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Abstract—The degree of tetragonality of TiAl and the effect of vanadium doping on it are studied theoretically
in the framework of the coherent-potential approximation using ab initio potentials. It is shown that substitution
of vanadium for Ti increases the degree of tetragonality, whereas substitution of vanadium for aluminum
decreases the degree of tetragonality of the TiAl : V alloy and the lattice becomes virtually cubic when the vana-
dium content is about 8 at. %; this, in turn, can increase the plasticity of TiAl, which is brittle at low tempera-
tures. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Intermetallic compounds are of considerable inter-
est from both the fundamental and practical standpoint
because of their possible application under high-tem-
perature conditions. Among these compounds are tran-
sition-metal aluminides, which are of importance in
modern technologies and possess many valuable prop-
erties, such as low density, high melting temperature,
and high load resistance. The TiAl-based intermetallic
systems have been the subject of many studies in recent
years [1–7].

Due to their low density and fluidity, these alloys are
an alternative to nickel alloys and other compounds
based on heat-resistant metals used in the aerospace
industry. However, in many cases, the former alloys are
not sufficiently plastic and, hence, are of limited useful-
ness. Because the deformation properties of these
alloys depend heavily on their crystal structure, ele-
mental composition, and the character of interatomic
interaction, the electronic structure plays a great role in
the formation of their plastic properties. Therefore, it is
important to study the electronic structure of these
alloys in the framework of the current theory.

At low temperatures, TiAl crystallizes in the L10
(CuAu) structure with a feebly marked tetragonality,
c/a = 1.02. To decrease its tetragonality and improve its
low-temperature plasticity, TiAl is lightly doped with
transition metals [2–5]. However, the experimental data
from those publications are not sufficient to reveal reg-
ularities in the dependence of the alloy structure on
doping with different metals, such as V, Cr, and Mn.
Furthermore, there are inconsistencies between the
results obtained by different groups of researchers,
which is probably due to the specific features of the
sample preparation techniques used.

In this paper, we perform an ab initio study on γ-
TiAl and the vanadium-doped binary alloy TiAl : V. The
dependence of the degree of alloy tetragonality on the
1063-7834/04/4608- $26.00 © 21383
concentration of vanadium substituting for Ti or Al is
determined. It is shown that, contrary to expectations,
substitution of V for Ti increases the alloy tetragonality.
However, substitution of vanadium for part of the Al
atoms causes the degree of tetragonality to decrease.

2. DETAILS OF THE CALCULATIONS

We applied two different methods for calculating
the electronic structure. For disordered alloys, we used
the method of exact MT orbitals (TMTO) [8] in combi-
nation with the coherent potential approximation
(CPA). The contributions from exchange-correlation
effects are calculated within the local density approxi-
mation with inclusion of generalized gradient correc-
tions [9]. The s, p, and d orbitals are used as a basis.
Integration over energy in the complex plane is per-
formed using 16 points on a semicircle. The Ti, V, and
Al atomic sphere radii are taken to be equal to the aver-
age radius of the Wigner–Seitz cell of the alloy. The
core states of all alloy components are recalculated in
each iterative cycle of the self-consistent procedure (the
unfrozen-core approximation). Integration over the
Brillouin zone is performed by involving 969 k points
in this zone. The equation of state for each case is
obtained by performing a cubic-spline interpolation of
the calculated total energies.

Using the VASP software package [0, 11] based on
ab initio pseudopotentials, we also carried out calcula-
tions for pure TiAl and for supercells containing 5.5 at. %
vanadium at Ti or Al sites. The many-electron
(pseudo)potentials used in the calculations are gener-
ated with allowance for all nodes of the wave functions
of the valence states and for the gradient corrections to
the local electron density [11, 12]. To determine the
electron density that minimizes the total energy of the
system according to the Hohenberg–Kohn theorem
[13], we calculated the wave functions using the David-
son method. Integration over the Brillouin zone is per-
004 MAIK “Nauka/Interperiodica”
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formed using the tetrahedron method with inclusion of
the Blöchl corrections [14] and involving 315 k points
in an irreducible part of the Brillouin zone (approxi-
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Fig. 1. Total energies calculated using the TMTO (EMTO)
and VASP methods.
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Fig. 2. Total energies of (a) Ti18(Al17V1) and
(b) (Ti17V1)Al18 supercells as a function of c/a at a fixed

unit cell volume of 218.36 au3.
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mately 4600 tetrahedra).The convergence criterion in
calculating the total energy is chosen to be 1 meV.

3. RESULTS

Using the TMTO method, we calculated the total
energy of γ-TiAl for several values of the unit cell vol-
ume and different values of the c/a ratio. At a fixed
value of c/a, the total energy reaches a minimum for a
unit cell volume of 218.36 au3, which is very close to
the experimental value (218.32 au3). For this value of
the unit cell volume, we calculated the total energy of
L10 TiAl using ab initio pseudopotentials (VASP). The
dependence of the total energy of γ-TiAl on the ratio c/a
at a fixed value of the unit cell volume (V = 218.36 au3)
is shown in Fig. 1. The results of TMTO and VASP cal-
culations virtually coincide, which lends additional
support to the adequacy of the methods used by us. The
equilibrium values of c/a calculated using the TMTO
and VASP methods are 1.0252 and 1.025, respectively,
and agree well with the experimental value c/a = 1.02
[15]. Therefore, the calculated equilibrium values of
the lattice parameters of TiAl are a = 3.988 Å and c =
4.0877 Å, which are close to the x-ray diffraction data,
a = 3.991 Å and c = 4.081 Å [16].

We also calculated the electronic structure of vana-
dium-doped TiAl alloys. Using the coherent potential
approximation makes it possible to study a disordered
alloy that forms when part of the atoms on one or both
sublattices of a binary alloy are replaced by atoms of a
third element. The available experimental data do not
give a decisive answer as to which sublattice is “pre-
ferred” by vanadium. For this reason, we calculated the
total energies of alloys (Ti99V1)(Ti1Al99) and
Ti(Al99V1). It is found that the energy of the Ti(Al99V1)
alloy is lower. From comparing the calculated total
energies of alloys (Ti99Al1)(Al99V1) and (Ti99V1)Al, it
follows that the energy of (Ti99V1)Al is lower. Thus, the
formation of antisite defects, i.e., the shift of Ti atoms
to Al sublattice sites or of Al atoms to Ti sublattice sites,
requires a greater energy than the substitution of V
atoms for Al and Ti atoms, respectively. Based on these
results, one might expect that neither of the two sublat-
tices will be preferred by vanadium (which agrees with
the conclusions made in [17]).

We performed calculations for the case where vana-
dium substitutes for atoms of only one (Ti or Al) sublat-
tice and its concentration x varies from 0 to 10 at. % on
the sublattice, i.e., for alloys (Ti100 – xVx)Al and
Ti(Al100 – xVx). Since the addition of a small amount of
V has virtually no effect on the equilibrium unit cell
volumes, the TMTO–CPA calculations of the total
energy are carried out at the same value of the unit cell
volume, 218.36 au3. The VASP calculations are per-
formed for supercells 3 × 3 × 2 in size (with the same
unit cell volume as for pure TiAl) containing 36 atoms
each. In one supercell, a V atom is placed at a Ti site,
and in the other, at an Al site; i.e., the supercells are
HYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
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(Ti17V)Al18 and Ti18(Al17V), respectively. Figures 2a
and 2b show the dependences of the total energy on the
ratio c/a at a fixed volume for alloys containing 5 at. %
V at Ti and Al sites, respectively. As is the case for pure
TiAl, the results obtained by the two methods for vana-
dium-doped alloys are in close agreement. Thus, the
total energy of alloys can be calculated by the TMTO
method within the coherent potential approximation
with the same accuracy as by the full-potential method.

Figure 3 shows the dependence of the ratio c/a of
TiAl : V alloys on the vanadium concentration on one
of the sublattices. The parameter c/a is seen to vary
smoothly. In the case where vanadium atoms are at Ti
sites, the c/a ratio increases monotonically from 1.025
to 1.03, which corresponds to the addition of 10 at. %
vanadium. In the case where vanadium substitutes for
Al atoms, the change in the c/a ratio is more significant,
c/a = 1.011 for alloy Ti(Al95V5). As can be seen from
the left-hand part of Fig. 3, the lattice becomes virtually
cubic on addition of 8 at. % V.

4. CONCLUSIONS
Thus, using the ab initio methods for calculating the

electronic structure, we have investigated γ-TiAl and
vanadium-doped TiAl alloys. It has been shown that
doping changes the degree of tetragonality of the
alloys. In the case where vanadium substitutes for Al
atoms, the c/a ratio decreases and the lattice becomes
virtually cubic as the V concentration reaches 8 at. %,
which can improve the plasticity of the alloy. Note that
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Fig. 3. Variation in the degree of tetragonality with vana-
dium concentration x. At x ≈ 8, the lattice becomes cubic.
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the tetragonality decreases when vanadium substitutes
for Al rather than Ti atoms.
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Abstract—Neutron diffraction studies of the fine structure of a Ti49Ni51 single crystal are performed before the
onset of the B2  B19' martensitic transformation (temperature of the onset of the transformation Ms = 200 K).
Upon cooling below 460 K, extra reflections are found to form; their positions in the B2-phase reciprocal lattice
correspond to the full non-Lifshitz star of the wave vector q = 0.225〈112〉 . At temperatures below 430 K,
0.45〈110〉  extra reflections appear, corresponding to second-order diffraction effects. In the temperature range
300–460 K, reversible and nonhysteretic changes in the intensities and positions of both types of extra reflec-
tions are observed. Analysis of the intensities and spatial distribution of the extra reflections in the B2-phase
reciprocal lattice indicates that a displacive superstructure dominated by longitudinally polarized atomic-
displacement waves with q = 0.225〈112〉  arises in the single crystal in the pretransition temperature range.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Binary titanium nickelide–based alloys undergo two
basic sequences of martensitic transformations (MTs):

B2  B2 + B19'  B19', (1)

B2  R  R + B19'  B19', (2)

where B2 is the high-temperature phase with a CsCl-
type long-range order and B19' and R are the marten-
site phases having monoclinic and rhombohedral
structures, respectively [1, 2]. MT sequence (1) is
characteristic of an equiatomic alloy (irrespective of
heat treatment) and similar alloys that have a higher
Ni content and are quenched from the B2 field. As the
temperature decreases, the concentration range of the
B2 field decreases sharply from ~57 at. % Ni at 1370
K [3] to ≤50.8 at. % Ni at 773 K [3, 4]. Thus, nickel-
rich TiNi-based alloys are aging alloys and undergo
MT sequence (2) upon heat treatment at temperatures
below 770–800 K [4]. In a wide temperature range pre-
ceding the formation of the R and B19' martensitic
phases, pretransition structures are formed, which can
change the physical–mechanical properties of binary
TiNi-based alloys [1, 2, 5]. The formation of the inter-
mediate displacive structure (IDS) preceding the
B2  R transformation has been studied in great
detail using various methods, such as electron micros-
copy [1, 5, 6], x-ray diffraction [5, 7], and neutron dif-
fraction [2, 8, 9]. The formation of IDS1 is character-
1063-7834/04/4608- $26.00 © 21386
ized by the appearance of (1/3)〈111〉 , (1/3)〈112〉 , and
(1/3)〈110〉  extra reflections in the electron, neutron, and
x-ray diffraction patterns. This structure is believed to
be due to correlation of the transverse waves of

1/3〈110〉q〈 〉 u atomic displacements (where q and u
are the wave vector and polarization vector, respec-
tively), which appear as a consequence of the softening
of the corresponding transverse phonon mode
TA2ξ[110] near ξ = 1/3 [10, 11].

The formation of the second-type of intermediate dis-
placive structure (IDS2) preceding the B2  B19'
transformation has been studied in less detail than IDS1;
it was mainly studied using electron diffraction [1, 5, 6,
12]. Structure IDS2 is identified by diffuse extra reflec-
tions that appear near the (1/2)〈110〉 positions in the
B2−phase reciprocal lattice and are strongly broadened
along the related directions. The broadening of the extra
reflections of IDS2 is assumed to be due to its incom-
mensurate structure with respect to the B2-phase lattice;
however, this assumption was not confirmed directly in
[5]. The incommensurate IDS2 structure was directly
detected in [9, 13], where the pretransition phase in a
massive Ti49Ni51 single crystal was studied using neutron
diffraction. After quenching from 1073–1123 K, this
crystal underwent the B2  IDS2  B19' phase
transformations. Below 420 K, extra doublet reflections
appeared in the (1/2 ± δ2)〈110〉  positions along radial

110
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directions 〈110〉  and the incommensurability parameter
δ2was as high as 0.09–0.10. Later [14], the same
authors showed that similar extra reflections also
appeared at temperatures below 420 K along nonradial
directions 〈110〉 . However, the results from [13, 14] are
insufficient to correctly describe the IDS2 structure
using only the correlation of incommensurate trans-
verse waves of atomic displacements with wave vectors
close to (1/2)〈110〉 . One of the reasons for this conclu-
sion is the presence of weak but reliably identified (1/2
– δ2)〈110〉  extra reflections in the neutron diffraction
patterns near the zero site of the reciprocal lattice; these
reflections must have zero intensity in the case of
purely transverse polarization. The appearance of these
reflections can be caused by either the longitudinal
component of atomic-displacement waves or second-
order (or higher-order) diffraction effects of neutron
scattering by correlated atomic displacements of other
types. Thus, to simulate the IDS2 structure, it is neces-
sary to study reflections located in other planes or in
other directions of the B2-phase reciprocal lattice or to
make certain that they are absent. The (110) and (111)
planes of the reciprocal lattice, which include the high-
symmetry 〈112〉  directions, are of great importance,
because, for example, longitudinal (2/3)〈111〉  atomic-
displacement waves, whose correlation induces the β

 ω transformation in bcc alloys [5], are equivalent

to (1/3)〈112〉q〈 〉 u transverse waves. Moreover, in

the ideal bcc structure, (1/2)〈110〉q〈 〉 u longitudinal

atomic-displacement waves and (1/2)〈110〉q〈 〉 u
transverse waves are equivalent to a

(1/2)〈 〉 q〈 〉 u transverse wave; however, this
equivalence is absent for incommensurate atomic-dis-
placement waves with q along the 〈110〉  directions.

The goal of this work is to apply neutron diffraction
to study the reflections in the 〈112〉  and 〈110〉  directions
of the B2-phase reciprocal lattice that appear when
IDS2 forms in a Ti49Ni51 single crystal as a result of the
B2  IDS2  B19' transformations.

2. EXPERIMENTAL

The initial Ti49Ni51 alloy was produced from electro-
lytic nickel N–0 and titanium iodide. A single crystal
was grown following the Bridgman technique in a
helium atmosphere with a preliminary vacuum of
10−3 Pa. The technique for preparing a single-crystal
sample 10 mm in diameter and 15 mm high, with its
axis being close to the B2-phase [001] direction, is
described in [8, 9, 13, 14]. The misorientation angle of
mosaic blocks was smaller than 1.2°. The initial struc-
tural state of the single-crystal sample, as in [9, 13, 14],
was produced by water-quenching from 1120 K. The
surface layer of the quenched sample was removed by
chemical polishing to a depth of ~0.25 mm. Upon cool-
ing, the sample underwent the B2  B19' transforma-

111

111

110

112 110
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      200
tion (Ms = 200 K). The results from [9, 13, 14] indicate
that, in the temperature range from 420 K to Ms, IDS2
is formed; it is identified by the appearance of incom-
mensurate extra reflections near (1/2)〈110〉  in the neu-
tron diffraction patterns.

Elastic scattering of thermal neutrons was studied
on a special-purpose multidetector diffractometer
intended for examination of the fine structure of single
crystals in the temperature range 1070–120 K. The
wavelength of neutrons incident upon the sample was
controlled by a double-crystal monochromator made of
pyrolytic graphite and germanium and was equal to
0.1567 nm. The monochromatized primary beam and
the chosen neutron wavelength allowed us to suppress
the effects of multiple diffraction harmonics and, thus,
substantially increase the sensitivity of the neutron dif-
fraction apparatus.

3. EXPERIMENTAL RESULTS

Neutron diffraction patterns taken from the Ti49Ni51
single crystal at T = 295 K along the 〈110〉  directions
and the nonradial 〈011〉  direction between the (011) and
(022) fundamental reflections of the B2 phase are found
to be qualitatively similar to the patterns taken in [8, 9,
13, 14]. A neutron diffraction pattern along the 〈011〉
direction that was not published earlier is shown in
Fig. 1. This pattern contains a pronounced extra-reflec-
tion doublet near (1/2)〈011〉 , which is characteristic of
the incommensurate IDS2. The reproducibility of the
extra-reflection profiles near (1/2)[110] and a similar
extra-reflection profile near (1/2)[011] indicate that the
structural state of the single-crystal sample at 295 K in
our studies [8, 9, 13, 14] is the same and characterized
by the presence of the incommensurate IDS2. The
incommensurability parameter δ2 characterizing the
positions of the (1/2 ± δ2)〈110〉  extra reflections with
respect to the centers of the corresponding zones of the
B2-phase reciprocal lattice is equal to ~0.05 ± 0.01.

New results were obtained when studying neutron
diffraction patterns taken along various 〈112〉  directions
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Fig. 1. Neutron diffraction pattern along the [011] direction
of the B2-phase reciprocal lattice at 295 K.
4



1388 GRISHKOV et al.
of the B2-phase reciprocal lattice. Figure 2a shows a

neutron diffraction pattern for the [ ] direction that is
typical of the radial 〈112〉  directions. Figure 2b shows a

neutron diffraction pattern along the nonradial [ ]

direction, which intersects the ( )and ( ) sites of
the B2-phase reciprocal lattice. Figure 3 gives frag-
ments of neutron diffraction patterns taken along the
nonradial equivalent 〈211〉  directions, which go

112

121

211 112

0 0.2 0.4 0.6 0.8 1.0 1.2
ξ[112]

––

400

300

200

100

(000)

1

(112)
––

2 3
(a)

0 0.2 0.4 0.6 0.8 1.0 1.2
ξ[121]

–

400

300

200

100

(112)
––

(211)
–

4 × 104

4

(b)

In
te

ns
ity

, c
ou

nt
s/

30
0 

s

Fig. 2. Neutron diffraction patterns taken at 295 K along

(a) the radial [ ] direction and (b) the [ ] direction,

which passes through the ( ) and ( ) sites of the
B2−phase reciprocal lattice.
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Fig. 3. Extra reflections in the nonradial 〈211〉  directions,
which pass through various sites of the B2-phase reciprocal

lattice: (a) from (122) to ( ) and (b) from (011) to (222).111
P

through the (122) superstructure site (Fig. 3a) and the
(011) structure site (Fig. 3b) of the B2-phase reciprocal
lattice. A characteristic feature of these neutron diffrac-
tion patterns is the presence of extra reflections (Fig. 2,
numerals 1–4; Fig. 5, numerals 1–7) near the recipro-
cal-lattice structure and superstructure sites. Analysis
of the neutron diffraction patterns shows that the posi-
tions of these extra reflections are determined by

(3)

where qm is a 0.225〈112〉  vector and m is the number of
the extra reflection. The profiles of the Gm extra reflec-
tions exhibit a significant dependence on orientation.

Figure 4 shows the profiles of the G2 = 〈 , ,

1.55〉  extra reflection measured along the 〈 〉  direc-

tion and along the perpendicular 〈 〉  direction. A
comparison of these profiles reveals that the half-width

of the G2 extra reflection in the 〈 〉  direction is

noticeably smaller than that in the 〈 〉  direction. As
follows from our studies, the shape of the Gm extra
reflections is close to a disk, with the disk plane being
normal to the 〈112〉  directions. The Gm extra reflections
are diffuse; their half-widths measured along the 〈112〉
directions are greater than those of the nearest funda-
mental and superstructure reflections of the B2 phase
by a factor of 1.5–2.

The distributions of the Gm extra reflections in the

(001)*, ( )*, and (111)* planes of the B2-phase
reciprocal lattice are given in Fig. 5. The extra reflec-
tions near the (1/2)〈110〉  positions (open contours),
which appear upon cooling below T01 = 430(±10) K, are
also shown in Fig. 5 [9, 13, 14]. To analyze the nature
of the Gm extra reflections, we have to study the temper-
ature dependences of their intensities and positions in
the reciprocal space and to find the temperature range
of their existence.

Figure 6 shows the evolution of the profile of the

G2 = 〈 , , 1.55〉  extra reflection upon heat-
ing, and Fig. 7 shows the temperature dependences of
its maximum intensity Imax, half-width ∆ξ, and position
ξ. It is seen that Imax decreases almost linearly upon
heating and that ξ increases insignificantly (~0.015 ±
0.005). In other words, the extra reflection shifts from

the nearest Bragg reflection ( ) upon heating and its
half-width increases noticeably. As follows from the
temperature dependence of Imax, the temperature of dis-
appearance of G2 upon heating is T02 = 460(±10) K.
Note that T02 is higher than T01 by about 40 K. Upon
repeated cooling to 295 K, the intensities and positions
of the Gm extra reflections are recovered (Fig. 8a).
Thus, both the extra reflections near (1/2)〈110〉  and the
Gm extra reflections coexist in a temperature range pre-
ceding the B2  B19' transformation and character-

Gm Ghkl qm,+=

0.775 0.775
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110
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0.775 0.775

112
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ize the pretransition IDS2 phase. This phase is suffi-
ciently stable in this temperature range: there are no
substantial changes in the profiles and positions of the
Gm extra reflections in the neutron diffraction patterns
taken after 1.5 years of storage of the sample at 295 K
(Fig. 8b).

4. DISCUSSION OF THE RESULTS
It is known [6, 16] that the positions of extra reflec-

tions near reciprocal-lattice sites of an initial phase in
which a modulated structure appears due to a correla-
tion of atomic-displacement waves of different types
with an amplitude u are determined by the scattering
vector

(4)

where bj is the jth reciprocal-lattice site; qi is the ith ray
of, e.g., the non-Lifshitz star of a wave vector charac-
terizing the spectrum of atomic-displacement waves;
and pi are integers (0, 1, 2, …). First-order diffraction
effects (in the case where one pi is ±1 and the others are
zero) correspond to the regular appearance of pair extra
reflections near reciprocal-lattice sites at the points

(5)

The intensities Iji of extra reflections of this type are
proportional to the square of a Bessel function of the
argument Zp = (Gij , up). Extra reflections in the posi-
tions bj + qi and bj – qi have the same intensities, and,
for small values of Z, we have

(6)

Second-order diffraction effects can appear at the
reciprocal-lattice points

(7)

(one pi is 2, the others are zero).

Their intensities  have a more complex form and,
at small Z, can be estimated from the expression

(8)

As a rule,  are much less intense than Iji.

Another type of second-order diffraction effects
corresponds to extra reflections whose positions are
characterized by the scattering vectors

(9)

(two pi, e.g., pk and pl, are equal to ±1, and the others
are zero). The intensities of these extra reflections are

close to  in order of magnitude. The intensities of

higher order extra reflections are well below  and

; hence, the probability of their detection is very low.

G j b j piqi,∑+=

G ji b j qi.±=

I ji G ji ui,( )2
.∼

Gij' b j 2qi±=

I ji'

I ji' G ji ui,( )4
.=

I ji'

G jkl'' b j qk± ql±=

I ji'

I ji'

I ji''
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A comparison of our experimental data and the the-
ory developed in [17] suggests that the extra reflections
along the 〈112〉  directions of the B2-phase reciprocal
lattice are first-order diffraction effects corresponding
to the full non-Lifshitz star of the wave vector,

q = 0.225〈112〉 , (10)

each of whose rays is incommensurate with the transla-
tions of the initial cubic crystal. In accordance with the
theory [16, 17], the intensities of the extra reflections
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with bj + qi and bj – qi are virtually the same if we take
into account the difference (which can reach ~10%) in
the angular intensity factors. For example, these are
pairs of extra reflections 2, 3 and 4, 5 in different 〈112〉
directions near the ( ) fundamental reflection of the
B2 phase (Fig. 2). The theory is also supported by the
presence of very weak diffuse maxima near (1/2 ±
0.05)〈112〉  (Fig. 2), which should correspond, accord-

ing to [16, 17], to the second-order  reflections (see
Eqs. (7), (8)). The doublet incommensurate extra
reflections (1/2 ± δ2)〈110〉  with δ2 ≈ 0.05, whose inten-
sities are 30–40% lower than the intensity of the extra
reflections characterized by Eq. (10) and which appear
at temperatures lower than T02, also correspond to sec-
ond-order diffraction effects (two-beam effects) but

belong to their second type, , defined by Eq. (9).
For example, the extra reflections in the (100)* plane
(Fig. 1) appear as a result of the correlation of atomic-
displacement waves of the type

(11)

(in the reduced zone). The extra reflections near
(1/2)〈110〉  in the (001)* plane, which were earlier
described in [9, 13, 14], also correspond to correlations
of a similar type,
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Thus, the analysis of the experimental diffraction
effects detected in the 〈112〉  and 〈110〉  directions of the
B2-phase reciprocal lattice suggests that all 24 rays of
the star of the wave vector in Eq. (10) are involved in
the formation of the neutron diffraction patterns of
IDS2 in the quenched Ti49Ni51 single crystal. In this
case, according to [16], the B2  IDS2 phase trans-
formation is characterized by a double-beam transfor-
mation channel and the IDS2 has a multidomain struc-
ture.

Another important problem, which can be discussed
using the experimental data obtained, is related to the
character (transverse or longitudinal) of displacement
waves appearing in the pretransition temperature range.
Based on the distribution of the extra reflections in the
reciprocal space, we can assume that the spectrum of
the atomic-displacement waves involved in the forma-
tion of IDS2 contains waves with clearly pronounced
longitudinal polarization. This assumption is based on
the presence of the weak but clearly visible 0.225〈112〉
extra reflections in the radial 〈112〉  directions near the
zero site of the B2-phase reciprocal lattice. The intensi-
ties of these extra reflections should be zero for any
type of transverse polarization u of the atomic-dis-
placement waves with q = 0.225〈112〉 , e.g., for u
directed along 〈111〉 , 〈 〉 , and 〈 〉 .

An argument for the involvement of longitudinal
waves in the formation of IDS2 is the presence of the
(1/2 – δ2)〈110〉  extra reflections in the neutron diffrac-
tion patterns in the radial 〈110〉  directions near the zero
site of the reciprocal lattice; according to Eq. (9), these
are two-beam effects of neutron scattering by a modu-
lated structure corresponding to the star of the wave
vector given by Eq. (10).

The existence of longitudinal displacement waves of
this type does not exclude the simultaneous presence of
components with transverse polarization and the same
wave vector along 〈110〉  in the premartensitic state of
the alloy and, in general, the presence of atomic-dis-
placement waves with other wave vectors and other dis-
placement polarization, whose diffraction effects will
completely or partly correspond to the extra-reflection
distribution in the neutron diffraction patterns obtained
in this work.

First of all, transversely polarized waves with q =

0.225〈 〉  and polarization vectors of the 〈 〉  and

〈111〉  types can be present. The (1/2)〈 〉 q〈 〉 u
transverse waves in the CsCl structure are equivalent to
transverse waves of the TA2 [110] phonon branch at ξ =
1/2. In [10, 11], it was found experimentally that, on the
whole, the TA2ξ [110] phonon branch in TiNi-based
alloys is low-energy, and the authors of [10, 18, 19]
found that, near the Brillouin zone boundary, there is a
deep minimum, which covers a rather wide range of
wave vectors (from ξ ≈ 0.4 to 1/2). The development of
anomalous softening of the TA2ξ [110] phonon branch

110 312

112 110

112 110
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in the vicinity of ξ = 1/2 was observed upon cooling in
the pretransition temperature range [10]. The diffuse
pretransition effects that appear in electron diffraction
patterns of TiNi-based alloys were comprehensively
discussed in [1, 2, 5, 12] in terms of the development of

weakly incommensurate correlated (1/2)〈110〉q〈 〉 u
atomic-displacement waves. Thus, the first- and sec-
ond-order diffraction effects that appear upon neutron

scattering by the correlated (1/2 – δ2)〈110〉q〈 〉 u
atomic-displacement waves can substantially overlap
(in the B2-phase reciprocal lattice) second-order dif-
fraction effects described by Eqs. (7) and (9) and
belonging to the star of the wave vector in Eq. (10). In
particular, at 1/2 – δ2 = 0.45, the space positions of
these reflections coincide completely.

In TiNi-based alloys, there exists a high probability of
appearance of diffraction effects induced by the correla-
tion of quasi-transverse atomic-displacement waves of
the so-called special phonon mode, which is close to the

transversely polarized T2〈112〉q〈 〉 u mode (their mis-
orientation is ~5° [20]). Softening of the specific elastic
modulus Cs, which characterizes the beginning of this
phonon-spectrum branch, was observed upon cooling
TiNi-based [21] and other alloys with the initial B2 struc-
ture (AuCd [22], NiAl [19, 22], Au–Ag–Cd [23]) in the
pretransition temperature range. A significant decrease
in the T2ξ [112] phonon energy at ξ ≈ 1/3 was detected
experimentally only in the pretransition temperature
range of the β  9R martensitic transformation in a
Cu–19.3 wt % Zn–13 wt % Al alloy [24]; in most other
alloys with the initial B2 structure, this phonon-spectrum
branch has not yet been studied. In [25–27], it was
assumed that, in β-Ti, β-Zn, and the related alloys, the
energy of T2ξ [112] phonons at ξ = 1/3 should also
decrease. In this case, these phonons are equivalent to
phonons of the LAξ [111] longitudinal mode at ξ = 2/3,
whose softening was observed in all these alloys when
approaching the β  ω martensitic transformation
[5, 25] and the β  9R transformation [24].

The complex structure of the phonon spectrum of
titanium nickelide–based alloys [28, 29] suggests vari-
ous scenarios of the development of correlated atomic-
displacement waves of different types and, hence, the
possible formation of various pretransition IDS2 struc-
tures (dominated by longitudinal waves, transverse
waves, or various combinations of them). Therefore, it
is important to study the second-order diffraction
effects, whose spatial distribution and intensity give
additional information on each of these structures. At
the same time, we can qualitatively estimate the ratios
of the integrated intensities of extra reflections using
Eq. (6) even without regard to the possible presence of
displacement waves other than longitudinally polarized
waves with q = 0.225〈112〉 . Estimates indicate that the
most intense extra reflections in the cubic field of the
reciprocal space bound by (200)-type sites should exist
near the (112) structural sites, which are located in the

110

110

111
4
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radial 〈112〉  directions. The ratio of the integrated inten-
sities of the extra reflections located in these directions
near the zero site should be about 8.6 : 1.0. The inte-
grated intensities of the extra reflections localized in the
nonradial 〈112〉  directions should be weaker than the
extra reflections located in the radial directions near the
(112) sites by a factor of 2–4. The experimental ratios
of the extra reflections considered above and partly
given in Figs. 2, 3, and 5 are close to the calculated val-
ues; their differences do not exceed 20%. The differ-
ences between the experimental and calculated values
are satisfactory, making allowance for the fact that
Eq. (6) was obtained under the assumption that the
argument of the corresponding Bessel functions
describing the extra-reflection intensities was small
[16, 17]. However, the amplitudes of atomic displace-
ments in the premartensitic temperature range (includ-
ing TiNi-based alloys [1, 5, 10]) can be 10% or more of
the values corresponding to the interplanar spacings;
therefore, Eq. (6) is applied near the boundary of its
range of application. The agreement between the calcu-
lated and experimental values of such subtle parameters
as the ratios of the integrated intensities of the extra
reflections supports the assumption regarding the dom-
inating role of the 0.225〈112〉q〈112〉u longitudinal dis-
placement waves in the formation of IDS2 in the alloy
under study.

In concluding, we note that the diffraction effects in
the form of strongly incommensurate (1/2 – δ2)〈110〉
(with δ2 varied from 0.05 to 0.1) extra reflections are
not a unique phenomenon that can exist only in TiNi-
based alloys undergoing the B2  B19' martensitic
transformation. In particular, electron diffraction pat-
terns corresponding to the (110)* planes of the recipro-
cal lattice of Ti54Ni46 – xFex (x = 0–16 at. %) and
Ti50Pd50 – xFex (x = 0–16 at. %) alloys contain pairs of
∆i 〈110〉  extra reflections (i = 1, 2) in the pretransition
temperature range before the B2  B19 martensitic
transformation. Depending on the alloy composition
and the recording temperature (T > Ms), the positions of
these reflections change from ∆1 ≈ 0.22 to ∆1 ≈ 1/3 and
from ∆2 ≈ 1/2 to ∆2 ≈ 1/3 (for the first and second extra
reflection of each pair, respectively) [30]. In [31], neu-
tron diffraction patterns of a Ti50Pd42Cr8 alloy also
exhibit 0.22〈110〉  extra reflections in the pretransition
temperature range of the B2  B19 martensitic trans-
formation. No softening of the TA2ξ [110] phonon
mode at ξ = 0.22 was detected in [31]. Other planes and
directions were not studied in [31]. The reasons for the
appearance of these extra reflections in TiPd-based
alloys are unknown. However, the fact that the positions
of the extra reflections in the 〈110〉  directions in TiPd-
based alloys doped with Fe and Cr [30, 31] are close to

the second-order reflections ( ) belonging to the
star of the wave vector in Eq. (8) suggests that the
results of a detailed study of these effects in TiNi-based
alloys could prove important not only for simulating the

G jkl''
P

IDS2 structure in them but also for the development of
general concepts on IDS structures that appear in vari-
ous alloys undergoing the B2  B19' (or B2  B19)
martensitic transformation.

5. CONCLUSIONS

(1) We have performed a neutron diffraction study
of a quenched Ti49Ni51 single-crystal alloy with a sin-
gle-phase B2 structure that undergoes the B2  B19'
martensitic transformation upon cooling below Ms =
200 K. The alloy is known to have a pretransition inter-
mediate displacive structure (IDS2) at about 300 K.
Neutron diffraction patterns revealed 0.225〈112〉  first-
order reflections belonging to the complete 24-ray star
of the wave vector q = 0.225〈112〉 .

(2) Second-order diffraction effects in the form of
0.45〈112〉  and 0.45〈110〉  extra reflections, which are
close to the (1/2)〈110〉  commensurate equivalent vec-
tors of the B2-phase reciprocal lattice, have been
revealed and studied.

(3) Based on the experimentally found spatial distri-
bution of the diffraction effects and analysis of the
intensities of the extra reflections in both radial and
nonradial directions of the B2 reciprocal lattice, we
have shown that these diffraction effects are caused by
the correlation of longitudinally polarized atomic-dis-
placement waves with q = 0.225〈112〉  in the tempera-
ture range of IDS2.

(4) Neutron diffraction studies at various tempera-
tures have indicated that the 0.225〈112〉  extra reflec-
tions appear upon cooling below T02 = 470 ± 10 K and
that the 0.45〈110〉  extra reflections appear upon cooling
below T01 = 430 ± 10 K. The intensities of all the extra
reflections detected increase upon cooling to Ms, then
decrease to zero without hysteresis upon subsequent
heating above T01 (for the 0.45〈110〉  reflection) and T02
(for 0.225〈112〉), and again increase during repeated
cooling below these temperatures.

(5) We assumed that the correlation of longitudi-
nally polarized atomic-displacement waves plays a
dominating role in the formation of IDS2 in the alloy

under study. The (1/2 – δ2)〈110〉q〈 〉 u transversely
polarized atomic-displacement waves (where δ2 can
vary from 0 to 0.1) can also take part in this process.
Since the contributions from atomic-displacement
waves of different types can vary because of the com-
plex structure of the acoustic-phonon spectrum in TiNi-
based alloys, various IDS2 can arise that differ in terms
of their fine crystal structure.
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Abstract—Single-crystal samples of the Bi2 + xSr2 – x – yCu1 + yO6 + δ system revealed anomalous (negative)
thermal expansion in the temperature range 10–20 K. Magnetic fields of 1–3 T were found to strongly affect
the position and width of the anomaly region. A thermal-expansion singularity was detected at temperatures
T ≈ 30–50 K, which may be related to the formation of a pseudogap. © 2004 MAIK “Nauka/Interperiodica”.
The temperature dependence of the thermal expan-
sion coefficient, α(T), of a number of HTSCs shows
anomalies at low temperatures [1]. Cuprate HTSC sys-
tems La2 – xSrxCuO4, YBa2Cu3O7 – x, and
Bi2Sr2CaCu2O8; the bismuthates Ba1 – xKxBiO3,
BaPbxBi1 – xOx; and MgB2 [2] reveal α(T) < 0 within a
certain temperature interval. Magnetic fields of a few
teslas strongly affect the position and width of the α(T)
anomaly region [3]. These effects were generally
observed on as-prepared high-quality samples. It was
shown in [1] (with the Ba1 – xKxBiO3 system) that the
anomaly of thermal expansion is manifested most
strongly in the light-doping region and disappears
under heavy doping. This anomaly is apparently a fun-
damental property of all HTSC systems; therefore, it
should be related to the mechanism of high-tempera-
ture superconductivity. A final conclusion on this point
would require additional studies in systems where the
α(T) dependence at low temperatures (in particular, in
magnetic fields) has not yet been investigated.

Recent studies have revealed the particular place the
Bi2Sr2CuO6 (Bi-2201) system holds in the investigation
of HTSCs [4]. These studies produced the first clear
indication that the superconducting gap ∆ and the
pseudogap ∆* differ strongly in magnitude and coexist
down to the lowest temperatures reached. In other
HTSC systems, the pseudogap ∆* at low temperatures
is comparable in magnitude to ∆ to such an extent that
they are practically indistinguishable. Various explana-
tions of the nature of the pseudogap have been offered.
The unique data quoted in [4] considerably narrow the
area on which the search for the mechanism of
pseudogap formation in HTSC systems should be
focused.

We carried out measurements of the thermal expan-
sion of single-crystal Bi2 + xSr2 – x – yCu1 + yO6 + δ samples
with different doping levels in the temperature region
1063-7834/04/4608- $26.00 © 21394
4.2–80 K and studied its response to magnetic fields of
up to 2.8 T. We investigated samples prepared by two
methods, namely, radiation-heated skull melting [5]
and growth in a gas cavern in a melt solution [6]. Ther-
mal expansion was investigated on samples of two
types. Samples of the first type, with the composition
x = 0.30–0.32, y = 0.01–0.04, and δ = 0.18–0.19, are
subsequently referred to as Bi-A, and samples of the
second type, with the composition x = 0.19–0.20, y =
0.10–0.12, and δ = 0.10, are referred to as Bi-B. The
composition of a sample was determined by electron
probe microanalysis (EPMA) and energy-dispersive x-
ray analysis (EDX). The compositions of the samples
studied here are known [4, 7] to be classed among
heavily doped materials, with the Bi-A samples being
more strongly doped. Preliminary results of these stud-
ies were reported earlier [8].

X-ray characterization showed the samples under
study to be of very high quality. Diffractograms of the
crystals contained only one series of very strong (001)
reflections. The lattice parameters of the Bi-A samples
are a = 5.410 Å and c = 24.55 Å; for the Bi-B samples,
they are a = 5.390 Å and c = 24.60 Å. The rocking curve
halfwidths attest to the high structural perfection of the
crystals. For instance, the halfwidth of the rocking
curve for the main lattice (0016) reflection in Bi-A sam-
ples was 0.1°–0.2°. Samples of both types revealed
superstructural modulation correlating with the critical
temperature. From the known dependence of the lattice
parameters of the Bi-2201 system on composition, it
follows that the x-ray measurements agree well with
the data derived from EPMA and EDX. The critical
temperatures Tc of the samples were derived from mea-
surements of the differential magnetic susceptibility. It
was found that for the Bi-B samples Tc = 7.2 ± 0.1 K and
for the Bi-A crystals Tc < 4 K.
004 MAIK “Nauka/Interperiodica”
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The change in sample length ∆L/L was measured
dilatometrically with a sensitivity of ~10–7 [9]. The
magnetic field was oriented parallel to the direction in
which the strain was determined. The setup was cali-
brated by measuring the thermal expansion of samples
of rare-earth oxides with a well-known α(T) depen-
dence.

Figure 1 shows typical temperature dependences of
∆L/L obtained for samples of both types (Bi-A, Bi-B) at
H = 0. The curve for the Bi-B sample clearly exhibits
two features, a low-temperature one at T ≤ 30 K and a
“high-temperature” feature in the region of T ~ 50 K.
For Bi-A samples with a higher doping level, the tem-
perature dependence of ∆L/L has only one, high-tem-
perature, feature in the region T = 25–35 K. At lower
temperatures, the thermal expansion of such samples is
practically zero (below the sensitivity level of the sen-
sor). Above the high-temperature feature, the tempera-
ture dependences of ∆L/L for both samples exhibit a
behavior typical of metals, with a positive coefficient of
thermal expansion.

The temperature behavior of the thermal expansion
coefficient α = (1/L)dL/dT in the region of the low-tem-
perature anomaly and the effect of a magnetic field on
this anomaly are illustrated in Fig. 2 for Bi-B samples.
We readily see that the region with α < 0 shifts to lower
temperatures with increasing magnetic field. The
dependence of the temperature of the minimum in α(T)
on magnetic field is presented graphically in Fig. 3.

The positions of the ∆L/L anomalies observed in Bi-
B samples in the higher temperature region (30–55 K)
are shown in Fig. 4 for various magnetic fields H. These
results were obtained by subtracting from the experi-
mental data the linear relation extrapolated from the
low-temperature region (here, experimental data are fit-
ted with good accuracy by a linear relation; see Fig. 4).
The onset of the anomaly is seen to shift toward lower
temperatures with increasing magnetic field. Figure 5
plots the dependence of the temperature of the anomaly
onset on H.

Analysis of these results should be performed with
due account of the fact that an increase in bismuth con-
centration in a sample in itself entails a decrease in the
hole concentration. On the other hand, this growth is
accompanied by an increase in the oxygen concentra-
tion, which gives rise to an increase in the hole concen-
tration. This complicates analysis of the phase diagram
in the region where the bismuth concentration is over 2.
Substitution of bismuth for strontium and insertion of
oxygen likewise result in a change in the distance
between the CuO2 and SrO planes. Strong changes in
the interatomic distances lead to a noticeable change in
Tc [4, 7]. At x ~ 0.4, the samples even become semicon-
ducting. Therefore, a study of the phase diagrams of
HTSC systems should take into account, in addition to
the variation in the carrier concentration with doping,
the effect of a variation in interatomic distance and the
ensuing distortion of the crystal lattice.
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Fig. 1. Typical temperature behavior of thermal expansion
∆L/L in a zero magnetic field obtained on samples (1) Bi-A
and (2) Bi-B. For convenience, the curve for the Bi-A sam-
ple was translated vertically by 1 × 10–4.
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Fig. 2. Temperature dependences of the thermal expansion
coefficient α(T) = (1/L)dL/dT in the region of the low-tem-
perature anomaly obtained for Bi-B samples in different
magnetic fields. The points are our experimental data, and
the curves are least square interpolations. For convenience,
the α(T) curves corresponding to different magnetic fields
are translated vertically by multiples of 0.2 × 10–4 K–1.
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Figure 6a shows a schematic phase diagram for the
Bi-2201 HTSC system drawn in the T vs. p coordinates,
where T is the temperature and p is the hole concentra-
tion reduced to one copper ion [10]. The solid line is a
plot of Tc(p), and the dashed line is the graph of the
T*(p) dependence, where T* is the temperature of the
pseudogap formation. Our samples belong to the
heavy-doping region with p * 0.2. Figure 6b shows the
positions of the high-temperature anomalies obtained
by us for the two types of samples and plotted versus Tc,
as well as the data on T* taken from [4, 7, 11]. We
readily see that this dependence is linear in the zero
approximation (actually, the best fitting dependence
also contains a small quadratic term, but, because of the
limited number of available points, this result is not
reliable). It is conceivable that the high-temperature
thermal expansion anomaly observed by us at T ≈ 30–
50 K is due to pseudogap formation. Thus, if we
subscribe to this conclusion, a pseudogap in the
Bi2 + xSr2 – x – yCu1 + yO6 + δ system should be observable

0.1

0
20

T, K

F, 10–4

H = 0

30 40 50 60

–0.1

–0.2

–0.3

–0.4

H = 1.41 TH = 2.82 T

Fig. 4. Positions of the ∆L/L anomalies observed in the tem-
perature interval 30–55 K in different magnetic fields H.
The quantity F was obtained by subtracting the linear
dependence (extrapolated from the low-temperature region)
from the experimental data. For convenience, the data for
∆L/L corresponding to different magnetic fields are trans-
lated vertically by multiples of 0.1 × 10–4.
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0 1 2 3
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Tanom, K

40

Fig. 5. Temperature of the onset of the high-temperature
anomaly plotted vs. H.
PH
up to carrier concentrations p * 0.2, i.e., to the bound-
ary of the superconductivity region. This point was
taken into account in constructing the phase diagram in
Fig. 6a.

Generally speaking, in this experiment, one
observes the so-called dielectric pseudogap , which
forms, according to our model [12], for certain recipro-
cal lattice directions and results in an increase in Tc.
Experiments [4] convincingly showed the pseudogap
and the superconductivity in the bismuth system to dif-
fer in physical nature. In other words, the pseudogap
observed in our experiments and in [4] is not related to
superconductivity. According to our model [12], the
formation of a dielectric pseudogap  should be
accompanied by a structural distortion and observed in
thermal-expansion experiments (Fig. 1). At the same
time, a “superconducting” pseudogap  (appearance
of incoherent carrier pairs), which is observed in some
experiments, may, in principle, also form in the system.
Despite the dielectric pseudogap  and the supercon-
ducting gap ∆ being of different origin, they are inti-
mately related because both are of electronic nature.

It was shown in [4] that, in contrast to other HTSC
systems, in Bi-2201 both the superconducting gap and
the pseudogap are observed to exist down to the lowest
temperatures reached. This should be assigned to them
differing strongly in magnitude. This is why they do not
coalesce, as they do in other HTSCs. It was also shown
that such a large gap difference originates from defor-
mation of the CuO2 sheets caused by a strong modula-
tion in the BiO planes. This deformation suppresses the
superconducting gap and decreases Tc while affecting
the magnitude of the pseudogap only weakly. This
implies that superconductivity (the value of Tc) depends
not only on the hole carrier concentration but also on
the degree of deformation D of the CuO2 sheets. There-
fore, a more complete phase diagram of HTSC systems
should be constructed in the T–p–D coordinates. This
manifests itself most vividly in the Bi-2201 system,
where Tc was successfully increased from 7 to 47 K by
reducing the deformation (through doping by lantha-
num and lead) [13].

It should be pointed out that, in the case of heavy
doping, similarly to other HTSC systems (for instance,
Ba1 − xKxBiO3 [3]), the coefficient α in the
Bi2 + xSr2 − x − yCu1 + yO6 + δ system is positive through-
out the temperature range covered. As the doping level
decreases, however, a thermal expansion anomaly
(α < 0) appears in the low-temperature range. The tem-
perature region of the α anomaly grows in extent as the
hole concentration decreases.

As in other HTSC systems [1–3],
Bi2 + xSr2 − x − yCu1 + yO6 + δ exhibits an anomalously
strong dependence of negative thermal expansion on a
magnetic field. This suggests that the anomalous (neg-
ative) coefficient α is of electronic nature [14].

∆D*

∆D*

∆c*

∆D*
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Figures 3 and 5 plot the variation of the temperature
of the minimum in α(T) and the position of the high-
temperature anomaly versus the magnetic field. In a
first approximation, these relations are linear and we
can readily estimate the field in which the anomalies
should vanish. It was found that the magnetic field
required to suppress both anomalies is 7–11 T. Unfor-
tunately, we did not have facilities for producing such
fields and, thus, could not verify this conclusion exper-
imentally.

300
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100

0
0.1 0.2 0.3

(a)

T*

Tc

p

T, K

300

200

100

0 10 20 40

(b)

Tc, K

T*, K

30

Fig. 6. (a) Phase diagram of the HTSC plotted in the T–p
coordinates (T is the temperature; p is the hole concentra-
tion reduced to one copper ion). Solid line is the Tc(p)
dependence; dashed line is the T*(p) plot (T* is the temper-
ature of pseudogap formation). (b) Dependence of T* on Tc;
the circles identify the positions of the high-temperature
anomalies obtained by us, and the squares relate to the data
on T* taken from [4, 7, 11].
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The results obtained in this work offer additional
grounds to believe that the observed anomalies in the
thermal characteristics, including their dependence on
magnetic field and doping level, are a fundamental
property of HTSC systems.
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Abstract—High-frequency losses in the strongly anisotropic layered superconductor Bi2Sr2CaCu2O8 are mea-
sured at 600 MHz under a magnetic field rocking about the ab plane. Anomalies in losses and hysteretic phe-
nomena are found while performing periodic rocking, i.e., cycling the magnetic field component normal to the
sample surface. Based on these observations, conclusions are drawn about the nature of magnetic-flux penetra-
tion into the superconductor. It is found that, in the range between 60 K and Tc, the dynamics of magnetic-flux
vortex lines normal to the ab plane in the presence of a constant magnetic field applied parallel to this plane is

governed by the critical penetration field  and the surface barrier in the presence of thermally activated

vortex motion (giant flux creep). The dependences of  and the characteristic field of the surface barrier on
the magnitude of the parallel magnetic field are measured. © 2004 MAIK “Nauka/Interperiodica”.

Hc
⊥ *

Hc1
⊥ *
1. INTRODUCTION

Interest in strongly anisotropic superconductors
remains strong because of the many striking features
exhibited by high-temperature superconductors. These
features are related, to a great extent, to the anisotropy
of these semiconductors and to the layered nature of
their lattices. Bi2Sr2CaCu2O8 is a prominent example of
this class of materials. Each half of its unit cell along
the c axis (a = 30.5 Å) contains one double CuO2 layer,
which supports conductivity and superconductivity.
The critical current densities along the CuO2 layers
(i.e., along the ab plane of the crystal) and along the
normal to them differ by up to four orders of magnitude
or greater, depending on the composition in the homo-
geneity region and on the conditions of thermal treat-
ment.

Strong anisotropy of the electrical properties of the
superconductors in question leads to anisotropy of their
magnetic properties. Magnetic flux can penetrate into a
layered superconductor with a weak, supposedly
Josephson coupling between layers in the form of vor-
tices of two different types. Vortex lines parallel to the
c axis of the crystal run through superconducting layers
and are similar to Abrikosov vortices in conventional
isotropic superconductors, but they can be represented
as a column of two-dimensional vortices or pancakes
[1]. Vortex lines parallel to the ab planes of the crystal
(to the superconducting layers) are coreless and similar
to the Josephson vortices present in wide tunnel junc-
tions [2].

Coexistence of the two types of magnetic-flux vorti-
ces gives rise to a variety of compound vortex struc-
1063-7834/04/4608- $26.00 © 21398
tures in a slanted magnetic field depending on the
degree of anisotropy and the relation between the
Josephson and magnetic energies [3–6]. Interaction
between Josephson vortices and pancakes in a com-
pound vortex structure modifies their total energies,
thus affecting the values of the critical fields governing
the dynamics of magnetic flux in strongly anisotropic
superconductors. At present, there are a number of the-
oretical and experimental publications devoted to the
study of the influence of a compound vortex structure
arising in a slanted magnetic field on the properties of
pancake and Josephson vortex lattices and on the melt-
ing line of the pancake vortex lattice [7–9].

The magnetization of Bi2Sr2CaCu2O8 in magnetic
fields up to 1 kOe directed at a small angle to the ab
plane was studied in [10]. In that work, experimental
observations were explained in terms of two critical

magnetic fields, namely,  corresponding to the
onset of penetration of magnetic flux parallel to the ab

plane into the sample and  corresponding to the
onset of penetration of flux parallel to the c axis. The

field  was found to be independent of the magnetic
field projection onto the ab plane. Several theoretical
papers [3] have discussed the behavior of an intersect-
ing vortex lattice in strongly anisotropic layered super-
conductors placed in a slanted magnetic field (phase
diagram in the H⊥  vs. H|| coordinates). It was shown

that, if H⊥  <  (where  is the critical field for
the penetration of magnetic flux parallel to the c axis

Hc1
||

H p
⊥

H p
⊥

Hc1
⊥ * Hc1

⊥ *
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with inclusion of the demagnetization factor), then the
vortex lattice consists only of Josephson vortices paral-
lel to the superconducting layers; that is, the sample is

locked in. At H⊥  > , the magnetization vector devi-
ates from the ab plane and pancakes appear. These
results are in agreement with those from [1] (if we set

 ≡ ).

In the present work, we studied high-frequency
electromagnetic field absorption in Bi2Sr2CaCu2O8 sin-
gle crystals at a frequency of 600 MHz. Fixed magnetic
fields ranging from zero to several kilooersteds were
applied along the ab plane, and a slowly varying mag-
netic field with a peak value of about 20 Oe was applied
normally to the ab plane along the c axis. From the
observed features of the high-frequency absorption, we
made conclusions regarding the behavior of the mag-
netic flux in the sample.

2. EXPERIMENTAL

To study high-frequency losses in a sample, we
employed a technique based on measuring the trans-
mission signal of a spiral resonator with the sample
placed inside it [11, 12]. The measurement circuit con-
sisted of a decimeter-range FM generator, a spiral reso-
nator, an mw detector, and a peak detector. The mea-
sured signal was proportional to the maximal transmit-
ted mw power during the period of frequency
modulation. If the resonance frequency of the loaded
resonator is within the modulation range, the variation
of the peak signal is proportional to the variation of the
quality factor of the resonator, which, in turn, is propor-
tional to the absorption in the sample. The resonance
frequency in our experiments was about 600 MHz. The
axis of the spiral resonator (which coincided with the
polarization of the mw magnetic field) was horizontal,
normal to the c axis, and parallel to the vertically
aligned ab plane of the sample (Fig. 1). The magnetic
field was created by an electromagnet, which could
rotate in the horizontal plane. This made it possible to
accurately align the field direction with the ab plane of
the sample by rotating the magnet and watching for fea-
tures of the loss behavior. An additional split coil pow-
ered by a sawtooth current at a frequency of about
0.01 Hz created a magnetic field normal to the sample
surface. The spiral resonator was placed in the center of
the coil such that their axes were orthogonal. Measure-
ments were performed at temperatures near the liquid-
nitrogen temperature with the use of a heater, which
made it possible to achieve temperatures ranging from
80 to 100 K. Most of the measurements were made at
80 K. A detailed description of the measurement tech-
nique can be found in [12].

We studied two sets of Bi2Sr2CaCu2O8 single crys-
tals. One (first) set was grown at Moscow State Institute
of Steel and Alloys by using the floating zone melting
method and had Tc = 91 K; samples from the other (sec-

Hc1
⊥ *

Hc1
⊥ * H p

⊥
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ond) set were prepared at the Royal Institute of Tech-
nology (Stockholm) by slow solidification of a nonsto-
ichiometric melt of a mixture of Bi, Sr, Ca, and Cu
oxides (composition 2.4 : 2 : 1 : 2) and had Tc = 86 K.
Samples were about 1 mm across with a thickness of
less than 1 µm. The superconducting transition width
obtained in resistance measurements was about 1 K.

3. EXPERIMENTAL RESULTS

Figure 2 presents dependences of the high-frequency
losses on a normal magnetic field at several values of the
parallel field. The curve at zero parallel field corresponds
to the beginning of penetration of magnetic flux vortices
normal to the ab plane. By using this curve and extrapo-

lating it, we determined (1 – N⊥ ) ≈ 13 ± 3 Oe, where

 is the lower critical field normal to the ab plane
and N⊥  is the demagnetization factor for the direction
perpendicular to the plate. Taking into account the crys-

tal geometry (N⊥  ≈ 0.9), we obtained (T = 80 K) ≈
100 ± 20 Oe. All other curves exhibit two kinds of fea-
tures. One of them arises in the vicinity of zero normal
field in the form of a peak in the high-frequency losses
after the zero value of the field is passed. The evolution
of this feature is evident at low parallel fields (Fig. 2a).
The other feature appears after the sweep direction of
the normal field is reversed. This feature can be clearly
seen at high enough parallel fields (Fig. 2b) and corre-
sponds to the development of hysteretic behavior close
to the maximum and minimum values of the normal
magnetic field. The field dependence of high-frequency

Hc1
⊥

Hc1
⊥

Hc1
⊥
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10
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2

3

4

5 6

8

Fig. 1. Experimental setup. (1) High-frequency generator,
(2) attenuator, (3) split-coil magnet, (4) cell, (5) sample,
(6) spiral resonator, (7) coaxial cables, (8) electromagnet,
(9) high-frequency detector and amplifier, (10) peak detec-
tor, and (11) computer.
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losses becomes weaker in a short range after the sweep
direction is reversed (at the highest or lowest value of
the perpendicular field) than prior to the reversal. This
range is terminated by a small jump in the high-fre-
quency losses, and its width depends on the parallel-
field value.

In order to study the second feature in further detail,
we adjusted the measurement procedure. For a certain
value of the parallel field, the amplitude of the perpen-
dicular field was chosen to be sufficient for full realiza-
tion of this feature and the field was swept around a
nonzero value in order to get a clear picture without
interference from the other feature. Examples of depen-
dences of high-frequency losses on a perpendicular
field for this case are shown in Fig. 3. We are interested
in the width of the slightly sloping part of the hysteresis
curve (from the maximal field value down to the field at
which the absorption undergoes a jump); this part is
denoted by ∆H in Fig. 3.
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Fig. 2. High-frequency absorption in a Bi2Sr2CaCu2O8
single crystal vs. magnetic field normal to the ab plane at
(a) low parallel fields and (b) high parallel fields. The values
of the parallel field are indicated on the curves; arrows show
the sweep direction and features of the absorption curves.
P

4. DISCUSSION

A magnetic field penetrates into a superconductor of
the second kind as magnetic flux vortices, whose
dynamics governs the high-frequency response of the
superconductor. In this case, the real part of the imped-
ance is given by

(1)

where ρf is the flux flow resistance, µ is the magnetic
permeability, c is the speed of light, and ω is the radian
frequency of an electromagnetic wave [13]. The princi-
pal quantity here is the flux flow resistance, which
depends on the vortex dynamics. The strong anisotropy
and layered structure of Bi2Sr2CaCu2O8 put additional
twist on the vortex system by producing Josephson vor-
tices and pancakes. Various vortex structures can occur
in strongly anisotropic layered superconductors at
small angles between the direction of the magnetic field
and the ab plane [3–6]. At present, the intersecting
structure of Josephson vortices between CuO planes
and pancake columns running through these planes and
localized at Josephson vortex positions is accepted as
the most plausible case [9].

It was shown in [5] that there are two contributions
to the high-frequency losses in single crystals at liquid-
nitrogen temperatures (T > 77 K). One contribution is
related to the Josephson vortex dynamics; it is observed
when a magnetic field is applied parallel to the ab plane
and has a characteristic maximum at a field value of
about 10–100 Oe. This contribution is suppressed at
liquid-nitrogen temperature because of the presence of
a small number of pancakes in a sample (typical sup-
pressing field H⊥  ≈ 1–10 Oe). The other contribution is
due to vortices normal to the ab plane; it is observed at

Re Z 2πωρf /µc
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Fig. 3. High-frequency absorption in a Bi2Sr2CaCu2O8 sin-
gle crystal vs. magnetic field normal to the ab plane for
sweeps performed around a nonzero normal-field value that
is larger than the modulation amplitude.
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sufficiently high temperatures, from 60 K to Tc, and
steadily increases as the vortex concentration increases.

The magnetic flux kinetics can be inferred from the
behavior of the high-frequency losses as H⊥  is varied.
As for the first feature, it is related to the absorption of
the electromagnetic field by Josephson components of
magnetic flux vortices and to suppression of this
absorption by vortices normal to the ab plane [12]. The
maximum of absorption in this case corresponds to the
minimum concentration of vortices normal to the ab
plane in the region of penetration of the mw field (in
other words, to the maximal length of pancake-free seg-
ments of Josephson vortices). The decrease in absorp-
tion observed after the maximum is due to the begin-
ning of penetration of normal vortices into the sample
as H⊥  is increased.

In this work, a sample is subjected to a relatively

strong parallel magnetic field (H > ) and a weak
normal field (H⊥  < H). For a low perpendicular field, the
orientation of magnetic flux vortices parallel to the ab
plane is favorable in energy because of the additional
positive energy that pancakes have in the local mag-
netic field HL < Hc1. The energy of Abrikosov vortices
in a superconductor has two terms, namely, the positive
energy of the normal vortex core and the negative
energy of the magnetic field:

(2)

where Hc is the thermodynamic critical field, ξ is the
coherence length, and λ is the magnetic-field penetra-
tion depth. The lower critical field Hc1 is defined as the
field in which these terms are equal. For strongly aniso-
tropic layered superconductors, Eq. (2) should be
adjusted by replacing ξ by ξab, λ by λab, and H⊥  by H.
As shown theoretically in [3], in this case, the right-
hand side of Eq. (2) is independent of the parallel mag-
netic field up to fairly large values. Accordingly, the
mixed and Meissner states of perpendicular vortices are
separated in the H⊥ –H|| phase diagram by a straight line

parallel to the H|| axis at a value H⊥  =  (with allow-
ance for the demagnetization factor of the sample).
When vortices begin entering the sample and absorp-
tion starts to fall off after the maximum, the energy of

pancakes becomes negative. At this point,  is equal

to  (with allowance for the demagnetization factor
of the sample). The dependence of H⊥  corresponding to
the absorption drop after the maximum on the parallel
magnetic field is shown in Fig. 4. As we consider this

quantity to be , we conclude that significant sup-
pression of the lower critical field occurs in a parallel
field of about 100 Oe. As the parallel field is increased

further, the field  remains unchanged (Fig. 2b).
Hence, we conclude that the positive part of the pan-

Hc1
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2ξ2
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2λ 2
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cake energy in a magnetic field parallel to the ab plane
decreases as the field increases from zero to 200 Oe.
This result contradicts the data from [10]. We per-
formed measurements at a high temperature, where all
hindrances to the magnetic flux flow are overcome due
to thermal activation and the critical fields and barriers
manifest themselves as specific features in the mea-
sured curves. In [10], the main measurements were per-
formed at 54 K, where thermal activation phenomena
rapidly subside and effects of barriers become pro-
nounced.

Our data show that a critical change in the field
dependence of absorption also takes place in the vicin-
ity of the reverse point of the H⊥  sweep, where the sign
of dH/dt changes. The experimental curves plotted for
high parallel fields clearly show that, as one approaches
the extreme point of the curve, the rate of change of
high-frequency losses (dA/dH)f is higher than in the
case where one goes away from this point. The lower
rate persists in a magnetic field range ∆H⊥  after passing
through the extreme value and then returns to (dA/dH)
in a small jump. The range ∆H⊥  increases with decreas-
ing H, covers the entire range of the variation in H⊥ , and
then exceeds it (dA/dH does not change when the sweep
direction is reversed at 560 Oe; see Fig. 2b).

On these grounds, we presume that the magnetic
flux inside the sample is screened from changes in the
external field after reversal of the H⊥  sweep. An analo-
gous phenomenon is observed in superconductors of
the second kind with a surface barrier [14] and in hard
superconductors of the second kind featuring bulk pin-
ning and a critical state [15]. Vortices normal to the ab
plane absorb a noticeable amount of high-frequency
power [12] at frequencies well below the depinning fre-
quency. Therefore, these vortices are fairly free in the
bulk and we can conclude that the surface barrier dom-
inates over the bulk pinning in the observed phenome-
non. As one approaches the extreme point, the flux
flows through the surface. In this case, the surface cur-
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rent density is equal to the critical value and there is no
barrier for vortices normal to the ab plane entering or
exiting the sample. After reversal of the magnetic field
sweep direction, the surface current density becomes
lower than the critical value and vortices cannot exist in
a sample surface layer of thickness λ. As the field is
swept further, the surface current density passes
through zero and again reaches the critical value in the
opposite direction. Now, vortices can again flow
through the surface instead of jumping over a surface
barrier. This happens in a magnetic field where a jump
in the high-frequency losses is observed. A nonzero
surface barrier exists over this span of the normal com-
ponent of the magnetic field.

Analogous experiments with conventional super-
conductors, such as PbIn alloys [14], demonstrated a
minimum of high-frequency absorption after the
change in the sign of dH/dt. This minimum was related
to the expulsion of magnetic flux vortices from the
region of penetration of the magnetic field at currents
below the critical value. In this case, absorption
decreases and reaches a minimum at zero induced sur-
face current. In high-temperature superconductors
(including strongly anisotropic layered ones), in con-
trast to conventional superconductors, thermally acti-
vated vortex motion (so-called giant flux creep) exists,
which can both cause depinning of vortices and make
them overcome the surface barrier [16]. The presence
or absence of a surface barrier affects the rate at which
vortices enter or leave the sample and their ability to
stay in the surface layer of thickness λab. Because sam-
ples are in the shape of a thin plate and the applied field
is not parallel to its surface, there is no absorption min-
imum in the region where the surface barrier exists.

The energy factor plays the main role in the ther-
mally activated motion over barriers. Consider a sam-
ple in the form of a thin plate placed in a strong mag-
netic field almost parallel to the plate plane. Variation of
the normal component of the magnetic field is equiva-
lent to rocking of the total field through a small angle
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∆H
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 O

e

Fig. 5. Critical value of the change ∆H⊥ c in the perpendic-
ular field vs. applied parallel magnetic field. Points are
experimental data and solid lines are fitting curves for (1)
the first and (2) second set of samples.
P

relative to the plate plane (for small angles, we have

H @ ). This problem coincides with minute rock-
ing of the sample in a nearly parallel magnetic field.
Magnetic field lines are distorted when the plate turns
away from the original position when in the subcritical
state. The distortion affects not only the small normal
field but also the large parallel field, giving rise to addi-
tional positive energy of the magnetic field:

(3)

where a is the width of the sample, l is the sample
length, and α is the angle between the sample plane and
the external magnetic field. We express the tilt angle via
the variation in the normal component. The distortion
of the magnetic field is caused by supercurrents flowing
on the sample surface. When the current density
reaches the critical value at any point, magnetic flux
starts to enter the sample and the field distortion sub-
sides. At this moment, one of the differences, (H⊥ max –
H⊥ ) or (H⊥  – H⊥ min), reaches the critical value ∆H⊥ c and
normal vortices (pancakes) start to pass through the
surface of the superconductor. The quantity ∆H⊥ c

depends on the critical current and is proportional to its
doubled value. According to Eq. (3), if Wm is constant
(i.e., the critical current is independent of the parallel
field) the critical variation in the normal magnetic field
∆H⊥ c is proportional to 1/H||. An experimental depen-
dence of the critical variation in the normal magnetic
field ∆H⊥ c on the parallel field can be derived from the
data shown in Figs. 2b and 3. This dependence is pre-
sented in Fig. 5. The experimental data agree well with
the inverse proportion law at high fields but deviate
from this law in the low-field region. The field depen-
dence of ∆H⊥ c can be approximated as

where Ha is a fitting parameter. The parameter Ha

describes deviation from the simple 1/H|| dependence in
the low-field region. The deviation may be due to the
increase in the critical current with a decrease in the
field in this range. For a sample from the set with Tc =
91 K, the fitting parameter Ha was 350 ± 100 Oe, and
for samples from the set with Tc = 86 K, it was Ha =
140 ± 50 Oe (all measurements were performed at
80 K). The values of Ha obtained using the above
approximation are close in order of magnitude to the

lower critical field normal to the ab plane, . Esti-
mations of the quantity H⊥ c(dHc1/dT) from magnetiza-
tion curves measured for different BSCCO samples
even by one research group [17, 18] differ significantly
but are comparable to our data. Theoretical calculations
are needed for more detailed discussion of this result.
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5. CONCLUSIONS

We have studied the behavior of high-frequency
losses in a Bi2Sr2CaCu2O8 single crystal at a frequency
of 600 MHz. We observed maxima of absorption at
fields of about several oersteds and hysteretic phenom-
ena arising after the change of the sweep direction
(after reaching the extreme value of the normal mag-
netic field). The maxima of absorption correspond to
the minimum concentration of normal vortices [12],
which is achieved just before the normal field reaches

. Hysteretic phenomena are related to the reduc-
tion of the induced surface current below the critical
value for the magnetic flux vortex formation and to the
formation of a surface barrier for the vortex entrance
[14]. From these data, we derived the dependence of the

lower critical field  on the parallel field (Fig. 4)
and the dependence of the magnetic field difference
characterizing the critical current for the formation of
vortices (surface barrier) on the parallel field (Fig. 5).
The characteristic magnetic field was achieved by
applying a sufficiently high magnetic field parallel to
the ab plane and subsequently applying a periodic nor-
mal field with a certain amplitude.

Strong thermally activated vortex motion in
Bi2Sr2CaCu2O8 at high temperature causes a lack of
phase coherence over large distances. However, the
coherence is preserved over distances of the order of
the vortex spacing. As a result, all features of the super-
conducting state are manifested to some extent and
there are no critical phenomena, such as pinning or sur-
face barrier, that are able to totally suppress magnetic
flux motion. This makes it possible to derive the quan-
tities characterizing the magnetic flux dynamics from
the features of the behavior of a measured variable
(high-frequency losses in our case).
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Abstract—The galvanomagnetic and thermoelectric properties of p-Bi2 – xSbxTe3 – ySey solid solutions (x ≤ 1.2,
y ≤ 0.09) are studied for various carrier concentrations. The degeneracy parameter βd governing the scattering
processes in solid solutions was calculated in terms of the many-valley energy spectrum model. The data on the
degeneracy parameter and the Seebeck coefficient α were used to calculate the effective scattering parameter
reff and the reduced Fermi level η. The parameter reff was found to depend on the carrier concentration in the
materials studied. The temperature dependences of the effective density-of-states mass m/m0 and mobility µ0 in
samples with various carrier concentrations were determined. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Solid solutions based on bismuth and antimony
chalcogenides are high-efficiency thermoelectric mate-
rials for operation at low temperatures (T < 220 K) [1–
3]. These materials have a complex band structure
described in terms of the many-valley energy-spectrum
model, and a two-band model is customarily invoked to
interpret the galvanomagnetic effects observed in them
[4–9]. In analyzing the parameters governing the ther-
moelectric efficiency, the conduction and valence bands
are generally described in terms of a simple parabolic
model under the assumption of the effective density-of-
states mass m/m0 being isotropic. This model usually
includes scattering of carriers by acoustic phonons
(scattering parameter r = –0.5), which is predominant
in these materials. The relaxation time is approximated
by a power-law function τ = aEr, where a = const. The
carrier degeneracy is taken into account through the
parameter βd(η)r = –0.5 (η is the reduced Fermi level).

Due to the inclusion of degeneracy in the form
βd(η)r = –0.5, the parameters of the ellipsoidal constant-
energy surfaces and their orientation relative to the
crystallographic axes in n- and p-Bi2Te3 derived from
galvanomagnetic effects in weak magnetic fields differ
from those determined by studying oscillatory phenom-
ena in strong magnetic fields [10–13]. This difference
was eliminated for n-Bi2Te3 in [14], where the scatter-
ing parameter r was not set in advance in calculating
βd(η) and determining the shape and orientation of the
constant-energy ellipsoids. Results analogous to those
reported in [14] were obtained by us for p-Bi2Te3 in
analyzing the results from [12, 13]. For the p-Bi2Te3
sample studied in [12], the value of βd(η) varied from
~0.9 for r = –0.5 to 0.7 when calculated following the
1063-7834/04/4608- $26.00 © 21404
method used in [14]; i.e., the sample was more degen-
erate at r = –0.5. Thus, in analyzing the thermoelectric
and galvanomagnetic properties of Bi2Te3-based mate-
rials, irrespective of the actual conduction type, it is
insufficient to include the scattering mechanism by put-
ting r = –0.5.

2. THEORY

The many-valley model of the energy spectrum
establishes the following relation between the electrical
resistivity (ρii), Hall effect (ρijk), and magnetoresistance
(ρijkl) tensor components and fitting parameters u, v,
and w determining the shape of constant-energy ellip-
soids [10, 14]:

(1)

(2)

(3)

(4)

where a = ρ312/ρ123.
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Table 1.  Thermoelectric and galvanomagnetic properties of p-Bi2 – xSbxTe3 – ySey solid solutions

Sample no. T, K x, y α, µV/K σ, Ω–1 cm–1 ρ1133/ρ1122 ρ1133/ρ1111 ρ1122/ρ111 ρ312/ρ123

1 77 1.2, 0.09 134 2600 1.34 1.89 1.4 1.89

290 290 226 1.3 3.0 2.3 2.07

2 77 1.1, 0.06 117 2990 1.32 1.69 1.26 1.77

290 280 273 1.2 1.98 1.65 1.84

3 77 1.1, 0.09 99 3920 1.2 1.65 1.38 1.45

290 266 348 1.2 1.97 1.67 1.36

4 77 1.2, 0.06 93 4100 1.42 2.33 1.65 1.39

290 260 355 1.28 1.72 1.34 1.35
The degeneracy parameter can be written as βd =

, where In are isotropic factors in the expressions

for the electrical conductivity (I0), Hall conductivity
(I1), and magnetoconductivity (I2). In the case of an iso-
tropic relaxation time, where τ = τ0Er is an energy-inde-
pendent factor), the parameter βd is [15]

(5)

where Fr(η) are Fermi integrals of the type

(6)

To find the quantities u, v, w, and βd, we solved the
coupled equations (1)–(4) by minimizing the following
objective function χ(u, v, w, βd), which determines the
quality of optimization:

(7)

Here,  are the ratios of the experimental galvano-

magnetic coefficients and (u, v, w, βd) are the analo-
gous ratios calculated from Eqs. (1)–(4).

Next, we used Eq. (5) for βd(r, η) and the Seebeck
coefficient α

(8)

to calculate the scattering parameter r (which is
referred to as the effective parameter, reff) and the
reduced Fermi level η in the same way as for materials
based on n-type bismuth and antimony chalcogenides
[15, 16].
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The objective function R(r, η) used in calculating reff
and η has the form

(9)

where αe(r, η) and αc(r, η) are the experimental and cal-
culated [from Eq. (8)] values of the Seebeck coefficient,
respectively; βe(r, η) are the values of the degeneracy
parameter derived from the coupled equations (1)–(4);
and βc(r, η) are the values calculated from Eq. (5).

3. EXPERIMENT

We studied the galvanomagnetic and thermoelectric
properties of p-Bi2 – xSbxTe3 – ySey solid solutions (x ≤
1.2, y ≤ 0.09) with various carrier concentrations. Sam-
ples of solid solutions grown by oriented crystallization
consisted of single-crystal blocks elongated along the
growth axis. The galvanomagnetic properties were
measured in weak magnetic fields (up to 28 kOe) on
single-crystal samples cut from such blocks. The tem-
perature dependences of thermopower and electrical
conductivity were obtained on “oriented” block crys-
tals similar to single crystals in terms of their character-
istics.

The carrier concentration in the samples was varied
by adding excess Te (with respect to the stoichiometric
solid solution composition). Adding excess Te to a solid
solution reduces the concentration of antisite defects
(i.e., reduces the number of Sb atoms in Te sublattice
sites) and favors a decrease in the concentration of
intrinsic acceptor-type point defects [17].

Table 1 lists the results from investigating the ther-
moelectric and galvanomagnetic effects in
Bi2 − xSbxTe3 – ySey solid solutions (x ≤ 1.2, y ≤ 0.09).
The anisotropy of the magnetoresistance is in accord
with the data obtained for n-type materials. The anisot-
ropy in the Hall coefficients decreases with decreasing
thermopower, i.e., with increasing carrier concentra-
tion.
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Data on the galvanomagnetic effects were used to
determine the degeneracy parameter βd by solving
Eqs. (1)–(4) (see Table 2). The variation of βd with ther-
mopower (carrier concentration) is similar in behavior
to that observed in studies on n-type solid solutions
[15]. The effective scattering parameter reff and the
reduced Fermi level were calculated by solving Eqs. (5)
and (8). The values of the objective functions χ(u, v, w,
βd) in Eq. (7) and R(r, η) in Eq. (9) involved in the solu-
tion of Eqs. (1)–(4) and Eqs. (5) and (8) did not exceed
10–4, which indicates a high accuracy of determination
of the fitting parameters.

The solution of the coupled equations (5) and (8)
can be represented in graphical form. Figure 1 plots the
objective functions R(r, η) for p-Bi2 – xSbxTe3 – ySey

samples. The function R(r, η) is seen to have a single
minimum; i.e., the coupled equations (5) and (8) have a
unique solution.

Table 2.  Degeneracy parameter βd, effective scattering param-
eter reff, and reduced Fermi level η of p-Bi2 – xSbxTe3 – ySey
solid solutions

Sample 
no. T, K x, y βd reff η p, 1019

cm–3

1 77 1.2, 0.09 0.89 –0.45 1.5 0.4

290 0.31 –0.75 –1.6

2 77 1.1, 0.06 0.83 –0.57 1.5 0.85

290 0.42 –0.72 –1.4

3 77 1.1, 0.09 0.46 –0.7 1.8 1.4

290 0.4 –0.78 –1.1

4 77 1.2, 0.06 0.44 –0.76 2 1.9

290 0.36 –0.78 –1.15
P

The dependence of the quantity reff on carrier con-
centration and temperature in p-Bi2 – xSbxTe3 – ySey solid
solutions (Table 2, Fig. 1) is similar to that observed in
n-type materials [18]. The values of reff also agree with
the data available on p-Bi2Te2.85Se0.15 [19]. The varia-
tion in reff with the Seebeck coefficient α obtained in
this study suggests that the scattering mechanism in p-
Bi2 – xSbxTe3 – ySey solid solutions changes because of
the influence of the additional valence band [4–9]. The
values of the reduced Fermi level presented in Table 2
indicate the solid-solution samples to be weakly degen-
erate.

Equations (5) and (8) enable one to calculate the
α(η) and βd(η) relations for broad ranges of reff and η
variation (Fig. 2). We readily see from Fig. 2 that using
a constant value for the scattering parameter, r = –0.5,
in analyzing the temperature and concentration depen-
dences of the thermoelectric properties of Bi2Te3-based
materials gives rise to errors in the determination of the
reduced Fermi level.

When measuring the Hall tensor components in
weak magnetic fields, the carrier concentration is usu-
ally calculated from a relation used for anisotropic
materials [10],

(10)

(11)

Here, B(reff , η) is the anisotropy parameter and A(reff ,
η) is the Hall factor

(12)
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Fig. 1. Objective functions R(r, η) calculated for samples (a) 1 and (b) 4 at T = 77 K (see Table 1).
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The values of the carrier concentration listed in
Table 2 correlate well with the data obtained for n-
Bi2 − xSbxTe3 – ySey (x = 0.08, 0.12; y = 0.24, 0.36) [18]
when we have similar values of the Seebeck coefficient
and can be employed in analyzing the thermoelectric
properties of p-Bi2 – xSbxTe3 – ySey solid solutions. Note
that the room-temperature carrier concentration calcu-
lated for p-Bi2 – xSbxTe3 – ySey is higher than that
obtained for T = 77 K by 20–30%, as is the case in n-
type materials (a growth in the carrier concentration
with temperature was also revealed earlier in calcula-
tions for r = –0.5).

The variation in the concentration with temperature
is possibly due to additional emfs generated by atten-
dant effects that appear when galvanomagnetic proper-
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Fig. 2. (a) Seebeck coefficient α and (b) degeneracy param-
eter βd plotted vs. reduced Fermi level η for various values
of reff: (1) –0.3, (2) –0.4, (3) –0.5, (4) –0.6, (5) –0.7, and
(6) –0.8. Curves in panel (a) are numbered from 1 to 6
down.
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ties are measured [20]. Variations in the carrier concen-
tration can also be brought about by electrically active
point defects; however, the corresponding mechanism
operating in the temperature interval under study
remains unclear. Because the increase in concentration
with temperature was very small and its inclusion has
no noticeable effect on the behavior of the properties of
the solid solutions we are interested in, the concentra-
tion needed for the subsequent calculations is taken to
be equal to that obtained for T = 77 K.

Figure 3 plots the temperature dependences of the
Seebeck coefficient α and the electrical conductivity σ
in p-Bi2 – xSbxTe3 – ySey (x ≤ 1.2, y ≤ 0.09) obtained for
various carrier concentrations. The measurements were
performed for the case where the current was passed
along the crystal growth axis parallel to the [1010]
cleavage planes, which corresponds to measurements
of the components α11 and σ11 for single-crystal sam-
ples. Room-temperature measurements of electrical
conductivity carried out on single-crystal and block
samples of p-Bi2 – xSbxTe3 – ySey solid solutions showed
that the values of σ in these materials differ by no more
than 5%, which is comparable to the measurement
error.

As the carrier concentration and the number of sub-
stituted atoms (Sb  Bi, Se  Te) in the p-
Bi2 − xSbxTe3 – ySey solid solutions increase, the temper-
ature dependences of α and σ become weaker (Fig. 3)
because of additional scattering from lattice distortions,
as is the case with n-type materials. The weakening of
the α = f(T) dependences brings about a decrease in the
slopes s1 = dlnα/dlnT determined for the low-tempera-
ture region. As the Sb and Se concentrations in the solid
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solutions increase from 1.0 to 1.2 and from 0.06 to 0.09,
respectively, the values of s1 decrease from 0.81 to 0.72.

The temperature dependences of α and σ (Fig. 3)
and the data on the carrier concentration (Table 2) were
used to calculate the average effective density-of-states
mass m/m0 and the carrier mobility µ0 (with due
account of the degeneracy). The temperature depen-
dences of the effective mass m/m0 in the p-
Bi2 − xSbxTe3 – ySey solid solutions in the temperature
range 77–200 K were found to be weaker than those for
the n-type materials [18, 20] (Fig. 4).

As the carrier concentration increases, m/m0 in sam-
ples of the same composition increases, as it does in n-
type solid solutions. As the Sb content in a solid solu-
tion increases, m/m0 grows with concentration for the
same number of Se atoms in samples with similar con-
centrations.

Note that, within the framework of the many-valley
model of the energy spectrum, the effective mass is m =
N2/3(m1m2m3)1/3, where m1, m2, and m3 are the effective
masses along the ellipsoid axes in the case of isotropic
carrier scattering.

Because the anisotropy in the kinetic properties of
the materials under study (both n and p type) originated
from that of elastic crystal vibrations, the many-valley
model is sometimes generalized to include anisotropic

scattering [21–23] described by a tensor , with τ0 in
the energy dependence of the relaxation time being
replaced by τij.

The changes in the expressions relating the galvano-
magnetic coefficients (ρii , ρijk , ρijkl) to the inverse effec-
tive mass tensor components (αij) in the model with

τ↔
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Fig. 4. Temperature dependences of the effective density-
of-states mass m/m0 in p-Bi2 – xSbxTe3 – ySey solid solutions

for different values of p (in units of 1019 cm–3): (1) 1.5 for
x = 1.0, y = 0.06; (2) 0.4, (3) 0.9, and (4) 1.5 for x = 1.2, y =
0.06; (5) 0.8, (6) 1.5, and (7) 2 for x = 1.2, y = 0.09; and
(8) 2 for x = 1.1, y = 0.09.
PH
anisotropic carrier scattering reduce to the replacement

of αij by matrix products (ατ)ij [21, 22]. The tensors 

and  are related through

(13)

where (Θ) is given by

(14)

Thus, the concentration and temperature depen-
dences of the effective mass m/m0 in p-
Bi2 − xSbxTe3 − ySey solid solutions originate not only
from changes in the shape of constant-energy surfaces
but also from anisotropy of the carrier scattering.

As the carrier concentration and the Sb and Se con-
tents in samples with similar carrier concentrations
increase, the mobility in p-Bi2 – xSbxTe3 – ySey (Fig. 5),
as well as the electrical conductivity, decreases as the
number of scatterers increases. For p > 0.4 × 1019 cm–3,
the mobility falls off considerably because of the effect
exerted by the additional band.

The effective mass m/m0 and mobility µ0, together
with the lattice thermal conductivity κL, define the
refrigerating factor β, which increases in p-
Bi2 − xSbxTe3 – ySey solid solutions (x ≤ 1.2, y ≤ 0.09) for
temperatures <200 K as compared to the value of β for
p-Bi2 – xSbxTe3 (x = 0.5), a composition employed
widely in the room-temperature region in various
refrigerating devices.
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4. CONCLUSIONS

Our studies provide supportive evidence for the
validity of the methods used to determine the scattering
mechanism, effective mass, and mobility, as well as the
lattice thermal conductivity κL. The latter were shown
to enable one to establish changes in the refrigerating
factor β and the figure of merit of thermoelectric mate-
rials Z with composition, temperature, and carrier con-
centration in p-type bismuth- and antimony-chalco-
genide-based solid solutions.
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Abstract—The low-temperature (2 < T < 80 K) thermopower in bismuth doped by tellurium, a donor impurity
(0 < c ≤ 0.07 at. % Te), is dominated by the phonon component, which shifts to higher temperatures with
increasing dopant concentration. The temperature and concentration dependences of the phonon thermopower
of doped bismuth are satisfactorily described by the theory of phonon drag of electrons. The theory is developed
for a strongly anisotropic electron spectrum and includes both direct and two-step phonon drag. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Doping bismuth with the tellurium impurity
destroys charge compensation in the semimetal, and the
concentration of electrons can increase compared to
that of the holes to the extent where electrons may
become the only carriers determining the transport phe-
nomena. As a result, the thermopower originating from
the phonon drag of electrons increases strongly at low
temperatures [1]. Theoretical studies have shown [2–4]
that, in semimetals and semiconductors, in which the
thermal phonon momentum substantially exceeds the
characteristic momentum of electrons and, hence, that
of phonons interacting with electrons, the drag of elec-
trons by phonons may acquire a two-step character. An
important part in this process is played by the nonequi-
librium state of thermal phonons transferring additional
momentum (in normal phonon–phonon collisions) to
low-energy phonons, which, in turn, transfer this
momentum to electrons. In the conditions where nor-
mal phonon collisions dominate over resistive colli-
sions, the drag thermopower is due primarily to two-
step phonon drag.

The phonon thermopower and the Nernst–Etting-
shausen phonon coefficient studied in pure and perfect
bismuth samples at low temperatures (3 < T < 9 K)
exhibit an exponential temperature dependence [5–8].
This dependence is characteristic of the relaxation time
associated with Umklapp processes, which in pure bis-
muth are resistive phonon processes. In the above
experimental studies, this dependence is assigned to
two-step phonon drag of charge carriers.

This communication reports on the phonon drag
thermopower observed in doped bismuth at low tem-
peratures.
1063-7834/04/4608- $26.00 © 21410
2. SAMPLES AND EXPERIMENTAL 
TECHNIQUES

The temperature behavior of the thermopower, ther-
mal conductivity, and electrical resistivity was studied
on single-crystal samples of bismuth doped by the tel-
lurium donor impurity. The samples were spark-eroded
from the central part of a single-crystal ingot grown
through horizontal zone recrystallization. The samples
were rectangular parallelepipeds 2.5 × 2.5 × 30 mm in
size whose faces were perpendicular to the C1, C2, and
C3 crystallographic axes. The largest dimension of the
samples was along either the bisector axis C1 or the
trigonal axis C3. The samples were etched in a
C2H5OH–HNO3 (1 : 1) solution.

A sample to be studied, with heaters attached to its
ends, was soldered to the bottom of a vacuum chamber
≈18 mm in diameter immersed in a thermostatting liq-
uid (helium, hydrogen, nitrogen). The heater at the
chamber bottom served to control the average tempera-
ture, and the heater at the other end of the sample pro-
duced a temperature gradient (—T) across the sample.
The temperature was measured in two cross sections of
the sample spaced by lT ≅  15 mm (at a constant heat
flux) with carbon resistance thermometers in the 1.5 <
T < 40 K region and with copper–constantan thermo-
couples in the range 30 < T < 80 K. The thermopower
of the samples was measured in relation to copper,
whose absolute thermopower did not exceed 1 µV/K
throughout the temperature region covered. The exper-
imental thermopower data are presented below without
inclusion of this small quantity.

3. EXPERIMENTAL RESULTS

Doping bismuth with tellurium destroys charge
compensation, because the concentration of electrons
in pure bismuth is equal to that of holes (n0 = p0 ≅  3 ×
1017 cm–3). In our experiments, the electron concentra-
004 MAIK “Nauka/Interperiodica”
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tion in doped bismuth samples increases from 3.5 ×
1017 to 1.5 × 1019 cm–3. The main parameters of the
doped bismuth samples studied are listed in the table.

As bismuth is doped, its conductivity first decreases
sharply from ~4 × 106 Ω–1 cm–1 in pure bismuth to ~4 ×
104 Ω–1 cm–1 for a doping level of ~4 × 10–3 at. % Te.
Further doping brings about a slow rise in the conduc-
tivity. The minimum in the conductivity as a function of
tellurium concentration can be identified with the
Fermi level approaching the top of the hole band in bis-
muth. When the degree of doping is higher, the Fermi
level rises above the hole band top and the electrons
become the sole charge carriers involved in the trans-
port phenomena. Increasing the electron concentration
in the course of bismuth doping does not give rise to a
proportional increase in the conductivity because the
mobility of electrons decreases as a result of their scat-
tering from the dopant (σ = enµ, where n and µ are the
concentration and mobility of electrons, respectively).

In the region of impurity conductivity in our bismuth
samples (T < 60 K), the electron gas is degenerate and
the Fermi surface consists of three electronic ellipsoids
centered at the L points of the Brillouin zone, which are
located on the reflection planes. One of the minor ellip-
soid axes coincides with the binary axis C2 of the crystal,
about which the ellipsoids are tilted through a small
angle ϕ = 6.38°. As a result of this turn, the two other
ellipsoid axes make an angle ϕ with the C1 and C3 axes.
The three electron ellipsoids are equivalent, in accor-
dance with the bismuth crystal symmetry, and the elec-
tron effective masses are strongly anisotropic.

Doping bismuth with tellurium also results in a
decrease in phonon thermal conductivity, because
phonons are scattered by dopant atoms (Fig. 1). The
maximum in the phonon thermal conductivity
decreases in magnitude and shifts toward higher tem-
peratures. In a sample of pure bismuth, phonon scatter-
ing from the boundaries results in a κ ~ T3 scaling at
low temperatures. In addition to phonon scattering on
the sample boundaries, the scattering from impurities
and electrons appears in doped bismuth, which changes
the temperature dependence of thermal conductivity
from cubic to close to quadratic, with the maximum
shifted toward high temperatures. Doping bismuth to
~4 × 10–3 at. % Te reduces the low-temperature conduc-
tivity by approximately two orders of magnitude, with
the phonon thermal conductivity decreasing by an order
of magnitude. Further doping of bismuth with tellurium
causes a slight rise in conductivity as a result of the
increase in the concentration of electrons outweighing
the decrease in their mobility. Indeed, doping of bis-
muth to an electron concentration of 1.5 × 1019 cm–3

reduces the conductivity as compared to the case of
pure bismuth by approximately 50 times, while the
phonon thermal conductivity at low temperatures
decreases by two orders of magnitude. Note that, for
T < 20 K, the electronic component of thermal conduc-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      200
tivity is negligible as compared to the phonon compo-
nent.

We studied the temperature dependence of ther-
mopower α22 (—T || C1) and α33 (—T || C3) in samples
of doped bismuth. Figure 2 plots the temperature
behavior of the thermopower α22 obtained on the sam-
ples of doped bismuth studied. The low-temperature
thermopower consists of two components, one due to

diffusion ( ) and one due to phonons ( ). The
electron gas in our samples of doped bismuth is degen-
erate at low temperatures (T < 60 K), and the diffusion
component of thermopower is given by [10]

(1)

where e is the absolute value of electronic charge, k is
the Boltzmann constant, and ζ is the chemical potential.
The parameter dln(1/τi(ζ))/dlnζ = βi takes on the fol-
lowing values, depending on the scattering mechanism
involved:

βe–ph = 

for electron scattering from acoustic phonons and

βe–imp = –

for electron scattering on ionized impurities.
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Main parameters of samples of bismuth doped by the tellu-
rium donor impurity

Sample 
no.

c, 10–2 
at. % Te

nL, 1017 
cm–3

pT, 1017 
cm–3

EFL, 
meV

EFT, 
meV

Θ1e, 
K

Θ2e, 
K

1 0.06 3.5 2.4 33 11 1.1 16

2 0.25 5.9 0.48 40 4 1.3 19

3 0.4 7.2 0.05 43 0.8 1.4 20

4 1 22 – 64 – 2 29

5 2 47 – 84 – 2.6 38

6 3.6 69 – 96 – 2.9 43

7 5 111 – 113 – 3.4 50

8 7 149 – 125 – 3.8 55

9 1 22 – 64 – 2 29

Note: c, nL, and pT are the concentrations of tellurium, L electrons,
and T holes, respectively; EFL and EFT are the Fermi energies
of L electrons and T holes, respectively; and Θ1e and Θ2e are
the electron Debye temperatures. The largest dimension of
samples 1–8 is along the C1 crystallographic axis, and that of
sample 9, along the C3 axis.
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Fig. 1. Thermal conductivity κ22 (—T || C1) plotted vs. tem-
perature for samples of pure bismuth (curve 0) [9] and of
bismuth doped by the tellurium donor impurity. The numer-
als on the curves indicate the sample numbers (see table).
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Fig. 2. Temperature dependence of thermopower for sam-
ples of doped bismuth. The numerals on the curves indicate
the sample numbers (see table).
P

The diffusion component of thermopower for the
samples of doped bismuth studied was found by lin-
early extrapolating the thermopower from the high tem-
perature region T > 30 K, where the diffusion compo-
nent dominates over the phonon component, to the low-
temperature region. Figure 3 shows (for sample 1) the
temperature dependence of total thermopower (curve 1)
and of its diffusion (straight line 2) and phonon (curve
3) components, with the latter derived by subtracting
the diffusion component from the total thermopower. A
similar procedure for isolating the phonon component
of thermopower was applied to the other samples of
doped bismuth. The temperature behavior of the
phonon thermopower in samples of doped bismuth is
presented graphically in Figs. 4 and 5. Comparing the
experimentally found diffusion components of ther-
mopower of doped bismuth samples with the results of
calculations from Eq. (1) using the parameters charac-
teristic of electron scattering on acoustic phonons and
ionized impurities leads to the following conclusion. At
low temperatures, doped bismuth features a mixed elec-
tron scattering mechanism; i.e., electrons scatter from
both acoustic phonons and ionized impurities, with the
latter process being predominant.

At temperatures above that of the maximum
(Figs. 4, 5), the phonon component of thermopower

follows a power law,  ~ T–m. For sample 1 (Fig. 4),
the exponent is m ≅  3 at low temperatures T < 10 K) and
m ≅  4 at high temperatures (T > 10 K). An increase in
the concentration of electrons entails an increase in
their momentum p, which brings about an increase in
the number of phonons interacting with electrons (2p ≤
"q, where "q is the phonon momentum). As a result, as
the electron concentration in bismuth increases under
doping, the phonon component shifts toward higher
temperatures (Figs. 4, 5). Figure 6 plots the dependence
of the temperature T0 at which the phonon ther-
mopower is 1 µV/K on electron concentration for the
samples studied. The temperature T0 grows with
increasing electron concentration as T0 ~ n0.17. Further-
more, the exponent m in the temperature dependence of
the phonon thermopower at low temperatures decreases
when the electron concentration is increased from m ≅  3
for sample 1 (n = 3.5 × 1017 cm–3) to m ≅  1 for sample 8
(n = 1.5 × 1019 cm–3). At high temperatures, the expo-
nent for the phonon thermopower remains unchanged
for all samples and is equal to m ≅  4.

Figure 7 presents temperature dependences of both

phonon thermopower components,  and , for
samples 4 and 9 having equal electron concentrations
n = 2.2 × 1018 cm–3. These dependences were used to
estimate the anisotropy of the phonon thermopower,

/  ≅  2, which varies only weakly with tempera-
ture.

α22
ph

α22
ph α33

ph

α22
ph α33

ph
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The temperature of the maximum in phonon ther-
mopower for doped bismuth samples lies in the interval
3.8–5.5 K (Figs. 4, 5). As the dopant concentration c
increases, this temperature shifts toward higher temper-
atures as Tmax ~ c0.08, with the maximum of the phonon
thermopower decreasing gradually as αmax ~ c–0.12.

The experimental temperature and concentration
dependences of the phonon thermopower component in
doped bismuth will now be analyzed in terms of a the-
ory that includes both direct and two-step phonon drag
of electrons.

4. THEORY OF PHONON DRAG OF ELECTRONS

The phonon thermopower tensor was found by solv-
ing the kinetic equation for bismuth L electrons with a
strongly anisotropic nonparabolic dispersion described
in terms of the Lax model:

(2)

where %p is the energy of an electron with momentum
p, whose components along the ellipsoid axes are p1, p2,
and p3; mi are the electron effective masses in an ellip-
soid; and %g is the energy band gap.

%p
%g

2
------ 

 
2 %g

2
------

p1
2

m1
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p2
2

m2
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p3
2
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------+ + 

 +
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2
------,–=
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3
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0 15 20 25

Fig. 3. Temperature dependence of the total thermopower
(curve 1) and of its (2) diffusion and (3) phonon compo-
nents for sample 1.
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Fig. 4. Temperature dependence of the phonon component
of thermopower plotted for doped bismuth samples. The
numerals on the curves indicate the sample numbers.
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Fig. 5. Temperature dependence of the phonon component
of thermopower plotted for different doped bismuth sam-
ples: (1) 4, (2) 5, (3) 6, (4) 7, and (5) 8.



1414 KAGAN et al.
The electron distribution function found by solving
the linearized kinetic equation is

(3)

f p

τe %p( )
----------------

d
3
q

2π( )3
-------------2π

"
------ Cq

2
nq∫

s 1=

3
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× [F0 %p "ωq
s( )

–( ) F0 %p( ) ]δ %p %p "q–– "ωq
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–( )–{
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s( )

+( ) } ,
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Fig. 6. Temperature T0 for which the phonon thermopower
is 1 µV/K in samples of doped bismuth plotted vs. electron
concentration; n0 = 3 × 1017 cm–3 is the electron concentra-
tion in pure bismuth.
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Fig. 7. Temperature dependence of thermopower α22 (—T ||
C1) for sample 4 (curve 1), of α33 (—T || C3) for sample 9
(curve 2), and of their phonon components (curves 3, 4,
respectively).
P

where fp and nq are nonequilibrium terms added to the
equilibrium distribution functions of electrons and
phonons, Fp = F0 + fp and Nq = N0 + nq (fp depends on
the electron momentum p, and nq is a function of the
phonon wave vector q); F0(%p) = [exp((%p – ζ)/kT) +
1]–1 is the equilibrium Fermi distribution function of
electrons with chemical potential ζ; N0 = [exp("ωq/kT) –

1]–1 is Planck’s equilibrium distribution function; 
is the frequency of s-mode phonons with wave vector q;
τe(%p) is the total electron relaxation time for scattering
from acoustic phonons and ionized impurities; and
Cq is the electron–phonon coupling constant.

The phonon distribution function is obtained from
the kinetic equation for s-mode phonons

(4)

The kinetic equation for phonons includes the scatter-
ing from impurities (τph–im), electrons (τph–e), and
phonons (τph–ph). By applying the Callaway method for
solving the kinetic equation, one can include conserva-
tion of the total momentum in phonon–phonon colli-
sions through the term involving the average drift
velocity of phonons V. This term is derived from the
condition of total-momentum conservation in normal
phonon–phonon collisions:

(5)

The above consideration disregards the influence of
the nonequilibrium distribution function of electrons on
that of phonons; in other words, the mutual electron and
phonon drag is neglected. Mutual drag will appear only
when, for both electrons and phonons, the mutual colli-
sions prevail over collisions with other scatterers. In
doped bismuth, these requirements for the onset of
mutual electron and phonon drag cannot be met.

Since kinetic equation (4) is independent of Eq.
(3), we first solve the former equation subject to con-
dition (5). Next, the solution is substituted into kinetic
equation (3), in which the phonon energy (on the order
of kT) is much less than the average electron energy
(which is equal to the Fermi energy); therefore, we can
expand the right-hand part of Eq. (3) in a small param-
eter "ωq/%p. Solving Eqs. (3) and (4) yields the elec-
tron distribution function fp, which is antisymmetric in
momentum and proportional to —T. With this function,
we can calculate the thermoelectric tensor (which is the
coefficient of proportionality between the electric cur-
rent and the temperature gradient) by summing the con-
tributions to this tensor due to the three equivalent ellip-
soids tilted to the C3 axis at an angle ϕ. By multiplying
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this tensor by the resistivity tensor (following a proce-
dure analogous to that employed to derive the diffusion
component in [11]), we obtain the phonon ther-
mopower tensor. The components of the phonon ther-
mopower α11 = α22 and α33 for n-type bismuth are
found to be

(6)

(7)

where
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Here, e is the absolute value of the electronic charge,
ρ is the density of doped Bi〈Te〉 , ζ is the electron chem-
ical potential, Λik is the deformation-potential tensor,
l is the polarization vector of s-mode phonons, τR(q) is
the resistive phonon relaxation time characterizing the
momentum relaxation in the phonon system, τph(q) is
the total phonon relaxation time, and τph–ph(q, T) is the
phonon–phonon relaxation time.

It should be pointed out that integration over wave
vector q in Eqs. (6) and (7) is performed within a lim-
ited volume of phonon momentum space determined by
the energy and momentum conservation laws for
phonons interacting with electrons and by dispersion
relation (2) for the L electrons:

(12)

The integrands in Eqs. (6) and (7) contain terms
with coefficients bi/ai that are associated with the gain
in phonons due to phonon–phonon collisions [the sec-
ond term in parentheses in Eq. (5)] and appear when the
phonon kinetic equation is solved using the Callaway
method. The integrals determining the coefficients ai

and bi in Eqs. (8) and (9), respectively, do not have any
bearing on the electron–phonon coupling. Therefore,
constraint (12) on the domain of integration in the
phonon momentum space does not extend to them; i.e.,
the integration in Eqs. (8) and (9) is performed over the
whole phonon wave vector space.

According to Eq. (12), the constraint on the region
in phonon momentum space where phonons interact
with electrons in an isotropic degenerate semiconduc-
tor defines the maximum momentum of a phonon inter-
acting with electrons, "qmax = [8mζ(1 + ζ/%g)]1/2. This
momentum can be identified with the electronic Debye
temperature Θe = s[8mζ(1 + ζ/%g)]1/2/k, where s is the
sound velocity. In the case of anisotropic n-type bis-
muth with the electron Fermi surface approximated by
ellipsoids of revolution with effective masses m1 ≅  m3
and m2, one may limit oneself to two different elec-
tronic Debye temperatures, Θ1e and Θ2e. Taking into
account the anisotropy of the electronic spectrum in
pure bismuth, we obtain Θ1e ≅  1 K and Θ2e ≅  15 K. The
corresponding data on Θie for our samples of doped bis-
muth are listed in the table. Because the values of Θ1e

and Θ2e differ strongly, it would be wrong to use an
average Debye temperature to estimate integrals (6)
and (7); therefore, another approach is employed to cal-
culate these integrals. If in Eq. (12) we neglect the small
term with large effective mass m2, the constraint will be
imposed only on the wave vector components q1 and q3.
Because q2 is not constrained, integration over q2 is per-
formed over an unlimited region of the phonon wave
vector component. In this case, Planck’s distribution
function for phonons makes the integral over q2 con-
verge; this integral will be determined by the thermal
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wave vector kT/"s. This value is larger than the maxi-
mum value q1m = [8m1ζ(1 + ζ/%g)]1/2/". Therefore,
everywhere in the integrals of Eqs. (6) and (7) except
the square root in the denominators, we can neglect the
variables q1 and q3 as compared to q2. This approach is
applicable to intermediate temperatures, i.e., in the
region between Θ1e and Θ2e. In the high- and low-tem-
perature regions, integration proceeds in standard fash-
ion. For high temperatures, T @ Θ2e, we integrate over
q2 only up to q2m = [8m2ζ(1 + ζ/%g)]1/2/" because of
condition (12); here, q2m is much less than the thermal
momentum. Note that Planck’s distribution function for
phonons can be replaced by the Rayleigh distribution
function. For low temperatures, T ! Θ1e, there is no need
to worry about the constraint on the integration region
for phonon wave vectors, because in Planck’s distribu-
tion function the most important wave vectors are those
corresponding to thermal phonons, which are substan-
tially smaller than q1m and, even more so, than q2m.

5. DISCUSSION OF THE EXPERIMENTAL 
RESULTS

The resistive processes for the phonon gas in pure
bismuth are the Umklapp processes and phonon scat-
tering from impurities in doped bismuth. Although nor-
mal phonon–phonon collisions dominate over resistive
processes in bismuth, the small resistive scattering can-
not be neglected. Despite the validity of the inequality

(13)

the terms containing the coefficients bi/ai in Eqs. (6)
and (7) are proportional to τR(qT) and are predominant.
In the high-temperature region, T @ Θ2e, these terms,
according to [2–4], describe two-step phonon drag. For
lower temperatures, T < Θ2e, interpretation of these
terms as reflecting two-step phonon drag is no longer
valid; indeed, thermal phonons are now coupled to
electrons. This contribution to the phonon ther-
mopower originates, according to inequality (13), only
from the weak resistive scattering and can be directly
related to Peierls’ ideas. We denote this part of the
phonon thermopower by αR; it is determined by the
terms containing the coefficients bi/ai [the second terms
in parentheses in Eqs. (6) and (7)]. This part of the
phonon thermopower is completely analogous to the
part of the thermal conductivity that, according to ine-
quality (13), is determined by weak resistive scattering.
For pure bismuth, τR is closely connected with
Umklapp processes and, thus, depends exponentially
on temperature. This dependence holds for tempera-
tures below the Debye temperature for the bismuth
crystal, Θ ≅  120 K; i.e., it is in no way related to Θ2e and
is applicable for temperatures both above and below
Θ2e and even for temperatures on the order of Θ1e. At
low temperatures, the power-law temperature depen-
dences for pure bismuth are hard to distinguish from the

1/τph–ph qT( ) @ 1/τR qT( ),
P

exponential relation. Therefore, an exponential temper-
ature dependence of the phonon thermopower will hold
for both the two-step phonon drag (T @ Θ2e) and the
resistive phonon part of the thermopower (T < Θ2e).
Exponential temperature dependences of the phonon
thermopower (αph) and the Nernst–Ettingshausen
phonon coefficient (Qph) were observed in [5–8] in pure
bismuth in the region below Θ2e, which follows from
the above estimates. Therefore, αph and Qph can be
related to the electronic characteristics associated with
resistive phonon scattering. The electrons serve here as
a probe for revealing the exponential that governs the
phonon thermal conductivity of pure bismuth.

A resistive process for the phonon gas in doped bis-
muth is Rayleigh phonon scattering from impurities,

for which 1/τph–im ~ , where c is the tellurium
dopant concentration in bismuth. In addition to this
power law, one has to take into account the variation of
all quantities under the integral in Eqs. (6) and (7) as
functions of the phonon wave vectors. In this case, in
view of condition (12), the dependences on temperature
and impurity concentration in different temperature
intervals will be different.

As for the concentration behavior of the phonon
thermopower, one has to bear in mind that there is a
direct and an indirect dependence. The direct concen-
tration dependence for the phonon thermopower is the
dependence of 1/τph–im on c. There is also an indirect
dependence, because q1m and q2m are related to the
chemical potential ζ determined by the electron con-
centration n. In doped bismuth, the concentration of
electrons is the sum of two parts, namely, the electron
concentration in pure bismuth, n0 = 3 × 1017 cm–3, and
the concentration of electrons formed in the ionization
of the tellurium dopant atoms present in concentration
c. The dependence of the chemical potential on the
electron concentration in doped bismuth is given by
[10, 11]

(14)

Now, we will analyze the phonon thermopower of
doped bismuth for temperatures above that of the max-
imum, as well as in the temperature region of the max-
imum.

5.1. Phonon Thermopower above the Temperature 
of the Maximum

5.1.1. Resistive phonon drag of electrons. Because
of the strong nonparabolicity of the L band in doped
bismuth (ζ/%g @ 1), we have ζ ~ (n0 + c)1/3. For temper-
atures above Θ2e (T @ Θ2e), theory predicts the follow-
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ing dependence of the resistive phonon thermopower
on temperature and impurity concentration:

(15)

The temperature dependence of αR (15) is determined
by the cross section of phonon scattering from impuri-
ties and is in agreement with experiment (Figs. 4, 5).
However, according to Eq. (15), the phonon ther-
mopower should decrease with increasing impurity
concentration, whereas experiment shows a growth in
the phonon thermopower. Thus, two-step phonon drag
of electrons described by Eq. (15) does not fit with the
experimentally observed concentration dependence of
the phonon thermopower.

5.1.2. Direct phonon drag of electrons. In what
follows, we assume that resistive phonon scattering in
doped bismuth is not weak: 1/τph–ph(qT) ≥ 1/τph–im(qT),
where qT is the wave vector of thermal phonons.
Therefore, the total phonon thermopower is deter-
mined by direct drag. This drag is represented in Eqs.
(6) and (7) by the first terms in the parentheses, with
τph(qT) ≅  τph–ph(qT). We denote this contribution to the
phonon thermopower by αn.

Now, we analyze all mechanisms of normal
phonon–phonon scattering to establish the temperature
and concentration dependences of the phonon ther-
mopower αn.

5.1.2.1. Accepting Herring’s model for τph–ph(q), we
obtain, for the crystal symmetry of bismuth,

(16)

In this case, for the phonon direct-drag thermopower in
bismuth, we have

(17)

The temperature and concentration dependences of
Eq. (17) for the phonon thermopower do not correlate
with the experimental relations (Figs. 4, 5).

5.1.2.2. Inclusion for the transverse phonon modes
in bismuth of normal phonon–phonon collisions deter-
mined by the Landau–Rumer processes yields

(18)

Equation (18) is also applicable to the longitudinal
phonon branch for Simons’ processes. In this case, the
contribution from all phonon modes to the phonon ther-
mopower turns out to be

(19)
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The temperature dependence of the phonon ther-
mopower αn ~ T–4, given by Eq. (19), agrees with the
experimental data presented graphically in Figs. 4 and
5. As a result of the strong nonparabolicity of the bis-
muth L band, the phonon thermopower depends on the
dopant concentration:

(20)

One can also theoretically find the concentration
dependence of the temperature T0 for a given value of
the phonon thermopower using the sample parameters.
The experimental data for our samples of doped bis-
muth are plotted in Fig. 7 for a phonon thermopower
α = 1 µV/K. As follows from Eq. (20), T0 ~ (n0 + c)1/12,
which correctly reflects the trend of a slow growth in T0
with increasing dopant concentration and deviates only
slightly from the experimental relation.

Let us discuss now the behavior of phonon ther-
mopower at lower temperatures (T < 15 K).

For dopant concentrations c < 0.01 at. % Te in bis-
muth, the temperature behavior of phonon ther-
mopower above the temperature of the maximum is
approximated by the intermediate-temperature model
(Θ1e < T < Θ2e):

(21)

Here, αn is the phonon thermopower mediated by direct
drag and αR is that due to resistive drag. The experi-
mentally observed temperature dependence of phonon
thermopower (Fig. 4) correlates with the dominant part
being played by the direct drag, as in Eq. (21).

For dopant concentrations in bismuth of c > 0.02 at. %
Te, the temperature behavior of phonon thermopower is
approximated by the low-temperature model (T < Θ1e):

(22)

The temperature dependence of phonon direct-drag
thermopower given by Eq. (22) also agrees with the
experimental relation plotted in Fig. 5.

According to Eq. (22), at low temperatures, αn

decreases with increasing impurity concentration c,
while at high temperatures, according to Eq. (20), αn

increases. As a result of the different concentration
dependences of the phonon thermopower, the graphs of
the temperature dependence of phonon thermopower
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obtained on bismuth with different dopant concentra-
tions cross in the intermediate temperature region,
which is in agreement with the experimental data plot-
ted in Fig. 5.

5.2. Phonon Thermopower in the Region 
of the Temperature of the Maximum

To consider the phonon thermopower below the
temperature of the maximum, we assume the phonon
scattering to be dominated by the phonon–electron
scattering [12] and phonon scattering from sample
boundaries:

(23)

where s is the sound velocity and L is the transverse size
of the sample. Because of the strong nonparabolicity of
the bismuth L band, τph–e contains an indirect concen-
tration dependence. For the phonon thermopower, we
obtain the following relation:

(24)

The first term in the second denominator in Eq. (24), a4,
is determined by phonon–boundary scattering, and the
second term, by phonon–electron collisions. As the
temperature increases, the rising temperature depen-
dence of the phonon thermopower should be replaced,
according to Eq. (24), by the dropping relation
described by Eq. (22). Thus, according to theory, the
temperature dependence of the phonon thermopower
should pass through a maximum, which is confirmed
experimentally (Figs. 4, 5).

If the phonon–electron scattering is insignificant,
the temperature of the maximum is concentration-inde-
pendent and

(25)

By contrast, if the maximum of the phonon ther-
mopower is dominated by phonon–electron scattering,
we have

(26)

Equations (25) and (26) reflect the trend of increasing
Tmax and decreasing αmax for the phonon thermopower
with increasing impurity concentration, and this trend
is in accord with the experimental data available for the
phonon thermopower of doped bismuth (Figs. 4, 5).
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Now, we consider the anisotropy of the phonon ther-
mopower observed experimentally (Fig. 6). According
to theory, the main contribution to the phonon ther-
mopower components α22 and α33 [given by Eqs. (6),
(7)] are due to the first terms. Due to elastic anisotropy,
these terms are not equal are close in order of magni-
tude, which does not contradict (and does not corrobo-
rate) the noticeable anisotropy observed experimen-
tally.

6. CONCLUSIONS

In doped bismuth, in contrast to pure bismuth, the
mechanism of two-step phonon drag of electrons is not
realized. The temperature and concentration depen-
dences of the phonon thermopower observed in doped
bismuth samples are described by the mechanism of
direct phonon drag, with allowance made for phonon
scattering through the Landau–Rumer mechanism for
transverse phonon branches and through the Simons
mechanism for the longitudinal phonon branch. It has
been shown that the phonon thermopower calculations
using Herring’s model for phonon scattering do not cor-
respond with the experimentally observed behavior of
the phonon thermopower. At low temperatures, the
temperature behavior of the phonon thermopower of
doped bismuth reveals a maximum, which also finds
explanation. According to theory, the maximum is due
to the dominant role of phonon–phonon scattering pre-
vailing for T > Tmax being replaced by the predominance
of the phonon–electron and phonon–boundary scatter-
ing for T < Tmax. The satisfactory description of the
behavior of the phonon thermopower component
observed in our doped bismuth samples in terms of
direct phonon drag suggests the conclusion that the
phonon–phonon collision frequency in such samples
does not dominate over that of resistive scattering.
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Abstract—A model of mixed (ionic and hole) conductivity in Tl3VS4 crystals at close-to-room temperatures
is proposed. The significant fraction of the ionic conductivity component (~70% of the total conductivity) is
explained by the nonstoichiometric electrically active thallium vacancies, whose acceptor levels provide p-type
conductivity. The characteristic time dependence of the voltage developing across a sample due to its polariza-
tion and depolarization is described using the diffusion theory of mixed conductivity previously developed by
Yokota. The charge transport phenomena in Tl3VS4 are studied experimentally, and the data are processed
according to the theoretical model. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Crystals of the Tl3BV  type (BV is V, Nb, Ta; CVI

is S, Se), belonging to the space symmetry group

, were synthesized, grown, and described for the
first time by Crevecouer in 1964 [1]. Subsequent papers
in the 1970s were mostly devoted to experimental stud-
ies of their electric and optical properties. Emphasis
was placed on Tl3VS4 crystals as the most prominent
representative of the class mentioned above. In the mid-
1980s, the interest in Tl3VS4 sharply increased due to
the discovery of unique properties in this compound,
namely, a pronounced piezoelectric effect at low veloc-
ities of slow elastic waves (800–1000 m/s) and a low
electrical conductivity [2–4]. Furthermore, it was in
Tl3VS4 crystals that the crystallographic planes and
polarizations of surface acoustic waves (SAWs) with
zero temperature coefficients of velocity were identi-
fied. This suggested promising application of this mate-
rial in acoustoelectronic devices. Due to the increased
interest expressed by developers of SAW-based elec-
tronic equipment in Tl3VS4 and other compounds of
this class, a significant number of studies were devoted
to the problems of growth of large single crystals and
the development of filters and delay lines based on
them using SAWs [2, 3, 5]. However, the application of
Tl3VS4 crystals encountered many difficulties, such as
nonreproducible and unstable parameters of the SAW-
based devices, changes in the condition of the substrate
surface, and the switching effect (a sharp decrease in
the resistivity almost to zero followed by its partial
recovery). These phenomena (in addition to the small
elastic constant C44 and its positive temperature coeffi-
cient) and the features of the temperature dependence
of the dc and ac conductivity [6–8] suggest a significant
influence of thallium ions on the properties of these

C4
VI

I43m
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materials. Our calculations showed that the ionicity of
the Tl+–(VS4)3– bond is 75% [9]. From direct measure-
ments of mass transfer, it was concluded in [10] that the
ionic component accounts for 85% of the total Tl3VS4
conductivity at 30°C. However, despite a significant
number of studies into the Tl3VS4 conductivity mecha-
nism, a convincing model of charge transfer in crystals
of this compound has not yet been developed.

In this paper, we propose a model of the mixed con-
ductivity in Tl3VS4 at close-to-room temperatures. Fur-
thermore, we report new experimental results and a
number of quantitative characteristics of the charge
transport phenomena in Tl3VS4.

2. MODEL OF THE MIXED CONDUCTIVITY
OF Tl3VS4

Since Tl3VS4 exhibits an appreciable ionic conduc-
tivity already at room temperature, we may assume that
this conductivity is not associated with thermally acti-
vated structural defects. The features of Tl3VS4 growth
(an excess of sulfur relative to the stoichiometric com-
position) suggest the existence of electrically active Tl
vacancies, whose acceptor levels provide p-type con-
ductivity. Indeed, it is unlikely that interstitial sulfur
ions exist in the close-packed Tl3VS4 structure; (VS4)3–

complex anions form a bcc lattice, and Tl+ ions are at
the centers of faces and edges of the cubic elementary
cell. There are crystallographic directions ([200] and
those equivalent to this direction) in which thallium
ions form linear chains, and vacancies provide facili-
tated motion of mobile thallium ions along these chan-
nels. We note that the ionic conductivity in isostructural
Cu3VS4 compounds was explained in [11] by the pres-
ence of interstitial Cu+ ions. We believe this explanation
to be inconsistent for Tl3VS4, since Cu3VS4 crystallizes
004 MAIK “Nauka/Interperiodica”
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in the simple cubic  structure, whereas Tl3VS4

crystallizes in the close-packed  structure. More-
over, the Tl+ ion radius significantly exceeds that of the
Cu+ ion.

Distinctive features of the direct current flowing in
mixed-conductivity semiconductors are a noticeable
time dependence of the potential distribution along the
sample and nonlinearity of this distribution. It should
be noted that, under these conditions, measurements
should be carried out without any irreversible pro-
cesses; i.e., the current intensity must be insufficient for
electrolytic deposition of ions on electrodes. These fea-
tures are described well in terms of the diffusion theory
of mixed conductivity developed by Yokota [12]. This
theory is based on the electrical quasi-neutrality con-
cept; i.e., any local change in the concentration of
mobile charges of one type must be compensated by a
corresponding change in the concentration of mobile
charges of other types. In general, the condition of elec-
trical quasineutrality imposed on the equilibrium
charge concentrations for Tl3VS4 crystals can be writ-
ten in the form

(1)

where nh is the hole concentration in the valence band,
 is the concentration of ionized donor levels of

interstitial thallium atoms,  is the concentration of

ionized shallow acceptor levels of impurities,  is the

concentration of ionized acceptor levels of thallium
vacancies, and n is the electron concentration in the
conduction band.

We assume that thermal activation of defects can be
neglected near room temperature. Moreover, the quan-
tities n and  can also be neglected in the tempera-

ture range under consideration, since the intrinsic con-
ductivity is not yet excited and shallow acceptor levels
are completely ionized but NA ! nv [8]. Then, Eq. (1)
takes on the form

(2)

with

(3)

where nv is the equilibrium concentration of thallium
vacancies. The coefficient α depends only on tempera-
ture and is defined by the conventional expression

(4)

where Nv is the number of nonstoichiometric Tl vacan-
cies in the sample, V is the sample volume, Ea is the
activation energy of acceptor vacancy levels, and gν is
the density of states in the valence band.
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As a weak external electric field is applied, the con-
centration of vacancies and, hence, that of holes
become functions of the coordinates and time that dif-
fer from the equilibrium values of nv and nh. For a sam-
ple in the form of a thin bar, we introduce the nonequi-
librium concentrations

(5)

where the x coordinate is measured from the positive
electrode. In this notation, the electrical quasi-neutral-
ity condition for any sample point at any instant of time
can be written as

(6)

We note that the coefficient α depends only on temper-
ature in this case as well [see Eq. (4)].

In terms of diffusion theory, the charge transport in
mixed-conductivity semiconductors is described by the
equations for the current densities

(7)

(8a)

(8b)

and the continuity equations for vacancies

(9)

In Eqs. (7)–(9), Ji and Jh are the ionic and hole compo-
nents of the current density J; ηi and ηh are the electro-
chemical potentials of ions and holes, respectively;
µi and µh are the mobilities of ions and holes, respec-
tively, which are considered independent of the coordi-
nate and time under weakly nonequilibrium conditions;
and E is the electric field, which is almost uniform at
low currents.

In Eqs. (8a) and (8b), the Einstein relation for the
diffusivity D = µkT/e is used.

In the case of electron electrodes, the voltage across
the sample is defined by the difference in the electro-
chemical potentials for holes. By eliminating E from
Eqs. (7) and (8) and taking into account relations (3)
and (6), one can derive the following expression for the
voltage U under the condition J = const:

(10)

where σi = env µi and σh = enhµh are the ionic and hole
conductivities, respectively, with σi + σh = σ being the
total conductivity of the material.
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∂ñh
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In turn,  is a solution to Eq. (9), which, after cer-
tain substitutions, can be reduced to a diffusion equa-
tion with the initial conditions

and the boundary conditions at the electron electrodes
defined by the absence of electrolytic deposition of the
ions,

In this case, 

(11)

where

(12)

The characteristic time τ is related to the ion diffu-
sivity Di as

(13)

and the theory parameter A should be less than unity, as
follows from the positiveness condition imposed on 
in Eq. (11). Thus, in the measurements, the current den-
sity J should satisfy the condition

(14)

Under steady-state conditions (t  ∞), we have

(15)

and the voltage across the sample is given by

(16)

We note that, in Eq. (16), the first term is the ohmic part
and the second term is due to ion (vacancy) redistribu-
tion.
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As the current is turned off (depolarization condi-
tions), the voltage initially drops abruptly to the value

(17)

and then slowly decreases to zero following the law

(18)

where, as before, (x, t) is the solution to the diffusion
equation, but now in the absence of current in the exter-
nal circuit and with the initial voltage Ud0 across the
sample:

(19)

Thus, by studying the time dependence of the volt-
age on the sample under polarization conditions (J =
const) followed by depolarization (J = 0) at various
temperatures, one can determine the basic characteris-
tics of charge transport in the sample. For example, the
parameter A (and, hence, σh) can be determined from
Eq. (16) and the ratio σi/(σi + σh) and, hence, σi can be
found from Eqs. (16) and (17):

(20)

In the depolarization regime, the characteristic time τ
and diffusivity D can be easily determined using tabu-
lated values of F(x/L; t/τ) [12] and Eq. (18). Knowing
the values of σh, σi, and Di, one can determine µi and
then nv, nh, and µh. From the temperature dependences
of these quantities, one can find the corresponding acti-
vation energies.

3. EXPERIMENTAL RESULTS

The applicability of the proposed model of charge
transport in Tl3VS4 near room temperature was deter-
mined by the absence of intrinsic-defect conductivity.
To this end, the temperature dependence of the specific
heat of Tl3VS4 was studied up to the melting point at a
fixed pressure (Fig. 1). The sharp increase in the spe-
cific heat at T ≥ 400°C is caused by absorption of the
energy expended for the generation of statistically equi-
librium defects. From the slope of the characteristic
dependence ln(T2∆C) on the inverse temperature
(Fig. 2), the activation energy for intrinsic defects was
found to be W ≅  4.5 eV. We can see in Fig. 1 that the
temperature range of intrinsic-defect conductivity exci-
tation is much higher than room temperature and seems
to coincide with the excitation range of the intrinsic
electronic conductivity (W/2 ≅  Eg, where Eg = 1.9 eV is
the band gap in Tl3VS4 [1, 8, 10]). Thus, the ionic com-
ponent of the room-temperature conductivity of Tl3VS4
is caused by temperature-independent defects due to a
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deviation from stoichiometry (which arises in the
course of the material fabrication) rather than by ther-
mal excitation of defects.

The mixed-conductivity parameters were experi-
mentally studied under dc conditions, J ≅  5 × 10–8 A/m2.
A sample in the form of a thin bar of length L = 16 mm
with a cross section of 2 × 2 mm was placed into a vac-
uum thermostat, whose temperature was maintained
constant by a temperature controller with an accuracy
of 0.1 K. Ohmic contacts were deposited onto sample
ends through thermal evaporation of aluminum in vac-
uum. The dc conditions were maintained using a load
resistor with R = 2 × 1010 Ω (Rload @ Rsample). The volt-
age on the sample was fed to an electrometric amplifier

1000
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250

0 150 300 450
T, °C

C
, J

/(
kg

 K
)

750

600

Fig. 1. Temperature dependence of the specific heat of
Tl3VS4 at a fixed pressure.
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Fig. 3. Time dependence of the polarization voltage across
the Tl3VS4 sample. Solid curves represent calculations.
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and then measured using an electronic recording poten-
tiometer. The time dependence of the voltage on the
sample was measured in the polarization (J = const) and
depolarization (J = 0) regimes in the temperature range
280–306 K.

By processing the experimental curves of polariza-
tion and depolarization according to the above tech-
nique, we determined the main characteristics of charge
transport in Tl3VS4. The table lists these characteristics
for T = 300 K, Fig. 3 shows the polarization curves for
T = 286 and 306 K, and Fig. 4 shows the temperature
dependence of the vacancy concentration nv.
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Fig. 2. Dependence of ln(T2∆C) on inverse temperature.
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Fig. 4. Temperature dependence of the vacancy concentra-
tion.
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It is noteworthy that nv is virtually temperature-
independent and nh ≅  nv in the entire temperature range
under consideration, which confirms the validity of the
proposed model of charge transport, namely, the statis-
tical relation between the electronic subsystem and the
subsystem of defects due to a deviation from stoichi-
ometry. The increase in diffusivity Di with temperature
leads to an exponential dependence of the ion mobility
and, hence, of the ionic conductivity component σi

(Fig. 5). Figure 5 also shows the dependences of the
hole and total conductivities on inverse temperature.
Since nh ≅  nv, the exponential growth of σh is caused
only by the corresponding increase in the hole mobility
µh. This means that the p-type hole conductivity in
Tl3VS4 near room temperature is hopping in character.
The activation energies for the hole, ionic, and total
conductivities are almost identical and equal to
≅ 0.25 eV, which is in good agreement with the values
previously obtained using alternative methods [8, 10,

17.2

16.0

15.6

3.20 3.25 3.30 3.35
103/T, Κ–1

–
ln

σ

3.40
15.2

16.8

16.4

3.45

1

2

3

Fig. 5. Dependence of conductivity on inverse temperature:
(1) hole component, (2) ionic component, and (3) total con-
ductivity.
PH
12]; the fraction of the ionic component σi/σ = 0.7 also
agrees well with the data from [8].

The authors hope this paper will revive interest in

Tl3BV  compounds and stimulate possible applica-
tions with them.
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Abstract—Terbium- and (Ce, Tb)-containing glasses prepared using the direct sol–gel–glass transition are
studied. It is shown that glasses doped with one activator contain two main types of optical centers, namely,
isolated and complex centers, which are characterized by weak and strong cross-relaxation quenching of lumi-
nescence from the 5D3 state of Tb3+ ions, respectively. The Ce4+–Tb3+ (Tb4+) complex centers are formed during
sintering of coactivated xerogels in oxygen and can be transformed into Ce3+–Tb3+ centers through saturation
of the samples with hydrogen. The Ce3+–Tb3+ centers exhibit efficient luminescence from the 5D4 state upon
excitation into the absorption bands of Ce3+ ions. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

For many decades, particular interest has been
expressed by researchers in glasses activated with Tb3+

ions due to their extensive use as materials for fabricat-
ing various optical reradiators and cathodoluminescent
screens [1–6]. The main features of luminescence in
these materials have already been established. In partic-
ular, it has been found that, at high activator contents,
the cross-relaxation quenching of luminescence from
the 5D3 state proceeds according to the Tb3+(5D3 
7F0,1)–Tb3+(7F6  5D4) and Tb3+(5D3  5D4)–
Tb3+(7F6  7F0,1) schemes with excitation of the 5D4
state [6–8]. However, the important problem of increas-
ing the light output of terbium-containing glasses upon
UV excitation still remains unsolved. The point is that
the light output of these materials is limited by the
occurrence of intense absorption bands in the high-fre-
quency range due to the 4f 8  4f 7(8S7/2)5d1(T2) and
4f 7(8S7/2)5d1(E) interconfigurational transitions [6] and
a relatively low efficiency of excitation transfer from
the luminescence sensitizers. For example, when Ce3+

[9, 10] and Sn2+ [3] ions are used as luminescence sen-
sitizers, the efficiency of excitation transfer does not
exceed 40 and 20%, respectively.

In this work, we attempted to solve the above prob-
lem for silica gel glasses by way of producing Ce–O–
Tb chains with a nearly collinear configuration that pro-
vides a maximum overlap of “optical” orbitals of
energy donors and energy acceptors [7]. As is known
[11–15], such a configuration can be formed in Ce4+–
Ln3+ complex centers, i.e., CeO2 nanoparticles in which
Ce4+ ions are partially replaced by Ln3+ ions [16]. In our
earlier work [17], we showed that, in the case when sil-
ica glasses containing similar complex centers are sat-
urated with hydrogen at relatively low temperatures
1063-7834/04/4608- $26.00 © 21425
(T ≤ 1000°C), the Ce4+ ions are completely reduced to
Ce3+ without relaxation of their local environment to an
equilibrium configuration with a new charge state. This
makes it possible to create conditions for the most effi-
cient intracenter sensitization of luminescence by labile
photoreduced ions (Ce4+)– [11–15] and their stable ana-
logs. Moreover, we elucidated the concentration fea-
tures of the spectroscopic behavior of Tb3+ ions in silica
gel glasses.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

Samples were prepared using the direct sol–gel–
glass transition according to the procedure described in
[12]. The glasses were activated by impregnating
porous xerogels1 with solutions of cerium and terbium
oxides at different activator contents CLn in H2SO4 +
HCl + H2O. All the reactants used were of reagent
grade. The terbium-containing glasses were sintered in
air, whereas the coactivated glasses were sintered pre-
dominantly in oxygen in order to decrease the fraction
of Ce4+–O–Ce3+ groups (cerium-containing clusters)
absorbing in the visible range [18]. In all cases, the sin-
tering temperature was equal to 1250°C. The coactiva-
tors were reduced by annealing the prepared glasses in
hydrogen at a temperature T ≈ 950°C.

The absorption spectra were recorded on a Cary-500
spectrophotometer in the form of the dependence of the
absorption coefficient k on the wavelength λ. The lumi-
nescence spectra and luminescence excitation spectra
were measured on an SDL-2 spectrofluorimeter and
were then corrected for the spectral sensitivity of the

1 We are grateful to B.V. Plyushch for synthesizing the xerogels
used in our experiments.
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recording system and spectral density of exciting radi-
ation, respectively [19]. These spectra were normalized
to unity at the maximum of the intensity and repre-
sented as the dependence of the number of photons per
unit range of wavelengths dN/dλ on the wavelength λ.
In order to reduce the reabsorption and luminescence
quenching, the frontal excitation was used for coacti-
vated samples and, if required, their thickness was
decreased to 100 µm. The barycenters of complex spec-
tral contours were calculated from their moments
according to the standard formula  =

, where ν is the wave number. The

luminescence kinetics was investigated with the use of
an S9-8 digital oscilloscope upon excitation of the third
(λ = 355 nm) and fourth (λ = 266 nm) harmonics of a
single-pulse neodymium laser. The time constant of the
measuring circuit did not exceed 0.02 of the mean time
of the process under investigation. The mean time of
luminescence decay was calculated from the relation-

ship  = . The quantum yield of lumines-

cence η for Tb3+ ions was determined by the compara-
tive method [19]. The tin-containing glass was used as
a reference sample. The quantum yield of luminescence
η for the tin-containing glass was determined using the
absolute method [20]. All spectral measurements were
performed at T = 298 K.

3. RESULTS

The absorption spectra of Tb- and (Ce, Tb)-contain-
ing glasses are depicted in Fig. 1. For comparison, this
figure shows the absorption spectrum of the nonacti-
vated glass (curve 1). It can be seen that the spectrum
of the terbium-containing glass (CTb = 1 wt %) exhibits
a broad structureless band with the maximum at a
wavelength λ ≈ 225 nm (curve 2). The shape of the
structureless band is virtually independent of the activa-
tor content CTb, whereas the intensity of this band varies
proportionally with CTb in the range 0.1–3.0 wt %. The
spectrum of the coactivated glass (CCe = CTb = 1.0 wt %)
sintered in air contains one more intense broad band at
a wavelength λ ≈ 260 nm (curve 3). A fourfold increase
in the cerium content in the coactivated glass upon sin-
tering in oxygen is accompanied by a multiple increase
in the intensity of absorption at λ < 400 nm and gives
rise to a relatively weak absorption in the long-wave-
length range (curve 4), which imparts a brown hue to
the glass. Annealing of this glass in hydrogen brings
about the disappearance of absorption at λ > 400 nm
and a considerable decrease in the intensity of the UV
band absorption (curve 5). Annealing of the glass at an
activator content CCe = CTb = 1.0 wt % in hydrogen
leads to the appearance of a deep spectral dip at wave-
length λ ≈ 260 nm (curve 6).

The luminescence spectra of the Tb- and (Ce, Tb)-
containing glasses are shown in Fig. 2. It can be seen

ν
νk ν( ) ν/ k ν( ) νd∫d∫

τ Imax
1–

I t( ) td∫
P

from this figure that the spectrum of the terbium-con-
taining glass (CTb = 0.1 wt %) measured at the excita-
tion wavelength λexc = 220 nm (curve 1) consists of a
series of narrow bands in the UV and visible ranges due
to transitions from the 5D3 and 5D4 states [8]. An
increase in the terbium content CTb to 3.0 wt % is
attended by a multiple decrease in the intensity of the
luminescence bands associated with the 5D3  7Fj

transition, a substantial redistribution of their relative
intensities, and a small shift in the barycenters toward
the short-wavelength range (curve 2). A shift in the
excitation wavelength λexc from the maximum to the
UV absorption band edge for the glass at an activator
content CTb = 0.1 wt % leads to a noticeable decrease
(by approximately 20%) in the relative intensity of the
bands attributed to the 5D3  7Fj transition. The lumi-
nescence spectrum of the coactivated glass (CCe =
4.0 wt %, CTb = 1.0 wt %) measured at the excitation
wavelength λexc = 330 nm (curve 3) exhibits a broad
band with the maximum at a wavelength λ ≈ 450 nm.
Moreover, it can be seen that the long-wavelength wing
of this band overlap with the narrow bands associated
with the 5D4  7Fj transition. Annealing of the glass
at activator contents CCe = 4.0 wt % and CTb = 1.0 wt %
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Fig. 1. Absorption spectra of (1) undoped, (2) Tb-contain-
ing, and (3–6) (Ce, Tb)-containing glasses sintered in (1–3,
6) air or (4, 5) oxygen (4) before and (5, 6) after annealing
in hydrogen. CCe = (3, 6) 1.0 and (4, 5) 4.0 wt %. CTb = (2–
6) 1.0 wt %.
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in hydrogen results in a considerable decrease in the
relative intensity of the broad band (λexc = 330 nm) and
an insignificant redistribution and a change in the loca-
tion and shape of the narrow bands (curve 4). A varia-
tion in the excitation wavelength λexc in the range of the
UV absorption band of this glass is accompanied only
by a small redistribution of the relative intensities of the
spectral bands. A decrease in the cerium content in the
hydrogen-saturated coactivated glass to 1.0 wt % does
not affect the shape of the luminescence spectrum but
leads to an increase in the fraction of photons emitted
within the broad band at wavelength λ ≈ 450 nm (λexc =
330 nm) and the appearance of weak bands associated
with the 5D3  7Fj transition at λexc = 220 nm (curve 5).

Figure 3 shows the luminescence excitation spectra
of Tb- and (Ce, Tb)-containing glasses. As can be seen
from Fig. 3, the spectrum of the terbium-containing
glass with an activator content CTb = 0.1 wt % at the
recording wavelength λrec = 545 nm consists of an
intense broad band at λmax ≈ 225 nm and a number of
weak narrow bands at λ > 300 nm (curve 1). Upon
recording the spectra at λrec = 438 nm, the barycenter of
the intense band is substantially shifted (by approxi-
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Fig. 2. Corrected normalized luminescence spectra of
(a) Tb-containing glasses sintered in air and (b) (Ce, Tb)-
containing glasses sintered in oxygen (1–3) before and
(4, 5) after annealing in hydrogen. CTb = (1) 0.1, (2) 3.0, and
(3–5) 1.0 wt %. CCe = (3, 4) 4.0 and (5) 1.0 wt %. λexc = (1,
2, 5) 220 and (3, 4) 330 nm. ∆λexc = 5 nm. ∆λrec = 1 nm.
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mately 2 nm or 350 cm–1) toward the short-wavelength
range and the contour of the narrow bands in the long-
wavelength range transforms insignificantly (curve 2).
An increase in the terbium content to 3.0 wt % does not
result in a radical change in the luminescence excitation
spectra. A variation in the recording wavelength λrec

within the most intense bands of luminescence also has
no noticeable effect on the luminescence excitation
spectra. In the luminescence excitation spectrum of the
coactivated glass (CCe = 4.0 wt %, CTb = 1.0 wt %) at the
recording wavelength λrec = 545 nm (curve 3), there
arises a new relatively intense broad double-peaked
band with a barycenter at λ ≈ 550 nm. After annealing
of the coactivated glass in hydrogen, this band trans-
forms into a broad weakly structured band with the
maximum at λ ≈ 330 nm (curve 4). The excitation spec-
trum of the broadband luminescence of this glass at
λrec = 450 nm (curve 5) differs from spectrum 4 prima-
rily in the substantial increase in the intensity of the long-
wavelength wing. As the cerium content decreases to
1.0 wt %, the spectrum of the annealed coactivated glass
becomes similar to spectrum 6 in Fig. 1 in outline; i.e., it
resembles the absorption spectrum.
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Fig. 3. Corrected normalized luminescence excitation spec-
tra of (a) Tb-containing glasses sintered in air and (b) (Ce,
Tb)-containing glasses sintered in oxygen (1–3) before and
(4, 5) after annealing in hydrogen. CTb = (1, 2) 0.1 and (3–
5) 1.0 wt %. CCe = (3–5) 4.0 wt %. λrec = (1, 3, 4) 545,
(2) 438, and (5) 450 nm. ∆λexc = ∆λrec = 5 nm.
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The decay kinetics of luminescence of trivalent ter-
bium ions in the Tb- and (Ce, Tb)-containing glasses is
illustrated in Fig. 4. It should be noted that complete
suppression of the scattered exciting radiation presents
considerable difficulties. Moreover, in this case, it is
necessary to cut off the luminescence of cerium ions.
For these reasons, the decay kinetics of luminescence
for the monoactivated and coactivated glasses was mea-
sured at delay times of 1 and 10 µs, respectively. It can
be seen from Fig. 4 that, in the terbium-containing glass
(CTb = 0.1 wt %) at the recording wavelength λrec =
380 nm and excitation wavelength λexc = 266 nm, the
luminescence decay occurs according to an approxi-
mately exponential law at a mean time  ≈ 0.92 ms
(curve 1). An increase in the excitation wavelength to
λexc = 355 nm leads to a substantial deviation from expo-
nential behavior of the luminescence decay (curve 2) and
to a decrease in the mean time  to 0.68 ms. However,
the time constant of the final stage τ1 increases from 1.06
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Fig. 4. Decay kinetics of luminescence in (a, b) Tb- and (c)
(Ce, Tb)-containing glasses (1–7) before and (8, 9) after
annealing in hydrogen. CTb = (1–3) 0.1, (4, 5) 3.0, and (6–9)
1.0 wt %. CCe = (6–9) 4.0 wt %. λexc = (1, 4, 5, 7, 9) 266 and
(2, 3, 6, 8) 355 nm. λrec = (1, 2, 4) 380 and (3, 5–9) 545 nm.
∆λexc = 0.1 nm. ∆λrec = 5 nm. Curves 1–5 and 6–9 are mea-
sured with delay times of 1 and 10 µs after excitation,
respectively. Dashed lines indicate the instants of excita-
tion.
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to 2.00 ms. At λrec = 545 nm, the decay curve exhibits
almost exponential behavior with τ ≈ 1.75 ms (curve 3).
For the terbium-containing glass (CTb = 3.0 wt %) at
λrec = 380 nm and λexc = 266 nm, the decay kinetics of
luminescence (curve 4) is virtually identical to that
observed at λexc = 355 nm and is characterized by an
insignificant deviation from exponential behavior with

 ≈ 0.87 ms. For λexc = 266 nm and λrec = 545 nm, the
kinetic curve exhibits almost exponential behavior with
τ ≈ 1.80 ms (curve 5) and only slightly differs from the
curve measured at the excitation wavelength λexc =
355 nm. In the coactivated glass (CCe = 4.0 wt %, CTb =
1.0 wt %) at the recording wavelength λrec = 545 nm,
the luminescence decay occurs according to a nonexpo-
nential law at both wavelengths λexc = 355 nm (curve 6)
and λexc = 266 nm (curve 7) with mean times  ≈ 0.25
and 0.34 ms, respectively. After annealing of this glass
in hydrogen, the decay curves exhibit a similar behav-
ior but the decay time  increases to 0.97 ms (τf ≈
2.15 ms) at λexc = 355 nm (curve 8) and to 1.63 ms (τf ≈
2.50 ms) at λexc = 266 nm (curve 9). The decay kinetics
of the broadband luminescence is characterized by a
substantial deviation from exponential behavior (  ≈
40 ns at λexc = 355 nm and λrec = 440 nm) and only
slightly differs from the decay kinetics in the cerium-
containing glasses prepared under identical conditions.

Furthermore, it should be noted that the integrated
intensity of luminescence in terbium-containing
glasses is proportional to the terbium content and that
the measured quantum yields of the sensitized lumines-
cence from the 5D4 state for the coactivated glass at
activator contents CCe = 4.0 wt % and CTb = 1.0 wt %
(λexc = 330 nm) before and after annealing in hydrogen
are equal to 5 and 95%, respectively. It is worth noting
that the quantum yield η for an identical coactivated
glass sintered in hydrogen does not exceed 40%. The
quantum yield of luminescence for the annealed glass
at activator contents CCe = CTb = 1 wt % is also rela-
tively small (≈ 50%).

4. DISCUSSION

According to [6], the broad UV absorption band of
the terbium-containing glass (Fig. 1, curve 2) can be
assigned to the 4f 8  4f 7(8S7/2)5d1(E) interconfigura-
tional transition of the activator. The probability of this
transition is almost three orders of magnitude higher
than that of parity-forbidden intraconfigurational tran-
sitions. The appearance of an intense band at λ ≈
260 nm in the spectrum of the glass (CTb = CCe = 1 wt %)
sintered in air (Fig. 1, curve 3) is associated with the
O2–  Ce4+ charge transfer [12]. The intensity of the
UV absorption for the glass at activator contents CCe =
4.0 wt % and CTb = 1.0 wt % increases nonlinearly with
an increase in the cerium content (Fig. 1, curve 4). This
can be explained by the formation of Ce–Ce and Ce–Tb
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τ

τ

τ
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complex centers, in which differently charged lan-
thanide ions are involved in exchange interactions [18,
21], and also by a partial oxidation of Tb3+ ions to Tb4+

ions, which are characterized by the O2−  Tb4+

charge-transfer band at λ ≈ 360 nm with ∆λ = 150 nm
[22]. The absorption of this glass in the visible range pre-
dominantly manifests itself in the long-wavelength wing
of the O2−  Tb4+ band and is associated with the resid-
ual coloring Ce4+–O–Ce3+ groups [18]. The considerable
weakening of absorption in the UV and visible ranges
after annealing of the glass in hydrogen (Fig. 1, curve 5)
is caused by the reduction of coactivator ions to the triply
charged state. In this case, the absence of the bands attrib-
uted to individual Ce3+ and Tb3+ ions in the spectrum,
which clearly manifest themselves in the spectrum of the
glass at activator contents CTb = CCe = 1.0 wt % (Fig. 1,
curve 6), can be treated as another argument in support
of the formation of Ce–Tb complex centers. On the
other hand, we cannot rule out the possible effect of
partial relaxation of the local environment of reduced
ions (Ce4+)– in cerium-containing clusters to an equilib-
rium state [17].

The close values of the integrated intensities of the
5D3  7Fj and 5D4  7Fj bands attributed to Tb3+

ions in the luminescence spectra of the glass at a ter-
bium content CTb = 0.1 wt % (Fig. 2, curve 1) and the
considerable decrease in the intensity of the former
bands with an increase in the terbium content to CTb =
3.0 wt % (Fig. 2, curve 2) can be explained by the
increase in the efficiency of cross-relaxation deactiva-
tion of the 5D3 state with an increase in the activator
content. The redistribution of the relative intensities of
the 5D3  7Fj spectral bands and the short-wave-
length shift of their barycenters with the aforemen-
tioned increase in the terbium content suggest that at
least two types of optical centers are formed in the ter-
bium-containing glasses. The Tb3+ luminescence
observed in the coactivated glass (CCe = 4.0 wt %, CTb =
1.0 wt %) sintered in oxygen upon excitation in the
range in which kCe @ kTb (λexc = 330 nm) can be caused
by the sensitization of Tb3+ ions by labile photoreduced
ions (Ce4+)–. The absence of the 5D3  7Fj bands in
this spectrum can be due to the nonradiative transfer of
excitations from the 5D3 state to the lowest sublevels of
the 4f5d state of the sensitizer. The broad luminescence
band with a maximum at approximately 450 nm is most
likely associated with the presence of Ce3+ residual iso-
lated ions. The substantial increase in the fraction of
photons emitted by Tb3+ ions as compared to that of
photons emitted by Ce3+ ions after annealing of this
glass in hydrogen (compare curves 3, 4 in Fig. 2) can be
attributed to the high efficiency of luminescence sensi-
tization and the loss of quenching properties by Ce4+–
O–Ce3+ groups and Tb(IV) oxo complexes upon reduc-
tion of Ce4+ and Tb4+ ions to the triply charged state.
The appearance of sufficiently intense bands due to the
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
5D3  7Fj transition in the luminescence spectrum
measured for the annealed glass at activator contents
CTb = CCe = 1.0 wt % and λexc = 220 nm (Fig. 2, curve
5) indicates that this glass contains Tb3+ isolated optical
centers with a weak cross-relaxation deactivation of the
5D3 state and an inefficient transfer of excitations from
Tb3+ isolated centers to Ce–Tb complex centers.

The short-wavelength shift of the 4f 8 
4f 7(8S7/2)5d1(E) band in the luminescence excitation
spectrum of the terbium-containing glass when chang-
ing over from the recording of the luminescence from
the 5D4 state to the recording of the luminescence from
the 5D3 state (Fig. 3, curves 1, 2) indicates a decrease in
the degree of covalence of Tb–O bonds [23]. This sug-
gests that optical centers characterized by a high inten-
sity of luminescence from the 5D3 state have Si4+ ions
in the first coordination sphere of the cationic environ-
ment (i.e., they are isolated centers), whereas centers
with a low luminescence intensity have Tb3+ ions in the
first coordination sphere (these centers will be referred
to as Tb–Tb complex centers). Actually, the relative
strength of a single chemical bond with oxygen is equal
to 1.54 for Si4+ and only 1.25 for Tb3+ [24]. This should
lead to displacement of the oxygen ion toward the sili-
con ion in the Si–O–Tb chain, a decrease in the overlap
of the Tb3+ and O2– electron shells, and the observed
shift of the band under consideration. It is unlikely that
the insignificant difference between the contours of the
intraconfigurational bands can contradict the assumption
regarding the formation of isolated and complex centers
due to the deep location of the f electron shell of Tb3+

ions. The broad double-peaked band (Fig. 3, curve 3)
revealed in the luminescence excitation spectrum of the
coactivated glass sintered in oxygen (λrec = 545 nm) can
be assigned to the transfer of excitations from photore-
duced ions (Ce4+)– to Tb3+ ions in Ce4+–Tb3+ complex
centers. As is known [11–15], this transfer can be
observed in the case when Ce4+ and Ln3+ ions are linked
by a bridging oxygen atom with the formation of a
nearly collinear configuration. It is reasonable to
assume that this band strongly shields the 7F6  5D3

band (λ ≈ 380 nm) of Tb3+ ions. As a consequence, the
luminescence from the 5D3 state is quenched and only
the 5D4  7Fj transitions manifest themselves in the
luminescence spectra. It is also evident that the short-
wavelength portion of the double-peaked band is dis-
torted as a result of luminescence quenching by Ce(IV)
and Tb(IV) oxo complexes and coloring Ce4+–O–Ce3+

groups. The considerable broadening of this band
toward the short-wavelength range after hydrogen satu-
ration of the coactivated glass (Fig. 3, curve 4) is pre-
dominantly associated with the transformation of the
above oxo complexes and groups due to the reduction
of Ln4+ ions. The substantial difference between the
band under consideration and the luminescence excita-
tion bands in the spectra of cerium-containing silica gel



1430 MALASHKEVICH et al.
glass annealed under identical conditions with a close
cerium content [17] can be treated as evidence of the
formation of Ce–Tb complex centers. In turn, the dif-
ference between the excitation band of these centers
and the spectrum obtained at λrec = 440 nm (compare
curves 4, 5 in Fig. 3) indicates that the broad short-
wavelength luminescence band corresponds to Ce3+

ions not involved in Ce–Tb centers.

The fundamental difference between the decay kinet-
ics of luminescence from the 5D3 state at wavelengths
λexc = 266 and 355 nm for the terbium-containing glass
with CTb = 0.1 wt % (Fig. 4, curves 1, 2) confirms the
above inference regarding the formation of centers of
two types. The analysis of kinetic curves 1 and 4 shows
that the function characterizing the rate of nonexponen-
tial luminescence decay Y = lnImax/I(t) – t/τf is linear in
t1/2 coordinates in both cases (Fig. 5). This suggests the
dipole–dipole mechanism of interaction between energy
donors and energy acceptors and provides a way of
determining the macroparameter of the Forster decay γ
from the slopes of straight lines 1 and 2. These parame-
ters for the glasses at terbium contents CTb = 0.1 and
3.0 wt % are calculated to be 7.7 and 9.0 s–1/2, respec-
tively. Such a small difference between these parameters
with an almost fourfold decrease in the relative intensity
of luminescence from the 5D3 state for the heavily doped
glass (compare curves 1, 2 in Fig. 2) is a weighty argu-
ment in support of the formation of isolated centers and
indicates a considerable decrease in their fraction with an
increase in the terbium content CTb. Therefore, we can
argue that the pronounced nonexponential behavior of
the luminescence decay (Fig. 4, curve 2) is associated
with the dominant contribution of Tb–Tb centers to the
decay kinetics. The independence of the decay rate of the
5D3 state from λexc for the glass at a terbium content CTb
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Fig. 5. Dependences of the function Y = lnImax/I(t) – t/τf on

t1/2 for the decay kinetics of luminescence in Tb-containing
glasses. CTb = (1) 0.1 and (2) 3.0 wt %.
PH
= 3.0 wt % suggests an almost complete cross-relaxation
quenching of the 5D3  7Fj luminescence of Tb–Tb
centers at high terbium contents and a very insignificant
transfer of excitations from isolated centers to complex
centers. It is this efficient cross-relaxation in complex
centers that can be responsible for the considerable
decrease in the decay rate of luminescence from the 5D4

state for the heavily doped glass at the initial instants of
time (Fig. 4, curve 5). Note that attempts to obtain a lin-
ear dependence of the function Y with different multipo-
larity parameters [8] for curve 2 in Fig. 4 have not been
successful. This circumstance, together with the absence
of indications that Tb–Tb centers of different types are
formed, counts in favor of the exchange interaction
between Tb3+ ions in these centers. A substantial
decrease in the decay time  for the luminescence corre-
sponding to the 5D4  7Fj transitions for the coacti-
vated glass sintered in oxygen (Fig. 4, curves 6, 7) indi-
cates that the Tb3+ luminescence is effectively quenched
by cerium-containing clusters and Tb(IV) oxo com-
plexes. The nonexponential decay of the 5D4 state at a
high quantum yield η and the dependence of this decay
on λexc after elimination of the aforementioned quench-
ing groups (Fig. 4, curves 8, 9) can be explained by the
wide scatter in the radiation-decay times of lumines-
cence of Tb3+ ions in an activator ensemble of Ce–Tb
complex centers. It should be noted that an increase in τf

by 20–40% for the coactivated glass saturated with
hydrogen as compared to τf for the terbium-containing
glass is in agreement with the high (cubic) symmetry of
Ln(III) oxo complexes in Ce4+–Ln3+ centers [14–16].
Furthermore, an insignificant difference between the
decay kinetics of the broadband luminescence in the Ce-
and (Ce, Te)-containing glasses annealed in hydrogen
confirms the inference (drawn in the analysis of the lumi-
nescence excitation spectra) that this luminescence is
associated with the Ce3+ ions not involved in Ce–Tb cen-
ters.

In our opinion, the main factors responsible for the
high quantum yield of luminescence η for the coacti-
vated glass at activator contents CCe = 4.0 wt % and
CTb = 1.0 wt % after annealing in hydrogen are as fol-
lows: the efficient intracenter sensitization of lumines-
cence due to the “conservation” of the collinear config-
uration of Ce–O–Tb bonds, the lower position of the
lowest 4f5d sublevel of Ce(III) in Ce–Tb complex cen-
ters as compared to that in Ce3+ isolated ions (compare
curve 4 in Fig. 3, for example, with curve 3 in Fig. 4 in
[12]), and the large fraction of complex centers. Appar-
ently, the absence of conditions for the formation of
these complex centers upon sintering of the coactivated
glass in hydrogen or the small fraction of complex cen-
ters formed upon sintering in air can explain the rela-
tively low quantum yield η of Tb3+ luminescence upon
excitation through Ce3+ ions in the corresponding
glasses.

τ
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5. CONCLUSIONS

Thus, terbium-containing silica gel glasses contain
optical centers of two main types, namely, Tb isolated
centers and Tb–Tb complex centers, which exhibit
weak and strong cross-relaxation quenching of the
luminescence from the 5D3 state of the activator,
respectively. The Ce4+–Tb3+ complex centers are
formed in glasses sintered under oxidizing conditions
and activated by cerium ions. These centers are charac-
terized by efficient intracenter transfer of excitations
from labile photoreduced ions (Ce4+)– to Tb3+ ions in
the 5D4 state and quenching of the luminescence from
this state by cerium-containing clusters and Tb(IV) oxo
complexes absorbing in the visible range. The hydro-
gen saturation of the glasses under investigation leads
to complete suppression of the quenching factors and a
multiple increase in the quantum yield of the sensitized
luminescence of Tb3+ ions. The transfer of excitations
from Tb isolated centers to Tb–Tb and Ce–Tb complex
centers has a low efficiency. The radiation-decay time
of luminescence of Tb3+ ions in Ce–Tb complex centers
is longer than that in Tb isolated centers and Tb–Tb
complex centers.
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Abstract—Radiation-induced changes in the optical properties of chalcogenide glasses in the Ge–As–S system
are investigated as a function of the concentration. Theoretical calculations are performed with due regard for
possible constraints on the range of variation in the number of homobonds and heterobonds upon their switch-
ing in the structural network of chalcogenide glasses. The experimental data are obtained upon irradiation of
GexAs40 – xS60 thin films with fast electrons (6 MeV). The possible mechanism of structural transformations
responsible for the specific features in the concentration dependence of the change in the band gap of chalco-
genide glasses is discussed. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Dependences of the range of variation in a number
of physicochemical parameters of chalcogenide glasses
on the ratio of chemical components are of consider-
able importance for several reasons. First and foremost,
the analysis of these dependences makes it possible to
choose the optimum media for data recording, on the
one hand, and the optimum compositions of chalco-
genide glasses resistant to radiation, on the other hand.
At the same time, the correct interpretation of the
experimental data can serve as a criterion for the ade-
quacy of theoretical models for the vitreous state, the
specific features of the glass structure, and the mecha-
nisms of structural transformations.

Modern concepts of the nature of the vitreous state
are based on the assumption of a stochastic agglomera-
tion of structural units [1, 2]. The type of structural
glass network containing atoms with different valences
is very sensitive to the ratio of chemical components or
the mean coordination number . It has been assumed
that there are two characteristic coordination numbers

 determining the stability of the glass structure:  =
2.4 and 2.67. For the former coordination number, the
problem associated with the rigidity of connection of
atoms by chemical bonds is described within the classi-
cal (Lagrangian) formalism [3]. The latter coordination
number corresponds to a change in the topological con-
nectivity of a glass upon the 2D  3D topological
transformation [4]. In more recent theoretical and
experimental studies, it has been demonstrated that, in
amorphous materials, the aforementioned coordination
numbers more likely determine the ranges of critical
values of the mean coordination number.

Z
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For quantitative estimations of the physical parame-
ters of a glass, it is of interest to consider models allow-
ing for the local structure and statistical distribution of
chemical bonds. One of the first approaches to solving
this problem is the chemical–structural method pro-
posed by Myuller [5]. Within this approach, parameters
of multicomponent glasses assumed to be additive with
respect to the ratio of structural units. In [6], it was
shown that the Myuller method can be used to evaluate
the concentration dependence of the range of induced
variations in the physical parameters of binary chalco-
genide glasses.

In this work, we performed similar calculations for
Ge–As–S ternary chalcogenide glasses. The experi-
mental data on the radiation-induced change in the opti-
cal properties as a function of the concentration were
obtained for GexAs40 – xS60 thin films (along the As2S3–
Ge2S3 join) irradiated with fast electrons. The choice of
this join is explained by the possibility of changing the
mean coordination number  from 2.4 to 2.8 with an
increase in the germanium content from 0 to 40 at. %.
We investigated the change in the band gap Eg under
irradiation. A comparison of the experimental data with
the results of calculations performed with allowance
made for the relation of the band gap Eg to the mean

energy  of the structural network [7] allowed us to
draw an inference regarding the induced structural
transformations in thin films of chalcogenide glasses.

2. THEORY

The theoretical model chosen for our calculations
allows for the fact that, under the action of different fac-

Z
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tors (optical radiation, nuclear particle beams, etc.), the
optical properties of chalcogenide glasses vary in a
similar way. In this case, the weak EPR signal mea-
sured for these glasses indicates the absence of dan-
gling chemical bonds [8]. It is assumed that atomic dis-
placements in chalcogenide glasses even under irradia-
tion with fast electrons at an energy Ee = 6.5 MeV (i.e.,
when an energy of 500–900 eV is transferred to atoms)
are “healed” through the switching of chemical bonds
with the formation of a new, more stable configuration.

Within this model, the changes observed in the
characteristics of chalcogenide glasses upon irradia-
tion will be interpreted under the assumption that the
homobond  heterobond switching is a dominant
mechanism. A number of switchings are accompanied
by spatial displacements and rotations of atoms in the
structure of the chalcogenide glass. After irradiation, a
new metastable state is characterized by a change in the
homobond-to-heterobond ratio depending on the initial
state of the chalcogenide glass and the accumulation of
radiation energy [9]. This approach makes it possible to
estimate quantitatively the radiation-induced changes
in complex systems, such as Ge–As–S glasses.

According to Manca [7], the band gap Eg depends lin-

early on the mean bond energy  for a chalcogenide
glass. Arsova [10] established that, for GexAs40 – xS60
glasses, these quantities are related by the expression

(1)

The irradiation leads to changes in the degree of
ordering, the homobond-to-heterobond ratio, and, hence,
the mean bond energy . According to formula (1), this
results in a change in the band gap Eg, which enables us
to estimate the concentration dependence of the optical
parameters of chalcogenide glasses.

Further calculation will be performed for a cluster
consisting of N atoms of the A, B, and C types, whose
coordination numbers are m, n, and l, respectively. It is
assumed that, in the cluster, the ratio of atoms corre-
sponds to the structural formula AαBβC1 – α – β and the
numbers of the A–A, B–B, C–C, A–B, A–C, and B–C
bonds are x1, x2, x3, y1, y2, and y3, respectively. In the
absence of dangling bonds, the quantities xi and yi (i =
1–3) are related by the expressions

(2)

From expressions (2), we can determine the total number
of chemical bonds in the cluster Nb = N/2[(m – l)α +
(n – l)β + l]. Under the condition that, in the chalco-
genide glass, the bond energies are additive respect to
the number and energy of chemical bonds, the mean

Ec

Eg 2.26Ec 1.62 eV[ ] .–=

Ec

2x1 y1 y2+ + mNα ,=

2x2 y1 y3+ + nNβ,=

2x3 y2 y3+ + lN 1 α– β–( ).=
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bond energy (per chemical bond) can be written in the
form

(3)

Here, the quantity C0 = EA–AmNα/2 + EB–BnNβ/2+
EC−ClN(1 – α – β) is determined only by the ratio of
components ∆i, j (i, j = A, B, C, i ≠ j) in the chalcogenide
glass and has the meaning of the accumulated energy
per chemical bond formed by atoms of the ith and jth
types: ∆i – j = Ei – j – (Ei – i + Ej – j)/2. According to Paul-
ing [11], the accumulated energy ∆i – j depends on the
difference between the electronegativities χi and χj (i,
j = A, B, C) of atoms of the Ath, Bth, and Cth types;
that is,

(4)

It follows from relationships (3) and (4) that the
range of variation in the mean bond energy  is deter-
mined by the limits of variation in the number of heter-
obonds and the type of atoms in the chalcogenide glass.
Formulas (1)–(4) make it possible to estimate the range
of variation in the mean bond energy  under different
constraints imposed on the range of variation in the
number of heterobonds and homobonds. These con-
straints account for the specific features observed in the
course of transformations of the structural network for
thin-film and bulk samples of chalcogenide glasses
under irradiation.

Figure 1 schematically represents the composition
region of GeαAsβS1 – α – β chalcogenide glasses in which
the number of heterobonds can reach a maximum due
to induced transformations and, according to expres-
sions (3) and (1), the band gap Eg can vary over the wid-
est range. This region was determined by assuming that
homobonds are not formed in the course of induced

Ec C0– ∆A–By1 ∆A–Cy2 ∆B–Cy3+ + +( )/Nb.=

∆i j– 1.06 χ i χ j–( )2 0.06 χ i χ j–( )4 eV[ ] .–=

Ec

Ec

0.4 – α – β = 0
6α – β = 2

5β + 6α = 2

5β – 2α = 2
0.7

0.5

0.3

0.1

0 0.1 0.2 0.3 0.4 0.5
α

β

Fig. 1. Graphical solution of Eq. (2) for determining the
composition region of GeαAsβS1 – α – β chalcogenide
glasses in which the number of heterobonds reaches a max-
imum. The dashed line corresponds to the GexAs40 – xS60
composition.
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transformations in the chalcogenide glass. Under this
assumption, the number density of heterobonds should
be maximum. In particular, it can be seen from Fig. 1
that, for the GexAs40 – xS60 composition, the region
under consideration (triangle) corresponds to concen-
trations x < 33 at. % Ge.

In order to obtain quantitative estimates, we con-
sider in more detail the possible constraints on the
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Fig. 2. Concentration dependences of the range of variation
in the band gap ε = (Eg max – Eg min)/Eg max (rel. units) for
different variants of constraints on the numbers of homo-
bonds and heterobonds xi and yi (i = 1–3). Curve 1 in panel
(a) is constructed without constraints on the possible
switchings of chemical bonds. Curves 2 and 3 in panel (a)
correspond to variant 2 (k = ki = pi) at k = 0.5 and 0.3,
respectively. Curves 1 and 2 in panel (b) represent the
dependences for variant 3 at t = 0.7 and 0.5 (t = ti), respec-
tively. Curves 1 and 2 in panel (c) are the dependences for
variant 4 at k = 0.5 and 0.3 (k = ki), respectively.

1

2

PH
range of variation in the number of homobonds and het-
erobonds xi and yj (i, j = 1–3).

Variant 1. All possible switchings of homobonds
and heterobonds are taken into account. In this case, the
state with the lowest bond energy of the chalcogenide
glass is achieved in the absence of heterobonds, which
corresponds to the phase separation of the material.

Variant 2. The initial state of the chalcogenide glass
is assumed to be statistically probable and is character-
ized by the following numbers of chemical bonds of
different types (see [12]):

(5)

Under the action of external factors, the numbers of
chemical bonds vary in the ranges |xi – | < ki , |yi –

| < pi  (i = 1–3).

Variant 3. In this variant, the initial state of the chal-
cogenide glass is characterized by the maximum num-
ber of heterobonds yi max (i = 1–3) [5]. The numbers of
heterobonds are represented by the relationships

(6)

The effect of external factors is reduced to a
decrease in the number of heterobonds in the chalco-
genide glass in the range |yi max – yi | < tiyi max (i = 1–3).
Here, as in the preceding case, the coefficients ti satisfy
the inequality ti < 1.

Variant 4. The numbers of heterobonds in the chal-
cogenide glass fall in the ranges [ , yi max], where 
and yi max are determined by relationships (5) and (6),
respectively. It is assumed that the inequality |xi – | <
ki  holds for the number of homobonds.

Figure 2 shows the calculated concentration depen-
dences of the range of variation in the band gap Eg

expressed in terms of the parameter ε for the above vari-
ants of constraints on the numbers of homobonds and
heterobonds in the chalcogenide glass. The parameter ε
is defined by the expression ε = (Eg max – Eg min)/Eg max,
where Eg max and Eg min are the maximum and minimum

x1 N αm( )2/ 2Ns( ), x2 N βn( )2/ 2Ns( ),= =

x3 N 1 α– β–( )2/ 2Ns( ),=

y1 Nαmβn/Ns, y2 Nαm 1 α– β–( )l/Ns,= =

y3 Nβn 1 α– β–( )l/Ns.=

xi xi

yi yi

y1   max 
mN
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band gaps Eg determined from formula (1), respec-
tively. The cluster consists of N = 1000 atoms. The
results of calculations account for the specific features
in the behavior of the function ε = ε(α) depending on
the range of induced variations in the number of homo-
bonds and heterobonds in the chalcogenide glass. It can
be seen from curve 1 in Fig. 2a that, even with allow-
ance made for all the possible structural combinations
of the chalcogenide glass at α ≥ 30 at. % Ge, the range
of variation in the energy  becomes narrower upon
switching of the chemical bonds. This is associated
with the general tendency toward a decrease in the
degrees of freedom in the space of possible numbers of
chemical bonds in a cluster of the chalcogenide glass
(Fig. 1). Under the assumption that structural transfor-
mations in the chalcogenide glass occur in accordance
with variant 2, the behavior of the parameter ε remains
unchanged (Fig. 2a, curves 2, 3). On the other hand, by
assuming that the initial state of the chalcogenide glass
is characterized by the maximum number of high-
energy heterobonds, whose number decreases during
induced structural transformations (variant 3), the con-
centration dependence of the parameter ε exhibits a
strong minimum (Fig. 2b) in the concentration range
α ~ 15–17 at. % Ge. Finally, the concentration depen-
dence of the parameter ε for variant 4 (Fig. 2c) is char-
acterized by a minimum in the range of low germanium
concentrations and a maximum at ≈30 at. % Ge.

3. EXPERIMENTAL TECHNIQUE
AND RESULTS

Radiation-induced changes in the optical properties of
chalcogenide glasses as a function of the concentration
were experimentally investigated using GexAs40 – xS60
thin films (0 ≤ x ≤ 40). The initial glasses were synthe-
sized from elemental substances of V5 purity grade.
After holding evacuated tubes with the initial sub-
stances at 950°C for 20 h and cooling in air, the pre-
pared glasses were ground to powder. The powder was
thermally evaporated at a deposition rate of ≈8 nm/s
chosen such that the compositions of the deposited film
and the initial glass would be as similar as possible. The
deposition rate and the film thickness (1.2–1.5 µm)
were checked in situ with a piezoelectric quartz sensor.
The films were deposited on substrates from fused sil-
ica, whose transparency very weakly varies under irra-
diation with high-energy particle beams.

Irradiation of film samples was performed at room
temperature on an M-30 microtron (Institute of Elec-
tronic Physics, National Academy of Sciences of
Ukraine) at an electron energy of 6.5 MeV and flux
density ϕe = 5 × 1011 electrons cm–2 s–1. The energy
homogeneity of the electron beam was equal to 0.02%.
The nonuniformity of the irradiation field was checked
in situ and did not exceed 5–7%. Films of different
compositions were fixed in a holder and were then
simultaneously irradiated with a uniform electron

Ec
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beam. The integrated particle flux per unit irradiation
area was equal to 1015–1016 electrons cm–2.

The transmittance of the samples in the range from
350 nm to 3 µm was measured before and after irradia-
tion on Specord 61 NIR, Specord UV/Vis, and Shi-
madzu UV 910 spectrophotometers. The absorption
coefficients and the refractive indices were calculated
by the Swanepoel method, and the optical band gaps
were determined by the Tautz technique.

Electron-induced changes in the optical properties
were predominantly investigated by irradiating as-pre-
pared (unannealed) films. Moreover, several annealed
films of different composition were irradiated with the
aim of observing reversible changes. The concentration
dependences of the relative change in the band gap [or

the parameter ε = (  – )/ ] calculated
from the experimental data are plotted in Fig. 3. Since
the surface of some samples under irradiation at high
doses became rough, the optical transmission could not
be measured to sufficient accuracy. For this reason, the
corresponding compositions are not presented in this
figure. The lines in Fig. 3 are drawn in order to illustrate
tendencies in the dependences of the electron-induced
changes on the film composition. The data presented
for irradiated films were obtained at four integrated
electron fluxes. Curves A, B, C, and D correspond to
integrated electron fluxes of 1015, 2.5 × 1015, 5 × 1015,
and 1016 electrons cm–2, respectively.

It can be seen from Fig. 3 that the changes induced
in the band gap of chalcogenide glasses upon irradia-
tion under conditions A and B are rather small and com-
parable in magnitude to those observed in chalcogenide
films due to ageing. The curves are almost identical in
shape and exhibit a maximum at x = 30 at. % Ge and a
weak feature (minimum) at x = 17 at. % Ge. This fea-
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Fig. 3. Experimental concentration dependences of the rel-
ative change in the band gap for GexAs40 – xS60 films at dif-
ferent irradiation doses.
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ture manifests itself differently depending on the irradi-
ation dose.

Note that the above changes in the band gap Eg

under irradiation with high-energy electrons and pho-
tons at energies close to the band gap identically
depend on the germanium content x [13–15]. The
reversible photoinduced changes are accompanied by a
darkening of the samples (an increase in the band gap),
whereas the irradiation with high-energy electrons and
irreversible photoinduced changes are attended by a
bleaching of the samples.

4. DISCUSSION

Therefore, experimental investigations demonstrate
that all the compositions are sensitive to irradiation
with electrons. (The maximum changes in the band gap
and the refractive index are of the order of 6–8%.)
According to Savchenko et al. [16], noticeable changes
in the structure-sensitive properties of glasses are
observed at integrated fluxes of higher than 1017 cm–2.
Owing to the considerable looseness of the film struc-
ture, similar changes occur in films at substantially
lower integrated electron fluxes (≥1012 cm–2) [16, 17].
For the GexAs40 – xS60 films, the threshold sensitivity
lies in the range 2.5 × 1015–5 × 1015 electrons cm–2. The
composition dependence of the electron-induced
change in the optical properties of the films is similar to
that of the photoinduced change in the optical proper-
ties of glasses [13] and exhibits a maximum at high ger-
manium contents (25–30 at. %). Judging from the sim-
ilarity of the dependences of the photoinduced and
electron-induced changes in the optical band gap, we
can assume that the structural transformations induced
under irradiation proceed through the same mecha-
nism.

In our earlier work [13], the higher sensitivity of
GexAs40 – xS60 glasses in the concentration range x =
27 at. % was explained by the loose atomic packing of
chalcogenide glasses (the large free volume). It was
assumed that this state of the chalcogenide glass is
favorable for manifestation of different mechanisms of
structural transformations, such as rotation of chalco-
gen atoms around Ge and As atoms [4] and switching
of homopolar and heteropolar bonds in chalcogenide
glasses [18].

The aforementioned theoretical model of structural
combinations allows for the possibility of these pro-
cesses occurring through both mechanisms. It can be
seen from Fig. 2 that, for each variant of constraints on
the range of variation in the number of bonds, the
dependence of the parameter ε for the GexAs40 – xS60
films exhibits a maximum in the range of 30 at. % Ge.
This can be explained by the fact that the largest num-
ber of chemical bonds, especially of bonds with a high
bond energy, such as the Ge–S and As–S bonds (≈0.5
and ≈0.26 eV per bond, respectively), can be switched
in chalcogenide glasses in the concentration range
P

under consideration. In particular, at a germanium con-
tent of 30 at. %, the bonds formed by Ge and S atoms
become comparable in number and the highest energy
is accumulated upon switching of the Ge–S bonds into
Ge–Ge and S–S bonds. As can be seen from Fig. 1, a
further increase in the germanium content leads to a
decrease in the energy accumulated by the structural
network of the chalcogenide glass upon switching of
the chemical bonds.

The origin of the feature observed in the concentra-
tion dependence of the parameter ε at a germanium
content of 17 at. % is of particular interest. As follows
from the results of our calculations (Fig. 2), the above
feature manifests itself only for models in which the
initial state of the chalcogenide glass is characterized
by a maximum number of heterobonds and the degree
of manifestation of this feature is determined by the
range of variation in the number of heterobonds with
respect to their maximum number yi max (i = 1–3). In the
framework of the proposed model, this feature is asso-
ciated with the competition between the effects caused
by the increase in the number of Ge–S heterobonds and,
correspondingly, the decrease in the number of As–S
heterobonds (having a lower bond energy) with an
increase in the germanium content. Specifically, the
number of chemical bonds formed by Ge atoms
becomes comparable to the number of chemical bonds
formed by As atoms at 17.3 at. % Ge (Fig. 2b) and the
total bond energy of Ge–S heterobonds is comparable
to that of As–S heterobonds at 10 at. % Ge (Fig. 2c).

In our specific case, the absence of a pronounced
minimum in the concentration dependence of ε can be
explained by both the insufficient irradiation dose and
the larger number of homobonds as compared to the
number assumed within the model (variants 3, 4).
Indeed, our IR spectroscopic measurements showed
that a relatively large number of As–As bonds are
formed in as-prepared As2S3 films [18]. According to
[19], there are grounds to believe that the introduction
of Ge into As2S3 in small amounts does not lead to the
incorporation of Ge into the structural clusters.

5. CONCLUSIONS

Thus, a model allowing for the switching of chemi-
cal homobonds and heterobonds in a chalcogenide
glass matrix offers a satisfactory explanation of the spe-
cific features of radiation-induced changes in the opti-
cal properties of GexAs40 – xS60 films. In particular, a
comparison of the experimental and theoretical data
lends support to the validity of variants 3 and 4, accord-
ing to which the GexAs40 – xS60 films in the initial state
involve GeS4/2 and AsS3/2 structural units. The irradia-
tion brings about the formation of new, weaker As–As,
Ge–Ge, and S–S homobonds. In as-deposited films,
part of these bonds can be formed in the course of syn-
thesis. This can affect the specific features in the con-
centration dependence of the induced changes in the
HYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
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optical properties of films. For example, unlike bulk
samples, the as-prepared films already contain homo-
bonds bonds, which is explained by the features of the
preparation technique. However, according to the
model, the initial state of the films is characterized by
the maximum number of heterobonds.

The proposed approach makes it possible to esti-
mate the physicochemical parameters of multicompo-
nent chalcogenide glasses quantitatively, including the
ranges of their variation, and to predict the optimum
composition of amorphous materials that are promis-
ing, for example, for optical data recording.
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Abstract—The effect of high pressure on the tetragonal structure of infinite-layer compounds Sr1 – xLaxCuO2
(x = 0.07, 0.13) and the orthorhombic structure of the SrCuO2 compound is investigated using powder neutron
diffraction. It is found that infinite-layer compounds are characterized by strong compression anisotropy. The
mechanism of the phase transition from the orthorhombic phase to the tetragonal phase is discussed. © 2004
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Under normal conditions, the SrCuO2 compound
has an orthorhombic structure (space group Cmcm)
(Fig. 1) consisting of copper-deficient layers (or so-
called double zigzag Cu–O chains) alternating with
(SrO)2 layers [1]. At high pressures P ~ 5 GPa and tem-
peratures T ~ 1000 K, this compound undergoes a phase
transition from the orthorhombic low-pressure phase to
the tetragonal infinite-layer phase, which is also
referred to as the high-pressure phase [2]. The mecha-
nism of the transition from the orthorhombic phase to
the tetragonal phase is not clearly understood. More-
over, it is still not known which external factor (temper-
ature or pressure) plays the key role in this phase tran-
sition.

Infinite-layer compounds of the general formula
Sr1 – xLnxCuO2, where Ln is a rare-earth element (La,
Nd, etc.), have a simple crystal structure (space group
P4/mmm) (see Fig. 2) [3–5] in which atoms occupy
only special positions. These compounds undergo a
transition to the superconducting state at a temperature
Tc ~ 20–110 K [4, 5]. The considerable interest expressed
by researchers in infinite-layer compounds with a tetrag-
onal structure stems from the fact that the unit cell
parameters a and c, which are related to the intralayer
and interlayer Cu–Cu interactions, respectively, can
serve as criteria for determining the temperature Tc of the
superconducting transition in these compounds [6]. A
change in the intralayer Cu–O distance is observed
when the Sr2+ ion with ionic radius reff = 1.26 Å is
replaced by ions with a smaller radius, for example,
La3+ (reff = 1.16 Å) or Nd3+ (reff = 1.11 Å) [6, 7]. X-ray
diffraction investigations of infinite-layer compounds
Sr1 – xLaxCuO2 (0.05 < x < 0.12) have revealed [6] that,
1063-7834/04/4608- $26.00 © 201438
under normal conditions, the parameters a and c of the
tetragonal unit cell decrease linearly with an increase in
the lanthanum content. However, at higher lanthanum

Sr

Cu

O

Fig. 1. Orthorhombic structure of the SrCuO2 compound
with copper-deficient Cu–O layers (double zigzag Cu–O
chains) alternating with (SrO)2 layers.
04 MAIK “Nauka/Interperiodica”
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contents (x > 0.12), the behavior of the unit cell param-
eters considerably deviates from linearity; similar devi-
ations are observed for Sr1 – xNdxCuO2 compounds [7].
Therefore, it can be assumed that there is a critical dop-
ing level xc at which the ratio of the unit cell parameters
c/a ceases to decrease with an increase in the content of
lanthanum or neodymium. It should be noted that
changes in the lattice parameters under pressure can
substantially exceed those observed upon doping.
However, the effect of high pressure on the structure
and properties of infinite-layer superconductors has not
been adequately investigated. In this work, we per-
formed a powder neutron diffraction investigation of
the orthorhombic structure of the SrCuO2 compound
and the tetragonal structure of infinite-layer compounds
Sr1 – xLaxCuO2 at lanthanum contents x = 0.07 and 0.13
under high pressure.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

Samples of Sr1 – xLaxCuO2 (x = 0.07, 0.13) com-
pounds were synthesized according to the original pro-
cedure developed in [6] from SrCuO2 and LaCuO2 pre-
cursors with the use of preliminary magnetic pulsed
compaction of batch pieces, which ensured a high den-
sity (~95%) and homogeneity of the samples and a high
degree of accuracy of their geometrical dimensions.
The final synthesis was carried out at a temperature of
1273 K and a pressure of 7 GPa (Institute of High-Pres-
sure Physics, Russian Academy of Sciences, Troitsk).
The neutron diffraction experiments were performed
on a DN-12 spectrometer [8] installed on an IBR-2
pulsed high-flux reactor (Joint Institute for Nuclear
Research, Dubna). Polycrystalline samples approxi-
mately 2.5 mm3 in volume were placed in a high-pres-
sure chamber with sapphire anvils [9]. The pressure in
the chamber was determined from the shift of the ruby
luminescence line with an accuracy of 0.05 GPa. The
characteristic time taken for one spectrum to be mea-
sured was equal to 20 h. The experimental data were
processed with the MRIA program [10] based on the
standard Rietveld method [11]. When processing the
neutron diffraction spectra measured at different pres-
sures, we refined the unit cell parameters a and c for the
tetragonal phase of infinite-layer compounds and the
unit cell parameters a, b, and c and positional parame-
ters of strontium, copper, and oxygen atoms for the
orthorhombic phase of the SrCuO2 compound. The
refinement was performed in the space group P4/mmm
for infinite-layer compounds and in the space group
Cmcm for the SrCuO2 compound. The results of the
structure refinement are summarized in the Table 1.

3. RESULTS AND DISCUSSION

Figure 3 shows the pressure dependences of the unit
cell parameters of the orthorhombic phase of the
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
SrCuO2 compound. The positional parameters of stron-
tium, copper, and oxygen atoms are weakly dependent
on pressure; their variations do not exceed the experi-
mental error. However, pressure substantially affects
the distance between the copper-deficient layers in the
orthorhombic structure. The ratio of the Cu–Cu inter-
layer distance to the Cu–Cu intralayer distance
decreases from 0.9138(8) to 0.9012(6). According to
calculations, the phase transition from the orthorhom-
bic low-pressure phase to the tetragonal infinite-layer
phase (high-pressure phase) should occur at a pressure
of 13.5 GPa. However, the pressure exerts a weak effect
on the positional parameters of the atoms in the struc-
ture. Therefore, the above phase transition can proceed
only at high temperatures. This suggests that the pres-
sure and temperature affect the point of the phase tran-

Cu

O

Ln

Fig. 2. Tetragonal structure of infinite-layer compounds
Sr1 – xLnxCuO2 (Ln is a rare-earth element).

Table 1.  Structural parameters of infinite-layer compounds
Sr1 – xLaxCuO2 (x = 0.07, 0.13) and the orthorhombic phase
of the SrCuO2 compound under normal pressure

Sr0.93La0.07CuO2 Sr0.87La0.13CuO2 SrCuO2

a, Å 3.939(5) 3.948(7) 3.573(4)

b, Å 3.939(5) 3.948(7) 16.316(6)

c, Å 3.417(6) 3.408(5) 3.910(2)

Sr (1/2, 1/2, 1/2) (1/2, 1/2, 1/2) (0, y, 0)

y = 0.327(5)

Cu (0, 0, 0) (0, 0, 0) (0, y, 0)

y = 0.058(6)

O(1) (1/2, 0, 0) (1/2, 0, 0) 0, y, 0

y = 0.175(4)

O(2) – – (0, y, 0)

y = 0.941(7)
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sition from the orthorhombic phase to the tetragonal
phase independently.

It can be seen from the Fig. 4 that the unit cell
parameters of infinite-layer compounds at different lan-
thanum contents decrease linearly with an increase in
pressure in the range up to 5.8 GPa. This behavior of the

0
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3.900
3.925

1 2 3 4 5 6

~~ ~~
a,

 Å
c,

 Å

P, GPa

0

16.295

16.265

16.305

16.315

16.325

1 2 3 4 5 6

b,
 Å

P, GPa

16.285

16.275

Fig. 3. Pressure dependences of the unit cell parameters a,
b, and c for the SrCuO2 orthorhombic phase. Solid straight
lines represent linear approximations by the least-squares
method. The experimental errors do not exceed the symbol
sizes.
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2

Fig. 5. Pressure dependences of the ratio c/a for the tetrag-
onal unit cell of infinite-layer compounds Sr1 – xLaxCuO2 at
lanthanum contents x = (1) 0.07 and (2) 0.13. Solid straight
lines represent linear approximations by the least-squares
method.
PH
unit cell parameters indicates the absence of saturation
observed in the case of doping [4, 5]. An increase in the
pressure leads to a more noticeable decrease in the unit
cell parameter c as compared to the parameter a. There-
fore, the compressibility of infinite-layer compounds is
anisotropic in nature (Figs. 5, 6; Table 2).
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Fig. 4. Pressure dependences of the unit cell parameters a
and c for the tetragonal phase of infinite-layer compounds
Sr1 – xLaxCuO2 at lanthanum contents x = (1) 0.07 and (2)
0.13. Solid straight lines represent linear approximations by
the least-squares method. The experimental errors do not
exceed the symbol sizes.
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Fig. 6. Pressure dependences of the unit cell volume of infi-
nite-layer compounds Sr1 – xLaxCuO2 at lanthanum con-
tents x = (1) 0.07 and (2) 0.13. Solid straight lines represent
linear approximations by the least-squares method. The
experimental errors do not exceed the symbol sizes.
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4. CONCLUSIONS

Thus, the results obtained in this study demonstrate
that infinite-layer structures undergo anisotropic com-
pression. The compression anisotropy of infinite-layer
compounds is less pronounced than that for other types
of oxide superconductors that crystallize in structures
characterized by positional parameters, with one of
them being more compliant [12–16]. In infinite-layer
structures in which atoms occupy only special posi-
tions, the structural transformations and, possibly,
changes in the electrical characteristics under pressure
are associated only with the anisotropic compression of
the unit cell.
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Abstract—Dielectric relaxation (activation energy U ≈ 0.03 eV, relaxation time τ0 ≈ 5 × 10–11 s) has been
observed in SrTiO3 : Mn solid solutions at low temperatures. It is assumed that the relaxation is related to reori-

entation of the polarons localized at defects of the { –O–} type and that the deviations from classical ther-
mally activated behavior at the lowest temperatures reached are due to the quantum tunneling mode. © 2004
MAIK “Nauka/Interperiodica”.

MnTi
2+
1. INTRODUCTION

Impurity centers in perovskite crystals have been
studied starting from the late 1950s (see [1] and refer-
ences therein). Strontium titanate crystals doped with
manganese (SrTiO3 : Mn) revealed cubic ESR spectra

of  and  and axial spectra of the { –

VO} and { –VO} complexes (after high-tempera-
ture reduction of the crystals), where VO denotes a
vacancy of oxygen ions O2– and the manganese ions
substitute for the main ion Ti4+. Additional information
on impurity centers of this type, as well as on impurity
centers with localized polarons, can be derived by
means of dielectric spectroscopy [3–6].

We report here on a dielectric spectroscopy study of
ceramic samples of strontium titanate doped by manga-
nese ions with different valences, which was aimed at
clarifying the dielectric relaxation mechanisms and
obtaining additional information on the structure of
impurity centers.

2. EXPERIMENTAL

SrTiO3 : Mn samples were prepared using standard
ceramic technology. The starting materials were the
high-purity reagents SrCO3, TiO2, MnO, and MnO2.
The typical heat treatment regime consisted of a pre-
liminary annealing at 1100–1200°C for 20 h and final
annealing at 1350–1450°C for 1.5 h.

The quadrivalent manganese was introduced into
SrTiO3 in the form of manganese dioxide (MnO2) or
preliminarily synthesized SrMnO3. For the manganese
ions to remain in the Mn4+ charge state, SrTiO3–
SrMnO3 ceramics were annealed in an oxygen flow at
1000°C for 20 h. Introduction of MnO resulted in an
excess of oxygen in the ceramics, and part of these sam-

MnTi
4+

MnTi
2+

MnTi
2+

MnTi
3+
1063-7834/04/4608- $26.00 © 21442
ples were annealed in an oxygen flow at 1000°C for
21 h. In all these cases, cooling was performed in two
regimes, namely, slow (at a rate of about 1 K/min) and
fast (5–10 K/min). We note immediately that all these
changes in the ceramic preparation regimes did not
affect the dielectric relaxation parameters (activation
energy U, relaxation time τ0) observed experimentally
under thermal-activation conditions.

The density of all samples was 0.92 to 0.96 of the
value determined from x-ray diffraction.

X-ray diffraction measurements were performed on
a DRON-2 diffractometer at room temperature. The
samples with a Mn concentration of less than 5 at. %
were single-phase with the perovskite structure. The
lattice parameters were measured on powders with a Ge
internal reference.

The permittivity was studied on a Solartron SI 1260
in the frequency range from 10 Hz to 1 MHz and at tem-
peratures ranging from 4.2 to 300 K. The samples pre-
pared for the measurements were about 10 mm in diam-
eter and 0.4 mm thick. Silver paste fired into the sam-
ples served as electrodes.

3. EXPERIMENTAL RESULTS

Figure 1 plots the lattice parameter a versus the
molar concentration x of Mn2+ ions. We readily see that
the solubility limit for this system is no greater than
0.05 and that the lattice parameter of SrTiO3 : Mn is
closer to that of the solid solution (1 – x)SrTiO3 +
xSrMnO3 than of (1 – x)SrTiO3 + xMnTiO3.

Note that doping with Mn4+ results in approximately
the same a(x) relation, with two cubic perovskite
phases observed for x ≥ 0.05. This fits with the results
from [7], where two phases with perovskite structure
were also observed and where the antiferromagnetic
004 MAIK “Nauka/Interperiodica”
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properties of the system were related to excess manga-
nese present at grain boundaries of the ceramic.

Figures 2–4 display temperature dependences of ε'
and ε'' obtained at different frequencies on SrTiO3 : Mn2+

samples with concentrations x = 0.005 and 0.02 and on
SrTiO3 : Mn4+ with x = 0.01. Figures 5–7 show ε'(ω)
and ε''(ω) spectra measured at different temperatures.

As follows from the treatment of our experimental
data, our samples exhibit, on the whole, Debye relax-
ation, with the relaxation frequencies (times) obeying
the Arrhenius law in the region of relatively high tem-
peratures.

For the Debye relaxation, we have

(1)

(2)

(3)

Here, ε0 is the permittivity in the case where it receives
all of the relaxing-center contribution (ωτ ! 1) and
ε∞ is the lattice permittivity in the case where the relax-
ation does not occur (ωτ @ 1). For ωτ = 1, we have

It is known that Eq. (1) for the Debye relaxation is a
particular case of the Cole–Cole function

(4)

Figures 8 and 9 plot (on a semilogarithmic scale) the
dependence of the relaxation times on reciprocal tem-
perature. The relaxation times were found by fitting the
ε'(ω) and ε"(ω) spectra with Cole–Cole function (4).

ε* ω( ) ε∞ ε0 ε∞–( )/ 1 iωτ+( ),+=

ε' ε∞ ε0 ε∞–( )/ 1 ω2τ2
+( ),+=

ε'' ε0 ε∞–( )ωτ/ 1 ω2τ2
+( ).=

ε' ε0 ε∞+( )/2, ε'' εmax'' ε0 ε∞–( )/2.= = =

ε* ω( ) ε∞ ε0 ε∞–( )/ 1 iωτ( )β
+[ ] .+=
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Fig. 1. Concentration dependence of the lattice parameter in
SrTiO3 : Mn2+. Solid line is experiment. Dotted line is Veg-
ard’s law for (1 – x)SrTiO3 + xMnTiO3 solid solutions, and
dashed line is Vegard’s law for (1 – x)SrTiO3 + xSrMnO3
solid solutions; the lines are drawn under the assumption
that the reduced perovskite cell parameters for the second
components of the solid solutions are 3.791 and 3.868 Å,
respectively.
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The quantity β varies from sample to sample within a
fairly broad range and, in addition, depends on temper-
ature. The average values of β are about 0.4.

The smallness of β shows that the ε(ω) spectra are
considerably more diffuse than the pure Debye spectra,
in other words, that there is a wide range of relaxation
times.

As follows from the figures, the experimental points
obtained at relatively high temperatures obey the
Arrhenius relation

(5)

The relaxation parameters U and τ0 = 1/ω0 extracted
from these experimental data are listed in Tables 1 and
2 (the deviation of experimental points from a linear
relation at low temperatures is discussed in the next
section).

We may add that the relaxation parameters U and τ0
obtained using ε"(T) relations measured at different fre-
quencies (Figs. 2–4) are the same.

τ τ 0 U/kT( ).exp=
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Fig. 4. Temperature dependence of the permittivity (a) ε'
and (b) ε" of SrTiO3 : Mn4+ measured at different frequen-
cies for x = 0.01.
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PH
4. DISCUSSION OF THE RESULTS

We start our discussion with Fig. 1. If SrTiO3 : Mn2+

is considered a (1 – x)SrTiO3 + xMnTiO3 solid solution,
a question arises as to the validity of Vegard’s law for
the lattice constant. The tolerance factor t for the ABO3
perovskite structure is given by

(6)

where RA, RB, and RO are the corresponding ionic radii.

For MnTiO3, the tolerance factor is t = 0.93. This
means it is unlikely that MnTiO3 can have a perovskite
structure. Nevertheless, if the parameter of the reduced

t 2/2 RA RO+( )/ RB RO+( ),=
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Fig. 5. Frequency dependences of the permittivity (a) ε' and
(b) ε" of SrTiO3 : Mn2+ measured at different temperatures
for x = 0.005.
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perovskite cell is estimated based on the volume of the
MnTiO3 hexagonal cell, we obtain for this parameter

ap = [(( )a2c)/Z]1/3, where a = 5.1396 Å and c =
14.2902 Å are the tabulated values of the MnTiO3 hex-
agonal cell parameters and Z = 6 is the number of for-
mula units in the cell. In this case, we come to ap =
3.791 Å.

On the other hand, if SrTiO3 : Mn2+ is considered a
(1 – x)SrTiO3 + xSrMnO3 solid solution, the second
component is SrMnO3 with a tolerance factor of 1.04.
Despite this tolerance factor being very favorable for
the perovskite structure, SrMnO3 usually has a hexago-
nal lattice with the tabulated parameters a = 5.460 Å

3/2
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Fig. 6. Frequency dependences of the permittivity (a) ε' and
(b) ε" of SrTiO3 : Mn2+ measured at different temperatures
for x = 0.05.
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and c = 13.45 Å. In this case, the parameter of the
reduced perovskite cell is ap = 3.868 Å.

In Fig. 1, the solid line displays experimental data
obtained for the lattice parameter of SrTiO3 : Mn2+ solid
solutions, the dotted straight line plots Vegard’s law for
a (1 – x)SrTiO3 + xMnTiO3 solid solution, and the dashed
straight line plots this law for a (1 – x)SrTiO3 + xSrMnO3

solid solution; these lines were drawn under the assump-
tion that the parameters ap of the reduced perovskite cell
for the second solid-solution components are 3.791 and
3.868 Å, respectively. We readily see that the experimen-
tal values of the SrTiO3 : Mn2+ lattice parameter are
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Fig. 7. Frequency dependences of the permittivity (a) ε' and
(b) ε" of SrTiO3 : Mn4+ measured at different temperatures
for x = 0.01.
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closer to Vegard’s law for the (1 – x)SrTiO3 + xSrMnO3
solid solution than to that for (1 – x)SrTiO3 + xMnTiO3.

Consider further which positions in the SrTiO3 lat-
tice can be occupied by manganese ions with different
valences. Consider first the ionic radii. We use for this
purpose the data obtained by Shannon [8]. These data
do not contain values of the ionic radii for the coordina-
tion number Nk = 12; these values are obtained by
extrapolating the data for smaller Nk (it is well known
that the coordination numbers Nk for the A, B, and O
ions in an ABO3 perovskite lattice are 12, 6, and 8,
respectively). Shannon gives two values of an ionic
radius for Nk = 6, namely, 0.67 and 0.83 Å for Mn2+ and
0.58 and 0.645 Å for Mn3+, with the second value in
each pair considered more reliable. It is these values
that we use here. The ionic radii for the SrTiO3 : Mn
system are listed in Table 3.

As seen from Table 3, the ionic radii differ strongly
(except for the Mn3+ and Ti4+ ions, which have similar
radii). Nevertheless, the Sr2+ and Ti4+ ions of the main
lattice can be replaced by a manganese ion in any
valence state. However, ESR studies [1, 2, 7] revealed
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SrTiO3 : Mn2+

1
2
3

Fig. 8. Relaxation time τ plotted vs. reciprocal temperature
for SrTiO3 : Mn2+ for (1) x = 0.005, (2) 0.02, and (3) 0.03.
Straight line is a plot of the Arrhenius law for U = 0.03 eV
and τ0 = 4.2 × 10–11 s.

Table 1.  Relaxation parameters in SrTiO3 : Mn2+

x U, eV τ0, 10–11 s

0.001 0.03 5.0

0.005 0.03 4.2

0.01 0.03 3.2

0.02 0.03 7.9

0.03 0.035 3.5

0.05 0.036 2.5
PH
Mn ions of various valences only in the Ti4+ position.
Furthermore, it was established that paramagnetic cen-
ters with Mn3+ arise only in samples calcined at a high
temperature in a mixture of nitrogen with hydrogen and
subsequently quenched to room temperature. Because
our samples were not subjected to this treatment, we
will not discuss centers with Mn3+ in what follows. We
will discuss instead in detail only the Mn2+ and Mn4+

ions in the Ti4+ position, i.e.,  and .

We start with the Mn2+ ion. The Mn2+ ion substitutes
for the titanium ion. The vacancy VO of the O2– ion with
an effective charge of +2 appears to compensate the

charge, and a { –VO} dipole forms (the formula of
the solid solution can in this case be written as

SrTi1 − x O3 – x). In another case, there are two oxy-

gen ions with a unit negative charge per  ion

(SrTi1 – x ), with one or two O– ions
located in the immediate vicinity of the Mn2+ ion (at a
distance of a/2). This formation may be treated as a
localized hole polaron (bipolaron). (One could consider
one more conceivable compensating center, namely,

neutral oxygen (SrTi1 – x ) with a radius of
about 1 Å, but the probability of formation of such a
center is apparently very low.)

In SrTiO3 : Mn4+, the Mn4+ ion substitutes for the

titanium ion,  (the formula of the solid solution is

now SrTi1 – x O3). In this case, no charge compen-
sation is needed, but the manganese ion may occupy an
off-center position because Ri/Rh = 0.88 (for the classi-
cal off-center ion Li+ in a KTaO3 lattice, Ri/Rh = 0.76).
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Fig. 9. Relaxation time τ plotted vs. reciprocal temperature
for SrTiO3 : Mn4+ for the concentration x = 0.01. Straight
line is a plot of the Arrhenius law for U = 0.028 eV and τ0 =

2 × 10–11 s.
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All of the three above centers, namely, { –VO},

{ –O–} (or {O–– –O–}), and the off-center

 ion, possess an electric dipole moment and,
hence, can contribute to dielectric relaxation.

As follows from Tables 1 and 2, the activation
energy U in our experiments is about 0.03 eV and the
relaxation time is τ0 ≈ 5 × 10–11 s. The values of the acti-
vation energy and the relaxation time listed in Tables 1
and 2 suggest the conclusion that we have one relax-
ation center in all cases. For the relaxation associated
with motion of the oxygen ions, this energy is substan-
tially larger than 0.1 eV and quite frequently is about
1 eV (see [6] and references therein). The experimen-
tally observed activation energy of 0.03 eV can be
related only to motion in the electronic subsystem.
From this viewpoint, the most appropriate of the above

centers appears to be the { –O–} (or {O–– –
O–}) center. Relaxation associated with this center
involves an electron (hole) hopping over six O2– ions

surrounding the  ion. Such an electron dressed in

a phonon coat is actually a polaron. As for the 
ion, an off-center position does not appear likely for it;
furthermore, the activation energy required to reorient
such an off-center ion may constitute about 0.1 eV, as
in the case of the Li+ ion in KTaO3 (where the activation
energy is about 0.09 eV).

Thus, out of the above centers in SrTiO3 : Mn that
can account for the observed relaxation, only one cen-

ter, { –O–} (or {O–– –O–}), is left. The acti-
vation energy for this center should be fairly low (a few
tens of millielectronvolts), in agreement with Tables 1
and 2, and the relaxation time should lie between the
electronic and phonon relaxation times, which is

MnTi
2+

MnTi
2+

MnTi
2+

MnTi
4+

MnTi
2+

MnTi
2+

MnTi
2+

MnTi
4+

MnTi
2+

MnTi
2+

Table 2.  Relaxation parameters in SrTiO3 : Mn4+

x U, eV τ0, 10–11 s

0.001 0.03 4.7

0.005 0.025 4.1

0.01 0.028 2.0
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approximately what is observed. Thus, we assume that
the dielectric relaxation observed in our SrTiO3 : Mn
samples at relatively high temperatures is related to
thermally activated polaron dynamics. We note that the
existence of polarons in SrTiO3 is still a subject of
debate [9].

An obvious question arises as to why we did not

observe the relaxation associated with the { –VO}
center. Two answers to this question can be offered;

namely, either the concentration of the { –VO}
centers in our samples is very low (because they were
not subjected to high-temperature calcination in a
reducing atmosphere [1, 2, 7]) or the parameters of the
relaxation, U and τ0, are such that this relaxation does
not fall into the frequency and temperature ranges stud-
ied by us (the lowest frequency was 10 Hz, and the
highest temperature, 300 K). Indeed, as follows from
Eq. (5), for a high enough activation energy and/or long
enough relaxation time τ0, the relaxation should be seen
at temperatures above 300 K. For instance, for U =
0.55 eV and τ0 = 10–10 s, the maximum value of ε" for
a frequency of 10 Hz should be observed at 370 K.

As follows from Figs. 8 and 9, the experimental
points deviate from the Arrhenius plot at low tempera-
tures. This can be accounted for by the fact that at low
temperatures the classical thermally activated regime
switches to quantum tunneling, with the hopping rate
becoming dependent on temperature, as was first
observed in nominally pure SrTiO3 crystals [4]. The
tunneling relaxation mode was also observed to occur
in SrTiO3 : Ca [10] and KTaO3 : Li [11] and was

assigned to tunneling of the off-center  and 
ions, respectively. An attempt was made in [12] to relate
the tunneling in the same crystals doped by Ca and Li
to bipolaron tunneling, but without invoking any partic-
ular (bi)polaron model. As for the results of our exper-
iments on dielectric relaxation with a transition from
the classical thermally activated to quantum tunneling
mode, they will be described in detail elsewhere [13].

Consider now the relaxation strength ε0 – ε∞. The
largest relaxation strength in our SrTiO3 : Mn samples
is (ε0 – ε∞) ≈ 3500. This quantity can be estimated fol-
lowing the approach used in [6].

MnTi
2+

MnTi
2+

CaSr
2+

LiK
+

Table 3.  Ionic radii following Shannon [8] (Nk is the coordination number; Ri and Rh are the radii of the impurity and the
main ion)

Nk

Sr2+ Ti4+ O2– Mn2+ Mn3+ Mn4+

12 6 8 6 12 6 12 6 12

R, Å 1.44 0.605 1.42 0.83 1.25 0.645 1.0 0.53 0.96

Ri/Rh 1.37 0.87 1.07 0.69 0.88 0.67

Note: The values of the ionic radii of manganese ions for Nk = 12 were obtained by extrapolating the data available for smaller Nk.
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The polarization induced by a field E is given (in
CGSE units) by

(7)

where p is the dipole moment of the defect under study,
n is the defect concentration, ε∞ is the permittivity for
ωτ @ 1 (i.e., at frequencies too high for the defects to
contribute to the permittivity), and the factor (ε∞ + 2)/3
accounts for the enhancement of the local electric field
compared to the applied field [14].

From Eq. (7), the permittivity ε0 is found to be

(8)

The dipole moment of the defects of interest here is
p ≈ ea ≈ 2 × 10–17 CGSE = 20 D. For x = 0.01, we have
n = 1.7 × 1020 cm–3, so that, for ε∞ = 2000 and T =
100 K, Eq. (8) yields ε0 = 8000 and the relaxation
strength becomes ε0 – ε∞ = 6000. Thus, even such a
rough estimate shows that this approach can be
employed for describing experimental results.

We note in conclusion that, in studying SrTiO3–
SrMnO3 solid solutions, we expected to detect ferro-
electric properties in this system. The tolerance factor
for the SrMnO3 compound, as already mentioned, is t =
1.04. Because the tolerance factors of the classical fer-
roelectrics BaTiO3 and PbTiO3 are 1.06 and 1.02,
respectively (for SrTiO3, t = 0.998), it appears only nat-
ural to assume that the cubic SrMnO3 with the perovs-
kite structure is also a ferroelectric. In this case, the
SrTiO3–SrMnO3 system should undergo a ferroelectric
phase transition. No such transition has been observed,
however; therefore, this point requires further study.

ACKNOWLEDGMENTS
The authors are indebted to N.V. Zaœtseva for per-

forming the x-ray measurements and to B.T. Melekh,
P.P. Syrnikov, V.V. Krasovskaya, and V.A. Yankovskaya
for preparing the samples. One of the authors (E.P.S.)

P p
2
n/3kT( ) ε∞ 2+( )/3[ ] E,=

ε0 4π p
2
n/9kT( ) ε∞ 2+( ).=
PH
acknowledges the financial support of the Ministry of
Science of Sachsen.

This study was supported by the President of the
Russian Federation (project no. NSh-2168.2003.2), the
program “Physics of Solid-State Nanostructures,” and a
program of the DPS RAS.

REFERENCES
1. R. A. Serway, W. Berlinger, K. A. Müller, and R. W. Col-

lins, Phys. Rev. B 16, 4761 (1977).
2. K. W. Blazey, J. M. Cabrera, and K. A. Müller, Solid

State Commun. 45, 903 (1983).
3. E. Iguchi, N. Kubota, T. Nakamori, N. Yamamoto, and

K. J. Lee, Phys. Rev. B 43, 8646 (1991).
4. R. Viana, P. Lukenheimer, J. Hemberger, R. Böhmer, and

A. Loidl, Phys. Rev. B 50, 601 (1994).
5. O. Bidault, M. Maglione, M. Actis, M. Kchikech, and

B. Salce, Phys. Rev. B 52, 4191 (1995).
6. V. V. Lemanov, A. V. Sotnikov, E. P. Smirnova, and

M. Weihnacht, Fiz. Tverd. Tela (St. Petersburg) 44, 1948
(2002) [Phys. Solid State 44, 2039 (2002)].

7. C. B. Azzoni, M. C. Mozzati, A. Paleari, V. Massarotti,
M. Bini, and D. Capsoni, Solid State Commun. 114, 617
(2000).

8. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).
9. J. F. Scott, A. Q. Jiang, S. A. T. Redfern, Ming Zhang,

and M. Dawber, J. Appl. Phys. 94, 3333 (2003).
10. W. Kleemann and H. Schremmer, Phys. Rev. B 40, 7428

(1989).
11. W. Kleemann, V. Schönknecht, D. Sommer, and D. Rytz,

Phys. Rev. Lett. 66, 762 (1991).
12. A. Levstik, C. Filipic, V. Bobnar, and R. Pirc, Appl.

Phys. Lett. 81, 4046 (2002); Appl. Phys. Lett. 82,
4843(E) (2003).

13. V. V. Lemanov, A. V. Sotnikov, E. P. Smirnova, and
M. Weihnacht (in preparation).

14. Ch. Kittel, Introduction to Solid State Physics, 4th ed.
(Wiley, New York, 1971; Nauka, Moscow, 1978).

Translated by G. Skrebtsov
YSICS OF THE SOLID STATE      Vol. 46      No. 8      2004



  

Physics of the Solid State, Vol. 46, No. 8, 2004, pp. 1449–1455. Translated from Fizika Tverdogo Tela, Vol. 46, No. 8, 2004, pp. 1409–1415.
Original Russian Text Copyright © 2004 by Kardashev, Plaksin, Stepanov, Chernov.

                

DEFECTS, DISLOCATIONS, 
AND PHYSICS OF STRENGTH

                             
Effect of Proton and Laser Irradiation on the Elastic 
and Inelastic Properties of a V–Ti–Cr Alloy

B. K. Kardashev*, O. A. Plaksin**, V. A. Stepanov**, and V. M. Chernov***
* Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia

e-mail: b.kardashev@mail.ioffe.ru
** Leœpunskiœ Institute of Physics and Power Engineering, Russian Federal Research Center, 

pl. Bondarenko 1, Obninsk, Kaluzhskaya oblast, 249020 Russia
*** Federal State Unitary Enterprise Bochvar All-Russia Research Institute of Inorganic Materials,

ul. Rogova 5, Moscow, 123060 Russia
Received December 30, 2003

Abstract—The behavior of Young’s modulus E and the decrement of ultrasonic vibrations δ in a V–4Ti–4Cr
alloy is studied during proton (8-MeV protons, dose rate 104 Gy/s) or IR laser (YAG : Nd3+ laser, wavelength
1.06 µm, intensity up to 102 W/cm2) irradiation. Measurements are performed using the method of a composite
piezoelectric oscillator (longitudinal 100-kHz resonance vibrations). The sizes of the irradiated surface regions
of a sample in the proton and laser experiments are the same in order to provide the same thermal conditions in
the sample–quartz transducer system. The amplitude, time, and temperature dependences of E and δ are mea-
sured before and after preliminary plastic deformation, as well as before, during, and after irradiation of a sam-
ple. The process of postdeformation aging (the kinetics of recovery of internal friction after deformation) during
proton irradiation is shown to differ substantially from that during laser irradiation. The specific features
detected can be explained by the more intense evolution of the defect structure during proton irradiation. Anal-
ysis shows that radiation annealing is related to the ionizing component of proton irradiation, which excites the
electronic subsystem of the metallic alloy and, thus, creates hot electrons and plasmons. The electron excita-
tions relax at lattice defects (dislocations) and increase the dislocation mobility; this results in a relatively rapid
decrease in the dislocation density and in a more significant (as compared to the laser irradiation) decrease in
the level of internal stresses in the material. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Metallic alloys of the V–Ti–Cr system are of practi-
cal interest as promising materials for the first wall and
a blanket in a novel fusion reactor [1, 2]. The structural
materials of the reactor are subjected to various radia-
tions, such as neutrons, protons, and γ rays. As a result
of irradiation by neutrons or ions, cascades of atom–
atom collisions occur in the materials. Depending on
the energy, temperature, and the type of materials
involved, the cascades are either a set of regions con-
sisting of isolated Frenkel pairs or a compact region
where the energy of the atoms that are primarily
knocked-out is spent for both atomic ionization and dis-
placements. Calculations show [3] that dense cascades
with an energy of primarily knocked-out atoms of
about 0.1 MeV can be as large as 6–7 nm. Late in the
development of the dense cascades, a shock wave (trav-
eling distances that are longer than the cascade size and
even longer than the projective ion range) forms in
them [4]. This wave induces pressures as high as
1011 Pa. As a result, plastic deformation occurs in a vol-
ume that significantly exceeds the cascade volume. The
evolution of the dislocation structure that appears dur-
ing this deformation has a substantial effect on the
behavior of the material upon irradiation.
1063-7834/04/4608- $26.00 © 21449
In this paper, we present the results of in situ acous-
tic studies of the dislocation structure evolution in V–
4Ti–4Cr alloy samples (the numerals indicate the per-
centage of titanium and chromium in the alloy). This
work is a continuation of studies [5, 6], where it was
found that, when the alloy is irradiated by 8-MeV pro-
tons, its elastic modulus (Young’s modulus), as a rule,
decreases and the decrement of acoustic vibrations
increases. This behavior is mainly caused by the heat-
ing of the material during irradiation. However, there is
another cause that can result in changes in the acoustic
parameters to be measured; namely, the changes can be
related to the appearing (radiation) defects and/or the
evolution of the defect structure existing in the material.
As shown in [5, 6], the sample temperature T measured
with a thermocouple often differs significantly from the
temperature estimated using the thermoelastic coeffi-
cient ∆E/∆T determined experimentally upon conven-
tional heating of the material.

The main problem in studying the behavior of a
material during irradiation consists in separating the
effects that influence the mechanical properties of the
material, namely, defect formation and the evolution of
a defect structure; the latter can occur upon heating and
as a result of radiation stimulation. This problem is
004 MAIK “Nauka/Interperiodica”
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rather complex and can be solved by carrying out in situ
acoustic experiments. The thermal conditions of such
experiments (the temperature and temperature gradi-
ents in a sample) must be the same in both proton
experiments and conventional heating. In this work, we
meet this requirement using a laser beam, which imi-
tates the thermal heating of a sample during proton irra-
diation.

We study the acoustic properties of a V–4Ti–4Cr
alloy after laser heating and proton irradiation and the
recovery of internal friction (ultrasonic damping) dur-
ing the proton and laser action on a material subjected
to preliminary plastic deformation.

2. EXPERIMENTAL

We studied samples of a V–4Ti–4Cr alloy prepared
in the United States. Samples in the form of 22.8 ×
2.5 × 1.0-mm rods were cut from plates and vacuum-
annealed at 1075°C for 1 h.

We applied the acoustic technique described in [5,
6]. For measurements, the method of a composite
piezoelectric oscillator was used. Longitudinal reso-
nance vibrations with a frequency f of about 100 kHz
were excited in a sample with a quartz transducer. The
parameters to be measured were the Young’s modulus
E ∞ f2 and the vibration decrement δ. These parameters
and the sample temperature during irradiation were
measured every 10 s at a fixed amplitude ε = 1.0 × 10–6,
which falls in the range of amplitude-independent
damping for vanadium alloys [6, 7]. The amplitude was
automatically stabilized with an error of less than 5%.
The E(ε) and δ(ε) amplitude dependences before and
after deformation and before and after irradiation were
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Fig. 1. Initial portion of the experimental time dependences
of the decrement δ and Young’s modulus E measured during
irradiation by 8-MeV protons with intensity Ib of a V–4Ti–
4Cr alloy sample that was first bent and then straightened.
P

measured at room temperature in the amplitude range
from ~10–6 to 3 × 10–4.

To separate the thermal effect of radiation, we also
performed measurements under laser-heating condi-
tions. The geometry of laser irradiation coincided with
that of proton irradiation. The same sample was used
for the measurements. An 8-MeV proton beam or a
laser beam (wavelength 1.06 µm) was directed onto the
central part of the wide face of a rod. The spot diameter
in both cases was about 1 cm. For temperature measure-
ments, a thermocouple was attached (by spot welding)
to the center of the rod sample from the side opposite to
the irradiated side. For irradiation, we used an ÉGP-
10M proton accelerator (RFRC IPPE, Obninsk) and a
YAG : Nd3+ continuous laser. As the intensity of irradi-
ation was varied, the sample temperature varied from
20 to 200°C. Thus, we obtained E(T) and δ(T) temper-
ature dependences, as well as E(t) and δ(T) time (dose)
dependences at various temperatures. The measure-
ments were carried out upon heating and cooling.

During the testing, samples were in air at atmo-
spheric pressure. For deformation, we applied three-
point bending, which allowed us to study the same sam-
ple in its undeformed and deformed states without
unsticking it from the quartz transducer. We studied
bent samples (the plastic bending flexure at the center
of a sample was 0.3 mm) and also samples that were
first bent and then straightened.

Three types of procedures were applied in the exper-
iments: (1) A sample in the undeformed state was irra-
diated by protons; then a laser beam; again by protons,
but after the sample was deformed; and finally by a
laser beam. (2) A second sample was first plastically
bent, then irradiated by protons, and finally irradiated
by a laser beam. (3) A third sample was first annealed
and deformed, then heated by a laser beam, and finally
irradiated by protons.

3. EXPERIMENTAL DATA

Figures 1 and 2 show the initial portions of time dia-
grams recorded during the proton irradiation of two
samples of the V–4Ti–4Cr alloy. Figure 1 shows how
the acoustic parameters (Young’s modulus E, decrement
δ) change in a bent and then straightened sample during
proton irradiation at a constant intensity. Figure 2 shows
the variation of the temperature T of a plastically bent
sample and the variation of its decrement δ early in the
irradiation.

The results of studying the effect of proton and laser
irradiation show that all deformed samples behave
qualitatively similarly at a constant radiation intensity.
Young’s modulus decreases and then levels off if the
sample temperature is constant, and the decrement
increases significantly upon heating and then gradually
decreases with time. The so-called recovery of internal
friction is observed, which is related to aging after
deformation. This process is irreversible, as indicated
HYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
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by both the amplitude (Figs. 3, 4) and temperature
(Figs. 5, 6) dependences of Young’s modulus and the
decrement. As a result of irradiation, the decrement and
elastic modulus tend to return to their initial values
measured before deformation.

It should be noted that the recovery of δ(t) in the
alloy under study follows a linear law in most cases.
This behavior is illustrated by Fig. 7, which shows the
time dependences of the relative change in the decre-
ment for various samples irradiated by protons and a
laser beam (δ0 is the maximum decrement for each
sample in the experiment at a steady-state temperature,
and the time t = 0 corresponds to the instant of the max-
imum decrement). The parameters characterizing the
recovery of internal friction in all samples of the V–
4Ti–4Cr alloy are given in Table 1. In addition to the
data on δ0, Table 1 contains the values of ∆δ/∆t (which
reflect the rate of change in the absolute value of the
decrement in various experiments) and the values of the
characteristic time τ = ∆t/(∆δ/δ0) corresponding to the
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Fig. 2. Time dependences of the decrement δ and tempera-
ture T of a bent V–4Ti–4Cr alloy sample measured during
irradiation by 8-MeV protons. The arrow shows the instant
of the beginning of irradiation.
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slopes of the straight lines in Fig. 7 (τ is the time it takes
for the quantity δ/δ0 to change twofold). The tempera-
ture dependences of this parameter for all V–4Ti–4Cr
samples irradiated by both protons and a laser beam are
given in Fig. 8.

The behavior of Young’s modulus during the proton
and laser irradiation can be judged from Figs. 5 and 6
and Table 2. Figures 5 and 6 are plotted with allowance
for the complete time diagrams for the sample tempera-
ture T, Young’s modulus E, and the decrement δ. Table 2
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Fig. 3. Amplitude dependences of the decrement δ and
Young’s modulus E of a nonirradiated V–4Ti–4Cr alloy
sample (1) before and (2) after preliminary deformation by
bending followed by unbending. (3, 4) The same but after
proton irradiation at doses of 2.8 × 1015 and 9.4 × 1016 pro-
tons/cm2, respectively. The measurements were performed
by increasing and then decreasing ε.
Table 1.  Damping characteristics of deformed V–4Ti–4Cr alloy samples under irradiation by protons and a laser beam

Sample 
no. Deformation Irradiation Irradiation

temperature, °C δ0, 10–5 rel. units ∆δ/∆t, 10–5 s–1 τ = ∆t/(∆δ/δ0), s

1 Bending Protons 170 120 0.102 1180

2 " " 125 195 0.082 2380

3 " " 121 110 0.070 1560

4 Bending–unbending " 181 40 0.029 1370

5 Bending Laser 91 51 0.0042 12100

6 " " 135 65 0.0074 9100

7 " " 188 240 0.104 2310
4
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lists the data on the temperature coefficients ∆E/∆T
obtained on samples before and after plastic deforma-
tion by bending.

Figures 5 and 6 show that the modulus varies lin-
early with temperature with a correlation coefficient of
no less than 0.994 for all experiments and all samples.
Thus, analysis of the E(T) dependences can be reduced
to a comparison of the thermoelastic coefficients ∆E/∆T
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Fig. 4. Amplitude dependences of the decrement δ and
Young’s modulus E of a nonirradiated V–4Ti–4Cr alloy
sample (1) before and (2) after preliminary deformation by
bending. (3–5) The same but after proton irradiation at
doses of 3.0 × 1015, 6.4 × 1015, and 9.5 × 1016 protons/cm2,
respectively. The measurements were performed by
increasing and then decreasing ε.

Table 2.  Thermoelastic coefficients ∆E/∆T reflecting changes
in Young’s modulus E with temperature T in a V–4Ti–4Cr
alloy irradiated by protons or a laser beam (numerals in paren-
theses are the ordinal numbers of experiments with the given
sample; the signs = and > mean approximately equal or differ-
ent values of ∆E/∆T, respectively, in the proton and laser
experiments)

Sample
no. Sample state

∆E/∆T, MPa/K

proton irradiation laser irradiation

1 Undeformed 16.0 ± 0.3 (1) = 15.6 ± 0.3 (2)

1 Bent 16.9 ± 0.3 (3) = 16.5 ± 0.3 (4)

2 Bent 22.5 ± 0.5 (1) > 18.4 ± 0.4 (2)

3 Undeformed – 17.4 ± 0.3 (1)

3 Bent 19 ± 0.4 (3) > 16.3 ± 0.3 (2)
P

determined in various experiments. Possible error in the
estimation of ∆E/∆T was determined experimentally on
one of the annealed undeformed samples, which exhib-
ited no noticeable irreversible structural changes. The
error in the estimation of ∆E/∆T was found to be
smaller than 2–3%. Table 2 gives the absolute errors in
determining ∆E/∆T for each sample in various experi-
ments.

A comparison of the data from Figs. 5 and 6 indi-
cates that the results for the deformed samples differ
from each other: the data in Fig. 5 are obtained using
procedure 1, and the data in Fig. 6, using procedure 2
(see above). The decrement of the deformed sample
(Fig. 6) increases with temperature, and this sample
undergoes more intense aging upon proton irradiation
as compared to the sample that is preliminarily subjected
to irradiation and then deformed (Fig. 5). As seen from
Fig. 6, the modulus E decreases with increasing temper-
ature during proton irradiation more rapidly than during
laser heating performed later on the same sample.

The data obtained indicate that the radiation (ther-
mal) and deformation histories of the samples are
important for the acoustic parameters, which reflect the
evolution of the defect structure of the material under
various external conditions.
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Fig. 5. Temperature dependence of Young’s modulus E and
decrement δ of a V–4Ti–4Cr alloy irradiated by (1, 3) pro-
tons and (2, 4) a laser beam. (1, 2) Undeformed sample and
(3, 4) the same sample after preliminary deformation by
bending. The arrows show the direction of temperature vari-
ation.
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4. DISCUSSION OF THE RESULTS

The behavior of the decrement δ (Figs. 1, 2, 7) in the
experiments with proton and laser irradiation qualita-
tively resembles the peaking effect that was detected in
unalloyed fcc and hcp metals irradiated by 1–2-MeV
electrons and γ rays and discussed extensively in the
1970s–1980s [8, 9]. Review [9] contains a number of
models for explaining this effect; these models, as a
rule, reduce to taking into account the interaction of
dislocations with point (radiation) defects. For exam-
ple, in one of the models (according to [9], it describes
the experimental characteristics of this effect most pre-
cisely), certain defects serve as pinning centers for dis-
locations (which decrease the damping), while other
radiation defects, located at a certain distance from slip
planes, cause an increase in the viscous retardation of
dislocations, which explains the increase in the decre-
ment early during irradiation. The temperature of a
sample is thought to be virtually unchanged after
switching the beam on. This is likely to be true, since a
possible change in the sample temperature during irra-
diation was not discussed in the papers reviewed in [9]
(the measurements were mainly carried out using the
flexural vibrations of thin foils made of copper, alumi-
num, silver, and magnesium).

The authors of [9] only mentioned that pinning cen-
ters can break away from dislocations into the lattice
under the action of irradiation, which should increase
the dislocation mobility and usually occurs with
increasing temperature.

Our experiments differ significantly from the exper-
iments described above in terms of both the material
(bcc alloy) and the level of irradiation (8-MeV protons
or intense laser radiation). The irradiation heats a sam-
ple such that its temperature differs dramatically from
the ambient temperature. Nevertheless, the behavior of
δ(t) is qualitatively the same: there is a maximum in the
damping curve. Undoubtedly, the increase in the decre-
ment under the action of a proton or laser beam in our
experiments is mainly caused by the increase in the
temperature of the sample. The subsequent decrease in
the decrement with time can be due to both dislocation
pinning by point defects (including radiation defects)
and possible annihilation of dislocations (radiation
annealing). During irradiation (heating), the annihila-
tion can occur because of an increase in the dislocation
mobility (slip velocity). In this case, dislocation motion
can be caused by residual internal stresses. This can
also be related to dislocation climb due to the damping
of proton-induced point defects. We think that the effect
of recrystallization annealing, which appears because
of an increase in the slip velocity, is the main factor.
This opinion can be supported as follows. First, our
experiments show that any irreversible change in the
decrement can be achieved by conventional heating, in
the absence of radiation point defects in the material.
Second (most important), the effects of irradiation on
Young’s moduli of bent samples and of samples that
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
were first bent and then straightened differ in sign
(compare Figs. 3, 4), which cannot be explained in
terms of a model where dislocations are pinned and/or
viscously retarded by point defects. Indeed, the effects
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Fig. 6. Temperature dependence of Young’s modulus E and
decrement δ of a bent V–4Ti–4Cr alloy sample irradiated by
(1) protons and (2) a laser beam upon heating followed by
cooling. The arrows show the direction of temperature vari-
ation.

0.90

0.80

0.75
0 100 200

δ/
δ 0

Time, s
300

0.95

1.05

400

0.85

1.00

1

2

3

Fig. 7. Relative change in the decrement δ of bent V–4Ti–
4Cr alloy samples as a function of the time of irradiation by
(1) protons and (2, 3) a laser beam. The irradiation temper-
ature is (1) 170, (2) 188, and (3) 135°C.



1454 KARDASHEV et al.
of proton and laser irradiation on the decrement
(Figs. 7, 8; Table 1) differ only in the characteristic
recovery times τ: for protons, this time is noticeably
shorter (by almost an order of magnitude at low temper-
atures). Analysis indicates that this difference is due to
radiation annealing, which increases the dislocation
mobility.

For the detected change in the decrement of acoustic
vibrations to be caused by dislocation climb, the dis-
placement of each dislocation should be ~ρ–1/2 in a time
of ~102 s. According to [10], the supersaturation with
point defects in this case should be ∆n = bρ1/2 ~ 10–4

(here, ρ ~ 108 cm–2 is the density of dislocations
involved in the process and b ~ 10–8 cm is the Burgers
vector). However, calculations with the TRIM-90 com-
puter program give ∆n ~ 4 × 10–6 for vacancies (inter-
stices) created by protons in vanadium alloys along a
free path of 220 µm in a time of 102 s (proton energy
8 MeV, intensity 1012 cm–2 s–1). This value is seen to be
well below the concentration of radiation defects
required for dislocation climb. Therefore, the increase
in the rate of relaxation of the decrement should be
related to the ionizing rather than the damaging effect
of proton irradiation, which stimulates dislocation slip.

As a result of the ionizing effect of proton irradia-
tion, the electron subsystem of the metal becomes
excited and virtually all the energy of the protons is
consumed to form hot electrons and, eventually, plas-
mons [11]. The electron excitations are likely to relax
mainly at lattice defects, including dislocations,
thereby increasing their mobility. The high dislocation
mobility increases the rate of their annihilation, which
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Fig. 8. Temperature dependences of the characteristic time
τ of irreversible changes in the decrement (recovery of
internal friction after preliminary deformation) for a V–
4Ti–4Cr alloy irradiated by protons or a laser beam.
P

results in a decrease in the decrement of acoustic vibra-
tions.

Like the decrement, the elastic modulus, which is
measured with a high accuracy, is a structure-sensitive
parameter of the material. From the standpoint of any
theory on the interaction between dislocations and
point defects (see, e.g., reviews [12, 13]), the decre-
ment, as a rule, increases and the elastic modulus
decreases when dislocations are introduced in a sample.
Irradiation, which creates additional point defects (dis-
location pinning centers) should lead to the opposite
effects. In this work, such a result was obtained only for
the sample that was first bent and then straightened
(Fig. 3). A slightly bent sample exhibits anomalous
behavior of the Young’s modulus (Fig. 4); namely, it
increases after deformation and decreases upon irra-
diation.

The effect of an increase in E after bending defor-
mation in alloys of the V–Ti–Cr system was first
observed by us in [7]. An analysis showed that this
effect is related to residual internal stresses, whose
relaxation in an alloy with a high amount of defects is
hindered. Owing to the anharmonicity of atomic vibra-
tions (i.e., higher order elastic constants), these stresses
increase the elastic modulus to be measured. Obvi-
ously, relaxation of the internal stresses, if it can be
realized, should significantly decrease the modulus E.
The decrease in E with increasing radiation dose (illus-
trated in Fig. 4) suggests annealing of dislocations.
Indeed, in terms of our model, a decrease in the dislo-
cation density during irradiation should decrease both
the modulus and the decrement.

Annealing of an alloy with a low level of internal
stresses (where the effect of higher order elastic con-
stants on the modulus is virtually absent) should
increase the modulus and decrease the decrement. In
this case, dislocation annihilation and dislocation pin-
ning by point defects produce effects having the same
sign. This behavior is likely to explain the finding that,
at similar radiation doses, the degree of recovery of the
decrement and modulus to their initial (before deforma-
tion) values for the bent-and-straightened sample
(Fig. 3) is higher than that for the bent sample (Fig. 4).

5. CONCLUSIONS

Using a structural metallic V–4Ti–4Cr alloy as an
example, we were the first to detect the effect of a
decrease in the elastic modulus upon irradiation. This
effect has been found to occur only in materials where
the dislocation-assisted relaxation of internal stresses is
hindered, e.g., by impurities.

The ionizing component of irradiation has been
shown to be important, because it excites the electron
subsystem of the alloy (thereby increasing the disloca-
tion slip velocity), results in dislocation annihilation,
and, hence, rapidly decreases the level of internal
stresses in the material.
HYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
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Abstract—Uniaxial-tensile tests are performed on samples of a commercial aluminum–lithium alloy subjected
to equal-channel angular extrusion. It is found that the material under study has a highly fine–grain structure
and exhibits superplasticity under tension. The microstructure of the samples is studied during their plastic
deformation. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nano- and submicrocrystalline materials are of
great interest, because they have a number of advan-
tages over conventional coarse-grained materials
(higher strength, high-rate superplasticity, etc. [1–3]).
Ultrafine-grain materials can be obtained, in particular,
through severe plastic deformation. One of the methods
for producing such deformations is equal-channel
angular (ECA) extrusion. This method was developed
by Segal [4, 5] and allows one to obtain bulk submicro-
crystalline samples. An important advantage of the
ECA extrusion method over the other methods for pro-
ducing submicrocrystalline materials is that the materi-
als obtained are nonporous and uniform in structure.

In this work, we studied aluminum–lithium alloy
1420 with submicrocrystalline structure produced
through ECA extrusion. Because of its unique physical
properties (low density, corrosion resistance, weldabil-
ity [6]), this alloy is of interest and has been studied
intensively in recent years [2, 7–9]. It should also be
noted that the study of plastic deformation of submicro-
crystalline materials may help in predicting their prop-
erties at later stages of deformation [10]. In this paper,
we report data on the evolution of the structure of alloy
1420 in the course of tensile tests carried out under the
conditions of superplasticity.

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

Experiments were performed using rods of alloy
1420 (Al–5.5 wt % Mg–2.2 wt % Li–0.12 wt % Zr)
subjected to tenfold ECA extrusion to obtain a microc-
rystalline grain structure. ECA extrusion was carried
out at 370°C. After each passage, the rod was rotated
through 90° about its axis (route B), which produced
the most uniform texture and microstructure in the
material [11].

From the rods thus treated, flat samples were pre-
pared for mechanical tests. The thickness of the sam-
1063-7834/04/4608- $26.00 © 21456
ples was 0.85 mm, and the length of their gage portion
was 5 mm. The samples were deformed in an Instron
testing machine under uniaxial-tension conditions at a
constant rate of 5 mm/min at 370°C. The temperature
was maintained constant to within ±2.5 K in the course
of testing. A more detailed description of the study of
the mechanical properties can be found in [9].

The structure and phase composition of the alloy in
the initial state (after ECA extrusion) and after mechan-
ical tests were examined with a JEM-100CX transmis-
sion electron microscope (accelerating voltage
100 kV). The substructure was investigated using gb
analysis and trace analysis [12]. X-ray phase analysis
of the alloy was carried out with a Siemens diffracto-
meter (CuKα radiation).

3. RESULTS AND DISCUSSION

Figure 1 shows a photograph of the microstructure
of the alloy subjected to ECA extrusion. The sample is
seen to consist of separate grains. The image of each
grain is a dark-field picture taken with one of the zone
reflections corresponding to the grain in question.
Selected-area diffraction patterns of the grains are also
shown in Fig. 1. It can be seen that the structure of the
alloy subjected to ECA extrusion is fairly uniform. The
grains are equiaxial, and the average grain size is
~1.5 µm. The grains exhibit a developed substructure
consisting of isolated dislocations, pileups of disloca-
tions, and dislocation subboundaries. Therefore,
because of the presence of subboundaries, the material
under study can be characterized as submicrocrystal-
line.

The average dislocation density in the material is
~109 cm–2. The structure contains precipitations of
intermetallic phases, namely, S1 phase (Al2LiMg) and δ'
phase (Al3Li). S1-phase precipitations arise near grain
boundaries and triple interface junctions, as well as in
the grains themselves, and make up colonies (Fig. 1).
004 MAIK “Nauka/Interperiodica”
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The series of photographs in Fig. 2 illustrates the
change in the structure of the alloy caused by its defor-
mation in the course of mechanical tests. The images
were obtained in the same way as those in Fig. 1. As
already mentioned, the grains in the alloy in the initial
state are typically equiaxial in shape. In the alloy with
strain ε = 110% (Fig. 2a), the structure is dominated by
elongated grains. This is also the case for samples with
ε = 300% (Fig. 2b). In samples with higher strains (900,
1200%), the structure is again characterized by equiax-
ial grains (Figs. 2c, 2d, respectively).

As the alloy strain is increased, the average grain
size slightly increases (up to 2 µm) and the dislocation
density decreases down to 106–107 cm–2. No changes
were observed in the size, shape, or distribution of the
secondary phases.

We performed a detailed study of the structure of
subboundaries with dislocations forming the structure
of grains in both the initial material and the samples
subjected to mechanical tests. Certain distortions were
observed in the structure of the subboundaries. For the
most part, these distortions were fairly regular, even
though the material was subjected to severe plastic
deformations, which indicates that the subboundaries
were formed not only through dislocation glide but also
through nonconservative motion of dislocations. Fig-
ures 3 and 4 show typical examples of dislocation sub-
boundaries observed in alloy samples.

Figure 3 shows photographs of a subboundary (dis-
location wall) corresponding to different diffraction
conditions (the foil lies horizontally). According to
selected-area diffraction data, the projection of the sub-
boundary onto the foil plane corresponds to the (112)
plane, the line of intersection of the subboundary and

the foil plane is parallel to [ ], and the projections
of the dislocations onto the foil plane are approximately

parallel to [ ].

The foil thickness t near a dislocation wall was
determined (for the horizontal film position) by mea-
suring the number of oscillations n in contrast on

images of tilted dislocations for g = [ ] and s ≈ 0,
where g is the diffraction vector and s is a parameter
characterizing the deviation from the exact reflection
position. The foil thickness is t = nξg = 0.17 µm, where
ξg is the extinction distance corresponding to the recip-
rocal lattice vector g.

The intersections of the subboundary with the upper
and lower foil surfaces were determined using a dark-
field image of the subboundary for s < 0. Under these
conditions, the contrast at dislocation lines is stronger
near the upper foil surface than near the lower one [13].
In Fig. 3b, the letters T and B indicate the portions of
the subboundary that cross the upper and lower foil sur-
faces, respectively. The width of the subboundary pro-
jection onto the plane of the figure is approximately
0.7 µm. Therefore, the plane of the subboundary is

131

111

111
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tilted at an angle of 19° to the plane of the figure and

coincides with the ( ) plane and the dislocations
forming the wall are virtually parallel to the [101]
direction.

The Burgers vector b of dislocations was deter-
mined from the reflections g in which no dislocations
were observed or the contrast of dislocations was min-
imal (gb = 0). This is the case in Fig. 3c. Note that,
according to diffraction intensity calculations based on
dynamic theory [14], the criterion for the absence of
contrast of dislocations with an edge component in the
case of gb = 0 is that m = g[b × u]/8 ≤ 0.08, where u is
a unit vector in the positive direction of a dislocation
line. In the case in question, m = 0.125; therefore, a low
contrast should be observed.

Thus, the dislocation wall at hand consists of mixed
~60° glide dislocations with Burgers vector b =

(a/2)[110] and slip plane ( ).
A subboundary consisting of a hexagonal network

formed by dislocations of three families is illustrated in
Fig. 4, where several photographs are shown corre-
sponding to different conditions that determine the sub-
boundary contrast. Analysis of the dislocation compo-
sition of the subboundary was performed following the
above technique used to analyze the dislocation wall.

As seen from Fig.4 (the foil is in horizontal posi-
tion), the foil surface coincides with the (110) plane, the
line of intersection of the dislocation network with the

foil plane is parallel to [ ], and the projections of
dislocations onto the foil plane are directed along v1 =

[ ], v2 = [ ], and v3 = [002]; the width of the pro-
jection of the network onto the plane of the figure is
approximately 0.5 µm.

101

111

131

111 111

a

b

c

d

e

b
a

d

e

c

0.5 µm

Fig. 1. Composed dark-field picture of the structure of alu-
minum alloy 1420 taken after ECA extrusion. Identical let-
ters indicate grains and the corresponding diffraction pat-
terns.
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(114) (110)

(112)

(113)

(110)

(221)

(112)

(110)

(001)
(110)

(221)

(112)(001)

Fig. 2. Composed dark-field pictures of the structure of aluminum alloy 1420 taken during tensile tests for (a) ε = 110, (b) 300,
(c) 900, and (d) 1200%. The zone axes are indicated for each grain.
The foil thickness near the dislocation network was
determined from the number of thickness extinction
profiles on a grain boundary image for s ≈ 0 (Fig. 4a)
and was 0.34 µm. The position of the network plane
was determined from the character of the contrast of a
dark-field image of dislocations for s < 0 (Fig. 4b). This

plane was found to coincide with the ( ) plane.
Therefore, the dislocation lines are approximately par-

allel to u1 = [135], u2 = [210], and u3 = [ ].

The photographs in Fig. 4 correspond to the cases

where the reflecting planes are (002), ( ), and

( ). In each of these photographs, only the contrast
of two families of dislocations is normal. Therefore, the
Burgers vectors for one family of dislocations lie in a
reflecting plane in each case. With allowance for the

121

110

111

111
PH
value of the parameter m, it can be found that, for the
first family of dislocations, the Burgers vector is b1 =

(a/2)[011]; for the second, b2 = (a/2)[ ]; and for the

third, b3 = (a/2)[ ]. All dislocations of the sub-
boundary in question are mixed, and the angles
between the vectors b and u are ϕ1 = 18°, ϕ2 = 51°, and
ϕ3 = 60°, respectively. For the third family of disloca-
tions, the slip plane is (111).

These and other similar subboundaries are typical of
both the material in the initial state and samples sub-
jected to mechanical tests.

As mentioned above, the material under study con-
tained two of the intermetallic phases known for the
Al–Li–Mg system [15, 16], namely, the equilibrium
cubic S1 phase and the nonequilibrium δ' phase (the L12
structure). Precipitations of the δ' phase are highly dis-

101

110
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131–

111

(a) (b)

0.5 µm

(c)

T

B

220
–

Fig. 3. Photomicrographs of a dislocation wall taken with (a) the g =  reflection, s ≈ 0; (b) g = , dark field, s < 0; and

(c) g = .

111[ ] 111[ ]
220[ ]

(a)

(c) (d)

(b)

[131]
––

[210]
[101]
–

[135]

0.5 µm

111
–

002

B

T

Fig. 4. Pictures of a hexagonal dislocation network taken with (a) the g = [002] reflection, s ≈ 0; (b) g = [002], dark field, s < 0;

(c) g = ; and (d) g = .111[ ] 111[ ]

–

111
–

persed, and the presence of this phase can often be
detected only through additional reflections in a
selected-area diffraction pattern. Precipitations of the
S1 phase are arbitrary in shape, and their size is 0.2–
0.3 µm. According to electron-microscopic examina-
tions, the volume fraction of this phase in the material
can be as large as 15%. However, an x-ray diffraction
study showed that the content of this phase in the alloy
is less than 1% (Fig. 5). The positions of the Al and
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      200
Al2LiMg reflections are indicated in the bar diagram at
the bottom of Fig. 5.

Figure 6 shows a dark-field picture of a portion of
the foil containing an S1-phase precipitation and the
corresponding diffraction pattern. The picture was
taken with one of the reflections of the phase. The S1

phase is seen to precipitate in the form of colonies of
randomly oriented small (~25-nm) Al2LiMg crystal-
lites. The contrast of regions containing crystallites of
4
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this phase differs from the contrast of other regions of
the material (without this phase). The material between
crystallites in a colony is, apparently, a Li- and Mg-lean
solid solution in an aluminum matrix.

It is instructive to compare the data on the structure
of the superplastic aluminum alloy with the results of

10 20 30 40 50

Al2LiMg

Al

In
te

ns
ity

, a
rb

. u
ni

ts

2θ, deg

Fig. 5. Diffraction pattern of aluminum alloy 1420 (CuKα
radiation).

0.25 µm

Fig. 6. Dark-field picture and the corresponding selected-
area diffraction pattern of a portion of the alloy structure
containing S1-phase particles.
PH
its mechanical tests performed in [9]. By analyzing the
true stress–true strain curve, it was concluded in [9] that
the deformation of alloy 1420 is characterized by two
main stages: elastic deformation is followed by a rela-
tively short portion of the curve associated with harden-
ing of the material, after which a prolonged softening
stage is observed. For the hardening and softening
stages, the activation energy was determined to be 1.4
and 0.98 eV, respectively. Based on these values of the
activation energy, it was supposed that the dominant
mechanism of superplastic deformation in the first
stage is self-diffusion in the bulk of grains (which cor-
responds to dislocation slip in grains) and in the second
stage, grain-boundary self-diffusion (i.e., slip along
grain boundaries).

Our study of the evolution of the alloy grain struc-
ture provides support for the conclusion concerning the
dominant mechanisms of deformation. Indeed, in the
hardening stage, the grain shape changes from equiax-
ial to elongated, which indicates the occurrence of
intragrain dislocation slip. Since the dislocation density
in grains is fairly high at this stage, intragrain disloca-
tion slip can be considered the dominant mechanism of
deformation.

Examinations of the alloy structure showed that, at the
softening stage (ε = 900, 1200%), grains become equiax-
ial in shape and the dislocation density in them decreases
significantly. Such a structure is typical of superplastic
deformation through grain boundary slip [17].

Our electron-microscopic studies of the dislocation
boundaries of building blocks indicate that the structure
is dominated by various nonequilibrium subbound-
aries. The subboundary nonequilibrium is associated,
first, with the breaking of their structural regularity and,
second, with the fact that the dislocations making up
dislocation walls have an appreciable screw component
and that the dislocations forming a dislocation network
have an edge component [18, 19]. Such nonequilibrium
boundaries have a higher energy and can undergo ther-
mally activated breakdown when samples are heated
and deformed. They produce long-range stress fields in
grains, which, in turn, can destroy other subboundaries
by causing dislocations to emerge from them.
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Abstract—A many-electron model of the energy band structure of VBO3 and of Fe1 – xVxBO3 solid solutions
is proposed with strong electron correlations taken into account. Experimental optical absorption spectra and
data on the resistivity are discussed in the framework of the suggested model. Variation in the magnetic and
electronic properties of VBO3 and Fe1 – xVxBO3 under high pressure is predicted. For VBO3, a Mott–Hubbard
(insulator–metal) transition is expected in the high-pressure phase. In Fe1 – xVxBO3 solid solutions, a nontrivial
variation in the properties is predicted, leading to the appearance of a different magnetic state. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

After the discovery of high-temperature supercon-
ductivity in copper oxides, interest in the study of
strongly correlated electronic systems has increased
substantially. Transition-metal borates form yet another
class of oxides, whose magnetic and electrical proper-
ties are determined by strong electron correlations in
narrow d bands. Transition-metal oxyborates MBO3
(where M = Fe, V, Cr, Ti) crystallize in the calcite struc-

ture [space group  ( )]. In this class of materi-
als, iron borate, FeBO3, has been studied most exten-
sively. This compound was first synthesized in 1963
[1], but correct interpretation of its magnetic properties
was given only in 1968, when Joubert and coworkers
showed that FeBO3 belongs to a large class of antifer-
romagnets with weak ferromagnetism [2]. FeBO3 is
one of the few compounds that have a spontaneous
magnetic moment at room temperature and, at the same
time, are transparent in the visible part of the spectrum
[3, 4]. Such a combination of magnetic and optical
properties makes this material rather promising for
applications in magnetooptics [5–7]. Although FeBO3
has been intensively studied for a long time, there are
only a few theoretical and experimental investigations
into the other representatives of this class, as well as of
FeBO3-based solid solutions. In particular, there is no
information about their electronic and, in some cases,
magnetic structure. The optical properties and anisot-
ropy of these compounds have been studied to an even

R3c D3d
6

1063-7834/04/4608- $26.00 © 21462
lesser extent. The VBO3, CrBO3, and TiBO3 isostruc-
tural compounds were synthesized for the first time in
1964 [8]. Further measurements have shown that
CrBO3 is a low-temperature antiferromagnet (TN =
15 K); according to [9], the magnetic moments of the
sublattices are oriented along the third-order C3 axis.
The magnetic and electrical properties of TiBO3 were
recently studied in [10], and it was assumed that this
compound is a weak ferromagnet (TN = 25 K). To date,
the following systems among the FeBO3-based solid
solutions have been synthesized and partly investi-
gated: Fe1 – xGaxBO3 [1, 11–14], Fe1 – xAlxBO3 [13–15],
Fe1 – xCrxBO3 [1, 13, 14, 16, 17], and Fe1 – xMxBO3 with
M = Mn, In [14] and M = Mg, Cu [18, 19])

A few studies of FeBO3-based solid solutions con-
taining a transition metal as a substitution ion are
restricted to the Fe1 – xMxBO3 (M = Mn, Cr) series; how-
ever, by synthesizing solid solutions of isostructural
compounds having different transport and magnetic
properties, one can intentionally create a situation
where competing mechanisms and interactions result in
the establishment of magnetic order accompanied by a
modification of the electrical properties of the sample.
Earlier, we performed a complex study of the electrical,
magnetic, and optical properties of Fe1 – xVxBO3 solid
solutions [20, 21]. The choice of the V3+ ion as a substi-
tution ion is motivated by the large difference in the
electrical and magnetic properties of the final com-
pounds. For example, FeBO3 is an antiferromagnet
004 MAIK “Nauka/Interperiodica”
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with weak ferromagnetism (TN = 348 K) and an insula-
tor with an optical absorption edge Eg = 2.9 eV [22],
while VBO3 is a ferromagnet (TC = 32 K) and a semi-
conductor [9].

In spite of the significant advances made in simula-
tion methods, there are no consistent calculations of the
energy band structure of transition-metal borates that
would even qualitatively account for the interrelation of
the observed effects. For this reason, the experimental
results were mainly interpreted on the basis of a model.
In the case of 3d-metal borates, this model was the
Mott–Hubbard model. Theoretical studies of the elec-
tronic structure of the materials in question are quite
scarce and deal mainly with iron borate, FeBO3. One-
electron ab initio calculations of FeBO3 using the
method of the local spin density functional (LDA) and
the generalized gradient approximation (GGA) taking
into account nonlocal corrections to the L-DA were
performed in [23] and [24], respectively. Calculations
of the molecular orbitals for the VB6O6 and FeB6O6
clusters have shown that for both compounds a strong
hybridization of s and p cation states with oxygen p
states and boron sp states occurs [20]. The valence band
is formed by strongly hybridized boron and oxygen s
and p states. At the same time, hybridization of the cat-
ion d electrons with oxygen s and p electrons is very
weak, much weaker than in 3d-metal oxides. This is
due to strong hybridization in the trigonal BO3 group.
Recently, a collapse of the magnetic moment was
observed in iron borate, which was accompanied by a
structural transition and modification of the electrical
properties of the sample under pressure [25–27]. A
many-electron model of the energy band structure of
FeBO3 with allowance for strong electron correlations
that adequately describes the transition under pressure
was given in [28]. However, up to now, there has been
no model of the electronic structure of solid solutions
describing the observed properties of these systems and
the dynamics of their variation at different concentra-
tions x and pressures.

In this study, we discuss the electrical and optical
properties of VBO3 and Fe1 – xVxBO3 single crystals on
the basis of the many-electron theory of energy band
structure taking into account strong electron correla-
tions for these crystals.

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUE

We studied single crystals of VBO3 and Fe1 – xVxBO3
solid solutions grown by spontaneous crystallization
from a melt solution [20]. It should be noted that we
previously listed the concentrations x determined from
the content of the components in the charge (xs) [20,
21]. To determine the exact amount of the components,
we used energy dispersive x-ray analysis (EDAX ZAF
Quantification). The values of x obtained and, for com-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
parison, the values of xs used previously are listed in
Table 1.

Since the intermediate contact resistance is rather
small, resistance measurements were performed by the
two-probe method using a teraohmmeter E6-13A,
which made it possible to measure resistances of up to
1013 Ω . Samples were heated and cooled at a rate of
1 K/min in order to prevent a parasitic temperature gra-
dient.

Single crystals of the Fe1 – xVxBO3 series were trans-
parent hexahedral plates with the optical C3 axis per-
pendicular to the plate plane. The color of the samples
varied from light green (FeBO3) to dark brown (VBO3).
The optical absorption of the crystals was measured
using a single-beam technique in the spectral range
4000–20000 cm–1. The spectral width of the slit of a
grating monochromator was 10 cm–1. The accuracy of
the absorption measurements was 3%. The spectral res-
olution varied from 20 cm–1 at 20000 cm–1 to 13 cm–1

at 4000 cm–1.

3. MODEL OF THE VBO3 BAND 
STRUCTURE

To calculate the one-electron density of states N(E)
in VBO3 with allowance for strong electronic correla-
tions in the framework of many-electron theory [28],
we consider the occupied term V3+ (3d2) and the 3d1 and
3d3 terms describing the annihilation and creation of an
electron from the d2 state. The Hamiltonian of the
model is

(1)

where nλσ = , aλσ is the d electron creation oper-
ator in one of the five orbitals λ with spin projection σ,
and  = –σ. The first term describes the atomic d levels
in the crystalline field; we neglect the small uniaxial

Ham ελnλσ
Uλ

2
------nλσnλσ+ 

 
λσ
∑=

+ Vλλ 'nλσnλ'σ' Jλλ 'aλσ
+

aλ'σaλ'σ'
+

aλ'σ–( ),
σσ'

∑
λ λ ',
λ λ '≠( )

∑

aλσ
+

aλσ

σ

Table 1.  Vanadium concentrations in Fe1 – xVxBO3 solid
solutions (xs is determined from the charge composition; x,
from the data from energy dispersive x-ray analysis)

xs x

0.25 0.02

0.5 0.13

0.6 0.18

0.75 0.3

0.95 0.95
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Table 2.  Energies Es(n) of the ground and first excited states of vanadium ions (the subscript denotes spin; n is the electronic
configuration)

d1 d2 d3

E1/2 1( ) εd
2
5
---∆–= E1 2( ) 2εd

4
5
---∆– V J–+= E3/2 3( ) 3εd

6
5
---∆– 3V 3J–+=

E1/2
' 1( ) εd

3
5
---∆+= E1

' 2( ) 2εd
1
5
---∆ V J–+ += E3/2

' 3( ) 3εd
1
5
---∆– 3V 3J–+=
component of the crystalline field and set ε(t2g) = εd –
2∆/5 and ε(eg) = εd + 3∆/5. The remaining terms in
Eq. (1) correspond to the Coulomb intraorbit repulsion
Uλ, interorbit repulsion Vλλ ', and Hund exchange Jλλ '.
For simplicity, we disregard the orbital dependence of
the Coulomb matrix elements and assume that there are
three parameters, U, V, and J, related by the well-known
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Fig. 1. Optical absorption spectra of solid solutions of the
system Fe1 – xVxBO3. (a) VBO3, (b) Fe0.7V0.3BO3, (c)
Fe0.82V0.18BO3, (d) Fe0.98V0.02BO3, and (e) FeBO3.
PH
formula U = 3V + J, which follows from the spherical
symmetry of the atom.

Since the M–O distances in the VBO3 and FeBO3
octahedrons are approximately equal, we assume that
the Coulomb parameters U, V, and J have the same val-
ues as in FeBO3. Furthermore, we assume that the
energy of the crystalline field ∆ for VBO3 is close to
∆ = 1 eV for FeBO3. Strongly hybridized s and p states
of the BO3 group show almost no change [20]. Thus, we
can assume that the bottom of the conduction band εc

and the top of the valence band εc in VBO3 are also
close in energy, with the energy distance between them
(the absorption threshold) being Eg0 = 2.9 eV.

Table 2 lists the energies ES(n) of the ground and
first dn excited terms with n = 1, 2, 3 for vanadium ions
with spin S calculated in the strong crystalline field
approximation. We find the crystalline field parameter
from the optical absorption spectrum of VBO3
(Fig. 1a), where a low-intensity peak is observed at the
energy ω0 = 9800 cm–1 [20]. If we assume, by analogy
with FeBO3, that this peak is related to d–d transitions
(in this case, transitions occur from the ground-state
term 3T1 of the V3+ ion to the first excited term 3T2 with

energy ω0 = (2) – E1(2) = ∆), then we obtain ∆ =
1.21 eV. This value is smaller than the quantity ∆ =
1.57 eV for FeBO3 [29]. Furthermore, we assume that
the values of the Coulomb parameters U, V, and J are
close to the analogous parameters for FeBO3; accord-
ing to [30], U = 3 eV, V = 1.15 eV, and J = 0.7 eV.

The levels Ωv and Ωc are analogous to the lower and
upper Hubbard bands for a zero interatomic hopping
parameter t:

(2)

The effective Hubbard energy is defined as the
energy of transitions between the lower and upper Hub-
bard bands: 

(3)

E1'

Ωv E1 2( ) E1/2 1( )– εd
2
5
---∆– V J ,–+= =

Ωc E3/2 3( ) E1 2( )– εd
2
5
---∆– 2V 2J .–+= =

Ueff Ωc Ωv–=

=  E3/2 3( ) E1/2 1( ) 2E1 2( )–+ V J .–=
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Using the parameters U, V, and J defined above, we
obtain Ueff = 0.45 eV. The lower level Ωv is occupied,
and the upper level Ωc is empty; this follows from the
self-consistency condition on the chemical potential,
which can be written in the x representation in the form

(4)

Here, Xnp, n'p' ≡ |np〉〈 n'p' | are the Hubbard operators con-
structed using the many-electron basis of terms |np〉
(p is the set of spin and orbital indices for an n-electron
term).

To correlate the level positions with that of the
valence band top of the oxygen p states, we use the data
on the conductivity, according to which the activation
energy is Ea = 0.9 eV. Since the Ωv and Ωc states are
localized and do not contribute to the conductivity, the
quantity 2Ea can be correlated with the energy of
charge transfer excitations with Ωc – εv (p6d2  p5d3)
(in this case, a hole appears on an oxygen atom at the
top of the valence band and an electron appears at the
level Ωc; i.e., a V2+ ion is formed). Measuring the one-
particle energy from the valence band top, we obtain
Ωc = 1.8 eV and Ωv = 1.35 eV. The density of states
N(E) for VBO3 is represented schematically in Fig. 2.
According to the classification used by Zaanen et al.
[31], VBO3 can be considered a Mott–Hubbard insula-
tor.

In addition to the levels Ωv and Ωc with a spectral
weight of 1, virtual levels with zero spectral weight in
the stoichiometric ground state appear in the many-
electron approach [32]. Such states acquire a nonzero
spectral weight at deviations from stoichiometry or
under optical pumping of excited levels. In the case of
VBO3, inside the band gap, we have the virtual level

shown by the dashed line in Fig. 2. Such levels do not
contribute to N(E), but optical transitions involving
these levels are possible; therefore, they can be
expected to appear in the absorption spectrum.

4. BAND STRUCTURE OF Fe1 – xVxBO3 
SOLID SOLUTIONS

When simulating the electronic structure of
Fe1 − xVxBO3 solid solutions, we make the following
assumptions. First, the BO3 states and, therefore, the
parameters εc, εv, and Eg0 = εc – εv are assumed to be
constant for all x. Second, the distribution of d electrons
in the crystal can be spatially homogeneous or inhomo-
geneous; in any case, the average concentration of d
electrons is nd = 5 – 3x. We consider both possibilities.

In the case of a homogeneous distribution, the elec-
tron concentration per cation is 〈nd〉  = nd. Such a distri-

ne

Ne

N
------ 1 X

1 p 1 p,

p

∑ 2 X
2 p 2 p,

p

∑ 3 X
3 p 3 p,

.
p

∑+ += =

Ωv' E1' 2( ) E1/2 1( )– Ωv ∆+ 2.56 eV,= = =
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bution could be established in a metal alloy due to hop-
ping of d electrons between the cations. However, in
our case, where the hopping integral td is almost zero,
there is no reason to expect the electron distribution to
be homogeneous. Nevertheless, we consider a possible
optical spectrum for the “homogeneous scenario.” As
follows from the self-consistency condition for the
chemical potential, the occupation probability for the d5

configuration with spin 5/2 is N5/2(d5) = 1 – 3x for x <
1/3. The lower term d4 with spin S = 2 is occupied with
the probability N2(d4) = 3x. Thus, the optical absorption
spectrum can be written in the form

(5)

where εA = E3/2(5) – E5/2(5) is the energy of an exciton
6A1g(S = 5/2)  4T1g(S = 3/2), which determines the A
absorption band in FeBO3, and  = E(3T1) – E(5E) is the
exciton energy for the d4 configuration. Using Tanabe–
Sugano diagrams and the above value of the parameter
∆, we find  = 0.97 eV. We did not detect an exciton
with this energy in the Fe1 – xVxBO3 optical spectra.
Thus, the assumption of a homogeneous distribution
does not agree with the experimental data.

In the model of an inhomogeneous distribution, we
assumed a random spatial distribution of the two types
of cations: V3+ (d2) with probability x and Fe3+ (d5) with

I ω( ) N5/2 d
5( )δ ω εA–( ) N2 d

4( )δ ω ε̃–( ),+=

ε̃

ε̃

E, eV

2.90

2.56

1.80

1.35

0

N(E)

Ω'v

Ωc

Ωv

εc

εv

Fig. 2. Density of states for VBO3 (schematic).
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probability 1 – x. In this model, characteristics such as
the density of states, the optical spectrum, and the
Mössbauer effect can be written in the form

(6)

where NV(NFe) and DV(DFe) are the density of states and
the absorption intensity for VBO3 (FeBO3). The density

N E( ) xNV E( ) 1 x–( )NFe E( ),+=

D ω( ) xDV E( ) 1 x–( )DFe E( ),+=

E, eV

0

N(E), FeBO3

Ω'v  2.56

Ωc 1.80
Ωv 1.35

εc

εv

N(E), VBO3

1.40 Ω'''v

2.80 Ωc

2.97 Ω'c

0.63 Ω''v
0.10 Ω'v

–1.40 Ωv

2.9

Fig. 3. Density of states for Fe1 – xVxBO3 solid solutions
(schematic). The left part is to be taken with weight x, and
the right part, with weight (1 – x).
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Fig. 4. Optical absorption spectra of Fe0.82V0.18BO3 at T =
90 K. (a) Experimental data, and (b) the calculated spec-
trum.
P

of states for Fe1 – xVxBO3 solid solutions is shown sche-
matically in Fig. 3; the density of states for FeBO3 is
taken from [30].

Let us consider the concentration dependence of the
optical absorption spectra for solid solutions of the
Fe1 − xVxBO3 series. For x = 0.02, the contribution from
IV is negligible and the spectrum in Fig. 1d practically
coincides with the spectrum for FeBO3. For compari-
son, Figs. 4 and 5 show the experimental absorption
spectra for the solid solutions and the simulated spectra
calculated by using Eq. (6) under the assumption of
independent V3+ and Fe3+ absorption centers. For x =
0.18, we can distinguish the same spectral lines A1–A4
as for FeBO3, but these lines are strongly broadened
(Fig. 4a). The absorption line εA = 9800 cm–1 for VBO3
is seen as a wide shoulder on the slope of the peak A1;
the latter is shifted by 100 cm–1 to lower energies as
compared to FeBO3. We believe that the reason for this
shift is a change in the magnetic order. Indeed, due to
the interatomic exchange interaction I, the energy of the
ES(n) term depends on the spin projection M:

(7)

Estimation of the exchange integral yields a value of
I ≈ 120 cm–1 [30]. Accordingly, the maximum shift of

the exciton energy is εA ≈ I〈SZ 〉  ≈  = 300 cm–1. In the

original FeBO3 at low temperatures, we have εA =
10250 cm–1, whereas at T > TN = 348 K we have εA =

ES M, n( ) ES I S
Z〈 〉 M.–=

5
2
--- I

2

1

0
0.6

0.4

0.2

0
8000 10 000 12 000 14 000

D

(a)

(b)

ω, cm–1

D

Fig. 5. Optical absorption spectra of Fe0.7V0.3BO3 at T =
90 K. (a) Experimental data, and (b) the calculated spec-
trum.
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9950 cm–1. For the Fe0.82V0.18BO3 composition, the
magnetic order is partially suppressed and TN drops to
200 K; therefore, the shift δεA equal to 1/3 of the max-
imum value agrees with the partial suppression of the
magnetic order.

For the Fe0.7V0.3BO3 composition, the magnetic order
is suppressed even more strongly and there is no mag-
netic order above 180 K. We note that, in a magnetically
ordered state of FeBO3, the line εA = 9950 cm–1 is very
close to the absorption line εA = 9800 cm–1 for VBO3;
therefore, for Fe0.7V0.3BO3, the two lines close in energy
are superimposed and a broad peak is seen in the absorp-
tion spectrum (Fig. 1b). With a decrease in temperature
to 90 K, the line εA is shifted to the energy region near
10050 cm–1 due to magnetic ordering and the lines in the
absorption spectrum of the Fe0.7V0.3BO3 solid solution
are split (Fig. 5a). The peak lying lower in energy corre-
sponds to the absorption line of the V3+ ion, and the upper
peak corresponds to that of the Fe3+ ion.

5. VARIATION IN THE BAND STRUCTURE 
OF VBO3 AND Fe1 – xVxBO3 SOLID SOLUTIONS 

UNDER PRESSURE

Recent experiments [25–27] have revealed nontriv-
ial variations in the magnetic and electronic properties
of FeBO3 at high pressures, which consist in a collapse
of the magnetic moment and a tendency toward metal-
lization. These variations were interpreted in [28] as a
result of the crossover of the high-spin term d5 (S = 5/2)
and the low-spin term d5 (S = 1/2) with an increase in
the crystalline field parameter ∆ under pressure. There-
fore, possible variations in the properties of VBO3 and
Fe1 – xVxBO3 solid solutions with increasing pressure,
i.e., with increasing parameter ∆, are of interest.

For VBO3, there is no crossover between the
ground-state high-spin and low-spin excited terms in
any of the sectors of the Hilbert space (d1, d2, d3). The
magnitude of the Mott–Hubbard band gap Ueff = Ωc –
Ωv does not depend on the parameter ∆. In this case a
change in the energy band structure under pressure can
only occur through broadening of the d bands and the
Mott–Hubbard (insulator–metal) transition.

For Fe1 – xVxBO3 solid solutions, an unusual situa-
tion is possible where there is a crossover of the Fe3+

terms and there is no crossover of the V3+ terms. This
situation implies that there exists a mixture of S = 5/2
(Fe) and S = 1 (V) spins below the critical pressure Pc ≈
50 GPa and a mixture of S = 1/2 (Fe) and S = 1 (V) spins
above Pc. Since VBO3 is a ferromagnet and FeBO3 is
expected to be antiferromagnetically ordered above Pc,
we may expect that, in the Fe1 – xVxBO3 system, ferro-
magnetic and antiferromagnetic bonds are randomly
distributed and are of the same order of magnitude.
Such a situation can give rise to disordered magnetic
phases, in particular, to a spin glass.
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
ACKNOWLEDGMENTS

One of the authors (M.M.A.) would like to thank the
Deutsche Forschungsgemeinschaft (SFB608) for finan-
cial support.

This study was supported by the Russian Founda-
tion for Basic Research (project no. 03-02-16286), the
program “Integration” (project no. B0017), and the pro-
gram of the Division of Physical Sciences of the Rus-
sian Academy of Sciences “Strongly Correlated Elec-
trons.”

REFERENCES
1. I. Bernal, C. W. Struck, and J. G. White, Acta Crystal-

logr. 16, 849 (1963).
2. J. C. Joubert, T. Shirk, W. B. White, and R. Roy, Mater.

Res. Bull. 3, 671 (1968).
3. A. J. Kurtzig, R. Wolfe, R. C. LeCraw, and J. W. Nielsen,

J. Appl. Phys. 14, 350 (1969).
4. R. Wolfe, A. J. Kurtzig, and R. C. LeCraw, J. Appl. Phys.

41, 1218 (1970).
5. B. Andlauer, J. Schneider, and W. Wettling, Appl. Phys.

10, 189 (1976).
6. V. N. Zabluda, A. V. Malakhovskiœ, and I. S. Édel’man,

Fiz. Tverd. Tela (Leningrad) 27, 133 (1985) [Sov. Phys.
Solid State 27, 77 (1985)].

7. J. Haisma, H. J. Prins, and K. L. L. van Mierlo, J. Phys.
D: Appl. Phys. 7, 162 (1974).

8. H. Schmid, Acta Crystallogr. 17, 1080 (1964).
9. T. A. Bither, C. G. Frederick, T. E. Gier, J. F. Weiher, and

H. S. Young, Solid State Commun. 8, 109 (1970).
10. Xu Ziguang, Matam Mahesh Kumar, and Ye Zuo Guang,

in Proceedings of Annual March Meeting (Am. Phys.
Soc., New York, 2001).

11. N. M. Salanskii, E. A. Glozman, and V. N. Seleznev,
Phys. Status Solidi A 36, 779 (1976).

12. I. W. Shepherd, Phys. Rev. B 5, 4524 (1972).
13. M. Vithal and R. Jagannathan, J. Solid State Chem. 63,

16 (1986).
14. O. Muller, M. P. O’Horo, and J. F. O’Neill, J. Solid State

Chem. 23, 115 (1978).
15. T. A. Bither and H. S. Young, J. Solid State Chem. 6, 502

(1973).
16. M. P. O’Horo and O. Muller, J. Appl. Phys. 49, 1516

(1978).
17. M. W. Ruckman, R. A. Levy, and R. Chennette, J. Appl.

Phys. 53, 1694 (1982).
18. A. A. Karaev, B. Yu. Sokolov, and Yu. M. Fedorov, Fiz.

Tverd. Tela (St. Petersburg) 42, 2036 (2000) [Phys. Solid
State 42, 2097 (2000)].

19. De Lacklison, J. Chadwick, and J. L. Page, J. Phys. D:
Appl. Phys. 5, 810 (1972).

20. N. B. Ivanova, V. V. Rudenko, A. D. Balaev, N. V. Kazak,
V. V. Markov, S. G. Ovchinnikov, I. S. Édel’man,
A. S. Fedorov, and P. V. Avramov, Zh. Éksp. Teor. Fiz.
121, 354 (2002) [JETP 94, 299 (2002)].

21. V. V. Markov, V. V. Rudenko, I. S. Edel’man, N. B. Iva-
nova, N. V. Kazak, A. D. Balaev, and S. G. Ovchinnikov,
Phys. Met. Metallogr. 93, 114 (2002).



1468 IVANOVA et al.
22. I. S. Édel’man, A. V. Malakhovskiœ, T. I. Vasil’eva, and
V. N. Seleznev, Fiz. Tverd. Tela (Leningrad) 14, 2810
(1972) [Sov. Phys. Solid State 14, 2442 (1972)].

23. A. V. Postnikov, St. Bartkowski, M. Neumann, R. A. Rupp,
E. Z. Kurmaev, S. N. Shamin, and V. V. Fedorenko, Phys.
Rev. B 50, 14849 (1994).

24. K. Parlinski, Eur. Phys. J. B 27, 283 (2002).

25. I. N. Troyan, A. G. Gavrilyuk, V. A. Sarkisyan,
I. S. Lyubutin, R. Rüffer, O. Leupold, A. Barla,
B. Doyle, and A. I. Chumakov, Pis’ma Zh. Éksp. Teor.
Fiz. 74, 26 (2001) [JETP Lett. 74, 24 (2001)].

26. A. G. Gavriliuk, I. A. Trojan, R. Boehler, M. Eremets,
A. Zerr, I. S. Lyubutin, and V. A. Sarkisyan, Pis’ma Zh.
Éksp. Teor. Fiz. 75, 25 (2002) [JETP Lett. 75, 23
(2002)].
P

27. V. A. Sarkisyan, I. A. Troyan, I. S. Lyubutin, A. G. Gavri-
lyuk, and A. F. Kashuba, Pis’ma Zh. Éksp. Teor. Fiz. 76,
788 (2002) [JETP Lett. 76, 664 (2002)].

28. S. G. Ovchinnikov, Pis’ma Zh. Éksp. Teor. Fiz. 77, 808
(2003) [JETP Lett. 77, 676 (2003)].

29. A. V. Malakhovskii and I. S. Edelman, Phys. Status
Solidi B 74, K145 (1976).

30. S. G. Ovchinnikov and V. N. Zabluda, Zh. Éksp. Teor.
Fiz. (in press).

31. J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev.
Lett. 55, 418 (1985).

32. V. V. Val’kov and S. G. Ovchinnikov, Quasiparticles in
Strongly Correlated Systems (Sib. Otd. Ross. Akad.
Nauk, Novosibirsk, 2001) [in Russian].

Translated by I. Zvyagin
HYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004



  

Physics of the Solid State, Vol. 46, No. 8, 2004, pp. 1469–1473. Translated from Fizika Tverdogo Tela, Vol. 46, No. 8, 2004, pp. 1428–1432.
Original Russian Text Copyright © 2004 by Ovchinnikov, Shne

 

œ

 

der.

                                                          

MAGNETISM 
AND FERROELECTRICITY

           
Spectral Functions in the Hubbard Model with Half-Filling
S. G. Ovchinnikov and E. I. Shneœder

Kirenskiœ Institute of Physics, Siberian Division, Russian Academy of Sciences,
Akademgorodok, Krasnoyarsk, 660036 Russia

e-mail: shneyder@iph.krasn.ru, sgo@iph.krasn.ru
Received November 24, 2003

Abstract—Under the assumption of long-range antiferromagnetic order at low temperatures, the spectral func-
tions and the density of states are calculated in the two-dimensional Hubbard model with half-filling in the Hub-
bard-I approximation. The results are compared with the data obtained using an exact numerical technique,
namely, the quantum Monte Carlo method. The influence of hopping to the next-to-nearest neighbor on the for-
mation of the electronic structure is considered. © 2004 MAIK “Nauka/Interperiodica”.
1. The Hubbard model taking into account electron
motion in solids along with the electron–electron inter-
action is one of the basic models in the theory of sys-
tems with strong electron correlations (SECs). The
point is that this model does reflect important effects
characteristic of systems with SECs, even though it is
insufficient for describing the properties of specific
materials quantitatively [1]. It is interesting to study
approximations in the atomic limit, because, as is
known, it is simpler to describe such systems by start-
ing with the local approach than with the theory of the
Hartree–Fock band limit [2]. In the limit of t ! U, the
Hubbard-I approximation yields a simple description of
a system in terms of two energy bands separated by a
Mott–Hubbard gap [1]. As the ratio t/U increases, this
approximation becomes incorrect a priori; however, it
is quite applicable to systems with SECs. In a diagram
technique based on Hubbard X operators [2, 3], the
Hubbard-I solution is a result of the Hartree–Fock
approximation. Using the quantum Monte Carlo
(QMC) method, one can compare the electronic struc-
ture of the Hubbard model obtained in the limit t ! U
in the Hubbard-I approximation and the results of exact
numerical calculations (see, e.g., [4, 5]). Such a com-
parison was performed in [4] to show that, at high tem-
peratures, the spectral functions A(k, ω) are sufficiently
well described by the Hubbard-I paramagnetic solu-
tion. At low temperatures, neither the Hubbard-I para-
magnetic solution nor the solution in the form of a spin
density wave (SDW) can even approximately repro-
duce the model electronic structure. It is known that the
SDW solution is applicable under conditions of weak
electron correlations, when U ! W = zt, but this solu-
tion is inapplicable to systems with SECs. In this paper,
the spectral functions of the two-dimensional (2D)
Hubbard model with half-filling are calculated in the
Hubbard-I approximation under the assumption of
long-range antiferromagnetic order at low tempera-
tures.
1063-7834/04/4608- $26.00 © 201469
Comparison of our results with the data obtained
using the QMC method showed that the spectral func-
tions are in reasonable agreement with the exact numer-
ical calculations, despite the disadvantages of the
approximation used. These disadvantages are as fol-
lows.

(i) According to the Mermin–Wagner theorem, there
is no antiferromagnetic order in a 2D system at finite
temperatures; hence, an interplane interaction or cer-
tain anisotropy should be assumed. Nevertheless, the
approximation used is appropriate, since we compare
the results of this study with QMC data for finite sys-
tems, for which the above-mentioned theorem is
invalid.

(ii) The Hubbard-I approximation does not yield a
self-consistent description of the antiferromagnetic
state; indeed, there is only a zero solution for the sub-
lattice magnetization m. For this reason, in the limit t !
U for a system with ne = 1, we construct an effective
Heisenberg Hamiltonian with the antiferromagnetic
interaction constant J = 4t2/U and calculate the magne-
tization self-consistently in the Heisenberg model. At
T = 0, m decreases from a nominal value due to zero
quantum fluctuations and we get m = 0.3 under the
assumption that the interplane interaction is weak in
comparison with the in-plane interaction.

It should be noted that going beyond the mean-field
approximation requires consideration of self-energy
one-loop diagrams [2, 3]. In the magnetically ordered
phase, the largest contribution comes from diagrams
describing spin-wave excitations. The main effect of
spin excitations consists in a renormalization of the
occupation numbers. According to [6], we define the
occupation numbers as

(1)
n f σ, n f σ,+ ne,=

n f σ, n f σ,– 2m 1 2nsf–( ).= =
04 MAIK “Nauka/Interperiodica”
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where 2nsf is the magnon concentration and nf, σ is the
number of electrons at a site with a specified spin pro-
jection. Thus, the introduction of the nonzero magneti-
zation of sublattices corresponds to consideration of the
first significant correction to the mean-field approxima-
tion.

2. The Hubbard model Hamiltonian can be written
as

(2)

Ĥ µN̂e– ε µ–( )n f σ,
1
2
---Un f σ, n f σ,+

f σ,
∑=

+ t f g, a f σ,
+

ag σ, H.c.+( ),
f g σ, ,
∑

PH
where (af, σ) is the creation (annihilation) operator

of an electron at site f with spin σ = ±1/2, nfσ = ,
ε is the one-electron energy in the crystal field, µ is the
chemical potential, U is the intra-atomic repulsion
matrix element, and tf, g is the hopping integral between
sites f and g in the nearest neighbor approximation.

In what follows, we analyze a simple spatially inho-
mogeneous solution to the above Hamiltonian for a 2D
square lattice with antiferromagnetic ordering of the
spins (the antiferromagnetic order near half-filling is
caused by kinetic superexchange in the system). In the
case of two sublattices, the Green’s function [7] is writ-
ten as

a f σ,
+

a fσ
+

a fσ
(3)G k ω,( ) 1
N
----

ik f f '–( ){ } a f a f '
+〈 | 〉〈 〉exp

f f ',
∑ ik g f–( ){ } ag a f

+〈 | 〉〈 〉exp
f g,
∑

ik f g–( ){ } a f ag
+〈 | 〉〈 〉exp

f g,
∑ ik g g '–( ){ } ag ag '

+〈 | 〉〈 〉exp
g g ',
∑

 
 
 
 
 
 
 
 

.=
Analytical expressions for the Green’s functions are
derived in the Hubbard-I approximation, which corre-
sponds to the following uncoupling of averages [1]:

  (4)

In the atomic limit, it is more convenient to use the
representation of Hubbard operators, with which the
conventional Fermi operators are related through the
linear combination

(5)

Therefore, the Green’s functions can be written in the
new representation (A, B are intersublattice indices) as

(6)

a f h σ,+ n f σ, a f ' σ,
+〈 | 〉〈 〉 n f σ,〈 〉 a f h σ,+ a f ' σ,

+〈 | 〉〈 〉 .

a f σ,
+

X f
σ 0,

2σX f
2 σ,

, a f σ,+ X f
0 σ,

2σX f
σ 2,

.+= =

GAA
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σ 2,
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σ 2,
E ε1–( )2 ν FB
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– FA
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t
2 k( ) E ε1– FB

0 σ,
U–( ) )/ E Ei–( ),

i 1=

4
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GAB
u

 = XA
σ 2,

XB
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E ε1–( )2 ν FA

σ 2,
t k( )+[ ](

– FB
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t
2 k( ) E ε1– FA
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l

XA
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XA
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t

2 k( )[ ](
where  = 〈  + 〉  and  = 〈  + 〉
are the filling factors, ε1 = (ε – µ), ν = (E – ε1 – U), and
superscripts l and u correspond to the lower and upper
Hubbard bands, respectively.

We restrict the analysis to the half-filling region,
where the chemical potential is described by the well-
known expression µ = ε + U/2 [8], which is valid for
any temperature and all values of the model parameters.
In this case, the equation defining the spectrum of qua-
siparticles in the 2D antiferromagnetic lattice has the
analytical solution

(7)

Since the Brillouin zone becomes twice as small in the
antiferromagnetic phase, each Hubbard subband in the
paraelectric phase is split into two. If the bands
obtained had been ordinary one-electron bands with a

+ FB
0 σ,

t k( ) ν2
FA
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number of states per atom equal to unity, the total num-
ber of states would have been equal to four. However,
these bands correspond to quasiparticles with a frac-
tional spectral weight, which can be explicitly calcu-
lated using the QMC method. In our calculations, the

spectral weight is defined by the filling factor  =

〈  + 〉 .
It is noteworthy that the quasiparticle spectrum (7)

can be rewritten using the well-known solution for the
paramagnetic phase. In this case, it turns out that the
dispersion in the antiferromagnetic state has a form
similar to that for SDWs,

(8)

where ∆ = Um is the gap parameter, m = (1/2)(nf, σ –

) is the sublattice magnetization,  is the disper-
sion of the upper and lower Hubbard bands in the para-
magnetic phase with the renormalized Coulomb repul-

sion parameter  = , and

(9)

If the magnetization is zero, the obtained bands exactly
correspond to the upper and lower Hubbard bands in
the paraelectric phase. In the one-electron SDW state,
the quasiparticle dispersion is described by a formula
similar to Eq. (9), with ξ± being the dispersion of free
electrons.

Now, we consider the full spectral function of the
system, which is the sum of the imaginary parts of the
Green’s functions in Eq. (6),

(10)

and the one-electron density of states,

(11)

The approximation used does not contain informa-
tion on the spectral linewidths (the spectral density con-
tains delta functions). To compare our results with the
numerical QMC data, we approximate the delta func-
tions by a Lorentzian with the most appropriate param-
eter δ. This renormalization of the width and weight of
the quasiparticle spectral lines corresponds to the intro-
duction of a certain nonzero imaginary part of the self-
energy Σ(k, ω). We note that there is no one-to-one cor-
respondence between the parameter δ and temperature;
however, this parameter tends to zero as the tempera-
ture decreases. Despite the fact that the Mermin–Wag-
ner theorem forbids the existence of antiferromagnetic

Fg
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Fig. 1. Spectral functions of the Hubbard model at high
temperatures T = 4t (Hubbard-I and QMC [4] calculations).
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Fig. 2. Spectral functions of the Hubbard model at high
temperatures T = 1t (Hubbard-I and QMC [4] calculations).
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culations).
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order in 2D systems at finite temperatures, it is gener-
ally assumed that the system is “effectively ordered” if
the spin correlation length becomes comparable to the
system size.
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Fig. 4. Spectral functions of the Hubbard model at low tem-
peratures T = 0.1t (Hubbard-I and QMC [4] calculations).
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Fig. 5. Density of states in the Hubbard model with half-fill-
ing (Hubbard-I and QMC [5] calculations).
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Figures 1–5 show the determined spectral functions
and the density of states, as well as the results of exact
numerical QMC calculations from [4, 5]. In this case,
the following values of the system parameters were
used: U = 8t, ε – µ + U/2 = 0, and t(k) = –2t(coskx +
cosky). We assume that the sublattice magnetization
parameter m is equal to 0.3 in the low-temperature
range.

At high temperatures (Figs. 1, 2), the Hubbard-I
approximation reproduces the position and weight of
the spectral peaks corresponding to the upper and lower
Hubbard bands to sufficient accuracy. This is explained
by the fact that the spin correlation effects (disregarded
in this approximation) become insignificant above the
Néel temperature.

At T = 1.00t, QMC calculations [4] indicate very
weak satellites for an unoccupied state at the k = (0, 0)
point and for an occupied state at the k = (π, π) point.

These satellites correspond to the calculated bands 

and  with a very small spectral weight. Of course,
long-range antiferromagnetic ordering does not exist in
the system at such temperatures; however, we think that
there is a short-range magnetic order, which gives rise
to weak satellites in the function E(k).

At intermediate and low temperatures (Figs. 3, 4),
each Hubbard band in the paramagnetic state is split

into two subbands . In this case, one of the sub-
bands has the largest spectral weight, while the other
appears as a weak satellite. A nontrivial result obtained
using the QMC method and the Hubbard-I approxima-
tion is the spectral weight redistribution between strong
and weak peaks. The tendencies toward redistribution
of the spectral weight in our calculations and the QMC
calculations are retained. In some regions of the Bril-
louin zone [near k = (0, 0) and k = (π, π)], reasonable
agreement is observed in the shape and position of the
peaks in A(k, ω). However, the QMC and Hubbard-1
data significantly differ in other k-space regions [k =
(π/2, π/2)and k = (π, 0)].

The one-electron density of states (Fig. 5) at low
temperatures has two peaks corresponding to the occu-
pied (l) and unoccupied (u) Hubbard bands. The weak
satellites in the spectral density give rise to shoulders
on both peaks. Our results and the QMC data from [6]
are in qualitative agreement.

We also considered the influence of the next-to-
nearest neighbor on the formation of the electronic
structure. The Hamiltonian of the tt' model includes
hopping on a sublattice described by the term

 + H.c.). In the simplest case,
the k dependence of the parameter t' is described by the
formula t '(k) = 4t 'coskxcosky. The spectral functions of
the Hubbard model, corresponding to the Hubbard-I
antiferromagnetic solution, are shown in Fig. 6 for the
ratio t'/t ≈ 0.3. A comparison of the solutions shows that

E+
u

E–
l

E1 2,
l u,

(t f f ',' a f σ,
+

ag σ,f f ' A σ,∈,∑
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the most significant effect is the formation of additional
quasiparticle states at points (π, 0) and (π, π/4) of the
Brillouin zone. At the (π, 0) point, these states appear
as small satellites located near the main peak. The posi-
tion of the additional peaks is controlled by spin fluctu-
ations and the parameter t'. When the magnon concen-
tration 2nsf is zero and t' = 0, there are two dispersion-
less levels in the electronic structure, which lie above
the valence band top and below the conduction band
bottom.

3. Thus, it was shown that the spectral function at
low temperatures, determined using the Hubbard model
in the Hubbard-I approximation, as well as that
obtained using exact numerical QMC calculations,
consists of four peaks corresponding to antiferromag-
netic Hubbard subbands. The approximation used
retains the basic tendencies toward redistribution of the
spectral weight; however, quantitative disagreement is
observed in some regions of the k space. The density of
states in the Hubbard-I solution agrees with the QMC
calculations. A significant effect resulting from the
inclusion of the next-to-nearest neighbor leads in calcu-
lating the electronic structure is the formation of addi-
tional quasiparticle states at certain points of the Bril-
louin zone.
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
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Abstract—La1 – xLixFeO3 solid solution prepared by solid-phase synthesis in an air environment at atmo-
spheric pressure is found to exist only for x & 0.1. All single-phase samples are p-type semiconductors. An
increase in lithium concentration brings about a decrease in their electrical resistivity and thermopower. The
results are discussed in terms of the small polaron (SP) model. The SP concentration and mobility are calculated
from data on the electrical resistivity and thermopower in the presence of an antiferromagnetic–paramagnetic
phase transition. It is shown that the decrease in electrical resistivity of the samples is connected with the
increase in both the concentration and mobility of SPs. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Perovskite-like La1 – xAxMO3 solid solutions (where
A stands for an alkaline-earth metal; M stands for Mn,
Fe, or Co; and x ≤ 0.5) form throughout the above inter-
val of x and attract considerable interest because their
electrical and magnetic properties depend substantially
on the species and concentration of the A atoms [1–10].
For illustration, one may be referred to the colossal-
magnetoresistance effect observed in lanthanum man-
ganites partially substituted by alkaline-earth metals
[1–5, 7, 8], as well as to the insulator–metal transitions
occurring, for instance, in La1 – xSrxMnO3 [8, 9] and
La1 – xSrxCoO3 [5, 6, 10]. Interestingly, a “stable” tran-
sition (i.e., occurring throughout the temperature range
studied) to the metallic phase takes place in both sys-
tems for x ≥ 0.3 and is identified with a rhombohedral
lattice distortion and ferromagnetic ordering below the
Curie temperature.

In the series of perovskite-like lanthanum oxides
containing a transition metal ion, LaFeO3 occupies an
intermediate position between LaMnO3 and LaCoO3.
However, the properties of LaFeO3 and the related
oxides La1 – xAxFeO3 differ from those of partially sub-
stituted lanthanum manganites and cobaltites. It is
known [11, 12] that LaFeO3 has an orthorhombic crys-
tal lattice and resides in the antiferromagnetic (AFM)
state below the Néel temperature TN = 750 K. At low
temperatures, this crystal is an insulator, while at higher
temperatures it exhibits semiconducting properties (a
p-type semiconductor, with charge transport mediated
by small-polaron hopping) [13]. La1 – xSrxFeO3 [5, 6, 9,
14] is one of the best studied oxide systems based on
this compound. As is evident from the phase diagram of
this system [9], single-phase samples can be prepared
1063-7834/04/4608- $26.00 © 201474
within a broad interval of x. It was shown that, within
the interval 0 ≤ x ≤ 0.5 (which is the interval in which
LaFeO3 may be considered a starting oxide), samples
do not convert to the metallic phase and that their crys-
tal structure and electrical and magnetic properties are
similar to those of LaFeO3. Partial substitution of stron-
tium for La brings about, however, a decrease in the
Néel temperature and an increase in the electrical con-
ductivity of samples. This phenomenon was assigned in
[14] to an increase in the concentration of small
polarons (SPs).

Unlike the La1 – xAxMO3 oxides, where A stands for
an alkaline-earth metal, solid solutions in which La is
replaced by a monovalent metal have been studied to a
much lesser extent. The properties of these compounds
are however no less interesting, although the region of
their existence is substantially narrower [15, 16]. To
cite just one example, a study of La1 – xAxMnO3 solid
solutions (where A denotes Na, K, Rb) revealed [15]
that they also undergo an insulator–metal transition.
However, single-phase samples with a perovskite-like
structure can be prepared only for x ≤ 0.2 when the lan-
thanum is replaced by sodium or potassium and only
for x ≤ 0.1 when rubidium is substituted for lanthanum.
A study of the magnetic properties of La1 – xAgxMnO3

showed that the region of existence of this solid solu-
tion is also relatively narrow (x < 0.3) [16].

Unfortunately, data on the possibility of formation,
region of existence, and electrical properties of lithium-
containing solid solutions, in particular, of
La1 − xLixFeO3, are lacking. Therefore, one of the goals
of this study was to establish the region of existence of
this solid solution as prepared in an air environment.
Another goal was to investigate the behavior of the
04 MAIK “Nauka/Interperiodica”
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electrical resistivity and thermopower of this solid solu-
tion as functions of Li concentration and temperature.

2. EXPERIMENTAL

With this goal in mind, we prepared six
La1 − xLixFeO3 samples with x varied from 0 to 0.25 in
steps of 0.05 (samples 1 through 6, respectively). We
studied their phase composition, ran derivatographic
measurements, and obtained the temperature depen-
dences of the electrical resistivity ρ and of the ther-
mopower (the Seebeck coefficient) α.

The starting components were powders of iron car-
bonyl, lithium carbonate (Li2CO3), and lanthanum
oxide (La2O3). La1 – xLixFeO3 samples were synthe-
sized for 18 h at temperatures of 1523 K (0.05 ≤ x ≤
0.25) and 1623 K (LaFeO3) following the technique
described earlier in [17]. To prepare samples for mea-
surements of the electrical resistivity and thermopower,
the powders thus obtained were pressed into the shape
of parallelepipeds and sintered for 12 h under the con-
ditions of their synthesis.

Phase analysis of the samples was performed by x-
ray diffractometry (CuKα radiation). Silicon was cho-
sen as a reference in determining the lattice parameters.
The error in determining the parameters and volume of
the unit cell was less than ±0.001 nm and ±0.001 nm3,
respectively. The porosity of the samples was estimated
by comparing their apparent density with the density
determined from x-ray diffraction and was found to
vary from 15 to 20%. Differential thermal analysis
(DTA) of the samples was carried out in the range 290–
1073 K in air with a Q-1500D derivatograph at a heat-
ing rate of 5 K/min.

The electrical resistivity was measured in the range
77–1073 K in air following the dc four-probe tech-
nique. The correction coefficients needed to reduce the
measured electrical resistivity of porous samples ρeff to
the resistivity of dense samples ρ were calculated using
the method described earlier in [17].

The thermopower was measured relative to Ag in
the steady state in air in the range 300–1073 K follow-
ing the standard technique [18]. The temperature of the
cell containing a sample was set by means of a tubular
electric heater. The sample was placed between two sil-
ver plates, one of which was heated additionally with an
electric heater insulated from the plate. The tempera-
tures of the “hot” (T1) and “cold” (T2) ends of a sample
were measured with chromel–alumel thermocouples.
The thermopower was derived from the expression α =
U/∆T (where U is the potential difference between the
hot and cold sample ends and ∆T = T1 – T2) and reduced
to the average sample temperature, T = (T1 + T2)/2, with
the Ag thermopower taken into account[19]. The value
of ∆T varied from 8 to 12 K, depending on the actual
sample temperature.
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
3. EXPERIMENTAL RESULTS

3.1. Phase Composition, Electrical Resistivity, 
and Thermopower

X-ray diffraction patterns of samples 1–5 contained
only the diffraction maxima characteristic of an orthor-
hombically distorted perovskite structure. A diffracto-
gram of sample 6 also exhibited the strongest peak
belonging to the cubic modification of LiFeO2. Table 1
lists the parameters a, b, and c and the volume Vc of the
orthorhombic unit cell of the samples. In the case of
LaFeO3, they agree satisfactorily with the literature
data [11]. It is seen from Table 1 that, as the lithium
concentration x increases from 0 to 0.1, the cell volume
decreases and then becomes stable at a value of
0.241 nm3. This gave us grounds to conclude that sin-
gle-phase samples formed in the concentration region
x ≤ 0.1. The samples obtained at higher Li concentra-
tions are apparently two-phase, although the small
amount of the second phase (LiFeO2) precluded obser-
vation of the corresponding x-ray peaks in the diffrac-
tograms of samples 4 and 5.

The DTA curves of the samples prepared in the
range 290–1073 K did not contain any features indica-
tive of first-order phase transformations.

Figure 1 displays temperature dependences of the
electrical resistivity ρ of the samples. All of them bear
a semiconductor signature. It should be pointed out that
the ρ(T) curve for sample 1 (curve 1) has a distinct fea-
ture associated with a crossing of the Néel temperature.
Immediately below and above T ≈ 750 K, however, one
can isolate quasi-linear portions within which the deriv-
ative d( )/dT is constant. As one crosses TN, the
derivative changes in magnitude. A similar feature is
present in the ρ(T) graphs of samples 2–6 near T =
750 K (curves 2–6).

The inset to Fig. 1 shows the concentration depen-
dences of ρ obtained for 220, 530, and 1050 K. They
pass through a minimum at x = 0.1. A further increase
in x causes the electrical resistivity to increase. Recall-
ing the sensitivity of the electrical resistivity of the
samples to phase composition, one may conjecture that

ρlog

Table 1.  Parameters a, b, and c and volume Vc of the orthor-
hombic unit cell of the perovskite phase in La1 – xLixFeO3
samples

Sample Compound a × 10,
nm

b × 10,
nm

c × 10,
nm

Vc × 103,
nm3

1 LaFeO3 5.56 5.57 7.86 243

2 La0.95Li0.05FeO3 5.55 5.56 7.86 242

3 La0.90Li0.10FeO3 5.53 5.54 7.85 240

4 La0.85Li0.15FeO3 5.54 5.55 7.85 241

5 La0.80Li0.20FeO3 5.54 5.55 7.85 241

6 La0.75Li0.25FeO3 5.54 5.55 7.85 241
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the increase in ρ for x > 0.1 is associated with the for-
mation of a second phase, LiFeO2, whose electrical
resistivity is two orders of magnitude larger than that of
LaFeO3 [20].
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Fig. 1. Temperature dependences of the electrical resistivity
of La1 – xLixFeO3 for different values of x: (1) 0, (2) 0.05,
(3) 0.1, (4) 0.15, (5) 0.2, and (6) 0.25. Inset shows concen-
tration dependences of the electrical resistivity of
La1 − xLixFeO3 at different temperatures: (1) 220, (2) 530,
and (3) 1050 K.
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Fig. 2. Temperature dependences of the thermopower of
La1 – xLixFeO3 for different values of x: (1) 0, (2) 0.05, and
(3) 0.1. Arrows identify the Néel temperature TN.
PH
It was established in [13, 17] that conduction in
LaFeO3 is mediated by SP hopping. In view of the sim-
ilarity between the temperature dependences of electri-
cal resistivity for samples 1–3 (Fig. 1), we suggest that
charge transport in samples 2 and 3 also involves SP
hopping, so the ρ(T) relations in various temperature
intervals can be written in the form [21]

(1)

where A1 is a constant factor, E is the activation energy
for electrical resistivity, and k is the Boltzmann con-
stant. Plotted in the ln(ρ/T) vs. T–1 coordinates, the tem-
perature dependences of the resistivity can be approxi-
mated by three sections, whose slope varies with
increasing T–1. The values of E are listed in Table 2.
Note that the upper boundary of the range 420–780 K,
within which the electrical resistivity can be described
by Eq. (1) with a constant activation energy E, lies
above the Néel temperature for LaFeO3 and the lower
boundary of the next temperature range is 810 K
(Table 2). These ranges are separated by an intermedi-
ate region within which the ln(ρ/T) vs. T–1 dependence
is not linear.

Figure 2 presents temperature dependences of the
thermopower α in single-phase samples 1–3 (0 ≤ x ≤
0.1). The analogous dependences for the two-phase sam-
ples (0.15 ≤ x ≤ 0.25) are similar to α(T) for sample 3.
The thermopower of all samples is positive, which is a
signature of p-type conduction. In the temperature
interval studied, α(T) for sample 1 passes through a
minimum at T0 ≈ 430 K. At higher temperatures, α
increases. In the vicinity of TN, a barely discernible fea-
ture is seen (identified by an arrow in Fig. 2).

The α(T) dependences of samples 2 and 3 also have
a minimum. It shifts in position, however, toward
higher temperatures (T0 ≈ 470 K). Furthermore, the fea-
ture which we associate with a crossing of the Néel
temperature manifests itself at a lower temperature,
TN ≈ 712 K (Fig. 2), and does not coincide with the
onset of the d( )/dT variation (Fig. 1).

If the conduction in the samples originates from SP
hopping over localized states, the thermopower in a
p-type semiconductor can be written as [22, 23]

(2)

where e > 0 is the electronic charge, C < 10 µV/K is a
constant, ξ is the Fermi level energy, ∆ is the energy gap
separating the conduction band from the valence band
(which will be discussed in more detail in the next sec-
tion), p is the concentration of mobile polarons, and
NV is the number of polaron states over which SPs can
hop.

Equation (2) relates the thermopower and the con-
centration of mobile polarons. If NV and the α(T) rela-

ρ A1T
E

kT
------ 

  ,exp=

ρlog

α ξ ∆+
eT

------------ C+
k
e
-- p

NV

-------ln– C,+= =
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tion are known, one can estimate p (neglecting the
small constant C [22]) and then, using the well-known
expression [24] σ = epu (where σ = 1/ρ), calculate the
SP mobility u. Obviously enough, in order to find NV

throughout the temperature interval studied, one has to
know the spectrum of electronic states of the semicon-
ductor both below and above the Néel temperature.

3.2. Carrier Concentration and Mobility

We suggested in [17] that the scheme of the elec-
tronic density of states N(E) in LaFeO3 for tempera-
tures T > TN is similar to that for LaCoO3 [25] in the
temperature region where the lanthanum cobaltite is
semiconducting. We took into account the distinctive
features of LaFeO3 [26, 27], as well as the theoretical
ab initio calculations of the electronic density of states
in LaFeO3 [28]. Figure 3a presents a fragment of the
scheme taken from [17]. The dashed areas identify
occupied states. According to this scheme, in the gap
separating the valence band from the conduction band
(CB) of LaFeO3, there is a narrow energy band
(π* band) deriving from the hybridized t2g orbitals of
Fe and the 2p orbitals of oxygen. In LaFeO3, all Fe3+

ions are in a high-spin state [28] and the electron con-

figuration of the d electrons can be written as .

The localized d-electron  and  levels (here and
subsequently, the state indices 2g and g are dropped and
the indices α and β denote the spin-up and spin-down
directions, respectively) overlap the valence band and
are not directly involved in the charge transport process
(these levels and the valence band are not shown in

Fig. 3). On the other hand, the localized  and  lev-
els lie in the energy region between the π* band and the

conduction band. The lower lying  states are sepa-
rated from the π* band by a comparatively narrow
energy gap Eg, whereas the energy gap between the

t2g
3

eg
2

tα
3

eα
2

tβ
3

eβ
2

tβ
3
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conduction band and the π* band, ∆, is a few electron-
volts [13, 28, 29].

If we neglect the AFM ordering below the Néel tem-

perature, then in this model at T = 0 all localized  and

 states, as well as the states in the π* band, will be

occupied by electrons and the  and  states will be
vacant. In the absence of impurities, the conductivity of
LaFeO3 is zero. At higher temperatures, the occupation

of the  levels will be nonzero due to carriers being
thermally activated from the π* band. Because these
levels are localized, the electrons in them will be
trapped and charge transport will be effected by holes
forming in the π* band (p conduction) [17, 25]. To rec-
oncile the data on the hopping character of conduction
in LaFeO3 [13, 17], which implies carrier localization,
with the model of electronic densities of state given in
Fig. 3, one has to assume that the holes apparently form
in the π* band tail beyond the mobility edge [21, 30].
Accepting the aforesaid, we note that this situation is
similar to that in a nondegenerate acceptor semiconduc-

tα
3

eα
2

tβ
3

eβ
2

tβ
3

Fig. 3. Schematic diagrams of the electronic density of
states N(E) for La1 – xLixFeO3 at (a) T ≥ TN and (b) T < TN
(for magnetic sublattice I).
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Table 2.  Activation energies for La1 – xLixFeO3 samples derived from data on the electrical resistivity (E) and the carrier
mobility (W)

Sample
Electrical resistivity Mobility

temperature range, K E, eV temperature range, K W, eV

1 200–350 0.53 300–350 0.38 ± 0.02

410–780 0.27 350–810 0.28 ± 0.01

810–1073 0.16 810–1073 0.14 ± 0.03

2 180–350 0.45 300–370 0.25 ± 0.02

420–780 0.23 370–810 0.22 ± 0.01

810–1073 0.14 810–1073 0.12 ± 0.02

3 200–370 0.44 300–370 0.28 ± 0.01

420–780 0.23 370–810 0.21 ± 0.01

810–1073 0.13 810–1073 0.13 ± 0.02
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tor (this assumption appears to be justified because the
orthorhombic crystal field in LaFeO3 lifts the t2g and eg

level degeneracy). The intrinsic  levels now act as
impurity levels, and the π* band acts as the valence
band.

The quantity NV in a nondegenerate semiconductor
with hole conduction is given by [22, 23]

(3)

where h is Planck’s constant and mh is the effective hole
mass in the lattice not distorted by electron–phonon
coupling. From Eq. (2), the hole concentration above
TN is found to be

(4)

After a sample has crossed to the AFM state, all
magnetic atoms (Fe) will be distributed over the two
magnetic sublattices [24]. To understand the situation
on a qualitative footing, we neglect the iron ion spins in
LaFeO3 being noncollinear [31] and consider the sim-
ple case where the magnetic moments of all atoms on
one of the sublattices are oriented parallel to one
another while the total magnetizations of the sublattices
are oppositely directed, which makes the net magnetic
moment of a sample zero.

We consider one of the sublattices and denote it by
I. All its atoms are in a constant effective magnetic field
He generated by atoms of the other sublattice (denoted
by II). Figure 3b gives a schematic representation of a
fragment of the single-particle density of electronic
states in sublattice I, which is acted upon by the effec-
tive magnetic field He of sublattice II. The electronic
density of states of sublattice II is a mirror reflection of
that of sublattice I in a plane parallel to the E axis.

The internal magnetic field He, similar to an external
field, affects the electron energy. In particular, the
energy of electrons with spin α aligned with the mag-
netic field He will be reduced by –µ0He as compared to
their energy at He = 0 (µ0 is the electron magnetic
moment) [24]. Accordingly, the energy of electrons
with spin β oriented opposite to the magnetic field He

will increase by +µ0He. The energy difference between
them is 2µ0He (Fig. 3b). The problem consists in esti-
mating the concentration of holes in the π* band, which
appear as a result of the thermal activation of electrons

into the  levels.

The procedure for calculating the hole concentration
in a nondegenerate, magnetically disordered semicon-
ductor is described in detail, for instance, in [23, 32]. If
the semiconductor is in the AFM state, this calculation
differs primarily in that each of the sublattices is treated
separately. As a consequence, the density of states of
electrons (holes) with spin α or β in the π* band of sub-

tβ
3

NV 2
2πmhkT

h
2

-------------------- 
  3/2

,=

p NV
e
k
--α– 

  .exp≈

tβ
3

PH
lattice I (or II) is NV/4. In addition, one has to take into
account the energy difference 2µ0He between electrons
(holes) with different spin directions on each sublattice.
The calculation performed for the density-of-states
scheme in Fig. 3b yielded the following expression for
the hole concentration on sublattice I, assuming a para-
bolic dispersion relation and the Boltzmann approxi-
mation for the distribution function:

(5)

where ξ1 is the Fermi energy for sublattice I. In the
same way, one can calculate the hole concentration pII

on sublattice II. Since the values of ∆ and of the Fermi
energy ξ1 on both sublattices are equal, we obtain pI =
pII = pAFM/2 (pAFM is the total hole concentration in the
sample).

Consider the argument of the function
 on the right-hand side of Eq. (5). In the

Weiss molecular field approximation, we have He =
λM, where M is the average magnetization of one of the
sublattices and λ is a constant. Following [33], we
introduce the reduced magnetization m(T) = M(T)/M(0)
and reduced temperature t = T/TN, where M(0) =

N IgSµB, TN = N Ig2S(S + 1)λ /3k, N I is the number of
magnetic atoms (Fe) on sublattice I (or II), g is the spec-
troscopic splitting factor for electrons, S is the average
spin per atom, and µB is the Bohr magneton. In this case,
the total hole concentration in a sample below TN is

(6)

where D = 3µ0/µBg(S + 1). For S = 5/2 (for the Fe3+ ion
in LaFeO3), g = 2.0023, and µ0 ≈ µB [33], we obtain
D ≈ 0.4285.

Since the thermopower of a sample in the AFM state
is αAFM ≈ (ξ1 + ∆)/eT, we can write

(7)

Knowing the temperature dependence of reduced
magnetization m(T) for one of the sublattices and the
Néel temperature for the sample, one can calculate the
hole concentration pAFM for T < TN from Eq. (7). In the
case where the formation of a hole in the spectrum of
electronic states of a semiconductor is accompanied by
the appearance of an SP, the concentration of holes will
apparently be equal to that of SPs.

Figure 4 plots temperature dependences of the SP
concentration p(T) in samples 1–3 calculated with
allowance for (points and solid lines) and disregarding
(dashed lines) the transformation of their electronic
spectrum in crossing from the paramagnetic to the
AFM state. The m(T) relation is approximated as [33]

p
I NV

2
-------

ξ1 ∆+
kT

---------------– 
  1

µ0He

kT
------------tanh+ 
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µB
2

pAFM NV

ξ1 ∆+
kT

---------------– 
  1 D

m
t
---- 

 tanh+
1–

,exp=

pAFM NV
e
k
--αAFM– 

  1 D
m
t
---- 

 tanh+
1–

.exp=
YSICS OF THE SOLID STATE      Vol. 46      No. 8      2004



REGION OF EXISTENCE AND ELECTRICAL PROPERTIES 1479
(8)

where the Brillouin function

The SP concentration in sample 1 is calculated assum-
ing that TN ≈ 750 K [12]. The Néel temperature in sam-
ples 2 and 3 is derived from the position of the feature
observed in the α(T) plots at 712 K (Fig. 2).

As the Li concentration increases, the number of car-
riers grows and reaches a maximum value in sample 3. In
all the samples, an increase in temperature from 300 to
430–470 K brings about an increase in the SP concen-
tration, after which it remains practically constant to
the end of the temperature interval studied. The concen-
tration first attains a maximum at the temperature T0
corresponding to the minimum in α(T).

Figure 5 displays temperature dependences of the
carrier mobility u(T) in samples 1–3. An increase in Li
concentration results in a substantial increase in the SP
mobility in samples 2 and 3 (compared to sample 1).
This dependence is not, however, a monotonically ris-
ing function. The calculated carrier mobilities in sam-
ple 2 are somewhat higher than those in sample 3,
although the electrical resistivity of the samples
decreases monotonically with increasing Li concentra-
tion (Fig. 1). The values of the mobility in samples 2
and 3 are apparently similar; the observed difference
should be assigned to errors in the determination of ρ
and α.

In all the samples, the SP mobility increases with
temperature. The u(T) dependence can be fitted in dif-
ferent temperature intervals by an exponential [22],

(9)

where A2 is a constant, W = (Wp + WD)/2 is the activa-
tion energy for the mobility, Wp is the energy of SP for-
mation, and WD is the disordering energy. However, the
boundaries of the temperature intervals within which
the u(T) relation is characterized by a constant activa-
tion energy W differ somewhat from those of the corre-
sponding intervals identified in the ρ(T) plots (Table 2),
because the electrical resistivity depends not only on u
but also on the SP concentration. In each of the above
temperature intervals, the inequality E ≥ W holds,
which is the necessary condition for SP hopping con-
duction [22].

4. DISCUSSION OF THE RESULTS

The above results permit us to conclude that the
region of existence of the La1 – xLixFeO3 solid solution
prepared in air at atmospheric pressure is limited to
10 mol % and is apparently close to the upper boundary

m BS
m
t
---- 

  ,=

BS
2S 1+

2S
--------------- 3 2S 1+( )m

2 S 1+( )t
----------------------------coth

1
2S
------ 3m

2 S 1+( )t
----------------------.coth–=

u
A2

T
------ W

kT
------– 

  ,exp=
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of existence of the La1 – xFeO3 nonstoichiometric oxide,
which forms for x ≤ 0.075 [34]. At higher Li concentra-
tions, two-phase samples form, which contain, in addi-
tion to the solid solution, the cubic modification of
LiFeO2.

In the temperature interval studied, samples 1–3
exhibit p-type hopping conduction. The carriers are

300 700 1100

1

2

3

1024

1023

1025

p,
 m

–
3

T, K

Fig. 4. Temperature dependences of the SP concentration in
La1 – xLixFeO3 calculated with allowance for (points and
solid lines) and disregarding (dashed lines) the transforma-
tion of their spectrum of electronic states occurring at the
paramagnet–antiferromagnet transition for different values
of x: (1) 0, (2) 0.05, and (3) 0.1.

300 700 1100
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 m

2 /V
 s

1
3
2

Fig. 5. Temperature dependences of the SP mobility in
La1 − xLixFeO3 for different values of x: (1) 0, (2) 0.05, and
(3) 0.1.
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apparently SPs created by the holes that form in the
thermal activation of electrons from the π* band to the

close-lying  energy levels (Fig. 3), which are sepa-
rated from the former by a relatively narrow energy gap
Eg ≈ 2(E – W) ≈ 0.3 eV (Table 2). As the lithium con-
centration increases, the electrical resistivity of the
samples decreases (Fig. 1). As follows from an analysis
of the ρ(T) and α(T) relations, this behavior is associ-
ated with the increase in the carrier concentration
(Fig. 4) and mobility (Fig. 5).

All temperature dependences of the SP concentra-
tion feature a broad maximum in the range 400–600 K,
whose magnitude decreases considerably when one
takes into account the change the energy spectrum of
the samples undergoes at a second-order phase transi-
tion (Fig. 4). The fact that this maximum does not dis-
appear altogether can be assigned to the approxima-
tions made in attempting to take into account the effect
of magnetic ordering for T < TN. In particular, we did
not include remanent magnetization of the samples,
which appears as a result of the net magnetic moments
of each of the two magnetic sublattices being noncol-
linear. On the other hand, one should not overlook the
possibility that, within a broad temperature interval,
both below and above TN, our samples have a domain
structure (as do La1 – xSrxMnO3 samples) and, viewed
in terms of their magnetic characteristics, are actually
composites consisting of AFM and paramagnetic
regions whose fractional concentration varies as one
approaches the Néel temperature [7]; in other words,
the real temperature dependence of the relative magne-
tization of each sublattice differs from the relation
derived from Eq. (8). A more thorough inclusion of fac-
tors capable of affecting the m(T) dependence should
result in the disappearance of this maximum. Neverthe-
less, the approach proposed by us for calculating the
carrier concentration for T < TN offers at least a qualita-
tive interpretation of the phenomena occurring in a
sample with increasing temperature.

It is appropriate to note, in particular, that the tem-
perature dependences of carrier concentration in the
samples studied are similar to those observed in accep-
tor semiconductors [23, 32]. At relatively low tempera-
tures, the SP concentration grows with temperature,
while at higher temperatures it stabilizes at a certain

value, because the number of vacant  levels appar-

ently decreases and electron excitation into the  lev-
els is made difficult as it requires a higher activation
energy.

The increase in SP mobility as the Li concentration
increases (Fig. 5) may be related to the correlation
among energy states of neighboring polarons increas-
ing as their concentration increases, thus reducing the
activation energy W (Table 2) in the corresponding tem-
perature intervals [21]. The same reason probably

tβ
3

tβ
3

eβ
2

P

accounts for the change in W as the sample temperature
increases (Table 2).

We note in conclusion that the SP mobility in
LaFeO3 for T < TN calculated with allowance for the
spontaneous magnetization of the electronic subsystem
differs from our earlier results from [17], where the SP
concentration was derived using Eq. (2), which is valid
for T > TN. In particular, the dependence of ln(uT) on T–1

obtained in the present study for LaFeO3 (not shown
here) does not exhibit a jump when crossing TN from
low temperatures. (In [17], such a jump manifested
itself in the fact that the inequality E ≥ W did not hold
in a certain temperature interval below TN.) Further-
more, when calculating the SP concentration p(T), the
density of states NV in the band is assumed, following
[22], to be equal to the iron atom concentration. In this
approximation, the SP concentration is overestimated
as compared to the values of p obtained when calculat-
ing NV from Eq. (3). Accordingly, the calculated SP
mobility is found to be lower than that obtained in [17].

ACKNOWLEDGMENTS

This study was supported by the Russian Founda-
tion for Basic Research, project no. 01-03-96435.

REFERENCES
1. E. I. Nikulin, V. M. Egorov, Yu. M. Baœkov, B. T. Melekh,

Yu. P. Stepanov, and I. N. Zimkin, Fiz. Tverd. Tela
(St. Petersburg) 44 (5), 881 (2002) [Phys. Solid State 44,
920 (2002)].

2. V. V. Mashkautsan, R. R. Zaœnullina, N. G. Bebenin,
V. V. Ustinov, and Ya. M. Mukovskiœ, Fiz. Tverd. Tela
(St. Petersburg) 45 (3), 468 (2003) [Phys. Solid State 45,
494 (2003)].

3. N. I. Solin and S. V. Naumov, Fiz. Tverd. Tela
(St. Petersburg) 45 (3), 460 (2003) [Phys. Solid State 45,
486 (2003)].

4. N. N. Loshkareva, A. V. Korolev, T. I. Arbuzova,
N. I. Solin, N. A. Viglin, I. B. Smolyak, N. G. Bebenin,
Yu. P. Sukhorukov, S. V. Naumov, N. V. Kostromitina,
and A. M. Balbashov, Fiz. Tverd. Tela (St. Petersburg) 44
(10), 1827 (2002) [Phys. Solid State 44, 1916 (2002)].

5. C. N. R. Rao, J. Mater. Chem. 9, 1 (1999).
6. C. N. R. Rao and J. Gopalakrishnan, New Directions in

Solid State Chemistry. Structure, Synthesis Properties,
Reactivity and Materials Design (Cambridge Univ.
Press, Cambridge, 1986; Nauka, Novosibirsk, 1990).

7. É. L. Nagaev, Usp. Fiz. Nauk 166 (8), 833 (1996) [Phys.
Usp. 39, 781 (1996)].

8. L. P. Gor’kov, Usp. Fiz. Nauk 168 (6), 665 (1998) [Phys.
Usp. 41, 589 (1998)].

9. T. Maeder and J. G. Bednorz, J. Eur. Ceram. Soc. 19,
1507 (1999).

10. M. A. Senaris-Rodriguez and J. B. Goodenough, J. Solid
State Chem. 118, 323 (1995).

11. S. Geller and E. A. Wood, Acta Crystallogr. 9 (7), 563
(1956).
HYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004



REGION OF EXISTENCE AND ELECTRICAL PROPERTIES 1481
12. G. N. Jonker, Physica (Amsterdam) 22, 707 (1956).
13. G. V. S. Rao, B. M. Wanklyn, and C. N. R. Rao, J. Phys.

Chem. Solids 32 (2), 345 (1971).
14. W. H. Jung and E. Iguchi, J. Phys.: Condens. Matter 7,

1215 (1995).
15. T. Shimura, T. Hayashi, Y. Inaguma, and M. Itoh, J. Solid

State Chem. 124, 250 (1996).
16. A. E. Teplykh, S. G. Bogdanov, É. Z. Valiev, A. N. Piro-

gov, Yu. A. Dorofeev, A. A. Ostroushko, A. E. Udilov,
V. A. Kazantsev, and A. E. Kar’kin, Fiz. Tverd. Tela
(St. Petersburg) 45 (12), 2222 (2003) [Phys. Solid State
45, 2328 (2003)].

17. S. I. Vecherskiœ and N. N. Batalov, Zh. Neorg. Khim. 45
(9), 1525 (2000) [Russ. J. Inorg. Chem. 45 (9), 1394
(2000)].

18. L. I. Anatychuk, Thermal Converters and Thermoelec-
tric Devices (Naukova Dumka, Kiev, 1979) [in Russian].

19. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskiœ,
et al., in Physical Quantities. Handbook, Ed. by
I. S. Grigor’ev and E. Z. Meœlikhov (Énergoatomizdat,
Moscow, 1991) [in Russian].

20. M. A. van den Noort, P. J. J. M. van den Put, and
J. Schoonman, High Temp. High Press. 20 (2), 197
(1988).

21. N. F. Mott and E. A. Davis, Electronic Processes in Non-
Crystalline Materials, 2nd ed. (Clarendon, Oxford,
1979; Mir, Moscow, 1982), Vol. 1.

22. D. Appel, in Polarons, Ed. by Yu. A. Firsov (Nauka,
Moscow, 1975).
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      200
23. R. A. Smith, Semiconductors, 2nd ed. (Cambridge Univ.
Press, Cambridge, 1978; Mir, Moscow, 1982).

24. J. M. Ziman, Principles of the Theory of Solids, 2nd ed.
(Cambridge Univ. Press, Cambridge, 1972; Mir, Mos-
cow, 1974).

25. M. A. Senaris-Rodriguez and J. B. Goodenough, J. Solid
State Chem. 116, 224 (1995).

26. D. D. Sarma and A. Chainani, J. Solid State Chem. 111,
208 (1994).

27. M. Abbate, F. M. F. de Groot, J. C. Fuggle, et al., Phys.
Rev. B 46 (8), 4511 (1992).

28. P. Mahadevan, N. Shanthi, and D. D. Sarma, J. Phys.:
Condens. Matter 9, 3129 (1997).

29. J. B. Goodenough, J. Appl. Phys. 37 (3), 1415 (1966).
30. É. A. Neœfel’d, V. E. Arkhipov, N. A. Tumalevich, and

Ya. M. Mukovskiœ, Pis’ma Zh. Éksp. Teor. Fiz. 74 (11),
630 (2001) [JETP Lett. 74, 556 (2001)].

31. R. White, Usp. Fiz. Nauk 103 (4), 593 (1971).
32. V. L. Bonch-Bruevich and S. G. Kalashnikov, Physics of

Semiconductors (Nauka, Moscow, 1977) [in Russian].
33. C. Kittel, Introduction to Solid State Physics, 5th ed.

(Wiley, New York, 1976; Nauka, Moscow, 1978).
34. V. C. Belessi, P. N. Trikalitis, A. K. Lavados, et al., Appl.

Catal. A 117, 53 (1999).

Translated by G. Skrebtsov
4



  

Physics of the Solid State, Vol. 46, No. 8, 2004, pp. 1482–1486. Translated from Fizika Tverdogo Tela, Vol. 46, No. 8, 2004, pp. 1441–1445.
Original Russian Text Copyright © 2004 by Aronzon, Granovski

 

œ

 

, Nikolaev, Kovalev, Perov, Ryl’kov.

                                                  

MAGNETISM 
AND FERROELECTRICITY

                        
Specific Features of the Hall Effect in Cr/Co Bilayer Films
B. A. Aronzon1, 2, A. B. Granovskiœ3, S. N. Nikolaev2, D. Yu. Kovalev1, 2, 

N. S. Perov3, and V. V. Ryl’kov1, 2

1 Institute of Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Moscow, 127412 Russia
e-mail: kovalev@imp.kiae.ru

2 Russian Research Centre Kurchatov Institute, pl. Kurchatova 1, Moscow, 123182 Russia
3 Moscow State University, Vorob’evy gory, Moscow, 119992 Russia

Received December 10, 2003

Abstract—The Hall effect and magnetoresistance in Cr(50 Å)/Co(200 Å) bilayer films prepared by ion sput-
tering on a silicon substrate are investigated at room temperature. The planar Hall effect revealed in the bilayer
films differs from the planar Hall effect observed usually in that it is symmetric with respect to the sign of the
change in the rotation angle of the magnetic moment in the film plane. Under conditions where the symmetric
planar Hall effect is realized, the change in the Hall resistance is more than 10% and exceeds the anisotropic
magnetoresistance by two orders of magnitude. The hysteresis loops are measured at different orientations of
magnetic fields. The planar Hall effect is studied in a weak longitudinal magnetic field. The results obtained
demonstrate that the symmetric planar Hall effect is associated with the multidomain structure of the cobalt film
in Cr/Co bilayer composites. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The specific feature of ferromagnetic films lies in
the fact that, owing to the magnetoresistance anisot-
ropy, an electric field perpendicular to the direction of
current (the Hall voltage or Hall emf) can be induced in
these films even when the magnetic moment is entirely
aligned with the film plane [1, 2], whereas the anoma-
lous Hall effect is usually observed in a geometry
allowing for the perpendicular component of the mag-
netic moment.

This effect is referred to as the planar Hall effect.
For a single-domain film, the planar Hall voltage can be
represented in the form [2]

(1)

Here, VPH is the Hall voltage induced in the direction
(along the Y axis) transverse to the direction of the cur-
rent Ix passing along the film (the X axis); d is the film
thickness; θ is the angle between the direction of the
magnetization M and the direction of the current; and ρ||
and ρ⊥  are the resistivities of the film in the directions
parallel and perpendicular to the magnetization direc-
tion, respectively [4]: (ρ|| – ρ⊥ ) ∝  M2. From relationship
(1), it follows that the planar Hall effect is most pro-
nounced in thin films and is determined by the anisotro-
pic magnetoresistance. Note that, if the magnetic field
is applied perpendicular to the film plane and there
arises a magnetization component aligned parallel to

VPH

Ix

d
---- ρ|| ρ⊥–( ) θ θ.cossin=
1063-7834/04/4608- $26.00 © 21482
the normal, an additive contribution to the measured
signal is made by the anomalous Hall voltage [4]:

(2)

(3)

Here, Rs is the anomalous Hall constant, φ is the angle
between the magnetic moment and the normal to the
film plane, and VH is the total measured voltage.1 

It can be seen from the above relationships that the
Hall voltage in ferromagnets is governed by the magne-
tization behavior and increases with a decrease in the
film thickness. It is not accidental that the progress
made in spintronics, in which miniature thin-film ele-
ments have found application, has given impetus to the
investigation and development of the methods based on
Hall magnetometry, including the techniques using the
planar Hall effect [5–11]. In particular, it has been dem-
onstrated that microcompasses and magnetic sensors
with a sensitivity of 1 nT can be devised on the basis of
the planar Hall effect (see [5–7] and references therein).
In recent works, the planar Hall effect has been used to
analyze the complex exchange anisotropy at ferromag-
net–antiferromagnet interfaces (specifically in
NiFe/FeMn [8] and NiFe/NiMn [9] bilayer structures)
and to investigate the magnetization reversal at differ-
ent directions of a pinning field in spin valves [10].

In this work, we studied the Hall effect in bilayer
structures based on cobalt and antiferromagnetic chro-

1 For 3d transition metals and their alloys, the contribution from
the usual Hall effect due to a Lorentz force is negligible.

V AH

RsIx

d
----------M φ,cos=

VH VPH V AH.+=
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mium. Note that, to date, investigation into the magne-
totransport properties of Co/Cr bilayer films has
received little attention. This can be explained by the
large mismatch between the cobalt and chromium lat-
tices and by the complex structure of the systems
formed [12].

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Samples with one pair of current contacts and two
pairs of potential (Hall) contacts had the standard shape
of a double cross. The width and length of the conduct-
ing channel were W = 2 mm and L = 7 mm, respectively.
The length and width of Hall probes on side faces of the
sample were equal to 1.5 and 0.5 mm, respectively. The
samples were prepared in a vacuum chamber by ion-
beam sputtering of chromium and then cobalt from sev-
eral targets arranged symmetrically with respect to the
sample plane. According to estimates, the angle of inci-
dence of Co and Cr ion beams varied in the range from
20° to 40°. The plane of incidence was, on the average,
perpendicular to the direction of the conducting chan-
nel. As is known [13], this circumstance favors the
appearance of an induced anisotropy with an easy mag-
netization axis perpendicular to the plane of incidence;
i.e., in our case, it is aligned along the sample channel.
The films were sputtered onto silicon substrates cov-
ered with a thin layer (~1000 Å) of thermal oxide
through precisely fabricated nickel masks. The Hall
probes were matched accurate to within ~10 µm.

The Hall effect was examined on an automated
setup on the basis of a computer. The setup was
equipped with an HP3457A precision multimeter. The
magnetic field was induced by an electromagnet with a
12-digit dc power supply (20 A), which was also con-
trolled by the computer. For a current of 20 A, the mag-
netic field strength was approximately equal to 1 T. The
voltage between the Hall (Vy) and potential (Vx) probes
and the current Ix in the sample were simultaneously
measured (in a digital form) at a dc bias voltage in pos-
itive and negative magnetic fields H. The results of
measurements were used to calculate the sample resis-
tance across the potential probes Rxx = Vx/Ix and the
transverse resistance Rxy = Vy/Ix. The current in these
measurements did not exceed 4–5 mA. The direction
(perpendicular or parallel) of the field with respect to
the sample was controlled by measuring the signal of
the Hall probes at the maximum strength of the mag-
netic field (~1 T).

Moreover, in order to determine the easy magnetiza-
tion axis, the magnetization was studied with the use of
a vibrating-coil magnetometer.

3. RESULTS AND DISCUSSION

Figure 1 presents the results of measuring the Hall
effect in Cr(50 Å)/Co(200 Å) bilayer films at room tem-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      200
perature in a standard Hall geometry (with the magnetic
field applied perpendicular to the sample plane). The
experiments were performed in the following way.
After aligning the sample plane, a magnetic field with
positive polarity and a strength of approximately 2 kOe
was applied. Then, the magnetic field strength was
decreased at a low rate (~400 Oe/min). The Hall effect
was measured with a change in the magnetic field
strength, initially, from +2 to –2 kOe and, then, from −2
to + 2 kOe. In this case, the perpendicular magnetic
anisotropy could be judged from the hysteresis in the
Hall resistance.

It can be seen from Fig. 1 that unusual hysteresis of
the Hall voltage is observed in the entire range of field
strengths under investigation. Note that similar hyster-
esis is not observed in Co(200 Å) films without a Cr
sublayer. Apparently, the unusual shape of the hystere-
sis for bilayer films (Fig. 1) suggests the presence of a
considerable even (with respect to the magnetic field)
component in the transverse resistance or, in other
words, the “even” Hall effect Ra = (  + )/2, where

 and  correspond to positive and negative fields,
respectively. The field dependence of the resistance
Ra(H) is plotted in Fig. 2. This dependence was
obtained by summing the resistances Rxy measured with
a change in the magnetic field strength from +2 kOe to
0 and from 0 to –2 kOe. As can be seen from Fig. 2, the
resistance Ra considerably increases at small strengths
of the magnetic field and then tends to flatten. It should
be noted that, in our recent work [14], we observed the
manifestation of the even component of the Hall effect
in disordered granular ferromagnets (Fe/SiO2 nano-
composites). In [14], this phenomenon was explained
in terms of the percolation mechanism of conduction in
these systems and changes in the trajectories of perco-
lation paths of the current under the action of magnetic

Rxy
+ Rxy

–

Rxy
+ Rxy

–

–2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0
H, kOe

–0.08

–0.06

–0.04

–0.02

0

0.02

Rxy, Ω

Fig. 1. Magnetic-field dependence of the transverse resis-
tance for a Cr(50 Å)/Co(200 Å) bilayer film. The field is
perpendicular to the sample plane. Arrows indicate the
direction of change in the magnetic field strength.
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Fig. 2. Magnetic-field dependence of the asymmetry resis-
tance Ra for a Cr(50 Å)/Co(200 Å) bilayer film.
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Fig. 3. Magnetic-field dependences of the transverse resis-
tance for the (a) perpendicular and (b) longitudinal magne-
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fields. However, the objects studied in the present work
are good metals. Consequently, the observed effect
should have a different origin. It will be shown below
that this effect can be associated with a nontypical
behavior of the planar Hall effect.

As follows from relationships (1)–(3), the anoma-
lous Hall voltage is an even function of the magnetiza-
tion M, whereas the planar Hall voltage is an odd func-
tion of the magnetization M. Therefore, if the resis-
tances in the hysteresis loop at field strengths H < 0 (see
Fig. 1) are subtracted from the corresponding resis-
tances in the hysteresis loop at field strengths H > 0, the
curve thus obtained will depend only on the perpendic-
ular component of the magnetization. Similarly, when
the corresponding resistances in the hysteresis loop are
added, the resultant curve will depend only on the in-
plane component of the magnetization of the film. By
using this procedure, it is easy to reconstruct the depen-
dences of the perpendicular and parallel components of
the magnetization [4].

The above procedure was applied to construct the
dependences of the transverse resistance associated
with the magnetization components oriented perpen-
dicular (Fig. 3a) and parallel (Fig. 3b) to the film plane.
A comparison of these dependences shows that the hys-
teresis of the Hall effect is determined by the in-plane
magnetization component. (Note that the residual resis-
tance in Fig. 3b at H = 0 should be interpreted as the
asymmetry resistance due to a geometrical mismatch of
the Hall probes; according to estimates, this mismatch
for the given sample can be as large as 4 µm.) It is also
worth noting that no hysteresis is observed for the
dependence of the transverse magnetization component
and this component linearly depends on the field
strength over the entire range of field strengths under
investigation. This fact indicates that our objects do not
exhibit perpendicular anisotropy, which is frequently
inherent in CoCr alloys [4, 15].

The measurements carried out with the vibrating-
coil magnetometer demonstrated that the easy magneti-
zation axis actually lies in the film plane almost parallel
to the conducting channel (the axis of the sample). The
hysteresis loops of the magnetization of the sample at
different angles between the magnetic field and the axis
of the sample are depicted in Fig. 4. The squareness of
the loops strongly depends on the field orientation and
exhibits a maximum close to unity at an angle of 10°
between the magnetic field and the axis of the sample
in the film plane (see inset to Fig. 4). Such a depen-
dence suggests that the sample is uniaxial; in this case,
the easy magnetization axis deviates from the axis of
the sample by an angle of ~10°. The coercive force of
the sample is approximately equal to 13 Oe. The mag-
netization reversal toward the direction of easy magne-
tization occurs with an increase in the field strength
from 12 to 14 Oe. Most likely, this wide range of fields
corresponding to the magnetization reversal can be
explained by the motion of domain walls, which is vir-
HYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
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tually complete at a field strength of the order of 14 Oe.
In stronger fields, the magnetic moment gradually com-
pletes the rotation to the easy magnetization axis.

The strong influence exerted by the longitudinal
magnetization component on the Hall effect (Fig. 3b)
stimulated the performance of two series of measure-
ments in a planar geometry. In the first series, the mag-
netic field was applied parallel to the sample plane and
perpendicular to the current passing through the sample
(Fig. 5). In the second series, the magnetic field was
aligned parallel to both the sample plane and the direc-
tion of the current (Fig. 6). It should be noted that neg-
ative magnetoresistance is observed in the former case
(Fig. 5b), whereas the magnetoresistance is positive in
the latter case (Fig. 6b). To put it differently, the behav-
ior of the magnetoresistance has all the traits character-
istic of the anisotropic magnetoresistance effect with a
small ratio ∆ρ/ρ (smaller than 0.1%). At the same time,
the change in the transverse Hall resistance exceeds
10%. Note also that the observed planar Hall effect is
symmetric with respect to the magnetic field and,
hence, with respect to the sign of the change in the rota-
tion angle of the magnetic moment. On the other hand,
according to relationship (1), the planar Hall effect
should be antisymmetric. Possibly, this fact can be
explained by the separation of the film into domains
due to the interaction of the ferromagnetic (Co) and
antiferromagnetic (Cr) components. This situation is
typical of Fe/Cr multilayer structures. Recall that a sim-
ilar symmetric planar Hall effect does not manifest
itself in Co films of the same thickness. Certainly, upon
separation of the film into domains, expression (1)
becomes invalid [16] and the specific features of the
planar Hall effect can be completely determined by the
domain structure.
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Fig. 4. Magnetization hysteresis loops for different orienta-
tions of the magnetic field with respect to the axis of the
sample (the direction of current). The external magnetic
field is aligned with the sample plane. The inset shows the
dependence of the coefficient of squareness on the angle of
field orientation.
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In order to confirm the above assumption, we per-
formed additional experiments in which a weak con-
stant magnetic field (~10 Oe) was applied in the plane
of the Cr(50 Å)/Co(200 Å) bilayer films (along the
direction of the current). The field strength was suffi-
ciently strong to decrease the number of domains or to
provide an almost homogeneous magnetic state. The
sweep field was aligned parallel to the sample plane and
perpendicular to the direction of the current. In this
case, the field dependence of the transverse resistance
Rxy differs significantly (Fig. 7). It can be seen from
Fig. 7 that the planar Hall effect under these conditions
appears to be antisymmetric. A similar situation was
previously observed by Ogrin et al. [7]. Furthermore,
this behavior follows from relationship (1) when taken
into account that the planar Hall voltage VPH ∝  sinθ,
where θ is the angle between the direction of the current
Ix and the direction of the magnetization M. Note that
the asymmetry of the dependence in Fig. 7 (i.e., differ-
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Fig. 5. Magnetic-field dependences of (a) the transverse
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change in the magnetic field strength.
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P

ent deviations at the maximum and the minimum from
zero magnetic field) can be associated with the fact that
the easy magnetization axis makes an angle with the
axis of the sample.

4. CONCLUSIONS

Thus, the results obtained in this work demonstrated
that the planar Hall effect revealed in Cr(50 Å)/Co(200 Å)
bilayer films is symmetric with respect to the sign of the
change in the rotation angle of the magnetic moment.
The inference was made that this effect is due to the
separation of cobalt films into domains and the motion
of the domain walls in the magnetic field. Elucidation
of the specific features in the observed phenomenon
calls for further investigation into the magnetization of
materials on the microscopic level [16], which will be
performed in the near future.
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Abstract—Colloids of cobalt-substituted magnetite are investigated using ferromagnetic resonance. It is found
that the ferromagnetic resonance spectrum consists of two spectral lines. The intensity ratio of these lines
depends on the size of the magnetic particles. The experimental results are interpreted in the framework of the
Raikher–Stepanov theory. It is established that the average radius of particles increases with increasing time.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Systems of ferromagnetic nanoparticles suspended
in a liquid carrier are of special interest for ferromag-
netic resonance investigations. In most cases, the ferro-
magnetic resonance spectrum is a single bell-shaped
line with a width of approximately 10–1 T. However, in
some cases, the ferromagnetic resonance spectrum has
a more complex shape and contains a larger number of
lines. In particular, Upadhyay et al. [1] obtained the fer-
romagnetic resonance spectrum of a magnetite colloid
in a nonaqueous medium. This spectrum exhibits a nar-
row line against the background of a broad line. The
width of the narrower line is one order of magnitude
smaller and its intensity is five orders of magnitude
lower than those of the broad line. Raikher and
Stepanov [2] theoretically analyzed the two-component
ferromagnetic resonance spectrum of a magnetic liq-
uid. According to [2], the shape of the ferromagnetic
resonance spectrum substantially depends on the
parameter ξ0 = µH/kT, where µ is the magnetic moment
of a particle, H is the magnetic field strength, k is the
Boltzmann constant, and T is the temperature. At ξ0 < 1,
the ferromagnetic resonance spectrum contains one
absorption peak. At 1 < ξ & 20, a second low-field peak
appears in the spectrum and its intensity increases with
an increase in the parameter ξ0. This is accompanied by
a decrease in the intensity of the first peak, which com-
pletely disappears at ξ > 50. In all cases, the spectral
lines have an asymmetric shape. The spectral position
of the absorption peaks and the linewidth also depend
on the parameter ξ0 [2].

Each value of the parameter ξ0 corresponds to a par-
ticular height of the absorption peak in the spectrum
[2]. Therefore, it is possible to determine the parameter
ξ0 from the height ratio of the peaks measured in the
experiments and, hence, to estimate the size of colloidal
particles. In contrast to the method described by Folly
1063-7834/04/4608- $26.00 © 1487
and de Biasi [3], the above method does not require
measurement of the temperature dependences of the
height of the absorption peaks and the effective anisot-
ropy constant at low temperatures.

Earlier [4], we carried out magnetometric investiga-
tions and revealed that the substitution of cobalt for a
small amount of divalent iron (approximately 1%) in
magnetite leads to a substantial increase (by approxi-
mately two orders of magnitude) in the magnetization
of the colloid due to an increase in the average magnetic
moment of colloidal particles. Therefore, the magnetic
liquids characterized by specified values of the param-
eter ξ0 can be prepared by varying the degree of substi-
tution of cobalt for iron.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Our experiments were performed with benzene-
based magnetic liquids. The magnetic filler was com-
posed of magnetite nanoparticles with oleic acid as a
surfactant. Magnetite was synthesized according to the
chemical reaction of FeSO4 and FeCl3 aqueous solu-
tions with aqua ammonia as an alkaline agent. The
reaction resulted in the precipitation of magnetite,
which was then separated from water through centrifu-
gation. In order to prepare the colloid, a solution of
oleic acid in benzene was added to the magnetite thus
obtained. Doping with cobalt was performed by substi-
tuting the cobalt salt for a specified amount of divalent
iron sulfate.

The concentration of the magnetic filler in the liquid
was determined by weighing the dry residue obtained
upon calcination of a sample of known volume. The
degree of substitution of cobalt for iron in the sample
was equal to 1.5%. The molar concentration of the
magnetic filler was 0.33 mol/l, and the volume concen-
tration of the surfactant was 2%.
2004 MAIK “Nauka/Interperiodica”
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The ferromagnetic resonance spectra were recorded
on an EPR spectrometer at an operating frequency of
9.1 GHz.

0.2 0.3 0.4
H, T

1

2

0.2 0.3
H, T

1

2

0.2 0.3
H, T

1
2

Fig. 1. Experimental ferromagnetic resonance spectra of
magnetite colloids (1) without substitution and (2) with sub-
stitution of cobalt for 1.5% Fe2+.

Fig. 2. Evolution of the ferromagnetic resonance line of
cobalt-substituted magnetite colloids: (1) as-prepared col-
loid and (2) the same colloid 13 days after synthesis.

Fig. 3. Integrated spectra of ferromagnetic resonance in
magnetic liquids: (1) as-prepared sample and (2) the same
sample 13 days after synthesis. Solid lines represent exper-
imental data, and dashed lines correspond to the results of
theoretical calculations.
PH
3. RESULTS AND DISCUSSION

The ferromagnetic resonance spectrum of the mag-
netite magnetic liquid measured before doping with
cobalt consists of one line with a width of approxi-
mately 0.1 T. After doping of the magnetite sample with
cobalt, an additional narrow line appears in the ferro-
magnetic resonance spectrum in the range of weaker
fields (Fig. 1).

It can be seen from Fig. 2 that the intensity of the
additional line increases with time. Subsequent experi-
ments revealed the complete disappearance of the ini-
tial high-field line.

The theoretical calculations performed in [2] dem-
onstrated that, at small parameters ξ0, the basic mecha-
nism responsible for the broadening of spectral lines is
associated with thermal fluctuation broadening. Conse-
quently, the spectral line should be nearly symmetric in
shape. This situation corresponds to the experimental
spectrum 1 (Fig. 1) of the magnetite colloid before
cobalt doping.

As the parameter ξ0 increases, the fluctuation field
decreases and becomes comparable to the anisotropy
field Ha; i.e., the magnetic interaction forces become
comparable to the thermal fluctuation interaction
forces. In this case, the precession of the magnetic
moments is affected by the internal fields of anisotropy
and the ferromagnetic resonance line becomes asym-
metric in shape. This situation is typical of cobalt-sub-
stituted magnetite colloids, for which an additional
absorption peak is experimentally observed in the low-
field range (spectrum 2 in Fig. 1). A further increase in
the parameter ξ0 leads to an increase in the magnetic
moment of the particles. As a result, their orientational
distribution becomes narrower in a direction almost
aligned with the external magnetic field. Up until the
orientational distribution in the intermediate cases
under consideration becomes completely collinear, the
initial high-field peak is retained but decreases in inten-
sity [2]. This situation corresponds to the state of the
sample several days after synthesis (Fig. 2). It should
be noted that, according to [2], a spectrum consisting of
two absorption peaks is a distinguishing feature of fer-
romagnetic resonance in magnetic liquids. A further
increase in the parameter ξ0 results in an increase in the
height of the low-field peak and in complete disappear-
ance of the initial high-field peak [2], which was also
observed in the experiments.

Our calculations of the integrated spectra of ferro-
magnetic resonance in the framework of the theory
described in [2] showed that, for the experimental spec-
tra depicted in Fig. 2, the parameter ξ0 is equal to 0.4 for
the as-prepared sample and 13.3 for the same sample
13 days after synthesis (Fig. 3). In these calculations,
we used the following parameters: temperature T =
300 K, saturation magnetization M = 477 kA/m, damp-
ing factor α = 0.01, and ratio of the magnetic anisotropy
energy to the Zeeman energy ε = 0.2. In order to deter-
YSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
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mine the parameter ξ0, we used the height ratio of the
spectral peaks, which was determined from experimen-
tal and calculated spectra approximated by a superposi-
tion of two lines of Gaussian shape. The disagreement
between the experimental widths of the spectral lines
and the results of theoretical calculations can be
explained in terms of the polydispersity of the particles
and the additional mechanisms providing the broaden-
ing of the spectral line under the conditions of the
experiment.

By assuming the particles to be spherical in shape,
the particle radii are found to be 11.6 nm for the as-pre-
pared liquid and 36.5 nm for the same liquid 13 days
after synthesis. It follows from the results obtained that
particle growth occurs in the studied samples, which
can be observed using ferromagnetic resonance.

4. CONCLUSIONS
Thus, the results of our experimental investigations

demonstrated that the processes analyzed theoretically
in [2] actually take place in magnetic liquids. Thus, fer-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
romagnetic resonance spectroscopy can provide reli-
able information on the size of magnetic colloidal par-
ticles and on the spatial distribution of their anisotropy
axes with respect to the external magnetic field.
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Abstract—The energy of the magnetic anisotropy of Co/Cu/Co polycrystalline ultradisperse films is investi-
gated as a function of the thickness of copper and cobalt layers. The influence of the structure parameters (the
size and distribution of defects, the period and amplitude of roughnesses) on the surface and volume compo-
nents of the magnetic anisotropy is analyzed. The parameters of the structure inhomogeneities and their distri-
bution over the film surface are determined from two-dimensional Fourier spectra and electron microscope
images of the films. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Over the last decade, nanostructured objects have
been studied extensively. Research interest expressed in
these objects is associated with their widespread use in
modern nanotechnology. Considerable recent progress
has been achieved in this field owing to significant
advances in the technology for producing and studying
micro- and nanostructures. Multilayer magnetic struc-
tures are of interest not only from the practical stand-
point but also as objects with radically new magnetic
and magnetoresistive properties. Investigation into the
influence of indirect exchange coupling on the mag-
netic properties of multilayer films is an important
problem.

In this work, we investigated the influence of the
distribution of structural defects and surface rough-
nesses on the components of the magnetic anisotropy of
Co/Cu/Co films.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Samples of Co/Cu/Co films were prepared using
magnetron dc sputtering in an argon atmosphere (PAr =
5 × 10–3 Torr). Films were deposited on naturally oxi-
dized Si(111) single crystals at room temperature. The
layer thickness was controlled by the time of sputtering.
The rates of deposition of cobalt and copper were equal
to 0.10 and 0.08 nm/s, respectively. The structure of the
films was investigated using electron microscopy and
electron microdiffraction. All the studied films had a
polycrystalline structure with a grain size of ~5–6 nm.
The magnetization was measured by the induction
method with the use of an automated vibrating-coil
magnetometer.

The anisotropy field was measured by the ferromag-
netic resonance method. The angular dispersion of
anisotropy axes ϕa was determined using the technique
1063-7834/04/4608- $26.00 © 21490
proposed by Kornev and Borodina [1]. According to
this technique, the angular dispersion of the anisotropy
axes ϕa was determined from the angle within which
the resonance field does not change upon rotation of the
film in its plane.

3. EXPERIMENTAL RESULTS 
AND DISCUSSION

The ferromagnetic resonance method was used to
measure the field of magnetic anisotropy of the films:

Ha = (  – )/2. Here,  and  are the res-
onance fields in the direction of the hard magnetization
and easy magnetization axes, respectively. Figure 1
shows the dependences of the constant of induced mag-
netic anisotropy Ku = HaIeff/2 (where Ieff is the magneti-
zation of the film) for (Co/Cu)n deposited films on the
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Fig. 1. Dependences of the constant of induced magnetic
anisotropy Ku on the thickness of cobalt ferromagnetic lay-
ers in Co/Cu(dCu)/Co films. dCu = (1) 0.7, (2) 1.0, and
(3) 1.6 nm.
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thickness of the cobalt layers. The constants of induced
magnetic anisotropy Ku were calculated taking into
account the dependence of the magnetization on the
thickness of the ferromagnetic layers Ieff = f(dCo)
(Fig. 2). As the thickness of the cobalt layers increases,
the constant of induced magnetic anisotropy increases
to saturation. For samples with a copper layer thickness
dCu = 0.7 nm, the constant of induced magnetic anisot-
ropy reaches a maximum. Possibly, this is associated
with the existence of a large number of ferromagnetic
bridges in the intermediate copper layer and, conse-
quently, with a local increase in the thickness of the
cobalt layers.

The energy of induced magnetic anisotropy Ku eff

can be represented in the form of the phenomenological
expression [2, 3]
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Fig. 2. Variation in the magnetization of Co/Cu/Co films
with increasing thickness of the cobalt layers after (1) dep-
osition and (2) annealing at Tann = 350°C and tann = 30 min.
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where Kv and Ks are the volume and surface compo-
nents of the induced magnetic anisotropy, respectively.

The volume component of the magnetic anisotropy
Kv is determined by the anisotropic distribution of bulk
defects (grain boundaries, chains consisting of grain
boundaries, micropores). The surface component of the
magnetic anisotropy Ks is governed by the morphology
of the Co/Cu interfaces. The coefficient 2 accounts for
the fact that each ferromagnetic layer has two inter-
faces. If the components Kv and Ks are constants, then,
according to the phenomenological law, the quantity
Ku effdCo increases linearly with an increase in the thick-
ness of the ferromagnetic layers. In the case when dCo =
–2Ks/Kv, the easy magnetization axis undergoes a
crossover from the film plane in a direction perpendic-
ular to the surface of the film. The surface component
of the magnetic anisotropy 2Ks was determined by
extrapolating the dependence Ku effdCo = f(dCo) to zero
thickness of the cobalt layer (dCo = 0). Figure 3a shows
the dependence Ku effdCo = f(dCo) for (Co/Cu)n films
with different thicknesses dCu. The constants of surface
anisotropy Ks are presented in Table 1.

After annealing of the samples at a temperature of
350°C for 30 min, the surface component of the mag-
netic anisotropy in Co/Cu/Co films changes sign
(Fig. 3b) This can be associated with the fact that, in
annealed films, the intermediate copper layer degrades
with an increase in the grain size by a factor of approx-
imately 6 (R = 28–30 nm) and, consequently, many pin
holes arise in the nonmagnetic layer. In this situation,
ferromagnetic coupling between the layers occurs
through pin holes. Therefore, these films can be consid-
ered single-layer films with a thickness equal to the
total thickness of the ferromagnetic layers. Owing to
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Fig. 3. Dependences of the constant of induced magnetic anisotropy KudCo on the thickness of cobalt layers after (a) deposition and
(b) annealing at Tann = 350°C and tann = 30 min for Co/Cu(dCu)/Co films. dCu = (1) 0.7, (2) 1.0, and (3) 1.6 nm.
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Table 1.  Magnetic anisotropy of Co/Cu/Co films before and after annealing at Tann = 350°C and tann = 30 min

dCu, nm

Kv, 104 erg/cm3 Ks, 10–3 erg/cm3

experiment calculation experiment calculation

before 
annealing

after 
annealing

before 
annealing

after 
annealing

before 
annealing

after 
annealing

before 
annealing

after 
annealing

0.7 7.1 1.3

1.0 7.5 2.3 7.3 5.7 5.5 –7.0 5.8 –8.6

1.6 6.9 5.0
the effective increase in the thickness of the cobalt
films, the magnetization vector is aligned with the plane
of the film.

The volume component of the magnetic anisotropy,
which is determined as the slope of the curve Ku effdCo =
f(dCo), is virtually identical for all films (Table 1). In
annealed films, the volume component of the induced
magnetic anisotropy decreases.

The surface magnetic anisotropy was estimated on
the basis of the real structure of the Co/Cu/Co films.
According to Rozenshtern et al. [4] and Bruno [5], the
surface magnetic anisotropy can be represented in the
form Ks = K0 + ∆K, where K0 is the constant of surface
(boundary) anisotropy for an ideal boundary and ∆K is
the anisotropy due to the roughness of the interfaces.

For an ideal interface, the boundary anisotropy in
multilayer films is associated with the pseudodipole
interaction of atomic pairs and can be represented by
the relationship [4] K0 = 3aNW, where a is the lattice
constant, N is the number of atoms per unit volume, and
W = WCoCo + WCuCu – 2WCoCu is the energy of pseudodi-
pole interaction of the Co–Co, Cu–Cu, and Co–Cu
atomic pairs, respectively. The anisotropy constant for
the ideal interface is determined to be K0 = 8.64 ×
10−2 erg/cm2.

The anisotropy of the ideal interface in real films is
affected by different factors, such as the roughness of
P

the interfaces between layers, diffusion spreading of
the interface, and the nanocrystalline structure.

The contribution from the roughness of the inter-
faces to the surface component of the magnetic anisot-
ropy was calculated according to the formula [4] ∆Kr =
–2K0(σ/λ)2, where σ is the dispersion of the amplitude
of roughnesses (the deviation from the mean plane) and
λ is the period of roughnesses determined from the sta-
tistically processed AFM images of the topography of
the film surfaces (Fig. 4). For the samples studied, we
obtained ∆Kr = –1 × 10–5 erg/cm2.

The contribution from the polycrystalline structure
was determined assuming that all orientations of the
crystallites are equally probable. Hence, the surface
magnetic anisotropy associated with the polycrystalline
structure can be represented in the form [4] ∆Kp =
−0.6K0 = –5.18 × 10–2 erg/cm2.

Diffusion spreading of the interfaces in the sample
occurs during the deposition of layers and subsequent
heat treatment. The surface component of the magnetic
anisotropy governed by diffusion spreading has the
form [4] ∆Kd = –K0(1 – a/hd), where a is the lattice con-
stant and hd is the depth of diffusion spreading of the
interface. For hd = 1–2 of the interatomic distances, we
obtain ∆Kd = –2.88 × 10–2 erg/cm2.
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Fig. 4. AFM images of the morphology of the film surface. The dispersion of the amplitude σ and the length l of roughnesses are
given in the upper right.
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Fig. 5. (a, b) Electron microscope images of the structure of the Co/Cu/Co film, (c, d) the dependences of the integrated energy of
frequency characteristics in ring zones on the wavelength, and (e, f) two-dimensional Fourier spectra (a, c, e) before and (b, d, f) after
annealing at Tann = 350°C and tann = 30 min. In panels (e, f), the periods of inhomogeneities λ are plotted along the radii.
In this case, the surface component of the magnetic
anisotropy of real interfaces is found to be Ks = 5.8 ×
10–3 erg/cm2. This result agrees with the experimental
values of the surface magnetic anisotropy in (Co/Cu)n

films (Table 1).
After annealing at Tann = 350°C, the interfaces of the

film undergo degradation due to an increase in the grain
size and interdiffusion. Let us assume that the depth hd

of diffusion spreading of the interface in annealed films
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
is comparable to the width of the interface. In this case,
the constant of surface magnetic anisotropy Ks changes
sign, which agrees with the experimental energy of the
surface anisotropy (Table 1).

In order to estimate the volume component of the
magnetic anisotropy associated with the distribution of
structure inhomogeneities, it is necessary to know not
only the linear sizes of the inhomogeneities but also
their mutual orientation and distribution in the film. The
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Table 2.  Parameters characterizing the distribution of structure inhomogeneities over the surface of Co/Cu/Co films

Co/Cu/Co films

Frequency ranges

first second third fourth

λ1, nm γ1 θ1, deg λ2, nm γ2 θ2, deg λ3, nm γ3 θ3, deg λ4, nm γ4 θ4, deg

Before annealing 23.4 1.0 – 54 1.6 0 72 2.6 175 104.5 2.3 170

After annealing 44.0 1.1 120 – – – 85.0 1.4 100

Table 3.  Sizes of structure inhomogeneities

Co/Cu/Co

Frequency ranges

first second third fourth

l1, nm d1, nm l2, nm d2, nm l3, nm d3, nm l4, nm d4, nm

Before annealing 5 1 10 1 20 1 30 1

After annealing at Tann = 350°C 74 2 203
electron microscope images of the films are visualized
by the hierarchy of structure inhomogeneities. How-
ever, the distribution of defects in multilayer structures
are difficult to evaluate quantitatively. In this study, the
parameters of structure inhomogeneities were esti-
mated using spectral Fourier analysis of the electron
microscope images of the film surfaces. The digital
two-dimensional Fourier spectra were calculated on a
computer. The two-dimensional Fourier spectrum of
each image was separated into 36 ring sectors. In each
sector, we determined the mean power of the spectral
components, which characterizes the frequency com-
position of the image. Then, we investigated the spec-
tral energy of structure inhomogeneities in different
frequency ranges. For convenience, the integrated fre-
quency characteristics were expressed in equivalent
wavelengths λ. Figure 5 shows the dependence of the
integrated energy of frequency characteristics in ring
zones on the wavelength of spatial inhomogeneities.
The spectral Fourier analysis of the electron micro-
scope images of the structure of three-layer films dem-
onstrated that the spectrum of the structure inhomoge-
neities exhibits several maxima, i.e., several periods in
the distribution of inhomogeneities. The distribution of
the structure inhomogeneities in the film was estimated
from the energy of the spectral components in the radial
spectra involving the observed local maxima. The two-
dimensional Fourier spectra were used to determine the
anisotropy coefficient of the distribution γ of defects in
the film and the angle of misorientation θ of defects in
different frequency ranges. The parameters of the struc-
ture inhomogeneities are presented in Table 2. The
inhomogeneities (periods of inhomogeneities) corre-
sponding to local energy maxima can be separated into
four types (Table 2). After annealing, the films are char-
acterized by only two local maxima (Fig. 5).
P

Taking into account the parameters of the structure
inhomogeneities of the film before and after annealing,
we estimated the contribution of structural defects to
the volume component of the magnetic anisotropy Kv.

In order to obtain the total constant of magnetic
anisotropy, we determined the anisotropy field. In
deposited films, the inhomogeneities involved in the
first range are distributed isotropically in the film (γ = 1)
(Fig. 5e). The isotropically distributed defects (stresses)
do not contribute to the induced magnetic anisotropy.
The precipitated films are characterized by three and,
after annealing, two systems of anisotropically distrib-
uted defects contributing to the magnetic anisotropy
(Table 2, Figs. 5e, 5f). The anisotropy field induced by
bulk defects in the deposited film is given by

For the annealed film, we have

Here, Hi are the components of the anisotropy field
induced by inhomogeneities of the ith range, which are
calculated according to the relationship

where Na and Nb are the demagnetizing coefficients
along the a and b axes of the defect, ∆I is the jump in
the magnetization at the boundary of the defect, and

Ha
v H2

2 H3
2 H4

2 2H2H3 θ3 θ2–( )cos–+ +{=

+ 2H4 H2
2 H3

2 2H2H3 θ3 θ2–( )cos–+[ ] 1/2

× θ2 θ4– γ+( ) } 1/2,cos

γ
H3 θ3 θ2–( )cos H2–

H2
2 H3

2 2H2H3 θ3 θ2–( )cos–+[ ] 1/2
-----------------------------------------------------------------------------------.arccos=

Ha
v H2

2 H4
2 2H2H4 θ4 θ2–( )cos+ +[ ] 1/2

.=

Hi 2 Nb Na–( ) ∆l( )2ci/Ieff,=
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ci is the concentration of defects of the ith type. Here,
∆I = Is – Idef. Since Ieff = IsV + Idef(1 – V), where V is the
grain volume, we have ∆I = (Is – Ieff)/(1 – V), where Is is
the reference value and V and Ieff are the quantities
determined from the experiment (Fig. 6). The concen-
tration of defects in each range was determined from
the expressions ci = Si/1 cm2 and Si = S0ni, where S0 = ld
is the surface area of an individual defect in the ith

range and ni = 1/  is the density of defects in the ith
range. Here, l and d are the length and width of defects
in the ith range, respectively (Table 3). The calculated
volume components of the magnetic anisotropy Kv =

If/2 are presented in Table 1. The calculated values
agree well with the experimental data.

4. CONCLUSIONS

The results of our investigations can be summarized
as follows.

(1) In polycrystalline, fine-grained, and multilayer
films, there exists a hierarchy of structure inhomogene-
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Fig. 6. Dependences of (1) the ratio ∆I/Is and (2) the grain
size R on the temperature of annealing of Co/Cu/Co films.
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ities that differ in terms of their size, periods (density),
and distribution over the surface of films.

(2) Heat treatment leads to variations in the size,
period, and distribution of structure inhomogeneities in
the film.

(3) Long-wavelength roughnesses of the surface do
not contribute to the surface anisotropy.

(4) The degradation of the nonmagnetic intermedi-
ate layer is accompanied by a change in sign of the sur-
face magnetic anisotropy in Co/Cu/Co films with thin
ferromagnetic layers.

(5) The energy components of the surface and vol-
ume anisotropies estimated for the real structure of
polycrystalline multilayer films agree with the experi-
mental values.
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Abstract—A theory describing the formation of condensed-phase regions at a high concentration of excitons
in a quantum well is constructed. The condensed phase can be either an exciton or an electron–hole liquid.
When the condensed phase and exciton gas coexist, islands of the condensed phase have the shape of disks. A
simultaneous solution to the kinetic equation (determining the island sizes) and the diffusion equation for exci-
tons outside the islands is obtained for stationary pumping. It is assumed that the exciton gas is nondegenerate
outside the islands. The mutual influence of islands through the concentration fields of excitons is taken into
account assuming that the mean radius of islands substantially exceeds the mean distance between them. The
radius distribution and concentration of islands are determined as functions of the rate of exciton production
and the parameters of the system. It is found that the radius distribution of islands is broadened near the thresh-
old of formation of the condensed phase. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Condensation of excitons in quantum wells has been
extensively investigated both experimentally [1–7] and
theoretically [8–13]. For the most part, these studies
have dealt with the Bose–Einstein condensation of
excitons. Investigation of excitons in double-well
potentials holds much promise. In these systems, the
application of an electric field perpendicular to the
plane of layers leads to the generation of excitons that
consist of electrons and holes located in different layers
and have a long lifetime, thus providing a high exciton
concentration. Dremin et al. [7] studied the lumines-
cence in (GaAl)As crystals with double quantum wells
and observed a narrow line against the background of a
broad emission band of interwell excitons. This line
appeared at the threshold pumping intensity and
became narrower with an increase in the pumping
intensity. The broad band was assigned to the emission
of trapped excitons, and the narrow line was attributed
to the emission of excitons in a Bose–Einstein con-
densed phase.

An indirect (interwell) exciton has a dipole moment.
Consequently, indirect excitons separated by large dis-
tances experience repulsive dipole–dipole forces. At
the same time, the attractive van der Waals forces
between indirect excitons are rather strong and can
exceed the dipole–dipole repulsion in the range of the
order of four or five exciton radii (the specific value
depends on the well parameters). As a result, the con-
densed exciton phase can appear in the system without
the formation of a Bose condensate. In a number of the-
oretical studies [8], it has been demonstrated that the
exciton-liquid and exciton-gas phases can coexist in a
1063-7834/04/4608- $26.00 © 21496
particular range of parameters of the system. However,
the system under consideration is nonequilibrium,
which affects the parameters of the condensed phase.
Specifically, owing to the finite lifetime of excitons in
the range of parameters corresponding to the coexist-
ence of the phases, the sizes of condensed-phase
regions should be limited and these regions in a two-
dimensional system should have the form of islands
surrounded by an exciton gas. The size distribution of
condensed exciton phase regions should depend on the
kinetic parameters of the system (lifetime, diffusion
rate of excitons, etc.). A statistical theory of the size dis-
tribution of electron–hole drops in bulk semiconductors
was developed in [14–17]. However, the problem for
two-dimensional systems was not analyzed.

The aim of the present study was to construct a the-
ory that describes the size distribution of condensed-
phase regions and their concentration as a function of
the pumping intensity, temperature, and parameters of
a two-dimensional system. The theory is applicable in
the case when a new phase is either an exciton liquid or
an electron–hole liquid. The parameters of the theory
are the energy and the surface area per electron–hole
pair in the condensed phase. It is assumed that the sizes
of condensed-phase regions are considerably larger
than the transverse sizes of the system. Therefore, the
results obtained can be applied to systems with single-
well and double-well potentials. In the calculations,
allowance is made for a nonuniform distribution of
excitons in the vicinity of condensed-phase islands due
to exciton diffusion and the interaction between differ-
ent condensed-phase islands. This interaction is associ-
ated with the effect of an individual island on the exci-
ton density of another island. The calculations are per-
004 MAIK “Nauka/Interperiodica”
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formed under the assumption that the exciton gas in the
vicinity of new-phase islands is nondegenerate and the
distance between islands is significantly larger than the
island sizes.

2. MODEL OF THE SYSTEM. SOLUTION
OF THE FOKKER–PLANCK EQUATION 

FOR THE RADIUS DISTRIBUTION FUNCTION 
OF EXCITON ISLANDS

Let us consider a two-dimensional system with a
high concentration of excitons produced under station-
ary pumping. Upon first-order phase transitions, the
nucleation of a new phase occurs through the formation
and growth of nuclei. New-phase regions (islands)
should have the shape of disks for which the free energy
is at a minimum (Fig. 1). These disks in a two-dimen-
sional system are analogs of drops in a three-dimen-
sional system. New-phase islands are characterized by
the minimum critical radius determined by the surface
energy and the maximum critical radius governed by
the exciton lifetime. It is assumed that the disk radius is
considerably larger than the mean free path of excitons.
In this case, the spatial distribution of excitons in the
vicinity of an island can be obtained from the diffusion
equation.

The island size is determined by four processes: the
capture of excitons from a region surrounding a disk,
the emission of excitons from the island into the envi-
ronment, the creation of excitons by an external source
K, and the annihilation of excitons due to light emission
or through other mechanisms. Let n be the number of
excitons in the island and Rn be the radius of the island
containing n excitons (or n electron–hole pairs in the
case of an electron–hole liquid). The function of the
distribution of islands over the particle number will be
designated as f(n). With due regard for the above pro-
cesses, the kinetic equation for the distribution function
of excitons can be written in the form

(1)

Here, jn is the probability current of excitons,

(2)

c(Rn) and ci are the concentrations of excitons outside
the disk in the vicinity of its surface and inside the
island, respectively; ci = 1/s0; s0 is the surface area per
exciton inside the island; Wfi(Rn) and Wif(Rn) are the
probabilities of the transition of an exciton occurring
inside and outside of the island per unit length, respec-
tively; and τ is the exciton lifetime.

∂ f n

∂t
-------- jn 1+– jn.+=

jn 2πRn 1– W fi Rn 1–( )c Rn 1–( ) n 1–( )s0K+( ) f n 1–=

– 2πRnWif Rn( )ci πRn
2

f n/τ ;–
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According to the principle of detailed balance, the
probabilities Wfi(Rn) and Wif(Rn) are related by the
expression

(3)

where Wfi(∞) and Wif(∞) are the transition probabilities
in the case when the interface between the condensed
and gas phases is a straight line, Wfi(∞)/Wif(∞) = ci/c∞,
and c∞ is the equilibrium concentration of excitons at a
straight-line interface. The value of this equilibrium
concentration can be obtained from the equality of the
chemical potentials of an exciton in the gas phase and
an electron–hole pair in the island; that is,

(4)

Here, ϕ is the condensation energy per exciton, m• is the
effective exciton mass, γ is the degeneracy multiplicity
of the exciton state, α2 = αls0/κT, and αl is the surface
energy per unit length of the island circumference.

Now, we introduce the radius distribution function
f(R) = fndn/dR = 2πRn fn/s0. With a large number of
excitons in the island (n @ 1), the kinetic equation (1)
for f(R) can be reduced to the Fokker–Planck equation

(5)

where

(6)

Wif R( )
W fi R( )
-----------------

Wif ∞( )
W fi ∞( )
-----------------

α2

R
----- 

  ,exp=

c∞ γm•κT
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2
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∂R̃
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∂R̃
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  ,–=
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 1
τ
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Fig. 1. Distribution of condensed-phase islands in the plane
of a quantum well.
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(7)

and the quantity  = Kτ is determined by the pumping
intensity and is equal to the exciton concentration that
should be observed in the system in the absence of
phase formation.

In relationships (5)–(7), we introduced the dimen-
sionless variables

(8)

the quantities ϕ and α are expressed in terms of temper-
ature.

In the stationary case, the solution of Eq. (5) has the
form

(9)

The nonuniform distribution of excitons in the
vicinity of the disk and the contribution from the other
disks to the distribution function are taken into account
in the exciton concentration c(R) at the disk boundary.

3. SPATIAL DISTRIBUTION OF EXCITONS
IN THE VICINITY OF A CONDENSED-PHASE 

ISLAND

The diffusion equation for the two-dimensional dis-
tribution of excitons in the stationary case can be repre-
sented in the following form:

(10)

where ∆2 is the two-dimensional Laplacian,  =
(Dτ/s0)1/2 is the dimensionless diffusion coefficient of
free excitons, and D is the diffusion coefficient of exci-
tons. Equation (10) will be solved at the boundary con-
ditions which will be determined below for each island.
The exciton concentration in the vicinity of a particular
island is governed not only by the parameters of the
island under consideration but also depends on the
other islands. If islands are arranged in random fashion,
their concentration fields have cylindrical symmetry.
Then, the solution of Eq. (10) can be written in the form

(11)

where cK = Kτ, K0(x) is the modified Bessel function
and rn is the radius vector specifying the position of the
nth island.

B R̃( ) ν c̃ R̃( ) c̃∞ α / R̃T( )( )exp–( ) -
=

+
R̃
2
--- 1 c̃K+( )

 1
4πτ
---------,

c̃K

R̃ R/ s0, c̃ R̃( ) c R̃( )s0,= =

ν W fiτ s0;=

f R̃( ) f 0 A R̃( )/B R̃( ) R̃d

0

R̃

∫ 
 
 

.exp=

∆2c̃ ρ̃( ) c̃ ρ̃( )/ l̃– K+ 0,=

l̃

c̃ r̃( ) cK anK0 r rn–( )/l( ),
a

∑+=
PH
Now, we consider the concentration field of excitons
in the vicinity of a particular island, for example, the
island with n = rn = 0. Solution (11) can be represented
in the form

(12)

where

(13)

Hereinafter, we will assume that the contribution to the
concentration field produced by other islands in the
region of the island under investigation is made by a
large number of islands. Then, in the last term in for-
mula (13), we can set ρ ≈ 0 and the sum over n can be
replaced by the integral. As a result, we obtain

(14)

where cN =  is the island concentration, N is their

total number, S is the surface area of the system, and
 is the coefficient an averaged over a large number of

islands. In this case, we ignore the correlation in the
arrangement of islands and the assumption made corre-
sponds to the self-consistent field approximation.

The boundary condition at the island boundary is
determined from the law of conservation of particles:
the flux of particles incident on the island must be equal
to the difference between the number of excitons cap-
tured by the island and the number of excitons escaping
from the island; that is,

(15)

From relationships (3), (12), and (15), we find that
the coefficient a0 is determined by the formula

(16)

Let us average the left- and right-hand sides of
expression (16) over the radius distribution function
f(R) of islands. We assume that the distribution function
has a sharp maximum at R = . This assumption will
be confirmed below. After averaging, we have  on the
left-hand side of expression (16). On the right-hand
side of this expression, we replace R by . From the
derived relationship with allowance made for the
dependence of c0 on a [formula (14)], we obtain the fol-
lowing expression:

(17)

c̃ r̃( ) c0 a0K0 ρ/l( ),+=

c0 cK anK0 r rn–( )/l( ).
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As a result, from relationship (9), we find

where

(18)

(19)

and the quantities a0(R) and  are determined by for-
mulas (14), (16), and (17). At a sharp maximum of the
distribution function, the mean radius coincides with
the most probable radius and can be found from the
condition

(20)

The probability that the system contains N islands with
radii R1, R2, …, RN can be written as

(21)

After integration over the island radius, we obtain the
probability of distribution over island numbers:

(22)

where

(23)

The most probable concentration of islands is deter-
mined by the condition

(24)

Next, we expand the distribution function F(cN, R)
into a series in the neighborhood of the most probable
radius:

(25)

As a result, we have

(26)

(27)

For a fixed surface area S of the quantum well, the dif-
ferentiation in expression (24) with respect to N is
equivalent to differentiation with respect to cN. Formu-
las (18), (24), and (26) make it possible to determine
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the mean radius of islands of the condensed exciton
phase and their mean concentration.

4. RESULTS OF CALCULATIONS 
AND DISCUSSION

The function ψ(cN) has a minimum at a value of cN

that corresponds to the most probable concentration of
islands. Qualitatively, the existence of an optimum
number of islands can be illustrated as follows. When
the condensed and gas phases coexist, the exciton den-
sity in the condensed phase is higher than the density of
excitons generated by the external source. Therefore, in
order to maintain their own size, the islands must trap
excitons from surrounding regions. The maximum
radius of islands should be limited, because the inflow
of excitons is determined by the linear sizes of the
island boundary and the number of annihilated excitons
is proportional to the surface area of the island. Conse-
quently, the density of islands should not be very high.
The density of islands should likewise not be very low,
since, at a low density, the probability exists that a new
island will be nucleated in the system. In this case, the
dependence ψ(cN) [see expression (26)] exhibits a min-
imum at the concentration cN corresponding to the
mean concentration of islands. The island parameters
were numerically analyzed using the solution of
Eq. (24) for a wide range of internal and external
parameters. The pumping intensity can be described by
the parameter cK = Kτ, i.e., the concentration of exci-
tons produced by pumping in the absence of the con-
densed phase. The main results obtained can be sum-
marized as follows.

Islands of the new phase arise when the pumping
intensity exceeds a critical value dependent on the sur-
face energy, the temperature, and the exciton lifetime.

An increase in the pumping parameter leads to an
increase in the mean radius of islands (Fig. 2) and a

decrease in the mean distance between them d = 
(Fig. 3). However, the radius increases more rapidly
than the distance decreases. The results of calculations
in dimensionless units are presented in the figures. The
unit length (the interparticle distance in the condensed
phase) is of the order of several exciton radii. For typi-
cal parameters of semiconductors, this estimate
approximately corresponds to 100–300 Å. Since the
surface energy of condensed-phase islands remains
unknown, this quantity was treated as a parameter. For
the parameters given in the figure captions, the thresh-
old exciton density is equal to 2 × 109 cm–2. This den-
sity is lower than the critical density for Bose–Einstein
condensation at the chosen temperature, which justifies
the use of the degenerate-gas statistics for excitons.
Note that inclusion of the Bose–Einstein statistics can
be significant when describing regions inside islands,
where the exciton concentration is higher. However, as
was noted above in the statement of the problem, the
situation in regions inside islands was taken into

1/ cN
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account by introducing the phenomenological parame-
ters (the energy and surface area per electron–hole
pair).

As the pumping parameter increases, the fraction of
excitons in islands increases more rapidly than that in
the gas phase (Fig. 4). The exciton density c0 in the gas
phase is severalfold lower than the exciton density cK in
the absence of phase formation.

It can be seen from Fig. 5 that the radius distribution
function has a sharp maximum. A decrease in the
pumping parameter leads to a broadening of the distri-
bution function. This is associated with the enhance-
ment of the role played by fluctuations with a decrease
in the size of the system. The energy per exciton should
depend on the size, especially for threshold pumping
parameters when the island radii are small. This should
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Fig. 2. Dependences of the mean island radius  on the
pumping parameter cK. The parameters of the system are as
follows: ϕ = 15 K, α2 = 4 K, ν = 10 000, and lD = (1) 1000
and (2) 1500.
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P

result in an increase in the width of the emission bands
at threshold pumping intensities. Therefore, the nar-
rowing of emission bands observed in a number of
experiments [7] with an increase in the pumping inten-
sity cannot be the sole indication of Bose–Einstein con-
densation. This narrowing can also be caused by the
substantial contribution from fluctuations of radii of
small-sized islands at pumping intensities close to the
threshold corresponding to the formation of the con-
densed phase.

When the pumping intensity is high and the mean
radius of islands is comparable to the distance between
islands, the mean-field approximation used in the
present work is inapplicable. In this case, correlations
in the island arrangement should be taken into account.
The possibility of forming a periodic distribution of
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on the pumping parameter cK. The parameters of the system
are the same as in Fig. 2.
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islands at high pumping intensities calls for further
investigation.

5. CONCLUSIONS

Thus, the theory constructed in this work for two-
dimensional systems makes it possible to determine the
mean radius of islands of the condensed exciton phase,
the mean distance between islands, and their radius dis-
tribution functions. These quantities can be obtained as
functions of the pumping intensity, temperature, and
parameters of crystals, such as the binding energy and
density of excitons in the condensed phase, the surface
energy, the diffusion coefficient of excitons, and their
lifetime. It was demonstrated that an increase in the
pumping intensity leads to a narrowing of the radius
distribution function of islands.
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Abstract—Small-sized metallic particles contained as inclusions in an n-type nondegenerate semiconductor
are considered. The problem concerning the potential and charge distributions in this composite system is ana-
lyzed in the case where regions depleted in carriers are formed around particles due to contact phenomena and
these regions substantially overlap one another. The redistribution of charges among very small metallic parti-
cles (R ~ 1–10 nm) is described with due regard for the semiconductor properties of the medium and the volume
fraction of particles. © 2004 MAIK “Nauka/Interperiodica”.
The properties of materials in a dispersed state and
the physical processes occurring in disperse (and
ultradisperse) systems continue to attract research
interest (see, for example, [1–3]). Small-sized metallic
particles contained as inclusions of a foreign phase in a
semiconductor material also belong to these systems.

In such a composite system, we are interested in the
phenomena associated with the exchange of free charge
carriers through a metal–semiconductor interface. As is
known [4], this exchange makes possible equalizing the
energies at the Fermi levels in a metal µm and a semi-
conductor µs and is accompanied by the formation of
space-charge regions around metallic particles. When
the number density of metallic particles in the matrix is
sufficiently high, the space-charge regions belonging to
different particles overlap and the entire volume of the
semiconductor appears to be either depleted or
enriched in charge carriers. For very small metallic par-
ticles (R ~ 1–10 nm), the Fermi energy µm strongly
depends on R (see the review by Nagaev [2] and [5–8]).
This leads to a thermodynamic equilibrium redistribu-
tion of charges among particles [6–9].

Under these conditions, the system is characterized
by two effects associated with the charge redistribution:
(1) the transfer of a number of electrons from the semi-
conductor to the metal surface (or from the metal to the
semiconductor bulk) due to usual contact phenomena at
the metal–semiconductor interface and (2) the size
effect of charge redistribution among small metallic
particles of different size. These effects will be consid-
ered within a unified approach. In the framework of the
self-consistent approach, the space is divided into
domains of influence of individual particles on
extracted carriers and the notion of a macroscopic
effective medium is introduced. This approach was
developed as applied to the problems associated with
determining the diffusion [10–12] and heat [13] fluxes
on precipitates of a new phase in ensembles.

First, we will consider a single particle in a semicon-
ductor matrix. We assume that the particle is spherical
1063-7834/04/4608- $26.00 © 21502
in shape and the matrix is an n-type nondegenerate
semiconductor.

1. Let us assume that U(r) is the electrostatic poten-
tial around a metallic particle of radius R, ϕ = –eU is the
potential energy of an electron in the field U, and (–e)
is the elementary charge. For brevity, ϕ will be referred
to as the potential. This potential can be described by
the equation [4]

(1)

where n0 is the carrier density in the semiconductor and
ε is the permittivity of the semiconductor. The bound-
ary conditions for Eq. (1) have the form

(2)

The quantity ϕ0 involved in boundary conditions (2) is
equal to the difference between the thermodynamic
work functions (reckoned from the Fermi level) of the
metal Φm and the semiconductor Φs [4]:

(3)

The charge density σ for the metal is determined from
the condition [14]

(4)

We will restrict our consideration to the case ϕ0 > 0
where the region depleted in carriers is formed around
the particle. Assuming that the inequality exp(–ϕ/kT) !
1 is satisfied in the greater part of the region of spatial
variation in the potential, Eq. (1) can be rewritten in the
form

(5)

This approximation, which was introduced by Schottky
[15] (see also [4, 16]) in the two-dimensional case,

∆ϕ
4πe
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implies that, in a semiconductor layer, there are no free
electrons around the particle (i.e., it is a completely
depleted layer). If the thickness of the depleted layer is
designated by L, the boundary conditions (2) can be
rewritten as

(6)

By solving Eq. (5) with boundary conditions (6) in
the range R ≤ r ≤ (R + L), we find

(7)

(8)

where Er is the rth component of the electric field vec-
tor E and the thickness L obeys the cubic equation

Next, we consider two limiting cases of physical inter-
est. For R ! L, we have

(9)

For R @ L, we obtain the Schottky formula [15]

(10)

In order to obtain numerical estimates, we set n0 ~
1020 m–3, ε ~ 10, and ϕ0/e ~ 1 V. Then, at R ≥ 10–5 m,
the metallic particle is surrounded by a planar depleted
layer L ~ 3 × 10–6 m thick. For R ≤ 10–7 m, the potential
around the particle is characterized by a spherical dis-
tribution (at R ~ 10–7 m, the thickness of the depleted
layer L ~ 10–6 m exceeds R by one order of magnitude).
Setting R ~ 10–7 m, we find Er(R) ~ 10–7 V m–1 and
Er(R + L/2) ~ 3 × 105 V m–1.

Substituting expression (7) into formula (4) gives
the charge density at the particle surface:

(11)

Since the semiconductor at ϕ0 > 0 is depleted in elec-
trons, electrons are in excess on the metal surface (σ <
0). Formula (11) becomes obvious when changing over
to the net charge of the particle:

(12)
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All free electrons are extracted from the layer of thick-
ness L around the particles and transferred to the parti-
cle surface, which determines the charge density σ.

In what follows, we will analyze only small-sized
particles (R ! L). In this case, from relationships (9)
and (11), we find

(13)

Hence, the excess number of electrons on the particle
surface can be represented in the form

(14)

Here, e2/εR is equal in order of magnitude to the elec-
trostatic energy acquired by the particle after trapping
an electron and ϕ0 is the potential energy of an electron
in the semiconductor at the interface with the metal.
Note that the description of surface charges in terms of
their density σ is correct at Ne @ 1. According to
expression (14), this leads to the inequality e2/ϕ0εR !
1. The same inequality determines the range of applica-
bility of Eq. (5). The relative fluctuation of the quantity
Ne can be estimated as (Ne)–1/2 ~ (e2/ϕ0εR)1/2 ! 1.

From formula (14), it is easy to verify that, at ε ~ 10
and ϕ0/e ~ 1 V, the surface of the particle R ~ 10–7 m in
size contains Ne ~ 103 excess electrons and, hence,
Ne @ 1 and ((Ne)–1/2 ~ 3 × 10–2 ! 1. The density of sur-
face electrons is estimated as σ/(–e) ~ 5 × 1015 m–2. For
comparison, we note that the density of surface atoms
(at the interatomic distance a ~ 3 × 10–10 m) can be esti-
mated as Ns ~ 1019 m–2.

The volume of the depleted region around the small-
sized metallic particles is given by the approximate for-
mula

(15)

2. Let us now examine a semiconductor containing
an ensemble of metallic particles. We assume that par-
ticles are uniformly distributed in the semiconductor;
i.e., they do not form clusters or regions with a low den-
sity. In this case, depleted regions cover the entire vol-
ume of the semiconductor and substantially overlap one
another when the following condition is satisfied: 

(16)

Here, the size distribution function of particles f(R) is
normalized to the particle number density N; that is,
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 = N. Substituting relationship (15) into ine-

quality (16) and taking into account that

(where  is the mean radius of particles), we find the
sought criterion for mutual overlapping of depleted lay-
ers:

(17)

We introduce the volume fraction η (η < 1) of metal-
lic particles in the semiconductor:

,

where  is the mean volume of metallic particles.
Then, criterion (16) can be rewritten in the form of an
inequality with respect to the volume fraction:

(18)

As before, the numerical estimates are made at n0 ~

1020 m–3, ε ~ 10, ϕ0/e ~ 1 V, and  ~ 10–7 m. For these
parameters, the depleted regions cover the entire vol-
ume of the semiconductor at number densities of the
metallic particles N ≥ 1017 m–3.

When condition (17) is satisfied, particles cannot be
treated as isolated in the calculation of the potential dis-
tribution in the semiconductor and the charge density at
the metal surface. To put it differently, particles sub-
stantially affect each other through electric fields and
form an “electrical” ensemble. We now turn to consid-
eration of this case.

If condition (17) is satisfied, the potential ϕ in the
semiconductor obeys Eq. (5), which can be represented
in the form

(19)

Here, ψ ≡ ϕ0 – ϕ and lD is the Debye screening length
of the potential (charge) in the semiconductor, which is
defined by the expression [4]

(20)

The boundary conditions for Eq. (19) must be spec-
ified for the surfaces of all particles. By ignoring the
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size effects, we can write the boundary conditions in the
form

(21)

where Si is the surface of the ith particle in the ensemble.
Now, we use an approach according to which the

composite space is divided into domains of influence of
individual particles and the notion of a macroscopic
effective medium is introduced [10–13]. In this case,
the size effects can be disregarded and the distributions
of the potential and the radial component Er of the elec-
tric field around a particle can be represented in the
form

(22)

(23)

where R0(R) is the radius determining the domain of
influence of the particle with size R. The radius R0 sat-
isfies the integral self-consistent equation

(24)

Equation (24) implies that the domains of influence of
individual particles cover the entire volume of the semi-
conductor matrix. The quantity ψ*, which is equal to
ψ(r) at r = R0, and the radius R0 are related by the
expression

(25)

Substituting expression (25) into formulas (22) and
(23) gives

(26)

(27)

By ignoring the dispersion of the distribution function
f(R), we obtain

. (28)
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In formula (28), we assume that η1/3 ! 1. The inequal-
ity exp(–ϕ*/kT) ! 1 (where ϕ* ≡ ϕ0 – ψ*) must be sat-
isfied for the approximation of a completely depleted
layer [Eq. (19)] to be applicable. The “contact poten-
tial” ϕ0 should obey the same condition.

The charge density at the particle surface can be
written as

(29)

Hence, it follows that the net charge of the particle can
be represented by the relationship

(30)

Relationship (30) is similar to relationship (12) for a
single particle and actually describes the law of conser-
vation of electric charge as applied to the particle in the
ensemble.

Let us attempt to take into account the size effects
associated with the dependence of the Fermi energy µm
of the metal on the radius R and the high Coulomb
energy for small-sized particles. The inclusion of the
size dependence of the work function of a small-sized
metallic particle (see, for example, [8]) leads to the
expressions

(31)

(32)

Here, Φmo is the work function of a bulk metal sample,
µ1(R) is the size-dependent correction to the Fermi
energy of the metal, and Ec is the electrostatic (charge)
energy acquired by the particle after the escape of an
electron. According to the numerical estimates made by
Zakgeœm et al. [17], the energy Ec in a dense ensemble
of metallic particles is lower than the electrostatic
energy of a single particle Eco = e2/2εR. This decrease
is explained by the polarization of metallic particles
surrounding the given particle in the ensemble. How-
ever, when the volume fraction η of the metallic phase
is sufficiently small, the decrease in the electrostatic
energy Ec is insignificant as compared to Eco. For exam-
ple, it was shown for a monodisperse disordered system
of metallic particles (see Fig. 3 in [17]) that  >

0.9 at η < 0.05 (where  is the mean electrostatic
energy of a particle at a fixed volume fraction η). Note
that, most likely, the difference between Ec and Eco can
be disregarded if the inequality η1/3 ! 1 (η ≤ 10–3),
which was used in formula (28), is satisfied. Therefore,
assuming the volume fraction η to be sufficiently small,
we set

(33)
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The work function of the semiconductor surround-
ing the metallic particle of radius R in the ensemble can
be written in the form

(34)

where Φso is the work function of a bulk semiconductor
sample and Ecs is the electrostatic energy of the semi-
conductor per particle in the domain of influence of the
particle with radius R, which appears after the escape of
an electron from this domain. It is easy to show that, at

 ! 1 (at η ! 1), the electrostatic energy Ecs is
given by the formula

(35)

Then, the boundary condition at the particle boundary
takes the form

(36)

where

(37)

Now, the problem of the potential distribution in the
semiconductor between metallic particles can be for-
mulated as follows. Equation (19) with the aforemen-
tioned assumptions is retained. The boundary condi-
tions (21) are replaced by the following conditions:

(38)

where Ri is the radius of the ith particle. In this case, the
sought distribution of the quantity ψ is determined as
the difference between ψ(r) [formula (26)] and the term
δϕ(r) [addition to the potential ϕ(r)] defined by the
relationship

(39)

Here,  ≡ ϕ* – ,  is the potential averaged over the
semiconductor volume, l is the macroscopic length of
screening of the potential by metallic particles, and θ(x)
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is the Heaviside step function. The additional potential
δϕ(r) corresponds to the electric field

(40)

which, in turn, is additional to the field described by
expression (27).

By using the easily verified identity

(41)

it can be shown that the quantities δϕ(r) and δEr are
continuous at r = R0.

The charge density additional to the density σ
[expression (29)] is represented by the relationship

(42)

Since the charge with density σ is extracted by the par-
ticle only from its own domain of influence [see for-
mula (30)], the quantity δσ characterizes the charge
redistribution among small-sized metallic particles. At
R ! R0, the quantity δσ can be written in the form

(43)

The screening length l is described by the formulas
derived in [10]. For the parameters N ~ 1017 m–3 and

 ~ 10–7 m, we find the volume fraction of particles

η = (4π/3)  ~ 4 × 10–4. Then, the numerical esti-
mates give the screening length l ~ 3 × 10–6 m and the
quantity (4π/3)l3N ≈ 10 @ 1.

3. Thus, a single metallic particle and an ensemble
of metallic particles in an n-type nondegenerate semi-
conductor were considered in the presence of a contact
potential ϕ0 > 0 at the metal. The analysis was per-
formed in the Schottky approximation (the approxima-
tion of a semiconductor layer completely depleted in
carriers). In the case of a single metallic particle,
explicit analytical relationships were derived for the
potential ϕ(r) around the particle [formula (7)], the
electric field Er(r) [formula (8)], the thickness of the
depleted layer L [formulas (9), (10)], and the charge
density σ at the particle surface [formula (11)]. It was
shown that, at R ! L (which is an actual case for nano-
particles), the potential and electric field around the
particle are characterized by a virtually spherical distri-
bution.

For a composite system formed by a semiconductor
containing small-sized metallic particles, the criterion

δEr ϕ̃ βR+( )
l R0+

l R0 R–+
----------------------- R

er
2

------- θ R0 r–( )
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+
l r+
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-------------
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------δEr R( ) ε

4πeR
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l R0+
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-----------------------.–= =

δσ ε
4πeR
------------- ϕ̃ α

R
--- e

2

2εR
----------+ + 

  .–≈

R

R
3
N

PH
for mutual overlapping of the depleted layers [inequal-
ities (17), (18)] was formulated. When this criterion
holds true, charged metallic particles interact with each
other and, hence, form an ensemble. This ensemble was
analyzed within an approach according to which the
composite space is divided into domains of influence of
individual particles and the notion of the macroscopic
effective medium is introduced. The use of this
approach made it possible to obtain the distributions of
the potential and electric field around a particle and the
charge density σ at the particle surface without regard
for the size effects [formulas (26)–(29)] and with due
regard for these effects [formulas (39), (40), (42)] but at
a sufficiently small fraction η of the metallic phase. The
included size effects are associated with the depen-
dence of the Fermi energy µm of the metal on the radius
R and the high Coulomb energy Ec for small-sized par-
ticles. These effects lead to an additional charge δσ at
the particle surface due to the charge redistribution
among small-sized metallic particles [formulas (42),
(43)].

Note that the analysis of the composite system
within the Schottky approximation does not include
screening of the potential by free charge carriers at the
Debye length lD, because all carriers are extracted from
the semiconductor by metallic particles. Therefore,
there are a macroscopic screening by metallic particles
and a screening by immobile charged impurities that
remain in the semiconductor after the transfer of carri-
ers to metallic particles. It should also be noted that,
when the condition for overlapping of the depleted lay-
ers around individual particles [inequalities (17), (18)]
is satisfied, the conductivity of the system under con-
sideration in sufficiently weak electric fields should
drastically decrease as compared to the conductivity of
the semiconductor without particles.

In a p-type semiconductor, a depleted layer around
a metallic particle is formed at ϕ0 < 0. The thickness of
this layer in the Schottky approximation for a single
particle of radius R ! Lp and a nondegenerate semicon-
ductor can be represented in the form

(44)

where p0 is the carrier (hole) density in the semiconduc-
tor. Under the condition

, (45)

depleted layers cover the entire volume of the semicon-
ductor. The electric field around the particle is
described by relationships similar to those derived
above, but with the quantities n0, L, ϕ, and E replaced
by p0, Lp, –ϕ, and –E, respectively. The surface charge
density σp can be obtained by replacing n0 by p0, L by
Lp, and σ by –σp.

Lp

3ε ϕ0

4πe
2
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-----------------R 
  1/3

,=

N
p0
----- e

2

εR ϕ0

---------------, η p0V
e

2

εR ϕ0

---------------> >
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Abstract—The states of electron–hole pairs in spherical silicon nanocrystals are theoretically studied using the
“multiband” effective-mass approximation in the limit of an infinitely high potential barrier at the boundary.
The degeneracy of the states at the top of the valence band is taken into account in the spherical approximation,
and the ellipsoidal character of the electronic spectrum in the conduction band is allowed for. Coulomb inter-
action–induced corrections to the energy of an electron–hole pair are found. © 2004 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

Silicon is a basic material for microelectronics;
however, its optoelectronic applications are compli-
cated by the fact that its band gap is indirect [1]. It is
tempting to overcome this fundamental difficulty, since
this would open prospects for integrating silicon-based
electronic and optical devices. One possibility is the use
of nanocrystalline silicon. In this case, nanocrystals can
be radiation sources [2], since the quasi-momentum
conservation law for optical transitions is no longer
valid due to the violation of translational symmetry [3,
4]; furthermore, nanocrystals can be good sensitizers
for radiation by optically active impurities, e.g., erbium
ions Er3+ [5–7]. Moreover, the use of silicon nanocrys-
tals as photosensitive catalysts of electronic transitions
in molecules is in itself of interest for new applications
in chemistry and biology [8]. To understand the physi-
cal processes involving electrons and holes localized in
nanocrystals, it is important to know the structure of
their energy spectrum and wave functions.

To date, there have been numerous publications in
which the states of electron–hole pairs (excitons) in sil-
icon nanocrystals were investigated theoretically by
using the pseudopotential method [9–11], the local-
density method [12–14], the tight-binding approxima-
tion [15–20], the effective-mass approximation [19,
21–26], and other approaches [27, 28].

In a number of studies of electron–hole states in
nanocrystals using the effective-mass approximation
[21, 23, 24], an oversimplified description of the struc-
ture of the Si valence band top was used. A multiband
effective-mass approximation (the kp method) taking
into account the degeneracy of the Si valence band was
first applied to the problem in question in [22]. How-
ever, the limiting case of strong spin–orbit interaction
[29] was considered in [22], which is not justified for
Si, where the spin–orbit splitting energy is 0.04 eV. In
[25], the spectrum of electrons and holes was studied
(disregarding the Coulomb interaction) in the multi-
1063-7834/04/4608- $26.00 © 21508
band effective-mass approximation by taking into
account the complex structure of the silicon valence
band top in the limit of weak spin–orbit interaction.
However, the band-mixing effects were taken into
account using perturbation theory. It should be noted
that the anisotropy of the hole spectrum was neglected
[25, 30]. To calculate the electron energy spectrum, the
Hamiltonian from [31, 32] was used, which takes into
account that the conduction band minimum lies near
the X point, where the effects of mixing of the two
bands occur. A simple effective-mass approximation
was used as a zeroth approximation, and the anisotropy
and the effects of mixing of the two lowest conduction
bands were taken into account in perturbation theory.
Later, the effect of finite height of the potential barrier
at the boundary for Si nanocrystals embedded in silicon
dioxide was taken into account in [26] and was shown
to be able to influence the quantum confinement levels
for nanodots of radius smaller than 2.5 nm. In [19, 25,
26], the effect of Coulomb interaction on the energy of
electron–hole pairs was disregarded.

In this study, we also apply the multiband effective-
mass approximation to calculate the energies and wave
functions of electrons and holes in spherical nanocrys-
tals. To describe hole states, we used a generalized Lut-
tinger Hamiltonian in the spherical approximation in
the limit of weak spin–orbit interaction [29]. However,
in contrast to [25, 26], we find the exact solution rather
than use perturbation theory to describe the hole spec-
trum. We take into account the highly nonspherical
(ellipsoidal) character of the electron energy dispersion
without using perturbation theory and assume that the
effect of the admixture of the upper conduction band on
the electronic spectrum in nanodots can be disregarded.
The correction introduced by Coulomb interaction
between an electron and a hole in the nanocrystal is
found in perturbation theory. Furthermore, the jump in
the permittivity at the boundary between the nanocrys-
tal and the surrounding material is taken into account.
004 MAIK “Nauka/Interperiodica”
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Since the spin–orbit interaction in Si is weak, we
neglect the spin-related effects when describing elec-
tron and hole states.

2. QUANTUM CONFINEMENT EFFECT
FOR ELECTRON STATES

Silicon has a diamond-type lattice and is a semicon-
ductor with an indirect energy band gap, with the con-
duction band minimum lying at the ∆ point near the X
point of the Brillouin zone. The space symmetry group

of Si is , which belongs to the Oh class and is non-
symmorphic since it contains elements with nontrivial
translations (by a fraction of a basis lattice vector). This
property causes an unavoidable double degeneracy of
the band at the X point [33]. It is also known that two
lowest conduction bands in Si are nondegenerate at the
∆ point and correspond to the ∆1 and ∆2' representa-
tions, respectively [1, 33]. If the ∆ point moves to the
surface of the Brillouin zone, it becomes the X point,
where, due to the compatibility conditions, the ∆1 and
∆2' representations transform into the doubly degener-
ate X2 representation or into the doubly degenerate X4

representation (in the notation from [33]). The X2 and
X4 representations have a nonzero projection of the
momentum matrix element onto the Γ–X axis. For this
reason, the band slope at the X point is nonzero and the
minimum of the lowest conduction band (c1) is shifted
from the X point towards the Γ point by a distance of kX

= 0.15 × 2π/aSi, where aSi = 0.543 nm is the lattice
parameter for Si. In all, there are six equivalent points
corresponding to the conduction band minima in the
Brillouin zone. We consider in detail the case where the
X point lies on the (001) axis. Accordingly, the mini-
mum of the c1 conduction band lies at a distance of k0

= 0.85 × 2π/aSi from the Γ point. Thus, the minimum
lies near the X point and, in order to describe the energy
band structure, we can use the Hamiltonian for the X2

and X4 representations (see [33, Eq. (30.51)]):

(1)

where  and  are the Pauli matrices and I is the 2 ×
2 unit matrix. The parameters A1 and A2 are expressed
in terms of the experimental masses m|| and m⊥ : A1 =
"2/2m|| and A2 = "2/2m⊥ . The constant A4 is determined
by the relation |A4 | = 2A1kX. It is convenient to express
the constant A3 in terms of an unknown mass m': A3 =
"2/m'. We note that, since we have neglected the relativ-
istic effects, the band is fourfold degenerate (including
spin degeneracy) at the X point. Rewriting Hamiltonian

Oh
7

* A1∂z
2

A2 ∂x
2 ∂y

2
+( )+[ ] I–=

– A3σ̂x∂x∂y iA4σ̂z∂z,–

σ̂x σ̂z
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(1) for the point of the Brillouin zone corresponding to
the conduction band minimum, we obtain

(2)

where the operators H1, H2, and H12 are given by

(3)

(4)

(5)

The parameter ∆c determines the energy distance
between the conduction bands at the point correspond-
ing to the minimum of the lowest conduction band and
is equal to

(6)

From this equation, using the Si parameters, we obtain
∆c = 0.5 eV. Using Hamiltonian (2), we can find a lower
bound for the unknown mass m' * 0.1m⊥  from the con-
dition that no warping of the conduction band is
observed in bulk silicon up to concentrations of
1019 cm–3.

To find several lowest electron energy levels in a
nanocrystal and the corresponding wave functions, we
neglect the admixture of states of the upper conduction
band (c2) to the c1 band states assuming that the matrix
element of the operator H12 calculated with the wave
functions corresponding to these states is much smaller
in magnitude than the energy difference between them.
Then, for the lower conduction band c1, we have the
equation

(7)

where ψ is the wave function and E is the correspond-
ing energy. In the approximation of an infinitely high
energy barrier at the boundary of the nanocrystal, we
have the boundary condition  = 0, where

a is the radius of the nanocrystal.
Since Eq. (7) has cylindrical symmetry, it is conve-

nient to introduce dimensionless cylindrical coordi-
nates

(8)
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Fig. 1. Wave functions corresponding to the four lowest electron states. (a)  = 34.30, m = 0; (b)  = 49.00, m = 0; (c)  =

67.49, m = 0; and (d)  = 80.32, m = ±1.
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Ẽ3

1.0
In these coordinates, Eq. (7) assumes the form

(9)

where

(10)

The boundary conditions for Eq. (9) are rewritten as

(11)

We can search for solutions to Eq. (9) with boundary
conditions (11) in the form

(12)

∂2

∂z̃2
-------ψ̃ ρ̃ φ z̃, ,( )
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m⊥
------- 1

ρ̃
--- ∂
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  ψ̃ ρ̃ φ z̃, ,( )+
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2+ 1=
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ρ̃ 0=

0, ψ̃ φ 0= ψ̃ φ 2π= .= =

ψ̃ ρ̃ φ z̃, ,( ) f ρ̃ z̃,( ) imφ( ),exp=
P

where f( , ) is a solution to the equation

(13)

with boundary conditions  = 0 and

 = 0. Here, the quantum number m can
assume arbitrary integer values.

2.1. Simulation

Taking into account the relationship between the
longitudinal and transverse masses in the Si conduction
band

(14)

ρ̃ z̃

∂2

∂z̃2
------- f ρ̃ z̃,( )

m||

m⊥
------- 1

ρ̃
--- ∂

∂ρ̃
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------ m

2

ρ̃2
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  f ρ̃ z̃,( )+

+ Ẽ f ρ̃ z̃,( ) 0=

f
ρ̃2

z̃
2+ 1=

∂f /∂ρ̃ ρ̃ 0=

m||

m⊥
------- 0.916

0.19
------------- 4.82,= =
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we found the four lowest energy eigenvalues and the
corresponding wave functions for Eq. (9) with bound-
ary conditions (11). The results are shown in Fig. 1.

To find the unnormalized energies and wave func-
tions in unnormalized coordinates, we must perform
the following transformations:

For further calculations, it is also convenient to normal-
ize the amplitudes of the wave functions.

2.2. Adiabatic Approximation

Since the difference between the transverse and lon-
gitudinal electron masses is large (see Eq. (14)), we can
use the adiabatic approximation; i.e., we assume that
the time scale for transverse motion of an electron is
shorter than that for longitudinal motion. This approach
is an independent, alternative way of finding the elec-
tronic states; therefore, we use it to verify the simula-
tion results and to understand them in more detail.
Here, we restrict ourselves to the case of m = 0. In the
adiabatic approximation, the wave function can be rep-
resented as the product f( , ) = Φ( , )Z( ) and
Eq. (13) at m = 0 takes the form

(15)

where κ( ) is related to  by the equation

(16)

Transforming Eq. (15) and introducing a new coordi-
nate ξ = , we arrive at the equation

(17)

The solutions to this equation bounded at the origin are
Bessel functions of zeroth order Φ = J0(ξ) = J0( ).
The boundary condition  = 0 leads to the

equation

(18)

It follows that

(19)
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a
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∂2
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m||
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z̃( ) Ẽ– Z z̃( ).=

ρ̃κ
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1
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αn
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-----------------,=
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where αn is the nth root of the function J0(x), n = 0, 1,
2, … . Substituting Eq. (19) into Eq. (16), we obtain the
equation

(20)

with the boundary conditions  = 0. Figure 2
shows in which one-dimensional potential the particle
moves according to Eq. (20). Equation (20) cannot be
solved analytically, so we solve it using the semiclassi-
cal approximation. Let Z( ) = exp(iσ( )), where σ( )
is a real phase. Using Eq. (20) in the semiclassical limit,
we find σ( ) to be

(21)

The quantization conditions for reflection from the
potential barrier yield [34]

(22)

Here,  is a turning point (Fig. 2) and the integer
nonnegative number N is the number of the level.
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Introducing the notation

(23)

(  = – /(1 – χ2)) and calculating the integral in

Eq. (22), we obtain the following equation for the
energy:

(24)

Solving Eq. (24) numerically, we find the energy values

for the three lowest electronic levels:  = 33.54,  =

47.31, and  = 64.64. We see that the solutions
obtained agree well with the exact numerical solutions
(see caption to Fig. 1).

3. QUANTUM CONFINEMENT EFFECT
FOR HOLES

To describe the structure of the valence band in sili-
con, we use a generalization of the Luttinger Hamilto-
nian in the spherical approximation [35]:

(25)

Here,  is the operator of the unit angular momentum,

 is the operator of the angular momentum 1/2, ∆ is the
spin–orbit splitting, and

(26)

where

(27)

(28)

For Si, the constants γ1, γ2, and γ3 are 4.22, 0.53, and
1.38, respectively [36]. In the limit of infinitesimal
spin–orbit splitting, ∆  0, which can be used for Si,
we write Hamiltonian (25) on the basis of the spherical

components u0 = Z and u±1 = (X ± iY) with the
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2 — Ĵ⋅( )2

+=

+
1
3
---∆ŝĴ
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functions X, Y, and Z of the Γ25' representation [37] in
the following form:

(29)

where I is the 3 × 3 unit matrix. As eigenfunctions of
Hamiltonian (29), we can choose the eigenfunctions
ψFM of the operators of the total angular momentum
squared (F2) and its projection Fz onto the z axis. Here,
F = L + J, where L = –ir × ∂r is the orbital angular
momentum operator and F(F + 1) and M are the eigen-
values of F2 and Fz, respectively.

To find the upper energy levels of holes in a spheri-
cal nanocrystal, we consider states with total angular
momentum F = 0, 1. For F = 0, there is only one type

of hole state, and it is described by wave functions :

(30)

where (r) is the radial part of the wave function,

Ynm(θ, φ) are spherical functions, and  are
Clebsch–Gordon coefficients [37]. For F = 1, there are
two types of hole states; they are described by wave

functions  and  and are degenerate in quantum
number M, which assumes the values –1, 0, 1:

(31)

(32)

The functions , , and (r, θ, φ) were previ-
ously used for describing impurity states in semicon-
ductors [29]. The general form of these functions is eas-
ily obtained by writing the result from [38] for the case
J = 1.

We note that only functions (31) are partially com-
posed of functions of s symmetry. The hole state corre-
sponding to the lowest confinement level is described
by such a function (below, we show that in our case the
admixture of d states for the upper hole level is small).
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, is reduced to the following system of equations

for the radial functions (r) and (r):

(33)

(34)

Similar equations for a hole bound to a shallow accep-
tor were derived in [29] using the method of “reduced
matrix elements” developed in the theory of angular
momenta [37]; in those equations, there are also terms
responsible for Coulomb interaction.

The general solution to the system of equations (33)
and (34) that does not diverge at r = 0 is

(35)

(36)

where C1 and C2 are arbitrary coefficients; jl(z) are
spherical Bessel functions, which are expressed in
terms of Bessel functions of half-integer argument,

jl(z) = ; the positive factor λ is related to
the energy E (the energy E is negative) by

(37)

and the coefficient β is defined by

(38)

Following [29], we introduce here a parameter µ
defined by

(39)

In the approximation of an infinitely high energy
barrier at the boundary of the nanocrystal (r = a), we
have

(40)

Solving Eqs. (40), we arrive at the following equation,
which determines the possible values of λ and, accord-
ingly, the possible values of the hole energy:
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The roots of this equation can easily be found numeri-
cally. For the Si parameters γ1 = 4.22, γ2 = 0.53, and γ3 =
1.38 (β = 0.505, µ = 0.493) [36], we write out the three
smallest roots of Eq. (41), which determine the three
upper hole levels corresponding to solutions of the type
of Eq. (31):

(42)

Using these values, we construct the radial wave func-
tions (35) and (36); the square of the modulus of these
functions determines the probability density of finding
a hole at a given distance from the center of the nanoc-
rystal. As an illustration, Fig. 3 shows the distribution
of the radial probability density for two states (λ0, λ1)
represented by Eq. (31).

We should note the difference between the ground
and first excited states of the type considered. For the
ground state, the contribution from the d states is small.

λ0 4.286, λ1 6.276, λ2 9.306.= = =
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Fig. 3. Probability density for holes as a function of the

radius for the states described by the function (r, θ, φ).

The solid line shows the contribution of the s state, the
dashed line is the contribution of the d state, and the dotted
line is the total probability density. (a) λ0 = 4.286, when the
admixture of d states is small. For clarity, the contribution
of d states is scaled by a factor of 100. (b) λ1 = 6.276, when
the admixture of d states is fairly large (2s1d hybridization).

ψ1M
S
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Furthermore, we have j2(λ0) = 0.245, j2(λ0β) = 0.220,
and Eq. (41) is approximately written as j0(λβ) +
2j0(λ) = 0 (the smallest root of this equation is equal to
4.162). The solution of this equation represents a spe-
cific average of the solutions of the equations j0(λβ) = 0
and j0(λ) = 0; these equations determine the energy lev-
els of light and heavy holes, respectively. The factor 2
before j0(λ) corresponds to a twofold degeneracy of the
subband of heavy holes. This fact implies that the
energy of the lower state can be determined with ade-
quate accuracy if, instead of a complicated valence
band structure, we consider (as is done in [24]) a simple
band in which the holes have an average mass m* =
3mlmh/(ml + 2mh) or if we find the energy to within sec-
ond-order corrections (as in [25, 26]). For the state cor-
responding to λ1, this argument does not hold. It is seen
from Fig. 3 that, for this state, the admixture of d states
is quite large.

Next, we consider the functions . In this case,
the Schrödinger equation leads to the following equa-
tion, which determines the energy eigenvalues and
radial functions:

(43)

its solution continuous at r = 0 has the form (r) =
Cj1(λβr/a), where C is an arbitrary constant.

The boundary conditions for infinitely high walls
lead to the following equation for λ:

(44)

The three smallest roots of Eq. (44) are

(45)
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Fig. 4. Dependence of the confinement energy on the
nanocrystal radius for the four lowest electron states (solid
lines) and the four upper hole states (dashed lines).
P

Finally, for the functions , we find the follow-
ing equation for the hole energy eigenvalues and radial
wave functions:

(46)

The equation for the energy eigenvalues has the form

(47)

and the three smallest roots are

(48)

For clarity, Fig. 4 shows the dependence of the
energy eigenvalues on the nanocrystal radius for the
ground and several excited states of electrons and
holes.

4. COULOMB SHIFT

To find the energy of an electron–hole pair in a
nanocrystal, we must also take into account Coulomb
interaction between the electron and the hole. Clearly,
this interaction decreases the energy of the electron–
hole pair (the exciton effect) in the nanocrystal [39]. We
calculate this effect using perturbation theory. The
states of the noninteracting electron and hole are taken
to be unperturbed states in the nanocrystal. The wave
functions of these states are the products of the wave
functions of an electron and a hole. Usually, perturba-
tion theory can be applied if the energy level spacings
for the unperturbed system are greater than the correc-
tions to these levels.

The unperturbed excitonic states with the lowest
energies consist of the lowest electronic state and the
uppermost hole state corresponding to the wave func-

tion  for the ground exciton state and to  for
the first excited state. In the absence of spin, both of
these exciton states are 18-fold degenerate (six elec-
tronic minima and triple degeneracy of hole functions).
With allowance for spin, there is a 72-fold degeneracy.
Since the separation between the upper hole levels cor-

responding to the wave functions  and  is very
small [see Eqs. (42), (48)], the above condition of appli-
cability of perturbation theory is not satisfied. Never-
theless, perturbation theory can be applied to calculate
the lower exciton levels, since Coulomb interaction
does not mix the corresponding states (Appendix A).

Let the electron and hole be at the points re and rh,
respectively, with respect to the center of a nanocrystal
having permittivity κ1; then, the term corresponding to
direct Coulomb interaction to be added to the Hamilto-
nian of the noninteracting electron and hole is

(49)
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For an electron–hole pair in a spherical nanocrystal
with permittivity κ1 surrounded by a material with per-
mittivity κ2, it is necessary to take into account the addi-
tional correction to the Hamiltonian

(50)

which appears due to interaction of the electron and the
hole with the “image charge” distributed outside the
nanocrystal [40]. In Eq. (50), θ is the angle between re

and rh, Pl(cosθ) are the Legendre polynomials, and the
coefficients Bl are given by

(51)

It should be noted that, with allowance for spin, Cou-
lomb interaction splits exciton multiplets due to the
presence of the exchange integrals. The magnitude of
the exchange splitting does not exceed 30 meV and
decreases with increasing nanocrystal size [10, 41]. In
this study, we neglect the exchange interaction due to
its smallness. However, it can be easily taken into
account, e.g., if we use the results from [42].

Furthermore, since the symmetry of the lowest elec-
tron state is different from spherical, the exciton mul-
tiplets split, depending on the absolute value of the hole
quantum number M (Appendix A). However, for
nanocrystals with a radius exceeding 1 nm, these cor-
rections do not exceed 5 meV. Therefore, they will be
disregarded in this study.

In this case, the Coulomb correction to the energy of
an electron–hole pair in a nanocrystal can be presented
in the form

(52)

where ρe(re) and ρh(rh) are the probability densities for
the electron and hole, respectively. In our notation, we
have ρe(re) = |ψe(re)|2. Neglecting splitting in M due to
the nonsphericity of the lowest electron state, we can

write ρh(rh) in the form ρh(rh) = [( (rh))2 +

( (rh))2]/4π for the states with the hole wave function

 and in the form ρh(rh) = ( (rh))2/4π for the states

with the hole wave function  (see Appendix A); the
functions R correspond to upper hole levels.

Computer calculation of the first term in Eq. (52)
yields an exciton ground state energy of –2.5e2/κ1a.
Taking κ1 = 12 for the Si permittivity and κ2 = 4 for the
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effective permittivity of the surrounding material (SiO2
with a high content of Si nanocrystals), we obtain the
value 0.2e2/κ1a for the second term in Eq. (52). Thus,
the energy of the exciton multiplet ground state is deter-
mined by the formula

(53)

Performing analogous calculations for the first
excited exciton multiplet, we obtain –2.2e2/κ1a and
0.3e2/κ1a for the first and second terms in Eq. (52),
respectively, and

(54)

for the exciton energy. The dependence of the exciton
energy on the nanocrystal radius for the ground and first
excited exciton multiplets is shown in Fig. 5. Experi-
mental values of the exciton energy in nanocrystals are
also shown in this figure.

5. CONCLUSIONS

Our results for the exciton energy agree quite well
with the experimental data from [44, 45] on the photo-
luminescence of silicon nanocrystals of radius 2 < a <
4.5 nm. There is substantial disagreement with the
results from [7] and other studies carried out by the
same group. The reason for the low photoluminescence
energy of the samples used in [7] remains unclear. It
should be noted that the range of nanocrystal radii indi-
cated above has only been studied in a few publications.
At present, no reliable experimental data are available
for nanocrystals of larger radius.
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Fig. 5. Dependence of the exciton energy on the nanocrystal
radius for the ground (solid line) and first excited multiplet
(dashed line) states calculated by using Eqs. (53) and (54).
The experimental data obtained from photoluminescence
measurements are taken from [7, 18, 43–45].
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For small nanocrystals (a < 2 nm), the results
obtained in the effective-mass approximation can
strongly differ from the experimental data, since the
radius of such nanocrystals is fairly close to the Si lat-
tice parameter and the conditions for the validity of the
effective-mass approximation are not satisfied. It
should be noted that the results obtained in this paper
likewise cannot be used for nanocrystals of large radii
(a > 5 nm), since in this case the exciton binding energy
in bulk Si is comparable to or exceeds the confinement
energy of electrons and holes. It is known that, in the
limit of a large nanocrystal radius, it is necessary to take
into account the quantization of the motion of an exci-
ton as a whole [46].

Recently, it was shown [26] that the finiteness of the
heights of the potential barriers for electrons and holes
at the nanocrystal boundary can affect the energy of an
electron–hole pair for small nanocrystal radii, a <
2.5 nm. Furthermore, it is known that the structure of
the nanocrystal surface, depending on the environment
and on the technological processes, such as passivation
by hydrogen and oxidation, affects the nanocrystal
radiation spectrum [18, 47]. To compare the experi-
mental spectra with theoretical calculations, it is also
necessary to take into account the dispersion in nanoc-
rystal size [24], the difference in the shape of the nanoc-
rystals from a sphere, and also the possibility of the
polaron effect [48, 49]. Exact determination of the
nanocrystal size is in itself a fairly complex experimen-
tal problem. Moreover, for the nanocrystals considered,
radiation of a photon due to exciton recombination can
occur both with and without the participation of
phonons [4, 41]. Finally, many experimental photolu-
minescence spectra are measured at room temperature.
In this case, exciton excited–state recombination is pos-
sible, since the energy separation between the ground
and first excited states is comparable to or smaller than
kT, while the energy separation between the ground and
the higher excited states is comparable to kT.

It should be noted that further experimental and
theoretical study of the properties of Si nanocrystals is
a problem of significant fundamental and applied
interest.

APPENDIX A

SYMMETRY PROPERTIES OF COULOMB 
INTEGRALS

Calculation of the correction to the energy of an
electron–hole pair in a nanocrystal due to the interac-
tion V1(re, rh) can be reduced to calculation of integrals
of the type

(A1)

where the subscripts i, i', j, and j' enumerate the electron
and hole states. To calculate such integrals, it is conve-
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where θe, φe, θh, and φh are the angles in the spherical
coordinate system corresponding to re and rh, respec-
tively, and r> is the greater of the quantities re and rh and
r< is the smaller of these quantities. Here, it is conve-
nient to choose the z axis (corresponding to θ = 0 and
θ = π) along the direction of the longitudinal motion of
electrons.

The distance between the zeroth and the first elec-
tron level is rather large, while the distance between the
zeroth and the first hole level is small; the distance
between the first hole level and the second hole level is
also comparatively large. Therefore, we will consider
only the exciton states originating from the lowest elec-
tronic level and the uppermost or first excited hole
level. The wave function of the electron ground state
does not depend on φ (see Eq. (12)). Therefore, when
substituting expansion (A2) into Eq. (A1), the sum over
m vanishes and only one term corresponding to m = 0
survives:

(A3)

For the lowest electron level, we have the symmetry
ψe(r, θ) = ψe(r, π – θ) (Fig. 1). Since the spherical func-
tions have symmetry
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for m = 0, from Eq. (A4) we have simply Yl0(θ, φ) =
(−1)lYl0(π – θ, φ), the subscript l in Eq. (A3) assumes
only even values.

For the integrals mixing hole states, we have
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Due to the symmetry of spherical functions (A4) and to
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since the sum of all orbital quantum numbers character-
izing the multiplied spherical harmonics is odd.

Thus, Coulomb interaction does not mix the unper-
turbed exciton states under study but only introduces a
correction to their energy. For the lowest exciton state,
we have

(A6)

For M = ±1,

(A7)

For M = 0,

(A8)

We see that, because of the nonsphericity of the elec-
tronic state, the exciton level splits into two multiplet
states, corresponding to M = ±1 and 0.

For the second exciton state, we have
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C2m11m2

1M
Y2m1

* θ φ,( )C2m11m2

1M
Y2m1

θ φ,( )
m1 m2,
∑

=  
1

4π
------ 1

4 5π
--------------Y20 θ φ,( ).–

C201M
1M 2

5
---,–=

C2m11m2

1M
Y2m1

* θ φ,( )C2m11m2

1M
Y2m1

θ φ,( )
m1 m2,
∑

=  
1

4π
------ 1

2 5π
--------------Y20 θ φ,( ).+

KM M ',
1P 1P,

4π re
3

rh
3 1

2l 1+
--------------

r<
l

r>
l 1+

---------
l 0=

∞

∑dd∫∫=

× Yl0 θe φe,( )Yl0* θh φh,( ) ψe re( ) 2
R1

P
rh( )( )

2

× C1m11m2

1M
Y1m1

* θh φh,( )C1m11m2

1M
Y1m1

θh φh,( )δM ' M, .
m1 m2,
∑
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For M = ±1,

(A10)

For M = 0,

(A11)

Thus, the second level also splits into two multiplet
states.

As a result, we can rewrite Eqs. (A6) and (A9) in the
form

(A12)

where

(A13)

for the ground exciton multiplet state,

(A14)

for the first excited exciton multiplet state, and ∆M is a
correction depending on M and related to the presence
of overlap integrals between Y20(θh, φh) and the elec-
tronic probability density |ψe(re)|2 in Eqs. (A6) and
(A9). For the ground exciton multiplet state, the correc-
tion ∆M appears only due to a small admixture of hole d
states; therefore, in this case, this correction contains
additional smallness. For the states differing in the
absolute value of the quantum number M, the splitting
is approximately 0.035e2/κ1a. For the first excited mul-
tiplet state, the splitting is approximately 0.21e2/κ1a.

The calculation of the correction to the energy of an
electron–hole pair in a nanocrystal due to the interac-
tion V2(re, rh) given by Eq. (50) is performed in a simi-
lar manner; in this case, for the first term in Eq. (50), we
used the expansion

(A15)

C1m11m2

1M
Y1m1

* θ φ,( )C1m11m2

1M
Y1m1

θ φ,( )
m1 m2,
∑

=  
1

4π
------ 1

4 5π
--------------Y20 θ φ,( ).+

C1m11m2

1M
Y1m1

* θ φ,( )C1m11m2

1M
Y1m1

θ φ,( )
m1 m2,
∑

=  
1

4π
------ – 

1

2 5π
--------------Y20 θ φ,( ).

–
e2

κ1
-----K EC1 ∆M,+=

EC1 d
3
red

3
rhV1 re rh,( ) ψe re( ) 2∫=

× R1
S

rh( )( )
2

R1
D

rh( )( )
2

+[ ] / 4π( )

EC1

=  d
3
red

3
rhV1 re rh,( ) ψe re( ) 2

R1
P

rh( )( )
2
/ 4π( )∫

Pl θcos( ) 4π
2l 1+
-------------- Ylm θe φe,( )Ylm* θh φh,( ),

m l–=

l

∑=
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where θ is the angle between re and rh. For the second
and third terms in Eq. (50), only components of the hole
wave function that are independent of θ and φ are
important. This part of the Hamiltonian also contains a
correction due to nonsphericity of the lowest electronic
state; however, since the energy change due to V2 is suf-
ficiently small compared to the energy change due to V1
(but is greater than the splitting in M due to V1), this
additional correction can be neglected.
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Abstract—Selective chemical etching and transmission electron microscopy are used to study the defect for-
mation in Ge1 – xSix/Ge(111) epitaxial heterostructures at 0.01 < x < 0.35. As the Si content in the solid solution
(SS) increases, the dislocation densities in the epitaxial layer, at the interface, and in the near-interface region
in the substrate are found to vary nonmonotonically. The difference in the depth distribution of dislocations
observed in the heterostructures in three different SS composition ranges is caused by the effect of the SS com-
position on the kinetics of misfit-stress relaxation, in particular, on the intensity of misfit-dislocation genera-
tion and multiplication. It is found that, in the heterostructures grown by hydride epitaxy at 600°C, misfit-dis-
location multiplication through a modified Frank–Read mechanism occurs only in the range 0.03 < x < 0.20.
The results obtained are explained in the context of the effect of silicon-rich microprecipitates, which form
during the spinodal decomposition of the SS, on dislocation generation and motion in the epitaxial layer. A
mechanism is proposed for misfit-dislocation generation by heterogeneous sources in the epitaxial layer; the
mechanism is based on the generation of interstitial dislocation loops near microprecipitates. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Studying the processes of misfit-stress relaxation in
epitaxial heterostructures is still a challenging problem
in modern semiconductor materials science. Detailed
knowledge of the mechanisms of misfit dislocation
(MD) generation and multiplication is necessary for the
development of new methods for producing strongly
relaxed thin buffer layers with low threading disloca-
tion densities [1–4].

The relaxation of misfit stresses in SiGe/Si hetero-
structures has been the subject of numerous studies
(e.g., see reviews [5, 6]). However, various interpreta-
tions have been proposed for the phenomena observed
in those studies. For example, Houghton [7] proposed a
theoretical model of misfit-stress plastic relaxation that
was thought to correctly explain the experimental data
obtained on single- and multilayer SiGe/Si heterostruc-
tures with various Ge contents in the solid solution
(SS). According to this model, the activation energies
for dislocation generation (Qn) and slip (Qv) are inde-
pendent of the SS composition, effective shear stress
τeff, and the geometry of the stressed epitaxial layer. As
a result, the misfit-stress relaxation rate in the hetero-
structures should be determined by the only parameter

( ) depending on the SS composition. However,
there are data indicating that stress relaxation in the het-
erostructures exhibits a more complex dependence on
the SS composition. It was shown in [8] that there is a
sharp contrast between the kinetics of stress relaxation

τeff
4.5
1063-7834/04/4608- $26.00 © 21520
in Si1 – yGey/Si heterostructures with a Ge content of
~0.15 and ~0.25. This result was explained as resulting
from an increase in the retardation of glide MDs at their
intersections with dislocations from orthogonal arrays
when the Ge content in the SS increases. In [9],
SiGe/Si(100) and GeSi/Ge(100) heterostructures with
approximately the same misfit stresses were studied
and the dislocation slip velocity was found to be much
higher in layers grown on Ge wafers. This result was
accounted for by a decrease in Qv with increasing Ge
content in the SS. These findings indicate that the SiGe
solution composition has a significant effect on the MD
behavior during misfit-stress relaxation. However, the
nature of this phenomenon is still unclear.

In studying the processes of stress relaxation, most
attention has been concentrated recently on the interac-
tion of dislocations with other dislocations and with
point defects and the effect of the microinhomogeneity
of the SS on defect formation [6, 10–13]. These phe-
nomena do affect the generation and propagation of
MDs in layers. In [6], a mechanism was proposed for
MD generation by heterogeneous sources in SiGe/Si
heterostructures; the mechanism involved the nucle-
ation of vacancy dislocation loops near Ge-rich precip-
itates. Unfortunately, the origin of the sufficiently high
vacancy concentration in the SiGe layers was not ana-
lyzed in [6]. The interaction of MDs with identical
Burgers vectors at the intersection points in the MD
network formed at the interface brings about the forma-
tion of MD multiplication sources through the Frank–
004 MAIK “Nauka/Interperiodica”
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Parameters of the Ge1 – xSix/Ge(111) epitaxial heterostructures under study (x is the Si content in the SS, h is the layer thick-
ness, T is the growth temperature, Eε is the specific energy of the elastically stressed interface, hCR is the critical layer thick-
ness for MDs to be introduced in the interface, hFR is the critical layer thickness for MD multiplication through the Frank–
Read mechanism, and FR means experimental confirmation of the operation of the Frank–Read mechanism)

Parameter
Sample no.

1 2 3 4 5 6 7 8 9 10 11 12

x, at. fraction 0.016 0.025 0.030 0.035 0.042 0.064 0.082 0.115 0.135 0.207 0.29 0.315

h, µm 3.5 2.1 1.0 2.5 0.85 0.25 3.5 3.5 2.3 >1.5 2.5 >0.5

T, °C 600 660 705

Eε, J/m2 0.2 0.3 0.2 0.8 0.4 0.3 6.2 12.1 11.0 55.2

hCR, µm 0.29 0.16 0.13 0.11 0.092 0.054 0.040 0.026 0.022 0.008

hFR, µm 2.9 1.6 1.3 1.1 0.92 0.54 0.40 0.26 0.22 0.08

FR + + + +
Read mechanism. Various versions of the so-called
modified Frank–Read mechanism were proposed in
[14, 15], where the geometric features of forming dis-
location structures were experimentally studied. This
mechanism was also studied theoretically using numer-
ical simulation [16]. When studying Si1 – yGey/Si(100)
heterostructures grown by molecular beam epitaxy
(MBE) [11] and MBE with a gaseous Ge source [12],
we found that MDs multiply through the Frank–Read
mechanism in a relatively narrow SS composition
range (0.02 < y < 0.20). In this range, the heterostruc-
tures exhibited a nonmonotonic change in the disloca-
tion density in the layer and the near-interface region in
the wafer. This peculiar feature of the Frank–Read
mechanism cannot be explained in terms of any well-
known models and requires further investigation.

Thus, the question as to which mechanisms of dislo-
cation generation, motion, and multiplication provide
misfit-stress plastic relaxation in heterostructures is still
an open question and requires further investigation.
From this standpoint, GeSi/Ge heterostructures seem to
be promising, since they differ in some characteristics
from SiGe/Si heterostructures; namely, they have
another base component of the SS, strains of other signs
in their constituents, and higher plasticity of the wafer.
Moreover, these heterostructures have been studied in
much less detail. Actually, the dependence of the dislo-
cation slip velocity in the epitaxial layers on the SS
composition in GeSi/Ge heterostructures has been stud-
ied only in [9]. The goal of this work is to study the for-
mation of a dislocation structure in GeSi/Ge hetero-
structures over a wide SS composition range. Attention
is focused on the effect of the SS composition on the
processes of MD generation, motion, and multiplica-
tion.

2. EXPERIMENTAL

Epitaxial Ge1 – xSix solid-solution layers were grown
on Ge(111) wafers by hydride epitaxy; the growth tech-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
nique is described in [17]. The dislocation density in
the wafer (substrate) was less than 103 cm–2. The basic
parameters of the heterostructures grown are given in
the table. A sufficiently high growth temperature and a
relatively thick SS layer provided misfit-stress relax-
ation during epitaxial growth.

To solve the problem formulated above, a certain
relation between the epitaxial-layer thickness and the
lattice mismatch of the heteropair elements must be
maintained. The criterion of this relation can be the
energy per unit area of the elastically stressed interface
[18–20], which is calculated from the formula [21]

(1)

where G and γ are the shear modulus and the Poisson
ratio in the isotropic solid, respectively; ε is the elastic
strain of the epitaxial layer caused by the mismatch f of
the layer and wafer lattice parameters; and h is the layer
thickness. The stored energy of the elastically stressed
layer determines the value of τeff, which is the driving
force of dislocation generation and motion [7], and the
resulting relaxation of misfit stresses in the heterostruc-
ture. From this standpoint, in order to study the effect
of the SS composition on the formation of a dislocation
structure, it is desirable to use heterostructures with the
same value of Eε. In heterostructures where the misfit
stress is partially relaxed during epitaxial growth, the
interface energy consists of elastically stressed and
plastically relaxed components. This heterostructure
state is described by the relation

(2)

where δ is the portion of strain that is relieved upon the
introduction of MDs into the interface. However, in
order to make a general estimate of the adequacy of the
samples for investigation, it will suffice to use Eε calcu-
lated for an elastically stressed layer. The table lists the
values of Eε calculated from Eq. (1) for the samples

Eε 2G 1 γ+( )/ 1 γ–( )[ ]ε 2h,=

ε f δ,–=
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under study. For the calculation, we used the values G =
5.64 × 1011 dyn/cm2 and γ = 0.2 for Ge [22]. As follows
form these data, samples 1–6 exhibit comparable val-
ues of Eε. This fact allows us to correctly compare the
dislocation structures formed in these samples. In sam-
ples 7–9, we can also compare their structural charac-
teristics. In samples with a higher Si content in the SS
(samples 10–12), defects form through other mecha-
nisms, as will be shown below; therefore, the fact that
the values of Eε differ significantly in them is not essen-
tial for comparing their structural characteristics with
those of other samples.

Structural examination was performed by selective
etching of inclined polished sections of the heterostruc-
tures in combination with optical interference micros-
copy and transmission electron microscopy (TEM). We
studied the effect of the SS composition on the linear
MD density NMD at the interface and the densities of
threading dislocations in the layers (NTD) and disloca-
tions in the near-interface region in the substrate (NSD).
The dislocation densities in the layers and substrates
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Fig. 1. Dependences of the linear MD density at the inter-
face and the threading-dislocation densities in the layer
(TD) and the substrate (SD) on the SS composition in
Ge1 − xSix/Ge heterostructures.
PH
were determined from dislocation etching pits, which
were revealed with an etchant based on K3Fe(CN)6 and
KOH. The linear MD density was measured using elec-
tron-microscopic images of longitudinal sections of the
heterostructures near the interface.

3. EXPERIMENTAL RESULTS

Figure 1 shows the generalized data characterizing
the dislocation density in the Ge1 – xSix/Ge heterostruc-
tures as a function of the Si composition in the SS. For
the sake of systematization and simplicity, the SS com-
position range is conventionally divided into three
ranges: x ≤ 0.03, 0.03 < x < 0.20, and x > 0.20. These
ranges differ radically in the depth distribution of dislo-
cations in the heterostructures. The third composition
range is not shown in Fig. 1, since a one-type disloca-
tion structure with a virtually constant density NTD ≥
109 cm–2 is observed in this range. It should be noted
that these ranges are conventional and can shift toward
either side depending on the epitaxial growth condi-
tions (layer thickness, growth temperature, substrate
orientation, growth technique, etc.).

3.1. Composition Range x ≤ 0.03

The main characteristic feature of the dislocation
structures in the heterostructures in this range is the
presence of a flat regular MD network (Fig. 2a) located
strictly in the interface plane (Fig. 2b). The trigonal MD
network consists of straight 60° dislocation lines ori-
ented along the 〈110〉  directions. Note that such a net-
work exhibits asymmetric linear MD density in the dis-
location arrays in all three directions. Moreover, the
dislocation structures contain groups of parallel MDs
with identical Burgers vectors (Fig. 2a), which likely
form as a result of dislocation multiplication at the
interface through a Hagen–Strunk-like mechanism [23]
proposed earlier to describe defect formation in hetero-
structures with a (100) growth surface. The regular
arrangement of MDs at the interface and the absence of
dislocation half-loops in the near-interface region in the
substrate indicate the absence of MD multiplication
through the Frank–Read mechanism. Since the values
of NMD in the layers exceed the initial dislocation den-
sities in the substrates, MDs are generated not only by
the dislocations growing from these substrates but also
by other sources. The high dislocation density, (1–2) ×
106 cm–2, in the near-interface region in the substrate is
caused by the bending of dislocation lines near the
intersection points of MDs [24] and the deviation of
short dislocation segments from the interface toward
the substrate to a depth of ≈0.1 µm (Fig. 2b). It is these
tilt dislocation segments that are revealed by chemical
etching in the substrate.

In this composition range, as follows from Fig. 1,
the dislocation densities in all regions of the hetero-
structures (NMD, NTD, NSD) decrease with increasing Si
YSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
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content in the SS and reach minimum values near x ≈
0.03. It should be noted that these concentration curves
are more complex, since, near x ≈ 0, the dislocation
densities NTD and NSD must decrease to the initial dislo-
cation density in the substrate and NMD must decrease
to zero (these segments are shown by dashed lines in
Fig. 1). Therefore, we may expect the curves to bend
downward and exhibit a maximum.

3.2. Composition Range 0.03 < x < 0.20

The main specific feature of the dislocation struc-
ture of the heterostructures in this SS composition
range is a three-dimensional MD network in the vicin-
ity of the interface. Typical TEM images of the MD net-
work are shown in Fig. 3. As is seen from the image of
a longitudinal section, the dense MD network mainly
contains regularly arranged dislocation lines along the
〈110〉  directions; against the background of these lines,
there are many curved segments (Fig. 3a). These curved
segments are dislocation half-loops coming from the
MD network into both the substrate and the epitaxial
layer (Fig. 3b). A stacked MD arrangement takes place
at the interface within a 0.1-µm-thick layer. The dislo-

(a)

(b)

1 µm

0.5 µm

Ge

GeSi

Fig. 2. TEM images of the dislocation structure in (a) lon-
gitudinal and (b) transverse sections of the
Ge0.984Si0.016/Ge heterostructure (SS composition range
x ≤ 0.03).
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cation density in the substrates of heterostructures is
about two orders of magnitude higher than the thread-
ing-dislocation density in the layer. These data indicate
that MDs in the heterostructures of this composition
range multiply through the Frank–Read mechanism. It
should be noted that the depth of propagation of the dis-
location half-loops into the Ge substrate in the hetero-
structures with a maximum degree of plastic strain in
their substrates does not exceed 2 µm. This value is
smaller than the corresponding value (up to 3 µm) for
analogous SiGe/Si heterostructures [11].

Earlier [12], we found that a three-dimensional net-
work develops gradually in SiGe/Si heterostructures
with increasing layer thickness because of dislocation
multiplication in the regular flat MD network that ini-
tially forms at the interface. The dislocation multiplica-
tion is assumed to begin when a certain “second criti-
cal” layer thickness hFR is achieved [25]. According to
quantitative estimations, this thickness is an order of
magnitude greater than the critical thickness hCR at
which MDs are introduced into the interface. The val-
ues of hCR calculated by us from the formula given in
[7] and the values of hFR (hFR = 10hCR) for the samples

0.5 µm

(b)

(a)

GeSi

0.5 µm

Ge

Fig. 3. TEM images of the dislocation structure in (a) lon-
gitudinal and (b) transverse sections of the
Ge0.918Si0.082/Ge heterostructure (SS composition range
0.03 < x < 0.20).
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under study are listed in the table. The values of hFR that
turn out to be smaller than the real layer thickness
appear in bold. In the corresponding samples, disloca-
tion multiplication should occur through a modified
Frank–Read mechanism. The samples in which dislo-
cation structures characteristic of this multiplication
were observed experimentally are marked (as FR) in
the lower line of the table. The table shows that, in this
composition range, the calculated and experimental
data are in good agreement. In samples 5 and 6, which
have relatively thin epitaxial layers, flat regular MD
networks are formed. In the heterostructures with h >
hFR (samples 4, 7–9), well-developed three-dimen-
sional dislocation networks are formed. These results
illustrate the evolution of the MD network in GeSi/Ge
heterostructures from the flat to a three-dimensional
network during layer growth.

Within this composition range, the concentration
dependences of the dislocation density are seen to be
complex (Fig. 1). The MD density at the interface
increases sharply at the beginning of this range and lev-
els off at x > 0.10 (at a level of NMD ≈ 2 × 105 cm–1). In
the most of this range, the NSD and NTD concentration
curves coincide and have a domelike shape. This shape

GeSi

Ge

100 nm

(b)

(a)

0.5 µm

Fig. 4. TEM images of the dislocation structure in (a) lon-
gitudinal and (b) transverse sections of the Ge0.71Si0.29/Ge
heterostructure (SS composition range x > 0.20).
PH
is caused by a nonmonotonic change in the intensity of
MD multiplication with increasing x. In the range
0.03 < x ≤ 0.8, the intensity of MD multiplication
increases, reaches a maximum at x ≈ 0.8, and then
decreases rapidly. As the Si concentration in the SS
increases further (0.13 < x < 0.20), the NSD and NTD
concentration curves become different. The density NSD
decreases to a minimum value because the MD multi-
plication ceases almost completely (which is supported
by the absence of dislocation half-loops in the sub-
strate), whereas NTD increases sharply. These hetero-
structures have a dense MD network, which is localized
near the interface and consists predominantly of irreg-
ularly arranged MDs; this likely indicates a transition
from layer-by-layer growth of the epitaxial layers to
island growth.

3.3. Composition Range x > 0.20

In this SS composition range, epitaxial growth pro-
ceeds through the island mechanism due to high misfit
stresses. Islands grow randomly with respect to each
other and the substrate, which is indicated by a moiré
pattern with nonparallel fringes of neighboring local
regions about 0.1 µm in size. As a result, such hetero-
structures have a dense irregular MD network at the
interface (Fig. 4a) and a forest of threading dislocations
(NTD ≥ 109 cm–2) in their epitaxial layers. The substrate
has no plastic strain (Fig. 4b). This dislocation structure
is characteristic of the whole SS composition range up
to x = 1.

4. DISCUSSION OF THE RESULTS

The experimental data show that, as the mismatch f
increases, the threading-dislocation densities in the
substrate and the layer of the Ge1 – xSix/Ge heterostruc-
tures and the MD density at the interface vary non-
monotonically. The difference between the depth distri-
butions of dislocations in the SS composition ranges
considered above is related to the specific features of
MD generation and multiplication in each range. An
important factor that depends on the Ge1 – xSix SS com-
position and affects the processes of defect formation is
the presence of specific microinhomogeneities (caused
by the spinodal decomposition of the SS) in the epitax-
ial layers. The spinodal decomposition occurs at the
surface of the growing layer and is accompanied by the
formation of a silicon-rich layer of microprecipitates
and by its subsequent growth into the layer matrix. The
spinodal decomposition intensity depends on the Si
content in the SS; namely, the microprecipitate sizes
and concentration increase with x. In this paper, we
define microprecipitates as Si-rich microinhomogene-
ities in the SS that are coherent with the layer matrix.
Ge-rich microprecipitates in Si1 – yGey solid solutions
were studied in [6] and found to have a platelike shape.
YSICS OF THE SOLID STATE      Vol. 46      No. 8      2004



DEFECT FORMATION IN Ge1 – xSix/Ge(111) EPITAXIAL HETEROSTRUCTURES 1525
Elastic stresses in a crystal lattice are known to
decrease the enthalpy of formation of intrinsic point
defects (vacancies for compressive stresses and intersti-
tials for tensile stresses) and, hence, increase their equi-
librium concentration [26]. In Ge1 – xSix/Ge heterostruc-
tures, the epitaxial layer undergoes tensile stresses (f <
0), since the substrate has a larger lattice parameter.
Therefore, the epitaxial layers should be enriched in
germanium interstitial atoms (Gei). The Gei concentra-
tion in the SS should increase with the Si content in this
solution. Silicon-rich microprecipitates have a smaller
lattice parameter than the SS matrix; therefore, poten-
tially, they can be stress concentrators and affect the Gei

concentration in their local environment. However, in
relatively thick epitaxial layers, the hydrostatic (dilata-
tion) component of the stress field should be tensile
inside the precipitates and zero in the surrounding
matrix. The situation changes radically if a micropre-
cipitate is located in the immediate vicinity of the free
surface of the epitaxial layer (when the spacing
between the surface and the microprecipitate is smaller
or equal to its size). In this case, due to the strong
screening of the normal component of the stress field of
the microprecipitate by the free surface, the hydrostatic
component can become negative in the region between
the microprecipitate and the free surface and be positive
at the lateral sides of the platelike microprecipitate.
These lateral zones can be filled with interstitial atoms,
which will be accompanied by the formation of dislo-
cation interstitial loops [27]. This situation occurs in the
material under study; indeed, as noted above, micropre-
cipitates form at the surface of an elastically stressed
growing layer and the related interstitial-atom Gei

migration proceeds during the subsequent growth of the
microprecipitates into the layer matrix.

Sufficiently large microprecipitates can serve as
centers of heterogeneous MD generation when disloca-
tion loops of critical sizes form near them. When such
a loop is formed in a plane parallel to the interface, a
segment of the loop comes into the inclined {111} slip
plane and slides rapidly to the surface of the epitaxial
layer under the action of misfit stresses. As a result of
breaking of the dislocation line, a 60° half-loop with
sliding inclined segments forms at the layer surface.
The slip of these inclined segments in the layer leads to
the formation of MDs at the interface. An analogous
MD generation mechanism (but based on the formation
of dislocation vacancy loops near Ge-rich microprecip-
itates) was considered earlier for SiGe/Si heterostruc-
tures [6].

Based on these concepts, we can explain our exper-
imental results as follows. When a growing layer
reaches a critical thickness, dislocations growing from
the substrate begin to curve toward the interface plane
and MDs are formed. This mechanism is the first to
manifest itself in all heterostructures irrespective of the
SS composition (the f value). MDs also form through
heterogeneous dislocation generation at microprecipi-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      200
tates. In the epitaxial layers belonging to the first SS
composition range (x ≤ 0.03), the finest microprecipi-
tates form with a large scatter in size. Therefore, a rela-
tively small addition of the largest microprecipitates
manifests itself as centers of heterogeneous MD gener-
ation. Since the misfit stresses in the heterostructures
are relatively low (|f | < 1.2 × 10–3), we can assume that
the concentration of the centers of heterogeneous MD
generation in the corresponding layers is virtually con-
stant. Under these conditions, the decrease in disloca-
tion density exhibited by all concentration curves can
only be caused by a decrease in the dislocation velocity
in the layers with increasing x. This conclusion is
experimentally confirmed by the results of measuring
the dislocation mobility in these samples [28]. One of
the most probable causes of the decrease in the disloca-
tion velocity can be the dragging effect of disperse
microprecipitates. This effect is also likely to explain
the absence of MD multiplication through the Frank–
Read mechanism in the samples belonging to the com-
position range in question when the layer thickness
exceeds the corresponding critical thickness hFR for dis-
location multiplication (samples 1, 2).

In the second SS composition range (0.03 < x <
0.20), the defect formation changes in character
because of a sharp increase in the dislocation genera-
tion rate. This is caused, on one hand, by the micropre-
cipitate size and concentration increasing with the Si
content in the epitaxial layer and, on the other, by the
corresponding increase in the misfit stresses in the het-
erostructures. As the misfit f increases, the critical dis-
location-loop size decreases [6]. As a result, the density
NMD in the initially formed regular MD networks at the
interface increases with f (samples 5, 6). The MD den-
sity detected in the initial networks provides the relax-
ation of only an insignificant part of the misfit stresses,
namely, about 3% for the layers with x = 0.042 and h =
0.85 µm and 7% for the layers with x = 0.064 and h =
0.25 µm. The degree of relaxation was estimated from
the ratio of the experimental value of NMD to its value
calculated assuming complete relaxation of misfit
stresses due to the regular arrangement of 60° MDs in
the interface plane (beff = 1.15 Å). In such heterostruc-
tures, high residual stresses are retained and multiplica-
tion sources in the form of dislocation corners bent into
the substrate are formed in the regular networks. There-
fore, as the layer thickness increases, MD multiplica-
tion through the Frank–Read mechanism is activated in
these heterostructures.

At x > 0.08 in this SS composition range, a further
increase in the concentration of dislocation generation
centers provides the limiting MD density in the initial
network (the concentration curve of NMD levels off). At
these MD densities, the intensity of dislocation multi-
plication decreases sharply and the Frank–Read mech-
anism is not operative. Similar termination of the
Frank–Read mechanism was also observed in
4
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SiGe/Si(100) heterostructures at an MD density in the
network of NMD ≈ 8 × 104 cm–1 [15].

Another factor that indirectly depends on the SS
composition and affects the defect formation is the epi-
taxial-layer growth mechanism. In the SS composition
range x < 0.15, the layer-by-layer growth mechanism,
which is optimum for the formation of a regular dislo-
cation structure, is operative. In the SS composition
range 0.15 < x < 0.20 (6 × 10–3 < |f | < 1 × 10–2), this
mechanism gradually transforms into the island epitax-
ial-growth mechanism. In the corresponding hetero-
structures, irregularly arranged MDs form at the inter-
face and a dense forest of threading dislocations forms
in the layer. When the layer grows in the third compo-
sition range (x > 0.20, (|f | > 1 × 10–2), pronounced
island growth takes place; 0.1-µm islands are disori-
ented with respect to each other. This factor dictates the
formation of a threading-dislocation forest in such lay-
ers with a virtually constant density NTD ≥ 109 cm–2. In
such heterostructures, MDs most likely arise as a result
of the generation of dislocation half-loops at the surface
of the growing layer [29].

5. CONCLUSIONS

The effect of the solid-solution composition on
defect formation in Ge1 – xSix/Ge(111) epitaxial hetero-
structures produced by hydride epitaxy has been stud-
ied. Using TEM and selective etching, we obtained data
on the depth distribution of dislocations. The character
of the dislocation distribution was shown to be different
in three different SS composition ranges (x ≤ 0.03,
0.03 < x < 0.20, x > 0.20). As the Si content in the SS
increases, the densities of threading dislocations in the
epitaxial layer and the substrate and the MD density at
the interface change nonmonotonically. The formation
of a dislocation structure in each composition range is
mainly determined by the MD generation rate and the
MD multiplication intensity.

We have proposed a mechanism for MD generation
from interstitial dislocation loops that form during the
coalescence of interstitial Gei atoms in the vicinity of
Si-rich (compared with the initial SS) platelike micro-
precipitates that are coherent with the crystalline
matrix.

In the heterostructures under study, MD multiplica-
tion through a modified Frank–Read mechanism occurs
only in the composition range 0.03 < x < 0.20 at epitax-
ial-layer thicknesses that are about one order of magni-
tude larger than the critical thickness. In the initial
stages of misfit-stress relaxation in such heterostruc-
tures, a flat regular MD network is formed, which trans-
forms into a three-dimensional network in the course of
MD multiplication. In this composition range, the MD
multiplication intensity changes nonmonotonically as
the Si content in the SS increases; namely, the intensity
reaches maximum values at x ≈ 0.08 and virtually van-
ishes at x ≈ 0.20.
PH
In the SiGe/Ge heterostructures, MD multiplication
through the Frank–Read mechanism has been found to
occur just as in SiGe/Si heterostructures, irrespective of
the sign of misfit stresses. A characteristic indication of
the operation of this mechanism is the propagation of
dislocation half-loops from the interface to the sub-
strate.
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Abstract—A new method is proposed for the treatment of Raman spectra of amorphous–nanocrystalline sili-
con films serving as a major component in solar cells. The method is based on the well-known theory of strong
spatial localization (confinement) of phonons and offers the possibility of estimating the fractional content of
the amorphous and crystalline phases in a film and the size distribution of nanocrystals. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Interest in photoelectric solar power converters
stems from ecological considerations and the steady
reduction of their production costs, which makes them
the most promising source of renewable energy. The
efforts of researchers and engineers working in the area
of solar cell production have been shifting increasingly
toward the development of thin-film silicon technology.
Deposition of amorphous and microcrystalline silicon
layers on low-cost substrates (stainless steel, plastics,
glass) appears presently to hold the greatest promise
[1–3]. Films prepared in these conditions are usually a
mixture of amorphous and microcrystalline silicon.
The crystalline phase consists, as a rule, of nanocrystals
30–100 Å in size differing from bulk crystals in terms
of their physical properties. The characteristics of thin-
film solar cells are governed to a considerable extent by
the properties of the silicon layers, which makes moni-
toring their physical characteristics and phase composi-
tion an aspect of paramount importance. Raman spec-
troscopy is the most appropriate and convenient
method for reaching this goal due to its high speed (the
time required to measure the spectrum of a Si film is
≈1 min), high spatial resolution (1–2 µm), nondestruc-
tive character, and the fact that there is no need for pre-
liminary sample preparation. The spectrum contains
complete information on the phase composition of the
sample, and the problem actually consists in extracting
this information as fully as possible.

The phonon spectrum of nanocrystals is usually
described in terms of the model proposed in [4, 5] pos-
tulating strong spatial localization (confinement).
1063-7834/04/4608- $26.00 © 1528
Assuming spherical crystallites of diameter D and
phonon decay following the exp(–αr2D2) law, the
Raman line shape is given by the integral [5]

(1)

where Γ0 is the natural linewidth of a bulk crystal and
ω(q) is the phonon frequency. The phonon wave vector
is expressed in units of 2π/a0, where a0 is the silicon lat-
tice constant (0.543 nm).

This expression was employed in [6] to describe an
experimental Raman spectrum of a film assuming it to
consist of crystallites of one size and the amorphous
phase. In analyzing the Raman spectra of porous sili-
con, the problem was complicated in [7] by assuming a
Gaussian size distribution of crystallites and by intro-
ducing the corresponding factor into integral (1).

In [8], the ratio between the scattering intensities at
frequencies of 520 cm–1 (Ic) and 480 cm–1 (Ia) in the
film spectrum was accepted as a measure of sample
crystallinity. Being straightforward and simple to
obtain, the Ic/Ia ratio is essentially an abstract parameter
that is in no way related to the real film structure. For
this reason, the content of the crystalline phase was
additionally determined in [8] by deconvoluting the
spectrum into four components, two of which corre-
sponded to the amorphous phase and the other two, to
crystallites 35 and 200 Å in size.

This communication pursues a somewhat different
goal. We believed it essential to estimate this distribu-
tion from the spectra themselves, rather than to preset

I ω( ) q2D2
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Fig. 1. (a) Raman spectra obtained from different regions of the same silicon film at different distances from its edge and (b) typical
Raman spectra of films. Intensity of spectrum II is halved (×1/2), and that of spectrum III is reduced by ten times (×1/10).
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the nanoparticle size distribution in advance in analyz-
ing various Raman spectra of amorphous–nanocrystal-
line silicon films. Our approach would enable one to
extract as fully as possible the information contained in
a spectrum and to correct the technological conditions
of film deposition.

2. EXPERIMENTAL

The amorphous–nanocrystalline silicon films under
study were prepared using the gas-jet electron-beam
plasma-enhanced chemical vapor deposition technol-
ogy (GJEB PE CVD) [9]. The film thickness was
derived from reflectance spectra in the near IR region
(800–2000 nm, UV 3101PC spectrophotometer, Shi-
madzu) and varied within 300–600 nm.

Raman spectra were measured with a Triplemate
SPEX spectrometer equipped with a liquid nitrogen–
cooled LN 1340PB (Princeton Instruments) multichan-
nel CCD camera. The spectra were excited by a 488-nm
argon laser line with a power at the sample surface of
no greater than 5 mW. The excitation wavelength was
chosen so as to reduce the light penetration depth and
prevent formation of the substrate spectrum, and the
excitation power was low in order to preclude light-
induced sample crystallization. The sample was placed
in the focal plane of a microscope whose objective, (LD
EPIPLAN, 40/0.60 Pol. Zeiss), with an operating dis-
tance of 2 mm and an aperture of 0.6, served to focus
the laser beam and collect the scattered radiation. The
laser beam spot on the sample surface was 2 µm in
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
diameter. In the experiments, 180° scattering geometry
was used. Raman spectra of films were measured with
a resolution of 5 cm–1.

3. RESULTS

Figure 1a presents Raman spectra of a film obtained
for different values of the distance x (in mm) from the
edge of the film facing the nozzle of the gas source, and
Fig. 1b shows typical Raman spectra, two of which (I,
II) are those shown in Fig. 1a and the third (III) was
measured on a film prepared in different technological
conditions.

One readily sees that Raman spectra reflect either
solely an amorphous state with a broad band peaking at
~475 cm–1 (Fig. 1b, I), an amorphous–nanocrystalline
state (Fig. 1b, II), or again a predominantly nanocrys-
talline phase (Fig. 1b, III). The Raman band peak posi-
tion of nanoparticles varies from 514 to 518 cm–1; i.e.,
it is always lower than the phonon frequency in a bulk
crystal (520 cm–1). Note the feature at 495 cm–1 in spec-
tra II and III (Fig. 1b), whose origin still remains to be
established.

4. ANALYSIS OF THE RAMAN SPECTRA

To describe the structure of a film, namely, the
degree of its crystallinity and the nanocrystal size dis-
tribution, we introduce a trial function. To do this, we
use Eq. (1) to calculate the line profiles for nanocrystals
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with a diameter of 6a0 (3.3 nm), 7a0, etc., up to 15a0 and
assign the same integrated intensity of unity to each
line. The lower limit corresponds to particles ~3 nm in
diameter, and the upper limit, to ~8 nm. Identification
of particles less than 3 nm in diameter with crystalline
formations is questionable. The profiles calculated for
nanocrystals with diameters above 15a0 are close to one
another and to the spectrum of a bulk crystal in terms of
peak position and halfwidth and thus can be replaced by
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Fig. 2. Calculated profiles of Raman spectra from particles
with different diameters (solid lines) and from the amor-
phous phase. All spectra are normalized against unit inte-
grated intensity. Dashed line is a trial function (see text).
The intensity for the trial function is reduced by four times
(×1/4).
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the latter. The spectrum of crystalline silicon obtained
under the same conditions as the spectra of the other
samples has a Lorentzian profile centered at 520 cm–1

with a halfwidth of 6 cm–1. The calculated profiles are
presented in Fig. 2. Also shown is a band corresponding
to the amorphous phase, likewise with a unit intensity,
and representing not a calculated Gaussian or a Loren-
tzian profile but rather an envelope of an experimental
spectrum of a pure amorphous phase (bottom spectrum
in Fig. 1a) intended to take into account the scattering
from acoustic phonons and second-order scattering
from combination tones. The amorphous and the
nanocrystalline components are normalized in the same
way, which finds justification in the fact that the inte-
grated intensities (scattering cross sections) of both
components are similar, Ic/Ia = 0.95 [6]. (In actuality,
the integrated Raman line intensity of a crystal is about
seven times that of the amorphous phase, which should
be assigned to a difference not in the scattering cross
section but rather in the absorption coefficient and,
accordingly, in the depth of exciting-light penetration
into the sample.) Summing up all the profiles, we
obtain a trial function (Fig. 2). The contribution of each
component to the experimental spectrum can be esti-
mated by reduction, i.e., by mathematically dividing
the experimental spectrum by a trial function. Figure 3a
illustrates the reduction of typical spectra I, II, and III
from Fig. 1b. Each of the spectra gives an idea of the
phase contents and the distribution of particles in size.
Because each of the spectra contains a large fraction of
the amorphous phase (100% for spectrum I), one can
make them still more revealing by subtracting spectrum I
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from spectra II and III. The result of this procedure is
displayed in Fig. 3b. Of most interest is the reduction of
spectrum II, because spectra of this type are frequently
met in studies of films and are the most difficult to inter-
pret. As is evident from the distributions in Fig. 3, the
fraction of the amorphous phase in the sample charac-
terized by spectrum II is ~90%. The size distribution of
nanoparticles is practically uniform, with a very weakly
pronounced decrease in the fraction of large particles
and of the bulk crystal. This may be used as a basis to
attempt to reconstruct the experimental spectrum by
adding up the corresponding fractions of “single-parti-
cle” functions and the amorphous phase (Fig. 2). The
sum of the Raman spectra of nine fractions of the amor-
phous phase, particles 7a0, 8a0, …14a0 in size (one
fraction for each size), a 1/2 fraction of particles 15a0 in
size, and a 1/4 fraction of the crystalline phase (i.e., of
all nanoparticles more than 8 nm in size) is presented in
Fig. 4a. We readily see that the reconstructed Raman
spectrum is in accord with experiment in the frequency
region corresponding to the amorphous phase and
nanocrystals but disagrees with the experimental spec-
trum in the intermediate region 490–500 cm–1. The
application of scattering profiles to particles 6a0 or less
in diameter, which have a strong and extended low-fre-
quency wing, results in a considerable deviation of the
calculated spectrum from the experimental spectrum in
the range 400–480 cm–1. The difference between the
two spectra (Fig. 4a, bottom) is a Gaussian centered at
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      200
496 cm–1 with a halfwidth of 23 cm–1. A similar feature,
but shaped as a well-resolved spectral band, becomes
manifest in the sample with a large (~60%) content of
the nanocrystalline phase (spectrum III in Fig. 1b). It is
well known that, at the center of the Brillouin zone of
silicon, there may be one threefold degenerate vibration
mode F2g, which includes two transverse and one lon-
gitudinal optical phonon. When moving along the dis-
persion curve toward one of the high-symmetry points,
this vibration splits into the TO and LO modes, whose
frequencies at the L point are 493 and ~400 cm–1,
respectively [10]. Thus, the TO(L)-phonon frequency
practically coincides with the position of the feature
observed in the Raman spectra of films (495 cm–1 for
the line in spectrum III in Fig. 1b). First-order Raman
scattering at the zone-edge critical points is forbidden,
but in nanocrystals the wave-vector selection rules are
violated because of the decrease in the phonon correla-
tion length, thus making such scattering possible. The
same effect is responsible for the detection of fre-
quency-shifted localized phonon modes at the zone
center in nanocrystals. The phonon density of states and
the vibration frequencies at the critical points in silicon
have been repeatedly studied both theoretically and
experimentally (see, e.g., [11]).

Figure 4b presents an experimental and a recon-
structed spectrum with inclusion of the scattering at the
L point. In this case, the agreement between the two
spectra is quite satisfactory.
4
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To sum up, Raman spectra contain complete infor-
mation on the phase composition and structure of amor-
phous–crystalline films, which can be extracted
through special treatment of the spectral data.
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Abstract—Atomic-force spectroscopy and Raman scattering are applied to study structural modification of the
p-CdTe (111) surface under exposure to pulsed multimode ruby laser radiation of nanosecond duration and a
power density below the material-melting and destruction thresholds. It is shown that irradiation of crystals pro-
duces nanometer quasi-ordered surface nanoclusters 1.0–11.3 nm in height with a lateral size of 41–336 nm.
Possible mechanisms of their formation are discussed. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Laser irradiation of solids produces both isolated
point (vacancies and interstices) and extended defects.
Accumulation of these defects and their interaction
intricately depend on the local temperature effects, irra-
diation dose, defect density, material properties, and
other factors. The interaction between defects and the
elastic strain field can bring about the formation of sur-
face ordered structures, such as periodic structures and
clusters ranging in linear size from a few micrometers
to several nanometers [1–5]. The formation of such
micrometer-sized structures caused by laser irradiation
of semiconducting Si crystals has been explained in
terms of two mechanisms: in-plane ordering of disloca-
tion–strain instabilities and redistribution of disloca-
tions between various atomic planes due to strain-
induced drift of vacancies [3, 4].

A defect–deformation theory of the laser-induced
structural modification of the semiconductor surface
caused by the interaction between defects via the elastic
strain field was proposed in [1, 2]. According to this
theory, when the externally controlled concentration of
laser-induced defects exceeds a threshold value, peri-
odic structures or clusters of nanometer size are formed
on the surface of solids.

In the case of binary compounds, in particular,
CdTe, such nanometer-scale structures were not formed
under laser irradiation. Therefore, it is urgent to search
for the conditions under which laser irradiation of CdTe
crystals causes the formation of low-dimensional
ordered surface structures, as this would be promising
for the development of modern optoelectronic engi-
neering.

In this paper, we report on atomic-force spectros-
copy and Raman spectroscopy studies of the laser-
1063-7834/04/4608- $26.00 © 21533
induced structural modification of surface layers of
CdTe crystals grown by synthesis from Cd and Te
vapors [6].

2. EXPERIMENTAL

Samples were irradiated at room temperature by sin-
gle nanosecond pulses (τ = 2 × 10–8 s) from a multi-
mode Q-switched ruby laser with a pulse power density
I below the surface destruction and melting thresholds
(I1 = 3 MW/cm2 and I2 = 4.5 MW/cm2, respectively).
The irradiation dose D = NIτ was changed by varying
the number of pulses N.

The crystal surface morphology before and after
irradiation was studied with a NanoScope IIIa (Digital
Instruments) atomic-force microscope (AFM) operat-
ing in the tapping mode. Silicon probes with a nominal
tip radius of ~10 nm were used for measurements.
Raman scattering spectra were measured at T = 80 K
using a setup based on a DFS-24 spectrometer. Raman
spectra were excited by an Ar+-laser beam with wave-
length λex = 488.0 nm and power P < 50 mW. The accu-
racy of determining the spectral position of phonon
lines in the Raman spectra was improved by simulta-
neously recording the plasma lines and was no worse
than 0.3 cm–1.

We note that optical radiation of the ruby laser is
absorbed in a thin CdTe surface layer of thickness d ~
α–1 ≈ 10–4–10–5 cm (the absorptivity is α = 6 × 104 cm–1

[7]). For this reason, it is expected that the main
changes in the structural properties of CdTe will occur
in a thin layer, whose thickness is defined by the value
of α–1 and the thermal diffusion length (0.1–0.7 µm
[8]).
004 MAIK “Nauka/Interperiodica”
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Fig. 1. AFM images of the surface of a CdTe crystal (a) in the initial state, (b) after irradiation with a dose D1 = 0.6 J/cm2 before

and (c) after removal of the Te layer, and (d) after irradiation with a dose D2 = 0.9 J/cm2 before removal of the Te layer.
3. EXPERIMENTAL RESULTS

Figure 1 shows the AFM images of surface frag-
ments (1 × 1 µm) obtained before and after laser irradi-
ation of p-CdTe (111) crystals. The arithmetic mean
roughness of the nonirradiated sample surface was
~0.056 nm; i.e., the crystal surface can be considered to
be atomically smooth (Fig. 1a). Irradiation with a dose
D1 = 0.6 J/cm2 brought about the formation of a
microrelief and of nanoclusters against its background
in the shape of smoothed hills with a lateral size of
~47 nm and an average height of ~1.0 nm (Fig. 1b). In
this case, the arithmetic mean surface roughness
increased to ~0.205 nm. The smoothed nanocluster
shape is caused by a thin tellurium layer formed at the
sample surface after irradiation [9]. After the Te film
was removed (to this end, the irradiated samples were
etched in a 1-N KOH solution in methanol), AFM stud-
ies were repeated. Figure 1c demonstrates that nano-
clusters with a lateral size of ~41 nm and an average
height of ~1.01 nm became more distinct on the sample
surface after removal of the Te film. The arithmetic
mean roughness of the surface after such treatment
changed insignificantly. Furthermore, nanoclusters are
ordered along certain directions, forming a quasiperi-
odic surface microrelief.
P

As the irradiation dose is increased to D2 =
0.9 J/cm2, larger nanoclusters are formed and their size
variance increases. Their lateral size and average height
before removal of the Te layer changed from ~185 to
256 nm and from ~2.0 to ~5.1 nm, respectively. After
removal of the Te film, the lateral size and height of the
clusters changed from ~164 to ~336 nm and from ~2.2
to ~11.3 nm, respectively (Fig. 1d). The arithmetic
mean surface roughness was ~0.837 nm. It should be
noted that the sizes and the character of the size distri-
bution of nanoclusters depend on both the irradiation
dose and uniformity of the laser beam spot.

Figure 2 shows the Raman spectra of CdTe exposed
to a pulsed laser beam, and the inset shows AFM
images of 30 × 30-µm fragments of the sample surface
irradiated with a dose D2 = 0.9 J/cm2.

The spectrum of the initial sample (curve 1 in Fig. 2)
contains only the longitudinal optical (LO) phonon
band of CdTe, νLO(CdTe) ≈ 168 cm–1. According to the
selection rules for Raman scattering (in the backscatter-
ing geometry), scattering by LO and TO phonons is
allowed in the case of the (111) crystal plane [10]. The
fact that scattering by TO phonons was not observed in
the Raman spectra under consideration is likely due to
HYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
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the resonance conditions for excitation near the photo-
nic gap E0 + ∆0 [11]. The latter factor causes a signifi-
cant increase in the LO(CdTe) band intensity due to the
Fröhlich mechanism of electron–phonon coupling (in
comparison to the TO(CdTe) band).

In the Raman spectrum of a sample irradiated with
a dose D1 = 0.6 J/cm2, the LO(CdTe) band shifts to
lower frequencies (∆ν ≈ 2.4 cm–1) and its half-width
increases (curve 2 in Fig. 2). In the low-frequency
region of the Raman spectra, Rayleigh scattering is
observed to occur, which is caused by elastic scattering
of light from extended defects, the distance between
which (≥10 µm) is smaller than the beam spot diameter
(~100 µm). Such an extended defect is, e.g., a disloca-
tion network, which can form during elastic stress
relaxation [12] (see inset to Fig. 2). The formation of
nanoclusters of fairly large density between dislocation
lines in the irradiated samples (Fig. 1), as well as the
fact that the thickness (d ≈ 1/2α) of the layer probed in
Raman scattering is comparable to surface relief inho-
mogeneities, suggests that the main contribution to the
Raman spectrum comes from the beam-modified sur-
face layer. The Raman spectrum of the sample irradi-
ated with a dose Di contains not only the LO(CdTe)
bands but also additional bands at ~123 and ~141 cm–1,
corresponding to the A1 and E vibrational modes of trig-
onal tellurium. The large half-width of the observed Te
lines and their low-energy shift with respect to the lines
from single-crystal Te are manifestations of the size
effects characteristic of a polycrystalline Te structure
with very small crystallites [13–15]. We note that the Te
absorptivity in the wavelength range under study
reaches 106 cm–1. Therefore, the mere fact that the
LO(CdTe) band is observed in the presence of a Te film
allows us to conclude that the Te film thickness is sev-
eral tens of angstroms. After the Te film was removed
from the sample surface, only the LO(CdTe) band was
observed in the Raman spectrum (curve 3 in Fig. 2). In
this case, the half-width of the LO(CdTe) band remains
unchanged and its small shift is due to a decrease in
mechanical stresses caused by the tellurium film.

The possible formation of oxides comprising the
elements was also examined. The frequencies of char-
acteristic vibrations of oxides should be much higher
than those observed in our case [16]. Comprehensive
measurements of Raman spectra in the frequency range
500–800 cm–1, where intense bands of TeO2 and
CdTeO3 should be observed [17], revealed no traces of
them.

Figure 2 (curves 4, 5) shows Raman spectra of CdTe
exposed to a laser beam with a dose D2 = 0.9 J/cm2. An
increase in the irradiation dose causes a stronger low-
frequency shift of the LO(CdTe) band and an apprecia-
ble decrease in its intensity (curve 4 in Fig. 2). It is
worth noting that, in this case, in comparison with dose
D1, the bands of the tellurium A1 and E modes shift to
higher frequencies by ~2 cm–1 and their intensities
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      200
increase. This fact can be due to both an increase in the
stresses in the Te film and an increase in its thickness.
In [18], it was shown that the frequencies of Te phonon
bands decrease as the compressive stress increases.
Hence, the fact that the experimentally determined
phonon frequencies exceed the values characteristic of
crystalline tellurium suggests that the tellurium film is
under tensile stress [18].

4. DISCUSSION

The Te film formation at the irradiated sample sur-
face is associated with the preferred removal of cad-
mium atoms from a surface layer. Mass-spectrometric
studies of the composition of atomic flows during laser
processing of CdTe showed that the number of Cd
atoms exceeds the number of Te atoms by four times as
a steady flow is established [19]. Thus, the surface layer
exposed to a laser beam is depleted by cadmium and an
amorphous Te film arises at the surface. We performed
Auger spectrum studies of CdTe before and after laser
irradiation, which showed that exposure of CdTe crys-
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tals to nanosecond laser pulses with a power density
below the destruction or melting threshold not only
causes evaporation of Cd as a more volatile component
but also changes the defect structure of the surface
region [12]. The Auger electron spectra, like the Raman
spectra, did not reveal any traces of oxides of the ele-
ments comprising the crystal. Excess tellurium forms
an amorphous p-type film, which eventually crystal-
lizes [5, 9]. The generation of point defects gives rise to
elastic stresses propagating to a crystal depth of 2–
3 µm. As the corresponding critical stresses are
reached, their relaxation can result in the formation of
relief surface structures. Their sizes depend on stresses,
i.e., on the density of generated defects. Relaxation of
these stresses was considered the cause of the forma-
tion of a micrometer-sized dislocation structure associ-
ated with the band at λmax = 840 nm, which arises in
photoluminescence spectra as a result of a recombina-
tion involving cationic point defects in CdTe crystals
exposed to a laser beam [12]. It is interesting that dislo-
cation networks begin to appear at an irradiation dose
D = 0.32 J/cm2 [5, 12], which is appreciably lower than
the dose at which nanometer-sized clusters form.
Therefore, the formation of the observed nanostruc-
tures can be explained in terms of the self-organization
of defects due to screening of the strain field by point
defects [2]. This circumstance arises as a certain critical
point-defect density is reached. The density of defects
generated by laser irradiation, as estimated using a for-
mula from [3], is ~1019 cm–3, which corresponds to the
first critical value for screening of the elastic interaction
between point defects [2]. In this case, defects are
assembled into nanometer-sized clusters, which are
self-trapped in strain wells. The formation of surface
nanoclusters observed during irradiation of CdTe crys-
tals with dose D1 is likely caused by this mechanism.
The increase in the nanocluster size at the higher dose
D2 can be associated with an increase in the doze at
which the critical defect density is reached [2]. Thus,
there are lower and upper limits of laser irradiation
doses at which nanometer-sized clusters form at the
CdTe crystal surface.

The structural disordering of the CdTe surface layer
can be studied by analyzing the changes in the fre-
quency and profile of the LO line in the Raman spectra
in terms of the model of spatial correlation of phonons
[13–15]. In the case under consideration, the band
LO(CdTe) profile was analyzed after subtracting the
Rayleigh scattering background.

This model assumes phonon localization in nano-
clusters, which weakens the selection rules for the wave
vector q for first-order Raman scattering (q = 0); i.e.,
transitions with q ≠ 0 become allowed. The latter factor
results in broadening of the LO band, its asymmetry,
and a low-frequency shift of the maximum.

Under the assumption that nanoclusters are homo-
geneous in a spherical region of diameter L (the corre-
lation length) and that the localization factor for the
P

phonon wave functions is Gaussian, the first-order
Raman scattering intensity can be written as [13–15]

where q is measured in units of 2π/a, a is the lattice
constant, Γ0 = 3.5 cm–1 is the natural half-width of the
LO-phonon line for the initial CdTe crystal, ν(q)
describes the dispersion of phonon branches, and N(L)
is the Gaussian size distribution of nanocrystallites. We
note that, within this model, correct results can be
obtained if the spherical nanocrystallites are less than
50 nm in size.

An AFM study shows that the nanocrystal size is
rather large; therefore, the lateral confinement of LO
phonons is negligible. For this reason, we relate the
broadening, asymmetry, and shift of the LO line to a
change in the nanocluster size along the direction per-
pendicular to the crystal surface. Using the results from
[9], we estimated the change in the average CdTe nan-
ocluster size as a function of the irradiation area. For
irradiation doses D1 and D2, the average nanocluster
size is found to be ~7.5 and ~9.0 nm, respectively. The
difference between the nanocluster sizes determined
from the Raman spectra and AFM data can be
explained as follows. The AFM data characterize only
the inhomogeneity scale of the surface relief, while the
Raman spectra are also formed by deeper surface
regions extended to a certain crystal depth [12]. Fur-
thermore, the measured average nanocluster size can
also be affected by resonant enhancement of scattering
from LO phonons in nanoclusters of certain sizes.
Therefore, the nanocluster size determined by analyz-
ing the LO(CdTe) line is only a rough estimate.

5. CONCLUSIONS

Thus, we have studied the structural modification of
CdTe surface layers under nanosecond-pulsed laser
radiation. It was shown that laser irradiation causes the
formation of a thin tellurium film on the surface, as well
as the generation of point defects and their subsequent
clustering, which results in the formation of CdTe nan-
oclusters in the surface region. The sizes and the size
distribution of surface nanoclusters depend on the laser
radiation dose absorbed by the CdTe crystal.
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Abstract—The formation and destruction of alloys and chemical compounds of gold with potassium occurring
in their coadsorption on tungsten have been studied by continuous-mode field-desorption microscopy, field-
emission microscopy, and time-of-flight mass analysis of the products of field-induced desorption. The effect
of an electric field on these processes was investigated. Monatomic and cluster ions of potassium and its com-
pounds with gold were found to appear in fields too weak for field desorption to set in. Chemical reactions give
rise to autooscillations in the field desorption of potassium. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Chemical compounds of gold with alkali metals
exhibit unique physical and chemical properties [1–4].
They feature the largest bonding ionicity among all
compounds of metals with metals. The volume of a
compound is far less than the sum of the volumes of the
starting components and even less than the volume of
one of the components, the alkali metal. The electrical
properties of the compounds are also unusual in that,
depending on the actual composition and external con-
ditions, they can behave as conductors, semiconduc-
tors, or insulators.

The unusual properties of the gold compounds and
alloys with alkali metals should be particularly manifest
on the surface and at interfaces, where the structure and
the number of nearest neighbor gold and alkali metal
atoms undergo a sharp change. Among these specific
features, one could class the recently discovered increase
in the diffusion rate under illumination [5] and autooscil-
lations of the field-desorption ionic current [6].

The investigation of films of gold compounds with
alkali metals also has application potential, because
regions differing in conductivity type can be obtained
in one film by slightly varying the chemical composi-
tion. Studying the effect of an electric field on the
growth and destruction of films with scanning tunnel-
ing and atomic force microscopy may prove to be of
particular interest in nanotechnology.

2. EXPERIMENTAL

Experiments were conducted with an ultrahigh-vac-
uum field-emission microscope, which can operate in
the field-electron and field-desorption microscopy
modes and perform time-of-flight mass analysis of the
products of field desorption. Continuous-mode field-
desorption images were obtained with potassium and
cesium used as imaging substances. The base pressure
in the instrument did not exceed 10–10 mm Hg. Emis-
1063-7834/04/4608- $26.00 © 21538
sion images and time-of-flight spectra were recorded
from the screens of the microscope and a storage oscil-
lograph, respectively, with a video camera and fed to a
computer for subsequent treatment and analysis.

A film of a gold compound with potassium was pre-
pared on the surface of a tungsten tip from the gold and
potassium atoms adsorbed on the tip. The potassium
was deposited from a commercial IKO-34-9 directly
heated source. Tantalum foil sources were fabricated
for the deposition of gold. A piece of gold wire of 0.999
purity was placed on the source after degassing the
source by heating in vacuum. To deposit the gold, the
tip holder was positioned such that the apex of the tip
faced the source. The adsorbates were deposited on the
tip surface with the substrate maintained at room tem-
perature.

The adsorbate surface concentration and the quality
of the film formed were judged from the I–V character-
istics of field electron emission (by determining the
work function), as well as from field electron and des-
orption images and field desorption mass spectra.

3. RESULTS AND DISCUSSION

The field desorption mass spectra obtained directly
after potassium and gold adsorption exhibited only sin-

gle- and multiatomic potassium ions (K+, , ).

Field desorption of potassium from a surface with a
gold–potassium adsorbate mixture revealed autooscil-
lation effects [6]. These effects consisted in periodic
variations of the ionic current and of the desorption
images under constant experimental conditions. The
image variations were shown in a periodic appearance
and disappearance of desorption zones, their broaden-
ing and narrowing, migration over the tip surface, and
local variations in the desorption intensity. The varia-
tions were observed at gold surface concentrations less
than a monolayer or near the edge of a thicker gold film.

K2
+

K3
+
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Films of a gold compound with potassium were
formed when the temperature increased to 500–800 K;
they were visualized by field electron and field desorp-
tion images and were evident from mass spectra.
Accordingly, films were prepared in three regimes:
with no field applied, in a field desorbing the potas-
sium, and in a field high enough to obtain field electron
images. The order in which the adsorbates were depos-
ited was also varied (first gold, then potassium, and in
the reverse sequence). Gold was deposited under vari-
ous angles of rotation of the tip relative to the gold
source. Gold was applied either to the entire surface or
to part of it. In the latter case, heating performed after
the gold deposition resulted in surface diffusion of gold
with a sharp front of propagation and the formation of
islands behind the front. Field electron images of the
gold film on tungsten had a weak contrast because of
the adsorbate and the substrate having similar work
functions; the diffusion front and the islands appearing
in the continuous-mode field-desorption images were
more distinct (Fig. 1).

Our experiments did not reveal any noticeable effect
of the sequence in which the adsorbates were deposited
and of the electric field on the formation and quality of
the film thus formed. The film properties depended only
on the amount of adsorbed gold. As already mentioned,
in field desorption of mixtures of the gold and potas-
sium adsorbates (desorbing fields F < 108 V/cm), only
potassium ions were observed. After heating (T >
500 K) and subsequent cooling to room temperature,
signals of molecular ions containing gold atoms
appeared in the field-desorption mass spectra (Fig. 2).
Furthermore, such heating (giving rise to the formation
of a film of the potassium–gold surface compound)
brought about a substantial rise in the surface diffusion
rate of potassium atoms and in the brightness of contin-
uous-mode field-desorption images.

Destruction of a film and decomposition of the
potassium–gold chemical compound by an electric

Fig. 1. Gold islands on the (110)W face (continuous-mode
field-desorption image). Imaging adsorbate is cesium,
imaging field is 1.5 × 107 V/cm, and T = 500 K.
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field was studied by analyzing continuous-mode field-
desorption images (Fig. 3) and mass spectra of the des-
orption products (Fig. 2). Three stages in the film
destruction were detected. In the first stage (fields of
2.0–2.5 V/nm), the spectra contained potassium ion sig-
nals only. The desorption zone revealed in the field-des-
orption images expanded from the center of the image
to its periphery with increasing voltage and receded
with decreasing voltage, with the image recovering its
prior pattern (Figs. 3a, 3b). This behavior of the images
is characteristic of continuous-mode field-desorption of
alkali metals [7, 8]. This cycle could be repeated many
times without any noticeable changes in the images.

K+ K2Au+ (KAu)+
2

K2
+ KAu+

K+ K3
+ (KAu)+

2

(a)

(b)

(c)

Fig. 2. Typical mass spectra of the desorption products
escaping from a KAu film in the course of its destruction in
an electric field. Detected ion composition: (a) K+, K2Au+,

; (b) , KAu+; and (c) K+, , .KAu( )2
+

K2
+

K3
+

KAu( )2
+
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(d) (e) (f)

(g) (h) (i)

Fig. 3. Continuous-mode field-desorption images of electric field–induced destruction of a KAu film for different values of the field
strength: (a) 2.5, (b) 2.8, (c–f) 4.0, (g, h) 4.6, and (i) 5.2 V/nm.
This stage is interpreted by us as indicating desorption
of the potassium adsorbed on the surface of the gold–
potassium compound film.

The second stage was observed to occur in fields of
3.0–3.5 V/nm (i.e., 20–30% higher than in the first
stage). This stage resembled the first stage of destruc-
tion in terms of its pattern; namely, there was an
expanding front of desorption and only potassium ions
were present in the spectra. The only differences were
a lower desorption current and a sharper boundary of
the desorption zone. It is believed that in this stage the
excess potassium atoms that are dissolved in the KAu
film become extracted and desorbed.

In the next stage, occurring in fields about twice
those of the first stage (4–6 V/nm), the chemical com-
pound decomposes and the film breaks down. The mass
P

spectra now contain signals not only from the potas-
sium ions but also from molecular (cluster) ions,
including potassium and gold atoms. Figure 2 illus-
trates time-of-flight spectra containing cluster ion sig-
nals. The ion mass is estimated from the time taken by
the ion to cross the distance from the tip to the detector,
which is derived from the rising part of the peak [9].
The occurrence frequency of a peak reflects the frac-
tional content of the corresponding ion species in the
desorption flux. Most of the oscillograms obtained con-
tained only peaks due to potassium ions. The amount of
cluster ions containing gold atoms does not exceed a
few percent of that of the alkali metal ions.

Destruction of a film of the KAu compound starts at
the passage of the desorption front expanding from the
maximum-field region at the tip apex (Figs. 3c–3i) and
HYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004



        

FIELD DESORPTION OF A POTASSIUM–GOLD FILM ON TUNGSTEN 1541

                                     
continues as the voltage is increased, which becomes
manifest in the desorption of potassium ions and cluster
ions of the KnAum type from the whole surface of the
tip. Experiments with thick films revealed the second
front of destruction of the KAu compound (Fig. 3i). A
continuous-mode field-desorption image indicates the
onset of film destruction with increasing desorbing
field by the appearance of a bright spot at the image
center (Fig. 3c), which transforms immediately into a
rapidly expanding ring (Figs. 3d–3f). When the ring
breaks up at the edge of the image (Fig. 3g), the front
stops. If the desorbing voltage is increased, the desorp-
tion front moves gradually toward the edge of the image
(Fig. 3i) and eventually escapes beyond it.

The processes observed can be explained as follows.
When the field is raised to the level corresponding to
Fig. 3c, the adsorbed potassium escapes from all of the
imaged tip surface and potassium and, partly, gold from
the KAu film start desorbing near the tip apex. Three
zones form on the surface: (1) near the tip vertex within
a ring, which corresponds to the partially destroyed and
potassium-depleted KAu compound with no adsorbed
potassium present; (2) outside the ring, a zone that can
be identified with the unaffected compound, in which
the potassium diffusing from the tip side surface is des-
orbed by the field (the lifetime of adsorbed potassium is
short in this zone) and cannot reach the ring; and (3) the
side surface of the tip, which is coated by the KAu film
with potassium adsorbed on the surface. At the bound-
ary between the first and second zones, a step (ring)
forms, which enhances the field. The local field
enhancement at the step makes film destruction possi-
ble not only in the region of the maximum field, at the
tip vertex (Fig. 3c), but also in weaker fields. The ring
expands, and, as it approaches the third zone or merges
with it (Fig. 3g), adsorbed potassium can now diffuse
from the tip sides directly to the first zone, i.e., the area
of the surface compound depleted in potassium. The
binding energy of potassium atoms to the surface and
their lifetime in the zone of the partially decomposed
compound are apparently higher than those on the sur-
face of the original undamaged compound; therefore,
the potassium migrating over the first zone is more
likely to reach the step. The processes occurring at the
step (surface diffusion, field desorption, decomposition
and recovery of the surface compound) become bal-
anced in a dynamic equilibrium, after which the des-
orption front stabilizes (Fig. 3g).

As the voltage is lowered, the decomposed film is
partially recovered through the influx of potassium
atoms from the tip sides. After several cycles of a rise
and decrease in voltage (decomposition–recovery of
the film), the restoration of the film degrades notice-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
ably, which may be assigned to gold escaping from the
desorbing cluster ions. The original gold concentration
at the tip vertex can be restored through heating to the
temperature at which surface diffusion of gold sets in,
but in these conditions all of the potassium desorbs
thermally from the surface.

4. CONCLUSIONS

Thus, for the specific example of a KAu film, we
have shown that, by properly varying the electric field,
the local composition (and, hence, the electronic prop-
erties) of gold compounds with alkali metals can be
changed. The changes are induced by field desorption
of atomic and cluster (molecular) ions and can be
reversible (with only the alkali metal being removed) or
irreversible (if the cluster ions containing gold atoms
also desorb).
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Abstract—Growth of thin Ti films on (100)W and the kinetics of their oxidation are studied using thermal-
desorption spectroscopy and Auger electron spectroscopy. Titanium films grow nearly layer by layer on the
(100)W face at room temperature. The activation energy for desorption of Ti atoms decreases from 5.2 eV for
coverage θ = 0.1 to 4.9 eV in a multilayer film. Oxidation of a thin (θ = 6) titanium film starts with dissolution
of oxygen atoms in its bulk to the limiting concentration for a given temperature, after which the film oxidizes
to TiO, with the TiO2 oxide starting to grow when exposure of the film to oxygen is prolonged. The thermal
desorption of oxides follows zero-order kinetics and is characterized by desorption activation energies of
5.1 (TiO) and 5.9 eV (TiO2). © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The TiO2 oxide has been employed as an effective
catalyst for photocatalytic splitting of water [1] and
organic compounds in polluted air and wastewaters [2].
This accounts for the large number of publications
dealing with studies of the initial stages in the oxidation
of single crystals [3–6], polycrystalline ribbons [7–10],
and thin titanium films deposited on a substrate [11–
16]. In those studies, various methods were invoked,
among them Auger electron spectroscopy (AES) [4, 8,
14, 16], UV photoelectron spectroscopy (UVPES) [3,
4, 12], low-energy electron diffraction (LEED) [3, 15,
16], work function measurements [3, 5, 8, 11], electron-
stimulated desorption (ESD) [5], electron energy loss
spectroscopy (EELS) [4, 16], secondary ion mass spec-
trometry (SIMS) [7], and x-ray photoelectron spectros-
copy (XPS) [9, 10, 12, 16]. Nevertheless, there is still
apparent disagreement in the interpretation of data
bearing on the chemical composition of the oxide
growing in the initial stage of oxidation and on its dis-
tribution over the substrate volume. In particular, some
authors believe that, in the initial stages of adsorption,
oxygen penetrates into the near-surface layer and only
after this does it chemisorb on the surface [3, 8, 11, 17].
Other researchers conclude that oxygen originally
builds up on the surface [5, 7, 18, 19]. There is also dis-
crepancy concerning the stoichiometric composition of
the oxides forming in the course of oxidation. Some
publications report the growth of oxide TiO2 under long
exposure to oxygen [4, 20]; others [8, 12, 21] assume
the formation of oxides TiO and Ti2O3; and, finally, in
[3, 5, 9, 10, 22], a mixture of various oxides is said to
have been revealed. The opinion is given that the com-
position of oxides on a surface is affected by surface
pretreatment [9, 16], by the oxygen pressure at which
oxidation is carried out [23], and by the substrate tem-
perature [10].
1063-7834/04/4608- $26.00 © 21542
This communication reports on thermal-desorption
spectroscopy (TDS) and AES studies of the growth of
thin Ti films on a patterned, predominantly (100)-ori-
ented tungsten ribbon and their oxidation kinetics in an
oxygen environment.

2. EXPERIMENTAL

Measurements were carried out with TDS and AES
(for more details, see [24, 25]). The experimental setup
consists of the following main parts. The products of
thermal desorption were detected by a pulsed time-of-
flight mass spectrometer. The magnitudes of fluxes of
Ti atoms and TiO and TiO2 molecules were determined
from the Ti+ (mass-48 line of the mass spectrum), TiO+

(mass-64 line), and Ti  (mass-80 line) ion currents,
respectively. The mass spectrometer resolution was
~60, which permitted reliable identification of these
ions.

The Auger spectra were measured with a 120°
quasi-spherical retarding-field analyzer. The amount of
deposited titanium was derived from the intensity of the
differentiated Ti(LMM) Auger line at 387 eV. The
degree of W screening by titanium was determined
from measurements of the differentiated W(NNV)
Auger line at 169 eV. The primary electron energy was
1.3 keV, the electron beam modulation voltage was
~3 eV, and the primary beam electron density did not
exceed 1.3 × 10–3 A/cm2.

The substrates were patterned tungsten ribbons with
a predominantly (100)-oriented surface measuring
0.01 × 1.0 × 30 mm. The ribbons were cleaned of car-
bon by annealing in oxygen at a pressure of ~10–6 Torr
and at a ribbon temperature of ~1600 K for one hour,
and the oxygen was flash desorbed at T = 2500 K in
vacuum. The titanium was deposited by ablation from

O2
+
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two titanium rods measuring 0.7 × 0.7 × 30 mm and
located parallel to the W ribbon on both its sides. The
rods were heated by a dc electric current.

A deposited titanium film was oxidized at a constant
temperature and an oxygen pressure of 10–7–10–6 Torr.
The amount of deposited titanium was determined from
the deposition time at a constant flux and monitored
using TDS and AES. The ribbon temperature was mea-
sured in the high temperature region with an optical
micropyrometer and in the low-temperature range by
linearly extrapolating the heating-current dependence
of the ribbon temperature to room temperature. The rib-
bon heating rate could be varied from 20 to 2000 K s–1,
with the time dependence of the temperature being
close to linear. The deviation from linearity in the range
1300–2000 K did not exceed 30 K.

A tungsten ribbon and titanium rods were fixed to
a manipulator, making it possible to displace the rib-
bon surface under study between the entrance to the
mass spectrometer source and the entrance to the
energy analyzer. The base pressure in the instrument
was ~10–10 Torr.

3. EXPERIMENTAL RESULTS

3.1. Growth of a Ti Film on W(100)

Figure 1 presents plots relating the Auger signal
intensity of Ti (387 eV) and W (169 eV) to the amount
of deposited titanium. The initial linear portion in the
plots is replaced by a break indicating the completion of
filling of one monolayer. In accordance with a study on
thin Ti film growth on W(110) [26], one Ti monolayer
screens the W Auger signal by a factor 0.56. When Ti is
applied to a substrate at T = 300 K, the Ti Auger signal
saturates after the deposition of about six monolayers,
with the W Auger signal dropping to zero. These graphs
argue for the layer-by-layer growth of a film at T =
300 K. Analogous plots obtained at the tungsten tem-
perature T = 1100 K coincide with those measured at
T = 300 K, before the formation of a monolayer cover-
age. For larger amounts of deposited Ti, the Ti Auger
signal saturates at a lower level, with the W Auger sig-
nal still being observed after the deposition of six
monolayers. This suggests a growth of three-dimen-
sional Ti formations on the W surface at T = 1100 K
after completion of the monolayer coverage.

Figure 2 displays the dependences of the Ti Auger
signal on the annealing temperature measured for dif-
ferent initial coverages θ0. For coverages θ0 ≤ 2 MLs,
the Ti Auger signal remains practically constant up to
1330 K, after which the signal intensity diminishes
gradually due to the thermal desorption of Ti. The dis-
solution of Ti in the bulk of W can be neglected [26].
For θ0 = 6 MLs, the annealing curve exhibits features in
the temperature region T = 600–800 K apparently
caused by changes in the film structure, possibly by the
formation of Ti clusters. For T > 1330 K, the Auger sig-
nal starts to decay as a result of thermal desorption. The
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
shoulder in the curve at T = 1550 K is probably associ-
ated with desorption from a submonolayer coating per-
sisting through the breakup of Ti clusters.

Figure 3 plots thermal-desorption spectra of Ti
atoms obtained for different titanium coverages θ0 on
W(100) at T = 300 K. For θ0 > 1, the thermal-desorption
spectra exhibit two maxima. First, the high-temperature
maximum grows with increasing coverage to reach sat-
uration at one-monolayer coverage. After this, a low-
temperature maximum appears, whose intensity
increases in proportion to θ0. For θ0 > 2.5, the rising
parts of the thermal-desorption curves associated with
this maximum coincide, which is indicative of zero-
order desorption kinetics, a feature usually observed
under layer-by-layer evaporation. The graph of
ln(−dθ/dt) versus 1/T drawn for the rising part of the
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Fig. 1. Auger peak intensities of (1, 2) Ti and (3, 4) W plot-
ted vs. the amount of deposited Ti (in monolayers) at sub-
strate temperature (1, 3) T = 300 and (2, 4) 1100 K.
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Fig. 2. Auger peak intensities of Ti plotted vs. annealing
temperature (annealing at each point was performed for
1 min) for various initial Ti coverages θ0: (1) 1, (2) 2, and
(3) 6 MLs.
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low-temperature maximum is fitted well by a straight
line, whose slope yields the activation energy for des-
orption of Ti atoms E2 = 4.9 ± 0.2 eV. This value is close
to the titanium sublimation heat, 4.87 eV [27]. The
ln[(–dθ/dt)/θ] versus 1/T graphs drawn for the high-
temperature phase remain straight lines only for θ0 <
0.15. From their slope, the desorption activation energy
is found to be E1 = 5.2 ± 0.2 eV. As the coverage
increases, the maxima in the desorption curves of the
high-temperature phase shift toward lower tempera-
tures, which can be tentatively ascribed to lateral repul-
sive interactions in the adlayer.

3.2. Oxidation of Ti Films Deposited on W

Figure 4 shows thermal-desorption spectra of TiO
molecules obtained after oxidation of a Ti film depos-
ited on a tungsten substrate at T = 300 K to a coverage
θ0 = 6 MLs. The oxidation was conducted at an oxygen
pressure P(O2) ≅  10–7 Torr and a substrate temperature
T = 1100 K. Thermal-desorption spectra of TiO mole-
cules, similar to those of Ti atoms, have a two-phase
shape but are shifted toward higher temperatures.
Hence, TiO molecules are bound to the substrate more
strongly than Ti atoms. The rising parts of the thermal-
desorption curves obtained within the oxidation time
interval from 8 to 16 min coincide, which indicates the
desorption kinetics to be zero-order. From the slope of
the ln(–dθ/dt) versus 1/T dependence drawn for the ris-
ing part of the TiO molecule desorption curves, the acti-
vation energy for desorption is found to be 5.1 ± 0.2 eV.
The rising parts of the desorption curves obtained under
oxidation for more than 20 min (curve 7 in Fig. 4) are
shifted toward higher temperatures, with TiO2 mole-
cules appearing in the mass spectrum. Therefore, the
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Fig. 3. Thermal-desorption spectra of Ti atoms escaping
from the W surface for different coverages θ0: (1) 0.1, (2)
0.4, (3) 0.85, (4) 1.4, (5) 1.85, (6) 2.3, (7) 2.75, (8) 3.2, and
(9) 3.8 MLs. Adsorption temperature T = 300 K; heating
rate 200 K s–1.
PH
deviation from zero-order desorption kinetics for TiO
molecules can be due to the rate of their desorption
being affected by a growing layer of oxide TiO2, which,
as will be shown later, desorbs at a higher temperature.

The number of desorbing TiO molecules grows lin-
early with increasing oxidation time at constant oxygen
pressure and substrate temperature and gradually
approaches saturation (Fig. 5). Such a linear depen-
dence implies that the rate-limiting stage in the oxida-
tion process is not the oxygen diffusion but the reaction
at the interface. As follows from Fig. 5, TiO molecules
start to desorb with a certain delay. Figure 6 plots the
dependences of the number of desorbing TiO mole-
cules versus oxidation time at T = 1100 K for Ti films
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Fig. 4. Thermal-desorption spectra of TiO obtained for var-
ious oxidation times of a Ti film θ = 6 ML thick deposited
at T = 300 K. Pressure P(O2) = 10–7 Torr; oxidation temper-
ature T = 1100 K. Oxidation time t: (1) 4, (2) 6, (3) 8, (4) 10,
(5) 13, (6) 16, (7) 22, and (8) 30 min. Heating rate 200 K s–1.
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Fig. 5. Dependence of the number of desorbing TiO mole-
cules on oxidation time. The oxidation was performed at an
oxygen pressure P(O2) = 10–7 Torr and T = 1100 K.
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of various thickness. The delay in the onset of forma-
tion of TiO molecules is seen to increase with the thick-
ness of the deposited Ti film. Furthermore, the delay
time decreases with increasing oxidation temperature at
constant oxygen pressure and Ti film thickness (Fig. 7).
Therefore, it follows that the delay originates from the
dissolution of oxygen atoms in the bulk of the Ti film
until a certain limiting concentration is reached. Esti-
mates based on the TiO desorption delay times in the
course of Ti oxidation show that the concentration of
oxygen dissolved in the bulk of the Ti film at T =
1100 K is ~10%, which agrees with the literature
data [28].

Figure 8 illustrates the dependence of the number of
desorbed TiO molecules on the oxidation temperature
under constant exposure of a 6-ML-thick Ti film to oxy-
gen. We readily see that the number of TiO molecules
grows slowly in the temperature interval from 300 to
1000 K, to pass through a maximum at T = 1300 K. The
decrease in the number of TiO molecules for T >
1300 K is apparently connected with the desorption of
Ti atoms (Fig. 2). The increase in the number of TiO
molecules with temperature suggests that there is a
potential barrier associated with the reaction proceed-
ing at the interface between TiO and Ti.

Long exposures of a Ti film to oxygen bring about
desorption of TiO2 molecules. Figure 9 plots the num-
ber of desorbing TiO and TiO2 molecules versus the
oxidation time at T = 1100 K and a pressure P(O2) ≈
10−6 Torr for a 6-ML-thick titanium film deposited at
T = 300 K. The delay time required to saturate the bulk
of the Ti film with oxygen decreases with increasing
oxygen pressure (cf. Fig. 5). For short oxidation times,
only the TiO molecules desorb; their number grows lin-
early with oxidation time. The thermal-desorption

25

20

15

10

5

0
1 2 3 4 5 6

3
2

1

t, min

NTiO, arb. units

Fig. 6. Initial parts of the graphs relating the number of
flash-desorbed TiO molecules to oxidation time, obtained
for Ti films of various thickness θ0: (1) 4, (2) 8, and
(3) 16 MLs. The oxidation was performed at T = 1100 K
and an oxygen pressure P(O2) = 10–7 Torr.
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spectra of TiO (Fig. 10) exhibit filling of the high-tem-
perature phase, followed by a rise in the low-tempera-
ture desorption phase (curves 1, 2). The plot attains a
maximum (curve 1 in Fig. 9) apparently when oxide
TiO grows through the Ti film. In the vicinity of the
maximum, TiO2 molecules start to desorb, which sig-
nals the onset of a new stage in the film oxidation. The
maximum in the dependence of the number of desorb-
ing TiO molecules on oxidation time does not fully
coincide in position with the onset of growth of TiO2

molecules, which is possibly caused by nonuniformi-
ties in the thickness or structure of the Ti film. The
dependence of the number of desorbing TiO2 molecules
on oxidation time (curve 2 in Fig. 9) reaches saturation
when oxide TiO2 grows through the Ti film. This is
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Fig. 7. Initial parts of the graphs relating the number of
flash-desorbed TiO molecules to oxidation time, obtained
for oxidation temperature (1) T = 1100 and (2) 300 K. Oxy-
gen pressure P(O2) = 10–7 Torr; Ti film thickness θ0 =
4 MLs.
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Fig. 8. Number of flash-desorbed TiO molecules plotted vs.
oxidation temperature. A Ti film θ0 = 6 ML thick was oxi-

dized at an oxygen pressure P(O2) = 10–7 Torr for t = 4 min.
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accompanied by a slight decrease in the signal corre-
sponding to the TiO molecule desorption, which
remains flat thereafter. Thermal-desorption spectra
obtained for TiO and TiO2 in this region (for t ≥ 10 min)
practically coincide in shape and are in the same posi-
tion on the temperature scale (curves 3, 4 in Fig. 10).
This gives us grounds to maintain that the TiO+ ions
observed in the mass spectrum in this case originate
from dissociative ionization of TiO2 molecules caused
by the electron beam in the mass spectrometer source.
The activation energy for the desorption of TiO2 mole-
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Fig. 9. Oxidation-time dependence of the number of (1) TiO
and (2) TiO2 molecules flash-desorbed from a Ti film θ0 =
6 ML thick, obtained through oxidation at T = 1100 K and
P(O2) = 10–6 Torr.
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Fig. 10. Thermal-desorption spectra of (1–3) TiO and
(4) TiO2 obtained for different oxidation times of a Ti film
θ = 6 ML thick deposited on W at T = 300 K. The oxidation
was performed at an oxygen pressure P(O2) = 10–6 Torr and
T = 1100 K. Oxidation time t: (1) 1.5, (2) 2, and (3, 4) 10 min.
Heating rate 200 K s–1.
P

cules derived from the rising part of the thermal-des-
orption curve under the assumption of zero-order des-
orption kinetics is found to be 5.9 ± 0.2 eV. This value
is higher than the activation energy for desorption of
TiO molecules, 5.1 ± 0.2 eV, determined from the rising
part of the low-temperature peak without the formation
of TiO2.

4. DISCUSSION OF THE RESULTS

Titanium films on W(100) grow nearly layer by
layer at T = 300 K. For T ≥ 900 K, a film grows through
the Stranski–Krastanow mechanism, with a Ti mono-
layer first forming on the surface and three-dimensional
clusters growing on it thereafter.

Oxidation of a Ti film in an oxygen environment is
accompanied, under flash desorption, by the appear-
ance of TiO+ and Ti  ions in the mass spectrum, with
the former ions appearing first and the Ti  ions being
seen only after long exposures. Note that thermal-des-
orption mass spectra obtained in the final stage of oxi-
dation always have Ti  and TiO+ ions. In this case,
however, the TiO+ ions form primarily in the dissocia-
tion of TiO2 molecules by electron impact, with the heat

of the reaction   TiO(g) + O being 6.3 eV, as
estimated from the Hess law [29]. Observation of this
reaction in the mass spectrometer correlates with the
thermal-desorption spectra of TiO2 and TiO molecules
having identical shape and occupying the same position
on the temperature scale.

TiO2 molecules desorb following the zero-order
kinetics (as do TiO molecules in the absence of TiO2
desorption). These desorption processes require 5.9 and
5.1 eV, respectively, for their activation, which is close
to the corresponding heats of sublimation of oxides
TiO2 and TiO [27, 30].

Decay of other oxides could also give rise to the
appearance of TiO and TiO2 molecules in the gas phase.
These reactions are [30]

(1)

(with a heat of reaction of 18.8 eV) and

(2)

(with a heat of reaction of 12.8 eV).
However, we believe it to be unlikely that the kinet-

ics of thermal desorption of different molecules (TiO,
TiO2) are characterized by the same activation energy
and prefactor in the desorption rate constant, as follows
from the thermal-desorption spectra (curves 3, 4 in
Fig. 10). We are of the opinion that the simultaneous
appearance of TiO and TiO2 in thermal desorption
observed with long oxidation times is associated with
the desorption of oxide TiO2 followed by its breakup in
electron impact ionization.

O2
+

O2
+

O2
+

TiO2
g( )

Ti3O5
s( ) TiO g( ) 2TiO2

g( )+

Ti2O3
s( ) TiO g( ) TiO2

g( )+
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The oxidation of a Ti film proceeds in a fairly com-
plex manner. First, oxygen dissolves in the Ti film until
an equilibrium solution forms at a given temperature.
Under a flash, the oxygen is apparently removed ther-
mally in the form of atoms and, therefore, is difficult to
detect because of its high chemical activity. The accu-
mulation time of this oxygen increases with Ti film
thickness but decreases with increasing substrate tem-
perature (Figs. 6, 7). After this stage of oxygen buildup
in the titanium film has come to completion, further
absorption of oxygen brings about the formation of
oxide TiO, which grows through the Ti film. As the oxi-
dation is continued, TiO oxidizes to TiO2.

Although a latent period in the oxide desorption
under the adsorption of oxygen has been observed ear-
lier for a number of high-melting metals, in all those
cases oxygen accumulated on the surface of the metal
[31–33]; in our case, however, this period is associated
with the fact that the reaction can occur only after oxy-
gen has reached the limiting concentration in the bulk
of the titanium film.

5. CONCLUSIONS

Thus, we have carried out AES and TDS studies on
the mechanism of growth and the thermal stability of a
Ti film on W(100). At room temperature, a Ti film was
shown to grow layer by layer. A transition to three-
dimensional formations in the deposited film occurs at
T ≥ 900 K. A Ti film is thermally stable up to T ~
1300 K. Oxidation at T = 1100 K of a film deposited at
room temperature to θ = 6 MLs brings about dissolu-
tion of oxygen atoms in the bulk of the Ti film, which is
followed by growth of oxide TiO evaporating with a
heat of sublimation of 5.1 ± 0.2 eV. The rate of forma-
tion of this oxide is rate-limited by the reaction at the
Ti–TiO interface. In the next stage, TiO2 starts to grow;
its heat of evaporation is 5.9 ± 0.2 eV. The presence of
a particular oxide phase is detected unambiguously
from the products of thermal desorption and the posi-
tion of their thermal-desorption peaks on the tempera-
ture scale.
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Abstract—The resistance to shear flow is investigated theoretically for polar liquid crystals, such as 4-n-octyl-
4'- and 4-n-octyloxy-4'-cyanobiphenyls. It is established that the lowest resistance to shear flow at temperatures
in the vicinity of the nematic–smectic A phase transition point TNA is observed when the nematic director is ori-
ented perpendicular to both the flow velocity vector and the flow velocity gradient. The three Miesowicz shear
viscosity coefficients ηi (i = 1–3) at temperatures close to the phase transition temperature (tens of millikelvins
from TNA) and far from this transition are calculated in the framework of the Ericksen–Leslie theory. The
decrease in the viscosity coefficients in the order η2 > η1 > η3 is explained by the fact that fluctuations of the
local smectic order in the nematic phase lead to a singular behavior of the viscosity coefficient η2, whereas the
other two viscosity coefficients η1 and η3 are not affected by order parameter fluctuations. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

As is shown in recent works [1–4], the theoretical
approach to describing dissipation processes in liquid
crystals continues to attract considerable research
attention. A number of qualitative and quantitative
advances have been made within the molecular theory
of rheological properties of nematic liquid crystals
upon shear flow at temperatures far from the tempera-
ture of the nematic–smectic A phase transition (N–SmA
transition) [5–9]. However, the theory describing the
rheology of nematic liquid crystals in the vicinity of
this transition at temperatures differing from the tem-
perature TNA by several tens of millikelvins is far from
complete. Since fluctuations of the local smectic order
parameter in the vicinity of the N–SmA second-order
phase transition lead to singularities in both the Frank
elastic constants and the rotational viscosity coefficient
γ1 [10–12], it can be expected that the Miesowicz shear
viscosity coefficients ηi (i = 1–3) should also possess
singularities in the vicinity of the temperature TNA [12].
Actually, when the nematic director n is oriented paral-
lel to the flow velocity v (n || v) and perpendicular to the
velocity gradient (n ⊥  —v), the lowest resistance to
nematic flow (the smallest viscosity coefficient η2 [13])
is observed in the nematic liquid crystal. Among the
other two viscosity coefficients, η1 and η3, the coeffi-
cient η1 (n || —v, n ⊥  v) is the largest and the value of
the coefficient η3 (n ⊥  —v, n ⊥  v) is close to that mea-
sured in the isotropic phase. Outside the pretransition
temperature range, the temperature dependences of the
shear viscosities are approximately parallel to each
other [13]. The viscosities of nematic liquid crystals
upon cooling can deviate from this behavior in the
1063-7834/04/4608- $26.00 © 21548
vicinity of the N–SmA phase transitions at temperatures
of the order of tens of millikelvins above the tempera-
ture TNA. Fluctuations of the order parameter of the
forming smectic A phase lead to a singular behavior of
the viscosity coefficient η2, whereas the other two vis-
cosity coefficients η1 and η3 are not affected by order
parameter fluctuations [11, 12]. Physically, this is
explained by the fact that the viscosity coefficients η1

and η2 change places; i.e., at temperatures differing
from the temperature TNA by less than tens of mil-
likelvins, the lowest resistance to flow is observed when
the director is perpendicular to both the velocity gradi-
ent and the flow direction. Our recent theoretical inves-
tigation [4] into the behavior of the rotational viscosity
coefficient γ1 in the vicinity of the phase transition of
4-n-octyl-4'-cyanobiphenyl (8CB) showed that the
critical behavior of the rotational viscosity coefficient

 should be expected only in the temperature range
0  <  t  < 10–3 (hereafter, we will use the dimensionless
temperatures t = T/TNA – 1), which is lower than
306.7 K (TNA ≈ 306.5 K for 8CB). On the basis of this
result and other theoretical data [11, 12], we can
assume that presmectic anomalies in the behavior of the
coefficient η2 should also be expected in the same tem-
perature range 0 < t < 10–3. In the present work, the tem-
perature difference between the phase transition tem-
perature TNA and the temperature of the nematic phase
at which the coefficient η2 exhibits pretransition anom-
alies will be determined within a theory based on the
results obtained earlier for the director rotation in the
vicinity of the N−SmA phase transition [4, 6, 11, 12].

γ1
c
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2. THEORY

The orientation of the director n in a shear flow is
determined by the balance of the torques acting on the
director. For a rapid shear flow, the elastic torques are
ignored [4] and the torque of the viscous forces can be
represented, according to the Leslie–Ericksen theory
[8, 9], in the general form Tvis = –n × [γ1N + γ2M · n],
where γ1 and γ2 are the rotational viscosity coefficients,
N = dn/dt – W · n is the vector of the rate of change
in the director with respect to the nematic flow, 2M =
—v + (—v)T, and –2W = —v – (—v)T. Here, M and W are
the symmetric and antisymmetric parts of the tensor of
the flow velocity gradient, respectively; the superscript
T indicates the transposition of the matrix correspond-

ing to —v; and dn/dt =  + v · —n. In a one-dimen-

sional model (the x–y plane is determined by the liquid-
crystal flow in the x direction and the velocity gradient
in the y direction; z is the vortex axis), we have v = v i ≡

. As a result, the torque of the viscous forces can be
represented in the following form:

(1)

where the vector m has the components (α2ny , α3nx , 0)
and the Leslie viscosity coefficients α2 and α3 are
related to the rotational viscosity coefficients through
the expressions α2 = (γ2 – γ1)/2 and α3 = (γ1 + γ2)/2.

The dynamic behavior of the director n (cosθ, sinθ)
in the shear plane can be reduced to two cases. In the
first case, the hydrodynamic torque

(2)

per unit volume of the nematic shear flow becomes zero
when the director is oriented at the equilibrium angle
θeq with respect to the flow velocity v [8, 9]; that is,

(3)

This condition is satisfied at |γ2 | > |γ1 |. In the second
case at |γ1 | > |γ2 |, the director continuously rotates in the
shear plane.

Let us consider the Miesowicz viscosity coefficients
ηi (i = 1–3) for a plane flow. These coefficients are
defined as the ratio between the yx component of the

stress tensor  and the shear rate  [8, 9]:

(4)
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The indices i = 1, 2, and 3 correspond to the cases
where the director n is parallel to the –x, –y, and –z
axes, respectively. The Miesowicz and Leslie viscosity
coefficients are related by the expressions [13]

(5)

From relationship (3), it follows that, at |γ1 | < |γ2 | or
α3 < 0 (because the inequality α2 < 0 is almost always
satisfied), the stationary solution to the torque balance
equation [see Eq. (1)] leads to orientation of the direc-
tor n in the v–—v  shear plane at a small angle θeq to the
flow direction. As the temperature TNA is approached
(upon cooling), an enhancement of order parameter
fluctuations gives rise to a torque Tfl acting on the direc-
tor n. At shear rates  ! 1 (τ is the maximum time of
structural relaxation), the inclusion of the torque Tfl
induced by the order parameter fluctuations leads to a
new torque balance equation [11, 12]: Tvis + Tfl = 0,
where

(6)

Here, ξ|| = ξ is the correlation length of the smectic
order,  = v/ |v |, and l is the interlayer spacing in the
SmA phase. Physically, the appearance of the torque Tfl
is associated with the influence of shear flow on fluctu-
ation regions. This implies that, in the region of thermal
fluctuations with n || v [2], the shear flow tends to rotate
layers, which results in a change in the interlayer spac-
ing and induces the restoring torque Tfl. By contrast,
the shear flow does not disturb the internal structure
through fluctuations at the director orientations i = 2
and 3. A comparison of the two torque balance equa-
tions with due regard for relationships (2) and (6)
shows that the smallest effect in order of magnitude of

 is reduced to the renormalization of γ1 and α3 (~η2);
that is,

(7)

Here, α3 and γ1 are the initial values (without regard for
fluctuations) of the Leslie and rotational viscosity coef-
ficients, respectively. By using the dynamic similarity
method, Jahnig and Brochard [11] revealed that the
relaxation time τ can be approximated by the expres-
sion τ ~ ξ3/2 and the correlation length ξ = ξ|| in a smec-
tic A liquid crystal in the range of reduced temperatures
close to the critical point can be approximated by the
relationship ξ = ξ0t –ν, where ξ0 is the dimension factor
and ν = ν|| is the corresponding critical exponent. This
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suggests that, at shear rates  ! 1, the quantities ,

, and  diverge as τ/ξ ~ t –ν/2 in the vicinity of the
phase transition temperature TNA. Since the inequality
α3 < 0 is satisfied virtually for all nematic liquid crys-
tals [14], the result obtained predicts that the effective
value of  should change sign in the neighborhood of
the temperature TNA and the lowest resistance to the
nematic flow should be observed when the director is
oriented perpendicular to both the flow velocity and the
flow velocity gradient and can be calculated from rela-
tionship (4) or (5) for η2.

It should be noted that there exists one more
approach to the description of the pretransition contri-
bution to the Leslie viscosity coefficient α3. According
to this approach, in the hydrodynamic regime q0ξ|| ! 1,

the critical contribution  to the corresponding Leslie
coefficient can be written in the form [10, 11]

(8)

where q0 = 2π/l, K1 is the elastic lateral bending strain,
and ρm is the density of the material. The correlation
lengths of the smectic A phase ξ|| in 8CB and 4-n-octy-
loxy-4'-cyanobiphenyl (8OCB) at temperatures close to
the critical point were measured using high-resolution
x-ray scattering by Davidov et al. [15]. The results
obtained in the range of reduced temperatures 5 ×
10−7 < t < 2 × 10–2 are as follows: ξ0 = 0.37 nm and ν =
0.67 for 8CB, ξ0 = 0.42 nm and ν = 0.62 for 8OCB, and
interlayer spacing in the smectic A phase l ≈ 2.0 nm for

both liquid crystals. The critical contributions  (or

) were calculated by Karat and Madhusudana [16]
with the use of the parameters ρm = 1000 kg/m3 and
K1 = 10 and 8 pN for the 8CB and 8OCB compounds,
respectively. Since the elastic lateral bending strain
does not exhibit an anomalous behavior in the vicinity
of the temperature TNA, both values of K1 were mea-
sured at the phase transition temperatures TNA of these
compounds. It should be emphasized that fluctuations
of the local smectic order parameter upon an N–SmA
second-order phase transition according to relation-
ships (5), (7), and (8) lead to a singularity only in the
behavior of the viscosity coefficient η2, whereas the
other two Miesowicz viscosity coefficients η1 and η3
are not affected by the new structure. This suggests that
the disturbing effect associated with the fluctuations of
the local smectic order parameter manifests itself in the
singular behavior of γ1. Note that the analytical expres-
sions for the rotational viscosity coefficient can be writ-
ten in two forms:  in the vicinity of the phase transi-
tion temperature TNA can diverge either as ~t ν/2 or as
~t ν – 1. Therefore, only comparison with experimental
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4
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PH
data on  makes it possible to choose the appropriate
form for describing the pretransition anomaly in the
behavior of . As the starting point, it is necessary to
calculate the pure contribution to the viscosity coeffi-
cient , namely, the viscosity coefficient γ1.

For this purpose, we will use the statistical-mecha-
nics approach to the theory of rotational viscosity γ1 [6].
In terms of this theory, the antisymmetric part of the

phenomenological stress tensor  = 1/2(α2 – α3) ×
(nN – Nn) + 1/2(α5 – α6)(nn · M – M · nn) = 1/2S[(γ1N +
γ2n · M) × n] (where S is the Levi-Civitá tensor) can be
represented as the mean equivalent microscopic tensor

 on the basis of the Zubarev method of a nonequilib-
rium statistical operator [17].

In essence, this approach is as follows: autocorrela-
tions of the microscopic stress tensor are considered
according to Fialkowski [7], and additional correlations
of both the stress tensor with the director and the flow
with the order parameter tensor are also taken into
account. As a result, the rotational viscosity coefficient
γ1 can be calculated as a function of the density ρ, order

parameter , and temperature T [6, 18, 19] and has the
form

(9)

where D⊥  is the coefficient of rotational self-diffusion
with respect to the short molecular axes, ρ = N/V is the
number density of molecules, s = (b2 – 1)/(b2 + 1) (b is
the length-to-width ratio of molecules) is the geometric
factor of molecules, and the function f is written in the
form

The mean value of the symmetric part  of the stress
tensor can be calculated by averaging its microscopic

equivalent  using the equilibrium orientational

distribution function φ(a) from the formula  =

φ(a)da, where a is the orientation of the long

molecular axis. In turn, the expression for the coeffi-
cient γ2 can be written as [5, 18, 19]

(10)

The Leslie coefficients αi (i = 2, …, 6) are expressed in
terms of the microparameters and macroparameters of
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Relaxation times , rotational diffusion coefficients D⊥ , and order parameters for 8CB [4] and 8OCB [18] nematic liquid
crystals

8CB (TNA = 306.5 K); T, K 306.72 306.80 308.00 310.00 312.00

 (ns) 19 20 27.8 22.7 18.6

D⊥  × 107 (s–1) 13 12.3 8.4 9.4 11.3

P2 0.57 0.053 0.44

P4 0.14 0.12 0.06

P6 0.07 0.05 0.03

8OCB (TNA = 339.5 K); T, K 340 345 350

 (ns) 30.4 19.5 12.1

D⊥  × 107 (s–1) 7.55 9.43 11.71

P2 0.55 0.47 0.38

P4 0.20 0.15 0.10

P6 0.05 0.03 0.02

τ00
1

τ00
1

τ00
1

the nematic liquid crystal as follows [5]:

(11)

where  (L = 1, 2) are the even-rank order parame-
ters, 1/λ = –γ1/γ2 = cos(2θeq), g = kBTρ/D⊥ , and the
Leslie coefficients in expressions (11) satisfy the
Onsager–Parodi relation α2 + α3 = α6 – α5.

Consequently, according to relationships (9)–(11),
the rotational viscosity coefficients γ1 and γ2 and the
Leslie coefficients αi appear to be inversely propor-
tional to the rotational self-diffusion coefficient D⊥ .
Note that, in the limit of high temperatures, the statisti-

cal-mechanics approach predicts that γ1 ~ . This
behavior of the rotational viscosity coefficient is con-
sistent with the mean-field theory [13]. It should be
noted that, although the order parameters for almost all
cyanobiphenyls were measured with a high accuracy
[20], determination of the mobility constants for rota-
tional diffusion remains considerably complicated.

By using the short-time expansion of the orienta-

tional time correlation functions (t) = (∞) +

α2 g 1 1
λ
---+ 

  P2, α3– g 1 1
λ
---– 

  P2,–= =

α4 g
2s
35
------ 7 5P2– 2P4–( ),=

α5 g
s
7
--- 3P2 P4+( ) P2+ ,=

α6 g
s
7
--- 3P2 P4+( ) P2– ,=

P2L

P2
2

Φmn
L Φmn

L
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[ (0) – (∞)]exp(–t/ ), the relaxation time 
can be represented in the form [18]

(12)

Here, the first-rank functions (L = 1) can be determined
by the dielectric spectroscopic techniques and the ori-
entational time correlation functions with L = 2 enter
into the expressions for the nuclear spin relaxation rate
and Raman band shapes. The experimental dielectric
spectroscopic data obtained by Bose et al. [21] were
used to calculate the complex permittivity e*(ω) =
Ree(ω) – iIme(ω) for the 8CB compound in the fre-
quency range 100 kHz ≤ ω ≤ 10 GHz. The experimental
data on the complex permittivity (ω) parallel to the

director n allow us to calculate the relaxation time 
with respect to the short axes of the 8CB molecules. In
turn, these relaxation times and the order parameters

 obtained from the polarized laser Raman scattering
data [20] can be used to calculate the rotational self-dif-
fusion coefficient D⊥  from formula (12). In [18], the

dynamic (D⊥ ) and structural (  at L = 1–3) character-
istics of the 8OCB compound over a wide temperature
range corresponding to the nematic phase were deter-
mined by NMR spectroscopy. The temperature depen-

dences of the relaxation time , the rotational self-
diffusion coefficient D⊥ , and the order parameter are
presented in the table. In order to calculate the Leslie
coefficients αi of these nematic liquid crystals, the
length and width of their molecules were chosen equal
to ~2.0 and 0.6 nm, respectively [15]. The number den-
sity of molecules ρ for the 8OCB and 8CB compounds
in the temperature range of the nematic phase was taken
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equal to 1.8 × 1027 m–3. The temperature dependences
of the Miesowicz viscosity coefficients ηi (i = 1–3) cal-
culated from relationships (5), (7), and (8) for the
8OCB compound are depicted in Fig. 1. The experi-
mental data in [14, 22, 23] were obtained by direct mea-
surements in the temperature range corresponding to
the nematic phase of the 8OCB compound. In the tem-
perature range far from the phase transition temperature
(logt > –4 or at temperatures 10 mK above the temper-
ature TNA), the calculated and measured Miesowicz vis-
cosity coefficients indicate that the smallest viscosity
coefficient η2 (η2 < η1 < η3) is observed when the nem-
atic-flow velocity v is parallel to the director n. The
temperature dependences ηi(T) for the two liquid crys-
tals are parallel to each other, except in the temperature
range in the vicinity of the clearing point [13]. The
dependences ηi(T) deviate from this behavior in the
neighborhood of the temperature TNA. As can be seen
from the temperature dependences ηi(T) in the range
−7 < logt < –3 (Fig. 2), the viscosity coefficients η1(T)
and η2(T) change places and the lowest resistance to the
flow is observed when the director is oriented perpen-
dicular to both the flow velocity v and the flow velocity
gradient —v. It should be noted that, according to the
experimental data on the viscosity coefficients η2(T)
and η1(T) for the nematic phase of the 8CB compound,
the viscosity coefficients η1(T) and η2(T) change places
only at Tc ≈ 343.64 K and the lowest resistance to the
shear flow upon cooling is observed when the director
is oriented perpendicular to both the flow velocity vec-
tor and the flow velocity gradient (i.e., η2 > η1 > η3). In
turn, the independent experimental measurement of the
rotational viscosity coefficient γ1 (Fig. 3) in the vicinity

TNA

342 346 350
0

40

80

ηi(i = 1, 2, 3), mPa s

1
2
3
4
5
6
7
8

Fig. 1. Temperature dependences of the Miesowicz viscos-
ity coefficients ηi (i = 1–3) for the 8OCB compound.
Results of calculations from formulas (5), (7), and (8):
(1) η1, (2) η2, and (3) η3. Experimental data: (4) η1, (5) η2,
(6) η3 [22], (7) η1, and (8) η3 [23].

T, K
PH
of the phase transition temperature TNA for the 8CB
compound demonstrates that the above exchange of
places of the coefficients occurs at temperatures logt <
–3 or at temperatures lower than 306.6 K (TNA ~306.5 K
for 8CB). The viscosity coefficients η2 calculated from
relationships (5), (7), and (8) indicate that the viscosity

~~ ~~

80

60

12

4

–5–7 –3
log(T/TNA – 1)

1
2
3

Fig. 2. Temperature dependences of the Miesowicz viscos-
ity coefficients ηi (i = 1–3) calculated from formulas (5),
(7), and (8) in the vicinity of the N–SmA phase transition
[−7 < log(T/TNA – 1) < –3] for the 8CB and 8OCB com-
pounds: (1) η2 for 8OCB, (2) η2 for 8CB, and (3) η3 for
8OCB. Stars indicate η1 for 8OCB, rhombuses correspond
to η1 for 8CB, and squares represent η3 for 8CB.

TNA

1
2
3

0.6

0.4

0.2

0
306.6 306.8 307.0

T, K

γ1, Pa s

Fig. 3. Temperature dependences of the rotational viscosity
coefficient γ1 calculated from (1) formulas (5) and (7) and
(2) formulas (5) and (8) in the vicinity of the N–SmA phase
transition [–7 < log(T/TNA – 1) < –3] for the 8CB com-
pound. Symbols 3 are the experimental data taken from
[23, 24].
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coefficients η1 and η2 change places at logt = –5.25
(≈306.502 K) for the 8CB compound and logt = –4
(≈339.540 K) for the 8OCB compound. It should be
noted that the use of formulas (7) and (8) to calculate
the contributions made to the rotational viscosity coef-
ficient γ1 by fluctuations of the local smectic order
parameter leads to virtually identical results in the tem-
perature range –7 < logt < –3 (Fig. 3).

3. CONCLUSIONS

Thus, the performed calculations of the Miesowicz
viscosity coefficients made it possible to describe the
viscous hydrodynamics in the vicinity of the N–SmA
phase transition more adequately.
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Abstract—The orientational order parameter S of molecules in high-temperature discotic nematic liquid-crys-
tal phases of triphenylene derivatives is investigated as a function of the length of side flexible molecular chains
at different temperatures. It is established that the orientational order parameters S in the range of the transition
from the nematic phase to the isotropic liquid phase (the ND–I transition) are smaller than those predicted from
the molecular-statistical theory and computer simulation. It is shown that the ND–I transition is close to both
the isolated Landau point and the tricritical point (regardless of the chemical structure of the molecules and the
anisotropy of dispersion intermolecular interactions). Consistent explanations are offered for a number of
experimental findings, such as the anomalously small changes in the enthalpy and entropy upon the ND–I tran-
sition (as compared to those revealed upon the N–I transition in calamitic nematic liquid crystals), the anoma-
lously strong response of the isotropic phase of discotic nematic liquid crystals to external fields (thermody-
namically conjugate to the order parameter S) and the long relaxation times of this response, and the formation
of cybotactic discotic molecular clusters in the isotropic phase in the vicinity of the ND–I transition. © 2004
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The phase transition from a discotic nematic phase
to an isotropic liquid phase (the ND–I transition) in liq-
uid crystals consisting of disk-shaped molecules is one
of the most intriguing phenomena in the physics of liq-
uid crystals. This transition has been the subject of
extensive experimental studies [1–12], molecular-sta-
tistical theoretical investigations [13–17], and com-
puter simulation [18–23]. Disk-shaped molecules
forming a discotic nematic phase consist of a planar
central aromatic core with a relatively large radius and
radial flexible aliphatic chains of specific length [24,
25]. In a uniaxial nonpolar homogeneously oriented
discotic nematic phase, the preferred axes l of disk-
shaped molecules are normal to the molecular planes
and are predominantly oriented along the director n.
The degree of orientational ordering in liquid-crystal
molecules is characterized by the order parameter S =
〈3cos2θ – 1〉/2, where θ is the angle between the vectors
l and n and the brackets 〈…〉  indicate statistical
averaging.

Discotic nematic liquid crystals are characterized by
anomalously small changes in the enthalpy ∆H = 0.02–
0.6 kJ/mol upon the ND–I phase transition [3–8, 12] as
compared to the enthalpy change ∆H = 1–6 kJ/mol [26]
observed upon the N–I phase transition in calamitic
nematic liquid crystals, which consist of rodlike or lath-
like molecules. From the Landau–de Gennes expansion
1063-7834/04/4608- $26.00 © 21554
for the thermodynamic potential of a nematic liquid
crystal into a series in powers of the parameter S, that is,

(1)

we obtain the following expression:

(2)

where TNI is the temperature of the ND–I phase transi-
tion (TNI > T*) and SNI = S(TNI)). Hence, it follows that
the smallness of the change in the enthalpy ∆H can be
associated either with the small values of SNI and the
similarity of the ND–I phase transition to the second-
order transition or with the smallness of the factor a.
Both variants lead to a number of physical conse-
quences. Since the specific features of the ND–I phase
transition are governed by the structural features of
disk-shaped molecules, this problem can be solved by
analyzing the available data on the influence of molec-
ular properties on the temperature dependence of the
orientational order parameter S(T). There are only a few
works devoted to the investigation of the dependence
S(T) for discotic nematic liquid crystals with the use of
refractometry [6, 9–11] and IR spectroscopy [12].

In this work, the dependence S(T) for the discotic
nematic phase of two high-temperature triphenylene
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derivatives was investigated using the anisotropy of
diamagnetic susceptibility of these compounds. Con-
sideration was given to the structural features of the
chosen molecules and their ordering, which are respon-
sible for the strong coupling of the orientational and
conformational degrees of freedom of molecules in the
discotic nematic phase. A correlation was revealed
between the dependence S(T) and molecular properties.
The results obtained were compared with those pre-
dicted from the molecular-statistical theory and com-
puter simulation. Consistent explanations were offered
for the known features of the ND–I phase transition.

2. OBJECTS OF INVESTIGATION
AND THEIR SPECIFIC FEATURES

Owing to the relatively dense molecular packing in
the nematic phase, the shape of the molecules deter-
mines the anisotropy of their local coordination envi-
ronment. In calamitic nematic liquid crystals, the vector
n is perpendicular to the direction of the shortest inter-
molecular distance which is comparable to the trans-
verse size of rodlike molecules. At the same time, in the
discotic nematic liquid crystals, the vector n is aligned
parallel to the direction of the shortest intermolecular
distance which is comparable to the thickness of disk-
shaped molecules. This difference in the local anisot-
ropy of the calamitic nematic and discotic nematic
phases, along with the structural–chemical features of
discotic molecules, accounts for the fact that the con-
formational state of side chains of these molecules in
the discotic nematic phase has a more profound effect
on the order parameter S and the dependence S(T) as
compared to that in the calamitic nematic phase.

The loose structure of discotic molecules with the
statistical symmetry axis Cn || l (n ≥ 3) is characterized
by large-sized holes between side chains of the mole-
cules, which is a prerequisite for a high conformational
mobility of the chains. As the chain length increases,
the free volume per chain of a discotic molecule
increases rapidly, which also enhances their conforma-
tional mobility.

In the discotic nematic phase, the planar aromatic
cores of the molecules are equivalent to the planes
restricting the conformational mobility of the chains of
neighboring molecules along the director. However, the
mobility in the directions normal to the director
remains sufficiently high and is restricted only by steric
repulsion of adjacent chains of the same molecule or by
the engagement of chains of the neighboring mole-
cules. An increase in the degree of orientational order
of molecular axes l with respect to the director n or in
the order parameter S leads to a decrease in the number
of conformational states responsible for the deviation
of the chains from the core plane. This favors an
increase in the anisotropy of the molecular shape and
enhances anisotropic steric intermolecular interactions.
On the other hand, the thermal conformational mobility
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
of the chains results in a decrease in their contribution
to the energy of the anisotropic intermolecular interac-
tion and has a disordering effect on the molecular cores.
The above factors are responsible for the interrelation
between the orientational order of molecules and the
conformational state of their chains in the nematic
phase. In turn, this interrelation should manifest itself
in the dependence of the magnitude and the tempera-
ture behavior of the order parameter S on the chain
length, especially in the case when the mesophase has
a high temperature corresponding to a high thermal
mobility of the molecular chains.

On this basis, the compounds of the homologous
series of 2,3,6,7,10,11-hexakis(4-n-alkyloxybenzoy-
loxy)triphenylenes (nOBT) at n = 6 and 11 [1] were
chosen as the objects of our investigation. The structure
of nOBT molecules is shown in Fig. 1.

The molecules of these compounds with an identical
number of side chains differ from those studied earlier
in [9–11] in terms of the point group of statistical sym-
metry C3, the chemical structure, the polar properties of
the aromatic cores, and the free volume per chain in an
individual molecule. For each fragment R, the angle ϕ1
between the plane of the triphenylene core and the
plane of the O(O)C bridging group varies from 61° to
81° [7]. The angle ϕ2 = 0 between the plane of the
O(O)C electron-acceptor fragment and the phenyl ring
provides the π conjugation of this fragment to the phe-
nyl ring and the electron-donor alkoxy chain. This
results in an increase in the anisotropy of molecular
polarizability. The distribution function f(ϕ3) has a
maximum at the angle ϕ3 = 0 [7]. Therefore, for the
methylene chain fragments that are adjacent to the
molecular core and predominantly adopt a trans con-
formation, the carbon backbone lies in the plane mak-
ing the angle ϕ4 = ϕ1 with the plane of the triphenylene
core. As the length of the chains increases, their side
fragments deviate from the core plane. This leads to an
increase in the thickness of the molecule and a decrease
in the anisotropy of the molecular shape. The anisot-
ropy of steric intermolecular interactions also
decreases.

Among the known compounds [25], the 6OBT
homolog has one of the highest temperature discotic
nematic phases. The nematic phase of the 11OBT

R

R

R R

R

R

O

O
O

CnH2n + 1ϕ1

ϕ2 ϕ3R =

Fig. 1. Structure of nOBT molecules.
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homolog is also observed at temperatures considerably
above the limiting temperature Tl = TNI(n  ∞) ≈
60°C at which the molecular chains do not affect the
phase transition point TNI for this homologous series
[27]. For all homologs of the nOBT series, the inequal-
ity TNI(n) > Tl holds true and an increase in n is accom-
panied by a monotonic decrease in the temperature
TNI(n). This implies a decrease in the anisotropy of
intermolecular interactions that stabilize the nematic
order of molecules. There is a scatter in the data avail-
able in the literature on the phase transition tempera-
tures TNI(n) for compounds of the nOBT series [1, 5, 12,
24, 25]; however, this scatter is not related to the aniso-
tropic properties of the discotic nematic phase on the
scale of the reduced temperature ∆T = TNI – T.

3. ORIENTATIONAL ORDER OF THE NEMATIC 
PHASE AND SPECIFIC FEATURES 
OF THE ND–I PHASE TRANSITION

The molecules under consideration are statistically

uniaxial, and the anisotropy ∆χm = (  – ) < 0 of the
diamagnetic susceptibility tensor of a discotic nematic
liquid crystal is determined only by the order parameter

S [11]. The components  and  correspond to the
magnetic field directions parallel and perpendicular to
the director. For the 6OBT and 11OBT homologs, there
are data on the dependence of the specific diamagnetic
anisotropy ∆χm(T) for the discotic nematic phase ori-
ented in a magnetic field [1]. These dependences were

obtained from the relationship ∆χm = 3(  – ) under

χ||
m χ⊥

m

χ||
m χ⊥

m

χ i
m χ⊥

m

260 270250

0.40

0.32

0.24

168 172 176

T, °C

T, °C

S

Fig. 2. Temperature dependences of the order parameter S
in the discotic nematic phase for nOBT homologs at n = (1)
6 and (2) 11. Solid lines represent the results of interpola-
tion according to relationships (3) and (4).

1

2

P

the assumption that the diamagnetic susceptibility 
in the isotropic phase coincides with the average dia-
magnetic susceptibility in the nematic phase  =

(  + 2 )/3, which does not depend on the tempera-
ture and the degree of molecular ordering. Since the
contribution of alkyl chains to the anisotropy of dia-
magnetic polarizability of the studied molecules is neg-
ligible [28], the dependences ∆χm(T) can be used to
determine the order parameter S:

(3)

Here, the value of ∆χm0 = ∆χm (T = 0, S = 1) can be
determined from the approximate relationship

(4)

which was theoretically justified in terms of expansion (1)
[9–11]. Here, we have TH > TNI. Figure 2 shows the
dependences S(T) thus calculated with parameters
∆χm0 = –(1.267 ± 0.027) × 10–7 cm3/g, TH = 550 ±
0.27 K, and β = 0.241 ± 0.007 for the 6OBT compound
and ∆χm0 = –(0.811 ± 0.082) × 10–7 cm3/g, TH = 451 ±
0.38 K, and β = 0.248 ± 0.027 for the 11OBT com-
pound. The order parameters for each homolog at the
highest temperatures correspond to the values of SNI

[1]. It can be seen from Fig. 2 that the dependences S(T)
are approximated well by expressions (3) and (4). For
identical differences ∆T = TNI – T, the order parameter
S for the 11OBT homolog with long chains is smaller
than that for the 6OBT homolog with short chains
(especially at temperatures close to the phase transition
point TNI). This indicates that the thermal mobility of
chains has a disordering effect on the orientational
order of the molecular cores in the range of the ND–I
phase transition. For the intermediate homolog 8OBT
of the studied series with the phase transition tempera-
ture TNI = 238°C and a wide range of existence of the
nematic phase, the order parameters S(∆T), which were
obtained from the data on the dichroism of the IR
absorption band at frequency ν = 1603 cm–1 for homeo-
tropically oriented samples, vary in the range from 0.27
to 0.6 [12]. For identical differences ∆T, these order
parameters fall in the range between the corresponding
values for the 6OBT and 11OBT homologs. Therefore,
an increase in the chain length of the nOBT homologs
leads to a monotonic decrease in the order parameter S
in the range of the ND–I phase transition. A similar
decrease in the order parameter S with an increase in
the chain length was observed earlier for the low-tem-
perature reentrant discotic nematic phase of truxene
derivatives [29] and, most likely, can be considered a
general property of discotic nematic liquid crystals.

The values of β = 0.24–0.25 for the above homologs
are close to those determined for the previously studied
liquid crystals [6, 9–11] with a different molecular
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structure and different parameters A = 3(γt – γl)/(γl +
2γt), where γl and γt are the longitudinal (along the l
axis) and transverse components of the molecular
polarizability, respectively. The parameter A character-
izes the relative anisotropy of the molecular polariz-
ability and dispersion intermolecular interactions in the
nematic phase. The close values of β indicate that the
steric intermolecular repulsion plays a decisive role in
the orientational ordering of discotic nematic liquid
crystals, as is the case with calamitic nematic liquid
crystals.

The experimental values of the order parameter
S(∆T) for the homologs under consideration and the
compounds studied earlier in [6, 9–12] are considerably
smaller than the parameters predicted from the Maier–
Saupe molecular-statistical theory [13], especially in
the vicinity of the phase transition temperature TNI. The
approaches based on generalizing this theory with a
more detailed analysis of the anisotropic intermolecular
interactions [14–16] and intermolecular correlations of
short-range order [17] lead to overestimated values of
S(∆T) and do not offer correct interpretation of the
experimental data. The molecular dynamics simulation
of a system of particles in the form of oblate ellipsoids
of revolution [21–23] predicts the sequence of the I–
ND–Colhd phase transitions with the order parameter
SNI = 0.5–0.7 and large values of S = 0.7–0.95 for the
discotic nematic phase. These results differ signifi-
cantly from the experimental data. Therefore, the
experimentally observed features in the dependence
S(∆T) for discotic nematic liquid crystals cannot be
explained without considering the structural features of
real discotic molecules and intramolecular degrees of
freedom in the framework of the molecular-statistical
theory and in the computer simulation.

The sequence of the I–ND–Colhd phase transitions
was also predicted by the Monte Carlo method for an
athermic system of disk-shaped particles (cut spheres
with diameter Ds and thickness L) at L/Ds < 0.14 [20].
However, in this system, the ND–I phase transition is a
weak first-order transition with the order parameter
SNI = 0.3–0.4. For a system of N disk-shaped particles
in a volume V with L = 0 and an effective density ρ =

 [18, 19], the order parameter SNI ≈ 0.37 corre-
sponds to the temperature of the ND–I phase transition
at ρ = ρNI and the dependence S(ρ) in the discotic nem-
atic phase is approximated well by the relationship S ~
(ρ – ρ1)β, where β = 0.23 ± 0.03. Here, the quantities ρ1
and β are similar to the quantities TH and β in for-
mula (4). The small difference between the calculated
and experimental values of β confirms the above
assumption regarding the role played by the steric inter-
molecular interactions in the ordering of the discotic
nematic phase.

Therefore, when changing over from models of
ellipsoidal molecules with a three-dimensional shape
(D = 3) [17, 21–23] to models of disk-shaped molecules

NDs
3
/V
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with a small thickness (dimension D ≈ 2) [18, 19], the
calculated parameters SNI and β approach the experi-
mental values. The loose structure of discotic mole-
cules with large-sized holes between radial side chains
suggests that the shape of these molecules has a dimen-
sion D < 2. The value of D depends on statistical sym-
metry of molecules, the structure of the molecular core,
the number of flexible chains, and their length. This
ensures a mutual penetration of the chains of neighbor-
ing molecules in the nematic phase (similar to engaged
gears) and hinders the rotation of molecules about the l
axes and their sliding relative to one another in planes
normal to the director. This type of intermolecular cor-
relation, which is not taken into account or described in
any of the known theoretical approaches or computer
simulation, corresponds to the high viscosity of discotic
nematic liquid crystals, which exceeds the viscosity of
calamitic nematic liquid crystals by one or two orders
of magnitude [4].

The experimental dependences S(∆T) for calamitic
and discotic nematic liquid crystals over the entire
range of existence of the mesophase are described with
a high accuracy in terms of expansion (1) with inclu-
sion of the terms up to S6 [9–11]. Note that, at B ≠ 0, the
contribution from the term ~S 5 is insignificant. Since
the values of β for discotic nematic liquid crystals are
close to 0.25, both coefficients B and C in expansion (1)
are small; i.e., the ND–I phase transition is close to the
isolated Landau point (B = 0) and the tricritical point
(C = 0). The smallness of the coefficients B and C for
discotic liquid-crystal molecules can be due to the
dimension of these molecules (D < 2) and the interrela-
tion between the orientational order of the molecules
and the conformational state of their flexible chains.
The former factor is associated with the mutual pene-
tration and engagement of the neighboring molecules
located in the plane normal to the director. This factor
brings about the formation of molecular associates with
an effective biaxial shape, which leads to a decrease in
the coefficient B [30]. The interrelation between the
order parameter S and the conformational mobility of
chains provides a decrease in the coefficient C [11].

The order parameters SNI for the discotic nematic
liquid crystals considered in this paper and studied ear-
lier in [6, 9–12] are smaller than those for calamitic
nematic liquid crystals. However, the difference is
insignificant. Therefore, the anomalously small
changes in the enthalpy ∆H [expression (2)] upon the
ND–I phase transition, as compared to the enthalpy
change observed upon the N–I phase transition, are
determined primarily by the smallness of the factor a
for the discotic nematic liquid crystals. In turn, the
smallness of the factor a suggests a considerable bare
correlation length ξ0 for equilibrium thermal fluctua-
tions of the order parameter S. For the isotropic phase,
the bare correlation length can be represented in the
form ξ0i = (L/aT*)1/2 [10]. In the one-constant approxi-
mation of the elasticity theory, the parameter L and the
4
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elastic modulus K of the nematic liquid crystal are
related by the expression K = 2S2L [28]. Since the elas-
tic moduli (like the order parameters S) for calamitic
and discotic nematic liquid crystals are close to each
other [3–5], the correlation length ξ0i for the discotic
nematic liquid crystals should be severalfold greater
than ξ0i ≈ 6 Å for the calamitic nematic liquid crystals
[31] and should be comparable to the diameter of disk-
shaped molecules.

According to the x-ray scattering data [1, 4], the
mean intermolecular distance along the director n in the
discotic nematic phase d|| ≈ 4.5 Å is substantially
smaller than the molecular diameter. Structurally, from
the inequality ξ0i @ d|| for discotic nematic liquid crys-
tals, it follows that the isotropic and nematic phases
should contain cybotactic molecular clusters with a
strong correlation of several molecules along the direc-
tor n. This is confirmed by the x-ray scattering data
obtained for nOBT homologs with polar molecules [1]
and other liquid crystals with nonpolar molecules [4].
The latter circumstance implies that the polarity of dis-
cotic molecules is not a controlling factor in the forma-
tion of cybotactic clusters.

The small values of the enthalpy change ∆H indicate
a small change in the entropy ∆Ξ = ∆H/TNI . In turn, the
smallness of the entropy change ∆Ξ means that
cybotactic clusters consisting of several molecules
rather than individual molecules serve as structural
units upon the ND–I phase transition. Moreover, this
transition is attended by an insignificant transformation
of the local structure of the material. This inference is
consistent with the aforementioned consequences of
the smallness of the factor a.

The factor a characterizes the susceptibility χi =

(∂2Φ/∂S2  = [a(T – T*)]–1 of the isotropic phase of
the nematic liquid crystal to external actions and deter-
mines the amplitude of anomalous changes in the
anisotropic properties of this phase in response to exter-
nal fields (thermodynamically conjugate to the order
parameter S) as the temperature of the I–ND phase tran-
sition is approached [10, 11]. Furthermore, the small-
ness of the factor a indicates long relaxation times τ ~
χi [32] for anisotropic properties induced by external
fields in the isotropic phase for a fixed difference T –
T*. This explains not only the anomalously high bire-
fringence ∆n ~ χi, which is induced by shear flow in the
isotropic phase of the discotic liquid crystal [8] with
an anomalously small value of ∆H = 20 ± 10 J/mol,
but also the large Kerr constant B ~ χi for the electric
birefringence ∆nE in the isotropic phase of the dis-
cotic nematic liquid crystal in the vicinity of the phase
transition temperature TNI and the long relaxation
time τ ~ χi for the quantity ∆nE as compared to the
relaxation time characteristic of calamitic nematic
liquid crystals [4].

)S 0=
1–
P

4. CONCLUSIONS

Thus, the above analysis of the experimental data on
the properties of discotic and calamitic nematic liquid
crystals has demonstrated that the difference in their
properties and the specific features of the ND–I phase
transition are associated with the structural features of
loose discotic molecules and can be consistently
explained in terms of the smallness of the factor a in
expansion (1).
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Abstract—The phase diagrams of transitions from an isotropic phase to nematic and smectic phases are inves-
tigated within a simple phenomenological model of the Landau thermodynamic potential. The conditions of the
isomorphic phase transition between two uniaxial smectic phases and the direct transition from the isotropic
phase to the uniaxial and biaxial smectic phases are determined. The behavior of the order parameters is
described along different thermodynamic paths. The theoretical results are discussed using the example of liquid-
crystal phases in compounds with banana-shaped achiral molecules. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Phases (mesophases) in liquid crystals are charac-
terized by orientational and partial positional orders
and, according to the Friedel classification [1], can be
separated into two main types, namely, nematic (N) and
smectic (Sm) phases. In a nematic phase, anisotropic
molecules (rods, disks) are predominantly oriented
along a preferred direction n, which is referred to as the
director. The centers of gravity of liquid-crystal mole-
cules are disordered, as is the case with the simple iso-
tropic (I) liquid. There are two types of nematic liquid
crystals with achiral molecules that differ in terms of
their physical properties, namely, uniaxial (Nu) and
biaxial (Nb) nematic liquid crystals [2–8]. The specific
features of the phase diagram (PD) of transitions
between these phases were investigated within the Lan-
dau theory of phase transitions by Prostakov et al. [9].

Smectic liquid crystals have a layered structure and
are separated into three main types: SmA, SmC, and
SmB [2]. In the structure of smectic liquid-crystal
phases, apart from the orientational order, there exists a
partial translational order with a specific spacing
between layers. Inside each layer, molecules are ori-
ented, but their centers of gravity are disordered, so that
each layer can be represented as a two-dimensional liq-
uid [2].

Recent investigations revealed a biaxial smectic
phase in liquid crystals with achiral molecules [10–14].
For this phase, it is possible to choose a direction char-
acterizing the biaxiality of the phase with the unit vec-
tor m lying in the layer plane (m ⊥  p, where p is the
vector normal to the smectic layer). In this case (for
nonpolar molecules), the phase is invariant with respect
to the transformation m  –m. According to de
Gennes [2], this smectic phase is designated as CM. In
1063-7834/04/4608- $26.00 © 21560
[13, 14], the corresponding smectic phase was denoted
by Sm Ab. In what follows, we will use the latter abbre-
viation, because it characterizes the phase properties
completely; namely, the letter A indicates the director
orientation n || p and the letter b stands for the phase
biaxiality. Therefore, the uniaxial smectic phase with
n || p will be designated as Sm Au. The particular inter-
est expressed by researchers in investigating the prop-
erties of Sm Ab phases is explained by two main factors.
First, a number of phases that have hitherto been classi-
fied as SmC phases can appear to be Sm Ab phases
according to their optical biaxiality [15, 16]. Second, in
recent works [13, 14], it was revealed that the Sm Ab
phases with achiral molecules exhibit ferroelectric
properties.

In this work, the specific features of the phase dia-
gram of liquid crystals and the behavior of a number of
physical quantities upon transitions from an isotropic
phase to uniaxial nematic, uniaxial smectic A, and biax-
ial smectic A phases were investigated in the frame-
work of the Landau theory of phase transitions. The
possibility of a direct transition occurring from an iso-
tropic phase to a uniaxial A smectic phase was theoret-
ically studied in [15–24]. In particular, Prostakov [24]
proposed a simple model of Landau transitions from an
isotropic phase to uniaxial smectic A and uniaxial nem-
atic phases. In the present work, the model of the Lan-
dau potential in the fourth order was used to determine
the conditions for the existence of a smectic A phase
and to describe a number of transitions, such as (i) a
transition between two isostructural phases Sm Au(I)
and Sm Au(II), which differ in the degree of ordering of
molecular orientation and the thickness of smectic lay-
ers; (ii) Sm Au–Sm Ab–Nu phase transitions; and (iii) a
direct I–SmAb phase transition. Moreover, we analyzed
004 MAIK “Nauka/Interperiodica”
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all types of phase diagrams that are possible within the
proposed model and the behavior of the order parame-
ters along different thermodynamic paths (TP).

2. MODEL OF THE THERMODYNAMIC 
POTENTIAL

The formation of nematic and smectic phases from
an isotropic liquid phase can be adequately described
within the phenomenological approach in the frame-
work of the Landau theory of phase transitions [25].
The symmetry of an isotropic phase (praphase) com-
posed of achiral molecules is described by the space
group G0 = T(3) × O(3), where T(3) is the translation
group and O(3) is the full orthogonal group in three-
dimensional space. For a phase transition to a nematic
phase, the order parameter, which can be transformed
according to the irreducible representation of the G0
group, is a symmetric traceless tensor of second rank,
Qik(r) [2]. The tensor field Qik(r) describes both the
degree of order (the degree of molecular orientation)
and the orientation (direction) of molecules at each
point r. In the homogeneous case, it is assumed that the
tensor Qik does not depend on r. This approximation
holds for the majority of nematic liquid crystals with
achiral molecules for which the Frank elastic constants
Ki (i = 1–3) are positive in sign [2, 21].

Let us choose the coordinate system ei, i = x, y, z
(where ei are the unit vectors along the x, y, and z axes,
respectively), in which Qik is the diagonal tensor; that is,

(1)

From relationships (1), it follows that the director n
is aligned parallel to the z axis. Now, we introduce the
triad of orthogonal vectors n, m, and l = m × n, for
which ni = ( ), mi = ( ), and li = ( ). Then, the
tensor Qik takes the form

(2)

The changeover to layered smectic phases leads to
violation of the continuous translational symmetry G0
of the isotropic phase. For the smectic A phase under
consideration, the violation occurs only in one direc-
tion, for example, along the z axis. In this case, the
phase transition is described by a two-component order
parameter, which is a one-dimensional density wave
along the direction q || z [2], that is,

(3)

where ρ0 is the density in the absence of layers and |Ψ|
is the modulus determining the strength of the smectic
order parameter. The wave number can be represented
as q = 2π/d, where d is the interlayer spacing. In the
general case, the modulus |Ψ| depends on the x, y, and

Qxx = 1/2 η1 3η2–( ), Qyy–  = 1/2 η1 3η2+( ),–

Qzz η1, Qik 0, i k, i k,≠ x y z., ,= = =

ei'ez ei'ey ei'ex

Qik 1/2η1 3nink δik–( ) 3/2η2 lilk mimk–( ).+=

ψ r( ) ρ0 Ψ iqz( ),exp+=
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z coordinates. We assume that the modulus |Ψ| does not
depend on r.

By retaining only the terms up to the fourth order in
the integer rational basis set of invariants, which
involves both order parameters, we find that the ther-
modynamic potential depends on the following seven
functions:

(4)

In the present formulation of the problem, the biax-
iality is determined only by the orientational order
parameter Qik and the inhomogeneity is governed only
by the smectic order parameter Ψ(z). Physically, the
presence of the invariant I6 among invariants (4) means
that the smectic ordering is accompanied by orienta-
tional ordering. With the use of expressions (1) and (3),
invariants (4) can be rearranged into the form

(5)

(6)

By retaining the terms up to the fourth order in the order
parameter in the expression for the thermodynamic
potential, we obtain a simple model potential similar to
that derived in [24]:

(7)

Compared to the potential proposed in [24], the poten-
tial Φ defined by expression (7) includes the additional

term .

3. MODELS OF LIQUID-CRYSTAL PHASES

The system of equations of state for the model ther-
modynamic potential (7) has the form

I1 QilQli, I2 QimQmlQli,= =

I3 ψ 2
, I4 ∇ iψ( ) ∇ iψ*( ),= =

I5 ∆ψ 2
, I6 Qik ∇ iψ( ) ∇ kψ*( ),= =

I7 QimQmk ∇ iψ( ) ∇ kψ*( ).=

I1 2/3 η1
2 η2

2
+( ), I2 3/4 η1

3
3η1η2

2
–( ),= =

I4 q
2 Ψ 2

, I5 q
4 Ψ 2

,= =

I6 η1q
2 Ψ 2

, I7 η1
2
q

2 Ψ 2
.= =

Φ η1 η2; Ψ q, ,( ) a1 η1
2 η2

2
+( ) b1 η1

3
3η1η2

2
–( )+=

+ a2 η1
2 η2

2
+( )

2
α1* Ψ 2 α2 Ψ 4

+ +

+ λ1 Ψ 2
q

2 λ2 Ψ 2
q

4 γ1*η1q
2 Ψ 2

+ +

+ γ2 η1
2 η2

2
+( ) Ψ 2 γ3*η1

2
q

2 Ψ 2
.+

γ3*η1
2
q

2 Ψ 2

∂Φ
∂η1
--------- 2a1η1 3b1 η1

2 η2
2

–( ) 4a2 η1
2 η2

2
+( )η1+ +=

+ γ1* Ψ 2
q

2 γ2 Ψ 2η1 γ3* Ψ 2η1
2

+ + 0,=
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(8)

and admits the solutions corresponding to the following
phases.

The isotropic phase exists under the conditions

(9)

The uniaxial nematic phases can be observed when
the following conditions are satisfied:

(10)

The Sm  uniaxial smectic phases is observed
when

(11)

The Sm Ab biaxial smectic phase exists under the
following conditions:

(12)

As will be shown below, the model under consider-
ation describes the sequence of the I–Sm –Sm Ab–

 phase transitions. In this case, the behavior of the
biaxiality in the biaxial smectic A phase is similar to the
behavior of the biaxiality described for the biaxial nem-
atic phase in [9], because the biaxiality of the system is
governed only by the orientational order parameter. The

biaxiality reaches a maximum at  =  and van-

ishes in the lines corresponding to the Sm –Sm Ab

and Sm Ab–  phase transitions.

4. PHASE DIAGRAM

In order to construct the phase diagram, it is neces-
sary to determine the stability regions for each phase
(9)–(12) in the space of variable parameters of the
model thermodynamic potential Φ (7). The global min-
imum of the model (all phases exist at finite order
parameters), which is obtained by the method proposed

∂Φ
∂η2
--------- = 2η2 a1 3b1η1– 2a2 η1

2 η2
2

+( ) γ2 Ψ 2
+ +[ ]  = 0,

∂Φ
∂ Ψ
---------- = 2 Ψ α1 2α2 Ψ 2

2λ2q
4

–+[

+ γ2 η1
2 η2

2
+( ) ]  = 0,

∂Φ
∂q
------- 2 Ψ 2

q λ1 2λ2q
2 γ1*η1 γ3*η1

2
+ + +( ) 0= =

η1 η2 0, Ψ 0.= = =

Nu
+
: η1 0, η2> 0=

η2 = 3η1± η1 0<,( ), Ψ 0;=

Nu
–
: η1 0, η2< 0=

η2 = 3η1± η1 0>,( ), Ψ 0.=

Au
±

η1 0, η2≠ 0, Ψ 0, q 0.≠ ≠=

η1 0, η2 0, Ψ 0, q 0,≠ ≠ ≠ ≠

η2
2

3η1
2

– γ1*q
2 Ψ 2 γ3*η1q

2 Ψ 2
+( )/3b1.=

Au
+

Nu
+

3η2
2 η1

2

Au
+

Nu
+

PH
in [9], requires that the following conditions be satis-
fied:

(13)

In the model potential Φ (7), the parameters a1, α1,
λ1, and b1 are variable parameters that depend on the
external conditions and determine the space of the com-
plete phase diagram. As a rule, experimental phase dia-
grams are represented by two-dimensional diagrams in
which the pressure P, temperature T, and concentration
c serve as variable parameters. Such two-dimensional
phase diagrams can be obtained from the complete n-
dimensional diagram (in our case, n = 4) through the
transformation Rn(ai)  R2(x1, x2), where xi = T, P, or
c and i = 1, 2. The simplest variant of the transformation
Rn  R2 can be written in the form

(14)

The assumption that λ1 = const is justified, because
the layer thickness in the experiments only weakly
depends on external conditions [in our model, owing to
the interaction with the orientational order parameter
(15)]. The assumption that b1 = const (hereinafter, b1 < 0
for definiteness) is supported by the fact that, at b1 < 0
and b1 > 0, the topological features of the phase diagram
R2(a1, α1) are retained upon the change η1  –η1. In
this case, from the system of equations of state, we find

. (15)

Substitution of this relationship into formula (7) gives

(16)

where

The model of the effective thermodynamic potential
F(η1, η2; |Ψ|) (16) for the uniaxial and biaxial smectic
A phases should be analyzed with due regard for the
additional condition following from the reality condi-
tion q2 > 0 [see relationship (15)], that is,

(17)

In order to construct the phase diagram for different
model parameters γ1, γ2, and γ3, we first determine the

complete bifurcation set of the parameters  and 
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A

O
a 1

a 1
in R2(a1, α1) from the degeneracy conditions for the
matrix of second derivatives of the potential F(η1, η2;
|Ψ|) with respect to the order parameters (Hessian Hik).

The bifurcation set BB( , ) ∈  R2(a1, α1) can be
found from the condition det ||Hik || = 0 for the order
parameters obtained for each phase from the system of
the equations of state (8)–(12). The problem associated
with constructing the phase diagram is reduced to

determination of the subset of the parameters  and

 ∈  BPD, which lead to degeneracy of the solutions
of the system of the equations of states corresponding
to minima of the thermodynamic potential F(η1, η2;
|Ψ|) (16).

The parameters  and  ∈  BPD determine the
conditions for the loss of stability of an equilibrium

a1
b α1

b

a1
PD

α1
PD

a1
PD α1

PD
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(absolute minimum) or metastable (local minimum)
state of the system.

(i) For the isotropic phase, we have

(18)

Equations (18) describe the OE and MD lines (Fig. 1).
(ii) The uniaxial nematic phase is characterized by

the order parameters

The degeneracy conditions for the solutions of the
equation of state are given by

(19)

The discriminant equation (the KG line in Fig. 1) deter-
mined by the condition 3b1 + 8a2η1 = 0 has the form

η1 0, η2 0, Ψ 0, a1 0, α1 0.≥ ≥= = =

η1 0, η2≠ 0, Ψ 0.= =

Det Hik 18b1η1–( )η1 3b1 8a2η1+( )=

× η1
2 α1 γ1η1 γ2 γ3+( )η1

2
+ +[ ] 0.=
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(20)

This equation in the phase diagram R2(a1, α1) describes
the reality region of the solutions to the equation of
state of the uniaxial nematic phase, that is,

(21)

In the phase diagram R2(a1, α1), between the lines
corresponding to relationships (18) and (21), there exist
two solutions of Eq. (21) for a given a1, namely, one
maximum and one minimum (η1min > η1max), and one
minimum at a1 < 0. For the model under consider-
ation, the condition –18b1η1 ≥ 0 following from rela-
tionships (18) leads to η1 > 0 at b1 < 0. A similar con-

dition for domains with η2 = ±  gives η1 < 0. The
stability condition with respect to fluctuations of the
order parameter Ψ [equality of the expression in the
square brackets in formula (19) to zero] results in the
equation for the KC line (Fig. 1):

(22)

The GK and KC lines are joined at the K point and form
a smooth GKC line:

(23)

The stability region of the  uniaxial nematic phase
is bounded by the GKC line (Fig. 1). In the GMOE
(Figs. 1a, 1b, 1d) and GKC (Fig. 1b) regions, the isotro-

pic and  phases coexist. The first-order transition
between these phases occurs along the line described
by the expression

(24)

(iii) Let us now consider the uniaxial smectic A phase.
The condition det ||Hik || = 0 for the uniaxial smectic

A phase takes the form

(25)

where ∆1 = 4a2α2 – (γ2 + γ3)2 and, together with
Eqs. (26), determines the complete bifurcation set of
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the parameters  and . From condition (25), it fol-
lows that, at |Ψ| = 0 and η1 = 0, the degeneracy condi-
tion is determined as α1 = 0. By setting the expression
in the curly brackets in formula (25) equal to zero, we
obtain the discriminant for R2(a1, α1). This discriminant
in the parametric form can be expressed through the
equations

(26)

The K1QO line [Eqs. (26)] has a cusp Q (Figs. 1a, 1b) at

(27)

The line that corresponds to the condition for loss of
stability of the uniaxial smectic A phase with respect to
fluctuations of η2 (∂2F/∂2η2 ≥ 0), with allowance made
for the effective equation of state (26), is described by
the relationship

(28)

The line corresponding to the condition |Ψ|2 ≥ 0 (at
η1 ≠ 0) coincides with that determined by relation-
ships (23), is tangent to the discriminant line at the K1

point, and then merges with this line. At γ1 < 0, there is
an interval of values of the parameters a1 and α1 in
which two stable solutions for the Sm  phase coexist
(P1QK1, γ2 > 0, Fig. 1a; OPQ, γ2 > 0, Fig. 1b). In these
regions, the isostructural first-order phase transition
can occur between the two smectic phases Sm (I)

and Sm (II) [η1(AI) < η1(AII)]. The line of this tran-
sition ends at a critical point of the liquid–vapor type.
The Sm (I) and Sm (II) phases differ in terms of
the orientational order parameter, the layer thickness,
and the order parameter |Ψ| (Fig. 2). The K1 point is the
tricritical point of the Sm –I transition at which the
second-order transition (CK1 line in Figs. 1a, 1b)
becomes a first-order transition. At γ1 > 0, the Sm
phase can border on the SmAb biaxial smectic phase.

(iv) Now, we analyze the biaxial smectic A phase.
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The effective equation of state for η1 in the biaxial
smectic A phase (at γ3 = 0) can be written in the form

(29)

For the biaxial smectic A phase, we have

(30)

where ∆2 = 4a2α2 – .

According to relationship (30), the conditions for
loss of stability of the biaxial smectic A phase are as
follows. Making allowance for the effective equation of
state (29), the  discriminant curve

(31)

can be represented by a straight line.
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The  line corresponds to |Ψ| = 0. At η2 = 0, the
condition for loss of stability of the biaxial smectic A
phase coincides with condition (22) for the uniaxial
nematic phase. At η2 ≠ 0, there appears an additional
condition

(32)

The  line at η2 = 0 and |Ψ| ≠ 0 coincides with
the line that corresponds to the condition for loss of sta-
bility of the uniaxial smectic A phase [relationship
(28)]. There can exist four topologically different types
of phase diagrams depending on the signs and ratios of
the nonvariable parameters b1, γ1, γ2, and γ3 (Fig. 1;
a2 = 4, α2 = 0.5, b1 = –0.2, γ3 = 0).

(i) At γ1 < 0 (Figs. 1a, 1b), the phase diagram R2 =

(a1, α1) contains stability regions of the I, , and

Sm  phases and regions of the metastable Sm  and
SmAb phases (shown by dotted rectangles). As follows
from the equation of state (29), in the region of the

BSm Ab

a1 3b1η1 8a2η1
2
,–=

α1 –γ1η1 4γ2η1
2
.–=

CSm Ab

Nu
+

Au
+

Au
–

4
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Sm  phase, the isostructural first-order transition is
possible between the two isomorphic smectic phases
Sm (I) and Sm (II) at b1 < γ1(γ2 + γ3)/2a2 (η1 > 0).

The direct first-order transition to the Sm  phase can
occur at γ2 < 0 (Fig. 1b). The first-order transition

between the  and Sm  phases transforms into a
second-order transition at the tricritical point J1.

(ii) The situation observed in the phase diagram R2 =
(a1, α1) at γ1 > 0 (Figs. 1c, 1d) differs fundamentally
from the results obtained in [21, 22, 24]. In this case,
there exist stability regions of the I, , Sm , and

SmAb phases, whereas the Sm  phase is metastable.

The transitions from the  and Sm  phases to the
SmAb biaxial smectic phase (at the K2 and K3 tricritical
points, respectively) can be first- and second-order
phase transitions. The I–SmAb direct first-order transi-
tion is possible. At γ2 > 0 (Fig. 1c), there exists a first-

order phase transition between the  and SmAu

phases.

5. BEHAVIOR OF THE ORDER PARAMETERS 
ALONG THE THERMODYNAMIC PATHS

The performed analysis of the phase diagram
(Fig. 1) makes it possible to investigate the behavior of
physical quantities and order parameters along differ-
ent thermodynamic paths. The thermodynamic path in
the phase diagram R2(a1, α1) is represented by a straight
line described by the dependence of the variable param-
eters a1 and α1 on one external variable [for example,
x1 = x2 = T in relationships (14)]. In this case, the depen-
dences a1 = a1(T) and α1 = α1(T) can be represented in
the form [24]

(33)

where aN and αA are constants and  and  are the
temperatures of the loss of stability of the isotropic
phase upon transition to the uniaxial nematic and
uniaxial smectic A phases, respectively.

Relationship (33) can be written as

(34)

where α0 = αA(  – ) and k = αN/αA.

Figure 2 depicts the dependences of the orienta-
tional order parameter η = (η1, η2), the smectic order
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a1 T( ) aN T TN*–( ), α1 T( ) αA T TA*–( ),= =

TN* TA*

α1 α0 ka1,+=
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P

parameter |Ψ|, and q = 2πd–1 in several phases at differ-
ent values of α0 and k along the thermodynamic paths:

(35)

Note that the behavior of the order parameters along the
thermodynamic paths TP3–TP6 has not been studied
previously. The main features observed in the above
dependences along these paths can be summarized as
follows.

(1) Along the thermodynamic path TP3 (Fig. 2a), the
direct first-order transition from the isotropic phase to
the Sm  uniaxial smectic A phase is observed at

. In our model, the nematic and smectic order

parameters increase from zero and the layer thickness
d( ) increases jumpwise with a decrease in the tem-
perature. The isomorphic transition accompanied by a
jumpwise change in the quantities , , and 
occurs at TAI–AII (Fig. 2a).

(2) Along the path TP4, the I–  first-order phase

transition takes place at . In the  phase, the

director (domains) can have three different orientations
in the chosen laboratory coordinate system:

It should be noted that the z axis specifies the orienta-
tion of smectic layers p = (0, 0, pz) and the director in
domains I, II, and III is aligned along the z, y, and x
axes, respectively. Upon an Nu–SmAb phase transition
(first-order or second-order transition; K is the tricriti-
cal point) at (T = ), the director, which is deter-
mined in the biaxial phase by the eigenvector with the
largest eigenvalue of the tensor [9], lies in the plane of
smectic layers. As the temperature of the Sm  phase
is approached (Fig. 2c), the biaxiality reaches a maxi-
mum and becomes equal to zero upon an SmAb–Sm
phase transition. In this case, the director is oriented
perpendicular to the layer plane. Upon an Nu–SmAb
second-order phase transition, the dependences η1(a1)
and η2(a1) exhibit kinks.

(3) Along the path TP5, the direct first-order transi-
tion from the isotropic phase to the biaxial smectic A
phase is observed at TI–SmAb (Fig. 2c).
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(4) The phase transition from the isotropic phase to
the biaxial smectic A phase can occur through the inter-
mediate Sm  phase (thermodynamic path TP6). The

Sm  phase with symmetry  (Fig. 2d) is formed
in compounds with discotic molecules. The director
perpendicular to the plane of disks is oriented normally
to layers (Qzz < 0, Qyy = Qxx). In the SmAb biaxial smec-
tic phase (D2h), in the vicinity of the transition (for
small biaxiality of the molecules), the director is per-
pendicular to layers and the biaxiality vector m lies in
the layer plane. In the stability region of the biaxial
smectic A phase, the director in the line determined by
the conditions Qyy, – Qxx = Qzz – Qxx changes the orien-
tation by π/2 and is aligned along the orientation of rod-
like molecules.

The results obtained at b1 < 0 are topologically iden-
tical to those for the phase diagram and the behavior of
the order parameters at b1 > 0 when the  and Sm
phases are replaced by  and Sm  phases, respec-
tively.

6. DISCUSSION

The investigation performed in terms of the simple
model of thermodynamic potential (7) revealed a num-
ber of new features in the transitions from the isotropic
phase to the nematic and smectic phases (compare with
[18–24]).

(1) The isotropic phase can undergo a direct first-
order transition to the uniaxial smectic A phase. This

transition occurs at T =  along the thermodynamic
paths TP2 and TP6 (Figs. 1c, 2a, 2d) under the following
conditions:

(36)

At α1 = 0 and a1 > a1(I–Nu), upon a first-order phase
transition, the smectic order parameter |Ψ| is primary
and the nematic order parameter η = (η1, 0) arises as a
secondary order parameter due to the interaction
γ1η1 |Ψ|2 (η1 ≈ |Ψ|2 in the vicinity of the phase transi-
tion). The thickness d of smectic layers increases jump-
wise to a final value at the phase transition point. In the
experiments, the I–Sm  direct transition was
observed as a first-order transition [26–32] upon which
both the nematic and smectic order parameters arise in
a jumpwise manner. Such a transition becomes possible
when condition (36) or the inequality α2 < 0 is satisfied
for the corresponding compounds. Note that, in this
case, the term α3 |Ψ|6 should be taken into account.

(2) The Sm (I)–Sm (II) isomorphic phase
transition is attended by a stepwise increase in the nem-
atic and smectic order parameters, which leads to an
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increase in the thickness of smectic layers. The line of
this transition ends at a critical point Q of the liquid–
vapor type (Figs. 1a, 1b).

(3) In recent years, liquid crystals with achiral
mesogens BCa have been investigated extensively [13,
14, 26–35]. It is in these compounds that the biaxial
smectic phase has been found [13 14, 26–32]. A BCa
molecule (mesogen) has biaxial symmetry C2v and con-
sists of two spherocylinders oriented along the unit vec-
tors e1 and e2 [e1e2 = cos(180°–γ) = –cosγ]. This dimer
molecule is uniaxial at γ = 0 and biaxial at γ ≠ 0 [33]. At
small angles γ, the molecule (rod) is aligned along the z
axis (  phase). At large angles γ, the vector perpen-
dicular to the plane of the molecule (disk) is oriented
along the z axis (  phase). At intermediate angles γ,
there arises an Nb nematic biaxial phase, which is not
considered in our model. The Sm , Sm , and
SmAb smectic phases are formed in a similar manner.

(4) In our case (b1 < 0), the director n of the BCa

molecule in the biaxial smectic A phase upon an –
SmAb transition lies in the plane of smectic layers. It is
this orientation that was experimentally found by
Sadashiva et al. [29]. The compound studied in [29] is
the first example of a single-component system with
BCa molecules that form the liquid-crystal phase under
consideration. The smectic phases (SmAu uniaxial
phase, SmAb biaxial phase) found in this compound
differ from those observed in mixtures of rodlike and
BCa molecules in which the director is oriented perpen-
dicular to the layers [28]. Note that, at b1 > 0, the Sm
phase can undergo a transition to the SmAb phase. In
this case, the director of BCa molecules is perpendicu-
lar to the smectic layers.

In conclusion, it should be noted that, in order to
describe the Nb biaxial nematic phase, strong nonlinear
interactions (terms up to the sixth order) should be
included in the Landau potential, whereas the forma-
tion of the SmAb biaxial smectic A phase can be
described with due regard for terms up to the fourth
order. The reason for this is that the biaxiality in the
biaxial smectic A phase is stabilized through the sec-
ondary interaction of two order parameters (invariant
γ1η1|Ψ|2); as a result, more highly nonlinear interac-
tions are effectively taken into account [34, 35]. The
inclusion of terms up to the sixth order in the nematic
order parameter in the Landau potential will make it
possible to describe the Nb–SmAb and Nb–Nu first- and
second-order transitions.
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Abstract—A comparative analysis of the stability factors and electronic structure of two possible crystalline
forms of small fullerene C28 and endohedral fullerene Zn@C28 with diamond and lonsdaleite structures is per-
formed using a cluster model. Atoms of elements that, when placed inside C28 cages, have no significant effect
on the stability of free small-fullerene molecules are shown to be able to dramatically change the electronic
properties and reactivity of the C28 skeleton and to be favorable for forming small-fullerene crystalline modifi-
cations, which are covalent crystals. In contrast, if the presence of foreign atoms inside C28 cages stabilizes the
isolated nanoparticles, then molecular crystals (such as C60 fullerites) are formed due to weak van der Waals
forces. © 2004 MAIK “Nauka/Interperiodica”.
The discovery of small fullerene C28 [1] in 1993 in
the form of the U@C28 endohedral complex has stimu-
lated theoretical and experimental studies on its stabil-
ity and the development of methods for producing it in
the free state and in the form of various complexes.
Analysis of the electronic structure and stability of
fullerene C28 has shown that it is more stable than its
isomers in the form of a ring or a planar layer [2–4].
However, this fullerene is a radical with four unpaired
electrons (S = 2) [5], which are localized on the atoms
shared by pentagons (Fig. 1). This state is responsible
for the high reactivity of the C28 polyhedral nanopar-
ticle.

The C28 cage can be stabilized by forming endohe-
dral fullerenes M@C28 in which M atoms are in the M4+

configuration (e.g., d elements Ti, Zr, Mo, W, Ru, Os;
f elements U, Ce, Th, Pu; p elements Si, Ge) [5–9].
Endohedral fullerenes with other M atoms are unstable
and reactive. The C28 fullerene can also be stabilized by
replacing part of the carbon atoms with atoms of other
elements. It was shown in [5, 10] that heterofullerenes
C24B4 and C24N4 with symmetry Td are stable particles
with closed electron shells.

Finally, C28 becomes stable when its free valences
are saturated through linking with hydrogen or halogen
atoms, alkyl groups, etc., on the outer side of the
fullerene to form an exohedral fullerene. Saturation is
also attained when C28 molecules are joined together to
form polymers, films, or crystals [5, 11].

It has been found that the formation of [C28]n poly-
mer chains and diamond-structure C28 crystals (so-
called hyperdiamonds) is favored energetically [11].
Energy-band calculations showed [12] that hyperdia-
1063-7834/04/4608- $26.00 © 21569
mond C28 is a semiconductor with a band gap of
~1.5 eV; its lattice parameter, elastic modulus, and den-
sity were calculated in [13]. When doped, hyperdia-
mond C28 is suggested to undergo a transition to a
superconducting state; estimates of the electron–
phonon interaction constants [14] show that the critical
temperature of alkali metal–doped phases MxC28 is
approximately eight times higher than that of fullerides
MxC60. However, attempts to synthesize hyperdiamond
C28 have not yet met with success.

In this paper, we perform a comparative analysis of
the electronic structure and stability factors of two pos-
sible crystalline modifications of C28 with diamond-
and lonsdaleite-type structures, as well as of analogous
crystals of endohedral complex Zn@C28. It is well
known that zinc is not a stabilizer of small fullerenes;
therefore, the properties of endohedral fullerene
Zn@C28 and C28 are similar in many ways.

We described the C28 and Zn@C28 crystals with dia-
mond and lonsdaleite structures (space groups Fd3m,
P63/mmc) using clusters (C28)5H12 and (Zn@C28)5H12
with symmetries Td and C3v , respectively (Fig. 1). The
boundary conditions are imposed by introducing
hydrogen atoms, which “close” the unsaturated bonds
of the clusters. The total energies Etot of the clusters and
the energies of molecules C28, Zn@C28, C28H4, and
Zn@C28H4 are calculated using the AM1 method [15]
within the Hartree–Fock approximation for fully opti-
mized geometry. The electronic structure of the model
clusters is found following the self-consistent electron
density functional method and the discrete-variation
technique with a numerical atomic orbital basis [16,
17]. The Gunnarsson–Lundqvist local exchange-corre-
004 MAIK “Nauka/Interperiodica”
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Fig. 1. (I) Fullerene Zn@C28 and (II, III) clusters
(Zn@C28)5H12 modeling (II) diamond- and (III) lonsdaleite
structure crystals with Td and C3v  symmetry, respectively.
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lation potential [18] is used. The basis atomic orbitals
are determined by solving the Hartree–Fock–Slater
equation for isolated atoms. In calculating the matrix
elements, numerical integration is carried out using
96000 points (1000 points for each of the C and H
atoms and 2000 points for each of the Zn atoms), and
the energy levels are determined with an accuracy of
better than 0.1 eV.

Knowing the total energies of fullerenes C28 and
Zn@C28 and their clusters (C28)5H12 and (Zn@C28)5H12
(Table 1), we can find the energy of association of
fullerenes ∆Etot (per fullerene mole) by first calculating
the bonding energy of the C–H bond, E(C–H), for the
systems in question (Table 2). For example, the energy
∆Etot of association of C28 fullerenes is defined as

where

It can be seen from Table 2 that the formation of the
C28 and Zn@C28 crystals is favored in all cases (∆Etot <
0). It is significant that the values of the energy of asso-
ciation ∆Etot for the diamond- and lonsdaleite-structure
C28 crystals are very close to each other; they differ by

∆Etot Etot C28( )5( )/5 Etot C28( ),–=

Etot C28( )5( ) Etot C28( )5H12( ) 12E C–H( ),–=

E C–H( ) Etot C28H4( ) Etot C28( )– 4E H( ).–=
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Fig. 2. Calculated electron densities of states of various
crystals (structures): (a) C28 (diamond), (b) C28 (lonsdale-
ite), (c) Zn@C28 (diamond), and (d) Zn@C28 (lonsdaleite).
The Fermi level corresponds to zero energy.

E, eV
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Table 1.  Total energies Etot of the C28 and Zn@C28
fullerenes and clusters modeling diamond- and lonsdaleite-
structure crystals (AM1 calculations)

System
(symmetry)

–Etot,
kcal/mol

System
(symmetry)

–Etot,
kcal/mol

C28 81976.3997 Zn@C28 82439.3854

C28H4 83378.8486 Zn@C28H4 83820.9341

(C28)5H12 
(Td)

414307.5974 (Zn@C28)5H12 
(Td)

416512.6825

(C28)5H12 
(C3v)

414306.5933 (Zn@C28)5H12 
(C3v)

416814.3787

Table 2.  Differences ∆Etot between the total energies of free
fullerenes C28 and Zn@C28 and of their crystalline modifica-
tions (AM1 calculations)

Reaction* –∆Etot, kcal/mol

C28 (gas)  C28 (solid) (1) 43.6505

C28 (gas)  C28 (solid) (2) 43.4497

Zn@C28 (gas)  Zn@C28 (solid) (1) 34.2218

Zn@C28 (gas)  Zn@C28 (solid) (2) 94.5611

* Formation of C28 (solid) and Zn@C28 (solid) crystals with
(1) diamond or (2) lonsdaleite structure.

Table 3.  Lattice constants a and c and density ρ of the C28
and Zn@C28 crystalline modifications (AM1 calculations)

System* a, nm c, nm ρ, g/cm3

C28 (1) 1.6110 – 1.07

C28 (2) 1.1292 1.8462 1.10

Zn@C28 (1) 1.6074 – 1.28

Zn@C28 (2) 1.1427 1.8542 1.27

* (1) Diamond and (2) lonsdaleite structures.
PHYSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
less than ~0.2 kcal/mol. Therefore, experimentally, it
will be difficult to prepare C28 crystals with these struc-
tures in the uncombined state (e.g., hyperdiamond C28
predicted in [12, 13]). The disordered (amorphous) C28
phase will most likely be formed (see also [19]).

For endohedral fullerene Zn@C28, the difference in
the energy of association between crystals with differ-
ent structures is large (more than 60 kcal/mol), with the
lonsdaleite-structure Zn@C28 crystal being more likely
to form. Therefore, atoms placed inside the C28 cages
can significantly change the reactivity of the C28 skele-
ton, thereby shifting the equilibrium toward the forma-
tion of a particular crystalline modification.

Table 3 lists the values of the lattice constants a and
c and density of hypothetical crystals of fullerenes C28
and Zn@C28 calculated for the optimized geometry of
the model clusters. According to our calculations, a =
1.611 nm for hyperdiamond, which agrees well with
the results of DFT–LDA energy band calculations
(1.64 nm [12]) and thereby supports the validity of the
model used. The density of the C28 and Zn@C28 crys-
tals turns out to be about one-third that of diamond
(Table 3).

The calculated densities of states of the crystalline
modifications of C28 and Zn@C28 are very close to one
another (Fig. 2). In the C28 crystals, the quasi-core C2s
states with an admixture of the C2p states form a set of
bands in the range from –20 to –13 eV below the Fermi
level, EF. The uppermost occupied band consists pre-
dominantly of the C2p states responsible for σ and π
bonds in the C28 fullerenes, with the π bonds being
associated with the well-defined peaks in the density of
states near EF. The bottom of the conduction band is
formed by the C2p states. Both crystalline modifica-
tions of C28 exhibit an energy spectrum typical of a
semiconductor, with a band gap of about 2 eV.

The electronic energy spectra of the analogous
Zn@C28 crystals differ significantly. On the whole, the
relative position and widths of the bands corresponding
to the carbon 2s and 2p states are similar to those for the
Table 4.  Bond populations for carbon atoms in the C1–C8 positions (Fig. 1) in the C28 and Zn@C28 crystalline modifications
calculated using the discrete variation method

System* Bond** Population, e Bond Population, e Bond Population, e

C28 (1) C1–C2 0.372 C2–C3 0.431 C3–C4 0.830

Zn@C28 (1) C1–C2 0.371 C2–C3 0.452 C3–C4 0.927

C28 (2) C1–C2 0.365 C2–C3 0.406 C3–C4 0.547

C5–C6 0.370 C5–C7 0.433 C7–C8 0.533

Zn@C28 (2) C1–C2 0.367 C2–C3 0.410 C3–C4 0.444

C5–C6 0.343 C5–C7 0.452 C7–C8 0.526

  * (1) Diamond and (2) lonsdaleite structures.
** The Zn–C1,2 interactions correspond to antibonding (bond population is negative).
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Fig. 3. Electron density distributions (a, b) in diamond-structure crystals of (a) C28 and (b) Zn@C28 and (c, d) in lonsdaleite-struc-
ture crystals of (c) C28 and (d) Zn@C28.
C28 crystals. However, in the energy spectrum of hyper-
diamond Zn@C28, the filled band of Zn4s states (Fig. 2,
peak A) lies above the uppermost filled carbon π bands.
As a result, the band gap in this phase narrows to
~1.6 eV. The Zn3d states lie in the range from –20 to
−16 eV.

The lonsdaleite-structure Zn@C28 crystal has an
energy spectrum typical of metals. The carbon density
of states is also analogous to that in the lonsdaleite-
structure C28 crystal; however, the position of the zinc
energy levels differs significantly from that in hyperdia-
mond: the Zn3d states lie in the range from –12 to
−11 eV, and the Zn4s and C2p states form a mixed-type
band crossing the Fermi level.

The interatomic interactions in the C28 and Zn@C28
crystals are covalent in character (Fig. 3) and are deter-
mined mainly by the overlap between the C2s and C2p
states and between different C2p states. The bond pop-
ulation is significant between the carbon atoms that
form the hexagons of the C28 cage. Weaker bonds are
formed between the atoms of these rings and the atoms
shared by three pentagons. The atoms via which
fullerenes link are bonded even more weakly (Table 4).
However, the populations of these bonds are compara-
ble in magnitude, which fundamentally distinguishes
the crystals under study from “classical” fullerites (e.g.,
fcc-C60); the latter are molecular crystals where indi-
vidual molecules are linked via van der Waals forces
[20–23]. The Zn atoms are not bonded to the carbon
atoms.

Thus, comparative analysis of the electronic struc-
tures and stability of the crystalline modifications of
fullerene C28 and endohedral fullerene Zn@C28 has
shown that, while a Zn atom placed inside a C28 cage
does not have a significant effect on the stability of the
free small-fullerene molecule, it can dramatically
change the reactivity of the C28 skeleton and the elec-
tronic properties of its crystalline modifications and
P

render fabrication of the latter impracticable. It is
important that these modifications are covalent crystals
in which the interactions are due to hybridization
between states of carbon atoms belonging to neighbor-
ing fullerenes. One might expect that, in the case where
M atoms placed inside C28 cages stabilize the isolated
nanoparticles, such endohedral fullerenes can be used
to fabricate molecular crystals in which nanoparticles
interact via van der Waals forces, as is the case in C60
fullerites.
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Abstract—The effect of a bismuth sublayer with an effective thickness of 0.5 to 4 nm on the structure of C60
fullerene films grown on amorphous substrates (silicon covered with a natural oxide layer; glass) using the
quasi-closed-volume method is studied. An x-ray diffraction study of fullerene films showed that the intensity
ratio between the (220) and (111) peaks depends nonmonotonically on the sublayer thickness. In the bismuth
sublayer thickness range 0.5–2.0 nm, fullerene films are found to exhibit a growth texture with the 〈110〉  axis;
the average crystallite size was ~20 µm. The quality of the texture can be improved by varying the fullerene
growth temperature. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The fabrication of oriented C60 fullerene films on
traditional substrates in electronics (silicon, germa-
nium, gallium arsenide) offers possibilities for the use
of fullerene C60 in nanotechnologies. Perfectly textured
C60 films have been produced only on layered sub-
strates with an appropriate structural geometry, e.g., on
mica [1–3]. The quasi-closed-volume method enables
one to obtain a highly perfect 〈111〉  texture in C60
fullerene films grown on mica substrates. The typical
rocking-curve half-width for (111) reflections of the
films was 0.25°–0.5°, and the maximum reflectivity for
FeKα radiation reached 12%, which is close to the the-
oretical value for fullerenes [3]. Only Makarova et al.
[1] succeeded in growing a fullerene film with (111)
texture on an amorphous substrate; however, the grain
size of the film did not exceed a few micrometers.

To grow textured films on nonoriented substrates,
the substrate surface is frequently covered with a sur-
face-active substance (surfactant), such as bismuth,
antimony, or arsenic. With an antimony sublayer
0.5 nm thick, C60 fullerene films with 〈111〉  texture
were obtained in [4] with grains several micrometers in
size. For growing a fullerene film, bismuth is more
preferable as a surfactant, because it has a larger atomic
radius and, hence, a smaller diffusion coefficient for
diffusion into the fullerite and substrate. According to
[5], in the initial stage of bismuth sublayer growth,
dimers Bi2 are observed to unite into linear chains,
which are favorable for forming a texture in C60 films.

In this work, we study the influence of bismuth
nanolayers on the texture and grain size of C60 fullerene
films grown on glass and on the natural amorphous
oxide covering a (100) single crystal silicon.
1063-7834/04/4608- $26.00 © 21574
2. EXPERIMENTAL TECHNIQUE

C60 fullerene films were grown on a bismuth nano-
layer using the quasi-closed-volume method. A vertical
quartz tube with two graphite bases at its ends was used
as an evaporation chamber. Inside the chamber, sub-
strates were placed near the top base and an evaporator
was placed on the bottom base. The evaporator con-
sisted of a graphite crucible (closed with a graphite cap
with calibrated holes) and a channel transporting bis-
muth vapor from an evaporation molybdenum cell
loaded with metallic bismuth. When the cell was
removed, the channel in the bottom base of the evapo-
ration chamber was closed off with a heated shutter.
The crucible of the evaporator, the quartz walls of the
evaporation chamber, the evaporation cell, and the sub-
strates were heated by external tungsten heaters. A
pumping-out system based on an Orbitron-type getter-
ion pump was used, which provided a residual pressure
of lower than 10–5 Pa in a pumped volume. C60 films
were grown at a residual pressure of lower than 5 ×
10−4 Pa.

As substrates, cover glasses and (100) single-crystal
silicon plates covered with natural amorphous oxide
were used. Substrates were washed in distilled water,
acetone, and n-hexane. Prior to depositing a bismuth
sublayer, substrates were heated in vacuum to a temper-
ature of 673 K. The initial materials to be evaporated
were fullerene C60 of purity higher than 99.98% and
bismuth of purity higher than 99.99%. A bismuth nano-
layer was deposited at a substrate temperature Ts =
400 K, with the bismuth being completely evaporated
in the evaporation cell, which was located under the
channel transporting bismuth vapor. Bismuth sublayers
differing in thickness were obtained by varying the
amount of bismuth in the evaporation cell. After depo-
sition of a sublayer, the substrate temperature was
004 MAIK “Nauka/Interperiodica”
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increased to 550–560 K (which is higher than the melt-
ing point of bismuth) and a fullerene film 15 to 100 µm
thick was grown on the substrate.

The effective thickness of bismuth sublayers was
determined from the intensity of the BiLα analytic line
in the x-ray fluorescence spectrum using a Sprut 2 spec-
trometer. The perfection of texture was judged from the
peak-intensity ratio between the (220) and (111) reflec-
tions. X-ray diffraction studies were performed in the
θ–2θ geometry using a DRON-3M diffractometer
(CuKα radiation monochromatized in the diffracted
beam by reflecting from the (002) plane of graphite).

3. RESULTS AND DISCUSSION

Since the condensation coefficient of bismuth dif-
fers from unity above room temperature [6], we exper-
imentally determined the dependence of the effective
sublayer thickness on the substrate temperature for a
fixed amount of bismuth charged into the evaporation
cell and with the evaporation regime held constant
(Fig. 1). As the temperature increases, this thickness
sharply decreases starting from 400 K and the conden-
sation coefficient approaches zero and does not exceed
1% at 450 K. In the temperature range 400–450 K, the
condensation coefficient decreases by approximately
1% as the temperature decreases by one kelvin. There-
fore, the temperature should be kept constant very
accurately in order to exactly dose the amount of bis-
muth for the sublayer. The highest substrate tempera-
ture at which the condensation coefficient does not vary
significantly with temperature is 400 K. At this temper-
ature, the sublayer thickness is dictated by the amount
of bismuth charged into the evaporation cell and can be
closely controlled by this amount.

1.0

0.6

0.2

0

h/hR

300 350 400 450 500
T, K

Fig. 1. Dependence of the effective bismuth sublayer thick-
ness h on the substrate temperature (hR is the thickness of a
bismuth sublayer deposited at a substrate temperature of
273 K).
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An x-ray diffraction study of fullerene films grown
on a bismuth nanolayer revealed a difference in peak
intensity between the (220) and (111) reflections
(Fig. 2). In the absence of a sublayer, their peak-inten-
sity ratio is close to unity, which is typical of a poly-
crystal without texture (Fig. 2a). The presence of a
nanolayer causes this ratio to increase sharply up to 20–
30 (Fig. 2b), which indicates the formation of texture
with the 〈110〉  axis. Such texture is observed in the case
of both silicon and glass substrates. Texture arises only
in a limited range of bismuth sublayer thicknesses (0.5
to 2 nm) and almost disappears as the thickness
increases (Fig. 2c). It is of great importance that, in this
thickness range, the texture can be improved (up to
I220/I111 = 120) by varying the temperature conditions
of fullerene growth, while outside this range a notice-
able texture cannot be achieved (Fig. 3). The (110) tex-
ture peak half-width can be decreased to a few kelvins,
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Fig. 2. Variations in intensity of the (111) and (220) x-ray
diffraction peaks from C60 fullerene films grown on a bismuth
sublayer with thickness (a) h = 0, (b) 0.5, and (c) 1.5 nm.
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which indicates that the C60 fullerene can grow through
autoepitaxy on amorphous substrates.

We grew fullerene films at temperatures exceeding
the bismuth melting temperature; therefore, the ori-
ented growth of C60 is not caused by the sublayer crys-
tal structure. Crystallographic (110)-type planes of a
fullerene fcc lattice are not habit planes; therefore, this
type of texture is unlikely to arise spontaneously. The
formation of texture can be due to the presence of bis-
muth dimer nanofilaments. If the sublayer thickness is
small, dimers and nanofilaments of bismuth cover only
part of the free substrate surface (being located prima-
rily on defects with broken bonds). During deposition
of fullerene C60 under conditions of a quasi-closed vol-
ume, where evaporation of fullerene from a substrate is
comparable in rate to its condensation, C60 molecules
can deposit predominantly along bismuth nanofila-
ments in the initial stage of film growth. C60 molecule
chains arranged along bismuth nanofilaments can serve
as a basis for forming the [110] close-packing direc-
tions of the growing fullerite crystal. As the sublayer
thickness increases, the bismuth sublayer transforms
into a set of islands through coalescence. In this case,
C60 molecules condense for the most part on liquid bis-
muth droplets and on the amorphous substrate surface,
in which there is no nanoscale relief in the form of bis-
muth filaments and dimers; therefore, texture does not
form.

30

20

10

0

0 1 2 3 4
h, nm

I220/I111

Fig. 3. Intensity ratio between the (220) and (111) reflec-
tions from fullerene as a function of the bismuth sublayer
thickness.
P

In the presence of a bismuth nanolayer, the grain
size in fullerene films increased up to 20 µm and on the
substrate surface there were crystallites 100 µm in size,
which occupied several percent of the surface area.
Note that, in films deposited on substrates without a
bismuth sublayer, the crystallite size did not exceed
1 µm. The increase of the crystallites in size is probably
due to bismuth concentrating primarily on defects of
the substrate and deactivating broken bonds on its sur-
face. This process decreases the quantity of nucleation
centers and enhances fullerene diffusion over the sub-
strate surface, which results in enlarged grains and
improves the structure of growing films.

4. CONCLUSIONS

The growth of fullerene films with (110) orientation
is most likely due to the formation of ordered bismuth
nanostructures on the amorphous substrate surface. The
coarsening of grains in fullerite is associated with the
deactivation of broken bonds in amorphous silicon
oxide by adsorbed bismuth; this process decreases the
quantity of nucleation centers and enhances surface dif-
fusion of fullerene.
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Abstract—The structure of single-wall carbon nanotube Y junctions of symmetry D3h containing topological
defects in the form of six heptagons or three octagons located immediately in the junction region of each pair
of nanotubes forming the Y junctions is investigated, and their classification is suggested. It is shown that the
pairs of heptagons in a Y junction formed by nanotubes of the “zigzag” type can be arranged in two ways and
can be transformed into one another by using the (6, 7, 7, 6)  (7, 6, 7, 6) Stone–Wales transformation and
that the octagon and pairs of heptagons in a Y junction formed by nanotubes of the “armchair” type can be trans-
formed into one another by introducing or removing a C2 cluster. A method for constructing such Y junctions
is suggested. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

After the discovery of carbon nanotubes (CNTs) by
Iijima [1], numerous experimental [2–6] and theoreti-
cal [6–10] studies of CNT-based multiterminal struc-
tures, namely, junctions of L, X, Y, and T-types, have
been carried out. It has been shown that such structures
can be used as nanotransistors and nanodiodes [11–18].

It is known that, depending on their diameter and
chirality, which are determined by the chiral vector (n,
m), where n and m are integers [19], single-wall CNTs
can be either conducting [of the (n, n) or (n, m) type
with n = m + 3q)] or semiconducting [of the (n, m) type
with n ≠ m + 3q, where q is an integer]. Thus, multiter-
minal junctions can be formed from nanotubes of dif-
ferent conductivity. In 1992, the possible formation of
a continuous junction from two different nanotubes
through the introduction of a pentagon–heptagon pair
was predicted [7, 8]. If one of the two nanotubes is
metallic and the other is semiconducting, then their het-
erojunction is a rectifying diode [20, 21]. Such two-ter-
minal junctions have recently been observed [22, 23].

In order to use Y junctions in electronic devices, one
needs high-yield fabrication of junctions that are uni-
form in shape and size; therefore, the first experimental
observations of CNT Y junctions [2] did not attract spe-
cial attention from scientists because of the difficulties
involved in fabricating uniform structures. Only quite
recently have controlled methods for producing Y junc-
tions been developed, using aluminum patterns [3] and
also through the pyrolysis of organometallic products
[5]. Using the former of these methods [3], Y junctions
were fabricated with a “stem” exceeding the
“branches” in diameter and with an acute angle
between them; CNT Y junctions with equal angles
1063-7834/04/4608- $26.00 © 21577
(120°) between all nanotubes were synthesized by
chemical vapor deposition [5].

2. STRUCTURE AND CLASSIFICATION
OF Y JUNCTIONS

From a topological point of view, the formation of
nanotube Y junctions is possible only in the presence of
topological defects between the nanotubes forming a
junction. As a rule, these defects are pentagons, hepta-
gons, and octagons. The number of topological defects
in such Y junctions can be defined by the Euler formula
for polyhedrons of an arbitrary type G [24]:

(1)

where N(5), N(7), and N(8) are the total numbers of
pentagons, heptagons, and octagons, respectively. The
number of hexagons in such a polyhedron is arbitrary.
If two Y junctions are joined perfectly, a closed second-
order surface is formed. For such a surface, the total
number of defects is twice that for each of the two Y
junctions forming this surface:

(2)

where n(5), n(7), and n(8) are the numbers of penta-
gons, heptagons, and octagons in such a Y junction.
Using Eq. (2), Eq. (1) can be written in the form

(3)

We note that pentagons, in pairs with additional hep-
tagons, can be present in a Y junction; however, the
presence of such pairs is not obligatory. Therefore, in
this study, we set n(5) = 0.

We consider only CNT Y junctions of symmetry D3h

(a C3 axis of third order, three symmetry planes σv con-

N 7( ) 2N 8( ) N 5( )–+ 12G 12,–=

N 5( ) = 2n 5( ), N 7( ) = 2n 7( ), N 8( ) = 2n 8( ),

n 7( ) 2n 8( ) n 5( )–+ 6.=
004 MAIK “Nauka/Interperiodica”
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taining this axis, and a symmetry plane perpendicular
to it) consisting of nonchiral nanotubes either of the (n,
n) armchair type or of the (n, 0) zigzag type. They con-
tain defects located in the regions of the nanotube cou-
pling (Fig. 1). We call these CNT junctions basic Yb

junctions (the subscript b means basic), since other Y
junctions of symmetry D3h can be obtained from them
using different transformations (transformations of the
Stone–Wales type; introducing/removing atoms,
atomic clusters, or hexagon rings).

The Yb junctions are formed of nanotubes of one
type with equal pairs of indices. Moreover, only nano-
tubes with even indexes n can take part in the formation

(a) (b)

Fig. 1. Yb junctions of (a) (12, 0) CNTs of the zigzag type,
six-heptagon defects; and (b) (6, 6) CNTs of the armchair
type, three-octagon defects. Defects are indicated by thick
lines.
P

of such a junction because of the presence of symmetry
planes of the D3h symmetry group; n ≥ 2 for nanotubes
of the armchair type and n ≥ 4 for nanotubes of the zig-
zag type. Due to the presence of a third-order symmetry
axis, only two possible sets of topological defects exist
in Yb junctions, namely, six heptagons or three octagons
(two heptagons or one octagon between each pair of
nanotubes). All possible variations of defect configura-
tions in the region of coupling of different pairs of nan-
otubes forming a Yb junction are shown in Fig. 2.

As seen from Fig. 2, two heptagons can occupy two
different positions in the regions of coupling of nano-
tubes of the zigzag type (Figs. 2a, 2b); they can be
transformed into one another by the (6, 7, 7, 6)  (7,
6, 7, 6) Stone–Wales transformation [25]. Out of the
two arrangements of heptagons, we choose the config-
uration corresponding to Fig. 2a as the basic arrange-
ment. We note that an octagon (Fig. 2c) cannot be trans-
formed into two heptagons and vice versa either by
using a Stone–Wales transformation or by removing or
adding a C2 cluster. It follows that, for Yb junctions of
nanotubes of the zigzag type, the basic sets of defects
are six heptagons (the location of each pair of hepta-
gons is shown in Fig. 2a) and three octagons (the loca-
tion of each octagon is shown in Fig. 2c).

In Yb junctions consisting of nanotubes of the arm-
chair type, one octagon (Fig. 2d) can be converted into
two heptagons (Fig. 2e or 2f) by introducing a C2 clus-
ter connecting the two heptagons. Inverse conversion is
(a) (b) (c)
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Fig. 2. Configurations of defects between the nanotubes forming Yb junctions. Nanotubes of the zigzag type: (a, b) two heptagons
and (c) an octagon. Nanotubes of the armchair type: (d) an octagon and (e, f) two heptagons. The (a  b) defect conversion is
realized by the (6, 7, 7, 6)  (7, 6, 7, 6) Stone–Wales transformation, and the (d  e and d  f) defect conversion is accom-
plished by introducing or removing a C2 cluster. The dashed line shows the intersection of the Y junction with the symmetry plane
σv . Defects are indicated by thick lines.
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possible by removing the C2 cluster. Accordingly, we
choose an octagon as the basic defect for nanotube
junctions of this type. Therefore, for Yb junctions of
nanotubes of the armchair type, we should consider
three octagons as the basic set of defects (the location
of each octagon is shown in Fig. 2d). Using this set, we
can obtain Yb junctions with six heptagons in two ver-
sions corresponding to the location of each pair either
according to Fig. 2e or according to Fig. 2f.

Now, we consider the structure of Yb junctions in
detail. In the case of Yb junctions consisting of nano-
tubes of the zigzag type, the third-order symmetry axis
can pass either through one of the atoms of the two-
point basis of the hexagonal mesh or through the center
of the hexagon ring. We will refer to the two points of a
Yb junction through which the C3 axis passes as the
interface. The junction under study can have three dif-
ferent types of interfaces (A, B, C), each of which has
its own system of basis vectors. We associate the (a1, a2,
a3) system with an interface of the A type, the (b1, b2,
b3) system with an interface of the B type, and the
(c1, c2, c3) system with an interface of the C type. The
center of each system of basis vectors coincides with
one of the points of the interface (Figs. 3a–3c). The
lengths of the basis vectors satisfy the relationship

(4)

where aC–C is the distance between the neighboring
atoms in the graphite plane.

Yb junctions of nanotubes of the armchair type have
only one type of interface (D) and, accordingly, one
system of basis vectors (d1, d2, d3) (Fig. 3d). The vec-
tors d1, d2, and d3 satisfy the relation

(5)

The classification is based on the following parame-
ters of Yb junctions: the nanotube type (zigzag or arm-
chair), the defect type (six heptagons or three octa-
gons), and the interface type (A, B, C, or D). We note
that these three parameters are not independent. There-
fore, to define the structure of Yb junctions unambigu-
ously, it is necessary and sufficient to know any two of
these three parameters.

To find the relation between the parameters deter-
mining a Yb junction of nanotubes of the zigzag type,
we note that the type of an interface (A, B, C) is
repeated if the nanotube index n is changed by 6. Thus,
the indices n of nanotubes having the same interface
type form an arithmetic progression whose common
difference is 6. The formula for the kth term of this pro-
gression is

(6)

where nk = n is the nanotube index in the Yb junction,
n0 is the minimum value of the nanotube index in the Yb

junction having an interface of the given type, and k is

ai bi ci aC–C, i 1 2 3,, ,= = = =

di 3/2( )aC–C.=

nk n0 6 k 1–( ),+=
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the number of the term of the arithmetic progression.
Thus, for a Yb junction with a set of topological defects
in the form of six heptagons, we have n0 = 6 for an inter-
face of the A type, n0 = 8 for an interface of the B type,
and n0 = 10 for an interface of the C type. We form three
arithmetic progressions: n = 6 + 6(k – 1) for an interface
of the A type, n = 8 + 6(k – 1) for an interface of the B
type, and n = 10 + 6(k – 1) for an interface of the C type.
If we express k in formulas (4)–(6) in terms of n, we
obtain an efficient method for determining the interface
type from the nanotube index n: the sequence number
of the term in the arithmetic progression is an integer;
therefore, from the three formulas corresponding to the
three different interface types, we can choose the term
in which the number k is an integer and thus determine
the interface type from the nanotube index n. Likewise,
we can derive formulas for finding the type of interface
of topological defects in the form of three octagons.

(a)

(b)

(c)

(d)

a1

a2 a3

b1
b2

b3

d1

d2 d3

c1 c2

c3

Fig. 3. Interface types and the related systems of basis vec-
tors for CNT Yb junctions. Nanotubes of the zigzag type:
(a) A type, (b) B type, and (c) C type. Nanotubes of the arm-
chair type: (d) D type. ai, bi, ci, and di are the basis vectors.

Table 1.  Relations between the three main parameters of Yb
junctions: the nanotube type (zigzag or armchair), the defect
type (six heptagons or three octagons), and the interface type
(A, B, C, D)

k
Interface type

six heptagons three octagons

1 2 3

(n, 0) zigzag type

(n + 2)/6 C A

n/6 A B

(n – 2)/6 B C

(n, n) armchair type

n/2 – D

Note: k > 0 is an integer, and n is the first nanotube index.
4
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These formulas are given in the first column of Table 1.
The upper part of this table corresponds to Yb junctions
formed by nanotubes of the zigzag type, and the lower
part corresponds to Yb junctions formed by nanotubes
of the armchair type. The second and third columns
contain information on the type of interface corre-
sponding to each arithmetic progression for different
defect types.

To facilitate the construction of Yb junctions, we
introduce a pointer vector RL for defects (the subscript
L = H for a heptagon and L = O for an octagon); the ori-
gin of the vector coincides with the origin of the system
of basis vectors, and this vector ends at the defect (at a
vertex of a heptagon or at the middle of an octagon
side). The magnitude of the pointer vector is a function
of the nanotube index n; for a nanotube of the zigzag
type, we have

(7)

(8)

and for a nanotube of the armchair type, we have

(9)

Below, we describe an algorithm that permits us to
construct a Yb junction by using the pointer vector.

Thus, once any two of the three main parameters of
a Yb junction are known, we can uniquely determine its
structure using the third parameter taken from Table 1.
The defect configurations are shown in Figs. 2a, 2c,
and 2d.

We describe one of the possible algorithms for con-
structing Yb junctions with the given nanotube type and
nanotube index n.

(1) In Table 1, we choose the part that corresponds
to the given type of nanotubes forming the Yb junction
(zigzag or armchair).

(2) Substituting the nanotube index n into the for-
mulas in the first column, we determine the table row
for which the number k is an integer.

RH
n
2
--- 2,–=

RO
n
2
--- 1;–=

RO n 1.–=

Table 2.  Numbers of atoms in the connectors of Yb junctions

Type of defects
Number of atoms in the connector

(n, 0) nanotube (n, n) nanotube

Six heptagons (n + 4)2/2 – 6 3(n2 + 2n + 4)/2, n ≥ 4

Fig. 2a Fig. 2e

" (n + 10)2/2 – 48 3(n2 + 14n + 4)/2

Fig. 2b Fig. 2f

Three octagons (n + 6)2/2 – 18 3(n2 + 6n)/2

Note: References to the figures, where the configuration of hepta-
gons in the connector is shown, are given in brackets.
PH
(3) At the intersection of the row chosen at step 2
and the column corresponding to the given set of
defects, we find the interface type for the Yb junction.

(4) We determine the magnitude of the pointer vec-
tor corresponding to the given set of defects (see
Eqs. (7)–(9)).

(5) Next, we construct the system of basis vectors
for the given interface type in the hexagon mesh
(Fig. 3) and plot the pointer vectors RL along each basis
vector.

(6) From the hexagon mesh, we cut a triangular
fragment at whose vertices there are hexagons at which
the pointer vectors end. These hexagons are replaced by
defects (heptagons for RH and halves of octagons for
RO). Then, the triangle obtained is mirror reflected in a
plane perpendicular the C3 axis. Finally, we superpose
the vertices of these two triangles.

The figure thus obtained is a pattern for forming a Yb

junction, since it contains all topological defects that
determine its geometrical shape. We call such a pattern
a connecter of three nanotubes [8].

Table 2 lists the number of atoms in the connecter
for Yb junctions.

In the next section, we discuss two examples, which
clarify the scheme of the construction of Yb junctions.

3. EXAMPLES OF THE CONSTRUCTION 
OF Yb JUNCTIONS

3.1. An Example of the Construction of Yb Junctions
of Zigzag-Type Nanotubes

Let us construct a (12, 0)–(12, 0)–(12, 0) Yb junction
with topological defects in the form of six heptagons by
applying our algorithm.

(1) The upper part of Table 1 corresponds to a nan-
otube of the zigzag type. The nanotube index is n = 12.

(2) We sequentially substitute the number 12 into
the three formulas for k (rows 1–3 of Table 1) and
choose the row for which k is an integer. For n = 12, we
have k = 2 in the second row.

(3) Since the topological defects are six heptagons,
the Yb junction has an interface of the A type (the inter-
section of the second row and the second column).

(4) Using formula (7), we determine the magnitude
of the pointer vector, |R |H = 4.

(5) The system of basis vectors (a1, a2, a3) is associ-
ated with an interface of the A type. We construct this
system of basis vectors in the hexagon mesh (Fig. 3a)
and plot the pointer vector RH = 4ai along each of the
vectors a1, a2, and a3 (Fig. 4a).

(6) From the hexagon mesh, we cut the triangle at
whose vertices there are hexagons at which the pointer
vectors end. Then, we replace these hexagons with hep-
tagons (Fig. 4b). Next, we reflect this triangle in a plane
perpendicular to the C3 axis and superimpose the
YSICS OF THE SOLID STATE      Vol. 46      No. 8      2004
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obtained triangles on the bonds (Fig. 4b). As a result,
we obtain the connector of the (12, 0)–(12, 0)–(12, 0)
Yb junction. By joining (12, 0) nanotubes to each of the
three connector terminals, we obtain the Yb junction
shown in Fig. 1a.

We note that, in order to construct a Yb junction with
topological defects in the form of six heptagons located
in accordance with Fig. 2b, we must perform the
(6, 7, 7, 6)  (7, 6, 7, 6) Stone–Wales transformation
for each pair of heptagons.

3.2. An Example of the Construction of a Yb Junction 
from Nanotubes of the Armchair Type

We outline the construction of a (6, 6)–(6, 6)–(6, 6)
Yb junction with topological defects in the form of three
octagons. We perform the construction using the above
algorithm.

(1) The lower part of Table 1 corresponds to a nano-
tube of the armchair type; the first nanotube index is 6.

(2) There is only one type of interface (the D type)
for Yb junctions of nanotubes of the armchair type.

(3) Using Eq. (9), we determine the magnitude of
the pointer vector, |RO | = 5.

(4) To construct a Yb junction with an interface of the
D type, we construct the system of basis vectors d1, d2,
and d3 and plot the pointer vector RO = 5di along each
basis vector (Fig. 5a).

(5) From the hexagon mesh, we cut the triangle at
whose vertices there are hexagons at which the pointer
vectors end. Then, we replace these hexagons with
halves of octagons (Fig. 5b). Next, we reflect this trian-
gle in a plane perpendicular to the C3 axis and superim-
pose the obtained triangles on the octagon atoms (solid
circles in Fig. 5b). Thus, we obtain the (6, 6)–(6, 6)–
(6, 6) connector of the Yb junction. By joining the (6, 6)

(a) (b)

4a1

4a2
4a3

4a1

4a2 4a3

Fig. 4. Construction of a (12, 0)-nanotube Yb junction (sche-
matic). (a) A system of basis vectors of the A type with the
pointer vector RH = 4ai, and (b) a triangular fragment of the
hexagon mesh after the replacement of hexagons lying at
the ends of the pointer vectors by heptagons. Thick lines are
the heptagon bonds that determine the superimposition.
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nanotubes to each of the three connector terminals, we
obtain the Yb junction shown in Fig. 1b.

We note that, if we want to construct a Yb junction
with topological defects in the form of six heptagons (in
any version), we need to construct a Yb junction with
defects in the form of three octagons and then add three
C2 clusters (Figs. 2d, 2e).

4. CONCLUSIONS

We have suggested a classification of CNT Y junc-
tions of symmetry D3h with the basic configuration that
contain topological defects in the form of six heptagons
or three octagons in the regions of coupling of each pair
of nanotubes. As a basis for the classification, we chose
a one-to-one correspondence between the three main
parameters of the Yb junction, namely, the nanotube
type, the defect type, and the interface type. These main
parameters determine the electronic and transport prop-
erties of the junctions considered [17]; therefore,
knowledge of the one-to-one correspondence between
them is effective for constructing nanochain elements
and studying the properties of such junctions. We have
shown that, in such basic Yb junctions, conversion of
defects into one another is possible by applying a
Stone–Wales transformation or by removing a C2 clus-
ter. On the basis of the suggested classification, we have
developed an effective method for constructing basic Yb

junctions.
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