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Abstract—It is shown that, in Auger-electron spectra of three-dimensional semimetal graphite and two-dimen-
sional graphite (a zero band-gap semiconductor), an energy gap should be observed between the thresholds
(edges) of the forward and inverse processes (threshold gap). In the one-electron approximation, this gap is
zero, since the threshold for the Auger spectrum of the forward process is the minimum hole energy in the
valence band, while the threshold for the spectrum of the inverse process is the minimum energy of conduction
electrons. Inclusion of the electron correlation at the Fermi surface within the quantum-chemical approximation
of a single open electron shell for multiplet structures of the restricted Hartree–Fock method makes it possible
to determine the threshold gap as 1.5 eV for a 48-atom cyclic model of three-dimensional graphite and as 2.0 eV
for a 24-atom model of two-dimensional graphite. The threshold gap does not contain the Fermi energy, in con-

trast to the Auger spectrum thresholds, where (4.0 eV – εF) for the forward Auger spectrum (holes) and

(−1.1 eV + εF) for the inverse spectrum (conduction electrons), the sum of which gives this gap. The results

of calculations for the forward Auger spectra of three-dimensional graphite (including the conclusion that elec-
tron correlation of holes in the top valence bands is weak in the Auger process) are shown to agree with the
experimental data. © 2004 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Auger electron spectroscopy (AES) and inverse
AES (iAES) are of particular importance in developing
the electronic theory of three-dimensional (3D) semi-
metal graphite, since these methods carry information
on the electron correlation. In the one-electron approx-
imation, the Auger electron spectrum describes the pro-
cess that yields two holes in the valence band below the
Fermi level εF. In other words, one valence electron
transfers from the level εv 1 to the level εcore of a prelim-
inarily generated deep core hole (the state close to the
atomic orbital C1s in the case of graphite) and another
valence electron transfers from the level εv 2 to a free
state with kinetic energy εkin. In the same approxima-
tion, the inverse Auger spectrum describes the process
resulting in the formation of two conduction electrons.
More specifically, a probe-beam electron with kinetic
energy εkin is captured into the vacant conduction level
εc1 and another electron transfers from the core level to
another conduction level εc2. We note that the abbrevia-
tion iAES is not conventional; it was introduced to
associate various electron spectroscopy versions with
the inverse Auger process, e.g., appearance-potential
spectroscopy (APS).

In what follows, we are interested only in systems
with metal filling and spectrum edges (thresholds)
caused by the lowest excitations of holes (AES) and
1063-7834/04/4609- $26.00 © 21583
conduction electrons (iAES) at the Fermi surface. In the
one-electron approximation, the spectra are double
convolutions of the density of states with a matrix ele-
ment of the Coulomb interaction of two final particles.
The energy dependence of the matrix element can be
found within the one-electron approximation, whereas
the many-electron approximation radically changes the
transition probability and includes correlation correc-
tions of the following types:

(i) The interaction of valence electrons with a deep
hole. This component has almost no effect on the shape
of the spectra and reduces to a constant, which is
included in the empirical parameter εcore = 284.35 ±
0.05 eV [1]. This parameter is directly measured as the
threshold for internal photoelectron emission in the x-
ray absorption spectrum.

(ii) The “direct” correlation associated with the
interaction of two final particles, i.e., holes (AES) or
conduction electrons (iAES). In the case of an insulator
(semiconductor) with delocalized carriers, this correla-
tion is small and is considered using the representation
of large-radius excitons. In particular, this correction
contains the static permittivity and, in effect, takes into
account the “indirect” correlation of all the crystal elec-
trons. The opposite extreme case of strong localization
(e.g., narrow 3d bands of transition metals) under con-
ditions of completely filled bands is also convenient for
analytical consideration in the Hubbard approximation.
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(iii) The indirect correlation associated with all
valence electrons. It is impossible to strictly distinguish
between this and the previous contribution. However, in
the case where we have metal filling of bands and spec-
trum edges associated with shallow delocalized excita-
tions near the Fermi level, exactly this type of correla-
tion becomes dominant. In this study, we perform
numerical simulation of this correlation.

The kinetic energy of primary (in forward AES) or
secondary electrons (in iAES) is involved in the bind-
ing energy,

(1)

where all the energy parameters are positive: εF is mea-
sured downwards from the zero potential, at which
εkin = 0; i.e., the Fermi energy is numerically equal to
the work function. The particle energies (in the approx-
imation of independent electrons) are also taken posi-
tive: εv and εc are measured downwards and upwards
from the Fermi level, respectively.

The first Auger spectrum in (1) was recently mea-
sured for 3D semimetal graphite under the same condi-
tions as a photoelectron emission spectrum (PES) (a
single sample in the same chamber without loss of vac-
uum and a single detector of electrons) [1]. Although
each measured electron spectrum coincided with x-ray
[2, 3] and Auger electron [4] spectra previously
obtained for graphite, accurate fixing of the contact
potential with the detector [1] allowed the authors to
conclude that the critical points of the AES and PES
spectra coincide (double differentiation was used, since
the spectra strongly differed in shape). Since the photo-
emission spectrum is one-electron and its features coin-
cide with the high-symmetry points of the band struc-
ture εv (k) = 2.3, 4.8, 7.8 eV, …, their coincidence with
critical points (1) was interpreted as being due to weak-
ness of the direct correlation of final holes from the
upper valence bands in the Auger process.

However, the shapes of the AES and PES spectrum
edges differ significantly over the range from the Fermi
level to the first critical point [1]. The difference in the
spectrum shapes is evident, and differentiation reveals
an additional critical point in the Auger electron spec-
trum. This point cannot be interpreted as belonging to a
band. Referencing the Auger electron spectra to the
Fermi level is always characterized by an error of no
less than 0.1 eV. Therefore, it is reasonable to say that
the electron correlation of the states at the Fermi sur-
face (including the direct correlation of two final parti-
cles at this surface) is the main effect that controls the
position of the Auger spectrum threshold of semimetal
graphite. Such an interpretation is also applicable to the

εv
1
2
--- εcore εkin

AES
– εF–( ),=

εc
1
2
--- εkin

iAES εcore– εF+( ),=
P

threshold for the inverse Auger spectrum, for which no
experimental data have yet been obtained.

We note that, for correlation with a core hole [see
item (i)], the edge shape of the AES spectrum of graph-
ite is affected by the Auger process with an initial state
consisting of an exciton formed by a core hole and a
valence electron. This contribution to the resulting
Auger spectrum was studied using convolution of the
one-electron density of graphite valence bands with a
model delta-shaped density of states of the exciton
under the assumption that the exciton binding energy is
small and is identical to the Auger spectrum threshold
[4]. In fact, there is a satellite of the basic Auger process
whose threshold is shifted by the binding energy of the
core-hole exciton. The spectrum narrows since the
exciton band is substituted for one of the valence den-
sities of states in the convolution integral for the proba-
bility of the Auger process. The contribution of the
exciton satellite can be experimentally separated, since
the lifetime of the free core hole is significantly longer
than the lifetime of an excitonic hole. The influence of
the electron correlation on the spectrum threshold ener-
gies for this satellite is the same as in the case of the
basic Auger process.

The approach that is developed in this paper is also
completely applicable to 2D graphite (zero band-gap
semiconductor), i.e., to a system with the Fermi surface
degenerated into a point. The thresholds of the Auger
spectra calculated in this work and their comparison
with experimental data for 2D (plane) and 3D hexago-
nal graphite show that these parameters can be impor-
tant experimental characteristics of the electronic prop-
erties of cluster carbon materials.

2. AUGER PROCESSES 
AND QUANTUM-CHEMICAL MODELS

Quantum-chemical calculation yields the total
energy of a crystal model consisting of a certain num-
ber of atomic cores and valence electrons (or bare
nuclei and all electrons). Let the crystal model contain
N valence electrons. The total energy E(N) of the
ground state is at least a self-consistent Hartree–Fock
approximation, which is more or less accurate depend-
ing on the calculation method (semiempirical or non-
empirical, ab initio method for calculating the matrix
elements of the electron–electron interaction). The total
energy can also account for the electron correlation if
the configuration interaction or perturbation theory is
applied to the self-consistent many-electron wave func-
tion [5].

The final states of the forward and inverse Auger
processes correspond to the energies E(N ± 2), which
can be calculated by changing the number of model
electrons by two. In this case, the problem of a nonzero
total charge of the model arises. For example, if the
model is a building block of an infinite crystal and the
calculation method takes into account only the valence
HYSICS OF THE SOLID STATE      Vol. 46      No. 9      2004
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electrons, then a small compensating charge should be
placed on the cores. Let ∆(N ± 1) be the correction to
the total model energy associated with the difference
between the electron charge of the model containing
only valence electrons and the charge of a separated
crystal volume involved in the Auger process. This cor-
rection is introduced with the following purpose. The
correction itself can be determined in quantum-chemi-
cal calculations, whereas direct calculations of E(N ± 1)
can be meaningless, e.g., because of the odd total spin
of the model.

In the forward Auger process, the initial energy is
E(N) – ∆(N – 1) + εcore and the final energy is E(N – 2) +
εkin. The charge correction takes into account that the
charge of the separated crystal volume changes by +1
in the Auger process, while the charge of valence elec-
trons of the model changes by +2. Substituting these
energies into Eq. (1), we obtain a theoretical formula
for the absolute position of the AES spectrum edge,

(2)

In the inverse Auger process, the initial energy is
E(N) + εkin and the final energy is E(N + 2) – ∆(N + 1) +
εcore; thus, we obtain a theoretical formula for the abso-
lute position of the iAES spectrum edge,

(3)

The charge corrections make up a fixed fraction of the
energy of electrostatic interaction of cores with each
other and with all electrons; both corrections are inde-
pendent of the electron correlation and are approxi-
mately equal. Therefore, summing Eqs. (2) and (3), we
obtain

(4)

In a system with metal filling, the energies of holes and
conduction electrons are very close to the Fermi energy
in the one-electron approximation. Hence, the energy
gap between the thresholds of the forward and inverse
Auger spectra (see Eq. (4)) is the characteristic energy
of the electron correlation and can be measured experi-
mentally. To this end, it is necessary not only to measure
the forward and inverse Auger spectra but also to deter-
mine their threshold energy involved in relation (4),
which is a complex problem. Its solution is facilitated
by the fact that one does not have to determine the abso-
lute position of the Fermi level but rather maintain a
constant contact potential between the sample and the
electron spectrometer.

εv
1
2
--- E N 2–( ) E N( )– ∆ N 1–( ) εF–+[ ] .=

εc
1
2
--- E N 2+( ) E N( )– ∆ N 1+( )– εF+[ ] .=

UF εv εc+
1
2
--- εkin

iAES εkin
AES

–( )= =

=  
1
2
--- E N 2+( ) E N 2–( ) 2E N( )–+[ ] .
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Finally, if E(N ± 2) are taken to be energies of
excited (rather than ground) states selected in a certain
way, then Eqs. (2) and (3) can be used to determine not
only thresholds but also specific features of Auger
spectra.

3. OPEN-SHELL METHOD 
FOR 2D AND 3D GRAPHITE

Although the above conclusion relates to an arbi-
trary many-electron system with an open shell, an ade-
quate quantum-chemical model for calculating the total
energies can be constructed only in a few cases. Due to
the fact that the Fermi surface of semimetal graphite
encloses a small phase volume, the electronic structure
of graphite can be adequately described by a cyclic
model based on an extended unit cell (EUC) of the
crystal, which allows one to calculate the wave func-
tions at several high-symmetry points of the Brillouin
zone, including points close to the Fermi surface, e.g.,
inside electron pockets. In 2D graphite, the Fermi sur-
face degenerates into a single high-symmetry point of
the Brillouin zone (zero band-gap semiconductor);
therefore, the model of a single open shell is adequate
for 2D graphite. This model and the method for calcu-
lating its electronic properties [6] are characterized by
the following features:

(i) The crystal is modeled by a quasi-molecular
EUC characterized by the D3h point symmetry and by
the k set {Γ + 6T + 3M(Q) + 2K(P)} and consists of two
crystal planes, with 24 carbon atoms in each. The
model of 2D graphite (D6h symmetry) consists of a sin-
gle plane; however, its k set is much the same. There-
fore, all group-theoretic constructions remain valid due
to simple doubling of the irreducible representations.
The prefix “quasi” in the model title means that peri-
odic boundary conditions are imposed on molecular
orbitals (MOs); i.e., the entire set of Bloch states of the
crystal is reduced to the k set indicated above (widely
used alternative designations of the high-symmetry
points of the Brillouin zone of hexagonal graphite are
given in parentheses). Thus, the number of valence
electrons in the models of the initial states of Auger
processes is N = 192 and 96 in the cases of 3D and 2D
graphite, respectively [see Eqs. (2)–(4)].

(ii) The open electron shell of such a quasi-molecu-
lar EUC models the Fermi surface of an infinite 3D
crystal according to the following scheme. The graphite
band states nearest to the Fermi surface are π-type, i.e.,
are composed of pz atomic orbitals (AOs). In turn, at the
point K, which is at the center of the main electron
pocket of the Fermi surface, the upper band π state of
the model is doubly degenerate and corresponds to the
bottom of the partially filled conduction band and the
valence band top of the crystal. As indicated in the k set
of the model, the Brillouin zone of graphite contains
two points K, which cannot be transferred to one
another by translation through a reciprocal lattice vec-
4



1586 MOLIVER
tor; hereafter, they are designated as K ' and K". The
open shell formed by MOs with these quasimomenta
includes four degenerate MOs grouped into two sub-
shells with different wave vectors. Each subshell is a
spatial MO doublet, which transforms according to the
2D representation E' or E" of the D3h point group. Three
spinless configurations of the type (K ')m(K '')n – m =
(2K)n with an even number of electrons n = 2, 4, 6 can
be formed from the MOs of the open shell. All the
above also relates to the model of the “Fermi surface”
of 2D graphite, which degenerated into the points K;
only the designations of irreducible representations
should be changed in the group-theoretic formulas.

The tables given in [6] list all terms of every config-
uration, i.e., spectroscopic combinations of the Slater
determinants, whose group-theoretic selection and des-
ignations correspond to (a) a certain wave vector, Γ or
K, which is determined by summing the wave vectors
of n electrons settled over four MOs of the open shell;
(b) irreducible representations of the D3h point group
(which is the point group of hexagonal semimetal
graphite and of a 48-atom EUC); and (c) the type of fill-
ing of the open-shell MOs: χ is the pairing type (the
open shell contains only doubly filled MOs), ψ is the
exchange type (the open shell contains only singly
filled MOs), and ϕ is the mixed type.

For example, according to a self-consistent calcula-
tion, the model ground state with energy E(N) at the
beginning of the Auger process is represented by a term
with configuration (K ')2(K '')2, whose wave function is
composed of four Slater determinants differing in the
filling of four MOs of the open shell [see Eq. (5)].

In fact, the group-theoretic analysis of the multiplet
structure of the open electron shell of the cyclic model
of semimetal graphite [6] is the basis of the proposed
theoretical description of Auger processes; the remain-
der relates to calculation of the electronic properties.

(iii) The construction of the model of semimetal
graphite described above predetermined the method for
calculating its properties: the restricted open-shell Har-
tree–Fock–Roothaan method. Although the abbrevia-
tion ROHF (restricted open-shell Hartree–Fock) is used
for this method as in quantum chemistry [5], an open
shell with any degeneracy (orbital and/or with respect
to the wave vector), rather than the simplest version
with half-filling of the upper MO as in conventional
software packages, is meant in the case under consider-
ation. Such an extended interpretation of the ROHF
necessitated the development of the McWeeney projec-
tion method by using electron density matrices to cal-
culate Fock matrices and by introducing a system of
open-shell coefficients [6] and a symmetrization proce-
dure (in the presence of subshells in crystal models). As
a result of these modifications, the self-consistency
cycle takes into account the electron correlation associ-
ated with the open shell (the calculated terms involve
several determinants). The high spatial symmetry of the
model is also used in full (for example, when selecting
PH
molecular orbitals for an initial approximation and for
calculating transition energies with allowance for the
selection rules).

(iv) The other features of the calculation are
methodical and are associated with the AO basis
(semiempirical Slater AOs C2s2p), parametrization of
matrix elements of the electron–electron interaction
[intermediate neglect of differential overlap (INDO)],
techniques for summing over an infinite lattice, etc. The
restrictions used on the basis size and Coulomb inte-
grals are associated exclusively with the potential of the
computer equipment employed and the experience
gained in the study of solid-state carbon systems (dia-
mond, its surface, and its structural defects; fullerene,
its crystals and chemical compounds).

We emphasize that the cyclic model and its elec-
tronic structure representation within the approxima-
tion of one open shell (ROHF) are not related to
semiempirical calculations and are quite feasible in ab
initio quantum chemistry. For this reason, details of the
geometrical parametrization of graphite and its proper-
ties are hereafter omitted.

4. CALCULATION OF AUGER PROCESS 
THRESHOLDS

It should be emphasized once again that the above-
stated method for calculating the Auger process thresh-
olds can be feasible at any level of quantum chemistry
with MOs (ab initio, semiempirical, tight-binding
approximation). However, since numerical results are
considered below, we first of all discuss the quantum-
chemical formalism of the software developed by the
author. These data were published in parts (semiempir-
ical implementations of the conventional Hartree–
Fock–Roothaan method always differ in some details
associated with the class of problems to be solved): the
Fock matrix construction for the self-consistency cycle
[7]; implementation of the self-consistent field (∆SCF)
method for electron excitations [8]; the procedure of
orthogonal transformation of MOs of a degenerate elec-
tron shell, which is necessary to relate these MOs to
equivalent wave vectors, i.e., subshells [9]; and the cal-
culation features associated with the cyclic model of
the crystal, which are important in estimating charge
corrections in the Auger process models described by
Eqs. (2) and (3) [9].

To demonstrate the quality of the semiempirical
parametrization, Fig. 1 shows the MO energy spectra
obtained using self-consistent ROHF calculations of
the diagonal Slater sum of the configuration (2K)4(Γ +
K) of two cyclic models of the initial Auger-process
states: (i) 2D graphite (graphene), a zero band-gap
semiconductor whose Fermi surface collapses into the
point K of the Brillouin zone (a 24-atom EUC), and
(ii) 3D hexagonal graphite, a semimetal with a small
Fermi surface (a 48-atom EUC).
YSICS OF THE SOLID STATE      Vol. 46      No. 9      2004
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The optimum basis interatomic distances are d =
2.90aB = 1.53 Å (experimental value, 1.42 Å) and c =
6.79aB = 3.59 Å (3.35 Å). Both spectra confirm the reli-
ability of the calculation by showing small splitting
(doubling) of the graphene bands as the interplane
interaction in 3D graphite is included, except for the π
bands at the Brillouin zone center Γ [10].

The orbital energy of the open shell is designated by
diamonds (1) in Fig. 1; the dash-dotted line shows that
the conduction band begins at this energy. This energy
does not obey the Koopmans’ theorem [7]; therefore, in
contrast to the case of orbital energies of closed and vir-
tual shells, this theorem cannot be applied to estimate
the energy of one-electron excitations, in particular, to
determine the Fermi level. By decreasing or increasing
the number of electrons of the EUC by two, we obtain
quantum-chemical models of the final states of Auger
processes, namely, diagonal Slater sums of the config-
urations (2K)2(Γ + K) and (2K)6(Γ + K) with open-shell
coefficients [6]. As a result, the following terms or
Slater sums of almost degenerate terms turned out to be
ground states:

(5)

(6)

(7)

where only the states of the open shell are given, α and
β are the spin basis functions, and the numerical values
for the 24-atom model of 2D graphite are parenthe-
sized.

Spectroscopic combinations of the Slater determi-
nants for the terms entering in diagonal Slater sums (6)
and (7) and their open-shell coefficients are given by

and are tabulated in [6].

E N( ) A1χ' Γ( ) αβαβ
4

--------------- Ki'Ki'K j''K j''
j 1 2,=

∑
i 1 2,=

∑= =

=  –5657.65 eV –2828.53 eV( ),

E N 2–( ) 1
4
--- A1ψ' Γ( ) A2ψ' Γ( ) 2Eψ' Γ( )+ +[ ]=

=  –5658.67 eV –2829.02 eV( ),

E N 2+( ) 1
4
--- A1ϕ' Γ( ) A2ϕ' Γ( ) 2Eϕ' Γ( )+ +[ ]=

=  –5653.65 eV –2823.96 eV( ),

A1ψ' Γ( ) 1

4
------- ψ11 ψ22+( ) αβ βα–( ),=

A2ψ' Γ( ) 1

4
------- ψ12 ψ21–( ) αβ βα–( ),=

Eψ' Γ( ) 1

8
------- ψ11 ψ22–( ) ψ12 ψ21+( )±[ ] αβ βα–( ),=

ψij Ki'K j''=
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Analogous terms of the mixed-filling type (with
subscript ϕ) entering into Eq. (7) have other open-shell
coefficients and can be determined using the same for-
mulas with the substitutions

    

Formally, these terms should be split by combinations
of three non-Hartree–Fock Coulomb integrals, which

ψ ϕ , αβ βα–( ) αβαβ αβ βα–( ),

ϕ ij Ki'Ki'( ) Ki''K j''( )Ki'K j''.=
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Fig. 1. Spectra of molecular orbitals of cyclic models of
(a) 2D and (b) 3D graphite. Closed squares and solid lines
are σ bands, and open squares and dashed lines are π bands;
numeral 1 indicates the open-shell states.
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involve all four MOs of the open shell [6]. In fact, all
these integrals strictly vanish. It is not necessary to per-
form a group-theoretic analysis, since direct calculation
with a symmetrization procedure yields zero values for
all three integrals at all values of the parameters (which
is another argument in favor of a maximum complete
consideration of the symmetry in quantum-chemical
calculations).

Figure 2 shows the self-consistently calculated com-
plete multiplet structures of the models of the initial and
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Fig. 2. Determination of the Auger process thresholds for
cyclic models of (a) 2D and (b) 3D graphite. The terms of
the three multiplets are separated by vertical lines and
grouped in column pairs. The left-hand and right-hand col-
umns contain the wave vectors Γ and K, respectively.
Squares, triangles (symbols are paired in the case of double
degeneracy), and circles designate the terms belonging to
the representations A', E', and (E', i), respectively. Closed
symbols show the pairing type of filling χ. The notations
allow one to determine the term type using the tables
from [6].
P

final states of Auger processes. For convenience, in the
tables from [6], the terms are designated by different
symbols [see (a–c) in item (ii) of Section 3]. Applying
definition (4) to energies (5)–(7), we immediately
obtain a numerical estimate of the observed effective
electron correlation at the Fermi surface of 3D (2D in
parentheses) graphite,

(8)

We estimate Auger process thresholds (2) and (3) by
determining the charge corrections. According to their
definition, we need to estimate the change in the total
energy of the model caused by a change in the total
charge of cores at a fixed state of the system of valence
electrons. The total energy terms containing the charge
correction are involved in any quantum-chemical cal-
culation. In the model we proposed, this term is the
“Madelung” energy EM defined as the energy of atomic
cores in their field (repulsion) and in the self-consistent
field of the valence electrons (attraction). This total
energy component should be calculated to control con-
vergence of lattice sums [11]; specific implementations
[9] are not of principle importance. Since this part of
the total energy is proportional to the squared charge of
the atomic core (all cores of the model are identical)
and since an identical extra charge is placed on each
core (to retain the entire model neutrality) as the num-
ber of valence electrons changes by i, we have the sim-
ple proportionality

It follows from this relation (and it is confirmed by cal-
culations) that the Madelung energies for the sequence
of states (6), (5), and (7) with a gradually increasing
number of electrons form a uniform series. Hence, sim-
ple averaging is sufficient to estimate the charge correc-
tions (in electronvolts):

(the values for 2D graphite are in parentheses). The
error in linearity is of the same order of smallness as the
difference in the determined charge corrections.
Graphic subtraction for determining the Auger process
thresholds, carried out at a Fermi energy of 4.6 eV [2]
(the work function of semimetal 3D graphite), is shown
in Fig. 2: the level E(N) is shifted by ±[∆(N ± 1) – εF].
Half differences between the obtained levels and the
final-state energies E(N ± 2) yield the sought thresholds
according to Eqs. (2) and (3). For 3D graphite (Fig. 2b),
we get

(9)

UF 1.5 eV 2.0 eV( ).=

E
M

N i±( ) 1
i
N
----± 

 
2

.∼

∆ N 1±( )
1
2
--- E

M
N 2±( ) E

M
N( )–[ ]±≈  = 

5.047 4.697( ),

5.052 4.798( )

εv
1
2
--- 4.0 eV εF–( ) 0.3 eV,–= =

εc
1
2
--- –1.1 eV εF+( ) +1.8 eV.= =
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These formulas correspond to the performed calcula-
tion, within which εF cannot be accurately determined;
these numerical estimations are carried out with an
experimental value of 4.6 eV for the Fermi energy [2].
The same value was also substituted into the formulas
for the thresholds for 2D graphite (Fig. 2a),

(10)

although the Fermi energy in graphene apparently dif-
fers from that in 3D graphite. We note that the indicated
numerical estimates of the thresholds and of the effec-
tive correlation depend only weakly on the conditions
for summing the exchange matrix elements, in contrast
to other model properties (upper levels of the valence
band, the elastic moduli, the multiplet levels of the open
shell in the ground state) [9]. Moreover, the determined
values of the Auger process thresholds are size-consis-
tent; i.e., they do not contain a proportional dependence
on the model size, as seen from Fig. 2, where the same
energy range (10 eV) is shown for the 24- and 48-atom
models. This independence shows that the calculation
procedure is reliable and that the results reflect the real
properties of open-shell electrons rather than artifacts
depending on quantum-chemical parameters.

The first of the thresholds (9) determined for holes
agrees with the conclusion (based on experimental data
[1]) that the correlation correction to the forward Auger
process is small; at least, this correction is of the order
of the experimental error in determining the Fermi
energy. There is also other experimental verification.
The negative effective correlation εv can be compared
to the negative critical energy of the forward Auger
spectrum [1]. Its exact value is not given in [1], since
this spectral region cannot be explained using the one-
electron approximation and other explanations (exciton
satellite of the initial core hole, correlation of final
holes) were not considered. This value was determined
within a unified technique for all critical points and,
judging from the presented spectra, is approximately
−0.8 eV.

We can see that the electron correlation at the Fermi
surface of graphite should most significantly manifest
itself in the inverse Auger process. The sum of the cal-
culated thresholds does not contain the uncertainty
associated with the calculated values of the charge cor-
rection and the Fermi energy in Eq. (9); therefore, it is
the value (8) of the observed quantity (4) that is the
main numerical prediction in this study.

5. CONCLUSIONS

The quantum-chemical method for calculating the
thresholds of Auger electron spectra proposed in this
paper is intended to analyze the effects of the electron

εv
1
2
--- 4.2 eV εF–( ) 0.2 eV,–= =

εc
1
2
--- –0.2 eV εF+( ) +2.2 eV,= =
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correlation of final particles generated at the Fermi sur-
face of semimetal graphite, namely, two holes in the
forward Auger process or two conduction electrons in
the inverse process. Since it is oriented toward a spe-
cific electron system, i.e., is conceptually a materials-
science approach, this method loses in generality in
comparison with analytical methods based on approxi-
mations, such as the Hubbard model [12–15]. However,
this approach has certain advantages.

(i) No special approximations are required to
describe the “direct” correlation of final particles in the
Auger process. Within a quantum-chemical model, this
Coulomb interaction is necessarily included in the self-
consistent Hartree–Fock approximation and in the cor-
relation calculated in the open-shell approximation.

(ii) The range of application of our method is dic-
tated by the feasibility of constructing a quantum-
chemical model rather than by restrictions on the
effective Hamiltonian (because an accurate descrip-
tion can be made for closed shells, for atomic spectra
of adsorbates or impurities weakly affected by band
electrons).

The difference in the calculated thresholds for the
Auger electron spectra between 2D and 3D graphite
[see Eqs. (9), (10)], as well as their relation to the Fermi
energy, shows that the experimental technique based on
measuring the threshold energies is promising in the
spectroscopy of materials based on 2D graphite, where
the substrate and/or adsorbate can change the Fermi
energy.
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Abstract—For a Josephson junction magnetically coupled to the superconducting waveguides enclosing it,
solutions to the equation for the difference of the Cooper pair phases over the Josephson junction are found and
the corresponding magnetic field values are calculated. Two gaps imposing an upper limit for the vortex velocity
are found for free vortices (moving without dissipation). Existence conditions are found for fast vortices in the
two high-velocity allowed regions. The dependence of the transport current on vortex velocity is established in
cases where the current flows through the Josephson junction only or through the entire structure. A reverse
current phenomenon is discovered in which vortices inside allowed velocity regions move opposite to the usual
direction. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Vortices in layered Josephson structures have
attracted the attention of researchers for a long time
(see, i.e., [1–3]). The interest in them is due primarily
to the fact that high-temperature superconductors can
be regarded as layered structures consisting of conduct-
ing layers separated by insulators, with Cooper pairs
being able to tunnel through the latter [4]. Also, the
properties of vortices in layered structures differ signif-
icantly from those in a single Josephson junction (JJ)
[5, 6]. The reason for the appearance of these new char-
acteristics is not only the changed spatial distribution of
the magnetic field of the vortices [5] but also the possi-
ble generation of electromagnetic fields outside the JJ
by moving vortices [7, 8]. In particular, changes in the
properties of vortices in a JJ coupled magnetically to a
planar waveguide were studied in [8]. It was shown that
vortices could propagate with a velocity much higher
than the Swihart velocity of the JJ. The perturbation of
the phase difference between the wave functions of the
superconductors in the waveguide that is generated by
such a fast vortex and produces a certain electromag-
netic field was also calculated in [8].

To further study the possibility of governing the vor-
tex properties by varying the parameters of a layered
structure, we consider in the present paper a vortex
moving in a more complex structure consisting of a JJ
coupled to two planar waveguides located on both sides
of the JJ. In the case where the Swihart velocities of the
waveguides Vs1 and Vs2 exceed the Swihart velocity Vs

of the JJ, it is found that two additional allowed velocity
ranges appear due to the presence of the two
waveguides; in these ranges, fast vortices can move at a
speed v > Vs. If Vs2 > Vs > Vs1, there is only one velocity
range for fast vortices, and a velocity gap appears at
1063-7834/04/4609- $26.00 © 21591
v < Vs because of the influence of the waveguide with
the Swihart velocity Vs1. If Vs > Vs1, Vs2, then the influ-
ence of the two waveguides gives rise to two velocity
gaps in the region v < Vs. We find a relation between the
transport current flowing through the JJ and the vortex
velocities for all these cases. We demonstrate that, for
all allowed velocities, the current sustaining vortex
motion is small compared to the critical Josephson cur-
rent jc if dissipation is low both in the JJ and in the
waveguides and if the vortex velocity is not too close to
the boundaries of the allowed regions. The j(v) depen-
dence is found for two paths of current flow through the
layered structure. In the case of a current flowing
through the JJ only, induced motion of a vortex is main-
tained by the Lorentz force, which is due to the interac-
tion of the current with the portion of the vortex mag-
netic field localized in the JJ and superconductors adja-
cent to it. If a current flows through the entire layered
structure, then the zone of effective interaction between
the current and the magnetic field becomes wider and
the main contribution to the Lorentz force arises from
the parts of the structure where the magnetic field is the
highest. For example, the magnetic field of fast vortices
is mainly concentrated in the waveguides and the super-
conductors bordering them. Consequently, the current
flowing through these parts contributes most to the
Lorentz force, which leads to a lower value of the cur-
rent required to sustain induced vortex motion as com-
pared to the case of the current flowing through the JJ
only.

Another unusual phenomenon arises if at least one
of the Swihart velocities, for example, Vs1, is smaller
than Vs. In this case, the magnetic field of the vortex
with a Swihart velocity just below Vs1 in the vicinity of
the waveguide is directed opposite to the magnetic field
004 MAIK “Nauka/Interperiodica”



 

1592

        

MALISHEVSKIŒ 

 

et al

 

.

                                                                                                                                  
in the JJ. As a result, as shown below, the net Lorentz
force changes sign and vortices with these velocities
move opposite to the direction in which vortices move
at velocities far from Vs1. In the case when the Swihart
velocities of both waveguides are smaller than Vs, there
are two velocity ranges, close to Vs1 and Vs2, where vor-
tices move opposite to the direction in which vortices
move at speeds far from Vs1 and Vs2.

2. EQUATIONS FOR THE PHASE
DIFFERENCE

Let us consider a layered structure consisting of a
thin nonsuperconducting layer with dielectric constant
ε and conductivity σ, located in the region –d < x < d,
and two nonsuperconducting waveguides with dielec-
tric constants ε1 and ε2 and conductivities σ1 and σ2,
located in the regions –L1 – d – 2d1 < x < –L1 – d and
L2 + d < x < L2 + d + 2d2, respectively. Superconductors
with thicknesses L1 and L2 and London penetration
depths λ1 and λ2 separate the nonsuperconducting lay-
ers. The regions x < –L1 – d – 2d1 and x > L2 + d + 2d2
are filled by superconductors with London penetration
depths λ0 and λ3. The waveguides are presumed to be
thick enough to neglect the tunneling current of super-
conducting pairs through them. In this case, the struc-
ture can be considered a JJ sandwiched between two
waveguides.

We assume that electromagnetic fields are indepen-
dent of y and that the superconducting layers are thin
enough for the magnetic field inside them to be inde-
pendent of x.

The condition for the x component of the general-
ized current to be continuous at the interfaces between
the superconducting and nonsuperconducting layers
gives equations that relate the wave-function phase dif-
ferences ϕ(z, t), ϕw1(z, t), and ϕw2(z, t) for the supercon-
ductors separated by the corresponding nonsupercon-
ducting layers to the y components of the magnetic
fields H(z, t), H1(z, t), and H2(z, t) in these layers:

(1)

Here, β = 4πσ/ε; βi = 4πσi/εi, i = 1, 2; and ωj is the

Josephson frequency (  = 16π|e | jcd/�ε).

∂2ϕw1 z t,( )
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2
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------------------------+
4 e c
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∂2ϕw2 z t,( )

∂t
2
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∂ϕw2 z t,( )
∂t

------------------------+
4 e c
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ω j
2 ϕ z t,( )sin β∂ϕ z t,( )
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∂t
2

---------------------+ +
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ε
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∂z
-----H z t,( ).

ω j
2

PH
Another set of equations relating the fields to the
phase differences follows from the Maxwell equations
and the continuity of the magnetic field and the z com-
ponent of the electric field at the interfaces [9]:

(2)

Here, we used the following notation:

Solving the set of equations (2) for the magnetic field
components, we obtain

(3)

where ∆ = B0B1B2 –  –  and φ0 = π�c/ |e | is
the magnetic flux quantum. Substituting these magnetic
fields into the first and second equations in set (1),
which describe the waveguides, we get

(4)
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2 e
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2 e
-------- ∂

∂z
-----ϕ z t,( ).=
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From the third equation in set (1), which describes the
JJ, we get

(5)

Equations (4) and (5) constitute a closed set of equa-
tions for the phase differences. Here, Vs, Vs1, and Vs2 are
the Swihart velocities of the JJ and the waveguides
magnetically coupled to each other,

S10 and S20 are the coupling constants describing the
influence of the JJ on the first and second waveguides,
respectively,

and S01 and S02 are the coupling constants describing
the influence of the waveguides on the JJ, S01 = a1/B1
and S02 = a2/B2. It should be stressed that the Swihart
velocities Vs, Vs1, and Vs2 are defined with allowance for
the interaction between the JJ and the waveguides.
Clearly, in the limit of large distances between the non-
superconducting layers, all coupling constants vanish
and the quantities Vs, Vs1, and Vs2 approach the Swihart
velocities of the isolated JJ and waveguides.

3. FREE-MOVING JOSEPHSON VORTICES

Let us consider vortices in free motion at constant
speed v along the z axis. Such motion is possible, in
particular, if dissipation in the nonsuperconducting lay-
ers is negligible. Dropping β, β1, and β2 from Eqs. (4)
and (5), we obtain

(6)

ω j
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PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      2004
Here, ψ(ζ) = ϕ(z, t), ψw1(ζ) = ϕw1(z, t), and ψw2(ζ) =
ϕw2(z, t), with ζ = z – vt. From the first two equations
in set (6), we find

(7)

Substituting Eqs. (7) into the third equation in set (6),
we get an equation for ψ(ζ),

(8)

where kj(v) is defined as

(9)

Here, v0, v1, and v2 are the roots of the equation

(10)

and the positive quantities given by

are the roots of the equation

(11)

The solution to Eq. (8) that corresponds to a stable
elementary vortex (2π kink) moving at constant veloc-
ity v is given by

(12)

This solution describes a vortex only if kj(v), defined
by Eq. (9), is real. For example, if the coupling con-
stants S10, S20, S01, and S02 are sufficiently small, an ele-
mentary vortex can move in one of three velocity
ranges: (1) from zero to the smallest root of Eq. (10),
(2) from the smallest root of Eq. (11) to the middle of
the three roots of Eq. (10), and (3) from the largest root
of Eq. (11) to the largest root of Eq. (10).
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If the coupling constants S10, S20, S01, and S02 are
small and the Swihart velocities Vs, Vs1, and Vs2 do not
coincide with each other (Vs2 > Vs1), the roots of
Eq. (11) are given by

(13)

and the roots of Eq. (10) are approximately equal to

(14)

When the Swihart velocity of the JJ is small com-
pared to the Swihart velocities of the waveguides (Vs �
Vs1 < Vs2), the roots of Eq. (10) are given by the simple
expressions

In this case, there are two relatively narrow velocity
ranges ( , v1) and ( , v2) where the 2π kink can
move at a speed much higher than the Swihart velocity
in the JJ. As in [8], we can assume that there are fast
Josephson vortices whose velocity lies in these ranges
and significantly exceeds the Swihart velocity in the JJ,
the limiting speed for a vortex moving in a solitary JJ.
In contrast to [8], in the structure under study here, con-
sisting of a JJ and two waveguides magnetically cou-
pled to it, there are two (rather than one) ranges in
which the velocity of fast vortices lie; therefore, we can
refer to them as the first and second fast vortices.

Let us consider another simple limiting case of
Vs1 � Vs < Vs2. This case takes place, for example, if the
London penetration depths of superconductors are
close in value, λ0 ≈ λ1 ≈ λ2 ≈ λ3 ≈ λ, and ε1(d1 + λ)/d1 �
ε(d1 + λ)/d > ε2(d2 + λ)/d2. In this case, the roots of
Eq. (10) are
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Let us compare these results to the data from [8],
where a structure consisting of a JJ magnetically cou-
pled to one waveguide was considered. It is evident that
the addition of a second waveguide with a relatively
small Swihart velocity Vs1 leads to a narrow gap near
Vs1, where an allowed velocity range was before. How-
ever, if a waveguide with a Swihart velocity Vs2 higher
than the Swihart velocity of the JJ is added, a narrow
velocity range of allowed vortex motion arises. In the
latter case, if the Swihart velocity of the second
waveguide is much higher than that of the JJ (Vs � Vs2),
we can say that a fast Josephson vortex appears.

If the Swihart velocities of both waveguides are
smaller than the Swihart velocity of the JJ (Vs1 < Vs2 <
Vs), the effect of the waveguides is that a vortex can
move with velocities v < Vs lying in three ranges sepa-
rated by two relatively narrow gaps located near the
Swihart velocities of the waveguides.

Let us discuss now three special cases that are out-
side the field of application of Eqs. (13) and (14). One
of them is the case where all three Swihart velocities
coincide (Vs = Vs1 = Vs2); the solutions to Eq. (11) are
given by

and the roots of Eq. (10) are

In this case, there are two relatively narrow gaps (in the
vicinity of the Swihart velocity) for the velocity of an
elementary vortex.

In the other case, the Swihart velocities of the JJ and
one of the waveguides are equal (Vs = Vs1 ≠ Vs2); the
solutions to Eq. (11) are still given by Eqs. (13), while
the solutions to Eq. (10) are described by the approxi-
mate expressions
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ṽ 2 Vs1 1
1
2
--- S01S10S02S20+ 

  ,≈

v 0 Vs O S01S10 S02S20+( ),+=

v 1 Vs 1
1
2
--- S01S10 S02S20+– 

  ,≈

v 2 Vs 1
1
2
--- S01S10 S02S20++ 

  .≈

v 0 Vs 1
1
2
--- S01S10– 

  , v 1 Vs 1
1
2
--- S01S10+ 

  ,≈ ≈
YSICS OF THE SOLID STATE      Vol. 46      No. 9      2004



VORTICES IN A JOSEPHSON JUNCTION SANDWICHED 1595
If, in addition, Vs < Vs2, then there is a relatively narrow
gap close to the Swihart velocity Vs and a narrow
allowed velocity range near the gap. Another narrow
region of allowed motion of an elementary vortex is
close to Vs2. If Vs � Vs2, fast vortex motion is possible
in this region. However, if Vs2 < Vs, then there are rela-
tively narrow gaps close to each of the Swihart veloci-
ties.

In the third special case, the Swihart velocities of the
waveguides are equal and much higher than the Swihart
velocity of the JJ (Vs � Vs1 = Vs2) and the motion of an
elementary vortex is possible at a speed (much higher
than the Swihart velocity of the JJ) inside two narrow
ranges close to Vs1 = Vs2 and separated by a relatively
narrow gap. The width of the allowed ranges in this

case is ~(S01S10 + S02S20) /Vs1. It should be stressed
that the same pattern of allowed velocity ranges and
gaps for vortex motion takes place for v < 0.

4. MAGNETIC FIELD OF A FREE-MOVING 
VORTEX

A vortex moving through the layered structure is
characterized by a certain spatial distribution of the
magnetic field. The fields inside the nonsuperconduct-
ing layers are given by Eqs. (3), (7), and (12), and the
magnetic field inside the superconductors is related to
the field inside the JJ and waveguides by

(15)

It follows from Eq. (12) that the characteristic scale of
the variations of the vortex magnetic field along the z
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axis is determined by (v), which depends on vortex
velocity and is given by Eq. (9). It is clear from Eq. (9)
that the field variation scale along the z axis decreases
with the vortex velocity v approaching one of the roots
of Eq. (10) and increases as v approaches roots of
Eq. (11).

The distribution of the vortex magnetic field along
the x axis is described in full by formulas (15). It is evi-
dent that the London penetration depths of the super-
conductors are characteristic scales of field variations
along this axis. However, the magnetic field distribution
depends on both the vortex speed and the proportion
between the Swihart velocities of the JJ and
waveguides.

The magnetic field distributions are presented in
Fig. 1 for all cases studied. The graphs are plotted
according to Eqs. (3), (7), (12), and (15) for t = 0 for the
case where λ0 = λ1 = λ2 = λ3 = λ and L1 = L2 = λ. We
also assumed that the widths of the waveguides are sig-
nificantly less than λ. This kind of relation between L1,
L2 and the London penetration depths corresponds to
the coupling constants S01 = S10 = S02 = S20 ≈ 0.4. All the
graphs have a common maximum of the magnetic field
as a function of z at the point z = 0 and confinement of
the field along the x axis to layers of thickness λ near
the boundaries of the superconductors, which is a man-
ifestation of the Meissner effect. Therefore, we will
assume that the magnetic field is concentrated near a
nonsuperconducting layer.

Let us consider the case of Vs2 = 2Vs1 = 6Vs. With
such a relation between the Swihart velocities of the JJ
and the waveguides, the motion of an elementary vortex
is possible inside the wide velocity range v < v0 ~ Vs

and in two narrow velocity ranges close to Vs1 and Vs2.
The magnetic field of a vortex has a specific distribution
in each of the allowed ranges. The distribution of the
magnetic field of a slow vortex with speed v = 0.6Vs <
v0 ~ Vs is shown in Fig. 1a. It is seen that the field of
such a vortex is mainly concentrated close to the JJ,
which is positioned in the x = 0 plane in Fig. 1a. The
magnetic field distribution of the first fast vortex is
shown in Fig. 1b. Unlike the slow vortex, the magnetic
field in this case is concentrated close to the first
waveguide, which is positioned in the x = –λ plane in
the figure. The magnetic field of the second fast vortex
is mainly concentrated close to the second waveguide,
which is in the x = λ plane. The field distribution of this
vortex is similar to that shown in Fig. 1b, but the field is
concentrated near the second waveguide.

Let us consider now the case of Vs2 = 4Vs/3 = 2Vs1.
In this case, there are two relatively wide and one nar-
row velocity range allowed for the motion of an ele-
mentary vortex. The magnetic field of a slow vortex
moving at speed v < v1 ~ Vs1 is shown in Figs. 1c and
1d. The magnetic field is concentrated mainly near the
JJ, as can be seen from Fig. 1c, which shows the field of
a vortex moving at a speed v = 0.5Vs1 corresponding to

k j
1–
4
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Fig. 1. Magnetic field distribution of a vortex for (a, b) Vs = Vs1/3, Vs2 = 2Vs1; (c–f) Vs = 3Vs1/2, Vs2 = 2Vs1; and (g–j) Vs = 3Vs1, Vs2 = 2Vs1.
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the middle of the allowed range. It is also seen that the
magnetic field near the first waveguide changes sign.
The influence of a slow vortex on the field distribution
intensifies as the vortex velocity increases and
approaches the Swihart velocity of the first waveguide.
The magnetic field distribution of a slow vortex in the
part of the allowed range adjacent to the Swihart veloc-
ity of the first waveguide is shown in Fig. 1d. In this
case, the magnetic field in the structure, for the most
part, reverses sign under the influence of the
waveguide. Figure 1e shows the magnetic field distribu-
tion of a vortex moving at speed v = 1.1Vs1, which cor-
responds to the middle of the wide allowed range  ≈
Vs1 < v < v0 ~ Vs. In this case, the magnetic field is con-
centrated in the superconductors close to the first
waveguide and the JJ. The magnetic field distribution of
a fast vortex moving with a speed in the narrow allowed
range near the Swihart velocity of the second
waveguide is shown in Fig. 1f. Similar to the fast vortex
presented in Fig. 1b, the field is mainly concentrated
close to this waveguide, whose influence gives rise to
the narrow allowed range.

Finally, let us discuss the spatial distribution of the
magnetic field of vortices in the case where Vs = 3Vs2/2 =
3Vs1. In this case, vortex motion is allowed in three
wide velocity ranges separated by two narrow gaps.
The magnetic field of a vortex moving at a speed in the
middle of the allowed range v < v1 ~ Vs1 is similar to
that shown in Fig. 1a.

The magnetic field distribution of a vortex moving
with a speed in the range v < v1 ~ Vs1 but closer to v1 ~
Vs1 is shown in Fig. 1g. Similar to the vortex presented
in Fig. 1d, the magnetic field reversed sign in the super-
conductors in the regions near the first waveguide. Fig-
ures 1h and 1i show the magnetic field distribution of
vortices moving with speeds in the allowed range  ≈
Vs1 < v < v2 ~ Vs2. A vortex moving at speed v = 1.5Vs1,
which corresponds to the middle of this allowed range,
is presented in Fig. 1h. It is seen that near the second
waveguide the magnetic field changes sign. Similar to
the previous cases (Figs. 1c, 1d), the influence of the
second waveguide intensifies as the speed of the vortex
approaches v2 ~ Vs2. If the vortex moves at a speed
close to v2 ~ Vs2, most of its magnetic flux reverses sign
(Fig. 1i). The magnetic field distribution of a vortex
moving at a speed in the middle of the third wide
allowed range  ≈ Vs2 < v < v0 ~ Vs is shown in
Fig. 1j. The magnetic field of this vortex is concen-
trated in the superconductors adjacent to the JJ and to
the second waveguide.

The graphs shown in Fig. 1 present the entire variety
of magnetic field distributions of elementary vortices
that can move in the structure consisting of a JJ and two
waveguides coupled to it. The data on the magnetic
field of vortices discussed in this section are important
for the development of various methods for sustaining

ṽ 1

ṽ

ṽ 2
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induced motion of vortices by passing a current through
layered structures.

5. INDUCED VORTEX MOTION

Let us examine vortex motion induced by a transport
current with density j flowing through the JJ along the
x axis. In this case, the phase differences are described
by the two equations in (4) and Eq. (5), in which the
current density is introduced:

(16)

Similar to the previous section, we only consider vorti-
ces moving at a constant speed. With the help of an
approximate solution to Eqs. (4) for the case of negligi-
ble dissipation in the nonsuperconducting layers (see
Appendix), we represent Eq. (16) in the form (cf.
Eq. (8))

(17)

where we introduced the notation

In the limit of small coupling constants S10, S20, S01, and
S02, we obtain from Eq. (17) (cf. [8])

(18)

This expression holds when the coupling between the
waveguides can be completely disregarded.

Using the formal similarity between Eq. (17) and
the equation describing uniform motion of a vortex in a
solitary JJ, we can obtain, following [10], a relation
between the transport current density and vortex
velocity,

(19)

Let us discuss Eq. (19) for a structure consisting of a JJ
and two waveguides magnetically coupled to it with
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ṽ 1
2

v
2

–( )
2
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small coupling constants S10, S20, S01, S02, and β1 ~ β2 in
the case where Vs � Vs1 � Vs2. In this case, the layered
structure has a wide velocity range for a slow vortex
and two narrow fast-vortex velocity ranges. Inside the
wide slow-vortex velocity range 0 < v < v0 ≈ Vs[1 –
(S01S10 + S02S20)/2], Eq. (19) can be approximated as

(20)

Equation (20) differs from the known expression for a
single junction [10] by, first, the additional terms
related to dissipation in the waveguides and, second,
the replacement of the Swihart velocity of the JJ by a
smaller quantity v0 under the radical sign.

Inside the two narrow ranges  ≈ Vsi < v < vi ≈

Vsi(1 + S0iSi0 ) for the motion of the first and
second fast vortices, we get

(21)

Here, i = 1, 2 for the first and second fast vortices,
respectively. It follows from Eq. (21) that, for each of
the fast vortices, the j(v) dependence has a minimum
inside the corresponding allowed range. Note that, in
the case of fast vortex motion in a JJ magnetically cou-
pled to one waveguide, the current also has a local min-
imum inside the velocity range where a fast vortex
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Fig. 2. Transport current density as a function of the vortex
velocity for Vs = Vs1/3 and Vs2 = 2Vs1.

00
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exists. If β � /( ) ~ /( ),
which corresponds to the case where dissipation in the
waveguides is significant as compared to that in the JJ,
we can find the minimum value of the transport current
in these regions:

It is seen that it is the parameters of the waveguide asso-
ciated with the particular fast vortex that determine the
minimum value of the transport current needed to sus-
tain fast vortex motion. The minimum value is reached
at a quarter of the width of the allowed range away from
its upper limit. Figure 2 shows the j(v) dependence
plotted according to Eq. (19) for all allowed velocity
ranges of an elementary vortex. The plot corresponds to
the following values of parameters: Vs = Vs1/3, Vs2 =
2Vs1, S01 = S10 = S02 = S20 = 0.3, and β = β1 = β2 = 10−5ωj.
It is clear from Fig. 2 that, in the region of the slowest
vortex, the transport current grows steadily up to the
edge of the allowed velocity range. In the narrow
ranges for the fast vortex, the transport current has a
local minimum, which is significantly lower than the
critical current jc. According to Eq. (21) and Fig. 2, the
derivative of j(v) is negative when the vortex velocity
is just slightly lower than the value corresponding to the
minimum of the current. By drawing on the analogy
between j(v) and the current–voltage characteristic of
a conductor, we will call the range of j '(v) < 0 the
region of negative differential conductivity. The pres-
ence of such a region in the j(v) curve suggests that a
system of a JJ magnetically coupled to a waveguide (or
waveguides) can be used to generate electromagnetic
radiation.

Let us now examine the case where the Swihart
velocity of one of the waveguides is much smaller than
the Swihart velocity of the JJ, Vs1 � Vs � Vs2. In this
case, for the velocity range 0 < v < v1 ≈ Vs1(1 –
S01S10/2), we obtain from Eq. (19) that
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In the relatively narrow range  ≈ Vs2 < v < v2 ≈

Vs2(1 + S02S20 ), where fast vortex motion is
possible, approximate expression (21) follows from
Eq. (19).

The current density is given in Fig. 3a as a function
of the vortex velocity for the case Vs1 < Vs < Vs2. This
j(v) graph is plotted for the following parameter val-
ues: Vs = 3Vs1/2, Vs2 = 2Vs1, S01 = S10 = S02 = S20 = 0.3,
and β = β1 = β2 = 10–5ωj. It is seen that, in the region of
the slowest vortex, the function j(v) grows steadily,
while inside the two other (narrow and wide) allowed
ranges of vortex motion this function has a local mini-
mum. As the vortex velocity approaches the lower
boundary of each of these ranges, we have j '(v) < 0.

Finally, let us consider the case where the Swihart
velocities of both waveguides are smaller than the Swi-
hart velocity of the JJ, Vs1 � Vs2 � Vs. In the region 0 <
v < v1 ≈ Vs1(1 – S01S10/2), the current is described by
Eq. (22). Note that the transport current is a monotoni-
cally increasing function of velocity in the region of the
slowest vortex regardless of the relation between the
Swihart velocities.

Inside the second wide velocity range v1 <  ≈
Vs1 < v < v2 ≈ Vs2(1 – S01S10/2), it follows from Eq. (19)
that

(24)

For the third wide velocity region v2 <  ≈ Vs2 < v <
v0 ≈ Vs, it follows from Eq. (19) that
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1600 MALISHEVSKIŒ et al.
rated by two narrow gaps is plotted in Fig. 3b for Vs =
3Vs1, Vs2 = 2Vs1, and the same values of the coupling
constants and parameters β/ωj and βi/ωj as before. It
follows from Fig. 3b that the current grows steadily
inside the first allowed region, while in each of the two
wide ranges the current has a local minimum and there
is a region where j '(v) < 0.

6. INDUCED VORTEX MOTION IN THE CASE 
WHERE A CURRENT FLOWS

THROUGH THE ENTIRE STRUCTURE

Let us consider vortex motion induced by a current
of density j flowing along the x axis not only through
the JJ but also through both waveguides. In this case,
the phase differences are described by Eq. (16) and the
two equations in (4) with inclusion of the current:

(26)

If the current and dissipation in the JJ and the
waveguides are small, the quantities ψw1 and ψw2 can be
found (approximately) from Eq. (26) in the same way
as in Section 5. By using approximate expressions for
ψw1 and ψw2, we get the following equation instead of
Eq. (17):
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With the help of the data from Section 5 and [10], we
obtain from Eq. (27) that

(29)

Equation (29) differs from Eq. (19) by a factor I(v).
This velocity-dependent factor appeared because of the
current flowing not only through the JJ but also through
the waveguides.

As in the previous section, let us examine the rela-
tion between the transport current density and vortex
velocity in the case of small coupling constants of the
JJ and waveguides. In the case of Vs � Vs1 � Vs2, where
two fast-vortex regions exist, for the low-velocity
allowed range 0 < v < v0 ≈ Vs[1 – (S01S10 + S02S20)/2]
we get

(30)

Here and henceforth, [ j(v)/jc]JJ is the dependence of
the transport current on velocity in the case where the
current flows through the JJ only. In this particular case,
this dependence is given by Eq. (20). Equation (30) dif-
fers from Eq. (20) by a constant factor greater than
unity. This means that, in the case where the current
flows through the entire structure, a higher current is
required to sustain the motion of a slow vortex as com-
pared to the case where the current flows through the JJ
only. A different situation occurs inside the two narrow
velocity regions where fast vortices can move. In the
narrow velocity ranges  ≈ Vsi < v < vi ≈ Vsi(1 +

S0iSi0 ), where the first (i = 1) and the second
(i = 2) fast vortex can move, the relation between the
current and velocity is given by

(31)

Recall that, in the case where the current flows through
the JJ only, the dependence of the current on the fast
vortex velocity is given by Eq. (21). It is evident from
Eq. (31) that the current flowing through the
waveguides causes a relative reduction of j(v) in value

by ~  for the first (i =1) and the second (i = 2)
fast vortex.

Let us comment on these results. To understand the
peculiarities of the interaction of a moving vortex and
the current in cases that differ in the way in which the
current flows through the layered structure, it is neces-
sary to know where the magnetic field of the vortex is
concentrated. When a transport current flows through
the layered structure, the vortex is subjected to a
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Lorentz force, whose amplitude per unit vortex length
along the y axis is given by

(32)

where H(x, z, t) is the vortex magnetic field. Integration
in Eq. (32) should be performed over all regions where
the transport current flows. If the current flows through
the entire layered structure, we substitute Eq. (15) into
Eq. (32) and obtain

(33)

By substituting the magnetic field of the slowest vortex
obtained from Eqs. (3) and (7) into Eq. (33), we find the
Lorentz force acting on a slow vortex:

(34)

If the transport current flows through the JJ only, we
get, instead of Eq. (33),

(35)

Hence, using explicit expressions for the magnetic
fields, we obtain

(36)

By comparing Eq. (34) to Eq. (36), we find that, when
the current flows through the entire structure, the
Lorentz force is smaller than in the case when the cur-
rent flows through the JJ only. Resistance to vortex
motion in the layered structure is due to energy dissipa-
tion in the nonsuperconducting layers. The change in
the energy of the system due to ohmic losses is given by

(37)

where integration is performed over the nonsupercon-
ducting layers. With the help of the time-dependent
Josephson relation and Eqs. (7) and (12), from Eq. (37)
we obtain

(38)

Relation (38) defines the dissipative force Fdiss acting
on a vortex moving at speed v.

It follows from Eq. (38) that the friction force acting
on an elementary vortex is

(39)
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According to Eqs. (37)–(39), the friction force is inde-
pendent of the way in which the current flows through
the layered structure. The value of the transport current
required to sustain the induced vortex motion is deter-
mined by equating the Lorentz force, which supports
the vortex motion, to the friction force, which opposes
it. Comparing Eqs. (34) and (36) with Eq. (39) shows
that the flow of current through the entire layered struc-
ture causes a reduction in the Lorentz force and, there-
fore, increases the transport current required to sustain
the vortex motion.

Let us now explain Eq. (31). The magnetic field of
the first fast vortex, as follows from Fig. 1b, is mainly
concentrated near the first waveguide, which is posi-
tioned in the plane x = –λ in this figure. In the same
way, the field of the second fast vortex is mainly con-
centrated near the second waveguide, which is posi-
tioned in the plane x = λ. If the current flows through
the JJ only, it does not pass through the regions where
the main part of the magnetic field of the fast vortex is
concentrated. Therefore, these regions do not contrib-
ute to the Lorentz force (32). In the case where the
transport current of the same density flows through the
entire layered structure, the contributions from the
main part of the magnetic field, concentrated near the
waveguide, significantly enhance the Lorentz force act-
ing on the fast vortex. Since the friction force (39) does
not change, a smaller transport current density is
required to sustain the vortex motion at the same speed,
which follows from Eq. (31).

Let us examine the vortex motion induced by a
transport current in the case where the Swihart velocity
of one of the waveguides is much lower than Vs, Vs1 �
Vs � Vs2. In Fig. 3c, the function j(v) is plotted in all
allowed velocity ranges for the parameter values Vs =
3Vs1/2, Vs2 = 2Vs1, S01 = S10 = S02 = S20 = 0.3, and β =
β1 = β2 = 10–5ωj. It can be seen that a region of negative
current appears in the velocity range of allowed motion
of a slow vortex 0 < v < v1 ≈ Vs1(1 – S01S10/2)). Let us
examine this phenomenon more closely. Near the right-
hand boundary of the allowed range v < v1, most of the
magnetic flux of the slow vortex changes sign under the
influence of the waveguide, as seen from Fig. 1d.
Therefore, the Lorentz force (32) acting on the vortex
also changes sign. There is no such effect inside the
other two allowed regions, as can be seen from Figs. 1e
and 1f. In the case where Vs1 � Vs � Vs2 and there is
weak coupling between the waveguides and the JJ,
Eq. (29) reduces to the following expression in the
velocity range 0 < v < v1 ≈ Vs1(1 – S01S10/2):

(40)
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According to Eq. (40), the current can reverse sign in
the allowed region 0 < v < v1 ≈ Vs1(1 – S01S10/2). The
sign reverses in Eq. (40) because of the change in sign
of the factor I(v) given by Eq. (28); the change in sign
of the current is due to the transport current flowing
through the waveguides. It follows from Eq. (40) that
the current is negative in the velocity range

(41)

From Eqs. (3) and (7), it follows that in this velocity
region the magnetic fields inside the nonsuperconduct-
ing layers are given by

(42)

Here, we keep only the main terms not containing small
coupling constants S10, S20, S01, and S02. It can be seen
from Eq. (42) that, in this approximation inside the
velocity range (41), the magnetic fields in the first
waveguide and the JJ are in opposite directions, which
is in full agreement with Fig. 1d. After substituting
Eq. (42) into Eq. (32) and performing integration, we get

(43)

It could be seen from Eq. (43) that, in the velocity range
(41), the force acting on the vortex changes sign, which
means that vortex motion is induced in the opposite
direction. Hence, a waveguide with a Swihart velocity
smaller than that of the JJ can provide conditions for
vortex motion in the reverse direction.

Inside the second wide allowed region  ≈ Vs1 <
v < v0 ≈ Vs(1 – S02S20/2), the current is given by
Eq. (40). The magnetic field of the vortex in this range,
as can be seen from Fig. 1e, is concentrated in the JJ
and the first waveguide, and the vortex magnetic flux
that reverses sign in the vicinity of the second
waveguide is negligibly small.

Inside the narrow velocity range of the fast vortex

 ≈ Vs2 < v < v2 ≈ Vs2(1 + S02S20 ), the current
is given by

(44)

It follows from Fig. 3c and Eqs. (40) and (44) that, in
both the wide and narrow allowed ranges, the current
has a local minimum and there are regions where
j '(v) < 0.
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Figure 3d plots the function j(v) for a system con-
taining two waveguides with Swihart velocities lower
than the Swihart velocity of the JJ, Vs1 � Vs2 � Vs; the
calculation is performed for Vs = 3Vs1 and Vs2 = 2Vs1
(the values of the other parameters are the same as
before). Two ranges of negative current appear on the
j(v) graph near each of the Swihart velocities of the
waveguides. In this case, Eq. (40) can be used to
describe the dependence of the transport current on
velocity in the first velocity range 0 < v < v1 ≈ Vs1(1 –
S01S10/2). In the next allowed range,  ≈ Vs1 < v < v2 ≈
Vs2(1 – S01S10/2), we get

(45)

It follows from Eq. (45), in particular, that the second
region of negative current appears inside the allowed
velocity range. It can be seen from Fig. 1i that most of
the magnetic flux also changes sign near the Swihart
velocity of the second waveguide, which is the reason
for the reversed direction of vortex motion.

Finally, in the third range  ≈ Vs2 < v < v0 ≈ Vs,
from Eq. (29) we get

(46)

In this case, the magnetic field is concentrated near the
JJ and the second waveguide, as can be seen from
Fig. 1j. The field concentrated near the waveguide
(which does not contribute to the Lorentz force (32)
when the current flows through the JJ only) causes the
current to change when the current flows through the
entire structure. Thus, we examined all possible cases
of induced vortex motion in a layered structure.

7. CONCLUSIONS

A set of equations for the Cooper pair phase differ-
ences has been considered for a layered structure con-
sisting of a JJ magnetically coupled to two waveguides,
with the mutual influence of the waveguides and the JJ
being taken into account. The possible existence of an
elementary vortex moving at a constant velocity in such
a structure was studied in the dissipation-free limit.
Such a vortex was found to exist inside three finite
velocity ranges. This is the difference between our sys-
tem and a system with one waveguide, where there are
only two allowed velocity ranges. Possible vortex
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motion in two narrow velocity ranges at a speed much
higher than the Swihart velocity of the JJ was demon-
strated for the case where the Swihart velocity of the JJ
is much lower than the Swihart velocities of the
waveguides. The existence of the second range for the
fast vortex is due to the presence of a second waveguide
with a relatively high Swihart velocity. The motion of
an elementary vortex can be induced inside the allowed
velocity ranges by a current flowing through the JJ; the
required value of the current is small as compared to the
critical Josephson current. A qualitatively new phe-
nomenon of induced motion of an elementary vortex
opposite to the regular direction has been predicted in
the case where the Swihart velocity of a waveguide is
much smaller than the Swihart velocity of the JJ.
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APPENDIX

Let us consider in detail the derivation of Eq. (17).
For vortices moving at a uniform speed v, the set of
equations (4) and (16) takes the form (cf. Eq. (6))

(A1)

Let us express the second derivatives of the functions
ψw1(ζ) and ψw2(ζ) with the help of the first of equa-
tions (A1):
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(A2)

We will limit ourselves to the case of low dissipation in
the nonsuperconducting layers. In the linear approxi-
mation for β1 and β2, we substitute the first derivatives
of ψw1(ζ) and ψw2(ζ) obtained from Eqs. (7) (which
neglect dissipation) into the terms containing β1 and β2
in the right-hand side of Eqs. (A2). The derivatives are
found by integrating Eqs. (7) and taking into account
that functions  and  vanish as ζ  ±∞. As a
result, Eqs. (A2) allow us to obtain approximate expres-
sions for the second derivatives of the phase differences
on both waveguides in terms of the phase difference on
the JJ. By substituting these explicit expressions for the
second derivatives into the last equation in set (A1), we
obtain Eq. (17).
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Abstract—The specific features of the superconducting state (with s and d pairing) are considered in terms of
a pseudogap state caused by short-range order fluctuations of the “dielectric” type, namely, antiferromagnetic
(spin density wave) or charge density wave fluctuations, in a model of the Fermi surface with “hot points.” A
set of recurrent Gor’kov equations is derived with inclusion of all Feynman diagrams of a perturbation expan-
sion in the interaction between an electron and short-range order fluctuations causing strong scattering near hot
points. The influence of nonmagnetic impurities on superconductivity in such a pseudogap state is analyzed.
The critical temperature for the superconducting transition is determined, and the effect of the effective
pseudogap width, correlation length of short-range-order fluctuations, and impurity scattering frequency on the
temperature dependence of the energy gap is investigated. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The pseudogap state, existing in a wide region on
the phase diagram of high-Tc superconducting (HTSC)
cuprates, gives rise to various anomalies in their prop-
erties in both the normal and superconducting states [1,
2]. The preferable scenario for formation of the
pseudogap state in HTSC oxides is believed to be based
on the fact that, in this region of the phase diagram,
there is strong scattering of carriers by short-range-
order fluctuations of the “dielectric” type, namely, anti-
ferromagnetic (AFM) [spin-density-wave (SDW)] or
charge-density-wave (CDW) fluctuations [2]. In
momentum space, this scattering occurs in the vicinity
of the antiferromagnetism vector Q = (π/a, π/a) (a is the
two-dimensional lattice parameter) and affects the elec-
tronic spectrum, thereby causing it to exhibit a clearly
defined non-Fermi-liquid behavior in the neighborhood
of the so-called “hot points” on the Fermi surface [2].
Recent experiments have provided fairly convincing
evidence in favor of this scenario of pseudogap forma-
tion [3–5]. Based on these concepts, a simplified model
of the pseudogap state has been proposed, which
describes the main features of this state [2] and includes
the contributions from all Feynman diagrams of a per-
turbation expansion in scattering by (Gaussian) short-
range-order fluctuations with a characteristic scattering
momentum lying in the region of the vector Q (this
region is determined by the corresponding correlation
length ξ) [6, 7].

Up to now, most of the relevant theoretical studies
have been dedicated to models of the pseudogap state in
the normal phase (at T > Tc). In [8–11], we considered
superconductivity using a simplified pseudogap-state
1063-7834/04/4609- $26.00 © 21604
model in which hot flat sections were assumed to exist
on the Fermi surface. In the framework of this model, a
Ginzburg–Landau expansion was obtained for different
types of Cooper pairs [8, 10] and the superconducting
state at temperatures T < Tc was studied using solutions
to the Gor’kov equations [9–11].

Analysis of the superconducting properties in terms
of the Ginzburg–Landau expansion in the immediate
vicinity of the superconducting transition temperature
Tc was performed in [12] using a more realistic model
of hot points on the Fermi surface. In this paper, we
analyze, in terms of this model, the main properties of
the superconducting state (for various types of pairing)
in a wide range of temperatures T < Tc and investigate
the influence of scattering by nonmagnetic impurities
on superconductivity in this case.

2. HOT-POINT MODEL AND PAIRING

In the “nearly antiferromagnetic” Fermi liquid
model, which is extensively used to explain the micro-
scopic mechanism of high-Tc superconductivity [13,
14], an effective interaction between electrons and spin
fluctuations is introduced and described by a dynamic
susceptibility depending on the spin-fluctuation corre-
lation length ξ, the antiferromagnetism vector in the
insulating phase Q = (π/a, π/a), and the characteristic
spin-fluctuation frequency ωsf [6]. The dynamic sus-
ceptibility and, hence, the effective interaction reach a
maximum in the region of q ~ Q. Therefore, quasipar-
ticles whose momenta are in the vicinity of the hot
points on the Fermi surface (Fig. 1) are strongly scat-
tered by spin fluctuations, with the scattering vector
004 MAIK “Nauka/Interperiodica”
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being of the order of Q. The effective interaction for
quasiparticles whose momenta are far from the hot
points is fairly weak.

At sufficiently high temperatures, 2πT @ ωsf, we can
ignore the spin dynamics [6] and restrict our consider-
ation to the static approximation. Calculations are sub-
stantially simplified and the contributions from higher
order terms in a perturbation expansion can be analyzed
if the interaction between electrons and spin (or charge)
fluctuations is approximately described by [7]

(1)

where W is an effective parameter with energy dimen-
sions. In what follows, W and ξ are treated as phenom-
enological parameters to be determined from experi-
ment. Equation (1) is qualitatively analogous to the
interaction in the static limit, considered in [13, 14],
and, for the appropriate values of the parameters, dif-
fers from it only slightly in the most interesting region
of |q – Q | < ξ–1, which determines scattering in the
vicinity of the hot points. In effect, the actual interac-
tion with short-range-order fluctuations is replaced in
this case by the interaction of the electrons with the
static random (Gaussian) field of these fluctuations.
The assumption of the static (and Gaussian) character
of fluctuations is physically least justified and is appli-
cable only at sufficiently high temperatures [6, 7]. At
low temperatures, and in the superconducting phase in
particular, the spin dynamics and non-Gaussian charac-
ter of fluctuations can significantly affect the micro-
scopic mechanism of formation of Cooper pairs
described in terms of the nearly antiferromagnetic
Fermi liquid model [13, 14]. We believe, however, that
the static Gaussian approximation will suffice to quali-
tatively investigate the effect of the pseudogap forma-
tion on superconductivity.

The spectrum of the original (free) quasiparticles is
taken in the form [6]

(2)

where t is the transfer integral between the nearest
neighbors on the square lattice, t' is the transfer integral
between the second-to-nearest neighbors, a is the lat-
tice parameter, and µ is the chemical potential. This
expression is fairly close to that given by band calcula-
tions performed for real HTSC systems. For example,
for YBa2Cu3O6 + δ, we have t = 0.25 eV and t' = –0.45t
[6]. The chemical potential is determined by the carrier
density.

In the limit of an infinitely long correlation length,
ξ  ∞, the short-range-order fluctuation scattering
model under study can be solved exactly [15]. For finite
values of ξ, an approximate solution can be found [6, 7]
by generalizing the one-dimensional consideration car-
ried out in [16]. In this case, all diagrams of the pertur-

Veff q( ) W
2 2ξ 1–

ξ 2–
qx Qx–( )2

+
------------------------------------- 2ξ 1–
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PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      2004
bation expansion of the one-particle electron Green’s
function can be approximately summed.

3. GOR’KOV EQUATIONS FOR A PSEUDOGAP 
SUPERCONDUCTOR

In studying superconductivity in the system in ques-
tion undergoing developed short-range-order fluctua-
tions, we assume that superconducting pairing occurs
due to an attracting potential of the simplest (BCS)
type,

(3)

where e(p) is taken to be

(4)

The constant V, as is usually assumed, is nonzero in
a layer 2ωc thick in the vicinity of the Fermi level (ωc is
the characteristic frequency of phonons responsible for
attraction between electrons). In general, the supercon-
ducting energy gap is anisotropic and can be written as
∆(p) = ∆e(p). In what follows, we will write ∆(p) as ∆
to simplify the notation and will indicate the momen-
tum dependence only where necessary.

In the subsequent consideration, the energy gap of
the superconductor is assumed to be self-averaging
over short-range-order fluctuations, which allows us to
employ a standard method from the theory of disor-
dered superconductors [17, 18]. In the case where the
short-range-order correlation length satisfies the ine-
quality ξ ! ξ0, where ξ0 ~ vF/∆0 is the BCS coherence
length (i.e., fluctuations are correlated over distances
shorter than the characteristic Cooper pair size), the
assumption of self-averaging ∆ must be valid; this
assumption ceases to be true only for ξ > ξ0 [9–11].1 

V sc p p',( ) Ve p( )e p'( ),–=

e p( )
1 s pairing( ),

pxa( )cos pya( ) d
x

2
y

2
–

 pairing( ).cos–



=
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Fig. 1. Fermi surface with “hot points” connected by the
scattering momentum vector Q = (π/a, π/a).



1606 KULEEVA, KUCHINSKIŒ
For the superconducting state, a perturbation expan-
sion in the interaction with AFM fluctuations described
by Eq. (1) is performed using the “unperturbed” normal
and anomalous Green’s functions:

(5)

where εn = 2πT(n + 1/2).

Following paper [10], we can write a set of recurrent
Gor’kov equations taking into account short-range-
order fluctuation scattering to all orders in the perturba-
tion expansion. The contribution from an Nth-order dia-
gram in interaction (1) to the full normal or anomalous
Green’s function is the product of N + 1 unperturbed

normal ( ) and anomalous ( ) Green’s functions
characterized by specially renormalized frequencies
and energy gaps (see below). Here, kj is the number of
interaction lines covering the jth (counted from the
ingoing line of the diagram) electron line. As in the nor-
mal state, the contribution from any diagram is charac-
terized by a set of integers kj and each diagram with
crossed interaction lines is equivalent to a certain dia-
gram of the same order without these lines crossed.
Therefore, we can consider only diagrams without
crossed interaction lines and take into account the con-
tribution from the other diagrams by introducing com-
binatorial factors s(k), which are assigned to the inter-
action lines.

In what follows, we consider commensurate fluctu-
ations with Q = (π/a, π/a) [16] without regard for their
spin structure (i.e., the CDW type of fluctuations). In
this case, the combinatorial factor is [6]

. (6)

If the spin structure of the interaction is taken into
account in the framework of the nearly antiferromag-
netic Fermi liquid model (spin-fermion model [6]), the
combinatorial analysis of the diagrams becomes more
complicated. In particular, in this model, the spin and
charge two-particle vertices are radically different. In
[6], the spin interaction was described in terms of the
isotropic Heisenberg model. If this interaction is
described within the Ising model, then only spin-pre-
serving scattering processes will retain, for which the
diagrams for commensurate fluctuations are character-
ized by combinatorial factor (6) for both the one-parti-
cle Green’s function and the spin and charge vertices.
Therefore, we will consider only the case of commen-
surate “Ising” spin AFM (SDW) fluctuations character-

1 The result obtained in [11] according to which the superconduct-
ing energy gap is not self-averaging even for ξ < ξ0 is likely due
to the specific features of the short-range-order model used in that
work.
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s k( ) k=
P

ized by Eq. (6) and commensurate charge fluctuations
(CDWs). Detailed consideration of the case of incom-
mensurate CDW-type fluctuations can be found in [7,
15, 16].

Charge fluctuation scattering is insensitive to the
electron spin, and the interaction sign is independent of
whether the vertex closing the interaction line is a
charge vertex or a spin vertex, changing the electron
spin. In the case of spin fluctuations, an extra factor of
(–1) should be assigned to an interaction line with lon-
gitudinal spin component Sz closed by a spin vertex
changing the spin direction [6]. Therefore, this factor
should also be assigned to an interaction line covering
an anomalous Green’s function in the case of spin fluc-
tuations.

As a result, we obtain the Gor’kov equations [19]
shown in diagrammatic notation in Fig. 2a. Here and
henceforth, the upper sign corresponds to the case of
charge fluctuations and the lower sign to that of spin
fluctuations. The corresponding two coupled recurrent
equations for the normal and anomalous Green’s func-
tions have the form

(7)

where

(8)

(9)

Here,

(10)

and the renormalized frequency  and energy gap ,
given by

(11)

are analogous to those that appear when considering
superconductors with impurities [19]. Here, κ = ξ–1,
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Fig. 2. Diagrammatic representation of (a) the recurrent Gor’kov equations and (b) equations for the Green’s functions  and

.

G00

F00
where v(p) = ∂ξp/∂p is the velocity of a free quasipar-
ticle, and the bare energy gap is

(13)

A set of recursion relations for the real and imagi-
nary parts of the normal Green’s function and for the
anomalous Green’s function can easily be derived from
Eq. (7)–(11). Introducing the notation

(14)

we obtain the following set of recursion relations for Jk,
Rk, and fk:

(15)

where dk = (ηk + W2s(k + 1)Jk + 1)2 + (ξk + W2s(k +

1)Rk + 1)2 + |∆k |2(ηk ± W2s(k + 1)( )fk + 1)2.

The normal and anomalous Green’s functions of
interest to us are expressed in terms of J0, R0, and f0 as

(16)

and are obtained by completely summing the perturba-
tion expansion in the interaction between an electron
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and short-range-order dielectric fluctuations in the
superconductor.

Let us consider the case of charge fluctuations. For
s pairing, the superconducting energy gap remains
unchanged as the vector Q is added to the momentum;
i.e., e(p + Q) = e(p), as is the case in the model where
hot flat sections are assumed to exist on the Fermi sur-
face [10]. In this case, it turns out that ∆k + 1 = ∆k and the
recursion relations for Jk and fk are identical, so Jk = fk.
For  pairing, the superconducting energy gap

changes sign as the vector Q is added to the momen-
tum, (e(p + Q) = –e(p)); therefore, ∆k + 1 = –∆k and the
second terms in the recursion relations for fk and Jk dif-
fer in sign.

Thus, the reversal in sign of the superconducting
energy gap upon adding the vector Q to the momentum
is equivalent to a sign reversal of the second term in the
recursion relation for the anomalous Green’s function
[the last expression in Eqs. (15)], i.e., is equivalent to
passing over to the case of spin fluctuations. Therefore,
in the case of spin fluctuations, the types of pairing are
interchanged; namely, for s pairing, the gap does not
change upon adding the vector Q to the momentum and
the recursion relations for Jk and fk differ in sign, while
for  the recursion relations for these quantities

are identical and, hence, Jk = fk.

Thus, the recursion relation for the anomalous
Green’s function takes the form

(17)

d
x

2
y

2
–

d
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2
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f k

ηk W
2
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--------------------------------------------------,=
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where the plus sign corresponds to s pairing in the case
of charge (CDW) fluctuations and to  pairing in

the case of spin (SDW) fluctuations and the minus sign
corresponds to s pairing for spin fluctuations and to

 pairing for charge fluctuations.

Two qualitatively different types (corresponding to
the upper and lower signs in Eq. (17)) of models of the
influence of the pseudogap on superconductivity also
arise when analyzing the superconducting properties of
such systems in the vicinity of the critical temperature
(T ~ Tc) on the basis of the Ginzburg–Landau expansion
[12]. The case of spin fluctuation scattering and 

pairing (corresponding to the plus sign in Eq. (17)) is
most likely to take place in copper oxide–based high-Tc

superconductors. Therefore, we primarily consider this
case in what follows.

4. SUPERCONDUCTOR WITH IMPURITIES

In considering a superconductor in the pseudogap
state with impurities, we assume that the disorder is
fairly weak and restrict our consideration to diagrams
in which (dashed) lines corresponding to impurity scat-
tering do not cross one another and wavy lines repre-
senting dielectric-fluctuation scattering.2 

Let us consider the normal ( ) and anomalous

( ) Green’s functions given by the diagrammatic
equations in Fig. 2b, where the full (dressed) normal
(G) and anomalous (F) Green’s functions taking into
account scattering by impurities and dielectric fluctua-
tions are indicated below the impurity lines. In explicit
form, these equations can be written as

(18)

where

(19)

ρ is the concentration of impurities, and U is their
potential.

In the absence of dielectric fluctuations, we have
G =  and F =  and the diagrammatic equations
in Fig. 2b and Eqs. (18) go over to the conventional

2 In effect, this approximation corresponds to the assumption that
the density of states and the superconducting energy gap are self-
averaging in the random field of impurities and dielectric fluctua-
tions.
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Gor’kov equations for a superconductor with impuri-
ties [19].

The normal, , and anomalous, , Green’s
functions defined by Eqs. (18) have the form of unper-
turbed Green’s functions (5) with impurity-renormal-
ized frequency and gap3: 

(20)

where

(21)

The frequency- and gap-renormalization factors ηε
and η∆ defined by Eqs. (21) depend on dielectric-fluc-
tuation scattering, i.e., on W, but are momentum-inde-
pendent. Therefore, we can construct perturbation the-
ory with respect to interaction with dielectric fluctua-
tions starting with the dressed normal and anomalous
Green’s functions  and  (taking into account
impurity scattering) in much the same way as was done
in the absence of impurities starting with unperturbed
Green’s functions (5). The results obtained in this case
coincide with those from Section 3 after the substitu-
tions εn  ηεεn and ∆  η∆∆. The recursion rela-
tions for the quantities Jk, Rk, and fk defined by Eqs. (14)
coincide with Eqs. (15), derived for a superconductor
without impurities, if in them one makes the substitu-
tions

  (22)

in the equation for the imaginary part of the normal
Green’s function, Jk, and

  (23)

in the equation for the anomalous Green’s function fk.
The normal and anomalous Green’s functions in this
case are expressed in terms of R0, J0, and f0 through
Eqs. (16) as before.

The recursion relation for the anomalous Green’s
function in the presence of impurity scattering coin-

3 There is also a renormalization of the spectrum,  = ξp +

ρU2 , which reduces to an insignificant (as numerical

estimations show) renormalization of the chemical potential and
which is neglected in what follows.
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cides with Eq. (17) after substitution (23). As men-
tioned above, we will consider only the cases corre-
sponding to the plus sign in Eq. (17), i.e., the case of s
pairing for charge fluctuations and the case of d pairing
for spin fluctuations.

For s pairing and charge fluctuations, we have ηε =
η∆ and

(24)

In this case, as in the absence of impurities, the recursion
relations for Jk and fk are identical and, hence, Jk = fk.

For d pairing and spin fluctuations, because of
anisotropy of the superconducting energy gap, we have

 = 0 and η∆ = 1 and Eqs. (22) and (23) take the
form

(25)

The renormalization factors ηε and η∆ should be
determined self-consistently in the recurrent procedure;
therefore, from Eqs. (21), we obtain

(26)

This self-consistent calculation of the renormaliza-
tion factors in recurrent procedure (15) need to be car-
ried out for each Matsubara frequency, which greatly
increases the computational effort. For this reason, in
addition to the above self-consistent scheme for includ-
ing impurity and dielectric-fluctuation scattering, we
will also use a simpler, non-self-consistent approxima-
tion, in which the impurity lines in the diagrammatic
equations in Fig. 2b represent the unperturbed Green’s
functions G00 and F00.

4 In this approximation, the fre-
quency- and gap-renormalization factors are calculated
from simple equations

(27)

4 This approximation was used in [20] to analyze the influence of
impurities on superconductivity in terms of an extremely simpli-
fied version of the pseudogap-state model with a infinite correla-
tion length and the Fermi surface exhibiting a complete “nesting.”
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where γ0 = πρU2N0(0) is the impurity scattering fre-
quency and N0(0) is the density of states at the Fermi
level in the absence of impurities and a pseudogap.

5. CRITICAL TEMPERATURE 
AND THE TEMPERATURE DEPENDENCE 

OF THE SUPERCONDUCTING ENERGY GAP

The energy gap of a superconductor is given by

(28)

The anomalous Green’s function can be found from
Eq. (16) using recurrent procedure (15). With regard for
Eq. (4), Eq. (28) can be written as

(29)

From Eq. (29), we obtain an equation for the super-
conducting transition temperature Tc by setting ∆  0

(30)

To perform numerical calculations, we choose an
energy (temperature) scale characterizing the supercon-
ducting state in our model in the absence of pseudogap-
state fluctuations (W = 0). In this case, the equation for
the corresponding superconducting transition tempera-
ture Tc0 has the conventional BCS form (in the general
case of anisotropic pairing):

(31)

where  = ωc/2πTc0 is a dimensionless frequency cut-
off of the sum over Matsubara frequencies. All calcula-
tions are performed for quasiparticle spectrum (2),
which is typical of high-Tc superconductors, with µ =
−1.3t and t '/t = –0.4. For (arbitrarily chosen) ωc = 0.4t
and Tc0 = 0.01t, we can easily find the value of the pair-
ing parameter V in Eq. (31) for which the temperature
Tc0 is equal to the chosen value for the different types of
pairing indicated in Eq. (4). For s and  pairing,

we obtain V/ta2 = 1 and 0.55, respectively [12].
Typical values of the superconducting transition

temperature Tc calculated numerically directly from
Eq. (30), based on recursion relations (15) for a super-
conductor with a pseudogap in the absence of impuri-
ties, are shown in the inset to Fig. 3. Pseudogap-state
(dielectric) fluctuations are seen to cause a significant
decrease in the superconducting transition temperature,
with  pairing being suppressed to a noticeably
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greater extent than s pairing. In contrast, a decrease in
the correlation length ξ (i.e., an increase in parameter
κ) of pseudogap-state fluctuations causes Tc to increase.
These results are in complete agreement with those
obtained by analyzing the Cooper instability of the nor-
mal phase in terms of the same pseudogap-state model
[12] and are qualitatively similar to the results obtained
earlier within the hot-section model [8, 10]. However,
in the latter case, there are significant distinctions;
namely, the dependence of Tc on the pseudogap width
W exhibits a characteristic “shelf” in the region of W <
10Tc0 and Tc is significantly decreased over the range of
W ~ 50Tc0.

Figures 3 and 4 show data on the superconducting
transition temperature for d pairing calculated with
inclusion of nonmagnetic-impurity scattering from
Eq. (30) [based on recursion relations (15)], with the
coefficients ηε and η∆ being determined either self-con-
sistently in the recurrent procedure using Eqs. (26)
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Fig. 3. Dependence of the superconducting transition tem-
perature on the effective pseudogap width in the case of d
pairing for κa = 0.2 and different values of the impurity
scattering frequency γ0/Tc0: (1) 0, (2) 0.18, and (3) 0.64.
Solid lines are self-consistent solutions, and dashed lines
are non-self-consistent solutions. The inset is the depen-
dence of the superconducting transition temperature on the
effective pseudogap width in the case of s pairing and
charge (CDW) fluctuation scattering (curves s1, s2) and in
the case of d pairing and spin AFM (SDW) fluctuation scat-
tering (curves d1, d2). The inverse correlation length is κa =
0.2 (curves s1, d1) and 0.5 (curves s2, d2).
PH
(solid curves) or non-self-consistently from Eqs. (27)
(dashed curves).

In the presence of impurity scattering, dielectric
fluctuations suppress superconductivity to a greater
extent and a critical value of the effective pseudogap
width appears at which the superconducting transition
temperature Tc vanishes (Fig. 3).

In the presence of pseudogap-state fluctuations,
nonmagnetic impurities also strongly suppress d-pair-
ing superconductivity [20]. The dependence of the
superconducting transition temperature on the impu-
rity-scattering frequency (Fig. 4) fairly closely follows
the conventional Abrikosov–Gor’kov curve [21, 22] in
the absence of a pseudogap (curve 1). As the pseudogap
increases, the critical value of the scattering frequency
increases only slightly (inset to Fig. 4), from the con-
ventional value given by the Abrikosov–Gor’kov the-
ory γ0c/Tc = π/2γ in the absence of a pseudogap to the
value γ0c/Tc ≈ 1.0–1.1 near the critical value of the
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(2) 37 and (1, 2) κa = 0.5 and (3) W/Tc0 = 37 and κa = 0.2.
Solid curves are self-consistent solutions, and dashed
curves are non-self-consistent solutions. The inset is the
dependence of the ratio of the critical impurity scattering
frequency to the superconducting transition temperature on
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pseudogap width at which superconductivity is com-
pletely suppressed.

In the case of s pairing, nonmagnetic-impurity scat-
tering affects superconductivity only slightly (inset to
Fig. 5). The small decrease in Tc at γ0 ~ t (Fig. 5) is due
mainly to the general decrease in the density of states
resulting from the band broadening produced by such
strong impurity scattering.

Figure 6 shows the temperature dependence of the
d-type superconducting energy gap calculated from
Eq. (29) using the recurrent procedure. This depen-
dence is qualitatively similar to that given by the BCS
theory (curve 1 in Fig. 6). However, there are distinc-
tions; in particular, for the impurity scattering fre-
quency corresponding to curves 2 and 4 in Fig. 6 (γ0 =
0.18Tc0), the ratio 2∆(T = 0)/Tc increases twofold as the
pseudogap width W increases from zero to the critical
value at which superconductivity is completely sup-
pressed. In the case of s-pairing superconductivity, the
ratio 2∆(T = 0)/Tc is virtually independent of both the
impurity scattering frequency and pseudogap width.

It should be noted that all of the above results con-
cerning the superconducting energy gap are valid if the
superconducting order parameter (gap width) is self-
averaging with respect to AFM fluctuations (mean-field
approximation [9]). This condition is satisfied if the
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Fig. 5. Dependence of the superconducting transition tem-
perature on the impurity scattering frequency in the case of
s pairing for various values of the effective pseudogap
width: (1) W/Tc0 = 0 and (2) 37; κa = 0.2. Solid curves are
self-consistent solutions, and dashed curves are non-self-
consistent solutions.
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correlation length is not very long: ξ < ξ0, where ξ0 is
the coherence length of the superconductor (the Cooper
pair size at T = 0). For ξ @ ξ0, the absence of self-aver-
aging leads to significant effects, which manifest them-
selves in the appearance of characteristic “tails” in the
temperature dependence of the averaged energy gap in
the range Tc < T < Tc0 [9, 11].

In studying the pseudogap state of real HTSC sys-
tems, it is important to analyze the dependence of the
physical characteristics on carrier density. In our
model, this dependence is due to the carrier density
dependences of the effective pseudogap width W and
the correlation length ξ, which, unfortunately, are
experimentally determined only indirectly and are to a
poor extent [1, 2]. The analogous dependence of the
temperature Tc0 (on which there is no information) can
also be of importance. According to very rough esti-
mates, the correlation length ξ varies only moderately
over a fairly wide range of carrier densities and the
pseudogap width W decreases linearly with increasing
carrier density from a value of the order of 103 K near
the region of the dielectric phase down to a value of the
order of the superconducting transition temperature (as
the optimum doping level is approached) and then van-
ishes at somewhat higher densities (see [2, Fig. 6],
based on [3, Fig. 4], where the corresponding data for
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Fig. 6. Temperature dependence of the superconducting
energy gap in the case of d pairing for κa = 0.2 and various
values of the effective pseudogap width W/Tc0 and the
impurity scattering frequency γ0/Tc0: (1) 0, 0; (2) 0, 0.18;
(3) 37, 0; and (4) 37, 0.18, respectively.
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the YBCO system are presented). Using this depen-
dence, one can easily transform the dependences on W
presented in this paper into the corresponding carrier
density dependences. Assuming a linear dependence of
Tc0 on carrier density, such a consideration was recently
given in [20] in terms of an extremely simplified ver-
sion of our model in which the correlation length is infi-
nite and the Fermi surface exhibits a complete nesting.
It was shown that this model qualitatively describes the
typical phase diagram of HTSC cuprates. However,
attempts at “improving” these qualitative results are not
worthwhile because of the obvious roughness of the
model and the absence of reliable experimental data on
the carrier density dependences of W, ξ, and Tc0.
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Abstract—A comparative analysis is performed for three optical and electrical methods of exciting space-
charge waves in photosemiconductors: (i) excitation by an external ac electric field combined with a static inter-
ference pattern, (ii) excitation by a moving interference grating, and (iii) excitation by an oscillating interfer-
ence grating. It is shown that, in the case when space-charge waves are excited using a combination of all three
methods, the dependence of the direct current passing through a sample on the excitation frequency exhibits
two peaks that correspond to the resonant excitation of two modes of space-charge oscillations, namely, drift
waves and trap recharging waves. It is noted that experimental observation of the peak attributed to the excita-
tion of trap recharging waves should not pose any problems, whereas observation of the second peak associated
with the excitation of drift waves is significantly complicated because of the small magnitude of the effect, espe-
cially for materials with a low electrical conductivity (or a long Maxwell relaxation time). © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, particular interest has been
expressed by researchers in experimental and theoreti-
cal investigations into the properties of space-charge
waves in semiconductors. These waves are considered
eigenmodes of electron density oscillations occurring
in semiconductors in an external electric field. There
exist two eigenmodes of space-charge waves. One
eigenmode is associated with

the transfer of electron density fluctuations of free
carriers in an external electric field. This mode is
described by the dispersion law ω1 = qµE0, where q is
the wave vector, µ is the mobility of charge carriers, and
E0 is the strength of the external electric field. For brev-
ity, waves of this mode will be referred to as drift
waves. The second eigenmode of space-charge waves is
associated with the capture of electrons in traps. Waves
of this mode are termed trap recharging waves. For the
second mode, the dispersion law has the form ω2 =
−(qµE0ττM)–1, where τ is the electron lifetime in the
conduction band and τM is the Maxwell relaxation time.
The phase velocities of these two modes have opposite
directions, whereas the group velocities coincide in
direction. The lifetime of space-charge waves depends
on the relaxation times τ and τM, the trap concentration,
and the carrier diffusion. Under actual experimental
conditions, there can occur situations where the relax-
ation processes play the dominant role in damping of
space-charge waves. Consequently, in a sufficiently
1063-7834/04/4609- $26.00 © 21613
strong electric field (under the conditions qµE0 @ τ–1,

), the high Q factor of space-charge waves is

ensured and the inequalities ω1 @ τ–1,  > ω2, and
ω1 > ω2 are satisfied. The theory of drift waves was
described, for example, in [1–3], and the drift waves
themselves were experimentally investigated by vari-
ous methods in [4–7].

The first theoretical studies of trap recharging waves
were published in [2, 3]. These waves were first exper-
imentally observed using electrical [8] and optical [9]
methods.

Space-charge waves have been attracting increasing
research interest since the advent of optical methods for
their excitation and detection. At present, the excitation
of space-charge waves with the use of oscillating [10]
and moving [9, 11] interference patterns is the most
universally employed method. If a crystal is illuminated
with the use of an interference pattern oscillating about
its equilibrium position, the space-charge waves are
resonantly excited under the condition that their spatial
period and eigenmode coincide with the spatial period
and frequency of oscillations of the interference pat-
tern. In this case, the excitation conditions do not
depend on the direction of the applied electric field. In
the other method (upon illumination of a sample with
an interference grating moving in one direction), the
resonant excitation occurs when the period of the inter-
ference pattern and the velocity of its motion coincide

τM
1–

τM
1–
004 MAIK “Nauka/Interperiodica”
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with the spatial period and phase velocity of the space-
charge waves. In this method, it is necessary to ensure
the appropriate direction of the applied electric field (or
the appropriate direction of motion of the interference
pattern). The excited space-charge waves can be
detected by measuring either the Bragg diffraction of
light (for photorefractive materials) or the electric cur-
rent passing through the sample. In the latter case, it is
necessary to provide conditions for effective nonlinear
interactions of space-charge waves.

The nonlinear effects responsible for changes in the
electric current under excitation of space-charge waves
involve spatial [12, 13] and complete [14, 15] rectifica-
tion of space-charge waves. For spatial rectification, a
traveling space-charge wave interacts with a static
charge grating (which always arises in the oscillating
interference pattern). This interaction generates a spa-
tially homogeneous but time-oscillating current both in
the crystal and in the external circuit.

Complete rectification occurs upon the interaction
of a moving charge grating with a moving field grating
if the phase shift between these gratings is not equal to
π/2. This interaction leads to a change in the direct cur-
rent passing through the sample. Until now, complete
rectification had been observed only using the oscillat-
ing-pattern method and only for trap recharging waves.
Spatial rectification has been detected both for trap
recharging waves [13] and, most likely, for drift waves
[6, 7]. The complete and spatial rectification of these
two modes upon excitation with an oscillating interfer-
ence pattern (under standard conditions [14] and in
crystals with negative differential conductivity [16])
has been theoretically investigated in sufficient detail.
There are also works concerned with effects that are
similar to complete rectification but are observed in the
case of forced relaxation charge-density oscillations
excited by a moving interference pattern rather than by
trap recharging waves (see, for example, [17]). In the
present work, we performed a theoretical investigation
of the following effects: (i) the complete rectification of
space-charge waves of both modes in the case of a mov-
ing interference pattern and (ii) the complete and spa-
tial rectification upon combined (optical and electrical)
excitation of space-charge waves when the sample is
illuminated with a static interference pattern under the
joint action of dc and ac electric fields.

The analysis performed in this work revealed that
the effects of rectification of space-charge waves upon
excitation with different methods are characterized by
specific features. In particular, these effects depend on
the carrier sign, excitation frequency, and other factors.

2. EXCITATION OF SPACE-CHARGE WAVES 
IN AN ALTERNATING-CURRENT 

ELECTRIC FIELD

As was noted above, the rectification of space-
charge waves brings about the appearance of an alter-
PH
nating-current component in the circuit and a change in
the direct-current component upon excitation of
space-charge waves. Let us calculate the electric cur-
rent passing through a sample that is placed in an elec-
tric field with the electric potential U(t ) = U0 +
Uaccos(Ωt ) and illuminated using a static interference
pattern with the intensity W(x) = W0[1 + mcos(Kgx)],
where m is the contrast of the interference pattern and
Kg is the wave vector of the pattern. In this calculation,
we use a standard system of nonlinear equations [16]
for the density n(x, t) of free electrons and the electric
field E(x, t), that is,

(1)

(2)

(3)

Here,  is the equilibrium electron density, τ is the
electron lifetime in the conduction band, ε is the per-
mittivity of the crystal, j(x, t) is the density of the elec-
tron current, I(t) is the density of the total current, v (E)
is the drift velocity, and D(E) is the diffusion coeffi-
cient. As in our previous work [16], we will consider
the general case of a nonlinear current–voltage charac-
teristic. This approach, in particular, makes it possible
to examine space-charge waves in the vicinity of the
instability point associated with the formation of either
domain structures in superlattices or Gunn-type domain
structures (see the discussion of this problem in [16]).
In a weak electric field, when the Ohm law holds, the
drift velocity has the form v (E) = µE, where µ is the
mobility of charge carriers. In this case, the diffusion
coefficient obeys the Einstein relation D = kTµ/e and
does not depend on the external electric field E. Note
also that, here, e is the carrier charge: e > 0 for hole con-
duction and e < 0 for electron conduction. Correspond-
ingly, we have the mobility µ > 0 for holes and µ < 0 for
electrons. Therefore, when comparing with the results
obtained in [16], it is necessary to make the changes
e  –e and v (E)  –v (E), because, in [16], e is the
charge of electrons whose mobility was assumed to be
positive. In the present work, the appropriate replace-
ment is used to simplify the changeover from electrons
to holes. The inclusion of holes is of considerable inter-
est, especially in the study of a moving grating, when
the important role is also played by particle fluxes
rather than only by electric currents, as is the case with
an oscillating grating. It should be noted that the recti-
fication effects are associated with the nonlinear contri-
bution from the product en(x, t)v [E(x, t)] in Eq. (3).

∂n x t,( )
∂t

-------------------
n x t,( ) ñ0–

τ
--------------------------+

=  g0 1 h x( )+[ ] ε
4πe
---------∂2

E x t,( )
∂x∂t

----------------------,+

ε
4π
------∂E x t,( )

∂t
------------------- j x t,( )+ I t( ),=

j x t,( ) = en x t,( )v E x t,( )[ ] eD E x t,( )[ ] ∂n x t,( )
∂x

-------------------.–
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Equations (1)–(3) differ from the relationships used in
[16] only in that the rate of electron photogeneration

(4)

does not depend on time. However, in the problem
under consideration, the alternating component of the
external electric field leads to a more complex bound-
ary condition,

(5)

where L is the length of the sample, Ξ0 = U0/L, Ξac =
Uac/L, ρ = RS/L, R is the external resistance, and S is the
cross section of the sample.

Since the equations used in this work and in [16] are
similar to each other, they can be solved according to
the same scheme. The sought quantities can be repre-
sented in the following form:

(6)

where E0, n0, and I0 are the electric field, the electron
density, and the total current under uniform illumina-
tion (i.e., at m = 0), respectively. In the absence of the
alternating component of the external electric field (i.e.,
at Uac = 0), we have

(7)

The last of these relationships implicitly specifies the
position of the operating point E0 (for more detail, see
[16]) as a function of the external voltage U0. The cor-
rections δE, δn, and δI at a sufficiently small value of
the contrast m (or, more precisely, the effective param-
eter mg0τ/n0 < m) and a small ac field amplitude Uac are
insignificant. Hence, we can use the expansion in the
vicinity of the operating point E0:

As a result, from Eqs. (1)–(3), we obtain a system of
nonlinear equations for the dimensionless quantities,

(8)

(9)

g x( ) g0 1 h x( )+[ ] , h x( ) m Kgx( )cos= =

1
L
--- xE x t,( )d

0

L

∫ ρI t( )+ Ξ0 Ξac Ωt( ),cos+=

E x t,( ) E0 δE x t,( ), n x t,( )+ n0 δn x t,( ),+= =

I t( ) I0 δI t( ),+=

n0 ñ0 g0τ , I0+ en0v E0( ),= =

E0 ρen0v E0( )+ Ξ0.=

v E0 δE+( ) v 0 v 0' δE
1
2
---v 0''δE

2
,+ +≅

D E0 δE+( ) D0 D0' δE.+≅

ΩτM
∂Y
∂T
------ Y λ Λ ∂λ

∂z
------– λY cY

2 Λ'Y
∂λ
∂z
------–+ + + +

=  f T( ),

Ωτ ∂λ
∂T
------ λ+

g0τ
n0
--------h z( ) ΩτMd

∂2
Y

∂z∂T
------------.+=
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Here,

(10)

and  = 4πe n0/ε is the reciprocal of the Maxwell
relaxation time generalized to the case where the con-
ditions are nonlinear in the electric field. Recall that, for
comparison with the results obtained in [16], it is nec-
essary to carry out the changes d  –d, Λ  –Λ,
and Λ'  –Λ'.

In Eqs. (8) and (9), we change over to the Fourier
transform with respect to the coordinate and time

(11)

After simple manipulations, we obtain a closed equa-
tion for the Fourier components of the dimensionless
electric field (compare with Eq. (19) in [16]):

(12)

where

(13)

Equation (12) should be completed by the expres-
sion relating the electric current to the homogeneous
electric field inside the sample. This expression can be
derived from relationship (5) in the following form:

(14)

where Yac = Ξac /v 0 and σd = en0  is the differential
conductivity of a material at the operating point E0.

By solving Eq. (12), we initially find the Fourier
components Yp, l of the electric field with p ≠ 0 (i.e., the
spatially inhomogeneous components). These compo-
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v 0'

v 0
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f
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en0v 0
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v 0
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nents at m = 0 become zero. In the approximation low-
est (linear) with respect to m, we have

(15)

When deriving relationship (15) from Eq. (12), we set
p ≠ 0, drop all contributions proportional to m2 (the last
term on the right-hand side), and take into account only
the term with p' = p in the penultimate term.

Now, we turn to the determination of the spatially
homogeneous components Y0, l of the electric field. Set-
ting p = 0 in Eq. (12) and using condition (14), we
obtain

(16)

Since the calculations are performed to the lowest order
in m, the spatially inhomogeneous components Yp, l' of
the electric field in relationship (15) can be obtain from
the homogeneous components in the zeroth order in m.
By designating the homogeneous electric field compo-

nents at m = 0 through , from expression (16), we
derive the following equation for these quantities:

(17)

Thus, we derived the electric-circuit equation for a
sample with a nonlinear current–voltage characteristic
in the presence of an external resistance ρ. For a suffi-
ciently small amplitude Yac of the ac electric signal,
Eq. (17) can be solved by the iteration method. As a

result, within a factor , we obtain

(18)

Y p l,
g0τ
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.

PH
Hereinafter, our interest will be only in the zeroth and
first electric field components with l = 0, ±1.

After rather cumbersome but simple calculations,
the expression for the first Fourier component of the
electric current can be determined accurate to within
the contributions ∝ m2Yac; that is,

(19)

where

(20)

(21)

Formulas (21) for the frequencies Ω1, 2 are the disper-
sion relations for the aforementioned two eigenmodes
of space-charge waves and can be conveniently repre-
sented by the approximate expressions (see also [16])

(22)

(23)

Therefore, as in the case of an oscillating interference
pattern, the frequency dependence of the first Fourier
component of the electric current for a static grating
and in the presence of the ac component of an external
electric field exhibits two peaks at Ω = |ReΩ1, 2 |, which
have a distinct resonant character under the condition
ReΩ1, 2 > ImΩ1, 2.

In the general case, the determination of the dc elec-
tric field component appears to be a rather laborious
problem and the solution found for the direct current I0
is represented by a very cumbersome relationship. The
point is that the resonant contribution to the electric

current I0 is proportional to the term  and, hence,
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the calculations have to be performed with the appro-
priate accuracy. The calculations of the dc component
Y0, 0 of the electric field in the sample become cumber-
some because of the last term on the left-hand side of
Eq. (16). This term describes a combination of two non-
linear contributions, namely, the current–voltage char-
acteristic (if c ≠ 0) and the interaction of space-charge
waves with the charge grating (∝ m2). The calculations
are significantly simplified when the Ohm law is valid
(c = 0) or the voltage source with zero external resis-
tance (ρ = 0) is used. In the latter case, there is no need
to apply Eq. (16), because the voltage across the sample
for this source according to relationship (14) is equal to
the external voltage,

(24)

Then, setting p = 0 and l = 0 in Eq. (12), from expres-
sion (15) for the spatially inhomogeneous field compo-
nents Yp, l and the boundary condition (24) for the spa-
tially homogeneous field components, we find that the
direct current passing through the sample can be deter-
mined from the relationship

(25)

where

(26)

The inclusion of the external resistance ρ does not rad-
ically change relationship (25) for the direct current but
substantially complicates the form of the coefficient
B(Ω). It should be kept in mind that the inclusion of the
external resistance can turn out to be of fundamental
importance in two cases: (i) in measurements of the
voltage across the sample rather than the current in the
circuit (see, for example, [15]) and (ii) in measurements
with a falling current–voltage characteristic in the
vicinity of the instability threshold where the behavior
of the system significantly changes after the crossover
from the current source mode to the voltage source
mode [2].

The expression for the direct current is also consid-
erably simplified for linear current–voltage characteris-
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tics when c = Λ' = 0 and v 0 = µE0. In this case, with
allowance made for the external resistance ρ, we have

(27)

If the Ohm law is valid, the following equality is satis-
fied: σd ≡ σ = en0µ. From Eq. (7), the relationship
between the electric field Ξ0 of the external voltage
source and the electric field E0 in the sample can be
derived in the explicit form E0 = Ξ0/(1 + ρσ).

Therefore, the dependence of the direct current on
the frequency of the ac electric field component has two
extrema, namely, a minimum at the frequency –ReΩ2 ≅
(KgµE0ττM)–1 = 4πen0/(εKgτE0) and a maximum at the
frequency ReΩ1 = KgµE0. This inference remains the
same with a changeover from hole conduction to elec-
tron conduction (i.e., after changing e  −e, µ 

−µ, Ω1, 2  – ).

3. MOVING GRATING
Both modes of space-charge waves can also be

observed upon excitation with a moving interference
grating in an external dc electric field. The nonlinear
system under consideration, as before, is described by
Eqs. (8) and (9). However, in Eq. (9), it is necessary to
make the change h(z)  h(z, T). Here, the function
h(z, T) has the form

(28)

For a moving grating, the frequency Ω and the velocity
of motion u are related by the expression Ω = Kgu. The
Fourier components are also described by Eq. (12), in
which we need to make the change hpδl, 0  hp, l.
Here, the quantity hp, l can be written as 

(29)

Thus, the equation for the Fourier components coin-
cides with Eq. (19) in [16]. However, the changeover
from the vibrating grating to the moving grating
requires the use of expression (29) for the quantity hp, l.
Therefore, relationship (23) from [16] with the appro-
priate changes can be used for the Fourier components
of the electric field with p ≠ 0; that is,

(30)

Here, one additional essential remark needs to be made.
For the moving grating, only the electric field compo-
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nents Yp, l with p = –l are nonzero. This implies that the
system of partial differential equations (8) and (9) is
reduced to ordinary differential equations through the
substitution Y(z, T) = Y(z – T), because h(z, T) = h(z –
T) = mcos(z – T) [see relationship (28)]. In this case, the
electric current f(T) through the sample does not
depend on the time T. Consequently, only the direct cur-
rent passes through the sample in the system with the
moving grating. This situation radically differs from
both the case with an oscillating grating and the case
with an external ac electric field component. Physically,
the absence of an alternating current for the moving
grating can be explained by the absence of a static
charge grating, because it is this interaction of the mov-
ing grating with the static grating that is responsible for
the passage of the alternating current through the sam-
ple. The alternating current in the system with a moving
grating can be generated, for example, through addi-
tional illumination of the sample with a static grating.
However, analysis of this situation does not enter into
the scope of the present paper. The possibility of reduc-
ing the problem under consideration to ordinary differ-
ential equations, in principle, enables us to examine the
stability of the system within the framework of classical
mechanics (see, for example, [2]).

With the use of the equation for the electric current
(21) taken from [16] (compare with Eq. (12) in the
present work) and simple transformations, we obtain
the relationship between the direct current passing
through the sample and the grating velocity u in the
form

(31)

In the limiting case of a linear current–voltage charac-
teristic, from expression (31), we have

(32)

where ED = KgD0/µ is the effective diffusion electric
field. Therefore, the dependence of the direct current on
the grating velocity u exhibits two resonant minima

either at u = v 0 and u = –(ττM v 0)–1 or at u = µE0 and

u = –4πen0/( ετE0) for the linear current–voltage
characteristic. This makes it possible to observe both
modes of space-charge waves in experiments with a
moving grating. However, there is a fundamental differ-
ence between these experiments and the variant with an
oscillating grating or excitation of the modes in an
external ac electric field. In the experiments with a
moving lattice, the result of observation depends on the
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direction of motion of the grating with respect to the
direction of the dc electric field and the type of conduc-
tivity of the sample. For definiteness, we assume that
the positive potential of the external electric field is
applied to the left electrode; i.e., E0 > 0. In materials
with hole conductivity (e > 0, µ > 0), the minimum cur-
rent is observed for the high-frequency mode Ω1 of
space-charge waves at u = µE0 for the grating motion
from left to right (u > 0) and for the low-frequency

mode Ω2 at u = –4πen0/( ετE0) for the grating
motion from right to left (u < 0). By contrast, in the case
of electron conductivity (e < 0, µ < 0), the electric cur-
rent should be minimum for the low-frequency mode
Ω2 when the grating moves from left to right and for the
high-frequency mode Ω1 when the grating moves from
right to left. This circumstance is associated with the
fact that the resonance occurs when the grating velocity
coincides with the phase velocity of elementary excita-
tions and the phase velocity reverses sign with a change
in the conductivity type. As regards the experiments
with an oscillating grating or an external ac electric
field component, their results do not depend on the type
of material conductivity, because the preferred direc-
tion of grating motion is absent in these cases.

A somewhat different situation arises with a suffi-
ciently high grating velocity, i.e., under the condition

|u | D0τM > |µE0 |. In this range of grating velocities,
the current gain δI0 reverses sign and becomes positive
at u < 0 for holes or u > 0 for electrons. This can be
explained by the fact that the total current (32) involves
two components: the ohmic component proportional to
µE0 and the diffusion component proportional to

u D0τM. If the quantities u and µ are opposite in sign,
the above components of the current are oppositely
directed and, consequently, the total current δI0 at a suf-
ficiently high grating velocity changes sign.

The diffusion contribution to the electric current
stems from fact that, in the experiments with a moving
grating, there exists a preferred direction of motion.
This leads to the passage of the direct current through
the sample in the absence of external electric fields.
Substituting E0 = 0 into expression (32) gives the diffu-
sion component of the electric current:

(33)

In the absence of external electric fields, the field grat-
ing is formed according to the pure diffusion mecha-
nism and no resonant interaction of space-charge waves
occurs. At v 0 = 0, the frequencies Ω1, 2 in the denomi-
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nator of formula (32) become strictly imaginary: Ω1, 2 =
iKgu1, 2. In this relationship,

(34)

A relationship similar to expression (33) for the direct
current in the absence of an external electric field upon
excitation with a moving interference pattern is given in
[16]. A similar relationship was also derived in [17] for
materials with a mixed electron–hole conductivity. It is
worth noting that the electric current defined by for-
mula (33) reverses sign upon crossover from the hole
mechanism to the electron mechanism of conduction
(i.e., after changing e  –e). The dependence of the
electric current I0(u) on the grating velocity is antisym-
metric, and the current vanishes at u = 0, ±∞. This
dependence at particular velocities exhibits an extre-
mum (see also [16]). The dependence of the quantity

I0u on u2 is described by the expression x(x + )–1(x +

)–1 (where x = u2) and exhibits a maximum at x =

xmax = (u2)max = u1u2 = ( ττM)–1. This feature of the
dependence of the electric current on the grating veloc-
ity makes it possible to measure the parameter ττM in
the experiment at a specified wave vector of the grating
Kg. Moreover, additional measurements of the electri-
cal conductivity σ of the system provide information on
the Maxwell relaxation time τM = ε/(4πσ). Therefore,
the important microscopic parameter, namely, the elec-
tron lifetime τ in the band, can be determined from the
measured dependence I0(u).

When comparing the aforementioned theoretical
results with experimental data, it is necessary to take
into account the following circumstance. As was noted
above, the frequency Ω1 of the high-frequency mode
can be of the order of tens or hundreds of megahertz
(because there is a very large uncertainty in the mobili-
ties). On the other hand, measurements have been often
performed using materials with a high content of impu-
rities. In these materials, charge transfer occurs through
electron trapping rather than through free band elec-
trons. The former mechanism (which is referred to as
dispersion transport) is characterized by a considerable
frequency dispersion of the electrical conductivity [18].
Moreover, the electrical conductivity cannot be
uniquely represented in the traditional form as the prod-
uct of the mobility and the concentration σ = enµ. Con-
sequently, the problem is substantially complicated,
especially in a nonlinear case. Some aspects of this
problem are discussed in [19, 20]. Note also that the
above results are valid in the absence of saturation of
impurity centers when the concentration NA of compen-
sating acceptor impurities is sufficiently high to satisfy

Kgu1 2,
1
2
--- 1

τ
--- 1

τM
------ Kg

2
D0+ + 

 –=

± 1
4
--- 1

τ
--- 1

τM
------ Kg

2
D0+ + 

  2 1
ττ M
---------– .

u1
2

u2
2

Kg
2

PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      200
the inequalities Eq @ E0 and Eq @ ED, where Eq =
4πeNa/(εKg) (this restriction was considered in more
detail in [16]).

4. DISCUSSION

Let us consider the three main methods for optical
excitation of space-charge waves: (1) excitation by an
external ac electric field combined with a static interfer-
ence pattern, (2) excitation by a moving interference
pattern, and (3) excitation by an oscillating interference
pattern. The first two methods were analyzed above,
and the dependences of the direct current through the
sample on the excitation frequency (when the Ohm law
holds) are described by formulas (27) and (32) for the
external ac electric field and the moving grating,
respectively. In our previous work [16], we analyzed
the third method for exciting space-charge waves with
an oscillating interference pattern, when electrons are
photogenerated according to the law [compare with
relationship (4)]

, (35)

where Θ is the oscillation amplitude. In [16], we con-
sidered the general case of a nonlinear current–voltage
characteristic. In the present work, we will disregard
the instability processes occurring in the vicinity of the
threshold of the domain structure formation (this prob-
lem was thoroughly discussed in [16]) and restrict our
consideration to the special case of linear characteris-
tics. Under these conditions, the dependence of the
direct current on the frequency Ω of grating oscillations
can be obtained from relationship (26) derived in [16];
that is,

(36)

A comparison of expressions (27), (32), and (36) shows
that all three excitation methods have specific features.
First and foremost, it should be noted that long-lived
space-charge waves in a sample can be excited only in
sufficiently strong external dc electric fields E0. In the
absence of a dc electric field E0, no resonant excitation
of space-charge waves occurs and we are dealing here
with relaxation processes. In sufficiently strong electric
fields E0 > ΩτM |ED |, only the method for exciting
space-charge waves with a moving grating is sensitive
to the type of conductivity of the material (the electric
current reverses sign when changing over from elec-
trons to holes). Upon excitation in an external ac elec-
tric field, the results of measurements never depend on
the conductivity type. In this case, the frequency depen-
dence of the direct current always exhibits a maximum
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at the high frequency Ω1 and a minimum at the low fre-
quency Ω2. Upon excitation of space-charge waves
with an oscillating interference pattern at E0 > ΩτM |ED |,
the frequency dependence of the direct current is char-
acterized by minima at both frequencies. In the case of
a moving grating at E0 > ΩτM |ED |, the electric current
increases in magnitude for electrons and holes at both
resonant frequencies, but the quantity δI0 reverses sign
with a change in the conductivity type. In the reversed
situation (at E0 < ΩτM |ED |), the dependence of the
direct current upon excitation with an oscillating grat-
ing has a minimum at one of the resonant frequencies
and a maximum at the other resonant frequency
depending on the conductivity type.

One more specific feature of the methods used for
exciting space-charge waves in an external ac electric
field and with an oscillating grating is that the direct
current passes through the sample simultaneously with
the alternating current at frequencies nΩ (where n is an
integer). The dependence of the amplitude of the alter-
nating current components on the excitation frequency
also exhibit a resonant behavior. This can be seen from
both relationship (19) for the frequency dependence of
the alternating current amplitude upon excitation of
space-charge waves in an external ac electric field and
expression (29) derived [13] for an oscillating grating
(these formulas describe the alternating current with
n = 1). Upon excitation of space-charge waves with a
moving grating, the direct current alone passes through
the sample. In this method, the alternating current can
be generated under additional illumination of the sam-
ple with a static interference pattern characterized by a
wave vector Kg identical to that of the moving grating.
Such an additional illumination induces a static grating
of the internal electric field, whereas the electric fields
of the moving and static gratings generate an alternat-
ing current in the system due to the interaction between
the harmonics of the internal electric field. These har-
monics are proportional to exp(iKgx – iΩt) and
exp(−Kgx). Even greater possibilities for measurements
exist when the second interference pattern with a wave
vector Kg identical to that of the first interference pat-
tern also moves in the sample at a velocity differing
from the velocity of the first pattern. In this case, there
are two different frequencies of excitation of space-
charge waves in the system. As a result, an alternating
current with frequencies equal to different combina-
tions of these excitation frequencies passes through the
sample due to nonlinear interactions.

In conclusion, we calculate the relative change in
the direct current at resonant frequencies. The magni-
tude of this current determines the possibility of
observing the above effects in experiments. Let us first
consider the resonance of the low-frequency mode at
Ω = Ω2 [the resonant frequencies Ω1 and Ω2 are given
by relationships (22) and (23), respectively]. Upon
P

excitation of the modes in an ac electric field, from
expression (27) at the resonant frequency, we have

(37)

Here, m' = mg0τ/n0 is the effective contrast of the inter-
ference pattern (m' ≤ m also for insulators with  = 0,
m' = m). In what follows, we will analyze the situation
where the external resistance is absent, i.e., where ρ =
0. For estimates, it should be remembered that the ine-
quality d @ 1 always holds under experimental condi-
tions. As a consequence, the Q factor has a rather large
value and the reciprocal of the eigenmode lifetime is
less than the eigenmode frequency.

Upon excitation with an oscillating interference pat-
tern, from relationship (36), we obtain

(38)

Finally, for the moving interference pattern, from for-
mula (32), we have

(39)

The above estimates indicate that observation of the
resonance for the low-frequency mode of space-charge
waves with the use of all three methods should not pose
any problems. For this purpose, it is only necessary to
satisfy the condition d = KgµE0τ > 1, which ensures a
small reciprocal of the eigenmode lifetime as compared
to the eigenmode frequency.

Now, we turn to the resonance of the high-frequency
drift mode at frequency Ω1. Upon excitation in an exter-
nal ac electric field, according to expression (27), we
obtain

(40)

From formula (36), the resonant amplitude in the case
of excitation with an oscillating grating is determined
by the relationship

(41)
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For a moving grating, from formula (32), we have

(42)

It can be seen from these relationships that the relative
resonant amplitude for the high-frequency mode is con-
siderably less than the amplitude upon interaction with
space-charge waves and involves the additional small
parameter τ/(d2τM) This parameter is rather small, espe-
cially for semi-insulating materials with τ/τM ! 1. This
can be corrected for by measuring the diffusion contri-
bution using the method with an oscillating or moving
grating. If τ/τM < dED/E0, the signal amplitude upon
interaction with the high-frequency mode is small com-
pared to that upon interaction with the low-frequency
mode according to the parameter ED/(dE0) = d–2(KglD)2,

where lD =  is the diffusion length. The magni-
tude of this parameter in experiments can be chosen
larger than the parameter τ/(d2τM) when the grating
wave vector is not overly small and (KglD)2 > τ/τM.
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Abstract—The electrical conductivity of CdF2 semiconductor crystals is measured using the microwave intra-
cavity technique at a frequency of ~35 GHz. The crystals are activated with yttrium donor impurities and indium
and gallium ions forming bistable one-electron donor impurity and two-electron DX centers. The conclusion is
drawn that the concentration of electrons in the conduction band of CdF2 : Ga crystals has an anomalously high
value. This confirms the results obtained in earlier NMR investigations of CdF2 semiconductor crystals at room
temperature. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A fluorite-type dielectric crystal CdF2 can be trans-
formed into a semiconducting state through doping
with Group III elements of the periodic table with sub-
sequent annealing in a reducing atmosphere [1]. During
this process (which is referred to as additive coloring),
F– interstitial ions that compensate for an excess charge
+1 of activator ions diffuse from the bulk toward the
surface of the crystal. This is attended by an injection of
electrons into the crystal bulk, which provides charge
neutralization of the crystal. The injected electrons
either can remain in the conduction band of the crystal
or can be localized at hydrogen-like donor orbitals of
trivalent impurity ions. In CdF2 crystals, donor impuri-
ties are characterized by a binding energy of ~100 meV
and bring about the appearance of a photoionization IR
absorption band with a maximum at wavelength
λmax ≈ 7 µm, which is also observed in the visible spec-
tral range [2, 3]. At room temperature, the electronic
conductivity of CdF2 semiconductor crystals can be as
high as 10 Ω–1 cm–1. However, all attempts to achieve
an electron concentration exceeding ~1019 cm–3 in
these crystals have not been successful [1, 2, 4].

Among the donor impurity ions introduced in CdF2

crystals, gallium and indium ions play a special role.
These impurity ions are considered an analog of DX
centers in III–V and II–VI semiconductors [5] and can
reside not only in a shallow-lying hydrogen-like state
but also in a deep-lying strongly localized two-electron
state accompanied by an enhanced lattice relaxation
[6]. Owing to this relaxation, the two aforementioned
states of the impurity center are separated by an energy
barrier, which leads to an increase in the time required
to occupy a deep-lying level and to attain thermal equi-
librium, especially at low temperatures [7–9]. The
1063-7834/04/4609- $26.00 © 21622
impurity level of a DX center is located at an energy of
~0.25 eV for indium and ~0.7 eV for gallium [5].

Earlier [8–10], CdF2 semiconductor crystals con-
taining DX centers and exhibiting photochromic prop-
erties were studied using optical and spectroscopic
methods. It was found that, in “better” CdF2 : Ga crys-
tals, the concentration of active centers and the total
concentration of electrons injected into the crystals dur-
ing additive coloring are several times lower than those
in CdF2 : In crystals. However, indirect estimates
obtained for the concentration of electrons in the con-
duction band of these crystals from data on the 113Cd
nuclear spin–lattice relaxation [11] led to inverse ratios
(at room temperature). Moreover, the temperature
dependence of the concentration of electrons in the
conduction band was examined using the 113Cd NMR
technique. It was shown that the activation energy for
the CdF2 : In crystal agrees with the theoretical value
calculated with due regard for the population of the
deep-level DX centers in this crystal [12] but is substan-
tially less than the theoretical activation energy calcu-
lated for the CdF2 : Ga crystal.

The main objective of the present work was to
obtain additional information on CdF2 semiconductor
crystals. With this aim in view, I developed a simple
noncontact microwave method for measuring the elec-
trical conductivity and compared the experimental
results obtained by this method for the above crystals
and CdF2 : Y semiconductor crystals containing no DX
centers.

2. EXPERIMENTAL TECHNIQUE

The crystals used in microwave measurements were
grown from a melt. The concentration NM of activator
ions introduced into the crystal (see table) was con-
004 MAIK “Nauka/Interperiodica”
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Experimental and calculated parameters of the CdF2 semiconductor crystals

Crystal , 1017 cm–3 , 1017 cm–3 , 1017 cm–3 σa, Ω–1 cm–1 nc, 1017 cm–3

CdF2 : In 100 30 3.0 0.15 0.6

CdF2 : Ga 100 6 0.7 0.22 0.9

CdF2 : Gac ~3.6d 0.6 2.4

CdF2 : Y 500 40 25 2.9 12
a The accuracy in determining the parameters presented in the table is equal to ±20%.
b Data obtained from the experimental IR spectra of the crystal.
c Data obtained upon exposure of the crystal to high-power UV radiation.
d Difference nΣ – nc.

NM
a nΣ

a,  b nD
a,  b
trolled using mass spectrometric analysis. Additive col-
oring was performed at a temperature of ~500°C in
vapors of a potassium–cadmium mixture. The total
concentration nΣ of electrons injected into the crystal in
the course of additive coloring and the concentration nD

of electrons localized at shallow-lying donor levels
were determined from the intensity of the IR absorption
band (λmax ≈ 7 µm) at different temperatures upon illu-
mination of CdF2 : In and CdF2 : Ga crystals in the pho-
toionization IR absorption bands of deep-level DX cen-
ters [9].

In the experiments, the complex permittivity of the
samples, i.e., ε = ε1 – iε2, was determined using the
microwave intracavity technique. The changes in the
frequency and loaded-Q factor of the microwave cavity
operating in the 8-mm band were examined upon inser-
tion of the sample at T = 300 K. Without a sample
present, the TE011-type cylindrical reflection cavity
(diameter b ≈ 12 mm, height H ≈ 8 mm) had a loaded-
Q factor QLS ≈ 1000 and was matched to a waveguide.
As a consequence, the microwave power from a Gunn-
diode oscillator with electric frequency tuning provided
by a varactor almost completely dissipated in the TE011-
type cavity at the resonance frequency. The oscillation
frequency was swept by a sawtooth voltage on the var-
actor in the range 34.5–35.7 GHz, and the curve of the
cavity was observed on an oscilloscope [13]. Indica-
tions from a wave meter were used as frequency mark-
ers. For microwave intracavity measurements, cylindri-
cal samples (diameter ~2.5 mm, height ~2.5 mm) were
inserted into the cavity precisely along the cavity axis
through a hole (diameter, 3.0 mm) at the center of the
upper cavity piston with the use of a fine adjustment
screw. (Note that the presence of a through hole in the
cavity piston does not affect the distribution pattern of
the electromagnetic field in the cavity [13].) The curve
of the cavity with a sample was measured in steps of
0.1 mm. From analyzing this curve (see [13, 14]) on a
computer, we determined the frequency shift δfc and the

change (degradation) in the Q factor of the cavity 
upon insertion of the sample as a function of the param-
eter x (x is the length of the part of the sample inserted

δQLS
1–
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into the cavity. The experimental dependences (x)
and δfc(x) thus obtained were compared with the family
of theoretical curves constructed for different values of
the complex permittivity. In this way, we determined
the complex permittivity for the studied sample. It
should be noted that these measurements were per-
formed with samples of relatively large volume. Hence,
the complex permittivity ε could not be calculated
within the approximation of an infinitely small sample
[14–16]. Therefore, we sought an approximate solution
to the wave equation for the distribution of the electro-
magnetic field in the cavity with a sample.

3. COMPUTATIONAL TECHNIQUE

The equation for the electric component Eϕ of the
electromagnetic field of the TE011 mode in the cylindri-
cal coordinates (z, r, ϕ) for a cylindrical cavity with a
dielectric sample has the form [13]

(1)

where c is the velocity of light, Eϕ ≡ Eϕ(z, r), ε(z, r, ϕ) =
1 for the cavity without a sample, and ε(z, r, ϕ) = ε for
the cavity with a dielectric sample. For the complex
permittivity ε = ε1 – iε2, Eq. (1) has solutions only at
characteristic (resonance) values of the complex circu-
lar frequency ω of a perturbed cavity. The complex cir-
cular frequency ω is related to the frequency and the Q
factor of the cavity with a dielectric sample through the
relationship [14]

(2)

The solutions to Eq. (1) under the boundary condition
Eϕ ≡ 0 at the cavity walls can be obtained in the form of
a series expansion:

(3)
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where Xi is the ith root of the Bessel function of the first
kind J1. With the use of expansion (3), Eq. (1) can be
transformed into a system of linear equations with
unknown coefficients Cij. By solving this system, we
determined the complex frequencies ω/2π for the per-
turbed cavity, which were close in magnitude to the fre-
quency of the unperturbed cavity at different values of
the complex permittivity of the sample and the length
of the part of the sample inserted into the cavity. The
number of sought expansion coefficients Cij (where i,
j = 1 … L) was equal to L × L = 60 × 60. Note that this
number was limited by the memory capacity of the
computer used in our calculations. (In these calcula-
tions, we determined the eigenvalues of the matrix of
3600 × 3600 complex numbers.)

4. RESULTS AND DISCUSSION

The figure shows the experimental dependences

δfc(x) and (x) (symbols) for all the crystals stud-
ied and the approximating curves (solid lines) calcu-
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Experimental (symbols) and calculated (solid lines) depen-

dences (x) and δfc(x) for samples of (A) metal (brass)

and CdF2 crystals doped with (B) yttrium, (C) indium,
(D) gallium (in the dark), and (E) gallium (upon exposure of
the crystal to high-power UV radiation). The dependences
are calculated under the assumption that the permittivity ε1
is equal to 8.49 [17] for the dielectric loss ε2 = (a) 6, (b) 7,
(c) 8, (d) 10, (e) 13, (f) 20, (g) 30, (h) 40, (i) 100, (j) 200,
(k) 400, and (l) 10 000. Sample diameter d = 2.53 ±
0.02 mm. 
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. Since
the impurity concentration in the doped crystals was
not very high, the calculations were performed under
the assumption that the permittivity of the samples is
equal to the permittivity of undoped CdF
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, i.e., 

 

ε
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 = 8.49
[17]. Moreover, the CdF
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 : Ga crystal was studied upon
exposure to high-power radiation (up to 30 mW) from
a nitrogen laser (

 

λ

 

 = 335 nm) in the absorption band of
deep-level 

 

DX

 

 centers. The characteristic time 

 

τ

 

required to attain equilibrium between the shallow and
deep Ga impurity centers at room temperature was
rather long and approximately equal to 10 s. As a result,
the irradiation of the sample led to a complete depletion
of deep-level centers in the CdF

 

2

 

 : Ga crystal. It should
be noted that, in the CdF

 

2

 

 : In crystal, the characteristic
time 

 

τ

 

 is approximately equal to 10

 

–7

 

 s and, hence, the
photobleaching of deep-level centers becomes impossi-
ble in the stationary mode at room temperature. The
time taken to achieve thermal equilibrium between
electrons in the conduction band and electrons local-
ized at donor levels is most likely shorter than 10

 

–9

 

 s.

The measurements performed in this work demon-
strated that the dielectric losses in all the studied sam-
ples are relatively large, i.e., 

 

ε2 @ 1. Since the uncol-
ored crystal CdF2 contained only cubic impurity cen-
ters, it was assumed that this crystal should not exhibit
dielectric losses through the relaxation reorientation of
low-symmetry centers in an oscillating electromagnetic
field [18]. This assumption was confirmed in the study
of uncolored crystals CdF2. It was revealed that the
uncolored crystals CdF2 have no appreciable dielectric
losses, including those due to ionic conduction. In col-
ored crystals CdF2 : In and CdF2 : Ga, the DX centers at
a concentration NDX < nΣ/2 possess a dipole moment
pDX < 3D (this estimate was obtained in the electrostatic
approximation). However, at room temperature, the
contribution of the DX centers to the dielectric loss,
apparently, should not exceed the limiting value deter-
mined by the relationship [19]

(4)

where k is the Boltzmann constant. Therefore, the con-
tribution of the DX centers to the dielectric loss ε2 can
be ignored.

In CdF2 semiconductor crystals, dielectric losses are
due to electronic conduction. It should be noted that, at
room temperature, the dominant contribution to the
dielectric loss is most likely made by electrons in the
conduction band [4]. As can be seen from the figure, the
cavity frequency considerably increases when the con-
ducting samples are inserted into the cavity to a depth
x > 1 mm. These findings can be explained by the fact

ε2( )DX
lim

2π
ε1 2+
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that the electromagnetic field penetrates into a conduct-
ing sample only to the skin depth [14]

(5)

and is “suppressed” in the rest of the volume of the con-
ducting sample. This leads to a decrease in the effective
size of the cavity, and, consequently, the frequency of
the cavity increases. For comparison, the figure shows
the experimental dependences for a sample having the
same shape and size but prepared from a “good” metal
(brass). It should be noted that, in the case when the
samples inserted into the cavity are characterized by
small (or moderate) dielectric losses, the cavity fre-
quency, on the contrary, decreases [13]. In our case, as
the length x of the part of the sample inserted into the
cavity increases from 0 to ~2δ, the shift in the cavity
frequency is first negative in sign and then begins to
increase. As a result, the dependence δfc(x) exhibits a
minimum at x ~ 2δ. This minimum is clearly seen both
in the experimental dependence (closed circles C) for
the CdF2 : In crystal characterized by a skin depth δ ~
0.6 mm and in calculated curves a–c (see figure). On
this basis, it is possible in principle to determine the
permittivity ε1 of the studied sample more exactly;
however, to accomplish this refinement, the measure-
ments must be performed with a higher accuracy.

When analyzing the experimental dependences

(x) and δfc(x), it should be remembered that the
accuracy in determining the values of δfc(x) is higher

than that of (x). The errors in calculating the the-
oretical (approximating) curves were estimated from a
comparison with exact solutions of Eq. (1). The exact
solutions were obtained for two specific cases: (i) a thin
disk with a diameter equal to the diameter of the cavity
and (ii) a long cylindrical rod passing through the cav-
ity [16]. It was established that the calculated depen-
dences agree with the exact solutions within an error
approximately equal to the spread of the values (the
amplitude of oscillations) of the corresponding calcu-
lated dependence. It can be seen from the figure that the
spread in the values becomes appreciable at dielectric
losses ε2 ~ 200 and that it is impossible to obtain the
calculated dependence for a good metal (for example,
at ε2 = 10000). This restriction is associated with the
fact that, at large values of ε2, the skin depth is substan-
tially less than the period of spatial oscillations of the
terms in expansion (3). Consequently, approximating
the electromagnetic field in the cavity with the use of
expansion (3) becomes unsatisfactory.

The experimental and calculated parameters of the
studied crystals are presented in the table. It should be
noted that the total concentration of electrons in the
CdF2 : Ga crystals is approximately five times less than
that in the CdF2 : In crystals, and the impurity levels of
DX centers in the former crystals are located at a con-

δ c

πf c 2ε2

---------------------=
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siderably lower energy than those in the latter crystals
(see above). Therefore, according to the theoretical
estimates obtained in [12], it can be assumed that the
electronic conductivity of the CdF2 : In crystal should
be at least one order of magnitude higher than that of
the CdF2 : Ga crystal. However, the tabulated values of
the microwave conductivity

(6)

indicate that, on the contrary, the conductivity of the
CdF2 : Ga crystals is ~1.5 times higher than that of the
crystals doped with indium ions. It is unlikely that the
above differences are associated with the large differ-
ence between the electron mobilities in these crystals.
The CdF2 semiconductor crystals studied in this work
are characterized by a high optical quality, are grown
and colored using the same methods under identical
conditions, and contain activator ions at a relatively low
concentration. Therefore, as was done in [18], we can
assume that, in these crystals, the electron mobility in
the conduction band is typical of CdF2 semiconductor
crystals [1, 2, 4]: µ = 15 cm2/(V s). Hence, the electron
concentration nc can be estimated from the microwave
conductivity. This estimate (see the last column in the
table) suggests a substantially higher relative con-
centration of electrons in the conduction band of the
CdF2 : Ga crystal as compared to that of the CdF2 : In
crystal.

It is of interest to note that, within the limits of
experimental error, the concentration ratio between the
electrons localized at the donor levels and in the con-
duction band of the CdF2 : Ga crystal approximately
coincides with the corresponding ratio for the CdF2 : Y
crystal free of DX centers. The same ratio is completely
retained upon photobleaching of the CdF2 : Ga crystal
with light from a nitrogen laser. Exposure of the crystal
to high-power laser illumination leads to a complete
release of electrons from the deep-level centers. There-
fore, we can exclude the deep-level centers from our
consideration. As a result, the CdF2 : Ga crystal
becomes similar to the CdF2 : Y crystal with a lower
total electron concentration. In both cases, the electrons
are localized at the donor levels and in the conduction
band.

5. CONCLUSIONS

Thus, the electrical conductivities of CdF2 semicon-
ductor crystals were measured using the microwave int-
racavity technique. The results obtained confirm the
conclusion drawn in earlier NMR investigations [11]
that the concentration of free electrons in the conduc-
tion band of CdF2 : Ga crystals at room temperature has
an anomalously high value. It was assumed that, in the
CdF2 : Ga crystal, the equilibrium population of shal-
low- and deep-lying levels is disturbed through an
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unknown mechanism. In order to solve this problem
conclusively, it is necessary to “count” the electrons
localized at the donor levels, at the DX centers, and in
the conduction band. In turn, this calls for an investiga-
tion of the Hall effect in CdF2 semiconductor crystals
exhibiting photochromic properties. Note that, until
now, these investigations had been performed only for
CdF2 semiconductor crystals not containing any DX
centers [1, 2, 4].
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Abstract—Electrical conductivity and NMR measurements were carried out for an aluminum-doped CeF3
crystal to study the influence of substitutional impurities on the superionic fluorine mobility. Activation
enthalpy was found to remain constant from low temperatures to about 325 K and to increase as compared to
that of a pure CeF3 crystal. Above about 325 K, a trend towards gradual conductivity saturation was observed.
This change was ascribed to a superionic phase transition not accompanied by structural transformations. NMR
also revealed some alterations in the local fluorine dynamics as compared to that reported for a pure CeF3 crys-
tal. According to NMR measurements, the superionic phase transition near 325 K results in acceleration of the
exchange between rigid or slow fluorine in the F1, F2, and F3 sublattices, while highly mobile F1 fluorine ions
move independently at least until 400 K. © 2004 MAIK “Nauka/Interperiodica”.
* 1. INTRODUCTION

Cerium fluoride, CeF3, belongs to the group of trif-
luoride crystals with tysonite-type structure, which
evince high ionic mobility already at room temperature
(see [1–4] and references therein). The space group is

 [5]. The pure CeF3 crystal has three nonequiva-
lent fluorine sublattices with different dynamics (see
[2–4, 6] and references therein). It was found from elec-
trical conductivity measurements [7] that CeF3, like
other fluorides LnF3 (Ln = La and Nd) [2, 7], at about
435 K exhibits strong alterations in the character of the
fluorine mobility, which manifest themselves as an
abrupt change in the activation enthalpy but are not
accompanied with a structural phase transition. A much
weaker change in the activation enthalpy was also
observed near 290 K [2, 8]. For neodymium fluoride,
the temperatures of similar changes in the activation
enthalpy were associated with bends on the temperature
dependences of the tysonite lattice parameters a and c
[2]. Doping the fluoride crystals strongly influences not
only the activation enthalpy but also the local dynamics
of fluorine ions [2–4]. This provides additional infor-
mation on the mechanisms of superionic mobility in tri-
fluoride crystals. In this paper, we present results of
studies on fluorine mobility in mixed Ce0.95Al0.05F3

crystals on the basis of electrical conductivity and
19F NMR.

* This article was submitted by the authors in English.

P3c1
1063-7834/04/4609- $26.00 © 201627
2. SAMPLES AND EXPERIMENT

A mixed cerium aluminum fluoride single crystal
with composition Ce0.95Al0.05F3 was grown by the
Bridgman–Stockbarger method. According to x-ray
powder diffraction, the crystal structure is tysonite-like
and the crystal is single-phase. The lattice parameters
are a = 7.177 Å and c = 7.277 Å. The composition of
the crystal was checked by inductively coupled plasma
(ICP) optical emission spectrometry and chemical anal-
ysis.

The sample for conductivity measurements had the
form of a parallelepiped with dimensions of 10.5 × 8 ×
5 mm cut along the crystallographic axes. The temper-
ature dependence of the conductivity was recorded
using an immitance meter E7-14 operating at four fixed
frequencies 0.1, 1, and 10 kHz and 1 MHz. Gold film
electrodes were made on the sample faces perpendicu-
lar and parallel to the c axis. During the measurements,
the temperature was gradually varied within the range
110–510 K at a rate of 1 K/min.

NMR measurements were carried out using a
Bruker Avance400 NMR spectrometer within the tem-
perature range 290–400 K. The 19F NMR line for the
Ce0.95Al0.05F3 powder sample was observed as the Fou-
rier transform of the free-induction signal after a 90°
pulse. The rate of the change in temperature was no
more than 1 K/min. Prior to each measurement, the
sample was kept at a fixed temperature for about
10 min. The accuracy of temperature control was better
than 1 K.
04 MAIK “Nauka/Interperiodica”
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3. RESULTS AND DISCUSSION

Figure 1 shows the results of the conductivity mea-
surements along the c axis at four different frequencies.
Above about 230 K, the sample displays high ionic con-
ductivity, which does not depend on frequency at
higher temperatures, in agreement with the delocalized
nature of fluorine mobility. The logarithmic curves are
straight lines for lower frequencies between about 230
and 325 K. The activation enthalpy calculated from
these curves is equal to 0.54 eV. This enthalpy is some-
what higher than that found within the corresponding
temperature range for the pressed polycrystalline pure
CeF3 sample (0.45 eV) [2]. At about 325 K, the curves
exhibit noticeable changes in the slope. Contrary to
pure CeF3 [2], the logarithmic curves for the sample
under study cannot be approximated by straight lines
above 325 K but rather indicate a gradual saturation of
the conductivity with increasing temperature up to
510 K. Note that the conductivity in the mixed fluoride
under study is slightly less than in the pure cerium flu-
oride [2]. The behavior of the conductivity in the direc-
tion perpendicular to the c axis for the sample under
study was very similar to that along the c axis for a
weak anisotropy of ionic mobility in fluorides with a
tysonite-like structure [9, 10]. Nevertheless, the activa-
tion enthalpy evaluated below 325 K was a little higher
for conductivity perpendicular to the c axis than for that
parallel to the c axis and equal to 0.56 eV.

19F NMR studies showed strong changes in the line
shape with increasing temperature from 190 K, reflect-
ing alterations in the fluorine mobility. Some NMR
spectra are depicted in Fig. 2. Near room temperature,
the line shape is very similar to that observed in the
pure cerium fluoride crystal near and below room tem-
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Fig. 1. Logarithm of electrical conductivity parallel to the c
axis measured at (1) 0.1, (2) 1, and (3) 10 kHz, and 1 MHz
(4) multiplied by temperature versus inverse temperature.
The arrow marks a temperature of the onset of curve devia-
tion from the linear dependence.
PH
perature [11]. According to [2–4, 6, 11], in crystals with
a tysonite-like structure, there are three different fluo-
rine sublattices, usually referred to as F1, F2, and F3.
Fluorine ions in the F1 sublattice were found to be
mobile even at low temperatures, while the F2 and F3

sublattices (often referred to as the F23 sublattice)
remained rigid. Fluorine ions in the second and third
rigid sublattices have about the same surroundings and
chemical shift, so their NMR lines overlap. The amount
of fluorine in the F1 sublattice is about twice as much as
in the F23 sublattice. Thus, below room temperature, in
pure tysonite-like crystals one can normally see two
distinct peaks ascribed to fluorine in the F1 and F23 sub-
lattices with positive and negative chemical shifts,
respectively [2, 4]. With and increase in temperature up
to room temperature, an additional peak may appear [2]
because of the increasing partial exchange of fluorine

1000 0 ppm

399 K

390 K

380 K

370 K

360 K

350 K

339 K

330 K

320 K

310 K

300 K

290 K

Fig. 2. 19F NMR spectra at several temperatures from 290
to 399 K.
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between the F1 and F23 sublattices. Which of the two
sublattices, F2 or F3, first starts exchanging with the F1
sublattice and becomes mobile remains a subject of
debate [2, 12]. In [12], the additional peak was not
observed. Instead of this, the F1 peak slightly shifted
and intensified when the F1–F23 exchange became
faster, which was explained in terms of fast interchange
within the F1 sublattice.

Thus, two distinct peaks with chemical shifts of
about 450 and –400 ppm that were seen in the sample
under study near room temperature (where ionic con-
ductivity is still moderate) can be mainly attributed to
fluorine in the F1 and F23 sublattices, respectively. The
integral intensity of the F23 peak is noticeably less than
half of that of the F1 peak. This means that only part of
the fluorine in the F23 sublattice remains rigid. Another
part participates in the exchange between the F1 and the
F23 sublattices. Mobile ions that originated from the F23
sublattice might form the right shoulder of the high-fre-
quency peak.

Above room temperature, the position and the inten-
sity of the main peak with a positive chemical shift
remain practically constant, while drastic alterations
occur in the NMR line in the lower frequency region.
First, with increasing temperature, the F23 peak van-
ishes completely by 340 K and the low frequency
shoulder of the main peak smoothes away. At 350 K,
one can actually see only a rather symmetric single
NMR line with a chemical shift of about 400 ppm.
Above about 360 K, a new peak appears with a chemi-
cal shift of about –100 ppm whose intensity gradually
increases with increasing temperature. The shape of
this peak can be fitted well by a Lorentzian function,
contrary to the shape of the higher frequency peak,
which is simulated well by a Gaussian function, as can
be seen in Fig. 3 for 393 K. At about 400 K, the new
peak dominates the 19F NMR spectrum.

On the whole, the obtained results differ drastically
from the temperature dependences of NMR spectra in
pure CeF3 that were reported in [2]. The appearance of
the new peak above 360 K can hardly be explained by
fast exchange between mobile fluorine in the F1 sublat-
tice and fluorine in the F23 sublattice, as was done for
the pure CeF3 and some other trifluoride crystals in [2,
4, 12]. In fact, when this peak starts to rise, the intensity
and position of the F1 peak do not change noticeably.
Another supposition seems to be more credible. One
can assume that the single peak at 350 K, which
remains stable from room temperature up to at least
399 K, originates from mobile fluorine in the F1 sublat-
tice. Jumps of these fluorine atoms are mainly respon-
sible for the conductivity near and below room temper-
ature with a constant activation enthalpy. Above room
temperature, acceleration in the ion exchange between
slow or rigid fluorine in the F2, F3, and F1 sublattices
leads first to smearing of the relevant resonance lines
and then to a rise in the new peak. Since the integral
PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      200
intensity of the new peak at, for instance, 390 K is
higher than that of the high-frequency peak, one can
suggest that the number of fluorine ions in the F1 sub-
lattice that remain slow or rigid near room temperature
is at least comparable to the number of mobile F1 fluo-
rine ions. Note that the Lorentzian shape of the new
peak corresponds to a high mobility of collective fluo-
rine ions.

The change in the character of fluorine mobility
could be treated as a superionic phase transition in type-
II ionic conductors [1]. Such superionic phase transi-
tions are accompanied by a saturation of conductivity
[1], in agreement with the results shown in Fig. 1.
According to Fig. 1, the onset of the saturation of con-
ductivity starts at about 325 K and this agrees with the
changes in the NMR spectra shown in Fig. 2. The slight
step in the lattice parameters and changes in the activa-
tion enthalpy seen near room temperature for some
rare-earth trifluorides [2] support the existence of such
a phase transition.

4. CONCLUSIONS

The conductivity and 19F NMR spectra measure-
ments in the Ce0.95Al0.05F3 superionic crystal revealed
noticeable distinctions from the results for pure CeF3.
The activation enthalpy near room temperature evalu-
ated from the conductivity was higher than in the pure
crystal. A gradual saturation of conductivity was
observed at elevated temperatures, contrary to the sharp
bend reported for pure CeF3. Detailed observations of
the evolution of the NMR spectra with changes in the
temperature showed that the simple picture of fast
exchange between the whole F1 and F23 sublattices used

1000 500 0 –500 –1000 ppm

Fig. 3. Deconvolution of the 19F NMR spectrum at 393 K.
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to treat the high-temperature spectra in a pure CeF3
crystal is no longer valid for the doped crystal under
study. The measurements also revealed a superionic
phase transition near 325 K that is not accompanied by
structural transformations.
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Abstract—The transient nutation of states dressed by a microwave field in a two-level system (  centers in a
quartz crystal) is observed in pulsed electron paramagnetic resonance (EPR) in the course of an additional pulse
of a linearly polarized radio-frequency (rf) field that has an amplitude 2B2 and is applied parallel to the static
magnetic field. It is shown that, when the frequency of the rf field coincides with the frequency of nutation of
the bare spin system, the signal of this nutation is modulated by the nutation of dressed states at the frequency
ω2 = γB2, where γ is the electron gyromagnetic ratio. The decay time of nutation of dressed states is considerably
(no less than four times) longer than that of bare states of  centers due to spin–spin relaxation and correlates
with the spin–lattice relaxation time in the rotating coordinate system. © 2004 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Eigenstates of a quantum system in a strong electro-
magnetic field with a frequency close to the frequency
of quantum transitions of the system differ substantially
from the eigenstates in the absence of an external elec-
tromagnetic field. States of this quantum system, which
is dressed by the electromagnetic field, are often
referred to as dressed states, in contrast to the states of
an unperturbed bare system. The properties of the
dressed quantum system are determined by both the
properties of the bare quantum system and the parame-
ters of the external electromagnetic field. Most fre-
quently, the properties of dressed quantum systems
have been investigated using stationary methods in
optical resonance [1]. The resonance of nuclear spin
states dressed by a resonant radio-frequency (rf) field
was observed in stationary nuclear magnetic resonance
and was termed the rotary saturation [2].

In recent years, the use of pulsed methods has made
it possible to study the dynamics of quantum transitions
between dressed states and to observe transient nuta-
tions of these states in optical [3, 4] and electron para-
magnetic [5] resonances. The interaction of dressed
states of a spin system with an electromagnetic field
depends on the matrix element of the transition dipole
moment, whereas the interaction of these states with
the environment occurs under conditions that differ sig-
nificantly from a similar interaction for a bare system.
In this respect, investigation into the dynamics of
dressed states can provide information that would be
useful for extending the capabilities of coherent spec-
troscopy as an efficient tool for studying complex mul-
tilevel systems [5].
1063-7834/04/4609- $26.00 © 21631
In this work, the transient nutation of dressed states
was investigated in the electron paramagnetic reso-
nance of  centers in a quartz crystal. As was done by
Jeschke [5], the transient nutation was induced by an
additional pulse of a linearly polarized rf magnetic field
aligned parallel to the static magnetic field. However, in
our experiments, we observed transient nutation of
dressed states in the course of the exciting rf pulse
which modulated the transient nutation of a bare spin
system, whereas Jeschke [5] recorded nutation after the
termination of the exciting pulse indirectly with the use
of a spin echo signal from a bare system.

2. THEORETICAL BACKGROUND

Let us consider an electron spin system with spin
S = 1/2 in a static magnetic field B0, which is oriented
parallel to the z axis of the laboratory coordinate sys-
tem, and a linearly polarized electromagnetic field
2B1cos(ωt), which is aligned with the x axis. In this
case, the Hamiltonian (in frequency units) can be repre-
sented in the form

(1)

where ω0 = γB0 is the Larmor frequency (resonant fre-
quency of spin transitions), γ = gβe/" is the electron
gyromagnetic ratio, g is the electron g factor, βe is the
Bohr magneton, and ω1 = γB1. The linearly polarized
electromagnetic field can be decomposed into two cir-
cularly polarized components that have the amplitude
B1 and rotate in opposite directions about the z axis in
the xy plane at frequencies ±ω. In the rotary-wave

E1'
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approximation, under the conditions of magnetic reso-
nance (ω ≈ ω0), only one component of the linearly
polarized electromagnetic field, which rotates in the
direction of the Larmor spin precession, efficiently
induces resonant spin transitions. The frequency of the
second component of the electromagnetic field differs
significantly from the resonant frequency and the effect
of this component at B1 ! B0 can be ignored with a high
accuracy. In the rotary-wave approximation, the Hamil-
tonian in the coordinate system rotating about the z axis
at the frequency ω has the form

(2)

In the presence of an additional linearly polarized
electromagnetic field 2B2cos(ωrf t) aligned parallel to
the z axis, the Hamiltonian in the rotating coordinate
system takes the following form [5]:

(3)

where ω2 = γB2.

It follows from relationship (3) that, under the con-
ditions of magnetic resonance with the first electromag-

netic field (ω = ω0), the Hamiltonians  and H1 have
the same form, except for the difference in the coordi-
nate axes. Consequently, the effect of the additional
electromagnetic field on states of the spin system
dressed by the first electromagnetic field is identical to
the effect exerted by the first electromagnetic field on
states of the bare system in the static magnetic field.

H̃1 ω0 ω–( )Sz ω1Sx.+=

H̃2 ω0 ω–( )Sz ω1Sx 2ω2 ωrf t( )Sz,cos+ +=

H̃2

2B1

tt1

(a)

(b)

(c)

B0 – ∆B

2B2

B0

t
0

0

0

Fig. 1. Scheme of generating transient nutations of bare and
dressed spin states in electron paramagnetic resonance with
(a) transverse continuous microwave radiation, (b) a pulse
of the magnetic field, and (c) a pulse of the linearly polar-
ized rf field (the fields are applied along the static magnetic
field).
P

As is known, transient nutation is the simplest effect
that arises upon exposure of a bare quantum system to
a pulsed resonant electromagnetic field and which
directly reflects the dynamics of quantum transitions
[6]. In the case of magnetic resonance under the condi-
tion ω1 @ 1/T2 @ 1/T1, the transient nutation signal
along the y axis (absorption signal) for a spin system,
which is in thermal equilibrium prior to excitation, can
be described by the relationship [7]

(4)

where δ = ω0 – ω is the detuning from resonance and
T1 and T2 are the spin–lattice and spin–spin relaxation
times, respectively. It can be seen from expression (4)
that, at exact resonance, the transient nutation of the
bare spin system has the frequency ω1 = γB1. It follows
from relationship (3) that, for zero detuning (δ = 0)
under the condition of nutation resonance (the fre-
quency of the additional field B2 is equal to the fre-
quency of nutation of the bare system, i.e., ωrf = ω1), the
nutation of the dressed system should have the fre-
quency ω2 = γB2.

Despite the similarity of the  and H1 Hamilto-
nians, the transitions between the states of the dressed
and bare spin systems occur under different physical
conditions, in particular, due to a substantial difference
in the static and alternating magnetic fields (as a rule,
B1 ! B0). This leads to a difference in the interaction of
the spins systems with the environment and brings
about a change in the relaxation processes. On the other
hand, in the case of transitions between the states of the
dressed system, there can readily arise a situation
where B2 ~ B1. As a result, the rotary-wave approxima-
tion becomes invalid and the effect of the second circu-
larly polarized component of the electromagnetic field
B2 must be taken into account. It is known that, upon
transitions between the states of a bare spin system, the
oppositely rotating component of the electromagnetic
field leads both to a shift in the resonant frequency of
one-photon transitions with respect to the frequency ω0
(the Bloch–Siegert shift) and to multiphoton transitions
at frequencies ω0/(2n + 1) [8]. A similar effect of the
oppositely rotating component should be expected
upon transitions between the states of the dressed spin
system, which, in turn, initiate nutation.

3. EXPERIMENTAL TECHNIQUE

The pulse sequence used to observe the transient
nutations of bare and dressed spin states in electron
paramagnetic resonance is shown in Fig. 1.
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The nutations of bare spin states were induced by
continuous microwave radiation (Fig. 1a) and a longi-
tudinal magnetic-field pulse (Fig. 1b) [9, 10]. Initially,
the spin system was exposed to an off-resonant static
magnetic field B = B0 – ∆B and a perpendicular micro-
wave field γB1 > 1/T2, 1/T1) for a time long enough for
a stationary state of the system to be reached. In this
case, no absorption of microwave radiation occurred.
Then, the magnetic field amplitude was jumpwise
changed to the resonant value B0. The time required to
attain the resonance conditions was chosen shorter than
the spin–spin relaxation time T2, and the rate of change
in the magnetic field amplitude satisfied the inequality

|dB/dt | > . The magnetic-field pulse (Fig. 1b) was
applied at the instant of time t = 0. With a jump in the
magnetic field ∆B = |B – B0 | due to the Zeeman effect,

the frequency  of the quantum transition in the spin
system at the instant t = 0 changed to ω0 and became
equal to the frequency ω of the microwave field
(Fig. 1a). Under these conditions, the magnetic-field
pulse was attended by a resonant interaction of the
microwave field with the spin system, which, in turn,
induced transient nutation.

The nutation of dressed spin states was generated by
a pulse of a linearly polarized rf field aligned with the
field B0. This pulse had an amplitude 2B2 and was
applied simultaneously with the magnetic-field pulse
∆B (Fig. 1c). As was already noted, the effect of the
additional alternating magnetic field (with an amplitude
B2 of the circularly polarized component and a fre-
quency ωrf) applied along the field B0 on the dressed
spin states is similar to that of the microwave field on
the bare system. As a result, a resonance is observed for
the dressed spin states at ωrf = ω1. Upon pulsed excita-
tion of these states at resonance, there arises a transient
nutation with frequency ω2 = γB2. Technically, both
magnetic-field pulses were produced by passing the
electric current through the same modulation unit. The
measurement of the current made it possible to cali-
brate the amplitude B2 of the rf field in the region of the
sample against the known amplitude ∆B of the mag-
netic-field pulse. The amplitude ∆B was determined
from the beat frequency (equal to ∆B/γ) of the free-
induction signal observed after the termination of the
magnetic-field pulse [11].

The above technique was used to generate nutation
signals on a modified pulsed EPR spectrometer operat-
ing in the X band (ω/2π = 10.1 GHz) [11]. The maxi-
mum amplitude B1 of the magnetic field in an H102-type
rectangular cavity with the sample was approximately
equal to 0.054 mT and provided the generation of nuta-
tion signals at a frequency up to ω1/2π = 1.5 MHz for
two-level systems with spin S = 1/2. Multichannel dig-
ital summation of the signals was used in order to
improve the signal-to-noise ratio. The phase of the rf

γB1
2

ω0'
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field was not locked to the onset of the magnetic-field
pulse or, hence, to the nutation of the bare spin system.

Owing to the narrow EPR line and long relaxation
times,  centers in quartz crystals are convenient
objects for investigating nutation [5, 10, 11]. The
ground state of  centers is represented by a Kramers
doublet with spin S = 1/2 and a weak anisotropy of the
spectroscopic splitting factor (∆g = 9 × 10–4). When the
magnetic field is parallel to the optic axis of the crystal,
the EPR spectrum of these centers in the X band con-
sists of a single line with the width ∆Bpp = 0.016 mT

and g = 2.0008. The relaxation times for  centers are
relatively long even at room temperature: T1 ≈ 0.2 ms
[12, 13] and T2 is determined by the dipole–dipole
interaction [12] and is approximately equal to 12 µs
when the concentration of  centers is 1017 cm–3.

The  centers were generated under exposure of a
quartz single crystal (1.5 × 1.5 × 2 mm) to reactor neu-
trons at a neutron fluence of approximately 1018 cm–2.
The concentration of  centers was estimated by com-
paring their stationary spectra with the spectra of a ref-
erence sample and amounted to approximately (3 ± 0.8) ×
1017 cm–3.

4. RESULTS AND DISCUSSION

The measurements were performed at room temper-
ature in a resonant static magnetic field in the course of
the pulse. These conditions ensured the strongest
absorption signal of nutations of the bare spin system at
the frequency ω1 = γB1. The static magnetic field was
aligned parallel to the optic axis of the crystal. The
duration of magnetic-field pulses t1 was equal to 10 µs,
the magnetic-field pulse amplitude ∆B amounted to
0.12 mT, and the pulse repetition period was 1.25 ms.

Figure 2 depicts the nutation signals of  centers in
the quartz crystal at different amplitudes B2 of the reso-
nant rf field (ωrf = ω1). It can be seen from oscillogram
a in Fig. 2 that, under resonant excitation (ω = ω0) by
the field B1 in the absence of the field B2, the nutation of
the bare spin system in accordance with relationship (4)
is observed at the frequency ω1/2πi = 1.34 MHz. At the
same time, the interaction with the resonant rf field B2
leads to modulation of the nutation signal of the bare
spin system (oscillograms b–d in Fig. 2). Note that the
frequency of this modulation increases proportionally
to the amplitude B2, as could be expected from expres-
sion (3) for the transient nutation of the dressed spin
states.

The nutation EPR signals of  centers at nutation
resonance (ωrf = ω1) for the same rf field amplitude B2
and different amplitudes B1 of the microwave field
(and, correspondingly, different frequencies ωrf of the rf
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field) are shown in Fig. 3. These signals indicate that
the modulation frequency (nutation frequency of the
dressed spin states) remains constant with a change in
the frequency of the nutation resonance.

In the case of nutation of the dressed spin states
under conditions of resonant excitation (ωrf = ω1), the
observed signal can be described in the rotary-wave
approximation by the relationship

(5)

where ω2 = γB2 is the nutation frequency of the dressed
spin states at ωrf = ω1 and Tmp is the relaxation time
characterizing the decay of nutation of the dressed spin
states.

The possibility of calibrating the amplitude B2 in our
experiments provides a means for quantitative analysis
of the nutation frequency ω2 as a function of the ampli-
tude B2 (Fig. 4). It can be seen from Fig. 4 that the
obtained dependence is in good agreement with the the-
oretically predicted linear dependence of the nutation
frequency of the dressed spin states ω2 = γB2.

The interaction of the dressed spin states with the
environment is accompanied by relaxation processes
and the decay of nutations with frequency ω2. In this
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Fig. 2. Nutation EPR signals of  centers in a quartz crys-
tal at different amplitudes B2 of the resonant rf field (ωrf =
ω1 = 2π × 1.34 MHz). B2 = (a) 0, (b) 2.8, (c) 5.6, and
(d) 11.2 µT.
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P

case, the microwave field B1 plays the role of a static
magnetic field B0 in the relaxation of the bare spin
states. This relaxation brings about the decay of nuta-
tions with frequency ω1 and is characterized by the
relaxation times T1 and T2. Since B1 ! B0, the relaxation
of the dressed spin states at resonance ωrf = ω1 can
exhibit specific behavior. A comparison of the decay
rates of the nutations depicted in Fig. 2 shows that the
interaction of the dressed spin states with the environ-
ment (oscillograms b–d) is considerably weaker than
the interaction of the bare spin states (oscillogram a).
According to the estimates made from relationships (4)
and (5), we have T2 = 3.6 ± 0.4 µs and Tmp = 16 ± 2 µs.

On the other hand, the relaxation time T2 for  cen-
ters in the case of the dipole–dipole interaction and a
random arrangement of these centers in the lattice can
be represented in the form [12]

. (6)

The relaxation time T2 determined from this formula at

a concentration of  centers C = 3 × 1017 cm–3 for the
studied sample is equal to 4.1 µs. It can be seen that the
relaxation time T2 estimated from the nutation decay is

E1'

T2
9 3

4π2γ2
"C

---------------------- 1

8.1 10
13–

C×
------------------------------= =

E1'

a

b

c

1

0

–1

0 2 4 6 8 10
t, µs

E
PR

 a
bs

or
pt

io
n,

 a
rb

. u
ni

ts

–2

–3

Fig. 3. Nutation EPR signals of  centers at a constant
amplitude of the rf field B2 = 8.0 µT and different frequen-
cies (ωrf = ω1) of nutation resonance: (a) 0.52, (b) 0.97, and
(c) 1.34 MHz.
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Fig. 4. Dependence of the nutation frequency of the dressed
spin states under resonant excitation (ωrf = ω1) on the
amplitude B2 of the rf field.
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and (3) 1.34 MHz.
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close to the relaxation time T2 determined from the con-

centration of  centers. This indicates that the inho-
mogeneity of the field B1 has a weak effect in our exper-
iments.

The relaxation time Tmp agrees both with the esti-
mate (Tmp > 10 µs) obtained in [5] from data on the
decay of the spin echo signal of the dressed spin states
and with the measured time T1p = 14 µs. As a result, we
have Tmρ ≈ T1ρ, where T1ρ is the spin–lattice relaxation
time in the rotating coordinate system. Moreover,
although the phase memory time for  centers in the
sample studied in [5] is longer than that in our sample
by a factor of 1.8, the decay time of nutations of the
dressed spin states in our case turned out to be signifi-
cantly (by a factor of 16) longer than that obtained in
[5]. This difference can be associated with the inhomo-
geneities of exciting fields, which more clearly mani-
fest themselves due to the stronger fields used in [5].

The spectrum of the dressed spin states can be
obtained by measuring both the frequency of the rf field
ωrf (when the other parameters of excitation of the spin
system are fixed) and the change in the nutation ampli-
tude due to the difference between the decay rates of
nutations of the bare and dressed spin states. It is seen
from Fig. 2 that, at t > 5 µs, the nutation amplitudes of
the bare spin system differ significantly from those of
the dressed spin system. This difference (A) was used to
construct the spectrum of the dressed spin states
(Fig. 5). The exciting rf field was taken to be substan-
tially weaker than the microwave field in order to avoid
a noticeable Bloch–Siegert shift for the resonance line
of the dressed spin states. It can be seen from Fig. 5
that, according to expression (3), the maximum of the
nutation signal from the dressed spin system is
observed when the frequency of the rf field coincides
with the frequency ω1. The amplitude of the rf field
(B2 = 2.8 µT) was also considerably less than the width

of the EPR line of  centers (the peak-to-peak deriva-
tive width ∆Bpp = 16 µT). In this case, the spectrum of
the dressed spin states can be similar to a usual EPR
spectrum. Indeed, the width of the resonance line of the
dressed spin states at half-maximum is determined to
be ∆B1/2 = 11 µT.

5. CONCLUSIONS

Thus, it was demonstrated that the nutation of
dressed spin states of  centers in quartz crystals can
be directly measured in electron paramagnetic reso-
nance. The nutation was observed upon exposure to
continuous microwave radiation and polarizing mag-
netic-field pulses with amplitudes modulated by an rf
field. Since the decay time of this nutation is close to
the spin–lattice relaxation time T1ρ in the rotating coor-
dinate system and this time in solids, as a rule, is longer
than the decay time of nutation of bare spin states

E1'

E1'

E1'

E1'
4
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(which is associated with the spin–spin relaxation time
T2), the use of dressed spin states provides information
that cannot be obtained for dynamic processes from
measurements of the relaxation times T1 and T2. More-
over, pulsed experiments with dressed spin states and,
in particular, two-dimensional correlation experiments
make it possible to extend the capabilities of nutation
EPR spectroscopy as an efficient tool for studying com-
plex multilevel systems with overlapping spectra [5].
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Abstract—The velocities of bulk acoustic waves and the acoustooptical Q factors M2 are measured. The results
of these measurements are used for calculating the photoelastic coefficients of a lead tetraborate single crystal.
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1. INTRODUCTION

Although single crystals of lead tetraborate PbB4O7
have long been known [1], these materials hold consid-
erable promise for acoustical and acoustooptical appli-
cations. Owing to their point symmetry (mm2), PbB4O7
single crystals can also be used as pyroelectric or piezo-
electric materials. To date, the structure, nonlinear opti-
cal and electrooptical properties [1–3], and other
macro- and microscopic characteristics of lead tetrabo-
rate have been investigated. The dependence of the
velocity of sound in lead tetraborate crystals on the
ratio of the melting temperature to the average atomic
weight for oxides, which was reconstructed from the
values of the microhardness, deviates from the well-
known (“linear”) dependence of the velocity of elastic
waves [4]. Moreover, this compound is transparent in
the ultraviolet range (up to 250 nm) [2], which is not
typical of lead compounds. The above properties of
PbB4O7 single crystals and prospects for their practical
application call for more comprehensive study of the
acoustic and acoustooptical properties of this material.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The initial batch used for growing lead tetraborate
crystals was prepared from basic lead carbonate
(reagent grade) and boric acid (special-purity grade)
according to the reaction

Pb(OH)2 · 2PbCO3 + 12H3BO3

= 3PbB4O7 + 2CO2↑  + 19H2O↑ .

Single crystals of lead tetraborate were grown by the
Czochralski technique along the b axis at a rate of
2 mm/day. The crystals grown had a length of 20 mm
and a diameter of 20 mm. These crystals were used to
1063-7834/04/4609- $26.00 © 1637
obtain the oriented samples. Crystallographic setting of
the samples was carried out according to the technique
described in [2] (space group Pnm21). The single crys-
tals of lead tetraborate are transparent in the ultraviolet
range up to 250 nm. The unit cell parameters of lead tet-
raborate single crystals are as follows: a = 4.4547(7) Å,
b = 10.839(2) Å, c = 4.2437(8) Å, and ρ = 5.852 g/cm3

[2]. The samples prepared are characterized by a high
degree of homogeneity.

The velocities of bulk acoustic waves in the single-
crystal samples were measured by a pulsed ultrasonic
method at a frequency of 30 MHz in the crystallo-
graphic directions [100], [010], and [001].

The acoustooptical measurements were performed
using the extended Dixon–Cohen method (Bragg dif-
fraction of light by an ultrasonic wave). The measure-
ment accuracy was no less than 10%. The experimental
setup was described earlier in [5]. The measurements
were carried out at an ultrasonic frequency of 105 MHz
for longitudinal acoustic waves with the use of emis-
sions from a helium–neon laser (λ = 632.8 nm). Fused
silica was used as a reference substance.

The measured velocities of propagation of bulk
acoustic waves in lead tetraborate single crystals are
presented in Table 1. The acoustooptical Q factors M2
and the photoelastic constants Pλµ, which were calcu-
lated from the M2 values and the velocities of bulk
acoustic waves, are given in Table 2.

3. RESULTS

The measured velocities of bulk acoustic waves (the
highest velocity VL[001] ~ 8 km/s) are in excellent
agreement with the predicted high values. It was found
that the material under investigation is characterized by
very small values of the acoustooptical Q factors (max-
2004 MAIK “Nauka/Interperiodica”
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Table 1.  Velocities of propagation of bulk acoustic waves in
the PbB4O7 single crystal

No. N U Mode V, m/s

1 [100] [100] L 7637.6 ± 0.5

2 [010] S 4684.5 ± 0.5

3 [001] S 4442.6 ± 0.5

4 [010] [010] L 7070.0 ± 0.5

5 [100] S 4684.3 ± 0.5

6 [001] S 4807.5 ± 0.5

7 [001] [001] L 7897.9 ± 0.5

8 [100] S 4421.9 ± 0.5

9 [010] S 4776.9 ± 0.5

Note: N is the direction of propagation of bulk acoustic waves, and
U is the direction of oscillations in bulk acoustic waves.

Table 2.  Acoustooptical and photoelastic characteristics of
the PbB4O7 single crystal

Direction
of propagation
of the longitu-
dinal acoustic 

wave

Velocity
V, m/s

Direction 
of light 

polariza-
tion

n
M2,

10–18

s3/g
Pλµ

[100] 7637.6 [100] 1.9325 0.03 0.0387

[010] 7070.0 [100] 1.9325 0.29 0.1073

[001] 7897.9 [100] 1.9325 0.24 0.1152

[100] 7637.6 [010] 1.9183 0.15 0.0885

[010] 7070.0 [010] 1.9183 0.07 0.0177

[100] 7637.6 [001] 1.9269 0.23 0.1082

[010] 7070.0 [001] 1.9269 0.66 0.1632

[001] 7897.9 [001] 1.9269 0.04 0.0474

Note: n is the refractive index for the specified direction of light
polarization.
PH
imum value M2 = 0.66 × 10–18 s3/g) and photoelastic
constants. This makes lead tetraborate crystals unsuit-
able for use in acoustooptical devices.

Such unusual acoustical and acoustooptical charac-
teristics of lead tetraborate single crystals can be
explained by the high density, which is unique for
borates, and the character of packing of this structural
type [6].
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lated within the shell model in the pair potential approximation. The local compressibility of the cationic and
anionic sublattices of the host lattice is determined in the vicinity of the Gd3+ (Eu2+) impurity ion. © 2004 MAIK
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1. INTRODUCTION

Fluorite crystals doped with rare-earth ions are
widely used as detectors of ionizing radiation and scin-
tillators [1, 2]. Upon doping of a fluorite crystal, a rare-
earth ion substitutes for an Me2+ cation in the crystal lat-
tice. In the case of heterovalent substitution, charge
compensation can occur either locally or nonlocally
with the formation of impurity centers of different sym-
metry. The energy spectrum of an impurity center is
governed by the interaction of 4f, 5s, and 5p electrons
of the rare-earth ion with the nearest neighbor ions in
the crystal lattice. The sensitivity of transitions between
sublevels of the 4f n configuration to a local environ-
ment of the rare-earth ion makes it possible to use rare-
earth ions as a probe in studying local distortions of the
host lattice [3]. In this respect, investigating the local
structure of impurity centers is of considerable interest.

Experimental ENDOR and EPR studies of Gd3+ and
Eu2+ impurity centers in cadmium fluoride CdF2 [4, 5]
have demonstrated that these centers have cubic sym-
metry (Fig. 1). Moreover, the ENDOR and EPR exper-
iments revealed the location of the second, third, and
fourth anionic coordination shells in the vicinity of the
impurity ion. However, the positions of F– ligands sur-
rounding the impurity ion and the positions of ions with
zero nuclear spin (Cd2+ cations) cannot be determined
to sufficient accuracy by the ENDOR and EPR tech-
niques. Since other methods have also not provided
reliable information on the local structure of Gd3+ and
Eu2+ impurity centers in cadmium fluoride, it is expedi-
ent to investigate the local crystal structure of these cen-
ters in the framework of the shell model.

2. MODEL CALCULATION OF THE ENERGY
OF A CRYSTAL

The equilibrium positions of ions in a crystal can be
determined by minimizing the energy of the crystal lat-
tice.
1063-7834/04/4609- $26.00 © 21639
Within the shell model in the pair potential approx-
imation, the lattice energy can be represented in the
form

(1)

where  is the energy of the core–shell interaction
for the ith ion, di is the displacement of the shell with
respect to the core, and Vik is the energy of the interac-

U lat
1
2
--- Vik

k ≠i( )
∑

i

∑ 1
2
--- kidi

2
,

i

∑+=

kidi
2

c4

F–

Me2+

Impurity ion

Fig. 1. Local structure of a Gd3+ (Eu2+) cubic impurity cen-
ter in the CdF2 crystal.
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tion between the ith and kth ions. This energy can be
written in the form

(2)

Here, Xi and Yi are the charges of the core and the shell
of the ith ion, respectively; ri is the vector specifying
the position of the core of the ith ion; the function

(3)

characterizes the short-range screening of the electro-
static interaction of the ion cores; and the function

(4)

describes the short-range repulsion between the ion
shells in the form of the Born–Mayer potential and the
van der Waals interaction. In this work, we used the fol-
lowing charges of the ion cores: XF = +5, XCd = +8,
XEu = +10, and XGd = +11. The charges of the ion shells
were calculated from the condition Zi = Xi + Yi, where
Zi is the charge of the ion in the compound under inves-
tigation. The energy of the Coulomb interaction of ions
[the first four terms in relationship (2)] was calculated
using the Ewald method. The short-range interaction of
metal ions with each other was ignored, because these
ions are separated by a large distance. The parameters
of the F––F– interaction were calculated within the ab
initio Hartree–Fock approach and the configuration
interaction method [6]. When calculating the Me2+–F–

short-range interaction, the contribution of the van der
Waals interaction was disregarded and the parameters
of the Cd2+–F– electrostatic screening were determined
by numerical integration of the interaction between the
electron densities of free ions; in these calculations, the
charge distribution was specified by the wave functions
[7, 8]. The parameters of the Cd2+–F– short-range inter-
action and the parameter ki of the core–shell interaction
for the Cd2+ ion were determined from the best fit of the
calculated characteristics of the CdF2 crystal to the
available experimental data, such as the lattice constant
[9]; the permittivities ε0 and ε∞ [10]; the elastic con-

Vik

XiXk

ri rk–
-----------------

YiXk

ri rk– di+
----------------------------

XiYk

ri rk– dk–
----------------------------+ +=

+
YiYk

ri rk– di dk–+
--------------------------------------- f ik ri rk–( )+

+ gik ri rk– di dk–+( ).

f ik r( ) Aik Bikr–( )/rexp–=

gik r( ) Cik Dikr–( )exp λ ik/r
6
 –=

Table 1.  Parameters of the pair interactions between ions (in au)

Ions Aij Bij Cij Dij λij

F––F– 36.456 1.3778 157.083 1.8927 69.5469

Cd2+–F– 68.207 1.5453 268.940 2.0342 0.0

Cd3+–F– 0.0 0.0 267.283 2.058 0.0

Eu2+–F– 0.0 0.0 268.291 1.921 0.0

Note: KCd = 8.2402 and KF = 4.1797.
PH
stants C11, C12, and C44 [9]; and the frequencies of fun-
damental vibrations ωTO [10] and ωR [11]. Therefore,
three empirical parameters were determined with the
use of eight experimental quantities.

Upon incorporation of an impurity ion, the crystal
lattice is polarized in the vicinity of this ion. Within the
shell model, the polarization is taken into account
through the displacement of the ion shells with respect
to the ion cores. In a cubic impurity center, the displace-
ments of the shells of the ions belonging to the host lat-
tice are symmetry-allowed, whereas the displacement
of the shell of the impurity ion is forbidden. The Gd3+–
F– and Eu2+–F– short-range interactions were calculated
without regard for the short-range screening. In this
case, the parameters C and D of the short-range repul-
sion were determined from the best fit of the calculated
data to the radial displacements of the second, third,
fourth, and fifth anion orbits, which were determined in
the cubic centers of these rare-earth ions in MeF2 (Me =
Ca, Sr, Ba) compounds from the ENDOR experiments
[12, 13].

The parameters of the pair interactions used in our
calculations are presented in Table 1. For the given
accuracy in determining the parameters of the pair
interactions, the interionic distances within the shell
model can be calculated accurate to 0.01 au.

The local crystal structure of an impurity center was
calculated using the embedded-cluster method.
According to this method, the crystal is divided into
two regions, namely, a defect region and the rest of the
host crystal. The defect region contains an impurity ion
and nearest neighbor ions belonging to the host lattice
that can relax within a specified symmetry. The ions of
the rest of the crystal are assumed to be fixed. The size
of the defect region is chosen so that a further increase
in the size of this region will not result in substantial
changes in the ion positions in the nearest environment
of the impurity ion. In our calculations, the defect
region involved ten coordination shells around the
impurity ion. The energy of the crystal lattice of the
doped crystal was calculated by the same methods and
under the same assumptions as those used for a pure
crystal [see relationships (1)–(4)]. The lattice constant
of the CdF2 crystal, which was necessary for calculat-
ing the local crystal structure of the impurity center,
was preliminarily determined in the framework of the
same model (acalcd = 554.7 pm, aexp = 535.6 pm [9]).

3. LOCAL DISTORTIONS OF THE CRYSTAL 
LATTICE IN THE VICINITY OF IMPURITY IONS

The results of calculating the local structure of the
CdF2 : Gd3+ and CdF2 : Eu2+ crystals are presented in
Tables 2 and 3. In this work, we used the notion of an
orbit, which, according to [14], is taken to mean a group
of ions capable of transforming into each other through
any symmetry operation of the point group of a doped
crystal. In cubic impurity centers, each coordination
YSICS OF THE SOLID STATE      Vol. 46      No. 9      2004
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shell is considered an orbit. The sole exception is the
seventh coordination shell, which involves two orbits.
The radial displacements of ions in the vicinity of the
Gd3+ and Eu2+ impurity centers in the CdF2 crystal
(Table 2) are expressed in terms of fractions of the lat-
tice constant (calculated or determined in the experi-
ment). The results of calculating the radial displace-
ments agree well with the experimental data. It should
be noted that the calculated radial displacements of the
second anionic shell coincide, to within the limits of
error, with the experimental data for both CdF2 : Gd3+

and CdF2 : Eu2+ crystals. The coincidence of the radial
displacements for the second anionic shell is particu-
larly important because, in this case, the radial dis-
placement can be determined in the experiment to the
highest accuracy. The error in the experimental deter-
mination of the radial displacements of more distant
anionic shells increases severalfold and even exceeds
the displacements themselves in the CdF2 : Eu2+ crystal
(Table 2). For this reason, the experimental data should
be used with care.

The calculations demonstrated that the distance
between the Gd3+ impurity ion and the F– ligand in the
CdF2 : Gd3+ crystal is 3.4 pm shorter than the Me2+–F–

distance in the pure lattice, whereas the distance
between the Eu2+ impurity ion and the F– ligand in the
CdF2 : Eu2+ crystal is 20.6 pm longer than the Me2+–F–

distance in the pure lattice. Our results for the CdF2 : Eu2+

crystal are in agreement with the empirical calculations
performed by Baker [15], according to which the dis-
tance between the Eu2+ impurity ion and the F– ligand
is 12.6 pm longer than the corresponding distance in the
pure lattice. As follows from our calculations, the
incorporation of the Eu2+ impurity ion brings about a
considerable expansion of the crystal lattice. However,
the lattice distortions rapidly decay and, already in the
fourth coordination shell, decrease by one order of
magnitude. This behavior of the lattice distortions is
consistent with the concept that the lattice ion is isov-
alently replaced by a larger sized impurity ion (RCd =
1.10 Å, REu = 1.25 Å [16]). The lattice distortions in the
vicinity of the Gd3+ impurity ion exhibit an oscillatory
behavior and decrease more slowly than those in the
vicinity of the Eu2+ impurity ion. This can be explained
by the fact that the excess charge of the impurity ion
affects the cationic and anionic coordination shells in
different ways. The calculated angular coordinates of
the lattice ions in the vicinity of the Gd3+ and Eu2+

impurity ions in the CdF2 crystal are listed in Table 3.
The angular displacements decrease drastically. In par-
ticular, the angular displacements in the fifth and sixth
coordination shells are one order of magnitude smaller
than those in the third coordination shell and are almost
completely absent in the seventh coordination shell. In
the CdF2 crystal, the angular coordinates decrease in
the vicinity of the Eu2+ impurity center and increase in
PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      200
the vicinity of the Gd3+ center (except for the sixth
coordination shell formed by cations).

4. LOCAL COMPRESSIBILITY OF THE CRYSTAL 
LATTICE IN THE VICINITY OF IMPURITY IONS

Studying the local elastic properties of a crystal lat-
tice in the vicinity of an impurity ion is of particular
interest, because information on the local compressibil-

Table 2.  Radial displacements of ions in the vicinity of the
Gd3+ and Eu2+ impurity centers in the CdF2 crystal (in frac-
tions of the lattice constant calculated or determined in the
experiment)

Orbit number (ion type) CdF2 : Gd3+ CdF2 : Eu2+

1 Calculation 0.0062 –0.040

(F) Experiment – –

2 Calculation –0.0097 –0.013

(Cd) Experiment – –

3 Calculation 0.0034 –0.0061

(F) Experiment 0.0032(7) –0.0067(20)

4 Calculation –0.00096 –0.0040

(Cd) Experiment – –

5 Calculation –0.0011 –0.0038

(F) Experiment 0.0028(20) –0.0017(50)

6 Calculation –0.0026 –0.0015

(Cd) Experiment – –

7 Calculation 0.0012 0.00049

(F) Experiment 0.00085(39) –0.0020(102)

8 Calculation 0.0018 –0.0035

(F) Experiment

9 Calculation –0.0032 –0.0022

(Cd) Experiment –

Note: Numbers in parentheses denote the error in units of the last
decimal place. The positive sign corresponds to a displace-
ment toward the impurity ion (lattice contraction). The
experimental data for the CdF2 : Gd3+ and CdF2 : Eu2+ crys-
tals are taken from [5] and [4], respectively.

Table 3.  Changes in the angular coordinates of ions (in
degrees) in the vicinity of the Gd3+ and Eu2+ impurity centers
in the CdF2 crystal (the positive sign corresponds to an
increase in the angle)

Pure crystal

Orbit number

3 5 6 8

25.24 76.74 35.26 15.79

CdF2 : Gd3+ 
(calculation)

0.20 0.01 –0.02 0.00

CdF2 : Eu2+ 
(calculation)

–0.22 –0.02 –0.06 0.00
4
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ity of the studied crystal can be used to interpret the
results of piezospectroscopic experiments and to deter-
mine the distance between an impurity ion and the F–

ligand from the experimental dependence db4/dP of the
crystal field parameter b4 on the external hydrostatic
pressure [15].

For cubic symmetry, the local compressibility of the
crystal can be determined as follows. All ions of a par-
ticular orbit are arranged on the same spherical surface.
Under compression of the crystal, the volume of the
sphere decreases. In this case, we deal with a decrease
in the volume of this sphere under pressure and intro-
duce the local compressibility for the given orbit:

(5)

where Vi is the volume of the sphere and P is the pres-

sure. Since Vi ~  (where ri is the distance to the ions
of the orbit), we have

(6)
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Fig. 2. Volume compressibilities of the orbits in the vicinity
of the Gd3+ and Eu2+ impurity ions in the CdF2 crystal.
Closed and open circles correspond to the orbits of anions
and cations, respectively. The compressibilities are given in
fractions of the volume compressibility of a pure CdF2
crystal.
P

By calculating the distortions of the crystal lattice in the
vicinity of an impurity ion under hydrostatic pressure,
we can determine the local compressibility ki for each
orbit. The effect of pressure on the doped crystal was
taken into account through the lattice constant calcu-
lated for the pure crystal as a function of the hydrostatic
pressure. The dependence of the lattice constant on the
external hydrostatic pressure was obtained by minimiz-
ing the Gibbs thermodynamic potential at zero temper-
ature:

(7)

where E is the static energy (1) of the crystal, P is the
hydrostatic pressure, and V is the volume of the crystal.

The local distortions of the crystal structure of the
Eu2+ and Gd3+ impurity centers were calculated at
external hydrostatic pressures of 1, 2, and 3 GPa. The
local compressibility ki was determined for each orbit.
It was found that the local compressibilities calculated
at different pressures differ insignificantly. The mean
local compressibilities expressed in fractions of the vol-
ume compressibility of the pure CdF2 crystal are pre-
sented in Fig. 2. According to our calculations, the local
compressibility of the anionic sublattice considerably
decreases (by more than 30%) in the vicinity of the
Gd3+ impurity ion, whereas the local compressibility of
the cationic sublattice remains approximately equal to
that of the pure crystal (its value increases by no more
than 2%). The results obtained suggest a higher mobil-
ity of the anionic sublattice. This type of behavior is
characteristic of fluorites. In the vicinity of the Eu2+

impurity ion, the local compressibility of the anionic
sublattice also decreases, whereas the local compress-
ibility of the cationic sublattice increases; however,
these changes are close in magnitude and do not exceed
5–6%. Therefore, we can conclude that the incorpora-
tion of an Eu2+ impurity ion into a CdF2 crystal only
slightly affects the local compressibility of the crystal
lattice.

The results of our calculations indicate that, upon
incorporation of an impurity ion into the host lattice,
the nearest environment of the Eu2+ impurity ion (8 F–

ions) expands, whereas the nearest environment of the
Gd3+ impurity ion undergoes contraction (Table 2). In
order to elucidate how the excess charge affects the lat-
tice distortions, we calculated the local distortions in
the vicinity of the gadolinium impurity ion for the same
potentials of the short-range interaction but with an ion
charge of +2 instead of +3. These calculations demon-
strated that the short-range interaction of gadolinium
impurity ions, like the short-range interaction of
europium impurity ions, brings about an expansion of
the crystal lattice. This result is consistent with the fact
that Eu2+ and Gd3+ ions have the same electron config-
uration. The excess positive charge induces an addi-
tional Coulomb interaction, which, in turn, affects the
orbits of cations and anions in different ways. Accord-
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ing to the calculation, this leads to a contraction of the
nearest environment of the Gd3+ impurity ion.

Moreover, we calculated the energy of the crystal
lattice under compression and extension of the nearest
environment of the Cd2+ cation, which is replaced by a
rare-earth ion in the doped crystal. It was found that the
increase in the energy of the crystal lattice under com-
pression of the nearest environment of the Cd2+ cation
is greater than the increase in the lattice energy under
extension. This is in agreement with the fact that the
decrease in the local compressibility of the anionic sub-
lattice in the vicinity of the gadolinium impurity ion,
whose incorporation into the host lattice is attended by
a contraction of its own nearest environment, substan-
tially exceeds the decrease in the local compressibility
of the anionic sublattice in the vicinity of the europium
impurity ion; consequently, the crystal lattice under-
goes expansion in the region of the nearest environment
of the europium ion (Fig. 2).

5. CONCLUSIONS
Thus, the shell model used in our calculations ade-

quately describes the local structure of Gd3+ and Eu2+

impurity centers in a CdF2 crystal. The local compress-
ibility of the crystal lattice of cadmium fluoride was
calculated in the vicinity of the Gd3+ and Eu2+ impurity
ions. This calculation predicted an insignificant change
in the compressibility of the cationic and anionic sub-
lattices upon isovalent substitution of an Eu2+ impurity
ion for a lattice cation and a considerable decrease in
the compressibility of the anionic sublattice in the
vicinity of a Gd3+ impurity ion with excess positive
charge. The results obtained can be used in further
investigations of the local dynamics of Gd3+ and Eu2+

impurity ions in cadmium fluoride and in studying exci-
tons localized near the impurity ions.
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Abstract—The generation of prismatic dislocation loops in strained quantum dots is investigated. The quantum
dots are embedded in a film–substrate heterostructure with mechanical stresses caused by the difference
between the lattice parameters of the film (heterolayer) and the substrate. The intrinsic plastic strain εm of a
quantum dot arises from the misfit between the lattice parameters of the materials of the quantum dot and the
surrounding matrix. The interface between the heterolayer and the substrate is characterized by a misfit param-
eter f. The critical radius of a quantum dot Rc at which the generation of a dislocation loop in the quantum dot
becomes energetically favorable is analyzed as a function of the intrinsic plastic strain εm and the misfit param-
eter f. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of the heterostructures containing
quantum dots and quantum wires is of considerable
interest. Elastic strains of semiconductor heterostruc-
tures substantially affect their electronic and optoelec-
tronic properties [1–3]. The lattice parameters of the
materials of quantum dots and quantum wires, as a rule,
differ from those of the surrounding matrix. Owing to
this circumstance, quantum dots (quantum wires) can
be simulated by inclusions with an intrinsic plastic
strain εm caused by the misfit between the lattice param-
eters. The energy of elastic strains introduced by such
inclusions is proportional to their volume [4] and hypo-
thetically can reach infinitely large values. It is obvious
that there exist mechanisms that provide dissipation of
the elastic energy by these inclusions. Particular inter-
est has been expressed by researchers in the mecha-
nisms associated with the following processes: (i) the
generation of a prismatic misfit dislocation loop at the
interface between an inclusion and the surrounding
matrix [5], as is the case with the generation of disloca-
tions at the interface between the film and the substrate
(see, for example, [6, 7]), and (ii) the ejection of a pris-
matic dislocation loop from an inclusion into the sur-
rounding matrix [8–10]. Since an elastically strained
film in contact with a substrate is a typical heterostruc-
ture, it is necessary to analyze the above mechanisms
providing dissipation of the elastic energy by quantum
dots embedded in the heterostructure.

In this work, we determined the conditions of gen-
eration of prismatic misfit dislocation loops in quantum
dots and analyzed how the lattice misfit between the
1063-7834/04/4609- $26.00 © 21644
film and the substrate affects the dependence of the crit-
ical radius of a quantum dot (at which the generation of
a dislocation loop becomes energetically favorable) on
the intrinsic plastic strain of this inclusion. This study
continues our investigation of the problem concerning
the generation of a misfit dislocation loop at the inter-
face between an inclusion and an unstrained surround-
ing matrix [5].

Among the studies devoted to similar problems with
quantum wires, mention should be made of the works
concerned with the generation of misfit dislocations
aligned parallel to the axis of a quantum wire with a tri-
angular, circular, or rectangular cross section [11–13].
In particular, Gutkin et al. [13] considered the genera-
tion of a rectangular dislocation loop in a quantum wire
near a free surface. Special interest has also been
expressed in the related problems regarding the gener-
ation of misfit dislocations at the interface between a
film and a substrate in spherical [14] and cylindrical
[15] solids. A number of models describing the genera-
tion of misfit dislocations in strained islands located in
a substrate were proposed in [16–18].

2. THEORETICAL ANALYSIS

In our case, a spheroidal inclusion of radius Rsp sim-
ulates a quantum dot embedded in a film–substrate het-
erostructure (Fig. 1). The lattice parameter of the film
afilm differs from the lattice parameter of the substrate
asub. This difference is characterized by the misfit
parameter f = (asub – afilm)/afilm and gives rise to mechan-
ical stresses in the heterostructure. Under the assump-
004 MAIK “Nauka/Interperiodica”
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tion that the substrate is semi-infinite and the film has a
finite thickness t, the stresses are constant and arise
only in the film:

(1)

We consider the generation of a prismatic misfit dis-
location loop in an inclusion located well away from a
free surface. This assumption substantially simplifies
the calculation and analysis of the influence of the
strained film on the generation of a prismatic disloca-
tion loop at the interface between the inclusion and the
surrounding matrix. The free surface has a profound
effect on both the elastic fields and the energies of the
inclusion and dislocation loop and, consequently, on
the relaxation processes occurring in the inclusion, pro-
vided this defect is located in the surface layer with a
thickness of the order of the defect radius. This influ-
ence of the free surface will be taken into account in a
more detailed analysis.

For a spheroidal inclusion, the plastic distortion 
caused by the misfit between the lattice parameters of
the materials of the spheroid asp and the film afilm can be
represented by the relationship

(2)

where εm = (asp – afilm)/afilm and δ(Ωsp) is the Dirac delta
function for a region Ωsp occupied by the spheroid. The
Dirac delta function is defined by the following expres-
sion:

The sign of the parameter εm corresponds to the
character of dilatation: εm > 0 for expansion and εm < 0
for compression.

The stresses ∞σij inside a spherical inclusion located
in an infinite medium have the form [4]

(3)

where G is the shear modulus and ν is the Poisson ratio.

The condition of generating a dislocation loop at the
surface of the inclusion can be represented by the ine-
quality

(4)

where Eloop is the elastic energy of the prismatic dislo-
cation loop, Wsp–loop is the energy of the elastic interac-
tion between the spheroid and the dislocation loop, and
Wloop–film is the energy of the elastic interaction between
the dislocation loop and the field of stresses in the film.
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misf 2G 1 ν+( ) f
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δ Ωsp( )
1, r Ωsp∈
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The elastic energy of a circular prismatic dislocation
loop has the form [9]

(5)

Here, b is the magnitude of the Burgers vector of the
dislocation loop, rloop is the radius of the dislocation
loop, and rcore is the radius of the dislocation core. In
relationship (5), the energy of the dislocation core can
be included by putting rcore = b/α (where α is an empir-
ical constant dependent on the material; for example,
for nonmetals, α = 4) [20]:

(6)

The energy of the interaction of the dislocation loop
with the inclusion Wsp–loop and the energy of the interac-
tion of the dislocation loop with the stress field of the
film Wloop–film are determined as the work expended on
generating a dislocation loop in the stress fields of the
inclusion and the film, respectively. Let us now con-
sider a situation where a vacancy prismatic dislocation
loop is generated at the boundary of an inclusion with
an intrinsic plastic strain εm > 0. This generation is ener-
getically favorable [see condition (4)] when the misfit
parameter f takes on negative or small positive values:

(7)
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Fig. 1. Schematic diagram illustrating (a–d) the orientations
and types of a prismatic misfit dislocation loop (MD) in a
quantum dot (QD) embedded in a heterolayer. Designa-
tions: εm is the intrinsic plastic dilatation of the quantum
dot, and f is the misfit parameter of the crystal lattices of the
film and the substrate.
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Here, δ(z – z0) and δ(x – x0) are the Dirac delta func-
tions, H(1 – γ1) and H(1 – γ2) are the Heaviside func-

tions, γ1 = , γ2 =

, and (x0, y0, z0) are the coor-

dinates of the center of the dislocation loop.
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Fig. 2. Dependences of the critical radius of the quantum
dot Rc on the intrinsic plastic dilatation εm at different misfit
parameters f for the Burgers vector of the dislocation loop
b = 0.3 nm, the constant characterizing the contribution
from the energy of the dislocation core α = 4, and the Pois-
son ratio ν = 0.3.
P

It should be noted that the radius of the nucleated
dislocation loop is equal to the radius of the inclusion:
rloop = Rsp. The energy of the interaction between the
dislocation loop and the field of stresses in the film is
analyzed in two cases: (a) the plane of the dislocation
loop is aligned parallel to the plane of the boundary
between the film and the substrate (the interface plane)
[see expression (8)], and (b) the plane of the dislocation
loop is perpendicular to the interface plane [see expres-
sion (9)] (Fig. 1).

From expressions (4) and (6)–(9) and the equality
rloop = Rsp, we obtain the following equation for the crit-
ical radius of the inclusion Rc at which the generation
of a prismatic misfit dislocation loop is energetically
favorable:

(10)

Here, f * = 0 for a dislocation loop plane aligned paral-
lel to the interface plane and f * = f for a dislocation
loop plane oriented perpendicular to the interface
plane. It follows from relationship (10) that the genera-
tion of a misfit dislocation loop perpendicular to the
interface plane is energetically favorable at f < 0. In this
case, the fields of stresses in the film (at f < 0, these
stresses are compressive) are favorable for the forma-
tion of a local inhomogeneity in the form of a misfit dis-
location loop at the boundary of the inclusion (at εm >
0, the stresses inside the inclusion are also compres-
sive). An inclusion located in this film takes a misfit dis-
location loop with smaller radii in comparison with an
inclusion located in the unstrained matrix (f = 0)
(Fig. 2a). It should be noted that, in the framework of
the elastic continuous model, when no stresses are
induced in the film (f = 0), the misfit dislocation loop
involved in an inclusion can be arbitrarily oriented in
space. The situation with a misfit parameter f > 0 is of
particular interest. According to relationship (10), the
only possibility exists of locating a dislocation loop
parallel to the interface plane (f * = 0). However, for
sufficiently large positive stresses in the film, the gener-
ation of an interstitial dislocation loop is energetically
more favorable, because it is this interstitial dislocation
loop that decreases the total elastic energy of the system
[see condition (4)]. In this case, the equation for the
critical radius of the inclusion takes the form

(11)

The criterion for the generation of an interstitial dislo-
cation loop is determined as 3f > 4εm (εm > 0).

3. RESULTS AND DISCUSSION

The above analysis revealed the following variants
of the formation of a misfit dislocation loop in an inclu-
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sion with an intrinsic plastic dilatation εm > 0 in a film
deposited on a substrate.

(1) For a negative parameter of the lattice misfit
between the film and the substrate (f < 0), a vacancy
prismatic dislocation loop is formed in the inclusion in
a plane perpendicular to the interface (Fig. 1a). The
critical radius of the inclusion is determined from con-
dition (10) (Fig. 2a).

(2) For f = 0, a vacancy prismatic dislocation loop is
formed in the inclusion in a plane arbitrarily oriented in
space (Fig. 1b). The critical radius of the inclusion is
also determined from condition (10) (Fig. 2a).

(3) For 0 < f < 4/3εm, a vacancy prismatic dislocation
loop is formed in the inclusion in a plane aligned paral-
lel to the interface (Fig. 1c). The critical radius of the
inclusion is determined from the condition

(12)

The dependence Rc(εm) is depicted by the curve at f = 0
in Fig. 2a.

(4) For f = 4/3εm, there can exist two variants: either
a vacancy prismatic dislocation loop is formed in the
inclusion in a plane parallel to the interface (Fig. 1c), or
an interstitial prismatic dislocation loop is formed in
the inclusion in a plane perpendicular to the interface
(Fig. 1d). The critical radius of the inclusion is deter-
mined from condition (12) (Fig. 2a).
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Fig. 3. Isolines of the critical radius of the inclusion Rc as a
function of the intrinsic plastic dilatation εm and the misfit
parameter f for the Burgers vector of the dislocation loop
b = 0.3 nm, the constant characterizing the contribution
from the energy of the dislocation core α = 4, and the Pois-
son ratio ν = 0.3. Rc, nm: (1) 80, (2) 50, (3) 40, (4) 30,
(5) 20, and (6) 10. Regions a–d correspond to the orienta-
tions of the misfit dislocation loop depicted in Fig. 1.
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(5) For f > 4/3εm, an interstitial prismatic dislocation
loop is formed in the inclusion in a plane perpendicular
to the interface (Fig. 1d). The critical radius of the
inclusion is determined from condition (11) (Fig. 2b).

Figure 3 presents the isolines of the critical radius in
the εm–f coordinates. The regions a–d correspond to the
positions of the misfit dislocation loop in Fig. 1.

The analysis of the generation of a misfit dislocation
loop for inclusions with an intrinsic plastic dilatation
εm < 0 is similar to that presented above and leads to a
mirrored result.

4. CONCLUSIONS

The theoretical analysis performed in this work
allowed us to conclude that the stresses induced in the
film due to the lattice misfit between the film and the
substrate have a noticeable effect not only on the criti-
cal radius of the quantum dot (at which the generation
of a misfit dislocation loop is energetically favorable)
but also on the orientation of the dislocation loop with
respect to the interface and on the dislocation loop type
(a vacancy dislocation loop or an interstitial dislocation
loop).
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Abstract—The effect of humidity and temperature in the range from –13 to + 60°C on the processes of recrys-
tallization and aging is studied upon holding of KCl crystals doped with 0.06 wt % Sr after plastic deformation.
The crystals initially consist of a supersaturated solid solution. The presence of water is found to increase the
rates of nucleation and growth of grains with twinned orientations with respect to the initial single crystal. Upon
aging of these crystals in the presence of water vapor, strontium chloride crystalline-hydrate SrCl2 · 6H2O forms
along the boundaries of recrystallized grains and crack edges. This results not only in a decreased plastic defor-
mation–induced increment in the hardness but also in decomposition of the crystals. It is found that varying the
temperature in the range from –13 to +25°C affects the recrystallization rate and aging processes much more
weakly than does the presence of excess moisture. The most stable structure and properties are observed in the
case where deformed crystals that are held at temperatures from –13 to +25°C remain in a solid-solution state.
The possible long-term conservation of the high hardness of deformed crystals owing to an additional postde-
formation treatment is discussed. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In [1–7], it was found that recrystallization kinetics
and aging processes in alkali halide crystals (AHCs)
doped with salts of bivalent metals depend strongly on
the dopant concentration, doping conditions, deforma-
tion, and high-pressure treatment. The high strength
caused by plastic deformation of strontium-doped KCl
single crystals was shown to be retained for more than
a year; this ability is substantially determined by the
ratio of the aging rate to the grain-boundary migration
rate during recrystallization [4, 7]. It should be noted
that the high strength of AHCs usually deteriorates in
two to three months after plastic deformation.

Apart from grain growth during recrystallization,
which decreases the strength, there are other factors
that hinder the long-term application of AHC materials
in laser optics. One of the most destructive factors is the
hygroscopicity of most AHCs [8].

Moisture adsorption from the environment leads to
an increase in the absorption coefficient (measured at
an IR-laser wavelength λ = 10.6 µm) in the deformed
surface layer of KCl crystals [9] because of the contri-
bution of hydroxyl ions, which are often present in
AHCs in a complex that contains OH– (in the anion lat-
tice position), a cation, and vacancies [10]. Contact
with water can deteriorate not only optical but also
mechanical properties, to the point of decomposition of
1063-7834/04/4609- $26.00 © 21649
the crystals. In this work, we consider how the water of
a gas phase interacts with deformed AHCs and whether
it is possible to avoid its harmful influence on the prop-
erties of these crystals or, at least, to decrease it.

We also study the effect of the temperature of post-
deformation holding on the structure and properties of
deformed crystals. More specifically, we analyze the
effect of varying the holding temperature from +60 to
−13°C on the processes of aging and grain growth and
on the microhardness of strontium-doped KCl crystals.

2. EXPERIMENTAL

We used Czochralski-grown KCl single crystals for
the study. The results of chemical analysis of the sam-
ples are given in [4]; they indicate that the level of each
controlled impurity in them is lower than 10–4 wt %. For
tests, we used 3 × 3 × 8-mm specimens cleaved along
the {100} cleavage planes. Upsetting deformation was
performed on an Instron machine at a rate of
0.1 mm/min to 70% reduction at 250°C; then, the spec-
imens were furnace-cooled to room temperature. Pole
figures (PFs) and diffuse scattering patterns were
recorded by the techniques described in [3, 4]. Pole fig-
ures were recorded according to the Schulz method
with a computer-assisted texture diffractometer at a
maximum tilt angle of 65°. Diffuse scattering patterns
004 MAIK “Nauka/Interperiodica”
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and PFs were recorded under the same conditions, with
the sole exception that, in the former case, the counter
was rotated 1°–2° with respect to the exact position of
the diffraction peak. X-ray diffraction patterns of the
specimens were recorded using the technique designed
for phase analysis of lightly doped single crystals [7].
The main difference between this technique and the
standard one is that the x-ray diffraction patterns are
recorded at different positions of a sample with respect
to the diffraction vector (the sample surface is not nor-
mal to the diffraction vector). Phases were identified
using several lines recorded at different orientations of
the sample, provided that the position of the line devi-
ated from the tabulated position by less than 0.4° and
that the line intensity met the criterion (Imax – Iback) ≥
3(Iback)1/2, where Imax is the line maximum and Iback is
the local background. To hold specimens in vacuum,
they were placed in quartz ampoules and the ampoules
were pumped out with a roughing pump to a pressure of
10–2 mbar and then sealed. To create an atmosphere of
saturated water vapor, specimens were placed in a
tightly sealed vessel near a glass of water at a tempera-
ture of +25°C or in a closed chamber with ice at –13°C.
The fraction of recrystallized grains and their sizes
were measured using standard metallographic tech-
niques [3, 4].

3. RESULTS AND DISCUSSION

Before analyzing the time dependence of the micro-
hardness under various conditions of postdeformation
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Fig. 1. Dependence of the microhardness on the holding
time at various temperatures and humidity: (1) T = –13°C,
high humidity; (2) T = +20°C, high humidity; (3) T =
+20°C, normal humidity (relative air humidity 50%);
(4) annealing at T = +60°C for 30 min followed by storage
at T = +20°C under normal humidity; (5) holding at T =
−13°C in an ampoule at a pressure P = 10–2 mbar for two
months followed by storage at T = +20°C under normal
humidity; and (6) storage at T = +20°C, P = 10–2 mbar for
two months followed by storage at T = +20°C under normal
humidity.
P

holding, we note that the microhardness of as-grown
single crystals and of single crystals after deformation
strongly depends on the cooling rate of the deformed
specimens. This behavior is related to the different
states of impurities depending on the heat treatment
conditions [11]. After growing and air quenching, the
hardness of KCl : 0.06 wt % Sr crystals is 173 MPa and
subsequent storage of the single crystals at room tem-
perature does not change this value. If a single crystal
is furnace-cooled after annealing at 250°C, its hardness
decreases to 130 MPa. If a single crystal of this chemi-
cal composition is then deformed and air-quenched, its
hardness increases to 193 MPa [13]. If single crystals of
this chemical composition are deformed and furnace-
cooled without exposure to air, their hardness is slightly
higher than that of the single crystal annealed at 250°C
(Fig. 1). All the specimens studied in this work are
deformed at 250°C and then furnace-cooled to room
temperature.

Figure 1 shows the variation of the microhardness of
deformed specimens upon subsequent holding at vari-
ous temperatures and humidity. It is seen that, under the
conditions of reduced humidity (the as-deformed crys-
tal was placed in an ampoule pumped out to a pressure
of 10–2 mbar), the microhardness of the specimens
increases during postdeformation holding. Increasing
the temperature from –13 to +25°C has an effect on the
microhardness: the microhardness of the single crystals
held at +25°C is found to be about 5% higher. The
microhardness of the crystals that are annealed at T =
+60°C for half an hour after deformation and then
exposed to air at +25°C also increases with the holding
time. In the crystals held at room temperature under the
conditions of only atmospheric moisture without addi-
tional treatments, the increase in the microhardness is
not as stable: the microhardness increases to about
170 MPa then, decreases after a 2.5-month holding and
reaches the values characteristic of the initial single
crystals with the same strontium content in the next
1.5-month holding. When the crystals are held under
the conditions of high air humidity at temperatures
from +25 to –13°C, the microhardness begins to
decrease noticeably even in the first days of postdefor-
mation holding and decreases down to the value char-
acteristic of a pure KCl single crystal in four months. It
should be noted that the microhardness of reference
undeformed single-crystal specimens having the same
strontium content does not change at these tempera-
tures during holding either in air, vacuum, or under high
humidity. Thus, the experimental data indicate that the
effect of moisture on the microhardness of deformed
strontium-containing potassium chloride single crys-
tals is stronger than that of the temperature varying in a
wide temperature range (from –13 to +60°C). The
lower the humidity, the higher the hardness and the
longer the time over which the hardness is at a higher
level (this level is 30% higher than the hardness of the
as-deformed crystals; see Fig. 1). In our previous stud-
ies, we used a specific technique for taking x-ray dif-
HYSICS OF THE SOLID STATE      Vol. 46      No. 9      2004
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fraction patterns [7] in order to track the change in the
phase composition of samples after a polymorphic
transformation under pressure or after plastic deforma-
tion. We found that KSr2Cl5 particles precipitated at
room temperature in plastically deformed (at 250°C)
potassium chloride samples containing 0.02–0.06 wt %
Sr [4]. In this work, we also used this technique to study
the effect of varying the holding temperature in the
range from –13 to +25°C and of the humidity on the
aging of KCl : 0.06 wt % Sr specimens after plastic
deformation at 250°C followed by slow cooling in a
furnace. We revealed that, upon holding of the speci-
mens at temperatures of +3 to +25°C and normal
humidity, particles of complex potassium–strontium
chloride form in them; diffraction lines of this chloride
appear in the x-ray diffraction patterns of the specimens
after holding for 2.5–3 months (Fig. 2). Furthermore,
2–3 µm particles arranged along the boundaries of
recrystallized grains become visible in polarized light
in a polished section cut parallel to the (100) plane. In
crystals held under the conditions of high humidity at
−13 or +25°C, particles precipitate upon aging; the dif-
fraction lines of these particles most likely belong to
strontium chloride crystalline hydrate SrCl2 · 6H2O
(Fig. 3). The interplanar spacings were calculated using
the data from [12] on the structure and lattice parame-
ters of this crystalline hydrate. The volume fraction of
this phase, which was estimated from the condition that
the amount of strontium in this phase not exceed the
amount introduced in the specimen in the form of
SrCl2, is .0.25%. This value is in agreement with the
measured volume fraction of the particles in the pol-
ished section, which are visible under the microscope
in polarized light (≅ 0.22%). According to [13, 14],
crystalline hydrate in the SrCl2–H2O system in the tem-
perature range from –18 to +60°C can exist in the form
of SrCl2 · 6H2O and, at temperatures from +64 to
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Fig. 2. X-ray diffraction pattern of a KCl : 0.06 wt % Sr
crystal taken after 70% plastic deformation at T = 250°C
and subsequent holding at T = +3°C for six months.
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114°C, strontium chloride crystalline hydrate has the
formula SrCl2 · 2H2O. The x-ray diffraction patterns of
specimens held under the conditions of saturated water
vapor at temperatures of –13 and +25°C contain the
lines of SrCl2 · 6H2O (Fig. 3). However, upon holding
under these conditions, the lines of the crystalline
hydrate disappear when the holding time exceeds
12 months. Apparently, water condensate, whose
amount increases with the holding time, dissolves fine
crystalline-hydrate particles arranged along grain and
pore boundaries. Therefore, a liquid layer of a salt solu-
tion or a layer consisting of ice and a salt solution forms
at different temperatures. According to [14], the latter
layer exists in the pseudobinary KCl–H2O and KCl–
SrCl2 systems in the absence of solid-state solubility up
to temperatures T ≅  –10.6 and –18.7°C, respectively.
There is good reason to believe that the point of the ter-
nary eutectic is at lower temperatures. X-ray diffraction
patterns of crystals placed in a vacuum after deforma-
tion (in an ampoule pumped out to a pressure of
10−2 mbar and then sealed) at temperatures of –13 and
+25°C contain only the KCl lines. X-ray diffraction
patterns of crystals subjected to postdeformation
annealing at 60°C for 30–60 min and then stored at
room temperature for 12 months exhibit no additional
lines; weak lines, which are likely to belong to α-SrCl2,
are observed only after longer storage (Fig. 4). The
manifestation of these lines is preceded by a 5–6%
decrease in the microhardness of these specimens
(Fig. 1). The x-ray diffraction data indicate that the
presence of water exerts a key effect on the aging rate
and phase composition of deformed KCl : 0.06 wt % Sr
single crystals. As is known [15], the presence of steam
can cause decomposition of solid solutions (e.g., in the
system of KCl–KBr continuous solid solutions and in
the NaCl–NaBr system). After being stored at room
temperature for one year, nonstoichiometric crystalline
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hydrates form in KCl–KBr crystals (according to elec-
tron diffraction data) and stoichiometric crystalline
hydrates form in the NaCl–NaBr system (according to
x-ray diffraction data). In single crystals, the decompo-
sition of the solid solution into potassium or sodium
salts and crystalline hydrate occurs in a near-surface
layer less than 0.04 µm thick that contains sorbed water
[15]. When the deformed single crystals studied in this
work are stored, the presence of subgrain and recrystal-
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Fig. 5. Dependence of the volume fraction of the recrystal-
lized material on the holding time: (1) T = –13°C, high
humidity; (2) T = +20°C, high humidity; (3) T = +20°C, nor-
mal humidity (relative air humidity 50%); (4) T = +3°C,
normal humidity; (5) T = –13°C, storage in an ampoule at a
pressure P = 10–2 mbar for two months and subsequent stor-
age at T = +20°C under normal humidity; (6) T = +20°C,
normal humidity (measurements are performed after
annealing at T = +60°C for 30 min); and (7) T = +20°C, nor-
mal humidity (before measurements, the sample is stored at
+20°C under a pressure P = 10–2 mbar for two months).
PH
lized-grain boundaries stimulates the penetration of
water from the surface into the bulk and its chemical
interaction with the strontium-containing KCl crystal
throughout the entire volume. Thus, an undeformed
single crystal is destroyed from the surface through dis-
solution of the alkali halide crystal in water, whereas in
a deformed single crystal the water penetrates into the
crystal (in the form of crystalline hydrate or of a liquid
layer of a salt solution) along grain and subgrain bound-
aries, thereby breaking the integrity of the crystal and
destroying it. It is very important to avoid contact with
water, especially at an early stage of storage. Annealing
at relatively low temperatures (from +60 to +120°C)
immediately after plastic deformation (where grain
boundaries do not transform in relatively short anneal-
ing times [1] and the mechanical properties do not dete-
riorate due to a change in the state of bivalent additions
with increasing temperature [11]) makes it possible to
fix the deformed structure and the state of the supersat-
urated solid solution (in particular, due to the drying of
crystals upon annealing). With storage under condi-
tions of atmospheric moisture, as a result of aging, par-
ticles of the complex potassium–strontium chloride
appear and, under high humidity, particles of strontium
chloride crystalline hydrate precipitate. The precipita-
tion of the water-containing phases upon aging (which
is detected by x-ray diffraction) is accompanied by a
significant decrease in the microhardness of the
deformed single crystals of strontium-containing potas-
sium chloride.

The change in the properties of the deformed crys-
tals during postdeformation holding is obviously
caused by the processes of aging, recovery, and recrys-
tallization, which proceed at different rates and affect
each other at various temperatures and humidity. For
example, the maximum grain-growth rate in the crys-
tals studied was detected in the crystals held under con-
ditions of high humidity at a temperature of –13°C. In
this case, twinned grains rapidly grow to reach
1000 µm in diameter within the first month of storage
and then a slower stage of migration of high-angle
boundaries sets in. The related changes in the grain
structure affect the PFs. In time, intensity maxima asso-
ciated with new grains and differing from {110} appear
in {220} PFs. However, the crystal orientation remains
{100}〈001〉 , which is typical of deformed single crys-
tals [3]. Under conditions of high humidity at room
temperature, twinned-grain sizes in the crystals reach
the same values but in two months; that is, the boundary
migration rate in the stage of twin growth is smaller by
a factor of 2–2.5. Recrystallized-grain growth under
normal humidity at temperatures of +3 and +25°C
occurs at similar rates. As seen from Fig. 5, the grain
growth decelerates after a 2.5-month holding, because
particles of the complex potassium–strontium chloride
(detected by x-ray diffraction) precipitate along the
boundaries of growing grains and begin to hinder their
growth. The mean grain size by this time is about
50 µm. Figure 5 also demonstrates that recrystalliza-
YSICS OF THE SOLID STATE      Vol. 46      No. 9      2004
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tion in the crystals under the conditions of low humidity
is much less pronounced than under conditions of nor-
mal or high humidity. In PFs of crystals held under con-
ditions of low humidity, the {100}<001> orientation
remains stable for the whole holding time and the num-
ber of reflections from grains of other orientations is
found to be substantially smaller than in the case of
crystals under conditions of high humidity at a temper-
ature of –13 or +25°C. A comparison of these data with
the x-ray diffraction data shows that the recrystalliza-
tion rate is minimum in the specimens consisting of a
supersaturated solid solution. As follows from Figs. 1
and 5 and the x-ray diffraction data, the microhardness
increases and remains high for a long time after defor-
mation in crystals in the state of a solid solution. In this
case, when the recrystallization and precipitation rates
upon aging are similar (as in the case of the crystals
stored at room temperature and normal humidity), pre-
cipitated particles of complex potassium–strontium
chloride hinder grain growth and provide a relatively
high microhardness, which is, however, lower than that
of the deformed crystals in the solid-solution state. In
the deformed crystals that are under high humidity over
the whole temperature range under study (from –13 to
+25°C), the grain growth is faster than the aging-
induced processes; therefore, the microhardness
decreases from the very beginning of holding and
reaches values characteristic of a pure KCl single crys-
tal. Moreover, the precipitation of crystalline hydrates
and the subsequent formation of a liquid layer along
boundaries can result in decomposition of the speci-
mens along the boundaries of recrystallized grains
(Fig. 6). It should be noted that the straight-line bound-
aries of twinned grains retained after holding are etched
by the liquid phase much less than high-angle bound-
aries.

Alkali halide materials are known to be very hygro-
scopic [8, 9]. When crystals are grown from melts, their
interaction with water causes contamination of the
melts with hydroxyl ions and compounds that form due
to the water interacting with the material of the cruci-
ble, e.g., platinum [9]. By applying vacuum drying, we
can reduce the amount of sorbed water in KCl to 10–6%
[9], and treatment of the melt with an HCl-halide gas
flow allows us to reduce the concentration of OH– ions.
These measures helped us to grow crystals with a low
content of impurities, including oxides that form as a
result of interaction with water. However, our experi-
mental data show that, when plastic deformation is
applied to increase the mechanical strength of an AHC,
water interacts with the deformed crystal and deterio-
rates its properties. The water is adsorbed on the surface
and penetrates into the bulk of the crystal in the pres-
ence of grain and subgrain boundaries. Moreover, as is
seen from the experimental results, water favors accel-
erated growth of recrystallized grains (especially in the
initial stage of the growth of grains with twinned orien-
tations with respect to the initial single crystal). Simul-
taneously, the water from the vapor phase interacts
PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      200
chemically with doping components; as a result, crys-
talline-hydrate particles and then a liquid layer of a salt
solution form along the boundaries of recrystallized
grains, which causes failure of these boundaries. A
decrease in the moisture content at the initial stage of
holding deformed crystals by any means (e.g., by their
postdeformation annealing at a temperature in the
range from +60 to +120°C or by placing them in a vac-
uum for two to three months after deformation) makes
it possible to conserve the deformation-induced struc-
ture and the solid-solution state in the deformed doped
single crystals. Thus, one can conserve, for a long time,
the high microhardness that is achieved by deformation
of single crystals and their postdeformation holding.
Decreasing the temperature from +25 to –13°C does
not decrease either the boundary migration rate or the
diffusion of the doping component.
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Abstract—It is found that, when a bismuth crystal is subjected simultaneously to concentrated loading and a
dc magnetic field, the magnetoplastic effect manifests itself as an abrupt decrease in the average length of
wedge twins on the (111) cleavage plane (and, hence, as a decrease in the total twinned volume of the crystal)
as a threshold value of the magnetic field is reached. However, the magnetic field stimulates glide deformation,
which is indicated by an increase in the size of dislocation rosettes. The microhardness of a crystal varies
smoothly and tends to increase with increasing magnetic field. The last phenomenon is accounted for by hard-
ening of the crystal under the indenter in the presence of a magnetic field, because several slip systems become
operative. © 2004 MAIK “Nauka/Interperiodica”.
Magnetoplastic effects (MPEs) that accompany
glide deformation are well known (see, e.g., [1, 2]). It
was found in [3] that the application of a dc magnetic
field (MF) decreases the size and number of wedge
twins. In [4, 5], it was predicted and experimentally
observed that there is a threshold field Bc above which
an MPE occurs. The objective of this work is to answer
the following questions:

(1) Does a threshold field Bc exist at which the aver-
age length L of wedge twins decreases in a jump in the
case of twinning of bismuth crystals?

(2) Is the abrupt decrease in L accompanied by an
increase in the size of dislocation rosettes?

(3) How does the microhardness H of samples vary
with increasing magnetic field?

In the study, we used bismuth single crystals grown,
following the Bridgman technique, from a 99.97 wt %
pure raw material (with a Pb impurity). Measurements
were performed on the (111) cleavage plane of as-
cleaved bismuth crystals. Samples were rectangular
prisms 10 × 5 × 5 mm in size. Measurements were car-
ried out using a PMT-3 microhardness tester, with a
diamond pyramid applying a concentrated load. All
components of the experimental setup with which a
sample was mounted and loaded were made from non-
magnetic materials to exclude instrumental effects. The
absence of artifacts was confirmed by a special check
experiment. The dimensions of indentations in the
absence of a load on the indenter rod did not change
when a magnetic field was turned on or off. A sample
was placed in the center of the electromagnet core gap.
Measurements performed with a Hall probe showed
that the relative field variations along the sample did not
exceed 2–3%. Loading of a sample was performed con-
currently with exposure to a magnetic field. The mag-
1063-7834/04/4609- $26.00 © 21655
netic field B was varied in the range from 0 to 0.9 T. The
time of the sample exposure to a magnetic field was
5 min. The force applied to the indenter rod was P =
0.14 N. Direct measurements were made of the diago-
nals of the pyramid indentations, the length and width
of wedge twins at the mouth, and the number of wedge
twins. Averaging was performed over measurements of
twenty indentations. The measurement error did not
exceed 3%.

The degree of plastic deformation in twinning can
be characterized by the total twinned volume 
[6, 7]. The volume of a wedge twin with a thickness h
at the mouth can be found using a formula for the vol-
ume of a sphere segment. Since the volume of a twin
Vtw is half of the sphere segment volume and r ≈ L (r is
the radius of the segment base), we have Vtw =

πh2 . The total twinned volume is  =

VtwN, where N is the number of twins.

To determine the sizes of the crystal surface areas
that were glide-hardened in the presence and in the

absence of a magnetic field, the ratio  (which is the

measure of strain hardening [8]) was plotted against the
distance l from the center of a prick. Here, ∆H = H ' – H
is the difference between the microhardness of the
deformed area (H') and that of the undeformed area (H)
of the crystal surface. In this case, we were interested in

the (l) dependence (rather than in the exact values

of microhardness), which allowed us to compare the
sizes of hardened areas in the presence and in the
absence of a magnetic field. Since it is difficult to cor-

V tw∑

1
24
------ 3L

h
2
---– 

  V tw∑

∆H
H

--------

∆H
H

--------
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rectly determine the size of a hardened area in the case
of a small applied load, we made a prior prick by apply-
ing a comparatively large load (P = 0.8 N) to the
indenter. The values of H' and H were measured in the
absence of an MF using a small load (P = 0.01 N).

It is seen from Fig. 1 (curve 1) that, for bismuth
crystals, there is a threshold magnetic field (B ~ 0.2 T)
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Fig. 1. Dependences (1) of the average length L of wedge
twins formed on the cleavage plane of a bismuth crystal and
(2) of the total twinned volume  on magnetic field B.V tw∑
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Fig. 2. Dependence of the ratio ∆H/H on the distance l from
the center of a prick (1) in the absence and (2) in the pres-
ence of a magnetic field.
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Fig. 3. Dependence of the microhardness H of a bismuth
crystal on magnetic field B.
P

at which the average length L of wedge twins on the
(111) cleavage plane decreases abruptly. Therefore,
there is a threshold for the MPE in twinned bismuth
crystals at which the average path length of twinning
dislocations λ =  decreases in a jump. Since
the average thickness h of wedge twins at the mouth is
the same to within experimental error, the number of
twinning dislocations at the twin–matrix boundary
(which is equal to h/a) also remains unchanged.

It was established that the decrease in L is the chief
cause of the abrupt decrease in the total twinned vol-
ume  at B ~ 0.2 T (curve 2 in Fig. 1), because the
number of twins N does not change to within experi-
mental error.

From comparison of the dependence of ∆H/H on the
distance from the center of prick l in the presence of an
MF with that measured in the absence of an MF (Fig. 2,
curves 2, 1, respectively), it follows that the MF causes
the hardened area of the crystal surface to increase sig-
nificantly in size. As the MF reaches the value B ~
0.2 T, the ratio ∆H/H decreases to zero at large values
of l, which indicates that the size of the dislocation
rosette increases in a jump.

However, the microhardness H varies smoothly and
tends to increase in high fields B (Fig. 3). The experi-
mental dependence observed by us can be explained as
follows. It was conjectured in [9] that the strain-harden-
ing coefficient of the region beneath the indenter is due
to all crossing slip systems being operative. In order to
elucidate the question as to whether the MF causes all
slip systems to operate, we performed a special experi-
ment. It is known [10] that a dislocation rosette on the
(111) cleavage plane of a bismuth crystal consists of
etching pits forming two equilateral triangles. The ver-

tices of one of these triangles lie on the〈 〉  axes, and

the vertices of the other lie on the 〈 〉  axes. The first

triangle consists of dislocation rows lying in the { }
planes making an obtuse angle with the direction of the
applied force. The other triangle consists of dislocation

rows lying in the { } planes making an acute angle
with the direction of the applied force. At room temper-
ature, only the first type of triangles forms around
indents in the absence of an MF, because twins prevent
the formation of dislocation rows of the second type

[10]. Our investigation of the (l) dependence for

the 〈 〉  and 〈 〉  directions showed that in both
cases this dependence follows curve 2 in Fig. 2 to
within experimental error. Therefore, our experimental
data suggest that the MF causes all slip systems to oper-
ate. As a result, strain hardening occurs, which
accounts for the fact that the microhardness does not
decrease in spite of the plasticizing effect of the mag-
netic field.

Li/2N
i∑

V tw∑

112

112

111

111

∆H
H

--------

112 112
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Abstract—Experimental studies of the fracture kinetics of polycrystalline metals have led to the problem of
the barrier and activation volume of elementary fracture acts. A model is proposed where the field binding
one atom to its environment in a metal is represented by equivalent bonds directed along three orthogonal
axes. These bonds are described using the Morse potential, whose parameters are found from the values of
the Young’s modulus and the linear thermal expansion coefficient for metals. The validity of the model is
checked by comparing the results obtained with metal sublimation data. The values of the barrier and acti-
vation volume of elementary fracture acts are determined for 15 polycrystalline metals. The levels of local
overstresses are estimated. The theoretical breaking strengths of the metals are calculated. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The concept of elementary fracture acts of solids,
including metals, entered fracture physics when the
kinetic nature of mechanical fracture was established.
Numerous systematic studies have shown that the frac-
ture of a loaded body cannot be considered a critical
event occurring under a certain load or deformation of
a body. Fracture was found to be a kinetic phenomenon:
a sufficiently long process develops from the instant of
loading and terminates in macroscopic fracture of the
body [1, 2].

The integrated characteristic of the rate of the pro-
cesses resulting in fracture is the life τ, namely, the time
from the instant of loading to the instant of fracture.
This time is inversely proportional to the mean fracture
rate. There is a wide scatter in the values of the life for
various bodies; experimentally determined values vary
from 10–3 to 107 s [2]. This means that the mean fracture
rate (if, e.g., the fracture rate is measured as the rate of
decrease in the bearing cross section of a body) is well
below (by orders of magnitude) the acoustic-wave
velocity in solids. Therefore, it follows that the process
of fracture consists of a sequence of certain elementary
acts. If the appearance of these acts has a probabilistic
character, then the life of a body under a load should be
logarithmically close to the mean expectation time for
one act [2].

The life of metals (just as other solids) was found to
exponentially depend on stress σ and temperature T [1–
4]. This dependence made it possible to reveal the
mechanism of the elementary acts of the process result-
ing in fracture.

Dependences of the life of metals on temperature
and applied stress, i.e., the τ(σ, T) dependences, are
1063-7834/04/4609- $26.00 © 21658
shown in Fig. 1. The results are given for cases where a
uniaxial tensile stress is maintained constant when
measuring the life of each sample. Similar dependences
were also obtained for many other metals [5–8]. In a
wide range, but not at very low and very high values of
σ and T, the τ(σ, T) dependences are described by the
Zhurkov formula [1–8]

(1)

where k is the Boltzmann constant. An important fea-
ture of Eq. (1) is the common value of the preexponen-
tial factor (τ0 ≈ 10–13–10–12 s) for all solids, which is
close to the mean period of atomic vibrations in solids
(or the period of maximum-frequency oscillations in a
Debye spectrum) [2].

Equation (1) can be is compared with the fundamen-
tal Frenkel formula for the mean expectation time of a
local energy fluctuation Efl [9]:

(2)

where τ0 is the same as in Eq. (1). The correspondence
between Eqs. (1) and (2) (under the condition U(σ) =
Efl) and the interpretation of the life τ(σ, T) as the mean
expectation time for elementary fracture acts allow us
to conclude that these acts have a thermal fluctuation
nature, i.e., that the potential barrier U(σ) is overcome
due to local energy fluctuations [1–8]. Therefore, the
barrier U(σ), which is often called the fracture activa-
tion energy, is the most important characteristic of an
elementary act of fracture.

τ σ T,( ) τ0
U σ( )

kT
-------------,exp≅

τ fl τ0

Efl

kT
------,exp≅
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Experimental data similar to those shown in Fig. 1
were used to obtain the U(σ) dependences for many
metals. Examples of such dependences are given in
Fig. 2. The U(σ) dependences are seen to be close to
linear, which allows us to describe them by the expres-
sion

(3)

Equation (3) shows that the elementary act of metal
fracture is characterized by an initial barrier U0 and that
the barrier decreases with increasing tensile stress σ
applied to a body.

In Eq. (3), the coefficient γ has the dimensions of
volume and its value determines the degree to which the
applied stress decreases the barrier. Thus, when analyz-
ing the elementary act of metal fracture, one has to
reveal the physical meaning of both U0 and γ.

The properties of U0 and γ have been found to be dif-
ferent. The barrier U0 was established to be a stable
characteristic of a metal. When the structural state of a
metal is changed (by annealing, quenching, or alloy-
ing), the value of U0 remains virtually constant
(although it is different for different metals) [4–8, 10].
Unlike U0, the coefficient γ varies strongly with the
structural state of a metal (up to an order of magnitude)
[4–7]. As an example, Fig. 3 shows the U(σ) depen-
dences for zinc; it is seen that U0 ≈ const and the coef-
ficient γ (the slope of the U(σ) curve) changes by sev-
eral times.

The basic characteristics of metal fracture kinetics
(U0 and γ) were analyzed earlier, and a basis for their
interpretation was developed in [1–8].

The purpose of this work is to comprehensively
study the initial barrier U0 and the stress dependence of
the barrier U(σ), characterized by the coefficient γ, in
elementary acts of metal fracture.

2. ANALYSIS OF THE INITIAL BARRIER U0
IN ELEMENTARY ACTS
OF METAL FRACTURE

Table 1 gives the values of U0 that were determined
in studying the fracture kinetics of a number of poly-
crystalline metals having various lattice types and brit-
tle–plastic properties. It is seen that the values of U0 for
the metals vary in the range 1–7 eV.

To reveal the physical meaning of U0, it is useful to
compare the values of U0 with a characteristic of metal
destruction, such as the sublimation (evaporation)
energy Ds [1–8, 11]. The values of Ds are given in Table 1
in the column next to that of U0. The values of U0 and
Ds are seen to be close to each other. Taking the ratios

U σ( ) U0 γσ.–≅
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U0/Ds for all 15 metals, we calculate the average ratio
U0/Ds and the average scatter to be

It should be noted that the values of U0, as deter-
mined from experimental studies of the fracture kinet-
ics, are accurate to within ~10% [2]. The values of Ds

given in various sources [12–15] have a scatter that
reaches ~20% in some cases. Table 1 gives values of Ds

U0

Ds

------ 1.01 0.07.±=

0

1.25

1.00

0.75

0.50
100 200

U
, e

V

σ, MPa

Zn

1 2 3 4 5

Fig. 3. Force dependences of the barrier in elementary acts
of the fracture of polycrystalline zinc (99.94%) annealed at
different temperatures [4]: (1) 630, (2) 530, (3) 490, (4) 450,
and (5) 370 K.
P

that are either the most stable or averaged over the data
from [12–15].

Making allowance for these circumstances, the
authors of [1–8, 10, 11] concluded that, actually, the
barrier U0 for the elementary act of metal fracture coin-
cides with the sublimation energy Ds. The process of
sublimation, which consists in the transition of an atom
from the surface of a metallic body to a gaseous mona-
tomic state, is related to bond breaking in the metallic
body. The sublimation energy is half the energy of
binding an atom to its environment in the body [16, 17].
The actual equality between U0 and Ds means that inter-
atomic bonds also break in the elementary act of metal
fracture.

Interatomic bonds in metals have specific features.
Indeed, cohesion in nonmetallic bodies is due to binary
and directed bonds, such as covalent, van der Waals,
and hydrogen bonds. The elastic and anharmonic char-
acteristics of such bonds are measured by various spec-
troscopic methods. The strength of a nonmetallic body
and its fracture are comparable to the strength and
breaking of real binary bonds. In metals, there are no
analogous individual interatomic bonds. A metal con-
sists of an ionic lattice embedded into an electron
plasma, and the binding of an atom to its environment
has a specific “diffuse” character. Therefore, we believe
that destruction processes in metals, such as sublima-
tion or fracture, can be analyzed using a specific
Table 1.  Metal characteristics. Estimates of the theoretical strength and activation volume in an elementary act of metal fracture

Metal U0,
eV

Ds,
eV

Va,
10–2

nm–3

E,
GPa

α,
105 K–1

De,
eV

σm,
GPa

,

10–2

nm3

, 10–2 nm3

3Va

Ag 2.7 [6] 2.8 0.97 1.7 77 1.9 0.7 0.25 8.5 1.4 0.8 5.3 5.1

B 5.7 [11] 5.5 1.04 0.8 345 0.8 2.0 0.36 43 0.8 1.0 2.3 2.4

Cd 1.2 [7] 1.2 1.00 2.2 52 ~3 0.3 0.25 4 1.3 0.6 5.2 6.6

Cu 3.6 [8] 3.5 1.03 1.2 120 1.7 0.8 0.23 13 1.0 0.8 4.5 3.6

Fe 4.4 [7] 4.2 1.05 1.2 200 1.2 1.0 0.24 19 0.9 0.8 4.0 3.6

Mg 1.5 [7] 1.5 1.00 2.3 44 2.5 0.5 0.33 4.5 1.9 0.8 5.7 6.9

Mo 7.5 [7] 6.9 1.09 1.6 315 0.53 2.4 0.35 31 1.2 0.8 3.7 4.8

Nb 6.6 [7] 7.1 0.93 1.8 150 0.7 2.4 0.34 20 2.0 1.1 5.6 5.4

Ni 3.8 [8] 3.9 0.97 1.1 210 1.3 0.9 0.23 19 0.8 0.7 3.4 3.3

Pb 1.9 [7] 2.0 0.95 3.1 16 ~2.8 0.8 0.40 3 4.6 1.5 11 9.3

Pt 5.7 [3] 5.5 1.04 1.5 162 0.9 1.7 0.31 19 1.4 0.9 4.6 4.5

Ti 5.3 [7] 4.9 1.08 1.8 110 0.83 2.4 0.49 17 2.3 1.3 5.1 5.4

V 5.7 [7] 5.3 1.08 1.4 155 0.8 2.4 0.45 24 1.7 1.2 4.1 4.2

Zn 1.3 [4] 1.2 1.08 1.5 115 ~3 0.2 0.17 5.7 0.6 0.4 3.9 4.5

Zr 5.3 [7] 6.1 0.87 2.4 90 0.74 2.8 0.46 15 3.1 1.3 5.9 7.2

Average 1.01 0.32 0.9

U0
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------

De
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------
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V A
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------
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V A
e U0

De
------
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approach to obtain quantitative characteristics of the
elementary acts of these processes.

Note the following essential circumstance. All stud-
ies of the fracture kinetics of metals whose results (the
values of U0 and γ) are given in Tables 1 and 2 were per-
formed on polycrystalline samples. The values of sub-
limation energy in Table 1 also correspond to polycrys-
talline metals. In what follows, we will use values of the
Young’s modulus and linear thermal expansion coeffi-
cient that are also related to polycrystalline metals.

Naturally, the properties of crystalline cells of a
metal, such as the interatomic distances, elasticity,
strength, and thermal expansion, are anisotropic. In
polycrystalline metals, these characteristics are aver-
aged (in the absence of texture); the metals are consid-
ered to be macroscopically isotropic. Thus, a polycrys-
talline structure is characterized by averaged values of
U0 and Ds, which leads us to use averaged quantities for
further analysis of U0 and Ds.

We assume that the field binding an atom to its envi-
ronment in a metal is represented by six identical equiv-
alent bonds directed along three orthogonal axes. In this
case, we can try to determine the dissociation energy,
fracture activation volume, and theoretical strength of
the equivalent bonds by using the measured values of
the Young’s modulus E and linear thermal expansion
coefficient α in metals. To find out whether the calcula-
tions are reliable, we will compare the calculated equiv-
alent-bond dissociation energy De with the sublimation
energy Ds; the value of De should be close to (1/3)Ds.

To determine the characteristics of the equivalent
metallic bond, we assume that the dependence of the
atomic interaction potential W on the distance r
between atomic centers is described by the Morse func-
tion [18], which is widely applied to describe inter-
atomic bonds [19–23]:

(4)

where d0 is the equilibrium interatomic distance, D is
the dissociation energy, and a is a parameter. Expres-
sion (4) corresponds to an asymmetric potential well
with depth –D and a minimum of W(r) at d0.

Let us introduce x = r – d0 and expand W(r) in a
power series in x up to a cubic term near the minimum
x = 0:

(5)

Expression (5) corresponds to the general form of the
cubic potential of binary interatomic interaction:

(6)

where f is the coefficient of linear bond elasticity (stiff-
ness) and g is the first-order anharmonicity coefficient.

Comparing Eqs. (5) and (6), we obtain

(7)

W r( ) = D 2a r d0–( )–[ ]exp 2 a r d0–( )–[ ]exp–{ } ,

W x( ) –D Da
2
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2
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3
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3
---gx

3
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f 2Da
2
; g 3Da

3
.= =
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Then, it follows that

(8)

Thus, given the coefficients f and g, we can find the
bond dissociation energy D. To estimate the coeffi-
cients f and g as characteristics of equivalent bonds in
metals, we use the values of the Young’s modulus and
linear thermal expansion coefficient (TEC) of polycrys-
talline metals.

The elasticity of an isotropic body during uniaxial
tension and the thermal expansion of the body along the
same axis are considered to be determined by the elastic
and anharmonic characteristics (i.e., f and g) of one
equivalent interatomic bond operating along this axis.

Then, the Young’s modulus is

(9)

and the linear TEC (in the classic region) is

(10)

Using Eq. (8) combined with Eqs. (9) and (10), the
equivalent-bond dissociation energy De is found to be

(11)

where Va =  is the mean volume per atom in the
metal.

Thus, to calculate De, we need to know Va, E, and α.
The value of Va can be found from the relation Va ≅
A/ρNA, where A is the atomic weight, ρ is the density,
and NA is Avogadro’s number. The values of E and α for
polycrystalline metals at temperature T = 300 K (for
boron, α was taken at 650 K) were borrowed from [15].

a
2
3
--- g

f
---; D

9
8
--- f

f
g
--- 

 
2

.= =

E
f

d0
-----;≅

α g
f
--- 

  k
2 f d0
------------, 9 17,[ ] .≅

De
9
32
------ k

2

Eα 2
d0

3
---------------- 9

32
------ k

2

Eα 2
Va

----------------,≅ ≅

d0
3

Table 2.  Estimates of the local overstresses in metals

Metal Annealing
T, K γ, nm3 ,

10–2 nm3

Ag 800 1.3 [6] 5.1 ~25

B 0.22 [11] 2.4 ~10

Cu 900 1.6 [8] 3.6 ~45

Ni 1060 0.7 [8] 3.3 ~20

Pt 1250 5.2 [3] 4.5 ~110

370 0.8 [4] ~18

450 1.0 [4] ~22

Zn 490 1.3 [4] 4.5 ~30

530 2.1 [4] ~50

630 3.2 [4] ~70

V A
F 3Va= q

γ
V A

F
------=
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The temperature of 300 K for all metals under analysis
(excluding boron) corresponds to a classic region, since
the Debye temperatures of these metals fall in the range
from 88 K (Pb) to 420 K (Fe). This justifies the appli-
cation of Eqs. (10) and (11) for the calculation of De.

The values of Va, E, and α for the metals under study
and the dissociation energies of the equivalent inter-
atomic bonds calculated from Eq. (11) are given in
Table 1.

As noted above, it is important to compare the cal-
culated values of De with the sublimation energies Ds of
the metals. As follows from Table 1, De < Ds; that is,
De is a fraction of Ds. This fraction is De/Ds ≡ β and is
given in Table 1 for each metal. The values of β are
rather uniformly distributed over the range 0.2–0.5.
The mean value and scatter of β are found to be 〈β〉  =
0.32 ± 0.08.

Thus, the dissociation energy of one equivalent
interatomic bond (for the metals under study) is, on
average, one-third of the sublimation energy (or one-
sixth of the total energy of binding an atom to its envi-
ronment inside the metallic body). The scatter in the
values of β with respect to one-third can be due to the
assumptions and approximations made to calculate De;
nevertheless, it can reflect the specific structural fea-
tures of different metals to some extent.

The closeness of the calculated dissociation ener-
gies of the equivalent interatomic bonds to one-third of
the sublimation energy supports the validity of the
model of the division of the interaction field of an atom
with its environment into six components (equivalent
bonds) and the validity of applying the Morse potential.
Therefore, an elementary sublimation act, namely,
evaporation of an atom from the surface of a metallic
body, can be considered an act of breaking three (in
average) equivalent bonds.

Since the barriers in the elementary acts of fracture
and sublimation are virtually the same (U0 ≅  Ds), the
elementary act of metal fracture can also be considered
an act of breaking three (in average) equivalent inter-
atomic bonds, with each of them having the dissocia-
tion energy De.

Of course, the elementary act of metal fracture dif-
fers from the sublimation act, i.e., from the removal of
one atom from a metallic surface. Our next problem is
to develop a model for an elementary act of metal frac-
ture that includes the breaking of three equivalent
bonds (e.g., in crack growth kinetics).

3. COEFFICIENT γ INVOLVED IN THE FORCE 
DEPENDENCE OF THE BARRIER U(σ) 

IN THE ELEMENTARY ACT 
OF METAL FRACTURE

According to Eq. (3), the coefficient γ is determined

as the derivative γ = . Note that σ is the average
dU σ( )

dσ
----------------
P

stress applied to a sample. The characteristic values of
γ for metals lie in the range 1–10 nm3 [2]. In [24–27],

the derivative  was called the activation volume.

Upon fluctuation-induced breaking of a stressed
interatomic bond, the required energy, which is equal to
the bond dissociation energy D, consists of two compo-
nents, more specifically, the tensile stress energy ∆A =
σlocVA (where σloc is the stress applied to the bond) and
the fluctuation energy Efl:

(12)

Therefore, the fluctuation energy required for breaking
a stressed bond is

(13)

Note that Eq. (13) has the same structure and, in
general, the same meaning as Eq. (3), which follows
from analysis of the metal fracture kinetics. The quan-
tity VA involved in Eqs. (12) and (13) is the activation
volume of breaking an interatomic bond, that is, the
increment in the volume at which the work of the
applied stress σloc provides the removal of an atom from
a potential well with depth D. At the moment the inter-
atomic bonds break, the characteristic values of VA are
close to the atomic volumes (in order of magnitude) and
fall in the range 0.01–0.03 nm3 [7, 9]. Thus, the coeffi-
cient γ of metals is well above (by orders of magnitude)
the values of VA, which calls into question the meaning
of γ as the activation volume in elementary acts of metal
fracture.

The interpretation of the coefficient γ proposed in
[2, 4] is based on the fact that local stresses σloc operat-
ing at the “point” of an elementary act can significantly
exceed the average stress σ in a body. The concept of
stress concentrators (local overstresses), which are
caused by structural heterogeneity and defects in real
solids, was proposed a long time ago [28–30] and con-
firmed experimentally. Therefore, we can introduce the
coefficient (index) of local overstresses q by assuming
that σloc is proportional to the average stress σ:

Assuming that the barrier decreases because of local
stresses, we obtain from Eq. (3)

(14)

Comparison of Eqs. (14) and (13) shows that we can
call γ' the activation volume of the elementary act of

metal fracture :

(15)

dU σ( )
dσ

----------------

D Efl V Aσloc.+=

Efl σloc( ) D V Aσloc.–=

σloc qσ.=

U σ( ) U0 γσ– U0 γ'σloc– U0 γ'qσ.–= = =

V A
F

γ qV A
F
.=
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In this case, the scatter in the values of γ is explained
by a change in the index of local overstresses q due to
changes in the structure of the metal (at a constant acti-

vation volume ). Therefore, we should determine

the activation volume  in the elementary act of metal
fracture, which has not been analyzed earlier in detail.

Note that the estimation of  will allow us to more
accurately estimate the level of local overstresses q

from the experimental values of γ .

The method for determining the activation volume
VA of the elementary act of metal fracture is based on
the same model for equivalent bonds. Let us calculate
the activation volume of breaking one equivalent bond

. To this end, we need the dependence of the bond
dissociation barrier on the tensile stress (or tensile
force) applied to the bond.

We again use the Morse potential. From Eq. (4), we
derive the force that induce bond deformation (this
force is equal to the restoring elastic force during bond
deformation):

The force F(x) starts from F = 0 at x = 0, goes
through a maximum Fm as x increases, and then

decreases. From the condition  = 0, Fm is found

to be

We go from the force to the stress

, (16)

where  is the cross section of an atom. The authors
of [31–34] used the Morse potential to find the depen-
dence of the bond dissociation barrier D(σloc) on the
stress. This dependence is nonlinear and rather com-
plex. However, in the range ~(0.2–1.0)σm, this depen-
dence can be approximated as

(17)

Equation (17) shows that the application of the maxi-
mum stress σm for a bond decreases the bond dissocia-
tion barrier to zero.

Upon breaking, the barrier D(σloc) is overcome
because of a fluctuation in energy (i.e., Efl = D(σloc)).

V A
F

V A
F

V A
F

q = 
γ

V A
F

------ 
 

V A
e

F x( ) dW x( )
dx

---------------- 2aD ax–( )exp 2ax–( )exp–[ ] .= =

dF x( )
dx

---------------

Fm
1
2
---aD.=

σm

Fm

d0
2

------ aD

2d0
2

--------= =

d0
2

D σloc( ) D 1
σloc

σm

--------– 
  D

D
σm

------
σm

σloc
--------σloc.–≅ ≅
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Therefore, by comparing Eqs. (17) and (13), we find the
activation volume of bond breaking:

(18)

Expression (18) shows that VA is not constant but
rather depends on the applied stress σloc. This depen-
dence is weak; for example, in the range σloc = (0.2–
1.0)σm, the quantity VA changes only by two times.

As follows from the analysis of the experimental
data on the kinetics of metal fracture, the stress depen-
dence of the barrier is close to the linear dependence

given by Eq. (3), where γ =  ≅  const. In the case

where q ≈ const, we have  ≈ const. This difference
between the experimental linear U(σ) dependence and
the calculated D(σloc) nonlinear dependence can be
caused by the conditions for deriving the D(σloc) depen-
dence. In this derivation, the stress σloc was assumed to
be constant in the act of bond breaking. In a real loaded
body, however, the stress applied to a bond is deter-
mined by the tensile stresses of the neighboring bonds;
the elongation of this bond in a breaking act leads to
contraction of the neighboring stretched bonds and,
thus, to a decrease in the stress applied to a given bond.
This effect decreases the nonlinearity of the D(σloc)

dependence, and the factor  approaches unity
[35–37].

The simulation of the kinetics of fluctuation-
induced breaking of a stressed atom chain performed in
[38] using the Morse potential to describe the inter-
atomic bond in the chain showed that the D(σloc) depen-
dence is linear, with VA ≅  D/σm.

Based on the considerations given above, we think
that the activation volume of breaking an equivalent
interatomic bond can be calculated from the relation

(19)

The values of De are determined above (Table 1). From
Eq. (16) combined with Eqs. (7)–(11), we obtain

(20)

The calculated values of σm for the metals under study
are given in Table 1. The maximum stress is commonly
called the theoretical bond strength. Table 1 indicates
that the theoretical strengths of the equivalent bonds of
the metals lie in a wide range, from 4 to 43 GPa.

From the ratio of De to σm, we find the activation

volumes of breaking equivalent interatomic bonds 
for the metals under study (Table 1).

V A
D
σm

------
σm

σloc
--------.≅

qV A
F

V A
F

σm σloc⁄

V A
e De

σm

------.≅

σm

aDe

2d0
2

---------
3
8
--- f

f
g
--- 

  1

d0
2

----- 3
16
------ k

αVa

----------.≅= =

V A
e
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The values of  can be compared with the values
of Va (which is the volume per atom in the metallic
body), i.e., with the atomic volumes (Table 1). The

mean ratio  and the mean scatter are

Thus, the activation volume of breaking an equiva-
lent bond in metals is, on average, close to the atomic
volume in them.

Now, we estimate the activation volume  in the
elementary act of metal fracture by assuming that this
volume is the sum of the activation volumes of breaking
equivalent bonds in an elementary act of fracture. We

estimate  using two methods.

When calculating each metal individually, we get

Here, U0/De is the number of equivalent bonds broken
in an elementary act of fracture (or sublimation, since
U0 ≈ Ds) of a given metal.

For calculating the average, we assume that  ≅  Va

and that the number of broken equivalent bonds is equal
to three (since the average ratio U0/De  ≈ 3). In this case,

 ≅  3Va. The values of  found using the two meth-
ods are also given in Table 1.

The values of  calculated by the different meth-
ods are seen to be rather similar. Taking into account
that our calculations are only approximate, it is wise to
take a simpler relation for the activation volume of the

elementary act of metal fracture, namely,  ≅  3Va.

Estimating the activation volume of the elementary
act of metal fracture makes it possible to estimate the
level of local overstresses q in polycrystalline metals
from Eq. (15):

Examples of such estimates for a number of metals are
given in Table 2. These estimates indicate that local
overstresses as high as 10–100 appear under loading of
real metallic bodies. Such stress concentrations have
been detected (using spectroscopic methods) in poly-
mer bodies [39] and follow from the analysis of the
luminescence of loaded crystals [40, 41], observations
of pinned dislocation pileups [42], and force-induced
bending of single dislocations [43]. Therefore, the
obtained estimates of the local overstresses in loaded
polycrystalline metals seem realistic.

V A
e

V A
e

Va⁄

V A
e

Va

------ 0.9 0.2.±≈

V A
F

V A
F

V A
F

V A
e U0

De

------.≅

V A
e

V A
F

V A
F

V A
F

V A
F

q
γ

V A
F

------ γ
3Va

---------.≅ ≅
PH
Note again that, unlike the barrier U0 of an elemen-
tary act of fracture (which is constant for a given
metal), the overstress index varies depending on the
structural state of the metal. This fact is seen from the
data for zinc (Fig. 3, Table 2).

Local overstresses that appear due to structural
defects and initiate elementary fracture acts do cause
smaller breaking strengths of real bodies than their the-
oretical strengths. The real breaking strength σr can be

estimated from the ratio σr ≈  (see below).

The calculated characteristics related to elementary

acts of metal fracture (De, , q, σm) are of course aver-
aged; they are averaged due to the polycrystalline struc-
ture of metals, the model of equivalent bonds, and the
use of the average values of α and E. The results
obtained can be supported by the calculated theoretical
strengths of equivalent bonds.

In the model of equivalent bonds, the theoretical
breaking strength σth of a polycrystalline metallic body
is equal to the theoretical strength σm of one equivalent
bond. Indeed, two neighboring atomic layers are
bonded by only the equivalent bonds normal to the
layer plane. Breaking a layer off the neighboring layer
occurs upon breaking of a number of equivalent bonds
equal to the number of atoms in the layer. Therefore, the
interlayer strength (the breaking force per layer area) is
equal to the strength of one equivalent bond. Thus, the
values of the theoretical strength σm of equivalent
bonds given in Table 2 can be treated as the theoretical
breaking strengths σth of polycrystalline metals.

In the literature, the theoretical strength of metals
has been estimated using various methods. These esti-
mates led to an approximate relation between the theo-
retical strength and Young’s modulus, σth ≅  (0.05–0.2)E
[17, 44]. The calculated values of σm (Table 1) also
demonstrate general correlation with the Young’s mod-
ulus of polycrystalline metals (Fig. 4). The averaged
line in Fig. 4 has a slope close to 0.1. This finding
allows us to conclude that the calculated values of σm

are reasonable quantitatively. However, as is seen from
Eq. (20), the theoretical strength is not related to the
Young’s modulus explicitly. Nevertheless, the correla-
tion between σm and E manifests itself, since the coef-
ficient of linear bond elasticity f enters into Eq. (10) for
TEC and α is approximately inversely proportional to f.

Many researchers [44] have studied the microme-
chanics of metal fracture and revealed the conditions of
both brittle and ductile fracture by using dislocation
and diffusion processes and by considering crack
nucleation and growth. However, many questions
remain in the complex process of fracture at a micro-
scopic level regarding both the micromechanics of the
process and the relationship between the macro- and
microfracture characteristics. It is important for the
physics of metal strength to consider the kinetics of

1
q
---σm

V A
F
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metal fracture, since data on the life (macroscopic char-
acteristic of fracture) and characteristics, such as the
elastic modulus and thermal expansion coefficient, can
give information on the microscopic characteristics of
fracture (the characteristics of the elementary act of
metal fracture). The data obtained (though strongly
averaged over elementary acts of the process resulting
in fracture of a metallic body) can serve as reference
points. Of course, it is still necessary to study the
micromechanics of fracture (including elementary acts
of metal fracture) in more detail.
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Abstract—The healing of micro- and macrocracks under local heating and x-ray irradiation of LiF single crys-
tals is studied. The main features revealed in crack healing due to local actions are described. The contribution
of the plastic zone formed upon the arrest and healing of a crack to the strength of the crystal is estimated.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, there are many publications concerned
with the crack healing predominantly observed in ionic
crystals with clearly defined cleavage planes [1]. In par-
ticular, Grdina and Neverov [2] described the main fea-
tures revealed in the healing of cracks under compres-
sion loads. Finkel’ and Sergeeva [3] and Fedorov et al.
[4] investigated the crack self-healing upon the arrest of
a crack and fast unloading of the sample, for example,
through lateral chipping off the crystal. Special atten-
tion was paid to the influence exerted by external fac-
tors (heating, electric field) on the recovery of the con-
tinuity of crystals and their strength properties [5].

In this work, we analyzed the possibility of healing
a crack in LiF crystals under conditions where the crack
tip is subjected to a local mechanical load. The local
load was applied to the crack tip by way of heating or
x-ray irradiation of the material in the immediate vicin-
ity of the crack tip. In the loaded region, there arise
compressive stresses, which can be used to recover the
continuity disturbed under the load. The difference
between these schemes of loading the samples lies in
the fact that heat stresses disappear upon cooling of the
sample, whereas the stresses induced during irradiation
can persist in the crystal over a long period of time and
keep the crack closed even in the case when the conti-
nuity of the material remains disturbed.

In this respect, the main objectives of the present
work were (i) to choose the regimes and schemes of
local action on a crack tip in such as way as to ensure
recovery of the continuity of the material at the crack
tip and (ii) to develop an appropriate method for
directly measuring the strength of the samples with a
healed crack and to perform these measurements.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Prismatic samples 3 × 8 × 40 mm in size were
cleaved from large blocks of LiF single crystals along
the cleavage planes. An incipient crack of length L =
1063-7834/04/4609- $26.00 © 21667
20–30 mm was formed in the (001) plane. The crack
was symmetric with respect to the larger face of the
sample.

The dislocation structure of the tip of the arrested
crack was revealed by chemical etching of the sample
in an aqueous solution of ferric chloride FeCl3. For
chemical etching, we used only the freshly cleaved sur-
faces of the sample. For this purpose, the initial sample
was split into two parts along the (100) plane: one part
of the sample was used to observe the initial dislocation
structure at the crack tip, and the other part was used to
reveal a structure formed at the crack tip after healing.

The required length of the crack to be studied was
attained through intermittent propagation of the crack
under a small impact load. A single jump of the crack
was equal to 2–3 mm. This character of crack propaga-
tion provided the formation of slip lines in the form of
a specific dislocation cross at points where the crack
was arrested.

Crack healing was accomplished using three
schemes: local heating, irradiation, and compression.
For local heating of the samples, we used a copper rod
4 mm in diameter. The temperature of the copper rod
was varied in the range from 100 to 350°C. This
scheme provided one-sided and two-sided heating of
the samples. In the second scheme, the samples were
irradiated on a DRON-2 diffractometer at a tube voltage
of 25–30 kV and a current of 8–10 mA. These parame-
ters of the irradiation correspond to a dose of 0.05 R/s.
In the third scheme, the samples were compressed
under a load of up to 20 N either with the use of a prism
or in a cramp. In some experiments, the action on the
sample was combined: a slightly compressed sample
was locally heated in the region of the crack tip.

A number of experiments were carried out with
microcracks formed upon indentation on the surface of
the crystals [6]. Such microcracks are penny-shaped
and lie in the (110) planes. In these experiments, the
length of cracks was measured by the optical method
before and after the indentation.
004 MAIK “Nauka/Interperiodica”
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The quality of the healing of macrocracks was eval-
uated by mechanical testing of the samples with initial
and healed cracks. In this case, first, we measured the
crack length L and the critical breaking load F. Then,
these data were used to determine the intensity factor of
crack tip stresses from the relationship [7]

where h is the half-width of the sample and w is the
thickness of the sample.

3. RESULTS AND DISCUSSION

3.1. Healing of Microcracks

Microcracks were formed upon indentation with
loads of 0.5, 1.0, and 2.0 N. At these loads, the charac-
teristic size of the cracks was equal to 20–60 µm
(Fig. 1). Initially, there were only a few incipient micro-
cracks in a small region. Then, this region was sub-
jected to either heating or x-ray irradiation through a
lead mask with an aperture 2 mm in diameter. The crack
sizes were measured before and after the exposure. We
did not observe a variation in the length of microcracks
upon local heating. However, under x-ray irradiation,
the sizes of microcracks slightly decreased (see table).

The samples were irradiated for 2 h. No effect was
observed at shorter exposures (of the order of 103 s).
Therefore, the healing should be enhanced with an
increase in the irradiation dose. Since no crack healing
was revealed upon local heating, the microcracks
formed upon indentation are fairly stable. This can be
associated with the geometry of the {110} surface of
the cracks, which is not a cleavage plane. The cracks in

K1
2 3LF

wh h
------------------,=

50 µm

Fig. 1. Microcracks formed under indentation with a Vick-
ers pyramid.

Changes in the microcrack size (µm) under local irradiation

a 91 77 79 65 42 103 112 78 161 148 124 192

b 82 70 79 65 39 91 108 75 155 140 123 184

Note: a is the size of the microcrack before irradiation, and b is the
size of the microcrack after irradiation.
PH
these planes have a well-developed surface relief inhib-
iting the healing. Chemical etching of the irradiated
samples did not reveal grooves typical of regions with
healed cracks. This suggests that, in the case under con-
sideration, there occurs only a visual decrease in the
crack size (optical contact is regained).

3.2. Healing of Macrocracks

As a rule, upon single-stage heating of a sample, the
initial crack closes within a segment with a size of the
order of the loaded region (2–3 mm). Most frequently,
the crack is completely healed along the whole length
of this segment. The front of the initial crack is not rec-
tilinear but is slightly concave toward the crack propa-
gation. As the thickness of the sample increases, the
front of the crack straightens out but the oval form is
retained for crystals of all sizes used in our experiments
(Fig. 2a).

In some experiments, the samples were subjected to
one-sided heating. The specific features of the crack
healing upon one-sided heating are illustrated in
Fig. 2b. It can be seen that the crack is not uniformly
healed in the bulk of the sample.

The healed crack segment adjacent to the heating
rod is longer than that located deep in the bulk or at the
opposite end of the sample. As the thickness of the sam-
ple increases, the healing of cracks becomes more non-
uniform. More effective healing is provided by two-
sided heating of the sample (Fig. 2c). In this case, the
sample is more uniformly heated in the bulk and the
whole tip of the crack occurs in the zone of compressive
stresses. It should be noted that the front of the crack
healing is concave away from the initial crack. This can
be associated with the fact that the contours of the
opposite edges of the crack at the center of the sample
coincide with each other more closely than those at the
periphery of the sample. Microcleavages that are more
frequently observed at the periphery of the sample can
inhibit the edges of the crack from approaching each
other and, thus, prevent crack healing.

An attempt was made to heal a crack in a large
region. To accomplish this, the heating area was gradu-

(a) (b) (c)

2 mm

Fig. 2. Fronts of the initial and healed cracks: (a) the initial
crack, (b) the crack after one-sided heating, and (c) the
crack after two-sided heating.
YSICS OF THE SOLID STATE      Vol. 46      No. 9      2004
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ally shifted toward the origin of the crack during heal-
ing. A fragment of the healed crack is shown in Fig. 3.
It can be seen that the healing is not as perfect as in the
first case. The quality of the healing is reduced away
from the crack tip. It is worth noting that unhealed seg-
ments of the crack are observed both at the periphery
and at the center of the sample.

When the temperatures of heating are not very high
and in the case of “hard” crystals, the crack closes as a
result of the reversible slip along the same bands and
lines that are formed at the arrest of the crack. This is
not attended by the formation of new zones of plastic
deformation. In “soft” crystals and at high temperatures
of heating, the heated regions undergo a severe defor-
mation. This is accompanied not only by an increase in
the size of the slip bands at the tip of the initial crack
but also by a plastic deformation in the region of ther-
mal contact along the other slip planes.

Analysis of the etch patterns of the samples with
healed cracks demonstrates that, in the majority of the
studied samples, crack healing restores not only the
optical contact but also the adhesion between the oppo-
site edges of the crack. The quality of the healing in the
regions adjacent to the tip of the crack is higher than
that in the regions away from it. In some cases, chemi-
cal etching revealed only a few pits on the track of the
healed crack (Fig. 4). It is assumed that these pits are
formed through local plastic compression of asperities
of subatomic size (Fig. 5).

The number of asperities increases away from the
crack tip. There arise groups of etch pits and single etch
grooves. As a result, the total number of relief macroas-
perities so large that their healing necessitates substan-
tially increased stresses in the loaded region. However,
these stresses will give rise to strains not only in the
vicinity of the crack but also in the whole volume of the
crystal. In our experiments, we did not reach such large
loads and restricted our measurements to the range of
stresses that did not cause an appreciable strain of the
sample as a whole.

It is of interest to evaluate the degree to which the
strength properties of the crystals can be recovered. For
this purpose, samples with a healed crack were broken
according to the scheme of a normal rupture. In this
case, we measured the critical breaking load F for a
sample with a crack of specified length. The results of
these experiments for two sets of samples with initial
and healed cracks are presented in Fig. 6.

It should be noted that the breaking load for a sam-
ple with a healed crack is larger than that for a sample
with an unhealed crack. Figure 6 shows the depen-
dences of the breaking load on the length of the initial
healed and unhealed cracks. The main and obvious fac-
tor behind the above difference between the breaking
loads is the decrease in the length of the crack upon
healing. This is associated with the fact that, in some
cases, the length L of a healed crack cannot be deter-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      2004
mined precisely because the front of this crack is far
from rectilinear.

However, the effective healing length ∆L, which is
determined from the change in the critical breaking
load, as a rule, somewhat exceeds the mean value of ∆L
obtained in the experiment. In other words, apart from
the decrease in the length of the crack, there is another
factor that causes a certain hardening of the samples
with a healed crack. In particular, this hardening can be
caused by the interaction of the crack with a plastic
zone formed upon the arrest and healing of this crack.

The plastic zone can be represented in the form of

two slip lines in the ( ) and (011) half-planes (facing011

3 mm

Fig. 3. Surface of the healed crack after repeated local
heating.

(011)

(001)

(010)
–

50 µm

Fig. 4. Dislocation structure of the tip of the healed crack.

Fig. 5. Schematic diagram illustrating the formation of etch
pits along the trajectory of the healed crack.
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the origin of the crack) and a disclination dipole at the
tip of the healed crack in the (001) plane. Then, the
change in the intensity factor of crack tip stresses ∆K1
due to elastic stresses in the plastic zone can be written
in the form

where σxx are the stresses at the edges of the crack and
∆L is the length of the healed region. Under the condi-

tion l < ∆L  (l is the length of the slip line), which is
satisfied almost without exception in the case of spon-
taneous arrest of the crack [8], the stresses σxx are com-
pressive stresses. The change in the factor ∆K1 can be
represented in the form

where A = Gb/2π(1 – ν), G is the shear modulus, b is the
Burgers vector of dislocations, ν is the Poisson ratio,
n is the number of dislocations in the slip line, and α is

∆K1
2 3L

wh h
-------------- σxx x( ) x,d

∆L

∆L L+

∫=

2

∆K1
2 6LAn

wh h
--------------------- 1 L

∆L
-------+ 

  α ,ln=

2 4 6 8 10 12 14 16
L, mm

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
F

, N 1
2

Fig. 6. Critical breaking load F for samples with (1) a
healed crack and (2) an unhealed crack.
P

the numerical coefficient determined by the geometry
of the plastic zone (α < 1).

For a sufficiently large number of dislocations in the
slip line (n > 100), the change in the intensity factor of
crack tip stresses ∆K1 can be as great as several tens of
percent. The hardening effect can give way to the soft-
ening effect in the case of other modes of crack arrest

when the plastic flow is more pronounced in the ( )
and (011) half-planes lying in front of the crack tip.
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Abstract—Dynamic indentation is used to study the character of a plastic flow during room-temperature defor-
mation of an Al–2.7% Mg alloy in micro- and submicrovolumes (the indentation depth is varied from 50 nm to
15 µm) at strain rates varying in the range 0.0005–1 s–1. In this region of parameters, the boundaries of stable
deformation and two modes of unstable deformation have been found. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Aluminum–magnesium alloys are classic examples
of materials that can exhibit various plastic-flow insta-
bility modes [in particular, the Portevin–Le Chatelier
(PLC) effect] during deformation [1–8]. The processes
of self-organization in dislocation ensembles, which
are still poorly understood, are of fundamental interest,
since the macroscopic properties of materials can be
predicted using extensive knowledge on the dynamics
of isolated defects.

From the practical standpoint, it is important that the
PLC effect causes deformation localization and a large
number of deformation bands (Lüders bands); as a
result, a smooth surface becomes rough. Al–Mg alloys
are widely applied as materials for disposable food
packaging (cans, tubes, etc.) and are promising materi-
als for use in the automotive industry (car bodies and
internal and external coverings) [9], where rough sur-
faces of manufactured parts are unacceptable. There-
fore, the problem of determining the boundaries of
deformation modes that separate the regions of stable
and unstable plastic flows is of particular importance.
These boundaries are usually found by testing macro-
scopic samples at various temperatures and strain rates
[2–5]. Such tests, however, are labor- and material-con-
suming.

The method of mechanical testing where a small,
continuously increasing load is applied to a well-certi-
fied diamond indenter (nanoindentation, or depth-sens-
ing testing) has recently attracted considerable interest.
It consists in continuous recording of the load P(t)
applied to the indenter and of the indentation depth h(t)
with a resolution of ~1 nm. These data are used to plot
a P–h loading diagram (which is an analog of a σ–ε dia-
gram for uniaxial testing), which is then analyzed [10–
12]. It is very tempting to substitute nondestructive
1063-7834/04/4609- $26.00 © 21671
tests for macroscopic tests of destructive samples using
only local deformation.

Unlike tension/compression, nanoindentation
makes it possible to localize plastic deformation in a
submicron or micron zone and to vary its dimension R
(R is usually taken to be equal to h) and the strain rate

 = dh/hdt by several orders of magnitude within one
test cycle. The modern methods of dynamic nanoinden-
tation can vary the deformed zone from virtually
atomic to macroscopic sizes in one cycle by applying a
load that is continuously varied from zero. Because of
this specific feature, mechanical properties are auto-
matically scanned through the plastically deformed
zone, which substantially increases the efficiency and
accuracy of mechanical tests. Moreover, multiple tests
of the same sample make it possible, if necessary, to
accumulate huge statistical experimental data (e.g., on
serrated deformation) and to analyze them by modern
processing methods (multifractal, spectral, and other
methods of analysis).

However, it is unclear how the substitution of
nanoindentation for mechanical macroscopic tests
affects the physical mechanisms and phenomenology
of the development of flow instabilities. In particular,
various plastic-flow instabilities, which reflect the self-
organization and collective behavior of a large number
of structural defects, will inevitably change character as
the characteristic sizes of the deformation zone
decrease to values that can be comparable, e.g., to the
conventional sizes of dislocation pileups.

In this work, we studied the regions of various
modes of plastic-flow instabilities, including the PLC
effect, depending on the size of the deformed zone and
the strain rate in an Al–2.7% Mg alloy (comprehen-
sively studied by mechanical macroscopic tests) under

ε̇
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a load that linearly increases with time at room temper-
ature.

Indentation measurements were performed on a
unique device, which allowed us to record a P–h dia-
gram with a P resolution of ~1 mN, an h resolution of
~1 nm, and a time resolution of t ~ 50 µs. Samples of
the Al–2.7% Mg alloy 8 × 5 × 40 mm in size were
spark-cut from rolled sheets. The samples were
mechanically polished with a paste having a grain size
of 3–5 µm, annealed at 450°C for 2 h, and then water-
quenched. In our previous work [13], we found that
deformation jumps during nanoindentation of the Al–
3% Mg alloy can be divided into two types: irregular
jumps with steep edges (<50 µs) (type I) and regular
slow jumps with edges >10–100 ms (type II). The
results of this work allowed us to determine kinematic
conditions of the appearance of instabilities and to
refine the boundaries of their regions (Fig. 1). The dia-
gram in Fig. 1 was plotted after processing more than
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Fig. 1. Regions of jumps of types I and II with an amplitude
∆h observed during indentation of the Al–2.7% Mg alloy.
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Fig. 2. Instabilities of types I and II in the transition region
observed under a linearly increased load.

M
1

P

400 measurements performed on the same sample in a
wide range of loading rates (about four orders of mag-
nitude) at indentation depths of 0.05–15 µm with Berk-
ovich and Vickers indenters. Contour ABCDEFGA
shows the region of variables h and  studied by us.

In most cases, the unstable type-I plastic flow
(MKHBM region) is detected at small indentation
depths (from ~0.05 to 2–4 µm). As a rule, the number
of such jumps is small (from several to several dozen)
and their coordinates in the h–  pseudophase diagram
are strongly scattered. Ordinarily, a substantial portion
of the curve in this mode corresponds to stable defor-
mation.

The type-II instability, which is characterized by a
linear dependence of the deformation-jump height on
the indentation depth [13], is limited by contour EHB-
CDE. This region is bounded from above on  by curve
BE, which becomes virtually horizontal at h > 4–5 µm.
In segment EH, the critical strain rate corresponding to
a change of the plastic-flow modes is  ≅  0.05 s–1. At

h < 3–4 µm, the value of  decreases smoothly. Since
the region below curve ABCD cannot be reached exper-
imentally, the position of point B is dictated by the tech-
nical capabilities of the equipment; this point is likely
to move below 1 µm when the strain rate decreases at
these depths.

In intermediate region BCH, jumps of both types
occur; as h increases, instabilities of type II substituted
for type-I jumps (Fig. 2).

It should be noted that nanoindentation did not
reveal a noticeable dependence of the results, including
the positions of the instability boundaries, on the type
of pyramid indenter employed (Berkovich or Vickers
indenter).

The results obtained allow us to make some conclu-
sions regarding the nature of instabilities observed dur-
ing dynamic indentation. Instabilities of types I and II
are most likely controlled by different microscopic
mechanisms. A type-I instability may be due to static
pinning of dislocations. This conclusion is supported
by the presence of steep jump edges and a horizontal
plateaus (Fig. 2), which can be related to the action of a
system of obstacles hindering dislocation motion under
certain conditions (depth h does not increase) until a
certain critical stress is reached. This stress should be
determined by the strength and volume distribution of
the obstacles that appear in the Al–Mg alloy upon roll-
ing and subsequent quenching. We can use this conclu-
sion to explain the random appearance of this type of
instability, which manifests itself in both the indenta-
tion-depth jump and the related increase in the load.

An instability of type II is most likely determined by
dynamic strain aging due to the interaction of disloca-
tions with impurity Mg atoms (Cottrell atmospheres).
This conclusion is supported by the change in the jump
shapes. The rise time of the jumps is much longer than

ε̇

ε̇

ε̇

ε̇c

ε̇c
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the rise time of type-I jumps and corresponds to the
time of motion of dislocations with impurity clouds,
and the flat segments of the slow increase in h corre-
spond to the breakaway of dislocations from impurity
clouds (which causes more rapid dislocation motion).
An additional argument for the mechanism of strain
aging is the presence of a critical strain rate determining
the upper limit of this mode (  ≈ 0.05 s–1). This value
virtually coincides with the analogous value measured
upon uniaxial tension of macroscopic samples of the
Al–Mg alloy in “soft” tension testing machines [14–
16], where this mechanism is believed to be most prob-
able. In terms of this model of the PLC effect, the reg-
ularity of the instability is due to a uniform impurity
distribution, which is provided by proper heat treatment
of the alloy. The independence of  from h in the
greater part of the h range under study, as well as the
almost linear increase in ∆h with h (Fig. 3), indicates
that the critical quantity for the formation of a jump is
a certain overstress at the jump leading edge: ∆σ ≈
∆P/24.5h2 ≈ 0.05∆P/24.5h2 ≈ 0.05〈σ〉 , where 〈σ〉  is the
average contact pressure at the indentation surface or,
what is the same, the microhardness HV [17].

The character of the plastic flow in the transition
region is determined by the competition between these
two types of instability. As the average rate  decreases
(with increasing indentation depth h in the case of a lin-
ear increase in the load), a type-II instability becomes
dominant.

Thus, using continuous indentation, we have found
the boundaries of various plastic-flow modes that occur
during local deformation of the Al–Mg alloy. The fact
that the critical value  (characterizing the transition
from an unstable to a stable flow) for a local test at h >
3–4 µm coincides with the analogous critical value as
determined upon uniaxial macroscopic tests indicates
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Fig. 3. Three-dimensional region of type-II jumps observed
during continuous indentation of the Al–2.7% Mg alloy.
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that the nature of the instability in both cases is caused
by internal microscopic factors rather than by the
scheme of loading. This finding gives grounds to hope
that, if necessary, it will be possible to replace labor-
and material-consuming macroscopic tests with
dynamic microindentation in order to measure struc-
tural characteristics of such alloys and the boundaries
of instabilities of the PLC type.
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Abstract—The magnetoelectric effect in ferrite–piezoelectric composites is considered. A theory of the mag-
netoelectric effect in the electromechanical-resonance region for disk-shaped samples is presented. The mag-
netooptical coefficient is calculated for longitudinal and transverse orientations of electric and magnetic fields.
It is shown that the effect increases by a few orders of magnitude at the electromechanical-resonance frequency.
The frequency dependence of the effect is experimentally studied for a ferrite-nickel spinel–PZT composite. A
resonant increase in the effect is observed (in agreement with the theory); the highest value of the magnetoelec-
tric coefficient was 15 V/(cm Oe). © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The magnetoelectric (ME) effect consists in the ini-
tiation of polarization under a magnetic field and, vice
versa, in the initiation of magnetization under an elec-
tric field. In magnetoelectric crystals, the mechanism of
this effect is the joint action of the spin–orbit coupling
and the interaction of a magnetoactive ion with the anti-
symmetric part of the crystalline potential and the
external electric field [1, 2]. In ferrite–piezoelectric
composites, the ME effect can be absent in individual
ferrite and piezoelectric components and appears due to
mechanical interaction between the ferrite and piezo-
electric subsystems. In a magnetic field, mechanical
stresses arise in the magnetic subsystem due to magne-
tostriction and are transferred to the piezoelectric
phase, where they produce an electric field due to the
inverse piezoelectric effect. The ME effect in such com-
posites is a secondary effect or a so-called “product
property” [3].

Macroscopically, composite materials can be char-
acterized by effective parameters, such as the effective
elastic moduli, piezoelectric effect, and magnetostric-
tion. It is clear that these effective parameters can be
defined in terms of the parameters of the ferrite and
piezoelectric components, their proportions, and the
degree of connectivity. The effective parameters char-
acterizing a material can be used if the characteristic
scales of changes in external influences are much larger
than the sizes of the building blocks. For the layered
materials in question, these sizes are the thicknesses of
the ferrite and piezoelectric layers. Since these sizes for
layered and bulk composite materials are typically
~10 µm, the effective parameters can be used to
describe the propagation of mechanical vibrations up to
frequencies of the order of hundreds of megahertz.
1063-7834/04/4609- $26.00 © 21674
In ferrite–piezoelectric composites, the ME effect is
associated with the mechanical interaction of the sub-
systems; therefore, a significant increase in the magne-
toelectric coefficient will be observed in the vicinity of
electromechanical resonance. This effect was indicated
for the first time in [4, 5]. The magnetoelectric coeffi-
cient was measured in bulk rod-shaped composite
materials at the resonant frequency in [6]; however, the
resonance was used in [6] only as a method for separat-
ing the signal from the background; neither a theoreti-
cal nor a detailed experimental study was carried out.
The frequency dependence of the effect in the region of
the electromechanical resonance was experimentally
studied in [7]. Rectangular samples based on terphenol
and lead zirconate-titanate (PZT) were studied. At a fre-
quency of 59.8 kHz, the magnetoelectric coefficient
was as large as 8.7 V/(cm Oe) in a dc magnetic field of
0.7 kOe. In [8], the frequency dependence of the ME
effect for plate-shaped samples in the range of sonic
frequencies was theoretically described for the first
time and experimental results for ferrite-nickel spinel–
PZT composites were presented. The magnetoelectric
coefficient was calculated for transverse and longitudi-
nal electric and magnetic fields in terms of the effective
parameters of the composite. It was shown that the
magnetoelectric coefficient increases more than tenfold
at the antiresonance frequency. However, disk-shaped
(rather than plate-shaped) samples are more often used
in practice. The theory of the ME effect in ferrite–
piezoelectric composites for disk-shaped samples is
briefly presented in [9]. However, the magnetoelectric
coefficient is calculated only for longitudinal electric
and magnetic fields. In practice, the effect under trans-
verse fields is generally tenfold stronger than under lon-
gitudinal fields. Currently, there is no theoretical
004 MAIK “Nauka/Interperiodica”
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description of the ME effect in the region of the electro-
mechanical resonance under transverse fields.

In this paper, we initially give a detailed theoretical
description of the ME effect in the range of sonic fre-
quencies in terms of effective parameters. The case of
longitudinal and transverse magnetic fields is consid-
ered for disk-shaped samples. The frequency depen-
dence of the magnetoelectric coefficient is found theo-
retically in the region of the electromechanical reso-
nance. For specific samples of ferrite-nickel spinel–
PZT composites, the frequency dependence of the mag-
netoelectric coefficient is calculated and compared with
experimental results.

2. MODEL AND BASIC EQUATIONS

Let us consider a ferrite–piezoelectric composite
sample shaped as a thin disk of radius R and thickness
d with thin metal contacts deposited onto its bottom and
top surfaces (Fig. 1).

Let the sample be polarized along the normal to the
contact planes (z axis). A dc (bias) and an ac magnetic
field can be directed either along the normal to the con-
tact plane or in the contact plane. Therefore, we will
consider the cases of longitudinal and transverse fields.
Due to magnetostriction, the ac magnetic field causes
vibrations to propagate over the sample thickness and
radius (thickness and radial vibrations, respectively). In
what follows, we will restrict our consideration to the
lowest frequency radial vibrations, since they are the
easiest to observe. Thickness vibrations have higher
frequencies and are more difficult to separate from
higher harmonics of radial vibrations.

Let the disk be thin, i.e., d ! R. Since the disk sur-
faces are free, the normal components of the stress ten-
sor are zero. For a thin disk, the component T3 of the
stress tensor can be considered to be zero not only at the
surface but also in the entire volume. Moreover, the top
and bottom disk surfaces are equipotential; therefore,
only the z component of the electric field will be non-
zero. Thus, in the case of longitudinal fields, the strain
tensor Si and the z component Dz of the electric induc-
tion vector satisfy the equations

(1)

where sij are the effective compliances of the compos-
ite; dij and qij are the effective piezoelectric and piezo-
magnetic moduli, respectively; εij is the effective per-
mittivity; and Ei and Hi are the components of the elec-
tric and magnetic field vectors. The procedure for
calculating the effective parameters of a composite is
given in [10].

In the case of transverse electric and magnetic fields,
we choose the coordinate system such that the x axis

S1 s11T1 s12T2 d31E3 q31H3,+ + +=

S2 s12T1 s22T2 d31E3 q31H3,+ + +=

D3 ε33E3 d31 T1 T2+( ) m33H3,+ +=
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coincides with the magnetic field direction. Therefore,
the equations for the strain tensor and the electric
induction vector are

(2)

For further calculations, it is convenient to use the
symmetry of the problem and to pass over to cylindrical
coordinates z, r, and θ. In going to the new coordinate
system, the components of the strain and stress tensors
are transformed as [11]

(3)

The strain tensor components in the cylindrical
coordinate system are expressed in terms of the
medium displacement vector u as

(4)

By substituting the expressions for the stress tensor
into the equation of motion of the medium, we obtain
an equation of radial displacements, from which we can
find the strains. However, the form of the equation for
medium displacements depends on the electric and
magnetic field orientations; therefore, we next consider
the cases of longitudinal and transverse fields sepa-
rately.

S1 s11T1 s12T2 d31E3 q11H1,+ + +=

S2 s12T1 s22T2 d31E3 q12H1,+ + +=

D3 ε33E3 d31 T1 T2+( ) m31H1.+ +=

S1 Srr θcos
2

2Srθ θ θcossin– Sθθ θ,sin
2

+=

S2 Srr θsin
2

2Srθ θ θcossin Sθθ θ,cos
2

+ +=

Trr T1 θcos
2

2T5 θ θcossin T2 θ,sin
2

+ +=

Tθθ T1 θsin
2

 – 2T5 θ θcossin T2 θ.cos
2

+=

Srr ∂ur/∂r,=

Sθθ 1/r( )∂uθ/∂θ ur/r,+=

Srθ ∂uθ/∂r uθ/r– 1/r( )∂ur/∂θ.+=

z y

xP

r

θ

Fig. 1. Sample configuration.
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3. LONGITUDINAL ELECTRIC 
AND MAGNETIC FIELDS (THEORY)

In the case of longitudinal fields, the dc bias and ac
magnetic fields are aligned with the polarization vector.
The longitudinal magnetic field causes mechanical
vibrations of the medium due to magnetostriction.
These vibrations, in turn, produce an electric field due
to the piezoelectric effect. In order to determine the
strength of the induced electric field and the magneto-
electric coefficient, we first solve the equations of
medium motion to determine the arising strains and
then solve the electrostatic equations to determine the
strength of the arising electric field.

Due to the axial symmetry, the nonzero components
of the stress and strain tensors in the cylindrical coordi-
nate system are Trr , Tθθ, Srr, and Sθθ. The other compo-
nents of the stress and strain tensors are zero. From the
axial symmetry, it also follows that the displacement
component uθ is zero. Therefore, Eqs. (1) take on the
form

(5)

The equation of motion for radial vibrations of the
disk is

(6)

where ρ is the composite density and ω is the circular
frequency.

Let us express the stress components from Eqs. (5)
in terms of the strain components:

(7)

where ν = –s12/s11 is the Poisson ratio.

To derive an equation for radial displacements, we
substitute Eqs. (7) into Eq. (6). After transformations,
Eq. (6) reduces to the Bessel equation

(8)

where k = ω . The general solution to
Eq. (8) is a linear combination of the first- and second-
order Bessel functions,

(9)

Srr s11Trr s12Tθθ d31E3 q31H3,+ + +=

Sθθ s12Trr s11Tθθ d31E3 q31H3.+ + +=

∂Trr

∂r
----------

1
r
--- Trr Tθθ–( ) ρω2

ur+ + 0,=

Trr

=  
1

s11 1 ν2
–( )

------------------------- Srr νSθθ 1 ν+( ) d31E3 q31H3+( )–+( ),

Tθθr

=  
1

s11 1 ν2
–( )

------------------------- νSrr Sθθ 1 ν+( ) d31E3 q31H3+( )–+( ),

∂2
ur

∂r
2

----------
1
r
---

∂ur

∂r
--------

ur

r
2

----– k
2
ur+ + 0,=

ρs11 1 ν2
–( )

ur c1J1 kr( ) c2Y1 kr( ).+=
P

The integration constants c1 and c2 are determined
from the boundary conditions: at r = 0, the displace-
ment ur = 0, and at r = R, the stress Trr = 0. This yields

(10)

where we introduced a dimensionless variable κ = kR,
which depends on the frequency, disk radius, and the
propagation velocity of elastic vibrations.

Substituting Eqs. (10) for the integration constants
c1 and c2 into Eq. (9) and expressing the stress compo-
nents in terms of strains, we obtain

(11)

The electric field can be found from the equation for
the normal component of the electric induction vector:

(12)

Under open-circuit conditions (as in experiment),
we have

(13)

Substituting Eq. (12) into Eq. (13) and using
Eqs. (11), we obtain (after some mathematical manipu-
lation) the induced electric field:

(14)

where

(15)

(16)

Here,  =  is the electromechanical cou-

pling coefficient for radial vibrations.

c2 0,=

c1
1 ν+( )R

κ J0 κ( ) 1 ν–( )J1 κ( )–
------------------------------------------------------ q31H3 d31E3+( ),=

Trr
1

s11 1 ν–( )
-----------------------

κ J0 kr( ) 1 ν–( )R
r
---J1 kr( )–

κ J0 κ( ) 1 ν–( )J1 κ( )–
-------------------------------------------------------------- 1–=

× q31H3 d31E3+( ),

Tθθ
1

s11 1 ν–( )
-----------------------

νκ J0 kr( ) 1 ν–( )R
r
---J1 kr( )+

κ J0 κ( ) 1 ν–( )J1 κ( )–
------------------------------------------------------------------ 1–=

× q31H3 d31E3+( ).

D3 d31 Trr Tθθ+( ) ε33E3 m33H3.+ +=

r r θD3d

0

2π

∫d

0

R

∫ 0.=

E3
1
∆a

-----
2d31q31

ε33s11 1 ν–( )
------------------------------

1 ν+( )J1 κ( )
∆r

------------------------------- 1– 
 –=

+
m33

ε33
-------- H3,

∆r κ J0 κ( ) 1 ν–( )J1 κ( ),–=

∆a 1 K p
2

– K p
2

1 ν+( )J1 κ( )/∆r.+=

K p
2 2d31

2

ε33s11 1 ν–( )
------------------------------
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For longitudinal electric and magnetic fields, the
magnetoelectric coefficient is defined as E3 = αE, LH3
and can be found to be

(17)

Expression (17) for the magnetoelectric coefficient
has a resonant frequency dependence. The roots of
Eq. (15) define the resonance frequencies, and the roots
of Eq. (16) give the antiresonance frequencies for the
piezoelectric effect. Thus, under open-circuit condi-
tions, a sharp increase in the magnetoelectric coeffi-
cient is observed at the antiresonance frequency. The
resonance frequency, as in the case of the piezoelectric
resonance, is controlled primarily by the disk radius R
and compliance s11. For ferrospinel–PZT composite
samples ~1 cm in radius, the lower value of the resonant
frequency is near 300 kHz. For longitudinal fields, the
magnetoelectric coefficient is directly proportional to
the product of piezoelectric (d31) and piezomagnetic
(q31) moduli and is inversely proportional to the permit-
tivity ε33 and compliance s11 of the material. In fact,
such structures are always characterized by losses, pri-
marily in contacts. These losses control the resonance
linewidth and limit the peak value of the magnetoelec-
tric coefficient. The losses can be taken into account in
the damping coefficient by considering either k or ω to
be a complex quantity [12]. We will use the latter
method, representing the circular frequency as ω = ω' +
iχ, where χ is a parameter characterizing damping,
which can be determined experimentally from the res-
onance linewidth.

4. TRANSVERSE ORIENTATION
OF THE ELECTRIC AND MAGNETIC FIELDS 

(THEORY)

Now, we consider the case where the dc bias and ac
magnetic fields lie in the disk plane and are perpendic-
ular to the electric field (which is directed along the z
axis). Using Eqs. (3) to pass to the cylindrical coordi-
nate system, we represent Eqs. (2) in the form

(18)

In this case, the equations for the strain tensor
become more complicated and, in addition to the radial
dependence, there appears an angular dependence
because of the magnetic field breaking the axial sym-
metry of the problem. Let us express the stress compo-

αE L,

=  
1
∆a

-----
2d31q31

ε33s11 1 ν–( )
------------------------------ 1

1 ν+( )J1 κ( )
∆r

-------------------------------– 
  m33

ε33
--------– .

Srr s11Trr s12Tθθ d31E3+ +=

+ q11 θcos
2

q12 θsin
2

+( )H1,

Sθθ s12Trr s11Tθθ d31E3+ +=

+ q11 θsin
2

q12 θcos
2

+( )H1.
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nents Trr and Tθθ from Eqs. (18). After simple algebra,
we obtain

(19)

Substituting Eqs. (19) into the equation of motion (6),
we arrive at an equation for radial vibrations for the
transverse field orientation,

(20)

where we introduced the notation D(θ) = (q11 – q12)(1 –
ν)(cos2θ – sin2θ)H1.

The solution to Eq. (20) is

(21)

where J1(kr) and Y1(kr) are the first- and second-order

Bessel functions, respectively, and k = ω .

The integration constants c1 and c2 are determined
from the same boundary conditions as in the case of
longitudinal fields. To satisfy the boundary condition
at r = 0, we take into account that the second-order
Bessel function at small values of the argument can be
written as

(22)

Using this property of the Bessel function, the inte-
gration constant c2 is found to be

(23)

From the boundary condition that the radial compo-
nent of the stress tensor vanish at the lateral surface of
the disk, we find the integration constant c1 to be

(24)

As follows from Eq. (21) combined with Eqs. (23)
and (24), the amplitude of radial vibrations for trans-
verse field orientations depends not only on the radial
variable r but also on the angular variable θ. Indeed, the
excitation of elastic vibrations along the magnetic field

Trr
1

s11 1 ν2
–( )

------------------------- Srr νSθθ 1 ν+( )d31E3–+[=

– θcos
2 ν θsin

2
+( )q11 θsin

2 ν θcos
2

+( )q12+( )H1 ] ,

Tθθ
1

s11 1 ν2
–( )

------------------------- νSrr Sθθ 1 ν+( )d31E3–+[=

– ν θcos
2 θsin

2
+( )q11 ν θsin

2 θcos
2

+( )q12+( )H1 ] .

∂2
ur

∂r
2

----------
1
r
---

∂ur

∂r
--------

ur

r
2

----– k
2
ur

D θ( )
r

------------–+ + 0,=

ur c1J1 kr( ) c2Y1 kr( ) D θ( )/ k
2
r( ),+ +=

ρs11 1 ν2
–( )

Y1 z( ) 2/ πz( ).–≈

c2 πD θ( )/ 2k( ).=

c1 R 1 ν+( )d31E3{=

+ q11 θcos
2 ν θsin

2
+( ) q12 ν θcos

2 θsin
2

+( )+( )H1

+ D θ( ) 1 ν–( ) πY1 κ( )/ 2κ( ) 1/κ 2 πY0/2–+( ) } /∆r.
4
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(x axis, θ = 0) and perpendicular to it (y axis, θ = π/2)
is determined by different coefficients, q11 and q12,
respectively. Since these coefficients differ in value, the
amplitude of radial vibrations depends on the angular
variable. The spatial frequency of radial vibrations is
controlled by the properties of the medium and is inde-
pendent of the excitation method applied; therefore, the
parameter k is the same for longitudinal and transverse
field orientations.

Using solution (21), we express the components of
the stress tensor from Eqs. (19) combined with Eqs. (4).
The calculations yield

(25)

As in the case of the longitudinal field orientation,
the electric field can be found from Eq. (12) for the nor-
mal component of the electric induction combined with
the open-circuit condition (13). Substituting Eqs. (25)
into Eq. (12) and the result into Eq. (13), we obtain,
after integration and simple algebra,

(26)

In the case of transverse field orientations, the mag-
netoelectric coefficient is defined as αE, T = E3/H1.

Trr
1

s11 1 ν2
–( )

------------------------- c1 kJ0 kr( ) 1 ν–( )
J1 kr( )

r
---------------– 

 

=

+ D θ( ) π
2
---Y0 kr( ) 1 ν–( )π

2
---

Y1 kr( )
kr

----------------– 1 ν–( ) 1

k
2
r

2
---------– 

 

– 1 ν+( )d31E3 θcos
2 ν θsin

2
+( )q11(–

---+ θsin
2 ν θcos

2
+( )q12 )H1

 ,

Tθθr
1

s11 1 ν2
–( )

------------------------- c1 νkJ0 kr( ) 1 ν–( )
J1 kr( )

r
---------------+ 

 

=

+ D θ( ) νπ
2
---Y0 kr( ) 1 ν–( )π

2
---

Y1 kr( )
kr

---------------- 1 ν–( ) 1

k
2
r

2
---------+ + 

 

– 1 ν+( )d31E3 ν θcos
2 θsin

2
+( )q11(–

--+ ν θsin
2 θcos

2
+( )q12 )H1

 .

E3
1
∆a

-----
d31 q11 q12+( )
ε33s11 1 ν–( )
-------------------------------- 1

1 ν+( )J1 κ( )
∆r

-------------------------------– 
 =

–
m31

ε33
-------- H1.
PH
Using this definition and Eq. (26), we obtain

(27)

As follows from Eq. (27), in the case of transverse
orientation of the electric and magnetic fields, as well
as for longitudinal orientation, the magnetoelectric
coefficient is proportional to the product of the piezo-
electric and piezomagnetic moduli. For the longitudinal
orientation, this coefficient is proportional to the double
product d31q31, and for the transverse orientation, it is
proportional to the product d31(q11 + q12). Since q11 and
q12 are almost tenfold larger than q31 because of the
absence of demagnetization, it might be expected that
the effect will be several times stronger for transverse
field orientations than for the longitudinal orientation.
The frequency dependence of the coefficient αE, T is
completely identical to the frequency dependence of
the coefficient αE, L. This identity is explained by the
fact that the same radial modes of vibrations are excited
both for longitudinal and transverse orientations of the
electric and magnetic fields; only the excitation meth-
ods are different.

5. EXPERIMENT

The magnetoelectric effect was studied experimen-
tally on multilayer composite samples consisting of
eleven nickel ferrospinel layers 13 µm thick each and
ten piezoelectric PZT ceramic layers 26 µm thick each.
The samples were disk-shaped with a radius R =
9.5 mm. Before measurements, the samples were polar-
ized in an electric field of 4 kV/mm for three hours at a
temperature of 80°C. The ME effect was studied by
measuring the ac voltage induced across a sample
under an ac and a slowly varying bias magnetic field.
First, the field dependence of the low-frequency ME
effect was studied at a fixed amplitude of the ac mag-
netic field of 1 Oe; the ME coefficient was measured as
a function of the bias field strength. Then, for the bias
magnetic field strength corresponding to the maximum
ME coefficient, the frequency dependence of this coef-
ficient was measured in the region of the electrome-
chanical resonance. The measurements were carried
out for longitudinal and transverse orientations of elec-
tric and magnetic fields. The open-circuit condition in
the measurements was satisfied satisfactorily. The input
impedance (active and capacitive resistances) of the
preamplifier and contact wires exceeded the sample
impedance more than tenfold.

The experimental results and the dependences cal-
culated using formulas (17) and (27) are shown in
Figs. 2 and 3, respectively. The calculations were car-
ried out using the parameters of nickel spinel ms11 =
6.5 × 10–12 m2/N, ms12 = –2.4 × 10–12 m2/N, mq31 = 70 ×

αE T,

=  
1
∆a

-----
d31 q11 q12+( )
ε33s11 1 ν–( )
-------------------------------- 1

1 ν+( )J1 κ( )
∆r

-------------------------------– 
   – 

m31

ε33
-------- .
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10–12 m/A, mq11 = –430 × 10–12 m/A, mq12 = 125 ×
10−12 m/A, and mε33/ε0 = 10 and the parameters of PZT
ps11 = 15.3 × 10–12 m2/N, ps12 = –5 × 10–12 m2/N, pd31 =
–175 × 10–12 m/V, and pε33/ε0 = 1750. The effective
parameters of the composite were calculated (using the
technique described in [7]) to be s11 = 10 × 10–12 m2/N,
s12 = –3.9 × 10–12 m2/N, q31 = 60 × 10–12 m/A, q11 =
−320 × 10–12 m/A, q12 = 84 × 10–12 m/A, and mε33/ε0 =
28; the damping parameter was determined from the
electromechanical resonance linewidth.
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Fig. 2. Theoretical (solid curve) and experimental (dots)
frequency dependences of the magnetoelectric coefficient
for the longitudinal field orientation. Damping coefficient
χ = 15000 rad/s.
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Fig. 3. The same as in Fig. 1, but for transverse field orien-
tations. Damping coefficient χ = 7500 rad/s.
PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      200
6. DISCUSSION

It can be seen from Figs. 2 and 3 that there is good
agreement between the theory and the experimental
results. A resonant increase in the effect is observed at
a frequency near 350 kHz. The highest magnetoelectric
coefficient (almost 15 V/cm Oe) is observed in the disk
for transverse field orientations, while at a frequency of
100 Hz this coefficient is 0.16 V/cm Oe. The damping
coefficient was determined from the resonance line-
width. For transverse orientations of electric and mag-
netic fields, this coefficient was found to be smaller
than for the longitudinal orientation. In our opinion,
this result is due to the fact that the currents excited in
metal contacts (and leading to losses) are smaller in the
case of in-plane magnetic fields.

In the case of transverse orientations of magnetic
and electric fields, the effect is tenfold stronger than for
the longitudinal orientation, because, as indicated
above, the demagnetizing fields that arise for longitudi-
nal field orientation decrease the effective piezomag-
netic modulus.

Quantitative discrepancies in the values of the mag-
netoelectric coefficient are observed in both the low-
frequency range and the region of the electromechani-
cal resonance. The reason for these discrepancies is that
the effective parameters were calculated for a compos-
ite characterized by ideal connectivity and uniform
composition over the sample. Meanwhile, imperfec-
tions of layers always occur when multilayer composite
materials are prepared, with the result that the compo-
sition is not uniform over the sample. It should be noted
that the effective parameters exhibit a strong depen-
dence on concentration.

The theory developed in this paper is applicable to
both multilayer and bulk composites. The effective
parameters of composite materials will be different for
these two cases.
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Abstract—The concentration dependences of the effective magnetic moment of transition metal atoms inter-
calated into TiSe2 are analyzed in the framework of the percolation theory. It is shown that, depending on the
degree of localization of impurity states, the effective magnetic moment is determined by the overlap of 3d
orbitals of transition metals or orbitals of titanium atoms coordinated by impurity atoms. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Intercalated materials based on titanium dichalco-
genides are formed through the intercalation of atoms
of different metals into the interlayer space of the host
lattice. Earlier investigations [1–4] revealed that the
intercalation of transition metals and silver into TiSe2
brings about the formation of Ti–Me–Ti covalent cen-
ters, where Me is an intercalated metal (Ti, Cr, Fe, Co,
Ni, Ag). The formation of covalent centers can be
judged from the distortion of the host lattice. In the case
when impurity atoms are ionized with electron transfer
to the conduction band of the initial compound, the lat-
tice parameter c0 increases with an increase in the
impurity content x. At the same time, the formation of
covalent centers is accompanied by a decrease in the
lattice parameter c0 with an increase in the impurity
content x. Electrons transferred with intercalant atoms
are localized at these centers. Such centers serve as
traps of free charge carriers, on the one hand, and as
strain centers of the lattice, on the other hand. Conse-
quently, these centers can be treated as polarons. Upon
the formation of polarons in the lattice, the influence of
an intercalated impurity atom is localized in the vicinity
of the site occupied by this atom. As a result, the depen-
dences of the electrical and magnetic properties of
intercalation materials on the intercalant content
exhibit a pronounced nonmonotonic behavior. There-
fore, the concentration dependences of the physical
parameters of intercalation materials can be described
in terms of the percolation theory.

Earlier [3–5], we demonstrated that, for TiSe2-based
intercalation compounds, the concentration depen-
1063-7834/04/4609- $26.00 © 21681
dences of the kinetic properties and the host-lattice
strain arising upon intercalation of transition metals are
adequately described within the percolation theory. The
characteristic concentrations are in close agreement
with the percolation threshold analytically calculated
by Sykes and Essam [6], who solved the site problem
for a triangular lattice with sites occupied by interca-
lated atoms. However, the question as to which physical
quantity plays the role of the percolation parameter
remains open. In our opinion, it is reasonable to con-
sider at least three possible mechanisms of percolation:
(1) the overlap of lattice distortion fields in the vicinity
of each intercalated atom, (2) the overlap of orbitals of
impurity atoms, and (3) the overlap of orbitals of tita-
nium atoms coordinated by impurity atoms (the overlap
of orbitals of Ti–Me–Ti centers). At the same time, elu-
cidation of the nature of the percolation thresholds is of
considerable importance in interpreting the observed
concentration dependence of the effective magnetic
moment µeff of intercalated atoms. As was shown in our
previous work [7], the difference between the effective
magnetic moment µeff and the spin moment of a free ion
is directly proportional to the lattice strain. The reduc-
tion of magnetic moments of impurity atoms can be
explained in the framework of the Anderson impurity
model for magnetic ions with an unfilled d(f) shell [8].
According to this model, the magnetic moment of an
atom is determined by the difference in the occupancies
of spin-polarized d(f) orbitals. The hybridization of the
orbitals with the environment leads to their broadening
and, hence, to a decrease in the difference between the
occupancies of these orbitals, which, in turn, results in
004 MAIK “Nauka/Interperiodica”
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a decrease in the magnetic moment. Consequently, the
dominant role in the reduction of the magnetic moment
is played by the concentration (temperature, etc.)
dependence of the d subband of impurity atoms. How-
ever, it is clear that the hybridization is only one of the
possible mechanisms of band broadening. This broad-
ening can also be caused by the increase in the overlap
of orbitals as the impurity atoms approach each other
with an increase in their concentration. Therefore, the
identification of percolation features with points of
anomalies in the concentration dependence of the effec-
tive magnetic moment µeff will make it possible to
reveal the mechanism responsible for the reduction of
the magnetic moments of impurity atoms intercalated
into titanium dichalcogenides.

Since the impurity atoms occupy octahedral posi-
tions forming a triangular lattice, the impurity concen-
tration corresponding to the percolation threshold in the
case of mechanism (2) is easily determined to be x = 0.5
[6] (where x is the dimensionless impurity concentra-
tion per unit cell containing only one octahedral posi-
tion that can be occupied by an impurity atom). For
mechanisms (1) and (3), the critical impurity concen-
tration is equal to x = 0.25. This follows from the struc-
tural features of the materials under investigation.
Actually, if an octahedral position in the structure of
these materials is occupied, the octahedral positions
nearest to this occupied position along the normal to the
basal plane of the crystal cannot be occupied by impu-
rity atoms [9]. Consequently, the intercalation of each
impurity metal atom leads to the formation of a Ti–Me–
Ti center with two titanium atoms coordinated by the
impurity atom. Therefore, at the impurity concentration
x = 0.25, the concentration of titanium atoms coordi-
nated by impurity atoms coincides with the percolation
threshold in the triangular lattice. Since the density of
octahedral positions that cannot be occupied upon
intercalation is equal to 2x (taking into account that
each blocked position belongs to two unit cells), the
impurity concentration corresponding to the critical
value x = 0.5 also amounts to x = 0.25.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The concentration dependences of the lattice param-
eters will be discussed using the data obtained earlier in
[2, 5, 9]. The effective magnetic moments of impurity
atoms were determined from the temperature depen-
dence of the magnetic susceptibility in the paramag-
netic temperature range. The measurements were per-
formed by the Faraday method according to the tech-
nique described in [4].

The x-ray photoelectron spectra of CrxTiSe2 single
crystals were recorded on a Perkin-Elmer spectrometer
with an energy resolution of 0.4 eV. The spectra were
excited with monochromated AlKα radiation. Samples
were applied on an adhesive conducting substrate. In
P

order to reduce undesirable effects of adsorbed atmo-
spheric gases and carbon on the spectra, the sample sur-
face was mechanically cleaned directly in the measur-
ing chamber of the spectrometer under vacuum (at a
residual pressure of 10–8 Torr).

Single-crystal samples were used to improve the
resolution. On the one hand, this approach restricted
detailed analysis of the influence of the impurity con-
tent on the electronic structure to the compositions with
x = 0.10 and 0.33 for which we succeeded in growing
the single crystals. On the other hand, the use of single-
crystal samples with a juvenile surface, which was pre-
pared by cleaving directly in the spectrometer chamber
under high vacuum, made it possible to obtain conclu-
sive results. The crystals were grown by the gas-trans-
port reaction method with the use of I2 as a gas carrier.
The growth procedure was described in detail in [7].

3. RESULTS AND DISCUSSION

The concentration dependences of the lattice param-
eters for MexTiSe2 (Me = Cr, Fe, Co, Ni) compounds
exhibit anomalies in the form of kinks at x = 0.25. It is
obvious that these anomalies can be associated with the
percolation. However, the question as to whether mech-
anism (1) or mechanism (3) is dominant remains
unclear. The contributions from the mechanisms of per-
colation due to the overlap of lattice distortion fields
and the overlap of orbitals can be separated using dif-
ferent degrees of localization of Ti–Me hybrid orbitals
for different metals. As was shown in our earlier work
[5], the degree of localization is governed by the lattice
strain arising upon intercalation of impurity atoms. It is
clear that, if the localization is sufficiently strong, the
percolation through mechanism (3) can be completely
absent. This situation can occur when the spatial exten-
sion of the orbitals of titanium atoms coordinated by
impurity atoms is less than half the distance between
the nearest localization centers. In turn, this distance
cannot be less than the lattice parameter a0. The strain
reaches a maximum in CoxTiSe2 compounds. Hence,
we can expect that, in these compounds, the percolation
through mechanism (3) is absent. In this case, the
anomaly at x = 0.25 should be assigned solely to the
overlap of distortion fields. Indeed, an increase in the
cobalt impurity content above the critical value x = 0.25
results only in a decrease in the slope of the concentra-
tion dependence of the lattice parameter c0(x) for
CoxTiSe2 compounds. This can be explained by the
interaction of strain centers due to the overlap of their
distortion fields. Therefore, an increase in the cobalt
impurity content x > 0.25 leads to an increase in the
concentration of strain centers with a simultaneous
decrease in the strain per intercalated atom. This infer-
ence is consistent with the data obtained in our work
[4], in which we observed linear concentration depen-
dences of the electrical conductivity and the Seebeck
coefficient in the cobalt concentration range x = 0–0.33.
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Consequently, the intercalation of each cobalt atom at a
cobalt content below and above x = 0.25 does not
change the localization of charge carriers.

The above dependence differs substantially from the
concentration dependence of the lattice parameter c0(x)
for CrxTiSe2 compounds, in which the strain is mini-
mum and, hence, the extension of orbitals of Ti–Cr–Ti
centers is maximum. In these compounds, an increase
in the chromium content x > 0.25 results in an increase
in the lattice parameter c0 [10]. Apparently, this differ-
ence should be caused by the additional contribution
from the overlap of orbitals of Ti–Cr–Ti centers. An
increase in the concentration of strain centers cannot be
attended by a decrease in the total strain. Such a behav-
ior can be explained solely by the decrease in the num-
ber of strain centers in the chromium concentration
range x > 0.25. Physically, this situation can be inter-
preted as follows (Fig. 1): the impurity band can be
broadened to an extent that the impurity band top
appears to be higher than the conduction band bottom
of TiSe2. As a consequence, electrons partially transfer
to the conduction band of TiSe2. In the impurity band,
the states between the impurity band top and the Fermi
level turn out to be empty, which, in essence, corre-
sponds to a partial decay of localization centers.

Thus, the overlap of distortion fields around interca-
lated impurity atoms results in a decrease in the strain
induced upon intercalation. A decrease in the contrac-
tion of the lattice parameter c0 can be provided only by
an overlap of orbitals of localization centers. Relevant
direct experimental evidence can be obtained by ana-
lyzing the electronic structure of the compounds under
investigation in the chromium concentration ranges x <
0.25 and x > 0.25.

Conduction band
of TiSe2

Impurity band
for x > 0.25

EF for x > 0.25

EF for x < 0.25

Impurity band
for x < 0.25

Fig. 1. A schematic diagram illustrating the shift of the
Fermi level upon broadening of the impurity band due to the
overlap of orbitals of localization centers. The arrow indi-
cates the electron transfer from the polaron band to the con-
duction band of the host lattice with an increase in the
energy at the top of the polaron band.
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Figure 2 shows the Cr 2p core-level photoemission
spectra of the Cr0.1TiSe2 and Cr0.33TiSe2 compounds. In
the spectrum of the Cr0.1TiSe2 compound, the Cr 2p3/2
line is split as a result of a strong exchange magnetic
interaction between Cr 2p3/2 holes and spin-polarized
Cr d electrons [7]. This is in agreement with the band
calculations performed in [11], according to which the
exchange splitting of this line is approximately equal to
0.9 eV. On the other hand, no splitting is observed in the
spectrum of the Cr0.33TiSe2 compound. However, the
maximum of this line appears to be flattened; i.e., it
retains indications of the splitting observed in the con-
centration range x < 0.25. Such a situation can occur
when the broadening of the Cr 3d spin subbands is
larger than the splitting. In turn, this can be interpreted
as resulting from the increase in the overlap of the wave
functions of chromium atoms due to the percolation in
the sublattice of the Ti–Cr–Ti centers.

Moreover, the width of the Ti 2p line in the spectrum
of the Cr0.33TiSe2 compound is considerably larger than
that in the spectrum of the Cr0.1TiSe2 compound,
whereas the energy positions of these lines coincide
with each other (Fig. 3). This can be explained by the
fact that the latter compound contains only identical
isolated Ti–Cr–Ti centers. As the impurity concentra-
tion increases above the percolation threshold, the
existence of both isolated and closely spaced centers
becomes quite possible.

Therefore, the extension of orbitals of Ti–Cr–Ti cen-
ters in CrxTiSe2 compounds can be estimated to be
approximately equal to the lattice parameter a0.

Upon intercalation, the lattice distortion of FexTiSe2
compounds is somewhat greater that of CrxTiSe2 com-
pounds (0.135 and 0.133 Å, respectively) [5]. Conse-
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Fig. 2. Cr 2p photoemission spectra of CrxTiSe2 compounds
with intercalant concentrations below (x = 0.1) and above
(x = 0.33) the percolation threshold in the sublattice of Ti–
Cr–Ti centers. The splitting of the line at an energy of
574 eV (Cr 2p3/2) in the spectrum of Cr0.1TiSe2 is caused by
the spin polarization of states at the Fermi level.
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quently, it can be expected that the degree of localiza-
tion of electrons in FexTiSe2 compounds should be
slightly higher than the degree of their localization in
CrxTiSe2 compounds. Actually, an increase in the impu-
rity content x > 0.25 manifests itself only in a kink in
the dependence c0(x). At the same time, an increase in
the lattice parameter c0 is observed in the concentration
range at x = 0.5, which corresponds to the percolation
in the intercalant sublattice rather than in the sublattice
of Ti–Fe–Ti centers. This can also be explained by the
broadening of the impurity band, as is the case in the
CrxTiSe2 compounds. However, in the FexTiSe2 com-
pounds, this broadening can be caused by the direct
overlap of orbitals of iron atoms. Since the lattice
parameter c0 begins to increase at an impurity content
slightly less than x = 0.5, the extension of iron orbitals
most likely exceeds the lattice parameter a0. It should
also be noted that, when the impurity content x
approaches 0.5, the concentration of Ti–Fe–Ti centers
tends to unity. None of the known types of plane lattices
has a percolation threshold corresponding to such a
concentration of localization centers. Therefore, the
direct overlap of the iron orbitals is the sole possible
explanation for the concentration dependence c0(x) of
the FexTiSe2 compounds. The orbitals of Ti–Fe–Ti cen-
ters do not overlap in any of the cases. Hence, the exten-
sion of these orbitals is considerably smaller than the
lattice parameter a0.

It is evident that, in materials with a greater lattice
strain, such as NixTiSe2 compounds, the orbitals of Ti–
Me–Ti centers should not overlap. Indeed, the lattice
parameter c0 for these compounds decreases in the
intercalant concentration range 0 < x < 0.5 [9].

The concentration dependence of the lattice param-
eter c0(x) for the CoxTiSe2 compounds exhibits only an
insignificant kink. This suggests that the percolation
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TiSe2

Fig. 3. Ti 2p photoemission spectra of the Cr0.1TiSe2 and
Cr0.33TiSe2 compounds. The Ti 2p photoemission spectrum
of the TiSe2 initial compound is shown for comparison.
PH
can proceed through the mechanism of overlap of dis-
tortion fields around the Ti–Co–Ti covalent centers. No
indications of the percolation mechanisms associated
with the overlap of orbitals are revealed. Therefore, we
can conclude that an intercalated impurity atom affects
the electronic structure in the vicinity of the site occu-
pied by the cobalt atom and this effect becomes negli-
gible outside the unit cell.

The kink observed in the concentration dependence
of the lattice parameter c0(x) for the CrxTiSe2 com-
pounds is obviously associated with the overlap of
orbitals of titanium atoms coordinated by chromium
atoms [mechanism (3)]. However, this mechanism is
masked by the percolation due to the overlap of distor-
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(3) [12], and (4) [9].
YSICS OF THE SOLID STATE      Vol. 46      No. 9      2004



HIERARCHY OF PERCOLATION THRESHOLDS 1685
tion fields and, therefore, cannot be identified with cer-
tainty.

The FexTiSe2 system is intermediate between the
CoxTiSe2 and CrxTiSe2 systems. The kinks in the depen-
dence c0(x) at contents x = 0.25 and 0.5 are caused by
the overlap of distortion fields and orbitals of iron
atoms, respectively.

The concentration dependences of the effective
magnetic moment µeff and the lattice parameter c0(x) for
the materials under investigation are plotted in Fig. 4. It
can be clearly seen from this figure that the concentra-
tion dependences of the effective magnetic moment
µeff(x) for all compounds are parallel to the concentra-
tion dependences of the lattice parameter c0(x). Conse-
quently, the mechanism responsible for the reduction of
the magnetic moments of impurity atoms is governed
solely by the broadening of spin subbands due to the
hybridization of impurity orbitals with orbitals of the
environment according to the Anderson model [8].

On this basis, we can solve the problem regarding
the determination of the charge and spin states of inter-
calated impurity atoms. This problem has long been
discussed in the literature. The point is that the experi-
mental dependence of the effective magnetic moment
µeff on the intercalant concentration did not permit one
to identify this moment with any standard state of tran-
sition metal ions [12] and could be interpreted in differ-
ent ways. The true effective magnetic moment µeff can
be obtained by extrapolating the concentration depen-
dence of the effective magnetic moment µeff(x) to the
impurity content x = 0, which corresponds to an infini-
tesimal concentration of intercalated metal atoms. The
effective magnetic moments thus determined are pre-
sented in the table. The table also presents the magnetic
moments of free ions. It can be seen that the effective

Effective magnetic moments µeff (in Bohr magnetons) of
impurity atoms intercalated into TiSe2 and theoretical spin
magnetic moments µsp for charge states of intercalated atoms
in the high-spin configuration (S is the spin, q is the spectro-
scopic splitting factor)

Compound µeff Charge state µsp = 

FexTiSe2 5.11 Fe2+ 4.90

CoxTiSe2 3.18 Co2+ 3.87

CrxTiSe2 3.6 Cr3+ 3.87

q S S 1+( )
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magnetic moments µeff agree well with the theoretical
values for Cr3+, Co2+, and Fe2+ charge states of the inter-
calated impurity atoms in the high-spin configuration.
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AND FERROELECTRICITY
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Abstract—The structure of an LiNi0.4Fe0.6O2 cubic solid solution is determined using magnetic measurements
and electron diffraction. It is found that this solid solution has a microinhomogeneous structure due to the for-
mation of superparamagnetic clusters. The electron diffraction analysis of LiNi0.4Fe0.6O2 samples has revealed
diffuse scattering characteristic of the substitutional short-range order in ordered solid solutions with a B1-type
structure. It is shown that the short-range order is associated with the LiNiO2-type rhombohedral superstructure
(space group ), i.e., with the redistribution of lithium and nickel atoms in the (111)B1 alternating planes.
The short-range order is observed in regions with a nickel content higher than the mean nickel content corre-
sponding to the macroscopic composition. © 2004 MAIK “Nauka/Interperiodica”.

R3m
1. INTRODUCTION

Compounds AMO2 (where A is an alkali metal and
M is a transition metal) have been considered promising
cathode materials for use in chemical current sources
[1]. The capacitance of lithium ion batteries is sensitive
not only to composition but also to the structure of the
material. These findings have stimulated investigation
into the microinhomogeneous structure of such materi-
als [2–4] and, in particular, the LiNiO2 compound,
whose structure involves short-range order regions
(clusters) [5]. The hexagonal (rhombohedral) structure
of the LiNiO2 compound is characterized by space

group , is a derivative of the B1 (NaCl)-type struc-
ture, and can be represented as a result of ordering of
alkali and transition metal ions in the (111)B1 alternat-
ing planes. The disturbance of the regular structure is
associated with the incorporation of nickel ions into
lithium layers and the formation of short-range order
regions (clusters) around these ions. It is these regions
that are responsible for the unusual magnetic properties
of lithium nickelite LiNiO2 [6, 7].

The degree of structural ordering in LiNiO2 depends
on the synthesis conditions [8, 9] and doping. From this
standpoint, the LiNiO2–LiFeO2 system is of particular
interest [10–12], because, unlike LiNiO2, lithium fer-
rite α-LiFeO2 has a B1 cubic structure, which belongs
to rare structures where two dissimilar cations occupy
the same position. In [11], it was shown that there exist
two concentration ranges of limited solid solutions in
this system. Solid solutions LiNi1 − xFexO2 in the con-
centration range 0 ≤ x ≤ 0.22 are isostructural to the
hexagonal lithium nickelite LiNiO2 and the degree of
their ordering decreases as nickel is replaced by iron,
whereas cubic solid solutions are formed in the concen-
tration range 0.42 ≤ x ≤ 1. Solid solutions in the inter-
mediate range have a two-phase structure. The hexago-

R3m
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nal solid solutions undergo a transition to a magneti-
cally ordered phase. The magnetic ordering indicates
that cations are partially disordered, i.e., the lithium
layers contain transition metal ions [10].

In cubic solid solutions LiNi1 − xFexO2 (x ≥ 0.42), no
ordering of alkali and transition metal ions occurs in a
way similar to that observed in the LiNiO2 structure.
However, these solid solutions at T < 200 K have a
short-range magnetic order [12], which can be caused
by partial aggregation of nickel ions.

In this respect, the aim of the present work was to
prove the existence of magnetic clusters in the cubic
solid solution LiNi1 − xFexO2 and to reveal their related
short-range structural order with the use of electron dif-
fraction. For our investigation, we chose an
LiNi0.4Fe0.6O2 solid solution with a nickel content close
to the maximum content at which the cubic structure is
retained. In this solid solution, the magnetic and dif-
fraction effects should be most pronounced.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The LiNi0.4Fe0.6O2 solid solution was synthesized
by the solid-phase reaction [11] from NiO and Fe2O3
oxides and lithium hydroxide. The primary structural
characterization was performed using x-ray diffraction
on a DRON-UM1 diffractometer (Cu  radiation;
scan mode; scan step ∆2θ = 0.1°; exposure time per
frame, 2 s). The sample contained only the cubic phase
with a B1 structure. The unit cell parameter was equal
to 0.4145 ± 0.0002 nm. Compared to the lattice of the
LiFeO2 compound with the unit cell parameter aB1 =
0.4158 ± 0.0002 nm, the lattice of the solid solution
synthesized is slightly contracted as a result of the

Kα1 2,
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replacement of Fe3+ ions by Ni3+ ions with a smaller
radius.

The static magnetic susceptibility was measured on
an MPMS-5XL Quantum Design SQUID magnetome-
ter at temperatures ranging from 4 to 300 K in magnetic
fields up to 50 kOe and by the Faraday method in the
temperature range 77–1000 K in magnetic fields up to
10 kOe.

The electron diffraction analysis was carried out
with a JEM-200CX transmission electron microscope
operating at a voltage of 160 keV. The microdiffraction
pattern was obtained from a region ~0.5 µm in size. The
samples suitable for the electron diffraction analysis
were prepared through ultrasonic dispersion of an
LiNi0.4Fe0.6O2 powder in ethanol for 10 min. The small-
est fraction of the LiNi0.4Fe0.6O2 powder from an alco-
hol suspension was applied to a supporting amorphous
carbon film on a copper grid. Judging from the results
of pycnometric measurements, dispersion in the alco-
hol did not lead to a change in the density or, conse-
quently, in the composition of the samples.

3. MAGNETIC PROPERTIES

The measurements revealed that the magnetic sus-
ceptibilities χ of the LiFeO2 and LiNi0.4Fe0.6O2 isos-
tructural phases differ significantly (Fig. 1). The tem-
perature dependence of the magnetic susceptibility
χ−1(T) for the LiFeO2 compound exhibits a linear
behavior typical of paramagnets and is adequately
described by the Curie–Weiss law χ = A0 + C/(T – Θ),
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Fig. 1. Experimental temperature dependences of the mag-
netic susceptibility of the LiNi0.4Fe0.6O2 and LiFeO2 com-
pounds in different magnetic fields. The inset shows the
temperature dependences of the reciprocal of the magnetic
susceptibility of the LiNi0.4Fe0.6O2 and LiFeO2 compounds
in the field H = 2.4 kOe.
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where A0 = –3.54 cm3 mol–1, C = 3.95 cm3 K mol–1, and
Θ = –448 K. The deviation from linear behavior observed
at T < 200 K is caused by the exchange interactions
between Fe3+ ions. The magnetic susceptibility of the
LiNi0.4Fe0.6O2 solid solution obeys the Curie–Weiss law
only at temperatures above 400 K (A0 = 90.4 cm3 mol–1,
C = 2.86 cm3 K mol–1, Θ = –386 K). The dependence
χ−1(T) considerably deviates from linearity already at a
temperature ~ 400 K and exhibits a kink at ~ 250 K.
Below this temperature, the magnetic susceptibility
depends on the magnetic field strength H (Fig. 1). The
magnetizations M were measured in magnetic fields up
to 50 kOe. It was found that the dependence M(H) is non-
linear even at 150 K (Fig. 2). A decrease in the tempera-
ture leads to an increase in the deviation from linearity,
but, even at 4 K, no saturation is observed up to a maxi-
mum field strength of 50 kOe (see inset to Fig. 2).

In order to answer the question as to whether the
solid solution under investigation possesses spontane-
ous magnetization, we used a method based on the ther-
modynamic theory of ferromagnetic transformations
[13]. According to Belov [13], a homogeneous system
(in which magnetic ordering is possible) at M ! Ms

(Ms is the saturation magnetization) obeys the follow-
ing relationship between the magnetic field strength
and the magnetization:

 (1)

where α and β are coefficients. With the use of the mag-
netization data, the so-called Belov–Arrott plots can be
constructed in the M2–H/M coordinates at different
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temperatures (Fig. 3). As follows from relationship (1),
the dependences of H/M on M2 are straight lines that
intersect the ordinate axis at positive values for T > TC

and at negative values for T < TC. The temperature at
which the coefficient α becomes zero (α = 0) corre-
sponds to the temperature of magnetic ordering TC. In
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Fig. 3. Belov–Arrott plots for the LiNi0.4Fe0.6O2 solid solu-
tion at different temperatures.

12

10

8

2

0 100 200 300

χ,
 1

0–
4  c

m
3  g

–
1

T, K

4

6

TB

ZFC

FC 100 Oe

Fig. 4. Temperature dependences of the magnetic suscepti-
bility χ(T) of the LiNi0.4Fe0.6O2 solid solution upon heating
in the field H = 100 Oe after preliminary cooling to 4 K in
the field H = 100 Oe (FC) and after cooling to 4 K in zero

magnetic field (ZFC).  is the temperature of magnetic

disordering inside clusters [11].

TC
c1

TC
c1
PH
our case, we have α > 0 even at 4 K (Fig. 3). This results
unambiguously indicates that spontaneous magnetiza-
tion and long-range magnetic order are absent in the
LiNi0.4Fe0.6O2 solid solution. Since the coefficient β in
a homogeneous system does not depend on the magne-
tization [13, 14], the observed sharp deviation of the
dependences H/M(M2) from linearity in weak fields
suggests that the solid solution involves microinhomo-
geneities due to the formation of magnetic clusters.

Thus, the LiNi0.4Fe0.6O2 cubic solid solution has no
long-range magnetic order and the dependence of the
magnetic susceptibility on the magnetic field strength is
associated with the short-range magnetic order. To put
it differently, the exchange interactions can occur
within a limited ensemble of atoms and the conditions
for percolation are absent. Such a system can be treated
as a superparamagnetic system. Note that the magneti-
zation of a superparamagnetic system is a single-valued
function of the ratio H/T [15]. Therefore, the coinci-
dence of the magnetization curves measured at differ-
ent temperatures and the absence of the magnetization
hysteresis with an increase and decrease in the mag-
netic field strength H (Fig. 2) can serve as experimental
evidence of the existence of the superparamagnetic
state in the LiNi0.4Fe0.6O2 solid solution.

In superparamagnetic materials, paramagnetic cen-
ters are ferromagnetic single-domain particles rather
than individual atoms (ions). Consequently, a super-
paramagnet possesses a high susceptibility. The mag-
netic moment of a superparamagnetic particle is con-
siderably larger than that of an atom. Hence, compared
to paramagnets, saturation in superparamagnetic mate-
rials can be reached in weaker magnetic fields and at
sufficiently high temperatures. This manifests itself in
the dependence of the susceptibility on the field
strength (Fig. 1).

In the hexagonal (rhombohedral) compound
LiNiO2, alkali and transition metal ions are located in
layers separated by oxygen planes. In the cubic com-
pound LiFeO2, ions of both metals occupy identical
positions. Most likely, the formation of magnetic clus-
ters in the LiNi0.4Fe0.6O2 cubic solid solution is gov-
erned by the redistribution of nickel ions over the
(111)B1 planes. This leads to the formation of nickel-
rich regions whose structure is similar to that of the
LiNiO2 compound, which is characterized by a layered
structure and magnetic ordering at T < 150 K [16].

The microinhomogeneous structure of LiNixFe1 – xO2
cubic solid solutions is also confirmed by the difference
between the temperature dependences of the dc suscep-
tibilities χ(T) (Fig. 4) measured in the magnetic field
H = 100 Oe after preliminary cooling to 4 K in the same
field, i.e., so-called field cooling (FC), and after cooling
in zero magnetic field, i.e., so-called zero-field cooling
(ZFC). The temperature of ~ 40 K, at which the depen-
dence χ(T) measured after cooling in zero magnetic
field exhibits a kink, can be interpreted as the blocking
YSICS OF THE SOLID STATE      Vol. 46      No. 9      2004
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temperature TB. At T ≥ TB, the thermal energy kBTB is
comparable to (or higher than) the anisotropy energy
KanV. This leads to thermal fluctuations in the directions
of the magnetic moments of the clusters and to a transi-
tion to the superparamagnetic state. Bean and Living-
ston [17] derived the expression for the thermal energy
kBTB = KanVmin, where Vmin is the minimum estimate of
the mean cluster volume and Kan is the anisotropy con-
stant of a ferromagnetic cluster. Bajpai and Banerjee
[18] estimated the anisotropy constant for LiNiO2 hex-
agonal crystals: Kan ≈ 5.8 × 10–4 J m–3. From these data,
the cluster radius at TB ~ 40 K can be estimated as
rmin ≥ 1.3 nm.

It should be noted that the presence of a maximum
in the temperature dependence of the static susceptibil-
ity measured after cooling in zero magnetic field and
the difference between the FC and ZFC dependences
often indicate a transition of the system to the spin glass
state [19]. In particular, this interpretation of the exper-
imental results for the LiNiO2 compound was proposed
by Shirakami et al. [20]. However, the presence of one
more anomaly in the temperature dependence of the
susceptibility at ~ 220 K (Fig. 4) due to the disturbance
of magnetic order inside the clusters is inconsistent
with the concept of spin glass and, in our opinion,
counts in favor of the proposed model.

The mean cluster size can also be estimated from the
analysis of the temperature dependence of the magneti-
zation with the use of the expression for the superpara-
magnetic contribution to the susceptibility:

(2)

where L = [  – 1/x] is the Langevin function and
n is the number of superparamagnetic particles per unit
volume. By assuming that clusters are spherical parti-
cles of the same size and using relationship (2), the
mean radius r of magnetic clusters can be represented
in the form [15, 21]

 (3)

In formula (3), the parameters for the LiNi0.4Fe0.6O2

solid solution are as follows: C = 3.33 cm3 K mol–1 is
the Curie constant at H  0, M* = 95.93 g mol–1 is
the molecular weight, ρ = 4.49 g cm–3 is the density,
Ms = 1563 G cm3 mol–1 is the specific saturation mag-
netization per mole [the magnetization Ms was
obtained through linear extrapolation of the depen-
dence M(T/H) to T/H = 0, i.e., to an infinite field], and
I0 = 4000 G cm3 mol–1 is the specific saturation magne-
tization of the cluster material (this value corresponds
to the experimental saturation magnetization of the
LiNi0.8Fe0.2O2 hexagonal solid solution with the highest
iron content and long-range magnetic order [16]). For
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these parameters, the mean radius r of magnetic clus-
ters is approximately equal to 1.4 nm. This radius is in
good agreement with the estimate made from the block-
ing temperature.

4. ELECTRON DIFFRACTION

In order to reveal the short-range structural order,
which was assumed from analyzing the magnetic prop-
erties and could arise from the redistribution of lithium
and nickel atoms, the LiNi0.4Fe0.6O2 solid solution was
studied using electron diffraction. Indeed, when the
arrangement of Li and Ni atoms is characterized by a
short-range order, the electron diffraction patterns
should contain both Bragg reflections and periodic fea-
tures of diffuse scattering, because the distribution
function of the diffuse intensity ID(g) in the reciprocal
space is uniquely related to the short-range order
parameters. Therefore, knowing the geometry of the
diffuse scattering distribution in particular planes of the
reciprocal lattice and reconstructing the three-dimen-
sional pattern of diffuse scattering in the reciprocal
space, we can analyze the short-range order in the
LiNi0.4Fe0.6O2 solid solution in the framework of the
approximate cluster model [22, 23].

The LiNi0.4Fe0.6O2 solid solution was examined with
the use of an electron microscope. As a result, we
obtain a number of microdiffraction patterns corre-
sponding to different cross sections of the reciprocal
lattice of the LiNi0.4Fe0.6O2 cubic phase (with the B1
structure). Figures 5 and 6 show the diffraction patterns

and their schemes for the  and  planes
of the reciprocal lattice of the solid solution under
investigation. These diffraction patterns contain Bragg
reflections of the B1 lattice and a set of diffuse features.
The observed periodic diffuse features do not pass
through the points of the reciprocal lattice of the cubic
solid solution. This implies that the diffuse features are
associated with the substitutional short-range order [24].
Furthermore, the diffuse scattering observed for the
LiNi0.4Fe0.6O2 cubic solid solution is also characteristic
of the substitutional short-range order in ordered binary
solid solutions with a B1-type lattice [23, 25, 26].

Brunel et al. [23] demonstrated that, in ABX2 ionic
compounds (LiFeO2, NaFeO2), which have a B1 struc-
ture and are ordered in the AB sublattice, a similar dif-
fuse scattering distribution is determined by the A3B3
octahedral cluster. For this cluster, the diffuse intensity
contours are described by the relationship cos(πh) +
cos(πk) + cos(πl) = 0, where h, k, and l are the coordi-
nates in the reciprocal space. The schematic drawing of
the diffuse intensity contours in the reciprocal lattice of
a B1-type solid solution is given in Fig. 7. The A3B3
octahedral cluster is characterized by different types of
substitutional short-range order. The diffuse scattering
geometry under consideration is equally characteristic
of two types of short-range order that correspond to two

111( )B1* 110( )B1*
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Fig. 5. (a) Diffraction pattern of the cubic solid solution crystals LiNi0.4Fe0.6O2 (structure B1) and (b) schemes of the  cross

section of the reciprocal lattice.
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Fig. 6. (a) Diffraction pattern of the cubic solid solution crystals LiNi0.4Fe0.6O2 (structure B1) and (b, c) schemes of the 
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different superstructures ordered on the basis of the
ABX2 compound with the B1 lattice [23]. These are the

tetragonal superstructure ABX2 with space group 
(for example, γ-LiFeO2), where each (111)B1 plane con-
tains equal fractions of A and B atoms, and the rhombo-
hedral (hexagonal)1 superstructure ABX2 with space

group  (for example, NaFeO2, LiNiO2), in which
A and B atoms occupy positions in (111)B1 alternating
planes. The experimental diffuse scattering patterns

1 Hereinafter, the diffraction patterns and the short-range order cor-
responding to the rhombohedral superstructure will be analyzed
in the hexagonal setting.

D4h
19

R3m
P

were measured using transmission electron microscopy
for both types of ordered solid solutions: (i) LiFeO2
quenched samples, which are ordered following the γ
superstructure type (space group ) [26], and
(ii) TiC0.65h0.35 quenched samples (h is a structural
vacancy), which are ordered following the TiC0.5h0.5
(Ti2C) rhombohedral superstructure (space group

) [27].

The analysis of the redistribution of the diffuse
intensity in the contours with due regard for the possi-
ble types of short-range order enables us to draw suffi-
ciently conclusive inferences regarding the observed
short-range order. It is established that the diffuse inten-

D4h
19

R3m
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sity increases in the vicinity of the reciprocal lattice
points with coordinates ±(1/2, 1/2, 1/2)B1. This increase

is observed in the  and  cross sections.

The  cross section does not pass exactly
through reciprocal lattice points of the (1/2, 1/2, 1/2)B1
type, but a noticeable enhancement of the segments of
diffuse intensity (shown by the arrow in Fig. 5a) occurs
at intersections with the diffuse intensity contours at the
(1, 1/2, 1/2)B1 positions. In a number of cases, in the

 cross section of the reciprocal lattice, the
intensity increases substantially and superstructure
reflections are observed at positions of the ±(1/2, 1/2,
1/2)B1 type (Figs. 6a, 6b). The set of these diffuse max-

ima is completely identified by two equivalent 
cross sections of the reciprocal lattice of the LiNiO2-
type rhombohedral superstructure (Figs. 6b, 6c) with two

possible orientations of the  axis:  ||

 and  || . We failed to reveal
rhombohedral distortions in the interplanar spacings
and angles, which are inherent in the LiNiO2-type
superstructure. For example, the (111)B1 reflection for
the LiNiO2 compound is split into the (006)hex and
(012)hex reflections with a difference between the inter-
planar distances ∆d = 0.0015 nm. The corresponding

angle between the vectors  and  in the
cubic reciprocal lattice is equal to 70.53°. The analo-

gous angle between the rhombohedral vectors 

and  is 70.65°; i.e., these angles coincide to
within experimental error. The absence of rhombohe-
dral distortions implies that the solid solution does not
contain particles with a rhombohedral superstructure
but exhibits a superstructural rhombohedral short-range
order [28, 29], which is responsible for the redistribu-
tion of the diffuse intensity and the appearance of dif-
fuse reflections [30].

The results obtained unambiguously indicate that
the structure of the LiNi0.4Fe0.6O2 cubic solid solution is
characterized by the short-range order corresponding to
a rhombohedral superstructure. The radius of short-
range order regions was estimated at ~ ~3aB1 from the
magnetic data. This means that the correlations in the
mutual arrangement of Li and Ni atoms cover more
than 15 coordination shells [28]. A question arises as to
the composition of short-range order regions, i.e., the
composition of the main octahedral cluster in the
framework of the cluster model proposed by Shirakami
et al. [20]. This composition does not correspond to the
macroscopic composition LiNi0.4Fe0.6O2, because the
concentration of nickel atoms in the LiNi0.4Fe0.6O2–
LiNiO2 region is several times higher than the concen-
trations at which the short-range order manifests itself
in ordered solid solutions. The observed diffraction fea-
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tures, which are associated with the short-range order
attributed to a rhombohedral superstructure of the
LiNiO2 type, suggest a local compositional inhomoge-
neity of the LiNi0.4Fe0.6O2 solid solution. There should
exist nickel-rich regions in which the short-range order
in the arrangement of Li and Ni atoms coincides with
the short-range order inherent in the rhombohedral
superstructure. It can be assumed that the composition
of ordered clusters lies in the LiNi0.8Fe0.2O2–LiNiO2
region, because solid solutions in this region have a
hexagonal structure.

5. CONCLUSIONS

Thus, the above analysis of the magnetic properties
of the LiNi0.4Fe0.6O2 solid solution demonstrated that
this solution is characterized by a short-range magnetic
order, which can be described within the concept of
superparamagnetism. The occurrence of short-range
order was confirmed by the electron diffraction data.
The electron diffraction patterns of the LiNi0.4Fe0.6O2
cubic solid solution exhibit the diffuse scattering typi-
cal of the substitutional short-range order in ordered
solid solutions with a B1 structure. The observed short-
range order is associated with the LiNiO2-type rhombo-

hedral superstructure (space group ), i.e., with the
redistribution of lithium and nickel atoms in (111)B1
alternating planes. This short-range order occurs in
regions in which the Ni content is higher than the mean
Ni content corresponding to the macroscopic composi-
tion of the LiNi0.4Fe0.6O2 solid solution.

In the near future, the geometry of the diffuse inten-
sity for ordered cubic solid solutions LiNi1 − xFexO2 can
be analytically described using the refined cluster
model [31, 32] within the approach proposed for

R3m

200B1

000

020B1

111B1

Fig. 7. Schematic drawing of the diffuse intensity contours
in the reciprocal lattice of the LiNi0.4Fe0.6O2 cubic solid
solution (structure B1) according to the model cos(πh) +
cos(πk) + cos(πl) = 0 (the reciprocal lattice segment with
0 ≤ h ≤ 2, 0 ≤ k ≤ 2, 0 ≤ h ≤ 1 is shown).
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numerical estimation of the order parameters in nonsto-
ichiometric carbides [27, 31]. This will make it possible
to determine the dependence of the parameters of the
analytical description of diffuse scattering and the
short-range order parameters on the composition of
LiNi1 − xFexO2 solid solutions. It can be expected that
the weakening of short-range order effects with a
decrease in the Ni content in LiNi1 − xFexO2 cubic solid
solutions will correlate with the change in the magnetic
properties.
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Abstract—Nonlinear propagation of longitudinal–transverse acoustic pulses of duration shorter than one oscil-
lation period (video pulses) is studied theoretically in a system of paramagnetic centers with effective spin S =
1. It is shown that, depending on the relationship between the magnitudes of the longitudinal and transverse
strain components and on the detuning of their linear velocities, various regimes of propagation corresponding
to different dynamics of the field and the medium can occur. In the case where the velocities of longitudinal and
transverse hypersonic waves differ only slightly, an effect similar to self-induced transparency is analyzed. For
substantial velocity detuning, propagation in the form of rational solitons is possible. If the transverse compo-
nent is dominant, these solitons can produce full population inversion of Zeeman sublevels. In the opposite
limit, the populations remain practically unchanged. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the basic trends in the development of mod-
ern nonlinear optics and physical acoustics is the gen-
eration of progressively shorter pulses under laboratory
conditions. Today, it is possible to generate pulses of
duration of about one (and even a half) period of oscil-
lations [1–3]. In such cases, one usually speaks about
extremely short pulses (ESP), or video pulses. The
duration τp can be as short as 5–10 fs for optical ESP
and about 10 ps for acoustic pulses [2].

The basic difference between ESP and quasi-mono-
chromatic pulses is the absence of a strongly pro-
nounced carrier frequency for ESP. Therefore, in study-
ing the interaction of such pulses with matter theoreti-
cally, one cannot use the approximation of a slowly
varying envelope function, which is traditionally
applied to quasi-monochromatic pulses.

Analysis of the development of the modern physics
of coherent phenomena reveals, in particular, that
sooner or later acoustic analogs of optical nonstation-
ary effects had to be discovered [4]. The corresponding
historical analysis is performed in [5]. In this paper, we
consider the acoustic analog of self-induced transpar-
ency (SIT) [6]. The phenomenon of acoustic SIT was
predicted and detected several years after the discovery
of optical SIT [7–9].

It is important to note not only the similarity but also
differences between the optical and acoustic coherent
phenomena. One of the basic differences can be related
to the fact that an acoustic wave in a solid has longitu-
dinal–transverse structure, with the velocities of longi-
tudinal (a||) and transverse (a⊥ ) waves being generally
1063-7834/04/4609- $26.00 © 21693
different. In [10], the effect of this two-component
structure on the acoustic SIT was studied and different
soliton propagation regimes were detected for slightly
different values of a|| and a⊥ . In [11, 12], the case of a|| =
a⊥  was considered without using the approximation of
a slowly varying envelope function and problems of
integrability of the corresponding system of constitu-
tive and wave equations were investigated.

The phenomenon of SIT for optical ESP was studied
in detail in [13], where similarities and differences with
SIT for quasi-monochromatic pulses were demon-
strated.

The interaction of acoustic ESP with substances in
the regime of acoustic SIT was studied in [14], where
the quantum objects interacting with elastic pulses
were considered to be paramagnetic ions with effective
spin S = 1/2. Although such a model is mathematically
relatively simple, it is not quite adequate to the experi-
mental situation. Indeed, the experiment shows that
paramagnetic ions with effective spin S = 1 are most
strongly coupled dynamically with lattice vibrations
[15–17]. The Fe2+ and Ni2+ ions in a MgO crystalline
matrix are examples of such ions [7]. Therefore, it is
important to theoretically study the interaction of
acoustic ESP with a system of spins S = 1 in the regime
of acoustic SIT. This is the objective of the present
study.

2. SEMICLASSICAL EQUATIONS OF MOTION
We consider the case where an external magnetic

field B is directed along a fourfold axis (chosen to be
the z axis) of a cubic paramagnetic crystal. In this case,
004 MAIK “Nauka/Interperiodica”
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the Hamiltonian of a spin interacting with lattice vibra-
tions in this field is

 (1)

where the spin Hamiltonian is

 (2)

Here, g is the Lande factor, µB is the Bohr magneton,

and the spin–phonon interaction Hamiltonian  is a
quadratic form in spin operators [15–17]:

 (3)

where Gijml are the tensor components of the spin–

phonon interaction;  (j = x, y, z) are the 3 × 3 spin
matrices, which (in the geometry considered) have the
form [15]

 (4)

and %ml is the strain tensor, which can be expressed in
terms of the Cartesian components of the local dis-
placement vector U as

 (5)

with m, l = x, y, z. In Eq. (3) and in what follows, sum-
mation over repeated inferior indices is implied.

The components of the tensor  are symmetric with
respect to permutations of the pairs of indices i, j and m,
l and also with respect to the permutations inside these
pairs.

To describe the dynamics of spins and acoustic
pulses self-consistently, we add the elastic-field Hamil-
tonian to Eqs. (2) and (3). Further, we use the semiclas-
sical approach, according to which spins are treated
quantum-mechanically and the elastic field is described
by the classical equations of mechanics of continuous
media. Accordingly, the elastic-field Hamiltonian has
the form of a classical functional [18],

 (6)

where ρ is the average crystal density, pi (i = x, y, z) are
the components of the momentum density p of local
displacements, and λijkl are the components of the elas-
tic modulus of the medium.

Ĥ Ĥs V̂ ,+=
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Ŝx
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2
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∂Um

∂xl

----------
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---------+ 
  d

3r,∫=
PH
Using the standard semiclassical approach [16], we
describe the spin evolution by the equation for the den-
sity matrix,

 (7)

and describe the dynamics of the acoustic field by the
classical Hamilton equations for a continuous medium,

 (8)

Here,  = , n is the concentration of para-

magnetic centers, and  ≡ Tr( ) is the quantum
average of the interaction Hamiltonian. In Eq. (7), we
disregarded relaxation terms assuming that the pulse
duration is shorter than all relaxation times.

The set of equations (7) and (8), in combination with
Eqs. (1)–(6), describes the propagation of an acoustic
pulse in any given direction with respect to B. In what
follows, we consider the Faraday geometry; i.e., the
pulse propagates along B. All dynamic variables are
assumed to depend only on z and t. Therefore, there are
three nonzero components of the strain tensor, namely,
%zz = %|| = ∂Uz/∂z, %xz = 0.5∂Ux/∂z and%yz = 0.5∂Uy/∂z.
In addition, in the case of a cubic crystal, the nonzero
components of the elastic modulus are λxzxz = λyzyz = λ⊥

and λzzzz = λ||. For the components of the tensor , we
use the Voigt notation [15]: xx  1, yy  2, zz 
3, yz  4, xz  5, and xy  6. Due to the cubic
symmetry, we have G23 = G13, G33 = G22 = G11, and

G55 = G44. To simplify expressions for  in a cubic
crystal, we note that, under inversion of the x and y
axes, the components of the spin operator are trans-

formed as follows [16]: x  –x,   ,  

– , and   – ; y  –y,   – ,  

, and   – . Taking into account the invariance
of V with respect to these transformations, we can write

 (9)

From the foregoing, it follows that, using Eqs. (8)
and (9), we can write

 (10)

 (11)

i"
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where the transverse strain is %⊥  ≡ (%xz + i%yz)/  and

a⊥  =  and a|| =  are the velocities of trans-
verse and longitudinal sonic waves, respectively, in the
absence of paramagnetic impurities.

Using Eqs. (2)–(4), we can rewrite the operator

 +  in the matrix form as

 (12)

where ω0 = gµBB/" is the Zeeman splitting frequency in
the equidistant three-level system with spin S = 1. We
note that we number the quantum levels in ascending
order.

It is seen from Eqs. (10)–(12) that, in the Faraday
geometry, the transverse component of the acoustic
wave induces the cascade quantum transitions 1  2
and 2  3, whereas the longitudinal component
causes a dynamical change in the frequencies of these
transitions (Fig. 1). The physical mechanism of spin–
phonon interaction in the case considered is the so-
called Van Vleck mechanism [4, 15, 17]; according to
this mechanism, an acoustic wave creates a crystalline
electric field gradient at the positions of paramagnetic
ions. This gradient, in turn, induces quadrupole transi-
tions between Zeeman sublevels and the dynamic qua-
drupole Stark effect, where the levels with magnetic
quantum numbers M that are equal in magnitude are
displaced equally [19]. In our case, the first (M = –1)
and third (M = +1) levels are displaced equally.

In zeroth approximation with respect to the right-
hand sides of Eqs. (10) and (11), we have two waves
propagating in different directions with velocities a⊥
and a|| respectively. We consider only waves propagat-
ing along the z axis, and assume that the velocities a⊥
and a|| differ only slightly, (a|| – a⊥ )/a|| ! 1. This approx-
imation is well justified in the bulk and yields a small
error near the front surface because of partial reflection.
In first approximation with respect to the right-hand
sides of Eqs. (10) and (11), we write %|| = %||(τ, ζ) and
%⊥  = %⊥ (τ, ζ), where τ = t – z/a|| is the local time, ζ = µz
is a “slow coordinate” [20], and µ is a small dimension-
less parameter (µ ! 1), whose meaning will be dis-
cussed below. Obviously,

    –  
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Disregarding the terms of the order of ~µ2, we write

   

Substituting these expressions into Eqs. (10) and (11),
integrating with respect to τ, and taking into account
that the strain and its derivatives vanish at infinity, we
obtain first-order differential equations for %|| and %⊥ .

These equations and the corresponding constitutive
equations can be written in the form

 (13)

 (14)

 (15)

where

 

 (16)

 

Using Eq. (15), we write the constitutive equations
for the elements of the density matrix that appear on the
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/ 8"ρa||a⊥
2( ), β|| 9nG11
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2

3 +1

0
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N M

Fig. 1. Diagram of quantum transitions in a three-level sys-
tem in the presence of Zeeman splitting. N is the number of
the quantum level, M is the magnetic quantum number,
wavy lines correspond to quantum transitions induced by
the transverse component of an acoustic pulse, and the dou-
ble arrow  corresponds to the dynamic frequency shift
for these transitions.
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right-hand side of Eq. (13) in the form

 

 

With these equations, we can write the derivative on
the right-hand side of Eq. (13) as

 (17)

Further study is based on the set of wave and constitu-
tive equations (13)–(17).

3. NONLINEAR WAVE EQUATIONS

Let the pulse duration τp be so short that the condi-
tion of spectral overlap [14, 21] is satisfied,

 (18)

i.e., the pulse spectrum contains Fourier components in
resonance with transitions between Zeeman sublevels.
In this case, the interaction between the acoustic wave
and paramagnetic impurities can be quite strong. We
also assume that the spatial size l of the pulse is much
greater than the interatomic spacing h and, therefore,
the approximation of continuous medium is still valid.
We can satisfy both these conditions if we assume that
the Zeeman transition frequency ω0 ~ 1010 s–1. Thus,
the pulse duration is τp ~ 10–11 s and l ~ a⊥ τp ~ 10–6 cm @
h ~ 10–8 cm.

We note that, under condition (18), inhomogeneous
broadening does not have an appreciable effect on the
spin interaction with an acoustic pulse. Indeed, the
characteristic frequency spread δω in the inhomoge-
neously broadened lines of Zeeman transitions is about
~108–109 s–1 [7], whereas the spectral pulse width is
δωp ~ 1/τp ~ 1011 s–1. Therefore, even in the case of
inhomogeneous broadening, the pulse spectrum effec-
tively covers all quantum transitions.

We eliminate material variables from Eqs. (13)–(15)
using an operator version of the Wentzel–Kramers–
Brillouin asymptotic method [10, 22, 23]. It is seen

from Eq. (16) that the matrix  does not commute with
itself at different times. However, if the pulse excitation

is sufficiently weak, then the variation in  in the time
of this excitation ∆τ is small and the matrix is approxi-
mately self-commuting. Then, we have [10]

 (19)
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2 2
---------- ρ33 ρ22–( )–

iΩ⊥*

2 2
----------ρ31* ,+=

∂ρ21*

∂τ
---------- i ω0 Ω||–( )ρ21*

iΩ⊥

2 2
---------- ρ11 ρ22–( )–

iΩ⊥*

2 2
----------ρ31* .+=

∂
∂τ
----- ρ32* ρ21*–( ) iω0 ρ32* ρ21*–( ) iΩ|| ρ32* ρ21*+( )+=

+
iΩ⊥

2 2
---------- ρ11 ρ33–( ).
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ρ̂ τ( ) Ûρ̂ t0( )Û
+
,=
P

                                                               

where

 (20)

is the evolution operator,  is the area opera-

tor, and t0 is the instant of time at which the pulse exci-
tation begins.

The exponential operator can be calculated using
the Silvester formula [24]:

 (21)

where  is the unit matrix and {λq} is the set of eigen-

values of the operator .

We resolve the indeterminacies of the 0/0 type in the
preexponential factors by using L’Hôspital’s rule and
assuming that, in the limit ∆τ  0, we have λj ≈ pj∆τ ≈

, where {pj} is the spectrum of the eigenval-

ues of the matrix .

Then, using Eqs. (20) and (21), we obtain

 (22)

Here, formally we let t0 tend to –∞.

Using Eq. (16), we find

 (23)

We assume that, before the pulse excitation, we have

 

where Wj (j = 1, 2, 3) are the initial Zeeman sublevel
populations satisfying the condition W1 + W2 + W3 = 1;
then, we obtain from Eqs. (16), (19), (22), and (23)

 (24)
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 (26)

Here, θ|| =  and θ = .

The general property of the solutions obtained by
using the WKB method is that the coefficients of the
periodic functions vary much more slowly [22, 23] than
these functions. Therefore, we can approximately write

 

Using this expression and Eqs. (13), (14), and (24)–(26)
and making the change of variable Ω⊥  = |Ω⊥ |eiϕ, we
arrive at the following system of integrodifferential
wave equations:

 (27)

 (28)

 (29)

where α⊥  = β⊥ (W1 – W3)/ , σ⊥  = β⊥ (1 – 3W2)/2 ,
and α|| = β||(1 – 3W2)/4.

The set of equations (27)–(29) describes nonlinear
interaction between the longitudinal and transverse
components of the elastic wave via resonant paramag-
netic impurities. It is seen from Eq. (29) that the trans-
verse component can generate a longitudinal compo-
nent, whereas the opposite is impossible. This can eas-
ily be seen if we set |Ω⊥ | = 0 and Ω|| ≠ 0 on the right-
hand side of Eq. (27), in accordance with the incidence
conditions. Then, we will have Ω⊥  = 0 in the bulk.

Equation (28) characterizes the phase of the trans-
verse component of the elastic-strain pulse, i.e., the rate
of rotation of its polarization plane. In analyzing
Eq. (28), we can reveal two mechanisms. The first term
on the right-hand side does not vanish at |Ω||| = 0 and
describes the dynamics of rotation of the polarization
plane due to the variation in the angular momentum of
the elastic wave caused by its interaction with paramag-
netic impurities. We note that this effect is linear in
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field, i.e., occurs at arbitrarily small values of |Ω⊥ |. The
remaining terms on the right-hand side of Eq. (28)
describe the effect of the longitudinal component on the
rotation of the polarization plane of the transverse com-
ponent. As noted above, the longitudinal component
dynamically changes the frequencies of quantum tran-
sitions and, therefore, affects the efficiency of interac-
tion of these transitions with the transverse component
and thus the efficiency of the angular-momentum
exchange between the field and the medium. The mech-
anism of rotation of the polarization plane related to the
presence of the longitudinal component is essentially
nonlinear [see Eqs. (28), (29)] and vanishes in the limit
of low fields. In what follows, these two mechanisms of
rotation of the polarization plane are called linear and
nonlinear, respectively.

We note again that, in deriving Eqs. (27)–(29), we
did not use the approximation of a slowly varying enve-
lope function. They are derived from the original sec-
ond-order differential wave equation under the assump-
tion of small right-hand sides in Eqs. (10) and (11).
Now, we can specify the parameter µ used in the deri-
vation and given by the ratio of the right-hand sides to
one of the terms on the left-hand side. It follows from
Eq. (27) that

 

where the dimensionless parameter η ~

/("ω0ρ ). Taking n ~ 1017 cm–3, G44 ~ 10–13 erg,
ρ ~ 5 g/cm3, and a⊥  ~ 3 × 105 cm/s [7, 15, 16], we find
η ~ 10–3. Using this value and Eq. (18), we find that µ !
1 by a large margin. A similar result is obtained from
Eq. (29).

4. SELF-INDUCED TRANSPARENCY
FOR ACOUSTIC VIDEO PULSES

Let the longitudinal component be relatively small,

so that  ! |Ω⊥ |2. In this case, we have Ω . |Ω⊥ |.

Introducing a new variable θ⊥  = θ/2 = , we

obtain from Eq. (27) the sine–Gordon equation

 (30)

where τ⊥  = t – z/a⊥ .

A single-soliton solution to Eq. (30) has the form
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where the propagation velocity in the laboratory frame
of reference is given by

 (32)

and τp is the duration of the transverse-component soli-
ton having the form

 (33)

Expressions for the populations ρ11 and ρ33 following
from Eqs. (19), (22), and (23) are generally rather
lengthy. To simplify them, we assume that the temper-
ature T of the paramagnetic crystal is so low that T <
"ω0/kB, where kB is the Boltzmann constant. For ω0 ~
1010 s–1, we have T < 0.1 K. In this case, we can take
W1 = 1 and W2 = W3 = 0 and, using Eqs. (19), (22), and
(23), find that

 (34)

 (35)

We can find ρ33 from the relation ρ33 = 1 – ρ11 – ρ22.
Using this relation together with Eqs. (34), (35), and
(31), we obtain

 (36)

The longitudinal component can be included by setting
Ω = |Ω⊥ | and θ = 2θ⊥  in Eq. (29). Then, using Eqs. (31)
and (33), we find

 (37)

This expression for Ω|| is valid in the case of |Ω⊥ |2 @ .

In the limit considered, using Eqs. (28) and (31) and
taking into account that [see Eq. (32)]
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we find the local rate of rotation of the polarization
plane for the transverse component ωrot = ∂ϕ/∂τ⊥  to be

 (38)

In this case, the rotation of the polarization plane is
caused by the linear mechanism. During pulse propaga-
tion, the spins of paramagnetic ions first perform suc-
cessive transitions 1  2  3 and then come back
to the initial state in reverse order, 3  2  1. In the
1  2 transition, the transverse pulse component
transfers the projection of its angular momentum to the
medium (∆M = +1), with the consequence that the rota-
tion of the polarization plane slows down. The same
process also occurs in the 2  3 transition. As a
result, the polarization plane rotates in the direction
opposite to the initial one (see Eq. (38) at t = z/v ). Then,
the acoustic pulse recovers the initial value of the pro-
jection of the angular momentum by causing cascade
transitions of spins from the excited to the ground state.

Figure 2 shows the propagating profiles of |Ω⊥ |, Ω||,
and ωrot and the populations of quantum levels corre-

sponding to the limit |Ω⊥ |2 @ .

We note that, due to the three-level structure of the
medium, the area of the pulse corresponding to this
solution is equal to 4π. It follows from Eq. (34) that
only pulses with an area that is a multiple of 4π return
the medium to the initial state.

Let us show that, in the opposite limiting case,

where  @ |Ω⊥ |2 and a|| = a⊥ , the soliton regime of
propagation with zero strain at infinity is impossible.
Putting θ = θ|| in Eq. (27) in this limit, then using
Eq. (29), and integrating, we obtain

 

The quantities α⊥  and σ⊥  are of the same order of mag-
nitude, whereas Ω ≈ |Ω||| @ ω0. It follows that the right-
hand side of this expression is negative and, therefore,
the expression has no sense.

5. RATIONAL SOLITONS

In this section, we assume that the condition |Ω||| @
ω0 is satisfied. In this case, we have %|| @ "ω0/G11 ~ 10−4.
Since values of the strain %|| ~ 10–3 still correspond to
elastic deformation, we can neglect the first term in the
right-hand side of Eq. (27). We search for a solution to
Eqs. (27)–(29) satisfying the condition Ω|| = qΩ⊥ ,
where q is a constant. For this solution, we have
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From the foregoing, it follows that we can write
Eqs. (27) and (29) in the form

 (39)

where δ = 1/a⊥  – 1/a||.

∂θ
∂τ
------

2 α|| σ⊥ q
2

+( )

δq 1 q
2

+
------------------------------- θ

2
---,sin

2
=
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2
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Fig. 2. The profiles of |Ω⊥ |, Ω||, δω, and quantum level pop-

ulations in the case of |Ω⊥ |2 @  (the acoustic-SIT

regime).

Ω||
2
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The single-soliton solution to this set of equations in
the laboratory frame of reference is

 (40)

where τp = δq /(α|| + σ⊥ q2) is the pulse duration
and its velocity v  is given by

 (41)

With allowance for Eq. (40), we have

 (42)

where ξ = (t – z/v )/τp.

In contrast to Eqs. (33) and (37), pulses (42) are
localized according to a power law rather than expo-
nentially. For this reason, we call them rational solitons.
Since a|| > a⊥ , we have δ, Ω|| > 0 [see Eq. (42)]. There-
fore, the first and third quantum levels are dynamically
displaced upwards with respect to the central level.
Since Ω|| @ ω0, the effective frequencies of the 1  2
and 2  3 transitions are much greater than the fre-
quency 2ω0 of the 1  3 transition (Fig. 3). Thus, the
longitudinal component effectively creates a medium
with an inverted population with respect to the middle
level. The transverse component, which induces quan-
tum transitions under such conditions, has a velocity
v  > a⊥  (but v  < a||) according to Eq. (41). Here, we see
an analogy with light pulses in inverted media [25–27];
however, in our case, the velocity of transverse sound
a⊥  plays the role of the velocity of light. A nonequilib-
rium population is not formed initially but instead
arises due to the atomic energy spectrum reconstructed
effectively by the longitudinal component of the elastic

θ 2
t z/v–

τ p

---------------- 
  ,arctan–=

1 q
2

+

1
v
----

1

a|| σ⊥ q
2

+
----------------------

α||

a⊥
-----

σ⊥ q
2

a||
-----------+ 

  .=

Ω⊥
2 α|| σ⊥ q

2
+( )

δq 1 q
2

+( ) 1 ξ2
+( )

---------------------------------------------,=

Ω||
2 α|| σ⊥ q

2
+( )

δ 1 q
2

+( ) 1 ξ2
+( )

------------------------------------------,=

Ω⊥

Ω⊥

Ω|| @ ω0

1

2

3 +1

0

–1

N M

Ω|| = 0

1

2

3 +1

0

–1

N M

Fig. 3. Deformation of the quantum spectrum of the S = 1
spin caused by an intense longitudinal component of an
acoustic pulse. The notation is the same as in Fig. 1.
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field propagating together with the transverse compo-
nent.

To analyze the population dynamics and ωrot, we
now consider the limiting cases. Let us assume that q !
1 and, hence, the transverse component predominates.
Then,

 (43)Ω⊥
2α||

δq 1 ξ2
+( )

-------------------------, Ω||
2α||

δ 1 ξ2
+( )

----------------------,= =

|Ω⊥ |

Ω||

0

δω

1

W1

(t – z/v)/τp

0

0

W3

W2

Fig. 4. Profiles of |Ω⊥ |, Ω||, δω, and quantum level popula-

tions in the case of |Ω⊥ |2 @  for rational inverting soli-

tons.

Ω||
2

PH
where τp = δq/α|| and v  = a⊥ . In this case, the popula-
tions are given by

 

 

In this limit, the rate of rotation of the polarization
plane is

 

It is seen from Fig. 4 that, after a pulse of the form of
(43) has passed, the medium becomes fully inverted;
for this reason, we call rational solitons for q ! 1
inverting.

We can also explain this effect in terms of recon-
structing the scheme of quantum transitions for the lon-
gitudinal component. In the approximation Ω|| @ ω0
made above, there is practically no difference between
the first and third levels and the system is, in effect,
two-level with a doubly degenerate upper level. The
transverse component induces 1  2 and 2  3
quantum transitions and propagates in the SIT regime.
We can say that the disappearance of distinctions
between the first and third levels for Ω|| @ ω0 corre-
sponds to the undepleted-field approximation for the
longitudinal component. Therefore, the violation of the
law of energy conservation in the case where the
steady-state pulse (42) passes through a medium and
fully inverts it is only apparent. Keeping the first term
on the right-hand side in Eq. (27) should result in a
gradual decay of the pulse.

A strong change in the population of the medium is
related here to the inequality |Ω⊥ | @ Ω||, which implies
that the condition of spectral overlap of quantum tran-
sitions and the pulse field also remains valid for the
rearranged spectrum of spin states.

We note that, in the case of S = 1/2 spin, no inversion
effect appears [14], since the displacements of both lev-
els (with M = ±1/2) caused by the longitudinal compo-
nent are the same and the spectrum remains unchanged.

In this case, the mechanism of rotation of the polar-
ization plane is linear and is related to sequential trans-
fer of the angular momentum from the field to the
medium as a result of transitions 1  2  3. There-
fore, the direction of rotation is reversed as one goes
from the front to the end of the pulse.

Here, we also have an analogy with the well-known
effect of adiabatic inversion in optics and radiospec-
troscopy; this effect consists in a full excitation of a
medium that occurs when the detuning of the field fre-
quency is dynamically changed from a negative to a
positive value [28]. In our case, ωrot plays the role of the
carrier frequency, whose asymptotic values (as ξ 
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±∞) are much greater in magnitude than the frequency
2ω0 of the 1  3 transition.

The above regime of propagation in which ω0 !
Ω|| ! |Ω⊥ | can be used to create population inversion in
a system of Zeeman sublevels. After the passage of
such a pulse, the medium must relax to the equilibrium
state. It is possible that the relaxation occurs in the
regime of acoustic superradiation. This problem
requires additional analysis, which lies beyond the
scope of the present study.

Now, we consider the opposite case q @ 1, where the
longitudinal component predominates. Here, the corre-
sponding solutions for the longitudinal and transverse
components of the pulse are

 (44)

where τp = δ/σ⊥  and v  = a||. In this limit, the populations
remain practically unchanged (Fig. 5),

 

This result is due to the fact that, for Ω|| @ |Ω⊥ | @ ω0,
the spectrum of the transverse component does not con-
tain practically any Fourier components in resonance
with quantum transitions. Accordingly, we call the
rational solitons (44) capturing.

Soliton propagation regimes under the conditions of
population capture were earlier studied in acoustics
[10] and optics of anisotropic media [29] for pulses
consisting of quasi-monochromatic and extremely
short components. In optics, the corresponding regime
is called extraordinary transparency [29]. The case q @
1 can, to a certain extent, be considered an analog of
extraordinary transparency for acoustic video pulses.

For q @ 1, we can write ωrot in the form

 

In this case, the dominant contribution to the rotation of
the polarization plane comes from the longitudinal
component; i.e., the corresponding mechanism is
essentially nonlinear. The transverse component tends
to transfer the projection of the angular momentum to
the 1  2 transition. However, since there are no res-
onant Fourier components, the transition is excited very
weakly and, therefore, the polarization plane of the
transverse component does not rotate.

We should note an interesting feature. In both limit-
ing cases, the amplitude of the longitudinal component
of the pulse is practically the same; only the amplitude
of the transverse component appreciably varies.

Passing to the limit τ  +∞ in the second equation
in set (39), we obtain

 (45)
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where leff = /2α|| and A =  is the total

pulse area.

Equation (45) can be considered the area theorem
for rational solitons. It follows from Eq. (45) that these
solitons have a one-sided stability (Fig. 6). Indeed, to
form a rational 2π pulse of the type of (42), the area A0
of the incident pulse must lie in the interval 2π < A0 <
4π. For A0 < 2π, the soliton cannot form and the pulse
must irreversibly decay in the medium. If A0 = 2πN + ε,
where N is an integer and 0 < ε < 2π, then A  2πN
as z @ leff. Most likely, this means that, in the medium,
the incident pulse is split into N rational solitons.
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Fig. 5. Profiles of |Ω⊥ |, Ω||, δω, and quantum level popula-

tions in the case of |Ω⊥ |2 !  for rational capturing soli-

tons.
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2
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We note that the effective length leff for the forma-
tion of inverting solitons is q times shorter than the cor-
responding length for capturing solitons. We estimate
the values of leff in both cases. For the above values of
the parameters of the medium, we have α|| ~ 1 cm–1.
Then, for q ~ 0.1 (inverting solitons), we have leff ~
0.1 cm, and for q ~ 10 (capturing solitons), leff ~ 10 cm.

6. CONCLUSIONS

Our study has revealed different propagation
regimes of acoustic video pulses of picosecond dura-
tion in a crystal containing paramagnetic centers with
effective spin S = 1. In the Faraday geometry, the role
of transverse and longitudinal components of the pulse
are strictly different: the former induces quantum tran-
sitions in the system of Zeeman sublevels, and the latter
dynamically displaces the frequencies of these transi-
tions. Due to this fact, the longitudinal component of
the pulse can, under certain conditions, appreciably
change the spectrum of quantum states of the effective
spin, thereby bringing about the occurrence of qualita-
tively different soliton propagation regimes. It is possi-
ble that SIT video solitons, inverted solitons (that can-
not exist in the case S = 1/2), and capturing solitons
describe only part of the propagation regimes in the
system S = 1 and, in geometries different from the Fara-
day geometry, new soliton regimes can occur.

In this study, we described the elastic field in the
framework of the mechanics of continuous media; i.e.,
we neglected spatial dispersion. As shown above, this
approximation imposes substantial restrictions on the
magnitude of the external magnetic field and the tem-
perature of the paramagnetic sample (T < 0.1 K). An
increase in T up to 1 K necessitates ten times higher
fields B (or frequencies ω0) in order to produce an
appreciable difference in the population of Zeeman
sublevels. Otherwise, spin–phonon interaction will be
hardly noticeable. For ω0 ~ 1011 s–1, the pulse duration

A

4π

2π

0 z

Fig. 6. Schematic analysis of the dynamics of the total ratio-
nal-soliton area.
P

should be τp ~ 1 ps, since the condition of spectral over-
lap, Eq. (18), must be satisfied. In this case, the spatial
size of the video pulse is l ~ a⊥ τp ~ 10–7 cm and we must
go beyond the continuous medium approximation [16,
30–32]. Furthermore, the effects of nonlocality of spin–
phonon interaction can be important under such condi-
tions [16]. As video pulses become shorter, their ampli-
tude grows. Under these conditions, it may appear to be
necessary to take into account the anharmonicity of
crystal lattice vibrations [16, 31, 32]. Lattice anharmo-
nicity and spatial dispersion themselves facilitate soli-
ton formation even in the absence of paramagnetic
impurities. It is possible that, with inclusion of the
spin–phonon interaction, new soliton regimes will
appear.
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Abstract—Neutron diffraction data are presented for the 152Sm0.55Sr0.45MnO3 (SSM) and
(Nd0.545Tb0.455)0.55Sr0.45MnO3 (NTSM) manganites. The Nd and Tb contents in the latter composition are such
that the average radius of the A cation 〈rA〉  in these two compounds is the same. The difference in local tolerance
factor fluctuations was about 10%. It was found that replacement of a rare-earth cation with leaving 〈rA〉
unchanged has practically no effect on the structural and transport properties; indeed, both compounds are met-
als at low temperatures, have the same crystal structure from liquid-helium to room temperature, and exhibit
the same pattern of structural distortions at the onset of magnetic ordering. Magnetic moments of Mn ions in
both compositions are ferromagnetically ordered at low temperatures, with TC = 122 and 90 K for the SSM and
NTSM, respectively. Below 80 K, the rare-earth cation moments in NTSM undergo additional ordering. In con-
trast to compositions that are close in Sr concentration (xSr = 0.4, 0.5), which feature a phase-separated state
with a mixture of the ferromagnetic metallic and antiferromagnetic insulator phases, the ground state of both
studied compositions with xSr = 0.45 is uniformly ferromagnetic and metallic. © 2004 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

We report on a continuation of our systematic inves-
tigation of the Sm1 − xSrxMnO3 perovskite manganites
(Sm–Sr subsequently), which have recently been
enjoying considerable interest because of their nontriv-
ial physical properties. For instance, the composition
with x = 0.45 revealed a strong decrease in electrical
resistivity [1] and a sharp change in the coefficients of
volume expansion and volume magnetostriction near
the Curie temperature TC [2], as well as some features
in the temperature dependence of heat capacity [3]. A
detailed phase diagram for the Sm1 − xSrxMnO3 system
established from measurements of the electrical resis-
tivity and magnetization and from electron diffraction
data can be found in [4]. In contrast to the Sm–Ca com-
positions, the Sm–Sr phase diagram was found to have
a broad region of a prevailing ferromagnetic (FM)
metallic state for 0.3 < x ≤ 0.52, whose formation is
believed to be associated with the larger average A cation
radius 〈rA〉 in the Sm–Sr compositions. Another feature
of the Sm–Sr system is the comparatively large scatter in
the size of A cations (rSm = 1.132 Å, rSr = 1.310 Å),
which brings about strong local fluctuations of the eg

electron hopping amplitude and lowers TC. Finally,
recent measurements [5] revealed a strong isotopic
1063-7834/04/4609- $26.00 © 21704
effect in Sm–Sr compositions near x = 0.45; indeed,
substitution of 18O for 16O results in a substantial
decrease in TC (by 40 K for x = 0.45 in a cooling run and
25 K in the sample heating mode) or even in a transition
to the insulating state (for x = 0.475, 0.5). The colossal
magnetoresistance was found to exist in the Sm–Sr sys-
tem only in the hole doping region for 0.3 ≤ x ≤ 0.5 [6].

Because of the high absorption cross section of nat-
ural Sm, neutron diffraction was almost not used at all
in the studies of the crystal and magnetic structure of
the Sm-based manganite. Only the x = 0.4 composition
has been investigated in detail [7, 8], and, in particular,
unusually large Jahn–Teller distortions of the oxygen
octahedra and the coexistence of FM and antiferromag-
netic (AFM) ordering within a certain temperature
interval were revealed it. The first neutron diffraction
data for the x = 0.45 composition were published in [9]
for several temperatures. Attention was focused on the
paramagnetic phase, in which FM clusters with a char-
acteristic size of ≈8 Å were found embedded in an
orbital- and charge-ordered insulator phase (but with-
out long-range order). At low temperatures (4 K), only
FM ordering of Mn ions with a magnetic moment
≈3.4µB was detected. The structural characteristics of
this compound were not analyzed in [9].
004 MAIK “Nauka/Interperiodica”
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We report here on a comprehensive neutron diffrac-
tion study of the Sm0.55Sr0.45MnO3 composition. To
refine the specific part played by Sm in the unusual
physical properties of the compound, the
(Nd1 − yTby)0.55Sr0.45MnO3 composition was also stud-
ied, with the Nd and Tb concentrations chosen such that
the average radius of the A cation in these compounds

will be the same. The parameter σ2 =  – 〈r〉2

(where xi is the cation concentration and ri is the cation
ionic radius) characterizes local fluctuations of the tol-
erance factor and governs, to a considerable extent, the
transport and magnetic properties of the manganites
[10]; the difference in this parameter between the two
compounds mentioned above is ~10%. We established
that replacement of a rare-earth cation has practically
no effect on the structural and magnetic properties of
the compound, provided 〈r〉  remains unchanged.

2. EXPERIMENTAL

We prepared two samples for neutron diffraction
measurements, 152Sm0.55Sr0.45MnO3 (SSM) and
(Nd0.545Tb0.455)0.55Sr0.45MnO3 (NTSM). Using the
152Sm isotope (neutron absorption cross section σa ≈
200 b) instead of a natural mixture of samarium iso-
topes (σa ≈ 5920 b) permitted us to substantially
improve the quality of neutron spectra and simplify the
treatment of the data. One SSM sample was prepared at
the CRISMAT laboratory (Caen, France) from a mix-
ture of Sm2O3, SrCO3, CaO, and MnO2 taken in appro-
priate ratio. The mixture was first calcined in air for
12 h for decarbonization, next ground thoroughly, and
then pelletized at a pressure of 103 kg/cm2. Subsequent
synthesis was conducted at 1400°C for 12 h. The other
SSM sample was fabricated at Moscow State Univer-
sity (MSU) using “paper synthesis,” a procedure in
which ashless filters were impregnated with a water
solution of metal nitrates of stoichiometric composition
with a total concentration of about 1 mol/l; the residue
remaining after these filters were burned was first cal-
cined at 700°C for 30 min, then pressed into pellets, and
finally sintered at 1200°C for 12 h. The NTSM sample
was prepared at MSU using the same technology as for
the second SSM sample. The phase composition of the
samples thus obtained was studied by x-ray diffraction
and Raman spectroscopy. Both methods showed them
to be single-phase. EPR measurements did not detect
any magnetic impurities in the samples.

The Nd to Tb ratio in NTSM was chosen using the
following data on ionic radii taken from Shannon’s
tables [11] for ninefold coordination of the A cation,
which is accepted for the manganites: rSm = 1.132 Å,
rSr = 1.310 Å, rNd = 1.163 Å, and rTb = 1.095 Å. The
average radius of the A cation is 1.212 Å for both com-
positions; σ2 = 0.0081 Å2 for SSM, and 0.0091 Å2 for
NTSM.

xiri
2∑
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The samples were characterized by measuring the
temperature dependences of the electrical resistivity,
magnetization, and magnetic susceptibility. Their char-
acteristics were compared with the available data on
samples prepared by the same research groups follow-
ing the same technology but using Sm with a natural
isotopic abundance [2, 4, 6]. It was found that the data
for the two SSM samples are practically identical and
are in good agreement with earlier publications. Small
discrepancies in the absolute value of the parameters
(for instance, the values of TC differ by 3 K), but not in
the character of the dependences, can be traced to a
slight difference in oxygen stoichiometry. The stoichi-
ometry was determined by iodometric titration, which
revealed that the oxygen index is 3.00(1) and 3.02(1)
for the first and second SSM samples, respectively.

The crystal and magnetic structures of the samples
were determined on the following powder neutron dif-
fractometers: G4.2 (ORPHEE reactor, Saclay, France;
λ0 = 2.343 Å, 3° ≤ 2θ ≤ 174°, ∆d/dmin = 0.2%) [12],
HRFD (IBR-2 pulsed reactor, Dubna, Russia; 0.7 ≤
dhkl ≤ 4 Å, ∆d/d = 0.1%) [13], and DMC (SINQ source,
PSI, Switzerland; λ0 = 2.56 Å, 5° ≤ 2θ ≤ 85°, ∆d/dmin =
1%) [14]. The neutron diffraction patterns were mea-
sured over a broad temperature interval (1.4–300 K for
SSM and 10–293 K for NTSM) in the sample heating
mode. The crystal and magnetic structures were refined
using the Rietveld technique with the MRIA [15] and
FullProf [16] codes. Figure 1 illustrates the treatment of
the neutron diffraction patterns obtained on G4.2 and
HRFD.

3. CRYSTAL STRUCTURE

The SSM samples prepared at CRISMAT and MSU
were found to be practically identical from the stand-
point not only of their macroscopic properties but also
in terms of crystal structure. Only a slight discrepancy
in the unit cell parameters was observed, which could
be assigned to a small difference in oxygen concentra-
tion. Further, we present the data only for the second
sample (fabricated at MSU), because its temperature
behavior was studied in more detail and because it was
prepared by the same technology as the NTSM sample.

The crystal structure of both SSM and NTSM sam-
ples can be described well by the orthorhombic space
group Pnma (N 62) typical of manganites with 〈rA〉  ≈
1.2 Å. No structural transitions were detected within
the temperature interval covered. Anisotropic broaden-
ing of the diffraction lines, which was found in [8] in a
Sm0.6Sr0.4MnO3 sample close in composition to our sam-
ples, was not observed in SSM and NTSM. Figure 2a
displays temperature dependences of the SSM cell
parameters (obtained on G4.2). The analogous relations
for NTSM follow the same pattern. At all temperatures,
the sample structure is characterized by the parameter

relation c > a > b/  and the a–b+a– perovskite cubic
lattice distortion system typical of manganites with tol-
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Fig. 1. Diffraction patterns of (a) 152Sm0.55Sr0.45MnO3 (G4.2 diffractometer, T = 1.5 K) and (b) (Nd0.545Tb0.455)0.55Sr0.45MnO3
(HRFD, T = 30 K). Experimental points and calculated and difference curves are presented. Bragg reflection positions are specified
by vertical bars. The difference curve for the spectrum obtained on HRFD is normalized to standard deviations.
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erance factors t < 0.94 [17]. Because 〈rA〉  is the same for
the samples under study, the lattice parameters of SSM
and NTSM are very similar; indeed, the difference in
the volume of their unit cells does not exceed 0.2%
throughout the temperature interval covered (Fig. 2b).
Near the transition temperature to the FM phase (TC),
an abrupt decrease in the cell volume (∆Vc/Vc ≈ 0.1%)
is observed, which is similar to the one found for some
other manganites at the transition to the metallic FM
phase. The change in cell volume is largely associated
with contraction of the rhombic base; indeed, a jump in
the temperature dependence of the parameters a and c
is observed, whereas the parameter b remains practi-
cally constant. The orthorhombic lattice distortion δ =
(a – c)/(a + c) is comparatively large (δ ≈ 0.15%).

The observed hysteresis of the lattice constants in
the vicinity of TC correlates well with the hysteresis
data obtained in measurements of the electrical resistiv-
ity [3, 18], magnetization [6], thermal expansion, mag-
netostriction [2], heat capacity, thermal conductivity,
and thermopower [18]. The temperature hysteresis near
the phase transition was also observed for the lattice
constants of the Sm0.6Sr0.4MnO3 composition [7, 8], but
within a broader temperature interval. By contrast, no
hysteresis was found to exist in Sm0.5Sr0.5MnO3 [19].

Superstructural diffraction maxima indicative of the
existence of charge long-range order (observed ordi-
narily at x ≈ 0.5 in La and Pr manganites) were not
detected in [9] throughout the temperature interval cov-
ered.

Neutron diffraction patterns measured on high reso-
lution diffractometers (HRFD, G4.2) yielded detailed
data on coherent Jahn–Teller distortions of the MnO6
octahedra for both SSM and NTSM samples. As in the
case of unit cell parameters, the pattern of the tempera-
ture dependences and the magnitude of the Jahn–Teller
distortions turned out to be practically the same for both
samples. On the whole, the cooperative Jahn–Teller
effect is small in the temperature interval covered. The
parameter σJT = (1/3Σ[(Mn–O)i – 〈Mn–O〉]2)1/2 charac-
terizing the magnitude of the distortions does not
exceed 0.01 Å, which is substantially smaller than that
for the x = 0.4 composition, where σJT ≈ 0.09 Å at low
temperatures [8]. The magnitude and the temperature
dependences of the Mn–Oi–Mn valence angles in SSM
and NTSM are likewise similar; at room temperature,
we have ϕ(Mn–O1–Mn) ≈ 159° and ϕ(Mn–O2–Mn) ≈
162.5°; near the transition to the FM phase, these
angles become approximately equal to ≈161° and part
slightly again as the temperature is lowered still further.
The variations in the average values 〈Mn–O〉  and 〈Mn–
O–Mn〉  with temperature for SSM and NTSM are small
and do not exceed 0.005 Å and 1° for the bond lengths
and valence angles, respectively. These features in the
temperature dependence of the structural parameters
are illustrated in Fig. 3 for the SSM composition.
PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      200
4. MAGNETIC STRUCTURE

The Mn magnetic moments become ordered ferro-
magnetically in both SSM and NTSM compositions at
TC = 122 and 90 K, respectively. At low temperatures,
the averaged ordered moments of Mn in the SSM and
NTSM samples are similar and equal to 3.36(5)µB and
3.6(1)µB, respectively. These values practically coin-
cide with the expected average value calculated under
the assumption that the structure contains 55% Mn3+

ions (µ = 4µB) and 45% Mn4+ ions (µ = 3µB). The FM
ordering temperature exhibits hysteresis, as is the case
with the temperature dependences of the SSM cell
parameters: TC = 122 K in the heating mode, and TC =
115 K under cooling.
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SSM did not show any indications of Sm magnetic
moment ordering. In NTSM, the magnetic moments
of rare-earth (RE) cations undergo ordering below T ≈
80 K. This process culminates in the formation of a
noncollinear magnetic structure with the FM compo-
nent of the RE cation moments oriented in the direction
of the Mn moment and with a G-type ordered AFM
component (antiparallel ordering of the nearest neigh-
bor moments along all three basic directions). Note that
the contributions to the magnetic peak intensity deriv-
ing from the FM components of the Mn and RE cation
moments allow unambiguous separation, because for
certain peaks their magnetic structural factors are added
(for instance, for (121)/(002)) while for others they are
subtracted (for example, (101)/(020)). By contrast, the
G-type AFM peaks can, in principle, be accounted for
by canting of either the RE-cation or Mn magnetic
moments. The first case (noncollinearity of the RE-cat-
ion magnetic moments) is chosen because otherwise
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P

the total Mn moment would be larger than 4 µB. The
absence of AFM peaks in SSM may be considered an
additional argument for the chosen version. The tem-
perature dependences of the ordered magnetic
moments of Mn and the RE cation in NTSM are shown
in Fig. 4. The total magnetic moment of the RE cation
was calculated as an average over Nd and Tb. For defi-
niteness, we used the magnetic formfactor of Nd3+ in
the calculation.

An analysis of the intensities of diffraction patterns
showed that the Mn magnetic moment is most probably
aligned with the c axis of the unit cell. The FM compo-
nent of the RE-cation moment is oriented in the same
way, and its AFM component is directed along the a
axis. The resolution of the DMC diffractometer is, how-
ever, not high enough to totally exclude the ordering
model with the moments changing directions along the
a and c axes.

To check the effect of a small compositional varia-
tion on magnetic ordering, a 152Sm0.525Sr0.475MnO3
sample was prepared and studied. This sample exhib-
ited the same features as 152Sm0.55Sr0.45MnO3. This sug-
gests that in the Sm–Sr manganite system there exists a
narrow concentration region near x = 0.45 with a purely
ferromagnetic ordering of the Mn ions.

4. DISCUSSION OF THE RESULTS

In the Sm1 − xSrxMnO3 system, the concentration
interval 0.4 ≤ x ≤ 0.5 is of particular interest, because a
number of remarkable properties are observed in this
range. The x = 0.4 composition exhibits an incoherent
mixture of phases, namely, one FM metallic (major)
and two AFM insulating phases (A type and a small
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(Nd0.545Tb0.455)0.55Sr0.45MnO3.
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amount of CE type) [8]. Both magnetic phases have
very similar structural parameters corresponding to the
orthorhombic Pnma group. Having a comparatively
low temperature TC ≈ 120 K, the x = 0.4 composition
reveals unusual magnetic behavior above TC, which is
associated with the formation of AFM domains in the
paramagnetic matrix. This feature originates primarily
from strong coherent Jahn–Teller distortions, which
develop below TJT ≈ 180 K and persist to some extent
in the FM phase. The ground state of the x = 0.5 com-
pound is metallic, with the A-type AFM phase domi-
nant and some inclusions of the FM phase [19]. Thus,
the concentrations x = 0.4 and 0.5 are characterized by
the coexistence of FM and AFM ordering, which is
interpreted as the formation of a two-phase state at low
temperatures.

We established in this work that the ground state of
the x = 0.45 composition, which is intermediate
between 0.4 and 0.5, is uniformly ferromagnetic and
metallic. Thus, we discovered a fairly unexpected fea-
ture in the phase diagram of the Sm–Sr manganites,
more specifically, that the inhomogeneous states with
similar values of x are separated by a narrow region of
a homogeneous state. It is in this interval that the colos-
sal magnetoresistance reaches its maximum value. The
fact that the ground ferromagnetic states in both com-
positions, SSM and NTSM, are identical indicates that
the nature of magnetic ordering of the Mn ions is inde-
pendent of the type of RE element and of the presence
or absence of its magnetic ordering.

The existence of a homogeneous FM state below the
Curie temperature is an unexpected finding also
because the paramagnetic state in these samples has
been found to be magnetically inhomogeneous and to
exhibit a complex temperature behavior [20]. In this
case, small CE-type AFM regions with a weak Dzya-
loshinsky–Moriya ferromagnetism and FM domains
form in the paramagnetic matrix. Nucleation of such
AFM regions in compositions with Sr concentrations
x = 0.4 and 0.5 at high temperatures brings about the
formation of a mixed FM + AFM magnetic state at low
temperatures. For the case where x = 0.45, the AFM
fluctuations completely vanish with decreasing temper-
ature.

When considering the transition temperatures to the
FM state in SSM and NTSM, which differ by about
30 K, one should take into account the following two
factors: the degree of deviation of the average structure
of these compounds from that of an ideal perovskite
and the level of local disorder, which is associated with
the scatter of the A cations in size. For perovskites, the
conduction band width W, which determines the FM
transition temperature (TC ~ W), is directly related to
the deviation of the average Mn–O–Mn valence angle
from 180°: W ~ cos[(π – 〈Mn–O–Mn〉)/2] (cf., e.g.,
[21]). According to this criterion, TC for NTSM should
be higher by ≈10 K than that for SSM. The empirical
dependence of W on the average bond length d = 〈Mn–
PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      200
O〉  (W ~ d–3.5), which is sometimes taken into account,
does not change the situation significantly, because the
〈Mn–O〉  distances in SSM and NTSM are the same.
The effect of scatter in the ionic radii of A cations on TC

can be estimated from the empirical relation between
TC and σ2 proposed [10] for compositions with a doping
level x = 0.3 and 〈rA〉  = 1.23 Å. The TC(σ2) relation [10]
suggests that TC for NTSM should be ≈20 K smaller
than that for SSM. Obviously enough, inclusion of the
above factors does not result in agreement with the
experimental value of TC variation, although the
smaller value of TC for NTSM is predicted correctly.

6. CONCLUSIONS

Thus, replacement of Sm by a mixture of Nd/Tb
with the same average cation radius did not produce
any noticeable changes in the structural or magnetic
properties; indeed, the SSM and NTSM compounds
have the same crystal structure over a broad tempera-
ture interval, the same character of structural distor-
tions at the FM ordering temperature, and the same
magnetic structure of the Mn sublattice. The observed
difference in the RE-cation ordering is a natural conse-
quence of the Nd/Tb mixture having a substantially
larger magnetic moment than Sm (the calculated effec-
tive spin moments are 0.84µB for Sm, 3.64µB for Nd,
and 9.7µB for Tb [22]). The alignment of the Mn and
RE-cation FM-component moments suggests that the
RE-cation moment ordering is induced by the ferro-
magnetic Mn sublattice. Accordingly, the ordering tem-
perature of the RE-cation moments is determined by
their magnitude, and in NTSM this temperature almost
coincides with that of the manganese sublattice.

In contrast to replacement of the RE element, a com-
paratively small change in the doping level by the diva-
lent cation, i.e., a change in the Mn3+/Mn4+ ratio, brings
about a radical modification of magnetic ordering. Both
a decrease in the Sr concentration (down to x = 0.4) and
an increase (up to x = 0.5) give rise to the formation of
an inhomogeneous state with a mixture of the FM and
AFM (primarily of the A type) phases.
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Abstract—Magnetic, elastic, magnetoelastic, transport, and magnetotransport properties of the
Eu0.55Sr0.45MnO3 ceramics have been studied. A break was detected in the temperature dependence of electrical
resistivity ρ(T) near the temperature of the magnetic phase transformation (41 K), with the material remaining
an insulator down to the lowest measurement temperature reached (ρ = 106 Ω cm at 4.2 K). In the interval
4.2 ≤ T ≤ 50 K, the isotherms of the magnetization, volume magnetostriction, and ρ were observed to undergo
jumps at the critical field HC1, which decreases with increasing T. For 50 ≤ T ≤ 120 K, the jumps in the above
curves persist, but the pattern of the curves changes and HC1 grows with increasing T. The magnetoresistance
∆ρ/ρ = (ρH – ρH = 0)/ρH is positive for H < HC1 and passes through a maximum at 41 K, where ∆ρ/ρ = 6%. For
H > HC1, the magnetoresistance is negative, passes through a minimum near 41 K, and reaches a colossal value
of 3 × 105 % at H = 45 kOe. The volume magnetostriction is negative and attains a giant value of 4.5 × 10–4 at
H = 45 kOe. The observed properties are assigned to the existence of three phases in Eu0.55Sr0.45MnO3, namely,
a ferromagnetic (FM) phase, in which carriers are concentrated because of the gain in s–d exchange energy, and
two antiferromagnetic (AFM) phases of the A and CE types. Their fractional volumes at low temperatures were
estimated to be as follows: ~3% of the sample volume is occupied by the FM phase; ~67%, by the CE-type
AFM phase; and ~30%, by the A-type AFM phase. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Until recently, the interest expressed in manganites
was mainly associated with the colossal magnetoresis-
tance (CMR) observed in some compositions near room
temperature. Our studies [1–4] revealed that, in the sys-
tems La1 − xSrxMnO3 (0.1 ≤ x ≤ 0.3), Nd1 – xSrxMnO3
(x = 0.33, 0.45), and Sm1 – xSrxMnO3 (x = 0.33, 0.4,
0.45), in addition to the CMR, giant negative volume
magnetostriction ω takes place, with its temperature,
ω(T), and field, ω(H), dependences found to closely
resemble those of the magnetoresistance, {∆ρ/ρ}(T)
and {∆ρ/ρ}(H). These properties were assigned to the
fact that, in these systems, there exists a magnetic two-
phase state, ferromagnetic (FM) and antiferromagnetic
(AFM), caused by strong s–d exchange, with the carriers
(holes in this case) being concentrated in the FM part of
the crystal [5]. It should be stressed that the concept of
the Curie point is largely conventional here; in fact, it is
the Curie temperature of the FM part of the crystal.

It is known that the Sm1 – xSrxMnO3 system with x =
0.5 undergoes charge–orbital (CO) ordering that results
in the onset of a CE-type AFM order. Neutron diffrac-
tion and electrical resistivity measurements showed
that the 154Sm0.6Sr0.4MnO3 compound contains A- and
CE-type AFM clusters, with CO order setting in the lat-
ter. These clusters are embedded in a conducting FM
matrix [6]. There are no CO-ordered clusters in the x =
0.25 composition [6]. As the temperature is increased,
1063-7834/04/4609- $26.00 © 21711
the FM order at T = TC is the first to break down in the
x = 0.4 composition, the A-type AFM order at TN ≥ TC

is next, and the CE-type AFM order at T = TCO is last.
This behavior is in full agreement with the theoretical
predictions of Dagotto et al. [7], who showed, using
numerical modeling, that the concentration-driven
transformation occurring in manganites at x = 0.5 from
the FM to the CO state is a first-order phase transition
and that compositions close to x = 0.5 contain various
types of magnetic clusters, namely, FM, A-type AFM,
and charge–orbital CE-type AFM ordering.

Our earlier study covered the magnetic, electrical,
and galvanomagnetic properties of the Eu0.7Sr0.3MnO3
composition (x = 0.3), which was semiconducting and
exhibited giant maxima in the ρ(T) and {∆ρ/ρ} (T)
curves [8, 9]. We furnished the following experimental
evidence of the existence of an insulating state with two
coexisting magnetic phases in this compound. The
magnetization isotherms measured at low temperatures
were the sums of a small spontaneous magnetization
and a linear-in-field magnetization characteristic of an
antiferromagnet. There was a difference between the
magnetizations of a sample cooled with no field applied
and in a field, which persisted up to the maximum field
reached, 45 kOe; furthermore, the magnetization hys-
teresis loops of a field-cooled sample were found to be
shifted along the H axis. The contribution due to the
FM clusters noticeably enhanced the paramagnetic
004 MAIK “Nauka/Interperiodica”
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Curie point Θ, from –100 K for an undoped EuMnO3
sample to 175 K for Eu0.7Sr0.3MnO3. The Curie temper-
ature of the FM part of the composition was almost
impossible to measure. For instance, the value of TC in
a field of 45 kOe derived by extrapolating the steepest
part of the M(T) curve to the T axis was found to be
equal to 90 K, which is threefold higher than the value
TC = 30 K determined in a field H = 0.5 kOe.

In this work, we study the magnetic, electrical, gal-
vanomagnetic, and magnetoelastic properties of
Eu0.55Sr0.45MnO3, which should contain clusters of
three types, namely, FM, A-type AFM, and CE-type
AFM [7], and determine their differences from the
properties of the compositions Sm1 – xSrxMnO3 (x =
0.33, 0.4, 0.45) and Eu0.7Sr0.3MnO3. As follows from
the magnetic and galvanomagnetic properties of the lat-
ter composition [8, 9], it does not contain CO clusters.
Therefore, investigation of the above properties of the
Eu0.55Sr0.45MnO3 composition should offer new infor-
mation on the effect of the CO-ordered phase on these
properties and, hopefully, shed light on the nature of
their anomalies.

2. PREPARATION OF SAMPLES 
AND EXPERIMENTAL TECHNIQUES

The Eu1 – xSrxMnO3 sample under study was pre-
pared using standard ceramic technology. The phase
composition and the lattice parameters were monitored
with a Siemens D5000 diffractometer. The ceramic
obtained was established to be a single-phase perovs-
kite with orthorhombic structure (Pnma group). The
orthorhombicity parameter derived from the lattice
constants is 0.2%, which indicates closeness to cubic
structure. The tolerance factor τ = 0.924, and the degree
of disorder d2 = 0.00893. The single-phase state of the
ceramics was corroborated by Raman spectrometric
measurements performed on a Jobin-Yvon T64000 tri-
ple monochromator; in fact, the only phonon modes
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Fig. 1. Temperature dependence of electrical resistivity.
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observed were those characteristic of orthorhombic
manganites with Pnma symmetry.

The magnetization was measured with a vibrating-
sample magnetometer at the Strong Magnetic Field
Laboratory (Wroclaw) in magnetic fields of up to
130 kOe and in the temperature interval from 1.5 to
150 K. The initial magnetic susceptibility in an ac mag-
netic field of 1 Oe (at frequencies of 0.8 to 8 kHz) was
measured with an F-5063 ferrometer. The electrical
resistivity was determined by the four-probe method.
The magnetostriction and thermal expansion in the
temperature interval 4.2–150 K were derived from data
obtained with strain gauges having a resistance of
92.30 ± 0.01 Ω and a tensometric sensitivity of 2.26.
One of the gauges was attached to the sample, and the
other, to quartz. In the course of measurements, the
strain gauges on the sample and on the quartz were ori-
ented identically with respect to the orientation of the
magnetic field. The longitudinal (λ||) and transverse
(λ⊥ ) magnetostriction components were measured and
were subsequently used to calculate the bulk and aniso-
tropic parts of the magnetostriction, ω = λ|| + 2λ⊥  and
λt = λ|| – λ⊥ , respectively.

3. EXPERIMENTAL RESULTS AND DISCUSSION

The temperature dependence of the initial magnetic
susceptibility measured in an ac magnetic field of 1 Oe
at a frequency of 8 kHz exhibited a maximum at a tem-
perature TN = 41 K, which is very close to the Néel
point for the EuMnO3 composition. Near this tempera-
ture, a jump in the temperature dependence of linear
thermal expansion (see inset to Fig. 1) and a break in
the ρ(T) curve were found (Fig. 1). In the absence of a
magnetic field, as seen from this figure, the sample
remains insulating down to the lowest temperatures
covered (ρ = 106 Ω cm at 4.2 K). The isotherms of mag-
netization, magnetostriction, and magnetoresistance
have two temperature intervals, 4.2–50 K and 60–120 K,
which exhibit similar behavior. Figure 2 presents iso-
therms of the magnetization σ(H), magnetostriction
ω(H), and electrical resistivity ρ(H) for a temperature
of 20 K from the first interval and for 60 K from the sec-
ond interval. In the first temperature interval, one sees
an abrupt rise in the magnetization and in the absolute
magnitude of magnetostriction and a decrease in elec-
trical resistivity occurring within the field interval
HC1 < H < HC2. Judging from the magnitude of magne-
tization in fields H > HC2, the larger part of the sample
transfers to the FM state in this interval. For H > HC2,
these parameters grow linearly with H, with no satura-
tion being reached up to the highest fields covered
(80 kOe for the magnetization and 50 kOe for the mag-
netostriction and magnetoresistance). The magnetiza-
tion at 4.2 K in a magnetic field of 80 kOe is
2.50 µB/mol, which is noticeably less than 3.55 µB/mol,
a figure corresponding to FM ordering of the Mn3+ and
Mn4+ ions (the former is 70% of the latter). At the jump,
HYSICS OF THE SOLID STATE      Vol. 46      No. 9      2004
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the σ(H), ω(H), and ρ(H) curves exhibit hysteresis,
which decreases with increasing temperature. After the
magnetic field is switched off at low temperatures, the
volume magnetostriction and electrical resistivity do
not recover their initial values, at least not in the 1800-s
period used in carrying out the measurements. These
quantities could be restored to the initial level only after
heating the sample to about 100 K and subsequent cool-
ing.

In the temperature interval 60–120 K, the jumps in
the σ(H), ω(H), and ρ(H) curves are retained, but their
patterns change and, after removal of the magnetic
field, the sample recovers its initial state (Fig. 2). Note
that, in this temperature interval, the above curves
behave exactly like those obtained on the
Sm0.55Sr0.45MnO3 ceramics studied by us earlier [1, 10].
The temperature dependence of the fields HC1 derived
from measurements of the magnetization, magneto-
striction, and electrical resistivity is presented in graph-
ical form in Fig. 3. We see immediately that these fields
coincide for each temperature and then decrease with
increasing temperature in the first interval and increase
in the second, with a broad minimum located near 41 K.
Figure 4 plots temperature dependences of the magne-
tization, magnetostriction, and magnetoresistance
obtained in different magnetic fields. The σ(T) curve
passes through a maximum near 41 K, and the ω(T) and
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{∆ρ/ρ}(T) curves pass through a minimum. The mag-
netic transition is strongly diffused by the magnetic
field. The volume magnetostriction reaches a giant
value of 4.5 × 10–4 in a magnetic field of 45 kOe in the
temperature interval 10–75 K. The magnetoresistance
of this composition behaves in an unusual way. For H <
HC1, it is positive and passes through a maximum of 6%
near 41 K (Fig. 5). For H > HC1, it becomes negative
and passes through a minimum slightly below 41 K, to
reach a colossal value of 3 × 105 % in a magnetic field
of 50 kOe (Fig. 4).

As already mentioned, for T ≥ 60 K, the magnetiza-
tion, magnetostriction, and magnetoresistance of the
sample studied in this work behave similarly to those of
the Sm1 – xSrxMnO3 ceramic samples (x = 0.4, 0.45)
studied by us earlier at T > TC [1, 10]. Our recent study
of these properties of a Sm0.55Sr0.45MnO3 single crystal
showed them to be identical to those of ceramics of the
same composition. As pointed out in the introduction,
the Sm0.6Sr0.4MnO3 composition at 1.5 ≤ T ≤ TC is a sin-
gly connected FM matrix containing A-type AFM clus-
ters and CE-type AFM CO-ordered clusters, with TC <
TN < TCO [6]. Here, TCO is the temperature of thermally
induced breakdown of CO ordering, which coincides
with the temperature at which AFM order breaks down
in CO-ordered clusters. The behavior of the magnetiza-
tion, magnetoresistance, and magnetostriction for T >
TN was explained in [1, 10] as being due to the magnetic
field–induced transition of the AFM CO clusters to the
FM state. Because the magnetic moments of most of
the nearest neighbor Mn ions are antiferromagnetically
ordered in the case of CE-type AFM ordering, there
need to be threshold fields to transfer this AFM to the
FM state. In this case, the CO-ordered clusters transfer
entirely to the FM state on reaching the HC2 field.
Because the isotherms of σ, ω, and ∆ρ/ρ of the
Eu0.55Sr0.45MnO3 compound in the range 1.5 ≤ T ≤ 120 K
are very close to those observed by us earlier in the
Sm0.55Sr0.45MnO3 and Sm0.6Sr0.4MnO3 compositions
[1] for T > TC, one may suggest that the
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Fig. 3. Temperature dependence of the critical field HC1
derived from measurements of the magnetization σ, volume
magnetostriction ω, and magnetoresistance ∆ρ/ρ.
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Eu0.55Sr0.45MnO3 composition likewise consists of the
FM, A-type AFM, and CE-type AFM phases. The frac-
tional volumes of these phases are, however, different
from those in Sm0.55Sr0.45MnO3 and Sm0.6Sr0.4MnO3.
As seen from Fig. 1, the temperature dependence of
electrical resistivity of the Eu0.55Sr0.45MnO3 composi-
tion is of semiconducting character and ρ at 4.2 K is
very large, ~106 Ω cm, unlike the Sm0.55Sr0.45MnO3
composition, which has metallic conduction. One may
therefore conjecture that the FM phase in this composi-
tion is multiply connected, in contrast to the
Sm0.55Sr0.45MnO3 compound, where this phase is singly
connected. The reason for this lies in fact that the toler-
ance factor for Eu0.55Sr0.45MnO3, τ = 0.924, is smaller
than that for Sm0.55Sr0.45MnO3 (τ = 0.927), while the
extent of disorder, d2 = 0.00893, is larger than that in
Sm0.55Sr0.45MnO3, where it is 0.00784.

It is known that, depending on the carrier concentra-
tion, an AFM semiconductor may be either in the insu-
lating or in the conducting FM–AFM magnetic two-
phase state (MTPS), with carriers concentrated in the
FM part of the crystal and with no carriers in the AFM
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PH
part because the s–d exchange energy makes this carrier
distribution preferable [11, 12]. It was shown in [13]
that the fractional volume of the FM phase in a sample
residing in the insulating MTPS is substantially smaller
than that in a sample in the conducting state with the
two coexisting magnetic phases. For instance, the frac-
tional volume of the FM phase in a doped EuSe sample
in the conducting MTPS is about an order of magnitude
larger than that in the sample in the insulating TPS [14].
It may be presumed that Eu0.55Sr0.45MnO3 is in the insu-
lating MTPS and Sm0.55Sr0.45MnO3 is in the conducting
TPS. In this case, the magnetization process in
Sm0.55Sr0.45MnO3 at T < TC will occur through an
increase in the fractional volume of the FM phase,
which occupies the larger part of the sample, by inter-
growth over FM planes in the A-type AFM phase; the
abrupt rise in magnetization caused by CE-type AFM
clusters would not be noticeable against the back-
ground of this growth, because these clusters occupy a
considerably smaller volume than the FM phase. Jumps
in the σ(H) curves appear here only at high tempera-
tures, where the FM and A-type AFM phases are ther-
mally destroyed and only CE-type AFM clusters
remain.

The Eu0.55Sr0.45MnO3 composition exhibits jumps in
the magnetization isotherms both below and above the
Néel temperature TN = 41 K, which was derived from
the maximum of initial susceptibility in an ac magnetic
field. The A-type AFM phase breaks down at this tem-
perature, because this temperature coincides with the
TN of EuMnO3, which exhibits A-type AFM order. As
seen from Fig. 6, these jumps are still observed at T =
120 K but are absent already at T = 150 K; i.e., the Néel
temperature of the CE-type AFM phase lies between
120 and 150 K. Figure 6 also shows that, in the ranges
1.4 ≤ T ≤ 40 K and 0 ≤ H < HC1, the σ(H) curves actu-
ally represent the sum of a small spontaneous magneti-
zation σ ~ 0.1µB and a linear-in-H magnetization char-
acteristic of the AFM state. Thus, the volume of the
FM phase is small, only ~3% of that of the sample, as
seen from the ratio of the FM-phase magnetization to
the saturation magnetization that would exist under
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Fig. 5. Temperature dependence of magnetoresistance for
H < HC1.
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complete FM ordering of the sample (3.55µB). As is
evident from Fig. 6, in the region 50 < T < 60 K, this
spontaneous part of the magnetization disappears,
which implies that it is in this temperature region that
the Curie point TC is located. After the jump in the iso-
therms, as already mentioned, the magnetization con-
stitutes ~70% of the saturation level. Assuming this
jump to be caused by the CE-type AFM phase, the frac-
tional volume of this phase should be about 67% of the
sample volume, which makes this phase singly con-
nected; therefore, the remaining ~30% of the sample
volume is occupied by the A-type AFM phase. After the
jump, the magnetization grows slowly and linearly with
the field because of the growth in the magnetic-field-
induced FM phase over the FM layers of the A-type
AFM phase.

It is known that the CE-type AFM phase with CO
ordering is the most stable at low temperatures, while at
higher temperatures it is less stable than the FM or the
A-type AFM phase [7]. Therefore, the critical field HC1
decreases with increasing T in the low-temperature
range up to 40 K inclusive (Fig. 3), in which the FM and
A-type AFM phases coexist with the CE-type AFM
phase. Starting from T = 50 K and up to 120 K, HC1
increases. The reason for this lies apparently in the fact
that for T > TC the magnetic fields needed to maintain
the FM order formed in the magnetic field–induced
transition of the CE-type AFM phase to the FM state
are higher than those for T < TC. As already mentioned,
the CE-type AFM phase supports orbital ordering and
the related charge ordering. If the magnetic field–
induced transition from this state were to be associated
only with charge order, one would expect the transition
to give rise to a paramagnetic state for T > TC. As fol-
lows from our experiment, however, the CE-type AFM
phase transfers to the FM state. This is due to the fact
that the carriers that are disordered by the field H > HC1
support the FM order because of the energy gained in
the s–d exchange.

It is seen from Figs. 6 and 2 that, for T < TC, the
σ(H), ρ(H), and ω(H) curves obtained in the increasing
and decreasing field modes are different and that there
are no jumps in the curves measured with decreasing
field. In other words, the FM state formed under
increasing H above HC1 in the transition of the CE-type
AFM phase to the FM state exists under decreasing
field down to fields that are negligible in comparison
with HC1. The giant magnitude of ω and the sharply
decreased ρ caused by this transition persist after
removal of the field. The sample can be restored to the
original state only by heating it to T > 100 K followed
by cooling to the desired temperature. This suggests
that the free energies of the FM and CE-type AFM
phases are similar in magnitude and that the magnetic
field–induced transition of the CE-type AFM phase to
the FM state is first-order. Starting from T = 60 K and
up, i.e., above TC, after the field is turned off, we have
ω = 0 and ρ recovers its initial value (before application
PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      200
of the field), though the difference in the ρ(H) and ω(H)
curves obtained under increasing and decreasing field is
retained (Fig. 2).

The colossal negative magnetoresistance of this
composition is related only to the FM phase that formed
in the magnetic field–induced transition of the CE-type
AFM phase to the FM state. Since the compound
retains its semiconducting character after this transi-
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tion, the FM phase is actually given by FM clusters
embedded in an A type AFM insulating matrix, with the
carriers (holes) concentrated in these clusters because
of the gain in s–d exchange energy. The CMR can be
interpreted in the following way. An external magnetic
field increases the radii of the FM clusters, thus facili-
tating carrier tunneling between them. Furthermore, the
magnetic moments of the FM clusters become ordered
by the external field, which likewise favors carrier tun-
neling. Finally, the external magnetic field tends to
destroy FM clusters, which increases the energy of the
holes inside the clusters and, thus, makes their transi-
tion to the delocalized state easier [5, 13]. The high pos-
itive magnetoresistance observed for H < HC1 and T <
TC is apparently associated with the FM phase and can
be interpreted in the same way as the situation in non-
degenerate FM semiconductors [15].

The giant volume magnetostriction is also inti-
mately connected with the FM phase formed in the
field-induced transition of the CE-type AFM phase to
the FM state. Yanase and Kasuya [16] showed that
within FM clusters the lattice constants are reduced
because of the new charge distribution, which brings
about a decrease in the energy inside the clusters
through increasing the overlap of the charge clouds
between the central impurity ion and its nearest neigh-
bors (magnetic ions). Obviously enough, thermal
destruction of the MTPS should give rise to an excess
thermal expansion of the sample in comparison with
the linear-in-temperature quantity, an effect which we
observed (see inset to Fig. 1). It is known that the tem-
perature dependence of thermal expansion of diamag-
netic and paramagnetic materials is nearly linear in T.
The excess thermal expansion can be suppressed by
using an external magnetic field to restore the MTPS;
i.e., the sample should exhibit negative volume magne-
tostriction.

4. CONCLUSIONS

Thus, the CMR, the high volume magnetostriction,
and the excess thermal expansion observed to occur in
Eu0.55Sr0.45MnO3 in the vicinity of TC are accounted for
by electronic phase separation in the sample stimulated
by strong s–d exchange, with the carriers concentrated
in the FM phase. The presence of the CE-type AFM CO
phase introduces specific features into the behavior of
the magnetoresistance and volume magnetostriction;
these features manifest themselves in the fact that the
isotherms of these quantities as a function of the field
exhibit jumps associated with the magnetic field–
induced transition of this phase to the FM state.
PH
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Abstract—The possibility of a zigzag-type instability occurring for oxygen atoms in B–O–B, B–O–Nb, and
Nb–O–Nb linear chains is examined in disordered mixed perovskite compounds Pb(B1/3, Nb2/3)O3 (B = Mg,
Zn, Cd). Local adiabatic potentials for oxygen atoms are studied using total energy calculations by the ab initio
Hartree–Fock + MP2 method for many-atomic clusters with different oxygen surroundings of lead atoms. The
effect of lattice relaxation along the chain on the shape of the local potential in the transverse direction for the
central oxygen atom is considered. © 2004 MAIK “Nauka/Interperiodica”.
* 1. INTRODUCTION

The disordered perovskite compounds of complex
composition Pb(Mg1/3, Nb2/3)O3 (PMN), Pb(Zn1/3,
Nb2/3)O3 (PZN), and Pb(Cd1/3, Nb2/3)O3 (PCN) belong
to the class of relaxor ferroelectrics. They have a broad,
strongly frequency-dependent maximum in the temper-
ature dependence of the dielectric permittivity and
retain average cubic symmetry down to 5 K [1–5]. To
explain the unusual properties of relaxor ferroelectrics,
a number of models have been proposed. For instance,
the diffuse ferroelectric phase transition model pro-
posed by Smolenskii and Isupov [1, 2, 6], the dipolar
glass model proposed by Cross [7], and the random
field induced domain state model proposed by West-
phal et al. [8] can be mentioned.

One of the main structural features of mixed perovs-
kites is the random occupation of the positions B in an
ideal perovskite lattice by chemically different ions.
This disorder gives rise to local distortions of the cubic
perovskite structure, that is, to random displacements
of ions from the pseudocubic sites. Two types of such
displacements are possible. Displacements of the first
type are determined simply by the difference in the
ionic radii and valences and are frozen when random
distribution of the ions is quenched. Such displace-
ments of ions produce a set of random local dipoles,
which are, in turn, the source of the random local elec-
tric field. In addition to this type of local distortions,
one can infer also the possibility of atomic displace-
ments concerned with local lattice instabilities pro-
duced by peculiarities in the chemical bonding in
mixed perovskites [9, 10]. These local polar distortions
would be reversible and could play an important role in

*  This article was submitted by the authors in English.
1063-7834/04/4609- $26.00 © 1717
the formation of the ferroelectric microregions in PMN,
PZN, and PCN along with the correlated displacements
of polar optical type [11, 12] frozen in the random local
electric field.

I can be expected that in mixed perovskites oxygen
ions can be unstable relative to off-center shifts in the
plane parallel to the pseudocubic face (the local zigzag
instability in the B–O–B' linear chain) [9, 10]. The stan-
dard crystallographic analysis based on x-ray or neutron
diffraction data [13, 14] and pair-density function (PDF)
analysis of pulsed neutron and synchrotron x-ray powder
diffraction data [15] show that, in PMN, the oxygen off-
center shifts in the planes parallel to the cube faces are
equal to ≈0.17–0.19 Å according to [13, 14] and to
≈0.4 Å according to [15]. However, these methods can-
not identify the origin of the observed oxygen shifts.
Thus in [9, 10] cluster ab initio calculations of the poten-
tial well for the oxygen atom and of the equilibrium oxy-
gen position in the B–O–Nb, B–O–B (B = Mg, Zn, Cd),
and Nb–O–Nb chains in PMN, PZN, and PCN were per-
formed. It was found that in B–O–Nb chains in PMN,
PZN, and PCN and in B–O–B chains in PZN and PCN
oxygen atoms move in multiwell potentials with four
minima shifted transversely to the fourfold [001] axis,
whereas the oxygen atom in the Nb–O–Nb chain in
PMN, PZN, and PCN and all oxygen atoms in BCN
move in single-well potentials. This raises the question
as to whether the solutions found in [9, 10] are stable rel-
ative to the cluster size, extensions of the atomic basis
sets, or structural relaxation of the oxygen surroundings.
These problems are studied in the present paper.
2004 MAIK “Nauka/Interperiodica”
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2. CALCULATION METHOD

Taking into account the aperiodic structure of disor-
dered relaxor ferroelectrics, we used for calculations of
the local potential wells the quasi-molecular cluster ab
initio method described in [16–18]. In a cubic perovs-
kite structure, oxygen atoms are situated at the center of
cubic faces, at the midpoint between neighboring B cat-
ions forming in PMN, PZN, and PCN Nb–O–Nb, B–
Nb–B, and B–O–Nb chains with B–O and Nb–O bonds
of equal length. Therefore, the crystalline surroundings
of the oxygen atoms is modeled by one of the extended
two-octahedron clusters [OBNbPb4(OH)10(OH2)8]3+,
OB2Pb4(OH)10(OH2)8, or [ONb2Pb4(OH)10(OH2)8]6+

instead of the simple two-octahedron clusters
[OBNbPb4(OH)10]3+, OB2Pb4(OH)10(OH2)8, or
[ONb2Pb4(OH)10]6+ used in [9, 10]. The clusters consist
of corner-shared octahedrons (NbO6, BO6) and involve
four Pb atoms (around the central oxygen) and eight
additional oxygen atoms (around the lead atoms)
arranged in the “mirror” plane. In addition, hydrogen
atoms are placed on broken bonds of surface oxygen
atoms at a distance of 1 Å to reduce the net charge of
the cluster. All interatomic distances are equal to the
corresponding values in an ideal perovskite structure
PMN with lattice constants a0 = 4.0278 Å (PMN) [10],
a0 = 4.04 Å (PZN) [19], and a0 = 4.135 Å (PCN) [20].

To find the local adiabatic potential for an atom in a
crystal, one has to calculate the total energy of the crys-
tal as a function of atomic displacement from the posi-
tion of the cubic perovskite lattice site, assuming that
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Fig. 1. Local adiabatic potentials ∆E(0, 0, z) for the oxygen
atom in a B–O–Nb chain along the chain in PMN, PZN, and
PCN calculated by the RHF method (open symbols) and by
the RHF + MP2 method (solid symbols). The oxygen shift
from the midpoint is positive in the direction of the Nb
atom.
P

the remaining atoms occupy equilibrium positions in
the crystal. A local adiabatic potential is defined as
∆E(h) = E(h) – E0, where E is the total crystal energy
and h is a shift of the oxygen atom. A cluster approxi-
mation is used for the total energy: ∆E(h) ≅  ∆Ec1(h),
where Ec1(h) is the total energy of a given cluster.

Calculations of the electronic structure and total
energy of the cluster are performed using the ab initio
restricted Hartree–Fock (RHF) MO LCAO method
with second-order Møller–Plesset perturbation theory
electron correlation corrections (MP2) to the total
energy using the PC GAMESS version [21] of the
GAMESS (US) QC package [22]. The following
atomic Gaussian basis sets were used: WTBS basis sets
(27s, 20p, 17d)/[5s, 3p, 2d] for Nb, (23s, 13p)/[3s, 1p]
for Mg, (27s, 20p, 17d)/[5s, 3p, 2d] for Zn, and (28s,
20p, 17d)/[5s, 3p, 2d] for Cd [23]; TZV basis set (10s,
6p)/[5s, 3p] for an oxygen atom [24] with Pople (2df,
2pd) polarization functions [25] for the central oxygen
atom and with the DHMS polarization function [26] for
other oxygen atoms; basis set (4s)/[2s] for H [20]; and
basis set SBKJC ECP for Pb (Ba) [27].

3. RESULTS AND DISCUSSION

The results of cluster ab initio calculations of local
adiabatic potentials for oxygen atoms in disordered
relaxor ferroelectrics are presented in Figs. 1–5.

In Fig. 1, local potentials for the oxygen atoms
along B–O–Nb (B = Mg, Zn, Cd) chains in PMN, PZN,
and PCN are presented. The equilibrium oxygen posi-
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Fig. 2. Local adiabatic potentials ∆E(x, 0, zmin) for oxygen
atoms in B–O–Nb chains in the transverse [100] and [010]
directions in PMN, PZN, and PCN calculated by the RHF
method (open symbols) and by the RHF + MP2 method
(solid symbols).
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tions zmin are shifted from the midpoint by 0.11 Å for
PMN, by 0.12 Å for PZN, and by 0.2 Å for PCN
towards the Nb atom. The shape of the potential well
along the chain is strongly influenced by electron cor-
relation, as in [9, 10].

In Fig. 2, local potentials for oxygen atoms in B–O–
Nb (B = Mg, Zn, Cd) chains in the directions [100] and
[010] transversal to the chain are presented for PMN,
PZN, and PCN. As indicated in Fig. 2, the local poten-
tials wells for oxygen in PMN, PZN, and PCN are sin-
gle-well, so the central position of the oxygen in the
Mg–O–Nb chain in PMN and in the Cd–O–Nb chain in
PCN is stable in the transverse direction.

In Fig. 3, local potential wells for the oxygen atoms
in B–O–B (B = Mg, Zn) chains in the directions [100]
and [010] transversal to the chains are presented for
both PMN and PZN and a similar local potential is pre-
sented for oxygen in the Ti–O–Ti chain for PTO. In
both cases, the oxygen atom moves in the mirror plane
in a soft single-well local potential with a small trans-
verse stiffness κ⊥  (defined as κ⊥  = 2∆E(h)/η2 at η 
0) equal to 1.3 eV/Å2 for PMN and to 0.65 eV/Å2 for
PZN within RHF + MP2. For comparison, the analo-
gous stiffness for oxygen in PTO is equal to 4.7 eV/Å2.
The anharmonic constants of the forth order are nearly
the same for all three compounds.

In Fig. 4, local potentials for oxygen atoms in the
Cd–O–Cd chain in PCN in the directions [100] and
[010] transversal to the chain are presented for three
different cases, (1) for OCd2Pb4(OH)10, (2) for cluster
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Fig. 3. Local adiabatic potentials ∆E(x, 0, 0) for oxygen
atoms in Mg–O–Mg and Zn–O–Zn chains in PMN and PZN
and in the Ti–O–Ti chain in PTO in the transverse [100] and
[010] directions calculated by the RHF method (open sym-
bols) and by the RHF + MP2 method (solid symbols).
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OCd2Pb4(OH)10(OH2)8, and (3) for cluster
OCd2Pb4(OH)10(OH2)8, taking into account lattice
relaxation for Cd–O distances along the chain. In the
first two cases, all interatomic distances are equal to
that for the average cubic structure. In the third case, all
distances are kept equal to their average values with the
exception of Cd–O distances along the chain, which are
chosen equal to (a0 + zmin)/2 = 2.1675 Å, where a0 =
4.135 Å is the average lattice constant and zmin = 0.2 Å
is the shift of the oxygen atom in the Cd–O–Nb chain
from the mirror plane towards the Nb atom. It is obvi-
ous from the curves that in all cases the oxygen atom in
the Cd–O–Cd chain moves in a multiwell local poten-
tial with four minima shifted in transverse directions.

In Fig. 5, the local potentials in the mirror plane for
the oxygen atom in Nb–O–Nb chains in PCN and in the
Ti–O–Ti chain in PTO are presented.

Let us discuss the results. From comparing the
results presented in Fig. 2 with those found in [10], one
can see that inclusion of the additional eight oxygen
atoms around the lead atoms dramatically changes the
shape of the local potentials for oxygen atoms in the
Mg–O–Nb, Zn–O–Nb, and Cd–O–Nb chains in direc-
tions transverse to the chains. We obtained single-well
hard local potentials instead of the multiwell potentials
found in [10]. On the other hand, when the results pre-
sented in Figs. 3 and 4 are compared with those found
in [9, 10], it becomes apparent that the shapes of the
local potentials for oxygen atoms in Mg–O–Mg,
Zn−O–Zn, and Cd–O–Cd chains retain their qualitative
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Fig. 4. Local adiabatic potential ∆E(x, 0, 0) for oxygen
atoms in the Cd–O–Cd chain in PCN in the transverse [100]
and [010] directions calculated by the RHF method (open
symbols) and by the RHF + MP2 method (solid symbols)
for cases 1–3 described in the text.
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features (softness in the cases of Mg–O–Mg and Zn–
O–Zn and multiwell character in the case of Cd–O–Cd)
and are altered only quantitatively. We see also that
extension of the cluster increases the transverse har-
monic stiffness for oxygen atoms in addition to taking
into account the increase in the Cd–O distance relative
to the average bond length.

It should be stressed that the availability of multi-
well potentials for oxygen atoms in the Cd–O–Cd chain
offers a new mechanism of dipole ordering and of
dielectric relaxation of order–disorder type in PCN.
The softness of the transverse local potentials for oxy-
gen atoms in the Mg–O–Mg chain in PMN and in the
Zn–O–Zn chain in PZN (Fig. 3) may strongly influence
the ferroelectric state observed in these compounds
after cooling in an electric field [28, 29]. In addition, the
small transverse local stiffness for oxygen atoms in
these chains may be responsible for the large off-center
shifts of the oxygen atoms in the planes parallel to
cubic faces observed in [13–15]. Within classical statis-
tics, one can write the displacement of an oxygen atom
in the mirror plane due to thermal motion as r⊥  =

(〈 〉 )1/2 = (2T/κ⊥ )1/2. Taking into account the values of κ⊥

calculated for PMN (1.3 eV/Å2), PZN (0.65 eV/Å2), and
PTO (4.7 eV/Å2), we find at T = 300 K that r⊥  ≈ 0.2 Å in
PMN (comparable with the observed values [13, 14]),
r⊥  ≈ 0.3 Å in PZN, and r⊥  ≈ 0.1 Å in PTO. One should
also take into account that the displacement r⊥  induced
by an electric field E⊥  is proportional to E⊥ /κ⊥ . This
gives rise to a larger difference in r⊥  than in the case of
thermal motion and ultimately results in a much larger

r⊥
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Fig. 5. Local adiabatic potential ∆E(x, 0, 0) for oxygen
atoms in Nb–O–Nb chains in PCN and in the Ti–O–Ti chain
in PTO in the transverse [100] and [010] directions calcu-
lated by the RHF method (open symbols) and by the RHF +
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contribution to the induced polarization in PZN than in
PMN.

4. CONCLUSIONS

We have studied local lattice instabilities for oxygen
atoms in PMN, PZN, and PCN employing cluster ab
initio total energy calculations using the restricted Har-
tree–Fock MO LCAO method with second-order
Møller–Plesset perturbation theory electron correlation
corrections. The influence of the oxygen surroundings
of the lead atoms in the many-atomic clusters used for
the ab initio simulation on the shape of the local adia-
batic potentials is considered. It is found that for oxy-
gen atoms in the B–O–Nb chains (B = Mg, Zn, Cd) the
use of an extended cluster with eight additional oxygen
atoms around the lead atoms instead of a simple two-
octahedron cluster dramatically changes the shape of
the potential curves in the planes parallel to cubic faces
from multiwell to single-well type. At the same time, it
is found that the shape of the local potentials for oxygen
atoms in Mg–O–Mg, Zn–O–Zn, and Cd–O–Cd chains
is altered only quantitatively. The local potentials in
directions transverse to the chain retain their softness
for Mg–O–Mg and Zn–O–Zn and multiwell character
for Cd–O–Cd.

ACKNOWLEDGMENTS

We are indebted to L.S. Kamzina and N.T. Krainik
for many stimulating and useful discussions. This work
was supported by TUBITAK (NATO PC Advanced Fel-
lowship Program), the Russian Foundation for Basic
Research (project nos. 01-02-17801 and 03-02-17557),
and the Russian Academy of Sciences program for
physical sciences.

REFERENCES
1. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and

S. N. Popov, Sov. Phys. Solid State 2, 2584 (1961).
2. G. A. Smolenskii, J. Phys. Soc. Jpn. 28 (Suppl.), 25

(1970).
3. M. E. Lines and A. M. Glass, Principles and Applica-

tions of Ferroelectrics and Related Materials (Claren-
don, Oxford, 1977; Mir, Moscow, 1981).

4. Z. G. Ye, Ferroelectrics 65, 193 (1996).
5. C. A. Randall and A. S. Bhalla, Jpn. J. Appl. Phys. 29,

327 (1990).
6. V. A. Isupov, Ferroelectrics 90, 113 (1989); Ferroelec-

trics 143, 109 (1993).
7. L. E. Cross, Ferroelectrics 76, 241 (1987).
8. B. V. Westphal, W. Kleemann, and M. D. Glinchuk,

Phys. Rev. Lett. 68, 847 (1992).
9. F. Karadag, S. Palaz, S. Güngör, A. Mamedov, and

O. E. Kvyatkovskii, Ferroelectrics 283, 61 (2003).
10. O. E. Kvyatkovskii, Ferroelectrics 283, 67 (2003).
11. S. Vakhrushev, S. Zhukov, G. Fetisov, and V. Cherny-

shov, J. Phys.: Condens. Matter 6, 4021 (1994).
HYSICS OF THE SOLID STATE      Vol. 46      No. 9      2004



CLUSTER ab initio MODELING OF LOCAL LATTICE INSTABILITY 1721
12. S. B. Vakhrushev, A. A. Naberezhnov, N. M. Okuneva,
and B. N. Savenko, Fiz. Tverd. Tela (St. Petersburg) 37,
3621 (1995) [Phys. Solid State 37, 1993 (1995)].

13. P. Bonneau, P. Garnier, G. Calvarin, E. Husson,
J. R. Gavarri, A. W. Hewat, and A. Morell, J. Solid State
Chem. 91, 350 (1991).

14. N. de Mathan, E. Husson, G. Calvarin, J. R. Gavarri,
A. W. Hewat, and A. Morrell, J. Phys.: Condens. Matter
3, 8159 (1991).

15. H. D. Rosenfeld and T. Egami, Ferroelectrics 164, 133
(1995).

16. O. E. Kvyatkovskii and B. F. Shchegolev, Ferroelectrics
153, 207 (1994).

17. O. E. Kvyatkovskii and B. F. Shchegolev, Izv. Ross.
Akad. Nauk, Ser. Fiz. 64, 1060 (2002).

18. O. E. Kvyatkovskii, Fiz. Tverd. Tela (St. Petersburg) 44,
1087 (2002) [Phys. Solid State 44, 1135 (2002)].

19. K. A. Bokov and I. E. Mylnikova, Fiz. Tverd. Tela (Len-
ingrad) 2, 2728 (1960) [Sov. Phys. Solid State 2, 2428
(1960)].

20. Landolt-Börnstein. Numerical Data and Functional
Relationships in Science and Technology, Ed. by
PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      200
K.-H. Hellwege and A. M. Hellwege (Springer, Berlin,
1981), Group III, Vol. 9a.

21. A. A. Granovsky, www http://classic.chem.msu.su/gran/
gamess/index.html.

22. M. W. Schmidt, K. K. Baldridge, J. A. Boatz,
S. T. Elbert, M. S. Gordon, J. J. Jensen, S. Koseki,
N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus,
M. Dupuis, and J. A. Montgomery, J. Comput. Chem.
14, 1347 (1993).

23. S. Huzinaga and B. Miguel, Chem. Phys. Lett. 175, 289
(1990); Chem. Phys. Lett. 212, 260 (1993).

24. T. H. Dunning, J. Chem. Phys. 55, 716 (1971).
25. M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem.

Phys. 80, 3265 (1984).
26. T. H. Dunning and P. J. Hay, in Methods of Electronic

Structure Theory, Ed. by H. F. Schaefer III (Plenum,
New York, 1977).

27. W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien,
Can. J. Chem. 70, 612 (1992).

28. H. Arndt, F. Sauerbier, G. Schmidt, and L. A. Shelbanov,
Ferroelectrics 79, 145 (1988).

29. L. S. Kamzina, N. N. Krainik, L. M. Sapozhnikova, and
S. V. Ivanova, Sov. Phys. Solid State 33, 1169 (1991).
4



  

Physics of the Solid State, Vol. 46, No. 9, 2004, pp. 1722–1729. Translated from Fizika Tverdogo Tela, Vol. 46, No. 9, 2004, pp. 1668–1675.
Original Russian Text Copyright © 2004 by Bush, Kamentsev, Provotorov, Trushkova.

                                                        

MAGNETISM 
AND FERROELECTRICITY
Low-Frequency Relaxation Processes 
in Pb5Ge3O11 Ferroelectric Crystals

A. A. Bush*, K. E. Kamentsev*, M. V. Provotorov**, and T. N. Trushkova**
*Moscow State Institute of Radioengineering, Electronics, and Automation (Technical University), 

pr. Vernadskogo 78, Moscow, 119454 Russia

e-mail: abush@ranet.ru

**Mendeleev University of Chemical Technology, Miusskaya pl. 9, Moscow, 123480 Russia
Received January 12, 2004

Abstract—Measurements and analysis of the temperature and frequency dependences of permittivity and losses
and of the electrical resistivity of Pb5Ge3O11 ferroelectric crystals at temperatures of 100 to 600 K and frequencies
of 0.1 to 100 kHz are reported. The dielectric characteristics of the crystals exhibit, in addition to clearly pro-
nounced anomalies near the Curie point TC = 450 K, less distinct anomalous features of the relaxation character
in the range 230–260 K. The data obtained on the effect of various factors (degree of crystal polarization, crystal
annealing at different temperatures and in different environments, etc.) on the low-temperature anomalies serve as
a basis for discussing the possible mechanisms responsible for these anomalies. It is concluded that the low-tem-
perature dielectric anomalies originate from thermal carrier localization in defect levels in the band gap, which
entail the formation of local polarized states. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Pb5Ge3O11 lead germanate crystals are uniaxial fer-
roelectrics whose symmetry switches when cooled to

the Curie point TC = 450 K from hexagonal, , to trig-
onal, P3 [1–4]. In view of their physical properties,
which are remarkable from the standpoint of both pure
and applied science, these crystals have been intensely
studied over the past four decades. Numerous studies of
their structure, dielectric, piezo- and pyroelectric, opti-
cal, mechanical, and other characteristics have been
carried out; the main results of these works are summa-
rized in review [4]. This compound holds considerable
promise, in particular, for use as a pyroelectric material,
in ferroelectric memory devices, and for hologram
recording and readout [4–8].

Studies of the temperature and frequency depen-
dences of the dielectric properties of crystals of this
compound in the low-frequency domain (<1 MHz) are
dealt with in [4, 9–15]. The reported data on the regions
of dispersion and their interpretation are not always in
agreement. The strong dispersion of the permittivity
observed at sonic frequencies and temperatures slightly
below TC is attributed to relaxation processes closely
linked with the motion of domain walls [10] or lattice
defects [12]. Charged domain walls in thermally depo-
larized lead germanate crystals were found [11] to pro-
duce three partially overlapping contributions to the
permittivity at temperatures of 190 to 430 K and fre-
quencies of 0.01 to 1000.0 kHz. The lowest frequency
contribution, observed in the range 290–320 K, is
assigned to the difference in charge transport between

P6
1063-7834/04/4609- $26.00 © 21722
the bulk of the crystal and the volume of domain walls.
The other two, higher frequency contributions, which
become manifest in the temperature intervals 220–290
and 190–250 K, originate from domain wall motion and
redistribution of trapped charge in domain walls. As
follows from measurements performed in the range
370–520 K [14], surface states and the Maxwell–Wagner
relaxation provide a noticeable contribution to the low-
frequency dispersion of permittivity both above and
below TC. Two relaxation mechanisms were revealed in
the regions 298–873 K and 102–107 Hz: one of them
involves hopping carrier transport, and the other, internal
polarization of the ferroelectric crystal [15].

In all of papers [9–15], except [11], the dielectric
properties of Pb5Ge3O11 crystals were probed above
room temperature. Studies of the dielectric properties
of this compound at low temperatures [4, 16] per-
formed at 1 kHz reveal anomalous changes in the per-
mittivity ε(T) and the loss tangent  at tempera-
tures below room temperature. The nature of these
anomalies still defies explanation. The present commu-
nication reports on a more comprehensive investigation
of the low-temperature dielectric anomalies aimed at
determining their origin. Measurements of the pattern
of the dielectric anomalies as a function of the measur-
ing field frequency, degree of crystal polarization,
details of the thermal treatment of crystals, and some
other factors were carried out at temperatures of 100 to
600 K and frequencies of 0.1 to 100 kHz.

δ T( )tan
004 MAIK “Nauka/Interperiodica”



        

LOW-FREQUENCY RELAXATION PROCESSES IN

 

 

 

Pb

 

5

 

Ge

 

3

 

O

 

11

 

 

 

FERROELECTRIC CRYSTALS 1723

                                                                                                                                           
2. PREPARATION OF CRYSTALS 
AND METHODS OF INVESTIGATION

Boules of Pb5Ge3O11 crystals up to a few cubic cen-
timeters in volume were Czochralski grown from a
5PbO · 3GeO2 stoichiometric melt in air. The boule
pulling rate was 2–4 mm/h, with the seed crystal growth
axis oriented along either the c or the a crystallographic
axis. The stripe growth structure characteristic of Czo-
chralski-grown crystals [17] was oriented perpendicu-
lar and parallel to the direction of spontaneous polariza-
tion when pulled along the c and a axes, respectively.

The crystals were transparent, brownish in color,

and exhibited the characteristic { } growth pat-
tern. Crystals grown from a melt that was already used
once for crystal growth were dark brown. As shown by
thermogravimetric measurements performed with a
Q 1500D derivatograph, relative changes in crystal
mass when heated to 720°C did not exceed 0.04%,
which argues against the presence of inclusions of H2O,
CO2, etc., in the sample composition.

The phase composition of the samples and their
crystallographic orientation were determined with a
DRON-4 x-ray diffractometer and a POLAM L-213M
polarization microscope. Powder x-ray diffraction pat-
terns of the crystals obtained and the parameters of the
trigonal cell derived from them are in agreement with
the data from [1–4] for Pb5Ge3O11 crystals. The param-
eters obtained for the brownish crystals are a =
10.226(4) Å and c = 10.664(3) Å; for the dark brown
samples, a = 10.214(5) Å and c = 10.649(4) Å. The
darkening in color and the decrease in the size of the
unit cell for the crystals grown from a used charge are
apparently associated with their composition shifting
toward GeO2, an effect caused by vaporization of part
of the PbO in the course of the previous boule growth.

The electrophysical properties were studied on sin-
gle-crystal plates cut from boules perpendicular to the
a and c axes. Silver paste electrodes were fired onto the
major sides of the plates. The plate thickness was d ~
0.5–3.0 mm, and the electrode area on the major sides
of the crystal was S ~ 10 mm2.

The capacitance C and the loss tangent  were
measured with an E7-14 meter or a P5083 ac bridge in
the temperature range T = 100–600 K and frequency
range f = 0.1–100 kHz in weak measuring fields. The
rate of variation in the temperature was typically
5.0 K/min. The real and imaginary parts of the complex
permittivity ε* = ε1 – iε2 and the electrical resistivity ρ
were calculated from the relations ε1 = Cd/Sε0, ε2 =

, and ρ = 1/2πfε1ε0 , where ε0 = 8.854 ×
10−12 F/m is an electric constant.

To make the crystals single-domain, they were
polarized by heating to temperatures (~200°C) above
the Curie point and cooled subsequently under applica-
tion of a dc electric field of ~0.5 kV/cm. The degree of
polarization was monitored by measuring the piezo-
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δtan

ε1 δtan δtan
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and pyroelectric constants of the crystals using the
oscillating-load and quasistatic techniques, respec-
tively.

3. RESULTS OF DIELECTRIC MEASUREMENTS

Figures 1–4 summarize the results obtained in mea-
surements of the permittivity ε, loss tangent , and
electrical resistivity ρ along the polar axis of the crystals,
which were carried out at temperatures of 100–770 K
band frequencies of 0.1–100.0 kHz. According to the
literature, the dependences obtained for nominally
defect-free crystals exhibit distinct anomalies near the
Curie point TC = 450 K in the form of maxima in ε and

 and a minimum in ρ (Fig. 1). The magnitude of
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Fig. 1. Temperature dependences of permittivity ε, dielec-
tric loss tangent tanδ, and electrical resistivity ρ of
Pb5Ge3O11 crystals grown along the c axis (measurements
were performed along the c axis of unpolarized crystals at
frequencies f = 0.1, 1.0, 10.0, and 100.0 kHz).
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the permittivity at the maximum in crystals grown
along the c axis noticeably exceeds that for the crystals
pulled along the a axis, namely, ~5000 against ~1000 at
1 kHz. For T > 300 K, ε and  exhibit a fairly com-
plex dispersive behavior, more specifically, a broad
peak at 430 K, whose amplitude decreases rapidly with
increasing frequency, and a sharp peak at 450 K, whose
magnitude grows with frequency. The temperature
region immediately below the Curie point has an inter-
val within which the resistivity increases with tempera-
ture; i.e., its temperature coefficient is positive. Within
broad enough temperature intervals below and above
TC, the ε(T) relation follows the Curie–Weiss law. The
growth in ε with deviation from the Curie–Weiss course
observed in an interval slightly above the Curie point,
whose width increases with frequency, is apparently
associated with space charge polarization, which is
noticeable at high temperatures and low frequencies.

In the low-temperature domain, multidomain crys-
tals exhibit dielectric anomalies in the form of local
maxima, εm and . At a frequency of 0.1 kHz,
these maxima are seen at 230 and 200 K, respectively,
and their positions shift toward higher temperatures, up
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Fig. 2. Temperature dependences of permittivity ε and
dielectric loss tangent tanδ measured along the c axis of (1–
4) multidomain and (5, 6) single-domain Pb5Ge3O11 crys-
tals (grown along the c axis) at frequencies of (1) 0.1, (2, 5,
6) 1.0, (3) 10.0, and (4) 100.0 kHz; the measurements on
polarized crystals were carried out (5) immediately after
and (6) 75 h after polarization.
P

to 250 and 260 K, with the frequency increasing to
100 kHz; the amplitudes of the maxima decrease fairly
rapidly, making the curves smooth (Fig. 2). After the
crystal polarization, the low-temperature dielectric
anomalies become weaker. The temperature depen-
dence of ε(T) measured immediately after the crystal
polarization becomes practically monotonic, and only
one weakly pronounced maximum appears in the

(T) relation. The ε(T) relation measured 75 h after
the polarization has a shoulder in the above temperature
interval (Fig. 2). Note that the high-temperature tails of
the low-temperature anomalies in ε, tanδ, and ρ do not
disappear near 300 K and considerably influence the
room-temperature dielectric characteristics of the crys-
tals.

The ε(T) and (T) relations measured along the
a axis of the crystals do not show any anomalies at low
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Fig. 3. Temperature dependences of ε and tanδ measured
along the c axis of unpolarized Pb5Ge3O11 crystals grown
along the a axis. The measurements were performed
sequentially on the same crystal with d = 0.95 mm and S =
10 mm2 at a frequency of 1 kHz (1) in air and (2–7) at a
reduced pressure p = 10–2 atm; (3) after UV illumination of
the crystal; (4–6) after annealing at 600°C at normal atmo-
spheric pressure for 1.5, (1.5 + 75), and (1.5 + 75 + 1) h,
respectively, and (4, 5) subsequent quenching or (6) cooling
at a rate of 40 K/h to room temperature; and (7) after anneal-
ing for an hour at 550°C and p = 10–2 atm followed by
quenching.
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temperatures, with ε growing monotonically from 18 to
22 with the temperature increasing from 100 to 300 K.

Changing the amplitude of the measuring voltage
within an interval 0.04–2.0 V affects the magnitude and
shape of the low-temperature dielectric anomalies only
weakly. Application of a dc bias of 1.5 kV/cm to the
crystals shifts the maxima in ε and tanδ by ~5 K toward
higher temperatures, with the maximum in ε decreasing
by ~10% and the maximum in tanδ remaining practi-
cally the same.

Figure 3 covers our study of the effect exerted on the
low-temperature anomalies by air pressure in the mea-
suring cell, illumination of the crystals, and their heat
treatment. Varying the partial pressure of oxygen from
0.2 to 0.002 atm does not affect the pattern of the low-
temperature anomalies substantially. The additional
maxima in ε and tanδ appearing at normal pressure
(1 atm) at 273 K are apparently due to moisture con-
densing on the sample surface. Annealing the crystals at
T < 250°C in air does not produce a noticeable effect on
the shape of the low-temperature dielectric anomalies.
Annealing at 600°C shifts the maximum in the ε(T) and

(T) relations toward lower temperatures by ~20 K
and decreases the amplitude of ε and tanδ by ~20 and
~50%, respectively. Annealing the crystals at 550°C in
a chamber at a pressure reduced to 10–2 atm degrades
the maxima. UV illumination of the crystals by a
200-W NARVA HBO200 halogen lamp for 40 min
shifts the positions of the low-temperature maxima in ε
and tanδ to lower temperatures by a few kelvins without
noticeable change in the maxima in amplitude.

Measurements made in the range 100–350 K on
crystals of various thicknesses (d = 0.4–3.2 mm) cut
from a boule or thinned by etching off the basal plane
of the same crystal reveal a substantial scatter in the
permittivity, from 35 to 65 at 300 K. Here, the depen-
dence of the permittivity on thickness is nonmonotonic.
This suggests that the permittivity depends not only on
the crystal thickness but also on other factors, for
instance, on the thermal prehistory of the sample.

The Curie point of defected, dark brown crystals
decreases down to 420 K, with the amplitude of ε
decreasing to 900 and the maximum itself becoming
diffuse (Fig. 4). The permittivity of these crystals with
nonstoichiometric cation composition reaches a room
temperature value of 120.

4. ANALYSIS AND DISCUSSION 
OF THE RESULTS

From the measurements made on the Pb5Ge3O11
crystals, it follows that, in the temperature and fre-
quency ranges covered, the crystals exhibit two anom-
alies in the dielectric properties, namely, (i) ferroelec-
tric anomalies near TC and (ii) low-temperature anoma-
lies in the region of ~230 K. Since the low-temperature
dielectric anomalies have been very poorly studied, we
further focus our attention on them.

δtan
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The shifts of the low-temperature maxima in ε and
tanδ toward higher temperatures (from 200 to 260 K)
with increasing frequency argue that they have a relax-
ation origin. Assuming that, at the point of maximum in
the ε2(T, fmeas) dependence, we have ωmeasτ = 1 [18, 19]
(ωmeas = 2πfmeas), we determined the characteristic
relaxation times τ(T) at different temperatures. When
plotted in the logτ vs. 1/T coordinates, the τ(T) relation
thus obtained can be fitted well by a straight line
(Fig. 5), which shows that it obeys the Arrhenius law
τ = τ0exp(–Ua/kBT). The activation energy Ua and the
characteristic relaxation time τ0 = τ(T  ∞) derived
from the lnτ(1/T) plot are Ua = 0.58 eV and τ0 = 2.2 ×
10–17 s. Thus, below TC, Pb5Ge3O11 crystals undergo
Debye-type dipole relaxation with thermally activated
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Fig. 4. Temperature dependences of permittivity ε, dielec-
tric loss tangent tanδ, and electrical resistivity ρ measured
along the c axis of (1–6) Pb-deficient Pb5Ge3O11 crystals
and (7) nominally defect-free Pb5Ge3O11 crystals; (1) f =
0.1, (2, 5–7) 1, (3) 10, and (4) 100 kHz; (1–5, 7) unpolarized
crystals, and (6) polarized crystal; (1–4, 6) d = 3.2 mm, and
(5) d = 0.67 mm (crystals grown along the c axis).
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reorientation of dipoles surmounting an energy barrier
Ua.

The maxima in the temperature dependences of ε(T)
and (T) at T < 100 K and the decrease in permit-
tivity to 15 when the temperature is lowered to 4.2 K,
which were established in [4, 16], indicate that there are
other relaxation processes that operate at still lower
temperatures in the crystals under study. The permittiv-
ity at frequencies above the range where the relaxation
process under study operates (ε∞1 ≈ 38) is equal to that
observed at frequencies below the range of the lower
temperature relaxation (εs2). The latter relaxation pro-
vides an additional contribution to the permittivity ε =
εel + εph + εrel and raises it to ~40 at 300 K. As the tem-
perature is lowered, the relaxation contribution (εrel)
freezes out, with the value ε = 15 at 4.2 K correspond-
ing to the sum of the contributions due to deformations
of the lattice (εph) and electronic shells (εel). Note that,
in accordance with the relaxation character of the low-
temperature dielectric anomalies, no clearly pro-
nounced features are observed in the temperature
dependence of heat capacity in the low-temperature
domain [20].

The widths of the (T) peaks in the region of
~230 K, which are derived from the monodisperse
Debye relation ε* – ε∞ = (εs – ε∞)/(1 + iωτ) [18, 19] and
the Arrhenius law with the use of the values of τ0 and
Ua found above and the values ε∞ = 38 and εs = 46, are
two to three times smaller than the experimentally
observed peak widths in the corresponding relations.
Therefore, it follows that the relaxation process
revealed in our crystals is characterized by a broad set
of relaxation times. The permittivity of a crystal can be
represented by a superposition of Debye contributions
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Fig. 5. Temperature dependence of characteristic relaxation
time τ derived from the low-temperature maxima in ε2(T)
and drawn in log τ vs. 1/T coordinates.
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with different relaxation times, ε*(ω, T) – ε∞ = (εs –

ε∞) (τ, τb)dτ/(1 + iωτ), where G(τ, τb) is the distri-

bution function of relaxation times, τb is the most prob-
able relaxation time, and ε∞ = ε∞1 = εel + εph + (εs2 – ε∞2).
The temperature evolution of the function G(τ, τb) gov-
erns the main features in the temperature and frequency
dependences of the complex permittivity. The relax-
ation times extracted above from the positions of the
maxima in the ε2(T, fmeas) relations are apparently the
most probable relaxation times τb.

The manifestation of relaxation processes indicates
that, in the crystals under study, there are some effective
dipoles capable of reorienting in an external electric
field. It would be difficult to pinpoint, at the micro-
scopic level, the dipoles that are responsible for the
relaxation processes actually observed. One could sug-
gest a number of mechanisms that could conceivably
cause low-frequency relaxation dielectric anomalies
similar to those observed in our crystals:

(a) phenomena associated with the motion of ferro-
electric domain walls and their freezing out;

(b) the presence of weakly bound structural blocks
in the crystal structure that undergo reorientation move-
ments;

(c) the presence of dipole defects in the crystal
structure, e.g., vacancies on the Pb, Ge, or O sublat-
tices; transition of part of the Pb2+ ions to the Pb3+ state
under illumination of the crystal [21], etc.;

(d) the presence of impurity dipoles forming the ori-
entation glass state, in which the regular crystal lattice
contains a number of dipoles or quadrupoles in
dynamic orientational disorder (as in crystals like
KCl : OH, KBr : CN, KTaO3 : Li [22]);

(e) crystal inhomogeneities giving rise to interlayer
polarization and relaxation of the Maxwell–Wagner
type [18, 19]; and

(f) the presence of carriers responsible for the semi-
conducting properties of Pb5Ge3O11 crystals [23, 24]
and the dynamics of formation of polarization states
induced by thermal localization of these charges at
impurity centers [25–27].

The relaxation associated with viscous domain wall
motion usually manifests itself in the temperature
region immediately below TC [28]. The domain wall
dynamics probably accounts for the dispersion pro-
cesses observed in Pb5Ge3O11 in this temperature
region, in particular, the decrease in amplitude of the
broad maximum in (T) with frequency (Fig. 1). As
the temperature is lowered from TC by ~200 K or the
frequency is increased above 10 kHz, these processes
freeze out and, thus, cannot be responsible for the
observed low-temperature dielectric anomalies. The
characteristic dispersion frequencies in the dynamics of
weakly coupled structural blocks lie, as a rule, above
100 kHz [18, 19]; therefore, the existence of this
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dynamics can also hardly account for the low-tempera-
ture dielectric anomalies observed in the range 0.1–
100.0 kHz. Note also that a possible relation between
the low-temperature dielectric anomalies and the
domain structure or reorientation of weakly coupled
structural blocks is at odds with the small value of τ0.
The fact that 1/τ0 is higher than the lattice vibration fre-
quencies argues rather for the electron (hole) relax-
ation.

While oxygen vacancies, deviations of the cation
composition from stoichiometry, and the growth stripe
structure do exert an influence on the dielectric proper-
ties of Pb5Ge3O11 crystals, the character of the changes
in the properties induced by these factors is indicative
of the absence of a direct relation between these defects
and the low-temperature dielectric anomalies. Indeed,
annealing a crystal at a low oxygen pressure while
increasing the content of oxygen vacancies brings
about a rise in dielectric losses for T > 300 K, with an
attendant degradation of the low-temperature anoma-
lies (Fig. 3). A deviation from an ideal cation composi-
tion in crystals grown from a GeO2-rich melt brings
about a rise in ε and tanδ, but the low-temperature
anomalies in ε(T) and (T) are considerably weaker
than in the case of the starting crystals (Fig. 4). Rotating
the growth stripe structure orientation 90° away from
the direction of spontaneous polarization affects the
magnitude of ε at the Curie point noticeably but does
not change the pattern of the low-temperature relax-
ation dielectric anomalies markedly. One may thus con-
clude that the observed low-temperature dielectric
anomalies in crystals are not related in any way to the
crystal defects mentioned above. It appears appropriate
to note here that the low-temperature dielectric anoma-
lies become increasingly more pronounced as the qual-
ity of Pb5Ge3O11 crystals improves; conversely, an
increase in the defect concentration brings about a
decrease in amplitude and increased broadening of the
maxima in ε and tanδ.

When analyzing the dielectric properties of
Pb5Ge3O11 crystals, one should bear in mind that they
belong to the class of semiconductor ferroelectrics [23,
24, 30], in which the dielectric properties are affected in
a specific manner by the coupling between the electronic
and lattice subsystems. These crystals are dominated for
T > 300 K by impurity electronic (or hole) conduction
due to the presence of local defect levels with an activa-
tion energy of ~0.7 eV in the band gap [13]. The impurity
character of the conduction is suggested by the fact that
the band gap Eg (Eg = 2.64 [23] or 3.0 eV [24]) notice-
ably exceeds the dc conduction activation energy
(0.63 [11], 0.83 [12], or 0.62 eV [13]).

The frequency and temperature ranges within which
the observed relaxation anomalies occur correlate most
closely with the dynamics of thermal localization at
impurity centers of carriers responsible for the semi-
conducting properties of Pb5Ge3O11 crystals. The pro-
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gressive filling of traps with decreasing temperature
generates local electric fields around local centers,
which, in turn, induce local polarization. The dynamics
of these processes may become manifest in the form of
low-frequency relaxation dielectric anomalies in the
temperature region where local centers are filled due to
thermal activation [25–27]. The characteristic time of
variation of induced polarization and ε* dispersion is
governed by vibrational properties of the local states
forming around the local centers and depends on the
characteristic times of the lattice subsystem and the
electron dynamics at the trapping levels. The low-fre-
quency range of the dispersion should be assigned to
the fact that the characteristic times of electron concen-
tration variation at the traps far exceed those of the lat-
tice.

The conclusion that the temperature region of the
low-temperature dielectric anomalies is close to that of
thermally activated filling of local centers is suggested
by the features observed in the temperature dependence
of the electrical conductivity of our crystals. Above the
temperatures of the anomalies, one observes thermally
activated electrical conductivity, which grows exponen-
tially with temperature (Fig. 1). Below the temperatures
at which the anomalies are observed, the conductivity is
only weakly temperature-dependent. The strongly pro-
nounced conductivity dependence on frequency and the
close-to-zero activation energy of conductivity in the
low-temperature domain (Fig. 1) indicate the predomi-
nance of the hopping mechanism of conduction via
localized states in this temperature region.

The fact that the activation energy for the relaxation
process (0.58 eV) is close to that for dc electrical con-
ductivity in the range 300–450 K suggests that the
dielectric relaxation processes and the temperature
dependence of conductivity are governed by the same
impurity levels.

Photorefractometric studies of Pb5Ge3O11 crystals
[8, 21, 31, 32] show that their characteristic defects act-
ing as charge traps in the band gap are the Pb2+ lead cat-
ions transferred by optical radiation to the Pb3+ state.
Recharging occurs due to hole trapping by Pb2+ ions
following the generation of electron–hole pairs in inter-
band transitions. Photoelectrons are captured by elec-
tron traps Z of, as yet, unknown origin. A comprehen-
sive investigation of the characteristics of local centers
in Pb5Ge3O11 crystals would obviously provide an
impetus to a deeper interpretation of the various fea-
tures seen in their dielectric properties. Information on
the type and structure of charge trapping centers in
Pb5Ge3O11 crystals can be derived from EPR spectro-
scopic and photoelectric studies. Our preliminary
investigation of nominally pure and defect-free crystals
performed in the range 100–300 K showed that defects
in a single crystal manifest themselves in EPR spectra
in the form of several series of absorption lines.

Doping, particularly with a nonisovalent atom, usu-
ally increases the effective charge density in semicon-
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ductors. As shown in [31, 32], however, no such
increase occurs in Pb5Ge3O11 doped by Ba, Fe, or Rh
atoms. It is believed that this doping has only a weak
effect on the concentration of the Pb3+ defects, which
are characteristic of these crystals and act as charge
traps. The above features of local centers may also pro-
vide an explanation for the comparatively weak influ-
ence that the substitution of various atoms for Pb, Ge,
and O in Pb5Ge3O11 crystals may exert on the pattern
and position of the low-temperature anomalies in ε(T)
and (T) [4].

The space charge density and the character of its
spatial distribution are affected considerably by the
degree of polarization of crystals and their breakup into
ferroelectric domains. In screening the spontaneous
polarization, the charge concentrates near the bound-
aries of ferroelectric domains with oppositely directed
spontaneous polarizations [29, 33]. As a result, an
enhanced concentration of centers creating levels in the
band gap arises at domain boundaries and these levels
trap the carriers to form bound space charges. It follows
that the polarization–depolarization processes should
affect the low-temperature anomalies in ε(T) and

(T), which is exactly what is observed experimen-
tally (Fig. 2). The space charge density in multidomain
crystals is obviously higher than in single-domain ones,
which accounts for their more pronounced manifesta-
tion of the low-temperature dielectric anomalies. Note
that the absence of any dependence of the conductivity
activation energy on the degree of crystal polarization
[11] provides evidence in support of the impurity center
levels being independent of their position relative to the
boundaries of ferroelectric domains. The change in the
pattern of the low-temperature anomalies induced by
crystal annealing near 600°C can be assigned to the
annealing-stimulated redistribution of space charges,
which is related, in particular, to the changed domain
structure.

5. CONCLUSIONS

(1) Pb5Ge3O11 crystals exhibit, in addition to ferro-
electric anomalies in ε and tanδ near the Curie point,
less pronounced low-temperature anomalies in the
vicinity of ~230 K, which are related to Debye-type
dipole relaxation with thermally activated reorientation
of dipoles surmounting an energy barrier Ua. The relax-
ation rate obeys the Arrhenius relation. The observed
relaxation is characterized by a broad set of relaxation
times. The most probable values of the activation
energy and characteristic relaxation time are τ0 = 2.2 ×
10–17 s and Ua = 0.58 eV. The relaxation processes exert
a pronounced influence on the values of the dielectric
characteristics near room temperature.

(2) The defects in Pb5Ge3O11 crystals that are asso-
ciated with oxygen vacancies, off-stoichiometric cation
composition, and the stripe growth structure influence
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the dielectric properties of these crystals. The pattern of
this influence does not suggest direct correlation
between these defects and the low-temperature dielec-
tric anomalies.

(3) The temperature and frequency ranges within
which the above relaxation anomalies are observed cor-
respond to the dynamics of formation of polarized
states through thermally induced localization of impu-
rity-bound carriers, which account for the semicon-
ducting properties of Pb5Ge3O11 crystals. The activa-
tion energy and the temperature region of carrier local-
ization as derived from the temperature dependence of
electrical conductivity are close to the activation energy
and temperature region of the low-temperature dielec-
tric relaxation.

(4) The polarization–depolarization processes and
breakup of a crystal into ferroelectric domains are
accompanied by a redistribution of the space charge
involved in the screening of spontaneous polarization
and noticeably affect the pattern and magnitude of the
low-temperature dielectric anomalies.

(5) The dielectric characteristics of Pb5Ge3O11 fer-
roelectric crystals depend to a considerable extent on a
number of various factors, such as the degree of polar-
ization of the crystal, its thermal prehistory, and the
kind and concentration of defects in the crystal. Uncon-
trolled combined action of various factors brings about
apparent irregular changes in the values of ε and tanδ.
In particular, the observed permittivity at room temper-
ature may range in magnitude from 30 to 120.

(6) Photorefractometric studies of Pb5Ge3O11 crys-
tals suggest that the characteristic defects inherent in
Pb5Ge3O11 crystals and acting as charge traps in the
band gap are Pb2+ lead cations transferred by light to the
Pb3+ state. The actual form and structure of the charge-
trapping centers producing local levels in the
Pb5Ge3O11 band gap, the structure of the density of
states of the defect levels, and the specific features of
the dynamics of charge localization on these levels
need further refinement, in particular, with the use of
EPR spectroscopy and photoelectric techniques.
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Abstract—The Cr3+ EPR spectra of Li2Ge7O15 (LGO) crystals are analyzed in the temperature range of the
ferroelectric phase transition. The temperature dependence of the local order parameter is determined from the
measured splittings of the EPR lines in the polar phase. The experimental critical exponent of the order param-
eter β = 0.31 in the range from the phase transition temperature TC to (TC – T) ~ 40 K corresponds to the critical
exponent of the three-dimensional Ising model. Analysis of the available data demonstrates that, away from the
phase transition temperature TC, the macroscopic and local properties of LGO crystals are characterized by a
crossover from the fluctuation behavior to the classical behavior described in terms of the mean-field theory.
The temperature dependence of the local order parameter for LGO : Cr crystals does not exhibit a crossover
from the Ising behavior (β = 0.31) to the classical behavior (β = 0.5). This is explained by the defect nature of
Cr3+ impurity centers, which weaken the spatial correlations in the LGO host crystal. The specific features of
the critical properties of LGO : Cr3+ crystals are discussed within a microscopic model of structural phase tran-
sitions. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Crystals of lithium heptagermanate Li2Ge7O15 (LGO)
upon cooling below the temperature TC = 283.5 K
undergo a transition from the high-temperature

paraelectric phase (space group ) to the ferroelec-

tric phase (space group ) with spontaneous polar-
ization along the c axis [1–4]. According to the neutron
diffraction data [5, 6], the structural transformations
upon phase transition involve rotations of [GeO4]4– tet-
rahedra and ordering of Li+ ions in channels of the LGO
crystal lattice. Analysis of the vibrational spectra of the
LGO compound revealed that the soft mode is associ-
ated with the oscillatory dynamics of germanium–oxy-
gen tetrahedra, whereas and the central peak is attrib-
uted to the relaxation dynamics of the lithium sublattice
[7–9].

In our previous works [10–12], the phase transition
in LGO crystals was investigated by Mn2+ EPR spec-
troscopy. It was demonstrated that manganese centers
substitute for lithium ions in positions of the second
type [5, 6] and retain the local C2 symmetry of sites in
the perfect lattice. Since the Ge–O and Li subsystems
play an important role in the phase transition, it is of
interest to analyze the EPR spectra of paramagnetic
ions embedded in the germanium–oxygen framework
of the LGO lattice. As was shown in [13, 14], Cr3+ ions
substitute for Ge(1) atoms at the center of oxygen octa-
hedral complexes [5, 6] and, hence, can serve as conve-
nient model objects for EPR studies of the phase tran-
sition in LGO crystals.

D2h
14

C2v
5
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Galeev et al. [13] analyzed the results obtained in
the first EPR study of LGO : Cr crystals and proposed
a model according to which Cr3+ ions at the Ge4+ posi-
tions and Li+ interstitial ions compensating for an
excess charge form Cr3+–Li+ pair centers with electric
dipole moments aligned parallel to the a axis. More
recently, Basun et al. [15, 16] measured the optical
luminescence spectra of similar crystals and confirmed
and refined the above model.

Taking into account that chromium ions are embed-
ded in the Ge–O framework of the LGO crystal lattice,
analysis of the Cr3+ EPR spectra measured in the vicin-
ity of the phase transition temperature TC can provide
new information on the specific features in the temper-
ature behavior of structural distortions in the Ge–O
sublattice. Moreover, the formation of Cr3+–Li+ pair
centers implies a sufficiently strong distortion of the
crystal field around paramagnetic ions. In particular,
this can lead to a considerable change in the phase tran-
sition temperature [17, 18]. With a fairly complete
model [13, 15, 16] at our disposal, it becomes possible
to elucidate how the Cr3+–Li+ centers affect the anoma-
lies in the physical properties of lithium heptager-
manate.

Earlier [14], we measured the EPR spectra of
LGO : Cr3+ crystals and revealed that the spectral com-
ponents are split into doublets upon cooling below the
phase transition temperature TC and the resonance lines
are anomalously broadened at temperatures close to TC.
This behavior is typical of the EPR spectra upon phase
transitions [19]. The splitting of spectral lines is associ-
ated with the local order parameter in the low-symme-
04 MAIK “Nauka/Interperiodica”
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try phase, whereas their broadening reflects an
enhancement of local fluctuations in the vicinity of the
phase transition temperature TC. In the present work,
we investigated the temperature dependence of the
local order parameter. For this purpose, we measured
the temperature shift of the Cr3+ lines in the polar phase
of LGO crystals.

2. EXPERIMENTAL TECHNIQUE AND RESULTS

For our experiments, single crystals of lithium hep-
tagermanate were grown by the Czochralski method
and doped with chromium ions (0.01 wt %).

The EPR spectra were recorded in the 3-cm band on
a Radiopan SE/X 2547 radiospectrometer. The temper-
ature of the samples was controlled by heating nitrogen
vapors with the use of a standard cryostat.

From analyzing the orientational dependences of
the EPR spectra of LGO : Cr crystals in the paraelectric
phase [14], we obtained four spectra (kM = 4) with C1
triclinic symmetry. The directions of the principal axes
of these spectra Zi (i = 1–4), which were chosen in the
vicinity of the c axis from the maximum splittings of
the outer lines in the fine structure, are determined by
the polar and azimuthal angles θ = 14° and ϕ = 30° with
respect to the crystal lattice basis [14]. In the system of
the magnetic axes, the EPR spectra can be described by
the orthorhombic spin Hamiltonian [20, 21]

 (1)

with the following parameters (T = 298 K): g = 1.978,
D = 1300 × 10–4 cm–1, and E = –330 × 10–4 cm–1. The
data obtained in [14] are in agreement with the results
of the EPR studies in the Q band of the radio-frequency
field (36 GHz) and confirm the model proposed by
Galeev et al. [13] for Cr3+ centers in the LGO structure.

Upon cooling below the phase transition tempera-
ture TC, an ensemble of four Cr3+ centers is divided into
two groups of structurally nonequivalent centers with a
multiplicity kM = 4 for each group [13, 14]. Upon the
phase transition, the local C1 symmetry of the centers
remains unchanged and the doublet splitting of the res-
onance lines is observed for any direction of the exter-
nal magnetic field B with respect to the crystal axes.
The temperature dependences of the EPR spectra were
measured for the principal directions of the magnetic
field along the crystal axes and were analyzed for B || a.
For this orientation, the above spectra in the paraphase
coincide with each other and the positions of the lines
associated with the electronic transitions only weakly
depend on the angle between the magnetic field and the
a axis [14]. Consequently, insignificant errors in orient-
ing the sample do not lead to a substantial distortion of
the spectral contour.

The temperature dependence of the position of the
low-field resonance line MS = –3/2  –1/2 measured

* gβBBS D SZ
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3
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  E SX
2
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for B || a is plotted in Fig. 1. It can be seen from this fig-
ure that, as the phase transition temperature is
approached from above, the EPR line slightly shifts
toward the high-field range. At temperatures below
TC = 283.4 K, the EPR line is split into two compo-
nents. Upon further cooling, these components shift
from the position of the signal in the high-symmetry
phase.

3. TEMPERATURE DEPENDENCE 
OF THE LOCAL ORDER PARAMETER

In the vicinity of the second-order phase transition,
the resonance fields B at which radio-frequency radia-
tion is absorbed can be expanded into a power series of
the local order parameter:

 (2)B B0 a1η
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Here, η is the local order parameter corresponding to
structural transformations in the environment of a mag-
netic ion upon the phase transition, B0 stands for the
position of the resonance line in the high-symmetry
phase (η = 0), and the coefficients a1 and a2 are deter-
mined by the position of the magnetic ion in the unit
cell and the direction of the magnetic field B with
respect to the crystal axes.

Since the point symmetry of Cr3+ centers (C1) does
not change upon the phase transition, the expansion of
resonance fields (2) at any direction of the magnetic
field B involves both even and odd powers of the order
parameter η. As follows from the data obtained in [10–
12], the properties of the LGO compound exhibit a criti-
cal behavior over a wide temperature range around the
transition point TC. The local order parameter can be rep-
resented in the form of the power function: η ~ (TC – T)β,
where β is the critical exponent. By substituting this
function into relationship (2), the expressions for the
positions of the EPR line components split below TC

can be written in the form

 (3)

where  ~ a1 and  ~ a2. According to relationships (2)
and (3), the change in the separation between the split
components characterizes the temperature dependence
of the local order parameter:

 (4)

In order to reveal the character of the dependence of ∆B
on (TC – T), the experimental data are presented in dif-
ferent coordinates in the insets to Fig. 1. As can be seen

B1 2, η±( ) B0 ã1 TC T–( )β± 1
2
--- ã2 TC T–( )2β

,+=
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Fig. 2. Splitting ∆B of the (1) Mn2+ and (2) Cr3+ EPR lines
as a function of (TC – T) on the log–log scale for LGO : Mn2+

[11] and LGO : Cr3+ crystals.
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P

                                                                    

from this figure, the experimental data presented in the
(TC – T)–∆B2 coordinates do not fall on a straight line.
Moreover, according to relationship (4), the mean-field
approximation (β = 0.5) in inapplicable for describing
the dependence η(T) in any of the studied temperature
ranges. By contrast, the dependence ∆B1/β(TC – T)
constructed at β = 0.31 is linear up to (TC – T) ~ 40 K
(Fig. 1). At lower temperatures, the experimental
dependence ∆B1/β(TC – T) deviates from a straight line
toward smaller values. This means that the temperature
dependence η(T) becomes less steep and flattens out.

The experimental dependences of the position of the
Cr3+ EPR line in the temperature range (TC – 40 K) < T <
(TC + 20 K) are described by relationship (3) with the
critical exponent β as a variable parameter. By mini-
mizing the root-mean-square deviations of the calcu-
lated values from the experimental data, we obtained
the following parameters:

 (5)

The variation in the position B0 of the resonance line
at temperatures above the transition point TC (Fig. 1)
due to the temperature dependence of the lattice
parameters was approximated by the straight line
B0 [mT] = (139.78 – 0.003T). The dependences calcu-
lated from relationships (3) and (5) are shown by solid
and dashed lines in Fig. 1. As can be seen, these rela-
tionships fit the experimental dependences fairly well
and the calculation gives a phase transition point TC

[see relationship (5)] that is very close to the tempera-
ture of splitting of the resonance lines (283.4 K).

The critical exponent β (5) determined from the
analysis of the Cr3+ EPR spectra coincides within the
experimental error with the critical exponent obtained
from the temperature shift of the Mn2+ EPR lines in [10,
11]. The occurrence of critical fluctuations in such a
wide temperature range is associated with the weakly
polar nature of the ferroelectric state of LGO crystals
[22] and was previously discussed in greater detail in
[11, 12].

It is worth noting that the temperature dependences
of the local order parameter determined from the anal-
ysis of the Mn2+ [11] and Cr3+ (Fig. 1) EPR spectra dif-
fer from each other. This difference can be seen in
Fig. 2, in which the dependences of the splitting of the
EPR lines ∆B ~ η on (TC – T) are depicted on the log–
log scale. As follows from the analysis of the Mn2+

spectra, the above dependence away from the phase
transition at T* ≈ (TC – 10 K) exhibits a crossover from
the Ising behavior in the portion with a slope of 0.3 to
the classical behavior in the portion with a slope of 0.5.
On the other hand, the dependence obtained by pro-
cessing the Cr3+ EPR spectra exhibits Ising behavior
over the entire temperature range in which the temper-
ature dependence of the local order parameter is

TC 283.38 K, β 0.31,= =

ã1 1.60mT /K
β
, ã2 0.25mT /K

2β
.= =
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described by the power function η ~ (TC – T)β. There-
fore, away from the phase transition point TC, the cross-
over from the Ising behavior to the classical behavior
occurs in the environment of Mn2+ active ions and is
absent in the case of Cr3+ ions. Let us consider the pos-
sible origin of this discrepancy.

4. WEAKENING OF THE SPATIAL 
CORRELATIONS DUE TO Cr3+–Li+ PAIR 

CENTERS

Making allowance for the specific features in the
dynamic behavior and the important role of the Ge–O
and Li sublattices in the phase transition, the results
obtained can be interpreted in terms of different posi-
tions of probes, namely, Mn2+ centers at the Li(2) posi-
tions in structural channels and Cr3+ ions at the Ge(1)
positions inside the oxygen octahedra. The difference
between the temperature dependences η(T) (Fig. 2) can
be associated with the specific features in the critical
behavior of the lattice displacements in the sublattices.

On the other hand, it should be taken into account
that paramagnetic centers have a defect nature. The
EPR data indicate that paramagnetic ions are differ-
ently incorporated into the lattice. Divalent manganese
ions do not change the general properties (local sym-
metry) of the Li(2) positions in the perfect lattice. Chro-
mium ions strongly distort the Ge–O structural frame-
work and are embedded in the Ge(1) positions with the
formation of Cr3+–Li+ dipole pair centers. Conse-
quently, the LGO crystals doped with Mn2+ and Cr3+

ions can exhibit different properties.
Analysis of the thermal and acoustic anomalies

demonstrates that the macroscopic properties of pure
LGO crystals are characterized by a crossover from the
fluctuation behavior to the classical behavior away
from the phase transition temperature TC [24]. This spe-
cific feature of LGO crystals is confirmed by the EPR
data for Mn2+ centers that are located in lattice channels
and do not substantially affect the Ge–O framework of
the crystal structure [11]. The fact that the mean-field
approximation is not applicable to any of the portions
of the dependence η(T) determined from the splitting of
the Cr3+ EPR lines (Figs. 1, 2) can be explained by the
defect nature of paramagnetic centers distorting the
Ge–O framework of the crystal structure. This infer-
ence is qualitatively supported by a quite different shift
of the transition temperature TC upon introduction of
manganese ions (which is not observed upon introduc-
tion of ~ 1 wt % Mn) and chromium ions (~ –70 K/wt %)
[17, 18].

Therefore, distortions of the Ge–O structural net-
work in the environment of Cr3+–Li+ centers are respon-
sible for the increase in the range of the fluctuation
behavior and the suppression of the crossover to the
classical behavior away from the phase transition point
TC. This change in the critical properties of the LGO
PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      200
compound suggests a decrease in the effective interac-
tion range and the range of spatial correlations of the
order parameter in the system containing defects. Since
the behavior of thermodynamic anomalies in the vicin-
ity of the phase transition temperature TC differs from
that predicted from the Landau theory [10–12, 23, 24],
we will attempt to analyze the influence of Cr3+–Li+

centers on the properties of the LGO crystal in the
framework of a simple microscopic model of structural
phase transitions. Within this model, the potential
energy of the crystal can be represented as the sum of
the energy *s of structure cells and the energy *int of
the interaction between them [25, 26]:

 (6)

Here, ur stands for a combination of atomic displace-
ments upon the phase transition in a unit cell with
radius vector r, α1 < 0, α2 > 0, and J > 0. For simplicity,
relationship (6) is written under the assumption of iso-
tropic interaction between the nearest neighbor cells in
a three-dimensional lattice. As a rule, Hamiltonian (6)
is analyzed for limiting cases. At |α1| ! J, the single-
particle potential *s has one minimum, the phase tran-
sition is described by the displacement model, and the
mean-field approximation is assumed to be valid. In the
opposite limit |α1| @ J, the potential *s has two minima
at equilibrium displacements ±u0 = ±(|α1|/α2)1/2 and the
phase transition is governed by the different occupa-
tions of the wells. In this case, Hamiltonian (6) is
reduced to the Ising Hamiltonian, structural transfor-
mations correspond to the model of ordering, and the
conditions for the applicability of the mean-field
approximation are not met. The classical behavior in
the framework of the mean-field theory gives way to
fluctuation behavior, in which the universal character of
the critical phenomena manifests itself.

It is assumed that the state of the LGO host crystal
can be described by Hamiltonian (6) and the Cr3+–Li+

defect centers can be included through renormalizing
the parameters of the model. Moreover, we assume that
a unit cell in the lattice can contain a defect with prob-
ability n and can be free of defects with probability
(1 – n), where n = Nd/N is the ratio of the number of
defect cells to their total number. For simplicity, the dis-
placements ur in the defect-free and defect cells are
assumed to be identical. We will analyze how the pres-
ence of the above defects affects the parameters of
Hamiltonian (6).

The parameter α1 changes as a result of the interac-
tion between displacements and dipole moments of
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defects. Reasoning from the D2h symmetry of the
paraelectric phase [1] and the direction of the defect
dipole d || a [13, 15, 16], the allowed lowest order

invariant has the form . The addition of the term

(1/2)  (g > 0, summation is performed over

defect cells with radius vector rd) to Hamiltonian (6)
leads to a decrease in |α1| (a decrease in the transition
temperature) and improves the condition for the mean-
field approximation |α1| ! J. The effect of Cr3+–Li+ pair
centers on the properties of the LGO host crystal has an
opposite tendency. For this reason, we will not consider
the change in the parameter α1 in a defect crystal. The
renormalization of the parameter α2 is also insignifi-
cant, because it is associated with the higher order
interaction and does not result in the appearance of any
features.

Since the Cr3+–Li+ pair centers bring about an
increase in the range of the fluctuation behavior, the
change in the correlation parameter J seems to be most
significant. The suppression of the classical (mean-
field) behavior (the displacement limit) implies that the

inequality |α1| @  (where  is the renormalized cor-
relation parameter) is better satisfied in the defect crys-
tal. The correlation of displacements in defect cells
with displacements in adjacent cells (which are
assumed to be defect free) is weaker than that in defect-
free regions of the crystal. Let Jd < J be a parameter
describing the correlation of the defect region with the
adjacent cells. By changing   (1 – n)  and

  n , the correlation parameter for the

defect crystal can be represented in the form

 (7)
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Fig. 3. Dependence of the transition temperature TC on the
chromium impurity content in LGO crystals according to
the dielectric data taken from [17].
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PH
The weakening of elastic forces between displacements
in unit cells of the defect crystal results in a decrease in
the characteristic interaction length. Within the model
described by Hamiltonian (6), the ratio of the correla-

tion length to the unit cell parameter is defined as  =
–J/α1. This indicates that the effective interaction range
decreases in the matrix due to Cr3+–Li+ pair centers:

 < r0 (where  is the renormalized correlation length
for the defect crystal).

Now, we make a number of quantitative estimates.
For this purpose, we consider the dependence of the
phase transition temperature on the chromium impurity
content. In terms of the model described by Hamiltonian
(6), the phase transition temperature can be written as

 (8)

where the proportionality factor C takes on different
values in the limits of the displacement and order–dis-
order transition [25, 26]. Then, the relative shift of the
transition temperature can be represented in the form

 (9)

This relationship is in agreement with the experimental
linear dependence of the phase transition temperature
TC on the impurity content (Fig. 3). Taking into account
the correction for the ratio between the molar masses of
formula units of the LGO crystal and the Cr2O3 dopant
and also the number of formula units per unit cell (Z =
4), we obtain Jd ≈ 0.3J. Therefore, the interaction of the
defect cell with the adjacent cells appears to be three
times weaker than the elastic forces in defect-free
regions. Under the above assumptions, the decrease in
the correlation length in the LGO host crystal contain-
ing Cr3+–Li+ pair centers with an increase in their con-

centration is estimated as  ≈ (1 – 0.7n).

5. DISCUSSION

Now, we dwell on the following problem. The cross-
over from the fluctuation behavior to the classical
behavior has been observed in the study of the local
order parameter from the Mn2+ EPR spectra [10, 11]
and also of the thermal and acoustical properties of
LGO crystals [23, 24]. However, a similar crossover
has not been revealed in the temperature dependence of
the local susceptibility determined from the broadening
of the Mn2+ EPR lines [12] and the temperature depen-
dence of the permittivity [27]. This can be associated
with the following circumstances. First, the tempera-
ture range of the fluctuation behavior differs for differ-
ent properties of the physical system [25]. Second, the
anomalous contributions to the width of the EPR line
and the permittivity can be measured to sufficient accu-
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racy only in the limited ranges (T – TC) ~ 10 and ~ 20 K,
respectively. By contrast, when studying the temperature
dependences of the local order parameter (Figs. 1, 2), the
splitting of the EPR lines and, hence, the accuracy in
measurements increases away from the transition tem-
perature TC. Therefore, the lack of experimental evi-
dence for the crossover in [12, 27] can stem from the
relatively narrow ranges in which the anomalous contri-
butions to the width of the EPR line and the permittivity
can be separated with confidence.

It should be emphasized that relationship (7) for the
correlation parameters actually implies the replacement
of a discrete medium [see expression (6)] by a contin-
uum in which defect distortions are averaged over the
crystal volume. In this respect, the above analysis
should be treated as a qualitative illustration of the
influence of Cr3+–Li+ pair defects on the critical proper-
ties of lithium heptagermanate crystals. However, the
assumptions made do not change the main inference
regarding a decrease in the correlation length in the
LGO host crystal with Cr3+–Li+ pair centers.

6. CONCLUSIONS

Thus, the EPR spectra of chromium ions introduced
into LGO crystals were investigated in the temperature
range of the ferroelectric phase transition. These ions
substitute for Ge(1) atoms at the centers of octahedral
oxygen complexes and form Cr3+–Li+ pair centers with
Li+ interstitial ions.

It was found that, upon cooling below the transition
point TC, the Cr3+ EPR spectrum is split into two struc-
turally nonequivalent components, each with a mag-
netic multiplicity kM = 4. The temperature dependences
of the split components of the EPR lines were described
using the expansion of the resonance fields in powers of
the local order parameter.

The splitting of the Cr3+ EPR lines was measured at
temperatures corresponding to the polar phase of LGO
crystals. It was revealed that the power dependence of
the local order parameter in the temperature range from
the transition temperature TC to (TC – T) ~ 40 K is con-
sistent with the three-dimensional Ising model (β =
0.31).

The analysis of the available experimental data
demonstrated that the crossover from the fluctuation
behavior to the classical behavior away from the transi-
tion temperature TC is characteristic of thermodynamic
anomalies of pure LGO crystals. The absence of the
crossover in the behavior of the properties of LGO : Cr
crystals was explained by the weakening of spatial cor-
relations in the LGO host crystal with Cr3+–Li+ defect
centers. The influence of Cr3+–Li+ pair centers on the
critical properties of LGO crystals was discussed
within the microscopic model of structural phase tran-
sitions.
PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      2004
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Abstract—The structure of the ilmenite phase of cadmium titanate is determined and the structure of the per-
ovskite phase of this compound is refined using x-ray powder diffraction. The effect of gamma radiation on the
structure and properties of the perovskite phase is investigated. The nature of relaxation of the dielectric param-
eters for the perovskite phase of cadmium titanate is discussed. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigations into the structure and properties of
ATiO3 double oxides (A = Ba, Pb, Sr, Ca, Cd, Mg, Mn,
Zn, Co) with a perovskite structure have demonstrated
that these compounds are characterized by a wide vari-
ety of structural configurations and physical properties.
These variations in the structure and properties of
ATiO3 double oxides can be caused by the following
factors: (i) deviations from the ATiO3 stoichiometry
(changes in the occupancies of the A and O sites),
(ii) the formation of other (non-perovskite) phases, and
(iii) the manifestation of different types and degrees of
structural ordering on a scale of a unit cell, a crystallite
(crystal block), or a crystal.

Earlier structural studies have established that,
depending on the crystallization conditions, cadmium
titanate CdTiO3 can have either an ilmenite-like [1, 2]
or perovskite structure [3]. Upon high-temperature
annealing, the CdTiO3 compound undergoes a transi-
tion from the ilmenite phase to the perovskite phase [4,
5]. In [6, 7] and [2, 8], the unit cell parameters of the
perovskite (P) phase of the CdTiO3 compound under
normal conditions differ from each other. According to
[6, 7], the orthorhombic cell (which is fourfold super-
structural with respect to the perovskite unit cell) is
characterized by the following parameters: AO = ap + cp,
BO = 2bp, and CO = ap – cp (AO = 5.348 Å, BO = 7.615 Å,
CO = 5.417 Å), where ap, bp, and cp are the parameters
of the perovskite monoclinic subcell with two possi-
ble space groups (Pnma or Pc21n). In [2, 8], the per-
ovskite phase of the CdTiO3 compound is characterized
by an orthorhombic unit cell with the following parame-
ters: AO = 2(ap + cp), BO = 2bp, and CO = 2(ap – cp)
(AO = 10.607 Å, BO = 7.606 Å, CO = 10.831 Å) and
space groups Cmca and Cmma. It is known that, at low
temperatures, the perovskite modification of the
CdTiO3 compound undergoes a transition to a ferro-
electric state [9, 10]. However, the ilmenite (I) phase of
the CdTiO3 compound does not exhibit ferroelectric
1063-7834/04/4609- $26.00 © 21737
properties. Earlier [8], we examined the temperature
and frequency dependences of the permittivity of
CdTiO3 crystals with a perovskite structure before and
after alpha and gamma irradiation and observed strong
dielectric relaxation at temperatures T ~ 200–300°C.
More recent studies of the electrical conductivity of
CdTiO3 single crystals with a perovskite structure [5]
revealed that the electrical conductivity exhibits anom-
alies in the same temperature range. Note that the struc-
ture of the ilmenite modification of the CdTiO3 com-
pound was first studied by Posnjak and Barth [1].

The objectives of the present work were as follows:
(1) to determine the structure of the ilmenite-like
CdTiO3 modification, which is of interest as a ferro-
electric structural analog of the LiNbO3 compound
[11]; (2) to refine the structure of the perovskite CdTiO3
modification; (3) to investigate how the radiation-
induced defects (gamma radiation) affect the structure
and properties of the perovskite CdTiO3 modification
with the aim of verifying the hypothesis regarding the
role played by the nanosize effects in the ilmenite–per-
ovskite phase transition of the CdTiO3 compound; and
(4) to discuss the nature of relaxation of the dielectric
parameters for the perovskite CdTiO3 modification [8].

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Polycrystalline samples of the ilmenite-like CdTiO3
(I) and perovskite CdTiO3 (P) modifications were pre-
pared from a stoichiometric mixture of CdO and TiO2
(rutile phase) according to the standard procedure of
solid-phase synthesis. The x-ray powder diffraction
analysis of the CdTiO3 samples revealed that the
ilmenite-like CdTiO3 modification is formed at synthe-
sis temperatures in the range 600–850°C [12]. Upon
annealing at a temperature T ≥ 900°C, the ilmenite-like
CdTiO3 modification undergoes a transition to the per-
ovskite CdTiO3 modification.
004 MAIK “Nauka/Interperiodica”
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X-ray structural investigations of CdTiO3 polycrys-
tals in the ilmenite-like and perovskite modifications
under normal conditions were performed at the Univer-
sity of Aveiro (Portugal). The x-ray diffraction patterns
were recorded in the Bragg–Brentano geometry on a
Rigaku diffractometer (CuKα radiation; graphite mono-
chromator; 2 range 16° < 2θ < 116°; scan step, 0.02°;
exposure time per frame, 2 s). The total number of
unique reflections was 113 for the ilmenite-like CdTiO3
modification and 166 for the perovskite CdTiO3 modi-
fication. The x-ray diffraction patterns of the powder

Table 1.  Atomic parameters and lengths of the Cd–O and
Ti–O bonds in the ilmenite-like CdTiO3 modification (the
atomic coordinates x, y, and z are given in fractions of the per-
ovskite cell)

Atom x y z B, Å2

Cd 0.000 0.000 0.346 1.6

Ti 0.000 0.000 0.150 1.0

O 0.333 0.050 0.237 1.1

Atom 1 Atom 2 Cd–O, Ti–O, Å

Cd O(1) 2.269

Cd O(2) 2.483

Ti O(1) 1.804

Ti O(2) 2.068

Note: The Cd and Ti atoms are located in the octahedral environment
of oxygen atoms and form Cd–O(1), Cd–O(2) and Ti–O(1),
Ti–O(2) bonds of different length, respectively. B is the
atomic thermal parameter.
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Fig. 1. Fragments of the x-ray diffraction patterns of the
ilmenite-like CdTiO3 modification: (a) model with space

group R3c, (b) model with space group , and (c) exper-
imental data.
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PH
samples prepared in the two CdTiO3 modifications
were processed with the PowderCell 2.2 program.

3. RESULTS AND DISCUSSION

When determining the structure of the ilmenite-like
CdTiO3 modification, we considered a number of pos-
sible structural models of the rhombohedral phase. The
unit cell of the ilmenite-like CdTiO3 modification in the
hexagonal system is characterized by the parameters
AH = 5.2403 Å and CH = 14.8380 Å [1] and contains six
formula units. In order to determine the space group of

symmetry, we chose the space groups R3c, , ,
R32, and R3m for our analysis, because they have 6-
and 18-fold regular systems of points and, hence, the
number of parameters refined can be decreased signifi-
cantly. For each space group, we determined the possi-
ble variants of the arrangement of atoms in the unit cell
in accordance with the crystal chemistry rules and the
results of a comparison with related structures. In the
analysis, we varied the atomic parameters over a rather
wide range and used the refinement procedure. It was
established that the minimum R factor (Rp = 14%) is

achieved in the model with space group  and the
atomic coordinates x, y, and z presented in Table 1. This
table also lists lengths of the Cd–O and Ti–O bonds in
the ilmenite-like CdTiO3 modification. Figure 1 shows
the fragments of the x-ray diffraction patterns for mod-
els of the ilmenite-like CdTiO3 modification with space

groups R3c and  and the experimental diffraction
curve. It should be noted that the data obtained in [1] do
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Fig. 2. Fragments of the x-ray diffraction patterns of the
perovskite CdTiO3 modifications: (a) model of the P1 mod-
ification, (b) model of the P2 modification, and (c) experi-
mental data.
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Table 2.  Atomic parameters and lengths of the Cd–O and Ti–O bonds in the perovskite CdTiO3 (P1, P2) modifications

CdTiO3 (P1) (space group Pnma) CdTiO3 (P2) (space group Cmca)

A0 = 5.348 Å
B0 = 7.615 Å
C0 = 5.417 Å

ap = cp = 3.806 Å
bp = 3.807 Å
βp = 90.73°

A0 = 10.607 Å
B0 = 7.606 Å
C0 = 10.831 Å

ap = cp = 3.790 Å
bp = 3.803 Å
βp = 91.0(3)°

Atom x y z B, Å2 Atom x y z B, Å2

Cd 0.020 0.250 0.022 2.0 Cd(1) 0.250 0.251 0.250 4.0

Ti 0.500 0.000 0.000 1.2 Cd(2) 0.000 0.248 0.010 4.0

O(1) 0.255 0.030 0.253 1.4 Ti(1) 0.270 0.000 0.000 1.1

O(2) 0.520 0.250 0.015 1.4 Ti(2) 0.000 0.510 0.240 1.1

O(1) 0.250 0.250 0.000 1.4

O(2) 0.000 0.720 0.220 1.4

O(3) 0.121 0.070 0.124 1.4

O(4) 0.127 0.550 0.123 1.4

Atom 1 Atom 2 Cd–O, Ti–O, Å Atom 1 Atom 2 Cd–O, Ti–O, Å

Cd O(1) 2.687 Cd(1) O(1) 2.710

Cd O(2) 2.654 Cd(1) O(2) 2.652

Ti O(1) 1.895 Cd(1) O(3) 2.339

Ti O(2) 1.906 Cd(1) O(4) 2.432

Cd(2) O(4) 2.432

Ti(1) O(1) 1.904

Ti(1) O(3) 1.969

Ti(1) O(4) 1.934

Ti(2) O(2) 1.904

Ti(2) O(4) 1.934
not seem reliable, because, in this case, the Cd–O bonds
should be shorter than the Ti–O bonds. However, in the
ilmenite-like structure, the Cd2+ and Ti4+ ions are
located in oxygen octahedra. Since the ionic radius of
Cd2+ is larger than that of Ti4+, the Cd–O bonds should
be longer than the Ti–O bonds, as was determined in
our experiments.

In processing of the experimental x-ray diffraction
pattern of the perovskite CdTiO3 modification (Fig. 2c),
we analyzed the variants of the unit cells determined in
[6, 7] and [2, 8] and the variants of the orthorhombic
space groups and positional atomic parameters. It was
found that the powder sample of the perovskite-like
CdTiO3 compound under investigation has a two-phase
composition. This compound consists of the perovskite
CdTiO3 (P1) modification with unit cell parameters
close to those determined in [6, 7] and the perovskite
CdTiO3 (P2) modification with unit cell parameters
close to those obtained in [2, 8]. The minimum Rp factor
corresponds to the sample with a composition contain-
ing 22.4% P1 and 77.6% P2 and the atomic parameters
presented in Table 2.
PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      2004
The positional and thermal parameters were deter-
mined accurate to within ±0.001 Å and ±0.1 Å2, respec-
tively. Figure 2 presents the fragments of the x-ray dif-
fraction patterns of the P1 and P2 perovskite modifica-
tions of cadmium titanate and the experimental
diffraction curve.

Polycrystalline samples of the perovskite CdTiO3
modification were exposed to bremsstrahlung gamma
radiation with an electron energy of ~20 MeV and a
dose of 107 R on an ST microtron. After this irradiation,
we revealed the following structural changes: (1) an
increase in the parameters of the monoclinic subcell (at
room temperature) ap = cp (from 3.8015 to 3.8107 Å)
and bp (from 3.8212 to 3.8256 Å) and a decrease in the
angle βp (from 91.22° to 91.09°); (2) the appearance of
new reflections corresponding to the cubic phase with
unit cell parameter ak = 3.850 Å; and (3) the disappear-
ance of some superstructure reflections (in particular,
the superstructure reflections with parameter d =
1.5217 Å).

Thus, in our experiment, we failed to induce a phase
transition from the perovskite CdTiO3 modification to
the ilmenite-like CdTiO3 modification under irradia-
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tion, as was assumed earlier in [8]. It is obvious that
gamma irradiation at this dose leads to an increase in
the linear unit cell parameters of the perovskite CdTiO3
modification and partial breaking of the long-range
order (the disappearance of several superstructure
reflections) due to the formation of defects. Annealing
of the samples at T = 700°C for 2 h results in a decrease
in the unit cell parameters ap, cp, and bp.

The measured lengths of the metal–oxygen bonds in
the ilmenite-like CdTiO3 modification (Table 1) differ
significantly, even though both the Cd and Ti atoms are
in the octahedral oxygen environment. Once the differ-
ence between the Cd–O and Ti–O bond lengths is asso-
ciated with the difference between the ionic radii of
Cd2+ and Ti4+, the two different lengths of the Cd–O and
Ti–O bonds can be explained in terms of strong distor-
tion of oxygen layers in the hexagonal closest packing,
i.e., the displacement of part of the oxygen ions from
the packing layers. This situation can correspond to a
relatively low temperature of the phase transition from
the ilmenite-like CdTiO3 modification to the perovskite
CdTiO3 modification (with a transformation of the hex-
agonal packing of the layers into a cubic packing), in
which the Cd ions are located in layers of the closest
packing with a large coordination number (12) and the
Cd–O bond lengths are considerably increased (Table 2).

The ilmenite phase of the CdTiO3 compound, like
the P1 and P2 perovskite phases, are characterized by
relatively high values of the Debye–Waller defects for
heavier Cd atoms. This suggests that, apart from ther-
mal motion, static disordered displacements of these
atoms can contribute noticeably to the aforementioned
parameters.

The analysis of the lengths of interatomic bonds in
the P1 and P2 perovskite CdTiO3 modifications showed
that the Cd–O bond lengths in the P1 modification dif-
fer only slightly (Table 2), whereas the difference
between these lengths in the P2 modification is more
significant and can be of the order of 0.3–0.4 Å.
PH
The previously revealed effects of relaxation of the
permittivity (similar to those observed in [13]) can be
explained in terms of the relaxation of space charges
induced by structural defects.
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Abstract—Reflectivity oscillations generated by A1g coherent phonons in an antimony single crystal have been
studied by a method involving pumping and probing by femtosecond laser pulses, which was complemented
by spectral filtration of the signal. An analysis of the spectrally resolved signal showed that not only the inte-
grated intensity but also the spectrum of the probe pulse are functions of the delay time between the pumping
and probing and oscillate between the Stokes and anti-Stokes components at the optical-phonon frequency. A
comparison of the integrated lattice excitation relaxation dynamics with the spectrally resolved lattice excita-
tion relaxation dynamics revealed new facets in the nature and generation mechanism of coherent phonons. ©
2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Progress in laser technologies, which have made it
possible to shorten the laser pulse duration down to the
subpicosecond range, opened the way for studying
excitation dynamics in solids on a real-time scale. At
present, this is apparently one of the most intensely pur-
sued subjects in the physics of condensed state and
studies involving pumping with subsequent probing by
ultrashort laser pulses are being increasingly used with
materials that have application potential [1–4]. Under-
standing the way in which the equilibrium violated by
a pump pulse is restored sheds light on the dynamics of
elementary excitations and their interaction and, thus,
provides information that cannot be obtained using
other methods.

Numerous studies of the dynamics of condensed
media acted upon by ultrashort laser pulses revealed a
subpicosecond-scale oscillatory behavior of the relax-
ation of the excited state created by a pump pulse [1–4].
The oscillation period coincides, as a rule, with the
reciprocal frequency of Raman-active phonons,
although the decay of oscillations differs from the
phonon energy relaxation as derived from the linewidth
of a spontaneous Raman spectrum [4]. These oscilla-
tions are identified with coherent lattice excitations
(phonons), and the adjective “coherent” is employed
because the oscillations have a definite phase. Obtain-
ing a stable phase is made possible by the pump pulse
length ∆t being less than the reciprocal phonon mode
frequency Ω–1(∆t < Ω–1).
1063-7834/04/4609- $26.00 © 21741
2. QUALITATIVE CONSIDERATION
OF THE MECHANISM OF COHERENT PHONON 

GENERATION

To reveal the way in which ultrashort laser pulses
give rise to an oscillatory optical response of a system,
we consider a harmonic oscillator. This oscillator, pre-
sented in Fig. 1 in the form of a pendulum, should be
identified with a phonon mode of the crystal, and we
shall be interested in how to change the pendulum state.
The state can be changed in two different ways. First,
one can translate the point of suspension of the pendu-
lum horizontally to change its potential energy. This
type of action does not require that work be done on the
pendulum; in other words, the applied force is purely
imaginary. Second, we can strike the pendulum to
change its kinetic energy. Because in this case an exter-
nal force brings about a change in the pendulum veloc-
ity, this force is real. These two types of action (a
change in the potential or kinetic energy) are displayed
schematically in Fig. 1, which shows that in both cases
an external action transfers the pendulum to a new
(excited) state and that its response to this action
reduces to oscillations with respect to a new or the old
equilibrium position.

To cross over now to the optical method of initiating
oscillations, we need to bear in mind that direct cou-
pling of photons of the visible range to phonons is
impossible because the light-field quanta and lattice
excitations differ strongly in energy. Their interaction
should be considered only on an effective basis and is
realized in some form of electron–phonon coupling. In
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Schemes of harmonic-oscillator excitation by varying (a) the potential energy (DECP) and (b) kinetic energy (TSRS). The
graphs to the right of each scheme display the temporal and frequency dependences of the driving force.
the case where linear absorption is negligibly low
(transparent media), the generation of coherent
phonons is identified with impulsive stimulated Raman
scattering [1]. The driving force is real in this case, and
the lattice coherence is realized in the ground electronic
state. A steady-state analog of impulsive stimulated
Raman scattering is given by coherent anti-Stokes light
scattering, in which the frequencies of two laser beams
are chosen so that their difference coincides with the
Raman-active mode frequency of the material medium.
For opaque media, however, where linear absorption
may no longer be disregarded, there is still no clear
understanding of how lattice excitations become coher-
ent. This is partially due to the fact that lattice coher-
ence can be created in this case in both the ground and
an excited electronic state, a factor that considerably
complicates theoretical consideration. Nevertheless,
the onset of oscillations in opaque media can be
described phenomenologically, with equal measure of
success, in terms of a model of displacive excitation of
coherent phonons (DECP) [5] and a mechanism resem-
bling, in many aspects, inelastic scattering of light [2].
The first model predicts the generation of only fully
symmetric phonons in an excited electronic state that
can be reached in both one- and two-photon absorption.
The phonon phase is described in this case by a cosine
relation; i.e., oscillations start with their maximum
amplitude (Fig. 1). The evolution of the driving force in
DECP is fitted by a Heaviside step function F(t) =
(1/2)[1 + ]. Because the Fourier transform of the
Heaviside function, F(ω) = (1/2)[δ(ω) – i/πω], has no
real component, the driving force is an imaginary quan-

t( )sgn
P

tity; i.e., the oscillator energy is modified through a
change in potential energy. The second model, pro-
posed in [2], accounts for the onset of oscillations and
was called transient stimulated Raman scattering
(TSRS). This model is capable of accounting for any of
the Raman-active phonons generated in either the
ground (nonresonant case) or an excited (resonant case)
electronic state. The initial phase of oscillations in
TSRS depends on the actual resonance conditions and
varies from the sine (in the first case) to cosine (in the
second) relation. The driving force in nonresonant
TSRS is real (F(t) = δ(t) and F(ν ) = 1), and the energy
is transferred to the oscillator through a change in its
kinetic energy.

Note that both phenomenological models describe
energy transfer between the external force and the lat-
tice rather than the onset of coherence in the phonon
subsystem. The coherence is determined by the off-
diagonal elements of the density matrix, which do not
depend, as a rule, on the populations described by the
diagonal elements and are responsible for the energy
state of the material system [4]. In actual fact, oscilla-
tions arise because of the light-induced lattice coher-
ence (onset of certain phase relations among the vari-
ous phonon states) and not only as a result of a change
in the phonon mode populations. Moreover, the differ-
ence between the phenomenological models as regards
the symmetry of excited phonon modes is fairly con-
ventional. For instance, the fairly common statement
that the DECP can excite only fully symmetric modes
ignores the fact that, if an electronic subsystem does not
thermalize instantaneously, its symmetry does not coin-
HYSICS OF THE SOLID STATE      Vol. 46      No. 9      2004
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cide with that of the lattice. Hence, in this nonequilib-
rium case, phonon modes of a lower symmetry can be
excited. At the same time, stating that any Raman-
active mode can be generated by TSRS would be too
strong, because the two-band Raman mechanism
underlying TSRS is responsible for the scattering by
fully symmetric phonons, whereas scattering by lower
symmetry modes is allowed only in the case of reso-
nance and degenerate electronic states. The fundamen-
tal difference between the DECP and TSRS lies in the
part played by the electromagnetic field in the creation
of coherent phonons. While in the first case this field
provides only the energy needed for excitation of the
system, in the second case the phase characteristics and
lattice excitation symmetry are determined by the
parameters of the Fourier components of the electro-
magnetic pulse.

Attempts at gaining a deeper understanding of the
physics of coherent lattice excitations made by invok-
ing microscopic descriptions led to contradictory con-
clusions concerning the nature of the coherent phonon.
The onset of coherence when considered in reciprocal
(momentum) space was explained as being due to
many-phonon processes within the same mode [6],
which reduces to macroscopic population of only
onephonon state, q = 0, and makes the situation similar
to the case of Bose–Einstein condensation. Another
approach, which is based on a two-point representation
of excitation in real space, attributes the coherence to a
locking of phonon modes with different wave vectors
[7, 8]. Although both microscopic approaches made
recourse to the DECP, the first of them (if the wave-vec-
tor selection rules are limited to long-wavelength
phonons) can also be applied to the TSRS model. This
can hardly be done for the second approach, because, in
view of the high velocity of light, optical processes do
not allow photons to interact with phonons far from the
Γ point of the Brillouin zone.

A comparison of the phenomenological models sug-
gests that, in the case of the DECP, the initial oscillation
phase is determined by the position of the excited-state
potential minimum. If this minimum lies to the left of
that of the ground state, i.e., if the total energy of the
system in an excited state reaches a minimum at a
smaller separation between ions, the initial lattice
response will be compression. In the reverse case, the
lattice response is expansion. The response of the lat-
tice (and, accordingly, the initial oscillation phase) will
be uniquely determined by the position of the minimum
of the excited-state potential. In the case of TSRS, the
initial phase of oscillations is governed by resonance
conditions and, depending on the actual scattering
channel (Stokes or anti-Stokes), can be additionally
shifted by π.

To unravel the nature of coherent lattice excitations
and establish the relevant dominant mechanism of its
realization in the interaction of femtosecond pulses
with matter, we carried out a detailed investigation of
PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      200
the fast lattice relaxation dynamics of single-crystal
antimony, with the time resolution technique comple-
mented by spectral analysis of the detected light. The
selection of such a semimetal as antimony as an object
for study stems from the fact that for antimony the
cubic nonlinear susceptibility χ(3) is large and the oscil-
lation amplitude ∆R/R0 is maximal and can be as high
as 10–3 [4]. Furthermore, the mechanism of generation
and the properties of coherent phonons in antimony
have recently been a subject of heated debate in the lit-
erature [9–13].

3. EXPERIMENT

The time dependences were measured using Ti sap-
phire laser pulses (λ = 800 nm) with a minimum length
of 50 fs and a repetition rate of 76 MHz. The pump and
probe pulses were orthogonally polarized, and the opti-
cal response was studied for the [001] plane of the Sb
single crystal. The pump and probe beams were
focused onto the sample surface by a short-focus lens,
f = 5 cm. The pump to probe pulse power ratio was
maintained at a level of 50 : 1, with the pump pulse
energy density being no greater than 1 µJ/cm2. The
pump channel was modulated with an optical chopper
with a frequency of 2 kHz, and measurements were per-
formed using synchronous detection of mixed signals
of photodiodes D2 and D1 placed in different arms of
the detection channel. The spectral response of the
probe pulse was effected by interference filters (with a
pass band from 1.5 to 10 nm) arranged immediately in
front of detector D1 (Fig. 2). The quantity measured in
the experiment was the normalized difference between
the reflectivities of the sample after and before excita-
tion
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4 5
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Fig. 2. Block diagram of the experiment: (1) laser, (2) mod-
ulator, (3) interference filter, (4) lock-in amplifier, and
(5) computer; D1 and D2 are optical detectors.
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as a function of time delay t between the pumping and
probing. The time t = 0 and the pump pulse length were
found from the autocorrelation function derived from
two-photon absorption of light by a nonlinear crystal.

4. EXPERIMENTAL RESULTS

Figure 3 plots a typical optical response observed
under excitation with subsequent probing of the anti-
mony single crystal with femtosecond pulses. For neg-
ative delay times, when the probe pulse arrives before
the pump pulse, ∆R/R0 ≈ 0, which is reached by match-
ing the intensities of the probe and reference laser
beams striking the detectors D2 and D1, respectively.
When the pump and the probe pulses coincide in time,
a coherent artifact appears as a result of four-wave mix-
ing, in which the pump and the probe pulses exchange
energy. Therefore, the coherent artifact requires pulse
overlap and is zero outside the limits of this overlap.
For positive delay times, the excited electronic state of
the system relaxes to equilibrium on a time scale on the
order of a few picoseconds. Fast oscillations assigned
to coherent phonons are superimposed onto this elec-
tronic relaxation [4, 9–13]. As follows from fitting the
oscillations with a decaying harmonic function
Aexp(−t/τ)sin(Ωt – ϕ) and the Fourier transform of the

0.0010

0.0005

0

0 1 3 5

3 4 5
Ω, THz

∆R
/R

0

t, ps

Fig. 3. Time-resolved normalized differential reflectivity,
∆R/R0, of a Sb single crystal. Inset shows the Fourier trans-
form of the oscillating part of the signal.
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oscillating component (inset to Fig. 3), these oscilla-
tions are damped; they start with the minimum value,
and their frequency is 4.51 THz. Comparing these data
with spontaneous Raman scattering studies [4, 13] and
other time-resolved measurements [9–13] enables one
to identify this mode as the A1g phonon, because out of
the six optical phonons in antimony, which crystallizes
in a structure with point symmetry D3d, only one is fully
symmetric at the Γ point of the Brillouin zone [4].

Knowing the magnitude of the photoinduced
response, we can readily estimate the number of
coherent phonons. After finding for the ion displace-
ment that [14]

 

where F is the laser pulse energy density in units of
[mJ/cm2], ρ is the sample density in units of [amu/Å3],
Ω is the frequency in THz, and ε is the dielectric con-
stant, the change in reflectivity is calculated to be ~10−5

and x0 ~ 10–3 Å. The square of the dimensionless coher-
ent amplitude [6] determines the number of phonons in
the interaction volume and is equal to N ≈ 1012, which
indicates macroscopic filling of the phonon mode.

A more complete idea of the energy and momentum
exchange between the crystal and the electromagnetic
field can be gained, in addition to straightforward time-
resolved measurements, from studies of the spectral
properties of the time-resolved signal; said otherwise,
one can obtain information not only on the spectrally
integrated response but also on the evolution of the var-
ious spectral components of the light field. This can be
done by analyzing the probe pulse spectrum as a func-
tion of delay time. In our experiments, spectral filtering
was performed by placing an interference filter imme-
diately in front of detector D2 and could not affect in
any way the state of the sample, which was determined
by the pumping conditions. Figure 4 displays the oscil-
lations obtained under spectral filtering of the probe
pulse with interference filters having different central
frequencies and the same pass band ∆λ = 10 nm.
Figure 4a illustrates the overall pattern of the ∆R/R0
signals, whereas Fig. 4b shows only the first cycles of
the oscillating part obtained by fitting with a decaying
harmonic function. A comparison of the oscillations
detected in different wavelengths reveals that, although
these oscillations always start from an extreme level,
their initial phases differ by π for the Stokes and anti-
Stokes parts of the spectrum (the Stokes and anti-
Stokes frequencies, ν < ν0 and ν > ν0, respectively, are
defined with respect to the central frequency ν0 of the
laser pulse spectrum). Therefore, it follows that not
only the intensity of the probe pulse but also its spec-
trum become functions of delay time after interaction
with the object under study and oscillate, at the fre-
quency of the fully symmetric phonon mode, between
the Stokes and anti-Stokes components of the spec-
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------- 
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ρΩ ε
--------------,≈
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trum. This situation is illustrated in Fig. 5, which gives
the pump pulse spectrum and the initial phase of oscil-
lations plotted versus the probe pulse wavelength.
These data argue for the probe laser pulse being fre-
quency-modulated around the central optical fre-
quency.

Fourier analysis of the spectrally resolved oscilla-
tions shows that their frequency and damping (dephas-
ing) do not depend, within experimental error, on the
optical spectral range in which they are detected. This
follows from Fig. 6a, which shows the frequency and
the dephasing rate plotted versus the wavelength of the
central interference-filter band. The coherent amplitude
(∆R/R0)osc is slightly larger for the anti-Stokes part of
the spectrum than for the Stokes part, which is seen
clearly from a comparison of the oscillations presented
in Fig. 4 or of their amplitudes in Fig. 6b. At the same
time, the magnitude of the coherent amplitude is inde-
pendent of the interference filter pass band. Certainly,
this conclusion does not apply to the absolute magni-
tude of the reflectivity change ∆R = R(t) – R0, which
decreases with reduction of the pass band. In addition
to the above effects, narrowing the spectral range of
probing also brings about a considerable increase of
noise in the oscillating signal, which is clearly seen at
short time delays. This noise is damped out, however,
more strongly than the oscillations themselves; there-
fore, the signal to noise ratio improves at long delay
times (Fig. 7). It should be stressed that narrowing the
filtering window also gives rise to noise at negative
delay times. This questions the statement that spectrally
resolved pump–probe experiments are indeed real-time
measurements in the sense that they offer the possibility
of following the temporal evolution of a material sys-
tem under study [15].

Earlier forward-scattering experiments performed
with transparent media showed that the probe pulse
spectrum is a function of delay time and oscillates, at a
frequency of the Raman mode, between the Stokes and
anti-Stokes components [1, 2]. It was argued that a
material system either donates or receives the energy of
the probe pulse, depending on the delay time. For a
spectrally integrated signal, however, the initial oscilla-
tion phase was shifted by π/2 with respect to the Stokes
and anti-Stokes components, which was assigned to a
contribution from surface effects [2].

5. DISCUSSION OF THE RESULTS

After the first time–resolved studies of Sb, which
revealed A1g-phonon oscillations, the generation mech-
anism was identified as DECP. This conclusion was
drawn from the cosine pattern of the oscillations and
the symmetry of the excited mode [9, 10]. Subsequent
investigation showed, however, that coherent oscilla-
tions are also generated for Eg phonons, which cannot
be excited by DECP [11]. This conclusion served as the
basis for a model in which coherent phonons are gener-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      2004
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ated by the TSRS, and the applicability of DECP was
reduced to a specific (resonant) case [2, 11]. This
approach was validated by comparing the resonance
behavior of spontaneous Raman scattering and coher-
ent oscillations [13].

To understand the revealed dependence of the initial
oscillation phase on the probe pulse wavelength, let us
consider the process of detection of the optical signal.
We first assume the pump and probe pulse interaction
to be governed by the same physics, i.e., that coherence
is created and detected through the same process. Being
a quadratic detector, the photodiode measures the total
energy of the probe pulse throughout the entire spectral
range determined by the spectral sensitivity R(t) =

, where R(t) is the signal to be detected,

ν is the optical frequency, and n(ν) is the number of
photons of a given frequency. In the case of DECP, in
which the electromagnetic field is not related to the
coherent phonon, n(ν) is modulated uniformly at all
frequencies; this is what accounts for the signal oscilla-
tions. Indeed, as is evident from Fig. 8, coherence of a
split excited state can be realized in second order of per-
turbation theory for an electromagnetic field. Because
of saturated absorption, reflection of the delayed probe
pulse is modified by a change in the absorption rate that
is proportional to the square of the projection of the
probed state onto the initial coherent state and contains
an oscillating term.

The TSRS case is shown schematically in Fig. 8b. In
this mechanism, the reflected probe pulse R(t) is addi-
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as the linewidth ∆Ω of the Fourier transform of oscillations,
and (b) modulus of coherent amplitude plotted vs. central
wavelength of the interference filter.
PH
tionally modulated by photon scattering into modes
with different frequencies. The delayed probe signal, as
in the DECP mechanism, is influenced by the absorp-
tion saturation, but, in addition to this, the signal can
both donate and receive energy from the material sys-
tem through inelastic light scattering. Although the

total number of photons in a pulse, , can

remain constant in this case, their spectral distribution
varies, thereby modifying the total probe pulse energy.
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Fig. 7. Normalized differential reflectivity ∆R/R0 for two
detection frequency bands centered at λ = 800 nm. The solid
line corresponds to ∆λ = 5 nm (translated along the vertical
axis), and the dashed line corresponds to the case without a
filter, ∆λ ≈ 60 nm.
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Fig. 8. Schemes illustrating (a) two-photon absorption res-
onance, ν1 + ν2 = Ω , and (b) combination-type resonance,
ν1 – ν2 = Ω , which produce coherence of split levels under
four-wave mixing. The ellipses shown by dashed line
denote interaction.
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The observed dependence of the initial oscillation
phase on the probe light wavelength indicates that the
spectrum of reflected light is a function of delay time.
This provides supportive evidence for the mechanism
of formation and detection of oscillations being domi-
nated by a process resembling, in many respects,
inelastic scattering of light. On the other hand, this
dependence may indicate that, if we represent a coher-
ent phonon in the form of a harmonic oscillator, this
oscillator will be localized at the same instant of time at
opposite sides of the potential curve (Fig. 1). This situ-
ation is impossible for a classical oscillator. Hence,
either the oscillator is in a nonclassical state and its
wave function contains components localized in differ-
ent regions of the phase space or, alternatively, spec-
trally resolved signals cannot be considered a measure
of the spatial localization of the oscillator. Most likely,
both statements are correct. Using spatial filtering, we
attempt to outsmart the Heisenberg uncertainty princi-
ple, according to which ∆E∆t ≥ h. In our case, E = hν,
so ∆ν∆t ≥ 1. This relation is automatically met for spec-
trally limited pulses (no spectral filtering); however, the
use of spectral filtering to reduce ∆ν brings about a
breakdown of the inequality if we assume the temporal
resolution to remain unchanged. This means that the
duration of the measurement, which defines the tempo-
ral resolution for a spectrally resolved signal, is no
longer determined by the duration of the laser pulse and
is substantially larger. Thus, temporal resolution is lost
in a spectrally resolved experiment. However, the fact
itself that the object under study (in our case, a coherent
phonon) obeys the uncertainty principle implies its
nonclassical nature.

To be precise, the assumption of the pump and probe
pulses interacting in a similar way has limited validity.
The pump pulse interacts with a material medium orig-
inally residing in thermal equilibrium. The probing
light pulse interacts with a coherent medium formed by
the pump pulse. This parametric coupling between
waves of different nature is nothing else but phase-
dependent Raman scattering [16]. In this process,
enhancement or attenuation of the Stokes and anti-
Stokes components of the probe pulse, rather than
being a result of a change in the phonon mode popula-
tion, is determined by the phase relations connecting
the excitations of the material medium and the field. In
this case, the phase of the coherent oscillations in ∆R/R0
of frequency Ω is determined by the phase difference
between the product of the Fourier components of the
field and the induced polarization of the medium.

We now consider the point of how phase relations
among phonons are established. We may recall that, in
theoretical analysis, nonlinear optical phenomena are
usually divided into two classes, depending on the
actual phase relations between the interacting electro-
magnetic waves. Such phenomena as multiphoton
absorption and stimulated Raman scattering belong to
the class for which photon phase relations do not play a
dominant role [17]. Therefore, it is unlikely that ele-
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mentary excitations of a material medium produced by
a field through these processes have the same phase. A
four-wave mixing process, ν1 = ν1 – ν2 + ν2, however,
is capable of preserving the phase of an excited phonon,
provided resonances of the type of two-photon absorp-
tion, ν1 + ν2 = Ω, or a combination type, ν1 – ν2 = Ω,
are realized in the material medium (Fig. 8). Note that
here, unlike for coherent anti-Stokes scattering of light,
the phase-matching conditions for the interacting Fou-
rier components of a laser pulse are met automatically.
Phase matching of phonon modes in a condensed
medium interacting with ultrashort laser pulses is
forced, i.e., induced by an external force. This phase
matching is attained through modulation of the pump-
pulse Fourier component losses at the intermode beat
frequency. Since the spectrum of the pump pulse con-
tains components differing by ν1 – ν2 = nΩ (where n is
an integer), these spectral components act as a driving
force. Phonon modes with n = 1, 2, 3,…, are excited
with the same phase, which is set rigorously by the
driving force; therefore, the modes are phase-matched.
Furthermore, because the photon wave vector is
defined to within δ–1 in opaque media (where δ is the
light penetration depth), phonon modes with wave
vectors q = –1/2δ and q = 1/2δ turn out to be phase cor-
related. This situation is analogous in more than one
respect to the case of obtaining ultrashort laser pulses
by locking the laser resonator longitudinal modes. In
our case, the condensed medium acts as an acoustoop-
tical modulator with a standing ultrasonic wave used to
modulate laser radiation. It should, however, be pointed
out that, although light interacts with a “continuum” of
phonon modes, the absolute value of the wave vector of
any mode is far smaller than the width of the Brillouin
zone determined by the lattice constant |q | ! 1/a.

Thus, the generation of coherent phonons is deter-
mined by the nonlinear susceptibility induced by a
high-power pump pulse. Coherence can set in in both
the ground and excited electronic state, depending on
the actual type (two-photon or combination) of reso-
nance of the medium. Unlike for spontaneous Raman
scattering of light, which involves a real change in the
phonon level population, in the case of coherent
phonons there may be no change in population at all,
with the scattering being caused by the induced macro-
scopic (coherent) dipole moment of the medium.
Therefore, the efficiency of scattering into the Stokes
and anti-Stokes regions should be the same. Moreover,
the original level of population brings about a decrease
in the oscillation amplitude, which becomes manifest in
an increase in the coherent amplitude with decreasing
sample temperature [4]. The larger coherent amplitude
for the anti-Stokes part of the spectrum in the spectrally
resolved signal may originate from the fact that the con-
ditions of spatial filtering for the Stokes and anti-Stokes
components were different (which is due to the fact that
the central pass band of the filters used was linear in
wavelength rather than in frequency). Also, one should
4
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not disregard the possibility that quantum beats occur
in different electronic states, more specifically, in the
split ground state and split excited states, which may
change the relation between the Stokes and anti-Stokes
components. These contributions can hopefully be
identified by varying the central frequency of the pump
pulse within a broader range or by using a nondegener-
ate version of the pump–probe method. Valuable infor-
mation can also be gained by studying the temperature
dependence of oscillations using the spectrally resolved
pump–probe method. Additional information can be
obtained using laser pulses with a linearly varied fre-
quency (“chirps”), which will permit variation of the
phase relation between the Fourier components of the
light field (in this study, spectrally limited pulses were
employed for which the frequency modulation rate was
zero).

When a solid is acted upon by ultrashort pulses, the
one-phonon states are not the only states that are
excited; as a consequence, the excitation acquires the
form of a wave packet. Wave packets (like coherent
states) lie at the boundary between the classical and
quantum-mechanical description of objects. A wave
packet can be treated classically as long as the position
probability function of the object under study is local-
ized in real or phase space. The localization is a distinc-
tive feature of a wave packet and is due to a coherent
superposition of many states with large quantum num-
bers. In the case of a large number of states, one maxi-
mum of the wave function can become significant
because of quantum interference; large quantum num-
bers are required in order for this maximum to have a
small spatial extent. Although a wave packet does dem-
onstrate dynamic evolution similar to that of a classical
particle, it is nevertheless a quantum object and,
accordingly, its behavior is much more complex. For
instance, in the case of an anharmonic potential, a wave
packet can localize again after delocalization [18]. We
have recently succeeded in observing the collapse and
rebirth of coherent phonons in semimetals, such as bis-
muth and antimony [19], thus furnishing convincing
evidence for the lattice states being nonclassical. Fur-
thermore, the spatial and temporal extents of a wave
packet may depend periodically on its position in phase
space, which is realized for the so-called squeezed
states [4, 12]. All of these features of a wave packet
originate from the discrete nature of the spectrum and
do not have analogs in classical physics. The depen-
dence of the initial phase on the detection wavelength
revealed in this study also shows that the state created
by femtosecond pulses cannot be described in terms of
classical mechanics. Indeed, the coherent amplitude
may have opposite signs depending on the method of
detection employed, thus demonstrating that wave
packet “localization” occurs simultaneously in differ-
ent regions of phase space, which is impossible for a
classical object. Leaving for future studies the question
concerning the character of nonclassical states to which
the state realized in Sb by ultrashort pulses belongs, we
PH
note only that this state seems to relate to the class of
Einstein–Podolsky–Rozen tangled states. For these

states,  –   0 and  +   0, where

 and  are the coordinate and momentum opera-
tors, respectively, of two parts of the wave packet well
separated in phase space [20]. The entanglement of
phonon states may originate from their being created by
correlated photons whose phases are locked within an
ultrashort pulse. Note that the entanglement of vibra-
tional states of a nonlinear molecule was studied in con-
siderable detail in [21].

Thus, coherence appears in a phonon system as a
result of multiphonon processes within a continuum of
phonon modes, which is determined by the light pene-
tration depth. This process entails phase matching for
one- and two-phonon modes rather than for phonons
with different wave vectors [19], while phonons with
wave vectors equal in absolute magnitude but opposite
in sign, within the range ∆q = ±1/2δ, turn out to be
phase correlated. The oscillation decay time is deter-
mined by the loss of (initial-)phase memory of the pro-
cess that brought about their generation.

6. CONCLUSIONS

Application of the pump–probe method comple-
mented by spectral analysis has revealed that the initial
phase of an A1g coherent phonon in Sb depends on the
wavelength of the probe light. This fact shows that the
spectrum of the probe pulse (as well as its integrated
intensity) is a function of the time delay between the
pump and probe pulses. The shift of the coherent-
phonon initial phase for the Stokes and anti-Stokes
components of the probe pulse may be considered
another argument (in addition to those presented in [4,
12, 19]) for the lattice state created by ultrashort laser
pulses being of nonclassical nature. The the onset of
fast temporal oscillations should be assigned to quan-
tum beats in the split ground and excited states, which
are detected in the process of phase-dependent Raman
scattering of light.
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Abstract—The spectrum of magnetoabsorption of D– centers in quantum wells is calculated with allowance
for their interaction with a magnetic plasma under resonance conditions, when the distance between the Landau
levels is of the same order of magnitude as the quantum energy of magnetoplasma oscillations. It is shown that
splitting of Landau levels results in the fine structure of absorption lines and that the relative peak heights
depend on the detuning from the resonance. The calculated frequency dependence of the absorption coefficient
agrees with the experimental results. © 2004 MAIK “Nauka/Interperiodica”.
Coulomb many-particle interaction of charge carri-
ers plays an important role in semiconductor optics. In
addition to renormalizing the energy spectrum and
decreasing the band gap, this interaction also induces
transitions with the participation of several low-fre-
quency optical plasmons [1–5]. Plasmon emission and
absorption can substantially modify the dynamics of
electrons and holes [1–5]. Collective interactions man-
ifested in multiplasmon optical transitions have been
studied both theoretically and experimentally [2–5]. In
[5], a generalized Bloch equation for semiconductor
polarization was obtained with allowance for coherent
memory effects and multiplasmon processes of light
absorption and emission satisfying the energy conser-
vation law, which is given by the argument of the δ
function of the form ω – ωg ± nωp, where ω is the pho-
ton frequency and ωp is the frequency of a long-wave-
length plasmon. In many respects, magnetic plasmas
differ from a plasma in the absence of a magnetic field,
and the effects of their interaction with an electromag-
netic field have been an area of research for many years.
In this study, we calculate the spectrum of the absorp-
tion of light by an impurity center in a quantum well in
the presence of a dc homogeneous magnetic field with
allowance for interaction of a bound electron with mag-
netoplasma waves. To calculate the density–density
correlator describing a spectrum of interacting elemen-
tary excitations, we use the fluctuation–dissipation the-
orem, which relates the correlation function to the
structure factor [6]. According to the Kubo formula [7],
the light absorption coefficient due to electron transi-
tions between discrete energy levels can be written as

 (1)

α ω( ) 4πe
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N

ω"cn ω( )
----------------------- 1 e
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–( )=
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Re e
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∑
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Here, e and m0 are the electron charge and mass, respec-
tively, k0 is the Boltzmann constant, T is the tempera-
ture of the crystal, "ωg = Eg is its band gap, N is the con-
centration of the centers, c is the velocity of light, and
n(ω) is the refraction index. The polarization vector of
light is directed along the y axis, which is parallel to the
surface of the quantum well, and a dc homogeneous
magnetic field of intensity H with a vector potential
A = (–Hy, 0, 0) is directed normal to the surface, i.e.,
along the quantum confinement axis z. The indices i
and j denote the set of quantum numbers of an optical
electron, and the wave function of the system is written
as a product of the wave functions (quasiparticle repre-
sentation). We calculated the transition frequency ωif

and the initial-state occupation probability ρi in the
one-particle approximation by neglecting the interac-
tion of the electron on the center with lattice vibrations
and with magnetic plasma:

 (2)

where vq is the Fourier transform of the Coulomb inter-
action of the electron with the charge density P–q pro-
duced by lattice and magnetic-plasma vibrations.
Many-particle interaction (2) was taken into account
using the generating function

 (3)

where λ = 1/k0T and V(rs) is the interaction operator (2)
in the Heisenberg representation. In Eq. (3), the averag-
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ing 〈…〉  is performed over the states of the system with-
out the electron on the center and the Feynman rule of
operator ordering [8] is used. When evaluating the aver-
ages, all unprimed operators are placed on the left in
descending order of the time argument from left to right
(so that the latest time stands at the left end), then fol-
lows the equilibrium density matrix, the operators Vσ in
descending order of σ, and all primed operators in
ascending order of the time argument from left to right.
If we assume that V(r) in Eq. (2) is the interaction with
phonons in the linear approximation and neglect the
electron–phonon interaction in the equilibrium density
matrix, i.e., if we set Vσ = 0, then, averaging over the
phonon states in Eq. (3), we easily obtain the well-known
result for the Feynman influence phase [8]. We note that
it is necessary to take the correlator 〈VσVs〉 into account,
since it substantially affects the time dependence of the
generating function (3). We calculate this function using
the cumulant method [9] and restrict ourselves to the sec-

ond cumulant 〈 〉  ≈  (the first cumu-
lant vanishes). In the linear harmonic approximation,
this approach yields an exact result, since the higher
order cumulants vanish. Thus, calculating the generat-
ing function (3) reduces to finding the density–density
correlator 〈Pq(s)P–q(s1)〉 , which can be expressed
through the structure factor [6]. In the quasistatic
approximation, we have

(4)

where n(Ω) = {exp(λ"Ω) – 1}–1, ε∞ is the high-fre-
quency permittivity, and εij is the permittivity tensor.
We calculate the quantum-mechanical averages in
Eq. (3) in the first-cumulant approximation. In this way,
the generating function is found to be
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where

 (6)

Formulas (1)–(5) determine the impurity absorption
coefficient with allowance for multiquantum transi-
tions. The frequencies of elementary excitations with
which the bound electrons interact are determined by
the zeros of the permittivity tensor of the system in a
magnetic field. We apply these general results to ana-
lyze the frequency dependence of the absorption coef-
ficient of two-dimensional D– centers. The terms linear
in time and in λ in the functions Φ determine the con-
tributions to the energy of the optical electron of the D–

center coming from the interaction of this electron with
lattice vibrations (polaron effect) and with the plasma:

 (7)

It follows from Eq. (7) that the interaction with mag-
netic plasma and lattice vibrations lowers the energy
levels of the bound electrons. According to the experi-
mental data [10], the binding energy of the electron on
the D– center increases with magnetic field following
approximately the square-root law. The theoretical
results obtained in [11, 12] for the binding energy Eb =
"ωb by neglecting interaction (2) qualitatively agree
with the experimental dependence of Eb on H, although
the calculated values of Eb themselves are somewhat
smaller than the observed values. Quantitative agree-
ment between the theory and the experiment can be
achieved not only by improving variational functions
[11] but also by taking into account the contribution
from the interaction with lattice vibrations and with
plasma to Eb, in accordance with Eq. (7). It follows
from Eq. (6) that Φt(ω) ≅  0.5t2 as ω  0; this results
in a Gaussian shape of the absorption spectrum α(ω).
The contribution from the interaction of the bound elec-
trons with acoustic phonons to the half-width of the
Gaussian curve ∆ is determined by

 (8)

This result can easily be obtained if we take the
ground-state wave function of the electron on the center
in the form

 (9)

In Eq. (8), w is the of velocity of sound, ρ is the density
of the crystal, and E1 is the deformation potential con-
stant. We see from Eq. (8) that this broadening mecha-
nism may be important for strongly bound electrons
with a small localization radius a. Using the values of
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the parameters of GaAs–GaAlAs quantum wells ρ =
5.4 g/cm2, w = 3 × 105 cm/s, E1 = 10 eV, T = 9 K, and
a = a0 = 100 Å) [10], we find ∆ = 0.31 eV, which is much
smaller than the experimental half-width ∆ = 4.8 eV used
in [11, 12]. The analysis of the experimental data from
[10] performed in the theoretical study in [11] showed
that the absorption lines of D– centers have a Lorentzian
(rather than Gaussian) shape:

 (10)

Here,  =  –  is the transition energy, which is
found with allowance for the interaction of the center
with lattice vibrations and with plasma and is given by
Eq. (7), and the absorption line half-width ∆if is calcu-
lated in the limit t  ∞ using the relation

 (11)

According to Eqs. (5) and (10), the i  f transition is
characterized by the half-width ∆if, whose magnitude
depends on the imaginary part of the permittivity tensor
at the frequencies Ω = ωin, Ω = ωfn, and Ω  0:

 (12)

The frequency dependence of the absorption coefficient
α(ω) is determined above all by the energy spectrum of
the D– center, but the spectrum of elementary excita-
tions of the magnetic plasma and of the crystal is no less
important. In the case of a quantum well where the
magnetic field is normal to its surface, according to the
known results for two-dimensional plasmas [6], we
have

 (13)

This expression has a pole at the point Ω =  = (  +
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upper hybrid mode . At low temperatures, only
spontaneous emission of quanta of magnetoplasma
waves is important. Taking multiquantum transitions
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into account, the absorption coefficient of the D– center
at low temperatures is found to be

(14)

The constants Nn (n enumerates the Landau levels)
determine the average number of magnetoplasma
quanta  that are emitted as a photon is absorbed
and an electron is transferred to the corresponding Lan-
dau level. In Eq. (14), the first and second terms in
braces characterize transitions from the ground state of
the center to the zeroth and first Landau levels, respec-
tively. The third term describes a transition to the zeroth
Landau level with emission of a magnetoplasma quan-
tum. The remaining terms are interpreted likewise. The
coefficients of the relative intensities of transitions
from the ground state i to a Landau level n can be cal-
culated analytically using wave function (9) for the
ground state and the Landau wave functions for the
excited states. For example,

 (15)

where γ = c"/eHa2. We do not write out intricate expres-
sions for I3, I4, … . For γ = 1, we have I1 = 4.5, I2 = 1.24,
and I3 = 0.41. The transition to the first Landau level is
the strongest. We recall that, for free electrons, the 0–1
transition is the only allowed transition at low tempera-
tures. Figure 1 shows the theoretical dependence of the
absorption coefficient (14) on the magnetic field in rel-
ative units at a photon energy "ω = 17.58 meV. The
half-widths ∆ of all Lorentzians in Eq. (14), as well as
the values of the parameters N, are taken to be equal. In
a simple model using the pole defined by Eq. (13) and
the ground-state wave function (9), we find

 (16)

We disregard the magnetic field dependence of the
parameters ∆ and N. In numerical calculations, we used
the experimental values of the binding energy from [10],
the value "ωp = 3.67 meV (without dispersion), and a =
100 Å. It is seen from Fig. 1a that, for ∆ = 0.28 meV, all
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absorption lines described by Eq. (14) are allowed. The
light absorption accompanied by the emission of mag-
netoplasma quanta of frequency  increases with N.
The increase in the line half-widths smoothes the fine
structure of the absorption spectrum. For ∆ = 4.8 meV,
the results of calculations are shown in Fig. 1b. The
Roman numerals near each absorption line indicate the
Landau level to which the electron is excited from the
ground state of the center. The absorption spectrum in
Fig. 1b calculated by formula (14) correctly reflects the
main experimental features [10] shown in the inset to
Fig. 2. We note that the ratio of the peak heights is sub-
stantially changed even at N = 0.5. Huant et al. [10]
measured the magnetophotoconductivity (MPC) due to
D– centers in GaAs–Ga0.75Al0.25As MQW structures
consisting of 150 quantum wells 100 Å wide separated
by 100-Å-wide barriers. Samples were doped by silicon
(1010 cm–2) at the center of each quantum well and at a
distance of 10 Å from its surface. The magnetic field
dependence of MPC had an oscillating character due to

ω̃p
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(b)
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Fig. 1. Absorption spectrum of D– centers calculated by
Eq. (14) at photon energy "ω = 17.58 meV, "ωp = 3.67 meV,
and a = 100 Å. Roman numerals indicate the number of the
Landau level to which an electron is transferred from the
ground state. (a) Half-width ∆ = 0.28 meV, and (1) N = 0.1
and (2) 2. (b) Half-width ∆ = 4.8 meV, and (1) N = 0.01,
(2) 0.5, and (3) 1.
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ionization of D– centers and neutral donors (peak A in
the inset to Fig. 2). According to [10], the MPC maxima
(Fig. 2) correspond to i  n transitions from the
ground state of a D– center to the first to fourth Landau
levels. The absorption line corresponding to the i  1
transition (to the first Landau level) dominates in the
spectrum. These experimental data agree with the theory.

However, some experimental features are not
described by formula (14). There is a shoulder on the
low-field side of the i  1 peak and a shoulder on the
high-field side of the i  2 peak. In [10], the former
shoulder is attributed to the contribution of donors lying
near the boundaries of quantum wells. However, in this
case, the shoulder at the i  2 peak should also lie on
the low-field side of the peak. Moreover, a similar
shoulder should also appear on the low-field side of the
i  0 peak. According to the experimental data from
[10], the i  0 peaks in MPC at different photon ener-
gies "ω are symmetric without indications of any struc-
ture. We believe that the shoulders at the i  1 and
i  2 peaks are due to resonant interaction of D– cen-
ters with magnetoplasma waves. Analogous effects
appear in resonant interaction of electron and phonon
subsystems [13–17]. As the cyclotron frequency coin-
cides with the longitudinal optical phonon frequency,
the Landau levels split, which manifests itself in the
pinned-mode structure of the transmission minima
[13]. Polaron pinned modes were observed when study-
ing both interband magnetoabsorption [13] and intra-
band cyclotron–phonon and cyclotron resonances [14–
16]. We note at once that it is impossible to explain the
shoulders in the MPC spectra [10] in terms of emission
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Fig. 2. Magnetic field dependence of the absorption coeffi-
cient of a D– center calculated with allowance for interac-
tion of the first and second Landau levels with the upper
hybrid mode of magnetoplasma oscillations for photon
energy "ω = 17.58 meV, "ωp = 2 meV, a = 100 Å, "G10 =
"G21 = 1.64 meV, and the experimental values of the bind-
ing energy from [10]. (1) N = 0.01 and (2) 0.5. The inset
shows the experimental magnetic field dependence of the
magnetophotoconductivity from [10].
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of real quanta , since N < 1 and I1 > 1. Emission of
virtual magnetoplasma quanta essentially changes the
energy spectrum and transition probabilities. Indeed, at
low plasma concentrations (  ≅  ωc), the electron
states corresponding to the first Landau level and to the
zeroth level plus one quantum  are close in energy,

E1 ≅  E0 + . Under resonance conditions, even in
zeroth approximation, we must take into account a
superposition of these states [18], since the standard
perturbation theory cannot be applied here. We can find
the energy spectrum of the impurity–plasma system
near the first Landau level from expression (7) by taking
into account the resonant terms and the pole at the point

Ω =  = (  + )1/2 (see Eq. (13)). The result is

 (17)

The magnetoplasma analog of the Rabi frequency 
depends on the detuning from the resonance δ =  –
ωc and on resonant interaction of the zeroth and first
Landau levels (constant G). Accordingly, the second
and third terms in Eq. (14) are replaced by

 (18)

As before, there are two peaks, but they are of substan-
tially different heights, which are determined by the
coefficients

 (19)

The ratio of the intensities of the two absorption
peaks depends on b and d. If the inequalities N0 < 1 and
I1 > 1 are satisfied, this ratio is determined by the quan-
tity b/d, which always exceeds unity, since δ > 0. There-
fore, the peak on the side of higher magnetic fields is
higher and the shoulder on the I  1 peak is located
on the low-field side, in accordance with the MPC spec-
trum shown in the inset to Fig. 2. In the region of the
second Landau level, four levels interact with one
another; however, the interaction between the levels
with the smallest detuning from the resonance is the
strongest. In Fig. 2, we show the calculated magnetic
field dependence of the absorption coefficient with
allowance for the splitting of the first and second Lan-
dau levels. We included the interaction of the second

Landau level with the level  ≅  E0 + (δ – ), for

which the detuning from the resonance δ1 = 1.5δ –
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0.5  is smaller than δ and can become negative and
the quantities N1I1 and N2 are comparable in magnitude.
Accordingly, the shoulder on the I  2 peak appears
on the high-field side, in agreement with the experi-
mental data from [10].
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Abstract—Nonlinear dependence of the CdSe/Al2O3 quantum wire luminescence intensity on the photoexci-
tation level and an asymmetric broadening of luminescence spectra accompanied by a high-frequency shift of
the maximum are observed and explained in terms of the dominant filling of exciton phase space in wires with
different cross sections. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It has been shown theoretically [1–5] that optical
absorption and luminescence spectra of quantum wires
are dominated by exciton transitions, i.e., that the oscil-
lator strength is concentrated at the wavelength of the
exciton transition to the ground state. The absorption
due to interband transitions of free electrons and holes
in quantum wires is substantially weaker than that of
excitons. Furthermore, the Sommerfeld contribution to
absorption by the “exciton continuum” is considerably
smaller (the Sommerfeld factor is less than unity) than
that in two- and three-dimensional (bulk) semiconduc-
tors.

In a semiconducting quantum wire with a dielectric
barrier, in which εs @ εd (εs and εd are the permittivities
of the semiconductor and insulator, respectively), the
exciton binding energy and oscillator strength increase
with decreasing transverse size not only due to quan-
tum confinement but also as a result of “dielectric
enhancement.” The origin of the dielectric enhance-
ment lies in the fact that the electric field of the electron
and the hole making up an exciton in a quantum wire
becomes redistributed due to the permittivity of an
insulator being considerably smaller than that of a
semiconductor. In quantum wires with a small cross
section, most of the electric field lines coupling the
electron with the hole pass through the insulator; as a
result, for the above ratio of the permittivities of a semi-
conductor and an insulator, the Coulomb attraction
between the electron and the hole is enhanced. The phe-
nomenon of dielectric enhancement of excitons was
predicted for thin films in [6–8] and quantum wires in
[5, 9–11]. The exciton binding energy in InP quantum
wires with a dielectric barrier (the semiconductor was
crystallized in transparent hollow nanotubes of chryso-
tile asbestos) was shown [12] to increase by a few times
as compared to InP quantum wires with semiconduct-
ing barriers. By properly choosing (when preparing
1063-7834/04/4609- $26.00 © 21755
quantum wires) semiconducting and insulating materi-
als with different permittivities, one can vary the exci-
ton binding energy and oscillator strength in a quantum
wire within a broad range, which may serve as an illus-
tration of the possibilities of the Coulomb interaction
engineering approach [5].

The present communication reports on an observa-
tion of a change in the photoluminescence spectra of
CdSe/Al2O3 quantum wires and of reference CdSe sin-
gle crystals with increasing excitation level. An analy-
sis of photoluminescence spectra of CdSe/Al2O3 quan-
tum wires obtained at high excitation levels enabled us
to identify the processes occurring at high exciton con-
centrations.

2. VARIATION OF PHOTOLUMINESCENCE 
SPECTRA OF CdSe/Al2O3 QUANTUM WIRES 

AND OF CDSE SINGLE CRYSTALS 
WITH INCREASING PHOTOEXCITATION LEVEL

To prepare samples of quantum wires, hollow
through channels 4–6 nm in radius were produced in a
transparent dielectric Al2O3 matrix (a layer a few
microns thick on an aluminum foil) by electrochemical
etching at room temperature in a 10% solution of sulfu-
ric acid. The transverse dimensions of the channels
were measured with an atomic force microscope [13].
The CdSe semiconductor was crystallized in the matrix
nanochannels by electrochemical substitution. The
semiconductor crystallized apparently not only in the
hollow nanochannels but also on the surface of our
samples in the form of islands of bulk material. This is
what may account for the features in the luminescence
spectra of samples cooled to liquid-helium temperature
(Fig. 1), which were recorded at various times after exci-
tation by weak second-harmonic picosecond pulses of a
Ti-sapphire laser (hν = 3.1 eV, pulse duration 1.5 ps,
pulse repetition frequency 82 MHz, pump energy den-
004 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Photoluminescence spectra of a CdSe/Al2O3
sample (18 K) obtained at different times after termination
of the pump pulse: (1) 0–80, (2) 190–270, (3) 460–540, and
(4) 720–820 ps. (b) Variation in the luminescence intensity
with time in various spectral intervals identified in panel (a).
P

sity 0.2 µJ/cm2) pumped by an argon laser. Time-
resolved luminescence spectra obtained with a poly-
chromator equipped with a Hamamatsu C1587 syn-
chroscan streak camera revealed two luminescence
bands (Fig. 1a). The low-frequency band, which we
assign to luminescence of the bulk semiconductor
(luminescence at the frequency of the first exciton
phonon replica, the A-LO band [14]), decays with a
time constant of about 1 ns, which is characteristic of
this recombination channel. The high-frequency band
peaking near 1.82 eV, which we attribute to quantum
wire luminescence, decays much faster (Fig. 1b). The
intensity of this band depends on the polarization of the
pump radiation. When excited by linearly polarized cw
He–Cd laser radiation, the luminescence intensity in
the case where the laser beam polarization was perpen-
dicular to the axis of the semiconductor-filled
nanochannels was lower [15] than that in the presence
of a polarization component oriented along the
nanochannel axis (for an angle of 45° between the
direction of laser beam polarization and the nanochan-
nel axis). This allows us to assume that the semiconduc-
tor crystallized in the matrix nanochannels predomi-
nantly in the form of quantum wires. The field compo-
nent perpendicular to the wire axis inside thin (with a
transverse size much less than the pump radiation
wavelength) semiconductor wires embedded in a
medium with a lower permittivity (in our case, an insu-
lator) is weakened considerably, by a factor (εd + εs)/2εd
[12]. The decrease in absorption of the pump radiation
polarized in this way may account for the drop in the
luminescence intensity.

Because the luminescence bands (Fig. 1) lie close to
one another and even partially overlap, we also per-
formed measurements with plates of undoped single-
crystal CdSe prepared from a gas phase, which permit-
ted us, in particular, to reveal differences in the varia-
tion of spectra under increasing excitation levels.

Figure 2 presents luminescence spectra of samples
of CdSe/Al2O3 and single-crystal CdSe measured at
low excitation levels. The CdSe/Al2O3 samples were
pumped by the second harmonic (2.3 eV) of a
Q-switched Nd : YAlO4 laser (lasing pulse duration
14 ns). To ensure efficient absorption of the pump radi-
ation (the radiation should be polarized along the semi-
conductor-filled nanochannels), the pump beam struck
the sample at 45° to the sample surface normal and was
polarized in the plane of incidence.

Plates of single-crystal CdSe about 20 µm thick
were excited by 30-ps second-harmonic pulses of a
mode-locked neodymium laser. The pump beam was
oriented at an angle of 45° to the (1210) plane.

As seen from Fig. 2, the maximum of the
CdSe/Al2O3 luminescence band is shifted to high fre-
quencies relative to the luminescence line of a weakly
excited CdSe single crystal (i.e., to the A-LO line repre-
senting the first phonon replica of the exciton line). This
high-frequency shift and the dependence of the lumi-
HYSICS OF THE SOLID STATE      Vol. 46      No. 9      2004
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nescence intensity on pump polarization suggest that
the luminescence band peaking at 1.82 eV derives from
exciton transitions in the quantum wires. A comparison
of the exciton transition energy with calculated (Fig. 3)
dependences of the exciton transition energy on the
semiconductor/insulator quantum-wire radius yields 3–
6 nm as an estimate of the quantum wire radius. These
calculations were made with due account of the large
(about 130 meV) halfwidth of the exciton transition
line, which should apparently be assigned to a disper-
sion of the quantum wires in transverse size. These data
are consistent with the measured transverse dimensions
of nanochannels in the Al2O3 matrix in which the semi-
conductor crystallized. As the pump level increased, the
variations in the luminescence spectra of the
CdSe/Al2O3 and single-crystal CdSe samples became
fundamentally different. Increasing the pump intensity
in single-crystal CdSe plates gave rise to new lumines-
cence bands, which are shifted to lower frequencies
with respect to the A-LO first phonon replica of the
exciton line (Fig. 4a).

As is evident from Figs. 4b and 2, the luminescence
spectrum of the CdSe/Al2O3 sample obtained at low
excitation levels consists of two bands. Measurements
made to verify the luminescence spectra of the Al2O3
matrix with no semiconductor in the nanochannels
show that it is the matrix that is responsible for the
high-frequency band with the maximum near 2 eV. As
the excitation level increases, the 1.82-eV lumines-
cence band of the CdSe/Al2O3 quantum wires begins to
dominate, its asymmetric broadening (contributed pri-
marily by its high-frequency wing) is accompanied by
a shift of the maximum toward higher frequencies
(Fig. 4c), and the dependence of the luminescence
intensity on the excitation level for various spectral
intervals identified in Fig. 4b becomes nonlinear (the
luminescence intensity was found to saturate; see
Fig. 5).

We assign the nonlinear dependence of the lumines-
cence intensity on pump intensity in various spectral
regions (Fig. 5) and the variation in spectral shape
(Figs. 4b, 4c) to nonlinear absorption in the
CdSe/Al2O3 quantum wires, which exhibit a noticeable
dispersion in transverse dimensions. Increasing the
excitation level gives rise to the onset of various nonlin-
ear processes in quantum wires, which can coexist and
compete with one another [16, 17]. For instance, exci-
ton screening, phase-space filling by excitons, and
occupation of states in electronic and hole one-dimen-
sional bands (the dynamic Burstein–Moss effect)
account for the decrease in absorption at the exciton
transition frequencies, while renormalization
(decrease) of the width of the one-dimensional band
gap at high carrier concentrations brings about an
increase in absorption. The decrease (saturation) in
absorption and, hence, the nonlinear variation in the
luminescence intensity at the exciton transition fre-
quency occurring as the excitation level increases in
PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      2004
semiconductor/insulator quantum wires (which are
characterized by a high exciton binding energy) are
apparently due to the excitonic phase-space filling
becoming a dominant effect. The phase-space filling is
actually the result of excitons consisting of electrons
and holes, which obey the Pauli exclusion principle.
Only the electron–hole states that are not yet occupied
by free electrons and holes can participate in exciton
creation. Thus, the large number of excited electrons
and holes reduces the electron–hole attraction not only
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Fig. 2. Photoluminescence spectra of a CdSe/Al2O3 sample
(solid line) and of a CdSe single crystal (dashed line)
obtained at low photoexcitation levels. Sample temperature
80 K.
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because of the screening but also as a result of filling of
the phase space. Here, the effect of exciton screening
by free carriers is apparently weakened, because the
motion of carriers in a quantum wire is confined to one
direction, in which case they have almost no influence
on the field lines in the barrier material. Quantum wires
with large transverse dimensions are responsible for the
low-frequency part of the luminescence spectrum.
Phase-space filling appears primarily in quantum wires
with a large cross section, i.e., with a larger exciton
effective length. This fact can account for the variation
in the luminescence spectral shape with increasing
pump power (Figs. 4b, 4c), which is accompanied by a
short-wavelength shift of the spectral maximum.

The effective exciton length (l = 5–10 nm) in semi-
conductor (CdSe) quantum wires with a dielectric bar-
rier calculated for a wire diameter of 6–10 nm [12]
enables one to estimate the linear concentration of exci-
tons (the number of excitons per unit length) necessary
for the phase-space filling effect to occur as nph = l–1 ≅
106 cm–1. Estimates show that this exciton concentra-
tion was indeed reached in the experiment. The steady-
state linear concentration of excited excitons (in our
case, the measured exciton lifetime τex ≅  10–10 s is much
shorter than the laser pump pulse duration τ) is

 

The values used in the estimation were as follows: the
energy absorbed in a sample L ≈ 5 µm thick under max-
imum pumping is W = 0.2 mJ (windows were etched out
in the opaque substrate of the samples to measure the
absorption of the second harmonic of the laser); the den-
sity of pores (hollow channels) filled by the semiconduc-
tor, as measured with an atomic force microscope, is
N ≈ 1011 cm–2 [13]; the pumped area is S = 10–2 cm2; and
the quantum yield of conversion of absorbed photons to
excitons is β ≅  0.5.

The dependences of the luminescence intensity on
the level of excitation for various intervals in the lumi-
nescence spectrum (Fig. 5) can be approximated in
terms of the saturation model, as was done in [18]. The
luminescence intensity (I ~ n) is

 

where ns ~ Ps is the exciton density necessary for satu-
ration and Ps is the corresponding saturation power
(saturation parameter). Thus, the saturation power is
the pump power at which the luminescence intensity
decreases to one-half the value reached in the case of
linear growth as the excitation level is increased. The
saturation power levels are presented in Fig. 6 for vari-
ous spectral intervals (for one-dimensional excitons
with various effective Bohr lengths). We readily see
that the saturation parameter increases with the spec-
tral-interval energy, which may be attributed to either

n β
τexW

τSLhνN
--------------------- 10

6
–10

7
 cm

1–
.≈≅

I
n

1 n/ns+
-------------------,=
PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      2004
0.8

0.6

0.2

0 62 10
PL

 in
te

ns
ity

, a
rb

. u
ni

ts

1.0

Excitation power, MW/cm2

I

II

III

0.4

4 8

Fig. 5. Photoluminescence intensity of a CdSe/Al2O3 sam-
ple plotted vs. excitation level for various spectral intervals
specified in Fig. 4b.

10

6

2

0
1.901.85

Sa
tu

ra
tio

n 
pa

ra
m

et
er

, M
W

/c
m

2

14

Photon energy, eV
1.80

1
2

Fig. 6. Spectral dependence of the photoluminescence satu-
ration parameter for CdSe/Al2O3 quantum wires at a sample
temperature of (1) 80 and (2) 300 K.



1760 DNEPROVSKIŒ et al.
the pump intensity increasing to the level where the
concentration of excitons with a smaller effective
length becomes high enough for the phase-space filling
process to set in or to a decrease in the recombination
time of these excitons (Fig. 1). The decrease in the sat-
uration parameter observed in samples cooled to liquid-
nitrogen temperature (Fig. 6) can be ascribed to the
exciton lifetime increasing with decreasing tempera-
ture. In this case, the exciton concentration needed to
fill the phase space can be produced at lower levels of
pump intensity.

As follows from Figs. 4b and 4c, the broadening of
the exciton luminescence line and the shift of its maxi-
mum to shorter wavelengths observed to occur in
CdSe/Al2O3 quantum wires with increasing pump
power manifest themselves more strongly at room tem-
perature than at liquid-nitrogen temperatures. This fact
may be due to the pronounced influence of the renor-
malization of the one-dimensional band-gap width, an
effect countering the luminescence band shift to shorter
wavelengths at low temperatures. Note that, in CdSe
single crystals at high excitation levels and room tem-
perature, the dynamic Burstein–Moss effect dominates,
while at low temperatures the renormalization
(decrease in the width) of the band gap becomes pre-
dominant [19].

As the excitation level increases, new bands appear
in CdSe single crystals, which, unlike the luminescence
spectra of CdSe/Al2O3 samples, shift toward lower
energies (Fig. 4a). It may be conjectured [20] (see the
calculated energies of the corresponding transitions
identified by arrows in Fig. 4a) that the A-LO lumines-
cence band is replaced by a P∞ luminescence band due
to inelastic exciton–exciton interaction resulting in the
formation of a photon and of a free electron and a hole
(ex + ex  hν + e + h) and by an electron–hole
plasma luminescence band. In our case, both lumines-
cence bands appear apparently at the same time,
because no special measures were taken to produce a
spatially uniform excitation level (for instance, by iso-
lating the central part of the excitation spot).

3. CONCLUSIONS

The changes in the luminescence spectra of
CdSe/Al2O3 quantum wires observed to occur at high
photoexcitation levels (asymmetric broadening accom-
panied by a short-wavelength shift of the maximum in
the luminescence spectrum), the nonlinear dependence
of the luminescence intensity on pump power (lumines-
cence intensity saturation), and the dependence of the
saturation parameter on the energy of the correspond-
ing part in the luminescence spectrum (i.e., on the
quantum-wire transverse dimensions) and on the sam-
ple temperature are explained as being due to the dom-
inant role played by the exciton phase-space filling and
the dependence of this effect (and, hence, of the satura-
tion parameter) on the exciton Bohr length and its
recombination time.
P
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Abstract—The theoretical principles of reflection and absorption of light by low-dimensional semiconductor
objects (quantum wells, quantum wires, quantum dots) under monochromatic and pulsed excitations with an
arbitrary pulse shape are developed. A semiconductor object can be placed in a strong constant magnetic field.
The normal incidence of light on a quantum well whose width can be comparable to the light wavelength and
for which the number of levels of electronic excitations can be arbitrary is considered as an example. An integral
equation similar to the Dyson equation is derived for the Fourier components of the electric fields. The solutions
to this equation are given for a number of special cases. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, great interest has been expressed by
researchers in the time-dependent effects associated
with the optical response of semiconductor objects [1–
4]. This interest stems from the considerable advances
achieved in short-pulse engineering, which, in turn, has
made it possible to investigate the coherent phenomena
occurring in the processes of interaction of light with
elementary excitations in different systems.

When an object is irradiated by a short light pulse,
there arises a secondary-radiation pulse whose shape
significantly differs from the shape of the primary pulse
and contains information on exited states of the object,
for example, on the lifetime of electron–hole pairs, the
energy splitting in magnetopolarons, etc.

In general, secondary radiation is a powerful tool for
investigating the internal structure of material objects.
Under both monochromatic and pulsed irradiation,
there can arise two types of secondary radiation. In par-
ticular, upon irradiation of low-dimensional semicon-
ductor objects, secondary radiation of the first type ini-
tiates reflection of light, which can be resonant if the
frequency ωl of the exciting light coincides with the fre-
quency ω0 of one of the discrete energy levels of the
electronic system. In a bulk semiconductor, secondary
radiation of the first type is responsible for the differ-
ence between the true electromagnetic fields and excit-
ing fields, i.e., for the deviation of the permittivity ε
from unity.

Secondary radiation of the second type is scattering
of light, for example, Raman scattering, which cannot
be described in terms of permittivity.
1063-7834/04/4609- $26.00 © 21761
A question now arises as to the origin of secondary
radiation of material objects. The exciting light induces
alternating electric currents and charges in systems of
charged particles. These currents and charge fluctua-
tions generate first-order electromagnetic fields, which,
in turn, induce second-order electric currents and
charges, etc. By summing over electromagnetic fields
of all orders (beginning with the first order), we can
obtain exact values of induced electromagnetic fields
(actually, we will solve an equation similar to the
Dyson equation).

By averaging the densities of induced currents and
charges (for example, at zero temperature, i.e., over the
ground state of the system of charges), we obtain sec-
ondary radiation of the first type (without changing the
frequency). Secondary radiation of the second type is
governed by fluctuations of the induced current and
charge densities and can be accompanied by a change
in the frequency, as is the case with Raman scattering.
In this work, we investigated only secondary radiation
of the first type and light absorption.

Modern semiconductor technologies make it possi-
ble to produce high-quality quantum wells for which
the radiative broadening of an absorption line can be
comparable to the contribution from nonradiative relax-
ation mechanisms or can even exceed it. In this situa-
tion, it will not suffice to use the approximation lowest
with respect to the interaction of electrons with an elec-
tromagnetic field as it is necessary to take into account
all orders of this interaction [5–13].

In the present work, we develop the principles of the
theory of secondary radiation of the first type as applied
to low-dimensional semiconductor objects. Attention is
004 MAIK “Nauka/Interperiodica”
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focused on the situation where an object is placed in a
strong constant magnetic field. The results obtained can
be applied to the case of irradiation with pulses of arbi-
trary shape.

This paper is organized as follows. In Section 2,
relationships are derived for the average densities of the
current and charge induced by a weak electromagnetic
field in a spatially confined system of charged particles.
These relationships are applicable in the case of any
stationary potential, any interaction between particles,
and a constant magnetic field of arbitrary strength. The
contributions containing the electric fields and the con-
tributions involving their derivatives with respect to the
coordinates are separated. Hereinafter, the latter contri-
butions are considered to be small and, hence, are dis-
regarded.

In Sections 3–8, the average density of the induced
current in low-dimensional semiconductor objects is
calculated without regard for the Coulomb interaction
between electrons and holes. At the end of Section 8,
the result obtained is generalized with allowance made
for the excitonic effect.

In Section 9, we introduce the notion of an electrical
conductivity tensor σαβ(k, ω|r), which depends on the
spatial coordinates in the case of low-dimensional
semiconductor objects due to the spatial inhomogene-
ity. The general formula derived for the tensor σαβ(k,
ω|r) is applicable to any object, for example, quantum
wells, wires, or dots.

In Section 10, the electrical conductivity tensor is
calculated for quantum wells in both zero and strong
magnetic fields. In Section 11, the average density of
the induced current is determined for the special case of
normal incidence of light on the surface of a quantum
well.

In Section 12, we describe a model that corresponds
to two degenerate valence bands and simplify the
expressions for the average density of the induced cur-
rent. It is demonstrated that, within this model, the den-
sity of the induced charge is zero.

In Section 13, the vector potential is expressed
through the integral containing the average density of
the induced current with the use of a formula for the
retarded potential. The vector potential obtained is used
to calculate the induced electric field. Since the induced
current density depends on the electric field, we derive
an integral equation for this field.

In Section 14, the integral equation is transformed to
be applicable to the case of an infinitely deep quantum
well.

In Sections 15–17, the integral equation for the elec-
tric field is solved for a number of special cases. In Sec-
tion 15, analysis is performed for a system with many
levels of electronic excitations in a narrow quantum
well whose width is considerably less than the wave-
length of the exciting light. In Section 16, the integral
equation is solved for a system with many levels in a
PH
wide quantum well, to the lowest order in the interac-
tion of the electromagnetic field with electrons. In Sec-
tion 17, the electric fields are exactly determined in the
case of one excitation level in a wide quantum well.

Finally, in Section 18, it is demonstrated how the
expressions for the induced fields are related to the
shape of the exciting pulse.

2. EXACT RELATIONSHIPS FOR THE AVERAGE 
INDUCED CURRENT AND CHARGE DENSITIES

Earlier [14], we showed that the average current and
charge densities induced by an external weak electro-
magnetic field can be expressed through the electric
fields and their derivatives with respect to the coordi-
nates as follows:

 (1)

 (2)

where the subscript 1 refers to the approximation linear
in fields, the subscript I indicates the contributions
involving the electric fields, and the subscript II denotes
the contribution containing the derivatives of the elec-
tric fields with respect to the coordinates, respectively.
We obtained the following expressions:

 (3)

 (4)

 (5)

 (6)

Here, we used the following designations: 〈0|…|0〉  is
the averaging over the ground state of the system, […]
is a commutator of two operators, and j(r, t) and ρ(r, t)

0〈 | j1α r t,( ) 0| 〉 0〈 | j1α r t,( ) 0| 〉I 0〈 | j1α r t,( ) 0| 〉II,+=

0〈 |ρ1 r t,( ) 0| 〉 0〈 |ρ1 r t,( ) 0| 〉I 0〈 |ρ1 r t,( ) 0| 〉II,+=
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=  
i
"
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∞–

t
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e

mc
------- 0〈 |dβ r( ) 0| 〉

∂aβ r t,( )
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-------------------=

–
i

"c
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----------------------,d
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t

∫d∫
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∫d∫
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are the current and charge density operators in the inter-
action representation:

 

 

where * is the Hamiltonian of the system, which is
defined by the expressions

 (7)

Here, Ac(r) is the vector potential corresponding to the
constant magnetic field Hc = curlAc(r), in which the
system can be placed and which can be rather strong;
and V(r1, …, rN) is the potential energy, including the
interaction between particles and an external potential.
Hamiltonian (7) describes a system consisting of N par-
ticles with charge e and mass m.

The operators j(r) and ρ(r) are defined as

 (8)

where ri is the coordinate of the ith particle. We also
introduced the designations

 (9)

and

 

The fields are assumed to be classical, and the temper-
ature is taken equal to zero. When deriving expres-
sions (1)–(6), we assumed that charges and currents are
absent at infinity and that the fields E(r, t) and H(r, t)
are equal to zero at t  –∞. This corresponds to the
adiabatic switching-on of the fields.

3. THE SECOND-QUANTIZATION 
REPRESENTATION

In this analysis, the contributions with subscript II,
which contain the derivatives of the electric fields with
respect to the coordinates, are ignored under the

j r t,( ) i*t/"( ) j r( ) i*t/"–( ),expexp=

ρ r t,( ) i*t/"( )ρ r( ) i*t/"–( ),expexp=

*
1

2m
------- pi

2
V r1 … rN, ,( ),+

i

∑=

pi Pi e/c( )Ac ri( ), Pi– i"
∂

∂ri

-------.–= =

j r( ) ji r( ), ρ r( )
i

∑ ρi r( ),
i

∑= =

ρi r( ) eδ r ri–( ),=

ji r( ) e/2( ) δ r ri–( )vi viδ r ri–( )+{ } ,=

vi pi/m,=

d r( ) = riρi r( ), Yβγ r( )
i

∑  = j jγriβ riβ jiγ+( )/2,
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∑
ri ri 0〈 |ri 0| 〉 ,–=

a r t,( ) c t 'E r t ',( ).d

∞–

∞

∫–=
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assumption that these contributions are small compared
to the main contributions with subscript I. This problem
was discussed in our previous work [15].

Now, we consider the second-quantization represen-
tation with the use of a set of particle wave functions
Ψm that satisfy the orthogonality and normalizing con-
dition:

 

In this representation, the current and charge density
operators defined by formulas (8) have the form

 

In turn, within the second-quantization representation,
the operator (r) given by expression (9) takes the
form

 (10)

where

 

and m0 is the set of N states occupied by particles in the
ground state |0〉 . Note that the quantity rα – r0α on the
right-hand side of relationship (10) is invariant with
respect to the shift in the origin of the coordinates, i.e.,
with respect to the change r by r + R, where R is an
arbitrary vector.

4. ANALYSIS OF SEMICONDUCTOR OBJECTS

Let us consider a semiconductor quantum well
(quantum wire, quantum dot) with valence bands and a
conduction band. In the set of indices m, the subscripts
v  and c indicate the valence and conduction bands,
respectively (there can be several valence bands). The
transitions to higher bands are disregarded. The other
indices are designated as ζ.

We calculate the average induced current density
from the initial expression (3). The right-hand side of
this expression involves only off-diagonal matrix ele-
ments of the operators jα(r) and (r), because the

rΨm'* r( )Ψm r( )d∫ δmm' .=

jα r( )

=  
e

2m
------- Ψm'* r( ) pαΨm r( ) Ψm r( ) pαΨm'* r( )–{ } am'

+
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m m',
∑

ρ r( ) e Ψm'* r( )Ψm r( )am'
+

am.
m m',
∑=

d

dα r( ) e rα r0α–( ) Ψm'* r( )Ψm r( )am'
+

am,
m m',
∑=

r0α
1
N
---- rΨm* r( )rαΨm r( )d∫

m0

∑=

dβ
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operators are under the commutator sign. Therefore, the
relationships

(11)

should be substituted into the right-hand side of expres-
sion (3).

In relationships (11) and below, we deal with elec-
trons. Hence, we have e = –|e | and m = m0, where m0 is
the mass of a free electron. The superscript nd refers to
the part of the operator that contains only off-diagonal
matrix elements.

5. THE EFFECTIVE-MASS APPROXIMATION

It is assumed that the sizes of an object, namely, the
quantum-well width d or the wire or dot sizes, are con-
siderably larger than the lattice constant a and the
slowly varying factor in the wave function changes over
distances significantly larger than a. In this case, it is
possible to use the effective-mass approximation,
according to which

 (12)

where u0µ(r) is a rapidly varying dimensionless factor,
ψµζ(r) is a slowly varying factor, and µ = c or v.

In relationships (11), we ignore the action of the
operators Pα on the slowly varying factors in the wave
functions (12). Then, we obtain the approximate
expressions

(13)

 (14)

Next, we eliminate the rapidly varying factors on the
right-hand sides of expressions (13) and (14). For this
purpose, we introduce the Fourier components
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PH
For κa ! 1, we approximately obtain

 

 

where

 (15)

and Ω is the volume of the crystal unit cell over which
integration is performed.

In the first equality (15), we replaced the operator p
[see expression (7)] by the operator P. When the system
is in a strong magnetic field Hc = curlAc(r) and operator
p contains the term –(e/c)Ac(r), this term makes a small
contribution to the quantity pcv and can be omitted in
the effective-mass approximation.

By assuming that our interest will be only in the

long-wavelength components jnd(r) and (r), we
change over from the k representation to the r represen-
tation and obtain

 (16)

 (17)

6. WAVE FUNCTIONS OF ELECTRONS
IN A QUANTUM WELL

Now, we consider two specific examples of electron
wave functions in a quantum well within the effective-
mass approximation. For free electrons, we have

 

where S0 is the normalization area, the z axis is perpen-
dicular to the quantum-well plane, and the real function
ϕl(z) corresponds to the levels l = 1, 2, … of the quan-
tum confinement of electrons. For quantum wells with
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a finite depth, the functions ϕl(z) and the corresponding
energy levels were determined, for example, in our ear-
lier work [16].

The second example is provided by electrons in a
quantum well in a strong magnetic field Hc perpendic-
ular to the quantum-well plane. The z axis is aligned
parallel to the magnetic field. The gauge of the vector
potential can be chosen in the form

 

Then, the electron wave functions can be written as
follows:

 

where aH = , Hn(t) are the Hermitian polyno-
mials, and Ly is the normalization length.

7. THE NOTION OF A HOLE 
IN THE VALENCE BAND

It is assumed that the components of the hole quasi-
momentum obey the equalities kh⊥  = –k⊥ and khy = –ky

(in a strong magnetic field Hc) and the annihilation
operator av ζ for an electron in the valence band is equal
to the creation operator for a hole. We introduce a set of
indices η describing the quantum numbers of an elec-
tron–hole pair and its creation (annihilation) operator

(aη). Then, from relationships (16) and (17), we find

(18)

 (19)

where Fη(r) is the wave function of the electron–hole
pair at re = rh = r and re(rh) is the radius vector of the
electron (hole).

For free electron–hole pairs in a quantum well, we
have

 (20)

where the set η involves the indices v, ke⊥ , kv ⊥ , le, and
lv. The energy of the electron–hole pair is reckoned
from the ground-state energy and can be represented in
the form

 (21)
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where "ωg is the band gap and me(mv ) is the effective
mass of the electron (hole).

For pairs in a quantum well in a strong magnetic
field, we obtain

 (22)

where the set η includes the indices v, ne, nv, key, kv y, le,
and lv. The corresponding energy can be written in the
form

 (23)

where Ωe(v )H = |e|Hc/(me(v )c) is the cyclotron frequency
of the electron (hole). It can be shown that formulas (18)
and (19) are also applicable to the case where the Cou-
lomb interaction between electrons and holes makes a
significant contribution. For example, at Hc = 0, the dis-
crete energy levels in the quantum well correspond to
exciton states. Then, Fη(r) is the exciton wave function
at rc = rh = r and η is the set of indices characterizing
the exciton. In a strong magnetic field, the Coulomb
forces can change the positions of the energy levels and
affect the function Fη(r).

8. THE AVERAGE INDUCED CURRENT 
DENSITY IN SEMICONDUCTOR OBJECTS

The relationship between the matrix elements pcv

and dcv defined by expressions (15) can be easily found
from the formula vα = (i/")[*, rα]. According to this
expression, we can write the relationship

 (24)

Substituting relationship (24) into formula (19) and
then formulas (18) and (19) into relationship (3) gives

 (25)

where Θ(τ) = 1 at τ > 0 and Θ(τ) = 0 at τ < 0.
As follows from [(7.35), 17], averaging over the

ground state leads to the following expression:
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where γη is the reciprocal nonradiative lifetime of the
state with the set of indices η.

Substituting relationship (26) into formula (25) and
changing the variable t '  t + t ', we obtain

 (27)

Expression (27) is applicable over a wide range, for
example, for exciton states in zero and strong magnetic
fields, i.e., with allowance made for the Coulomb inter-
action between electrons and holes in the cases where
this interaction is significant. Undeniably, the form of
the functions Fη(r) with inclusion of the Coulomb
interaction should differ from those described by rela-
tionships (20) and (22). Moreover, expression (27) is
valid for other low-dimensional semiconductor objects,
such as quantum wires or dots.

9. ELECTRICAL CONDUCTIVITY TENSOR

Expression (27) can be rewritten in the following
form:

 (28)

where σαβ(r', t ' |r, t) is the electrical conductivity tensor.
From expression (27), we find

(29)

It can be seen from formula (29) that the tensor σαβ(r',
t ' |r, t) does not depend on the time t if the potential
energy V(r1, …, rN) in Hamiltonian (7) is independent
of the time t, which is assumed. This fact follows from
the time homogeneity. Therefore, hereafter, we will use
the designation

 

Next, we take the Fourier transform. The electric
field can be written in the form
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where

 (31)

 (32)

Separation is usually carried out in formula (30) in
order to avoid the use of negative frequencies ω.

Let us introduce the Fourier transform of the tensor
σαβ(r', t ' |r) with respect to the variables r' and t ':

 (33)

Then, from relationships (28), (31), and (32), we find

 (34)

For spatially homogeneous systems, such as bulk semi-
conductor crystals, we have

 

By using formula (29), taking the Fourier trans-
form (33), and integrating over t ', we obtain

 (35)

Note that the electrical conductivity tensor pos-
sesses the following property:

 

It should be emphasized that expressions (34) and (36),
in principle, enable one to calculate the average
induced current density under monochromatic and
pulsed light excitation at an arbitrary direction of the
incident light, i.e., not only for normal incidence but
also for oblique incidence of light on the quantum-well
plane.
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10. ELECTRICAL CONDUCTIVITY TENSOR 
IN A QUANTUM WELL

It follows from formulas (20) and (22) that, for free
electron–hole pairs in zero and strong magnetic fields,
the function Fη(r) can be represented as the product

 (36)

where π is the set of indices v, ke⊥ , and kv ⊥ at Hc = 0 and
v, ne, nv, kcy, and kv y in a strong magnetic field; χ is the
set of indices v, le, and lv; and

 (37)

Separation (36) is also applicable to the case where the
Coulomb interaction of electrons and holes can substan-
tially affect only the motion of particles along the z axis.

This situation occurs under the condition [18]  @ 
(i.e., in sufficiently strong magnetic fields), where
aexc = "2ε0/(µe2) is the Wannier–Mott exciton radius in
the absence of the magnetic field, ε0 is the static permit-
tivity, and µ = memv /(me + mv ) is the effective mass. At
aexc @ d (i.e., for sufficiently narrow quantum wells), the
Coulomb forces weakly affect the motion of particles
along the z axis and the functions φχ(z) have the form of
formula (37). In the opposite case, at aexc ! d, formula
(37) is inapplicable. For GaAs, we obtain aexc = 146 Å

and  = 57.2 Å, where  corresponds to the mag-
netic field Hres in which the magnetophonon resonance
ΩeH = ωLO takes place. From relationships (36) and (35),
we find

 (38)

For free electron–hole pairs at Hc = 0, we have
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By substituting this expression into formula (38) and
performing integration over , we obtain

 (39)

where K⊥  = ke⊥  + kv ⊥ ,

 

and the energy "ωη is determined from formula (21).
For electron–hole pairs in a strong magnetic field, we
derive

 (40)

Now, we substitute expression (40) into relation-
ship (38), integrate over the variable y', and sum over
indices key and kv y, which do not affect the energies "ωη
given by formula (23). As a result, we find

 

 

 (41)

 

 

where ξ is the set of indices χ, ne, and nv and the energy
"ωξ = "ωη.

It is worth noting that, as follows from expres-
sions (39) and (41), the quantities σαβ(k, ω|r) in the
case of the quantum well at Hc = 0 or if the vector Hc is
aligned parallel to the z axis depend only on z. This is
associated with the fact that the system is inhomoge-

r⊥'

σαβ k ω r,( ) ie
2

"ωgm0
2
S0

---------------------- ikzz–( )exp=

× φχ z( )Rχ* kz( )
pcv α* pcv βδK⊥ k⊥,

ω ωη– iγη /2+
-----------------------------------





η
∑

+
pcv α pcv β* δK⊥ k⊥–,

ω ωη iγη /2+ +
-------------------------------------





,

Rχ kz( ) z ikzz–( )φχ z( ),expd

∞–

∞

∫=

Qπ r⊥( ) Φne x aH
2

key+( )Φnv x aH
2

kv y–( )=

× i key kv y+( )y[ ] /Ly.exp

σαβ k ω r,( )

=  
ie

2

2π"ωgm0
2
aH

2
------------------------------ ikzz–( ) φχ z( )Rχ* kz( )

ξ
∑exp

×
pcv α* pcv βΞnc nv, kx ky,( )

ω ωξ– iγξ /2+
----------------------------------------------------





+
pcv α pcv β* Ξnc nv, kx– ky–,( )

ω ωξ iγξ /2+ +
-----------------------------------------------------------





,

Ξne nv, kx ky,( ) tΦne
t( )Φnv

t aH
2

ky–( )e
ikxt

d

∞–

∞

∫
2

,=
4



1768 LANG et al.
neous only along the z axis perpendicular to the quan-
tum-well plane. Consequently, we can write

 

After substituting formula (39) or (41) into expres-
sion (34), it can be applied to the case where the light
is incident on the quantum well at an arbitrary angle
with respect to the z axis under monochromatic and
pulsed irradiation.

11. NORMAL INCIDENCE OF LIGHT 
ON THE SURFACE OF THE QUANTUM WELL

For normal incidence of light, the electric field E(r, t)
depends only on the variables z and t. We introduce the
Fourier component of the field with respect to the vari-
able t:

 (42)

With the use of formulas (34) and (39), it is possible to
show that the average induced current density at Hc = 0
is described by the expression

 (43)

where κ is the set of indexes χ, k⊥  = ke⊥  = –kv ⊥ , and

 

In relationship (43), we change over from integration
over ω from 0 to ∞ to integration from –∞ to ∞. This is
more convenient for specific calculations, because the
integration contour can be closed in the upper or lower
half-plane.

In a strong magnetic field, from relationships (34)
and (41), we obtain
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PH
 (44)

where

 

In deriving expression (44), we used the relationship

 

This relationship corresponds to the following selection
rule: for normal incidence of light, electron–hole pairs
in which electrons and holes have identical Landau
quantum numbers are excited.

Since the electron–hole pairs with zero quasi-
momentum in the quantum-well plane are excited at
Hc = 0 with normal incidence of light, it follows from
the law of conservation of quasi-momentum in the xy
plane that ke⊥  = –kh⊥ .

Note that expression (44) for the strong magnetic
field differs from expression (43) for Hc = 0 only in that

the normalization area S0 is replaced by 2π  and the
index k⊥ is replaced by the index n.

12. THE MODEL SIMPLIFYING 
THE EXPRESSIONS FOR THE AVERAGE 

CURRENT DENSITIES

Let us now consider the model used earlier in [19–
27]. The pcv vectors for the two degenerate valence
bands I and II have the form

 (45)

where ex and ey are the unit vectors along the x and y
axes and pcv is the real quantity. This model corre-
sponds to heavy holes in a semiconductor with a zinc
blende structure when the z axis is aligned along the
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fourfold symmetry axis [28, 29]. For the circular polar-
ization vectors of the exciting light,

 

the following condition of conservation of the polariza-
tion vector is satisfied:

 

Note that both the functions  and the energy levels

 do not depend on the numbers of valence bands I
and II.

With the use of model (45) and expressions (43) and
(44), the relationship for the average induced current
density at Hc = 0 in a strong magnetic field can be writ-
ten in a unified form:

 (46)

where ν is the refractive index for light. For Hc = 0, we
obtain

 (47)

and the set ρ of indices le, lh, and k⊥ , where lh is the
quantum number of the quantum confinement in
valence bands I and II. In the case of a strong magnetic
field, we have

 (48)

Ω0H = |e |Hc/m0c, and the set ρ of indices le, lh, and n. On
the right-hand side of formula (46), the quantity γr has
the index ρ, even though the right-hand sides of formu-
las (47) and (48) do not involve this index. The reason
is that, in this form, relationship (46) is also applicable
to other situations, for example, to the magnetopolaron
resonance in a strong magnetic field. The physical
meaning of the quantity γrρ will be explained below.

It should be noted that, for model (45), the following
important expression is satisfied:

 

Therefore, as follows from the continuity equation,
the average induced charge density is equal to zero.
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13. CALCULATION OF THE VECTOR 
POTENTIAL AND ELECTRIC FIELD

Knowing the distribution of the average current den-
sity inside the quantum well, we can determine the vec-
tor potential from the standard formula for the retarded
potentials (see, for example, [30]); that is,

 (49)

It follows from relationship (46) that the dependence of
the current density on the coordinates is governed only
by the factor φρ(z) under the sign of the sum over ρ.

The integral

 

can be rewritten in the form

 (50)

where κ = ων/c. From expressions (46), (49), and (50),
we obtain the following relationship for the vector
potential:

 

As was noted above, the average charge density for
model (45) is equal to zero. Therefore, the scalar poten-
tial ϕ also goes to zero. As a result, we have
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Correspondingly, we obtain

 (51)

where E0α(z, t) is the exciting field. By taking the Fou-
rier transform of the left-hand and right-hand sides of
expression (51) with due regard for formula (42), we
find

 

Therefore, we derived the integral equation for the
Fourier components of the electric field. The exciting
field can be represented as follows:

 (52)

where p = t – ωνz/c. For monochromatic excitation at
the frequency ωl, we have

 

The quantity D0(ω) can correspond to pulses with an
arbitrary duration and shape. From formula (52), we
can write

 

The sought solution can be represented in the form

 (53)

Eα z t,( ) E0α z t,( ) i
4π
------ ωe

iωt–
d

∞–

∞

∫–=

× γrρ z'φρ z'( )Eα z' ω,( )d

∞–

∞

∫
ρ
∑

× z'φρ z'( )e
iκ z z'–( )

d

∞–

z

∫ z'φρ z'( )e
iκ z z'–( )–

d

z

∞

∫+
 
 
 

× ω ωρ– iγρ/2+( ) 1– ω ωρ iγρ/2+ +( ) 1–
+{ } ,

Eα z ω,( ) E0α z ω,( ) i
2
--- γrρ z'φρ z'( )Eα z' ω,( )d

∞–

∞

∫
ρ
∑–=

× z'φρ z'( )e
iκ z z'–( )

d

∞–

z

∫ z'φρ z'( )e
iκ z z'–( )–

d

z

∞

∫+
 
 
 

.

E0 z t,( ) E0el ωe
iωp–

D0 ω( )d

∞–

∞

∫ c.c.,+=

D0 ω( ) δ ω ωl–( ).=

B0α z ω,( ) 2πE0e
iωνz/c elD0 ω( ) el*D0 ω–( )+{ } .=

E z t,( ) el/2π( ) ω iωt–( )% z ω,( )expd

∞–

∞

∫ c.c.+=
PH
Then, for the quantity %(z, ω), we obtain the equation

 (54)

14. APPROXIMATION OF AN INFINITELY DEEP 
QUANTUM WELL

For simplicity and clarity in the solutions, let us con-
sider the case of an infinitely deep quantum well where
the wave functions ϕl(z) of electrons and holes are rig-
idly confined within the quantum well and do not pen-
etrate into the barrier. This means that the wave func-
tions for free pairs can be written in the form

 (55)

Then, with the use of Eq. (54), we obtain the expression

 (56)

15. SOLUTIONS FOR A QUANTUM WELL 
WHOSE WIDTH IS CONSIDERABLY LESS

THAN THE LIGHT WAVELENGTH

Now, we analyze the solution to Eq. (56) at κd ! 1.
For monochromatic irradiation, we have κl = ωlν/c. In
the case of pulsed irradiation, the frequencies in the
range ±∆ω around the carrier frequency ωl of an excit-
ing pulse are significant. The quantity ∆ω is of the order
of (∆t)–1, where ∆t is the pulse duration. In all cases, the
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frequency ω is of the order of ωg, where "ωg is the band
gap of the semiconductor. The solution %(z, ω) will be
sought to the left and the right of the quantum well,
where only plane waves with frequencies ω = cκ/ν can
propagate. The solutions are sought in the following
form:

 (57)

The field inside the quantum well is denoted by the sub-
script QW and can represented in the form

 (58)

Now, we calculate the integral

 

on the right-hand side of relationship (56) at κd ! 1.
Substituting formula (58) into the integrand gives
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The function ∆%QW(z) is unknown. However, at the
quantum-well boundaries, we have
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It is obvious from formulas (60) that, at κd ! 1, the fol-
lowing approximate equality should be satisfied:
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Substituting relationship (61) into integral (59) gives
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With the use of the first expression (57), we write
Eq. (56) for the range z < –d/2. In this range, the integral

 

on the right-hand side of relationship (56) is equal to
zero and the other integral is written as

 

We obtain an equation for D(ω) whose solution is given
by the expression

 (62)

Equation (56) in the range z > d/2 also leads to a solu-
tion in the form of expression (62). In the case of free
traveling electrons and holes along the z axis, when
condition (37) is satisfied, we find that Cρ =  and

 

Here, ρ0 is the set of indices at le = lh = l, i.e., the set of
indices l and k⊥ at Hc = 0 and indices l and n in a strong
magnetic field.

The energy levels are given by the formulas

 

where

 

The electric fields to the left and the right of the
quantum well are described by the relationships
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respectively. The use of expressions (63) and (64)
makes it possible to derive formulas for the transmitted,
reflected, and absorbed light fluxes for a quantum well
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with an arbitrary number of energy levels in the quan-
tum well, any shape of the exciting pulse (including
monochromatic irradiation), and an arbitrary ratio
between the parameters γr and γ (reciprocal radiative
and nonradiative excited-state lifetimes). As follows
from relationship (64), the induced fields ∆El (z, t) and
∆Er (z, t) differ only in the direction of propagation.

16. SOLUTIONS FOR QUANTUM WELLS WHOSE 
WIDTH IS COMPARABLE TO THE LIGHT 

WAVELENGTH: FIRST ORDER 
IN THE LIGHT–ELECTRON INTERACTION

The electric field E(z, t) can be expanded into a series
in the interaction of the field with electrons, that is,

 (65)

where E0(z, t) is the exciting field and terms of subse-
quent orders can be obtained by the iteration method
from Eq. (56).

In the first order, we obtain

 (66)
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and relationship (66), we find
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Here, we introduced the designation
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For free electrons and holes in an infinitely deep
quantum well, we have

 (70)

where the functions ϕl(z) are given by formulas (55).
From expression (68), we obtain the relationships for
the fields to the left and the right of the quantum well in
the following form:

(71)

(72)

Formula (68) should be used for the field E1QW(z, t)
inside the quantum well. From expressions (68)–(72), it
follows that, for sufficiently wide quantum wells, there
can arise electron–hole pairs with quantum numbers
le ≠ lh and the fields depend on the quantum-well width
d. This dependence is included in the coefficients Rρ(κ).
It can be demonstrated that, for the wave functions (55),
the factor (κ)/Rρ(κ) entering into the ratio E1l(z,
t)/E1r(z, t) depends on the indices le and lh as follows:

(κ)/Rρ(κ) = 1 for the indices le and lh of the same

parity and (κ)/Rρ(κ) = –1 for the indices le and lh of
different parities.

Substituting solution (67) of the first order into the
right-hand side of relationship (56) gives a solution of
the second order, etc. In such a manner, series (65), in
principle, can be obtained. However, we will use one
more method for calculating the fields for wide quan-
tum wells at κd ≥ 1.

17. SOLUTION FOR WIDE QUANTUM WELLS 
WITH ONE ENERGY LEVEL

In the case where one energy level is significant,
Eq. (56) can be solved exactly. By introducing the des-
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Rρ*
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ωρ ω0, γρ γ, φρ z( ) φ z( ), γrρ γr,= = = =
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Eq. (56) can be rewritten in the form

 (73)

where we used one more designation,

 

Now, we multiply both sides of equality (73) into φ(z)
and integrate over z from –d/2 to d/2. As a result, we
derive an equation for the quantity M(ω) whose solu-
tion has the form

 (74)

where

 

It is possible to show that the following equality is sat-
isfied:

 

Substituting expression (74) into formula (73) gives the
solution of the problem. From expression (53), we
obtain the relationships for the induced fields to the left
and the right of the quantum well in the following form:

(75)

(76)

% z ω,( ) 2πE0e
iκ z

D0 ω( ) i/2( )γrM ω( )–=

× e
iκ z

z'e
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d/2–

z

∫ e
iκ z–

z'e
iκ z'φ z'( )d

z

d/2

∫+
 
 
 

× ω ω0– iγ/2+( ) 1– ω ω0 iγ/2+ +( ) 1–
+{ } ,

M ω( ) z'φ z'( )% z' ω,( ).d

d/2–

d/2

∫=

M ω( ) 2πE0D0 ω( )R* κ( ) 1 i/2( )γrJ κ( )+{=

× ω ω0– iγ/2+( ) 1– ω ω0 iγ/2+ +( ) 1–
+[ ] }

1–
,

J κ( ) zφ z( )d

d/2–

d/2
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× e
iκ z

z'e
iκ z'– φ z'( )d

d/2–

z

∫ e
iκ z–

z'e
iκ z'φ z'( )d

z

d/2

∫+
 
 
 

.

J κ( ) R κ( ) 2
iQ κ( ).+=

∆El z t,( ) = ielE0 γr/2( ) ωe
iκ z– iωt–

D0 ω( ) R* κ( )( )
2

d

∞–

∞

∫–

× ω ω0– iγ/2+( ) 1– ω ω0 iγ/2+ +( ) 1–
+[ ]

× 1 i γr/2( ) R κ( ) 2
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∆Er z t,( ) = ielE0 γr/2( ) ωe
iκ z iωt–

D0 ω( ) R* κ( )
2
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∞–

∞

∫–

× ω ω0– iγ/2+( ) 1– ω ω0 iγ/2+ +( ) 1–
+[ ]
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iQ κ( )+( ) ω ω0– iγ/2+( ) 1–[+{

+ ω ω0 iγ/2+ +( ) 1– ] }
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The quantity

 

at ω = ω0 with allowance made for expression (48)
coincides with the reciprocal radiative lifetime calcu-
lated in [26] for electron–hole pairs in a strong mag-
netic field for ne = nh = n, K⊥  = 0, and an arbitrary quan-
tity ω0νd/c.

By ignoring the nonresonant contribution (ω + ω0 +
iγ/2)–1, from relationships (75) and (76), we can derive
formulas identical to those obtained in our earlier work
[25]:1 

 

 

where

 

Note that, in this section, we did not use expression (37),
which is valid only for free motion of electrons and
holes along the z axis, and assumed that only relation-
ship (36) was applicable.

By using expression (37) with wave functions (55)
substituted into it, the relationships for the coefficients
R(κ) and R*(κ) can be rearranged to the form

 

 

For narrow quantum wells at κd ! 1, we have

 

This implies that the light gives rise only to pairs with
identical numbers of the quantum confinement of elec-
trons and holes (in the limit of infinitely deep quantum

1 In [25], the parameter  in formulas (47) and (48) should be

replaced by the expression exp(–iκd/2).
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-------------------------------------------------------------------------------------------d
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∞

∫ c.c.,+

∆Er z t,( ) ielE0–=

× ω
iκz iωt–( ) γ̃r ω( )/2( )D0 ω( )exp
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wells). At κd ≥ 1, there arise pairs with different num-
bers le and lh; i.e., a substantially larger number of
energy levels can be excited under irradiation.

18. MONOCHROMATIC AND PULSED 
EXCITATION

In [7–15], the exciting light pulse was described by
the relationship

 

where ωl is the carrier frequency, p = t – zν/c, and Θ(p)
is the Heaviside function. By expanding the pulse in
terms of frequencies, we obtain

 

where

 

Under the condition γl1 = γl2 = γl, the pulse is symmetric

and the pulse duration is of the order of . At γl 
0, we have

 

This corresponds to monochromatic irradiation. At
γl2  ∞, the pulse is asymmetric and has a very steep
front.

In a number of our previous works, we analyzed dif-
ferent variants of irradiation, such as monochromatic
irradiation in [25, 26], pulsed irradiation with asym-
metric pulses in [19–21], pulsed irradiation with sym-
metric pulses in [22, 23, 27], and pulsed irradiation
with symmetric and asymmetric pulses in [24].

19. CONCLUSIONS

The two most important results obtained in the
present work are as follows.

The first result is the derivation of expressions (34)
and (35) for the average induced current density. These
expressions can be applied to any semiconductor object
with an arbitrary number of levels of electronic excita-
tions with any exiting pulse shape for an arbitrary direc-
tion of the light with respect to the crystallographic
axes.

The second result is the integral equation (54) for
the Fourier components of the electric field at normal
incidence of light on a quantum well whose width can
be comparable to the light wavelength and for which

E0 z t,( ) E0 ele
iωl p–

el*e
iωl p+( )=

× Θ p( )e
γl1 p/2–

1 Θ p( )–[ ] e
γl2 p/2

+{ } ,

E z t,( ) E0el ωe
iωp–

D0 ω( )d

∞–

∞

∫ c.c.,+=

D0 ω( )

=  
i

2π
------ ω ωl– iγl1/2+( ) 1– ω ωl– iγl2/2–( ) 1–

–[ ] .

γl
1–

D0 ω( ) δ ω ωl–( ).=
PH
the number of levels of electronic excitations can be
arbitrary. In particular, this situation is typical of a
quantum well in a strong magnetic field. Equation (54)
is applicable to cases of both monochromatic and
pulsed irradiation. The results obtained can be used for
solving a large number of problems in the optics of low-
dimensional semiconductor objects.
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Abstract—Emission spectra of three Cd0.6Mn0.4Te/Cd0.5Mg0.5Te superlattices with Cd0.6Mn0.4Te quantum-
well (QW) widths of 7, 13, and 26 monolayers, respectively, and the same thickness (46 monolayers) of the
Cd0.5Mg0.5Te barriers have been studied. The QW width affects the shape and spectral position of the Mn2+

intracenter luminescence (IL) band as a result of the crystal field being dependent on the position of the man-
ganese ion with respect to the interface. Measured in identical experimental conditions, the exciton lumines-
cence as compared to the IL is substantially higher in intensity in a QW than in a bulk CdMnTe crystal. Some
samples of superlattices and bulk crystals exhibit, in addition to the conventional IL band near 2.0 eV, a weaker
band at about 1.45 eV. This band apparently derives from intracenter transitions in the Mn2+ ions in the regions
where the crystal lattice has the rock-salt rather than the conventional zinc blende structure. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

II–VI compound crystals doped by iron group ele-
ments form the major family of dilute magnetic semi-
conductors (DMS). These compounds combine con-
ventional semiconducting properties with strong mag-
netism, which accounts for the appearance of new
characteristics, in particular, the giant Zeeman and
Faraday effects and the magnetic polaron effect. Bulk
DMSs and nanostructures containing II–VI compound
DMSs have been a subject of intense study over the past
three decades, with particular emphasis placed on
Cd1 − xMnxTe, the CdTe/CdxMn1 − xTe quasi-two-
dimensional structures, and manganese-doped nanoc-
rystals. The optical properties of DMSs, which are gov-
erned by interband excitons and intracenter transitions
in unfilled 3d shells of magnetic ions, are treated in a
number of review papers [1–4]. The broad band-gap
manganese-doped II–VI compound crystals enjoy wide
use as luminophors due to the bright Mn2+ 3d-shell
intracenter luminescence (IL) they produce near 2 eV
(the 6A1–4T1 transition) [5]. The spectral and kinetic
properties of the Mn2+ IL in bulk II–VI compound crys-
tals were reported on in a number of publications
[6−10].

It is known that the position of the 6A1 level is prac-
tically independent of the crystal field, whereas the 4T1

level energy decreases with increasing field, so the IL
band shifts toward lower energies. The manganese IL
decay time τ is of the order of 10–5 s; at high manganese
concentrations, τ varies over the emission band profile.
1063-7834/04/4609- $26.00 © 21776
Of particular interest for investigating the relative con-
tributions of the conventional exciton and the intrac-
enter emission mechanisms are Cd1 − xMnxTe solid
solutions, in which the lowest exciton level crosses the
Mn2+ intracenter absorption threshold at a concentra-
tion near x = 0.4, so that for x < 0.4 one observes only
the exciton emission, while for x > 0.4 both the exciton
and intracenter emissions occur. The Mn2+ IL Stokes
shift in Cd1 − xMnxTe is quite large, with the distance
between the IL maximum and the Mn2+ excitation
threshold being about 0.15 eV.

The interest that has arisen in recent years in doped
nanostructures is partially related to theoretical sub-
stantiation of the quantum confinement effect on transi-
tions in unfilled 3d and 4f shells [11, 12] and to experi-
mental evidence of an increase in the manganese IL
quantum yield in II–VI compound nanocrystals
[13−16]. The transformation of the Mn2+ IL properties
in a nanomatrix may be caused by two factors. First, the
contraction of the band electron and hole wave func-
tions is capable of substantially affecting the sp–d cou-
pling. Second, the migration of intracenter excitation in
a nanomatrix is partially or completely suppressed and
the crystal field and the interaction of 3d electrons with
phonons change. In nanomatrices, the oscillator
strength of the 6A1–4T1 intercombination intracenter
transition and the IL decay rate should increase and the
nonradiative relaxation of intracenter excitation should
weaken. Studies of wide band-gap ZnS : Mn/ZnS
quasi-two-dimensional structures have provided evi-
004 MAIK “Nauka/Interperiodica”
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dence of an enhancement of the IL quantum yield at
high temperatures [17]. As for CdTe- and CdxMn1 − xTe-
based 2D structures, either nonmagnetic quantum wells
(QWs) or QWs with a low manganese content, where
IL is not observed and there is insufficient data on the
IL of Mn2+ ions in wide magnetic barriers of
CdTe/CdxMn1 − xTe structures [18], have been studied.
Unlike the case of doped nanocrystals, quasi-two-
dimensional II–VI compound systems in which IL of
iron group ions is observed have only been investigated
in a few publications.

This communication deals with the luminescence of
Cd0.6Mn0.4Te quantum wells of various thickness sepa-
rated by nonmagnetic barriers.

2. EXPERIMENTAL

A set of superlattices consisting of 100
Cd1 − xMnxTe/Cd0.5Mg0.5Te periods were MBE grown
under identical conditions. In samples 1, 2, and 3, the
width of the Cd1 − xMnxTe (x = 0.4) QWs is 7, 13, and
26 monolayers (ML), respectively; in sample 4, with a
QW width of 13 ML, the manganese concentration is
slightly lower. The thickness of the Cd0.5Mg0.5Te bar-
rier layers is 46 ML in all samples. For the chosen man-
ganese and magnesium concentrations, the barrier
height in a QW is 100 meV for electrons and 60 meV for
holes. The structures were grown by sequentially depos-
iting [on a (100)-oriented substrate] CdTe (4.2 µm) and
Cd0.5Mg0.5Te (0.4 µm) layers, a superlattice, and a
Cd0.5Mg0.5Te cap layer (40 nm).

Experiments were performed at temperatures of 4 K
and higher, with luminescence excited by a cw argon-
ion laser and a pulsed nitrogen laser.

3. RESULTS AND THEIR INTERPRETATION

All samples exhibit exciton emission bands from the
Cd0.6Mn0.4Te QW and the Cd0.5Mg0.5Te barrier, and
their halfwidths and intensity ratios depend only
weakly on temperature in the range 4–77 K. As seen
from Fig. 1, in structures 2, 3, and 4 (13- and 26-ML
wide QWs), exciton emission from QWs is predomi-
nant, whereas in structure 1 with narrower QWs the sit-
uation is reversed, because under above-barrier excita-
tion the lifetime of the exciton is too short for it to relax
in the QW. In sample 4, the exciton level lies close to
the Mn2+excitation threshold, which accounts for the
weak manganese IL.

The maxima of the Mn2+ IL bands are located in the
2.0-eV region, which corresponds in position to the IL
band in bulk Cd1 − xMnxTe samples with x > 0.4. The
accurate position of the maximum and the shape of the
IL band depend, however, as is evident from Fig. 2, on
PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      2004
the QW width. Note that, in the multilayer structures
studied, the broad IL band located in the region of
transparency of all the constituent layers is superposed
by the bands due to light interference in the compara-
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Fig. 1. Luminescence spectra of
Cd1 − xMnxTe/Cd0.5Mg0.5Te structures (a–c) with x = 0.5
and a QW width equal to 7 (sample 1), 13 (2), and 26 ML
(3); (e) with an x value of about 0.35 and a QW width of
13 ML (sample 4); and (d) luminescence spectrum of bulk
Cd0.5Mn0.5Te. IL is intracenter luminescence of the Mn2+

3d shell; X(QW), X(barrier), and X stand for excitons in the
QWs and barriers of the superlattices and in a bulk crystal,
respectively; and the dashed line is Mn2+ intracenter
absorption (relative to the band J; see text). CW excitation
by 2.60-eV photons is used (indicated by the arrow), the
excitation level is 30 W/cm2, and T = 77 K.
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tively thick CdTe and Cd0.5Mg0.5Te layers on which the
superlattice was grown (see inset to Fig. 1). This con-
sideration should be taken into account in analyzing the
IL band profiles, because the distance between the
interference maxima forming in this region under nor-
mal incidence is about 10 nm.
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Fig. 2. Mn2+ intracenter luminescence bands (a–c) in sam-
ples 1–3 and (d) in a bulk Cd0.5Mn0.5Te crystal; T = 77 K.
Profiles a–c are deformed by interference; the band J is dis-
cussed in the text. The inset shows the Mn2+ IL band profile
of sample 3 superposed by an interference pattern seen in
reflection under normal incidence of light.
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Fig. 3. Mn2+ intracenter luminescence band and band J in
the spectrum of sample 2 obtained under excitation by
10-ns-long pulses. (a, b) Normalized spectra measured con-
tinuously at pumping levels of 102 and 104 W/cm2 and
(c, d) spectra obtained 0.1 and 5 µs after the completion of
excitation; T = 77 K.
PH
The QWs studied here are specific in that they con-
tain layers of manganese ions located at different dis-
tances from the interfaces. The crystal field acting on
the interface ions is weaker than the field in which the
Mn2+ ions in the QW are located. This follows from the
well-known dependence of the IL maximum energy on
the cation concentration ratio in bulk
Cd1 − x − yMnxMgyTe crystals [6]. Thus, the ions located
close to the interfaces are responsible for the short-
wavelength wing of the IL profile due to Mn2+ ions in
the QW. The high-energy IL shift should be the largest
in structure 1 with narrow QWs, in full agreement with
experiment. While the crystal field acting on cations in
the structures studied generally has a lower symmetry
than that in a bulk crystal, this change is the most pro-
nounced for the ions near the interfaces. As already
pointed out, the optical transition in the Mn2+ 3d shell
is of the intercombination type and, thus, is forbidden
in the dipole approximation (the corresponding absorp-
tion coefficient does not exceed 103 cm–1). This forbid-
denness is weakened by various factors, one of them
being the asymmetric crystal-field component, which
should relatively enhance the interface ion contribution
to the IL.

The homogeneous and inhomogeneous broadenings
of the 2.0-eV IL band for Cd0.4Mn0.6Te solid solutions
are 85 and 70 meV, respectively, at T = 15 K [8]. The
main factors responsible for these broadenings are the
electron–phonon coupling and the crystal field fluctua-
tions, respectively. Crystal field fluctuations in a bulk
crystal originate from random concentration inhomo-
geneities of the solid solutions, as well as from impuri-
ties and structural defects. MBE-grown QWs are higher
in quality than bulk solid solutions, which are usually
prepared using the Bridgman method, but the major
contribution to inhomogeneous broadening is due to the
inherent properties of a solid solution. The calculated
dependence of the crystal field on the Mn2+ ion location
in a QW with respect to the interface and the influence
of this dependence on the energy of the radiating 4T1

level correlate well, on the whole, with the experimen-
tally observed shift and broadening of the IL band in
QWs as compared to that from a bulk crystal.

There is a difference in the intensity ratio of the
exciton luminescence and the Mn2+ IL between the bulk
crystal and QW structures. Comparison of a bulk crys-
tal with a Cd1 − xMnxTe QW with the same energy spac-
ings between the Mn2+ 3d-shell excitation threshold
and the exciton level reveals that the relative exciton
intensity in a QW is considerably higher than that in a
bulk crystal.1 This difference may be due to either an

1 The intensities should be compared for the same excitation levels
of about 10 W/cm2, because, in contrast to exciton luminescence,
the Mn2+ IL saturates rapidly.
YSICS OF THE SOLID STATE      Vol. 46      No. 9      2004
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increase in the exciton oscillator strength or the specific
features of exciton excitation transfer to the 3d shell in
a quasi-two-dimensional system. Two cases should be
considered in the structures under study, namely, exci-
tation of the manganese 3d shell by the barrier exciton
and excitation preceded by relaxation of the QW exci-
ton. Measurements of the dependence of the exciton-to-
IL intensity ratio on the QW width at different excita-
tion levels using different methods of optical excitation
would permit one to refine the mechanisms of elec-
tronic excitation in two-dimensional systems via exci-
tons and 3d shells of magnetic ions, including the part
played by spin effects; this dependence requires addi-
tional investigation.

Sample 2 exhibits a new band J with a decay time of
less than 0.1 µs on the low-energy wing of the IL pro-
file. In contrast to the IL, this band saturates only
weakly at high excitation levels (Fig. 3). The band J
may have a bearing on defects forming at the interfaces
of the Cd0.6Mn0.4Te/Cd0.5Mg0.5Te heterostructure. Note
that the band J is not seen in samples 1, 3, and 4, grown
in the same conditions.

The radiation from sample 3 measured at long
detection delay times, when the exciton luminescence
of the Cd0.6Mn0.4Te/Cd0.5Mg0.5Te superlattice and of
the GaAs substrate is no longer present in the spectrum,
still contains the conventional 2.0-eV manganese IL
band and a band near 1.45 eV (Fig. 4). The intensity of
the 1.45-eV band varies from one sample to another;
indeed, in sample 2 it is weak, while in samples 1 and 4
it is almost completely absent. We studied a number of
bulk Cd1 − xMnxTe crystals and found that this band is
also seen in some of them (Fig. 4). CdTe is known to
undergo a phase transition (at a hydrostatic pressure of
3.5 kbar) from the zinc blende to the rock-salt structure
through a cinnabar-type lattice, which is stable within a
narrow pressure interval [19–21]. We believe that the
1.45-eV band originates from the IL of manganese ions
that are located in crystal regions with rock-salt sym-
metry (octahedral anion environment), where the crys-
tal field is substantially stronger than in the case of zinc
blende symmetry (tetrahedral anion environment). This
interpretation is supported by the change the lumines-
cence spectrum of Zn0.93Mn0.07S undergoes at the struc-
tural phase transition induced by hydrostatic pressure;
during this transition, the 2.1-eV band vanishes and a
broad band near 1.4 eV sharply increases in intensity
[22]. The energy shift of the IL band from 2.0 to
1.45 eV is due to the crystal field Dq acting on the
Mn2+ ion in Cd1 − xMnxTe and changing from 800 to
1300 cm−1, respectively. As already mentioned, while
samples 1–4 were grown using the same technology,
the 1.45-eV band in samples 1, 2, and 4 is either weak
or altogether lacking. It may be conjectured that the
PHYSICS OF THE SOLID STATE      Vol. 46      No. 9      200
probability of formation of regions with a rock-salt
structure in thin Cd0.6Mn0.4Te layers is very low.
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Abstract—The atomic mechanisms and kinetics of self-diffusion of Pd adatoms on a single-crystal Pd(001)
surface are investigated using molecular dynamics simulation. It is shown that the migration of Pd adatoms on
the Pd(001) surface predominantly occurs through the relay-race mechanism with the participation of substrate
atoms. The activation energy for an elementary event of relay-race self-diffusion is calculated from the kinetic
equation describing the change in the concentration of surface adatoms labeled at the initial instant of time. ©
2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is known that, at the early stages of formation of
films from a gas phase on crystal substrates, the surface
diffusion of adatoms is one of the controlling factors in
the nucleation and subsequent growth of the condensate
[1–12].

At present, it is generally believed that the diffusion
of adatoms on a metal surface predominantly occurs
according to the rolling-stone mechanism, i.e., through
a sequence of thermally activated transitions of ada-
toms from one stable state to another [1–4]. This
scheme of migration of adatoms over an atomically
smooth surface is so obvious that, up to now, other
(alternative) mechanisms of diffusion of adatoms had
been considered unlikely. Direct experimental methods
for observing diffusion on a solid surface enable one to
“see” single atoms; however, when the positions of
atoms are fixed prior to and after a self-diffusion event,
it is impossible to determine the particular processes
due to which an atom is brought into a new position and
to establish whether it is this atom that was located in
the initial position. The motion of each atom in a sys-
tem (including adatoms) at all stages of the diffusion
can be traced in a computer experiment based on the
molecular dynamics method. In particular, Garofalini
and Halicioglu [13] carried out a molecular dynamics
simulation of the diffusion of Au, Ir, and Pt adatoms on
the Pt(110) surface with the use of the Lennard-Jones
pair potential of the interatomic interaction. It was
shown that the Ir and Pt atoms can diffuse according to
the exchange mechanism through the displacement of a
substrate atom by a diffusing adatom. This process is
favorable for mutual mixing of atoms of the condensed
material and the substrate. Circumstantial evidence in
support of the above mechanism of diffusion is given
by the experimentally observed escape of Cu atoms
onto the surface of Pd, Rh, and Pt growing films [9],
1063-7834/04/4609- $26.00 © 21781
which has defied explanation within the model of bulk
heterodiffusion.

In this work, the atomic mechanisms and kinetics of
self-diffusion of Pd adatoms on the surface of a single-
crystal Pd(001) substrate were investigated using
molecular dynamics simulation.

2. COMPUTER EXPERIMENT

The substrate was simulated using a computational
cell made up of eight (001) planes that were cut in the
form of a square lattice 48 × 48 atoms in size and con-
tained 2304 atoms each. Periodic boundary conditions
were imposed on the system in the directions [110] and

[ ]. In the computational cell, the three lower layers
at the bottom were static and the five subsequent layers
were dynamic. For the computer experiment, 64 ada-
toms were regularly arranged on the surface of the sub-
strate in such a way that they formed a square lattice
8 × 8 adatoms in size. Then, the system was subjected
to static relaxation. The interaction between the atoms
was governed by the many-particle potential, which
was calculated in the framework of the embedded-atom
method [14]. Thereafter, velocities specified by a Max-
well distribution at a given temperature were imparted
to the adatoms and substrate atoms arranged in the
dynamic layers and isothermal annealing of the sub-
strate was simulated by the molecular dynamics
method. The molecular dynamics calculation involved
numerical integration of the equations of motion of the
atoms with a time step ∆t = 1.5 × 10–15 s according to
the Verlet algorithm [15].

3. RESULTS AND DISCUSSION

It was established that, during isothermal annealing,
the diffusion of Pd adatoms on the Pd(001) surface pre-
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dominantly occurs not from one stable position to
another stable position through the rolling-stone mech-
anism but through the transfer of an atom from the first
layer of the substrate to the adatom position followed
by the migration of this atom to the nearest stable sur-
face position situated at the longest distance from the
initial position of the adatom (see Fig. 1).

In a single-component system, an adatom involved
in a similar relay-race diffusion event is displaced in the
〈100〉  direction over a distance equal to the lattice con-
stant. For example, the computer experiment performed
at 800 K demonstrated that, among the 64 initial
labeled Pd adatoms, 37 adatoms turn out to be in the
first layer of the Pd(001) substrate in 3 × 10–11 s. It

(a)

(b)

Fig. 1. Fragment of the Pd(001) surface after annealing at
700 K for (a) 1.5 × 10–11 and (b) 3 × 10–11 s. An elementary
event of the surface diffusion occurring through the relay-
race mechanism is illustrated in the bounded region. Circles
with a large diameter are adatoms, and circles with a small
diameter are substrate atoms. Black circles are the adatoms
labeled at the initial instant.
PH
should be noted that, in this case, no labeled atom was
observed in the second or subsequent layers of the sub-
strate and no atom from the nearest environment of the
adatom escaped from the first layer of the substrate onto
the surface.

Therefore, during annealing, the number of labeled
atoms in the first layer of the substrate increases,
whereas the number of labeled atoms on the surface of
the sample decreases. The total number of adatoms
remains constant due to the escape of atoms from the
first layer of the substrate onto the surface. However, an
increase in the number of labeled atoms in the first layer
of the substrate leads to an increase in the probability of
their back transfer to the surface of the sample. With
time, the counter flows of labeled atoms balance and the
concentration of these atoms at the surface becomes
close to equilibrium.

The obtained data on the atomic mechanism of the
surface self-diffusion allowed us to describe the kinet-
ics of the decrease in the number n0 of adatoms (labeled
at the initial instant of time) with a low coverage θ =
n0/N, where N is the total number of adsorption posi-
tions on the surface. Using the schematic diagram of
the mutual arrangement of substrate atoms as an illus-
tration (Fig. 2), we consider the possible paths of the
motion of adatoms through the mechanism of relay-
race self-diffusion. Let us assume that a labeled adatom
is displaced from the initial position 0 to the position a
of the substrate due to the relay-race diffusion, whereas
the substrate atom is displaced from the position a to
the adatom position 1. The probability of this process in
a unit time is defined as ν = ν0exp(–W/kT), where ν0 is
the frequency factor, W is the activation energy for an
elementary event of the relay-race diffusion, k is the

4

31

1

0

a

4 4 4

4

4

444

4

4

32 31

3231

3131

2

2

2

Fig. 2. Schematic diagram of the mutual arrangement of
substrate atoms (small circles) and the possible paths of
migration of adatoms to positions 1, 2, 31, 32, and 4 (dashed
lines). The large circle is a labeled adatom in the initial posi-
tion.
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Boltzmann constant, and T is the temperature. In this
case, there are two possibilities for the adatom located
in position 1; namely, it either can “pass on the baton”
to the substrate atom for occupying one of the three
positions 2 or can displace the labeled adatom from the
position a and again return to the initial position 1 with
a probability of 1/4 for each of these events. If the ada-
tom turns out to be in one of the positions 2 with a prob-
ability of 1/3, it either can occupy one of the five posi-
tions 31 and one of the two positions 32 with a probabil-
ity of

 

or can come back to the initial position 1 with a proba-
bility of 1/4. Since the probability of the transfer of the
adatom from position 2 to position 32 is two times
higher than that to position 31, the probabilities of the
adatom occupying one of the five positions 31 and one
of the two positions 32 are equal to 5/9 and 4/9, respec-
tively. Consequently, the probability of the transfer of
the adatom from position 3 to position 2 is determined
to be

 

The above variants of the relay-race transfer of ada-
toms between the positions at small coverages (θ ! 1)
were used to construct a system of kinetic equations for
adatoms located in different positions. By assuming
that the numbers of atoms in positions 0, 1, 2, and 3 at
the instant of time t are equal to n, n1, n2, and n3, respec-
tively, the kinetic equations take the form

 (1)

Here, we assume that the number of atoms in positions
4 is so small that their diffusion into positions 3 can be
disregarded. Therefore, the system of equations (1)
describes the time dependences of the concentration of
adatoms arranged in four positions (0, 1, 2, 3). It fol-
lows from the system of equations (1) that, if all ada-
toms at the initial instant of time are arranged in posi-
tions 0 [n(0) = n0] and are labeled, the decrease in the
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concentration of labeled adatoms as a function of time
c(t) = n/n0 can be described by the expression

 (2)

Figure 3 presents the results of a computer simula-
tion of the surface diffusion at temperatures of 700,
750, 800, and 850 K. The values of the parameter ν at
different temperatures were found by approximating
the results of the computer experiment according to
expression (2). The data obtained were used to determine
the activation energy for an elementary event of the
relay-race diffusion of adatoms from the slope of the
dependence of ln(ν) on 1/ T (Fig. 4). As a result, the acti-
vation energy was estimated to be 0.62 ± 0.04 eV/atom.
Liu et al. [4] found that the activation energy for rolling-
stone diffusion falls in the range 0.71–0.74 eV/atom; i.e.,
it is higher than the activation energy obtained in our
experiment. This is an additional argument in support
of the dominant role played by the relay-race mecha-

c t( ) 1
2
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× 1 5 133
133
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  51

12
---------- 1 133

17
-------------+ νt 
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Fig. 3. Variation in the concentration of labeled adatoms
during annealing at different temperatures and the results of
approximation by formula (2).
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nism in the self-diffusion of adatoms on the Pd(001)
surface.

In conclusion, we note that the relay-race mecha-
nism of the diffusion of adatoms on the Pd(001) surface
does not exclude the occurrence of other mechanisms
of the surface self-diffusion. However, as follows from
our molecular dynamics experiments, the probability of
these mechanisms is considerably lower. For example,
for the entire computer experiment, only at a tempera-
ture of 850 K did the molecular dynamics simulation
performed in this work reveal an elementary event of
self-diffusion occurring through the rolling-stone
mechanism.
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1.1 1.2 1.3 1.4 1.5 1.6 1.7

lnν [s–1]

103/T, K–1
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Fig. 4. Temperature dependence of the number of elemen-
tary events of the relay-race surface diffusion in a unit time
in the 1/T–lnν coordinates.
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