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Nuclear transparency for incoherent real and virtual photoproduction of vector mesons off nuclei
depends crucially on the interplay of the initial-state and final-state interactions. We
develop a consistent description of initial-state and final-state interactions based on the coupled-
channel multiple-scattering theory. We present detailed predictions for incoherent
production ofss̄ andcc̄ mesons. The onset of initial-state interactions is controlled by the
production lengthl P , and we find strong variations of nuclear transparency whenl P rises with
energy and becomes comparable to the radius of the target nucleusRA . For ss̄mesons,
the regimel P ; RA corresponds to precisely the kinematic range of the HERA–HERMES
experiment, whereas forcc̄ mesons the same condition will be met at the ENC electron–nucleus
collider at GSI. In spite of the subasymptotic values ofQ2 andn, we find a complex pattern
of color transparency-induced effects whose experimental study may provide information on
several issues relevant to the understanding of QCD, both in the perturbative and
nonperturbative regimes. ©1997 American Institute of Physics.@S1063-7761~97!00103-0#

1. INTRODUCTION
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The color transparency~CT! phenomenon in diffractive
exclusive virtual photoproduction of vector mesons
nuclear targets has recently attracted much attention.1–8 The
Q2-dependence of the size of the initialqq̄ fluctuation of the
virtual photon makes the measurements of nuclear trans
ency in these reactions a unique tool for probing the co
dipole cross section, which plays a fundamental role in lo
x physics.9–11Measurements of nuclear transparency in v
tor meson electroproduction may also provide important
formation on the spatial wave function of vector meson4

Predictions4,5 of CT effects at asymptotic energies have be
confirmed in the E665 muon scattering experiment at FE
MILAB, although the statistical accuracy of the E665 da
was limited.12 Much more accurate data on nuclear transp
ency in virtual photoproduction of vector mesons will b
obtained in the forthcoming high-luminosity experiments
CEBAF and HERA~HERMES collaboration!. In these ex-
periments the energy will be rather low, which makes
thorough theoretical analysis of CT effects at subasympt
energies a pertinent issue.

Virtual photons are produced in the scattering of el
trons~muons!, and nuclear transparency for virtual photopr
duction with photon energyn and virtualityQ2 is defined as
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A ds~e1N→e81N1V!

whereA is the mass number of the target nucleus. In inc
herent production off the nucleus, the nuclear cross sectio
summed over all excited and nuclear break-up statesA* ,
excluding production of secondary particles~mesons!. In the
single incoherent rescattering approximation, the reac
mechanism can be viewed as a formation and propagatio
the projectile wave packet, the incoherent~quasi-elastic!
scattering of which off the bound nucleon produces the e
tile wave packet, which propagates through the nucleus
forms the observed final state vector mesonV. The nuclear
transparency can be written as

TA~q!5
1

A E d3r nA~r !
u^VuŜf~r ! f̂ ~q!Ŝi~r !ug* &u2

u^Vu f̂ ~q!ug* &u2
. ~2!

HerenA(r ) is the nuclear density,q is the transverse momen
tum transfer,Ŝi(r ) andŜf(r ) are the evolution operators de
scribing the coherent initial-state interaction~ISI! of the pro-
jectile and final-state interaction~FSI! of the ejectile in a
nucleus, respectively, andf (q) is the scattering matrix,
which describes projectile-to-ejectile diffractive transitio
in interaction on a free nucleon. The evolution operat
Ŝi , f and the scattering matrixf̂ in Eq. ~1! act in a space

4211$10.00 © 1997 American Institute of Physics



including both the hadronic states and the photon state. The
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function approach to FSI. This technique was further used in
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physical meaning of the numerator in the integrand of~2! is
obvious: it is the cross section of the one-fold incoher
interaction with a bound nucleon, modified by the intr
nuclear coherent ISI of the projectile and FSI of the eject
the denominator is the photoproduction cross section o
free nucleon. Equation~1! is valid atq2 & 1/B, whereB is
the diffraction slope for photoproduction on a free nucleo
for which the many-fold incoherent rescatterings in a nucl
medium can be neglected. For incoherent diffractive scat
ing of hadrons off nuclei at subasymptotic energies,
counterpart of Eq.~2! has been derived in Ref. 13. For th
first application to an evaluation of CT effects in the char
exchange of pions off nuclei at asymptotic energies, see
14.

To leading order in the fine-structure consta
aem51/137, the intermediate state decomposition of the m
trix element ^VuŜf(r ) f̂ (q)Ŝi(r )ug* & which enters into Eq.
~2! is given by

^VuŜf f̂ Ŝi ug* &5(
h

^VuŜf uh&^hu f̂ ug* &1 (
h,h8

^VuŜf uh8&

3^h8u f̂ uh&^huŜi ug* &, ~3!

whereuh&,uh8& are the intermediate hadronic states, and
have taken into account that to leading order inaem, one can
set ^g* uŜi ug* &51. The first term in the decomposition~3!
describes incoherent scattering at the level of production
the intermediate stateuh& at the electromagnetic interactio
vertex, and is described by the amplitude^hu f̂ ug* &. ISI ef-
fects are present only in the second term, in which incohe
scattering takes place at the level of intermediate statesuh&
and uh8& and is described by the amplitude^h8u f̂ uh&. The
coherency properties of ISI of the projectile and FSI of t
ejectile in virtual photoproduction of vector mesons are ch
acterized by two different length scales. For ISI, the relev
scale is the production length of theqq̄ pair by the virtual
photon,

l P;
2n

Q21mV
2 , ~4!

while for FSI, the relevant scale is the formation length
the wave function of the final vector meson,

l F;
2n

mV8
2

2mV
2 , ~5!

where mV,V8 are the masses of the 1S and 2S vector
mesons.1,2

The strength of ISI effects critically depends on the ra
l P /RA , whereRA is the nuclear radius. At sufficiently low
energy and/or largeQ2, whenl P ! RA , the off-diagonal ma-
trix element^huŜi ug* & is suppressed due to the large long
tudinal momentum transfer,; 1/l P , in the coherent
g*→qq̄ transition. As a result, the second term in Eq.~2!
related to ISI can be neglected. In this case the nuclea
fects are exhausted by FSI, which in turn depends cruci
on the ratiol F /RA . In Ref. 2 this regime forcc̄ vector me-
son photoproduction was considered within the Gree
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Ref. 8 for evaluation of nuclear transparency inss vector
meson electroproduction for the energy range of future
periments at CEBAF. Atl P * RA , ISI and FSI must be taken
into account on the same footing. In the limit of high energ
whenl P,F @ RA , ISI and FSI absorption effects can be eva
ated within the frozen-size approximation for propagation
the qq̄ fluctuation of the virtual photon through the nucle
medium.2

The intermediate energy region whenl P,F are compa-
rable with the nucleus size is the most complicated for eva
ation of CT effects. In Ref. 3 an approximate formula f
nuclear transparency, interpolating between the high-
low-energy regimes was obtained within the two-chan
model. Because of the relatively weak nuclear attenuatio
J/C photoproduction, this interpolation formula works we
and the theoretical results of Ref. 3 agree with the exp
mental data of NMC collaboration.15 A more rigorous treat-
ment of CT effects atl P,F ; RA is highly desirable, becaus
the kinematic conditions at the CEBAF and HERA
HERMES experiments on production of light vector meso
correspond precisely to this situation. In the energy range
the ENC electron–nucleus collider which is being planned
GSI, one will encounter the casel P ; RA in the production of
J/C,C8 mesons off nuclei.~At much higher energies o
HERA operating in the electron–nucleus collider mode, o
will have the asymptotic situationl P ,l F @ RA , which re-
quires a separate analysis.! The theoretical basis for evalua
tion of CT effects without restrictions on the values ofl P,F is
the Glauber–Gribov coupled-channel multiple-scatter
theory ~CCMST!.16,17 The formalism of CCMST allows for
both evolution and absorption effects in propagation of
projectile state through nuclear medium.

The interplay of ISI and FSI effects is also important
diffractive hadroproduction off nuclei. Because in hadron
interactions one always hasl P ' l F , the ISI and FSI effects
cannot be separated. The virtuality of the photon,Q2, which
can easily be varied experimentally over a broad range, g
an important handle on the values ofl P and the strength of
ISI, which makes the real and virtual photoproduction
vector mesons a unique testing ground of the cohere
properties of diffractive production off nuclei. In the prese
paper we carry out a CCMST analysis of CT effects inf, f8
andJ/C,C8 electroproduction.

2. ISI AND FSI EVOLUTION OPERATORS IN THE COUPLED-
CHANNEL MULTIPLE-SCATTERING FORMALISM

We use for evaluation of the ISI and FSI evolutio
operators Ŝi , f an extension of the formalism previous
developed18 for calculating FSI effects in nuclear transpa
ency for quasielasticA(e,e8p) scattering. As in the case o
the FSI evolution operator for the ejectile state in (e,e8p)
scattering, the operatorsŜi and Ŝf within CCMST can be
written in z-ordered operator exponential form

Ŝi~r !5 P̂z expF2
1

2 E
2`

z

dj ŝ~j2z!nA~b,j!G , ~6!

422Benhar et al.



Ŝ ~r !5 P̂ exp 2
1 E`

dj ŝ~j2z!n ~b,j! , ~7!
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t~b,z ,z !s , n>2,

ef-
tile
tion
-
ff-
he

In
ts

the
de-
tile
ely

ff-
the

ntial

-
and
f z F 2 z
A G

wherer5(b,z), and P̂z is thez-ordering operator. The ma
trix elements of thez-dependent operatorŝ(z) are related to
the diffraction scattering matrix atq50:

^ i uŝ~z!u j &52 i exp~ ik i j z!^ i u f̂ ~q50!u j &, ~8!

whereki j is the longitudinal momentum transfer associa
with the transitioniN→ jN,17

ki j5
mi
22mj

2

2n
, ~9!

mi andmj are the masses of the statesu i & andu j &, and for the
virtual photonmg*

2
52Q2. The exponential phase factor i

Eq. ~8! results from the difference between the phases for
plane waves describing the statesu i & and u j & after propagat-
ing the distancez. It is easy to check that the full phas
factors, which the operators~6! and ~7! yield in the case of
arbitrary sequences of intermediate states for transit
g*→h andh→V, coincide with the phase factors that ca
be obtained by solving the set of coupled-channel w
equations.

For numerical calculations, it is convenient to treat t
off-diagonal part of matrixŝ(z) in ~6! and ~7! as a pertur-
bation. Then we can represent the matrix elements of
operatorsŜi , f(r ) in the form ofn-fold off-diagonal rescatter-
ing series:

^huŜi~r !ug* &5 (
n51

`

^huŜi
~n!~r !ug* &, ~10!

^VuŜf~r !uh&5 (
n50

`

^VuŜf
~n!~r !uh&, ~11!

where

^huŜi
~1!~b,z!ug* &52

1

2
shg* exp~ ikg* hz!E

2`

z

dz1 nA~b,z1!

3expF ikhg*z12
1

2
t~b,z,z1!shhG , ~12!

^huŜi
~n!~b,z!ug* &5S 2

1

2D
n

(
i1 ,...i n21

shin21
8 s i n21i n22

8 •••s i1g*

3exp~ ikg* hz!E
2`

z

dzn nA~b,zn!

3expF ikhin21
zn2

1

2
t~b,z,zn!shhG

3E
2`

z

dzn21 nA~b,zn21!

3expF ik i n21i n22
zn21

2
1

2
t~b,zn ,zn21!s i n21i n21G •••
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^VuŜf
~0!~b,z!uh&5dVh expF2

1

2
t~b,`,z!sVVG , ~14!

^VuŜf
~n!~b,z!uh&5S 2

1

2D
n

(
i1 ,...i n21

sVin21
8 s i n21i n22

8 •••s i1h
8

3exp~ ikhVz!E
z

`

dz1 nA~b,z1!

3expF ik i1hz1
2
1

2
t~b,z1 ,z!shhG

3E
z1

`

dz2 nA~b,z2!expF ik i2i1z2
2
1

2
t~b,z2 ,z1!s i1i1G •••Ezn21

`

dzn

3nA~b,zn!expF ikVin21
zn

2
1

2
t~b,`,zn!sVVG , n>1. ~15!

Heres ik8 5s ik 2 d iks i i , the matrixŝ is related to the forward
diffraction scattering matrix, f̂ (q50)5 i ŝ, and
t(b,z2 ,z1)5*z1

z2dz nA(b,z) is the partial optical thickness.

The ISI and FSI evolution operators comprise two
fects: the first can be called nuclear filtering of the projec
and ejectile wave packets due to the difference in attenua
factors exp@ 2 (1/2)t(b,z2 ,z1)s i i #, the second is the space
time evolution of these wave packets resulting from o
diagonal coherent rescattering in a nuclear medium. T
first-order ISI term̂ huŜi

(1)(b,z)ug* & of Eq. ~12! and zeroth-
order FSI term̂VuSf

(0)(b,z)uh& of Eq. ~11! describe the con-
ventional Glauber ISI and FSI absorption, respectively.
this Glauber approximation, only the nuclear filtering effec
are included. The terms~13! and~15! give corrections to ISI
and FSI associated with the off-diagonal rescattering of
intermediate hadronic states in a nuclear medium, and
scribe the space-time evolution of the projectile and ejec
wave packets due to intranuclear interactions. It is precis
the oscillating exponential phase factors in Eqs.~13! and
~15! that lead to suppression of the contributions of the o
diagonal inelastic intermediate states at low energies of
virtual photon. Notice that the suppression of ISI atl P&RA

discussed above is also related to the oscillating expone
phase factor exp(ikhg*z1) in the integrand in Eq.~12!. Equa-
tions ~2! and~10!–~15! form the basis for numerical evalua
tion of nuclear transparency in incoherent vector meson
electroproduction in the framework of CCMST.
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3. CALCULATION OF THE DIFFRACTION SCATTERING
MATRIX
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The ISI and FSI operatorsŜi , f describing the evolution
of the qq̄ state as it propagates through the nucleus dep
critically on the form of the diffraction matrix. In our analy
sis we describe theqq̄ states in the nonrelativistic oscillato
model. Then, assuming the dominance of Pomeron
change, the diffraction matrix elementss ik can be written as

^ i uŝuk&5E d2r dzC i* ~r,z!s~r!Ck~r,z!, ~16!

wherer is the transverse size of theqq̄ pair, C i ,k(r,z) are
the wave functions describing theqq̄ states, ands~r! is the
dipole cross section describing the interaction of theqq̄ pair
with a nucleon.

We need also the matrix element for the diffraction e
citation of the virtual photon into aqq̄ state on the free
nucleon. Following Ref. 2, we use the perturbativeqq̄ light-
cone wave function of the virtual photon9 and write the ma-
trix elementŝ i uŝug* & in the form

^ i uŝug* &5lE d2r dzC i* ~r,z!s~r!K0~er!

3expS 2
z2

d2D , ~17!

where

e25mq
21Q2/4, ~18!

mq is the quark mass,K0(x) is the modified Bessel function
d51/2mq andl is a normalization coefficient that is imma
terial for the evaluation of nuclear transparency. Equat
~14! yields the diffraction amplitude for transition of the vi
tual photon into aqq̄ state with the sum of quark helicitie
equal to the photon helicity.2 This amplitude dominates fo
production of nonrelativisticqq̄ states and/or for the mode
ately largeQ2 & mV

2 considered in the present paper.
In our analysis we restrict ourselves to calculation

nuclear transparency at small momentum transfer. Then
can use Eqs.~16! and ~17! to calculate the scattering matri
f̂ in the numerator and denominator of the integrand in
~2!. At small momentum transfer; rescatterings of theqq̄
state on nucleons do not change the projection of its orb
momentum on thez-axis. As a result, in the oscillator mode
the intermediateqq̄ states emerging in the coupled-chann
formalism are exhausted by the transverse excitations of
qq̄ system with zero value of the azimuthal quantum nu
ber. The masses of theseqq̄ states entering into Eq.~9! for
longitudinal momentum transfer can be written asmi5m0

1 2ivq , wherevq is the oscillator frequency. For the osci
lator frequencies of thess̄andcc̄ systems we use the value
vs5(mf82mf)/250.33 GeV and vc5(mC82mJ/C)/2
50.3 GeV. For the quark masses we takems50.5 GeV and
mc51.5 GeV.

The form of the diffraction matrix is sensitive to th
r-dependence of the dipole cross section. The available
perimental data on the structure functionF2 at low x and the
cross sections of vector meson electroproduction off nu
ons can be described by representing the dipole cross se
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energy-independent nonperturbative components.
The energy dependence of the perturbative part ofs~r!

generated by the higher Fock states is governed by the
eralized BFKL equation.19 The analysis of CT effects at hig
energy in the regime of large contribution to the dipole cro
section of higher Fock states requires an accurate treatm
of the nuclear filtering effects for the many-body part
components of the projectile and ejectile. The interplay
absorption effects for the different Fock states may be
portant to the energy dependence of nuclear transparenc
the limit l P @ RA .

In the present paper we restrict ourselves to evalua
of CT effects at relatively low energies, in which the high
Fock states do not greatly affect nuclear transparency.
use fors~r! the parametrization given by the two-gluon e
change model of the pomeron,20,21 which yields the energy-
independent dipole cross section

s~r!5
16

3 E d2k

3
aS~max~C/r,k!!aS~k!@12exp~ ikr!#@12G2~k,2k!#

~k21mg!
2 ,

~19!

whereG2(k1 ,k2)5^Nuexp(ik1r1 1 ik2r2)uN& is the two-
quark form factor of the nucleon,mg is an effective gluon
mass, andC . 1.5.9 We calculated the dipole cross sectio
making use of the running and freezing couplingaS(k) ac-
cording to the prescription of Ref. 9. The value ofaS was
frozen at the momentak < kf r50.7 GeV. At higher mo-
menta, the runningaS was calculated through the one-loo
formula withLQCD50.3. As in Ref. 22, we use for the ef
fective gluon mass valuemg50.17 GeV. Ther-dependence
of the dipole cross section calculated in the two-gluon mo
is shown in Fig. 1. Calculation ofs tot(pN)5^puŝup& with our
parametrization of the dipole cross section reproduces
experimental value of the pion–nucleon total cross sectio
the 10–100 GeV energy range.

The decrease in dipole cross sections~r! at perturba-
tively small r given by the parametrization~19! agrees well
with the behavior of the dipole cross section extracted
cently from experimental data on vector meson electrop
duction off free nucleons for the range of dipole sizer
; 0.2–1.5 fm.23 The r-dependence of the dipole cross se
tion given by Eq.~19! was previously corroborated by th
analysis of CT effects in the quasielastic charge-excha
reactionp25A→p0A8,14 and of the nuclear shadowing an
diffraction cross section in deep inelastic scattering.9,24

At this point, it must be made clear that the above cho
of gluon mass is oriented toward description of the nonp
turbative part of the dipole cross section, andmg is a phe-
nomenological parameter that must not be taken at f
value. The analysis of low-x HERA data on the structure
function F2

11 within the generalized BFKL equation,19 and
the nonperturbative evaluation of the gluon correlati
radius25 yield clearcut evidence for an effective gluon ma
; 0.75 GeV. The value ofmg used in the present paper do
not affect the dipole cross section at perturbatively smar
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r t
! 1/mg , but it provides a viable parametrization of the e
perimental information on the dipole cross section in
semiperturbative and nonperturbative ranges of larger,
which really cannot be described in perturbative QCD.

Making use of the parametrization~19! for s~r!, with the
above set of the quark masses and oscillator frequencies
find the following total interaction cross sections for vec
mesons with a free nucleon:s tot(f N) ' 16 mb, s tot(f8N)
' 24.5 mb,s tot(J/CN) ' 7.5 mb, ands tot(C8N) ' 14.5 mb.
For the ratio ^V(2S)uŝug* &/^V(1S)uŝug* & at Q250, we
obtain 0.186 and 0.49 for thess̄andcc̄mesons, respectively
Notice that the resulting ratio R(2S/1S)5s(g*N
→C8N)/s(g*N→J/CN) ' 0.24 predicted forQ250
agrees well with the result of the NMC collaboratio
R(2S/1S)50.226 0.05,26andR(2S/1S)50.216 0.02 from
the E687 collaboration.27

FIG. 1. The dipole–size dependence of color dipole cross sections fo
parametrizations~19! ~solid curve! and ~21! ~dashed curve!.
e

we
r

scanning phenomenon and the effect of the nodal structur
the spatial wave function of radially excited 2S vector me-
sons on the amplitude of the transitiong*→V(2S). The
transverse spatialqq̄ wave function of the virtual photon
} K0(er), which enters into the matrix element~17!, de-
creases proportionally to exp(2er) at large r * 1/e
; 1/Amq

21Q2/4; see Eq.~19!. Due to the vanishing of the
dipole cross section atr50, the typical size of theqq̄ pair
that dominates the matrix element~17!, the so-called scan
ning radiusr S ,

4 turns our to be considerably greater than t
naively expected value; 1/Amq

21Q2/4, and is given by

r S'
6

AQ21mV
2

~20!

~here we put 2mq ' mV!. At low Q2, r S is close to the radius
r V of the 1S state and to the position of the node,r n ; r V , in
the spatial wave function of the radially excited 2S vector
mesons. This leads to considerable cancellation between
contributions to the amplitudêV(2S)uŝug* & coming from
the regions of large (r * r n) and small (r & r n) dipole
size.3,28Precisely this cancellation is responsible for the cit
suppression of the cross section of photoproduction ofS
vector mesons as compared to 1S vector mesons. Similar
suppression of the production amplitude^V(nS)uŝug* &
holds for higher statesV(nS).

The effect is extremely strong for light vector meson
For the diffraction amplitudeŝV(2S)uŝug* & for light vector

he
r-
f

.
d

FIG. 2. Predictions for nuclear transpa
ency in incoherent production o
J/C(1S) andC8(2S) mesons off nuclei
for the color dipole cross section of Eq
~19!. The dot-dashed, dashed, solid, an
dot-dot-dashed curves are forQ250, 5,
10, and 20 GeV2, respectively.
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tion scenario, with dominance of the small-r contribution, or
the overcompensation scenario with dominance of
large-r contribution. Which scenario is realized can only
decided experimentally. To this end, the nuclear filtering
fects drastically affect the cancellation between the contri
tions of the regions of large and small interquark distance
the 2S vector meson photoproduction amplitudes. The ana
sis of r8 photoproduction in the frozen-size approximati
appropriate to the high-energy regime in Ref. 6 shows t
the strong nodal effect for light 2S vector mesons can lead t
an anomalousA-dependence of nuclear transparency.

The behavior of nuclear transparency for light 2S vector
mesons at lowQ2 differs strongly for the undercompensatio
and overcompensation scenarios. In our model for the dip
cross section and for the wave functions of vector meso
the undercompensation regime takes place in real photo
duction of thef8 andC8 on the free nucleon atQ250. In
contrast toC8, for the f8 the compensation effect is ver
strong, and at present the overcompensation regime fof8
photoproduction also cannot be ruled out. A recent analys23

of vector meson photoproduction on free nucleons in
light-cone wave function formalism shows that for photop
duction of light 2S vector mesons by longitudinal photon
relativistic effects can lead to the overcompensation scen
at lowQ2.

In order to illustrate the behavior of nuclear transparen
in the overcompensation scenario, we also compute nuc
transparency, which makes for a parametrization ofs~r! in
the form

s~r!5r2
s tot~fN!

^fur2uf&
, ~21!

which enhances the large-r contribution and leads to th
overcompensation scenario forf8 photoproduction, although
this parametrization is somewhat unrealistic, in view of t
available experimental information on the dipole cross s
tion s~r! analyzed in Ref. 23. The normalization in~21! has
been so chosen as to produce approximately the same re
for T(f), while emphasizing the overcompensation effe
in T(f8).

4. NUMERICAL RESULTS

We carried out our numerical calculations in the ran
Q2 & 2mV

2. The number of includedqq̄ resonance states an
the multiplicity of the off-diagonal rescatterings used in Eq
~7!–~12! were equal to 5 and 3, respectively. We check
that the contributions from higher excitations and rescat
ings withn . 3 are negligible in the above range ofQ2, even
at high energies, when the suppression of the higher m
states related to the longitudinal momentum transfer v
ishes. In the above range ofQ2, predictions of the CCMST
are saturated by the contribution of several lowest reson
qq̄ states for two related-reasons: the suppression of the
fraction matrix element~16! for transitions with large differ-
ence between the masses of the initial and final states,
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photoexcitation of higher statesuh& for a relatively large
value of the scanning radius~20!.

In the present paper, we focus on predictions for nucl
transparency inf, f8, J/C, andC8 virtual photoproduction
on the target nuclei9Be, 66Fe, and207Pb. For the nuclear
matter density in the target nucleus9Be we use the oscillato
shell model nuclear density, with the oscillator frequen
adjusted to reproduce the experimental rms radius of
charge distribution̂r 2&9Be

1/2
52.51 fm.29 For the target nucleus

56Fe, the parametrization of the nuclear density in terms o
sum of Gaussians from Ref. 29 was used. For207Pb the
Wood–Saxon parametrization of the nuclear density with
rameters taken from Ref. 29 was used.

The results obtained for the dipole cross section para
etrized by Eq.~19! are shown in Figs. 2 and 3. At low ene
gies, the magnitude of nuclear transperenciesTA(f) and
TA(J/C) is controlled by FSI attenuation of the ejectile. Th
decrease inTA(f) andTA(J/C) at higher energies is due t
the onset of attenuation for ISI effects. The energyn at which
TA(f) andTA(J/C) start dropping is higher for largerQ2

and for heavier vector mesons, which nicely correlates w
the conditionl P * RA , i.e. n * RA(mV

2 1 Q2) for fully-
developed ISI. This ISI-driven drop in nuclear transparen
is preceded by a rise inTA(f) andTA(J/C) at lower ener-
gies. We shall comment more on the origin of this rise b
low, when discussing the results for the Glauber approxim
tion to the ISI and FSI operators shown below in Figs. 6 a
7. The asymptotic values ofTA(f) andTA(J/C) rise with
Q2, which is the CT effect. In the frozen size approximatio
appropriate at high energies, this diminishing attenuation
rives from the decrease in the scanning radiusr S with Q2;
see Eq.~20!.

The preasymptotic rise in nuclear transparency is m
stronger for the 2S vector mesons. Also for the 2S states, the
onset of ISI is followed by a decrease inTA(f8) and
TA(C8) at higher energies. At smallQ2, when the scanning
radius r S is larger and the node effect is stronger, bo
TA(f8) and TA(C8) exhibit rapidQ2 dependence, faste
than forTA(f) andTA(J/C), respectively. At much highe
Q2, when the scanning radiusr S is substantially smaller than
the radiusr V of the 1S states, the role of the node effe
diminishes and we find TA(f8)'TA(f) and
TA(C8)'TA(J/C) ~for more discussion on this point se
Ref. 4!. Nuclear transparency for the 2S states peak in the
range n;10230 GeV for f8 photoproduction andn;50
2150 GeV forC8 photoproduction. Our results show th
despite the inequalitys tot(V8N) . stot(VN), in the kinematic
region studied, the counterintuitive inequalityTA(V(2S))
. TA(V(1S)) is predicted. For realf8 photoproduction
(Q250), we predict a considerable antishadowing effect.
course, one must bear in mind that due to the strong n
effect inf8 photoproduction discussed above, the theoret
predictions forTA(f8) at lowQ2 are very model-dependen

We consider the above predictions for nuclear transp
ency in f8 photoproduction as only an illustration of th
energy- andQ2-dependence of nuclear transparency e
pected for the undercompensation scenario. Notice that m
of the interesting energy dependence ofTA(f) andTA(f8)

426Benhar et al.
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FIG. 3. Predictions for nuclear transpa
ency in incoherent production of the
f(1S) and f8(2S) mesons off nuclei
for the color dipole cross section of Eq
~19!. The dot-dashed, dashed, solid, an
dot-dot-dashed curves are forQ250,
0.5, 1.0, and 2.0 GeV2, respectively.
takes place atn ; 10–30 GeV, which is precisely the kine-
ly,
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matic range of the HERA–HERMES experiment. Similar
the interesting variations ofTA(J/C) andTA(C8) take place
atn ; 302 200 GeV, which are in the kinematic range of th
ENC collider.

In Fig. 4 we compare the theoretical predictions obtain
for the dipole cross section~19! with the experimental data
on the ratio of nuclear transparencies for tin and carbon
gets atQ250 from the NMC collaboration.15 The agreemen

FIG. 4. Predictions for the ratio of nuclear transparencies in incohe
photoproduction of theJ/C off Sn and C targets for the dipole cross secti
of Eq. ~19!, in comparison with experimental data from the NMC mu
scattering experiment. The open and full circles are for muon energy
GeV and 200 GeV, respectively.15
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r-

the results obtained in the full CCMST for the energy dep
dence of the ratioTSn(J/C)/TC(J/C) turn out to be very
close to the evaluation of the energy dependence from
approximate two-channel extrapolation formula for nucle
transparency suggested in Ref. 3.

In Figs. 5 and 6 we show the nuclear transparency
tained with the quadratic parametrization of the dipole cr
section ~21!. As stated above, this parametrization was
devised as to enforce the overcompensation scenario, an
have a negative amplitude forg*→f8 transition at low
Q2. For C8 production, the undercompensation regime
retained. In the undercompensation scenario, nuclear tr
parencyTA(f8) decreases monotonically in the range
Q2 considered.

In the overcompensation scenario,TA(f8) rises with
Q2 at low Q2, which is mostly due to the decrease in th
denominator in Eq.~2! with rising Q2. In our simplified
model in which we neglect the small real part of the pome
amplitudes,TA(f8) even becomes infinite at a certain valu
of Q2, at which the denominator in Eq.~2! vanishes and then
decreases withQ2, following the pattern for the undercom
pensation regime.

In a more realistic model, the infinity ofTA(f8) is re-
moved, and one instead finds a maximum inTA(f8) if one
takes into account the nonzero real part of the amplitude
g*→f8 transition. We shall not dwell on this, but mere
emphasize that an experimental observation of such a n

nt

0
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FIG. 5. The same as Fig. 2, but for th
dipole cross section of Eq.~21!.

FIG. 6. The same as Fig. 3, but for th
dipole cross section of Eq.~21!.
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FIG. 7. The same as Fig. 2, but in th
Glauber approximation as described
the text. The dipole cross section of Eq
~19! is used.

FIG. 8. The same as Fig. 3, but in th
Glauber approximation as described
the text. The dipole cross section of Eq
~19! has been used.
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FIG. 9. The ratio of nuclear transpar
ancies for incoherent production o
the J/C, C8, f, andf8 mesons off
nuclei, allowing only for final state
interaction and neglecting the initia
state interaction~FSI! and with both
initial and final state interactions in-
cluded ~IFSI!. The printed patterns
for J/C andC8 mesons are the sam
as in Fig. 2, and forf andf8 mesons
they are the same as in Fig. 3. Th
dipole cross section of Eq.~19! has
been used.
monotonicQ2-dependence ofTA(f8) would be clearcut evi-
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dence for the overcompensation scenario inf8 electropro-
duction.

For the 1S states, we find only marginal changes
TA(J/C) andTA(f) from the ones shown in Figs. 3 and
for the dipole cross section~19!. For theJ/C, Fig. 5 shows
slightly weaker attenuation than in Fig. 3 which is obvio
from the fact that the dipole cross section~21! is smaller than
the parametrization~19! in the range ofr relevant toJ/C
production. The cross sections~19! and ~21! differ substan-
tially only at r * 1 fm, and the changes inTA(C) from one
parametrization to another are also marginal. The node e
is somewhat enhanced, though, and the inequalityTA(C8)
. TA(J/C) becomes stronger, withTA(C8) even reaching
the antishadowing regime ofTA(C8) forQ2 ; 0. Finally, the
CT effect derives from the variation ofs~r! with r. Because
this variation is stronger for the parametrization~21!, the
Q2 dependence ofTA(J/C) andTA(f) in the high-energy
regime of the developed ISI is somewhat stronger for
parametrization~21! than for the parametrization~19!, in
particular for theTA(f); cf. Fig. 6 and Fig. 3.

The rise ofTA(J/C) andTA(f) with Q2 is the CT ef-
fect, which in the framework of CCMST derives from th
off-diagonal transitionsh→h8→...→V in the ISI and FSI
operators, and from the interference of transitionsg*→V

430 JETP 84 (3), March 1997
ct

e

assess the relative importance of difference off-diago
transitions. In the most naive and unrealistic single-chan
vector meson dominance~VMD ! model, one allows only the
g*→V transitions in the photoabsorption vertex and the
agonalV→V transitions in the ISI and FSI operators. Th
energy dependence caused by the onset of ISI is present
in VMD, but it completely fails to describe theQ2 depen-
dence of photoproduction on free nucleons—all the CT
fects are lost, and we skip a discussion of this unreali
approximation. A more interesting case is the one in wh
the ISI and FSI operators are approximated by the Glau
formulas~12! and~14!. In such a simplified model, which we
call here the Glauber approximation, one neglects the ev
tion of the ejectile and projectile wave packets caused
off-diagonal rescattering. The retention of the interference
transitionsg*→V andg*→h in the photoabsorption verte
yields theQ2-dependent projectile wave packet, and the
terference of the diagonalV→V and off-diagonalh→V tran-
sitions in the incoherent rescattering vertex allow a corr
description of theQ2 dependence of the free nucleon cro
section.

The importance of off-diagonal transitions in the F
operator is best seen by comparing the energy dependen
TA(J/C) in Figs. 3 and 7 with that ofTA(f) in Figs. 4 and

430Benhar et al.
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transparency is flat versus energyn, whereas in Figs. 3 and
nuclear transparency exhibits a growth, which is a contri
tion from the off-diagonal transitions to the CT effect. F
the same reason, theQ2-dependence ofTA(V(1S)) in the
regime of developed ISI at high energies is weaker in
Glauber approximation~cf. Figs. 7, 8 and Figs. 3, 4!, which
is evidence for the importance of the off-diagonal transitio
also in the ISI.

The difference between the full CCMST and Glaub
approximation is even greater in the case of the 2S states.
Here the Glauber model substantially underestimates the
effects, most notably the preasymptotic-growth ofTA(C8)
with energy and theQ2 dependence at high energies.

The high-energy region where the curves in Figs. 2 a
3 become flat corresponds to the regime in which the tra
verse interquark distance is frozen during propagation of
qq̄ fluctuation of the virtual photon through the targ
nucleus. At the same time, this is the regime of develo
ISI. In order to illustrate the energy dependence of
strength of ISI in Fig. 9 we show the ratio of nuclear tran
parency obtained with ISI excluded, i.e., puttin
^huŜi ug* &50 in the decomposition~3!, to nuclear transpar
ency computed with full allowance for both ISI and FSI. A
one can see, neglecting ISI leads to a systematic overesti
of nuclear transparency for 1S states.

For 2S vector mesons as more complicated interplay
ISI and FSI takes place at lower energies. After the ene
upgrade, virtual photon energiesn ; 5–8 GeV will become
feasible in experiments at CEBAF. Figure 9 shows t
evaluations ofTA(f) andTA(f8) carried out in8 neglecting
the ISI have an accuracy of about 20–30%. The interpr
tion of the higher-energy data from the HERA–HERME
experiment requires full allowance for ISI. Still another lig
difference between the present calculations and those in
8 is in the parametrization of the dipole cross section. In R
8 we parametrized the dipole cross section ass(r)5s0@1
2 exp(2 r2/R0

2)#, which reproduces well the gross features
the cross section of the model of Eq.~19!.

5. CONCLUSIONS

We have presented a consistent theory of coherency
fects in initial and final state interaction effects for virtu
photoproduction of vector mesons off nuclei. The relat
role of nuclear filtering and of the off-diagonal coherent
scatterings in the ISI and FSI for the onset of color transp
ency effects is elucidated. The onset of ISI with increas
photon energy is shown to have a very strong impact
nuclear transparency and on the onset of color transpar
effects. For light vector mesons, the onset of ISI takes pl
in the kinematic domain of the HERA–HERMES expe
ment, and for charmonium states, the interesting energy
pendence of nuclear transparency takes place in the k
matic domain of the GSI–ENC.
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Reduction of the finite grand unification theory to the minimal supersymmetric standard

model

I. N. Kondrashuk* )

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna,
Moscow Region, Russia
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Zh. Éksp. Teor. Fiz.111, 787–795~March 1997!

The recently proposed mechanism for reducing the finiteSU(5) grand unification theory~GUT!
to the minimal supersymmetric standard model~MSSM! is reanalyzed and simplified. For
the scalarSU(2) 3 U(1) invariant Higgs doublet potential that results fromSU(5) symmetry
breaking to have no dangerous directions, a restriction on the parameters of the unified
theory should be imposed. At the same time, this restriction guarantees that the scalar Higgs
doublet potential has a minimum at zero at the GUT scale, and the low-energy theory appears to be
exactly the MSSM. ©1997 American Institute of Physics.@S1063-7761~97!00203-5#

1. INTRODUCTION breaking of the electroweak symmetry occurs.8,9
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The supersymmetric~SUSY! field theories have remark
able properties in the ultraviolet range. The n
renormalization theorem forN 5 1 SUSY theories1 guaran-
tees absence of divergences in quantum corrections to
superpotential. The only possible divergences in these th
ries ~in the background field method! are the logarithmic
divergences of the two-point Green functions of gauge
chiral superfields. If the group and the multiplet contents
theN 5 1 theory are chosen in some particular way, the
divergences disappear at the one-loop level too. This oc
as the result of mutual cancellation of the divergent con
butions from gauge and Yukawa interactions.2 The gauge
groups and the multiplet contents of the theories for wh
this cancellation is possible have been classified in Ref. 3
Refs. 2 and 4 it has been shown that one-loop finiten
guarantees two-loop finiteness of the theory without imp
ing new conditions, but this requirement appeared to be
sufficient for the theory to be free from ultraviolet dive
gences at the three-loop level.5 However, an algorithm for
constructing anN 5 1 SUSY field theory finite in all orders
of perturbation theory has been proposed and a fi
SU(5) grand unification theory~GUT! was constructed.6

The method used there was based on fine-tuning of
Yukawa coupling constants in each new order of pertur
tion theory. The only requirement imposed on the theory
this algorithm to work is one-loop finiteness~and, automati-
cally, two-loop finiteness!.6

The idea of complete finiteness of the unified theory
very attractive, and it is not surprising that many efforts ha
been made to derive low-energy predictions of the finite u
fied theory and compare them with modern experimen
data.7 For this purpose the standard approach is used:
assumed thatSU(5) symmetry is spontaneously broken
the unification scale, and the unified theory is reduced t
low-energy supersymmetric theory with the correspond
boundary conditions for the coupling constants of the lo
energy Lagrangian at the GUT scale. Then, the renorma
tion group equation method is applied to get quantities of
Lagrangian at the electroweak scale, where spontane

432 JETP 84 (3), March 1997 1063-7761/97/030432
-

he
o-

d
f
e
rs
i-

h
In
ss
-
-

te

e
-
r

s
e
i-
l
is

a
g
-
a-
e
us

Although the one-loop finiteness conditions fix th
gauge groups and the multiplet contents of the finiteN 5 1
SUSY theory, they allow considerable arbitrariness in
Yukawa and mass matrices.10 In this situation the main guid-
ing principles in choosing the finite GUT are simplicity an
aesthetic attractiveness of the unified theory. In Ref. 11,
finite GUT satisfying these requirements was completely
vestigated in a consistent way. The model was based on
SU(5) gauge group and is the simplest finite GUT comp
ible with the low-energy phenomenology. Its distinctio
from the minimal SUSYSU(5) GUT model is in the exten-
sion of the Higgs sector: it contains eight Higgs superfie
instead of two in the minimalSU(5) GUT.12 The Yukawa
and mass parts of the Lagrangian are chosen in the m
economical way. Soft supersymmetry breaking takes plac
the Planck scaleMP due to the appearance of soft terms
the Lagrangian.13,14 A universal form for these terms at th
Planck scale is assumed.14 In Ref. 11, the condition of finite-
ness was extended to them, which resulted in a comple
finite theory betweenMP andMGUT. Complete finiteness in
this case means that no charge or mass coupling of the th
changes in this energy range. To get the small initial m
parameters of the low-energy theory from the large m
parameters of the unified theory, the usual fine-tuning pro
dure was used in Ref. 11. This procedure generates the
archy of the mass scales in the doublet part of theSU(5)
superpotential which decouples from the triplet part of t
latter after spontaneous breaking of theSU(5) symmetry.

In the treatment of the low-energy part of the finite GU
model in Ref. 11, in addition to the matter superfields of t
minimal supersymmetric standard model~MSSM!, three
Higgs doublets were included in the low-energy Lagrangi
To get the Higgs potential at the electroweak scale,
renormalization group equations for the parameters of
potential were used. According to the radiative symmet
breaking scenario,8 the parameters of the scalar Higgs pote
tial yield nontrivial vacuum expectation values of the sca
Higgs fields at the electroweak scale. Due to the degene
of the Yukawa couplings with respect to the generations
the matter superfields,11,15 the quark and lepton mass spe

4325$10.00 © 1997 American Institute of Physics



trum at the GUT scale in this model is completely deter-
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mined by the spectrum of vacuum expectation values of
Higgs fields at the electroweak scale.

In this paper, the low-energy part of this finite theory
analyzed in a simpler and more efficient way than that
Ref. 11. Namely, the finite GUT is shown to reduce to t
MSSM after spontaneous breaking of theSU(5) symmetry
at the unification scale. The parameters of the electrow
Lagrangian need not be evolved down to low energies in
approach.

2. FINITE GUT

In this section, a brief review of the main points of th
softly broken supersymmetric finiteSU(5) model con-
structed in Ref. 11 is proposed. The multiplet contents of
model and its Lagrangian were described there. The sect
the chiral matter and Higgs superfields has the follow
contents ~in terms of the irreducible representations
SU(5)!:

Matter fields: C i25̄, L i210, i51, 2, 3,

Higgs fields: Fa25, F̄a25̄, S224,

a51, 2, 3, 4,

where i anda are the generation indices of the matter a
Higgs superfields, respectively.

The most general form of the superpotential for t
theory having this field content is6

W5Ai j
a F̄aaC ibL j

ab1
1

8
Bi j
aFa

aL i
bgL j

dseabgds

1CabF̄aaFb
aSb

a1
1

3
DSb

aSg
bSa

g

1
1

2
Eab
i F̄aaF̄bbL i

ab1FiaC iaFa
bSb

a

1
1

2
Gi j
k C iaC jbLk

ab ,

whereeabgds is a completely antisymmetric tensor. The la
three terms, which would violate the baryon and lepton nu
bers at the tree levels and lead to (B 2 L)-nonconservation,
are usually ignored.

The one-loop finiteness conditions of the two-po
Green’s functions in the theory with the above potential a6

4(
i , j

Ai j
a ~Ai j

b !*1
24

5 (
e
Cae~Cbe!*14(

i ,e
Eae
i ~Ebe

i !*

5
12

5
g2dab , 3(

i , j
Bı j
a ~Bi j

b !*1
24

5 (
e
Cea~Ceb!*

1
24

5 (
i
Fia~Fib!*5

12

5
g2dab ,
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a,k 5 a l ,k

5
12
5 g2d i j , 2(

a,k
Aki
a ~Akj

a !*13(
a,k

Bik
a ~Bjk

a !*

12(
a,b

Eab
i ~Eab

j !*12(
k,l

Gkl
i ~Gkl

j !*5
18
5 g2d i j ,

(
a,b

Cab~Cab!*1
21

5
DD*1(

i ,a
Fia~Fia!*55g2. ~1!

In Ref. 11 the following simple ansatz for the Yukaw
matrices of the superpotential was proposed:

W5y1C iKi j F̄iL j1y18C iF̄4L i1
y2
8

F iL iL i

1
y28

8
F4L iL i1y3F̄iSi jSF j1y38F̄4SF41

y4
3

3S31F̄iM i jF j1F̄4MF41
M0

2
S2, ~2!

where theSU(5) indices are omitted, but can easily be r
covered in a covariant manner. The potential~2! is taken in
this form so that each generation of the matter interacts w
its pair of Higgs fields, while the fourth pair of the Higg
fields is coupled with all the generations of matter as well
the Higgs pair of the minimal SUSYSU(5) GUT. In Ref. 6
it is demonstrated that the Yukawa matrices correspondin
this specific ansatz will not be changed by the quantum c
rections if the Yukawa couplings in~2! satisfy the conditions
of one-loop finiteness~1! and if their necessary fine tuning i
performed in each order of perturbation theory step by s

The presence of unitaryK andSmatrices does not con
tradict the finiteness conditions~1!. The matrixK is neces-
sary to create the initial mixing of the quark fields at t
unification scale~that is, initial values of the Cabibbo–
Kobayashi–Maskawa matrix!. As for the matrixS, it con-
tains all initial information about the hierarchy of the qua
mass spectrum at this scale. This role ofSwill become clear
below.

From the no-renormalization theorem for th
superpotential1 it follows that the mass parametersM0 , M ,
andMi j are not fixed by the requirement of one-loop finit
ness. IfM0 is negative, the unifiedSU(5) symmetry is bro-
ken by the vacuum expectation value ofS ~Ref. 11!:

^S&5S V

V

V

2
3

2
V

2
3

2
V

D ,

where V;M0 /y4;1016 GeV.

433I. N. Kondrashuk



After breaking of theSU(5) symmetry, the Higgs quin-
¯ e

th
y
ct
ed
it
u

th

th

f

n

a

wherea, b5 1, 2 are theSU(2) indices ande125 1, and the

bers

r-

g

n
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e
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an
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e-
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ters
tetsFa andFa split into doublets and triplets. As can b
seen from~2!, their mass terms look like

y3F̄iSi j ^S&F j1F̄iM i jF j

5F̄iS y3Si jV1Mi j

2
3

2
y3Si jV1Mi j

D F j , ~3!

and

y38F̄4^S&F41F̄4MF4

5F̄4S y38V1M

2
3

2
y38V1M D F4 . ~4!

All the mass parameters in these relations are on
order of theMGUT scale. To generate light initial boundar
values for the masses in the doublet part of the Higgs se
of the unified theory, which should be radiatively correct
to give the mass parameters at the electroweak scale,
necessary to carry out a fine-tuning procedure. For this p
pose, the following trick was used in Ref. 11.

First, the unitary matrixS was represented as

S5X̄S eiu1 0 0

0 eiu2 0

0 0 eiu3
D XT5X̄DXT,

X̄TX̄5I , XTX5I ,

whereX and X̃ are real orthogonal matrices,D is a unitary
diagonal matrix, andI is a unit matrix. The solution of the
one-loop finiteness conditions for the specific ansatz of
Yukawa matrices used in the superpotential~2! still has some
arbitrariness,11 which can be used to sety38 5 0. This allows
one to absorb one common phase into the redefinition of
fields. Therefore, in what follows it is supposed thatu3 5 0. It
is necessary to note thaty38 5 0 implies that the fourth pair o
the Higgs doublets~4! remains heavy in any case.

Second, the requirement of one-loop finiteness does
restrict the mass matrixMi j . This matrix can be written as

M5X̄~RI1T8D !XT,

whereR andT8 are some heavy mass parameters,

R;T8;V.

Now, if the fourth pair of the Higgs doublets and its Yukaw
interactions are omitted, theSU(2) 3 U(1) invariant super-
potential at theMGUT scale can be represented as

W5SA2

5
gQj

bKi j H̄ i
aDi1A2

5
gLi

bH̄ i
aEi

1A 8

15
gQi

bHi
aUi D eab1$H̄ i

a@X̄~RI

1TD!XT# i j H j
beab , ~5!
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following notation is used

T5T82
3

2
y3V.

The three pairs of Higgs doublets have the quantum num

H̄ i S 1,2,2 1

2D5S H̄ i
0

H̄ i
2D , Hi S 1,2, 12D5SHi

1

Hi
0 D , ~6!

while the other superfields in~5! are the usual matter supe
fields of the MSSM.16

In addition, the following soft supersymmetry breakin
terms must be added to the superpotential~5!:

WSSB5m0
2(

i
uw i u21

1

2 Sm1/2(
k

lklk1H.c.D
1B$H̄ i

a@X̄~RI1TD!XT# i j H j
b1c.c.%eab

1~ADyDq̃j
bKi j H̄ i

ad̃i1ALyLl̃ i
bH̄ i

aẽi

1AUyUq̃i
bHi

aũi1c.c.!eab , ~7!

wherew i denotes all scalar fields with common massm0
2 at

the unification scale, andlk are the gauginos with commo
massm1/2 at the same scale. Aside from the gauginos,
other fields inWSSB are the low scalar components of th
corresponding superfields. The notation for the scalar Hi
doublets in~7! coincides with the corresponding superfie
notation ~6!. These soft supersymmetry breaking terms c
be reduced from the correspondingSU(5) invariant terms of
the unified theory after theSU(5) symmetry-breaking.11

Having rotated the superfieldsHi and H̄ i as

Hi5~XH8! i5Xi1H181Xi2H281Xi3H38 , ~8!

H̄ i5~X̄H̄8! i5X̄i1H̄181X̄i2H̄281X̄i3H̄38 , ~9!

whereHi8 and H̄ i8 are the new Higgs superfields, one c
conveniently rewrite~5! as

W5~yDQj
bKi j X̄ikH̄k8

aDi1yLLi
bX̄ikH̄k8

aEi

1yUQi
bXikHk8

aUi !eab1@H̄ i8
a~RI1TD! i j H j8

b#eab ,

~10!

and ~7! as

WSSB5m0
2(

i
uw i u21

1

2 Sm1/2(
k

lklk1H.c.D
1B@H̄ i8

a~RI1TD! i j H j8
b1c.c.#eab

1~ADyDq̃j
bKi j X̄ikH̄k8

ad̃i1ALyLl̃ i
bX̄ikH̄k8

aẽi

1AUyUq̃i
bXikHk8

aũi1c.c.!eab . ~11!

To get the light Higgs doublet pair, a fine tuning proc
dure should be performed:

R1T5m;103 GeV. ~12!

The fine-tuning procedure is more meaningful than in
other GUTs, since in the finite model none of the parame
is running above the GUT scale.
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As can be seen from~10! and~11!, the first two compo-
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nondynamical components of the Higgs and gauge super-
er-

di-
nents in the decompositions~8! and~9! remain heavy, while
the third componentsH38 and H̄38 become light. By the de-
coupling theorem,17 only this pair need be taken into accou
in the effective low-energy theory, whose superpoten
takes the following form at the unification scale:

W5~yDn̄iQj
bKi j H̄38

aDi1yLn̄iLi
bH̄38

aEi

1yUniQi
bH38

aUi !eab1B~mH̄38
aH38

b!eab , ~13!

where

n̄i5X̄i3 , ni5Xi3 , (
i
n̄ i

251, (
i
ni
251.

The corresponding soft supersymmetry breaking terms a

WSSB5m0
2(

i
uw i u21

1

2 Sm1/2(
k

lklk1H.c.D
1B~mH̄38

aH38
b1c.c.!eab1~ADyDn̄i q̃ j

bKi j H̄38
ad̃i

1ALyLn̄i l̃ i
bH̄38

aẽi1AUyUni q̃i
bH38

aũi1c.c.!eab .

~14!

Herew i denotes all light scalar fields of the effective low
energy theory. In analogy with~7!, the notation for the scala
Higgs doublets in~14! coincides with the notation of the
corresponding superfields.

Equations~13! and~14! are the usual superpotential an
soft supersymmetry breaking potential of the MSSM,16 re-
spectively. As is well known, in the MSSM there is no pro
lem with unification of the gauge coupling constants
MSSM at a single point at a very high scale.18 Moreover,
only in the supersymmetric model with two Higgs double
is this unification possible.19

As can be seen from~13!, all information about the
quark mass hierarchy at the GUT scale is contained in
Higgs sector of the finite unified theory, namely, in the u
tary Higgs mixing matrixS:

yi
U5niy

U, yi
D5n̄iy

D, yi
L5n̄iy

L,

yU5
4

A15
gGUT, yD5yL5

2

A5
gGUT, ~15!

where gGUT is a gauge coupling constant of the unifie
theory.

These conclusions are natural and correct, and there
no subtle points if the full scalar Higgs doublet potential h
no dangerous directions~along these directions it can be u
bounded below! and has absolute minimum at zero at t
unification scale. Since the full scalar Higgs potential ha
rather complicated structure because of the large numbe
Higgs fields, this is not obvious. In the next section, a co
dition will be written for the parameters of the unified supe
potential which is necessary to guarantee this.

3. DOUBLET POTENTIAL AT THE GUT SCALE

The scalar Higgs doublet potential arises from the sup
potential~13! and minimal SUSY gauge interaction, when a
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fields are eliminated, and from the corresponding soft sup
symmetry breaking part~14!.16 Hence, the full potential has
the following form at the unification scale:

V~H̄ i8 ,Hi8!5~m0
21R21T2!S (

i
uH̄ i8u

21(
i

uHi8u
2D

1RT~D*1D ! i j ~H̄ i8
†H̄ j81Hi8

†Hj8!

1B@H̄ i8
a~RI1TD! i j H j8

b1c.c.#eab

1
g21g82

8 F(
i

uH̄ i8u
22(

i
uHi8u

2G2
1
g2

4 F ~H̄ i8
†H̄ j8!* ~H̄ i8

†Hj8!2S (
i

uH̄ i8u
2D 2

1~Hi8
†Hj8!* ~Hi8

†Hj8!2S (
i

uHi8u
2D 2

12~H̄ i8
†Hj8!* ~H̄ i8

†Hj8!G , ~16!

where summation over the repeating Higgs generation in
ces is implied. Also, it is assumed for brevity that

uH̄ i u25uH̄ i
0u21uH̄ i

2u2, uHi u25uHi
1u21uHi

0u2.

It is more convenient to introduce the new notation

M1
25m0

21R21T212RT cosu1 ,

M1e
ig15R1Teiu1, M15uR1Teiu1u,

M2
25m0

21R21T212RT cosu2 ,

M2e
ig25R1Teiu2, M25uR1Teiu2u,

m25m0
21~R1T!2, m5R1T,

and rewrite the potential~16! as

V5M1
2~ uH̄18u

21uH18u
2!1M2

2~ uH̄28u
21uH28u

2!1m2~ uH38u
2

1uH38u
2!1B~M1e

ig1H̄18
aH18

b1M2e
ig2H̄28

aH28
b

1mH̄38
aH38

b!eab1
g21g82

8 F(
i

uH̄ i8u
22(

i
uHi8u

2G2
1
g2

4 F ~H̄ i8
†H̄ j8!* ~H̄ i8

†H̄ j8!2S (
i

uH̄ i8u
2D 2

1~Hi8
†Hj8!* ~Hi8

†Hj8!2S (
i

uHi8u
2D 2

12~H̄ i8
†Hj8!* ~H̄ i8

†Hj8!G . ~17!

Having parametrized the Higgs doublets as

Hi5Ui S 0v i D , H̄ i5Ū i S v̄ i0 D ,
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whereUi andŪ i are someSU(2) matrices, andv i andv̄ i are

of

r

ve

a-

so

s
e
e
s
th
f fi
S
le
n
of
in
x

te
he
th

the scalar Higgs doublet potential have no dangerous direc-
the
e
f
e-

ith
wa

e-

ro-
by
ow

M.

5-
rint

ys.

-

.

ticle

with
positive, one can derive that when the quartic terms in~17!
vanish the condition for positivity of the quadratic part
~17! is

M1
2~a1

21b1
2!1M2

2~a2
21b2

2!1m2~a3
21b3

2!

22uBM1ua1b122uBM2ua2b222uBmua3b3>0,

~18!

where

a1
21a2

21a3
251, b1

21b2
21b3

251,

v̄ i5a iA(
i
v̄ i

2, v i5b iA(
i
v i
2.

This requirement is necessary to provide stability of~17! in
these directions. The quadratic form~18! is obviously posi-
tive if the following conditions are satisfied:

M1
2>uBM1u, ~19!

M2
2>uBM2u, ~20!

m2>uBmu. ~21!

The conditions~19! and ~20! hold in any case due to ou
fine-tuning procedure~12! ~it is assumed thatB ; m!. Note
that if ~21! is violated, the quadratic form would be negati
when

a15a25b15b250.

Thus, the condition

m0
21m2>uBmu ~22!

is necessary for the stability of the potential~17! for large
fields. At the same time, as can be seen from~18! and~19!–
~21!, the restriction~22! guarantees the positivity of the sc
lar Higgs potential~16! on any field configurations. This
means that after spontaneous breaking of theSU(5) symme-
try the scalar Higgs doublet potential has its only and ab
lute minimum at zero at the GUT scale.

4. CONCLUSIONS

In this paper, the SUSYSU(5) finite theory with an
R-symmetrical and (B 2 L)-conserving superpotential ha
been considered. The Yukawa matrices of this theory w
chosen in the simplest possible way, and their values w
fixed by the condition of finiteness up to some arbitrarine
This arbitrariness, and the arbitrariness in the choice of
mass matrices that are not restricted by the condition o
niteness, can be used to reduce the finite GUT to the MS
after theSU(5) symmetry breaking at the unification sca
Reduction to the MSSM is necessary because only i
SUSY theory with two Higgs doublets is the unification
the gauge couplings of the MSSM at a single po
possible.18 In the supersymmetric theories with a more e
tended Higgs sector such a unification is problematical.19

In this work, the analysis of the reduction of the fini
GUT to the MSSM is simpler than that in Ref. 11. For t
low-energy theory to be self-consistent, it is necessary
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tions and have an absolute global minimum at zero at
unification scale after theSU(5) symmetry breaking. Thes
requirements impose the restriction~22! on the parameters o
the finite GUT. If this restriction holds, both the requir
ments are met. As for the rest, after theSU(5) symmetry
breaking one gets the MSSM as the low-energy theory w
the boundary conditions at the GUT scale for the Yuka
couplings~15!.
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Resonant scattering of three-level Rydberg atoms in a microwave field

e
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We examine the theory of potential scattering of Rydberg atoms in a microwave field. The
model of a three-level atom is employed to calculate the radiative force emerging in the resonant
coherent interaction with the microwave field for the case of a two-photon resonance and
high intensities, using the method of quasienergies of the system consisting of the atom and the
field. We determine the probabilities of Landau–Zener transitions in the spatial regions
where under two-photon resonance conditions the quasienergies of the atoms approach one another
by a small quantity. We also study the dynamics of the variation of the spatial profile of a
beam of Rydberg atoms caused by resonant scattering. Finally, we give the results of the first
experimental observation of the variation of the transverse beam profile when Rydberg
atoms pass through a nonuniform microwave field formed in a rectangular waveguide and in
resonance with the two-photon 36P–37P transition. © 1997 American Institute of Physics.
© 1997 American Institute of Physics.@S1063-7761~97!00303-X#
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The resonant interaction of Rydberg atoms and mic
wave radiation is one of the areas of the physics that is be
vigorously explored.1 Lately a number of papers have a
peared that study the effect of spatially nonuniform mic
wave fields on the motion of Rydberg atom in reson
one-photon2 and multiphoton3 interactions.

The present study is devoted to a theoretical analysi
the process of resonant scattering of a beam of Rydberg a
in a microwave field of a standing linearly polarized wav
based on the assumption that the three-level model of ato
energy states is valid. In Sec. 2 we describe the interactio
the atoms with the microwave field. Section 3 is devoted t
study of ‘‘dressed’’ states of Rydberg atoms in a microwa
field. The analysis is done by applying the method
quasienergies to separate resonant states of the system
sisting of an atom and the field. In Sec. 4 we investigate
probabilities of Landau–Zener transitions in spatial regio
where the corresponding quasienergies of the atoms m
closer together by a small quantity in conditions of a tw
photon resonance. In Sec. 5 we calculate the radiative f
emerging as a result of the resonant interaction of the at
and the microwave field. Here we study various limitin
cases depending on the initial population of the selec
Rydberg states of atoms: in two-photon resonance, an
high microwave field intensities. We compare our resu
with those for a one-photon transition, a case thoroug
studied for optical transitions. Section 6 is devoted to
analysis of the kinetics of an atomic beam as a whole, w
the effects of spontaneous decay of Rydberg states of a
ignored. In Sec. 7 we examine the dynamics of the variati
of the spatial profile of the beam caused by scattering p
cesses in the light field. There we also give the results
experiments on the scattering of a beam of Rydberg sod
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field in the form of a standing wave.

2. A MODEL FOR THE INTERACTION OF RYDBERG ATOMS
AND A MICROWAVE FIELD

Let us take a beam of Rydberg atoms propagating al
thex axis with a thermal velocityv;105 cm/s and entering
a region with a standing microwave field directed along
z axis:

E~r ,t !5$e2 ivtE0e0 sin~kz!1 c.c.%, ~1!

whereE0 is amplitude of the field,v is the wave frequency
ande0 is the linear polarization vector. For instance, for s
dium atoms in highly excited states with principal quantu
numbers n520–40, the corresponding resonance wa
length l is of order 3–5 mm and lies in the microwav
range.4

In analyzing the interaction of atoms with such a fie
we limit ourselves to a simplified energy-level structure co
sisting of only three states of sodium atoms, in accorda
with Ref. 4: we isolate the states 36P, 37S, and 37P from the
entire set of energy states existing in the given energy ra
~see Fig. 1a!. This means we ignore multiphoton resonan
processes involving more than two photons, and the o
states (D andF) are not taken into consideration either b
cause of the existing selection rules in a linearly polariz
field or because of the nonresonant nature of the interact
The simplified energy-level structure of the atoms has
form depicted in Fig. 1b. Here, following Ref. 5, we use t
following notation:

Ei , with i51, 2, 3, stands for the values of the energ
of the given states~we ignore the fine structure ofP states!;

D25(E22E1)/\2v is the detuning of the microwave
field from resonance for the 36P–37S levels;

4371$10.00 © 1997 American Institute of Physics
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D35(E32E2)/\2v is the detuning of the microwav
field from resonance for the 37S–37P levels;

D325(E32E1)/\22v 5 D3 2 D2 is the detuning of the
microwave field from two-photon resonance of the 36P–
37P levels.

The following aspects set our model apart from the e
lier models of three-level atoms resonantly interacting w
light fields.

1. The lifetimes of the Rydberg states increase with
principal quantum number in proportion ton3–n5. For the
values of the principal quantum number considered h
(n536 and 37! these lifetimes reach several hundred mic
seconds. This means that processes of spontaneous em
into the vacuum modes of the microwave field can be trea
by perturbation techniques. For Rydberg atoms the inco
ent processes of interaction with the thermal-reservoir mo
become most important. However, when the temperatur
the surrounding medium is fairly low, this type of incohere
interaction can also be considered a perturbation. There
to a high accuracy we can consider the processes of reso
interaction of Rydberg atoms and microwave fields as be
coherent to lowest order. This approximation is valid ev
when the transverse profiles of the microwave field are fa
broad, of orderr 0;10 cm.

2. The dipole moment of the transitions increases c
siderably since geometrically Rydberg atoms are large.
corresponding dipole momentsd are of order 103ea0, where
a0 is the Bohr radius. Hence the effect of saturation of re
nant transitions in microwave fields sets in at fairly low i
tensities. For example, for the transitions in sodium un
discussion the saturation intensityI sat is of order
531027W/cm2.

3. The momentumpph5\k5h/l transferred from the
field to an atom as a result of a single act of stimula
absorption is roughly 104–103 smaller than the momentum
of recoil from an optical photon.

4. The distribution of some groups of levels~for ex-
ample,S andP) is almost uniform, so that multiphoton reso
nances also play an important role~in addition to one-photon

FIG. 1. The energy-level diagram of the Rydberg states of the sodium a
nearn536. The dashed lines indicate multiphoton transitions, and the s
lines one-photon transitions.
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photon processes.
If we limit ourselves to coherent processes of the int

action of atoms and a microwave field, it is sufficient
analyze the corresponding Schro¨dinger equation for the at
oms and to assume that the field is fixed and classical~Eq.
~1!!:

i\
]

]t
Ĉ5~Ĥ01V̂int!Ĉ. ~2!

HereĤ05T̂kin1V̂0 is the operator of the energy of the ato
in the absence of the interaction with the microwave fie
Note that the given operator determines the dynamics of
atom in relation to both translational degrees of freedom~the
kinetic-energy operatorT̂kin52\¹2/2m) and internal de-
grees of freedom~the operatorV̂0). The energy level dia-
gram in Fig. 1 determines the eigenvaluesEi of the operator
V̂0, while the corresponding wave functionsw i

0 determine
the probability amplitudes of the corresponding states. N
the following feature of the model presented in Fig. 1b:
the Zeeman sublevels present can be divided into three i
pendent groups, in accordance with the stimulated transit
that emerge in the model. In the first, and most importa
group the P-atoms with angular-momentum projection
m50 and theS-atoms (37S) participate in the coherent in
teraction with the linearly polarized field. The dynamics
the populations of these states is determined by one-ph
and two-photon resonant transitions. The other two indep
dent subgroups are formed by the 36P and 37P sublevels
with projectionsm561 and are connected by two-photo
transitions. However, because of the absence of an inter
diate real level~see Fig. 1b! the interaction with the field is
nonresonant. There are two reasons why the dynamic
these subgroups will not be examined here: first, becaus
the smallness of the resulting effects due to the nonreso
nature of the interaction; second, because these proce
contribute nothing to the gradient radiative force~25!.1)

In Eq. ~2!, V̂int52d̂•E is the operator of the energy o
the interaction of atoms with the microwave field (d̂ is the
atomic dipole moment operator!, andĈ is the column vector
of the atomic wave function,

Ĉ5S C1

C2

C3

D , ~3!

which in the representation of the self-energy states$w i
0%, of

a ‘‘bare’’ atom described earlier couple the correspond
probability amplitudesC i ~herei51 corresponds to 36P at
m50, i52 corresponds to 37S, and i53 corresponds to
37P at m50), whose squaresuC i u2 determine the popula
tions of the given states.

Since we are considering only coherent atom–field int
action process, specifying the initial conditions is also
important part of the model:

m
id

438Bezverbnyı̆ et al.
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Ĉ~ t50!5S C2

C3

D . ~4!

When we are dealing with optical transitions from t
ground state of the atom, the initial conditions are usua
chosen to beC150 andC25C350. However, specifying
the initial conditions in our case is a problem in its own rig
since, firstly, the 36P state with the lowest energy is not th
ground state at all~it is obtained as a result of a certa
multistage process4! and, secondly, groups of Rydberg atom
with closely spaced energy values are actually formed in
excitation process.

Therefore, usually all three probability amplitudesCi are
finite. However, in analyzing specific results we mainly e
amine, for the sake of simplicity, the ideal case where in
process of formation of Rydberg atoms all the atoms ac
mulate in the 36P sublevel withm50, i.e., C151 and
C25C350.

3. QUASIENERGY ATOMIC STATES

We analyze the dynamics of the atoms with respec
the internal degrees of freedom in their interaction with
electromagnetic wave by employing the quasiene
method.6 Let us write the components of the atomic wa
function in the form of an expansion in the time harmon
of the microwave field:

Cp~ t !5 (
l52`

`

Cp,l exp@ i lvt#.

Next we use the resonance approximation, which means
noring the contribution of the terms in Eq.~2! that oscillate
in time. As demonstrated by Akulin and Karlov,6 in such a
model it is sufficient to analyze the approximate closed s
tem of equations for the three following components:

C1,05a~ t !expS 2 i
E1

\
t D ,

C2,215b~ t !expS 2 i
E1

\
t D , ~5!

C3,225c~ t !expS 2 i
E1

\
t D .

To this we add one more approximation: at the first stage
ignore the contribution of the kinetic-energy operator. No
that in models in which the atoms interact with spatia
uniform electromagnetic fields~a traveling wave! the kinetic
energy can be taken into account fairly simply by allowi
for the corresponding Doppler shiftsDD5k•v. In our model
we examine the case of the spatially nonuniform field~1! ~a
standing wave!. The fact that in the atom–field interactio
we ignore the atom’s kinetic energy means that the ato
beam is well-collimated: the timet int52r 0 /vT of the atom–
field interaction is not sufficiently long for the atom to b
shifted along the field by a distance of the order of one wa
length:

vzt int!l. ~6!
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fields this condition is easily met even for beams with
divergence angle

Da5
vz
vT

;
l

r 0
'1022,

where the transverse size of the microwave field in thex
direction is of orderr 0;10 cm.

The corresponding system of equations is

]a~r ,t !

]t
52 iV12~r !b~r ,t !,

]b~r ,t !

]t
52 iD2b~r ,t !2 iV12* ~r !a~r ,t !2 iV23~r !c~ t !,

~7!

]c~r ,t !

]t
52 iD32c~r ,t !2 iV23* ~r !b~r ,t !.

Here we have introduced the following notation for the Ra
frequencies:

V i j ~r !5V0 sin~kz!, V i j5V j i* , ~8!

V05
di j E0

\
, ~9!

where thedi j are the dipole moments of the correspondi
transitions.

Note that by ignoring the contribution of the kinetic
energy operator we ensure that the system of equations~7!
describes the dynamics of the internal degrees of freedom
an atom. The effect of translational motion on the dynam
of the internal degrees of freedom of atoms can be large
regions where the field is low, i.e., at the nodes of a stand
wave. As is well known, in this case the Landau–Zener tr
sitions between states with closely spaced energy levels
come important. In what follows this aspect is studied se
rately.

We examine the solution of the system of equation~7!
by diagonalizing the system and finding its eigenvalues
eigenvectors. In matrix form the system~7! becomes

i
]

]t
X̂~r ,t !5Â~r !X̂~r ,t !,

X̂5S a

b

c
D , Â5S 0 V12 0

V12* D2 V23

0 V23* D32

D . ~10!

The eigenvalues of the matrixÂ are given by the following
Cardan formulas:

l1~s11s2!2
a2
3
,

l2,352
s11s2
2

2
a2
3

6 i
A3
2

~s12s2!,

s1,25A3 r6Aq31r 2, q5
1

3
a12

1

9
a2
2 ,
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~a1a223a0!2

1
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a2
3 , a05D2uV12u2,

a15D2D322uV23u22uV12u2, a252D22D32.

Figure 2 depicts the spatial dependence of the given
genvalues at half of the wavelength of the microwave fie

The corresponding eigenvectors are defined as

L̂ i5Ni
21S 1

l i /V12

~V23* l i !/@V12~l i2D32!#
D ~11!

with the normalization constants

Ni5A11
l i
2

uV12u2
1

l i
2uV23u2

~l i2D32!
2uV12u2

. ~12!

Note the important physical essence of the given states:
describe ‘‘dressed’’ states of an atom, with the eigenval
l i ~Fig. 2! determining, among other things, level repulsi
caused by the switch-on of the field.6

Analysis of Fig. 2 shows that under two-photon res
nance conditions, whenD32!D2 ,V23,12 holds, near the

FIG. 2. Spatial dependence of the eigenvalues of the matrixA for different
detunings and intensities of the microwave field.
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ul22l3u'D32. Identification of the corresponding dresse
states~11! shows that forD2 andD32 positive the stateL1

corresponds in the node regionV→0 to the bare state 37S,
L2 corresponds to 36P, andL3 corresponds to 37P. When
D32 is negative, the situation changes in the following ma
ner:2) L3 corresponds to 36P, andL2 to 37P.

In the approximation of small values ofD32, the energy
values are given by the following formulas:

l1,25
D26AD2

214~ uV23u21uV12u2!
2

1dl1,2,
~13!

l35dl3 ,

dl15D32

uV12u2

uV23u21uV12u2
,

dl2,35D32

uV23u2

2~ uV23u21uV12u2!

3F17
D2

AD2
214~ uV23u21uV12u2!

G . ~14!

As noted earlier, in the regions wherel2 and l3 are
close the effect of the kinetic-energy operator cannot be
nored. Here quantum hopping from statel2 to statel3 ~or in
the opposite direction! become possible~Landau–Zener tran-
sitions; see Ref. 5!. Below we calculate the probabilities o
such transitions.

The general solution of the Schro¨dinger equation~2! can
be expressed in terms of the eigenvectors defined abov
accordance with the initial conditions as follows:

C̃
ˆ

~ t !5(
s51

3

asL̂s exp~2 ilst !,

~15!

C̃
ˆ

~ t !5S C1 expS i E1

\
t D

C2 expS i E1

\
t1 ivt D

C3 expS i E1

\
t12ivt D D ,

where the factorsas can be found from the initial condition
at t50 andV23,1250.

For instance, att50 only the 36P sublevel is populated

C15a251, C2,35a1,3 for D32.0,
~16!

C15a351, C2,35a1,2 for D32,0.

Figure 3 depicts the distribution of the probability amp
tudes for these initial conditions with different values of t
parameters of the problem. The upper diagram which sh
the case of a two-photon resonance when the populatio
the intermediate level proves is low, is especially notew
thy.
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4. LANDAU–ZENER TRANSITIONS UNDER TWO-PHOTON
RESONANCE CONDITIONS

Let us estimate the probability of the above Landa
Zener transitions between the statesL̂2,3 near the nodes of a
standing wave. To this end we linearize the initial Rabi f
quencies,

V i j ~r !'
di j E0

\
kz5V i j

0 kz,

and employ the condition that the translational motion of
center of mass of an atom is given,R(t)'R01vt ~see Ref.
5!. Under these simplifying assumptions the initial Sch¨-
dinger equation~2! acquires the form

i
da

dt
5V12

0 kzb,

i
db

dt
5~V12

0 !* kza1D2b1V23
0 kzc, ~17!

i
dc

dt
5~V23

0 !* kzb1D32c.

FIG. 3. The probability amplitudes of various states with the initial con
tionsa251 anda15a350.

441 JETP 84 (3), March 1997
-

e

amplitude for the 37S state we haveubu!uau,ucu by virtue of
the small parameteruV12

3 u/D2, and we can use the following
approximation:

b'2
~V12

0 !* kza1V23kzc

D2
. ~18!

As a result, the system of equations~17! is reduced to a
system of two equations for the probability amplitudesa and
c:

i
da

dt
5 ivz

da

dz
52

V1
2~kz!2a1V1V2~kz!

2c

D2
, ~19!

i
dc

dt
5 ivz

dc

dz
52D32c2

V2
2~kz!2c1V2V1~kz!

2a

D2
, ~20!

V15V12
0 , V25V23

0 . ~21!

Note that the Landau–Zener Hamiltonian that follows fro
this system of equations differs considerably for the ordin
Hamiltonian which is linear inz for the case of two-level
atoms.5 This, in particular, leads to a situation in which it
impossible to derive a Landau–Zener transition matrix
such a Hamiltonian, contrary to the case of Ref. 5. But
probability Wac of transitions from the 36P state to the
37P state can be estimated by employing the complex-ti
method.7 We can assume with fairly high accuracy th
V1'V25V. In this approximation the corresponding pro
ability is

Wab5expF2
1

4
B~3/2,1/4!S D32

DL
D 3/2G , ~22!

B~3/2,1/4!5
G~3/2!G~1/4!

G~7/4!
'3.5, DL5FV2~kv !2

D2
G1/3.

~23!

The characteristic parameter here is the frequencyDL : for
D32;DL the Landau–Zener transitions become importa
We estimateDL for the following orders of magnitude of th
quantities involved in the problem:

• for the transition in sodium with an exact two-photo
resonance the detuningD2 is 2p32.6 GHz;

• the dipole moment is estimated at 1500ea0;
• the velocity of the atoms along the wave vector

estimated atvz;DadivvT510233600 m/s, whereDadiv is
the divergence angle of the atomic beam, andvT is the cor-
responding thermal velocity of the atoms; and

• Imax;20 mW/cm2 is the maximum intensity of the mi
crowave field from the open end of the waveguide.

For these values of the parametersDL reaches its maxi-
mum value, roughly 2p380 kHz, i.e., DL is extremely
small, smaller in order of magnitude than the fine struct
;114 and 124 MHz~Ref. 4! of the 36P and 37P states.
Note, however, that in this model only the single Zeem
sublevel with the projectionm50 interacts resonantly with
the field.

As we show below, the effect of Landau–Zener tran
tions near nodes can essentially diminish the gradient ra
tive force.

-
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By the gradient force acting on an atom in a microwa
field we mean the corresponding vectorF(r ) entering into
the Fokker–Planck equation for the atomic distribution fun
tion f (r ,p,t),

S ]

]t
1v•¹ D f ~r ,p,t !52

]

]p
~F~r ! f ~r ,p,t !! ~24!

and defined as

F5(
a,b

3

¹Va,brba . ~25!

Here summation is over the entire set of states of the at
The matricesrab in the adopted coherent atom–field inte
action model can be expressed in terms of the correspon
probability amplitudes of the levels:

rab5Ca*Cb . ~26!

For the solution~15! obtained earlier this means that

F5 (
i , j51

3

(
m,n51

3

¹V i , j exp~ i ~lm2ln!t !Lm, j* Ln,iam* an ,

~27!

wherem andn label the dressed states defined by~11!, and
i and j label the matrix elements of these states.

Let us now show that the corrections oscillating in tim
can be ignored. For instance, in the particular case of p
tive detuningsD32 considered here the smallest difference

ul22l3u;2
uVu2

D2
. ~28!

At such intensities, forV;0, 1 andD2'1 GHz, in the time
t5d0 /vT'35ms it takes the atoms to pass through the
gion with the microwave field, the corresponding terms
~29! perform aboutNosc5104–105 oscillations. Hence in av-
eraging over the velocitiesvx these contributions can be dis
carded, provided that the experiment does select group
atoms with fixed longitudinal velocities:

F' (
i , j51

3

(
n51

3

¹V i , j uanu2Ln, j* Ln,i5(
i51

3

uai u2Fi . ~29!

We also assume that the interaction between the microw
field and the Rydberg atoms is switched on smoothly, i.e.
allowing for an approximately Gaussian decay of the int
sity of the microwave field toward the periphery we can
sume that the probability of the transitions between the c
responding quasienergy states considered earlier
negligible. Due to the adiabaticity of the switch-on proce
the quantitiesan are determined solely by the initial cond
tions.3)

Let us take, for example, the boundary conditions~16!.
In this case the expression for the force simplifies (n52 at
D32.0):

F'¹V12L2,2* L2,11¹V23L2,3* L2,21 c.c. ~30!

If we now take values of the problem’s parameters su
thatD32 can be neglected in comparison toV12,23, D2, and
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for l2: As a result we arrive at the following expression f
the gradient radiative force:

Fz52
]Veff

]z
, ~31!

where the effective potential is defined as

Veff5
\

2
A~D2!

214~ uV12~z!u21uV23~z!u2!. ~32!

Below we list the important features of this potential.
1. The potential resembles what is known as the n

resonant potential5 in the theory of coherent interaction o
two-level atoms with the field of a standing light wave. He
the inclusion of an additional, third, level into the picture
the resonant interaction with the field effectively increas
the potential~32! due to the additional termV23 by a factor
of approximatelyA2. It can be suggested that allowing fo
three-photon and higher-order processes may further incr
the effectiveness of the potential by a factor ofAm , where
m is the corresponding order of the process involving ph
tons.

2. In the case of a two-photon resonance, when

V12

D2
!1, D32!V,D2 , ~33!

with V12'V235V(z) for Rydberg atoms, the effective po
tential becomes the well-known potential for two-phot
transitions,6

Veff5\
V2~z!

D2
. ~34!

3. Finally, we note that the results are independent of
sign of D32 and are determined mainly by the value ofD2:
when the microwave field intensity satisfiesV.D2, the am-
plitude of the effective potential~32! depends onV almost
linearly. Actually, at such microwave field intensities w
cannot limit ourselves to two-photon processes in the mo
and we must take into account higher-order multiphoton p
cesses.

If, however, the initial conditions are defined in a mo
complicated way and there are components w
a1 , a3 Þ 0, we must use the general formula~29!. Figure 4
depicts the graphs of the corresponding components of
constituent forces in~29! at the half-wavelength of the field
In particular, we see that as the componenta3 increases due
to Landau–Zener transitions, the overall force diminish
sinceuF3u!uF2u.

6. THE KINETICS OF RYDBERG ATOMS IN A MICROWAVE
FIELD

The kinetics of a beam of Rydberg atoms in microwa
fields is described by Eq.~24!, with ~30! as the force. Let us
examine the time-independent pattern of the atoms scatt
by the microwave field. In this case the initial kinetic equ
tion assumes the form
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S vx ]

]x
1vz

]

]zD f ~r ,v!52Fz~z!w~x!
]

]pz
f ~r ,v !, ~35!

where the functionw(x) determines the profile of the micro
wave amplitude in the directionx of propagation of the
atomic beam.

An important aspect of solving Eq.~35! is formulating
the appropriate boundary conditions. In this case the bou
ary condition is fixed by the distribution function for th
atoms at the ‘‘muzzle’’ of the atomic gun (x50). We as-
sume that the atoms are thermalized in the longitud
(vx) and transverse (vz) projections of the velocities but tha
the temperatures are different. The corresponding velo
distributions are shaped like Maxwellian distributions.8 Simi-
larly, the spatial distribution, or profile, of the atomic bea
in the cross section~along thez axis! is determined by a
Gaussian law. Thus, the boundary condition can be wri
as

f ~x50, z,vx ,vz!

5
1

N
expS 2

~z2z0!
2

r b
2 2

vx
2

vT
2 2

vz
2

v'
2 D u~vx!, ~36!

FIG. 4. The components of the constituent forces for different detunings
intensities of the microwave field in relative units.
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atomic beam,z0 specifies the position of the center of th
atomic beam along thez axis, u(y) is the Heaviside step
function,v'5DavT is the transverse thermal velocity of th
atoms in the beam,Da is the beam divergence angle
radians~the extent to which the beam is collimated!, and
vT is the longitudinal thermal velocity.

Let us solve Eq.~35! by perturbation techniques. Her
for the zeroth approximation we can take the solution of
initial kinetic equation~35! with a zero right-hand side,

f 0~x.0,z,vx ,vz!

5
1

N
expS 2

~z2z02~vz /vx!x!2

r b
2 2

vx
2

vT
2 2

vz
2

v'
2 D u~vx!.

~37!

It describes the spread of the transverse profile of the ato
beam caused by thermal motion of the atoms along thz
axis. If the effect of the microwave field on the atomic-bea
profile is regarded as a perturbation, the initial distributi
function can be written as

f ~r ,v!' f 0~r ,v!1d f ~r ,v!, ~38!

where the kinetic equation for the corresponding correct
is

S vx ]

]x
1vz

]

]zD d f ~r ,v!52Fz~z!w~x!
]

]pz
f 0~r ,v!.

~39!

The solution of this equation can be written in the form

d f ~r ,p!52E
0

x

dj
Fz@z1~vz /vx!~j2x!#w~j!

vx

3H ]

]pz
2

j2x

px

]

]z J f 0@j,z1~vz /vx!

3~j2x!,vx ,vz#. ~40!

In particular, if we take a simplified version of the prob
lem, where the microwave field begins immediately after
source of the atomic beam and its profile has sharp bou
aries,w(x)5u(2r 02x) ~recall thatr 0 is the traverse radius
of the profile of the microwave field!, the computational for-
mula for the correction following the region with the micro
wave field (x.2r 0) assumes the form

d f ~x.2r 0 ,z,p!

52E
0

2r0
dj

Fz~z1~vz /vx!~j2x!!

vx
H ]

]pz
2

j2x

px

]

]z J
3 f 0~j,z1~vz /vx!~j2x!,vx ,vz!, ~41!

or, using the explicit form of the zeroth approximation~37!,
we obtain

d f ~z,x,vx ,vz!

522E
0

2r0
dj

F~z1~vz /vx!~j2x!!

vx

d
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icrowave:
FIG. 5. The results of calculations of the spatial profile of the atomic beam for different positions of its center in relation to the nodes of a standing m
kz5p/8 ~curve1!, kz5p/4 ~curve2!, kz50.188~curve3!.
pz ~z2z02~vz /vx!x!j
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G f 0~z,x,vz ,vx!. ~42!

The perturbation theory we have just described actu
amounts to an expansion in powers of the time of flight~the
interaction time! of the atom through the microwave field
t int52r 0 /vT , and the first correction is linear in this param
eter. Note that the higher2order corrections give rise to di
vergences, related to the large interaction times for ato
whose velocitiesvx are low. As is well known, these diver
gences can be removed by summing the en
perturbation2theory series. In the present model, howev
calculating the first correction is sufficient because of
small effect of the microwave field on the dynamics of t
atoms. For example, let us estimate in order of magnitude
corresponding smallness parameter in the problem.

1. We assume that the force acting on the atom attain
maximum value, and its order of magnitude, in accorda
with Eqs. ~31! and ~32!, is estimated atF;\kV. For the
limiting value we take the Rabi frequency at which the d
namic Stark broadeningD2 is of order 2p32.6 GHz.

2. In accordance with the coherent nature of the ato
field interaction chosen in the model, the interaction tim
t int cannot exceed the characteristic time of radiative de
of the corresponding Rydberg states. In our case we limit
value tot int'35ms.

Then the corresponding smallness parameter in the
turbation theory described above has the form

n5
Ft int
pz

5
8V2

A~D2!
218V2

\ktint
DadivmvT

, ~43!

and with the above parameters and the corresponding m
of sodium atoms we obtainn;0.1–1. Note that for Rab
frequenciesV>D2 the parametern becomes greater tha
unity and our perturbation theory becomes invalid.

The above result~42! for the first correction to the dis
tribution function can be simplified if we allow for the fac
that in the microwave field the wavelengthl54 mm, as a
characteristic parameter for the spatial gradient forFz , is
large compared to the integration paramet
(vz /vx)2r 0;adiv2r 0!l. For instance, for microwave field
with transverse dimensions 2r 0;10 cm the value of the
small parameter is
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Then, expanding the integrand in a Taylor series and keep
only the first correction, we arrive at the following approx
mate result for the given correction:

d f5 f 0
4F~z2~vz /vx!x!

vx

3F pzp'
2 r 02

~z2z02~vz /vx!x!r 0
2

r b
2px

G . ~44!

Further calculations of the profile of the atomic beam at
detector with a known distribution function are done acco
ing to the following algorithm:

n~z!5E dv f ~z,x2L,vx ,vz!n0 , ~45!

whereL is the position of the detector of atoms along t
x axis, andn0 is the average atomic density in the beam
the initial stage.

In particular, if we plug the above correction~44! into
this formula, the final expression for the correction to t
density caused by the radiative force becomes

dn~z,L !

5n0~z,L !K 4F~z2~vz /vx!L !

vx
F pzp'

2 r 0

2
~z2z02~vz /vx!L !r 0

2

r b
2px

G L
vz ,vx

, ~46!

wheren0(z,L) is the distribution of the atomic beam densi
at the detector in the absence of a microwave field. The t
density of the atomic beam is

n~z,L !5n0~z,L !1dn~z,L !. ~47!

Figure 5 depicts the results of calculations of the spa
profile of the atomic beam for different values of the para
eters of the problem. The left diagram shows the distrib
tions dn(z) at the detector at pointx5L for the following
values of the dimensionless parameters: the detuning of
two-photon transition isD̃325D32/D25531024;0; the
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Rabi frequencies areṼi , j5V i , j /D251; the width of the mi-

crowave beam isr̃ 05r 0 /l510; the detector position is
L̃5L/l5103; the divergence of the atomic beam
a5v' /vT51023; the width of the atomic beam i
r̃ b5r b /l51021; the position of the center of the atom
beam in relation to the nodes of the standing wave of
microwave field is z̃05kz05p/8 for the curve 1 and
z̃05p/4 for the curve2; and the scale along the vertical ax
is chosen in units of the characteristic parameter of the p
lem to bedñ5\D2 /mv t

2;1024, which, of course, in this
case is a small parameter.

The right diagram in Fig. 5 depicts the density distrib
tion dn for the following altered parameters of the proble
Rabi frequenciesṼi , j5V i , j /D2510; and the position of the
center of the atomic beam is chosen by the maximum of
gradient force, i.e., atz̃0'0.188.

An important aspect should be noted. The above cor
tion to the density~46! becomes divergent as a result
averaging because of the contribution of atoms with low
locities vx;0, since the time it takes such atoms to inter
with the microwave field tends to infinity. The above resu
are given for velocitiesvx.1026vT .

7. EXPERIMENT

We measured the profile of a beam of Rydberg sodi
atoms in two-photon resonance with a standing wave of
microwave field~at frequency 72.6 GHz! on the 36P–37P
transition. Earlier we studied this transition in detail in tw
photon microwave spectroscopy and double-Stark-reson
experiments.4 In addition, other multiphoton resonance
were also observed in the given frequency range.9

The experimental setup is shown schematically in Fig
The 36P Rydberg state of a sodium atom was excited in
three-stage process 3S–3P–4S–36P by the radiation from
three pulsed locked tunable lasers. The parameters of
lasers were close to those described in Ref. 4. The l
beams were matched on dichroic mirrors and were focus
on the vacuum chamber1 at right angles to the atomic bea
2. The sodium atoms were evaporated in the oven3, with the
beam being formed by two diaphragms,4 and5, which lim-
ited the initial divergence to about 331023 rad. The Ryd-
berg atoms were detected by the means of selective
ionization10 in a pulsed electric field. The produced phot
electrons were gathered at the entrance windows of the c

FIG. 6. Experimental setup:1—vacuum chamber,2—beam of sodium at-
oms,3—oven,4 and5—diaphragms,6—moving slit,7—entrance windows
of the channel multipliers, and8—waveguide.
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nel electron multipliers7. The electric signals from the out
put of the multipliers were processed in the pulse-count
mode with an accumulation time of 10 s.

The detection device consisted of two parts. In one
Rydberg atoms were excited by laser radiation and w
forced to interact with the microwave field when the beam
excited atoms was sent through the waveguide8. Here the
signals from tuning the field frequency to the multiphot
resonances were registered. The total number of Rydb
atoms passing through the moving diaphragm6 was mea-
sured in the second part of the device. By changing the
sition of the diaphragm one could obtain the distribution
the number density of the Rydberg atoms in the beam al
one axis. Scattering or deflection of the beam of Rydb
atoms caused by the transfer of transverse momentum f
the microwave field changes the measured beam profile
addition we were able to vary the gradient of the microwa
field in the opening of the waveguide by changing the po
tion of the reflecting wall~piston!, which ensured the forma
tion of a quasistanding wave. The peak power flux of t
microwave field could reach 0.2 W/cm2. This was done by
using a frequency-tunable oscillator with a G4-1
backward-wave valve.

Figure 7 depicts the characteristic traces of the profi
of a beam of Rydberg sodium atoms with and without
microwave field. The frequency of the microwave radiati
was tuned exactly in resonance with the two-photon tran
tion 36P–37P. The initial profile of the beam was a near
symmetric trapezoidal distribution with a width of abo
1 mm, determined by the size of the collimating diaphragm
The contribution of the measuring device to the width w
less than 0.3 mm. The signal noise was related primarily
the fluctuations in the frequency and amplitude of the la
radiation. Also, a slight constant background noise was
served, which was attributed to the charged particles fr
the magnetic discharge pump which produced the h
vacuum, entering into the registration area. Introduction
the microwave field was found to change the profile of t
atomic beam considerably, depending on how the stand
wave was formed in the waveguide. Figure 7 correspond
tuning to one of the slopes of the standing waves, where

FIG. 7. Experimental traces of the profile of a beam of Rydberg sod
atoms for different intensities of microwave radiation in resonance with
36P–37P two-photon transition~the atomic beam passes through the regi
with the maximum gradient force!.
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bution of the Rydberg atoms in the cross section after
atoms have gone through the opening in the waveguide
pends on the intensity of the microwave field and on
point of interaction. When the minimum of the microwav
was formed in the opening, the profile of the beam of Ry
berg atoms was found to change insignificantly.

Analysis of the experimental results suggests two ba
physical effects that determine the change in the profile
the beam of Rydberg atoms when the atoms pass throu
nonuniform resonant microwave field.

The first, is the mechanical effect produced by the m
crowave field. This effect is caused by the gradient force
was discussed above. In our experiment we were abl
deflect the Rydberg atoms to angles comparable to the in
divergence of the atomic beam. For this reason the at
passing through the antinodes of the standing microwave
deflected to larger angles than when passing through
slopes of the wave. According to the above theory~see Sec.
5!, the dependence of the angle of deflection of the beam
the gradient force on the velocity and on the time it takes
Rydberg atoms to interact with the microwave field comp
cates the pattern of the spatial distribution of the atoms c
siderably. Here, by allowing for the distribution of the atom
over the longitudinal and transverse velocities we arrive a
complex scattering pattern, and the microwave field may
as a positive or negative lens. In addition, the position of
detector also affects the beam profile.

Actually, the narrowing of the atomic beam observed
Fig. 7 corresponds to the focussing mode. But at the s
time we see that the total number of the Rydberg atom
not conserved. This is due either to scattering by very la
angles, as a result of which the signal from the Rydb
atoms falls below the background noise, or to quenching
the Rydberg atoms in the microwave field. Such quench
may be caused by ionization coupling with the continuum
the type of diffusion ionization.11 However, in our experi-
ments the probability of such ionization is negligible sin
the ionization threshold corresponds to microwave fie
whose strength must be higher by a factor of 10 to 100
states with such values ofn.

A more likely explanation is the phenomenon of rad
tive quenching of Rydberg states in an intense microw
field, related to the transition of the atoms to lower stat
For states 36P the lifetime of Rydberg atoms, with allow
ance for the decrease in lifetime due to the interaction w
thermal radiation at liquid nitrogen temperatures is 170ms
and exceeds, albeit insignificantly, the time it takes
Rydberg atoms with typical velocities to travel from th
point of laser excitation to the second channel multiplier.
this case practically all Rydberg atoms are detected. Dep
ing on the principal quantum numbern, the lifetime of Ry-
dberg states increases at least liken3, and for lower levels it
decreases according to the same law. This could lead
situation in which for essentially lower states not all the R
dberg atoms that have interacted with microwave radia
would be detected. Calculations have shown that at the
quency of the microwave radiation used in the experim
there are no transitions, either resonant or multiphoton, fr
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microwave fields the resonance defect may be balanced
the dynamic Stark effect, and then the resulting resonan9

could drive up the probabilities of radiative transitions, i
cluding multiphoton transitions, considerably.

The detected profiles of a beam of Rydberg sodium
oms depicted in Fig. 7, with the atoms passing throug
spatially nonuniform microwave field formed in the wav
guide, most probably reflect a combination of kinetic effe
and multiphoton radiative quenching of Rydberg stat
Moreover, strong signals have been detected in the rang
intensities of the microwave field in which the three-lev
model, for which there is a reliable theory, ceases to be va

To observe the kinetic effects more clearly and to co
pare the results with the above theory, we need experim
at minimum intensities of the microwave field, which r
quires increasing the sensitivity of the device considera
and retaining spatial resolution. Nevertheless, our exp
ments have revealed a considerable variation in the profil
a beam of Rydberg atoms in the presence of a spatially n
uniform microwave field, which qualitatively supports ou
picture of resonant scattering of Rydberg atoms. To ens
quantitative agreement the experimental setup must be r
signed, and other resonances, where the contribution o
diative quenching would be less important, should be fou
Theoretical calculations that allow for higher-order mul
photon interaction must also be done. Estimates show th
high intensities of the microwave field the contribution of t
above factor may be extremely significant.

8. CONCLUSION

By using the present method we can study, at leas
principle, the scattering of atoms when the interaction in
electromagnetic fields is coherent, to any photon order. H
not only can we calculate the effect of a force on an in
vidual atom but we can also estimate the kinetic characte
tics of the atomic beam as a whole. Below we list the p
sible avenues of research.

1.Taking into account a large number of levels in t
limit of an m-photon resonance.

2. Taking into account the perturbations of relaxati
processes for Rydberg states.

3. Studying other field configurations. Here a stand
wave is not a good example, since for a microwave field
spatial gradients are low. Note that the results given in t
paper~e.g.,~32!! are valid not only for a standing wave bu
also for a wave of arbitrary spatial configuration~to be sure,
a linearly polarized field!. Thus, the choice of the appropria
sharp spatial nonuniformity in a microwave field with a gr
dient extending over a region with dimensions!l could
boost the scattering effect considerably.

4. Landau–Zener transitions require further study.
particular, it would be interesting to select models with co
responding field and atomic configurations, where
Landau–Zener transitions would have a strong effect on
scattering of atoms by the field.

5. Various polarization field configurations, possibly i
cluding a static field, could be used as an instrument to c
trol scattering processes.
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Exact nonrelativistic expressions for the tensor for scattering of light by atoms

r

M. A. Preobrazhenskiı̆

Voronezh State Academy of Architecture and Civil Engineering, 394000 Voronezh, Russia
~Submitted 7 June 1996!
Zh. Éksp. Teor. Fiz.111, 816–830~March 1997!

Exact nonrelativistic analytical expressions are derived for dipole two-photon transitions between
arbitrary multiplets of the hydrogen atom and positive hydrogenlike ions. The result is
expressed in terms of a single Gauss hypergeometric function and polynomials whose degrees
increase linearly with the number of nodes of the bound states of the quantum system.
The cross sections of elastic scattering of light byK- andL-shells of the hydrogen atom are
given as an example. It is demonstrated that by expanding the discrete-spectrum wave functions in
ultraspherical polynomials it is also possible to obtain analytical expressions of the cross
sections of two-photon transitions between states described by the Simons model potential. The
basis consisting of Chebyshev polynomials is shown to be the best expansion basis, and
the coefficients of such an expansion are given for a broad range of parameters of the problem.
Calculation of the polarizability of the 5S-state of the rubidium atom is chosen as an
example. Finally, the results are compared with the experimental data and the theoretical results
of other researchers. ©1997 American Institute of Physics.© 1997 American Institute
of Physics.@S1063-7761~97!00403-4#
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As is known,1 the matrix elementsCik of the dipole ten-
sor of scattering of light by an atom can be expressed
terms of the wave functions of the initial (u1&) and final
u2& states as follows:

Cik5^2udiGE11v1
dk1dkGE12v2

di u1&, ~1!

where thedi are the components of the dipole-interacti
operator,G is the atomic Green’s function,E1 is the energy
of the initial level, andv1,2 are the energies of the absorb
and scattered photons, respectively.~Here and in what fol-
lows the atomic system of units is employed.! The dipole
approximation is applicable in studies of the interaction
tween bound atomic states and an electromagnetic wave
cause the linear dimensionsr of atoms are small compared t
the wavelengthl, i.e., r!l. In the optical range this is true
for states whose principal quantum numbern does not ex-
ceed 30~see Ref. 2!.

TheCik can be used to express the probabilities of el
tic and inelastic scattering of light and the shifts of ener
levels in an electromagnetic field. For instance, for an i
lated atomic level, the tensorCik degenerates into the pola
izability tensora ik , related to the level shiftDE as follows:

DE52
a ikE iEk

2
, ~2!

where theE i are the components of the electric field vect
The atomic states with positive orbital quantum numberl
cannot be isolated and are degenerate at least inM , the pro-
jection of the total angular momentumJ. The dependence o
Cik on bothM and the indicesi and k can be found in
general form via the Wigner–Eckart theorem, which mak
it possible to determine the dependence ofDE on magnetic
quantum numbers.3 Here, for an isolated atom, it has prove
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a ik but in terms of the scalar and tensor polarizabilities p
portional to the components of this tensor.

Hydrogenlike and Rydberg states are also degenera
l . Generally speaking, the contribution to the shift of
atomic level is provided not only by the terms ofa ik propor-
tional to the square of the field strength but also by ter
linear in E . It is the linear terms that completely determin
DE in the static limit. However, in the range of optical fre
quenciesv such terms provide only a small contribution
the Stark effect.3 In the presence of a field so strong that t
fine structure of the levels can be ignored, the problem c
generally speaking, be reduced to diagonalizing the tridia
nal quasienergy matrix of rankn2uM u, wheren is the prin-
cipal quantum number, with elements proportional to~1! ~see
Ref. 4!. In particular cases of fields that do not lift the d
generacy completely the calculation ofDE is simpler. For
instance, in linearly polarized fields the level parity is co
served and the quasienergy matrix can be expanded in
rect sum of matrices that mix states of fixed parity.3

The situation becomes more complicated when we w
to describe the Stark effect for an atomic multiplet. The ra
of the matrix that must be diagonalized depends on the
quency and strength of the field and cannot be specifie
advance. It is determined by the number of levels for wh
the shift of a separate level is on the order of the width of
multiplet. For the excited states of most atoms in real fie
all levels belonging to a multiplet are mixed by the fiel
while different multiplets can be assumed isolated.

Since in all cases except that of a static field the cal
lation of the scattering matrix is a mandatory stage in stu
ing level shifts, probabilities of elastic and Raman scatter
of light, two-photon ionization, and other two-photon pr
cesses, the problem has attracted great interest and m
methods have been employed for its solution. Tim
dependent perturbation theory in the Hartree–Fock meth5

4489$10.00 © 1997 American Institute of Physics



many-particle perturbation theory,6 and the method of ran-
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2. EXACT ANALYTICAL EXPRESSIONS FOR THE
COMPONENTS OF THE TENSOR FOR SCATTERING OF
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dom phase with exchangeare the methods commonly use
for studying ground states of complex atoms. Howev
many difficulties of a technical nature are encountered w
one attempts to apply these methods to excited degen
states. In this case the use of the Coulomb approxima
proves to be justified from the physical standpoint. Howev
even in this approximation exact analytical expressions
the elements of the scattering matrix have only been obta
for the ground and first excited states of the hydrog
atom.3,8 Direct summation of the terms generated by t
Sturm expansion of the Green’s function is possible only
the one-photon ionization channel is closed.4 A method
based on solving an inhomogeneous differential equat9

uses the spherical symmetry of theS-state explicitly. But
even in this case the considerable technical difficulties
volved allow only the two lowest states to be studied. T
use of the spectral expansion and the integ
representation10 of the Green’s function leads to cumbe
some numerical calculations, whose complexity rapidly
creases withn.

If n is greater than 2, calculatingCik for an arbitrary
frequencyv of the external field requires additional approx
mations even for levels of the hydrogen atom and hydrog
like ions. Some researchers have used the expansion oCik

in inverse powers ofv ~see Ref. 11!, but this resulted in
obtaining only a few terms of the expansion. The slow co
vergence of such an expansion and the nonanalytic natu
the behavior of the imaginary part ofCik limit the applica-
bility of this approximation.

The semiclassical expansion in inverse powers of
principal quantum numbern ~see Ref. 12! is also weakly
convergent. Technical difficulties limit the accuracy of th
expansion to terms of order 1/n2, and the fact that the leve
width is nonanalytic in the energy makes it impossible
obtain the imaginary part ofDE in this approximation.

Methods based on summing a finite number of oscilla
strengths calculated in the Kramer approximation13 also have
limited applicability. Since in this case the contribution
the continuous spectrum toa ik is completely ignored, the
approximation is inapplicable for frequenciesv exceeding
the ionization potential of the level being excited. Here,
shown in Ref. 3, for ground atomic states the virtual tran
tions to the continuous spectrum determine up to 50–90 %
the polarizability value. For excited states the contribut
varies dramatically, and for values of the orbital quantu
numberl greater than unity it can reach considerable val
even when the ionization channel is closed. On the ot
hand, the approximation also becomes invalid for low f
quenciesv. The thing is that in the Kramer approximatio
the oscillator strengths do not depend onl . This makes it
impossible to allow for the mixing of levels that are dege
erate inl , and this mixing cannot be ignored for low freque
ciesv.

The situation requires developing new methods for
taining exact analytical expressions forCik . The present pa-
per is devoted to solving this problem in the nonrelativis
dipole approximation.
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LIGHT BY HYDROGEN LEVELS

The standard methods of the theory of angu
momentum14 make it possible to integrate in~1! over the
angular variables and to find the dependence ofCik on the
magnetic quantum numbers of the initial, virtual, and fin
atomic states (M ,m, andM f , respectively!. By applying the
Wigner–Eckart theorem to~1! we can expressCik in terms
of Clebsch–Gordan coefficients and the reduc
perturbation-theory composite matrix element:

Cik5~21!J2M1 j2mS J 1 j

M qi mD H j 1 Jf

M qk M f
D

3~2idGE11v1
d1dGE12v1

di1!, ~3!

whereqi ,k50,61. Calculation of~3! has been done for vari
ous angular-momentum coupling schemes and present
difficulties ~see, e.g., Refs. 3 and 15!. In what follows we
will need the explicit expression forCik in the LS coupling
scheme in terms of the radial composite matrix elemenT
and the Racah coefficientsW:

Cik5~21!J2M2m2 j12S2L2L1S J 1 j

M qi mD
3S j 1 J1

M qk M1
D ~2 j11!@~2J11!~2J111!#1/2

3W~LSl j;S1!W~ l jL 1J1 ;S1!LmaxL1max

3@T~nL,n1l ,n1L1!1T~nL,n1l ,n1L1!#. ~4!

HereL, l , andL f are, respectively, the orbital quantum num
bers of the initial, virtual, and final states;Lmax is the largest
of the numbersL and l ; S is the spin quantum number; th
effective principal quantum number of the virtual level
defined as

n1,25@2~2E6v!#1/2; ~5!

and the perturbation-theory radial composite matrix elem
is given by

T~nfL f ,n l ,nL!5^nLur 3gl~n,r ,r 1!r 1
3unfL f&, ~6!

where^nLu andunfL f& are the radial parts of the wave func
tions of the initial and final atomic states, andgl(n,r ,r 1) is
the radial part of the Green’s function. CalculatingT consti-
tutes the main difficulty in the problem.

The general algorithm for calculating two-photon dipo
radial matrix elements for hydrogen states can be found
Ref. 15. Reasoning along similar lines, we arrive at an
pression for the elements of the scattering matrix. We s
stitute the Sturm representation of the radial part of the C
lomb Green’s function3 in terms of the Laguerre polynomial
Lk
2l11 in ~6! ~see Ref. 16!,

gl~n,r ,r 1!5
4

n (
k50

`
~rr 1!

lexp~2r /n2r 1 /n!

k! ~k12l11!! ~k1 l112n!

3Lk
2l11~2r /n!Lk

2l11~2r 1 /n!, ~7!
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and the explicit expression for the bound-state wave func-
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tion,

unL&5
2L11

nL12 @~n1L !! ~n2L21!! #1/2

3 (
a50

n2L21
~22r /n!a

~n2L212a!! ~2L111a!!a!
. ~8!

The matrix element~6! can be expressed in terms of th
Laplace transform forLk

2L11 . Using the expression for a
Laplace transform in terms of the hypergeometric function16

we get

T~nfL f ,n l ,niLi !5CiCf(
k50

`
~2l1k11!!

k! ~k1 l112n!

3Fn2ni
n1ni

n2nf
n1nf

Gk
3I ~niLi ,n,lk !I ~nfL f ,n,lk !. ~9!

Here we have introduced the following notation:

Ci5
@~ni1Li !! ~ni2 l i21!! #1/2

ni
Li12

n l11/2~2l11!!
S nni
n1ni

D l1Li14

, ~10!

I ~niLi ,n,lk !

5 (
a50

ni -Li -1 ~ l1Li1a13!!

~ni2 l i2a21!! ~2Li1a11!!a!

3S 22n

n1ni
D a

FF2k,l2Li2a22,2l12,
2ni

n2ni
G , ~11!

whereF is the Gauss hypergeometric function, which in o
case is a finite polynomial in the variable 2ni /(n2ni) whose
degree is the smaller of the numbersk andLi2 l1a12. At
the same time,F can be considered a polynomial of degr
Li1a122 l in the parameterk.

This property makes it possible to analytically contin
T(nf L f ,n l ,niLi) into the region of imaginaryn, where the
expansion~9! diverges. Physically this region corresponds
an open channel of one-photon ionization of the init
atomic state. Let us writeI (niLi ,n,lk) in the form of a poly-
nomialQj i

xi ,yi(k) of the variablek with coefficients that de-

pend on

xi5
ni

n2ni
, yi5

n

n1ni
. ~12!

The degreej i of this polynomial is determined by the leadin
term in the expansion ofF with the maximum value
amax
i 5ni2Li21 and isj i5ni112 l , with the result that the

degreej of the productPi f (k) of the polynomialsQi and
Qf is determined by the total number of nodes of the wa
functions of the initial and final states,nr i andnr f :

j5nr i1nr f1222l ; ~13!

thePi f (k) are polynomials of the variablek with coefficients
that depend on the parametersxi , yi , xf , andyf . Expanding
Pi f (k) in the polynomials
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r
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Rm5 )
g50

~k12l121g!, m51, . . . ,j , R051, ~14!

we find that

Pi f ~k!5 (
m50

j

bm~xi ,yi ,xf ,yf !Rm . ~15!

Since the system of polynomials~14! is not orthogonal, we
cannot obtain closed expressions for the coefficie
bm(xi ,yi ,xf ,yf) of the expansion~15!. Such an expansion
can be done by standard methods: either by Horner’s me
via successive division ofPi f (k) byRm (m50, . . . ,j ), or by
solving a system ofj11 linear equation obtained by com
paring the coefficients of like powers of the variablek on the
right- and left-hand sides of Eq.~15!. The fact that the lead-
ing coefficients of all the polynomials in~14! are equal to
unity makes it possible to construct a more economical
cursion procedure for obtaining thebm(xi ,yi ,xf ,yf) coeffi-
cients, a generalization of the moving band technique~see
Ref. 17, Chap. 1! to the case of asymmetric functions. If w
subtract fromPi f (k) the polynomialRj with a weight equal
to the leading coefficient ofPi f (k), the remainder is a poly-
nomial of degreej21. By recursively repeating this proce
dure with the remaindersj21 times we arrive at the system
of coefficientsbm . This algorithm consists only of subtrac
tion of polynomials with integral coefficients, is free from
numerical errors, and can easily be programmed.

Now we allow for the fact that

~k12l11!!Rm5~k12l1m11!!, ~16!

and reduce~9! to

T~nfL f ,n l ,niLi !5CiCf (
m50

j

bi ,l , f ,m~xi ,yi ,xf ,yf !

3 (
k50

`
~2l1k111m!!

k! ~k1 l112n!

3Fn2ni
n1ni

n2nf
n1nf

Gk. ~17!

Since the inner sum with respect tok can be expressed by
hypergeometric series,16

(
k50

`
~2l1k111m!!

k! ~k1 l112n! Fn2ni
n1ni

n2nf
n1nf

Gk

5
~2l111m!!

l112n 2F1F2l1m11,l112n,l

122n,
n2ni
n1ni

n2nf
n1nf

G , ~18!

we see that Eq.~17! constitutes a finite sum of contiguou
Gauss hypergeometric functions:

T~nfL f ,n l ,niLi !5 (
m50

j

di ,l , f ,m~xi ,yi ,xf ,yf !Fi f ~m!.

~19!

Here the following notation has been introduced:
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di ,l , f ,m~xi ,yi ,xf ,yf !
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n
hy
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:
d

3 2
1

15y 114x2~1220y!1400x3y 1x2F~2!

o-

the
ic
eo-
ns
re-
ird
5CiCf

~2l111m!!

l112n
bi ,l , f ,m~xi ,yi ,xf ,yf !,

~20!

Fi f ~m!52F1F2l1m11,l112n,l122n,
n2ni
n1ni

n2nf
n1nf

G .
The algorithm not only makes it possible to describe

behavior of the scattering tensor in the region of analytic
but also gives the correct position of the poles:n5 l1n11
for n50, 1, . . . , `.

The above algorithm for deriving analytical expressio
for the components of the scattering tensor in terms of
pergeometric functions contains only the procedures of
viding polynomials with rational coefficients and collectin
like terms in the variablesx andy, which means that it can
easily be programmed. The program implementing the a
rithm contains only integer operations and is free from n
merical errors.

By way of an example we give the explicit expressio
for the diagonal ~in the principal quantum numbers
xi5xf5x and yi5yf5y) transitions from the ground an
first excited states of the hydrogen atom:

T~1s,n1,1s!

2832

5F~0!~124x14x2!1xF~1!~429x!15x2F~2!,

T~2s,n1,2s!

211335

5F~0!F1/522y15y2

8
1
x~21/513y210y2!

2
12x2

3S 1526y1300y2D116x3y~1210y!1160x4y2G
1xF~1!F1/523y110y2

8
1x~2 9/10126y2130y2!

256x2y~1210y!2800x3y2G12x2F~2!F S 1427y

135y2D132xy~1210y!1728x21y2G264x3yF~3!

3~1210y148xy!1336x4F~4!y2,

T~2p,n1,2s!

210325

5F~0!F125y

16
1
x~23120y!

4
13x2

3~1210y!14x3~21120y!280x4yG
1xF~1!F S 3425yD113x
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3F S 7225yD116x~21120y!2728x21yG1x3F~3!

3@6~1220y!1576xy#1168x4F~4!~211y!, ~21!

T~2p,n0,2p!

273

5F~0!S 1242x110x22
160

3x3
1160x42256x51

512

3x6D
1xF~1!~1223x2208x22928x312048x421792x5!

116x2F~2!S 1316216x1116x22368x31432x4D
116x3F~3!S 193 298x1496x22824x3D
1160x4F~4!~3232x184x2!1640x5F~5!~2211x!

1x6F~6!
4480

3
,

T~2p,n1,2p!

293352
5F~0!S 1162x16x2216x3116x4D

1xF~1!~1213x156x2280x3!

1x2F~2!S 7264x1
738x2

5 D
124x3F~3!S 12

24x

5 D1
168x4F~4!

5
,

T~2p,n2,2p!

2123253
53F~0!S 182x12x2D1xF~1!~3213x!

17x2F~2!.

In the formal static limitn5ni , f1 l i , f11 the initial se-
ries ~17! can have only one first-order pole atnr i , f5 l2 l i , f ,
which is possible only ifD l50,21. In all other cases~17!
tends to a finite limit. Clearly, in the finite sums in~21! all
the termsxi , f

j containing poles of orders higher than in~17!
cancel out. For instance, forT(1s,n1,1s) there exists a finite
static limit,T(1s,n1,1s)527/4, which yields a correct value
for the static polarizability of the ground state of the hydr
gen atom:a1s529/2.

The above algorithm makes it possible to express
tensor for scattering of light by any hydrogenlike atom
state in terms of a finite sum of contiguous Gauss hyperg
metric functions. The three-term Kummer recursion relatio
allow any contiguous hypergeometric functions to be
duced to two functions. The fact that the second and th
arguments inFi f (m) differ by unity makes it possible to
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reduce~20! to a single hypergeometric function and several
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elementary functions. Let us prove this assertion.

Applying the Kummer relation

F~a11,b,c,z!5
F~a,b,c,z!1bF~a,b11,c,z!

a
~22!

to Fi f (m) and allowing for the fact thatF(a,b,b,z) is an
elementary function,

F~a,b,b,z!5~12z!2a, ~23!

we find that

Fi f ~m!5
l1m111n

2l121m
F~m21!1

l112n

2l121m
Q2l121m,

~24!

with

Q[
~n1ni !~n1nf !

2n~ni1nf !
. ~25!

By applying ~24! successively we can expressFi f (m) with
an arbitrarym and hence the sum~20! in terms ofFi f (0) and
an elementary function:

Fi f ~m!5
l1m211n

2l121m
PmFi f ~0!

1~ l112n! (
j50

m21
PjQ

2l121m2 j

2l111m2 j
, ~26!

where

Pj5)
k50

j21
l1 j1n2k

2l111 j2k
. ~27!

To illustrate the above ideas, we give two examples
radial composite matrix elements expressed in terms of
single hypergeometric functionF(0):

T~1s,n1,1s!

5
3

2 S 2n

11n D 10
3

~7n2218n112!F~0!1~22n!@~3n28!Q414Q5#

n3~n21!2~22n!
,

T~2p,n2,2p!5
27153

n5~n22!2 S 2n

21n D 14
3H ~49n22162n1324!F~0!

24
1~32n!

3F ~5n224!Q6

3
1

~3n232!Q7

4 G J . ~28!

The relationships between contiguous hypergeome
functions can be used to prove a more general assertion
only can an individual component of the tensor for scatter
of light by an atomic shell be expressed in terms of a sin
hypergeometric function but so can the entire tensor. T
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the atomic multiplet components and the diagonalization
the quasienergy matrix.

According to the selection rules in the dipole approxim
tion, the angular momentuml of the virtual state can be
Li , Li11, orLi21. HenceFi f (0) can be expressed in term
of the angular quantum number of the initial state as follow

Fi f
1~0!5F~2Li14,Li122n,Li132n,z!,

Fi f ~0!5F~2Li12,Li112n,Li122n,z!, ~29!

Fi f
2~0!5F~2Li ,Li2n,Li112n,z!.

Let us expressFi f
1(0) in terms ofFi f (0). Thereduction

of the first parameter in the functionFi f
1(0) to the value

2Li12 is done by applying the transformation~22! twice. A
simultaneous decrease of the second and third paramete
unity can be achieved by a single Kummer transformatio

F~a,b,c11,z!5
c@F~a,b21,c,z!2~12z!F~a,b,c,z!#

z~a2c!
.

~30!

In view of the fact that we havec5b in ~29!, the function
F(a,b,c,z) is, in accordance with~23!, an elementary func-
tion, with the result that

Fi f
1~0!5

Li122n

2Li13

3HQ2Li131
Li111n

~2Li12!z
@Q2Li122Fi f ~0!#J .

~31!

Applying the transformation

F~a21,b,c,z!

5
bF~a,b11,c,z!/z2~c2b2a!F~a,b,c,z!

c2a
~32!

to Fi f
2(0) twice and allowing for the fact thatF(a,b

1 1 ,c,z) is an elementary function, we can reduce the fi
parameter inFi f

2(0) to 2Li12. The Kummer transformation

F~a,b,c21,z!

5
bF~a,b11,c,z!/z1~c2b21!F~a,b,c,z!

c2a
~33!

makes it possible to expressFi f
2(0) in terms ofFi f (0) as

follows:

Fi f
2~0!5

Q2Li

Li1n
~2LiQ2Li1n!

2
z2Li~2Li11!

~Li2n!~Li1n11!
Fi f ~0!. ~34!

In particular, forP-states we have
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F1~0!5
32n

Q51
21n

~Q42F ~0!! ,
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3Lk
2l11~2r /n!Lk

2l11~2r 1 /n!,
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i f 5 F 4z i f G
~35!

Fi f
2~0!5

Q2

n11
~2Q211n!2

6z

~12n!~21n!
Fi f ~0!.

3. ANALYTICAL EXPRESSIONS FOR THE ELEMENTS OF
THE TENSOR FOR SCATTERING OF LIGHT BY
HYDROGENLIKE STATES OF COMPLEX ATOMS

When the one-electron approximation can be used to
scribe the behavior of the optical electron of a complex ato
we can employ the model-potential method to construct
wave function and the Green’s function. The only meth
that leads to analytical results and is therefore most o
used in multiphoton calculations is that of the Simons mo
potential3

V~r !52
Z

r
1(

l

Bl~E!Pl

r 2
. ~36!

Here Bl(E) is a parameter determined from the conditi
that the poles of the Green’s function and the experime
spectrum of the atom coincide, andPl is the projection op-
erator on the subspace of angular-momentum eigenfunct
with a given l . Like as any one-electron method, it inco
rectly describes the atomic-core region, where correlati
have a strong effect. However, in calculating the probabi
of processes involving photons the dipole-interaction ope
tor d reduces the relative contribution of this region to t
integral ~6!.

The Simons potential is characterized by an incorr
asymptotic behavior in the opposite limit of large values
r , too. However, the wave functions and the Green’s fu
tion in the region of larger are exponentially small. In ad
dition, the nonlocal character of the potential in the angu
variables makes it possible to offset this deficiency at le
partially by an appropriate choice of the parametersBl(E)
~see Ref. 3!. As numerous calculations have shown, there
a broad range of radiation frequencies and level ener
within which photoprocesses involving excited states of
oms of alkali and alkali-earth metals, noble gases, and o
elements are described fairly well with such a potential.
addition, the potential also describes phototransitions fr
the ground states of atoms with one valence electron. T
makes it possible to use the approximation with the Sim
model potential to calculate the tensor for scattering of li
by a complex atom.3

The wave function un il& and the Green’s function
gl(n,r ,r 1) of an optical electron in this potential are3

un il&5
2l11

nl12 @~n i1l!!nr ! #
1/2

3 (
a50

nr S 22r

n i
D a 1

nr ! ~2l111a!!a!
~37!

gl~n,r ,r 1!5
4

n (
k50

`
~rr 1!

lexp~2r /n2r 1 /n!

k! ~k12l11!! ~k1l112n!
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whennr is the radial quantum number. The effective princ
pal quantum number of a bound state,n i , f , is defined as
n i , f5(22Ei , f)

21/2, and the parameterl is a function of the
energyE of the optical electron and the angular quantu
numberl . The parameter is selected in such a way that
experimentally established values of the bound-state ener
coincide with the poles of the Green’s function. The nec
sary condition for the Simons model-potential method to
applicable in calculating the photoprocess probabilities is
smoothness of the functionl(E):

U ]l

]E U!1.

Substituting~37! into ~6!, we arrive at the generalized ex
pressions~9!–~11! for the case of complex atoms:

T~n fl f ,nl,n il i !

5CiCf (
k50

`
F~2l1k12!!

k! ~k1l112n!

3Fn2n i
n1n i

n2n f

n1n f
GkI ~n il i ,n,lk!I ~n fl f ,n,lk!, ~38!

where

Ci5
@G~ni1Li11!nri ! #

1/2

ni
l i12

nl i11/2G~2l i12!
S nni
n1ni

D l1l i14

,

I ~nil i ,n,lk!

5 (
a50

nri G~l1l i1a14!

G~nri2a!G~2l i1a12!!a!

3S 22n

n1ni
D a

FF2k,l2l i2a22,2l12,
2ni

n2ni
G . ~39!

A particular case of~37! and ~38! for transitions that are
diagonal in the principal quantum number was obtained
Manakov and Ovsiannikov.10

The expansion~37! converges only for realn, which
from the standpoint of physics means that the one-pho
ionization channel is closed. It is impossible to directly app
the above algorithm for analytic continuation o
T(nfL f ,n l ,niLi) to the imaginary n region, since
F@2k,l2l i2a22, 2l12, 2ni /(n2ni)# is not a finite
polynomial of variablek for noninteger values of the param
eter l i2l. For the analytic continuation algorithm to be
come applicable we must reduceI (nil i ,n,lk) with nonin-
tegerl andl i to a sum of polynomialsQj i

xi ,yi(k). To this end

we expandr l i122l in integer powers of the variabler :

r l i122l5 (
d50

dmax

hd~l2l i !r
d. ~40!

A function can be expanded in power series in orthog
nal Jacobi polynomials in an infinite number of ways, wi
the various series differing by the weight function with r
spect to which orthogonality is established. By collecti
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terms with equal powers ofr we arrive at the power expan-
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sions~40!. For dmax→` all these expansions are exact a
equivalent. But if the purpose of the expansion is to attain
accuracy that is fixed in a finite interval with a minimu
number dmax of expansion terms, the convergence vari
Since the error in calculating the cross section of a photop
cess involving a complex atom is in any case bounded be
by the one-electron approximation of the model potent
there is no need to strive for absolute accuracy in the exp
sion. It is precisely this situation that we are studying he

The expansion basis must be selected so as to ensur
most economical~for the given accuracy! description of the
integrand in~6! in the interval 0.r>n of variation of vari-
abler , the interval that provides the main contribution to t
integral. Generally speaking, the local Taylor and Maclau
expansions are extremely inefficient here, since they use
the information about the behavior of a function at a sin
point. Much more effective is the procedure of expanding
orthogonal polynomials, and from the overall point of vie
the best is the expansion in ultraspherical polynomials.17

The contributions of the different parts of the domain
integration in~6! differ for different values of the paramete
of the problem. This fact can be taken into account by
appropriate choice of the weight factors in the orthogo
expansion and, hence, of the form of the ultraspher
polynomial.17 The basis consisting of Chebyshev polynom
als Tk(x) ensures a uniform estimate for the relative ma
mum deviationDmax of the approximation polynomial from
the expanded function in the entire interval of values ofr . It
is this property of Chebyshev polynomials that determin
their advantage in approximating a function over a bro
interval of variation of the parameters of the problem. Suc
choice of the basis makes it possible to determine the form
the power expansion irrespective of the type of atom and
field parameters. Here the relative errorD in calculating the
integral cannot exceedDmax. In the interval21,r,1 the
polynomialsTk(x) are determined by the recurrence re
tions

Tk11~x!52xTk~x!2Tk21~x!,

T0~x!51, T1~x!5x. ~41!

The coefficientsak of the expansion of a functionf (x) in
Chebyshev polynomials are given by the following expr
sion:

ak5E
21

1

f ~x!Tk~x!~12x2!1/2dx. ~42!

Substituting~40! into ~6! we get

I ~nil i ,n,lk!

5 (
d50

d i

hd~l2l i ! (
a50

nri G~l1l i1a14!

G~nri2a!G~2l i1a12!a!

3S 22n

n1ni
D a

FF2k,2d2a,2l12,
2ni

n2ni
G . ~43!

Since now the second parameter inF is a negative integer
we have an expression similar to~15!:
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Pi f ~k!5 (
m50

j

Bm~xi ,yi ,xf ,yf !Rm , ~44!

whereBm(xi ,yi ,xf ,yf) is simply a linear combination of the
quantitiesbm(xi ,yi ,xf ,yf) determined earlier, with weights
defined by the coefficients of the approximation~40!:

Bm~xi ,yi ,xf ,yf !5 (
d50

d i

hd~l2l i !

3 (
d150

d f

hd1
~l2l f !bm~xi ,yi ,xf ,yf !.

~45!

Thus, the problem of calculating the elements of the t
sor for scattering of light by a complex atom amounts
determining the energy dependence of the parameterl,
l i , andl f and calculating the coefficientshd(l2l i , f12).
The first part of this problem for each atom can easily
solved by approximating the values ofl calculated from the
experimental spectrum.19 By way of an example, Fig. 1 de
picts the energy dependence of thel parameters for the ru
bidium atom, which is used below in calculations.

The solution of the second part of the problem is ind
pendent of the features of a specific atom. Table I lists
values of the coefficientshd(r) of the lowest-order terms in
the expansion and Table II the values of the coefficients
the highest-order terms, which ensure an approximation
curacyDmax51024 for 0,r,40. These data make it pos
sible to calculate the probabilities of photoprocesses
which n, n i f , n<40 hold . The interval of variation of the
parameterr describes all the transitions between the lev
of alkali and alkali-earth metals and noble gases. Here
approximations that vanish to the specified accuracy are
carded, andc/n stands forc3102n. Table I and II show that,
with the exception of the trivial cases of the neighborhoo
of integer values ofr, where one term withd5r in the
expansion~40! is sufficient, the expansion rapidly converg

FIG. 1. The energy dependence of the parametersl of the model potential
for the rubidium atom. The curves1–5 correspond tos-, p1/2-, p3/2-, d-, and
f -states. Energies are measured in units of cm21. The given values ofl l are
normalized by the conditionl l5l2al , where as50.8, ap1251.3,
ap3/251.2,ad51.68, andaf52.98.
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for n'100, and

TABLE I.

455 JETP 84
d
r 0 1 2 3 4 5 6 7 8

0.6 1 4 27 8.7 28 4.541 21.788 0.506 20.1059
0.7 22 3.5 27 6.5 24.9 2.83 21.09 0.309 20.06482
0.8 21 2.1 23.5 2.8 22.7 1.5 20.59 0.167 20.03455
0.9 2.6 21.227 1.339 20.99 0.594 20.233 0.06621 20.01385
1.0 1
1.1 0.1 0.5 0.95 20.733 0.67 20.3712 0.145 20.04077 0.008526
1.2 0.5 0.2 1.4 21.464 1.07 20.595 0.225 20.0629 0.01308
1.3 20.4 1.2 1.2 21.272 1.15 20.64 0.253 20.0705 0.0147
1.4 0.05 0.31 1.08 20.6713 0.344 20.1241 0.3142 20.00569 0.7485/4
1.5 0.1 0.3 0.965520.3927 0.14148 20.03759 0.00678728.585/4 0.7659/4
1.6 20.027 0.274 0.903 20.2188 0.05504 20.009698 0.00116220.9382/4 0.502/5
1.7 0.033 0.215 0.910620.1463 0.02905 20.004056 0.3778/320.2293/4 0.8688/6
1.8 0.041 0.16 0.923420.8634 0.01314 20.001406 0.9748/420.4156/5 0.9878/7
1.9 20.038 0.12 0.985120.02804 0.00230920.1252/3 0.3728/5 20.4612/7
2.0 1
2.1 20.0089 20.11 1.056 0.0391320.00291 0.1528/3 0.445/5 0.548/7
2.2 0.085 20.18 1.089 0.0907620.00634 0.3261/3 0.947/5 0.1153/7
2.3 0.074 20.27 1.092 0.1561 20.0101 0.5089/3 0.146/4 0.1772/6
2.4 0.438 20.36 1.063 0.2362 20.01392 0.6851/3 0.195/4 0.2347/6
2.5 0.01 20.29 0.993 0.3315 20.01736 0.8334/3 0.234/4 0.2806/6
2.6 20.02 20.4 0.883 0.4421 20.01985 0.9261/3 0.257/4 0.3061/6
2.7 1.73 20.5 0.746 0.5667 20.02056 0.9294/3 0.255/4 0.3013/6
2.8 0.95 20.5 0.6835 0.6572 20.01173 0.3128/3 0.391/5
2.9 0.39 20.1 0.3815 0.8213 20.008 0.2049/3 0.252/5
3.0 1
3.1 20.096 0.8 20.708 1.243 0.00887520.9342/4
3.2 20.4 0.8 20.936 1.1375 0.03685 20.8004/3 0.9357/5
3.3 21 1.1 21.483 1.547 0.07107 20.001431 0.1638/4
3.4 1 1.8 21.893 1.687 0.1205 20.002209 0.2471/4
3.5 210.1 5 22.451 1.766 0.1894 20.003086 0.3366/4
3.6 211 3 22.821 1.763 0.2825 20.003948 0.4186/4
for an arbitraryn it also rapidly converges

n
io
he

nd
an

error estimate that is uniform over the entire approximation
b-
of

c-

ls.

ists
for
for r.1.5. In this case, even whenn is large, the required
accuracy is ensured by a small number of terms withd<5.
For d small and highly excited states, the numberdmax of
terms in~40! that must be taken into account increases, a
one is forced to allow for the leading terms in the expans
~Table II!, making the use of the method in calculating t
tensor of scattering of light much more complicated.

In this case the basis of ultraspherical polynomials a
in particular, of Chebyshev polynomials, which yields
TABLE II.
d
n

,

interval, does not provide a correct description of the pro
lem. For different parameter intervals the range of values
r providing the greatest contribution to~6! is different. Here
the basis of Jacobi polynomials with asymmetric weight fa
tors emphasizing such a range of values ofr has proved
more economical than that of ultraspherical polynomia
Naturally, with this choice of basis, the expansion~40! be-
comes more economical but loses in generality. There ex
an important limit of a strong asymmetry of the integrand
455
d
r 9 10 11 12 13 14 15 16 17

0.6 0.01668 20.2/2 0.183/3 20.128/4 0.677/6 20.267/7 0.7567/920.15/10 0.172/12
0.7 0.01016 20.12/2 0.111/320.778/5 0.412/6 20.162/7 0.46/9 20.89/11 0.104/12
0.8 0.00545 20.65/3 0.6/4 20.417/5 0.221/6 20.869/8 0.2465/920.48/11 0.56/13
0.9 0.00218 20.26/3 0.238/420.166/5 0.88/7 20.346/8 0.982/1020.19/11 0.223/13
1.0
1.1 20.00134 0.16/3 20.146/4 0.1017/5 20.54/7 0.2121/820.6/11 0.116/1120.14/13
1.2 20.00205 0.245/320.224/4 0.156/5 20.825/7 0.3247/820.92/10 0.178/1120.21/13
1.3 20.0023 0.275/320.251/4 0.175/5 20.235/7 0.3648/820.103/9 0.2/11 20.23/13
1.4 20.748/3 0.505/520.256/6 0.913/5 20.217/9 0.307/1120.2/13
1.5 20.479/5 0.205/620.574/8 0.943/10 20.7/12
1.6 20.17/6 0.332/820.28/10
1.7 20.19/7 0.173/9
1.8 20.1/8
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which the Chebyshev-polynomial basis can be used for large

ic
ro
tio

a

c
te
io
er
e
a
-
wi

e
o

ca

e
s
r
ed
la

ia

I

r 1.8786520.0323510.1335r10.9196r 220.038r 3
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values ofn and small values ofr as well.
As shown in Ref. 10, the range of values ofr contribut-

ing to the integral~6! narrows as the energy of bound atom
states and the frequency of the electromagnetic wave g
Since the model potential provides an incorrect descrip
of the behavior of wave functions forr<r c , wherer c is the
atomic-core radius, this fact imposes restrictions on the
plicability of the Simons model potential~and hence of the
method! to calculations of the tensor for scattering of ele
tromagnetic radiation by Rydberg states. For highly exci
states the range of applicability of the dipole approximat
narrows, too. All this hinders theoretical studies of the int
action of light with such levels. At the same time, within th
range of applicability of the method for states with princip
quantum numbern>101, the number of terms in the expan
sion ~40! required to ensure a given accuracy decreases
increasingni , f and v and with narrowing approximation
range. This makes it possible to use the Chebysh
polynomial basis in calculations of the tensor of scattering
light by complex atoms in these cases even whenr is small.

Here is an example that illustrates how the method
be used to calculate the scattering tensor. Let us compute
shift of the ground 5S-state of the rubidium atom at th
frequencyv59434 cm21 of a neodymium laser, which ha
recently been studied both theoretically and expe
mentally.18 Since the detuning to the nearest level exce
0.1 a.u., the isolated-level approximation is valid for real
ser fields, with the result that, in accordance with~4!, the
polarizability a5S can be expressed in terms of the rad
matrix elements~6! as follows:

a5S52
T~5,0,n11,5,0!1T~5,0,n21,5,0!

12
. ~46!

The energies of the virtual states areE1
1,256vn . Extrapo-

lation of the data of Fig. 1 yieldsl050.8236, l1
1

5 1.26124, andl1
250.945, in view of whichr151.5624

and r251.8786. Interpolation by the data listed in Table
yields

r 1.5624520.2210.3128r10.914r 220.27r 310.09r 4

20.024r 510.0061r 620.00012r 7

10.00084r 820.000045r 9,
456 JETP 84 (3), March 1997
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10.0088r 420.00015r 520.0003r 6

11.631024r 722.931025r 814.831026r 9.

~47!

Sincen of the initial and virtual states~and hence the rang
of values ofr contributing to the integral~6!! is of order 2,
there is no need to include in~47! the highest-order terms in
d from Tables I and II. The discarded terms contribute
relative correction less than 1024. Plugging ~47! into ~45!
and allowing for~20!, we obtaina5S5707 a.u., which is in
good agreement with other theoretical (a5S5692 a.u.; see
Ref. 3! and experimental (a5S5769661 a.u.; see Ref. 18!
values.
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Quantum kinetic Boltzmann equation taking into account the resonant exchange of

ion
excitations
T. L. Andreeva and P. L. Rubin

P. N. Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Russia
~Submitted 8 July 1996!
Zh. Éksp. Teor. Fiz.111, 831–837~March 1997!

A derivation of the quantum Boltzmann equation is given for identical particles with internal
degrees of freedom. It is shown that the off-diagonal~with respect to the internal degrees
of freedom! term of the equation contains an energy pole term, which is not present in the most
commonly used kinetic equation, known as the Waldmann-Snider equation. The physical
conditions underlying the occurrence of the pole term in the quantum kinetic equation are
analyzed. ©1997 American Institute of Physics.@S1063-7761~97!00503-9#
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A necessary adjunct to line-shape calculations for ga
in laser spectroscopy problems is a kinetic Boltzmann eq
tion with the internal degrees of freedom of the partic
taken into account~i.e., an equation for the density matrix!.
The spectral line shape is determined by the off-diagona
with respect to internal degrees of freedom—element of
density matrix.1 Typical of such degrees of freedom are t
electronic states of an atom, both nondegenerate and de
erate with respect to the projections of the angular mom
tum.

Of special interest are gases whose magnetic mome
determined entirely by spin~S state! and in which the mag-
netic polarization, like the line shape in optics, is determin
by the off-diagonal—with respect to the spin variables
element of the density matrix. So-called spin-polarized ga
have come under intense scrutiny in recent years as var
techniques afford increasing possibilities for the polarizat
of paramagnetic gases~see, e.g., Refs. 2 and 3!. At issue is
the fact that spin polarization significantly influences t
macroscopic properties of quantum gases and, under de
conditions, even admits the existence of weakly damped
waves in them.4,5

The primary tool for the theoretical investigation of spi
polarized gases is currently the Waldmann–Snider kin
equation6,7 generalized to the case of identical particle8

which has no pole term. The presence of the pole term in
Boltzmann equation has been mentioned in sev
papers,9–11 and it leads to a number of interesting physic
effects. In particular, the optical region of the spectrum
quires an additional line shift with an anomalous depende
on the temperature of the gas,11 and spin waves occur in
spin-polarized gases.2–8,10

Meyerovich, Stepaniants, and Laloe¨ have recently2 aug-
mented the Waldmann–Snider equation with a pole term,
it is obtained as a third-order term with respect to the den
of the gas, and they have stated that such a term does
occur in second order with respect to the density. In
present study we show that a pole term in the kinetic eq
tion does in fact occur in second order with respect to the
density, as is usual for the Boltzmann equation. We ana
the physical conditions underlying the origin of the po
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appears when the scattering amplitudes depend on the i
nal state of the particles. In particular, the presence of
collision processes with different scattering amplitudes
sufficient for the onset of a pole term.

2. DERIVATION OF AN EQUATION FOR THE DENSITY
MATRIX

The basic plan of derivation is the same as that used
Snider6 except that our treatment is applicable both to deg
erate ~as in Snider’s work! and to nondegenerate system
We assume for simplicity that the particles in question
bosons~it can easily be shown that the final result does n
depend on this choice!. In coordinate representation the de
sity matrix has the form

raa8~x,x8,t !5^ca8
1

~x8,t !ca~x,t !&. ~1!

Hereca(x,t) is the wave function of the given particles i
the second-quantization representation~a enumerates the in
ternal states!, and the angle brackets signify quantum
statistical averaging.

The second-quantized Hamiltonian of the system has
usual form

Ĥ5E cm
1~x!H ~0!cn~x!dx1

1

2 E cm
1~y!cn

1~x!

3Umnsu~x2y!cs~x!cu~y!dx dy. ~2!

HereH (0) is the single-particle Hamiltonian:

H ~0!cn~x!S 2
¹x
2

2m
1EnDcn~x!,

wherem is the particle mass,¹2 is the Laplace operator
En is the energy of the internal state, andU is the particle
interaction potential taking their internal state into accou
For simplicity, we set\51. The following properties of the
interaction potential are deduced from the Hermitian pro
erty of Ĥ and the condition of symmetry under permutatio
of identical particles:

Umnsu* ~x!5Uusnm~x!, Umnsu~x!5Unmus~2x!. ~3!

4574$10.00 © 1997 American Institute of Physics



The equations for the single-particle density matrix~1! and
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for the two-particle density matrix

raba8b8
~2!

~x,y,x8,y8!5^ca
1~x!cb

1~y!ca8~x8!cb8~y8!&

have the standard form9,10

i
]raa8~x,x8,t !

]t
5S 2

¹x
2

2m
1Ea1

¹x8
2

2m
2Ea8D raa8

3~x,x8,t !1I aa8~x,x8,t !2I a8a
* ~x8,x,t !,

~4!

i
]rt1t2t3t4

~2! ~x1 ,x2 ,x3 ,x4!

]t

5F S 2
¹x3
2

2m
2

¹x1
2

2m
D 1Et3

1Et4
2S 2

¹x1
2

2m
2

¹x2
2

2m
1Et1

1Et2
D Grt1t2t3t4

~2! ~x1 ,x2 ,x3 ,x4!1Ut3t4gb~x3

2x4!rt1t2gb
~2! ~x1 ,x2 ,x3 ,x4!2Ubgt1t2

~x22x1!

3rbgt1t2
~2! ~x1 ,x2 ,x3 ,x4!, ~5!

whereI aa8 is the collision integral:

I aa8~x,x8,t !5E Ulasu~x2y!rlaus
~2! ~x8,y,y,x!dy. ~6!

Summation on repeated indices is understood. Here, as u
ternary collisions are disregarded.

To solve Eq.~6!, it is necessary to specify the asympto
form of the solution in the region where the particles ess
tially do not interact. The formula for this case is we
known:9

rt1t2t3t4
~2! ~x1 ,x2 ,x3 ,x4!5~11 P̂!rt3t1

~x3 ,x1!rt4t2
~x4 ,x2!.

Here P̂ is the 1↔2 or ~equivalently! 3↔4 particle permu-
tation operator.

Assuming, as is customary in the Boltzmann approxim
tion, that collisions are local and transforming from the de
sity matrix in coordinate representation to the Wign
function,12 we readily obtain an asymptotic expression f
the two-particle function:

rt3t1
~x3 ,x1!rt4t2

~x4 ,x2!5E dp8dp9 f t3t1
~p8! f t4t2

~p9!

3exp i F ~p81p9!~R2R8!

1
~p82p9!~r2r 8!

2 G . ~7!

Along with the initial variables, the right-hand side of th
expression uses the change of variables:

r5x32x4 , R5~x31x4!/2, r 85x12x2 ,

R85~x11x2!/2,
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center of inertia of the colliding particles from their relativ
motion.

The next step in the derivation of the equation in Sn
er’s paper6 has been done compactly and in an abstract
erator form, a device that probably accounts for certain in
curacies in the final result. We shall cover this part of t
derivation in greater detail. We first invoke the obvious ide
tity:

f t3t1
~p8! f t4t2

~p9!5 f t
38t

18
~p8! f t

48t
28
~p9!dt1t

18
dt2t

28
dt3t

38
dt4t

48
.

Here the function

wS t38 ,t48 ,
p82p9

2
;t3 ,t4 ,r D5dt3t

38
dt4t

48
expS i p82p9

2
r D

represents the asymptotic~at infinity! value of the wave
function of the two-particle collision problem: (p82p9)/2 is
the relative momentum~the reduced mass ism/2!, t38 and
t48 are quantum numbers, andt3 andt4 are the correspond
ing internal state variables. We illustrate this operation in
example of a particle with spin, for which the wave functio
of the internal state represents spinorsd (1/2)t and d2(1/2)t ,
wheret51/2 or21/2.

The groups of variables (r ,R,t3 ,t4) and (r 8,R,t1 ,t2)
are separated in Eq.~4!, the second group describing time
reversed motion. We can assume that the time-inversion
eration is tantamount to complex conjugation of the wa
function, because the pair of them comprises a boson eve
the case of fermions.

An exact solution is now easily obtained for the equati
for the two-particle density matrix. It suffices in Eq.~7! to
replace the factors representing asymptotic wave function
the scattering problem according to~4! by the corresponding
exact wave functionsc:

wS t38 ,t48 ,
p82p9

2
;t3 ,t4 ,r D

→cS t38 ,t48 ,
p82p9

2
;t3 ,t4 ,r D .

As a result, the expression for the two-particle functi
acquires the form

rt1t2t3t4
~2! ~x1 ,x2, x3 ,x4!

52E dp8dp9exp@ i ~p81p9!~R

2R8!# f t
38t

18
~p8! f t

48t
28
~p9!exp~ iEt

18t
28t

38t
48
t !c

3S t38 ,t48 ,
p82p9

2
;t3 ,t4 ,r Dc*

3S t18 ,t28 ,
p82p9

2
;t1 ,t2 ,r 8D . ~8!

Here

Et
18t

28t
38t

48
5Et

18
1Et

28
2Et

38
2Et

48
.

458T. L. Andreeva and P. L. Rubin



We note that the factor 2 on the right-hand side of the equa-
av
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ge

c t8 ,t8 ,
p82p9

;a8,l,x

ile
in

r
al
tion is a consequence of the symmetrization of the w
function ~we assume everywhere thatc has already been
symmetrized!.

With the expression for the two-particle function at o
disposal we can readily form the collision integr
I aa8(x,x8,t) @see~6!#. It is convenient to write it directly in
the Wigner representation:

I aa8~x,p,t !

5
2

p3 E dh dj dp8dp9Ulaus~h!cS t38 ,t48 ,
p82p9

2
;

3u,s,h Dc* S t18 ,t28 ,
p82p9

2
;a8,l,h22j D

3 f t
38t

18
~p8! f t

48t
28
~p9!exp$ i @Et

18t
28t

38t
48
t

1j~2p2p82p9!#%.

The subsequent transformation of this expression
quires the use of matrix elements of theT matrix @cf. Ref. 6#.
For this purpose we can use the Lippmann-Schwin
equation13
y
um

l

e
i
o
to
s
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g
m
be
e

-

r

S 1 2 2 D
5dt

18a8dt
28l8expS i p82p9

2
xD1G~1 !S ~p82p9!2

4m
1Et

18

1Et
28D ÛcS t18 ,t28 ,

p82p9

2
;a8,l,xD .

HereG1(E)5(E2Ĥ (0))21 is the Green’s function of the
noninteracting particles. This equation provides a fac
means for expressing the collision integral exclusively
terms ofT-matrix elements.14 The final form of the quantum
kinetic Boltzmann equation can now be written as

] f aa8~p!

]t
1 i ~Ea2Ea8! f aa8~p!1S pm• ¹2D f aa8~p!

52 i @ I aa8~p!2I a8a
* ~p!#. ~9!

The variablesx and t have been omitted from the Wigne
function and the collision integral for brevity. The integr
I aa8(p) is expressed in terms ofT-matrix elements as fol-
lows:
ter-
I aa8~p!5~2p!3\2E dp8TlausS p82p

2
,
p82p

2 Dexp@ iEa8lust# f sl~p8! f ua8~p!1~2p!4\2E dp8dp9dp̃d~p1 p̃2p8

2p9!exp@ iEt1t2t3t4
t#
Talt3t4

@~p2 p̃!/2,~p82p9!/2#Ta8lt1t2
* @~ p̃2p!/2,~p82p9!/2#

~p82p9!2/4m1Et1
1Et2

2~ p̃2p!2/4m2Ea82El2 i0
f t3t1

~p8! f t4t2
~p9!. ~10!

A comparison of this equation with the corresponding
6

tween nondegenerate states. For the time being, in the in
er
es

n

.
erm
expression in Snider’s papershows that they concur onl
when theT matrix does not depend on the internal quant
numbers. In this case theT-quadratic part of the collision
integral contains only a term with the energyd-function,
while the pole term~interpreted as a principal-value integra!
disappears.

3. DISCUSSION

Consequently, it follows from Eq.~10! that the widely
used Waldmann-Snider kinetic equation6 must be augmented
with a pole term. This term vanishes only when theT matrix
~and, hence, the scattering amplitude! does not depend on th
internal quantum numbers of the colliding particles. This
the situation treated in Ref. 13 and explains why the auth
obtained a pole term only in the third order with respect
the gas density. We consider the following special case
examples. Let theT matrix be initially diagonal:

Taba8b85Tabdaa8dbb8 ,

and let it be energetically nondegenerate. This approxima
is customarily used in the theory of spectral line broadenin1

even though in reality there is always an off-diagonal ter
and indeed this term describes the transition probability
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est of simplicity, we consider only the linear term inT in the
kinetic equation for the off-diagonal element of the Wign
distribution function~9!. In this case the equation assum
the very simple form

] f aa8~p!

]t
1 i ~Ea2Ea8! f aa8~p!1S pm •¹ D f aa8~p!

52~G1 i¹2! f aa8~p!,

G1 i¹25 i ~2p!3\2E dp8$@Taa~u50! f aa~p8!

1Ta8a~u50! f a8a8~p8!#exp~ iDEt!

2@Ta8a8
* ~u50! f a8a8~p8!

1Taa8
* ~u50! f aa~p8!#exp~2 iDEt!%.

HereDE5Ea2Ea8 , andu is the scattering angle.
This equation differs from the similar type of equatio

normally used~see Ref. 1!. Thus, the relationship of the
width and shift of the spectral line to the elements of theT
matrix ~Smatrix! differs from the one usually encountered1

The more general case taking into account the quadratic t
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in T and the off-diagonality of theT matrix, in which case
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tion can be found in Ref. 2. It follows from the results of the

s-
the equation acquires a pole term, poses an indepen
problem and will be treated separately.

The second case refers to a paramagnetic gas, wher
energy levels corresponding to different spin projections
nondegenerate. The simplest model for this case essen
takes only two types of collisions into account: collisions
particles with parallel and antiparallel spins, with the cons
vation of total spin in both cases. When these two proces
are taken into account, theT matrix ~nonsymmetrized! has
the form

Tabcd5Tddacdbd1Tesac
~ i !sbd

~ i !

~s denotes the Pauli spin matrices!. Now the pole term in the
kinetic equation~9! includes only the imaginary part of th
interference termTe*Td . Consequently, only in the~hypo-
thetical! event of exact coincidence of the scattering amp
tudes for particles with parallel and antiparallel spi
(Td5Te) is the pole term absent.

We note that a pole term in the kinetic equation for t
density matrix of a paramagnetic gas first appeared in a p
by Silin.10 However, the term in that paper has a differe
form from our expression~10!. Moreover, a kinetic equation
containing a pole term has been derived previously by on
the present authors~Andreeva11! in a study of the scattering
of particles by amorphous impurities. A detailed historic
discussion of the origin of the pole term in the kinetic equ
460 JETP 84 (3), March 1997
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present study that the discussion is not over.
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Combined configuration-superposition and many-particle perturbation calculations for

riate
atoms with two valence electrons
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B. P. Konstantinov St. Petersburg Institute of Nuclear Physics, 188350 Gatchina, Leningrad Province,
Russia
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A new high-precision method is used to calculate the characteristics of atoms with two valence
electrons. An effective Hamiltonian for the valence electrons is formulated by many-
particle perturbation theory with respect to the residual interaction of the valence electrons with
the core. The configuration-superposition method is then used to find the energy levels of
the atom. The application of the combined method to divalent calcium, strontium, barium, and
ytterbium atoms shows that the ionization potential is obtained within 0.5% error limits.
The precision attained for the first few lowest levels of the energy spectra is significantly higher
than is obtained by configuration-superposition calculations alone. ©1997 American
Institute of Physics.@S1063-7761~97!00603-3#
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The fruitfulness of atomic physics methods in the inve
tigation of fundamental interactions is well known, esp
cially in the study of discrete symmetries.1–4 The nonconser-
vation of parity has been measured to within 1% for
number of atoms.5–8 However, only for cesium9,10 and
francium11 has a comparable precision been attained in
calculations required for the interpretation of experimen
The need for a new method by which to improve the pre
sion of atomic calculations is obvious in this light. Th
method, representing a combination of two well-know
methods ~the superposition of configurations and man
particle perturbation theory! was proposed earlier.12

The application of many-particle perturbation theory
heavy atoms with several valence electrons cannot be
pected to yield high computational precision, because e
trostatic interaction between valence electrons cannot be
cisely accounted for within the context of this metho
However, this situation can be rectified by the configuratio
superposition method~or the related multiconfigurationa
Hartree–Fock method!, which has been used on many occ
sions in calculations for complex atoms.13–20 But then the
precision of the configuration-superposition calculations
also limited by the impossibility of fully taking into accoun
the correlations between core and valence electrons. T
methods can therefore complement one another, and the
lies the motivation for their combining them.

2. BRIEF DESCRIPTION OF THE METHOD

The method has been proposed in two previous pape12

which include detailed descriptions. We shall therefore c
fine the present discussion to a review of its basic prece
The complete Hilbert space, in which the many-parti
Dirac equation

HC5EC ~1!
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projection operatorsP andQ are introduced, satisfying the
conditionP1Q51. The HamiltonianH and the wave func-
tion C can be written as follows in theP, Q formalism:

H5PHP1PHQ1QHP1QHQ, ~2!

C5PC1QC[F1x. ~3!

The operatorP is defined as the projector onto those states
the atom for whichNc electrons are always present in th
core~i.e., the core does not contain any holes, as allNc states
are filled with electrons!. The operatorQ projects onto the
orthogonal complement of subspaceP ~i.e., onto those state
of the atom where at least one hole is present in the cor!.

The following problem is solved in the configuration
superposition stage:

~PHP!F5ECIF. ~4!

The solution of this equation is not a solution of Eq.~1!,
since the subspaceQ is not taken into account here. It ha
been shown12 that the inclusion of this subspace leads to t
equations

@PHP1S~E!#F5EF, ~5!

S~E!5~PHQ!
1

E2QHQ
~QHP!. ~6!

The normalization condition̂C i uCk&5d ik can be rewritten
in terms of the functionsF i in the form

^F i u11~PHQ!
1

Ei2QHQ

1

Ek2QHQ
~QHP!uFk&5d ik .

~7!

If we restrict the discussion to a few of the lowest levels, i.
if we assume thatD[(Ei2Ek)/2 is much smaller than
Eav5(Ei1Ek)/2, we see at once that the second term in~7!
can be written in the series form:

4615$10.00 © 1997 American Institute of Physics
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FIG. 1. Self-energy diagrams for valenc
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~PHQ!
Ei2QHQ Ek2QHQ

~QHP!

5S 2
]S~E!

]E
2

D2

6

]3S~E!

]E3 2••• D U
E5Ev

. ~8!

The first term of the expansion~8! is already much smalle
than unity. Consequently, in calculating the lowest ene
levels, we can simply omit the second term in Eq.~7! and
write the normalization condition in the conventional form

^F i uFk&5d ik . ~9!

It has been shown12 that the operatorS(E) can be trans-
formed as follows for the proper choice of core orbitals:

S~E!5P~V2VNPT!Q
1

E2QHQ
Q~V2VNPT!P, ~10!

whereV denotes the two-electron electrostatic interacti
and VNPT is the interaction ofNPT electrons with the
Hartree–Fock field. The quantityNPT must satisfy the con-
dition Nc < NPT < N. For the calculation of the energy de
nominators in the indicated approximationE is replaced by
Eav in Eq. ~10!.

The operatorS is calculated by standard diagram tec
nique. In the lowest order the corresponding diagrams
have one, two, or three outer lines.12 Diagrams of the first
type describe corrections to the one-electron partPHP ~Figs.
1 and 2!. Diagrams of the second type give a correction
shielding of the core by the interaction between valence e
trons ~Figs. 3 and 4!. Diagrams corresponding to three
particle interaction, of course, do not exist for atoms w
two valence electrons.
y

,

n

r
c-

with allowance for the fact that the Hartree–Fock field i
cludes contributions fromNPT2Nc valence electrons. They
obviously vanish for the caseNPT5Nc . Since the potential
VNPT occurs with a minus sign in Eq.~10!, these diagrams
are called subtractive.

3. COMPUTATIONAL PROCEDURE

The procedures used to perform the calculations can
divided into three parts. In the first stage a basis set of o
electron wave functions~orbitals! is formulated. The one-
electron wave functions of the ground state of the atom
the corresponding one-electron energies are found by
Hartree–Fock–Dirac method. We use a program written
Brattsev, De�neka, and Tupitsyn21 and subsequently modi
fied by Tupitsyn~in particular, with allowance for the finite
size of the nucleus, which is important in the treatment
heavy atoms!. In addition to the Hartree–Fock variety w
also construct virtual orbitals. Each of these can be rep
sented by the product of one of the corresponding orbital
the same symmetry and the exponentr with subsequent or-
thogonalization of the newly constructed orbitals with r
spect to all those preceding. A similar method for the co
struction of basis functions has been proposed
Bogdanovich22,23and has already been used by us for cal
lations of ytterbium14 and bismuth.15

In the second stage it is required to calculate the ma
elements of the operatorS. To calculate the self-energy dia
grams and the shielding diagrams by perturbation theory,
f-
FIG. 2. Subtractive diagrams for the sel
energy.
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use the constructed set of basis orbitals. Since we are
cerned in this stage with the excitation of electrons hav
inner shells~which can be quite deeply situated!, we must
take into account a large number of states of the continu
spectrum as excited states. The need to include a large n
ber of diagrams for a large number of excited states ma
this part of the calculations the most time-consuming.

The third and final step is to solve Eq.~5!. This can be
done by the well-known configuration-superposition meth
In the calculations we use a program written by Kotochigo
and Tupitsyn,24 which we have substantially modified.

4. CALCULATIONS FOR Ca, Sr, Ba, AND Yb

We have chosen the Ca, Sr, Ba, and Yb atoms to tes
configuration-superposition method in combination w
many-particle perturbation theory. They have in common
existence of twos-electrons in the outermost shell. It is re
sonable, therefore, to assume thats-electrons are present i
the valence zone and that the remaining electrons form
core.

As mentioned, the first step in calculating the ener
spectrum is to obtain the one-electron functions by
Hartree–Fock–Dirac method. In this stage a self-consis
field procedure is implemented for all electrons in the ato
including electrons of the outermost shell. The resulting
bitals are then frozen in place, one electron from the
ns shell is moved to the (n21)d shell, and the Hartree–
Fock–Dirac equation for this shell is solved~n54,5 for Ca
and Sr, andn56 for Ba and Yb!. Thenp shell is augmented
analogously. The procedure culminates in the constructio
Hartree–Fock orbitals for all electronic states of the m

FIG. 3. Shielding diagrams.
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shells. The virtual orbitals, which together with the Hartre
Fock orbitals form the basis set, are subsequently constru
according to the procedure set forth in the preceding sect
The number of orbitals that must be included in the basis w
be discussed below.

The next stage is to calculate the matrix elements of
operatorS by perturbation theory. In the case of theVN

approximation, which is the one used for the calculations,
the diagrams of Figs. 1–4 need to be taken into account~the
subtractive diagrams do not vanish in this case, beca
NPT Þ Nc!. In the perturbation calculations the number
excited states that must be included to attain saturatio
fairly high. The test of whether saturation has been reac
is that the matrix elements of the operatorS essentially cease
to change as new shells are added. For example, in the
culation of the energy spectrum of Yb, the following virtu
states are included: 7s–19s, 6p–19p, 5d–18d, 5f –17f ,
5g–16g. The number of orbitals included for the other a
oms is approximately the same. Once the virtual orbit
have been constructed, the Hartree–Fock–Dirac operat
diagonalized on them. In this case the majority of the orbit
of each symmetry resides in the continuous spectrum,
the energy of the last orbitals is on the order of 102 a.u.

Next we solve Eq.~5! by the configuration-superpositio
method, using the calculated matrix elements of the oper
S. In this state we take into account configurations asso
ated with the excitation of both valence~but not core!! elec-
trons to higher levels. The configurations are augmented
til the energy of the investigated levels no longer chang
~We assume that saturation is attained when the energy o
levels does not vary by more than 30–40 cm21 with the
addition of new configurations.! The basis set of orbitals re
quired to attain saturation in the configuration-superposit
calculations is far smaller than in the state where ma
particle perturbation theory is used. In our case it is suffici
to include 18–27 virtual orbitals. The two or three highe
s-, p-, d-, f - andg-shells are added as virtual. As explaine
excitations in theh-shell are insignificant for the given atom
and can be disregarded.

For comparison we also solve Eq.~4! instead of~5! to
obtain a solution by the pure configuration-superposit
method. The results of calculations of the lowest energy l
els for both methods, the pure configuration-superposit
method~SC! and its coordination with the many-particle pe
turbation theory~SC1MPP! for the Ca, Sr, Ba, and Yb at
oms are summarized in Tables I–IV.
-
FIG. 4. Subtractive diagrams for shield
ing.
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TABLE I. Energies of the lowest few levels of Ca (cm21) ~multiplet split-
tings are shown in parentheses!.

TABLE III. Energies of several lowest levels of Ba (cm21).
In addition to the energy spectra we can also calcu
the ionization potentials of these atoms. Thus, in the cas
two valence electrons their energyEv is simply the sum of
the first and second ionization potentials. Consequently
find the first two ionization potentials, it is sufficient to als
solve Eq.~5! for a single positive ion. If the same basis set
orbitals is used, the radial integrals needed in order to ca
late the matrix elements of the operatorsH andS are the
same as for the neutral atom. This fact is extremely imp
tant, since the calculation of the radial integrals for the o
eratorS is the most costly operation in the computation
sense. KnowingEv for the atom and the ion, we can obta
the ionization potential for each of them without undue co
plication ~see Tables V and Tables VI!.

Analyzing the results obtained for the ionization pote
tials, we see that the combined method yields precision a
0.5% level, which is roughly an order of magnitude bet
than obtained by pure configuration-superposition calcu
tions. The energy spectrum obtained for the lower levels
all four atoms by the configuration-superposition method
conjunction with many-particle perturbation theory also e
hibits significantly better agreement with the experimen
For odd levels the precision is close to that attained for
ionization potentials~i.e., for the most part better than 1%!;
for even levels~particularly theD levels! the precision is
somewhat lower but still far better than for pu
configuration-superposition calculations. The change in
multiplet splitting is especially dramatic when correlatio
are taken into account by perturbation theory. In the cas
Yb, for example, it is evident from Table IV that th
configuration-superposition method gives approximately

Configuration Level SC SC1MPP Experiment25

4s2 1S0 0 0 0
4s4p 3P0

o 13720 15230 15158
4s4p 3P1

o 13769 ~49! 15284 ~54! 15210 ~52!
4s4p 3P2

o 13870 ~101! 15394 ~110! 15316 ~106!
4s3d 3D1 23661 21489 20335
4s3d 3D2 23664 ~3! 21505 ~16! 20349 ~14!
4s3d 3D3 23664 ~0! 21530 ~25! 20371 ~22!
4s3d 1D2 23642 22984 21850
4s4p 1P1

o 23255 23555 23652

TABLE II. Energies of several lowest levels of Sr (cm21).

Configuration Level SC SC1MPP Experiment25

5s2 1S0 0 0 0
5s5p 3P0

o 12475 14242 14318
5s5p 3P1

o 12648 ~173! 14428 ~186! 14504 ~186!
5s5p 3P2

o 13007 ~359! 14821 ~393! 14899 ~395!
5s4d 3D1 19618 18877 18159
5s4d 3D2 19635 ~17! 18936 ~59! 18219 ~50!
5s4d 3D3 19664 ~29! 19033 ~97! 18319 ~100!
5s5p 1P1

o 20863 21444 21698
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tenth of the experimental splitting of theD triplet, whereas
the combined method reproduces this splitting almost p
fectly. The loss of precision for even as opposed to o
levels is most likely attributable to the fact that the Hartre
Fockd-functions are a poor approximation to the true wa
functions.~We note that an attempt to use virtual rather th
Hartree–Fockd-functions does nothing to improve the situ
ation.!

5. CONCLUSION

Our calculations for atoms with two valence electro
~Ca, Sr, Ba, and Yb! by the combined method of configura
tion superposition and many-particle perturbation the
confirms that the accuracy of computation of such atom
characteristics as the ionization potential and the ene
spectrum is significantly higher than when the pu
configuration-superposition method is used. In particular,
ionization potential has been reproduced within 0.5% er
limits.

Work is currently in progress on the application of th
combined method for transition amplitude calculations. T
approach will make it possible to improve the precision
calculation of impurityP-odd amplitudes needed for the in
terpretation of experimental parity-nonconservation res
and for testing the standard model.

The authors are grateful to Yu. G. Rakhlina for assist
with the ytterbium calculations. This work has received p
tial support from the Russian Fundamental Research Fo
dation ~Grant No. 95-02-03701-a!.

Configuration Level SC SC1MPP Experiment25

6s2 1S0 0 0 0
6s5d 3D1 11019 9423 9034
6s5d 3D2 11104 ~85! 9631 ~208! 9216 ~182!
6s5d 3D3 11281 ~177! 10065 ~434! 9597 ~381!
6s6p 3P0

o 10253 12221 12266
6s6p 3P1

o 10597 ~344! 12583 ~362! 12637 ~371!
6s6p 3P2

o 11370 ~773! 13448 ~865! 13515 ~878!
6s6p 1P1

o 17157 17740 18060

TABLE IV. Energies of several lowest levels of Yb (cm21).

Configuration Level SC SC1MPP Experiment25

6s2 1S0 0 0 0
6s6p 3P0

o 14357 17075 17288
6s6p 3P1

o 15022 ~665! 17764 ~689! 17992 ~704!
6s6p 3P2

o 16527 ~505! 19447 ~683! 19710 ~718!
6s5d 3D1 25216 25075 24489
6s5d 3D2 25238 ~22! 25338 ~263! 24751 ~262!
6s5d 3D3 25299 ~61! 25855 ~517! 25270 ~519!
6s6p 1P1

o 24221 25306 25068
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TABLE V. Ionization potentials of Ca1, Sr1, Ba1, and Yb1 (cm21). TABLE VI. Ionization potentials of neutral atoms (cm21).
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Spontaneous and induced Cherenkov radiation generated by electrons in cylindrical

ach
dielectrics
N. K. Zhevago and V. I. Glebov
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A theory of induced Cherenkov radiation in cylindrically symmetrical dielectrics in the case
when an electron beam is moving close to the dielectric surface is presented. The spectrum of
excited radiation modes has been investigated, and analytical expressions for the gain at the
frequencies of various modes have been derived. ©1997 American Institute of Physics.
@S1063-7761~97!00703-8#

1. INTRODUCTION ing a free-electron laser. We will present a general appro
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Induced Cherenkov radiation makes feasible fr
electron lasers operating over a broad spectral range.1–5 The
major factor reducing the gain in Cherenkov free-elect
lasers is multiple Coulomb scattering of electrons, which
important even in gases and relatively thin targets. A des
alternative to that of a free-electron laser, in which an el
tron beam passes through material, is a scheme using
trons moving next to a dielectric surface.4,6 In this case, mul-
tiple electron scattering is no longer a factor, but the inten
of Cherenkov radiation drops exponentially when the d
tance to the dielectric surface exceedsg|/2p, whereg is the
Lorentz factor of the electrons and| is the radiation wave-
length. Nonetheless, it has been possible to detect Chere
radiation of fairly high intensity in the microwave7–9 and
far-infrared7 ranges in devices using waveguides coupled
dielectrics.

The paper presents a theory of Cherenkov radiation
the case when an electron beam moves near a solid diele
cylinder or inside a hollow dielectric cylinder parallel to i
axis. First we will describe the general approach to the pr
lem of the electron energy loss, which can be also applie
other problems, such as plasmon generation, or to more c
plicated structures, such as an optic fiber with smoot
varying refraction index. Then we will investigate the spe
trum of excited Cherenkov radiation modes in solid and h
low dielectric cylinders. The ultimate aim of this resear
was to study induced Cherenkov radiation at relatively sh
wavelengths, namely in the visible and near-infrared ban
In the limit of a cold electron beam and small gain, analyti
expressions for the gain at frequencies of different mo
will be given, and optimal conditions for light amplificatio
will be presented.

2. ELECTROMAGNETIC LOSSES OF ELECTRON ENERGY
IN A MEDIUM WITH CYLINDRICAL SYMMETRY

The theory of spontaneous Cherenkov radiation gen
ated by a charge moving parallel to the axis of a cylindri
channel in a dielectric was developed by Bogdankevich
Bolotovskii.10 But they analyzed the case of an electr
moving inside a cylinder, whereas the case of an elec
outside a cylinder is more interesting with a view to desig
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to the problem in order to obtain equations for an arbitra
separationr0 between the electron and the cylinder axis a
more refined analytical expressions for spectra of sponta
ous Cherenkov radiation, which are crucial for further ana
sis of induced Cherenkov radiation.

Let us first consider the case of a solid cylinder, and
more complicated case of a hollow cylinder can be analy
similarly ~Sec. 4!. Let the medium around the cylinder b
characterized by a dielectric permittivity«1(v) ~which is,
generally speaking, complex!, and the material of the cylin-
der by «2(v), and let an electron move along the cylind
axis with a velocityv. In order to find solutions of the inho
mogeneous Maxwell equations determined by the curr
and charge of a relativistic electron, we express the elec
magnetic field in the form of Fourier integrals with respect
time and the distancez along the cylinder axis, and in th
form of a Fourier series in the azimuthal anglef, which is
measured with respect to the plane passing through the
inder axis and the electron trajectory:

E~r ,t !5~2p!22E
2`

` E
2`

`

(
m52`

`

E~r,m,kz ,v!

3exp~ imf2 ivt1 ikzz!dkzdv, ~1!

H~r ,t !5~2p!22E
2`

` E
2`

`

(
m52`

`

H~r,m,kz ,v!

3exp~ imf2 ivt1 ikzz!dkzdv.

The energyW lost by the electron as it moves equals t
work done by the electric field on the charge:

W5E
2`

`

j* ~r ,t !E~r ,t !d3rdt, ~2!

where only the longitudinal current component is nonzer

j z~r ,t !5evd~r'2r'0!d~z2vt !;

here r'0 is the electron radius-vector in the plane perpe
dicular to thez-axis, r5(r'0 ,z). Let us use an expansio
like the one in Eq.~1! for both the electron current an

4668$10.00 © 1997 American Institute of Physics



electric field and perform the integration in Eq.~2!. As a
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H ~h!52
iv« ]Ez

~TM!

1
mkz

H ~TE! .

for

r

n-
ic

aic

the

he
result, we have the spectral expansion of the energy loss
the form

W5
ev
p

Re (
m52`

` E
0

`

EzS r0 ,m,
v

v
,v Ddv. ~3!

As might be expected, the electron energy losses are d
mined by those modes whose phase velocityv/kz parallel to
the cylinder axis coincides with the electron velocityv, and
only the modes with the nonzeroz-component of the electric
field contribute.

Let us seek a general solution of the inhomogene
Maxwell equations in the form of a sum of a particular s
lution of the inhomogeneous equations, hereinafter identi
by the upper index (p), and the general solution of the ho
mogeneous equations identified by the index (h). The first
term of this sum is the electromagnetic field generated b
moving electron, and in each region of space, namelyr,a
andr.a, wherer5ur'u, it can be expressed in terms of th
z-component of the vector potentialAz :

Hr
~p!5

im

r
Az , Hw

~p!52
]Az

]r
, Hz

~p!50,

Er
~p!5

c

v«

]Az

]r
, Ew

~p!52
im

v«r
Az ,

Ez
~p!5 i S v

c
2
ckz
v« DAz ,

where the subscripts denote components in the cylindr
coordinate system, and« is the permittivity of the medium:

«5 H «1~v! for r.a,
«2~v! for r,a.

Thez-componentAz of the vector-potential can be express
in turn as

Az~r,m,kz ,v!5
4pe

c
fm~r,r0!dS kz2 v

v D , ~4!

f m~kr!5 HKm~kr0!I m~kr! for r<r0 ,
I m~kr0!Km~kr! for r>r0 .

~5!

Here Km and I m are modified Bessel functions, an
k5((v/c)2«2kz

2)1/2.
It is known11 that the general solution of the homog

neous Maxwell equations can be expressed as a linear c
bination of TE-modes~in which the longitudinal electric
field componentEz

~TE! is identically zero! and TM-modes~in
which Hz

~TM![0). The nonzero components of the fiel
Ez

~TM! andHz
~TE! satisfy the equation

1

r

]

]r S r
]F

]r D2~m22k2!F50,

and the transverse components can be expressed in term
Ez

~TM! andHz
~TE! . In particular, the tangential field compo

nents are expressed as

Ew
~h!5

iv

ck2

]Hz
~TE!

]r
1
mkz
k2r

Ez
~TM! ,
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Let us seek the longitudinal components of free fields
kz5v/v in the form

Ez
~TM!5LAm

~TM!Km~k1r!, Hz
~TE!5LAm

~TE!Km~k1r!, r>a,

~6!

Ez
~TM!5LBm

~TM!I m~k2r!, Hz
~TE!5LBm

~TE!I m~k2r!, r<a,

whereAm
~TM! , Bm

~TM! , Am
~TE! , andBm

~TE! are unknown coeffi-
cients, k5(v/v)A12«b2, and b5v/c. The factor
2pd(kz2v/v) in Eq. ~4! should be interpreted fo
kz5v/v as the electron free pathL. The unknown coeffi-
cients are derived from continuity conditions for the tange
tial and longitudinal components for the electr
E5E(p)1E(h) and magneticH5H(p)1H(h) fields. These
coefficients are determined by the following linear algebr
equation system:

Am
~TE!Km~k1a!5Bm

~TE!I m~k2a!,

Am
~TM!Km~k1a!1

2iev

c2 S 12
1

«1b
2D f m~k1a!

5Bm
~TM!I m~k2a!1

2iev

c2 S 12
1

«2b
2D f m~k2a!,

iv

ck1
2 FAm

~TE!k1Km8 ~k1a!2
im

ba
Am

~TM!Km~k1a!G2
2iem

v«1a
fm~k1a!

5
iv

ck2
2 FBm

~TE!k2I m8 ~k2a!2
im

ba
Bm

~TM!I m~k2a!G
2
2iem

v«2a
fm~k2a!,

iv

ck1
2 F imbaAm

~TE!Km~k1a!1«1k1Am
~TM!Km8 ~k1a!G

1
2ek1

c
fm8 ~k1a!5

iv

ck2
2 F imbaBm

~TE!I m~k2a!

1«2k2Bm
~TM!I m8 ~k2a!G1

2ek2

c
fm8 ~k2a!,

where the primes denote differentiation with respect to
argument.

After solving this system of equations, we obtain t
longitudinal electric field componentEz(r0 ,m,v/v,v):
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L21Ez~r0<a!
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scribes generation of electron density oscillations~plasmons!
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5
Dm~v!

Dm~v!
I m~k2a!2

2ie

v

k2
2

«2
I m~k2r0!Km~k2a!,

L21Ez~r0>a!

5
2ie

v H k1
4I m~k2a!

aDm~v!

Km
2 ~k1r0!

Km~k1a!

3F I m~k2a!Km8 ~k1a!

k1
2
I m8 ~k2a!Km~k1a!

k2
G

1
k1
2

«1
Km~k1r0!I m~k1a!FKm~k1r0!

Km~k1a!
21G J . ~7!

Here we have introduced the notation

Dm5
2ie

v
I m~k2r0!H «1k1

4k2
2

3F I m~k2a!Km8 ~k1a!

k1
2
I m8 ~k2a!Km~k1a!

k2
G

3FKm~k2a!Km8 ~k1a!

«2k1
2
Km8 ~k2a!Km~k1a!

«1k2
G

2S mbaD 2 ~k2
22k1

2!2

«2k2
2 I m~k2a!Km~k2a!Km

2 ~k1a!J ,
~8!

Dm~v!5«1«2k1
4F I m~k2a!Km8 ~k1a!

k1
2
I m8 ~k2a!Km~k1a!

k2
G

3F I m~k2a!Km8 ~k1a!

«2k1
2
I m8 ~k2a!Km~k1a!

«1k2
G

2S mbaD 2S 12
k1
2

k2
2D 2I m2 ~k2a!Km

2 ~k1a!.

The expressions for the longitudinal field components in
~7! are in agreement with similar results10 derived using a
different technique.

The electron energy loss is determined in the gen
case by the poles of the electric field compone
Ez(r0 ,m,v/v,v), regarded as a function of the complex fr
quencyv, in the upper half-plane. When the absorption
electromagnetic waves in both media can be neglected,
imaginary part of the permittivity tends to zero, and the sp
trum of possible excitations resulting in energy losses is
termined by the zeros of the functionDm(v). Thus, the
analysis of the spectrum of the electromagnetic energy lo
in a relatively transparent material reduces to solving
dispersion equationDm(v)50 and calculating the sum o
residues for the integrand in Eq.~3!. It follows from our
analysis that the dispersion equation can have solutions
in the frequency range where the real part of the dielec
permittivities«1 or «2 is negative and at frequencies whe
«1 and «2 are positive, and the electron velocity is larg
than the threshold velocity of the Cherenkov radiation in o
of the media. The solution for negative«(v) in metals de-
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and should be the subject of a separate study. We note
that the plasmon spectrum in a cylindrical sample as i
spherical12 sample can differ from the spectrum in a contin
ous medium («15«25«) determined by the condition
«(v)50.

3. ENERGY LOSSES TO CHERENKOV RADIATION

Now let us investigate the case which is especially int
esting from the viewpoint of generating Cherenkov radiatio
when an electron travels in vacuum,«1[1, and the cylinder
is made from a fairly transparent dielectric with the dielect
permittivity «2(v)[«(v). In this case, the argument of th
modified Bessel function in Eqs.~7! and~8! is purely imagi-
nary, and it is more convenient to replace them with t
Bessel functionsJm(x) using the well known relations
I m( iz)5 i mJm(z). Moreover, note that the dispersion equ
tion Dm50 is quadratic with respect to the ratioJm8 /Jm . As
a result, it splits into the two equations

Jm8 ~x!

Jm~x!
5

~«b221!1/2

2«~12b2!1/2
H 2~«11!

Km8 ~y!

Km~y!
6~«21!

3SKm8 ~y!

Km~y!
D 21 4«m2b2

~«b221!2y2J , ~9!

where we have introduced the notationx5(va/v)
3(«b221)1/2 andy5(va/v)(12b2)1/2, and both plus and
minus signs on the right-hand side of this equation should
considered. Let us introduce a binary indexs, which equals
1 or21, depending on the sign on the right-hand side of E
~9!, and denote the zeros of the dispersion equations
vmns . Further, let us calculate the sum of the residues
ordinary polesvmns at each value ofs, which is equivalent
to calculatingDm(v) and the derivativedDm /dv at the
pointsvmns . Suppose that the frequency range of interes
far from the absorption bands and lines in the material,
that the dispersion of the permittivity«(v) is relatively
small: ud«/dvu!«/v. In this case, we can assume in calc
lating the derivativedDm /dv to lowest order that« is inde-
pendent of the frequencyv. In order to simplify the resulting
expressions, we use the recurrence relations between
Bessel functions and their derivatives. We replace the os
latory terms containing Bessel functions by monotonic fun
tionsKm using the dispersion equation~9!. After a long se-
ries of transformations, which we do not describe here,
obtain the spectral distribution of the Cherenkov radiation
the form

dW

dv
5
4e2L

a2 (
n51

` F gT
2K0

2~yr0 /a!

g2K1
2~y!1«K0

2~y!
d~v2v0n1!

12(
m51

`

(
s561

Km
2 ~yr0 /a!

Km
2 ~y!

Sm1s

Qm
d~v2vmns!G .

~10!

We have introduced the following notation:

468N. K. Zhevago and V. I. Glebov



Qm5~«21!~Sm1s!12«SmSRm
2 2

m2

2 D1@«~Sm2s!1Sm

c-

th

s-
g-

r-

-
i
d
,
at

o-

i
uc

t
on
:

-

d

-

g

x

1s#S Fm
2 2

m2

y2 D ,
Fm~y!5

Km8 ~y!

Km~y!
, Sm~y!5H 11F 2bbT

b22bT
2

m

yFm~y!G2J 1/2,
~11!

Rm~y!5S b22bT
2

12b2 D 1/2bT

2
@~«21!sSm~y!

2~«11!#Fm~y!,

x5
va

v
~«b221!, y5

va

v
~12b2!1/2,

wherebT5«21/2 is the electron Cherenkov-threshold velo
ity divided by the speed of light, andd(v2vmns) is the
Dirac delta-function, which should be replaced, owing to
finite cylinder length, with the function

s~v2vmns!5
L

2pv S sincc D 2, c5
L

2v
~v2vmns!. ~12!

The dispersion relation~9! in this notation becomes
Jm8 (x)/Jm(x)5Rm(y).

The first term on the right-hand side of Eq.~10! corre-
sponds to the spectrum of axisymmetrical (m50) modes. In
accordance with Eq.~9!, the axisymmetrical modes are cla
sified as TM0n and TE0n modes with purely transverse ma
netic and electric fields, respectively, and only TM0n modes
corresponding tos51 contribute to radiation. The dispe
sion equation for the TM0n modes can be expressed as

~12b2!1/2J1~x!K0~y!1bT~b22bT
2!1/2J0~x!K1~y!50.

~13!

The other modes withmÞ 0 are hybrid, i.e., neither the elec
tric nor magnetic field is purely transverse in them, which
the case in a conventional waveguide, therefore, the mo
with both s51 ands521 contribute, generally speaking
to the radiation. Numerical calculations, however, indic
that the Cherenkov radiation intensity of the (m,n,1) modes
is considerably higher than that of the (m,n,21) modes be-
cause the modes withs521 have a nearly transverse p
larization also in the case ofm Þ 0.

In the case when the dispersion of the dielectric perm
tivity «(v) can be neglected and the electron energy is m
higher than the threshold value, the approximate solution
Eq. ~13! has the form

v0n15
v
a

an

A«b221
, ~14!

where thean are the zeros of the Bessel functionJ0(an),
which for sufficiently largen are approximately located a
p(n21/4). In this case the spectral distribution of radiati
energy among the modes withm50 takes the simpler form

dW0

dv
5
4e2

a2
gT
2

g2 (
n51

` K0
2~yr0 /a!

K1
2~y!

s~v2v0n1!,

~15!
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g5~12b2!21/2 , gT5~12bT
2!21/2 , g@gT .

The radiation intensity versus electron energy for the
most intense modes~s51! calculated from Eq.~9! for quartz
in the visible spectral range~«52.3! is shown in Fig. 1 by
dashed curves~the right-hand ordinate axis!, where the num-
bers are the indices (m,n). The wavelengthslmns for almost
all modes tend to certain limits as the electron energy in
creases. The only exception is the mode withm51 and
n51, whose wavelength grows logarithmically with the
electron energy.

4. CHERENKOV RADIATION IN CAPILLARY TUBES

Another case which is of interest from the viewpoint of
generating induced Cherenkov radiation is an electron beam
traveling inside a hollow dielectric cylinder~capillary tube!.
Let a be the inside radius of the capillary tube,b its outside
radius,«2(v) the dielectric permittivity of the capillary tube
material, and«1(v) the permittivity of the environment. The
spectrum of spontaneous Cherenkov radiation is calculate
using Eq.~3! and the technique described in Sec. 2. In the
regionsr,a andr.b, the field components are calculated
in a form similar to Eq.~6!, and in the regiona,r,b as a
linear combination of the functionsI m(k2r) andKm(k2r)
with unknown coefficients. The continuity conditions on the
tube boundaries yield a linear equation system for eight un
known coefficients. In the case of arbitrary azimuthal indices
m, the solution is rather lengthy, so we limit our analysis to
the case of axisymmetrical modes withm50. Note that
these are the only excited modes if an electron travels alon

FIG. 1. Mode wavelengthslmn1 ~dashed curves! and respective gains
Gmn1 @in units ofG051023( i / i 0)(L/a)

3# versus the electron Lorentz factor
g for several modes in a dielectric cylinder («52.3) of radiusa. The num-
bers at the curves show the indices (mn). The most intense modes with
s51 are shown.
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the tube axisr050. By solving the linear algebraic equation
tu

is

o
is-

ng

d

th
m-

-

of

h

r-

an
system, we obtain the following expression for the longi
dinal field componentEz(r0,0,v/v,v) in the regionr0,a:

L21Ez~r0,a!5
2ie

va

I 0~k1r0!

I 0~k1a!
FK0~k2a!a212I 0~k2a!a22

a11a222a12a21

1
k1
2a

«1
K0~k1a!G , ~16!

where

a115
«1
k1

I 1~k1a!I 0~k2a!2
«2
k2

I 0~k1a!I 1~k2a!,

a125
«1
k1

I 1~k1a!K0~k2a!1
«2
k2

I 0~k1a!K1~k2a!,

a215
«1
k1

K1~k1b!I 0~k2b!1
«2
k2

K0~k1b!I 1~k2b!,

a225
«1
k1

K1~k1b!K0~k2b!2
«2
k2

K0~k1b!K1~k2b!.

Let us next consider the case when the tube material
relatively transparent dielectric ( Im«250, Re«25«.0),
and the tube is in vacuum («1[1). We setk52 ik2 and use
the relation

K0~k2a!5~2 ip/2!@J0~ka!2 iY0~ka!#,

whereY0 is the Neumann function. Then the integration
Eq. ~3! yields the following expression for the spectral d
tribution of the radiated energy of the modes withm50:

dW0

dv
5
4e2L

a2 (
n51

`

I 0
2~jr0!H F 4«

~pka f0!
2 2~«21!G I 02~ja!

2
g2

gT
2 I 1

2~ja!J 21

s~v2v0n!. ~17!

Here

f 0
25

@~g22g t
2!1/2K1~jb!p02«1/2gTK0~jb!q0#

2

g2K1
2~jb!1«K0

2~jb!
,

k5
v

v
~«b221!1/2, j5

v

v
~12b2!1/2,

p05J0~ka!Y0~kb!2J0~kb!Y0~ka!, q05
]p0
]kb

,

r 05
]p0
]ka

, s05
]q0
]ka

,

andv0n are the roots of the dispersion equation. In derivi
Eq. ~17!, we have used the relationship13

p0s02q0r 054/(p2k2ab). The dispersion relation is derive
using the condition that the denominator in Eq.~16! should
vanish:

I 1~ja!

I 0~ja!
1

«j

k

kK1~jb!r 02«jK0~jb!s0
kK1~jb!p02«jK0~jb!q0

50. ~18!
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When the tube radius is much larger than the waveleng
(ka@1), the resulting spectrum can be expressed in a si
pler form:

dW0

dv
5
4e2

a2 (
n51

`

I 0
2~jr0!H ~11«d!I 0

2~ja!

1F S S g

gT
D 221D d21G I 12~ja!J 21

s~v2v0n!,

~19!

whered5(b2a)/a, and the dispersion relation is also sim
plified:

tan@k~b2a!#5
«j

k FK0~jb!

K1~jb!
1
I 0~ja!

I 1~ja!G .
Since the conditionj!k holds in this case, the mode fre-
quencies forn Þ 1 are determined in the first approximation
by the equation

v0n5p~n21!v/@b2a!~«b221!1/2] . ~20!

The wavelengths of the excited modes as functions
the electron Lorentz factorg calculated by Eq.~18! are
shown by dashed lines in Fig. 2 for a capillary tube wit
«52.3 and the ratioa/b50.9. At all electron energies much
larger than the threshold (g@gT), the wavelengths of all
modes except (0, 1) tend to certain limits. They are dete
mined by the ratio between the inner and outer radii,a/b,
which is illustrated by the curves in Fig. 3 forg510gT . One
can see that in thin-wall capillary tubes (b2a!b) the mode
wavelength is determined by the wall thickness, rather th
by the tube radius.

FIG. 2. Radiation wavelengthsl0n ~dashed curves! and gainG0n in units
of G051023( i / i 0)(L/b)

3 versus electron Lorentz factorg for several
axisymmetrical modes in a capillary tube with aspect ratioa/b50.9 and
«52.3. The numbers at the curves are the indices (m,n) of respective
modes.
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5. INDUCED CHERENKOV RADIATION

The optical gain due to induced radiation at waveleng
of various modes can easily be calculated in the limit of lo
optical gain and cold electron beam, when the nonlinear
fects of interaction between the radiation and electrons
negligible, and the spectral width of the radiation line is d
termined by the length over which an electron interacts w
the wave field. LetN be the initial number of photons in a
certain mode (m,n,s) between the planesz50 andz5L. In
particular, these may be photons generated by an exte
source. The changeDN in the photon number is caused b
both induced radiation of photons by electrons at the co
sponding mode frequency and induced absorption of phot
by beam electrons. The probabilities of these processes
related to the spontaneous radiation probability by the w
known relation wind5wcap5Nwsp. The parameter
DN5wind2wcap is nonzero if the recoil due to emission o
absorption of a photon is taken into account. As a result,
have

DN5N
]wsp

]c
Dc, ~21!

where the phasec is determined by Eq.~12!, and its change
Dc by the mode frequency shift due to recoil.

The probabilitywsp of spontaneous radiation is obtaine
by dividing the classical radiation energydWmns /dv of the
corresponding mode calculated above by the photon ene
\v. As for the small shiftDc, it can be calculated using
conservation of momentum and energy in the process of p
ton emission to a certain mode (m,n,s). Let the electron
have in the initial state energyE, longitudinal momentum
pz , and zero projection on thexy-plane. The corresponding
parameters in the final state areE8, pz8 , andp'8 . The total

FIG. 3. Wavelengths of modes with indices (0,n) in a capillary at
g510gT versus the ratio between capillary radiia/b.
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values of these parameters for the electron–photon system
the process of radiation~absorption! are constant, i.e.,

E85E7\v, pz85pz7\kz , p8'
25~\k!2, ~22!

where (\k)25(\v/c)2«2(\kz)
2 is the square of the pho-

ton transverse momentum in the material@see Eq.~5!#. Since
the relationships E22pz

25mc25E822(p821p'8
2),

kz
21k25«v2, and pz5Ev also hold, we derive from Eq.

~22! the condition of Cherenkov radiation~absorption! of
various modes with due account of the quantum recoil effe

~v2kzv !6
\v2

2E
~12«!50.

Hence

Dc5 \v2~«21!L/~2Ev ! . ~23!

Then the gainG is determined using the equation

G5
1

eES
DN

N
j ~r0 ,w0!dS, ~24!

where j (r0 ,w0) is the electron current density as a functio
of the distancer0 from the cylinder axis and of the azimutha
anglew0, and integration~24! is performed over the electron
beam cross sectionS. Using Eqs.~21! and ~23!, we can ex-
press the gain at the frequency of the (m,n,s) mode as

Gmns5
~«21!vL

2eEv E
S
j ~r0 ,w0!

]

]c

dWmns

dv
dS, ~25!

wheredWmns /dv is the spectral distribution of spontaneou
Cherenkov radiation in the (m,n,s) mode. Note that the

FIG. 4. The gainGmn1 at the frequencies of the modes withm50, n51,
s51 ~solid curves! andm50, n515, s51 ~dashed curves! in a cylinder
with «52.3 and radiusa for a hollow electron beam with inner radius
r5Ca and outer radiusR52a as a function of the Lorentz factorg. The
coefficientsC are shown by numbers at the curves.
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Planck constant and can be derived from a purely class
theory.

In the case of a solid dielectric cylinder, we derive fro
Eq. ~10! and~25! the gain for the mode (m,n,s) in the form

Gmns

5
2i

i 0

L3~«21!

a2lmnsgb2

^Km
2 ~yr0 /a!&

Km
2 ~y!

~Sm1s!~22dm0!

Qm

3
d

dc

sin2c

c2 . ~26!

Here we have writteni 05mc3/e, i is the total electron cur-
rent, y52pa/(lmnsgb!, lmns52pc/vmns , dm0 is the
Kronecker symbol, and angular brackets denote avera
over the beam cross section. In particular, if the electrons
distributed uniformly over a ring with inner radiusr<a and
outer radiusR, we obtain, using integration formulas,14

KKm
2 S yr0

a D L 5
r0
2

R22r 2 FKm
2 S yr0

a D
2Km21S yr0

a DKm11S yr0
a D GU

r

R

. ~27!

For axisymmetrical modes (m50), the gain determined by
Eq. ~26! is expressed by a simpler formula:

G0ns5
2i

i 0

L3

a2l0nsgb2

«^Km
2 ~yr0 /a!&

g2K1
2~y!1«K0

2~y!

d

dc

sin2c

c2 .

Since at large values of the argument the modifi
Bessel functions in Eq.~27! contain an exponentially decay
ing factor, most of the radiation at the wavelengthlmns is

FIG. 5. The gainGmn1 for the mode 111 versus the deviation from th
resonant electron Lorentz factorg r . Curve1 corresponds tog r /gT51.10;
~2! 1.21; ~3! 1.46; ~4! 1.70; ~5! 2.00.
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inder surface withinDc5lmnsbg/4p. Thus, the gapD be-
tween the electron beam and the dielectric surface de
mines the minimum electron Lorentz facto
gc54pD/lmnsb needed for efficient amplification of radia
tion at the wavelengthlmns . The gain described by Eq.~26!
at c'21.3, corresponding to the maximum ofGmns , for
the most intense modes withs51 as a function of the ratio
betweeng and its threshold valuegT is plotted in Fig. 1 for
the case of«52.3 ~visible band in quartz! and a beam with
the parametersr51.1a, R52a @see Eq.~27!#. In this case
the minimum gapD5r2a is 0.1a. The gain is measured in
the unitsG051023( i / i 0)(L/a)

3. One can see thatg corre-
sponding to the maximum gain increases with decreas
wavelength~increasing mode indexn), whereas the maxi-
mum gain itself drops. Similar effects can be observed wh
the mode indices (m,n) are fixed and the gap width
D5r2a is varied~Fig. 4!.

In the case of a hollow dielectric cylinder~capillary
tube!, the gainG0n at frequencies of harmonics withm50
can be expressed as

G0n5
2i

i 0

L3«

a~b2a!l0ng
3b2

^I 0
2~jr0!&

I 1
2~ja!

d

dc

sin2c

c2 , ~28!

where j52p/l0nbg. If a cylindrical electron beam has
uniform density in the region 0<r0<R, we have14

^I 0
2~jr0!&5I 0

2~jR!2I 1
2~jR!. ~29!

Calculations of the gain by Eq.~28! for the case«52.3 and
R50.9a, when the gap between the beam and the tube w
is 0.1 of its inside radiusa, are given in Fig. 2. These result
are similar to those for the case of a solid cylinder discus
above~Fig. 1!.

6. CONCLUDING REMARKS

In deriving Eqs.~26! and~28! for the gain, we assumed
that the spontaneous radiation line had a natural width du
the finite time of interaction between the dielectric and
electron. The resulting expressions are also valid in the c
of inhomogeneous broadening due to the spread of the e
tron energy and angle distributions, if the inhomogeneo
broadening is smaller than the natural line width. By varyi
the phase angle parametersc, in Eq. ~12! and assuming
dc,p, we obtain the following limitations:

Du2,~«b221!lb/L, ~30!

Dg/g3,~«b221!b3l/L, ~31!

whereDu2 is the mean-square spread of the electron pro
gation angle around the dielectric axis andDgmc2 is the
spread in the electron energy. The conditions~30! and ~31!
were obtained assuming that the electron energy was not
different from the threshold value and the mode frequenc
were determined by the approximate expressions~14! and
~20!.

The condition~31! can be also used in estimating th
maximum efficiency of conversion of the electron energy
that of induced Cherenkov radiation if the entire spreadDg
is ascribed to electron energy radiation losses. The efficie
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according to curves of Figs. 1 and 2, the gain drops with
ratio g/gT . In the range of electron energies close to t
threshold value, where the gain is maximum, the simple
timates by Eqs.~30! and~31! do not apply. For this case, Fig
5 shows curves of the gain as a function of the elect
energy deviation from the resonanceEr5mc2g r correspond-
ing to the maximum gain. The curves were plotted for t
~111! mode in a solid cylinder and a set of gradually incre
ing values ofg res ~and corresponding wavelengths; see F
1!. The peak widths are proportional to the efficiency f
conversion of the electron energy to induced radiation.

Induced Cherenkov radiation in a cylindrical dielectr
can be used to amplify electromagnetic waves over a w
wavelength range from the microwave through the opti
band. For example, according to our estimates, the g
G01 is about 5% for wavelengthl5190mm, electron energy
E51 MeV, and the following capillary tube parameter
a5100mm, b5150mm, L55 cm, andi570mA. The an-
gular divergence of the electron beam in this case should
less than 1023 rad. In this case, waves of the visible band c
be amplified only using modes with large refraction indic
n*10, whereas in this case, as can be seen in Fig. 4, the
is highly sensitive to the gap width between the beam and
dielectric wall.
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Helium ionization with excitation of the atom accompanied by absorption and scattering

t

of high-energy photons
M. Ya. Amus’ya and A. I. Mikha lov

B. P. Konstantinov St. Petersburg Institute of Nuclear Physics, 188350 Gatchina, Leningrad Region, Russia
~Submitted 16 September 1996!
Zh. Éksp. Teor. Fiz.111, 862–870~March 1997!

We calculate analytically the cross sections for ionization of the helium atom with absorption
and scattering of high-energy photons. The electrons are assumed to be moving in the
Coulomb field of the nucleus. The electron–electron interaction is taken into account in the first
order of perturbation theory. The high-frequency limits for the ratios of these cross sections
to the single-electron ionization cross sections are obtained fors-excitations in absorption and for
s- andp-excitations in scattering. ©1997 American Institute of Physics.
@S1063-7761~97!00803-2#

1. Ionization with excitation of the atom accompanied by electrons in the final state. IfC2 refers to the bound state, a
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photon absorption or scattering is determined entirely by
electron–electron interaction. The helium atom is the s
plest system in which such a process can take place. W
two-electron ionization has been thoroughly studied b
theoretically and experimentally, the process in which
removal of one atomic electron is accompanied by excita
of the other electron belonging to the same atom has b
studied much less. However, this process contributes to
formation of singly charged ions and must be taken i
account when the theoretical and experimental values for
ratio of the cross sections of double and single ionizati
are compared.

We examine photons whose energyv is in the interval
I!v!m ~hereI is the ionization energy of the atom,m is
the electron mass, and we employ the relativistic system
units, in which\5c51). When the photon energy is limite
by the inequalitiesI,v,h, whereh5maZ is the average
momentum of a bound electron (a51/137, andZ is the
atomic number!, photoabsorption has a much higher pro
ability than inelastic photon scattering. The probabilities
these two processes become comparable atv;h, where in
the energy rangev@h photon scattering~the Compton ef-
fect! dominates. For the helium atom the threshold freque
satisfiesv0'h'7 keV.

Similarly, ionization with excitation of the atom by pho
tons occurs primarily through photoabsorption forI,v,h
and through scattering forv.h.

2.We start with ionization with excitation of the helium
atom in photoabsorption. The process has been studie
Refs. 1–3. Brown1 and Dalgarno and Sadeghpour2 did nu-
merical calculations involving variational wave functions
the initial state and Coulomb wave functions of the fin
electrons. An analytic calculation was done in Ref. 3, but
final formula contains an error, which is corrected in t
present paper. We also derive an analytical formula link
the cross sections for double ionization and single ioniza
with excitation.

Let us derive a formula for the cross section of the p
cess in the first approximation in the electron–electron in
action, using Coulomb wave functions as the zeroth appr
mation. ByC1 andC2 we denote the wave functions of th
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high photon frequenciesv@I the energy of the ejected elec
tron, E1, is approximatelyv and the momentump1 is
A2mv@v, while the wave functionC1 can be taken in the
form of a plane wave, since the Coulomb parameter for t
electron is small:

j15
h

p1
5A I

v
!1.

This is also true for double ionization, since, as shown
Ref. 3, the principal contribution to the cross section of t
process is provided by energies ranging fromE1;v to
E2;I .

The Feynman diagram of the process is depicted in F
1. A line with a solid black dot indicates that the correspon
ing state is described by a Coulomb function, a wavy li
depicts electron–electron interaction, and a dashed line
responds to a photon. Estimates done in Ref. 3 show tha
diagram of Fig. 1 is the leading term in the amplitude of t
process. The contributions of other diagrams contain an
ditional small factor of orderI /v.

Writing the electron–photon interaction operator in t
ordinary gradient formp–A/m, whereA is the photon vector
potential andp is the electron momentum operator, and
lowing for the fact thatp12k'p1 holds ~where k is the
photon momentum,p1@k5v), we arrive at the following
expression for the amplitude of the process:

F5
e–p1
m E ^p1uG~E!uf1&^f11fuC1s&

3
1

f 2
^C2uf2&^f22fuC1s&

dfdf1df2
~2p!9

. ~1!

HereE52E1s2E2 is the energy of the intermediate stat
G(E) is the Coulomb Green’s function of the electron, ande
is the photon polarization vector.

The integrals with respect tof1 andf2 with the Coulomb
functionsC1s can easily be evaluated:

4745$10.00 © 1997 American Institute of Physics
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E ^p1uG~E!uf1&^f11fuC1s&
df1

~2p!3
5NS 2

]

]n D
3^p1uG~E!Vinu2f&un5h , ~2!

E ^C2uf2&^f22fuC1s&
df2

~2p!3

5NS 2
]

]n D ^C2uVinuf&un5h , ~3!

whereN5(h3/p)1/2, andh5maZ.
Using the Coulomb Green’s function in the momentu

representation4 and performing a series of transformation
we find that

^p1uG~E!Vinu2f&5
4ipmh

p1
4

3E
1

`

dyS y11

y21D
i j

^fuVpy1 inu0&,

~4!

p5A2mE5 ihl, l5A21«2, «25
E2

I
,

I5
h2

2m
, i j5

ih

p
5
1

l
.

Here ^fuViauf8& is the matrix element of the Yukawa pote
tial exp(2ar)/r in the momentum representation:

^fuViauf8&5
4p

~ f2f8!21a2
. ~5!

After Eqs. ~2!–~4! are substituted in~1! we arrive at the
following expression for the amplitude of the process:

F5BN2I yS 2
]

]m D 1m2 ^C2uVih2Vi ~h1m!u0&,
~6!

B52
4h2l

p1
3 ~e–n1!, n15

p1
p1
, m5h~11ly!,

where

I y5E
1

`

dyS y11

y21D
1/l

is an integral operator, and the ket vectoru0& stands for a
plane-wave state with zero momentum.

Formula~6! can be used in the cases of ionization w
excitation and double ionization. In the first process,C2 is
the Coulomb functionwnl m of a bound state. For it the ma
trix element in~6! is

FIG. 1.
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,

nl m in n ~n1hn!
n11 l 0 m0

~7!

Nn5S hn
3

p D 1/2, hn5
h

n
.

In the event of double ionization,C2 is the Coulomb wave
function of the continuous spectrumwp2

. In the coordinate
representation the function̂r uwp2

&5wp2
(r ) behaves asymp

totically like a combination of a plane wave and a conve
ing spherical wave. For the Coulomb function of the contin
ous spectrum there exists a closed nonrelativis
expression,5 which yields6

^wp2
uVinu0&54pNp2

~n1 ip2!
i j221

~n2 ip2!
i j211 ,

Np2
2 5

2pj2
12exp~22pj2!

, j25
h

p2
. ~8!

The same expression can be obtained if forwp2
we take a

partial-wave expansion. As in~7!, only the wave with
l 50 contributes to the matrix element~8!. Thus, in our
approximation, the transition of a second electron is poss
only in thes-state of the discrete and continuous spectra

Comparing~7! and ~8!, we conclude that

^wp2
uVinu0&5SNp2

Nn
^wnsuVinu0& D U

n→ i j2

, ~9!

wherewns[wn10.
Plugging~6! into ~7!, we arrive at the following expres

sion for the amplitude of photoionization accompanied
excitation of the ion to a state with principal quantum nu
bern:

F1~n!5F1~ns!58h22NnBIyx~y!~11ly!23, ~10!

x~y!5w~1,1!2w~x,1!2~x21!2w~x,2!, ~11!

x521ly, l5A22n22,

w~q,k!5
~q2n21!n2k

~q1n21!n1k . ~12!

ReplacingNn with Np2
andn with i j2 in ~10!, we arrive at

an expression for the double ionization amplitudeF11.
The differential cross sections of the process involvi

photon absorption are

dsa
1~n!5~4pa!3

1

v
uF1~n!u2

dp1
~2p!2

3d~v12E1s2E12Ens!, ~13!

dsa
115~4pa!3

1

v
uF11u2

dp1dp2
~2p!5

3d~v12E1s2E12E2!. ~14!

The bar overuFu2 stands for an average over photon pola
izations. Integrating with respect top1 ~and with respect to
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TABLE I. Values ofba
1(n) in %.
V2 in ~14!!, we find the total cross sectionsa
1(n) for single

ionization and the energy distributiondsa
11/d«2 for double

ionization:

ba
1~n!5

sa
1~n!

sa
1 5

Q~n!

Z2
, ~15!

ba
11~«2!5

1

sa
1

dsa
11

d«2
5
Ra~«2!

Z2
. ~16!

HereZ is the atomic number~we are examining helium an
heliumlike atoms!, andsa

1 is the cross section of an ordinar
photoeffect on a helium atom in the Born approximation:

sa
15

28pa

3mv S Iv D 5/2, ~17!

Q~n!5
28

n3
J2~n!, Ra~«2!527J2~p2!, ~18!

J~n!5lE
1

`

dyS y11

y21D
1/l

x~y!~11ly!23, ~19!

J~p2!5J~n→ i j2!, j25
h

p2
5

1

A«2
. ~20!

The inverse is also true, i.e.,

J~n!5J~p2→ ihn!, hn5
h

n
. ~21!

This yields a relationship linkingQ(n) andRa(«2):

Q~n!5
2

n3
Ra~p2→ ihn!. ~22!

By calculating J(n) in the limit n→` we can find the
asymptotic behavior ofQ(n):

Q~n@1!'
0.336

n3
5
2Ra~0!

n3
. ~23!

The graph in Ref. 3 presenting the dependence ofRa on
«2 can be used to findRa(0), which is equal to 0.168 and
coincides with~23!. But from the data listed in Table 1 o
Ref. 3 it follows thatQ(n)50.277/n3, which contradicts
~23!. This forced us to calculateba

1(n) anew via formula
~15! and to tabulate the results in Table I together with
sults obtained earlier by Dalgarno and Sadeghpour2 for He
and Li1. As Table I clearly shows, the agreement betwe
the numerical results of Ref. 2 and our analytical resu
improves asn andZ grow.

Ref. 2 Present work
n He Li1 He Li1

2 4.79 1.60 2.31 1.03
3 0.59 0.25 0.43 0.19
4 0.19 0.08 0.16 0.071
5 0.09 0.04 0.076 0.034
6 0.05 0.02 0.043 0.019
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3. Now let us discuss inelastic~Compton! photon scat-
tering in theh!v!m energy range. Double ionization o
the helium atom in such a process was studied in Refs. 7–
Here we develop the ideas of Ref. 10 and derive formulas
the cross sections of ionization with excitation in first ord
in the electron–electron interaction~Ref. 8 contains only nu-
merical values of such cross sections obtained in the mom
tum approximation!.

The process is described by the Feynman diagram
picted in Fig. 2. The electron–photon interaction is rep
sented by the operatorA2/2m. As Refs. 9 and 10 show, thi
diagram plays the leading role in double ionization v
Compton scattering. In double ionization the main contrib
tion is provided by the part of the electron energy spectr
where the second electron acquires an energyE2;I . The
energy of the incident photon~minus the ionization and ex
citation energies! is distributed between the scattered phot
and the ejected electron.

Let E1 and p1 be the energy and momentum of th
ejected electron, andv1 andv2 the frequencies of the inci
dent and scattered photons. In Ref. 10 it is shown that
scattered photons predominantly carry away the ene
v2'v12v1

2/m. SinceE15p1
2/2m'v12v2'v1

2/m holds,
we have p1;v1, and the Coulomb parameter satisfi
j15h/p1'h/v1!1. This makes it possible to use a plan
wave with momentump1 as the wave function of the ejecte
electron.

Let sc
1 be the cross section of ordinary Compton sc

tering by a helium atom, and letsc
1(nl ) be the cross section

for inelastic photon scattering by helium in which one ele
tron leaves the atom and the other is transferred to an exc
statenl of the He1 ion. Equations~11!, ~29!, and ~45! of
Ref. 10 make it possible to find the ratio of these cross s
tions:

bc
1~nl !5

sc
1~nl !

sc
1

5~4pa!2S 2
]

]ED(
m

^fnl muG~E!ufnl m&,

~24!

^fnl mu5N2
]2

]n1]n2
E df

~2p!3
^wnl muVin1

uf&

3
1

f 2
^2fuVin2

, ~25!

FIG. 2.
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TABLE II. Values ofQik in %.
rivatives we must putn15n25h5maZ.
As in Ref. 10, we approximate the Coulomb Green

functionG(E) by three terms of the Sturm expansion:13

G~E!'M H uC10&^C10u
l21

1
uC20&^C20u

l21/2
1(

m

uC21m&^C21mu
l21/2 J

5G101G201G21, ~26!

M52
h2l2

paZ
, l5A«, «52

E

I
522n22.

The functionsc ik in the coordinate representation have t
form

^r uC10&5e2gr , ^r uC20&5~12gr !e2gr ,
~27!

^r uC21m&5g~«mr !e
2gr ,

where g5hl, and the«m are cyclic unit vectors, with
m50,61.

As a result of inserting~26! into ~24! we get

bc
1~nl !

5
~4pa!2

2Il

]

]l
M(

m
S u^fnl muC10&u2

l21

1
u^fnl muC20&u2

l21/2
1(

m

u^fnl muC21m&u2

l21/2 D . ~28!

Substituting~25! into ~28! yields the following matrix ele-
ments:

^2fuVihuC10&5^fuVinu0&, n5h1g,

^2fuVihuC20&5S 11g
]

]n D ^fuVinu0&, ~29!

^2fuVihuC21m&5 ig~«m¹k!^fuVinuk&uk→0 .

Employing ~29!, we obtain

^fnl muC10&5N2S 2
]

]n D 1

n2
^wnl muVih2Vi ~h1n!u0&,

^fnl muC20&5S 11g
]

]n D ^fnl muC10&, ~30!

^fnl muC21m&5 igN2
]2

]n1]n

«m¹k

n

3E
0

1

dt^wnl muViLukt2&uk→0 ,

whereL5n11nt. Now we can use Eq.~7! and the definition
~12! to obtain

^fnl muC i0&5d l 0dm0
8Nn

h2~l11!3
x i , i51, 2,

~31!

^fnl muC21m&5d l1dmm

32Nnl

h2~l11!3
x3 ,

x15w~1,1!2w~a,1!2~a21!2w~a,2!,
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x252
2l21

l11
x112l~l11!2~2l13!w~a,3!, ~32!

x352
x1

~l11!2
1
1

2
~l11!~2l13!w~a,3!,

wherea5l12.
As Eqs.~31! show, the second electron can be excit

only to the s- and p-states of the helium ion, which is
consequence of our approximation of the Green’s functi
The probability of a transition to other states can be found
we leave a greater number of terms in the Sturm expan
of the Green’s function. But such transitions, as Suric´ et al.8

argue, have a small probability, and we ignore them here
We plug ~31! into ~28! and find the derivative with re-

spect tol. For transitions tons- andnp-states we have

bc
1~ns!5

Q101Q20

Z2
, bc

1~np!5
Q21

Z2
, ~33!

Q105
210

n3
lx1

2

~l11!6~l21!
S 1

l21
1

6

l11
2
2

l
2
2x18

x1
D ,

Q205
210

n3
lx2

2

~l11!6~l21/2!

3S 1

l21/2
1

6

l11
2
2

l
2
2x28

x2
D , ~34!

Q215
214

n3 S 12
1

n2D l3x3
2

~l11!6~l21/2!

3S 1

l21/2
1

6

l11
2
4

l
2
2x38

x3
D ,

wherex i85]x i /]l. After the derivative with respect tol is
found, we can use the definitionl5A22n22 to simplify the
expressions forx i andx i8 .

For n@1 we have the following asymptotic formulas:

Q105
0.196

n3
, Q2052

0.00585

n3
, Q215

0.0263

n3
. ~35!

Table II lists the values ofQik for finite n that were calcu-
lated by ~34!, and Table III lists the results of calculatin
bc

1(nl ) for He by ~33! and those of Suric´ et al.8 Note that
the results of numerical and analytical calculations for ph
ton scattering~Table III! are in better agreement than tho
for photoabsorption.

As in the photoeffect, in Compton scattering there exi
a simple relationship between the cross sections of dou
ionization,sc

11 , and of ionization with excitation,sc
1(n):

n 2 3 4 5 6

Q10 6.01 1.05 0.376 0.179 9.93(22)*
2Q20 0.126 2.74(22) 1.04(22) 5.09(23) 2.87(23)
Q21 0.479 0.115 4.51(22) 2.24(22) 1.27(22)

Note:* The number in parentheses stands for the power of 10.
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The validity of ~37! can easily be established forn→`. In

e
t of

v,

M.
g,

TABLE III. Values of bc
1(nl ) in %.
sc
1~n!5sc

1~ns!1sc
1~np!5

2

n3
dsc

11

d«2
~p2→ ihn!, ~36!

or

Qik5
2

n3
Rik~p2→ ih!, ~37!

where theRik determine the ratiobc
11(«2) of the cross sec-

tions of double and single ionizations in Compton scatteri

bc
11~«2!5

dsc
11

d«2

1

sc
5
Rc~«2!

Z2
5
R101R201R21

Z2
, ~38!

sc
152sTS 12

2v1

m D , sT5
8

3
pr e

2 ,

wheresT is the Thomson cross section, andr e is the classi-
cal electron radius.

TheRik correspond to the same termsGik of the Sturm
expansion of the Coulomb Green’s function~26! as the
Qik . In Ref. 10 only the numerical values ofRik(«2) for
different«2 are given. To arrive at analytical expressions
must simply multiply theQik of ~34! by n3/2 and then re-
placen with i j2:

Rik~«2!5S n32 QikD
n→ i j2

. ~39!

Ref. 8 Present work
n ns np ns np

2 2.60 0.163 1.47 1.120
3 0.292 0.0316 0.256 0.0288
4 0.094 0.0119 0.091 0.0113
5 0.043 0.0057 0.043 0.0056
6 0.023 0.0032 0.024 0.0032
478 JETP 84 (3), March 1997
:

this case

Qik~n@1!5
2

n3
Rik~0!. ~40!

By taking the values ofRik(0) from Table 2 of Ref. 10
we arrive at the expressions~35! for theQik .
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Comparison of methods for calculating turbulent diffusion coefficients

ed
N. A. Silant’ev

Main Astronomical Observatory, Russian Academy of Sciences, 196140 St. Petersburg, Russia; Instituto
Nacional de Astrofisica, Optica y Electronica, Puebla, Mexico
~Submitted 18 September 1996!
Zh. Éksp. Teor. Fiz.111, 871–881~March 1997!

Different methods for calculating the turbulent diffusion coefficientDT of a passive scalar
impurity in an infinite homogeneous isotropic stationary turbulent medium are examined. The
values ofDT calculated by these methods are compared for two limiting types of
turbulence, viz., turbulence with ad-function spectrum and turbulence with a Kolmogorov-type
spectrum. The temporal dependence of the velocity correlators is assumed to be exponential.
It is shown that the most accurate method is based on the use of the solution of the nonlinear
equation for the averaged Green’s function with consideration of the contribution from the
four-point turbulent velocity correlators. A comparison with the results of other methods that are
simpler from the mathematical standpoint shows that some of them also permit the
calculation ofDT with relatively good accuracy. ©1997 American Institute of Physics.
@S1063-7761~97!00903-7#

1. INTRODUCTION can certainly be generalized to turbulent flows in bound
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The description of the transport of a passive scalar
purity ~particle concentrations, temperatures! in turbulent
media is one of the main problems in the theory of turb
lence. In view of the complexity of the exact solution of th
problem, efforts are usually confined to the use of the dif
sion approximation, which is suitable for large-scale s
tiotemporal averaging of an impurity field~for further de-
tails, see Refs. 1 and 2!. In the diffusion approximation the
main problem is the calculation of the turbulent diffusio
coefficientDT . The latter determines the mean impurity flu
@F(r ,t)52DT¹^n&# at the fixed pointr of the medium at
the timet in the diffusion approximation. As will be show
below, the calculation ofDT is associated with the use of th
ordinary single-particle Green’s functionG(1,2) of the exact
transport equation for the impurity field.

We note that the theory of turbulence is also concer
with the somewhat different problem of ‘‘relative diffu
sion,’’ in which interest is focused on the probabili
p(R,t) of the separation of two initially close liquid particle
to a distanceR during the timet. The functionp(R,t) ap-
proximately satisfies a diffusion equation with the diffusi
coefficient K(R,t). The classic work by Richardson3 and
Batchelor4,5 was devoted mainly to the solution of this pro
lem ~see also Ref. 6 and 7!. The exact determination o
K(R,t) requires knowledge of the two-particle Green’s fun
tion G(1,2;3,4). We stress that the ordinary diffusion co
ficient DT does not coincide withK(R,t).

The problem of calculatingDT is also related directly to
long-enduring problems of the theory of turbulence, viz.,
problem of closing the hierarchy of equations for the veloc
correlators and the problem of calculating the turbulent v
cosity. Various methods have been developed to solve th
problems.8,9 The methods for describing turbulent transp
in bounded media and for the case of free turbulence in
infinite medium differ significantly. In the present work w
consider only the latter case, although the proposed meth
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Thus, the problem is formulated as follows: there is

incompressible infinite turbulent medium characterized by
ensemble of assigned velocitiesu(r ,t). The turbulence is
assumed to be homogeneous, isotropic, and stationary
mean velocity satisfieŝu(r ,t)&50, and divu50. The angle
brackets denote averaging over the ensemble of the ac
turbulent velocitiesu(r ,t). Because of the homogeneous s
tionary character of the turbulence, all the averaged qua
ties depend on the coordinate differenceR5r12r2 and the
time differencet5t12t2 . To be specific, we shall discus
the diffusion of impurity particles with the concentratio
n(r ,t). The molecular diffusion coefficientDm is usually
much smaller thanDT , and in the final formulas we se
Dm50.

The numerical values of the turbulent diffusion coef
cient DT are essentially determined by the explicit form
the pair velocity correlator

Bnm~R,t!5^un~r1 ,t1!um~r2 ,t2!&, ~1!

which can also be characterized by the generalized spec
E(p,t):

^u~r ,t !u~r ,t1t!&5E
0

`

dp E~p,t!. ~2!

This is because the most significant contribution to impur
transport is made by the large-scale turbulent fluctuatio
which are described well by the two-point correlator~1!. The
description of small-scale fluctuations clearly requir
knowledge of the four-point and higher velocity correlato
The generalized spectrumE(p,t) is characterized by the
lifetime t0 , the wave numberp051/R0 , and the velocity
u0 of the turbulent motions. The turbulent diffusion coef
cientDT depends significantly on these parameters. It is c
venient to representDT in the dimensionless form

4796$10.00 © 1997 American Institute of Physics
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Here j05u0t0p0 is a dimensionless parameter, which
very important for determiningDT . The following estimates
apply:1 DT.u0

2t0/3[(u0 /p0)j0/3 for j0!1 and DT

.u0 /p0 for frozen turbulence withj0@1. Thus, the dimen-
sionless turbulent diffusion coefficientD̄T as a function of
j0 first increases linearly withj0/3 and then tends monoton
cally to a certain limiting valueD̄T(`). The monotonicity of
this increase is dictated by the fact that an increase inj0
corresponds to a longer lifetime for the turbulent fluctu
tions.

These limiting estimates can have only a qualitat
character. For turbulent flows having a broad energy sp
trum and a complicated dependence on the timet, even the
choice of the parametersp0 andt0 is uncertain. This choice
is more or less unique only for narrow-band spectra
E(p,t). The diffusion coefficientDT depends on the
specific form ofE(p,t,) as a whole, and methods for calc
lating it that are independent of the formal choice of t
parametersp0 andt0 are needed.

In this paper we shall study mainly the stationary va
of DT corresponding to the timest@t0 ~or t@t05R0 /u0 for
frozen turbulence!.

In the Lagrangian representation of the velocity fie
v(a,t) the exact expression for the turbulent diffusion co
ficient has the form10

DT~ t !5
1

3 E
0

t

dt^v~a,t !v~a,t!&, ~4!

wherea is the initial position of a liquid or gas particle. Thi
simple formula can be used only in cases in which the
semble of trajectories of the liquid particles is known~as a
result of measurements or a numerical experiment!. As we
know, the Eulerian representation of the velocityu(r ,t) is
used for the most part, and Eq.~4! is practically useless fo
calculatingDT , since passage from the Eulerian velociti
u(r ,t) to the Lagrangian velocitiesv(a,t) is a difficult prob-
lem that has not yet been solved.

In the Eulerian representation the exact expression
DT contains averaging of the velocity componentsun(r ,t)
with the Green’s functionG(r1 ,t1 ;r2 ,t2)[G(1,2):1,2

DT~ t !5
1

3 E dRE
0

t

dt^un~1!G~1,2!un~2!&. ~5!

Here and below we use the convenient notat
dn[drndtn , f (n)[ f (rn ,tn), f (122)[ f (r12r2 ,t12t2),
R5r12r2 , t5t12t2 , as well as the usual convention r
garding the summation over repeated vector and tensor
ces. The Green’s functionG(1,2) is a random function
which depends on the velocity fieldu(r ,t). As is usually
done, we represent all the quantities in the form of a sum
the mean value and the fluctuational part:

n~r ,t !5^n&1n8~r ,t !, G~1,2!5^G&1G8~1,2!.

The evolution of the impurity concentrationn(r ,t) sat-
isfies the equation~we recall that divu50!:
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The Green’s functionG(1,2) is the solution of this equation
with a d-function source@Q(r ,t)5d(R)d(t)#. Using the
Green’s functionGm(R,t) of this equation without the term
containing the velocityu(r ,t), we obtain the integral equa
tion for G(1,2):

G~1,2!5Gm~122!1E d3G~123!~2u~3!¹~3!!G~3,2!,

~7!

Gm~R,t![Gm~122!5H~t!~4pDmt!23/2

3exp~2R2/4Dmt!, ~8!

whereH(t)51 for t.0 andH(t)50 for t,0. For turbu-
lent flows in bounded media the Green’s functionsGm and
G(1,2) satisfy particular boundary conditions, but the ge
eral formula~5! is also suitable in these cases. The form
solution of Eq. ~6! in terms of the Lagrangian velocity
v(a,t) gives the expression

G~1,2!5dS r12r22E
t2

t1
dt v~a,t ! D ,

whose substitution together with the relations

r15a1E
0

t1
dt v~a,t!

andu(r ,t)5v(a,t) into the basic expression~5! leads at once
to ~4!.

Thus, the different methods for calculatingDT in the
Eulerian representation reduce to a particular choice of
Green’s functionG(1,2) ~or to the method for calculating it!.
The explicit form of the stochastic Green’s functio
G(1,2) as a functional of the random velocityu(r ,t) is un-
known. Therefore, ways must be sought to repres
G(1,2) in the form of a series of approximations, who
substitution into~5! would lead to a corresponding series
approximations forDT . The main question here is the rap
~although only asymptotic for broad spectra! convergence of
this series for different values ofj05u0t0p0 .

2. RENORMALIZED EQUATION FOR THE GREEN’S
FUNCTION

The simplest representation of the Green’s funct
G(1,2) in the form of a series is confined to the iteration
the basic equation~7!. The substitution of this series of itera
tions into ~5! leads to a series of approximations forDT of
the form

DT5
u0
2t0
3

~a1bj0
21cj0

41...!. ~9!

Here the term withj0
2 is specified by the four-point velocity

correlatoru(r ,t), the term withj0
4 is given by sixth-order

correlators, etc. It is seen from~9! thatDT can be calculated
in this manner only forj0

2!1. For turbulence with a broad
Kolmogorov-type spectrum (} p25/3), only the first term in
the expansion exists, and the terms withb,c,... diverge. The
series~9! converges poorly because the expansion into a
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tionGm , which does not describe the convective characte
the transport of an impurity by turbulence.

An equation forG(1,2) in a new renormalized form
must clearly be obtained. In this new equation the convec
mechanism of impurity transport must already be taken i
account in the free term. The possibility of writing such
equation is obvious and is based on the relations1

G~1,2!5M ~122!1E d3M ~123!

3F ~2u~3!¹~3!!G~3,2!2E d4 K̂~3

24!G~4,2!G , ~10!

M ~122!5Gm~122!1E d3E d4Gm~123!

3K̂~324!M ~422!. ~11!

It is easy to verify that the substitution of~11! into ~10! leads
to the original equation~7!. The most satisfactory choice o
the kernelK̂ is probably the one for which the auxiliar
functionM (R,t) would coincide with the averaged Green
function ^G(1,2)&. In fact, the free term
M (122)5^G(1,2)& describes the convective transport
impurity particles in a turbulent medium. Thus, Eq.~11! for
M (R,t) should be a closed equation for the averag
Green’s function̂G(1,2)&. The stochastic equations~6! and
~7! are linear equations. It is, however, easy to see that
eraging these equations does not give separate equation
^n(r ,t)& or ^G(1,2)&, i.e., there will always be terms like
^u(1)¹n8(1)& or ^u(1)¹G8(1,2)&. The situation is similar
to the one which emerges during the derivation of the R
nolds equations for the mean velocity, i.e., the mean va
depend on the contribution of the fluctuations, and the lat
in turn, are determined by the distribution of the averag
quantities. The endeavor to write a separate equation
^G(1,2)& leads to a hierarchy of equations that are nonlin
in ^G(1,2)&. The procedure for deriving this hierarchy wa
described in detail in Ref. 1. Thus, the kernelK̂ in ~11!
depends on̂G& and can be represented in the form of
infinite series of terms with continually increasing powers
^G&. The first term in this series has the form

K̂ ~1!~122!5^~2u~1!¹~1!!^G~1,2!&~2u~2!¹~2!!&.
~12!

The substitution of this kernel into~11! leads to the simples
nonlinear equation in the hierarchy of equations
^G(1,2)&[g(122):

g~122!5Gm~122!1E d3E d4Gm~123!

3^u~3!¹~3!g~324!u~4!¹~4!&g~422!. ~13!

This is the familiar nonlinear equation proposed
Kraichnan11 and Roberts12 to describe turbulent transpo
~the direct interaction or DIA equation!. Comparing the re-
sults of the numerical simulation of the transport of impur
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quently showed that they agree well with one another.
Thus, the first of the equations in the hierarchy alrea

describes the convective transport of particles well and
be employed as the free term in the renormalized equa
~10!. The substitution of the iterations of Eq.~10! into ~5!
then leads to a series of the form

DT5
u0
2t0
3 F a

11dj0
1

bj0
2

~11ej0!
3 1...G . ~14!

This series exhibits good asymptotic convergence for all v
ues of the parameter 0< j0,`. The series~14! can be re-
garded as an analog of Kummer’s method15 for improving
the convergence of the original series~9!. The first term in
~14! is obtained when the free termM[g of the renormal-
ized equation~10! is substituted into~5!. This term com-
pletely takes into account the contribution of all the form
and powers of the two-point correlators~1! to DT . The sec-
ond term in~14! describes the contribution of the remainin
fourth-order correlators etc. Of course, the choice of the k
nel K̂ in ~11! is formally arbitrary, but its apparently phys
cally substantiated choice in the form~12! is quite fortuitous.
From the physical standpoint it is clear that the contributio
to DT from the higher-order velocity correlators, which d
scribe the details of the turbulent fluctuations, should be
less significant than the contributions of the two- and fo
point correlators.

We present the explicit form of the first two terms in th
seriesDT5DT

(0)1DT
(1)1..., which is obtained as a result o

the substitution of the free termM5g and the first iteration
of Eq. ~10! into ~5! ~here we consider only the stationa
values ofDT at t→`!:

DT
~0!5

1

3 E
0

`

dpE
0

`

dt E~p,t!g̃~p,t!, ~15!

DT
~1!5

1

24 E0
`

dp pE
0

`

dq qE
21

1

dm m~12m2!

3E
0

`

dt1E
0

`

dt2E
0

`

dt3E~p,t11t2!E~q,t21t3!

3g̃~p,t1!g̃~q,t3!g̃~ up1qu,t2!. ~16!

Here p•q5pqm, and g̃(p,t,) is the Fourier transform
g(R,t) in the variableR:

g̃~p,t!5E dR exp~2 ip•R!g~R,t!. ~17!

In calculating~16! we assumed that the fourth-order veloci
correlators are Gaussian, i.e., they were assumed to be e
to the sum of all the possible products of the second-or
correlators.

Here we present the results of the calculations ofDT
(0)

and DT
(1) for the two limiting types of spectra, viz., a

d-function spectrum and a very broad~Kolmogorov-type!
spectrum:
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FIG. 1. Stationary values of turbulent diffusion coeffi
cients. The upper group of curves corresponds to
d-function spectrumE1(p,t), and the lower group cor-
responds to the Kolmogorov-type spectrumE2(p,t).
The dot-dashed curves representD̄T

(0)(j0), and the solid
curves represent the values ofD̄T

(0)(j0)1D̄T
(1)(j0). The

dotted curves giveD̄T
(m)(j0). The dashed and long

dashed curves correspond toD̄T
(s)(j0) and D̄T

(s)(`,j0).
The two-dot-dashed curves represent the combined s
consistent values ofD̄T

(sa)(j0). The levels on the right
correspond to the values ofD̄T in the limit j0→` ~fro-
zen turbulence!.
E1~p,t!5u0
2d~p2p0!exp~2t/t0!, ~18!
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< 1% of DT whenj0→`. Whenj0→0, the contribution

ua-

nu-

val-

al-

n-

ive
E2~p,t!5~u0
2/p0!0.65159x

4/~11x17/3!exp~2t/t0!,

wherex5p/p0 . In the limit x@1, we haveE2 } p25/3, i.e.,
the spectrum is of the Kolmogorov type. These results m
it possible to evaluate the accuracy of proposed methods
intermediate types of spectra.

The values ofDT
(0)(j0) andDT

(0)(j0)1DT
(1)(j0) are pre-

sented in Fig. 1. It is seen that the contribution of the four
order velocity correlators increases monotonically from 0
at j050 to 4.1% for theE2 spectrum and up to 5.5% for th
E1 spectrum atj0510. The exact values ofD̄T

(0) and D̄T
(1)

for frozen turbulence (j0→`) were obtained in Ref. 16
where they were denoted byDT

(0) andDT
(1) . For theE1 spec-

trum we haveD̄T
(0)(`)50.6222 andD̄T

(1)(`)520.0691,
i.e., the correctionD̄T

(1) amounts to 11.1% ofD̄T
(0) . For the

E2 spectrum we have D̄T
(0)(`)50.4359 and D̄T

(1)

3(`)520.0291, i.e., the correction for this broad spectru
amounts to less than 6.7%.

These results show that the main contribution toDT is
made by the two-point velocity correlators, which descr
the large-scale structure of the turbulent fluctuations. T
contribution of the four-point correlators is< 10%, in agree-
ment with the comparatively small influence of small-sc
turbulent motions on diffusion. It is noteworthy that the co
rection satisfiesDT

(1),0. This seems physically natural, sinc
the presence of small-scale eddies clearly means that no
the impurity particles are carried by the medium to gr
distances. Because the formulas are very lengthy, it is d
cult to evaluate the contributionDT

(2) of the sixth-order cor-
relators, which describe even smaller eddy motions. If, ho
ever, it is assumed that the relative rate of decrease of
terms in~14! is identical for at least the first terms, the max
mum contribution of the sixth-order correlators will b
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of all the correctionsDT
(1) ,DT

(2) ,... tends to zero.
The results obtained with the use of the nonlinear eq

tion ~13! and the iterations of the renormalized equation~10!
are physically and mathematically sounder. The direct
merical simulation of turbulent diffusion13 for the E1 spec-
trum confirms this. Therefore, we shall assume that the
ues ofDT

(0)1DT
(1) are very close to the exact value ofDT and

compare the results of the calculations ofDT using different
approximate methods specifically with these ‘‘standard’’ v
ues.

3. APPROXIMATE METHODS FOR CALCULATING DT

3.1. Use of asymptotes of the nonlinear equation (13)

The numerical determination of the solutions of the no
linear equation~13! is a fairly complicated problem. It is
most convenient to use the Fourier transform inR and the
Laplace transform int ~we takeDm50!:

g̃~p,s!5E dRE
0

`

dt exp~2st!exp̂ 2 ip•R!g~p,t!,

~19!

g̃~p,s!5Fs1
p2

4 E
0

`

dqE
21

1

dm~12m2!E
0

`

dt E

3~q,t!g̃~ up2qu,t!exp~2st!G21

. ~20!

It is easy to see that the interations~20! comprise a continued
fraction with positive terms. This means that two consecut
interations represent the exact valueg̃(p,s) with a deficiency
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(g̃,(p,s) and an excess (g̃.(p,s). Thus, g̃.(p,s)51/s
˜ f

n
n

-

of

nt

s
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ith
ca

m
,

n

D ~s!~j !5
1 E`

dpE`

dt E~p,t!exp@2D ~s!~j !p2t#.

e

c-
-

ch

int

for

to
or
e

n
t-

as

the
clearly representsg(p,s) with an excess. The substitution o
this expression into~20! gives

g̃,~p,s!5Fs1
u0
2t0p

2

3~st011!
G21

.

However, these functions are excessively rough represe
tions of the exact valueg̃(p,s). A more exact representatio
is given by the asymptoteg̃(p,s) for p@p0 :

g̃a~p,s![g̃,~p,s!52@s1~s214u0
2p2/3!1/2#21. ~21!

Substitution of~21! into ~13! yields g̃.(p,s):

g̃.~p,s!5Fs1
p2

4 E
0

`

dqE
0

`

dtE
21

1

dm~12m2!E

3~q,t!g̃,~ up2qu,t!exp~2st!G21

. ~22!

The mean valuegm5(g,1g.)/2 is a fairly good represen
tation of the exact value ofg. The substitution ofgm into ~5!
gives the following expression for the case
E(p,t)5E(p)exp(2t/t0):

DT
~m!~j0!5

t0
6 E

0

`

dp E~p!H 2@11~114u0
2t0

2p2/3!1/2#21

1F11S pt0
2 D 2E

0

`

dq E~q!E
21

1

dm

3
12m2

11~11u0
2t0

2~p2q!2/3!1/2G21J . ~23!

The calculation ofDT using this formula does not prese
any difficulties.

The results of the calculations ofDT
(m)(j0) for the spec-

tra ~18! are presented in Fig. 1~the dotted curves!. It is seen
that for both spectra the plots ofDT

(m) are close to the value
of DT

(0)1DT
(1) . For E2(p,t) a maximum difference of

.12% is observed atj0.5, and it decreases to 4% fo
j0→`. In the case of the narrow-band spectrumE1(p,t), a
maximum difference of.13% is observed forj0→`.

Thus, the comparatively simple formula~23! represents
DT quite satisfactorily, especially for frozen turbulence w
a broad spectrum. More exact approximate formulas
probably be found for the Green’s functiong(R,t) and used
to calculateDT .

3.2. Self-consistent method

We have already stated that the large-scale turbulent
tions make the largest contribution toDT . On the other hand
for such scales the Green’s function^G(1,2)& is described
well by the diffusion formula ~8!, in which the sum
D5Dm1DT.DT must be taken instead ofDm . Therefore,
it is natural to employ the expressio
g̃(p,t)5exp(2DT

(s)p2t) with the as yet unknown diffusion
coefficientDT

(s)(j0) as g̃(p,t) in ~15!:
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~24!

The expression~24! is a nonlinear equation for finding th
self-consistent diffusion coefficientDT

(s)(j0). This expres-
sion was apparently first proposed in Ref. 17.

The results of the calculations ofDT
(s)(j0) are presented

in Fig. 1 ~dashed lines!. The maximum departure from
DT
(0)1DT

(1) for the d-function spectrumE1(p,t) amounts to
15% at j053, and then the difference decreases~9.5% at
j0510 and 4% forj0→`!. The difference for the broad
spectrumE2(p,t) is greater: 19%, 17%, and 15%, respe
tively for j053, 10, and`. Such accuracy is perfectly ac
ceptable for many cases.

3.3. Combined self-consistent method

A more exact result is provided by the method in whi
the diffusion Green’s functiong̃(p,t)5exp(2DT

(sa)p2t) is
used forp < p* and the asymptote~21! is used forp > p* .
ForE(p,t) } exp(2t /t0) such a combined method gives

DT
~sa!5

t0
3 E

0

p
* dp

E~p!

11DT
~sa!p2t0

1
2t0
3 E

p
*

`

dp
E~p!

11~114p2u0
2t0

2/3!1/2
. ~25!

Continuity of the combined Green’s function at the po
p* gives

p*5@~u0
2t023DT

sa!/3~DT
~sa!!2t0#

1/2. ~26!

The results of the calculations based on this method
E2(p,t) are given in Fig. 1~the two-dot-dashed curve!. It is
seen that this method gives values that are closer
DT
(0)1DT

(1) than does the pure self-consistent method. F
the d-function spectrumE1(p,t) this method is as accurat
as the pure self-consistent method.

3.4. Self-consistent method with a time-dependent diffusion
coefficient

The stationary values ofDT(j0) can also be calculated
as thet→` limit of the time-dependent turbulent diffusio
coefficientDT(t,j0). A self-consistent method for calcula
ing DT(t,j0) follows from ~5!, if a diffusion Green’s func-
tion with a time-dependent diffusion coefficient is taken
the Green’s function. Ultimately we obtain

DT
~s!~ t,j0!5

1

3 E
0

`

dpE
0

t

dt E~p,t!

3expF2E
0

t

dt8DT
~s!~t8,j0!p

2G . ~27!

If we takeDT
(s)(t,j0)[DT

(s)(j0) here and lett→`, Eq. ~27!
transforms into~24!. The coefficientDT

(s)(t,j0) takes a sta-
tionary value, in the limitt@t0 for j0!1 or t@t051/u0p0
for j0@1, i.e., the process is determined by the smaller of
characteristic times.
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The results of the calculations ofDT
(s)(`,j0) are given in

s

-

f

e

n

m

s

th
d
ng

th
re

3. For turbulence characterized by a broad spectrum, the
(sm) lf-

for
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2

Fig. 1 ~the long-dashed curve!. It is seen that the curve
practically coincide withDT

(0)1DT
(1) at j0 < 1. Then the dif-

ference increases monotonically and reaches 23% atj0510
for the d-function spectrumE1(p,t) and 15% for the broad
spectrumE2(p,t). In the limit j0→` the differences are
even greater, being.48% and 17%, respectively. A com
parison of Eqs. ~24! and ~27! reveals thatDT

(s)(t,j0)
.DT

(s)(j0). The figure confirms this. The values o
DT
(0)1DT

(1) lie between the plots ofDT
(s)(`,j0) and DT

(s)

3(j0), which can be regarded as the upper and low
bounds for the real turbulent diffusion coefficientDT(j0). In
addition, the mean valueDT

(sm)5(DT
(s)(`,j0)1DT

(s)(j0))/2
of these coefficients representsDT

(0)1DT
(1) with very good

accuracy. The difference between this mean a
DT
(0)1DT

(1) for the broad spectrumE2(p,t) amounts to 3%,
1.5%, and 1.2% atj055, 10, and̀ , respectively, i.e., in this
caseDT

(sm) is more accurate thanDT
(m) . However, the differ-

ence for thed-function spectrumE1(p,t) is greater and
amounts to 0.1%, 7%, and 25%, respectively, at the sa
values ofj0 . For this spectrumDT

(s)(j0) is more accurate for
j0.10.

4. CONCLUSIONS

A comparison of the methods considered above lead
the following conclusions.

1. The method based on the numerical solution of
nonlinear equation~13! and iteration of the renormalize
equation~10! is the most accurate method for calculati
turbulent diffusion coefficients.

2. Of all the approximate methods considered,
method which is based on the use of an approximate exp
sion for the solution of the nonlinear equation~13! and gives
~23! is the most accurate and preferable method.
484 JETP 84 (3), March 1997
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mean valueDT of the stationary and nonstationary se
consistent values ofDT also representsDT(j0) with good
accuracy.

4. All the methods considered can be generalized
calculating the nonstationary diffusion coefficien
DT(t,j0). For short timesD̄T(t,j0).t/3t0 is a good approxi-
mation up tot/t0 < j0 for turbulence withj0!1 and up to
t/t0 < 1 for j0@1. We recall thatt051/u0p0.R0 /u0 . For
j0!1 the quantityDT(t,j0) achieves a stationary value a
t/t0.2–3, and forj0@1 it achieves a stationary value a
t/t0.10–20.
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Investigation of the turbulent mixing of thin layers of materials of different density

Al
during the laser acceleration of flat multilayer targets in the Iskra-4 facility
V. A. Andronov,1) S. A. Bel’kov, A. V. Bessarab, I. N. Voronich, S. G. Garanin,
A. A. Gorbunov, V. N. Derkach, G. V. Dolgoleva, A. I. Zaretski , V. M. Izgorodin,
B. N. Ilyushechkin, G. A. Kirillov, G. G. Kochemasov, Yu. V. Kuratov, V. I. Lazarchuk,
V. A. Lebedev, V. M. Murugov, L. S. Mkhitar’yan, A. V. Okutin, S. I. Petrov,
A. V. Pinegin, N. N. Rukavishnikov, A. N. Razin, A. V. Ryadov, A. V. Senik,
N. A. Suslov, S. A. Sukharev, and V. A. Tokarev

~Submitted 19 April 1996!
Zh. Éksp. Teor. Fiz.111, 882–888~March 1997!

The results of the first experiments devised to investigate the mixing of thin layers of Al and Au
during the laser acceleration of flat three-layer targets of Si~5 mm!, Al ~2 mm!, and Au
~0.05–0.26mm! by radiation converted to the second harmonic from the Iskra-4 iodine laser with
an intensity of 431013 2 731013 W/cm2 (t0.5;1 ns), which acts on the Si side of the
target. A method for detecting the occurrence of mixing is developed. It is established that under
the experimental conditions the thickness of the mixing region is at least;0.15mm. The
results of a theoretical analysis of the evolution of the disturbances leading to mixing are
presented. ©1997 American Institute of Physics.@S1063-7761~97!01003-2#

The turbulent mixing of thermonuclear fuel with the ma- laser radiation of suitable intensity, a plasma of Au and
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terial of the target capsule compressing it is a serious p
lem in the intertial-confinement thermonuclear fusion p
gram. This process leads to a significant increase in
energy of the laser radiation needed to effect the ignition
laser targets.1,2

Mathematical-physical models of the mixing proces3

which have been experimentally confirmed in shock-tu
experiments,4 are presently known. However, the accele
tion of the target capsule by laser radiation has some spe
features, which preclude extrapolating the existing model
the case of targets for laser-driven thermonuclear fus
without experimental verification. For this reason, specia
designed experiments involving the laser acceleration
such capsules or their flat analogs would be of interest.

This paper presents the results of the first experime
performed to investigate the mixing of thin layers of Al an
Au when three-layer flat Si–Al–Au targets are accelerated
the Iskra-4 facility.5 The methodical approach to performin
the experiments under consideration, whose main feat
were proposed in Refs. 6 and 7, was implemented in
following manner~see the schematic representation in F
1!. A Si–Al–Au target was irradiated from the Si side by
pulse with wavelength l50.66mm, duration tp
'0.8–1.2 ns, and intensityI p'0.5310142131014W/cm2,
which we shall henceforth call the power pulse. The thic
ness of the silicon layer was selected so that the ther
wave would not manage to reach the Al layer during
period of action of the power laser radiation, i.e., the alum
num and gold layers were accelerated in the ‘‘cold’’ state~if
their heating by the x radiation of the plasma corona and
shock wave is disregarded!. The conditions for the develop
ment of Rayleigh–Taylor instability, which results in turb
lent mixing, obtained on the Al–Au interface because of
large difference between the densitiesr of these materials
and the direction of acceleration of the materials realiz
(g•¹r,0).

When the mixture of these materials formed is heated
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ions can be obtained, and the occurrence of mixing can
detected by observing the appearance of the x-ray line e
sion of those ions. For this purpose, a diagnostic pulse w
durationtd'0.3–0.5 nm and intensityI d',1013 W/cm2 is
supplied coaxially with the power pulse to the rear side
the target in the experiments. The delay of the diagno
beam relative to the power beam was selected so that
mixing process would manage to develop. In the experime
under consideration this delay amounted toDt;0.86 ns.

In the absence of mixing a possible reason for the
pearance of the Al line emission may be that a sufficien
thin layer of Au is ‘‘burned through’’ because of the pre
ence of ‘‘hot’’ spots in the intensity distribution over th
cross section of the diagnostic beam. However, even w
mixing occurs, the presence of these ‘‘hot’’ spots must
taken into account when the experiment is compared w
theoretical estimates of the time for the appearance of the
x-ray line emission. To monitor the possibility of a manife
tation of the effect just indicated on the target, an additio
beam, which we shall henceforth call the control beam, w
directed onto the target from the gold side. The design de
of this beam relative to the power beam was;1.6 ns, and
the spot was located at a distance of 4 mm from the diagn
tic beam. Both spots were simultaneously within the field
vision of the diagnostic instrument. It was assumed that
laser flux densities and the intensity distributions in the
agnostic and control spots are similar. An identical delay
the appearance of the Al x-ray line emission relative to
beginning of the diagnostic and control laser radiation p
vides evidence that the Au layer is burned through at the
points of the respective spots. The appearance of the puls
Al x radiation from the diagnostic spot before the corr
sponding x-ray pulse from the control spot~or the absence o
the latter pulse! can indicate the occurrence of mixing.

The target fabrication technique ensured a specular
face on the Al and Au layers with a roughness no grea
than 0.05mm.8 The roughness of the Si surface was 0.1–

4854$10.00 © 1997 American Institute of Physics
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mm. In the experiments described here the thickness of th
layer was 4.3–5mm, the thickness of the Al layer was 1.7
2.0mm, and the thickness of the Au layer varied in the ran
0.05–0.3mm.

The temporal parameters of the laser radiation~the shape
and duration of the pulses! were determined using an SE´R
type electro-optic device detector9 with a time resolution of
;40 ps. The values of the energy in the power, diagnos
and control beams were measured using TPI-2A calor
eters. The measurement error was615%. The energy of the
laser radiation absorbed by the target was also measure
the experiments. Plasma and optical calorimeters10 placed
within the vacuum interaction chamber were used for t
purpose.

The dimensions of the irradiation spots of the pow
diagnostic, and control spots and the nature of the distr
tion of the intensity of the laser radiation in them~the pres-
ence of hot points! were evaluated using x-ray pinhole cam
eras.

The x-ray diagnostic system provided for the record
of the following: the time-integrated x-ray line emissio
spectrum of the plasma in the 0.04–0.25 keV and 1.4–
keV ranges using spectrographs on a diffraction grating
a KAP crystal; the x-ray line emission near the HeaAl line
(hn'1.6 keV) on a background of the x emission in the A
M band with a time resolution of;150 ps; the x-ray emis
sion continuum of the plasma in the 1–5 keV range with
time resolution of;50 ps.

The shape and time sequence of the power, diagno
and control laser pulses are presented in Fig. 2.

The intensity distribution in the power beam was fair
smooth. At the same time, numerous hot microregions w
observed on the pinhole images of the diagnostic and e
cially the control irradiation spots. The transverse dime
sions of the control spots were 1.5–2 times greater than
dimensions of the diagnostic beam on the target. This cau
the corresponding mean intensities in the beams to diffe
a factor of 2–3. The transverse dimensions of the power
diagnostic beams on the target were similar.

The flux density of the laser radiation in the power be
varied in the rangeI p;531013–1014 W/cm2, the duration
varied in the range 0.83–1.1 ns, and the diameter of the

FIG. 1. Schematic representation of the mixing experiments: power~1!,
diagnostic~2!, and control~3! beams.

486 JETP 84 (3), March 1997
Si

e

c,
-

in

s

,
u-

.5
d

a

ic,

re
e-
-
he
ed
y
d

ot

varied in the range 320–520mm. The intensity of the diag-
nostic beam fell within the range 2•1013–4•1013 W/cm2,
and the intensity of the control beam was betwe
0.731013 and 231013 W/cm2 when the pulse duration wa
0.3–0.5 ns. The corresponding spot diameters were 390–
mm and 500–800mm. The absorption factor of the energy o
the power beam in the target wasKa'0.9 in these experi-
ments.

Let us turn to the results from recording the x-ray em
sion spectrum of the plasma formed on the rear side of
target. We, first of all, note that the Al line emission in th
0.04–0.25 keV range was recorded on the time-integra
spectrograms on a background of the x-ray emission of g
from both the diagnostic and control spots when the thi
ness of the gold layer was up to 0.15mm. As for the control
spot, this is evidence either that Au is burned through at
hot points or that a layer of Au of thickness 0.15mm man-
ages to vaporize within the duration of the control pulse.

The results of the temporal recording of the x radiati
of the plasma in the range of quantum energies n
hn;1.5 keV for thicknesses of the gold layer on the targ
equal to 0.1 and 0.16mm are presented in Fig. 3. In eac
figure the spectral photochronograms are presented on
left, and the plots of the time dependence of the intensity
the x-ray emission in the Au continuum and the HeaA1 line
(l50.776 nm) obtained as a result of their treatment
presented on the right. The duration of the emission of
Au continuum at half-height corresponds approximately
the duration of the diagnostic and control laser puls
(;0.5 ns), and the temporal distance between them
;0.7 ns, which corresponds to the difference between
arrival times of the diagnostic and control beams on the r
side of the target. In this case the temporal shape of the
emission approximately repeats the shape of the pulse o
Au x-ray continuum.

When the thickness of the gold layer is 0.1mm, Al line
emission is observed for both the diagnostic and con
beams, simultaneously with the Au emission. However,

FIG. 2. Temporal irradiation diagram of targets in one of the experime
power ~1!, diagnostic~2!, and control~3! beams.
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FIG. 3. Spectral photochronograms an
plots of the time dependence of the intensi
of the x-ray emission of gold~solid line! and
aluminum~dotted line!. The numbers1 and
2 label the spectral bands corresponding
the continuous x radiation from the diagnos
tic and control spots; the upper part of th
figure corresponds todAu50.1mm, and the
lower part of the figure corresponds t
dAu50.16mm.
the control beam this finding is most likely attributable to the
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The shape of the diagnostic pulse was given by a Gaussian
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rapid burning through of the Au at the hot points, who
presence was evidenced by the pinhole image of the exp
ment. At the same time, the fairly good synchronism of
Al and Au x-ray emission pulses for the diagnostic beam
be attributed to the occurrence of their complete mixing a
result of acceleration of the target by the power laser ra
tion already at the arrival time of the diagnostic pulse.

Considerable synchronism of the Au and Al emissi
pulses in the diagnostic spot is also observed when the th
ness of the gold layer is 0.15–0.16mm. At the same time,
there is no Al emission from the control spot. Such a pict
definitely attests to the presence of a region of mixing of
and Au of thickness 0.15–0.16mm at the arrival time of the
diagnostic pulse.

Preliminary calculations of the development of turbule
mixing when a three-layer target is accelerated were p
formed using physical models3 and the SNDP program.11

The shape of the power laser pulse was approximated in
calculations by an isosceles trapezium with a duration at
basetb52 ns and rise and decay timeste50.6 ns. The in-
tensity at the maximum was equal toI p57.531013 W/cm2.
The diagnostic pulse was incident on the rear~gold! side of
the three-layer target with a delay of the pulse maxim
relative to the beginning of the power pulseDt51.46 ns.
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line profile with a duration at half-maximumt0.550.45 ns
and a peak intensityI d5331013 W/cm2. The thicknesses o
the Si ~5 mm! and Al ~2 mm! layers corresponded to th
experimental values. The thickness of the Au layer was v
ied from 0.15 to 0.3mm.

The following physical processes were taken into a
count in the calculations: the gas dynamics, the electro
and ionic heat conduction, the nonequilibrium spectral dif
sion of the x radiation, the relaxation of the electron and
temperatures, and the kinetics of the ionization of the mu
component high-Z plasma. The electronic thermal condu
tance was calculated with consideration of the heat flux l
iting. The limiting factor was set equal tof50.1. The
absorption of the laser radiation was taken into account w
consideration of the inverse bremsstrahlung mechanism o

Figure 4 shows the motion of the interface between
Au and Al layers in the calculation without mixing. Up t
approximatelyt50.5 ns the motion of the boundary is gov
erned by the removal of the thin gold layer under the act
of the hard x radiation in the silicon laser corona~mainly the
line emission in the siliconKa region!. The Au and Al den-
sities are practically equalized, and no mixing appears. Th
at the moment when the shock wave appears, the inter
accelerates abruptly, and a density jump forms. Rayleig

487Andronov et al.
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Taylor instability, which results in mixing of the layers
should develop after this moment.

Figure 5 presents a density profile and the distribution
the mass concentrations of gold and aluminum calcula
with consideration of mixing att51.4 ns, which corre-
sponds approximately to the intensity maximum of the di
nostic pulse for a gold thickness equal to 0.15mm. It is seen
from the calculation that because of the rapid removal of
gold layer as a result of its being heated by the hard x ra
tion of the Si laser corona, the mixing zone for the expe
mentally realized acceleration values does not manag
cover the entire layer. At the time represented in Fig. 5
mass of the mixed gold layer corresponds approximately
half of its initial mass. Similar behavior of the mixing zone
observed in the calculation with a thickness of the gold la
equal to 0.3mm. The comparison of the calculated emissi
pulses in the HeaAl lines in calculations with different thick-
nesses of the gold layer and of the background emissio
the gold plasma is more striking.

Figure 6 presents calculated plots of the time dep
dence of the emission intensity of the Al lines obtained in
calculations with a thicknesses of the gold layer equal to 0
and 0.3mm ~curves1 and2, respectively!. The figure also
presents the emission intensity of the gold plasma~curve4!
in the spectral range near the quantum energy of the line
helium-like aluminum, as well as the diagnostic laser pu
~curve 3!. The delay of the emission of the gold plasm

FIG. 4. X 2 t diagram of the motion of the interface between the gold a
aluminum layers and diagrams of the velocityV and accelerationg of the
interface calculated without mixing.

FIG. 5. Distribution of the density and the mass concentrationsCAu,Al of
gold and aluminum in a calculation with mixing for a gold layer thickne
equal to 0.15mm at the timet51.4 ns.
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relative to the diagnostic pulse is clearly seen~it equals ap-
proximately 100 ps!. For a thin layer of gold its emission in
the continuum spectrum and the emission of the alumin
lines practically coincide along the time scale~the delay
amounts to;50 ps, which is appreciably smaller than th
temporal resolution of the electro-optic device detector!. A
significant delay~about 0.2 ns! of the beginning of the emis
sion of the aluminum lines relative to the Au emission in t
continuum spectrum is observed for the thick gold layer.

A comparison of the Au emission and the aluminu
lines in the experiments with gold layers of different thic
ness suggests the appearance of such a delay (;50 ps) for a
layer thicknessdAu'0.15mm; however, the insufficiently
high temporal resolution of the detector precludes draw
an unequivocal conclusion regarding its presence and m
nitude. As the calculations show, when the thickness of
gold layer is increased, reliable detection of this delay can
expected.
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FIG. 6. Calculated time dependence of the emission in the HeaAl lines from
the rear side of the target for different thicknesses of the gold layer1
2 dAu50.15mm, 2 2 dAu50.3mm), of the diagnostic laser pulse~3!, and
of the x radiation in the continuous spectrum of the gold plasma~4!.

488Andronov et al.



Creation of ordered structures in a classical thermal plasma containing macroparticles:

experiment and computer simulation

V. E. Fortov, V. S. Filinov, A. P. Nefedov, O. F. Petrov, A. A. Samaryan, and
A. M. Lipaev

Science and Research Center for the Thermal Physics of Pulsed Excitations, Russian Academy of Sciences,
127412 Moscow, Russia
~Submitted 17 June 1996; resubmitted 3 October 1996!
Zh. Éksp. Teor. Fiz.111, 889–902~March 1997!

We have compared experimental measurements of ordered structures in a thermal plasma
containing macroparticles of CeO2 at atmospheric pressure and a temperature around 1700 K with
the results of numerical Monte Carlo calculations for the Yukawa model. We describe
several distinctive features of the way the experiments were done, including how the ordered
macroparticle structures were detected. We discuss a theoretical model of the behavior
of an equilibrium system of charged macroparticles in a plasma and the effective interaction
potential between them. Good agreement between the experimental and numerical results is noted,
and possible reasons for the observed discrepancies are discussed. ©1997 American
Institute of Physics.@S1063-7761~97!01103-7#

1. INTRODUCTION HereTg is the plasma temperature,^r &5(4pnp/3)
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A characteristic of plasmas with macroparticles~often
referred to as a dusty or aerosol plasma, or a plasma w
condensed dispersive phase! is the fact that the particle
~whose sizes can vary from hundredths of a micron up
several tens of microns! effectively interact with the elec
trons and ions, and thus significantly affect the properties
the plasma. When these particles are introduced into
plasma, or just appear in it, e.g., as the result of conde
tion, they are charged by the electron and ion currents,
also by electron emission. The latter process can lead
positive electric charge; in this case, particles that emit e
trons can raise the electron density in the gas phase and
its electrical conductivity. If, however, the particles trap ele
trons, then the opposite effect occurs.1–4

One of the parameters used to describe the plasma i
so-called interaction parametergp , which is the ratio of the
average Coulomb energy of a particle to its average ther
energy. A distinguishing feature of a plasma with macrop
ticles is the fact that the chargeZp of a particle can have
extremely large values~of order 102–105 electron charges!.
As a result, the interaction parametergp , which depends on
Zp
2 , can greatly exceed unity, which implies that the resu

ing plasma is highly nonideal. Theoretical calculations of
equilibrium properties of such a plasma show that under
tain conditions strong interparticle correlations lead to
appearance of ordered structures in the distribution of m
roscopic particles analogous to structures in liquids
solids.5 Electrons and ions in this case remain an ideal gas
in a Debye plasma.

Here we will conduct a detailed investigation of order
structures, including the conditions for their formatio
within the framework of the single-component plasma a
the Yukawa models.5–7

For a one-component plasma the interaction poten
between particlesU(r ) is Coulombic, and the plasma the
modynamics are characterized by a parametergp of the form

gp5~Zpe!2/^r &kTg .
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mean distance between particles, andnp is the particle den-
sity. The Yukawa model includes the effect of screening b
background charge, which leads to an interaction potentia
Debye–Hu¨ckel type. The effect of screening is determin
by the ratiok5^r &/r D ~wherer D is the Debye radius!. The
model of a one-component plasma is a limiting case of
Yukawa model aŝr &/→r D0.

Note that these models treat a classical quasineutral
tially unbounded plasma, for which critical values of the i
terparticle interaction parameter are obtained by numer
simulation; these critical values correspond to pha
transitions.8,9 Thus, in a one-component plasma the thre
dimensional system forms a regular crystalline structure
values ofgp larger thangc5171. For small values ofgp

(gp,4) the plasma is in a gaslike state~see Ref. 8!.
One of the first experimental observations of crys

structures was in systems of micron-size charged particle
iron and aluminum confined by a certain configuration of A
and DC electric fields.10 Later investigations revealed Cou
lomb crystals of atomic ions in traps of various kinds, f
example in Penning traps.11 For macroscopic particles with
large negative charge (;104e), crystalline states are ob
served when the particles are introduced into the bound
space-charge layer of a high-frequency discharge12 in which
equilibrium is established between gravitational and elec
static forces.13–16

In practically all the experimental papers known to u
ordered structures are observed in clouds of space ch
containing from a hundred to a few thousand charged p
ticles. The interaction potential between particles, who
form is found to have a strong effect on the phase transiti
in the plasma, can in this case differ significantly from t
interaction potential in a classical quasineutral plasma.
plasma structures of this kind, theory also predicts t
boundary conditions have a strong effect on the phase s
of the plasma.17 Thus, for example, a cloud of particles in
spherical trap separates into spherical layers. In place
sharp phase transitions, the system undergoes a gradual

4898$10.00 © 1997 American Institute of Physics
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to an intermediate state characterized by the coexistence
liquid and solid phase, and finally to a solid state.18

For a system of macroparticles in the boundary layer
a high-frequency discharge, a crystalline structure is
served for 2.1+104,gp,1.63105 and 0.6<k<4.8 ~Ref.
14!, or gp;106 for k;9.8 ~Ref. 16!. However, numerical
calculations using the Yukawa model predict that for cr
tallization we requiregp'99 for k50.7, 160,gp,850 for
1,k,5, andgp54.83104 for k510 ~Ref. 9, 19!. In Ref.
20 this considerable jump in the value ofgp ~by roughly two
orders of magnitude! was explained by Brownian motion o
the particles. The corresponding model calculations lead
values ofgp'1.63104 for k54. Nevertheless, a conside
able difference remains~a factor of;10! in the value of
gp , which is assigned to perturbations of the external hi
frequency field.

Thus, the study of phase transitions in systems of p
ticles confined in traps requires both inclusion of the eff
of the external field and the choice of an adequate part
interaction potential. All these factors make the problem
numerically simulating phase transitions in these system
complicated that present-day efforts have met with only i
lated successes.

In this paper we study experimentally and theoretica
the appearance of ordered structures in a weakly ion
thermal plasma containing charged macroparticles unde
ing practically laminar flow at atmospheric pressure and te
peratures of order 2000 degrees.21 Our theoretical analysis is
based on numerical calculations using the Monte Ca
method to solve the Yukawa model. The rather large size
the region of plasma formation~a volume of;10 cm3, cor-
responding to macroparticle numbers of order 108 of densi-
ties;107 cm23!, together with the uniformity of the plasm
and the absence of external electric and magnetic fields
low us to minimize the influence of boundary conditions
the phase transitions in the plasma and thereby correctly
lyze the experimental results within the framework of t
Yukawa model.

2. EFFECTIVE INTERACTION OF MACROPARTICLES IN A
PLASMA

The problem of correctly constructing an effectiv
pseudopotential for the interaction of macroparticles in
low-temperature plasma is extremely difficult, and up to n
has not been solved. An analogous problem arises in
theory of suspensions of charged particles as well.22,23Many
theoretical papers begin their investigations of the proper
of these systems within the framework of the so-cal
primitive model. In this model the interaction betwee
charged macroparticles is described by a hard-sphere C
lomb potential, for which we haveVmm(r )5` for r<2Rp

while for r.2Rp

Vmm~r !5
~Zpe!2

r
, ~1!

whereZp is the charge on a macroparticle and 2Rp is its
characteristic size.
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ticles ~electrons and ions! is described by a potentialVmc

such thatVmc(r )5` for r<Rp1sa , while for r.Rp1sa

Vmm~r !5
~Zpqa!e2

r
, ~2!

whereqae is the charge on a microparticle of typea, and
sa is its characteristic size~for example: a51 and
qa521 for electrons,a52 andqa.0 for ions!.

The interaction between microparticles is described b
potentialVag for which Vag(r )5` for r<sa1sg , while
for r.sa1sga

Vag~r !5
~qaqa!e2

r
. ~3!

The macroparticle, electron, and ion densitiesnp , n1 ,
andn2 should satisfy the condition of electrical neutrality:

Zpnp1q2n25q1n1 . ~4!

Because of the strong charge and density asymme
Zp@q1 , Zp@q2 , q1'q2 , np!n1 and np!n2, n2q2
!n1q1, and also the strong interaction between particles,
primitive model is very difficult to use, both in constructin
a first-principles analytic theory and in numerical simu
tions. At this time the most promising theoretical approach
are based on describing the interaction between macro
ticles in terms of effective pseudopotentials that arise fr
averaging~integration! over microparticle coordinates. On
of the most natural ways to introduce effective pseudopot
tials for interaction between macroparticles is to generate
effective Hamiltonian by using the expression24

Heff52kT lnK expS 2
H

kTD L , ~5!

whereH is the full Hamiltonian of the primitive model,k is
Boltzmann’s constant, and the brackets^ & denote canonica
averaging over coordinates and momenta of the microp
ticles. The effective HamiltonianHeff can have the following
form:

Heff5Km1Umm~$Rj%!1F~@rc~r !;$Rj%#!, ~6!

whereKm is the macroparticle kinetic energy,

Umm~$Rj%!5(
i, j

Vmm~ uRi2Rj u/2R!

is the potential energy of the interaction between macrop
ticles based on the potential~1!, and$Rj% is the set of coor-
dinates that describe the configuration of the macropartic
In this expression, the functionalF describes the free energ
of the microparticles in the external field of the macrop
ticles. It is known23 thatF can be represented as a function
of the local charged-particle densityrc(r ), which depends
parametrically on the positions of the macroparticles$Rj%.
The functionalF can be written in the form of a sum of fou
terms as follows:

F5Fid1Fext1Fcc1Fcor, ~7!

where
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Fext5E dr rc~r !Vext~r ,$Rj%!5(
j
E dr rc~r !

3Vmc~ ur2Rj u!, ~9!

Fcc5
~q1e!2

2 E dr8dr
rc~r !rc~r 8!

ur2r 8u
; ~10!

here lc is the thermal wavelength of the microparticle
Fext describes the interaction between micro- and macro
ticles, andFcc is the contribution of the average field arisin
from the Coulomb repulsion between electrons. Unfor
nately, no explicit expression is known for the termFcor that
describes the correlation between macroparticles; there
various approximations are used in the literature. One ra
promising approximation is the expression

Fcor5kTE dr rc~r !COCP
exc ~T,rc~r !!, ~11!

whereCOCP
exc (T,rc(r )) is the contribution to the free energ

per unit volume for the one-component plasma model, wh
is known from Monte Carlo calculations. It is obvious th
the functionalF depends nonlinearly on the coordinat
$Rj%.

In Refs. 24 and 25, the authors minimize the functio
F and find the effective interaction potential between m
roparticles by using the numerical Carparrinello meth
Their calculations showed that over a wide range of temp
tures and densities the two terms on the right side of Eq.~6!,
which depend on the macroparticle coordinates and wh
describe many-particle interactions, can be reliably appro
mated by a sum of pairwise additive terms, each of which
turn is well approximated by the Yukawa potential. Thus,
can use a screened Coulomb potential of the Debye–Hu¨ckel
type as an effective pairwise potential to describe the in
action between macroparticles, in which the characteri
scale of the screening and the interaction parameter ha
more complicated dependence on density and tempera
than in the Debye case. These dependences are differen
different phase states of the system.7,24–26

By virtue of the latter fact, a first-principles investigatio
of the phase diagram requires very careful and extensive
culations. The best approach is probably to use specia
designed numerical methods combined with comparis
and analysis of experimental data. In this paper, the mo
we adopt, which matches the conditions of the experime
is one in which the macroparticles interact through
screened Coulomb potential~the Debye model or the
Yukawa model!:

U~r !5
~Zpe!2exp~2r /r D!

r
. ~12!

Justification for our use of the Yukawa model is al
provided by analysis of the experimental data given
Ref. 21.
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In the literature, authors have used various phenome
logical criteria to define the transition of a system to a cr
talline state.7,23,25–32 The best-known criterion is that o
Lindemann,26–28 according to which a solid phase mel
when the ratio of the mean-square displacement of a par
to the mean interparticle distance begins to exceed 0.1~al-
though for different physical systems this number sometim
varies between 0.05 and 0.2!. Other criteria are formulated in
Refs. 29–32. For example, it has been shown that the
maximum of the structure factorS(q) of a liquid on its crys-
tallization curve, where

S~q!511npE dr @g~r !21#exp~2 i ^q–r &!, ~13!

is constant and equal to 2.85. Hereg(r ) is the binary corre-
lation function, which is the probability for finding particle
separated by a distancer5ur u.

A simple criterion for crystallization based on the bina
correlation function can be formulated by considering t
ratio of the minimumm valuegmin to the maximum value
gmax of this function:

27–29

Rg5
gmin
gmax

. ~14!

The transition from liquid to crystalline state corresponds
values of this parameter equal to 0.2.

4. EXPERIMENT

Our experimental setup, which includes a generator
plasma and diagnostic apparatus for determining the par
eters of the particles and the gas, is described in deta
Refs. 21, 33. The source of plasma~a two-flame propane-ai
Mecker burner! creates a laminar jet of plasma with un
formly distributed parameters~temperatures, electron and io
concentrations! in the region interior to the jet. The pressu
of the combustion products is atmospheric. The diamete
the plasma jet was 25 mm, with a velocityVg that varied in
the range 2–3 m/s. The concentrations of electrons and
in the plasma are in the range 109–1010 cm23, with equal
electron and ion temperatures:Tı5Te5Tg . Spectrometer
measurements of the particle temperature34 show that the lat-
ter is close to the gas temperature (Tp5Tg).

Our object of study was a weakly ionized therm
plasma with CeO2 macroparticles. Cerium dioxide was cho
sen as a material for the macroparticles both because o
chemical inertness and because of the small amount of w
needed to liberate thermal electrons~;2.75 eV, see Ref. 35!
from the surface of heated CeO2 particles. Particles of ce
rium oxide powder contain impurities of alkali metal com
pounds. As a result, spectral measurements in the plasm
detected the presence of sodium atoms with a low ioniza
potential. Thus, the basic components of the plasma w
charged particles of CeO2, electrons, and singly-charge
Na1 ions.

In order to study Coulombic ordered structures in th
plasma it is necessary to have data both on the par
charge and on the basic plasma parameters. Our experim
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FIG. 1. Sketch of optical measurements of spat
macroparticle structures.
determined the particle sizes, their densities, the plasma tem-
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perature, the local electron density, and the density of
dium ions.21,33,36–38

Plasma diagnostics were carried out both by probe
optical methods. The densityni of positive alkali metal ions
was measured by the electric probe method.36,37The method
used to determine the local electron densityne was based on
measuring the currentI and the longitudinal electric field
intensityE in the plasma.36 The temperature of the gas an
the density of alkali metal atoms were measured by tra
tional methods: the generalized reversal method and
method of total absorption.33

In order to determine the average~Sauter! diameterDp

and the macroparticle densitynp in the plasma jet we used
novel laser method.38 The method is based on measurem
of the extinction~attenuation of light! in a dispersive me-
dium at small scattering angles, and is designed to determ
the characteristics of particles in the size range 0.5–15mm.
Measurement errors of the extinction of about 2% give r
to errors in finding the particle sizes of about 3%, and err
in the density of about 10%.

In order to measure the spatial positions of the mac
particles we used a laser time-of-flight detector.21 The mea-
surement volume for the time-of-flight detector is formed
focusing the beam of an argon laser (l 5 0.488mm) in a
given region of the plasma jet~Fig. 1!. The pulses of scat
tered light from individual particles are converted by a ph
tomultiplier into electric signals. These signals are proces
to calculate the correlation functiong(r ), where r5Vpt.
Here Vp is the average velocity of the particles (Vp'Vg)
and t is the time. In what follows, the binary correlatio
functiong(r ) will be used to analyze the spatial structure
the particles.

In measurements with CeO2 particles, the particle den
sity np varied in the range (0.2–5.0)3107 cm23, the tem-
perature of the plasmaTg in the range 1700–2200 K. Con
sequently, the ion densityni varied from 0.431010 cm23 to
4.031010 cm23, and the electron densityne from
2.531010 cm23 to 831010 cm23. The average diamete
Dp of a CeO2 particle is about 0.8mm.

The measurements of the spatial structures of macro
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jet at room temperature. In this case, the interior flame of
burner contained only air and CeO2 particles. This system
simulates a plasma with a random~chaotic! spatial distribu-
tion of macroparticles~a gaslike plasma!.

Figure 2 shows typical binary correlation function
g(r ) for CeO2 particles in an aerosol jet at room temperatu
(Tg>300 K) and in a plasma ~Tg52170 K and
Tg51700 K!. It is easy to see that the correlation functio

FIG. 2. Binary correlation functiong(r ) for CeO2 particles in an air jet at
room temperatureTg>300 K andgp50 ~a!, in a plasma (Zp5500) at a
temperatureTg52170 K, gp540 and k53.5 ~b!, and at a temperature
Tg51700 K, gp5120, andk51.6 ~c!.
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Tg52170 K and particle densitynp52.0310 cm are
practically the same~Figs. 2a, b!. We therefore conclude tha
particles in the plasma are weakly interacting and the form
tion of ordered structures is impossible. This is also c
firmed by independent diagnostic measurements~probe and
optical! made in the plasma. Thus, the values of the inter
tion parametergp computed from the measurement resu
and the parameterk5^r &/r D that takes into account Deby
screening, are respectively 40 and 3.5.

At a plasma temperature of about 1700 K and Ce2
particle density of order 107 cm23, analysis of the binary
correlation functiong(r ) reveals short-range order, which
characteristic of liquids~Fig. 2c!. That is, the particles form
an ordered structure.21 Under these conditions the ion densi
(ni54.23109 cm23) is roughly an order of magnitud
lower than the electron density (ne57.231010 cm23). The
charge of the particles obtained from the quasineutrality c
dition in the form Zpnp5ne (ni!ne) is positive, with a
value of about 103e. This value is accurate to within a facto
of 2, which can be explained by the thermal emission
electrons from the particle surface.1,2,35 The parametersgp

andk obtained from these diagnostic measurements had
ues . 120 and 1.6 respectively, indicating a system
weakly interacting particles. According to criteria of Refs.
7, 19, this implies that a gas–liquid phase transition is
curring.

5. NUMERICAL RESULTS

The plasma with macroparticles was numerica
simulated using the Monte Carlo method.39 For the
calculations the following parameters for the plasm
with CeO2 particles were chosen: macropartic
density np55.03107 cm23, electron density ne57.2
3 1010 cm23, ion densityni50.4231010 cm23, and plasma
temperatureTg51700 K. The Debye radiusr D and average
distance between particles in this case were 11mm and 17
mm respectively. The electron density and ion density in
plasma was roughly three orders of magnitude larger than
macroparticle density. Therefore, in simulating the plas
the Monte Carlo calculations can be carried out only a
introducing an effective interaction potential between
macroparticles, which arises, as we mentioned above, f
averaging over the positions of electrons and ions. In
context it is worth recalling that the question of the form
the effective potential is not finally resolved; however, at t
time the Debye potential~12! is the most reliable choice.

In these calculations it is convenient to pick the Deb
radiusr D as a unit of length, where this radius depends
the electron and ion density of the plasma. Then~12! be-
comes

U~r !5
~Zpe!2exp~2r !

r Dr
, ~15!

where we have introduced the dimensionless dista
r5r /r D from the macroparticle.

The correlation parameterGp5Zp
2e2/kTgrD can be writ-

ten in the formGp5gp^r &/r D . Under conditions character

493 JETP 84 (3), March 1997
-
-

-
,

-

f

l-
f
,
-

e
he
a
r
e
m
is

s

n

e

r D511mm, we obtaingp.120 andGp5gp^r &/r D>185 for
Zp5500, andTg51700 K.

As an alternate model for analysis and comparison
numerical and experimental results, we chose the model
single-component plasma in which the macroparticles in
act via the Coulomb potential~1! superposed on a uniform
compensating background of the opposite charge. As is w
known from the literature,5,8 the model of a single-
component plasma has been studied in considerable deta
Monte Carlo methods. For this reason it is expedient to co
pare the numerical results for both models. In doing this,
must keep in mind that the model of a single-compon
plasma has the property of similarity, which implies that
the results depend only on the single dimensionless par
etergp . However, in the Debye model the results depend
two dimensionless parameters, namely,gp and k5^r &/r D .
Numerical results within the Debye model were obtained
the two valuesk51.0 and 2.0. These values correspond
the experimental conditions, and allow us to analyze th
oughly the tendency for the computed quantities to cha
when we compare with the results of the single-compon
plasma model.

In Monte Carlo calculations we usually consider a fin
number of particlesN located in a cell of sizeL with peri-
odic boundary conditions. Current speeds of available co
puters and the requirement that computation times be rea
able ~one point per day! restricts the problems that can b
solved to those for which values ofN range up to 125. Thus
in our case the size of the cellL, which is also conveniently
measured in units of the Debye radius, equaled

L

rD
5S N

nprD
3 D 1/35S 4p

3
ND 1/3 ^r &

r D
. ~16!

In the calculations withk51.0 and 2.0, the quantity
L/r D was equal to 8.05 and 16.1 respectively, and the in
action parameter varied over wide limits. Let us begin o
analysis of the numerical results with a discussion of
binary correlation functionsg(r ) obtained within the one-
component model. Figure 3 shows the macroparticleg(r ) for
values of the parametergp from 1 to 140.8 Note that in this
model crystallization occurs atgp5171, and that the binary
correlation functiong(r ) for gp5171 satisfies the crystalli
zation criteria mentioned above.

The results of calculatingg(r ) for the Yukawa model
and analogous values of the parameterGp for values of
k51.0 and 2.0 are shown in Figs. 4 and 5. Comparison
analysis of Figs. 3, 4, and 5 shows that within the framew
of the Debye modelg(r ) is close to the analogousg(r )
obtained within the framework of the one-component mod
for k51.0 this is quite natural, since asr D→` the Debye
model reduces to the one-component plasma model. Incr
ing the parameterGp to 1000 fork51.0 ~which significantly
exceeds values ofGp obtained under experimental cond
tions! does not lead to crystallization of macroparticles a
cording to this criteria. Evidence of this is the rat
Rg.0.2 and the behavior of the computed structure fac
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shown in Fig. 6. The maximum value ofS(q) atGp51000 is
smaller than 2.5, whereas according to Ref. 29 it sho
reach 2.85 on the crystallization curve ofS(q).

Comparison of these numerical results forg(r ) with ex-
periment is complicated by the fact that the waist of the la
beam has a diameter several times smaller than the inte
ticle distance. Therefore, the diagnostic methods used
these ordered structures in the plasma give us informa
not about the correlation function itself, but rather about
correlation function averaged over the measurement volu
formed by the focusing of the laser beam.

In order to estimate an effective sizedeff that takes into
account the diameter of the laser constriction, we note
when the distance from such a particle is smaller thandeff the
probability of finding another particle reduces to zero. This

FIG. 3. Binary correlation functionsg(r ) of the one-component plasm
model for various values ofGp .

FIG. 4. Binary correlation functionsg(r ) of the Debye plasma model fo
k52. Gp5(1), 7.5 ~2!, 15 ~3!, 75 ~4!, 150 ~5!, and 210~6!.
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valid for noninteracting particles whendeff@D holds. There-
fore, in order to estimatedeff we use measurements of the
correlation function for CeO2 particles in an air jet~Fig. 2b!.
The effective sizedeff lies in the interval within which the
value of the correlation function equals zero. According

FIG. 5. Binary correlation functionsg(r ) of the Debye plasma model for
k51.Gp51.5 ~1!, 7.5~2!, 15 ~3!, 75 ~4!, 150~5!, 185~6!, 210~7!, and 1000
~8!.

FIG. 6. Structure factor for the Debye plasma model with macroparticles
k51. Gp5216 ~1! and 1000~2!.
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our estimates, the sizedeff of the region of averaging is
roughly 5mm.

In order to convert to the corresponding averaged co
lation function we must go from the probability density
probability distributions obtained by the Monte-Car
method, for whichg(r ) must be multiplied by the volume o
a spherical layer of thicknessdr. By integrating this over a
spherical layer of thicknessdeff and dividing the results by its
volume, we obtain the averaged correlation functio
^g(r )&. The functions obtained are shown in Fig. 7. In th
same figure we show the experimental binary correlat
function ~curve 8! obtained under the experimental cond
tions listed above~Fig. 2c!. Comparison of these figure
shows that the agreement between numerical and experim
tal results is rather good. These results are also in agreem
with the calculations of the binary correlation function
given in Refs. 9, 39. The discrepancies, in particular
broader experimentally obtained correlation function, co
be due to the coexistence of regions with random positi
of the particles and regions with an ordered structure~do-
mains!. In the latter case, the particles could be located
positions smaller than̂r &.40

6. CONCLUSION

In this work we have compared experimental measu
ments of spatially ordered macroparticle structures in
volume of a thermal plasma with the results of numeric
Monte Carlo calculations based on the Yukawa model.
dered structures of macroparticles are observed to form

FIG. 7. Averaged theoretical and experimental binary correlation functi
g(r ) of the Debye plasma model fork51. Gp51.5 ~1!, 7.5 ~2!, 15 ~3!, 75
~4!, 150 ~5!, 216 ~6!, and 1000~7!; ~8!—experimental binary correlation
function.
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particles, electrons emitted by them, and singly charged
dium ions at atmospheric pressure and temperatures of a
1700 K. Analysis of the theoretical and experimental bina
correlation functionsg(r ) show that the latter are in goo
agreement after averaging the theoreticalg(r ) over the mea-
surement volume formed by focusing of the laser beam. N
merical results also confirm that under the conditions of
experiment no crystallization of macroparticles takes place
the plasma. However, a gas–liquid phase transition is cle
observed, along with spatial ordering of the macropartic
associated with strong interparticle interactions. This as
tion is based on analysis of the computed correlation fu
tions and verification that the two criteria for crystallizatio
mentioned above~Rg.0.2 andS(q).2.85! are fulfilled.

This work was carried out with the partial financial su
port of the Russian Fund for Fundamental Research~Grant
No. 95-02-04561! and of an INTAS-RFBR program~Grant
No. 95-1335!.
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Interaction of a high-power laser beam with low-density porous media

ing
A. E. Bugrov, S. Yu. Gus’kov, and V. B. Rozanov

P. N. Lebedev Institute of Physics, Russian Academy of Sciences, 117924 Moscow, Russia

I. N. Burdonski , V. V. Gavrilov, A. Yu. Gol’tsov, E. V. Zhuzhukalo, N. G. Koval’ski , M. I.
Pergament, and V. M. Petryakov

Troitsk Insitiute for Innovative and Thermonuclear Studies, 142092 Troitsk, Moscow Region, Russia
~Submitted 26 June 1996!
Zh. Éksp. Teor. Fiz.111, 903–918~March 1997!

We have experimentally investigated the processes of laser light absorption and energy transfer
in porous targets made of ‘‘agar-agar’’ (C14H18O7) with an average density of 1–4
mg/cm3 illuminated by the focused beam of a neodymium laser with an intensity of 1014 W/cm2

within a pulse of duration 2.5 ns. Many important scientific and technical problems, e.g.,
inertial-confinement thermonuclear fusion, the creation of lasers in the x-ray regime, and the
modeling of astrophysical phenomena under laboratory conditions, can be successfully
addressed by using low-density porous media as components of such targets. In our experiments
with porous targets of variable density and thickness we used optical and x-ray diagnostic
methods, which ensured that our measurements were made with high temporal and spatial
resolution. We show that a region forms within the porous target consisting of a dense
high-temperature plasma which effectively absorbs the laser radiation. Energy is transferred from
the absorption region to the surrounding layer of porous material at up to 23107 cm/s.
Experimental data are in good agreement with the predictions of our theoretical model, which
takes into account the specific features of absorption of laser radiation in a porous material
and is based on representing the energy transfer within the material as a hydrothermal wave.
© 1997 American Institute of Physics.@S1063-7761~97!01203-1#
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The use of low-density porous media as component
various types of targets illuminated by high-power las
pulses is a very promising approach to the study of the ph
ics of interaction between a laser beam and matter, and
lead to the successful resolution of a number of import
scientific and technical problems. Among these are inert
confinement thermonuclear fusion, the creation of source
coherent radiation in the x-ray region of the spectrum, sim
lation of astrophysical phenomena under laboratory con
tions, and finally fundamental studies of the properties a
states of matter under dynamic loading in the megabar p
sure range.

Continuing efforts to initiate thermonuclear fusion in m
crotargets by high-power laser beams have led to consi
able refinement of the fundamental requirements on the
rameters of laser radiation and target construction. The us
complex targets made with materials whose average de
ties are two or three orders of magnitude smaller than nor
solid-state densities can in principle ensure symmetric c
pression of the thermonuclear fuel and implementation
thermonuclear ignition with significantly more relaxed r
quirements on the parameters of the laser system and co
tions for illumination. In the direct-illumination scheme, it
possible to significantly alter the spatial density distributi
of the plasma corona that forms at the illuminated surface
a spherical thermonuclear target by depositing on the sur
a layer of foam material with suitably chosen thickness a
initial density made from elements with low atomic numbe
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out of nonuniformities in the illumination at high values o
the ablation pressure at the target surface. In the indir
illumination scheme, a low-density material placed at t
inner surface of a shell-converter made of heavy eleme
and illuminated by laser beams can confine the expand
reradiating plasma, thereby ensuring the required uniform
of the distribution of x-ray intensity at the surface of th
thermonuclear target. A porous medium is a fundament
necessary element in the construction of promising target
the ‘‘laser greenhouse’’ type as well.1 A further attractive
possibility is the option of introducing a small amount
various elements into the porous target, thereby influenc
the spectral composition of the x-ray emission from t
plasma.

A fundamental feature of porous low-density targets
their nonuniformity. The structure of these materials is, a
rule, a disordered aggregate of particles of various sha
and normal solid-state densities together with pores. The
sorption of high-power laser radiation, the mechanism
energy transport, and the fluid dynamic processes in me
with discrete structures can have a very distinctive chara
and has recently attracted more and more interest
attention.2

In contrast to the classical process of light scattering i
dispersive medium when the latter is illuminated by a la
beam with intensity exceeding 1012 W/cm2, in a porous me-
dium heating and expansion of the structural elements ta
place, causing the dimensions of the structure to incre

4979$10.00 © 1997 American Institute of Physics
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Consider a case where the average density of elect

in the porous target is below the critical density for the giv
wavelength of the laser light. The length of the interacti
region, which is related to the overlap of the laser beam cr
section by the expanding dense elements of the porous
terial, will decrease until the particles of the material ha
dispersed to below a critical density. After this, a region
bulk absorption of the laser radiation forms, whose longi
dinal size~along the direction of the laser beam! is deter-
mined by classical collision mechanisms:

LT5
9.231028

Z SAZD 2 T3/2

l2r2
.

HereA, Z are the atomic number and charge of the plas
ions respectively,l is the wavelength of the laser light~in
mm!, T is the electron temperature~in keV!, and r is the
plasma density~in g/cm3!. Finally, after total internal vapor
ization of the porous material~at which point the density o
the plasma becomes equal to the average initial density!, the
size of the region of bulk absorption will depend only on t
plasma temperature.~We assume that the pulse persists un
all these processes are able to proceed to their completi!

What kind of mechanism should operate to transport
ergy from the bulk absorption element to the cooler inn
layers of the target? An electron thermal conductivity wa
should form only after the pores in the material are fill
with plasma during the internal vaporization of the solid
ements. However, under our conditions, energy can be tr
ferred from the zone where the laser radiation is absorbe
a wave that is best referred to as hydrothermal. This w
forms as fluid dynamic plasma currents diffuse through
low-density porous material; behind the wave front, a ra
equalization of the plasma temperature occurs due to e
tron thermal conductivity. The velocity of a hydrotherm
wave is close to the velocity of sound, which for the e
pected plasma temperatures of order 1 keV comes
;23107 cm/s, whereas the velocity of an electron therm
conductivity wave at the same temperature and densitie
1023–1022 g/cm3 exceeds;53107 cm/s.

This paper presents experimental and theoretical stu
of the interaction of high-intensity laser light with low
density porous media. In Sec. 2 we discuss our experime
conditions, the parameters of the targets used, and also
suite of diagnostic equipment. In Sec. 3 we give the res
of experiments and their discussions. Section 4 deals w
the development of a theoretical model and comparison
computational results with experimental data. The main c
clusions are formulated in Sec. 5.

2. EXPERIMENTAL CONDITIONS AND DIAGNOSTIC
APPARATUS

In these experiments on the interaction of high-pow
laser light with low-density targets we used the Mishe
facility3 with the following illumination conditions: the opti
cal wavelength was 1.054mm; the half-width of the laser
pulse was;2.5 ns with a rise time of 0.3 ns; the light wa
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1:10 ~the half-width of the intensity distribution within the
focal spot was;150mm!; and the optical flux density at th
surface of the illuminated target was 1014W/cm2. In these
experiments we used planar targets with thicknesses of 1
1000mm made of ‘‘agar-agar’’ (C14H18O7) with densities in
the range 1–10 mg/cm3, and also multilayer targets in whic
layers of aluminum with thickness 1–6mm were deposited
on the illuminated surface, back surface, or both surface
the low-density material. The agar has a chaotic struct
made up of fibers with solid-state density and a diamete
1–2 mm, and a spacing between fibers of 10–50mm. The
technology for fabricating targets from agar was develop
at TRINITI by S. F. Medovshchikov and S. L. Nedoseev.4

The diagnostic complex we used to investigate
mechanisms for interaction of the laser light with low
density targets and the energy transport in these target
cluded a number of methods based on measuring the x
emission of the plasma, and also optical diagnostic meth
The x-ray methods included time-integrated calorimet
measurements in the wavelength range 0.5–2 nm; imagin
the plasma using a pinhole camera behind various filters
observing both along the surface of the irradiated target~with
a spatial resolution;15mm! and at an angle of;30° to the
direction of the laser beam~with spatial resolution;25
mm!; and recording of the x-ray emission from the plasm
using photodiodes with a time resolution of;0.5 ns. The
optical methods included multiframe shadow photography
the expansion of the plasma as it forms~the exposure time of
an individual frame was;0.3 ns, the wavelength of th
probe light wasl50.53mm, and the spatial resolution wa
;30mm!; measurements using an Agat-SF photodetecto
the time evolution of illumination of the back surface of th
irradiated target in the wavelength range 400–700 nm wit
spatial resolution; 30mm and time resolution of 50 ps; an
time-integrated measurements of the emission spectra
tered into the aperture of a focusing lens. The positioning
the x-ray and optical diagnostics is shown in Figs. 1a, 1b

3. EXPERIMENTAL RESULTS

Let us first discuss the results of measuring the illum
nation of the back surface of the target in the visible wa
length range 400–700 nm, spatially~along the direction of
the discriminating slit! and temporally resolved measur
ments made with an Agat-SF electrooptic camera. Figu
2a–2c show measurements of the time evolution of the ba
surface illumination of the target, recorded in experiments
which three different types of planar targets made of a
were illuminated. In Fig. 2a, note the first flash, which co
cides in time with the start of the laser pulse illuminating t
target. This flash is caused by the passage of the laser ra
tion through the target at the initial stage of the illuminati
process. We note that we observed an analogous effe
previous experiments on illuminating thin plastic films ma
of Mylar.5 As follows from Fig. 2a, the duration of the phas
of partial transparency is 200–300 ps. As we might expe
this flash is absent when a layer of aluminum of thickne
1.5 mm is deposited on the back surface of the target~Fig.
2b!. In all the image-converter pictures shown we observe
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FIG. 1. Sketch of the positioning of diagnostic app
ratus.
abrupt growth in the intensity of illumination at the target’s
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back surface with a time delay relative to the start of the la
pulse. The delay in appearance of this flash relative to
beginning of the laser pulse increases with increasing ta
thickness, as can be seen by comparing Figs. 2a, 2b, an
If we assume that the origin of the flash is associated w
energy transport to the back surface of the target from
developing zone of efficient absorption of the laser lig
assuming the velocity of energy transfer in the porous m

FIG. 2. Time history of the illumination of the back surface of a target ma
of agar with density 1 mg/cm3 and thickness 600mm ~a!, 500mm ~b!, and
1000mm ~c!, In cases b and c an aluminum film with thickness 1.5mm was
deposited on the back surface of the target.
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velocity vT , and also to estimate the thickness of the abso
tion zoneD. Under our experimental conditions, the resu
shown in Fig. 2 imply that the corresponding values a
vT;23107 cm/s andD;150 mm ~Here and in what fol-
lows, we will neglect the relatively small~;100 ps! time
delay connected with the passage of the shock wave thro
the aluminum layer of thickness 1.5mm.!

The question of what mechanism can transfers ene
from the zone of absorption with such a high velocity is
topic for special discussion. One possible mechanism co
be the propagation of a shock wave from the high-press
zone ~the zone where the laser light is absorbed! into the
interior of the target. In order to test this assumption we
up experiments in which we illuminated three-layer targ
made up of a porous medium~agar with a density of
;1 mg/cm3 and thicknesses from 500mm to 1000mm! in-
serted between layers of aluminum at the illuminated a
back surfaces of the target~of thickness 6mm and 1.5mm
respectively!. Under these conditions, energy is transferr
through the porous medium primarily by propagation of
shock wave. From our previous experiments6 on the illumi-
nation of aluminum foils with thickness 6mm, we know that
for a laser pulse with duration;2.5 ns and an optical flux
density of;1014 W/cm2 an aluminum layer with thicknes
;4 mm accelerates in the direction of propagation of t
laser beam and acquires a velocity of~6–8!3107 cm/s. In
experiments with a three-layer target, the accelerated
relatively cold~5–10 eV! aluminum plasma plays the role o
the piston, which excites a shock wave in the porous ma
rial. The experiments show that the rate of propagation of
shock wave in the agar practically coincides with the pis
velocity and is a few times smaller than the energy transp
velocity (vT) recorded when a single-layer target made
agar is illuminated. Thus, the shock-wave mechanism is
responsible for the energy transport in one-layer porous
gets.

Information about the dimensions and temperature of
plasma wave formed with a target made of agar was obta
by recording x-ray photons in the range of energy 1–1.5 k
with a pinhole camera. In Fig. 3 we show pinhole came

e
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FIG. 3. Pinhole camera picture~a!
and the corresponding darkness di
tribution ~b! obtained from illuminat-
ing a target made of agar with thick
ness 500 mm and densities 1
mg/cm3 ~1! and 4 mg/cm3 ~2!, and
also during illumination of a target
made of Mylar with thickness 10
mm ~3!.
pictures obtained with a beryllium filter 50mm thick and
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observations perpendicular to the direction of the laser be
in experiments where the illuminated targets were of a
with thickness of 500mm and densities 1 mg/cm3 ~1! and 4
mg/cm3 ~2!. For comparison, the same figure shows a p
hole camera picture obtained by illuminating a target ma
of Mylar with solid-state density and a thickness of 10mm
~3!. The results of processing these pinhole camera pict
are shown in Fig. 4. It is clear from this figure that the lo
gitudinal ~in the direction of the laser beam! dimensions of
the developing high-temperature plasma layer are 400–
mm for a target with initial density of 1 mg/cm3 and 150–
200mm for a target with initial density 4 mg/cm3. The elec-
tron temperature of the plasma is determined by the fi

FIG. 4. Distribution of intensity of x rays from the plasma along the dire
tion of the laser beam obtained as a result of processing the pinhole ca
oscura pictures shown in Fig. 3.
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ing somewhat in the direction into the depth of the poro
target. For example, when the target density is 1 mg/cm3 we
haveTe'0.6–0.7 keV at a distance of 350mm from the
illuminated surface. Note that during illumination of a targ
with decreased density the intensity of x-ray light in the
gion of photon energies 1–1.5 keV exceeds the correspo
ing value obtained in experiments with the Mylar target by
factor of 2–3.

Taken together, these experimental data are in g
agreement with the results of multiframe shadow photog
phy of porous targets illuminated by a high-power las
beam. Figures 5a, 5b show shadow photographs recorde
experiments on an agar target with thickness 500mm and
density 1 mg/cm3 ~a! and a Mylar film with thickness 10
mm ~b!. It is clear that the overall pictures of the plasm
dispersal differ significantly for these cases. For the illum
nated Mylar film the transverse size of the high-press
zone at the back surface of the target practically coinci
with the diameter of the focal spot of the laser beam~Fig.
5b!, whereas for the low-density target this dimension, as
apparent from Fig. 5a, is several times larger than the di
eter of the focal spot. We find that practically all the mater
of the porous target is in motion~see Fig. 5a! only three
nanoseconds after the start of the illumination. Figure
shows the results of shadow photographs of the proces
plasma expansion in experiments where agar targets
density 1 mg/cm3 and two different thicknesses are illum
nated; at the back surface of both targets aluminum lay
were deposited with thicknesses of 1.5mm. These photo-
graphs allows us to measure the rate of directional motion
the aluminum layer and estimate the pressure~energy den-
sity! at the back surface of the porous material, which for
case of targets made of agar with thickness 500mm and

-
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FIG. 5. Shadow photographs taken in experiments
which an agar target with density 1 mg/cm3 and
thickness 500mm is irradiated~a! and a target made
of Mylar with thickness 10mm is irradiated~b!.
density 1 mg/cm3 ~see Fig. 6a! amount to;23107 cm/s and
o-
o

th
e
tio
h
a

ac

e
en
th

a
e
th
th

u

et

decay instabilities!, which could lead to undesirable conse-
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;2.5 Mbar respectively. As the initial thickness of the p
rous material increases, the velocity of the aluminum f
decreases~see Fig. 6b!. Increasing the initial density of the
agar target leads to a similar effect. Aluminum foil wi
thickness 1.5mm efficiently confines the expansion of th
heated material of the porous target into vacuum, and mo
is observed only within the zone of maximum pressure. T
transverse size of this zone depends weakly on thickness
the density of the porous material, and equals;500mm, i.e.,
it exceeds the size of the focal spot at the illuminated surf
of the target by a factor of several.

The distinctive features of the interaction of high-pow
laser light with our porous targets arise from the lower d
sity and larger extent of the plasma that forms. When
material from a target made of agar with density 4 mg/cm3 is
totally ionized, the electron density is close to the critic
density for the fundamental harmonic of a neodymium las
while the longitudinal size of the plasma that forms, as
data shown above illustrate, is several hundred times
wavelength of the laser radiation. It is known7 that at suffi-
ciently high optical flux densities (>1014 W/cm2) these
conditions are favorable for the development of vario
types of anomalous processes in the plasma~stimulated Bril-
louin scattering, stimulated Raman scattering, and param
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quences when porous media are used as targets for
thermonuclear fusion~decrease in the absorption coefficie
of the laser light, generation of fast particles, decrease in
conversion coefficient of the laser light to x-rays, etc.!. How-
ever, preliminary experiments in which we measured the
ergy and spectrum of the radiation scattered into the aper
of a focusing lens showed that for optical flux densities
;1014 W/cm2 the fraction of scattered energy came to 5
6 percent of the pulse energy for illumination of either p
rous targets or targets made of Mylar with solid-state den
ties. It is interesting to note that radiation is observed in
scattering spectrum at the second harmonic freque
(l50.53mm! even when the illuminated agar target has
initial density of 1 mg/cm3, although in this case the max
mum electron density of the plasma for such a target at
ionization of the porous material (ne'331020cm23) is sev-
eral times lower than the critical value.

4. THEORETICAL MODEL FOR THE INTERACTION OF
PULSED LASER LIGHT WITH A POROUS MATERIAL

4.1. Absorption of laser light in a porous material

Let us discuss the problem of absorption of a laser be
in a planar layer of porous material, taking into account
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FIG. 6. Shadow photographs recorded in experime
on irradiated targets made of agar with density
mg/cm3 and thicknesses 350mm ~a! and 1000mm ~b!.
An aluminum layer with thickness 1.5mm was depos-
ited on the back surface of the targets.
processes of internal vaporization of initially solid elements
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as they are heated by the laser light. The properties o
porous material are determined by its atomic compositi
density, and the sizes of the solid particles of material,
also the dimensions of the pores. In the experiments we u
targets made of agar, which consists of randomly loca
fibers of solid-state densities and lengthsl;10–50mm and
radii b0;1mm (l@b0). The average pore sizer p and the
average numbern of fibers per unit volume are expressed
terms of the dimensions and bulk densityr0 of the thread
materials, and also the average bulk density of the por
materialra , in the following way:

r p.p1/3b0
2/3l 1/3~r0 /ra!

1/3, n5ra /~r0pb0
2l !. ~1!

For porous materials consisting of randomly located
bers, the degree of geometric overlap of the laser beam
unit length along the direction of propagation of the beam
given by the expressions*52/pb0ln.

For a laser beam propagating into the porous materi
distancex from the surface, the fractional overlap of th
optical flux, when we neglect light scattering, is

s512exp~2s* x!.s* x. ~2!

Since the length of an agar fiber greatly exceeds its
dius (l@b0), the expansion of an individual fiber as it
heated by the laser light can be treated in the approxima
of cylindrical dispersal. In this case, according to~2! the
increase in the degree of opacity of the porous material in
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radius of the expanding fiber. As we show below, under
conditions of our experiments the duration of the intern
vaporization process~homogenization! of the porous mate-
rial in the region where the laser beam acts is shorter than
rise time of the laser pulse. Doing the calculations for cyl
drical isothermal expansion of a fiber of porous material
a linearly growing laser light power, we obtain the followin
expression for the opacitys and the absorption length fo
laser radiationL5s

*
21 :

s5x/L, L5L0@11~ t/t* !2#22, 0<t<tcr,a . ~3!

Here L05p2r0b0/2ra is the absorption length correspon
ing to the initial state of the porous materia
t*5@24p2/(g21)(r0b0

3/kaImt1)#
1/2; ka is the average ab

sorption coefficient of laser light in an individual expandin
thread; t1 is the duration of the leading edge of the las
pulse; I m5I (t1); g is the adiabatic constant
tcr,a5@(r0 /rcr,a)

1/421#1/2t* are completion times for the
processes that generate the region of absorption of the
beam:tcr is the internal vaporization time of a thread, i.e., t
time it takes to reach the critical density~for a material with
densityra,rcr!, while ta is the total internal vaporization
time, i.e., the time it takes to reach its average densityra ~for
a material with densityra.rcr!.

Figure 7 shows the time dependence of the length of
absorption region for the laser beam in a porous material
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two values of its average density~1 mg/cm3 is a subcritical
density and 4 mg/cm3 is a supercritical density!, calculating
using Eq.~3!. The absorption coefficient was taken to be 0
and the initial radius of the thread was 1mm. The calcula-
tions show that the absorption region for laser light in t
targets used in our experiments forms in a time shorter t
the rise time of the laser pulse~t150.3 ns!. The absorption
length for the laser beam in a porous material with a den
close to the critical density decreases in the process of in
nal vaporization from its initial valueL0 , which depends on
the density of the materialra and is a few mm, to a value
L'L0(rcr /r0!

1/2 corresponding to the critical density of th
expanding fibers, which equals'200mm. According to~3!,
for a target of thicknessDa the transparency stage lasts
time

t tr5@~L0 /Da!
1/221#1/2t* , Da,L0 . ~4!

Then for a target with average densityra51 mg/cm3 the
duration of the transparency stage is 150 ps for a target th
ness of 500mm, and 120 ps for a target thickness of 10
mm. And, in fact, this time was less than 300 ps in expe
ments.

The spatial extent~along the laser beam! of the specific
~per ion! energy absorption is determined from the expr
sion

E~x,t !5
1

Bra
E
0

t f ~x!

kaI ~ t !s~x,t !dt, ~5!

in which t f is the time of arrival at the point with coordinat
x of the front that marks the start of the region of cut-o
absorption, andB5@Z/(g–1)A#31015 erg/g•keV is the spe-
cific heat of the plasma. For a porous material with subcr
cal average density the spatial extent of the specific energ
the absorption region with final lengthLcr'L0~rcr /r0!

1/2 is
quite uniform. The magnitude of the energy per unit volum
absorbed in this region up to timeTcr according to~3! and
~5! is

Ecr5
32

3p2~g21! S r0
rcr

D 3/2S kaImb0B2r0t
D 1/2. ~6!

FIG. 7. Time dependence of the absorption length of a laser beam
porous material with average density 1 mg/cm3 ~1! and 4 mg/cm3 ~2!. The
dashed lines show the characteristic thicknesses of the targets used.
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light in the porous material ends with the total internal v
porization of the material. Using the expression for the ch
acteristic length of a classical collisional absorption mec
nism, and also Eq.~6!, and settingka'0.5, we can find the
temperature and size of the absorption region at this t
internal vaporization time. For a target made of agar w
average densityra'1 mg/cm3 it is easy to obtain the value
T'400 eV,LT'300mm.

Thus, the effect of increasing opacity of the porous m
terial as it internally vaporizes under the action of the la
light can explain the finite duration of the transparency sta
observed in experiments on planar porous targets, and
formation within these targets of a region of bulk absorpti
of the laser light. For most of the duration of the laser pu
light is absorbed in just this region due to classical collisi
mechanisms, and the hydrothermal wave transports energ
the surrounding layers of porous materials.

4.2. Energy transfer in the porous material

The problem of propagation of a spherical hydrotherm
wave is described by a system of equations which inclu
an equation for the velocity of the wave front:

dZ

dt
5@~g21!BT#1/2, t@tcr , Z@Lt~ tcr!, Z@r f

~7!

~wherer f is the radius of the focal spot! and an equation for
the energy, assuming that the temperature behind the w
front is uniform ~the temperature behind the hydrotherm
wave front is equalized by the ultrasonic electron therm
conduction wave!:

2pZ3TBra5H E
0

t

ELdt, 0<t<tL

EL , t.tL

. ~8!

The solution of this system of equations for the case of c
stant laser light power (EL 5 const) has the form

Z5F32 S 53D
2 ~g21!EL

pra
G1/5t2/5w~ t !, ~9!

T5F32 S 53D
3 EL

~g21!3/2B5/3pra
G2/5t26/5w2~ t !. ~10!

Here

w~ t !5H ~ t/tL!1/5, tcr!t<tL

l , t>tL
.

whereas the pressure behind the front of the hydrother
wave is

P5F S 35D 3 32 ~g21!ELra
3/2

p G2/5t26/5w2~ t !. ~11!

Note that fort.tL the solution to the problem of propagatio
of a hydrothermal wave coincides up to constant coefficie
with the solution to the problem of a strong explosion.8 The
difference in the coefficients is connected with the differe
velocities of the hydrothermal and shock waves. Accord

a

503Bugrov et al.



ck

-

v
fu
a
e
e

n
th
e
e

pressions~9!, ~11!, ~15!. Calculations for the hydrothermal
of
nar
me.

rial
r

r

the
ntal

ex-
rs

al
is
that
ick-
e

d
e
ack-
a
cor-

po-
ge of
the
tire

of
ck
lid
he
the
po-
al
lid
for

lid
ing

y
ri-

fro

-
l-
to ~9! when a laser beam strikes a planar target with thi
nessDa the hydrothermal wave reaches the back surface
the target at the time

t r5H F S 35D 2 23 pratLDa
5

~g21!EL
G1/3, t r<tL

F S 35D 2 23 praDa
5

~g21!EL
G1/2, t r>tL

. ~12!

At this time, according to~9!–~12! the temperature and pres
sure of the plasma behind the wave front equal

T55 F35 S 32D EL

p~g21!1/2B3/2tLraDa
2G2/3, t r<tL

3

2

EL

praBDa
3 , t r>tL

, ~13!

P55 F S 35D ~g21!ELra
1/2

ptLDa
2 G2/3, t r<tL

3

2

~g21!EL

pDa
3 , t r.tL

. ~14!

In analyzing energy transport by a hydrothermal wa
and comparing it with experimental results, it is also use
to include a calculation of the propagation velocity of
spherical electron thermal conduction wave in a uniform m
dium of densityra under the action of a constant-power las
pulse:1

Z'F197 fc

B7/2 S 3

2p

EL

tL
D 5/2G2/19S t

ra
D 7/19. ~15!

Herec'1019/Z erg/~keV7/2 cm3s! is the coefficient in the
expression for the thermal conductivity, andf is the factor
that limits the thermal flux. Figure 8 shows the time depe
dence of the radii of the hydrothermal wave front and of
electron thermal conduction wave front, and also the pr
sure behind the front for these waves calculated using

FIG. 8. Time dependence of the radius of the energy transport wave
~curvesZ1,2 andZ1,28 ) and the pressure behind the wave front~curvesP1,2

andP1,28 ). Label 1 is for an average density of 1 mg/cm3, label 2 is for 4
mg/cm3. CurvesZ1,2 andP1,2 are plotted for transport of energy by a hy
drothermal wave, curvesZ1,28 andP1,28 for transport by an electron therma
conduction wave.
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wave give results close to experiment for the arrival time
the energy transport wave at the back surface of a pla
target and for the pressure behind the wave front at this ti
For a target with thicknessDa50.5 mm these quantities
come to 1.3 ns and 0.6 Mbar, respectively for a mate
whose mean densityra51 mg/cm3, and 2.2 ns and 1.2 Mba
for a material whose densityra54 mg/cm3. The propagation
velocity of the hydrothermal wave equals 43107 cm/s for a
material of density isra51 mg/cm3 and 2.73107 cm/s for a
material whose densityra54 mg/cm3. The classical electron
thermal conduction wave~for a thermal flux bounding facto
f51! propagates with a higher velocity: 63107 cm/s for
ra51 mg/cm3 and 3.83107 cm/s forra54 mg/cm3, which
implies an arrival time of the wave at the back surface of
target that is considerably smaller than the experime
value ~especially for the target withra51 mg/cm3!: t r50.6
ns for ra51 mg/cm3 and t r51.8 ns forra54 mg/cm3. The
electron thermal conduction wave gives results close to
periment only when we introduce significant limiting facto
for the thermal flux~f'0.01 for ra51 mg/cm3 and f'0.1
for ra54 mg/cm3!.

Thus, our model of energy transfer via hydrotherm
waves when laser light is absorbed in a porous medium
adequate to describe the experimental results. We note
the energy transport wave passes through a target of th
nessDa50.5 mm in a time shorter than the duration of th
laser pulset r,tL . Estimates using Eq.~13! give values of
the temperatureT'800 eV for a target of this thickness an
a densityra51 mg/cm3 at the instant the hydrothermal wav
reaches the back side of the surface. In contrast, the b
ward ~classical! bremsstrahlung absorption length in
plasma with temperature 800 eV and an electron density
responding to a target with densityra51 mg/cm3 is 720
mm, i.e., larger than the target thickness. Therefore, for
rous targets with these parameters we can reach the sta
secondary transparency to the laser light, connected with
formation of the high-temperature plasma over the en
thickness of the target.

In concluding this section, let us consider the question
acceleration of the planar layer of solid material at the ba
of the target surface. Acceleration of a planar layer of so
material after the arrival of the hydrothermal wave at t
back surface of the porous material takes place, while
hydrothermal wave continues to propagate through the
rous material; however, it is now in the form of a cylindric
wave. Solution to the equations of motion for a thin so
layer under these conditions gives the following estimate
the asymptotic velocity of the layer:

vs'S P~ t r !

ra
D 1/2S raDa

rsDs
D , ~16!

wherers andDs are the density and thickness of the so
material layer respectively. For a two-layer target consist
of a layer of agar withra51 mg/cm3, Da50.5 mm and a
layer of aluminum withrs52.7 g/cm3, Ds51.5mm, Eq.
~16! givesvs'53106 cm/s for the magnitude of the velocit
in the solid layer, which is in good agreement with expe
ment.
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5. CONCLUSION
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We have experimentally investigated the interaction
high-power laser pulses~l51.054 mm, t52.5 ns,
I51014 W/cm2) with planar low-density porous targets~1–4
mg/cm3!.

We find that targets with thicknesses of several hund
microns are partially transparent to the laser radiation
times less than 300 ps from the start of illumination.

We have shown that even at the initial stages of illum
nation (t50.5 ns! a region of dense high-temperature plas
forms within the porous target at a depth 100–200mm, in
which the laser radiation is effectively absorbed.

The velocity of energy transport from the region of a
sorption of the laser light to the surrounding layers of poro
material reaches 23107 cm/s, while the plasma temperatu
rises to 0.8 keV within the internal regions of the target ov
the time of the laser pulse.

We have developed a theoretical model that takes
account the properties of the absorption of laser radiatio
a porous medium with low average density and a hydroth
mal wave based on the representation of energy transpo
the porous medium.

The results of these experiments are found to be in
sonable agreement with the theoretical predictions. Comp
son of the experimental data with the results of our theo
ical analysis allows us, in particular, to estimate the press
of the plasma at the back surface of the porous target a
time the hydrothermal wave arrives. At the back surface o
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sure of the plasma exceeds 1 Mbar within an area with
mensions that are several times larger than the diamete
the focal spot.
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Nonlinear repolarization processes in ferroelectric liquid-crystal thin films
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The dynamics of spontaneous polarization switching of the ferroelectric smecticC* in a variable
electric field are examined theoretically and experimentally with the help of polarized light
scattering. The observed effect of quasiresonant scattering both in freely suspended smectic films
and in ordinary electro-optical cells is interpreted within the framework of the nonlinear
model of isolated movable kinks in the director orientation distribution. It is shown that the
maximum of the scattering intensity at the characteristic frequency of the applied electric
field disappears at low temperatures and for small thicknesses of the smectic film. The dependence
of the ‘‘resonant’’ frequency on the electric field amplitude, the proximity to the phase
transition temperature, the film thickness and thickness of the ferroelectric domains, and also
various material parameters is found. Estimates are made of such important
characteristics as the dielectric anisotropy, viscosity, and elasticity of the smectic films. The
effect of film thickness on the density distribution of the polar anisotropy energy in the film and on
the corresponding shape of the moving orientation front within the film are discussed.
© 1997 American Institute of Physics.@S1063-7761~97!01303-6#
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The dynamics of ferroelectric liquid crystals~LC! in
electric fields is usually associated with the existence of c
lective modes,1–12 which are damped. Specifically, th
means they are associated with the Goldstone mode, w
describes the relaxation of perturbations of the phase of
order parameter~spontaneous polarizationP!, and a soft
mode, which describes the relaxation of perturbations of
amplitude of the order parameter.

These modes are readily observed by means of diele
spectroscopy as a response of ferroelectric liquid crystal
the application of a relatively weak electric fieldE, which, as
a rule, is smaller than some critical valueEc called the un-
winding field of the polarization helix5 ~such a helix exists in
practically all ferroelectric liquid crystals in thermodynam
equilibrium!. Here the phasew, which is the azimuthal angle
of the orientation vectorP lying in the plane of the smectic
layer of the ferroelectric liquid crystal, and the amplitu
P5mu, wherem is the piezoelectric modulus~a material
parameter of the liquid crystal! andu is the polar angle of the
collective tilt of the molecules in the smectic layer, va
weakly and almost independently of each other.5

In strong fields exceeding the unwinding field, perturb
tions of the anglesw andu become large and are in gener
interdependent. Thus, ferroelectric liquid crystals repolar
in strong fields. For the appropriate boundary conditions
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ropy of the liquid crystal in the plane of the smectic laye
and relative rigidity of the orientational structure of the li
uid crystal along the crystal axis perpendicular to the sme
layer, variations of the tilt angleu can be weak, but varia
tions of the azimuthal anglew become large.

A large number of varied applications of electro-optic
cells based on ferroelectric liquid crystals possessing s
properties come at once to mind. Thus, the correspond
characteristics of azimuthal switching of the spontaneous
larization are of significant interest; however, these ess
tially nonlinear repolarization processes have been little st
ied.

In the present paper we present a fundamentally non
ear model of azimuthal repolarization of ferroelectric liqu
crystals in a variable electric field together with experimen
data on light scattering in repolarizing liquid-crystal film
These studies allow us to draw definite conclusions about
suitability of the proposed model. We also advance the
pothesis that the described nonlinear polarization dynam
is also applicable in the case of solid solutions of ferroel
trics with the corresponding anistropy properties.

The main idea is that repolarization, i.e., rotation of t
polarization vectorP under the action of the electric fiel
E through the anglep does not happen all at once throug
out the volume of the liquid crystal, but begins in the ‘‘wea

5060$10.00 © 1997 American Institute of Physics



FIG. 1. Geometry of ferroelectric
liquid-crystal films: a! geometry #1—
freely suspended film, b! geometry
#2—‘‘bookshelf’’ ~ordinary cell!.
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etc., via local generation of a so-called orientational kin
which is characterized by an abrupt change in the dep
dence w(r ) over a relatively small scaleDr . A kink
Dw;w(r1Dr )2w(r );p then propagates into the interio
of the film with some velocityv which depends on the ap
plied field to distancesd which are much greater than th
width uDr u of the kink, where the distancesd can character-
ize the thickness of the film, the width of the ferroelect
domain, the distance between defects, etc.~Such a moving
kink is sometimes called a soliton.! In a variable field this
moving kink takes on the nature of an oscillator.

This repolarization mechanism, i.e., the dynamics of m
tion of the orientational kink~solitons!, leads to an entirely
different form of the perturbations of the dielectric tens
~permittivity tensor! e(r ,t) in comparison with the Gold-
stone contribution to these perturbations. In particular, li
scattering off a Goldstone mode cannot explain the curve
the observed frequency dependence of the integrated sc
ing intensity I (v), which have a quasiresonant charact
where v is the frequency of the applied fiel
E5Ẽ cos(vt). We show below that the soliton mechanism
perturbations in the permittivity provides a completely a
equate explanation of the experimental results.

2. THE EQUATION OF AZIMUTHAL MOTION AND ISOLATED
ORIENTATIONAL KINKS

We consider two situations in which the applied elect
field E is parallel to the smectic layers and induces azimut
rotations of the polarization vectorP by the anglew(r ,t) in
the plane of the smectic layer, that is to say, the case
freely suspended film, in which the smectic layers are pa
lel to the surface of the film~Fig. 1a!, the case of ‘‘book-
shelf’’ geometry, i.e., the case of a surface-stabilized fer
electric liquid crystal in which the smectic layers a
perpendicular to the film surface~Fig. 1b!. In these cases th
equations of motion for the director and polarization vec
have the form13–17

PE sin w2Uu2 sin w cosw1Ku2
]2w

]y2
5gu2

]w

]t
, ~1!

whereK is the elasticity constant,g is the viscosity coeffi-
cient, and the quantity

Uu25~U01eaE
2!u2 ~2!

507 JETP 84 (3), March 1997
,
n-

-

r

t
of
ter-
,

f
-

l

a
l-

-

r

We assume that the quantityU5U01eaE
2 is positive, i.e.,

the easy~most favored! direction of the polarization vecto
P corresponds to the anglesw50 andw5p. The anglew in
these cases varies along they axis which lies in the plane o
the smectic layer.

The right-hand side of Eq.~1! corresponds to the exis
tence of the invariant expression

gS j1
]j2
]t

2j2
]j1
]t D5g~j3 j̇!y ~3!

for the viscous torque, which retards the rotation of the tw
dimensional vectorj with components

j15u cosw, j25u sin w, ~4!

describing the orientational order parameter of the ferroe
tric liquid crystal.5

The anisotropy parameterUu2 characterizes the energ
of the anisotropic dipole–dipole interactions which give ri
to the polarization fluctuations inducing a Coulomb intera
tion between the polarization charges, which in turn che
the development of such fluctuations. The preferred orien
tion of the spontaneous polarization vector in the liqu
crystal film may be conditioned by the boundary conditio
and external factors and may be fixed in the film, thanks
the presence of free current carriers. Negative values of
parameterU correspond to the preferred orientation of t
polarization vectorw5p/2, i.e., perpendicular to the applie
electric field, while in the case of the bookshelf geome
~see Fig. 1b! the preferred direction is parallel to the film
surface. In the case of a freely suspended thin film~Fig. 1a!
the smectic layer can be homogeneous along thez axis and
inhomogeneous inx and y due to the influence of the film
surfaces and the electrodes. In particular, very thin films
have an easy direction, thez axis, withU,0. The tempera-
ture dependence of the parameterU0 is completely deter-
mined by the fluctuational nature of the considered anis
ropy: in the phenomenological description it satisfiesU0

}2 u2 } TAC*2T, i.e., the corresponding contribution to th
free energy is

Uu252const•u41eau
2E2. ~5!

HereTAC* is the temperature of the smecticA–smecticC*
phase transition.
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Thus, it may be supposed that in very thin films the
tl
e
e
f
er

te
-
e
n
a

he
lie
-
rre

tilt

hi
lo

bl

e

e
-

ge

ng

It should be noted that we are considering large reorien-
ly
tric
ce

is
alls
h

ansi-

rate

be
o-
ed
of

-
c

o-

nal

r-

ter-

ti-

d

parameterU can take negative values, at least at sufficien
low temperatures~at sufficiently large values of the tilt angl
u!. In relatively thick films in the absence of a field th
parameterU is evidently small since in the limiting case o
an unbounded ferroelectric liquid crystal the smectic lay
should be practically isotropic. When a fieldE is applied
perpendicular to the surface of a thick film the parame
U can take positive values (ea.0) since usually the elec
trode surfaces define the orientation of the polarization v
tor P to be normal to the film surface. These consideratio
are purely qualitative and motivational. Below we show th
they can be backed up by light-scattering experiments
various liquid-crystal films where the parametersU0 andea
can be estimated from the experimental data.

Equation ~1! can be used to describe rotations of t
director and of the polarization under the action of an app
field E5Ẽ cos(vt). In this case we will make use of an ap
proximate expression for the anisotropy energy which co
sponds to the time-averaged value of the expressionUu2,
i.e., without allowance for the second harmonic:

^Uu2&'2const•u41
1

2
eau

2Ẽ2, ~6!

where byu we understand some effective value of the
angle of the director depending on the field amplitudeẼ.
This approximation, as a consideration of problems of t
kind shows, gives an adequate qualitative description. Be
we will drop the time-averaging notation̂...&.

It is convenient to introduce the dimensionless varia
s5y/h, the dimensionless parameterb5d/h, and param-
eters having dimensions of frequency and length, resp
tively

a5
mẼ

gu
, h5AK

U
, ~7!

whered is the characteristic length in the film. Given th
assumptions we have made, Eq.~1!, as shown in the Appen
dix, has a solution of the form

w~s,t !5arctan
1

sinh@s2s02~a/v!sin~vt !#
, ~8!

where s0 is some constant, and for constant and homo
neousU, in the notation of Eq.~A1! we have

J̃5
mẼ

Uu
, q5

vg

U
, t5

tU

g
, u~s!5s5

y

h
. ~9!

Solution ~8! describes the motion of an isolated kink alo
the y axis with velocity

v5ha cos~vt !. ~10!

In a constant field, i.e., in the limitv→0, Eqs.~8! and ~10!
describe the motion of the kink13,14 with constant velocity
v5ha:

w~s,t !5arctan
1

sinh~s2s02at!
. ~11!
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tation anglesw;p, i.e., the given case differs fundamental
from the usual dielectric measurements in weak elec
fields. Moreover, in this situation repolarization takes pla
between two homogeneous orientational states (w50 and
w5p!, i.e., in the absence of an orientational helix. As
well known, such a helix can be unwound between the w
of the electro-optical cell if the smectic film is thin enoug
(d,0.1–1mm!, and also if the electric fieldE exceeds the
unwinding fieldEc . The value ofEc is a function of the
temperature and vanishes at the second-order phase tr
tion temperatureTc ~Ref. 5!. Therefore even in relatively
thick films at temperatures close toTc we are in the right to
consider homogeneous orientational states in mode
fields.

3. DYNAMICAL INHOMOGENEITY OF THE PERMITTIVITY
AND SCATTERING OF POLARIZED LIGHT

Experimentally, such repolarization processes can
studied by scattering polarized light off the dynamic inhom
geneities of the permittivity. The total integrated scatter
light intensity is proportional to the integral of the square
the scattering amplitudea(y,t) over the variablesy and t.

The function a(y,t) is proportional to the quantity
i•D«̂(y,t) • f, wherei andf are the initial and final polariza
tions of the light, andD«̂ is the permutation of the dielectri
tensor ~permittivity tensor! for light with the given wave-
length. In the case under consideration the quantityi•Dê•f is
proportional to the difference of the products of the comp
nents of the order parameter

j i~y,t !j f~y,t !2j i~y,0!j f~y,0!, ~12!

and therefore the total scattered light intensity is proportio
to

I i f5E
0

2p/v

dtE
0

d

dy@j i~y,t !j f~y,t !2j i~y,0!j f~y,0!#2.

~13!

Two experimental geometries are of interest:
1! a freely suspended film~Fig. 1a! with the y axis

aligned with the normal to the plane of the film, in an exte
nal fieldE directed along thex axis; light with polarization
i x or i z is normally incident upon the film.

2! An electro-optical cell~Fig. 1b! with the y axis per-
pendicular to the plane of the electrodes, in which the ex
nal fieldE lies; the incident light has polarizationi x or i z .

If the incident and scattered light are polarized iden
cally ~either along thex axis or along thez axis! in both
cases, then the quantityI characterizing the total scattere
light intensity is, according to Eqs.~4!, ~12!, and~13!, equal
in both cases to

I xx5I zz5u4E
0

2p/v

dtE
0

d

dy@cos2 w~y,t !

2cos2 w~y,0!] 2. ~14!

In the case of crossed polarizers~i x and f z! for geom-
etries #1 and #2 we obtain respectively the equations
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I 8 5u4E2p/v

dtEd

dy@sin w~y,t !cosw~y,t !

e

l-
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that if the period of the oscillations of the electric field is
the

,

-
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tity
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ct
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tion
xz
0 0

2sin w~y,0!cosw~y,0!#2, ~15!

I xz9 5u2E
0

2p/v

dtE
0

d

dy@cosw~y,t !2cosw~y,0!#2. ~16!

For geometry #2 and the light incident in thez direction in
crossed polarizers~i x and f y! the quantityI xy coincides with
the value ofI xz for geometry #1. It is useful to note in th
calculations of the intensityI that in geometry #2~see Fig.
1b! the projection of the directorn on thez axis is approxi-
mately equal toA12u2 cos2 w.

Using the relations

sin w~y,t !5
1

cosh~s2A!
, cosw~y,t !5tanh~s2A!,

sin w~y,0!5
1

coshs
, cosw~y,0!5tanhs, ~17!

A[A~ t !5
a

v
sin~vt !, b5

d

h
,

in which we have left out the unimportant constants0 , we
can calculate the integrals over the coordinatey in expres-
sions~14!–~16!. We obtain

I zz~v!5u4hE
0

2p/v

dtH tanhb2
1

3
tanh3 b1tanhA

2
1

3
tanh3 A1tanh~b2A!2

1

3
tanh3~b2A!

1
2

sinh2 A F tanhb1
~12tanh2 A!tanhb

12tanhb tanhA

1
2

tanhA
ln~12tanhb tanhA!G J , ~18!

I xz8 ~v!5u4hE
0

2p/v

dtH 13 tanh3 b1
1

3
tanh3~b2A!

1
1

3
tanh3 A1

2

sinhA
ln~12tanhb tanhA!

2
2 coshA

sinh2 A F tanhb1
~12tanh2 A!tanhb

12tanhb tanhA

1
2

tanhA
ln~12tanhb tanhA!G J , ~19!

I xz9 ~v!52u4hE
0

2p/v

dtH tanhb1tanh~b2A!1tanhA

1
2

tanhA
ln~12tanhb tanhA!J . ~20!

Integrals~18!–~20! cannot be expressed in terms of e
ementary functions and, what is more, at very low frequ
ciesv of the external variable field the limits of integratio
in time must be changed for the following reasons. It is cl
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much greater than the time it takes a kink to move across
film ~perpendicular or parallel to its surface!, i.e., for
2p/v@d/v, perturbations of the permittivity will exist only
for times of orderd/v. Therefore, in the low-frequency limit
whenA(t)'at holds, the integrals in Eqs.~18!–~20! should
be calculated over the interval 0<t<b/a, i.e., the quantities
I (v→0) tend toward some finite limit. At very high fre
quencies, when the spatial amplitudes of the oscillations
the kinks are of the order ofha/v!d, the intensitiesI
should tend to zero. The asymptotic limitI (v→`) can be
calculated with the help of expansions in the small quan
A. In particular, expressions~18!–~20! have the asymptotic
limits

I zz~v→`!'u4hS 43 tanh3 b2
4

5
tanh5 bD pa2

v3 , ~21!

I xz8 ~v→`!'u4hS 6 tanhb27 tanh3 b

1
16

5
tanh5 bD pa2

v3 , ~22!

I xz9 ~v→`!'u2hS tanhb2
1

3
tanh3 bD pa2

v3 . ~23!

The limits I (v→0) can also be calculated for small va
ues of the parameterb if we make the substitution

E
0

2p/v

A2~ t !dt5
pa2

v3 →a2E
0

b/a

t2dt5
b3

3a
, ~24!

which gives

I zz~v→0, b→0!;u4hb6/a, ~25!

I xz8 ~v→0, b→0!;u4hb4/a, ~26!

I xz9 ~v→0, b→0!;u2hb4/a. ~27!

Expressions~25!–~27! can be used to estimate the effe
of scattering when the kinks in fact disappear forb!1 and
the dependenceI (v) has a quasiresonant character. At inte
mediate values ofv the functionI (v) should have a maxi-
mum. This has the physical meaning that the permittiv
experiences its largest perturbation when the kink runs ac
a distanced during a time of the order of the half-perio
p/v.

d;
v

vext
;

ha

vext
, i.e. vext;

a

b
, ~28!

where the quantityvext corresponds to the maximum inten
sity Imax5I(vext);u4hb/a. Consequently, we have

vext;
a

b
;

mhẼ

gud
;

mẼ

gud
AK

U
,

Imax~v;vext!;
u4d

a
;

gu5d

mẼ
. ~29!

Numerical calculations confirm these qualitative es
mates. Figures 2a–b reveal the role of the upper integra
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FIG. 2. Numerical calculations of the frequency dependence of the integrated light scattering intensity~crossed polarizers!. The effect of the integration limit
in time is shown: a! 2p/v for v.a/b and 2pa/b for v,a/b; b! 10p/v for v.a/b and 10pa/b for v,a/b; c! 20p/v for v.a/b and 20pa/b for
v,a/b. The parametersa and b in the calculations of the four curves from top to bottom took the respective valuesa5104, b510; a5105, b520;
a5105, b510; a5105, b55.
limit in expressions~18!–~20!, which was chosen to be equal

w

y

or

be

a
i

The temperature dependence ofvext and Imax is deter-

ses
e

e

tter-
r
ed
to 2p/v, 10p/v, and 20p/v, respectively, forv.a/b and
2pa/b, 10pa/b, and 20pa/b, respectively, forv<a/b. It
is clear that the figures are qualitatively similar, but at lo
frequencies the behavior of the functionsI (v) depends on
the upper limitt0 , which is determined in the experiment b
the instrument parameters.

Relations~29! show that at a fixed temperature, i.e., f
u5const andU;Ẽ2 the quantitiesvext andImax as functions
of the field amplitudeẼ behave as follows:

vext5const, I zzmax;I xzmax8 }1/Ẽ. ~30!

It would be well to underscore the main features of the
havior of the intensity maximumI xzmax9 as a function ofẼ for

constantu: I xzmax9 5const, which follows from relations~16!

and ~20!. Thus, the field dependence of the quasi-reson
behavior of the intensity in geometries #1 and #2 differs
the case of crossed polarizers.
-

nt
n

mined by the temperature dependence of the tilt angleu.
Thus, as the temperature is lowered the tilt angle increa
and correspondingly the frequencyvext decreases and th
intensityImax increases. If, in accordance with relation~5!, as
the temperature is lowered in a sufficiently thin film th
quantityU vanishes at some value of the temperatureT, then
at this point the width of the kinkh diverges~the parameter
b vanishes! and, according to relations~30!, the frequency
vext grows without bound and the intensityImax vanishes at
this temperature.

4. DISCUSSION OF EXPERIMENTAL RESULTS

The observed frequency dependence of the light sca
ing intensity~Figs. 3–6! is reminiscent of resonant behavio
and can be explained by the motion of kinks describ
above. Fits of the experimental dependencesI (v) for geom-
etries #1 and #2 at large frequenciesv.vext to the func-
-

e
n

FIG. 3. Fit to the high-frequency limb of the
function I xz(v) by the power-lawv23 in
geometry #1~a! and #2~b!. In the experi-
ments we used the liquid crystal 4
(2s,3s)-2-@chloro-3-methylpentanoyloxy#-
48-heptyloxybiphenyl with smectic

A-smecticC* phase transition temperatur
TAC*543 °C and spontaneous polarizatio
varying within the limits 1300–290 nC/cm2

in theC* phase.
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FIG. 4. Frequency characteristics of quasi-resonance light scattering in geometry #1 for a! different numbers of smectic layersN and b! amplitudes of the
variable electric field. Figure 4c shows the resonance scattering characteristics as functions of the field amplitude forN5300, TAC*2T'0.5 °C.
tional form G(v1B)2C are shown in Fig. 3: the best fit

p

#
de
g

th
e

~29!. However, at very small values ofẼ the nature of the

tic
ti-

en-
d

a-
is
results for the lawI (v);v23 with G;a2;108 s22 ~the
theoretical dependences were calculated for values of the
rametera>104 s21).

Figure 4a presents data of an experiment in geometry
in which the thickness of the freely suspended film was
creased. The calculated curves fora5const and decreasin
b exhibit qualitatively similar behavior: a decrease ofImax
and an increase ofvext ~cf. Figs. 4 and 2!.

Figures 4b and c show that for fixed tilt angleu in a
freely suspended film an increase in the amplitude of
field leads to a decrease of the maximum intensity for ess
tially constantvext, which is explained by relations~28! and
a-

1
-

e
n-

dependenceImax(Ẽ) changes abruptly~Fig. 4c!, which is ex-
plained by the disappearance of kinks forb!1, when the
width h of a kink becomes larger than the characteris
dimension of the filmd. Indeed, as was noted above, es
mates~24!–~26! fora} b} h21 } Ẽ show that for smallẼ the
function Imax(Ẽ) begins to grow steeply with increasingẼ.

Figure 5 illustrates the two types of temperature dep
dence ofvmax and Imax for thin and thick freely suspende
films. In the thin film disappearance of scattering (Imax→0)
and a critical increase ofvext are observed at some temper
ture while in the thick film no such critical temperature
e
FIG. 5. Temperature dependence of th
resonant frequency~a! and the scattering
amplitude~b! in thin and thick freely sus-
pended films.
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FIG. 6. Frequency characteristics of quasiresonant light scattering in geometry #2 a! for different amplitudes of the variable electric field for
D5TAC*2T50.5 °C and b! for different temperatures. Figure 6c shows the resonance characteristics as functions of temperature;d525mm; I—smectic
C* , II—smecticA.
observed, andImax grows whilevext decreases continuously
in

in

a
m
t

h
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he
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x

the integrals~18!–~20! the upper limitt0 remains fixed, lead-

ed

is
tem-

ove

era-

d #2
e, at

ion
e

ar
ap-
be-

s of
with decrease of temperature. These data are easily expla
with the help of relations~5!–~7! if it is assumed that in the
thin film we haveU0,0 and in the thick filmU0→0. The
geometry of the investigated thin films~see Fig. 1a! can
cause the appearance of the easy axis~z axis! and the nega-
tive value ofU0 since the film is practically homogeneous
z, but inhomogeneous inx andy due to the influence of the
film surfaces and the electrodes. Here note should be m
of a remarkable feature of such freely suspended fil
banded domains exist in them spontaneously, parallel to
z axis, with characteristic widthDx;102 mm.18–22 There-
fore for thin films~less than 1mm!, when the kink becomes
thicker than the film, kinks can arise and migrate only in t
xz plane of the film. At the same time, the widthDx of a
domain becomes the characteristic dimensiond and the pa-
rameterb;Dx/h remains large. For very small film thick
nesses~less than 0.1mm!, when the indicated domain
disappear,22 the time it takes the kinks to move across t
film becomes very large, for which reason in the latter c
we do not observe any quasiresonant light scattering p
nomena.

A word should be said about the complexity of expe
mental studies of the dependenceI (v) at very low frequen-
cies. These difficulties are connected with the proper cho
of the instrument time constantt0,vext

21 , which defines the
upper integration limit in expressions~18!–~20!. If the pa-
rametert0 is a random quantity, then the observed scatter
intensity can have random jumps in the low-frequency
gion, which indeed took place in the experiment.

Another feature of the low-frequency dependenceI (v)
shows up in films with small characteristic dimensiond, i.e.,
for b!1. As was noted above, in this case there is no ma
mum intensity; however, expressions of the form~22!–~24!
remain valid for the frequency intervala!v!b/a, where in

512 JETP 84 (3), March 1997
ed

de
s:
he

e

e
e-

e

g
-

i-

ing to the replacement of the functional dependenceI (v)
} v23 by the lawI (v) } v22.

In thick films with geometry #2 in the case of cross
polarizers, experiment shows~see Fig. 6a! that the depen-
dence of the maximum intensityI xzmax9 on the field amplitude
Ẽ differs fundamentally from that for geometry #1. Th
maximum increases as the field increases at constant
perature near the phase transition temperatureTAC* , where
the ratio of the maxima for temperatures below and ab
TAC* is significantly greater than unity~see Fig. 6b!. As the
temperature increases through the phase transition temp
tureTAC* , the quantityI xzmax9 falls rapidly while the quantity

vext rapidly grows~see Fig. 6c!. Such a qualitative difference
between the experimental data for the geometries #1 an
is explained by several factors. First, as was noted abov
temperatures not too close toTAC* and not for too large
fields Ẽ, the chirality of the smecticC* stabilizes the azi-
muthal helix of spontaneous polarization and hinders mot
of the orientational kinks. In the immediate vicinity of th
phase transition, when the effective fieldE is greater than the
unwinding fieldEc } u, kinks can move, and here the pol
angleu, which depends strongly on temperature and the
plied field, determines the corresponding quasiresonant
havior according to relations~29!. Making use of well-
known thermodynamic expressions for the functionu(T,E)
in these simple cases and taking relations~29! into account,
we obtain qualitative dependences for the characteristic
the quasiresonance peak:

vext}
1

ATAC*2T
2

const•mE

A~TAC*2T!3
,

~31!

I xzmax}A~TAC*2T!31const•mE
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E,constA(TAC*2T) ;

vext}E
21/3, I xzmax}E ~32!

in phasesC* and A for E.const•AuTAC*2Tu3 and u
} E1/3; and

vext}
T2TAC*

E
, I xzmax}

E3

~T2TAC* !3
~33!

in phase A for E,const•A(TAC*2T)3 and u
} E/(T2TAC* ). Expressions~31!–~33! provide a com-
pletely adequate explanation of the experimental d
graphed in Fig. 6c.

To estimate the parametersa and b in the kink model
and describe the experimental data, we use the follow
characteristic orders of magnitude:

m;1023 C/m2, K;10212 N, g;1021 Pa•s,

Ẽ;3•106 V/m, d;1025 m, «a;10211
m2N

C2 ,

u;1021 for DT5TAC*2T;1 K. ~34!

Thus we obtain

a5
mẼ

gu
;33105 s21, h;

1

Ẽ
AK

ea
;1027 m,

b5
d

h
;102, vext;33103 s21.

In fact the quantitiesg, K, and ea are not known exactly;
however, they can be estimated from the experimental d
by choosing the parametersa andb that most adequately fi
the experimental data.

5. CONCLUSION

The observed frequency dependence of the light sca
ing intensity I xz is reminiscent of resonant behavior and
explained by the motion of the orientational kinks discuss
above. Here a substantial role is played by the boundarie
the homogeneous layer of theC* smectic phase. Under th
action of an external field such isolated kinks can form
these boundaries, after which they move into the interior
the ferroelectric film. Both the surface of the film and t
domain walls, in the case in which a domain structure
formed in the film, can serve as such boundaries. It ma
sense to speak of the motion of kinks if the distance betw
the characteristic boundaries exceeds the width of a k
Therefore in thick films, whether freely suspended or fou
between the solid electrode surfaces, isolated kinks can m
in three dimensions, whereas in the case of thin films t
can move only along its surface. The helical structure of
C* smectic is unfavorable for the appearance of kinks, a
therefore the above-discussed quasi-resonant behavior o
light scattering characteristics is not observed in theC*
phase far from the transition pointTAC* , where the helix
exists. Since the critical unwinding field of the helix
Ec;q0

2Ku/m, whereq0 is the wave number of the unpe
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m;10 C/m , K;10 N, q0;10 m , and
E;104 V/m in thick films the described effects can tak
place in a narrow temperature interval aboutTAC* , specifi-
cally for DT5(TAC*2T)<DTc;TAC* (mE/Kq0

2)2;1 K,
whereu(DTc);1021.

In thin films, where the orientational helix is abse
thanks to the influence of the boundaries, these effects e
over a wider temperature interval.

The motion of the kinks is substantially influenced b
the dielectric anisotropy in the plane of the smectic lay
This anisotropy can be due to the two-dimensional nature
theC* smectic, the anisotropy of the dipole–dipole intera
tions, and electrical effects of the outer boundaries. Spec
combinations of these conditions lead to various regimes
kink motion and, accordingly, to different temperature a
field dependences of the characteristics of quasireso
scattering of polarized light. Guided by the experimen
data, with the help of the dynamic kink model discuss
above we have arrived at estimates of the unknown mate
parameters, namely the orientational viscosity and elastic
and also the dielectric anisotropy.

It is of interest to study the situation in which the ferr
electric liquid-crystal film has not one, but several differe
characteristic scalesd, e.g., as a result of the coexistence
several domain structures. In this case, one can expec
appearance of several quasiresonances in the light scatt
intensity, corresponding to different characteristic freque
cies. We explored this possibility in the case of the ferroel
tric liquid crystal FLC-240 (TAC*553.5 °C!, which has a
relatively high spontaneous polarizationP540 nC/cm2. In
Refs. 23–25 it was shown that such liquid crystals in
ordinary electro-optical cell possess a specific static dom
structure which is characterized by a strong temperature
pendenced1(T) of the domain widths. Along with such do
mains, under certain critical conditions in these liquid cry
tals a dynamic domain structure appears, caused,
example, by an electrohydrodynamical instability which
characterized by a strong frequency dependence of the w
of the domains d2(v) ~Ref. 5!, where the inequality
d2(v),d1(T) is entirely possible. Consequences of th
kind require additional study. In the present paper we h
only presented evidence of the appearance of two qu
resonances~see Fig. 7! for different values of the frequenc
of the applied electric field which adequately correspond
the two observed domain structures and depend substan
on the temperature and field amplitude.
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APPENDIX A

We consider a class of nonlinear equations of mot
which can be written formally as

S J1(
i

]2u

]si
2 D sin w2

1

2 (
i

S ]u

]si
D 2 sin 2w1(

i

]2w

]si
2 5

]w

]t
,

~A1!

where u5u(s) is an arbitrary function,J5J̃ cos(nt),
w5w(s,t), ands andt are dimensionless variables. If it i
assumed that at the timet50 ~the time at which the field is
switched on! such a region exists inside the ferroelect
liquid-crystal film, bounded by the lineu(r )5u05const, and
that inside it we havew(s,t50)50 and outside it
w(s,t50)5p or vice versa, where the widthuDsu;1 of the
transition region is much smaller than the characteristic
mensionless film parameters, then it can be easily seen th
Eq. ~A1! has the exact solutions

w1
656arctan

1

sinh@u~s!2u02~J̃/n!sin~nt!#
. ~A2!

The form of the solution~A2! is uniquely determined by
the following relations:

sin w1
15

1

coshR1
, cosw1

15tanhR1 ,

sin 2w1
15

2 sinhR1

cosh2 R1
,

]w1
1

]si
52

1

coshR1

]R1

]si
,

]w1
1

]t
52

1

coshR1

]R1

]t
,

]2w1
1

]si
2 52

1

coshR1

]2R1

]si
2 1

sinhR1

cosh2 R1
S ]R1

]si
D 2, ~A3!

where

R1~s,t!5u~s!2u02
J

n
sin~n,t!. ~A4!

The solutions~A2! describe the motion of isolated or
entational kinks in the functionw(s,t). For example, for

FIG. 7. Frequency dependence of scattering intensity with two maxi
observed in the smectic liquid crystal FLC-240 with coexistence of t
domain structures.
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along thes axis ~the solutions with subscripts 1 and 2 corr
spond to motion in opposite directions!:

w1
6~s,t!56arctan

1

sinh~s2s02Jt!
,

~5!

w2
6~s,t!56arctan

1

sinh~s2s01Jt!
,

with constant velocityV65ds/dt56J, where the plane of
the front is perpendicular to the directions.

The first term on the left-hand side of Eq.~A1! describes
the linear interaction between the spontaneous polariza
and the effective field containing a homogeneous partJ ~the
external field! and the contribution of some internal field du
to the electrical properties of the liquid-crystal layer. T
second term, which is quadratic in the polarization, descri
the influence of the anisotropy energy on the motion of
spontaneous polarization vector; here the anisotropy en
density of the smectic layer can be locally inhomogeneo
thanks to the influence of the film surface, domain walls, a
structural defects. The third term gives the usual contribut
of the orientational elasticity energy. The right-hand side
Eq. ~A1! describes the contribution of the orientational v
cosity and the corresponding moment of the friction forc
The dimensionless variablessi[xi /h i andt[t/t0 reflect the
existence of characteristic spatial (h i) and temporal (t0)
scales, defined by the material parameters of the liquid c
tal.

Equation ~A1! makes it possible to estimate, at lea
qualitatively, the influence of inhomogeneity of the ferr
electric liquid2crystal film on the repolarization processe
We will give a few examples.

1! Let the anisotropy energy density in the plane of t
smectic layer~the s1s2 plane! in the vicinity of some point
defect vary quadratically in the coordinatess1 and s2 , and
the effective field be homogeneous and constant, i.e.,

S ]u

]s1
D 21S ]u

]s2
D 254~s1

21s2
2!,

]2u

]s1
2 1

]2u

]s2
2 5const. ~A6!

In this case the functionsu(s1 ,s2) may take the following
forms:

s1
26s2

2, 2s1s2 . ~A7!

Depending on the shape of the lineu(s1 ,s2)5u0 describing
the surface of constant phasew5p/2 at the initial time
t50, the motion of the phase frontw(s1 ,s2 ,t)5p/2, i.e.,
an orientational kink, can take various forms over the cou
of time t. According to Eqs.~A5! and~A7!, the correspond-
ing fronts can have the form of circles, parabolas, and hyp
bolas, i.e., the following proportional dependences are p
sible:

s1
26s2

2}t, 2s1s2}t. ~A8!

2! Let the anisotropy energy density fall off expone
tially according to the law exp(22s1) in some directions1 in

a,
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the smectic layer, for example, with depth into the film away

a

o

u
ha

In

t

u

th
t-

and (s2s0)usur@1. In this case, the solutions~A5! can have
ar

e

r

from a planar defect~the surface of the film!, and let the
effective field be homogeneous and constant, i.e.,

S ]u

]s1
D 26S ]u

]s2
D 25e22s1,

]2u

]s1
2 1

]2u

]s2
2 50.

In this case the functionsu(s1 ,s2) may take the forms

e6s1 sin s2 , ~A9!

which lead to wedge-shaped fronts, where the wedges
arrayed periodically along an isolated surface~along thes2
axis! with period equal to the effective penetration depth
the front along thes1 axis.

The above simple examples, of course, do not exha
the shapes of kink motion in a constant field. It is clear t
the shapes and velocities of such fronts depend strongly
the local properties of the ferroelectric liquid-crystal films.
the case of the action of a variable fieldJ, the solution~A2!
shows that the kinks execute oscillatory motion relative
some initial position with frequencyn and amplitude propor-
tional to J̃/n.

Generally speaking, the boundary conditions on the s
faces of a film of finite thickness have the form14,15

Q sin wusur5G
]w

]sU
sur

, ~A10!

whereQ is the effective parameter of polar adhesion to
surface andG is the effective elastic coupling constant. No
ing the relations

sin w1
656

1

cosh~s2s02J̃t!
52

]w1
6

]s
,

sin w2
656

1

cosh~s2s01J̃t!
5

]w2
6

]s
.

We can rewrite Eq.~A10! in the form

Q6G

cosh~s2s02J̃t!usur
50,

Q7G

cosh~s2s01J̃t!usur
50.

Thus, condition~A10! is approximately fulfilled forJ̃t@1
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the following meaning: if an orientational kink appears ne
the film surface having widthDsx;1 (Dx;h), then it can
move a distanceJ̃t@1 in the sx direction during the time
t, and in this case boundary condition~A10! is satisfied with
exponential accuracy.

If the parameterQ is positive, then the derivative
(]w/]s)usur in Eq. ~A10! should also be positive. In this cas
the solutions~A5! describe the motion of a2p-kink along
the sx axis and a1p-kink in the opposite direction. Fo
negative values ofQ the solutions~A5! describe the motion
of a1p-kink along thesx axis and a2p-kink in the oppo-
site direction.
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The metal–insulator transition and the phase transition in metal–ammonia solutions

s-
A. A. Likal’ter

Institute for High Temperatures, Russian Academy of Sciences, 127412 Moscow, Russia
~Submitted 15 July 1996!
Zh. Éksp. Teor. Fiz.111, 938–948~March 1997!

The ground state of impurity metal~sodium! atoms in liquid ammonia close to the solvated state
of the free electrons is considered. It is shown that the critical solubility point lying on the
metal side of the metal–insulator transition is determined by the Coulomb interaction between the
ions and electrons in the overlapping impurity states, classically accessible spheres of which
form an infinite percolation cluster. The percolation conductivity via the impurity states is
estimated. The estimate agrees with the experimental data near the critical solubility point.
© 1997 American Institute of Physics.@S1063-7761~97!01403-0#
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For a long time metal solutions in liquid ammonia ha
attracted attention by virtue of the unique variety of effe
observable in them, yet they belong to the class of disorde
electron systems which have received of yet little theoret
study. From the theoretical viewpoint, they are of interest
only because of their unique properties, but also the gen
properties which define the behavior of apparently co
pletely different physical systems. In dilute solutions w
metal concentration less than 1% the atoms are almost c
pletely dissociated into ions and solvated electrons. Of es
cial interest is the possibility, as the concentration is
creased, of observing a continuous transition from a wea
conducting electrolyte to a metal solution with conductiv
greater than 102V21 cm21. The strong variation in their
properties links metal–ammonia solutions with other el
tron systems undergoing a metal-nonmetal transition. T
are closest in their properties to expanded metals and he
doped semiconductors.1

The analogy with semiconductors is based on the h
dielectric constant of liquid ammonia, thanks to which t
metal atoms can form impurity electron states whose rad
is greater than the distance between the solvent molecule
contrast to semiconductors, the impurity states in ammo
have been little studied, since the main role in dilute so
tions is played by solvated electrons. Localization of s
vated electrons is the reason why dilute metal–ammonia
lutions are analogous in many of their properties
electrolytes.2 However, as in heavily doped semiconducto
in which the impurity states overlap,3 concentrated solution
have metallic properties.

It is noteworthy that solutions of some metals, in partic
lar sodium, allow one to observe the phase transition w
stratification into a metallic and a dielectric phase with d
ferent concentrations. As was noted long ago, this transit
reaching completion at the critical solubility point, is anal
gous to the condensation of metal atoms.4 A connection be-
tween this phase transition and the metal–insulator trans
has also been noted.5 The metallic electrical conductivity a
the critical solubility point of sodium-ammonia solution
shows that near this point two metallic phases can be fo
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solved metal.
The recently developed theory of plasma critical poin

of metals is based on their being found near the met
nonmetal transition point.6,7 Therefore, they are characte
ized by a metallic state with strong electron–ion coupli
which is described in terms of the virtual atomic structu
model. In particular, the position of the plasma critical poin
is determined by the interaction of virtual atoms with ove
lapping electron shells. It may be expected that the criti
solubility points of metal solutions are also determined
the interaction of overlapping impurity states.

Despite the apparent obviousness of the above analo
metal–ammonia solutions have their own idiosyncraci
rendering their theoretical treatment more difficult. These
clude, in particular, frequency dispersion and nonlinearity
the dielectric constant, caused respectively by the inertia
the dipolar molecules and saturation of their polarizat
near the ions. In this paper we estimate the parameters o
impurity states and extend the theory of plasma criti
points to metal–ammonia solutions.

The plan of the paper is as follows. Section 2 introduc
the dielectric model of an electron solution, which is used
describe the critical solubility point. Section 3 describes
model of the impurity states playing the main role in conne
tion with the percolation metal–insulator transition. Secti
4 presents a theory of conductivity in the vicinity of th
transition point and compares the results of this theory w
the experimental data. Section 5 is the conclusion.

2. DIELECTRIC MODEL OF THE SOLUTION

The dielectric constant of liquid ammonia associat
with electron polarization of the molecules at optical fr
quencies is roughly equal to 2. The high dielectric constan
low frequencies, becoming as large as 22, is due mainly
orientation of the constant dipoles of the ammonia m
ecules. Thanks to the delayed response of the molecule
unique form of self-interaction of the electron takes pla
which can be described~outside the preferred localizatio
region! by an asymptotic potential energ
2(«`

212«0
21)e2/r , wheree is the electron charge, and«`

and «0 are respectively the optical and static dielect

5166$10.00 © 1997 American Institute of Physics



constants.8 The corresponding asymptotic limit for the impu-
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rity state obtained by adding the potential energy of the e
tron in the field of an ion2e2/«0r is simply

u52e2/«`r . ~1!

The radius of the classical accessible sphere in potentia~1!
is equal to

Ra5e2/«` I , ~2!

whereI is the binding energy of the impurity states.
A characteristic parameter is the fraction of the volum

occupied by the classically accessible spheres

z5
4p

3
Ra
3n5SRa

Rs
D 3, ~3!

wheren is the density of the metal atoms andRs is the radius
of the Wigner–Seitz sphere

Rs5~4pn/3!21/3.

The virtual structure of the overlapping impurities in me
solutions is assumed to lie in the interval between the pe
lation thresholdz'1/3 ~identified with the metal-insulato
transition point! and random dense packing of spher
z'2/3.

The interaction between the overlapping impurity sta
in a percolation cluster is characterized by the Coulomb c
pling parameter

G5e2/«eRsT, ~4!

whereT is the temperature. Since this interaction is govern
by the region of preferred localization of the electrons,
static dielectric constant enters into the coupling parame
The effective value of the dielectric constant«e , as was
mentioned above, differs from its macroscopic value due
saturation of the polarization of the dipolar molecules n
the ions.

Another dimensionless parameter is the ratio of the te
perature to the ionization potential. It is not independe
since it can be expressed in terms of the parametersz andG
already introduced. In particular, formulas~2!–~4! yield the
ratio

Tc
I

5
«` zc

1/3

«eGc
, ~5!

for the critical solubility point. Here the subscriptc indicates
a critical parameter. Assuming similarity of plasma critic
points, one might expect that the dimensionless parame
zc and Gc are universal. The ratioTc /I , however, is not
universal. According to Eq.~5! it depends on the ratio of th
dielectric constants.

Using known values for the parameterszc'0.365 and
Gc'17 ~Refs. 7 and 9!, formulas~2! and ~3! yield the fol-
lowing expression for the critical density

nc52.9231019~«` I !3, ~6!

and formula~5! yields the expression

Tc50.0425
«`

«e
I , ~7!
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When the density corresponding to the critical conce

tration xc50.0415 and the critical temperatureTc5230 K
~Ref. 10! is substituted into Eqs.~6! and ~7!, Eq. ~6! yields
the estimateI51.665 eV for the binding energy and Eq.~7!
the estimate«e56.9 for the effective dielectric constant. Th
binding energy of the impurity states turns out to be near
binding energy of the solvated electron. This estimate
backed up below by a calculation for a simple model of t
impurity states.

Let us consider how to explain the relatively small e
fective dielectric constant. First of all, the minimum scale
which this quantity can have meaning is greater than or
the order of the mean distance between the molecules

R05~4pN/3!21/3,

whereN is the density of the ammonia molecules. At su
distances the ion field is large enough for saturation of
larization. The polarization vector of the dipolar molecules
the field of an ion is equal to

P5xE5
«e~r !2«`

4p

e

«e~r !r 2
, ~8!

wherex is the dielectric susceptibility of the dipoles,E is the
intensity of the electric field of the ion,«e(r ) is the effective
dielectric constant, which for polarization saturation b
comes a function of the distance from the ion. The mag
tude of the saturation polarization is given by

P5dN, ~9!

where d50.58eaB is the dipole moment of the ammoni
molecules andaB is the Bohr radius. Equating expressio
~8! and ~9! and solving the resulting equation for«e(r ), we
obtain

«e~r !5
«`

12r 2/Rd
2 , R0,r,Rd , ~10!

whereRd is the polarization saturation radius,

Rd5A e

4pdN
.

Schematically the dielectric constant is given by formu
~10! for those values ofr for which «e is less than its mac-
roscopic value, and is equal to«0 at large distances~Fig. 1!.
However, before it can be used in the equations of elec
statics, it must be averaged over space. Since the potenti
a single ion can be represented as an integral ofe/«e(r )r

2,
the average of the dielectric constant over a Wigner–S
cell is found as follows:

1

«e
5S 1R0

2
1

Rs
D 21E

R0

Rs dr

«e~r !r 2
.

For conditions at the critical solubility point, averaging giv
«e'9, which is in reasonable agreement with the estim
obtained above based on the critical parameters. Thus,
consequence of polarization saturation, the average diele
constant, defining the interaction between the impurity sta
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in a percolation cluster, is roughly three times smaller th
its macroscopic value, so the treatment of the critical so
bility point based on similarity with plasma critical points o
metals is self-consistent.

3. IMPURITY STATES

For a more detailed analysis of the impurity states,
choose the Heine–Abarenkov pseudopotential~constant in-
side the ionic core!, which reproduces the energy level of th
free atom.11 In ammonia solution the ionic core of the impu
rity atom is smaller than the molecular cell, and the Coulo
potential outside the core falls off as 1/r and is inversely
proportional to the dielectric constant. With allowance f
the polarization field of the constant solvent dipoles induc
by the impurity electron cloud, the pseudopotential takes
form

U5 H 2e2/Rc ,
2@1/«e1~1/«`21/«e!n~r !#e2/r1C,

r,Rc ,
r.Rc,

~11!

where the factorn(r ) describes the deviation of the electr
potential of the electron cloud from a Coulomb potential, a
the constantC is determined by the condition of continuity

The potential of the electron cloud satisfies the Pois
equation

1

r

d2

dr2
~rw!5

4pec2~r !

«e
, ~12!

wherec(r ) is the wave function of the electron. Since th
dependence of the potential on the charge distribution ha
integrated character, we may substitute a quite simple

FIG. 1. Effective dielectric constant, with allowance for saturation of pol
ization of dipolar molecules at small distances from the ion. The radiu
polarization saturation isRd55.72aB .
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wave function into this equation. In particular, we use
pseudo wave function that differs from zero only outside
ionic core

c~r !5
B

A4p
e2kr, r.Rc , ~13!

where

k5A2mI/\2,

m is the electron mass,\ is Planck’s constant, andB is a
normalization factor,

B52k3/2 exp~kRc!/A112kRc12k2Rc
2.

The solution of the Poisson equation has the form

w52en~r !/«er , ~14!

where

n~r !512
11kr

112kRc12k2Rc
2 exp@22k~r2Rc!#. ~15!

For r near the classically accessible radiusRc , the pseudo-
potential defined by formulas~11! and ~15! is close to a
Coulomb potential~Fig. 2!.

The impurity level is found from the Schro¨dinger equa-
tion ~in atomic units!

d2x

dr2
12~E2U !x50, ~16!

wherex5rR(r ), R(r ) is the radial wave function,E is the
energy, and the boundary conditions are

x~0!50, z5
d ln x~`!

dr
,0.

Solving the Schro¨dinger equation for the core region give
the additional boundary condition

-
f

FIG. 2. Pseudopotential and impurity levelE520.2492 a.u., obtained by
solving the Schro¨dinger equation. Ionic core radiusRc53.265aB .
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z~Rc!5k cot~kRc!, k5A2~E11/Rc!. ~17!

In the outer region it is convenient to solve the equival
nonlinear first-order equation

dz

dr
1z212~E2U !50 ~18!

instead of Eq.~16! ~Ref. 12!. The impurity level is subtended
between near-lying energy levels at whichz(r ) diverges at
large distances with positive and negative sign~Fig. 3!. The
binding energy, which is only weakly sensitive to variatio
of the parameters~in particular, the active dielectric con
stant!, is equal to 1.53 eV, which agrees with the estim
based on the critical solubility point. In practice, howev
much higher accuracy is needed. In particular, the bind
energy of the impurity states should be greater than the b
ing energy of the solvated states~for which normalization to
the experimental optical spectra gives 1.6 eV, Ref. 1!.

4. PERCOLATION CONDUCTIVITY

In the vicinity of the metal–insulator transition point th
conductivity is due to electron diffusion between the clas
cally accessible spheres of the virtual impurity states. T
solvated electrons diffuse along with them. Assuming t
the classically accessible radius of the solvated states is c
to that of the impurities, from the percolation viewpoint th
may be considered as equivalent. With the exception of
latter point, the metal-nonmetal transition is complete
analogous to the percolation transition in impur
semiconductors.13 The transition point corresponds to th
percolation threshold of classically accessible spheres
electrons. The Fermi energy of the mixed impurity~solvated!
states with continuous energy spectrum depends on pro
ity to the transition point. As one approaches this point,
ratio of the Fermi energy to the temperature tends to zero

FIG. 3. Numerical solution for the logarithmic derivative of the pseu
wave functionz5d ln x/dr. The impurity level is subtended between tw
near-lying energy values for whichz(r ) diverges at larger with negative
sign ~as in the figure! or positive sign~not shown!.
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scribed by Boltzmann statistics. The conductivity below th
point is due to thermal excitation of the electrons to t
percolation level, i.e., it has an activation character. With
repeating all the arguments,13 we may simply review here the
main relations needed to describe percolation conductivi

The modified Drude formula has the form

s5e2netq/m, ~19!

wherene is the density of the valence electrons,t5 l /vT is
the relaxation time,l'Rs is the minimum mean free path fo
scattering off the impurities,vT5A8T/pm is the mean ther-
mal velocity, andq is the localization factor.

Partial localization of the electrons is connected with t
mobility gap defined by the two parametersDk ~the absolute
and relative gaps!,

Dk5I2
e2

«`
S 4pn

3zk
D 1/3 ~k51,2!, ~20!

wherez1'1/3 andz2'2/3. The first and second gaps defin
the excitation energies, below which the mobility is respe
tively equal to zero and less than the minimum gas-kine
value.

On the nonmetal side of the transition the localizati
factor is an exponentially decreasing function of the first m
bility gap:

q5
T~F12F2!

D22D1
'

2

Ap

AD1T

D22D1
expS 2

D1

T D , ~21!

D2.D1@T,

where the functionFk is a combination of incomplete
gamma functionsG(m,x):

Fk5
2

Ap
FGS 52 , Dk

T D2
Dk

T
GS 32 , Dk

T D G .
On the metal side of the transition

q5
3T/22D12TF2

D22D1
'
3T/22D1

D22D1
, ~22!

D1<0, D2@T.

According to Eq.~22!, in the metallic state the localizatio
factor tends to unity for the width of the gapD2;T.

Growth of the localization factor on the metal side of t
transition is linked with growth of the Fermi energy and wi
degeneracy of the electrons. The Fermi energy of the mi
impurity states is equal to

«F85\2kF
2q2/2m, kF5~6p2ni /ga!

1/3, ~23!

wherekF5mvF /\ is the Fermi wave vector of the deloca
ized valence electrons,vF is the Fermi velocity,ga is the
statistical weight of the impurity level, and the prime deno
deviation from an electron gas. For degenerate electrons
relaxation time in the Drude formula is

t5 l /vF8 , vF85vFq. ~24!
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he

n
e
di
re

m
tu
m
s
r

n-
ith

t
th

s

r

a

n-
u-

e
t
in
tly
d
ia

lu
x
e

o
ol
o

las-
ates
the
ons
tal–
ion

lu-
the

rs of
b
m-
ich
cro-
the
ma
the
he
ty
tes
ex-
ous
lec-
ity

,

-

ium
re

lies
s
on-
out the localization factor which now appears both in t
numerator and the denominator, we obtain the minimum m
tallic conductivity

s5
e2nel

mvF
. ~25!

Thus, for the degenerate electrons the conductivity
longer has a percolation character. Consequently, the m
free path for impurity scattering becomes larger than the
tance between the impurity atoms. The minimum mean f
path in the Ioffe–Regel’ sense is

l;\/Dp, ~26!

whereDp is the quantum indeterminacy of the momentu
At high enough temperatures the mean thermal momen
mvT may serve as a measure of the uncertainty in the
mentum, and the thermal wavelength may serve as a mea
of the minimum mean free path. We thus obtain from fo
mula ~19!

s'
e2ne
kFmvT

'
e2neRs

mvT
. ~27!

Thus, to within a numerical factor of order unity, the co
ductivity would be the same in the Boltzmann case w
mean free pathRs . To this accuracy, formulas~19!–~22! for
the percolation conductivity can be directly extrapolated
the electron degeneracy region on the metal side of
metal–insulator transition.

However, in the limiting case of strong degeneracy~at
sufficiently low temperatures or high concentrations! the un-
certainty in the momentum can be expressed only in term
the Fermi momentum, i.e.,Dp5gmvF , whereg is a coef-
ficient. According to relation~26!, the mean free path fo
strong degeneracy isl;1/gkF . Schematically, we will as-
sume that the transition between cases of moderate
strong degeneracy takes place at the point wherevT5gvF
holds, so thatDp varies continuously. Thus, using the co
dition of matching with the extrapolated Boltzmann form
las, we obtain

l5Rs /g. ~28!

Thus, the parameterg may be defined as the ratio of th
inverse mean free path in the limit of strong degeneracy
the inverse of the distance between impurities. When us
this parameter which defines the conductivity significan
above the metal-nonmetal transition point, there is no nee
explicitly allow for scattering of electrons by the ammon
molecules.

The percolation conductivity of sodium–ammonia so
tions with different concentrations is compared with the e
perimental data in Fig. 4, which shows qualitative agreem
between theory and experiment.

5. CONCLUSION

Solutions of metals in ammonia are a unique example
electron solutions containing solvated electrons. Such s
tions contain the metal atoms in impurity states whose r
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grows as the concentration is increased. Overlap of the c
sically accessible spheres of the impurity and solvated st
is responsible the metal–insulator transition. Despite
qualitative differences between metal–ammonia soluti
and doped semiconductors or expanded metals, the me
insulator transitions in them have an identical percolat
nature and are described by a universal theory.

The metal–insulator transition in metal–ammonia so
tions has an effect on the phase transition analogous to
liquid–gas phase transition in pure metals. The paramete
the critical solubility point are determined by the Coulom
interaction of the ions and electrons in the overlapping i
purity states, and the effective dielectric constant, wh
weakens this interaction, is substantially less than its ma
scopic values due to saturation of the polarization of
dipolar molecules near the ions. An analogy with plas
critical points was used to estimate the binding energy of
impurity states. This estimate is confirmed by solving t
Schrödinger equation for a simple model of the impuri
states. The percolation conductivity via the impurity sta
near the metal–insulator transition point also agrees with
periment. Taken together, the self-consistency of the vari
estimates corroborates the given interpretation of the e
tronic structure of metal–ammonia solutions in the vicin
of the metal–insulator transition point.
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Surface ordering near the smectic- A –smectic- C transition in thin, free-standing, liquid-
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crystal films
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Optical reflectivity measurements have been conducted near the smectic-A–smectic-C phase
transition in free-standing films with thickness between two and eleven molecular layers. The
temperature dependence of the reflectivity in thin film differs significantly from that in thick
films. The optical thickness per layer increases in films with two to five layers as a result of
cooling, in contrast with thick films. The average layer spacing was found to decrease with
decreasing film thickness. ©1997 American Institute of Physics.@S1063-7761~97!01503-5#

Phase transitions in thin, liquid-crystal, free-standing
1–10
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films have recently been studied extensively. Free-
standing films reveal rich variety of properties unknown
the bulk samples. The discrete layer-by-layer surface fre
ing has been observed near the Sm-A–Sm-I ,
Sm-A–Hex-B, Sm-A–Cry-B bulk transitions.4,5,10,11 In
contrast, ellipsometric measurements of the molecular
angle have demonstrated that the order parameter for
Sm-A–Sm-C transition is a continuous function of temper
ture in thin films.12,13 The surface ordering phenomena ne
the Sm-A–Sm-C transition are very unusual. Boundary la
ers in free-standing films are tilted in the temperature inter
of Sm-A phase.12,13This tilt causes an increase in the tran
tion temperature on decreasing the number of layers.12–15

The optical reflectivity measurements are an informative t
for studies of phase transitions in free-standing films. U
now, however, detailed optical reflectivity measureme
have not been conducted in extremely thin films near
Sm-A–Sm-C transition.

In this paper we report the results of high-precisio
optical-reflectivity measurements near Sm-A–Sm-C transi-
tion for free-standing films varying from two to eleven m
lecular layers. We have observed an anomalous tempera
dependence of the optical thickness in ultrathin layers.
present the thickness dependence of the average inter
spacing on the film thickness. The penetration length of
Sm-C surface ordering was found to be significantly larg
than in the case of the layer-by-layer transitions.

The experiments were performed on free-standing fi
of p-decyloxybenzoic acid-p-n-hexyloxyphenyl ester. The
bulk samples possess the following phase sequence: SC
~77 °C! Sm-A ~83 °C! nematic~89 °C! isotropic. Using the
polarizing microscope we did not observe discontinuities
the optical properties at the bulk transition temperat
(TAC). These observations indicate that the Sm-A–Sm-C
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Our experimental setup enabled simultaneous optical ob
vations and measurements of the reflection and transmis
intensities to be made. The films were illuminated w
nearly normally incident light. The temperature was co
trolled with an accuracy of60.01 °C, X-ray-diffraction stud-
ies of the bulk samples were carried out using a curved lin
position-sensitive multidetector and a curved quartz mo
chromator. The layer spacing wasdA 5 3.02 nm at 82 °C and
increased slightly in Sm-A temperature range with decrea
ing temperature~about 1023 nm/°C!. In the Sm-C phase
dC decreased significantly with decreasing temperature~dC
5 2.92 nm at 71 °C!.

The 2 to 11-layer films were spread over a 6-mm-dia
hole in a 0.2-mm-thick steel plate. Two methods of film
preparation were used. Thin films could be spread b
movement of a mobile steel slip across the hole. As a rule
took many attempts to obtain a film of the required thickne
The second method was based on the step-by-step thin
of free-standing films above the bulk Sm-A– isotropic16 or
Sm-A–nematic17,18phase transitions. The film thickness d
creased in a stepwise manner on increasing the tempera
After preparing a film of a required thickness, the heati
was stopped and the film cooled in the temperature inte
of the bulky Sm-A. Combining these two methods, we pr
pared films ranging from 2 and 11 layers. The film thickne
and interlayer spacings were determined by optic
reflectivity measurements using the equation19

I ~l!5
~n221!2 sin2~2pnL/l!

4n21~n221!2 sin2~2pnL/l!
, ~1!

whereN is the number of layers,n 5 1.48 is the refractive
index, andd is the interlayer spacing. For thin films Eq.~1!
can be simplified:20

5223$10.00 © 1997 American Institute of Physics
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I ~l!5
N2p2d2~n221!2

l2 . ~2!

Equation ~2! allows the determination of the optica
thickness per layer (n2 2 1)d. In our case this equation give
the optical thickness with acceptable accuracy only fo
very thin film. For thicker films, it was necessary to use t
exact equation@Eq. ~1!#. The thickness of very thick films
together with the refractive index, can be obtained from
fitting of the reflectivity spectraI (l) with Eq. ~1!.14 How-
ever, this does not work properly for thin films (N , 15),
because thel-dependence of the reflectivity is very smoot
In this case, we used the bulk value for the refraction ind
and reduced the number of fitting parameters. The nume
estimates show that this procedure allows us to find opt
thickness without significant error~no more than 0.3%!.

Figure 1 shows the temperature dependences of the
flectivities from 2- and 11-layer films (l 5 550 nm) multi-
plied by 4/N2 to compare results from films of differen
thicknesses. As expected for the second-order transition
observed the continuous variation in the reflected intensit
Unexpected result is a drastic change in the temperature
pendences with decreasing number of layers. The varia
in the slope of the curves was found to occur for the num
of layers ranging from 7 to 5.

Using the reflectivity data in Fig. 1, the temperature d
pendences of the optical thickness per layer (n2 2 1)d were
calculated. These dependences are shown in Fig. 2.
change of the thickness is continuous, which correspond
the second-order Sm-A–Sm-C transition. For the 7 to 11
layer films the optical thickness decreases on cooling. Qu
tatively similar decrease in the optical thickness at
Sm-A–Sm-C transition was observed previously for ve
thick films.14 The interlayer spacing was estimated using
optical thickness per layer and the refractive index. In th
films ~9 to 11 layers! at 82 °C ~Sm-A phase! dA coincided
with the value obtained from x-ray measurements with ac
racy of 2%. Since the value of the optical reflectivity w
measured with an uncertainty of about 1% andn with accu-

FIG. 1. Temperature dependence of the reflectivity in various free-stan
films. The data from 3-, 5-, 7-, and 11-layer films were multiplied
4/N2. The temperature was decreased at the rate 2 mK/s.
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racy of 0.02, there was a good agreement between op
and x-ray data in the Sm-A phase. However, the relativ
decrease of the layer spacing (dA 2 dC)/dA ' 0.03. ~x-ray
measurements! in the range of temperatures from 82 to 71 °
was more than the decrease of the optical thickness in t
films. In our opinion, this difference stems from the chan
of the refractive index.

Data for theN , 5 layer films display the anomalou
increase of the optical thickness and seem to indicate tha
Sm-A–Sm-C transition is not present in thin films. Ex
tremely thin films exhibit similar variation of (n2 2 1)d in
the entire temperature range, in which these thicknesses
stable~up to 104 °C for a two-layer film!. These results can
be explained if we assume that the surface field stabilizes
Sm-C molecular ordering near the surface. The anomal
temperature dependence of the optical thickness in ultra
films (N , 5) can be interpreted in two ways: i! the increase
of the refractive index as a result of cooling, ii! the change in
the interlayer spacing. Our data are not sufficient to dis
guish between these two cases. It should be noted that t
cannot be a simple analogy with the behavior of thick film
The increased packing efficiency and the quench of the la
fluctuations in thin films,21 as compared with thick films, can
be the reason for the anomalous change of the optical th
ness.

Recently, x-ray reflectivity studies of ultrathin Sm-C*
films on subtrates have shown an increase in the sme
layer spacing with decreasing number of smectic lay
~about 20%!.22 Figure 3 shows the plot of the optical thick
ness per layer versus the number of layers. Our results s
that at low temperature~71 °C, Sm-C phase! the change in
the interlayer spacing is less than 1%. At high temperatu
we observed significant differences in the optical interla
spacings in thin and thick films~Fig. 3!. The (n2 2 1)d
changes are continuous within the measurement error. F
Fig. 3 it is clear that (n2 2 1)d increases at different rates a
the temperature changes. It should be noted that some
face ordering has been observed even below the bulk tra
tion temperature~75 °C Fig. 3!. The s-like shape of the
thickness dependence~86 °C! provides strong evidence o

gFIG. 2. Temperature dependence of the optical density per layer (n2 2 1)d
for 2-, 3-, 5-, 7-, 9-, and 11-layer films.
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the transition from the Sm-C surface to Sm-A ordering. In
the Sm-C phase the thickness of the single smectic lay
dC , may be assumed to bedC 5 dA cosu, whereu is the tilt
angle. By assuming that the value of the refractive ind
does not depend on the film thickness and that the thickn
of the eleven-layer film at 86 °C is determined mainly by t
Sm-A ordering, we could estimateu at about 18° for a two-
layer film. This value ofu is slightly lower than that found in
the DOBAMBC two-layer film ~approximately 25°,T
2 TAC ' 10 °C!.12 For the layer-by-layer ordering,4,5,10,11

only the surface layers exhibit transition at a temperat
'10 °C above the bulk transition. It is obvious that the pe
etration depth in our case is several times greater~Fig. 3!.
We estimate the surface order penetration depth to be a
three layers. Another distinguishing feature of this transit
is the behavior of the penetration depth nearTAC . For the
layer-by-layer transition4,5,10,11 the penetration depth di
verges near the bulk transition temperature, at which ther
an abrupt transition in the whole sample. In contrast,
penetration depth remains finite in the temperature rang
the bulk Sm-C phase near the bulk transition temperatu
These results can be attributed to the strong surface orde
and to the possibility of the continuous changes of the m
lecular tilt angle in the adjacent layers.

In summary, we have presented the first study of
Sm-A—Sm-C transition in extremely thin films using opti

FIG. 3. Optical density per layer plotted as a function of the number
layersN.
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of the layer spacing in thin films differs significantly from
that in thick films near the bulk Sm-A–Sm-C transition. Our
observations indicate that surface field stabilizes the SmC
phase in extremely thin films. In the high-temperature
gion, the layer spacing decreases with decreasing numb
layers and remains approximately constant at lower temp
tures. These observations indicate that the Sm-C–Sm-A
transition takes place with increasing film thickness.
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The magnetic field and energy of an Abrikosov vortex in an anisotropic London

for
superconductor
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The behavior of a straight Abrikosov vortex in an anisotropic uniaxial London superconductor is
studied. Analytical expressions are derived that approximately describe the magnetic field
in three regions: the asymptotic region, where the distancer from the vortex line is greater than
lG ~l is the London length andG is the anisotropy constant!, the intermediate region
l,r,lG, and the regionr,l. It is found that in the intermediate region with high anisotropy
the component of the magnetic field along the vortex line changes sign for a certain
interval of angles between the vortex line and the anisotropy axis. Because of this the interaction
of parallel vortices whose plane is parallel to the anisotropy axis has a minimum and a
maximum. This means that numerous metastable vortex lattices can exist. Additional terms in the
vortex self-energy are obtained, and although they are smaller than the leading logarithmic
term, they display a different dependence on the angle between the vortex line and the anisotropy
axis. © 1997 American Institute of Physics.@S1063-7761~97!01603-X#

1. The magnetic field of a straight Abrikosov vortex in an Fourier transform. Here we derive analytical expressions
2 22
anisotropic superconductor with large values of the
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Ginzburg–Landau parameterk was studied in Refs. 1–4. An
equation describing the magnetic fieldh(R) can be derived
from the Ginzburg–Landau theory~see Ref. 3 and 5!:

h1curl~m̂ curl h!5
F0

2pl2D~R!v. ~1!

In what follows we confine ourselves to the case of uniax
anisotropy, when the effective mass along the axis is gre
than in the perpendicular plane. Then, along the major a
the tensorm̂ has the following components:

m115m2251, m335G2.1, ~2!

whereF0 is the quantum of magnetic flux~fluxoid!, v is the
unit vector along the Abrikosov-vortex line, (h(0)•v.0, l
is the depth of penetration of the magnetic field parallel
the anisotropy axis, andR is the two-dimensional radius vec
tor in the plane perpendicular tov and measured, in units o
l, from the point of intersection of the plane and t
Abrikosov-vortex line. We denote the polar coordinates
this plane byR andw, and the angle between the anisotro
axis and the Abrikosov-vortex line, measured from the a
to the direction ofv, by u. As for the functionD(R), it is
known that forR.R05h(w,u)k21 it is negligible and that

E
S
D~R!dR52p. ~3!

The values of the functionh(w,u) differ little from unity,
andS stands for the entire plane perpendicular tov. In Refs.
1–4,D(R) was replaced by 2pd(R), whered(R) is a delta
function in a plane, i.e., instead ofh(R) one actually finds
g(R), the Green’s function of Eq.~1!. ~More precisely,
g(R) is one of the three vectors comprising the Green’s t
sor of Eq.~1!.! The Fourier transform ofg(R) was obtained
in Refs. 2 and 6, while in Ref. 3g(R) was studied via nu-
merical integration and asymptotic expansion of the inve
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g(R) in the regionsR!1 and 1!R!G 12sin u(12G ),
and refine the asymptotic expression forg(R) whenR@G.
In obtaining the results we often use formulas from Refs
and 8. Actually,

h~R1!5
1

2pESg~R12R2!D~R2!dR2 . ~4!

In what follows we show that forR,1 the averaging of~4!
is important in the case of an anisotropic superconduc
Bearing Eq.~4! in mind, we also refine the expression for th
Abrikosov-vortex energy derived in Ref. 6.

2. Let us decomposeg(R) along the directions of the
Cartesian axes of a system of coordinates with axis 3
rected alongv, axis 1 perpendicular to the anisotropy ax
and axis 2 directed in such a way that 0<u<p/2. We as-
sume that the components are functions of the polar coo
natesR andw in the plane perpendicular tov. Theng(R)
andh(R) can be represented by the following Fourier seri

g1~R!5 (
n51

`

g1n~R!sin 2nw,

g2~R!5 (
n50

`

g2n~R!cos 2nw, ~5!

g3~R!5 (
n50

`

g3n~R!cos 2nw.

Next we show that the other Fourier amplitudes are ze
Let us discuss in greater detail the calculation ofg3(R). The
integral formula for this function obtained in Refs. 2 and
can be derived by means of some identities. It has the
lowing form:

5256$10.00 © 1997 American Institute of Physics



g ~R!5
F0 E2pE`

exp@ iq Rcos~w2c!#
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the amplitudeg3n in a series in sin2u begins with the power
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2 ~2pl!2 0 0

3F S cos2g

12sin2g sin2c
2

cos2u

12sin2u sin2c D
3

1

q21G22~12sin2g sin2c!21

1
cos2u

12sin2u sin2c

1

q211Gqdq dc, ~6!

where q and c are the polar coordinates of the two
dimensional vectorq,

sin2g5sin2u~12G22!, 0<g<u<p/2, ~7!

with g5u only if u50. Using formula~8.511.4! of Ref. 7,

exp~ iz cosa!5J0~z!12(
n51

`

i nJn~z!cosna, ~8!

we arrive at the following expressions for the Fourier amp
tudes:

g3n5
F0

~2pl!2
~22dn,0!E

0

2p

cos 2ncF S cos2g

12sin2g sin2c

2
cos2u

12sin2u sin2c DGnS R

G~12sin2g sin2c!1/2D
1

cos2u

12sin2u sin 2c
Gn~R!Gdc. ~9!

Here

Gn~aR!5~21!nE
0

` J2n~qR!qdq

q21a2

5~21!nE
0

` J2n~z!zdz

z21a2R2 . ~10!

These integrals are evaluated in the Appendix, with the re
that

Gn~aR!5K2n~aR!

2
1

2 (
m50

n21
~21!m~2n2m21!!22n22m

m! ~aR!2n22m , ~11!

G0~aR!5K0~aR!,

i.e.,Gn(aR) for n Þ 0 is equal to the corresponding modifie
Bessel functionK2n(aR) minus the terms in the series re
resentation of this function~see formula~8.446! in Ref. 7!
that diverge atR50. Equations~6!–~9! suggest that since
the factor of cosnc (sinnc) in the integrand is a function
only of sin2c, only the terms in the Fourier series propo
tional to cos 2nw are retained. Since

sin2mc5 (
k50

m

Sk cos@2~m2k!c# ~12!

~see formula~1.320.1! of Ref. 7! and sin2c enters into the
integrand only with a factor sin2u or sin2g, the expansion of
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2n. This ensures good convergence of the Fourier series
Let us study the asymptotic behavior ofg3n(R) in the

limit R@G (n Þ 0). With the help of the identity

G2~12sin2g sin2c![~G221!~12sin2u sin2c!11,
~13!

we can easily show that all the terms of the asymptotic
pansion of the integrand in~9! originating from the sum in
~11! are proportional to sin2c with a power of at most
n21, with the result that they vanish when integrated w
respect toc. The leading term of the asymptotic expansi
of the modified Bessel function does not depend on the o
of the function. Then Eqs.~5!, ~9!, and ~11! and the well-
known definition of the coefficients of a Fourier series le
to the following result:

g3~R!5
F0

2pl2A p

2RH S cos2g

12sin2g sin2w

2
cos2u

12sin2u sin2w DG1/2~12sin2g sin2w!1/4

3expF2
R

G
~12sin2g sin2w!21/2G

1
cos2u

12sin2u sin2w
exp~2R!J . ~14!

Let us now compare~14! with the corresponding Eqs
~15!–~19! of Ref. 3. The dependence ofg3(R) onR in both
cases is the same: an exponential decreases asR grows, with
a pre-exponential factor proportional toR21/2. The
w2dependent factor in the exponent~the expression in
square brackets! of the first term is also the same, to fir
order in sin2g. The factor of the second exponential functio
is also partly the same, but in the present paper it prove
be universal for all anglesw andu, while in Ref. 3 it differs
significantly in some sectors, even exhibiting a different d
pendence onR. The most important is the difference in th
factor of the first exponential function. In particular, in E
~14! it is always nonnegative, which is understandable if
allow for ~7!. Generally, Eq.~14! suggests thatg3(R) for
R@G is always positive, i.e., the inversion effect discover
by Grishinet al.3 does not manifest itself in the asymptot
region. In Ref. 3 the existence of inversion in this regi
rests on the assumption that the second term of
asymptotic expansion is greater in absolute value than
first ~see Eqs.~15! and ~20! in Ref. 3!. From ~11! it follows
that the functionGn(aR) may have zeros originating from
the sum, but, as we have just seen, forR@G the contribution
of the sum from ~11! to g3n(R) vanishes and only the
asymptotic behavior of the modified Bessel functions, wh
are always positive, is important here.

Inversion in g3(R) was also discovered by Grishi
et al.3 in their numerical calculations in the intermediate r
gion of values ofR. From ~9! it follows that the effect can
occur when the first and second terms in the integrand h
different signs. Let us study the region
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1!R!G cosg. ~15!
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Then, using~11!, we can write the following approximat
relationships:

GnS R

GA12sin2g sin2c
D '

~21!n

2n
,

Gn~R!'~21!n
2n

R2 ,

G0S R

GA12sin2g sin2c
D '2 ln

R

2G
2C

1
1

2
ln~12sin2g sin2c!,

~16!

G0~R!'A p

2R
exp ~2R!,

whereC is Euler’s constant. Plugging~16! into ~9!, evaluat-
ing the integrals via formulas~3.615.1! and~4.399.3! of Ref.
7, and summing the series via formulas~5.4.9.6! and
~5.4.9.13! of Ref. 8, we find that

g3~R!5
F0

2pl2 H ~cosg2cosu!S 2 ln
R

2G
2CD

1cosuA p

2R
exp~2R!2cosg

3 lnF11cosg

2 cosg S 122 tan2
g

2
cos 2w1tan4

g

2D
1/2G

1cosu lnF 11cosu

cosg1cosu

3S 122 tan2
u

2
cos 2w1tan4

u

2D
1/2G1

4 cosu

R2

3tan2
u

2

~ tan4~u/2!11!cos 2w22 tan2~u/2!

~122 tan2~u/2!cos 2w1tan4~u/2!!2 J .
~17!

The expression~17! in the sectors where cos 2w is close to
21 can be negative. For instance, for the values of the
rameters adopted in Ref. 3 in numerical calculations,G58
and u5p/6 at the point with coordinatesR55.2 and
w5p/2, which corresponds to the negative minimum
g3(R) in Eq. ~17!, we haveg3523.331023F0/2pl2. ~In
the notation adopted in the present paper, atG58 the value
of l is half the value ofl of Ref. 3.! The departure from the
value depicted in Fig. 1c of Ref. 3 amounts to about 10
However, in contrast to the results of Ref. 3, in the pres
work the regions whereg3,0 are limited.

For the values ofR we are considering here the fie
h(R) differs little from g(R). Indeed, the characteristic dis
tances over whichg3n(R) changes considerably are of ord
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unity (l in the dimensional units of length!. Then the terms
in the Fourier series~5! change considerably over a distan
of min(1, R/n). If this distance is much larger thank21,
integration in~4! does not change the corresponding ter
Thus, over the given distanceR integration changes only th
terms in the Fourier series withn>Rk, and, as shown ear
lier, the smallness of these terms is of order sin2nu.

For R,1 we have

FIG. 1. Equal-value curves for the components of the functiongs(R), nor-
malized toF0 /pl2, in the plane perpendicular to the axis of an Abrikos
vortex: a—gs1(R), b—gs2(R), and c—gs3(R). The heavy curves separat
the regions of positive and negative values.
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R ~21!n

g
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rs
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they
,

GnS
GA12sin2g sin2c

D 'Gn~R!'
2n

,

G0S R

GA12sin2g sin2c
D '2 ln

R

2G
1
1

2

3 ln~12sin2g sin2c!2C,

~18!

G0~R!52 ln
R

2
2C,

which yield

g3~R!5
F0

2pl2 F ~cosg2cosu!ln G1cosgS 2 ln
R

2
2CD

2cosg ln
11cosg

2 cosg
1cosu ln

11cosu

cosg1cosu

2
1

2
cosg lnS 122 tan2

g

2
cos 2w1tan4

g

2D G . ~19!

Not only does this expression diverge, it becomes stron
dependent onw asR→0. This singularity, which is natura
for a Green8s function, vanishes inh(R) if formula ~4! is
employed. In~19! we put

R5uR12R2u,
~20!

cos 2w5cosF2arctanS R1sin w12R2sin w2

R1cosw12R2cosw2
D G .

Note thatD(R2)R2 has a sharp peak atR25R0 with a width
of orderk21. Then integration in~4! with respect toR2 can
be done in general form by taking the slowly varying facto
of D(R2)R2 outside the integral sign atR25R0, ignoring the
dependence ofR0 onw to the same accuracy, and employin
Eq. ~3!. As a result of integration with respect tow2 we find
that the axisymmetric term inh3(R1)5h3(R1)1h̃3(R1 ,w1)
for R1>h̄k21 coincides with a similar term in~19!, while
for R1,h̄k21 it remains constant~the factorh̄ differs little
from unity!. Thew1-dependent term inh3(R1) has the form

h̃3~R1 ,w1!

5
F0

2~2pl!2
cosgE

0

2p

lnH 11tan4
u

2
22 tan2

u

2

3cosF2arctanS R1 sin w12h̄k21 sin w2

R1 cosw12h̄k21 cosw2
D G J dw2 .

~21!

At R15h̄k21,

cosF2arctanS sin w12sin w2

cosw12cosw2
D G52cos~w11w2!. ~22!

Then, according to Eq.~2.6.36.9! of Ref. 8, we have
h3(h̄k21,w1)[0. Reasoning along similar lines we ca
show thath3(0,w1)[0.

Thus, Eqs.~14!, ~17!, ~19!, and ~21! describe the com-
ponent of the magnetic field parallel to the Abrikosov-vort
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field changes sign only in the intermediate region.
Similarly, we can write expressions for the other com

ponents of the Green’s function. In the asymptotic reg
R@G,

g1~R!

5
F0

2pl2

sin 2u sin 2w

4
~G221!A p

2R

3H F G1/2~12sin2g sin2w!1/4

~G221!~12sin2u sin2w!

2
1

G3/2~12sin2g sin2w!3/4G
3expF2

R

G~12sin2g sin2 w!1/2G
2

1

~G221!~12sin2u sin2w!
exp~2R!J , ~23!

g2~R!52
2cos2w

sin 2w
g1~R!. ~24!

In the intermediate region~15!,

g1~R!

5
F0

2pl2cot uH 4

R2

cos24~u/2!cosu sin 2w

@122tan2~u/2!cos 2w1tan4~u/2!#2

1arctanF tan2~g/2!sin 2w

12tan2~g/2!cos 2w G
2arctanF tan2~u/2!sin 2w

12tan2~u/2!cos 2wG J , ~25!

g2~R!

5
F0

2pl2

sin 2u

4 H 1

cos2~u/2!
A p

2R
exp~2R!

1F G221

G2cos2~g/2!
2

1

cos2~u/2!
G S ln 2G

R
2CD

2
2 cosu

R2cos4~u/2!

@11tan4~u/2!#cos 2w22 tan2~u/2!

@122 tan2~u/2!cos 2w1tan4~u/2!#2

1
2 cosg

sin2u
lnF11cosg

2 cosg S 122 tan2
g

2
cos 2w

1tan4
g

2D
1/2G2

2 cosu

sin2u
lnF 11cosu

cosg1cosu

3S 122 tan2
u

2
cos 2w1tan4

u

2D
1/2G J . ~26!

It may seem that these expressions are incorrect since
do not vanish when we letG go to 1. In this case, however
the intermediate region determined by the inequalities~15!
vanishes.

For R!1,

528I. M. Dubrovski 



g ~R!5
F0

cot u arctan
tan2~g/2!sin 2w

. ~27!
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1 2pl2 F12tan2~g/2!cos 2w G
The dependence ofg1(R) on R appears when the

higher-order approximations inR are taken into account. Th
function g2(R), as well asg3(R), has a logarithmic singu
larity at R50:

g2~R!5
F0

2pl2

~G221!sin 2u

2 H ln~2/R!2C

2G2cos2~g/2!

1
ln G

2 F 1

G2cos2~g/2!
2

1

~G221!cos2~u/2!G
1

1

~G221!sin2u Fcosg ln
11cosg

2cos g

2cosu ln
11cosu

cosg1cosuG1
cosg

2~G221!sin2u

3 lnF122tan2S g

2D cos 2w1tan4
g

2G J . ~28!

This means that even at the center of the vortex nei
g(R) nor h(R) is parallel tov.

Figure 1 depicts the equal-value curves for the th
components of the functiongs(R) formed by matching the
above asymptotic expressions forg(R) at parameter value
G58 andu5p/6. The matching was done by including on
expression and excluding the other via coefficients vary
from zero to unity in the intermediate regions 0.5<R<1 and
6<R<8. Hence Fig. 1 provides a qualitative representat
of the functiong(R), while in the regions of applicability of
the asymptotic formulas this representation is even quan
tive. Figure 1 can be compared with the corresponding fig
in Ref. 3, which was obtained by numerically integrating t
inverse Fourier transform for the same parameter valu
Note that the unit of length in the present paper is half tha
Ref. 3. In both papers the pattern ofg1(R) ~Fig. 1a! is the
same. The functiong2(R) in Fig. 1b corresponds even qua
titatively to theg2 of Ref. 3 in the region represented in th
paper. The position of the negative minimum on the horiz
tal axis cannot be obtained exactly from the asymptotic f
mulas for the chosen values of the parameter. However,
region does not provide a full description of the functi
g2(R). From Eqs.~23! and~24! and from the correspondin
asymptotic formula of Ref. 3 it follows thatg2(R) is non-
positive forR@G and vanishes on the vertical axis, since
is proportional to cos2w. Hence the zero-level curve becom
closed on the vertical axis and then continues along this a
Figure 1c shows that the region of negative values
g3(R) is limited, in contrast to the behavior depicted in t
corresponding figure in Ref. 3.

3. The leading contribution to the energy of a singu
vortex is provided by the magnetic field and the kinetic e
ergy of the superconducting currents3

E5
l2

8pES@ uhu21~curl h!•m̂•~curl h!#dR. ~29!
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vortex. Integrating the second term by parts and plugging~1!
and ~4!, we obtain

E5
F0

32p3E
S
E
S
D~R1!g3~R12R2!D~R2!dR1dR2 . ~30!

The cutoff procedure inq-space carried out in Ref. 6 mean
replacing one of the functionsD(R) by 2pd(R) and the
other by

D~R!5
1

2pE0
kE

0

2p

exp@ iqR cos~w2c!#qdqdc

5
kJ1~kR!

R
. ~31!

Instead we allow for the fact that, as noted earlier,RD(R)
has a sharp peak atR5R0'h̄k21. Then ing3(R12R2) of
Eq. ~30! we can putR15R25h̄k21 and, using Eqs.~3!, ~19!
and ~20!, we obtain

E5
F0

32p3E
0

2pE
0

2p

g3~ h̄k21,w1 ;h̄k21,w2!dw1dw2

5S F0

4pl D 2FcosgS ln2k

h̄
2CD 1~cosg2cosu!

3 ln G2cosg ln
11cosg

2 cosg
1cosu ln

11cosu

cosg1cosuG .
~32!

Here the first term coincides with the well-known formu
derived in Ref. 6. The employed method of integrati
makes it possible to estimate the relative accuracy of
calculations. For the first term this accuracy is (lnk)21, i.e.,
the term is determined to within logarithmic accuracy,
noted in Ref. 6. The other terms are determined to withi
relative accuracy ofk21 and are generally smaller than th
first. They are characterized, however, by a different dep
dence on the angle between the Abrikosov vortex and
anisotropy axis: atu50 they are zero, and their contributio
monotonically increases withu. For G58, k550, and
u5p/2 the correction amounts to 14% of the value of t
first term.

The energy of interaction, per unit length, of two paral
Abrikosov vortices separated by a distanceL so large that
h3(L )'g3(L ) is

Eint5
F0

4p
g3~L !. ~33!

If the plane containing the Abrikosov vortices passes throu
the anisotropy axis, for parameter values allowing for t
inversion of the sign ofg3(L ), in the intermediate region
~15! theEint vs L dependence acquires a negative minimu
at L5Lmin and a positive maximum atL5Lmax ~here
Lmin,Lmax;G). In this case, at Abrikosov-vortex densitie
N,Lmax

22 there can be two ideal vortex lattices in the syste
a metastable Abrikosov lattice in which all the vortices a
separated by distances greater thanLmax and are repulsive,
and a stable lattice~described in Ref. 3! consisting of repul-
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sive planes that are parallel to the anisotropy axis and in
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Taking (2/aR)k outside the brackets, replacing the summa-

s

n,

n
, a

d

a,
which the Abrikosov vortices are separated by distance
aboutLmin . There can also be metastable groups of nonid
lattices in which chains of different lengths consisting
Abrikosov vortices separated by distances of aboutLmin are
surrounded on all sides by Abrikosov vortices separated
distances greater thanLmax. These metastable lattices can
one of the reasons for the hysteresis phenomena obse
and discussed in Ref. 9 and the works cited therein.

APPENDIX

Using the recursion relation for the Bessel function
the first kind~see formula~8.471.1! of Ref. 7!, we find that

J2n~x!5~21!n(
k50

n

~21!kJk~x!Ank , ~A1!

where theAnk are positive integral coefficients. We have

2kE
0

`

x2k11Jk~x!
dx

x21b2

5
2

~k21!!b2
22k11E

0

`

x2~k21!11Jk21~x!
dx

~x21b2!2
.

~A2!

Here integration by parts is done according to form
~5.52.2! of Ref. 7. Doing thisk times and using formula
~6.565.4! of Ref. 7, we get

2kE
0

`

x2k11Jk~x!
dx

x21b2

5 (
m51

k
~21!m1122m21~m21!!

~k2m!!b2m
1~21!k

2k

bk
Kk~b!.

~A3!

Next we plug~A1! into ~10! and integrate according to~A3!.
The result is

Gn~aR!5 (
k50

n

AnkF ~21!k (
m51

k
~21!m1122m21~m21!!

~k2m!! ~aR!2m

1
2k

~aR!k
Kk~aR!G . ~A4!
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tion indexm with k2 l , and writingKk(aR) in the form of a
series via formula~8.446! of Ref. 7, we arrive at a serie
expansion ofGn(aR) in powers of the argument:

Gn~aR!5 (
m50

`
1

m! S aR2 D 2m(
k50

n
~21!k11

~m1k!!
Ank

3F lnaR2 1C2
1

2 S (
l51

m
1

l
1 (

l51

m1k
1

l D G . ~A5!

One can obtain the zeroth term in this expansio
Gn(0)5(21)n/2n, directly from Eq.~10! by using formula
~6.561.14! of Ref. 7. For the modified Bessel functio
K2n(x) we can derive, by employing recurrence relations
formula similar to~A1! with the same coefficientsAnk but
without the factors (21)k1n. Using this formula, we can
transform~A4! to

Gn~aR!5K2n~aR!2 (
k51

n

(
l51

k

Ank~21!k1 l

3
22l21~ l21!!

~k2 l !! ~aR!2l
. ~A6!

Writing K2n(aR) in the form of a series via formula~8.446!
of Ref. 7 and comparing the result with~A5!, we conclude
that the coefficients of the negative powers ofaR vanish,
which yields~11!.
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Teor. Fiz.97, 1930~1990! @Sov. Phys. JETP70, 1089~1990!#.

4V. G. Kogan and J. R. Clem, Phys. Rev. B24, 2497~1981!.
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“The energy spectrum of quadrupole impurity centers of different types

of
in antiferromagnets
M. A. Ivanov
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We study the energy spectrum and some properties of various quadrupole centers~magnetic
impurities or magnetic impurity complexes that are symmetric with respect to the magnetic
sublattices of the antiferromagnet!. We allow for the effect of spin–phonon coupling on the
quadrupole splitting parameter and show that such coupling can lead to a considerable decrease in
the value of this parameter and even change its sign. We investigate the behavior of
quadrupole centers with an orbitally degenerate ground state and of quadrupole impurity
complexes formed by mixed-valence ions. We demonstrate that such centers may greatly affect
the resonant, magnetic, and thermodynamic properties of antiferromagnets. Finally, we
analyze the existing experimental data and show that several new effects can be observed in
systems with such centers~in particular, a magnetic analog of the Jahn–Teller effect and a strong
magnetoelectric effect!. © © 1997 American Institute of Physics.@S1063-7761~97!01703-4#

1. INTRODUCTION in analyzing the special features of the electron spectrum
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Localized low-frequency excitations of an impurity sp
positioned symmetrically with respect to the magnetic s
lattices of an antiferromagnet have been studied by m
researchers~see, e.g., Refs. 1–6!. In the absence of a mag
netic field the spectrum of such impurities is described by
effective Hamiltonian of quadrupole type with a constantA
equal, in order of magnitude, to the ratio of the square of
constantJ of the exchange impurity–matrix coupling to th
width of the spin-wave band of the antiferromagnet, w
A.0. As a result, the ground state of impurities with ha
integer spin proves to be twofold generate:Sz571/2. Here
the magnetic, resonant, and thermodynamic properties o
antiferromagnet containing such centers exhibit many s
cific properties characteristic of crystals with two-level sy
tems, including the presence of a peculiar glass phase.5

The present upsurge of interest in quadrupole cente
caused by the appearance of new objects of research in
traditional systems7 and such specific quasi-two-dimension
magnetic materials as high-Tc superconducting oxides.8–12

The reason for the appearance of quadrupole magnetic
ters in high-Tc superconducting oxides is either nonstoic
ometry of the composition or nonisovalent substitutional
oms. Therefore, it is natural that in this case the behavio
the impurity center strongly depends on the nature of loc
ization of excess charge on the center. The same sys
have been mentioned~see Ref. 8! in connection with the
possibility of forming quadrupole centers with an orbita
degenerate ground state.

Following the description of quadrupole states belong
to impurity centers, a similar approach was adopted in
scribing the properties of some types of antiferromagnets
which the average value of the exchange field generate
the atoms of one sublattice on the other is zero,13 as well as

531 JETP 84 (3), March 1997 1063-7761/97/030531
-
y

n

e

an
e-
-

is
oth
l

n-

-
f
l-
ms

g
-
in
by

carriers in high-Tc superconducting oxides.
In this paper we go into a deeper study of the ene

spectrum of various types of quadrupole centers. Here for
traditional quadrupole centers we find the contribution
spin–phonon coupling to the quadrupole splitting parame
A and attempt to resolve the contradiction between
theory developed earlier and the new experimental data.7 We
focus on the analysis of the features of the low-frequen
energy spectra and properties of unconventional quadru
centers, such as centers in which the ground state is orbi
degenerate, and impurity complexes that occur due to ch
transfer between ions of transition elements that are ne
bors of an impurity atom~quadrupole centers with mixed
valence ions!.

2. COMMON QUADRUPOLE CENTERS

2.1. Contribution of spin–phonon coupling to the
quadrupole splitting parameter

An example of quadrupole centers is the orbitally no
degenerate magnetic impurity interstitial atoms position
symmetrically with respect to the magnetic sublattices of
antiferromagnet. For such centers the Hamiltonian of the
change interaction with the spin subsystem of the matrix
be written as

H5(
in

(
s
Jin,s~Sin•Ss!, (

n
J1n,s5(

n
J2n,s , ~1!

whereSs is the spin of an impurity atom at the interstitial si
with numbers, and theJin,s are the constant of exchang
coupling between an impurity at the interstitial sites and the
matrix spinSin in the celln of the sublatticei ( i51,2).

When the exchange coupling of impurity and matrix
weak, the effective spin HamiltonianHeff for noninteracting

5319$10.00 © 1997 American Institute of Physics



impurity centers can be found by perturbation techniques.
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The small parameter in the perturbation series is the rati
the impurity–matrix exchange interaction to the maximu
exchange interaction in the matrix,J/max(Jii8), where
J[(nJin,s is the effective impurity–matrix exchange inte
action, andJii 8[(nJin,i 8n8 is the corresponding interactio
of matrix atoms belonging to different sublattices. Then,
second order in this ratio,Heff can be expressed as2,3

Heff5A~Sz
22S~S11!!, ~2!

whereS is the impurity spin, andSz is the projection of the
spin on the antiferromagnetism axis. The quadrupole sp
ting parameterA in ~2! is positive and satisfies

A;
J2

max~Jii 8!
.

These statements concerning the magnitude and sig
the quadrupole splitting parameter may become invalid
there is a strong interaction between the magnetic momen
an impurity center and phonons. Lattice vibrations model
parameters of the impurity–matrix exchange interaction:

V 5(
in

(
as

K in,s
a ~Sin•Ss!~U in

a 2U s
a!,

~3!

Rin,s
a [

]Jin,s
]~Rin

a 2Rs
a!
, a5x, y, z,

whereRin
a , Rs

a andU in
a , U s

a are the coordinates of th
equilibrium positions and the displacements of the ma
atoms and the impurity in the lattice. Allowing for this effe
in second-theory perturbation theory inV ~with respect to
the phonon subsystem! adds the following term to the
impurity-center effective HamiltonianHeff ~Eq. ~2!!;

H~s2p!5A~s2p!Sz
2 , A~s2p!;2

S0
2~K is1d,s

a !2a2

vD
, 0,

~4!

whereS0 is the spin of the matrix atoms, the labels1d
numbers the sites nearest to an impurity centers, a is the
distance between the impurity and the nearest spin in
matrix, andvD is the Debye frequency.

We see that the contributionA(s–p) of the spin–phonon
interaction~Eq. ~4!! to the total quadrupole splitting consta
Aeff5A1A(s–p) is negative. As a result,Aeff can become
much smaller thanA and even have different signs. The tem
perature dependence of the parameterA(s–p) at low tempera-
tures can be approximately described if in~4! we replace
S0 with the temperature-dependent functionS0(T)
5 S0s(T)/s(0),which reflects the variation of the sublattic
magnetizations(T) with temperature. Thus, the paramet
A(s–p) is proportional tos2(T). At the same, we can easil
show thatA exhibits no such temperature dependence, a
result of which the effective quadrupole splitting parame
Aeff can increase with temperature within a certain tempe
ture range.

At present we know of two examples of direct spect
manifestation of ordinary quadrupole centers in magn
materials.1,7 In both cases, Fe31 ions at the interstitial sites o
the FeCl2 lattice ~Ref. 1! or occupying ‘‘illegal’’ positionsc
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the impurity center Fe (c) in YFeO3, the presence of five
lines in the spectrum has made it possible to determine
constants in the effective impurity Hamiltonian and to es
mate the impurity–matrix exchange coupling paramete7

Here the experimentally determined quadrupole splitt
constantA>0.5 cm21 proved to be smaller by a factor of te
than the fractionJ2/J12;10 cm21 found from theoretical
estimates.7

The only obvious reason for the experimental value
A of Ref. 7 to be so small is almost perfect balance betw
the exchange and spin–phonon contributions toAeff . In this
connection it seems natural to study analogous quadru
centers in substances that are similar in structure, and
establish whether such a perfect balance of these contr
tions is a unique property or a general law.

2.2. Strongly coupled quadrupole centers

A characteristic feature of high-Tcsuperconducting ox-
ides is that the exchange interaction between the h
formed as a result of doping and the matrix spins is mu
stronger than the exchange interaction in the matrix prop
i.e., uJu.uJii 8u. In describing the energy spectra of su
strongly coupled quadrupole centers it is convenient to
the approach suggested in Ref. 4. Here for the zeroth
proximation we take the spectrum of an isolated comp
consisting of an impurity center and the nearest spin ne
bors. Then the interaction of this complex and the remain
matrix is taken into account by perturbation techniques. H
the smallness parameter is 1/z0, wherez0 is the number of
the nearest magnetic neighbors of a spin in the matrix.
instance, the spectrum of a complex consisting of an im
rity spin and the two nearest magnetic ions belonging
different sublattices of an antiferromagnet can be descri
in the zeroth approximation by the following expression:

E~S̄,S12,M S̄!5
J10~S̄~S̄11!2S12~S1211!2S~S11!!

2

1J12SS12~S1211!

2
2S0~S011! D , ~5!

whereJ10 andJ12 are the parameters of the exchange int
action in the complex between the spins of the impurity a
matrix and between the spins in the matrix, respective
S12 is the total spin of two matrix atoms, andS̄ is the total
spin of the complex.

We see that the nature of the ground state of the impu
complex strongly depends on the signs ofJ10 and J12, in
contrast to the case of a weakly coupled quadrupole cen
where the sign of the impurity–matrix exchange interact
has no effect on the structure of the spectral terms. Here
a complex where antiferromagnetic interactionJ10 is domi-
nant (J10.0) the ground state corresponds to a maxim
value ofS12 and a minimum value ofS̄.

In this approximation, when the interaction between t
isolated complex and the matrix is ignored, all energy lev
~5! are degenerate in the magnetic quantum numberM S̄ cor-
responding to the projection of the total spin of the compl
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The degeneracy is lifted when we allow for the effective
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exchange fields, described by the HamiltonianHeff(a),
through which the remaining magnetic atoms of the ma
act on the spins of the complex (a50, 1, 2 is the number o
the atom in the complex!. Second-order perturbation theo
in the above parameter yields the following correctio
DE(S̄,S12,M S̄) to the energyE(S̄,S12,M S̄):

DE~S̄,S12,M S̄!5A~S̄,S12!@M S̄

2
2S̄~S̄11!#, ~6!

where the constantsA(S̄,S12) prove to be positive~as they
are in ~2!!, but their value is determined by the exchan
parameters only for the matrix atoms.4 Thus, the ground state
of the complex in this approximation is achieved only wh
the projectionM S̄ of the total spinS̄ is at its minimum.
However, in the present case the renormalization of
quadrupole splitting parameter caused by spin–phonon
pling is still determined by the corresponding parameters
the matrix atoms.

Note that the impurity center examined by Aristov a
Maleyev9, which incorporates two Cu21 ions and a spin-1/2
hole (O2) between the ions, fully corresponds to the mod
of a strongly coupled quadrupole impurity adopted in t
present paper and in Ref. 4. Here, in the~generally accepted!
case of antiferromagnetic interaction between the hole
the copper ions, the ground state in the spin triad Cu21–
O2–Cu21is, according to~5!, the state with an intermediat
spinS1251 and a total spinS̄5 1/2 rather thanS̄53/2, as is
the case in Ref. 9. Nevertheless, here too the ground s
proves to be twofold degenerate and contributes consider
to the magnetic properties of high-Tc superconducting ox-
ides.

3. ORBITALLY DEGENERATE QUADRUPOLE CENTERS

Let us now examine the case where a position symme
with respect to the magnetic sublattices of the antiferrom
netic is occupied by a Jahn–Teller impurity ion in which t
ground state is twofold orbitally degenerate in a cubic cr
talline field ~the E-state!. Such a situation occurs, for in
stance, when Jahn–Teller centers replace nonmagnetic t
hedral cations in the spinel lattice with antiferromagne
ordering of the magnetic ions in octopositions.

The exchange interaction of a Jahn–Teller impurity
the nearest magnetic ions can be described by the follow
Hamiltonian:15

H5(
d

S L~S–Sd!1L̃ (
m5u,«

CEm,d~S–Sd!UEmD ,
~7!

UEu5S 21 0

0 1D , UE«5S 0 1

1 0D ,
where theSd are the operators of the spins of the near
neighbors of the impurity,L andL̃ are the exchange interac
tion parameters for an impurity with orbital degeneracy, a
theUEm are the orbital operators specified in the space of
wave functions of the groundE-state. The expressions fo
the unitary matricesCEm,d for some impurity-cluster types
can be found in Ref. 15.
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interaction between the centers and the nearest neighb
i.e., uLu,uL̃u!uHdu, whereHd is the molecular field acting on
the matrix spins. Then the effective Hamiltonian of an is
lated quadrupole center is given by the following expressi
accurate to within second-order terms in the above sm
parameters:

Heff5A~Sz
22S~S11!!1BSz , ~8!

A5A0I , A05
~L212L̃2!S0z

u2Hdu
, I5S 1 0

0 1D ,
B5(

m
BEmUEm ,

BEm5L̃ (
d

CEm,d @^Sd
z&2 L~S0~S011!2^~Sd

z!2&!/Hd#,

wherez is the number of magnetic ions nearest to the imp
rity.

If when we allow for magnetic order in the matrix th
local symmetry of the impurity center does not change~and
coincides with the crystallographic symmetry!, then only the
first term, which is independent of the orbital variabl
(BEm50), remains in the effective Hamiltonian~8! of the
impurity center. Here the splitting of the magnetic states
described by the same effective Hamiltonian as in the cas
orbitally nondegenerate quadrupole centers:

E~M !5A0M
2.

But when the symmetry of the impurity cluster with a
lowance for the spin orientations of the magnetic ions nea
to the Jahn–Teller center is lower than the crystallograp
symmetry, an additional splitting of the spectrum of loca
ized states may occur:

E7~M !5A0M
27A~BEuM1hEu!21~BE«M1hE«!2,

~9!

where thehEm are the components of the low-symmet
crystalline field on the Jahn–Teller ion. If the lowering of th
symmetry on the impurity is caused only by exchange int
actions (hEm50), the twofold degeneracy of the energy le
els of the Jahn–Teller center is retained for allM Þ 0:

E7~M !5E6~2M !.

Equation~9! clearly shows that the value ofuM u for the
impurity spin in the ground state depends on the param
h5ABEu

2 1BE«
2 /A0 and, in contrast to the case of an orb

ally nondegenerate quadrupole center, may not assum
minimum value. In particular, for an impurity with an intege
spin the ground state transforms with increasingh in the
following manner: the nondegenerate nonmagnetic state
M50 is successively replaced by twofold degenerate st
with spin projections7M (M Þ 0) when the parameterh
reaches the corresponding critical valueshcrit(M )
5 (2uM u11). Such behavior of the ground magnetic state
the magnetic analog of the Jahn–Teller effect.

Let us now analyze the effect of quadrupole Jahn–Te
centers on the magnetic anisotropy energy and the magn
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anomalously large contribution to these characteristics of
magnetic material!. The corresponding terms in the impuri
Hamiltonian that describe single-ion anisotropy on a Jah
Teller center, and the interaction of the center and unifo
magnetostriction strains have the form16

Ha5UEuS DFSz22S~S11!

3 G1VEeEuD
1UE«S D~Sx

22Sy
2!

A3
1VEeE«D , ~10!

whereD is the single-ion anisotropy constant, andVE is the
parameter of the interaction of the Jahn–Teller ion with
Eg-strains eEu5(2ezz2exx2eyy)/2 and eE«5A3(exx
2 eyy)/2 in a cubic magnetic material.

For the sake of brevity let us examine the case where
haveBEm50 and the Hamiltonian~10! can be considered
perturbation with respect to the energy levels~9!. Then the
magnetic anisotropy energyEa related to the Jahn–Telle
subsystem can be written as

Ea52xJTUD KM22
S~S11!

3 L
0
U

3A123(
i, j

b i
2b j

2, kBT!uDu, ~11!

where xJT is the concentration of Jahn–Teller cente
^•••&0 stands for the quantum average in the ground st
and theb i are the direction cosines of the sublattice mag
tizations with respect to the crystallographic axes. We
that even when the ground state of quadrupole centers
integer spin is nonmagnetic (M50), the contribution of
these centers to the magnetic anisotropy of the crystal i
the same order of magnitude as that of a Jahn–Teller
with an ordinary dipole spectrum. The maximum splitting
the doublet and, accordingly, the greatest absolute valu
Ea are achieved when magnetization is directed along
tetragonal axes of the crystal.

According to Ref. 16, the contribution of such Jahn
Teller centers,DB1, to the magnetoelastic constantB1 at low
temperatureskBT!uDu is given by the following expression

DB15xJTuVEusgnS VEDKM22
S~S11!

3 L
0

D . ~12!

What is important is that for quadrupole~with M50 or
71/2 in the ground state! and dipole~with M5S in the
ground state! centers not only do the values of the corr
sponding contributions toB1 differ but so do their signs. A
similar effect exists for the contribution of the Jahn–Tel
subsystem to the magnetostriction constantl [001] .

4. QUADRUPOLE CENTERS WITH 3d-IONS OF MIXED
VALENCE

In this section we discuss another type of quadrup
center in an antiferromagnet: an impurity cluster contain
mixed-valence 3d-ions. Such clusters form in various com
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pounds as a result of doping the compounds by nonisova
substitutional atoms or in the presence of nonstoichiome
in the cation or anion sublattices. Such centers are chara
ized by a strong resonant coupling of the 3d-ions in equiva-
lent crystallographic positions nearest to the defect, a si
tion realized by the transfer of an excess electron or h
from one magnetic 3d-ion of the complex to another~double
Zener exchange!. The tunneling splitting of the states of suc
a cluster is at its maximum and the ground-state energy i
its minimum when all the spins in the complex are aligne
When the cluster center occupies a position symmetric w
respect to the magnetic sublattices of the antiferromag
and the resonant exchange interaction of cluster ions do
nates, a new type of quadrupole center, a mixed-vale
complex appears. In the mean-field approximation, the
change interaction of such a complex and the nearest ant
romagnetically ordered spins of the matrix is found to
fully balanced.

Usually one of the charge states of mixed-valence ion
orbitally degenerate. Hence describing the behavior o
mixed-valence complex requires proper generalization
double-exchange theory17 and analysis on its basis of th
structure of the ground state of the complex and
complex–matrix exchange interaction. In solving this pro
lem we begin with a mixed-valence complex of minimu
size, and then discuss more complicated quadrupole cen

4.1. Double exchange in a pair of 3 d-ions with orbitally
degenerate resonance states

Let us take a cubic or quasi-two-dimensional antifer
magnet with anion substitution of, say, F2 for O22 in the
Me–O plane with antiparallel-ordered magnetic 3d-ions Me.
This gives rise to the simplest mixed-valence center: a p
of 3d-ions of Me separated by the F2 ion and an excess
eg- or t2g-electron localized at this complex~Fig. 1!. For the
sake of definiteness we select Mn41(3d3) ions as the main
magnetic ions, as the substitution of F2 for O22 leads to
another state, Mn31(3d4), which corresponds to the additio
of an eg-electron to the cation subsystem. This is the situ
tion, for instance, for the Ca2MnO42xFx (x!1)
compound.18

For the basis of the lowest electron states of the clu
we take the one corresponding to the localization of the
cess electron on one of the two (a,b) magnetic ions of the

FIG. 1. A mixed-valence quadrupole center coupled with an anion sub
tution of F2 for O22 in the Me–O plane of the antiferromagnet.
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complex accompanied by the formation of the following
31 41 41

e
e

uc
fo
-
t

ce
o

on
-

s

n

g

at
-
th
in

field D r is smaller thanubu/2. But if D r.ubu/2, the exchange

to

nd

total

r of
ital
-

in

e
.

o
r

e

nge

as a
f

configurations: Mn (a) –Mn (b) and Mn (a) –
Mn31(b). The ground state of the Mn41 ion is the orbital
singlet4A2, and the ground state of the Mn

31 ion in a cubic
crystalline field is the orbitally degenerate4E-state. The de-
generacy is lifted by the following low-symmetry crystallin
fields: the rhombic fieldD r , caused by the presence of th
F2 ion on the Mn31–Mn41 line, and the tetragonal field
D t , present in crystals with a quasi-two-dimensional str
ture. Nevertheless, in analyzing the spectrum we allow
both orbital states of the Mn31 ion, since the resonant inter
action may prove to be comparable or even stronger than
low-symmetry fieldsD t andD r . All these interactions are
assumed to be weaker than intratomic exchange.

Let us write the wave functions of the mixed-valen
complex as a combination of antisymmetrized products
the wave function of the Mn31 and Mn41 ions:

Cn~S̄M S̄!5
c~a,A2 ,S0 ;b,Em,S;S̄M S̄!

A2

7
c~a,Em,S;b,A2 ,S0 ;S̄M S̄!

A2
, ~13!

whereS andS0 are the spins of the Mn31 and Mn41 ions,
S̄ andM S̄ are the total spin of the pair and its projection
the quantization axis, and the indexm numbers the orthogo
nal states of the orbital doublet on the Mn31 ion. The corre-
sponding energy levelsEn(En[En(S̄,M S̄), n51–4) of the
mixed-valence complex are given by the following expre
sion ~which does not allow for Heisenberg exchange!:

E1,25
1

2
@ t7A~ t12D r !

214D t
212D t~ t12D r !#,

~14!

E3,45
1

2
@2t7A~2t12D r !

214D t
212D t~2t12D r !#,

t[t~S̄!5
b~S̄11/2!

2S011
,

b>4bEu,Eu>
4

3
bE«,E«>

4

A3
bEu,E« ,

whereb is the transfer integral for theeg-electron in the pair
we are considering here,17and the energiesE1,2 andE3,4 cor-
responds to the respective wave functions with1 and 2
signs in~13!. Figures 2a and b depicts the curves represe
ing the dependence of the resonance state energiesEn on the
double-exchange parametert(S̄).

An analysis of Eqs.~14! ~see also Fig. 2! shows that the
energy of the lowest state,En , decreases with increasin
utu ~unlessD r.ubu/2 andD t50). Since the parametert de-
scribing resonant splitting is at its maximum
S̄max5S1S052S011/2, the ground state of the mixed
valence complex correspond to parallel orientation of
spins. Here the energy of exchange splitting, correspond
to the change ofS̄ from 1/2 to S̄max, is equal in order of
magnitude to the transfer integralb if the rhombic crystalline

535 JETP 84 (3), March 1997
-
r

he

f

-

t-

e
g

energy is reduced considerably foruD t /D r u!1 and amounts
to a quantity of order (D t /D r)

2b.
The caseD t50 is of special interest. It corresponds

mixed-valence complexes in cubic crystals~in the absence of
random crystalline fields of tetragonal symmetry!. In this
case, forD r.ubu/2 there is no charge transfer in the grou
state of the complex~with an energyE15E352D r), so that
the degenerate levels of the ground state correspond to
localization of aneg-electron on the ions of thea- or
b-pair. The absence of effects associated with the transfe
aneg-electron is due in this case to the nature of the orb
wave function of the Mn31 ion, which in the present condi
tions is oriented perpendicularly to they axis of the complex.
Note that random crystalline fields withD t Þ 0 may have a
strong effect on the nature of the exchange interaction
such mixed-valence complexes.

The Heisenberg exchange interactionJab in the (a,b)
pair provides a certain contribution to the energy levelsEn

(n51–4! of the mixed-valence complex, tending to align th
spins of the Mn31–Mn41 ions in an antiparallel manner
These effects are important only whenD r.ubu/2 and
uD t /D r u!1 hold, i.e., when the resonant splitting of the tw
lowest states is small~in absolute value comparable to, o
smaller than, the Heisenberg exchange in the pair!.

Below for the sake of simplicity we examine only th
limiting cases in the behavior of the Mn31–Mn41 pair cor-
responding to the Heisenberg exchange or double excha
being dominant. The degeneracy inM S̄ of the ground state

FIG. 2. The energy spectrum of a mixed-valence quadrupole center
function of the transfer parametert ~bothE and t are measured in units o
D r): D t /D r50.2 ~a!, andD t /D r51 ~b!.
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such complexes is lifted if we allow for the exchange int
action between the total spinS̄ of the complex and the near
est spins in the matrix. We start by examining the qualitat
nature of the behavior of mixed-valence centers in an a
ferromagnet, ignoring the possible effects of renormalizat
of the parameters of the exchange interaction between
spins of the mixed-valence complex and the spins of
remaining matrix caused by the transfer of aneg-electron.

4.2. The effect of the interaction with magnetic sublattices
on the behavior of mixed-valence centers

When (D t /D r)
2ubu!uJabu holds and we can ignore th

effects of electron transfer on a mixed-valence complex,
ground state of this complex in the molecular field of t
matrix is characterized by the projections of the total sp
M S̄51/2 orM S̄521/2 , depending at what ion (a or b) the
excess charge is localized. As a result, the degeneracy o
ground state of the mixed-valence complex is of a combi
nature, where one projectionM S̄ of the total spin on the
antiferromagnetism axis corresponds to a well-defined p
jection of the electric dipole momentp0 on they axis of the
complex. Thus, we arrive at a peculiar two-level system
which direct tunneling between its states withDM S̄571 is
impossible, so that the corresponding reorientation of suc
mixed-valence complex may be only activational. Stabiliz
tion of these states of the two-level system may occur
external fields~electric, magnetic, or stress field! and in ran-
dom crystalline fields.

A characteristic feature of the two-level systems cons
ered here is the strong magnetoelectric effect that they
duce. The interaction of such two-level system with an el
tric field Ey and a magnetic fieldHiM has the form

H52~p0Ey1 mBgH/2!tz , ~15!

tz5S 21 0

0 1D , p05ueur ,

wheree is the electron charge,r is the distance between th
Mn and F ions,mB is the Bohr magneton, andg is the gy-
romagnetic ratio of the mixed-valence center. As a result
the absence of random crystalline fields, the free energyF of
the subsystem consisting ofN mixed-valence centers is

F52NkBT lnS 2coshp0Ey1mBH

kBT
D , g>2. ~16!

This expression describes a magnetoelectric effect of an
usual type. At temperatures exceeding the splitting energ
the two-level system, the effect is transformed into an or
nary linear magnetoelectric effect, when the correspond
contribution FEH to the free energy assumes the for
FEH;2NEyH/T. In random crystalline fields with disper
sionG the effect is reduced in proportion toT/G for T,G.

Let us now analyze the behavior of an impurity center
an antiferromagnetic matrix when double exchange is do
nant in the mixed-valence complex. In this case, us
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expression for the energy of quadrupole splitting of the m
spectral term (E1 or E3):

DE~S̄,M S̄!5A~M S̄

2
2S̄~S̄11!!,

~17!

A5(
d

Jd
2

2~z21!J0
, S̄5S1S0 ,

whereJ0 is the value of the exchange interaction (J0.0)
between the Mn41 ions in the matrix, and theJd are the
parameters of exchange between the mixed-valence ce
and the spins of the Mn41 ions nearest to the center. Th
convergence of the perturbation-theory series is ensure
this case by the parameter 1/z, as it is in the case of strongly
coupled ordinary quadrupole centers.

Note that in contrast to the earlier situation wi
(D t /D r)

2ubu!uJabu, here the dipole moment at the mixed
valence center is zero in the ground state, in view of
symmetric nature of its wave function.

Obviously, the type of quadrupole centers with an exc
electron or hole considered here is always characterized
half-integer total spanS̄. As a result, irrespective of the sig
of the quadrupole splitting parameterA, the ground state of
the center proves to be twofold degenerate. At presen
number of basic features of the behavior of crystals w
such two-level systems are known, but they are still a to
of great interest in research, including research that invol
high-Tc superconducting oxides.

The specific properties of quadrupole mixed-valen
centers are due to the presence of orbital degeneracy in
of the 3d-electron configurations, 3dn or 3dn71. As already
noted in Sec. 3, this manifests itself in a considerable con
bution of such centers to the constants of magnetic crys
lographic anisotropy and magnetostriction at low tempe
tures. The energy of magnetic anisotropy,Ea(M S̄), of the
quadrupole center~Fig. 1! can be obtained by averaging th
Hamiltonian~10! over the ground-state wave functionC0 of
the complex:

Ea~M S̄!5FD iS bz
22

1

3D1D'~bx
22by

2!G
3~M S̄

2
2 S̄~S̄11!/3!, ~18!

D i5
3

2
k~S̄!D cosw, D'5

A3
2

k~S̄!D sin w,

whereD is the single-ion anisotropy constant of the Mn31

ion, k(S̄) is a reduction factor (k(S̄),1), and the anglew is
related to the wave functionC0 as follows:

C0;U 3z22r 2

2 L cosw2 1U A3~x22y2!

2 L sin w

2
.

We see that the anisotropy energy~18! is determined by
the large constantD typical of Jahn–Teller ions and strongl
depends on the effects of charge transfer at the impurity c
ter. As a result, the value and sign of the corresponding
fects for the impurity contribution to the magnetic-anisotro
and magnetostriction may differ from those observed
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in a nonzero exchange field. Note in this connection that
anisotropy energy~18! is also a source of competing aniso
ropy in systems where impurity mixed-valence complex
have different orientation axes.

4.3. Renormalization of the exchange parameters;
enlargement of mixed-valence complexes

Now let us examine the renormalization of the para
eters of exchange between the impurity center and the m
spins. Here we allow for the transfer of aneg-electron be-
tween the ions of the mixed-valence complex and the m
netic ions of the matrix. We also assume that the differe
u in the potential energies of the localization of an exc
change on the first and second~third! magnetic neighbors o
the F2 ion is much larger than the transfer integralb1 be-
tween these ions through the oxygen ion O22 ~the deep im-
purity model!. Then the corresponding effective exchan
interactions can be described by the following Hamiltonia

H5 (
d51

z8

Jd~S̄Sd!,

Jd5gJ01bS J12 2bd
2

~2S011!2ud
D , ~19!

g5
S0

2~S1S0!
, b5

S

2~S1S0!
,

whereJ1 is the superexchange interaction integral (J1.0) in
the Mn31–O22–Mn41 configuration, thebd are the transfer
parameters of aneg-electron between the ions of the com
plex and matrix through the intermediate oxygen ion O22,
andz8 is the number of the nearest magnetic neighbors of
mixed-valence complex.

We see that the ferromagnetic interactions (;bd
2 /u) re-

lated to the transfer of aneg-electron may change not onl
the magnitude but also the sign of the parametersJd of the
exchange interaction. Here the ferromagnetic contributi
to Jd for the bonds oriented along thex and y axes of the
mixed-valence complex differ~see Fig. 1!, thanks to the an-
isotropy of the transfer integralsbd :

bd5
b8

2 F11cosS w1
2p

3 D G along thex axis,
(20)

bd5
b8

2 F11cosS w2
2p

3 D G along they axis,
where the prime on the transfer integral (b8) implies that, in
contrast tob, the transfer of aneg-electron occurs through
oxygen rather than through fluorine. For instance,
utu@uD r u,uD tu ~and, correspondingly,w>2p/3), the integral
of transfer along they axis is almost four times greater tha
that along thex axis.

The ferromagnetic~resonant! contribution may dominate
in Jd if

ub8u@ub0uAu

U
, ~21!
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single center, andb0 is the transfer integral of a
t2g-electron, responsible for the superexchange interact
between the Mn41 ions in the matrix and the Mn31–O22–
Mn41 pair ~hereJ,J0;b0

2/U). What is important is that the
condition ~21! is met over a broad range of values of th
transfer integralb8, since the potential energy differenceu is
usually much smaller than the repulsion energyU.

Note that for large negative values ofJd (uJd u@J0 ,J) it
becomes necessary to increase the dimensions of the
netic impurity cluster without changing the radius of electr
localization of the eg-electron. Here, in the limit of
(D t /D r)

2ubu!uJabu, the effective value of the total spinS̄ of
mixed-valence centers must increase considerably, and
does the height of the potential barrier between the state
the two-level system with projectionsM S̄57S̄. As a result,
the reorientation of the two-level system and the rela
properties may turn out to be strongly dependent on the p
ence of agents inducing transitions~photoinduced effects!.

In the case of mixed-valence centers of the quadrup
type, an increase in the size of the impurity complex subst
tially increases the contribution of these complexes to
magnetic susceptibility, specific heat, etc. Similar effects
increased contribution of the impurity centers to the vario
observables linked, however, to different causes are kno
to exist in other systems, such as magnetic impurities
strongly correlated paramagnets19 and orthogonal impurity
centers in magnetic materials.6

4.4. More complicated types of mixed valence in
antiferromagnets

Let us examine the more complicated centers w
charge transfer in antiferromagnetic crystals of a cubic
quasi-two-dimensional structure. In such substances one
expect the emergence of mixed-valence centers with f
3d-ions nearest to the corresponding defect, and it is
tween these ions that electron transfer occurs. Here the de
and the cations may belong to different crystallograp
planes, say, when the defect is at the vertex of a pyra
~e.g., the Ca22xYxMnO4 and Nd22xCexCuO4 compounds!.

Let us discuss the Ca22xYxMnO4 system in greater de
tail. Here there is transfer of aneg-electron between Mn41

ions, just as there is in the case of a complex with t
3d-ions discussed above. When the transfer integralb is
small ~in comparison to the parameters of antiferromagne
exchange for Mn41–Mn31 ions!, we can assume that th
ground state of the mixed-valence complex is fourfold d
generate, in accordance with the number of possible p
tions for localizing aneg-electron. Each of these four state
is characterized by a specific direction of the dipole mom
of the complex and a projection of the total complex sp
(M S̄51/2 or 21/2, depending to which antiferromagnet
sublattice the position belongs!. As a result, a kind of mag-
netoelectric effect may manifest itself in the impurity su
system. This effect amounts to the following. If th
eg-electron is stabilized in one of the four positions by d
recting the electric field along the diagonal of the pyramid
base, we have fixed the magnetic moment of the mix
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corresponding free energy of the impurity subsystem in
electric fieldE and a magnetic fieldHiM is

F52NkBT lnH 2FexpS mBH

kBT
D coshp0~Ex1Ey!

kBT

1expS 2
mBH

kBT
D coshp0~Ex2Ey!

kBT
G J . ~22!

We see that in contrast to the situation examined earlier
involving the Mn41–Mn31pair, the present magnetoelectr
effect is even in the electric field.

When strong resonant coupling is present, i.e., when
electron is moving along the plaquette of four Mn41 ions,
the energy levels of the mixed-valence complex in a s
with spin S̄54S011/2 are

E~A1!52D t1
b

2
, E~B1!5D t1 3b/2 ,

E~B2!52D t2 b/2 , ~23!

E~A2!5D t2 3b/2 , E7~E!57AD t
21 3b2/4.

These states of the mixed-valence center are classified
cording to theG representations of theC4v group (G5A1,
A2, B1, B2, and 2E) and are degenerate inM S̄ in first-order
perturbation theory in the molecular field of the matrix.
the same way as for ordinary quadrupole centers, the de
eracy is lifted in the second order, and the correspond
energy levels are described by an effective Hamiltonian
type~2!. The states in question have a zero dipole momen
the Mn–O plane.

Usually the ground state of a mixed-valence cente
orbitally nondegenerate. But in the range of valu
b>72D t the spectral terms, one of which is orbitally dege
erate, move closer to each other. Here the Jahn–Teller
E2(E) may turn out to be the lowest if we allow for th
orbitally dependent part of the exchange interaction betw
the mixed-valence complex and the matrix. In this case
quadrupole center possesses the specific features discus
Sec. 3.

Thus, the behavior of mixed-valence centers that occ
positions symmetric with respect to the magnetic sublatti
of an antiferromagnet is determined by the mechanism
stabilizing the ground state, i.e., the relative role of the tra
fer effects. The type of mixed-valence complex~the number
of ions in the complex and their spatial configuration! mani-
fests itself in the specific values of the total spin and
projections, in the geometry of the magnetoelectric effect
values of the parameters of the effective Hamiltonian, et

5. CONCLUSION

Our study of the different types of quadrupole centers
antiferromagnets suggests the following.

1. There exists an additional spin-phonon coupli
mechanism for quadrupole splitting of the spectrum of i
purity centers in a zero exchange field of the magnetic s
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quadrupole splitting parameter and change the sign of
parameter.

2. A special type of quadrupole center is the one
which the ground state is orbitally degenerate. The spec
features of the properties of such centers are related to
individual properties of the exchange and spin–orbit co
plings and to the presence of strong vibronic effects in
orbitally degenerate states. We have predicted the existe
of a magnetic analog of the Jahn–Teller effect for such c
ters. We have also found that the contribution of the Jah
Teller impurities to the magnetic-anisotropy and magne
striction constants is exceptionally large, but the value a
sign of the corresponding effects differ from the typical on
for ordinary Jahn–Teller ions in magnetic crystals.

3. We have studied a new class of magnetic impurit
that we believe to be quite broad: mixed-valence centers
sitioned symmetrically with respect to the sublattices of a
tiferromagnets of different types. We have shown that
properties of these mixed-valence centers strongly depen
the nature of localization of excess charge. For small tran
integrals, twofold degeneracy of the ground states in the p
jections7uM S̄u is accompanied by dipole degeneracy with
multiplicity equal to the number of mixed-valence ions in t
impurity cluster. As a result, the mixed-valence centers m
give rise to strong magnetoelectric effects of an extrao
nary nature. On the other hand, in systems where reso
interactions dominate, the mixed-valence centers are
scribed by an effective Hamiltonian of the quadrupole typ
whose ground state is twofold degenerate in7uM S̄u. Delo-
calization of the excess charge in this case leads to a s
tion in which the dipole moment of the center in the grou
state vanishes. In both cases such centers with a degen
ground state can have an anomalously strong effect on
resonant, magnetic, and thermodynamic properties of var
substances. The behavior of the magnetic susceptibility c
acteristic of the systems discussed above has, probably,
observed in the Ca2MnO42xFx compound.
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wavelength band
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Resonant microwave absorption in a~BEDO-TTF!2ReO4~H2O! organic conductor single crystal
at a temperature of 1.9 K, a magnetic field of up to 70 kOe, and in the frequency band
between 30 and 120 GHz has been studied. A spectral component due to the cyclotron resonance
~CR! of two-dimensional charge carriers has been identified forn>80 GHz andH>10
kOe. The effective massm(v) increases with the frequency fromm'0.8m0 at n580 GHz to
m'0.95m0 at n5120 GHz. Measurements of the CR line position and FWHM as
functions of frequency yield an independently determined imaginary part of the memory function
M (v), which controls the dynamic magnetoconductivity, and the relaxation time
t(n5100 GHz)'2.9310211 s, which is more than thirty times the value of this parameter in the
low-frequency limitt(n→0). The anomalous behavior of the CR line position and FWHM
is caused by the dispersion of both real and imaginary parts ofM (v), which are probably due to
strong Fermi-liquid effects. ©1997 American Institute of Physics.@S1063-7761~97!01803-9#

1. INTRODUCTION nant magneto-absorption spectrum in organic metals
3,4
-

es

n
an
s
h
se
he
o
y

r
ss
dd
s
ea

to
e
es

ct
e
n
o

ron
so-
ance
r by

etic

ts

ures
ted

e
irst,
on

t in
ule
d

iza-
ive

in

-0
The cyclotron resonance~CR! recently detected in sev
eral quasi-two-dimensional organic metals1–5 has generated
special interest in studies of microwave absorption in th
materials. The first publications on this topic~see Refs. 1 and
2, and references therein! reported the differences betwee
the effective masses derived from quantum oscillations
CR curves. Cyclotron resonance yielded effective mas
m;(0.521)m0, wherem0 is the free electron mass, whic
were a factor of 2.5–3 smaller than the effective mas
derived from Shubnikov–de Haas and de Haas–van Alp
measurements. This behavior led to a conclusion ab
strong Fermi-liquid effects resulting in a giant frequenc
dependent effective mass renormalization.1–5 The dispersion
in the band ofn5v/2p530–120 GHz was detected in ou
previous work,4,5 where we found that the effective ma
decreased with the frequency. It is remarkable that, in a
tion to light masses, CR modes corresponding to mas
heavier than those derived from quantum oscillation m
surements were also detected.3–5

From a technical standpoint, detection of magne
absorption in organic metals is a very difficult problem b
cause of the small dimensions of single crystals of th
materials. The first experiments1,2 were performed with mo-
saic samples, and a technique that can be used in dete
signals due to individual organic single crystals was dev
oped by us3 and described in detail in subseque
publications.4–6 As a result, the general structure of the res
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strong magnetic fields was determined.This structure is
composed of broad absorption lines due to the cyclot
resonance on which narrower lines of various magnetic re
nances are superposed, namely, the electron spin reson
and antiferromagnetic resonance, with amplitudes smalle
a factor of five to ten.3–5 Thus, distinguishing CR lines from
absorption spectra of organic metals with specific magn
structures may be quite a difficult problem.

Moreover, it is noteworthy that most CR experimen
were conducted using organic metals of the~BEDT-TTF!

2

MHg~SCN!4 family, where M5K, Tl, NH4, and BEDT-TTF
is bis~ethylenedithio!tetrathiafulvalene,1–6 the most thor-
oughly investigated cases being M5K, Tl,3–5 i.e., two-
dimensional conductors characterized at helium temperat
by antiferromagnetic ordering and consequently complica
magnetoabsorption spectra.

The aim of the present work directly derives from th
above description of the present status of the problem. F
it is not clear to what extent the description of the cyclotr
resonance in~BEDT-TTF!2MHg~SCN!4 applies to other
two-dimensional organic conductors. Hence, the interes
studying an organic metal based on a cross-linking molec
different from BEDT-TTF and with a nonmagnetic groun
state is obvious.

Second, the interactions responsible for the renormal
tion and dispersion of the effective mass should also g
rise to the behavior of the relaxation timet(v). This follows
from both the theoretical analysis of cyclotron resonance

5405$10.00 © 1997 American Institute of Physics



interacting systems7 and experimental data on heavy-fermion
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systems.The shape of CR lines in organic metals, howev
has not been analyzed, and the issue of the correspond
between relaxation times in the high- and low-frequency
periments has not been addressed.

2. EXPERIMENTAL TECHNIQUES AND SAMPLES

Experiments were carried out using~BEDO-TTF!2
ReO4~H2O! single crystals, where BEDO-TTF is bis~ethyl-
endioxy!tetrithiafulvalene. Compared to ~BEDT
-TTF!2MHg~SCN!4, both the basic molecule forming th
conducting plane and the anion have different chemical c
positions. The physical and structural properties of~BEDO-
TTF!2ReO4~H2O! have been studied in detail.9–12 It is
known that the structure of this organic metal is similar
those of compounds based on BEDT-TTF, and its cond
tivity has a pronounced anisotropy:rc :ra :rb'1:3:1000 at
T5300 K,9–12 where a and c are the crystal axes in th
conducting plane, and theb axis is perpendicular to the
ac-plane. The quasi-two-dimensional nature of its cond
tivity at helium temperatures is confirmed by transport m
surements, and studies of Shubnikov–de Haas oscillat
yield the effective massesm50.9m0 andm51.15m0 ~Ref.
10!, corresponding to different sections of the Fermi surfa
TemperaturesT<3 K correspond to the onset of the supe
conducting transition in~BEDO-TTF!2ReO4~H2O!, which
ends at T52.4 K ~Ref. 10!. Therefore, in contrast to
~BEDT-TTF!2 MHg~SCN!4 with M5K, Tl, it seems that the
ground state of~BEDO-TTF!2ReO4~H2O! is not magneti-
cally ordered forT,2–3 K, although a possible antiferro
magnetic structure like a spin-density wave at higher te
peratures ~3 K<T<35 K! has been discussed i
literature.9–12

The ~BEDO-TTF!2ReO4~H2O! single crystals studied in
our experiments had typical dimensions of 23130.05
mm3. The technique of measuring microwave absorption
small metallic samples was described in detail in our pre
ous publications.4–6 The underlying idea of the method is t
compare the microwave powerP(H) absorbed at a fixed
microwave frequencyn5const when the cell in the exper
mental device is empty and when it contains a sample.

As in previous experiments,4–6 radiation was detected b
a small carbon bolometer placed close to a sample. Mic
waves of the 30–120-GHz band were generated by a se
backward-wave oscillators with a frequency stabil
Dn/n;1024 and were fed to the experimental cell via
waveguide.

The theoretical analysis4–6 has demonstrated that th
power absorption due to the sample is determined by
sample impedanceZs and the functionf (Zc ,Z0) which de-
scribes the change in the reflectivity caused by introduc
the sample into the cell:

dP; f ~Zc ,Z0!/ Re$Zs%,

whereZc andZ0 are the impedances of the waveguide a
empty cell, respectively. SinceZ0 depends on the bolomete
resistance, which is a function of magnetic field, the abso
tion resonances due to the sample are superposed on a m
tonic signalP(H).
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At first glance, the factorf (Zc ,Z0) makes the analysis o
the absorption line shape more difficult. The cell configu
tion, however, can be selected so thatf (Zc ,Z0) is a weak
function of the magnetic field, and we can tak
f (Zc ,Z0)'const near a resonance if its line is sufficien
narrow. This was the case in our experimental device.

The experiments were performed in a magnetic fi
H<70 kOe at a temperatureT51.9 K. The applied magnetic
field and the Poynting vector of the microwave field we
normal to the conducting plane in which two-dimension
current carriers moved. Assuming that at this temperature
H50 the sample was in the superconducting state, we a
lyze in this paper the absorption forH.10 kOe, when the
superconducting state was surely destroyed9–12 and the
sample was a normal metal. The circuit stabilizing the b
lometer temperature5 allowed us to record features in th
absorbed microwave powerP(H) down to the level
dP(H)/P(0);531025. In order to rule out effects of
sample overheating, we performed calibration experiment
several microwave powers.

Typical experimental curves of the signal detected by
bolometer as a function of magnetic field,Ubol(H), for the
case of the empty cell and the cell with the sample are sho
in Fig. 1 ~curves1 and 2, respectively!. They demonstrate
that introduction of the sample into the cell leads to an
ditional broad absorption maximum connected with the
ganic metal@here we take into account that, owing to th
negative slope of the bolometer characterist
P(H);2Ubol(H)#. The difference between curves2 and1
yields a function proportional todP(H).

The shape of thedP(H) curve in an organic metal is
determined by the superposition of broad maxima4–6 due to
the CR and narrower resonances due to the spin degree

FIG. 1. Bolometer signal as a function of magnetic field:~1! experimental
cell with the ~BEDO-TTF!2ReO4~H2O! sample;~2! empty cell. The arrow
indicates the ESR peak corresponding tog52.
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freedom. The curves in Fig. 1 conform to this assumption.
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Specifically, a narrow ESR line of a smaller amplitude c
responding to theg-factor g'2 ~the arrow and dotted line
in Fig. 1! can be seen superposed on a broad absorp
maximum. Note that, unlike the case
~BEDT-TTF!2MHg~SCN!4,

4–6 no additional magnetic reso
nances have been detected in~BEDO-TTF!2ReO4~H2O!.
This result is in agreement with the data9–12 indicating that
~BEDO-TTF!2ReO4~H2O! is not magnetically ordered at liq
uid helium temperatures. In view of this, the question
magnetic spin-density-wave ordering in this material9–12

seems controversial and calls for further investigation.
Note that, because of the thinness (;50mm! of the

~BEDO-TTF!2ReO4~H2O! crystal ~in earlier experiments
0.1–0.3 mm samples were used!, not all the radiation was
absorbed in the sample, and the fraction of microwave tra
mitted through the sample excited ESR in the bolome
~Fig. 1, curve2!. Although the amplitude of this signal i
lower than in the case of the cell with the metal~Fig. 1, curve
1!, the contributions due to the sample and experimental
to the ESR are comparable, which makes the quantita
analysis of the absorption around the ESR difficult. The
fore this study is limited to the main broad maximum on t
magnetoabsorption curveP(H) ~Fig. 1!.

In order to test whether the maximum on theP(H) curve
is really due to the CR of two-dimensional carriers, we p
formed measurements in the configuration where the fi
was directed at an anglea with respect to the sample norma
In this case the absorption maximum~Fig. 1! was shifted to
higher magnetic fields by a factor cos21a, which confirmed
our interpretation of the absorption maximum as a C
peak due to two-dimensional carriers in~BEDO-TTF!2
ReO4~H2O!, because in this case the effective componen
the dc magnetic field isH'5H cosa.

3. CYCLOTRON RESONANCE IN (BEDO-TTF) 2REO4(H2O)

The technique described in the previous section w
used to distinguish the CR signal at different microwave f
quencies. The result is given in Fig. 2. The absorption ma
mum was detected at frequenciesn.80 GHz. The experi-
mental curves of dP(H) can be approximated b
Lorentzians,

dP~H !5
Pmax~DH !2

4~H2H res!
21~DH !2

, ~1!

whereH res is the position of the absorption peak with th
amplitudePmax, DH is the FWHM of the resonant curv
@open circles in Fig. 2 show experimental data, and the s
curves are best fits to Eq.~1!#. The parametersH res and
DH corresponding to the curves in Fig. 2 are plotted in F
3 as functions of microwave frequency. The uncertainty
the nonlinear approximation procedure using Eq.~1! is about
5% forH res and about 15% forDH. It is remarkable that the
function H res(n) is nonlinear, and the nonlinear functio
DH(n) has a minimum aroundn;100 GHz~Fig. 3!.

In analyzing the CR in~BEDO-TTF!2ReO4~H2O!, one
should bear in mind that the case of an organic conducto
essentially different from that of a normal metal.4–6 Specifi-
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cally, under the conditions for cyclotron resonance in a n
mal metal, carriers move in a highly nonnuniform micr
wave field concentrated in the skin layer, so the magne
absorption curvep(H) is a superposition of a set of peak
corresponding to multiple frequencies.13 In an organic metal
studied using this experimental geometry, in which the m
netic fieldH and the Poynting vector are directed perpe
dicular to the conducting plane, the microwave electric fie
also drops with increasing depth, but since the electron m

FIG. 2. Magnetoabsorption in~BEDO-TTF!2ReO4~H2O! due to the cyclo-
tron resonance atT51.9 K for various microwave frequencies. Experime
tal data are plotted by circles, and the best Lorentzian approximation
solid lines.

FIG. 3. ~1! Peak positions and~2! FWHM of the CR line in
~BEDO-TTF!2ReO4~H2O! as functions of frequency.
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tion is two-dimensional, the microwave amplitude in each
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plane is constant, whereas the motion along the field am
tude gradient is practically nonexistent because the trans
in the direction perpendicular to the layers is negligible.
this case4–6 we have Zs } 1/s(v,H) and dP(H)
} Re$s(v,H)%, wheres(v,H) is the sample conductivity
Thus, the process of microwave absorption in an orga
conductor resembles the case of a semiconductor, in w
dP(H) } Re$s,(vH)% also holds.7

Another essential feature of the process is that
Drude–Lorentz model fors(v,H), generally speaking, doe
not apply to the case of CR in a system with strong inter
tion, and the following function should be used:7

s~v,H !5
e2n

m

i @v2vc1M 8~v!#1M 9~v!

@v2vc1M 8~v!#21@M 9~v!#2
, ~2!

M 85 Re$M ~v!%, M 95 Im$M ~v!%, ~2a!

wherevc5eH/mc is the cyclotron frequency,n is the car-
rier density, andM (v) is the memory function, which take
into account interactions in the system.7

Assuming thatM 8(v) andM 9(v) vary sllowly near the
resonance, one can transform Eq.~2! to a quasi-Drude form7

and obtain

dP} Res~v,H !

5
e2n

m

M 9~vc* !

@11]M 8~vc* !/]v#2~v2vc* !21M* 2~vc* !2
, ~3!

whereas the resonance condition takes the form

v5vc*5
eHres~v!

cm~v!
, ~4!

m~v!5mF11
M 8~v!

v G , ~5!

and

M 9~v!5
e

2cm

DH~v!v

H res~v!

]H res~v!

]v
. ~6!

Using Eqs. ~4! and ~6!, we have derivedm(n) and
M 9(n) from the experimental data plotted in Fig. 3~see Fig.
4!. In order to calculate]H res/]v, we approximated the ex
perimental data by a polynomial~the solid line in Fig. 3!, and
in subsequent calculations used the derivative of the appr
mating function. In calculatingM 9(n) we used the value
m50.9m0.

Since the functionH res(n) is nonlinear, the effective
mass depends on the frequency and, unlike the ea
results,4–6 m(n) increases with the frequency~Fig. 4!, but
rather then decreasing as in the case of~BEDT
-TTF!2MHg~SCN!4. Note that the observed values of th
effective mass range between 0.8m0 and 0.95m0, i.e., they
are close to the value (m50.9m0 derived from
Shubnikov–de Haas oscillations. But forn;80 GHz the ex-
perimental curve ofm(n) shows a tendency to saturation a
levelm(n),m. Summarizing the results of the present wo
and other publications,10–12we therefore conclude that at m
crowave frequencies lower than 80 GHz the effective m
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may decrease as a function of the frequency, i.e., in the c
of ~BEDO-TTF!2ReO4~H2O! the functionm(v) may be
nonmonotonic. It is also remarkable that, although the fu
tion DH(n) has a minimum ~Fig. 3!, the function
M 9(n)5Im$M (n)% increases monotonically with frequenc
and has no singularities in the frequency band studied.

Our analysis indicates that Eqs.~2!–~6! can be applied to
the cyclotron resonance in~BEDO-TTF!2ReO4~H2O! at fre-
quencies ranging between 80 and 120 GHz~Figs. 2–4!. One
can easily derive an expression for the relaxation time in
generalized Drude–Lorentz model with frequency-depend
effective mass and relaxation time:5–8

t~n!5
@11]M 8~v!/]v#

M 9~v!
5

H res

pnDH
. ~7!

It follows from Eq. ~7! that, in the generalized Drude
Lorentz model, both the real and imaginary parts ofM (v)
contribute to the dispersion oft. As a result, even if
M 8(v) andM 9(v) are smooth functions~Fig. 4!, the curve
of t(n) may be nonmonotonic. The calculations according
Eq. ~7! based on the data plotted in Fig. 3 are given in t
insert to Fig. 4. The experimental values oft(n) are about
10211 s, and the maximum relaxation timet'2.9310211 s
occurs atn;100 GHz.

Now let us compare the results of this work to the valu
corresponding tov50 derived from Shubnikov–de Haa
oscillations.10–12 Earlier we have noted the difference b
tween the effective masses. As for the relaxation times,
Dingle temperature yieldst(0)50.9310212 s.10 Thus the
difference between the relaxation times at low and high f
quencies is also considerable~see the insert to Fig. 4!, and in
the case of the relaxation time, the renormalization is mu
larger than that of the effective mass@in the frequency range

FIG. 4. ~1! Effective mass and~2! imaginary part of the memory function a
functions of the microwave frequency for~BEDO-TTF!2ReO4~H2O!. The
insert shows the relaxation timet(n) derived from the experimental data.
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factor of 30#. Hence we assume that Fermi-liquid effects
~BEDO-TTF!2ReO4~H2O! are quite strong, and the relax
ation time is a strong function of frequency in the frequen
range below 80 GHz@the suggested shape oft(v) is shown
by the dashed line in the insert to Fig. 4#. Unfortunately,
experimental investigations of CR in this band are rat
difficult, and further investigation beyond the scope of t
reported study is required.

4. CONCLUSION

Measurements of the resonant microwave absorptio
~BEDO-TTF!2ReO4~H2O! in the 80–120-GHz band have a
lowed us to distinguish the contribution due to the CR
two-dimensional carriers. This is the first time when not on
the peak positions, but also CR line widths have been m
sured. We have found out that the effective mass increa
with the frequency fromm'0.8m0 at n;80 GHz to
m'0.95m0 at n;120 GHz. Alongside the effective mas
dispersion, we have detected a strong renormalization of
relaxation time: atn;100 GHz the ratiot(n)/t(0) is more
than 30. It seems that the most adequate description of C
~BEDO-TTF!2ReO4~H2O! can be achieved using the magn
toconductance model7 based on the memory functio
M (v) whose real and imaginary parts are rapidly varyi
functions of the microwave frequency.

We are deeply indebted to B. A. Volkov, L. A. Falk
ovskii, and S. V. Sharov for helpful discussions. This wo
was part of the INTAS 93-2400 and INTAS 94-1788 inte
national projects, and was supported by theFullerenes and
Atomic ClustersandMicrowave Physicsprograms sponsore
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Dynamic properties of an incommensurate charge density wave in monoclinic TaS 3
at low temperatures
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The permittivity of monoclinic TaS3, a quasi-one-dimensional conductor with an incommensurate
charge density wave~CDW!, as a function of frequency and temperature has been studied.
At low temperatures and at frequencies below 1 MHz, the temperature dependence of the real part
of the permittivity shows a maximum shift to lower temperatures with decreasing frequency.
The temperature dependence of the relaxation time consists of two branches corresponding to
macroscopic regions of CDWs with long and short relaxation timest on the microscopic
scale. With decreasing temperature, the growth oft for large CDW regions is faster than thermal
activation and shows a tendency to diverge at a finite temperature while the growth oft
due to the relaxation on the microscopic scale is slower than the activation rate. Our results show
that with decreasing temperature them-TaS3 quasi-one-dimensional conductor goes over to
a glasslike state due to the strong pinning of CDWs by randomly distributed impurities and the
formation of mutually interacting solitary CDW collective excitations. ©1997 American
Institute of Physics.@S1063-7761~97!01903-3#
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Recently several papers have been published1–4 stating
the evidence that a maximum~singularity! exists on the tem-
perature dependence of the real part«8(T) of the dielectric
function of quasi-one-dimensional conductors measured
low frequencies between 1022 and 107 Hz in the low tem-
perature range. A model ascribing this maximum to an
crease of the coherence length and relaxation times of CD
in this temperature range and a transition to a ‘‘froze
glasslike state has been proposed.3,4 These effects have bee
found in two materials with CDWs, namely in the blu
bronze K0.3MoO3

1,2 and orthorhombic TaS3,
3,4 where the

CDW of one type is incommensurate with the initial crys
lattice near the Peierls transition temperatureTP .

The CDW wave vector in these materials is temperatu
dependent, and its value approaches four-fold commens
bility with decreasing temperature.5,6 In this connection, the
question arises as to whether the observed feature
«8(T) are typical of only such quasi-one-dimensional co
ductors where, in particular, the maximum of«8(T) can be
attributed to a transition to the commensurate CDW. In or
to test whether the divergence in«8(T) at low temperatures
is a fundamental phenomenon deriving from basic phys
principles, we have measured at low temperatures the
mittivity of monoclinic TaS3, a quasi-one-dimensional con
ductor in which two CDWs occur with wave vectorsq1 and
q2, independent of temperature and never approaching c
mensurability as the temperature decreases.5
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We have investigated four samples of monoclinic Ta3

with cross sections of 1027–1026 cm2 and a length of 1–2
mm. The samples were placed on a sapphire substrate. T
electrical contacts were made of silver paste or vacu
deposition of indium strips on the samples after therm
treating.7 The contacts fabricated in vacuum had lower res
tances, and were stable during thermocycling. In this pa
we present data for them4 sample, which had dimension
120031032.5mm, a room-temperature resistance
144 V, and contacts fabricated in vacuum. Similar resu
have been obtained with other samples.

We have measured the dc conductivityGdc and current–
voltage curves~IVC! of m-TaS3 in the temperature rang
from 30 to 300 K. The real part ReG and the imaginary par
Im G of the ac conductivity at frequencies between 53102

and 106 Hz were measured over a wide temperature ra
between room and liquid helium temperature. The meas
ments of the conductivity were made using an HP 419
vector impedance analyzer under computer control. At l
temperatures, when the sample resistance was greater th
MV, we used a special preamplifier in order to enhance
sensitivity at frequencies below 104 Hz.4 The ac voltage ap-
plied to the sample was 5–10 mV, which corresponds to l
than one-tenth of the minimum threshold fieldET throughout
the studied temperature range. As follows from our data
other publications,4,8,9 the conductivity was independent o
such field amplitudes, i.e., our experiments were perform
in the linear regime, and we measured the conductivity of
CDW ground state.

5457$10.00 © 1997 American Institute of Physics
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It follows from our measurements that the temperat
dependence of the dc conductivityGdc in our samples has a
form typical ofm-TaS3 with two sharp drops in the conduc
tivity at T15240 K and T25160 K, corresponding to
formation of two CDWs with wave vector
q15(0a* , 0.253b* , 0c* ) for T,T1 and q25((1/2)a* ,
0.247b* , (1/2)c* ) for T,T2.

10 In the temperature rang
between 100 and 160 K, the function logGdc(1/T) is almost
linear and characterized by the activation energyD5900
K.11,12 The IVCs ofm-TaS3 samples had forms typical o
quasi-one-dimensional conductors with CDWs.13 At tem-
peratures above the first Peierls transitionT1, the IVCs of
our samples were linear in electric fields of up to abou
V/cm, with subsequent smooth growth of the conductiv
proportional to the second power of the current due to
heating effect. At temperatures belowT1, a large nonlinear-
ity develops on the IVC at values as low as.3 V/cm. The
pulsed measurements eliminated sample heating, sho
that the nonlinearity is not due to the thermal effects, bu
the beginning of CDW motion as a whole.13 Figure 1 shows
the threshold fieldET as a function of temperature. In th
range of the first CDW~160–240 K!, ET has a minimum at
T5200 K, then grows with decreasing temperature and
mains relatively high, which is typical ofm-TaS3.

13 It is
known that after formation of the second CDW (T,160 K!,
the bulk of the nonlinear conductivity is associated with
The threshold field decreases in several times, although
temperature dependence is qualitatively similar: it drops a
the transition throughT2, has a minimum, and at lower tem
peratures increases exponentially asET(T)5ET(0)
3exp(2T/T0), whereT0525 K.11

In the temperature range between 100 and 160 K,
threshold fieldET is clearly defined because the CDW
E,ET is immobile, and the IVC is linear, whereas
E.ET the CDW is driven by the electric field, the IVC i
quite nonlinear, which is seen most clearly inm-TaS3, and

FIG. 1. Temperature dependence of threshold field and permittivity: sta
threshold fieldET for the first CDW; circles and diamonds—threshold fiel
ET and ET8 for the second CDW; squares—real part of the permittiv
«8/23108 at a frequency of 10 kHz.
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100 K, simultaneously with the continuing growth ofET

~Fig. 1!, a small nonlinear contribution emerges on the IV
linear section beginning with the threshold fieldET8 below
ET .

11,14Figure 1 showsET8 as a function of temperature. On
can see that below 100 K the threshold voltage of this n
linearity decreases with decreasing temperature, approa
a minimum, its value at the minimum being close to t
minimumET at T5149 K, and after that shows a nonline
growth.

Simultaneously withGdc and IVC, we measured the
complex ac conductivityG(v) at fixed temperatures be
tween 4.2 and 300 K. From these data we derived the
mittivity using standard relations: the real part of the perm
tivity is «8(v)5 Ims(v)/v, and the imaginary part is
«9(v)5@ Res(v)2sdc#/v, wheres denotes conductivity.
Figure 1 shows a plot of«8(T) measured at the frequenc
f5v/2p510 kHz in the temperature range of 4.2 to 160
One can see that it has two clearly defined maxima. One
these is near the Peierls transition temperatureT2, where the
second CDW emerges. In the temperature range below
maximum,«8 drops monotonically and, according to prev
ously reported measurements at frequenciesf.10 MHz, this
drop should extend to very low temperatures.13 Our measure-
ments at low frequencies, however, show that forf,1 MHz
a clear maximum can be seen atT580 K superposed on this
monotonic decrease in«8(T). Comparing the curves
ET(T), ET8(T), and «8(T) in Fig. 1, one can see a certa
correlation among them. The maxima of«8(T) occur near
the temperatures whereET and ET8 have minima. Similar
effects were observed in other quasi-one-dimensio
conductors.15 The data plotted in Fig. 1 were taken from th
m-TaS3 sample with a relatively low room-temperature r
sistance (R05144V); therefore our device could not accu
rately measure ImG nearT1 at such low frequencies be
cause of inadequate resolution. Measurements of them3
sample withR0;103V at a frequency of 1 MHz, however
have demonstrated that there is also a maximum n
T15240 K on the«8(T) curve recorded at a frequency of
MHz.

Figure 2 shows the«8(T) curves nearT2 measured at
several frequencies between 1 kHz and 1 MHz. As can
seen from Fig. 2, the amplitudes of these peaks increas
the frequency decreases, but their position remains cons
to within the experimental accuracy. This result is in qua
tative agreement with the behavior of the«8(T) curve near
the Peierls transition in orthorhombic TaS3,

16 NbSe3,
17 and

~NbSe4)10/3I.
18 Figure 3 shows the«8(T) curves near the

low-temperature maximum at frequencies between 700
and 1 MHz. The growth of the peak with decreasing fr
quency is considerably larger than nearT2. But it is more
important that the peak position depends strongly on the
quency, in contrast to the region nearT2. The location of the
peak shifts to lower temperatures as the frequency decrea
That is, in this quasi-one-dimensional conductor, as in ot
materials of this kind, such as K0.3MoO3 ~Ref. 12! and ortho-
rhombic TaS3,

3,4 the function«8(T) shows a tendency to
diverge with a specific frequency dependence, which is ty

—
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cal of many disordered systems which go over to a glass
state at low temperatures.19–21

The real part of the conductivity, ReG, measured at
fixed temperatures as a function of frequency~Fig. 4! is simi-
lar to those measured in other quasi-one-dimensional c
ductors with CDWs.2,4 In the frequency range under inves
gation, the low-frequency region is achieved at temperatu
above 50 K in which ReG becomes independent of th
frequency, i.e., it equalsGdc. But at lower temperatures, R
G varies with the frequency in this region, and it shou
approachGdc at even lower frequencies.4 At low tempera-
tures between 4.2 and 40 K, the observed behavior
G(v) is well approximated by the functionG(v) } va,
wherea;0.8, which is typical of low-temperature states
quasi-one-dimensional conductors,4,22 and in the more gen

FIG. 2. Real part«8 of the permittivity versus temperature around the s
ond Peierls transition measured at different frequencies: squares—
triangles—100; diamonds—300; stars—1000 kHz.

FIG. 3. Real part of the dielectric permittivity«8 versus temperature in the
low-temperature range measured at different frequencies: crosses—
circles—1; squares—3; squares with crosses—10; diagonal crosses
triangles—100; diamonds—300; stars—1000 kHz.
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eral case, of many systems with a certain degree of diso
in which the hopping conductivity dominates.23

The parameterGdc is necessary for calculating the diss
pative part of the dielectric permittivity«9 using the relation
given above. If the transition ofG(v) to the constant value
G is observed within the measured frequency range,
maximum on the«9(v) curve should also be located withi
this frequency range. This can be seen from Fig. 5, wh
shows the«9(v) curves measured at fixed temperatures
tween 50 and 100 K. For temperaturesT,50 K, the maxima
on the«9(v) curves are in the frequency range below 13

Hz, and we can see only the tails of these curves.
T.50 K, most of the«9(v) curve ~which is also called the
loss function! are in the measured frequency band. T
maximum on the«9(v) curve shifts to higher frequencie
with increasing temperature, and atT.100 K it approaches
the edge of the frequency range in question.

Figure 5 shows the«9(v) curves at different tempera
tures and, as will be shown below, the values of«8(v) are
considerably different from theoretical predictions obtain

-
0;

.7;
30;

FIG. 4. Real partG of the conductivity versus frequency measured at t
different temperatures indicated at the curves.

FIG. 5. Imaginary part of the dielectric permittivity«9 versus frequency
measured at the different temperatures indicated at the curves.
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single relaxation timet0. The «9(v) and «8(v) curves
obtained at low temperatures are similar to those observe
a wide range of disordered materials, including vario
glasses.24 In these materials the relaxation of excitations
found to be nonexponential with an wide distribution of r
laxation times. This relaxation is described by various p
nomenological equations, which were generalized in
theory of dielectric relaxation in polymers:25

«~v!5«HF1
«02«HF

@11~ ivt!12a#b , ~1!

where«HF corresponds to the high-frequency limit«8(v) at
v@v0 (v0[t0

21), «0 is the low-frequency limit of«8(v) at
v!v0, anda andb characterize the width and asymmet
of the relaxation time distribution. According to Eq.~1!, the
relationship between«9 and «8 is similar to the familiar
Cole–Cole relation described by an asymmetrical arc o
circle.24 The point where the high-frequency part of th
«9(«8) curve crosses the«950 axis defines the high
frequency parameter«HF, and the intersection with the low
frequency part defines«0. Our plots of the function
«9 («8) have demonstrated that«HF can be determined us
ing measurements in this frequency range with sufficient
curacy. By determining this parameter at different tempe
tures and subtracting it from measurements of«8(v), we can
obtain the low-frequency component of the dielectric
sponse more accurately because the dielectric response,
well known, can include contributions from different su
systems, such as the lattice, free electrons, etc. Figu
shows a plot of«82«HF8 as a function of frequency~in Fig. 3
and hereinafter this difference is denoted as«8). Throughout
the temperature range studied, the measured«HF8 was signifi-
cantly smaller than«8.4 As can be seen from Fig. 6, log–lo
plots of «8(v) at different temperatures are qualitative
similar and can be brought to coincidence by shifting th
along the logv and log «8 axes.4,24 In the temperature
range between 4.2 and 50 K, these curves shift upwards
the temperature, and in the range between 50 and 100 K
move downwards. These curves can be roughly appr
mated by two parts with different slopes: a smaller slope
lower frequencies,«8(v) } v2m, wherem increases from 0.1
to 0.25 as the temperature decreases, and a larger slo
higher frequencies,«8(v) } v2n, wheren changes between
0.5 and 0.7. The region of the crossover between these
parts shifts to higher frequencies with increasing tempe
ture. Figure 5 shows that the curves of«9(v) are also similar
to each other in the log–log plots and can be brought
coincidence by shifting them along both axes.4,24 Moreover,
Figs. 5 and 6 indicate that the high-frequency parts of
«8(v) and«9(v) curves are similar and can be described
the formula

«8;«9}v2n.

3. DISCUSSION

Measurement of the permittivity as a function of tem
perature and frequency is a widely used technique in stu
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of fundamental properties of condensed matter. This met
is equally applicable to electronic condensed states such
CDW in quasi-one-dimensional conductors.

The results described above, in particular those plot
in Fig. 1, demonstrate that the temperature dependence o
conductivity, threshold fieldET , and permittivity are inter-
related. The decreases in the conductivity nearT1 and T2,
where the appropriate CDWs develope, correspond to
creases in the threshold field and, as follows from our m
surements, maxima on the curves of«8(T). The amplitudes
of the peaks on the curves of the permittivity«8(T) depend
weakly on the frequency, but their positions on the tempe
ture axis do not change with the frequency. This may
caused by the small relaxation timet0 of CDWs (.10210 s!
near the Peierls transitions,15 i.e., the response to the ac ele
tric field with a frequency.106 Hz weakly depends on the
frequency. The temperatures belowT1, which correspond to
the«8(T) maximum andET(T) minimum, are close to each
other. However,«8 in this range is a steeper function o
temperature thanET , and as a result, the product«8ET de-
pends on the temperature. In the temperature range be
T1 ~80–120 K!, the correlation between the increase
ET(T) and decrease in«8(T) is stronger, and their produc
changes little. It is known that the product«8ET is also a
weak function of temperature below the Peierls transit
temperature in other quasi-one-dimensional conductor15

The interpretation of this fact is based on the assumption
the force needed to shift the CDW as a whole, i.e., to ov
come the threshold, and the field needed to polarize
CDW are proportional to one another, which is in agreem
with the concept of an elastic CDW with a fairly large c
herence lengthL0, whose motion is blocked by a collectiv
action of impurities within its coherence length. This ca
corresponds to pinning of weak CDWs and has been tre
in some theoretical papers.26,27 This means that an elastic
weakly pinned CDW is a typical state in the region near
Peierls transition.

The number of electron–hole pairs excited across
Peierls gapD drops exponentially with decreasing temper

FIG. 6. Real part of the permittivity«8 as a function of frequency at differ-
ent temperatures: filled squares—4; diamonds—10; squares with cross
20; triangles—30; stars—40; filled circles—50; circles with slash—6
empty circles—70; squares with dots—80; circles with crosses—90 K.
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leads to an increase in the local interaction between
CDW and strong pinning centers, hence a gradual transi
from the weak, collective pinning to strong pinning.3,4,28,29In
the case of strong pinning, the coherence of CDWs exte
only over a distanceLi!L0 between impurity centers. Thi
is probably the reason for the drop in«8 with decreasing
temperature inm-TaS3 and other quasi-one-dimension
conductors.3 Additional evidence in favor of the increase
pinning force and decrease in coherence length at low t
peratures is the exponential growth of the threshold fi
ET ~Fig. 1!, the decrease in the nonlinear contribution to t
conductivity, etc.13

In ourm-TaS3 samples below 80 K, the CDW interact
in effect, locally with simple impurity centres. The onset
its coherent motion as a whole demands high electric fie
In a weak field it is practically immobile, and its response
a weak ac field can probably be accounted for in terms
deformations of local CDW regions localized near impu
ties. As follows from some theoretical29–31 and
experimental3,4,14 studies, it is most probable that deforme
regions of a CDW near impurities correspond either to to
logical solitons with phase shifts of62p and charges of
62e, or dipole solitons with zero charge. It seems that m
of the change in the CDW phase takes place over a lengt
about ten lattice constants near an impurity. Soliton ta
however, may extend over considerably longer distan
Such collective excitations, involving several electrons a
similar to polarons, have effective masses larger than the
electron mass.29 In our opinion, these collective CDW exc
tations determine the kinetic properties of the CDW grou
state at low temperatures. The dc conductivityGdc is con-
trolled by the hopping of such collective excitations amo
randomly distributed impurities. In accordance with the ho
ping conductivity mechanism, its temperature dependenc
described as follows:11,14

Gdc}exp~2T/T0!
1/2.

As can be seen from Fig. 4, inm-TaS3, as in other quasi-
one-dimensional conductors, we haveG(v) } va, where
a;0.8, which is typical of the hopping conductivity.4,14

Measurements of the optical absorption due to states wi
the Peierls gap also indicate the presence of collective e
tations resulting in localized electron states.32,33

It is natural to assume that the response of a pin
CDW to a weak electric field, described in terms of the p
mittivity, is also determined mainly by these collectiv
excitations.3,4 The number of collective excitations at lo
temperatures should probably be determined largely by
concentration of pinning centers for CDWs and be a
function of the temperature. But because the CDW beco
more rigid and cooperative interaction among collective
citations increases with decreasing temperature, there
tendency to ordering in their distributions and to extension
regions with a certain alignment of microdipoles, i.e., to
enhancement of coherence regions of collect
excitations.3,34 The permittivity should also increase, whic
is observed inm-TaS3 ~Figs. 1 and 3! and in other similar
materials. Figure 1 shows that, as near the Peierls trans
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~.50 K!, there is a local minimum of the threshold fie
ET, which also indicates the possibility of extension of r
gions with coherent states of collective excitations, beca
their motion leads to the initial, weak departure of IVC fro
a linear curve.11,12,14In this temperature range, the change
«8 is larger than inET8(T), and the product«8ET8 is no longer
constant, and it is considerably smaller than nearT2 ~at ap-
proximately the same minimum values ofET andET8). The
amplitudes of the peaks on the«8(T) curve and their posi-
tions are steeper functions of the frequency than nearT2
~Fig. 2!. This difference indicates that the physical causes
the maxima on«8(T) curves in the low-temperature rang
may be different. This type of ground state and its behav
at a variable temperature resemble the ground state and
main growth near transitions to a glassy state in many m
rials with a certain degree of disorder, such as spin glas
orientational glasses, etc.19–21

Simultaneously with the growth of the sizeL of the co-
herence region, their relaxation time also increases at
} exp L.35We measured«8 at low but finite frequencies; for
2p f.t21, the CDW did not have enough time to respond
the field at this frequency, so that delay effects and a
crease in«8 were detected. This dynamic effect, also nam
as ‘‘slowing-down behavior,’’ is responsible for the max
mum on the«8(T) curve. At temperatures below the max
mum of«8(T), the relaxation time is so large that the CDW
is frozen in a glasslike state. Assuming that the maxim
point satisfies the conditiont51/2p f , we can derive from
the function«8(T,v) the characteristic relaxation timet* of
a CDW at low temperatures.3,4

Figure 7 shows the characteristic relaxation timet* as a
function of the reciprocal temperature, which, probab
characterizes relaxation of the largest and slowest CDW
gions, i.e., it describes so-calleda-relaxation.4,24 The curve
of log t*5t0(1/T) plotted in Fig. 7 cannot be described b
a pure activation mechanism~which suggests a linear func
tion of 1/T!, but curves downward, i.e., demonstrates a t
dency to divergence. According to the dynamic scaling h
pothesis, which provides an adequate description of m
disordered materials near a transition to a glassy state,19–21

such a dependence should be described by the equation

t*5t0~12Tc /T!2zn.

Our experimental data can be approximated by this equa
with t0;10211 s, Tc536 K, andzn513 ~Fig. 7!.

Figure 7 also shows the dependencetp(T)5(vp)
21 de-

rived from the frequencyvp corresponding to the maximum
of the dissipative part of the permittivity versus frequenc
«9(v) ~Fig. 5!. In the temperature range above 70 K t
curves oft* (1/T) and tp(1/T) are close, which should be
true when the process is characterized by a single relaxa
time, or the distribution of relaxation times is narrow. In th
temperature range, both curves tend asymptotically to an
tivation curve defined byt;t0 exp(2D/T) with D.900 K,
which corresponds to the gap inm-TaS3 obtained from mea-
surements of its conductivity versus temperature. This,
parently, means that in this temperature range the CDW
laxation is largely determined by single electron–hole pa
excited across the Peierls gap. One of these relaxa
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mechanisms of local CDW deformation can be a therma
activated phase slip with dephasing between the two par
the wave in a small region which go over to the normal st
for a short time and through which the energy is dissipate36

As can be seen from Fig. 7, thet* (1/T) and tp(1/T)
curves differ at temperatures below.70 K. The t* (1/T)
curve deviates upward from the thermal activation line a
as was mentioned above, resembles the typical divergenc
«8(T) near the transition to a glasslike state with a transit
temperatureTc.36 K. This divergence corresponds to th
case of barrier heights increasing with decreasing temp
ture, which is in accordance with the above model sugg
ing growth in the regions of uniform polarization of colle
tive excitations in the CDW with decreasing temperature a
the consequent increase in the height of the energy barri
be overcome in order to change polarizations of th
regions.4,29 The curve oftp(1/T) deviates downward from
the activation line, which corresponds to the case of ene
barriers of a constant height. This means that fortp(1/T) the
effective barrier height decreases with decreasing temp
ture. Probably, this shape corresponds to the case when
relaxation is due to tunneling of solitons~collective excita-
tions! between metastable states of CDWs near pinning c
ters. These transitions can be the basis of a macrosc
mechanism, which determines both the hopping conducti
and the CDW polarization, hence«8, at low temperatures
According to theory, if a correlation between separate t
neling events exists, thetp(1/T) curve should be describe
by an equation similar to the one describing the up
branch:

tp5tp
0~12Tc /T!2zn,

but with a negativeTc .
37 The experimental curve o

tp(1/T) can in fact be approximated by this equation w
t0;10211 s, Tc5240 K, andzn524. This seems to indi-
cate that there can also be a correlated motion of collec
excitations on this branch of thet(1/T) curve, similarly to
the case of orthorhombic TaS3.

4 The existence of two

FIG. 7. Characteristic relaxation time as a function of temperature.
parametertp ~circles with crosses! is derived from the peak positions on th
«9(v,T) curves. The timet* ~squares! is derived from the positions of the
peaks on the«8(v,T) curves.
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time deviating upwards and downwards from the activat
curve is a sign of broadening of the relaxation time distrib
tion at low temperatures and, accordingly, of the energy d
tributions of barrier heights to be overcome in the process
relaxation. It is also possible, naturally, to determine an
erage relaxation time, whose temperature dependence w
be close to that described by the Arrhenius law and would
between the two branches shown in Fig. 7.

Thus, as can be seen from the above data, in monoc
TaS3, as in other quasi-one-dimensional conductors, sev
effects are observed with decreasing temperature which
characteristic of a transition to a glasslike state. The exp
mental data are satisfactorily described in terms of the
namic scaling hypothesis37 and the approximate model of th
ground state in the form of a CDW and its collective solito
like excitations at low temperatures.3,4,29,30,38As was noted
above, there are two CDWs inm-TaS3 and, according to
earlier results,5 their wave vectors are independent of tem
perature and do not approach values corresponding to a c
mensurate CDW. From this it follows that the transition to
glasslike state described in the paper is directly related
ther to the presence nor absence of a temperature depend
of the wave vector, nor to a transition of the CDW to
commensurate state. The transition of a quasi-o
dimensional conductor with CDWs to a glasslike state see
to be determined mainly by processes of strong pinning
CDWs at randomly distributed impurities with formation o
interacting soliton-like CDW collective excitations.
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On the theory of quantum interference between inelastic and elastic electron scattering

of
events
V. V. Rumyantsev, E. V. Orlenko and B. N. Libenson

Technical University of St. Petersburg, 195251 St. Petersburg, Russia
~Submitted 11 June 1996!
Zh. Éksp. Teor. Fiz.111, 1001–1015~March 1997!

The mechanism of weak localization of relatively fast electrons scattered with a fixed energy loss
from disordered media is examined. The main focus of this paper is to put forward an
explanation why coherent enhancement of electron scattering in the inelastic-scattering channel
takes place at angles which differ fromp. A simplified kinematic model is proposed to
determine the basic properties of the weak localization of electrons in the inelastic scattering
channel. The model reproduces easily the range of scattering angles typical of the weak
localization of electrons with a fixed energy loss. The procedure does not require calculation
of the contribution from the crossed diagrams. The results agree with those based on the dynamical
theory associated with the calculation of the crossed and ladder diagrams. It is possible to
follow the transition from the new type of weak localization to the ordinary weak localization with
decreasing energy loss. The new-type weak localization is in agreement with the regular
weak localization if the energy loss is approximately equal to the energy of an optical phonon.
© 1997 American Institute of Physics.@S1063-7761~97!02003-9#
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The weak localization of conduction electrons and ba
scattering enhancement of classical waves in disordered
dia have been studied extensively during the last few deca
~see, for example, Refs. 1–9!. The two phenomena, whic
are connected with the constructive interference of rand
wave fields, are closely related to each other. In the cas
conduction electrons, coherent quantum–mechanical b
scattering can be regarded as a precursor of the expone
localization. It gives rise to a variety of quantum transp
phenomena, particularly to the logarithmic increase in
resistance of metallic films with decreasing temperat
which approaches absolute zero. In the case of electrom
netic waves and other classical fields, weak localizat
manifests itself in the enhancement of scattering in a nar
angular cone of width on the order of 1/(kl) ! 1 in the back-
ward direction~k is the electron wave vector or the wav
vector of a classical wave, andl is the mean free path!.

Now we observe a partial shift of interest in the stud
of weak localization from the problems of electron condu
tivity or elastic backscattering of light to new domains as
ciated with the electron motion in disordered media. T
discovery of universal conduction fluctuations has shifted
interest from average values of physical quantities to th
variance and to the behavior of separate groups of elect
with fixed energies. Another point of interest is associa
with the dissipation effects, because the inelastic scatte
leads to the loss of phase memory of the wave function
suppresses the weak localization and the resistance flu
tions.

Finally, coherent phenomena are also of interest in
scattering of external particles~such as electrons! with a
fixed energy incident on disordered samples. In contras
electronic measurements which can only measure the

552 JETP 84 (3), March 1997 1063-7761/97/030552
-
e-
es

m
of
k-
tial
t
e
e
g-
n
w

s
-
-
e
e
ir
ns
d
g
d
ua-

e

to
n-

intermediate-energy electrons have the advantage of mea
ing the angular and energy spectra of electrons for an exp
mental realization. In Refs. 10–12, the weak localization
external electrons~with energies from tens to thousands
electronvolts! has been studied. Neutrons have also been
subject of such a consideration.13 According to those studies
coherent phenomena can be observed in the elastic b
scattering of electrons, in spite of sufficiently high energ
of external electrons.

In contrast with the scattering of electromagnetic wav
the interaction of an external energetic electron with a dis
dered medium leads, with high probability, to inelastic sc
tering. The effects of inelastic processes on the conducti
under weak localization have been studied extensively~for
example, see Refs. 1 and 2!. We now see a new wave of thi
activity. One method of treating inelastic processes wh
they occur only in an electron reservoir~coupled to a device
without inelastic processes! was developed in Refs. 14 an
15, and elsewhere subsequently. The quantum kinetic e
tion, which can be employed for describing quantum tra
port, has been derived under the assumption that the inel
scattering is caused by noncorrelated point scattere16

Much attention has been given to the effect of inelastic sc
tering on the observed coherent phenomena like
Aharonov–Bohm oscillations,17 conductance fluctua
tions,18,19 persistent current,20 resonance behavior of th
conductance,21 conductance of a disordered linear chain22

and destruction of weak localization in inelastic scattering
particles.23 We also point out an elegant experimen
study,24 in which the authors tried to use the weak localiz
tion as a thermometer. Some studies are devoted to the e
of dissipation on the localization of classical fields. The
flection and transmission coefficients in the presence of
sorption under the localization of classical fields ha

5528$10.00 © 1997 American Institute of Physics



been considered in Ref. 25. The effect of absorption on the
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wave transport has been studied in Refs. 26–35. In m
cases the absorption has been introduced as a uniform im
nary energy part. The common feature of those studies is
inelastic scattering destroys the phase memory and for
the quantum interference effect.

In some cases, however, the inelastic processes do
lead to a phase memory loss. A very simple example w
considered recently.36 In that study the authors demonstrat
the effect in which the electron-photon interaction in a b
listic microstructure plays the same role as the impurity sc
tering in disordered media. In the presence of an exte
electromagnetic field all relevant photons are coherent,
spatial interference in electron-photon scattering become
lowed, despite the inelastic nature of the collisions. The e
trons do not couple to a large number of degrees of freed
and their phase memory is preserved. The interference
fects are, therefore, certainly possible in the system, e
though the electron scattering is inelastic.

The quantum interference can occur even if an elect
undergoes a single inelastic scattering while interacting w
an incoherent electromagnetic field. Because of a single
elastic collision, the electron loses a fixed energy,\v, and
finds itself in the so-called inelastic-scattering channel. T
energy of this electron is different from the energy of t
incident particles. It can escape the medium and then
detected. In addition to the single inelastic collision, the el
tron should undergo at least one elastic scattering befo
leaves the medium through the same surface through w
it penetrates the medium. There are two ways to realize
process, since it can either start or end with an inelastic
lision. The interference of electron waves associated w
these complementary processes has been proved37,38 to be
constructive. It manifests itself in the enhancement of el
tron scattering through an angle which differs fromp. The
difference of this angle fromp may be considerable. Th
new coherent phenomenon is called a new~or different! type
of weak localization.

The ratiog/v , 1 ~whereg is the particle collision fre-
quency, and\v is the particle energy loss! has been consid
ered in Refs. 37–39. Recently, the opposite limiting ca
g/v . 1, which is closer to the usual weak localization~i.e.,
weak localization in the elastic-scattering channel!, has been
considered in Refs. 40 and 41. In both cases the new typ
weak localization appears to be clearly observable.

The main difference between the ordinary and the n
weak localization is the typical electron scattering angle. T
angular distribution of particles and radiation undergo
weak localization in a disordered medium can be found
calculating the contribution of the crossed~or so-called
‘‘fan’’ ! diagrams into an electron~radiation! cross section or
density matrix. However, it is also useful to have a sim
physical model explaining why coherent phenomena are
ticularly pronounced in particle scattering at certain ang
This approach is clear and enables us to evaluate the sc
ing angles without calculating the crossed diagrams. T
main goal of the present article is to find the physical int
pretation of the fact that constructive interference of the n
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In the case of the ordinary weak localization, there is

particular simple graphic method,2,4 which provides insight
into the phenomenon and which explains why the anglep is
specific for the regular weak localization. This method tak
into account that an electron with a momentumk is scattered
via two complementary series of intermediate scatter
states k→k18→k28→...→kn218 →kn852k and k→k19
→k29→...→kn219 →kn9 5 2k into the2 k state. Themomen-
tum changes areq1 ,q2 ,...,qn21 ,qn for the first series, and
qn ,qn21 ,...,q2 ,q1 for the second one. The amplitudes in th
final state2 k are identical,A8 5 A9 5 A, and interfere con-
structively. This is because the complementary scattering
ries have the same momentum changes in opposite
quences.

The weak localization of electrons in the inelasti
scattering channel increases the electron scattering cross
tion at scattering angles different fromp. Moreover, the ef-
fect is pronounced in a considerably wider range of ang
than for the localization in the elastic-scattering channel.
this article we show that there exists a simple kinema
method which reproduces the range of scattering angles t
cal of the new type of weak localization. We explain th
mechanism of particle localization with a fixed energy lo
The results obtained in the framework of our kinematic a
proach are compared with those based on the exact dyn
cal theory. The scattering angles typical of coherent scat
ing and calculated in the kinematic and dynamic
approaches are in good agreement.

We shall also show that the localization of the new ty
turns into an ordinary localization in the limit of vanishin
fixed energy loss.

2. KINEMATIC APPROACH TO DESCRIBE THE FEATURES
OF WEAK LOCALIZATION

Let us consider a process in which the electron mov
in a disordered medium undergoes elastic collisions an
single inelastic collision. The electron energy is assumed
be higher than the energies of the conduction electrons.
fixed energy loss\v of the electron occurs due to the inela
tic collision. There are many sources of inelastic scatteri
which provide a clearly distinguishable energy loss, for
stance, plasmons and a number of electron atomic tra
tions.

In the regular weak localizations and in the new type
weak localizations the interference of the electron wave
described by crossed diagrams. In contrast with the ordin
weak localization, one of the crossed lines in the new type
weak localization corresponds to the inelastic interacti
while the others correspond to elastic interaction with ra
domly distributed force centers. In accordance with Eq.~18!
of Ref. 37, the crossed diagrams, together with the co
sponding ladder diagrams, contribute to the scattering pr
ability factor

S ~v,x!5~2p!23E
0

`

dqi qi wi~qi ,v!G ~qi ,v,x!, ~1!

553Rumyantsev et al.



wherex is the electron scattering angle,wi(qi ,v) is the rate
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of inelastic scattering accompanied by excitation of the m
dium with a momentumqi and energy\v. The functionG is
given by

G ~qi ,v,x!5\2E dVqi
uG~k2qi ,Ek2\v!

1G~k2Q1qi ,Ek!u2. ~2!

HereG(k2 qi ,Ek2 \v) andG(k2 Q1 qi ,Ek) are theelec-
tron Green’s functions. The former describes electron mo
between the inelastic and elastic scattering events and
latter refers to the process with the opposite sequenc
events.Ek andk are the initial energy and momentum of a
incident electron, respectively;Q 5 qi 1 qe is the total mo-
mentum transfer to the medium, andqe corresponds to the
elastic scattering. The integration in Eq.~2! is performed
over possible orientations ofqi . Equation~2! can be rewrit-
ten in the form

G ~qi ,v,x!5E dVqiU 1

vqi2v2\qi
2/2m2 ig

1
1

v2v8qi2\qi
2/2m2 igU

2

. ~3!

Here we assume that the electron energy isEk 5 \2k2/2m, v
andv8 are the electron velocities in the initial and final stat
respectively, andg is the electron collision frequency.

The function ~3! is convenient for studying the wea
localization since it describes the propagation of elect
waves between collisions. Equation~3! contains three terms
The squared absolute value of the first Green’s funct
gives the contribution of a ladder-type diagram and descr
the process in which the first collision is inelastic. T
squared absolute value of the second Green’s function
responds to a ladder-type diagram for the case in which
inelastic collision is the last collision. In both cases the e
pressions are independent of the electron-scattering an
x 5 cos21(vv8/vv8). There is also the third term, which con
tains the product of the first and second Green’s function
corresponds to the crossed diagrams and describes the
ference of two electron waves which propagate along
same path in opposite directions. The integration overVqi

in
this term does not ‘‘kill’’ thex-dependence that describes t
weak localization. The functionG describes it at a fixed
length ofqi , while Eq.~1! is appropriate if the length ofqi is
not fixed.

If an inelastic collision occurs between two elastic co
sions, the weak localization does not exist.38 It was also
shown38 that elastic multiple scattering at arbitrary angl
does not change the angular dependence determined b
functionsG andS .

The squared absolute value of the first Green’s funct
in Eq. ~3! at smallg can be represented in the form

U 1

Ek2Ek2qi
2\v2 igU2. p

\g
d~Ek2Ek2qi

2\v!. ~4!

The squared absolute value of the second Green’s functio
Eq. ~3! can be written similarly. The term in the integrand
Eq. ~3!, which describes the interference, has the form

554 JETP 84 (3), March 1997
-

n
he
of

,

n

n
s

r-
e
-
le,

It
ter-
e

the

n

in

~Ek2Ek2qi
2\v2 ig!~Ek2Ek2Q1qi

1 ig!

1
1

~Ek2Ek2Q1qi
2 ig!~Ek2Ek2qi

2\v1 ig!
. ~5a!

It is evident that the ratio of Eq.~5a! to Eq. ~4! is propor-
tional to the small quantityg. We can assume, therefore, th
the frequencyg in the denominators of Eq.~5a! is ~as a first
approximation! an infinitesimal quantity. This enables us
rewrite Eq.~5a! in the form

FP 1

Ek2Ek2qi
2\v

1 ipd~Ek2Ek2qi
2\v!G

3FP 1

Ek2Ek2Q1qi

2 ipd~Ek2Ek2Q1qi
!G

1FP 1

Ek2Ek2Q1qi

1 ipd~Ek2Ek2Q1qi
!G

3FP 1

Ek2Ek2qi
2\v

2 ipd~Ek2Ek2qi
2\v!G . ~5b!

An estimate reveals that in Eq.~5a! the ratio of the terms
containing the product of two delta functions to the term
which contain the principal values is

\v

vqc

k

qc
. ~6!

Here qc is the maximum momentumqi ~for example, the
cutoff plasmon momentum!. As long ask @ qc , the contribu-
tion of the product of the delta functions is dominant. Th
means that although the quantum transport generally~and the
weak localization specifically! occurs due to such electro
collisions at which every next scattering begins before
end of the previous one, weak localization permits~to the
first approximation! a physical interpretation, which start
from the analysis of the consequences of the simultane
satisfaction of the two conditions,

Ek2Ek2Q1qi
50 and Ek2Ek2qi

2\v50. ~7!

These conditions come from the two delta functions a
have the meaning of energy momentum conservation.
analysis based on Eqs.~7! is called the kinematic method in
the theory of weak localization.

Below we compare the results of the kinematic analy
with the so-called dynamic results of the exact theory. W
shall prove that the kinematic approach reproduces the a
lar properties of the weak localization with fairly good acc
racy.

Let us rewrite Eqs.~7! in the form

Ek82Ek2qi
50, ~8!

Ek2Ek2qe
50, ~9!
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and show that the vectorsqi andqe , the momentum transfer
during the inelastic and elastic collisions, are reciprocal
thogonal vectors.

Subtracting Eq.~8! from Eq. ~9!, we have

~k2k8!~k1k8!5~qi2qe!~2k2qi2qe!. ~10!

From Eq.~9! we obtainqe
2 5 2kqe . SinceQ 5 k 2 k8 5 qi

1 qe , we obtain

2k~Q2qi2qe!5Q22qi
22qe

2. ~11!

SinceQ5 qi 1 qe , weobtainQ
25 qi

21 qe
2. Therefore,

qiqe50. ~12!

Let us now represent graphically the sequence of ev
which give rise to a new type of weak localization. Th
circles in Fig. 1 have the radiiR 5 k and R8 5 k8
5 Ak222m\21v, respectively. The radii coincide with th
lengths of the electron wave vectors in the initial and fin
states. Let us first consider the case in which the first co
sion is elastic. For brevity, we denote this process
^m,k8uHiGHeun,k&. Herem andn correspond to the initia
and final states of the medium. The end of the vectorqe, the
momentum transfer during the elastic scattering~which may
involve multiple elastic scattering!, touches the circleR, so
that the electron wave vector becomes equal tok1 as a result
of elastic scattering. The following event of the scattering
an inelastic collision with a momentum transferqi , and the
conditionqiqe 5 0 is satisfied. The vectorqi connects the end
of the vectork1 with the pointA on the circleR8 5 k8
~where the end of the vectork8 rests!. The energy of the fina
state electron is lower by\v than the energy of the initia
state.

In the complementary scattering proce
^m,k8uHeGHi un,k& the particle first loses its energy an
only then undergoes the elastic scattering. The interfere
between two realizations of the scattering process is effec
if the wave vectors transferred during inelastic scattering
each realization are parallel and if they have the sa
lengths. Therefore, the momentum transferqi8 in the event of

FIG. 1. Kinematic diagram of the sequence of events which give rise
weak localization.
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shown with the segment that connects the end of the vectk
and the pointB on the circleR8 5 k8, where the vectorqi8 is
perpendicular to the vectorqe . The vectorqe8 in the process
under consideration is shown with the segmentAB. The vec-
tors qe and qi in the procesŝm,k8uHiGHeun,k& and the
vectorsqi8 andqe8 in the procesŝm,k8uHeGHi un,k& convert
the vectork to k8.

As can be seen from Fig. 1, there is the other set
vectorsqi ,qe andqi8 ,qe8 . In this caseqi connects the point
C ~at the end ofk8! with the end ofk1. The segmentCD and
the segment joining the pointD and the end ofk defineqe8
andqi8 .

As a rule, the two sets of solutions, which correspond
the segmentsAB and CD, cannot be realized simulta
neously. It is obvious that a solution concerned with the
istence of the segmentCD corresponds to the lengthqi ,

qi5Ak22~qe/2!21Ak822~qe/2!2,

and to the electron-scattering angle,

x5
p

2
1sin21S qe2kD1sin21S qe2k8D ,

so thatp/2< x < p.
Therefore,

qi
25k21k8212kk8 sin x, ~13!

qe
25

~2kk8 cosx!2

k21k8212kk8 sin x
. ~14!

It is evident thatqi /qe . 1, an inequality that is difficult to
realize. For example, in the case of plasmon excitations th
is a cutoff vectorqi 5 qic 5 vvF

21 ~wherevF is the electron
Fermi velocity!, and the probability of plasmon excitatio
with qi . qic is zero. In other cases of inelastic scattering t
processes with small momentum transfers are also proba
However, when taking the limit of the ordinary weak loca
ization (k8→k), the solution of Eqs.~13! and ~14! corre-
sponds to the correct description of the process. When
ratio \v/E is small, we have

cosx5211
1

8@~2k/qe!
221# S \v

E D 2, ~15!

andx→p as\v→0.
When we consider the new type of weak localization, t

solution associated with small momentum transfersqi is re-
alized. In this case the interference conforms to the rectan
with the vorticesABLM. According to Fig. 1, the depen
dence of the length of the vectorqi on x has the form

qi5Ak22~qe/2!22Ak822~qe/2!2, ~16!

and

x5sin21S qe2kD1sin21S qe2k8D . ~17!

From Eqs.~16! and ~17! we obtain

a
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q25
~2kk8 sin x!2

, ~18!
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qi5
2mv

\Ak21k8212kk8 cosx
. ~19!

We see from Eq.~19! that

cosx52
k21k82

2kk8
1

2v2

vv8qi
2 . ~20!

This expression determines the electron-scattering angle
der weak localization at different values ofqi , the inelastic
momentum transfer.

If k2 k8! k, then

cosx5211
2v2

v2qi
2 or cos

x

2
5

v

vqi
.

It is convenient to rewrite them as

x52 cos21S v

vqi
D . ~21!

If the electron scattering excites the electromagnetic wa
~longitudinal or transverse!, Eq. ~21! can be interpreted a
the condition of the electron scattering through the dou
Čerenkov angle. This circumstance was pointed out in R
37.

There is a top value of the vectorqe ~this vector is rep-
resented by the dashed lineMF! at which the vectorqi ,
drawn from the pointF perpendicularly to the segmen
MF, ceases to cross the inner circle. Accordingly, it is i
possible to expect the new type of weak localization to be
electron-scattering angles close top. We see from the geo
metric consideration that the top scattering angle is

x05p2cos21S 12
\v

2E D . ~22!

Therefore, we obtain

qi05k sin x05A2mv\21. ~23!

The new type of weak localization takes place only ifqi
,qi0 .

Now we can determine the range of scattering angle
the electrons that undergo weak localization for differe
types of medium excitations. When a bulk plasmon is
cited and its wave vector is in the range

vp

v
,qi ,qc5

vp

vF
,

the coherent phenomena at electron scattering occur at

0,x,2 cos21~vF /v !. ~24!

The range of wave vectors of the transverse electromagn
waves~at the Čerenkov excitation! is

v

v
,qi ,

v

c
Ae.

The most intense scattering will then occur in the range
scattering angles
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0,x,2 cos21S c

vAe
D . ~25!

In the case of excitation and ionization of atoms37 we have

qi.
eAZ

udx mnu
,

whereZ is the atomic number, anddx mn is the matrix ele-
ment of the atomic dipole for excitation from the groun
staten to the upper statem. Therefore, the coherent phenom
ena at electron scattering will be pronounced at

x.2 cos21S vudx mnu

evAZ D . ~26!

For an optical-phonon excitation, the weak localization
effective when

vph

v
,qi ,

A2mvph

k
!uGu

~G is the reciprocal lattice vector!. The appropriate range o
the electron-scattering angles is

0,x,2 cos21~A\v/4E!. ~27!

Until now we have assumed that every vector in Fig
lies in the same plane. However, the vectorqi , which is
perpendicular toqe does not necessarily lie in the plane
the vectorsk andqe . If the vectorsqi , qe , qi8 , qe8 , k, andk8
are situated as shown in Fig. 2, the complementary scatte
processes will be accompanied by a constructive inter
ence. In this case the ends of the vectorsqi andqi8 are situ-
ated on the circles formed by intersection of the inner sph
R8 5 k8 and the planes which are perpendicular toqe and
pass through the pointsL andM . The vectorsqi andqi8 form
the ‘‘fan’’

v&

vA12cosx
,qi ,minFA2mv

\2 ,qi maxG . ~28!

FIG. 2. Three-dimensional diagram of the realization of constructive in
ference.
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Instead of Eq.~15! in this case we have
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To analyze the weak localization during excitation of the
ical

-
m
hen

e

ce
by
cosx5211
1

8@~2k/qe!
221#cosf S \v

E D 2, ~29!

wheref is the azimuthal angle~in the plane perpendicular t
k! between the vectorsk8 and qe . Although the kinematic
diagram of the realization of effective interference is no
three-dimensional, our conclusions about the interfere
mechanism and about the features of electron-scatte
angles remain valid.

3. DYNAMICAL APPROACH FOR THE DESCRIPTION OF
THE NEW TYPE OF WEAK LOCALIZATION

Although the description of weak localization require
first of all, the contribution from the poles of the Green
functions in Eq.~3!, the contribution from the principal valu
might modify the results of the previous section. In additio
we shall consider the uncertainty of the radii of the sphe
in Figs. 1 and 2 due to the image potential of the mediu
The uncertainty isk . A2mU8@2\AE#21, whereU8 is the
image potential mentioned above.

Moreover, the momentum transferqi usually is not fixed
in experiments. Hence we should perform integration o
qi . It is convenient to introduce the function

M ~x!5
*0
k1k8dqi qi

2wi~qi ,v!G c~qi ,v,x!

*0
k1k8dqi qi

2wi~qi ,v!G L~qi ,v!
, ~30!

which is called the degree of coherency. Equations~12!,
~18!, and ~19! in Ref. 37 clarify the definition ofM (x). In
Eq. ~30! wi(qi ,v) is the rate of excitation of a state wit
energy\v and momentumqi .

The functionsG c andG L occur due to the crossed an
ladder diagrams; these functions are defined as

G c~qi ,v,x!

52 ReE dVq

3
1

~vqi2v2\qi
2/2m1 ig!~v2v8qi2\qi

2/2m2 ig!
,

~31!

G L~qi ,v!5E dVqH 1

~vqi2v2\qi
2/2m!21g2

1
1

~v2vqi2\qi
2/2m!21g2J . ~32!

Here the damping isg 5 kv.
e
ng

,

,
s
.

r

long-wavelength medium states, e.g., of plasmons or opt
phonons, it is convenient to writewi(qi ,v) as follows:

wi~qi ,v!5F ~v!qi
22u~qi max2qi !.

The functionF ~v! is the long-wavelength limit of the imagi
nary part of the reverse dielectric function of the mediu
accurate within a constant. The degree of coherency will t
be

M ~x!5
*0
min~k1k8,qi max!dqi G c~qi ,v,x!

*0
min~k1k8,qi max!dqi G L~qi ,v!

. ~33!

The functionG L determines the incoherent part of th
electron cross section and takes the form

G L~qi ,v!5
2p

gqi
H 1v F tan21S vqi1v1\qi

2/2m

g D
1tan21S vqi2v2\qi

2/2m

g D G
1

1

v8
F tan21S v8qi1v2\qi

2/2m

g D
1tan21S v8qi2v1\qi

2/2m

g D G J . ~34!

The coherent part is determined by

G c~qi ,v,x!5
4p

qi
ReHY 21~v,v8,v,vc ,x,qi !

3 logFqi2~vv8!1~\qi
2/2m!22vc

21qiY

qi
2~vv8!1~\qi

2/2m!22vc
22qiY

G J ,
~35!

whereY (v,v8,v,vc ,x,qi) has the form

Y5H vc
2~v2v8!22F ~qi@vv8# !21

2\2vvcqi
2

m2

2S \qi
2

2m D 2~v1v8!2G J 1/2. ~36!

Herevc5 v 2 ig.
The position of the angular features of the interferen

part in the electron cross section is mainly determined
zeros of the functionY . The equationY 5 0 has two roots:
~qi
2!15

8vc
2@@vv8#21~\v/m!2#~v1v8!22

@vv8#212\2vvcm
221A@vv8#414\vc~v2vc!m

22@vv8#2
, ~37!

~qi
2!25

2m

\2

@vv8#212\2vvcm
221A@vv8#414\vc~v2vc!m

22@vv8#2

~v1v8!2
. ~38!
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We can associate these roots with the valueqi defined by Eq.
~19!. The association is clearly seen in the limit ofg→0. In
this casevc→v, and from Eq.~37! we obtain

qi15
2v

Auv1v8u2
. ~39!

Equation~39! coincides with Eq.~19!. This means that the
kinematic approach yields a reasonably good accuracy.

In the same approximation Eq.~38! yields

qi25Ak41k8422k2k82 cos 2x

k21k8212kk8 cosx
. ~40!

From Eqs.~40!, ~18!, and ~19! we see the sum of Eq.~18!
and the squared Eq.~19! is equal to the squared right-han
side of Eq.~40!. Therefore, Eq.~40! corresponds to the cas
whereqi 5 Q. This solution is not significant for the new
type of weak localization.

Since the equations are rather complicated and do
give a transparent insight into the dependence of the elec
cross section on the various parameters, we present the
oretical features in Figs. 3–6 for a few typical cases.

Figure 3 showsM (x) for the plasmon excitation in met
als. Every curve shows a clearly defined slope. The natur
the sharp decrease has been explained in Sec. 2 on the
of Eq. ~22!. In the case of a particular excitation the cond
tion ~22! might undergo some change. The dynamical
proach takes into account these changes. In the partic
case of the bulk plasmon excitation the change can be
scribed in terms of the Cˇ erenkov and bremsstrahlung gene
tion of plasmons. The weak localization takes place when
plasmon generation mechanism differs only slightly from
Čerenkov mechanism. The absence of the Cˇ erenkov genera-
tion of plasmons at

2 cos21~vF /v !,x,p

implies that at these angles the new type of weak localiza
is suppressed. The difference in the cross sections from

FIG. 3. Degree of coherency versus electron-scattering angle for plas
excitation. The sharp decrease of the curves is due to the absence
Čerenkov generation of plasmons. The difference in the degree of coher
from zero at angles which lie in the range from 2 cos21(vF /v) up top is due
to the finiteness ofg and the contribution from the principal value in Eq
~5b!. \v 5 10 eV,U8 5 1 eV. Curve1 corresponds toE 5 200 eV,2—300
eV, 3—400 eV,4—500 eV, and5—600 eV.
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at the angles which lie in the range from 2 cos21(vF /v) up to
p is due to the finiteness ofg and the contribution from the
principal value in Eq.~5b!.

Figure 4 shows the plot ofM (x) versus the energy los
due to the plasmon excitation. With an increase in\vp , the
peak position shifts to smallerx. If \v 5 2 eV, the construc-
tive interference takes place atxm 5 150°. If\v 5 4 eV, we
havexm 5 120°. These results agree with Eq.~21!which was
obtained from a kinematic analysis.

The curvesM (x) depend also on the image potential. A
shown in Fig. 5, a considerable decrease in the degre
coherency atx 5 p ~i.e., in the range of bremsstrahlung pla
mon generation! takes place up tog/v 5 0.5. Only atg/v
. 1 the angular dependence begins to smooth out whex
5 2 cos21(v/vqi). In that case it looks like a peak on th
curveM (x). With an increase ing, it shifts tox 5 p.

Figure 6 shows a theoretical curveM (x) for excitation
of polar optical phonons. Weak localization associated w
this excitation corresponds to curve5. We assume tha
\vph5 0.05 eV. Other curves correspond to\vph larger than
for ordinary optical phonons. These curves show a variat
of M (x) when the energy loss increases from phonon
plasmon losses. At\v , 0.5 eV, the width of the coheren
peak atx . p is equal to 15° and it does not get narrow

on
the
cy

FIG. 4. Degree of coherency at different values of the energy lossE
5 500 eV,U8 5 1 eV. Cureve1 corresponds to\v 5 2 eV, 2—4 eV,3—8
eV, and4—12 eV.

FIG. 5. Dependence of the degree of coherency on the image potentiE
5 500 eV,\v 5 10 eV. Curve1 corresponds toU8 5 1 eV, 2—3 eV,3—5
eV, 4—8 eV, and5—10 eV.
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with a further decrease of\v. This means that the wea
localization of an electron during elastic scattering does
differ noticeably from the new type of weak localization du
ing quasielastic scattering.

4. CONCLUSIONS

With a decrease in the energy loss, the new type of w
localization transforms into an ordinary weak localizatio
The transition is described by taking into account that
term qi

2/2m in the denominator of the Green’s functions
Eq. ~3! is more significant than\v in the limit v→0.

We have mentioned this fact at the end of Sec. 3. O
can study the transition further by analyzing the variation
the ratioG c /G L with 2mv/qi

2 at different scattering angles
The transition of the ordinary weak localization~i.e., at\v
5 0! to the new localization (\v Þ 0) is shown in Fig. 7. For
example, at 2mvqi

22 5 0.8 an announced maximum occu
for x . 175°. The transition seems to take place for those\v
andqi

2/2m which are> g.
It can now be stated with assurance that we have

plained why the angles typical of the new type of weak
calization differ fromp. The simple kinematic approach en
ables us to estimate these angles very accurately.

FIG. 6. Degree of coherency for quasielastic scattering.E 5 500 eV,U8
5 1 eV. Curve1 corresponds to\v 5 2 eV, 2—1.0 eV,3—0.5 eV,4—0.2
eV, and5—0.05 eV.

FIG. 7. Transition rate from ordinary weak localization to the new type
weak localization.qi

2/2mE5 0.01,qcv/E 5 0.2,g/E 5 0.01. Curve1 refers
to \v 5 0, curve2 corresponds to\v/E 5 0.002, 3—0.004,4—0.006,
5—0.008,6—0.010,7—0.012, and8—0.014.
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other parameters can be predicted. Finally, we have sh
that there is no wall between new and ordinary weak loc
izations. The two phenomena are two different manifes
tions of the constructive quantum interference of elect
waves.

We thank Prof. D. G. Yakovlev for critical reading o
our paper and for helpful advice.
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Propagation of magnetostatic waves in unsaturated ferrite films with a strip domain

tatic
structure
A. V. Vashkovski , É. G. Lokk, and V. I. Shcheglov

Institute of Radio Engineering and Electronics, Russian Academy of Sciences,
141120 Fryayzino, Moscow Region, Russia
~Submitted 24 June 1996!
Zh. Éksp. Teor. Fiz.111, 1016–1031~March 1997!

The propagation of surface and volume magnetostatic waves in unsaturated films of yttrium iron
garnet is studied experimentally for the case when the wavelength greatly exceeds the
domain width, while the domain width is comparable to the film thickness. The characteristics of
these waves are examined for symmetric linear, asymmetric linear, and symmetric zigzag
strip domain structures in the films. These characteristics cannot be explained by a theory based
on averaging the magnetization over all the domains. ©1997 American Institute of
Physics.@S1063-7761~97!02103-3#
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Studies of the propagation of magnetostatic waves
ferrite films with a domain structure have been of interest
many years because of saturation owing to various phys
phenomena and effects. Most of the previous work has b
devoted to the propagation of magnetostatic wave in fer
films and wafers with regular strip domain structures~re-
ferred to as plane-parallel or laminar by some writers!,1–11

but some papers report observations of magnetostatic w
in films with an irregular domain structure.12 The character-
istics of magnetostatic waves in films with a strip doma
structure have most often been examined theoretically
suming that the wavelengthl is much greater than the do
main width d, while the ferrite layer thickness satisfie
s@d@d (d is the thickness of the domain boundaries, wh
are assumed to be infinitely thin 180-degree walls!.1,3–6 The
casel!d has been studied in Ref. 2 andl.d, in Ref. 8.
Here the medium was described by magnetic susceptib

x̂ and permeability m̂ tensors averaged over all th
domains3,7 or the medium was treated as a ‘‘macrosco
antiferromagnet’’ in which neighboring domains play th
role of antiparallel spins.1 Both these models have made
possible to use conventional techniques from electrodyn
ics to obtain dispersion relations. Depending on the ad
tional assumptions that have been made, such as the ab
of an external magnetic field,1,4,8 the absence of anisotrop
fields in ferrite,3 or the presence of an easy axis4,8 or cubic
symmetry with an anisotropy constantK1,05–7 in the fer-

rite, the calculatedx̂ andm̂ tensors were either diagonal3,4 or
nondiagonal1,2,5–7, while the resulting dispersion relation
described different types of surface and volume waves.
theoretical models obtained in these papers, however,
apply to a rather limited or specific circle of actual situation
In many experiments, the domain width and the film thic
ness do not obey the relationships@d, so it becomes neces
sary to include the demagnetizing fields of the static effec
magnetic surface charges created by the domain walls
the calculations cannot be carried out using the earlier th
retical models.1,3–6
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waves, domain walls in unsaturated ferrite films can oscill
at high frequencies11 and spin-wave excitation, such a
waves or modes localized on domain boundaries,13,14 can
occur. Collective oscillations of the domain structures as
entire ensemble can exist, whose dynamic properties w
described by Fillipov and Tankeev.15

Here we describe an experimental study of the char
teristics of magnetostatic waves with wave numb
0,k,1000 cm21 in the case ofl@d ands.d for tangen-
tially magnetized films of yttrium iron garnet~one of the
most widely studied materials in research on the physics
magnetism! grown in the (111) plane. No detailed studies
this kind have been carried out previously and only so
preliminary results10,16 have been reported.

2. EXPERIMENTAL APPARATUS AND THE PARAMETERS
OF THE MAGNETIC FILMS

The experiments were conducted on a device which p
mitted simultaneous microwave and optical measureme
The ferrite films to be studied were magnetized by a tang
tial uniform magnetic fieldH0.0–100 Oe. Magnetostatic
waves were excited and detected by means of moveable
tennas with transducers made of gold-plated tungsten w
of length 3.5 mm and thickness 12mm. A mechanical sys-
tem was used to displace the antennas in two mutually
pendicular directions in the plane of the film and rotate th
about an axis perpendicular to the surface of the film. T
detector antenna was moved along a line joining the cen
of the transducers to determine the wave numbers by m
suring the phase shift from the phase-frequency charact
tic at a fixed frequency~sliding probe technique!. The orien-
tation of the crystallographic axes of the films relative to t
direction ofH0 could be varied by rotating the film about a
axis perpendicular to its plane. The domain structure w
observed with the aid of a measurement microscope from
Faraday effect when a beam of light was incident on the fi
perpendicular to its surface.

Films of yttrium iron garnet grown in the (111) plan
with a well resolved domain structure as seen by the mic
scope were chosen for study. This domain structure was

5609$10.00 © 1997 American Institute of Physics
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FIG. 1. Forms of strip domain structures in yttrium iro
garnet films.
parently a consequence of the presence of an easy-axis mag-
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netic uniaxial anisotropy perpendicular to the film surface,
that the local magnetization of the domains had a large c
ponent along this axis over a rather wide range of fields. T
parameters of the three films that were most studied
shown in Table I, where the following notation is use
4pM0 is the saturation magnetization,DH is the half width
of the resonance line,s is the film thickness,Hc is the cubic
anisotropy field,u is the deviation of the uniaxial anisotrop
axis from the normal to the film plane, andwa is the angle
between the projection of the uniaxial anisotropy axis on
film plane and the@11̄0# axis. ~The parametersHs2z ,
Hz2n , Hsat , Hs2n

' , andHsat
' will be defined later.! The pa-

rameterss, Hc , u, andwa were measured by a method th
has been described elsewhere.17 This method yielded large
errors in the uniaxial anisotropyHa and in 4pM0, so that the
listed values of 4pM0 were determined from microwav
measurements on films that had been magnetized to sa
tion.

The film size was at least 30330 mm2, so that edge
effects were eliminated.

In order to avoid nonlinear effects~three-magnon deca
and four-magnon scattering!, for which the threshold level is
generally higher in unsaturated yttrium iron garnet films th
in saturated films18 ~in the latter this level is.5–15mW, at
best!, the power of the cw sinusoidal microwave signal in
dent on the input converter was kept below 1mW over the
entire frequency range.

3. DOMAIN STRUCTURES IN THE TEST FILMS

The type of domain structure that occurs in the film
depends on the magnitude of the applied magnetic fieldH0

TABLE I.

Value

Parameter No. 1 No. 2 No. 3 Error

4pM 0, G 1781 1787 1890 620
2DH, Oe 0.6 0.75 0.5
s, mm 7.9 11.5 8.9 60.1
Hc, Oe 284 283 276 64
u° 1.5 3.8 4.9 61
wa° 292.5 2107.6 217.0 62.5
Hs2z, Oe 28 7 4 60.5
Hz2n Oe 35 13.5 6.5 60.5
Hsat Oe 62 35.5 24 61
Hs

', Oe 39.3 14 7 60.5
Hsat

' , Oe 69.5 55.5 29 61
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of domain structure which existed in the film prior to this,
well as the orientation of its domain boundaries relative
the applied fieldH0. In order to eliminate the effect of the
previous domain structure of a film on the domain struct
which develops in the film, before the experiments the fi
was magnetized to saturation along a crystallographic di
tion, after which the magnitude of the field was no long
allowed to go below 3–5 Oe~so as to preclude random do
main structures!. This made it possible to create just regul
types of domain structures and to reproduce each type
structure the required number of times in the course of
experiments. Films in which a single regular domain stru
ture developed over the entire sample area were studied.
made it possible to eliminate effects related to the devel
ment of block domain structures.12 The propagation of mag
netostatic waves in reproducible domain structures of
type will be examined in this paper.

When the yttrium iron garnet films were magnetiz
along the@11̄0# axis by a uniform magnetic fieldH0, a regu-
lar domain structure developed in them. Depending on
magnitude of the field, the nature and parameters of
domain structure varied as follows~see Figs. 1 and 2!:

~1! for .0,H0,Hs2z the films had a linear strip sym

FIG. 2. Dependence onH0 of the periodsTs of a linear strip symmetric
domain structure~smooth curves!, Tz of a zigzag strip symmetric structure
~dashed curves!, and Tn of a linear strip nonsymmetric domain structur
~thick curves! and of the widthdn of the narrow domains of a nonsymmetri
strip structure~dot-dashed curve! for films No. 1–No. 3 (* fieldH0 applied
along the@11̄0# axis of the film,s field H0 applied perpendicular to the

@11̄0# axis of the film!. Curves1, 4, and7 are for film No. 1; curves2, 5,
and8 for film No. 2; and, curves3, 6, and9 for film No. 3.
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metric structure; neighboring domains had the same width
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4. PROPAGATION OF SURFACE MAGNETOSTATIC WAVES
IN YTTRIUM IRON GARNET FILMS WITH A STRIP
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and were oriented along the field direction;
~2! for Hs2z,H0,Hz2n the films had a zigzag strip

symmetric structure; neighboring domains had the sa
width and were oriented at angles of630° to the field, i.e.,
along directions specified by the projections of@111# axes on
the plane of the film; here the length of the straight segm
of the domains~from the point where the orientation of th
domain segments relative toH0 changes from230° to
130° to the point where it changes from130° to 230°)
exceeded the domain width by a factor of 10–20;

~3! for Hz2n,H0,Hsat the films had a linear strip non
symmetric structure in which neighboring domains had s
nificantly different widths and were oriented along the fie
and,

~4! for H0.Hsat there was no domain structure in th
films and the films were in a saturated state.

The fieldsHs2z , Hz2n , andHsat for the transitions from
one state of magnetic ordering to another for yttrium ir
garnet films Nos. 1–3 are listed in Table I, while the perio
of the symmetricTs , zigzagTz , and nonsymmetricTn do-
main structures and the domain widthsdn of the nonsymmet-
ric domain structure in these films can be judged from Fig
which shows plots of Ts(H0), Tz(H0), Tn(H0), and
dn(H0). We note that the contrast of the nonsymmetric d
main structure observed with the microscope in the inter
Hz2n,H0,Hsat ~especially nearHsat) decreased signifi-
cantly as the field was raised; this is evidence of an incre
in the component of the domain magnetization parallel to
field.

When the films were magnetized perpendicular to
@11̄0# axis by a uniform magnetic fieldH0, the nature and
parameters of the domain structure varied with the mag
tude of the field in the following way~see Figs. 1 and 2!:

~1! for .0,H0,Hs
' the films had a linear strip sym

metric structure; neighboring domains had the same w
and were oriented along the field;

~2! For Hs
',H0,Hsat

' no domain structure was ob
served in the films, although the films were not in a satura
state over the entire range of fields;

~3! for H0.Hsat
' there was no domain structure in th

films and they were in a saturated state.
When characterizing the magnetic state of the films

the above field intervals, one should note that
.0,H0,Hs

' the period of the regular strip symmetric d
main structureTs

' differs little from the periodTs when the
@11̄0# axis is oriented parallel toH0 ~see Fig. 2!. HereHs

'

was always slightly greater thanHz2n for the same film. As
H0 was increased, the contrast in the symmetric dom
structure observed with the microscope gradually fell and
H0>Hs

' no domain structure could be seen.
The fieldHsat

' at which the films reached saturation ma
netization could not be determined using the Faraday eff
This field could be evaluated only indirectly from measu
ments of the equiphase curves for the magnetostatic wa
This will be described below.
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DOMAIN STRUCTURE

In the following we describe the parameters and char
teristics of magnetostatic waves in yttrium iron garnet fi
No. 1 for wave propagation perpendicular toH0 ~transducers
oriented parallel to the fieldH0). Then surface magnetostat
waves are excited in the film in the saturated state. The
tinctive features of and differences in the propagation
magnetostatic waves in the other films will be noted in t
course of the discussion.

First we consider the propagation of magnetosta
waves when the films were magnetized by a fieldH0 along
the @11̄0# axis.

For fieldsH0,Hs2z , with a linear strip symmetric do-
main structure in film No. 1 (Hs2z528 Oe! three excitation
regions for magnetostatic waves were observed:Ss1, Ss2, and
Ss3 at frequencies of 150–500 MHz. These regions, toget
with plots of the low frequency limitsf s1, f s2, andf s3 for the
magnetostatic waves in each region as a function of the fi
H0 are shown in Fig. 3a. The high frequency limits of th
regions where magnetostatic waves exist could generally
determined only very approximately, since their location
substantially determined by the ratio of the amplitudes of
signal and electromagnetic pickup.~These limits are not in-
dicated in the figures.! The f s1(H0), f s2(H0), and f s3(H0)
curves were measured from the phase–frequency chara
istics by following the change with frequency in the consta
value of the phase corresponding to wave numbersk.0. In
a similar fashion, by varying the field and maintaining
fixed distance between the transducers, it is possible to
low the frequency variation of any other fixed value of t
phase corresponding to another constant value ofk from the
phase–frequency characteristics. The curvesf k(H0) ~in what
follows we shall refer to them as the ‘‘equiphase’’ curve!
obtained in this way for the regionsSs1, Ss2, andSs3 of film
No. 1 are shown in Fig. 3a. Here the values ofk measured by
moving the detector transducer are written near the co
sponding curves.~For clarity some values ofk have not been
written down.!

The minimum attenuationLs1
min for the transmission co-

efficient in regionSs1 for H056 Oe was236 dB, while the
electromagnetic pickup levelLew was .255 dB. When
H0 was raised to 18 Oe,Ls1

min increased to229 dB and then,
as the field was increased toHs2z , decreased to240 dB. In
the regionSs2, which was observed for 24.3 Oe,H0,26.4
Oe, the minimum attenuation in the amplitude–frequen
characteristic was at a level of246 dB, while in region
Ss3 when the field was changed from 6 Oe to 13.4 Oe
varied from241 dB to roughlyLew .

Dispersion curves for magnetostatic waves in regio
Ss1, Ss2, and Ss3 are shown in Fig. 4~curves1–4!. It is
evident from Fig. 3a that the dispersion curve for regi
Ss1 will have discontinuities for fieldsH0,17.5 Oe~curve3,
Fig. 4! and will not have them for 17.5 Oe,H0,28 Oe
~curve4, Fig. 4!. The shapes of the observed curves cor
spond to the dispersion curves for surface magnetos
waves. The surface character of the excited waves is
confirmed by the large difference in the damping of t
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e
ir

e

-

FIG. 3. The regions where surfac
magnetostatic waves exist and the
equiphase curves for film No. 1~the
values ofk in cm21 are written next
to each equiphase curve; th
equiphase curve fork'182 cm21 is
shown within the regionSn2); ~a!
fieldH0 applied along the (11̄0) axis
of the film, ~b! field H0 applied per-
pendicular to the (11̄0) axis of the
film. The frequency limits of the re-
gions where the waves exist are de
noted by heavy curves.
waves when their propagation direction is reversed.~Because
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of the nonreciprocity of surface magnetostatic waves, w
the maximum amplitude of the wave is localized at t
ferrite–substrate interface, the losses increase noticeabl!

An analysis of the amplitude- and phase–frequen
characteristics of the excitations observed in regionsSs1,
Ss2, andSs3 leaves no doubt that we have observed travell
waves. The nature of the magnetostatic waves in these
gions may be related to collective oscillations of doma
boundaries, as noticed previously.6,7,10 In accordance with
theoretical calculations11 the domain boundaries have a res
nant frequency in the range.50–150 MHz.

We note that in some yttrium iron garnet films the ef
ciency of exciting magnetostatic waves at fieldsH0,Hs2z

FIG. 4. Dispersion curvesf (k) for surface~curves1–6! and volume~curve
7! magnetostatic waves with a linear strip symmetric domain structur
film No. 1 (* field H0 applied along the (11̄0) axis of the film,s field
H0 applied perpendicular to the (110̄) axis of the film!: ~1! for regionSs3
with H056 Oe;~2! for regionSs2 with H0526.5 Oe;~3! and~4! for region
Ss1 with H056 Oe andH0526.5 Oe; ~5! and ~6! for region Ss1

' with
H0511 Oe andH0527.5 Oe;~7! for regionVs2

' with H0539.3 Oe.
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observed waves only with small wave numbers up to.15
cm21 in the 2402260 MHz band.

When film No. 1 had a zigzag domain structure, in fiel
Hs2z,H0,Hz2n ~28 Oe,H0,35 Oe!, no magnetostatic
waves were observed, and this was typical of the other fi
that were studied.

When film No. 1 had a linear strip nonsymmetric doma
structure, for fieldsHz2n,H0,Hsat ~35 Oe,H0,62 Oe!,
surface magnetostatic waves were also excited in the fi
The amplitude–frequency characteristics of the transmiss
coefficient for these waves at different magnetization fie
are shown in Fig. 5. For fields close toHz2n the surface
magnetostatic waves with a low frequency boundaryf n1 in
the spectrum are only slightly higher than the average e
tromagnetic pickup levelLew ~Fig. 5!. As H0 was raised the
frequency bands and excitation efficiency of the surfa
magnetostatic waves gradually increased~Fig. 4a–d!, while a
narrow band in which surface magnetostatic waves were
excited appeared between the initial portion and the res
the spectrum~Fig. 5c! and beginning at fieldsH0.46 Oe the
initial portion of the spectrum was no longer observed. F
59 Oe,H0,62 Oe, there are two other regions in whic
surface magnetostatic waves exist: at frequencies of 15
1620 MHz with an initial frequencyf n2 and 1000–1200
MHz with an initial frequency f n3 ~Fig. 5e!. Thus, for
Hz2n,H0,Hsat three regions in which magnetostatic wav
exist were observed:Sn1, Sn2, andSn3. The equiphase curve
for these regions are shown in Fig. 3a. ForH0>Hsat562 Oe
the film was magnetized to saturation and instead of the
gions Sn1, Sn2, and Sn3, there was a spectrum of surfac
magnetostatic waves characteristic of a saturated film~Fig.
5f; the regionSsat of Fig. 3a! occupying the band 990–240
MHz, in agreement with theory.19 Note that, despite a brea
at the pointH05Hsat, the equiphase curves for regionsSn1
andSn3 ~see Fig. 3a! organically join the equiphase curve

n
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for the regionSsat, while the equiphase curves for regio
Sn2 do not merge at the pointH05Hsat with the analogous
curves for the regionSsat. Thus, the magnetostatic wave
observed in regionsSn1 andSn3 transform organically into
waves that are characteristic of a saturated film, while
magnetostatic waves observed in regionSn2 simply cease to
be excited forH0>Hsat.

Figure 6 shows the dispersion curvesf (k) for region
Sn1 ~curves15!, regionSn2 ~curve6!, and regionSsat ~curve
7!. The dispersion curves for regionSn1 become steeper a
H0 increases; this is apparently a consequence of the
crease in the projection of the average magnetization of
film parallel to the field. Unlike the dispersion curvesf (k)
for a saturated film, in regionSn1 at fields 45 Oe,H0,62
Oe ~curves3–5, Fig. 6! and in regionSn2 ~curve6, Fig. 6!
the f (k) curves for films with a nonsymmetric domain stru
ture begin not atk.0, but at somekn1 andkn2 which depend
on H0. In other words, the low frequency limits of the su
face magnetostatic wave spectrum for regionsSn1 andSn2
~the f n1 and f n2 curves in Fig. 3a! correspond to waves with
k Þ 0. ~The f n1 curve coincides with the equiphase curve f
k.0 only for 35 Oe,H0,45 Oe.! Approximating the
f (k) curve for regionSn1 ~curves3–5, Fig. 6! to its inter-
section with the ordinatef , we obtain the frequenciesf n138 ,
f n148 , f n158 , . . . in the surface magnetostatic wave spectr
which would correspond to waves withk.0. The dashed
curve f n18 in Fig. 3a has been constructed from these val

FIG. 5. Amplitude–frequency characteristics of the transmission coeffic
for a microwave setup with a distance between transducers of 15 mm
the following values of the applied fieldH0 ~Oe!: ~a! 35.7,~b! 40.5,~c! 45.2,
~d! 54.9, ~e! 61.0, and~f! 62.2.
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for the frequencies. The curvesf n18 and f n1 bound the region
that corresponds to the experimentally unobserved wa
with k,kn1. kn1 varied over.50–150 cm21 for fields in
the range.45260 Oe.

In the other studies of yttrium iron garnet films th
propagation of surface magnetostatic waves mostly reta
the same character, but there were also differences. In m
films, waves were not observed in the main region~type
Sn1) immediately forH0.Hz2n , but with the appearance o
a nonsymmetric domain structure in the film; thus, in fil
No. 2 magnetostatic waves appeared only forH0. . 19 Oe
and in film No. 3, forH0. > 14 Oe. In these films the
equiphase curves for theSn1 type region looked the same a
those for film No. 1, but without the initial segment of th
curves lying between the straight linesH05Hz2n and
H0545 Oe~i.e., in these films waves with smallk,kn1 were
not excited in theSn1 type regions!. In some films, often not
just a single existence region of the typeSn2 ~which vanishes
when the film is saturated! was observed to the left of th
main region for the existence of magnetostatic waves,
two or three such regions distributed side by side, separ
by frequency intervals in which there were no waves. T
range of fields in which these regions were observed was
a rule, wider for the other films than for the one describ
here~for No. 2 regions of this type were observed for 24 O
,H0,35.5 Oe and for No. 3, for 14.5 Oe,H0,24 Oe!, the
minimum values ofk ~type kn2) at which the dispersion
curves for these regions originated always depended onH0

and varied over 40–200 cm21 for the different films, and the
width of the range of wave numbers for these dispers
curves could be as high as 150 cm21 ~e.g., for No. 3!. In
exactly the same way, the range of fields within which ma
netostatic waves were observed in regions of typeSn3 was
wider for some of the other films than for film No. 1. Thu
in film No. 3 waves were observed in a typeSn3 region for
18 Oe,H0,24 Oe, with waves having 101 cm21,k,208
cm21 being observed atH0518 Oe, waves having 65

nt
nd

FIG. 6. Dispersion curvesf (k) for surface magnetostatic waves in film No
1 for the regionsSn1 ~curves1–5!, Sn2 ~curve 6!, Ssat ~curve 7, *), Ss2

'

~curves8 and9!, S' ~curve10!, andSsat
' ~curve11, s) with the following

values of the magnetic fieldH0 (* field H0 applied along the (11̄0) axis of
the film, s field H0 applied perpendicular to the (110̄) axis of the film!
~Oe!: ~1! 35.7,~2! 38, ~3! 50.1,~4! 54.9,~5! 59.7,~6! 59.7,~7! (*) 62.2, ~7!
(s) 69.5, ~8! 36.9, ~9! 39.1, ~10! 39.5.
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waves havingk,120 cm being observed atH0523.5 Oe.
We now consider the propagation of magnetosta

waves when the films were magnetized by a fieldH0 perpen-
dicular to the@11̄0# axis.

In fieldsH0,Hs
' with a linear strip symmetric domain

structure in film No. 1 (Hs
'539.3 Oe!, two regions for exci-

tation of surface magnetostatic waves were observed:Ss1
'

and Ss2
' lying at frequencies of 300–500 MHz and 1500

2100 MHz, respectively. These regions, the low frequen
limit f s1

' for the regionSs1
' , and the equiphase curves for th

magnetostatic wave spectra in both regions are shown in
3b and the dispersion curvesf (k) are shown in Figs. 4~for
regionSs1

' ) and 6~for regionSs2
' . As can be seen from thes

figures, f (k) for the regionSs1
' has no discontinuities fo

fields of 5–15 Oe and 28–35 Oe~Fig. 4, curve5!, while it
does for fields 15 Oe,H0,28 Oe~Fig. 4, curve6!. Surface
magnetostatic waves cease to be excited in the regionSs1

' for
H0'35 Oe. In fields of 35 Oe,H0,36.9 Oe magnetostati
waves are not excited at any frequency in the film, but
H0536.9 Oe they appear in regionSs2

' at frequencies of
1570–1750 MHz. This new frequency range for the ex
tence of surface magnetostatic waves expands quite rap
and forH05Hs

'539.3 Oe it extends over 1130–2120 MH
At the same time there is a substantial reduction in the da
ing as these waves propagate. Thus, at a freque
f51650 MHz forH0536.9 Oe, the losses were252 dB,
while atH0539.3 Oe they were already233 dB. It is clear
from the dispersion curvesf (k) for the regionSs2

' ~curves8
and9 in Fig. 6! that magnetostatic waves with wave numbe
k below a certain valueks2

' are not excited and thatks2
' tends

to zero as the field approachesHs
' ~see also the equiphas

curves in Fig. 3b!.
In film No. 1 a spectrum of surface magnetostatic wav

is excited in the regionS' in fields Hs
',H0,Hsat

'

(39.3,H0,69.5 Oe! with a low frequency boundaryf' ~see
Fig. 3b! which always corresponds to waves withk.0. The
equiphase curves of the magnetostatic waves for this re
merge smoothly~without discontinuities or abrupt changes
slope! with the equiphase curves of the waves in regionSs2

'

at H05Hs
' and they merge just as smoothly with th

equiphase curves for the regionSsat
' at H05Hsat

' ~see Fig.
3b!, which correspond to the ordinary surface magnetost
waves excited, according to theory,19 in a film that has been
magnetized to saturation. The magnitude of the fieldHsat

' was
determined using the equiphase curves for surface magn
static waves when the sign of the derivative of the equiph
curve fork.0 changes~curve f' in Fig. 3b!. It was possible
to determineHsat

' only within 61 Oe, since the sign chang
in the derivative takes place very smoothly. The dispers
relationsf (k) for the regionsS' andSsat

' ~for H05Hsat
' ) are

shown in Fig. 6~curves10 and11!. In accordance with the
change in the character of the dispersion in the regionS', as
in the regionSs2

' , whenH0 increases the damping of th
magnetostatic wave continues to decrease: thus, at a
quency off51650 MHz forH0539.3 Oe the overall losse
in the conversion and propagation of the magnetost
waves were233 dB and forH0569.5 Oe,— 2 26 dB.
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the propagation of surface magnetostatic waves mostly
tains the character described above. Thus, in some films
a symmetric domain wall (H0,Hs

') the efficiency of wave
excitation in the low frequencySs1

' type region was much
lower: for example, in film No. 2 magnetostatic waves w
k,15 cm21 were observed in the 235–255 MHz band wi
overall losses of.253 dB. In the high frequencySs2

' type
region, magnetostatic waves were not excited at all in m
of the test samples~for example, in sample No. 2!. For
Hs

',H0,Hsat
' , in all the samples of yttrium iron garnet tha

were studied, the excitation of magnetostatic waves in
S' region was similar in character to that described abo
for film No. 1. However, we note that the equiphase curv
for those films in which waves were not observed in t
Ss2

' type region did not have an inflection point~as in Fig.
3b! in the neighborhoodH0.Hs

' .

5. PROPAGATION OF VOLUME MAGNETOSTATIC WAVES
IN YTTRIUM IRON GARNET FILMS WITH A STRIP
DOMAIN STRUCTURE

We now estimate the parameters and characteristic
magnetostatic waves in yttrium iron garnet film No. 1 for t
case in which the waves propagate parallel toH0 ~transduc-
ers oriented perpendicular to the fieldH0). In the saturated
state a backward volume magnetostatic wave is excited
the film. We note at once that, of all the films that we
studied, magnetostatic waves were excited efficiently in t
geometry only in film No. 1. In another two films the wave
were hardly noticeable above the electromagnetic pic
level (255 dB!, so that measurements could not be made
the remaining films magnetostatic waves were simply
excited.

First we consider the propagation of magnetosta
waves for the case in which the film is magnetized by a fi
H0 along the@11̄0# axis.

At fields H0,Hs2z , with a linear strip symmetric do-
main structure in film No. 1 magnetostatic waves were o
served at frequencies of 1300–2500 MHz. The regionVs

where these waves exist, its low frequency limitf s , and the
equiphase curves are shown in Fig. 7a and the disper
curves f (k) are shown in Fig. 8~curves1 and2!. The dis-
persion curves indicate that forward volume magnetost
waves are excited, and this is also confirmed by the fact
when the direction of propagation of the wave is reversed
damping does not change. The excitation of forward volu
magnetostatic waves when there is a symmetric dom
structure in the film is apparently caused by the quite la
projection of the magnetization vector along the normal
the plane of the film in domains with both signs. As can
seen from Fig. 8, the dispersion curve forH056.3 Oe~curve
1! is interrupted; the spectrum of the excited waves loo
like frequency bands with fairly efficient wave excitation a
ternating with bands in which waves are not excited. As
field H0 is increased, the magnetostatic waves with smak
gradually ceased to be excited, while the excitation ba
merged. ForH0527 Oe the dispersion curve was alrea
continuous.

565Vashkovski  et al.
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FIG. 7. The regions where forward
volume magnetostatic waves exis
and their equiphase curves for film
No. 1 ~values ofk in cm21 are writ-
ten next to each equiphase curve! for
~a! the field H0 applied along the
(11̄0) axis of the film and~b! the
field H0 applied perpendicular to the
(11̄0) axis of the film. The fre-
quency limits of the existence re
gions for the magnetostatic wave
are given as thick curves.
When a zigzag domain structure was present in the film,
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magnetostatic waves were not excited.
When the film contained a nonsymmetric structure,

citation of forward volume magnetostatic waves was ag
observed at 1900–2200 MHz, but only for fields 35 O
,H0,46 Oe~saturation took place atH0.62 Oe!. The re-
gion Vn where the waves exist, its low frequency limitf n ,
and the equiphase curves are shown in Fig. 7a and the
persion curvesf (k), in Fig. 8 ~curves3 and4!. The disper-
sion curves in the frequency range occupied by magn
static waves were much less steep than the analog
parameters for forward volume magnetostatic waves exc
in the film with a symmetric domain structure. Beginning
fieldsH0.40 Oe, the efficiency of exciting forward volum
magnetostatic waves with wave numbe
.50 cm21,k,.100 cm21 deteriorates significantly~for
the samek and the same fields as for the propagation

FIG. 8. The dispersion relationsf (k) for forward volume magnetostatic
waves in film No. 1 for regionsVs ~curves1 and2!, Vn ~curves3 and4!, and
Vs1

' ~curves5–9! with the following applied fieldsH0 ~Oe! (* field H0

applied along the (11̄0) axis of the film,s field H0 applied perpendicular
to the (11̄0) axis of the film!: ~1! 6.2, ~2! 27.3,~3! 35.7,~4! 44, ~5! 13.2,~6!
26.3, ~7! 32.2, ~8! 37.4, and~9! 38.3.
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along the@11̄0# axis!. Thus, the dispersion curvesf (k) for
H0.40 Oe~curve4, Fig. 8! have a discontinuity. The con
vergence of the equiphase curves with increasing field for
region Vn in Fig. 7a is apparently caused by the gradu
disappearance of the component of the average magne
tion perpendicular to the film surface.

At saturation (H0.Hsat) backward volume magneto
static waves were excited in the regionVsat in accordance
with theory19 ~not shown in the figure!.

We now consider the propagation of volume magne
static waves when the films are magnetized by a fieldH0

perpendicular to the@11̄0# axis.
In fields H0,Hs

' when film No. 1 had a linear strip
symmetric domain structure two regions for excitation
magnetostatic waves,Vs1

' andVs2
' were observed: one in th

band 1300–2850 MHz and the other in the band 100–
MHz. The equiphase curves and low frequency limitsf s1

' and
f s2
' for both regions where these wave exist are shown in F
7b and the dispersion curvesf (k) are shown in Fig. 8~for
the regionVs1

' ) and Fig. 4~for the regionVs2
' ). These dis-

persion curves indicate the excitation of forward volum
magnetostatic waves in both regions. For fieldsH0,32 Oe
the dispersion curvesf (k) have discontinuities~curves5 and
6 of Fig. 8!, while for H0.32 Oe and for the regionVs2

'

there are no discontinuities in thef (k) curves~Fig. 8, curves
7–9, and Fig. 4, curve7!. With increasingH0 the steepness
of the f (k) curves always decreases. NearH0.27 Oe the
excitation of magnetostatic waves in the film ceases co
pletely ~except for a narrow band segment near 1350 M
with k,50 cm21). In fieldsH0.32 Oe in regionVs1

' mag-
netostatic waves withk,ks1

' are not excited withks1
' rising

from 130 to 240 cm21 as the field is increased. In regio
Vs2

' , on the other hand, magnetostatic waves withk.ks2
' are

not excited withks2
' rising from 20 to 100 cm21 as the field

is increased.
In the second field interval,Hs

',H0,Hsat
' , magneto-

static waves were not excited in the film.
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6. ANALYSIS OF EXPERIMENTAL DATA
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In comparing the experimental data obtained for mag
tization of yttrium iron garnet film No. 1 parallel and perpe
dicular to the @11̄0# axis, it should be noted that th
equiphase and dispersion curves for surface magnetos
waves in regionsSs1 andSs1

' are substantially the same i
character forH0,Hs2z528 Oe: the equiphase curves f
the samek ~whenk,80 cm21) with the same fieldsH0 have
essentially the same steepness and lie at the same freque
~see Figs. 3a and 3b!. The same can also be said about t
characteristics of the forward volume magnetostatic wave
regionsVs andVs1

' whenH0,Hs2z528 Oe ~see Figs. 7a
and 7b!. Since the dependences of the periodsTs andTs

' of
the domain structures also are essentially the same
H0,Hs2z ~see Fig. 2!, we may conclude that the local mag
netizationsM1 andM2 of both kinds of domains in a sym
metric domain structure have essentially the same pro
tions on the normal to the film surface and on the direction
H0, for both parallel and perpendicular orientations of t
@11̄0# axis of the film relative toH0 and, apparently, that th
vectors themselves are identical:M1

i 5M1
' andM2

i 5M2
' for

H0,Hs2z .
In order to explain the differences which are neverth

less observed in the characteristics of the magnetos
waves for perpendicular and parallel orientations of
@11̄0# axis of the film relative toH0 ~such as a slight differ-
ence in the behavior of the equiphase curves of the sur
magnetostatic waves fork.80 cm21, the existence of addi
tional regionsSs2 andSs3 when the@11̄0# axis is parallel to
H0, etc.!, we shall examine how the magnetic ordering of t
film changes as it is magnetized. The magnetization of
film, which has an easy axis anisotropy normal to the pla
can be viewed simply as a change in the orientation of
magnetizations of the domains,M1 andM2, from a position
parallel to the easy axis (M1 directed alongn andM2 in the
opposite direction fromn) H0 to a position parallel to the
applied field (M1iH0 andM2iH0). In the first case, when
the @11̄0# axis is perpendicular toH0, the vectorsn and
H0 and the@111# axis ~the orientation of the vectorsM1 and
M2, along which the magnetic energy of a yttrium iron ga
net crystal is reduced! lie in a single plane, so that all th
changes inM1 andM2 asH0 is increased will also take plac
in a single plane. In the second case, when the@11̄0# axis is
parallel toH0, the vectorsn andH0 and the type@111# axis
do not lie in a single plane. Within a certain range of fiel
0,H0,Hs2z , however, the change in the vectorsM1 and
M2 asH0 is increased nevertheless takes place in a pl
passing throughn andH0. This also explains the coincidenc
of the characteristics of the magnetostatic waves in this ra
of fields. Nevertheless, the closeness of the@111# axes to a
plane passing throughn andH0 may lead to the formation o
domains of closure that cannot be seen in the microscope
have magnetizationsM3 andM4 oriented along the@111#
axes nearest to the direction ofH0 and, apparently, are th
reason for the differences observed in the characteristic
the magnetostatic waves in the first and second cases
H0 is increased, the vectorsM1 andM2, which lie in a plane
passing throughn andH0, come ever closer to the direction

567 JETP 84 (3), March 1997
-

tic

cies
e
in

or

c-
f

-
tic
e

ce

e
e,
e

-

e

ge

nd

of
As

When H05Hs2z it becomes favorable for them to orien
themselves along these axes; the domain boundaries also
ent themselves along these directions and a zigzag dom
structure develops in the film forHs2z,H0,Hz2n . For
Hz2n,H0,Hsat the vectorsM1 and M2 appear to rotate
again in the plane passing throughn andH0 , but because of
the higherH0 a nonsymmetric domain structure develops
the film.

The above remarks implies that only for field
H0,Hs2z can the characteristics of the magnetostatic wa
for the cases when the@11̄0# axis is perpendicular and par
allel to H0 coincide to a substantial degree.

The above discussion of the change in the characte
the magnetic ordering in yttrium iron garnet films is basica
hypothetical and does not explain the many experime
results described earlier. In particular, for example, it is u
clear why the initial frequencies of the spectra of surfa
magnetostatic waves in a film with a nonsymmetric dom
structure are much higher than in a film that has been m
netized to saturation.

It is easy to show that these data cannot be explaine
terms of a theory which employs averaging of the magne
permeability tensor over all the domains.~See Refs. 1, 3, and
5–7, for example.! With this approach, operating with th
average effective magnetization and average effective m
netizing field, we can use the standard dispersion relati
for magnetostatic waves. With the aid of these, using
proximation methods, we can obtain good agreement
tween the calculated and experimental curves. It is qu
simple to guess the shortcomings of this approach: estim
for surface magnetostatic waves show that an initial f
quency for the spectrum on the order of 1500–2000 M
~typical of many experimental dependences given in this
per! at an average magnetization of less than 1750 G~aver-
aging over all the domains cannot yield a value exceed
4pM0 for pure saturated yttrium iron garnet! can be ob-
tained only with the aid of fieldsH0 of magnitude 300–500
Oe and not the 5–70 Oe used in the experiments, while
order to make the width of the spectrum of the volume m
netostatic waves as large as in curves1 and5 of Fig. 8, the
‘‘average effective magnetization’’ should be on the order
6000 G. Thus, although models employing ‘‘averaging’’ a
parently can yield fair agreement with experiment, they c
not provide a reasonable physical interpretation of the res
ing average effective magnetization and field or explain
impossibility of exciting magnetostatic waves when a zigz
domain structure exists in the films, the absence of wave
certain ranges of wave vectorsk, the discontinuous characte
of the spectra, and the simultaneous excitation of magn
static waves at different frequencies.~In Fig. 7b magneto-
static waves are excited at frequencies of 100–200 MHz
1500–2100 MHz for 33 Oe, H0,39 Oe.!

7. CONCLUSIONS

An experimental study has been made of wave proce
in tangentially magnetized unsaturated films of yttrium ir
garnet with regular symmetric, nonsymmetric, and zigz
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strip domain structures. The waves observed at 800–3000
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4I. V. Zavislyak and V. V. Danilov, Pis’ma Zh. Tekh. Fiz.8, 72 ~1982!
@Sov. Tech. Phys. Lett.8, 31 ~1982!#.

i

i

ics
MHz are similar to volume and surface magnetostatic wa
in saturated films, propagate with damping characteristic
the latter, and have wavelengths much greater than the
riod of the domain structure.

The experimentally studied characteristics of the m
netic waves are not explained either by a theory employ
averaging of the magnetization over all the domains or w
the aid of the information on the film parameters and on
nature and parameters of the domain structure given in F
1 and 2 and in Table I.~For example, it is not possible to fin
any correlation between the period of the structure and
magnitudes of the wave vectors of these waves, which
not excited.!

In addition, low-frequency~100–500 MHz! branches of
the wave oscillations are observed which appear to be rel
to collective resonant oscillations of the domain boundar
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Dynamic and stimulated rf echo in high- Tc superconducting powders
A. V. Drobinin and Yu. M. Tsipenyuk

P. L. Kapitza Institute of Physics Problems, Russian Academy of Sciences, 117973 Moscow, Russia
~Submitted 10 July 1996!
Zh. Éksp. Teor. Fiz.111, 1032–1046~March 1997!

Two-pulse and three-pulse echoes in powdered yttrium and bismuth high-Tc superconductors are
investigated to determine the dependence of the signal amplitude on the magnetic field, the
temperature, and the gas pressure. The temperature is measured as a function of the relaxation time
of the echo signal. The properties of the long-lived rf echo are studied in detail; it exhibits a
persistent~lasting more than several hours! memory of a time series of write pulses and a
cumulative storage effect. The experimental results can be explained qualitatively within the
framework of the theory proposed by Asadullin@Sverkhprovodimost’6, 545~1993!# to account for
the nonlinear motion of vortices associated with sample defects. ©1997 American
Institute of Physics.@S1063-7761~97!02203-8#

1. INTRODUCTION namics of crystal structure defects.8 This work lends qualita-
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Radio-frequency echo in powders, also known as po
ization, powder, or phonon echo, was discovered in the
ties and continues to intrigue both experimental and theo
ical scientists to the present day. The echo was observe
powdered piezoelectrics, ferroelectrics, ferromagnets,
normal and superconducting metals~see the surveys in Refs
1 and 2!. By the nature of the dynamics of these objects,
rf echo effect is classified as an oscillator echo,2,3 because it
is a result of the dynamics of a system of nonlinear osci
tors.

An interesting topic in its own right, polarization echo
also used as a method for the investigation of physical p
nomena. It has far-reaching implications in radiospectr
copy, specifically in the coherent pulsed radiospectrosc
of defects in crystals and their powders. As one exam
Romanov and Solovarov4 have used rf echo to investiga
the anomalous generation and conversion of acoustic m
in the vicinity of phase transitions in ferroelectric sing
crystals.

The sum total of experimental data indicates that in
ery case the phenomenon is attributable to acoustic vi
tions of powder grains driven in resonance by rf pulses. L
all echo phenomena, powder echo is a nonlinear effect; h
ever, the mechanism of the nonlinearity has its own chara
specific to each situation.

Immediately following the discovery of high
temperature superconductivity, rf echo was observed in h
Tc superconducting powders.5–7 It is observed only in the
superconducting phase, where the amplitude of the rf e
signal is three orders of magnitude times the amplitude
nuclear magnetic resonance~NMR! signals in these com
pounds~the echo is scarcely observable in the normal pha
since high-Tc superconductors are poor metals!. Fundamen-
tal to the rf echo phenomenon is the question of what kind
mechanism underlies such strong enhancement of the e
in superconductors and what is the relationship between
superconducting and acoustical properties. In 1993 Asadu
proposed a theoretical description of rf echo in high-Tc su-
perconductors, based on the nonlinear character of the
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tive insight into the principal attributes of rf echo observed
high-Tc superconducting powders.

Two-pulse and three-pulse rf echoes have been class
as dynamic echoes. In addition, a long-lived stimulated e
has been observed in powders of certain materials, whe
occurs under the influence of a read pulse even after a pa
write pulses has terminated. This memory effect of a ti
series of exciting pulses is retained in the sample for a v
long time ~hours and even days!.

Here we give the results of a detailed experimental stu
of dynamic and stimulated echo in yttrium and bismuth hig
Tc superconductors; this work has been briefly reported in
earlier publication.5

2. EXPERIMENTAL APPARATUS

The observation of rf echo is methodologically similar
pulsed NMR experiments. The process is well known: T
nuclear spin system is excited by a train of rf pulses w
specially selected durations and delays between pulses.
event creates rotating magnetization in a coil, inducing
weak emf in it. To maximize the emf, the axis of the co
must be perpendicular to the external field. The emf has
components: a time-decaying free induction after each p
and a subsequently emerging echo signal after the p
train.

In the case of the rf powder echo signal as well, t
application of essentially the same sequence of two pu
separated by a time intervalt causes an echo signal to appe
in the sample at a timet after the second pulse. The amp
tude of this signal decays with time with a characteris
relaxation time of the order of a few tens of microsecon
~by analogy with NMR, it is denoted byT2 , i.e., the longi-
tudinal relaxation time!, and when a third sensing~read!
pulse is transmitted after a time much greater thanT2 , a
stimulated echo signal appears, again after a timet. The
fundamental difference of rf echo in powders from the NM
signal is its nonresonant character: For exciting pulses o
given frequency it occurs in any magnetic field.

5699$10.00 © 1997 American Institute of Physics
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FIG. 1. Apparatus and circuit for the mea
surement of rf echo in high-Tc supercon-
ductors. a! Placement of the rf circuit in
the cryostat; b! schematic view of the
heater and attached thermometer; c! cir-
cuit schematic: 1! exciting pulse genera-
tor; 2! preamplifier.
The measurement arrangement is shown schematically
to
on
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te
pe
l t

a
o
re
e

ss
s
t t

prevent the evaporation of helium and the formation of a
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ulse
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fier,
es
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e

in Fig. 1. A magnet with superconducting coils is used
generate a magnetic field. The rf coil is a hollow Tefl
cylinder of length 22 mm and diameter 7 mm with 25 tur
of 0.3-mm PÉV wire wound around it. The axis of the coil i
perpendicular to the external magnetic field and has an
ductanceL153mH. The investigated powder is packed i
side the coil. In addition to the powder, a Nichrome hea
wound on a copper form made from two crossed cop
plates of thickness 0.2 mm is also placed inside the coi
create a uniform temperature in the powder~see Fig. 1!. The
heater winding is bifilar. Also contained inside the coil is
semiconductor thermometer. The resistance of the therm
eter is measured by a four-point technique with current
versal to compensate the thermal emf in the measurem
wires. The coil with the sample enclosed is placed in a ve
filled with helium gas as a heat-transfer medium. The ves
wall and liquid helium are separated by a vacuum jacke
n-

r
r
o

m-
-
nt
el
el
o

temperature gradient in the vessel.
A sinusoidal signal from an rf oscillator is sent to an

pulse shaper, whose second input receives square-w
pulses from a programmable pulse generator. The p
shaper output signal consists of pulses of the same dura
as the square-wave pulses but with an rf sine wave car
The pulses are sent from the shaper to an rf power ampli
which energizes the excitation circuit. The divider diod
D1,2 are open at the instant of transmission of the rf pul
acquiring a voltage drop;0.7 V. Since the capacitance C2
of the sensing L2C2 circuit is shunted by the diodes D3,4, the
current in this circuit is determined by the reactance of
coil L2 . Consequently, most of the power from the pow
amplifier is transferred to the resonance-tuned excit
L1C1 circuit with Q.25. When the electric length of th
connecting cable is set atl5l/4, optimal conditions are cre
ated for transferring energy into the exciting circuit. Th
e-
ird
FIG. 2. Oscillogram of dynamic two-pulse and thre
pulse echoes; not only the second, but also the th
echo is visible.
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FIG. 3. Relaxation timeT2 of dy-
namic echo in YBaCuO powder vs
temperature T ~H525 kOe! ~left
graph! and echo amplitudeA vs time
delay t between exciting pulses for
BiCaSrCuO ~T57 K, H525 kOe!
~right graph!.
voltage across the coil L1 attains 1 kV in this case, and the rf
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The echo amplitude is a maximum when the rf pulse
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field is H;.25 G.
The preamplifier and the receiver operate at satura

during transmission of the rf pulse. The decay of the rf vo
age to the 0.7-V level requires a time of about 3ms, after
which the diodes D1,2 close and disconnect the power amp
fier. The preamplifier has a high-resistance input and a g
equal to 10. A YaS-54 spectrum analyzer is used as th
oscillator and receiver. The amplifier and the receiver le
the saturation regime 10ms after the pulse. Consequentl
although not normally recommended, the time delay betw
exciting pulses is made shorter than this value. Without
citing pulses the elements L1 , C1 , and C2 form a single
series resonant circuit. The preamplifier and the receiver
plify the voltage formed across the capacitor C2 under the
influence of the sample-induced emf in the coil L2 .

The signal from the receiver is sent to a V9-5 gat
voltmeter, whose gate is controlled by a programmable pu
generator. The gate is visually adjusted to the maximum
the echo signal by means of a dual-beam oscilloscope, wh
two beams provide sweeps for the receiver signal and
gate pulse.

On the order of 106 ceramic grains of diamete
;100mm were used to observe the echo in YBaCuO a
BiCaSrCuO powders. The powder was prepared by crush
a polycrystalline sample and then screening fine grains f
coarse grains by means of two metal screens with diffe
mesh sizes.

No echo of any kind was observed for a powder sam
containing;102–103 grains of diameter 1 mm or smalle
Instead, a highly erratic ‘‘ringing’’ was visible after each
pulse as a result of beats generated by different powder-g
oscillators.

3. EXPERIMENTAL RESULTS

When two successive rf pulses of frequency;20 MHz,
power;100 W, and duration;5ms are fed into the reso
nant circuit containing the powder, a strong dynamic ec
signal is observed. The rf frequencyf is very close to the
estimated acoustic resonance of the experimental powd
Indeed, if the characteristic grain diameterl spans one half-
wavelength, then it satisfies l5l/25s/2 f , where
s5(3–4)•103 m/s is the speed of sound. At a frequen
f52•107 Hz the resonance grain diameter must in fact be
the order of 100mm.
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lengths are equal, and its width increases as the duratio
the sensing pulses increases. A secondary echo is obse
for short time delays, as seen in Fig. 2.

As the time delay between pulses is increased, the e
amplitude decays with a time constantT2.35ms, which is
approximately the same at temperatures from 4.2 K to;30
K, and thenT2 begins to decrease~Fig. 3!. It is evident from
Fig. 3 that the decay of the echo amplitude with increas
time delay is exponential.

When a third pulse is sent to the input, a stimulated ec
is observed, as seen in Fig. 2. Here the time delay betw
the first pair of write pulses and the third, read pulse can
much longer than the decay time constantT2 of the two-
pulse echo. The long-lived stimulated echo does not van
even after the pair of write pulses has terminated.

Both the echo intensity and the relaxation time depe
significantly on the pressure of the gas~helium in our experi-
ments! used to fill the capsule containing the powder; t
higher the gas pressure, the lower is the echo amplit
~Figs. 4 and 5!. These measurements offer further eviden
to the effect that the phenomenon is associated with acou
vibrations of the sample powders.

Both the dynamic and the stimulated echo die out w
increasing temperature and exist only in the superconduc

FIG. 4. Relaxation time vs helium pressure for YBaCuO~H525 kOe,
T54.2 K!.
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phase. However, the temperature behavior of the echo
plitude differs for YBaCuO and BiSrCaCuO~Fig. 6!, even
though the superconducting transition temperatures of b
samples have very nearly the same value, 90–92 K, a
that has been verified both for the initial polycrystallin
samples and for their powders.

Graphs of the echo amplitude as a function of the ex
nal magnetic field for the yttrium and bismuth high-Tc su-
perconducting powders are shown in Fig. 7. For both s
tems the dependence is essentially linear, although
YBaCuO the amplitude begins to increase with increas
magnetic field at;3 kOe. Note that Petrovet al.7 have ob-
tained a quadratic field dependence of the echo amplitu
but their measurements were performed in a narrow rang
magnetic fields, only up to 7 kOe.

A characteristic feature of the stimulated echo is the
mulative storage effect of repeated inputs of coherent p
of rf write pulses. After a pair of write pulses is cut off, th
amplitude of the long-lived echo decreases by one hal
10–20 s, then after a few minutes it settles into a cons
levelU2 approximately to 0.4 times the initial valueU1 , and
it remains unchanged for at least several hours. When a

FIG. 5. Intensities of two-pulse (d) and three-pulse (s) dynamic echoes
vs ambient pressure of the gas~helium!.
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quence of two rf write pulses separated by a time inter
t,T2 is applied, the stimulated echo grows with the sa
time scales as shown in Fig. 8. It must be emphasized
the characteristic times of this process are not tens of mi
seconds like the typical relaxation time of the dynamic ec
but are measured in minutes, i.e., the time scale of this ef
is 106 times greater.

More than one, in fact several time series can be writt
as shown in Fig. 9, where the powder is initially exposed
a pair of rf pulses with a 30-ms time delay between them
and then the spacing of the pulses is approximately doub
Two echo signals are observed after the read pulse. In
situation the write pulses become read pulses, as is pate
evident in the given oscillogram. However, slight (;5%)
changes in either the temperature or the external field alm
completely erase the memory of the time series of w
pulses, and the long-lived echo signal disappears.

The intensity of the stimulated echo, like that of th
dynamic echo, decreases as the ambient gas pressure
creased, but at low pressures the quantitiesU1 andU2 ex-
hibit altogether opposite behavior: WhereasU1 exactly re-
peats the pressure dependence of the dynamic e
amplitude,U2 increases at first but then begins to dimini
as the gas pressure is increased~Fig. 10!.

FIG. 6. Echo amplitude vs temperature for yttrium (h) and bismuth (s)
samples.
-
FIG. 7. Echo amplitude vs external mag
netic field for yttrium~a! and bismuth~b!
samples~T54.2 K!.
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4. DISCUSSION OF THE EXPERIMENTAL RESULTS

The nonresonant dependence of the echo signal am
tude on the static external magnetic field leads to the con
sion that it is not related to the rotation of nuclear spins,
is attributable to oscillations imparted to the diamagne
moment of the powder grains by the emf in the rf circuit. A
mentioned, the acoustical nature of the echo is confirmed
the correlation of the frequency of the exciting pulses w
the grain diameter and by the dependence of the echo in
sity on the ambient gas pressure.

When rf pulses are applied to a powder, acoustic vib
tions are excited in its grains. The electromagnetic gen
tion of sound in normal metals has been studied at consi
able length.9,10 The feasibility of generating soun
electromagnetically in high-Tc superconductor samples in a
external magnetic field has already been demonstrated.11

Acoustic waves are generated with the same freque
as the alternating current in the exciting inductance coil
virtue of the Lorentz force acting on electrons down to t
field penetration depth. The magnetic field in which t
sample is immersed penetrates it as a system of vort
separated by a distance shorter than their characteristic

FIG. 8. Stimulated echo amplitude vs time after the input and cutoff o
pair of rf write pulses~cumulative storage effect!.
li-
u-
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mensions. This means that spatial modulation of the m
netic field in the sample interior is extremely weak, so th
the external field can be assumed to act directly on the e
trons.

The vibrations of the powder grains induce in the rece
ing circuit an emf that decays within a time;1/Dv after
each pulse, whereDv is the spread of the oscillator eigen
frequencies. If a second exciting pulse is incident on
powders after a timet, before the grain vibrations have ha
time to decay but after they have fallen out of phase, a s
ond, similar decay of the induced emf sets in; after a ti
2t the grain vibration enter back into phase, producing
echo.

Gould12 has shown that echo generation in a system
vibrating oscillators can be attributed only to their anharm
nicity. The occurrence of echo in a system of anharmo
oscillators is clearly illustrated by the following simpl

a

FIG. 10. Amplitudes of stimulated echo~with the constant input of two
write pulses! and long-lived~with the input of a read pulse only! echoes vs
ambient helium pressure for YBaCuO~T54.2 K, H520 kOe!.
y
es

e
a

FIG. 9. Oscillogram of stimulated echo produced b
two different time series of write pulses: after one seri
is written (t530ms) and the time delay between them
is changed tot550ms, the write pulses resume th
role of read pulses and are therefore followed by
stimulated echo signal.
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FIG. 11. Phase diagram of a system
nonlinear oscillators~results of a com-
puter simulation of the behavior of a
system of anharmonic oscillators with
distinctly discernible resonance fre
quencies for various degrees of non
linearity!. The lettersA, B, C, D, E
denote different times in the system o
exciting and sensing pulses.
model. Let us suppose that we have many nonlinear oscilla-
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tors with distinctly discernible resonance frequencies a
that their motion is described by the equation

ẍ1v2x1gx350. ~1!

The behavior of this system under the influence of an ex
nal force in the form of a sequential pair of pulses separa
by a time intervalt is easily exhibited on a computer. Th
results of such a simulation are conveniently displayed
thexw phase plane in a rotating coordinate frame~where the
x axis corresponds to vibration of an oscillator with the me
frequency! and are shown in Fig. 11.

When exposed to the first pulse, all the oscillators
brate with the same amplitude and phase regardless of
frequency~Fig. 11b!, and a macroscopic response appear
the system of oscillators. But then as time passes, owin
the different resonance frequencies, the vibration amplitu
gradually diverge in phase until the distribution of the dire
tions of the vibration vectors becomes completely rando
so that the phase diagram simply takes the form of a ci
~Fig. 11d!.

Under the influence of the second pulse all the osci
tors acquire the same amplitude increment as in the ex
tion of the first pulse, and the phase diagram now repres
the same circle shifted along thex axis ~Fig. 11e!. If the
nonlinear term@the coefficientg in Eq. ~1!# is small~or equal
to zero!, in the subsequent evolution of the phase diagr
the average projection of all the vectors describing the os
lator motions onto thex axis becomes equal to zero, and t
induction signal in the receiving coil, being proportional
the vibration amplitude of the system at the mean frequen
becomes equal to zero~Fig. 11f!. In the presence of nonlin
earity, however, the phase trajectory is asymmetrical, and
echo signal appears after the timet.
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shift of the particle resonant frequency due to the def
structure of the sample material, in particular to dislocat
deformation.2 Asadullin8 has developed the same approa
to account for the echo in high-Tc superconductors. Accord
ing to the Granato-Lu¨cke string theory, the dislocation line
in a crystal form a three-dimensional grid. The lines are r
idly attached at the nodes of the grid and cannot be bro
away by an ultrasonic field. A dislocation loop is loose
pinned in the interstitial space by all possible point defec
In the field of elastic vibrations~after pulsed excitation!
small loops of lengthL vibrate as an elastic string withou
separating from the pinning sites if the elastic stress is sm
The losses and the modulus step~DE effect! due to these
loop vibrations are amplitude-independent. The respons
the system is essentially nonlinear in this case, and echo
not occur.

As the amplitude of the stresses increases, the loops
catastrophically broken away from their pinning sites, but
process is reversible: After each half-period of the elas
vibrations a loop of lengthL breaks away and is repinned b
defects. The attendant losses depend on the stress ampl
As a dislocation moves under the influence of an rf pulse
transfers from one local potential minimum to another. In
new position, initially at least, it is not necessarily pinned
point defects and, in that sense, can be characterized a
cited. It is reasonable to assume that the density of exc
dislocations is a function of the elastic stress amplitude
the pulse duration.

Under the influence of one pair of pulses only some
the mobile dislocation loops make an irreversible jump. T
application of several pairs causes the pileup of such di
cations. This pileup of irreversibly excited dislocations is t
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The nonlinearity of the excitation process lies in the fa

that the dislocation densityN, which depends on the ampl
tude of the elastic strainus(x,t)u excited by this field, can
vary during the lifetime of the rf pulse. The variation o
N(us(x,t)u) influences the losses and dispersion of the ela
vibrations as well as the magnetostrictive contribution
their excitation.

We now consider the way in which, according
Asadullin,8 an echo signal is generated in the case of sup
conductor in the mixed state. We assume for simplicity t
the exciting pulses are identical and that acoustic vibrati
s(t) of amplitudes0 are generated in the powder grains u
der their influence. The first exciting pulse is followed b
vibrations in time at a frequencyv1 with dampingg1 :

s1~ t !5s0 exp@~ iv12g1!t#. ~2!

The Lorentz force exerted by the rf current on the vo
ces is transferred to a dislocation associated with them.
assume for definiteness that the echo is associated with
linear properties in the dislocation vibrations. If the disloc
tions vibrate without breaking away from the weak pinni
sites, the only consequence after the input of a second p
is an amplitude-independent resonance shift and a chang
the damping factor proportional to the dislocation dens
N:

s2~ t !5s0 exp@~ iv22g2!~ t2t!#,

Dg5g22g15c1N, Dv5v22v15c2N, ~3!

wherec1 and c2 are constants. After the second pulse t
vibration amplitude is the sum of the response to the first
second pulses and at a timet.t has the form

s~ t !5s1~ t !1s2~ t !5s0$exp@~ iv12g1!t#11%

3exp@~ iv22g2!~ t2t!#. ~4!

If Dv andDg do not depend on the amplitude, it is evide
from Eq. ~4! that the i th oscillator with frequencyv iÞv1

merely experiences a phase shift, but the system of osc
tors with a random distribution ofv i about the mean fre
quencyv1 does not acquire a macroscopic moment, and
echo is not produced.

We now inquire what happens when the system acqu
excited dislocations, the number of which depends on
vibration amplitude. During the second pulse the force act
on a unit length of the system$dislocation1vortex% is

f5bG$s0 exp@~ iv12g1!t1s0%1nj2F0 . ~5!

The first term in this expression for the force describes
direct effect of the acoustic vibrations~G is the shear modu
lus, andb is the Burgers vector!, and the second term de
scribes the interaction between the rf current in the sec
pulse and the vortices~n is the number of vortices associate
with one dislocation,j2 is the convolution of the second r
pulse with time, andF0 is the magnetic flux quantum!.

The average number of dislocations shifted from th
sites ~excited dislocations! is proportional to the effective
force, and the substitution of the force expression~5! yields
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Herea andb are constants.
According to~3!, the frequency shift and the variation o

the damping are proportional to the dislocation density,
according to~6!, the number of excited dislocations depen
on the time interval between pulses, so that the variation
the frequency and the damping factor acquire a factor
depends on the spacingt of the write pulses:

Dv~ t !5Dv02Dv1 cos~v1t!,

Dg~ t !5Dg01Dg1 cos~v1t! ~7!

The new frequency and the new damping factor of
vibrations contain phase information about the rf pulse in
form of the phase of the elastic vibrationsv1t. Now the
expression~4! for the vibration amplitude of the powde
gains assumes the form

s~ t !5~s11s2!exp@2 iDv cos~v1t!#

3exp@2Dg cos~v1t!#. ~8!

It has been shown8,13 that this result implies the formation o
an echo signal a short timet after the second pulse in
system consisting of a large number of particles with d
tinctly discernible resonant frequencies.

A remarkable characteristic of rf echo in powders is t
long-term memory effect. We now elucidate the process
which a long-lived stimulated echo is produced under
influence of nonlinear mechanisms. We consider a ti
when the vibrations excited by the first and second pul
have decayed, but the memory of these pulses is retaine
the variations of the dampingDg(p1 ,p2 ,t) and the fre-
quencyDv(p1 ,p2 ,t) of the particle eigenfrequencies~p1
andp2 are the dipole moments of the powder grains!. These
variations are attributable to the irreversible motions of d
fects in the grains~dislocations, etc.! under the influence of
the elastic vibrations.

The third ~read! pulse imparts a dipole momentp3 to
each grain. As in the case of two-pulse exposure, nonlin
ity leads to echo generation. The phase memory of the
ceding pulses is retained in the density of excited dislo
tions. As time passes, the state of the excited dislocat
changes, and in the new position they are gradually pin
by point defects diffusing toward them and continue the p
cess of diffusion to other potential minima, thereby break
up the coherence of the state.

By this time, of course, all the elastic vibrations gene
ated by the first two pulses have died out. The memory
them is retained only in the damping factorg2 and the fre-
quencyv2 . The third pulse imparts a dipole moment to ea
grain, and once again an echo signal appears after a timet if
the damping in the system is amplitude-dependent.

The lifetime of the echo in this case is determined by
relaxation time of the indicated excited state. The relaxat
process could be associated, for example, with the gra
pinning of dislocations by point defects diffusing towa
them or with the reverse process of truncation of exten
dislocation loops. The cumulative storage effect in the
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the pileup of excited dislocations~or twinning boundaries!.
The erasure of the memory as the temperature and the e
nal magnetic field vary is readily explained in the followin
model: When the temperature varies, the pinning fo
changes and, accordingly, the vortices transfer to other l
minima of the potential relief of the lattice; when the fie
varies, the number of vortices changes, and they can
transfer to other pinning centers, i.e., become rearrange

In a superconductor the breaking away of a dislocat
from its pinning site inevitably sets in motion the vorte
associated with it, and magnetic flux jumps take place.
exactly the same way, any motion of the vortices impa
motion to defects associated with them. This can hap
only so long as the unpinning of vortices does not set in
some temperature where the coupling between the mot
of dislocations and vortices is broken.14 The (B,T) diagram
therefore acquires two regions separated by a line of irrev
ibility, above which the diamagnetic moment quickly r
laxes, and the critical current drops abruptly with increas
temperature, both of these effects being associated wi
variation of the vortex mobility in the high-Tc supercon-
ductor. The energy of pinning of a solitary vortex by a po
defect can be described by the expression

Up'jdBc2
2 , ~9!

wherej is the coherence length, which is very small in hig
Tc superconductors, 1,d,3, andBc2 is the second critica
field. This energy must be compared with the energy of th
mal vibrationskT, which lead to thermally activated vorte
hops from one pinning center to another. The probabilityW
of such hops is

W}exp~2Up /kT!, ~10!

and the ratioUp /kT in the high-Tc superconductor can be a
order of magnitude lower than in ordinary superconducto
Consequently, thermally activated vortex motion has a s
nificant influence on the magnetic and transport propertie
high-Tc superconductors. In conventional superconduct
this phenomenon is observed only near the transition t
perature as flux creep.

The unpinning effect appears as a maximum on the t
perature curve of the losses in the superconducting sam
when the vortex lattice is set in motion by the external for
Data of this kind have been obtained so far in experiment
measure the real and imaginary parts of the magnetic sus
tibility as well as the speed and attenuation of ultrasou
and also from the results of measurements of the curr
voltage characteristics in experiments with a high-Tc super-
conducting single crystal vibrating in an external field~see,
e.g., Ref. 15!.

The mobility of the vortices can also be regarded
melting of the vortex lattice.16 Thus, even in a perfect crysta
a solitary vortex cannot move freely ifB@Bc1 , because any
slight movement of the vortex relative to the stationary v
tex lattice causes it to be deformed. The vibration amplitu
of the vortex lattice increases as the temperature rises,
when the vibration amplitudêx& becomes sufficiently large
the vortex lattice can melt~by the Lindemann criterion
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transforming into a vortex liquid. The mobility of the vor-
tices increases dramatically when the shear modulus of
vortex lattice becomes equal to zero at the melting point

It follows from the experimental results that not only d
the echo signals vanish long before the transition temp
ture of our high-Tc superconductors is reached, but also th
temperature dependences differ for the yttrium and bism
systems. These characteristic attributes of the generatio
echo signals are readily understood through the result
recent studies of (B,T) diagrams: They differ significantly
for anisotropic three-dimensional~YBaCuO type! and lay-
ered~BiCaSrCuO type! high-Tc superconductors in that th
boundary of the phase diagram for the yttrium system ex
at much higher temperatures and fields than for the BiCa
CuO system.

An estimate of the line of irreversibility for grains o
diameter 100mm at a frequency of 20 MHz shows that i
position coincides with the curve representing the tempe
ture dependence of the echo intensity, and the differenc
the temperature behavior of the yttrium and bismuth powd
is qualitatively consistent with the difference in the positio
of their lines of irreversibility.

5. CONCLUSION

We have carried out a detailed experimental study
dynamic and stimulated rf echo in powdered yttrium a
bismuth high-Tc superconductors as functions of the ma
netic field, the ambient gas pressure, and the tempera
We have measured the temperature dependence of the
relaxation time, and we observed a long-lived stimula
echo and its cumulative storage.

Most of the results can be explained in terms of t
model proposed by Asadullin, based on the nonlinear ch
acter of the motion of defects and their associated vortice
the sample. It follows from the temperature dependence
the echo amplitude that this phenomenon is intimately
lated to the vortex lattice dynamics and can therefore se
as an effective method of investigation of the latter.

The authors are deeply indebted to V. V. Zhuchkov
assistance with the experiments and to Ya. Ya. Asadullin
rewarding discussions.
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of Project 93210 of the State Scientific Program ‘‘Superco
ductors.’’
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Effect of an alternating field on the relaxation of Effect of an alternating field on the

ll-
relaxation of magnetic flux in a Josephson medium
É. V. Matizen, P. P. Bezverkhiı̆, and V. G. Martynets

Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 690090 Novosibirsk,
Russia
~Submitted 19 July 1996!
Zh. Éksp. Teor. Fiz.111, 1047–1056~March 1997!

We establish how trapped magnetic flux depends on the frequency and amplitude of an
alternating field and how such a field affects the relaxation rate of the flux. We find that the nature
of the flux creep changes in the process and that relaxation of the flux stops after the
external field is switched off. We examine the dynamics of flux relaxation in a ring in the
approximation in which the current density is assumed homogeneous, for various density
dependences of the effective vortex activation energy. The critical current density and the
vortex activation energy are obtained as functions of the external field strength. Finally, we explain
the observed behavior in terms of the different field profiles emerging in the rings. ©1997
American Institute of Physics.@S1063-7761~97!02303-2#
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Much research has been done in studying the effect o
alternating magnetic field on the properties of granula
high-Tc superconductors~see, e.g., the review in Ref. 1!. The
research involved studying the complex magnetic susce
bility, the penetration of samples by weak alternating m
netic fields,2 the formation of various current layers by su
fields,3 the effect of an alternating field on the curren
voltage characteristics of the samples,4 and other research
However, the effect of an alternating field on relaxation ph
nomena has been studied less.

It is known that the presence of weak fields gives rise
a random network of Josephson junctions in granulated h
Tc superconductors.

5–7 When this problem is studied phe
nomenologically, the system is interpreted as an effec
medium with a Josephson penetration depthl j and an effec-
tive permeabilitymeff that allows for Meissner screening o
the granules. In fields lower thanHc1

gr , the first critical field
of the granules, the electrodynamics of the medium is de
mined by intergranular currents. Such an approach is val
l j@a(AHc1!AHc2), wherea is the size of the granules
andHc1 andHc2 are the first and second critical fields for th
medium. In such a medium the condition for the existence
a critical state,udH/dxu5 j c(H), is valid, with the field pen-
etrating the medium in the form of Josephson vortices, wh
can move and get pinned at various pinning centers, lea
to various effects in flux creep.

In this work we study the effect of an alternating low
frequency magnetic field (H̃) on the magnetic flux trapped i
ceramic high-Tc superconducting rings when a Josephs
medium is formed in rings and the amplitude of the altern
ing field is lower than the field capable of completely pe
etrating the sample~ring!.

2. EXPERIMENT

The measuring cell consisted of a solenoid with two a
iliary coils forming a Helmholtz system, the coils being c
axial with the solenoid. The sample, a high-Tc superconduct-
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effect detector and the junction of a thermocouple w
placed at the center of the ring. The solenoid generate
constant magnetic field up to 200 Oe, while the lo
inductance coils were used to generate an additional alter
ing magnetic field with an amplitude of up to 20 Oe. The c
was placed in a bath of liquid nitrogen or helium vapo
Measurements were done automatically and were compu
controlled. The error in measuring the magnetic field at
ring’s center amounted to 0.02Oe, and the sample temp
ture was kept constant to within 531022K. The rings we
studied were made of Bi-based ceramic and of granula
YBCO films on a sapphire substrate. The dimensions of
ceramic rings were: external radiusR2'4.8 mm, internal ra-
dius R1'3.2 mm, height ;1.4–2 mm, and width
W5R22R1; 1.2–2 mm; the current density wa
'1 kA/cm22 at 4.2 K; andTc'105–107 K. The film rings
had an external diameter of approximately 9 mm, inter
diameter of approximately 6.5 mm, their height'0.5mm;
the current density was'11 kA/cm22 at 78 K; and
Tc'98 K.

First we studied the magnetization of the rings, i.e.,
dependence of the fieldB at the center of the ring on th
strengthHe of the external field generated by the soleno
Figure 1 depicts one such dependence~curve1!, with cell-
configuration corrections introduced in accordance with R
8. Obviously, up toHcj , corresponding to the critical state
of the ring, the transport current encompasses an ever
creasing cross-sectional area of the ring, starting from
outer layer. When the critical state is reached, the field
pands into the hole of the ring. A further increase in t
strength of the external field causes a decrease in cur
density. This is evident from the fact that theB vsHe curve
approaches the straight lineB5He. In higher fields,
He.30 Oe, the dependence is affected by magnetization
the granules, which, on the one hand, additionally lowers
transport current density and, on the other, generates a
acting on the Hall-effect detector in the opposite direction.
high external fields and at high temperatures the field ge

5786$10.00 © 1997 American Institute of Physics
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ated by the granules exceeds the field generated by the t
port current and creates several effects, including reve
hysteresis loops.8 The curve 2 in Fig. 1 represents the
trapped field after several seconds (;4 s) following the
switch-off of the external field. We see that in field
He<Hcj the flux is not trapped, in the rangeHcj,He,H*
the flux is trapped only partially, and atHe5H* the trapped
flux reaches its maximum value, remaining almost cons
in high fields~the observed small decrease in flux is due
granule magnetization9!. Note that for all the samples~both
bismuth and yttrium! the curves exhibit similar behavior, dif
fering only in the value of the characteristics.

The time dependence of the fieldB trapped at the cente
of the ring when the field is turned off~a relaxation curve! is
generally described by a function characteristic of collect
creep:1,10

B~ t !5
B0

@11S8ln~11t/t!#1/b
, ~1!

whereB0 is the value of the field at time zero,S8 is the
relaxation rate, andt is the characteristic relaxation time.

When the external fieldHe is switched on, the time de
pendence ofB(t), i.e., the introduction of the field into th
ring, is described by the following formula:

He2B~ t !5~He2B0!F11S8lnS 11
t

t D G . ~2!

To study the effect of an alternating field on the rela
ation mode, we first found the dependence of the curr
density in the ring at time zero (j 0), calculated from the
relationshipj 0 } He2B0, on the external field strength. Th
dependence onHe, experimentally found from the param
eters of the relaxation curve during the introduction of t
field into the ring, is described satisfactorily by the function11

FIG. 1. Magnetization of the ring by a constant magnetic fieldHe: curve1
represents the behavior of the fieldB at the center of the ring asHe in-
creases; curve2 the behavior ofB at the center of the ring afterHe is
switched off; the straight lineB5He represents the readings of a Hall-effe
detector in the absence of the ring;Hcj stands for the penetration field
strength corresponding to the critical state of the ring;H* stands for the
value ofHe at which maximum flux is trapped; andT577.3K.
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j 00H0
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He21H0
2 ~3!

with the fitting parameters j 005420.4 A/cm2 and
H0536.5 Oe (T537 K); see Fig. 2. Note that there is
range of weak fields in whichj 0 changes little. Figure 2 also
depicts the dependence of the relaxation rateS8 on the ex-
ternal field strength.

Figure 3 depicts the curves representing the relaxatio
the constant component of the trapped fieldB(t) afterHe is
switched off, in the absence of an alternating field and wh
such a field is switched on at the moment of trappi
(T578 K). Without the alternating field the relaxation curv
is described by the following relationship:

B~ t !5B0F12S8lnS 11
t

t D G , ~4!

FIG. 2. The transport current densityj 0 (s) and the relaxation rateS8
(n) as functions of the external field strengthHe, found from the data on
the relaxation of the fieldB at the center of the ring whenHe is introduced
into the ring at 37 K: the solid curve represents the results of calculation
formula ~2!, and the dashed curve the results of calculations by the form
S85AHe, with A5431024 Oe21.

FIG. 3. Relaxation of the trapped fieldB in the presence of an alternatin
magnetic field with an amplitudeH0 after He has been switched off
(T577.3 K): curve1 represents the behavior ofB without the alternating
field; curve2 represents the behavior ofB atH052.9 Oe,n51100 Hz, and
the same initial value ofHe as for curve1; and curve3 represents the
behavior ofB at H052.9 Oe,n5100 Hz, and the value ofHe correspond-
ing to the case of curve1.
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with the parametersS850.0133, B058.77 Oe, andt51
~curve1 in Fig. 3!. Note that this dependence is the limit
the function ~1! as 1/b→1 for small values ofS8. In an
alternating field the relaxation curve is described by the fu
tion ~1! with S859.4831023, B057.18 Oe, and 1/b51.83
for an alternating field amplitude equal to 2.9 Oe and a f
quency n51100 Hz ~curve 2!, and with S851.4831022,
B057.31 Oe, and 1/b51.26 for the same alternating fiel
amplitude and a frequencyn5100 Hz~curve3!. The param-
eter calculated from the formulat5S8 j cW(dHe/dt)21 ~see
Ref. 12! was equal to 0.06 s. As Fig. 3 shows, the introdu
tion of an alternating field transforms the logarithmic depe
dence~4! into the nonlinear dependence~1!.

Figure 4 depicts the effect of an alternating magne
field on the relaxation of the constant component of the fi
B trapped by the ring. Up to timet1 the fieldB relaxes with
a rateS850.015. Att1 an alternating field with an amplitud
H051 Oe and a frequencyn57 kHz is switched on, which
leads to a sharp drop inB, after which the field relaxes unti
time t2 with a rateS850.017, provided that this relaxatio
process starts att1. At time t2 the alternating field is
switched off over'0.5–1 s, after which the trapped fie
ceases to change, within the limits of sensitivity of the m
suring device (dB'0.004 Oe). As a result, one can obser
an interesting phenomenon—the flux in the ring becom
trapped. In the course of several hours no change in this s
was observed. At timet3 an alternating field with
H052.5 Oe andn57 kHz is switched on, there is again
sharp increase inB, and relaxation sets in once more. At tim
t4 the amplitude increases toH

053.11 Oe,B drops still fur-
ther, and relaxation continues with a rateS850.017.

Figure 5 depicts, in relative units, the dependence~char-
acteristic of all rings! of the constant component of th
trapped fieldB ~the value to which the fieldB rapidly drops
after an alternating fieldH̃ with an amplitudeH0 is switched

FIG. 4. The effect of introducing an alternating field on the relaxation of
constant component of the trapped fieldB at 77.3 K. The fieldHe is
switched off, and the arrows indicate the various times: att1 the amplitude
is H051 Oe and the frequency isn57 kHz; at t2 the alternating field is is
switched off; at t3 the amplitude isH052.5 Oe and the frequency i
n57 kHz; and att4 the amplitude increases toH053.11 Oe which the fre-
quency isn57 kHz. The dashed straight line separates the regions w
different scales along the horizontal axis.
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on; see Fig. 4! on the amplitude and frequency of the appli
alternating field. Clearly, the experimental points for all a
plitudes and frequencies in these coordinates fit on a sin
curve. Note, however, that the effect of the frequency on
derivativedB/dH0 is weak~see the inset in Fig. 5!.

3. DISCUSSION

Before we consider the effects of an alternating field
a trapped magnetic flux, let us discuss the characteristic
the Josephson medium realized in the samples. As an
ample we take the results for one ceramic ring~see Fig. 1!.
For He>H* the curve2 reaches a plateau, which corre
sponds to the maximum value of the trapped flux. We fi
H*'1.8Hcj , a result that is in approximate agreement w
the calculated one. Indeed, reasoning on the basis of
critical-state equation and the usual assumptions concer
the j c vsH

e dependence, one can show thatH*52Hcj ~see
Ref. 5!. When the strength of the field is further increase
the value of trapped flux~curve2! slowly decreases becaus
of suppression of the critical current~the depinning current!
by the external field due to degradation of the Joseph
medium and granule magnetization.9 We observed a similar
behavior of the curves for the YBCO film rings.

The variation of the relaxation rate of a magnetic flux
a ceramic ring in the absence of an alternating field, wh
we studied in our description of the Josephson medium
depicted in Fig. 2. ForHe<150 Oe theS8 vsHe dependence
can be described by an expression of the formS85AHe

(A5431024 Oe21). ForHe,Hcj the method does not al
low the dependence ofS8 onHe to be detected, since in thi
range of field strengths the contriimportant of the field ge
erated by the relaxing current itself is important. There a
however, certain experimental indications, obtained fr
single-crystal studies,13 that forHe,Hc1 theS8 vs fHe de-

e

h

FIG. 5. The fieldB trapped by a ring afterHe is switched off as a function
of the amplitudeH0 of the alternating field. HereB0 is the field trapped at
H050, andH0(B50) is the amplitude of the alternating field at which th
field trapped by the ring vanishes. The solid curve corresponds to the re
of calculations by formula~8!. The experimental points for six differen
frequencies in the interval from 10 Hz to 20 kHz fit the calculated curve
for each frequency we take the corresponding value ofH0(B50). The inset
shows the dependence of the average derivatived(B/B0)/dH

0 on lnn in the
interval 0.5,H0/H0(B50),1.
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37 K, the weak Josephson junctions in the medium are
stroyed. This value ofH0 agrees with the value ofHc2 ob-
tained in measurements of the magnetization of rectang
rods fabricated from the same ceramic material.8 This value
of Hc2 has a corresponding sizez5AF0 /Hc2'0.7mm,
which in order of magnitude coincides with the average s
of a grain~granule!, with F0 the quantum of magnetic flux

As is well known,12 if the Kim–Anderson model is ap
plicable, i.e., if creep in a thin film generates an electrom
tive force whose value per unit length is

E5
E0

2
expF2

U0

kBT
S 12

a j

U0
D G ,

then forkBT/U0!1 and relatively long times the relaxatio
rate is given by the following expression:

S85
kBT

a j 0
.

HereU0 is the vortex activation energy,a is a coefficient
that accounts for the lowering of the barrier for vortex ho
ping due to the Lorentz force, andj 0 is the current density
corresponding toB0 in ~1! or to He2B0 in ~2!. For
He.Hcj , according to~3!, this yields

a5
kBT

A j00~ t !H
S 11

He2

H0
2 D .

By definition, the critical current density~the depinning cur-
rent! j c is equal toU0 /a. In our case we can assume th
j 0; j c . Then U0' j 0a5kBT/S85kBT/AH

e when
He.Hcj . Note that in Ref. 8 it was established that in ma
netic fields induced by the critical current itself, we ha
S8 } T, with the result thatA is proportional toT andU0 is
temperature independent. An estimate ofE from the data on
flux relaxation at 37 K yieldsE.(1/2)Rm0B0S8/(t1t). At
t50 and t51 we have E0.(1/2)3Rm0B0S8'3
31028 V/m, where R is the mean radius of the ring
S850.015,B0510 Oe5786 A/m, andm054p327H/m.

To explain the effect of an alternating field on the b
havior of the magnetic flux trapped by a ring we attempted
describe our experiment using the Kin–Anderson model w
Ueff5U0(12 j / j c). This model allows for an analytical so
lution for a thin ring in an approximation in which the cu
rent density is homogeneous andkBT/U0!1. Suppose tha
the amplitude of the alternating field is sufficiently high f
the field to extend into the hole of the ring. Then the ele
trodynamics of the ring is described by the following equ
tion:

2pRL
d j

dt
1
E0

2
expS 2

U0

kBT
DexpS a j

kBT
D

1m0pR
2vH0 sin vt50. ~5!

Here the dimensions of the ring were taken into account o
by the ring inductanceL5m0RW/2, whereR is the mean
radius of the ring, andW is the width of the ring.

The solution of Eq. ~5! with the initial condition
j (t50)5 j 0 has the form
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0H Wj0 a j 0

3 lnF11CE
0

vt

exp~2C sin vt !d~vt !G J . ~6!

Here we writeC5(U0 /kBT)H
0/ j 0W with allowance for the

fact that j 0; j c . Averaging this solution over the perio
yields

^ j ~ t !&5 j 0H 12
kBT

U0
ln@11G~H0!vt#J , ~7!

where

G~H0!5
C

vtE0
vt

exp~2C sin vt !d~vt !.

The solution implies that with the passage of time the curr
generating the flux trapped by the ring decreases logarith
cally, as is the case with ordinary creep~see Eq.~4!!, but we
havet5@G(H0)v#21 rather than unity. In addition, this so
lution provides a qualitative description of bursts of t
trapped flux escaping when the alternating field is switch
on ~see Fig. 4!. Choosing the characteristic values of th
parameters of, say, one bismuth ring at 77
kBT/U051.631022, W5231023m, and j 053.4
3106A/m2, we found that an alternating field of frequenc
100 Hz with an amplitudeH0'Hcj511.4 Oe in the experi-
ment leads to complete destrapping flux~the field is pushed
out of the hole of the ring!. On the other hand, if we use Eq
~7! and determineG(11.4 Oe) by numerical integration, w
find that it takes roughly one second for the field trapped
the ring~the current in the ring! to drop from 8.63 Oe to only
6.86 Oe, while it takes a field of 76 Oe to achieve compl
detrapping of the flux in the course of several seconds
view of the almost exponential rise in the functionG(H0).
The discharge of the trapped field caused by introduction
an alternating field of amplitudeH0 occurs in a relatively
short interval, the time it takes to introduce the field~i.e.,
;1–2 s!; see Fig. 4. Calculation of the discharge by Eq.~7!
at time t1 in Fig. 4 has shown that such a step on the rel
ation curve appears when an alternating field w
H050.04 Oe andn57 kHz is introduced, while in the ex
periment the amplitudeH0 amounted to 1 Oe. We also not
that the solution~6! for an infinitely thin ring contains a term
with sinvt, as a result of which the alternating field reach
the center of the ring at any amplitudeH0. This, however, is
not the case for a real ring of widthW, and we can examine
the effect of this solution on the field at the center only fro
that outer part of the ring that is penetrated by the alterna
field.

Thus, the model provides a qualitative description of t
behavior of the samples in an alternating field, but for be
agreement with the experimental data it is advisable to t
into account the finite dimensions of the ring and the res
ing current and field distributions. Similar results concerni
the effect of an alternating field are achieved by using
collective creep model
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within the same approximations. Combining this model a
the method of Gurevich and Brand,10 we arrive at the follow-
ing expression for the time dependence of the current den

j ~ t !5 j 0H 11
bH0

Wj0
sin vt1

kBT

U0

3 lnF11bCE
0

vt

exp~2bC sin vt !d~vt !G J 21/b

,

which in the limit of small amplitudesH0 and kBT/U0!1
coincides with~6!.

Let us now explain the results depicted in Fig. 5. Here
is natural to assume that if the conditions for a critical st
are met, in rings of finite width a weak alternating fieldH̃
penetrates the ring only up to a certain depth along the ra
from the external lateral surface. This field evens out
average gradient of the field trapped in the ring. Thus
H0 is lower than the field in which the current is destroyed
the entire ring, then the trapped~average! transport current is
destroyed only within a certain layerDR and, hence, the
trapped flux proves to be smaller than when the current flo
through the entire cross section of the ring. In this case
dependence of the constant component of the fieldB at the
center of the ring onH0 is given by the following expres
sion:

B~H0!

B0
5
ln$11~W/R!@12H0/H0~B50!#%

ln~11W/R!
. ~8!

HereR is the external radius of the ring, andH0(B50) is
the amplitude at which the trapped flux is destroyed by
alternating field in the entire ring. In Fig. 5 the dependen
~8! is represented by the solid line, which approximates
behavior of the experimental values fairly well. The expe
ments in the frequency range 2, ln n,7 revealed a weak
dependence ofB(H0) on n ~see the inset in Fig. 5!, with
H0(B50) increasing with frequency, with the result th
qualitatively the suggested dependence~8! correctly reflects
the behavior of the derivative (1/B0)dB/dH

0 in the experi-
ment. The weak frequency dependence of this derivative
follows from the solution~7!, since the derivative

1

j 0

d j

dH0;
1

B0

dB

dH0,

found from ~7! is almost frequency-independent.
The observed sudden change inB ~Fig. 4! corresponds

to the dependence ofB(H0) given by~8!, while cessation of
flux relaxation resembles the same phenomenon of flux t
ping in the region fromHcj to H* without an alternating
field, which in the previous paper~Ref. 8! was explained by
the formation of two field distributions in a ring with grad
ents opposite in sign, with the field gradient in the regi
adjacent to the hole directed in such a way that a force
rected toward the center of the ring acts on the vortices. T
explains the absence of flux relaxation in the hole. Cessa
of relaxation when the fieldH̃ is switched off has a differen
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in a Josephson medium occurs because of the motion
emergence of Josephson vortices with a certain diffusion
efficient D as a result of the existence of a field gradie
Strong variation ofD requires a frequency of the alternatin
field that is comparable with the frequency of vortex hoppi
between pinning centers,V;106–1010s21. Since in our ex-
periments the frequency of the alternating field varied fro
20 Hz to 20 kHz, which is much lower than hopping fr
quency, the sharp decrease in the rate of flux relaxation m
be attributed to field gradients. Consequently, we assum
that the practical termination of relaxation is caused by
field structure modulated along the ring radius, a struct
produced by a low-frequency alternating field. Different
directed varying gradients may appear in such structu
when the field is applied, while a constant structure emer
when the field is switched off. Here it is assumed that
average gradient of the field in a modulated structure is z
and so is the flux trapped by such a structure~see solution
~7!!.

Thus, our interpretation is as follows. When there is
laxation of the trapped flux in an alternating field who
amplitude is lower thanH0(B50), the section of the ring
near the hole contains a constant field gradient that pus
the vortices out, while the section of the ring near its ou
surface, penetrated by the alternating fieldH̃, contains a
modulated structure with a zero average gradient. When
field is applied, the modulated structure oscillates and d
not prevent the vortices from escaping, only slightly disto
ing the purely logarithmic pattern of relaxation~see Fig. 3!.
After H̃ is switched off, the modulated structure becom
frozen. The frozen structure contains field gradients direc
so as to prevent the vortices from escaping, the flux in
ring freezes, and relaxation stops~see Fig. 4!.

The modulated structure emerges primarily because
conditions for the critical state to emerge are met. Its stabi
is determined by the phenomenon of self-organiz
criticality,15 amounting to the fact that when the field grad
ent spontaneously decreases, the current density in a se
of the ring also decreases, which in turn results in an incre
in the effective pinning energy driving the field gradient u
and vice versa. Such a modulated structure was observe
Batkin and Savchenko,3 which suggests that the propose
physical picture correctly reflects the experimental situati

4. CONCLUSION

We have found that the magnetic behavior of the rin
corresponds to the low-field dynamics of a Joseph
medium.2,5,15We have established the main characteristics
such a medium: the dependence of the critical current
the reduced logarithmic-relaxation rate on the constant fi
and the dependence of the field at the center of the ring
the external field and on the trapped total current induced
switch-off of the external fields.

We have shown that the introduction of an alternati
magnetic field changes the nature of relaxation of the cur
in the ring induced by the trapped constant external field

We have experimentally established the dependenc
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3V. N. Batkin and O. Ya. Savchenko, Pis’ma Zh. Tekh. Fiz.19, No. 7, 29
~1993! @Tech. Phys. Lett.19, 409 ~1993!#.

C
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te,

l.
field. The experimental data are found to be in good agr
ment with the results of calculations done on the assump
that the depth of penetration by the alternating field depe
on the field amplitude.

We have discovered a change in the nature of the
creep and the freezing of the trapped flux in the ring. T
can be explained by the formation of a modulated field str
ture in the bulk of the ring when an external alternating fie
is applied.

Finally, we have used the Kim–Anderson and collectiv
creep models to calculate the effect of an alternating field
the flux trapped in a thin ring.
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Magnetization of a diffusive ring: Beyond the perturbation theory

V. V. Afonin
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Average persistent current over a set of diffusive metallic rings with fixed number of electrons is
considered. We study the case in which the phase breaking time is much greater than an
inverse average interlevel distance. In such a case, many return events for an electron must be
taken into account. As a result, one arrives at a nonperturbative problem for a cooperon
mode fixed by an external magnetic field. This multi-cooperon problem has been considered
previously by Altlandet al., @Europhys. Lett.20, 155 ~1992!# and in several following papers
within the framework of supersymmetric approach. Such an approach involves very tedious
calculations which were performed using a computer algebraic package. Here we solve the
problem in question with the help of a replica trick. It is demonstrated that the replica trick
in combination with a proper analytical continuation in the replica space allows one to obtain the
result in much more explicit way. ©1997 American Institute of Physics.
@S1063-7761~97!02403-7#

1. INTRODUCTION
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Magnetic properties of small conductors were stud
extensively during the last several years~see Refs. 1 and 2
and the bibliography cited there!. It has been understood tha
the magnetic moment~and the associated persistent curre!
induced by an external magnetic flux is a very specific ma
festation of mesoscopic behavior. While originally predict
to appear in clean, one-dimensional, metallic rings,3 most of
the recent discussions about persistent currents have
focused on metallic rings that contain impurities.4 Static
magnetic properties of small rings and dots were studied
several authors.5–11 An important step in the understandin
of magnetization of mesoscopic quantum rings took into
count the difference between canonical and grand canon
ensembles.7,10,12–14It was shown that the magnetization
isolated rings with a fixed number of particles is much larg
than that of the ensemble of rings kept under fixed chem
potential. As a result, the main contribution to the magne
moment was expressed in terms of the fluctuation of
number of particles at fixed chemical potential,^(dN)2&.
The latter quantity was analyzed in Refs. 10 and 14 under
condition\/Dtf @ 1. HereD is an average interlevel dis
tance at the Fermi level,D21 5 nV ~n is the density of states
at the Fermi level, andV is the volume! andtf is the phase-
breaking time.

Let us discuss the physical meaning of the param
\/Dtf . As is well known,15 in the absence of an extern
magnetic field the quantum correction to the conductivity
proportional to the classical probabilityW for an electron
with a velocityv and momentump to return to the vicinity
of the starting point~more exactly, into the volume of th
order ofv dt(\/p)2, which is important for quantum inter
ference!. The probabilityW is given by the expression15
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whereP(r ,t) is the probability density. Here we employ th
fact that in a diffusive regime it is a smooth function
coordinates at the scale of the mean free pathl . To estimate
P(0,t) we take into account that the electron diffusion
restricted by a finite volume of the sample. In such a case,
have

P~0,t !}
1

V (
n,n'

expF2DS n2R2 1
n'
2

d'
2 D tG . ~2!

HereD is the diffusion constant,R is the radius of the ring,
andd' is its transverse dimension. The numbersn, n' have
the meaning of quantum numbers for longitudinal and tra
verse diffusive modes, respectively. For a thin ring,d' ! R,
onlyn' 5 0 is important. We can see that atDtf /R

2 @ 1 the
sum over discreten, n' in ~2! cannot be replaced by a
integral. Otherwise, onlyn 5 0 is important, andW
; tfD/\. If this quantity is small, we can restrict the anal
sis to a single return event.

Let us now concentrate on the case of external magn
field. In a magnetic field, the numbern in the expression~2!
must be replaced byn 2 F/F0 , whereF is the magnetic flux
embedded in the ring, andF0 5 p\c/e.16 It is clear that the
quantum contribution is maximal ifF/F0 is close to an in-
teger numbern0 . If the differenceñ [ n0 2 F/F0 5 0, we
have the same situation as that in the absence of a mag
field—only the mode withn 5 n0 is important. One can ex
pect that this property is also the case at finiteuñu ! 1. Indeed,
fornÞ n0

dW} (
nÞn0

D

Dñ 2/R211/tf
;

DR2

D
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~for the last estimate we have assumedDtf /R
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where ^(dN)2&m5^m& is the particle number autocorrelation
ial.
ron

l-

by

x-

ge,

ase
22,
quently, ifdW! 1 one can ignore the contributions of all th
modes withn Þ n0 to the probability for the return. Howeve
the corresponding contribution of the mode withn 5 n0 is not
small atDtf /\ * 1. Hence, we arrive at the problem of ca
culating the localization contribution in the case

D/R2@D/\*1/tf .

In this region we can still use a single-mode approximati
but the perturbation theory involving a single return eve
fails.

The problem in question was addressed by Altla
et al.17,18 ~see also Refs. 19–21!. The authors used the so
calledQ-Hamiltonian approach within the framework of th
supersymmetric method. An intrinsic feature of this meth
is that one has to cancel out specific nonphysical contr
tions. Therefore, the supersymmetric approach involves
dious algebraic calculations. Consequently, the authors
Refs. 17 and 18 extensively used a computer algebraic p
age. As a result, the intermediate equations have not b
published, because, as it was stated, the computer prin
had many pages.

On the other hand, another approach—the so-called
lica method—exists.22 According to this method, one has t
replace the system under consideration byN systems which
are identical to the original one and at the end tendN→0.
Usually, after such a procedure one obtains relatively sim
expressions. The limiting transitionN→0 ~if done properly!
automatically cancels out the nonphysical contributio
which has to be done explicitly within the supersymmet
approach.

To take the full advantage of this property, one need
regular procedure to calculate the limitN→0. The aim of the
present paper is to suggest a procedure of analytical con
ation of a nonperturbative, two-particle Green’s functi
from integerN to the whole complex plane which include
the pointN 5 0. Such a procedure allows one to calculate
limit rather automatically, without the need of direct canc
lation of nonphysical contributions. We obtain an analytic
nonperturbative expression for the persistent current in a
soscopic diffusive ring and compare it with the results
Refs. 17 and 18.

The paper is organized as follows. In Sec. 2 the ba
equations for the fluctuation of the number of particles,
well as for the persistent current are analyzed. The effec
action in the single-mode approximation is considered
Sec. 3. In Sec. 4 the particle number autocorrelation func
and persistent current are calculated in the nonperturba
region, and results are summarized. In the following cal
lations we set\ 5 1. Then\ will be restored in the estimate
and final results.

2. BASIC EQUATIONS

According to Ref. 10, the main contribution to the pe
sistent currentI can be expressed in terms of the magne
flux F embedded in the ring as follows:

I5
cD

2

]

]F
^~dN!2&m5^m& , ~3!
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function, calculated at a given value of chemical potent
The latter can be expressed in terms of single-elect
Green’s functions as23

^~dN!2&5E
2m

0

de1de2K~e1 ,e2!, ~4!

where

K~e1 ,e2!5
1

p2 E dr1dr2$^Im Ge1
R ~r1 ,r1!

3Im Ge2
R ~r2 ,r2!&2^Im Ge1

R ~r1 ,r1!&

3^Im Ge2
R ~r2 ,r2!&%. ~5!

Here^...& means the usual impurity average. The quantity~5!
has been calculated in Ref. 10 in the limiting caseDtf

! \. Our aim is to go beyond this limiting case, i.e. to ca
culate the correlation function for arbitraryDtf /\, keeping
pFl @ \. For this purpose we employ the method used
Efetov, Larkin, and Khmelnitskii22 with minor modifications.
Namely, we will use the so-calledQ-Hamiltonian approach
within the framework of the replica trick. The confined e
pression for the correlation functionK(v)(v 5 e1 2 e2) can
be written in the form~cf. Ref. 22!

K~v!5F n2

N2*DQ exp~2F !
E dr1dr2E DQe2F

3Tr@LQ~r1!#Tr@LQ~r2!#G
N→0

, ~6!

where

F5
pn

4 E dz TrFDS ¹Q1
ie

c
A@Q,L#2D 2

12S iv2
1

tf
DLQG . ~7!

HereA is the vector-potential, and@A,B#2 [ AB2 BA. Tak-
ing into account only the elastic scattering by short-ran
nonmagnetic impurities, we can specifyQ as 2N 3 2N Her-
mitian matrices,Q2 5 1, Tr Q 5 0,N is the number of repli-
cas, while

L5S 1̂ 0

0 21̂
D ,

where 1̂is theN 3 N unit matrix. The parametertf
21 is in-

troduced phenomenologically. We assume that the ph
breaking is due to the inelastic processes. Following Ref.
we use the parametrization

Q5L exp~W!, W5S 0 B

2B1 0 D ,
whereB is an arbitraryN 3 N matrix.
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3. EFFECTIVE ACTION IN SINGLE-MODE APPROXIMATION
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Let us consider a ring with the radiusR and the width
d' ! R. We can therefore take into account only the dep
dence of the matricesB on the angular coordinatew. Ex-
panding this dependence into the discrete Fourier serieB
5 (nBn exp(inw), we introduce the mode numbern. As was
explained in Sec. 1, only one mode withn 5 n0 correspond-
ing to min(n 2 F/F0) is important~this assumption will be
justified at the end of Sec. 4A!. Retaining only this mode and
assuming¹w 5 (1/R)]/]w, weobtainW¹wW1 ¹wWW5 0.
Hence,

¹wQ5
1

R
L

]

]w
eW5~¹wW!W21 sinhW

5
in0
R

sinhW.

We can then expand sinh2W5 (1/2)(cosh 2W2 1) as a series
in

W2k5~21!kS ABn0
Bn0

1 0

0 ABn0
1Bn0

D 2k

.

The item Tr(LQ) can be treated in a similar way. As
result, we obtain the following expression forF:

F5
p

2D F DR2 S n02 F

F0
D 2 Tr sin2~ABn0

Bn0
1 !

12S iv2
1

tf
DTr cos~ABn0

Bn0
1 !G . ~8!

We must now consider an important point. An arbitrary co
plexN 3 N matrixB can be described by two HermitianN
3 N matrices. These matrices are defined as

B5r exp~ iw!, B15exp~2 iw!r. ~9!

The quantityF depends only on the matrixr. On the other
hand, an arbitrary Hermitian matrix could be diagonaliz
the eigenvalues being real. One can immediately see tha
integral overr in the expression~6!, with F taken from Eq.
~8!, for the correlation function diverges. This divergence,
fact, does not occur, because the eigenvalues ofr must be
defined in a finite interval. Indeed, one has to define
variablesr in a way to obtain a one-to-one corresponden
betweenr andQ. On the other hand, one can explicitly sho
that

Q5LeW5S cosABB1
sinABB1

ABB1
B

B1
sinABB1

ABB1
2cosAB1B

D
5S cosr sin r eiw

e2 iw sin r 2cosrT
D , ~10!

where rT denotes the transposed matrixr. Here we have
employed the relation

rT5Ae2 iwr2eiw, ~11!
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initial replica Hamiltonian~see Appendix A!. It is clear that
the matrixQ is a periodic function ofr, and that one has to
specify a region at least not larger than one period in orde
obtain a one-to-one correspondence. Moreover, to ob
proper analytical properties~damping is the lower semi
plane of thev-variable! of the actionF ~8!, we must define
the integration limits as (2 p/2, p/2). Finally, the actionF
reads as

F5
p

2D F DR2 S n02 F

F0
D 2 Tr sin2 r

12S iv2
1

tf
DTr cosrG . ~12!

Now let us transform the variables fromB, B1 to r, u
[ exp(iw), where the Jacobian is~see Appendix B!

D~B,B1!

D~r,u!
52~detu21r!N. ~13!

We see that the variablesu can be integrated out and can
celled with the denominator in Eq.~6!.

4. PARTICLE NUMBER AUTO-CORRELATION FUNCTION

A. Eigenvalue representation

Let us now return to Eq. ~6!. Since TrLQ
5 2 Tr cosr, we see that the integrand depends only on
eigenvalues ofr. Hence, we should transform the variabl
to the eigenvalues and some other ones which could be
grated out in the numerator and the denominator. This tra
form is outlined in Appendix 5. As a result, we obtain

KN5

~Vn!2*0
1$dl%u~l~ i !!F (

j51

N

cos
pl~ j !

2 G2
N2*0

1$dl%u~l~ i !!
, ~14!

where$dl% [ P i50
N21dl ( i )ul ( i )u2i1N, and

u~x!5expF2
pD

2DR2 S n02 F

F0
D 2 sin2S px

2 D2
p

D

3S i ~e12e2!2
1

tf
D cosS px

2 D G . ~15!

The expression~15! contains three dimensionless param
eters:

g[
p\

Dtf
, V[

p~e12e2!

D
, E[

\pDñ 2

2R2D
, ~16!

whereñ [ (n0 2 F/F0). It is important to keep in mind the
following. If max(g,V) @ 1, only the smalll’s are important.
Hence, one obtains at the result which is found in the fram
work of the perturbation theory.10,14However, if bothg and
V are small one must sum the multi-cooperon contributio
which cannot be done in the framework of the perturbat
theory. There is a substantial simplification in the case

ñ!1, but Ec[
\pD

2R2D
@1. ~17!
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In this case, only one mode withun0 2 F/F0u ! 1 is impor-
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tant; this is the case in which Eq.~15! is valid. Consequently
we consider the case in which the inequalities~17! hold, but
the quantitiesg andV can be arbitrary. In fact, the mod
n0 must be considered in a nonperturbative manner, w
the other modes can be treated in the framework of the
turbation theory.

B. Analytical continuation

We are not able to analytically calculate the express
~14! for an arbitraryN. Instead, we will perform analytica
continuation of this expression to arbitraryN, and then cal-
culate its limit asN→0.

We introduce the quantity

ZN5 )
k50

N21 E
0

1

dxkxk
2k1Nu~xk!, ~18!

where

u~x!5exp@2E sin2~px/2!2~ iV2g!cos~px/2!#. ~19!

It is convenient to define

zN[ ln ZN[zR1zA,

where

zR[
1

2 (
k5

N11
2

3N21
2

ln E
0

1

dx x2k211du~x!,

~20!

zA[
1

2 (
k52

N11
2

2
3N21
2

ln E
0

1

dx x22k211du~x!,

d is a small positive number which later will vanish. W
introduce this parameter to keep the important integrals c
vergent in the limitN→0. The first step is to express the su
over k in terms of the contour integral over complexk. For
this purpose we should keep in mind that the derivat
] f @2p i (k 1 1/2)#]k @wheref (z) 5 (ez 1 1)21# has second-
order poles at integer numbers. Consequently, one can
presszR(A) as

zR~A!5E
C6
dkS ] f ~2p ik !

]k DF6~k!, ~21!

F6~k!5
1

2 Ek

dk8 lnF E
0

1

dx x62k8211du~x!G . ~22!

The contoursC6 are shown in Fig. 1. These expressions
correct only if other singularities, except for the poles off ,
are not important. We can show that the functionF1(k) has
singularities only in the left-hand semi-plane of the comp
variablek, while the functionF2 has singularities only in
the right-hand semi-plane ofk. To prove this statement, on
must expand the functionu(x) in a Taylor series. For the
following, it is convenient to rotate thek-plane throughp/2
by introducing a new variable,k1 [ 2p ik. The transformed
contoursC̄6 are shown in Fig. 2.

Making use of exponential convergence of the integ
due to the properties of] f /]k, we transform the contou
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integrals to the integrals along the real axis. For simplicity
us assume thatN is even. As a result, we have

zR~A!57E
2`

`

dkS ] f ~k!

]k D FF6S k6 ipN

2p i D
2F6S k63ipN

2p i D G . ~23!

We can now perform an analytical continuation overN. For
the functionsF6 the continuation must be done in a differe
way for the reason to be discussed later. For this purpose
replaceiN by 6 N0 in the functionsF

6, respectively. Here
N0 is a real, positive quantity which will eventually tend t
zero. Finally, we have

zN05E
2`

`

dkF S ] f ~k2pN0!

]k D2S ] f ~k23pN0!

]k D G
3FF2S k

2p i D2F1S k

2p i D G . ~24!

As a result, the lowest-order term in theN0-expansion of the
functionzN0 is } N0

2. Finally, we obtain

FIG. 1. The integration contoursC6 for N 5 4.

FIG. 2. The integration contoursC̃6 for N 5 4.
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z52p iN2E`

dk
]2f ~k!

ln E1

dx x2 ik/p211du~x! .
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I52J ñ, J 5
eD Dtf

. ~28!

nly

ed

for

t

ter
the

be

ty
s

.

ent

ce.
n

odes

li-
ex-
0
2`

S ]k2 D F
0

G
~25!

The reason for splitting the functionzN into zR andzA with
the replacementsN→ 6 iN0 is as follows. AsN tends to
zero, the integration contour comes infinitely close to the
of the logarithm functions in the expressions forF6. Such a
situation is not the case for any finiteN, and it leads to a
nonphysical pinch which should be subtracted. Within
above-mentioned procedure such a contribution is pu
imaginary, while the one of interest to us is real. The ima
nary contributions toF1 andF2 have opposite signs. Thus
the nonphysical contribution is automatically cancelled in
sumzR 1 zA. We note that these terms are of the first orde
N0 , and that they must vanish; otherwise, the two-parti
Green’s function would be divergent.

In fact, a similar trick has been used by Matsubara
formulate the thermal Green’s function technique~see, e.g.,
Ref. 24!. Let us compare our analytical continuation of t
function z to the analytical continuation of the two-partic
Matsubara Green’s functionK(Vm), whereVm is the exter-
nal Matsubara frequency. In each case one must use
functions, which are regular in the upper~retarded! and the
lower ~advanced! semi-plane, respectively. The two abov
mentioned functions can then be combined into one wit
cut in the complex plane. The physical reason for suc
splitting into R and A parts is to cancel the nonphysic
contributions. In the Matsubara case the nonphysical con
butions toK(Vm) arise at the pointVm→0 and cancel out
after a similar continuationVm→ iV of the sum overV.

C. Persistent current

Following Ref. 10, we express the current according
Eqs.~3! and ~4!. On the other hand,

K~e1 ,e2!}e
2z

]2

]e1]e2
ez.

Finally, we obtain

I52
cD

2

]

]F
lim
N0→0

zN0~e15e250!

N0
2 52J0ñG , ~26!

whereJ05 \cD/R2F05 eD/pR2, and

G5 i E
2`

`

dk

3
]2f ~k!

]k2
*0
1dx sin2~px/2!x2 ik/p211du~x,V50!

*0
1dx x2 ik/p211du~x,V50!

. ~27!

One can check directly that at

D!
\

tf
!

\D

R2 , uñu!1

the above expressions lead to the expressions obtaine
Refs. 10 and 14. One can calculate the integrals with the
of the steepest-descent method to find10,14
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In the region

g!1, Ec@E@1

one can also develop a perturbation theory. Indeed, o
small values ofx in the integrals in Eq.~27! are important.
The physical reason for this is the magnetic-field-induc
phase breaking. In this region we obtain the result

G5
1

p2ñ 2

R2D

\D
, I52

1

p3ñ

eD

\
. ~29!

This result agrees with the asymptotic result of Ref. 14
g @ 1,AR2/Dtf ! ñ ! 1. Note that the result~29! obtained
for g ! 1 is valid in the region

AR2D/\D!ñ!1.

For the caseg ! 1,E ! 1, where the perturbation theory is no
applicable, we setu(x,V 5 0) 5 1. As a result, we obtainG
5 0.21, and the current is

I520.21
eD

p3R2 ñ. ~30!

We observe a maximum atñ ; AR2D/\D, where the maxi-
mal current is

Imax;eADD/\R2. ~31!

Expressions~29! and~30! are fully consistent with the curve
calculated in Refs. 17 and 18 with the help of a compu
algebraic package. Let us consider the dependence of
maximal current ong ' \/Dtf . At g @ 1 the perturbation
theory10,14 predicts the maximum of the current atñ
; AR2/Dtf; the maximum value is

Imax;e
D

\
AtfD

R2 . ~32!

Consequently,Imax} g21/2atg @ 1, and it isg-independent at
g ! 1. In this region we estimate the persistent current to

Jmax;
evF
R
ADtel

\
,

where tel is the elastic relaxation time. The quanti
Dtel /\ for a typical metal can be estimated a
~l /R!(a2/A), wherel is the mean free path,a is a typical
interatomic distance, andA is the cross section of the ring
Equation~30! shows that atDtf /\ @ 1 the phase-breaking
time tf is not contained in the expression for the persist
current. Returning to Eq.~1!, we must conclude that att
* \/D the electronic wave packet is not smeared in spa
This means that then0-mode of the cooperon is localized i
a sense; the localization length is of the order ofA\D/D. Of
course, this does not mean localized, because other m
are still under weak localization conditions.

The range of parameters in which the theory is app
cable and where it leads to nontrivial results can be
pressed as follows:

1!R/l !K,~1/K !~tf /tel!,
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whereK ; (pd' /\)2 is the number of transverse channels.
e

u
t

u
ar

ll
e
li-
ich
tw

r
c

ys
r-
c-
g
n
y

.

ia

g
r

Herec ic i
1 1 c i

1c i 5 0. The action can bewritten as follows:
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The left inequality is the criterion for a diffusive motion, th
first right inequality is the Thouless criterionEc @ 1, and the
last right inequality is the conditionDtf /\ @ 1. We see that
one needs low temperatures to satisfy the inequalitytf /tel
@ K @ 1, and also samples of very small size. No previo
experiments, to the best of our knowledge, satisfy this se
conditions.

5. DISCUSSION

As one can see from the preceding sections, the res
of the replica procedure which are complicated for arbitr
integerN, are rather simple in the limitN→0. In this limit
the nonphysical contributions are cancelled automatica
while in the supersymmetric method this has been done
plicitly. An important feature which leads to such a simp
fication is the procedure of the analytical continuation wh
is done before direct calculations. Specifically, one has
functions which are analytical in the upper~lower! semi-
plane of the complex plane ofN, respectively. The prope
analytical continuation is a combination of these two fun
tions. Consequently, it has a cut at ImN 5 0. The procedure
used above allows one to cancel automatically the nonph
cal pinch in the two-particle Green’s function, which othe
wise would exist atN0 5 0. We believe that such a constru
tion is important, in general, for the calculations involvin
the replica trick. In such a way we reproduce analytically a
rather simply the results obtained in Refs. 17 and 18 b
computer algebraic package.

We wish to thank V. L. Gurevich, V. Yu. Petrov, and A
D. Mirlin for valuable comments. One of the author~V.V.A.!
is grateful to the Research Council of Norway for a financ
support within the Cultural Exchange Program~KAS!.

APPENDIX A: EFFECTIVE ACTION-DERIVATION

Here we rederive the expression~6! following Ref. 22,
in order to clarify important symmetry properties. Followin
Ref. 22 we use the replica trick and introduce field operato

C5$c1 ,...,cN ,c1
1 ,...,cN

1%, C15S c1
1

...
cN

1

2c1

...
2cN

D .
the same as Eq.~17! from Ref. 22. To analyze the symmetry
k
o
r

s
of

lts
y

y,
x-

o

-

i-

d
a

l

s:

F5 i E ~dr !C1~r !~Ê2Ĥ!C1~r !,

Ê5EÎ, Ĥ5@H01Uel~r !# Î2S v

2
1 id DL. ~A1!

HereH0 is the free-electron Hamiltonian,Î is the 2N 3 2N
unit matrix, andUel(r ) 5 U0( i

Md(r 2 r i), whereM is the
total number of impurities. The firstN rows of Ĥ describe
the evolution of the retarded Green’s functions, while the l
N rows describe an evolution of the advanced Green’s fu
tions. The following step is the averaging over the positio
of the impurities. We have

S[)
i51

M E dr i
V

expF iU 0(
i51

M

C1~r i !C~r i !G
5F E dr

V )
f51

2N

~11 iU 0c f
1~r !c f~r !!GM. ~A2!

Here we have taken into account that only the linear term
c f

1 andc f can enter the continual integral for the correlati
function ~Grassman algebra!. For the same reason, one mu
allow for only the terms with differentf when calculating the
product. For a weak scattering and in the thermodyna
limit M ,V→`, M /V5const,

S'exp~dm1 iG!,

dm5
MU0

V E drC1~r !C~r !,

G5
g0
2

2 E dr(
fÞg

c f
1~r !c f~r !cg

1~r !cg~r !. ~A3!

Here dm is a shift in the chemical potential, andg0
2

5 2MU0
2/V ~g0 is the coupling constant!. By analogy with

Ref. 22, we introduce an auxiliary scalar field which is re
resented by Hermitian matricesQ. As a result, the effective
c4 interaction can be decoupled as follows:
expF2
g0
2

2 E dr(
fÞg

c f
1~r !c f~r !cg

1~r !cg~r !G5
*DQ exp@2Tr *dr ~pn/4tel!Q

2~r !2~1/2tel!C1~r !QC~r !#
*DQ exp@2Tr *dr ~pn/4tel!Q

2~r !#
. ~A4!

Here we used the definition 2png0
2tel 5 1. This expression is impurity averaging and after introducing the fieldQ. In
*

properties of the impurity-averaged Hamiltonian, we ta
into account that the initial Hamiltonian possesses the pr
ertyH i j u i , j,N 5 H i1N, j1N* . This property must be kept afte
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e
p-

terms ofQ it reads asiQi j 5 2 iQi1N, j1N . Taking into ac-
count Eq.~10!, we obtain the relation~11!. The following
steps are exactly the same as those in Ref. 22.
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APPENDIX B: CALCULATION OF THE JACOBIAN

e

th

the definitionr ikXk
(b) 5 l (b)d ikXi

(b) that any vector of the type
ix(b) (b) (b)

-
o-

n,
he
c-

nce
der

ver
ange
Let us arrange the columns of the 2N2 3 2N2 matrix
](B,B1)/](r,m) as

$B11,...,BN1 ;B12,...,BNN ;B11
1 ,...,BNN

1 %

and the rows as

$r11,...,rN1 ;r12,...,rN2 ,...,rNN ;

u11,...,uN1 ;u12,...,uN2 ,...,uNN%.

Taking into account the matrix identities

dB5dru1rdu, dB15u21dr2u21du u21r, ~B1!

we express](B,B1)/](r,u) as follows:

]~B,B1!

]~r,u!
5S Â11 Â12

Â21 Â22,
D . ~B2!

whereÂik are theN
2 3 N2 matrices. One can show that

~B3!

Here3 means the Kronecker product, and̂means the di-
rect product.25 Making use of the identity25

det~A3B![~detA!p~detB!q,

~where q and p are the ranges of the matricesA and B,
respectively!, and of the Laplace expansion of th
determinant,25 we obtain Eq.~13!.

APPENDIX C: VARIABLE TRANSFORMATION

Let us consider the set of variables which includes
eigenstatesl (b) andN eigenvectorsX(b). One can see from
rows contain the common factorl times the quantities

l-
e

e X ~where x is an arbitrary phase! satisfies the
equation with the samel (b) and r ik . Consequently, one
must excludeN extra variablesx (b). We therefore require
the diagonal elementsXi

( i ) to be real. Consequently, the ma
trix Xk

( i ) can be constructed according to the following pr
cedure. The first column,Xi

(1) , containsN 2 1 variables
Xi
(1) , i Þ 1, while the last~real! column,X1

(1) , is calculated
from the requirement of normalization. In the next colum
Xi
(2) , the lastN 2 2 variables are chosen independently. T

elementX1
(2) is determined by the orthogonality of the ve

torsX(2) andX(1), while the last element,X2
(2) is determined

by the normalization ofuX(2)u. The following elements are
determined by continuation of this procedure. Note that si
all the off-diagonal elements are complex, we can consi
the real (Uk

( i )) and the imaginary (Vk
( i )) parts. In this way we

can presentN2 independent elements of the matrixr in terms
of N eigenvaluesl ( i ), andN2 2 N independent variables

Uk
( i ) andVk

( i ) . From the definition,r i j 5 (kXi
(k)l (k)Xj

(k)* , we
can expressr in terms of$U,V,l% as

]r i j
]Ui

~k! 5l~k!@Uj
~k!~11d i j !2 iV j

~k!~12d i j !#,

]r i j
]Vi

~k! 5l~k!@ iU j
~k!~12d i j !1Vj

~k!~11d i j !#,

]r i j
]l~k! 5Ui

~k!Uj
~k!1Vi

~k!Vj
~k!1 i ~Vi

~k!Uj
~k!2Ui

~k!Vj
~k!!.

~C1!

Note that the above formulas do not contain summation o
repeated superscripts. To calculate the Jacobian, we arr
the correspondingN2 3 N2 transformation matrix in the fol-
lowing way. The columns are labeled byN2 ^^old&& variables

$r i1 ,r i2 ,...,r iN%.
The rows are labeled byN2 ‘‘new’’ variables

Consequently, as follows from Eq.~33!, the first (N 2 1)
(1)

4L. P. Levy, G. Dolan, J. Dunsmuir, and H. Bouchiat, Phys. Rev. Lett.64,
2074 ~1990!.
er,
which depend only on$U,V%. The next (N 2 2) lines contain
the factorl (2), etc. The lastN lines are$l%-independent. As
a result, the Jacobian can be expressed asP i51

N @l ( i )#2(N2 i )

3 ~some function of$U,V%!. This expression must be mu
tiplied by (detr)N 5 (Pi51

N l(i))N, and we obtain Eq.~14!.
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Electrodynamics of hard superconductors in crossed magnetic fields
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A model systematically accounting for the cutting of Abrikosov flux lines has been developed
for the critical state of a hard superconductor in crossed dc and ac magnetic fields. The
electrodynamic equations have been derived by minimizing the Gibbs free energy calculated
using the proposed two-velocity hydrodynamic model. One velocity describes the motion of the
vortex lattice as a whole, and the other describes the relative motion of the two intersecting
sublattices. The resulting equations yield as special cases the previously known electrodynamic
equations for hard superconductors. The model provides a natural explanation for the
suppression of dc magnetization by a transverse ac magnetic field observed in our experiments.
© 1997 American Institute of Physics.@S1063-7761~97!02503-1#
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The problem of describing the electrodynamic propert
of hard superconductors has noat been completely solve
this day. The static and quasi-static properties of these
terials are usually described using an equation propose
Bean1 for the distribution of the magnetic fieldH:

dH

dx
56

4p

c
Jc , ~1!

whereJc is the critical current density andc is the speed of
light. This equation has allowed the dc magnetization of h
superconductors to be calculated, and determines the sh
of hysteresis loops and the energy loss due to remagne
tion. This equation has been used in describing lo
frequency properties of superconductors. It was employe
developing a technique for remote measurements of the c
cal current densityJc , and determination of its dependen
on the magnetic field, temperature and other parameters
ing measurements of the surface impedance, ac mag
susceptibility, third harmonic in the superconductor respo
to an ac magnetic field, etc.2–5

The Bean equation was verified by analyzing the bala
of forces acting on magnetic flux lines. According to th
model, called a critical-state model, the magnetic force a
ing on a vortex is balanced by the pinning forces due to
interaction of vortices with crystal lattice irregularities, pr
cipitates of other phases, sample boundaries, etc.6 Owing to
pinning, the critical current densityJc is nonzero, and the
magnetic field distribution is fairly accurately described
Eq. ~1!.

Presently the critical state equation is usually defined
the Maxwell equation for magnetic field combined with t
material equationJ5Jc .

7 In most cases when the configur
tion is simple, the direction of the vectorJc is determined
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magnetic field consists of several components or its orie
tion is variable. Some authors~see, for example, Ref. 8! sug-
gested for calculations of electromagnetic parameters a
eralized critical-state equation in the form

curl B5
4p

c
Jc
E

E
, ~2!

whereE is the electric field andB is the magnetic induction
This equation can be understood by analyzing the curr
voltage characteristic of a hard superconductor. A chang
the magnetic flux within the superconductor generates
electric field and converts the sample to a resistive state.
can assume that, as in the case of a normal metal, the cu
should be aligned with the electric field. By taking the lim
E→0, one obtains Eq.~2!. This equation has been used
interpreting several effects associated with the nonlinear
teraction between electromagnetic waves.9,10

Description of superconductors in crossed magne
fields is of special interest.8,11 Recently12 we have detected
the collapse of the dc magnetic momentM of a hard super-
conductor subjected to an ac magnetic fieldh5h0cosvt or-
thogonal to the dc magnetic fieldH. Both fields were aligned
with the superconducting plate surface. We found that the
magnetic moment decreases markedly under the ac mag
field h0!H, and the hysteresis on theM (H) curve disap-
pears.

There are two alternative approaches to the electro
namics of superconductors in crossed magnetic fields. On
them is based on Eq.~2!. In accordance with this equation
shielding currents, generating the dc magnetization,
driven by the ac magnetic field inwards, which leads to
decrease in the magnetic moment. A more consistent
proach can be based on the features of the vortex syste
crossed magnetic fields due to crossing of magnetic

5927$10.00 © 1997 American Institute of Physics



lines, which is also calledflux cutting.13,14 It would be natu-
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ral to account for the collapse of the dc magnetization
terms of electrodynamic equations based on the mode
flux cutting,15,16 which has been successfully used in inte
preting several experiments in crossed magnetic fields.17,18

These equations describe the magnitude of the magnetic
density B and its tilt angleq with respect to a selecte
z-axis as functions of coordinates and are a generalized
sion of the Bean model by Eq.~1!. In the simplest case, the
can be expressed in the form

]B

]x
5
4p

c
Jc ,

]q

]x
5kc , ~3!

whereJc is the critical current density similar to that in Eq
~1!, andkc is a phenomenological parameter determined
the current component aligned with the vectorB. Unfortu-
nately, these equations cannot account for the collapse o
dc magnetization.

Thus, we have a paradoxical situation, when Eq.~2!,
which has no proper theoretical justification and ignores
portant features of the vortex system, describes the colla
of the dc magnetization, whereas the equations based o
physical properties of the vortex system in crossed magn
fields yield a description in which this magnetic mome
does not strongly depend on the ac field. One can ascribe
paradox to the fact that the electromagnetic equations h
not been consistently derived from the model of cross
magnetic vortex filaments and are purely phenomenologi

The aim of the present study was to develop an elec
magnetic model adequately taking into account the featu
of the vortex system in crossed magnetic fields and desc
ing the above effect. The next section will present a deta
description of the experiment,12 which was a crucial test o
existing models of hard superconductor electrodynamic
crossed magnetic fields. Then the equation system w
successfully describes the collapse of the dc magnetic
ment and also describes other existing models as limi
cases will be derived using a variational technique.

2. EXPERIMENT

An efficient method for studying the behavior of ha
superconductors in crossed magnetic fields is measuring
effect of ac magnetic field on dc magnetization curves. M
surements were performed with plates of textured highTc
superconductor of the Y–Ba–Cu–O~YBCO! family cut
from a bulk piece (437360 mm3!. The plate surface coin
cided with theab crystal plane. The sample microstructu
had a brick-wall shape, which is typical of fused YBC
materials. The temperatures of the onset and completio
the superconducting transition were 92 and 91.3 K, resp
tively, and the critical current density atT577 K in a mag-
netic field of 10 kOe was about 104 A/cm2.

The magnetization curvesM (H) were recorded using a
vibrating-sample magnetometer. A dc magnetic field of up
10 kOe was generated by an electromagnet and directed
allel to the sample surface. An ac magnetic fie
h(t)5h0cosvt with the amplitudeh0 of up to 600 Oe and a
frequencyv/2p ranging between 100 and 2000 Hz was p
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duced by a solenoid. The ac magnetic fieldh(t) was directed
perpendicular to the dc fieldH in the sample plane.

The effect of the ac magnetic field on the dc magne
moment is illustrated by Fig. 1. The curves ofM (H) were
recorded in a sample with dimensions of 83430.4 mm and
correspond to different amplitudes of the ac field. One c
see that the hysteresis of the magnetization is smalle
higherh0. Moreover, for largeH the magnetization hyster
esis is totally suppressed and cannot be seen on some pa
the magnetization curve. The share of these parts incre
markedly withh0. Some estimates have demonstrated t
these parts of the magnetization curve correspond toH and
h0 for which the ac magnetic field penetrates throughout
sample volume. The effect has been shown to be insens
to the ac field frequency. It is noteworthy that the suppr
sion of the dc magnetization caused by the ac field is ir
versible, i.e., when the ac magnetic field is turned off at
arbitrary dc fieldH5H1, the magnetic moment is frozen an
does not return to its initial value corresponding toM (H1)
on curve1 ~Fig. 1!.

These experimental results provide indirect evidence
favor of the following description of direct and alternatin
shielding currents in the sample. Alternating currents
duced by the applied ac magnetic fieldh(t) push the direct
shielding current from the surface layer into the sample
terior. As a result, the regions containing the ac magn
field do not contain currents generating dc magnetizati
i.e., the dc magnetic field in these regions is uniform. If t
ac magnetic field penetrates throughout the sample volu
the magnetization curve has no hysteresis, and this state
sists even when the applied ac magnetic field is turned
This decoupling of direct and alternating shielding curre
leads to other effects detected in experiments, such as
collapse of the transport current due to a collinear ac m
netic field, the suppression of induced circular currents
superconducting loops, etc.8,11 Direct measurements of th
spatial current distribution in a sample using a Hall prob4

have produced experimental evidence in favor of this mod
describing the decoupling of shielding currents. The the

FIG. 1. Evolution of magnetization loops with increasing ac field amplitu
~1! h050; ~2! 100 Oe;~3! 200 Oe;~4! 300 Oe;v/2p5130 Hz,T577 K.
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described in the next section and based on the kinetics of the
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vortex system provides an interpretation of all the expe
mental facts.

3. THEORY

3.1. Two-velocity hydrodynamic model of vortex lattice

In order to describe the electrodynamics of hard sup
conductors in crossed magnetic fields, let us consider
behavior of the vortex system in the macroscopic appro
mation. The state of the system is characterized not by
positions and velocities of isolated flux lines, but by som
averaged parameters describing the state of vortex
sembles, i.e., we use the quasi-hydrodynamic approxima
In this model, we introduce two continuous function
namely the vortex densityn and the mean velocityV of a
sufficiently large group of vortices. The velocityV is non-
zero when the applied magnetic field is varied, and we
sume that this variation is slow~quasi-stationary!. If the field
on the superconductor surface is constant, the vortex la
remains in its current state for an infinite time. In the state
equilibrium, the magnetic force acting on the vortices is fu
balanced by the pinning force. This means that our con
eration is limited to the critical state model, and both t
magnetic flux creep and viscous flow of vortices are ignor
The electrodynamic equations for such a system are der
by varying the Gibbs energy with respect to small pertur
tions of the vortex coordinates. The Gibbs energy inclu
both the magnetic energy of the system and the work aga
pinning forces.

In what follows, we will assume that the superconduc
occupies the half-spacex.0. Suppose that both the absolu
value and direction of the applied magnetic field are variab
but the field is always parallel to the sample surface. In t
case, the vortex lattice state can change for several rea
First, flux lines driven into the sample from the surface a
tilted with respect to those in the bulk can change their ali
ment owing to their magnetic interaction. A simple analys
however, indicates that this process is energetically unfa
able. Specifically, the gain in the magnetic energy due
vortex realignment along the magnetic field is proportio
to its length, whereas the work done by the pinning force
proportional to its length squared. Second, nonparallel vo
ces can cross one another during their motion. When
vortices cross, there are two options. They may pass thro
one another without changing their alignments, or two n
vortices parallel to one another may be generated as a r
of their crossing.13,14 In this process, the vortices chang
their directions, which become closer to that of the magn
field, so they gain some energy. In what follows, for conv
nience, we will refer to the cutting as the interaction of tw
vortices in which initial vortices disappear and two new on
are generated. The probability of this process is character
by the parameterp* , which depends on their mutual align
ment and may also be a function of the vortex densityn. The
parameterp* can be calculated, in principle, only using th
microscopic theory. Our task is construction of a model
the critical state for the vortex lattice taking into account t
process of flux-line cutting.
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ables. In this situation, there is a spatial distribution of v
tices with different orientations. A simple analysis~see Ap-
pendix A! demonstrates that the flux-line cutting
impossible if we introduce a single velocityV(x,t) as a con-
tinuous function of time and coordinate characterizing m
tion of vortices at a given point. We should introduce,
least, one additional velocityU(x,t) characterizing the rela
tive motion of vortices. Introducing the second veloci
means that we assume the existence of two vortex gro
with different velocities at a given point~a two-velocity
quasi-hydrodynamic approximation was discussed in the
lier publication14!:

VA5V1
U

2
, VB5V2

U

2
. ~4!

In fact, we have separated all the vortices into two grou
A andB. Let us assume, for simplicity, that the vortex de
sities in both groups are equal, i.e.,nA5nB5(1/2)n(x,t). It
is obvious that the vortices of groupsA andB, having the
mean velocitiesVA and VB , should have different vortex
anglesqA(x,t) andqB(x,t) relative to a certain axisz. Spe-
cifically, vortices that have not undergone cutting arrive
the pointx from its neighborhood of the size 2l . The length
l can be derived from the parameter of the vortex latt
a51/An and the dimensionless parameterp, which can be
calculated by averaging the microscopic flux-line cutti
probability p* over the angles. As a result, we have

l51/pAn. ~5!

This length is the vortex free path. In what follows, we w
characterize the system by the average angleq(x,t)5(1/2)
3(qA1qB) and the differenceDq between the mean vorte
angles in the groupsA andB. This difference can be esti
mated through the gradient of the average vortex an
q(x,t):

Dq5qA2qB52 l
]q

]x
. ~6!

Generally speaking, there are vortices of different orie
tations with an angular spreadDq around each pointx, and
the theoretical description should include a distribution fun
tion f (x,t,q). In this study, however, we have limited ou
consideration, for simplicity, to two vortex groups with th
average anglesqA andqB .

3.2. Transport equations for the vortex density and angle

Given the average translationalV and relativeU veloci-
ties in the system, both the vortex densityn and the average
vortex angleq are transported across the sample volume
is obvious that the velocityV gives rise to changes in bot
n(x) and q(x), whereas the relative velocityU generates
only an additional flow of the vortex angle. The vortex de
sity n(x) should satisfy the continuity condition

]n

]t
52

]~nV!

]x
. ~7!
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The hydrodynamic component of the angle flowgq
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determined by the velocityV, can be expressed as

gq
hydr5nVq. ~8!

The other component of the angular flow is due to the re
tive motion of the vortices. In order to obtain the express
for this flow, it is convenient to introduce the planex5x0
moving at the velocityV(x0 ,t) with respect to the laborator
coordinate system. Vortices of typeB on the right of the
plane and those of typeA on the left cross the plane an
transport a certain average angle. It is clear that the num
of the vortices crossing the plane from the left and right
equal because the total flow of vortices across the plan
zero. This means, in fact, that (n/2)U/2 vortices of typeA
cross the plane per unit time, and the equal number of v
tices of typeB cross the plane in the opposite direction. T
factor 1/2 multiplyingn is introduced because the concent
tion of vortices of each type isn/2, and the factor 1/2 atU is
due to the fact that the average vortex velocity with resp
to the plane isU/2. The angle transported across the pla
when a vortex of typeA is replaced by one of typeB equals
Dq @Eq. ~6!#. Thus, the angle flow due to the relative motio
of vortices is determined by the expression

gq
rel52

1

2
n•

1

2
Ul

]q

]x
. ~9!

By adding Eqs.~8! and ~9! for both angle flows and using
Eq. ~6!, which yields the difference between the angles,
obtain the following equation for the angle transport:

]~nq!

]t
52

]

]x
~nVq!1

]

]x S 14 nUl ]q

]x D . ~10!

3.3. Gibbs energy and basic electrodynamic equations

This section describes derivation of electrodynam
equations for a hard superconductor taking into account
teractions among vortices, between a vortex and the sam
surface, pinning centers, and flux-line cutting. This can
done by varying the Gibbs energyG, which includes the
magnetic energy, the work done by pinning forces when
vortex lattice is translated, and the work by pinning forces
unbending a vortex after crossing, with respect to the velo
ties, dV(x,t) and dU(x,t). To begin with, note the funda
mental difference between the Gibbs energy variation tak
into account flux-line cutting and the case when this effec
ignored,19–21i.e., when the magnetic field does not change
direction. In the latter case, the relative vortex velocity
zero, so, the variation should be performed only with resp
to one variable, namelyV. Note that the variation of the
Gibbs energy with respect to the velocitiesV and U is
equivalent to the variation of the vortex lattice as a wh
with respect to the hydrodynamic displacement,duhydr, and
of sublatticesA andB with respect to the relative displace
ment,durel:

duhydr5tdV, durel5tdU, ~11!

wheret is an arbitrary time interval smaller than the chara
teristic time over which fields in the sample change.
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of the Gibbs energy in the nonlocal case, when the magn
flux density and vortex density are related not by a sim
linear formulaB5nF0, whereF0 is the magnetic flux quan
tum, but by the integral formula19,21

B5Bm1E dx8h1~x,x8!e~x8!n~x8!. ~12!

Here the kernelh1(x,x8) and the Meissner componentBm of
the magnetic induction are defined by the equations

h15
F0

2l
~e2ux2x8u/l2e2~x1x8!/l!, ~13!

Bm5H0e
2x/l, ~14!

wherel is the London penetration depth,H0 is the applied
magnetic field, the vectore(x)5(eA1eB)/2 defines the aver-
age direction of vortices at a given point in space, and
unit vectorseA andeB define the directions of the vortices o
typesA andB. By using the technique described in Ref. 2
and taking into account Eq.~12!, we derive from the well-
known expression for the Gibbs energy of a vortex lattice
the London approximation21 the following formula:

Gem5
1

8pE dx dx8@F0h1~x,x8!e~x!e~x8!n~x!n~x8!

22H0e~x8!n~x8!h1~x,x8!#. ~15!

The variation of the Gibbs energy with respect to vort
displacements can be expressed in the form of two ter
dGem

hydr anddGem
rel , each of which is a function of one inde

pendent variable,duhydr and durel, respectively. From Eq.
~15!, one can derive the following expressions for variatio
of both components~see Appendix B!:

dGem
hydr5

F0

4pE dx nduhydre~x!
]B

]x
, ~16!

dGem
rel5

F0

4pE dx
1

4
nl

]q

]x
durelex

]

]x
@e~x!,B~x!2H0#,

~17!

whereex is the unit vector aligned with thex-axis.
Now consider the Gibbs energy component due to

work done by pinning forces on the vortex lattice. The wo
done in a timet per pair of vortices can be expressed as

A52 f puVAut2 f puVBut, ~18!

where f p is the magnitude of the maximum pinning forc
andVA andVB are the sublattice velocities@Eq. ~4!#. It fol-
lows from Eqs.~4!, ~11!, and ~18! that the variation of the
work

dA52 f pS duhydr2
durel

2 D signSV2
U

2 D2 f pS duhydr

1
durel

2 D signSV1
U

2 D ~19!

depends sensitively on which of two motions~translational
motion of the lattice as a whole or the relative displacem
of the two sublattices! prevails. One can see that two fund
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mentally different cases may occur. IfuVu.uUu/2 holds, then
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Thus, Eqs.~16!, ~17!, ~22!, and~26! determine the Gibbs
ents
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the vortices of bothA andB types travel in one direction in
the laboratory coordinate system, and the energy loss defi
by Eq. ~19! is determined by the hydrodynamic displac
ment:

dA522 f p sign~V!duhydr. ~20!

Otherwise (uVu,uUu/2) we derive from Eq.~19! a different
formula:

dA52 f p sign~U !durel. ~21!

The fundamental difference between these two cases is
the work done by pinning forces, and hence the correspo
ing component of the Gibbs energy, depends on two dif
ent independent variables. In the first case, this is the la
average displacement, and in the second case, the rel
displacement of the sublattices.

By combining the two latter equations, we can expre
the Gibbs energy variation as follows:

dGp5
1

2E dx n~x! f pF2duhydr sign~V!uS uVu2
uUu
2 D

1durel sign~U !uS uUu
2

2uVu D G , ~22!

whereu(x) is the Heaviside step function.
Finally, let us consider the Gibbs energy component

lated to the work done by pinning forces in unbending fl
lines after their cutting. After the cutting of two flux lines o
theA andB sublattices, new flux lines are generated. So
of their sections are aligned with the typeA lines, and others
with the typeB vortices. Then the new lines are unbent
that their sections of the average lengthL and aligned with
vortices of typesA andB should turn towards one anothe
through an angle ofDq/2. The pinning forces act agains
such a turn, and the energy loss per unit length of the vo
is determined by the expression

dA5
1

L F12 f pL2uDqu
2 G5

1

4
f pLlU ]q

]x U. ~23!

The lengthL is easily expressed in terms of the vort
lattice constanta and the angleuDqu between the vortices
With due account of Eqs.~5! and ~6!, we obtain

L5
a

uDqu
5

1

Anu]q/]xu l
5

p

u]q/]xu
. ~24!

In order to derive the expression for the Gibbs energy co
ponent due to unbending of flux lines, one should calcu
the number of lines cut during the relative displacem
durel of the sublatticesA and B in unit time. This simple
estimate yields

dNcut5n sign~U !dureldx/ l . ~25!

The unknown Gibbs energy variation is derived from E
~23!–~25!:

dGcut5
1

4E dx np fp sign~U !durel. ~26!
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energy variations due to the mean and relative displacem
of flux lines. By equating the coefficients atduhydr and
durel to zero, we obtain the sought electrodynamic equatio

e~x!
]B

]x
52

4p

c
Jc sign~V!uS uVu2

uUu
2 D , ~27!

ex
]

]x
@e~x!,B~x!2H0#52

4p

c
Jc
p2An
]q/]x

sign~U !

3F11
2

p
uS uUu

2
2uVu D G , ~28!

whereJc5c fp /F0.
In the local limit of interest to us,l→0, the direction of

the vectore coincides with that of the magnetic inductio
vector, and the equation system takes a simpler form. It
be different, depending on the relation between the veloci
of hydrodynamic and relative displacements. For exam
for uVu.uUu/2 we have

]B

]x
56

4p

c
Jc ,

]q

]x
56A4p

c
Jc

p2An
H0cos~q2q0!

, ~29!

while for uVu,uUu/2 we obtain

]B

]x
50,

]q

]x
56A4p

c
Jc

p2An
H0cos~q2q0!

S 11
2

pD , ~30!

where q0 is the tilt angle of the magnetic fieldH0 with
respect to thez-axis. Finally, in the degenerate case, wh
uVu5uUu/2 holds, the number of variables in the problem
reduced. After transformations similar to those perform
above, we obtain the following equation:

]B

]x
~6 !

H0

2pAn
]q

]x

]sin~q2q0!

]x
56

4p

c
Jc@1~6 !p#.

~31!

A more detailed analysis demonstrates that the plus or m
signs in all equations can be selected independently,
those in parentheses should be consistent with each o
Note that we prefer to express our results in terms of
parameterp, not the related parameterl . The dimensionless
parameterp seems to be more convenient because it
closely related to the real microscopic probability of flux-lin
cutting.

4. DISCUSSION

The electrodynamic equations derived from the sim
two-component model allow us to analyze the behavior
hard superconductors in crossed magnetic fields. Equat
~29! and ~30! supplemented with the transport equations~7!
and ~10!, and continuity conditions for the velocitiesV and
U and the magnetic inductionB form a complete system o
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equations for the variablesB5nF0, q, V, andU. Note that
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the first lines in Eqs.~29! and~30! do not containp, i.e., they
are independent of the selection of the flux-line cutti
model. Depending on the values of the velocitiesV andU,
the system of equationsB andq takes one of the possibl
forms @with different selections of plus and minus signs
Eqs. ~29!–~31!#. In this respect, our model is similar to th
traditional one-component model of the critical state, wh
the sign of the current density is also determined by
direction of vortex motion. As in the traditional model of th
critical state, the selection of electrodynamic equations~29!,
~30!, or ~31! is determined by the magnetic history of th
system. In principle, starting with an arbitrary initial stat
one can reconstruct the system evolution using the elec
dynamic equations.

Note that system of equations in the form of Eq.~29! is
fully equivalent to the model often applied to the electrod
namic properties of hard superconductors in crossed m
netic fields.15,16Specifically, the second line of Eq.~29! can
be easily transformed to]q/]x56kc . Our analysis has
demonstrated that, generally speaking, the parameterkc de-
pends not only onB, but also on the angleq.

Let us apply the resulting equations to our experimen
results. Direct calculations of the magnetic induction by E
~29!, which holds foruUu,2uVu, have shown that at all am
plitudes of the ac magnetic field the dc magnetic field co
ponent is nonuniform, so the dc magnetization of the sam
is not suppressed.

Therefore, let us try to interpret our experimental resu
in terms of the second pair of Eqs.~30!. According to the
first of these equations, the magnitude of the magnetic ind
tion B(x,t) is independent of the coordinatex. Sinceh0 in
the experiment was much smaller than the typical strengt
the dc fieldH, the uniformity ofB is equivalent to the uni-
formity of the z-component of magnetic induction throug
out the volume where the ac field penetrates. The increas
h0 leads to an increase in its penetration depth and supp
sion of the dc sample magnetization, which is in agreem
with our experimental data. We should, however, t
whether this solution is consistent with the complete syste
of equations. In other words, we should test whether
condition uUu.2uVu for the applicability of Eq.~30! is sat-
isfied. This condition is surely satisfied, in particular,
V50 holds throughout the region where the ac field p
etrates. This can be proved using Eqs.~7! and ~10!. Given
the solutionB5const and the smallness of the ac field
comparison with the dc field, we find from Eq.~7! that the
hydrodynamic velocity is also independent of position. T
velocity V(x,t) is a continuous function. SinceV(x,t)50
holds in the region where the magnetic field is constant,
where the vortex lattice is ‘‘frozen,’’ it is zero throughout th
sample. At the same time, it follows from the second line
Eq. ~30! and the transport equation~10! for the vortex angle
that the relative velocity satisfiesU Þ 0. Hence the necessar
condition for the applicability of Eq.~30! is met.

Thus, Eq.~30! allows us to give a qualitative interpreta
tion of our experimental results. The results obtained
Hasanainet al.,22 where the dc magnetization was su
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probably be also interpreted in these terms.
The analysis of Eq.~30! combined with Faraday’s law

demonstrates that, in the limith0!H, the direction of the
alternating shielding current coincides with the direction
the induced electric field. As a result, Eq.~30! is transformed
to Eq. ~2!. Therefore Eq.~2! can be used in interpreting th
observed effect.12 For this reason, this equation yields corre
results in many other cases.8,9,11 In the general case, on
should test in solving a specific problem whether Eq.~2!
applies, or a more sophisticated model must be used.15,16

Moreover, it is plausible than in some regions of a superc
ductor Eq.~30! applies, whereas in other regions Eq.~29!
should be used. In other words, a careful analysis of
complete equation system described in this paper is nee
for a theoretical description of the electrodynamic propert
of hard superconductors in crossed magnetic fields.

The work is a part of national programs on high-Tc su-
perconductivity~the ‘‘Collapse’’ projects sponsored by th
governments of Russia and Ukraine!, and was supported by
the Russian Fund for Fundamental Research~Project 96-02-
17730! and the Mexican Committee on Science and Te
nology ~CONACyT!, Grant 3004E306.

APPENDIX A

Let us prove that the flux-line cutting cannot be d
scribed in terms of one continuous function, namely the
locity V(x,t) of flux lines. Specificaly, the equation of mo
tion for an arbitrary vortex has the form

dx1 /dt5V~x1 ,t !. ~A1!

For a neighboring vortex, we have the equation

dx2
dt

5V~x11~x22x1!,t !'V~x1 ,t !1~x22x1!
]V

]x U
x5x1

.

~A2!

The separation between them is described by the equati

d~x22x1!

dt
5~x22x1!

]V

]x U
x5x1

. ~A3!

Its solution has the form

~x22x1!5~x22x1!u t50expS E0tdt]V]x Ux5x1
D Þ0. ~A4!

The latter equation indicates that the separation between
vortices only asymptotically approaches zero, and the fl
line cutting is impossible.

APPENDIX B

Let us derive expressions for the variation of the elect
magnetic component of the Gibbs energy due to the ave
and relative displacements of vortices. To this end, we
pressGem

15 as

Gem5
1

8pE dxdx8$h1~x,x8!F0n~x!n~x8!
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3cos@q~x!2q~x8!#22H0n~x8!h1~x,x8!

ng

ts
y

f

e

3Fh ~x,x8!n~x8!sin~q~x!2q~x8!!

nd

,

Sci.
3cos@q~x8!2q0#%. ~B1!

It follows from the transport equations~7! and ~10! that
small displacements of the vortices lead to the followi
variations in the vortex density and vortex angle:

dn52
]

]x
~nduhydr!, ~B2!

dq52duhydr
]q

]x
1
1

n

]

]x S 14 ndurell
]q

]x D . ~B3!

By varyingGem with respect to the flux-line density and i
tilt angle with respect to thez-axis and using the symmetr
property of the functionh1(x,x8)5h1(x8,x), ~Eq. 13! we
obtain

dGem5
F0

4pE dx dx8

3H dn~x!Fh1~x,x8!n~x8!cos~q~x!2q~x8!!

2
H0

F0
h1~x,x8!cos~q~x!2q0!G2dq~x!

3Fh1~x,x8!n~x!n~x8!sin~q~x!2q~x8!!

2
H0

F0
n~x8!h1~x,x8!sin~q~x8!2q0!G J . ~B4!

By substituting into the latter equation Eqs.~B2! and ~B3!,
integrating the term withdn(x) by parts with due account o
the symmetry ofh1(x,x8), and replacing cos@q(x)2q(x8)#
and cos@q(x8)2q0# with the respective scalar products, w
derive the equation

dGem5
F0

4pE dx dx8n~x!

3H duhydre~x!
]

]x Fh1~x,x8!n~x8!e~x8!

2
H0

F0
h1~x,x8!G1

1

4
durell

]q

]x

]

]x
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1

2
H0

F0
h1~x,x8!sin~q~x!2q0!G J . ~B5!

After expressing the sines in terms of vector products a
using the relation

H0E dx8h1~x,x8!5F0@H02Bm~x!#, ~B6!

which can be easily verified, we obtain Eqs.~16! and ~17!.
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Magnetic fields at 181Ta nuclei in Laves phases of RFe 2 (R5Nd, Pr, Sm, Gd, Dy, Yb, Lu)

re
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~Submitted 15 August 1997!
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By studying the perturbed angular correlations ofg-rays emitted during the decay of181Hf
impurities in the Laves phases of PrFe2, DyFe2, and YbFe2, we have investigated the magnetic
hyperfine interaction between these compounds and its daughter nucleus181Ta, and have
determined the temperature dependence of the magnetic hyperfine fields. At room temperature
we obtained the following values of these magnetic hyperfine fieldsBhf :
Bhf(PrFe2) 5 7.6(1) T,Bhf(DyFe2) 5 15.5(5) T, andBhf(YbFe2) 5 18.8(3) T. When taken
together with data obtained previously, the results of our experiments show that for Ta nuclei in
the RFe2 Laves phases the values ofBhf depend strongly on whether R is a light or a
heavy rare- earth element, which allows us to conclude that in these phases the value of the
magnetic moment induced at the impurity Ta nuclei depends on the interatomic distance. ©1997
American Institute of Physics.@S1063-7761~97!02603-6#
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The Laves phases form a general class of intermeta
compounds with the chemical formula AB2, which crystal-
lize either in the MgCu2 cubic structure~C15! or the
MgZn2 ~C14! or MgNi2 ~C36! hexagonal structures. A de
tailed classification of the Laves phases was given in
monograph Ref. 1. The members of this class of compou
with transition metal and rare-earth elements are espec
interesting, since they exhibit great variety in their elect
and magnetic properties, depending on their constituen
oms. The recent development of powerful computatio
methods makes it possible to arrive at a fairly realistic
scription of the electronic structure of these intermetalli
from which predictions can be made regarding their mac
scopic properties. Verification of these predictions calls
experimental techniques that make it possible to determ
the parameters of the hyperfine interaction between nucle
ions incorporated into their composition, since these par
eters are very sensitive to the details of the imtermeta
electronic structure. The need for these techniques has le
wide application of investigative methods such as nucl
magnetic resonance, the Mossbauer effect~or nuclear gamma
resonance!, and the method of perturbed angular correlatio
of cascade gamma quanta.

All the rare-earth elements except Eu combine with ir
to form the intermetallic compounds RFe2 with the structure
of the cubic Laves phases. The magnetism of these inter
tallics is determined by the 3d-bands of Fe and by the well
localized 4f - moments of the rare-earth ions. In the major
of cases, the magnetic moments of the rare-earth elem
are oriented antiparallel to the Fe moments, i.e., the co
sponding compounds are not ferromagnets but ferrimagn
The exceptions are PrFe2 and NdFe2 ~see Ref. 2!: according
to the data of Ref. 3, PrFe2 is a ferromagnet. In NdFe2 the
mutual orientation of the Fe and Nd moments is much m
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oriented antiparallel to one another and are almost perp
dicular to the iron moments. In the Laves phases of RFe2 the
4 f -moments of the rare-earth elements interact with the i
3d-bands through the rare-earth valence electrons, which
polarized by their interaction with the 3d-band electrons.
Because this interaction also determines the peculiar m
netic properties of these intermetallics, the experimen
study of these compounds is of great interest.

We attempted to study several aspects of this interac
by using data on hyperfine magnetic fields at substitutio
impurity Ta ions located at the sites of rare-earth ions. W
previously studied compounds based on the light rare-e
elements~R5Nd, Sm, Gd! and Lu with a fully occupied
4 f -shell. The results of our measurements of hyperfine fie
at Ta in NdFe2, SmFe2, GdFe2, and LuFe2 were published
previously in separate short communications.4–7 In the
present paper we continue our investigation of hyperfi
magnetic fields at Ta nuclei in the Laves phases with li
rare earths (PrFe2) and extend it to compounds with heav
rare earths~DyFe2 and YbFe2!.

2. EXPERIMENTAL METHOD

The compounds PrFe2 and YbFe2 can be synthesized
only under special conditions, specifically by sintering
smelting the original materials under high pressures.2 We
prepared our samples~as we did the compound GdFe2 in
Ref. 4! by smelting at a pressure up to 80 kbar in a spec
high-pressure chamber. Construction of the chamber and
method for smelting are described in Ref. 8. The sample
DyFe2 were prepared by smelting in an induction furna
containing an argon atmosphere at ordinary pressure. In
course of smelting these samples, in all cases we add
rather small amount~usually less than 1 percent by weight
the Laves phase of HfFe2, previously irradiated in a reacto

5994$10.00 © 1997 American Institute of Physics



and containing the isotope181Hf ~T1/2543 days) with high
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specific activity. This procedure ensured that our final pr
uct was a solid solution of HfFe2 in RFe2, with impurity
atoms localized in the RFe2 lattice at substitutional sites o
the rare-earth ions. The quality of the samples was chec
by x-ray structure analysis, and also measurement of
Mossbauer spectra for Fe, and by comparing them with p
lished data.

During theb decay of181Hf into 181Ta, a series of 133–
142 keVg transitions is excited, in the course of which th
nucleus passes through an isomer state of 482 keV wi
lifetime t515.6 ns. The spin of this state isI 5 5/2 and the
magnetic moment is m53.25mN ~the g factor is
g5m/I51.30, wheremN is the nuclear magneton!. The
magnetic hyperfine field acting on a Ta nucleus was de
mined from the method of perturbed angulargg correlations
in the cascade. Measurements were made using an auto
three-detector scintillation coincidence spectrometer,9 which
allowed us to simultaneously record coincidence spe
N(t,u) between cascadeg rays as a function of the time fo
anglesu590° andu5180° between the detectors. Accor
ing to the widely used procedure based on the theory
perturbed angular correlations,10 information about the mag
netic hyperfine fields is obtained from a frequency analy
of the anisotropy spectra of the angular correlationsR(t)
determined fromN(t,u) by the expression

R~ t !52@N~ t,180°!2N~ t,90°!#/@N~ t,180°!

12N~ t,90°!#. ~1!

For static magnetic hyperfine interactions in an unm
netized ferromagnetic sample~i.e., with chaotic orientation
of the domains! the anisotropy of the perturbed angular co
relations is expressed in the form10

R~ t !5A$0.210.4@exp~2LvLt !cosvLt

1exp~22LvLt !cos 2vLt#%. ~2!

HerevL52pgmNBhf /h is the Larmor precession frequenc
andBhf is the magnetic hyperfine field acting on the nucle
The coefficientA is determined by the known nuclear param
eters for a given cascade; in our case, including the cor
tions for the angular resolution of the detectors, we h
A5 2 0.24. The exponentL characterizes the scatter in th
hyperfine interaction frequencies due to crystal imperfecti
in the region around the probe nucleus~assuming that the
distribution of frequencies around the average value
Lorentzian!.

3. MEASUREMENT RESULTS AND DISCUSSION

Figures 1 and 2 show experimental anisotropy spectr
perturbed angular correlations for Ta in PrFe2 and YbFe2
measured at temperatures fromT580 K to T.TC . In these
figures the modulation at the Larmor spin precession
quency is easy to see. The relatively weak attenuation of
precession is evidence that the probe Ta nuclei are local
at substitutional sites of the rare-earth ions with point cu
symmetry. This attenuation is caused by the lattice defe
randomly distributed around the probe nucleus, which cre
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electric field gradients with a characteristic random distrib
tion in frequency and direction. By processing these spec
we find that the gradients are characterized by a mean-sq
value of the quadrupole frequency^vQ&525 MHz, which
is considerably smaller than the Larmor frequen
(vL5450 MHz for PrFe2 and 1100 MHz for YbFe2 at room
temperature!.

FIG. 1. Spectra of angular correlation anisotropy for181Ta in PrFe2 mea-
sured at different temperatures.

FIG. 2. Spectra of angular correlation anisotropy for181Ta in YbFe2 mea-
sured at different temperatures.
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The values of the hyperfine field obtained from analy
of these spectra are shown in Fig. 3 as functions of temp
ture for these compounds, and also for DyFe2. The observed
falloff in Bhf(Ta) at high temperatures is in good agreem
with known values ofTC ~see Refs. 2, 11!—except for
YbFe2, for which a value 543~5! K is obtained instead of the
only available valueTC.560 K in the literature. In the tem
perature range below;0.5TC , in contrast to the ordinarily
observed increase in the hyperfine field, we observed a s
decrease with temperature. We have observed analogou
even more marked behavior in studies of NdFe2, SmFe2, and
GdFe2. In Table I we show values of the hyperfine field f
Ta extrapolated toT50 K. The signs of the hyperfine field
when given, were determined directly from measurement
an external magnetic field. In the table we also list the fu
damental properties of these systems as published in Re
and 11.

Figure 4 shows the dependence of the magnitude
Bhf(Ta) on the atomic number of the rare-earth eleme
The RFe2 phases clearly separate into two groups, one
light R and one for heavy R. For the light group the values
Bhf are small and close to one another~5–6 T!, despite the
different types of magnetic ordering~ferromagnetic for
PrFe2 and NdFe2 and ferrimagnetic for SmFe2 and GdFe2!

FIG. 3. Temperature dependence of the magnetic hyperfine fields
181Ta nuclei in YbFe2, DyFe2, and PrFe2.
TABLE I. Properties of the Laves phase of RFe2 and values ofBhf~Ta! reduced
s
a-

t

ht
but

in
-
. 2

of
s.
r
f

and the different values of the magnetic moments of the ra
earth elements~e.g.,, 0.5mB for Sm and 7mB for Gd!. In the
heavy group,Bhf is 10–15 T larger in absolute value, an
also is insensitive to increases in the magnetic moment of
rare-earth ions~9mB for Dy, 4mB for Yb, while for Lu
m(4 f ) 5 0!. Note that the lattice constant of RFe2 decreases
monotonically from 7.47 Å to 7.22 Å with increasin
atomic number of the rare-earth element~see Table I!.

Studies of the magnetic hyperfine interactions of imp
rity 181Ta ions in the ferromagnetic Laves phase of AF2
~where A is a 3d- or 4d-transition element!12–16 show that
these ions possess rather small intrinsic magnetic mom
~a few tenths of a Bohr magneton! oriented antiparallel to the
macroscopic magnetization of the host, i.e., the magn
moments of the Fe ions. The presence of this moment g
rise to an additional contribution to the magnetic hyperfi
field at the nucleus of the Ta ion, essentially due to polari
tion of thes-electrons of the host.

Calculations of the electronic structure of the4(5)d-
3d Laves phase published after 1984~see Refs. 17–19 and
the citations in the review article Ref. 19!, and also the re-
sults of the experimental papers Refs. 20–25, show that b
host and impurity 4d- and 5d-ions ~e.g., Nb in ZrFe2; see
Ref. 21! possess intrinsic magnetic moments of ord
0.3–0.7mB antiparallel to the moments of the Fe ions in t
Laves phases. Consequently, the hyperfine magnetic field
nuclei of ions of thend elements should be the sum of tw
contributions: one from the interaction between the ion

or

FIG. 4. Magnetic fields at181Ta nuclei extrapolated toT50 K in the com-
pounds RFe2.
toT 5 0 K.
Phase a, Å TC , K
Magnetic
ordering m~Fe!, mB m(4f ), mB Bhf~Ta!, T

PrFe2 7.47 543 ferro 1.6 3.2 6.2
NdFe2 7.46 578 ferro 1.6 3.27 2 5.0
SmFe2 7.42 676 ferri 1.6 ,0.7 6.0
GdFe2 7.39 796 ferri 1.62 7.0 1 6.0
TbFe2 7.35 697 ferri 1.7 8.4 -
DyFe2 7.32 630 ferri 1.7 9.4 15.5
HoFe2 7.30 608 ferri 1.7 9.4 -
ErFe2 7.28 587 ferri 1.7 8.4 -
TmFe2 7.23 600 ferri 1.7 6.1 -
YbFe2 7.24 543 ferri 1.64 4.0 17.5
LuFe2 7.22 596 ferri 1.67 0 220.5
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(Bv), and one from the polarization of the core (Bhost):

Bhf5Bv1Bhost. ~3!

These contributions have opposite signs:Bv,0, whereas
Bhost.0. It is known11 that in rare-earth Laves phases t
magnetic moment of iron, which determines the value of
negative contribution toBhf(Ta) remains practically un
changed (1.6–1.7mB) as R in RFe2 varies over the entire
rare-earth series; therefore, the observed change inBhf(Ta)
must be due to a sudden change in the positive contribu
Bhost, which is determined by the intrinsically localize
5d-moment of the Ta ion. According to the estimates of R
26 the magnetic moment of the 5d-shellmB(5d) 5 1mB due
to polarization of the host creates a field at the nucleus
Bhost.50 T. Thus, the observed change of 10–15 T in
positive contribution corresponds to a change in the intrin
moment of the Ta ion of 0.2–0.3mB , or an equivalent
change in the degree of localization of this moment, i.e.,
diffuseness.

At this point it is worth discussing an analogy betwe
the behavior of the intrinsic moment of Ta ions in the ser
RFe2 and the magnetic moment of Mn ions in the ser
RMn2. In Ref. 27, which summarizes data on measureme
of magnetic hyperfine fields at Mn nuclei using nuclear m
netic resonance, the authors showed that in the ligh
phases from Pr to Tb the Mn ions possess large magn
moments, from;2.5 to 3.5mB , but thatmB(Mn)50 holds
in the heavy-R phases R5Ho, Er, Tm. Yoshimuraet al.27

conclude that the magnitude of the magnetic moment of
Mn ions is determined by the interatomic distance: large v
ues ofmB(Mn) are observed in the range of lattice consta
above roughly 7.5 Å; however, as the lattice constant
creases with increasing atomic number of the rare-earth
ment to values smaller than this value due to lanthanide c
traction, the Mn ion moment goes to zero.

Although our situation is different—the ions we a
studying are isolated impurities in the R sublattice rat
than host ions of the lattice—the strength of the analo
leads us to conclude that the behavior of the intrin
5d-moment of Ta ions in the series of RFe2 phases is simi-
larly determined by interatomic distances, and that its abr
decrease correlates with the decrease in lattice constant
7.38 Å for GdFe2 to 7.31 Å for DyFe2. It is possible that this
is caused by a decrease in the splitting of the 5d-band as we
successively decrease the 4f -spins in the Gd–Yb serie
while simultaneously shifting the Fermi energy due to t
lanthanide contraction. The real cause can be identified
calculating the local 5d-density at the Ta ions as a functio
of these parameters. The high sensitivity of the hyperfi
field at the Ta to details of the electronic structure of t
4 f –3d-intermetallics can be used to test these hypothe
experimentally.
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and analyzing the nuclear gamma resonance spectra o
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A hybrid-phonon resonance in a quasi-two-dimensional nanostructure

is-
V. A. Margulis

N. P. Ogaryov Mordovian State University, 430000 Saransk, Russia
~Submitted 29 August 1996!
Zh. Éksp. Teor. Fiz.111, 1092–1106~March 1997!

The coefficient of absorption of electromagnetic radiation by a quasi-two-dimensional electron
gas placed in an oblique magnetic field is found. The scattering of electrons by optical
phonons is shown to lead to resonant absorption. The shape of the resonance peaks on the
absorption curve is studied, and their doublet nature is demonstrated. Finally, the dependence of
the resonance peaks on the angle between the magnetic field vector and the confinement
plane is investigated. ©1997 American Institute of Physics.@S1063-7761~97!02703-0#
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The study of intraband optical transitions of quasi-tw
dimensional electrons in an oblique magnetic field yields
portant information about the energy spectrum of charge
riers and their interaction with the scatterers.1–3 A review of
the early work in this area can be found in the article
Ando et al.,4 while the more recent results can be found
Refs. 5 and 6. Hybridization of electric and magnetic qu
tization in a quasi-two-dimensional nanostructure leads
purely discrete energy spectrum of the electrons. In view
this, resonant absorption of electromagnetic radiation cau
by electron transitions between two hybrid energy levels
comes possible. To study these transitions we must sele
appropriate model for the confinement potential of the qu
two-dimensional electron gas in the nanostructure. T
model employed in Ref. 7–9 in studying the effects cau
by an oblique magnetic fieldB uses a parabolic well with a
confinement potentialU5m*V2z2/2, wherem* is the effec-
tive mass of the charge carriers, andV is the frequency of
the potential, related to the characteristic confinement dim
sion l by l5A\/m*V. The explanation for such a choice lie
in two important facts. First, the Hamiltonian of the on
electron states in this model is quadratic, so that by apply
a certain canonical transformation of the phase space
spectrum of the system can be reduced to a sum of the s
tra of two harmonic oscillators, while the eigenfunctions fa
torize, i.e., become a product of oscillator functions.10 The
filling factor of these states is determined by the degener
of the hybrid-oscillator levels and is equal toeBz /c\, where
Bz is the component of the magnetic fieldB5(Bx,0,Bz) per-
pendicular to the confinement plane. Second, in accorda
with the generalized Kohn theorem,11 electron–electron in-
teractions in this case have no effect on the electron tra
tions.

Since the spectrum and wave functions of one-elect
states have a simple analytical form, it is possible~and this
will be shown shortly! to derive explicit analytical expres
sions for the coefficient of absorption of a high-frequen
electromagnetic field.

Scattering by phonons in a two-dimensional nanostr
ture can lead to a process in which the transition betw
electronic states occurs under the simultaneous action of
factors, i.e., when the absorption of a quantum\v of the
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sion of an optical phonon. We call a resonance in absorp
due to processes of this type a hybrid-phonon resonance

2. THE ENERGY SPECTRUM AND THE WAVE FUNCTIONS

The energy spectrum of a electron in a parabolic w
placed in an oblique magnetic field has the form7

«b5\v1S n1
1

2D1\v2Sm1
1

2D, n, m50, 1, . . . ,

~1!

where the hybrid frequencies are8

v1,2
2 5

vc
21V2

2
6A~vc

21V2!2

4
2vc

2V2cos2u0,

and u0 is the angle between fieldB and the confinemen
plane. The respective wave functions in the mix
coordinate–momentum representation can be describe
follows:

ub&5
1

ALx
expS ipxx\ DwnS ul 1DwmS vl 2D , ~2!

wherewn(x) are the oscillator functions,Lx is the normal-
ization size, b5(px , n, m), and the hybrid-magnetic
lengths arel 1,25A\/m*v1,2. The variablesu andv are re-
lated to the electron coordinates and momenta as follow

u5~y2y0!cosa2
1

m*V
~pz2pz

0!,

~3!

v5~y2y0!sin a1
1

m*V
~pz2pz

0!,

wherepz
052m*vcy0 sinu0, y052cpx /eB cosa, and the

anglea is defined by the relation7

tan 2a5
2vcV sin u0

vc
22V2 . ~4!

The hybrid-quantization levels~1! are smeared by ther
mal motion by an amount of orderT and by collisions by an
amount of order\/t, the latter being determined by the ele
tron relaxation timet. Clearly, a hybrid-phonon resonanc
can be observed only if all levels are well-resolved and

6039$10.00 © 1997 American Institute of Physics
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photon and phonon frequencies are sufficiently monoch
matic. Hence in what follows we assume that the pho
frequency is high (vt@1) and the hybrid confinement i
sufficiently strong (v1,2t @ 1) and quantizing (\v1,2@T).

The phonon frequency is quite monochromatic if the
teraction involves long-wave optical phonons. The charac
istic distance over which the electron wave function varie
of the same order as the hybrid-magnetic lengthsl 1,2. For
realistic situations in nanostructures these lengths are l
compared to the lattice constant, with the result that the
teracting phonons are long-wave.

Now let us examine the physical nature of a hybr
phonon resonance. In the absence of size confinement a
thez axis, motion along the magnetic field is free and, hen
the electron spectrum is quasidiscrete~Landau levels!. This
fact is known to lead to root singularities in the density of t
initial and final states, which in turn lead to logarithmic si
gularities in the cyclotron-phonon absorption of hig
frequency radiation.12–14 The singularities become smeare
if we allow for the collisional width of the level,;\/t, or
for optical phonon dispersion.

For a quasi-two-dimensional nanostructure the phys
nature of the singularity is different. In our case the proba
ity of an electron transition occurring is proportional
d(eb2eb81\v6\vq), whereeb,b8 are electron energies
and\vq is the optical phonon energy. Because the spect
of one-electron states is discrete, if we ignore optical pho
dispersion, the absorption coefficientG(v) containing this
factor has, delta-function singularities at points where
photon frequency satisfies the condition

\v1~n2n8!1\v2~m2m8!1\v6\vq50. ~5!

If phonon dispersion is taken into account, the singula
becomes smeared~as shown below!, and at the singularity
the absorption vanishes.

The possible types of electron transition are depicted
Fig. 1.

3. A GENERAL EXPRESSION FOR THE ABSORPTION
COEFFICIENT

Using an approach based on the method suggeste
Fröhlich15 and examined in the case of transitions in a m
netic field by Bass and Levinson,12 we can find the absorp
tion coefficient by applying ordinary perturbation-theo
techniques for the interactions of electrons with the hig
frequency field,HR , and the lattice,HL , which are switched
on simultaneously. The transitions depicted in Fig. 1 eme
in second-order perturbation theory inHR1HL .

FIG. 1. Transitions leading to resonant absorption in second-order pe
bation theory.
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phonons is described by the following Hamiltonian:

H05(
b

ebab
1ab1(

f
\v fbf

1bf1(
q

\vqcq
1cq , ~6!

whereab
1 (ab), bf

1 (bf), andcq
1 (cq) are the creation~an-

nihilation! operators for electrons, photons, and phonons,
spectively. Following the ideas of Ref. 12, we can write t
matrix elements of the transitions depicted in Fig. 1 as f
lows:

^auHua8&5(
b9

^b,0uHRub9,2f&^b9,0uHLub8,6q&
eb2eb91\v

1(
b9

^b,0uHLub9,6q&^b9,0uHRub8,2f&
eb82eb92\v

.

~7!

In Eq. ~7! the initial state ua& is simply
ub, . . . ,Nf , . . . ,Nq , . . . &[ub,0,0&, and the final stateua8&
is ub8, . . . ,Nf21, . . . ,Nq61, . . .&[ub8,2f,6q&. It is now
convenient to write the absorption coefficient in a form sim
lar to that used in Ref. 12:

G~v!5Ḡ1~v!1Ḡ2~v!,

whereḠ stands for thermal averaging over the initial phon
states, and

G~6 !~v!5
2pA«~v!

c\Nf
~12e2\v/T! (

b,b8,q
f 0~eb!u^2f,

6q,b8uVu0,0,b&u2d~eb2eb87\vq1\v!,

~8!

where «(v) is the real part of the dielectric constant~for
which in the frequency range considered here there is
dispersion!, c is the speed of light in vacuum,Nf is the
number of initial-state photons with a frequenc
v5c f /A«(v), and

f 0~«b!5
8p\n0Lz

m*vc cosu0
sinh

\v1

2T
sinh

\v2

2T
expS 2

eb

T D ,
is the electron distribution function for a nondegenerate g
wheren0 is the electron concentration andLz is the normal-
ization length. In Eq.~8! we introduced the matrix elemen

^V&5(
b9

^b8,0uHRub9,2f&^b9,0uhLub,6q&
eb2eb91\v

1(
b9

^b,0uhLub9,6q&^b9,0uHRub8,2f&
eb82eb92\v

. ~9!

The interaction with the lattice is represented by the Ham
tonian

HL5(
q
hL~q!,

where

hL~q!5Dqcqe
iqr1 c.c.,

r-
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We write the HamiltonianHR representing the interac
tion with the high-frequency field in the form12

HR5
e

m*
A 2p\

«~v!vV
bf ef P. ~10!

HereV is the normalization volume, andP is the generalized
momentum in a constant magnetic field:

P5p1
e

c
A, A5S eBzc y, 0,2

eBx
c

yD .
Below we calculate the absorption for linear polarization a
choose the polarization vectoref in the y direction. Then

HR5
e

m*
A 2p\

«~v!vV
bf py . ~11!

In the calculations of the matrix elements ofHR that
follow, the high-frequency field is assumed uniform. For th
the photon wavelengthl must be much larger thanl 1,2,
which imposes certain restrictions on the hybrid-oscillat
frequenciesv1,2. If this condition is met, the electron–
photon transitions are dipole transitions, with the result t

^b,0uHRub8,2f&5
e

m*
A 2p\Nf

«~v!vV
^bupyub8&. ~12!

4. FORMULAS FOR THE MATRIX ELEMENTS

Since the one-electron statesub& are given in the mixed
coordinate–momentum representation, to calculate the
trix elements~12! we must write the operatorpy in the same
representation. Using~3!, we get

py5cosa
]

]u
1sin a

]

]v
. ~13!

Plugging ~13! into ~12! and performing simple transforma
tions, we get

^b,0uHRub8,2f&5
ie\

m* l 1l 2
A p\Nf

«~v!vV
d~kx8 ,kx!

3$ l 2d~m8,m!cosa@And~n8,n21!

2An11d~n8,n11!#

1 l 1d~n8,n!sin a@Amd~m8,m21!

2Am11d~m8,m11!#%. ~14!

After integration with respect to the variablez the matrix
elements of the electron–phonon interaction become

^6q,b8uhLu0,b&5DqANq1
1

2
6
1

2
d~kx8 ,kx6qx!

3^n8m8uexp@ i ~qyy1qzz!#un,m&.

~15!

To find the matrix element on the right-hand side of E
~15! we write the exponential function in the mixe
coordinate–momentum representation:
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d

t

a-

.

3expFqzl 2S sin a
]

]u
2cosa

]

]v D G .
~16!

We introduce the generalized momentapu and pc that
are the canonical conjugates ofu andv. Then

pu5
\

i

]

]u
, pv5

\

i

]

]v
,

and the second exponential factor on the right-hand side
Eq. ~16! becomes exp@iqzl

2(pusina2pvcosa)#. Next we use
the relationship

expS ia\ puDwnS ul 1D5wnS u1a

l 1
D , ~17!

which follows from the fact that the exponential operator
the generator of the translation group.

Combining ~16! and ~17!, we can easily obtain an ex
pression for the matrix elements:

^n8,m8uexp@ i ~qyy1qzz!#un,m&5exp~ iqyy0!

3K wn8S ul 1D Uexp~ iqyu cosa!UwnS u1 l 2qz sin a

l 1
D L

3 K wm8S ul 2D Uexp~ iqyv sin a!UwmS v2 l 2qz cosa

l 2
D L .

~18!

Instead of the projections of the phonon wave vector
introduce the following dimensionless quantities:

gy5
l 1qy

A2
cosa, gz5

l 2qz

A2l 1
sin a,

~19!

dy5
l 2qy

A2
cosa, dz5

l 2qz

A2l 2
sin a.

After simple but lengthy transformations, evaluation of t
integrals with oscillator functions in~18! yields

^n8,m8uexp@ i ~qyy1qzz!#un,m&

5Am8!n8!

m!n!
~21!n1m2n82m8gn2n8dm2m8

3expS iqyy02d21g2

2 Dexp~ i @w~n2n8!1c~m2m8!# !

3Ln8
n2n8~g2!Lm8

m2m8~d2!, ~20!

where tanw5gy /gz , tanc5dy /dz , d25dy
21dz

2 ,

g25gy
21gz

2 , andLN
N8 are generalized Laguerre polynomial

We introduce the notation

^n8,m8uexp@ i ~qyy1qzz!#un,m&

5exp~ iqyy0!J~n8,m8,n,m!. ~21!

Then, using~9!, ~4!, ~15!, and~21!, we obtain
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^2f,6q,b8uVu0,0,b&
2 2 2

v1
22V2 1 v1

22V2

-

l-

ts

l

ts

ns
w:

the
g

5
ie\

m* l 1l 2
Ap\Nf~Nq11/261/2!

v«~v!V
Dqd~kx ,k86qx!

3H l 2An11 cosa

\~v2v1!
J~n11,m;n8,m8!

2
l 2An cosa

\~v1v1!
J~n21,m;n8,m8!1

l 1Am11 sina

\~v2v2!

3J~n,m11;n8,m8!2
l 1Am sin a

\~v1v2!
J~n,m21;n8,m8!

2
l 2An8 cosa

\~v2v1!
J~n,m;n821,m8!1

l 2An811 cosa

\~v1v1!

3J~n,m;n811,m8!2
l 1Am8 sin a

\~v2v2!
J~n,m;n8,m821!

1
l 1Am811 cosa

\~v1v2!
J~n,m;n8,m811!J exp~ iqyy0!.

~22!

Using ~20! and ~21! we can transform~22! into

^2f,6q,b8uVu0,0,b&

52
ie\

m* l 1l 2
Ap\Nf~Nq11/261/2!

v«~v!V
DqA~v!

3exp~ iqyy0!d~kx ,kx86qx!Jnn8~g
2!Jmm8~d

2!, ~23!

where

Jnn8~x
2!

5
n8!

n!
xn2n8expS 2

x2

2 DexpS 2
1

2
iqyqzl

2 sin a cosa D
3~21!n2n8exp@ iw~n82n!#Ln

n2n8~x2!, ~24!

and Jmm8(x) can be found from~24! by replacingw with
c. The frequency factor

A~v!5gl2 cosaS e2 iw

v12v
1

eiw

v11v D
1dl1 sin aS eic

v22v
2

e2 ic

v21v D . ~25!

This can also be used to write

uA~v!u252@a~v!qz
21b~v!qy

2#, ~26!

where

a~v!5
l 4

l 1
2l 2
2

v2
22V2

v2
22v1

2 S v1l 2
2

v1
22v2Av1

22V2

v1
22v2

2

1
v2l 1

2

v2
22v2Av2

22V2

v2
22v1

2 D 2,
~27!
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b~v!5v l 1l 2 v1
22v2

2 S v1
22v2Av1

22v2
2

1
1

v2
22v2Av2

22V2

v2
22v1

2 D 2.
In deriving ~27! we employed the following relation

ships:

cos2a5
v1
22V2

v1
22v2

2 , sin2a5
v2
22V2

v2
22v1

2 .

5. THE CHARACTERISTICS OF RESONANT ABSORPTION
PEAKS

We introduce partial absorption coefficients by the fo
lowing formula:

G~6 !~v!5 (
n,m,n8,m850

`

Ḡ~6 !~n,m;n8,m8!. ~28!

We also introduce the quantity

Dv5v1~n2n8!1v2~m2m8!1v7vq . ~29!

Using the results of Sec. 4 and summing overkx , we get

Ḡ~6 !~n,m;n8m8!5
e2vccosu0

m* c\2l 1
2l 2
2vLzA«~v!

3~12e2\v/T!(
q

uDqu2S n8!m8!

n!m! D
3uA~v!u2d2~m2m8!g2~n2n8!e2d22g2@Ln8

n2n8~g2!

3Lm8
m2m8~d2!#2~NT11/261/2!d~Dv! f 0~«b!, ~30!

whereNT is the Planck distribution function, which resul
from thermal averaging over phonon states.

Equation~30! clearly shows that if one ignores optica
phonon dispersion (vq5v0), the partial coefficients
G (6)(n,m;n8,m8) have delta-function singularities at poin
where the detuning from resonance,Dv, is zero. Let us now
allow for weak phonon dispersion. For long-wave phono
we assume a parabolic dispersion la
vq5v0(12v0

22vs
2q2), where v0 is the optical2phonon

threshold frequency, andvs is the speed of sound.13 In this
case the integral with respect touqu in ~30! can easily be
evaluated thanks to the presence of a delta function of
form d(Dv6v0

21vs
2q2). The electron–phonon couplin

constant forPO- andDO-phonons is12

uDqu25
2p\2aLv0

m*V 5
A2m* \v0

q2
for PO-phonons,

4\2

A2m* \v0

for DO-phonons.

~31!

Then forGDO
(6)(n,m;n8,m8) we obtain
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FIG. 2. Partial absorption coefficients in th
case of emission ofDO-phonons;u0530°.
GDO
~6 !~n,m;n8,m8!
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The maxima inG(n,m;n8,m8) are obviously caused by the
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We
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rtial

s
re-
of
ld
the
5
2e2n0~N011/261/2!~12e2\v/T!\v0

3~Dv!3/2vcV

pcvm* vs
5A2m* \«~v!

3sinh
\v1

2T
sinh

\v2

2T

3expF2
v1~n11/2!1\v2~m11/2!

T G
3F~n,m;n8,m8!. ~32!

HereaL is the dimensionless electron–lattice coupling co
stant,N05(e\v0 /T21)21, and the integral over the angle
F(n,m;n8,m8) is given by

F~n,m;n8,m8!

5
n8!m8!

n!m! E0
2p

dwE
0

p

sin qdq~a cos2q

1b sin2q sin2w!x1
n2n8x2

m2m8e2x12x2

3@Ln8
n2n8~x1!Lm8

m2m8~x2!#
2, ~33!

where

x1,25
1

2

v0uDvu
l 1,2
2 vs

2 S v1
22V2

v1
22v2

2 l 1,2
4 sin2q sin2w

1
v2
22V2

v2
22v1

2 l
4 cos2q D , ~34!

For the partial absorption coefficientGPO
(6)(n,m;n8,m8) we

have

GPO
~6 !~n,m;n8,m8!5

~mvs!
2

2\uDvu
GDO~n,m;n8,m8!.
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maxima inF(n,m;n8,m8). Let us examine transitions tha
originate from the ground state (n5m50). As Eq.~33! im-
plies, in this case the integrand in the expression
F(0,0;n8,m8) has the form (Dv)n81m8exp@2f(q,w)Dv#.
For small values ofDv, this function increases according t
a power law, and then falls off exponentially.

If we allow for the smearing of the hybrid-oscillatio
levels caused by collisions, thenG(Dv) must be replaced by
ReG(Dv1 ig), with the collisional spreadg5t21. In Eq.
~8! we must replace the delta function by the Lorentzi
pt/@11t2(Dv)2#. In this caseG(Dv) has delta-function-
like spikes with a halfwidth equal tot21.

6. RESULTS OF NUMERICAL ANALYSIS

Let us study the absorption coefficient more closely. W
confine ourselves to the ultraquantum case, where transit
originate from the ground state of the system. The ab
analytical expressions for the partial absorption coefficie
G (6)(0,0;n,m) imply that at the point where the frequency
the electromagnetic radiation satisfiesDv50 these coeffi-
cients vanish. Within a small neighborhood of this poi
F(0,0;n,m) as a function ofDv has two symmetrically po-
sitioned sharp peaks~to the left and right of the point!, and
henceG (6)(0,0;n,m) has the same peaks near this poi
i.e., the partial absorption peaks have a doublet structure.
also note that the exponential nature of the dependence o
partial absorption coefficients on the numbersn andm of the
hybrid-oscillator levels guarantees a sharp decrease in pa
absorption as the level numbers grow.

In view of the complexity of the analytical formula
~32!–~34!, a detailed description of the absorption peaks
quires numerical studies of the dependence
G (6)(0,0;n,m) on the radiation frequency, the magnetic fie
strength, and the angle between the magnetic field and
confinement plane.
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FIG. 3. Partial absorption coefficients in th
case of absorption of DO-phonons;
u0560°.
Figures 2–5 depict several partial absorption coefficients

te
d
:
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to
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Note that the distance between the doublet components
r-

on
igs.

-
n

rly
gly
in
as functions of the radiation frequencyv for DO- and
PO-phonons. The curves were found by numerically in
grating Eqs.~32!–~34!. In constructing the graphs we use
the numerical values of the parameters for InSb12

«0517.5,«`516, andv053.731013s21 at an electron den
sity n51016 cm23, temperature T5100 K, and
vc53.431013 s21. The graphs in Figs. 2–5 correspond
different values of the angle between the magnetic field
the confinement plane, and the doublet structure in the
sorption peak is clearly visible. The peaks comprising
doublet in all figures have a similar asymmetric shape:
relation to the point at whichDv50 the left peak gradually
rises but then suddenly drops, while for the right peak
situation is the opposite.
-

d
b-
e
n

e

in frequency (;109s21) is small compared to the characte
istic frequenciesv1, v2, V, vc , andv0 in the system.

The dependence of the partial absorption coefficients
the magnetic field is roughly the same as depicted in F
2–5. For the values ofB at whichDv50 the absorption is
nil. The peaks on theG (6) vs B curves exhibit the same
doublet structure as those inG (6)(v). Besides being depen
dent on the magnitudeB of the magnetic field, the absorptio
coefficientsG (6) depend on the angleu0 between the plane
with field B and the confinement plane. Figures 2–5 clea
show that the amplitude and absorption of the peaks stron
depend onu0, but the general shape of the curves and,
e
FIG. 4. Partial absorption coefficients in th
case of emission ofPO-phonons;u0560°.
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FIG. 5. Partial absorption coefficients in th
case of absorption of PO-phonons;
u0545°.
particular, their doublet nature remain the same. Figure 6
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s
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depicts the dependence of the partial absorption coeffici
on the angle betweenB and the confinement plane. Clearl
the dependence ofG (6)(0,0;n,m) on u0 is represented by a
resonance curve. The resonance peaks are symmetric a
the value ofu0 at whichDv50. On the whole the genera
nature of theG (6) vs u0 dependence is the same as f
G (6)(v) andG (6)(B).

7. DISCUSSION

The absorption peaks in the hybrid-phonon resona
are due primarily to the selection rules for the transitions
second-order perturbation theory and the law of energy c
servation in such transitions. If we ignore optical phon
dispersion, the partial absorption peaks inG (6)
ts

out

e
n
n-

whereDv50. Allowing for dispersion generally broaden
these peaks, but it also leads to an interesting change in
shape of the absorption curve. The above results sugges
in this case the partial absorption coefficients inG(v) have
two narrow and high peaks to the left and right of the po
at whichDv50 holds, while at the point itself absorption
nil. The separation in frequency between the peaks is
tremely small. Thus, the doublet structure reveals itself
cause phonon dispersion is taken into account. We also
that the results of Sec. 6 imply that the doublet compone
are asymmetric. The widths of the maxima in theG vs v
curve are much smaller than the characteristic frequencie
the system. Figures 2–5 suggest that the ratio of the p
value ofG(v) to the value in the tail of the absorption line
n
FIG. 6. Dependence of partial absorptio
coefficients on the angle u0 at
vc53.431013s21, v5431013s21, and
T5100 K.
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points only the corresponding partial absorption coeffici
contributes.

Note that this method of calculation is restricted by t
conditionvt@1 ~Ref. 16!, with t the relaxation time in the
system, so that the passage to the limitv→0 in order to
obtain DC conductivity in an oblique magnetic field is i
valid.

The frequency factorsa(v) andb(v) in the absorption
coefficient have singularities at the pointsv5v1 and
v5v2. These singularities, however, are unimportant
studies of the hybrid-phonon resonance, since they
shifted in relation to the points whereDv50 by the optical
phonon frequency, with the result that they lie in the dist
region of the wings of the hybrid-phonon resonance lines

There is also an analog of a cyclotron resonance in
system, which is due to purely electromagnetic transitio
between hybrid-oscillator levels broadened by scattering

To find the absorption we employ the same approach
we did in calculating the hybrid-phonon resonance. In fir
order perturbation theory the absorption coefficient is

G~v!5
2pA«~v!

c\Nf
~12e2\v/T!(

bb8
f 0~eb!u^b,0uHRub8,

2f&u2d~eb2eb81\v!. ~35!

Using ~14! and summing, we get

G~v!5
2p2e2n0

cm*A«~v!

v22V2

v1
22v2

2 @d~v12v!2d~v22v!#.

~36!

We allow for the time dependence in the hybri
oscillator levels by introducing a phenomenological para
eter 1/t, the halfwidth of the absorption peak, wheret is the
phenomenological relaxation time. Then Eq.~36! yields

G~v!5
2p3e2n0t

cm*A«~v!
Fv1

22V2

v1
22v2

2

1

11t2~v2v1!
2

1
v2
22V2

v2
22v1

2

1

11t2~v2v2!
2G . ~37!

We call this resonance at pointsv5v1,2 a hybrid resonance
Since the hybrid-oscillator frequenciesv1,2 depend on the
magnitude of the magnetic field and the angle between
magnetic field and the confinement plane, the position of
peaks on theG vs v curve depends on these paramete
These peaks are shifted at least by the optical phonon
quency in relation to hybrid-phonon resonance peaks, w
the result that the latter lie in the distant region of the hyb
resonance wings. Elementary estimates based on~37! and the
numerical results of Sec. 6 yieldG (6)(0,0;n,m)@G(v) in
the wings of the hybrid resonance.

The physical nature of the hybrid-phonon resonance,
cussed in the Introduction, suggests that the statistics of
electrons has no effect on the emergence of this resona
Describing the shape of the absorption curve in a degene
gas requires allowing for the Pauli exclusion principle for t
final states. Moreover, at low temperatures the phonon n
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expression forG(v) one can retain only the terms corre
sponding to processes with phonon emission. In view of t
for a degenerate gas Eq.~30! acquires the form

G~n,m;n8,m8!

5
e2vc cosu0~12e2\v/T!

m* c\2vA«~v!l 1l 2V

n!m!

n8!m8!(q uDqu2uA~v!u2

3d2~m2m8!g2~n2n8!e2d22g2@Ln8
n2n8~g2!Lm8

m2m8~d2!#2

3~Nq
T11!d~Dv! f 0~eb!@12 f 0~eb8!#, ~38!

where f 0(eb) is the Fermi function,V is the normalization
volume, and Dv5v1(n2n8)1v2(m2m8)1v2vq . In
the limit of T50 the distribution is a step function, with th
initial–state electrons ‘‘occupying’’ the energy interv
@m2\v1\vq ,m# and the final2state electrons the interva
@m,m1\v2\vq#. This suggests that the partial contrib
tions to absorption are provided only by electrons with o
cillator quantum numbers lying within the respective inte
vals.

A comparison of~38! and the results of Sec. 4 show
that the hybrid2phonon resonance peaks are at the sa
points and have the same structure as the peaks for a no
generate gas.

The resonance under discussion is observed agains
background of lattice absorption byTO-phonons. These
however, provide only a monotonic contribution in th
neighborhood of a hybrid2phonon resonance, which can b
excluded by using the expression for the lattice absorp
coefficient discussed in Ref. 12.

Note, finally, that the condition for hybrid quantization
\v2.T ~sincev1.v2), imposes a restriction on large va
ues of the angle between the field and the confinem
plane:8

cos2u0@S T

\v2
D 2S 11

vc
2

V2D .
Thus, for a fieldB that is almost parallel to the confineme
plane the above results cease to be valid.
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Drag effects in a two-layer system of spatially separated electrons and excitons

fect
Yu. E. Lozovik* ) and M. V. Nikitkov

Institute of Spectroscopy, Russian Academy of Sciences, 142092 Troitsk, Moscow Region, Russia
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We discuss drag effects in a two-layer system of spatially separated electrons and excitons: the
entrainment of excitons by moving electrons, and the entrainment of electrons by moving
excitons. For the case of excitons entrained by electrons we find the drag velocityvdrag, and for
electrons entrained by excitons we compute the induced electric fieldE2 . These drag
effects can be sensitive indicators of the phase state of the excitons and of phase transitions in
the exciton system~to a liquid phase, superfluid state, etc.!. © 1997 American Institute
of Physics.@S1063-7761~97!02803-5#

1. INTRODUCTION exciton–electron system. However, we hope that the ef
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In Ref. 1, drag effects in a two-layer system of spatia
separated electrons and holes were predicted theoretic
and their influence on phase transitions to a superfluid e
tonic phase investigated~see also Ref. 2 and the papers cit
therein!. Later, Pogrebinski�3 discussed the entrainment o
electrons by electrons in a semiconductor–insulat
semiconductor structure.4 Price proposed a practical metho
for observing the drag effect in heterostructures. Sub
quently, the drag effect was explored in a number of th
retical and experimental papers,5–13 where various physica
realizations of the drag effect were discussed in o
dimensional, two-dimensional, and three-dimensional s
tems.

In this paper we discuss new effects: drag phenomen
a two-layer system of spatially separated excitons and e
trons. The electrical neutrality of excitons is a source of gr
difficulty in the investigation of their transport properties. U
to now, information about their transport properties has b
obtained from local investigations of their recombinati
emission.14 Therefore, it would interesting to investigate th
drag exerted on electrons by excitons that are set into mo
by a concentration gradient. The drag in this case is cau
by the interaction of an exciton with an electron that pol
izes it. In principle, the effects we will discuss could make
possible to learn things about the transport properties of
citons, and how they change as a result of phase transit
in the exciton system, by measuring the current or volta
associated with the entrained electrons. We will also disc
the inverse effect in a system of spatially separated elect
and excitons, namely the entrainment of excitons by mov
electrons. In principle, this effect could make it possible
control the motion of excitons by varying the field in th
electron layer. Naturally, all these effects will also occur
electrons and excitons in a single layer. The results we ob
are qualitatively correct for this case as well.

The interaction between an electron and an exciton
weaker than the interaction between two charged partic
Consequently, drag in an electron–exciton system will
harder to detect than drag in a purely electronic system. T
fact leads to complications in seeing it experimentally in
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will nevertheless be observable.
In this paper we solve a system of two Boltzmann eq

tions for the electron and exciton distribution functions. W
find the velocityvdrag, which excitons acquire through inter
acting with the moving electrons. We obtain an express
for the electric fieldE2 that arises in the electron system d
to the entrainment of electrons by excitons.

2. DRAG COEFFICIENTS

Consider a double quantum-well structure. Assu
that excitons are created by a laser in one of the wells~which
we will denote with the number 1! with nonuniform density
~due to, e.g., the use of a mask that is opaque to the l
radiation, focusing, etc.!. Asssume that the other well~which
we label with the number 2! contains a gas of electrons wit
densityn2 . The width of the barrier between the wells w
denote byd. In this problem we will not consider tunnelin
effects. Our goal is to compute the response of the exc
system to an external electric field applied to the elect
system, and also the response of the electron system to fo
exerted by the exciton system.

In the two-layer system of electrons and excitons,
exciton mass fluxi5m1n1v1 and the electron charge flu
j52en2v2 can be expressed in terms of the exciton conc
tration gradient¹n1 and the external electric fieldE2 applied
to the electron subsystem by

J5K̂S, ~1!

where

J5S i1j2D , K̂5S 2m1D11 2n1m1m12

em1D21/m2 en2m22
D ,

S5S ¹n1
E2

D .
HereD11 is the exciton diffusion coefficient,D21 is the co-
efficient of mutual diffusion of electrons and excitons,m12 is
the coefficient of mutual mobility of the excitons and ele
trons, andm22 is the mobility coefficient of the electrons.
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Note that in our two-layer system the coefficientsD11
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] f 1
v 5I , ~8!
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on
andm22 include the interaction between electrons and ex
tons ~as is true forD21 andm12!.

When no external electric field is applied to the electr
layer, but it is not connected into a closed circuit, creation
a concentration gradient in the exciton system gives rise
an induced electric fieldE2

ind in the electron layer equal to

E2
ind52

m1D21

m2n2m22
¹n152K21¹n1 . ~2!

In this case, we obtain the following expression for the e
citon flux from ~1!:

i152~m1D112n1m1m12K21!¹n1 . ~3!

If, however,¹n150, then we have for the exciton flux

i152n1m1m12E2 , ~4!

in this case, it follows from~4! that the velocity of the exci-
tons is

v152m12E2 . ~5!

3. ENTRAINMENT OF ELECTRONS BY EXCITONS

When their density is nonuniform, excitons will diffus
in the direction of its decrease. As they move, the excit
interact with electrons, thereby imparting momentum
them. As a result of this, an induced electric fieldE2 appears
in the electron layer.

Consider the case where the circuit to which the elect
layer is connected is open. The kinetic equations for the
citon and electron distribution functions have the form

] f 1
]r1

v15I 11I 12, ~6!

] f 2
]r2

v21
] f 2
]p2

ṗ25I 21, ~7!

here I 1 is a collision integral that includes all exciton sca
tering processes except scattering of excitons by electr
while I 12 is the collision integral that takes the latter in
account. In Eq.~6! there is no term with a momentum de
rivative (] f 1 /]p1)ṗ1 . This term vanishes because no ma
roscopic force acts on the excitons, andṗ150. When the
circuit that includes the electron layer is open, the collis
integral I 2 for the electrons in layer 2 also vanishes and
equilibrium an induced electric fieldE2 appears which com
pensates the change in momentum of the electrons as a r
of electron–exciton collisions. The system of Eqs.~6! and
~7! can be simplified if we assume that the electron–exci
interaction has only a weak effect on the process of exc
diffusion, so thatuI 1u@uI 12u and the termI 12 can be omitted.
If the nonuniformity in the distribution of electrons is sma
i.e.,

U] f 2]r2
v2U!U] f 2]p2

ṗ2U,
then we also can neglect the spatial derivative in~7!. Then
we obtain
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n
n

]r1
1 1

] f 2
]p2

ṗ25I 21. ~9!

Let us rewrite the left side of Eq.~8! in the following
form ~assumingn15n1(x)!:

] f 1
]r1

v15
] f 1
]m

]m

]n1

]n1
]x

v1x1
] f 1
]T

]T

]r1
v1 , ~10!

wherem5m(x) is the chemical potential of the exciton ga
We will neglect the temperature gradient and write the c
lision integralI 1 in the t-approximation:

I 152
f 12 f 1

0

t1
, ~11!

wheret1 is the relaxation time of the excitons. Heref 1
0 is a

Bose function withm5m(n10)5m0 , normalized by

n105E f 1
0 dp1

~2p\!2
. ~12!

As a result, Eq.~8! acquires the form

] f 1
]m

]m

]n1

]n1
]x

v1x52
f 12 f 1

0

t1
. ~13!

We linearize Eq.~13!; for this we letn1(x)5n101dn1(x),
m(n1)5m(n10)1dm(x), and write f 1 in the form

f 15 f 1
01 f 1

0~11 f 1
0!c1 . ~14!

As a result, we obtain the following expression forc1 :

c152
t1
kBT

]m0

]n10

]n1
]x

v1x . ~15!

Let us assume that collisions between excitons and e
trons are elastic. Then the collision integral in Eq.~9! has the
form

I 215(
s28

E w~p1p2 ;p18p28!$ f 18 f 28~11 f 1!~12 f 2!

2 f 1f 2~11 f 18!~12 f 28!%d~«11«22«182«28!

3
dp1

~2p\!2
dp28

~2p\!2
, ~16!

wherew is the probability of scattering of an exciton by a
electron.

We linearize Eq.~9! by writing f 2 in a form analogous to
~14!, i.e.,

f 25 f 2
01 f 2

0~12 f 2
0!c2 , ~17!

where f 2
0 is a Fermi function that satisfies the normalizati

condition

n252E f 2
0 dp2

~2p\!2
. ~18!

Sinceṗ252eE2 , we obtain
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2eE
] f 2

0

5 w$ f 0f 0~11 f 0 !~12 f 0 !%~c 1c
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c

e
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m

we obtain a different expression for the coefficientK21:

and
nd

.
-

2 ]p2
(
s28

E 1 2 18 28 18 28

2c12c2!d~«11«22«182«28!

3
dp1

~2p\!2
dp28

~2p\!2
. ~19!

When there is no current in the electron layer,c2 and
c28 vanish. We multiply both parts of Eq.~19! by
p2x /(2p\)2, integrate over all the momentap2 , and sum
over projections of the spins2 . Then Eq.~19! can be written
in the form

E252K21¹xn1 , ~20!

where the coefficientK21 ~see Eq.~2!! equals

K215
2t1

em1n2kBT

]m0

]n10
E wf1

0f 2
0~11 f 18

0
!~12 f 28

0
!

3p2x~p18x2p1x!d~«11«22«182«28!

3
dp1

~2p\!2
dp2

~2p\!2
dp28

~2p\!2
. ~21!

Taking into account the conservation of momentum d
ing collisions:p1x2p18x5p28x2p2x , and also the symmetry
of the integral in Eq.~21!, we obtain

K215
t1

2em1n2kBT

]m0

]n10
E wf1

0f 2
0~11 f 18

0
!~12 f 28

0
!

3q2d~«11«22«182«28!

3
dp1

~2p\!2
dp2

~2p\!2
dp28

~2p\!2
, ~22!

whereq5p282p2 .
For the probability of scattering of an exciton by an ele

tron we will use the Born approximation:

w~p1p2 ;p18 p28!5
2p

\
uU~q!u2, ~23!

where U(q) is the Fourier transform of the effectiv
exciton–electron interaction energy~see Sec. 5!.

Use of the Born approximation in this case is corre
because the condition for its applicability has the form

gn3/2!\v, if d,n21/2,

gd23!\v, if d.n21/2,

wheren5max$n1 ,n2%; the quantityg is defined below in
Eq. ~71!, andv is the electron–exciton relative velocity. Th
condition is fulfilled over a wide range of densities and te
peratures. For example, for an exciton radiusa520 Å, a
dielectric constante 5 10, in the medium andd,n21/2, we
obtain the conditionn3/2/v!1013cm24.

Using the identity

d~«11«22«182«28!5E d~\v!d~«12«182\v!

3d~«22«281\v!, ~24!
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K215
1

2

t1
e\2kBTm1n2

]m0

]n10
E
0

`

U2~q!q3dqE
2`

`

dv

3E
2`

`

f 1
0~11 f 18

0
!d~«12«182\v!

dp1
~2p\!2

3E
2`

`

f 2
0~12 f 28

0
!d~«22«281\v!

dp2
~2p\!2

. ~25!

We rewrite Eq.~25! in the form

K215
1

8p2

t1
e\2kBTm1n2

]m0

]n10
E
0

`

U2~q!q3dq

3E
2`

` Im xB~q,v!Im xF~q,v!

sinh2~\v/2kBT!
dv, ~26!

where

xB~q,v!52E f 0~«1!2 f 0~«18!

~«12«181\v1 id!

dp1
~2p\!2

, ~27!

xF~q,v!52E f 0~«2!2 f 0~«28!

~«22«281\v1 id!

dp2
~2p\!2

. ~28!

Let the system parameters be such that the excitons
electrons obey Boltzmann distributions. In this case we fi
a simpler expression forK21 from ~25!:

K215
1

4A2p

t1n10
em1

A M

~kBT!3
]m0

]n10
E
0

`

U2~k!k2

3expS 2
k2\2

8MkBT
Ddk, ~29!

whereM5m1m2 /(m11m2), k5q/\ andU is the potential
energy of the interaction between electrons and excitons

We now wrteE2 in terms of the exciton diffusion veloc
ity vdiff . Doing so, we find

vdiff5
1

n10
E v1xf 1

0c1

dp1
~2p\!2

. ~30!

Taking into account Eq.~15!, we obtain from~30!

vdiff52
t1
m1

]m0

]n10

]n1
]x

. ~31!

Let us write the equation forE2 in the form

E25l21vdiff . ~32!

Using ~29!, we find the following expression forl21:

l215
1

4A2p

n10
e
A M

~kBT!3

3E
0

`

U2~k!k2expS 2
k2\2

8MkBT
Ddk. ~33!
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4. ENTRAINMENT OF EXCITONS BY ELECTRONS
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Consider the reverse situation, i.e., where the electr
drag the excitons. Let us calculate the velocity imparted
the excitons when they interact with electrons.

In this case, the kinetic equations have the form

] f 1
]r1

v15I 11I 12, ~34!

] f 2
]r2

v21
] f 2
]p2

ṗ25I 21I 21. ~35!

In order to simplify Eqs.~34! and ~35! we will assume
that the electron current is uniform, and also that the co
sion integralI 21 is a small correction toI 2 and thus can be
neglected in~35!. Furthermore, if we are interested only
the drag velocityvdrag, assuming that it dominates over th
diffusion velocityvdiff , we can omit the term containing th
spatial derivative off 1 in Eq. ~34!. Then we obtain

I 11I 1250, ~36!

] f 2
]p2

ṗ25I 2 . ~37!

The usual procedure of substitutingf 2 into Eq. ~37! in
Eq. ~17! and using thet approximation forI 2 gives

c252
t2

m2kBT
eE2p2 . ~38!

HereE25$E2,0% is the intensity of the external electric fiel
andt2 is the relaxation time of the electrons.

Let us write Eq.~36! in more detail:

I 152 (
s2 ,s28

E w$ f 18 f 28~11 f 1!~12 f 2!2 f 1f 2~11 f 18!

3~12 f 28!%d~«11«22«182«28!
dp18

~2p\!2
dp2

~2p\!2
.

~39!

By substitutingf 1 in the form ~14! and f 2 in the form
~17! into ~39!, and also settingI 152( f 12 f 1

0)/t1 , we obtain
the linearized equation

f 1
0~11 f 1

0!c152t1E wf1
0f 2

0~11 f 18
0

!~12 f 28
0

!~c181c28

2c12c2!d~«11«22«182«28!

3
dp18

~2p\!2
dp2

~2p\!2
. ~40!

The conditionvdiff!vdrag permits us to drop the terms i
c1 andc18 under the integral sign in Eq.~40!.

The expression for the drag velocity has the form

vdrag5
1

m1n10
E p1xf 1

0~11 f 1
0!c1

dp1
~2p\!2

. ~41!

We write the equation forvdrag ~see~5!! as

vdrag52m12E2 . ~42!

In light of the relations~40! and ~41!, we have form12
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12 m1m2n10kBT
1 2 18 28 1x

3~p28x2p2x!d~«11«22«182«28!

3
dp1

~2p\!2
dp18

~2p\!2
dp2

~2p\!2
. ~43!

Omitting calculations like those described above, we
nally find an expression form12:

m125
1

8p2

t1t2
m1m2n10\

2

e

kBT
E
0

`

dq E
2`

`

dvU2~q!q3

3
Im xB~q,v!Im xF~q,v!

sinh2~\v/2kBT!
, ~44!

or in the classical case

m125
t1t2

4A2p

en2
m1m2

A M

~kBT!3
E
0

`

U2~k!k2

3expS 2
k2\2

8MkBT
Ddk. ~45!

5. EFFECTIVE INTERACTION IN THE ELECTRON–EXCITON
SYSTEM

In order to compute the effective interaction energy in
two-layer system of electrons and excitons we will use
self-consistent approximation. Quantities that refer to ex
tons we label with the number 1, while those that refer
electrons we label with 2. If the exciton radius is mu
smaller than the distance between electrons and excit
then the interaction energy between an isolated electron
an exciton has the form

Ve2ex~r12r2 ,d!52
g

@~r12r2!
21d2#2

,

where g5ae2/2e, a is the polarizability of the two-
dimensional exciton in its ground state,d is the distance
between layers,ur12r2u the distance between excitons an
electrons along the layers, ande is the dielectric permittivity
of the medium. In deriving expressions for the effective
teraction energy in a multiparticle electron–exciton syst
we will assume that the exciton–exciton interaction is neg
gibly small compared to the electron–exciton interaction a
omit it. Let us place a test charge2e in the electron sub-
system at the origin of the coordinates. The linearized kine
equations for the distribution functions of excitons and el
trons have the form

] f 1
]r1

v11
] f 1

0

]p1
ṗ150, ~46!

] f 2
]r2

v21
] f 2

0

]p2
ṗ250, ~47!

where

ṗ152
]

]r1
U~r1 ,d!, ṗ252

]

]r2
U~r2,0!.
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The interaction energiesU(r ,0) andU(r ,d) satisfy the equa-

-

b 52
m2

. ~58!

on
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xci-

n is
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th
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tions

U~r ,0!5E r2~r 8!
e2

eur2r 8u
dr 8

2E gr1~r 8!dr 8
@~r2r 8!21d2#2

1
e2

er
, ~48!

U~r ,d!52E gr2~r 8!dr 8
@~r2r 8!21d2#2

2
g

~r 21d2!2
, ~49!

where

r1~r !5E f 1~r ,p!
dp

~2p\!2
,

r2~r !52E f 2~r ,p!
dp

~2p\!2
.

Fourier-transforming Eqs.~46!, ~49!, we obtain ~assuming
that k5$k,0%)

f 1~k,p!5
1

v1x

] f 1
0

]p1x
U~k,d!, ~50!

f 2~k,p!5
1

v2x

] f 2
0

]p2x
U~k,0!, ~51!

where f 1
0 is a Bose function andf 2

0 is a Fermi function, and

U~k,0!5
4pe2

ek E f 2~k,p!
dp

~2p\!2

2gF~k,d!E f 1~k,p!
dp

~2p\!2
1
2pe2

ek
, ~52!

U~k,d!522gF~k,d!E f 2~k,p!
dp

~2p\!2
2gF~k,d!,

~53!

where the functionF(k,d)5(pk/d)K1(kd), whereK1(z) is
a modified Bessel function.

From Eqs.~50!–~53! we obtain a system of two alge
braic equations for determiningU(k,0) andU(k,d):

U~k,0!5
2pe2

ek
b2U~k,0!2gb1F~k,d!U~k,d!

1
2pe2

ek
, ~54!

U~k,d!52gb2F~k,d!U~k,0!2gF~k,d!, ~55!

where

b15E 1

vx

] f 1
0

]px

dp

~2p\!2
, b252E 1

vx

] f 2
0

]px

dp

~2p\!2
.

~56!

If f 1
0 and f 2

0 are Boltzmann distributions, then

b152
n10
kBT

, b252
n2
kBT

, ~57!

If f 2
0 is a Fermi step function, then
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2 p\2

As a result, the expression for the effective interacti
energy in a multiparticle electron–exciton system has
form

U~k,d!52
gF~k,d!

122pe2b2 /ek2g2b1b2F
2 . ~59!

The expression for the effective interaction energy h
the same form in a one-layer system of electrons and e
tons, except that the functionF(k,d) is replaced by
F(k,a), defined as follows:

F~k,a!5E e2 ikrdr

r 4
52pE

a

` J0~kr !dr

r 3
,

wherea is the exciton radius andJ0 is a Bessel function.
By defining the functionF(k,a) in this way, we assert

that the interaction between an electron and an excito
dipole–charge at distances down to the exciton size
equals zero at smaller distances.

We now derive the value of the parameterg5ae2/2e
entering into Eq.~59!.

To second order in perturbation theory wi
respect to the electron–exciton interaction opera
V̂52dE52edR/eR3 ~where d5er is the exciton dipole
moment andR the distance between the electron and
exciton!, the energy of interaction between an exciton in
ground state and an electron has the form

W5(
k

8
uV0ku2

E02Ek
5

e4

e2R4 (
k

8
ux0ku2

E02Ek
52

ae2

2eR4 .

~60!

We will use this expression to calculate the effective int
action in the many-particle electron–exciton system. First
calculate the polarizabilitya entering into the parameterg
for a two-dimensional exciton:

a52
2e2

e (
k

8
ux0ku2

E02Ek
. ~61!

We introduce the auxiliary operatorb̂ by15

x5
m1

\

db̂

dt
. ~62!

Then we obtain fora the expression

a5
2im1e

2

e\2 ~xb̂!00. ~63!

Consider the action of the operatorb̂ on the wave function
c0 for the exciton ground state:

xc05
m1

\

db̂

dt
c05

im1

\2 ~Ĥb̂2b̂Ĥ !c0 , ~64!

whereĤ is the system Hamiltonian.
Let b̂c05b(r )c0 . The equation @2\2¹2/2m1

1 U(r )#c05E0c0 implies that Eq.~64! has the form
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Substitutingb(r )5 f (r )cosf into Eq. ~65! reduces it to the
form

ir5
1

2
f 91

1

2

f 8

r
2
1

2

f

r 2
1 f 8

c08

c0
. ~66!

The ground-state wave function of the two-dimensio
exciton is

c05A 2

pa2
e2r /a, ~67!

wherea5e\2/2m1e
2 is the radius of the two-dimensiona

exciton in its ground state,m15memh/(me1mh), me and
mh are the electron and hole masses.

Solving Eq.~66!, taking ~67! into account, we obtain

f5AS 11
a

2r D1B
e2r /a

r
2

ia

2

3S r 21 3ar

2
1
3a2

2
1
3a3

4r D . ~68!

The coefficientsA andB are chosen from the condition o
finiteness offc0 ast→0 andt→`. As a result, the solution
takes the form

f52
ia

2 S r 21 3ar

2 D . ~69!

For the polarizabilitya, taking~63! and~67! into account we
obtain

a5
21

8

m1e
2

e\2 a45
21

16
a3. ~70!

Thus, the parameterg entering into Eq.~59! for the ef-
fective interaction energy in a many-particle electro
exciton system equals

g5
21

32

e2a3

e
. ~71!

6. CONCLUSION

Let us discuss possible types of experiments to de
entrainment excitons by electrons and electrons by excit
First consider entrainment electrons by excitons. A direc
flux of excitons can be obtained if we locally create excito
~for example, using a laser with cw pumping! at one of the
edges of layer 1. The excitons will diffuse away from t
edge of the layer in the direction opposite to the concen
tion gradient. During the diffusion process the excitons w
partially recombine, and also interact with electrons in
second layer. The response of the electron subsystem to
exciton diffusion will either be an induced current of ele
trons or an induced electric field~voltage! in layer 2, which
can be measured.

For the case of entrainment of excitons by electrons,
drag velocityvdragcan be measured using two optical prob
~fibers! or apertures in opaque masks located a set dista
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the luminescence. By measuring the time interval betw
maxima of the luminescence, we can determine the drag
locity of the excitonvdrag ~this experiment is possible when
pulsed laser is used!. Actually, both diffusion ~connected
with the concentration gradient! and drag give contributions
to the measured exciton velocity. However, the role of d
fusion can be isolated by measuring the velocity of exci
motion when there is no electron current dragging the ex
tons.

Analogous experimental setups are possible when
electrons and excitons share a common layer.

In a one-layer system it is possible for a rather shall
electron–exciton bound state to form16 due to the polariza-
tion interaction between them. However, the predicted bi
ing energy of this state should decrease markedly when
take into account the Pauli exchange repulsion between
free and excitonic electron and screening~the latter is espe-
cially important for exciton concentrationsn2.1/r 1

2, where
r 1
2 is the radius of the state of a single electron bound t
single exciton!. For temperatures larger than 0.2 ionizati
energies of this bound state, the latter gives no contribu
to our kinetic equations.

The formation of electron–exciton bound states in a tw
layer system turns out to be even less important beca
even at distancesd5100 Å the ionization temperature o
these states is less than 1 K.

These drag effects, in particular the electric field~volt-
age! induced by excitons in the electron layer, can be sen
tive indicators of the state of the excitonic subsystem and
phase transitions. For example, the response should ch
markedly when a phase transition to the liquid state ta
place in the two-dimensional exciton system. In particul
the appearance of moving insulating excitonic droplets
lead to electric current pulses in the electron layer.

It would be interesting to study the implications of exc
tonic Bose–Einstein statistics using these drag effects
particular the appearance of an excitonic Bose–Einstein c
densate. In a two-dimensional system of excitons at low te
peratures, where Bose–Einstein condensation does not o
~in the thermodynamic limit! it would be interesting to in-
vestigate how the electron drag is affected by the appeara
first of a local superfluid density~with uncorrelated phases!
and then a global superfluid exciton density at t
Kosterlitz–Thouless transition temperature. In the crosso
region where the local superfluid density appears, the d
coefficients~mutual mobility and mutual diffusion! should
slowly increase and be discontinuous at the Kosterlit
Thouless transition point.
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Current–voltage characteristics of tunnel junctions between superconductors with

r is
anisotropic pairing
Yu. S. Barash and A. A. Svidzinski 

P. N. Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Russia
~Submitted 26 September 1996!
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Charge transfer in tunnel junctions between superconductors with anisotropic singlet pairing is
considered theoretically on the basis of the Eilenberger equations for the quasiclassical
Green’s functions. New singularities of the current–voltage characteristics, which are characteristic
of the case of anisotropic pairing, are treated analytically assuming that the electrons reflect
specularly from the boundaries of the tunnel barrier. All four contributions to the tunneling current
are investigated. Two of them describe Josephson tunneling, and the other two contributions
correspond to the quasiparticle current~the last term appears only for a variable voltage!. Different
dependences of the order parameter on the momentum directions in the interior of the
superconductors and different orientations of the crystal axes relative to the junction plane are
considered. The results of numerical calculations of the current–voltage characteristics
for several particular cases are presented. ©1997 American Institute of Physics.
@S1063-7761~97!02903-X#
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Charge transfer through a tunnel junction between su
conductors with isotropic pairing was considered theor
cally 30 years ago. In particular, a microscopic description
the total tunneling current that flows when an external va
able voltage is applied to a junction was obtained within
tunneling Hamiltonian formalism by Larkin an
Ovchinnikov1 and by Werthamer2 ~see also Ref. 3 and th
references cited therein!. It has recently become clear fo
superconductors with anisotropic pairing that measurem
of the Josephson and quasiparticle currents provide im
tant information on the structure of the superconducting
der parameter on both sides of the junction, on the proxim
effect, and on several other surface effects near the plan
a tunnel junction between superconductors.4–9 Investigations
in this area have attracted a great deal of attention, prima
because of the importance of determining the structure of
anisotropic superconducting order parameter for differ
high-temperature superconductors~see, for example, Ref. 10
and 11!.

One of the characteristic features of the microscopic
scription of charge transfer through tunnel junctions betw
superconductors with anisotropic pairing is the ineffectiv
ness of the tunneling Hamiltonian formalism in this case12

This method, which can usually be employed successf
for tunnel junctions between superconductors with isotro
pairing, contains uncertainties in the case of anisotropic p
ing because of the significant momentum dependence o
matrix elements describing the tunneling between the su
conductors. Choosing the matrix elements independent o
momentum directions~which is permissible for isotropic
s-wave pairing! leads to incorrect results for anisotropic pa
ing. At the same time, the momentum dependence of tun
ing matrix elements cannot be obtained within this meth
The use of a systematic microscopic description of the t
neling of a charge between superconductors based on a
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not plagued by the uncertainties inherent in the tunnel
Hamiltonian formalism.

In this paper we analytically investigate the singulariti
on the current–voltage characteristics of tunnel junctions
tween superconductors with anisotropic pairing, to which
external, generally variable voltage is applied. We use a
croscopic approach based on a microscopic expression
the tunneling current and on the solution of the Eilenber
equations together with the corresponding boundary co
tions for quasiclassical electron propagators. In the spe
case of a junction between superconductors with isotro
pairing, our results coincide with those found in Ref. 1.
Ref. 1 general expressions were obtained, and the sing
points of the functionsI m(V) (m51, 2, 3, 4), which appea
in the expression for the total tunneling current, were d
scribed@see, for example,~6! and ~7! below#. The functions
I 1,2(V) play the role of amplitudes in the expression for t
Josephson current, which for a constant voltage reduces

I 1~V!sinS x12x212
eVt

\ D1I 2~V!cosS x12x212
eVt

\ D .
The functionsI 3,4(V) describe the quasiparticle current. Th
function I 4(V) appears only in the case of a variable voltag
while in the case of a constant voltage the quasiparticle c
rent reduces to the single termI 3(V). In particular, it was
shown that at the voltageueVu5D11D2 the functions
I 1(V) and I 4(V) diverge logarithmically, whileI 2(V) and
I 3(V) undergo jumps. Similar singularities were found for
variable voltage oscillating with a frequency\v5D11D2 .
The divergence ofI 1 is called the Riedel peak.

13 This diver-
gence ofI 1 is associated with a corresponding singularity
the density of states of the superconductors at\v5D.

In the case of anisotropic pairing, in which the density
states does not exhibit divergence, the Riedel peak is
course, smeared out. Nevertheless, as is shown below, s

6196$10.00 © 1997 American Institute of Physics



new characteristic singularities appear on the current–
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voltage characteristic under certain conditions specific
because of the anisotropy of the order parameter, som
them caused by reversal of the sign of the order paramet
the Fermi surface. The characteristic behavior of
current–voltage characteristic can depend significantly
the orientation of the crystal axes of the superconduc
relative to the junction plane. Their orientation determin
the spatial behavior of the order parameter near that pl
However, even in the simplest case of a uniform distribut
of the superconducting order parameter on the two side
the junction, the features of the current–voltage characte
tic differ sharply from the case of isotropic pairing. In fac
for superconductors with anisotropic singlet pairing the fu
tions I m(V) also become dependent on the momentum dir
tion on the Fermi surface, and to find the tunneling curr
these functions must be integrated with some weight over
Fermi surface. For orientations of the crystal axes in wh
there is no suppression of the order parameter on either
of the junction, we found that nonanalytic behavior of t
current–voltage characteristic is observed only for the dir
tions of ueVu which are equal to the values of the expressio
iD2(p̂2)u6uD1(p̂1)i at their extremum points. Herep̂1 is the
momentum direction of a quasiparticle impinging on t
boundary of the tunnel barrier, andp̂2 is the momentum di-
rection of a transmitted quasiparticle, which is directly r
lated to p̂1 and to the form of the Fermi surfaces of th
contacting metals. The expressions presented have bee
amined, for example, as a function ofp̂1 . It was found that
the singularities of the current–voltage characteristic dep
strongly on the types of extrema for these expressions. T
was first pointed out in Ref. 7, which treated the charac
istic behavior of the current–voltage characteristic for
quasiparticle current at low temperatures in the critical o
entations, in which there is no suppression of the order
rameter on either side of the junction.

The situation becomes more complicated for crystal o
entations in which the order parameter is significantly s
pressed near the junction plane. In this case quasipar
bound states localized near the junction plane can oc
Among them we can distinguish the bound state with z
energy, which appears under quite general conditions.8,14–17

In the case of an opaque, specularly reflecting bound
such a state always appears for quasiparticles whose inc
and reflected momenta correspond to different signs of
order parameter in the bulk of the superconductor. Bes
such universal states localized near a boundary, quasipa
bound states with a nonzero energy, whose value is spec
by the specific profile of the variation of the order parame
near the surface, can also be present.8 Below we shall con-
sider both types of bound states and their manifestation
the current–voltage characteristic.

2. MICROSCOPIC EXPRESSION FOR THE TUNNELING
ELECTRIC CURRENT

Let us consider a tunnel junction with a transparen
factor D!1 and with a specularly reflecting plane at t
potential barrier between two clean superconductors ha
singlet pairing. We assume that the external volta
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x axis parallel to a normal to the junction plane,nix. To first
order in the transparencyD the microscopic expression fo
the tunneling current density can be written in the followi
form:18

j x52
1

8p3 E
vx1.0

d2S1vx1
4pv f1

Tr$t̂3D~ p̂1!

3~ ĝ1
Rĝ2

K1ĝ1
Kĝ2

A2ĝ2
Rĝ1

K2ĝ2
Kĝ1

A!0~ t,t !%. ~1!

Here and below we sete, \, c51, wheree52ueu is the
charge of the electron.

In ~1! the retarded, advanced, and Keldysh quasiclass
matrix propagators are taken directly on the junction bou
ary and should be calculated in zero order with respect to
transparency of the barrier~i.e., for a nontransparent bound
ary!. These propagators depend on the corresponding d
tions p̂1 and p̂2 in momentum space. The subscript 1~2!
labels the left-hand~right-hand! half-space with respect to
the boundary plane,vx is the component of the Fermi veloc
ity along the normaln to the junction plane. In~1! the inte-
gration is performed over the part of the Fermi surface
whichvx.0. The relation between the incident and transm
ted Fermi momenta~i.e., betweenp1 andp2) is as follows.
The components which are parallel to the specularly refle
ing barrier plane should be equal to one another, and
magnitudes of the components along the normal to
boundary are determined from the condition that the m
mentap1 andp2 lie on the corresponding Fermi surfaces.
is obvious that in the special case of superconductors w
identical spherical or cylindrical Fermi surfaces~provided
the cylindrical axis is parallel to the junction plane! the inci-
dent and transmitted momenta are equal,p15p2.

The quantities used in~1! are found in accordance with
the following example:

~ ĝ1
Rĝ2

K!0~ t,t !5E
2`

t

dt1ĝ1
R~ t,t1!ĝ2

K~ t1 ,t !. ~2!

Here ĝl
R,A,K(t,t1)5Ŝl(t)ĝl

R,A,K(t2t1)Ŝl
1(t1) ( l51, 2),

where

Ŝl~ t !5S exp@ ix l~ t !/2# 0

0 exp@2 ix l~ t !/2#
D ,

x l~ t !5x l22E t

F l~ t8!dt8 ~3!

andx l is the phase of the order parameter of thel th super-
conductor in the junction plane when the electric poten
F l is zero.

Below we consider only singlet types of anisotropic pa
ing. The matrix propagators for them can be written in t
form

ĝ5S g f

f1 2gD . ~4!

For the further calculations we note that the nonequil
rium effects are generally insignificant for tunnel junction
The voltageV only shifts the Fermi levels of the electrode
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the current in first order with respect to the transparency,
Green’s functions can be calculated for nontransparent h
spaces~if we neglect the tunneling of electrons through t
junction!. Under the conditions considered here the elect
distribution functions still correspond to equilibrium, and t
electric potential leads only to the appearance of the co
sponding coordinate-independent terms in the phases o
superconducting order parameters and in the Green’s f
tions on the two sides of the junction@see, for example,~3!#.
The following relation then holds:

ĝK~v!5@ ĝR~v!2ĝA~v!#tanhS v

2TD . ~5!

According to the general symmetry properties of prop
gators,ĝA5 t̂3(ĝ

R)†t̂3 , where t̂3 is a Pauli matrix. Let us
consider the case in which the phase of the order param
within the half-space occupied by a superconductor with
opaque boundary does not depend on the coordinates o
momentum. Then this phase corresponds tox l in Eq. ~3!, and
the Green’s functions should be calculated for the real or
parameter, although the sign of the order parameter can
pend on the momentum direction. Under these conditions
have

f R,A~2p̂,x,v!52 f1R,A~ p̂,x,v!,

gR,A~2p̂,x,v!5gR,A~ p̂,x,v!,

f R,A~ p̂,x,2v!5 f R,A* ~ p̂,x,v!,

gR,A~ p̂,x,2v!52gR,A* ~ p̂,x,v!.

We also take into account in the calculations that the val
of the propagator from the incident momentump̂ and from
the reflected momentump̌ coincide andvx(p̂)52vx(p̌) on
an opaque boundary. Therefore, when the variable volt
V(t)5V01acos(v0t) is applied to the junction, we can ob
tain the following expression for the tunneling current fro
Eq. ~1!:

j x5 (
n52`

`

JnS av0
D H j 1~V01vn!

3sinFx12x212V0t1
a

v0

3sin~v0t !1vnt G1 j 2~V01vn!

3cosFx12x212V0t1
a

v0
sin~v0t !1vnt G

1 j 3~V01vn!cosFvnt2
a

v0
sin~v0t !G

1 j 4~V01vn!sinFvnt2
a

v0
sin~v0t !G J . ~6!

Here we have introduced the quantities:

j m~V!5E
vx1.0

d2S1
~2p!3

vx1
v f1

D~ p̂1!I m~V,p̂1!,

m51, 2, 3, 4, ~7!
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2` 2p2 S 2TD 1 2

1 f 2
R* ~v!#1~1↔2,V→2V!%, ~8!

I 2~V,p̂1!52E
2`

` dv

2p2 tanhS v

2TDRe$ f 1R~v2V!

3@ f 2
1R~v!1 f 2

R* ~v!#2~1↔2,V→2V!%, ~9!

I 3~V,p̂1!5E
2`

` dv

p2 F tanhS v2V

2T D2tanhS v

2TD G
3Img1

R~v!Im g2
R~v2V!, ~10!

I 4~V,p̂1!52E
2`

` dv

p2 tanhS v

2TD $Re@g1
R~v2V!#Im g2

R

3~v!1Re@g2
R~v2V!#Im g1

R~v!%. ~11!

The replacementf↔ f1 in formulas~8! and ~9! leads to the
same result for the Josephson current after integration o
the momentum directions in~7!.

For the special case of superconductors with isotro
pairing Eqs.~6!–~11! agree with the results of Larkin an
Ovchinnikov.1 We note thatI 1(V) and I 4(V) are even func-
tions ofV, while I 2 and I 3 are odd. This difference enable
us, in principle, to unequivocally isolate the behavior of
four contributions to the tunneling current from the results
measurements and to study it on an individual basis. T
the parity properties with respect toV just mentioned permit
elimination of the replacementV→2V in the complete ex-
pressions forI 1,2(V), which leads only to reversal of the sig
in front of the corresponding term in the expression
I 2(V).

Equations~8!–~11! were written out above in a form
which is conserved in the more general case~compared with
the case considered below! in which the phase of the com
plex order parameter depends on the coordinates and the
mentum directions and the Green’s functions satisfy the g
eral symmetry relations

f1R,A~2p̂,x,2v!52 f R,A* ~ p̂,x,v!,

gR,A~2p̂,x,2v!52gR,A* ~ p̂,x,v!.

Here, of course, a different choice of the phase differe
x12x2 can appear in the arguments of the trigonome
functions with a corresponding change in the definition
the amplitudesj 1,2. If this phase difference is chosen depe
dent on the momentum direction, those trigonometric fu
tions must appear together withI 1,2(V) in the integral over
the Fermi surface. In the general caseI 1(V) and I 2(V) do
not have the properties of evenness or oddness with res
to the direction.

For a constant voltage on the junction, settinga50,
from ~6! we obtain

j x~V!5 j 1~V!sin~x12x212Vt!1 j 2~V!cos~x12x2

12Vt!1 j 3~V!. ~12!

It follows from ~12! and~6! that the characteristic singu
larities of the current–voltage characteristic for constant a
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variable voltages on the junction are given by the singular
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points of the functionsj m(V). We useVm to denote the
singular points of these functions. Then the current–volt
characteristic for a constant voltage on the junction will ha
singularities only at these points. However, in the case o
variable voltage the expression for the current~6! has singu-
larities at the voltage valuesV5Vm2nv0 ~m51, 2, 3, 4;
n50,61,62, . . .!. For sufficiently large values ofn
(a/v0&n) the amplitude of the current becomes small~be-
cause of the corresponding behavior of the Bessel functio!.

3. QUASICLASSICAL GREEN’S FUNCTIONS ON AN
OPAQUE FLAT BOUNDARY

It follows from the preceding section that to calculate t
tunneling electric current through a junction of low transp
ency it is sufficient to find the values of the retarded elect
propagators on a flat opaque boundary of a half-space o
pied by a superconductor. It is apparently impossible to fi
the complete analytic solution of this problem for a pairi
potential that leads to an anisotropic order parameter~except
for a few special orientations of the crystal axes, for wh
there is no suppression of the order parameter near
boundary and it does not depend on the coordinates!, and a
numerical calculation is required for this purpose. Howev
the problem is simplified significantly, if we are interest
only in the singularities of the current–voltage characteris
since finding them requires knowledge of the behavior of
Green’s functions~taken on the boundary! only near the sin-
gular points. To solve this problem we use the Eilenber
equation for delayed quasiclassical propagators, which
be written for a superconductor with singlet pairing in t
following manner~below we omit the subscripts on the r
tarded propagators!:

~2v1 ivx]x! f ~ p̂,x,v!12D~ p̂,x!g~ p̂,x,v!50,

~2v2 ivx]x! f
1~ p̂,x,v!22D* ~ p̂,x!g~ p̂,x,v!50, ~13!

ivx]xg~ p̂,x,v!2D~ p̂,x! f1~ p̂,x,v!2D* ~ p̂,x! f ~ p̂,x,v!50.

To be specific, we assume that the superconductor o
pies the half-spacex.0.

Apart from the self-consistency equation forD(p̂,x),
Eqs.~13! should be supplemented by the normalization c
dition

g21 f f152p2 ~14!

and the boundary conditions for the quasiclassical propa
tors. For an opaque, specularly reflecting surface we hav

g~ p̂,v!5g~ p̌,v!ux50 , f ~ p̂,v!5 f ~ p̌,v!ux50 ,

f1~ p̂,v!5 f1~ p̌,v!ux50 . ~15!

Here p̂ is the incident momentum direction, andp̌ is the
reflected momentum direction.

An additional boundary~asymptotic! condition is im-
posed on Eqs.~13! by the behavior of the propagators in th
interior of the superconductor:

g~ p̂,v!ux5`5
2pv

AuD`~ p̂!u22v2
,
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f ~p,v!ux5`52 f ~p,v!ux5`5
AuD`~ p̂!u22v2

. ~16!

We assume that we can choose the order parameteD
real within a superconducting half-space with an opaq
boundary~i.e., when no current passes through the bou
ary!. We introduce the following functions:

f 15
1

2
~ f2 f1!, f 25

1

2
~ f1 f1!. ~17!

For f 1 and f 2 Eqs.~13! and ~14! take on the forms

2v f 11 ivx]xf 212Dg50,

f 252 i
vx
2v

]xf 1 , ~18!

]xg52 i
2D

vx
f 2 ,

g21 f 2
22 f 1

252p2. ~19!

The boundary conditions atx50 for f 1,2 are the same as
~15!, but in the bulk of the superconductor we have

f 1~ p̂,v!ux5`5
pD`~ p̂!

AuD`~ p̂!u22v2
, f 2ux5`50. ~20!

A representation of the functionsg and f taken on the
boundary, which is convenient for considering the singu
parts of the propagators, can be obtained from these e
tions. To obtain this representation we introduce the follo
ing function:

D̃~ p̂,v!5
*0

`D~ p̂,x! f 2~ p̂,x,v!dx

*0
` f 2~ p̂,x,v!dx

. ~21!

From the second and third equations in~18! we can easily
obtain

g~`!2g~0!52
2i

vx
E
0

`

D~ p̂,x! f 2~ p̂,x,v!dx,

f 1~`!2 f 1~0!5
2iv

vx
E
0

`

f 2~ p̂,x,v!dx. ~22!

With consideration of this function,D̃(p̂,v) can also be re-
written in the form

D̃~ p̂,v!52v
g~`!2g~0!

f 1~`!2 f 1~0!
. ~23!

Here we introduce the notation gux505g(0),
gux5`5g(`), f ux505 f (0), and f ux5`5 f (`).

After substituting the expressions~16! and ~20! for the
propagators in the bulk of the superconductor into Eq.~23!,
we arrive at the following relation betweeng(0), f 1(0), and
D̃(p̂,v):
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2
v

f 1~0!. ~24!

A completely analogous relation can be written for the m
mentum directionp̌. Thereafter, using the boundary cond
tions ~15!, we can write the following representation fo
g(0) and f 1(0):

g~0!5
p

v

D̃~ p̂,v!D̃~ p̌,v!

D̃~ p̌,v!2D̃~ p̂,v!
F D`~ p̂!D̃~ p̂,v!2v2

D̃~ p̂,v!AuD`~ p̂!u22v2

2
D`~ p̌!D̃~ p̌,v!2v2

D̃~ p̌,v!AuD`~ p̌!u22v2
G , ~25!

f 1~0!5
p

D̃~ p̂,v!2D̃~ p̌,v!
FD`~ p̂!D̃~ p̂,v!2v2

AuD`~ p̂!u22v2

2
D`~ p̌!D̃~ p̌,v!2v2

AuD`~ p̌!u22v2
G . ~26!

It is seen from Eq.~25! that the candidates for the sin
gular points of the propagatorg(0) arev50, 6uD`(p̂)u,
6u D`(p̌)u, and, generally speaking, the singular points
the functionsD̃(p̂,v) andD̃(p̌,v). Similarly, it is seen from
Eq. ~26! that the candidates for the singular points off 1(0)
arev56uD`(p̂)u, 6uD`(p̌)u. We note that if we are inter
ested in the points for whichD̃(p̂,v)5D̃(p̌,v) holds, the
treatment of Eq.~24! for the momentum directionp̌ yields no
independent relation other than Eq.~24! for the momentum
direction p̂. Thus, additional information is needed to co
sider this limiting case in Eqs.~25! and ~26!.

Let us first consider the singular parts of the propaga
gs , f s , and f s

1 taken on the boundary in the vicinity o
v50. It follows from ~25! and~26! that f 1(0) does not have
a singularity atv50, while g(0) has poles at that poin
~providedD`(p̂) andD`(p̌) have opposite signs!:

gs~0!5
1

v

pD̃~ p̂,0!D̃~ p̌,0!

D̃~ p̌,0!2D̃~ p̂,0!
$sgn@D`~ p̂!#

2sgn@D`~ p̌!#%5
Bg~ p̂!

v
. ~27!

It is noteworthy that besides this relation we can a
find the explicit expression forD̃(p̂,0) in terms of the non-
uniform distribution of the order parameter. In fact, sin
f 1 does not have a singularity atv50 @see~18!#, the relation
gs56 i f 2,s ~for v→0! between the singular parts of th
functionsg and f 2 can be obtained from the normalizatio
condition ~19!. Then, from the last equation of system~18!
we obtain the following equation for the singular part
f 2 :

]xf 2,s6
2D

vx
f 2,s50.

The solution of this equation which satisfies the bound
conditions~20! and ~15! is the function
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3expH 2
2 sgn@D`~ p̂!#

uvxu
E
0

x

D~ p̂,x8!dx8J .
~28!

Substituting this solution into~21!, we obtain

D̃~ p̂,0!5
1

2
uvxusgn@D`~ p̂!#

3F E
0

`

expH 2
2 sgn@D`~ p̂!#

uvxu

3E
0

x

D~ p̂,x8!dx8J dxG21

. ~29!

We note that determination of the sign in~28! from the
asymptotic condition in the interior of the superconduc
makes it possible to fix the sign in the relation between
singular parts of the quasiclassical propagators taken nea
boundary forv→0:

f s~ p̂,x,v!5 f s
1~ p̂,x,v!52 i sgn@vxD`~ p̂!#gs~ p̂,x,v!.

~30!

Thus, Eqs.~27!, ~29!, and ~30! provide a fairly general
description of the singular parts of the propagators taken
the boundary in the vicinity ofv50. If we are interested
only in the singularities of the current–voltage characteris
the problem of solving the self-consistency equation fo
specific pairing potential can be considered separately.
latter problem is an important part of the complete theor
cal description of the current–voltage characteristic and
be solved by numerical methods.

Let us now consider the behavior of the propagators n
the pointsv56uD`(p̂)u, 6uD`(p̌u. For this purpose, we
first find the values ofD̃(p̂,v) at these frequencies. This ca
be done, for example, using the relation~21!. In fact, Eqs.
~18!–~20! give the following asymptotic behavior o
f 2(p̂,v) asx→`:

f 2~ p̂,x,v!}expS 2
2AuD`~ p̂!u22v2

uvxu
xD . ~31!

Hence it is seen from ~21! that in the limit
uvu→uD`(p̂)u the main contribution to the integrals in~21! is
made by the region within the superconductor where the
der parameterD(p̂,x) is equal to its value in the interior
Taking this into account, we obtain the following relation

D̃~ p̂,v!→D`~ p̂! for uvu→uD`~ p̂!u. ~32!

Now we can examine the behavior of the functionsg
and f 1 in the vicinity of the pointsuvu5uD`(p̂)u, uD`(p̌)u.
Going over to the limituvu→uD`(p̂)u or uvu→uD`(p̌)u in
Eqs.~25! and ~26! and taking into account~32!, we see that
the divergences are reduced and thatg(0) and f 1(0) @and,
therefore, f (0)# have a square-root nonanalyticity of th
form AD`

2 (p̂)2v2 ~or AD`
2 (p̌)2v2! at these points in first

order. The orientations for whichD̃(p̂)5D̃(p̌) holds, in
which, strictly speaking, Eqs.~25! and ~26! do not provide
more information than~24!, can be exceptions. As is gene
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directions, then there is no suppression of the order par
eter, and in this special case the propagators diverge in
limit uvu→uD`(p̂)u:

gR~ p̂,v!52
pv

AuD~ p̂!u22v2
,

f R~ p̂,v!5
pD~ p̂!

AuD~ p̂!u22v2
. ~33!

Finally, the possible existence of quasiparticle bou
states with nonzero energy, localized near the bound
should be taken into account. They can appear, for exam
because of the spatial variation of the order parameter, w
is suppressed near the boundary. Such a bound state c
interpreted as a bound state in the ‘‘potential well’’ form
by the order parameter.8 Since such a bound state corr
sponds to a pole in the quasiclassical propagators, we
simply add the pole term to the singular parts of the pro
gators. If the propagatorsg(0) and f 1(0) have the same
poles describing bound states with a nonzero energy, it
lows from Eq. ~23! and the boundary conditions~15! that
D̃(p̂,v)5D̃(p̌,v) holds at the point of the pole.

With consideration of the results obtained above,
nonanalytic parts ofg(0) and f (0) can be written in the
following form:

gs
R~ p̂,v!ux505

Bg~ p̂!

v1 id
1

Qg~ p̂!

v2h~ p̂!sgn~v!1 id

1C~ p̂,v!sgn~v!AD`
2 ~ p̂!2v2

1C~ p̌,v!sgn~v!AD`
2 ~ p̌!2v21 . . . ,

~34!

f s
R~ p̂,v!ux505

iB f~ p̂!

v1 id
1

iQ f~ p̂!

v2h~ p̂!sgn~v!1 id

1E~ p̂,v!AD`
2 ~ p̂!2v2

1E~ p̌,v!AD`
2 ~ p̌!2v21 . . . ,

d→10. ~35!

In addition, the following relations hold:

Bf~ p̂!52sgn@vxD`~ p̂!#Bg~ p̂!52Bf~2p̂!,

Qg~ p̂!5uQf~ p̂!u,

Qf~ p̂!52Qf* ~2p̂!, h~2p̂!5h~ p̂!.

Below we shall be interested only in the values of t
functionsQg, f(p̂) near the polesv56h(p̂). When the posi-
tive and negative poles are considered, it should be ta
into account thatQg(p̂,v) and ReQf(p̂,v) are even func-
tions and that ImQf(p̂,v) is an odd function with respect t
v. Henceforth we shall not consider the dependence
Qg, f on v, and we shall assume that these functions
evaluated at the positive pole.

Since there are no states with a continuous spect
for an assigned momentum directionp̂ when uvu
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condition ImC, ImQg50. In addition, for the particular ori-
entation in which the equalityD(p̌,x)52D(p̂,x) holds for
all x, we haveD(x50)50 and f 1(0)50 on the supercon-
ductor boundary. Then it can be found for this orientati
from the Eilenberger equations that Ref(0)50 will hold in
the frequency rangeuvu,uD`(p̂)u. Therefore, ReE(p̂,v)
1E(p̌,v)]50 holds in this frequency range.

As is shown below, the positions and types of singula
ties on the current–voltage characteristics of tunnel ju
tions, which are governed by the contribution from the qu
siparticle bound states, are determined, in particular, by
extremum and nonanalytic points of the functionh(p̂). The
boundary conditions for propagators in the case of sing
pairing implyh(p̂)5h(2p̌). Since we also havep̂52p̌ for
the momentum directionp̂in, the functionh(p̂) ~as well as
the complete propagatorg~0!! should have an extremum i
the direction in which the vectorp̂ is parallel to the normal to
the boundaryn ~provided there is a bound state for this val
of the momentum!. Similarly, we find that the function
Qf(p̂) is purely imaginary forp̂in. In particular, it follows
that for orientations of the crystal axis in which the relatio
ship D(p̌,x)52D(p̂,x) is satisfied for allx, the equality
Qf ,g(p̂)50 will hold for p̂in. The other characteristic point
for the functionh(p̂) are the momentum directions for whic
the quasiparticle bound states vanish near the boundary

Figure 1 presents the results of numerical calculations
Bg(f), Qg(f)5uQf(f)u, ReQf(f), andh(f). We consid-
ered a tetragonal superconductor with a cylindrical Fe
surface and an opaque, specularly reflecting flat bound
located atx50 ~the cylindrical z axis is parallel to the
boundary plane!. The pairing potential is taken in the form

V~f,f8!52Vd cos~2f22f0!cos~2f822f0!,

which leads to an order parameter withdx
0
22y

0
2 symmetry.

Here f is the azimuthal angle in thexy plane, measured
from the direction of a normal to the boundary. The ang
f0 describes the orientation of thex0 crystal axis relative to
a normal to the boundary. For the pairing potential that
selected the order parameter has the form

D~f,x!5D~x!cos~2f22f0!,

whereD(x) is calculated using the self-consistency equati
The anglef assigns the incident momentum direction alo
the quasiparticle trajectory. In the numerical calculation
took f05p/9, T50.45Tc , and D0/2T52, where
D0[D(x5`) andTc is the critical temperature. For the or
entation of the crystal axes that we selected (f05p/9) the
order parameter is suppressed near the boundary to the v
D(x50)50.28D0 . In Fig. 1 the functionsBg(f), Qg(f),
and ReQf(f) were normalized topD0 , while h(f) was
normalized toD0 . It is seen from the figure that bound stat
with a nonzero energy6h(f) exist in the narrow range o
anglesf P (20.095,0.095) in the vicinity of the normal to
the boundary. States with zero energy exist in anoth
broader range of angles, in whichBg(f) Þ 0. In addition, the
value ofh(f) at the maximum point ishm50.7D0 , and the
value ofh(fed) at the cut-off points~where the bound state
vanishes! is hed50.63D0 . We note that for the momentum
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directionsp̂ (fed560.095), at which the bound state with
nonzero energy vanishes,hed5min(uD`(p̌)u,uD`(p̂)u) is sat-
isfied. This means that a discrete level splits off from t
continuum spectrum at the pointsfed . For these momentum
directions the quantitiesC(p̂,v) and E(p̂,v) appearing in
~34! and~35! ~or C(p̌,v) andE(p̌,v), depending on which
of the two quantitiesD`(p̂)u anduD` ~p̌u is smaller! diverge
at uvu5hed .

4. CURRENT–VOLTAGE CHARACTERISTICS FOR THE
JOSEPHSON AND QUASIPARTICLE CURRENTS WHEN THE
ORDER PARAMETER IS NOT SUPPRESSED ON THE
BOUNDARY

The features of the current–voltage characteristic app
because the functionsI m(V,p̂1) have singular points. If thes
functions do not depend on the momentum directions, th
according to~6!–~11!, their dependence on the voltage d
rectly describes the behavior of the current–volta
characteristic1,2 ~see also Ref. 3 and the references ci
therein!. Conversely, the features of the current–volta
characteristics for superconductors with anisotropic pair
differ significantly from the singularities of the function
I m(V,p̂1) because of the integration of these functions o
the momentum directions. In this case the features of
current–voltage characteristics will correspond to the sin
larities of the functionsj m(V). Another distinguishing fea-
ture of superconductors with anisotropic pairing, which
rectly influences the behavior of the Josephson
quasiparticle currents, is their sensitivity to inhomogeneit
and boundaries. Suppression of the anisotropic order pa
eter near a boundary leads, generally speaking, not onl
the appearance of the quasiparticle bound states consid

FIG. 1.
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order parameter with a different symmetry in the ne
boundary region.19,20

Even in the case of the ordinary boundary conditions
which there is no suppression of the superconducting o
parameter near the junction plane, the characteristic feat
of the current–voltage characteristic for a junction betwe
superconductors with anisotropic pairing differ from those
the case of a junction between superconductors with iso
pic pairing. Under the condition of specular reflection fro
the boundary, suppression of the order parameter is not
served for orientations of the crystal axes in which the or
parameter remains unchanged when the incident momen
is replaced by the reflected momentum for all moment
directions. In this section we examine the current–volta
characteristics only for such orientations. Thus, we expl
the behavior of the functionsj m(V) for cases in which the
quasiclassical propagators have the same form~33! on an
opaque boundary as in the bulk of the superconductor. S
stituting these propagators into Eqs.~8!–~11!, we obtain

I 1~V,p̂1!52D1~ p̂1!D2~ p̂2!E
2`

`

dv tanhS uvu
2T D

3S u~ uD1~ p̂1!u2uv2Vu!

AuD1~ p̂1!u22~v2V!2
u~ uvu2uD2~ p̂2!u!

Av22uD2~ p̂2!u2

1
u~ uvu2uD1~ p̂1!u!

Av22uD1~ p̂1!u2
u~ uD2~ p̂2!u2uv1Vu!

AuD2~ p̂2!u22~v1V!2
,

~36!

I 2~V,p̂1!5D1~ p̂1!D2~ p̂2!

3E
2`

`

dvF tanhS v

2TD2tanhS v1V

2T D G
3
sgn~v!sgn~v1V!u~ uvu2uD1~ p̂1!u!

Av22uD1~ p̂1!u2

3
u~ uv1Vu2uD2~ p̂2!u!

A~v1V!22uD2~ p̂2!u2
, ~37!

I 3~V,p̂1!5E
2`

`

dvF tanhS v2V

2T D2tanhS v

2TD G
3

uvuuv2Vuu~ uvu2uD1~ p̂1!u!

Av22uD1~ p̂1!u2

3
u~ uv2Vu2uD2~ p̂2!u!

A~v2V!22uD2~ p̂2!u2
, ~38!
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I ~V,p̂ !52E`

dv tanh
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AuD D u tanh
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1tanh
uD2u
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4 1
2`

S 2TD
3S u~ uD1~ p̂1!u2uv2Vu!

AuD1~ p̂1!u22~2V!2
u~ uvu2uD2~ p̂2!u

Av22uD2~ p̂2!u2

1
u~ uvu2uD1~ p̂1!u!

Av22uD1~ p̂1!u2
u~ uD2~ p̂2!u2uv2Vu!

AuD2~ p̂2!u22~v2V!2
D .

~39!

After integration over the frequency, the singularities of t
functions I m(V,p̂1) appear only if the two square roo
~which multiply one another in the denominators of the in
grands! can vanish simultaneously. This is possible for c
tain frequency and voltage values. As a result, we find t
the functionsI m(V,p̂1) can have singularities at points fo
which uVu5iD2u6uD1i . From Eqs.~36!–~39! we find the
following expressions for the singular parts of the functio
I m(V,p̂1):

I 15
1

2
AuD1D2usgn~D1D2!H F tanhS uD1u

2T D
1tanhS uD2u

2T D G lniVu2uD1u2uD2i2putanhS uD1u
2T D

2tanhS uD2u
2T D uu~ uVu2iD2u2uD1i !J , ~40!

I 25
1

2
AuD1D2usgn~D1D2!sgn~V!

3H sgn~ uD1u2uD2u!F tanhS uD1u
2T D

2tanhS uD1u1uVusgn~ uD2u2uD1u!
2T D G lnuuVu

2uuD2u2uD1uuu1pF tanhS uD1u
2T D1tanhS uD2u

2T D G
3u~ uVu2uD1u2uD2u!J , ~41!

I 35
1

2
AuD1D2usgn~V!H sgn~ uD1u2uD2u!F tanhS uD1u

2T D
2tanhS uD1u1uVusgn~ uD2u2uD1u!

2T D G
3 lnuuVu2uuD2u2uD1uuu2pF tanhS uD1u

2T D
1tanhS uD2u

2T D Gu~ uVu2uD1u2uD2u!J , ~42!
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4 2 1 2 H F S 2T D S 2T D G
3 lnuuVu2UD1u2uD2uu1pUtanhS uD1u

2T D
2tanhS uD2u

2T D Uu~ uVu2uuD2u2uD1uu!J . ~43!

According to ~6! and ~7!, to find the behavior of a
current–voltage characteristic in the vicinity of the singula
ties, Eqs.~40!–~43! must be integrated over the momentu
directions. After this integration, we find that the curren
voltage characteristic will exhibit nonanalytic behavior
uVu equal to the values of the expressio
iD2(p̂2)6uD1(p̂1)i ~which can be examined, for example,
a function ofp̂1! at the extremum points. As it turns out, th
characteristic behavior of the current–voltage characteri
near these extrema depends strongly on the nature of
extremum points. It is seen from a comparison of Eqs.~40!–
~43! that the pairs of functionsj 1(V), j 4(V) and j 2(V),
j 3(V) behave identically~to within a sign! near singularities.
Therefore, it is sufficient to describe only the nonanaly
points for j 1(V) and j 3(V).

Below it will be convenient to consider the singula
points in the conductanceG5d jx /dV. It turns out that to
find the nonanalytic behavior ofG(V) only theu functions
and the logarithms need be differentiated with respect toV.
In the former case, ad function appears following differen
tiation. Consequently, integration over the Fermi surface
duces to integration along a line on that surface. The co
sponding termsG̃1,3(V) in the functionsG1,3(V)5d j1,3/dV
can be written in the following manner:

G̃152sgn~V!E dl
K2~ p̂1!

u¹ p̂1
~ uD1u2uD2u!u

,

G̃352E dl
K1~ p̂1!sgn~D1D2!

u¹ p̂1
~ uD1u1uD2u!u

. ~44!

Here l is the local coordinate along the lin
uVu5iD1(p̂1)u6uD2(p̂2)i on the Fermi surface~the plus sign
belongs toG̃3 , and the minus sign belongs toG̃1!. The func-
tionsK6 are defined by

K6~ p̂1!5
1

16p2 UtanhS uD1u
2T D6tanhS uD2u

2T D U
3AuD1D2usgn~D1D2!

vx1
v f1

D. ~45!

Below we shall consider different types of extrema, a
we shall obtain the features of the behavior ofGm(V) corre-
sponding to them. Let the functioniD2u2uD1i have a local
maximum or minimum at the pointp15p0 on the Fermi
surface and have the following form in the vicinity of th
point:

iD2u2uD1i5a6~bp̃ 1
21cp̃ 2

2!, a,b,c,.0. ~46!
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vicinity of the pointp0 . Since the functioniD2u2uD1i ap-
pears in the argument of theu function in the expression fo
j 1,4, as well as in the argument of the logarithm in the fo
mula for j 2,3, we obtain two different types of singular be
havior near the voltageuVu5a:

dG1u uVu5a5sgn~D1D2!u p̂15p̂0
dG4u uVu5a57

p

Abc
K2~ p̂0!,

~47!

G25sgn~D1D2!u p̂15p̂0
G356

1

Abc
K2~ p̂0!lnuuVu2au. ~48!

Here we have introduced the following notation for the co
ductance jump:

dGu uVu5a5G~ uVu.a!2G~ uVu,a!.

There will be similar singularities when the functio
uD2u1uD1u has a local maximum or minimum, near whic
uD2u1uD1u5a6(bp̃ 1

21cp̃ 2
2),a,b,c,.0:

dG2u uVu5a52sgn~D1D2!u p̂15p̂0
dG3u uVu5a

57
p

Abc
K1~ p̂0!, ~49!

G152sgn~D1D2!u p̂15p̂0
G4

56
1

Abc
K1~ p̂0!sgn~V!lnuuVu2au. ~50!

When the functioniD2uuD1i has a saddle point, nea
which

iD2u2uD1i5a1bp̃ 1
22cp̃ 2

2 , a,b,c,.0, ~51!

the corresponding singularities in the conductance have
form

G15sgn~D1D2!u p̂15p̂0
G45

1

Abc
K2~ p̂0!

3sgn~V!lnuuVu2au, ~52!

G25sgn~D1D2!u p̂15p̂0
G35

2

pAbc

3sgn~ uVu2a!K2~ p̂0!ln
2uuVu2au. ~53!

Similarly, for the saddle point of the function

uD2u1uD1u5a1bp̃ 1
22cp̃ 2

2 , a,b,c,.0 ~54!

we obtain

G252sgn~D1D2!u p̂15p̂0
G3

52
1

Abc
K1~ p̂0!lnua2uVuu, ~55!
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5
2 sgn~V!sgn~ uVu2a!

pAbc
K1~ p̂0!

3 ln2uuVu2au. ~56!

The conductance jumps described by Eqs.~47! and~49!
correspond to breaks in the current–voltage characteri
The logarithmic divergences of the conductance described
the expressions~48!, ~50!, ~52!, and~55! correspond to step
type features on the current–voltage characteristic~note that
G has the same sign on both sides of these singular poi!.
Finally, the terms containing squares of logarithms,~53! and
~56!, describe ‘‘beak-shaped’’ features on the curren
voltage characteristic. They appear in the case of sad
points of the functionsiD2u6uD1i after integration of the
logarithmic singularities inI m .

We now consider the case in which the expressio
iD2u6uD1i take extremum values on a certain linel̃ on the
Fermi surface, rather than at isolated points. Then, for
ample, in the vicinity of a local maximum or minimum of th
functionsiD2u2uD1i we have

iD2u2uD1i5a6 p̃ 1
2 , a,b,.0, ~57!

wherep̃1 is the local coordinate on the Fermi surface that
orthogonal to the line of extremal̃ .

In this case the conductance will have square-root div
gences on one side of the voltage valueuVu5a:

G15sgn~D1D2!u l̃ G452
sgn~V!

AuuVu2au

3u~6~ uVu2a!! E
uuD2u2uD1uu5a

vx1.0

dl̃
K2

2Ab
, ~58!

G25sgn~D1D2!u l̃ G357
u~7~ uVu2a!!

AuuVu2au

3 E
uuD2u2uD1uu5a

vx1.0

dl̃
K2

Ab
. ~59!

These conductance singularities corresponding to o
sided vertical tangents to the current–voltage character
at uVu5a in each of the four terms in the expression for t
total tunneling current. For example, in the case of a ma
mum on thel̃ line there are vertical tangents to thej 1(V) and
j 4(V) curves atuVu5a on theuVu,a side and to thej 2(V)
and j 3(V) curves on theuVu.a side.

Similarly, if the function uD1u1uD2u achieves a local
maximum or minimum on thel̃ line

uD1u1uD2u5a6bp̃ 1
2 , a,b.0, ~60!

the conductance has the singular behavior:
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5
u~6~ uVu2a!!

AuuVu2au
E

uD1u1uD2u5a
vx1.0

dl̃
K1

2Ab
, ~61!

G152sgn~D1D2!u l̃ G4

57
sgn~V!

AuuVu2au
u~7~ uVu2a!! E

uD1u1uD2u5a
vx1.0

dl̃
K1

Ab
.

~62!

In the formulas written out above for the singularities
the current–voltage characteristic associated with an ex
mum of the differenceuD1u1uD2u, we could not go directly
to the limitD156D25D. It follows from ~40!–~43! that in
this particular caseG1 andG4 do not have a singularity a
V5uD1u2uD2u50, while forG2 andG3 nearV50 ~or, more
precisely, atuVu!T!, instead of~48!, ~53!, and~59!, we ob-
tain the expression

G256G356
lnuVu
2T E

vx1.0

d2S1
~2p!3

vx1
v f1

3D~ p̂1!
uDu

cosh2~ uDu/2T!
. ~63!

For superconductors with isotropic pairing this expre
sion is exponentially small at low temperaturesT!D. Con-
versely, for superconductors with anisotropic pairing the
pression~63! has a power-function temperature depende
atT!Dmax. For example, if the order parameter vanishes
a certain line on the Fermi surface~when uD(p̂)u5bu p̃1u
holds near that line!, it follows from ~63! thatG2,3} T ln uVu at
low temperatures.

Figures 2 and 3 present the results of numerical calc
tions of thej m(v)(v5V/D0) for orientations in which there
is no suppression of the order parameter on either side o
tunnel barrier. Figure 2 presents plots for a junction betw
a superconductor with anisotropic pairing and an isotro
superconductor:D15D0 cos(2f), D25D0/25const. Here
f is the azimuthal angle in thexy plane of a tetragona
superconductor~the z axis is parallel to the junction plane!.
For a superconductor withd-wave pairing we assume tha
the Fermi surface is cylindrical. We take the transparency
the barrier in the formD } cos2 f, andD0 /(2T)50.5. In this
case the singular points of the current–voltage character
will be only the maximum values ofiD1(f)u6uD2i , since
the minimum values of these quantities are achieved w
D1 equals zero. We note that in the case ofD252D0 only
the minimum ofiD1(f)u2uD2i would be important for this
same functionD1(f). Figure 3 presents the results of n
merical calculations for a junction between tw
identical superconductors with anisotropic pairin
D15D25D0 cos(2f). All the functionsj m(v) were normal-
ized to u j 1(0)u.
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5. CURRENT–VOLTAGE CHARACTERISTIC FOR THE
TUNNELING CURRENT WHEN THE ORDER PARAMETER IS
SUPPRESSED ON ONE SIDE OF THE JUNCTION

Let us consider a tunnel junction between two superc
ductors with anisotropic pairing. Unlike the case conside
in the preceding section, here we gradually vary the orien
tion of the crystal axis of one of the superconductors relat
to the barrier plane, and we assume that the former condi
D2(p̂)5D2(p̌) holds for the other superconductor. Accor
ing to ~34! and~35!, in an intermediate crystal orientation th

FIG. 2.

FIG. 3.
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barrier plane do not have the square-root divergences c
acteristic of the values of these propagators in the interio
the superconductor. Therefore, the singularities which w
found in the preceding section will be smoothed and w
vanish at sufficiently large deviations from the initial orie
tation. At the same time, as we have already mention
some new characteristic singularities of the current–volt
characteristic appear in this case. Some of these singula
of the current–voltage characteristic are associated with
existence of regions on the Fermi surface where the o
parameterD1,̀ (p̂) has different signs. A quasiparticle boun
state with zero energy then appears near the boundary p
Other singularities appear, if additional quasiparticle bou
states with a nonzero energy occur because of the sp
variation of the order parameter.8 As is seen from~34! and
~35!, in the former case the terms containing 1/v in the
propagators are important. In the latter case the pole
nonzero frequency should be considered in the propaga
Thus, we use Eqs.~34! and~35! for the singular parts of the
propagators of the first superconductor and Eq.~33! for the
propagators of the second superconductor.

It is significant that in the case in which quasipartic
bound states with zero energy exist on only one side of
junction ~and there is no suppression of the order param
on the other side! a singular contribution from these boun
states appears only in the quasiparticle current, but not in
Josephson current. In fact, according to~30!, the singular
parts of the propagators associated with the pole at zero
quency satisfy the relationf s(p̂)5 f s

1(p̂). Conversely, the
relation f (p̂)52 f1(p̂) holds for orientations in which ther
is no suppression of the order parameter. For this reason
corresponding singular parts ofj 1 and j 2 vanish. However,
this is not so for the bound states with a nonzero ene
since Qf(p̂) is complex, unlike Bf(p̂), which is real
~Bf

15Bf*5Bf , Qf
15Qf* !.

Substituting~33!–~35! into ~10! and ~11! and then inte-
grating overv, we obtain the following singular contribu
tions for I 3 and I 4 :

I 3~V,p̂1!52Bg1~ p̂1!

3tanhS V2TD uVuu~ uVu2uD2~ p̂2!u!

AV22uD2~ p̂2!u2

2
Qg1~ p̂1!AuD2usgn~V!

&

3H F tanhS h12TD1tanhS uD2u
2T D G

3
u~ uVu2h12uD2u!

AuVu2h12uD2u
1UtanhS uD2u

2T D
2tanhS h12TD U u~~ uVu2uuD2u2h1u!sgn~ uD2u2h1!!

~Vu2uuD2u2h1u!sgn~ uD2u2h1!
J

~64!
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3tanhS uVu

2T
D uVuu~ uD2~ p̂2!u2uVu!

AuD2~ p̂2!u22V2

1
Qg1~ p̂1!AuD2u

&

H F tanhS h1
2T

D
1tanhS uD2u

2T
D Gu~h11uD2u2uVu!

Ah11uD2u2uVu

1F tanhS uD2u

2T
D 2tanhS h1

2T
D G

3u
~~ uVu2uuD2u2h1u!sgn~h12uD2u!!

A~Vu2uuD2u2h1u!sgn~h12uD2u!
J ~65!

The terms describing the square-root analyticities in~34!
and~35! are not taken into account in~64! and~65!, since in
the case under consideration here they lead to jumps
divergences only in derivatives of the conductance, but
in the current or the conductance itself. Because the dep
dences of the order parameterD2 and the functionh1 of the
momentum directions can be different, subsequent inte
tion over the Fermi surface can give rise to different types
singular points on the current–voltage characteristic@the
type of singularity is influenced by the behavior of the co
responding functions near the extremum~see below!#. Let us
first consider the singularities of the current–voltage char
teristic, which are related to the terms of the form 1/v in the
expressions for the propagators of the first superconduc
and confine ourselves to two important examples. In the s
cial case in which the second superconductor is a super
ductor with isotropic pairing, the following square-root d
vergences will appear in the current–voltage characteris

j 352tanhS V2TD uVuu~ uVu2uD2u!

AV22uD2u2

3E
vx1.0

d2S1
~2p!3

vx1
v f1

DBg1~ p̂1!, ~66!

j 452tanhS uVu
2T D uVuu~ uD2u2uVu!

AuD2u22V2

3E
vx1.0

d2S1
~2p!3

vx1
v f1

DBg1~ p̂1!. ~67!

The functionj 3 diverges atuVu5D2 on theuVu.D2 side,
and j 4 diverges on theuVu,D2 side. In the caseD250 ~an
S–N junction!, it follows from ~66! that G3

} @T cosh2(V/2T)#21. Hence at the low voltagesuVu!T we
haveG3 } 1/T, and we obtain an anomalous increase in
conductance at low temperatures~see also Ref. 21!. Of
course, such a divergence ofG3 occurs at zero temperatur
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broadening of thed peaks in the quasiparticle density
states are not taken into account.

Next, if the anisotropic order parameterD2 has an extre-
mum on a certain line on the Fermi surface, near which

uD2u5a6bp̃ 1
2 , a,b.0, ~68!

the type of singularity on the current–voltage characteri
depends on the behavior of the functionBg1(p1) only of this
line. If Bg1(p1) Þ 0 on this line of extrema,j 3 will have a
logarithmic divergence for a line of maxima, andj 4 will
have such a divergence for a line of minima:

j 3 , j 4}Aa

b
tanhS a

2TD lnuuVu2au. ~69!

If the functionBg1(p1) vanishes on the line of extrem
and exhibits linear behavior near zero, i.e.,

Bg1~ p̃1!5bu p̃1u, ~70!

then j 3 and j 4 will have one-sided vertical tangents
uVu5a:

G3}
Aa
b

tanhS a

2TD u~ uVu2a!

AuVu2a
,

G4}
Aa
b

tanhS a

2TD u~a2uVu!

Aa2uVu
. ~71!

Now, let us move on to consider the singularities of t
current–voltage characteristic appearing because of the p
in the propagators of the first superconductor at a nonz
frequency. Unlike the contribution from the bound sta
with zero energy, the quasiparticle bound states with
nonzero energy make a singular contribution not only to
quasiparticle current, but also to the Josephson current,
if they are present on only one side of the junction pla
This is related to the nonzero value of ImQf(p̂) ~while
Im Bf(p̂)50!. The positions of the corresponding singul
points on the current–voltage characteristic are related to
extremum values of the quantitiesh16uD2u on the Fermi
surface. For example, the presence of a line of extremal for

h11uD2u5a6bp̃ 1
2 , a,b.0 ~72!

leads to logarithmic divergences and discontinuities of
functions j m :

j 1 ,2 j 45M f ,g
1 H lnuuVu2au,

pu~ uVu2a!
,

2 j 2 , j 35M f ,g
1 sgn~V!Hpu~a2uVu!,

lnuuVu2au. ~73!

The upper~lower! rows in these formulas correspond
the upper~lower! sign in ~72!, and

Mg
65

1

16&p3 Evx1.0
dl

vx1
v f1

DAuD2u
b

Qg1~ p̂1!

3UtanhS h12TD6tanhS uD2u
2T D U, ~74!
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M f 5E
vx1.0

dl
v f1

DA
b 16&p3

Im Qf1~p1!

3UtanhS h12TD6tanhS uD2u
2T D U. ~75!

If the function uuD2u2h1u has a line of extrema

uuD2u2h1u5a6bp̃ 1
2 , a,b.0, ~76!

we obtain the following singularities in the current:

j 1,45M f ,g
2 $7u~6~ uD2u2h1!!lnuuVu2au

1pu~7~ uD2u2h1!!u~a2uVu!%, ~77!

j 2,35M f ,g
2 sgn~V!$u~7~ uD2u2h1!!lnuuVu2au

6pu~6~ uD2u2h1!!u~a2uVu!%. ~78!

Thus, for a positive~negative! value of uD2u2h1 the
functions j 2,3 ( j 1,4) have a logarithmic divergence only fo
the line of maxima ofuuD2u2h1u, while the functionsj 1,4
( j 2,3) have such a divergence only for the line of minima
this quantity.

As was noted above, the functionh(p̂) can have nonana
lytic behavior, for example, in the momentum direction f
which the bound state vanishes near the boundary. Ta
into account this possibility, we assume that the funct
h11uD2u exhibits the following nonanalytic behavior nea
some line on the Fermi surface:

h11uD2u5a1@bu~ p̃!1cu~2 p̃!# p̃, a.0. ~79!

The special case ofb(or c)→` corresponds to the absenc
of a bound state in the directionsp̃.0 ~or p̃,0! from this
line. Then the functionsj m will have the following one-sided
vertical tangents atuVu5a:

G1 ,2G45
u~a2uVu!

Aa2uVu
sgn~V!Pf ,g

1 ,

G2 ,2G35
u~ uVu2a!

AuVu2a
Pf ,g

1 . ~80!

Here we have introduced the notation

Pg
65E

vx1.0
dlS 1b2

1

cD vx1v f1
DAuD2u

Qg1~ p̂1!

8&p3

3UtanhS h12TD6tanhS uD2u
2T D U, ~81!

Pf
65E

vx1.0
dlS 1b2

1

cD
3
vx1
v f1

DAuD2u
sgn~D2!

8&p3
Im Qf1~ p̂1!

3UtanhS h12TD6tanhS uD2u
2T D U. ~82!

Similarity, if the functionuh12uD2uu has the form~79!
near some line, the functionsj m will have one-sided vertica
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G1,45sgn~V!sgn~ uD2u2h1!

3
u~~a2uVu! ~ uD2u2h1!!

A~a2uVu!sgn~ uD2u2h1!
Pf ,g

2 , ~83!

G2,352
u~~ uVu2a! ~ uD2u2h1!!

A~ uVu2a!sgn~ uD2u2h1!
Pf ,g

2 . ~84!

Formulas~64! and ~65! are not suitable for direct pas
sage to the limitD250 at a finite voltage, since it was as
sumed during their derivation that the magnitude of the v
age is close to the corresponding singularities in th
formulas. In the case of anS–N junction, it follows from~7!,
~10!, and ~11! that if h1 has an extremum of the form
h15a6bp̃ 1

2 , a, b.0, the conductance atuVu5a: will ex-
hibit the low-temperature anomalyG3,4} 1/AbT.

Figure 4 presents the results of numerical calculation
plots of j m(v) (v5V/D0) for the case in which there i
suppression of the order parameter on only one side of
tunnel barrier. A tunnel junction between a superconduc
with d-wave pairing and a superconductor with isotrop
s-wave pairing was considered under the following con
tions:

D1`5D0 cos~2f22f0!, D250.2D05const.

For the superconductor withd-wave pairing we chose th
same parameters as before~see Fig. 1!: f05p/9,
T50.45Tc1 , D0 /(2T)52. HereTc1 is the critical tempera-
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parency of the tunnel barrier was taken in the formD
}cos2 f.

The plots of j 3 and j 4 have square-root divergences
V5D250.2D0 . In addition, atV5hm2D250.5D0 the func-
tions j 1 and j 4 have logarithmic divergences, whilej 2 and
j 3 have jumps. AtV5hm1D250.9D0 there are logarithmic
divergences onj 2 and j 3 and jumps onj 1 and j 4 . At the
voltagesV5hed6D250.83D0 , 0.43D0 the current–voltage
characteristics have breaks, although some of them
weakly expressed. All the functionsj m(v) were normalized
to j 1(0).

6. CURRENT–VOLTAGE CHARACTERISTIC FOR THE
TUNNELING CURRENT WHEN THE ORDER PARAMETER IS
SUPPRESSED ON BOTH SIDES OF THE JUNCTION

Let us now consider the case in which the order para
eter is suppressed significantly near the junction plane
both superconductors. The singular parts of the propaga
on both sides of the barrier should then be described by~34!
and ~35!. When these expressions are substituted into~8!–
~11!, several types of nonanalytic terms appear. They
obtained after renormalization of the pole terms to one
other and from the product of the pole terms on one side
the square-root terms in~34! and~35! on the other side. After
this, for the singular part ofI 3 , for example, we find the
following expression:
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3 p S 2TD g1 1

3FReC2(p̂2)AV22D2`
2 (p̂2)

3u(uVu2uD2`(p̂2)u)

1Im C2(p̂2)AD2`
2 (p̂2)2V2u(uD2`(p̂2)u

2uVu2
p

2
Qg2(p̂2)d(uVu2h2(p̂2))

1(p̂2→(p̌2)G1
1

p H F tanhS h1~ p̂1!1V

2T D
2tanhS h1~ p̂1!2T D GQg1~ p̂1!

3F2
p

4
Qg2~ p̂2!d~ uh1~ p̂1!1Vu2h2~ p̂2!!

1ReC2~ p̂2!A~h1~ p̂1!1V!22D2`
2 ~ p̂2!

3u~ uh1~ p̂1!1Vu2uD2`~ p̂2!u!1Im C2

3~ p̂2!AD2`
2 ~ p̂2!2~h1~ p̂1!1V!2

3u~ uD2`~ p̂2!u2uh1~ p̂1!1Vu!2~V→2V!G
1~ p̂2→p̌2!J 1~1↔2!. ~85!

Similar singularities appear in the expressions forI 1,2,4.
In the last formula we neglected the contribution whi

is obtained after multiplying the pole terms~wherev50!
appearing in the Green’s functions on both sides of the ju
tion. When the broadening of the bound states is neglec
this contribution vanishes at a finite voltage. However,
real systems it can be important for voltages that are
than or comparable to the characteristic width of the co
sponding peak in the quasiparticle density of states. For
stationary Josephson effect this contribution leads to a l
temperature anomaly in the critical current and to the po
bility ~at some temperature! of a phase transition from a
junction to ap junction.22,23

During the subsequent integration over the moment
directions, we assume that the order parameteruD2`(p̂2)u or
the quantitiesuh16uD2`uu, h2 , and uh16h2u have a line of
extrema. Let, for example,uD2`(p̂2)u or uh16uD2`uu have a
line of extrema of the form

uD2`u, uh16uD2`uu5a6bp̃ 2, a,b.0, ~86!

and letB1(p̂1) or uD2`u andQ1(p̂1) be nonvanishing on tha
line. Then the conductanceG1,2,4 will have the following
logarithmic singularities:

sgn~V!G1 ,G2 ,sgn~V!G4}Aa

b
lnuuVu2au. ~87!

At the same time, the logarithmic divergence inG3 of
the form ~87! appears only for a line of maxima. This
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the special orientationD2(p̌2 ,x)52D2(p̂2 ,x), the logarith-
mic divergence inG4 remains only for a line of minima. The
square-root behavior of the propagator of the fo
AD`

2 (p̂)2v2 led here to logarithmic divergence in the co
ductance. In other cases it can give rise to a kink in
conductance or divergence of its derivatives. In the pres
work we shall not consider such singularities.

If the functionh2 has a line of extrema of the form

h25a6bp̃ 2, a,b.0, ~88!

the current–voltage characteristic will have the followin
square-root divergences:

j 1 ,7 j 45
61

16p3 tanhS uVu
2T D u~6~a2uVu!!

AuuVu2au

3E
vx1.0

dl
vx1
v f1

Bf ,g1~ p̂1!ReQf ,g2~ p̂2!
D

Ab
,

~89!

j 2 ,2 j 35
1

8p3 tanhS V2TD u~6~ uVu2a!!

AuuVu2au

3E
vx1.0

dl
vx1
v f1

Bf ,g1~ p̂1!ReQf ,g2~ p̂2!
D

Ab
.

~90!

In this section the coefficientsBf2 andQf2* are taken from
the corresponding expressions forf1 of the second super
conductor, whileBf1 andQf1 are taken from the expression
for f of the first superconductor.

Let the functionh2 near a certain linel have, for ex-
ample, the following nonanalytic behavior:

h25a1@bu~ p̃!1cu~2 p̃!# p̃, a.0. ~91!

This leads to logarithmic divergence of the functio
j 1,4 at uVu5a:

j 1 , j 45
lnuuVu2au

8p4 tanhS uVu
2T D

3E
vx1.0

dl
vx1
v f1

DBf ,g1~ p̂1!

3ReQf ,g2~ p̂2!S 1c2
1

bD . ~92!

The functionsj 2 and j 3 have jumps:

j 2 ,2 j 35
1

8p3 tanhS V2TD
3E

vx1.0
dl

vx1
v f1

DBf ,g1~ p̂1!ReQf ,g2~ p̂2!

3Fu~~ uVu2a!b!

ubu
1

u~~a2uVu!c!

ucu G . ~93!
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uh12h2u5a6bp̃ 2, a, b.0. ~94!

Then we find that the current–voltage characteristics w
have the following square-root divergences:

j 1 ,2 j 45
7u~6~a2uVu!!

16p3AuuVu2au
E
vx1.0

dl

Ab
Nf ,g , ~95!

j 2 ,2 j 35
sgn~V!u~6~ uVu2a!!

8p3AuuVu2au
E
vx1.0

dl

Ab
Nf ,g . ~96!

Here we have introduced the notation

Nf ,g5
vx1
v f1

D Re~Qf ,g1Qf ,g2* !UtanhS h12TD2tanhS h22TD U.
~97!

In the case in which the value ofuh12h2u near a certain
line has nonanalytic behavior of the form~91!, the functions
j 1 and j 4 have logarithmic divergences atuVu5a:

j 1 ,2 j 45
lnuuVu2au

8p4 E
vx1.0

dlNf ,gS 1b2
1

cD , ~98!

and the functionsj 2 and j 3 undergo jumps:

j 2 ,2 j 35
sgn~V!

8p3 E
vx1.0

dlNf ,gFu~~ uVu2a!b!

ubu

1
u~~a2uVu!c!

ucu G . ~99!

When h11h2 has a line of extrema, all the results for th
singularities are obtained from~94!–~99! after the replace-
mentsh2→2h2 , j 1→2 j 1 , andQf2* →Qf2 in these formu-
las. It should be added that besides the singular points

633 JETP 84 (3), March 1997
ll

e-

which are described by the same Eqs.~86!–~93! after the
replacement 1↔2.

Figure 5 presents the results of numerical calculations
the functionsj m(v)(v5V/D0) when the order parameter i
suppressed on both sides of the tunnel barrier. We con
ered a tunnel junction between two identical superconduc
with d-wave pairing in the special case of a specularly
flecting junction, in which the tunnel barrier is
symmetry plane of the superconducting electrod
D1`(p̂1)5D2`(p̌1)5D0 cos(2f22f0). As before~see Fig.
1!, we tookf05p/9, T50.45Tc , D0 /(2T)52,D } cos2 f.
At the voltageV52hm51.4D0 the plots of j 1,2,3,4 have
square-root divergences. In addition, atV52hed51.26D0

the plots ofj 1 and j 4 have logarithmic divergences, and th
plots of j 2 and j 3 have jumps. NearV50.635D0 the behav-
ior of the plots ofj 1 and j 2 resembles a break. This is attrib
uted to the contribution of the bound states with zero ene
on one side of the junction and the states in the continu
spectrum of the quasiparticles on the other size of the ju
tion. The function min (ucos(2f22f0)u,ucos(2f12f0)u)
takes the maximum value 0.635 in the directio
f560.79, in whichBf Þ 0.

7. CONCLUSIONS

As we have shown above, a large variety of nonanaly
points can appear on the current–voltage characteristic
junctions between superconductors with anisotropic pair
when the quasiparticles are specularly reflected from
plane of the tunnel barrier. The singular behavior of t
current–voltage characteristic differs significantly from t
behavior typical of a junction between superconductors w
isotropic s-wave pairing. Of course, in real systems all t
features should be smeared out to a considered exten
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particular, the quality of the barrier plane can have an appre-
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1A. I. Larkin and Yu. N. Ovchinnikov, Zh. E´ksp. Teor. Fiz.51, 1535
~1966! @Sov. Phys. JETP24, 1035~1967!#.
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p.

p.
ciable influence on the occurrence of these features. For
ample, instead of the divergences in the current descr
above, the appearance of finite peaks should be expe
under real conditions. The amplitude and width of the
peaks are sensitive to elastic and inelastic scattering
cesses, irregularities on the barrier plane, and the value o
transparency factor. Inelastic scattering processes smoot
singularities in the tunneling current for superconduct
with either isotropic or anisotropic pairing. Elastic scatteri
processes are known to suppress superconductivity only
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the Fermi surface.
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