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Abstract—The potentialities of the model of nonstationary waveguide equations for describing pulsed pro-
cesses in irregular transmission lines are studied using planar lines as an example. The problem of high-accu-
racy controllable-error numerical simulation is discussed. Typical examples of simulating ultra-wide-band elec-
tromagnetic pulses with an initial TEM structure in terms of time-domain representation are presented with
emphasis on the interaction of the pulses with irregularities, including their transformation into longitudinal
waves. Both lumped and distributed irregularities are addressed: deep corrugations that cover 90% of the trans-
mission line’s aperture (distributed irregularities) and these corrugations in combination with sharp kinks at the
boundary surfaces and permittivity steps at the boundaries of the dielectric filling (lumped irregularities). It is
shown that a relative rms error involved in the calculated field intensity of no higher than 10–4 is easy to achieve.
© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The growing interest in the electrodynamics of non-
stationary and pulsed processes in irregular transmis-
sion lines and, in particular, in the propagation of ultra-
wide-band (UWB) electromagnetic pulses (EMPs) in
them [1] poses new problems in waveguide electrody-
namics. The models developed for the numerical simu-
lation of monochromatic (i.e., ~exp(–iωt)) processes
are inapplicable to UWB EMPs for the following rea-
son. The numerical inversion of Fourier integrals of
monochromatic UWB EMP field components (in irreg-
ular waveguides, they are also found numerically)
encounters insurmountable difficulties in attaining a
sufficient and controllable accuracy, because the fre-
quency spectra are very wide. Due to this circumstance,
one has to give up frequency representations and
develop new more general simulation methods that pro-
vide a higher and controllable accuracy.

At the same time, the propagation of nanosecond
and subnanosecond pulses in devices that contain irreg-
ular transmission lines is accompanied by effects that
can be explained neither quantitatively nor qualitatively
within the conventional theory of transmission lines,
because the theory is approximate and not wholly ade-
quate for a rigorous electrodynamic approach. In par-
ticular, according to the generally accepted single-
mode model, a TEM pulse in a matched inhomoge-
neous line (i.e., when the wave impedance is constant
over the line length) usually with a low loss per unit
length can only slowly change its waveform. In a loss-
less line, the waveform should remain unchanged.
However, experiments [2] and simulations [4] based on
1063-7842/03/4804- $24.00 © 20377
the more rigorous model of coupled strings [3] have
shown significant qualitative deviations from these pre-
dictions. The reason for this discrepancy is that the sin-
gle-mode model of telegraph equations disregards
mode mutual transformation and, in particular, the
transformation of the dispersion-free TEM mode into
dispersive modes (and vice versa) when the cross sec-
tion varies continuously. The variational method [3]
applied below is more adequate for a rigorous electro-
dynamic approach and allows for the real processes.

Note also that a combination of the analytical meth-
ods that represent transient fields in irregular
waveguides as the superposition of monochromatic
fields and methods for numerically calculating these
fields are associated with significant difficulties where
short or steep-edge pulses are concerned. The practical
implementation of this approach produces unpredict-
able errors when calculating the inverse Fourier trans-
form, because the frequency spectra are very wide. This
circumstance is another important reason for the appli-
cation of the method mentioned above [3], which does
not use expansions in frequency spectra.

Although interest in transient electromagnetic pro-
cesses in waveguides is growing, the number of theoret-
ical works on this subject is very limited. Monograph
[5] considers transient waves in waveguides. Although
the method using the separation of variables [5] is free
of the above disadvantages of frequency-domain analy-
sis, it is applicable only to irregular waveguides of cer-
tain special shapes.

Below, we consider the propagation of a pulse of a
finite initial shape in planar irregular transmission lines
003 MAIK “Nauka/Interperiodica”
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and study the feasibility of providing high-accuracy
controlled-error numerical results by the variational
method of nonstationary waveguide equations.

1. STATEMENT OF THE PROBLEM 
AND NONSTATIONARY WAVEGUIDE 

EQUATIONS

Let the y axis of the Cartesian coordinates be
directed transversely to the waveguide under study, i.e.,
an irregular layer sandwiched in two perfectly conduct-
ing surfaces. These surfaces are defined by the equa-
tions y = –a1(z) and y = a2(z). Here, z is the longitudinal
coordinate, which specifies the direction of wave prop-
agation in the layer, and a1(z) and a2(z) are continuous
functions of z such that a1(z) ≥ 0 and a2(z) ≥ 0. These
functions do not turn to zero simultaneously; hence, the
layer width ∆(z) = a1(z) + a2(z) > 0 for any z. An exam-
ple of the profile (normal to the plane X0Z and passing
through the Z axis) is shown in Fig. 1. The profile here
is a planar layer confined by the lines y = a1(z) and y =
–a2(z). We assume that the boundaries are regular at z <
0: a1(z) = a10 = const and a2(z) = a20 = const; hence, the
width of the half-layer z < 0 is ∆(z) = a10 + a20 = ∆0 =
const. We also assume that the electrophysical parame-
ters of the medium filling the line are independent of z
and that the layer profile, electrical parameters of the
medium, and field components are independent of the x
coordinate.

In the calculations that follow, we use dimensionless
variables and parameters. To pass to the dimensionless
variables, we normalize all quantities that have dimen-
sions of length (spatial coordinates, the functions a1(z)
and a2(z), etc.) to a certain appropriate linear scale L
and normalize the time t by dividing by L/c (c is the
velocity of light in free space). Throughout the paper,
L = ∆0. To designate all the dimensionless variables, we
use the same notation for convenience. In particular, as
a result of the normalization, we have ∆0 = 1 and c = 1.

Let a finite TEM pulse whose waveform is limited in
space and time propagate from the regular half-layer
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Fig. 1.
(z < 0) in the positive z direction. As the pulse reaches
the irregular part of the layer because of the interaction
with the irregularities, it partially reflects, retaining its
TEM structure, and partially transforms into TM modes
propagating in both forward and backward directions.

Following the variational method [3] to derive non-
stationary waveguide equations for our irregular planar
layer in view of the above assumptions, we use the
bilinear functional

(1)

which depends on the vector magnetic and auxiliary
fields H(y, z, t) and H0(y, z, t). Here, ε = ε(y, z) and µ =
µ(y, z) are the relative permittivity and permeability of
the medium. The domain of integration Ω in (1) is the
interior of a fragment of a four-dimensional cylinder
whose generatrix is the t axis (0 ≤ t ≤ T) and the direc-
trix is the boundary of the interval z1 ≤ z ≤ z2 of the strip
line of unit width in the x direction. The values T, z1,
and z2 will be specified below. Because the integrand in
(1) is independent of x, integration over x is reduced to
multiplication by unity. As a result, the four-dimen-
sional integral becomes three-dimensional.

The stationarity conditions

(2)

with δH0(y, z, t0) = δH0(y, z, t0 + T) = δH0(y, z1, 2, t) = 0
are equivalent to the Maxwell equations inside Ω with
the boundary conditions [(∇  × H) × n] = 0 on metal sur-
faces. For finite pulses, this corresponds to a perfectly
conducting metal.

In our case, the magnetic field intensity has only one
component H(y, z, t) in the x direction. Let us expand
this component in modes of reference waveguides:

(3)

where the amplitudes fj(z, t) (j = 1, 2, 3, …) are
unknown. As the basis functions {ej(y, z)} in expansion
(3), we use the field distributions in the reference
waveguides for the planar case studied:

(4)

The amplitude f1(z, t) defines the magnetic field of
the TEM mode; the remaining amplitudes fi(z, t) (j ≥ 2),
the magnetic fields of the TM0(j – 1) modes (E waves).

In matrix form, a system of waveguide equations for
transient and pulsed processes in the irregular line
under study is similar to system (7) in [3]:

(5)

J H H0,( ) ε 1– ∇ H×[ ] ∇ H0×[ ]⋅( ){
Ω
∫=

– µ ∂H/∂t ∂H0/∂t⋅( ) } d4Ω,

δH0
J H H0⋅( ) 0=

H y z t, ,( ) e j y z,( ) f j z t,( ),∑=

e j y z,( ) π j 1–( ) a1 z( ) y+( )/∆ z( )[ ]cos .=

∂/∂z G z( )∂f /∂z Q z( )f+[ ] Qτ z( )∂f /∂z–

– P z( )f T z( )∂2f /∂t2– 0.=
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The unknown column vector f(z, t) is formed by its
coordinates fj(z, t), and its dimension N is equal to the
number of terms involved in sum (1). The coefficients
in system (5) are the [N × N]-dimensional matrix func-
tions G(z), Q(z), P(z), and T(z) with elements given by

(6)

In the above formulas, Qτ(z) is the transpose of Q(z)
and the subscripts z and y mean differentiation with
respect to these variables.

Note two features of system (5) that follow from the
properties of functional (1), which was used to derive
this system, and from conditions (2).

(1) As N grows, sums (3) provide, in the limit,
the perfect conductivity condition on metal boundaries
for finite pulses after substituting exact solutions (5)
into (3).

(2) Because model (5) is adequate for the rigorous
electrodynamic approach, the accuracy of numerical
results obtained with this model is the same as the accu-
racy of its numerical realization. This accuracy can be
checked by performing (i) a numerical experiment (by
varying the lengths hz and ht of the intervals used in the
finite-difference approximation of the derivatives and
also the number N of terms involved in (3)) and
(ii) additional energy-balance calculations.

When ε and µ are independent of the transverse
coordinate y, the factors ε–1 = ε–1(z) and µ = µ(z) in
expressions (6) can be factored out from the integral
sign:

(6')

The integrals gns(z), tns(z), qns(z), and pns(z) can be
taken analytically using expressions (4) (see Appen-
dix).

We will study system (5) subject to the initial condi-
tions

(7)

Gns z( ) ε 1– esen y,d

a1 z( )–

a2 z( )

∫=

Tns z( ) µesen y,d

a1 z( )–

a2 z( )

∫=

Qns z( ) ε 1– es( )zen y,d

a1 z( )–

a2 z( )

∫=

Pns z( ) ε 1– es( )z en( )z es( )y en( )y+{ } y.d

a1 z( )–

a2 z( )

∫=

Gns z( ) ε 1– z( )gns z( ), Tns z( ) µ z( )tns z( ),= =

Qns z( ) ε 1– z( )qns z( ), Pns z( ) ε 1– z( )pns z( ).= =

f 1 z t,( ) t 0=  = ϕ z( ), f 1' z t,( )t t 0=  = εµ( ) 1/2– ϕ' z( ),–

f j z t,( ) t 0=  = 0, f j' z t,( )t t 0=  = 0, j = 2 3 4 …,, , ,
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
which correspond to a given initial waveform ϕ(z) of
the TEM pulse. The function ϕ(z) is assumed to be
finite and lie in the interval α < z < β in the regular part
of the layer (i.e., α < β < 0). Since we are always inter-
ested in a certain finite range Λ of dimensionless z and
t (Λ = {z1 ≤ z ≤ z2, 0 ≤ t ≤ T}, where z1 < α, z2 > 0 and
T ≤ min{|z1 + α|, |z2 – β|}), formulas (7) should be sup-
plemented by auxiliary boundary conditions

(8)

With conditions (7) and (8), system (5) is closed and
can be used to calculate f(z, t) on a discrete mesh in the
rectangle Λ.

Below, we present an expression for the pulse
energy per unit width of the layer in the x direction,
W(t):

(9)

The exact solution to the problem corresponds to
W(t) = W(0) = W0 = const; therefore, the spread of W(t)
will be used about W0 to estimate the accuracy of the
numerical solution.

Below are examples of numerical solutions for a
continuously distributed smooth irregularity (Section 2)
and for combinations of this irregularity with a number
of typical lumped obstacles that produce discontinuities
in matrix functions (6) and (6') (sharp kinks at the
boundary surfaces and steps of ε(z)) (Section 3).

In our calculations, we specify the pulse waveform
(the function ϕ(z) in conditions (7)) by the following
trapezoidal functions with possibly smooth edges:
(a) a geometrical trapezoid of unit height with the base
on the z axis and linear edges, where the length of the
median of the trapezoid is taken as the pulse width zp
and the projections of the corresponding sides onto the
z axis are taken as the durations z+ and z– of the leading
and trailing edges; (b) a trapezoid-like figure obtained
by replacing the sides of the trapezoid in (a) by quarter-
wavelength sections of cubed sinusoids; and (c) a trap-
ezoid-like figure obtained by replacing the sides of the
trapezoid in (a) with sections of fifth-degree polynomi-
als uniquely defined from the requirement that they,
together with their first and second derivatives, pass
continuously into the z axis and upper plateau at the end
points.

Trapezoid-like pulses (b) and (c), which are
obtained from trapezoid (a), will be characterized by

f z1 t,( ) f z2 t,( ) 0, 0 t T .≤ ≤= =

W t( ) z y µ e j f j∑( )2
-





d

a1 z( )–

a2 z( )

∫d

z1

z2

∫=

+ ε 1– e j f j∑ ηd

0

t

∫ 
 
 

y

2

+ ε 1– εµ( )1/2e1ϕ z( ) e j f j∑( )z ηd

0

t

∫–

2





.
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the parameters zp, z+, and z– equal to their values for the
original trapezoid. Note that, at ε = µ = 1, for the dura-
tions of the pulse (tp) and of its leading (t+) and trailing
(t–) edges, we have tp = zp, t+ = z–, and t– = z+.

To solve the problem stated by (3), (5), and (6)
numerically, we apply a uniform mesh with steps hz
and ht along the coordinates z and t, respectively, to the
rectangle Λ. The explicit three-layer scheme gives a
chance to calculate f on an (n + 1)th layer in t from its
values on nth and (n – 1)th layers. The standard approx-
imation

for the derivative ftt at the point (zi, tj) allows us to find
from (5) the basic calculational relationship

in which we use the formulas for five-point and seven-
point differentiation to calculate, respectively, the first
and second derivatives with respect to z.

Unless specified otherwise in each particular case,
the numerical results presented below refer to N = 7,
mesh step sizes hz = 0.01 and ht = 0.004, and pulse
parameters zp = 1 and z+ = z– = 0.2.

2. PROPAGATION OF THE PULSE 
THROUGH A CORRUGATION

Consider a transmission line with a distributed
smooth irregularity in the form of a symmetric corruga-
tion

(10)

∂2f /∂t2( )i j, f i j 1+, 2f i j,– f i j 1–,+( )/ ht( )2,=

f i j, f zi t j,( )=

f i j 1+, 2f i j, f i j 1–, ht( )2 T 1– ∂/∂z G∂f /∂z Qf+[ ]{+–=

– T 1– Qτ∂f /∂z T 1– Pf– } i j, ,

a1 z( ) a2 z( )=

=  
0.5 at z 0 and z 2><

0.5 a0 πz/2( ) at 0 z 2≤ ≤sin
2

–



Fig. 2.
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of height a0 (0 < a0 < 0.5). Then, ∆0 = 1 and the
waveguide aperture in the narrowest cross section (at
z = 1) is ∆min = (1 – 2a0). In our calculations, we put ε =
µ = 1.

Figure 1 shows the profile of the transmission line
containing distributed irregularity (10) with ∆min = 0.1
(a0 = 0.45) and plots the magnetic field intensity H in
the midplane (y = 0) versus z at t = 0, 1, 2, 3, and 4
(curves 1–5, respectively). These curves illustrate the
waveform variation and the reflection picture for a
pulse that initially has the TEM structure and waveform
(b) described above (curve 1). As follows from curves 4
and 5, which refer to the time instants when the front
part of the pulse again enters the regular region (z > 2)
of the transmission line having passed through the cor-
rugation, the deformation of the front part continues.
This is because by then the nondispersed TEM mode,
which existed alone at t = 0, coexists with dispersed TM
modes, which emerged in this region later.

Figure 2 plots the amplitudes f1(z, t) of the TEM
component of the pulse versus z for the same values of
t and for the same initial waveform (b) as in Fig. 1. The
curve numbers in Fig. 2 correspond to the same values
of t as in Fig. 1. As could be expected, after the front
part of the pulse has entered the second regular region
of the transmission line (curves 4 and 5 at z > 2), the
deformation of the TEM component of the front part
stops.

For the same initial pulse, Fig. 3 shows the distribu-
tions of the E02 mode (curve 1), which is absent at t = 0
(f3(z, 0) ≡ 0) and arises later (t = 2 (curve 1) and 4 (cur-
ve 2)) as the result of transformation of the TEM mode
as the pulse passes through the irregular region of the
transmission line. Note that, unlike the situation with an
asymmetrical aperture [6], f2(z, t) ≡ 0 in our case,
because the geometry is symmetric about the plane y = 0
and the E01 mode is not generated.

Figure 4 plots H versus time in the midpoint of the
narrowest cross section (z = 1, y = 0) at ∆min = 0.10
(curve 1), 0.25 (curve 2), and 0.50 (curve 3) for the
same initial waveform and parameters of the pulse. For

Fig. 3.
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comparison, the dependence H(t) at the same point is
also shown in the absence of corrugation (a0 = 0 in
(10)), when the transmission line becomes regular
(curve 4).

The accuracy of the calculations can be estimated by
comparing the time dependence of [1 – W(t)/W0] in
Fig. 5 (where W0 = W(0)) with the data summarized in
Table 1. Curve a (n = 3 on the vertical axis) refers to the
initial pulse in the form of a trapezoid (case (a)). Curves b
(n = 4) and c (n = 4) refer to the initial pulses in the form
(b) and (c), respectively. Figure 5 also demonstrates
results for the pulse with the initial waveform (b)
(curve b', n = 4) obtained on a [2 × 2] times finer mesh
(hz = 0.005, ht = 0.002). Curves b and b' show that the
use of the finer mesh decreases the error by a factor
of 5. It is also seen that, as the initial waveform changes
from (a) to (b) and then from (b) to (c) (with the pulse
parameters zp, z+, and z– and mesh steps hz and ht
remaining unchanged), the accuracy of the calculations
improves each time by approximately one order of
magnitude, because the quality of the differential prop-
erties of the finite function ϕ(z) in initial conditions (5)
improves in the same order. For instance, when form (a)
is changed into (b), the function ϕ(z) that is everywhere
continuous but has discontinuities (at four vertices of
the trapezoid) is replaced with the function ϕ(z) that is
everywhere smooth but has a discontinuous (at two
points of the junction with the upper plateau) first deriv-
ative. In turn, this function changes into ϕ(z) with a
continuous second derivative when form (b) is changed
into (c).

Table 1 illustrates the error arising when the infinite
sum in formula (3) is replaced by its first N = 7 terms.
It lists relative partial energies Wj /W0 of the TEM mode
(j = 1) and also the E01 ( j = 2), …, E014 ( j = 15) modes.
The energies are calculated at t = 7 for the pulses with
initial waveforms (a), (b), and (c) with N = 15. For odd
j, the calculated values of Wj /W0 are no higher than ~10–24

(rather than exact zeroes); therefore, the corresponding

Fig. 4.
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rows are omitted in the table (except for the row j = 2).
The last row of Table 1 gives estimates for the relative
residual energy Wr/W0 of all terms neglected in (3) (N =
7). The residual energy Wr is calculated by formula (9)
with infinite sum (3) replaced by a finite sum (8 ≤ j ≤
15). Note that the calculation of Wr as the sum of its par-
tial components Wj might prove to be incorrect, since
modes of the reference waveguides for the irregular
lines are not orthogonal.

From Fig. 5 and Table 1, it follows that, when the
relative rms error of the field intensity is specified at a
level of no higher than ~1/2max{[1 – W(t)/W0], Wr/W0} ∼
10–4 (as in our example), the choice N = 7 is justified,
because it meets the condition max[1 – W(t)/W0] ~
W r/W0. Note that, for shallower corrugations, the same
calculation accuracy can be reached at smaller N.

3. OTHER EXAMPLES

Consider combinations of distributed and lumped
irregularities by taking as an example a nonsmooth
junction between a regular planar line and a corrugation

Fig. 5.
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2
[1 – W(t)/W0] × 10n

Table 1

j (a) (b) (c)

1 9.8729 × 10–1 9.8132 × 10–1 9.8067 × 10–1

2 1.1780 × 10–24 1.4727 × 10–24 1.4284 × 10–24

3 1.2406 × 10–2 1.6568 × 10–2 1.6901 × 10–2

5 9.2914 × 10–4 2.5102 × 10–3 2.5583 × 10–3

7 1.0327 × 10–4 4.0804 × 10–4 4.3313 × 10–4

9 5.0128 × 10–5 7.1098 × 10–5 7.9569 × 10–5

11 2.6025 × 10–5 1.5548 × 10–5 1.6966 × 10–5

13 1.1362 × 10–5 6.4971 × 10–6 6.4337 × 10–6

15 6.3585 × 10–6 4.5141 × 10–6 4.5382 × 10–6

Wr/W0 9.6848 × 10–5 1.0049 × 10–4 1.1042 × 10–4
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Table 2

j (5, 0) (5, 7) (5, 11) (0, 11)

1 9.7905 × 10–1 9.7610 × 10–1 9.7588 × 10–1 9.7588 × 10–1

2 2.8608 × 10–24 2.9541 × 10–24 3.0585 × 10–24 3.0925 × 10–24

3 2.1332 × 10–2 2.1753 × 10–2 2.1884 × 10–2 2.1891 × 10–2

5 3.2702 × 10–3 3.3279 × 10–3 3.3750 × 10–3 3.3746 × 10–3

7 1.3490 × 10–3 1.3639 × 10–3 1.3700 × 10–3 1.3658 × 10–3

9 2.9793 × 10–4 2.7792 × 10–4 2.7650 × 10–4 2.7842 × 10–4

11 7.8100 × 10–5 6.9677 × 10–5 6.7895 × 10–5 6.7055 × 10–5

13 2.5970 × 10–5 2.1262 × 10–5 2.0937 × 10–5 2.1023 × 10–5

15 1.6246 × 10–5 1.3926 × 10–5 1.3874 × 10–5 1.3861 × 10–5

Wr/W0 4.2455 × 10–4 3.8984 × 10–4 3.8565 × 10–4 3.8667 × 10–4
in the presence of a dielectric plug with permittivity
jumps at its boundaries. The corrugation shape is differ-
ent from that given by formula (10). Here,

(11)

with µ = 1, ε(z) = ε– = const at z < 0 and z > 2, and ε(z) =
ε+ = const at 0 < z < 2. Figure 6 illustrates the profile
of this transmission line for a0 = 0.45, ∆ = 1, and
∆min = 0.1.

As the pulse that satisfies initial conditions (7) prop-
agates from the first regular half-layer (z < 0) to the sec-
ond (z > 2), it has to pass through the smooth distributed
irregularity (corrugation) and also through the lumped
irregularities: (i) sharp kinks at the boundary surfaces
that are given by the functions a1(z) and a2(z) in (11) at
z = 0 and 2 and (ii) steps of ε(z) also at z = 0 and 2. As
follows directly from formulas (6) and (6'), the lumped

a1 z( ) a2 z( )=

=  
0.5 at z 0 and z 2><
0.5 a0 πz/2( ) at 0 z 2≤ ≤sin–




Fig. 6.
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2.5
irregularities break the continuity (or smoothness) of
the matrix coefficients in the system of waveguide
equations (5). In all cases of nonsmooth behavior of the
matrix coefficients at isolated points on the z axis, sys-
tem (5) must be completed with joining conditions,
which require the transverse magnetic and electric field
components to be continuous.

Note, however, that joining conditions greatly com-
plicate the computational algorithms, as the use of
implicit schemes becomes necessary. As a result, the
body of computation increases substantially and, all
other factors being the same, the simulation accuracy
degrades because of the accumulation of roundoff
errors. Below, we show that, for the lumped irregulari-
ties considered in this paper, these difficulties can be
avoided by applying an approximate smoothing-out
technique that makes it possible to obviate the need for
joining conditions and extend system (5) to the entire
interior of the rectangle Λ defined above, thereby pre-
serving the possibility of applying the explicit proce-
dure with all its advantages. We will also show that, in
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Fig. 7.
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the examples that follow, additional errors arising from
this approximation can be minimized.

In further calculations, we use a0 = 0.45, ε– = 1, and
ε+ = 2.

In addition to the profile of the transmission line,
Fig. 6 plots the magnetic field intensity H in the median
plane (y = 0) as a function of z at t = 0, 1, 2, 3, and 4
(curves 1–5, respectively). The curves illustrate the
time variation of the waveform for the initial pulse (b)
(curve 1). To smooth out the function ε(z), we replace
its values at 11 points of the mesh in the z direction near
each of the jump points (at z = 0 and 2 and at five points
adjacent to each of them on the left and on the right) by
the values of a fifth-order polynomial. This polynomial
is uniquely defined from the conditions that it passes
continuously into the constants ε– and ε+ at the end
points and that its first and second derivatives remain
continuous at these points. To smooth out the boundary
surfaces, we replace the values of the functions a1(z)
and a2(z) at five points of the mesh in the z direction
near each of the kinks (at z = 0 and 2 and at two points
adjacent to each of them on the left and right) by the
values of a third-order polynomial that is uniquely
defined from the continuity and smoothness conditions.

The curves show that, as the pulse passes from the
position t = 0 (curve 1) to the position t = 4 (curve 5)
through the positions t = 1, 2, and 3 (curves 2–4), the
front part of the pulse first narrows and then restores its
width, because the pulse travels from the optically
lower density medium to the higher density medium
and then again to the former.

Table 2 lists the relative partial energies Wj/W0 of the
TEM mode (j = 1) and for the E01 ( j = 2), …, E014 ( j =
15) modes. The calculation was made at t = 7 and N =
15 for pulses with initial waveform (b). The columns of
the table refer to various pairs (p, q), where p and q are
the numbers of mesh nodes in the z direction used to
smooth out each of the kinks (p) and each of the jumps
in ε(q) by fifth-order polynomials. The zero values of p
or q mean that smoothing-out was absent. The relative
energies Wj/W0 obtained for even j are no higher than
~10–24 (rather than exact zeroes) and are not included in
the table (except for the row j = 2). The last row of Table 2
contains estimates of the relative energy Wr/W0 of the
residual in sum (3), which is neglected when N = 7.

Figure 7 plots [1 – W(t)/W0] versus t for 0 ≤ t ≤ 4 and
N = 7 for the same initial pulse and the same values
(p, q) as in Table 2. From Table 2 and Fig. 7, we can
draw the following conclusions. The smoothing-out of
the boundary kinks in the above examples does not
yield a noticeable gain in accuracy, as follows from the
results obtained for variants (5, 11) and (0, 11); hence,
smoothing-out may be omitted. At the same time, the
smoothing-out of the steps in ε gives a significant gain:
the upper estimate ~1/2max{[1 – W(t)/W0], Wr/W0} of
the relative rms error of the field intensity in variants
(5, 0), (5, 7), and (5, 11) is ~3 × 10–2, 7 × 10–4, and
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
2 × 10–4, respectively. Such a significant difference in
the effect of smoothing arises because the jumps in ε
cause discontinuities in the matrix coefficient G(z) by
the higher derivative with respect to z in (5), while the
boundary kinks do not affect the continuity of G(z).

CONCLUSIONS

Thus, calculations based on nonstationary
waveguide equations provide a relative rms error in the
field intensity of the pulse that does not exceed ~10–4,
which is much smaller than the experimental error. This
conclusion applies both to distributed irregularities
(such as deep corrugation) and to combinations of dis-
tributed and lumped irregularities (i.e., sharp kinks at
the boundary surfaces and steps of the permittivity).
This opens up new possibilities for studies concerned
with UWB EMPs and for the development of reference
field-shaping systems and devices for calibrating UWB
EMP detectors.

APPENDIX

Expressions for the functions gns(z), tns(z), qns(z),
and pns(z).

(1) Functions gns(z) and tns(z) have the following
form:

(2) Functions qns(z) are as follows:

(3) Functions pns(z) are

g11 ∆ z( );=

g1s gn1 0, n 1 and s 1;> >= =

gns
1
2
---∆ z( )δns, n 1 and s 1,> >=

δns  is the Kronecker symbol;

tns gns for any n and s 1≥ .=

qn1 0, n 1;≥=

q1s 1–( )sa2' z( ) a1' z( )–[ ] , s 1,>=

'( )  is the derivative symbol;

qns
s 1–( )2

n 1–( )2 s 1–( )2–
-------------------------------------------=

× a1' z( ) 1–( )n s+ a2' z( )+[ ] , n 1 and s 1, n s;≠> >

qnn
1
4
---∆' z( ), n– 1.>=

p1s pn1 0, n 1 and s 1;≥ ≥= =
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Abstract—The effect of unidirectional propagation of surface electromagnetic waves on the interface between
an isotropic Faraday medium and isotropic optically inactive medium is predicted. Such waves can be excited
when the intensity of an external magnetic field exceeds a certain threshold. Solutions to the dispersion relation
are analyzed, and existence conditions for the surface waves are established. © 2003 MAIK “Nauka/Interperi-
odica”.
INTRODUCTION

In recent years, along with surface electromagnetic
waves in surface-active negative permittivity media
(metals, plasmas, etc. [1]), surface waves of a new type,
dispersionless polaritons, have been the subject of
much investigation. They appear when one or both con-
tacting media are anisotropic [2–5] and can be observed
at the interface between a positive uniaxial crystal and
an isotropic medium, between identical positive uniax-
ial crystals with crossed axes, or between a biaxial crys-
tal and an isotropic medium. General conditions for the
existence of these surface waves at the interface
between anisotropic and isotropic dielectric media with
positively definite permittivity tensors have been found
in [6], and conditions for the resonance excitation of
them in isotropic layer–anisotropic substrate structures
have been discussed in [7]. A typical feature of disper-
sionless surface waves is that they can propagate only
in certain directions along the interface. The angular
width of allowed directions increases with the degree of
anisotropy of contacting media.

The use of contacting media as parametric materials
whose anisotropy can be induced and varied by external
fields opens up wide possibilities for controlling disper-
sionless surface polaritons. In this paper, we touch upon
the problem of magnetooptically controlling surface
waves at the interface between a Faraday medium and
an optically inactive isotropic medium with an external
magnetic field applied along the interface. Using the
surface-impedance tensor formalism, we derive a dis-
persion relation, study the symmetry of its solutions,
and find the necessary and sufficient conditions for the
existence of surface electromagnetic waves. These con-
ditions imply that the interface between optically active
and passive media may serve as an isolator. We also
consider the particular case where surface waves prop-
agate perpendicularly to an external magnetic field.
Expressions for the surface impedance tensors entering
the dispersion relation are derived in the Appendix.
1063-7842/03/4804- $24.00 © 0385
DISPERSION RELATION FOR SURFACE WAVES 
AT THE INTERFACE BETWEEN FARADAY 

AND INACTIVE ISOTROPIC MEDIA

Constitutive equations for monochromatic waves
with a frequency ω in transparent Faraday optically
active media have the form [8]

where the inverse tensor of the permittivity ε–1 is a lin-
ear function of the external magnetic field intensity H:

(1)

In Eq. (1), F = (Fik) is the Faraday tensor and eikl is
the completely antisymmetric third-rank pseudotensor
(Levi-Civita pseudotensor). Summation over repeating
indices is performed from 1 to 3. Below, we consider
optically isotropic Faraday media, for which the tensors

(ε0)–1 and F are proportional to the unit tensor: (ε0  =
aδik and Fik = f δik, where δik is the Kronecker delta and
a and f are scalar quantities. For such media, Eq. (1)
takes the form

(2)

where the scalar quantity b is a linear function of the
magnitude of H and c× is the tensor dual [9, 10] to the
unit vector c that is parallel to H.

Artificial optical activity shows up as the rotation of
plane of polarization of linearly polarized light (the
Faraday effect). The parameters a and b entering for-
mula (2) are expressed through the refractive index n0
of a linearly polarized wave propagating in the direc-
tion of c, the wavelength λ0 = 2πc/ω of this wave in free
space, and the Verdet constant V as [8]

(3)

E ε 1– D, H B,= =

εik
1– ε0( )ik

1–
ieiklFlmHm.+=

)ik
1–

ε 1– a ibc×,+=

a
1

n0
2

-----, b
Vχ0H

πn0
3

--------------.= =
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Without loss of generality, we further assume that
0 ≤ b < a and that the unit vector c is codirected to the
vector H for Faraday media with positive rotation
(V > 0) and counterdirected to the vector H for those
with negative rotation (V < 0).

Let isotropic Faraday medium I (z < 0) characterized
by inverse permittivity tensor ε–1 (2) border on isotropic
optically inactive medium II (z > 0, Fig. 1) character-
ized by the inverse permittivity a' = 1/ε' > 0, and let an
external magnetic field be applied parallel to the inter-
face (the vector c is perpendicular to the unit normal
vector q to the interface, which is parallel to the z axis).
Below, we show that, when

surface waves may be excited in such a structure that
propagate in certain directions b (b2 = 1) relative to the
vector c.

Equations for a surface electromagnetic wave in
medium I can be written as

(4)

where k is the projection of the wavevector onto the

direction b, , and  are the amplitudes of inhomo-
geneous partial waves at the interface, ηs are complex
coefficients that characterize the decay of these waves
away from the interface (Reηs > 0), and Cs are weight-
ing factors.

The fields in medium II are described by similar

equations involving the amplitudes  and  and

the coefficients  and  (with Re  < 0). The vec-

tors , , , and  and coefficients ηs and 
can be found by substituting (4) into the Maxwell equa-
tions and constitutive relations, while the projection k
of the wavevector and the weighting factors Cs and 
are found from the continuity conditions for the tangen-

b a a'  a' a<( ), b a' a' a–( )   a' a>( ),>–>

H r t,( ) CsHs
0 ik b iη sq–( ) r⋅ iωt–[ ] ,exp

s 1=

2

∑=

E r t,( ) CsEs
0 ik b iη sq–( ) r⋅ iωt–[ ] ,exp

s 1=

2

∑=

H0
s E0

s

Hs'
0

Es'
0

Cs' η s
' η s

'

Hs
0 Es

0 Hs'
0

Es'
0 η s

'

Cs'

z

II

I
O

z = 0
α

ε' –1 = a'

ε–1 = a + ibc×

b

c

q

a = b × q

Fig. 1. Interface between Faraday medium and isotropic
optically inactive media.
tial components of the fields at the interface (boundary
conditions). The tangential components of the resultant
magnetic and electric fields at the interface,

are related to each other through the surface impedance
tensors γ and γ' of the contacting media [11]:

(5)

From Eqs. (5) and boundary conditions  = 
and q × E0 = q × E'0, it follows that

(6)

where Γ = –iνγ, Γ' = –iνγ', and ν = ω/(ck) is the dimen-
sionless reduced frequency (the phase velocity in terms
of the velocity of light in free space).

Assuming that Eq. (6) has nontrivial solutions  ≠
0, we obtain the dispersion relation

(7)

Here, the bar means the tensor adjugate to Γ – Γ' and Tr
means the trace of this tensor [9, 10].

For surface electromagnetic waves in transparent
media described by Eqs. (4), the tensors Γ and Γ' are
Hermitean tensors and can be calculated from general
formulas obtained in [5, 6]. For a Faraday medium (see
Appendix),

(8)

where a = [b × q] (a2 = 1), α is the angle between the
vectors b and c (c = bcosα + asinα), and 

(9)

are the decay coefficients of the partial waves. 
For an isotropic medium,

(10)

Hτ
0 CsHsτ

0 , Hτ'
0

s 1=

2

∑ Cs'Hsτ'
0
,

s 1=

2

∑= =

q E× 0 Csq E× s
0, q E× '0

s 1=

2

∑ Cs'q E× s
'0,

s 1=

2

∑= =

q E× 0 γHτ
0, q E× '0 γ'Hτ'

0
.= =

Hτ
0 Hτ'

0

Γ Γ '–( )Hτ
0 0,=

Hτ
0

Tr Γ Γ '–( ) 0.=

Γ 1

a ν2– aη1η2+
-----------------------------------=

× ν2a η1 η2+( )b b⊗ ν 2b α b a⊗ a b⊗+( )cos–{

+ b α a ν2– aη1η2+( )sin a2η1η2 η1 η2+( )–[ ] a a⊗ } ,

η1 2,
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a
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2
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TECHNICAL PHYSICS      Vol. 48      No. 4      2003



SURFACE ELECTROMAGNETIC WAVES IN FARADAY MEDIA 387
and

(11)

By substituting expressions (8) and (10) into Eq. (7),
we obtain a dispersion relation for surface waves prop-
agating over the interface between Faraday and isotro-
pic media:

(12)

where

(13)

Given the parameters a, b, a', and α, relations (12),
(13), and (9) can be used to determine the reduced fre-
quency ν = νs and, consequently, the projection k = ks
of the surface wave’s wavevector onto the direction b.
In these formulas, we assume that

(14)

where νlim =  and  =  are the lim-
iting frequencies of the waves in the Faraday and isotro-
pic media (see also Eq. (A8)).

Condition (14) means that the electromagnetic wave
energy is localized near the interface in both media; i.e.,
the wave is actually a surface wave. The absence of
solutions to Eq. (12) in the interval [0, ), the so-
called sublight interval [6], means that it is impossible
to excite a surface wave propagating in the given direc-
tion b.

ANALYSIS OF SOLUTIONS TO THE DISPERSION 
RELATION AND EXISTENCE CONDITIONS 

FOR SURFACE WAVES

Dispersion relation (12) does not change its form
when the angle α is replaced by π – α, the equalities
η1(π – α) = η2(α) and η2(π – α) = η1(α) being valid in
this case. Therefore, if a surface wave can propagate in
the direction specified by a certain vector b, it can also
propagate in the direction mirror-reflected in the plane
to which c is normal.

At the same time, the dispersion relation is not
invariant under the substitution α  α – π (the rever-

η1 2,'
a' ν2–

a'
---------------.–=

G ν α,( ) 0,=

G ν α,( )
η1 η2+( )ab αsin

a ν2– aη1η2+
-----------------------------------------=

–
a3η1η2 η1 η2+( )2 ν2b2 αcos

2
+

a ν2– aη1η2+( )2
--------------------------------------------------------------------------

+ b αsin
a2η1η2 η1 η2–( )
a ν2– aη1η2+

---------------------------------------– a'

a' ν2–
---------------

–
a η1 η2+( )

a ν2– aη1η2+
----------------------------------- a' a' ν2–( ) a'.–

0 νs ν̂ lim<≤ min ν lim ν lim',( ),=

a b αcos– ν lim' a'

ν̂ lim
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
sal of the propagation direction: b  –b) if the coef-
ficients η1 and η2 remain positive and  and , ne-
gative. This means that, in general, the propagation
direction of surface electromagnetic waves at the inter-
face between Faraday and inactive isotropic media is
irreversible and that such an interface exhibits isolating
properties. If ν = νs is a solution to Eq. (12), ν = –νs is
also a solution. However, the substitution νs  –νs (or
ks  –ks) is not equivalent to the substitution b 
−b, because the corresponding wave not only travels in
the opposite direction but also its amplitude grows
exponentially with distance from the interface (see
Eq. (4)). Such a wave is physically unrealistic.

At the left boundary ν = 0 of the sublight interval,
the coefficients η1 and η2 (9) are

and the function G(ν, α), which appears in the disper-
sion relation, is negative:

If the dispersion relation has a solution, it is unique
[6]. Consequently, Eq. (12) has a solution if the func-
tion G is positive at the right boundary ν = of the
sublight interval:

(15)

Condition (15) is a necessary and sufficient condi-
tion for the existence of surface electromagnetic waves
at the interface between Faraday and inactive isotropic
media.

Function G(ν, α) in (15) can be replaced by the

function R(ν, α) = G(ν, α), which is finite at

ν = . Figure 2 plots the function Rlim(α) = R( ,
α) for various values of the constitutive parameters a, b,
and a'. The angular intervals marked by thick segments
on the abscissa are those where dispersion relation (12)
has solutions. They define the propagation directions of
surface electromagnetic waves. Depending on the
parameters, one of the three following cases is realized:
(i) no directions exist on the interface in which the sur-
face waves can propagate (Fig. 2a); (ii) the wave prop-
agation is possible if α belongs to either the interval
(α1, α2) or the interval (π – α2, π – α1), where 0 < α1 <
α2 < π/2 (Fig. 2b); and (iii) allowed propagation direc-
tions are defined by α lying in the interval (α1, π – α1),
where 0 < α1 < π/2 (Fig. 2c). In other words, these
directions fall into the angle π – 2α1 with the bisectrix
perpendicular to c.

In cases (ii) and (iii), the unidirectional propagation
mentioned above is observed. Mathematically, this
means that there are no intervals with negative α, which
correspond to waves traveling in the opposite direction.

η1' η2'

η1 0( ) 1, η2 0( ) 1
a
--- a2 b2 αcos

2
–= =

G 0 α,( ) 2 b αsin a2 b2 αcos
2
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ν ν̂ lim→
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All vectors b that specify allowed propagation di-
rections lie in the interface plane on one side of the vec-
tor c:

(16)

Below, we use relationship (15) to derive expres-
sions for the extreme angles α1 and α2 of the intervals
and establish conditions under which each of the cases
listed above is realized.

Since the dispersion relation retains its form under
the substitution α  π – α, it can be assumed that α ∈
[–π/2, π/2]. Let the angle α be such that a – bcosα < a'.

Then,  = νlim =  and, at ν = ,
expression (9) for η1,2 becomes

(the zero value of the coefficient η2 means that one of
the partial waves in the Faraday medium becomes a

b q×[ ] c⋅ 0.>

ν̂ lim a b αcos– ν̂ lim

η1lim
1
a
--- b α 2a b αcos–( )cos , η2lim 0= =
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Fig. 2. Functions Rlim = Rlim(α) and intervals of the angle α
where surface electromagnetic waves exist for a = 0.9 and
b = 0.3. a' = (a) 0.5, (b) 0.7, and (c) 0.9.
body wave). Eventually, condition (15) takes the form

(17)

If a – bcosα > a',  =  =  and the function
Glim(α) increases without limit due to the singular term
with (a' – ν2)–1/2. The function is positive if the brack-

eted term in (13) is positive at ν = . Thus, we have

(18)

Inequalities (17) and (18) define the intervals of α
(a set of directions b at the interface between the Fara-
day and isotropic media) where surface electromag-
netic waves can be excited. The extreme angles α1 and
α2 of these intervals can be found from relationships
(17) and (18) written as equalities. Then, we exclude
the radical signs from (17) to obtain

(19)

where x = cosα1 and

(20)

From (18), we find

(21)
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where y = cosα2 and

(22)

When 0 ≤ b < a, a' > 0, and a' < a, the left of rela-
tionship (17) turns into zero if we take the greatest real
root x of Eq. (19). If a' < a; the same takes place for the
smallest real root. Relationship (18) turns into an equal-
ity if we take the following root of Eq. (21):

(23)

The left boundary α1 of the interval where surface
electromagnetic waves exist is thus defined by a real
root of Eq. (19) (the greatest one if a' < a or the smallest
one if a' > a). The right boundary α2 can be calculated
directly from formula (23).

Consider the variation of the angles α1 and α2 with
a' at given a and b. If a' < a – b, conditions (17) and (18)
do not hold whatever α is (case (i)). When a' = a – b, the
roots of Eqs. (19) and (21) are x = 1 and y = 1 (α1 = α2 =
0). Further, the angles α1 and α2 increase monotoni-
cally with a' (Fig. 3). The angle α2 becomes equal to π/2
when y = 0 and, hence, when the free term d4 of Eq. (21)
is zero. This condition is achieved at a' = a – b2/a. Thus,
when the condition

is met, case (ii) is realized and there are two intervals
(α1, α2) and (π – α2, π – α1) of the angle α where sur-
face waves exist. Finally, the angle α1 becomes equal to
π/2 when the free term c4 of Eq. (19) vanishes; i.e., at
(a – a')a' + b2 = 0. Therefore, the condition

(24)

corresponds to case (iii), in which there is only one
interval (α1, π – α1) of surface wave existence, with α1
being found from Eq. (19) as before. When a' > (a +

)/2, surface waves cannot propagate (case (i)).
The variation of the angles α1 and α2 with b at fixed

a and a' depends significantly on whether a' < a or a' >
a (Fig. 4). However, surface waves can be excited in

d0 4a'2b4,=

d2 b2 a a'–( )2 a2 6aa'– 3a'2–( )[=

– 2 a a'–( ) a 3a'–( )b2 b4 ] ,+

d4 4a' a a'–( )3 a a a'–( ) b2–[ ] .=

y
1

2 2a'b
------------------ a a'–( )2 a2 6aa'– 3a'2–( )---–





=

+ 2 a a'–( ) a 3a'–( )b2 b4–

– 9a' a–( ) a a'–( ) b2+[ ] b2 a a'–( )2
–[ ]

3





1/2

.

a b– a' a
b2

a
-----–< <

a
b2

a
----- a'

1
2
--- a a2 4b2++( )< <–

a2 4b2+
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both cases when b exceeds a certain threshold. When
a' < a, this threshold is

Case (ii) is realized when b* < b < ; ca-

se (iii), when b > . At b = , coef-
ficient d4 of (22) turns to zero and α2 = π/2.

b* a a'.–=

a a a'–( )
a a a'–( ) a a a'–( )

90

75

60

45

30

15

α1, α2

0.52 0.70 0.87 a'
a – b a – b2/a a a2 4b2++( ) 2⁄

Fig. 3. Extreme angles α1 and α2 versus parameter a' at a =
0.9 and b = 0.3.
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Fig. 4. Extreme angles α1 and α2 versus parameter b at a =
0.9 and a' = (a) 0.8 and (b) 0.95.
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When a' > a, the threshold value for b is determined
from the condition c4 = 0:

When b > b*, case (iii) is realized. With (3), the
threshold of the external magnetic field intensity can
easily be found:

(25)

At a' = a, the threshold for the external magnetic
field is absent and case (iii) takes place at any b. From
(19) and (20), we find that α1 = b/2a). Hence,
the angular width of the range of directions b in which
surface waves can propagate is ∆α = 2 b/2a).
When b ! a, we have

For example, at a wavelength λ0 = 496 nm, the
refractive index and Verdet constant of crystalline
strontium titanate SrTiO3 are n0 = 2.48 and V =
0.31 min/(Oe cm), respectively. If this crystal is adja-
cent to an isotropic inactive medium with the same

b* a' a' a–( ).=

H*

πn0 ε' n0
2

–( )
Vλ0ε'

-----------------------------, ε' n0
2>

πn0
2

n0
2 ε'–

Vλ0ε'
----------------------------, ε' n0

2.<








=

(arccos

(arccos

∆α b
a
---

Vλ0H
πn0

---------------.= =
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Fig. 5. Solutions to the dispersion relation for surface waves

propagating perpendicularly to H at a = 0.9: (a)  versus

a' at b = 0.1 (1), 0.2 (2), and 0.3 (3) and (b)  versus b at

a' = 0.8 (1), 0.85 (2), 0.9 (3), and 0.95 (4).

νs
2

νs
2

refractive index, the width of the interval is ∆α = 12″ at
the magnetic field intensity H = 105 Oe.

In general, at arbitrary a, b, a', and α, the dispersion
relation given by (12) and (13) can only be solved
numerically. This equation is simplified when a surface
wave propagates perpendicularly to an external mag-
netic field (α = π/2, c = a). In this case,

(26)

and (12) takes the form

(27)

Note that the substitutions a  a' do not change
Eq. (27); i.e., the phase velocity of a surface wave prop-
agating in a direction perpendicular to c at the interface
between media with the inverse permittivity tensors
ε−1 = a' + ibc× and ε'–1 = a is the same as for media with
the inverse permittivity tensors ε–1 = a + ibc× and ε'–1 = a'.

Equation (27) with positive a, b, and a' has the real
root ν2 when case (iii) is realized. Therefore, given a
and b, a' must satisfy inequalities (24) (see also Fig. 3);
given a and a', b must meet the inequalities

(28)

(29)

(Fig. 4). Conditions (28) and (29) correspond to posi-
tive bracketed terms in (27).

Excluding the radicals from (27), we come to

(30)

The reduced frequency  squared equals the posi-
tive root of Eq. (30):

(31)

At a = a', formula (30) yields

In the limit b =  (see (28)) (or, what is the
same, the replacement of the first sign in inequality (24)

by the equality sign), (31) yields  =  = a'. The
fact that the reduced frequency equals the limiting fre-
quency means that the wave propagating in isotropic

η1 2,
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a
--------------, ν lim
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b a a ν2–( )–[ ] a'
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---------------
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2 1
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medium II is a body wave (see (11)) with the Poynting
vector parallel to the interface (a limiting electromag-
netic wave [6]). In a similar fashion, passing to the
equality in (29) (replacing the second sign in (24) by

the equality sign), we arrive at  =  = a. In this
case, the body wave propagates in Faraday medium I

(see (26)). Figure 5a plots the functions  = (a') cal-
culated from (31) for several values of the parameter b;

Fig. 5b, the functions  = (b) calculated for various a'.
The leftmost points in the curves in Fig. 5a correspond
to the limiting wave propagating in the isotropic
medium; the rightmost points, in the Faraday medium.
Accordingly, in Fig. 5b, the leftmost points in curves 1
and 2 refer to the limiting wave in the isotropic medium
(a' < a), while the leftmost point in curve 4 refers to the
limiting wave in the Faraday medium (a' > a).

CONCLUSIONS

Linearly polarized body electromagnetic waves can
always propagate in Faraday media in both forward and
backward directions. They experience a Faraday rota-
tion twice when traveling through the medium back and
forth. For surface waves, the interface between Faraday
and isotropic optically inactive media serves as an iso-
lator: these waves either cannot propagate in both direc-
tions b and –b (if condition (17) or (18) is not met) or
can only propagate in the forward b direction defined
by condition (16). Surface waves can be excited when
the external magnetic field exceeds a threshold depend-
ing on the difference between the constitutive parame-
ters a and a' (see also (25)). Thus, by varying the inten-
sity or direction of the external magnetic field, one can
effectively control the angular spectra of allowed prop-
agation directions for surface waves.

APPENDIX: TENSORS Γ AND Γ'

In [5, 6], the Barnett–Lothe integral operator for-
malism for SAWs [12] was extended to surface electro-
magnetic excitations. The new approach involves a uni-
fied procedure for calculating the impedance tensors
for surface electromagnetic waves in lossless anisotro-
pic dielectric media and deriving dispersion relations
with these tensors. For waves at the interface between
anisotropic materials characterized by the permittivity
tensors ε (z = q ⋅ r < 0) and ε' (z > 0), the dispersion rela-
tion has the form of (7) with

(A1)

The bar in (A1) means the pseudoinversion of planar
tensors in the two-dimensional subspace of the inter-

face (i.e., QQ– = Q–Q = I, where I = –  = b ⊗  b +
a ⊗  a is the projective operator). The tensors Q and S

νs
2 ν lim

2

νs
2 νs

2

νs
2 νs

2

Γ –Q– iQ–S, Γ '+ Q'– iQ'–S'.+= =

q×2
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can be represented in the integral form:

(A2)

The integrands in (A2) contain tensor bilinear forms
of two vector arguments. For any vectors u and v (uv =
0), these forms are given as follows:

(A3)

The vectors e1 and e2 are expressed through b and q
as

In formula (A3),  is the transposed tensor adju-
gate to ε–1 [9, 10].

The tensors Q' and S' are also calculated from for-
mulas (A2) and (A3) with the tensor ε in (A3) replaced
by ε'.

To find Γ for a Faraday isotropic medium, we sub-
stitute expressions (2) and c = bcosα + asinα into (A3).
We here take into account that tensors of form (A3) are
planar and represent them as expansions in dyadic pro-
jectors b ⊗  b, b ⊗  a, a ⊗  b, and a ⊗  a. Bearing in mind

that aε–1 ⋅ a = a and  = a2 – b2c ⊗  c + iabc×, we find
from (A3) at u = v = e2 that

(A4)

At u = e2 and v = e1, we have

To calculate (e2e2)–, we represent tensor (e2e2) (A4)
as a 2 × 2 matrix and invert it:

(A5)
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Next, we find the product of the tensors (e2e2)– and
(e2e1):

(A6)

Clearly, the tensors Q and S (see (A2)) are repre-
sented through the integrals

(A7)

with J02 = J00 – J20 and J11 = J31 = 0. We assume that the
denominator of the integrand is nonzero for all φ; i.e.,
the tensors Q, S, and Γ are defined if

(A8)

The quantity νlim is called the limiting frequency [6].
Physically, condition (A8) means that each of the par-
tial waves in a Faraday medium is localized near the
interface, i.e., is not a body wave. By introducing the
variable of integration x = , we obtain

where η1,2 given by formulas (9) have the meaning of
the decay coefficients of the partial waves.

For J00 and J20, we finally arrive at

(A9)

Next, substituting formulas (A5) and (A6) into (A2)
in view of (A9) yields expressions for the tensors Q
and S:

(A10)
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(A11)

For the tensor Q–, we have

(A12)

From formulas (A11), (A12), and (A1), one arrives
at expression (8) for the tensor Γ for a Faraday optically
active medium.

The tensor Γ' for the other bordering medium can be
found by substituting a' for a in (9), (A11), and (A12)
and setting b = 0. Then,

and the tensor Γ' coincides with Q'–.
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Abstract—A thermal model of a furnace chamber involving both a three-dimensional radiation heat transfer
equation and an energy equation describing the one-dimensional flow of a combustible mixture is proposed.
Convective heat transfer at the walls and shields is taken into account by the approximate standardized method.
The model allows one to calculate the temperature and heat flux distributions both in the volume and at
the boundaries of the furnace chamber. The problem of finding the specific volumetric heat generation from
the radiation fluxes measured at the furnace walls is considered with this model. © 2003 MAIK “Nauka/Inter-
periodica”.
A mathematically rigorous description of complex
heat transfer in furnace chambers of power installations
is a challenge. The reason is that, first, heat-and-mass
transfer and combustion are interrelated processes and,
second, there is a great number of parameters determin-
ing the thermal state of a real furnace. Therefore, it
seems to be topical to improve available engineering
techniques so as to limit the number of parameters (the
values of temperature and heat fluxes) measured in
accessible points on a real boiler unit and, thereby,
adjust the model (i.e., to finally determine unknown
parameters). Heat transfer parameters of both surfaces
(radiant emissivity, thickness, fouling factor, etc.) and
thermophysical parameters of media involved in the
heat transfer process (e.g., fuel burnup and densities of
furnace gases) may be unknown parameters.

In view of the fact that energy transfer by radiation
makes an overwhelming contribution (up to 90%) to
heat transfer in a furnace, the three-dimensional radia-
tion transfer equation [1, 2] is solved in this paper to
take into account radiation transfer. In the framework of
this model, both the turbulent flow and conductive heat
transfer are neglected and the flow of a combustible
mixture is assumed to be one-dimensional. The radiant
emissivity of a furnace chamber and the total heat gen-
eration are taken into account by the standardized
method. The total heat generation in a furnace is
defined by the fuel rate (Bf) and also by the sum of the

heat of fuel combustion ( ) and sensible heat of both
the fuel and supplied air. The lowest fuel combustion
heat is estimated by the Mendeleev approximate for-
mula [3]. The specific volumetric heat generation upon
fuel combustion is an important characteristic of the
furnace process. It is related to heat-and-mass exchange
and depends on the composition and properties of the

QH
f

1063-7842/03/4804- $24.00 © 20393
fuel and fuel–oxidant (air) mixture, gasdynamic pro-
cesses, and the completeness of combustion. This
parameter greatly influences both the temperature field
in the furnace volume and the distribution of the flux
incident on the furnace walls. The straightforward calcu-
lation of the specific volumetric heat generation involves
particular mathematical difficulties. In power engineer-
ing, empirical dependences of the fuel burnup on the fur-
nace height, e.g., the so-called zone method [3], are used.
Therefore, finding the volumetric heat generation from
experimental data is of interest. In this paper, the thermal
model proposed is applied both to the direct design of
the furnace chamber of a DKVP-10 steam boiler and to
the inverse problem of finding the specific volumetric
heat generation in the furnace chamber.

MATHEMATICAL MODEL

The mathematical model of a furnace chamber
involves the radiation heat transfer equation

(1)

and the energy equation

(2)

Here,

(3)

is the radiation flux divergence; P(Ω , Ω') is the scatter-
ing indicatrix; S(r) is the specific volumetric heat gen-
eration due to fuel combustion;

Ω ∇⋅( )I r Ω,( ) kabs kdis+( )I rΩ( )+

=  kabsIP T r( )[ ]
kdis

4π
------- P Ω Ω',( )I r Ω',( ) Ω'd

4π
∫+

div cfρv T r( ) λgradT r( )–( ) = BfQH
f S r( ) divQr.–

divQr 4πkabsIP T r( )[ ] kabsG r( )–=
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(4)

IP[T(r)] is the Planck’s function; kabs and kdis are the
absorption and dissipation factors, respectively; σ0 is
the Stefan–Boltzmann constant; n is the refractive
index of the medium; and

(5)

is the incident power.
Boundary conditions for the transfer equation

are given by

(6)

where ε is the radiant emissivity of the boundary sur-
face.

Boundary conditions for the energy equation.
The continuity condition for the total heat flux (Qw) at
the boundary (interior surface of the furnace wall)
makes it possible to write a set of two equations for two
unknowns (the temperatures at the interior and exterior
surfaces of the furnace wall Tw and Tw0):

(7)

One more equation for one unknown Tw ,

(8)

is written for a heat baffle (tube) at a given temperature
Tsw of the steam-and-water mixture.

The total heat flux at the furnace interior surface is
equal to the sum of the resultant radiation flux

(9)

and the convective flux

(10)

The thermal resistance of a baffle tube, Rt, can be
expressed via the heat-transfer factor of the steam-and-
water mixture in the tubes (αsw), the thermal resistance
of the tube walls (σm/λm), and the thermal resistance of
a surface deposit on the tubes (Es):

(11)
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--------------------= =
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α sw
-------- Es
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------.+ +=
In (7)–(11), Tair is the temperature of surrounding air;
δm and λm are the thickness and thermal conductivity of
the baffle tubes; Rw is the thermal resistance of the fur-
nace wall (lining); α0 is the coefficient of convective
heat transfer from the furnace exterior surface to the
environment; αcon is the coefficient of convective heat
transfer from the furnace medium to the furnace walls
and baffle tubes; and εw is the radiant emissivity.

SIMPLIFICATIONS AND APPROXIMATIONS

A real furnace is approximated by a parallelepiped.
A gas inlet is modeled by setting the emissivity and
reflection coefficient of the corresponding part of the
surface equal to zero. We assume that a baffle entirely
covers the furnace lateral surface. The absorption factor
of a disperse furnace medium is estimated in the frame-
work of the gray body approximation by the formulas
of the standardized method [3]:

(12)

(13)

where εφ is the radiant emissivity, Seff is the effective
thickness of the radiating layer, V is the furnace vol-
ume, and F is the total surface area of the furnace walls.

As a fuel, we consider furnace oil. When burning,
furnace oil produces fine soot (the mean particle radius
rm < 0.02 µm) with a negligible scattering coefficient of
visible and infrared radiations. Therefore, in this paper,
the integral term in transfer equation (1) is omitted.

A simple model is used to describe volumetric heat
generation. A furnace is conventionally divided into
two parts from top to bottom. The lower zone (maxi-
mum heat generation) extends from the bottom to the
section that is roughly 1.5 m higher than the burner
throat axis. The majority of the fuel burns in this zone.
In the upper zone, the heat generation is assumed to
decrease exponentially with height. Such a model of
heat generation will be described by the six-parameter
one-variable function

(14)

where zL is the furnace height.
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The heat transfer factors αsw, α0, and αcon are esti-
mated by the empirical formulas [3, 4]

(15)

(16)

where Pr and Re are the Reynolds and Prandtl numbers,
respectively, and ξ is the correction factor [1], which
depends on the relation between the height of the fur-
nace and its effective diameter D.

α0

–6.80 0.054Tw0, Tw0 473 K≥+

–20.56 0.83Tw0, Tw0 473 K,<+



=

α con

0.15ξ λ
D
----Pr0.33Re0.43, Re 2000<

0.023ξ λ
D
----Pr0.4Re0.8, Re 2000,>






=

TECHNICAL PHYSICS      Vol. 48      No. 4      2003
SOLUTION OF THE EQUATIONS
Transfer equations. In developing numerical meth-

ods for solving the transfer equation, much effort is
made to preliminarily (fully or partially) integrate it
with respect to frequency and angular variables. In this
paper, the gray body approximation, which implies full
integration over the radiation spectrum, is used; i.e., the
radiative properties of the medium are assumed to be
independent of the radiation wavelength. The discrete
ordinate (DO) method, first applied to this situation by
Chandrasekhar [2, 3], is used in this paper to simplify
the angular dependence. The DO method can be
divided into two steps. First, the angular discretization
of the transfer equation is performed. At the second
step, for each direction defined by zenith (ΘL) and azi-
muthal (ϕm) angles on a given space grid, the finite-dif-
ference approximation of the transfer equation is con-
structed by the integro-interpolation method [2]:
(17)Ii j k, ,
1 m, µm AIi 1/2± j k, ,

1 m, ξ1 m, BIi j 1/2± k, ,
1 m, η1 m, CIi j k 1/2±, ,

1 m, αkabsIP T( )∆v+ + +
µm A ξ1 m, B η1 m, C αkabs ∆v( )+ + +

-----------------------------------------------------------------------------------------------------------------------------------------------------------------.=
Here, µL = cosΘL, ξL, m = sinΘLcosϕm, and ηL, m =
sinΘLsinϕm are angular coordinates; α is the finite-dif-
ference weighting factor (1/2 < α ≤ 1); A = ∆y(j)∆z(k),
B = ∆x(i)∆z(k), and C = ∆x(i)∆y(j) are the surface areas
of the faces of control volumes; and ∆v  =
∆x(i)∆y(j)∆z(k). The plus and minus signs in the sub-
scripts of formula (17) depend on whether the six faces
of the domain of computation are counted in the posi-
tive (+) or negative (–) direction of the corresponding
coordinate axis. The indices i, j, and k take the values
i = 1.Nx, j = 1.Ny, and k = 1.Nz, where Nx, Ny, and Nz
are the numbers of the nodes of the finite-difference
grid along the axes OX, OY, and OZ, respectively.

Energy equation. In this equation, we neglect heat
conduction (the second term on the left of Eq. (2)) and
assume that the gas flow along the OZ (v x = v y = 0) axis
is one-dimensional. Then, integrating energy equation (2)
over the control volume with the indices i, j, and k in
view of the continuity condition turns the differential
energy equation into a nonlinear algebraic equation for
the temperature at the center of the control volume:

(18)

where ρf is the fuel rate per unit volume:

(19)

The first and second terms on the right of Eq. (17)
are the increment of the gas enthalpy. The subscripts k –
1/2 and k + 1/2 correspond to opposite faces of the con-
trol volume. The gas temperatures at the lower faces of

4Kabsσ0Ti j k, ,
4 ρfCpTi j k 1/2–, , ρfCpTi j k 1/2+, ,–=

+ BfQH
f Si j k, , KabsGi j k, , ,+

ρf

Bf

V
-----.=
the control volumes with indices i, j, and 1/2 adjoining
the furnace bottom are assumed to be equal to T = 300 K
(initial gas temperature). Boundary control volumes
with unknown temperatures of the furnace walls or heat
baffle are complemented by the set of equations (7) for
the walls or by equation (8) for the baffle.

RECONSTRUCTION OF SPECIFIC VOLUMETRIC 
HEAT GENERATION

The parameters of specific volumetric heat genera-
tion (i.e., n-dimensional vector A = (a1, a2, …, an)) are
used as unknowns and the densities of the total radia-
tion flux incident onto the furnace walls, as measur-
ands. The vector A = (a1, a2, …, an) is found by the min-
imization of the function

(20)

which is the sum of the squares of the differences
between measured (exact) and calculated incident radia-
tion fluxes, and Nk is the number of radiation detectors.

The minimization of the multidimensional function
is performed by a simple method that does not require
calculating the derivative of the function to be mini-
mized, i.e., by the coordinate-wise random search
method. For a chosen coordinate, we calculate a ran-
dom trial step. The step is accepted if the function F(A)
decreases. Otherwise, we reverse the step direction for
this coordinate and test the variation of the function
being minimized. For each coordinate, the step size
increases if a series of successive steps is successful
and decreases otherwise. The minimization of the func-

F A( ) Qr inc,
exp k( ) Qr inc,

calc k( )–( )2
,

k 1=

Nk

∑=
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tion F(A) (the search of unknown parameters) is fin-
ished when the variation of the function becomes
smaller than a given value. The influence of random
errors in measuring the radiation fluxes is modeled by
introducing normally distributed noise into exact data:

(21)

(22)

where ζ(k) is a normally distributed random number
with unit standard deviation and a zero mean value and
σq(k) is the root-mean-square deviation of the measured

Q̃r inc,
exp

k( ) Qr inc,
exp k( ) σq k( )ζ k( ),–=

σq k( )
Qr inc,

exp k( )γ%
2.576

----------------------------,=
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Fig. 1. (a) Temperature distribution in the plane y = 1.0 m
along straight lines with applicates z = (1, 2) 0.4, (3, 4) 2.0,
and (5, 6) 3.6 m; (1, 3, 5) zone method [2] and (2, 4, 6) DO
method. (b) Distribution of incident flux in the plane y = 1.0
m along the straight lines with applicates z = (1, 2) 0 and
(3, 4) ZL; (2, 4) DO method and (1, 3) zone method [2].
radiative heat flux at a kth detector for a relative mea-
surement error of γ% at a 99% confidence level.

RESULTS

Comparative analysis of the transfer equation.
Consider radiation transfer in an ideal furnace that has
the form of a parallelepiped with sizes XL = 2 m, YL =
2 m, and ZL = 4 m. The temperatures and emissivities
of the boundary surfaces are the following: T = 1200 K
and εz0 = 0.85 at z = 0; T = 400 K and εzH = 0.70 at z =
ZL; and T = 900 K and εx0 = εxL = εy0 = εyL = 0.70 at x =
x0, x = xL, y = y0, and y = yL. The specific volumetric
heat generation and the absorption factor are assumed
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Fig. 2. (a) Isorads for radiation fluxes incident on the furnace
wall (y = YL) and (b) isotherms on the furnace wall (y = YL).

Fig. 3. Gas temperature distribution throughout the furnace
height: (1) over the furnace surface (x = 1.4 m, y = 3 m) and
(2) at the center of the furnace (x = 1.4 m, y = 1.5 m).
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to be constant in the furnace volume and equal to Sv =
5.0 kW/m3 and kabs = 0.5 m–1, respectively. The results
found by the DO method for the temperature field and
incident radiative fluxes (Figs. 1a, 1b) are in good
agreement with the results of the zone method [1].

Thermal design of the furnace of a DKVR-10
steam boiler. The thermal design method is applied to
a DKVR-10 industrial steam boiler. Its furnace is
approximated by a parallelepiped with XL = 2.80 m,
YL = 3.0 m, and ZL = 4.98 m. The gas inlet is located in
the Y = YL plane in the range 3.50 ≤ Z ≤ 4.98 m. The
radiant emissivities of the furnace interior surfaces are
set equal to εz0 = 0.85 and εzH = εx0 = εxL = εy0 = εyL =
0.70. The initial calculation data are listed in Table 1.

The parameters of the specific volumetric heat gen-
eration function are listed in Table 2 (second and third
columns). The liquid fuel rate for the boiler is Bf =
0.193 kg/s. The compositions of the fuel and combus-
tion products are listed in Tables 3 and 4, respectively.
The computational results are presented in the form of
temperature distribution and radiation fluxes both in the
volume and on the walls of the furnace. Below the gas
inlet on the furnace back wall (Y = YL) (Figs. 2a, 2b),
the temperature of the interior surface and the incident
heat flux decrease rapidly with increasing height. How-
ever, these parameters are almost uniform near the gas
inlet. Such behavior of the thermal parameters of the
furnace can be explained primarily by the heat genera-
tion model chosen, as well as by the presence of the gas
inlet. The temperature along the furnace height (Fig. 3)
behaves in a similar manner and coincides satisfactorily

500

400

300

200

100

0

S(z), kW/m3

1 2 3 4 5
z, m

3
2
1

Fig. 4. Volumetric heat generation functions at γ = 3%:
(1, 3) those constructed using only negative and only posi-
tive root-mean-square deviations of reconstructed parame-
ters, respectively, and (2) the function constructed from the
mean values of the parameters.
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with the estimates made by the standardized method
(Table 5).

Problem of reconstruction of volumetric heat
generation for the DKVR-10. The results of the direct
calculations of incident fluxes (see the previous sec-
tion) are used as experimental values. The radiation
detectors are placed at 14 points on the interior surface:
six points at each of two adjacent lateral faces (x = 0 and
y = 0) and one on the top and bottom faces. In measur-
ing incident fluxes, the noise is modeled by a normal
law (25 realizations). The measurement error is taken to
be γ = 3%. The mean values and the root-mean-square
deviations of each ith parameter reconstructed are listed
in Table 2 (columns 3, 4, and 5). In Fig. 4, the volumet-
ric heat generation functions are shown for the mean
values of the reconstructed parameters and their root-
mean-square deviations. As is seen from Fig. 4, the
range of the reconstructed function of volumetric heat
generation can be considered satisfactory for the (rather
high) flux measurement error γ = 3%. The relative error
of the reconstructed values of the volumetric heat gen-

4

2

0

–2
0 1 2 3 4 5

z, m

δs(z), %

Fig. 5. Relative error of the specific volumetric heat gener-
ation as a function of height.

Table 1.  Initial calculation data

Tsw 464 K

αcon (1.94–2.58) J/(m2 s K) (T = 1000–2000) K

Rt (0.299–3) m2 s K/kJ

Rw 0.52 m2 s K/kJ

Es 0 m2 s K/kJ

αsw 1.00 kJ/(m2 s K)
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Table 2.  Parameter vector for specific volumetric heat generation 

N Zi , m ai

γ = 3%

〈ai〉 σ(ai) δair %

1 0.226 333.2 kW/m3 337.4 kW/m3 12.30 kW/m3 1.26

2 0.679 426.4 kW/m3 414.1 kW/m3 14.06 kW/m3 2.88

3 1.13 412.6 kW/m3 419.9 kW/m3 16.42 kW/m3 1.77

4 1.58 346.2 kW/m3 340.4 kW/m3 15.05 kW/m3 1.68

5 2.94 66.5 kW/m3 68.31 kW/m3 58.24 kW/m3 2.72

6 2.94 < z < 4.80 4.5 m–1 4.605 m–1 0.320 m–1 2.33
Table 3.  Elemental composition of the fuel

Carbon Cc 85.9%

Hydrogen Hc 11.5%

Nitrogen Nc 0.26%

Oxygen Oc 0.26%

Sulfur Sc 2.05%

Ash content Ac 0.1%

Humidity Wp 3.0%

Table 4.  Combustion product composition

Coefficient of excess of air αT 1.10 –

Theoretical volume of air Va 11.4 m3/kg

Theoretical volume of chimney 
gases

Vg 12.3 m3/kg

Theoretical volume of triatomic 
gases

1.57 m3/kg

Theoretical volume of steam 1.46 m3/kg

Theoretical volume of nitrogen 8.22 m3/kg

VRO2

VH2O

VN2

Table 5.  Characteristics of heat exchange in a furnace cham-
ber (standardized method)

Theoretical combustion
temperature in furnace

Tcom K 2253

Gas temperature outside
furnace

Tout K 1333

Heat of fuel combustion kJ/kg 0.339 + 5

Sensible heat of fuel Qsens kJ/kg 0.244 + 3

Sensible heat of supplied air Qa kJ/kg 0.304 + 3

Heat transferred by radiation Qr kJ/kg 0.203 + 5

QH
f

eration as a function of height δs(z) is shown in Fig. 5.
The increase in the relative error may be related to two
reasons: a considerable relative decrease in the volu-
metric heat generation at the furnace exit (Fig. 4) and
the insufficient number of radiation detectors at the top
of the furnace. It seems that the same reasons might
explain the high value of the root-mean-square devia-
tion for the fifth reconstructed parameter (Table 2),
which is responsible for the exponential decay of the
heat generation in the top region of the furnace.

CONCLUSIONS

(1) The proposed thermal model of a furnace, in
contrast to the standardized method, allows one to esti-
mate temperature fields and radiation fluxes, as well as
to design small- and medium-size boiler units (for
which the standardized method lacks empirical data).
This technique makes it possible to estimate the most
thermally stressed regions on heat-exchange surfaces.

(2) Within this thermal model, the possibility of
reconstructing the volumetric heat generation profile at
the relatively high errors involved in measurements of
incident radiation flux is shown.
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Abstract—Experimental data show that regular three-dimensional liquid-crystal protein structures ranging in
size from several hundredths to several tenths of a millimeter are present in the whole blood serum (plasma) of
patients suffering from various diseases. When a drop of serum dries, some of the structures melt to produce a
gel, whereas the rest of them undergo phase transition to form solid crystals. These crystals are shaped like
immunoglobulin M molecules enlarged 1000-fold. In the serum (plasma) of ailing people, the amount of the
gel formed upon drying increases, breaking the symmetry during the formation of nonequilibrium protein films.
It is believed that low-intensity physical factors exert a therapeutic action by changing the phase state of protein
in body fluids. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The phase composition of body fluids is vitally
important for maintaining normal bodily functions [1].
The discovery of protein self-organization upon drying
under nonequilibrium conditions [2, 3] has stimulated
intense research on the structuring of biological fluids
in naturally drying drops, which is aimed at using this
phenomenon in diagnostic tests [4]. Blood plasma
(serum) self-organization is an interesting and complex
process involving closely related events that are the
subject matter of biophysics, physical and colloid
chemistry, chemical physics, immunology, and crystal-
lography. In the previous work [5], we noted that the
drops of blood serum taken from healthy people and
patients suffering from viral hepatitis B and burn dis-
ease differ in the dynamic parameters of structuring
upon drying. In the latter case, the time of drying is
longer; the front of structuring moves at a lower rate,
with the variance of this rate being greater; and the
amount of gel produced is larger. When these serum
samples were irradiated in vitro by low-intensity red or
blue light at a dose of 100 J/m2, the dynamic parame-
ters of drying drops approached those of normal serum
samples and the amount of gel decreased.

In this paper, we study phase transitions in the liquid
blood serum (plasma) in greater detail, which allows us
to consider their scenario from a new standpoint and
hypothesize for a number of phenomena.

MATERIALS AND METHODS

The samples of blood plasma and serum were
obtained from 30 clinically healthy people; 18 patients
1063-7842/03/4804- $24.00 © 20399
with viral hepatitis B and C in the acute stage (the mate-
rial supplied by the Hepatological Center, Nizhni
Novgorod); 30 patients with burn disease (supplied by
the Federal Burn Treatment Center, Nizhni Novgorod
Research Institute of Traumatology and Orthopedics);
40 women after normal or premature (second- and
third-trimester) childbirth (supplied by the maternity
and child-welfare services of Nizhni Novgorod); one
patient with Waldenstrom’s macroglobulinemia; and
one patient with paraproteinemic hemoblastosis, whose
blood contained a negligible amount of immunoglobu-
lin M (IgM) (supplied by the Research Institute of Epi-
demiology and Microbiology, Nizhni Novgorod). In
addition, the saliva of several patients with viral hepati-
tis was studied. The samples of blood plasma were ana-
lyzed before and after a freezing (−18°C)–thawing
cycle in a household refrigerator.

The test fluids were applied on chemically clean
glass slides either as small drops (six to eight 5-µl drops
per slide) or in relatively large amounts (0.5 ml per
slide). The slides were dried at room temperature for
24 h. Thus, the drying of the fluids occurred under dif-
ferent thermodynamic conditions depending on their
volume and the form of the drops. Some of the samples
(small drops) were dried under an MBS-10 microscope
fitted with a television camera connected to a computer,
so that phase transitions in the fluid could be recorded.
After drying, the drops were studied in a Lyamam-IZ
microscope under conventional illumination conditions
with polarizing filters.
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Morphology of phase states in drying drops of blood serum taken from patients with different diseases: (a) exacerbation of
chronic hepatitis B and C (×12); (b) viral hepatitis B, acute icteric form of medium severity (×12); (c) burn disease (×140); and
(d) viral hepatitis B, acute icteric form (×140).
RESULTS AND DISCUSSION

Under the microscope, the liquid drops of serum
taken from the patients with viral hepatitis or burn dis-
ease often looked rough due to the presence of small
light-scattering structures (Fig. 1a). Such a phenome-
non has never been observed in the sera of healthy
donors. Sometimes, serum inhomogeneities were so
great that they emerged on the surface, exhibiting a reg-
ular three-dimensional cluster structure (Fig. 1b). In the
course of drying, some of these structures melted to
produce the gel, whereas the remaining part underwent
a phase transition to the solid (crystal) state (Figs. 1c,
1d). The formation of the abundant structureless gel
breaks self-organization in drying drops and prevents
their contents from being arranged into a regular cen-
trosymmetric pattern, which is characteristic of the
samples taken from healthy donors [4, 5]. In the plasma
of women in the early postpartum period, solid and par-
tially melted crystals usually formed a circle in the tran-
sition zone of the drop. In the cases of acute toxemia
and premature childbirth, this zone was significantly
wider and had larger crystals (Figs. 2a, 2b), which
showed weak greenish fluorescence under polarized
light (Figs. 2c, 2d). Upon slower drying (in a greater
volume of the fluid), their structure persisted longer,
with the shape of most of the crystals being similar to
that of IgM (Fig. 3) [6] (with a 1000-fold difference in
size). The same structures were also found in the saliva
of some patients with viral hepatitis (at the edges of the
drying drops). Phylogenetically, IgM is the most
ancient class of immunoglobulins [7]. Its concentration
increases primarily upon the first exposure to an anti-
gen. An IgM molecule is a pentamer with a molecular
weight of approximately 950 kDa. The IgM sedimenta-
tion constant is 7S, and its concentration in the blood of
healthy people ranges from 0.5 to 1.9 mg/ml. A number
of diseases are known to be accompanied by M hyper-
globulinemia, which can be primary (e.g., in the case of
Waldenstrom’s disease, when only genetically modi-
fied IgM is produced) or secondary (in the cases of can-
cer, allergies, infectious and autoimmune diseases, hep-
atitis, cirrhosis of the liver, etc.) [8]. Publications avail-
able to us contain no description of regular
macrostructures in the liquid phase of blood serum
(plasma). In most cases, the liquid-crystal texture of
biological fluids has been studied upon drying between
two glass slides under conditions that are close to equi-
librium [4, 9].

Both primary and secondary M hyperglobulinemias
may be complicated by the deposition of amorphous
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
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(a) (b)

(c) (d)

Fig. 2. Dried drops of blood plasma taken from women in the early postpartum period: (a) normal childbirth (after 40 weeks of
gestation) (×17); (b) premature childbirth (after 34 weeks) (×17); (c) premature childbirth, protein crystals under normal illumina-
tion (×600); and (d) premature childbirth, protein crystals under polarized light (×600). The arrows indicate the location of protein
crystals.
protein masses in blood vessels. These deposits are usu-
ally regarded as the swarms of circulating immune
complexes [10, 11]. In our opinion, however, the crys-
tallization of such complexes is unlikely. An antigen is
bonded to specific sites in antibody molecules by
means of ionic and hydrogen bonds, van der Waals
forces, and hydrophobic interactions [12]. Bonding
conditions are optimal only within the physiological
ranges of pH, ionic strength, and salt concentration.
When these conditions change, resulting immune com-
plexes dissociate. Hence, it appears more probable that
the liquid-crystal structures are formed by IgM mole-
cules alone. Direct verification of this hypothesis (e.g.,
using fluorescein-labeled diagnostic immunoglobulins)
is difficult and requires the development of new
approaches. However, we obtained indirect evidence in
favor of our hypothesis when analyzing the blood
serum of the patient with Waldenstrom’s macroglobu-
linemia (in this disease, functionally deficient IgM is
the only immunoglobulin produced by the immune sys-
tem). This serum in a tube segregated spontaneously
into two transparent liquid fractions that differ in den-
sity (lower density at the top and higher density at the
bottom). Upon drying, the crystals of interest were
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
observed in the bottom fraction only, as well as in the
thoroughly mixed whole serum (Fig. 3a). In the blood
serum of the patient with paraproteinemic hemoblasto-
sis, which contained only immunoglobulin IgG, no
such crystals were found.

Thus, as the functioning of antibodies involves
interactions at the molecular level, the apparent
mesophase state of IgM in the liquid serum may evi-
dence that IgM molecules are immunologically inac-
tive. The same factor may be involved in pathogenesis
of the endogenous intoxication syndrome [13–15].

Microcalorimetric data [16] indicated that the ther-
mal denaturations of albumin and γ globulins, entering
into the whole blood serum, occur independently: the
enthalpy of γ-globulin denaturation was more than
twice that of albumin denaturation. It was also found in
[16] that the parameters of the thermal denaturation of
proteins depend on the physiological state of the people
examined [17]. These findings are consistent with the
idea that γ globulins are in the mesophase state (accord-
ingly a greater energy is needed to melt molecules of
the liquid crystal) and also with our concept that several
phase transitions take place in a multicomponent liquid
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(a) (b)

(d)(c) 25 nm

Fig. 3. Protein crystals in the dried 0.5-ml samples of blood serum from patients with (a) Waldenstrom’s macroglobulinemia (×600)
and (b) viral hepatitis B and chronic hepatitis C (×600). (c) Model of an IgM molecule [6] and (d) IgM molecule under an electron
microscope [6]. 
medium subjected to a denaturing factor (high temper-
ature, dehydration, etc.).

The freezing and thawing of the blood plasma
(serum) samples taken from the patients, including
women in the early postpartum period, resulted in an
increase in the surface area of the drops applied on the
glass slides (on average, by 24%). The same was
observed when the samples were exposed in vitro to an
eddy magnetic field [4], microwaves (in the millimeter
range), and a He–Ne laser beam (our unpublished data).
These facts indicate that, whatever agents act on this
body fluid, its physical properties behave in a similar
manner. Such behavior may be accounted for by
changes in the liquid-crystal phase of protein: the mac-
rostructures melt, antibodies recover functional activ-
ity, and the rate of their clearance (removal from circu-
lation) increases. Recall that liquid crystals have found
wide applications because of their high sensitivity to
temperature and external electric fields [18]. The fact
that physical therapeutic procedures influence protein
liquid-crystal structures found in the blood plasma of
patients may be a plausible explanation for the exist-
ence of a threshold irradiation level in He–Ne laser
therapy and also for the absence of any effects when
patients are irradiated after recovery [19].

Thus, the presence of regular three-dimensional liq-
uid-crystal structures in the blood serum (plasma) of
ailing people is probably explained by IgM overpro-
duction under conditions of endogenous intoxication
(i.e., in the presence of toxic metabolites in the blood,
which may change the phase state of globular proteins).
This entails disturbance in the cascade of protective and
adaptive reactions. In such cases, measures aimed at
detoxification, including physical therapy, may exert an
effect via changing the phase composition of body flu-
ids.

Research on phase transformations in protein during
physiological and pathological processes holds consid-
erable promise for both fundamental science and prac-
tical medicine. In the near future, new findings in this
field will hopefully contribute to our knowledge of
“mesomorphic pathogenesis” and provide a basis for
novel approaches to the treatment of diseases accompa-
nied by this phenomenon.
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
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Abstract—For the first time a rigorous solution to the problem on time evolution of the periodic wave shape
on the surface of a viscous infinitely deep liquid is found in the quadratic approximation with respect to the
wave amplitude. It is found, in particular, that the damping rate of the quadratic component with respect to the
wave amplitude is twice as high as the damping rate of the linear term. It is shown that inclusion of viscosity
leads to asymmetry of the wave profile. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In spite of continued study of finite-amplitude
waves, until now all rigorous investigations were car-
ried out within the model of an ideal liquid (see, for
instance, [1–7] and the references therein). The most
correct attempts at making allowance for the influence
of viscosity on the nonlinear evolution of the free sur-
face shape of a viscous liquid were performed in an
approximation of low viscosity in the framework of the
boundary layer theory [8–10]. Such an approach is
valid only at large Reynolds numbers. Nevertheless, a
correct analytical formulation of the problem of deter-
mining the shape of a wave propagating over the sur-
face of an infinitely deep viscous liquid is quite real in
a quadratic approximation with respect to the wave
amplitude [11].

The problem of investigating the motion of a finite
amplitude wave in a viscous liquid is relevant to numer-
ous scientific, technical, and technological applica-
tions. For example, in [12–14] in a linear approxima-
tion in the wave amplitude, the existence of a surface
instability in a viscous liquid against both elastic
stresses and inactive surface-active substances (SAS)
were predicted, as well as the existence of a vibrational
liquid instability at a finite redistribution velocity of an
electric charge over the liquid surface. A detail theoret-
ical analysis of these effects is possible only in approx-
imations with respect to the wave amplitude that are
higher than first order. In connection with the above, the
present problem was formulated.

MATHEMATICAL FORMULATION 
OF THE PROBLEM

Let u = u(x, z, t) and v  = v(x, z, t) be horizontal and
vertical velocity components, which, for simplicity, are
assumed to be independent of the y coordinate; let ex

and ez be unit vectors of the Ox and Oz axes. Then, wave
1063-7842/03/4804- $24.00 © 20404
profile ξ = ξ(x, t) and velocity field U = uex + vez satisfy
the following initial boundary value problem:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Here, t is time; p is the liquid pressure; ∂t and ∂x are the
partial derivatives with respect to time and coordinate;
t and n are the unit vectors tangent and normal to the
liquid surface, respectively (explicit expressions for
them and for divergence of the normal, div(n), are given
in Appendix A); and ∆ is Laplacian. The awkwardness
of the problem (1)–(8) is directly related to the com-
plexity of initial conditions (8). The particular form of
the functions appearing in (8) is rather arbitrary. There-
fore, in the present paper, initial conditions yielding the
least awkward solution are chosen. In order to maintain
orderliness of the reasoning, we shall refine the form of
initial conditions in the course of solving the problem
when it becomes clear how the initial conditions influ-
ence the awkwardness of the solution.

PRINCIPLE OF SOLVING THE PROBLEM
We use the perturbation method to find an analytical

solution to problem (1)–(8). Usually in this method,
equations are first written in dimensionless form. In the

∂tU ∇ U×( )+ U× ∇ 1
ρ
--- p

U2

2
------ gz+ + 

  ν∆U;+–=

∇ U 0;=

z ξ : ∂tξ u∂xξ+ v ;= =

p 2ρνn n —⋅( )U( ) P0–⋅– γ∇ n;⋅=

t n —⋅( )U( )⋅ n t —⋅( )U( )⋅+ 0;=

z ∞: U 0;–

t 0: ξ F x( );= =

z ξ : U≤  = U0 = U0 x z,( ) = u0 x z,( )ex v 0 x z,( )ez.+
003 MAIK “Nauka/Interperiodica”
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present study, we do not specify a particular method of
this reduction. Let an initial perturbation be periodic in
x and form a wavy profile with a wavelength of λ = 2π/k
and an amplitude of a. Dimensionless parameter ε = ka
is independent of the method of reduction to dimen-
sionless form, and its small value corresponds to the
small amplitude approximation. In this study, all rela-
tionships are written in dimensional form. In reducing
to dimensionless form, the parameter a = εk–1 and all
variables proportional to it are transformed into dimen-
sionless variables on the order of O(ε). In dimensional
expressions, such variables are related to the same
order of magnitude.

At small ε, a solution of the problem is sought in the
form

(9)

Let the initial perturbation profile of the free liquid
surface be a sine wave in the first approximation with
respect to ε:

The forms of F2(x) and functions involved in an
asymptotic representation of the initial distribution of
the velocity field,

are chosen in order to find the least awkward solution.

Substituting (9) into (1) and (2) leads us to the
zeroth-, first-, and second-order problems for these
equations. In Appendix B, a procedure is described that
allows one to decompose boundary conditions (3)–(5)
into relationships for quantities of different orders of
smallness in view of the expansions of these conditions
in the vicinity of the unperturbed plane liquid surface.

In the zero-order approximation with respect to ε,
the problem is reduced to determining the hydrostatic
pressure:

In what follows, we shall use special notation for
linear differential operators,

U U1 U2 O ε3( ); U1+ + O ε( ); U2 O ε2( );= = =

p p0 p1 p2 O ε3( ); p0+ + + O 1( );= =

p1 O ε( ); p2 O ε2( );= =

ξ ξ 1 ξ2 O ε3( ); ξ1+ + O ξ( ); ξ2 O ε2( ).= = =

F = F1 F2 O ε3( ); F1+ +  = a kx( ); F2cos  = O ε2( ).

U0 = U1
0 U2

0 O ε3( ); U1
0+ +  = O ε( ); U2

0 = O ε2( ),

p0 P0 ρgz.–=

L
∂t ν ∂xx ∂zz+( )– 0 1/ρ( )∂x

0 ∂t ν ∂xx ∂zz+( )– 1/ρ( )∂x

∂x ∂z 0

≡ ;
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
and for column matrices,

Operator B transforms objects of  type in the fol-
lowing way: first, matrix operations are executed; then,
all differentiation and arithmetic operations are per-
formed; and after this, it is assumed that z = 0. The
result of application of operator B to a column vector
consisting of three functions depending on three vari-
ables x, z, and t is a vector consisting of three functions
independent of z.

THE PROBLEM OF THE FIRST ORDER 
OF SMALLNESS

For quantities of the first order of smallness in ε, the
complete mathematical formulation of the problem has
the form

(10)

(11)

(12)

(13)

Here, the initial condition has been formulated for the

two first elements of  but not for the entire symbolic
vector of unknown values. In the expressions forming
the initial conditions, there are no conditions for p1 (the
third element of this vector). Actually, values of p1 at
any instant of time are expressed through components
of the U1 field in the liquid and on its free surface.
Indeed, the linearized Navier–Stokes equation (the first
equation of (10)) can be written in the form

If one applies divergence to both parts of this equa-
tion, taking into account that the liquid is incompress-
ible, that is, div(U1) = 0, and that the order of successive
partial differentiation can be interchanged, then the
Laplacian equation for p1 is easily found:

The linearized boundary condition for the normal
stress and the condition of vanishing of the gradient of

R

∂t

ρg γ∂xx+–

0

; B
0 1– 0

0 2ρν∂z– 1

∂z ∂x 0
z 0=

≡ ≡

0̂

0

0

0

; Ŷ j

u j

v j

p j

.≡≡

Ŷ j

LŶ1 0̂;=

BŶ1 Rξ1+ 0̂;=

z ∞– : u1 0; v 1 0;

t 0: ξ1 a kx( ); z 0: U1≤cos U1
0.= = =

Ŷ1

∂tU1 ∇ 1
ρ
--- p1 

 – ν∆U1.+=

∆ p1 0.=
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a first-order additive to pressure at a large depth have
the form

It is seen that, if field U1 is known on the liquid sur-
face and in the liquid volume and an expression for ξ1
is given, then p1 satisfies the Dirichlet problem in an
infinite domain (there exists a unique solution for this
problem). The above considerations justify the absence
of a condition for p1 in the statement of problem
(10)−(13).

Following [15], a complex solution of problem
(10)–(13) is readily found and then, having separated
the real part, the following solution of the first-order
problem is obtained:

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

Here, q is calculated as a root of disperse equation (18)
obeying conditions (19). The first of them necessarily
follows from (12) and the second means that a traveling
wave propagating along Ox is chosen as a solution. It is
known (see, for example, [15, 16]) that only one root of
Eq. (18) satisfies such conditions. This provides
uniqueness of the procedure for calculation of the com-
plex frequency S.

Using solution (14)–(17), we construct the substitu-
tion

z 0: p1 2ρν∂zu1 ∂xxξ1;+= =

z ∞– : — p1 0.

ξ1 a Θ( ) T( );expcos=

u1 a S2 kz( )exp 2νk q2 q2z( )cos q1 q2z( )sin+( )–((=

× q1z( ) ) Θ( )cosexp D kz( )exp(+

– 2νk q1 q2z( )cos q2 q2z( )sin–( )
× q1z( )exp ) Θ( ) ) T( );expsin

v 1 = a D2 kz( )exp 2νk2 q2z( ) q1z( )expcos–( ) Θ( )cos(

– S2 kz( )exp 2νk2 q2z( )sin–( ) q1z( )) Θ( ) T( );expsinexp

p1 aρk 1– –S1D S2
2+( ) Θ( )cos(=

+ 2S2 S1 νk2+( ) Θ( ) ) kz( ) T( );expexpsin

ν2 k2 q2+( )2
4ν2k3q– kg

k3γ
ρ

--------+ 
 + 0;=

q1 Req 0; q2≥ Im q( ) 0;≥= =

S ν q2 k2–( ); S1 ReS; S2 ImS;= = =

Θ S2t kx; T– S1t; D S1 2νk2.+= = =

ξ a Θ( ) T( )expcos ξ1*; Ŷ1*+

u1

v 1

p1

u1*

v 1*

p1*

,+= =
reducing (10)–(13) to a problem with the initially
unperturbed surface,

(22)

The shape of the free liquid surface is represented in
the form of the superposition of function ξ1 coinciding
with the initial surface perturbation at t = 0 and function

 = 0 coinciding with the equilibrium liquid surface

at the initial time instant (  = 0 at t = 0).

With the aim of obtaining the least awkward solu-
tion, it is reasonable to restrict our consideration to a
condition of the absence of the initial velocity distribu-
tion in problem (22):

(23)

From this it follows that problem (22) has a zero
solution and relationships (14)–(21) are the solution of
the first-order problem with initial condition (23),

where components  are calculated using formulas
(14) and (15) at t = 0.

THE SECOND-ORDER PROBLEM 

Problem-solving outline. After decomposition of
Eqs. (1) and (2) into relationships for quantities of dif-
ferent orders of smallness, one can obtain the following
equation for the second-order quantities with the help
of expression (9):

(24)

(25)

Boundary conditions (72), (78), and (81) for them
are obtained in Appendix B. All these relationships
involve terms depending on a product of first-order
magnitudes. These terms transform into particular
expressions after the solution of first-order problem
(14)–(21) is substituted into them. As a result, problem
(24), (25), (72), (78), and (81) with the initial condi-
tions as yet undetermined can be formulated in a new
form:

(26)

LŶ1* 0̂; B1Ŷ1* Rξ1*+ 0̂;= =

z ∞– : u1 0; v 1 0;

t 0: ξ1* 0; z 0: U1*≤ U1
0 U1.–= = =

ξ1*

ξ1*

t 0: U1
0 U1– 0.= =

U1
0

∂tU2 ∇ 1
ρ
--- p2 

  ν∆U2–+

=  
1
2
--- ∇ U1

2( )– ∇ U1×( )– U1;×

divU2 0.=

LŶ2 a2Re Â1 2q1z( )exp Â2 kz( )exp+((=

+ Â3 k q+( )z( )exp ) 2T( )exp

+ Â4 k q+( )z( ) 2 T iΘ+( )( )exp );exp
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
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(27)

(28)

(29)

where ,…,  are three-component columns with
complex coefficients independent of coordinates and
time. Their expressions are given in Appendix C.

If one finds a particular solution , ξ* of problem
(26)–(29) obeying arbitrary initial conditions and uses
the substitution

(30)

this inhomogeneous problem is transformed into the
homogeneous problem

(31)

(32)

(33)

(34)

This problem can be solved in the same way as the
first-order problem.

Then, it is required to find a particular solution 
and ξ* of problem (26)–(28), and it is not necessary to
write the initial conditions or worry about the com-
pleteness of the solution. In addition, due to the linear-
ity of relationships (26)–(28), it is possible to omit the

sign of Re and seek a particular solution  and ξ* in
complex-valued form, considering the real part of the
complex-valued solution as a physical solution.

Formulation of an auxiliary problem. Based on
the structure of the right-hand side of (26), one can try
to seek a particular solution of this equation in the form

(35)

Substitution of (35) into (26) leads us to an inhomo-
geneous set of linear algebraic equations for determin-

BŶ2 Rξ2+

=  a2Re Â5 2T( )exp Â6 2 T iΘ+( )( )exp+( );

z ∞: u2 0; v 2 0;–

t 0: ξ2 F2 x( ); z 0: U2≤ U2
0,= = =

Â1 Â6

Ŷ*

Ŷ2 Ŷ* Ŷ*; Ŷ*+

u*
v *
p*

; Ŷ

u*

v *

p*

;= = =

ξ1 ξ* ξ*+=

LŶ* 0̂;=

BŶ* Rξ*+ 0;=

z ∞– : u* 0; v * 0;

t 0: ξ* F2 x( ) ξ*;–= =

z 0: u*≤ u2
0 u*; v *– v 2

0 v *.–= =

Ŷ*

Ŷ*

Ŷ a2 Ĉ1 2q1z( )exp Ĉ2 2kz( )exp+((=

+ Ĉ3 k q+( )z( ) ) 2T( )expexp

+ Ĉ4 k q+( )z ) 2 T iΘ+( )( ).expexp
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ing the coefficients forming columns – :

(36)

Matrices , , , and  are given in Appen-
dix C.

Having found (35), it is easy to make the substitu-
tion of variables

(37)

which transforms the problem into a simpler one:

(38)

(39)

(40)

Now, we have homogeneous set of Eqs. (38) instead
of inhomogeneous set (26). The simplification lies pre-
cisely in this. Similar to the first-order problem, the
solution of problem (38) is expressed through scalar
functions

(41)

satisfying the equations

(42)

under the following restrictions:

(43)

In considering the correctness of the transition to ϕ2
and ψ2, we use only properties of Eqs. (38), disregard-
ing other relationships. This is why it is possible to use
the scalarization procedure developed in solving the
first-order problem. Such an approach is inapplicable in
solving problem (26)–(28) because of the presence of
the right-hand side in (26).

Insolvability of the auxiliary problem by the
method of separation of variables. In order to satisfy
relationships (39)–(40), it is necessary to look for ϕ2
and ψ2 in the form

Ĉ1 Ĉ4

Π̂1C1 Â1; Π̂2C2 Â2; Π̂3C3 Â3;= = =

Π̂4C4 Â4.=

Π̂1 Π̂2 Π̂3 Π̂4

Ŷ2 ŷ* ŷ; ŷ*+

u2*

v 2*

p2*

,= =

L ŷ* 0;=

B ŷ* Rξ2 B ŷ+ +

=  a2 Â5 2T( )exp Â6 2 T iΘ+( )( )exp+( );

z ∞– : u2* 0; v 2* 0.

ŷ* a2

∂xϕ2 ∂zψ2–

∂zϕ2 ∂xψ2+

f t( ) ρ∂tϕ2–

,=

∆ϕ2 0; ∂tψ2 ν∆ψ2– 0= =

z ∞– : ∂xϕ2 ∂zψ2 0;–

∂zϕ2 ∂xψ2 0.+

ϕ2 = α z( ) 2 T iΘ+( )( ); ψ2exp  = β z( ) 2 T iΘ+( )( ).exp
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Substitution of these expressions into (37) yields
equations in α(z) and β(z). Solving these equations, we
readily find

(44)

(45)

The found functions ϕ2 and ψ2 satisfy Eqs. (42) at
any values of complex-valued constants λ and H. Thus,
after substituting (44) into (41), the resulting column
vector

(46)

is the solution of (38) regardless of the value of H and λ.
In order to find the expression in the left-hand side

of (39) in the form of the right-hand side after substitut-
ing (46) into (39), one may seek a particular solution ξ*
for variable ξ2 in the form

(47)

After substituting (46) and (47) into (39), the left-
hand side of (39) takes the form

(48)

where

and the right-hand side is

(49)

The form of square matrix  is given in Appendix C.

In the same place, three-element vector  is written in
explicit form with the coefficients depending on the ele-

ϕ2 z( ) λ kz( ) 2 T iΘ+( )( );expexp=

ψ2 z( ) H rz( )exp 2 T iΘ+( )( );exp=

r 2 k2 q2+( ); Re r( ) 0.>=

ŷ* = a2

0

0

f t( )
a22k

i–

1

2ρS

λ kz( ) 2 T iΘ+( )( )expexp+

+ a2

r–

2ik–

0

H rz( ) 2 T iΘ+( )( )expexp

ξ* a2ζ 2 T iΘ+( )( )exp .=

ŷ* Rξ* B ŷ+ +

= a2

0

f t( )
0

a2

0

C1 3[ ] C2 3[ ] C3 3[ ]+ +

Λ
2T( )exp+

+ â2 L̂

H

λ
ζ

B̂–
 
 
 
 

2 T iΘ+( )( ),exp

Λ 2C1 1[ ] q1 C3 1[ ] k q+( )+=

a2 Â5 2T( )exp Â6 2 T iΘ+( )( )exp+( )

=  a2

0

N1

M0

2T( )exp a2

Ω
N

M

2 T iΘ+( )( ).exp+

L̂

B̂

ments of vector C4. Hereafter, the mth element of vec-
tor Cn is denoted by Cn[m]. Expressions for Ω , M0, M,
N1, and N are also given in Appendix C. If one focuses
on the fact that Θ = S2t – kx, it becomes clear that equal-
ities (48) and (49) at any values of x and t mean the
equalities of corresponding real and imaginary parts at
any Θ. As a result, we obtain equalities of Fourier series
in sines and cosines of variable Θ. They are valid only
if the corresponding coefficients of the Fourier expan-
sions are equal to each other. Therefore, the problem is
solvable if the equality Λ = M0 is satisfied. It is readily
verified that, if this equality is fulfilled, then one can
equalize (48) and (49) by means of selecting constants
H, λ, and ζ.

In the general case, Λ ≠ M0, and seeking a solution
of (38)–(40) in the form (41) results in an insolvable
problem.

Modified auxiliary problem and its solution by
the method of separation of variables. A solution of
the problem can be found if one considers the following
auxiliary problem:

(50)

(51)

(52)

Reasoning in the same way as in solving (38)–(40),
we come to the step at which, in the previous case, con-
dition Λ ≠ M0 appeared to transform the problem into
an insolvable one. After substituting 

(53)

(54)

into (50)–(52), we obtain the set of equalities

(55)

L ŷh 0;=

B ŷh Rξh+ a2 Â5* 2T( )exp Â6* 2 T iΘ+( )( )exp+( )=

– B ŷ

0

0

Λ M0–

;+

z ∞– : uh 0; v h 0.

ŷh a2

0

0

f t( )
=

+ a22k

i–

1

2ρS–

λ kz( ) 2 T iΘ+( )( )expexp

+ a2

r–

2ik–

0

H rz( ) 2 T iΘ+( )( );expexp

ξh a2ζ 2 T iΘ+( )( )exp=

Λ Λ ;=

f t( ) N1 C1 3[ ]– C2 3[ ]– C3 3[ ]–( ) 2T( );exp=
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(56)

The first of them is an identity. The second uniquely
determines f(t). Equality (56) is an inhomogeneous set
of linear algebraic equations in H, λ, and ζ. The form of

matrix  and expressions for Ω , N, and M are written
in Appendix C. Finally, H, λ, and ζ that are found
should be substituted into (53) and (54).

The second auxiliary problem and its solution.
The following change of the variables,

transforms (26)–(28) into the following problem:

(57)

(58)

(59)

If one rewrites these equations in the standard form,

then one can see that the problem has a particular solu-
tion with ξα = 0, pα = 0, and vα = 0. Indeed, in this case,
from the discontinuity equation it follows that ∂xuα ≡ 0
and, consequently, uα may depend only on z and t. As a
result, the problem is transformed into a well-known
problem of mathematical physics,

(60)

(61)

with an additional condition,

(62)

This problem has a solution satisfying the initial
condition

(63)

L̂

H

λ
ζ

C4 2[ ] Ω+

2C4 2[ ]ρν k q+( ) C4 3[ ]– N+

2iC4 2[ ] k C4 1[ ] k q+( ) M+–

.=

Λ̂

Ŷ2 Ŷα ŷ ŷh; ξ2+ + ξα ξh+= =

LŶα 0;=

BŶα Rξα+ a2

0

0

M0 Λ–

2T( );exp=

z ∞: uα 0; v α 0.–

∂tUα ∇ 1
ρ
--- pα 

  ν∆Uα–+ 0; ∇ Uα⋅ 0;= =

z 0: ∂tξα v α– 0; pα 2ρν∂zv α– ∂xxξα+ 0;= = =

∂zuα ∂xv α+ a2 M0 Λ–( ) 2T( );exp=

z ∞– : uα 0; v α 0,

∂tuα ν∂zzu– 0;=

z 0: ∂zuα a2 M0 Λ–( ) 2S1t( )exp= =

z ∞– : uα 0.

t 0: uα 0; v α 0.= = =
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According to [12], such a solution is

(64)

It is easily seen that condition (62) is fulfilled in this
case.

Results of solving the second-order problem. The
reasoning presented allows us to formulate an algo-
rithm for calculating the variables:

(65)

(66)

The set of linear algebraic equations (36) allows one

to determine vectors , , , and . Using them
with the help of (35), one can construct . The ele-
ments of vector C4 and values Ω , N, and M calculated
with formulas from Appendix C are used for the con-
struction of the right-hand side of (56). The inhomoge-
neous set of linear algebraic equations (56) is solved for
H, λ, and ζ. Function f(t) is calculated using formula
(55), and vector  is defined by formula (53). Values

ζ, , and  found in such a way, together with expres-
sion (64) for uα, are substituted into (65) and (66). The
separate steps of the algorithm represent a solution of
the sets of linear equations and can be performed both
analytically and numerically. Situations where no solu-
tion exists for any set are not considered here.

Since  is a particular solution of Eqs. (36),  and
ξ* are solutions of problem (50)–(52), and ξα = 0 and

 are solutions of problem (57)–(59), it is easy to ver-

ify that substitution (30), in which  and ξ* are con-
structed with the help of (65) and (66), transforms prob-
lem (26)–(29) into a simpler one (31)–(34). One can see
that, under the initial conditions

(67)

the solution of problem (31)–(34) is zero, and (65) and
(66) are solutions of problem (26)–(28) with initial con-
ditions (67).

NONLINEAR WAVE PROFILE ON THE SURFACE 
OF A DEEP VISCOUS LIQUID

Analytical expression for the wave profile. Sum-
mation of (14) and (65) gives an expression for the

uα a2 M0 Λ–( ) ν
π
---=

× z2

4ν t τ–( )
---------------------– 

  2S1τ( )expexp τ .d

0

t

∫

ξ* a2 ζ1 2Θ( )cos ζ2 2Θ( )sin–( ) 2S1t( );exp=

ζ1 Re ζ( ), ζ2 Im ζ( );= =

Ŷ* Re ŷ ŷh+( )
uα

0

0

.+=

Ĉ1 Ĉ2 Ĉ3 Ĉ4

ŷ

ŷh

ŷ ŷh

ŷ ŷh

Ŷα

Ŷ*

t = 0: F2 x( ) = ξ*; z = 0: u2
0 = u*; v 2

0 = v *,
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wave profile which is correct up to O(ε2):

(68)
ξ a Θ( ) S1t( )expcos=

+ a2 ζ1 2Θ( )cos ζ2 2Θ( )sin–( ) 2S1t( ).exp

0.010
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0

–0.005
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1
3

3 2

1

Fig. 1. Variations in the amplitudes of dimensionless qua-
dratic terms W(γ) entering into (68) and (69) describing the
wave profile as functions of dimensionless surface tension.
(1) For an ideal liquid W(γ) = a2Λ0(γ); (2) and (3) for a vis-

cous liquid W(γ) = a2Λ1(γ, ν) and W(γ) = a2Λ2(γ, ν), respec-

tively, at ν = 10–3 cm2/s.

0.5
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1
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Θ/k

Fig. 2. Profiles of waves with a wavelength of λ = 2 cm on
the water surface calculated using formula (61) at ρ =
1 g/cm3, γ = 72 dyn/cm, ν = 0.01 cm2/s, and g = 981 cm/s2

for various time instants t: (1) 0, (2) 5 s. The characteristic
length in the reference frame attached to the wave is set off
as an abscissa. The units of measure along the vertical and
horizontal axes are centimeters.

Θ/k

1.5

0

–1.5

–2 –1 0 1 2

ξ

Fig. 3. Wave profiles on the water surface with the wave-
length λ = 2.5 cm close to the resonance λ = 2.4 cm. The
profiles are calculated using formulas (61) for t = 0 (solid
line) and (62) (dashed line).
Here, ζ1 and ζ2 are real and imaginary parts of variable
ζ, which is calculated in the course of constructing (65)
and (66), which is described directly below these
expressions. Analytical expressions for ζ1 and ζ2 are
very awkward and, therefore, uninformative. Values S1,
S2, and Θ are calculated with the help of relationships
(18)–(21).

Comparison of the solution found with known
solutions. It is of interest to compare the solution found
with the results by A.H. Nayfeh, who investigated a
similar problem formulated for an ideal liquid [4]. In
this case, according to [4], a direct expansion of the
solution with respect to the amplitude of a deviation
from the equilibrium shape in a quadratic approxima-
tion leads us to the following result:

(69)

When γ = 0, solution (69) is transformed into a
Stokes wave [1, 2]. It is readily seen that expression (68)
for the wave profile in a viscous liquid at ν  0 is
reduced to the corresponding one for an ideal liquid (69).

Comparing solutions for viscous (68) and ideal (69)
liquids shows that they differ to the greatest extent at
values of dimensionless parameters corresponding to
resonance interaction of the modes. For an inviscid liq-
uid, from (69) it is seen that at γk2 = 0.5ρg, a quadratic
term with respect to the wave amplitude of the first
approximation becomes infinitely large. Thus, the prin-
cipal mode resonantly excited a wave with a half-wave-
length.

In Fig. 1, in dimensionless variables chosen in such
a way that k = g = ρ = 1, the amplitudes of the second
terms in solutions (68) and (69) are plotted versus
dimensionless surface tension γ for dimensionless val-
ues ν = 10–3 and a = 0.01. The set of dimensionless vari-
ables chosen allows us to compare viscous and inviscid
models of intermode resonance for a wave on the liquid
surface with a wavelength of 2.4 cm and amplitude of
0.3 mm. Figure 1 shows that in a region of dimension-
less parameters corresponding to values of γ remote
from the resonance conditions, solutions (68) and (69)
coincide with one another. Near the resonance dimen-
sionless value γ = 0.5, in the solution found in view of
the viscosity, coefficient Λ2 of sin(2Θ) becomes non-
zero. This shifts the wave phase found in the second
order approximation relative to the phase of the princi-

pal wave. The amplitude of quadratic term 
remains less than the amplitude of the principal wave
a = 0.01 even at the resonance value γ = 0.5. This means
that solution (68) in the given case is suitable for all val-
ues of γ, whereas solution (69) based on an approxima-
tion corresponding to an inviscid liquid predicts a high
resonance amplitude.

ξ a Θ0( )cos a2Λ0 2Θ0( );cos+=

Λ0
ρgk γk3+( )

2 ρg 2γk2–( )
--------------------------------; Θ0 kx ω0t.–= =

Λ1
2 Λ2

2+
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Examples of calculation of the wave profile. Cal-
culations show that, on the water surface, profiles of
waves remote from the resonance wavelength λ ≠ 2.4 ±
0.1 cm found using formula (69) and profiles calculated
at the same values of the parameters at time instant t =
0 with formula (68) differ insignificantly from one
another; however, the difference between the height of
waves (68) and (69) grows quickly with time. The mag-
nitude of the amplitude of wave (69) decreases due to
the viscosity, and when this takes place, the amplitude
of the first-order component decreases proportionally,
exp(–S1t), where S1 < 0, and the amplitude of the sec-
ond-order term decreases as the square of that expo-
nent. As a result, over the course of time, the decrease
in the wave amplitude is accompanied by a change in
the wave profile. In Fig. 2, there is an example of the
profile of a nonlinear wave on the water surface with a
wavelength of λ = 2 cm and a = 0.3 cm. Curve 1 is a pro-
file calculated neglecting the viscosity by formula (69). It
coincides up to the line width with a profile calculated
for time instant t = 0 using formula (68) making allow-
ance for the viscosity. According to (68), over a time
interval of t = 5 s, the amplitude will decrease approxi-
mately by a factor of 2 (profile shown by curve 2). In
addition, the lower hollow of the curve will rise in that
time above the zero level, changing the character of the
profile.

Figure 3 shows that both expressions (68) and (69)
are unsuitable for the description of a wave in the vicin-
ity of a resonance with a wavelength of λ = 2.5 cm in
the case under consideration. Indeed, at a = 3 mm, a
term which should be of the second order of smallness
makes a contribution that increases the amplitude
almost up to 3 cm. This situation requires a special
study, which will be performed in future research.

Influence of the viscosity on the wave profile sym-
metry. In an approximation of an ideal liquid (69), the
wave profile is a sequence of large and small humps
that are symmetrical relative to the vertical passing
through the crests of the humps. It may be said that the
front and rear (with respect to the wave propagation
direction) slopes of the humps have the same steepness.
Because of the viscosity, the symmetry is distorted.
However, this manifests itself markedly only at suffi-
ciently large values of viscosity. Figure 4 shows that for
a liquid that has similar properties to water but with ν =
0.1 cm2/s (this value is ten times as much as that for
water), the asymmetry of the humps becomes notice-
able and at ν = 0.5 cm2/s, substantial. It can be seen in
Fig. 4 that, for the wave with λ = 2.6 cm, the trailing
edge of the large hump is steeper than the leading edge;
for the small hump, the reverse is true. The viscosity of
liquids with densities close to the density of water
under normal conditions and surface tensions close to
50 dyn/cm may differ appreciably (from 0.01 cm2/s for
water to 7 cm2/s for glycerine). Apparently, a solution
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
with properties similar to that of Fig. 4 can be obtained
by mixing liquids of different viscosity.

CONCLUSIONS

The asymptotic solution of the problem of wave
propagation over the surface of an infinitely deep liquid
with an arbitrary viscosity is correctly obtained in a
quadratic approximation with respect to the wave
amplitude. This solution allows us to generalize the
idea of the Stokes wave (defined for an ideal liquid) to
the case of a viscous liquid. Comparison of the solution
found with that for an ideal liquid shows that even low
viscosity plays a considerable role in the formation of
the wave profile, and the role of viscosity in the time
evolution of nonlinear waves is enhanced with growth
of the order of smallness of the approximation. Allow-
ing for the viscosity leads to a considerable change in
the pattern of development of the resonance intermode
interaction between waves and distorts the wave profile
symmetry.
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APPENDIX A

Unit Vectors Normal and Tangential to the Free Liquid 
Surface: Divergence of the Normal Unit Vector

The equation of the plane free liquid surface per-
turbed by a wave motion has the form z – ξ = 0, where
ξ = ξ(x, z, t). Therefore, a unit vector normal to the liq-
uid surface is calculated with the help of the relation-
ship

(70)

Unit vector t defined as

(71)

satisfies condition t · n ≡ 0, and, therefore, it is a unit
vector tangential to the liquid surface perturbed by a
wave motion.

The mean surface curvature, as is known, is equal to
the divergence of an outward normal unit vector:

(72)

APPENDIX B

Boundary Conditions for Magnitudes of Different 
Orders of Smallness

Kinematic boundary condition (3). Expanding (3)
in a series in the vicinity of unperturbed liquid surface
ξ = 0 and assuming hereafter that u ~ O(ε), it is possible
to obtain an asymptotic form of this condition up to an
accuracy on the order of O(ξ3):

(73)

Substituting into (73) the relationships ξ = ξ1 + ξ2,
u = u1 + u2, and v  = v 1 + v 2, where subscripts denote
orders of smallness with respect to ε, one can decom-
pose (73) into relationships for values of different
orders of smallness:

(74)

(75)

n — z ξ–( )
— z ξ–( )
-----------------------

ex∂xξ– ez+

1 ∂xξ( )2
+

----------------------------.= =

t
ex ez∂xξ+

1 ∂xξ( )2
+

----------------------------=

∇ n⋅
∂xxξ–

1 ∂xξ( )2+
----------------------------

∂xξ( )2∂xxξ

1 ∂xξ( )2+( )
3
2
---

-------------------------------+=

=  
∂xxξ–

1 ∂xξ( )2+
---------------------------- –1

∂xξ( )2

1 ∂xξ( )2+
------------------------+

 
 
 

=  
∂xxξ

1 ∂xξ( )2+( )
3
2
---

-------------------------------– ∂xxξ– O ξ3( ).+=

z 0: ∂tξ u∂xξ+ v ξ∂ zv .+= =

z 0: ∂tξ1 v 1– 0;= =

∂tξ2 v 2– ξ1∂zv 1 u1∂xξ1.–=
A condition for tangential tensions on the free
liquid surface. If one uses formulas (70) and (71) as
definitions of unit vectors n and t, then, denoting

it is readily found that

With the help of the two last equalities, condition (5)
can be rewritten in the form

(76)

Expanding (76) into a series in ξ in the vicinity of
z = 0 leads us to approximation expression

accurate up to magnitudes on the order of O(ξ3).
Substituting the necessary expressions from (10)

into the latter expression, it is easy to find the following
expression for magnitudes of the first order of small-
ness with respect to ε,

(77)

and the expression for the second order of smallness,

which is simplified in view of the discontinuity condi-
tion, written in the form ∂xu1 = –∂zv 1, as follows:

(78)

Condition (4) for the pressure at the perturbed
liquid surface. If one uses formula (70) and definition
U = exu + ezv, within an error on the order of O(ξ3), it is
possible to obtain the expressions

χ 1 ∂xξ( )2+( ) 1/2–
,=

n —⋅( )U ex n —⋅( )u ez n —⋅( )v+=

=  χex –∂xξ∂ xu ∂zu+( ) χez –∂xξ∂ xv ∂zv+( );+

t —⋅( )U ex t —⋅( )u ez t —⋅( )v+=

=  χex ∂xu ∂xξ∂ zu+( ) χez ∂xv ∂xξ∂ zv+( ):+

t n —⋅( )U( )⋅ = χ2 ∂xξ∂ xu– ∂zu ∂xξ( )2∂xv– ∂xξ∂zv+ +( );

n t —⋅( )U( )⋅  

 = χ2 ∂xξ∂ xu– ∂xξ( )2∂zu ∂xv ∂xξ∂ zv+ +–( ).

z ξ : ∂xv ∂zu+( ) 1 ∂xξ( )2–( )=

– 2 ∂xu ∂zv–( )∂xξ 0.=

z 0: ∂xv ∂zu ξ∂ z ∂xv ∂zu+( )+ +=

=  2 ∂xu ∂zv–( )∂xξ

z 0: ∂xv 1 ∂zu1+ 0,= =

∂xv 2 ∂zu2 ξ1∂z ∂xv 1 ∂zu1+( )+ +

=  2 ∂xu1 ∂zv 1–( )∂xξ1,

z 0: ∂xv 2 ∂zu2+=

=  –4∂zv 1∂xξ1 ξ1∂z ∂xv 1 ∂zu1+( ).–

z ξ : n –∂xξ O ξ3( )+( )ex 1 O ξ2( )+( )ez;+= =

n —⋅( )U –∂xξ∂ xu ∂zu O ξ3( )+ +( )ex=

+ –∂xξ∂ xv ∂zv O ξ3( )+ +( )ez;
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An expansion of (4) in series in ξ in the vicinity of
ξ = 0 up to terms on the order of O(ξ3) has the form

(79)

If one takes into account that

and that p0 = P0 – ρgz, that is, ∂zp0 = –ρg and ∂zzp0 =
−ρg, then (79) is decomposed into the relationships for
magnitudes of different orders of smallness

In view of (77), the last expression is simplified as
follows:

APPENDIX C

Auxiliary Vectors Arising in the Second-Order 
Problem

Values S, S1, S2, q, q1, q2, and D appearing in the
relationships of this appendix are calculated with the
help of expressions (18)–(21).

Vectors , …, entering into (26) and (27)

n n —⋅( )U( )⋅ –∂xξ∂ zu ∂xξ∂ xv– ∂zv O ξ3( ).+ +=

z 0: p ξ∂ z p
1
2
---ξ2∂zz p 2ρν∂zv– 2ρνξ∂ zzv–+ +=

+ 2ρν∂xξ ∂ zu ∂xv+( ) P0– γdiv n( ).=

p = p0 p1 p2 O ξ3( ); p1+ + +  = O ε( ); p2 = O ε2( );

ξ ξ 1 ξ2 O ε3( ); ε1+ + O ε( ); ξ2 O ε2( ),= = =

∇ n⋅ –∂xxξ O ε3( )+=

z 0: p0 P0;= =

–ρgξ1 p1 2ρν∂zv 1– γ∂xxξ1+ + 0;=

–ρgξ2 p2 2ρν∂zv 2– γ∂xxξ2+ + 2ρνξ1∂zzv 1=

– 2ρν∂xξ2 ∂zu1 ∂xv 1+( ).

–ρgξ2 p2 2ρν∂zv 2– γ∂xxξ2+ +

=  2ρνξ1∂zzv 1 ξ1∂z p1.–

Â1 Â6

Â1 4ν2k3q1

q2

k

0

; Â2–

0

k S2
2 D2+( )–

0

;= =

Â3 = νk

2 S 2νk2+( )q1q2 S2 iD+( ) q2
2 q1

2– k2+( )+

2ik k q+( ) S2 iD+( )–

0

;
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where  is a complex conjugate of S, and N1, N2, Ω1,
Ω2, M1, and M2 are calculated by formulas

Square matrices , …, entering into (36) are

Â4

iνk q k–( )2 S 2νk2+( )–

0

0

;=

Â5

0

N1

M0

; Â6

Ω
N

M

;

Ω Ω1 iΩ2;+=

N N1 iN2;+=

M M1 iM2,+=

= =

S

Ω1 k D 2νkq1–( ); Ω2 k S2 2νkq2–( );= =

N1 ρνk2 D 2ν q2 q1
2–( )+( ) 1

2
---ρ S1D S2

2–( );+=

N2 ρνk2 S2 4q1q2ν–( ) ρS2 S1 νk2+( );+=

M0 = k 2k S2 2νkq2–( ) kS2– q2ν k2– q2
2 3q1

2–+( )–( );

M1 = k– 2k S2 2νkq2–( ) kS2 q2ν k2– q2
2 3q1

2–+( )+ +( );

M2 = k 2k D 2νkq1–( )(

+ kS1 ν 2k3 k2q1– 3q1q2
2 q1

3–+( ) ).+

Π̂1 Π̂4

Π̂1

2 S1 2νk2–( ) 0 0

0 0 2q1ρ
1–

0 2q1 0

;=

Π̂2

2 S1 2νk2–( ) 0 0

0 0 2q1ρ
1–

0 2k 0

;=

Π̂3

2S1 ν k q+( )2– 0 0

0 0 k q+

0 k q+ 0

;=
Π̂4

2S ν 3k2 2kq– q2–( )+ 0 2ikρ 1––

0 2S ν 3k2 2kq– q2–( )+ k q+( )ρ 1–

2ik– k q+ 0

.=
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Matrices , , and value Λ appearing in (48) are
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Abstract—A plasma injector with pulsed gas filling is investigated experimentally. Interferometric measure-
ments of the formation dynamics of the plasma channel are carried out. Under optimal operating conditions,
the injector is capable of producing a plasma channel 4 cm in diameter with an electron density of ~1017 cm–3.
The effect of the cathode diameter of the plasma opening switch on the conductivity of the plasma channel
is studied. It is shown that the current flowing through the plasma channel of a single injector attains 400 kA.
© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Over the last decade, the development of plasma
opening switches (POSs) has been characterized by the
advancement into the megaampere current range with a
conduction phase duration as short as 1 µs [1, 2]. The
advance into this range was accompanied by an
increase in the POS plasma density from 1013–1014 to
6 × 1015 cm–3. The necessity of increasing the plasma
density stems from the scaling obtained in the ACE and
Decada devices [3, 4],

(1)

where I is the POS current that is reached during the
conduction phase of duration T; n and l are the initial
plasma density and the axial length of the plasma layer,
respectively; and r is the POS cathode radius.

Scaling (1) determines the condition that is neces-
sary for achieving the required quality of the current
break, which is characterized by the ratio between the
current rise and fall times.

Since 1999, work has been carried out at the Russian
Federal Nuclear Center All-Russia Research Institute
of Experimental Physics on creating pulsed microwave
oscillators based on inductive energy storages with
POSs, powered by magneto-cumulative generators
(MCGs) [5].

The required value of the current in the load of an
MCG (i.e., in the POS) can only be obtained at very low
values of the load impedance: the inductance and resis-
tance of the load must be no larger than several tens of
nanohenry and milliohm, respectively. This limitation
on the load unit of the MCG results in the limitation of
the POS length and in the necessity of producing a
high-density plasma layer.

IT /rl n,∼
1063-7842/03/4804- $24.00 © 20415
At present, erosion plasma injectors are most widely
used. They ensure the plasma density in the POS inter-
electrode gap at a level of (4–6) × 1015 cm–3 [6]. Interest
in gas-plasma injectors stems from the possibility of
varying the composition and density of the generated
plasma, which, in turn, makes it possible to improve the
POS parameters [7]. It is shown in [8] that a gas-plasma
injector with a reversed Z-pinch allows the generation
of plasma channels of different composition with elec-
tron densities from 6 × 1015 to 2 × 1016 cm–3.

In this paper, we present the results of the investiga-
tion of a coaxial gas–plasma injector. It is shown that
this type of plasma generator allows one to generate
plasma jets with electron densities of up to several units
of 1017 cm–3 and to increase the channel current pro-
duced by one injector to 400 kA. Experiments were car-
ried out in two devices, one of which was specially
designed for investigating the plasma injector. The POS
operation in the current-rise mode was studied in the
second device with the given plasma injector.

The question of the possibility of achieving a high-
quality current break at such a high plasma density is
still open, and it can only be answered experimentally.

EXPERIMENTAL SETUP AND PLASMA 
DIAGNOSTIC TECHNIQUE

Investigations of the plasma injector [9] were car-
ried out in a vacuum chamber evacuated to (5–8) ×
10−5 torr. The coaxial plasma injector (PI) with pulsed
gas puffing was mounted on the side wall of the cham-
ber. With the help of an electromagnetic valve, the gas
was puffed into the inner electrode of the injector. The
inner electrode was a 2-cm-diameter tube closed at one
end. The diameter of the gas channel was 1.4 cm. A bar-
003 MAIK “Nauka/Interperiodica”
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rel with an inner diameter of 4 cm served as an outer PI
electrode. The length of the injector unit was 21 cm,
and the distance between the gas puffing region (the
end of the inner electrode) and the injector outlet was
5 cm. A negative voltage of 25 kV from a 12-µF capac-
itor was applied to the inner electrode of the injector.
The maximum current amplitude was 125 kA, and the
half-period was 6.5 µs. As an imitator of the POS cath-
ode, we used a metal rod, which was located at a dis-
tance of 3 cm from the injector outlet.

Figure 1 shows the waveform of the PI current and
the optical scheme of the plasma diagnostics. The
plasma produced by the PI was studied with the help of
a Michelson interferometer operating with the 0.63-µm
radiation of a He–Ne laser. The interference pattern was

Fig. 1. (a) Waveform of the injector current and (b) the
scheme of the optical plasma diagnostics: (1) vacuum
chamber, (2) injector, (3) imitator of the POS cathode,
(4) probing He–Ne laser, (5) electromagnetic gate,
(6) beam-expanding telescope, (7, 8) interferometer mir-
rors, (9) sweep mirror, (10) telescope system for imaging
the injector onto the streak camera slit, (11) diaphragm,
(12) KS-11 optical filter, (13) high-speed streak camera,
and (14) Dove prism.
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recorded by a high-speed streak camera operating in the
scanning-slit mode with temporal and spatial resolu-
tions of 0.1 µs and 0.3 mm, respectively. To rotate the
injector image on the slit of the streak camera, we used
a Dove prism. The accuracy of determining the shift of
the interference fringe was 1/20 of the fringe width.

In preliminary investigations, it was found that,
when the gas valve was open but the PI discharge bank
was not switched on, the gas effluent from the injector
into the vacuum chamber did not lead to a shift of the
interference fringes. In experiments with discharging
the PI capacitor bank, we observed a decrease in the
refractive index of the plasma outflowing from the
injector. For this reason, we assumed that the main con-
tribution to the change of the refractive index was made
by free plasma electrons.

The integral electron density along the probing line
(hereafter referred to as the line electron density) was
calculated by the formula

(2)

where ne is the mean electron density over the optical
path, l is the geometrical length of the plasma along the
probing line, and ∆k is the relative shift of the interfer-
ence fringe.

The sensitivity of the technique for determining nel
was 9 × 1015 cm–2. The numerical factor in formula (2)
was determined taking into account the double pass of
the probing radiation through the plasma and the polar-
izability of electrons at the probing radiation frequency.

RESULTS FROM THE OPTICAL DIAGNOSTICS 
OF THE INJECTOR PLASMA 

AND THEIR DISCUSSION

In the experiments we varied the time delay of the
switching of the PI capacitor bank (Tg) relative to the
switching of the gas valve for air puffing. It was
assumed that, depending on the delay time, the gas den-
sity would change in the PI, which would lead to a
change in the density of the generated plasma. The time
between the switching of the gas valve and the start of
the gas puffing into the discharge gap was ~350 µs.

Figure 2 shows typical interferograms illustrating
the time evolution of the electron density distribution
along the plasma channel for two values of Tg. The slit
of the streak camera was oriented with the help of the
Dove prism along the PI axis and perpendicular to the
plane of the output nozzle of the PI, i.e. in the propaga-
tion direction of the plasma jet outflowing from the
injector. Figure 3 shows the results of the interferogram
processing.

Let us point out the characteristic features of the for-
mation of the plasma channel at the PI outlet.

The maximum velocity of the front of the first
plasma wave (~3 × 105 m/s) was observed for Tg =
400 µs. The plasma appeared in the interelectrode gap

nel 1.76– 1017∆k cm 2– ,×=
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of the POS practically without any delay after switch-
ing on the PI capacitor bank. Two characteristic fea-
tures were observed in the time evolution of the plasma
density in the probing region: (i) the line electron den-
sity in the plasma channel increased gradually to about
4 × 1017 cm–2 with a rise time of ~7 µs and then
decreased to 1.5 × 1017 cm–2 and (ii) small-scale density
fluctuations were observed in the plasma outflowing
from the injector. About 12 µs after switching on the PI
capacitor bank, the second plasma wave appeared at the
injector outlet as a result of the oscillatory character of
the discharge current of the injector capacitor bank.
This wave propagated with a velocity of 3 × 104 m/s and
had a sharp jump in the plasma density at its front
(~5 × 1017 cm–2).

When Tg was increased to 500 µs, the plasma
appeared at the injector outlet with some delay, the
propagation velocity of the leading front of the plasma
wave decreased to 105 m/s, and the density jump
appeared at the front of the first wave.

The above results allow us to formulate the general
features of the formation of the plasma channel at the
PI outlet.

The character of plasma density variations at Tg =
500 µs, namely, the generation of a shock wave at the
front of the outflowing plasma, indicates that the mech-
anism for plasma channel generation in this regime is
similar to the mechanism operating in coaxial electro-
magnetic shock tubes [10]. At large values of Tg, a por-
tion of the gas leaves the PI and falls into the discharge
volume of the POS. In fact, the velocity of the steady air
stream outflowing into a vacuum is ~800 m/s. Conse-
quently, in a time of ~100 µs (the time period between
the start of gas puffing into the PI and the switching-on
of the discharge bank), the size of the region occupied
by the gas cloud can reach ~10 cm. During the break-
down in the PI discharge gap, a plasma layer is gener-
ated near the end of the gas-puffing tube, where the
electric field strength is maximum. Under the action of
the magnetic field pressure, the plasma layer acceler-
ates toward the injector outlet and a shock wave is
formed. Initially, the shock wave propagates inside the
PI (for this reason, it appears at the injector outlet with
a delay of 1.5 µs), and then it propagates through the
gas cloud in the interelectrode gap of the POS. It fol-
lows from interferometric measurements that the air
density at the PI outlet is no higher than 3.6 × 1016 cm–3

(which is the sensitivity limit of this technique for a
neutral gas). A decrease in the plasma density behind
the shock (Fig. 3a, curve 2) is typical of shock tubes.
The further smooth increase in the electron density is
probably due to the subsequent ionization of the gas in
the buffer area of the PI.

For Tg = 400 µs, before the discharge bank is
switched on, the gas flowing out through the holes in
the central electrode propagates toward the PI outlet
and also into the PI buffer area over a distance of 3–
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
4 cm; i.e., the gas cloud is concentrated inside the PI.
The interferograms observed allow us to affirm that,
when the discharge is initiated, the breakdown occurs
in the outer shell of the gas cloud (on the side of the PI
outlet). This is evidenced by the absence of a shock
wave at the leading front of the plasma jet, which could
be expected if the current layer were formed in another
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Fig. 2. Interferograms illustrating the time evolution of the
electron density between the injector and the cathode for
Tg = (a) 400 and (b) 500 µs; y = 0 is the coordinate of the
injector exit nozzle, and t = 0 is the start time of the PI cur-
rent.
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Fig. 3. (a) Line electron density as a function of time at a
distance of 1.5 cm from the injector and (b) the electron
density distribution along the plasma channel at different
times for (a) Tg = (1) 400 and (2) 500 µs and (b) Tg = 400 µs.
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region of the gas cloud. The smooth increase in the
electron density with time is related to the quasi-steady
character of the plasma jet outflowing from the PI. We
can assume that, at this stage, the current-carrying layer
is displaced inside the injector. Small-scale fluctuations
of the electron density are due to plasma bunches car-
ried out from the PI by the relatively uniform plasma
flow; the appearance of these bunches is probably
caused by the onset of instabilities in the discharge
region [11]. It follows from interferograms that the
velocity of the density jumps (and, consequently, of the
plasma jet as a whole) gradually decreases to 104 m/s.
The decrease in the velocity of the plasma flow behind
the wave front is also confirmed by the character of the
interaction between the plasma and the POS cathode:
the lower the plasma jet velocity, the smaller the ampli-
tude of the wave reflected from the cathode (Fig. 2).

Figure 4 presents an interferogram and the results of
its processing, which show the character of the time
evolution of the electron density distribution over the
transverse cross section of the plasma channel at the
injector outlet. It can be seen from Fig. 4 that the lead-
ing front of the plasma jet is almost plane and its diam-
eter is approximately equal to the diameter of the injec-
tor nozzle. The plasma density distribution across the
plasma jet is nonaxisymmetric, which can be attributed
to the misalignment of the electrode system of the PI.
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Fig. 4. (a) Interferogram illustrating the time evolution the
plasma electron density across the plasma channel for Tg =
500 µs and (b) the results of its processing. Numerals by the
curves show the times (in µs) corresponding to the given
distributions of nel.
The above investigations allowed us to determine
the optimal time delay for gas puffing (Tg = 400 µs) and
the optimal time delay for switching on the discharge of
the POS capacitive storage with respect to the begin-
ning of the PI operation (5–7 µs). These time delays
were then used in experiments in the GITaRa device.

INVESTIGATIONS OF THE POS 
IN THE GITaRa-1 DEVICE

The GITaRa-1 device contained a capacitive storage
[a GIT-100 pulsed current generator (PCG)] connected
to the POS through a bushing insulator. The GIT-100
parameters are the following: the capacitance is 8 µF,
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Fig. 5. Typical GIT–POS current pulses at different cathode
diameters: (a) 2, (b) 8.5, and (c) 25 cm.
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the self-inductance is 35–40 nH, the charging voltage is
70–90 kV, and the resistance of the spark gaps is 15–
20 mΩ . The plasma injector was mounted on the outer
tube of the vacuum chamber (48 cm in diameter), which
served as the POS anode. In the experiments we varied
the configuration of the central electrode (cathode).
Cathodes 2 or 8.5 cm in diameter were located at a dis-
tance of 3 cm from the injector nozzle, and a cathode
25 cm in diameter was aligned with the chamber axis.
In the latter case, the distance between the nozzle of the
plasma injector and the cathode surface was 8 cm. The
total inductance of the circuit with the 2-cm-diameter
cathode was 240 nH; in the two other cases, it was 160–
180 nH. The current was measured by Rogowski coils,
one of which was located nearby the bushing insulator
and measured the total current I1. The current I2

through the plasma channel was measured with the help
of a second loop located inside the vacuum chamber.
The experiments were carried out at the optimal time
delays for gas puffing and for switching on the dis-
charge of the main capacitive storage, i.e., in the
regimes in which the electron density in the plasma
channel of the POS reached 1017 cm–3. The time depen-
dences of the current for different cathode diameters
are shown in Fig. 5.

The plasma resistance in the conduction stage of the
plasma channel is usually neglected. The experiments
performed show that the plasma channel resistance,
which depends on the size of the region over which the
cathode is overlapped, can limit the current flowing
through the channel. Besides, the maximum current
depends on the strength of the magnetic field, which in
the case of azimuthal nonuniformity is determined not
only by the cathode diameter, but also by the size of the
plasma cathode. Indeed, as can be seen in Fig. 5, the
maximum value of the current was obtained with the
25-cm-diameter cathode and the 8-cm interelectrode
gap. In this case, the size of the plasma region overlap-
ping the cathode surface increased to ~6 cm due to the
divergence of the plasma jet. The coincidence of the
time dependences of I1 and I2 shows that the entire cur-
rent flows through the plasma channel. In the case pre-
sented in Fig. 5b, the difference between the currents I1

and I2 can be attributed to both an increase in the
plasma channel resistance in the break stage and the
subsequent breakdown of the bushing insulator of the
POS chamber.

The table gives the values of the maximum current
Im flowing through the plasma channel in the conduc-
tion stage and the plasma channel resistance rpl for dif-
ferent cathode diameters dk. The circuit resistance R
averaged over the quarter of the current oscillation
period was determined by choosing the parameters of
the function describing the current measured in the cir-
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
cuit: I(t) = (U0/ρ)exp(–R/2L)sin(t/ ), where U0 is
the charge voltage and ρ and L are the wave resistance
and inductance of the circuit, respectively.

Hence, by varying the cathode diameter and the dis-
tance from the injector, it is possible to optimize the
plasma channel resistance and maximize the peak cur-
rent value. It can be expected that, for an azimuthally
uniform plasma bridge with an electron density of
~1017 cm–3, the current can be increased substantially.

CONCLUSION

Our investigations have shown that, depending on
the time delay of the switching of the PI capacitor bank,
two different regimes of the plasma channel formation
are realized. At small values of Tg, a quasi-steady
regime of the plasma outflow from the PI was observed;
in this case, the electron density at the injector outlet
increased smoothly. When Tg was increased to 100 µs,
the plasma channel generation in the POS interelec-
trode gap was accompanied by the formation of a shock
wave. The maximum electron density (1017 cm–3) in the
channel was observed for the former regime. It has been
shown that the resistance of the POS plasma channel
depends on the cathode configuration and that the cur-
rent flowing through the channel can attain 400 kA.

In the MCG–POS experiments (which will be
reported in a separate paper), six injectors were sym-
metrically placed over the azimuth of the outer POS
tube. This made it possible to increase the current
through the plasma channels to 2 MA.
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Abstract—It is found that a weak (103–105 times lower than breakdown fields) ultralow-frequency (1 < ω <
1000 Hz) electric field has a strong effect on the explosive instability threshold of ice uniaxially compressed by
high pressures in the temperature range 210–240 K. The explanation for the high electromechanical sensitivity
of ice is based on the concept that ice undergoing structure modifications due to highly nonuniform compres-
sion is a heterogeneous system with cooperative phenomena in space-bounded sets of dipoles. The dipoles form
around new-phase nuclei, defects, or air microbubbles and occupy domains with a typical size of 10–2–10–5 mm.
When exposed to ultralow-frequency electric fields, such systems may exhibit resonant bursts of polarization,
causing the ice stability to drastically drop because of dipole compression or microbreakdowns. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Recently, the high mechanical sensitivity of crystal
hydrate insulators under ultralow-frequency (ULF)
electric fields has been discovered [1–6]. It is remark-
able that this effect has been found in experiments
where the threshold of explosive (Bridgman) instability
against ULF electric field was studied. The Bridgman
effect is observed in many solid insulators when they
undergo slow uniaxial compression with rates dP/dt ≤
0.1 GPa/s under high pressures (up to 20 GPa) in open-
ended anvils [7–14].

The Bridgman explosive effect is usually attended
by the formation of shock waves and the fast (0.5–
2.0 km/s) emission of finely dispersed breakdown
products outside the compression facility (Fig. 1). Such
explosive instabilities occur when the elastic energy of
a highly compressed body is converted into mechanical
work with ultrafast volume relief of the system once
certain critical pressure and temperature values have
been attained [11, 13]. Under compression, instabilities
due to phase transitions and polymorphic transforma-
tions in solid insulators may somewhat decrease the
explosion threshold [13]. Note also that the explosion
generates a high-energy pulse of electromagnetic radi-
ation over a wide range of wavelengths (up to X-rays
[10]) and causes the emission of electrons [11]. The
threshold Pc (or the mean critical pressure inside a body
that initiates the Bridgman effect) decreases with
increasing temperature and compression rate [13], cor-
relates with the thermodynamic parameters of the
material [14], and is size dependent [12].

When highly compressible crystal hydrates are sub-
jected to a very weak ULF electric field (103–104 times
lower than breakdown fields), the explosive instability
1063-7842/03/4804- $24.00 © 20421
threshold Pc drops by a factor of 1.5–2.0 at certain fre-
quencies. Recent theoretical models of this phenome-
non [15–17] rely on the fundamental idea that similar
highly sensitive effects must be observed in many insu-
lators that are in a heterogeneous state or are experienc-
ing phase transitions. Such phenomena may also be
present in materials with proton conduction. The strong
variation of the plasticity of ice in weak constant elec-
tric fields is an example [18]. Ice is a most interesting
and easily accessible material for checking the above
idea, since it may be in 12 phase states [19–21] and has
two amorphous modifications (see, e.g., [22–26]). In
experiments with ice, one can easily cover the ranges of
pressures and temperatures where one or another phase
transition can be observed.

Interest in the possible high-sensitivity mechanical
behavior of ice in ULF fields is associated with the dis-
covery of multikilometer ice shells on several satellites

Pc
23

1

4
5

u = 0.5–2.0 km/s

Fig. 1. Compression of ice by two Bridgman anvils with
superhard inserts, which are necessary for creating an
explosion with fast emission of a part of the material outside
the compression device, under the action of ULF electric
pulses. (1) Ice, (2) Bridgman anvil, (3) superhard insert,
(4) emitted material, and (5) low-frequency pulse generator.
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of large planets in the solar system [27–30]. The ice
thickness on Jupiter’s satellites Europe and Ganimed
was estimated as 100–150 km with temperatures in the
range 130–273 K and pressures from 0 to 0.25 GPa
[31]. This means that the ice crust on the satellites may
contain vast regions where ice is in a metastable state
[32]. The stability of ice in this state might be consider-
ably affected by the ULF variations of the Jupiter’s
giant magnetic field and induced ULF electric fields. In
the ice crust of Europe, the skin depth for magnetic
waves of amplitude 220 nH is at least 110 km thick [33].

In this work, we for the first time report experimen-
tal data demonstrating a high electromechanical sensi-
tivity of ice to weak ULF fields.

EXPERIMENT

The high electromechanical sensitivity of ice was
demonstrated in experiments where a ULF electric field
influenced the threshold of explosive instability, which
has been recently discovered over wide pressure and
temperature ranges [32]. We experimented with Bridg-
man anvils that had VK-8 superhard alloy inserts in the
form of a truncated cone. The ground and polished
operating area had a diameter d = 10 mm. The experi-
ments were performed by the same method as in [32] at
temperatures between 210 and 240 K. The rate of
uniaxial compression was fixed: dP/dt ≈ 0.02 GPa/s.
The temperature of the sample was measured by a cop-
per/Copel thermocouple with the junction placed in the
neighborhood of the sample edge. At the initial (prepa-
ratory) stage, the anvils were directly cooled by liquid
nitrogen to 230–240 K. Then, the operating area of one
anvil was covered by a given amount of distilled water,
which was converted to a thin ice disk of thickness h ≈
0.4 mm by slightly compressing the cooling water film
with an insulating plane. At the second stage, the ice
disk was cooled to any given temperature in the range
273–100 K. The rate of ice cooling was dT/dt ≈
−20 K/s.

To obtain statistically significant values of Pc, many
runs at a given temperature T have to be done. The
desired temperature was achieved as follows. The
anvils with the sample were cooled to a temperature
somewhat below the desired value, and the entire sys-
tem was placed under a press. Once the desired temper-
ature had been established by natural heating with a low
rate (dT/dt ≈ 0.1 K/s), the system was compressed and
ULF rectangular electrical pulses were simultaneously
applied to the anvils (according to the technique
described in [1–6]) up to the onset of explosive instabil-
ity. The amplitude of the pulses was varied between
0.05 to 65 V, and their duration was 10–5 s throughout
the experiment. They were applied from the beginning
of compression to the onset of Bridgman instability
with a frequency of 8.0–105 Hz. Note that the experi-
ments were carried out in the temperature range 210–
240 K. At T > 220 K, the temperature dependence of the
ice stability threshold is nearly linear; for 210 < T <
220 K, it exhibits a minimum, which is related to the
phase transition Ih–II in polycrystalline ice [32].

Figure 2 shows ULF spectra of the ice instability
threshold for 65-V pulses at temperatures T1 = 210 K,
T2 = 220 K, T3 = 230 K, and T4 = 240 K. Each data point
was obtained from seven explosion runs. At certain
ultralow frequencies (at the early stage of excitation by
the method described in [3]), permittivity bursts were
observed. For T2 = 220 K, the qualitative ULF spectrum
ε(ω) was constructed (Fig. 3). In addition, for each of
the temperatures listed, we found the dependences of
the instability threshold on the pulse amplitude (0.05–
65 V) at 10 Hz (Fig. 4). To gain a better insight into the
electrical properties of ice at these temperatures, the
relative resistance of the ice disk was plotted against the
uniaxial compression P in the absence of explosion
(Fig. 5).

RESULTS AND DISCUSSION

As follows from Figs. 2a–2d, the ULF spectra of the
explosive instability threshold Pc(ω) for ice have a non-
trivial shape for all four temperatures. In the frequency
range 8 < ω < 105 Hz and for the pulse amplitude U =
65 V, all four spectra exhibit several dips. Earlier, simi-
lar dips were found for several model and natural crys-
tal hydrates [1–6]. For ω > 103 Hz, the drop of the
threshold Pc(ω) is most likely to be associated with
dielectric loss bursts, as is the case for crystal hydrates
under the same conditions. However, the nontrivial
shape of the ULF instability spectra for ice at ω <
103 Hz can apparently be explained by taking into con-
sideration that, when nonuniformly compressed, ice (as
well as crystal hydrates) exhibits giant resonance-like
permittivity bursts at ULFs (Fig. 3). The strong effect of
permittivity bursts on the instability threshold Pc is
probably related to enhanced dipole compressions or
microbreakdowns under ULF fields in a heterogeneous
system into which a heavily compressed solid material
turns [16, 17]. At T2 = 220 K, the frequencies at which
the permittivity bursts are observed are the same as
those at which the ULF instability threshold spectrum
exhibits deep dips. In essence, these dips for ice
exposed to a ULF electric field indicate the high
mechanical sensitivity of ice; in other words, it shows a
high mechanical response to a weak electrical action.
Such a strong response could be expected under break-
down fields. For ice, the breakdown field is on the order
of E ~ 106 V/cm [34], while the strong response is
observed in variable fields of strength E = 101–
103 V/cm. From Fig. 4, it is seen that with T1 = 210 K,
T2 = 220 K, and T3 = 230 K, the high electromechanical
response of ice at 10 Hz is retained up to E ~ 102 V/cm.
With T = 240 K, the curve Pc(V) has an unexpected
minimum in still lower fields, E = 1–10 V/cm, at the
same frequency.
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Note that the “oscillatory” spectra ε(ω) obtained for
highly compressible ice in this work differ considerably
from the permittivity spectra taken from ice crystals by
conventional techniques [35–37]. A normal permittiv-
ity spectrum for ice has the form of Debye dispersion

where εm is the maximal value at ULFs, ε∞ is the high-
frequency value in the dispersion law ε(ω), and τ is the
relaxation time of bound charges.

However, the spectrum ε(ω) (Fig. 3) for highly com-
pressible ice has a set of peaks and dips. Such a radical
difference between the spectra ε(ω) obtained in this
work and those known previously can be explained
only by invoking the fundamentally new concept of
relaxation processes taking place in dense disperse sys-
tems at the beginning of their low-frequency excitation
[16, 17]. At the initial stage of excitation, resonance
responses gradually (for a time ∆t > 0.2–1.0 s, which
depends on many parameters of the system) transform-
ing into dispersion-like spectra can be observed even in
the one-dimensional approximation of a complicated
model system with interacting dipoles.

The parallels observed between ULF spectra of
explosive instability for ice and crystal hydrates sug-
gest the temporal (∆t < 0.2–1.0 s) circulation of bound
charges in compressed ice exposed to a ULF field. Such
a circulation may appear [17] if a heterogeneous struc-
ture with disperse phase grains of typical size ~10–2–
10–5 mm that are surrounded by liquid or quasi-liquid
sheaths and contain mobile anions and cations (most
likely, protons or OH– and H3O+ ions) forms in com-
pressed ice. Diffuse phase transitions like Ih–II, which
may result in such a heterogeneous structure, are a real
possibility at temperatures of 210 and 220 K and mean
pressures of 0.06–0.10 GPa [32]. The same is indicated
by an inflection in the dependences of the relative resis-
tance of the ice disks on the mean anvil pressure at 210
and 220 K (Fig. 5). At 230 and 240 K, the inflection is
nearly or completely absent, which means the absence
of phase transitions for the given combinations of P and
T. With such parameters, however, quasi-liquid layers
may exist between crystal grains in the Ic phase even at
T = 140–210 K, as follows from IR spectroscopy data
[38]. It seems likely that these intergranular layers may
serve as effective paths for charge circulation (around
new-phase grains, defects, or microbubbles).

It should also be noted that, when cooling, gases dis-
solved in distilled water may form spherical microvoids
with unusual thermodynamic properties. For example,
their inner surfaces may turn out to be quasi-liquid ion-
conducting sheaths. In water, gas bubbles can form
fractal clusters of size 10–30 µm (see, e.g., [39]). It
appears that the quasi-liquid properties of the inner
sheaths in the bubbles may exist over the wide temper-
ature range 180–273 K [39].

ε ω( ) ε∞
εm ε∞–

1 ωτ( )2+
-----------------------,+=
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Fig. 2. ULF spectra of explosive instability threshold Pc for
the case when ice between Bridgman anvils is exposed to
ULF rectangular pulses of amplitude U = 56 V at (a) 210,
(b) 220, (c) 230, and (d) 240 K. The dashed lines show the
Pc level without electric fields. The arrows in panels (b–d)
demonstrate the slight shift of the first minima in the ULF
spectra Pc(ω) as the temperature rises from 220 to 240 K.
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Numerous defects that are generated by phase tran-
sitions in ice [44] can also act as effective spatially con-
fined traps of charges circulating in ULF fields [40–43].
The same is equally true for gas microbubbles and new-
phase grains.

Yet the oscillatory behavior of the permittivity is
hard to explain by the presence of spatial traps with
charges circulating around. Indeed, during compres-

800

600

400

200

0

ε

10 20 30 40 50 60
ω, Hz

1.4

1.2

1.0

0.8

0.6

0.4

P, kbar

10–2 10–1 100 102101

U, V

240 K

230 K

220 K

210 K

Fig. 3. ULF permittivity spectrum ε(ω) at the instant of
maximal burst under strong compression of ice exposed to
65-V pulses at 220 K.

Fig. 4. Explosive effect threshold Pc vs. pulse amplitude at
10 Hz for four temperatures. For each of the temperatures,
the Pc level without the field is the same as shown in Fig. 2.
sion, ice is continuously in the ULF electric field but the
permittivity bursts appear only after the compression
has reached certain critical preexplosive values. We are
thus led to the assumption that the traps rapidly form
and rapidly disappear at such pressures, which may
take place at the instant of phase transitions in ice.

Let us estimate the difference in the relaxation times
τ = a2/2D of charges in the liquid films around new-
phase grains and in traps around defects (here, a is the
characteristic size of a grain or trap and D is the diffu-
sion coefficient of charges in the liquid or quasi-liquid
sheath or in a trap). The parameters typical of a disperse
system under normal pressure and temperature are a =
10–4–10–6 m and D < 10–12 m2/s; accordingly, τ ≤ 10–10–
10–4 s and the characteristic dispersion frequencies lie
in the range ω = 1/τ = 1–104 Hz [16]. For a system with
traps, a ≤ 10–6–10–8 m, D ~ 10–10 m2/s, and, accordingly,
τ = 10–2–10–6 s and ω = 102–106 Hz [41]. Thus, at least
two characteristic frequency of dielectric dispersion
must exist in ice.

At lower temperatures, the characteristic frequen-
cies must decrease and the resonance-like dips in the
ULF spectrum Pc(ω) of instability threshold corre-
spondingly shift [5]. Such a shift is really observed for
several initial dips in the ULF spectra with ω = 10–
15 Hz and temperatures of 220, 230, and 240 K
(Figs. 2b–2d). A slight shift can also be identified at
102–104 Hz for the spectra Pc(ω) with 210, 220, and
230 K (Figs. 2a–2c). However, the dips in this part of
the spectrum are most likely to be due to resonances
associated with characteristic relaxation times for
smaller disperse particles or defect-induced traps.
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Fig. 5. Relative resistance of the ≈0.4-mm-thick ice disk vs.
uniaxial compression for four temperatures in the absence
of the Bridgman effect.
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In experiments with “warmer” ice, additional min-
ima in the spectra Pc(ω) arise (Figs. 2b–2d). They can
be explained in terms of the theoretical model of system
ultrasensitivity, where a system, in the first approxima-
tion, is represented as a chain of extended dipole oscil-
lators with widely varying moments [17].

Of interest is the dependence of the explosive effect
threshold on the pulse amplitude, Pc(V), at 240 K,
which has a minimum at U ≈ 0.5 V (Fig. 4). One may
suppose that such behavior is related to the potential of
H2O dissociation into hydrogen and oxygen: Uc ≈
1.23 V [42]. It can be assumed that carrier clouds gen-
erated in ice at U > Uc effectively shield dipole interac-
tions in chains of spatially closed oscillators, thereby
suppressing local polarization bursts [16]. The degree
of shielding may increase with the ULF pulse ampli-
tude, since more ions like OH– and H3O+ are activated
in ice under these conditions [41–43]. At the same time,
the dependence Pc(V) with a minimum at E ≈ 12 V/cm
is observed only near a certain threshold temperature
T ≈ 244 K. Above this temperature, the behavior of ice
is plastic rather than explosive [32]. At this tempera-
ture, a distinct phase transition is not observed either
(Fig. 5). It is likely that in this temperature range, ice
has (at an appropriate pressure) a number of liquid-like
spacers with a thickness [40] much larger than under
other conditions, which may increase the effective
mobility of ions.

At temperatures of 210, 220, and 230 K, most of the
charge carriers that must be injected from the anvils
(electrodes) possibly remain at the anvil boundaries
because of the absence of through quasi-liquid spacers.
If so, dipole interactions at these temperatures are
shielded by the field-induced ion clouds to a lesser
extent. Nevertheless, the phase transition duration at
210, 220, and 230 K seems to be insufficient to initiate
giant oscillations in dipole systems, which could have a
still greater effect on the mechanical stability of ice.
According to estimates [16], the durations of such
phase transitions do not exceed 0.1–0.2 s. However, at
240 K, the existence time of structural elements with
charge circulation is probably much longer, since the
nature of these structures is somewhat different. As a
result, the probability of generating local giant polar-
ization bursts in dipole systems at this temperature
grows and these bursts may considerably affect the ice
stability even in ultralow ULF fields. This means that,
as the ULF pulse amplitude rises at 240 K, two compet-
ing trends arise: on the one hand, the effect of the pulses
on the systems of oscillators increases and, on the other
hand, dipole interactions weaken because activated ion
clouds shield them more effectively; hence, the appear-
ance of a minimum in the curve Pc(V).

CONCLUSION

Thus, it was shown that ice may exhibit a high
mechanical sensitivity to weak ULF electric fields over
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
a wide range of low temperatures. This effect is unre-
lated to the dielectric loss of ice at ULFs, as indicated
by a correlation between the ULF spectra of mechani-
cal instability excitation (the Bridgman effect) and
those of the permittivity. The parallels in the behavior
of ice and crystal hydrates in weak ULF electric fields
lead us to conclude that ultrahigh-sensitivity effects are
observed when ice undergoes phase transitions or is in
the metastable state. These results can be explained in
terms of nonlinear cooperative phenomena in sets of
nonmolecular spatial dipoles with a characteristic size
of 10–2–10–5 mm and strongly varying moments.
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Abstract—The magnetoimpedance effect in sheets made of Fe4Co67Mo1.5Si16.5B11 amorphous metallic alloy
is studied in relation to the mutual orientations of the sheet axis, permanent magnetic field, and variable elec-
trical current. Also, the effective permeability is studied as a function of the mutual orientations of the sheet
axis, permanent magnetic field, and rf magnetic field. Under certain orientations of the rf magnetic field and rf
electrical current relative to the sheet axis, experimental dependences of the magnetoimpedance effect and
effective permeability on the permanent magnetic field are found to correlate qualitatively. The experimental
data are explained in terms of domain reconfiguration in the alloys. © 2003 MAIK “Nauka/Interperiodica”.
Today, the giant magnetoimpedance effect is one of
the most topical areas of research in the physics of mag-
netic phenomena [1–4]. In spite of many publications
devoted to this effect, a number of issues necessary for
a complete understanding of its nature still remain
unclear.

This work generalizes the complex study of this
effect. Our goal was to trace how the mutual orienta-
tions of the axis of rolling of a fast-quenched amor-
phous metallic alloy (sheet axis), permanent external
magnetic field H, and rf current I passing through the
alloy influence the H dependence of the sample imped-
ance Z. We also studied the effect of the orientations of
the rf magnetic field h in a measuring coil and of the
field H relative to the sheet axis on the H dependence of
the effective permeability µeff.

The samples used were 25-µm-thick disks of diam-
eter 9.5 mm cut from sheets of Fe4Co67Mo1.5Si16.5B11
amorphous metallic alloy. The saturation magnetostric-
tion and saturation induction of the alloy were, respec-
tively, λs = –3 × 10–7 and Bs = 0.55 T.

The amount of the magnetoimpedance effect was
measured with a high-value resistor series-connected to
the sample. The amount of the effect ∆Z/Z0 was deter-
mined as [4]

(1)

where Z0 is the sample impedance at H = 0, ZH is that in
a magnetic field H, UH is the voltage across the sample
in the field H, and U0 is the voltage at H = 0.

The magnetoimpedance effect was studied in mag-
netic fields up to 9600 A/m and current frequencies
0.1–10 MHz.

When the sheet axis is aligned with the current
direction and magnetic field H, the impedance Z
remains virtually the same as H grows in the interval 0–
1200 A/m. With a further increase in H, the impedance

∆Z/Z0 ZH Z0–( )/Z0 UH U0–( )/U0,= =
1063-7842/03/4804- $24.00 © 0427
decreases monotonically and the dependence Z(H)
tends toward saturation (Fig. 1a). The magnetoimped-
ance effect is negative: in a field of 9600 A/m and cur-
rent frequency of 1 MHz, it equals 50%.

With the sheet axis parallel to the rf current and nor-
mal to the direction of the applied permanent magnetic
field H, the impedance decreases monotonically
(Fig. 1b) with increasing H. In this case, the decrease is
faster than when H is parallel to the sheet axis and pass-
ing current and ∆Z/Z0 tends toward saturation at lower
magnetic fields. The negative value of the magne-
toimpedance effect is 54% for an rf current frequency
of 1 MHz and magnetic field 9600 A/m.

When the sheet axis is normal to both the magnetic
field H and rf current, the impedance Z first grows with
H, peaks at H = 1680 A/m, and then declines monoton-
ically, tending toward saturation (Fig. 1c). The positive
effect has a maximal value of 60% at an rf current fre-
quency of 1.5 MHz; the negative effect, 25% for H =
9600 A/m and a current frequency of 1.5 MHz.

Finally, when the sheet axis is parallel to H and nor-
mal to the rf current, the impedance Z remains practi-
cally the same for H = 0–1200 A/m. As H grows further,
the impedance decreases monotonically and the depen-
dence Z(H) tends toward saturation (Fig. 1d). The effect
is negative: 28% for H = 9600 A/m and a current fre-
quency of 1.5 MHz.

In the saturation field, the impedance is minimal
irrespective of the H and current orientations relative to
the sheet axis.

According to [5], the magnetoimpedance effect is
related to the skin depth, which in magnetic materials is
given by

(2)

where ρ is the bulk resistivity of the sample, f is the
variable current frequency, µeff is the effective perme-
ability, and µ0 is the permeability of free space.

δ ρ/πf µ0µeff( )1/2,=
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The sample impedance is

(3)

In amorphous magnetically soft materials, an
applied magnetic field may change µeff [5] by two or
three orders of magnitude. Accordingly, the skin depth
varies significantly and the effect may be very high. It

Z ρf µeff( )1/2.∼

Fig. 1. Sample impedance vs. applied permanent magnetic
field. The sheet axis is (a) parallel to both the rf current and
external permanent magnetic field, (b) parallel to the rf cur-
rent and normal to the magnetic field, (c) normal to both the
rf current and the magnetic field, and (d) normal to the rf
current and parallel to the external magnetic field.
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should be noted that µeff and, hence, Z are complicated
functions of H. Therefore, to adequately explain the
experimental dependences Z(H), it is necessary to study
the dependence µeff(H) at various mutual orientations of
the sheet axis, H, and a probing rf magnetic field h.

The value of µeff was measured with a series-con-
nected resistor and measuring coil. The sample was
placed into the coil with an rf current generating a prob-
ing rf magnetic field h. The voltage picked up from the
coil is proportional to the effective permeability of the
sample. The effective permeability was measured at
frequencies of the rf magnetic field from 0.1 to 10 MHz
and H = 0–9600 A/m with various orientations of the
sheet axis, permanent magnetic field H, and rf probing
field h.

Figure 2 shows the H dependences of the effective
permeability at different frequencies of the probing
field h. In Fig. 2a, the sheet axis is parallel to H and nor-
mal to h; in Fig. 2b, the sheet axis is normal to both H
and h; in Fig. 2c, the sheet axis is normal to H and par-
allel to h; and in Fig. 2d, the sheet axis is aligned with
both H and h. It is seen that the run of the curves is sim-
ilar to that of the dependences Z(H) provided that the rf
current passing through the sample during the imped-
ance measurements is perpendicular to the probing rf
field during the permeability measurements. In measur-
ing the magnetoimpedance effect, the magnetization of
the sample interacts with the rf magnetic field, which is
generated by the rf current and is normal to it.

Qualitatively, our experimental results can be
explained as follows. In fast-quenched cobalt-based
amorphous alloys, the surface axis of easy magnetiza-
tion was shown [6] to coincide with the axis of rolling
of the sheet. Therefore, it can be assumed that strip
domains prevail on the sheet surface.

Experimental study [7] of the permeability in rela-
tion to magnetization reversal processes showed that
the permeability is insensitive to the displacement of
180° domain walls. In the case when magnetization
reversal is accomplished by rotation, µeff first grows
with H, reaches a maximum, and then monotonically
decreases, tending toward saturation under high fields.
Generally, µeff can be represented as

where µd is the component due to domain wall dis-
placement and µr is that due to magnetization rotation.

The components µd and µr depend on the frequency
of the variable magnetic field in a different manner [7].
The former component decreases more sharply than the
latter when the variable magnetic field frequency
grows.

With the sheet axis normal to h and parallel to H, the
effective permeability µeff is defined by µr. Magnetiza-
tion reversal in this case is accomplished by domain
wall displacement under the action of the permanent
magnetic field H. At the initial portion of the curve

µeff µd µr,+=
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µeff(H), the effective permeability is nearly constant. As
H grows further, µeff declines and tends to unity in the
saturation field (Fig. 2a). The effect is negative and
reaches a maximum in the saturation field:

(4)

where µs is the effective permeability of the sample in
the saturation state.

When the sheet axis is normal to h and H (Fig. 2b),
the component µr also makes a major contribution to
the effective permeability. As the permanent magnetic
field rises, the magnetization rotates and the magnetiza-
tion component that is aligned with H grows; as a
result, µr decreases and µd increases. If the condition
µr > µd is met at a certain frequency of the rf current, µeff
drops more sharply than in the previous case, saturating
at lower fields, and the initial portion with constant µeff
is absent. Under the saturation field, µeff tends to unity;
therefore, the maximal negative effect is determined by
relationship (4) irrespective of the H direction.

With the sheet axis running parallel to h and nor-
mally to H, µd makes a major contribution to µeff. As H
increases, the magnetization of the sample rotates. In
this case, the contribution from µd to µeff diminishes and
that from µr grows. If the condition µr > µd is met at a
certain frequency of the rf current, µeff increases with H.
When the external magnetic field becomes sufficient to
rotate the magnetization about H, i.e., becomes equal to
the field of anisotropy Ha, µeff is completely specified
by µr and attains a maximum (Fig. 2c). Under such a
magnetic field, the sample impedance and positive
magnetoimpedance effect reach maxima. The magne-
toimpedance effect depends on the variation of µeff with
H and is given by

(5)

As H grows further, µeff decreases and tends to unity
under the saturation field. In this case, the maximum
negative magnetoimpedance effect is observed under
the saturation field and depends on µeff, which varies
with H from µd at H ≈ 0 to µr at H ≈ Ha:

(6)

With the sheet axis running parallel to h and H
(Fig. 2d), µd makes a major contribution to µeff. As H
increases, 180° domain walls are displaced. In the ini-
tial portion of the curve µeff(H), the effective permeabil-
ity remains virtually invariable in this case. Then, µeff
drops with increasing H and tends to unity in the satu-
ration magnetic field. In this case, the positive magne-
toimpedance effect is absent and the maximal negative
effect depends on µeff, which varies from µd to µs = 1
according to (6).

∆Z/Z0 µs
1/2 µr

1/2–( )/µr
1/2,=

∆Z/Z0 µr
1/2 µd

1/2–( )/µd
1/2.=

∆Z/Z0 µs
1/2 µd

1/2–( )/µd
1/2.=
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Fig. 2. Family of the effective permeability vs. permanent
magnetic field curves. The frequencies of the probing mag-
netic field are (1) 0.1, (2) 0.5, (3) 1, (4) 2, (5) 3, (6) 4, (7) 5,
(8) 6, (9) 7, (10) 8, (11) 9, and (12) 10 MHz.
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From the results obtained, the following conclu-
sions can be drawn.

(1) In cobalt-based amorphous metallic alloys pro-
duced by fast quenching from the melt, the dependence
of the magnetoimpedance effect on the permanent mag-
netic field is governed by the mutual orientations of the
sheet axis, permanent magnetic field, and rf current
passing through the alloy.

(2) The dependences of the magnetoimpedance
effect and effective permeability on the applied perma-
nent magnetic field correlate when the probing mag-
netic field and rf current are appropriately oriented rel-
ative to the sheet axis.

(3) The differences in the impedance vs. permanent
magnetic field curves under different mutual orienta-
tions of the sheet axis, permanent magnetic field, and rf
current are associated with different magnetization
reversal mechanisms in the samples studied.
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Abstract—A new design of spin transistor based on half-metallic ferromagnets (referred to as a spin half-
metallic transistor) is suggested, and its current–voltage characteristics are studied theoretically. Like a bipolar
transistor, the new device can amplify current. At the same time, the properties of a spin half-metallic transistor
depend considerably on the mutual orientation of the magnetizations of its three contacts. We also propose a
device based on an F↑–F↓ junction. This device consists of two single-domain half-metallic parts with opposite
magnetizations. There is a range of voltages where the current–voltage characteristics of an F↑–F↓ junction
and a semiconductor diode are similar. The behavior of an F↑–F↓ junction under different conditions is studied.
© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

A new direction, spin electronics (spintronics), has
recently evolved in applied physics. To process infor-
mation, spintronic devices, unlike conventional micro-
electronic devices, use not only the charge of an elec-
tron but also its spin [1]. Spintronics is based on the so-
called spin-dependent transport of electrons, a physical
phenomenon discovered late in the 20th century, the
essence of which is the dependence of electron trans-
port properties on the spin degree of freedom. Exam-
ples of spin-dependent transport are giant magnetore-
sistance [2–5], the magnetoresistance of tunnel junc-
tions and nanocontacts [6–9], the spin accumulation
effect, and the surface resistance of heterojunctions
[10, 11]. Currently available spintronic devices include
sensing heads for high-density hard disks and magnetic
RAMs. Spintronic devices based on the spin injection
effect seem to be even more promising [12, 13], since
they allow one to process and read information written
in spin degrees of freedom. Spin transistors belong to
such devices.

Two types of spin transistors are being intensely dis-
cussed in the literature: a spin field-effect transistor
(spin FET) [14] and an F↑–N–F↓ transistor [15], where
F and N mean a ferromagnetic and normal metal,
respectively. If a spin field-effect transistor is very close
to a bipolar transistor in principle of operation, the
apparent analogy between an F↑–N–F↓ and a bipolar
transistor fails from the viewpoint of device function-
ing. In the former, a base layer (normal metal) does not
serve to amplify the current between the emitter and
collector. Instead, it is often intended for measuring the
1063-7842/03/4804- $24.00 © 20431
potential difference at the base–collector heterojunc-
tion. This potential difference arises when the spin is
injected from the emitter and depends on the spin ori-
entation in the collector junction. Such a device is not
an amplifier in the strict sense of the word.

This paper considers the design of an F↑–F↓–F↑ spin
transistor, which has similar current amplification prop-
erties as an n–p–n (or p–n–p) bipolar transistor but its
characteristics depend considerably on the mutual ori-
entation of electron spins in the emitter, base, and col-
lector.

Our transistor is based on half-metallic ferromag-
nets [16–18]. These materials are metals, but their band
structure has the following feature: the densities of
states are different for spins of opposite orientation, and
one of them has a discontinuity (gap). Such materials
behave like a metal for electrons of one (major) polar-
ization and like a semiconductor for opposite (minor)
polarization.

In order to stress how it differs in band structure
from a semiconductor transistor, the transistor dis-
cussed will be referred to as a spin half-metallic (SHM)
transistor. To describe electron transport in ferromag-
nets, the two-current approach (currents of electrons
with spins up and down) was proposed [10, 19, 20].

Such materials as Fe3O4, Cr2O, LaPrMnO3, Heusler
alloys (PtMnSb and PtMnSn [21, 22]), etc., are exam-
ples of half-metals. In these materials, the gap 2∆ is
about several tenths of an electronvolt. At room temper-
ature, the minority electron conductivity can be several
orders of magnitude lower than the majority electron
003 MAIK “Nauka/Interperiodica”
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conductivity. The model band structure of these materi-
als is shown in Fig. 1.

F↑–F↓ JUNCTION

Let us consider a sample comprising two domains of
opposite orientation. To prevent the formation of the
domain wall, a thin insulating layer of thickness from
one to several atomic layers should be inserted between
the domains. For electrons of major polarization at the
left junction, the band structure is shown in Fig. 2. For
the opposite polarization, the structure is similar.

It is assumed that the tunneling resistance of the
insulating layer is lower than the resistance due to the
effect of spin accumulation [10, 22, 23].

It should be noted that the resulting current in the
insulating layer decreases by a factor on the order of

exp(– L/"), where U is the potential bar-
rier height, L is the barrier length, E is the electron
kinetic energy, and m is the electron effective mass. For
example, for (E – U) ≈ 4 eV and L ≈ 5 Å, the current
decay is about 6 × 10–3. Although in the case considered
the boundary between the domains is an insulating
layer rather than a domain wall, we assume below that
the polarization of electrons when they pass through
this layer remains unchanged. The theoretical depen-
dence of the current through a spin diode made of fer-

2m E U–( )

+∆ ρ0
ρ1

ρ2

EF

–∆

Fig. 1. Schematic band structure of a ferromagnetic half-
metal.

eV EF

EF – ∆

EF + ∆

Fig. 2. Band structure of the F↑–F↓  junction for major
polarization in the left contact. The arrows indicate the
domain magnetization direction.
romagnetic semiconductors on the domain wall thick-
ness and temperature [24] shows that electrons retain
their spin polarization for sharp domain walls (i.e., with
a thickness of less than 20 nm).

Consider the I–V characteristic of such a structure.
The tunnel electron current related to one of the polar-
izations can be calculated by the formula (see, for
example, [26])

(1)

where f(x) is the Fermi function; ρL and ρR are the den-
sity of states for electrons of the conducting polariza-
tion in the left and right ferromagnets, respectively; V is
the potential difference between contacts to the F↑–F↓

junction; M is a tunneling matrix element (assumed to
be constant); and e is the electron charge.

In our case, the functions ρL and ρR for half-metallic
ferromagnets are given by (Fig. 1)

(2)

where EF is the Fermi energy.

Integral (1) can be taken analytically:

(3)

For the special case ρ1 = ρ2 = ρ0 and ∆ = 0, Eq. (3)
yields the tunnel current for a junction where the mag-
netizations of edge contacts are codirected (an F↑–F↓

junction). This current can be given in the form1

(cf. [24–26])

(4)

where G is the conductivity of such a structure. In our

1 This is the current of majority carriers only. The current of minor-
ity carriers is neglected, since it is much less than the former at
voltages |V| ! 2∆ [10, 22].
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case,

The total current I↑↓  of an F↑–F↓ junction is equal to
the sum of the currents of both polarizations. For low
voltages (|eV| < kT), it can be expressed as

(5)

for V @ ∆,

(6)

Thus, at moderate temperatures, the current of an
F↑–F↓ junction is roughly zero for voltages |eV| < ∆;
otherwise, it can be represented by straight line (6)
(Fig. 3).

An F↑–F↓ junction may be called a spin diode, since
the nonlinear part of the I–V curve near the point V = ∆
behaves like the characteristic of a conventional diode.
Obviously, this seeming similarity breaks for V < –∆,
where the I–V curve of the junction has a nonzero
value.

NONCOLLINEAR POLARIZATIONS

Let us discuss the case when the magnetizations of the
electrodes lie at an angle ϑ to each other (Fig. 4). Con-
sider an electron that has come from the left domain to
the right. Since, according to our assumption, the polar-
ization of the electron has not changed, its spin in the
right domain will make the same angle ϑ with the mag-
netization axis. The quantum-mechanical state of this

electron | 〉 [27] is given by

(7)

According to the Fermi golden rule, the transition
probability per unit time is proportional to the transition

matrix element squared and the states | 〉 and | 〉
are orthogonal to each other; therefore, the resulting
current is

(8)

Upon simple transformations, Eqs. (3) and (8) yield
a general expression for the spin diode current in the
case of arbitrarily magnetized domains:
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(9)

The results of calculation by this formula are shown
in Fig. 3 for different values of ϑ and ρ0/ρ2 = 3, ρ1/ρ2 =
1.5, kT = 25 meV, and ∆ = 0.3 eV.

The behavior of the spin current for an F↑–F↓ junc-
tion is shown in the inset to Fig. 3. Here, the spin cur-
rent is equal to the difference between the currents of
the two polarizations. It is shown for several values of
ϑ and the same values of the problem parameters as
above. The expression for the angular dependence of
the spin current is

(10)
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Fig. 3. I–V curve of the F↑–F↓  junction for various angles ϑ
between the domain magnetization. The case ϑ = 0 corre-
sponds to the oppositely magnetized domains; ϑ = 180°, to
the domains magnetized in one direction (F↑–F↓  junction).
The inset shows the behavior of the spin current for several ϑ.
The figures by the curves are ϑ in degrees.
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Let us also consider the case when one more domain
is present in one of the electrodes that is magnetized at
an angle to the magnetizations of both contacts (Fig. 5).
In this case, the current is given by

(11)

where S is the total contact surface area, S→ is the sur-
face area of the domain with inclined magnetization,
and δS = S→/S is the relative surface area of this domain.
In this case, the I–V characteristic is similar to that for
oppositely directed polarizations.

SHM TRANSISTOR

We now turn to a three-contact device based on half-
metallic ferromagnets. The band structure of a spin
transistor for electrons polarized so that base carriers
have minor polarization is shown in Fig. 6. Such a
polarization will be called conducting polarization. The
contribution from the current of the opposite polariza-
tion can be neglected for kT ! ∆, VEB > 0, and VBC < ∆.2

We consider a common-base transistor. For this con-
figuration, the dependence of the potential energy on
the coordinate x along the transistor for electrons of
conducting polarization is modulated as shown in
Fig. 7.

The diffusion equation for nonequilibrium carriers
in the base (namely, electrons injected from the emitter)
has the form

(12)

2 This is because, for this polarization, the carriers in the base are
majority carriers (in the emitter and collector, they are minority
carriers). Therefore, the emitter current cannot influence the col-
lector current in this range of temperatures and voltages.
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D
∂2n
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n n0–
τ

--------------,=
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Fig. 4. Spin diode where the magnetization of one domain
makes an angle ϑ with the magnetization of the other.
where D is the electron diffusion coefficient, τ is the
average spin lifetime of an electron in the base, (n – n0)
is the concentration of electrons injected from the emit-
ter into the base, and n0 is the equilibrium electron con-
centration (all the parameters are considered for minor-
ity carriers).

The boundary conditions for the electron concentra-
tions at the base boundaries are specified by the Boltz-
mann factor:

(13)

Here, W is the base width; n(+0) and n(W – 0) are the
conduction electron concentrations at the emitter–base
and base–collector interfaces; ∆1 and ∆2 are the poten-
tial barriers for electrons tending to penetrate from the
emitter to the base and from the collector to the base in
the absence of the voltage; and VEB and VBC are the
emitter-to-base and base-to-collector voltages, respec-
tively. For generality, we consider the case ∆1 ≠ ∆2,
which corresponds to variously magnetized emitter and
collector.

Given the distribution of the minority electron con-
centration in the base, n(x), we can calculate the emit-
ter, IE, collector, IC, and base, IB, currents by the formu-
las [28]

(14)

Solving Eq. (12) with boundary conditions (13) and
substituting the solution into Eq. (14), we arrive at the

n +0( ) n0e

∆1 eVEB–

kT
------------------------–
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n W 0–( ) n0e

∆2 eVBC+
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-------------------------–

.=

IE eD∂n
∂x
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x 0=
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IC eD∂n
∂x
------

x W=

,=

IB IE IC.–=

Fig. 5. Spin diode with an additional obliquely magnetized
domain inside one of the contacts.
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following expressions for the transistor currents:

(15)

(16)

(17)

Here,

(18)

(19)

S is the cross-sectional area of the transistor and L =

 is the electron mean free path in the base.

DISCUSSION

As follows from the I–V characteristic (Fig. 8), cal-
culated for the potential energy profile in Fig. 7, the
spin transistor behaves similarly to its semiconductor
analogue. This means that this device can amplify cur-
rent. However, the base size in semiconductor transis-
tors is known to be limited by the thickness of the p–n
junction and cannot be narrower than a tenth of a
micrometer. In an SHM transistor, this restriction is
removed: the junction area may be shrunk to several
interatomic spacings.

One more advantage of an SHM transistor is that it
can operate as a switching device and, correspondingly,
can be used as an element of a magnetic RAM. If the
central domain is reversely magnetized, all the domains
will be magnetized in the same direction and the current
will increase many times. Magnetization reversal in
only one domain can be accomplished by properly
selecting the coercive forces of the emitter, base, and
collector. For example, if the coercive force of the base
is less than that of the emitter and collector, there
appears a range of magnetic fields where the base mag-
netization is switched but the emitter and collector
magnetizations are not.

Although this work focuses on an SHM transistor
made of half-metallic ferromagnets, the basic idea of an
F↑–F↓–F↑ spin transistor as a current (or voltage)
amplifier can be generalized to normal ferromagnetic
metals [28, 29]. Of fundamental importance here is the
presence of two electron currents (with spins up and
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down) and spin-dependent transport properties in a fer-
romagnet [20].

CONCLUSION

We considered an F↑–F↓–F↑ device (SHM transis-
tor) based on half-metallic ferromagnets. Unlike con-
ventional spin transistors, an SHM transistor is capable
of amplifying current like its semiconductor analogue.
In addition, an SHM transistor can operate as a switch

eVBC

eVEB

EF

Fig. 6. Band structure of a spin transistor for electrons of
conducting polarization.

∆1

∆2

U

W0 x

Fig. 7. Potential energy profile for electrons of conducting
polarization.
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Fig. 8. Family of the I–V characteristics for a spin transistor
with various emitter-to-base voltages VEB.
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and, therefore, can be used as an element of magnetic
RAMs. In this paper, we also considered an F↑–F↓ spin
junction. This device has a nonlinear I–V characteristic,
which resembles that of a semiconductor diode in sev-
eral voltage ranges. The I–V characteristic of the F↑–F↓

spin junction for different operating regimes, as well as
the characteristic of the spin SHM transistor, was con-
structed.
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Abstract—Thin GaN films are grown on (001) single-crystal GaAs substrates processed in an atmosphere of
active nitrogen radicals. Auger electron spectroscopy is applied to take the depth profiles of the basic chemical
elements that enter into the composition of the epitaxial GaN films and single-crystal GaAs substrates. It is
found that the surface composition of the GaN films is characterized by considerable nonstoichiometry (the
excess nitrogen achieves ≈9%), which is caused by the presence of atomic nitrogen in the discharge chamber.
With a high-resolution X-ray diffraction method, the structural perfection of the epitaxial layers is investigated.
It is shown that low-temperature annealing (at temperatures below 700°C) is responsible for the formation of
cubic GaN films on the (001) surface of cubic GaAs, whereas higher temperature annealing results in the
growth of the hexagonal films. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Group-III nitrides (InN, GaN, and AlN) and related
ternary compounds are wide-gap materials with unique
properties, which are promising for electronic and
optoelectronic device technologies (see, for example,
[1, 2]). The probability of defect formation in the nearly
perfect lattice of nitrides is less than in the lattices of
arsenides and phosphides, since metal–nitrogen bonds
are stronger than bonds between metal and As (or P)
atoms. Accordingly, the performance of nitride-based
devices (service life; output power; operating fre-
quency; thermal, mechanical, radiation, and chemical
stabilities; speed; and supply voltage) is superior to ars-
enide- and phosphide-based [2] devices.

Among the many fundamental problems to be tack-
led in order to improve the quality and reliability of
opto- and microelectronic devices based on Group-III
nitrides, one may note the lack of good substrates from
the standpoint of their crystallographic (inadequate lat-
tice parameter and temperature coefficient of expan-
sion), morphological, topological, structural, and elec-
trophysical properties and the associated problem of
the buffer layer. Therefore, today’s technologies for
structure modification, specifically, the synthesis of
novel materials by processing single-crystal semicon-
ductors in an atmosphere of active gas radicals, attract
much attention because of their potential application [3].

In the commercial-scale production of semiconduc-
tor (primarily GaN-based) heterostructures, the most
frequently used substrates are made of Al2O3 (basal
(lattice mismatch ≈13.9%) and other planes are used for
1063-7842/03/4804- $24.00 © 20437
growth), SiC, Si (≈4.5%), AlN (≈2.5%), LiGaO2
(≈1%), and many other materials [1].

The best method of producing high-quality thin
GaN films is homoepitaxy on substrates made of GaN
single crystals. Another type of substrate is a structure
consisting of a thin GaN layer grown on a so-called
quasi-substrate (Si, GaAs, or other materials). The lat-
ter approach may significantly simplify the process of
epitaxy and make it cheaper. Basically, the problem of
the buffer layer can also be solved in this way.

In this work, we study thin GaN films that are grown
on GaAs substrates exposed to active nitrogen radicals
and investigate their structural characteristics. It should
be noted that the equipment for our method is 100 times
cheaper than that for MO hydride and molecular-beam
epitaxies, which are widely used in the production of
nitrides.

EXPERIMENTAL

GaN films were grown on (001)GaAs single-crystal
substrates. The substrates were first ground and then
finished by thin diamond pastes. After degreasing and
removing the imperfect surface layer by etching in the
standard etchant H2SO4 : H2O2 : H2O = 3 : 1 : 1 for
2 min, the samples were rinsed in distilled water and
placed into a high-frequency discharge chamber. GaN
layers were produced by annealing the GaAs substrates
in active (i.e., capable to incorporate into a growing
semiconductor film) nitrogen radicals generated in a
high-power rf plasma discharge. This is an attractive
003 MAIK “Nauka/Interperiodica”
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technique for growing complex semiconductors, since
it is simple and cheap (for details, see [4]).

The difficulty with using nitrogen for the epitaxial
growth of semiconductor compounds is associated with
the high binding energy in an N2 molecule (9.76 eV at
temperatures of 300–750°C), which makes it impossi-
ble to activate molecular nitrogen. Today, as an activa-
tion source, one usually uses different types of high-fre-
quency plasma sources. We use the discharge of a high-
frequency generator with an operating frequency of
40 MHz and power of up to 2 kW [5]. Under these con-
ditions, the formation of gallium nitride is basically dif-
ferent from other methods of epitaxy. The major differ-
ence is the presence of the ionic component in the flow
of particles toward the surface. In addition, the neutral
particles themselves have an elevated energy and are in
an excited state. These three factors make it possible to
obtain GaN films virtually at room temperature.

To exclude surface damage due to nitrogen atoms,
the high-frequency plasma was passed through a strong
permanent magnetic field to remove its ionic compo-
nent. Thus, the subsequent annealing of GaAs was per-
formed in an atmosphere where neutral excited nitro-
gen atoms (active radicals) dominate. The concentra-
tion of active nitrogen radicals was measured with the
help of an LT-2 manometer tube placed into the reaction
chamber. The tube was sealed-in so that its catalytic fil-
ament was near the surface of the substrate being pro-
cessed. Under the same conditions, the concentration of
active nitrogen radicals in our method was 4 to 5 orders
of magnitude higher than that in the nonactivated atmo-
sphere. The yield of active nitrogen radicals under our
experimental conditions attained 15% of the total
amount of N2 molecules. For ammonia, the yield was
even higher. The concentration of the radicals was max-
imum when the pressure in the reaction chamber was
varied from 10–3 to 10–1 torr.

RESULTS AND DISCUSSION

The elemental surface composition of epitaxial
films obtained by our method was analyzed by Auger
electron spectroscopy (AES). Figure 1 shows the AES

N Ga

600 1200 1800
ε, eV

∂N
(ε

)/
∂ε

Fig. 1. AES spectra from the surface of the epitaxial GaN
film.
spectra taken after irradiating the sample surface by the
flux of primary 3-keV electrons. These spectra contain
information on the elemental composition of only a thin
(0.3- to 0.5-nm-thick) surface layer (the maximum AES
depth is 3 nm [6]). A comparison between the energies
of the spectral lines of Auger electrons emitted by the
atoms to be identified and the known characteristic
peaks of atomic spectra allowed us to clarify the chem-
ical nature of the atoms. The energy positions and
shapes of the spectral lines indicate that the main ele-
ments in the thin surface layer of the films grown are
gallium (the energy of the dominating peak is about
1070 eV) and nitrogen (the energy of the peak is about
380 eV). Thus, one can conclude that the substrate sur-
face is covered by a thin GaN film. One of the factors
that favors this process is that Ga–N binding energy
(7 eV) is higher than Ga–As binding energy (4 eV) [7].

To investigate the chemical composition across the
thickness of the GaN/GaAs heterostructures, we used
layer-by-layer ion sputtering of the surface film and
found the concentration profiles of the main chemical
elements entering into the composition of the epitaxial
GaN film and single-crystal GaAs substrate. Figure 2
shows the intensities of Auger electron peaks in the Ga–
N–As system as functions of the sputtering (etching)
time or, in other words, the concentration profiles of the
elements in the epitaxial film–substrate structure. As is
seen from the experimental concentration profiles for
this structure, the basic components in the film are Ga
and N, and the decrease in the N concentration toward
the substrate is fairly smooth. Inside the substrate, only
Ga and As are present, as it should be. Consequently,
the processing of GaAs by nitrogen radicals favors the
formation of a stable thin GaN layer on its surface. This
can be explained in the following way. First, Ga atoms
migrate from the bulk of the GaAs substrate to its sur-
face and react with active nitrogen radicals of the gas
phase, thereby forming the GaN compound. Second, As
atoms evaporate intensely from the GaAs near-surface
layer and from the growing GaN film into the gas
phase. The sharp decay of the As concentration profile
near the surface suggests that the transition GaAsN
layer is depleted by As atoms and its thickness is insig-
nificant. In addition, it is seen from the profilograms

N

Ga

10 20 25
Etching time, min

5 15

17

34

51

68

85

C
on

ce
nt

ra
tio

n,
 %

As N

Ga

As

Fig. 2. Element concentration in the GaN/GaAs hetero-
structure as a function of the etching time.
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that Ga atoms migrate to the surface faster than As
atoms. Hence, Ga atoms play a limiting role in the for-
mation of GaN films.

One more factor that encourages the growth of epi-
taxial GaN films is the penetration and diffusion of
active nitrogen radicals into the GaAs substrate (which
is of importance for thin film growth) followed by their
capture by resulting As vacancies. This also contributes
to the formation of the GaN compound. In general,
nitrogen atoms can occupy not only sites in the As sub-
lattice but also interstices because of their small radius.
In the former case, the lattice parameter decreases; in
the latter, it remains virtually unchanged.

It is necessary to note that the GaN film exhibits a
considerable surface nonstoichiometry: the excess
nitrogen amounts to ≈9%. This is caused primarily by a
large amount of nitrogen atoms present in the chamber,
which prevent the evaporation of nitrogen from the
film. This indicates that the first of the above-men-
tioned factors (quasi-epitaxial growth of thin GaN
films) prevails.

The nitrogen concentration and structural perfection
of the epitaxial layers were investigated by high-resolu-
tion X-ray diffraction. The lattice parameters (interpla-
nar spacings) of the GaN films grown and GaAs sub-
strates were determined from the angular position and
intensity of diffracted X rays, which were found from
X-ray diffraction patterns (rocking curves). Figure 3
shows X-ray diffraction patterns for three GaN samples
grown on the (001)GaAs surface at different tempera-
tures. In addition to the peaks located near 2Θ ≈ 32°,
which correspond to symmetric reflections from the
(002) plane of cubic single-crystal GaAs, one can also
see the broadened asymmetric peaks near 2Θ ≈ 35° and
≈40°. These peaks correspond to the hexagonal and
cubic GaN structures; i.e., they are the reflections from
the (0002) and (002) planes of the hexagonal and cubic
GaN modifications, respectively. For the cubic struc-
ture, the lattice constant found from the positions of the
peaks was close to 4.515 ± 0.008 Å, which is in good
agreement with many published results (see, for exam-
ple, [8]).

The half-width of the peaks (not exceeding 1°) indi-
cates that the crystal quality of our GaN layers is satis-
factory, while not as good as that of nearly perfect
MBE-grown films (the half-width does not exceed 25′′
[9]). In Fig. 3, only the GaN and GaAs peaks are
observed instead of those for the GaAsN solid solution.
The identification of the interplanar spacings corre-
sponding to the diffraction peaks showed that the thin
epitaxial GaN films may have both the cubic and the
hexagonal structures, depending on processing
(growth) conditions. With an increase in the tempera-
ture, the diffraction peaks shift toward smaller angles.
Generally, among all the process parameters (substrate
temperature, vapor pressure, discharge current, growth
rate, etc.), the substrate temperature is the most critical.
The low-temperature process (the annealing tempera-
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
ture below 700°C) is responsible for the formation of
cubic thin GaN films on the (001) surface of cubic
GaAs [10]. In our opinion, this is because the As vapor
pressure at low temperatures is lower than at high tem-
peratures. As the temperature in the reaction chamber
grows, the reflection corresponding to hexagonal GaN
layers arises and begins to dominate. This process
involves mixing the cubic and hexagonal phases in
equal amounts. In this situation, it is easy to control the
structure of the growing films.

Thus, the annealing of GaAs single crystals in the
atmosphere of active nitrogen radicals leads to the
growth of thin single-crystal GaN layers. The minimum
film thickness roughly estimated from the etching rate
of the GaN compound was no less than 200–300 Å. The
actual thickness of the epitaxial films did not exceed
200–300 nm, which results in the partial relaxation of
mechanical stresses. The concentration profiles of the
basic chemical elements entering into the epitaxial
GaN films and GaAs single-crystal substrate were
obtained. It was found that, depending on the tempera-
ture of GaAs substrate annealing in the atmosphere of
active nitrogen radicals, thin epitaxial GaN layers may
have both the hexagonal and the cubic structure.
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Abstract—The temperature stability of TiNx(TiBx)–n-Si–n+-Si, Au–TiNx(TiBx)–n-Si–n+-Si, and Au–Ti(Mo)–
TiNx(TiBx)–n-Si–n+-Si Schottky-barrier contacts subjected to rapid thermal annealing in hydrogen at tempera-
tures T = 400, 600, and 800°C is studied. It is shown that structural and morphological transformations and the
related degradation of electrophysical characteristics in interstitial alloys (titanium nitrides and borides) start at
600°C. Reasons for the degradation of the barrier properties of titanium borides and nitrides are discussed. ©
2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent years, increasingly stringent require-
ments for the stability of metal–semiconductor con-
tacts in solid-state electronic devices have stimulated
the search for novel metallization materials that pro-
vide the stability of contact parameters under severe
environmental conditions. Among the promising con-
tact materials are nitrides, carbides, and borides of
transition metals (from Groups III–VI). These com-
pounds offer metallic properties and also are chemi-
cally inert and temperature resistant. Titanium nitride
ranks first in this list, as indicated by the number of
publications.

Titanium nitride films are already being used as
ohmic and barrier contacts in electronics [1]. It seems,
however, that their usage as barriers preventing diffu-
sion in multilayer thin-film metallization systems of
semiconductor devices will be even more promising.
Data for contacts using boride-based interstitial alloys
are scarce, although available information indicates
that interdiffusion, including reactive diffusion, at
interfaces is suppressed when they are employed in
metallization systems [2, 3].

The application of interstitial alloys is limited
because detailed knowledge of the mechanisms
behind the degradation and failure of contacts using
these alloys is lacking. Of great importance in this
respect is to understand the nature and properties of
the transition layer (especially its diffusion-prevent-
ing capability).

In this work, we study the temperature stability of
Ti-based interstitial alloy layers applied on Si alone and
in combination with other metal layers.
1063-7842/03/4804- $24.00 © 20441
EXPERIMENTAL

The samples used were standard silicon n–n+ struc-
tures prepared by vapor-phase epitaxy. The thickness of
the n layer and the donor concentration in it were,
respectively, 1–2 µm and (8–9) × 1016 cm–3. For the n+

substrate, these values were, respectively, 300 µm and
(2–3) × 1019 cm–3. TiBx layers were applied on the
chemically cleaned surface of the epitaxial layer by the
magnetron sputtering of titanium boride. TiNx layers
were applied both by the magnetron sputtering of com-
pact stoichiometric TiN targets and by thermoreactive
ion synthesis. The contact layers of titanium, molybde-
num, and gold were applied by electron-beam evapora-
tion at a pressure of ≈6.6 × 10–4 Pa. The thicknesses of
these layers did not exceed 100 nm. Rapid thermal
annealing (RTA) of the contacts was carried out at 400,
600, and 800°C in the hydrogen atmosphere for 60 s.

The mechanisms of contact formation and the tem-
perature stability of the contacts were studied by SEM,
AES, XPS, and microprobe analysis, as well as by tak-
ing static I–V characteristics. The structure and mor-
phology of the contacts, as well as the component dis-
tributions in them, were investigated using 10 × 10-mm
metallized test systems formed on n-Si–n+-Si sub-
strates. The I–V characteristics were taken from Schot-
tky-barrier diodes with a diameter of 100 µm that were
made by photolithography in the form of mesas.

RESULTS AND DISCUSSION

(i) TiNx-based contacts. Consider first a simple
TiNx/Si system. Factors influencing the barrier proper-
ties of such contacts were revealed by studying the
003 MAIK “Nauka/Interperiodica”
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structure, chemical composition, and morphology of
the TiNx films before and after temperature actions.

Figure 1 shows electron diffraction patterns from
the TiNx films obtained by thermoreactive ion synthe-
sis. The diffuse diffraction lines indicate their quasi-
amorphous state. This result was supported by X-ray
diffraction studies. From X-ray diffraction data for the
TiNx films, we calculated the fractions of the amor-
phous and polycrystalline phases in the films, grain size
L, lattice spacing a, and macrostresses σ (see Table 1).

As follows from Table 1, as the RTA temperature
increases, the quasi-amorphous TiNx layer recrystal-
lizes into polycrystalline with a grain size of ≈40 nm.
Simultaneously, residual compression stresses in the
TiNx film are reduced, the reduction being the stronger,
the thinner the film.

Along with this change in the mechanical stresses in
the heterosystem, the recrystallization of the TiNx films
should also have an effect on the parameters of the tran-

(a)

(b)

(c)

Fig. 1. Electron diffraction patterns from TiNx films applied
on the Si substrate by thermoreactive ion synthesis. (a) As-
prepared and after RTA at T = 600 (b) and 800°C (c).
sition layer, i.e., on the barrier properties of the TiNx

film. This supposition was supported by AES depth
profiles in the film (Fig. 2). These results show that the
extent of the interface (transition layer) noticeably
changes at 600°C (i.e., under RTA conditions), when
intense transformations of the structure and morphol-
ogy of the TiNx film are observed. The intriguing fact is
that the expansion of the transition layer does not fol-
low the simple exchange mechanism of interface for-
mation. Since titanium nitrides are chemically inert [6]
and the oxygen present in the film seems to be in the
bound state, producing titanium oxides and titanium
oxynitride, the properties of the TiNx/Si interface
should be governed by competitive Ti–Si and N–Si
reactions and depend on the number of free or dissoci-
ated Si, Ti, and N atoms and on the permeability of the
TiNx film. Note that the latter reaction is a high-temper-
ature process because of the high energy of N diffusion
activation in Si (≈3.7 eV) [7].

Thus, the interface of the contact is nonuniform. As
the RTA temperature grows, the structural–phase non-
uniformity of the transition layer may increase because
of both the recrystallization and diffusion mobility,
which causes mixing in the TiNx/Si system and chemi-
cal reactions between the components of the contact
pair. However, in view of the low permeability of the
TiNx film and an insufficient amount of free Si atoms,
one may expect that the interface in the heteropair will
remain sharp up to high annealing temperatures, just as
follows from Fig. 2.

It should be noted that the above scenario of chemi-
cal and structural transformations of the interface
ignores the formation of a thin oxide layer on the sur-
face of the semiconductor. The presence of SiO2 may
appreciably suppress chemical processes in the transi-
tion layer and, thereby, improve the temperature stabil-
ity of the contact.

Actually, contacts comprise several films of differ-
ent metals in order to satisfy many requirements for a
contact structure. When combining with one another
and also with TiNx through mutual boundaries, these
metals may significantly affect the TiNx barrier proper-
ties and, accordingly, the electrophysical parameters of
the contacts.

The basic multilayer structures used in this work
were Au/TiNx/Si, Au/Ti/TiNx/Si, and Au/Mo/TiNx/Si. It
turned out that the degradation mechanism for all three
structures is the same. The only difference is that the
Mo layer serves as an additional diffusion barrier,
because the mutual solubility of Mo and Au is low [8].

Let us consider the thermal degradation of multi-
layer contact structures in detail with Au/Ti/TiNx/Si.

Figure 3 shows the morphology of the layered con-
tact subjected to RTA. Table 2 demonstrates the varia-
tion of the atomic structure at different metallization
sites (sites 1–4) according to the microprobe analysis
data.
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
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Table 1.  Lattice spacing, microstresses, and size of coherently scattering blocks in 1-µm-thick TiN layers

Parameter
TiN layer

as-prepared 600°C 800°C

Percentage of polycrystalline phase, % 30 80 95

Si lattice spacing a, Å 5.4276(0) 5.4293(0) 5.4292(2)

TiN lattice spacing a, Å 4.2524(7) 4.2420(4) 4.2362(2)

Macrostresses in TiN layers σ, GPa 3.4 1.3 0.1

TiN block size L, nm 15.0 20.0 40.0

Note: Macrostresses in TiN films were calculated by the formula [4] σ  ≈ , where E ≈ 256 GPa is the Young’s modulus of

TiN [5], µ ≈ 0.3 is the Poisson’s ratio, d1 is the interplanar spacing for a set of planes that make the greatest contribution to reflection
under the normal incidence of an X-ray beam on the sample, and d0 is the interplanar spacing for the same set of planes without
stresses. The value of L was estimated by the formula [4] L = 0.94λ/ρcosΘ, where λ is the X-ray wavelength, Θ is the Bragg angle, ρ =

, B is the total half-width of the line from the sample, and b is the instrumental half-width of the reference.
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As follows from the results obtained, structural and
chemical transformations in the contact metallization
do not occur at RTA temperatures below 400°C. The
structural–phase reconstruction of the system is
observed at temperatures between 400 and 600°C. It is
accompanied by changes in the metal atom distribution
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
and also by the appearance of pores and cracks in the
TiNx layer. The layered structure of the contact turns
into a crab structure, which decorates defects in the
TiNx underlayer. Pores and cracks are filled with the
products of the Ti–Au reaction. It was shown [9, 10]
that this reaction, which starts even at 350°C, may pro-
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Fig. 2. Depth profiles of the components in the TiNx/Si contact. (a) As-prepared contact and (b–d) after RTA at T = 400, 600, and
800°C, respectively, for 60 s in hydrogen. (–*–) Si, (–.–) Ti, (–e–) N, (–j–) C, and (–s–) O.
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Fig. 3. Surface morphology of the Au/Ti/TiNx/Si contact (a) before and after RTA at (b) 400, (c) 600, and (d) 800°C for 60 s in
hydrogen.
duce intermetallic compounds, which are then con-
verted to the stable phase AuTi3.

At the early stage, the failure of the antidiffusion
layer appears to be associated with micropores present
in the TiNx film, which give rise to microcracking. The
presence of micropores in films based on interstitial
alloys was noted in [11]. The high brittleness (small
ductility margin) of metallic nitrides and their
extremely low capability to plastically deform upon
annealing are also factors favoring cracking. As a
result, elastic stresses have no time to occupy the entire
volume of the material and are localized at sites where
the concentration of structure defects is increased. It is
at these sites where the layer starts to fail with the sub-
sequent formation and interaction of microcracks.

Thus, the number of pores and microcracks originat-
ing in the initial TiNx film is responsible for the degra-
dation of the contact structure under study. The number
of these defects depends on the TiNx fabrication condi-
tions, TiNx film thickness, and mechanical stresses [12].
Microcracks serve as an additional path for transfer
through the interface and, hence, alter the electrical
properties of the contact. The further change in the
electrophysical properties of the structure is due to the
complete failure of the TiNx barrier film. Diffusing
toward the substrate along cracks in the antidiffusion
layer, Au creates sharp protrusions of eutectic Si-based
alloys, which change the electrophysical properties of
the contact.

Such a scenario of thermal degradation of the con-
tacts was completely supported by depth profiling data
for the Au/Ti/TiNx/Si system (Fig. 4). Although Ti
reacts with Au at an RTA temperature of 400°C, the
barrier properties of the TiNx layer are retained.

As follows from the data in Figs. 3 and 4, RTA at T =
600 (800°C) breaks the layered structure of the contact
and considerably smears the interface. The latter effect
is the most pronounced at an RTA temperature of
800°C. In this case, AuTi alloy, TiNx-based alloy, Au,
and Si/SiAuTi eutectic/Si composition become the
dominant components of the contact. As a result, the
“electrical” boundary of the contact shifts deeper into
the semiconductor and its structural–chemical homoge-
neity breaks.

(ii) TiBx-based contacts. The temperature stability
of TiBx barrier layers will first be considered using the
most-studied Si/TiB2/Mo/Au system.
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
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Fig. 4. The same as in Fig. 2 for the Au/Ti/TiNx/Si contact.
Figure 5 shows the depth profiles for the compo-
nents of the Si/TiB2/Mo/Au contact structure before
and after RTA, as well as the binding energies for core
electrons of the contact components. These data allow
one to judge the annealing-induced modifications of the
structure and phase composition, as well as interfacial
interactions, at different annealing temperatures. At T ≤
600°C, the layered structure of the contact remains
unchanged and the contact components are redistrib-
uted insignificantly, although the phase composition
somewhat changes.
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Since the position of the core level peak in basic
atoms depends on their interaction with atoms of other
elements in the matrix, it can be assumed that the antid-
iffusion barrier includes elements for which the binding
energy of Ti 2p electrons is 454.8 eV and that of B 1s
electrons, 192.8 and 181.1 eV. Therefore, the phase
composition of the film can be identified as a mixture of
TiBx compounds with a small amount of oxyborides
and/or boron suboxide [13]. This conclusion agrees
with the results obtained in [14]. One can also argue
that the antidiffusion layer–Si interface is free of TiSi
silicides with consideration for the binding energies of
Table 2.  Effect of RTA on the planar redistribution of atoms in the Au/Ti/TiNx/Si contacts

Annealing
temperature, °C

Element percentage, %

Au Ti Si

site number

1 2 3 4 1 2 3 4 1 2 3 4

Without annealing 70.6 5.0 24.4

400 71.0 5.1 23.9

600 9.0 16.8 80.5 11.0 5.3 4.3 8.3 37.2 85.7 78.9 11.2 43.8

800 10.8 81.0 26.9 – 4.6 4.7 33.1 – 84.6 14.3 40.7 –
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Fig. 5. Binding energy of the core electrons and the AES profiles of the components in the Si/TiB2/Mo/Au contact. (a) As-prepared
and after RTA at (b) 400, (c) 600, and (d) 800°C in hydrogen for 60 s. (j) Au, (d) Mo, (m) Ti, (.) B, (r) Si, (+) O, and (*) C.
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Table 3.  Parameters of TiN- and TiB-based Schottky barriers on the n-Si–n+-Si structure before and after RTA in a hydrogen
atmosphere for 60 s

Contact structure

Annealing conditions

before annealing 400°C 600°C

ϕb, V n ϕb, V n ϕb, V n

TiNx/n-Si/n+-Si T 0.59 1.36 0.58 1.11 0.55 1.26

Au/TiNx/n-Si/n+-Si M 0.59 1.30 0.59 1.20 0.55 1.38

Au/Ti/TiNx/n-Si/n+-Si T 0.59 1.3 0.59 1.18 0.50 1.65

TiBx/n-Si/n+-Si M 0.55 1.11 0.57 1.13 0.59 1.24

Au/TiBx/n-Si/n+-Si M 0.55 1.2 0.56 1.2 0.56 1.28

Au/Mo/TiBx/n-Si/n+-Si M 0.55 1.3 0.60 1.32 0.56 1.44

Note: M, layers obtained by magnetron sputtering; T, layers obtained by thermoreactive ion synthesis.
2p electrons of Ti (454.8 eV) and 2p electrons of Si
(99.6 eV). The binding energies of 3d electrons of Mo
and 4f electrons of Au imply that the Mo–Au interface
is chemically inactive [13].

Annealing at moderate temperatures removes boron
anhydride. This possibly causes micropores to form
and stimulates minor reactions in the Ti–Si system.
Thus, prerequisites for the local chemical restructuring
of the contact are provided.

Annealing at 800°C completely breaks the layered
structure of the contact. In this case, irregularities on
the contact surface cannot be described by the normal
distribution [15]. This points to the essential role of
activation processes at the interface. Under these condi-
tions, the microrelief of the interface is defined by
chemical reactions between the contact components
and semiconductor. The presence of different phases
and the associated roughness of the interface result in
the degradation of the electrophysical properties.

Thus, the thermal threshold of degradation of the
contact depends on the temperature stability of the TiBx

layer. This conclusion was supported by studies of the
TiBx/Si, Au/TiBx/Si, and Au/Mo/TiBx/Ti/Si systems.

In fact, TiBx layers have structural elements that
deform and strengthen the basic metallic lattice [11].
These deformations cannot be released by diffusion.
They can be removed by high-temperature processing,
which loosens metal–metalloid bonds. With this in
mind, we can put forward several reasons for the local
breakdown of the TiBx film.

The first one is intrinsic mechanical stresses in TiBx

films. It is known that TiBx layers obtained by magne-
tron sputtering possess high compression stresses [16].
The layers under study are quasi-amorphous; hence,
one might expect that both the elastic properties of
these materials and the mechanisms of their structural
relaxation differ considerably from those typical of
crystalline layers. To date, a correlation between the
microstructure and stressed state of the film has been
confirmed only on a qualitative basis [11]. One can,
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
however, argue that in quasi-amorphous layers, the
temperature threshold of microcracking due to struc-
ture relaxation upon annealing will be different from
that in crystalline layers. In addition, the temperature
threshold in our case is affected by the contact layers
with other thermal expansion coefficients.

The second reason is that the reactions proceeding at
local sites of the barrier layers favor the formation of
pores in TiBx. Porosity leads to an increase in the ther-
mal expansion coefficient with temperature. In this
case, the strain distribution in the structure becomes
even more nonuniform, which may cause microcrack-
ing, especially in view of the low ductility margin of
TiBx.

Third, under certain conditions (an oxygen atmo-
sphere and a sufficiently high temperature), the TiBx

layer may decompose according to the reaction

4TiBx + (2m + 3x)O2  4TiOm + 2xB2O3.

In this case, the oxidation rate and oxide structure
are controlled by two factors: boron anhydride evapora-
tion and borate formation. The former factor is domi-
nant at the relatively low temperatures used in this
work. The other factor becomes essential at higher tem-
peratures; hence, it can be disregarded.

The results reported above were confirmed by inves-
tigating the electrophysical characteristics of
TiNx(TiBx)/n-Si/n+-Si surface-barrier structures sub-
jected to RTA. RTA-induced changes in the parameters
of the Schottky barriers (the barrier height ϕb and the
ideality factor n) are listed in Table 3. It is seen that the
values of ϕb and n for the diode structures before and
after RTA at 400°C differ insignificantly. Conversely, at
T = 600°C, the barrier properties of the contact degrade.

Thus, by varying the conditions for titanium nitride
and titanium boride formation, as well as the metalliza-
tion composition, one can prepare contact structures
that are stable against RTA at temperatures no higher
than 600°C.
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Abstract—In the second part of this work, the general principles of the quasi-diffraction approach developed
in the first part are applied to analyzing the irradiation of moving surfaces by pulsed fluxes of fast charged par-
ticles. Special emphasis is given to the fact that the operating aperture is scanned by a narrow focused beam
during the formation of these fluxes.1 © 2003 MAIK “Nauka/Interperiodica”.
11. SPACE–TIME BEATS ARISING 
UPON PERIODICALLY SCANNING 

THE OPERATING APERTURE BY A PULSED 
BEAM

Charged particle fluxes differ from electromagnetic
and neutron fluxes in that they can be controlled by
electrostatic and magnetic fields. Specifically, electro-
static or magnetic scanning is used to provide a uniform
irradiation density over a coordinate [1, 2]. If an accel-
erator generating an initial electron or ion beam oper-
ates in the pulsed mode, space–time beats arise, which
result from the presence of two independent frequen-
cies: the scanning frequency and the pulse-repetition
frequency. Let us consider the formation of the beats
more closely.

Let irradiating pulses be rectangular and have a
duration Tp (pattern 1 in Fig. 1). Also, let the pulsed
beam scan the irradiating aperture by a linear periodic
law with a period Tsc such that Tsc ≤ Tp < T0, where T0 is
the pulse-repetition period. This condition is met in the
patterns on the left of Fig. 1. Consider the case where
the period T0 is an almost exact multiple of Tsc, i.e.,
there exists a natural number n > 1 such that

(1)

With the arrival of each pulse, the scan function x(t)
slightly shifts relative to the beginning of the pulse. In
pattern 2 (Fig. 1), the initial phases of the processes are
selected so that the irradiation density ρ(x) in the upper

1 Initially, we designed this article as consisting of two parts, with
experimental data being reported in the second part. Later, how-
ever, we considered that it would be more appropriate to describe
the experimental data processing techniques in greater detail.
They will be discussed in the third part.

nT sc T0–
T sc

----------------------  ! 1.
1063-7842/03/4804- $24.00 © 20449
part of the aperture is twice as high as that in the lower
part. We assume that the phase shift ∆T in this case is
zero. In pattern 3, ∆T ≠ 0. It is easy to check that here
the density distribution over the aperture has the form
of a three-step function depicted to the right of pattern 3.
With ∆T increasing further, first the irradiation density
distribution becomes uniform in the interval –xm ≤ x ≤
xm (pattern 4 in Fig. 1) and then the irradiation density
in the lower part starts dominating. The cycle of ρ(x)
variation ends up at ∆T = Tp. Mathematically, the func-
tion ρ(x, ∆T) for the cases shown in the patterns can be
represented as

(2)

From the right-hand side of Fig. 1, it is seen that if
the dependence ρ(x, ∆T) for each ∆T is approximated
by a linear function passing through the point (x = 0,
ρ = ρ0), where ρ0 is the aperture-averaged incident flux
intensity, the approximating function “precesses” about
this point with a period, which will be called the beat
period Tb. It is obvious that

(3)

With Tsc and Tp constant, the values of T0 and ∆T are
not independent. They are related to each other as

(4)

ρ x ∆T,( )

4
4xm
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From (3) and (4), we get

(5)

where fsc = 1/Tsc, f0 = 1/T0, and fb = 1/Tb are the associ-
ated frequencies.

From (5), it follows that fb = |fsc – nf0|. If fb and f0 are
constant, the scan frequencies to which a given beat fre-
quency corresponds are given by

(6)
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Fig. 1. Time waveforms and the corresponding distributions
of the irradiation density ρ(x) over the pulse duration Tp for
different phases of the scanning function x(t).
If fsc @ fb, the same beat frequency will be repeated
very often as the scanning frequency varies. Let, for
example, fsc ≈ 100f0. Then, if fsc varies within a 10%
interval, say, from fsc to 1.1fsc, beats with a given low
frequency fb will take place at 20 points within this nar-
row frequency interval (at integer n = 100–109 for both
signs). The pulse duration does not enter into the
expressions given above; however, one can easily show
that Tp has an effect on the beat amplitude and not on
the beat frequency.

Thus, if an irradiating ion beam with a pulsed tem-
poral structure scans the operating aperture along one
coordinate, the pulse-duration-averaged flux density
distribution along this coordinate has a variable compo-
nent of frequency fb = |fsc – nf0|.

In the linear approximation, this variable compo-
nent is given by a space–time expression for a standing
wave with a wavelength far exceeding the aperture
width and with the node at the aperture center. Adding
up the variable and constant components of the irradia-
tion density, one can write an expression for the density
of the irradiating flux thus formed as a function of coor-
dinate x and time t:

(7)

where I0 is the constant component of the intensity,
ωb = 2πfb is the angular beat frequency, and Im is the
variable component amplitude at the aperture edge
x = xm.

In (7), the linearly periodic time dependence is
changed to sinusoidal. Experience shows that such a
replacement is valid: the associated expression
describes a real process and at the same time the calcu-
lation is greatly simplified.

2. PULSED-BEAM MODULATION 
OF THE MOVING SURFACE IRRADIATION 

DENSITY USING LONGITUDINAL SCANNING: 
THE CALCULATION OF THE MODULATION 

COEFFICIENT

In the first part of this work [3], it was shown that the
irradiation of a moving surface by a sinusoidally mod-
ulated flux through a slot screen can be considered as
the Fraunhofer diffraction of a wave field in a specific
quasi-diffraction space. Here, this analogy will help us
to develop an appropriate mathematical apparatus.
Namely, first the calculation of the density of flux (7)
irradiating a moving surface through a single-slot
screen will be reduced to the analysis of the diffraction
pattern in a quasi-diffraction space. Then, we will pass
from the coordinates of this space to the physical quan-
tities of interest.

To do this, consider a two-dimensional Euclidean
space XY with a standard Euclidean metric. The physi-
cal meaning of the coordinates of this space will be

I t x,( ) I0

Im

xm

-----x ωbt( ),cos+=
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refined later; for the moment, we will consider them as
coordinates of a usual physical space. Let a slot screen
B'B" be placed at a distance R from the plane of obser-
vation A'A" (Fig. 2). A wave flux of conventionally elec-
tromagnetic nature falls on the screen from above. Let
this flux generate a field varying linearly across the slot
(i.e., in the x direction). In complex form, the amplitude
of this field is given by

(8)

where ∆x is the shift of the zero amplitude point relative
to the slot center, η = ∆x/xm is the relative value of this
shift, and Im is the field amplitude at the slot edge that
is opposite to the shift ∆x.

Figure 2 shows the field distribution at the time
instant t = 0, when Re[Ia(x, t)] reaches one of its maxi-
mal absolute values. Field (8) can be viewed as a frag-
ment of a standing wave that is distributed along x and
has the node at x = ∆x. Its wavelength λ @ xm. Accord-
ing to the Huygens–Fresnel principle, the representa-
tion of a field in the slot plane uniquely specifies its dis-
tribution behind the screen. If the analysis of the dif-
fraction pattern is restricted to the Fraunhofer
approximation, the angles ϕ and α should be assumed
to be small. In this case, the analysis of the diffraction
pattern on the plane A'A" is reduced to the analysis of
angular diffraction at infinity.

Let us introduce the wavevector k = ω/c in the direc-
tion of field propagation, where c is the field propaga-
tion velocity in the quasi-diffraction space. Then, the
desired dependence of the diffraction field on the angle
α has the form [4, 5]
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With kαxm = ξ, we have

(9)

where J1/2(ξ) and J3/2(ξ) are the Bessel function of the
first kind with a half-integral index.

The magnitude of (9) is

(10)

where l = 2xm is the slot width.
According to the general statement put forward in

[3], we can revise formula (10) and assign the variables
entering into this formula a new physical meaning.
Namely, we will consider the irradiation of a surface
moving with a velocity v  through an aperture of width
l. It is assumed in this case that the irradiating flux
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Fig. 2. On the analysis of the quasi-diffraction produced by
a single-slot screen with a linear amplitude distribution
across the slot (the angles α and ϕ are assumed to be small).



452 DOINIKOV et al.
obeys the laws of geometrical, rather than wave, optics.
Then, the distribution of its intensity across the aperture
is given by

(11)

where I0 is the constant component of the intensity and
Ia(x, t) is given by (8).

Distribution (11) for t = 0 is shown in Fig. 3. From
physical considerations, it is clear that I0 ≥ Im. Then,
according to [3], we can argue that behind the limiting
aperture the coefficient of irradiation density modula-
tion along the propagation direction is given by

(12)

where C is a constant factor.
Consider the limit

(13)

As follows from (11), to this limit corresponds the x-
independent irradiation intensity, which harmonically
varies with time. This case was discussed in [3], where
the following expression for the coefficient of irradia-
tion density modulation was derived:

(14)

Here, ξ = ωbl/2v, v  is the surface motion velocity, ωb is
the angular frequency of modulation (the beat fre-
quency in our case), Im is the maximal intensity modu-
lation amplitude (in our case, it is the amplitude of the
variable intensity component at the slot edge opposite

I x t,( ) I0 Re Ia x t,( )[ ]+=

=  I0
Imη

1 η+
------------

Imx
1 η+( )xm

-----------------------– 
  ωt( ),cos+

Ap ξ η,( ) C Ia ξ η,( )=

=  C
Iml
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2ξ
------ η2J1/2

2 ξ( ) J3/2
2 ξ( )+[ ] ,

Aρ ξ η,( )
η ∞→
lim CIml

π
2ξ
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∆x
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–xm xm

O

x

Fig. 3. Distribution of the mean flux intensity across the slot
(aperture) of width l at a fixed time instant. The scanning
axis is displaced by a distance ∆x relative to the aperture
center.
to the shift ∆x, Fig. 3), and I0 is the constant component
of the irradiation intensity.

Comparing (13) and (14), we conclude that C =
1/(I0l). Since Im and I0 do not depend on η in both the
limiting and general cases, the final form of expression
(12) is

(15)

Turning back to the conclusions reached in Section 1
of this work, we can argue that expression (11) gener-
alizes expression (7) for the case η ≠ 0, when the scan-
ning axis does not pass through the aperture center and
may even run outside the aperture. If the scanning axis
passes through the aperture center, η = 0 and, according
to (15), the coefficient of irradiation density modulation
is calculated by the formula

(16)

For the parameter values such that Aρ = 0, the vari-
able component of the density is absent; hence, the sur-
face is uniformly irradiated.

Figure 4 shows relationships (15) for three values of η.
When the scanning axis passes through the aperture
center (curve 2), the density modulation coefficient is
zero; in other words, the irradiation density remains
uniform if the beat frequency is sufficiently low. In
practice, however, to keep this frequency at a low level
is a challenge, as was noted above. Even a minor varia-
tion of fsc or fp may drastically increase the beat fre-
quency fb, causing the irradiation density to be periodi-
cally nonuniform. For the same reason, it is difficult to
keep the beat frequency constant at any point corre-
sponding to Aρ = 0. The situation can hardly be reme-
died by increasing the scanning frequency, since the
low-frequency beat spectrum for high fsc is also
extremely wide. The introduction of controllable aperi-
odicity into the scanning process seems to be the most
efficient way to avoid irradiation nonuniformity. In this
case, beats cannot concentrate at a certain point of the
quasi-diffraction pattern and the unfavorable effect
appears to spread over it.

Of interest is the case η = 1. Unlike the cases η = 0
and η = ∞, here the ξ dependence of Aρ is fairly smooth
and monotonic. Such an irradiation regime is useful if
it is necessary to obtain a constant modulation coeffi-
cient when the beat frequency or the velocity of the sur-
face irradiated significantly vary.

To conclude this section, we give (without proof) an
expression for the density of moving surface irradiation
through a space-periodic grating as a function of ξ. This
expression was derived on the assumption that the sym-
metry axis of scanning runs through the grating center

Aρ ξ η,( )
Im

I0 1 η+( )
---------------------- π

2ξ
------ η2J1/2 ξ( ) J3/2

2 ξ( )+[ ] .=

Aρ ξ 0,( )
Im

I0
----- π

2ξ
------J3/2

2 ξ( ).=
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and that the number N of slots is odd. Clearly, the latter
assumption becomes insignificant for large N.

(17)

where

ξ = lωb/2v, l is the slot width, d is the grating spacing,
Im is the irradiation intensity at the grating edges, and
I0 is the constant component of the irradiation intensity.

From physical considerations, it is evident that 
cannot exceed unity. Hence, I0 ≥ Im, as in the previous
cases.

Figure 5 plots function (17) for N = 11 and (d –
l)/d = 0.1. It is seen that pulsed irradiation combined
with scanning causes the characteristic split of quasi-
diffraction maxima, including the zero one.

3. INTERPRETATION OF QUASI-DIFFRACTION 
SPACE COORDINATES

In [3], we noted that it is rather difficult to indicate
grounds for the unambiguous identification of the coor-
dinates of the XY space and assign the metric of this
space the physical meaning of basic transformation
invariant. However, without pretending to the unique-

Aρ
N( ) ξ( )

Im

I0Nl d N 1–( ) l+[ ]
---------------------------------------------=

× 1–( )i 1+ li
2 π

2ξ i

-------J3/2 ξ i( ),
i 1=

N

∑

li i 1–( )d Ψ i( ) d l–( )+ Ψ i 1+( )l;= =

ξ i ξ /l( ) i 1–( )d Ψ i( )d l 1–( )i 1++ + ;=

Ψ i( ) 1 1–( )i+
2

---------------------;=

Aρ
N( )

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Aρ(ξ, η)

3.
14

15

6.
28

30

9.
42

45

12
.5

66
0

15
.7

07
0

18
.8

49
0

21
.9

90
0

25
.1

32
0

28
.2

73
0

31
.4

15
0

ξ

1

2

3

Fig. 4. Irradiation density modulation coefficient Aρ vs. ξ
for the relative shift η = ∞ (1), 0 (2), and 1 (3).
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ness and generality of an approach, this problem can be
completely solved. Indeed, let us assume that the coor-
dinate system in the XY space is fixed as is shown in
Fig. 2. With the boundary conditions imposed by the
slot taken into account, diffraction can be completely
described by the wave equation

(18)

where I is the wave function of the field, c is the veloc-
ity of field propagation in the XY space, and ∆ is two-
dimensional Laplacian.

With α/c substituted for 1/v  in Eq. (14), where α is
a small diffraction angle, the dependence Aρ1(α) coin-
cides with the absolute value of the solution to (18) in
the plane of observation A'A" in the Fraunhofer approx-
imation [6, 7]. From this substitution, it follows that
α = c/v. Since the Fraunhofer approximation assumes
that α ! 1, we have c ! v ; that is, the velocity of wave
propagation in the XY space must be much less than the
velocity of the irradiated surface in real space.

Let an arbitrary point on the surface travel a distance
R for a real time τ. Then,

(19)

We assume that the XY space has the metric of a
usual Euclidean space where the X and Y axes are mutu-
ally orthogonal. If a plane wave is incident on a slot
screen in the Y direction and diffraction shifts are
observed in the X direction, we have α ≈  = x/y for
small angles. Hence, in view of (19), we can assign the
coordinates x and y the physical meaning

(20)
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In other words, in a quasi-diffraction space, the
coordinate x is the normalized real time τ (c is the nor-
malizing factor) and the coordinate y is the length of the
surface area irradiated within this time. If the frequency
of modulation of the irradiating flux remains constant,
the transition to another point of a quasi-diffraction pat-
tern means a change in the angle of observation and,
hence, in the velocity of the moving surface.
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Abstract—The processes occurring in expanding laser-produced antimony plasma are investigated by the
emission spectroscopy method. The plasma expansion velocity, the recombination time of SbII, and the electron
temperature and density are determined from the dynamics of SbI line emission. Based on the results obtained,
the processes occurring during the formation and expansion of laser-produced antimony plasma are qualita-
tively analyzed. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Optical diagnostics of laser plasmas and the study of
their characteristics are of importance for optimizing
laser technology processes [1]. The great interest in this
research stems from the absence of adequate compre-
hensive laser plasma models, especially for certain
semiconductors, metals, and compounds that are
widely used in microelectronics (for film depositing
and micropolishing) and photochemistry, as well as in
developing short-wavelength radiation sources [2, 3].

Pure antimony and antimony-containing crystals
(such as CuSbS(Se)2) are widely used in microelectron-
ics [4]. Since the emission spectra of the laser plasmas
produced from multicomponent compounds are rather
complicated [5], the study of the laser plasmas pro-
duced from individual crystal components at similar
pumping conditions is of significant interest.

EXPERIMENTAL SETUP

The laser plasma was produced by irradiating a mas-
sive block of very-high-purity antimony with an
LTIPCh-5 Q-switched neodymium laser. The laser
wavelength was 1.06 µm, the pulse duration was 20 ns,
and the pulse repetition rate was 12 Hz. With the help
of a deflecting prism and a lens with a focal distance of
F = 50 cm, the laser beam was focused onto the target
in a spot 0.3–0.5 mm in diameter; the focal-spot intensity
on the target surface was (3–5) × 108 W/cm2. The plasma
expanded into air at a residual pressure of 3–7 Pa.

The laser plasma emission in the spectral range
200–600 nm was analyzed using an MDR-2 monochro-
mator equipped with a 1200-line/mm diffraction grat-
ing, a FÉU-106 photomultiplier, and a KSP-4 recorder.
To take into account the relative spectral sensitivity of
the monochromator and photomultiplier, the recording
system was calibrated with hydrogen and tungsten
lamps.
1063-7842/03/4804- $24.00 © 0455
The pulsed radiation was recorded at the distances
r = 1 and 7 mm from the sample surface. Pulses with a
duration longer than 1 µs were recorded with a pulsed
Foton photomultiplier and a S1-99 oscilloscope, and
the shorter pulses were recorded using an ÉLU-14FS
photomultiplier and a 6LOR-04 oscilloscope.

The target was positioned at an angle of 60° with
respect to the laser beam, and the emitted radiation was
received at a right angle to the beam. The emission
spectra were interpreted using the data from [6].

Based on the measured emission intensities of the
SbI spectral lines and their spatiotemporal dynamics,
one can calculate some plasma parameters, assuming
that the plasma is in equilibrium and the spectral tran-
sitions are homogeneous.

The average propagation velocity of the laser plume
was determined by monitoring the positions of the
emission maxima at different distances from the target.
Under the assumption that the upper level is populated
via recombination, the recombination time can be
determined from the time dependence of the logarithm
of the emission intensity I normalized to its maximum
value Im. In this case, the slope of this straight line,

, gives the time τr of the ion recombination from
the nearest upper ionization state [1]

(1)

The electron temperature Te was determined by the
Ornstein method using the Boltzmann statistics and
from the ratio of the emission intensities of the SbI
spectral lines [7]

(2)

(3)

where E and g are the energy and statistical weight of
the upper level, respectively; I and λ are the spectral

αtan

αtan τ r ∆t/∆ I/Im( ).ln= =

Te ∆ E2 E1–( )/∆ I1/I2( ),ln=

Te E2 E1–( )/k I1A2g2λ1/I2A1g1λ2( )ln ,=
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line intensity and wavelength, respectively; and A is the
transition probability.

From the relation between τr and the recombination
coefficient [1], one can estimate the electron density ne:

(4)

where z is the ion charge.

DISCUSSION OF THE RESULTS

To take into account all the processes in laser
plasma, one needs to know the parameters of the laser
beam, the properties of the target material, the surface
conditions, and the mechanism for the interaction of
radiation with matter. The interaction of the laser beam
with a solid target begins with the efficient electron
photoemission and the photosublimation of the target
material, which are followed by the thermodestruction
of the target and the expansion of the plasma produced.
Then, the plasma particles are created due to the pro-
cesses occurring in the plasma itself [8, 9]. As a result,
a significant electric potential arises on and near the tar-

ne τ rTe
9/2– /8.75 10 27– z3,×=
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Fig. 1. Fragment of the emission spectrum from a laser-pro-
duced antimony plasma.
get surface [10], which facilitates the formation of
plasma particles and stimulates plasma expansion.

An analysis of the spectra and waveforms of the
plasma emission provides enough information about
the plasma formation and propagation. Based on the
calculated electron temperature and density, it is possi-
ble to reveal the most typical processes in the laser
plasma.

The emission spectrum of the laser-produced anti-
mony plasma contains intense spectral lines of Sb
atoms in the range 217.0–388.8 nm and the spectral
lines of single-charged Sb ions in the range 347.4–
461.3 nm. The upper energy states of these transitions
are Eup = 5–7 eV for SbI and Eup = 11–12 eV for SbII.
A fragment of the emission spectrum of the laser-pro-
duced antimony plasma is shown in Fig. 1. The emis-
sion intensity distribution over the spectrum indicates
the presence of a recombination bottleneck at an energy
level of E = 7.51 eV and significantly disagrees with the
data on the electron excitation cross sections from [11].

Typical waveforms of the emission intensities
(Figs. 2, 3) have two maxima, except for the case of ion
emission near the target surface. For transitions from
the low-lying levels of SbI and SbII, the increase in the
distance from the target results in the onset of another
maximum. At the given laser power and wavelength,
the processes of target photodestruction and thermode-
struction are feasible, and the combined action of these
processes governs the emission time behavior near the
target. The energy of the heated surface is insufficient
to form the second maximum of ions, and they are pro-
duced exclusively via multiphoton ionization. This pro-
cess is facilitated due to the significant width of energy
states in a solid. A comparison of the lifetime of the SbI
excited state (≈5 ns) with the characteristic emission
time allows us to conclude that there is an extra channel
for the particle formation in the course of recombina-
tion. The recombination and the effect of the potentials
of both the plasma itself and the target surface stretch
the plasma and its emission in space and time, which is
seen in the waveforms of the spectral lines recorded at
a distance of 7 mm from the target (Fig. 3).

The continuum was recorded at r ≤ 3 mm, and its
characteristic waveform also had two maxima. It can be
seen in the spectrum that the emission pedestal is sig-
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Fig. 2. Waveforms of the line emission intensity at a distance of 1 mm from the target: (1) SbI 277.0-nm, (2) SbI 287.8-nm, (3) SbI
326.8-nm, and (4) SbII 461.3-nm lines.
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nificantly higher in the region of the supposed locations
of the antimony dimer bands, λ = 210–230 nm.

The positions of the maxima in the emission inten-
sity waveforms indicate the most efficient creation of
ions with Eup = 11.2 eV and atoms with Eup = 5.7 eV,
which are followed by the emission intensity maxima
from the atoms with high Eup values. At the end of the
laser pulse, there arises the emission maximum corre-
sponding to the transitions from the level Eup = 5.4 eV.
Although the second maximum for all the other spectral
lines arises in the reverse order, it nevertheless remains
up to the pulse end. At a distance of 7 mm from the tar-
get, the first maxima somewhat change their order of
appearance in time: Eup = 11.2, 5.8, 5.4, and 5.7 eV. The
second maximum in the waveforms appears in the order
of decreasing Eup energies. The additional maxima of
the emission intensity from Sb atoms and ions coincide
in time.

Taking into account that the molecular evaporation
of antimony is feasible [6] and that almost all the inci-
dent photon energy can be converted into the energy of
the atomic electrons [12], the presence of additional
maxima in the waveforms (Figs. 2, 3) and the fact that
the plasma particles are most efficiently produced when
the Eup value is a multiple of the laser photon energy
can be explained as a result of the dissociation and dis-

sociative recombination of  and  ions.

The average recombination time of SbII ions calcu-
lated from the radiation decay rate in the waveforms
(Figs. 2, 3) transformed into curves like that presented
in Fig. 4 amounts to 6.2 ns at r = 1 mm and 2.7 µs at
r = 7 mm. Here, the main difficulty is to exclude other
channels for the production of SbI; these channels
should either be related to recombination or be insignif-
icant, which is true during plasma cooling in the late
stage of plasma expansion.
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Fig. 3. Waveforms of the line emission intensity at a dis-
tance of 7 mm from the target: (1) SbI 277.0-nm, (2) SbI
287.8-nm, (3) SbI 326.8-nm, and (4) SbII 461.3-nm lines.
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It is also easy to calculate the average propagation
velocity of the plasma and the length of laser plume
from the waveforms of the SbI spectral line intensities.
Thus, the average propagation velocity from r = 1 to
7 mm is 5 km/s for the first maximum and 2.3 km/s for
the second maximum. It follows from this that the
length of the laser plume is 1.1 mm at a distance of
1 mm from the target and 36 mm at a distance of 7 mm.
Additional information about the plasma propagation
can be obtained taking into account that ln(I/Im) =
ln(N/Nm) (where N is the density of atoms with the
energy Eup) and that the emission intensity and the
plasma density vary in time by an exponential law. In
Fig. 4, straight-line segments can be seen, which indi-
cate the propagation of plasma layers with equal veloc-
ities and densities.

Hence, we can conclude that plasma layers with dif-
ferent velocities are mixed, which leads to the redistri-
bution of energy in the plasma; i.e., there is an extra
channel for the production of particles.

In Fig. 5, the plasma electron temperatures calcu-
lated by the most intense SbI spectral lines indicate
that, during plasma expansion, Te varies in time within
the range 0–6.5 eV, the average value being 0.63 eV.
These data agree with the data from [13–15], where the
presence of spikes and a decrease in Te from the front to
the tail were observed in laser-produced metal plasmas.

It can be seen that, in the early stage, the electrons
are heated more intensely when interacting with the SbI
atoms in the 5.826-eV state than with those in the
5.696-eV state; however, as time elapses, the situation
becomes reversed. This means that the photo- and ther-
moexcitation processes are dominant only in the initial
stage and that their role decreases with time, which is
accompanied by the redistribution of the SbI level pop-
ulations as the plasma cools. An important circum-
stance is the high average electron density ne = 8.27 ×
1017 cm–3, which is two orders of magnitude higher than
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Fig. 4. Logarithm of the normalized emission intensity of
the SbI 326.8-nm line at a distance of 7 mm from the target
vs. time.
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that for metal plasmas under similar conditions [16].
The error in all the measurements did not exceed 30%.

A more detailed examination of the Te dynamics
reveals a characteristic set of repetitive steplike max-
ima. A comparison of their positions with the maxima
of the emission intensity shows that the highest plasma
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Fig. 5. (a) Logarithm of the ratio between the averaged
intensities of the SbI spectral lines vs. difference between
their upper level energies and (b, c) the time evolution of the
electron temperature calculated by the ratio of the intensi-
ties of the (b) λ1 = 287.8 nm and λ2 = 277.0 nm lines and
(c) λ1 = 287.8 nm and λ2 = 326.8 nm lines of SbI at a dis-
tance of 7 mm from the target.
temperature is attained in the region of the combined
action of the photo- and thermoexcitation. The repro-
duction of the structure of these maxima indicates the
self-stimulation of the heating and the excitation due to
reabsorption.

Thus, for the above regime of plasma formation in
the region where the combined action of different exci-
tation factors take place, both the dissociation of com-
plex ions and the formation of Sb+ should proceed effi-
ciently, which is confirmed by the additional increase in
the intensity between the two main maxima in the ion
emission waveform (Fig. 3).

CONCLUSION

The above qualitative analysis of the plasma emis-
sion allows one to model the behavior of an expanding
erosion laser plasma, which is important for various
laser applications.

In our case, the laser plasma is characterized by the
following features: the presence of two excitation
stages due to the multiphoton and thermal mechanisms
for target destruction; the self-stimulation of plasma
processes due to reabsorption; the overlapping of the
plasma layers with different kinetic energies; the for-
mation and destruction of heavy complex particles; and
a distinctive mechanism for the energy redistribution in
plasma due to the high electron density, which enables
efficient recombination.
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Abstract—A new method for determining the transmission and reflection coefficients for an arbitrarily polar-
ized electromagnetic wave incident obliquely on an inhomogeneous insulating layer inside an asymmetric
Fabry–Perot resonator is proposed. Algebraic relationships between these coefficients for a layer bounded by
different homogeneous semi-infinite media and for the same layer in a vacuum are derived. Three examples cor-
responding to real situations are analyzed, and the results of corresponding numerical calculations are dis-
cussed. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

For many years, the propagation of electromagnetic
waves in random disordered media has been a central
problem in the wave theory [1–6]. It is well known that
even an approximate analysis of this problem for 2D
and 3D systems involves mathematical difficulties. At
the same time, interest in various properties of one-
dimensional random and arbitrary layered structures
has increased [7–13]. The reasons are the technological
progress in creating artificial systems with the desired
structure and composition and their expanded applica-
tion.

Recently, various optical devices based on planar
and thin-film layered structures have found wide appli-
cations [9, 14–16]. For example, one-dimensional
metal–dielectric photonic crystals are frequently used
as high-quality mirrors [15, 17–19]. Of interest also are
various combinations of photonic crystals with layered
structures. In particular, they can be used in real-time
optical delay lines [20]; high-performance substrates
for antennas, optical diodes, and limiters [21–23]; and
optical sensors and modulators [24, 25].

In this work, we consider the amplitude coefficients
of reflection and transmission for an arbitrarily polar-
ized plane electromagnetic wave incident obliquely on
a one-dimensional inhomogeneous insulating layer
bounded by two different semi-infinite layers (asym-
metric Fabry–Perot resonator with a heterogeneous
layer inside, Fig. 1). Such structures have many appli-
cations, such as laser cavities; various acousto-, electro-,
and magnetooptical devices; diffraction filters; mirrors;
etc.
1063-7842/03/4804- $24.00 © 0460
STATEMENT OF THE PROBLEM

Consider an isotropic insulating layer that is inho-
mogeneous in the z direction and homogeneous in the x
and y directions. Let this layer be sandwiched in two
different homogeneous semi-infinite dielectric media
(Fig. 1); that is,

(1)

where ε(z) is an arbitrary function and, in the general
case, ε1 differs from ε2.

Assume that the wave vector k lies in the (x, z) plane
and that the electric and magnetic fields represent the
real parts of complex vectors Eexp{–iωt} and

ε z( )

ε1, z 0<
ε0, 0 z a ∆/2–<≤
ε z( ), a ∆/2– z a ∆/2+≤ ≤
ε0, a ∆/2+ z d≤<
ε2, z d ,>










=

α

k

ε1 ε0 ε = ε(z) ε0 ε2

e2

e1e3

zkt
∆0

kr

a

d

Fig. 1. Propagation of light through a 1D layer between two
different isotropic semi-infinite media.
2003 MAIK “Nauka/Interperiodica”
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Hexp{−iωt}. Then, the spatial dependences of E and H
are written as

(2)

where E0, Er, and Et are the respective amplitudes of
the incident, reflected, and transmitted waves.

The vectors k and kr have equal absolute values (k =

ω /c) and belong to the xz plane. Note that the mag-
netic field exhibits the same asymptotic behavior as that
given by expression (2). The wave vectors of the inci-
dent and reflected waves are given by

and

(3)

respectively, where α is the angle of incidence and e1,
e2, and e3 are unit base vectors for the z, x, and y axes,
respectively.

Since the energy flux density of an electromagnetic
wave remains constant, the wave vector of the transmit-
ted wave is independent of the refractive index of the
layer. It depends only on the angle of incidence and
refractive indices of the first and second semi-infinite
media:

(4)

where β is the angle of refraction ( sinα = sinβ)

and k2 = ω /c.

One can represent an arbitrarily polarized plane
wave as the superposition of s- and p-polarized waves:

(5)

Here, the subscripts i, r, and t correspond to the inci-
dent, reflected, and transmitted waves, respectively, and
ns and np are the unit vectors of s and p polarizations.
Note that the polarization of the s and p waves is invari-
ant under scattering.

For p polarization, the electric field vector is in the
plane parallel to the plane of the layer. For s polariza-
tion, this vector lies in the plane of incidence. Let us
represent Es(x, z) and Hp(x, z) as Es(x, z) = Es(z)U(x) and
Hp(x, z) = Hp(z)V(x). Based on the Maxwell equation
and asymptotic equation (2), we can then derive the fol-
lowing wave equations [1, 2]:

(6)

(7)

E r( )
E0 ik r⋅{ }exp Er ikr r⋅{ } , z 0<exp+

Et ikt r⋅{ } , z d ,>exp



=

ε1

k k1 αe1 k1 αe2sin+cos=

kr k1 αecos– k1 αe2,sin+=

kt k2 βe1 k2 βe2,sin+cos=

ε1 ε2

ε2

Ei r t, , Ei r t, ,
s ns Ei r t, ,

p np.+=

d2Es z( )
dz2

------------------
ω2

c2
------ ε z( ) ε1 αsin

2
–( )Es z( )+ 0,=

d
dz
----- 1

ε z( )
----------dH p z( )

dz
------------------ 

  ω2

c2
------ 1

ε1 αsin
2

ε z( )
------------------– 

  H p z( )+ 0.=
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It follows from the Snell law that the term ε1sin2α in
expressions (6) and (7) can be replaced by the term
ε2sin2β. This fact reflects the independence of the angle
of refraction β on the parameters (width and refractive
index) of the layer. This angle depends only on the
angle of incidence α and the permittivities ε1 and ε2 of
the semi-infinite media.

Using boundary conditions (2), we introduce the
complex amplitude reflection and transmission coeffi-
cients for the s and p waves in the form

and

(8)

It can be deduced from wave equations (6) and (7)
that the following quantities related to the electric and
magnetic components of the s and p waves are indepen-
dent of z:

(9)

(10)

These conditions represent the law of conservation
of the energy flux density for the s- and p-polarized
waves, respectively. Using the asymptotics of the field
in the semi-infinite media (expression (2)) and also
conditions (9) and (10), we obtain

(11)

(12)

In view of (8), expressions (11) and (12) are repre-
sented as

(13)

Our goal is to find amplitude coefficients (8) for
given parameters of the system (ε1, ε2, ε(z), d, ∆, and a),
angle of incidence, and wavelength.

SCATTERING BY AN INSULATING LAYER 
BOUNDED BY TWO HOMOGENEOUS 

SEMI-INFINITE MEDIA

Consider the scattering of an electromagnetic wave
by an insulating layer with an arbitrary permittivity ε(z)

T1 2,
s Et

s

E0
s

-----, R1 2,
s Er

s

E0
s

-----= =

T1 2,
p H t

p

H0
p

-------, R1 2,
p Hr

p

H0
p

-------.= =

Es d Es( )*
dz

----------------- Es( )*
dEs

dz
--------– const,= =

1
ε z( )
---------- H pd H p( )*

dz
------------------ H p( )*

dH p

dz
----------– const.=

k1 α E0
s 2

Er
s 2

–( )cos k2 β Et
s 2

,cos=

k1 αcos
ε1

----------------- H0
p 2

Hr
p 2

–( )
k2 βcos

ε2
----------------- H t

p 2
.=

1 R1 2,
s 2

+
k2 βcos
k1 αcos
----------------- T1 2,

s ,=

1 R1 2,
p 2

+
k1 βcos
k2 αcos
----------------- T1 2,

p 2
.=
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sandwiched between two different semi-infinite media
with permittivities ε1 and ε2. For the domains z < 0 and
z > d, the general solution to Eqs. (6) and (7) is written as

(14)

where k1z = k1cosα and k2z = k2cosβ.
The transfer matrix method [26–29] yields a linear

relation between the coefficients entering into expres-
sions (14):

(15)

Here,  and  are the amplitude transmission and
reflection coefficients, respectively, given by relation-
ships (8) for the s and p waves.

Note that in the case of the s-polarized wave,  =

k1, z and  = k2, z. For the p-polarized wave, we have

 = k1, z/ε1 and  = k2, z/ε2.

Let us introduce the matrices

and

(16)

where k0x = ω/ccosγ and sinγ = sinα = sinβ.

In expressions (16), t1, 0 and r1, 0 (t0, 2 and r0, 2) are the
amplitude transmission and reflection coefficients,
respectively, for the first (second) semi-infinite medium
bordering a vacuum on the right (left). The amplitudes

, , , and  can be represented as

(17)

(18)

As p, ik1zz{ }exp Bs p, ik1zz–{ } , z 0,<exp+

Cs p, ik2zz{ }exp Ds p, ik2zz–{ } , z d ,>exp+

Cs p,

Ds p, 
 
 

 = 
k1 z,

s p,

k2 z,
s p,--------

1/T1 2,
s p,( )* R1 2,

s p, /T1 2,
s p,–( )*

R1 2,
s p, /T1 2,

s p,– 1/T1 2,
s p,

 
 
 
  As p,

Bs p, 
 
 

.

T1 2,
s p, R1 2,

s p,

k1 z,
s

k2 z,
s

k1 z,
p k2 z,

p

Q1 0,
s p, k1z

k0z

------
1/t1 0,

s p,( )* r1 0,
s p, /t1 0,

s p,–( )*

r1 0,
s p, /t1 0,

s p,– 1/t1 0,
s p,

 
 
 
 

=

Q0 2,
s p, k0z

k2z

------
1/t0 2,

s p,( )* r0 2,
s p, /t0 2,

s p,–( )*

r0 2,
s p, /t0 2,

s p,– 1/t0 2,
s p,

 
 
 
 

,=

ε1 ε2

t1 0,
s p, r1 0,

s p, t0 2,
s p, r0 2,

s p,

1

t0 2,
s

-------
k0z k2z+

2k0z

------------------- i k2z k0z–( )d{ }exp ,=

r0 2,
s

t0 2,
s

--------
k0z k2z–

2k0z

------------------- i k2z k0z+( )d{ }exp ,=

1

t0 2,
p

-------
ε2k0z k2z+

2ε2k0z

------------------------ i k2z k0z–( )d{ }exp ,=

r0 2,
p

t0 2,
p

--------
ε2k0z k2z–

2ε2k0z

------------------------ i k2z k0z+( )d{ }exp .=
Expressions for  and  can be obtained from
relationships (17) by substituting d = 0, k0z for k1z, and

k2z for k0z. Similarly, expressions for  and  can
be obtained from relationships (18) by substituting d =
0, k1z for ε2k0z, and ε1k0z for k2z.

The transfer matrix for the entire system can be rep-
resented as the product of matrices (16) and the transfer
matrix for a layer bordering a vacuum on both sides:

(19)

Here, Us, p is the transfer matrix for the layer bordering
a vacuum on both sides:

(20)

where Ts, p and Rs, p are the amplitude transmission and
reflection coefficients of the s and p waves with the
transfer matrix for this layer.

Using expressions (17)–(20), we can derive alge-
braic relationships between the amplitude coefficients

, , , and . For the s wave, these rela-
tionships are given by

(21)

(22)

where

(23)

For the p wave, these are

(24)

t1 0,
s r1 0,

s

t1 0,
p r1 0,

0

U1 2,
s p, Q0 2,

s p,
Us p, Q1 0,

s p, .=

Us p, 1/Ts p,( )* Rs p, /Ts p,–( )*

Rs p, /Ts p,– 1/Ts p,
 
 
 
 

,=

T1 2,
s p, R1 2,

s p, Ts p, Rs p,

1

T1 2,
s

---------
ik2zd{ }exp

4k1zk0z

---------------------------- k2z k0z–( ) k0z k1z–( )as[=

+ k2z k0z+( ) k0z k1z+( ) as( )*

+ k0z k2z+( ) k1z k0z–( )bs

+ k0z k2z–( ) k0z k1z+( ) bs( )* ] ,

R1 2,
s

T1 2,
s

---------
ik2zd{ }exp

4k1zk0z

---------------------------- k0z k2z–( ) k0z k1z+( )a3[=

+ k1z k0z–( ) k0z k2z+( ) as( )*

+ k0z k2z+( ) k0z k1z+( )bs

+ k2z k0z–( ) k0z k1–( ) bs( )* ] ,

as  = ik0zd{ } / Ts( )*, bsexp  = Rs ik0zd–{ } /Ts.exp

1

T1 2,
p

---------
ik2zd{ }exp

4ε2k1zk0z

---------------------------- k2z ε2k0z–( ) ε1k0z k1z–( )ap[=

+ k2z ε2k0z+( ) ε1k0z k1z+( ) ap( )*

+ ε2k0z k2z+( ) k1z ε1k0z–( )bp

+ ε2k0z k2z–( ) ε1k0z k1z+( ) bp( )* ] ,
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(25)

where

(26)

It follows from expressions (21)–(26) that the deter-

mination of the amplitude coefficients  and 
for a layer bounded by two different homogeneous
semi-infinite media is reduced to the determination of
the amplitude coefficients Ts, p and Rs, p for the same
layer bordering a vacuum on both sides. Note that in the
case of normal incidence (Rs = –Rp and Ts = Tp), the

amplitude coefficients  and  for the electric
component of the s wave and the amplitude coefficients

 and  for the magnetic component of the p

wave are related as  = –  and  =

.

THE PROBLEM OF SCATTERING 
AS THE CAUCHY PROBLEM FOR A WAVE 

EQUATION

It has been demonstrated in the previous section that
there exist relationships (expressions (21–(26))
between the amplitude coefficients of an electromag-
netic wave incident on an insulating layer bounded by
two homogeneous semi-infinite media and the ampli-
tude coefficients of this wave incident on the same layer
bordering a vacuum on both sides (Fig. 1). Below, we
will demonstrate that the problem of determining the

coefficients  and  can be formulated as the
Cauchy problem for wave equations (6) and (7).

In accordance with the approach developed in [30,
31], the amplitude coefficients Ts, p and Rs, p for a layer
that has a continuous refractive index ε(z) and borders
a vacuum on both sides can be expressed in terms of

real functions (z) and (z) at the point z = d:

(27)

R1 2,
p

T1 2,
p

---------
ik2zd{ }exp

4ε2k1zk0z

---------------------------- ε2k0z k2z–( ) ε1k0z k1z+( )ap[=

+ k1z ε1k0z–( ) ε2k0z k2z+( ) ap( )*

+ ε2k0z k2z+( ) ε1k0z k1z+( )bp

+ k2z ε2k0z–( ) ε1k0z k1z–( ) bp( )* ] ,

ap = ik0zd{ } / T p( )*, bpexp  = Rp ik0zd–{ } /T p.exp

T1 2,
s p, R1 2,

s p,

T1 2,
s R1 2,

s

T1 2,
p R1 2,

p

R1 2,
s R1 2,

p ε2T1 2,
s

ε1T1 2,
p

T1 2,
s p, R1 2,

s p,

H1 2,
s p, N1 2,

s p,

1

Ts p,---------
1
2
--- ik0xd{ }exp=

× H1
s p, d( ) N2

s p, d( )+( ) i N1
s p, d( ) H2

s p, d( )–( )–[ ] ,
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(28)

The functions (z) and (z) are solutions to
the following system of differential equations:

(29)

and

(30)

with the initial conditions

(31)

It is seen from Eqs. (29) and (30) that the functions

(z) and (z) also obey wave equations (6) and

(7). Note that in Eqs. (29) and (30), k0z = cosγ, where

γ is the angle at which the wave propagating from a vac-
uum is incident on the layer, and that to determine Ts, p

and Rs, p, it is necessary to take into account the relation-

ships sinγ = sinα = sinβ.

Using expressions (21)–(26), (29), and (30), one can

show that the amplitude coefficients  and  for
a layer bounded by different homogeneous semi-infi-
nite media are expressed in terms of the functions

(z) and (z) at the point z = d as follows:

(32)

(33)

Rs p,

Ts p,--------- 1
2
---– ik0xd{ }exp=

× H1
s p, d( ) – N2

s p, d( )( ) i N1
s p, d( ) H2

s p, d( )+( )–[ ] .

H1 2,
s p, N1 2,

s p,

dN1 2,
s

dz
-------------

ω2

c2
------

ε1 αsin
2 ε z( )–
k0z

---------------------------------- H1 2,
s ,=

dH1 2,
s

dz
-------------- k0zN1 2,

s–=

dN1 2,
p

dz
-------------

ω2

c2
------ 1

k0z

------ 1
ε1 αsin

2

ε z( )
------------------– H1 2,

p ,=

dH1 2,
p

dz
-------------- ε z( )k0zN1 2,

p–=

H1
s p,  = 1, H2

s p,  = 0 and N1
s p,  = 0, N2

s p,  = 1.

H1 2,
s p, N1 2,

s p,

ω
c
----

ε1 ε2

T1 2,
s p, R1 2,

s p,

H1 2,
s p, N1 2,

s p,

1

T1 2,
s

---------
1
2
--- ik2zd{ }

k2z

k1 z,
--------H1

s d( ) N2
s d( )+ 

 exp=

– i
k0z

k1z

------N1
s d( )

k2z

k0z

------H2
s d( )– 

  ,

R1 2,
s

T1 2,
s

--------- 1
2
---– ik2zd{ }

k2z

k1 z,
--------H1

s d( ) N2
s d( )– 

 exp=

– i
k0z

kiz

------N1
s d( )

k2z

k0z

------H2
s d( )+ 

  ,
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(34)

(35)

It follows from expressions (29)–(31) and (32)–(35)
that the problem of determining the amplitude coeffi-

cients  =  (z = d) and  =  (z = d) for

the s and p waves is reduced to the Cauchy problem for
Eqs. (6) and (7), respectively.

It is expedient to apply (29)–(35) to the simple case
of a homogeneous layer (ε(z) = ε = const) bounded by
two semi-infinite media. In this case, from Eqs. (29)–
(31), we have

(36)

(37)

where kz = ω/c cosϕ and εsinϕ = sinγ.

Substituting expressions (36) into Eqs. (32) and (33)
and expressions (37) into Eqs. (34) and (35), we arrive
at

(38)

(39)

1

T1 2,
p

---------
1
2
--- ik2zd{ }

ε1k2z

ε2k1 2,
-------------H1

p d( ) N2
p d( )+ 

 exp=

– i
ε1k0z

k1z

-----------N1
p d( )

k2z

ε2k0z

-----------H2
p d( )– 

  ,

R1 2,
p

T1 2,
p

--------- 1
2
---– ik2zd{ }

ε1k2z

ε2k1 z,
-------------H1

p d( ) N2
p d( )– 

 exp=

– i
ε1k0z

k1z

-----------N1
p d( )

k2z

ε2k0z

-----------H2
p d( )+ 

  .

T1 2,
s p, T1 2,

s p, R1 2,
s p, R1 2,

s p,

H1
s kzz, N1

scos
kz

k0z

------ kzz,sin= =

H2
s k0z

kz

------– kzsin z, N2
s kzcos z,= =

H1
p kzz, N1

scos
kz

εk0z

--------- kzz,sin= =

H2
s εk0z

kz

---------– kzsin z, N2
s kzcos z,= =

ε

1

T1 2,
s

--------- ik2zd{ }exp
1
2
--- 1

k2z

k1z

------+ 
  kzd{ }cos=

– i
k2zk1z kz

2
+

2k1zkz

------------------------- kzd{ }sin ,

R1 2,
s

T1 2,
s

--------- ik2zd{ }exp
1
2
--- 1

k2z

k1z

------– 
  kzd{ }cos=

+ i
kz

2
k1zk2z–

2k1zkz

------------------------ kzd{ }sin ,
(40)

(41)

with

where α is the angle at which the wave propagating
from the first semi-infinite medium is incident on the
layer, ϕ is the angle of refraction in the layer, and β is
the angle of refraction in the second semi-infinite
medium.

Expressions (38)–(41) enable one to determine the
transmission and reflection coefficients for the s- and
p-polarized waves in the case of a homogeneous layer
bounded by two different semi-infinite media.

Assume for definiteness that k2z entering into
expressions (38)–(41) is a real quantity. In other words,
we suppose that ε2 > ε1 and that, if ε2 < ε1, the angle of
incidence α is less than the critical angle α' (sinα' =

) of total internal reflection from the interface
between the first and second semi-infinite media.
Expressions (38)–(41) allow us to determine the condi-
tion for the total transmission for the s and p waves.
Note that if kz is an imaginary quantity (ε1 < ε or α > α''

and sinα'' = ), the reflected and transmitted waves
exist for both polarizations.

If kz is a real quantity, the condition  = 0 means
that the parameters of the problem satisfy simulta-
neously two equations

(42)

It is seen that the total transmission of the s wave
through the layer is possible only if the semi-infinite
media are identical (ε1 = ε2) and kzd = πn, where
n = 1, 2, ….

In the case of p polarization and Rp = 0, two equa-
tions can be derived from expression (41):

(43)

Note that the first equation is equivalent to the Brew-
ster condition for the total transmission of a p-polarized
wave at the interface between the first and the second

semi-infinite media (  = ) [1]. It follows
from Eqs. (43) that the condition Rp = 0 is satisfied only
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if the angle of incidence equals α =  and
kzd = πn, where n = 1, 2, ….

NUMERICAL CALCULATIONS 
AND CONCLUSIONS

To illustrate the results obtained, we will consider
three examples. The first one corresponds to a homoge-
neous layer with a finite width ∆ placed inside an asym-
metric Fabry–Perot resonator of width d. Let a be the
distance between the center of the homogeneous layer
and the left arm of the interferometer (Fig. 1). Note that
in accordance with the statement of the problem, the
parameters d, ∆, and a must satisfy the conditions ∆ ≤
d and ∆/2 ≤ a ≤ d – ∆/2. Assume that the permittivity ε0
of the free space inside the interferometer is constant.
Then, expression (27) and (28) for the amplitude coef-
ficients take the form

(44)

ε2/ε1arctan

1

Ts
----- = ik0z∆{ } kz∆{ }cos i

k0z
2 kz

2+
2k0zkz

----------------- kz∆{ }sin– ,exp
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Fig. 2. Reflection coefficient for the (a) s and (b) p waves
versus angle of incidence α and parameter a for λ = 0.5 µm,
ε0 = 1, ε1 = 1.69, ε2 = 3.24, ε = 2.25 + i0.1, d = 10 µm, and
∆ = 0.5 µm.
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(45)

(46)

(47)

Figure 2 plots the reflection coefficients Rs = | |2

and Rp = | |2 for the s- and p-polarized waves, respec-
tively, versus the angle of incidence α and parameter a.
The refractive index of the isotropic layer is written as

(48)

where n'' is the absorption coefficient.
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Fig. 3. Absorption coefficient for the (a) s and (b) p waves
versus angle of incidence α and parameter a. The remaining
parameters are the same as in Fig. 2.
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Figure 3 plots the parameters Qs, p = 1 – (Rs, p + Ts, p),
which characterize the electromagnetic wave energy
absorbed in the medium, versus the angle of incidence
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Fig. 4. Reflection coefficient R versus (a) wavelength,
(c) angle of incidence, and (d) parameter a. (b) The absorp-
tion coefficient Q versus wavelength for σ = 0.4 µm, c = 0.5,
d = 100 µm, and ∆ = 25σ. ε = 2.25 + i0.001 (a, b) and 2.25
(c, d), α = 30° (a, b, d), a = 40 µm (a–c), and λ = 0.63925
(c) and 0.64 µm (d). The remaining parameters are the same
as in Fig. 2.

R

α and parameter a. It is seen that the quantities Qs, p

oscillate and the amplitudes of these oscillations are
different for the s and p waves. The oscillations are
modulated. The values of Qs, p vary over wide ranges
from anomalously strong to anomalously weak absorp-
tion [33]. These variations can be used, in particular, for
designing systems with controlled reflection, transmis-
sion, and absorption.

Consider the second case where a layer between
semi-infinite media is periodically inhomogeneous
with ε(z) = ε(1 + csin2bz), where b = 2π/σ and σ and c
are the period and amplitude of modulation, respec-
tively. Figure 4a shows the wavelength dependence of
the reflection coefficient R; Fig. 4b demonstrates the
absorption Q as a function of the wavelength; and
Figs. 4c and 4d show the dependences of the reflection
coefficient R on the angle of incidence α and parameter
a, respectively. The solid and dashed lines correspond,
respectively to the s-and p-polarized waves. It is seen
from Figs. 4a–4c that there exist finite ranges of the
wavelength and angle of incidence where the reflection
coefficient equals unity (the so-called forbidden band,
where |R|2 ≈ 1). This is a manifestation of the diffraction
of the electromagnetic wave by the periodic structure of
the medium similarly to the Bragg reflection of X rays
from crystal planes. The dependence of the reflection
coefficient on the system’s parameters for the s wave
differs from that for the p wave. Namely, in contrast to
the s wave, the p wave does not reflect in the case of
incidence at the Brewster angle. Our calculations show
that this difference is observed at any width of the layer.
In addition, the width and position of the Bragg reflec-
tion range for the s wave differ from those for the p
wave. Oscillations accompanying the decrease in the
reflection coefficient outside the Bragg reflection range
are noteworthy. The oscillations are modulated and are
related both to the diffraction of light in the finite vol-
ume and to multiple reflections from the dielectric
interfaces. If the absolute value of the angle of inci-
dence exceeds 50°, we observe total internal reflection.
It is seen from Fig. 4b that the wavelength dependence
of Q exhibits a minimum in the forbidden band, where
the absorption is suppressed (Bormann effect). Outside
the forbidden band, Q oscillates: anomalously strong
absorption changes to anomalously weak absorption
and vice versa. In the case of nonuniform periodic
absorption, the mechanism of this phenomenon is the
same as behind the Bormann effect. For uniform
absorption (in this case, Q also oscillates outside the
Bragg reflection range), this phenomenon is related to
the variation in the group velocity of light, which is a
newly discovered mechanism of anomalous absorption
[32]. Figure 4d and the results of numerical analysis
show the modulated oscillation of the a dependence of
the reflection coefficient R. If the wavelength of inci-
dent light falls into the range of diffraction reflection,
the oscillation amplitude is small (diffraction reflection
suppresses the reflection coefficient oscillations).
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Consider another practically important example. Let
the layer bounded by two semi-infinite media be an
amplifying medium (such a system is equivalent to a
resonator with an active element inside). In this case,
the parameter n" entering into expression (48) is nega-
tive. In the approximation of linear optics, the relation-
ships obtained in this work describe both amplification
and lasing. Figure 5 shows the dependences of the
reflection, R, and transmission, T, coefficients on the
parameter a. We consider normal incidence. The calcu-
lations were made for the wavelength of incident ruby
laser radiation (λ = 0.6943 µm) and the parameters of
the medium n' = 1.763 and n" = 10–4 (the parameters of
ruby at the given wavelength). Narrow peaks in Fig. 5
correspond to the values of the parameter a satisfying
the phase conditions for lasing [33]. The oscillations
observed are modulated. The highest peak corresponds
to the value of a at which both phase and amplitude
conditions for lasing are satisfied. Thus, the lasing con-
ditions can be controlled by varying the parameter a.

Note that the problem of transmission through a res-
onator whose active element has a constant gain χ =
4πn/λ is not adequate for the real process. Actually, the
gain decreases with increasing intensity of radiation

25
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T

100000 200000 300000
a, µm

Fig. 5. Reflection, R, and transmission, T, coefficients ver-
sus parameter a for ∆ = 3000 µm and d = 300 000 µm. The
remaining parameters are the same as in Fig. 2.
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propagating in a lasing medium, which is related to the
creation of population inversion. If the energy accumu-
lated in the active element of a laser is very high, the
frequency of stimulated transitions exceeds the pump-
ing frequency. The difference in the populations
between the ground and excited states decreases
sharply, the gain drops, and, hence, the lasing intensity
saturates [33]. The interaction of the radiation with the
amplifying medium becomes nonstationary and nonlin-
ear. Therefore, the linear approximation fails.
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Abstract—It is shown that the kinetics of the charge and current passing through a thin-film electroluminescent
emitter, as well as the I–V characteristics of the emitter, greatly diverge under blue, red, and IR pulsed illumi-
nation with photon energies of ≈2.6, ≈1.9, and ≈1.3 eV, respectively, and a photon flux density of 4 × 1014–3 ×
1015 mm–2 s–1. Results obtained indicate that, during the operation of the emitter, deep centers associated pre-

sumably with  zinc vacancies and  and  sulfur vacancies exchange charge. These centers lie above
the valence band by ≈1.1, ≤1.9, and ≤1.3 eV, respectively. Their concentrations are estimated as (3–4) ×
1016 cm–3 for  and  and ≈1.5 × 1016 cm–3 for . It is demonstrated that positive and negative space
charges forming in the near-anode and near-cathode regions of the phosphor layer specify the electric perfor-
mance of the emitters. © 2003 MAIK “Nauka/Interperiodica”.

VZn
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+ VS

2+

VZn
2–

VS
+ VS

2+
Studies of the photoelectric properties of ZnS : Mn-
based thin-film electroluminescent emitters (TFELEs),
as well as the behavior of their blue EL band, indicate
that deep centers associated with zinc vacancies VZn
that lie 2.7–1.8 eV below the conduction band bottom
play a key role in EL initiation [1–4]. At the same time,
a number of TFELE properties cannot be explained
without considering the effect of deep centers due to
sulfur vacancies VS [4–8].

The aim of this work is to study the effect of excita-
tion by light from different spectral ranges on the elec-
trical performance of TFELEs in the active operating
regime to clarify the role of deep centers in EL initia-
tion and refine their energy position in the ZnS : Mn
forbidden gap.

The object of our experiments was metal–insulator–
semiconductor–insulator–metal (MISIM) TFELEs,
where M is a lower 0.2-µm-thick transparent SnO2 elec-
trode applied on a glass substrate and an upper
0.15 µm-thick opaque TF Al electrode of diameter
1.5 mm; S, a Mn-doped (0.5 wt %) 0.48-µm-thick
ZnS : Mn phosphor layer; and I, a 0.17-µm-thick Y2O3-
stabilized (13 wt %) ZrO2 insulating layer. The phos-
phor layer was thermally evaporated in vacuo in a
quasi-static volume at a substrate temperature of 250°C
with subsequent annealing at 250°C for 1 h, the opaque
electrode was also applied with thermal evaporation,
and the insulating layers were applied by electron-
beam evaporation.

The time variation of the current through the TFELE
Ie(t) was recorded upon the excitation of the device by
an alternating-sign triangular voltage V(t) from a G6-34
1063-7842/03/4804- $24.00 © 20469
voltage generator equipped with a driver amplifier and
G5-89 external trigger generator. The maximal ampli-
tude of pulses was Vm = 160 V at a voltage nonlinearity
factor of no more than 2%. We used the continuous
mode of excitation with frequencies of 20 and 50 Hz
and the pulsed mode. In the latter case, a train of pulses
with a duration equal to two periods of the triangular
voltage and a repetition rate f = 4, 20, and 50 Hz was
used with the positive and negative voltage half-waves
applied to the upper electrode in the first half-period
(variants (+Al) and (–Al), respectively). The pulse-rep-
etition interval of the train was T = 0.2, 2, and 100 s.
The current Ie was measured with a 0.1- to 10 kΩ-resis-
tor series-connected to the TFELE. The voltage drop
across the resistor was no higher than 0.5% of Vm. The
instantaneous values of the TFELE brightness were
measured with an FÉU-84-3 photoelectric multiplier.
The dependences V(t) and Ie(t) were recorded with an
S9-16 two-channel storage oscilloscope linked to a
computer via an interface. For either channel, 2048
points with a given period of discretization and 256 lev-
els of amplitude quantization were measured and
stored. Mathematical and graphical processing was
accomplished with the Maple V Release4 Version 4.00b
and GRAPHER Version 1.06 2-D Graphing System
application packages. The time variations of the mean
field in the phosphor Fp(t), as well as that of the current,
Ip(t), and charge, Qp(t), passing through the phosphor
layer in the active mode of operation, were calculated
by the method described in [6, 7] for the insulator
capacitance Ci = 730 pF and phosphor capacitance Cp =
275 pF. These values were determined with an E7-14
003 MAIK “Nauka/Interperiodica”
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Fig. 1. (a, c) Ie(t) and (b, d) L(t) at f = 50 Hz. (1) Continuous excitation regime, (2) excitation by a single pulse with T = 2 s, and
(3) blue illumination pulse applied in the interval between exciting voltage pulses with T = 2 s is 500 ms long. (a, b) Variant (–Al)
and (c, d) variant (+Al).
immitance meter for known geometrical parameters of
the device. The device was illuminated (excited) on the
substrate side under continuous and pulsed conditions.
In the blue range, it was illuminated with an E1L51-3B
light-emitting diode with the following radiation
parameters: the maximal amplitude wavelength λm =
475 nm, the half-height width of the radiation spectrum
∆λ0.5 ≈ 35 nm, luminous intensity ≈1 cd, the radiation
power ≈5 mW, and the photon flux density Φ ≈ 1.6 ×
1015 mm–2 s–1. In the red range, the device was illumi-
nated with a semiconductor laser with λm = 656 nm,
∆λ0.5 = 15 nm, P ≈ 1 mW, and Φ ≈ 4 × 1014 mm–2 s–1. In
the IR range, the device was illuminated by two
AL107A diodes with λm = 950 nm, ∆λ0.5 = 25 nm, total
power P ≈ 12 mW, and total flux density Φ ≈ 3 ×
1015 mm–2 s–1.

Pulsed photoexcitation was accomplished in two
regimes: (1) a light pulse is applied during the action of
the train of triangular voltage pulses (the duration of the
pulses equals the doubled period of the exciting volt-
age) and (2) a pulse is applied between the trains imme-
diately after the last pulse with the radiation pulse width
being equal to the pause between the trains.
The basic results of our investigation are as follows.

The effect of the illumination in the pause between
the trains on the shapes of the current pulse Ie(t) and
brightness pulse L(t) is similar to that of the pause with-
out the illumination (Fig. 1). This is because the charge
state of the deep centers in the phosphor layer changes
equally during the pause both with and without [6, 7]
the illumination.

The curves Ie(t), L(t), Ip(t), and Ip(Fp) for the variants
(–Al) and (+Al) are asymmetric (Figs. 1, 2). As in [6,
7], this is explained by the nonuniform distribution of
structural defects and Mn2+ ions across the phosphor
layer, with the Mn2+ ion concentration growing toward
the upper (Al) electrode [6, 7].

As compared with the no-illumination conditions in
the pause, additional effects due to the pulsed illumina-
tion between the trains are the following. (i) For blue
illumination, the current in the initial portion of the
curve Ip(t) grows significantly up to the point r, which
is a demarcation line between the “fast” and “slow” rise
of the curves Ie(t). After this point, the rate of rise for the
curves decreases [6, 7]. Simultaneously, for the variant
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
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Fig. 2. (a, b) Ip(t) and (c, d) Ip(Fp) under pulsed illumination of the device in the interval between voltage pulses: (a, c) variant (−Al)
and (b, d) variant (+Al). (1) Without illumination, (2) blue illumination, (3) red illumination, (4) IR illumination, and (5) V(t)
(V(t) = U). f = 20 Hz, T = 100 s.
(–Al), the slow portion shrinks (Figs. 2a, 2b) and the
mean field Fp(t) in the phosphor grows (Figs. 2c, 2d, 3b,
3d). (ii) For red illumination, the current in the initial
(fast) portion of Ip(t) decreases, while in the slow por-
tion, the amplitude of the pulse Ip(t) increases (Figs. 2a,
2b). The field Fp(t) grows in both portions (Figs. 2c, 2d,
3b, 3d), the growth being more noticeable for the (–Al)
variant. (iii) In the case of IR illumination, the current
Ip(t) early in the fast portion slightly declines. Then, the
rate of rise of the current Ip(t) grows and its amplitude
grows insignificantly (Figs. 2a, 2b). The field Fp(t)
grows only slightly in both (±Al) variants (Figs. 2c, 2d,
3b, 3d).

The above variations of the current Ip(t) for the blue
and red illuminations become much less pronounced in
the second half-period. In the third half-period, they
diminish still more and finally become comparable to
the measurement accuracy in the fourth half-period
(Fig. 4).

For pulsed illumination during the action of the volt-
age pulses, the variations of the Ip(t) curves are much
weaker compared with the no-illumination case. Slight
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
variations are observed only in the portion where Ip(t)
grows. Here, the Ip(t) amplitude varies within the mea-
surement accuracy (Fig. 5). Blue illumination also
causes a significant rise in the current Ip(t) early in the
fast portion, and red illumination also results in a weak
growth of Ip(t) compared with the no-illumination case
for the (+Al) variant and does not change Ip(t) for the
(−Al) variant within the measurement accuracy. For IR
illumination, the rate of rise of Ip(t) in the ascending
portion is higher than in the no-illumination case (as in
the cases with and without illumination in the pause
between the voltage pulses; Figs. 2a, 2b), this effect
being more significant for the (–Al) variant.

For continuous illumination (excitation) of the
TFELE, the effect of the illumination for all the excit-
ing voltage frequencies and spectral ranges mentioned
above is absent (all the variations of Ip(t) are within the
measurement accuracy).

The results obtained can be explained as follows.
The process of ZnS : Mn layer fabrication introduces
various structural defects, including those that are the
most plausible in terms of thermodynamics, namely,
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Fig. 3. (a, c) Qp(t) and (b, d) Fp(t) under pulsed illumination of the device in the interval between voltage pulses: (a, b) variant (–Al)
and (c, d) variant (+Al); (1)–(5) mean the same as in Fig. 2.
zinc and sulfur vacancies [9]. The sulfur concentration
must be high because of doping by manganese and
increase from the lower to upper electrode according to
the growth of the manganese concentration. For the
phosphor layer to remain electrically neutral, it must
also contain a sufficient concentration of zinc vacan-
cies. Their concentration, conversely, is the highest at
the lower insulator–phosphor interface, at least because
of a higher sulfur vapor pressure at the beginning of
phosphor layer application and possibly because of the
presence of defects like singly charged or neutral zinc

interstitials ( , ). Since the concentration of Mn
is high (0.5 wt%), it can not only substitute zinc at lat-
tice sites in the form of Mn2+ ions but also produce Mn
interstitials Mni. The energy positions of deep centers
due to these defects are as follows: for singly charged

Zni
+ Zni

0

zinc vacancies , 0.5–0.6 eV above the valence band

top [10, 11]; for singly charged sulfur vacancies ,
0.6–2.0 eV below the conduction band bottom [10, 12];

for doubly charged zinc vacancies , 1.0–1.1 eV
above the valence band top [1–4, 11]; for doubly

charged sulfur vacancies , 1.05–1.3 eV above the
valence band top [9, 13]; for neutral sulfur vacancies

, 0.2–1.05 eV below the conduction band bottom
[10, 12]; and for zinc interstitials, 0.2 and 0.1–0.12 eV

below the conduction band bottom for  and ,
respectively [12, 13]. Centers due to Mni defects appar-
ently lie near the valence band [11]. In addition, centers
related to other lattice defects, including defect com-
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trains. (a) Variant (–Al) and (b) variant (+Al). For (1)–(5), see Fig. 2.
plexes, may appear under nonequilibrium conditions
[8–15].

Since the equilibrium Fermi level in ZnS is slightly
above the midgap (hence, the low electron conductivity
of the material), deep centers associated with singly

charged  vacancies (which appear to be responsible
for a deep center near the midgap with an energy

exceeding the energy of a  center) and doubly

charged zinc vacancies  (which produce a deeper

center than ) seem to be the most plausible under
equilibrium conditions. The phosphor structure is poly-
crystalline; therefore, levels corresponding to these
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+
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VZn
2–

VZn
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centers are not discrete but have some energy distribu-
tion in the energy gap.

When the applied voltage exceeds a threshold value
in the active operating mode of the TFELE, the tunnel
emission of electrons from surface states at the near-
cathode insulator–phosphor interface takes place. The
electrons are ballistically accelerated, causing the
impact ionization of shallow levels (which, in particu-
lar, are due to Zni defects); Mn2+ luminescence centers
(the energy of excitation of these centers is 2.4–2.5 eV);
and deep centers, including those associated with zinc
and sulfur vacancies [2–4, 6, 7]. The first excitation of
the device to the active mode is, however, accomplished
at a higher excitation voltage [4, 6]. As a result of the
impact ionization of deep centers, whose concentration
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is maximal in the phosphor layer, a positive space
charge (PSC) forms in the near-anode region of the
phosphor possibly via the reactions

(1)

(2)

(3)

It is likely that the ionization of  levels proceeds
at close-to-maximal excitation voltages, since these
levels lie near the valence band top. To these voltages,
there corresponds that portion of the I–V characteristic
where Ip(t) rises after the first S-shaped region and then
falls (Figs. 2c, 2d).

Simultaneously, in the near-cathode region of the

phosphor, electrons are captured by  and  deep
centers, which have a large capture cross section, and a
negative space charge (NSC) forms [8]. Specifically,
the latter effect arises as a result of tunneling from sur-
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Fig. 5. Ip(t) under pulsed illumination of the device during
the action of exciting voltage pulses. (a) Variant (–Al) and
(b) variant (+Al). For (1)–(5), see Fig. 2.
face states:

(4)

(5)

Over the time interval the device is inactive, the
space charges are neutralized by capturing free elec-
trons and holes by the deep centers. However, the relax-
ation time of these charges is relatively large (from sev-
eral seconds to several tens of seconds [6]). Conse-
quently, under continuous excitation with a frequency
f ≥ 1 Hz, the space charges do not have time to be neu-
tralized. In the next exciting voltage half-period, the
voltage polarity on the electrodes reverses. Accord-
ingly, the PSC in the near-cathode region facilitates the
tunnel emission of electrons and the NSC in the near-
anode region provides the impact ionization of Mn2+

luminescence centers and deep centers associated with
zinc and sulfur vacancies at a lesser mean field Fp(t) in
the phosphor layer. Eventually, the threshold voltage
and the luminescence field of the TFELE decrease
compared with the first switching of the device (Fig. 1,
curve 1) [4, 6, 7]. When sufficiently long exciting volt-
age pulses, e.g., with T = 100 s, are separated by a pause
of duration T – 2/f = 100 s – 100 ms = 99.9 s, the space
charges are neutralized by the following scheme:

in the former near-anode region, the PSC is neutral-
ized by capturing free electrons (or tunneling) or their
thermal emission from the valence band or surface
states:

(6)

(7)

(8)

in the former near-cathode region, the NSC is neu-
tralized by tunneling or thermal excitation of the cap-
tured electrons into the conduction band by the reaction

(9)

and reaction (2).
It appears that reaction (6) proceeds much faster

than reactions (7) and (8), because the level due to 
is located near the valence band top.

Blue (photon energy hν ≈ 2.6 eV) illumination of
the device in the interval between the exciting voltage
pulses suppresses the PSC neutralization in the former
near-anode regions according to reactions (7) and (8)

because of the photoionization of  and  by reac-
tions (1) and (2) and leads to the formation of the PSC
in the former near-cathode region via the photoioniza-

tion of , , and  by reactions (1), (2), and (9).
These effects in combination increase the tunnel emis-
sion current, along with the current Ip(t) in the initial
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portion of the dependence Ip(t) (Figs. 2a, 2b, 6a, 6c),
and almost eliminate the portion where Ip(t) slowly
rises, which is apparently associated with the ionization

of  and  centers because they are almost entirely
depleted. In the initial portion of the Ip(t) rise, the dif-
ference ∆Ip(t) between the currents Ip(t) with and with-
out illumination, as well as the related difference in the
charge transferred through the phosphor layer

is positive (Fig. 6). As the voltage V(t) increases, the
values of ∆Ip(t) and ∆Qp(t) become negative. In this
case, |∆Ip(t)|, |∆Qp(t)|, and the field Fp(t) (Figs. 2c, 2d,
3b, 3d, 6a–6d) are greater in the variant (–Al) possibly
because of the greater total concentration of zinc and

VZn
2–

VS
+

∆Qp t( ) ∆Ip t( ) t,d

0

t

∫=
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sulfur vacancies in the phosphor layer at the lower insu-
lator–phosphor interface.

Red (hν ≈ 1.9 eV) illumination in the interval
between exciting voltage pulses suppresses NSC neu-
tralization in the former near-cathode region by reac-
tion (9) and favors PSC neutralization and NSC forma-
tion in the former near-anode region, since illumina-
tion-excited electrons from the valence band are

captured by singly charged  sulfur vacancies by
reaction (4). Because of this, the tunnel emission cur-
rent, as well as the current Ip(t) and the charge Qp(t) in
the initial portion of the Ip(t) rise, decreases (Figs. 2c,
2d, 3a, 3c) compared with the no-illumination case.
Simultaneously, the field Fp(t) grows with increasing
V(t) (Figs. 2c, 2d, 3b, 3d). Since the concentration of
sulfur vacancies in the phosphor layer is greater at the
upper phosphor–insulator interface, the values of
|∆Ip(t)| and |∆Qp(t)|, as well as the rise in the field Fp(t),

VS
+



476 GURIN et al.
are larger for the variant (–Al). At the same time, in the
portion of steep rise for this variant, Ip(t) is higher pre-
cisely because of higher Fp(t), which favors the impact
ionization (in the near-anode region) of the remaining

 centers and also other centers located in the ZnS
energy gap farther from the conduction band bottom.

IR (hν ≈ 1.3 eV) illumination in the interval between
exciting voltage pulses contributes to PSC neutraliza-
tion in the former near-anode region by exciting elec-
trons from the valence band according to reaction (8)
and accelerates NSC neutralization in the former near-
cathode region by reaction (9). The additional PSC neu-
tralization causes a small decrease in the tunnel emis-
sion current, the current Ip(t) (Figs. 2a, 2b, 6a, 6c), and
the charge Qp(t) (Figs. 3a, 5a, 5b) and increases Fp(t)
(Figs. 2c, 3b) in the initial portion of Ip(t) growth com-
pared with their values without IR illumination. This is
observed in the variant (–Al) alone and is explained by
the higher concentration of sulfur vacancies at the
upper phosphor–insulator interface. As the voltage V(t)
and the field Fp(t) increase, the current Ip(t) and the
charge Qp(t) grow in comparison with their values with-
out IR illumination of the device (Fig. 6). This effect is

associated with the impact ionization of  formed by

the additional IR neutralization (by reaction (8)) of 
sulfur vacancies in the bulk and near-anode region of
the phosphor. In the (+Al) variant, the concentration of
sulfur vacancies in the phosphor layer is smaller than
that of zinc vacancies. Moreover, at the lower insula-
tor–phosphor interface, the concentration of sulfur
vacancies is smaller than at the upper interface. There-
fore, the additional neutralization of sulfur vacancies
affects the initial portions of Ip(t), Qp(t), and Fp(t)
growth insignificantly (Figs. 2d, 3c, 3d). As V(t) rises,

the impact ionization of additionally neutralized 
sulfur vacancies that are present in the near-anode
region causes Ip(t) and Qp(t) to grow (Fig. 6), the growth
being somewhat faster than in the variant (–Al) because
of the higher concentration of sulfur vacancies at the
upper phosphor–insulator interface. The fact that the
increments of the Ie(t) and, hence, Ip(t) amplitudes
remain the same in the second to the fourth half-periods
of the voltage V(t) (Fig. 4) can presumably be explained

as follows. For  centers that are additionally neu-

tralized by the IR illumination to the charge state ,
the time of relaxation into the equilibrium state is the
longest compared with the relaxation times for the

other centers, because  centers are the deepest in
the ZnS energy gap. This relaxation time far exceeds
the time interval between successive TFELE switch-
ings during two exciting voltage periods. As a result,

the concentration of the additional  centers remains
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VS
2+

VS
+

VS
2+

VS
+

VS
2+

VS
+

elevated and practically unchanged during the voltage
pulse application.

As was mentioned above, under the blue and red
illuminations, the current Ip(t) varies to a lesser extent
in the second, third, and fourth half-periods of the excit-
ing voltage (Fig. 4). Similar effects were also observed
in [1], where the device was exposed to UV radiation,
and in [6], where illumination was absent. This is

explained by successive charge exchange between 

and  deep centers in the ZnS : Mn energy gap
because of impact ionization when the device is
switched on and carrier capture when the device is
switched off under the condition that the equilibrium
concentrations of these centers are constant. As a result,
by the third or fourth exciting voltage half-period, the
charge state of these centers corresponds to the state
typical of the continuous mode of TFELE operation.

The much weaker variation of the current Ip(t) when
the pulsed illumination is imposed on the exciting volt-
age pulses (Fig. 5) is explained by the much shorter
illumination time (with f = 20 Hz, this time is no more
than 12.5 ms for the first voltage half-period) compared
with the pause duration (99.9 s) and, accordingly, by
the proportional decrease in the number of absorbed
photons. Blue illumination results in the photoioniza-

tion of  and  centers by reactions (1) and (2),
increasing the PSC in the near-cathode region and the
current Ip(t) at the early stage of its growth (Fig. 5). This
is particularly noticeable in the variant (+Al), presum-
ably because of the higher net concentration of zinc and
sulfur vacancies at the lower insulator–phosphor inter-
face. Red illumination causes neutral sulfur vacancies

 to form by reaction (4). The energy position of the
corresponding center is close to the conduction band
bottom, and the impact ionization of this center
increases the current Ip(t). This increase is greater in the
variant (+Al) (Fig. 5b), because, as was already men-
tioned, the concentration of sulfur vacancies at the
upper phosphor–insulator interface is higher. IR illumi-
nation, on the one hand, generates holes in the valence
band via the capture of excited electrons from the

valence band by  centers (reaction (8)); on the other

hand, it raises the concentration of  centers, which
are a basic source of increasing Ip(t) through impact
ionization. Since the mobility of electrons in ZnS is ≈28
times that of holes [15], the latter effect makes a greater
contribution to Ip(t) (Fig. 5).

The fact that the illumination has a negligible effect
on Ip(t) under the continuous excitation of the device
with the illumination intensities and exciting voltage
frequencies used is explained as follows. As was noted,
the time interval between the active modes of the device
is much shorter than the relaxation time of the space
charges; therefore, these charges in the near-cathode
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and near-anode regions have no time to be neutralized
and the number of photons absorbed during the pause
and the active regime is three or four orders of magni-
tude smaller than when the device is excited once and
the pause lasts several seconds to several tens of sec-
onds. As a result, the effect of the illumination on the
space charges formed by reactions (1)–(4) is weak and
the concentration of photogenerated free carriers is
small compared with that of free carriers generated by
tunnel emission and impact ionization in the device’s
active mode.

The results obtained allow us to estimate the con-
centration of deep centers in the ZnS : Mn energy gap.
Let it be assumed that, in the case of blue illumination,

all centers associated with  and  are completely
depleted during the pause between exciting voltage
pulses with T = 100 s. Then, the maximal difference
|∆Qp(t)| in the charges transferred through the phosphor
layer in the active mode with and without the illumina-
tion that is estimated in the portion of steep rise
(Figs. 6b, 6d; curves 2–1) is |∆Qp(t)| ≈ 4.0 × 10–9 C
(variant (–Al)) and |∆Qp(t)| ≈ 4.0 × 10–9 C (variant
(+Al)) for a TFELE area S = 2 mm2 and a PSC layer
thickness close to half the thickness of the phosphor
layer (≈0.2 µm). With such values, the net concentra-

tion of  and  centers is ≈7.7 × 1016 cm–3 at the
lower insulator–phosphor interface and ≈6.2 × 1016 cm–3

at the upper interface. By order of magnitude, these
concentrations equal the expected concentration of zinc
and sulfur vacancies in ZnS [9, 12]. The somewhat

higher concentration of  and  centers at the
lower interface is due to a greater number of defects in
that part of the phosphor film obtained at the early stage
of ZnS : Mn growth.

It should be noted that the total charge transferred
through the phosphor in the active mode without illumi-
nation up to the point the voltage V(t) reaches its high-
est (amplitude) value amounts to ≈2.1 × 10–8 C
(Figs. 3a, 3c) in both (±Al) variants. Then, a fraction of

the charge that is released from  and  centers is
≈0.23 and ≈0.19 (relative to the total charge) for the
(−Al) and (+Al) variants, respectively.

Since red illumination generates, according to reac-
tion (4), the NSC in the near-cathode region, which pro-
duces a field preventing the tunnel emission of elec-

trons from surface states, the determination of the 
sulfur vacancy concentration requires the potential bar-
rier at the insulator–phosphor interface to be known.
Since the local field in the near-anode region changes
with the mean field in the phosphor layer remaining
unchanged, the component of Ip(t) that is due to the

impact ionization of  centers also changes. There-
fore, the fractions of Ip(t) and Qp(t) that are associated
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with impact ionization or electron tunneling from 
centers are difficult to separate exactly.

IR illumination allows us to estimate the concentra-

tion of additionally produced  vacancies and, hence,

the equilibrium concentration of . It equals 1.5 ×
1016 cm–3 with ∆Q ≈ 1 × 10–9 C and a PSC region thick-
ness of ≈0.2 µm. It is interesting to note that the incre-
ments of the current, ∆Ip(t); charge, ∆Qp(t); and,

accordingly, concentration of  centers in the portion
where ∆Ip(t) and ∆Qp(t) sharply grow are almost the
same for both variants (±Al) (Fig. 6). This may indicate

that the structural defects like  are uniformly dis-
tributed across the phosphor layer.

Thus, the blue, red, and IR photoexcitations of a
TFELE in the time interval between exciting voltage
pulses (in the case when this interval and photon flux
density are sufficiently large) confirms the existence of
deep levels in the energy band of ZnS : Mn. They lie
≈1.1, ≤1.3, and ≤1.9 eV above the valence band top and
can probably be related to doubly charged zinc vacan-
cies, doubly charged sulfur vacancies, and singly
charged sulfur vacancies, respectively. The net concen-

tration of centers due to  and  vacancies varies
from 7.7 × 1016 cm–3 at the lower insulator–phosphor
interface to 6.2 × 1016 cm–3 at the upper phosphor–insu-
lator interface. To provide the electroneutrality condi-

tion for the phosphor, the concentrations of  and

 vacancies must be (3–4) × 1016 cm–3. The concen-

tration of  vacancies is about 1.5 × 1016 cm–3. The
results of our study suggest that during the TFELE
operation, accelerated electrons in the near-anode
region ionize (by impact ionization) Mn2+ lumines-

cence centers and also deep centers due to , ,

and  vacancies, causing the formation of the PSC.

In the near-cathode region, deep centers related to 

and  vacancies trap free electrons, neutralizing the
PSC formed in the preceding operating cycle and form-
ing the NSC. In time intervals between the active states
of the device, these space charges are neutralized; the
degree of neutralization is the higher, the longer the
pause. The photoexcitation of the device by “blue” pho-
tons during the pause prevents PSC neutralization in the
former near-anode region, thereby increasing the field
in the near-cathode region and the tunnel emission cur-
rent from surface states at the insulator–phosphor inter-
face. As a result, the current component due to the

impact ionization of  and  deep centers
decreases in the next operating cycle of the device.
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The irradiation by “red” photons decelerates NSC
neutralization in the former near-cathode region and
favors PSC neutralization. Simultaneously, it generates
the NSC in the former near-anode region by transfer-
ring radiation-excited electrons from the valence band

to a level corresponding to . This decreases the field
in the near-cathode region and the tunnel emission cur-
rent. At the same time, the mean field in the phosphor

layer that is required for  and  deep centers in
the near-anode region to be ionized in the next operat-
ing cycle grows. When the field reaches the value
required, the current amplitude becomes larger than in
the absence of the illumination.

IR irradiation causes additional  sulfur vacancies
to form via capturing free electrons that are radiation-

excited from the valence band by  centers. Because
of this, in the next operating cycle, the space charges,
the field in the near-cathode region, and the tunnel
emission current decrease in the variant (–Al), where
the sulfur vacancy concentration at the upper phos-
phor–insulator interface exceeds the concentration of
zinc vacancies. As the applied field grows, so does the
current amplitude because of the ionization of addi-

tional  vacancies in the phosphor layer.

The illumination combined with exciting voltage
pulses affects the current passing through the device
insignificantly, since the number of photons absorbed
by the phosphor layer is small (for the photon flux den-
sities and exciting voltage frequencies used). For the
same reason, the illumination of the device under the
continuous excitation regime does not affect the current
passing through the device.
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Abstract—The instantaneous values of the internal quantum yield and luminous efficacy of thin-film electrolu-
minescent emitters are experimentally studied as functions of time, the mean field in the phosphor layer, and
the charge passing through this layer. Also, the dependences of the internal quantum yield and luminous efficacy
on the exciting voltage amplitude are explored. At exciting voltage frequencies above 10 Hz, the time depen-
dences of the instantaneous quantum yield and luminous efficacy exhibit a dip in the range where the brightness
and current through the phosphor layer grow and a peak in the range where the brightness and current decline.
The dip and peak are related to the different rates of rise and fall of the brightness and current. © 2003 MAIK
“Nauka/Interperiodica”.
The basic parameters characterizing the efficiency
of thin-film electroluminescent emitters (TFELEs),
internal and external quantum yields and luminous effi-
cacy, are integral quantities. For this reason, physical
processes governing their variation with various param-
eters of TFELE excitation (the shape, frequency, and
amplitude of the applied voltage, etc.) cannot be con-
sidered in detail. Earlier, we studied the EL kinetics in
such devices, including the kinetics of the instanta-
neous quantum yield, for exciting voltage frequencies
in the range 0.1–2.0 Hz. With these frequencies, the
adjacent brightness waves do not overlap and the char-
acteristic times of EL are less than a quarter of the
exciting voltage period [1]. Of practical interest are,
however, exciting voltage frequencies of 50 Hz or
higher.

The aim of this work is to study the variation of the
instantaneous internal quantum yield and luminous
efficacy of TFELEs with time, the mean field in the
phosphor layer, and the charge passing through this
layer. Also, we were interested in the dependences of
the external and internal quantum yields and luminous
efficacy on the exciting voltage amplitude in the voltage
frequency range 2–500 Hz.

The object of our experiments was metal–insulator–
semiconductor–insulator–metal (MISIM) TFELEs,
where M is a lower 0.2-µm-thick transparent SnO2 elec-
trode applied on a glass substrate and an upper
0.15-µm-thick opaque thin-film Al electrode of diame-
ter 1.5 mm; S, a Mn-doped (0.5 wt %) 0.54-µm-thick
ZnS : Mn phosphor layer; and I, a 0.15-µm-thick Y2O3-
stabilized (13 wt %) ZrO2 insulating layer. The phos-
phor layer was thermally evaporated in vacuo in a
quasi-closed volume at a substrate temperature of
250°C with subsequent annealing at 250°C for 1 h, the
1063-7842/03/4804- $24.00 © 20479
opaque electrode was also applied by thermal evapora-
tion, and the insulating layers were applied by electron-
beam evaporation.

The time variations of the brightness L and current
through the TFELE Ie(t) were recorded upon the excita-
tion of the device by an alternating-sign triangular volt-
age V(t) from a G6-34 voltage generator equipped with
a driver amplifier and G5-89 external trigger generator.
The maximal amplitude of pulses was Vm = 160 V at a
voltage nonlinearity factor of no more than 2%. The
exciting voltage (in the pulsed excitation regime) was
applied as a train of pulses with a duration equal to two
periods of the triangular voltage and a repetition rate f =
2, 10, 50, 200, and 500 Hz. The time T between excita-
tions was varied between 1 and 100 s. In the continuous
excitation mode, the exciting voltage frequency was
also 2, 10, 50, 200, and 500 Hz. The current Ie was mea-
sured with a 0.1- to 10 kΩ-resistor series-connected to
the TFELE. The voltage drop across the resistor was no
higher than 0.5% of the voltage amplitude. The instan-
taneous value of the brightness was measured with an
FÉU-84-3 photoelectric multiplier. The time depen-
dences of the exciting voltage, current through the
device, and instantaneous brightness were recorded
with an S9-16 two-channel storage oscilloscope linked
to a computer via an interface. For either channel,
2048 points with a given period of discretization and
256 levels of amplitude quantization were measured
and stored. Mathematical and graphical processing was
accomplished with the Maple V Release4 Version 4.00b
and GRAPHER Version 1.06 2-D Graphing System
application packages.

The time variations of the mean field in the phos-
phor Fp(t), as well as that of the current, Ip(t), and
charge, Qp(t), passing through the phosphor layer in the
003 MAIK “Nauka/Interperiodica”
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active mode of operation, were calculated as in [1, 2]
for a total capacitance of the device’s layers Ctot = 986
pF and initial geometrical phosphor capacitance Cp =
250 pF with allowance for the voltage drop across the
resistor, which was subtracted from the voltage V(t).
The capacitances were found from the total capacitance
of the device Ce = 200 pF, which was measured with an
E7-14 immitance meter for known geometrical param-
eters of the device.

The external quantum yield ηext of a TFELE is
known to be defined as the ratio of the number of pho-
tons emitted by the device to the number of charge car-
riers that passed through the phosphor layer during
luminescence. Under the assumption that the emission
from the device’s surface is monochromatic and direc-
tion-independent, we have [3]

(1)

where K0 is the coefficient of emission extraction from
the device; ηint is the internal quantum yield; A =
(πSeq)/(hνfλ), Se is the emitting surface area; q is the
charge of an electron; hν is the photon energy; fλ is the
spectral luminous efficiency of the emission; Le is the
electroluminescence brightness averaged over the
exciting voltage period T,

and Qp is the charge passed through the device for the
period T during the formation of two brightness waves.

The luminous efficacy ηL of a TFELE is defined as
the ratio of the optical flux from the device, Φe = πSeLe,
to the active power Pp spent to produce this flux [3]:

(2)

where dp is the phosphor thickness and

As follows from (1) and (2), ηext, ηint, and ηL are
integral parameters and cannot clarify physical pro-
cesses governing EL in TFELEs. The instantaneous
values of these parameters, ηext(t), ηint(t), and ηL(t),
bear much more information. Earlier [1], we deter-

ηext K0η int K0A
LeT
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mined the dependences ηext(t) and ηint(t) in the range of
ultralow frequencies 0.1–2.0 Hz. At higher frequencies,
the solution of the kinetic equation relating the concen-
tration of excited EL centers (hence, the instantaneous
brightness L(t)) to the current Ip(t) throughout the
brightness wave may be difficult. Therefore, we will
use another approach.

As the instantaneous value of the internal quantum
yield, we will take the increment of the number of pho-
tons emitted from the phosphor layer, ∆m(t), divided by
the increment of the number of charge carriers, ∆n(t),
passing through the layer over a time interval ∆t:

(3)

Similarly, the instantaneous luminous efficacy is
defined as the ratio of the increment of the optical flux,
∆Φe(t), to the increment of the active power, ∆Pp(t),
spent to create this increment:

(4)

In the curves ηint(t) (see (3)) obtained from the
experimental dependences L(t) (Figs. 1a, 1e, 2a, 2e)
and Ie(t), as well as from the analytical dependences
Ip(t) [1, 2], for the frequencies f = 10 (Figs. 1b, 1f) and
200 Hz (Figs. 2b, 2f) one can separate three portions in
accordance with similar portions in the curves L(t),
Ip(t), and Fp(t) (Figs. 1, 2). Here, I is the portion where
the parameters rapidly grow when the exciting voltage
V(t) slightly exceeds the threshold value Vt; II, the por-
tion where the parameters vary in a complicated man-
ner; and III, the portion where the voltage diminishes.
For the two given frequencies, the behavior of ηint(t) is
noticeably different (Fig. 3), exhibiting the following
features:

(1) Asymmetry for both variants (±Al) in correspon-
dence with the asymmetry of the dependences L(t),
Ip(t), and Fp(t) as in [1, 2]. The value of ηint is greater
for the variant (+Al), since Mn2+ impurity ions and lat-
tice defects are nonuniformly distributed across the
phosphor layer.
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Fig. 1. (a, e) L(t), (b, f) Ip(t), (c, g) Fp(t), and (d, h) ηint(t) at f = 10 Hz. (a–d) Variant (–Al) and (e–h) variant (+Al). (1) Continuous
excitation and (2, 3) pulsed excitation with T = 5 (2) and 100 s (3). I, portion of fast rise; II, intermediate portion; III, portion of fall.
Dashed line in Figs. 1–3, 5, and 7 shows the shape of the voltage V(t). Sample 1.
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Fig. 2. The same as in Fig. 1 for f = 200 Hz. Sample 1.
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Fig. 3. ηint(t) for f = 2 (a), 10 (b), 50 (c), and 200 Hz (d). (1, 4) Continuous excitation and (2, 3, 5, 6) pulsed excitation with T =
(2, 5) 5 and (3, 6) 100 s. (1–3) Variant (–Al) and (4–6) variant (+Al). Sample 1.
(2) In portion I, ηint(t) monotonically grows at
frequencies f = 2 and 10 Hz (Figs. 3a, 3b). In this
portion, the dependence Fp(t) is also close to linear
(Figs. 1c, 1g).

(3) With an increase in the period T of the pulsed
excitation regime, the beginning of the curve ηint(t) in
portion I shifts in time (Fig. 3) in accordance with the
shift of the curves L(t) and Ip(t) (Figs. 1, 2). As in [1, 2],
this is explained by an increase in the threshold voltage
Vt because of a decrease in the residual field Fp(t) in the
phosphor layer (Figs. 1c, 1g, 2c, 2g). The decrease in
Fp(t) is due to polarization charges on states at the phos-
phor–insulator interface and also to space charges in
the phosphor layer, which are neutralized as T increases
[1, 2].
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
(4) In the continuous excitation mode, at frequen-
cies of 50 Hz or higher, brightness waves overlap
(Figs. 2a, 2e). This causes the overlap of adjacent volt-
age half-periods in portion I of the dependence ηint(t)
(Figs. 2d, 2h, 3c, 3d).

(5) At frequencies of 50 Hz or higher, portion I
exhibits a dip (Figs. 3c, 3d), which becomes deeper
when continuous excitation changes to the pulsed exci-
tation regime and T increases.

(6) In portion II, the dependence ηint(t) is different
for the variants (–Al) and (+Al) at f = 2, 10, and 50 Hz
(Figs. 3a–3c). Namely, under continuous excitation, the
curve ηint(t) slightly increases in the variant (–Al) and
declines in the variant (+Al). At f = 200 Hz under con-
tinuous excitation (Fig. 3d), the curve ηint(t) in this por-
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Fig. 4. ηint(Qp). The frequencies, excitation conditions, and variants are the same as in Fig. 2. Sample 1.
tion tends toward saturation and at still higher frequen-
cies also falls in the variant (–Al).

(7) At f = 2, 10, 50, and 200 Hz, portion II of the
curve ηint(t) shows a peak in the variant (–Al) in the
case of pulsed excitation. A similar peak is observed in
the variant (+Al) under continuous excitation as in the
previously obtained data for f = 2 Hz [1] (Figs. 1d, 1h,
2d, 2h, 3). The height of this peak grows with T in the
variant (+Al).

(8) In portion III, the form of the curves ηint(t) is fre-
quency dependent. Namely, at f = 2 Hz, ηint falls
(Fig. 3a); at f = 10 Hz or higher, an additional peak is
observed in this portion (Figs. 1d, 1h, 3b). For the fre-
quencies 50 and 200 Hz, this additional peak is shown
incompletely because of its large amplitude and long
fall time, which extends beyond the figures (Figs. 2d,
2h, 3c, 3d). Its appearance is associated with the fact [1]
that the brightness L(t) drops more slowly than the cur-
rent Ip(t) (Figs. 2a, 2b, 2e, 2f).

(9) In portions I and II, as the frequency grows, ηint
decreases at the same voltage values for both variants
(Fig. 3).

The dependences of ηint on the charge Qp passing
through the TFELE during the formation of brightness
waves (Fig. 4) are similar to the curves ηint(t) (Fig. 3).
This is because the dependence Qp(t) is almost linear in
portions I and II and varies only slightly in portion III
(Fig. 5).

The dependence of ηint on the mean field Fp in the
phosphor layer (Fig. 6) is nearly linear in portion I for
f = 2 and 10 Hz. At f = 50 Hz or higher, it exhibits a dip
like the curves ηint(t) and ηint(Qp) at f = 50 Hz. This is
explained by the nearly linear dependence Fp(t) in this
portion (Figs. 1c, 1d, 2c, 2d). In portion II, however, the
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
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curves ηint(Fp) are highly irregular, which reflects the
different behavior of Fp(t) in this portion depending on
the variant (±Al) and frequency (Figs. 1c, 1d, 2c, 2d).
This situation is the result of space charges forming in
the near-anode and near-cathode regions of the phos-
phor [1, 2].

As follows from (3) and (4), the dependence ηL(t)
differs from the dependence ηint(t) by the factor Fp(t) in
the denominator. Then, the instantaneous active power
Pp(t) can be fairly accurately approximated by the rela-
tionship [3]

(5)

In view of the linear growth of Fp(t) in portion I and
the relatively weak dependence Fp(t) in portion II
(Figs. 1c, 1g, 2c, 2g), the form of the dependence Pp(t)
turns out to be similar to that of the dependence Ip(t)
(Figs. 7b, 7d). Therefore, the dependences ηint(t) and
ηL(t) are similar in shape (Figs. 7e, 7f). As follows from
Figs. 7e and 7f, at frequencies f ≤ 10 Hz, the values of
ηint and ηL for sample 2 reach a maximum at the point
r, which separates the regions of fast and slow growth
of Ip(t) and L(t). Above this point, the rate of rise of
these curves declines [1, 2] even if the amplitude (max-
imal value) Vm of the exciting voltage increases further.

Pp t( ) Ip t( )Fp t( )dp.=
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However, this maximum in the curve ηL(t) slightly low-
ers with increasing Vm (Fig. 7f), because the field Fp(t)
increases at the point r with Vm (Fig. 7c).

The values of the internal quantum yield ηint and
luminous efficacy ηL in the dependences ηint(Vm) and
ηL(Vm), which were found from Fig. 7 by formulas (1)
and (2), are greater for the variant (+Al) (Figs. 8d, 8e),
which is due to different values of Le in the variants
(+Al) and (–Al) (Fig. 8c). At the same time, the half-
period-averaged values of the current Ip passing
through the phosphor layer,

(6)

and power Pp,

(7)

coincide within the accuracy of measurement and cal-
culation for both variants (Figs. 8a, 8b). The bright-
ness–voltage characteristic of the TFELE, Le(Vm), is
typical of this device: it has a portion where the growth
of Le slows down (for Vm above 125 V; Fig. 8c) or satu-

Ip
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T
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(1, 2) Variant (–Al) and (3, 4) variant (+Al). Sample 1.
rates (in the semilogarithmic scale [4]; Fig. 8f). In this
portion, the curves Ip(Vm) and Pp(Vm) are similar to the
curve Le(Vm) (Figs. 8a–8c). Therefore, at Vm above
125 V, ηint depends on Vm only slightly, reaching a max-
imum at Vm ≈ 135 V. Since Fp grows with Vm in portion II
(Fig. 7b), the curves ηL(Vm) exhibit a more distinct fall
at Vm ≥ 125–130 V (Fig. 8e). However, from these
dependences ηint(Vm) and ηL(Vm), one cannot elucidate
the physical mechanisms governing the EL kinetics,
particularly because the portion where the brightness
L(t) falls (Figs. 1a, 1e, 2a, 2e) makes a considerable
contribution to the mean brightness at f ≥ 10 Hz.

The results obtained can be explained as follows.
The behavior of the curves ηint(t) in portions I and II

can be explained in the same way as in [1, 4]. The val-
ues of L(t) and ηint(t) are related to the concentration
N*(t) of excited luminescence centers as [5, 6]

(8)

where

(9)

N1(t) is the number of luminescence centers excited by
one electron that passed through the phosphor layer,

(10)

dp(t) is the effective phosphor thickness within which
the impact excitation of luminescence centers takes
place; σ is the impact excitation cross section; N(x, t) is
the distribution of unexcited luminescence centers

L t( )
K0hν f λ

π
-------------------

η int t( )N* t( )dp t( )
τ*

------------------------------------------,=

η int t( ) N1 t( )Pr t( );=

N1 t( ) dp t( )σN x t,( );=
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TECHNICAL PHYSICS      Vol. 48      No. 4      2003



488 GURIN et al.
2 × 10–6

1 × 10–6

0

Ip, A

(a)

1, 2

2

1

0

ηint, arb. units

(d)

1

2

3

Pp, W

2 × 10–4 (b)

1, 2

1 × 10–4

0

(e)

0

1

2

ηL, arb. units

1

3

2

1 × 105

1 × 104

1 × 103

1 × 102

1 × 101

Le, arb. units

1
3
2

1
100 120 140 160

U, V

(f)(c)

1

100 120 140 160
U, V

3

2

0.02

Le, arb. units

0

Fig. 8. (a) Ipe(Vm), (b) Ppe(Vm), (c) Le(Vm), (d) ηint(Vm), (e) ηL(Vm), and (f) (Vm) at f = 10 Hz under pulsed excitation with

T = 1 s for the voltage half-period in the variant (1) (–Al) and (2) (+Al). (3) Values averaged over the voltage period. Sample 2.

Lelog
TECHNICAL PHYSICS      Vol. 48      No. 4      2003



QUANTUM YIELD AND LUMINOUS EFFICACY 489
across the phosphor layer; Pr(t) is the probability of
radiative recombination of luminescence centers,

(11)

τ* is the lifetime of excited luminescence centers; and
τr is the time constant of excited center relaxation via
radiative transitions to the ground state.

The concentration N*(t) of excited luminescence
centers is proportional to the probability of excitation
per unit time α(t), which is generally expressed as [4]

(12)

where n(t) and v(t) are, respectively, the concentration
and velocity of free electrons with an energy sufficient
for exciting luminescence centers.

Thus, the rapid growth of ηint(t) in portion I at f = 2
and 10 Hz (Figs. 1d, 1h, 3a, 3b) is associated with the
growth of Fp(t) (Figs. 1c, 1g), the energy of accelerated
electrons, α(t) (see (12)), and N1(t) (see (10)).

The dip in portion I of the curve ηint(t) at frequencies
of 50 Hz and higher (Figs. 2d, 2h, 3c, 3d), as well as in
the curves ηint(Qp) (Figs. 4c, 4d) and ηint(Fp) (Figs. 6c,
6d), is explained by the changed relationship between
the rates of rise of the brightness L(t) and current Ip(t)
in this portion. At f = 2 and 10 Hz, the rates of rise of
L(t) and Ip(t) are nearly the same (in accordance with
data obtained in [1]). Also, ηint(Qp) and ηint(Fp) also
grow in portion I (Figs. 1d, 1h, 3a, 3b, 4a, 4b, 6a, 6b).
At higher frequencies, the current Ip(t) rises faster than
L(t) up to the point r (cf. Figs. 2b, 2f and 2a, 2e). As a
result, ηint(t) decreases, reaching a minimum at the
point r (Figs. 2d, 2h, 3c, 3d). In going over the point r,
the growth of Ip(t) slows down and ηint(t), as well as
ηint(Qp) and ηint(Fp), increases. Under continuous exci-
tation at frequencies of 50 Hz or higher, adjacent
brightness waves overlap. Therefore, in portion I, Mn2+

luminescence centers excited in both the previous and
current voltage half-periods relax, with their concentra-
tions decreasing and increasing, respectively. Such a
relaxation causes the minimum in the curve ηint(t)
(Figs. 2d, 2h, 3c, 3d). This minimum shades the dip
(including in the curves ηint(Qp) and ηint(Fp); Figs. 4c,
4d, 6c, 6d), which appears when the relationship
between the growth rates of Ip(t) and L(t) changes.

In portion II, the excitation of Mn2+ centers is char-
acterized by a weak variation of the mean field Fp(t)
(Figs. 1c, 1g, 2c, 2g). Therefore, ηint(t) varies under the
condition that Pr(t) is constant and the mechanism of
direct impact excitation of luminescence centers with
the distribution N(x, t) in a phosphor layer of effective
thickness dp(t) (see (9) and (10)) holds. As was men-
tioned above, the distribution N(x, t) is nonuniform: the
concentration of the centers is higher at the upper elec-

Pr t( ) τ*
τ r
-----;=

α t( ) σn t( )v t( )
σIp t( )

qSe
---------------,= =
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trode (Al). The value of dp(t) changes when deep cen-
ters at the anode and cathode ionize and exchange
charge. This results in the formation of space charge
fields at the electrodes. The ionization of deep centers
at the anode also leads to the dissipation of the energy
of accelerated electrons by these centers; hence, n(t),
v (t), and, accordingly, α(t) decrease [4]. Eventually, the
behavior of ηint(t) in portion II is governed by the
decrease in dp(t) and α(t), as well as by the change in
N(x, t). The distribution N(x, t) is the variation of the
Mn2+ initial distribution N(x) across the phosphor layer
with time because of the decrease in the thickness dp(t)
of the region where luminescent centers are excited and
the shift of this region toward the anode. For the variant
(+Al), all these factors in portion II become less signif-
icant and ηint(t) drops (Figs. 1h, 2h, 3). For the variant
(–Al), a decrease in dp(t) and α(t) may be compensated
for by an increase in N(x, t). Therefore, ηint(t) may
slightly grow (Figs. 1d, 3a, 3b) for same samples and
decline for others (Fig. 7e).

In the case of pulsed excitation of the TFELE, the
space charges relax and the fields of these charges in the
near-anode and near-cathode regions of the phosphor
decrease over the time interval between voltage pulses
[1, 2]. The field decrease is the stronger, the larger T is.
As a result, the threshold value Vt of the device and the
mean field Fp(t) in the phosphor rise in the next excita-
tion cycle, including in portion II (Figs. 1, 2). This
causes the energy of accelerated electrons and the prob-
ability α(t) of excitation of luminescence centers (see
(12)) to increase and also results in the appearance
and/or growth of the peak in the dependence ηint(t) in
portion II (Figs. 1d, 1h, 2d, 2h, 3).

The decrease in ηint(t) with increasing frequency f in
portion II for the same values of V(t) is explained as fol-
lows.

The kinetic equation for the rate of change of the
concentration of excited luminescence centers has the
form [1]

(13)

If σ is constant, α(t) is independent of N*(t), τ* is
independent of time t, α(t) ! 1/τ*, and the current Ip(t)
in portion III is approximated as

(14)

(where τ4 and τ5 are the time constants of Ip(t) fall), the
solution to Eq. (13) that contains the value Ipm at the
point m (Figs. 1b, 1f, 2b, 2f) was shown [1] to yield (in
view of expressions (8) and (12)) the following expres-
sion for L(t) in portion III:

dN* t( )
dt

----------------- α t( ) N t( ) N* t( )–[ ] N* t( )
τ*

--------------.–=

Ip t( )
Ipm

2
------- e

t /τ4–
e

t /τ5–
+( )=

L t( ) = 
Aη int t( )N1 t( )

qSe
--------------------------------

Ipm

2
-------

τ4

τ4 τ*–
----------------e

t /τ4– τ5

τ5 τ*–
----------------e

t /τ5–
+ 

 
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
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Table

f, Hz 2 10 50 200

Variant –Al +Al –Al +Al –Al +Al –Al +Al

τ4, ms 2.79 2.08 0.35 0.574 0.088 0.055 0.0199 0.0166

τ5, ms 10.8 9.4 2.05 2.96 0.45 0.397 0.111 0.105

B 0.67 0.609 0.0877 0.25 0.143 0.0003 7.95 × 10–7 5.35 × 10–5

C 0.36 0.399 0.0103 0.0089 0.591 0.717 0.81 0.76

D 3.26 × 10–5 4.15 × 10–5 0.914 0.727 0.277 0.269 0.27 0.34
(15)

Here, τ1, τ2, and τ3 are the respective time constants
of Ip(t) growth in portion I up to the point r and in por-
tion II before and after the point where the rate of cur-
rent growth changes sign; tm is the time corresponding
to the value Vm; and Ipr is the value of the current Ip at
the point r.

For τ* = 1.4 ms, the inequality α(t) ! 1/τ* holds at
f < 200 Hz. Indeed, since σ = (2–4) × 10–16 cm2 [1, 5]
and Se = 2 mm2, then, according to (12), α(t) ≈ 5 s–1 for
f = 50 Hz and Ipm ≈ 5 × 10–5 A and α(t) ≈ 15 s–1 for f =
200 Hz and Ipm ≈ 1.5 × 10–4 A. At the same time, 1/τ* =
714 s–1.

As follows from Figs. 1 and 2, the current Ip(t) drops
almost to zero when the mean field Fp(t) diminishes to
~108 V/m, which roughly equals the luminescence
threshold; that is, the ionization of Mn2+ luminescence
centers continues throughout the Ip(t) fall. This points
to the need to solve kinetic equation (13), which
involves the term α(t)[N – N*(t)] responsible for gener-
ation, in portion III (the portion of fall) for the fre-
quency range considered above, as in the case of
ultralow frequencies [1].

At f < 2 Hz, τ1…τ5 @ τ* and the dependence L(t) is
similar to the dependence Ip(t) [1]. However, even at
f = 2 Hz, τ4 becomes comparable to τ* [1]. At f ≥ 10 Hz,
the same is true for the other time constants. At high
frequencies, τ1…τ5 become less than τ*. This decreases
the preexponentials in (15) and slows down the growth
of L(t) in comparison with that of Ip(t) with increasing
frequency. Physically, this means that the relaxation of
excited Mn2+ luminescence centers is slower than the
variation of Ip(t) and that the concentration [N – N*(t)]
of unexcited centers in Eq. (13) decreases with increas-

+ Ipr

τ2

τ2 τ*–
----------------e

tm/τ2–
–

τ3

τ3 τ*–
----------------e

tm/τ3+
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τ1
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ing frequency f. Under continuous excitation of the
device, the decrease in ηint(t) at f ≥ 50 Hz is more appre-
ciable because adjacent brightness waves overlap
(Figs. 2a, 2e).

The similar variation of ηint(t) with frequency in
portion II (Fig. 3) under continuous excitation and
under pulsed excitation with different T confirms the
fact that dp(t), N(x, t), and Fp(t) vary with frequency
insignificantly. The dependence Fp(t) in portion II is
also weak at different frequencies (Figs. 1c, 1g, 2c, 2g).

The explanation of the behavior of the curve ηint(t)
in portion II, including at various Vm (Figs. 1, 2, 3, 7),
as well as solution (15) to Eq. (13), is based on the
assumption that the mechanism of direct impact excita-
tion of single Mn2+ centers holds and that σ, Pr, and,
hence, τ* appearing in (9)–(11) remain constant. The
constancy of τ* unambiguously characterizes the con-
stancy of the relationship between radiative and nonra-
diative recombination centers [7, 8], as well as the
absence of luminescence centers of another type.

The data obtained validate the above assumptions.
For example, approximation (14) of portions III, where
the curves Ip(t) fall, fits the values of Ip(t) obtained from
the experimental dependence Ie(t) within 0.4%. Taking
into account that the exponentials in expression (15) for
L(t) vary in portion III much more than the preexponen-
tials, we represent (15) in the form

(16)

where B, C, and D are constants.

Approximation (16) of L(t) in portion III, where the
curve falls, is accurate to within 0.1% for the range of
fall of two decades (one hundred times), which is prac-
tically the most important, at f = 2, 10, and 50 Hz and
τ* = 1.4 ms. At f ≥ 200 Hz, the agreement breaks pos-
sibly because the assumptions used when solving
Eq. (13) are not quite correct.

As follows from the table, τ4 and τ5 vary almost
inversely proportionally to f and so rapidly decreases
with increasing f. This time constant apparently charac-
terizes the capture of free charge carriers by volume
and surface centers when the mean field in the phosphor
layer drops to the threshold value or below.

L t( ) Be
t /τ4–

≈ Ce
t /τ5–

De t /τ*– ,+ +
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The f dependences of the coefficients B, C, and D
suggest that the slowly decaying component of Ip(t)
with the time constant τ5 and the lifetime τ* of lumines-
cence centers play an increasingly important role in the
fall of Ip(t) and L(t), respectively, as f grows.

The fact that the branch where L(t) falls remains
unchanged at various Vm (Figs. 7a, 7b) also indicates
the constancy of the parameters that describe the exci-
tation mechanisms, as well as the mechanisms of radi-
ative and nonradiative recombinations of luminescence
centers, at greatly differing excitation levels. The
branches where L(t) and Ip(t) fall also do not change
when the continuous excitation is changed to the pulsed
excitation with different T (Figs. 1a, 1b, 1e, 1f, 2a, 2b,
2e, 2f). This is additional evidence that the charge state
of defects in the phosphor layer has a minor effect on
the excitation and relaxation of Mn2+ luminescence
centers.

It should be noted that the product of exponential
functions used in [9] to approximate brightness fall
does not agree with the experimental dependence L(t),
including in that range of f where τ* @ τ4 and τ5. This
may indicate that, with the concentration of Mn2+ cen-
ters in the phosphor layer used in this work, the concen-
tration quenching of luminescence is absent.

Thus, the dependences of the instantaneous values
of the internal quantum yield ηint and luminous efficacy
ηL on time t and exciting voltage amplitude Vm in com-
bination with other electrical and illumination engi-
neering characteristics show that at exciting voltage
frequencies f ≤ 10 Hz, instantaneous values ηint(t) and
ηL(t) rapidly grow in the portion where the brightness
L(t) and the current Ip(t) passing through the phosphor
layer also steeply grow. This may be associated with an
increase in the number of luminescence centers excited
by one electron passing through the phosphor layer
when the mean field in the phosphor increases. At f >
10 Hz, the portion where ηint(t) grows shows a dip,
which appears when the current Ip rises faster than the
instantaneous brightness L(t). The dip becomes more
pronounced in the pulsed excitation mode especially
when the time interval T between the pulses widens.
This effect is due to the enhanced rate of growth of Ip(t)
when the space charge fields in the near-anode and
near-cathode regions of the phosphor layer are compen-
sated for in the pause between the pulses and the thresh-
old field of luminescence increases. As the current Ip(t)
and brightness L(t) grow further (more slowly), the
dependences ηint(t) and ηL(t) in both the continuous and
pulsed excitation modes are apparently governed by the
decrease in the effective phosphor thickness dp(t)
within which the ionization of Mn2+ luminescence cen-
ters occurs and in the probability of excitation of these
centers per unit time α(t). One more characteristic con-
trolling the behavior of ηint(t) and ηL(t) is the variation
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
of the initial distribution of luminescence centers across
the phosphor layer N(x) with time; i.e., the distribution
N(x, t). The initial distribution changes because the
effective phosphor thickness dp(t) (the thickness of the
ionization region) diminishes and shifts toward the
anode. Eventually, according to the frequency f, the
curves ηint(t) and ηL(t) in this portion may reach a max-
imum (its height grows with T in the pulsed excitation
mode) and then fall, have a plateau (where ηint and ηL

are time independent), or exhibit a region where ηint
and ηL grow with time.

The integral characteristics ηint(Vm) and ηL(Vm) do
not allow the physical mechanisms responsible for
electroluminescence to be considered in detail. The rea-
son is that, at f ≥ 10 Hz, the branch where the brightness
falls because of the relaxation of excited Mn2+ centers
contributes significantly to the mean brightness, which
is necessary to determine these processes. The portion
of brightness fall lasts long after the fall of the current
through the phosphor and masks processes responsible
for the excitation of the centers.

For the concentration of luminescence centers used
in this work, the analytical solution to the kinetic equa-
tion describing the change of this concentration with
time yields a fairly accurate approximation of the curve
of L(t) fall at frequencies f < 200 Hz under various
exciting voltage amplitudes Vm. In this case, the fall of
the current Ip(t) through the phosphor layer is approxi-
mated by the sum of two exponential functions under
the assumption of simple impact ionization of single
Mn2+ centers, which subsequently relax without chang-
ing the probability of radiative transitions.
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Abstract—The eigenfrequencies of magnetic modes in a resonator made up of two segments of a circular eva-
nescent waveguide and a coaxial line are found by solving an electrodynamic problem. For the fundamental
H11δ mode, the performance of the resonator is studied analytically and experimentally over a wide range of its
parameters. The feasibility of a high-power microwave semiconductor oscillator based on the resonator under
study is demonstrated. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Resonators built around evanescent waveguides par-
tially filled with a dielectric (known as waveguide
dielectric resonators, WDRs [1]) have a sparse eigen-
mode spectrum, small weight and dimensions, and an
appreciably high intrinsic Q factor. WDRs are used in
measuring insulator parameters, as well as in micro-
wave frequency-selective devices and oscillators.
WDR-based devices and instruments are readily
matched to both waveguides and microstrip lines.
WDRs axisymmetrically filled with a multilayer (spe-
cifically, two-layer) dielectric offer improved perfor-
mance.

A two-layer WDR is easily transformed into a
waveguide coaxial resonator (WCR) (segments of a cir-
cular evanescent waveguide placed on both sides of a
coaxial line) [2] if the inner dielectric layer in the
former is replaced by a metal layer. The scattering of
electromagnetic waves incident from the side of the cir-
cular waveguide on various metal-dielectric irregulari-
ties (including on a coaxial line segment) was studied
in [3–5]. In those works and also in [6], which is
devoted to studying the eigenmode spectrum of a coax-
ial waveguide resonator (CWR) (two coaxial segments
attached to a circular waveguide on both sides), axi-
symmetric H and E modes were investigated. We are
not aware of studies where the resonance properties of
WCRs of the given design are investigated.

A number of WCR features were experimentally
studied in our previous work [7]. It was shown that in
such resonators, electromagnetic waveguide eigen-
modes common to a coaxial line may coexist with TEM
modes, which are typical of coaxial resonators.

In this work, we consider Hmnδ magnetic modes in a
WCR that are coupled with waveguide modes in a
coaxial line.
1063-7842/03/4804- $24.00 © 0492
STATEMENT AND SOLUTION 
OF THE BOUNDARY-VALUE PROBLEM

The spectrum of Hmnδ magnetic eigenmodes in a
WCR was sought by the method of domains using the
projection procedure and vector eigenfunctions to
derive a set of linear algebraic equations.

The resonator being analyzed (Fig. 1) is convention-
ally divided into four domains: I, the domain occupied
by the inner metal conductor of a coaxial segment; II,
the domain occupied by the insulating layer filling the
coaxial segment; and III and IV, the semi-infinite
domains of the circular waveguides adjacent to the
coaxial segment on both its sides.

When solving the problem, we assume that dielec-
tric losses are negligibly small and the metal surfaces
are of infinite conductivity. Electromagnetic fields in
each of the domains will be described in terms of the
Hertz magnetic vector, which vanishes in domain I
because of the absence of the electromagnetic field in it.

In domain II, the Hertz magnetic vector takes the
form

in domains III and IV,

Pz
II z0 Amn Jm ξmnr( )

Jm' ξmnb( )
Nm' ξmnb( )
------------------------Nm ξmnr( )–

m n,
∑





=

× βmnz( )e imp–cos  Bmn Jm ξmnr( )+

–
Jm' ξmnb( )
Nm' ξmnb( )
------------------------Nm ξmnr( ) βmnz( )e imp–sin


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Here, Amn, Bmn, Cmn, and Dmn are the electromagnetic
field amplitudes in domains II–IV; Jm(ξmnr), Nm(ξmnr)
and (ξmnb), (ξmnb) are the mth-order Bessel func-
tions of the first and second kind and their derivatives;

βmn, γmn and ξmn,  are the longitudinal and trans-
verse wavenumbers of the coaxial and circular
waveguide, respectively; and h is the length of the coax-
ial segment.

The next step in the solution of the eigenmode prob-
lem for the resonator under study is joining the shear
components of the electric and magnetic fields at the
boundaries between the domains. The boundary condi-
tions used in joining the electric fields at the II–III and
II–IV boundaries are written as

where r0 and j0 are the unit vectors along the r and ϕ
coordinate axes, respectively.

For the magnetic fields, the boundary conditions are
written in a similar way. The shear components of the
electric field at the end faces of the metal rod (domain I)
were set equal to zero. The fulfillment of the boundary
conditions yields a set of four functional equations
involving the amplitudes Amn, Bmn, Cmn, and Dmn of the
electromagnetic fields. As was noted above, the reduc-
tion of this set to the set of linear algebraic equations
was accomplished with the projection technique. Equa-
tions obtained by joining the electric fields were sca-
larly multiplied by the vector eigenfunction ϕ(e) of the
electric field of the coaxial line:

The resultant product was integrated over the reso-
nator cross section. Equations obtained by joining the
magnetic fields were multiplied by the vector eigen-

function  of the magnetic field of the circular
waveguide:

The eigenfunctions were selected so as to satisfy the
orthogonality condition
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where δmk and δnp are the Kronecker symbols and 

and  are the norms of the electric and magnetic
eigenfunctions of the coaxial and circular waveguide,
respectively.

Then, we checked that the condition of energy
finiteness in each of the domains is met for any finite
volume V:

This condition virtually specifies the field at metal
fins [8]. As follows from the statement of the problem,
the electromagnetic field is absent in domain I and has
no singularities in domains III and IV. One can show
that the energy stored in domain II tends to zero at
a  b or to the energy stored in the circular
waveguide of permittivity ε when a  0.

The fulfillment of the boundary conditions yields two
sets of linear algebraic equations of the second kind:

(1)

(2)
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Fig. 1. Design of a waveguide coaxial resonator.
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The initial equations were transformed into two
uncoupled sets of 2m equations. This is because the res-
onator is uniform in ϕ. Thus, the 3D problem is reduced
to 2m 2D problems. Equation (1) describes Hmnδ modes
where δ (the number of field variations along the z axis)
= 1, 3, 5, …; Eq. (2), Hmnδ modes where δ = 2, 4, 6, ….
The resonance frequencies of symmetric and asymmet-
ric Hmnδ modes are found by equating the determinant
of the set of Eqs. (1) and (2) to zero.

ANALYSIS OF THE EQUATIONS

Equations (1) and (2) allow one to find the complete
spectrum of magnetic modes in the resonator studied.
The basic lowest frequency magnetic mode in this res-
onator is the H11δ mode. Therefore, in subsequent anal-
ysis, we will consider this mode alone. In this case,
Eqs. (1) and (2) take the simple form
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Fig. 2. Normalized resonance wavelength λ/λcr vs. a/b.
From Eqs. (3) and (4), one can determine the reso-
nance frequencies for the H111 and H112 modes, respec-
tively.

Figure 2 shows (for the H111 mode) the dependences
of the normalized resonance wavelength λ/λcr (λcr =
3.41b is the critical wavelength for an empty circular
waveguide) on a/b for several permittivities ε of a
dielectric filling the coaxial line (ε = 1.0, 2.1, 5.0, and
10, respectively for curves 1–4). The calculation was
made in the one-mode approximation for h/b = 1.34.

Figure 3 illustrates (for the same H111 mode) the
λ/λcr vs. h/b curves for a/b = 0.19 (1), 0.25 (2), 0.45
(3, 4), and 0.75 (5) with ε = 2.1. The continuous curves
were calculated in the one-mode approximation, while
dashed curve 4 takes into account 20 modes (k = n =
p = 20).

We studied two WCRs designed for the centimeter-
and millimeter-wave ranges, respectively. The former
had a circular waveguide with inner diameter 13 mm
and metal-dielectric elements made of FT-4 Teflon (ε =
2.1) with brass cylinders of different diameters and
lengths (h/b = 1.34). This resonator generated reso-
nance oscillations in the 5.5–11.0 GHz frequency band.
Experimental data for this resonator are marked by
crosses in Fig. 2. The millimeter-wave resonator repre-
sented a segment of a circular waveguide of inner diam-
eter 4.62 mm in which metal-dielectric elements with
internal conductors of different inner diameter were
placed (the length of the conductors was the same).
Experimental data for this resonator are marked by cir-
cles in Fig. 2. Its resonance frequencies lie in the range
17–30 GHz.

In Fig. 3, circles in curve 1 and crosses in curves 3
and 4 display measured resonance frequencies of the
centimeter-wave WCR. It is seen that as the length h/b
of the coaxial line shortens, the error in λ/λcr calculated
in the one-mode approximation grows. Also, the error
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Fig. 3. Normalized resonance wavelength λ/λcr vs. h/b.
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increases with the parameter a/b. From the analytical
and experimental curves in Figs. 2 and 3, one can con-
clude that the one-mode approximation is valid over a
wide range of a/b for h/b ≥ 1. In this case, the error in
determining λ does not exceed 2.5%.

CONCLUSION
Thus, we solved the problem of magnetic eigen-

modes in a resonator made up of a coaxial line and two
circular evanescent waveguides. Two sets of linear
algebraic equations were derived, which imply that the
eigenmodes of WCRs with an even and odd number of
variations along the z axis are not coupled to each other,
as in WDRs. Modes differing in number of variations
with respect to the azimuth angle ϕ are also uncoupled.
The resonance frequencies of the resonator are found
by equating the determinant of the set of equations to
zero. The error in calculating the eigenfrequency of the
fundamental mode in the one-mode approximation is
≤2.5%.

Note that, using this resonator matched to a micros-
trip input, we succeeded in fabricating a 3-cm-range
microwave semiconductor oscillator based on an
AA725A Gunn diode. The oscillator thus designed had
an output power higher than a WDR-based oscillator.
The increased power of the WCR-based oscillator is
supposedly associated with improved diode–resonator
matching. The resonator suggested in this work may
find wide application in frequency-selective devices
used in microwave technology because of the possibil-
ity of electronic and mechanical tuning. On the basis of
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
such resonators, techniques for measuring the parame-
ters of both insulating materials and metal conductors
can be developed.
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Abstract—The surfaces of electrodeposited 1-µm-thick CoxCu100 – x (x = 8, 11, and 20 at. %) films and also of
0.2-µm-thick films obtained by sputtering targets made of the electrodeposited films with an argon ion beam
are analyzed by atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy
(XPS). XPS data indicate that cobalt is absent on the surface of the electrodeposited films but is present in the
bulk and on the surface of the sputtered films. The difference in the XPS spectra of copper in the electrodepos-
ited and sputtered films of the same composition is less significant. The data obtained are explained within the
framework of a qualitative model according to which subgrains of the basic (copper) component coalesce into
large clusters, which subsequently take on a regular oval shape on the free surface. This process favors cobalt
atom migration from the free surface to near-surface voids. High-energy particles existing in the flux of the tar-
get sputtering products bombard the growth front of the ion-sputtered films, causing the fastest sputtered cobalt
atoms to penetrate into the copper matrix as point defects. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Questions related to ordering on the surface of
homogeneous metal alloys have received much atten-
tion owing to the great practical significance of these
alloys and the fundamental importance of ordering pro-
cesses [1–4]. For example, it was shown [1, 2] that, in
homogeneous metallic alloys that have components
with different chemical activities, the more inert com-
ponent may form a developed porous surface structure
as a result of its redistribution over the surface after
removing the chemically active component, e.g., by
selective dissolution in an electrolyte. Unfortunately,
the composition of this porous structure was not ana-
lyzed in the works cited. The authors of [3, 4] consid-
ered melting during the deposition of chromium on the
iron surface and, conversely, of iron on the chromium
surface in a high vacuum. The element redistribution at
the interface after the deposition was shown to play an
important role in the formation of multilayer iron–chro-
mium structures and govern their magnetic properties.

Thin films of inhomogeneous cobalt–copper mag-
netic alloys have also been studied extensively [5];
however, data on their surface composition are scarce.
Here, attention has mainly been focused on structural
ordering, which has been considered for ultrathin
cobalt films on the surface of thicker copper films in
multilayer structures [6] or for ultrathin cobalt films on
the single-crystalline copper surface [7]. This work, in
which we analyze the surface and subsurface layers of
cobalt–copper thin films, is an extension of our previ-
ous investigation [8, 9]. Comparing the surface states of
films obtained under equilibrium conditions of elec-
1063-7842/03/4804- $24.00 © 20496
trodeposition with those prepared by the nonequilib-
rium ion sputtering of the electrodeposited films as tar-
gets, we make an attempt to explain the process of
cobalt ordering on the surface.

EXPERIMENTAL

CoxCo100 – x (6 ≤ x ≤ 35) 1-µm-thick films were elec-
trolytically deposited according to the technique
described in [10]. Similarly to [10], we controlled the
film composition by varying the cobalt sulfate content
in the electrolyte, all other things being equal. Then,
some of the electrodeposited films (EDFs) were used as
targets for ion sputtering. The ion sputtering was per-
formed with the setup described in [11]. The argon ion
beam had an energy of 1 keV and a current density of
0.25 mA/cm2. The ultimate pressure was no higher than
10–4 Pa, and the working pressure was no higher than
2 × 10–2 Pa. The sputtering products were films about
0.2 µm thick (hereafter, ion-beam films (IBFs)). EDF
and IBF substrates measuring 20 × 20 mm were made
of one piece of 50-µm-thick rolled copper foil. Imme-
diately before the deposition, the substrate surface was
etched in a 5% hydrochloric acid solution and then
sequentially cleaned with oxygen and argon ion beams.
In both cleaning modes, the ion current density was
0.2 mA/cm2 and the beam energy was 400 eV. Visual
inspection was made with an NU-2 optical microscope
(Germany) with a magnification of up to 600. To exam-
ine the surfaces and to determine the volume composi-
tion of the films, we used a Nanolab-7 scanning elec-
tron microscope (SEM) equipped with a System 810-
003 MAIK “Nauka/Interperiodica”
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500 energy dispersion analyzer (Great Britain). The
surfaces were also studied with a Femtoskan-001
atomic force microscope (AFM) (Moscow State Uni-
versity, Russia) equipped with a Park Scientific (USA)
silicon cantilever and operating in the contact mode.
Surface layers thinner than 5 nm were analyzed by an
XPS spectrometer with a magnesium cathode (MgKα
radiation with a photon energy of 1253.6 eV) as an
X-ray source. The energy scale was calibrated against
the C(1s) line and additionally against the O(1s),
Co(2p), and Cu(2p) lines. In this case, a 5 × 5-mm sur-
face area of the samples was preliminary cleaned by an
argon ion beam of energy 500 eV and current density
10 µA in the spectrometer for 5 min. When analyzing
near-surface layers, we cleaned the sample surface for
a longer time.

EXPERIMENTAL RESULTS

The surface analysis of the EDFs of various compo-
sition demonstrated that only the films with 8 ≤ x ≤
20 at. % Co can be used as targets. Those with a cobalt
content x < 8 at. % did not have metallic luster and con-
sisted of irregularly shaped aggregates. Figure 1a
shows a typical SEM micrograph of the Co6Cu94 EDF.
The surface is seen to be discontinuous with agglomer-
ates as large as 1 µm. The discontinuous surface of the
EDFs with a cobalt content x < 8 at. % does not allow
for surface analysis with XPS and AFM. Moreover,
because of the uncertain thickness of these films, we
cannot specify ion sputtering conditions. The EDFs
with a cobalt content x ≥ 8 at. % had a continuous sur-
face with characteristic metallic luster. Figure 1b shows
a typical SEM surface micrograph from an EDF with
the cobalt content x = 8 at. %. The surface is fairly con-
tinuous and consists of uniformly distributed valleys
and ridges with a small number of regularly shaped
inhomogeneities. Their size is much smaller than that
of the inhomogeneities on the surface of the EDFs with
a cobalt content x < 8 at. %. As the cobalt content
increases from 8 to 35 at. %, the surface of the EDFs
becomes glossy, the surface color changes from reddish
to white, and the number and size of large surface irreg-
ularities decrease. However, during the ion sputtering
of the EDFs with x > 20 at. %, we observed cracking
and swelling in several film areas to the extent they peel
off from the substrates. As a result, the copper substrate
makes an uncontrollable contribution to the composi-
tion of the sputtered material flux. Therefore, films with
20 < x < 35 at. % are not considered below.

The Cu(2p) and Co(2p) lines of the XPS spectra
taken from the surfaces of the Co8Cu92, Co11Cu89, and
Co20Cu80 EDFs are shown in Fig. 2. The alloy compo-
sition was determined by microprobe analysis. The
Cu(2p) line of the Co8Cu92 film is the weakest com-
pared to the Cu(2p) lines of the other alloys, although
the volume concentration of copper in the Co8Cu92 film
is the highest. The additional ion cleaning of the sur-
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
faces for 10 min noticeably increased the intensity of
the Cu(2p) line only for the Co11Cu89 EDF (Fig. 2c),
leaving the shapes of the spectra almost unchanged.
This means that the bulk and surface copper contents
are different. However, an increase in the surface con-
centration of copper with as its bulk content decreases
may also be caused by a relative increase in the surface
density of the EDFs. This assumption agrees with the
fact that the surface smoothness and homogeneity
improve with increasing cobalt content, as follows from
the SEM images and visual inspection. Furthermore,
the intensities of the C(1s) and O(1s) lines taken from
the surface of the as-deposited Co8Cu92 sample were
the highest in comparison with the other samples and
changed only slightly after ion cleaning of various
duration, whereas those for the Co11Cu89 and Co20Cu80

samples decreased to constant values after the ion
cleaning. This finding also evidences a higher surface
density of the EDFs with a high cobalt content. The uni-
form cobalt distribution across EDFs of the given com-
positions, which was found earlier [8–10], along with
the assumption that the cobalt distribution over the sur-
face remains constant, allowed us to suppose that the
Co(2p) line in the XPS spectra from the sample sur-
faces studied also has specific features caused by the

(a)
1 µm

(b)
1 µm

Fig. 1. SEM images of the surfaces of electrodeposited
(a) Co6Cu94 and (b) Co8Cu92 films.
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Fig. 2. XPS spectra from the electrodeposited films. The Cu(2p) line for the films (a) Co8Cu92, (b) Co11Cu89, (c) Co11Cu89 after
additional ion cleaning, and (d) Co20Cu80. The Co(2p) line for the films (e) Co8Cu92, (f) Co11Cu89, (g) Co11Cu89 after additional
ion cleaning, and (h) Co20Cu80.
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specific variation of the surface component concentra-
tion with bulk copper concentration. However, we
failed to resolve this line in the XPS spectra taken both
from the samples with various Co contents (Figs. 2e,
2g) and after ion cleaning of various durations (Fig. 2).
As follows from these spectra, cobalt is absent in sur-
face layers of thickness less than 5 nm in both the as-
deposited and ion-etched samples.

According to the microprobe analysis data, IBF
samples about 0.2 µm thick had the same composition
as the EDFs used as targets for sputtering. All the IBFs
had identically smooth surfaces with metallic luster,
although those with a high cobalt content in the bulk
were more whitish. The XPS spectra from the IBF sur-
faces are given in Fig. 3. As for the EDFs, the Cu(2p)
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Fig. 4. AFM images of the surfaces of the (a) copper sub-
strate, (b) electrodeposited Co11Cu89 films, and (c) ion-
sputtered Co11Cu89 films.
line from the Co6Cu94 surface (Fig. 3a) has a lower
intensity compared with the equally intense Cu(2p)
lines from the surfaces of Cu11Co89 (Fig. 3b) and
Co20Cu80 (Fig. 3d). The additional ion cleaning of the
Co6Cu94 surface changed the shape and intensity of the
Cu(2p) line insignificantly. For all the IBFs, the inten-
sities of the carbon and oxygen lines were maximum
for the as-deposited samples, decreased two or three
times after ion cleaning for several minutes, and then
leveled off. The leveling off indicates that most of the
organic impurities are located directly on the surface
and that their appearance is caused mainly by the stor-
age conditions. The rest of the impurities, which have a
constant concentration over the thickness, are residual
impurities in the vacuum chamber during sputtering
and those present in the targets. The variation of the
Cu(2p) line of the XPS spectra with the bulk composi-
tion of the films suggests that, as for the EDFs, the sur-
face density of copper in the Co11Cu89 and Co20Cu80
films is higher than in the Co8Cu92. However, unlike the
EDFs, the Co(2p) lines in the XPS spectra from the IBF
surfaces are resolved for all the samples (Figs. 3e–3h).
The higher the bulk cobalt content, the higher the inten-
sity of the Co(2p) line (Figs. 3e, 3f, 3h). The XPS spec-
trum of cobalt depends only slightly on the ion cleaning
duration (Fig. 3g). It has a complex shape for all the
IBFs and contains a number of peaks, which are shifted
toward higher binding energies with respect to the
value for metallic cobalt (778 eV), indicating the inho-
mogeneous environment of cobalt atoms in the surface
layer [12].

AFM images taken of characteristic regions on the
substrate and on the electrodeposited and sputtered
Co11Cu89 films are shown in Fig. 4. The texture of the
substrate surface, which is associated with rolling dur-
ing the manufacture of the copper foil (Fig. 4a), is not
observed on the EDF surface (Fig. 4b). The IBF surface
(Fig. 4c) is more uniform along the rolling direction
than across it. It is seen that even an IBF as thin as
≈0.2 µm smoothes out the substrate surface relief
height from an initial 30 nm to less than 10 nm. The
EDF surface consists of relatively large islands, most of
which have a smooth shape and a height of several tens
of nanometers; however, their transverse sizes vary.
Between the islands, one can observe shallow small-
area and rare deep large (100 × 100 nm) depressions.
Such a surface appearance is typical of films prepared
by electrodeposition. The large depressions may be
related to lower density regions or dead-end pores in
electrodeposited films [13].

DISCUSSION

The experimental data indicate differences in the
bulk and surface ordering processes in inhomogeneous
CoCu alloys. Cobalt is fairly uniformly distributed only
over the volume of the EDFs, including the ≈0.1-µm-
thick surface layer, which agrees with the early results
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
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[8–10]. Directly on the surface of the EDFs (Figs. 2e,
2f), cobalt is absent, according to the XPS data. During
the continuous ion sputtering of the films (at a rate of
10–30 nm/min in our case), cobalt has no time to be
redistributed over the surface and is sputtered together
with the copper matrix, its portion in the sputtered flux
being proportional to its bulk concentration. Therefore,
the compositions of the IBFs and their targets made of
the corresponding EDFs coincide. When ion cleaning
in the XPS spectrometer or ion sputtering in the ion-
beam setup is interrupted, a cobalt deficiency on the
EDF surface is observed again (Figs. 2g, 2h). Our ear-
lier investigation of CoCu films by conversion electron
Mössbauer spectroscopy [9] showed that a resonance
iron atom was detected only in the pure copper or
mixed cobalt–copper environment in a surface layer
0.15 µm thick. Therefore, we can assume that cobalt
near the free surface of the films is also in the form of
small nanoclusters distributed over the copper matrix
surface. If the islands of regular shape (Fig. 4b) are con-
sidered as the free surface of the copper matrix, which
forms during the EDF growth via the coalescence of
10-nm subgrains, as was shown earlier in [10], we may
assume that cobalt atoms, migrating over the surface,
occupy energetically more favorable positions near the
lower density regions (surface voids) rather than
directly on the free surface of the copper matrix (if it is
additionally taken into account that bulk copper and
cobalt do not form alloys). During the ion sputtering,
the surface is exposed to an ion-beam plasma and bom-
barding ions and ceases to be free. Simultaneously,
conditions for the surface redistribution of cobalt
change. As a result, usual layer-by-layer sputtering
takes place; that is, both copper and cobalt are sputtered
in amounts proportional to their bulk concentrations
over long time intervals. After the termination of ion
bombardment, the free surface takes on an appearance
close to the original, which was also shown in [8]. In
the case of EDFs, the surface deficiency of cobalt exists
both before (Figs. 3e, 3f) and after (Figs. 3g, 3h) the ion
bombardment. This means that this deficiency can be
regarded as a recoverable quantity that is caused by
ordering processes on the surface of the inhomoge-
neous alloys rather than by the application of XPS to
examine the surfaces [12].

To explain the difference between the surface condi-
tion of EDFs and IBFs of the same composition that are
obtained on identical substrates, one should take into
account that the deposition conditions for IBFs are
more nonequilibrium than for EDFs. One reason for
this nonequilibrium is the form of the energy distribu-
tion function for the flux of sputtered cobalt and copper
atoms. This flux can be conventionally divided into two
parts: the main part, consisting of sputtered atoms with
a mean energy approximately equal to the heat of evap-
oration (4.43 eV/atom for cobalt and 3.52 eV/atom for
copper), and the high-energy part, consisting of atoms
with energies of 40–200 eV [14]. The energy of atoms
in the high-energy tail of the distribution function turns
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
out to be sufficient for the “self-irradiation” of the IBF
growth surface. According to estimates made with the
SRIM2000 program (www.srim.org), cobalt atoms
with an energy of 50 eV have a range of 0.4 ± 0.1 nm in
a massive copper matrix and generate 0.6 vacan-
cies/ion; for those with an energy of 100 eV, the range
is 0.5 ± 0.1 nm and the yield is 1.4 vacancies/ion; and
for those with an energy of 150 eV, these parameters
equal 0.5 ± 0.2 nm and 2.2 vacancies/ion. Hence, some
cobalt atoms from the high-energy tail can penetrate
into the copper matrix during deposition to form point
defects. Naturally, the concentration of such cobalt
atoms in the surface layer is significantly lower than in
the bulk and their XPS spectra differ substantially from
the XPS spectrum from the pure cobalt surface [12]
because of the higher density copper environment,
which agrees with Figs. 3e–3h. The existence of the
self-irradiation mode is indirectly supported by the fact
that depressions on the substrate surface are covered
more readily than asperities during the IBF growth and
that the IBFs are more uniform along the rolling direc-
tion (Fig. 4c). These specific features indicate the
anisotropy of the deposition process, which may arise
when energetic sputtered atoms from the tail strike the
surface and favor the surface migration of adatoms
along the rolling direction. Irradiation upon sputtering
also results in the formation of finer and more closely
spaced islands on IBFs as compared with EDFs of the
same composition.

CONCLUSION

Inhomogeneous CoCu alloy films prepared by elec-
trodeposition and ion-beam sputtering show a signifi-
cant difference in cobalt distribution, which should be
taken into account when analyzing the properties of the
alloy. The redistribution of unbound cobalt over the free
surface of the copper matrix during electrodeposition
and the generation of point defects due to cobalt atoms
in copper grains upon ion-beam sputtering should be
taken into consideration when studying the formation
of interfaces in inhomogeneous CoCu alloy films, espe-
cially in the production of multilayer structures.
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Abstract—The characteristics of a metal-ceramic (MC) cathode designed for nanosecond electron accelerators
are studied in relation to the size of metal particles, their density on the ceramic surface, and the type of ceram-
ics. A high emissivity of the MC cathode at a moderate electric field in the diode tube is demonstrated. This
allows one to significantly sharpen the electron beam and increase its current (power). The possibility of con-
trolling the emissivity of the MC cathode by varying the composition of the MC plate is established. © 2003
MAIK “Nauka/Interperiodica”.
INTRODUCTION

The advent of powerful nanosecond generators with
a pulse repetition rate of up to several kilohertz and a
service life of 1010–1011 pulses [1, 2] has motivated the
design of electron accelerators that are promising for
applications [3, 4].

These accelerators require inexpensive and durable
cathodes with reproducible parameters. In [5], we
described an MC cathode that is a 2-mm-thick pellet
with a diameter of 12 mm made of oxide nanoceramics
incorporating metal particles that are fairly uniformly
distributed over its volume, with some of them lying at
the surface. Because of the great difference in the tem-
perature coefficients of linear expansion of ceramics
and metals, the postsynthesis cooling of this system
leaves microvoids around the metal particles, which are
likely to serve as gas sources during the formation of a
plasma on the MC cathode surface.

Early studies [6, 7] revealed that this cathode offers
high emissivity (does not limit the power of an acceler-
ator and ensures a rapid rise of the current at a relatively
small emitting area), allows for a highly uniform elec-
tron density distribution on the anode, and sharpens the
accelerator power (as compared with the metal-dielec-
tric cathode of the same size with ten emitting centers
that was previously used in our accelerator [4]).

In this study, we consider the characteristics of the
MC cathode in relation to the size D of metal particles,
their density n on the surface, and the type of ceramics.

EXPERIMENTAL

We used a URT-0.5 nanosecond accelerator [4] with
an accelerating voltage U ≤ 500 kV, pulse half-height
width tp ≈ 50 ns, first-transition duration τ10.1–0.9 = 46 ns,
and pulse repetition rate f ≤ 200 Hz. An AVR-50 pump
1063-7842/03/4804- $24.00 © 20503
reduced the pressure in the diode tube chamber to 10–1–
10–2 Pa without freezing-out oil vapors.

The design of the cathode unit was similar to that
described in [6]: the MC plate was placed edgeways as
before but mounted on the cathode holder with a collet.
Figure 1 shows stainless steel particles on the MC plate
surface.

The measuring system was the same as in the exper-
iment [6]. We also recorded the integral distribution of
the plasma glow over the MC plate by means of a Zenit-
E open-shutter photographic camera on an RF-3 photo-
graphic film through a transparent window (made of
Sol organic glass) in the vacuum chamber wall opposite
the plate.

40 µm

Fig. 1. Typical view of the MC plate surface.
003 MAIK “Nauka/Interperiodica”



 

504

        

KOTOV 

 

et al

 

.

                                                                                                           
RESULTS AND DISCUSSION

The parameters of the MC plates studied are listed
in Table 1. For all the plates, the diode current almost
always has a delay t1 relative to the voltage (Figs. 2, 3b).
The value of t1 varies with the cathode–anode spacing
d (the distance between the edge of the ceramic pellet
of height h and the anode plane [6]) in the same way for
cathodes of all types: namely, the delay time increases
with d ≤ 30 mm and remains practically constant at

Table 1.  Characteristics of the MC cathodes under study

Cathode no. Ceramics D, µm n, 1/cm2

1885

1886 Al2O3 9 1900

1887

1888 Al2O3 9 40 000

1889

1890

II-1 Al2O3 26 4700

1891

1892 TiO2 9 4020

1893

30 60 90
d, mm

0

15
1885

II-1

1888

1891

30

45
t1, ns

Fig. 2. Time delay between the voltage pulse arrival and the
appearance of the current pulse for MC cathodes of differ-
ent composition vs. the anode–cathode spacing. The figures
by the curves are cathode numbers.
d ≥ 30 mm. Such behavior indicates the presence of the
total voltage effect [6], which is due to both the shape
of the electrodes and the desorption of the gas (espe-
cially from microvoids).

For Al2O3 ceramics, the value of t1 grows only
slightly with the density of the particles on the MC
cathode surface (1885 and 1889 in Table 2) and is
almost independent of their size (1885, II-1). When
Al2O3 ceramics (relative permittivity ε = 9.6) is
replaced by TiO2 (ε = 170), t1 increases nearly twofold
(II-1 and 1891).

Therein lies the radical distinction of the process
discussed from a discharge over the dielectric surface in
a vacuum [8]. In the latter case, both the firing voltage
and the current delay decrease with an increase in the
permittivity and height of the dielectric plate in the vac-
uum gap.

By properly choosing the time moment of connect-
ing a load during the rapid growth of the impedance of
a current interruptor (of any type), one can improve the
operating conditions for the interruptor and, thus, raise

100 150 200
t, ns

(a)

1891

1888

1

U

50

–50

–150

–250

–350

–450

U
, k

V
; P

 ×
 2

, M
W

100 150 200
t, ns

(b)

I-1888

U-1888

U1

50

–100

–200

–300

–500

–700

U
, k

V
; I

, A

250

0

–400

–600

I1t1

Fig. 3. (a) Voltage U for cathode no. 1891 and the electron
beam power for different cathodes and (b) the voltages and
current for the MDM cathode (1) and MC cathode no. 1888.
d = 47 mm.
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the output power [9]. Since the current break time for
the semiconductor interruptor used in the experiment is
no more than τ = 30 ns, the output power first grows
with t1 and then (when t1 > τ) lowers (Table 2). In the
latter case, the power peaks at the trailing edge of the
voltage pulse (Fig. 3a, 1891).

The efficiency of energy transfer varies nearly lin-
early with t1 (Table 2). However, in case of the MC
plate no. 1891, where t1 > τ, the efficiency grows
because of an increase in the fraction of low-energy
electrons forming at the trailing edge of the voltage
pulse.

The maximal power Pm of the accelerator, which
was observed for the MC cathodes nos. 1888–1890
(Table 1), was found to be twice as high as the Pm value
for the metal–dielectric–metal (MDM) cathode
(Fig. 3a, Table 2). With an MC cathode, the rate of cur-
rent rise appreciably exceeds that achievable with an
MDM cathode [7]. In our experiment, at d = 47 mm, the
mean rate of current rise di/dt (from its beginning to a
voltage level of 0.9) comprised 0.84 and 1.7 × 1010 A/s
and the amplitude of the current equaled 177 and 358 A
for the MDM and MC 1888 cathodes, respectively. In
parallel with this, the half-height duration of the voltage
pulses shortens from 68 to 50 ns and that of the current
pulses, from 92 to 44 ns for the MDM and MC 1888
cathodes, respectively.

From the close coincidence of the rates of rise and
amplitudes of the voltage in both cases (Fig. 3b), we
conclude that the output power of the accelerator may
be not only sharpened but also raised by using an MC
cathode. This fact may be explained by a higher emis-
sive capacity of an MC cathode combined with a higher
rate of emissivity increase due to a rapidly expanding
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
emitting plasma surface area and/or a high density of
the plasma.

In order to observe the MC cathode operation with-
out the arc stage, which complicates the interpretation
of the experimental data, we cut the voltage pulse by
breaking down the vacuum insulator [10] (by changing
the number of its sections, Fig. 4). Under these condi-
tions, the photographic film detects only a weak glow at
the points where the MC plate contacts the cathode
holder even if 30 pulses per frame are recorded. We
thus may conclude that the plasma density on the MC
plate surface is low and the surface discharge is always
initiated at the same points of contact between the MC
plate and the cathode holder.

The data obtained suggest that a low-density plasma
appears almost simultaneously over a considerable area
of the plate surface, which explains the high emissive

0

–100

–200

–300

–400

–500

U
, k

V
; I

, A

20 40 60 80 100
t/2, ns

U1 I2

U2
U6

I6

Fig. 4. Accelerating voltages (U1, U2, and U6) and anode
currents (I2 and I6) for a different number of sections in the
vacuum insulator.
Table 2.  Experimental results for d = 47 mm

Cathode no. t1, ns Power, MW I, A Beam energy, J
Efficiency

of energy transfer 
to the beam, %

1891 40 155 428 6.73 30.3

1889 22 181 581 5.65 25.5

II-1 18 125 330 5.24 23.6

1885 14 137 556 4.97 22.4

MDM 14 91 251 4.33 19.5

Table 3.  Experimental and calculated parameters for d = 47 mm

Sample no. t1, ns Ui0, kV Ei0, kV/cm E1, kV/cm U0 Rmax, Ω

1885 14 149 4.93 2669 9.56 985

II-1 18 200 6.64 790 2.10 1106

1890 22 246 8.14 960 2.08 1037

1891 40 376 0.77 287 0.37 2227
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Fig. 6. (a) Delay time t1 vs. the dimensionless voltage U0
and (b) the impedance Rmax for the voltage peak vs. the field
strength E1 in a microvoid. d = 47 mm.
capacity of the cathode, as well as its long service life
and reproducible characteristics. This large-area forma-
tion of the plasma is apparently caused by the break-
downs of micropores around the metal particles in the
MC plate.

The delay time t1 calculated on the assumption that
the metal particles have the same diameter D (Table 3)
appears to be a linear function of the initial (at the
instant of current appearance in the diode) electric field
strength Eio averaged over the MC plate surface. This is
hardly probable, and the hypothesis [6] for the decisive
role of processes occurring in micropores rather than on
the MC plate surface is thus substantiated. As follows
from Table 3, for the same diameter D of the particles,
t1 varies inversely with the average field strength E1 in
a pore of width δ (E1 ≈ Ei0/(n0.5δ)), which is in line with
the present-day concepts.

It should be noted that, at a given field strength, the
current delay in our experiment is on the same order of
magnitude as that in the case of explosive emission
[11], where t1 ≈ E4. In our case, however, t1 ≈ E2. Phys-
ical reasons behind this difference are still to be clari-
fied.

Let us take the dimensionless voltage U0 ≈
1/(εn0.5D) arising when a metal particle is charged by
the displacement currents at Ui0 (with its size and
capacitance taken into consideration) as a parameter
and plot the average field strength in a micropore E1
versus U0 (Fig. 5b). It is seen that, as d decreases, the
nearly linear dependence transforms into logarithmic,
which seems to be explicable in terms of the total volt-
age effect.

In essence, the parameter U0 is a generalized char-
acteristic of the emissive properties of an MC plate. The
introduction of U0 helps in understanding why cath-
odes with substantially different properties may have
close values of t1. For example, for the cathodes II-1
and 1890, U0 = 2.08 and 2.10, respectively. The values
of t1 are also close (Table 3).

Thus, the MC cathode properties can be predicted
based on the composition of an MC plate, the parameter
U0, and the data obtained (Fig. 6). In particular, the
increase in the particle diameter in the plate II-1 to D =
50 µm yields t1 ≈ 28 ns.

An important parameter defining the cathode prop-
erties is the diode impedance. It is desirable to be able
to estimate the impedance at the instant of the peak
voltage Rmax, when the beam energy is maximum.
Table 3 implies that Rmax varies inversely with U0;
however, the dependence of Rmax on 1/E1 seems to be
more evident (Fig. 6b). According to this curve, the
increase in the diameter of the particles in the plate II-1
to D = 50 µm gives E1 = 590 kV/cm and Rmax ≈ 1300 Ω;
i.e., the emissive capacity of the cathode degrades.

The aforesaid substantiates the view that, before the
onset of the current, the electric field distribution is
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
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purely capacitive and that the ceramic material and the
amount and size of the metal particles play an essential
role. This means that most particles contained in the
MC plate are involved in the process.

CONCLUSIONS
MC cathodes studied in this work are demonstrated

to have a number of features that make them promising
for industrial accelerators.

The high emissive capacity of the cathodes at a rel-
atively low electric field in the diode tube makes it pos-
sible to greatly sharpen and increase the current (beam
power), i.e., to reduce the low-energy component of the
beam spectrum without using any special facilities and,
hence, to improve the efficiency of beam extraction.

There appears the possibility of controlling the
emissivity of an MC cathode by varying the MC plate
parameters (the size and surface density of metal parti-
cles, as well as the ceramics permittivity).

In contrast to a discharge over the dielectric surface
in a vacuum [8], the voltage Uio corresponding to the
appearance of the current grows with increasing per-
mittivity and decreasing height h of the MC plate.

The long-term exploitation (108 pulses or more)
does not change the MC cathode characteristics: they
remain highly reproducible from pulse to pulse and
from sample to sample of the same type.
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Abstract—An analysis of the published data on X-ray reflectometry is carried out. The potentialities of X-ray
reflectometry are demonstrated with the laser evaporation of an oxide film from a silicon surface. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The method of X-ray reflectometry is based on mea-
suring the reflection of X rays from the material surface
near the critical angle ϑcr of total external reflection
(TER) and can be used for determining the geometrical
and physical parameters of the surface [1]. The angular
range of the measurements covers several tens of angu-
lar minutes, and the half-width of the incident radiation
is within several angular seconds. Such experimental
conditions impose stringent requirements on related
equipment. Reflectometers designed around diffracto-
meters have gained most recognition [2–5]. A weakly
divergent beam is provided by multiple-reflection slit
monochromators.

Reflectometric curves are divided into integral and
differential. To obtain the former, the sample is placed
so that it halves the beam. Such an angular position is
taken to be the initial (zero) position. Then, a wide-
aperture detector, rotating with an angular velocity
twice that of the sample, records the angular depen-
dence of the reflected intensity.

To obtain a differential curve, a crystal analyzer is
placed between the sample and detector at the Bragg
angle to one of a set of planes. The detector records the
X-ray intensity vs. angle of analyzer rotation with the
angle of sample rotation fixed. One can also take the
dependence of the X-ray intensity on the angle of sam-
ple rotation with the angle of analyzer rotation fixed.

In the integral curves, the reflection coefficient first
grows with the angle from 0.5 almost to unity and then
sharply drops nearly to zero. The initial rise in the
reflection coefficient is due to an increase in the beam
area on the sample: since the angle is less than the crit-
ical TER angle, the radiation reflects almost com-
pletely. The radiation is incident at an angle near to crit-
ical. The critical angle is that at which the reflection
coefficient decreases twofold [6].
1063-7842/03/4804- $24.00 © 20508
A differential curve has a specular peak and anoma-
lous (so-called Yoneda [7, 8]) peak. The angular posi-
tion of the latter does not depend on the angle of inci-
dence and equals ≈0.9ϑcr [1].

The shapes of integral and differential curves are
related to the microrelief of the sample surface. A rough
surface diminishes the maximal reflection coefficient in
the integral curves and their steepness in the vicinity of
the critical angle [9] and also shifts the critical angle
toward smaller angles. In the differential curves, the
intensity of the specular peak drops, while that of the
anomalous peak grows [10]. Surface roughness is char-
acterized by the rms roughness height σ and correlation
length. In the first approximation, the reflection coeffi-
cient obtained from the specular peak and the value of
σ are related through the Debye–Waller factor [11]:

where R0 is the reflection coefficients calculated by the
Fresnel formula.

With the reflectometry method, one can measure,
specifically, the density and thickness of surface layers
and thin films. The density is found by the formula [12]

where ρm is the density of a massive sample, ϑexp is the
critical angle found experimentally, and ϑcr is the calcu-
lated critical angle.

The critical angle is calculated by the formula ϑcr =
(|χhr|)1/2, where χhr is the real part of the polarizability.

The film density is determined from the interference
of X rays scattered by the upper and lower boundaries
of the film. As a result of interference, the integral curve
exhibits maxima and minima near the region where the
reflection coefficient drops. The number N of an inter-

R R0 4πσ ϑ/λcos( )2–[ ] ,exp=

ρ ρm ϑ exp/ϑ cr( )2,=
003 MAIK “Nauka/Interperiodica”



        

X-RAY REFLECTOMETRY AND ITS APPLICATION 509

                                                                                                          
ference maximum or minimum is related to the thick-
ness L as

where M is the phase constant and ϑN is the angular
position of the Nth maximum or minimum.

The thickness is found from the slope of the N vs.

(  – )1/2 straight line. Interference maxima (min-
ima) are counted from the first (initial) maximum (min-
imum) that is the nearest to the critical angle: N = Ni and
N = Ni + 0.5 for maxima and minima, respectively,
where Ni is an integer.

X-ray reflectometry diagnoses thin surface layers,
since the penetration depth of X rays is tens of ang-
ströms for smaller-than-critical angles of incidence and
several tenths of a micrometer for larger-than-critical
angles of incidence.

If X rays strike a crystalline object at a small angle,
they may be diffraction-reflected from planes that are
normal to the surface [9]. A specularly reflected (dif-
fracted) wave carries information on the crystal struc-
ture of a film applied on a crystalline substrate [14]. The
aim of this work is to generalize the published data on
X-ray reflectometry and illustrate its potentialities
using laser decontamination of a single-crystal silicon
surface as an example.

THEORY OF THE METHOD

A schematic diagram of an X-ray reflectometer is
depicted in Fig. 1. The arrows show the direction of
X rays. The integral curve is taken without a crystal
analyzer. Its shape does not depend on whether the
sample is amorphous or crystalline nor on its orienta-
tion (if the sample is crystalline). The reflection coeffi-
cient is given by the Fresnel formula [9]

where ϑ1 is the glancing angle of incidence and n is the
refractive index. For glancing angles of incidence,
sinϑ ≈ ϑ because of their smallness; therefore, the dif-
ference between σ and π polarizations can be
neglected.

Reflection from a multilayer medium is described
by the Parratt relationship [15]

where an = exp(–iπfndn/λ), Rn, n + 1 = ( /En),
Fn − 1, n = (fn – 1 – fn)/(fn – 1 + fn),  fn = [sin2ϑ1 + 2(nn – 1)]1/2,

dn is the thickness of an nth layer,  and En are the
amplitudes of the reflected and transmitted fields in the
nth layer, and n is the refractive index of the nth layer.

N M 2L/λ( ) ϑ N
2 ϑ exp

2–( )
1/2

,+=

ϑ N
2 ϑ exp

2

R ϑ 1sin ϑ 1 2 n 1–( )+sin
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A distinct interference pattern is observed for a layer
thickness of several tens to several thousands of ang-
ströms. The upper limit of the homogeneous film thick-
ness can be estimated from the relationship [16]

where δϑ is the angular resolution. The lower limit of
the thickness is determined with the formula

where N is the order of an interference peak;  and

 are the critical angles of reflection from the upper
and lower boundaries of the film, respectively; I0 is the
intensity of primary X-ray radiation; and τ is the expo-
sure time.

The integral curves make it possible to detect for-
eign spacers between layers of a homogeneous material
[17]. Such a possibility has been demonstrated with the
time-separated thermal evaporations of two aluminum
layers.

In terms of the Born approximation of a distorted
wave, the intensity of small-angle scattering by a rough
surface can be divided into two, specular and diffuse
(Yoneda), components [18]. The former component is
given by

where I0 is the intensity of incident radiation,

qz = 2k0sinϑ1,  = 2k0sinϑg, k0 is the wave vector of
the incident wave, ϑg is the glancing angle of reflection,
cosϑg = cosϑ1/n, and ω = [exp(–z2/2σ2)][σ(2π)1/2]–1.
The coordinates x and y lie in the surface plane, and the
z coordinate runs normally to the surface. The coeffi-
cient R of reflection from a smooth surface is found by
the formula
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Fig. 1. X-ray reflectometer. (1) X-ray tube; (2) crystal
monochromator; (3) sample; (4) crystal analyzer; and
(5) detector.
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The diffuse component of reflection is given by

where (dσ/dΩ)dif = (LxLy)|T(k1)|2|T(k2)|2S(qg)| (1 –
n2)|2/16π, ∆Ω is the constant angle of detection of the
scattered radiation, A is the beam area, (LxLy) is the sur-
face area of the sample, T(ki) = 2sinϑ i/(sinϑ i + nsinϑg),
and ϑ2 is the grazing angle of refraction.

The value of S(qg) is found by the formula

where integration is over the surface irradiated and 
is the projection of the refraction wave vector.

In the same approximation, the problem of small-
angle scattering by the rough surface of a multilayer
medium has been solved [19]. It should be noted that
integral curves of small-angle X-ray scattering exhibit
a number of peaks whose angular positions are defined
by the Bragg formula. Here, the period of the structure
plays the role of interplanar spacing. X-ray reflectome-
try combines well with high-resolution X-ray tech-
niques for studying multilayer structures [20].

The angular distribution of small-angle scattering
by a rough surface can be calculated within the model
of the inhomogeneous transition layer [1]. Under the
assumption that the electron density in a layer is a ran-
dom fluctuation of the radius vector r, the permittivity
is represented in the form

where ε0(z) = 〈ε(r)〉  is the permittivity averaged over
density fluctuations (the z axis is directed inward to the
crystal) and δε(r) is the permittivity fluctuation.

Let a plane wave with a wave vector τ0 = {τ||, τz} be
incident on a crystal. Here, |τ||| = τsinΘ0, τ = ω/c, Θ0 is
the angle between the incident beam and the normal to
the surface, and ε0(z) = 1 + [exp(z/a)]/[1 + exp(z/a)].
The scattering intensity is found by the formula

where t0 = t(Θ0) and t is the refracted wave amplitude.

In the simplest case of plane waves, K(s) can be
approximated by the expression
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where the vector s = t|| – k||; k is the wave vector of the
refracted wave; L = 1/(1 + σ2(τ0z + τz)2)1/2; l is the cor-
relation length of inhomogeneities; and σ is the vari-
ance, which is related to the roughness height d by the
relationship σ = d/2. In the expression for K(s), the first
term stands for the Yoneda scattering intensity and the
second one describes the intensity of the specular com-
ponent.

The surface roughness is characterized by the
parameter σ(τ0z + τz), which defines the phase differ-
ence between the waves reflected from the upper and
lower boundaries of the transition layer. The inhomoge-
neity of the transition layer may also be due to bulk
defects and not only to surface roughness. These
defects can be studied with this method only if the sur-
face is smooth (finish class 14 or higher) and the rough-
ness can be neglected. If the surface meets this require-
ment, defects caused, e.g., by ion implantation can be
studied [21]. When recording the differential curve, one
should keep in mind that its shape may depend on the
distance from the illuminated surface area of the sam-
ple to its edge [22].

The dependence of small-angle scattering on the
electron density fluctuation in the surface layer was
confirmed in [23]. In that work, the theoretical formulas
were verified by taking experimental dependences of
the small-angle scattering of As ions on the irradiation
dose during As implantation into the silicon surface of
finish class 14.

In [24], the surface roughness was described by pos-
tulating the presence of a transition layer whose density
varies with depth. The TER of X rays was treated in
terms of the Darwin dynamic theory. The surface layer
is split into elementary layers that are parallel to the
surface. The incident wave partially passes through an
elementary layer and partially reflects in the specular
direction. The wave reflected from lower layers is par-
tially reflected by upper layers in the direction of the
primary beam.

Let us introduce the critical parameter

where t is the transition layer thickness. If the lateral
sizes of surface irregularities are less than S0, scattering
due to surface roughness can be described in the
approximation of the transition layer, whose density
grows with depth. Otherwise, macroirregularities occur
and reflection is described in terms of geometrical
optics. Theoretical calculations are confirmed by exper-
imental integral curves.

The roughness can be taken into consideration by
introducing the averaged-density transition layer [25].
This approximation applies when the distribution of
surface asperity heights is normal. As model objects,
metal (Cr, Cu, and Ni) films evaporated in vacuo were

S0 2 tλ( )1/2/3ϑ cr
3/2,=
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used. Analytical and experimental integral curves were
in good agreement.

In [26], diffuse scattering from a surface is
explained based on the theory where the surface is
viewed as statistically distributed microareas.

The angular position of the diffuse peak depends on
the critical angle of a scattering material. Therefore, it
was suggested [27] that composites consisting of a dis-
similar layer and substrate must exhibit two diffuse
peaks. This supposition was substantiated by the shape
of the differential curve for the scattering of MoKα1
radiation by a ≈50-Å-thick organic film on a glass sub-
strate.

The Yoneda effect is also observed for ultrasoft
X-ray radiation [28]. According to the Rayleigh crite-
rion h ≤ λ/(8ϑ), where h is the height of surface irregu-
larities and ϑ is the angle of scattering, the smaller the
wavelength, the greater the diffuse scattering compo-
nent. In [28], small-angle scattering by the face of hex-
agonal boron nitride that is parallel to the c axis was
studied as a function of wavelength in the range 50–
160 Å (the grazing angle of incidence was larger than
critical). It turned out that the diffuse peak may both
increase and decrease with wavelength relative to the
specular peak.

Of special interest is the absence of the specular
peak at several wavelengths. This was assumed to be
associated with the presence of the transition layer,
which provides a smooth, rather than stepwise, change
in the permittivity at the vacuum–material interface.

The fit of the model integral X-ray scattering curves
to the experimental ones allows one not only to refine
the film thickness but also to estimate the electron den-
sity profile in the film [29]. The reflected intensity is
calculated by the formula

where ρ0 and ρ are the electron densities in the film and
substrate, respectively; Θ = (4πsinϑ)/λ; and z is the
coordinate of the substrate plane.

The recovery of the density profile for a layered sys-
tem from integral curves is a challenge. This problem
cannot be solved directly, except for the simplest cases.
To solve the inverse problem, the profile is expanded
over a set of given functions. Then, the calculated curve
of scattering by a model object is fitted to the experi-
mental curve by finding the appropriate values of inde-
pendent expansion parameters [30].

EXPERIMENTAL

We studied the (111)Si wafer surface. The wafers
were irradiated by a cw ruby laser. The parameters of
the radiation were the pulse duration 0.5 ms, energy
density 18 J/cm2, and laser beam diameter 8 mm. Sur-
face areas measuring 25 × 8 mm were successively
exposed to laser pulses as the sample was moved after

I ρ0
2– ρ/ zdd( ) iQz( ) zdexp∫

2
,=
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each pulse so that the overlap of two neighboring pulses
was 27 mm2.

The integral and differential curves of TER for
CuKα1 radiation were recorded before and after the
irradiation. The incident radiation was monochroma-
tized by means of a slit silicon monochromator with tri-
ple reflection from the (111) plane. The angular distri-
bution of the radiation scattered by the sample in the
differential scheme was analyzed by a silicon analyzer
with a single reflection from the (111) plane.

The integral curves were taken for angles α of sam-
ple rotation from 0 to 25'. The differential curves were
taken for scan angles ϑ of the analyzer from 0 to 50'
with the angle of sample rotation fixed (14').

RESULTS AND DISCUSSION

Figure 2 shows experimental and analytical integral
curves. The reflection coefficient first increases from
0.5 to almost 0.9 and then drops, the drop being sharper
for the irradiated sample. The differential curves
(Fig. 3) have one maximum at ϑ  = 2α, which is more
intense and more narrow for the irradiated sample.

In the integral scheme, the surface to be studied is
positioned in the object holder parallel to the incident
beam, shutting out half of it (zero position). If the sam-
ple is positioned correctly, half the radiation in the zero
position falls directly into the detector and the other
half is shut out by the sample face that is normal to the
surface. As the sample is rotated, the intensity of the
radiation picked up by the detector grows, since that
part of the beam striking this face decreases, while the
other (incident on the sample surface) increases. At
angles smaller than critical, the radiation is almost
completely reflected from the surface and falls into the
detector. At near-critical angles of rotation, the reflected
intensity drastically drops. The ideal integral curve can
be recorded only if an infinitely narrow rectangular
beam is reflected by a perfectly smooth nonabsorbing

2
1

1.2

0.9

0.6

0.3

0

R, arb. units

5 10 15 20 25
α, ang. min

Fig. 2. Integral curves of TER. Solid lines, experiment;
dashed lines, theory. (1) Before and (2) after the laser irra-
diation.
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surface. Actually, however, the primary beam is bell-
shaped and, therefore, the intensity near the critical
angle smoothly declines by half.

The critical angle determined from the angular posi-
tion of the half-intensity point equals 14.15' before the
irradiation and 13.48' after the irradiation. This differ-
ence is due to the presence of an oxide film on the sili-
con surface, which evaporates under the action of the
laser beam. This is also confirmed by calculating the
surface layer density from the values of the critical
angle. Before the laser irradiation, the density is
≈2.65 g/cm3, which is close to the density of SiO2; after
the irradiation, it is equal to ≈2.42 g/cm3, i.e., to the
density of Si.

The thickness of the oxide film found by fitting the
theoretical curves to the experimental ones with the
procedure described in [10] is (55 ± 5) Å. The presence
of the film must give rise to interference maxima. The
spacing between the maxima is inversely proportional
to the thickness of the film. The absence of the maxima
means that the resolution of the reflectometer is insuffi-
ciently high to detect interference from such a thin film.
Further studies showed that well-resolved interference
is observed for film thicknesses between 150 and
1500 Å.

Note that the correct fit of theoretical curves to those
found experimentally is possible only if the rms height
of surface asperities is known. Relevant data were
obtained by fitting the theoretical specular component
to the experimental specular component in diffraction
curves as in [10]. Before the irradiation, the roughness
was higher, (12 ± 2) Å, than after the irradiation, (8 ±
1) Å. Thus, the irradiation of the silicon surface by laser
pulses with the parameters listed above removes the
oxide film and reduces the surface roughness.

The correlation length, which characterized the sur-
face roughness, has an effect on the diffuse component
of the differential curve. To extract reliable information
on the correlation length from a differential curve, it is

150

100

50

0

I, counts/s

20 25 30 35 40
α, ang. min

2

1

Fig. 3. Differential curves of TER. Solid lines, experiment;
dashed lines, theory. (1) Before and (2) after the laser irra-
diation.
necessary to have a powerful X-ray source. In our
experiments, where the usual X-ray tube was combined
with the triple-reflection monochromator, the diffuse
scattering intensity was close to the background; there-
fore, we failed to determine the correlation length.

From the published data cited and our experiment, it
follows that surface roughness affects the shape of inte-
gral and differential curves of TER. The irradiation of
the silicon surface by millisecond laser pulses with an
appropriate energy removes the oxide film. The evapo-
ration of the film reduces the surface roughness.
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Abstract—In the first approximation, the following formula is derived for water viscosity as a function of tem-
perature and pressure:

where p is the pressure and E, η0, θ, a, b, and c are constants. A formula obtained in the second-order approx-
imation contains terms quadratic in pressure and temperature-dependent coefficients outside pressure terms.
© 2003 MAIK “Nauka/Interperiodica”.

η η 0 ap
E bp–

R T θ– cp–( )
---------------------------------+ ,exp=
In [1], the temperature dependence of the viscosity
of liquids is given by

(1)

where T0 is a correction for the nonideality of the liquid.
Since for water T0 < 0, we hereafter use the param-

eter θ = –T0.
Detailed tabulated values of water viscosity as a

function of temperature [2, 3] were obtained from
experimental data. It is therefore of interest to derive a
general formula for water viscosity as a function of
temperature and pressure.

In this work, the temperature dependence of the
water viscosity was calculated by formula (1) for differ-
ent temperatures using data from the reference books
[2, 3]. The results of these calculations are summarized
in the table, which gives, along with the parameters E,
η0, and θ, the temperature intervals covered, the num-
ber of the values of η used, and the relative error δ. It
turned out that, at low and medium pressures (1–
250 bar), formula (1) fits the tabulated data well in a
temperature interval from the melting point to a pres-
sure-dependent temperature in the range 483–523 K. At
higher temperatures, the viscosity deviates from the
calculated curve toward lower values the greater, the
higher the temperature is. This deviation is caused by
the gradual transition from the liquid to gas phase. As
follows from the tables for viscosity [2, 3], at higher-
than-critical pressures, the liquid–gas transition is con-
tinuous. At lower pressures, this transition is inter-
rupted, because the liquid starts boiling when the pres-
sure of the gas being in equilibrium with the liquid
equals the external pressure. At above-critical pres-

η η 0
E

R T T0+( )
------------------------ ,exp=
1063-7842/03/4804- $24.00 © 20514
sures, the liquid entirely turns into the gas before boil-
ing and the transition, therefore, proceeds continuously.

From our tabulated values, one can find a general
dependence of the viscosity on temperature and pres-
sure. In the first approximation, this dependence for
low and medium pressures is given by the formula

(2)

For E = 4.753 kJ/mol, η0 = 2.4055 × 10–5 Pa s,
θ = 139.7 K, a = 4.42 × 10–4 bar–1, b = 9.565 ×
10−4 kJ/(mol bar), and c = 1.24 × 10–2 K/bar, the viscos-
ity values calculated by formula (2) over a temperature
interval of 273–463 K and at pressures of 1–250 bar are
in good agreement with the tabulated data.

Formula (2) explains the fact that, with rising pres-
sure, water viscosity declines at temperatures of 273–
303 K and grows at higher temperatures. As is seen
from (2), the viscosity varies with pressure, because the
energy E' = E – bp diminishes with pressure, while the
quantities  = η0exp(ap) and θ' = θ + cp increase. At
low temperatures, the former factor prevails; at high
temperatures, the increase in  and θ' becomes domi-
nant. Physically, the increase in θ' is related to that in
the water density. As the density grows, the system is
more and more disturbed from equilibrium, causing [1]
θ' to increase. The table also gives the results for heavy
water calculated with data in [3]. Heavy water is denser
than light water; accordingly, η0 and θ for the former
are larger. The slight decline of the energy E with rising
pressure may be explained by an increase in θ if it is
assumed [1] that the potential barrier height linearly

η η 0 ap
E bp–

R T θ– cp–( )
---------------------------------+exp .=

η0'

η0'
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Table

Liquid P, bar T, K n η0, 10–5 Pa s E, KJ/mol θ, K δ, %

Light water 1 273–363 10 2.4152 4.7428 139.86 0.0046

60 273–493 23 2.4638 4.703 140.3 0.030

100 273–503 24 2.5124 4.659 140.9 0.026

150 273–513 25 2.5702 4.608 141.6 0.033

210 273–513 25 2.6484 4.539 142.6 0.037

250 273–513 25 2.7042 4.491 143.3 0.042

300 273–533 27 2.7830 4.419 144.5 0.063

500 273–553 29 3.0816 4.181 148.3 0.12

800 273–573 31 3.5940 3.823 154.4 0.24

Heavy water 1 277–373 13 3.175 4.234 155.0 0.61
varies with temperature. In this case, formula (1) takes
the form

(3)

where  = η0exp(–β/R) and E = U0 – βθ.

It follows that, as θ increases, the energy E dimin-
ishes. This may explain why the energy E of heavy
water is lower than that of light water. However, from
(3) it follows that, at constant U0 and β, the viscosity
always grows with p (and, correspondingly, θ). There-
fore, to explain the lowering of water viscosity with ris-
ing pressure at low temperatures, one should assume
that U0 or β (or both) vary with pressure accordingly.
One reason why the potential barrier height varies with
pressure may be a change in the intermolecular spac-
ing. As this spacing shrinks with pressure, the repulsion
forces between molecules grow, facilitating the transi-
tion of molecules to adjacent “holes.” It should be
noted, however, that, with rising pressure, the probabil-
ity of hole formation drops. Therefore, for the barrier to
lower with rising pressure, it is necessary that the
former factor prevail. Such conditions are likely to exist
at low temperatures, where immobile holes (due to
structural defects), whose concentration is independent
of pressure, dominate.

At high pressures, considerable deviations from the
viscosity curve given by formula (1) appear not only at
temperatures of liquid–gas transition but also at those
close to the melting point. These deviations add to the
average error δ, as is seen from the table. The calcula-
tion results show that, at high pressures, where pressure
corrections increase, terms quadratic in pressure and
temperature-dependent coefficients outside pressure

η η 0

U0 βT–
R T θ–( )
---------------------exp η0'

E
R T θ–( )
--------------------- ,exp= =

η0'
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terms become essential. In the second-order approxi-
mation, the formula for water viscosity takes the form

(4)

Formula (4) agrees well with the data given in the
table over the pressure range 1–800 bar with the follow-
ing values of the constants: E = 4.753 kJ/mol, η0 =
2.4055 × 10–5 Pa s, θ = 139.7 K, a = 2.547 × 10–4 bar–1,
a1 = 6.42 × 10–7 K–1 bar–1, a2 = 7.967 × 10–8 bar–2, a3 =
1.16 × 10–10 K–1 bar–2, b = 2.795 × 10–4 kJ/(mol bar),
b1 = 2.48 × 10–6 kJ/(mol K bar), c = –4.85 × 10–3 K/bar,
and c1 = 6.32 × 10–5 bar–1.

In conclusion, it should be noted that, using a
greater number of variable parameters, one can arrive at
expressions that could fit the data in the table better
than formula (4). However, this makes little sense,
because experimental data on viscosity, as well as the
data in the table, are not accurate enough.
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Abstract—An explanation for an intriguing natural phenomenon, the formation of “gravid” shells, is given.
Our experiments show that it is unrelated to mollusk breeding but reflects the self-assembly of dissipative nano-
structured protein films under ordinary nonequilibrium conditions. This point concerns several important
aspects of biology, nanotechnology, and mineralogy. © 2003 MAIK “Nauka/Interperiodica”.
Have you ever seen gravid shells? What other name
could be given to specimens of shells whose interior
cavities contain one or many small shells that look like
their young (Fig. 1)? They are easy to find: it is only
necessary to look carefully at a coastal strip. One can
find many of them; therefore, they are of certain interest
as an object of investigation. The “young” of shells are
totally different from one another. Some of them,
already convoluted, fully copy the shape of their “par-
ents.” They are located in the proper place, that is, in the
shell interior, which is similar to an abdominal cavity
(Fig. 1). Others are shaped into numerous twisted or
extended tubes and tubules that are stratified on the
inner (and sometimes outer) surface of the shell
(Fig. 2). But what does it mean in reality?

In viewing the inner surface of screw shells under a
microscope, we managed to discover a number of fea-
tures that can be considered as early phases in the
development of the specimens described. For example,
a thin fibrous cancellation with alternating dark and
bright zones can be discerned. Brown-colored com-
pacts occur extensively, which are similar in shape and
size and have expanding endings (“heads”). They
appear as small equispaced rods or tubules, resembling
larvae, and are arranged symmetrically about a thin fil-
ament at an angle of 30°–40° to it (like leaves on a tree).
In many cases, voids at the former places of such larvae
can be detected. Areas of regular cells (like honey-
combs) or rectangular lunules with recessed bright cen-
ters separated by darker interstices are still more con-
vincing evidence that such a phenomenon does exist.
Also, laminated films are often observed.

Thus, we are dealing with manifestations of a non-
stochastic process. It can be said with confidence that
they are early stages of system structuring with the
appearance of helical, tubular, and film fibrous forms.
These are firmly bonded to the solid surface of a
“maternal” shell, are three-dimensional, and exhibit
macroscopic periodic density variations. The last effect
shows up not only in the alternation of bright and dark
areas but also in the presence of regular equispaced
holes in the “bony” medium (Fig. 3).
1063-7842/03/4804- $24.00 © 20516
Thus, we observe the phenomena of discontinuous
bilateral, helical, and chiral symmetry and asymmetry;
angular momentum; helical motion; adhesion to a solid
substrate; macroscopic three-dimensionality of the
structures; and other features typical of the self-organi-
zation of matter. The basic properties of this phenome-
nology, such as coherence, cooperation, synchronism,
nucleation, and self-similarity, are evident.

Of special interest is the fact that similar phenomena
are experimentally observed at the final stage of assem-

(a)

(b)

Fig. 1. Gravid shells with small youngs inside. Magnifica-
tion ×1.5.
003 MAIK “Nauka/Interperiodica”
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bling nonequilibrium protein films in vitro [1–4]. The
films are divided into cells with helically twisted tubes,
which serve as shell nuclei, etc. (Figs. 4, 5).

The question arises as to whether the similarity
between the features in the phenomenon of gravid
shells and the protein properties upon self-assembly
discovered in the in vitro experiments is accidental. We
have good grounds to believe that this identity is regular
and reflects the fundamental capability of protein to
autonomously self-organize and make other sub-
stances, specifically, calcites, take its shape.

It is known that when forming shells, mollusks
secrete a colloidal organic mass, which is mineralized
during condensation and aggregation. Our observations
show that among all organic ingredients (protein, DNA,
RNA, ATPase, etc.), only a protein solution condensed
in vitro acquires the above properties [4–6].

Our experiments where a protein solution combined
with calcium confirmed that the mineralization of the
protein film favors the stabilization process but does not
radically change the protein self-assembly and symme-
try properties. These findings are in complete agree-
ment with those obtained by Belcher et al. [7], who
demonstrated that “a small amount of protein controls
the growth of calcium crystals, facilitating the shell for-
mation.” This seems to be one more argument support-
ing the capability of protein for autonomous and com-
petitive self-organization [5, 6].

Based on the aforesaid, we assume that shells both
in the interior and on the surface of a maternal individ-
ual, being minerals of specific type, exemplify the nat-
ural self-assembly of dissipative protein nanostructures
combined with other organic substances and minerals.

Fig. 2. Tubules inside a helical shell. Magnification ×1.2.
TECHNICAL PHYSICS      Vol. 48      No. 4      2003
In these structures, the same kinds of symmetry typical
of protein nonequilibrium forms are observed from the
nano- to macrolevel [6]. This substantiates the view that
nanoscience and material self-assembly are of great
significance in the problem of protein self-organization
[8–11].

In essence, it is meaningless to describe the forma-
tion of a new biomineral shell frame on the existing
exoskeleton of a mollusk using the notion of gravidity,
as adopted for living creatures, since the process
described has nothing to do with the known forms of
mollusk breeding [12].

Yet it is difficult to get rid of the idea that such an
intriguing and unexpected similarity of these phenom-
ena reflects to some extent the fundamental unity of
processes involved in the self-organization of matter,
especially in going from living organisms to inanimate
matter.

If so, it becomes clear that the corpus of a mollusk
and its organic constituents, on the one hand, and pro-
teins of the environment, on the other, can form nano-

Fig. 3. Circular voids indicating the larva positions. Magni-
fication ×1.2.

Fig. 4. Nonequilibrium film of the protos protein
(lysozyme–water system). Geometrically similar blocks
(cells) with nuclei are seen.
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structured films, turning into biomineral helical forms
(shells). Then, there appears the exoskeleton of a mol-
lusk in the former case and a similar (“filial”) form in
the latter.

The structural similarity between such individuals
of quite different nature (both unrelated to mollusk
breeding) seems to reflect the same mechanisms under-
lying the self-assembly and mineralization of protein
films.

(a)

(b)

Fig. 5. Division of a nonequilibrium protein film into cells
with shell-like nuclei by large rectilinear and helical
defects. (a, b) 3D vortices of opposite rotation indicate the
nucleation process. The images were obtained with an
MIN-8 optical polarizing microscope (×200).
The point raised in this article is worth studying
more thoroughly, since it is not only of theoretical inter-
est. The natural phenomenon of protein self-assembly
may be of practical importance in biology, nanotech-
nology, and mineralogy.
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Abstract—The dynamics of Cooper pair tunneling under Coulomb blockade in small-size Josephson junctions
is studied in terms of the resistive model. A relationship between the delay time and temperature fluctuations
of the Coulomb blockade edge and the rate of rise of the voltage across the junction is derived. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Quantum effects in small Josephson junctions have
been the subject of much investigation in recent years
[1, 2]. An important manifestation of quantum fluctua-
tions is the microscopic quantum tunneling of an effec-
tive particle, which reflects its behavior in going over
the potential barrier in phase coordinates. It is known
that the switching dynamics of a usual Josephson junc-
tion is similar to the motion of a particle in the field of
the “washing-board”-like potential [3]

(1)

where ε is the displacement current in terms of the crit-
ical Josephson current Ic, φ is the Josephson phase, and
EJ = "Ic/2e is the Josephson energy.

The lifetime τl of the metastable state of a Josephson
junction with current is given by [3]

(2)

where U0 = EJ{–πε + 2(εsinε + (1 – ε2)1/2)} is the poten-
tial barrier height and ωA is the frequency of attempts,
which depends on the McCamber capacitance parame-
ter

According to formula (2), quantum fluctuations
become essential at low temperatures. The potential
barrier height U0 lowers to a value that is comparable to
the plasma oscillation energy "ωp. In this case, it is nat-

U φ( ) EJ φcos εφ+( ),–=

τ l
2π
ωA
-------

U0

kT
------ 

  ,exp=

β 2e
"
------ IcRN

2
C.=
1063-7842/03/4804- $24.00 © 20519
ural to suppose macroscopic tunneling through this bar-
rier.

Another manifestation of the quantum fluctuation
effect at low temperatures is Coulomb blockade in
small Josephson junctions [4, 5]. Coulomb blockade
appears when [3]

(3)

where ωp = (2eIc/"C)1/2 is the plasma frequency, ωc =
2eIcRN/" is the characteristic frequency of a Josephson
junction with a critical current Ic, normal resistance RN,
and capacitance C.

In terms of resistance, condition (3) is recast as

(4)

where RQ = 1 qΩ is the quantum unit of resistance.

The I–V characteristic of small Josephson junctions
shows that at voltages below the Coulomb blockade
edge V0 = e/C (i.e., at V < V0), the capacitor made up of
the junction electrodes is charged (the blockade condi-
tion) [3]. The mean value of the supercurrent in this
case is zero. When the charge of the capacitor
approaches an odd number of elementary (electron)
charges, the supercurrent becomes nonzero and the
electrodes exchange a Cooper pair. In the presence of
thermal fluctuations, the transfer of the Cooper pair
occurs somewhat earlier; that is, when the equality
V(t) = e/C is not strict. In other words, the Coulomb
blockade edge “diffuses.” In this work, we consider the
effect of Coulomb blockade on the tunneling dynamics
of a Cooper pair and the effect of thermal fluctuations
on the Coulomb blockade edge.

min "ωp "ωc,  @ EJ,

RN RQ; RQ> "/4e2,=
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BASIC EQUATIONS

For junctions with parameters satisfying condition
(4) and at low voltages eV < ∆, where ∆ is the energy
gap of a superconductor, the Hamiltonian has the form

(5)

where I(t) is the external current passing through the
junction.

The general theory of Josephson effect [3] is valid
when

(6)

In this case, the electric charge Q and Josephson
phase φ can be considered as classical variables. In the
opposite limit, such an approach fails and Q and φ must
be viewed as noncommuting operators [6] such that

(7)

in the φ representation.
It was shown [7] that the properties of a small junc-

tion depend on the impedance of the environment
(external leads). Only in the high-resistance environ-
ment, Re @ RQ, can Coulomb blockade not be sup-
pressed by charge fluctuations in the leads. The semi-
classical theory of Josephson junctions with a small
capacitance and a low quasi-particle conductivity under
low-current conditions has been worked out in [8]. In
this theory, 2e periodicity is attributed to Bloch zones of
the junction. The lower zone height depends on the
ratio κ of the Josephson energy EJ = "Ic/2e to the elec-
trostatic energy EQ = e2/2C; that is, κ = EJ/EQ. We will
assume that κ ! 1, since this condition is necessary for
charge effects to be observed in experiments. In the sin-
gle-zone approximation, the equation for quasi-charge
appears as [8]

(8)

In a high-resistance environment, equation (8) for
the normalized charge y = q/e is recast as

(9)

Here, the dot means differentiation with respect to time
in terms of RNC, where RN is the Josephson junction
resistance; E(q) is the dispersion law for the lower
zone; and V(q) = dE/dq.

We also introduce the dimensionless parameters
ν(q) = V(q)/V0, which is the voltage across the junction,
and νe, which is the external voltage in units V0 = e/C.
According to [8], ν(q) is given by

(10)

H Q̂
2
/2C Ec 1 φcos–( ) "

2e
------ I t( )φ,–+=

EQ ! EJ, EQ Q2/2C.=

Q 2ei ∂/∂φ( )–=

dq
dt
------ I t( ) 1

R
---dE q( )

dq
---------------.–=

ẏ ν y( )+ νe.=

ν q( ) y y3–( )
y2 1–( ) κ /2( )2+( )0.5

--------------------------------------------------.=
DELAY TIME FOR COOPER PAIR TUNNELING 
IN THE CASE OF VOLTAGE RAMP

Small Josephson junctions have a nonlinear normal-

ized differential capacitance  = dν(y)/dy. It is essen-
tial that this capacitance may take negative values.
Because of this, the properties of small Josephson junc-
tions greatly differ from those of other nonlinear reac-
tive elements, including standard Josephson junctions.
As follows from Eq. (8), the behavior of a small Joseph-
son junction is akin to the behavior of a particle in the
potential field of the form U(q) = E(q) – νeq, where E(q)
is the periodic dispersion law for the lower zone.

As for a usual Josephson junction [3, 9, 10], this
nonlinear capacitance causes an additional delay of
Cooper pair tunneling. However, the delay time
involves a factor that depends on the shape of the volt-
age pulse νe. Using (8) and approximating ν(y) near
y = 1 as ν(y) ≈ 2(1 – y2)/κ, we arrive at the solution to
Eq. (9)

(11)

For delay time, we have

(12)

Here, it is assumed that νe becomes larger than the Cou-
lomb blockade edge e/C stepwise. This formula is in
good agreement with a more complicated formula
obtained by exactly solving Eq. (10) with the nonlinear
dependence ν(y).

Let the rate of external voltage ramp α = dνe/dτ be
such that the tunneling of a Cooper pair takes place near
y = 1 with negligibly small fluctuations. In terms of the
new variables

Eq. (9) takes the form

(13)

with the asymptotic solutions

(14a)

(14b)

where z0 = C2  is the time instant y becomes equal
to unity, C1–C3 are constants close to unity, and τd is the
time it takes for the quasi-charge to become infinitely
large. This time is taken to be the delay time in the case
of voltage ramp.

cdif
1–

y νe
2
κ
---τtanh–

κν e

2
-------- 2

κ
---τtanh+ 

  / 1 νe
2
κ
---τtanh– 

  .=

τd κ .≈

z
4
κ
---τ 8

ακ 2
---------,–=

α z ακ 2/16=

dy
dz
------

2
κ
---y2– α zz=

y C1α z
2/3 z z0–( ) at y 1,<=

y
21/3

C3α z
1/3– z–( )1/3

----------------------------------- at y ∞,=

α z
1/3–
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Solution (14a) corresponds to the charging of the
nonlinear capacitor under voltage ramp (the blockade
condition). In this case, the particle moves along the
inner slope of the barrier U(q) = E(q) – νeq. The motion
after the Coulomb blockade edge has been achieved
(i.e., the motion along the outer slope of the barrier) is
described by solution (14b). Joining the asymptotic
solutions at the boundary of their applicability
domains, we obtain the time delay under voltage ramp:

(15)

THERMAL FLUCTUATIONS OF THE COULOMB 
BLOCKADE EDGE

When the voltage rises slowly, the energy barrier
U(q) = E(q) – νeq gradually lowers and fluctuations
may initiate Cooper pair tunneling. For the probability
of tunneling within a time interval t, we can write (see,
e.g., [3])

(16)

where the tunneling rate Γ can be expressed as a Gaus-
sian peak centered at the point q = e (y = 1):

(17)

Here, Ic is the critical current of a Josephson junction
and the parameter γ = 2kCT/e2 is small (γ ! 1).

If thermal fluctuations are insignificant, we can sub-
stitute asymptotic solution (14a) into Eq. (16). Such an
approach is justified, since the inertial motion of a par-
ticle in the potential filed U(q) = E(q) – νeq corresponds
to solution (14a) and the duration of this motion is large
compared with that of the motion corresponding to
solution (14b). Integration yields

(18)

where erf(…) is the error function.
From (18), the charge fluctuation is given by

(19)
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The fluctuation of the Coulomb blockade edge is
found from the relationship

(19')

DISCUSSION

As follows from the last formula, fluctuations of the
Coulomb blockade edge depend not only the factor γ,
which is responsible for thermal fluctuations, but also
on the rate of voltage rise α. When the latter parameter
increases, so do the fluctuations of the blockade edge.
At the same time, as the rate of rise of the current
through a usual Josephson junction increases, the fluc-
tuation of the critical current is suppressed [3, 9]. The
difference in the behavior of usual and small Josephson
junctions is associated with different nonlinearities in
the junctions. As is known [3], the equivalent circuit of
a usual Josephson junction consists of four parallel-
connected currents: Cooper pair current IS, quasi-parti-
cle current IN, displacement current ID, and fluctuation
current IF. The Cooper pair current IS = Icsinφ behaves
as a nonlinear reactive “power-consuming” element
US(φ) = –EJcosφ. If current variations are small, the dif-
ferential value of the nonlinear inductance is given by

(20a)

In small junctions, unlike usual Josephson junc-
tions, the current, as was noted above, has three compo-
nents: nonlinear displacement current ID, quasi-particle
current IN, and fluctuation current IF. The nonlinear dis-
placement current ID behaves as a capacitive element
with an energy U(q) = E(q). Its inverse differential
value is

(20b)

The change of the variable φ to q changes the induc-
tive nature of a junction to capacitive.

Thus, we studied the effect of Coulomb blockade on
the dynamic properties of small Josephson junctions in
terms of the resistive model. Formulas for the delay
time of Cooper pair tunneling in terms of nonlinear
capacitance were derived. In addition, we obtained a
formula for the thermal fluctuation of the Coulomb
blockade edge when the current through the junction
rises linearly.
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