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Abstract—A random walk of a particle is considered in a medium with randomly timed changes in the direc-
tion of its motion. An asymptotics and, in several cases, distribution of the total displacement (for finite process
duration) are found. The results may be used in technological processes, geophysics, and astrophysics. © 2003
MAIK “Nauka/Interperiodica”.
INTRODUCTION

The positions of particles in various liquid and plas-
tic mediums change when the mediums are deformed.
The problem of estimating the particle displacement,
together with a medium and as a result of autonomous
diffusion, arises in various technological processes
[1−4], as well as in geophysics and astrophysics [5–7].
One of the simple models takes place in the case when
the motions of a medium are spatially ordered so that
the particle displacement over a period of time is inde-
pendent of its previous position. In other words, the
characteristic size of inhomogeneities in the course of
the deformation of a medium is substantially larger
than the expected particle displacements along the
coordinates x, y, and z. We will consider a more compli-
cated case when these quantities are of the same order
of magnitude elsewhere.

The displacements of a medium are assumed to be
random functions of time. We will consider a simple
model of random switchings (independent of the sys-
tem’s history) with a frequency ν. Particles are
entrained by a medium with a velocity of v(v x, v y, v z)
that varies randomly and is constant between switch-
ings. This model is referred to as semiregular. Our aim
is to find the distribution law for the total displacement
r(x, y, z) over finite time t and its asymptotics for large t.

ONE-DIMENSIONAL MODEL

First, consider one-dimensional motions along the x
axis with a velocity of the same absolute value v 0 and
the direction changing to the opposite at each switch-
ing. After a lapse of time t, it is necessary to find the dis-
tribution density p(x, t) of the particle position in the
case when it moves in the positive direction and p(x, t),
in the opposite direction.

As a matter of fact, this model determines a Mark-
ovian process; therefore, one might use the ordinary
Kolmogorov–Feller equations [8] with a stepwise pro-
1063-7842/03/4802- $24.00 © 20133
cess component. However, it is convenient to use an
alternate way.

Let us introduce the probability q(x, t)dxdt that, in
the period of time (t, t + dt), both switching from the
regime of leftward to rightward sliding occurs and a
particle is located inside the interval (x, x + dx). The
function (x, t) for the opposite switching is deter-
mined in a similar way.

Let us find the function q(x, t). The number n of the
last switching is not given beforehand; it is only clear
that it is an even random number. If n is fixed in the def-
inition above, we will deal with the functions qn(x, t):

(1)

The quantity qn(x, t)dxdt can be considered as the
probability that a two-component quantity (x, t) will
belong to a two-dimensional interval dxdt, where t, as a
random variable, performs n independent steps t = t1 +
t2 + t3 + … + tn distributed exponentially with a density
of

(2)

Hence, the sum of n such steps is distributed with
the density [9]

(3)

The coordinate x, by definition, is the sum of the
terms with alternate signs:

(4)

It is convenient to introduce auxiliary quantities T =
t1 + t3 + … + tn – 1 and T ' = t2 + t4 + … + tn. Then,

(5)

q

q x t,( ) qn x t,( ).
n 2 4…,=

∑=

θ1 νe ν t– .=

θn
νn

n 1–( )!
------------------tn 1– e ν t– .=

x x1 x2– x3 …– xn–+=

=  v 0 t1 t2– t3 …– tn–+( ).

t T T', x+ v 0 T T'–( ).= =
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As is seen from the structure of T and T ', they are
two independent random variables each of which is dis-
tributed according to (3), where n is substituted for n/2.
The joint density θ(T, T ') is

(6)

In view of the mutually independent character of
transformation (5), in order to perform transformation
to the variables t and x, one has to make the correspond-
ing inverse substitution in (6) and take into account the
Jacobian of transformation (5), which is equal to 2v 0.
Thus,

(7)

Summation over even n results in the following
expression for q(x, t):

(8)

where I0 is the modified Bessel function of the first
kind.

We calculate (x, t) in a similar way. Instead of (1),
we have

(9)

The value (x, t)dxdt is interpreted as the probabil-
ity that a two-dimensional quantity (x, t) will belong to
a two-dimensional range dxdt, where t, as a random
variable, is given by the sum t = t1 + t2 + … + tn and x =
x1 – x2 + … + xn = v 0(t1 – t2 + … + tn). We introduce aux-
iliary variables T = t1 + t3 + … + tn and T ' = t2 + t4 + … +
tn – 1. Formula (5) is valid in this case, and the only dif-
ference between this and the previous case is that the
distributions of T and T ' result from the general formula
(3) by substituting n by (n + 1)/2 in the first case and by
(n – 1)/2 in this case. Hence, the joint density is

θn T T',( ) νn

n
2
--- 1– 

  !
2

---------------------------Tn/2 1– T '( )n/2 1– e ν T T'+( )– ,=

T T', 0>( ).

qn x t,( ) 1

2n 1– v 0

----------------- νn

n
2
--- 1– 

  !
2

--------------------------- t2 x2

v 0
2

------–
 
 
  n/2 1–

e ν t–=

t 0> x, v 0t≤( ).

q x t,( ) ν2e ν t–

2v 0
--------------I0 ν t2 x2

v 0
2

------–
 
 
 

,=

q

q x t,( ) qn x t,( ).
n 1 3…,=

∑=

qn

θ T T',( ) νn

n
2
--- 3– 

  ! n
2
--- 1– 

  !

---------------------------------------Tn/2 1– T'( )n/2 1– e ν T T'+( )–=

T T', 0, n 3≥>( ),

θ1 T T',( ) δ T'( )νe νT– .=
Having performed the transformation to the vari-
ables t and x, we find

so that the summation with respect to n yields

(10)

Now, let us turn to the determination of the func-
tions p(x, t) and (x, t). If a particle is inside an interval
(x, x + dx) and is moving rightward at time t, within the
time interval (t, t + dt) the direction of its motion will
change to the opposite with a probability of νdt. Hence,

(x, t)dxdt = q(x, t)νdtdx, or, in other terms,

(11)

as well as

(11a)

Thus, the distributions to be found are expressed in
terms of Bessel functions. Asymptotic behaviors of p
and  at large t are also of interest. By analogy with the
well-known central limit theorem, one may expect that

the characteristic values of x will increase as . Using
the asymptotics of the Bessel functions at large z,

we have

However, we have

qn x t,( ) 1

2n 1– v 0

----------------- νn

n
2
--- 3– 

  ! n
2
--- 1– 

  !

--------------------------------------- t
x

v 0
------+ 

  n 1–( )/2

=

× t
x

v 0
------– 

  n 3–( )/2

e ν t– t 0> x v 0t, n 3≥≤,( ),

q1 x t,( ) δ x v 0t–( )νe ν t– ,=

q x t,( ) ν2

2v 0
---------e ν t– v 0t x+

v 0 x–
-----------------I1 ν t2 x2

v 0
2

------–
 
 
 

=

+ δ x v 0t–( )νe ν t– .

p

q

p x t,( ) q x t,( )
ν

---------------,=

p x t,( ) q x t,( )
ν

---------------.=

p

t

I0 z( ) ez

2 2πz
----------------,≈

q x t,( ) ν2

2v 0
--------- 1

2πν
---------- t2 x2

v 0
2

------–
 
 
  1/4–

e
ν t

2 x
2

v 0
2

------– t–
 
 
 

.≈

t t2 x2

v 0
2

------––

x2

v 0
2

------

t t2 x2

v 0
2

------–+

---------------------------- x2

2v 0
2

---------t,≈=
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since x2/  increases as t increases. In a separated fac-
tor, the second term can be neglected as well. There-
fore,

(12)

In a similar way,

(12a)

Thus, according to (12) and (12a), the asymptotic
distribution of x is Gaussian, as one would expect, since
the central limit theorem is generally valid for Mark-
ovian processes [8]. The influence of the initial state
diminishes, although p and  do not coincide at finite
t. Formulas (8) and (10), as well as (12) and (12a), can
be used to estimate the particle displacement with a
moving plastic medium or interstellar plasma.

GENERAL SPATIAL CASE

Consider a general spatial case when the velocity of
a medium is a three-dimensional random vector v(v x,
v y, v z) with a zero mathematical expectation; variances

, , and  with respect to principal axes; and a
distribution density of χ(v x, v y, v z). Let the vector v be
chosen randomly at t = 0 and then experience random
switchings from one value v  to another independent of
history with a frequency ν. The distribution of the par-
ticle displacement over time t and its asymptotics are to
be found.

We will employ a previous method. Let q(x, y, z,
t)dxdydzdt be the probability that a switching will
occur in a time interval of (t, t + dt) when a particle is
located in a parallelepiped with sides dx, dy, and dz
around the point x, y, and z. The distribution density
p(x, y, z, t) is related to q(x, y, z, t) by the simple relation

(13)

At any given number of switchings n = 1, 2, 3, …,
we have a certain probability qn(x, y, z, t)dxdydzdt and

(14)

v 0
2

q x t,( ) ν3/2

2v 0
--------- 1

2πt
--------e

νx
2

2ν0
2
r

-----------–

,≈

p x t,( ) 1
2v 0
--------- ν

2πt
--------e

νx
2

2v 0
2
t

------------–

.≈

I1 z( ) ez

2πz
-------------,≈

q x t,( ) ν2

2v 0
--------- 1

2πνt
----------------e

ν t
2 x

2

v 0
2

------– t–
 
 
 

q x t,( ),≈ ≈

p x t,( ) p x t,( ).≈

p

σx
2 σy

2 σz
2

q νp.=

q qn.
n 1=

∞

∑=
TECHNICAL PHYSICS      Vol. 48      No. 2      2003
The function q1 is given by a distribution density for
the sum of the four-dimensional quantity (x, y, z, t)
where t, as a random variable, has density (2). Accord-
ing to our conditions, at a given t = s, a direct propor-
tionality between the vectors r(x, y, z) and v(x, y, z) with
the coefficient s would take place. At n = 1, we would
have the four-dimensional distribution

(15)

Then, we have to average (15) over all possible s:

(16)

The density qn is represented by a convolution of n
distributions (16). At large n, we can directly refer to
the central limit theorem. The mathematical expecta-
tions with respect to x, y, and z corresponding to q1 are
evidently equal to zero, and the variances Dx, Dy, and Dz

can be calculated by (16):

Now let us calculate the mathematical expectation
〈t 〉  and the variance Dt with respect to t. First,

The second moment is

Q1 x y z t, , ,( ) δ t s–( )χ x
s
-- y

s
-- z

s
--, , 

  s 3– .=

q1 x y z t, , ,( ) ν e νs–

s3
--------δ t s–( )χ x

s
-- y

s
-- z

s
--, , 

  sd

0

∞

∫=

=  
ν
t3
---e ν t– χ x

t
-- y

t
-- z

t
--, , 

  .

Dx x2q1 x y z t, , ,( ) xd yd zd td∫∫∫∫=

=  
ν
t3
---e ν t– χ x

t
-- y

t
-- z

t
--, , 

  x2 xd yd zd td∫∫∫∫

=  νσx
2 t2e ν t– td

0

∞

∫
2σx

2

ν2
---------,=

Dy

2σy
2

ν2
---------, Dz

2σz
2

ν2
---------.= =

t〈 〉 ν
t2
---e ν t– χ x

t
-- y

t
-- z

t
--, , 

  xd yd zd td∫∫∫∫=

=  νte ν t– td

0

∞

∫ 1
ν
---.=

t2〈 〉 ν
t
---e ν t– χ x

t
-- y

t
-- z

t
--, , 

  xd yd zd td∫∫∫∫=

=  νt2e ν t– td

0

∞

∫ 2

ν2
-----.=
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Then Dt = 〈t2〉  – (〈t 〉)2 = 1/ν2. The product moments
with respect to pairs (t, x), (t, y), and (t, z) are equal to
zero.

According to the central limit theorem, at large n,

(17)

We assume a value of t to be proportional to n. It is
clear that only values of n close to νt make a substantial
contribution to the sum, whereas for the other values
the exponent rapidly decreases. For example, it is equal

to 1/2 (the peak value is 1) at |t – n/ν| = /ν and

|n – νt | = .

Thus, the bandwidth of values of n making a sub-
stantial contribution to the sum is proportional to n0,

where  corresponds to the middle of the band and

~ . The values of n appearing in the other expo-
nents, as well as the preexponential factors, do not
change significantly; therefore, n can be substituted by
the mean value n0 = νt. Then, one has to sum up only
the last exponents where the difference between n and
n0 can be neglected. In view of the comparatively small
step of the exponent (of the order of ((νt)1/2) when n
changes by 1 in the range under consideration, the sum

can be replaced by the corresponding integral

Therefore,

and hence,

(18)

The integral of (18) over the entire space is equal to
unity, as expected. The distribution (18) is Gaussian
with variances increasing as t increases.

qn x y z t, , ,( ) ν4 2

σxσyσz 4πn( )2
----------------------------------≈

× –
ν2x2

4nσx
2

------------ ν2y2

4nσy
2

------------ ν2z2

4nσz
2

------------
ν2

2n
------ t

n
ν
---– 

  2

–––
 
 
 

.exp

2n 2ln

2n 2ln

n0

νt

e
1

2ν t
-------- n ν t–( )2–

n

∑

e
1

2ν t
-------- n ν t–( )2–

nd

∞–

∞

∫ 2πνt.=

q
2ν5/2 π

σxσyσz 4π( )2t3/2
-------------------------------------- ν

4t
----- x2

σx
2

----- y2

σy
2

----- z2

σz
2

-----+ +
 
 
 

–
 
 
 

exp≈

p x y z, ,( ) ν3/2

8 πt( )3/2σxσyσz

------------------------------------≈

× ν
4t
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σx
2

----- y2

σy
2

----- z2

σz
2

-----+ +
 
 
 

–
 
 
 

.exp
An exact calculation of p(x, y, z, t) at a finite n is
somewhat difficult. They are obviated to a certain
extent by using the method of characteristics. First, let
us introduce such a function for the initial density χ:

(19)

We also define characteristics for qn as

Then,

(20)

and according to the general rule,

(21)

so that the characteristic function F for q is given by

(22)

PARTICULAR EXAMPLE

Consider an example when the characteristic func-
tion can be found [then, one has to perform the Fourier
transform of p(x, y, z, t)]:

(23)

This is a distribution with a finite variance:

the same result takes place for the other directions. Fur-
ther calculations yield

where ρ = .

f τ x τ y τ z, ,( )

=  χ v x v y v z, ,( )e
i v xτ x v yτ y v zτz+ +( )

v xd v y v z.dd∫∫∫

Fn τ x τ y τ z τ, , ,( )

=  qn x y z t, , ,( )e
i xτ x yτ y zτz tτ+ + +( )

xd y z t.ddd∫∫∫∫

F1 τ x τ y τ z τ, , ,( )

=  
ν
t3
---e ν t– χ x

t
-- y

t
-- z

t
--, , 

  e
i xτ x yτ y zτz tτ+ + +( )

xd y z tddd∫∫∫∫

=  ν f tτ x tτ y tτ z,,( )et iτ ν–( ) td

0

∞

∫

Fn F1( )n,=

F Fn

n 1=

∞

∑ F1
n

n 1=

∞

∑ F1

1 F1–
--------------.= = =

q1 v x v y v z, ,( )
4v 0

3

π2 v x
2 v y

2 v z
2 v 0

2+ + +( )3
--------------------------------------------------------.=

v q
2q v x v y v z, ,( ) v xd v yd v zd∫∫∫ v 0

2;=

f e
v 0ρ 1 v 0ρ+( )

,=

τ x
2 τ y

2 τ z
2+ +
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Then,

(24)

The Fourier transform with respect to τx, τy, and τz

has to be applied to the last formula of (24). The trans-
form with respect to τ can be easily performed if one
expands the fraction in (24) into partial fractions; then
we will obtain the sum of exponents with respect to t.
Canceling the factor ν, we find the characteristic func-
tion

(25)

for p(x, y, z, t) (t is a parameter), where

This formula can be verified if one calculates the

asymptotics of (25) with respect to t for x, y, z ~  and

ρ ~ 1/ . As is easily seen, formula (25) yields the
characteristic function of the Gaussian law with the
corresponding variance for large t.

CONCLUSIONS
In the model of random switchings under consider-

ation, the Gaussian distribution of the total displace-
ment is established in the course of time. This conclu-
sion is evidently valid in the presence of autonomous
diffusion of a particle: the results will be summed up
according to the rule for independent random variables
and the asymptotics will be Gaussian as well. The only
question is how to estimate the variance; we have
derived the corresponding formula (18). In several

F1

ν 2v 0ρ ν iτ–+( )
v 0ρ ν iτ–+( )2

-----------------------------------------,=

F1

1 F1–
--------------

ν 2v 0ρ ν iτ–+( )
v 0

2ρ2 2iv 0ρτ– iτ ν iτ–( )–
-----------------------------------------------------------------.=

ν
2
--- v 0ρ+

ν2 4v 0νρ+
-------------------------------- e

tξ2–
e

tξ1–
–( ) 1

2
--- e

tξ2–
e

tξ1–
+( ),+

ξ1 2,
2v 0ρ ν ν2 4v 0νρ+±+

2
-------------------------------------------------------------.=

t

t
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cases, it is possible to find exact displacement distribu-
tions at any positive t. In the one-dimensional case, this
takes place in the model with equal velocities of dis-
placements in the opposite directions. In the three-
dimensional case, the corresponding characteristic
function can be found for a particular velocity distribu-
tion (23); the results support the general calculations. In
future, the particle displacements in a turbulent
medium with a finite correlation distance may be stud-
ied in a similar way. Such attempts have already been
performed [10] in somewhat awkward and inconve-
nient form.
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Abstract—The properties of the nonlinear collision integral in the Boltzmann equation are studied. Expansions
in spherical Hermitean polynomials are used. It was shown [1] that the nonlinear matrix elements of the colli-
sion operator are related to each other by simple expressions, which are valid for arbitrary cross sections of par-
ticle interaction. The structure of the collision operator and the properties of the matrix elements are studied for
the case when the interaction potential is spherically symmetric. In this case, the linear Boltzmann operator sat-
isfies the Hecke theorem. The generalized Hecke theorem, from which it follows that many nonlinear matrix
elements vanish, is proved with recurrence relations derived. It is shown that the generalized Hecke theorem is
a consequence of the ordinary Hecke theorem. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION
In this work, we study the structure of the collision

operator using polynomial expansions. This method
converts the collision integral to an interaction matrix.
It has been shown [1–3] that the nonlinear elements of
this matrix obey various relations, which are valid irre-
spective of the particle interaction potential. The appli-
cation of these relations greatly simplifies the calcula-
tion of the matrix elements (MEs) at large indices.

As basis functions in which the distribution function
(DF) in the Boltzmann equation is expanded, we take
spherical Hermitean polynomials, which are the prod-
uct of Sonine (generalized Laguerre) polynomials by
spherical harmonics. The Boltzmann equation is
replaced by an equivalent set of moment equations for
the expansion coefficients.

The basic challenge impeding the wide application
of the nonlinear method of moments is the calculation
of MEs with large indices. In [2, 3], recurrence rela-
tions for the MEs in the isotropic case were found based
on the invariance of the collision integral with respect
to basis functions. Also, it was shown that these rela-
tions make it possible to construct the DF up to 8–
10 thermal velocities with a “nearly” analytical accu-
racy. Similar recurrence relations for the MEs corre-
sponding to the DF that is axisymmetric in terms of
velocities were constructed in [1]. These relations allow
one to express any nonlinear ME through a set of linear
isotropic and nonisotropic MEs. All the relations are
independent of a particle interaction model, as was
mentioned above, since they are valid even if a prefer-
1063-7842/03/4802- $24.00 © 20138
ential direction exists in a system, such as particles in a
very high magnetic or electric field. The particles are
aligned with the field and become asymmetric.

In this work, the structure of the collision operator
and the properties of the MEs for nonoriented particles
are studied in the case when the interaction potential is
spherically symmetric, not arbitrary. Under these con-
ditions, the interaction cross section depends only on
the velocity magnitude and angle of scattering. Such
potentials are the basic subject for study in the classical
theory of gases.

In Section 1, we demonstrate polynomial expan-
sions of the DF, the general form of the moment system
that is axisymmetric in terms of velocities, and the
recurrence relations [1] deduced for the MEs. Also, the
Hecke results for the linear Boltzmann operator [4, 5]
are analyzed.

In Section 2, we give a simple proof of the general-
ized Hecke theorem for the nonlinear axisymmetric
case using the recurrence relations for the MEs. It
becomes clear that the generalized Hecke theorem is a
consequence of the Hecke theorem for linear MEs.

Finally, in Section 3, we consider the Kumar repre-
sentation [6] of the nonlinear collision integral, which
uses the Talmi transformations. The way to prove the
generalized Hecke theorem with the Kumar results is
outlined.
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1. POLYNOMIAL EXPANSION 
OF THE AXISYMMETRIC BOLTZMANN 
EQUATION AND RELATIONS BETWEEN 

COLLISION INTEGRAL MATRIX ELEMENTS

Polynomial expansions are widely used in the
kinetic theory of gases. For the linearized Boltzmann
equation, such an expansion forms the basis for the
well-known Chapman–Enskog method [7]. In the non-
linear case, this method was extended by Burnett [8, 9]
and Grad [10]. According to Kumar [6], the most com-
pact expansion (suggested by Burnett) is that in Her-
mitean spherical polynomials

where  are Sonine (Laguerre) polynomials and

(Θ, ϕ) (i = 0, 1) are unnormalized real spherical
harmonics. They are defined as follows:

Here, (x) are associated Legendre polynomials. In
the axisymmetric case (m = 0), spherical harmonics
pass to Legendre polynomials Pl and the expansion is

accomplished in functions Hr, l = clPl with the
Maxwellian weight

where

In this case, the nonlinear Boltzmann equation is
replaced by a set of equations for the expansion coeffi-
cients Cr, l:

(1)

Here, D/Dt is the differential operator that represents
the left-hand sides of the moment equations, which
were thoroughly analyzed, for example, in [9, 11].

An axisymmetric nonlinear ME has the form

The relations between the MEs are based on the
invariance of the collision integral with respect to basis
functions. For example, in the isotropic case [2, 3], the
invariance with respect to the temperature T of the
Maxwellian weighting function is used, while in the
axisymmetric case, the invariance with respect to both

Hr l m, , Sl 1/2+
r( ) clYlm

i ,=

Sl 1/2+
r( )

Ylm
i

Ylm
0 Θ ϕ,( ) Pl

m Θcos( ) mϕ m 0 1 … l, , ,=( ),cos=

Ylm
1– Θ ϕ,( ) Pl

m Θcos( ) msin ϕ m 0 1 … l, , ,=( ).=

Pl
m

Sl 1/2+
r( )

f v x t, ,( ) M c( ) Cr l, x t,( )Hr l, c( ),∑=

M c( ) m
2πkT
------------- 

 
3/2

e c
2– , c m

2πkT
------------- v u–( ).= =

DCr l, /Dt Kr1 l1 r2 l2, , ,
r l, Cr1 l1, Cr2 l2, .∑=

Kr1 l1 r2 l2, , ,
r l, 1

gr l,
------- Hr l, Î MHr1 l1, MHr2 l2,,( )d3v ,∫=

gr l,
2r 2l 1+ +( )!!

2r( )!!2l 2l 1+( )
--------------------------------------.=
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T and the mean velocity u [1] is taken into consider-
ation. The matrix of the bilinear collision operator is
transformed by the formula

(2)

The matrix D of basis-to-basis transition can be con-
structed with the α–u representation [12].

Differentiating (2) with respect to T and u yields two
types of relations between the MEs:

(3)

(4)

Here, R = r1 + r2 – r and L = l1 + l2 – l, which are simple
algebraic expressions for the case of power potentials.
These relations suffice to construct all nonlinear MEs

from given linear MEs of one type,  or

, by applying the recurrence procedure.

If a system has a preferential direction, for example,
in the presence of an electric or magnetic field, the par-
ticles are aligned with the field. The kinetic equation for
such asymmetric particles was considered in [13],
where the H theorem was also proved for the case of a
preferential direction in the space. Such problems are
much more difficult to solve than those considered in
the conventional kinetic theory, where a preferential
direction is absent and particles are assumed to be sym-
metric.

In the presence of a preferential direction, the scat-
tering cross section depends on the magnitude of the
relative velocity g and the angles (g1, ) and (g2, ),
where z is the vector along the preferential direction
and g1 and g2 are the vectors of the relative velocity
before and after collision. In the conventional classical
theory, the scattering cross section depends only on the
relative velocity magnitude and angle between the vec-
tors g1 and g2; that is,

(5)

As the kinetic theory of gases evolved, many results
for the linear and linearized collision integral were
obtained. Even Hilbert [14] suggested an iteration

K̂'ˆ D̂K̂̂ D̂
1–

D̂
1–,( ).=

l
2l 1–
-------------Kr1 l1 r2 l2, , ,

r l 1–, l 1+( )r
2l 3+

------------------Kr1 l1 r2 l2, , ,
r 1– l 1+,–

–
l1 1+

2l1 1+
----------------Kr1 l1 1+ r2 l2, , ,

r l, l1 r1 1+( )
2l1 1+

----------------------Kr1 1+ l1 1– r2 l2, , ,
r l,+

–
l2 1+

2l2 1+
----------------Kr1 l1 r2 l2 1+, , ,

r l, l2 r2 1+( )
2l2 1+

----------------------Kr1 l1 r2 1+ l2 1–, , ,
r l,+ 0,=

T
d

dT
------Kr1 l1 r2 l2, , ,

r l, T( ) R L/2+( )Kr1 l1 r2 l2, , ,
r l, T( )=

+ rKr1 l1 r2 l2, , ,
r 1– l, T( ) r1 1+( )Kr1 1+ l1 r2 l2, , ,

r l, T( )–

– r2 1+( )Kr1 l1 r2 1+ l2, , ,
r l, T( ).

Kr1 l1 0 0, , ,
r l,

K0 0 r1 l1, , ,
r l,

ẑ ẑ

σ σ g Θ,( ).=
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scheme to solve the Boltzmann equation. In his
scheme, the DF was represented in the form

and one equation with the nonlinear collision integral
was transformed into a set of linear integral equations.
Using hard spheres as an example, Hilbert showed that
all these equations are linear integral Fredholm equa-
tions of the second kind with the symmetric and orthog-
onally invariant kernel K(c, c1). Orthogonal invariance
is invariance under rotation of coordinate axes, i.e., the

dependence of the kernel only on c2, , and the scalar
product (c ⋅ c1).

Subsequently, Hecke [4, 5] considered a linear inte-
gral equation with an orthogonally invariant kernel and
proved that this operator does not remove functions of
type ψ(c)Yl, m from the Yl, m-related subspace; that is,

(6)

The operator  is independent of the subscript m,

and the function [ψ(c)] is isotropic in terms of velo-
city.

In [5], Hecke applied his theorem to the linear Bolt-
zmann operator for the hard sphere model. This point
merits detailed consideration. Following Hilbert,
Hecke represented the linear collision integral in the
form

where

The Fourier transforms  of the kernel  =
K+/(k(c)k(c1)) were defined by Hecke as follows:

The analytical expressions for (c, c1) have the
form

(7)

f v r t, ,( ) M c( ) 1 ϕ c( )+( )=
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2
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-------------------=

+
4πM
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2l 1+( ) 2l 1–( ) cc1( )l 1–
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2l 1+( ) 2l 3+( ) cc1( )l 1+
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+
8π
cc1
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2

E u( )Pl
u
c
--- 

  Pl
u
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u M<
∫ ,
where 

Thus, the application of the Hecke theorem to the
linear Boltzmann equation leads to the following result:
if the distribution function ϕ(c) is expanded in Leg-
endre polynomials with expansion coefficients ϕl(c),
the Boltzmann operator in the axisymmetric case is
reduced to a number of spherically symmetric integral
operators

(8)

where the kernels Kl(c, c1) are easily found through

(c, c1) (7) and Θ is the angle between the vector c
and the z axis. It should be stressed that it is sufficient
to consider only one angle because the isotropic opera-

tors  in (6) do not depend on the subscript m. The
generalization to the three-dimensional case is straight-
forward.

The linear Boltzmann operator exhibits the property
of orthogonal invariance with the proviso that condition
(5) is satisfied. Hence, the Hecke theorem is always
valid if the particles are nonoriented. Upon expanding
in spherical Hermitean polynomials, Hecke theorem
(6) imposes certain restrictions on the linear MEs. In
the axisymmetric case, it follows from (6) that

(9)

(10)

that is, the MEs vanish if l ≠ l1. Formulas (9) and (10)
state the Hecke theorem in matrix form. Hereafter, the

linear elements ( ) and ( )
will be called linear elements of the first and second
type, respectively.

2. PROOF OF THE GENERALIZED HECKE 
THEOREM FROM THE RECURRENCE 

RELATIONS

Let us show that, from the Hecke theorem for the
linear elements, one can easily find the conditions
where the nonlinear MEs vanish using recurrence rela-
tions (3) and (4). This statement will be proved in the
axisymmetric case by the example of MEs of first type
(9). First, we will take advantage of expression (4),
which relates matrix elements with variable indices r,

M min c c1,( ); E u( ) x2–( )exp xd

0

u

∫= = .

L̂ ϕ( ) Pl θcos( ) Kl c c1,( )ϕ l c1( ) c1,d∫
l

∑=

kl*

L̂
l

Kr1 l1 0 0, , ,
r l, Λr r1 l, ,

1( ) δl1 l, ,=

K0 0 r1 l1, , ,
r l, Λr r1 l, ,

2( ) δl1 l, ,=

Kr1 l1 0 0, , ,
r l, Λr r1 l, ,

1( ) K0 0 r1 l1, , ,
r l, Λr r1 l, ,

2( )
TECHNICAL PHYSICS      Vol. 48      No. 2      2003



GENERALIZATION OF THE HECKE THEOREM 141
r1, and r2 but fixed l, l1, and l2. Expression (4) can be
recast in the form

(11)

Substituting r2 = l2 = 0 into (11), we find, according
to the Hecke theorem, that

Then, substituting r2 = 1 and l2 = 0 into (11) yields

where G2(r, r1, l) is expressed through a linear combi-
nation of the functions G1.

Clearly, by consecutively increasing r2 in this way,
one can find by induction the relationships

(12)

that is, any nonlinear ME vanishes if l ≠ l1 irrespective
of the value of r2. Thus, it has been demonstrated that
the collision operator retains the subspace related to a
certain Legendre polynomial Pl not only on the linear
background but also on an arbitrary spherically sym-
metric background.

Now we turn to equality (3), which follows from the
invariance of the collision integral under shift of the
velocity u and relates MEs with various l, l1, and l2. Let
us transfer the fifth term to the left (i.e., we determine

the ME  = ) and take indices l1 ≥
. Putting first  = 1 (l2 = 0), we have

(13)

With l = l1 – 1 substituted into (13), the first gener-
alization of the Hecke theorem (see (12)) yields that the
first and third terms on the right vanish and only the
second and fourth terms can be other than zero. With l =
l1 + 1, only the first and third terms on the right can be
nonzero. For all other values of l, all the terms on the
right are zero according to (12). Thus, the MEs

 can be other than zero only in two cases:

(14)

Now we put  = 2 in (3). Then, the following MEs

r2 1+( )Kr1 l1 r2 1+ l2, , ,
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r l, T̃( )–=
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d
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Kr1 l1 1 0, , ,
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G1 r r1 l, ,( ) – r1 1+( )Λr r1 1+ l, ,
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d
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r l, G2 r r1 l, ,( )δl l1, ,=

Kr1 l1 r2 0, , ,
r l, Gr2

r r1 l, ,( )δl l1, ;=

Kr1 l1 r2 l2 1+, , ,
r l, Kr1 l1 r2 l2', , ,

r l,

l2' l2'

Kr1 l1 r2 1, , ,
r l,– β l 1–( )Kr1 l1 r2 0, , ,

r l 1–, γ r 1– l 1+,( )+=

× Kr1 l1 r2 0, , ,
r 1– l 1+, β l1( )Kr1 l1 1+ r2 0, , ,

r l, γ r1 l1,( )Kr1 1+ l1 1– r2 0, , ,
r l, .––

Kr1 l1 r2 1, , ,
r l,

l l1 1, l– l1 1.+= =
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TECHNICAL PHYSICS      Vol. 48      No. 2      2003
are present on the right: , ,

, , and . Applying
inequality (14) to the first four of them, we find that the
first and third MEs are other than zero only if l = l1 or
l = l1 + 2, while the second and fourth are nonzero only
if l = l1 – 2 or l = l1. The fifth ME can be nonzero only
if l = l1 according to (12). Combining these conditions,

we come to the conclusion that the ME  is
nonzero only if

(15)

The second condition in (15) means that the parity
of l coincides with that of l1 + 2. At  = 3, conditions
for l are found from (14) and (15). Increasing l2 still fur-
ther, we can easily find by induction that, according to
the Hecke theorem for linear elements of the first type

(see (9)), the MEs  for l1 ≥ l2 are other than
zero only if

(16)

In the case of linear elements of second type (10),
the generalization of the Hecke theorem is performed in
a similar way. First, taking the fourth term in (4) as the
desired one, we arrive at the relationship

Then, one can apply all the considerations concern-
ing the zeros of MEs if the third, rather than the fifth,
element in (3) is determined. In this case, it is easy to

check that the MEs  at l1 ≤ l2 can be nonzero
only if

(17)

Combining (16) and (17) yields

(18)

The properties of MEs obeying (18) state the gener-
alized Hecke theorem (GHT) for nonlinear MEs.

Thus, from the Hecke theorem for linear elements,
one proves the GHT for nonlinear MEs with (3) and (4).
It should be noted that the vanishing of MEs that do not
satisfy the GHT conditions at l1 > l2 is a consequence of
the Hecke theorem for linear elements of the first type,
the vanishing of the same MEs at l1 < l2 is a conse-
quence of the Hecke theorem for linear elements of the
second type, and the presence of the corresponding
zeros at l1 = l2 is proved independently for linear MEs
of both the first and second types.

To conclude this section, we generalize the Hecke
results for the expansion of the kernel of linear Boltz-
mann operator (8) to the nonlinear case. This becomes
possible since recurrence relations (3) and (4) allow the
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r 1– l 1+,

Kr1 l1 1+ r2 1, , ,
r l, Kr1 1+ l1 1– r2 1, , ,

r l, Kr1 l1 r2 1+ 0, , ,
r l,

Kr1 l1 r2 2, , ,
r l,

l1 2– l l1 2, 1–( )l+≤ ≤ 1–( )
l1 2+

.=

l2'

Kr1 l1 r2 l2, , ,
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l1 l2 l l1 l2, 1–( )l+≤ ≤– 1–( )
l1 l2+

.=
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r l, F r r1 r2 l, , ,( )δl l2, .=

Kr1 l1 r2 l2, , ,
r l,

l2 l1– l l1 l2, 1–( )l+≤ ≤ 1–( )
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calculation of nonlinear MEs  with large indi-
ces. Indeed, since the set of spherical Hermitean poly-
nomials is complete in our case, we can write the kernel
of the bilinear operator in the form

(19)

Here, x = cosΘ, x1 = cosΘ1, and x2 = cosΘ2. The angles
Θ, Θ1, and Θ2 are those between the velocity vectors c,
c1, and c2, respectively, and the z axis. The upper limit
of summation over l in (19) is set according to the GHT.

If the DF is expanded in Legendre polynomials with
expansion coefficients fl(c), expression (8) has the gen-
eralization

Here, ( f, f ) is the nonlinear Boltzmann collision inte-

gral. The kernels  in this case are given by

where  and  are normalizing factors for the
corresponding Sonine polynomials.

3. DERIVATION OF FORMULAS FOR MATRIX 
ELEMENTS AND THE PROOF 

OF THE GENERALIZED HECKE THEOREM 
BASED ON KUMAR’S RESULTS

Kumar [6] considered the moment representation of
the collision integral upon expanding the DF in com-
plex spherical Hermitean polynomials:

where
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He noted that these polynomials are the eigenfunc-
tions of a quantum harmonic oscillator and showed that
the nonlinear MEs can be conveniently calculated with
the help of transformations first introduced by Talmi
[15] in the context of the shell model of the nucleus.

Following Kumar and using for the most part his
notation, we write the expansion of the collision inte-
gral in the form

where

The product of two spherical Hermitean polynomi-
als in particle velocity before (or after) collision is
expressed through the sum of the products of spherical
Hermitean polynomials in center-of-mass velocity by
the relative velocity of colliding (bouncing apart) parti-
cles. The expansion coefficients in this case are the
Talmi coefficients

Here,

G is the center-of-mass velocity, g is the relative veloc-
ity, and ma and mb are the particle masses. Then, an
arbitrary expansion coefficient of the collision integral

 is represented as the sum of the products of the
integrals of the center-of-mass velocity and the inte-
grals of the relative velocities, the Talmi coefficients

Pl
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entering only into the former. The integrals of the rela-
tive velocities have the form

(20)

Kumar also showed that if the particles are nonori-
ented (he analyzed only this case), three of the five inte-
grals in (20) can be taken and

(21)

where

and Rn, l(γg) is a radial function from the class of nor-
malized Laguerre (Sonine) polynomials.

The Kronecker symbols δl, l'δm, m' in (21) appear
because of the spherical symmetry of the interaction

potential. As a result, the expression for (β1) is
substantially simplified because it becomes shorter by
two summations.

From Kumar’s expression for (β1), it is easy to
imagine the form of the MEs in the case of expansion
in normalized spherical Hermitean polynomials;
namely,

(22)

Here, instead of K the symbol E is used to distinguish MEs
expanded in complex and real spherical harmonics.

Talmi coefficients are other than zero if certain rela-
tionships between indices are valid. Specifically, the
parity conservation law must be fulfilled; that is, the
Talmi coefficient

is other than zero only if the parity of L + l coincides
with that of l1 + l2. If so, from (22) it follows that the

ME  can be other than zero only if the
parity of l1 + l2 coincides with the parity of l3:

(23)
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Further mathematics is based on the Smirnov for-
mula [16] that expresses Talmi coefficients through

well-known Clebsch–Gordan coefficients :

(24)

It is essential here that the coefficients Bλ do not
depend on the projections of the moments of m1, m2, M,
and m. The properties of the Clebsch–Gordan coeffi-
cients can be found, for example, in [17]. One of them
that corresponds to the law of conservation of angular
momentum projection implies that the Talmi coeffi-
cients can be other than zero only if

To transform the first of the Talmi coefficients in
(22), we will take advantage of the following properties
of the Clebsch–Gordan coefficients:

(25)

(26)

From (24), we have

Here, the arguments of the function  are explicitly
substituted into formula (25). From (22) and (24), we
come to

(27)

Applying property (26) to the last sum, one can sim-
plify expression (27) to

(28)

Thus, a nonlinear matrix element is proportional to
a Clebsch–Gordan coefficient with the same indices.
Note that the expression under the summation sign does
not depend on the indices m1, m2, and m3.

Formula (28) is one more approach to directly cal-
culating the MEs. Like all other direct formulas, it

Caαbβ
cγ

NLM

nlm

β1( )n1l1m1

β2( )n2l2m2 
 
 

BλCl1m1l2m2

λ M0 CLMlm
λ M0 .

λ
∑=

M0 m1 m2+ M m.+= =

Cl3m300
λ M0 δλ l3, δM0 m3, ,=

CLMlm
λ M0 CLMlm

l3m3

M n,
∑ δλ l3, δM0 m3, .=

NLM

n'lm

β1( )n3l3m3

β2( )000 
 
  * Bλ*Cl3m300

λ M0 CLMlm
λ M0

λ
∑=

=  Bl3
* N n' n3 0 L l l3 0, , , , , , ,( )CLMlm

l3m3 .

Bl3
*

En1 l1 m1 n2 l2 m2, , , , ,
n3 l3 m3, ,

Vn n',
l Bl3

* N n' n3 0 L l l3 0, , , , , , ,( )∑=

× Bλ N n n1 n2 L l l1 l2, , , , , , ,( )Cl1m1l2m2

λ M0 CLMlm
λ M0 CLMlm

l3m3 .
M m,
∑

λ
∑

En1 l1 m1 n2 l2 m2, , , , ,
n3 l3 m3, ,

=  Cl1m1l2m2

l3m3 Vn n',
l Bl3

* N n' n3 0 L l l3 0, , , , , , ,( )∑
× Bl3

N n n1 n2 L l l1 l2, , , , , , ,( ).
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includes many summations, is extremely tedious, and
thus, inappropriate for calculating MEs with large indi-
ces.

Recall that initially the Talmi coefficients were used
in quantum-mechanical calculations, specifically, in the
calculation of MEs within the shell model of the
nucleus. For quantum calculations with large indices,
one can invoke an analogue of the recurrence procedure
developed for the kinetic theory in this and earlier
works of the authors. Note that the proportionality of
nonlinear MEs to the Clebsch–Gordan coefficients was
proved [17] based on the invariance of the bilinear Bolt-
zmann operator under rotation group SO (see (3)) (such
a procedure is valid only for centrosymmetric poten-
tials).

Let us turn back to formula (28). Owing to the fact
that the expression under the summation sign is inde-
pendent of the indices m, m1, and m2, any three-dimen-
sional ME can be expressed through an axisymmetric
one:

It is obvious that in the axisymmetric case all indices
m vanish, complex and real harmonics coincide, and
spherical harmonics become Legendre polynomials.
Also, E with zero m, m1, and m2 coincides with

 up to the normalizing factor.

It is well known [18] that, according to the rule of
vector summation, the Clebsch–Gordan coefficients are
other than zero only if they meet the “triangle” condi-
tions:

(29)

Hence, three-dimensional MEs will be nonzero only
if the triangle conditions are met. In the axisymmetric
case, which is of interest to us, property (29), together
with parity conservation law (23), states the GHT
(see (18)).

In the particular case of Maxwellian molecules,
MEs were considered in [19–21]. In the first two works
cited, where the Fourier transformation is applied to the
Boltzmann equation, formulas for directly calculating
nonlinear MEs were derived. In [21], formulas for cal-
culating axisymmetric nonlinear MEs are derived with
the α–u representation, calculations for very large indi-
ces are performed, and tables of elements calculated are
given.

It is of interest that, in the case of Maxwellian mol-
ecules, not only those MEs vanish to which the GHT is
applied but also those for which the conditions

are fulfilled [22].

En1 l1 m1 n2 l2 m2, , , , ,
n3 l3 m3, , Cl1m1l2m2

l3m3

Cl20l20
l30

------------------En1 l1 0 n2 l2 0, , , , ,
n3 l3 0, ,

.=

Kn1 l1 n2 l2, , ,
n3 l3,

l1 l2– l3 l1 l2.+≤ ≤

l 0, l1 l2 2n 1, n+ 0 1 2 …, , ,= = = =
CONCLUSION

It is important that the rotation group and the
orthogonal invariance of the kernel are used only when
the GHT is stated for linear MEs. When the GHT is
proved for nonlinear MEs, relationships (3) and (4) are
used. These relationships are universal and follow from
the invariance of the collision integral in terms of basis.
When the basis is changed, only the temperature and
velocity (shift) of the weighting Maxwellian change.

The GHT not only places limits on the range of non-
zero MEs but also allows one to establish additional
relations between MEs. From the GHT and universal
recurrence relations deduced in this paper, it follows

that any linear axisymmetric ME  can be
uniquely determined from given isotropic linear MEs

 or  [22]. For these linear elements,
simple analytical formulas were given in [2]. An algo-
rithm allowing the simple calculation of any linear axi-
symmetric ME was developed in [22]. Such MEs are
proportional to integral brackets [23], with which trans-
port coefficients in the classical kinetic theory of gases
are calculated. Thus, the GHT can ensure a great step
forward in the transport theory.
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Abstract—We develop a systematic approach to calculating the electrostatic force between point charges in an
arbitrary domain with arbitrary boundary conditions. When the boundary is present, the simple expression for
the force acting on a charge as “the charge times the field it is placed in” becomes ill-defined. However, this rule
can be salvaged if the field in question is redefined to only include all terms that do not diverge at the charge
position, in particular, those due to the charge itself. The proof requires handling the self-action energy diver-
gence for point charges, which is accomplished by means of a geometrical regularization. © 2003 MAIK
“Nauka/Interperiodica”.
I. INTRODUCTION

It is trivial to determine the force exerted by an
external field1 on a point charge in an otherwise empty
space: by definition, “the force is equal to the charge
times the field it is placed in.” In particular, if the field
in question is created by some other point charges, this
rule, known by many from high school, still holds.

However, the situation changes drastically when a
set of point charges creates the field inside an arbitrary
domain with a boundary of some physical origin
(reflected in the appropriate boundary conditions). Now
the very notion of “the field the charge is placed in”
becomes ill-defined. For example, a naive treatment of
a single-charge problem might lead one to the entirely
wrong conclusion that, since the entire field in the prob-
lem is due to the charge itself (there are no other
sources!), “the field it is placed in” is zero, so there is
no force at all.

A slightly more sophisticated physicist would argue
that only that part of the field which diverges as 1/r2

near the charge is really created by it, while the rest is
due to the boundary conditions, which represent math-
ematically the rearrangement of other physical charges
at the boundary. Therefore, it is precisely what remains
after subtracting the singular part that now gives “the
field the charge is placed in.” Unfortunately, such treat-
ment leaves one in a somewhat awkward position of,
first, calculating potentials and fields rigorously and,
then, lowering the plank and using hand-waving argu-
ments to derive forces from them. It is also not clear
whether the conjecture about which part of the total
field contributes to the force is always valid.

1 In fact, the word “external” means that the field is produced by
some independent sources, and the boundaries, if any, are far
away from the charge.

*This article was submitted by the authors in English.
1063-7842/03/4802- $24.00 © 20146
Thus, it seems appealing to show that the physical
arguments can be backed by an accurate mathematical
proof demonstrating that the adjusted rule, “the force is
equal to the charge times the part of the field that does
not diverge at the charge’s location,” is either universal
or limited by certain conditions. To do this, one should
turn to the most fundamental energy conservation argu-
ment which gives the force as the negative gradient of
the energy in the charge’s position. This approach also
does not turn out to be straightforward, since the energy
is infinite in the presence of point charges due to their
self-action.

Perhaps because of these difficulties, as well as the
misleading apparent simplicity of the problem, our lit-
erature search, which encompassed, in particular, [1–10]
and many other books on the subject, revealed no ready
result (except in [6], which we discuss in Section 4). So
we give a careful derivation of the general expression
for the force on point charges in this paper. It consists
of the regularization of the problem, calculation of the
force from the (regularized and finite) energy, and then
taking the singular limit. The result agrees with one’s
intuitive expectations.

II. ELECTROSTATICS PROBLEM WITH VOLUME 
POINT CHARGES: POTENTIAL AND ENERGY

Consider an arbitrary three-dimensional domain D
with a perfectly conducting boundary S and some N
point electrical charges inside. The electrical potential
ψ(r), in this case, is determined by the following
Dirichlet boundary value problem (we use SI units
throughout the paper):

(1)

(2)

∆ψ 1
ε0
---- qiδ r ri–( ), r ri D;∈,

i 1=

N

∑–=

ψ S 0.=
003 MAIK “Nauka/Interperiodica”



        

ON THE INTERACTION OF POINT CHARGES 147

                                                                                                                      
Here, r = xex + yey + zez is the vector radius of a point,
and ri = xiex + yiey + ziez specifies the ith charge position,
with eα, α = x, y, z, being the unit vectors in the direction
of the corresponding Cartesian axes.

By the superposition principle, the potential ψ(r) is
merely the sum of the potentials induced by each
charge separately,

              (3)

              (4)

where κ = 1/4πε0, and GR(r, rj) is the regular part of the
Green’s function G(r, rj) of the corresponding bound-
ary value problem [set qj = 1, qi = 0, i ≠ j in Eq. (1)].
Both functions are, of course, symmetric in their argu-
ments,

(5)

Furthermore, we can rewrite Eq. (4), splitting the
potential in a sum of its singular and regular parts,

(6)

(7)

where ψR(r) is a regular function satisfying the Laplace
equation everywhere in D [by continuity, this holds also
at any regular point2 of the boundary S, although this is
irrelevant to our discussion]. Note that both the poten-
tial ψ and its regular part ψR actually depend on the
positions of the charges ri, as well as on the observation
point r, which is reflected in the full notation

(8)

(9)

We assume that the potential is known, and we are
interested in finding the force F i acting on the charge qi.
From the energy conservation for the considered prob-
lem, the force is given by (cf. [6])

(10)

where WD is the energy of the field in the volume D,

(11)

2 We allow for boundary singularities, such as sharp edges and
spikes, provided that the Meixner-type finite energy condition
[11] is satisfied near them; in particular, the domain D can be infi-
nite.

ψ r( ) κ q jG r r j,( ),
j 1=

N

∑=

κ q j
1

r r j–
--------------- GR r r j,( )+ ,

j 1=

N

∑≡

G r r j,( ) G r j r,( ), GR r r j,( ) GR r j r,( ).= =

ψ r( ) κ
q j

r r j–
---------------

j 1=

N

∑ ψR r( ),+=

ψR r( ) κ q jGR r r j,( ),
j 1=

N

∑≡

ψ r( ) ψ r r1 … ri … rN, , , , ,( ),≡

ψR r( ) ψR r r1 … ri … rN, , , , ,( ).≡

Fi ∂
∂ri

-------WD,
∂

∂ri

-------–
∂

∂xi

-------ex
∂

∂yi

-------ey
∂

∂zi

------ez,+ += =

WD

ε0

2
---- —ψ( )2 V .d

D

∫=
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Note that we alternatively write — or ∂/∂r for the gradi-
ent, whatever seems proper in a particular expression.

The problem is, however, that the above integral
obviously diverges due to self-interaction of the point
charges (the energy of a single point charge is infinite).
We are going to show that even though the energy for a
given point charge distribution is infinite, the difference
between its two values corresponding to any two charge
configurations is finite (for an arbitrary boundary
shape) and goes to zero when one charge distribution
tends to the other. Hence, the force is also finite, in
accordance with common intuition. The situation with
energy here is similar to the one arising in the calcula-
tion of the Casimir effect [12], which also requires
some generalization.

III. REGULARIZED ENERGY AND THE FORCE 
ON THE CHARGES

We surround each volume charge qi by a small

sphere  of radius e; we write  for the ball inside it.

We define De as D without all domains , and Se as a

union of S and all spherical surfaces  (see Fig. 1). In
effect, Se is the boundary of the domain De and De 
D, Se  S when e  0.

Using Eq. (10), we may now define the force acting
on the charge qi as

(12)

where  is the regularized energy, that is, the energy
of the field in De, which is finite. It is important to note
the order of operations in Eq. (12): first, take the gradi-
ent of the regularized energy in the charge position,
then, take the (singular) limit. In principle, we also have
to show that the final result does not depend on the reg-
ularization chosen, but this task is not easy. We will
return to this problem briefly later in this paper.

In view of Eq. (11) and the fact that the total poten-
tial given by Eq. (3) or Eq. (6) is regular in De, the reg-

Si
e Di

e

Di
e

Si
e

Fi Fe
i

e 0→
lim  

∂
∂ri

-------WD
e ,

e 0→
lim–= =

WD
e

D

S

Si
ε

Sε

n

n

Di
ε

qi

ε

Fig. 1. Volumes, surfaces, and normal directions involved.
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ularized energy is

where n is the direction of the outward normal to Se

(and thus the inward normal to the spheres ). For an
infinite domain D, it is assumed here that the potential
and its gradient drop at infinity fast enough to make the
contribution of integrating over the sphere of a large
radius vanishing in the limit, an assumption which has
to be verified in each particular case.

Since ψ is harmonic everywhere in De, the volume
integral on the right of the previous equality vanishes;
the remaining surface integral is represented as

(15)

and then, because of the boundary condition, Eq. (2), as

(16)

We are ultimately interested in the limit e  0, so
we need to calculate only the quantities which do not
vanish in this limit. The area of integration in each term
of the above sum is O(e2); therefore, we need to keep
track of the integrands that grow at least quadratically
in e–1. Bearing this in mind and using Eq. (6) for the
potential, we can write the surface integral in Eq. (16)
as

(17)

The first term in the above expression is, in fact, the

regularized self-energy of the kth charge, . Per-
forming elementary integration, we immediately find
that

(18)

The only feature of the regularized self-energy given
by Eq. (18) that is important for our derivation is that it
does not depend on the position of the charge qk, i.e., on
the vector radius rk.
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The second term of the right-hand side of Eq. (17)
can also be simplified if one notices that both ψR and

1/|r – rj |, j ≠ k, are regular on  and in . Therefore,

their change within the small surface  is of order e.
Thus, Eq. (17) may be rewritten as

(19)

and the integration here yielding the factor 4π is again
elementary. This asymptotic equality may be differen-
tiated in ri with the same estimate of the remaining
term.

Introducing now the previous expression into
Eq. (16), we obtain

(20)

Equation (20), in its turn, is inserted in Eq. (12) for
the force; as shown, the self-energies do not depend on
the charge positions; hence, although diverging in the
limit e  0, they do not contribute to the force. The
rest is pretty straightforward, except that one has to be
careful when differentiating the last term on the right of
Eq. (20) with k = i: as is seen from Eq. (8), in this case
ri stands for two (and not one!) arguments of ψR,
namely, ψR(ri) ≡ ψR(ri, r1, …, ri, …, rN), and both of
them have to be differentiated. Bearing this in mind, the
expression for the force finally becomes

(21)
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This is the general result for the electrostatics which
can be transformed further. Indeed, the direct substitu-
tion of the expression for ψR from Eq. (6) into Eq. (21)
provides the force in the form

(22)

and here we have used the symmetry property of Eq. (5)
to obtain the second equality. To make the result even
more physically transparent, we rewrite Eq. (22), in its
turn, in the following way:

(23)

Note that the last expression, indeed, coincides with
our intuitive conjecture about the form of the force.

IV. DISCUSSION

Our first remark on the expressions for the force in
Eqs. (21)–(23) is that for the charges in a free space
(volume D is the whole space, no boundaries are
present), apparently, GR(r, rk) ≡ 0, ψR ≡ 0, and the clas-
sical Coulomb formula for the force is restored.

Next, Eq. (23) shows that the rule “the force is the
charge times the field it is placed in” does work if one
counts the regular part of the field produced by the
charge in question as a part of the “field the charge is
placed in.” It also allows for a certain “minimal princi-
ple”; namely, to get the right answer for the force, one
should remove from the field only the part which other-
wise makes the result infinite, and nothing beyond that.
As we mentioned in the Introduction, this result is sup-
ported by physical intuition. It becomes even more
obvious if one notes that the singular part of the field
removed is radial, and a radial field produces no force.

The contribution of the regular part of the field cre-
ated by a charge to the force acting on it is especially
important in the case of a single charge, as one may see
from the simplest example of a charge near a conduct-

–
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ing plane. It is precisely the regular part of the field pro-
duced by the charge in question (equal to the field of the
image charge) that gives the whole answer when no
other charges are present. Finally, an important ques-
tion is how robust our regularization of the problem is,
i.e., whether the result for the force changes or not if
one uses a different regularization. There are two sig-
nificant points demonstrating such robustness.

The first one is concerned with the geometrical reg-

ularization that we used. If one chooses domain 
around qk to be not a ball but some differently shaped

volume bounded by a smooth surface  (“topological
ball”), then it is not difficult to see that all the terms in
Eq. (20) for the regularized energy remain unchanged,
and, hence, our result for the force is still valid. This can
be demonstrated in exactly the same way as above, only

the computation of the integral over the surface  in
Eq. (19) requires a well-known result from potential
theory (cf. [13], n. 193, or [14]).

As for the first integral on the right of Eq. (17),

which defines the self-energy , its explicit
expression is not required, and its only relevant prop-
erty, namely, its independence of rk, is obvious.

An alternative way of regularization, so widely used
during the whole “pre-Dirac delta-function” era, is
physical regularization, where the point charge qk is

replaced, within a small volume , with some smooth

charge distribution of the density (k) and the same
total charge qk, and e is taken to be zero in the answer.
From a technical point of view, this approach proves to
be more complicated in this particular case, but it leads
again to the same terms in Eq. (20) for the regularized
energy. The key point here is to start with the following
expression for the regularized energy,

(24)

and then, instead of Eq. (3), split the potential into a

sum of volume potentials of (r) over  (which
becomes singular in the limit) and a regular addition

(r).

In particular, this regularization is used by Smythe
in Section 3.08 of [6] for calculating the force on a sin-
gle point charge in a domain with zero potential at the
boundary. In that work, derivation is at the “physical
level of accuracy” and the answer is not brought down
to its physically most relevant form of Eq. (23). More-
over, the final answer [right-hand side of Eq. (2) in that
section] is, unfortunately, formally diverging because
of the inappropriate use of the notation for the total
potential in the place where its regular part should be.

Dk
e

Sk
e

Sk
e

Wk self,
e

Dk
e

ρk
e

WD
e 1

2
--- ρeψ Vd

D

∫≡ 1
2
--- ρk

eψ V ,d

Dk
e

∫
k 1=

N

∑=

ρk
e Dk

e

ψR
e
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Finally, we want to end our discussion by mention-
ing that the electrostatic problem we just solved, as well
as its generalizations (see Section 5), involve only vol-
ume charges. On the other hand, magnetostatic prob-
lems that deal, for example, with magnetic fluxes
trapped in superconducting media (cf. [15]) give rise to
surface charges. Analysis of these is of extreme impor-
tance for modern experimental physics [16]. No easy
solution for the force between surface charges should
be anticipated since the details of the boundary shape,
such as its curvature, are expected to play a role; the
interaction of such surface charges will be discussed
elsewhere.

V. GENERALIZATION: OTHER BOUNDARY 
CONDITIONS

We can now generalize our result for other condi-
tions at the boundary.

A modest but potentially useful generalization may
be applied to the case of electrodes, where an arbitrary
distribution of the potential V(r), and not just a zero, is
specified at the boundary:

(25)

Let us split the potential in two,

(26)

in which the first is caused by point charges without any
voltage applied to the boundary, and the second is
entirely due to the boundary voltage. Therefore, ψ(1)

satisfies the boundary value problem of Eqs. (1) and (2),

(27)

(28)

According to what was proven above, the force on a
charge from the field specified by the potential ψ(1) is
given according to Eq. (23),

(29)

On the other hand, the potential ψ(2), satisfying

(30)

describes a field external to all point charges, since it
does not depend on them and their positions. Therefore,
the force exerted by this field is

(31)

Using the superposition principle, we add these two
forces to reinstate the result of Eq. (23) in the consid-

ψ S V r( ), r S.∈=

ψ ψ 1( ) ψ 2( ),+=

∆ψ 1( ) 1
ε0
---- qiδ r ri–( ), r ri D;∈,

i 1=

N

∑–=

ψ 1( )
S 0.=

F 1( )
i qi— ψ 1( ) r( )

κqi

r ri–
---------------–

r ri=

.–=

∆ψ 2( ) 0, r D; ψ 2( )
S∈ V r( ),= =

F 2( )
i qi—ψ 2( ) r( ) r ri= .–=
ered case:

(32)

The mixed boundary conditions

(33)

where the surfaces S1, S2 are nonintersecting (S1 ∩ S2 =
∅ ) and comprise the whole boundary (S1 ∪  S2 = S), and
V(r), σ(r) are given functions, lead to the same standard
result for the force [Eq. (23)] without any new technical
difficulties. Indeed, we split the total potential in two as
in Eq. (26) and require that

(34)

(35)

and

(36)

(37)

The derivation of the force from ψ(1) is performed
exactly as in Section 3 and leads to Eq. (29). The field
that is external to the charges from ψ(2) produces the
force of Eq. (31), so by superposition the total force is
again the same as in Eq. (23) [or Eq. (32)].

The appropriate splitting of the potential into two
parts [Eq. (26)] is somewhat more difficult for the Neu-
mann boundary condition,

(38)

namely, the solvability criterion (the total charge must
be zero) requires that, when splitting the potential,
another charge Q (equal to the sum of the point charges
qi) be added and subtracted at some point r∗  of the
domain D to obtain

(39)

(40)

Fi F 1( )
i F 2( )

i+ qi— ψ r( )
κqi

r ri–
---------------–

r ri=

.–= =

ψ S1
V r( ), ε0

∂ψ
∂n
-------

S2

σ r( ),= =

∆ψ 1( ) 1
ε0
---- qiδ r ri–( ), r ri D;∈,

i 1=

N

∑–=

ψ 1( )
S1

0, ∂ψ 1( )

∂n
------------

S2

0= =

∆ψ 2( ) 0, r D;∈=

ψ 2( )
S1

 = V r( ), ε0
∂ψ 2( )

∂n
------------

S2

σ r( ).=

ε0
∂ψ
∂n
-------

S

σ r( ), σ r( ) Ad
S
∫ Q+ 0, Q q j;

j 1=

N

∑≡= =

∆ψ 1( ) 1
ε0
---- qiδ r ri–( )

i 1=

N

∑ Qδ r r*–( )– ,–=

r ri r*, , D;∈

∂ψ 1( )

∂n
------------

S

0,=
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as well as

(41)

(42)

with both problems solvable. Again, the derivation of
the force from ψ(1) satisfying the homogeneous bound-
ary condition is performed exactly as before and leads
to Eq. (29), the field ψ(2) external to the charges exerts
the force given in Eq. (31), and the result of Eq. (23)
holds by superposition. The problem itself, though, is
not too realistic, except for the case of an insulated
boundary, σ(r) ≡ 0.
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Abstract—In the approximation quadratic in the amplitude of an arbitrary initial deformation of an equilibrium
spherical uniformly (volumetrically) charged drop of a dielectric liquid, an analytical expression for the drop
surface generatrix as a function of time is derived in the case when the drop shape executes axisymmetric vibra-
tions. A condition that must be imposed on mode frequencies in order for resonant interaction between modes
to take place in the quadratic approximation is found. It is shown that many resonances, rather than one known
previously, are realized when the self-charge is insufficient (subcritical) for drop surface instability against self-
charge to arise. Nonlinear two- and three-mode resonant interactions are studied. © 2003 MAIK “Nauka/Inter-
periodica”.
(1) The nonlinear capillary vibration of charged
drops is of considerable interest in a variety of areas of
science and technology (see, e.g., [1–11] and Refs.
therein). However, because of the cumbersome analyt-
ical calculations, many aspects of the nonlinear vibra-
tion of charged drops are as yet little understood. The
issues that remain poorly studied are, for example, the
so-called translational instability of drops, which shows
up when several neighboring modes arise in the mode
spectrum excited at the initial time instant [11]; internal
nonlinear resonant interaction between different modes
of the capillary vibration of the drop [1, 8]; and the
effect of the charge distribution over the drop volume
on nonlinear vibration. In this work, we solve the prob-
lem of a nonlinearly vibrating uniformly (volumetri-
cally) charged drop of a dielectric liquid, separate out
resonances arising in the case of a subcritical (in terms
of linear instability) charge, and analyze the solution in
the vicinity of typical resonances.

(2) Consider the time evolution of the shape of a
spherical drop of an ideal incompressible dielectric liq-
uid with a density ρ, surface tension coefficient ζ, and
permittivity εd. We assume that the drop of radius R is
in a vacuum and that its total charge Q is uniformly dis-
tributed over the volume with a constant charge density
µq. At the time instant t = 0, the equilibrium spherical
shape of the drop undergoes an axisymmetric perturba-
tion of fixed amplitude, the perturbation being much
smaller than the radius of the drop. Our aim is to find
the spectrum of arising capillary oscillations (i.e., the
shape of the drop) for t > 0.

Let us assume that the drop is axisymmetric at any
time instant. Then, in the spherical coordinate system
with the origin at the center of mass of the drop, the
1063-7842/03/4802- $24.00 © 20152
equation describing the surface of the drop in dimen-
sionless variables where R = ρ = ζ = 1 has the form

(1)

The flow inside the drop is assumed to be potential.
In this case, the velocity field in the drop V(r, t) = —ψ(r, t)
is completely defined by the velocity potential function
ψ(r, t).

The set of equations for drop shape evolution con-
sists of the Laplace equations for the velocity potential
ψ(r, t) and external electrostatic potential Φex(r, t), as
well as the Poisson equation for the internal electro-
static potential Φin(r, t):

(2)

, (3)

where ∆ is Laplacian.
The boundary conditions are as follows:

(4)

(5)

(6)

(7)

r Θ t,( ) 1 ξ Θ t,( ), ξ  ! 1.+=

∆ψ r t,( ) 0,=

∆Φex r t,( ) 0, ∆Φin r t,( ) 4π
µq

εd

-----–= =

r 0: ψ r t,( ) 0;

r ∞: —Φex r t,( ) 0;

r 0: —Φin r t,( ) ∞;<

r 1 ξ Θ t,( ): 
∂ξ
∂t
------+ ∂ψ

∂r
-------

1

r2
---- ∂ξ

∂Θ
-------∂ψ

∂Θ
-------;–= =

∆p
∂ψ
∂t
-------

1
2
--- —ψ( )2– µqΦin

1
8π
------ εd 1–( ) —Φex( )2+––

–
εd 1–( )2

8πεd

-------------------- n —Φex⋅( )2
divn;=
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(8)

(9)

We also introduce the obvious conditions of center-
of-mass immobility and conservation of drop volume:

(10)

(11)

Note that conditions (10) and (11) have to be satis-
fied at any time instant, including the initial one. There-
fore, at t = 0, they define the amplitudes of the zero and
first modes in the expansion of the initial perturbation
ξ(Θ) of the equilibrium spherical shape of the drop in
Legendre polynomials. In other words, the amplitudes
of the zero and first modes cannot be arbitrary: they
depend on the initial deformation.

The initial conditions are set as the initial deforma-
tions of the equilibrium spherical shape of the drop and
as the zero initial velocity of the surface:

(12)

where Ξ is a set of the numbers of initially excited
vibrational modes and µ ≡ cosΘ.

In (6)–(12), ∆p is the difference in the constant pres-
sures inside and outside of the drop in equilibrium;
n, the unit normal vector to the surface defined by (1);
ε, the amplitude of the initial perturbation of the surface
shape (small parameter of the problem); Pi(µ), ith-order
Legendre polynomials; hi, coefficients specifying the
partial contribution from an ith mode to the total initial
perturbation; and ξ0 and ξ1, constants that are deter-
mined from conditions (10) and (11) at the initial time
instant and are given by

(13)

up to second-order infinitesimals in ε.
In Eqs. (3), (5), (8), and (9), the electrical charge is

assumed to be “frozen” in the liquid, i.e., uniformly dis-
tributed over the drop volume with a constant volumet-
ric density µq = (3Q/4π).

Φex Φin;=

n —Φex⋅( ) εd n —Φin⋅( ).=

r2 r Θsind Θd φd

v

∫ 4
3
---π,=

v 0 r 1 ξ Θ t,( ), 0 Θ π, 0 φ 2π≤ ≤≤ ≤+≤ ≤[ ] ;=

er r⋅ 3 r Θsind Θd φd

v

∫ 0,=

v 0 r 1 ξ Θ t,( ), 0 Θ π, 0 φ 2π≤ ≤≤ ≤+≤ ≤[ ] .=

t 0: ξ Θ( ) ξ0P0 µ( ) ξ1P1 µ( ) ε hiPi µ( );
i Ξ∈
∑+ += =

∂ξ Θ( )
∂t

--------------- 0; hi

i Ξ∈
∑ 1,= =

ξ0 –ε2 hi
2

2i 1+( )
-------------------

i Ξ∈
∑ O ε3( );+≈

ξ1 ε2 9ihi 1– hi

2i 1–( ) 2i 1+( )
--------------------------------------

i Ξ∈
∑ O ε3( )+–≈
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(3) To solve the problem posed, we will use the clas-
sical method of multiple scales. The desired functions
ξ(Θ, t), ψ(r, t), Φex(r, t), and Φin(r, t) are expanded in
the power series in the small parameter ε that are con-
sidered as functions of various time scales (rather than
merely of time t) defined via the small parameter ε:
Tm ≡ εm, t. Then,

(14)

The hydrodynamic part of the problem is solved in
a similar way as the problem [9, 10] of the surface
vibration of a charged drop of a perfectly conducting
liquid. The only difference is requirement (11) that the
center of mass be stationary at any time instant, which
eventually defines the first mode amplitude (see (13)) in
expansion (12) and the time evolution of the first mode
(see (19) and (32)). The electrical part of the problem is
considered at length in Appendix A.

We will restrict our analysis by the second-order
approximation to find the desired parameters as a func-
tion of two time scales T0 and T1.

Substituting expansions (14) into set (2)–(11) and
equating the terms with the same powers of ε, we arrive

at a set of boundary-value problems for ξ(m), Ψ(m), ,

and .

It is obvious that each of the functions Ψ(m), ,

and  must satisfy linear equations (2) and (3). Note
only that owing to the model of frozen charge, the

potential  is the solution to Poisson equation (3),

while  and  are found from the homogeneous
Laplace equation.

In the zeroth approximation, we will come to a solu-
tion for an equilibrium spherical dielectric drop with
the easily calculable electric potentials of zeroth order

of smallness  and  (see Appendix A).

(4) Solutions to Eqs. (2) and (3) for the functions of
first and second orders of smallness that satisfy bound-

ξ Θ t,( ) εmξ m( ) Θ T0 T1, ,( );
m 1=

∞

∑=

ψ r t,( ) εmψ m( ) r Θ T0 T1, , ,( );
m 1=

∞

∑=

Φex r t,( ) εmΦex
m( ) r Θ T0 T1, , ,( );

m 1=

∞

∑=

Φin r t,( ) εmΦin
m( ) r Θ T0 T1, , ,( ).

m 1=

∞

∑=

Φex
m( )

Φin
m( )

Φex
m( )

Φin
m( )

Φin
0( )

Φin
1( ) Φin

2( )

Φin
0( ) Φex

0( )
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ary conditions (4) and (5) can be written in the form

(15)

Successive corrections to the equilibrium surface of
the drop are also represented as expansions in Legendre
polynomials:

(16)

Substituting solutions (15) and (16) at m = 1 into a
set of first-order boundary conditions that is derived
from (6)–(9), we come, after appropriate rearrange-
ments, to differential equations for the coefficients

(T0, T1):

(17)

A solution to Eqs. (17) is harmonic functions with
coefficients dependent on the time T1:

(18)

(hereafter, “c.c.” means terms complex conjugate to

written terms), where (T1) and (T1) are real
functions whose dependence on T1 can be found only
after the problem of the next order of smallness is con-
sidered.

From conditions (10) and (11) written in the approx-
imation linear in ε, it follows that

(19)

Note that expressions (19) formally do not contra-
dict Eqs. (17) for n = 0 and 1.

Ψ m( ) r Θ T0 T1, , ,( ) T0 T1,( )rnPn µ( );  m
n 1=

∞

∑ 1 2;,= =

Φex
m( ) r Θ T0 T1, , ,( ) = Fn

m ex,( ) T0 T1,( )r n 1+( )– Pn µ( );
n 0=

∞

∑

Φin
m( ) r Θ T0 T1, , ,( ) Fn

m in,( ) T0 T1,( )rnPn µ( ).
n 0=

∞

∑=

xi m( ) Θ T0 T1, ,( ) = Mn
m( ) T0 T1,( )Pn µ( );

n 0=

∞

∑
m 1 2.,=

Mn
1( )

∂2Mn
1( ) T0 T1,( )
∂T0

2
----------------------------------- ωn

2Mn
1( )

T0 T1,( )+ 0;=

ωn
2 n n 1–( ) n 2+( ) Wκ1 n εd,( )–[ ] ; W≡ Q2

4π
------;=

κ1 n εd,( )
nεd

2 2n 5–( )εd– n 1+( )+
εd nεd n 1+ +( )

--------------------------------------------------------------.≡

Mn
1( ) T0 T1,( ) = An

1( ) T1( ) iωnT0( )exp c.c.; n 2;≥+

An
1( ) T1( ) an

1( ) T1( ) ibn
1( )

T1( )( )exp=

an
1( ) bn

1( )

M0
1( ) T0 T1,( ) 0; M1

1( ) T0 T1,( ) 0.= =
Satisfying boundary conditions (12) in the first
approximation in ε, we obtain

(20)

Substituting first-order solutions (18) and (19), as
well as solutions (15) and (16) with m = 2, into a set of
second-order boundary conditions that is derived from
(6)–(9) and performing much more tedious rearrange-
ments, we arrive at an equation for the coefficients

(T0, T1):

(21)

Hereafter, the bar means complex conjugation. The
expressions for γlmn and ηlmn are given in Appendix B.

According to the general procedure [12], a uni-
formly suitable solution to Eq. (21) is found if terms
responsible for secular terms and small-denominator
terms in corresponding solutions are eliminated from
the right of (21) by appropriately choosing the func-

tions (T1). The condition for eliminating these
terms makes it possible to determine the form of the

functions (T1), i.e., the dependence of the first-

order solution (T0, T1) on the “slow” time T1.

Recall that in a partial solution to inhomogeneous
equation (21), the terms in the inhomogeneous function
that vary in the time scale T0 with a frequency equal to
the eigenfrequency ωn of a solution to the correspond-
ing homogeneous equation cause defects like secular
and small-denominator terms.

(5) From the right of (21), it follows that if one of the
relationships

(22)

is valid for three vibrational modes with numbers p, q,
and k, these modes are resonantly coupled. In this case,
so-called secondary Raman resonance takes place.

It should be noted that, according to (17), the eigen-
frequencies ωn of drop vibration depend on the permit-
tivity εd and drop charge (parameter W). At the critical
value of W, Wcr = 4/κ1(2, εd), the vibration frequency of
the fundamental mode (with n = 2) vanishes, indicating
that the drop loses stability. This means that secondary

ai
1( ) 0( ) 1

2
---hi; bi
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0( ) 0; i Ξ;∈= =

an
1( ) 0( ) 0; bn

1( )
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2( ) T0 T1,( )+ 2iωn
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resonances may appear only if relationships (22)
remain true at W < Wcr. In [1], one such resonance was
found in the case ω6 = 2ω4.

Numerical calculations by formula (22) show that a
greater number of secondary resonances may be
excited in the drop. The values of W for which the rela-
tionship ω3 = ωp – ωq is met at different p and q smaller
than 10 with εd = 5 and Wcr = 4.483 are listed in Table 1
and with εd = 1000 and Wcr = 4.004, in Table 2. Similar
data for the relationship ω4 = ωp – ωq are listed in Tables 3
and 4. Note that in the formal limit εd  ∞, all the
solutions obtained are reduced to solutions of a similar
problem for a perfectly conducting drop with a total
surface charge Q. Therefore, the data in Tables 2 and 4
for εd = 1000 should be considered to be valid for a con-
ducting drop.

In the subsequent analysis of Eq. (21), we will con-
sider the situation where modes p, q, and k obey the dif-
ference relationship ωp – ωq = ωk and p > q. Clearly, the
resonant sum is obtained from this difference relation-
ship by transferring the frequency ωq to the right-hand
side of the latter and permutating p and k.

Let us consider separately four possible cases: n ≠ k,
p, q; n = k; n = p; and n = q. For each of them, the con-
dition for eliminating secular and small-denominator
terms from a solution to (21) is different.

For n ≠ k, p, q, when the mode n is resonantly uncou-
pled, this condition has the simplest form:

Using expression (18), where (T1) is expressed

through the scalar functions (T1) and (T1), and
requiring the real and imaginary parts to vanish, one
easily finds from the above equality that

This means that  and  do not depend on the
slow time T1 and therefore can be considered constant
and equal to their initial values (20) in the second-order
approximation. Expression (18) for the small-order

coefficients (t) in the expansion of the equilibrium
surface disturbance ξ(1)(Θ, t) in Legendre polynomials
takes the form

(23)

where δn, i is the Kronecker symbol.
When analyzing Eq. (21) for modes with n = k, p, or

q, we introduce the detuning parameter σ O(1) defined
as

in order to underline the closeness of ωp – ωq to ωk.

dAn
1( ) T1( )
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dbn
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Then, the right of (21) will have terms containing
the factors

i ωp ωq–( )T0[ ]exp

=  i ωk εσ+( )T0[ ]exp iσT1[ ] iωkT0[ ] ;expexp=

Table 1.  Mode numbers (q, p ≤ 10) excited at the initial time
instant and the values of the parameter W related to the drop
charge for which the resonant buildup of the third mode takes
place (εd = 5, Wcr = 4.483)

εd = 5, Wcr = 4.483

q p Q

4 5 4.355

5 6 3.867

6 7 3.361

7 8 2.847

8 9 2.328

9 10 1.807

Table 2.  The same as in Table 1 for εd = 1000 and Wcr = 4.004

εd = 1000, Wcr = 4.004

q p W

4 5 3.623

5 6 3.210

6 7 2.785

7 8 2.356

8 9 1.925

9 10 1.493

Table 3.  The same as in Table 1 for the buildup of the fourth
mode

εd = 5, Wcr = 4.483

q p Q

3 5 4.355

4 6 3.248

5 7 2.018

6 8 0.750

Table 4.  The same as in Table 2 for the buildup of the fourth
mode

εd = 1000, Wcr = 4.004

q p W

3 5 3.623

4 6 2.671

5 7 1.651

6 8 0.612
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for the respective cases, and the conditions for eliminat-
ing secular terms from solutions to (21) for n = k, p, or
q, respectively, will take the form

(24)

Equating the real and imaginary parts of (24) to zero
and introducing the new function

(25)

we come to a set of differential equations for the real

functions (T1), (T1), (T1), (T1), (T1),

and (T1):

(26)
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Relationships (20) serve as initial conditions for
Eqs. (26). From the condition that system (26) be con-
sistent at t = 0, we find that if one of the modes p, q, or
k is absent in the set Ξ of initially excited modes, i.e.,
the amplitude of this mode equals zero at the initial
time instant, its phase is π/2 and not arbitrary. Eventu-
ally, the initial conditions for set (26) can be written in
compact form

(27)

First-order coefficients in expansion (16) for reso-
nantly coupled modes p, q, and k will be written as
(see (18))

(28)

where the coefficients , , , , , and

 are the solutions to set (26) with initial conditi-
ons (27).

Note that in the second-order approximation, the
resonant interaction between three modes is observed
only if at least two of them are present in the initially
excited spectrum, i.e., if their amplitudes are other than
zero at t = 0. The third mode, even with a zero initial
amplitude, will appear in the first-order vibration spec-
trum if its number meets the conditions that (for the
case p, q ∈  Ξ, k ∉  Ξ) p + q + k is even and |p – q| ≤ k ≤
p + q, which follow from the requirement that the coef-

ficients , , and  in (26) be other than
zero.

For εd = 5 and ε = 0.3, the time evolution of the first-
order amplitudes of the third, sixth, and seventh modes
(with W = 3.361) is shown in Fig. 1a and for the third,
fourth, and fifth modes (with W = 4.355), in Fig. 1b. It
is seen that the third mode, which was absent in the ini-
tial disturbance spectrum, is excited by resonantly tak-
ing up the energy from the highest mode. Calculations
indicate that the variation of the permittivity εd affects
resonant mode coupling insignificantly.

Prior to presenting solutions to Eq. (21), we note
that for second-order calculations, it is sufficient to find

the dependence of the coefficients (t) on the time

T0. Indeed, the neglect of the (t) vs. T1 dependence
(T1 is the slow time) causes an error O(εt). In expansion
(14) for ξ(Θ, t), this error produces an error O(ε3t) and,
hence, does not influence the accuracy of the second-
order approximation within time intervals t O(1).
Because of this, when solving Eq. (21), we will assume
that all the functions in its right-hand side do not
depend on T1 and equal their initial values.

a j
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Assuming that the partial solution to inhomoge-
neous equation (21) depends on T0 in the same way as
its right-hand side and adding this solution to the gen-
eral solution to the corresponding homogeneous equa-
tion, we write the general solution to inhomogeneous
equation (21) for the case n ≥ 2; n ≠ p, q, k in the form

(29)

Here,  and  are real constants that are deter-
mined from the initial conditions and the expressions

for  are given in Appendix B.

In the second-order approximation, initial condi-
tions (12) take the form

(30)

Substituting (29) and (30) into (12), we arrive at the
final expression for the second-order coefficients in
expansion (16):

(31)

The time evolution of the zero (n = 0) and first (n =
1) modes is defined by requirements (10) and (11).
With (10) and (11) written in the second-order approx-
imation, we easily obtain

(32)

It should be noted that expressions (32) are consis-
tent with general equation (21), which can be checked
by direct substitution.

When solving (21) with n = p, q, or k, one should
bear in mind that “dangerous” terms are excluded from
the double sum on the right of (21) by virtue of relation-
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ships (24). We take into account this circumstance
through the definition

(33)

and write the general solutions for n = p, q, or k in a
form similar to (29) but with additional coefficients:

 before  (if n = k),  before  (if n = p),

and  before  (if n = q).

These general solutions contain the real constants

, , , , , and  that are specified by
initial conditions (30).

If three resonantly coupled modes are present in the
spectrum of initially excited modes, i.e., (k, p, q) ∈  Ξ,
then, satisfying initial conditions (30), we obtain
expressions for the time-dependent second-order coef-
ficients in expansion (16) that are similar to (31):
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Fig. 1. Amplitudes  of the resonantly interacting

(a) third, sixth, and seventh modes and (b) third, fourth, and
fifth modes vs. dimensionless time t. The figure by the
curves indicates the mode number. Different modes are
depicted by lines of different thickness.
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(34)

If one of the resonantly coupled modes has a zero
amplitude and the amplitudes of the remaining two are
other than zero, for example, [p, q] ∈  Ξ, k ∉  Ξ, the coef-

ficients (t) and (t) are given by (34), while for
the kth mode, we have

(35)

Similar expressions can also be written for two other
possible situations: [k, q] ∈  Ξ, p ∉  Ξ and [k, p] ∈  Ξ,
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q ∉  Ξ. In the former case,
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In the latter,

(37)

The coefficients omitted here are given by (34) in
both cases.

Figure 2 shows the time dependences of the third
mode amplitude for εd = 5, ε = 0.3, and W = 4.355 accu-
rate to the first and second order of smallness for the
resonant interaction between the third, fourth, and fifth
modes. It is easy to check that the second-order correc-
tion to the amplitude is small. Yet it should be recalled
once more that resonant coupling between modes of
capillary drop vibration is a nonlinear effect that can be
“observed” only in the second-order approximation in
the initial disturbance amplitude.

(6) Consider separately the case when only two
modes interact resonantly; that is, when the relationship

takes place.
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The same analysis as before yields for the first-order
time-dependent coefficients in expansion (16)

(38)

where the real functions (εt), (εt), (εt), and

(εt) are the solutions to the set of differential equa-
tions

(39)

Relationships (20) imply the following sets of the
initial conditions for system (39):

In the case p ∉  Ξ, k ∈  Ξ (i.e., (0) = 0, (0) =
hk/2), resonant coupling between the modes p and k is
absent in this approximation, since from (39) at t = 0 we
have

i.e., the amplitudes  and  retain their initial
values.

Figure 3 depicts the time dependences of the ampli-
tudes of the resonantly interacting fourth and sixth
modes with εd = 5, ε = 0.3, and W = 3.248 for two initial
conditions: (1) both modes are present in the initial dis-
turbance spectrum and (2) initially the fourth mode is
excited and the six mode has a zero amplitude. If ini-
tially only the sixth mode is present, the resonant build-
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up of the fourth mode does not occur [8]. As was men-
tioned above, this resonance was found in [1]; however,
it is not the only two-mode resonance at subcritical val-
ues of the parameter W. For example, for εd = 5 and W =
3.607, the resonance between the ninth and fourteenth
modes takes place (ω14 = 2ω9).

In the second-order approximation for two-mode
resonance when [k, p] ∈  Ξ, we have
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Fig. 2. Variation of the third mode with time calculated in
the (1) first and (2) second approximations.
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Fig. 3. The same as in Fig. 1 for two-mode coupling: (a) the
fourth and sixth modes are initially excited and (b) the
fourth mode alone is initially excited. Fine line, fourth
mode; thick line, sixth mode.
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(40)

If the mode k is absent in the initial disturbance
spectrum (k ∉  Ξ, p ∈  Ξ), the second-order time-depen-
dent coefficient in expansion (16) for this mode has the
form (instead of (40))

(41)

(7) The final expression for the shape of the drop
surface accurate to second-order terms in the initial
disturbance amplitude ε is given by (see (1), (14),
and (16))

(42)

where 5 is the set of the numbers of capillary vibration
modes whose amplitudes are of a second order of
smallness in ε. This set combines the set Ξ of the num-
bers of modes excited initially (at t = 0) (see (12)) and
the numbers of modes generated by resonant mode
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interaction. In (42), the amplitudes (t) are given by
formulas (19) and (23) or, in the presence of the reso-

nance, by (28) or (38). The amplitudes (t) are
given by expressions (31) and (32) or, in the presence
of resonance, by (34)–(37) or (40) and (41) according
to initial conditions and type of resonance coupling.
Thus, in the approximation linear in ε, the shape of the
drop is defined by the vibrations of modes present in the
initial perturbation spectrum and of modes excited by
resonance interaction. The vibration eigenfrequencies
ωn depend on the permittivity εd of the liquid (see (17))
and grow as εd diminishes. The critical value of the
parameter W (which is related to the charge Q of the
drop) at which the surface of the drop loses stability is
determined from the vanishing condition for the funda-
mental mode frequency (n = 2), Wcr = 0.25κ1(2, εd), and
also grows with decreasing εd. Thus, a volumetrically
charged dielectric drop is more stable against its charge
than a drop of perfectly conducting surface-charged
liquid.

Note that the second-order amplitudes (t) are

proportional to the coefficients , which, in turn, are
expressed through the Clebsch–Gordan coefficients

[13] (see Appendix B). This means that  are non-
zero only if the indices satisfy the relationships

(43)

where g is an integer.

Therefore, the number of modes excited by second-
order mode coupling is specified by conditions (43),

i.e., by the fact that the coefficients  and  in
expressions (31) are other than zero only for even n
from the intervals [0, 2i] and [0, 2j], respectively, and

 and , for n from the interval [|i – j|, (i + j)] such
that n + i + j is even. Therefore, when two, even and
odd, modes (with numbers p and q) are excited simul-
taneously, their coupling will generate all even modes
from the interval [0, max(2p, 2q)] and all odd modes
from the interval [|p – q|, (p + q)]. If two odd or even
modes are initially excited, their resonance will gener-
ate only even modes from the interval [0, max(2p, 2q)]
in the second-order approximation.

As was mentioned above, this is also true for sec-
ondary resonances. If one of the resonantly coupled
modes obeying (22) (say, the mode k) is absent in the
initially excited spectrum (k ∉  Ξ), its resonant excita-
tion is possible if the numbers of the interacting modes
k, p, and q meet conditions like (43):

Mi
1( )

Mn
2( )

Mn
2( )

λ ijn
±( )

λ ijn
±( )

i j– n i j; i j n+ + +≤ ≤ 2g,=

λ iin
±( ) λ jjn

±( )

λ ijn
±( ) λ jin

±( )

p q– k p q; p q k+ + +≤ ≤ 2g.=
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From (32), it also follows that if the spectrum
describing the initial disturbance of the surface contains
two (even and odd) neighboring vibration modes, the
amplitude of the former will be different from zero in
the second-order approximation. This provides the cen-
ter-of-mass immobility at t ≥ 0 and its position at the
origin by compensating for that displacement of the
center of mass caused by the excitation of two neigh-
boring vibration modes.

CONCLUSION

The study of the nonlinear surface dynamics of a
nonviscous volumetrically charged dielectric spherical
drop subjected to an arbitrary initial deformation shows
that the number of resonances due to three-mode cou-
pling is infinitely large if the charge of the drop is sub-
critical. Resonant mode coupling causes energy trans-
fer from higher to lower modes. The amplitudes of
lower modes increase, and the drop may become unsta-
ble against the self-charge. The third mode is the lowest
among those excited as a result of resonant coupling
with higher modes. Although nonlinear mode coupling
is a second-order effect, it leads to an increase in the
amplitude of an excited mode up to a first-order quan-
tity (even if this mode had a zero amplitude).

A possible mechanism behind the disintegration of
a charged drop in the case when the self-charge is small
(subcritical in terms of linear instability) may be asso-
ciated with the resonance transfer of the capillary vibra-
tion energy from higher to lower modes.

APPENDIX A: EXPRESSION 
FOR THE PRESSURE OF THE ELECTRIC FIELD 

OF THE DROP SELF-CHARGE

The problem of finding the internal and external
electrostatic potentials Φin(r, t) and Φex(r, t), which are
needed to express the pressure on the drop surface in
dynamic boundary condition (7), involves Eqs. (3) and
boundary conditions (5), (8), and (9). Substituting
expansion (14) into them and requiring these equations
to be fulfilled for each order of smallness m, we arrive

at a boundary-value problem for the functions  and

, where m = 0, 1, 2.

Since, a solution obviously possesses central sym-
metry in the zeroth approximation, the Laplace and

Poisson equation for  and , respectively, in (3)
turn into ordinary second-order differential equations
whose solutions are found in the form ~Crs. With
boundary conditions (8) and (9) satisfied in the zeroth-

Φin
m( )

Φex
m( )

Φin
0( ) Φex

0( )
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order approximation;

we find

(A1)

where Φ∞ is a constant that equals the adopted value of
the external potential at infinity.

The first- and second-order functions  and

 (m = 1, 2) are the solutions to the Laplace equa-
tion and, in view of boundary conditions (5), can be
written in the form

(A2)

The functions ξ(m)(Θ, T0, T1) (m = 1, 2) in expan-
sion (14), which describe the shape of the drop in the
first and second approximations are also represented as
expansions in Legendre polynomials:

(A3)

The unknown functions of time (T0, T1) and

(T0, T1) in (A2) can be expressed through the

amplitudes (T0, T1) in (A3) with conditions (8)
and (9) on the free surface. In the first-order approxima-
tion, these conditions take the form

Substituting solutions (A2) into them with m = 1
yields

(A4)

r 1: Φin
0( ) Φex

0( ); εd

dΦin
0( )

dr
-------------

dΦex
0( )

dr
-------------,= = =

Φex
0( ) Q

r
---- Φ∞; Φin

0( )
+

Q
2ε
----- 2εd 1 r2–+( ) Φ∞,+= =

Φin
m( )

Φex
m( )

Φex
m( ) r Θ T0 T1, , ,( ) Fn

m ex,( ) T0 T1,( )r n 1+( )– Pn µ( );
n 0=

∞

∑=

Φin
m( ) r Θ T0 T1, , ,( ) Fn

m in,( ) T0 T1,( )rnPn µ( );
n 0=

∞

∑=

m 1; 2.=

ξ m( ) Θ T0 T1, ,( ) Mn
m( ) T0 T1,( )Pn µ( ).

n 0=

∞

∑=

Fn
m ex,( )

Fn
m in,( )

Mn
m( )

r 1: Φin
1( ) dΦin

0( )

dr
-------------ξ 1( )+ Φex

1( ) dΦex
0( )

dr
-------------ξ 1( )

;+= =

εd

∂Φin
1( )

∂r
-------------

d2Φin
0( )

dr2
---------------ξ 1( )

+
∂Φex

1( )

∂r
-------------

d2Φex
0( )

dr2
---------------ξ 1( ).+=

Fn
1 ex,( ) T0 T1,( ) κ1

ex( ) n εd,( )QMn
1( ) T0 T1,( );=

Fn
1 in,( ) T0 T1,( ) κ– 1

in( ) n εd,( )QMn
1( ) T0 T1,( ).=
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The expressions for the coefficients (n, εd) and

(n, εd) are given in Appendix B.

In the second approximation, conditions (8) and (9)
have the form

Then, for the functions  and  in solu-
tions (A2), one obtains

(A5)

All necessary designations are given in Appendix B.

The electric field pressure pE on the drop is the sum
of the following terms in dynamic boundary condition (7):

(A6)

κ1
ex( )

κ1
in( )

r 1: Φin
2( ) dΦin

0( )

dr
-------------ξ 2( ) ∂Φin

1( )

∂r
-------------ξ 1( ) 1

2
---

d2Φin
0( )

dr2
--------------- ξ 1( )( )2

+ + +=

=  Φex
2( ) dΦex

0( )

dr
-------------ξ 2( ) ∂Φex

1( )

∂r
-------------ξ 1( ) 1

2
---

d2Φex
0( )

dr2
--------------- ξ 1( )( )2

;+ + +

εd

dΦin
2( )

dr
-------------

d2Φin
0( )

dr2
---------------ξ 2( ) d2Φin

1( )

dr2
---------------ξ 1( ) 1

2
---

d3Φin
0( )

dr3
--------------- ξ 1( )( )2

+ + +

–
1
2
---

dΦin
0( )

dr
------------- ∂ξ 1( )

∂Θ
----------- 

 
2

∂Φin
1( )

∂Θ
-------------∂ξ 1( )

∂Θ
-----------–

∂Φex
2( )

∂r
-------------=

+
d2Φex

0( )

dr2
---------------ξ 2( ) ∂2Φex

1( )

∂r2
---------------ξ 1( ) 1

2
---

d3Φex
0( )

dr3
--------------- ξ 1( )( )2

+ +

–
1
2
---

dΦex
0( )

dr
------------- ∂ξ 1( )

∂Θ
----------- 

 
2

∂Φex
1( )

∂Θ
-------------∂ξ 1( )

∂Θ
-----------.–

Fn
2 ex,( ) Fn

2 in,( )

Fn
2 ex,( ) T0 T1,( )

nεd n– 3+( )
nεd n 1+ +( )

-------------------------------QMn
2( )

T0 T1,( )=

+ Kijnκ2
ex( )

i n εd, ,( ) α ijnκ2 i n εd, ,( )–[ ]
j 2=

∞

∑
i 2=

∞

∑

× QMi
1( ) T0 T1,( )M j

1( )
T0 T1,( );

Fn
2 in,( ) T0 T1,( )

n 2–( )εd n– 1–[ ]
εd nεd n 1+ +( )

--------------------------------------------QMn
2( ) T0 T1,( )–=

+ Kijnκ2
in( ) i n εd, ,( ) α ijnκ2 i n εd, ,( )–[ ]

j 2=

∞

∑
i 2=

∞

∑
× QMi

1( ) T0 T1,( )M j
1( ) T0 T1,( ).

pE –µqΦin εd 1–( ) 1
8π
------ —Φex( )2

+=

–
εd 1–( )2

εd

-------------------- 1
8π
------ n —Φex⋅( )2

r 1 ξ+=

.

In (A6), the unit normal vector n to the surface
whose shape is specified by Eq. (1) is given by

(A7)

up to second-order smalls. 

Expanding (A6) in the small parameter ε in view of
representations (14) yields for (A7)

Substituting solutions (A1)–(A5), we eventually
find for the electric field pressure

n er 1
ε2

2
---- ∂ξ 1( )

∂Θ
----------- 

 
2

–≈

– eΘ ε∂ξ 1( )

∂Θ
----------- ε2 ∂ξ 2( )

∂Θ
----------- ε 1( )∂ξ 1( )

∂Θ
-----------– 

 +

pE –
3Q
4π
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0( ) εd 1–( )
εd

------------------ 1
8π
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dΦex
0( )

dr
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 
2

+
 
 
 

r 1=

≈

+ ε 3Q
4π
------- Φin

1( ) dΦin
0( )

dr
-------------ξ 1( )+

εd 1–( )
εd

------------------ 1
4π
------+–





×
dΦex

0( )

dr
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dΦex
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∂r
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∂2Φex
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∂r2
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


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ε2 3Q
4π
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



+

× Φin
2( ) dΦin

0( )

dr
-------------ξ 2( ) ∂Φin

1( )

∂r
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2
---

d2Φin
0( )

dr2
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+ + +

+
εd 1–( )

εd
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8π
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dΦex
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dr
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∂Φex
2( )

∂r
-------------

d2Φex
0( )

dr2
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 
 
 

+ 2
d2Φex
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dr2
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∂Φex
1( )
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-------------

dΦex
0( )

dr
-------------

d2Φex
1( )

dr2
---------------+

 
 
 

ξ 1( )

+
dΦex

0( )

dr2
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d3Φex
0( )

∂r3
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d2Φex
0( )

dr2
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∂2Φex
0( )

dr2
---------------+

 
 
 

ξ 1( )( )2

+
∂Φex

1( )
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------------- 

 
2

εd

∂Φex
1( )

∂Θ
------------- 

 
2

εd 1–( )+ +

×
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∂r
------------- 2
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∂Θ
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dΘ
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  ∂ξ 1( )

∂Θ
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



r 1=

O ε3( ).+

pE µq Q Φ∞+( ) Q2
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8π
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All definitions omitted here are given in Appendix B.

APPENDIX B: COEFFICIENTS APPEARING 
IN THE TIME DEPENDENCE OF THE SHAPE 

OF THE NONLINEARLY VIBRATING DROP (16)

+ ε2Q2

8π
------ 2 n 1–( )κ1 n εd,( )Mn

2( ) T0 T1,( )---



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∞
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
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In the last sum, summation is over all integer z for
which the expressions under the factorial sign are non-

negative, and  and  are the Clebsch–Gor-
dan coefficients [13] that are other than zero only if the
subscripts satisfy the relationships
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Abstract—A new kinetic equation whose solution yields a correct Prandtl number is suggested. A technique
for analytically solving half-space boundary-value problems is demonstrated with the classical Smoluchowski
problem of finding temperature and concentration steps. Numerical results indicating the succession of the
equation. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION AND DERIVATION 
OF A NEW MODEL EQUATION

A temperature jump at the gas–condensed phase
interface is among the most important phenomena in
the kinetic theory of gases. This effect is of crucial
importance in many physical processes and should be
taken into consideration in determining the thermal
conductivity of a gas, studying the dynamics of aerosol
particles, etc.

This phenomenon was first studied by Smolu-
chowski and continues to be a topical problem. There
are a number of approaches to studying it, among
which those providing analytical solutions are of partic-
ular importance. First, analytical approaches were
developed by Welander [1]; later, they were extended
by Cercignani [2], Sone [3], and others. To date, analyt-
ical solutions to the Smoluchowski problem have been
found within the Bhatnagar–Gross–Krook (BGK) [4]
and ellipsoidal statistical models [5] with a constant
collision frequency. Also, an analytical solution to this
problem has been obtained within the BGK model with
a variable collision frequency (proportional to the mol-
ecule velocity) [6].

The Smoluchowski problem borders on the problem
of weak evaporation of a gas from a flat surface. Weak
evaporation is evaporation with a gas velocity that is
much less than the velocity of sound. The latter prob-
lem has many applications concerned with heat and
mass transfer between a gas and a condensed phase [3].
The two problems differ only in boundary conditions.
Therefore, it is convenient to treat them together as the
generalized Smoluchowski problem.

The well-known disadvantage of the BGK model is
that it gives an unrealistic Prandtl number. For the BGK
model with a variable collision frequency, this discrep-
ancy is smaller than for the BGK model where the col-
lision frequency is assumed to be constant. Yet the dif-
ference from the realistic Prandtl number still exists.
1063-7842/03/4802- $24.00 © 20165
Note that the Prandtl number is an important param-
eter characterizing the properties of gases. Therefore,
finding an analytical solution to the Smoluchowski
problem for the kinetic equation with a variable colli-
sion frequency that provides the correct Prandtl number
remains on the agenda of researchers.

Let us construct a model kinetic equation with a
variable collision frequency that would yield the cor-
rect Prandtl number. We will consider only the linear-
ized case, since the Smoluchowski problem is linear in
its conventional statement. In the linearized steady-
state case, the distribution function can be represented
as f(r, v) = f0(1 + ϕ(r, v)), where f0 is the Maxwell dis-
tribution function, f0 = nsβ3/2exp(–βv 2), β = m/(2kTs),
Ts is the surface temperature, and ns is the concentration
of the saturated vapor for evaporation from a surface at
a temperatures Ts.

In the general case, the linearized steady-state
kinetic equation for ϕ is given by C∇ϕ  = J[ϕ], where

J[ϕ] is the linearized collision integral and C = v is
the dimensionless molecule velocity. For the BGK
equation with a constant collision frequency ν, the lin-
earized collision integral has the form

Here,

For the BGK equation with a collision frequency
proportional to the molecule velocity (and with a con-

β

J ϕ[ ] βν 2C U⋅ δn
n0
------ C2 3

2
---– 

  δT
T0
------ ϕ–+ + .=

U π 3/2– C2–( )Cϕexp d3C,∫=

δn
n0
------ π 3/2– C2–( )ϕd3C,exp∫=

δT
T0
------

2
3
---π 3/2– C2–( ) C2 3

2
---– 

  ϕd3C.exp∫=
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stant free path ~ ), the linearized collision integral is
given by [2, 6]

Here,

Since all the terms in the expression for the collision
integral are proportional to the dimensionless velocity
C, the collision frequency of molecules is also propor-
tional to the molecule velocity.

The cases of constant and variable (proportional to
the molecule velocity) collision frequencies are partic-
ular cases. In general, the collision frequency is a com-
plicated function of the molecule velocity.

Consider a simple nontrivial generalization of the
above collision integrals that allows for a more compli-
cated dependence of the collision frequency on the
molecule velocity.

Let the linearized collision integral have the form

(1)

Here, the right-hand side contains terms that are and are
not proportional to the molecule velocity; in other
words, the collision frequency is a mixed function of
the molecule velocity.

The collision integral must have the following prop-
erty [7]:

(2)

where ϕ and ψ are arbitrary functions of the molecule
velocity.

Property (2) implies the symmetry of the coeffi-
cients: α12 = α21. In addition, collision integral (1) must
satisfy the molecule conservation law, momentum con-
servation law, and energy conservation law [7]. With

ν0
1–

J ϕ[ ] βν 0
3
4
--- πCC U*⋅ π

2
-------C

δn*
n0

---------+=

+
π

4
-------C C2 2–( )δT*

T0
---------- Cϕ– .

U* π 3/2– C' C'2–( )C'ϕd3C',exp∫=

δn*
n0

--------- π 3/2– C' C'2–( )ϕd3C',exp∫=

δT*
T0

---------- π 3/2– C' C'2–( ) C'2 2–( )ϕd3C'.exp∫=

J ϕ[ ] βν 0 2α11CC U*⋅[=

+ 2α12C U*⋅ 2α21CC U---⋅+

+ 2α22C U⋅ π
2

-------C
δn*
n0

--------- π
4
---C C2 2–( )δT*

T0
---------- Cϕ–+ + .

C2–( )ϕJ ψ[ ] d3Cexp∫ C2–( )ψJ ϕ[ ] d3C,exp∫=
these requirements satisfied, we come to the set of
equations

(3)

where ψj are collision invariants: ψ0 = 1, (ψ1, ψ2, ψ3) =
C, and ψ4 = C2.

System (3) results in a linear relationship between
the coefficients αij. Let α22 = a be a free parameter.
Then, the other parameters are expressed through a as
follows: α12 = α21 = –2αa, α11 = 2α(1 + 2αa), and α =

3 /16. Also, let a1 = –2αa and a2 = 2α(1 + 2αa).
Thus, in terms of the dimensional spatial coordinate

introduced by the substitution x  ν0x, the steady-
state linearized model kinetic equation has the form

(4)

with the kernel

The parameter a and the Prandtl number are related
as

For a = 0, Eq. (4) yields exactly the well-known
equation that follows from the BGK model with a
velocity-proportional collision frequency [2, 6].

The presence of the parameter a allows for the use
of model equation (4) in applications where heat con-
duction and viscosity are key mechanisms.

Let a gas occupy the half-space x > 0 over the gas–
condensed phase interface at which the constant-rate
evaporation (condensation) and gas–condensed phase
heat exchange take place. Away from the interface, a
constant temperature gradient Kt normal to it is speci-
fied. Let the gradient be small and the rate of evapora-
tion (condensation) be much lower than the velocity of
sound; then, the problem can be considered in the linear
statement. Outside the Knudsen layer, the gas tempera-
ture and concentration profiles have the form T(x) =
T0 + Ktx and n(x) = n0 – Ktx, respectively, and the gas
velocity is constant. The parameters to be found are εt =
T0/Ts – 1 and εn = n0/ns – 1 (so-called relative tempera-
ture and concentration steps). In the linear approxima-
tion, εt = Ttkt + TuU and εn = Ntkt + NuU, where kt =

Kt/(Tν0) and U = u are the dimensionless tempera-
ture gradient and gas velocity, respectively. We will

C2–( )J ϕ[ ]ψ j C( )d3Cexp∫  = 0; j = 0 1 2 3 4,, , , ,

π

C
C
---- ∇ϕ( ) ϕ r C,( )+

=  
1

2π
------ C'2–( )C'k C C',( )ϕ r C',( )d3C'exp∫

k C C',( ) 1
1
2
--- C2 2–( ) C'2 2–( )+=

+
4CC'

πCC'
----------------- a a1 C C'+( ) a2CC'+ +[ ] .

Pr
8α 1 2a+( ) 2a–

9α 2a 1 9α2–( )–
------------------------------------------.=

β
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seek the dimensionless coefficients Tt, Tu, Nt, and Nu

(so-called coefficients of temperature and concentra-
tion steps). The statement of this problem is described
in detail elsewhere (see, e.g., [1–8]).

For the case of the diffuse reflection of molecules
from the walls, the boundary conditions are as follows
(the derivation is omitted):

(5)

where

In this problem, the function ϕ, boundary conditions
(5), and Eq. (4) involve the velocity magnitude C, the
cosine µ of the angle between the direction of a mole-
cule and normal to the surface, and one spatial coordi-
nate x. Therefore, Eq. (4) can be integrated over the
polar (azimuth) angle from 0 to 2π in the plane (Cy, Cz)
to yield

(6)

Note that the Prandtl number Pr = 2/3 (which is
valid for monoatomic gases) correspond to the follow-
ing values of the parameters:

ϕ 0 µ C, ,( ) 0, 0 µ 1,< <=

ϕ x µ C, ,( ) ϕaz x µ C, ,( ) o 1( ),+=

x ∞, 1 µ 0,< <–

ϕaz x µ C, ,( ) εn εt C2 3
2
---– 

 +=

+ 2UCµ kt x µ–( ) C2 5
2
---– 

  kt b0 b1C+( )µ,+ +

b1
1 2αa+

8α 2a 1 8α2–( )–
------------------------------------------,–=

b0
a

8α 2a 1 8α2–( )–
------------------------------------------, µ Cx/C.= =

µ∂ϕ
∂x
------ ϕ x µ C, ,( )+

=  k µµ' C C', ,( )ϕ x µ' C', ,( ) C'2–( )exp C'3 µ' C',dd

0

∞

∫
1–

1

∫

k µµ' C C', ,( ) 1
1
2
--- C2 2–( ) C' 2–( )+=

+
4µµ'

π
----------- aCC' a1 C C'+( ) a2+ +[ ] .

a
3α

1 6α2–
------------------, a1

6α2

1 6α2–
------------------, a2–

2α
1 6α2–
------------------,= = =

b0
3
2
---, b1

1
2α
-------.–= =
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REDUCTION OF THE SMOLUCHOWSKI 
PROBLEM TO THE ONE-DIMENSIONAL 

PROBLEM

We will seek a solution to the problem (5)–(6) in the
form

Then, Eq. (6) is equivalent to the one-dimensional
vector equation

(7)

for the column vector h = col{h1, h2, h3} with the kernel
K0(µ, µ') 

Boundary conditions (5) pass to

(8)

We will simplify the kernel of (7) taking advantage
of the mass and energy conservation laws. Eventually,
we will arrive at the representation of the kernel of (7)
in the form K(µ, µ') = K0 + µµ'K2, where K0 is the same
as before and

with c0 = 1 – 9α2.

ϕ x µ C, ,( ) = h1 x µ,( ) Ch2 x µ,( ) C2 2–( )h3 x µ,( ).+ +

µ∂h
∂x
------ h x µ,( )+

1
2
--- K0 µ µ',( )h x µ',( ) µ'd

1–

1

∫=

K0 µ µ',( ) K0
4

π
-------µµ'K1,+=

K0

1 4α 0

0 0 0

0 α 1

,=

K1

a 4αa1+ 0 2αα 1

a1 4αa2+ 2a2 4αa1+ 2αa2

0 0 0

.=

h 0 µ,( ) 0, 0 µ 1,< <=

h x µ,( ) = has x µ,( ) o 1( ), x +∞, 1 µ 0,< <–+

has x µ,( )
εn

1
2
---εt

1
2
---kt x µ–( ) b0ktµ+–+

b1ktµ 2Uµ+

εt kt x µ–( )+

.=

K2

4

π
-------ac0 0 0

0 3c0 1 2αa+( ) 0

0 0 0

=
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SEPARATION OF VARIABLES 
AND EIGENSOLUTIONS

Let us separate the variables in Eq. (7). The general
Fourier method yields

(9)

where η is a spectral (or separation) parameter, which
is generally complex.

Expression (9) immediately leads to the characteris-
tic equation

(10)

Integrating Eq. (10) over µ from –1 to +1 yields
n(1)(η) = η(E – K0)n(η), where E is the unit matrix and
n(η) is the vector n(0)(η). Hence, Eq. (10) can be recast
as

(11)

Since Eq. (7) is homogeneous, we can put n(η) =
col{1, 1, 1}.

Let η ∈  (–1, 1); then, in the space of generalized
functions [9], we find from Eq. (11) the eigenmatrix
(eigenfunction) of the characteristic equation

(12)

Here, Px–1 is the distribution, i.e., the principal value of
the integral upon integrating x–1; δ(x) is the Dirac func-
tion; and

is the dispersion matrix of the problem.
Thus, the continuous spectrum of solutions is found

from equality (9), where Φ(η, µ) is given by relation-
ship (12) for η ∈  (0, 1).

In subsequent analysis, we need the dispersion
matrix in explicit form:

Here, λC(z) = 1 + zt(z) is the Case dispersion function

hη x µ,( ) x
η
---– 

  Φ η µ,( ),exp=

η µ–( )Φ η µ,( ) 1
2
---ηK0n

0( ) η( ) 1
2
---µηK2n 1( ) η( ),+=

n α( ) η( ) µαΦ η µ,( ) µ; αd

1–

1

∫ 0 1.,= =

η µ–( )Φ η µ,( ) 1
2
---η∆ µη( )n η( ),=

∆ x( ) K0 xK3, K3+ K2 E K2–( ).= =

Φ η µ,( ) 1
2
---η∆ µη( )P

1
η µ–
------------- Λ η( )δ η µ–( ).+=

Λ z( ) E z
1
2
--- ∆ zµ( )

µ z–
-------------- µd

1–

1

∫+=

Λ z( )
λC z( ) 4αzt z( ) 3c0az2λC z( )– 0

0 ω z( ) 0

0 αzt z( ) λC z( )

.=
[10], where

By the dispersion function of the problem is meant
the determinant of the dispersion matrix λ(z) ≡
detΛ(z) = (z)ω(z) (see, e.g., [10]).

The discrete spectrum of Eq. (10) is formed by the
zeros of the dispersion function. Let us first find those
of ω(z). Using the principle of argument [11], one can
show that the function ω(z) has two simple real zeros
±η0 lying beyond the cut (–1, 1) near its extremes. Let
η = η0; then, from Eq. (11), it follows

(13)

Substituting the function

(14)

where Φ(η0, µ) is given by (13), into Eq. (7), we find
that the function (x, µ) is a solution of (7) if and only
if n(η0) satisfies the homogeneous solution

(15)

Equation (15) has a nonzero solution because
λ(η0) = detΛ(η0) = 0.

Let us split Eq. (12) into three scalar ones to find the
vector n(η0):

(16)

Thus, the eigensolution of the discrete spectrum that
corresponds to the zero η0 is constructed. It is given by
equalities (13), (14), and (16).

The dispersion function λ(z) has one more zero,
which is the quadruple zero ηi = ∞. To this zero, there
correspond four linearly independent discrete solu-
tions, which are column vectors in the expansion of
has(x, µ).

SOLUTION TO THE BOUNDARY-VALUE 
PROBLEM: REDUCTION TO A VECTOR 

BOUNDARY-VALUE PROBLEM

A solution to the problem stated by (7) and (8) will
be sought as the expansion in eigensolutions of the dis-

t z( ) 1
2
--- τd

τ z–
----------, ω z( )

1–

1

∫ 1 3c0 1 2αa+( )z2λC z( ).+= =

λC
2

Φ η0 µ,( ) 1
2
---η0∆ µη0( ) 1

η0 µ–
---------------n η0( ).=

hη0
x µ,( ) x

η0
-----– 

  Φ η0 µ,( ),exp=

hη0

Λ η 0( )n η0( ) Θ, Θ col 0 0 0, ,{ } .= =

n η0( )
–4αη 0t η0( ) 3c0aη0

2λC η0( )+

λC η0( )
αη 0t η0( )–

.=
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crete and continuous spectra:

(17)

or (in a more detailed form)

Here, A0, εn, and εt are unknown constants (the coeffi-
cients of the discrete spectrum); A(η) is an unknown
vector function (the coefficient of the continuous spec-
trum); and Θ+(µ) = 1 (for 0 < µ < 1) or 0 (for –1 < µ < 0).

Substituting expansion (17) into the first boundary
condition in (8) yields a singular integral equation with
the Cauchy kernel in the interval (0, 1):

(18)

Let us introduce the auxiliary vector function

(19)

for which, according to the Sokhotsky formulas,

(20)

Using the boundary values of N(z) and Λ(z), we
reduce Eq. (18) to the Riemann–Hilbert vector bound-
ary-value problem

(21)

Consider the related homogeneous boundary-value
problem

(22)

Here, X(z) is an unknown matrix that is analytical in the
plane with a cut along the segment [0, 1]. Taking into

h x µ,( ) A0hη0
x µ,( ) has x µ,( )+=

+ x
η
---– 

  Φ η µ,( )A η( )exp η , 1– µ 1, x 0>< <d

0

1

∫

h x µ,( ) A0hη0
x µ,( ) has x µ,( )+=

+
1
2
--- x

η
---– 

  η∆ µη( )
η µ–

--------------------A η( )exp ηd

0

1

∫

+ x
µ
---– 

  Λ µ( )A µ( )Θ+ µ( ).exp

A0hη0
0 µ,( ) has 0 µ,( )+

+
1
2
--- η∆ µη( )

η µ–
--------------------A η( ) ηd

0

1

∫ Λ µ( )A µ( )+ Θ.=

N z( ) 1
2
--- η∆ η z( )A η( ) ηd

η z–
-----------,

0

1

∫=

N+ µ( ) N– µ( )– πiµ∆ µ2( )A µ( ), 0 µ 1.< <=

B+ µ( ) N+ µ( ) A0hη0
0 µ,( ) has 0 µ,( )+ +[ ]

=  B– µ( ) N– µ( ) A0hη0
0 µ,( ) has 0 µ,( )+ +[ ] ,

0 µ 1.< <

B+ µ( )X+ µ( ) B– µ( )X– µ( ), 0 µ 1.< <=
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account that the dispersion matrix can be represented in
the form

we find that

Omitting the diagonalization of problem (22) (see
[6]), we write the matrix

without proof. Here,

Now we return to the solution of inhomogeneous
problem (21). With the homogeneous problem, we
transform it into the problem of finding an analytical
vector function from its zero step at a cut,

Taking into consideration the behavior of the matri-
ces and vectors involved in this problem at the point η0
and at the point ηi = ∞, we arrive at its general solution:

(23)

Here, the vectors B and C have the arbitrary compo-
nents Bi and Ci, respectively (i = 1, 2, and 3). For solu-
tion (23) to be taken as auxiliary function (19), we will
eliminate the singularities of the general solution.

Λ z( ) λC z( )∆ z2( ) K4, K4+
0 4α– 0

0 1 0

0 α– 0

,= =

B z( ) λCE
1

3c0 1 2αa+( )z2
-------------------------------------K4.+=

X z( )
U z( ) 4α U z( ) V z( )–( ) 0

0 V z( ) 0

0 α U z( ) V z( )–( ) U z( )

=

U z( ) z u z( )–( ), u z( )exp
1
π
--- Θ τ( )

τ z–
------------ τ ,d

0

1

∫= =

Θ τ( ) –
π
2
---

2λC τ( )
πτ

-----------------,arctan–=

V z( ) z v z( )–( ), v z( )exp
1
π
--- ε τ( )

τ z–
---------- τ ,d

0

1

∫= =

ε τ( ) –
π
2
--- 2ω τ( )

3c0 1 2αa+( )πτ3
-----------------------------------------.arctan–=

X+ µ( )[ ] 1–
N+ µ( ) A0hη0

0 µ,( ) has 0 µ,( )+ +[ ]

=  X– µ( )[ ] 1–
N– µ( ) A0hη0

0 µ,( ) has 0 µ,( )+ +[ ] ,

0 µ 1.< <

N z( ) A0hη0
0 z,( )–=

– has 0 z,( ) X z( ) B
z η0–
-------------- C+ .+
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SOLVABILITY CONDITIONS AND NUMERICAL 
CALCULATIONS

To remove the pole at the point η0 in Eq. (23), we
require that

This equation is equivalent to three scalar equations,
from which we found the vector B:

Let us expand the matrix function X(z) in the vicin-
ity of the point ηi = ∞:

Here,

Now, it is easy to expand N(z) in the vicinity of the
point ηi = ∞:

Here,

To remove the pole of N(z) at the point ηi = ∞, we
construct the vector C:

1
2
---A0η0∆ η0

2( )n η0( ) X η0( )B+ Θ.=

B
A0η0

2V η0( )
------------------

4α–

1

α–

.=

X z( ) zE
U1 4α U1 V1–( ) 0

0 V1 0

0 α U1 V1–( ) U1

– o 1( ),+=

z ∞.

U1
1
π
--- Θ τ( ) τ , V1d

0

1

∫–
1
π
--- ε τ( ) τ .d

0

1

∫–= =

N z( ) zN1 N0 o 1( ), z ∞.+ +=

N1

kt 1/2 b1+( ) C1+–

– 2U b1kt+( ) C2+

kt C3+

,=

N0

–εn
1
2
---εt–

1
2
---A03c0aη0

2n1 η0( )–

+ B1 U1C1– 4α U1 V1–( )C2–

1
2
---A03c0 1 2αa+( )η0

2n2 η0( ) B2 V1C2–+

– εt B3 α U1 V1–( )C2– U1C3–+

.=

C

kt 1/2 b0+( )
2U b1kt+

kt–

.=
Now we find the auxiliary function N(z) at the point
ηi = ∞:

From the condition N(∞) = N0, we arrive at the set
of equations

(24)

(25)

(26)

Substituting general solution (23) into Sokhotsky
formula (20), we find the integrand in (24) and (25):

(27)

Let

Applying the contour integration procedure, one can
show that

Integrating (27) in view of (25) and (26) yields

(28)

(29)

where β = α(V1 – η0 – U1).

With a = 0, formulas (28) and (29) give

N ∞( )
3c0

2
-------- η2

aA η( )
1 2αa+( )A2 η( )

0

η .d

0

1

∫=

3c0

2
--------a η2A η( ) ηd

0

1

∫ –εn
1
2
---εt–

1
2
---A03c0aη0

2n η0( )–=

+ B1 U1C1– 4α U1 V1–( )C2,–

3c0

2
-------- 1 2αa+( ) η2A2 η( ) ηd

0

1

∫–  = –
1
2
---A0 B2 V2C2,–+

εt B3 α U1 V1–( )C2– U1C3.–=

3c0

2
-------- 1 2αa+( )η2A2 η( )dη

=  
1

2πiη
------------ V+ η( ) V– η( )–[ ]

B2

η η 0–
--------------- C2+ 

  .

J η0( ) 1
2πi
-------- V+ η( ) V– η( )–[ ] ηd

η η 0–
---------------.

0

1

∫=

J η0( ) V η0( ) η0– V1.+=

εn 2U
7
2
---β

a V1 η0–( )
1 2αa+

-------------------------– 
 =

+ kt –U1
7
2
---b1β

a V1 η0– U1–( )
8α 2a 1 9α2–( )–
------------------------------------------+ + 

  ,

εt 2Uβ kt U1 b1β+( ),+=

εt 2Uβ kt U1
2β

3 π
----------– 

  ,+=

εn 2U
7
2
---β 
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3 π
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in complete agreement with well-known formulas (6.1)
in [6].

Let a in (28) and (29) correspond to Pr = 2/3. Then,
in a form convenient for calculation, we have

(30)

Numerical calculations show that η0 = 1 + ε, where
ε = 1.3 × 10–17; U1 = 0.71045; and V1 = 0.99326. Hence,
from (30),

Now we pass to the dimension variables, defining

the free path of molecules as l = (η/ρ) ,
where η is the kinematic viscosity and ρ is the density
of a gas [8]. Then, the computational formulas for tem-
perature and concentration steps take the form

Here,

For comparison, results [6] for gases where the col-
lision frequency is proportional to the molecule veloc-
ity (i.e., the free path of molecules is constant) are as

follows: Ct = 1.99885, Cn = –0.99657,  = –0.23687,

and  = –0.82905.

Results [12] for gases with a constant molecular col-

lision frequency are Ct = 2.20262, Cn = –1.23035,  =

–0.22436, and  = –0.84350.

Finally, we give the results Ct = 2.1133, which was
obtained by numerically solving the complete Boltz-
mann equation [13] within the hard sphere model, and
Ct = 2.20576 [14], which was obtained by using the 13-
moment kinetic model with a constant molecular colli-
sion frequency. Note that the results cited are given in
terms of the molecule free path at Pr = 2/3, which is
adopted in this paper.

CONCLUSION

The numerical results obtained in this paper for tem-
perature jumps lie between those found within the BGK

εt 2Uα V1 η0– U1–( ) kt
1
2
--- 3U1 V1– η0+( ),+=

εn Uα V1 η0– 7U1–( ) kt
1
4
--- –3U1 V1– η0+( ).+=

εt 1.06904kt 0.23835 2U( ),–=

εn –0.53115kt 0.82749 2U( ).–=

πm/2kT0

εt CtlKt 2 βCt
uu, εn+ CnlKt 2 βCn

uu.+= =

Ct
15
8
------ 1.06904( ) 2.00445, Ct

u 0.23835,–= = =

Cn
15
8
------ 0.53115–( ) 0.99591,–= =

Cn
u 0.82749.–=

Ct
u

Cn
u

Ct
u

Cn
u
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model with a constant collision frequency and those
found within the BGK model with a constant free path.
Thus, our model can be considered as a model with an
intermediate character of molecular collisions. Its
important advantage is the use of the correct Prandtl
number. Otherwise, calculated results must be con-
verted in view of the discrepancy between the true and
obtained Prandtl numbers [8]. Such a procedure is to
some extent uncertain. Results obtained with our
model, which handles the correct Prandtl number, are
free of this drawback.

Note also that the accuracy of our model is close to
that of the 13-moment kinetic model, which is today
very popular.
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Abstract—A model for estimating hydrodynamic drag from a ship’s inertial travel and/or velocity is suggested.
Full-scale experimental data for sea-going ships are discussed. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The development of methods for describing moving
object–environment interaction is of undeniable current
interest [1, 2].

The aim of this work is to estimate the hydrody-
namic drag from full-scale experiments. This problem
is of great importance in designing ship’s hull lines and
traffic control systems, in estimating the efficiency of
object exploitation, etc.

The towing [3, 4] and inertial [1] methods of esti-
mating the hydrodynamic drag on objects are most
widely used in full-scale experiments. The former can
be applied only in specially equipped testing grounds.
In contrast, the inertial method does not require sophis-
ticated facilities and is compatible with current on-line
surveillance systems. Therefore, the inertial method
can be viewed as the basis for an approach to estimating
the hydrodynamic drag from an inertial motion trajec-
tory and, hence, deserves careful examination.

STATEMENT OF THE PROBLEM 
AND MODEL CONCEPTS

First, let us note the disadvantages typical of the
towing method and the advantages of the method sug-
gested in this paper. In the towing method for measur-
ing the hydrodynamic drag, (i) it is necessary to use a
tug and towing facilities, (ii) the hydrodynamic drag vs.
velocity dependence is derived by repeat towings with
various velocities, (iii) the sea-forming properties of a
ship are estimated by additionally measuring its seas,
and (iv) there is basically no way of excluding the effect
of the tug’s seas on drag measurements.

While being free of these disadvantages, the inertial
method in the form stated in [1] makes it possible to
estimate only the sea component of the hydrodynamic
drag.

In view of the aforesaid and taking into account that
the inertial method is easier to apply, we formulate
1063-7842/03/4802- $24.00 © 20172
requirements for a modified inertial method that would
allow the derivation of the hydrodynamic drag vs. ship
velocity dependence. These are the following: (i) The
hydrodynamic drag should be estimated from a single
inertial motion trajectory; (ii) since the acceleration of
object inertial motion is generally very low
(≈0.02 m/s2), trajectory data processing techniques
must provide a sufficient accuracy; (iii) a modified iner-
tial method must allow for the identification of motion
transients; and (iv) a modified inertial method must
allow one to compare the sea-forming properties of
objects.

Formally, the problem is reduced to the estimation
of the unmeasurable component (acceleration) from the
measurable components of the motion vector (position
and/or velocity) and then to finding the drag from the
known acceleration.

It follows that, in terms of the starting theoretical
mechanical concepts, our problem can obviously be
treated as the first problem of mechanics and, thus, is
the classical inverse problem of dynamics for an object
moving in a medium.

We are now coming to the formal statement of the
problem. The hydrodynamic drag r is conventionally
considered as a function of the steady-state velocity:
r = rx(v ) [3, 4]. We will adhere to this approach, but the
corresponding function is derived by converting the
acceleration of inertial motion to the hydrodynamic
drag with the well-known relationship [3, 4]

(1)

where rx is the specific hydrodynamic drag per unit
object mass (hereafter drag), x is the linear coordinate
along which the object moves (1D motion alone is con-
sidered), and nr is a correction factor taking into
account the unsteadiness of the motion and object
geometry.

The rigorous theoretical–mechanical interpretation
of the factor nr is straightforward and well known [3, 4].

rx 1 nr+( ) ẋ̇ or rx– 1 nr+( )v̇ ,–= =
003 MAIK “Nauka/Interperiodica”
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However, with the applied aspect of the problem borne
in mind, it is appropriate to represent it in the empirical
form

(2)

where bφ = bφ, 0 + bφ, 1ψ + bφ, 2ψ2 + … + bφ, sψθ are coef-
ficients related to the object geometry, namely, to its
length L and volume displacement Vvol; hence, ψ =

L/ .

In this work, the coefficient nr in the form of (2) is
given for the case γ = θ = 2 (see below) as the result of
the analysis of typical relationships [4] that generalize
full-scale test data for a seagoing cargo ship.

As follows from (1) and (2), the drag rx(t) and,
hence, rx(v ) (according to the approach adopted) can be
estimated if the position x(t) and velocity v(t) or accel-
eration (t) (or (t)) are known. Consider the usual
practical case when the motion of an object is charac-
terized by measuring v(t) and/or x(t). Assuming that the
measurements are performed at discrete time instants

 (i = ) within an interval [ , ] where the ini-

tial time  corresponds to the onset of the inertial
motion of the object and introducing the normalized
time t ∈  [–1, 1] (t = (t* –  – Sm)/Sm, where Sm = (  –

)/2), we represent the measurement models as

(3)

(4)

where εx(ti) = εxi and εv(ti) = εv i are random Gaussian

instrumental measurement errors, εx : N(0, ) and εv :

N(0, ), and hj(t) are the basis functions (j = 1, 2, …,).

Expressions (3) and (4) can be written in the vector
matrix form

(5)

(6)

where the meaning and components of the vectors and
matrices are quite obvious.

Equations (5) and (6) can be viewed as declarative
models of two problems, one of which appeals to the
measurement of only the object position on the trajec-
tory and the other, to the measurement of only the
velocity.

The appeal to the simultaneous measurement of the
position and velocity (which may be necessary to

nr b0 b1v … bφv
φ … bγv

γ,+ + + + +=

Vvol
1/3

ẋ̇ v̇

ti* 1 n, t1* tn*

t1*

t1* tn*

t1*

x ti( ) hxj ti( )px j 1+, , k n,<
j 0=

k 1–

∑=

v ti( ) hv j ti( )pv j 1+, , m n,<
j 0=

m 1–

∑=

σx
2

σv
2

Zx Hx px εx,+=

Zv Hv pv εv ,+=
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improve the accuracy of the specific drag estimate)
leads to a model of the third problem:

(7)

or, in terms of the obvious designations, Zxv = Hxvpxv +
εxv.

The Hadamard requirements for the correction of
the statements [5] for these three problems are easily
satisfied if the bases of the spaces of definition x and v
are represented by sets of the functions hj(t) that are
orthogonal within the segment [–1, 1]. In this case,
solutions to problems (5) and (6) are perfectly condi-
tioned and highly accurate. As such functions, we will
use Hayes orthogonal polynomials [6].

Note that the dimension of the linear space of solu-
tions to problems (5)–(7), k and m, depends on the com-
plexity of object motion (or on the complexity of veloc-
ity variation in our case, since we are considering 1D
motion in the physical space) and is not known a priori.
Therefore, when finding the final results, we should
carry out an additional procedure, namely, to check the
hypothesis G : dim(px) = dim(pxv ) = k or dim(pv ) = m.

Thus, the formal statement of the starting problem,
that is, the use of the inertial method to estimate the
hydrodynamic drag as a function of velocity, basically
implies the solution of one of the problems (5), (6), or
(7) subject to the two alternative hypotheses for motion
complexity and the need to find the domain of defini-
tion for this function in view of the actual object
motion.

FORMAL SOLUTION AND RESULT SUITABLE 
FOR APPLICATION

In the general form, a model of a solution to the
above problem can be represented by the following
tuple:

(8)

where the cap means the estimate of the corresponding
quantity, σr is the rms estimation error of the drag ,

and [ , ] is the interval of definition of the func-

tion ( ) with regard to actual object motion.

Obviously, the first nine components { , , , ,

, , , , } of model (8), which refer to a solu-
tion to problem (5), (6), or (7), play a decisive role,
since the others are obtained by straightforward calcu-
lations.

Consider first problem (5) or (6). Solving any of
them by the least-squares method [5], we arrive at the

Zx

Zv
 
  Hx

Ḣx 
 
 

pxv

εx

εv
 
  ,+=

x̂ x̂̇ x̂̇̇ v̂ v̇̂ k̂ σ̂x m̂ σ̂v r̂x v̂( ) σr v̂( ) v̂ min v̂ max,[ ], , , , , , , , , , ,{ } ,

r̂x

v̂ min v̂ max

r̂x v̂

x̂ x̂̇ x̂̇̇ v̂

v̇̂ k̂ σ̂x m̂ σ̂v
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following estimates (the subscripts x and v  indicating
the type of measurement are omitted):

(9)

where i =  and j =  for position measure-

ments or j =  for velocity measurements, Zi is
the value of an ith component of the vector Z, wi ≡ 1
according to the previously adopted hypothesis that
measurements of the same type are of the same accu-

racy,  is the estimated variance of the instrumental

error, and  is the estimated variance of the error in
determining the vector p.

Now we pass to problem (7). Note first of all that a
set of polynomials that are derived from the initial set
of orthogonal polynomials by time differentiation is
generally no longer orthogonal. With this taken into
account, a solution to problem (7) can be represented in
the matrix form

(10)

where Dpxv is the variance matrix for the vector 

and Qxv = M[εxv ].

One should bear in mind that velocity measure-
ments combined with position measurements improve
the estimates of all the components of the spectra px and
pv in object motion models (5) and (6) except for the
first component.

As the value of , we take the value of  or 
subject to the hypothesis G : dim(p) = ξ (ξ takes the

value k for  or m for ). These values are calculated
from the expression (the subscripts x, v, and xv  are
omitted)

(11)

The hypothesis is checked in order to find the mini-

mal value of ξ in the range of steady-state values of 

by comparing values of  adjacent in ξ with each

other or with an a priori value of  provided that it is
known with a desired degree of confidence.

In view of (1), (2), (4)–(7), (9), and (10), as well as

the relationship dt = dt*, the estimate of the specific

drag ( ) as a function of the estimated velocity in

p̂ j 1+ wih j ti( )Zi

i

∑ 
 
 

/ wih j
2 ti( );

i

∑=

σ̂p
2 σ̂2 wih j

2 ti( )
i

∑ 
 
 

1–

,=

1 n, 0 k 1–,
0 m 1–,

σ̂2

σ̂p
2

p̂xv Hxv
T Qxv

1– Hxv( ) 1–
Hxv

T
Qxv

1– Zxv ,=

D pxv σ̂2 Hxv
T

Qxv
1– Hxv( )

1–
,=

p̂xv

εxv
T

σ̂2 σ̂x
2 σ̂v

2

σ̂x
2 σ̂v

2

σ̂2 Z H p̂– 2/ n ξ–( ).=

σ̂2

σ̂2

σ̂a
2

Sm
1–

r̂x v̂
problems (5)–(7) can be found by eliminating  from
sets of expressions which follow:

(12)

The quality of the estimates of the function ( )
in problems (5)–(7) is specified by the diagonal ele-

ments ( ) of the variance matrices Drx( ), which

are obtained by eliminating  from the sets of expres-
sions

(13)

where (with the subscripts x, v, and xv  omitted) W =

−(1 + nr)H, Dp = (HTH)–1/ , and  = Dp/ .

EXPERIMENTAL RESULTS 
AND DISCUSSION

The model that estimates the specific drag as a func-
tion of steady-state velocity values was experimentally
verified based on acceptance test data for the Vitus
Bearing cargo ship.

The fixed parameters of the model were the ship’s
length along the waterline L = 150 m, volume displace-
ment Vvol = 20200 m3, initial ship velocity v 1 = 8.2 m/s,
and inertial motion duration 1500 s. The variable
parameters of the motion, the ship’s position and veloc-
ity under calm conditions, were measured with stan-
dard measuring means (radar and log). The maximal
number of measurements was n = 500. The components
of the vector b for γ = θ = 2 were obtained by approxi-
mating typical velocity dependences of the coefficient
nr [3, 4] with regard to the ship’s length and volume dis-
placement: b0 = 0.2017 – 0.0321ψ + 0.0010ψ2, b1 =

(−0.4871 + 0.1193ψ – 0.0034ψ2)/ , and b2 =

(5.9608 – 1.3184ψ + 0.0679ψ2)/(gL), where ψ = L/

ti*

r̂x ti*( ) Ẇ̇ x p̂x/Sm
2 ,=

r̂x ti*( ) Ẇv p̂v /Sm,=

r̂x ti*( ) Ẇ̇ x p̂xv /Sm
2 ,=

v̂ ti*( ) Ḣx p̂x/Sm;=

v̂ ti*( ) Hv p̂v ;=

v̂ ti*( ) Ḣx p̂xv /Sm.=

r̂x v̂

σr
2 v̂ v̂

ti*

Drx ti*( ) Ẇ̇ xDpx* Ẇ̇ x
T
,=

Drx ti*( ) Ẇv Dpv Ẇv
T
,=

Drx ti*( ) Ẇ̇ xDpxv* Ẇ̇ x
T
,=

v̂ ti*( ) Ḣx p̂x/Sm;=

v̂ ti*( ) Hv p̂v ;=

v̂ ti*( ) Ḣx p̂xv /Sm,=

σ̂2 Sm
2 Dp* Sm

2

gL

Vvol
1/3
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and g = 9.81 m/s2. The maximum permissible value of
the rms deviation σr, max normalized to the maximal
value of the function  was taken to be wmax =

σr, max/  = 0.01.

The dimension of the vectors p for various estima-
tion schemes was defined as the minimal value of k* or
m* in the range where the parameter given by (11) takes

steady-state values (Fig. 1): s = / , where  is the
mean value of the estimated variance in the range of its
steady-state values.

r̂x

r̂x max,

σ̂2 σ̃2 σ̃2

1.02

0.98
s(x)

x

1.02

0.98
s (v)
v

1.02

0.98
s(xv)

x

1.02

0.98
s(xv)

v

8 10 12 14
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k*

m*

k*

1

3

452
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134

5
43
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k

Fig. 1. Normalized estimated variances  of measure-

ment errors for n = (1) 100, (2) 200, (3) 300, (4) 400, and
(5) 500 readings. The subscript ν = {x, v} indicates the
quantity under consideration: position or velocity, respec-
tively; the superscript ζ = {x, v, xv} indicates the type of
measurement: position measurements, velocity measure-
ments, or both.
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Fig. 2. Normalized estimated specific drags and their deriv-
atives with respect to Froude number. Curve c2 is normal-
ized to the maximal value of curve c3.
TECHNICAL PHYSICS      Vol. 48      No. 2      2003
To analyze the behavior of the drag calculated from
the measured parameters of the inertial motion, we also
present the specific drag normalized to its maximal
value for another vessel, a Rowdy yacht. In this case,
the drag was evaluated from the time profiles of the
velocity [1] for two starting velocities: five and six
knots (curves c2 and c3, respectively, in Fig. 2).

It is known [4] that the dependence of the total drag
on the steady-state ship velocity can be described by the
relationship Rx = C(0, 5ρSv 2), where C is the dimen-
sionless coefficient of drag, ρ is the density of the liq-
uid, and S is the wetted surface area of the ship. Note
that C = Cvis + Cs, where Cvis and Cs are the coefficients
of the viscous and sea components of the total drag,
respectively. Taking into account the monotonic run of
the Cvis vs. v  curve [3], as well as the constancy of ρ and
S, we can conclude that the variation of both the total
and specific drags is defined by the coefficient Cs,
which generally grows at Froude numbers Fr =

v /  ≤ 0.2 [3, 4, 7]. Therefore, to see how the sea-
forming effect of the inertial motion affects the specific
drag, we will consider its dependence on the relative
velocity (Froude number).

Figure 2 shows the estimated specific drags (given
by (12)) on the inertial motion of the Vitus Bearing ship
(curve c1, n = 100) and Rowdy yacht (curves c2, c3) nor-
malized to their maxima. Also, the derivatives of the
drags with respect to the Froude number are shown
(curves – ). The maximal values of the derivatives
correspond to the inflection points b1–b3 in the curves c1–
c3. In view of the above-mentioned behavior of the
coefficient Cs, it follows from curve c1 that the range of
the drag for the Vitus Bearing ship correlates with the
relative velocity interval [Frmin, Frmax], where Frmax =

gL

c1' c3'

0.05 0.10 0.15 0.20 0.25

Frmin Frmax
Fr

10–2

w

wmax
1

1'

2

2'

3'

3

4'

4

Fig. 3. Normalized rms deviations w of the estimated spe-
cific drags determined from (1) position measurements;
(2) velocity measurements; and (3, 4) combined measure-
ments for the number of measurements n and n/2, respec-
tively. Curves 1'–4' are the averaged curves 1–4.
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maxFr(∂ /∂Fr)}. It is interesting that the position
of the points b2 and b3 does not depend on the starting
velocities; that is, Frmax is a measure of the sea-forming
properties of ships. The choice of Frmin depends on our
knowledge of factors affecting the ship’s motion and,
hence, drag at low velocities (instability of longitudinal
motion, natural environmental fluctuations, etc.).

Figure 3 demonstrates the Fr dependences of the
normalized rms deviations (given by (13)) w =
σr/  < wmax for the Vitus Bearing ship (n = 100).
The curves indicate the high accuracy of the specific
drag estimates due to the use of the least-squares
regression of observations on an orthogonal basis. The
maximal accuracy of the estimates (the least variance,
curves 3 and 4) for the specific drag is achieved when
position and velocity measurements are combined.

CONCLUSION

Thus, as follows from our experimental investiga-
tion, the inertial method developed in this paper, unlike
the towing method, makes it possible to derive the
velocity dependence of the drag and compare the sea-
forming properties of ships of different type by pro-
cessing data for one trajectory of their inertial motion.
Obviously, a Rowdy yacht has a better design of hull
lines and exhibits less pronounced sea-forming proper-
ties, since the effect of its seas on the specific drag dis-
appears at higher Froude numbers than in the case of
the Vitus Bearing ship. The maximum of the derivative
of the specific drag indicates the termination of a tran-

{arg r̂x

r̂x max,
sient due to inertial motion. Below this point, the
dependences studied are free of any disturbances. In the
case of the towing method, conversely, foreign effects
on measurements (for example, the tug’s seas) are basi-
cally impossible to exclude.

Clearly, results obtained by our method can be used
for the rapid estimation of specific drag actual values
because of its simplicity. If the estimates are made at
more or less regular intervals, they can serve as a means
for inspecting the condition (fouling) of the ship’s body
(in view of the fact that the viscous component of the
total drag prevails at small Froude numbers).
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Abstract—Effective ways for controlling shock wave configurations by means of external actions are sought.
One such way is a local effect of electric and magnetic fields. In this paper, the local effect of external fields is
implemented by current localization in a limited region of a diffuser. The experiment is carried out in a diffuser
providing the complete internal compression of the gas with a Mach number at the inlet M = 4.3. As a working
medium, a xenon plasma is used. The plasma flow is formed in a shock tube equipped with an accelerating noz-
zle. Two ways of current localization are tested. In the first one, the diffuser inlet is a short channel of Faraday
generator type. In this case, the ponderomotive force basically decelerates or accelerates the flow depending on
the direction of the electric field. In the second way, the current flows through a narrow near-wall region
between adjacent electrodes. In this case, the ponderomotive force compresses or expands the gas. In both
cases, it is shown that the angle of an attached shock due to MHD interaction can be both decreased and
increased. The central problem with the MHD control of shock waves is near-electrode and near-wall phenom-
ena. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

At present, various approaches to controlling new-
generation hypersonic flying vehicles being designed
are being widely discussed [1]. In this work, we exper-
imentally study the possibility of controlling shocks at
the inlet of a supersonic diffuser with a magnetohydro-
dynamic (MHD) technique. This problem was initiated
by the AJAX concept [1, 2] and developed in a number
of theoretical [3–8] and experimental studies [9–13].
This paper is a continuation of this series of experimen-
tal investigations. I–V characteristics described in [13]
showed a great potential drop near the electrodes,
which was compensated for by applying an external
electric field. Therefore, in the experiment considered
below, the flow pattern is formed both as a result of
MHD interaction and by applying an electric field.

When investigating the influence of external fields
applied to various diffuser sections [12], we found that
the efficiency of field application is higher if the field is
applied to the diffuser inlet. By efficiency, we mean the
ratio of a certain change in the attached shock angle to
the power consumption. Therefore, it is natural to con-
tinue the investigations in this direction and to study
different ways of local action. In our new experiment,
an external effect is localized by confining the electric
current in a limited region of the diffuser. We tested two
ways of current localization. In the one case, the current
passed through oppositely placed electrodes; in the
1063-7842/03/4802- $24.00 © 20177
other, through electrodes placed on the same wall of the
MHD channel. The different arrangement of the elec-
trodes corresponded to various ways of force action.

EXPERIMENT

The experimental setup is schematically shown in
Fig. 1. It consists of a shock tube with high-pressure

1 2 3 4 5 6
7

8 9

1000 4450

5.
510

11
38∅ 5

0

470

V = 0.2 m3

A

AA–A

Fig. 1. Experimental setup. (1) High-pressure chamber,
(2) low-pressure chamber, (3) test section of the low-pres-
sure chamber, (4) plane nozzle, (5) diffuser, (6) vacuum
chamber, (7) optical window, (8) bellows, (9) gas receiver,
(10) nozzle inlet cross section, and (11) shock tube cross
section. Dimensions are given in millimeters.
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Fig. 2. First way of current localization: (a) decelerating regime and (b) accelerating regime. N, nozzle; D, diffuser. The figures are
electrode numbers, and the arrows indicate the directions of the current I, emf ε, ponderomotive force FL, and flow u.

II
chamber 1 designed for a hydrogen pressure of up to
150 atm and low-pressure chamber 2 ≈50 mm in diam-
eter and 4.5 m in length filled with a heavy inert gas to
a pressure of 20–50 torr. The chambers are separated by
a metallic diaphragm. The low-pressure chamber is ter-
minated by test section 3 with a piezoelectric pressure
transducer and windows to extract the radiation of the
shock-heated gas. At the end of the test section, there is
the throat of plane nozzle 4, which is separated from the
test section by a thin lavsan diaphragm. The gas flow
accelerated in the nozzle enters diffuser 5 with elec-
trodes on its opposite walls. The nozzle and the diffuser
are placed in vacuum chamber 6. Schlieren patterns of
the flow are recorded through optical windows 7. The
gasdynamic path extends beyond the vacuum chamber
through bellows 8 to gas receiver 9. The setup is
described in detail in [9].

As the shock-heated gas becomes stagnant at the
nozzle end face, its temperature increases and thermal
ionization occurs. The ionized gas passes through nar-
row nozzle throat 10 at face end 11 of the test portion
(cross section A–A in Fig. 1) and enters divergent noz-
zle 4, where the gas is accelerated to specified Mach
numbers. The expanding plasma cools down, but the
gas ionization in the nozzle lowers rather slowly
because of the slow recombination in inert gas plasmas
[14]; therefore, the plasma conductivity appropriate for
MHD experiments is provided. The supersonic flows of
relaxing inert-gas plasmas and their interaction with a
magnetic field are detailed elsewhere [15].

A pulsed magnetic field of induction 1.5 T directed
transversely to the flow was produced by the discharge
of a 0.0125-F capacitor bank through coaxial Helm-

ε = uBh

V

Vin

VR

Reff

Rl

Fig. 3. Equivalent electric circuit.
holtz coils 300 mm in diameter placed on the vacuum
chamber walls. The discharge duration is 3.5 ms, and
the magnetic field induction can be considered constant
over a period of 500 µs. The latter time interval was
used to synchronize the process. An electric pulse of an
appropriate amplitude and duration was produced by
the “long line” discharge. To visualize the flow, we
designed an optical Schlieren system. The filming of
the process was performed with a VSK-5 high-speed
camera with a Podmoshenskiœ illuminant [16]. The
exposure time per frame was 2.7 µs. A higher time res-
olution (30 ns) was achieved by using an OGM-20 ruby
laser as a light source and taking single pictures.

The experiment was carried out in xenon at a Mach
number of the shock wave front in the shock tube of 8
and an initial xenon pressure in the low-pressure cham-
ber of 30 torr. The design gas parameter at the diffuser
inlet were M = 4.3, the xenon density ρ = 0.127 kg/m3,
the flow velocity u = 1.55 km/s, and the plasma conduc-
tivity σ = 600 S/m. The plasma efflux duration was
approximately equal to 500 µs.

FIRST WAY OF CURRENT LOCALIZATION

In the case considered, the effect of magnetic and
electric fields on the plasma flow is localized in a short
section at the diffuser inlet [18], as shown in Fig. 2. The
current flows only through the third pair of the elec-
trodes at the diffuser inlet. In this case, the diffuser inlet
operates as a Faraday MHD generator and an electro-
motive force (emf) ε = uBh is induced at the inlet (here,
u is the flow velocity, B is the magnetic induction, and
h is the electrode spacing). A voltage V of either polar-
ity can be applied to the electrodes from an external
source. When the emf induced by the magnetic field
and the external electric field are codirected (Fig. 2a),
we deal with the so-called decelerating regime; when
the emf and the field are opposing (Fig. 2b), the regime
is conventionally referred to as accelerating. The equiv-
alent electric circuit of the setup is shown in Fig. 3. Its
basic feature is that the source of external voltage V is
connected in series to the magnetically induced emf.
The sum of the emf and applied voltage partially drop
across load resistor Rl and partially, across the internal
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LOCAL EFFECT OF ELECTRIC AND MAGNETIC FIELDS 179

                                   
xc

X, cm

2α

ϕ

ϕ

0 5 10 15 X, cm

2.84.
7

3.
3

3.5 3.14.3

3.
6

3.
1

(a) (b)

Fig. 4. Shock wave configuration in the diffuser (B = 0 and V = 0). (a) Calculated distribution of the flow Mach number over the
nozzle and diffuser [3] and (b) basic characteristics of the flow pattern in a supersonic diffuser. 2α is the angle between interacting
attached shocks, ϕ is the angle between an attached shock and the diffuser wall, and xc is the point of crossing the attached shocks.
resistance Reff of the interelectrode gap. The total of
these two resistances is close to the long-line wave
impedance, from which the voltage V is picked up. In
this case, Ohm’s law has the form

(1)

where Reff is the interelectrode gap resistance and k is
the load factor given by

(2)

The plus sign before the second term in Eq. (1) corre-
sponds to MHD deceleration; the minus sign, to MHD
acceleration.

Consider factors affecting the flow exposed to mag-
netic and electric fields and try to evaluate their relative
effects on the flow parameters, especially on the flow
Mach number, because its value is mainly responsible
for the shock angle.

The MHD effect has two elementary components.
The first one is the work of the mass force with a den-
sity juB, which decelerates or accelerates the flow. The
other is the removal (supply) of the electric energy pro-
duced by the magnetically induced emf. Its density per
unit volume equals kjuB. The external electric field
heats the plasma via the release of Joule heat with a
density Q = (1 – k)jV/h. Our qualitative analysis of the
problem will rely on the one-dimensional solution [17].
In [17], all elementary effects on the flow are repre-
sented in the form of additive terms with coefficients
depending on the flow parameters. For example, the
equation for a Mach number M of the flow exposed to
a magnetic field of strength uB and an electric field of
strength V/h can be written in the form

(3)

where j is the current density, a is the speed of sound,
ρ is the gas density, and u is the flow velocity.

IReff 1 k–( ) uBh V±( ),=

k
Rl

Rl Reff+
-------------------.=

M2 1–( )d M2ln
dx

---------------- j

a2ρu
------------ f M M( )uB f E M( )V

h
---+ 

  ,=
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The coefficients characterizing the MHD effect ( fM)
and the influence of the external electric field ( fE) are
defined as follows:

(4)

where γ = Cp/Cv is the ratio of specific heats at constant
pressure and constant volume.

In Eq. (4) the upper minus before the first term and
the upper plus before the second one correspond to the
decelerating regime, while the inverse means accelera-
tion.

From Eq. (3) it follows that the effect of the mag-
netic field dominates that of the electric field if the mag-
netically induced emf (ε = uBh) and the external volt-
age meet the inequality

(5)

Equation (5) shows that at M > 5 the Mach number
is governed largely by the MHD effect rather than by
the electric field for uBh/V > 1 and any load factor. At
M = 1 and γ = 5/3, the effect of the magnetic field pre-
vails when uBh/V > 2(1 – k)/(5 – 2k). Thus, the relative
role of MHD interaction increases as the flow Mach
number decreases. The greater the load factor, the
stronger the MHD effect. Let us estimate the limiting
values of V/uBh corresponding to our experiment by
using formula (5). In the experiment k ≈ 0.2 and the
Mach numbers calculated at the inlet and outlet are
equal to 4.3 and 3, respectively. Then, the limiting val-
ues of V/ε turn out to be equal to 1.15 and 1.3. Thus, the
interval separating the regions of prevalence of the
magnetic and electric field effects is 1.3 > V/ε > 1.15.

Parameters of the shock wave configuration that
characterize the response of the flow to the external
effect are clarified from the shock pattern in the diffuser
(Fig. 4). The diffuser is formed by two wedge-shaped
walls with an angle of 5.5°. An attached shock makes

f M M( ) γ 2 γ 1–( )M2+( )+− γ 1–( ) 1 γM2+( )k,±=

f E M( ) γ 1–( ) 1 γM2+( ) k 1–( ),–=

uBh
V

----------
f E M( )
f M M( )
----------------->

=  
γ 1–( ) 1 k–( ) 1 γM2+( )

γ 2 γ 1–( )M2+( ) k γ 1–( ) 1 γM2+( )–
--------------------------------------------------------------------------------------------.
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(a)

(b)

(c)

(d)

Fig. 5. Examples of shock wave configurations in the flow
subjected to electric and magnetic fields. (a) V = 0 and B =
0, (b) V = 120 V and B = 0, (c) V = 125 V and B = –1.3 T
(decelerating regime), (d) V = 150 V and B = –1.3 T (accel-
erating regime).
an angle ϕ with the diffuser wall. Two shocks attached
to the opposite diffuser walls cross one another at a dis-
tance xc from the diffuser inlet and reflect from one
another at an angle 2α. Each of the three parameters ϕ,
xc, and α can serve as an indicator of an external effect.
For example, when the flow is decelerated and the flow
Mach number decreases, the shock angle grows, the
point of shock intersection approaches the diffuser
inlet, and the angle between the shocks increases.
When the flow is accelerated, these parameters vary in
the opposite direction.

Shlieren pictures of the steady-state flows are shown
in Fig. 5. Figure 5a displays the shock wave configura-
tion without the fields (V = 0 and B = 0). In this case,
ϕ = 15°, xc = 43 mm, and α = 21.5°. The situation when
the magnetic field is absent (B = 0) and the electric field
is applied (V = 120 V) is demonstrated in Fig. 5b. It is
seen that the increase in the flow Mach number due to
heating is accompanied by an increase in the shock
angle ϕ, decrease in the distance xc, and increase in the
angle α between the shocks. Figure 5c shows the
Schlieren picture of the flow exposed to both magnetic
and electric fields (B = –1.3 T and V = 125 V) (deceler-
ating regime). Here, the joint action of the fields causes
stronger flow deceleration; that is, the angle α increases
and the distance xc decreases. Figure 5d shows the
Schlieren pattern of the flow in the accelerating regime
at V = –150 V and B = –1.3 T. It is seen that additional
shocks practically merge with the attached shocks
probably due to the strong current-related heating of the
near-wall layer. As a whole, the angle α increases and
the distance xc decreases as compared with the case V = 0
and B = 0; that is, the flow does not accelerate. It seems
that the flow deceleration due to the Joule heating of the
gas is stronger than the flow acceleration caused by the
ponderomotive force in this case. However, as follows
from Fig. 4b, the joint action of the accelerating MHD
effect and electric field weakens the decelerating effect
caused by the Joule heating of the gas.

In a series of experiments, we maintained the mag-
netic induction B at –1.3 T and applied voltages of var-
ious amplitude and polarity to the electrodes. With such
a magnetic field, the magnetically induced emf at the
diffuser inlet was ε = 65 V. The variation of the attached
shock position with electric and magnetic field is
shown in Fig. 6 as the dependences of the half-angle
between the shocks and of the current on the relative
voltage V/ε.

Let us turn to the I–V characteristics presented in
Fig. 6. The solid line C is the I–V characteristic calcu-
lated on the assumption that the plasma resistance is
equal to the value specified at the diffuser inlet. This
dependence demonstrates that the ideal I–V character-
istic is linear. However, the experimental dependence
I(V/ε) is essentially nonlinear and the current, almost
without exception, is considerably less than that pre-
dicted theoretically. All this is evidence of the impor-
tant role of near-electrode processes in current passage.
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Moreover, it turns out that this role is not the same at
V > 0 and V < 0. From the I–V characteristic, one can
estimate the near-electrode potential drop ∆V at low
currents [13]. It is determined from the initial portion of
the I–V characteristic up to the value of V at which the
derivative of the dependence I(V) starts to decrease. At
V > 0 (the decelerating regime), ∆V/ε ≈ 1.1 (see Fig. 6);
that is, the near-electrode potential drop is close to or
slightly greater than the magnetically induced emf. The
same also follows from the fact that the current through
the interelectrode gap is practically absent when V = 0
and the plasma is affected by the emf alone. The
absence of the current can be explained by the forma-
tion of unneutralized space charge near the cold none-
mitting electrodes. The emission of electrons from a
cold cathode is possible [18] when microarcs and
cathodic spots appear. In the fast processes, this can
occur at a current density of about 50 A/cm2. In our
experiments, such a current density is achievable only
at relatively high voltages applied to the electrodes.
Besides, cold gasdynamic boundary layers and possible
separation of the flow may prevent current passage.

It is interesting that the reversal of the sign of the
applied voltage modifies the dependence I(V/ε). It
should also be noted that at |V/ε| > 1, the current in the
range of negative V grows faster than in the positive
range. The differential plasma resistance determined
from the I–V characteristic for V/ε < –1 turned out to be
roughly 0.25 Ω, while for V/ε > 1, it grows to 0.43 Ω .
Thus, the I–V characteristic suggests that near-wall
effects in the decelerating regime are more pronounced
than in the accelerating one.

The vertical lines in Fig. 6 show the values of V/ε
separating regions with different dominant effects.
There are three such demarcation lines, which separate
regions I–IV.

First, let us consider these boundaries. The first
boundary covers the interval 1.15 < V/ε < 1.3, the sec-
ond is the line V/ε = –1, and the third is the line V/ε =
−1.15. In region I (V/ε > 1.3), the relationships between
the applied voltage and emf are such that the flow
deceleration due to Joule heating by the external elec-
tric field is stronger than the deceleration caused by
MHD interaction. In region II (–1.0 < V/ε < 1.15), the
ponderomotive force is the basic reason for the flow
deceleration. In region III (narrow range –1.15 < V/ε <
–1.0), the relationships between the external voltage
and magnetically induced emf are such that the ponder-
omotive force can accelerate the flow. In region IV
(V/ε < –1.15), the flow deceleration due to Joule heat-
ing by the external electric field dominates the acceler-
ating action of the magnetic field.

Consider how the shock wave at the inlet responds
to the variations of the voltage across the electrodes.
First, let us analyze the behavior of the angle α as a
function of the applied voltage for V > 0 (Fig. 6). In
region II, the angle α varies insignificantly. This is
because the current in this region is insufficient to con-
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siderably decelerate the flow owing to near-electrode
processes. The larger increase in the angle α is
observed in region I, where the current is higher and the
flow deceleration is stronger because of the gas heating
by the external electric field and the action of the pon-
deromotive force.

Now we trace the variation of the angle α for V < 0
in Fig. 6. Here, the behavior of α in region II is note-
worthy: α increases noticeably at I = 40 A. This seems
to be rather unexpected because at V > 0 in the same
region, α remains practically unchanged. The reason is
that during the MHD interaction, the current oscillated,
while at other V, the current remained constant. Since
there was no exact synchronization between process
recording and current passage, it is not improbable that
the flow pattern was recorded at a current exceeding its
average value. Therefore, we observed the flow decel-
eration under the dominant effect of the ponderomotive
force. In region III, the current changes direction, but
the flow deceleration, that is, the decrease in the angle
α as compared with its value at V = 0, is absent. In
region IV, the effect of the external fields becomes
noticeable, as demonstrated by the increase in α. The
increase in α indicates that, as was expected, the flow
deceleration in region IV takes place, because the gas
heating by the external field dominates the accelerating
action of the ponderomotive force. Thus, in our experi-
ment, Joule heating in the external electric field has the
most noticeable effect on the flow both in the decelerat-
ing and accelerating regimes.

The experimental data allow us to separate the
effects of flow acceleration and deceleration caused by
the ponderomotive force from the decelerating effect
due to Joule heating in an external electric field. This is
done as follows. We select three regimes with the same
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Fig. 6. Electric current and angle α as functions of the rela-
tive voltage V/E (ε = 65 V). I, region with the dominating
role of the electric field in flow deceleration; II, region with
the dominating role of the MHD effect in flow deceleration;
III, region with the MHD acceleration of the flow; and
IV, region with the dominating role of the electric field in
the accelerating MHD regime.
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current I = (500 ± 50) A and two oppositely directed
and one zero (B = 0) ponderomotive force. The ponder-
omotive force causing the flow deceleration corre-
sponds to a negative value of the magnetic induction
(B = –1.3 T); the accelerating ponderomotive force, to
the positive magnetic induction B = 1.3 T. The results
of such an approach are presented in Fig. 7, where the
angle α is plotted against the magnetic induction. The
horizontal dotted line depicts the value α = 27° (corre-
sponding to B = 0). The angle α corresponding to the
decelerating regime is larger and that corresponding to
the accelerating regime is smaller than the value at B = 0,
as it should be.

To conclude, we see no basic obstacles in control-
ling shocks at the inlet with the ponderomotive force
other than near-wall effects.

32

28

24
III

–1.5 –1.0 –0.5 0 0.5 1.0 1.5
B, T

α, deg

Fig. 7. Variation of the angle between the attached shocks
that is caused by magnetic induction reversal. The dotted
line indicates the angle α when B = 0 and the current is the
same as in the presence of the magnetic field (B = ±1.3 T).
I, accelerating regime; II, decelerating regime.
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Fig. 8. Second way of current localization. The arrows indi-
cate the directions of the current I, magnetic field B, Lorentz
force FL, and flow velocity u.
SECOND WAY OF CURRENT 
LOCALIZATION

The scheme of the experiment is shown in Fig. 8.
The current passes through a local region behind the
attached shocks near the diffuser walls between elec-
trodes 3 and 4. In Fig. 8, the directions of the current
and Lorentz force near the upper and lower diffuser
walls are shown by arrows. The Lorentz force near the
opposite walls is seen to act in opposite directions. At
the upper wall, the Lorentz force tends to decrease the
gas pressure, while at the lower wall, it compresses the
gas. In both cases, the gas also warms up owing to the
Joule heat. The current passing through the upper and
lower electrodes is equal to 400 and 500 A, respec-
tively. The magnetic induction is B = 1.3 T.

Figure 9 displays a number of steady-state flow pic-
tures. The asymmetric arrangement of the attached

N55

N75

N95

Fig. 9. Steady-state flow pictures. The figures above are pic-
ture numbers. The exposure time is 1.9 µs, the time interval
between the pictures is 5.7 µs.
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shocks is noteworthy. To clarify changes in the shock
wave structure, Fig. 10 shows the shocks in the absence
of external effects (dashed lines) and those depicted in
Fig. 9 (solid lines). At B = 0 and V = 0, the shocks are
symmetric about the flow axis and make an angle ϕ =
15° with the diffuser walls. After the magnetic field has
been applied and the current from an external source
has passed through local region 3–4, the shock angle
near the upper wall decreases to 13°; that is, the shock
shifts nearer to the wall. At the lower wall, the shock
angle increases to 17°; i.e., the shock moves away from
the wall. Such a behavior of the near-wall shocks is
explained by the fact that the directed action of the
Lorentz force near the upper wall decreases the gas
pressure and the shock approaches the wall. Near the
lower wall, the Lorentz force acts in the opposite direc-
tion, raising the pressure, and the shock moves away
from the wall.

CONCLUSIONS

It is shown that the attached shock angle in a diffuser
can be controlled by locally affecting the flow with
external magnetic and electric fields.

In the first way of control, the effect is localized at
the diffuser inlet, since the current passes only through
the electrodes located at the inlet (Faraday scheme of
electrode connection). The ranges of the applied volt-
age and magnetically induced emf are found where the
flow deceleration (acceleration) is governed by MHD
interaction or Joule heating in an external electric field.
The experimental results suggest that the one-dimen-
sional theory provides good estimates of the domains
where the MHD interaction or the electric field domi-
nates.

The decelerating and accelerating effects of the pon-
deromotive force and the decelerating action of an
external electric field are separated. The attached shock
angle can be increased or decreased by appropriately
applying the ponderomotive force.

With the Faraday scheme of electrode connection,
the role of near-wall effects in the decelerating regime
is greater than in the accelerating one.

In the second way of control, the current flows
through adjacent electrodes downstream from the
attached shocks and the Lorentz force is localized

17°

13°

Fig. 10. Comparison of the attached shock positions. Solid
lines correspond to the Schlieren patterns in Fig. 9; dashed
lines show the shock positions at V = 0 and B = 0.
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mainly in a narrow near-wall region. In this case, the
Lorentz force either compresses or expands the gas. In
the experiment, both an increase and decrease in the
attached shock angle was observed.

Comparing the effects of external fields on the loca-
tion of attached shocks in the two ways of current local-
ization, one can note that, in spite of a lesser change in
the shock angle with the second way (at approximately
the same power consumption), it seems to be prefera-
ble, since in this case the flow core is disturbed less and,
consequently, one may expect total pressure losses to
be lower.
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Abstract—It is assumed that gas properties are defined by the motion and interaction not only of individual
molecules but also of their clusters, which consist of several molecules. From the exponential cluster size dis-
tribution, the basic relationships for the parameters of cluster gas mixtures are derived, a computational scheme
is suggested, and the cluster concentration and the compressibility factor for a number of gases are calculated.
Using the example of the viscosity coefficient of oxygen, it is demonstrated that the cluster model fits the exper-
imental pressure dependence of the viscosity if the variation of the cluster composition and partial contributions
of cluster components to the viscosity are taken into account. © 2003 MAIK “Nauka/Interperiodica”.
The kinetic theory of gases explains the properties
of gases by the motion and interaction of individual
structure elements to which dynamics laws are applica-
ble. The basic difficulty here is to find an object that is
such a structure element. In gases, these are molecules,
which are thought to be responsible for the chemical
properties. When the motion of molecules is described
in terms of dynamics laws, they are viewed as compact
and stable objects. However, molecules are complex
thermodynamic systems and may aggregate into stable
and unstable clusters or macromolecules (see, e.g., [1]).
In the cluster model of gases, the behavior of real gases,
which diverges from that of a perfect gas, is explained
by the formation or dissociation of clusters according to
the variation of macroparameters.

Physically this divergence is explained by the varia-
tion of the number of structure elements, which
decreases upon clustering and grows upon cluster dis-
sociation. In the equation of state, this is reflected by
the variable number of moles and the variable molar
mass of a cluster mixture, since a gas should be consid-
ered as a multicomponent mixture consisting of dimers,
trimers, and higher order clusters. The presence of
many components and the variability of the cluster
composition significantly affect the nonequilibrium
properties of a gas, which shows up, in particular, in the
temperature and pressure dependences of the transport
coefficients.

In this work, we derive basic relationships for the
parameters of gas cluster mixtures, suggest a computa-
tional scheme, and calculate a number of equilibrium
and transport parameters.

An equilibrium thermostatically controlled cluster
gas can be described by a statistical ensemble with the
canonical particle energy distribution [2, 3]. The poten-
tial energy of a cluster consisting of g molecules that is
averaged over configurations is proportional to the
1063-7842/03/4802- $24.00 © 20185
number of molecules incorporated:

(1)

where G is a normalizing factor, k is the Boltzmann
constant, and T is temperature.

Considering the amount ng of g-dimensional clus-
ters as the population of an appropriate energy level in
the canonical ensemble, one can write

(2)

where A is a normalizing preexponential.
In view of (1), this distribution takes the form

(3)

The normalizing factor A can be expressed through
the amount of monomers (individual moving mole-
cules, for which g = 1):

(4)

where n1 is the number of monomers per unit volume.
Substituting (4) into (3) yields the exponential clus-

ter size distribution:

(5)

Dividing this expression by the total amount of clus-
ters n(c) =  (r is the size of largest clusters
taken into consideration) yields the cluster fraction
(concentration) distribution over sizes:

(6)

where  is the concentration of molecules (mono-
mers).

Eg GgkT ,=

ng A
Eg
kT
-------– ,exp=

ng A Gg–( ).exp=

A n1 G( ),exp=

ng n1 G g 1–( )–([ ] .exp=

ngg 1=
r∑

Cg
c( ) C1

c( ) G g 1–( )–[ ] ,exp=

Cg
c( ) ng

n c( )-------,=
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In the cluster model, a gas is considered as a multi-
component mixture of clusters. The composition of the
mixture can be conveniently expressed through macro-
parameters such as the average molar mass

(7)

where Mg is the molar mass of a g-dimensional cluster
component and 〈M〉  is the average molar mass of the
cluster mixture.

Bearing in mind that the molar mass is defined as the
mass of structure components taken in an amount equal
to the Avogadro number, one can write the molar mass
of a g-dimensional cluster component as

(8)

Since the mass of a g-dimensional cluster is the sum
of the masses mi of g individual molecules, Mg = M1g.

Structure elements responsible for chemical proper-
ties (of molecules) can be distinguished from those pro-
ducing gas pressure by introducing the compressibility
factor. With this factor, the real gas equation is given by

(9)

where n(n) is the total amount of both free and bound
(clustered) molecules and z is the compressibility factor
(see, e.g., [3; p. 202, 259]).

In the cluster model, each cluster component is
viewed as an independent participant of processes. The
gas equation for it can be written in the form

(10)

where pg is the partial pressure of a g-dimensional clus-
ter component, mg is the mass of the g-dimensional
cluster, and b is the correction for the relative (specific)
volume of the particles.

In terms of the partial mass density, this equation
appears as

(11)

where ρg is the partial mass density of a g-dimensional
cluster.

The mass density of a cluster component can be
expressed through the mass mi of one molecule:

(12)

Thus, the partial pressure is given by

(13)

M〈 〉 Cg
c( )Mg,

g 1=

r

∑=

Mg NAmig.=

p zn n( )kT ,=

pg

mg

V 1 b–( )Mg

----------------------------RT ,=

pg

ρg

1 b–( )Mg

------------------------RT ,=

ρg ngmig.=

pg

ng

1 b–( )
----------------kT .=
For a cluster mixture, the gas pressure is the sum of
the partial pressures of cluster components:

(14)

The total pressure of a gas is convenient to express
through the ratio of the number of clusters to the total
number of molecules:

(15)

(16)

where r is the size of largest clusters taken into consid-
eration.

From (9) and (15), we find a formula for the com-
pressibility factor:

(17)

It is seen that the compressibility factor can be cal-

culated if the concentrations  of clusters of various
size are known. Computational schemes usually use

concentrations , from which  can be found:

(18)

where n(c) is the total amount of clusters.
In this work, the compressibility factor is calculated

by the formula

(19)

where b is the relative correction for the partial volume
of the particles. In terms of the effective molecule-col-
lision diameter σ, this correction is given by

(20)
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where ψ is the packing parameter taking into account
the fact that the (specific) particle volume may change
upon clustering.

The above relationships give a set of equations for

the concentration :

(21)

The results of calculation for specific cases per-
formed with this scheme are presented in Figs. 1 and 2

Cg
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Fig. 1. Concentration  of cluster components vs. clus-

ter dimension g (expressed in numbers of molecules) for
oxygen pressure p = (j) 6, (s) 40, and (n) 90 MPa at 300 K.
The calculation was made for g = 1–20 with the effective
collision diameter σ11 = 0.308 nm evaluated from the vis-

cosity coefficient. Curves are plotted by the formula  =

exp[–G(g – 1)].
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and in Tables 1 and 2. In the calculations, we used pub-
lished data for the density or specific volume. The
effective diameters were evaluated from reference data
for viscosity coefficients (for oxygen and xenon [4, 5])
or self-diffusion coefficients [4] with allowance for
their temperature dependences by using the kinetic the-
ory formulas [6–8]. As follows from the figures, the
size of clusters may be rather large at high pressures.
Their presence influences the compressibility factor.
Specifically, if the fraction of xenon molecules com-
bined into clusters is high, the compressibility factor
drops to less than unity. Table 2 shows that the com-
pressibility factors calculated are in good agreement
with the reference data.

In the cluster model, a chemically pure gas is con-
sidered as consisting of many cluster components. The
reason for the temperature or pressure dependence of

1.0
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0
1 2 3 4 5 6 7 8 9 10

Xe

0.5
4
6

g

C(c)
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Fig. 2. Concentration  of cluster components vs. clus-

ter dimension g (expressed in numbers of molecules) for
xenon pressure p = (j) 0.5, (s) 4, and (n) 6 MPa at 300 K.
The calculation was made for g = 1–10 with the effective
collision diameter σ11 = 0.411 nm evaluated from the vis-

cosity coefficient. Curves are plotted by the formula  =

exp[–G(g – 1)].
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C1
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Table 1.  Cluster concentrations  for carbon dioxide at a pressure 2 MPa and various temperatures

Cluster dimension, g
Temperature, K

300 400 600 700

1 0.8172 0.9144 0.9696 0.9796

2 0.494 0.0783 0.0295 0.0200

3 0.0273 0.0067 8.9918 × 10–4 4.0907 × 10–4

4 0.0050 5.744 × 10–4 0 0

5 9.1189 × 10–4 0 0 0

6 1.6666 × 10–4 0 0 0

Note: Calculations were made for g = 1–6 with effective collision diameters evaluated from the self-diffusion coefficients [4].

Cs
c( )
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Fig. 3. Pressure dependence of the viscosity coefficient η at
300 K: (squares) smoothed tabulated data [4] and (circles)
calculation by formula (22) including clusters with the vis-
cous effective collision diameter σ11 = 0.308 nm. The clus-
ter dimension g = 1–20. The dashed line shows the constant
value η = 20.7 µPa s for a Boltzmann gas [4].
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Fig. 4. Partial viscosity coefficient of a cluster component
vs. cluster dimension. The values of p are the same as in
Fig. 1. T = 300 K.
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Fig. 5. Fraction of clusters vs. their dimension. The values
of p are the same as in Fig. 1. T = 300 K.
the transfer coefficients is that a temperature decrease
or a pressure increase favors the formation of larger
clusters, which make a greater contribution to transfer
processes. Specifically, the pressure dependence of the
viscosity coefficient is associated with the formation of
large clusters with a high molar mass. The formulas of
the kinetic theory [6, 7] for the viscosity of a multicom-
ponent mixture can also be applied for a cluster mix-
ture. With Enskog corrections taken into account, the
formula for the viscosity coefficient of the mixture has
the form

(22)

where h = 8009 × 10–29 J1/2 K–1/2 kmol1/2 is the dimen-
sional coefficient.

With allowance for collisional momentum transfer
within the effective diameter, the Enskog correction χαβ
has the form [9]

(23)

In cluster mixtures consisting of molecules of one
sort, the cluster dimension g plays the role of the com-
ponent number and summation is over the sizes of clus-
ters taken into account.

Figures 3–5 show the results of calculation by for-
mula (22). The effective molecule diameter, which also
enters into the formula for the equilibrium parameters
(compressibility factor and cluster concentration), is
found by the same formula. Here, reference data for the
viscosity coefficient of a specific gas are taken under
conditions when the clustering effect can be neglected
(rarefied, or Boltzmann, gas), which is usually
observed under atmospheric pressure.

The effect of clustering on the transport parameters
is demonstrated with Fig. 3, where the pressure depen-
dence of the viscosity coefficient of oxygen is shown.
The calculation is seen to be in good agreement with
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the published data. Physically, this dependence is
explained as follows. As is seen from formula (22), the
total viscosity coefficient is the sum of the partial con-
tributions from cluster components. This formula
describes well the concentration dependence of the vis-
cosity of a rarefied gas mixture consisting of chemi-
cally different components [7]. Under elevated pres-
sures, a gas consisting of chemically identical mole-
cules contains clusters in the form of dimers, trimers,
etc. Within the cluster model, they are treated in terms
of the formulas from the kinetic theory (specifically, in
terms of formula (22)) as if they are independent mix-
ture components. When colliding with molecules or
lighter clusters, heavy clusters have a longer free path

Table 2.  Compressibility factor at T = 500 K

Pressure
p, MPa

Compressibility factor z

oxygen xenon

 reference 
data [5]

calculation 
by (19)

 reference 
data [5]

calculation 
by (19)

0.1 1.0002 0.9997 0.9991 0.9994

1 1.0018 1.0023 0.9911 0.9909

2 1.0037 1.0036 1.0823 0.9822

3 1.0057 1.0056 0.9735 0.9735

4 1.0078 1.0078 0.9649 0.9649

5 1.0099 1.0099 0.9563 0.9563

6 1.0122 1.0122 0.9479 0.9479

8 1.0169 1.0169 0.9316 0.9315

10 1.0221 1.0221 0.9160 0.9159

12 1.0275 1.0275 0.9013 0.9012

16 1.0394 1.0395 0.8754 0.8754

20 1.0525 1.0526 –

25 1.0706 1.0706

30 1.0903 1.0903

35 1.1115 1.1115

40 1.1339 1.1339

45 1.1575 1.158

50 1.182 1.182
TECHNICAL PHYSICS      Vol. 48      No. 2      2003
(the effect of velocity persistence after collision); there-
fore, their contribution to the momentum flux and the
mixture viscosity grows. Moreover, the relationships
between the masses and mean thermal velocities are
such that heavy clusters transfer the momentum more
effectively. This statement is supported by Fig. 4, which
shows the partial viscosity coefficient vs. cluster
dimension. The weaker dependence under high pres-
sures is due to the fact that, when the concentration of
heavy clusters is significant, they collide with each
other more frequently and the effect of velocity persis-
tence after collision is reduced. Thus, the viscosity of a
cluster mixture increases with the fraction of heavy
clusters. However, the fraction of heavy clusters drops
exponentially with the cluster dimension (Fig. 5);
therefore, their contribution to the viscosity is not so
pronounced as follows from Fig. 4. The competition of
these two mechanisms is responsible for the pressure
dependence of the gas viscosity (Fig. 3).
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Abstract—Based on the available experimental data and computer simulations, analytical approximations of
the quantities characterizing electron multiplication in the cathode sheath are proposed. The critical electric
field is found above which runaway electrons are observed. Using the approximations proposed, the depen-
dences of the plasma parameters (the electron and ion densities and currents and the electric field strength) on
the distance from the cathode are analyzed. Simple formulas for the total current, the cathode sheath thickness,
and the cathode potential drop as functions of the electric field on the cathode surface are derived. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

In recent years, excimer lamps—the sources of
spontaneous emission on the transitions of exciplex and
excimer molecules—have attracted considerable inter-
est [1–5]. In particular, excimer lamps on xenon dimers
have been intensely developed [3–5]. To pump excimer
lamps, barrier discharges, which allow one to obtain
172-nm radiation with an efficiency of higher than 50%
[5], are most frequently used. Earlier, such a high effi-
ciency was obtained by pumping high-pressure xenon
by either an electron beam or an electron-beam sus-
tained discharge [6–8].

The highest efficiency was attained with lamps in
which a single-barrier discharge was ignited between a
thin wire cathode located on the tube axis and an anode
placed on the outer surface of a quartz tube. The xenon
pressure was fairly high (~100–200 torr). Simulations
[9] show that this pressure is indeed optimum for elec-
tron beam pumping. However, the kinetics of a plasma
pumped by an electron beam differs significantly from
the kinetics of a discharge plasma (see, e.g., [10]). In
this context, it is of interest to study the discharge phys-
ics in dense xenon. The discharge characteristics are, to
a great extent, governed by the processes occurring in
the cathode sheath. This paper is devoted to studying
the plasma parameters in the cathode sheath.

The following problems are considered. First, we
simulate electron multiplication near the cathode,
where the screening of the electric field by the plasma
is of minor importance. Then, based on the simulation
results and available experimental data, we obtain the
Townsend ionization coefficient, drift velocity, electron
mean energy, and other ionization characteristics as
functions of the electric field. These data are used to
solve the set of equations describing the current gener-
ation in the cathode sheath. Based on the simulation
1063-7842/03/4802- $24.00 © 0190
results, simple analytical expressions for the cathode
sheath parameters are derived.

1. SIMULATIONS OF IONIZATION

1.1. Simulations of Electron Multiplication

The problem is solved in cylindrical geometry. The
grounded anode is a cylinder of radius Rmax ~ 1 cm. The
cathode, which is a wire of radius r0 = 0.5 mm located
on the axis of the anode cylinder, is at the potential U0 ~
–(0.5–3.0) kV.

In the absence of plasma, the electric field depends
on the distance r from the wire axis as

(1)

For the above parameters and in the absence of
plasma, the electric field near the cathode is in the range
E0 ~ 3–20 kV/cm.

Electron multiplication in electric field (1) was sim-
ulated by the particle method. The electron motion was
computed over a certain radial interval r1 < r < r2 (r1 ≥
r0, r2 ≤ Rmax), which was divided into ten to one hundred
cells. The numerical grid obtained was used to acquire
the statistics for the parameters under study (the ioniza-
tion rate, electron velocity, electron mean energy, etc.).
The electrons were injected at a certain rate from the
point r = r1 into the computation region. The energies
of the injected electrons ε were distributed by Poisson’s
law, P1 = ε0exp(–ε/ε0), with the characteristic energy
ε0, which was set at ε0 = 0.2 eV. During the time inter-
vals between the electron injection events, the evolution
of all the electrons in the computation region was traced
and statistics was gained. For this purpose, the time step
∆t was chosen such that, for any electron energy below

E r( ) E0

r0

r
----, E0 E r0( )≡

U0–
r0/Rmax( )ln

--------------------------- 1
r0
----.= =
2003 MAIK “Nauka/Interperiodica”



        

SIMULATIONS OF PLASMA FORMATION 191

                                                             
3 keV, the electron displacement during this time step
did not exceed 30% of the mean free path (commonly,
under the above conditions, the time step was ∆t =
0.5 fs). At each time step, the equations of motion for
all the electrons (both newly injected and already resid-
ing in the computation region) in the electric field were
solved and the electrons were set at new positions.

The electrons that reached the boundaries of the
computation region (r ≥ Rmax or r ≤ Rmin) were excluded
from consideration (disappeared). The remaining elec-
trons underwent collisions with the collision probabil-
ity determined by Poisson’s law

where ∆l is the distance passed by an electron for the
last time step and L is the electron mean free path.

To determine whether or not the collision occurs, a
random number u distributed uniformly over the inter-
val [0, 1] was generated. The collision was considered
to occur if, for a given ∆l, we obtained u < P2. To gen-
erate random numbers, we used a multiplicative gener-
ator.

The mean free path L is expressed via cross sections
as

where ε is the electron energy and σel, σex, and σi are the
cross sections for elastic scattering, excitation to the
first resonance level, and ionization, respectively (see
Section 1.2).

Then, by using the ratio among the cross sections
and with the help of the random number generator, we
determined which one of the collision events had
occurred: elastic scattering, excitation, or ionization.

In the case of elastic scattering, the electron velocity
was rotated by angles ϕ and χ with respect to the previ-
ous electron velocity. For the angular distribution, we
used an expression proposed in [11] that models the
collision of an electron with a screened point charge at
low and moderate energies ε,

(2)

where ε1 is the characteristic energy. In subsequent cal-
culations, this energy is set at 1 eV.

To determine the scattering angles distributed in
accordance with this expression, pairs of random num-
bers (u1 and u2) distributed uniformly over the interval
[0, 1] were generated. The scattering angles were calcu-

P2 ∆l( ) 1 ∆l/L–( ),exp–=

L 1– NXe σel ε( ) σex ε( ) σi ε( )+ +[ ] ,=

f ϕ χ,( )dϕd χcos( ) ε̃
4π 1 ε̃+( )ln
----------------------------- dΩ

ε̃ χ
2
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2

 
 
-------------------------------,=

ε̃ ε
ε1
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lated using the expressions

In the case of excitation, the electron energy was
decreased by the excitation energy, the velocity direc-
tion was changed in the same way as with elastic scat-
tering, and the number of the excited atoms in the given
spatial cell was increased by one.

In the case of ionization, a new electron appeared
and the number of ions in the given spatial cell was
increased by one. The spatial coordinates of a newly
born electron were assumed to be the same as those of
the parent atom. The energy ε of the newly born elec-
tron was assumed to be distributed according to the
Thomson model: F(ε) = I/(ε – I)2. The rest of the energy
was given to the primary electron. The velocities of
both the primary and newly born electrons were distrib-
uted by formula (2), as in the case with elastic collision.

In the course of computations, statistics was gained
to determine the ionization frequency in different spa-
tial cells, the mean electron energy and the mean radial
velocity as functions of radius, the electron energy dis-
tribution function (EEDF), etc.

The computation time was chosen long enough not
only for the electron multiplication process to be estab-
lished, but also a reliable statistics for the computed
quantities to be gained.

1.2. Approximation of the Electron-Impact Cross 
Sections

The elastic scattering cross section was calculated
by interpolating the table data. The data for energies of
0.01–20 eV were taken from [12]; for energies of 20–
36 eV, they were taken from [13, Fig. 3]; and for ener-
gies in the range from 36 eV to 3 keV, it was assumed
that the cross section decreased with energy as 1/ε. The
ionization cross section in the range 0–3 keV was cal-
culated by interpolating the table data from [14].

For the sake of convenience, we derived approxima-
tion formulas that generalized the available information
about the dependence of various cross sections on the
energy of the incident electron.

The elastic scattering cross section in the energy
range from 0.01 eV to 3 keV was approximated with an
accuracy of 20% by the expression

where ε is the energy of the incident electron in elec-
tronvolts.

In the same energy range, the single-ionization cross
section can be approximated with an accuracy of 15%

χcos 1 2
1 ε̃+( )
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-----------------------------, ϕ– 2πu2.= =
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1 0.0045ε3+
------------------------------ 12 6.6ε1.1–( )exp

ε
-------------------------------------+ 
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by the expression

where I = 12.13 eV is the ionization energy of a xenon
atom and the electron energy ε is in electronvolts.

For the excitation cross section in the energy range
0–3 keV, we used the following simplified approxima-
tion:

(3)

Formula (3) approximates the known Drawin for-
mula (see [15, Fig. 9.4]) for the transition from the
ground state to the first resonant state 5p56s (J = 1),

where the energy E1 = 8.437 eV and the transition oscil-
lator strength is f = 0.26. The parameter values in for-
mula (3) were chosen such that the integral of the cross
section and its maximum position match the integral
and the maximum position in the case of the Drawin
approximation.

In some runs, to estimate the effect of the excitation
processes on the local ionization parameters, we also
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Fig. 1. Total cross section for electron collisions with Xe
atoms vs. incident electron energy. The solid curve is for
ionization; the dotted and dashed curves are for the excita-
tion to the first and second resonance states, respectively;
and the dashed-and-dotted curve is for elastic collisions.
took into account the excitation of Xe atoms to the sec-
ond resonant state 5p56s'[3/2]1 with the cross section

This formula was derived in the same way as for-
mula (3), by fitting to the Drawin approximation with
the parameters E2 = 9.57 eV and f = 0.27. The energy
dependences of the cross sections used in the calcula-
tions are shown in Fig. 1.

Ionization rates. Based on the above approxima-
tions, we calculated the rates of the collision-induced

transitions, k = (ε)(2ε/me)1/2f(ε)dε, where f(ε) is the

EEDF.
Figure 2a presents the rates of the collision-induced

transitions calculated for the case of a Maxwellian
EEDF

where me is the electron mass and Te is the electron tem-
perature. It can be seen that significant excitation and
ionization occur at a mean electron energy of higher
than 1 eV.

However, a mean electron energy of several elec-
tronvolts is actually insufficient for efficient ionization.
This fact contradicts the results of simulations of elec-
tron multiplication by the particle method. Calculations
show (see below) that the mean electron energy
exceeds 1 eV already at E ~ 100 V/cm. However, in
reality, ionization begins to dominate over excitation at
significantly higher electric fields. The point is that,
near the cathode surface, the electron energy distribu-
tion is closer to a Druyvesteyn distribution than to a
Maxwellian one.

The result of averaging the cross sections using the
Druyvesteyn distribution

is illustrated in Fig. 2b. Here, Γ(3/4) = 1.225; mXe is the
Xe atomic mass; and ε0 = eE/(σelNXe) is the energy
acquired by an electron in the electric field E over the
distance l = 1/(σelNXe), which the electron travels
between two successive elastic collisions.

At a given density of Xe atoms, the frequencies of
ionization, νi = kiNXe, and excitation, νex = kexNXe, aver-
aged using a Druyvesteyn distribution, appear to be
functions of the electric field E only. It is seen that the

σex
2( ) ε( ) 2.9 10 16–  cm2 30 E2–( ) ε E2–( )

ε 30 2E2–+( )2
------------------------------------------×=

ε E2 energies are in electronvolts>( ).

σ∫
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---------------- ε/Te–( ),exp≡ ≡

f ε( ) f D ε( )=

≡ 2
Γ 3/4( )
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3me
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--------- 

 
3/4 ε

ε0
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3meε
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m
Xeε0

2

--------------–
 
 
 

exp
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high ionization efficiency, νex < νi ~ 1010 s–1, is achieved
at E ~ 104 V/cm.

1.3. Calculated Results and Approximations

Electron multiplication. In calculations, the xenon
density was assumed to be relatively high, NXe = 4.4 ×
1018 cm–3. Intense electron multiplication and electric
field screening take place in a narrow layer, whose
thickness is much smaller than the cathode diameter.
Generally speaking, the dependence of the local ioniza-
tion parameters on the electric field should be deter-
mined by the modeling of the multiplication process in
plane geometry (provided that the external electric field
is uniform). In calculations of the ionization parame-
ters, plane geometry was provided by choosing a suffi-
ciently large cathode radius of curvature, r0 = 103 mm,
which is larger than all the other characteristic dimen-
sions. The typical calculated results are shown in Fig. 3.

Simulations show that, the number of Xe atoms
excited and ionized by electron impact exponentially

0.01 0.10 1 10 100 1000

(a)

(b)

Te, eV

k, cm3/s

E, V/cm

ν, s–1

10–7

10–8

10–9

10–10

1011

1010

109

108

103 104 105 106

Fig. 2. (a) Rate constants of the electron-impact ionization
and excitation of Xe atoms vs. electron temperature and
(b) the ionization and excitation frequencies vs. electric
field. The solid curves show the rate constant ki and the ion-
ization frequency νi (an ionization threshold of 12.13 eV),
the dotted curves show the rate constant kex1 and the fre-
quency νex1 of the excitation to the 5p56s[3/2]1 state (an
excitation threshold of 8.437 eV), the dashed curves show
the rate constant kex2 and the frequency νex2 of the excita-
tion to the 5p56s'[3/2]1 state (an excitation threshold of
9.57 eV), and the dashed-and-dotted curve shows the elastic
collision rate constant kel.
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increases with distance x from the cathode (Fig. 3a).
The x-component of the mean electron velocity, ux,
directed along the electric field; the mean electron
energy, ε*; and the ionization frequency, νi, depend
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Fig. 3. Electron multiplication parameters calculated in
plane geometry for an electric field of E0 = 9400 V/cm and

a xenon atom density of NXe = 4.4 × 1018 cm–3 (which cor-
responds to a pressure of 137 torr at room temperature):
(a) the numbers of the created ions ni (diamonds) and the
excited atoms nex (squares) vs. distance x from the cathode;
the solid curve is ni(x) = 7exp(180x/cm); (b) the mean elec-
tron velocity ux (diamonds) along the x axis (along the elec-
tric field) and the mean electron velocities uy (crosses) and
uz (squares) along the y and z axes, respectively, as functions
of x; (c) the mean electron energy vs. x; and (d) the EEDF
obtained by averaging over all the electrons in the interval
x = 250–400 µm (the symbols show the simulation results
and the dotted curve shows the dependence f(ε) =
0.5exp(−0.59ε).
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slightly on the x coordinate (Figs. 3b–3d). The EEDF
has a maximum at an energy lower than the ionization
energy and decays exponentially at energies higher
than the ionization energy (Fig. 3e).

This agrees with the Townsend theory, according to
which the ionization frequency νi is related to the
Townsend ionization coefficient α via the simple
expression

(4)

where ue is the mean electron velocity along the electric
field and the Townsend coefficient shows the number of
the ionization events produced by an electron per unit
path length. It is important that α and ue mainly depend
only on E/N and do not depend on the x coordinate. This
fact is confirmed by the results of our simulations for
the gas density that is one hundred times lower, namely,
for NXe = 4.4 × 1016 cm–3.

Note that the Townsend theory holds for electric
fields that are lower than a certain critical value Ecr. At
E < Ecr, the mean electron velocity continuously
increases with distance; i.e., a runaway of electrons
occurs. The transition to the runaway regime is illus-
trated in Fig. 4. At E = 1.1 × 106 V/cm, the electron
velocity is almost constant, and at E = 2.1 × 106 V/cm,
the mean electron velocity continuously increases.

ν i αue,=

0

5 × 108

109

–5 × 108

(a)

ux, uy, uz, cm/s

1.5 × 109

0

5

109

2 × 109

–109

(b)

10 15 20 25 30 35 400

3 × 109

x, µm

Fig. 4. Illustration of the transition to the electron runaway
regime. The mean electron velocity vs. distance x from the
cathode for an electric field of E0: (a) 1.07 × 106 and
(b) 2.13 × 106 V/cm: ux (diamonds) is the mean electron
velocity along the x axis (along the electric field) and uy
(crosses) and uz (squares) are the mean velocities along the
y and z axes, respectively.
According to the calculated results, the critical elec-
tric field for xenon is Ecr ≈ 104(NXe/3.2 × 1016 cm–3) V/cm.
Below, we present approximations of the electron mul-
tiplication parameters corresponding to E < Ecr.

Approximations of the multiplication parame-
ters. We performed a series of simulations (similar to
those presented in Figs. 3 and 4) for different electric
fields. Based on both these simulations and the experi-
mental data, we proposed approximations for depen-
dences of some quantities (that are used below in the set
of equations describing the plasma formation in the
cathode sheath) on E and N (Fig. 5).

The dependence of the Townsend coefficient on the
electric field is in good agreement with the known
approximation [13]

(5)

where C1 = 2.03 × 10–15 cm2 and C2 = 2.014 ×
10−7 cm3/2 V1/2 are the fitting parameters (Fig 5a).

The measured dependence of the drift velocity on
the electric field (see [13] and Tables 3, 4 in [16]) was
supplemented with the simulation results and approxi-
mated (Fig. 5b) by the expression

(6)

Here and below, in the approximation formulas, N is in
cm–3 and E is in V/cm.

The calculated ionization frequency νi (Fig. 5c) as a
function of the electric field is approximated to within
a factor of 3 by the product of expressions (5) and (6).
The calculated mean electron energy and the experi-
mental data [16] are described by the approximation
(Fig. 5d)

(7)

To solve the equations describing the plasma forma-
tion in the cathode sheath (see below), we also need to
know the dependence of the ion drift velocity on the
electric field. This dependence was obtained by approx-
imating the experimental data of [15, 16]:

(8)
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2. SIMULATIONS OF THE ELECTRON 
AND ION CURRENTS

2.1. Formulation of the Problem

Basic equations. In the cathode sheath, a plasma is
formed that screens the electric field. The process of
plasma formation is described by the momentum trans-
fer equation, the continuity equations for electrons and
ions, and Poisson’s equation. In a steady state, in which
the ionization and transfer processes in the cathode
sheath comply with a given boundary electric field, the
basic equations are as follows [11, 17, 18]:

Here, e is the electron charge, u is the mean velocity,
b is the mobility, D is the diffusion coefficient, N is the
density, and E is the electric field; the indices e and i
stand for electrons and ions, respectively.

Let us turn to cylindrical geometry. In this case, we
have grad  d/dr and div  (1/r)d(r·)/dr. Here, it is
convenient to introduce the linear current densities

(9)

Then, using the charge conservation law in the form
je + ji = j0 = const and expressing the particle densities
via the current densities, we obtain the following set of
equations

(10)

The right-hand sides of Eqs. (10) are specified by
the expressions

(11)

ue –ebeE De/Ne( )grad Ne( ),–=

div Neue( ) ν iNe,=

div E( ) 4πe N i Ne–( );=

ui ebiE Di/N i( )grad N i( ),–=

div N iui( ) ν iNe.=

je 2πeueNer, ji– 2πeuiN ir.–= =

d je

dr
------- 2πerν iNe,–=
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---------
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2πerDe
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beENe
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---------------,–=

dN i
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biENe
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---------------+ ,=
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Fig. 5. Ionization and drift parameters vs. electric field at NXe = 4.4 × 1018 cm–3: (a) Townsend coefficient approximated by formula (5)

(solid curve) and obtained in simulations (symbols); (b) the electron drift velocity from [13, 15] (symbols, E = (0.1–1.6) × 104 V/cm)
and simulated (symbols, E > 1000 V/cm), the solid curve shows the approximation by formula (6); (c) the ionization frequency
obtained in simulations (symbols) and from approximations (5) and (6) for the Townsend coefficient and the drift velocity, respec-
tively (solid curve); (d) the characteristic electron energy obtained in simulations (symbols, E = 103–105 V/cm) and from approxi-
mation (7) (solid curve) and the data from [15] (symbols, E = 0.1–100 V/cm); and (e) the ion drift velocity approximated by formula
(8) (solid curve) and the data from [15, 16] (symbols).
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where Ti = 0.03 eV is the ion temperature and the quan-
tities udi, ude, and ε* are specified by formulas (5)–(7).

Boundary conditions. In order to solve the set of
equations (10), boundary conditions should be
imposed. In particular, at the large distances from the
cathode, the ion and electron densities should be equal
to each other:

(12)

In this study, we used the “shooting” method. The
boundary conditions for the electron current, electron

Ne r ∞( ) N i r ∞( ).=

(a)

(b)

(c)
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Fig. 6. Plasma parameters vs. distance from the cathode x =
r – r0 for j0 = 20 mA/cm, NXe = 4.4 × 1018 cm–3, E0 =
34 kV/cm, ξ = 0.07, and ζ ≈ 1.16: (a) the electron (solid
curve) and ion (dotted curve) densities, (b) the electron
(solid curve) and ion (dotted curve) currents, and (c) the
electric field (solid curve) and change in the electric field
potential ∆ϕ(r) = ϕ(r0) – ϕ(r) (dotted curve).
and ion densities, and electric field were imposed at the
cathode surface, i.e., at r = r0:

(13)

The value of je0 was determined by using the preset
values of the total current j0 and the secondary electron
emission coefficient ξ

(14)

The boundary value of the ion density was set such
that its gradient at the boundary was zero,

(15)

In the first approximation, the boundary value of the
electron density was obtained from the condition that
its gradient at the boundary comply with the Townsend
multiplication,

(16)

where ξ is a fitting factor.
Then, the set of equations (10) was solved for given

values of j0 and E0 with boundary conditions (13)–(16)
at ξ = 1. Usually, the solution obtained did not satisfy
condition (12). This condition was then satisfied by
matching the ξ value. Note that, although the resultant
ξ value insignificantly differed from unity, the solution
was very sensitive to its exact value.

2.2. Simulation Results

Typical results from simulations of the plasma
parameters in the cathode sheath are shown in Fig. 6.
The total current j0 = 20 mA/cm is taken from the
experiment. Due to the screening of the electric field,
the potential drop occurs in a very narrow sheath (see
below); for this reason, the boundary electric field was
set somewhat higher than follows from formula (1) for
the electric field in the absence of plasma.

It can be seen from Fig. 6 that the physical processes
can be described as follows. The intense electron mul-
tiplication occurs in a sheath of thickness ∆x ~ 30 µm.
Within the sheath, the electric field is screened by the
ion charge. At x ~ ∆x, the electric field decreases to a
value at which the multiplication almost stops. Then,
the electron and ion densities become nearly equal to
each other and the current is mainly carried by elec-
trons.

The potential drop across the sheath is relatively
low, ∆ϕ0 = |ϕ(r0) – ϕ(r0 + 100 µm)| = 59 V. It comprises
a small fraction of the discharge voltage U0 ~ 0.5–3 kV.
The rest of the voltage, U0 – ∆ϕ0 ~ U0, falls on the
quasineutral plasma, in which electron heating and,
accordingly, thermal ionization play an important role.
Here, we will not consider this region.

je0 je r r0=( ), Ne0 Ne r r0=( ),= =

N i0 N i r r0=( ), E0 E r r0=( ).= =

je0 j0ξ / 1 ξ+( ).=

Ni0 j0/ 2πer0bi E0( )E0( ).=

Ne0 ζ j0 2πer0 be E0( )E0 De E0( )α E0( )+( )[ ] ,=
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3. PLASMA PARAMETERS IN THE CATHODE 
SHEATH

3.1. Effect of the Cathode Electric Field

Assuming that the current is determined by the cath-
ode sheath parameters, j0 = 2πeuiNi0r0, we express it as
a function of the electric field at the cathode E0. For this
purpose, we determine the ion density from the condi-
tion for the electric field screening,

(17)

Let us estimate the sheath thickness via the
Townsend coefficient,

(18)

As a result, we obtain

(19)

The quantities on the right-hand side of this expres-
sion are specified by formulas (4), (7), (17), and (18).

The potential drop across the cathode sheath can be
estimated by the expression

(20)

The dependences of these quantities on E0 and the
xenon density are shown in Figs. 7 and 8. It should be
noted that, generally, dependences (17)–(20) do not
allow one to predict the plasma parameters in the cath-
ode sheath. The matter is that the value of E0 is not
known a priori and, thus, should be measured. One
only knows the voltage across the discharge gap, U0,
which is to be related to E0. Formula (1) cannot be used
for this purpose. Since the voltage drop ∆ϕ0 across the
cathode sheath is low compared to U0, we need to con-
sider a region far from the cathode to find E0, which is
beyond the scope of this study.

3.2. Relaxation Times

The relaxation time of the electron density near the
cathode is determined by the ionization frequency νi. At

E ~ 3 × 104 V/cm, this time is rather short:  ~ 5 ×
10−11 s at NXe = 4.4 × 1018 cm–3.

The relaxation time of the ion current near the cath-
ode (x ! ∆x), τion, is significantly longer:

Here, udi(E) is the ion drift velocity, which amounts to
~5 × 104 cm/s at E ~ 104 V/cm. The optimum duration
of the pumping pulse should be longer than τion.

Between the pulses, recombination occurs. For the
plasma in the cathode sheath not to recombine com-
pletely between the pulses, the repetition rate of the
pumping pulses should not be too low.

N i0 E0( ) E0/ 4πe∆x E0( )( ).=

∆x E0( ) 1/ξ( )/α E0( ).ln=

j0 E0( )
ui d, E0( )E0r0

2∆x E0( )
------------------------------.=

∆ϕ0 E0( ) E0∆x E0( )/2.=

ν i
1–

τ ion udi E( )∆x( ) 1– 10 7–  s.∼ ∼
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Let us consider two recombination mechanisms for
electrons and ions: the surface and the volume ones. On
the cathode surface, the recombination time between
the pumping pulses is determined by the ion diffusion
time

in a layer of thickness ∆x ~ 30 µm. Here, σtr ~ 1.2 ×
1014 cm2 is the cross section for resonant charge trans-
fer between Xe ions and atoms and vXe ~ 2.7 × 104 cm/s
is the thermal velocity of Xe atoms.

The characteristic time of volume recombination,

τdif v Xe/σtrNXe∆x2( ) 1–
1.7 10 5–  s×∼ ∼

τdis αdisN i( ) 1–
5 10 7–  s×∼ ∼
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Fig. 7. Linear current density j0 (solid curve), ion density
Ni0 (dotted curve), cathode sheath thickness ∆x (dashed
curve), and potential drop ∆ϕ0 (dashed-and-dotted curve)
vs. electric field on the cathode E0 for NXe = 4.4 × 1018 cm–3.
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Fig. 8. Potential drop ∆ϕ0 vs. gas density for different elec-
tric fields at the cathode: E0 = 105 (solid curve), 3 × 104

(dotted curve), 104 (dashed curve), and 3 × 103 V/cm
(dashed-and-dotted curve).
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is determined by the dissociative recombination rate
constant αdis ~ 2 × 10–6 cm3/s, because at the pressures
used, the conversion of atomic ions into molecular ions
proceeds rather rapidly. Here, based on the calculated
parameters of the cathode sheath, the ion density is set
at Ni ~ 1012 cm–3.

It is seen that, at the pulse repetition rate in the range
f ~ 10–100 kHz, the ion density in the cathode sheath
does not decrease below Ni ~ 1010–1011 cm–3.

4. CONCLUSION

In this study, we have simulated the development of
an electron avalanche in xenon. Based on the simula-
tion results and the available experimental data, analyt-
ical approximations of the quantities characterizing the
electron multiplication in the cathode sheath have been
proposed. The critical electric field has been found,
above which the runaway of electrons occurs. It is
shown that, in high-pressure xenon lamps, there are no
runaway electrons; consequently, these electrons can-
not be the main cause for the formation of a volume dis-
charge in a single-barrier xenon excimer lamp.

Based on the approximations proposed, the depen-
dences of the plasma parameters (the electron and ion
densities and currents and the electric field) on the dis-
tance from cathode have been analyzed. Simple formu-
las that determine the total current, the cathode sheath
thickness, and the voltage drop across the sheath as
functions of the electric field on the cathode surface
have been proposed.

The study above allows us to draw conclusions
regarding the cathode sheath in a xenon lamp with a
cylindrical electrode about one millimeter in diameter.

In the cathode sheath, electron multiplication occurs
and the electric field is screened by the ion charge. At a
pressure of ~100 torr and an electric field of about
10 kV/cm, the cathode sheath thickness turns out to be
smaller than the wire radius by one order of magnitude.
Because of the small sheath thickness, the voltage drop
across the cathode sheath is significantly lower than the
voltage applied to the discharge gap. At a given electric
field at the cathode, the screening of the electric field in
the cathode sheath limits the current density through
the sheath.

The results obtained allow one to self-consistently
consider the problem of the excitation of discharge
xenon lamps.
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Abstract—The properties of experimental thermionic converters with emitters made of oxygen-containing sin-
gle-crystal tungsten are studied. The tungsten is produced by the chloride CVD method. Such emitters not only
perform their basic function in the converter but also serve as an “internal” oxygen source. An attempt is made
to raise the emitter temperature in order to increase the maximal output of the converter using the new emitter
material. The efficiency of applying an oxygen-free single-crystal tungsten collector is contrasted with that
when the collector is made of polycrystalline tungsten or Cb-1 niobium alloy. © 2003 MAIK “Nauka/Interpe-
riodica”.
INTRODUCTION

Today, it is obvious that arc cesium thermionic con-
verters (TCs) with single-crystal tungsten electrodes
hold much promise [1]. However, a number of issues,
such as the introduction of oxygen into the interelec-
trode space to improve the TC output and the choice of
the most efficient collector material, are still incom-
pletely understood. It was suggested [2] that oxygen be
introduced from an internal source, single-crystal oxy-
gen-containing tungsten [3–5]. In this work, we use this
new emitter material with a “high-temperature” work
function of 5.7 eV in pilot TCs.

Along with conventional Cb-1 niobium alloy, which
contains about 1% Zr, several oxidized refractory met-
als have been studied [6–11] in an attempt to improve
TC output. However, as early as about 40 years ago,
Bol’shov and Zharinov [12] noted that the collector sur-
face in an operating TC will inevitably be contaminated
by emitter material evaporation products. Therefore,
later [13] TCs with a polycrystalline tungsten collector
were studied. In this work, we apply a collector made
of single-crystal tungsten and compare the associated
TC with those where the collector is made of polycrys-
talline tungsten or Cb-1 alloy. Earlier [14], the single-
crystal tungsten collector was used in experimental TCs
with cesium–barium fillers in an effort to achieve the
maximal adsorption of barium.

Of interest also is the examination of the output
characteristics of cesium–oxygen TCs with tungsten
electrodes at elevated temperatures. Such a seemingly
easy way to improve TC output runs into difficulties in
1063-7842/03/4802- $24.00 © 20199
terms of materials science. Estimates and experiments
made for an oxygen-free arc cesium TC of cylindrical
geometry (where the emitter was made of zirconium
carbide and the collector, of aluminum) have shown
[15] that, with an electrode spacing of about 5 mm, the
power density at a level P ≥ 40 W/cm2 can be provided
at emitter temperatures as high as Te ≥ 2500 K. Under
these conditions, the efficiency has been demonstrated
to exceed 16%, reaching 25% at Te = 3050 K and P =
106 W/cm2. Our efforts to approach these temperatures
in this work have not met with much success.

The goal of this study was to gain additional infor-
mation concerning the three aspects mentioned above.

EXPERIMENTAL

The studies were performed on experimental cylin-
drical monomodular TCs. Their emitters were made by
the original CVD technique [3], which provides the
production of tubular tungsten single crystals faceted
by six (110) planes and containing an increased amount
of oxygen (10–3–10–2 wt %) in the form of a quasi-solid
solution. Such emitters exhibit a sharp temperature
dependence of the work function, which reaches 5.6–
5.7 eV at temperatures above 2000 K [2, 5]. Before
being used in cylindrical TCs, single-crystal tungsten
tubes were turned with a lathe and then electrochemi-
cally polished in an alkaline solution to remove the
damaged layer (about 100 µm thick). After such pro-
cessing, the work function declined to 5.2 eV. Tubular
rear parts, one of which had a dead end, were welded to
003 MAIK “Nauka/Interperiodica”
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both sides of the emitter by electron beam welding. The
rear parts had special positioning shoulders, which
were seated against the ceramic belts of the collector
unit upon assembling and thus specified the electrode
spacing. A tubular tungsten resistance-type heater was
inserted into the emitter. A hole to receive a W(5% Re)/
W(20% Re) tungsten–rhenium thermocouple was pre-
drilled on the emitter end face.

The collector unit was prepared by the gas-static
pressing of a three-layer tubular pile [16, 17]. After the
pressing, the inner metal layer, which served as a coat
through which the ceramic layer was consolidated and
simultaneously the collector and ceramic layer were
diffusion-welded to the outer metal layer, was removed
by turning. With this coat removed, the ceramic and
collector layers became exposed and the collector layer
was electrochemically finished. Thus, the inner layer of
the collector bank was composite. After assembling,
the central part of the collector unit, where the collector
itself is located, faced the emitter. The remaining part of
the collector unit had an inner insulating ceramic coat-
ing. As a collector layer, we used tubular single-crystal
tungsten with the 〈111〉 axis grown by oxygen-free
chloride CVD. For comparison, collectors were made
of polycrystalline tungsten and Cb-1 niobium alloy
(1 wt % Zn + 0.1 wt % C). A branch pipe for evacuating
the module and for cesium vapor delivery was welded
into the side of the collector unit, and a tubular vacuum-
tight Nb–Al2O3–Nb pressure seal was welded to the
open end of the module.

Upon assembling the module, the dead end of the
emitter unit with the calked-in W(5% Re)/W(20% Re)
thermocouple was inserted into the collector cavity,
which is also dead at one end. The rare part of the open
end of the emitter unit had an expansion whose diame-
ter was matched to that of the pressure seal welded to
the collector. Once the emitter unit had been com-
pletely mounted, the emitter and collector faced each
other, the expanded end was in intimate contact with
the cylindrical niobium gland of the seal, and the emit-
ter–collector spacing (0.25–0.30 mm in our case) was
specified by the positioning shoulders. The assembling
procedure was complete when the end face of the gland
was circumferentially soldered to the expansion of the
emitter rare part by electron-beam welding.

The assembly (module) was placed on a test bench
to measure its output characteristics. The module was
insulated from the bench by ceramic sleeves. The work-
ing section of the bench consists of three hollow coaxial
cylinders producing two isolated cylindrical spaces.
The inner space, providing gas cooling, was in direct
contact with the collector. The outer space was a water
jacket. By varying the pressure in the gas space, as well
as the water flow rate in the jacket, one could vary con-
ditions for heat transfer from the module in operation to
the coolant and thus control the collector temperature
over wide limits. Appropriate temperature conditions
during the tests were established with electrical heaters
(a nichrome wire in a quartz sheath) mounted on the
outer surface of the working section. The power of the
heaters was set and maintained with current- and volt-
age-controlling VRT-3 temperature regulators. The
temperature was measured with Chromel–Alumel ther-
mocouples mounted on the outer surface of the working
section and on the module. The characteristic working
parameters were T = 773–1073 K, pressure in the gas
space P = 0.7–700 Pa, and water flow rate in the jacket
G = 0.5 l/s.

The vacuum–cesium system (VCS) provided the
desired pressure in the interelectrode space before
cesium vapor delivery, the maintenance and control of
the cesium vapor pressure within given limits, and the
cesium condensation at a given site at the final test
stage. The VCS basic element is a two-chamber cesium
thermostat. One chamber is filled with cesium, while in
the other, cooling tap water circulates. The cesium
chamber is connected to the interelectrode space of the
module and to high- and low-pressure vacuum pumps.
The thermostat is communicated with the interelec-
trode space and pumps (in turn or simultaneously) via a
tee. The thermostat and the VCS communications
throughout their length are equipped with electrical
heaters controlled by the VRT-3 temperature regulators.

The residual pressure in the interelectrode space
was measured with a VIT-3 vacuum gauge. The test
conditions provided a static residual pressure in the
interelectrode space of no more than (1–3) × 10–4 Pa.
The cesium vapor pressure in the interelectrode space
was varied by varying the thermostat temperature and
was kept between 300 and 700 Pa. The temperature of
the thermostat and pipelines was measured with the
Chromel–Alumel thermocouples.

Once the whole system had been degassed and the
module had operated as a converter for about 100 h, we
took the current–voltage characteristics j = f(U) at dif-
ferent emitter (Te) and collector (Tc) temperatures.
Then, the heaters of the VCS were switched off. As the
thermostat temperature was reduced to T = 320–350 K,
water started circulating in the cooler of the thermostat,
providing the condensation of the cesium vapor in it.

RESULTS

Figure 1 shows examples of the current–voltage
curves and associated dependences of the maximal out-
put power density on the output voltage, P = f(U), for
the module with the single-crystal tungsten electrodes
at Te = 2100 K and Tc = 800–1300 K. From the current–
voltage characteristics, the dependences P = f(Te) and
P = f(Tc) (Figs. 2, 3) for the modules with different col-
lectors were constructed.

From Fig. 2, it follows that, first, the output of the
modules with the tungsten collectors is more than twice
as high as that for the module where the collector is
made of the niobium alloy (cf. curves a, b, and c). Sec-
ond, the efficiency of the tungsten collector, unlike the
TECHNICAL PHYSICS      Vol. 48      No. 2      2003
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emitter, is almost independent of whether single-crystal
or polycrystalline tungsten is used (cf. curves a and b).
Third, the output vs. emitter temperature dependence
has two clear-cut portions in all the cases. At tempera-
tures up to 1900–1950 K, the curves rise only slightly
or even tend to saturate. At higher temperatures, the
output grows sharply. In the case of the niobium collec-
tor, the rise rapidly changes to the tendency toward sat-
uration; for the tungsten collectors, the curves continue
to increase sharply. Unfortunately, we could not
increase the temperature above 2100 K with our bench;
however, the run of these curves implies that they do
not even approach saturation.

All the dependences P = f(Te) in Fig. 3 have a peak.
The peaks in the panel c (niobium collector) appear at
a collector temperature of 900 K. For the modules with
tungsten collectors (panels a, b), the peak corresponds
to collector temperatures of no lower than 1000 K.

DISCUSSION

As was mentioned in the Introduction, one of the
main goals of our study was to estimate the efficiency
of oxygen-containing single-crystal CVD tungsten as
an emitter material of cesium–oxygen TCs [3]. This
emitter material offers high adsorptivity and emissivity
and additionally can serve as a source of oxygen arriv-
ing from the bulk of the emitter directly at the emitting
surface as the emitter is heated [4]. Experimental
results reported in the previous section (Figs. 1–3) dem-
onstrate various aspects of the oxygen effect. Impres-
sive are the sharply increasing temperature depen-
dences of the power generated at emitter temperatures
higher than 1900–1950 K for the modules with the
tungsten collectors (Fig. 2). It was shown [4, 5] that at
temperatures above 1900 K, the oxygen flow from the
bulk to the surface is greatly enhanced, substantially
increasing the work function of this surface. With the
cesium vapor present over the emitter surface, cesium
is adsorbed on the surface more intensely. It was dem-
onstrated [4] that the temperature dependence of the
output of experimental TCs with emitters made of oxy-
gen-containing single-crystal tungsten is well approxi-
mated by a straight line when plotted in the Arrhenius
coordinates. The apparent energy of activation found
from the slope of this line turned out to be close to that
of gaseous impurity diffusion in tungsten.

Figure 4 shows the Arrhenius plot of the output con-
structed from the averaged data for the modules with
oxygen-containing tungsten emitters. Data points are
seen to lie well in a straight line (a correlation coeffi-
cient r = 0.984), which allows us to extrapolate it. The
output was found to be zero at T = 1458 K, i.e., pre-
cisely in the middle of the interval 1400–1500 K, where
noticeable electron emission from the tungsten surface
is usually observed. Since the emitter temperature was
limited by 2100 K in our tests, extrapolation toward
TECHNICAL PHYSICS      Vol. 48      No. 2      2003
higher temperatures was also of interest. As follows
from Fig. 4, the output extrapolated to Te = 2500 K
reaches 80 W/cm2.
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Fig. 1. Current–voltage characteristics of an experimental
arc cesium–oxygen TC with single-crystal tungsten elec-
trodes. The emitter temperature is 2100 K. The collector
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and (6) 1300 K.
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The results of this work was compared with those
found earlier for experimental cesium–oxygen and
high-temperature TCs (Fig. 5). The most complete data
were published 30 years ago. In [18], cylindrical mod-
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emitter temperatures are (1) 2100, (2) 2000, (3) 1900,
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values.
ules with an emitter made of tungsten produced by
chloride CVD and 〈110〉  textured were studied. Unlike
the tungsten used in our work, that in [18] is not single-
crystal and, moreover, is oxygen-free (the oxygen con-
tent in this material is at least no higher than 10–5 wt %).
The collector was covered by an oxygen-containing
molybdenum coating applied by vacuum evaporation.
The output averaged over five modules was found to be
9 W/cm2. One of the most carefully designed modules
(unfortunately with plane-parallel electrodes) was ana-
lyzed in [7]. The emitter material, tungsten with the
〈110〉 texture obtained by chloride CVD, had a work
function of 4.85 eV. The collector was made of nontex-
tured polycrystalline tungsten. The emitter was electro-
chemically polished and decarbonized by heating under
a low oxygen pressure at Te = 1900 K. Then, the cesium
vapor was delivered, the current–voltage characteristics
were taken, and the cesium was removed. The inner
surfaces of the module were oxidized at Te = 1073 K,
and the work function as a function of Tc was measured.
As Tc grew, so did the emitter current, which is a direct
indication that oxygen comes to the emitter surface
from the collector. The current–voltage characteristic
taken after the oxidation showed a much higher output
than before the oxidation: at the same current density
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10 A/cm2, the output voltage increased more than twice
from 0.2 to 0.46 V. The output vs. Te dependences
before and after the oxidation were also given (curves 3
and 4 in Fig. 5). Note that the long-term testing of the
cesium–oxygen module performed in [7] showed that
the output was stable within several percent during the
operation for 1400 h.

The results cited above and our data (curve 1) indi-
cate that, at temperatures between 1500 and 1900 K, the
output of all the cesium–oxygen TCs is roughly the
same and twice as high as that of the TCs where the
amount of oxygen is insufficient for the oxygen effect
to be significant (cf. curves in Fig. 2a–2c and curves 3
and 4 in Fig. 5). Unfortunately, we failed to find pub-
lished data for the high-temperature operation of
cesium–oxygen TCs. As for our results (curve 1 in
Fig. 5), they show that the output rises sharply at 1900–
1950 K. However, for high-temperature oxygen-free
modules [15, 19], the rise is not so dramatic (curves 5
and 6 in Fig. 5). It is seen that at T = 2500 K, the char-
acteristics of these modules are on average thrice as low
as in our case. This difference seems to increase still
further with temperature, as follows from the run of the
associated curves.

Thus, oxygen-containing single-crystal tungsten is a
promising emitter material for arc cesium–oxygen TCs,
its advantage being exploited most fully at high temper-
atures.

Some points on the choice of the emitter material
need to be made. The general considerations concern-
ing the steady-state condition of the operating TC sur-
face are not quite adequate. When discussing Fig. 2, we
noted that the difference between the curves P = f(Te)
for the niobium and tungsten collectors is that the
former not only runs below the latter but also tends to
saturate at temperatures higher than 2000 K. It should
be emphasized here that the emitter material in all the
TC experimental designs was the same: oxygen-con-
taining single-crystal tungsten. Therefore, the only rea-
son for this difference is the difference in the collector
material. It can thus be concluded that the use of tung-
sten collectors in cesium-oxygen TCs is particularly
promising in the sense that they do not absorb the oxy-
gen entering into the interelectrode space from the
emitter. In this sense, it really does not matter whether
single-crystal or polycrystalline tungsten is applied.
The same emitter, when combined with zirconium-
doped niobium collector, is half as efficient, since the
oxygen from the gas phase is absorbed by niobium and
then irreversibly combines with the zirconium present
in the alloy to form zirconium oxide [20]. Eventually,
the steady state, which is characterized by the satura-
tion of the dependences P = f(Te), is established (Fig. 2).

Thus, materials that do not absorb oxygen, such as
tungsten, are the materials of choice for cesium–oxy-
gen TCs.

Of great interest are the curves P = f(Tc) in Fig. 3. It
was noted in the previous section that the optimal tem-
TECHNICAL PHYSICS      Vol. 48      No. 2      2003
perature of tungsten collectors in cesium–oxygen TCs
can be substantially increased. For oxygen-free mod-
ules with niobium collectors, the optimal collector tem-
perature is near 900 K (curve in Fig. 3c). At 1100 K, the
output drops to 7 W/cm2. Temperature optimum in this
case reflects the establishment of the complex steady
state influenced by many factors. For oxygen-contain-
ing modules with tungsten electrodes, the optimum
shifts to 1000–1100 K (curves in Fig. 3a and 3b). With
the collector temperature increased by further 200 K,
the output remains at a level of 18–20 W/cm2. This still
more complex steady state is affected by additional fac-
tors due to the presence of oxygen in the interelectrode
gap. For detailed analysis of this effect, additional
experimental data (omitted in this paper) must be
invoked.

Since actual nuclear power plants with a TC [1] are
designed for operation in space, heat removal from the
collector is accomplished by radiation alone; that is, a
heat sink is a basic component of a TC. An increase in
the radiator temperature by 200–300 K would allow
engineers to considerably reduce the weight and overall
dimensions of a heat sink and the system as whole.

CONCLUSIONS

(1) Oxygen-containing single-crystal tungsten is a
promising material for emitters of cesium–oxygen TCs.

(2) The maximum efficiency of this emitter material
is reached at temperatures of higher than 1900 K.

(3) The maximum efficiency of cesium–oxygen TCs
can be reached by using collector materials that do not
absorb oxygen.

(4) When tungsten is used as a collector material
that does not absorb oxygen, the optimal collector tem-
perature can be raised to 1000–1100 K and, accord-
ingly, the weight and overall dimensions of related
power plants can be greatly reduced.
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Abstract—The spatial structure of the lower mode of ion-acoustic instability in the plasma of the continuous
discharge of a high-current argon ion laser is studied experimentally. The oscillations in the intensity of the
spontaneous ArII line radiation from the plasma are recorded in different directions in cross sections perpen-
dicular to the discharge axis. The power spectra of the integral projections of radiation are obtained and used to
reconstruct the two-dimensional spatial structure of the mode, which is identified by using the available theo-
retical models. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

At present, ion gas lasers are the most powerful
sources of continuous coherent radiation in the visible
and near ultraviolet spectral regions. As an active
medium of these lasers, low-pressure high-current dis-
charges generated in cylindrical tubes 5 ≤ d ≤ 30 mm in
diameter are used [1]. Earlier, it was experimentally
established that, under optimal (with respect to the gen-
eration power) conditions, in addition to high-fre-
quency ion-acoustic oscillations at frequencies of ω &
Ωi (where Ωi is the ion plasma frequency), low-fre-
quency ion-acoustic oscillations at frequencies of ω &
10–2Ωi [1–5] can spontaneously be excited in the
plasma of an ion laser. The threshold current for the
onset of instability depends on d, the gas pressure, and
the distribution of atoms along the discharge. The
increase in the current above the threshold value can
result in the destruction of the discharge tube wall,
which limits the output power and the laser service
life [1].

The low-frequency spectrum of ion-acoustic insta-
bility in an argon laser plasma consists of individual
peaks within the range 0.1 & ν & 2 MHz (where ν =
ω/2π). Near the threshold, there are no more than two
peaks. The number of peaks increases with increasing
discharge current. These low-frequency peaks are the
lower modes of long-wavelength ion-acoustic oscilla-
tions of the plasma bounded by the tube wall [6, 7]. The
experimentally determined dispersion relation of the
lower (with the lowest frequency) mode [8] is in good
agreement with the theory of ion-acoustic oscillations
in low-pressure cylindrical discharges [9, 10]. To our
knowledge, the spatial inhomogeneity of the oscillation
intensity of the two lowest modes was experimentally
1063-7842/03/4802- $24.00 © 20205
studied only in [7]. The qualitative radial dependence
of the oscillation intensity obtained in [7] was insuffi-
cient to provide an idea about the spatial structure of the
modes and the number of each mode. In the present
paper, the two-dimension spatial structure of the lowest
frequency mode is determined by the tomographic
method, and this mode is identified according to the
available theoretical models.

EXPERIMENTAL SETUP AND RESULTS

An argon plasma was produced in a steady-state
high-current discharge in a tube 1 m in length and
16 mm in diameter (Fig. 1). The tube consisted of
water-cooled aluminum sections with an oxide coating

W

C

1

A

2

3
4

5
6

7

8

9

Fig. 1. Block diagram of the experimental setup for study-
ing the spatial structure of plasma oscillations: (1) discharge
tube with cathode (C), anode (A), and windows (W);
(2) optical system with fiber (3); (4) photomultiplier;
(5) amplifier; (6) spectrum analyzer; (7) correlator; (8) ana-
log-to-digital converter; and (9) computer.
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and had a cool arc cathode with self-heated refractory
bushing [1]. Four tube sections had openings made in
the form of 4 × 16-mm slots located perpendicularly to
the discharge axis (z axis) in order to output radiation
from the discharge through quartz windows. Each sec-
tion had three windows permitting observations at
angles ξ of 0°, 55°, and 90° in the cross section perpen-
dicular to the z axis. The sections with windows were
located in the cathode region of the tube, where the
oscillations under study were most intense (the corre-
sponding intensity profile is given in [8]). At argon
pressures of 0.2–0.4 torr (the discharge pressure was
much lower, especially in the cathode region), the
threshold current was in the range 300–400 A. The
measurements were carried out under conditions close
to the instability threshold. The lowest oscillation mode
had a frequency of ν0 = 190 kHz.

To investigate the spatial structure of the oscilla-
tions, we used the method of plasma emission tomog-
raphy [11]. The intensity of the plasma emission was
determined mainly by blue-green lines of singly excited
argon ions with the density . At currents slightly
exceeding the threshold current, the density of ions in
the ground state is ni(t) = ni + δni(t), where ni is the
time-independent component and δni(t) is a small
(&3% of ni) oscillating component. Under the experi-
mental conditions, the density  is close to saturation

with respect to the electron density; i.e., (t) ~ ni(t),

ni*

ni*

ni*

y

x

z

L

p ξ f(ξ, p)

Fig. 2. Tomographic scheme for observing plasma emis-
sion.

1

2

3 4 5 6

Fig. 3. Optical scheme for recording plasma emission:
(1) discharge cross section, (2) cylindrical volume element,
(3) lens, (4) light filter, (5) apertures, and (6) receiving fiber
platform.
at least for frequencies of ν < βi, where βi is the ioniza-
tion rate [1].

The tomographic method consists in measuring the
plasma emission at different angles in the cross sections
perpendicular to the z axis. A scheme of the measure-
ments is shown in Fig. 2, where x and y are the coordi-
nates of points in the cross section under study. At each
instant, the intensity of the plasma radiation emitted in
the observation direction L is proportional to the integral
of the density of the excited ions along the line of sight

where dl is the length increment along L.
In the experiment, the integral emission was

recorded as one-dimensional projections f(ξ, p) in the
system of parallel rays specified by the angle ξ and the
distance p from the z axis. Assuming that the plasma is
optically thin, the projections are described by the clas-
sical Radon integral transform R [11]

(1)

From the projections experimentally measured at an
arbitrary instant for the set of angles ξ ∈  [0, π] and the
set of coordinates p ∈  [–d/2, d/2], one can obtain an
estimate for the solution to integral equation (1) in the
form

(2)

where R–1 is the approximation of the inverse Radon
transform.

We apply the Fourier transform in time to both sides
of formula (2):

(3)

Here and below, a tilde stands for the Fourier transform
in time. The possibility of obtaining Fourier transform
(3) of inverse-problem solution (2) was justified by
numerical simulations. The frequency dependence of
the function (x, y, ν) at each point of the region under
study represents the spectrum of the plasma ion oscilla-
tions. At a fixed mode frequency, this function repre-
sents its spatial distribution.

The projections and their Fourier spectra were mea-
sured in the experimental setup shown in Fig. 1. The
plasma radiation emitted through a window was con-
verted into an electrical signal with the help of an opti-
cal system consisting of a focusing lens, a blue-green
light filter, two apertures, an optical fiber (Fig. 3), and a
photomultiplier. Two identical systems were used in the
measurements. Each system measured the plasma
emission from a narrow cylindrical volume perpendic-
ular to the discharge axis. The aperture diameters and
the distances between the elements of the optical sys-
tem were chosen according to the calculations of [12].
The spatial resolution of the optical system was
0.25 mm. Each system was situated on an individual

ni
* x y t, ,( ) l,d

L

∫

f ξ p t, ,( ) R ni* x y t, ,( ){ } .=

ni x y t, ,( ) R 1– f ξ p t, ,( ){ } ,∼

ñ x y ν, ,( ) R 1– f̃ ξ p ν, ,( ){ } .∼

ñi
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A, arb. units

ξ = 0
ξ = 90°

Fig. 4. (a) Time-independent and (b) oscillating components of integral plasma emission as functions of p.
bench, which could be smoothly displaced along the p
coordinate perpendicular to the z axis with the help of
an electric motor. One of these systems allowed consec-
utive measurements from two windows of the same
section.

Since the available multichannel analog-to-digital
converter (ADC) had a relatively low operation speed
(≥30 µs), we used an SK4-59 analog spectrum ana-
lyzer; the voltage from the photomultiplier was fed at
the input of the analyzer through an amplifier. The ana-
lyzer measured the amplitude of the harmonic compo-
nent of the input signal at the frequency ν0. The ana-
lyzer passband at this frequency was 10 kHz. The volt-
age reading from the analyzer output was proportional
to the measured amplitude and represented the power

spectrum of the signal U ~ | (ξ, p, ν0)|. To determine
the correlation characteristics of the oscillations (see
[8]), the amplified signals from the photomultipliers
were input to a Kh6-4 correlator. To record the correla-
tion functions and the function U(p), we used the ADC
and a PC. The time-integrated signals from the amplifi-
ers were fed to the inputs of the ADC. Each signal
reflected the dependence of the constant component of
the integral plasma emission on p in one of the observa-
tion directions (Fig. 4a). Using these curves, we could
check the adjustment of the optical systems. Figure 4b
shows typical power spectra for the projections at the
frequency ν0, measured simultaneously at two angles.
The projections have a minimum at the center of the
discharge between two equal maxima. Depending on
the observation angle, the distance between the maxima
could change (even up to the coincidence of the peaks).
The measurements showed that, the displacement of
the optical system along the z axis (within the 4-mm slit
width) did not affect the shape of the projection. This
means that the spatial distribution of the oscillations
under study is almost uniform along the discharge axis;

f̃
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i.e., |k| @ kz where k is the wave vector of the oscilla-
tions and kz is its longitudinal component.

The problem of reconstructing the spatial structure
of the oscillation mode under study was to find its two-
dimensional distribution by using the sets of the exper-
imental projections by the method of computational
tomography according to formula (3). In order to use
formula (3), the imaginary and the real parts of the

spectrum (ξ, p, ν0) must be separately measured
experimentally (or calculated in one way or another).
However the analyzer measured only the power spec-
trum of the projections. In the general case, the distri-
bution reconstructed from the envelope of the projec-
tion spectrum may differ from the spatial structure of
the function for which the projections were calculated.
However, for a number of objects (including, as numer-
ical simulations have shown, our case too) describing
stationary harmonic oscillations, this method allows
one to determine their characteristic spatial structure
without substantially distorting it.

The tomograms were reconstructed using the
method of maximum entropy [13], which is efficient for
problems involving parallel measurements of the pro-
jections with a very small number of observation
angles. In the calculations, we used the MENT algo-
rithm included in the TOPAS–MICRO program pack-
age for the computational tomography of a plasma and
gas [11]. The reconstructed tomograms (Fig. 5a) had
two principal maxima that were symmetrical about the
discharge center. The cross correlation functions of the
oscillations measured from the different discharge
regions showed the existence of a phase shift of π rad
between the principal maxima. The artifacts in the
tomograms (such as polygonal deformations) appeared
as a result of a small number of observation angles.
A comparison of the tomograms for the neighboring
sections showed that the characteristic structures of the
image turned by a small angle about the z axis. There-

f̃



208 DONIN et al.
64
2

0
–2

–4
–6

–6 –4 –2 0 2 4 6y

x

64
2

0
–2

–4
–6

–6 –4 –2 0 2 4 6y

x

(a) (b)

Fig. 5. (a) Reconstructed tomogram and (b) the structure (envelope) of the (1, 1) mode [7].
fore, the three-dimensional structure of the mode under
study could qualitatively be represented as a double spi-
ral with a turn period (according to our estimates) of
50–100 cm. The reasons why the mode structure turns
slightly as z changes were not examined.

DISCUSSION OF THE RESULTS 
AND CONCLUSIONS

As was stated above, the spatial inhomogeneity of
the intensity distribution of ion-acoustic oscillations in
the high-current discharge of an ion laser was revealed
experimentally in [7] from the qualitative difference of
the radial distributions of the two lowest oscillation
modes. In contrast to the experimental scheme used in
that paper, our scheme allowed us to investigate the
spatial structure of the oscillations by the tomographic
method with a much better spatial resolution. The two-
dimensional structure of the lowest mode was deter-
mined from the measurements of the power spectra of
the integral projections and their processing by the
method of computational tomography. The correlation
measurements revealed the spatial phase inhomogene-
ity of this mode.

Hydrodynamic considerations of the mode structure
of ion-acoustic oscillations in a discharge are given in
[7, 9, 10]. However, in contrast to [9, 10], the model of
[7] explains the existence of the lowest boundary fre-
quency and demonstrates a good agreement between
the calculated and measured frequency of the lowest
mode. According to [7], the oscillation modes in the
polar coordinates (r, ϕ) have a structure of the form

where jmn is the nth zero of the mth order Bessel func-
tion Jm.

Hence, each mode is characterized by a pair of inte-
gers (m, n). The shape of the reconstructed two-dimen-

δni r ϕ,( ) Jm jmn
2r
d
----- 

  mϕ( ),cos∼
sional distribution of the lowest mode with two charac-
teristic maxima (Fig. 5a) and the existence of a phase
shift of π rad between them agree well only with the
theoretical structure of the m = 1, n = 1 mode (shown in
Fig. 5b). This allows us to identify the lowest mode as
the (1, 1) mode, which does not contradict the results of
[8–10]. Therefore, using the emission tomography
method adapted to studying the spatial characteristics of
plasma oscillations, the two-dimensional spatial struc-
ture of the lowest mode of the ion-acoustic plasma insta-
bility of a high-current argon laser was determined for
the first time and the mode under study was identified.
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Abstract—The frequency dependence of the magnetic response of YBa2Cu3O7 – x high-temperature supercon-
ducting ceramics is studied. The experimental results are obtained for different values of the constant ((0–99) ×
10–4 T) and variable ((0.18–7.24) × 10–4 T) components of the external magnetic field in the frequency range
from 60 Hz to 1 MHz. A simple qualitative model of the distributed Josephson medium is offered to account
for the results obtained. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is known that if an electromagnetic wave is inci-
dent onto a conductor surface, the field penetrates to a
skin-layer depth. The skin effect is inherent not only to
metals but to superconductors as well. For example,
papers [1, 2] consider normal and anomalous skin
effects in superconductors in the framework of a two-
fluid model.

The pattern of magnetic field penetration in a gran-
ulated superconductor is quite complicated (see, for
example, [3]) and, apparently, not fully understood
[4, 5].

Penetration of the alternative magnetic field in a
cylindrical granulated superconductor was studied in
[4] using a Hall effect device. This paper reported that
the magnetic flux gradient in samples were independent
of frequency over all the range of frequencies used
from 5 to 500 Hz.

Paper [5] investigated the frequency dependence of
the real component of surface impedance in the super-
conductor samples using special precision measuring
equipment. The sample composition was similar to that
used in [4]. There, the real component of surface
impedance is also independent of frequency in the
range from 10 Hz to 1 kHz for a variable component
amplitude from 10–5 to 10–3 T.

EXPERIMENTAL TECHNIQUE

Samples of YBa2Cu3O7 – x high-temperature super-
conducting (HTSC) ceramics manufactured by the
method of solid phase synthesis were studied. The sam-
ples were of cylindrical shape with a diameter of 9 mm
and a height of 15 mm. The experimental setup is
sketched in Fig. 1.
1063-7842/03/4802- $24.00 © 20209
The setup consists of a G (G3-117) sinusoidal volt-
age generator, a current source C (a U7-5 output ampli-
fier loaded with a constant resistance R connected in
series to a sensor) governed by a generator, a signal sen-
sor D, and a selective nanovoltmeter V (type 233). The
sensor consists of current and signal coils wound
around a cylindrical sample of HTSC ceramics one
over another. Coils 15 mm in length are wound with a
PELShO-0.05 copper wire and consisted of 95 turns
each. The current coil is wound over a signal one.
Resistance R is connected in series to the current coil
(R @ 2πfLk in the range of frequency f from zero to f =
2 × 106 Hz, where Lk is the current coil inductance).

The external magnetic field is directed along the
sample axis. The constant component of the magnetic
field H0 is determined by an external coil (not shown in
Fig. 1) in which the sensor is inserted and the variable
component h0cos(ωt + ψ) is produced by the signal
coil.

0 2 4 6 8 10 12 14

λmeas

λtheor

λ, mm

1

3 G C V

D

f,  kHz

2

Fig. 1. Schematic view of the experimental setup and refer-
ence graphics. λtheor and λmeas are the calculated and mea-
sured depth of field penetration into a copper sample.
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This setup was used to investigate the frequency
dependence of the first harmonic of the HTSC sample’s
response to the external magnetic field H = H0 +
h0cos(ωt) in the frequency range from 60 Hz to 1 MHz
for different values of the constant (H0 = (0–99) × 10–4 T)
and variable (h0 = (0.18–7.24) × 10–4 T) components.

The setup allows one to estimate the penetration
depth of the magnetic field into a sample using the

7.24
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0.74
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Fig. 2. Frequency dependence of magnetic flux amplitude Φ
penetrating into the sample for different values of h0 at
H0 = 0. Figures by curves are values of h0, 10–4 T.

î, 10–8 Wb

3

2

1

0 5 10 15 20
h0, 10–4 T

Fig. 3. Dependence of Φ on the variable magnetic field
amplitude at H0 = 0 and f = 2 kHz.
formula

where U1 represents the selective voltmeter readings in
the presence of a sample; U0, those in the absence of a
sample; and r, the sample radius.

Calibration tests were carried out for a sample of
annealed copper. The frequency dependence of the field
penetration depth λ into a copper sample is shown in
Fig. 1: λtheor is calculated with reference data [6] and
[7], and λmeas is measured using the setup and then cal-
culated by the formula given above.

Estimation of a random measuring error leads to the
conclusion that the penetration depth of the magnetic
field is measured by the above-described method within
an accuracy of 0.03 mm, which corresponds to a rela-
tive error of about 3%. In this case, the relative measur-
ing error of the magnetic flux is equal to

From this it follows that this value need not be higher
than that of the penetration depth of the magnetic field
into the sample.

In summary, the above technique for measuring the
magnetic flux penetrating into the sample provides a
relative measuring error of 3%.

EXPERIMENTAL RESULTS

The amplitude of the magnetic field Φ penetrating
into the sample can be derived from the selective volt-
meter readings  as Φ = /2πf N.

Figure 2 shows the frequency dependence of Φ in
different frequency ranges at H0 = 0 for various h0. In
the frequency range from 120 kHz to 1 MHz, the fol-
lowing devices were used: a G4-164 generator, a U7-5
power amplifier, and a V6-10 selective microvoltmeter.

Figure 3 shows the dependence of Φ as a function of
the variable magnetic field amplitude h0 for H0 = 0 and
f = 2 kHz.

Figure 4 shows the frequency dependence of Φ at
the fixed amplitude of the variable field h0 = 1.83 ×
10−4 T in the constant magnetic field H0 ≈ 0.2 × 10–4 and
33 × 10–4 T.

DISCUSSION

In [4], the fact that the magnetic flux gradient in the
samples is independent of frequency in the range from
5 to 500 Hz is explained by the absence of viscous
forces. According to estimates in [8], the effects of the
viscous flow of the vortex structure in HTSC ceramics

U1/U0 πr2 π r λmeas–( )2–[ ] /πr2=

=  2rλmeas λmeas
2–[ ] /r2,

∆Φ
Φ

-------- 2πB r λ–( )∆λ
πB 2rλ λ 2–( )
-----------------------------------

2r 2λ–
2r λ–

------------------∆λ
λ

-------.= =

U1* U1*
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become important for frequencies of ωη ≥ 108 rad/s.
The experiments in [4] used frequencies that were
many orders of magnitude lower; hence, the viscous
forces are reasonably neglected in [4].

In [5], the results obtained are accounted for in the
framework of a pinning model and a viscous flow of
hypervortices, but, unfortunately, these results have not
been confirmed by any estimate.

In this paper, to account for the results obtained and
to estimate the magnetic parameters of high-tempera-
ture superconductors, an effort is made to draw an anal-
ogy between a granulated superconductor and the well-
known [9] distributed Josephson junction. Such a
model has no pretensions to completeness or mathe-
matical rigorousness, but allows us to qualitatively
explain the magnetic processes in HTSC ceramics.

Consider the magnetic field penetration into a cylin-
drical superconductor of HTSC ceramics. We will con-
sider the ceramics as a set of weakly bound supercon-
ducting granules. Granule material is generally recog-
nized to have properties of the type II superconductor
with magnetic field penetrating in the form of Abriko-
sov vortices. A mean granule size L* is of the same
order of magnitude as typical crystallite dimensions of
about 10 µm [4]. Hence, the condition L* @ λL is met,
where λL is the London penetration depth for the gran-
ules; its value is about 10–5 cm [4] at T = 77 K. Let us
assume that a number of voids and regions with small
crystallites L* < λL between large granules can be
neglected and extensive (not point) weak bonds
(Josephson contacts) prevail. Such a structure is sche-
matically shown in Fig. 5. The first critical field of a

granule  is about (50–100) × 10–4 T at 77 K [10].

Thus, the magnetic field lower than  penetrates
from the surface of a cylinder to its center along the
Josephson junctions. Some of these junctions are
shown in Fig. 5 by bold solid lines. In this case, one can
obviously assume that the experimentally observed
effects are related to the magnetic field penetration into
the Josephson junction. Let us consider the distributed
Josephson junction –L/2 ≤ z ≤ L/2 placed in the external
magnetic field (Fig. 6). The uniform magnetic field is
assumed to be directed along axis Y. As has already
been mentioned, the thickness of superconducting elec-
trodes is much greater than the London penetration
depth.

Electrodynamics of the extensive Josephson junc-
tion can be described by the partial differential equation
of a sin-Gordon type [9, 11]. Disregarding dissipation
in our one-dimensional case, this equation has the form

(1)

where ϕ is the phase difference of the order parameter
at the Josephson junction; vϕ, the wave phase velocity

Hc1
g

Hc1
g

∂2

∂z2
-------

1

v φ
2

------ ∂2

∂t2
-------–

 
 
 

ϕ 1

λ j
2

----- ϕ ,sin=
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(Swihart velocity); and λj, the Josephson penetration
depth.

The experimentally observed values are related to
the phase differences ϕ(z, t) by the relations [9]

(2)

Here, H(z) is the magnetic intensity in the Josephson
junction at a point z in the direction of the Y axis; d =
2λL + s; s is the dielectric thickness (oxide layer); λL is
the London penetration depth; and J(z) is the supercon-
ducting current density in the direction of the X axis.

Let the external magnetic field Hex change by the
law Hex = h0cosωt (here, the Hex and j directions, shown
in Fig. 6, can be reversed). Let us determine a stationary

H z( )
Φ0

2πd
----------dϕ z( )

dz
--------------, J z( ) Jc ϕ( ).sin= =

î, 10–9 Wb

f, Hz
102
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2

103 104
0
60

1

2

3

Fig. 4. Frequency dependence of Φ for different values of
the constant magnetic field H0 [(1) 33 × 10–4 and (2) ≈0.2 ×
10–4 T].

Hex

Hex
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Hex

Fig. 5. HTSC ceramics structure in the external magnetic
field (draft). Solid lines are extensive weak bonds between
granules.
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distribution of the magnetic field amplitude H(z) in the
junction.

For weak magnetic fields, i.e., for h0 ! Φ0/(2πλjd)
[1], the currents flowing through the junction are small
(J(z) ! Jc) and the phase difference ϕ is small. Hence,
Eq. (1) can be expressed as

(3)

We will express the stationary oscillation regime in
the junction in the form

(4)

∂2

∂z2
-------

1

v φ
2

------ ∂2

∂t2
-------–

 
 
 

ϕ ϕ
λ j

2
-----.=

ϕ z t,( ) ϕ z( ) ωt ψ+( ).cos=
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Fig. 6. The distributed Josephson junction in the external
magnetic field Hex.
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Fig. 7. Frequency dependence of the amplitude of the mag-
netic flux captured by the distributed Josephson junction,
where A = Φ(ω = 0) = 2dλjHex L/2λj)/ L/2λj).(sinh (cosh

Z

Substituting Eq. (4) into Eq. (3) and differentiating,
we find

(5)

Let us look for solutions of Eq. (5) with boundary
conditions

(6)

In the case ω2/  < 1/  in view of Eqs. (2) and (6),
the distribution of the magnetic field amplitude in the
junction is equal to

(7)

where ξ2 = 1/  – ω2/ .

Hence, the amplitude of the total magnetic flux in
the junction is

(8)

In the case ω2/  > 1/ , the distribution of the
magnetic field amplitude equals

(9)

where  = ω2/  – 1/  and the magnetic flux ampli-
tude is equal to

(10)

The dependence Φ(ω) is shown in Fig. 7. Let us esti-
mate the threshold value of ω providing Eq. (5) with a
solution in the form of standing waves. Equating
(kv)2 = 0 and substituting in this relationship the values
vφ = 0.05c and λj ~ 100 µm [9], where c is the velocity
of light in free space, we find f ≈ 2.4 × 1010 Hz such that
it coincides with the values of the typical plasma fre-
quency given in [9].

As is easily seen from Fig. 2, the dependence of the
amplitude of magnetic flux captured by the sample as a
function of the exciting field frequency is absent for a
field amplitude lower than 2 × 10–4 T. This allows us to
assert that the value Hc1 of HTSC ceramics cannot be
higher than 2 × 10–4 T.
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Use of a constitutive equation of the granulated
superconductor offers a more correct description of its
electrodynamics. Such an equation was offered in [12]:

(11)

where j is the current density in a superconductor; A is
the vector potential of the magnetic field H = curlA;
and the positive constants k, A0, a, and b are determined
by the parameters of the granulated superconducting
medium.

In weak magnetic fields |A| ! A0, Eq. (11) is given
by

Taking into account the Maxwell equation curlH =
curlcurlA = (4π/c)j, we reduce the given problem of
magnetic field penetration into a granulated supercon-
ducting medium to the differential equation

Disregarding the dissipative term a* , this equa-
tion is equivalent to Eq. (3) describing magnetic field
penetration into the distributed Josephson junction.

The magnetic field penetrates into the granulated
superconducting medium into both granules compris-
ing the medium and intergranule spaces [3], which are
the distributed Josephson junctions. The field pene-
trates into intergranule spaces according to the law H1 =
Hexexp(–x/λj) [1] in the case of a weak external field
Hex ! Hc1. Here, Hc1 is the value of an external field Hex,
during the existence of which a vortex at the junction is
justified energetically. The magnetic field distribution
in granules is described by the expression H2 =
Hexexp(–x/λL) for a weak external magnetic field Hex !

. The magnetic field induction in a granulated
medium (i.e., the field H averaged over volume involv-
ing a large number of granules) is determined as

where α and β are the contributions in the total volume
from intergranule spaces and granules, respectively.

Since α < β, the magnetic field induction should
have the distribution shown in Fig. 8. As is seen, the
magnetic field jumps at the boundary of a granulated
superconducting medium. This magnetic field jump
was experimentally observed, for example, in [4]. It is
of interest that in [4] the magnetic field was measured
by a Hall effect device with working-area sizes of 50 ×
50 µm and a thickness of 180 µm, which is much larger
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than the granule size (~10 µm [4]). These experimental
results can be considered as an additional indirect cor-
roboration of the model we offer.

CONCLUSION
The considered analogy between a Josephson

medium and distributed Josephson junction allows us
to explain a number of properties of granulated super-
conductors, the most important of which is the fre-
quency independence of magnetic response of the
HTSC sample found earlier. The obtained estimate of
an upper boundary frequency of electromagnetic field
penetration into an HTSC (about 10 GHz) should be
taken into account in designing, for example, a com-
pensation HTSC magnetometer [13], in which an
increase in the operating frequency should increase its
sensitivity.
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Abstract—The structure evolution in WC–80G4 steel composite heavily loaded by compression is studied.
The fractal properties of the deformation relief appearing on the surface are determined. The fractal dimension
of the deformed surface profile is shown to depend on the mean spacing between bands of localized deformation
and on the parameters of the material fine crystal structure. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Deformation usually causes a surface relief to
appear in both ductile and brittle metals and alloys such
as hard alloys. However, relationships between the
relief and structural properties of brittle materials are
little understood. A promising approach to studying the
relief on the surface of the deformed material is to ana-
lyze the profile of the signal of secondary electrons
escaping the surface under investigation in a scanning
electron microscope [1–4], since the number of second-
ary electrons is uniquely related to the surface relief.
Moreover, the deformation relief on the material sur-
face is the result of structural changes occurring at var-
ious scale levels. In particular, when studying WC–
80G4 steel composite, we showed [4] that the fractal
dimension (Df) measured at various scale levels lin-
early depends on the microstructure parameters of a
binder, namely, coherently diffracting domains (CDDs)
and microstrained lattice regions. However, the relation
between the parameters of the fine crystal structure of
phases making up the composite and the fractal charac-
teristics of its surface has not been studied.

The purpose of this work is to determine the fractal
dimension of the surface and trace its evolution upon
loading, as well as to establish a relation between the
fractal dimension and micro- and macroparameters of
the structure of the composite.

EXPERIMENTAL

We studied WC–80G4 steel composite material
with an 80% strengthening phase. The production of
the hard alloy was described elsewhere [5]. The mean
size of a carbide grain in the composite was 2.4 ±
0.2 µm, the mean size of intercarbide layers was 1.2 ±
0.2 µm, and the general porosity was smaller than
1063-7842/03/4802- $24.00 © 20215
0.5%. Test specimens measured 0.004 × 0.005 × 0.007 m
and had a polished side face. An INSTRON-1185
machine was used to load specimens in 100-MPa steps
up to fracture. After each loading step, the sample was
unloaded and its structure and surface relief were stud-
ied at various scale levels. Metallographic examination
was performed with a NEOPHOT-21 optical micro-
scope using direct and oblique illumination. The mean
spacing between bands of localized deformation was
determined by the linear intercept method [6]. X-ray
diffraction analysis was carried out with a DRON-UM1
X-ray diffractometer using filtered CuKα radiation. The
size of CDDs was calculated using the (111) reflection
from the γ phase and (100) reflection from WC; the lat-
tice microstrains, with the (222) reflection from the γ
phase and (300) from WC. We chose these reflections,
assuming that the major contribution to the broadening
of lower index diffraction lines is from CDDs and of
higher index lines, from lattice microstrains [7]. The
surface relief was analyzed by the determination of the
fractal dimension (Df) using a RÉM-200 scanning elec-
tron microscope at an accelerating voltage of 30 kV by
the technique described in [2].

RESULTS AND DISCUSSION

The metallographic examination of the evolution of
the WC–80G4 steel composite surface upon compres-
sion loading showed no visible changes at stresses of 0–
600 MPa. At stresses from 700 to 1700 MPa, two pro-
cesses proceed simultaneously: the deformation of
large binder regions, showing up as the relief between
carbide grains, and the appearance of slip bands in a
number of coarse carbide grains. At this loading stage,
carbide grains and the binding phase are deformed
simultaneously without breaking the continuity of the
material. At stresses of 1700–2200 MPa, the number of
003 MAIK “Nauka/Interperiodica”
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100 µm(a) (b) 10 µm

Fig. 1. Micrographs of (a) bands of localized deformation on the surface of the hard alloy and (b) macrocracks originating at the
sites of band intersection.
plastically deformed grains on the composite surface
increases and finer grains are involved in the plastic
flow. The binder in narrow intercarbide spacings under-
goes severe deformation. Along with the deformation
of the structure constituents, individual cracks of size
comparable to the carbide grain size appear. These are
placed predominantly along the carbide–binder inter-
face and randomly distributed over the composite sur-
face. An increase in the stress to 3000 MPa leads to an
increase in the density of cracks and the amount of car-
bide grains deformed.

At 3000–3900 MPa, bands of local plastic deforma-
tion appear on the composite surface (Fig. 1a). These
bands are regions with a large number of deformed car-
bide grains (with slip traces) and the severely deformed
binding phase. Moreover, cracks running along the car-
bide–carbide and carbide–binder interfaces are found
to coalesce in bands of localized deformation. Under
severe deformation, individual carbide grains, as a rule
coarse ones, break up into fragments. The bands are ori-
ented in two directions and extend in the direction of
maximum shear stresses at an angle of about 45° to the
loading axis, irrespective of the structure of the mate-
rial. Their length varies in a wide range from 20 µm to
4 mm, and their width is 5–10 µm, i.e., two to four times
as large as the carbide grain size.

First, the bands of local deformation spaced at 300–
700 µm appear. Their length is comparable to the spec-
imen dimensions, and their width increases with plastic
strain. Shorter bands of localized deformation form
between these large bands. Their intersection leads to
the fragmentation of the entire specimen surface.
Before the composite fails, the stresses accumulate
basically in several adjacent bands whose length is
comparable to the specimen dimensions. As they inter-
sect, macrocracks 40–150 µm in size that are oriented
along the bands of localized deformation form
(Fig. 1b). These macrocracks are the precursors of hard
alloy fracture.

Figure 2 (curve 1) shows the variation of the mean
interband spacing with residual strain. The metallo-
graphic examination of the surface demonstrates that
the intense formation of bands of localized deforma-
tion, which shrinks the interband spacing, takes place
up to a residual strain of 3.5%. At final stages of load-
ing, the deformation of the structure constituents, pre-
fracture processes in the form of crack initiation and
coalescence along the interfaces, and carbide fragmen-
tation occur in several adjacent bands that have the
most pronounced surface relief. This means that new
bands do not arise and that a catastrophic crack, which
causes composite fracture, extends via the coalescence
of several macrocracks in adjacent bands of localized
deformation.

The stress–strain curve for the alloy obtained by
measuring the residual strain after unloading the speci-
men is typical. The strain increases linearly up to σ =
2500 MPa. From 2500 MPa to fracture, the strain is a
parabolic function of the stress. Plotted in the logarith-
mic coordinates, the σ–ε curve exhibits three linear seg-
ments. They correspond to three stages of the strain
hardening of the composite material, which reflect rad-
ical modifications of the composite structure and, pos-
sibly, changes in deformation mechanisms. In the first
segment with a strain-hardening exponent n = 0.54, the
matrix and the carbide phase are deformed simulta-
neously without visible signs of fracture. The second
segment (n = 0.31) (macroyield) corresponds to the
TECHNICAL PHYSICS      Vol. 48      No. 2      2003
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intermediate region. In the third segment (n = 0.15),
processes leading to the fracture of the alloy (the forma-
tion and development of bands of localized deforma-
tion and micro- and macrocracks) accompany the
deformation of the structure constituents.

Using the X-ray diffraction data, we measured the
sizes of CDDs and microstrains 〈ε2〉1/2 in the matrix and
carbide lattice. The initial γ phase has a fine-grained
structure with a block size of ≈60 ± 5 nm. The CDD
size remained unchanged up to stresses of 600 MPa. As
the applied stress grows (σ = 700–1700 MPa), the CDD
size in the austenite rises from 60 to 67 nm. This
increase in the block size in the austenitic matrix at the
early stage of loading may be due to a decrease in the
density of dislocations because of their annihilation and
arrival at grain boundaries [8]. At stresses above
2000 MPa, the CDD size decreases to 30 nm and 〈ε2〉1/2

increases.

The size of CDDs in the tungsten carbide is initially
400 ± 50 nm. Up to stresses of ≈2500 MPa, the CDD
size and 〈ε2〉1/2 in the tungsten carbide remain
unchanged. At higher stresses, the size of CDDs
decreases to 100 nm.

It was found that, although the lattice microstrains
are different in the austenitic matrix and tungsten car-
bide, the generating microstresses are equal at all stages
of loading the composite material (Fig. 3). This indi-
cates the absence of a stress jump at the carbide–binder
interface and means that the binder and strengthener are
plastically deformed as a whole and interfacial cracks
are due to the limited plastic deformation of the tung-
sten carbide.
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Fig. 2. Mean spacing between the bands of localized defor-
mation as a function of the (1) residual strain and (2) fractal
dimension.
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Figure 4 illustrates the fractal dimension of the
deformed surface profile during the steplike loading of
the specimen as a function of the residual strain and
applied stress. As the strain increases, Df varies lin-
early. At the same time, the fractal dimension varies
nonmonotonically with stress: increasing and decreas-
ing segments alternate.

The three stress ranges in the σ–ε curve, which
reflect radical changes in the composite structure dur-
ing deformation were compared with the fractal dimen-
sions. These ranges are separated by vertical lines in
Fig. 4. In the first range, the fractal dimension first
increases and then returns to its initial value. The slight
difference in Df here may be associated with the
appearance of deformed regions in the binder and slip
bands in coarse carbide grains, as well as with an
increase in the CDD size in the austenitic matrix. The
increase in the fractal dimension in the second range
can be caused by several factors. At this stage, carbide
grains and the binding phase undergo severe deforma-
tion and finer carbide grains are involved in the process
of plastic flow. The number of cracks at the carbide–
binder interface increases. The examination of the com-
posite fine structure showed that the block size in the
matrix and carbide phase decrease slightly at this stage.
In the third range, the fractal dimension first remains
unchanged and then, above 3500 MPa, abruptly
increases. Structure modifications that occur at final
deformation stages imply that plastic deformation com-
petes with composite fracture. On the one hand, many
micro- and macrocracks appear, carbide grains become
fragmented, and strains localize in several adjacent
bands. On the other hand, the sizes of CDDs sharply
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Fig. 3. Microstresses in the binding phase and tungsten car-
bide vs. the applied stress.
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decrease and the lattice microstrains in the matrix and
carbide phase sharply increase, indicating severe plas-
tic deformation in the structural constituents of the
alloy.

Figure 2 (curve 2) shows the variation of the fractal
dimension with the mean spacing between the bands of
localized deformation. A decrease in the mean spacing
is seen to significantly increase the fractal dimension.
The value of Df is small where the interband spacing is
maximum; that is, the stronger the surface fragmenta-
tion, the higher the fractal dimension.

Figure 5 illustrates the dependence of the fractal
dimension on the parameters of the fine structures of
the binder and carbide phase. The fractal dimension
grows with decreasing CDD size in the austenitic
matrix and carbide phase. At the same time, an increase
in the lattice microstrains in both phases also raises Df;
in other words, changes in the fractal dimension reflect
those in the microstructure parameters.

CONCLUSIONS

(1) A change in the fractal dimension is caused by
structural features appearing on the deformed surface,
such as slip bands in carbide grains, the relief on the
binder, micro- and macrocracks, and bands of localized
deformation.

(2) The fractal dimension increases linearly with the
residual strain, whereas its stress dependence is non-
monotonic. Three ranges of Df variation, which charac-
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Fig. 4. Variation of the fractal dimension of the surface of
the WC–80G4 steel hard alloy with stress and residual
strain.
terize the sequential stages of composite deformation,
are revealed.

(3) The deformation relief on the alloy surface is
associated with microstructural changes in the material.
The fractal dimension grows as the size of coherently
diffracting domains in the austenitic matrix and tung-
sten carbide decreases and lattice microstrains in them
increase.
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Abstract—The effect of hydrogen on the photovoltage and I–V characteristics of palladium/anodic oxide/gal-
lium arsenide Schottky diodes is studied. The oxide thickness that is optimal in terms of the hydrogen sensitivity
of the diodes and the depth of atomic hydrogen penetration into the oxide are determined. The mechanism
behind the hydrogen effect consists in the chemical adsorption of atomic hydrogen on the gallium arsenide sur-
face, which decreases the barrier height and increases the recombination component of the current. It is shown
that a thin tunnel-transparent anodic oxide film is nonuniform in thickness and that hydrogen exposure raises
the probability of tunneling through the oxide. It is found that the method of hydrogen detection from the pho-
tovoltage response offers a higher sensitivity and detectivity but has a lower speed than the reverse current
method. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Schottky diodes (SDs) with a thin tunnel-transpar-
ent insulating layer between a catalytic rectifying con-
tact (Pd) and semiconductor are promising for high-
speed low-power hydrogen sensors [1]. The effect of
hydrogen on the properties of Si diodes with a specially
grown or native tunnel-transparent oxide layer is rather
well understood [2–6]. GaAs diodes have been less
investigated [7–9]. Most of the studies concerned
diodes with a native or thermally grown oxide layer of
fixed thickness. In this paper, we investigate the effect
of hydrogen on the photovoltage and I–V characteris-
tics of GaAs diodes with an anodic oxide (AO) layer of
various thickness.

EXPERIMENTAL

The diodes were made of n-GaAs epitaxial layers
with an electron density n0 ≈ 3 × 1016 cm–3 grown by
atmospheric-pressure metal-organic vapor-phase epit-
axy (MOVPE) on GaAs(100) substrates misoriented by
3°. The electron density in the substrate was n0 ≈
1016 cm–3. AO films were grown by anodization in an
electrolyte consisting of a 3% aqueous solution of tar-
taric acid and ethylene glycol (1 : 2). The thickness of
the AO films, dAO, was varied from 0 to 20 nm. A semi-
transparent Pd electrode of area ≈8 × 10–3 cm–2 and
thickness ≈10 nm (a transmission of about 80%) was
deposited on the unheated oxidized surface of the epi-
taxial film by vacuum evaporation. The thickness of the
AO and Pd films was conventionally determined from
the anodization constant and by microweighing,
respectively, as well as by a Topometrix® atomic force
microscope (AFM) with an accuracy of 0.3 nm using an
1063-7842/03/4802- $24.00 © 20219
etched step. The microscope was also used to examine
the surface microrelief of the epitaxial and oxide layers
in the noncontact mode.

We also studied the open-circuit photovoltage upon
illuminating by undecomposed light from a tungsten
incandescent lamp, photovoltage spectra with photon
energies between 0.6 and 1.5 eV, and I–V characteris-
tics of the SDs at temperatures from 300 to 420 K in air
and in an air–argon flow with a hydrogen concentration
PH ≈ 0.04–0.22 vol % [8].

RESULTS AND DISCUSSION

Photovoltage. We found that at temperatures from
360 to 390 K, the hydrogen sensitivity and speed of the
diodes were the highest and the change in their proper-
ties was reversible.

In an hydrogen-containing atmosphere, the photo-
voltage Vph always decreased, in agreement with pub-
lished data, because of the hydrogen-related decrease in
the GaAs surface barrier [8, 9].

Figure 1 (curves 1, 2) shows the dependences of the
photovoltage Vph and its variation ∆Vph due to the
hydrogen effect on the oxide layer thickness. It is obvi-
ous that both Vph and ∆Vph grow as the AO thickness
increases to 3.0 nm. Then, Vph saturates, whereas ∆Vph
passes through a maximum (at 3.0–5.0 nm) and drops
to zero at dAO ≈ 16 nm. The increase in Vph (curve 1) is
explained by the formation of the negative charge in the
near-surface AO layer during GaAs anodic oxidation
[10]. The sensitivity to hydrogen shows up only after
the GaAs surface has been covered by a thin oxide layer
(curve 2) and then increases with oxide thickness,
003 MAIK “Nauka/Interperiodica”
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because the fraction of the hydrogen-insensitive GaAs–
Pd compound diminishes [11].

The decline of ∆Vph as the oxide layer grows while
Vph remains constant indicates that the amount of
atomic hydrogen reaching the Pd/GaAs interface
decreases. Thus, the value dAO ≈ 16 nm, at which the
hydrogen sensitivity virtually disappears, characterizes
the depth of hydrogen penetration into the AO at the
temperature of measurement (390 K).

A shift ∆VI of the forward-bias branch of the I–V
characteristic at a fixed current can serve as another
measure of the SD sensitivity to hydrogen [4]. Curve 3
shows that ∆VI declines at lesser oxide thicknesses than
∆Vph and even changes sign at dAO ≈ 7 nm, testifying
that the forward current decreases under the action of
hydrogen.

It was found that, for the light intensity used in the
measurements, the photovoltage varies in accordance
with the variation of the barrier in the semiconductor.
The fact that ∆VI responds to hydrogen more weakly
and drops with dAO more sharply than ∆Vph is naturally
explained by the decrease in the current (and hence in
its hydrogen-sensitive component) when the oxide
resistance grows.

The results which follow refer to Schottky diodes
with dAO ≈ 3.4 nm, which have the maximal sensitivity
to hydrogen in terms of both photovoltage and current.

Since the variation of the Schottky contact work
function usually changes the GaAs surface condition
only slightly [12], the decrease in the Pd/GaAs barrier
on exposure to hydrogen can be related either to the
decrease in the proton concentration at the AO/GaAs
interface due to atomic hydrogen chemisorption or to
the decrease in the density of negatively charged sur-
face states (SSs) at this interface due to hydrogen pas-
sivation. In order to decide between these mechanisms,
it was necessary to find a way of evaluating the density
of negatively charged surface states below the equilib-

0

0 4 8 12 16

0.1

0.2

0.3

3

1

2
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Fig. 1. (1) Vph, (2) ∆Vph, and (3) ∆VI vs. oxide layer thick-
ness. T ≈ 390 K, PH ≈ 0.22%.
rium Fermi level and to make sure that hydrogen has an
effect on them. According to [13], surface states below
the equilibrium Fermi level show themselves as a char-
acteristic extended portion of extrinsic photosensitivity
S(Vph/L), which increases exponentially with the pho-
ton energy hν and is observed in the gallium ars-
enide/electrolyte system. We carried out similar mea-
surements with our diodes.

Figure 2 shows typical spectra S(hν) measured in air
and in air–argon flows with different hydrogen concen-
trations. The wide extrinsic photosensitivity band is
seen in the energy range of Ec – (0.72–1.32 eV), where
the value of S increases almost exponentially with hν
due to the response from the surface states. The small
convexity of the exponential is associated with the
response of bulk defects in GaAs that are generated by
Pd–GaAs chemical interaction [14]. This convexity
was not observed in the spectra for diodes with an Au
electrode and for those with an electrolyte contact [13].

It is apparent that the hydrogen exposure reduces S
by nearly two orders of magnitude. At the same time,
the extrinsic (impurity) photoresponse from the surface
states decreases insignificantly with respect to the
intrinsic photoresponse from GaAs. Hence, the density
of surface states lying below the Fermi level, including
the density of acceptor surface states, does not respond
to hydrogen exposure: the barrier in the semiconductor
lowers as a result of hydrogen chemisorption at the
AO/GaAs interface with the formation of the proton
charge. This conclusion is in agreement with that drawn
in [9] for hydrogen-sensitive Schottky diodes with a
thermal oxide.

I–V characteristics and temperature depen-
dences of the current. Figure 3 shows the I–V charac-
teristics of the diodes taken at ≈390 K in the air flow
(curves 1, 2) and in the air–argon flow with a different
H2 content (curves 3–5). Evidently, the hydrogen expo-
sure increases the current density j (by one to two
orders of magnitude) and thus considerably modifies
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hν, eV
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Fig. 2. Photosensitivity vs. photon energy. dAO ≈ 3.4 nm,
T ≈ 366 K. PH = (1) 0, (2) 0.021, (3) 0.084, (4) 0.17, and
(5) 0.42%.
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the shape of the I–V characteristic. The forward-bias
portion of the I–V curve deviates markedly from an
exponential even at low voltages, tending toward satu-
ration at high forward biases (V > 0 at Pd). The reverse-
bias portion almost saturates with an increase in nega-

tive V unlike the dependence j ~ , which is observed
in the air flow (cf. curves 1 and 4, 5).

Usually the analysis of the I–V characteristic of
Schottky diodes with a thin tunnel-transparent oxide
layer includes the thermionic emission over the barrier
and tunnel emission through the oxide [9, 15]:

(1)

where A is the Richardson–Schottky constant, Tn(V) is
the tunneling probability, q is the electron charge, k is
the Boltzmann constant, ϕs(V) is the surface potential
of a semiconductor, and Ec–F is the gap between the
conduction band bottom Ec and equilibrium Fermi level
F in the bulk of the semiconductor.

To elucidate the current transport mechanism and
the effect of hydrogen on the diodes, we took the tem-
perature dependences of the forward, jf, and reverse, jr,
current densities at various voltages and hydrogen con-
centrations (Fig. 4). They all obey the exponential law
in accordance with (1) and exhibit high activation ener-
gies, which vary with the sign and magnitude of the
bias and with the hydrogen concentration.

The activation energy Er of the reverse current was
independent of the bias voltage and was found to be
about 1.0 eV in the air flow. This value is close to the
Pd/GaAs barrier height qϕb = qϕs + Ec – F ≈ 1.1 eV. The
value of ϕs was determined from the voltage depen-
dence of the barrier capacity.

Exposure to hydrogen with a concentration of
0.044% increases the reverse current by more than one
order of magnitude, leaving the value of Er ≈ qϕb
unchanged. This result can be explained by proton
accumulation due to the chemisorption of atomic
hydrogen at the oxide–semiconductor interface, which
thins the tunneling barrier and thereby increases
the  probability of tunneling through the insulating
layer [15].

A further increase in PH to 0.22% results in the
smooth decrease in Er to 0.65 eV (cf. curves 3, 4,
and 5). The maximal change in the activation energy
was found to be ∆Er ≈ 0.35 eV, which is probably equal
to the change in the barrier height at the Pd/GaAs inter-
face after hydrogen exposure.

The activation energy Ef of the forward current
decreases with increasing bias V and PH (Fig. 4;
curves 1, 2). The maximal decrease in ∆Ef on exposure
to hydrogen with PH ≈ 0.22% was ≈0.19 eV.

V

j AT2Tn V( )=

×
qϕ s V( ) qV Ec F–+ +

kT
-----------------------------------------------------– 

  qV
kT
------- 

 exp 1– ,exp
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The general feature of the temperature dependences
of jr and jf is that the current variation at a fixed temper-
ature is considerably lower than one might expect from
the variation of the energy of activation both on expo-
sure to hydrogen and with forward bias on the diode.
For instance, as follows from Fig. 4, hydrogen exposure
at T ≈ 333 K increases jf by a factor of 4, while from the
decrease in Ef by 0.19 eV, one could expect an increase
in Jf by a factor of 785. For jr, the increase is 13.6 times
versus the expected 2.2 × 105 times. Within the model
accepted, it is reasonable to explain this difference by
the influence of the tunnel-transparent insulating
spacer.

According to (1), the ratio of an experimentally
observed current increase to the expected one for a
given decrease in the activation energy on exposure to
hydrogen at a fixed temperature and voltage is equal to
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Fig. 3. The effect of hydrogen on the (2, 3) forward-bias and
(1, 4, 5) reverse-bias branches of the I–V characteristic:
(1, 2) in air flow and (3–5) in air–argon flow with H2. PH =
(3, 5) 0.22 and (4) 0.022%; T ≈ 390 K; dAO ≈ 3.4 nm.
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(3–6) reverse currents. V = (1, 2) +0.3 and (3–6) –1 V. PH =
(2, 6) 0, (1, 3) 0.22, (4) 0.11, and (5) 0.044%. dAO ≈ 3.4 nm.
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Fig. 5. AFM images of the (a) epitaxial layer and (b) oxide layer of rated thickness 3.4 nm.
the probability of tunneling through the oxide. Then,
for a reverse-biased diode at 333 K and V = –1 V, Tn ≈
6.2 × 10–5, and calculations by the formula [15]

(2)

where η0 is the effective tunnel barrier height in elec-
tronvolts and d0 is the barrier thickness in nanometers,
yield η0 ≈ 0.08 eV if the effective mass of an electron is
taken to be equal to the rest mass of an electron in a vac-
uum and d0 = dAO.

The same value of η0 is obtained for the forward-
biased diode. It differs dramatically from the AO/GaAs
barrier height calculated in [16]. Using (2), we have
d0 ≈ 0.6 nm at η0 = 1.6 eV. It is known that anodic oxide
films of small thickness have areas of still smaller
thickness, where pores are filled [17]. The effective
oxide thickness is actually smaller than the nominal
thickness dAO because of these thinnings, which may

η0 Tn( )ln[ ] 2/ 100d0( ),=
introduce an error in the tunneling barrier height calcu-
lated by (2).

The thinnings in the oxide can be observed and mea-
sured with an atomic force microscope by comparing
the microreliefs of the initial and oxidized surfaces of
the GaAs epitaxial layer. The AFM images of these sur-
faces are presented in Fig. 5. On the initial surface
(Fig. 5a), growth steps with incipient hillocks along the
length are seen, whereas the surface covered by the
anodic oxide of rated thickness ≈3.4 nm (Fig. 5b)
exhibits the well-defined hillocks along the whole step.
The growth of the hillocks is probably related to pre-
ferred oxide growth in the regions of highest electric
field (at the sites where the hillocks nucleate). Thus, the
surface roughness increases after the anodic oxidation
and the anodic oxide film turns out to be nonuniform in
thickness. The computer analysis of the microrelief
shows that the average surface roughness increases
from 0.25 nm (for the nonoxidized surface) to 0.55 nm
(for the oxidized surface). The maximal roughness
TECHNICAL PHYSICS      Vol. 48      No. 2      2003
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(from peak to valley) in the oxide is 2.6 nm. Therefore,
it can be concluded that the thickness difference (thin-
nings) in the oxide may reach the difference between
the rated thickness and maximal roughness height, i.e.,
0.8 nm. This value is somewhat higher than d0 ≈ 0.6 nm
calculated above.

The small (with allowance for film thickness non-
uniformity) quantitative discrepancy between the the-
ory and experiment can be explained by the neglect of
the recombination component of the current through
the diode, which is added to the thermionic overbarrier
emission current and is related, for example, to recom-
bination via surface states [15]. In this case, the
expected increase in the current is even higher than that
predicted by Schottky emission and the tunneling prob-
ability is lower than that obtained above (6.2 × 10–5).

The reverse-bias portion of the I–V characteristic

where j ~  at low V, which corresponds to the ther-
mal generation mechanism [12], and direct observation
of electroluminescence in the forward-bias diodes are
indicative of the need to consider the recombinational
current component. A decrease in the barrier on hydro-
gen exposure probably enhances recombination,
changing the shape of the I–V characteristic: in partic-
ular, its forward-bias branch deviates from the expo-
nential law throughout the voltage range and both the
forward-bias and reverse-bias portions of the I–V curve
tend toward saturation as the voltage increases. Such a
behavior of the I–V characteristic of Schottky diodes
was predicted theoretically in [15] under the assump-
tion that recombination via surface states prevails. It
should be noted that the inclusion of such a recombina-
tion retains the single-slope exponential dependences
of the forward and reverse current on the inverse tem-
perature in the narrow temperature range under study
and the continuous decrease in the activation energy of
the current with increasing hydrogen concentration.

Since the recombination current in our diodes is sig-
nificant, the determination of the semiconductor band
bending with formula (1) and the density of surface
states by differentiating the forward-bias branch of the
I–V characteristic with the procedure suggested in [9]
becomes difficult. Thus, hydrogen chemisorption at the
AO/GaAs interface not only increases the positive
charge at the interface and probability of tunneling
through the oxide but also enhances the recombination
activity of this interface.

Performance of the diodes as gas sensors. Figure 6
shows the dependences of ∆Vph and ∆j on hydrogen
concentration at T ≈ 370 K. Both ∆Vph and ∆VI increase
approximately as ~  and tend toward saturation at
PH ≥ 10–1%, which is typical of such dependences [8].
The sensitivity to hydrogen (a voltage change at a given
concentration) determined from the photovoltage is
higher than that found from ∆VI. Also, the determina-
tion of the hydrogen effect using ∆Vph gives a higher
detectivity (found by extrapolating the logarithmic part

V

PHlog
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of the response to ∆Vph = 0) than the procedure using
∆VI. Thus, the detectivity of our Schottky diodes with
respect to hydrogen is ~10–3%, which is inferior to that
of GaAs diodes with a native oxide (~10–4%). However,
as follows from the study of the hydrogen response
kinetics, the speed of the diodes with AO is no less than
that of the best Si and GaAs Schottky diodes [5, 8].

In general, the variation of the current and photo-
voltage on hydrogen exposure is nonexponential,
implying heterogeneous hydrogen adsorption and des-
orption in the diodes with Pd [1]. Because of this, as the
characteristics of the relaxation process, we take the
times of adsorption, τads, and desorption, τdes, when
hydrogen delivery was switched on and off, respec-
tively. Both values were measured at a level of 0.5 in the
range where the variation of the associated parameter
was the fastest.

The dependences of τads and τdes on PH at T ≈ 370 K
obtained from the variation of ∆Vph, ∆jf, and ∆jr are pre-
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Fig. 6. Steady-state responses (1) ∆Vph and (2) ∆VI vs. PH.
T ≈ 370 K, dAO ≈ 3.4 nm.
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obtained from the variation of (3, 6) ∆Vph, (2, 5) ∆If, and
(1, 4) ∆Ir at V = (1) –0.3, (2) +0.4, and (4, 5) +0.3 V. T ≈
370 K, dAO ≈ 3.4 nm.
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sented in Fig. 7. In the PH range under study, τads and
τdes vary between 0.6 and 50 s, which means that the
diodes are fast-responding sensors. Upon adsorption,

τads varies approximately as ~  (curves 2–4); upon
desorption, τdes determined from the current variation

varies roughly as ~  (curves 1, 5). The desorption
relaxation found from the ∆Vph curve (curve 6) is the
slowest. With a forward bias applied to the diode, the
adsorption accelerates and the desorption slows down
(cf. curves 2 and 5). For V < 0, the situation is reverse
(curves 1 and 3). The maximal increase in the speed at
V < 0 was as much as one order of magnitude
(cf. curves 1 and 5). Note that the adsorption depended
on the bias relatively weakly and its rate was equally
high during current and photovoltage relaxations
(curves 2, 3).

The influence of the magnitude and sign of the elec-
tric field on hydrogen adsorption and desorption in
Schottky diodes with AO can be related to the mecha-
nism of hydrogen effect, which probably includes not
only atomic hydrogen diffusion and chemisorption at
the AO/GaAs interface but also the drift of protons. It is
therefore natural to assume that a forward bias acceler-
ates adsorption and a reverse bias accelerates desorp-
tion.

The activation energies of adsorption and desorption
also depend on the magnitude and sign of the bias and
were found to be 0.45 and 0.49 eV, respectively, at V =
+0.3 V and 0.4 and 0.3 eV at V = –0.3 V.

CONCLUSION

Studying palladium/anodic oxide/gallium arsenide
diodes, we found the AO layer thickness for which the
sensitivity to hydrogen is maximum. The effective
depth of atomic hydrogen penetration into oxide is
determined. The mechanism behind the hydrogen
effect involves hydrogen chemisorption, positive
charge formation at the AO/GaAs interface, the drift of
protons, and an enhanced probability of current carrier
tunneling through the oxide. Thin tunnel-transparent
anodic oxide layers are shown to be nonuniform in
thickness, the surface roughness being comparable to
the rated thickness. The essential role of the recombina-
tion current in Schottky diodes, which is usually
neglected in the hydrogen-sensitive Si and GaAs struc-
tures, is demonstrated. It is found that the highest
hydrogen detectivity is achieved from photovoltage

PH
1–

PH
1/2–
measurements and the maximal speed of response is
provided by recording the reverse current.
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Abstract—It is shown that the excitation of the electronic subsystem in heterogeneous semiconductors causes
the gettering (accumulation) of defects in regions where the diffusion coefficient of defects is low. This is
because this parameter in the wide-gap (active) region of the material increases, remaining low in narrow-gap
areas (drains). This effect improves the radiation hardness of the heterogeneous material, as demonstrated with
the CdS–PbS system, which exhibits a limited series of solid solutions. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION
It is known that the lifetime of II–VI (e.g., CdS)

semiconductor devices, such as electron-beam-pumped
lasers and photoresistors, decreases upon high-intensity
irradiation because of the degradation of photoelectric
parameters. The degradation of the photoconductivity
manifests itself in two ways: the photoconductivity
greatly decreases, while the dark conductivity signifi-
cantly grows. The former effect is associated with an
increase in the concentration of dislocations and point
defects, which serve as centers for rapid nonradiative
recombination. The nature of these centers is as yet
imperfectly understood. It is generally believed that
they are small associates of shallow donors, primarily
Cd and Cu interstitials, with other (usually acceptor-
type) defects [1, 2]. As a rule, heating to a temperature
of 450 K and subsequent cooling in the dark recovers
the performance of the initial (good) material.

The latter effect is usually associated with an
increase in the concentration of shallow donors (prima-
rily Cd interstitials), which can be caused by either the
dissociation of donor–acceptor pairs [1] or the effect of
subthreshold defect formation [3–5].

It was shown previously [6] that the stability of
polycrystalline II–VI semiconducting films is improved
significantly if IV–VI compounds (PbS, PbSe, and their
solid solutions) are added to the initial charge. Because
of the limited mutual solubility of the components, a
heterogeneous material (hereafter referred to as CdS–
PbS) forms. It consists of the wide-gap photoconduct-
ing matrix PbxCd1 – xS and narrow-gap inclusions
CdyPb1 – yS (x, y < 0.5). The study of the stability of
CdS–PbS and similar systems against degradation, as
well as the construction of a mathematical model
accounting for this stability, is therefore of great scien-
tific and practical interest.

The construction of such a model is the purpose of
this work. Our model utilizes the fact that irradiation
1063-7842/03/4802- $24.00 © 20225
variously enhances the diffusion of defects in wide- and
narrow-gap areas of a heterogeneous system (CdS–PbS
in particular). We generalize and extend our results
published previously [7–10], review theoretical works
concerned with radiation-stimulated solid diffusion,
apply them to heterogeneous systems with strongly dif-
fering diffusion coefficients in their constituents, state
the problem of diffusion in a heterogeneous medium,
and discuss some consequences that follow from this
problem.

RADIATION-STIMULATED DIFFUSION

The irradiation of solids is known to substantially
enhance the diffusion of defects [11–13]. Three mech-
anisms of radiation-enhanced diffusion (RED) are dis-
tinguished. Vinetskiœ and Chaœka [11] considered the
RED of recombination centers when they acquire the
energy of free carriers through their recombination. In
this case, the RED coefficient D* is given by

(1)

where D0 is a factor weakly varying with temperature,
n is the free electron concentration, Nc is the density of
states in the conduction band, U is the energy barrier for
the migration of the centers, Er is the energy of an elec-
tron on the recombination level, k is the Boltzmann
constant, T is temperature, and β is the empirical coef-
ficient that equals the fraction of the free-carrier energy
transferred to the center (recombination may involve
intermediate levels; therefore, the energy transferred to
the center may be less than Er).

This RED mechanism takes place in the wide-gap
phase of CdS–PbS, where recombination proceeds
through local centers and where the energy βEr may be
significant.

D* D0
n
Nc
------

U βEr–
kT

-------------------– 
  ,exp=
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Mak [12] considered diffusion stimulated by charge
exchange on a center as a result of recombination and
derived the formula

(2)

where a is the lattice parameter, c is the number of
equivalent sites that can be occupied by a diffusing
atom, and

(3)

is the rate of charge exchange during recombination. In
(3), Nv is the density of states in the valence band;
γn and γp are the coefficients of trapping of electrons
and holes, respectively, by a center; and Eg is the energy
gap.

However, expression (2) is valid if each event of
charge exchange causes a diffusion jump, i.e., if the
center becomes unstable after charge exchange. Only
then does the probability of the center passing jump-
wise from one equilibrium state to another (adjacent)
state per unit time equal m. Actually, charge exchange
narrows the barrier U by only ∆U = 0.5–1.0 eV [14].
With this taken into account, we refined the form of for-
mula (2):

(4)

The third RED mechanism, which was suggested by
Stepanov [13], relies on energy transfer to diffusing
atoms when a radiation flux is elastically scattered by
them. Under the assumption that the maximal energy
transferred to defects from the particles is higher than
the barrier U for elementary activation processes but
lower than the threshold energy for atomic displace-
ments, he derived the formula for the RED coefficient

(5)

where D is the coefficient of equilibrium diffusion, E is
the maximal energy imparted to diffusing atoms by the
flux particles,

(6)

is the parameter of nonequilibrium, τt is the thermaliza-
tion time of an excited atom, σ is the cross section of
flux–atom elastic interaction, and I is the radiation flux.

If E < U, the value of D* can be estimated with a for-
mula similar to (5) where U in the exponent is replaced

D*
a2m

c
---------,=

m γpn 1

γp

γn

-----n Nc
Er

kT
------– 

 exp+

N n–
γp

γn

-----Nv
Eg Er–

kT
-----------------– 

 exp+
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 
 
 
 
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=
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a2m

c
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kT
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  .exp=

D* D 1 α E U– kT+
E

--------------------------- U
kT
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 exp+
 
 
 

,=

α τ tσI/ 1 τ tσI+( )=
by E. Then,

(7)

The derivation of (5) and (7) does not impose strin-
gent restrictions on the nature of the energy gained by
diffusing centers [13]. Therefore, these expressions are
fairly universal. In particular, formula (7) describes
RED proceeding by the first mechanism if the recombi-
nation flux Ir of electrons is substituted for the radiation
flux I. Since, according to [15],

(8)

where A is a constant, and the energy imparted to a cen-
ter through recombination βEr < U, we have from (7)

(9)

where σr is the cross section of charge carrier scattering
by a center, Ir = v n is the recombination flux, and v  is
the thermal velocity of electrons.

It is easy to check that (9) is equivalent to (1).

Considering a CdS–PbS photodetector as a model
heterogeneous system, we estimated the coefficient of
sulfur interstitial diffusion enhanced by an electron flux
I = 1017 m–2 s–1 (beam current density 10–2 A/m2, accel-
erating voltage 2 × 104 V). None of the mechanisms
mentioned above was found to noticeably enhance the
diffusion of defects in narrow-gap inclusions of the
CdS–PbS system (the maximal diffusion coefficient
observed was D* = 10–29 m2/s). Conversely, in the
wide-gap component, the diffusion of defects was
greatly enhanced following the first mechanism, D* =
10–14 m2/s. This value appears to be quite realistic, since
in experiments where CdS was irradiated by X rays (the
dose rate 250 rad/s), radiolysis products diffused with a
coefficient D* = 10–16–10–15 m2/s [3], and in our case
the radiation power was three orders of magnitude
higher.

Such a great difference between the RED coeffi-
cients of the centers in the components of the CdS–PbS
system is associated with the large energy gap and,
accordingly, with a large depth of recombination levels
in the wide-gap (ith) component (Egi > 2 eV). There-
fore, recombination in this component is indirect and
proceeds via defect levels (Fig. 1). In narrow-gap inclu-
sions (jth component), Egj < 0.8 eV, recombination is
direct, and defects do not acquire the energy. Thus, in
an excited CdS–PbS system, defects responsible for
free carrier recombination have greatly differing diffu-
sion coefficients. The consequences of such a nonuni-
formity are discussed below.

D* Dα E
kT
------ 

  .exp≈

D A
U
kT
------– 

  ,exp=

D* Dα
βEr

kT
-------- 

 exp Aτ tσrIr
U βEr–

kT
-------------------– 

  ,exp≈ ≈
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MOTION OF DEFECTS 
IN A HETEROGENEOUS MATERIAL

Since point defects in crystals are mobile, their con-
centration N must obey the continuity equation

(10)

where G and R are the generation and annihilation
rates, respectively. In the general case, they are func-
tions of the coordinate r, time t, and concentration N,
and the defect flux J is given by

(11)

where D is the diffusion coefficient of defects and µ is
their mobility, i.e., in the electric field E of a hetero-
junction.

In view of (11), expression (10) takes the form

(12)

If the diffusion component of the flux far exceeds
the drift component, which is valid, for example, in
coarse grains (as in the case of CdS–PbS samples pre-
pared by the vacuum evaporation technology described
in [16]) subjected to low electric fields, one can put E =
0 and recast (12) as

(13)

For regions with constant D, Eq. (13) can be simpli-
fied still further:

(14)

Equation (14) is the basic equation of motion of
defects in a heterogeneous semiconductor like CdS–
PbS. To solve it requires initial and boundary condi-
tions to be imposed.

Since the concentration of defects grows during irra-
diation and much exceeds the initial concentration N0
(which causes degradation), one can put N0 = 0; then,
the initial condition has the form

(15)

For joining together the solutions at the interface,
we direct gradN along the x axis. Then, Eq. (11) can be
written in scalar form, where the operator ∇  is replaced
by differentiation with respect to x. In this case, the dif-
fusion component Jdif of the flux is

(16)

On the other hand, defects can be treated in terms of
the molecular kinetic theory (MKT) [14]. Let some sur-
face Sij, say, the plane x = l, separate the defect area i
(x < l) and defect-free area j (x > l). Then, using the
MKT, one finds that the diffusion flux Jdif of defects at
the interface is Jdif = N(l)vD/6, where vD = a/τ is the

G R– divJ
∂N
∂t
-------,+=

J –DgradN µNE,+=

— D—N( )⋅ — µNE( )⋅– G R–+
∂N
∂t
-------.=

— D—N( )⋅ G R–+
∂N
∂t
-------.=

D—2N G R–+
∂N
∂t
-------.=

N r 0,( ) 0.=

Jdif D ∂N /∂x( ).–=
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defect velocity in the crystal (a is the lattice constant,
which plays the role of the free path when considering
the diffusion of defects, and τ is the mean residence
time of a defect in an equilibrium position). Expressing
vD through D [14],

(17)

we find that J = DN(l)/a.

Now if the defect concentration N is N(l – 0) = Ni to
the left of the point x = l and N(l + 0) = Nj to the right
of this point (Fig. 2), the diffusion flux Jdif across the
plane x = l is given by the difference Ji – Jj:

(18)

Assuming that D(x) and N(x) are continuous func-
tions and taking into account that the least distance dx
in a crystal that has a physical meaning is the lattice
parameter a, we obtain formula (16) from (18). If at
least one of these functions experiences a discontinuity
at the point x = l, we obtain the joining condition at the
interface from (18). If D(x) and N(x) are piecewise con-
tinuous functions and everywhere have derivatives on
the left and right and if the flux is continuous at the

v D 6D/a,=

Jdif Ji J j–=

=  D l 0–( )N l 0–( ) D l 0+( )N l 0+( )–[ ] /a.

3 F
Ecj

Ev j

Egj

1

2 hν

F
Er

Egi

Eci

Ev i

i j

l x

Fig. 1. Band diagram of the heterogeneous photoconduct-
ing system. Eci and Ecj, conduction band bottoms; Evi and
Evj, valence band tops; F, Fermi level; Er, recombination
(defect) level; Egi and Egj, energy gaps; 1, capture of an
electron from the conduction band to a defect-related
recombination level; 2, recombination of the captured elec-
tron, photon release, and energy transfer to the defect; and
3, direct (band-to-band) recombination.
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interface (defects do not annihilate at the interface), the
joining condition appears as

(19)

Since gradN is aligned with the x axis, (19) can be
recast in vector form

(20)

Here, the interface between the regions i and j may be
an arbitrary (including closed) surface and not neces-
sarily a plane.

Note that if Ni(l) ≈ Nj(l), ai ≈ aj, and Di @ Dj, the
right-hand side of (19) is positive and the flux of defects
from the region i to the region j arises; in other words,
defects are gettered by the region with a smaller diffu-
sion coefficient (as if stuck in it). Thus, the difference
in the RED rate in the narrow- and wide-gap regions of
a heterogeneous photoconducting system (such as
CdS–PbS) causes the gettering of defects by narrow-
gap inclusions.

If the regions with a smaller diffusion coefficient are
limited (as takes place in CdS–PbS), the defect flux
mentioned above causes local minima of N(r) to appear

Di
∂Ni

∂x
---------

x l=

– D j
∂N j

∂x
---------

x l=

–=

=  
Di

ai

-----Ni l( )
D j

a j

------N j l( ).–

Di —Ni Sij
– D j —N j Sij

–=

=  Di/ai( )Ni D j/a j( )N j–[ ] Sij
.

N
Nj

j

JjJi

Ni

l x

Fig. 2. Defect concentration profile and defect fluxes at the
interface between the wide (i)- and narrow (j)-gap phases of
the heterogeneous semiconductor. N, defect concentration;
x, coordinate; l, coordinate of the interface; and Ji and Jj,
defect fluxes at the interface.

i

inside narrow-gap inclusions. Let the number of these
minimum points generate a set ρ (in the simplest case,
ρ = 1). Then, in the general case, the boundary condi-
tion for a narrow-gap inclusion has the form

(21)

For the wide-gap region, the boundary condition is
the same with the only difference that here points of
extremum are maximum points. Therefore, since this
region can be considered as unbounded (its size is much
greater than that of a narrow-gap inclusion), here ρ rep-
resents, as a rule, a surface (or a set of surfaces).

To summarize, we mathematically state the problem
of defect migration in the CdS–PbS heterogeneous
photoconductor in the general form

(22)

(23)

(24)

(25)

(26)

(27)

(28)

Recall that the subscripts i and j refer to the wide-
and narrow-gap regions, respectively. Expression (28),
which is the joining condition at the interface, refers to
adjacent regions separated by the surfaces Sij.

Since the only property of the CdS–PbS heteroge-
neous system used in stating the problem is the nonuni-
form distribution of the diffusion coefficient, our con-
siderations are applicable to any solid-state heteroge-
neous system featuring the nonuniform distribution of
the diffusion coefficient.

Below, we introduce some notions and discuss sev-
eral results following from boundary-value problem
(22)–(28).

MEAN CONCENTRATIONS AND MEAN RATE 
OF DEFECT GENERATION IN A 

HETEROGENEOUS MEDIUM

For any regions of a heterogeneous photoconductor,
one can introduce the parameter Geff that has the mean-
ing of the effective mean rate of defect formation (by
analogy with a homogeneous photoconductor):

(29)

where the angular brackets mean a space average.
We assume that the diffusion migration of defects is

the only reason for the effects discussed above; that is,

gradN r ρ∈ 0.=

— Di∇ Ni( )⋅ — µiNiEi( )⋅– Gi Ri–+ ∂Ni/∂t,=

— D j∇ N j( )⋅ — µ jN jE j( )⋅– G j R j–+ ∂N j/∂t,=

Ni r 0,( ) 0,=

N j r 0,( ) 0,=

gradNi r ρi∈ 0,=

gradN j r ρ j∈ 0,=

Di —Ni Sij
– D j —N j Sij

–=

=  Di/ai( )Ni D j/a j( )N j–[ ] Sij
.

Geff ∂N /∂t R+〈 〉 ,=
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Eq. (13) is the basic one. In view of this equation, let us
recast (29) as

(30)

Here, V is the volume of the corresponding space and
S is the boundary surface. In (30), we used the diver-
gence theorem. Since, as was shown above, the defect
flux across S is directed from the wide- to narrow-gap

region, the integral dS is positive for a narrow-

gap inclusion and negative for the wide-gap matrix.
Hence, the effective rate of defect generation in the
wide-gap phase is lower and in the narrow-gap phase is
higher than the generation rate 〈G〉  in the corresponding
homogeneous material. In other words, the presence of
the narrow-gap phase, where the radiation-induced
enhancement of defect diffusion is lower than in the
wide-gap phase, decreases the effective rate of defect
generation in the wide-gap phase of a heterogeneous
semiconductor.

Let  (ω = i, j) be the mean concentrations in the
wide- and narrow-gap regions:

(31)

where Vω is the volume of the corresponding space.

Expressing the recombination term as R = κN2 (κ is
the recombination coefficient), which is valid for the
direct recombination of Frenkel defects, and integrating
(13) over the volume Vi of the wide-gap region, we

arrive at an equation for :

(32)

where Si is the surface bounding the wide-gap region.

Since the variance 〈(N – )2〉  = 〈N2〉  – 〈N〉2 is non-
negative, we have

(33)

Consequently, in view of (32) and (33), we can write

(34)

Geff
1
V
--- — D—N( )⋅ G+[ ] Vd

V

∫=

=  G〈 〉 1
V
--- DgradNdS.

S

∫°+

gradN
S∫°

Nω

Nω Nω〈 〉 1
Vω
------ Nω V ,d

Vω

∫= =

Ni

Vi
dNi

dt
--------- Vi Gi〈 〉 κ Ni

2 V Di—Ni

Si

∫°+d S,d

Vi

∫–=

N

Vi Ni
2〈 〉 Ni

2
Vd

Vi

∫ 1
Vi

----- N Vd

Vi

∫ 
 
  2

≥ ViNi
2
.= =

dNi

dt
--------- Gi〈 〉 κ Ni

2
–

1
Vi

----- Si—NidS

S

∫°+≤
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and conclude that , which obeys the equation

(35)

bounds  from above; that is,  ≤ . Since the two
last terms in (35) are nothing but Geff, which, in the
wide-gap region, is below the mean generation rate 〈G〉 ,
we find that  <  < N0, where N0 is the defect con-
centration in a homogeneous material at the same
defect generation rate G. This means that the concentra-
tion of radiation-induced defects in the wide-gap phase
of a heterogeneous semiconductor is always lower than
in a homogeneous system of the same composition;
hence, the wide-gap phase is superior to the homoge-
neous material in radiation hardness.

The presence of an electric field may change the
defect distribution up to the point where  > N0; how-

ever, in this case, too,  will be lower than the concen-
tration of defects under the condition when the coeffi-
cient of defect diffusion is the same throughout the
material.

When implementing this mechanism of increasing
the radiation hardness, one should bear in mind that the
mere difference in D is insufficient for this mechanism
to be efficient. It is also necessary that the diffusion
coefficient in the active region (the wide-gap region in
the case of CdS–PbS) be so high that defects can reach
the gettering zone for the time of enhanced diffusion
(i.e., during irradiation). Our calculations and experi-
ments with CdS [3, 6, 8] show that such a situation
occurs in an irradiated heterogeneous CdS–PbS semi-
conductor.

CONCLUSIONS

The basic results of this work are as follows.
(1) A different degree of defect diffusion enhance-

ment in the wide-gap matrix and narrow-gap inclusions
of a heterogeneous photoconductor improves its radia-
tion hardness in comparison with a homogeneous pho-
toconductor provided that the diffusion coefficient in
the active region of the heterogeneous material is suffi-
ciently high.

(2) If the RED coefficients in the wide- and narrow-
gap regions of heterogeneous systems differ substan-
tially, radiation-induced and processing-related defects
are gettered by the lower coefficient region. This
decreases greatly the mean concentration of defects and
the mean effective rate of their generation (formula
(29)) in the higher coefficient region.

(3) These processes may be responsible for the
experimentally observed fact that the radiation hard-
ness of an CdS heterogeneous semiconductor is
improved by adding PbS.

Ñi

d Ñi

dt
--------- Gi〈 〉 κ Ñi

2
–

1
Vi

----- Di—NidS,

S

∫°+=

Ni Ni Ñi

Ni Ñi

Ni

Ni
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Abstract—Modified coupled-mode equations are employed to develop a theory of filters that use
waveguide modes of two surface acoustic wave (SAW) resonators weakly coupled in the transverse
direction. Results of simulation based on this theory are compared with the earlier experiment.© 2003
MAIK “Nauka/Interperiodica”.
INTRODUCTION

The coupled mode (COM) method is an efficient
technique for calculating parameters of SAW filters.
The conventional COM method (see, e.g., [1]), which
relies on a system of inhomogeneous differential equa-
tions, involves too complicated a procedure for design-
ing SAW devices with arbitrarily varying parameters.
In the framework of this theory, it is difficult to allow
for such factors as the variable period of the structure,
the arbitrary polarity of the electrodes connected to the
contact lines, apodization, and the nonuniform charge
distribution over the electrodes. All these factors are
easy to take into account by the method that is based on
modified equations for coupled modes and deals with
an elementary unit of the structure. This method also
allows one to use more complex models of the struc-
ture.

The method of modified equations has been used to
simulate various SAW devices [2–4]. In this paper, we
elaborate a theory of a narrow-band SAW filter that is
most promising for communications. These filters
employ waveguide modes in a structure of two SAW
resonators weakly coupled in the transverse direction
(transversely coupled resonator filters, TCRFs). TCRFs
attract researchers' attention because they feature a low
insertion loss and high out-of-band suppression. Earlier
(see, e.g., review [5]), TCRFs were analyzed based on
the conventional coupled mode theory (COM theory).
However, TCRFs with variable polarity of electrode
pairs connected to the contact buses are difficult to sim-
ulate in terms of the conventional COM theory. In the
TCRFs considered in this paper, the polarity of the elec-
trodes is chosen so that at least two longitudinal reso-
nance modes are excited. Note that, owing to both the
weak transverse coupling between the two resonators
and the waveguide effect, either longitudinal mode
splits into two modes. Thus, in TCRFs with variable
polarity of electrode pairs connected to the contact bus,
four or even more modes can be excited simulta-
1063-7842/03/4802- $24.00 © 20231
neously. A four-mode filter provides a wider passband
and higher shape factor than a usual two-mode TCRF.
The theory proposed below can be used for simulating
conventional TCRFs, as well as TCRFs with variable
electrode-pair polarity.

In this paper, a theory of filters that use waveguide
modes in two SAW resonators with weak transverse
coupling is developed. Calculations based on this the-
ory are compared with the earlier experiment [6, 7].

TRANSVERSE ACOUSTIC FIELD 
DISTRIBUTION IN A TCRF

Let R(y, z, ω) and S(y, z, ω) be two coupled inhomo-
geneous plane waves of angular frequency ω that prop-
agate in a semi-infinite piezoelectric with interdigital
transducers (IDT-1 and IDT-2) and reflecting arrays
(RA1-L, RA1-R, RA2-L, and RA2-R) in the form of
metal strips applied on its surface (Fig. 1). The wave
R(y, z, ω) travels in the positive z direction; the wave
S(y, z, ω), in the negative z direction. We will also
assume that the transverse field distribution is z inde-
pendent and that the structure is limited in the y (trans-

1
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y
U1

I1

d1dTdR

U2

I2

z

S

G

W

RA1-L

RA2-L IDT-2 RA2-R

IDT-1 RA1-R

Fig. 1. Layout of a TCRF.
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verse) direction; therefore, waveguide modes can exist
in this structure. The inhomogeneous plane waves can
be written as

(1)

(2)

where R(ω) and S(ω) are the complex amplitudes of the
waves, Ψ(y) is the transverse acoustic field distribution,
and k is the wave number.

We will seek the field distribution Ψ(y) as a solution
to the wave equation for the complex amplitudes of
waves traveling in the positive z direction:

(3)

where t = 1, 2, 3, or 4 is the number of the structure’s
region (Fig. 1) for which the equation is written.

The acoustic field distribution must satisfy the
boundary conditions

(4)

(5)

(6)

(7)

(8)

(9)

Since the structure is symmetric about the z axis, a
solution to Eq. (3) under boundary conditions (4)–(9)
will be sought in the region y > 0 as the expansion in
orthonormal set of functions

(10)

where Ψn(y) = Ansin(ktny) + Bncos(ktny).

In region 1,  = –  = –(  – ); in region 2,

 =  =  – ; in region 3, k3n = k1n; and in region 4,

 = –  = –(  – ). Here, km, ke, and k0 are the
SAW wave numbers for an infinite piezoelectric cov-
ered by a continuous metal film, covered by an infi-
nitely long array of infinitely long electrodes, and
uncovered, respectively, and kn is the wave number of
an nth mode. In the general case, waveguide modes of
n (n = 0, 1, 2, 3, …) types can exist in the structure, each
having a particular transverse field distribution. There-
fore, we will seek a solution for each of them.

R y z ω, ,( ) R ω( )Ψ y( ) jkz–( ),exp=

S y z ω, ,( ) S ω( )Ψ y( ) + jkz( ),exp=

d2Ψ t( ) y( )
d2y

---------------------- kt
2dΨ t( ) y( )+ 0,=

Ψ 1( ) y( ) Ψ 2( ) y( ) at y G/2,= =

Ψ 2( ) y( ) Ψ 3( ) y( ) at y G/2 W ,+= =

Ψ 3( ) y( ) Ψ 4( )
y( ) at y G/2 W S,+ += =

∂Ψ 1( ) y( )
∂y

---------------------
∂Ψ 2( ) y( )

∂y
--------------------- at y G/2,= =

∂Ψ 2( ) y( )
∂y

---------------------
∂Ψ 3( )

y( )
∂y

--------------------- at y G/2 W ,+= =

∂Ψ 3( ) y( )
∂y

---------------------
∂Ψ 4( ) y( )

∂y
--------------------- at y G/2 W S.+ += =

Ψ t( ) y( ) Ψn
t( ) y( ),

n

∑=

ktn
2 k1n

2 kn
2 km

2

ktn
2 k2n

2 ke
2 kn

2

ktn
2 k4n

2 kn
2 k0

2

Taking into account the sign of the propagation con-
stant ktn and the symmetry of the structure, we look for
a solution to Eq. (3) in regions 1–4 in the following
form:
in region 1 (0 < y < G/2),

where

(11)

in region 2 (G/2 < y < W + G/2),

(12)

in region 3 (W + G/2 < y < W + G/2 + S),

(13)

and in region 4 (y > W + G/2 + S),

(14)

The coefficients B1n, A2n, B2n, A3n, B3n, and B4n can be
found from boundary conditions (4)–(9) and the
orthonormality condition

(15)

where δnm is the Kronecker symbol.

Using boundary conditions (5) and (8) and expres-
sions (12) and (13), a dispersion relation that relates the
wave numbers of acoustic waveguide modes to their
angular frequency can be derived. The existence condi-
tions for a solution to the dispersion relation are dis-
cussed in [1].

MODIFIED COM EQUATIONS 
FOR A TCRF

To calculate the TCRF’s input admittance, let us use
Eqs. (9)–(11) from [3] and expand the acoustic wave
field in waveguide modes. Then, with expressions (1),
(2), and (10), we can write

(16)

(17)

Next, we perform the following standard procedure.
Substituting expansions (16) and (17) into Eqs. (9) and
(10) from [3], multiplying both sides of the equations
by Ψn(y), and integrating the result with respect to y

Ψn
1( )

y( ) B1nFB,=

FB

k1nG/2( ) for symmetric modescosh

k1nG/2( ) for antisymmetric modes;sinh



=

Ψn
2( ) y( ) A2n k2ny( )sin B2n k2ny( );cos+=

Ψn
3( ) y( ) B3n k3ny–( );exp=

Ψn
4( )

y( ) B4n k4ny–( ).exp=

yΨn
t( ) y( )Ψm

t( ) y( )d

∞–

∞

∫ δnmW ,=

R y z ω, ,( ) Rn ω( ) jknz–( )Ψn y( ),exp
n

∑=

S y z ω, ,( ) Sn ω( ) + jknz( )exp Ψn y( ).
n

∑=
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from –∞ to +∞, we obtain, in view of orthonormality
condition (15),

(18)

(19)

where rK is the complex reflection coefficient of a Kth
electrode, κn = kn – k0 – jα, k0 = 2π/pK, pK is the center
distance between (K + 1)th and Kth electrodes, ξK is the
coefficient of SAW transformation by a Kth electrode
[3], η1, K = W1, K/W, η2, K = W2, K/W, W is the maximal
aperture, W1, K is the overlap of adjacent electrodes,
W2, K = W when dummy electrodes are used and W2, K =
W1, K otherwise, α is the total SAW propagation loss in
the electrode structure per unit length, and LK is the
width of a Kth electrode. The SAW reflection (transfor-
mation) center is assumed to be at the center of each
electrode.

The quantities  and  are defined as

Note that  =  for symmetric waves and

 = –  for antisymmetric ones. Let the number of
electrodes in either IDT and in each of the reflecting
arrays be NT and NR, respectively. Next, we write
Eq. (11) from [3] for either transducer, substitute
expansions (16) and (17) into the resulting equations,
multiply both their sides by Ψn(y), and integrate the
result over the aperture of either transducer to arrive at
formulas for the variation of the current in the IDTs due
to the transformation of the forward- and backward-
traveling waves:

(20)

(21)

The change in the current in the buses that is caused
by the voltage drop across the IDT capacitance will be
taken into account later.

SK n, ω( ) rKη1 K, jκn pK–[ ] RK n, ω( )exp=

+ η1 K, 1 rK
2–( )1/2

jκn pK–[ ] SK 1+ n, ω( )exp

+ ξK ω( )η2 K, jκn pK/2–[ ] Tn
1( )U1 Tn

2( )U2+( ),exp

RK 1+ n, ω( ) η1 K, 1 rK
2–( )1/2

jκn pK–[ ] RK n, ω( )exp=

+ rKη1 K, jκn pK–[ ] SK 1+ n, ω( )exp

+ ξK ω( )η2 K, jκn pK/2–[ ] Tn
1( )U1 Tn

2( )U2+( ),exp

Tn
1( ) Tn

2( )

Tn
1( ) 1/W( ) yΨn y( ),d

G/2

G/2 W+

∫=

Tn
2( ) 1/W( ) yΨn y( ).d

G/2 W+( )–

G/2–

∫=

Tn
1( ) Tn

2( )

Tn
1( ) Tn

2( )

I1 K n, , ω( ) I1 K 1+ n, , ω( )– 2ξK ω( ) jκn pK/2–[ ]exp=

× Tn
1( ) RK n, ω( ) SK n, ω( )+[ ] ,

I2 K n, , ω( ) I2 K 1+ n, , ω( )– 2ξK ω( ) jκn pK/2–[ ]exp=

× Tn
2( ) RK n, ω( ) SK n, ω( )+[ ] .
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Relationships (18)–(21) can be written in matrix
form:

(22)

where ∆I1, K, n(ω) = I1, K, n(ω) – I1, K + 1, n(ω), ∆I2, K, n(ω) =
I2, K, n(ω) – I2, K + 1, n(ω),

To calculate the components of the TCRF’s P
matrix, we will first find the components of the total P
matrix for two SAW structures (with matrices [P(1)] and
[P(2)]) connected in series. For the sake of simplicity,
we omit the subscript n from relationships that follow.
Then, the [P(1)] matrix is given by

(23)

SK n, ω( )
RK 1+ n, ω( )
∆I1 K n, , ω( )
∆I2 K n, , ω( )

 = 

P 1 1,( ) P 1 2,( ) P 1 3,( ) P 1 4,( )
P 2 1,( ) P 2 2,( ) P 2 3,( ) P 2 4,( )
P 3 1,( ) P 3 2,( ) P 3 3,( ) P 3 4,( )
P 4 1,( ) P 4 2,( ) P 4 3,( ) P 4 4,( )

×

RK n, ω( )
SK 1+ n, ω( )

U1

U2

,

P 1 1,( ) rKη1 K, jκn pK–[ ]exp ,=

P 1 2,( ) η1 K, 1 rK
2–( )1/2

jκn pK–[ ] ,exp=

P 1 3,( ) ξK ω( )η2 K, jκn pK/2–[ ] Tn
1( )

,exp=

P 1 4,( ) ξK ω( )η2 K, jκn pK/2–[ ] Tn
2( ),exp=

P 2 1,( ) η1 K, 1 rK
2

–( )
1/2

jκn pK–[ ] ,exp=

P 2 2,( ) rKη1 K, jκn pK–[ ]exp ,=

P 2 3,( ) ξK ω( )η2 K, jκn pK– /2[ ] Tn
1( ),exp=

P 2 4,( ) ξK ω( )η2 K, kκn pK/2–[ ] Tn
2( )

,exp=

P 3 1,( ) P 3 2,( ) 2ξK ω( ) jκK/2–[ ] Tn
1( ),exp= =

P 4 1,( ) P 4 2,( ) 2ξK ω( ) jκnPK/2–[ ] Tn
2( )

,exp= =

P 3 3,( ) P 3 4,( ) P 4 3,( ) P 4 4,( ) 0.= = = =

SK ω( )
RK 1+ ω( )
∆I1 K, ω( )
∆I2 K, ω( )

= 

P
1( )

1 1,( ) P 1( ) 1 2,( ) P 1( ) 1 3,( ) P 1( ) 1 4,( )

P 1( ) 2 1,( ) P 1( ) 2 2,( ) P 1( ) 2 3,( ) P 1( ) 2 4,( )

P 1( ) 3 1,( ) P 1( ) 3 2,( ) P 1( ) 3 3,( ) P 1( ) 3 4,( )

P 1( ) 4 1,( ) P 1( ) 4 2,( ) P 1( ) 4 3,( ) P 1( ) 4 4,( )

RK ω( )

SK 1+ ω( )

U1

U2

,
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where ∆I1, K(ω) = I1, K(ω) – I1, K + 1(ω) and ∆I2, K(ω) =
I2, K(ω) – I2, K + 1(ω).

The [P(2)] matrix will be defined as

(24)

where ∆I1, K + 1(ω) = I1, K + 1(ω) – I1, K + 2(ω) and
∆I2, K + 1(ω) = I2, K + 1(ω) – I2, K + 2(ω).

Using systems of equations (23) and (24) with arbi-
trary coefficients, which are written for two series-con-
nected SAW structures of the TCRF, we easily obtain
the components of the total P matrix:

(25)

where ∆I1(ω) = I1, K(ω) – I1, K + 2(ω), ∆I2(ω) = I2, K(ω) –
I2, K + 2(ω),

(26)

(27)

(28)

(29)

(30)

SK 1+ ω( )
RK 1+ ω( )

∆I1 K 1+, ω( )
∆I2 K 1+, ω( )

= 

P
2( )

1 1,( ) P
2( )

1 2,( ) P
2( )

1 3,( ) P
2( )

1 4,( )

P
2( )

2 1,( ) P
2( )

2 2,( ) P
2( )

2 3,( ) P
2( )

2 4,( )

P
2( )

3 1,( ) P
2( )

3 2,( ) P
2( )

3 3,( ) P
2( )

3 4,( )

P
2( )

4 1,( ) P
2( )

4 2,( ) P
2( )

4 3,( ) P
2( )

4 4,( )

RK 1+ ω( )

SK 2+ ω( )

U1

U2

,

SK ω( )
RK 2+ ω( )
∆I1 ω( )
∆I2 ω( )

= 

P
S4( )

1 1,( ) P
S4( )

1 2,( ) P
S4( )

1 3,( ) P
S4( )

1 4,( )

P
S4( )

2 1,( ) P
S4( )

2 2,( ) P
S4( )

2 3,( ) P
S4( )

2 4,( )

P
S4( )

3 1,( ) P
S4( )

3 2,( ) P
S4( )

3 3,( ) P
S4( )

3 4,( )

P
S4( )

4 1,( ) P
S4( )

4 2,( ) P
S4( )

4 3,( ) P
S4( )

4 4,( )

RK ω( )

SK 2+ ω( )

U1

U2

,

P S4( ) 1 1,( ) P 1( ) 1 1,( )=

+ P 1( ) 1 2,( )P 2( ) 1 1,( )P 1( ) 2 1,( )/P0;

P S4( ) 1 2,( ) P 1( ) 1 2,( )P
2( )

1 2,( )/P0;=

P S4( ) 1 3,( ) P 1( ) 1 3,( )=

+ P 1( ) 1 2,( ) P[ 2( ) 1 3,( ) P 2( ) 1 1,( )P 1( ) 2 3,( ) ] /P0;+

P
S4( )

1 4,( ) P
1( )

1 4,( ) P 1( ) 1 2,( ) P 2( ) 1 4,( )[+=

+ P 2( ) 1 1,( )P 1( ) 2 4,( ) ] /P0;

P
S4( )

2 1,( ) P 1( ) 2 1,( )P 2( ) 2 1,( )/P0;=
(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

where P0 = 1 – P(2)(1, 1)P(1)(2, 2).
The superscripts S4, 1, and 2 refer to the total P

matrix, P matrix of the left-hand SAW structure, and P
matrix of the right-hand SAW structure, respectively.
By an SAW structure, one can mean both a single elec-
trode and a group of electrodes with a known total P
matrix. The above relationships can be used for calcu-
lating the input admittance of a TCRF with arbitrarily
varying polarity of the electrodes connected to the IDT
buses, varying period, apodized electrodes in the IDT

P S4( ) 2 2,( ) P
2( )

2 2,( )=

+ P 2( ) 2 1,( )P 1( ) 2 2,( )P
2( )

1 2,( )/P0;

P S4( ) 2 3,( ) P 2( ) 2 3,( ) P 2( ) 2 1,( ) P 1( ) 2 3,( )[+=

+ P 2( ) 1 3,( )P 1( ) 2 2,( ) ] /P0;

P S4( ) 2 4,( ) P 2( ) 2 4,( ) P 2( ) 2 1,( ) P 1( ) 2 4,( )[+=

+ P 2( ) 1 4,( )P 1( ) 2 2,( ) ] /P0;

P S4( ) 3 1,( ) P
1( )

3 1,( ) P 1( ) 2 1,( ) P
2( )

3 1,( )[+=

+ P 2( ) 1 1,( )P 1( ) 3 2,( ) ] /P0;

P S4( ) 3 2,( ) P 2( ) 3 2,( ) P 2( ) 1 2,( ) P 1( ) 3 2,( )[+=

+ P 1( ) 2 2,( )P 2( ) 3 1,( ) ] /P0;

P S4( ) 3 3,( ) P 1( ) 3 3,( ) P 2( ) 3 3,( )+=

+ P 1( ) 3 2,( ) P 2( ) 1 3,( ) P 2( ) 1 1,( )P 1( ) 2 3,( )+[ ]{

+ P 2( ) 3 1,( ) P 1( ) 2 3,( ) P 1( ) 2 2,( )P
2( )

1 3,( )+[ ] } /P0;

P S4( ) 3 4,( ) P 1( ) 3 4,( ) P 2( ) 3 4,( )+=

+ P 1( ) 3 2,( ) P 2( ) 1 4,( ) P 2( ) 1 1,( )P 1( ) 2 4,( )+[ ]{

+ P 2( ) 3 1,( ) P 1( ) 2 4,( ) P 1( ) 2 2,( )P
2( )

1 4,( )+[ ] } /P0;

P S4( ) 4 1,( ) P 1( ) 4 1,( ) P 1( ) 2 1,( ) P 2( ) 4 1,( )[+=

+ P 2( ) 1 1,( )P 1( ) 4 2,( ) ] /P0;

P S4( ) 4 2,( ) P 2( ) 4 2,( ) P 2( ) 1 2,( ) P 1( ) 4 2,( )[+=

+ P 1( ) 2 2,( )P 2( ) 4 1,( ) ] /P0;

P
S4( )

4 3,( ) P 1( ) 4 3,( ) P
2( )

4 3,( )+=

+ P 1( ) 4 2,( ) P 2( ) 1 3,( ) P 2( ) 1 1,( )P 1( ) 2 3,( )+[ ]{

+ P
2( )

4 1,( ) P 1( ) 2 3,( ) P 1( ) 2 2,( )P
2( )

1 3,( )+[ ] } /P0;

P
S4( )

4 4,( ) P 1( ) 4 4,( ) P
2( )

4 4,( )+=

+ P 1( ) 4 2,( ) P 2( ) 1 4,( ) P 2( ) 1 1,( )P 1( ) 2 4,( )+[ ]{

+ P
2( )

4 1,( ) P 1( ) 2 4,( ) P 1( ) 2 2,( )P
2( )

1 4,( )+[ ] } /P0,
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and reflecting arrays, and a realistic distribution of the
surface current (charge) over the IDT’s electrodes [3].

INPUT ADMITTANCE OF A TCRF

We will calculate the input admittance of a TCRF
with the modified COM method. We represent either
IDT as a device with two electric and six acoustic
inputs (outputs). Then, the equivalent circuit of a TCRF
can be represented as shown in Fig. 2. The transducers
IDT-1 and IDT-2 are under potentials U1 and U2, which
generate currents I1 and I2, respectively, through the
devices. The complex amplitudes of acoustic waves
incident on IDT-1 and IDT-2 from the left are denoted

as ; the corresponding reflected waves, as . The
complex amplitudes of acoustic waves incident on IDT-1

and IDT-2 from the right are denoted as ; the

respective reflected waves, as . The complex ampli-
tudes of acoustic waves incident on the reflecting arrays
RA1-L (RA2-L) and RA1-R (RA2-R) from the left are

denoted as  and , respectively; those of the cor-

responding reflected waves, as  and . The com-
plex amplitudes of acoustic waves incident on the

reflecting arrays from the right are denoted as  and

, respectively; those of the corresponding reflected

waves, as  and .

Acoustic coupling between the transducers IDT-1
and IDT-2, as well as between the reflecting arrays
RA1-L, RA2-L and RA1-R, RA2-R, is defined by the
transverse acoustic field distribution in the structure,
which is described by expressions (11) and (12).

To obtain the components of the [P(IDT)] matrices,
which describe the TCRF’s transducers in the absence
of the reflecting arrays RA1-L (RA2-L) and RA1-R
(RA2-R), we write equations similar to Eqs. (22) for a
kth electrode of IDT-1 and IDT-2, set pK = dT, and suc-
cessively multiply the matrix components according to
(25)–(41). As a result, we obtain

(42)

Rn
A1 Sn

A1

Sn
A2

Rn
A2

Rn
B1 Rn

C1

Sn
B1

Sn
C1

Sn
B2

Sn
C2

Rn
B2

Rn
C2

SA1 ω( )

RA1 ω( )
∆I1 ω( )
∆I2 ω( )

= 

P
IDT( )

1 1,( ) P IDT( ) 1 2,( ) P IDT( ) 1 3,( ) P IDT( ) 1 4,( )

P IDT( ) 2 1,( ) P IDT( ) 2 2,( ) P IDT( ) 2 3,( ) P IDT( ) 2 4,( )

P IDT( ) 3 1,( ) P IDT( ) 3 2,( ) P IDT( ) 3 3,( ) P IDT( ) 3 4,( )

P IDT( ) 4 1,( ) P IDT( ) 4 2,( ) P IDT( ) 4 3,( ) P IDT( ) 4 4,( )
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The P matrices of the reflecting arrays RA1-L
(RA2-L) and RA1-R (RA2-R) are derived from
Eqs. (22) and (25)–(41) in a similar manner. It should
be taken into account that the reflecting arrays do not
reverse the forward- and backward-traveling acoustic
waves, and electric potentials are not applied to them.
Therefore, in deriving the P matrices of the reflecting
arrays, we must put ξK = 0, U0 = 0, and C2 = 0. In this
case, the matrix elements P(1, 3), P(2, 3), P(3, 1),
P(3, 2), P(3, 3), P(1, 4), P(2, 4), P(4, 1), P(4, 2), and
P(4, 4) vanish. Then, with pK = dR, for the P matrix of
the reflecting array RA1-L (RA2-L), we obtain

(43)

and for the P matrix of the reflecting array RA1-R
(RA2-R),

(44)

The matrix [P(D1)], which describes the gap between
the reflecting array RA1-L (RA2-L) and IDT, and the
matrix [P(D2)], which describes the gap between the
IDT and reflecting array RA1-R (RA2-R), can be
obtained from Eqs. (22) and (25)–(41) with ξK = 0,
U0 = 0, C2 = 0, rK = 0, and WK = 0. In this case, only the
elements P(1, 2) and P(2, 1) will be nonzero. Figure 2
shows that R(A1) = R(B2)exp(–jkd1), SB2 = SA1exp[jkd1],
RC1 = RA1exp(–jkd1), and SA2 = SC1exp(jkd1), where
d1 is the spacing between the IDT and reflecting array.

×

RA2 ω( )

SA2 ω( )
U1

U2

.

SB1 ω( )

RB2 ω( )

P AL( ) 1 1,( ) P AL( ) 1 2,( )

P AL( ) 2 2,( ) P AL( ) 2 2,( )

RB1 ω( )

SB2 ω( )
,=

SC1 ω( )

RC2 ω( )

P AR( ) 1 1,( ) P AR( ) 1 2,( )

P AR( ) 2 2,( ) P AR( ) 2 2,( )

RC1 ω( )

SC2 ω( )
.=

U1

RB1 RB2 RA1 RA2 RC1 RC2

RB1 RB2 RA1 RA2 RC1 RC2
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SB1 SB2 SA1 SA2 SC1 SC2
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RA1-RIDT-1

IDT-2

Fig. 2. Equivalent acoustoelectric circuit of a TCRF.
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By successively multiplying the matrices in accor-
dance with formulas (25)–(41),

and

we obtain the components of the matrix [P(S4)], which
describes the transducers in the presence of the reflect-
ing arrays RA1-L (RA2-L) and RA1-R (RA2-R).

The quantities P(S4)(3, 3), P(S4)(3, 4), P(S4)(4, 3), and
P(S4)(4, 4) have the meaning of admittances. One should
keep in mind that they are obtained for an nth
waveguide mode. Extracting these quantities from the
[P(S4)] matrix, we come to

where Yn(1, 1) = P(S4)(3, 3), Yn(1, 2) = ±P(S4)(3, 4), Yn(2,
1) = P(S4)(4, 3), and Yn(2, 2) = ±P(S4)(4, 4) are the com-
ponents of the input admittance matrix of the filter due
to an nth waveguide mode.

Taking into account the sign of U2, one should use a
plus sign before Yn(1, 2) and Yn(2, 2) for symmetric
modes; a minus sign, for antisymmetric ones.

Since this theory considers only linear interactions
(the transformation of forward- and backward-traveling
SAWs and also the reflection and propagation of
SAWs), the total current through the IDT is equal to the
sum of the currents related to each of the modes excited
plus the high-frequency current through the IDT static
capacitance:

(47)

P L( )[ ] P D1( )[ ] P AL( )[ ] P IDT( )[ ] ,××=

P R( )[ ] P
AR( )[ ] P D2( )[ ] ,×=

P S4( )[ ] P L( )[ ] P R( )[ ]× ,=

I1 n, ω( )
I2 n, ω( )

Yn 1 1,( ) Yn 1 2,( )
Yn 2 1,( ) Yn 2 2,( )

U1

U2

,
=

,

45( )
46( )

I1 ω( ) I1 n, ω( )[ ]
n

∑ jω C2/2( )U1 η1K ,
k 1=

NT

∑+=

1

2

–5

–10
–15

–20

–25

–30

S21, dB

68.3 68.8 69.3
ω, MHz

Fig. 3. Transmission coefficient of an unmatched two-mode
TCRF: (1) experiment and (2) simulation.
(48)

Note that the number of waves being excited and
their symmetry are determined by solving the disper-
sion relation derived from boundary conditions (5) and
(8). Then, after the input admittance matrix compo-
nents due to each of the waveguide modes excited in the
TCRF have been calculated from Eqs. (45)–(48), they
are merely summed to find the components of the
TCRF’s total input admittance:

where

(51)

(52)

(53)

(54)

Note that the plus sign in the expressions for Y(1, 2)
and Y(2, 2) should be used for symmetric modes; a
minus sign, for antisymmetric modes.

The equivalent electrical circuit of a TCRF has the
form of a Π-section composed of passive elements with
complex admittances. Using the equivalent electric cir-
cuit and input admittances of (51)–(54), the S parame-
ters of a TCRF can easily be found by the standard tech-
nique.

I2 ω( ) I2 n, ω( )[ ]
n

∑ jω C2/2( )U2 η2K .
k 1=

NT

∑+=

I1 ω( )
I2 ω( )

Y 1 1,( ) Y 1 2,( )
Y 2 1,( ) Y 2 2,( )

U1

U2

,
=

,

49( )
50( )

Y 1 1,( ) Pn
S4( ) 3 3,( )

n

∑ jω C2/2( ) η1K;
k 1=

NT

∑+=

Y 1 2,( ) Pn
S4( ) 3 4,( );±

n

∑=

Y 2 1,( ) Pn
S4( ) 4 3,( );

n

∑=

Y 2 2,( ) Pn
S4( ) 4 4,( )±

n
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Fig. 4. Transmission coefficient of two matched TCRFs
connected in series: (1) experiment and (2) simulation.
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EXPERIMENTAL RESULTS 
AND SIMULATION

To experimentally validate the theory developed
above, we will use the results reported in [7], where a
TCRF with the same polarity of electrode pairs is con-
sidered. Therefore, it can be simulated with both the
conventional COM theory (see, e.g., [1]) and the theory
presented in this paper. The filter was designed for a
center frequency of 68.9 MHz using the conventional
COM theory and the procedure of optimizing the
parameters W, G, NT, and dT/dR. To provide the required
bandwidth (≈80 kHz), ST, X quartz was taken as a
piezoelectric substrate material. The basic parameters
of the filter’s layout were dT = 22.835 µm, dR = 22.791 µm,
the number of electrodes in the transducer IDT-1 (and
IDT-2) NT = 561, the number of electrodes in the
reflecting array RA1 (and RA2) NR = 200, W = 6.3λ0,
G = λ0, thickness of the film A1 0.018λ0, dT = 0.875λ0,
and WK = 5λ0, where λ0 is the acoustic wavelength at
the center frequency.

The measured transmission coefficient (S21) of the
filter connected to a 300-Ω transmission line without
matching elements is shown in Fig. 3 (curve 1) together
with the result of simulation based on the theory pro-
posed in this paper (curve 2). The –3-dB bandwidth and
the insertion loss were measured to be 85 kHz and
5.5 dB, respectively. The plateau at –27 dB in the
experimental curve is attributed to direct leakage. Note

–1

0

1

N1 N2

N3 N4

N5 N6

NT

Fig. 5. Electrode polarity reversal in the four-mode TCRF.
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that the input (output) impedance of the filter measured
with a R4-37 network analyzer is ≈300 Ω.

In order to improve the out-of-band suppression, we
connected two filters (with W = 6.3λ0 for the first filter
and 5.9λ0 for the second) in series. The input and output
of either filter were matched with the help of 0.6-µH
inductances, and an emitter follower was connected to
the input of the first filter. The frequency response of
the two filters that was taken using the 50-Ω R4-37 net-
work analyzer is shown in Fig. 4 (curve 1) together with
the result of simulation based on the theory proposed
(curve 2). The insertion loss and –3-dB bandwidth were
measured to be 7 dB and 82 kHz, respectively. The out-
of-band suppression in the range 10–200 MHz was no
less than 43 dB except for the narrow (about 10-kHz-
wide) –36-dB peak at 68.770 MHz.

To validate our theory in the case when four modes
are simultaneously excited in a system of two weakly
coupled resonators, we took advantage of the experi-
mental data reported in [6] for a TCRF with four rever-
sals of the polarity of electrodes connected to the IDT
contact buses. The basic parameters of the filter’s lay-
out were as follows: the total number of electrodes in
the transducer IDT-1 (IDT-2) NT = 999, the number of
electrodes in the reflecting array RA1 (RA2) NR = 250,
W = 8λ0, G = 2λ0, thickness of the film A1 0.017λ0, and
d1 = 0.875λ0. The piezoelectric substrate material was
ST, X quartz. The polarity of electrode pairs is reversed
at N1 = 91, N2 = 139, N3 = 326, N4 = 674, N5 = 861, and
N6 = 909. Electrodes from the first to N1th, from N2th to
N3th, from N4th to N5th, and from N6th to NTth were
dummy. The electrode polarity variation is illustrated in
Fig. 5. If we assume that the electrode polarity in the
central part of the IDT is positive, i.e., +1, then the
polarity of electrodes from N1th to N2th and from N5th
to N6th is negative, i.e., –1.

The measured transmission coefficient of the filter
connected to a 50-Ω transmission line without match-
ing elements is shown in Fig. 6a (data from [6]). The
results of simulation based on our theory are illustrated
Cor
Get
Hld

CH1 B/R logMAG 5 dB/REF–9.115 dB
(a)

Cor
Get
Hld

CH1 B/R logMAG 5dB/REF–3.507 dB
(b)

CH1 Center 249.540000 MHz SPAN 5.000000 MHz

Fig. 6. Measured transmission coefficient of (a) the unmatched and (b) matched four-mode TCRF [6].
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in Fig. 7a (theoretical results in [6] are absent). The
measured transmission coefficient of the filter matched
to the transmission line is plotted in Fig. 6b (data from
[6]), while Fig. 7b shows the curve calculated with our
theory. Good agreement between the experiment [6]
and the proposed theory is observed. The theoretical
insertion loss is slightly lower than the experimental
values, presumably because our calculations ignored

(a) (b)
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–40
–50
–60

246.5 249.5 252.5 246.5 249.5 252.5

–5
–10
–15
–20
–25
–30

S21min = –7.8 dB S21min = –1.2 dB
S21, dB

ω, MHz

Fig. 7. Transmission coefficient of (a) the unmatched and
(b) matched four-mode TCRF calculated by the method
proposed in this paper. The filter layout is the same as in [6].

S21, dB
 the ohmic loss in the IDT electrodes and reflecting
arrays.
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Abstract—Methods for measuring angular, geometrical, and energy characteristics of a hollow relativistic
electron beam using the transfer function of a converting target are developed. A relationship between the
anisotropy parameters of bremsstrahlung behind the target, angular characteristics of electrons, and geometrical
parameters of the electron beam in the target plane is established. The energy balance equation that describes
the interaction between the electron beam and converting target is studied. The transfer function of the target
and its behavior versus electron energy are found. The time and integral characteristics of the electron beam are
examined. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

15-MeV electron accelerators are widely used for
studying nuclear-radiation-related effects and in appli-
cations concerned with the generation of high-intensity
pulsed photon radiation [1, 2]. The radiation is gener-
ated in a target that converts a part of the electron
energy to bremsstrahlung (converting target). The
parameters of the bremsstrahlung depend directly on
the type and thickness of the target, as well as on the
energy, current, and angle of incidence of electrons.

Although electron beams in accelerators have been
used for a long time, a reliable correlation between the
bremsstrahlung characteristics and electron beam
parameters, which could be used to optimize the elec-
tron beam conversion and obtain given bremsstrahlung
fields, is still lacking. According to [3], the energy yield
I of bremsstrahlung per electron (without considering
self-absorption in a target with an atomic number Z and
assuming that normally incident electrons of energy E
are totally absorbed) is given by

(1)

The strong dependence between the energy yield of
bremsstrahlung and the electron energy has stimulated
the development of methods for finding the energy and
current characteristics of electron beams by measuring
the bremsstrahlung characteristics. In particular, it was
proposed [4] to measure the time distributions of the
electron energy E(t) and current J(t) with a set of
Compton detectors that have essentially different
energy dependences of the sensitivity to photon radia-
tion.

I ZE2/ ZE 6.53 103×+( ), MeV.=
1063-7842/03/4802- $24.00 © 20239
A set of dose-rate detectors with replaceable filters
was used in [5], where electrons were assumed to nor-
mally strike the target. The disadvantages of the tech-
niques suggested in [4, 5] are the inadequacy of calibra-
tion and measurement conditions and a narrow energy
range available because of fundamental limitations. In
[6], a diode collimating array was used to study the time
evolution of the electron beam radial structure by trac-
ing the bremsstrahlung yield. The feasibility of evaluat-
ing the parameters of a continuous cylindrical electron
beam from those of secondary radiation was carefully
investigated in [7]. These studies have made it possible
to work out an algorithm for the synthesis of the target
transfer functions to estimate the energy, current, and
angle of incidence of electrons in the energy range
below 3 MeV. The associated technique uses a set of at
least four dose-rate detectors with identical energy
dependences of the sensitivity (which are placed at
fixed distances from the target at different angles to the
axis of electron beam transport (G = 0–180°)) and elec-
tron beam current meters.

The measuring methods developed are indirect and
assume that bremsstrahlung measurements are exact.
Under certain conditions, this approach is apparently
justified.

At present, there are no data for using similar meth-
ods to measure the characteristics of high-current hol-
low relativistic electron beams. In this paper, we fill this
gap to a certain extent, suggesting experimental
approaches to reconstructing geometrical, angular, and
energy characteristics of hollow electron beams in the
plane of a converting target.
003 MAIK “Nauka/Interperiodica”
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SUBJECT OF INVESTIGATION 
AND EXPERIMENTAL TECHNIQUE

The problem of increasing the bremsstrahlung yield
under laboratory conditions was partially solved by
using linear pulsed accelerators (of LIU type) with a
hollow electron beam [8]. Hollow electron beams are
accelerated and transported in axisymmetric electric
and magnetic fields. The limiting current Jlim that can be
transported under these conditions is given by

(2)

where J0 = 17 kA is the Alfvén current; γ is the relative
electron energy; and l and r are the thickness and effec-
tive radius of the electron beam, respectively.

The arrangement of the accelerator’s inductors built
on radial lines provides a wide range of electron energy.
The electron energy spread ∆γ over the beam cross sec-
tion depends on the beam current J as

(3)

For the LIU-10 accelerator, the maximum electron
energy is 12 MeV, the beam current is ≤40 kA at a
cathode diameter of 8 to 12 cm, and the pulse width is
≤3 × 10–8 s.

When a high-current hollow electron beam is trans-
ported through an accelerating tube in an axisymmetric
magnetic field, the particle velocity vector makes a cer-
tain angle with the magnetic induction vector. This
angle depends on the self-consistent structure of the
self-electromagnetic fields of the beam and external
fields. The complex motion of an electron in such fields
can be represented as the motion of a point (guiding
center) in appropriate coordinates plus the rotational
motion about this center. The path of the electron’s
guiding center is a helix with a radius depending on the
guiding center azimuth velocity, i.e., on the self-electric
field (radial component) and resultant magnetic field
(axial component), while the path of an individual elec-
tron is a helix with a Larmor radius that is wound on the
guiding center path.

Such a representation of the particle motion is not
rigorous but visualizes its influence on the bremsstrahl-
ung field behind the target. Relative to the beam trans-
port axis, the electron motion has the axial, V||; azi-
muthal, Va; and radial, Vr, velocity components, which
are related to the angle of incidence Θ as

(4)

With reproducible axisymmetric magnetic and
accelerating electric fields, the angle of incidence
depends primarily on its energy and, for a several-
megaelectronvolt energy range, varies within a radia-

J lim J0 γ2/3 1–( )3/2
1 2 l/r( )ln+[ ] ,=

∆γ/γ 0.5lJ /rJ lim.=

Θ V a
2 V r

2+( )/V ||{ }arctan=

=  βtan
2 ϕtan

2
+( ).arctan
tion pulse only slightly; i.e., under these conditions, an
electron beam during a pulse can be characterized by
the effective angle of incidence Q.

The method for determining the angular and geo-
metric characteristics of a hollow relativistic electron
beam incident on a converting target relies on the fact
that the energy and angular distributions of
bremsstrahlung leaving an absorbent with an atomic
number Z depends on its thickness D, electron energy
E, and effective angle of incidence Q. The basic prop-
erty of the angular distribution of the bremsstrahlung
generated when a relativistic electron is deflected in the
field of a nucleus or bound electron is that the photons
travel predominantly in the direction of the primary
electron, mostly within a cone whose apex angle is
inversely proportional to the relative electron energy γ
[2]. The angular distribution of bremsstrahlung gener-
ated in converting targets of a thickness comparable to
or greater than the primary electron mean free path is
affected by multiple scattering and depends on the elec-
tron energy loss. An analytical expression describing
the bremsstrahlung from such absorbents has not been
derived. Based on qualitative considerations, one can
expect that, as the target thickness increases, so does
the angular distribution width and the angle of maxi-
mum bremsstrahlung yield may not coincide with Q
when Q ≠ 0. The difference Y between Q and the angle
of maximum bremsstrahlung yield increases with Z, D,
and Q and decreases with increasing E. Under particu-
lar measurement conditions and geometry, Y can be
obtained from independent experiments with monoen-
ergetic electron beams. Velocity components responsi-
ble for the bremsstrahlung exit angle (as in (4)) in the
case of a hollow electron beam are determined from the
positions of maxima in the bremsstrahlung dose rate
distribution over j (j ≥ 3) planes at different distances
from the target that are normal to the electron beam
transport axis [9] (for example, with the help of dose-
rate detectors).

In the coordinate planes, the sequences of the
bremsstrahlung dose rate distribution maxima pro-
duced within a pulse are represented by normal (rela-
tive to the electron beam transport axis) sections of a
one-sheet hyperboloid (at Q ≠ 0). The geometric
parameters of these sections are used to find the coeffi-
cients a, c, and h of the equation of one-sheet hyperbo-
loid (in the canonical form) whose rectilinear genera-
trices are collinear with the direction of the maximum
bremsstrahlung yield. Therefore, the components of the
effective (over a pulse) angle of electron incidence
given by (4) can be expressed through the coefficients
a, c, and h of the canonical equation of one-sheet hyper-
boloid as follows:

(5)

(6)

β a/c( )arctan Yβ,+=

ϕ ah/c c2 h2+( ){ }arctan Yϕ .+=
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Using this technique, one can also determine the
one-pulse effective radius r of the cross section of a hol-
low electron beam in the target plane:

(7)

To calculate the energy characteristics of the beam’s
electrons, consider the energy balance equation for the
interaction of the beam with a homogeneous converting
target whose thickness meets the total absorption con-
dition for primary electrons. For the electron energies
of interest, the beam energy W can be represented by
the sum of the energy absorbed in the target (Wab), that
carried away by bremsstrahlung (Wbr), backscattered
electron radiation (WQ), δ-electron radiation (Wδ), and
photoneutron radiation (Wph); i.e.,

(8)

The energy W of the electron beam per radiation
pulse can be expressed by the time-dependent beam
current J(t) and electron energy E(t):

(9)

where e is the electron charge.
According to [7, 10, 11], the energy E(t) of electrons

incident on the target at the time instant t within the
width τ of an electron radiation pulse can be repre-
sented through the dynamic characteristic of the target
transfer function ([U(t) = P(t)/J(t)] as follows:

(10)

Here, P(t) is the time-dependent bremsstrahlung dose
rate at a particular point of the field and

(11)

where b, α0, β0, and γ0 are the coefficients depending on
measurement conditions and geometry.

The parameters Wab, J(t), P(t), and Q are determined
experimentally during a radiation pulse. The compo-
nents Wph, Wbr, WQ, and Wδ from (8) can be expressed
as a function of W given by (9) with relationship (10)
taken into account.

Consider in detail the components of Eq. (8) for a
single-layer converting target. Due to their small mass,
electrons are intensely scattered in a material; there-
fore, the probability that they will reflect from the target
is fairly high, especially at Q ≠ 0. By analogy with (9),
the component of Eq. (8) that refers to the beam energy
loss WQ during a pulse due to electron backscattering
can be represented as

(12)

r a/c( ) c2 h2+( ).=

W Wab– WQ– Wδ– Wbr– Wph– 0,=

W e 1– J t( )E t( ) t,d

0

τ

∫=

E t( ) b 1– P t( )/J t( )[ ] n t( )–
Q const= .=

n t( ) = α0 β0 P t( )/J t( )[ ] γ 0 P t( )/J t( )[ ] 2 …,+ + +

WQ e 1– R Q E Z, ,( )J t( )Eav t( ) t,d

0

τ

∫=
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where R(Q, E, Z) is the total electron backscattering
factor and Eav(t) is the average energy of backscattered
electrons.

The total electron backscattering (reflection) factor
R depends largely on their energy E, effective angle of
incidence Q on the target, and atomic number Z of the
target material and can be analytically represented
as [12]

(13)

where V is the tabulated function of the electron scatter-
ing angle [12] and σ ≈ (Z + 1)/E is the number of events
of electron scattering by angles on the order of 1.

The average energy Eav can be estimated as [12]

(14)

The component Wbr in Eq. (8), which represents the
electron beam energy carried away from the target by
bremsstrahlung, is determined from the radiation yield
by introducing the efficiency coefficient for target
bremsstrahlung [2] (which depends on the atomic num-
ber of the target and electron energy) and by estimating
the self-absorption of the bremsstrahlung radiation in
the target; i.e.,

(15)

where K is a coefficient in MeV–1; µ{E(t)} is the mass
coefficient of photon absorption in the converting target
that is averaged over the photon energy spectrum; and
D and d{E(t)} are, respectively, the thickness of the tar-
get and the depth where the effective generation of pho-
tons starts [2].

The component Wδ in Eq. (8), which represents the
energy taken away from the target by δ electrons, is
estimated in accordance with [13]. Here, it is taken into
account that the bremsstrahlung spectrum, excluding
the characteristic radiation, is almost independent of
the target’s atomic number Z and the relative
bremsstrahlung spectrum, of the electron energy. Thus,
Wδ depends on the bremsstrahlung cross section alone
and is no greater than 0.2% of W in (9) for target mate-
rials with Z ≤ 74.

The analysis of the photoneutron yield [2] shows
that Wph in (8) is no greater than 0.1% of the electron
beam energy W for the vast majority of materials; i.e.,
Wδ and Wph in Eq. (8) can be viewed as corrections. As
follows from the aforesaid, in the electron energy range
considered, the significant components of Eq. (8) are W,
Wab, Wbr, and WQ, of which Wbr and WQ can be
expressed analytically through the components of the

R V 1 V–{ } 1 1 σ+( ) 0.5––{+=

× 1 1.73 Qcos–( )/ 1 1.73+([

× Q 1 σ–( )/ 1 σ+( )cos{ } 0.5– ) ] } 1/σ–( ),exp

Eav 0.6E 1 E 1 Qsin–( )/ Z 1+( )–[ ] .≈

Wbr e 1– KZ W t( )E t( )
0

τ

∫=

× µ E t( ){ } D d E t( ){ }–( )/ Qcos–[ ] dt,exp
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parameter W given by (9) and Wab is determined exper-
imentally. The errors in Wbr and WQ calculated and in
the parameters P(t), J(t), Q, and Wab measured may sig-
nificantly affect the solution. The ratios of WQ, Wbr, and
Wab to W depend on the atomic number of the target.
The lower Z, the smaller WQ/W and Wbr/W and the
greater Wab/W; i.e., the significance of WQ and Wbr in
energy balance equation (8) can be minimized by
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Fig. 1. Y versus Q at E = (j) 4 and (r) 12 MeV.
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Fig. 3. Transfer function U(E) of the converting target.
appropriately choosing Z of the target. To find the coef-
ficients b, α0, β0, and γ0 from (10) and (11), we will use
the method stated in [14]. In this method, P(t), J(t), Q,
and Wab are first measured by applying a series of d ≥ 4
radiation pulses from the accelerator that differ signifi-
cantly in maximum electron energy, with the experi-
mental geometry and conditions remaining the same,
and then system of nonlinear equations (8) is solved.

EXPERIMENTAL

The above techniques were used to study the angu-
lar and energy characteristics of electrons in a hollow
beam at the exit of an LIU-10 linac in order to optimize
its operating conditions for obtaining a high-intensity
uniform bremsstrahlung field. The converting target
was made of iron (Z = 26 and D = 7.2 g cm–2), and the
bremsstrahlung dose rate was measured with an SD2-
01 scintillation detector made of P-15 plastic and
placed 1 m behind the target on the electron beam axis.
The beam current was measured with a sectional
Rogowski loop. The current and dose-rate measuring
channels were synchronized and had identical time res-
olutions. The beam energy absorbed in the target, Wab,
was determined with a copper thermal resistor, which
was regularly applied on the surface of the target and
had a uniform surface resistance per unit length [14].
The coordinates of the dose distribution maxima were
found with IS-7 thermoluminescent glass detectors and
then processed with a computer program. In indepen-
dent experiments with continuous cylindrical beams of
monoenergetic electrons with the same experiment
geometry, we determined the parameter Y versus
energy and angle of electron incidence over given
ranges of these parameters (Figs. 1, 2) with the help of
thermoluminescent detectors.

With an induction of an axisymmetric magnetic
field applied to the accelerator channel B = 0.4 T and a
maximum electron energy from 8 to 12 MeV, the effec-
tive angle of incidence changed from 16° (β = 14° and
ϕ = –8°) to 13° (β = 11° and ϕ = –7°). The negative
value of ϕ means that the electron beam radially
diverges near the target. The value ϕ ≠ 0 characterizes
the deviation of the electron beam from the cylindrical
form.

As follows from the experiment, the induction B =
0.4 T of the external axisymmetric magnetic field,
which prevents the spread of the electron beam in the
accelerating tube (ϕ = 0), decreases substantially near
the target because of the edge and skin effects, which
changes the angular characteristics of the electrons.
When the external magnetic field near the target is
increased to 0.55 T, the component of the effective
angle of incidence ϕ ≈ 0 and the component β increases
to 18° (for E = 12 MeV).

The dynamic transfer function U(t) of the convert-
ing target was constructed by machine processing the
measured distributions P(t) and J(t). From the experi-
TECHNICAL PHYSICS      Vol. 48      No. 2      2003
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mental results and in view of the measurement errors
involved in P, J, Q, and Wab, we obtained a solution to
Eq. (8) when the number of equations in the system is
d ≥ m (m is the number of unknowns b, α0, β0, γ0, …):

These results allow us to find the transfer function of
the target U = P/J versus the electron energy, U(E),
shown in Fig. 3. When U(E) and dynamic transfer func-
tion U(t) are known, it is possible to calculate E(t),
W(t), and the electron energy spectrum F(E) in the tar-
get plane. The functions E(t) and F(E) are plotted in
Figs. 4 and 5, respectively, for two energy regimes. The
discrepancy in the rise times of the electron energy
pulse when a different number of the inductors is used
(Fig. 4) and the tail observed in the low-energy region
of the integral electron energy spectra (Fig. 5) make it
possible to estimate the temporal mismatch between
the accelerating fields of the inductors.

CONCLUSION

Thus, we established a correlation between the
parameters of the bremsstrahlung field and those of a
hollow electron beam incident on a converting target
whose thickness meets the total reflection condition for
primary electrons.

It is shown that, when the bremsstrahlung is pro-
duced by a hollow electron beam transported in an axi-
symmetric magnetic field, the components of the angle
of incidence of relativistic electrons on the target can be
determined from the geometrical parameters of the
maxima of the bremsstrahlung dose rate distribution in
several planes. The effect of the angle of incidence and
energy of electrons on this correlation is clarified. The
transfer function of the target is defined as the ratio of
the bremsstrahlung dose rate at a point on the electron

b 0.047, α0 7.23 10 2– ,×= =

β0 0.91 10 2– , γ0× 2 10 4– .×–= =

2
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Fig. 4. Time distribution of the electron energy in a radia-
tion pulse: (j) intermediate acceleration mode and
(r) acceleration mode optimized in electron energy.
TECHNICAL PHYSICS      Vol. 48      No. 2      2003
beam axis to the beam current. The solution of Eq. (8)
is, in essence, the calibration of the measuring system,
primary current converters, bremsstrahlung dose rate,
and target in a given geometry. This calibration speci-
fies the transfer function of the target versus the elec-
tron beam energy, U(E). The procedure employs the
absolute calibration method measuring the energy Wab

released in the target and may be omitted in subsequent
measurements.

The techniques developed in this paper are used to
study the geometrical, angular, and energy characteris-
tics of a hollow electron beam transported to a convert-
ing target in an axisymmetric magnetic field. The time
behavior of the electron energy and current allow one to
analyze the acceleration process, improve the synchro-
nization of the accelerating field inductors, and thus
optimize the angular and geometrical characteristics of
the electron beam in the target plane. This information
is sufficient to calculate the bremsstrahlung energy
spectrum for any time interval (within the pulse width)
and can be used to find ways of acting on a hollow elec-
tron beam that provide a bremsstrahlung field with spe-
cific desired properties (dose, dose rate, irradiation uni-
formity, equidistant planes of equal dose, etc.).
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Abstract—A study is made of the generation of electron beams in a system consisting of eight secondary-emis-
sion cathodes arranged at regular intervals in the azimuthal direction inside a coaxial cylindrical anode in
crossed electric and magnetic fields. In this system with an azimuthally nonuniform electric field, secondary-
emission multiplication of electrons is realized and beam generation is achieved. With a cathode voltage of
~37 kV and a magnetic field of ~3000 Oe, the total current of all the beams amounts to ~35 A, the microper-
veance of each beam being ~0.7 µA/V3/2. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent years, studies of electron sources with cold
cathodes operating in the regime of secondary emission
in crossed electric and magnetic electric fields have
aroused considerable interest [1–6]. The principle of
beam generation in secondary-emission systems in
crossed fields is well known. When the voltage drops,
primary electrons moving in a decreasing electric field
and constant magnetic field along cycloidal trajectories
gain energy and bombard the cathode. If the electric
field at the cathode decreases very rapidly, the electrons
gain enough energy to knock out secondary electrons
(with a secondary yield σ above unity). At this instant,
the number of both bombarding and knocked-on elec-
trons increases in an avalanche-like manner. The num-
ber of electrons near the cathode increases until it
reaches a certain critical value, at which the dynamic
equilibrium is established, the secondary-electron mul-
tiplication becomes steady state, and beam generation
begins. Primary electrons in the system can be pro-
duced by field emission, emission from dielectric
impregnations on the cathode surface, or emission from
an auxiliary hot cathode [1, 2].

For generating an electron flow by secondary-emis-
sion multiplication, the crossed electric and magnetic
fields must be properly produced near the cathode. In
view of the boundary conditions near the metal surface,
the electric field is always normal to the cathode sur-
face. Therefore, in any system of cylindrical secondary-
emission cathodes (including those possessing no azi-
muthal symmetry throughout the entire interelectrode
gap), conditions exist such that an electron beam may
be generated by secondary-emission multiplication.

A system consisting of rod anodes and secondary-
emission cathodes was studied in detail in [7]. In this
1063-7842/03/4802- $24.00 © 20245
system, the rod anodes are positioned at the intersection
of the axes forming squares in the xy plane, and the rod
cathodes are located between them at the intersections
of the diagonals and form a set of cells. The azimuthal
profile of the electric field in each cell varies from
almost uniform (near the surfaces of the rod cathodes)
to strongly nonuniform (at a distance from the cathode
equal to or longer than half the distance from the rod
anodes). Such a design allows the regular arrangement
of the cells with secondary-emission cathodes and, con-
sequently, of the electron beams, whose number can be
increased either in one axial direction (to form a linear
beam) or in both directions (to form an arbitrary beam
configuration in the xy plane). With four cells, a cathode
voltage of ~28 kV, and a magnetic field of ~2200 Oe,
electron beams with a total beam current of ~22 A were
produced.

It is of interest to study a nonuniform system similar
to the linear system with rod anodes and cathodes, but
in cylindrical geometry. Such a system consists of a
coaxial cylindrical anode and secondary-emission cath-
odes arranged at regular intervals in the azimuthal
direction between the anode cylinders. In this paper, we
study the generation of electron beams in a multicath-
ode secondary-emission system with a coaxial anode in
crossed electric and magnetic fields.

EXPERIMENTAL SETUP AND MEASUREMENT 
TECHNIQUE

A schematic of the experimental device is shown in
Fig. 1. Specially shaped voltage pulses with an ampli-
tude of up to 100 kV, a flat-top duration of ~5 µs, and a
repetition rate of 12–15 Hz were fed from pulse modu-
lator 1 (where FL is the forming line, L is the charging
003 MAIK “Nauka/Interperiodica”
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choke coil, U0 is the charging voltage, R is the charging
resistor, DL is the delay line, C is the forming capacitor,
and PT is the step-up pulse transformer) to cathodes 6
of the system through lead-in insulator 2. Anode 7 was
grounded through resistor R3. The pulse top necessary
for the beam generation was formed at the cathodes by
adding two pulses: a short pulse, produced by a sepa-
rate generator with thyratron T2, and a flat-top voltage
pulse, generated by a modulator with thyratron T1 [8].
The duration of the voltage drop was ~0.3 µs, and the
drop steepness was ~150 kV/µs. We used a nine-cell
forming line with a wave impedance of 12 Ω and a full
width at half maximum of ~7 µs.

The multicathode system was placed in vacuum
chamber 3, which was evacuated to ~10–6 torr. The
magnetic field necessary for the generation and trans-
portation of the beam was created by solenoid 4, con-
sisting of four sections and powered by dc source 5.
The strength and longitudinal profile of the magnetic
field in the vacuum chamber could be controlled by
varying the currents in the solenoid sections. The inho-
mogeneity of the longitudinal magnetic field in the sys-
tem and in the transport channel (up to the Faraday cup)
was ±8%.

We measured the cathode voltage, the electron beam
current at the Faraday cup, and the anode current. The
parameters of the voltage pulse were measured with the
help of resistive divider R1R2, and the anode current was
measured with the help of measuring resistor R3. The
Faraday cup 8 was a segment of a coaxial line with an

R
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FLT1

DL

T2

L

C
PT

R1

R2 2
1

3
4

R3

6 7 8
5

Fig. 1. Schematic of the experimental device.
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Fig. 2. Multicathode system: (1) secondary-emission cath-
odes, (2) anode, (3) insulator, and (4) metal disk.

Λ

impedance of ~12 Ω . The line length was ~400 mm,
and the cylinder diameter was 120 mm. The stainless-
steel end surface of the Faraday cup, which was
exposed to the beam, was cooled with water. The beam
current in the measurement circuit reached its steady-
state value in 1.0–1.5 ns. The beam dimensions were
measured from beam prints on an aluminum or a
molybdenum foil. In order to estimate the reproducibil-
ity of the shape and amplitude of the cathode voltage
pulses, as well as the beam current at the Faraday cup,
in addition to oscilloscope measurements, a double-
channel computer-based system was also used.

The design of the system with a cylindrical anode,
in which secondary-emission cathodes are arranged, is
shown in Fig. 2. It can be seen that the system contains
eight copper cathodes 1 (5 mm in diameter) mounted on
metal disk 4. Coaxial anode 2 is mounted on the same
disk through insulator 3. The outside diameter of the
anode cylinder is 68 mm, and the inside diameter is
20 mm. The stainless-steel anode cylinders are jointed
with a metal flange, which has holes to insert the cath-
odes.

EXPERIMENTAL RESULTS 
AND DISCUSSION

In the experiments, we achieved secondary-emis-
sion electron multiplication and the generation of elec-
tron beams. The total beam at the outlet from the gun
consisted of 8 electron beams. At a voltage amplitude
of ~37 kV and magnetic field of 3000 Oe, the total
beam current amounted to ~35 A and the anode current
attained 1.5–2 A. Stable beam generation was obtained
with a voltage drop steepness of ~150 kV/µs.

Figure 3a shows typical oscillograms of the cathode
voltage and the total beam current at the Faraday cup. It
can be seen that the beam generation begins and the
leading edge of the beam-current pulse forms when the
cathode voltage drops. The measured rise time of the
beam-current pulse is 10–12 ns.

Figure 3b shows oscillograms of the anode current
and the total beam current at the Faraday cup. It can be
seen from Fig. 3b that the anode current is similar in
shape to the beam current and amounts to ~3% of the
beam current. In the oscillogram of the anode current,
we can see an initial signal related to the differentiation
of the spike of the voltage pulse. We also measured the
dependence of the beam current at the Faraday cup on
the cathode voltage. This dependence obeys the 3/2
law. In these measurements, the magnetic field corre-
sponded to the maximum amplitude of the total beam
current.

In experiments, it was found that the design of the
cathode insertion into the anode significantly affected
the generation stability and the beam amplitude. To
study this effect, we examined the beam generation in
two versions of the cathode insertion. In the first ver-
sion, the flange joining the anode cylinders was posi-
TECHNICAL PHYSICS      Vol. 48      No. 2      2003
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(a) (b)

Fig. 3. Typical oscillograms of (a) the voltage pulse at the cathode (bottom) and the current pulse at the Faraday cup (top) (the ver-
tical scales are 8 kV/division and 8 A/division, respectively; the horizontal scale is 1 µs/division) and (b) beam-current pulse at the
Faraday cup (bottom) and the gun anode current (top) (the vertical scale is 8 A/division for the beam current and 1 A/div for the
anode current; the horizontal scale is 1 µs/division). The magnetic field is ~2500 Oe.

(a) (b)

Fig. 4. Beam prints (a) at the outlet from the anode and (b) at a distance of 72 mm from the anode.
tioned on the cathode-insertion side. In the second ver-
sion, the joining flange was positioned on the beam-exit
side, whereas the cathodes were inserted into the anode
through the gap between the inner and outer cylinders,
and the anode had a conical part at the cathode-inser-
tion site (in order to increase the electric strength). The
experiments showed that the first version ensured the
stable generation of the beam current. In the second
version, generation was also stable, but the beam cur-
rent was lower. In this version, the beam-current pulse
consisted of two parts: an initial flat-top part (corre-
sponding to stable generation) with a duration of 0.5–
1.5 µs and a subsequent (unstable) part with current
spike amplitudes of ~5 to 10 A. As the magnetic field
increased, the duration of the flat-top part increased (to
TECHNICAL PHYSICS      Vol. 48      No. 2      2003
1.5 µs), but the spiky character of the subsequent beam
generation remained the same.

The above effects are explained by the fact that,
changing the design of the cathode insertion, we
change secondary-emission conditions in the initial
stage of the beam formation. The change in the strength
and distribution of the edge electric field in the sites
where the cathodes are inserted into the anode results in
a change in both the number of primary electrons and
the conditions under which these electrons gain energy.
With a high electric field, the number of electrons is
larger, they gain energy more rapidly, and their final
energy is higher. With a lower electric field, both the
number of the primary electrons and their energy
decrease; as a result, the beam generation becomes
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Fig. 5. Waveforms of the cathode voltage pulses and the beam current at the Faraday cap.
unstable. On the other hand, the multicathode system is
a system with a nonuniform field. Calculations show
that, in this case, the character of electron motion
changes substantially and self-sustained secondary-
emission multiplication can even become impossible.
Hence, the cylindrical part of the cathode insertion into
the anode acts as a stabilizing element that determines
the development of the secondary-emission processes.
These results show that the secondary-emission pro-
cesses can be initiated by introducing a section in which
the electric field is strongly nonuniform.

The transverse dimensions and positions of the elec-
tron beams were measured from their prints on targets
placed at different distances from the anode (Fig. 4).
These measurements showed that, at the outlet from the
anode, the system forms eight elliptical electron beams
with a major axis of 6.5–7.0 mm and minor axis of
5.5−6.0 mm. The beam positions correspond to the
cathode positions. The beam-print thickness is ~1 mm.
The ellipse axes are inclined at an angle of ~45° to the
circle on which the cathodes are arranged (Fig. 1).
When the magnetic-field direction is reversed, the incli-
nation of the ellipse axes changes by 90°. The ellipse
dimensions are the same both at the exit from the anode
unit and at a distance of 72 mm from the exit.

A physical reason why we obtain such prints is as
follows. The electric-field distribution over the trans-
verse cross section of the system is nonuniform. Calcu-
lations show that the radial electric field near the cath-
ode surface is nonuniform within ~20% in the azi-
muthal direction: the shorter the distance to the anode,
the higher the electric field. This causes radial electron
drift and deforms the shape of the beam cross section,
which transforms from a circle into an ellipse inclined
at a certain angle about the beam axis.

We note that the magnetic field in the multicathode
system is higher than the magnetic field of a single
magnetron gun with nearly the same dimensions (with
a cathode diameter of 5 mm, an anode diameter of
26 mm, a cathode voltage amplitude of 37 kV, and a
TECHNICAL PHYSICS      Vol. 48      No. 2      2003
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magnetic field of 1900–2000 Oe) by a factor of 1.5. For
instance, stable beam generation in the multicathode
system with a cathode voltage amplitude of 36 kV was
achieved at a magnetic field of 3000 Oe.

This might be the result of a change in the electric-
field distribution in the system under study. In the
absence of an electron cloud, the spatial region where
the electric field near the cathode is uniform in the
transverse direction is small. When an electron sheath
(with a substantial space charge) is formed, the electric
field near the cathode is forced out from the sheath and
the size of the region where the electric field is uniform
decreases. As a result, a higher magnetic field is
required for beam formation.

The cathode voltage pulses and the beam current at
the Faraday cup were also measured with a double-
channel computer-based system. Experimental points
were obtained by sampling from running oscillograms
with a sampling period of 200 ns (at a voltage ampli-
tude of 34 kV and beam current of 30 A). This allowed
us to estimate the beam-generation stability in 16 suc-
cessive pulses, i.e., the amplitude stability from pulse to
pulse. These results are presented in Fig. 5, which dem-
onstrates a rather stable beam generation.

CONCLUSION
It has been demonstrated that crossed-field electron

guns with rod cathodes and a nonuniform electric field
can be used to achieve self-sustained electron-beam
generation due to secondary electron emission. The
electric-field distribution near the sites where the rod
cathodes are inserted into the anode system consider-
ably affects the characteristics of the generated beam.
TECHNICAL PHYSICS      Vol. 48      No. 2      2003
The electron flow from the gun makes up N distinct
beams, where N is the number of cathodes (in our case
N = 8). At the outlet from the anode unit, the beam cross
section is elliptical in shape, and this shape changes
only slightly during beam propagation.
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Abstract—Crystallographic phase transitions in perovskite-like LaSrMnO metallic oxides are studied. The
transitions are induced when internal stresses generated during film synthesis (at temperatures between 450 and
730°C) vary (decrease or increase) upon subsequent irradiation by a KrF laser emitting in the UV range. As the
synthesis temperature Ts grows, the rhombohedral-to-orthorhombic phase transition occurs at 650–670°C. The
resistivity is shown to be either temperature-independent, ρ(T) = const, at T < Tcrit, or varies and reaches a max-
imum, ρ(T) = ρmax, at the Curie temperature Tc. Optical transmission spectra taken at photon energies "ω =
0.5–2.5 eV exhibit both a high (0.8–0.9) and low (0.1–0.3) transmission coefficient t, depending on the synthe-
sis temperature. As follows from X-ray diffraction data, the laser irradiation causes a phase transition only in
LaSrMnO films grown at Ts < 650°C. Phases of different size scales appear: the long-range-order orthorhombic
matrix and mesoscopic-range-order rhombohedral clusters are observed in the films grown at Ts = 450–550°C
and the rhombohedral matrix with orthorhombic clusters, in the films grown at Ts = 550–650°C. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION
It has been reported [1–5] that the unit cell of lantha-

num manganese oxides like LaSrMnO (which attract
researchers’ attention because of the giant magnetore-
sistance effect) may vary from cubic to rhombohedral.

The variability of the unit cell structure in perovs-
kite-like metallic oxides is explained by the fact that
growth-related internal stresses may be accumulated
and accordingly released in a different way in the mul-
ticomponent system, causing the crystallographic self-
organization of one or another order.

Taking into account [6, 7] and our own experience,
the structure evolution in order of increasing lattice dis-
tortions is generally the following: cubic  tetrago-
nal  orthorhombic  rhombohedral, or

MATERIAL AND INVESTIGATION 
TECHNIQUES

Samples were obtained by the sputtering of a
La0.6Sr0.2Mn1.2O3 target with a pulsed KrF laser (τ =
25 ns, energy density Φ = 3.0 J/cm2, oxygen pressure in
the working chamber P = 300 mtorr). The films were

a b c, a b≠ c,= = =

α β γ 90°, α β γ 90°,= = = = = =

a b c, a≠ ≠ b c,= =

α β γ 90°, α β 90°, γ 90°.≠= = = = =
1063-7842/03/4802- $24.00 © 20250
deposited on SrLaGaO4, Nd3Ga5O12, and Gd3Ga5O12
substrates in the temperature range 450–730°C and
subsequently irradiated by the same laser at lower
energy densities (0.1 < Φ < 0.15 J/cm2; the number of
pulses was varied from 5 to 500).

The film structure was examined by the X-ray dif-
fraction method using CrKα radiation combined with
the photometry method [8], which makes it easy to
detect X rays diffusely scattered by clustered solid
solutions (i.e., our objects; Fig. 1). Electrical measure-
ments were carried out in the temperature interval 4.2–
300 K by standard techniques. Transmission spectra
were taken at room temperature in the photon energy
range "ω = 0.5–5.0 eV with an SP 700C spectropho-
tometer.

RESULTS AND DISCUSSION

Film synthesis temperature. The stressed state of
the film structure was varied by varying the LaSrMnO
synthesis temperature Ts between 450 and 730°C. The
lower limit is close to the amorphous–crystalline (dis-
order–order) phase transition (T = 350–400°C); the
upper, to the experimentally found optimum tempera-
ture (T ≈ 750°C) for the synthesis of good films (with a
Curie temperature Tc > 300 K).

Substrates for epitaxial growth. Substrates used in
the experiment had a much lesser effect on the film
stressed state than the synthesis temperature. We used
003 MAIK “Nauka/Interperiodica”
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Gd3Ga5O12, SrLaGaO4, and Nd3Ga5O12 perovskite-like
single-crystal substrates with different interplanar spac-
ings.

Varying these two parameters (the synthesis temper-
ature and lattice–substrate lattice mismatch), we pro-
vided conditions for growing elastically stressed
La0.6Sr0.2Mn1.2O3 layers and thus created a variety of
crystalline phase structures via the self-organization of
the elastically stressed multicomponent charge-inho-
mogeneous system. Moreover, the system is subjected
to a time–temperature regime that favors diffusion pro-
cesses (450 < Ts < 730°C, 10 min).

The rhombohedral-to-orthorhombic phase tran-
sition at 650 ≤ Ts ≤ 670°C. Diffraction patterns taken
from the La0.6Sr0.2Mn1.2O3 films synthesized at Ts =
450–730°C suggest that, first, the films are crystalline
(as follows from Laue reflections observed in the pat-
terns for all diffraction angles) and, second, that, as Ts
grows, the crystallographic phase states of the films
vary as

in other words, the single-phase rhombohedral struc-
ture R(3c) passes to the single-phase orthorhombic
phase O(Pnma) through the two-phase structure with
comparable amounts of the phases. The integral diffrac-
tion maximum intensities for the corresponding struc-
ture groups are shown in Fig. 2. The curve I = f(T) fluc-
tuates, which indicates the labile rearranging low-
coherence atomic structure of the La0.6Sr0.2Mn1.2O3
two-phase (rhombohedral + orthorhombic) state at Ts =
650–670°C (Fig. 2, curves 2 init).

Phase state in the LaSrMnO films after laser
irradiation. The labile atomic order in the material
under study shows up after the UV ("ω ≈ 5 eV) laser
irradiation. In the films synthesized at high tempera-
tures (Ts > 650°C), the structure does not change qual-
itatively. However, in the films grown at lower temper-
atures (Ts ≤ 600°C), which are in a more stressed state,
the laser irradiation splits the temperature domain of
existence of the single-phase rhombohedral structure
(450–600°C) into two two-phase domains with a
demarcation line near Ts = 550°C (Fig. 2; curves 3, 4).
Below 550°C, the structure consists of the orthorhom-
bic matrix and rhombohedral clusters (basic reflections
from the O phase and diffuse maxima from the R phase;
Fig. 1c). Conversely, above 550°C, the matrix is rhom-
bohedral, while the clusters are orthorhombic.

The stressed state of the LaSrMnO atomic struc-
ture revealed from diffraction patterns. The distur-
bance of the atomic order in the crystalline structure
(appearing as ion displacements from “zero” lattice
sites) is accompanied by the enhancement of the inten-
sity Iincoh of X-ray incoherent scattering. This follows
from Fig. 3, which shows the Iincoh maxima near Ts =
550 and 670°C. This pattern agrees with findings in

R 3c( ) R 3c( ) O Pnma( ) O Pnma( );+
Ts < 650°C Ts > 670°C
TECHNICAL PHYSICS      Vol. 48      No. 2      2003
[9, 10] and indicates that the system becomes disor-
dered before it acquires a new stable atomic order.

As for “near-zero” ion displacements, one should
bear in mind that the resulting directions of the dis-
placements are nonzero on average. They remain sig-
nificant, reflecting the presence of either tensile or com-
pression stresses in the material, which alternate as the
synthesis temperature Ts grows. This follows from the
oscillating Ts dependences of the interplanar spacing d
(Fig. 4). The dependences were calculated (by the
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Fig. 1. Typical diffraction patterns from La0.6Sr0.2Mn1.2O3
films synthesized at different temperatures Ts. (a) 450–
600°C (rhombohedral phase R3c), (b) 650–670°C (rhombo-
hedral R3c + orthorhombic Pn3m two-phase region),
(c) 700–730°C (orthorhombic phase Pn3m), and (d) 450–
550°C with irradiation (phase Pn3m with R3c clusters).



252 SAMOŒLENKO et al.
Bragg formula 2dsinθ = nλ) for the principal maxi-
mum from diffraction angles θ found experimentally.
The discrepancy between the experimental and tabu-
lated values of d for the Gd3Ga5O12 substrate (curve 1)
in the R range (Ts < 650°C) varies between +0.08 and
−0.04 Å (or +2.94 and –1.47%) relative to d(202) =
2.72 Å. In the O range (Ts > 650°C), the value of d
approaches 2.80 Å, which corresponds to {020} planes
of the orthorhombic phase. Note that this group of O
planes differs from the {412} planes identified at Ts ≤
650°C (Fig. 1, curve 1). On the crystallographic order
scale, a distortion of 2% is very large. For example,
studies [11] on the formation of new phase nuclei
showed that if the radii of neighboring atoms differ by
less than 2%, the nuclei are spherical, and when the dif-
ference exceeds 2%, the nuclei grow flat; that is, the
shape of growing (isotropic or anisotropic) phase grains
changes qualitatively. In our samples, as Ts rises, the
rhombohedral-to-orthorhombic phase transition takes
place, which agrees with the hierarchical order
observed in the evolution of the perovskite-like struc-
ture: from more distorted to less distorted, i.e., from
lower symmetry R3c to higher symmetry Pnma.

The effect of laser irradiation on the dependence
d = f(Ts). As follows from Fig. 4, the laser irradiation
does not change the periodic run of the dependence
d(Ts) but inverts it relative to the dependence for the as-
grown sample (cf. curves 1, 2). This means that the
laser energy shifts the periodic variation of elastic
stresses in the LaSrMnO structure with Ts, leaving it
basically the same. That is, laser irradiation may favor
(accelerate) structure modifications without radically
changing the material properties. This is confirmed by
Fig. 3, which demonstrates the phase states in the as-
grown and irradiated material.
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Fig. 2. Integral intensities of X-ray coherent scattering from
the La0.6Sr0.2Mn1.2O3 films grown at different Ts for (2, 3)
orthorhombic and (1, 4) rhombohedral phases. Curves 3 and
4 are taken after the laser irradiation.
The effect of the substrates on the dependence
d = f(Ts). Comparing curves 1, 3, and 4 in Fig. 4, we see
that the SrLaGaO4, Nd3Ga5O12, and Gd3Ga5O12 sub-
strates have both a similar and different effect on the
dependence d = f(Ts). The similar effect is that the
curves oscillate synchronously (in phase) at Ts < 600°C,
i.e., in the range where the rhombohedral phase of
LaSrMnO forms. For the films synthesized at Ts >
600°C, the difference between the curves becomes
noticeable and the curve for the SrLaGaO4 substrate
runs in antiphase to the others.

At high synthesis temperatures (Ts > 600°C), the
curves tend to saturate (the sinusoidal variation changes
to tangential). This change is of principal character,
indicating qualitative modifications in the LaSrMnO
atomic and electron configurations; namely, it means
that in the structurally unstable lattice (sinusoidal run of
the curves d = f(Ts)), large stable clusters embedded in
the matrix arise. These clusters generate long-range
forces that are proportional to [9]

where m = 1–3, ϕ is the phase, and the vector 2kF con-
nects Fermi surface areas with the normals parallel to
the radius vector r.

The formation of waves reduces the electron energy
of the system, and its heterogeneous state becomes sta-
ble. In our material, the heterogeneous state implies the
presence of mesoscopic-size (≤100 Å) clusters
bounded by {00l} planes, because oxygen anions inter-
act mostly with one of the metals in LaSrMnO (diffuse
maxima {00l} in Fig. 1c).

Among {hkl} clusters, of most interest are those
reflecting Mn–O interactions in the perovskite lattice,
which are responsible for the LaSrMnO conducting and
magnetic properties. According to the experimental

r m– 2kF r⋅ ϕ+( ),cos⋅
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Fig. 3. Integral intensity of X-ray noncoherent scattering vs.
synthesis temperature Ts for the (1) as-grown and (2) irradi-
ated La0.6Sr0.2Mn1.2O3 films.
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values of d, these are (400)R clusters in the rhombohe-
dral phase and (202)O and (004)O clusters in the orthor-
hombic phase. Let us trace their temperature behavior.
Having measured the integral intensities Icoh of all the
diffraction reflections and separated out the above-
mentioned diffuse maxima Im of the metallic phase, we
estimated its concentration Cm = Im/Icoh with an accu-
racy of ±0.05Cm (Fig. 5, curve 1). It is noteworthy that
Cm < 12% (at Ts < 600°C) and Cm > 12% (at Ts ≥
650°C). This difference reflects the qualitative change
in the physical properties that are sensitive to the con-
centration of metallic granules in the insulating matrix
(inhomogeneity of this type is assumed to be responsi-
ble for the conducting and magnetic properties of mate-
rials like those considered in this paper [1]). The value
Cm ≈ 12% is near the percolation threshold [9, 12],
when charge carriers may travel along a continuous
channel through metallic regions in an inhomogeneous
medium and the internal energy of the system is
reduced.

For the samples grown at Ts = 650 and 670°C, the
experimental concentration of the clusters is below
12%; namely, Cm ≈ 10.8 and 8.6%, respectively. At the
same time, the metallic cluster sizes calculated from the
widths of the diffuse maxima ((400)R, (202)O, and
(004)O) by the Kitaigorodsky technique vary insignifi-
cantly (as in [8]), fluctuating about 100 Å (see inset
to Fig. 5). This means that the concentration Cm of
metallic clusters, rather than their size, governs the
variation of the LaSrMnO properties with Ts. Such a
conclusion is in line with the concepts of the percola-
tion theory [12].
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Fig. 4. Interplanar spacings d corresponding to the principal
diffraction maximum vs. synthesis temperature Ts for
the   La0.6Sr0.2Mn1.2O3 films on (1, 2) Gd3Ga5O12,
(3) Nd3Ga5O12, and (4) SrLaGaO4 substrates. Curve 2 is
obtained after irradiation by the KrF laser.
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Optical transmission spectra. Two types of spectra
are observed (Fig. 6). For the films synthesized at Ts <
600°C, which have a rhombohedral structure, the trans-
parency in the long-wavelength ("ω < 2 eV) range is
high. In this range, two closely spaced maxima with a
minimum at "ω = 0.9–1.1 eV in between are observed.
The regions associated with absorption by free carriers
at "ω < 0.8 eV indicate the presence of the metallic
clusters. Their concentration Cm is conveniently esti-
mated from the relationship

where p is the hole concentration [13].
In the films synthesized at Ts < 600°C, the cluster

concentration thus estimated equals 2–5% [14] in
accordance with the experimental data in Fig. 5.

The samples synthesized at Ts > 600°C are less
transparent. Unlike the former samples, for which
transmission spectra are well known [15], they have a
minimum near "ω = 1.5 eV and a maximum whose
position varies between 1.7 and 2.2 eV from sample to
sample. According to the concepts concerning the ori-
gin of optical spectra from manganites [15], the varia-
tion of the transmission t with "ω for "ω < 1.5 eV and
>1.5 eV is related to intraband and interband transi-
tions, respectively. For "ω > 2.2 eV, the density of
states involved in absorption significantly grows and
the transmission drops rapidly with increasing "ω.

The effect of the substrate on the spectra is observed
only in the critical temperature range. The inset to
Fig. 6 shows the spectra taken from the films grown on
different substrates at Ts = 600°C. It is seen that the
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Fig. 5. Concentration Cm of the metallic phase determined
from the diffraction patterns from the La0.6Sr0.2Mn1.2O3
films on Gd3Ga5O12 at different temperatures Ts (1) before
and (2) after laser irradiation. The inset shows the sizes of
the metallic clusters (1) before and (2) after the irradiation.
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Fig. 7. Temperature dependences of the resistivity of the
La0.6Sr0.2Mn1.2O3 films synthesized at different Ts.
(1) ρ(T) = const at T < Tcrit (the film grown at Ts = 550°C on
the Gd3Ga5O12 substrate), (2) the same as (1) after the laser

irradiation (30 pulses with an energy density of 0.15 J/cm2),
(3) ρ(T) has a peak near the Curie temperature (the film
grown at Ts = 730°C on the SrLaGaO4 substrate), and
(4) the same as (3) measured in a magnetic field of 3.8 kG.
spectrum from the film grown on Nd3Ga5O12 can obvi-
ously be assigned to the spectra of the first type, while
the spectrum from the film on SrLaGaO4 can be
assigned to the spectra of the second type. This agrees
with the data in Fig. 4.

After the laser irradiation, changes in the spectra
follow those in the structure: the rhombohedral phase
(low Ts) loses transparency, becoming orthorhombic,
while the spectra from the orthorhombic phase change
insignificantly because of its stability.

Electrical conductivity. The qualitative modifica-
tions observed in the LaSrMnO films as the synthesis
temperature Ts grows also affect the temperature depen-
dence of the resistivity ρ(T). For the samples grown at
Ts ≤ 600°C, the dependence ρ(T) is typical of semicon-
ductors or insulators in the temperature range between
Tcrit = 250 K and room temperature (Fig. 7, curve 1).
Below Tcrit, the curve exhibits a plateau with ρ(T) =
const. The laser irradiation, which causes the phase
transition, reduces the resistance by three or four orders
(Fig. 7, curve 2). Also, for T between 4.2 and 100 K
(where the resistivity of the as-grown samples is con-
stant), the resistivity of the samples irradiated grows
with decreasing temperature approximately by a factor
of 1.5.

Plateaus in the curves ρ(T) for manganites of vari-
ous composition have been observed earlier [5, 14, 16–
22]. The origin of these portions has been discussed in
[5, 14, 16–18]. In [5], this effect is related to magnetic
ordering in the films below the Néel temperature. This
effect was also observed in YBaCuO, where small clus-
ters of metallic conductivity are embedded in an insu-
lating matrix [8, 14, 19]. With this in mind, it has been
inferred that the plateaus are due to elastic electron tun-
neling between the clusters, which turn into quantum
dots with a discrete energy spectrum at low tempera-
tures. This is indirectly corroborated in [16], where the
curves ρ(T) taken from high-ρ insulating films with
nanometer ferromagnetic inclusions exhibited portions
with ρ(T) = const.

For the films obtained at high temperatures (Ts ≥
650°C), the curve ρ(T) has a maximum ρmax near the
Curie temperature (Fig. 7, curve 3). This maximum was
also observed in [20, 21], where the “semiconductor”
run (dρ/dT < 0) changes to the “metallic” run (dρ/dT >
0). In the latter case, however, the similarity is formal.
In fact, in our films, the range where the resistivity
peaks lies between 0.2 and 1.5 Ω cm. The associated
values of the conductivity σ vary between 5 and
0.7 Ω−1 cm–1, which is much lower than the minimal
metallic conductivity, which is determined by the for-
mula [22]

σmin
πe2

4z"a
------------ B

V0
------

crit

2

,=
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z is the coordination number, a is the spacing between
impurity centers, V0 is the random potential amplitude,
and B is the band width.

For La0.6Sr0.2Mn1.2O3 films, the value of σmin must
be no less than 100 Ω–1 cm–1, which agrees with esti-
mates made in [23]. Since the conductivity of such sys-
tems is related to d orbitals, its value is expected to
approach 1000 Ω–1 cm–1 [22]. Even if one takes into
account that the samples are heavily inhomogeneous
and that the insulator–metal transition is of percolation
character, the mean possible conductivity near the per-
colation threshold is one or two orders of magnitude
lower than the value of σmin expected. The most plausi-
ble explanation for the dependence ρ(T) observed in the
low-temperature range appears to be the hypothesis
that, in a highly inhomogeneous medium, the hole edge
of the mobility shifts relative to the Fermi level under
magnetic ordering conditions [24].

The drastic decrease in the resistivity in the magnet-
ically ordered state is associated with a decrease in the
energy of activation (the material remains in the dielec-
tric state). An external magnetic field facilitates the
motion of charge carriers in the magnetic excitation
“environment” [24]. Under such conditions, the resis-
tivity of the samples in a magnetic field must decrease,
which is the case in the experiments (Fig. 7, curve 4).

To conclude, we will discuss the correlation
between the electrical properties and structure of the
films. As follows from the X-ray diffraction data, in the
samples synthesized at Ts = 650 and 670°C, Cs is less
than 12% (between 8.6 and 10.8%), i.e., below the per-
colation threshold. In spite of this, for Ts < 230 K, the
dependences ρ(T) exhibit a pronounced metallic behav-
ior near the maximum of ρ (ρ = 1.0–1.5 Ω cm). These
values are at least one or two orders of magnitude
higher than those corresponding to the minimum of the
metallic conductivity (ρ = 10–3–10–2 Ω cm). According
to today’s concepts, a decrease in the LaSrMnO resis-
tivity is due to magnetic ordering in the material. Since
this takes place at Cm < 12%, it is obvious that magnetic
ordering occurs at metallic (ferromagnetic) phase con-
centrations below the percolation threshold. The mag-
netically ordered state is the result of the enhanced
interaction between crystallographically similar clus-
ters (bounded by {004} planes in our case). The metal-
lic behavior of the dependence ρ(T) is observed when a
continuous channel through metallic regions between
the electrodes is still absent and the electrical conduc-
tivity of the films is limited by carrier tunneling
between isolated but already numerous regions of
metallic conductivity. Insulating spacers make a major
contribution to the resistivity.

CONCLUSIONS

Our results show that phase transitions take place in
local areas (clusters) of LaSrMnO solid solution, which
may show themselves as quantum dots at low tempera-
TECHNICAL PHYSICS      Vol. 48      No. 2      2003
tures. Schematically, the phase transitions can be
described as follows.

(1) As the synthesis temperature grows (Ts ≥
650°C), elastic stresses and diffusion initiate the R 
O phase transition.

(2) Strains cause electronic density redistribution
and the local (in the clusters) insulator–metal (Ts <
600°C, the basic phase R(3c) phase transition. At low
temperatures, the clusters turn into a set of tunnel-cou-
pled quantum dots with ρ(T) = const.

(3) The reconfiguration of the lattice and electronic
subsystems results in the paramagnet–ferromagnet
(Ts > 600°C, the basic phase is the O phase Pnma) tran-
sition with ρ(T) = ρmax near the Curie temperature.

(4) The metallic behavior of ρ(T) in the LaSrMnO
films studied in this paper (Ts > 600°C) is unrelated to
the transition to the metallic state. It is observed when
fluctuations are suppressed and the material becomes
structurally and magnetically ordered. Under these
conditions, the percolation threshold changes and the
resistivity diminishes with decreasing temperature.
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Abstract—The effect of laser irradiation with hν = 1.96 eV (λ = 0.63 µm) on the properties of titanium–silicon
contacts subjected to steady-state thermal annealing in a nitrogen atmosphere is studied. It is found that treat-
ment-induced changes in the phase composition of the contact modify its electrophysical parameters. The appli-
cability of laser irradiation to the formation of rectifying titanium–silicon junctions with desired parameters is
demonstrated. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Refractory metals and their silicides are widely used
in microelectronics due to their thermodynamic and
electrophysical properties, as well as their high-temper-
ature stability. Modern science and technology require
new materials with a particular set of physicochemical
properties. In this context, nitrides, compounds of met-
als with nitrogen, hold much promise for microelec-
tronics. Nitrides offer high hardness, high electrical
conductivity, and a high melting point. The supercon-
ducting-transition temperature in these compounds is
also comparatively high. One method for producing
nitride films is steady-state thermal annealing in a nitro-
gen atmosphere, which, however, is usually accompa-
nied by oxidation. To prevent the oxidation, the anneal-
ing is combined with the irradiation of films by elec-
trons of given energies [1, 2]. Recently, much attention
has been drawn to nonthermal processes that occur in
thin metal films that are simultaneously subjected to
thermal treatment and photon irradiation. The photon
energy governs the structure, phase composition, and,
as a consequence, electrophysical properties of the
resulting films [3–5].

In this study, we consider phase transformations and
changes in the electrophysical parameters of titanium–
silicon compositions subjected to thermal annealing in
nitrogen in combination with laser irradiation by pho-
tons with an energy hν = 1.96 eV.

EXPERIMENTAL

Titanium films with a thickness of 100 nm were pre-
pared by electron-beam deposition at a pressure of 3 ×
10–5 Pa on Si(111) n-type substrates at a temperature of
100°C. Wafers were pretreated according to the method
described in [6]. The films deposited were fine-grained
1063-7842/03/4802- $24.00 © 20257
polycrystalline with an average grain size ranging from
15 to 20 nm (Fig. 1a).

The structures thus obtained were scribed into 5 ×
5-mm chips, which were placed into a VUP-4 vacuum
chamber, where they were simultaneously heat-treated
in the nitrogen atmosphere and irradiated by an LGN-
215 laser with λ = 0.63 µm. The annealing was carried
out at a temperature of 500°C for 1, 5, 15, and 30 min.
The laser power was continuously monitored by an
IMO-2 power meter and was kept at 55 mW throughout
the experiment. Extra-pure-grade nitrogen was frozen
out before entering the working chamber. According to
our preliminary studies, the annealing at T = 500°C is
of most interest. At T < 500°C, phase transformations in
the Ti–Si structure are insignificant; at T > 500°C, the
film oxidizes, and the processes of oxidation and nitri-
dation are hard to study.

The electron microscopic and electron diffraction
analysis of the samples was carried out with a JEM-
200CX electron microscope; they were also examined
by ESCA. Electron diffraction patterns were inter-
preted using relevant original studies and ASTM tables.
The Schottky barrier height was determined from the
I−V characteristics as described in [7]. The area of the
Ti–Si contact was 0.7 mm2.

In the absence of laser irradiation, the thermal
annealing of the titanium–silicon contacts in a vacuum
results in the formation of titanium oxide Ti3O5 or tita-
nium silicide TiSi depending on the time of treatment
(Table 1, Fig. 1b). Lower titanium oxide forms when
titanium combines with oxygen adsorbed on the film
during the deposition. According to the data listed in
Table 1, titanium reflections that are present on diffrac-
tion patterns taken of the samples annealed for 1 min
disappear with an increase in the annealing time. Such
a behavior is associated with the relationship between
003 MAIK “Nauka/Interperiodica”
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the rates of Ti–Si interaction and Si oxidation. Reflec-
tions from titanium silicide are observed on diffraction
patterns taken after the annealing of the Ti–Si structure
for τ = 5–30 min. The silicide formation is governed by
the diffusion of silicon to the surface and its subsequent
interaction with the titanium film. It should be noted
that reflections from titanium silicide are particularly
intense for τ = 15 and 30 min.

The phase composition of the Ti–Si contact changes
under the combined action of thermal annealing in a
vacuum (5 × 10–5 Pa) and laser irradiation with λ =
0.63 µm and E = 55 mW. After annealing for 1 min, the

Ti2N

Ti2O3

TiO2

TiSi

TiO2

TiN

TiSi

Ti3O5

Ti3O5
TiSi

Ti

Ti

(d)

(c)

(b)
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Fig. 1. Electron diffraction patterns from the titanium–sili-
con compound. (a) Thermal annealing at T = 500°C for
1 min, (b) thermal annealing for 15 min, (c) thermal anneal-
ing in extra-pure-grade nitrogen, and (d) annealing com-
bined with laser irradiation (λ = 0.63 µm, E = 55 mW) in the
nitrogen.
diffraction patterns show reflections from only the ini-
tial phase (titanium). For annealing times of 5–30 min,
reflections due to titanium oxide Ti3O (the ordered
solution of oxygen in titanium) and titanium silicide
TiSi arise (Table 2).

Along with the reflections from the titanium oxides
and silicide, the annealing of the contact in the atmo-
sphere of extra-pure-grade nitrogen gives rise to reflec-
tions from titanium nitrides (Table 3, Fig. 1c). In partic-
ular, annealing for 1 min causes reflections from lower
oxide Ti3O5, initial titanium, and metal-enriched nitride
Ti2N, whereas an increase in the annealing time to
5 min gives rise to reflections from titanium silicide and
nitride (TiN). When the annealing time rises to 15–
30 min, extra reflections from higher oxide TiO2 (rutile)
also appear on the diffraction patterns.

Special features of metal–nitrogen interaction, the
kinetics of saturation by nitrogen, as well as the relation
between the nitride layer thickness, amount of absorbed
nitrogen, and nitridation time are described in [8]. The
nitridation mechanism generally involves diffusion
mass transfer of nitrogen into a metal and the formation
of the solid solution. Conventional heterodiffusion
transforms into reaction diffusion with the formation of
nitrides. The nitride formation is limited either by the
rate of the reaction itself or by the diffusion mass trans-
fer of nitrogen through the already formed nitride layer
[9–11]. Analysis shows that the rate of titanium interac-
tion with nitrogen is considerably lower than that of the
interaction with oxygen. This is due to the fact that, at
a fixed temperature, the rate of oxygen absorption by
titanium is seven times that of nitrogen absorption. The
key to this effect evidently lies in the atomic configura-
tion. An oxygen atom has the s2p4 configuration and
tends to complete it to s2p6. A nitrogen atom with the
s2p3 configuration tends either to complete s2p6 shells or
to lose an electron, taking the sp3 configuration. This
circumstance also slows down the diffusion of nitrogen
as compared with oxygen [10]. Therefore, if there is a
tendency toward surface oxidation, an increase in the
oxygen content makes nitridation difficult. When com-
bined with metals, nitrogen may either accept their
electrons or donate its own electron to form the energet-
ically stable s2p6 or sp3 configuration, respectively. In
the former case, the resulting compounds feature pro-
nounced ionic bonding; in the latter, bonds are typically
metallic with a greater or lesser share of covalent
bonds.

It is known that, under certain conditions, d transi-
tion Group-IV metals (Ti, Zr, Hf) and Group-V metals
(V, Nb, Ta) readily interact with molecular nitrogen to
produce nitrides. The temperature coefficient of transi-
tion metal nitride formation ranges from 25 to
35 kcal/mol [12].

Thermal annealing in nitrogen in combination with
0.63-µm laser irradiation (hν = 1.96 eV) with a power
of 55 mW modifies significantly the phase composition
TECHNICAL PHYSICS      Vol. 48      No. 2      2003
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of the titanium–silicon contact. It is seen from Table 4
that short-term annealing (1 and 5 min) suppresses oxi-
dation and nitridation. An increase in the annealing
time to τ = 15 and 30 min results in the formation of

Table 1.  Phase composition of the Ti–Si contact after thermal
annealing at T = 500°C

d, Å
τ, min

1 5 15 30

3.54 Ti3O5 Ti3O5 Ti3O5 Ti3O5

3.14 Ti3O5 Ti3O5 Ti3O5 Ti3O5

2.69 – TiSi TiSi TiSi

2.68 Ti3O5 Ti3O5 Ti3O5 Ti3O5

2.44 – TiSi TiSi TiSi

2.35 Ti – – –

2.34 – TiSi TiSi TiSi

2.24 Ti – – –

2.19 – TiSi TiSi TiSi

1.73 Ti – – –

1.48 Ti – – –

Note: d, interplanar spacing; τ, annealing time.

Table 3.  Phase composition of the Ti–Si contact after thermal
annealing at T = 500°C in extra-pure-grade nitrogen

d, Å
τ, min

1 5 15 30

3.54 Ti3O5 Ti3O5 Ti3O5 Ti3O5

3.28 – – TiO2 TiO2

3.24 – – TiO2 TiO2

3.14 Ti3O5 Ti3O5 Ti3O5 Ti3O5

2.69 Ti – – –

2.68 Ti3O5 Ti3O5 Ti3O5 Ti3O5

2.56 – TiSi TiSi TiSi

2.48 – TiN TiN TiN

2.44 – TiSi TiSi TiSi

2.34 Ti – – –

2.32 Ti2N Ti2N Ti2N Ti2N

2.25 Ti2N Ti2N Ti2N Ti2N

2.24 Ti – – –

2.19 – TiSi TiSi TiSi

2.16 – – TiO2 TiO2

2.09 – TiN TiN TiN

1.76 Ti2N Ti2N Ti2N Ti2N

1.47 – TiN TiN TiN
TECHNICAL PHYSICS      Vol. 48      No. 2      2003
TiN (Fig. 1d) and Ti2N, respectively. The absence of
lower high-oxygen oxide Ti3O5 and titanium nitrides
after annealing for 1 and 5 min can be attributed to the
fact that the irradiation of the composition being

Table 2.  Phase composition of the Ti–Si contact after ther-
mal annealing at T = 500°C combined with laser irradiation
with λ = 0.63 µm and E = 55 mW

d, Å
τ, min

1 5 15 30

2.69 – TiSi TiSi TiSi

2.44 – TiSi TiSi TiSi

2.39 – Ti3O Ti3O Ti3O

2.35 Ti – – –

2.34 – TiSi TiSi TiSi

2.24 Ti – – –

2.19 – TiSi TiSi TiSi

2.17 – Ti3O Ti3O Ti3O

1.73 Ti – – –

1.68 – Ti3O Ti3O Ti3O

1.48 Ti – – –

1.42 – Ti3O Ti3O Ti3O

Table 4.  Phase composition of the Ti–Si contact after thermal
annealing at T = 500°C combined with laser irradiation with
λ = 0.63 µm and E = 55 mW in extra-pure-grade nitrogen

d, Å
τ, min

1 5 15 30

3.28 – – TiO2 TiO2

3.24 – – TiO2 TiO2

2.71 – Ti2O3 Ti2O3 –

2.69 – TiSi TiSi TiSi

2.56 Ti Ti – –

2.48 – – – TiN

2.44 – TiSi TiSi TiSi

2.34 Ti Ti – –

2.33 – Ti3O Ti3O Ti3O

2.32 – – Ti2N Ti2N

2.25 – – Ti2N Ti2N

2.24 Ti Ti – –

2.19 – TiSi TiSi TiSi

2.18 – Ti3O Ti3O Ti3O

2.16 – – TiO2 TiO2

2.09 – – – TiN

1.76 – – Ti2N Ti2N

1.70 – Ti2O3 Ti2O3 –

1.47 – – – TiN
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annealed by 1.96-eV photons suppresses (at a certain
photon flux density) oxidation and nitridation and the
dissolved oxygen and nitrogen become chemically
inactive [13]. For the complete suppression of oxida-
tion and nitridation in the titanium–silicon contact dur-
ing heat treatment in a nitrogen atmosphere, the output
of 0.63-µm laser radiation (photons with hν = 1.96 eV)
should be increased in order to passivate M−O and M–
N bonds and thereby prevent the interaction of oxygen
and nitrogen with the contact surface (titanium film)
during the annealing. The electron diffraction and
ESCA data correlate.

The change in the phase composition of Ti–Si
entails a change in the electrophysical parameters of the
contact. The I–V characteristic of the as-prepared con-
tact was asymmetric with a breakdown voltage of 6 V,
which indicates the presence of silicon dioxide SiO2
between the silicon substrate and titanium film. The
electrophysical parameters of the contact after various
treatments are summarized in Table 5. The annealing
decreases the concentration of defects in the insulating

Table 5.  Electrophysical parameters of the titanium–silicon
contact

T, °C τ, min ϕ, eV U, V n

As-prepared
sample

0.55 6 1.17

After thermal annealing

500 1 0.56 7 1.16

5 0.56 8 1.16

15 0.56 9 1.16

30 0.57 15 1.12

After thermal annealing combined
with laser irradiation

500 1 0.56 8 1.16

5 0.56 8 1.16

15 0.56 9 1.09

30 0.57 12 1.07

After thermal annealing
in extra-pure-grade nitrogen

500 1 0.54 8 1.17

5 0.54 8 1.17

15 0.53 10 1.18

30 0.52 12 1.19

After thermal annealing combined with laser 
irradiation in extra-pure-grade nitrogen

500 1 0.56 8 1.16

5 0.56 8 1.16

15 0.56 10 1.17

30 0.54 12 1.18

Note: ϕ is the Schottky barrier height; U, breakdown voltage; and
n, ideality coefficient.
SiO2 film at the metal–silicon interface. The diffusion
of oxygen thickens the insulating layer, as evidenced by
the increase in the breakdown voltage. The Schottky
barrier grows after thermal annealing in a vacuum and
diminishes after annealing in a nitrogen atmosphere.
The treatment alters the density of surface states in the
silicon at the metal–silicon interface, thereby changing
the barrier height. The I–V characteristics of the contact
were characterized by the ideality coefficient n, which
was estimated from the experimental dependences [7]
(Table 5). It is demonstrated that the ideality coefficient
decreases with increasing vacuum annealing time and
grows after annealing in nitrogen. This is associated
with the modification of the electrophysical parameters
of the oxide layer at the interface and with a treatment-
induced change in the concentration of electron traps.
Therefore, the electrophysical parameters of the tita-
nium–silicon contact are sensitive to its phase compo-
sition, the formation of titanium nitrides and oxides,
and the variation of the interface constituents. The ini-
tial Ti/SiO2/Si interface transforms into TixOy/TiSi,
TixOy, TimN, or TiSi/SiO2/Si depending on the type of
treatment.

Thus, it is demonstrated that the combined process-
ing of the titanium–silicon composition in nitrogen
makes it possible to form a rectifying contact with a
given phase composition and, as a consequence, with a
given set of electrophysical properties.
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Abstract—A vacuum deposition method for producing SiOx〈Fe〉 composite metal-dielectric films in which the
metal concentration in the SiOx dielectric matrix varies across thickness is described. The reflection and trans-
mission of the films in the 2–12 µm IR spectral range are studied and their optical properties are simulated.
In the temperature range 283–390 K, the temperature-sensitive properties of the SiOx〈Fe〉 films with a phase
volume ratio of 23% (Fe) : 77% (SiO) is investigated. For these films, the temperature coefficient of resistance
is found. The feasibility of these films as a sensitive layer in microbolometers is demonstrated. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

In recent years, much attention has been concen-
trated on the design of small thermal imagers and IR
displays where the temperature-sensitive element is
made in the form of a chain or array consisting of iden-
tical uncooled thermal radiation detectors (TRDs) [1].
Their basic advantage is the absence of a system for
cryogenic cooling, which significantly facilitates the
design of IR displays, reduces their weight and cost,
etc. In contrast to photon detectors, TRDs can operate
in a wide IR spectral range, since their long-wave sen-
sitivity is unlimited. The family of TRDs includes ther-
mocouples, bolometers, and acoustooptic and pyro-
electric detectors. Array bolometers are the easiest to
fabricate; therefore, they are fairly popular. Normally,
the sensitive element in a microbolometer consists of a
temperature-sensitive layer with a high value of the
temperature coefficient of resistance (TCR) and an
absorbing coating. As the temperature-sensitive layer,
VO2 films [2, 3] or amorphous semiconductor films
[4, 5] are most often used. As the absorbing coating,
one can apply thin metal films (an absorption of ≈50%
in a wide spectral region) or multilayer structures for
which the resonant absorption may reach 90% in a cer-
tain spectral range.

However, these additional layers raise the heat
capacity of a microbolometer substantially and
adversely affect its performance. Therefore, searching
for materials that would combine the functions of tem-
perature-sensitive and absorbing layers seems to be
topical. It was shown earlier [6] that inhomogeneous
metal-dielectric films can offer a high absorption in the
IR range combined with elevated (in comparison with
metals) TCR values. This makes it possible to accom-
1063-7842/03/4802- $24.00 © 20261
plish the absorption of IR radiation and the formation of
an electrical signal in a single layer.

In this study, we investigate the optical and ther-
moresistive properties of inhomogeneous SiO〈Fe〉
metal-dielectric films. Experimental data for reflection
(R) and transmission (T) spectra for these films at wave-
lengths between 2 and 12 µm are reported. These spec-
tra are compared with those calculated in the effective-
medium approximation. In addition, the temperature
dependences of the film resistance (r) and TCR in the
interval from 283 to 390 K are presented.

EXPERIMENTAL
Samples were prepared by the method proposed ear-

lier to produce light-absorbing inhomogeneous SiO-
and Cr-based coatings [7]. Its basic idea is the thermal
coevaporation of a mixture of these materials in a vac-
uum from a single evaporator. In this work, a mixture of
SiO and Fe powders was deposited on glass, pyrocer-
amic, and silicon substrates at a pressure of 2 × 10–3 Pa.
The average metal-to-oxide mass ratio in a layer thus
obtained was roughly determined from the ratio of the
powder masses in the evaporator, and the distribution of
the components was specified by the evaporation
regime. Since SiO and Fe evaporate at different temper-
atures, it is possible to select such conditions for mix-
ture heating that would provide a desirable distribution
of the component concentrations in the layer deposited.
For example, a gradual decrease in the temperature of
the evaporator leads to a continuous decrease in the
metal concentration in the vapor flux. Layers thus
obtained are composite SiOx〈Fe〉  films in which the
metal concentration in the dielectric matrix varies with
thickness. Note that the concentration of the metal is
maximal near the interface and minimum at the film
003 MAIK “Nauka/Interperiodica”
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surface. Such a distribution specifies the optical and
electrical properties of these inhomogeneous metal-
dielectric layers. The deposition process was controlled
by a calibrated quartz resonator. The thickness of the
films measured by a microinterferometer was found to
range between 2 and 3 µm.

Layers obtained by the thermal evaporation of sili-
con oxide under similar conditions had the composition
SiOx, where x = 1.2–1.3 [8]. Therefore, hereafter we
designate the films under consideration as SiOx〈Fe〉 .
The reflection and transmission spectra in the IR spec-
tral range were taken from the films deposited on
Si(100) substrates using an IKS-31 spectrometer. To
examine the temperature-sensitive properties (TCR and
resistance), we used the films deposited on the pyroce-
ramic substrates in a vacuum. Samples had the form of
a planar chip of several square millimeters in area. On
the top of the chip, Mn–Ag contacts were deposited to
which thin wires were soldered. During the measure-
ments, the samples were placed in a thermostat and the
bias current was chosen in such a way as to prevent
Joule heating.

EXPERIMENTAL RESULTS 
AND DISCUSSION

Figures 1 and 2 show the measured spectral depen-
dences of R and T for 2.73-µm-thick SiOx〈Fe〉  films.
The powder mass ratio in the evaporator was 50 : 50,
which corresponded to a Fe-to-SiO volume ratio of
23 : 77. The deposition conditions provided a nonuni-
form distribution of the phases in the film with the min-
imum concentration of the metal on its surface. As was
shown earlier [9], such a distribution ensures a low
reflectivity in a wide spectral region. As follows from
Fig. 2, in the entire spectral region considered, the film
is characterized by a low transmission (less than 1%).
Therefore, its absorptivity equals 1 – R. In the range of
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Fig. 1. Reflection spectrum of the SiOx〈Fe〉  gradient layer.
(j) Calculation and (d) experimental data.
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2–8.5 µm, the absorptivity is about 90%. In the longer
wave range (8.5–12 µm), the reflectivity rises and peaks
(32.5%) near 9.5 µm. Such behavior of the reflection
spectrum is associated with the presence of the absorp-
tion band (typical of SiOx) due to the Si–O bond vibra-
tion mode [10]. This band is also observed in the trans-
mission spectrum (Fig. 2). However, in this range, too,
the film has a high absorptivity, which ranges from 85
to 67.5%.

The simulation of the optical characteristics for
these layers in the IR region was performed using the
method [9] applied to the visible range. It was assumed
that a film deposited can be represented as a metal-
dielectric layer consisting of an oxide matrix with metal
inclusions whose concentration varies linearly across
the layer; the average volume concentration of the
metal is 23% (i.e., the same as in the evaporator). To
describe the optical constants (refractive index n and
absorption coefficient k) of such a composite, we used
the Bruggeman–Landauer theory of effective dielectric
function of statistical heterostructure [11, 12]. Since
there are no detailed experimental data for the optical
constants of SiOx (for x = 1.2–1.3) in the IR region, we
applied the data for n and k of SiO [13] to the matrix.
For iron, n and k were taken from [14]. The spectral
dependences of n and k obtained for composites with
different Fe concentrations were used to simulate the
reflection and transmission of the film deposited. The
parameters R and T of an inhomogeneous layer were
calculated by applying the Abeles matrix theory, which
is stated for dielectric and inhomogeneous nonabsorb-
ing structures in [15] and [16], respectively (for details
of the calculation technique, see [9]). Since the Fe dis-
tribution in the layer was not studied experimentally
and was specified by the deposition conditions, we cal-
culated R and T of the layer for different gradients of
the metal concentration, keeping the average concen-
tration constant. The discrepancy between the experi-
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Fig. 2. Transmission spectrum of the SiOx〈Fe〉  gradient
layer (designations are the same as in Fig. 1).
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mental and simulated spectra was minimized by select-
ing the appropriate gradient.

Figures 1 and 2 show the optimum R and T spectra
calculated for the 2.73-µm-thick gradient SiO〈Fe〉
layer. These curves correspond to a linear increase in
the iron volume fraction in the layer from 42% (near the
interface) to 4% (on the layer surface). Agreement
between the calculated and experimental curves is sat-
isfactory, indicating that the model of an inhomoge-
neous metal-dielectric layer is applicable in our case.
However, there are certain differences associated with
the approximations and simplifications used in the cal-
culations. First, the structure related to the vibrational
band in the simulated reflection spectrum shifts toward
the long-wave range as compared with the experiment.
This is because we used the optical data for SiO rather
than for SiOx. As is known [10], the position of the
vibrational band maximum depends on the stoichio-
metric ratio and shifts toward the short-wave region
with increasing x, which is the case. In addition, the
bands are slightly distorted, especially in the transmis-
sion spectrum. It seems likely that SiO and Fe react in
the evaporator during the evaporation to form a certain
amount of iron silicides, which may alter the matrix
composition and cause extra bands in the IR region to
appear.

In general, when choosing a material for the temper-
ature-sensitive layer of a microbolometer, we should be
guided by its resistance, TCR, and specific heat [1]. The
investigation of the electrophysical properties of the
metal-dielectric films showed that their resistivity
depends essentially on the composition. By varying the
metal content in the film, one can vary its resistivity in
a very wide range from values typical of a dielectric
oxide to those of a metal. The resistance of the inhomo-
geneous layers is specified mainly by the region where
the metal concentration is maximal. However, it also
depends on the concentration gradient. A change in the
volume ratio between the conducting (Fe) and noncon-
ducting (SiOx) phases, as well as the particle size distri-
bution, significantly influences the TCR value [16].

To determine the TCR in the inhomogeneous
SiOx〈Fe〉  films, we recorded the temperature depen-
dences of their resistance r. Test samples were 0.8 ×
2-mm chips on pyroceramic substrates. By varying the
metal content (the mean concentration was varied from
13 to 23 vol%) and setting the appropriate evaporation
conditions for the SiO–Fe mixture, we succeeded in
growing films with a TCR varying within (0.3–1.2)% K–1

(at 293 K). The resistance of the chips was from several
hundreds of ohms to several hundreds of kiloohms,
which falls into the interval of optimum resistances for
microbolometers [1]. The maximum TCR values were
observed for the highest resistivity samples.

For such samples, a typical temperature dependence
of the resistance r constructed in the lnr – T–1 coordi-
nates is shown in Fig. 3. The results presented were
obtained for an inhomogeneous SiOx〈Fe〉  film with the
TECHNICAL PHYSICS      Vol. 48      No. 2      2003
same parameters as in Figs. 1 and 2 (a thickness of
2.73 µm and a mean Fe-to-SiO volume ratio of 23:77).
It is seen that the resistance drops with temperature
(i.e., the films have a negative TCR) and its room-tem-
perature value is equal to –0.47% K–1, decreasing
slightly with temperature (Fig. 3). The negative TCR
value is likely to be associated with the conduction
mechanism in these films (tunnel conduction through
percolation channels as, for example, in Au–SiO cermet
films of similar composition, for which this mechanism
has been studied rather extensively [16, 17]).

CONCLUSION

Thus, using thermal evaporation in a vacuum, we
obtained inhomogeneous SiOx〈Fe〉  metal-dielectric
films, which are characterized by a low reflection coef-
ficient and high absorption coefficient in the near- and
mid-IR spectral ranges. The optical parameters of these
films are described by the model of the effective dielec-
tric function of a statistical oxide matrix–metal inclu-
sion heterosystem where the concentration of metal
inclusions across the film obeys a linear law. The elec-
trical resistance and TCR of the films, as well as their
optical properties, depend on the concentration of metal
inclusions and concentration gradient. In particular, for
films with the average component volume ratio
Fe : SiO = 23:77, the TCR equals –0.47% K–1 at room
temperature. Such inhomogeneous metal-dielectric
layers can be used in microbolometers as sensitive lay-
ers that combine IR radiation absorption and electrical
signal formation.
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Abstract—Electroluminescent sources of light based on plastically deformed ZnSe : Mn single crystals are
studied. It is shown that the emissivity of the electroluminescent sources depends on the manganese concentra-
tion and the part of a ZnSe : Mn boule from which a plane-parallel wafer is cut. © 2003 MAIK “Nauka/Inter-
periodica”.
It is known that zinc sulfide and zinc selenide are
widely used in fabricating electroluminescent sources
[1–3]. Among zinc sulfide and zinc selenide phosphors,
ZnS : Mn and ZnSe : Mn single crystals occupy an
important place. Waters for electroluminescent sources
are cut from single-crystal ZnSe : Mn boules [4]. To
increase the brightness of the source, 2 × 2 × 4-mm
wafers cut from a ZnSe : Mn (111) single-crystal boule
at an angle of 45° ± 2° to the (111) plane are subjected
to uniaxial compression to produce plastic strains of 2–
5% [5].

Our studies have shown that the emissivity of a light
source thus prepared depends on the part of a single-
crystal ZnSe : Mn boule from which the wafer is cut.
The scatter in the brightness of the wafers cut from the
same single crystal with a fixed plastic strain (ε ≈ 5%)
and manganese concentration in the starting mixture
(≈5 × 10–2 wt %) reaches 60% (when the brightness of
the wafers cut from the bottom and center parts are
compared) and 40% (for the wafers cut from the top
and center parts). For a manganese concentration of ≈5
× 10–2 wt % in the wafer, the scatter in the electrolumi-
nescence intensity between the wafers cut from the
same portions of a single-crystal boule was ≈20 and
8%, respectively. As will be shown below, the reason
for such a spread is the nonuniform distribution of the
manganese dopant along a single-crystal zinc selenide
boule grown from the melt under argon pressure.

The purpose of this work is to study conditions for
fabricating electroluminescent sources with optimum
brightness. To find reasons for the brightness scatter in
wafers cut from the same single-crystal boule, EPR
analysis of the manganese distribution along a single-
crystal ZnSe : Mn boule was carried out. The analysis
showed that, as a whole, the boule was doped nonuni-
formly. In its central part (about 70–75% of the length),
the manganese distribution was found to be uniform. If
the concentration in this part is conventionally taken to
be 100%, then in the bottom part (up to 15% of the
1063-7842/03/4802- $24.00 © 20265
length), which crystallizes first, the manganese concen-
tration decreases to about 50–70%. In the top part of the
boule (15% of the length), which is the last to grow, the
manganese concentration is, on the contrary, higher,
rising to 130–150%. Such a distribution of the dopant
along a boule grown from the melt under argon pres-
sure could be expected, because single crystal growth
in this case involves the same processes as in zone refin-
ing of materials. As the solubility of an impurity in the
melt is higher than in the solid, at the initial stage of
growth, impurities present in the charge pass from the
solid phase to the melt zone. Consequently, the bottom
portion of the crystal (which crystallizes first) will con-
tain a lesser amount of impurity than the central por-
tion, which, in turn, will be less doped than the top por-
tion of the boule (which is the last to grow).

It can be assumed that the effect of plastic deforma-
tion on the brightness depends on the manganese con-
centration in the samples. To check this assumption, the
brightness of equally strained samples was studied as a
function of the manganese concentration. Samples
from the same lot and from different lots were studied.
The manganese concentration was determined by two
independent methods: EPR and chemical analysis. The
electroluminescence brightness and resistivity of the
equally strained ZnSe : Mn single crystals vs. the man-
ganese concentration in the samples are listed in the
table.

The results indicate that the emissivity of the work-
ing media prepared by the procedure described in [5]
varies with the manganese concentration. Since the ini-
tial brightness depends on the manganese concentra-
tion, the table lists the relative changes in the brightness
of the strained samples at a fixed manganese concentra-
tion; i.e., the effect of the plastic strain on the brightness
is isolated. We plotted the electroluminescence bright-
ness for a fixed plastic strain versus manganese concen-
tration in the samples studied (see figure). The plot has
two regions: a linear one, where the brightness varies in
003 MAIK “Nauka/Interperiodica”
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Electroluminescence brightness and resistivity of plastically strained ZnSe vs. the dopant (manganese) concentration

Plastic strain ε = 5%

Mn concentration, wt % 10–2 5 × 10–2 10–1 5 × 10–1 1 5

                 B 1.1 × 102 0.9 × 103 1.5 × 103 2.0 × 103 3.5 × 103 4.1 × 103

                 ρ 2.8 × 10–8 4.2 × 10–7 7.5 × 10–7 1.3 × 10–7 8.0 × 10–8 4.5 × 10–8

Note: B is the relative increase in brightness in the strained sample in comparison with the as-grown one and ρ is the relative decrease in
the resistivity of the strained sample in comparison with the as-grown one.
proportion to the concentration of manganese ions in
the working medium, and a region of saturation, where
the brightness depends on the concentration of manga-
nese ions only slightly. The latter is observed at high
dopant concentrations.

In order to reduce the scatter in the brightness of the
plastically strained working media and also to pick out
the most efficient emitters, we set the lower limit of the
Mn ion concentration in the working medium at a level
of 5 × 10–1 wt %. Starting from this concentration, the
linear portion of the electroluminescence–Mn the con-
centration curve changes to the saturation region.

At Mn concentrations >5 × 10–1 wt %, the brightness
curve of the plastically strained working media runs
nearly parallel to the concentration axis. This ensures a
high brightness with a minimum scatter from sample to
sample.

I

104

103

102

101

10–2 10–1 100 101

B, arb. units

CMn, wt %

Brightness of electroluminescent sources fabricated from
ZnS : Mn single-crystal wafers plastically strained to ε =
5% vs. Mn concentration C. I is the region of the highest
brightness.
The upper boundary of the Mn ion concentration
equals 5 wt %. Above this value of the activator concen-
tration, Mn ions in a single-crystal ZnSe boule do not
all represent substitutional or interstitial point centers,
because Mn precipitates either as an additional solid
phase (metallic manganese) or as the MnSe compound,
producing the ternary compound ZnxMn1 – xSe. The for-
mation of the additional solid phase depends strongly
on the single crystal growth conditions, chemical com-
position of the activator, and presence of coactivators.
Wafers containing solid precipitates of manganese or
its compounds are harder to be plastically strained.
Because of their inhomogeneity, they tend to crack dur-
ing the treatment; therefore, the sequence of operations
used in [5] may be inappropriate in this case.

Thus, the results obtained will help to produce
working media for electroluminescent sources with
maximum brightness, reproducible characteristics, and
a lesser scatter from sample to sample.
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Abstract—Lasing and discharge in mixtures of SF6 with hydrogen and hydrocarbons are investigated. If the
chemical reaction is initiated by a self-sustained discharge (a generator with both an inductive and capacitive
energy storage can be used), the maximum lasing efficiency is attained at high values of the ratio E/p (where E
is the electric field intensity and p is the pressure in the mixture) if shaped electrodes and preionization of the
discharge gap are employed. For the first time, the lasing efficiency obtained in a nonchain HF laser is as high
as 10% of the energy deposit and 4.5% of the stored energy for a specific radiation energy of ≈140 J/(l atm). At
high efficiencies, the emission spectrum of the nonchain HF laser significantly broadens and cascade lasing at
P(3–2)  P(2–1)  P(1–0) vibrational transitions for several rotational lines is realized. © 2003 MAIK
“Nauka/Interperiodica”.
(1) Interest in HF and DF lasers pumped by non-
chain chemical reactions that are initiated by single-
pulse and pulse–periodic self-sustained discharges is
related to their high output in the IR spectral range
[1−9]. However, the efficiency of an electric discharge
nonchain HF laser with respect to the stored energy is
usually no greater than 3–4%, and the specific radiation
energy is about 70 J/(l atm). If a nonchain HF laser is
excited by an inductive-storage generator, the lasing
efficiency amounts to 5.5%, including at relatively high
specific energies (≈1.7 kJ/(l atm)) [3, 7]. When a pump-
ing discharge is initiated by X rays at E/p exceeding the
static breakdown value, the lasing efficiency in mix-
tures with H2 relative to the energy deposit is about 8%
at relatively low specific energies (about 0.2 kJ/(l atm)
without considering the pressure of buffer neon) [4].
Recently [7], we reported a high output energy of an HF
laser when using inductive energy storage and intense
preionization in mixtures with hydrocarbons and
hydrogen. We also proposed the use of shaped elec-
trodes to maximize the output of such lasers.

In this work, we gained effective pumping of a non-
chain HF laser by using inductive and capacitive energy
storage. For the first time, the efficiency of an electric
discharge HF is as high as ≈10% of the energy deposit.
The specific radiation energy is about 140 J/(l atm), and
the efficiency with respect to the stored energy is 4.5%.

(2) In experiments, we used an inductive-storage
laser and a semiconductor current interrupter described
in detail elsewhere [9]. The gap between 70-cm-long
shaped electrodes was 2 or 3.8 cm. In both cases, the
lasing volume was 200 cm3. Preionization by 72 spark
gaps evenly distributed on both sides of the anode
1063-7842/03/4802- $24.00 © 20267
ensures the uniform irradiation of the cathode. The
value of peaking capacitors was 2.2 nF, and the storage
capacitance was decreased to 70 nF. The duration of a
discharge current pulse was about 100 ns. The inductive
storage can easily be switched off. In this case, the
pumping pulse duration increased to 200 ns. Lasing
was studied in SF6–pentane and SF6–hydrogen mix-
tures at pressures ranging from 0.02 to 0.2 atm.

(3) The output of the laser with a 2-cm gap was no
higher than 0.4 J both with and without the inductive
storage. The discharge was heavily inhomogeneous. If
the inductive storage is switched off, discharge contrac-
tion may take place in 100 ns after gap breakdown.

The laser parameters were improved significantly
by extending the gap to 4 cm. With the capacitive stor-
age, the output exceeded 1.0 and 1.4 J in the mixtures
with hydrogen and pentane, respectively, when the effi-
ciency with respect to the stored energy was 4.5% and
the specific energy approached 140 J/(l atm). As in [7],
a residual voltage was detected across the gap after the
termination of the current pulse. However, the use of
the shaped electrodes and uniform preionization of the
cathode prevented the secondary breakdown of the dis-
charge gap. The residual energy in the capacitor
evolved through the charging resistance for a long time
(several hundreds of microseconds).

With the inductive storage, the output was no greater
than 0.9 J because of the nonoptimal operation of the
current interrupter. We observed a totally homogeneous
discharge and many small bright spots on the cathode
(the overall pattern of the discharge glow was recorded
by a digital camera).
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Figure 1 shows the waveforms of voltage pulses,
discharge current, and HF laser output for various
working conditions. In the case of capacitive pumping,
the residual voltage increased with decreasing charge
voltage U0 and the discharge was not initiated starting
from a certain voltage depending on the mixture com-
position and pressure (e.g., from U0 ≈ 19 kV for the
SF6 : H2 = 36 : 4.5 torr mixture). As in [3], we observed
a quasi-steady discharge with E/p = 125 V/(cm torr)
(Fig. 1a) at low U0. Upon current passage, the voltage
across the plasma decreased as the charge voltage grew
(Fig. 1b). In the case of inductive pumping, the residual
voltage was relatively low and virtually independent of
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Fig. 1. Voltage, current, and laser output waveforms at U0 =
(a) 22 and (b, c) 30 kV for (a, b) capacitive and (c) inductive
pumping. SF6 : C5H12 = 18 : 1 mixture, the pressure p =
0.05 atm.
the charge voltage. The inductive storage substantially
raised the breakdown voltage, providing a short current
pulse with an amplitude of up to 30 kA to form. In this
case, the energy was applied mainly at the trailing edge
of the voltage pulse when the electric field intensity is
high (Fig. 1c).

Figure 2 shows the dependences of the laser output
and efficiency (in terms of the energy deposit) on the
charge voltage for inductive and capacitive pumping. In
the capacitively pumped SF6 : H2 = 48 : 6 torr mixture,
lasing starts at a charge voltage of ≈26 kV. The maxi-
mum efficiency amounts to 11%. The increase in the
charge voltage significantly depresses the efficiency
with respect to the energy deposit, but the efficiency in
terms of the stored energy increases. As was mentioned
above, as the charge voltage grows, the residual voltage
across the gap and the plasma voltage during the dis-
charge drop. For the inductive pumping of the same
mixture, lasing arises at a charge voltage of ≈20 kV. The
maximum efficiency in terms of the energy deposit also
reaches ≈11% in this case but remains almost
unchanged with the charge voltage increasing from 22
to 30 kV.

In the case of the capacitive generator, the maximum
efficiency is reached at relatively low current densities
and very low charge voltages. The voltage across the
gap decreases with increasing current density, which
reduces the efficiency in terms of the energy deposit. In
the case of pumping by an X-ray-initiated discharge
[4], the maximum efficiency in terms of the energy
deposit (8%) was also obtained at minimum energy
deposits. For each mixture, the appropriate energy
deposit was selected by varying the amplitude of the
voltage across the discharge gap. The energy deposited
into the discharge at the trailing edge of the voltage
pulse with high values of the ratio E/p in the laser gap
increases substantially if we use inductive pumping.
Under these conditions, high-efficiency pumping is
also possible at high energy deposits.

The spectral and temporal characteristics of the
radiation show that the spectrum of the HF laser in the
case of maximum efficiency is much broader than that
under conventional pumping conditions [1]. In the
spectrum of the high-efficiency laser, the number of
rotational lines for each of the vibrational transitions
P(3–2), P(2–1), and P(1–0) of the ground electron state
increases to 8–11, so that the total number of lines
reached 30. In addition, in this case, the powers at the
rotational lines of the above vibrational transitions are
nearly the same and sequential lasing at several rota-
tional lines of the vibrational transitions is observed.
The time–amplitude characteristics of lasing at individ-
ual rotational lines indicate that the radiation of 6  7,
7  8, and 8  9 rotational lines of the P(3–2)
vibrational transition contributes to the radiation of
7  8, 8  9, and 9  10 rotational lines of the
P(2–1) vibrational transition. Taken together, these lines
contribute to the radiation of 8  9, 9  10, and
TECHNICAL PHYSICS      Vol. 48      No. 2      2003
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10  11 rotational lines of the P(1–0) vibrational
transition. The longest emission pulses are due to the
rotational lines of the P(1–0) vibrational transition.

(4) Thus, high efficiency (≈10%) in terms of the
energy deposit can be provided by two pumping
regimes. In the case of capacitive pumping, the maxi-
mum efficiency is attained at the minimum possible dis-
charge-initiating voltage, when the residual voltage
after discharge quenching and the plasma voltage are
maximal during pumping. However, in this method, the
specific energy deposit and output are low. The laser
efficiency can be significantly increased using a gener-
ator built on a line with distributed parameters whose
impedance equals the plasma resistance during pump-
ing.
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Fig. 2. (1, 3) HF laser output and (2, 4) efficiency in terms
of the energy deposit versus the charge voltage for (1, 2)
capacitive and (3, 4) inductive pumping. SF6 : H2 = 8 : 1
mixture, the pressure p = 0.072 atm.
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In the case of inductive pumping, a high efficiency
is observed in a wide range of charge voltages and
energy deposits. Specifically, the specific laser energy
was increased to 4.5 J/l (100 J/(l atm)) at an efficiency
≈10%.
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Abstract—New expressions for the resistance law and dimensionless moment of force are derived for a Taylor–
Couette turbulent flow starting from the generalized model of local balance for the turbulent energy. In the
case of extremely high Reynolds numbers, the formulas derived involve a single empirical (Karman) constant.
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None of the available turbulence models derived
from the Navier–Stokes equations can be considered to
be sufficiently accurate. Therefore, comparing semi-
empirical turbulence models with experimental data is
of great importance. A Taylor–Couette flow between
two rotating coaxial cylinders is very convenient for
such a comparison. Here, we will consider the case
when the inner cylinder rotates and the outer cylinder is
at rest.

The basic parameters of such a flow are the Rey-
nolds number Re = Ωa(b – a)/ν and the dimensional
moment of forces acting on the inner cylinder G =
T/(ρν2L), where Ω is the angular velocity of rotation of
the inner cylinder, T is the moment of forces, ρ is the
density of the liquid, ν is the molecular kinematic vis-
cosity, L is the length of either cylinder, a is the radius
of the inner cylinder, and b is the radius of the outer cyl-
inder.

It has been shown [1] that the relationship G ∝  Reα

with α = 5/3, which was suggested in [2, 3], contradicts
experimental data. Agreement was reached by using the
Prandtl–Karman resistance law

(1)

where f = G/Re2 and the constants c1 and c2 are related
to the Prandtl–Karman constants.

This law was deduced by joining together the loga-
rithmic profiles of the velocity in the middle of a cylin-
drical channel. In [4], the relationship Uf/U ∝  Reξ has
been suggested, where Uf is the friction speed on the
surface of the inner cylinder, U is the linear velocity of
rotation of the inner cylinder (U = aΩ), and ξ = –0.051
is the empirical parameter derived from experiments
[1]. The value of G was found by fitting data obtained

1

f
------- c1 Re f( )log c2,+=
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in the same experiments [1]. Eventually, the following
expression was derived:

(2)

where  = 10.5 and  = 0.196.

Now we will show that logarithmic corrections
ln(Re) make it impossible to find a power law for the
moment of forces. In [5], the Prandtl–Karman law of
resistance was deduced from the generalized model of
local balance

(3)

where Re = V1(b – a)/ν, q = b/a, a and b are the radii of
the cylinders,  and  are the friction speeds on the
inner and outer surfaces of the cylinders, κ = 0.4 and
C = 9.5 are the Prandtl–Karman constants for the loga-
rithmic profile of the mean velocity, V1 and V2 are the
linear velocities of the oppositely rotating cylinders
(V2 = 0 for the cylinder at rest), and

Using the well-known relationship for a Taylor–
Couette turbulent flow, b = a, and introducing

the dimensionless friction speed z = /V1, we obtain
an algebraic equation for z = z(Re):

(4)

G c1' Re3/2 5ξ /2+ c2Re2 3ξ+ ,+=

c1' c2'

4πquin*κ 1– q4 1–( ) 1–
J0 uin*qκ 1– CU in* b a–( )[ ]ln+

+ uput* κ 1– Cuout* b a–( )/ν[ ]ln V2 V1q,+=

uin* uout*

J0 x x π x4 1–( )/ q4 1–( )[ ]cosec{d

1

q

∫=

– q4 1–( ) 4π( ) 1– x 1–( ) 1– q4 1–( ) 4π( ) 1– q 2– q x–( ) 1– } .–

uout* uin*

uin*

4qπκ 1– q4 1–( ) 1–
J0 qκ 1– CRez( )ln+

+ κ 1– q 1– CRez/q( )ln q/z.=
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If Re  ∞, z  0 and we can derive an asymp-
totic expression for z = z(Re). First, we omit additive
constants. After straightforward rearrangements, we
obtain

(5)

Second, we neglect the second term on the left of (5)
to come to

(6)

It becomes obvious that the second omission is
valid, since

(7)

The first omission is also valid. Thus, we have

(8)

It is known [5] that the coefficient of resistance is
given by cf = 2πz2(q – 1)–2 and G = cfRe2. Final expres-
sions are those at Re  ∞:

(9)

(10)

These formulas contain the single empirical (Kar-
man) constant κ = 0.4. This constant and also the loga-
rithmic factor (lnRe)–2 differentiate them from those
derived in previous approaches. The table summarizes
the values of G∞ (expression (10)), theoretical values

κ 1– q q 1–+( ) Reln κ 1– q q 1–+( ) z( )ln+ q/z.=

z
κq

q q 1–+( ) Reln
---------------------------------.=

Relnln
Reln

-----------------
Re ∞→
lim 0.=

z
κq2

1 q2+( ) Reln
-------------------------------.=

c f
2πκ2q4

q2 1+( )2
q 1–( )2 Reln( )2

------------------------------------------------------------,=

G
2πκ2q4

q2 1+( )2
q 1–( )2

---------------------------------------- Re
Reln

------------ 
 

2

.=
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Gtheor (expression (4)), and associated experimental
data Gexpt [1]. The empirical and theoretical depen-
dences are seen to be in fairly good agreement.

Clearly, the value Re = 106 is insufficiently high in
order for Eq. (3) to be replaced by its approximation
(10). However, one should bear in mind that Eq. (10)
merely follows from the model of turbulence. It is
believed that additional effort should be made to bridge
the gap between the direct numerical simulation of the
Navier–Stokes equations and cascade models of turbu-
lence used in [1] for comparison with experimental
data.
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Experimental [1] and theoretical moments of forces G vs.
Reynolds number (inner cylinder rotates, outer cylinder is at
rest) for the ratio of the radii q–1 = η = 0.724

Re Gexpt Gtheor G∞

104 5.0 × 106 5.4 × 106 3.5 × 106

105 3.0 × 108 3.3 × 108 2.3 × 108

106 1.5 × 1010 2.2 × 1010 1.6 × 1010
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Abstract—The basic reason for the significant spread in the experimental data on the surface tension (σ) of
aluminum is shown to be the adsorption of a residual gas in a vacuum chamber. The processing of the kinetic
curves σ(θ) by a method proposed in this work yields for aluminum σ = 1070 mJ/m2. © 2003 MAIK
“Nauka/Interperiodica”.
Published data on the surface tension (ST) of alumi-
num range from 850 to 1100 mJ/m2 (Fig. 1) [1, 2]. Val-
ues near the upper limit are considered overstated and
should be used with caution [2]. Indeed, if σ is deter-
mined under conditions when the metal is in thermody-
namic equilibrium with its vapor, which is possible
only in small sealed chambers disconnected from a
pump (as a rule, glass chambers), the resulting value is
closer to the lower limit of this interval (Fig. 1, empty
circles). On the other hand, if σ is measured with mod-
ern setups under conditions of the continuous evacua-
tion of the chamber and detection of surface contamina-
tion by an electron spectrometer (Fig. 1, filled circles),
the thermodynamic equilibrium of the metal with its
vapor breaks and the ST values approach the upper
limit of the interval. Thus, the true ST of pure alumi-
num remains unclear.

Various factors that may influence the ST of metals
were the concern of [3]. The key one is the adsorption
of the residual gas components on the metal surface or
the adsorption relaxation of the as-prepared or cleaned
metal surface. The ST variation during surface relax-
ation under measurement conditions can be expressed
by the formula [3]

(1)

where σ0 and σr are the STs of the metal at the begin-
ning of, and within a sufficiently long time after, the
formation (or cleaning) of the surface, respectively, and
τr has the meaning of the time of surface adsorption
relaxation.

Let us apply Eq. (1) to experimental data in [4],
where the ST of aluminum was studied as a function of
the oxygen content on its surface. To do this, we
employ the time dependence of the coverage [5]

(2)

where θs corresponds to the case of equilibrium at a
given temperature and pressure.

σ t( ) σr–[ ]ln σ0 σr–[ ]ln
t
τ r
----,–=

θ t( ) θs 1 t/τ r–[ ]exp–( ),=
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Assuming that Eqs. (1) and (2) are valid at small θ
(or t), expanding Eq. (2) in the Taylor series for small
times (t ! τr), and disregarding all the terms except the
linear one, we obtain

(3)

Here, θs should evidently be replaced by θr, which is
the coverage at the time moment τr . Then, Eqs. (1) and
(3) yield

(4)

Expression (4) was used to process the experimental
dependence σ = σ(θ) obtained in [4] for the aluminum
surface upon oxygen adsorption. The resulting curve (4) is
presented in Fig. 2.

It is seen that the data points can be well approxi-
mated by a straight line, thus indicating the validity of
expression (4). The initial ST value of aluminum, σ0,
was determined from the intersection of straight line (4)
with the vertical axis and turned out to equal
1070 mJ/m2. This value is in fairly good agreement
with the experimental values found by direct measure-

θ t( )
θs

---------- t
τ r
----.≈

σ σr–( )ln σ0 σr–( ) θ
θr
----.–≈

1100

1000

900

σ, mJ/m2

1970 1980 1990 t, year

Fig. 1. Surface tension of aluminum vs. the date of measure-
ment [2]. (s) As-prepared and (d) ion-cleaned surface.
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ments [4, 6]. When determining σ0, we found that the
ST of aluminum varies during the adsorption relaxation
of the surface and, under the conditions in [4], takes the
value σr = 890 mJ/m2 at the time moment t = τr . From
the slope of straight line (4), the coverage θr of the alu-
minum surface by oxygen was determined to be 0.24.
A further increase in θ will evidently lower the ST and
lead to better agreement with experimental values of σ
measured in sealed devices.

Thus, the ST value approaching 1100 mJ/m2 [4, 6]
should be assigned to the as-prepared or cleaned alumi-
num surface that has not yet reached equilibrium with a

ln(σ0 – σr)

–tanα = 1/τr
α

0.2 0.4 0.6 θ

6

5

4

3

ln(σ – σr)

Fig. 2. Determination of σ0 and θs for aluminum from
data [4].
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residual gas in the camera. The value of about
860 mJ/m2 is characteristic of the aluminum surface
that is in equilibrium with a residual gas, i.e., is par-
tially covered by gas molecules. The review [2] of
methods for determining the ST of aluminum suggests
that, with an advance in the experimental instruments
and methods, measured ST values increase and
approach the upper limit of the interval mentioned
above, i.e., come close to 1100 mJ/m2.
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