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Abstract—By reducing the hydrodynamic flow in the volume occupied by one or two fluids with different den-
sities to the dynamics of the free surface or interface, equations describing their evolution are derived. These
equations make it possible to study the essentially nonlinear stages of instability of free surfaces or interfaces
in simple mathematical terms. It is shown that a perturbation of the free surface, however small, causes the for-
mation and separation of a drop for a finite time. Accordingly, a perturbation, however small, of the interface
between media with different densities results in the formation and subsequent separation of a large-scale vortex
of the heavier fluid. Theoretical results agree qualitatively and quantitatively with experiments performed in
[1, 2]. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Theoretical investigation into the stability of the free
surface or interface between two continuous media (flu-
ids) with different densities in the gravitational field
(Rayleigh–Taylor gravitational instability) or in a mag-
netic field (Rayleigh–Taylor magnetohydrodynamic
instability) [3], as well as instabilities caused by a
shock-wave- or pressure-pulse-induced acceleration
(Richtmyer–Meshkov instabilities [4, 5]), are of great
scientific and applied interest [6, 7]. Examples of their
application are the generation of pulsed powerful X-ray
radiation from a plasma [8] and solid surface modifica-
tion by the action of intense beams of charged particles
[9–11]. The essentially nonlinear stages, including the
vortex stage, are usually studied numerically. As a rule,
an initial distribution of point vortices (the vortex
method [12]) or a distribution of small finite-size vorti-
ces (the vortex drop method [13]) is specified at the
interface. These methods, while providing fairly rea-
sonable results, suffer from the considerable disad-
vantage that the vortex distributions over the interface
and sizes are uncertain. The purpose of this work is to
elaborate a method for studying the interface dynam-
ics such that the distribution of point or finite-size vor-
tices is unneeded. Our study is based on the method
[14], with which we analyzed the vortex-free stage of
nonlinear interface dynamics. Also, we rely on the fact
that the interface dynamics can be adequately studied
on the assumption that the fluids are incompressible
[4, 14−16].
1063-7842/03/4803- $24.00 © 20275
DYNAMIC EQUATIONS FOR FREE SURFACE 
AND INTERFACE

We will deal with an ideal incompressible fluid
occupying a volume bounded above by the surface
F(X, Z, t) = 0 (hereafter, X and Z are the coordinates of
boundary points). Our first goal is to reduce the hydro-
dynamic volume flow of the fluid to the dynamics of its
boundary. The equations of motion of an ideal incom-
pressible fluid have the form [17]

(1)

(2)

where v = {v x(x, z, t), 0, v z(x, z, t)} is the hydrodynamic
velocity, Ω = [— × v] = {0, Ω(x, z, t), 0} is the vorticity,
P(x, z, t) is pressure, and G(x, z, t) is the external field
potential. The vectors in the parentheses and brackets
mean the scalar and vector products, respectively.

According to the well-known Helmholtz theorem,
one can put v = —ϕ + [— × A]. Here, ϕ(x, z, t) is the sca-
lar velocity potential and A = {0, –ψ(x, z, t), 0} is the
vector velocity potential satisfying Coulomb gauge
(— ⋅ A) = 0. Then, it follows from (1) that the scalar
potential satisfies the Laplace equation

(3)

where ∆ is Laplacian.
Applying the operator [— × v] to Eq. (2), we will

obtain for the vorticity Ω = ∆ψ

(4)

— v⋅( ) 0;=

∂v
∂t
------ Ω v×[ ]+ — P

ρ
--- v 2

2
------ G+ + 

  ,–=

∆ϕ x z t, ,( ) 0,=

∂∆ψ
∂t

----------- v —⋅( )∆ψ+ 0.=
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From Eq. (4), it follows that if the vorticity Ω(x, z,
0) = ∆ψ(x, z, 0) = 0 at the initial time instant, it also
equals zero at any other time instant:

(5)

In an ideal incompressible fluid, vorticity may
appear only when its free surface (or interface)
becomes unstable [18] and is introduced into a forbid-
den area by convection. It is the latter prerequisite that
prompted the authors of [12, 13] to specify the initial
distribution of point [12] or finite-size [13] vortices at
the interface when they analyzed the vortex stage of
Richtmyer–Meshkov instability. We will show below
that there is no need to do this.

From Eq. (2) in view of (5), we arrive at the Ber-
noulli equation [17]

(6)

which also applies to the free boundary P(X, Z, t) = 0
[17, 19].

Bernoulli equation (6) and the so-called kinematic
condition D(X, Z, t) – (v(X, Z, t) ⋅ n(X, Z, t)) = 0 (D is
the phase velocity of the boundary and n is the normal
to the boundary), according to which boundary points
are “frozen” in the fluid, constitute boundary conditions
on the free surface for the Laplace equation. At the
lower boundary z = –∞, the range of solutions for the
velocity and the potentials vanish. At the left and right
boundaries, the periodic conditions are specified: the
equality of the velocities and potentials at the points
x = 0 and λ.

At the essentially nonlinear stages of boundary
instability, there may appear a situation where the
boundary dynamics cannot be uniquely described by a
function of one variable X. In the case of a large-scale
disturbance (“large scale” is limited below by the con-
dition of existence of tangent, t(X, Z, t), and normal,
n(X, Z, t), vectors at an arbitrary point and also by the
condition of applicability of the hydrodynamic approx-
imation), the boundary should be described parametri-
cally using two functions: x = X(l, t) and z = Z(l, t)
(where l is the contour length along the boundary start-
ing from some separated point). The remaining param-
eters of the fluid that are specified at the boundary are
also functions of l and t. According to the kinematic
condition, boundary points are frozen in the fluid and
move with a velocity v(X, Z, t). Consequently, the value
of the parameter l for a fixed boundary point also varies
with time: l = l(l0, t), where l0 is some Lagrangean coor-
dinate of the fixed boundary point, for example, the
value of l at the initial time instant. In this case,

(7)

(8)

Ω x z t, ,( ) ∆ψ x z t, ,( ) 0.= =

∂ϕ
∂t
------

X Z,( )

–
v 2 X Z t, ,( )

2
-------------------------- G X Z t, ,( )– 0,= =

dX l t,( )
dt

------------------ v x l t,( ),=

dZ l t,( )
dt

------------------ v z l t,( ).=
The vectors t(l, t) and n(l, t) are given by

(9)

(10)

Taking into account that (v ⋅ t) = ∂ϕ(l, t)/∂l and
(v ⋅ n) = –∂ψ(l, t)/∂l and also (9) and (10), we can now
relate the velocities to the derivatives of the potential ϕ
and stream function ψ along the boundary:

(11)

(12)

The total derivative of the potential at a fixed point
of the moving boundary and the partial derivative of the
potential are related as

(13)

where the second term describes the variation of the
potential as the point of observation moves.

Relationships (11)–(13) allow one to rewrite Ber-
noulli equation (6) in the form

(14)

Following our work [14], we will describe the evo-
lution of the free surface without calculating the vol-
ume flow. Such an approach is basically validated by
the fact that the velocity potential ϕ and the stream
function ψ are harmonic functions and, hence, are com-
pletely defined by the boundary conditions. In this case,
it is necessary to find the normal derivative of the poten-
tial from its boundary value or, which is the same, to
establish a relationship between ψ(l, t) and ϕ(l, t).

In [20], the Laplace equation for an area with an
irregular boundary was solved with conformal transfor-
mations. Let us perform coordinate transformation

τ x l t,( ) nz l t,( ) ∂X
∂l
------- ∂X

∂l
------- 

 
2 ∂Z

∂l
------ 

 
2

+ 
 

1/2–

,= =

τ z l t,( ) n– x l t,( ) ∂Z
∂l
------ ∂X

∂l
------- 

 
2 ∂Z

∂l
------ 

 
2

+ 
 

1/2–

.= =

v x l t,( ) ∂ϕ l t,( )
∂l

------------------τ x l t,( ) ∂ψ l t,( )
∂l

-------------------τ z l t,( )+=

=  
∂ϕ l t,( )

∂l
------------------∂X

∂l
------- ∂ψ l t,( )

∂l
-------------------∂Z

∂l
------+ 

  ∂X
∂l
------- 

 
2 ∂Z

∂l
------ 

 
2

+ 
 

1/2–

,

v z l t,( ) ∂ϕ l t,( )
∂l

------------------τ z l t,( ) ∂ψ l t,( )
∂l

-------------------τ x l t,( )–=

=  
∂ϕ l t,( )

∂l
------------------∂Z

∂l
------ ∂ψ l t,( )

∂l
-------------------∂X

∂l
-------– 

  ∂X
∂l
------- 

 
2 ∂Z

∂l
------ 

 
2

+ 
 

1/2–

.

dϕ l t,( )
dt

------------------ ∂ϕ l t,( )
∂t

------------------ v x l t,( )dX
dt
------- v z l t,( )dZ

dt
------+ +=

=  
∂ϕ l t,( )

∂t
------------------ v 2 l t,( ),+

dϕ l t,( )
dt

------------------
1
2
--- ∂ϕ l t,( )

∂l
------------------ 

 
2 ∂ψ l t,( )

∂l
------------------- 

 
2

+ 
  G l t,( ).–=
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(x, z)  (ξ, η). In terms of the new variables, Eq. (3)
takes the form

(15)

In order for Eq. (15) in the variables (ξ, η) to be the
Laplace equation in the form ∆(ξ, η)ϕ(ξ, η) = 0, it is nec-
essary that the following conditions be fulfilled:

(16)

(17)

(18)

Since the new coordinate system is arbitrary, we put

(19)

Now conditions (16) and (17), as well as the second
equation of (18), are fulfilled automatically.

The coordinate transformation performed above
must not only retain the form of the Laplace equation
but also convert the fluid-filled space to a half-plane,
e.g., η ≤ 0. Let us define the unit vector t tangent to the
boundary as

(20)

Then, from (19), —(x, z)η|(X(l), Z(l)) = n, where n is the
outer normal to the boundary. Hence, ∂η/∂l = (—(x, z)
η ⋅ t) = 0 along the boundary and the coordinate η at
the boundary has some constant value, which can be set
equal to zero. Such a coordinate transformation does
convert the fluid-filled space to the half-plane η ≤ 0.
The variable ξ at the boundary can be found from the
relationship ∂ξ/∂l = (—(x, z)ξ ⋅ t) = 1 for its derivative
along the boundary. Integrating this relationship along
the contour yields

(21)

up to a constant.
Another boundary condition can be specified, e.g.,

by putting

(22)

The first of Eqs. (18) in combination with boundary
conditions (21) and (22) represent the first boundary-
value problem for the Laplace equation for the function
ξ(x, z) and, consequently, has a unique solution. Thus,
it is possible to find coordinates (ξ, η) such that they
meet conditions (19) and (20) and do not change the
form of the Laplace equation. The transformation
defined by conditions (19) and (20) converts the fluid-
filled space to a half-plane. It should be noted that find-
ing a specific transformation of this type is a problem
no less complicated than the initial problem, since it
also requires the Laplace equation to be solved in a

∂2ϕ
∂ξ2
--------- — x z,( )ξ

2 ∂2ϕ
∂η2
--------- — x z,( )η

2 2 ∂2ϕ
∂ξ∂η
------------- — x z,( )ξ — x z,( )η⋅( )+ +

+
∂ϕ
∂ξ
------∆ x z,( )ξ

∂ϕ
∂η
------∆ x z,( )η+ 0.=

— x z,( )ξ
2 — x z,( )η

2,=

— x z,( )ξ — x z,( )η⋅( ) 0,=

∆ x z,( )ξ 0, ∆ x z,( )η 0.= =

— x z,( )η — x z,( )ξ ey×[ ] .=

t — x z,( )ξ X l( ) Z l( ),( ).=

ξ X l( ) Z l( ),( ) l=

ξ x z,( ) x for x ∞.–
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complex-geometry area. Fortunately, to establish a
relation between the value of a harmonic function at the
boundary and its normal derivative does not require
finding ξ(x, z) and η(x, z) in explicit form. With this aim
in view, we note that this transformation has the impor-
tant properties that η = 0 and (n ⋅ —) = ∂/∂η along the
contour ξ = l. The latter equality follows from the fact
that by definition —(x, z)ξ and —(x, z)η are the vectors of
the reciprocal basis [21]. Since this set of vectors is
orthonormalized along the boundary, the local basis
coincides with the reciprocal basis at boundary points;
that is, eξ|(X(l), Z(l)) = —(x, z)ξ|(X(l), Z(l)) = t and eη|(X(l), Z(l)) =
—(x, z)η|(X(l), Z(l)) = n. Then, the derivative ∂/∂η = (eη ⋅ —) =
(n ⋅ —) at boundary points.

The decaying (at η  –∞) solution to the Laplace
equation for the function ϕ(ξ, η) in the domain η ≤ 0
can be written through ϕ(ξ, 0, t) as

Differentiating this expression with respect to η
yields (in view of (19)–(21)) an expression for the
derivative of ϕ normal to the boundary:

(23)

Here,  is the integral operator [22]:

(24)

The important properties of the operator k and recip-

rocal operator  are the following:

The stream function ψ also meets Laplace equation
(5). Taking into account that (v ⋅ t) = (n ⋅ —ψ), we can
write

On the other hand, the tangential velocity compo-
nent is (v ⋅ t) = ∂ϕ(l, η = 0)/∂l. Hence, we can relate the
stream function and the derivative of the potential
(hereafter, we consider only values at the boundary and
omit the argument η = 0):

(25)

Relationship (25) is valid for a smooth contour
where the normal and tangent vectors are defined at
each point.

ϕ ξ η t, ,( ) = 
1

2π
------ k ϕ ξ ' 0 t, ,( )e k η k ξ ξ '–( )( )cos ξ'.d

∞–

+∞

∫d

∞–

+∞

∫

n —ϕ⋅( ) ∂ϕ
∂η
------

η 0=

k̂ϕ η 0= .= =

k̂

k̂ f l( ) 1
2π
------ k k f l'( ) k l l'–( )( )cos l'.d

∞–

+∞

∫d

∞–

+∞

∫=

k̂
1–

k̂eikl k eikl, k̂
1–
eikl 1

k
-----eikl.= =

v t⋅( ) ∂ψ
∂η
-------

η 0=

k̂ψ η 0= .= =

ψ l t,( ) k̂
1– ∂ϕ l t,( )

∂l
------------------.=
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Expanding the potential at the boundary into the
Fourier series in l yields for Eq. (25)

(26)

where L(t) is the current total length of the contour and
K(t) = 2π/L(t) is its associated wavenumber.

Equations (7), (8), and (14) combined with relation-
ships (11), (12), and (25) (or (26)) make up a closed set
that describes the evolution of the free surface of the
fluid.

Consider now a system of two perfect incompress-
ible fluids with different densities. Let the upper fluid
have a density ρ– and the lower, a density ρ+ (ρ– < ρ+).
All quantities that refer to the heavier and lighter fluids
will have the associated superscript (+ and –, respec-
tively). Then, Eqs. (6), (11), (12), and (25) are recast as
follows:

(27)

(28)

(29)

(30)

Let points at the interface be frozen in the heavier
fluid. We then have

(31)

(32)

In this case, the kinematic condition has the form
[17, 19] D – (v+ ⋅ n) = D – (v– ⋅ n) = 0; hence, we have
continuity of the normal velocities of the fluids at the

ψ l t,( ) 2
L t( )
---------- ϕ l' t,( ) nK t( ) l' l–( )( )sin l',d

0

L t( )

∫
n 1=

∞

∑=

∂ϕ± l t,( )
∂t

-------------------- –
1
2
--- ∂ϕ±

∂l
--------- 

 
2 ∂ψ±

∂l
--------- 

 
2

+ 
  P±

ρ±------– G l t,( ),–=

v x
± l t,( ) ∂ϕ± l t,( )

∂l
--------------------τ x l t,( ) ∂ψ± l t,( )

∂l
---------------------τ z l t,( )+=

=  
∂ϕ± l t,( )

∂l
--------------------∂X

∂l
------- ∂ψ± l t,( )

∂l
---------------------∂Z

∂l
------+ 

 

× ∂X
∂l
------- 

 
2 ∂Z

∂l
------ 

 
2

+ 
 

1/2–

,

v z
± l t,( ) ∂ϕ± l t,( )

∂l
--------------------τ z l t,( ) ∂ψ± l t,( )

∂l
---------------------τ x l t,( )–=

=  
∂ϕ± l t,( )

∂l
--------------------∂Z

∂l
------ ∂ψ± l t,( )

∂l
---------------------∂X

∂l
-------– 

 

× ∂X
∂l
------- 

 
2 ∂Z

∂l
------ 

 
2

+ 
 

1/2–

,

ψ± l t,( ) k̂
1– ∂ϕ± l t,( )

∂l
--------------------.±=

dX l t,( )
dt

------------------ v x
+ l t,( ),=

dZ l t,( )
dt

------------------ v z
+ l t,( ).=
interface: (v+ ⋅ n) = (v– ⋅ n) = 0 or ∂ψ+/∂l = ∂ψ–/∂l. Inte-
grating the latter equality yields

(33)

From (30) in view of (33), it follows that ∂ϕ+/∂l =
−∂ϕ–/∂l. Integrating, we find that

(34)

at the interface.
The equality of the normal velocities leads to the

equality of the pressures at the interface [17, 19]:
P+(l, t) = P–(l, t) = P(l, t).

The total time derivative of the potential ϕ+(l, t) and
its partial derivative are related as

(35)

Accordingly, the total time derivative of the poten-
tial ϕ–(l, t) is

(36)

With (35) and (36), Bernoulli equation (27) takes
the form

(37)

(38)

Eliminating the pressure from (37) and (38) and tak-
ing into account equalities (33) and (34), we arrive at an
equation for the velocity potential of the heavier fluid at
the interface:

(39)

where A = (ρ+ – ρ–)/(ρ+ + ρ–) is the Atwood number.
Consequently, the action of the lighter fluid on the

dynamics of the heavier one modifies the Bernoulli
equation for the free surface (cf. (39) and (14)). Equa-
tions (31), (32), and (39) supplemented by equalities
(28)–(30) for the heavier fluid make up a closed set.
Below, we will omit the superscript “+” and always
consider the system of two fluids. Then, in the set of
equations describing the dynamics of the free surface,
A = 1.

ψ+ l t,( ) ψ– l t,( ).=

ϕ+ l t,( ) ϕ– l t,( )–=

dϕ+

dt
--------- ∂ϕ+

∂t
--------- v +( )2

+ ∂ϕ+

∂t
---------

∂ϕ+

∂l
--------- 

 
2 ∂ψ+

∂l
--------- 

 
2

.+ += =

dϕ–

dt
--------- dϕ–

∂t
--------- v x

–dX
dt
------- v z

–dZ
dt
------+ + ∂ϕ–

∂t
--------- v x

–v x
+ v z

–v z
++ += =

=  
∂ϕ–

∂t
--------- ∂ϕ–

∂l
---------∂ϕ+

∂l
--------- ∂ψ–

∂l
---------∂ψ+

∂l
---------.+ +

dϕ+ l t,( )
∂t

---------------------
1
2
--- ∂ϕ+

∂x
--------- 

 
2 ∂ψ+

∂x
--------- 

 
2

+ 
  P

ρ+
-----– G l t,( ),–=

dϕ– l t,( )
dt

--------------------
∂ϕ–

∂l
---------∂ϕ+

∂l
--------- ∂ψ–

∂l
---------∂ψ+

∂l
---------+=

–
1
2
--- ∂ϕ–

∂x
--------- 

 
2 ∂ψ–

∂x
--------- 

 
2

+ 
  P

ρ–
-----– G l t,( ).–

dϕ+ l t,( )
∂t

--------------------- = 
A
2
---- ∂ψ+

∂l
--------- 

 
2

1 A
2
----– 

  ∂ϕ+

∂l
--------- 

 
2

AG l t,( ),–+
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Thus, we derived the closed set of dynamic equa-
tions for the interface between two ideal incompress-
ible fluids with different densities:

(40)

(41)

(42)

(43)

SOLUTION METHOD AND NUMERICAL 
EXPERIMENT

The seemingly simple set (40)–(43) turns out to be
difficult to solve analytically. Therefore, it was solved
numerically. The contour of the boundary was specified
by a set of points Xi(t) and Zi(t) (i ∈  [0, I0]) so that the
spacing between adjacent points was the same: li + 1(t) –
li(t) = h(t) = L(t)/(I0 – 1). The time dependence was also

discrete:  = li(t m),  = ϕ( , tm),  = ψ( ,
tm), etc.

Taking the integral in (43) with the finite-difference
grid yields

(44)

where

(45)

This functions is periodic, Λ(y + 1) = Λ(y), and even,
Λ(y) = Λ(–y). In calculations, summation in (45) is up
to some number N. The uniformity of the computa-
tional grid in l makes it possible to calculate the func-

tion  = Λ i + /(I0 – 1)  (i = 0, 1, …, (I0 – 1))

once and use it subsequently (with regard for the parity

dϕ l t,( )
dt

------------------
A
2
---- ∂ψ

∂l
------- 

 
2

1 A
2
----– 

  ∂ϕ
∂l
------ 

 
2

AG l t,( ),–+=

dX l t,( )
dt

------------------ v x l t,( ) ∂ϕ l t,( )
∂l

------------------∂X
∂l
------- ∂ψ l t,( )

∂l
-------------------∂Z

∂l
------+ 

 = =

× ∂X
∂l
------- 

 
2 ∂Z

∂l
------ 

 
2

+ 
 

1/2–

,

dZ l t,( )
dt

------------------ v z l t,( ) ∂ϕ l t,( )
∂l

------------------∂Z
∂l
------ ∂ψ l t,( )

∂l
-------------------∂X

∂l
-------– 

 = =

× ∂X
∂l
------- 

 
2 ∂Z

∂l
------ 

 
2

+ 
 

1/2–

,

ψ l t,( ) 2
L t( )
---------- ϕ l' t,( ) nK t( ) l' l–( )( )sin l'.d

0

L t( )

∫
n 1=

∞

∑=

li
m( ) ϕ i

m( ) li
m( ) ψi

m( ) li
m( )

ψ j t( ) ϕ i t( )
i 1=

I0 1–

∑=

× Λ
l j t( ) l

i
1
2
---+

t( )–

L t( )
--------------------------------

 
 
 

Λ
l j t( ) l

i
1
2
---–

t( )–

L t( )
-------------------------------

 
 
 

–
 
 
 

,

Λ y( ) 1
π
--- 1

n
--- 2πny( )cos .

n 1=

∞

∑–=

Λ
i

1
2
---+

-



 1

2
---

 -


TECHNICAL PHYSICS      Vol. 48      No. 3      2003
and symmetry properties) to transform the velocity
potential into stream function (44). Such an approach
can take into account any number of harmonics in the
transformation.

The transition between time layers proceeds in two
stages. First, boundary points are shifted and a new
value of the potential is determined. Then, the compu-
tational grid is regularized. Thus, at the first stage, we
integrate Eqs. (40)–(42) over time:

(46)

(47)

(48)

where ∆t is the time step.
To improve the stability of the solution, the integra-

tion was performed in implicit form and Eqs. (46)–(48)
were solved by the method of successive iterations. The
time step was constant and much smaller than the char-
acteristic time of boundary evolution. The validation of
the time step was the convergence of a solution to
Eqs. (46)–(48) within a reasonable (say, no more than
ten) number of iterations. Once new positions of
boundary points have been found, a new value of the

parameter , which is the distance from the initial

point ( , ) to the moving point ( ,

), and a new total length Λ(m + 1) of the contour
are determined.

At the second stage, the grid was reconfigured so as
to restore the uniform distribution of Lagrangean points
in terms of l. To this end, a new computational grid

 = Λ(m + 1)(i – 1)/(I0 – 1) was applied. All quanti-

ties ( , , , etc.) at points of the new

grid were calculated through the quantities ( ,

, , etc.) specified on the previous grid

 by linear interpolation in l. The regularization of
the grid at either stage allowed us to avoid the excessive
thickening or rarefaction of calculation points.

The method described above was used to calculate
the interface evolution under Richtmyer–Meshkov
instability. This type of instability arises when a shock
wave passes through the interface between fluids of dif-
ferent density. In our statement for an incompressible
fluid, a shock wave is replaced by the field of inertial
forces G(X, Z, t) = –g(t)Z, where g(t) = Uδ(t) is the
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accelerating momentum and U is the velocity imparted
to the medium by a shock wave. Integrating Bernoulli
equation (40) over time from t = –0 to t = +0 yields the
initial condition for the velocity potential:

(49)

The linear theory [4] of Richtmyer–Meshkov insta-
bility predicts a constant growth rate of the perturbation

amplitude:  = AUka0. The interface evolution is
conveniently described by the dimensionless time
τ = (k2AUa0)t, where a0 is either the initial harmonic
perturbation amplitude, Z(l, 0) = a0cos(kX(l, 0)), or the
initial perturbation height relative to the OX axis (if the
perturbation is of a complex shape).

Figures 1 and 2 show the initial perturbations and
their evolution with time for the free surface (A = 1)
and interface between fluids of various density
(A = 0.1). It is seen that even the free surface ceases to
be a unique function of x as time passes, as distinct
from results obtained in [12]. Instead, the elongated
fluid stream turns to a drop and at τ ≈ 1.8 separates from
the fluid. Note that drops on the free surface form at any
amplitude of the initial perturbation. With A = 0.1, a
stream of the heavier fluid penetrates into the lighter
one and forms a mushroomlike vortex, rather than a
drop. However, at τ ≈ 2, the mushroom’s stipe also has
a waist.

Figure 3 demonstrates the growth rates of the
stream, Γs, and bubble, Γb, for the free surface (A = 1)
that are normalized to the linear rate vs. dimensional
time for initial harmonic perturbation amplitudes a0k =
0.005 and 0.5. For comparison, analytical results [16]

ϕ l t, +0=( ) AUZ l 0,( ).=

ŻRM
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Fig. 1. Initial perturbation and its evolution due to Richt-
myer–Meshkov instability on the free surface (A = 1, U = 1).
corresponding to an infinitesimal initial perturbation
and results of calculation by the vortex method [12] are
also shown. As follows from our calculations, for a
small initial perturbation (a0k = 0.005), the growth rate
of the stream becomes constant with time: Γs ≈ 3.5.
That of the bubble varies in a complicated manner: it
first decreases, then (at τ = 0.6) starts increasing, and at
τ > 1.9 slowly decreases again. In [12], the growth rate
of the stream for a small perturbation was also found to
be constant but at a level of ≈2.2 and the growth rate of
a bubble tends to zero monotonically. At a0k = 0.5, both
our results and the results of [12] give a steady-state
value of the stream growth rate at a level Γs ≈ 2.4, which
is much lower than for the small initial perturbation. As
for the bubble growth rate at a0k = 0.5, it monotonically
declines, according to our calculations. Generally, our
calculations give higher growth rates than in [12, 16].

As the initial perturbation amplitude grows (Fig. 4),
both the initial values and variation of the rates change.
The bubble growth rate tends to zero, and the shapes of
the curves for a0k = 1–4 are roughly the same. For a0k = 1
and 2, the stream growth rate first rises and then starts
decreasing (at τ > 2 and τ > 1, respectively). For a0k = 3
and 4, the stream growth rate first increases and then
exhibits a plateau.

Figure 5 compares our results with those obtained
by the vortex method [12] for a system of two fluids
with the Atwood number A = 0.33. The run of the
curves is in accordance with [12]. However, as for A = 1,
our rates exceed those obtained by the vortex method.

The growth rates of the stream and bubble for a sys-
tem of two fluids with various Atwood numbers (small
perturbation) are shown in Fig. 6. The growth rate of
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Fig. 2. The same at the interface between two fluids (A =
0.1, U = 1).
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the bubble decreases monotonically with time. That of
the stream first increases, peaks, and then decreases
monotonically. As the Atwood number decreases, so
does the maximal value of Γs. With A = 0.1, the region
of initial rise almost degenerates into a plateau.

4
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1

0

–1
0 1 2 3 4

τ

1
3

2 5

4

Γb

3

2
1

4

5
Γs

Γ

Fig. 3. Growth rates of the stream, Γs, and bubble, Γb, nor-
malized to the linear rate vs. dimensional time for the free
surface: (1) [16]; (2, 3) vortex method [12] for a0k = 0.005
and 0.5, respectively; and (4, 5) our calculation for the same
initial perturbations.
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Fig. 5. Dynamics of the interface for A = 0.33. (1–3) Vortex
method [12] with a0k = 0.1, 0.3, and 0.5, respectively; (4–6)
our calculations for the same a0k.
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We compared our calculations with the experiments
of Zaœtsev [1] (Fig. 7) and Vasilenko [2, 13] (Fig. 8), as
well as with results of processing these experiments by
other authors [13, 23]. As follows from Figs. 7 and 8,
our analytical curves fit the experimental data qualita-
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Fig. 4. Dynamics of the free surface (A = 1) for different ini-
tial perturbation amplitudes. The nonlinearity coefficients
for the initial perturbation are (1) 1, (2) 2, (3) 3, and (4) 4.
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Fig. 6. Dynamics of the interface for A = 0.7 (1), 0.5 (2), and
0.1 (3). The initial amplitude a0k = 0.005.
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Fig. 7. Coordinates of the stream tip (lower quadrant) and
bubble (upper quadrant) vs. time in the experiments of Zaœ-
tsev [1]. A shock wave passes from argon to xenon. The
shock wave velocity D = 1273 m/s, fluid velocity increment
U = 764 m/s, and A = 0.45 [13]. The initial perturbation:
a0 = 5 mm and λ = 36 mm. Circles, Zaœtsev experimental
data [1]; dotted lines, linear theory [4]; solid lines, our cal-
culations; and dashed lines, vortex drop method [13].

Fig. 8. Time dependence of the mean height (amplitude) of
the interface, a(t) = 0.5(|Zs(t)| + |Zb(t)|), for the experiments
of Vasilenko [2, 13]. A slowing-down shock wave propa-
gates from krypton to helium. The combined action of the
pulsed and constant accelerations is noteworthy. The shock
wave velocity D = –811.4 m/s, fluid velocity increment U =
–940 m/s, constant acceleration g = 106 m/s2, and A =
0.8644 [13]. The initial perturbation: a0 = 1 mm and λ =
50 mm. Squares, Vasilenko experimental data [2, 13]; dot-
ted line, linear theory [2]; solid line, our calculation;
crosses, calculation with the TIGR gasdynamic method
[24]; and dashed line, vortex drop method [13].
tively and quantitatively. Note that the vortex method
[12] and the vortex drop method [13] give perturbation
growth rates that are somewhat lower than those found
experimentally, unlike our theory.

CONCLUSION

Thus, by reducing the hydrodynamic flow in a vol-
ume occupied by perfect incompressible fluids with
different densities to the interface evolution, we
obtained a closed set of Eqs. (40)–(43). For the 2D flow
geometry, exact relationship (25), which relates the
stream function and the velocity potential derivative at
the interface, was derived. Its applicability is limited by
the condition of existence of vectors tangent and nor-
mal to the interface and also by the validity of the
hydrodynamic approximation. Our numerical experi-
ment showed that actually there is no need to specify
the initial distribution of point or finite-size vortices at
the interface. A perturbation, however small, of the free
surface or interface causes the formation and separa-
tion, respectively, of a drop or large-scale vortex of the
heavier fluid for a finite time. Our results agree with
experimental data [1, 2] both qualitatively and quanti-
tatively.

Note in conclusion that our approach is certainly
inapplicable to studying the stage of turbulent mixing
of light and heavy fluids, when many vortices of differ-
ent sizes appear and their interaction must be taken into
account.

ACKNOWLEDGMENTS

The authors thank N.M. Zubarev for support and
valuable discussions.

REFERENCES

1. A. N. Aleshin, E. V. Lazareva, S. G. Zaœtsev, et al., Dokl.
Akad. Nauk SSSR 310, 1105 (1990) [Sov. Phys. Dokl.
35, 159 (1990)].

2. V. B. Rozanov, I. G. Lebo, S. G. Zaœtsev, et al., Preprint
No. 56, FIAN (Lebedev Physical Institute, Academy of
Sciences of USSR, Moscow, 1990).

3. S. Chandrasekhar, Hydrodynamic and Hydromagnetic
Stability (Clarendon, Oxford, 1961).

4. R. D. Richtmyer, Commun. Pure Appl. Math. 12, 297
(1960).

5. E. E. Meshkov, Izv. Akad. Nauk SSSR, Mekh. Zhidk.
Gaza 5, 151 (1969).

6. D. H. Sharp, Physica D 12, 3 (1984).
7. N. A. Inogamov, A. Yu. Dem’yanov, and E. E. Son,

Hydrodynamics of Mixing, Periodic Structures, Amplifi-
cation of Subharmonics, and Inversion Cascade (Mos-
cow Institute of Physics and Technology, Moscow,
1999).

8. D. D. Ryutov, M. S. Derzon, and M. K. Matzen, Rev.
Mod. Phys. 72, 167 (2000).
TECHNICAL PHYSICS      Vol. 48      No. 3      2003



NONLINEAR DYNAMICS OF THE INTERFACE 283
9. A. D. Korotaev, S. V. Ovchinnikov, Yu. I. Pochivalov,
et al., Surf. Coat. Technol. 105, 84 (1998).

10. A. D. Korotaev, A. N. Tyumentsev, M. V. Tretjak, et al.,
Structure, Phase Transformations and Diffusion 89, 54
(2000).

11. N. B. Volkov, A. E. Maœer, and A. P. Yalovets, Zh. Tekh.
Fiz. 72, 34 (2002) [Tech. Phys. 47, 968 (2002)].

12. V. E. Neuvazhayev and I. E. Parshukov, Mathematical
Modelling and Applied Mathematics, Ed. by A. A. Sa-
marsky and M. P. Sapagovas (North-Holland: Elsevier
Science Publishers B.V., IMACS, 1992), p. 323.

13. V. E. Neuvazhaev and I. É. Parshukov, Math. Model. 5
(2), 16 (1993).

14. N. B. Volkov, A. E. Maœer, and A. P. Yalovets, Pis’ma Zh.
Tekh. Fiz. 27 (1), 47 (2001) [Tech. Phys. Lett. 27, 20
(2001)].

15. E. Fermi, Scientific Works (Nauka, Moscow, 1972),
Vol. 2, p. 493; É. Fermi and J. von Neumann, Scientific
Works (Nauka, Moscow, 1972), Vol. 2, p. 498.

16. A. L. Velikovich and G. Dimonte, Phys. Rev. Lett. 76,
3112 (1996).
TECHNICAL PHYSICS      Vol. 48      No. 3      2003
17. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow,
1986; Pergamon, New York, 1987).

18. P. G. Saffman, Vortex Dynamics (University Press, Cam-
bridge, 1992).

19. L. I. Sedov, A Course in Continuum Mechanics
(Wolters-Noordhoff, Groningen, 1971; Nauka, Moscow,
1976), 3rd ed., Vol. 1.

20. A. I. Dyachenko, A. E. Kuznetsov, M. D. Spector, et al.,
Phys. Lett. A 221, 73 (1996).

21. E. Madelung, Die Mathematischen Hilfsmittel des Phys-
ikers (Springer, Berlin, 1957; Nauka, Moscow, 1968).

22. N. M. Zubarev and O. V. Zubareva, Zh. Tekh. Fiz. 71, 21
(2001) [Tech. Phys. 46, 806 (2001)].

23. K. A. Meyer and P. J. Blewett, Phys. Fluids 15, 753
(1972).

24. F. Yu. Bisyarin, V. M. Gribov, A. D. Zubov, et al., Vopr.
At. Nauki Tekh., Ser. Chisl. Met. Mat. Fiz. 3 (17), 34
(1984).

Translated by V. Isaakyan



  

Technical Physics, Vol. 48, No. 3, 2003, pp. 284–289. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 73, No. 3, 2003, pp. 10–15.
Original Russian Text Copyright © 2003 by Erofeenko, Shushkevich.

                                                                                                         

THEORETICAL
AND MATHEMATICAL PHYSICS

                            
Shielding of Low-Frequency Electric Fields by a Set of Shields 
Consisting of a Thin Unclosed Spherical Sheath and Thin-Walled 

Pervious Spherical Shell
V. T. Erofeenko* and G. Ch. Shushkevich**

* Belorussian State University, Leningradskaya ul. 14, Minsk, 220050 Belarus
** Kupala State University, Grodno, 230023 Belarus

e-mail: sys@mail.grsu.grodno.by
Received February 22, 2002; in final form, August 29, 2002

Abstract—The penetration of low-frequency electric fields through a thin-walled spherical conducting shell
in the presence of a thin unclosed spherical perfectly conducting sheath is considered. The problem is solved
by the method of pair summational equations with averaged boundary conditions. The effect of the central
angle of the unclosed spherical sheath and field source position on the field attenuation inside the closed thin-
walled shell is studied numerically for different shell thicknesses and materials. © 2003 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

Among the problems of electrodynamics, the prob-
lem of electromagnetic field (EMF) shielding is of spe-
cial importance from both the practical and theoretical
standpoints. In the case of thin-walled shields, electro-
magnetic processes in the shield itself are not consid-
ered. Instead, the EMFs on both sides of the conducting
shield are related by the equivalent boundary condi-
tions defined on its median surface. Such an approach
is strictly justified if the shield thickness does not
exceed the EMF penetration depth. To consider single
thin-walled shields, approximate averaged boundary
conditions of the second kind are used [1–3]. In this
paper, we study the penetration of the low-frequency
electric dipole field through a thin-walled spherical
conducting shell in the presence of a thin unclosed
spherical perfectly conducting sheath using approxi-
mate averaged boundary conditions of the third kind.

STATEMENT OF SHIELDING PROBLEM

Let us consider a uniform isotropic space R3 of per-
mittivity ε0 where a thin unclosed spherical sheath Γ
with a central angle θ0 covering a sphere Γ1 of radius a1
and a thin-walled spherical shell S of thickness ∆ are
placed (see figure). The thickness of the spherical
sheath Γ is assumed to be small in comparison with
other geometrical sizes. The medium filling the shell S
is described by permitivity ε, permeability µ, and con-
ductivity γ.

Let a low-frequency electric dipole oscillating by
the law e–iωt and having the moment directed along the
axis Oz3 (θ3 = 0) be located at the point O3.
1063-7842/03/4803- $24.00 © 20284
To solve the problem, we relate spherical coordi-
nates {rj, θj, ϕ} to the point Oj (j = 1, 2, 3):

(0 ≤ rj < ∞, 0 ≤ θj ≤ π, 0 ≤ ϕ ≤ 2π).

Now we assume by convention that the sphere Γ1
and the median surface S of the thin-walled shield S
divide the space R3 into three domains: D1 (inside the

x j r j ϕ θ j, y jsincos r j ϕ θ j, z jsinsin r j θ jcos= = =
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sphere Γ1), D2 (inside the sphere ), and D3 = R3/(D1 ∪
D2). Let the distance between the points O1 and O3 be
d2 and the distance between the points O2 and O3, d1;
d = d1 + d2.

The problem to be studied is the scattering of the
electric dipole field by the system of the shields Γ and
S with allowance for field penetration through the
spherical layer S. Here, the unclosed spherical sheath Γ
is assumed to be impenetrable to the field.

Let Ud be the potential of the electric dipole placed
at the point O3 and Uj be the potential of the field in the
domain Dj (j = 1, 2, 3).

In the quasi-stationary approximation, the solution
of the problem is reduced to determining the electrical
potentials Uj in the domains Dj (j = 1, 2, 3). These
potentials must satisfy the Laplace equation ∆Uj = 0

and the boundary conditions on the sphere  [4, p. 86],
which describe the field penetration through the thin
spherical layer S:

(1)

(2)

where

ε' = ε + i(γ/ω) is the complex permittivity, and ω = 2πf
is the angular frequency of the field. The potentials
must also meet the boundary condition on the surface
of the thin unclosed spherical perfectly conducting
sheath Γ

at r1 = a1, 0 ≤ θ1 < θ0 (3)

and the condition at infinity

(4)

where M is an arbitrary point in the space.
Finally, we require that the continuity conditions for

the potential on the sphere Γ1 and for the field on the
nonconducting part of the sphere Γ1 be satisfied:

(5)

(6)

The operator F(Uj) entering into boundary condi-
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tions (1) and (2) can be represented as [4, p. 86]

where n is the unit normal to the median surface  that
is directed inward to the domain D3.

In the spherical coordinates, this operator is trans-
formed into the form [3]

(7)

SOLUTION TO THE PROBLEM 

The potential of an electric dipole in spherical coor-
dinates can be represented as [4–6]

(8)

where Mz is the dipole moment.

The potentials Uj can be expressed as the superposi-
tion of spherical functions such that condition at infin-
ity (4) is satisfied:

(9)

(10)

where,

(11)

(12)

Here, Pn (cosθ) are the Legendre polynomials [5–8].

The unknown coefficients  and  (j = 1, 2) are
determined from the boundary conditions.

FULFILLMENT OF BOUNDARY 
CONDITIONS

To satisfy boundary conditions (3), (5), and (6), let

us express the potentials (r2, θ2) and Ud(r3, θ3)
through spherical harmonic functions related to the
coordinate system with the origin at the point O1. Using
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the formula [3, 9]

we arrive at

(13)

(14)

where

(15)

(16)

Taking into account Eqs. (9), (11), (13), and (14)
and satisfying boundary conditions (3), (5), and (6), we
obtain the pair summational equations in Legendre
polynomials

where δ0n is the Kronecker delta.
These pair summational equations can be trans-

formed into an infinite set of linear algebraic equations

of second kind for the coefficients  ∈  l2 [8, 9]:
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Taking into account (15), from Eq. (17) we obtain

the relation between the coefficients  and 

where

To satisfy boundary conditions (1) and (2), we

express the potentials (r1, θ1) and Ud(r3, θ3)
through spherical harmonic functions that are related to
the coordinate system with the origin at the point O2.
Using the formula [3, 9]

we have

(18)

(19)

where

(20)

Taking into account (10), (12), (18), (19), and repre-
sentation (7) of the operator F(Uj) in the spherical coor-
dinates and also satisfying boundary conditions (1) and
(2), we obtain the system
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where

Solving system (21), we find that

(22)

(23)

where

Substituting the representation of  from Eq. (20)
into Eq. (22) yields the relation between the coefficients

 and :

Thus, the solution of the problem is reduced to the
solution of coupled equations

(24)
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 in Eq. (24) is replaced by representation (25):
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where

(27)

(28)

(29)

(30)

If the dipole is placed at the point O1, the right of
system (26) is calculated by the formula

CALCULATION OF THE FIELD SHIELDING 
(ATTENUATION) CONSTANTS

In the absence of the shields, the electric field inten-
sity of the dipole at an arbitrary point M0(r2, θ2) of the
space is given by

or, in view of representation (19),

If the point M0 is at the axis Oz2, θ2 = 0 or π and
sinθ2 = 0; then, according to Eqs. (20) and (16),

The intensity of the secondary electric field at an

Mps 1–( )pIksTkF k p a2 a1 d, , , ,( ),
k 0=

∞

∑=

Iks 1–( )nF n k a1 a2 d, , , ,( )Qns θ0( ),
n 0=

∞

∑=

F p k a1 a2 d, , , ,( ) p k+( )!
p!k!

-------------------
a1

d
----- 

 
P a2

d
----- 

 
k 1+

,=

Fs

a2

a1
----- IksTkF 1 k a1 a2 d1, , , ,( )

k 0=

∞

∑–=

+ Vδ0n 1–( )nF n 1 a1 a2 d2, , , ,( )–( )Qns θ0( ).
n 0=

∞

∑

Fs VQ0s θ0( )
a2

a1
----- 

 
2

δ1s Q1s θ0( )–( ).+=

Ed M0( ) gradUd M0( )–
∂Ud

∂r2
---------er2

1
r2
----

∂Ud

∂θ2
---------eθ2

+ 
 –= =

Ed M0( ) Mz n pnr2
n 1– Pn θ2cos( )er2

n 0=

∞

∑–=

+ Mz
1
r2
---- pnr2

n d
dx
------Pn x( ) x θ2cos= θ2eθ2

.sin
n 0=

∞

∑

Ed
+ Ed r2 0,( ) Mz

1
r2
----

a2

d1
----- 

 
2

n n 1+( )
r2

d1
----- 

 
n

ez2
,

n 1=

∞

∑= =

Ed
– Ed r2 π,( )=

=  Mz
1
r2
----

a2

d1
----- 

 
2

1–( )nn n 1+( )
r2

d1
----- 

 
n

ez2
.

n 1=

∞

∑



288 EROFEENKO, SHUSHKEVICH
Table 1

d1/a2

r2/a2

0 0.2 0.4 0.6 0.8

1.1 0.975 0.962 0.943 0.911 0.844

0.0000042 0.0000032 0.0000023 0.000016 0.0000008

2.0 0.986 0.978 0.968 0.956 0.941

0.0000043 0.0000037 0.0000032 0.0000026 0.0000022

2.5 1.008 0.999 0.989 0.978 0.965

0.0000043 0.0000039 0.0000034 0.0000031 0.0000026

4 1.521 1.479 1.438 1.397 1.356

0.0000065 0.0000059 0.0000055 0.0000051 0.000046
arbitrary point M0(r2, θ2) in the domain D2 is given by

If the point M0 is on the axis Oz2, θ2 = 0 or π and

Using Eqs. (23), (20), and (16), we find that the

coefficients  are expressed through the solutions to
the infinite system of linear algebraic equations (26) as

If the dipole is at the point O1, the coefficients 
are calculated by the formula

The shielding (attenuation) constant at the point
M0(r2, θ2) in the domain D2 can be calculated by the
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formula

In the absence of the unclosed spherical sheath Γ,
the shielding constant K(±)(r2) at the point M0(0, 0) is
equal to

COMPUTING EXPERIMENT

Using the MathCAD 2000 software package [10],
we calculated the shielding constant K(±)(r2) for differ-
ent geometrical parameters of the shields and for differ-
ent materials of the thin-walled shell. The coefficients
given by (27), (28), and (30), which are convergent
series, were calculated with an accuracy of 10–6. Infinite
system (26) was solved by the truncation method [11].
The order of truncation was taken to be equal to 40,
which provided the solution of system (26) with an
accuracy of 10–6 for all the parameters of the problem
that were considered. The calculations were performed
for thin-walled shells S made of organic glass (εr = 3.7,

γ = 10−12 ) [12] and PPV material1 (εr = 5, γ = 0.1

). Here, ε = εrε0, ε0 = 10–9 , and µ = µ0 = 4π ×

10–7 . 

The shielding constant K(+)(r2) as a function of the
dipole position is given in Table 1: d1/a2 = 1.1 (first
row), d1/a2 = 2.0 (second row), and d1/a2 = 2.5 (third
row). The fourth row refers to the case when the dipole
is at the point O1 (d1 = d, d1/a2 = 4). The other parame-
ters were θ0 = π/3, a1/a2 = 1, d/a2 = 4, ∆ = 0.01a2, V = 0,
and f = 50 Hz. In each of the rows, the upper values cor-

1 http://infomag.apc.relarn.ru/texts/b007r/
1995_V002_%23013_notes.txt

K ±( ) r2( )
E2

±( )

Ed
±( )------------.=

K ±( ) 0( ) N1 .=

1
Ωm
---------

1
Ωm
--------- 1

36π
--------- F
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Table 2

d1/a2

∆/a2

0.01 0.005 0.002 0.001

1.1 0.931 0.964 0.986 0.994
0.000039 0.000078 0.000194 0.000388

1.5 0.955 0.982 0.984 0.999
0.000051 0.00011 0.000252 0.000503

1.9 0.988 1.012 1.026 1.030
0.000059 0.000118 0.000295 0.000589

3 1.121 1.141 1.154 1.158
0.000078 0.000156 0.000389 0.000778

Table 3

d1/a2

τ0, deg

30 60 90 120 150

1.1 0.987 0.988 0.989 0.991 1.005
0.0000083 0.0000084 0.0000084 0.0000084 0.0000087

1.5 0.988 0.991 0.993 0.994 1.038
0.0000083 0.0000084 0.0000084 0.0000085 0.0000089

1.8 0.991 0.995 1.001 0.981 1.067
0.0000083 0.0000084 0.0000085 0.0000083 0.0000092

4 1.122 1.182 1.096 0.789 0.258
0.0000095 0.0000098 0.0000093 0.0000067 0.0000022
respond to organic glass and the lower ones, to PPV
material.

The shielding constant K(+)(a2/2) as a function of the
dipole position and thickness ∆ of the spherical shell S
is listed in Table 2 for a central angle θ0 = π/2, a1/a2 = 1,
d/a2 = 3, V = 0, and f = 1000 Hz.

The shielding constant K(+)(0) as a function of the
dipole position and the central angle θ0 of the unclosed
spherical sheath S is listed in Table 3 for a1/a2 = 2,
d/a2 = 4, ∆ = 0.005a2, V = 0, and f = 50 Hz.

Based on the computing experiment, we may con-
clude the following.

(1) If a thin-walled shell is made of PPV material,
the shielding constant is virtually zero; i.e., the field
does not penetrate through the shell.

(2) As the distance between the field source and the
thin-walled shell S in the domain D3 (d2 > a1) increases,
the shielding constant increases irrespective of the
angle θ0 of the spherical sheath Γ; i.e., a grounded per-
fectly conducting unclosed sheath acts as a reflector
and raises the field inside the domain D2. If the field
source is in the domain D1 (0 ≤ d2 < a1), the shielding
constant increases if θ0 < 90° and decreases if θ0 ≥ 90°.

(3) The last term on the right of boundary condition
(2), being a third-order differential expression, influ-
ences the value of the shielding constant if the field
source is at a distance d1 ≤ 1.25a2.
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Abstract—The cross section of the absorption of a magnetic field by a cylindrical metal particle is calculated.
The general case when the ratio of the electron mean free path to the particle transverse size may take arbitrary
values is considered. The boundary conditions imply the mixed mirror–diffuse reflection of electrons from the
inner surface of the particle. The limiting cases are considered and results obtained are discussed. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The electromagnetic properties of small metal parti-
cles exhibit a number of special features [1, 2]. These
features stem from the fact that the electron mean free
path in such particles is comparable to their linear size.
In this case, nonlocal effects come to play an essential
role and the classical theory of interaction of electro-
magnetic radiation with metal particles (the Mie the-
ory) [3], which is based on local equations of macro-
scopic electrodynamics, turns out to be inapplicable.

The problem of the magnetic dipole absorption of
infrared radiation by spherical particles was considered
in [4, 5], where the conventional kinetic theory of the
degenerate Fermi gas of conduction electrons in metals
was used for the description of the particle’s electro-
magnetic response [6]. Consideration was restricted to
the purely diffuse scattering of conduction electrons
from the inner surface of the particle.

Later [7–9], the influence of the mirror reflection of
electrons on the electromagnetic properties of fine
metal particles was touched upon. The absorption of
the magnetic dipole radiation by a spherical particle
was considered in detail in [10], where the electron
reflection from the particle surface was assumed to be
of a mixed mirror–diffuse character [6].

In this paper, which is a generalization of [11], we
construct a theory of interaction between electromag-
netic radiation and a cylindrical particle with allowance
for the mixed (mirror–diffuse) character of electron
reflection.

STATEMENT OF THE PROBLEM

Consider an infinite metal cylinder with a radius R
and length L (L @ R) in the field of a plane electromag-
netic wave. We assume that the magnetic field of the
wave is aligned with the cylinder axis. In this system,
the absorption of electromagnetic radiation is due to the
occurrence of eddy currents. In the dipole approxima-
1063-7842/03/4803- $24.00 © 20290
tion and with the neglect of the skin effect (it is assumed
that R < δ, where δ is the skin depth), an eddy electric
field inducing these currents has the form

(1)

where H = H0exp(–iωt) is the magnetic field, r is the
radius vector (the origin of the coordinates is placed on
the axis of the particle), H0 is the amplitude of the mag-
netic field of the wave, ω is the circular frequency, and
c is the speed of light.

The average dissipated power  per particle is
found from the formula [12]

(2)

Here, the bar means time averaging, the asterisk
denotes complex conjugation, and j is the eddy current.
Let local Ohm’s law be applied to obtain the current j:

(3)

where Σ(ω) is the Drude conductivity [6, 13] and Σ(0) =
(e2nτ)/m is the static conductivity of the metal. Then,

dividing  by the mean energy flux c /8π in the
wave, we arrive at the classical relationship for the
cross section σcl of electromagnetic radiation absorp-
tion by the particle [12]:

(4)

where e, m, and n are the electron charge, electron
mass, and density of conduction electrons, respectively,
and τ is the relaxation time.

In this study, we assume that the particle radius R is
comparable to, or lower than, the electron mean free

E
1

2c
------ r

∂H
∂t
-------× ω

2ic
-------- r H0×[ ] iωt–( ),exp= =

Q

Q ReE( ) Re j( )⋅ d3r∫ 1
2
---Re j E*d3r.⋅∫= =

j ω( )E; Σ ω( )∑ σ 0( )
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------------------,= =
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path Λ in the metal. In this case, Eq. (3) is inapplicable
since the relationship between E and j becomes essen-
tially nonlocal. In order to find this relationship, we
apply the kinetic equation (in the relaxation time
approximation) to the degenerate Fermi gas of conduc-
tion electrons in a cylindrical particle. For weak exter-
nal fields E, this equation can be linearized in E and in
small deviations from the equilibrium Fermi distribu-
tion function:

(5)

Here,

(6)

is the electron distribution function, and f0(ε) is the
equilibrium Fermi distribution of electrons over energy.
In what follows, we consider the quadratic dependence
of the energy on the velocity, mv 2/2, and use a step
approximation of the equilibrium function f0(ε) [13]

(7)

In (7), εF = m /2 is the Fermi energy and f1(r, v) is a
small field-induced deviation of f from the equilibrium
value f0(ε), which generates the current

(8)

The electron concentration n is determined from the
standard formula

(9)

where h is the Planck constant and vF is the Fermi
velocity.

Substituting E in the form of (1) into Eq. (5), we find
f1 as a solution to Eq. (5). Next, from relationship (8),
we find the current and absorption cross section

(10)

In order to uniquely solve the problem posed, it is
necessary to establish a boundary condition on the par-
ticle surface for the unknown function f1. Physically,
this means that if R < Λ, the energy absorption by the
particle depends considerably on the interaction of con-
duction electrons with the particle boundary. Let the
boundary condition be

(11)
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where r⊥  and v⊥  are the respective projections of the
radius vector r and velocity v of an electron onto the
plane normal to the axis of the cylinder;

(12)

is the velocity vector that transforms into the vector v⊥ ,
being specularly reflected from the inner cylinder sur-
face at the point r⊥ (|r⊥ | = R); vz is the component of the
electron velocity along the axis of the particle; and q is
the probability of mirror reflection,

(13)

At q = 0, we deal with purely diffuse scattering of
conduction electrons; at q = 1, the reflection is purely
specular. At q ≠ 0 and q ≠ 1, we have different kinds of
mixed (mirror–diffuse) electron reflection.

DISTRIBUTION FUNCTION

Kinetic equation (5) is solved by the method of
characteristics [14]. The variation of f1 along the path
(characteristic)

(14)

is given by

(15)

where

(16)

is the complex scattering frequency.
Boundary condition (10) enables us to keep track of

f1 along the mirror-reflecting trajectory. At the point of
reflection t = tn, the function f1(t) experiences a discon-
tinuity:

(17)

The sign +/– denotes the limit of the function f1 at
the point of reflection tn on the right and left, respec-
tively.

For mirror reflection, the angular momentum is con-
served, [r⊥  × v⊥ ] = [r⊥  × ]; therefore, for the trajec-
tory considered,

(18)

The difference tn – tn – 1 does not depend on the num-
ber n of the point of reflection:

(19)

where T is the transit time of an electron with a velocity
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R2
-----------------------------–=

0 q 1.≤ ≤

dr vdt=

d f 1 ν f 1 e v E⋅( )
∂ f 0

∂ε
--------+ 

  dt,–=

ν 1
τ
--- iω–=

f 1 tn 0+( ) q f 1 tn 0–( ).=

v⊥'

r⊥ v⊥×[ ] const.=

tn nT const, n Z ,∈+=
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v⊥  from the point rn – 1⊥  to the point rn⊥ :

(20)

The value of v ◊ E also remains constant on the tra-
jectory:

(21)

The general solution to Eq. (14) is the function

(22)

Let us solve this equation in the interval (tn – 1, tn). At
the initial time moment (t = 0),

(23)

Then, the value of the constant C is

(24)

Now we can obtain a relationship between the initial
values of the function f1 in two adjacent segments of the
trajectory. Since tn – 0 = tn – 1 + T, we have

(25)

In view of condition (17),

(26)

Then, using this recurrence relation to express
f1(tn − 1 + 0) through f1(tn – 2 + 0) etc., we come to the
expression where f1(tn + 0) is represented as an infinite
geometric progression with a ratio qexp(–νT). Its sum
equals

(27)

In order to find a final solution to Eq. (15), we use
initial condition (27). When t = 0,

(28)

T
2 vn⊥ r⋅ n⊥( )

v ⊥
2

----------------------------.–=

v E⋅ ω
2ic
-------- r H×[ ] v⋅ iω

2c
------ r v×[ ] H⋅ const.= = =

f 1 C νt–( )exp
A
ν
---, where A– e v E⋅( )

∂ f 0

∂ε
--------.= =

f 1 tn 1– 0+( ) C
A
ν
---.–=

C
A
ν
--- f 1 tn 1– 0+( ).+=

f 1 tn 0–( ) A
ν
--- f 1 tn 1– 0+( )+ 

  νT–( )exp
A
ν
---–=

=  
A
ν
--- 1 νT–( )exp–( ) f 1 tn 1– 0+( ) νT–( ).exp+

f 1 tn 0+( ) q
A
ν
--- 1 νT–( )exp–( )–





=

---+ f 1 tn 1– 0+( ) νT–( )exp




.

f 1 tn 0+( ) qA 1 νT–( )exp–( )–
ν 1 q νT–( )exp–( )

-------------------------------------------------.=

qA 1 νT–( )exp–( )–
ν 1 q νT–( )exp–( )

------------------------------------------------- C
A
ν
---,–=
hence,

(29)

Therefore,

(30)

The parameters t and T can be related to the coordi-
nates of the point (r⊥ , v⊥ ) in the phase space (at n = 0,
v0⊥  = v⊥ ) as

(31)

where r0⊥  is the projection of the electron radius vector
at the instant of reflection from the particle boundary
onto the plane normal to the cylinder axis. Excluding
r0⊥ , we obtain

(32)

(33)

Relationships (30), (32), and (33) define completely
the function f1(r⊥ , v⊥ ).

ABSORPTION CROSS SECTION

The distribution function obtained enables us to cal-
culate the current (formula (8)) and average dissipated
power (formula (2)), as well as the absorption cross
section (formula (10)).

Integrals (8) and (2) are convenient to take in cylin-
drical coordinates both in the coordinate space (r⊥ , α,
rz, where the Z axis is the polar axis and the vector H0
is parallel to the Z axis), and in the velocity space
(v ⊥ , ϕ, v z). The cylinder axis coincides with the Z axis.
Field (1) in the cylindrical coordinates has only the ϕ
component:

(34)

Correspondingly, current (8) also has the ϕ compo-
nent alone (the current lines form closed circles cen-

C
A
ν
--- 1 q 1 νT–( )exp–( )

1 q νT–( )exp–
-----------------------------------------–

 
 
 

=

=  
A
ν
--- 1 q–

1 q νT–( )exp–
-------------------------------------

 
 
 

.

f 1 t( ) A
ν
--- 1 q–

1 q νT–( )exp–
-------------------------------------

 
 
 

νt–( )exp
A
ν
---–=

=  
A
ν
--- 1 q–( ) νt–( )exp

1 q νT–( )exp–
---------------------------------------- 1–

 
 
 

.

r⊥ r0⊥ v⊥ t; v⊥ r⋅ 0⊥ 0;<+=

r0⊥
2 R2; T

2 v⊥ r⋅ 0⊥( )

v ⊥
2

-------------------------– ,= =

t r⊥ v⋅ ⊥ r⊥ v⋅ ⊥( )2 R2 r⊥
2–( )v⊥

2+[ ] 1/2
+{ } /v ⊥

2 ,=

T 2 r⊥ v⋅ ⊥( )2 R2 r⊥
2–( )v⊥

2+[ ] 1/2
/v ⊥

2 .=

E Eϕeϕ ; Eϕ
iω
2c
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tered on the Z axis in planes normal to the Z axis):

(35)

Indeed, using the properties of the δ function, we
obtain

By virtue of the symmetry of the problem, integra-
tion over the whole range of velocities v z is replaced by
integration over the positive half-range and the result is
doubled.

Putting ξ = r⊥ /R and ρ = v ⊥ /v f and taking into
account that r⊥  ⋅ v⊥  = r⊥ v ⊥ cosϕ, we rearrange expres-
sions (32) and (33) into the form

(36)

(37)

Let us introduce the new variable

(38)

jϕ  = 2e
m
h
---- 

 
31
ν
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=  Eϕ2e2 m
h
---- 

 
31
ν
--- 2

m
---- 

  v ⊥
3

v F
2 v ⊥

2–
-----------------------

0
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Then, expression (35) takes the form

(39)

Using formulas (2) and (10), we calculate the
absorption cross section

(40)

where

(41)

The triple integral is reduced to the double integral
by changing the variables: (ξcosϕ, ξ sinϕ)  (u, w).
Indeed, we have

(42)

Integrating with respect to u yields the sum of three
double integrals, which describes the dimensionless
absorption cross section F(x, y):

(43)
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The last two integrals in sum (43) cannot be taken in
elementary functions.

DISCUSSION
In the limit of purely mirror reflection (q = 1), we

obtain the relationship for F(x, y)

(44)

In view of notation (38) and (41), cross section (40)
agrees completely with classical result (4), because the
boundary does not affect the electron distribution func-
tion f at q = 1. The eddy current inside a mirror-reflect-
ing extended cylinder (see (39)) meets local Ohm’s
law (3) at any relationship between the cylinder radius R
and electron mean free path Λ. Thus, nonlocal (surface)
effects are absent in the case of mirror reflection.

Irrespective of the character of reflection (at any q),
as the particle size increases (at x @ 1), we arrive at
macroscopic asymptotics (44). As follows from (43)
(where we neglect the last two integrals), the relative
contribution of the surface effects decreases as x–1(|z| ~ x).

In the case of purely diffuse reflection (q = 0), inte-
gral (43) is simplified:

(45)

The detailed kinetic analysis made it possible to
refine the applicability of the well-known approximate
description of nonlocal kinetic effects in fine metal par-
ticles. The central idea of this approach is to modify the
Drude formula (see above) and still retain formally
local relation (3) between the current j and field E. The
modification implies the substitution of the effective
time of electron relaxation τeff for the relaxation time τ,
τ  τeff, where τeff depends on the geometrical (R)

–
y2

z x y,( )2
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1 ρ2–
------------------
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∫
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∫
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 exp–
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-------------------.=
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1
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0

1

∫
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z x y,( )2
------------------ ρ4w2

1 ρ2–
------------------ ρd w.d

1–

1

∫
0

1

∫

and kinetic (q) parameters in much the same way as the
relaxation frequency depends on the bulk and surface
relaxation frequencies:

(46)

In (38), (46) takes the form

(47)

In terms of the modified Drude theory (MD theory),
the formula for the dimensionless absorption cross sec-
tion F(x, y) appears as

(48)

In the limit of purely mirror reflection (q = 1), for-
mula (48), as well as exact one (43), coincides with
classical formula (44); however, at q ≠ 1, (48) is an
approximation to exact formula (43). The greatest dif-
ference between the exact kinetic calculation and MD
theory arises in the case of purely diffuse electron
reflection (q = 0). Thus, the MD approximation (i.e., the
modification of Drude formula (44) by substituting
(46)) approximates the exact kinetic calculation for a
cylindrical particle with an accuracy of 50% or higher.
It should be noted that the oscillatory frequency depen-
dence of the dimensionless absorption cross section
F(x, y), which is the most noticeable for the diffuse
reflection (q = 0) of small particles (x ! 1), is basically
impossible in the MD approximation.

The results obtained in this study are presented in
Figs. 1–8.

Figures 1–3 show the dependences of the dimen-
sionless absorption cross section F on the dimension-
less frequency y of the external field. Figure 1 refers to
small particles with R ! Λ (x = 0). The curves are plot-
ted for different reflection coefficients q. The oscilla-
tory frequency dependence can be explained by the fact
that, for diffuse electron reflection from the particle sur-
face (q = 0), the surface effects, which decay with an
increase in the reflection coefficient q, are the most sig-
nificant.

Figures 2 and 3 are plotted for a fixed value of the
coefficient q. An increase in the particle radius
smoothes out the oscillation in the frequency depen-
dence in Fig. 2. With an increase in the reflection coef-
ficient, the absorption cross section decreases because
the contribution of the surface effects to the energy dis-
sipation is reduced.

Figure 3 compares the results obtained with the
kinetic approach with classical results (44) and (48).
Here, the particle radius is equal to the electron mean
free path (x = 1) and the reflection coefficient q = 0.1.
When the dimensionless frequency y is small (y < 2),
the adsorption cross section grows in proportion to y2

and all the three formulas give close results. As y
increases, the absorption rapidly tends toward satura-
tion. The results obtained by the classical formulas

τ 1– τeff
1– νeff τ 1– 1 q–( )v F/R.+= =

x xeff x 1 q.–+=

FMD x y,( ) π
6
--- x 1 q–+( )y2

x 1 q–+( )2 y2+
---------------------------------------.=
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asymptotically tend to FD(y) = πx/6 and FMD(y) = π(x +
1 – q)/6.

Figures 4–6 plot the dimensionless cross section F
against the dimensionless reciprocal mean free path x.
In Fig. 4, the dimensionless frequency y is fixed and the
reflection coefficient q is varied. In this figure, the
absorption cross section has the sharpest maximum at
q = 1 (in agreement with the classical result), this curve
emerging from the origin. At q ≠ 1, the dimensionless
absorption cross section is nonzero even at x = 0. With
an increase in the particle radius, the curves merge, fol-

0.6
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0.4

0.3

0.2

0.1

0 2 4 6 8 10
y

F(y)

2

1

Fig. 1. Dimensionless absorption cross section F vs. dimen-
sionless frequency y at the fixed dimensionless reciprocal
mean free path x = 0. The reflection coefficient q is (1) 0,
(2) 0.5, and (3) 1 (the last curve coincides with the y axis).
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Fig. 3. The same as in Fig. 1 for q = 0.1 and x = 1: (1) mod-
ified Drude formula, (2) kinetic calculation, and (3) Drude
formula.
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lowing the classical prediction. As the frequency
grows, so does the absorption cross section, since the
eddy electric field strength is proportional to the exter-
nal field frequency.

Figure 5 shows how the absorption cross section
varies with the dimensionless frequency y for a given
reflection coefficient q; namely, the absorption cross
section F increases with y.

With Fig. 6, the results obtained by the kinetic cal-
culations and with the classical Drude theory can be
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0 2 4 6 8 10
y

F(y)
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Fig. 2. The same as in Fig. 1 for q = 0.2 and x = 1 (1), 0.5 (2),
and 0 (3).
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Fig. 4. Dimensionless absorption cross section F vs. dimen-
sionless reciprocal mean free path x for the dimensionless
frequency y = 0.5 and reflection coefficient q = 1 (1), 0.5 (2),
and 0 (3).
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compared. At high x, they are practically identical.
Classical formulas (44) and (48) have the asymptotes
FD(x) = πy2/6x and FMD(x) = πy2/6(x + 1 – q), respec-
tively.

The effect of the reflection coefficient q on the
absorption cross section F can be clarified from Figs. 7
and 8. It is evident from Fig. 7 that, in the absence of
volume electron scattering, the absorption increases
with dimensionless frequency y. In this case, the
absorption cross section tends to zero at any y if the
reflection of electrons is purely mirror (q = 1). The rea-
son is that the absorption cross section is approximately
proportional to the sum of the volume and surface scat-
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Fig. 5. The same as in Fig. 4 for q = 0.8 and y = 2 (1), 1 (2),
and 0.5 (3).
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Fig. 7. Dimensionless absorption cross section F vs. reflec-
tion coefficient q at the fixed dimensionless reciprocal mean
free path x = 0. y = 2 (1), 1 (2), and 0.5 (3).
tering frequencies at large y (see (48)). At a given fre-
quency, the absorption cross section decreases with
growing reflection coefficient (Fig. 8).
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Abstract—In rotating stellar convective zones, heat transfer is shown to be associated with unbalanced azimuth
forces arising in the radially ascending (heated) or descending (cold) matter. The presence of a longitude-depen-
dent magnetic field generates additional azimuth forces, hence, new ways of compensating for the unbalanced
forces. Generally speaking, this magnetic field is variable but may be nearly static in layers where convective
equilibrium is replaced by radiative equilibrium. The condition for the coexistence of the static and usual fields
is derived. To this end, an axisymmetric azimuth magnetic field of energy comparable to the energy of rotation
should be introduced into models under consideration. In such configurations, conditions for magnetic field
generation, as in the Sun, may appear. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The conventional model of the convective zone
around a rotating star is based on the assumption that
the effective turbulent viscosity of the medium plays a
crucial role, as it is responsible for the differential rota-
tion and magnetic field generation (see, e.g., [1]). How-
ever, many attempts to construct an appropriate theoret-
ical model of differential rotation and solar activity
heretofore have failed. Moreover, the very fact that vis-
cous forces spontaneously sustain the rigid rotation of
the medium comes into conflict with the laws of ther-
modynamics, as was noted in [2].

Therefore, models that are based on the minimal
dissipation principle and ignore the turbulent viscosity
of the medium [3] seem to be more substantiated. Yet
these models, too, do not remove the contradictions
between the theory and observations. In particular, dif-
ferential rotation as in the Sun does form spontaneously
in terms of the minimum dissipation models [3], but the
latitude differentiation far exceeds that due to the Sun’s
rotation. In addition, in these models, a great role is
allocated to latitude differentiation described by higher
order modes, which has also not found experimental
support.

It is not improbable that the problem should be
treated with allowance for convective heat transfer in
the presence of the Coriolis force. With this in mind, it
should be noted that any radially moving convective
element of a rotating medium is subjected to an unbal-
anced azimuth force, which has not been considered up
to now in constructing the models.
1063-7842/03/4803- $24.00 © 20298
The azimuth balance condition in a nonviscous
rotating magnetized medium is given by

(1)

where v is the velocity, B is the magnetic field, ρ is the
density of the medium (which is assumed to be spheri-
cally symmetric), t is time, ϕ is the azimuth angle, and
iϕ is the azimuth unit vector.

In a rigidly rotating (with an angular velocity Ω)
medium, curlv = iz2Ω , where the z axis is parallel to the
axis of rotation; therefore, for a radially moving (with a
velocity v r) convective element, the Coriolis force in
Eq. (1) is azimuth. This force is nonzero not only at the
poles. It is obvious that such an azimuth force arises at
any differential rotation of the medium.

The velocity of convection in stellar atmospheres is
not low. According to Spruit’s estimates [4], the radial
velocity v r in the lower layers of the solar convective
zone is on the order of 103–104 cm/s. Substituting these
values into (1) yields characteristic times of variation of
vϕ from one year to one month if vϕ ≈ 2 km/s as in the
Sun. Certainly, here we are actually dealing with an azi-
muth force arising in ascending (heated) or descending
(cold) flows of matter; yet the unbalanced side force
may markedly disturb the radial motion of convective
elements and, hence, cause random variations of the
velocity of rotation, which make convective heat trans-
fer difficult. Thus, processes that regularize convective
heat transfer in stellar atmospheres may be of crucial
importance.

In the presence of longitude-dependent velocity and
magnetic fields, the force balance must include addi-
tional azimuth forces. If these additional forces prevail,

∂v ϕ

∂t
--------- curlv( ) v

1
4πρ
---------- curlB( ) B×–× iϕ+ 0,=
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new ways of compensating for the small unbalance
mentioned above appear. As will be shown later, the
additional forces are usually variable, which may be
related to solar activity. The problem discussed here is
also of interest for the theory of differential rotation of
the Sun and also for the theory of nonrigid rotation of
convective cores in stars.

Initially, it would be reasonable to study the static
model in order to perceive more fully difficulties asso-
ciated with the construction of a general theory. Specif-
ically, one can expect that the static condition will be
valid for equilibrium in transition layers between the
convective and radiative zones of stars. In Sect. 1, we
consider the basic condition for azimuth equilibrium in
the steady state, bearing in mind that relationships
derived in this section are a prerequisite for going to a
more general nonstationary problem. The discussion of
the results is given in Sect. 2.

1. AZIMUTH EQUILIBRIUM

The equilibrium problem for a magnetized rotating
gravitating medium can be solved by using the quan-
tum-mechanical apparatus for expanding vector fields

in orthogonal spherical vector harmonics , where
λ = 0 or ±1, J ≥ 0 is an integer, and M = –J, –J + 1, …, J.
(For detailed derivation of all basic relationships, see
[5].) It is important here that radius–time and angular
variables in general nonlinear equations are separated
without loss of generality. The reduction of the basic
relationships to a form convenient for astrophysical
applications is carried out in [6, 7]. It is also significant
that there may arise difficulties associated with the non-
existence of a solution [7–9] because the equations of
motion are nonlinear.

The disturbances of azimuth equilibrium (see Intro-
duction) are nonaxisymmetric (M ≠ 0). Then, a set of
equations for longitude-dependent variable parameters
includes Eq. (1) and a similar equation for the ϕ com-
ponent of the induction. These fields with M ≠ 0 will be
imposed on rotational and magnetic structures symmet-
ric about the axis of rotation.

With the relationships derived in [6] and negligibly
small poloidal components of the fields, the basic equa-
tions after the separation of variables take the form

(2)

(3)

Y JM
λ( )

r
∂
∂t
-----v JM

0( ) M

2J 1+( )1/2
------------------------- T J1 J2

J J1 J2–( )
J1 J2

∑–=

× J1 J2 1+ +( ) v J1M
0( ) v J20

0( ) AJ1M
0( )

AJ20
0( )–( ),

r
∂
∂t
-----AJM

0( ) MJ J 1+( )
2J 1+( )1/2

-------------------------=

× T J1 J2

J

J1 J2

∑ v J1M
0( ) AJ20

0( ) AJ1M
0( )

v J20
0( )–( ),
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where M ≠ 0,  = /(4πρ)1/2 is the Alfvén veloc-

ity,  (or ) is the coefficient in the formula for
the rotation velocity (or axisymmetric azimuth mag-

netic field),  = /M is the numerical
factor that will be discussed in the Appendix, and the
sum J + J1 + J2 is odd.

We will study the longitude-dependent static fields
with various subscripts M, assuming that the rotation
velocity is symmetric about the equator (i.e., that the

coefficients  have odd J) and the azimuth magnetic
field is characterized by complementary symmetry (J is
even). We also assume that the symmetry of the coeffi-
cients with M ≠ 0 is complementary symmetry com-
pared with the coefficients with M = 0. Finally, in what

follows, the designations uJ = /  and aL =

/ , where J = 1, 3, 5, … and L = J + 1, will be
used.

In the general case, Eqs. (2) and (3) define the har-
monic variations of the longitude-dependent fields. For
the case of the rigid stationary rotation of a nonmag-
netic medium, the former describes Rossby waves
whose angular frequency divided by the angular veloc-
ity of rotation equals –M(J – 1)(J + 2)/[J(J + 1)] [10].
Note also that the generation of the longitude-depen-
dent field should be studied in terms of more rigorous
equations where the poloidal components of the fields
are taken into account (see calculations in [11, 12]).

Nevertheless, a number of important conclusions
can be drawn by studying the steady-state equilibrium
state. In this case, the right-hand sides of Eqs. (2) and
(3) represent a set of homogeneous linear equations for

 and  with M ≠ 0. Clearly, for solutions to
these equations to exist, it is necessary that the param-

eters  and  (or uJ and aL) satisfy the associated
solubility condition, that is, that the determinant made
up of the coefficients multiplying these parameters with
M ≠ 0 be equal to zero.

Below, it will be shown that a stationary single-
mode model is of most interest. In this model, only the
first coefficients u1 and u2 are essential in the expan-
sions of the axisymmetric fields (u1 is set equal to
unity). If we put M = ±1 at once, Eqs. (2) and (3) take
the form

(4)

AJM
0( )

BJM
0( )

v J0
0( ) BJ0

0( )

T J1 J2

J CJ1M J20
JM ΘJ1 J2

J

v J0
0( )

uJ0
0( ) v 10

0( )

AL0
0( ) v 10

0( )

v JM
0( ) AJM

0( )

v J0
0( ) AJ0

0( )

5( )1/2a2

J 2J 1–( )1/2
----------------------------v J 1– M,

0( ) 2J 1+( )1/2

J J 1+( )
-------------------------AJM

0( )–

+
5( )1/2a2

J 1+( ) 2J 3+( )1/2
-------------------------------------------v J 1+ M,

0( ) 0; J 1 3 …,, ,= =

5( )1/2a2 J 3–( ) J 2+( )
J 2J 1–( )1/2

-----------------------------------------------------AJ 1– M,
0( )
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(5)

where the first and last terms (with the subscripts J –
1 = 0 and J + 1 > N) in the first and last equations must
be omitted. Here, N is the order of the determinant that
follows from the solubility condition for the entire set

–
J 1–( ) J 2+( ) 2J 1+( )1/2

J J 1+( )
------------------------------------------------------------v JM

0( )

+
5( )1/2a2 J 1–( ) J 4+( )

J 1+( ) 2J 3+( )1/2
-----------------------------------------------------AJ 1+ M,

0( ) 0, J 2 4 …,, ,= =
of N variables. Note that N is an even number. Cer-
tainly, only solutions that depend on N insignificantly
are of interest. The matrix corresponding to the left-
hand sides of the last equations is tridiagonal: only the
principle diagonal and two adjacent diagonals are
filled.

Let us also give the solubility condition for the case
when the first-order corrections to the latitude differen-
tiation of rotation are taken into account. For N = 4 and
M = ±1, this condition is reduced to
(6)

T11
1

T22
1 a2– T33

1 u3 T44
1 a4–

4T12
2

a2– 4T21
2– 6T23

2 u3+ 6T32
2 a2 8T34

2 a4– 8T43
2

u3–

T13
3 u3 –T22

3 a2 T24
3 a4– T31

3
T33

3 u3+ –T42
3 a2 T44

3 a4–

18T14
4 a4– 6T23

4 u3 6T32
4 a2 8T34

4 a4– –18T41
4 8T43

4 u3–

0.=
As was already noted, a solution to these equations

is true when the parameters  and  found from
them are virtually independent of N. Note in passing
that a solution is absent if N = 2. Latitude differential
rotation observed in the Sun roughly meets the condi-

tion u3 = /  ≈ –0.05 [2, 7]. It appears that if
|u3| < 0.1 (with the same restriction imposed on the
coefficients u5, u7, …, a4, a6, …), a solution to Eqs. (2)
and (3) nearly coincides with that of (4) and (5) and
becomes almost independent of both N and all the coef-
ficients except u1 (taken to be equal to unity) and a2 pro-
vided that the maximal value of J, Jmax, is sufficiently
large (e.g., Jmax ≥ 100; i.e., N ≥ 100). This solution spec-
ifies the first coefficient in the expansion of the azimuth
Alfvén velocity:

(7)

If N = 4, 8, or 12 and the correction coefficients u3,
a4, etc., are negligibly small, |a2| equals 0.847, 0.525,
and 0.482, respectively, and depends noticeably on the
coefficients u3, etc. For example, with N = 4, a4 = 0, and
u3 = –0.05, we find from Eq. (6) the solution a2 = 0.814.
If N = 4 and a4 = u3 = –0.05, then a2 = 0.782. Thus, in
going from the very crude to exact solution, a2 substan-
tially decreases and becomes insensitive to the latitude
variation of the fields.

In the case of the configuration with |M| > 1, all
terms in basic equations (4) and (5) must be multiplied
by M; also, the terms containing coefficients with the
subscripts J ± 1 and M must be additionally multiplied,
respectively, by {[(J + I) – M2]/[(J + I)2 – 1]}1/2, where
I = (1 ± 1)/2. It is easy to check that the above consid-
erations are valid when M is not too large, i.e., when the
ratio |M|/Jmax is a small quantity.

v J0
0( ) AJ0

0( )

v 30
0( ) v 10

0( )

a2 A20
0( )

/v 10
0( ) . 0.449.±=
It is seen that the stationary solution found describes
fields that are virtually independent of the differential
latitude rotation. If latitude differentiation is com-
pletely absent, the radius-dependent angular velocity,

(8)

and the azimuth magnetic field,

(9)

are related to each other as

(10)

For example, at the bottom of the solar convective
zone, the linear rotation velocity rΩ is ≈2 km/s and the
density ρ ≈ 0.1 g/cm3; then, if the condition under dis-
cussion is met, a maximal magnetic field of Bϕ ≈
110 kG is attained at a latitude of 45°.

The amplitudes of the longitude-dependent modes
with the subscript M (M modes) can be found from (4)
and (5) if the amplitude of the mode with the least sub-
script J is normalized. We will assume below that wJ =

 (if J is odd) or  (if J is even). For M = 1, we

put  = 1; for M = 2,  = 0 and  = 1. In the
figure, the variation of the amplitudes for these two
cases is depicted by the continuous and dotted curves.
The amplitudes are seen to severely rotate when the
subscript J changes. For example, with J ≥ 30, the
amplitude may exceed its initial value by more than
three orders of magnitude.

2. DISCUSSION
The solution found indicates that the regularization

of convective heat transfer in a rotating star is possible
if both the axisymmetric azimuth magnetic field and

Ω v ϕ / r ϑsin( ) i 3/ 8π( )[ ] 1/2 v 10
0( )/r( ),= =

Bϕ i 15/ 32π( )1/2B20
0( )

2ϑ( )sin[ ] ,=

Bϕ 0.449 5πρ( )1/2rΩ 2ϑ( ).sin±=

AJM
0( ) v JM

0( )

A11
0( ) A12

0( ) v 22
0( )
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the longitude-dependent rotational and magnetic fields
are present in the stellar atmosphere. At the bottom of
the solar convective zone, this axisymmetric azimuth
magnetic field equals about 110 kG irrespective of
whether the latitude differentiation of the angular
velocity takes place. This field can be compared with
that defined by mechanical equilibrium. For the angular
velocity of rotation depending on the radius r alone,
these conditions were discussed in [11]. We will
assume that at the bottom of the solar convective zone,
the medium is stratified and quasi-adiabatic. First, only
effects induced by axisymmetric fields will be dis-
cussed.

It is easy to show that the axisymmetric magnetic
force that sustains the differential (in respect to the
radius) rotation of the medium is described by a vector
containing three spherical harmonics with the principal
subscripts J = 0, 2, and 4. For J = 0, the equilibrium
condition is met readily. With J = 2, equilibrium is
established in the presence of the appropriate radial
gradient of the angular velocity (see Eq. 42 in [11]).
Under our conditions (ρ ≈ 0.1 g/cm3), equilibrium takes
place when the angular velocity varies as r0.38. Such a
radial dependence of the angular velocity at the bottom
of the solar convective zone may fit helioseismic data
reported, e.g., in [13].

Difficulties arise in the case J = 4, when Eq. (26) in
[11] is valid. In this case, the last term of this equation
vanishes in an adiabatically stratified medium. This
equation could be satisfied if the magnetic field
decreased with increasing radius. This would mean that
the angular velocity of rotation decreases with altitude.
This, however, contradicts both the result obtained
above and helioseismic data. In essence, we arrive at
the conclusion that the equations of equilibrium cannot
be solved for an adiabatically stratified medium if the
standard conditions are considered (the fields are axi-
symmetric) and the angular velocity depends on the
radius. This conclusion remains true irrespective of
whether condition (10) of convective heat transfer reg-
ularization is taken into account or not. If the latitude
differentiation of rotation is lacking, the situation
becomes still more aggravated.

The conclusion that the equations of equilibrium are
unsolvable is not related to any model concepts; there-
fore, here we are dealing with a fundamental problem
of theoretical astrophysics. The fact is that, as applied
to our nonlinear equilibrium problem, the number of
coefficients to be found grows more slowly than the
number of equations for these coefficients when one
passes from one approximation to another (higher
order) approximation. We believe that the only way to
tackle this theoretical problem is to supplement the
general equation for force balance with the averaged
forces introduced by the longitude-dependent M
modes. In this case, additional equations of equilibrium
will certainly arise for layers between the convective
and radiative zones (in the very convective zone, non-
TECHNICAL PHYSICS      Vol. 48      No. 3      2003
stationary processes are expected to play a decisive
role). These additional equations will probably be sat-
isfied by exciting weak horizontal motions of the
medium. Such a supposition is based on recent heli-
oseismic data [14] indicating dynamic variations in the
velocity of rotation of the Sun with periods of about a
year in layers with relative radii of 0.63 and 0.72. These
layers are below or near the convective zone boundary.
It is also important here that the presence of the longi-
tude-dependent fields makes it possible to regularize
convective heat transfer.

Certainly, it seems unlikely that the amplitudes of
the M modes be comparable with the amplitudes of the
axisymmetric modes. However, the combined effect
may arise from those large-amplitude M modes located
near an extremum in the figure. For example, in the case
of modes with amplitudes from (2/3)(wJ)max to (wJ)max,
where (wJ)max is the largest amplitude corresponding to
a given maximum, the force generated by these M
modes will most likely be comparable to the standard
force if the longitude-dependent field is one order of
magnitude smaller than the axisymmetric field.

These results favor the opinion that convection in
rotating stellar atmospheres is closely related to mag-
netic phenomena. We considered only the quasi-sta-
tionary situation, which occurs either at the bottom of
the convective shell or at the top of the convective core.
For the entire convective shell, as has been stated, non-
stationary processes generating a longitude-dependent
magnetic field are of great concern [11, 12, 15]. It
should be stressed that this magnetic field is generated
spontaneously in the presence of a rather weak meridi-
onal circulation of the medium. For example, the char-
acteristic time of field generation in the Sun is about ten
years if the circulation rate in the interior is as low as
10 cm/s. Relations between the magnetic field genera-
tion and convective heat transfer regularization call for
special investigation.

2000

1000
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–1000

–2000
0 50 100 150 200
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M = 1

Amplitudes of the longitude-dependent Alfvén (if n is odd)
and rotational (if n is even) velocities for M = 1 (continuous
line) and M = 2 (dotted line) vs. mode number. The initial
fragments of the curves are depicted.
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APPENDIX

The numerical coefficients  are determined with
the equations given in [6]; however, the form of
Eqs. (8), (9), (13), and (22)–(24) in [6] is inconvenient.

In them, v1, v2, and  should be replaced, respec-

tively, by u, v, and , where λ may stand for ±1, 0,
or λ1. The same substitutions should be made in
Eqs. (34)–(37) in [7], where the last superscript in (36)
should be –1.

Using the relationships given in [5], one can derive
the following formulas for the numerical coefficients

 entering into Eqs. (2) and (3):

Here, f = [3/(8π)]1/2 and δ(J, K) equals unity for J = K
or otherwise zero.

TKL
J

v J1M1

λ( )

uJ1M1

λ( )

TKL
J

TK1
J f

2J 1+( )1/2

J J 1+( )
-------------------------δ J K,( ),–=

TK2
J f 2 5( )1/2δ J K 1+,( ) δ J K 1–,( )+

J K 1+ +( ) 2K 1+( )1/2
-------------------------------------------------------------,–=

TK3
J f

14( )1/2

4
--------------- 5 δ J K 2+,( ) δ J K 2–,( )+[ ]

J K 1+ +( ) 2K 1+( )1/2
---------------------------------------------------------------------





–=

+
6 J 1–( ) J 2+( ) 2J 1+( )1/2

J J 1+( ) 2J 1–( ) 2J 3+( )
---------------------------------------------------------------δ J K,( )



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J f

9 15( )1/2

4 2 2K 1+( )[ ] 1/2
--------------------------------------–=

× 7 J K 1+ +( ) δ J K 3+,( ) δ J K 3–,( )+[ ]
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Abstract—The distribution of the two-dimensional gas velocity inside ion-irradiated laser cells is considered
for low ion energy deposits into the gas. It is shown that, if the energy deposit is smoothly nonuniform, the two-
dimensional motion has two quasi-one-dimensional components: the longitudinal gas velocity is practically
uniform across the cell and depends on the transversely averaged energy deposit, while the transverse velocity
component depends on the difference between the local energy deposit and energy deposit averaged over the
transverse direction. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The basic principle behind nuclear-pumped laser
operation is the production of inversely populated las-
ing levels in the gas medium via irradiation by ions that
are products of nuclear reactions (usually, fission frag-
ments from uranium layers; see review [1]). A nonuni-
form energy deposit from the ions into the gas leads to
the redistribution of the gas density in the cell [2–7] and
thereby adversely affects the lasing quality [2, 6]. One-
dimensional calculations of the transverse gas motion
in a gastight cell [2–6] and the numerical calculation of
the two-dimensional gas density distribution over a
flowing gas cell [7] have been carried out; however, the
problem of two-dimensional distribution of the gas
velocity has yet to be solved.

In this paper, the method of separation of variables
is applied to analyze the two-dimensional gas motion
inside a cell irradiated by fission fragments. The energy
deposit from the fragments into the gas is assumed to be
low (as compared with the internal gas energy). In this
case, the gas velocity field is irrotational and is
described by the scalar potential satisfying the Poisson
equation [8].

BASIC PHYSICAL PROCESSES

A nuclear-pumped laser is a gas-filled (gastight or
flowing-gas) cell with thin uranium layers on its inner
surface that irradiate the gas (Fig. 1). Here, cells with
plane layers inside are considered in the two-dimen-
sional approximation. For gastight cells [5], the x axis
is directed along the optical one (the length of such
cells is L ≈ 1 m); for flowing-gas cells [6], the x axis is
aligned with the gas flow and runs transversely to the
optical axis (L ≈ 0.1 m). The width of either cell is 2h ≈
0.01 m.
1063-7842/03/4803- $24.00 © 20303
The key gasdynamic factor for such cells is the
energy deposit from fusion fragments irradiating the
gas from the uranium layers. The energy δQ of the frag-
ments that is absorbed by a small gas volume δV for a
time δt can be represented in the form [4, 5]

(1)

where ρ(x, y, t) is the gas density; ρ0 is the initial gas
density; P0 is the initial gas pressure; γ ≈ 5/3 is the ratio
of the specific heat at constant pressure to that at con-
stant volume; F(x, y, t) is the energy deposit function
depending on the cell geometry, neutron flux distribu-
tion, and gas density (F(x, y, t) ≈ 1) [9]; Θ is a dimen-
sionless energy deposit parameter; and ψ(t) is the time-
dependent neutron flux profile such that its integral
taken over the irradiation time τ is normalized to unity.

For gastight cells, τ is the duration of the neutron
pulse (≈1 ms); for flowing gas cells, τ is the character-
istic time of the gas flow: τ = L/U0 ≈ 0.01 s, where U0 ≈
10 m/s is the gas velocity at the cell inlet (x = 0). The
parameter Θ is introduced as a thermodynamic measure
of the energy deposit [4]: it equals the ratio of the fis-
sion fragment energy absorbed by a homogeneous ideal
gas with a density ρ0 in the cell for a time τ to the inter-
nal energy of this gas. In practice, Θ < 1 or Θ ≈ 1.0

δQ
δVδt
------------

ΘP0

γ 1–
-----------ρ x y t, ,( )

ρ0
---------------------ψ t( )F x y t, ,( ),=

y L

A

Q
2h

x

Fig. 1. Nuclear-pumped laser cell. Q, cell; A, uranium layer.
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[5, 6]. In this study, Θ is a small parameter: we assume
that Θ ! 1.

The second small parameter is the Mach number M.
In gastight cells, the transverse gas velocity is w < h/τ
and the longitudinal velocity is u < L/(2τ); in flowing
gas cells, u ≈ U0. For gases used in nuclear-pumped
lasers (He or Ar at a pressure P0 ≈ 1 atm), the speed of
sound v s ~ 103 m/s; therefore, for gastight cells w/v s <
10–2 and u/v s < 0.5, while for flowing gas cells w/v s <
10–3 and u/v s < 10–2. Thus, the gas pressure is practi-
cally uniform across the cell. Along flowing gas cells,
the pressure is also uniform. However, for gastight
cells, the longitudinal pressure can be considered to be
uniform only if it is taken into account that u ! L/(2τ)
when Θ ! 1. The presence of considerable gas density
differences at low Mach numbers, which is due to inter-
nal heat sources (see (1)), is a key feature of gas dynam-
ics in nuclear-pumped lasers. Viscosity and heat con-
duction play a noticeable role only in the narrow near-
wall layer. In most of the cell volume, their effect is
negligibly small [2, 3, 6]. Under these conditions, the
gas motion is virtually self-consistent thermal expan-
sion over the cell volume; the self-consistency is condi-
tioned by the pressure uniformity.

GASDYNAMIC MODEL

The gas is assumed to be ideal, inviscid, and non-
heat-conducting, and the pressure is set equal to the
cell-volume-averaged value:

where 〈…〉V means volume averaging.
The fission fragment energy ∆Q that is released in a

gas volume element V raises the internal gas energy
E = PV/(γ – 1) and does the expansion work P∆V:

In the limit V  0 and in view of the mass conser-
vation condition (∆V/V  –dρ/ρ), we have

(2)

subject to the continuity equation

where v is the gas velocity.
The neglect of heat removal in gastight cells yields

(3)

In flowing gas cells, P = P0 under steady-state gas
flow conditions.

The set of Eqs. (1)–(3) was solved for one-dimen-
sional transverse gas motion in a gastight cell [3, 4]. In
this case, the energy deposit function can be assumed to

p x y t, ,( ) P t( ) p x y t, ,( )〈 〉 V ,≈≈

γ 1–( )∆Q γP∆V V∆P.+=

γ 1–( ) δQ
δVδt
------------ dP

dt
------- – 

γP
ρ

------ dρ
dt
------⋅=

1
ρ
---dρ

dt
------ divv+ 0, v u w,( ),= =

dP
dt
------- γ 1–( ) δQ

δVδt
------------

V
.=
be fixed in Lagrangian coordinates: F(x, y, t) = F0(y0),
where y0 is the Lagrangian coordinate defined by the
equation ρ0dy0 = ρ(y, t)dy. In this case, the energy
deposit is easily averaged and the gas pressure is deter-
mined at once. According to (1) and (3),

because the energy deposit function F(x, y, t) is normal-
ized so that [4, 5] its volume-averaged value in a cell
containing an unperturbed gas with a density ρ0 is equal
to unity: 〈F(x, y, 0)〉V = 1. Hence,

At a specified gas pressure and energy deposit
related to the Lagrangian coordinates, Eq. (2) is easily
solved in the Lagrangian coordinates (y0, t) [3, 4]; the
return to the Eulerian coordinates can be accomplished
through the continuity equation. Thus, for one-dimen-
sional gas motion, Eqs. (2) and (3), which express the
first law of thermodynamics, allow one to completely
solve the gasdynamic problem. At low Mach numbers
M, the solution obtained is practically exact [3] and
even at M  1 it well describes the dynamics of the
smoothed density profile (on which, however, acoustic
ripple is imposed [3]).

For two-dimensional flows, the situation is much
more complicated. First, the energy deposit function is
not fixed in the Lagrangian coordinates. Second, even
if the gas density distribution is known, it is impossible,
generally speaking, to describe the two-dimensional
flow using the continuity equation alone: one must also
invoke the Euler equation and consider the nonuniform
pressure p(x, y, t). Nevertheless, at low energy deposits,
Eqs. (2) and (3) still make it possible to obtain an
approximate two-dimensional distribution of the gas
velocity. According to the Helmholtz theorem, a vector
field is defined by its divergence and curl (up to a con-
stant vector). The velocity field divergence is given by
(2) and (3), while the velocity curl is given by the Fried-
mann equation [10], which in the two-dimensional case
takes the form

At low energy deposits (Θ ! 1), the differences in
the gas velocities and densities (and, consequently, the
pressure difference) are first-order perturbations in Θ,

dP
dt
------- ΘP0ψ t( )1

h
--- ρ y t,( )

ρ0
---------------F0 y0( ) yd

0

h

∫=

=  ΘP0ψ t( )1
h
--- F0 y0( ) y0d

0

h

∫ ΘP0ψ t( ),=

P t( ) ΘP0 ψ t'( ) t'.d

0

t

∫=

dω
dt
------- ωdivv+

1

ρ2
----- ∇ρ ∇ p× , ω curlv .= =
TECHNICAL PHYSICS      Vol. 48      No. 3      2003



TWO-DIMENSIONAL GAS MOTION IN NUCLEAR-PUMPED LASER CELLS 305
as is the time integral of the divergence. Therefore,

If the gas is initially at rest or executes irrotational
motion, the curl of the velocity is of higher order of
smallness in Θ than the divergence of the velocity.
Thus, at low energy deposits (and at high deposits at the
initial stage), the gas flow can be assumed to be vortex-
free [8] and one can introduce a scalar potential Φ(x, y, t):

which satisfies, according to (2), the Poisson equa-
tion [8]

(4)

Here, ∆ is Laplacian.

At small Θ, energy deposit (1) can be calculated for
a gas with an unperturbed density: ρ(x, y, t) = ρ0 (in this
case, F(x, y, t) = F0(x, y) is a known function [9]). In the
first order of smallness in Θ for gastight cells, we have,
subject to (3),

(5)

for flowing gas cells under steady-state flow conditions,
when ψ(t) = 1/τ = U0/L,

(6)

Time does not appear explicitly in Eq. (4) for the
potential. The velocity distribution is quasi-stationary
in the sense that at each time instant the velocity field is
related to the gas pressure and energy-deposit distribu-
tion that are present at this instant and varies simulta-
neously with them in time. The time dependence of the
velocity is virtually parametric. Hereafter, the argu-
ment t will be omitted.

ω t( ) divv t'd

0

t

∫–
 
 
 

exp=

× ω 0( ) divv t''d

0

t'

∫ 
 
 

∇ρ ∇ p× t'd

ρ2d
--------exp

0

t

∫+
 
 
 

≈ ω 0( ) 1 divv t'd

0

t

∫–
 
 
 

∇ρ ∇ p× t'd

ρ2
-----, Θ ! 1.

0

t

∫+

v ∇Φ , divv ∆Φ 1
ρ
---dρ

dt
------,= = =

∆Φ G x y t, ,( ),=

G x y t, ,( ) 1
γP
------ γ 1–( ) δQ

δVδt
------------ 

  dP
dt
-------–

 
 
 

.=

G x y t, ,( ) γ 1–
γP

----------- δQ
δVδt
------------ 

  δQ
δVδt
------------

V
–

 
 
 

=

≈ Θ
γ
----ψ t( ) F0 x y,( ) F0 x y,( )〈 〉 V–{ } , Θ ! 1;

G x y,( ) γ 1–
γP0
----------- δQ

δVδt
------------ 

  Θ
γ
----

U0

L
------F0 x y,( ), Θ ! 1.≈=
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GENERAL SOLUTION FOR THE VELOCITY 
POTENTIAL

Equation (4) can be solved by the method of separa-
tion of variables. For the transverse velocity w(x, y), the
boundary conditions in gastight and flowing gas cells
are the same:

They correspond to symmetric eigenfunctions χn(y) =
cos(πny/h) of the homogeneous equation ∆Φ = 0. The
potential Φ(x, y) and function G(x, y) can be expanded
into series in these functions:

(7)

(8)

where

and 〈…〉y means averaging across a cell.

From (4), (7), and (8), it is seen that the zero-order
potential ϕ0(x)/2 specifies the longitudinal velocity
U(x), for which

(9)

For flowing gas cells, U0 is the gas flow velocity; for
gastight cells, U0 = 0 and U(L) = 0, according to (5).
From (4) and (9), it follows that the zero-order potential
ϕ0(x)/2 corresponds to the problem with transverse
averaging, that is, describes the longitudinal gas motion
in the one-dimensional approximation.

For the expansion coefficients of first and higher
orders ϕ(x), it follows from (4), (7), and (8) that

(10)

w x 0,( ) = 
∂Φ
∂y
------- x 0,( ) =0, w x h±,( ) = 

∂Φ
∂y
------- x h±,( ) = 0.

Φ x y,( )
ϕ0 x( )

2
------------- ϕn x( ) any( ),cos

n 1=

∞

∑+=

ϕn x( ) 2
h
--- Φ x y,( ) any( )cos y,d

0

h

∫=

G x y,( )
g0 x( )

2
------------- gn x( ) any( ),cos

n 1=

∞

∑+=

gn x( ) 2
h
--- G x y,( ) any( )cos y,d

0

h

∫=

an
πn
h

------,
g0 x( )

2
------------- G x y,( )〈 〉 y,= =

dU
dx
-------

1
2
---

d2ϕ0

dx2
-----------

g0 x( )
2

------------- G x y,( )〈 〉 y,= = =

U x( ) G ξ y,( )〈 〉 y ξ U0.+d

0

x

∫=

d2ϕn

dx2
----------- an

2ϕn x( )– gn x( ),=
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(11)

Thus, in the general case, the gas velocity compo-
nents are given by

(12)

(13)

(14)

The coefficients An and Bn are defined by the bound-
ary conditions for the longitudinal velocity u(x, y).
Since these conditions for gastight and flowing gas cells
are different, the two cases should be considered sepa-
rately.

GASTIGHT CELLS

In gastight cells, the boundary conditions for the
longitudinal velocity u(x, y) are the same as for the
transverse one: u(0, y) = u(L, y) = 0. Substituting these
conditions into (12) gives the general solution to the
problem:

(15)

(16)

ϕn x( )
anx( )exp

2an

---------------------- An gn ξ( ) anξ–( )exp ξd

0

x

∫+
 
 
 

=

–
a– nx( )exp

2an

-------------------------- Bn gn ξ( ) anξ( )exp ξd

0

x

∫+
 
 
 

.

u x y,( ) ∂Φ
∂x
------- U x( ) v n x( ) any( ),cos

n 1=

∞

∑+= =

v n x( ) = 
dϕn

dx
--------- = 

anx( )exp
2

---------------------- An gn ξ( ) anξ–( )exp ξd

0

x

∫+
 
 
 

+
a– nx( )exp

2
-------------------------- Bn gn ξ( ) anξ( )exp ξd

0

x

∫+
 
 
 

,

w x y,( ) ∂Φ
∂y
------- anϕn x( )–[ ] any( ).sin

n 1=

∞

∑= =

Bn An–
1
anL( )sinh

------------------------ gn ξ( ) an L ξ–( )[ ]cosh ξ ,d

0

L

∫= =

ϕn x( ) 1
an

----- gn ξ( ) an x ξ–( )[ ]sinh ξd

0

x

∫



=

–
anx( )cosh
anL( )sinh

------------------------- gn ξ( ) an L ξ–( )[ ]cosh ξd

0

L

∫ 



,

v n x( ) gn ξ( ) an x ξ–( )[ ]cosh ξd

0

x

∫=

–
anx( )sinh
anL( )sinh

------------------------ gn ξ( ) an L ξ–( )[ ]cosh ξ .d

0

L

∫

If the energy deposit is transversely uniform, that is,
F = F(x), then gn = 0, v n = ϕn = 0, and the solution is
reduced to one-dimensional longitudinal motion (9).
If the energy deposit is uniform in the longitudinal
direction (F = F(y)), the solution is reduced to one-
dimensional transverse motions [3, 4]. In this case,
according to (5), G = G(y), 〈G〉y = 〈G〉V = 0, transversely
averaged velocity (9) is equal to zero, and the expan-
sion coefficients gn do not depend on x. According to
(15) and (16),

that is, the longitudinal velocity is equal to zero and the
transverse velocity, according to (14), is given by

In view of (4), this corresponds to (2) for one-dimen-
sional transverse motions. Thus, the obtained distribu-
tion of the two-dimensional velocity covers, as particu-
lar cases, both longitudinal (G = G(x), gn = 0) and trans-
verse (G = G(y), 〈G〉y = 0, and gn does not depend on x)
one-dimensional flows.

The general solution, given by (12)–(16), has a
rather complicated form; however, in practically impor-
tant cases, it can be simplified considerably. Usually,
the energy deposit is smoothly nonuniform along the
cell: G(x, y,) and, accordingly, gn(x) vary considerably
with x over distances ~L @ h, whereas the exponential
functions under the integral sign in the general solution
vary steeply over distances ~h even at n ≈ 1. Therefore,
with a good accuracy, the function gn(x) can be set
equal to its value at the maximums of the decay expo-
nentials. Then, for the longitudinal velocity it follows
from (16) that

Bn An–
gn

an

-----, ϕn

gn

an
2

-----– , v n 0,= = = =

w y( )
gn

an

----- an( )y,sin
n 1=

∞

∑=

dw
dy
------- gn any( )cos

n 1=

∞

∑ G y( ) G〈 〉 y– G y( ).= = =

v n x( )
gn ξ( )

2
------------- an x ξ–( )–{ }exp ξd

0

x

∫≈

–
gn ξ( )

2
------------- an ξ x–( )–{ }exp ξd

x

L

∫

+
gn ξ( )

2
------------- an ξ x+( )–{ }exp ξd

0

L

∫

–
gn ξ( )

2
------------- an 2L ξ– x–( )–{ }exp ξd

0

L

∫
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with other exponential terms being small. The rest of
the terms are equally small everywhere except narrow
regions near the cell ends (the longitudinal size of these
regions is on the order of h). Thus, in most of the cell,
the longitudinal velocity can be replaced by its trans-
versely averaged value (see (9)). Analogously, for the
transverse velocity given by (15), we have

(17)

with the addition Ω(x) being exponentially small every-
where except the same end regions. Outside these
regions, according to (14),

(18)

that is, the transverse velocity component satisfies the
equation

(19)

Result (17) can also be obtained directly from (10)
by passing to the dimensionless longitudinal coordinate
X = x/L and recasting (10) in the form

This is a typical singularly disturbed equation (with
a small factor outside the derivative), and its solution
away from the cell ends can be immediately written as

because the term with the second derivative is negligi-
bly small everywhere except the end regions, where it
must provide fulfillment of the boundary conditions.

Thus, if the energy deposit is smoothly nonuniform
along the cell, the longitudinal gas velocity in most of
the cell volume (except the narrow regions near the cell
ends) depends on the transversely averaged energy
deposit, while the transverse component depends on the

≈
gn 0( ) gn x( )–

2an

-------------------------------- anx–{ }exp

+
gx x( ) gn L( )–

2an

-------------------------------- an L x–( )–{ } ,exp

ϕn x( )
gn x( )

an
2

-------------– Ω x( ),–≈

Ω x( )
gn 0( ) gn x( )–

2an
2

-------------------------------- anx–{ }exp=

+
gn L( ) gn x( )–

2an
2

-------------------------------- an L x–( )–{ }exp ,

w x y,( )
gn x( )

an

------------- any( );sin
n 1=

∞

∑≈

∂w
∂y
------- gn x( ) any( )cos

n 1=

∞

∑≈ G x y,( ) G x y,( )〈 〉 y.–=

µ
d2ϕn

dX2
----------- ϕn–

gn X( )
an

2
--------------, µ h

πnL
---------- 

 
2

 ! 1.= =

ϕn X( )
gn X( )

an
2

--------------,–≈
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difference between the local energy deposit and trans-
versely averaged energy deposit.

The two-dimensionality of the problem can be dem-
onstrated with a model cell with a step energy deposit:

(20)

with the section x = l of energy deposit discontinuity
being located not too close to the cell ends. Physically,
such a problem corresponds to a laser cell with a large
buffer volume where the gas can flow (Fig. 2). Here, we
disregard the narrow area near the edge of the uranium
layer, where the energy deposit smoothly decays to
zero (the longitudinal size of this area does not exceed
the doubled range of fission fragments in the gas:
2R0 ! L). If the energy deposit parameter Θ is normal-
ized to the volume of the active (irradiated) part of the
cell 0 < x < l, then f0 = 1 [4, 5].

According to (5), (9), and (20), we have

(21)

The longitudinal gas velocity averaged over the
transverse direction linearly grows in the active part of
the cell beginning from its end, reaches a maximum at
the end of the active layer (at x = l), and then linearly

F0 x y,( )
f y( ), 0 x l< <
0, l x L,< <




=

F0 x y,( )〈 〉 V f 0
l
L
---, f 0 f y( )〈 〉 y,= =

G x y,( )〈 〉 y

Θ
γ
----ψ t( ) 1 l

L
---– 

 

Θ
γ
----ψ t( ) l

L
---– 

  ,








=

gn x( )
gn, 0 x l,< <
0, l x L,< <




=

U x( )

Θ
γ
----ψ t( ) 1 l

L
---– 

  x, 0 x l< <

Θ
γ
----ψ t( )l 1 x

L
---– 

  , l x L.< <








=

y L

x2h

l

Fig. 2. Gastight laser cell with a buffer volume.
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decays to zero at the other end (in the buffer volume).
The expressions for the expansion coefficients of the
longitudinal velocity in (16) are

(22)

up to exponentially small terms. It is seen that, even if
the energy deposit is discontinuous (see (20)), the lon-
gitudinal gas velocity is almost equal to its transversely
averaged value given by (21) in both the active part and
the buffer volume. Only in the region of discontinuity,
the longitudinal velocity is essentially two-dimen-
sional; the dimensions of this region are roughly equal
to the cell width h. For the transverse velocity compo-
nent, according to (15), one has

(23)

up to exponentially small terms. As before, the two-
dimensional effects are concentrated in the same nar-
row region near the discontinuity. Beyond this region,
the transverse motion is absent, while in the active part
of the cell, it is quasi-one-dimensional: according to
(14) and (23), the transverse velocity in the active cell
part has the same form (18) as for a smoothly nonuni-
form energy deposit given by Eq. (19). At the place of
the discontinuity (x = l), the transverse velocity, accord-
ing to (14) and (23), is half that in the active part
(see (18)).

Note, however, that the velocity distribution
obtained for the two-dimensional domain has a purely
model character, because the step approximation of the
energy deposit is especially crude just within this
domain.

v n x( )
gn

an

-----
anx( )sinh
anL( )sinh

------------------------ an L l–( )[ ]sinh=

≈
gn

2an

-------- an l x–( )–{ } ,exp

0 x l,< <

v n x( ) = 
gn

an
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anL( )sinh
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 
 

≈
gn
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-------- an x l–( )–{ } , l x L< <exp

ϕn x( )
gn

an
2

-----– 1
anx( )cosh
anL( )sinh

------------------------- an L l–( )[ ]sinh–
 
 
 

=

≈ –
gn

an
2

----- 1
1
2
--- an l x–( )–[ ]exp–

 
 
 

, 0 x l,< <

ϕn x( ) = 
gn

an
2

-----– an x l–( )[ ]cosh
anx( )cosh
anL( )sinh

----------------------- an L l–( )[ ]sinh–
 
 
 

≈
gn

2an
2

--------– an x l–( )–{ } , l x L< <exp
The cases of smoothly nonuniform and discontinu-
ous energy deposits considered above allow us to reach
a general conclusion for two-dimensional gas flows in
gastight cells at low energy deposits. In those regions of
the cell where the longitudinal profile of the energy
deposit is smoothly nonuniform (varies considerably
over a length far exceeding the cell width), the two-
dimensional flow can be represented as the superposi-
tion of two quasi-one-dimensional motions: the longi-
tudinal velocity is practically uniform across the cell
and depends on the energy deposit averaged over the
transverse direction according to (9), whereas the trans-
verse component depends on the difference between
the local energy deposit and the transversely averaged
deposit according to (19). In this case, initial equation (2)
splits into two equations [8]:

(24)

(25)

Near the cell ends and in the transition regions
between the smoothly nonuniform regions (in the
former, the energy deposit is substantially nonuniform,
considerably varying over a length on the order of the
cell width), the velocity distribution switches from one
quasi-one-dimensional form to another. The dimen-
sions of the transition regions, where the gas motion is
essentially two-dimensional, are approximately equal
to the cell width.

The above consideration was carried out for cells
with plane uranium layers. It seems, however, that the
basic result given by (24) and (25) is also valid for
cylindrical cells.

FLOWING GAS CELLS

General laws of velocity field formation in flowing
gas cells (Fig. 1) are the same as in gastight ones. How-
ever, because of the absence of the end faces, boundary
conditions here are more sophisticated. If we merely
required the gas velocity to be transversely uniform and
equal to U0 at the cell inlet, (11) and (13) would yield
“zero” boundary conditions 

(26)

which cause the solution to diverge away from the inlet.
The fact is that, in the case of a subsonic flow, any dis-
turbances of flow conditions inside a channel (and the
energy deposit greatly affects the flow conditions) are
“discerned” upstream from the channel and, accord-
ingly, the velocity distribution is modified upstream
from the cell inlet. Therefore, one should establish the
zero conditions not at the inlet (at x = 0) but away from
it (formally at x  –∞) and solve the conjugate prob-

γP
∂u
∂x
------ γ 1–( ) δQ

δVδt
------------

y

dP
dt
-------,–=

γP
∂w
∂y
------- γ 1–( ) δQ

δVδt
------------ 

  δQ
δVδt
------------

y
–

 
 
 

.=

ϕn 0( ) v n 0( ) 0, An Bn 0,= = = =
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lem. Since gn = 0 at x < 0, from (11), (13), and zero
boundary conditions (26) it follows at x  –∞ that

(27)

From (27), (11), and (13) at x = 0, we find the coef-
ficients Bn and Cn:

Downstream from the cell, the gas velocity must be
finite at any distance x @ L. From this condition in view
of (11) and (13), we find An:

(28)

This coefficient is seen to be virtually the same as for
gastight cells.

Thus, the coefficients of expansions (11) and (13)
for flowing gas cells have the form

(29)

When deriving (27)–(29), we assumed that the energy
deposit has an effect only within the cell, 0 < x < L. In
the general case, distinct bounds of energy deposit
action may be absent. To avoid the need for considering
two conjugate domains, one can impose limits on the
gas velocity throughout the longitudinal axis and find
from (11) and (13)

(30)
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2an
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2
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x 0.<
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0

L
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ϕn x( ) 1
2an
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0

x
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

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x
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

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2
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x
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

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– gn ξ( ) an x ξ–( )[ ]exp ξd

x

L
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+ gn ξ( ) an x ξ–( )[ ]exp ξd
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∫ 



,

v n x( ) 1
2
--- gn ξ( ) an ξ x–( )[ ]exp ξd

∞–

x
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
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∫ 

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which virtually coincides with (29). Similarly to (28),
we have in this case

For a smoothly nonuniform energy deposit (gn(x)
are smooth functions), it follows from (29) that

(31)

In flowing gas cells, the same pattern as in gastight
ones is observed: at a distance on the order of the cell
width from the inlet (that is, from the energy deposit
discontinuity), the difference between the actual longi-
tudinal velocity and its averaged value becomes negli-
gible; the transverse velocity takes form (18), satisfying
Eq. (19); and the problem is reduced to the set of
Eqs. (24) and (25) (split equation (2)).

Near the inlet in the initial part of the energy deposit
area (at x  0 but x > 0), we find from (29) subject to
(9), (12), and (14) that

It is seen that in regions where the local energy deposit
is higher than the deposit averaged over the cross sec-
tion, the gas expands across the cell and its longitudinal
expansion is larger than the expansion averaged over
the cross section. In those regions where the local
energy deposit is lower than the section-averaged value,
the gas is compressed across the cell and its longitudi-
nal expansion is less than that averaged over the cross
section. For x  0 on the other side of the cell inlet
(where the energy deposit is yet absent), from (27) and
(28) subject to (12) and (14) it follows that

Certainly, ∂u/∂x + ∂w/∂y = 0 at x < 0.
Thus, the gas to be entered into the region with a

high energy deposit starts expanding across the cell and
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for this reason it is compressed (decelerated) in the lon-
gitudinal direction. The gas to be entered into the region
with a low energy deposit conversely starts being com-
pressed across the cell beforehand and, therefore,
expands (accelerates) in the longitudinal direction.

The two-dimensional gas velocity distribution in
flowing gas cells (see (12), (14), and (29)) has been
obtained in the form of infinite series. Using the well-
known formulas [11]

and taking into consideration (8) and (9), one can rep-
resent this distribution in the form of double quadra-
tures:

(32)

Such a representation of the gas velocity distribu-
tion is more convenient for numerical calculations,
although makes qualitative analysis somewhat difficult.
Similar formulas can also be derived for gastight cells.

CONCLUSIONS
A two-dimensional gas velocity distribution in low-

velocity subsonic gas flows through gastight and flow-
ing gas laser cells with an internal low-power heat
source has been constructed. It has been shown that, at
a smoothly nonuniform energy deposit, the two-dimen-
sional gas flow splits into two quasi-one-dimensional
flows because of different longitudinal and transverse
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scales of the process: the longitudinal gas velocity is
practically uniform across the cell and depends on the
transversely averaged energy deposit, while the trans-
verse velocity depends on the difference between the
local energy deposit and transversely averaged one.

The split of the two-dimensional motion into two
quasi-one-dimensional flows allows one to approxi-
mately calculate the gas density distribution in laser
cells without applying complicated two-dimensional
gasdynamic computer programs (such as those used in
[7]). This greatly simplifies the analysis of optical non-
uniformities in nuclear-pumped lasers.

The set of Eqs. (24) and (25) (split equation (2)) of
gas motion remains valid for near-axial regions of the
cell even with allowance for the viscous thermal bound-
ary layer if the gas pressure is calculated subject to heat
removal onto the wall [4, 5].

In the framework of the model stated by (24) and
(25), the transverse gas motion at very large energy
deposits (Θ  ∞) would lead to the formation of a
transverse density profile that is the reciprocal of the
transverse energy deposit profile, ρ(y) ∝  1/F(y), in
the limit x  ∞ for flowing gas cells and in the limit
t  ∞ for gastight ones, similarly to the case of one-
dimensional transverse motion [3, 4]. However, at large
energy deposits, the split model, generally speaking, is
incorrect [8].
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Abstract—The electrical transparency of the grid and the passing current are determined from probe measure-
ments of the discharge plasma parameters when a plasma switch with a developed cathode is in the steady con-
ductive state. To eliminate discrepancies between the analysis and experiment, it is assumed that the potential
(virtual cathode) distribution in a grid mesh is nonmonotonic in the direction of current transfer. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Current passage through a grid placed in a plasma
and, accordingly, the dependence of the “electrical
transparency” of a grid mesh on the grid potential and
plasma properties are key issues in the problem of grid
control of the current in plasma switches. Obviously,
both characteristics are specified by the potential distri-
bution in a mesh of the grid near its turns. It is also
apparent, however, that usually neither the potential
distribution can be directly measured nor ion kinetics
can be adequately studied in the 3D case. Therefore,
indirect data gained from the study of the general laws
of grid control in plasma switches are used. Probe mea-
surements of the plasma parameters in the cathode and
anode regions of the discharge are the most informa-
tive. Based on certain assumptions, they allow one to
determine the electrical transparency of the grid, estab-
lish the current balance in the grid plane, and judge the
potential distribution near grid turns by comparing ana-
lytical results with direct current measurements.

MODEL OF ELECTRICAL TRANSPARENCY

Early progress toward an understanding of the cur-
rent transfer mechanism is associated with the model of
electrical transparency [1–3]. According to this model,
a negative voltage applied to the grid increases the
radius rL of Langmuir layers near its turns, thereby
decreasing its transparency

(1)

where h is the grid pitch. In this case, the current dimin-
ishes and may eventually vanish. In a low-voltage
Knudsen cesium arc, where grid control is very effi-
cient, the potentials ϕ1 and ϕ2 (Figs. 1b, 1c), the plasma
concentrations n1 and n2, and the electron temperatures

δ 1 2rL h⁄–( )2,=
1063-7842/03/4803- $24.00 © 20311
T1 and T2 were found [3] to vary insignificantly within
the cathode–grid and grid–anode gaps, respectively. At
the same time, there appears a potential step ϕ12 = ϕ1 –
ϕ2 in the grid plane (hereafter, by the potential we con-
ventionally mean the potential energy of an electron
divided by the elementary charge). Under these condi-
tions, the current density in the conducting path of a
grid mesh is given by

(2)

(2')

(where m is the mass of an electron, q is the elementary
charge, and k is the Boltzmann constant), and the dis-
charge (anode) current density is expressed as

(3)

j qn1
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2πm
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2πm
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2πm
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kT2

2πm
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q– ϕ12

kT2
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 
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 
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ja δj.=

(a)

R
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(b)

(c)

ϕ1

ϕ2

ϕ12

Cathode region Anode region

Grid

Fig. 1. (a) Connection diagram of a plasma switch and
(b, c) longitudinal potential distribution along the central
line of the meshes for the conductive state according to the
generally accepted concepts.
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When steep (with a rise time of <100 ns) control
pulses are applied to the grid, the plasma concentration
has no time to change and the grid transparency
decreases. Concurrently, the step ϕ12 changes. Experi-
ments show [4–6] that if the amplitude of the grid pulse
is small, the discharge current remains constant and the
decrease in the transparency is compensated for by
increasing the current density in the channel owing to
the change in ϕ12. Specifically, in the initially conduc-
tive state with ϕ12 < 0 (the potential step slows down the
electron flow from the cathode toward the anode) and
n1 @ n2, the current density in the channel will grow up
to the value j ≅  qn1(kT1/2πm)1/2, at which ϕ12 becomes
larger than zero. This means that when a negative pulse
is applied to the grid, the current starts decreasing after
the current density in the transparent area of the mesh
reaches the density of the stochastic current of plasma
electrons near the cathode.

The model of electrical transparency made it possi-
ble to theoretically explain processes occurring in
cesium switches in the conductive state and upon dis-
charge quenching [3, 7]. However, the subsequent
detailed experimental studies of the switches showed

Grid

Cathode region

(a)

Anode region

ϕ12 ~ Ea @ kTe

(b)

G

ϕm

ϕ12

Fig. 2. (a) Potential distribution for the partially blocked
state and (b) actual potential distribution in the conductive
state.
that this model does not necessarily fit probe measure-
ments with which one can calculate the transparency,
establish the current balance in the grid channel, and
compare the analytical and experimental values of the
passing current. The discrepancies are commonly
explained by the low accuracy of probe measurements
and the partial transfer of the discharge current by the
cathodic electron beam.

DEPENDENCE OF INITIAL CURRENT 
BLOCKING ON Ea

If a grid pulse has a large amplitude and can par-
tially block the current, the conditions for current pas-
sage change drastically as compared with those in the
conductive state [8]. In conventional modulation cir-
cuits (Fig. 2a), the supply voltage Ea in the conductive
state exceeds the anode voltage Va many times. If a con-
trol grid pulse is sufficiently high and partially
decreases the current from its initial value Ia to the
residual value Ires (Fig. 2b), the voltage at the switch
anode rises substantially by a value ∆Va = –(R(Ires – Ia) +
LdIa/dt), where R is the anode load (resistance) and L is
the stray inductance of the anode circuit. It was shown
[4] that this voltage increment almost completely drops
across the grid barrier; that is, ϕ12 ≈ ∆Va @ kT2. In other
words, the electric double (space-charge) layer
(Fig. 2c) must form in the electrically transparent area
of the mesh. Irrespective of the value of ϕ12,

(4)

where M is the mass of an ion, je is the electron current
density in the electrically transparent area of a mesh,
and

is the saturation ion current density.
If the density of the stochastic current of plasma

electrons near the cathode exceeds the value given by
(4), a virtual cathode, which partially blocks this cur-
rent, appears before the electric double layer. Under
these conditions, the passing (anode) current density
depends on the plasma parameters in the anode region
of the discharge:

(5)

On the other hand, if the anode is short-circuited to
the anode voltage supply, the current can be blocked by
a grid pulse with the anode potential remaining
unchanged. In this case, the electric double layer in a
mesh does not form and the residual passing current at
n1 @ n2 is defined by expressions (2) and (3) irrespec-
tive of the initial blocking ∆Ia = Ia – Ires. Since current
blocking already takes place, ϕ12 > 0 and the current

je ji
M
m
-----,=

ji 0.61qn2
kT2

M
--------=

ja 0.61qn2
kT2

m
--------δ.=
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density in the conducting channel equals that of the sto-
chastic current of the near-cathode plasma; therefore,
the anode current density is ja ≅  qn1(kT1/2πm)1/2δ.
Comparing this formula with (5) implies that, in the
cases considered, the values of the residual current Ires
must differ substantially for the same value of the trans-
parency and, hence, Vg under typical conditions with
n1 @ n2. The relative initial blocking is expected to be
much larger in the presence of the load Ra than in its
absence (Ra = 0), since the residual current ratio is
jres(Ra ≠ 0)/jres(Ra = 0) ≈ n2/n1.

In real experiments, the condition Va = Ea is impos-
sible to provide when current blocking is fast (≈0.1 µs)
because of the inductance of wires connecting the
anode to the voltage supply. This causes an appreciable
spike of the anode voltage. However, since in the pres-
ence of Ra it is necessary that Ea far exceed Va (Ea – Va @
kT 2) for the virtual cathode to appear and condition (5)
to be valid, one can anticipate that, in the presence of
the inductive spike when Ea grows, the relative block-
ing must also increase noticeably, especially at low Ea.
This supposition is in conflict with the practical use of
cesium plasma switches, according to which the dis-
charge is the easier to quench, the higher the initial cur-
rent blocking, and the harder to quench, the greater Ea
(all other things being equal). Therefore, the Ea depen-
dence of the initial current blocking needed careful
experimental verification.

During the measurements, we suppressed the induc-
tive spike as much as possible (to 5–10 V) by minimiz-
ing the connected wire length and using a low-induc-
tion anode load.1 As in early studies [9], the depen-
dence ∆I/I0(Ea) was weak and the reproducibility of the
results, poor. The reason for the latter fact turned out to
be the inaccurate recovery of the initial conductive state
of the switch after Ea and anode load had been changed.
Only when the anode voltage Va and the anode current
I0 were stabilized within 0.1–0.2% (the current was sta-
bilized by regulating the cathode temperature) did the
reproducibility of ∆I/I0 at different Ea become good. It
turned out [10] that the initial blocking ∆I/I0 is almost
independent of Ea or decreases (rather than increases)
insignificantly with increasing Ea (Fig. 3).

NONMONOTONIC POTENTIAL DISTRIBUTION 
IN THE CURRENT CHANNEL AND CURRENT 

BALANCE IN THE GRID PLANE

It is logical to assume that the potential hump also
exists in the steady conductive state with Vg close to
zero. Such an assumption eliminates the discrepancy in
calculating the current balance in the conducting chan-
nel that usually arises when the plasma parameters
measured with a probe near the cathode and anode
regions of the discharge are substituted into Eqs. (2).
Earlier, this discrepancy was explained by experimen-

1 A U-shaped Nichrome resistor with a wire spacing of ≈1 mm.
TECHNICAL PHYSICS      Vol. 48      No. 3      2003
tal errors (see Introduction) and no significance was
attached to it. Therefore, it was of interest to perform
special experiments from which necessary discharge
parameters would be extracted in the most reliable way.
In these experiments, we used a device with a devel-
oped cathode [11], where the electron beam from the
cathode is negligibly small and cannot influence the
current balance. Accordingly, probe measurements in
the absence of the beam can be interpreted more reli-
ably.

Current values obtained with the model of electrical
transparency are convenient to compare with experi-
mental findings as follows. For the values of n1, n2, T1,
T2, and the plasma potentials ϕ1 and ϕ2 measured with
a probe and for the discharge current density ja obtained
from (2) and (3), one determines δ and then rL from (1).
The dimensionless (in terms of kT/q) potential drop ηL
across the Langmuir layer for the Debye radius rD =
(kT/4πq2n)1/2 was found [6] by integrating the equation

(6)

from ξ = 1 to a/rL (where a is the radius of the grid wire)
with the boundary conditions

(6')

The values of ηL thus obtained were compared with
those ( ) found experimentally:

(7)

Note that we used two values of the plasma potential
ϕpl, as well as T and n, which also enter into the Debye
radius in Eq. (6). These values were measured in the
cathode and anode regions, respectively (see table).
Both result in a considerable disagreement with ηL
obtained from (6). Sometimes (especially for high
plasma concentrations and n1 @ n2), the disagreement
is particularly large. It can be eliminated if we suppose
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Fig. 3. Initial current blocking vs. anode supply voltage for
PCs = 10–2 torr and Te = 1130 K. (1) ja = 1.5 A/cm2, Va =

2.3 V, Vg = –20 V and (2) ja = 3.8 A/cm2, Va = 3.0 V, Vg =
−30 V.
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that the plasma concentration is measured inaccurately.
However, the errors in this case seem to be unwarrant-
edly too large (several hundreds of percent).2 At the
same time, the anode current calculated from the exper-
imental values of n2, T2, ϕ2, and Ua deviates from the
measured value insignificantly (by less than 30%), indi-
cating that probe measurements are sufficiently accurate.
Assuming that the discrepancies in the current balance
on the grid as a whole are due to the potential hump in a
mesh, one can determine the maximum value ϕm of the
potential that eliminates them. The largest value among
ϕ1 and ϕ2 (ϕ1, ϕ2 < 0) was taken as ϕm. The measure-
ments were carried out over a wide range of plasma
parameters. The calculation was performed as follows.

The current density in the grid channel is

(8)

(8')

The transparency and the Langmuir radius were
found from (3) and (1). The dimensionless potential ηL
across the Langmuir layer was determined by integrat-

2 If n1 ≈ n2 and both terms on the right of Eq. (6) are of the same
order of magnitude, the assumption of moderate errors (less than
a factor of 2) involved in the plasma concentrations leads to
agreement for the current balance in the grid plane.
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Table

Te, K Ja,
A/cm2

Calculation
using (10)

Calculation
using (10')

η η ' η η '

1100 0.635 118 5.3 17 4.9

1.27 231 6.1 96 7.8

1.9 275 6.7 155 9.0

2.54 253 8.0 205 10.5

3.17 205 9.4 215 12.7

1120 1.27 100 5.3 25 5.1

2.54 134 5.9 51 6.6

3.81 203 6.3 108 6.6

5.08 278 6.6 213 8.3

6.35 219 7.4 233 9.2
ing (6) subject to boundary conditions (6') with rD cal-
culated for the concentration n determined in the
“neck” of the current channel:

(9)

(9')

The value of Vg was found twofold:

(10)

(10')

and the result of choice was that providing the least
value of ϕm when the set of Eqs. (1), (3), (6), and (8)–
(10) was solved for the unknowns j, rL, δ, n, ηL, and ϕm.
In either of the two schemes, we used the correspond-
ing value of T when calculating the Debye radius enter-
ing into (6), although this circumstance is clearly of
minor importance. Typical results of calculation are
depicted in Figs. 4 and 5. In all the cases, ϕm is other
than zero. Data measured under many other conditions
gave similar results. It should be mentioned that taking
into account the presence of the virtual cathode also
reconciles the current balance in our earlier measure-
ments on various devices, yielding quite reasonable
values of ϕm (on the order of kT/q).

DISCUSSION

The presence of the potential hump in the steady
conductive state in no way follows from the previous
concepts, which imply the fulfillment of the balance
equations and the validity of the model of electrical
transparency [7]. To find reasons for the existence of
the hump, it is first necessary to answer the question as
to whether the potential hump (its height, as is seen,
may markedly exceed kT/q) is a virtual cathode in the
conventional meaning of this term (when the potential
drop is localized within a short distance on the order of
the Langmuir length where the space charge forms) or
whether it is an extended feature in a quasi-neutral
plasma. In the former case, the hump influences the
current balance only in the grid plane without affecting
the ion motion; in the latter, the potential hump must
have a decisive effect on the ion motion, since electric
fields in this case are strong for ions (kTe @ kTi).

Although the overall potential drop ϕ12 + ϕm may be
very high (see above), we guess that potential steps in
the current channel between the cathode and anode
regions of the discharge are absent and a quasi-neutral
plasma exists throughout the channel.
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Fig. 4. Plasma parameters and potential drop ϕ12 vs. anode current density for PCs = 10–2 Torr and Te = 1100 K.
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In fact, strictly speaking, the presence of an
extended potential “hill” with a height of at least kT/2q
with a maximum near the grid is obligatory. Under typ-
ical operating conditions of the switch, the ion free path
in terms of scattering by atoms (as well as the ioniza-
tion length) far exceeds the entire interelectrode gap
[12]; hence, the gap is essentially a set of near-electrode
layers. If the grid in a Knudsen arc is absent, a potential
minimum for electrons appears at the center of the gap
and a potential drop of about kT/2q between this mini-
mum and the space charge boundary at the cathode and
anode arises in the plasma volume. This drop is associ-
ated with ion transfer toward the electrodes. In the pres-
ence of the grid in the gap, the total surface area of its
turns is close to the surface area of the cathode and
anode (even for thin woven meshes of high, 0.6–0.8,
transparency) and the ion currents to the plane elec-
trodes and grid approach each other. Therefore, a
potential minimum of the same nature must appear at
the centers of the cathode–grid and grid–anode spaces,
as well as a potential drop of about kT/2q near either of
the electrodes. The potential minima on both sides of
the grid specify a maximum in the grid plane. More-
over, at a distance on the order of the mesh size from the
grid, the ion motion becomes nonplanar: the trajecto-
ries of ions forming space-charge layers near those sur-
faces of the turns facing the mesh center move apart
when approaching the quasi-neutrality boundary. Such
a separation of the ion trajectories, which decreases the
concentration because of the geometry of the collecting
electrode, must cause an additional rise in the potential
along the discharge axis at the mesh center and,
thereby, an extended potential hill of much greater
height.

This point of view is substantiated by the kinetic
consideration of the high-field region in a quasi-neutral
plasma for the cases when the plasma boundary admits
an exact solution. Specifically, Langmuir and Tonks
[13] analyzed the ion kinetics in a confined plasma in
the presence of direct ionization and ballistic ion trans-
fer toward the plasma boundary for the 1D case. The
CHNICAL PHYSICS      Vol. 48      No. 3      2003
equation for potential distribution had the form

where s is the dimensionless spatial coordinate and k =
0, 1, or 2 for the planar, cylindrical, and spherical
boundaries, respectively. They obtained solutions for
k = 0 and 1 in the form of series. The values of s0 and η0
corresponding to the quasi-neutrality boundary were
found from the condition that the electric field at the
plasma boundary is infinitely high: ds/dη = 0. In this
case, η0 = 0.85 and 1.15 for k = 0 and 1, respectively.
Our solution for k = 2 is

with η0 = 1.42.
As follows from the above example, the additional

reason for the ion concentration decrease near the
plasma boundary (along with the acceleration of ions in
the electric field because of the nonplanar motion) leads
to a much greater potential drop across the quasi-neu-
trality region for the cylindrical and especially spheri-
cal boundaries in comparison with the planar one. The
potential drop for the sphere is the greatest for any 1D
case, since in this situation the rate of fall of the ion

e η– 1

sk
----–

e η'– s'k

η η '–
------------------ s'd

0

s

∫ 0; k 0 1 2,, ,= =

s 4 π 1( 0.1428571428η– 0.0177228786η2–⁄=

– 0.00438904201η3 0.00132569418η4–

– 0.00044099572η5 0.00015537689η6– …),–
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Fig. 5. Anode voltage and calculated maximal potential jm
vs. anode current density for PCs = 10–2 Torr and Te = 1100
and 1120 K.
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concentration is the highest when the ion trajectories
move apart when approaching the boundary. However,
the potential drop for the spherical boundary cannot be
considered as ultimate: it may be even higher in the
case of a more complex non-one-dimensional geometry
such as that in a grid mesh of a plasma switch.

In [14], a switch with a thick (cellular) grid was
investigated. The grid was made in the form of “bot-
tom-free” cells. Its thickness was 1 mm, and the cell
size was 0.2 mm. For the thin and thick grids of the
same transparency, the discharge parameters greatly
differ. In the latter case, the plasma concentration in
both the cathode and anode regions is high even at a low
current density (≈1 A/cm2), with the concentration near
the anode always exceeding that at the cathode. The
rate of ion generation in the channel of the thick grid is
low, and the quasi-neutral plasma inside its cells is pro-
vided by ions penetrating from the cathode and anode
regions. It was supposed that a nonmonotonic longitu-
dinal potential distribution with a maximum estimated
as several kT/q exists in a cell of the thick grid. Our
study of current transfer through thin grids can be con-
sidered as a validation of the assumptions used and con-
clusions drawn in [14]. This is important since the sim-
plified calculations performed in [14] may provoke cer-
tain objections.

Thus, one can infer that the presence of a distinct
peak in the potential distribution within the current
channel is common for the conductive state of plasma
switches with grid-controlled current.

It should also be noted that the existence of the
potential hump offers a clearer view of why the Max-
well electron distributions with different electron tem-
peratures are observed in the cathode and anode regions
at low ϕ12 and high electrical transparencies (when
unobstructed electron exchange between the discharge
regions takes place).
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Abstract—The dielectric dispersion of heterogeneous matrices containing dissimilar cylindrical inclusions is
studied. Conditions for the dispersion in multicomponent media are found and explained from the physical
standpoint. It is shown that the effective loss factor may have several maxima with their number depending on
the number of dissimilar inclusions in the composite. Effective permittivity diagrams in the complex plane are
constructed. For media with a low inclusion concentration, an approximate method for finding the frequency of
the maxima is suggested. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In studying the transport properties of inhomoge-
neous materials, dielectric dispersion analysis is of cru-
cial importance. For piecewise homogeneous matrix
systems, Maxwell–Wagner polarization is the basic
polarization mechanism [1, 2]. This polarization is
macroscopic, or surface, polarization (it is also called
interlayer, space-charge, interfacial, etc.). It is related to
the formation of charged surface layers at the interface
between dissimilar media when free charges move
within separate phases of a composite subjected to an
external variable electric field.

Although dielectric dispersion in heterogeneous
media is finding wide application in many areas of
physics, biology, and chemistry [3, 4], its theoretical
study faces a number of difficulties. First, the analytical
calculation of the effective parameters of multicompo-
nent systems, which is of independent interest and
makes an integral part of the theory of dispersion in
inhomogeneous insulators, is a complex mathematical
problem that is solvable only in specific cases. Second,
in the case of multicomponent materials, the number of
parameters and dimensionless quantities that character-
ize the behavior of an inhomogeneous system in a vari-
able electric field greatly increases: to the parameters
describing the geometrical structure of a composite, as
well as its conductive and insulating properties, fre-
quency parameters and characteristic times for each
phase of the system are added. This complicates the
electrical spectroscopy of inhomogeneous materials.

The most significant results have been obtained for
two-dimensional two-component media with a doubly
periodic distribution of inclusions. Using highly effi-
cient techniques from the theory of functions of com-
plex variable, researchers have succeeded in calculating
the mean electrophysical characteristics of composites
whose composition varies over a wide range up to the
1063-7842/03/4803- $24.00 © 20317
critical one at which the metal–insulator transition
takes place [5–10]. Also, general symmetry transforma-
tions and reciprocity relations have been established
that allow one to check the validity and accuracy of the
effective parameters irrespective of the inhomogeneous
system structure [11–14].

The mechanism of Maxwell–Wagner polarization is
of orientation type, because inclusions within which
charge carriers move behave as macroscopic objects
with image dipoles. In fact, in calculations of an electric
field outside spherical bodies and cylindrical inclusions
of circular cross section, the field is usually represented
as the infinite sum of image dipoles [15, 16]. Relaxation
processes in such systems are described in terms of the
Debye classical theory [17]. This is confirmed by the
configuration of the Coal–Coal plot, which, in the case
of a low inclusion concentration, has the shape of a
semi-circle according to the Debye equations.

The frequency dependences of the effective permit-
tivity and dielectric loss factor are sensitive to relation-
ships between the electrophysical parameters of the
disperse phase and matrix, as well as to the shape of
inclusions and their orientation in an external electric
field. These properties of the effective parameters were
discovered in early works on the electroscopy of inho-
mogeneous materials [1, 2, 18]. Subsequently, the self-
consistent models of heterogeneous media worked out
by Wiener, Bruggeman, Wagner, and others made it
possible to refine the effect of different factors on the
dielectric dispersion of inhomogeneous materials [4].
The majority of available data concerns two-compo-
nent systems.

Multicomponent systems have a wider variety of
properties and a larger number of possible structure
configurations than two-component ones. The matrix of
a multicomponent system has several, rather than one,
inclusions that differ in properties, size, and mutual
003 MAIK “Nauka/Interperiodica”
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arrangement. In this work, we found conditions under
which the permittivity of a multicomponent system has
a dispersion and studied the relaxation spectrum in spe-
cific media where the polarizations of dissimilar phases
are compensated for [19]. We theoretically supported
experimental findings that relaxation processes in a
piecewise homogeneous material have two and three
relaxation times and depend on the number of its con-
stituents.

Calculations were carried out in the quasi-steady-
state approximation described in [20], which assumes
that the wavelength of a variable electric field is much
larger than the characteristic sizes of the system and,
hence, the interfacial polarization process has time to
respond to a field variation. It is also assumed that
polarizations of other types contribute to the system’s
overall polarization insignificantly.

THREE-COMPONENT MEDIA

The analysis of the permittivity dispersion in heter-
ogeneous systems with Maxwell–Wagner polarization
is convenient to begin with simple doubly and singly
periodic models, of which the latter acquires anisotro-
pic properties on averaging.

Matrix system. Consider a model three-component
dielectric system consisting of a matrix with a permit-
tivity ε1 where two types of circular cylindrical inclu-
sions alternate. The radii and permittivities of the inclu-
sions are r1, r2 and ε2, ε3, respectively (Fig. 1). The long
cylindrical bodies run in the same direction, forming a
2D doubly periodic lattice with square cells of side h.
In the plane normal to the axes of the cylindrical bodies,
the electric field in such a system is two-dimensional
and can be calculated with techniques from the theory
of analytical functions [15, 19].

In such a system, field averaging over a period
makes it possible to evaluate its effective electrical
characteristics. On average, the structure is isotropic. If
the inclusion concentration is not too high (relevant
estimates will be given below), the effective permittiv-
ity of such a material is given by
(1)εeff ε1

1 s1∆ε12/2 s2∆ε13/2 A1∆ε12
2 A2∆ε13

2 B1 B2+( )∆ε12∆ε13+ + +––

1 s1∆ε12/2 s2∆ε13/2 A1∆ε12
2 A2∆ε13

2 B1 B2+( )∆ε12∆ε13+ + + + +
-----------------------------------------------------------------------------------------------------------------------------------------------------.=
Here,

(2)

are the concentrations of inclusions with the permittiv-
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Fig. 1. Fragment of a three-component insulator with cylin-
drical inclusions.
ities ε2 and ε3, respectively, and

(3)

are the relative permittivities of the inclusions. The
parameters Ak and Bk (k = 1, 2) appearing in formula (1)
depend on the radii as

(4)

∆ε12
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---------------, ∆ε13
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In (4), the inclusion radii rk are given in relative units
(see formula (2)). The asterisks are omitted for brevity.

Formula (1) was derived under the assumption that
the concentration of inclusions is low and, hence, their
interaction in the system is well described by an
approximate multidipole representation of electric field
where only the first-order (principal) image dipoles
located at the centers of the inclusions are considered
[16]. Higher order dipoles, whose moments decline rap-
idly with increasing order λ = 2, 3, …, as (sk∆ε12∆ε13)λ,
contribute insignificantly under these conditions. The
parameters ∆ε1m (m = 2, 3), whose magnitudes are usu-
ally less than unity, and concentrations sk (k = 1, 2)
appear in the expression for effective permittivity in

+
rk 2m+

rk 2m+( )2 2n 1–( )2+
-----------------------------------------------------

rk 2m– 1+

rk 2m– 1+( )2 4n2+
-------------------------------------------------+

+
rk 2m 1–+

rk 2m 1–+( )2 4n2+
-------------------------------------------------





.
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multiplicatively; therefore, (1) is valid even if |∆ε1m| ! 1
and sk is finite or sk ! 1 and |∆ε1m| is finite. The accuracy
of formula (1) obtained asymptotically is the higher, the
smaller are |∆ε1m| and sk.

Formula (1) defines the effective permittivity of a
composite made up of perfect insulators. Real insula-
tors are to a certain extent conductive. The electrical
properties of such materials exposed to a harmonic

electric field  = exp(iωt) are described by the com-
plex permittivity

(5)

where ε is the relative permittivity, σ is the electrical
conductivity, ω is the circular frequency, and ε0 is the
permittivity of vacuum. The parameters σ and ε do not
depend on the frequency ω of the electric field.

In the quasi-steady-state approximation, formula (1)
with the complex permittivities (ω) (j = 1, 2, 3) takes
the form

Ê Ê0

ε̂ ω( ) ε i
σ

ε0ω
---------,–=

ε̂ j
(6)

ε̂eff ω( ) εeff' ω( ) iεeff'' ω( )– ε̂1 ω( )= =

×
1 s1∆̂12 ω( )/2 s2∆̂13 ω( )/2 A1∆̂12

2 ω( ) A2∆̂13
2 ω( ) B1 B2+( )∆̂12 ω( )∆̂13 ω( )+ + +––

1 s1∆̂12 ω( )/2 s2∆̂13 ω( )/2 A1∆̂12
2 ω( ) A2∆̂13

2 ω( ) B1 B2+( )∆̂12 ω( )∆̂13 ω( )+ + + + +
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------.
Here,

(7)

are complex parameters with the components given by

(8)

where

(9)

is the relative conductivity.
Expressions (6)–(8) involve three frequency param-

eters:

(10)

which are the ratios of the Maxwellian frequencies
ω0j = σj/ε0εj to the angular frequency ω. In terms of
energy, they define the dielectric loss tangents in the
components of a composite material. The parameters Γj

∆̂1m ω( ) ∆1m' ω( ) i∆1m
'' ω( ) m 2 3,=( )+=

∆1m' ω( )
∆ε1m 1 ∆σ1m–( )2 Γm

2 ω( )∆σ1m 1 ∆ε1m–( )2+

1 ∆σ1m–( )2 Γm
2 ω( ) 1 ∆ε1m–( )2+

---------------------------------------------------------------------------------------------------,=

∆1m'' ω( )
Γm ω( ) ∆ε1 p ∆σ1m–( ) 1 ∆σ1m–( ) 1 ∆ε1m–( )

1 ∆σ1m–( )2 Γm
2 ω( ) 1 ∆ε1m–( )2+

---------------------------------------------------------------------------------------------------,=

∆σ1m

σ1 σm–
σ1 σm+
------------------ 1– ∆σ1m 1≤ ≤( )=

Γ j ω( ) = 
ω0 j

ω
-------- = 

σ j

ε0ε jω
-------------  0 Γ j ∞≤ ≤( );  j = 1 2 3,, ,
are linearly related to each other as

(11)

or, in terms of ∆ε1m and ∆σ1m (m = 2, 3), as

(12)

For subsequent analysis, it is convenient to intro-
duce the relative frequency ∆ωj:

(13)

As the angular frequency ω runs continuously from
0 to ∞, ∆ωj runs from 0 to 1.

Now expression (6) can be represented in the form

(14)

Γ1 ω( )
ε2σ1

ε1σ2
----------Γ2 ω( )

ε3σ1

ε1σ3
----------Γ3 ω( )= =

Γ1 ω( )
1 ∆ε12–( ) 1 ∆σ12+( )
1 ∆ε12+( ) 1 ∆σ12–( )

------------------------------------------------Γ2 ω( )=

=  
1 ∆ε13–( ) 1 ∆σ13+( )
1 ∆ε13+( ) 1 ∆σ13–( )

------------------------------------------------Γ3 ω( ).

∆ωj
ω

ω0 j ω+
------------------ 0 ∆ωj 1<≤( ).=

ε̂eff ω( ) εeff' ω( ) iεeff'' ω( )–=

=  ε1 1 iΓ1 ω( )–[ ] U– ω( ) iV+ ω( )+

U+ ω( ) iV– ω( )+
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Here, the real functions U±(ω) and V±(ω) are given by

(15)

U± ω( ) 1 s1∆12' ω( )/2 s2∆13' ω( )/2±±=

+ A1 ∆12'
2 ω( ) ∆12''

2 ω( )–[ ] A2 ∆13'
2 ω( ) ∆13''

2
ω( )–[ ]+

+ B1 B2+( ) ∆12' ω( )∆13' ω( ) ∆12'' ω( )∆13'' ω( )–[ ] ,

V± ω( ) s1∆12'' ω( )/2 s2∆13'' ω( )/2±±=
Estimates show that if the radii of the cylindrical
inclusions are small and, hence, their concentrations
are low, the terms quadratic in (ω), (ω), (ω),

and (ω) in (15) can be neglected. This also can be
done if the material inhomogeneity is small: |∆ε1m| ! 1
and |∆δ1m| ! 1. Then, formula (14) becomes

– 2A1∆12' ω( )∆12'' ω( ) 2A2∆13' ω( )∆13'' ω( )–

– B1 B2+( ) ∆12' ω( )∆13'' ω( ) ∆13' ω( )∆12'' ω( )+[ ] .

∆12' ∆12'' ∆13'

∆13''
(16)

ε̂eff ω( ) εeff' ω( ) iεeff'' ω( )– ε1 1 iΓ1 ω( )–[ ]= =

×
1 s1∆12' ω( )/2 s2∆13' ω( )/2 i s1∆12'' ω( )/2 s2∆13'' ω( )/2+[ ]+––

1 s1∆12' ω( )/2 s2∆13' ω( )/2 i s1∆12'' ω( )/2 s2∆13'' ω( )/2+[ ]–+ +
-----------------------------------------------------------------------------------------------------------------------------------------------.
From (8), it directly follows that with

(17)

or, otherwise,

(18)

we have

∆ε12 ∆σ12, ∆ε13 ∆σ13,= =

ε1σ2 ε2σ1, ε1σ3 ε3σ1,= =
(19)

Under these conditions, a three-component medium
has the single frequency parameter

(20)

Substituting (19) into (14) and (15) yields

∆12' ω( ) ∆ε12, ∆13' ω( ) ∆ε13,= =

∆12'' ω( ) ∆13'' ω( ) 0.= =

Γ1 ω( ) Γ2 ω( ) Γ3 ω( ).= =
(21)
εeff' ε1

1 s1∆ε12' /2 s2∆ε13' /2 A1∆ε12'2 A2∆ε13'2 B1 B2+( )∆ε12' ∆ε13'+ + +––

1 s1∆ε12' /2 s2∆ε13' /2 A1∆ε12'2 A2∆ε13'2 B1 B2+( )∆ε12' ∆ε13'+ + + + +
-----------------------------------------------------------------------------------------------------------------------------------------------------,=

εeff'' ω( ) εeff' Γ1 ω( ).=
As follows from the first expression in (21), the
effective permittivity  does not depend on the fre-
quency. Thus, relationships (18) specify the condition
under which the dispersion of a three-component
matrix composite is absent. Unlike a two-component
inhomogeneous material, for which either of two rela-
tionships (17) and (18) is fulfilled, in a three-compo-
nent system, both must be fulfilled simultaneously.

The dielectric loss factor  in this case depends on
the frequency, and its frequency dependence is given by
the function Γ1(ω) alone.

If the concentrations of inclusions of two sorts in a
composite are the same (s1 = s2) and the permittivities
of the inclusions satisfy the relationship

(22)

the effective permittivity equals the permittivity of the
matrix: εeff = ε1. Relationships (22) outline the class of so-
called characteristic media [19]. Their specific feature is
that the polarizations in dissimilar inclusions are in oppo-
sition to each other and thus cancel each other out.

εeff'

εeff''

ε1 ε2ε3 ∆ε12 ∆ε13–=( ),=
To find the effective permittivity values in limiting
cases, we will take advantage of approximate expres-
sion (16). In this expression, as well as in the others,
one must first fix one of the three frequency parameters
Γj(ω) (j = 1, 2, 3) for which calculations will be per-
formed. The choice of the parameter is of no principal
significance: it must be merely convenient for analysis.
For definiteness, the calculation will hereafter be per-
formed for Γ2(ω), unless otherwise stated. This param-
eter is assigned to phase 2, which has the electrophysi-
cal parameters ε2 and σ2 and Maxwellian frequency
ω02 = σ2/ε0ε2. Accordingly, the relative frequency ∆ω2
will be used as a variable (see formulas (10)–(13)).

In the limit ω  0 (Γ2(ω)  ∞, ∆ω2  0), we
have from expression (16)

(23)

εeff' 0( ) ε1

1 s1∆ε12/2 s2∆ε13/2––
1 s1∆ε12/2 s2∆ε13/2+ +
-------------------------------------------------------





=

+
1

1 s1∆ε12/2 s2∆ε13/2+ +
------------------------------------------------------- s1 ∆σ12 ∆ε12–( )

1 ∆σ12+
1 ∆ε12+
-------------------
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The static value of the permittivity (0) is seen to
be dependent on the inclusion concentration and all the
electrophysical parameters of the system. The loss fac-
tor in this case has a singularity of type 1/ω:

(24)

The infinite growth of (0) at ω  0 is due to the
bulk conductivity of the composite.

In the other limit, ω  ∞ (Γ2(ω)  0, ∆ω2 
1), the optical values of the effective permittivity and
loss factor are expressed as

(25)

At high frequencies, (∞) depends only on the
inclusion concentration and permittivity of the material
constituents. Under these conditions, losses in the com-
posite are absent.

+ s2 ∆σ13 ∆ε13–( )
1 ∆σ13+
1 ∆ε13+
-------------------





.

εeff'

εeff'' 0( ) ε1Γ2 0( )=

×
1 ∆ε12–( ) 1 ∆σ12+( ) 1 s1∆ε12/2 s2∆ε13/2––( )
1 ∆ε12+( ) 1 ∆σ12–( ) 1 s1∆ε12/2 s2∆ε13/2+ +( )

------------------------------------------------------------------------------------------------------------.

εeff''

εeff' ∞( ) = ε1

1 s1∆ε12/2 s2∆ε13/2––
1 s1∆ε12/2 s2∆ε13/2+ +
-------------------------------------------------------,  εeff'' ∞( ) = 0.

εeff''
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The frequency dependences of the complex effec-
tive permittivity become clearer if the inclusions are
conductive and the matrix is a perfect insulator; that is,

(26)

Then, the parameters (ω) and (ω) (m = 2, 3)
, which are given by (8), will take the form

(27)

Now, to find the limiting values of the complex
effective permittivity, we will proceed from general
expression (14).

For ω  0 (Γ2(ω)  ∞, ∆ω2  0), the effective
values (0) and (0) are given by

(28)

For ω  ∞ (Γ2(ω)  0, ∆ω2  1), the optical
values of the effective permittivity (∞) and loss fac-

tor (∞) are expressed as

σ1 0 ∆σ12 ∆σ13 1–= =( ); σ2 σ3 0.≠,=

∆1m' ∆1m''

∆1m' ω( )
4∆ε1m Γm

2 ω( ) 1 ∆ε1m–( )2–

4 Γm
2 ω( ) 1 ∆ε1m–( )2+

---------------------------------------------------------------,=

∆1m'' ω( )
2Γm ω( ) 1 ∆ε1m

2
–( )

4 Γm
2 ω( ) 1 ∆ε1m–( )2+

----------------------------------------------------.=

εeff' εeff''

εeff' 0( ) ε1

1 s1/2 s2/2 A1 A2 B1 B2+ + + + + +
1 s1/2 s2/2 A1 A2 B1 B2+ + + +––
------------------------------------------------------------------------------------,=

εeff'' 0( ) 0.=

εeff'

εeff''
(29)
εeff' ∞( ) ε1

1 s1∆ε12/2– s2∆ε13/2 A1∆ε12
2 A2∆ε13

2 B1 B2+( )∆ε12∆ε13+ + +–

1 s1∆ε12/2 s2∆ε13/2 A1∆ε12
2 A2∆ε13

2 B1 B2+( )∆ε12∆ε13+ + + + +
-----------------------------------------------------------------------------------------------------------------------------------------------------,=

εeff'' ∞( ) 0.=
In our material, the effective static value of the per-
mittivity (0) depends on the permittivity of the
matrix with a proportionality coefficient (>1) that is a
function only of the system’s geometrical parameters.
In the limits ω  0 and ω  ∞, the effective loss
factor of the composite vanishes; therefore, the fre-
quency dependence (0) has at least one maximum in
the interval 0 ≤ ω < ∞. Actually, as follows from inves-
tigations, the function (ω) for a three-component sys-
tem may have two (and no more) maxima under certain
relationships between the electrophysical parameters.

Such behavior of the static value of the complex
effective permittivity is observed in inhomogeneous
matrix systems where the matrix is nonconductive and,
thus, bulk conduction is absent. This follows from com-
parison of (28) and (29) with expressions (23)–(25) for a
material with a conductive matrix, in which (ω) 
∞ at ω  0.

εeff'

εeff''

εeff''

εeff''
With ω  ∞, the effective permittivity (ω)
depends only on the permittivities of the components
and geometrical parameters of the system for both σ1 ≠ 0
and σ1 = 0. Thus, (∞) is independent of the conduc-
tive properties of the inclusions.

The aforesaid is illustrated in Fig. 2, where the
effective permittivity (∆ω2), effective loss factor

(∆ω2), and effective loss tangent (∆ω2) are
plotted against relative frequency ∆ω2 using formulas
(28) and (29). The dimensionless parameters are as fol-
lows: s1 = 0.25, s2 = 0.20, ε1 = 12, ε2 = 4, ε3 = 2, σ1 = 0,
σ2 = 1, and σ3 = 100 (∆ε12 = 0.5, ∆ε13 = 0.714, and ∆σ12 =
∆σ13 = –1). The plots are constructed for the relative val-
ues  = /ε1 and  = /ε1 (the asterisks are
omitted). For the conditions under consideration, Fig. 3
shows the complex permittivity diagram in the form of
two semicircles, which intersect at the point where the
effective loss factor has a local minimum between two
maxima.

εeff'

εeff'

εeff'

εeff' δefftan

εeff*
' εeff' εeff*

'' εeff''
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The curves (∆ω2) and ( ) (Figs. 2, 3) have
two peaks. In terms of the Debye theory [17], this
means that the system has two relaxation times under
the conditions adopted. The peaks of the dependence

(∆ω2) coincide with the inflection points of the

dependence (∆ω2).

The direct use of expressions (14) and (15) to find
the frequencies at which the function (∆ω2) takes
extremum values yields very awkward and hard-to-per-
ceive results. Therefore, it would be appropriate to
make an approximate estimate in order to cut the body
of calculation and represent the final results in a physi-
cally meaningful form. The mathematical prerequisite
for such estimates is as follows.

From expressions (14) and (15) for σ1 = 0 (∆σ12 =
−1), the effective loss factor can be represented as

(30)

where the dots in the numerator and denominator imply

two-term products like (∆ω2), (∆ω2),

(∆ω2) (∆ω2), etc. Here, the parameters (∆ω2)

and (∆ω2) (m = 2, 3) are defined by formulas (27).
In (30), the absolute values of all subsequent terms are
always smaller than those of the first two shown. The
difference between them is the greater, the smaller the
nonuniformity of the electrophysical parameters of the
material and the smaller the concentrations of inclu-
sions of either type. Thus, it can be concluded that the
first two terms of the numerator in (30), which contain
the parameters (∆ω2) and (∆ω2) in the first

εeff'' εeff'' εeff'

εeff''

εeff'

εeff''

εeff'' ∆ω2( )
s1∆12'' ∆ω2( )– s2∆13'' ∆ω2( ) …+–

1 s1∆12
' ∆ω2( ) s2∆13' ∆ω2( ) …+ + +

---------------------------------------------------------------------------------,=

∆12'
2 ∆12''

2

∆12' ∆12'' ∆1m'

∆1m''

∆12'' ∆13''

1.5

1.0

0.5

0 0.25 0.50 0.75

ε'eff ε''eff tanδeff ∆''12 ∆''13

∆ω2

ε'eff

∆''12
∆''13

ε''eff

tanδeff

Fig. 2. Effective permittivity, effective loss factor, effective
loss tangent, and parameters  and  vs. relative fre-

quency ∆ω2 for the inclusion concentrations s1 = 0.25 and
s2 = 0.20 and ∆ε12 = 0.5, ∆ε13 = 0.714, and ∆σ12 = ∆σ13 = –1.

∆12'' ∆13''

, , , ,
 power, make a major contribution to the effective loss
factor. Since these parameters as functions of the rela-
tive frequency ∆ω2 have maxima, one can expect that
these maxima define those of the function (∆ω2).
This supposition is confirmed by many particular calcu-
lations. As applied to the case under consideration, the
results of calculation are graphically depicted in Fig. 2.
It is seen that the maxima of the effective loss factor

(∆ω2) do roughly coincide with the extrema of the

functions (∆ω2) and (∆ω2), the coincidence
being more accurate at high frequencies and less accu-
rate at low ones. Thus, the qualitative analysis of the
effective loss factor spectrum (∆ω2) can be per-
formed by studying the frequency dependences of

(∆ω2) and (∆ω2).

The parameter (∆ω2) reaches a maximum at

(31)

Theoretically, the frequency  may take values

from the interval 0 ≤  ≤ 1/2.

The other parameter, (∆ω2), has an extremum at

(32)

in this case, the range of the frequency  is not lim-

ited by the interval 0 ≤  ≤ 1.

The frequencies  and , at which the effec-

tive loss factor (∆ω2) takes maximal values, are
found by conventional techniques of mathematical
analysis. The general extremum condition follows from
the second expression of (27):

(33)

Hence, using formulas (10) and (13) in view of relation-
ships (11), we arrive at expressions (31) and (32).

For the maxima of the effective loss factor (∆ω2)
to be distinguishable and not to overlap, the frequency
spacing between them must be sufficiently wide. This

requirement can be provided if the frequency  of
the first maximum is shifted, for example, to low fre-

quencies and the frequency  of the second maxi-
mum, to high frequencies. According to formulas (31)
and (32), such conditions are met when the electrophys-
ical parameters of the composite satisfy the relation-
ships

(34)

εeff''

εeff''

∆12'' ∆13''

εeff''

∆12'' ∆13''

∆12''

∆ω2
1( ) 1 ∆ε12–

3 ∆ε12–
------------------

ε2

ε1 2ε2+
-------------------.= =

∆ω2
1( )

∆ω2
1( )

∆13''

∆ω2
2( )

 = 
1 ∆ε13–

1 2ε3σ2/ε2σ3 ∆ε13–+
---------------------------------------------------- = 

ε2σ3

ε2σ3 σ2 ε1 ε3+( )+
-------------------------------------------,

∆ω2
2( )

∆ω2
2( )

∆ω2
1( ) ∆ω2

2( )

εeff''

Γm
m 1–( ) 2

1 ∆ε1m–
------------------- m 2 3,=( ).=

εeff''

∆ω2
1( )

∆ω2
2( )

ε1 @ ε2 ∆ε12 1( ), ε2σ3 @ ε3σ2.
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Note that the parameters used in constructing the
graphical dependences in Figs. 2 and 3 satisfy relation-
ships (34).

Stratified system. Studying the spectral character-
istics of an inhomogeneous medium composed of dou-
bly periodically alternating cylindrical inclusions of
two types, we have found conditions when the permit-
tivity dispersion is absent. It has been shown that the
effective loss factor in a three-component system may
have two maxima. The natural question arises: To what
extent do these results apply to nonmatrix systems? To
tackle the question, one should study the frequency
dependence of the complex permittivities of variously
textured inhomogeneous systems. Below, as a simple
inhomogeneous system of this type, we consider a
stratified material consisting of three dissimilar alter-
nating layers of equal size. As a whole, such a system
acquires anisotropic properties, and its effective per-
mittivity tensor has the components

(35)

It is assumed that the x axis is directed normally to
the layers.

For a medium whose constituents have complex
permittivity of form (5), expressions (35) written in

terms of the complex parameters (ω) (m = 2, 3)
become

(36)

Here,

(37)

In expanded form, expressions (36) and (37) take
the form

(38)

where the functions X±(ω), Y±(ω), and Z±(ω) are given

εeff xx,  = 
3ε1ε2ε3

ε1ε2 ε1ε3 ε2ε3+ +
------------------------------------------,

εeff yy,  = 1
3
--- ε1 ε2 ε3+ +( ).

∆̂1m

ε̂eff, xx ω( ) 3ε̂1 ω( ) F– ω( )
G– ω( )
---------------,=

ε̂eff, yy ω( ) 1
3
--- ε̂1 ω( )G+ ω( )

F+ ω( )
----------------.=

F± ω( ) ∆̂12 ω( )±[ ] 1 ∆̂13 ω( )±[ ] ,=

G± ω( ) ∆̂12 ω( )±[ ] 1 ∆̂13 ω( )+−[ ]=

+ 1 ∆̂12 ω( )+−[ ] 1 ∆̂13 ω( )±[ ] 1 ∆̂12 ω( )±[ ] 1 ∆̂13 ω( )±[ ] .+

ε̂eff, xx ω( ) 3ε̂1 ω( )X– ω( ) iY– ω( )+

Z– ω( ) iY+ ω( )+
--------------------------------------,=

ε̂eff, yy ω( )
ε̂1 ω( )

3
-------------- Z+ ω( ) iY– ω( )–

X+ ω( ) iY+ ω( )–
--------------------------------------,=
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by

(39)

With conditions (17) and (18) met, relationships
(19) are valid and the system is characterized by single
frequency parameter (20). Then, from expressions (38)
and (39), we find that the real parts of the effective per-
mittivity tensor,  and , retain their constant
values, while the imaginary parts vary with frequency
as the parameter Γ1(ω):

(40)

Relationships (18) thus define the conditions under
which the permittivity dispersion is also absent in the
case of a one-period system.

The expressions for  and  coincide with
respective formulas (35), which is easy to check by sub-
stituting formulas (3) for ∆ε12 and ∆ε13 into (40).

Let one of the layers (e.g., layer 1) be nonconduct-
ing; that is, σ1 = 0 (∆σ12 = ∆σ13 = –1). Then, in the lim-
iting cases (as for the matrix system, the relative fre-
quency ∆ω2 and the frequency parameter Γ2(∆ω2)
assigned to phase 2 are taken as variable parameters),
we have the following expressions:

for ω  0 (Γ2(ω)  ∞, ∆ω2  0),

X± ω( ) 1 ∆12' ω( ) ∆13' ω( )±±=

+ ∆12' ω( )∆13' ω( ) ∆12'' ω( )∆13'' ω( ),–

Y± ω( ) = ∆12'' ω( ) 1 ∆13' ω( )±[ ] ∆ 13'' ω( ) 1 ∆12' ω( )±[ ] ,+

Z± ω( ) 3 ∆12' ω( ) ∆13' ω( )±±=

– ∆12' ω( )∆13' ω( ) ∆12'' ω( )∆13'' ω( ).+

εeff, xx' εeff, yy'

εeff, xx' 3ε1

1 ∆ε12 ∆ε13 ∆ε12∆ε13+––
3 ∆ε12 ∆ε13– ∆ε12∆ε13––
------------------------------------------------------------,=

εeff, xx'' ω( ) εeff, xx' Γ1 ω( );=

εeff, yy'
ε1

3
----

3 ∆ε12 ∆ε13 ∆ε12∆ε13–+ +
1 ∆ε12 ∆ε13 ∆ε12∆ε13+ + +
-------------------------------------------------------------,=

εeff, yy'' ω( ) εeff, yy' Γ1 ω( ).=

εeff, xx'' εeff, yy'

εeff, xx' 0( ) 3ε1, εeff, xx'' 0( ) 0;= =

0.25

ε''eff

0 0.5 1.0 1.5 ε'effε'eff (∞) ε'eff (0)

Fig. 3. Diagram of the effective complex permittivity of the
three-component insulator with the same parameters as in
Fig. 2.
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(41)

for ω  ∞ (Γ2(ω)  0, ∆ω2  1),

(42)

From (41) and (42), it follows that the electrostatic
and optical components of the effective permittivity
tensor differ substantially. There are at least two distin-
guishing features. First, at ω  0, the effective longi-

tudinal loss factor (0) has a singularity. It is note-
worthy that this singularity exists even if two layers of
the three are nonconducting. In fact, setting σ3 = 0 in

formula (41) for (0) does not change the charac-
ter of the singularity. This is because for the longitudi-
nal component of the effective permittivity tensor
(unlike the transverse component), bulk conduction
exists if at least one of the layers is conducting. Second,
the effective longitudinal permittivity  does not
depend on the frequency; hence, the dispersion of this
permittivity component is absent under any conditions.

For the component (ω), the dielectric spec-
trum of the stratified material is the same as for the dou-
bly periodic matrix structure with circular inclusions

εeff, yy'' 0( )
ε1

3
----

3 ∆ε12 ∆ε13 ∆ε12∆ε13–+ +
1 ∆ε12 ∆ε13 ∆ε12∆ε13+ + +
-------------------------------------------------------------,=

εeff, yy'' 0( ) 1
3
---ε1Γ2 0( ) 1

σ3

σ2
-----+ 

  1 ∆ε12–
1 ∆ε12+
------------------;=

εeff, xx' ∞( ) 3ε1

1 ∆ε12– ∆ε13 ∆ε12∆ε13+–
3 ∆ε12 ∆ε13 ∆ε12∆ε13–––
------------------------------------------------------------,=

εeff, xx'' ∞( ) 0;=

εeff, yy' ∞( )
ε1

3
----

3 ∆ε12 ∆ε13 ∆ε12∆ε13–+ +
1 ∆ε12 ∆ε13 ∆ε12∆ε13+ + +
-------------------------------------------------------------,=

εeff, yy'' ∞( ) 0.=

εeff, yy''

εeff, yy''

εeff, yy'

ε̂eff, xx

3

2

1

0 0.25 0.50 0.75 ∆ω2

ε'eff, yy ε''eff, xx

ε'eff, xx
ε''eff, yy

ε'eff, xx ε''eff, xx ε'eff, yy ε''eff, yy

Fig. 4. Frequency dependences of the effective permittivity
of the stratified medium with ∆ε12 = 0.333, ∆ε13 = 0.6, and
∆σ12 = ∆σ13 = –1.

, ,,
that was considered in the previous section. This can be
visualized by comparing Figs. 2 and 4.

Thus, a singly periodic structure and a doubly peri-
odic structure with a low concentration of inclusions
have the same frequency characteristics of the trans-
verse permittivity component. The associated dielectric
spectra are described based on similar theoretical state-
ments.

FOUR-COMPONENT MEDIUM 
WITH A HEXAGONAL STRUCTURE

The simplest model of such a medium is represented
by a matrix with a permittivity ε1 in which three types
of circular cylindrical unidirectional inclusions with
permittivities ε2, ε3, and ε4 and radii r1, r2, and r3,
respectively, are embedded (Fig. 5). The inclusions are
doubly periodically arranged at the centers of hexago-
nal cells, continuously covering the plane. Geometri-
cally, this structure has a hexagonal axis. On averaging,
the structure acquires anisotropic properties and its
electrophysical parameters in the transverse direction
are described by the effective permittivity tensor ,
which has two components when reduced to the princi-
pal axes:  = {εeff, xx, εeff, yy}. The four-component sys-
tem under consideration has a matrix structure, like the
former of the two analyzed above, and is anisotropic as
a whole like the latter.

To find the basic features of the dielectric spectrum
of such structures, it is sufficient to analyze the case
when the total concentration of the inclusions is low
(s1 + s2 + s3 ≤ 0.5). Under the conditions adopted, the
components of the effective permittivity tensor are
given by [21]

(43)

Here, α and β are numerical coefficients reflecting the
system’s anisotropy (α = 4/3 and α + β = 2) and the
parameters ∆ε1g (g = 2, 3, 4) are given by formulas (3)
with an obvious complement. The components of the
tensor  satisfy the reciprocity relations

(44)

therefore, it is sufficient to analyze the properties of
only one of the components. Let this component be
εeff, xx for the sake of definiteness.

ε̃eff

ε̃eff

εeff, xx ε1

1 α s1∆ε12 s2∆ε13 s3∆ε14+ +( )–
1 β s1∆ε12 s2∆ε13 s3∆ε14+ +( )+
--------------------------------------------------------------------------,=

εeff, yy ε1

1 β s1∆ε12 s2∆ε13 s3∆ε14+ +( )–
1 α s1∆ε12 s2∆ε13 s3∆ε14+ +( )+
--------------------------------------------------------------------------.=

ε̃eff

εeff, xx ∆ε12 ∆ε13 ∆ε14, ,( )εeff, yy ∆ε21 ∆ε31 ∆ε41, ,( ) ε1
2;=
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Then, for the complex permittivity given by (5), the
first expression in (43) can be rearranged into

(45)

where the complex parameters (ω) are given by
expressions (7)–(10) as before with the subscripts m
replaced by g.

Now these expressions contain four frequency
parameters Γν(ω) (ν = 1, …, 4), which are linearly
related to each other:

(46)

With formulas (3) and (9), relationships (46) can be
rearranged into

(47)

Relationships (46) and (47) generalize equalities (11)
and (12) for the case of a four-component medium.

Separating the real and imaginary parts of complex
expression (45), we obtain

(48)

where

(49)

From expressions (48) and (49) in view of formulas
(7)–(10), it follows that if the three conditions

(50)

or, which is the same,

(51)

are satisfied, the real part of the component (ω)

ε̂eff, xx ω( )

=  ε̂1
1 α s1∆̂12 ω( ) s2∆̂13 ω( ) s3∆̂14 ω( )+ +[ ]–

1 β s1∆̂12 ω( ) s2∆̂13 ω( ) s3∆̂14 ω( )+ +[ ]+
-----------------------------------------------------------------------------------------------,

∆̂14

Γ1 ω( ) = 
ε2σ1

ε1σ2
----------Γ2 ω( ) = 

ε3σ1

ε1σ3
----------Γ3 ω( ) = 

ε4σ1

ε1σ4
----------Γ4 ω( ).

Γ1 ω( )
1 ∆ε12–( ) 1 ∆σ12+( )
1 ∆ε12+( ) 1 ∆σ12–( )

------------------------------------------------Γ2 ω( )=

=  
1 ∆ε13–( ) 1 ∆σ13+( )
1 ∆ε13+( ) 1 ∆σ13–( )

------------------------------------------------Γ3 ω( )

=  
1 ∆ε14–( ) 1 ∆σ14+( )
1 ∆ε14+( ) 1 ∆σ14–( )

------------------------------------------------Γ4 ω( ).

εeff, xx' ω( )

=  ε1

1 α β–( )∆'– αβ ∆' ∆''+( ) α β+( )Γ1 ω( )∆''+–

1 β∆'+( )2 β∆''( )2+
-----------------------------------------------------------------------------------------------------------------,

εeff, xx'' ω( ) ε1=

×
Γ1 ω( ) 1 α β–( )∆'– αβ ∆' ∆''+( )–[ ] α β+( ) ω( )∆''–

1 β∆'+( )2 β∆''( )2+
---------------------------------------------------------------------------------------------------------------------------,

∆' s1∆12' s2∆13' s3∆14' ,+ +=

∆'' s1∆12'' s2∆13'' s3∆14'' .+ +=

∆ε12 ∆σ12, ∆ε13 ∆σ13, ∆ε14 ∆σ14= = =

ε1σ2 ε2σ1, ε1σ3 ε3σ1, ε1σ4 ε4σ1,= = =

ε̂eff, xx
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does not depend on frequency,

(52)

and takes electrostatic value (43). The imaginary part
varies as the frequency parameter Γ1(ω):

(53)

Relationships (50) or (51), like similar expressions
in the previous cases, specify no-dispersion conditions.
Note that relationships (51) can be derived from the
boundary conditions in the absence of free charges. As
compared with the previous systems, here the number
of governing equations increases by one and becomes
equal to the number of inclusion types in a matrix com-
posite. According to (46), the material in this case is
characterized by the single frequency parameter

(54)

In the general case, when conditions (50) fail, the
effective parameter (ω) with ω  0 (Γ2(ω) 
∞, ∆ω2  0) takes the following electrostatic values
(as before, Γ2(ω) and ∆ω2 are variables):

εeff, xx' ε1

1 α s1∆ε12 s2∆ε13 s3∆ε14+ +( )–
1 β s1∆ε12 s2∆ε13 s3∆ε14+ +( )+
--------------------------------------------------------------------------,=

εeff, xx'' ω( ) εeff, xx' Γ1 ω( ).=

Γ1 ω( ) Γ2 ω( ) Γ3 ω( ) Γ4 ω( ).= = =

ε̂eff, xx

εeff, xx' 0( ) ε1

1 α s1∆σ12 s2∆σ13 s3∆σ14+ +( )–
1 β s1∆σ12 s2∆σ13 s3∆σ14+ +( )+
---------------------------------------------------------------------------=

+
2ε1

1 β s1∆ε12 s2∆ε13 s3∆ε14+ +( )+[ ] 2
--------------------------------------------------------------------------------

1

2 3

4

Fig. 5. Fragment of a four-component medium with a hex-
agonal structure.
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(55)

At low frequencies, the effective parameters of the
medium are seen to depend considerably on the con-
ductivity of the components.

From the second formula of (55), it follows that the
effective dielectric loss factor has a singularity at ω  0.

The infinite growth of (0) (as 1/ω) is associated
with the conductivity of the matrix phase and, conse-
quently, with the bulk conductivity of the composite.

At high frequencies, ω  ∞ (Γ2(ω)  0,
∆ω2  1), the effective parameters of the medium (we
everywhere mean the component (ω) of the ten-

sor (ω)) take the values

(56)

Formulas (56) describe Maxwell–Wagner polariza-
tion at high frequencies.

As before, it is convenient to consider the frequency

× s1 ∆σ12 ∆ε12–( )
1 ∆σ12+
1 ∆ε12+
------------------- s2 ∆σ13 ∆ε13–( )

1 ∆σ13+
1 ∆ε13+
-------------------+

+ s3 ∆σ14 ∆ε14–( )
1 ∆σ14+
1 ∆ε14+
------------------- ,

εeff, xx'' 0( ) ε1Γ2 0( )=

×
1 ∆ε12–( ) 1 ∆σ12+( ) 1 α s1∆σ12 s2∆σ13 s3∆σ14+ +( )–[ ]
1 ∆ε12+( ) 1 ∆σ12–( ) 1 β s1∆σ12 s2∆σ13 s3∆σ14+ +( )+[ ]

-------------------------------------------------------------------------------------------------------------------.

εeff, xx''

ε̂eff, xx

ε̃eff, xx

εeff, xx' ∞( ) ε1

1 α s1∆ε12 s2∆ε13 s3∆ε14+ +( )–
1 β s1∆ε12 s2∆ε13 s3∆ε14+ +( )+
-------------------------------------------------------------------,=

εeff, xx'' ∞( ) 0.=

3

2

1

0 0.25 0.50 0.75 ∆ω2

ε'eff , xx ε''eff, xx tanδeff, xx ∆''12 ∆''13

ε'eff , xx

ε''eff, xx ∆''12 tanδeff, xx

∆''13

Fig. 6. The same as in Fig. 2 for s1 = 0.25, s2 = 0.20, s3 =
0.20, ∆ε12 = 0.5, ∆ε13 = 0.714, ∆ε14 = 0.714, and ∆σ12 =
∆σ13 = ∆σ14 = –1.

, , , ,
dependences when the matrix is a perfect insulator:

(57)

The electrostatic parameters of such a system are
derived from general expression (45) at ω  0
(Γ2(ω)  ∞, ∆ω2  0):

(58)

Formulas (58) can also be obtained from (55) in
view of condition (57).

With ω  ∞ (Γ2(ω)  0, ∆ω2  1), the expres-

sions for (∞) and (∞) completely coincide
with (56). Thus, at high frequencies, the system’s
behavior does not depend on the component conduc-
tivity.

Comparing these expressions with similar expres-
sions obtained previously, one can note that in the lim-
iting cases, the parameters of the four-component sys-
tem qualitatively behave in the same manner as those of
the three-component composite. The quantitative dif-
ference is due to the different compositions of the sys-
tems and anisotropy, which arises in the four-compo-
nent hexagonal structure upon averaging its parame-
ters.

A more significant difference between the systems
results from the fact that the number of the extrema of

the function (ω) grows in proportion to the num-
ber of components (the number of the extrema depends
on certain relationships between local parameters of the
components).

By way of example, Fig. 6 shows the frequency
dependences of the effective permittivity, dielectric loss
factor, and dielectric loss tangent. The diagram of the
complex effective permittivity for this case is con-
structed in Fig. 7. The system has the following relative
parameters: s1 = 0.1, s2 = 0.15, s3 = 0.2, ε1 = 19, ε2 = 9,
ε3 = 4, ε4 = 2, σ1 = 0, σ2 = 1, σ3 = 30, and σ4 = 1500
(∆ε12 = 0.357, ∆ε13 = 0.652, ∆ε14 = 0.810, ∆σ12 = ∆σ13 =
∆σ14 = –1). With these parameters, the dependence

(∆ω2) has three peaks, one of which (near
∆ω2  1) is not clearly seen in Fig. 6. These three
peaks are well defined in the diagram of the complex
permittivity (Fig. 7), which means that the complex dia-
gram is a convenient tool for permittivity dispersion
analysis. For the parameters listed above, this diagram
consists of circular arcs with their centers below the
abscissa axis.

The peak of the curve (∆ω2) at ∆ω2  1
(ω  1) is distinctly seen in Fig. 8, where the fre-
quency dependences of the permittivity components
are shown on an enlarged scale in the range 0.95 ≤
∆ω2 ≤ 1.0.

ε̂1 ε1, σ1 0  ∆σ12 ∆σ13 ∆σ14 1–= = =( )= = .

εeff, xx' 0( ) ε1

1 α s1 s2 s3+ +( )+
1 β s1 s2 s3+ +( )–
--------------------------------------------, εeff, xx'' 0( ) 0.= =

εeff, xx' εeff, xx''

εeff, xx''

εeff, xx''

εeff, xx''
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The direct application of analytical methods to find

the frequencies of the peaks of (∆ω2) is cumber-
some; therefore, as before, the frequencies of effective
loss factor extrema are approximately found from the

frequencies where the parameters (∆ω2) (g = 2, 3, 4).
This greatly simplifies calculations.

In order of increasing frequency (more exactly, the
parameter ∆ω2), the frequencies of the first two maxima,

 and , are given by formulas (31) and (32),
while the third frequency is found from the expression

(59)

The dependences of the parameters  (g = 2, 3, 4)
on the relative frequency ∆ω2 are shown by the dash-
and-dot and dotted lines in Figs. 6 and 8. It is seen that

the frequencies  (j = 1, 2, 3) do specify the maxima

of the function (∆ω2) with a high accuracy (the
error is about 1%). It should be noted in this respect that

the maxima of (∆ω2) and (∆ω2) correlate only
at low and moderate concentrations of the inclusions
(s1 + s2 + s3 ≤ 0.5). Under these conditions, the complex
permittivity depends essentially on the complex param-

eters (∆ω2).

To summarize, we note that complex parameters (7)
are of great importance in the theory of permittivity dis-
persion in heterogeneous media. They depend on fre-
quency, conductivity, and permittivity. It is convenient
to analyze them in the complex plane. By eliminating
the frequency parameter Γm(ω) from expressions (8),
we arrive at the equation of circle in the complex plane:

(60)

The circle has a radius |∆ε1m – ∆σ1m|/2 and is centered
at the point (∆ε1m + ∆σ1m)/2 on the x axis.

For the limiting values of the frequency, ω  0
(Γm(ω)  ∞) and ω  ∞ (Γm(ω)  0), the real

part of the complex parameter (ω) takes the respec-
tive values

(61)

εeff, xx''

∆1g''

∆ω2
1( ) ∆ω2

2( )

∆ω2
3( ) = 

1 ∆ε14–
1 2ε4σ2/ε2σ4 ∆ε14–+
---------------------------------------------------- = 

ε2σ4

ε2σ4 σ2 ε1 ε4+( )+
------------------------------------------.

∆1g''

∆ω2
j( )

εeff, xx''

∆1g'' εeff, xx''

∆̂1g

∆1m' ω( ) 1
2
--- ∆ε1m ∆σ1m+( )–

2

∆1m
''2 ω( )+

=  
1
4
--- ∆ε1m ∆σ1m–( )2.

∆̂1m

∆1m' 0( ) ∆σ1m, ∆1m' ∞( ) ∆ε1m;= =
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therefore, relationship (60) can be represented as

(62)

Only the semicircle in the upper (at ∆ε1m > ∆σ1m) or
lower (∆ε1m < ∆σ1m) half-plane, rather than the complete
circle, has a physical meaning.

CONCLUSION

Some general comments in conclusion.

If a matrix composite contains several types of dis-
similar inclusions, the frequency dependences of the
effective complex permittivity components become
more complicated; namely, the effective loss factor
may have several, rather than one, maxima. Hence,
there is a set of relaxation times associated with Max-
well–Wagner polarization. The effective permittivity
diagram in the complex plane is composed of succes-
sively connected circular arcs. The greatest number of

∆1m' ω( ) 1
2
--- ∆1m' ∞( ) ∆1m' 0( )+( )–

2

+ ∆1m
''2 ω( ) 1

4
--- ∆1m' ∞( ) ∆1m' 0( )–( )2

.=

0.5

0 1 2 3 ε'eff, xx (0)ε'eff, xx (∞)

ε''eff, xx

ε'eff, xx

Fig. 7. Diagram of the effective complex permittivity of the
four-component medium (the parameters are the same as in
Fig. 6).

3
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1

0
0.95 0.96 0.97 0.98 0.99 ∆ω2

ε'eff, xx
ε''eff, xx

ε'eff, xx

ε''eff, xx

–∆''14

Fig. 8. Effective permittivity, effective loss factor, and the
parameter –  vs. relative frequency ∆ω2 at high frequen-

cies (the parameters are the same as in Fig. 6).

∆14''
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the maxima of the imaginary part of the complex effec-
tive permittivity equals the number of inclusion types.

Heterogeneous materials for which the complex dia-
gram shows several maxima are some polymers, silica
gels, and polycondensation resins (ionites). For exam-
ple, AB-18 multipurpose ionite is an insulating matrix
with two types of high-conductivity inclusions (grains)
[4]. The complex diagram of this material exhibits two
maxima, each of which corresponds to its own type of
inhomogeneity.

Since calculations for multiphase media are very
awkward because of the great number of relevant
parameters, we analyzed matrix systems with a low
concentration of inclusions. It seems, however, that this
simplification cannot significantly affect the conclu-
sions drawn in this paper about the dielectric dispersion
in heterogeneous materials. For nonmatrix multicom-
ponent systems, the situation remains unclear and calls
for special investigation. This applies, in particular, to
totally inhomogeneous systems with the symmetry of
color mosaics or parquetry, where each color is associ-
ated with a certain property of the components. The
study of the effective parameters of such systems is
greatly complicated by the need to solve boundary-
value problems concerned with the formation of physi-
cal fields in the structure’s constituents.
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Abstract—The theory of diffuse martensitic transitions is used to analyze martensitic transformation and stress
relaxation in a planar round membrane made of a shape memory material under a constant pressure. The plastic
flexure of the membrane is found as a function of the temperature and applied pressure. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Metallic shape memory alloys (SMAs) have unique
deformation properties; namely, they can undergo
reversible plastic deformation and recover their initial
(prior to deformation) shape [1–3]. Owing to these
properties, they are applied in orthopedic medicine [4]
and various devices [5]. Recently, SMAs have become
considered as candidates for active elements in
microsensors and microactuators [6–9], e.g., in micro-
electromechanical systems (MEMSs) [10].

The intriguing properties of shape memory materi-
als are caused by structural martensitic transforma-
tions, which are sensitive to temperature and mechani-
cal stresses. To evaluate the functional characteristics
of devices and elements made of shape memory mate-
rials, it is necessary to know the relationship between
the material strain and applied stress at various temper-
atures. This relationship can be obtained empirically or
by using a relevant theory of structural martensitic
transformation. Since these transformations are first-
order phase transitions, for which a complete theory
has yet to be developed, the performance of devices
with the shape memory effect is usually evaluated
based on semi-empirical models [11].

In this work, we calculate martensite-induced stress
relaxation and reversible plastic strain (flexure) in
shape memory membranes under a constant pressure in
terms of the recently developed phenomenological the-
ory of diffuse martensitic transitions in such materials
[12–14]. This theory considers martensitic transforma-
tion in terms of thermodynamics, namely, as a sequence
of phase equilibria depending on temperature and
applied mechanical stress. Such an approach makes it
possible to find the volume fraction of martensite and
the plastic strain as a function of temperature and stress
over the whole range, including the case of nonuniform
1063-7842/03/4803- $24.00 © 20329
stress distribution in the material. Using the theory of
diffuse martensitic transformations, we analyze the
plastic flexure of the membrane as a function of its
radius, temperature, and pressure.

ELASTIC FLEXURE OF A MEMBRANE

Consider a round membrane of thickness h and
radius R @ h that is circumferentially clamped. The
equation for the angle of rotation ωe of its plane sec-
tions upon elastic bending under a constant pressure P
has the form [15, 16]

(1)

where r is the distance from the center of the mem-
brane, E is the modulus of elasticity, and ν is Poisson’s
ratio.

Integrating Eq. (1) twice, we find the dependence of
the angle of rotation on the radius:

(2)

Here, C1 = PR2/16D and C2 = 0 are constants of integra-
tion that are determined from the conditions ωe(0) =
ωe(R) = 0. Since ωe = dwe/dr, the elastic flexure of the
membrane is

(3)

The constant of integration C3 = –PR4/64D is found
from the condition we(R) = 0.

d
dr
----- 1

r
--- d

dr
----- ωer( ) r

2D
-------P, D–

Eh3

12 1 ν2–( )
-------------------------,= =

ωe r( ) C1r C2r 1– r3

16D
----------P–+

P
16D
----------r R2 r2–( ).= =

we r( ) C3 ωe rd∫+
P

64D
---------- R2 r2–( )

2
.–= =
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Taking into account the expressions for the radial
and tangential strains in the membrane,

(4)

where z is the distance from the neutral plane of the
membrane, we obtain the corresponding stress distribu-
tions [16]

(5)

Figure 1a shows the distributions of the radial
(curve 1) and tangential (curve 2) stresses in the lower
surface layer of the membrane (z = –h/2) in the σr/E∗ –
r/R coordinates at h/R = 0.1, P/E∗ = 10–2, and ν = 0.3,
where E∗ = (h/R)2E is the effective modulus of elastic-
ity of the membrane. Since pressure is applied along the
negative z direction, the central part of the lower sur-
face is extended and the peripheral part is compressed.
Equations (1)–(5) are derived based on the hypotheses
of plane sections and bending strain dominance, which
imply that the flexure of the membrane must be signif-
icantly smaller than its thickness, we(R) ! h. This con-
dition specifies the range of applied pressures: P !
(16/3)(h/R)2E∗ . At h/R = 0.1, we have P/E∗  ! 5 × 10–2

or P/E ! 5 × 10–4.
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Fig. 1. (a) Distributions of (1) radial and (2) tangential
bending stresses and (b) martensite distribution in the lower
surface layer of the loaded membrane.
MARTENSITE-INDUCED STRESS RELAXATION 
IN THE MEMBRANE

For the membrane made of a shape memory alloy,
the applied pressure P in the temperature range of mar-
tensitic transformation leads to elastic stress relaxation
and causes a plastic strain, i.e., an additional (but
reversible) plastic flexure. The problem is to find the
variation of this flexure with the membrane radius. To
this end, it is necessary to know the relation between
the plastic strain of the membrane and the applied stress
(pressure).

According to the theory of diffuse martensitic tran-
sitions [12–14], this relation follows from the law of
phase equilibrium

(6)

Here, ϕM is the volume fraction of martensite in the
material that undergoes martensitic transformation;
∆U = ω∆u is the change in the internal energy of the
material when its elementary volume ω passes from the
austenitic to martensitic state; k is the Boltzmann con-
stant; and

(7)

is the change in the internal energy of the elementary
volume of the membrane material due to this transfor-
mation, where q is the heat of transformation, T is tem-
perature, Tc is the critical (characteristic) temperature
of martensitic transformation in the absence of
mechanical stress τik; and ξik are the spontaneous shear
strains of the lattice that appear during its reconstruc-
tion. Assuming that plastic (martensitic) stress relax-
ation in the membrane is specified by the maximum
shear stresses τ = (σ1 – σ3)/2, where σ1 = σr, σ2 = σt, and
σ3 = σz = 0 are principal stresses, we obtain the marten-
site distribution in the membrane (for one dominating
type of martensite ξik ≡ ξ)

(8)

where B = ωq/kT ≈ ωq/kTc and m is the orientation fac-
tor, which depends on the angle the plane and direction
of the shear ξ make with the normal to the plane of the
stress σr. In Eq. (8), we took into account expressions
(5)–(7).

For further calculation, it is convenient to recast (8)
in dimensionless variables:

ϕM T τ,( ) 1
∆U
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--------------- ξ ikτ ik–=

ϕM r z P T, , ,( )

=  1 B
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Tc
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mξ σ r r z P, ,( )
2q

-----------------------------------– 
 exp+

 
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(9)

Figure 1b shows the radial distribution of martensite
in the surface layer of the membrane (z/h = –0.5)
according to (9) (B = 50, a = 1, m = 0.5, t = 1.1, p = 10–2,
and h/R = 0.1). The corresponding distribution of radial
stresses is given in Fig. 1a. Martensite is seen to form at
sites of maximum stresses at the center of the mem-
brane and at its periphery, where it is clamped. Figu-
res 2a and 2b show the martensite distribution in the
radial section of the membrane at the given parameters
and two temperatures (T = 1.1Tc and 1.05Tc). Contours 1
and 2 in these figures correspond to the martensite vol-
ume fractions ϕM = 0.67 and 0.33. Obviously, a
decrease in the temperature and an increase in the pres-
sure raise the martensite volume fraction.

PLASTIC FLEXURE OF THE MEMBRANE

The local plastic strain of the membrane related to
the formation of martensite is given by

(10)

Formula (10) takes into account the fact that the
membrane does not have plastic strain in the absence of
stress (pressure) despite the formation of martensite in
it, since martensite is in a twinned state. According to
(10), the applied stress leads to detwining the marten-
site; i.e., the fraction of martensite with orientation m
grows and the martensite phase with orientation –m
eventually disappears. As a result, a plastic strain
appears in the membrane in addition to its elastic strain.

Curve 1 in Fig. 3 shows the dependence of the elas-

tic strain  on the radius r in the membrane surface
layer (z = –h/2) according to (4) at the parameters given
above. Curves 2–4 illustrate the distributions of plastic
strains in the surface layer according to (10) at various
temperatures and ξ = 0.1. The plastic strains are maxi-
mal at the sites where radial stresses are maximal,
namely, at the center of the membrane and at its periph-
ery. As follows from (10), the plastic strain of the mem-
brane is limited by the value mξ = 0.05. Figure 3 shows
that this limiting value is reached at these sites at a pres-
sure P = 10–2E∗  and temperature T = 1.05Tc and signif-
icantly exceeds the elastic strain of the membrane there.

To find the plastic flexure of the entire membrane,
we will average the radial strains over the membrane
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thickness. Using the notation in (9) and integrating, we
find

(11)

Then, using the relationship between the rotation of

the membrane sections and the radial strains, ( , p,
t) = (h/2)dωm/dr, we arrive at the dependence of the
angle of plastic rotation ωm on the membrane radius:

(12)
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Fig. 2. Martensite distribution in the radial section of the
membrane for T = 1.1Tc (a) and 1.05Tc (b) at P = 10–2E∗ .
The section is shown for the ratio h/R = 0.2.
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Expression (12) uses the boundary condition ωm = 0
at r = 0. Figure 4a illustrates the dependences ωm( ) for
two temperatures (T = 1.1Tc and 1.05Tc) at a pressure
P = 10–2E∗ . Curve 1 demonstrates the dependence of

the angle of elastic rotation on the radius ωe( ) (see (2))
at the given pressure. Unlike the elastic rotation, the
plastic rotation at the periphery of the membrane is

r
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Fig. 4. Dependences of the (1) elastic and (2, 3) plastic
(a) rotations of sections and (b) membrane flexures at T =
1.1Tc (2) and 1.05Tc (3).
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Fig. 5. Temperature dependences of the plastic flexures of
the membrane at P = 10–3E∗  (1) and 10–2E∗  (2).
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tic, and (3) total flexures of the membrane for T = 1.05Tc.
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nonzero, since a plastic hinge forms at the edges owing
to the martensitic transformation.

Since ωm = dwm/dr, the dependence of the plastic
flexure of the membrane wm on its radius is given by

(13)

Here, it is taken into account that wm = 0 at the periph-
ery. Figure 4b shows the dependences ωm(r) corre-
sponding to the radial dependences of the angles of
plastic rotation in Fig. 4a. For comparison we also show
the radial dependence of the elastic flexure described
by Eq. (3) (curve 1).

The formation of the plastic hinge at the membrane
circumference significantly (several times) increases
the flexure of the central part in comparison with the
elastic flexure at the periphery. Therefore, it is of inter-
est to compare the maximum plastic flexure of the cen-

ter of the membrane  = (0, p, t)h with its maxi-
mum elastic flexure when the edges of the membrane
are mounted on a hinged support. Calculation [15]
shows that the elastic flexure of the hinged membrane
is greater than the maximum elastic flexure of the clamped

membrane, , by a factor of (5 + ν)/(1 + ν) ≈ 4. This

figure is comparable with the flexure ratios /  =
1.5 and 4.9 in Fig. 4b. It was shown that more than half
the material of the membrane passes to the martensitic
state at T = Tc and P = 10–2E∗ . Under these conditions,

/  = 7.4.

STRAIN CHARACTERISTICS
OF THE MEMBRANE

The membrane plastic flexure depends not only on
the applied stress but also on the temperature. Figure 5
shows the temperature dependences of the relative plas-

tic flexure /h described by (13) at pressures P = 2 ×
10–3E∗  (curve 1) and 10–2E∗  (curve 2). The flexure is
maximum at the critical temperature Tc and approaches
zero as the material turns into a purely martensitic or
purely austenitic state.

Figure 6a illustrates the pressure dependences of the
maximum elastic (curve 1) and plastic (curve 2), as well
as of the total (curve 3), flexures of the membrane at
1.05Tc. The initial (low-pressure) segments of the
curves are shown in Fig. 6b. As follows from Fig. 6a,
the plastic flexure tends toward saturation at pressures
over 0.03E∗  and then becomes pressure-independent.
The computed results given in Fig. 6b evidence that, at
near-critical temperatures, the plastic flexure exceeds
the elastic flexure at indefinitely small pressures.

Another specific feature of plastic flexure is its non-
linear pressure dependence and a large value at a rela-
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h
-------------------------

R
h
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r
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max w
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max we

max
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max we

max

wm
max
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tively small pressure. Figures 4b, 5, and 6 indicate that
the plastic flexures at near-critical temperatures
become comparable to the membrane thickness. At
such flexures, radial tensile stresses, which depend on
the membrane flexure, appear along with bending
stresses [15–17]. This circumstance significantly (non-
linearly) affects the pressure dependence of the elastic
flexures of the membrane and requires special calcula-
tion. This remark is also true for large plastic flexures
of shape memory membranes.

Thus, the theory of diffuse martensitic transitions
allows one to completely calculate the strain character-
istics of a shape memory membrane and find their tem-
perature and pressure dependences.
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Abstract—Kinetic mechanisms resulting in the enhancement of combustion of H2 + O2 mixtures when O2 mol-

ecules are excited to the a1∆g and b1  states with laser radiation (λ = 1.268 and 0.762 µm) are analyzed. It is
shown that the excitation of O2 molecules by the laser radiation leads to the appearance of new O, H, and OH
formation channels; promotes the ignition of the starting mixture; and reduces the self-ignition temperature.
With initial pressures in the range P0 = 103–104 Pa, the self-ignition temperature can be reduced to 300 K even
at relatively low energies of the laser radiation with λ = 0.762 µm. © 2003 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The intensification of combustion of reactive gas
mixtures by initiating plasma-chemical reactions
involving excited atoms and molecules has long been
discussed in the literature [1–5]. In particular, it has
been shown that the pre-excitation of the initial molec-
ular reagents accelerates the formation of reactive radi-
cals and lowers the self-ignition threshold, thereby
facilitating combustion [5, 6].

This is generally associated with the reduction of the
barrier for endoergic reactions with the participation of
vibrationally excited molecules. The excitation of the
electronic degrees of freedom of reacting molecules
must cause a further reduction of the barrier, because
electron states have a much higher energy than vibra-
tional states. However, detailed information on mecha-
nisms initiating combustion when the electronic states
of reagents are excited is lacking. This is primarily due
to the absence of adequate kinetic models that describe
processes in reactive mixtures with the participation of
electronically excited molecules.

H2 + O2 mixtures, where O2 molecules can be

excited to the a1∆g and b1  states, are the simplest to
analyze theoretically. This excitation can be accom-
plished with either an electrical discharge [7] or reso-
nant laser radiation [8]. Recent analysis [9] has shown
that even a small fraction (≈1%) of electronically
excited O2 molecules O2(a1∆g) present in the mixture
may substantially intensify the chain mechanism of
combustion and cause the self-ignition of a H2 + O2
mixture even at an initial temperature T0 ≈ 400 K.

O2(b1 ) molecules should overcome endoergic reac-
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tion barriers more easily than O2(a1∆g). Moreover,

O2(b1 ) molecules are much easier to produce than
O2(a1∆g) when molecular oxygen is excited by laser
radiation.

In this work, we analyze the self-ignition dynamics
of an H2 + O2 mixture when O2 molecules are excited
into the a1∆g and b1  states by laser radiation.

KINETIC MODEL

The elaboration of a kinetic scheme that allows one
to correctly describe the basic characteristics of com-
bustion and analyze ignition mechanisms is the most
important and, at the same time, most complex stage in
treating elementary events in reactive systems. We will
consider a stirred H2 + O2 mixture placed in an adia-
batic reactor where O2(a1∆g) and O2(b1 ) excited
molecules may be present. It is assumed that transla-
tional, rotational, and vibrational degrees of freedom
are in thermodynamic equilibrium, which does not
break during chemical reactions.

It is known that the ignition of a simple H2 + O2 mix-
ture in a wide range of initial temperatures and pres-
sures is described by a branched kinetic scheme involv-
ing 29 reactions with the participation of H, O, OH,
H2O, H2, O2, HO2, H2O2, and O3 even if electronically
excited O2 molecules are absent. The reactions and
associated reaction rates are given in [9, 10]. The pres-

ence of excited O2(a1∆g) and O2(b1 ) molecules in the
reactive mixture necessitates the introduction of addi-
tional reaction channels not only for these molecules
but also for O(1D) atoms that are generated by reactions

Σg
+

Σg
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+

Σg
+
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involving O2(a1∆g) and O2(b1 ) [8]. Reactions
included in the kinetic scheme are listed in the table.

The excitation of vibrational and electronic degrees
of freedom of reacting molecules increases the reaction
cross section and lowers the barrier for endoergic reac-
tions [11]. The rate constant for an endoergic reaction
is represented in the usual form

(1)

where  is the energy of activation of a qth exchange
reaction involving an excited molecule. Figure 1 shows
the energy diagram of an exothermal exchange reaction
AB + C = A + BC for the cases when the AB molecule
is in a ground electronic state and in excited state e (the
latter will be hereafter designated as AB(e)). Here, ∆H

is the thermal effect of the reaction and  is the energy
of activation of the reaction when the AB molecule is
not excited. According to [11], the potential energy sur-
faces for the forward and backward reactions when the
AB molecule is unexcited are given by

The potential energy surface for the forward reac-
tion with the AB molecule excited to state e with an
energy Ee is expressed as

where r1 and r2 are the exchange force ranges for the
reagents and reaction products, respectively. For many
reactions, r1 ≈ r2 [11]. In this case, at the point of inter-

section of the potential surfaces  and U2, we have

where t = exp(r/r1).
Then, the energy of  is given by

(2)

From relationships (1) and (2), we calculated the
rate constants for forward reactions 4, 5, 16, 17, 27, 28,
32, 33, 46, and 47 (see table) and backward reactions
41, 42, 52, 53, 55, and 56.

For barrier-free and low-barrier (  ≈ 0) reactions,

which produce O2 in various electronic states (X3 ,

a1∆g, and b1 ) according to [12], it was assumed that

the probability of producing O2(X3 ), O2(a1∆g), and

O2(b1 ) is proportional to the degeneracy multiplicity
of these states qX = 0.5, qa = 0.33, and qb = 0.17. The
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channels of the associated reactions are numbered 18–
20, 34–36, 61–63, and 65–67. The rate constants of the
overall processes are taken to be the same as in [13].

The rate constants for chain reactions 10 and 22,
which involve O2(a1∆g), were taken from [14], and the
rate constants for similar reactions with the participa-

tion of O2(b1 ) (reactions 11 and 23) were calculated
by formulas (1) and (2). Here, it was assumed that in (2)

the thermal effect ∆H and the energy of activation 
correspond to reactions 10 and 22, while Ee = ∆Eba,
where ∆Eba is the difference between the energies of the

states b1  and a1∆g of an O2 molecule with a zero
vibrational quantum number (Eba = 7593 K).

The rate constants of reactions that involve excited
atoms O(1D) (reactions 8, 13, 25, 57–60, 73–76) were
taken according to recommendations in [8, 12, 15] and
those of electronic–electronic (E–E) exchange and
electronic–translational (E–T) relaxation (reactions
70–72) were taken from [16]. The rate constants of for-
ward reactions 34–36, 41, 42, 52, 53, 55, and 56 and of
backward reactions 4, 5, 8, 11, 13, 16, 17, 23, 25, 27,
28, 32, 33, 46, 47, 49, 50, 57–60, and 62–76 were found
by the detailed balance principle.

STATEMENT OF THE PROBLEM 
AND BASIC EQUATIONS

Let us consider a stationary homogeneous H2 + O2
gas mixture exposed to a laser pulse with a duration τp
and frequency that is in resonance with the frequency of
the center of the m(e', v ', j', K')  n(e'', v '', j'', K'')

electronic–vibrational transition, where e' = X3 ; e'' =

a1∆g or b1 ; v ' and v" are the vibrational quantum
numbers; and j', K' and j", K" are the rotational quantum

Σg
+
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0

Σg
+

Σg
–

Σg
+

U1
e

U1

Ea
e

U2

∆H

Ea
0

A + BC

AB(e) + C

AB + C

Reaction coordinate, r

Energy, E

Fig. 1. Energy diagram of an exothermal exchange reaction
AB + C = A + BC with the participation of an unexcited mol-
ecule AB and excited molecule AB(e).
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Reactions involved in the kinetic scheme

No. Reaction No. Reaction

1 H2O + M = OH + H + M 32 OH + O2(a1∆g) = O(3P) + HO2

2 H2 + M = 2H + M 33 OH + O2( ) = O(3P) + HO2

3 O2( ) + M = O(3P) + O(3P) + M 34 OH + O2( ) = O(1D) + HO2

4 O2(a1∆g) + M = O(3P) + O(3P) + M 35 OH + O2(a1∆g) = O(1D) + HO2

5 O2( ) + M = O(3P) + O(3P) + M 36 OH + O2( ) = O(1D) + HO2

6 OH + M = O(3P) + H + M 37 H2O2 + M = 2OH + M

7 H2 + O(3P) = OH + H 38 H + H2O2 = H2 + HO2

8 H2 + O(1D) = OH + H 39 H + H2O2 = H2O + OH

9 O2( ) + H = OH + O(3P) 40 2HO2 = H2O2 + O2( )

10 O2(a1∆g) + H = OH + O(3P) 41 2HO2 = H2O2 + O2(a1∆g)

11 O2( ) + H = OH + O(3P) 42 2HO2 = H2O2 + O2( )

12 H2O + O(3P) = 2OH 43 HO2 + H2O = H2O2 + OH

13 H2O + O(1D) = 2OH 44 OH + HO2 = H2O2 + O(3P)

14 H2O + H = OH + H2 45 H2O + O2( ) = H2O2 + O(3P)

15 H2 + O2( ) = 2OH 46 H2O + O2(a1∆g) = H2O2 + O(3P)

16 H2 + O2(a1∆g) = 2OH 47 H2O + O2( ) = H2O2 + O(3P)

17 H2 + O2( ) = 2OH 48 O3 + M = O(3P) + O2( ) + M

18 HO2 + M = O2( ) + H + M 49 O3 + M = O(3P) + O2(a1∆g) + M

19 HO2 + M = O2(a1∆g) + H + M 50 O3 + M = O(3P) + O2( ) + M

20 HO2 + M = O2( ) + H + M 51 O3 + H = OH + O2( )

21 H2 + O2( ) = H + HO2 52 O3 + H = OH + O2(a1∆g)

22 H2 + O2(a1∆g) = H + HO2 53 O3 + H = OH + O2( )

23 H2 + O2( ) = H + HO2 54 O3 + O(3P) = 2O2( )

24 H2O + O(3P) = H + HO2 55 O3 + O(3P) = O2( ) + O2(a1∆g)

25 H2O + O(1D) = H2 + O2( ) 56 O3 + O(3P) = O2( ) + O2( )

26 H2O + O2( ) = OH + HO2 57 O3 + O(1D) = 2O2( )

27 H2O + O2(a1∆g) = OH + HO2 58 O3 + O(1D) = O2( ) + O2(a1∆g)

28 H2O + O2( ) = OH + HO2 59 O3 + O(1D) = O2( ) + O2( )

29 H2O + OH = H2 + HO2 60 O3 + O(1D) = O2( ) + O(3P) + O(3P)

30 2OH = H + HO2 61 O3 + OH = HO2 + O2( )

31 OH + O2( ) = O(3P) + HO2 62 O3 + OH = HO2 + O2(a1∆g)

b1Σg
+

X3Σg
– X3Σg

–

b1Σg
+ b1Σg

+

X3Σg
– X3Σg

–

b1Σg
+ b1Σg

+

X3Σg
–

X3Σg
–

b1Σg
+

b1Σg
+ X3Σg

–

X3Σg
–

b1Σg
+

b1Σg
+ X3Σg

–

X3Σg
–

b1Σg
+

b1Σg
+ X3Σg

–

X3Σg
–

X3Σg
– X3Σg

– b1Σg
+

X3Σg
– X3Σg

–

X3Σg
–

b1Σg
+ X3Σg

– b1Σg
+

X3Σg
–

X3Σg
–

X3Σg
–

TECHNICAL PHYSICS      Vol. 48      No. 3      2003



KINETIC MECHANISMS OF INITIATING HYDROGEN–OXYGEN MIXTURE 337
Table.  (Contd.)

No. Reaction No. Reaction

63 O3 + OH = HO2 + O2( ) 70 2O2(a1∆g) = O2( ) + O2( )

64 O3 + H2 = OH + HO2 71 O2(a1∆g) + M = O2( ) + M

65 O3 + HO2 = OH + 2O2( ) 72 O2( ) + M = O2(a1∆g) + M

66 O3 + HO2 = OH + O2( ) + O2(a1∆g) 73 O(1D) + O2( ) = O(3P) + O2(a1∆g)

67 O3 + HO2 = OH + O2( ) + O2( ) 74 O(1D) + O2( ) = O(3P) + O2( )

68 O3 + O2(a1∆g) = 2O2( ) + O(3P) 75 O(1D) + O2(a1∆g) = O(3P) + O2( )

69 O3 + O2( ) = 2O2( ) + O(3P) 76 O(1D) + M = O(3P) + M

b1Σg
+ b1Σg

+ X3Σg
–

X3Σg
–

X3Σg
– b1∆g

X3Σg
– X3Σg

–
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+ X3Σg
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+

X3Σg
– b1Σg

+

b1Σg
+ X3Σg

–

numbers in the ground, X3 , and excited, a1∆g or

b1 , states of an O2 molecule. We will analyze the
case τI @ τR, τV. Here, τI is the induced transition time,
and τR and τV are the characteristic times of rotational
and vibrational relaxations. Electronically excited mol-

ecules O2(a1∆g) and O2(b1 ), as well as atoms O(1D),
will be treated as separate chemical components with
their own enthalpy of formation. In this case, E–E
exchange and E–T relaxation can be considered as
usual chemical reactions. With the above assumptions,
the equations describing processes in a reactive gas
mixture where O2 molecules are excited to the a1∆g or

b1  states by laser radiation are given by
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Here, ρ, T, P, and u are the density, temperature, pres-
sure, and velocity of the gas, respectively; Ni is the con-
centration of molecules of an ith sort (i = 1, …, M);
mi is the mass of a molecule of an ith sort; h0i is the
enthalpy of formation of an ith component at T = 298 K;

µi is its molar mass (i = 1, 2, or 3 for O2(X3 ),

O2(a1∆g), and O2(b1 ), respectively);  and  are
the stoichiometric coefficients of a qth reaction; k+(–)q
are the rate constants of a qth reaction proceeding in the

forward and backward directions;  is the number
of components involved in this reaction; M1 is the num-
ber of reactions causing the decomposition (produc-

tion) of an ith component;  and Dij are the coeffi-
cients of thermal diffusion of an ith component and of
multicomponent diffusion; λT is the thermal conductiv-
ity; R is the gas constant; kB is the Boltzmann constant;
h is the Planck constant; lIi is the number of quanta lost
(or acquired) by a molecule of an ith sort under induced

transitions;  = 0 (for atoms), 1 (for linear mole-
cules), or 1.5 (for nonlinear molecules); Θil is the char-
acteristic temperature of vibrations of l type in an ith
molecule; Li is the total number of vibration types in
this molecule; νI is the frequency of laser radiation; I is

its intensity;  is the decomposition rate for a mole-
cule of qth sort and the formation rate for a molecule of
ith sort under spontaneous transitions; λmn is the wave-
length corresponding to the center of the m  n tran-
sition; Amn is the Einstein coefficient for this transition;
gn and gm are the degeneracy multiplicities of the states
m and n, respectively; Nn and Nm are the populations of
these states; and Xi is the electromagnetic field force
acting on a molecule of the ith sort.

In the general case, the expression for Xi has the
form [17]

Here, fig is the so-called gradient (or striction) force,
fip is the light pressure force, fiA is the Abraham force,
lz and lr are the unit vectors along the beam and in the
radial direction; αi is the polarizability of molecules of
the ith sort, c is the velocity of light in free space, and
n0 is the refractive index of the undisturbed mixture at
t = 0. Below, we consider conditions under which the
parameters fA and fp can be ignored.

Specific analysis will be performed for radiation
absorption at the center of the spectral line for the tran-
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sitions X3   a1∆g and X3   b1  with v ' =
v" = 0, j' = 9, and j" = K' = K" = 8 (with such rotational
numbers at T0 = 300 K, the absorption coefficient is

maximal). To the transition X3   a1∆g with the
given v ', j', K', v", j", and K", there corresponds the

wavelength λ = 1.268 µm; to the transition X3  

b1 , λ = 0.762 µm. The Einstein coefficients depend
on the rotational quantum number only slightly and for
the given transitions for the branch QP(9) were taken to
be equal to 2.58 × 10–4 and 8.5 × 10–2 s–1 [8]. When cal-
culating the Voigt function H(x, a) (at the center of the
line x = 0), we assumed that the cross sections of the
collisional broadening of the spectral line are equal to
the gas-kinetic cross sections. The rotational energies
of an O2 molecule in the states m and n were calculated

in view of the fact that the level j' in the state X3  is
split into three components: j' = K' + 1, j' = K', and j' =
K' – 1 [18].

Consider the ignition of a combustible mixture in a
laser beam with the radial Gaussian distribution of

intensity: I(r, t) = I0(t)exp(–r2/ ), where Ra is the char-
acteristic beam radius and I0(t) = I0 (for 0 < t ≤ τp) or 0

(for t > τp). Let Ra ! ; then, the variation of the
parameters in the longitudinal direction is negligibly
small as compared with the radial direction and it is
appropriate to consider an optically thin gaseous layer
where the parameters of the medium vary only along
the beam radius. By introducing the dimensionless
coordinates r' = r/Ra and t' = t/τp and passing to the

dimensionless variables  = Ni/N0,  = ρ/ρ0,  =

u(τp/Ra),  = P/N0kBT0,  = T/T0,  = Viτp/Ra,  =

kν/ ,  = I/I0,  = fig/ , and  = 2πα10I0N10/cn0Ra

(the index 0 refers to the time instant t = 0), we reduce
system (3)–(5) to the dimensionless form (primes and
tildes are omitted)
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(8)

Here, τa = Ra/  is the time of acoustic wave

propagation across the beam;  = /Dij and τTi =

miN0/  are, respectively, the times of multicompo-

nent diffusion and thermal diffusion; τλ = ρ0 /λT

is the heat conduction time;  = N0( )–1 is the char-
acteristic time of a qth reaction producing an ith com-

ponent; τI = N10hνI/ I0 is the induced transition time;

 = ( )–1 is the time of the radiation decomposition
of the O2 excited states (i = 1, 2, 3) due to spontaneous

transitions; τF =  is the time of change of
a mixture state under the action of the striction force;

and δI = I0τp/ρ0 T0.

Now let us numerically estimate the characteristic
times when the stoichiometric 2H2 + O2 mixture is
exposed to laser radiation with λ = 0.762 µm for I0 = 1–
10 kW/cm2, Ra = 10 cm, P0 = 103–104 Pa, T0 = 300–
700 K. The hierarchy of these times to a great extent
determines the influence of various processes on the
evolution of the components within the range and,
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hence, ignition process. With the given conditions of
numerical experiment, τI = 2 × 10–1–4 × 10–3 s, τa ≈ 2 ×
10–4 s, τD ≈ τTi ≈ τλ = 0.3–10 s, and τF = 1–10 s. For the

transition a1∆g  X3 ,  = 3.87 × 103 s; for the

transition b1   X3 ,  = 1.18 × 101 s. We will
consider the case in which τa ! τp ~ τI ≤ τin ! τD, where
τin is the characteristic time of ignition (induction time).

In this case, one can neglect macrotransfer pro-
cesses and spontaneous emission within the interval
[0, τin] and assume that the motion of the gas across the
beam is insignificant at u(t = 0) = 0. Then, Eqs. (6)–(8)
can be represented as

(9)

(10)

(11)

Equation (10) has the simple solution P(r) = Pa,
where Pa is the pressure in the undisturbed gas (Pa =

P0). Equations like (9) for i = O2(X3 ), O2(a1∆g),

O2(b1 ), H2, H2O, OH, HO2, H2O2, O3, O(3P), O(1D),
and H, as well as Eq. (11), were solved numerically in
the second approximation with the implicit difference
scheme.

IGNITION OF THE H2 + O2 MIXTURE WITH O2 
MOLECULES EXCITED 

TO THE a1∆g AND b1  STATES

It is known that the ignition of hydrogen–air mix-
tures implies chain reactions involving reactive O and
H atoms and OH radicals. These atoms and radicals are
produced by chemical reactions, which have character-

istic reaction times . A set of these times defines the
induction period τin (or the delay time of ignition).
Active radicals are lost in chain-termination reactions
and leave the reaction zone by diffusion. Self-ignition

takes place if  ~ τin ≤ . In H2 + O2 mixtures, 
coincides with the diffusion time of the lightest partici-
pant of the chain mechanism, i.e., hydrogen atoms

( ).

Figure 2 demonstrates the dependence of the induc-

tion period τin and atomic hydrogen diffusion time 
on the initial temperature T0 of the H2/O2 = 2/1 mixture
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for P0 = 103 Pa; radiation wavelengths λ = 1.286 and
0.762 µm; τp = 10–3 s; and I0 = 1, 5, and 10 kW/cm2. For
the given I0, τp, and parameters of the medium, the laser
energy absorbed by an O2 molecule is 0.017, 0.082, and
0.15 eV/mol at λ = 0.762 µm and 2.4 × 10–4, 1.2 × 10–3,
and 2.4 × 10–3 eV/mol at λ = 1.268 µm. One can see that
the radiation with λ = 0.762 µm decreases τin and
accordingly the self-ignition temperature to a greater
extent than the radiation with λ = 1.268 µm. In the first
approximation, the self-ignition temperature can found

from the equality τin(T, I0) = (T). For radiation with
λ = 0.762 µm with an input energy Einp = I0τp ≥ 5 J/cm2,
the self-ignition temperature can be decreased to Tign =
300 K. Note that even with such Einp, the energy spent

on the excitation of one O2 molecule to the state b1

is as low as 0.15 eV, while the photodissociation of an
O2 molecule that is derived from the ground state (this
process initiates the chain mechanism of the ignition of
the H2 + O2 mixture via atomic oxygen production)
requires 5.8 eV. Moreover, at low temperatures (T0 ≤
600 K), O atoms recombine rather quickly, which also
reduces the efficiency of the photochemical ignition
method [19], which is based on molecule dissociation
by laser radiation.

A decrease in τin upon exciting O2 molecules to the

state a1∆g (λ = 1.268 µm) or b1  (λ = 0.762 µm) is
related to a change in the production kinetics of reactive
O and H atoms and OH radicals. This is illustrated in
Fig. 3, which shows the time evolution of the species
concentration (mole fractions) without laser radiation
and with the radiation at λ = 1.268 and 0.762 µm. When
O2 molecules are excited to the state a1∆g (λ = 1.268 µm)

τD
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Fig. 2. Dependences (T0) (dotted line) and τin(T0) for the

radiation wavelengths λ = 0.762 (solid lines) and 1.268 µm
(dashed lines) and intensities I0 = (1) 1, (2) 5, and

(3) 10 kW/cm2. The dash-and-dot line depicts the depen-
dence τin(T0) for I0 = 0.

τD
H

or b1  (λ = 0.762 µm), not only τin but also the dynam-
ics of the species concentration within the interval [0,
τin] changes. It is of interest that when O2 molecules are

excited to the b1  state, the concentration of O2(a1∆g)
molecules also grows because of E–T collisional relax-
ation by reaction 72 (see table). In this case, the concen-
tration of O2(a1∆g) molecules due to the irradiation by
0.762-µm radiation under t = τp is much (by a factor of
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about 50) higher than the concentration of O2 mole-
cules directly excited to the a1∆g state by the 1.268-µm
radiation. This is caused by the fact that for given I0 and
parameters of the medium, the rate of the induced

2500

2000

1500

1000

500

0
10–4 10–3 10–2 10–1 t, s

T, K

12 2 1

Fig. 4. Time evolution of the temperature when the mixture
was ignited by laser radiation with λ = 1.268 (dotted lines)
and 0.762 µm (solid lines) at T0 = 600 K and I0 = (1) 5 and

(2) 10 kW/cm2.
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X3   b1  transitions is much (by a factor of 40–75)

greater than that for the X3   a1∆g transitions.

The intense collisional quenching of the b1  state
for the given parameters of the medium not only
increases the concentration of O2(a1∆g) but also slightly
raises the temperature in the interval [0, τin]. At the
same time, when O2 molecules are directly excited by
laser radiation to the a1∆g state, T does not grow since
the quenching rate of the state a1∆g (reaction 73) is
much slower. This is illustrated in Fig. 4, where the gas
temperature is plotted versus time when the H2/O2 =
2/1 mixture with T0 = 600 K and P0 = 103 Pa is exposed
to the radiations with λ = 1.268 and 0.762 µm, I0 = 5
and 10 kW/cm2, and τp = 10–3 s. For λ = 0.762 µm and
the two given values of I0, the temperature in the inter-
val [0, τp] varies from 600 to 647 and 688 K, respec-
tively. The respective values of τin in this case equal
9.8 × 10–3 and 4.6 × 10–3 s. It should be noted that the
combustion time τc (its value was determined at the
instant the temperature reaches 0.99Te, where Te is the
equilibrium temperature of combustion products) var-
ies less significantly when I0 changes from 5 to
10 kW/cm2.
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The reduction of the ignition delay time is associ-
ated mainly with the appearance of new channels for
the formation of reactive O and H atoms and OH radi-
cals rather than with a temperature increase due to the
absorption of the 0.762-µm radiation. This is clearly
seen from Fig. 5, where the time evolution of the rates
Sq of (+) formation and (–) loss of (a) O and (b) H
atoms, as well as (c) OH radicals, is shown for λ =
1.268 (dashed lines) and 0.762 µm (solid lines). Recall

that in the absence of O2(a1∆g) and O2(b1 ) molecules
in the mixture, the basic reaction initiating the ignition
of the H2 + O2 mixture in air at low temperatures (T0 <
800 K) is H2 + O2 = 2OH (reaction 15). Then, the chain
propagation reaction H2 + OH = H2O + H produces H
atoms, which react with O2 molecules to form O and
OH (branching reaction 9). The chain mechanism is
closed by the reaction H2 + O = OH + H (reaction 7).

When O2 molecules are excited by the laser radia-
tion with λ = 1.268 µm, the basic reaction triggering the
chain mechanism is reaction 16, which involves
O2(a1∆g). Hydrogen atoms form, as in the absence of
excited O2(a1∆g) molecules, by reaction 14, which pro-
ceeds in the back direction. Here, reaction 10 becomes
the key one in the formation of O atoms. Moreover,
even if a small amount of O2(a1∆g) molecules is present
in the mixture (for I0 = 10 kW/cm2 and τp = 10–3 s, their
relative content in the mixture does not exceed 0.1%),
reaction 68, involving O3 and O2(a1∆g) molecules, also
becomes an efficient source of O atoms. Both processes
are much faster than the associated reactions with the
participation of unexcited O2 molecules. Therefore,
even if O2(a1∆g) molecules are present in small
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Fig. 6. τin vs. P0 dependence when the mixture at T0 = 400
(dashed lines) and 600 K (solid lines) is irradiated by
0.762-µm radiation with I0 = (1) 0, (2) 1, (3) 5, and

(4) 10 kW/cm2.
amounts (≈0.1%), τin decreases significantly (more than
tenfold at T0 = 600 K, P0 = 103 Pa, and I0 = 10 kW/cm2).

When O2(b1 ) molecules are excited, reactions 17

and 23, which involve O2(b1 ), become the basic
chain-initiating reactions. In reaction 17, OH radicals
are produced; and reaction 23, hydrogen atoms. Since
the radiation with λ = 0.762 µm produces not only

O2(b1 ) but also O2(a1∆g) molecules, O atoms appear
early in the process mainly by branching reactions 11
and 10. Such new intense reaction paths generate addi-
tional components taking part in the chain mechanism
of ignition, thus accelerating the chain reactions and
cutting τin. If the thermal mechanism of ignition alone
occurred under the evolution radiation of the mixture at
λ = 0.762 µm, the induction period at T0 = 688 K (the
temperature that is reached at t = τp = 10–3 s for I0 =
10 kW/cm2) would equal 1.4 × 10–1 s. This value is
30 times that obtained with allowance for the chain
reaction intensification due to the presence of O2(a1∆g)

and O2(b1 ) molecules in the mixture. If the radiation
energy were spent only on heating the gas, the temper-
ature of the mixture for t = τp and the parameters given
above would be 806 K and τin = 2 × 10–2 s. The latter
value is by a factor of 4.4 greater than τin that is

observed when O2 molecules are excited to the b1

state. With lower T0 and higher P0, the difference is still
larger. For example, with T0 = 400 K, P0 = 104 Pa, I0 =
10 kW/cm2, and τp = 10–3 s, the induction period in the

case of O2 molecules excited to the b1  state more
than 60 times exceeds that for the purely thermal action
of the radiation with λ = 0.762 µm.

The effect of the initial pressure in the 2H2 + O2
mixture on the ignition delay time when O2 molecules

are excited to the b1  state by the 0.762-µm radiation
for T0 = 400 and 600 K and various values of I0 is illus-
trated in Fig. 6. For each of the values of I0 and T0, there
are three characteristic ranges of P0. In the first range,
τin decreases with increasing P0; in the second range, it
increases; and in the third range, it decreases again. The
excitation of O2 molecules with the 0.762-µm radiation
not only substantially cuts τin (e.g., for I0 = 10 kW/cm2

and P0 = 104 Pa, the value of τin is by a factor of 600
smaller than without the radiation) but also increases
the boundary values of P0 separating these ranges. The
higher I0, the higher P0 at which the run of the depen-
dence τin(P0) changes. For I0 = 0 and T0 = 600 K, the
boundary value of P0, Pb0, separating the first and sec-
ond ranges, equals 103 Pa; for I0 = 10 kW/cm2, it equals
2 × 104 Pa. The presence of the characteristic ranges is
explained by the fact that at sufficiently low T0 and P0 >
Pb0, the intense formation of chemically inactive H2O2
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molecules takes place, while the formation of O and H
atoms, as well as OH radicals, slows down. When com-
bined, these two trends increase the ignition delay [13].
From the dependences τin(P0) shown in Fig. 6, it fol-
lows that there exists the third range of P0, P0 > P0c =
f(I0, T0), where the radiation has an insignificant effect
on τin. For example, at T0 = 600 K and I0 = 10 kW/cm2,
P0c = 2 × 105 Pa. At lower mixture temperatures, the
value of P0c at the same I0 grows.

CONCLUSION

The excitation of O2 molecules to the b1  state by
resonant laser radiation with λ = 0.762 µm generates

electronically excited O2(b1 ) molecules and
O2(a1∆g) metastable molecules in the mixture via E–E
and E–T transitions. In this case, the concentration of
O2(a1∆g) molecules in the mixture is even higher
(≈50 times) than when O2 molecules are directly
excited to the a1∆g state by laser radiation with λ =
1.268 µm of the same intensity. The presence of

O2(a1∆g) and O2(b1 ) excited molecules in the mix-
ture produces new paths for the formation of reactive O
and H atoms and OH radicals, stimulating ignition by
the chain mechanism. This allows a decrease in the
induction period and ignition temperature. Even if the
energy density of the 0.762-µm radiation is low, Einp =
5 J/cm2, the self-ignition temperature can be reduced to
300 K. In terms of the influence on the combustion pro-

cess, the excitation of O2 molecules into the b1  state
by resonant laser radiation is much more (several tens
of times) efficient than the direct laser heating of the
medium. Since molecular oxygen serves as an oxidant
in the combustion of most organic and inorganic fuels,
one can expect that the given method of intensifying
chain reactions will also be efficient for other combus-
tible mixtures.
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Abstract—The variation of the frequency at which the spectral intensity is maximal within a given time interval
with the amplitude of an applied femtosecond pulse is simulated. The computer simulation is performed in the
model of an optically thin layer for a medium with cubic nonlinearity and saturable restoring force. It is shown
that the hysteretic dependence of the spectral line frequency on the applied pulse amplitude may take place for
both one and several simultaneously generated harmonics. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

When passing through a medium, a femtosecond
optical pulse is known to cause various nonlinear opti-
cal phenomena, such as plasma formation and genera-
tion of optical harmonics and supercontinuum, depend-
ing on the pulse intensity. Also, there appears the possi-
bility of controlling ultrafast chemical reactions, etc.
(see, e.g., [1–8]). Therefore, the study of femtosecond
pulse propagation is of great importance for many
applications.

It has been discovered recently [8, 9] that the femto-
second pulse spectrum in the bulk of a nonlinear
medium depends on the absolute phase of the pulse at
the entrance to the medium and that the pulse generates
a train of subpulses with various spatial and frequency
characteristics. Computer experiments revealed the
asymmetry of the spectral distribution of the pulse near
local maxima under certain relationships between pulse
parameters. Such behavior can be explained, for exam-
ple, if one takes into account the nonlinear dependence
of the resonance frequency on the applied pulse ampli-
tude. From the vibration theory it is known [10] that
when a pulse of sufficient duration and amplitude
exceeding some critical value is applied to a medium
with cubic nonlinearity, the dependence of the steady-
state oscillation amplitude on the detuning of the fre-
quency of the applied harmonic signal from the reso-
nance frequency of a linear oscillator shows hysteresis.
Obviously, with a femtosecond pulse applied, the inter-
action pattern becomes more complicated, because the
process is basically non-steady-state in this case and
nonlinearities of different orders come into play simul-
taneously. Therefore, obtaining the hysteretic depen-
dence, e.g., of the frequency at which the amplitude is
maximal in a given spectral band, on the femtosecond
pulse amplitude at the entrance to a medium where the
pulse propagates is a challenge. This point is discussed
in this work (see also [11]), where this effect is shown
1063-7842/03/4803- $24.00 © 20344
to be possible within the model of an optically thin
layer.

Note that the presence of hysteretic phenomena,
first, opens up the fundamental possibility of realizing
ultrafast all-optical bistable elements where radiations
with different frequencies play the role of “zero” and
“unity.” Second, the bistable dependence of the fre-
quency at which the spectral intensity has a local max-
imum in the spectral distribution on the input amplitude
of a wave packet propagating in the medium allows for
the control of chemical reactions [2] with a single input
pulse generating a train of subpulses with various fre-
quencies.

BASIC EQUATIONS

In this work, we consider the propagation of a light
pulse through an optically thin layer. The situation is
described either by the Duffing dimensionless equation
with cubic nonlinearity

(1')

or by the equation with the saturable potential of the
restoring force

(1'')

with the initial conditions

corresponding to the undisturbed medium. The acting

d2P

dt2
--------- δdP

dt
------- P βP3+ + + αE=

d2P

dt2
--------- δdP

dt
------- P

1 P4+
---------------+ + αE, 0 t Lt,≤<=

D E 4πP+=

P t 0=
dP
dt
-------

t 0=

0= =
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pulse is either triangular,

(2')

or trapezoidal,

(2'')

These shapes meet the purpose of this work: they
highlight the dependences responsible for optical bista-
bility and are therefore widely used in the relevant lit-
erature.

In the formulas given above, t is dimensionless time,
Lt is its maximal value, E0 is the maximal amplitude of
the pulse, δ characterizes the polarization attenuation in
the medium, α is the quantity proportional to the dipole
moment of an atom or molecule, and ω is the frequency
of the pulse. The normalization of the variables is such
that the linear oscillator frequency equals unity. The
sign of β in (1) specifies the contribution of anharmo-
nicity to the potential energy of an atom. With β > 0, the
potential energy grows; i.e., the atom is disturbed (com-
pressed) near the equilibrium state. The negative value
of β refers to the heavily disturbed system (far from
equilibrium), when electron–ion coupling loosens, that
is, describes the state of the atom immediately before
ionization.

For a medium with cubic nonlinearity, the parame-
ters used in the simulation were

(3)

These values were taken for the following reasons.
For the attenuation factor δ = 10–4, the absorption of the
medium has a minor effect on the nonlinear propaga-
tion of a femtosecond pulse [9]. The other parameters
had the same values as in [6–9, 11], where the associ-
ated linear and nonlinear effects were clearly demon-
strated.

The amplitude of the applied pulse and its duration
were varied to trace the spectral response of the
medium in a given time interval. To this end, the time
of pulse action [0, Lt] is split into M equal intervals of
width T (tk = kT, k = 0…M, Lt = MT), at each of which
[tk, tk + 1] the Fourier transformation of the electric
induction was carried out:

(4)

Accordingly, the inverse Fourier transform has the
form

(5)

E t( ) E0 t( ) ω t Lt 2⁄–( )( ),cos=

E0 t( ) E0 1 1 2t Lt⁄––( ),=

E t( ) E0 t( ) ω t Lt 2⁄–( )( ),cos=

E0 t( ) 2E0 1 t Lt⁄ 0.25– t Lt⁄ 0.75–––( ).=

α 0.9, ω 1.4, δ 10 4– , β 0.1.= = = =

Dk ω( ) 1
T
--- D t( )e

iω t tk–( )–
t,  kd

tk

tk T+

∫ 0…(M 1).–= =

D t( ) Dk ω( )e
iω t tk–( )

ω, t tk tk 1+,[ ] .∈d

∞–

∞

∫=
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Note that in numerical experiments, the fast discrete
Fourier transform is used instead of (4). The intensity
of a spectral mode is defined in the standard manner,
i.e., as the squared magnitude of the amplitude of the
associated harmonic:

(6)

RESULTS OF COMPUTER SIMULATION

Clearly, because of the nonlinearity of the system,
new spectral lines generated are of different intensity.
Consequently, in each of the time intervals, there exist
several spectral lines with center frequencies ωk, m (the
subscript k denotes the corresponding time interval, and
m refers to a local spectral maximum in this interval).
In going from one time interval to another, these spec-
tral maxima may shift or disappear and their amplitudes
may vary. Because of this, the frequency at which the
maximum of the spectral intensity is observed in a
given time interval also varies. Therefore, in numerical
experiments, the frequency of choice is that providing
the maximal spectral intensity in most of the time inter-
vals (i.e., that corresponding to the “global” spectral
maximum). In those several intervals where the spec-
tral maxima are observed at other (greatly differing)
frequencies, the frequency of another “global” maxi-
mum is looked for. In the figures that follow, the results
of simulation are depicted as the dependences of the
frequency

(7)

(in view of the remark made above) on the averaged
(over a given interval) amplitude of the external action

(8)

For convenience, the arrows indicate the direction of
time variation. The beginning and end of the lines near
Aext ≈ 0 correspond to the appearing or disappearing
amplitudes of related spectral harmonics. However, the
amplitudes may also disappear near the peak of the sig-
nal (Fig. 2b, curve 4), which means that a given har-
monic is absent. In a number of the figures, the number
of intervals into which the pulse is split and their widths
(the first and second number, respectively, in the paren-
theses) are shown for clarity. Note also that an increase
(decrease) in Aext corresponds to the leading (trailing)
edge of the pulse.

To answer the question as to whether the frequency
of the harmonic with the maximal amplitude can
exhibit the hysteretic dependence on the applied field,
the simulation is carried out in two steps. First, the fea-
sibility of such a dependence was studied for the vari-
able maximal amplitude E0 of the pulse with its width
fixed. In this case, as E0 grows, the width of the elemen-
tary time interval is made narrower to keep the acting
momentum roughly the same. Another splitting crite-

Ik ω( ) Dk ω( ) 2= .

ωk Ik ω( ), k
ω

max 0… M 1–( )= =

Aext
E0 tk 1+( ) E0 tk( )+( )

2
----------------------------------------------= .
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rion is to keep the quantity T roughly the same in
order to conserve the pulse energy over the interval T.

Then, the feasibility of the hysteretic dependence is
studied for the case when the amplitude of the acting
pulse and elementary time interval T are fixed and the
total width of the pulse is varied. The simulation of this
type is widely used in studying optical bistability.

Medium with cubic nonlinearity. As follows from
Fig. 1, the hysteretic dependence of the frequency of
the highest intensity harmonic on the applied pulse
amplitude appears in both cases (when the amplitude of
the pulse grows with its width remaining fixed,
Figs. 1a–1d, and vice versa, Figs. 1e–1h). Many local
hysteresis loops are noteworthy (Figs. 1d, 1h). Thus,
Fig. 1 demonstrates the bistable dependence of the fre-
quency of the highest intensity harmonic on the ampli-
tude of the pulse applied. This is one more reason why
the spectral composition of the response near several
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Fig. 1. (a–d) Frequency of the most intense harmonic vs.
averaged amplitude of the triangular pulse for Lt = 1600,

α = 0.9, ω = 1.4, δ = 10–4, β = 0.1, and fixed product E0T.
(E0; T) = (5; 200) (a), (7.5; 133) (b), (10; 100) (c), and (20;
50) (d). (e–h) Frequency of the most intense harmonic vs.
duration of the triangular pulse for E0 = 10, α = 0.9, ω = 1.4,

δ = 10–4, β = 0.1, and Lt = 200 (e), 400 (f), 800 (g), and 3200
(h). The elementary time interval is T = 50.
spectral lines is different at the leading and trailing
edges of the pulse.

It should also be emphasized that hysteresis may be
observed at a number of frequencies (see Fig. 2 for
illustration). However, the amplitudes of these harmon-
ics may differ dramatically: from almost coincident to
differing by several tens of times. For example, over the
interval the nearest to the center of the pulse (Fig. 2),
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Fig. 2. Time evolution for four frequencies at which the
spectral amplitudes are maximal under the action of the tri-
angular pulse with α = 0.9, ω = 1.4, δ = 10–4, and β = 0.1.
E0 = 10 (a) and 40 (b). Lt = 3200 (a) and 6400 (b). The ele-
mentary time interval is T = 200.
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Fig. 3. Center frequency of the spectral line whose intensity
is 5% of the highest intensity harmonic vs. amplitude of the
(a) trapezoidal and (b) triangular pulses. E0 = 1, Lt = 400,
α = 0.6, ω = 1.4, δ = 10–4, and β = –4.485 (a) and –4.536 (b).
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harmonic 3 is the highest. The intensities of harmonics
1, 2, and 4 amount to 7, 28, and 3% (Fig. 2a) and 10, 80,
and 1% (Fig. 2b), respectively, relative to that of har-
monic 3.

The hysteretic dependences in Fig. 2 are of two
types. Some of them form closed contours (when the
curves intersect), while others contain well-defined
portions of standard hysteretic loops. It should be noted
that if the response of a medium is nonstationary, non-
self-intersecting curves may also be observed in a lin-
ear medium. However, these curves will appear only at
the center (carrier) frequency of the pulse, since new
frequencies will not be generated because of the linear
propagation. Also, in a linear medium, it is impossible
to obtain the hysteretic dependence of the frequency of
the highest intensity harmonic on the pulse amplitude,
because the resonance frequency does not exhibit such
a dependence. Figure 2 illustrates that the interaction
nonlinearity is of great concern in the appearance of
hysteretic dependence of the frequency of the highest
intensity harmonic on the amplitude of the applied
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Fig. 4. Frequency of the most-intense harmonic vs. ampli-
tude of the triangular pulse for α = 0.9, δ = 10–4, Lt = 1600,
ω = 1.4, β = 0.1, and T = 100. E0 = 9 (a), 9.5 (b), 9.8 (c), 9.85
(d), 9.9 (e), 11.0 (f), 11.25 (g), and 11.5 (h).
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pulse. Additional evidence can be gained from Figs. 5e
and 5f.

The run of the curves discussed above is indepen-
dent of the pulse shape and sign of β. Figures 3a and 3b
demonstrate the time evolution of the frequency of one
harmonic under the action of a trapezoidal (Eq. (2"))
and triangular (Eq. (2')) pulse, respectively, for negative
β. During most of the pulse, the spectral intensity of
this harmonic is 2–5% relative to the most intense har-
monic generated at a hysteresis-free frequency. By the
end of the pulse, its intensity grows to 10% or more rel-
ative to the highest intensity. Hysteresis is pronounced
in both cases. For the trapezoidal pulse (Fig. 3a), the
extreme point (at Aext ≈ 0.62) is as if extended: the fre-
quency of the harmonic studied remained unchanged
for a time because the pulse amplitude was constant.

Obviously, the appearance and disappearance of the
hysteresis at a fixed elementary time interval must also
depend on the maximal amplitude of the pulse, since it
specifies the shift of the frequency of nonlinear reso-
nance. By way of example, Fig. 4 demonstrates the ωk
vs. Aext dependence when the maximal amplitude of the
pulse grows. The initial value is E0 = 9, at which the
hysteresis is absent (Fig. 4a) and the shape of the pulse
transmitted is essentially asymmetric (see also Fig. 5).
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Fig. 5. (a–d) Hysteresis loops for one frequency of the elec-
tric induction that appear when the triangular pulse is
applied to the medium with saturable potential for α = 0.79,
δ = 10–4, Lt = 800, and (E0; T) = (1; 50); ω = 1.098 (a),
1.1 (b), 1.12 (c), and 1.13 (d). (e, f) Single frequency of the
response vs. triangular pulse amplitude in the case of a lin-
ear medium for the same parameters as in Figs. 1g and 5b,
respectively.
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As the maximal amplitude of the pulse grows, the
curves close at smaller Aext and a hysteresis loop
appears (Fig. 4b). With a further increase in E0 to 11.25,
the hysteresis loop shifts nonmonotonically along the
abscissa axis; accordingly, the frequency at which the
spectral amplitude is maximal also varies. Finally, at
E0 = 11.5, the hysteresis dependence of ω on the pulse
amplitude disappears (Fig. 4h). This is because the
scale of hysteresis development becomes less than the
elementary time interval used (T = 100).

Medium with saturable restoring force. In this
case (Eq. (1")), the dependences are similar, as illus-
trated in Fig. 5, where the curves are calculated for sev-
eral frequencies of the applied signal. Here, the nonlin-
ear response of the medium is more complicated and
the hysteresis phenomena depend on the frequency
mismatch between the pulse and nonlinear resonance
much more strongly. For example, at ω = 1.098, the fre-
quency of the locally maximal spectral amplitude
becomes dependent on the pulse amplitude (Fig. 5a). At
higher frequencies of the optical pulse, a hysteresis
loop appears (Fig. 5b) and is retained up to ω = 1.13
(Figs. 5c, 5d). With ω = 1.14, the hysteresis loop disap-
pears.

CONCLUSION

Thus, under the nonlinear action of a femtosecond
pulse, the frequency at which the spectral intensity is
maximal may exhibit the hysteretic dependence on the
pulse amplitude. This means that the hysteretic depen-
dence of this frequency on time takes place near the
center frequency of one or several harmonics gener-
ated.

The effect discovered apparently opens a new class
of all-optical switches where light waves of certain fre-
quencies are assigned to various states. The obvious
advantages of these switches are the insignificant atten-
uation of the optical energy, the feasibility of realizing
many hysteretic dependences simultaneously, as well
as the fact that switching times fall into the femtosec-
ond range.

Note once again that these hysteresis phenomena
stem from the nonlinearity of the process. The non-sta-
tionary response of the medium to a femtosecond pulse
is known to render the shape of the pulse transmitted
asymmetric. In the spectral analysis of the pulse carried
out in this work, its nonsymmetry shows up in the bifur-

cation of the curves ω(Aext). As an example, Figs. 5e
and 5f illustrate the variation of the most intense har-
monic with the amplitude of the triangular pulse pass-
ing through a linear medium with a nonstationary
response. If the action on the medium is sufficiently
strong (the effect of polarization is significant), the
shape of the pulse deforms and the curve ωk(Aext) bifur-
cates (Figs. 5c and 5d). It is the nonstationarity of the
process and the high excitation of the medium that are
responsible for the bisecting of the curves ωk(Aext) in
previous figures.
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Abstract—The resolutions of quantum frequency discriminators of two types are compared with analytical and
numerical calculations. It is shown that a double-coherent-field device does not offer significant advantages
over a conventional double-resonance device for frequency discrimination. © 2003 MAIK “Nauka/Interperi-
odica”.
INTRODUCTION

A quantum frequency discriminator (QFD) is a
quantum (two-level in the simplest case) device that
resonantly responds to a variable probe field. In this
way, the probe field frequency is compared with the
natural frequency of the system. QFDs are widely used
in frequency meters, time counters, and magnetome-
ters. Discriminators are characterized by their resolu-
tion, i.e., the least detectable (with a given degree of
confidence) deviation of the probe field frequency from
its rated value.

The necessary condition for QFD operation is a dif-
ference in the populations of combining states. More
generally, the system’s density matrix must be nonunit.
This condition is fulfilled automatically, since relax-
ation processes excessively populate the lower energy
sublevel. However, if the natural frequency of a dis-
criminator is small compared with the thermal energy,
the population difference (and, accordingly, the QFD
efficiency) is also small. This trouble is obviated by
means of “pumping.” Such an expedient is applied to a
multilevel system where at least one additional level
with an energy far exceeding the energies of two oper-
ating levels is present. Specifically, if the energy of the
third level is many times higher than the thermal energy
and the level is empty in equilibrium, the pumping is
efficient (so-called “optical pumping” [1]). The sim-
plest scheme of optical pimping is depicted in Fig. 1.
Operating levels 1 and 2 are assumed to be long-lived

(the relaxation rate γ = 2π , where T1 is the time of
longitudinal relaxation), while high-lying level 3 is
short-lived and decays spontaneously into states 1 and 2.
Using a pump field Ip to selectively excite, for example,
the transition 1–3, one can create an excess population

T1
1–
1063-7842/03/4803- $24.00 © 20349
of level 2. Then, a probe field V at a frequency ω that is
close to the frequency ω12 of the transition 1–2 will
reduce the population of level 2 and cause the coher-
ence ρ12, which can be used as a resonant response. It is
essential that this response can be observed in an opti-
cal pump channel with a high quantum yield. The
approach described has been given the title Kastler–
Brossel double radiooptical resonance. Shortly after its
discovery, a modification of double resonance was sug-
gested and demonstrated. This version is today vari-
ously known, since many researchers arrived at it inde-
pendently (see review [2]). We will use the term “Λ res-
onance.” This name is associated with the transition
scheme (Fig. 2). Here, in a three-level system, two
high-frequency transitions 1–3 and 2–3 are excited by

3

1

2

Ip

V

γ

γ

Fig. 1. Optical pumping in a three-level system.
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applying fields V with frequencies ω1 and ω2. Under
conditions of double resonance, when the equalities
ω1 = ω13 and ω2 = ω23 hold, the coherence ρ12 at the
combination frequency ω12 = ω1 – ω2 arises and the
population of top level 3 is the least (hence, another
name “dark resonance,” since the luminescence inten-
sity drops in this case). To date, many approaches to
using n resonance as a means for measuring the transi-
tion frequency ω12 have been suggested and imple-
mented. It is assumed (explicitly or implicitly) that this
method offers improved accuracy, since the field
directly connecting states 1 and 2 is absent. The obvi-
ous disadvantage of the method is that the relatively
low frequency ω12 is measured as a difference of the
two high frequencies ω1 and ω2. However, the situation
can be readily remedied if the frequency ω2 is obtained
by mixing the frequency ω1 with a low reference fre-
quency Ω in the vicinity of the desired combination fre-
quency ω12. If the widths of the high-frequency reso-
nances at ω13 and ω23 are many times that of the Raman
resonance at ω12, the instability of the high frequency
ω1 will not affect the accuracy of ω12 measurements
(such an approach was used in the early experimental
demonstration of rubidium spin coherent precession
excited by absorbing polarized light modulated at the
precession frequency [3]).

Nevertheless, these basic advantages of the n reso-
nance method have not been proved until now. Our
work is an attempt to quantitatively compare the two
double-resonance approaches in terms of frequency
discrimination efficiency. First, we considered an ideal-
ized three-level system and made sure that n resonance
basically can twice improve the resolution of a discrim-
inator. Then, using the simplest real medium, 4He
atoms, we compared the calculated efficiencies for the
two types of QFDs.

3Γ

V V

2

1γ

γ

Fig. 2. Three-level n scheme.
RESOLUTION ANALYSIS FOR n

AND RADIOOPTICAL RESONANCES
IN A MODEL THREE-LEVEL SYSTEM

Let us turn back to Figs. 1 and 2. They can be ana-
lyzed by solving an equation for the density matrix ρik
subject to appropriate simplifications. In Fig. 1, the sys-
tem can be viewed as a system of two levels (1 and 2)
where optical pumping via channel 1–3 is a relaxation
process with a rate Ip, which establishes a stationary
population difference between levels 1 and 2 (initially
equipopulated). The interaction with the coherent field
of frequency ω for transition 1–2 will be considered in
the conventional rotating-wave approximation. The
coherence ρ12(t) will be used as a system’s response.
A set of equations for the density matrix has the form

Under stationary conditions, the coherence oscil-
lates with a frequency ω and its complex amplitude is
given by

Here, V is the matrix element of coupling with a vari-
able field (Rabi frequency), δ = ω – ω12 is the detuning
of the resonance, Γ12 = γ + Ip/2 is the resonance half-
width, Ip is the optical pumping rate, and γ is the popu-
lation relaxation rate in the absence of pumping. It is
assumed that level 3 decays into states 1 and 2
equiprobably. If the probabilities of spontaneous decay
differ, the expression for the coherence takes the form

where κ is the probability of decay into state 2.
A frequency discriminator is convenient to design

so that the real part of the coherence is detected. The
real part is a dispersion curve vanishing at the exact res-
onance frequency. The steepness S of the discriminator
response in the vicinity of a resonance,

should be optimized in terms of the pumping rate Ip and
field V. Its maximum, (16γ)–1, is reached with V = γ,
Γ12 = 2γ, and Ip = 2γ.

In the case of the n resonance method, it is neces-
sary to solve an equation for the density matrix when
the system has three levels and two coherent fields at
frequencies ω1 and ω2. The rotating wave approxima-
tion remains valid, so that the problem can be solved
exactly. The general solution was repeatedly obtained

idρ11 dt⁄ iγ ρ11 1 2⁄–( )– iIpρ11–=

+ 1 2⁄ iIpρ11 V ρ21 ρ12–( ),+

idρ22/dt –iγ ρ22 1/2–( ) 1/2iIpρ11 V ρ12 ρ21–( ),+ +=

idρ12 dt⁄ +δρ12 iΓ12ρ12– V ρ22 ρ11–( ).+=

ρ12
V Ip

2Γ12
-----------–

δ iΓ12+

δ2 Γ12
2 4V2+ +

----------------------------------.=

ρ12 Vκ Ip–
δ iΓ12+

δ2 Γ12
2+( ) γ κIp+( ) 4V2Γ12+

----------------------------------------------------------------------,=

S d Reρ12( ) dδ δ 0= ,⁄=
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earlier. However, it is so awkward that only specific
cases were published. We will also restrict our analysis
to the specific case for the coherence ρ12 when the Rabi
frequencies obey the equalities V13 = V23 = V. In addi-
tion, we will assume that the radiation width Γ of the
top-most level 3 is many orders of magnitude greater
than the width of pumping-undisturbed operating tran-
sition 1–2. The associated set of equations is as follows:

For the coherence ρ12 to occur, the fulfillment of the
resonance condition ω1 – ω2 = ω12 is of prime impor-
tance, while resonances at the pumping frequencies
take place automatically because level 3 is sufficiently
wide. Introducing symmetric and equal detunings for
the pump fields, δ31 = ω1 – ω31 = –δ32 = ω32 – ω2 = δ @ Γ,
we arrive at the expression for the dispersion part y12 of
the coherence ρ12 = x12 + iy12

The steepness of the discrimination curve dy12/dδ in
the absence of the detuning, δ = 0, has the form

It is maximal when V2 = Γγ/4:

The extrema of the discrimination curve are found at
V2 = Γγ/4 and δ = ±γ. They equal (y13)extr = ±1/8, respec-
tively.

When comparing the maximal steepness of a n dis-
criminator with that of a discriminator designed as
shown in Fig. 1, one should bear in mind that the equal-
in-magnitude and opposite-in-sign detunings adopted
above correspond to the doubled detuning of Raman
resonance: δ12 = 2δ. Therefore, the maximal steepness
of a n discriminator per single detuning of Raman res-
onance is halved and becomes equal to 1/(8γ).

Thus, all other things being equal, the optimized
steepness of a n discriminator, which is proportional to
the resolution, is twice as large as that of a discrimina-
tor based on double radiooptical resonance.

EFFICIENCY ANALYSIS FOR DISCRIMINATORS 
OF BOTH TYPES WITH CONSIDERATION FOR 

THE REAL ATOMIC LEVEL STRUCTURE
The above comparison was made for the model

three-level system. However, any real structure is more

idρ11 dt⁄ V ρ31 ρ13–( ) iγ ρ11 1 2⁄–( )– 1 2iΓρ33,⁄+=

idρ22 dt⁄ V ρ23 ρ32–( ) iγ ρ22 1 2⁄–( )– 1 2iΓρ33,⁄+=

idρ33 dt⁄ V ρ13 ρ31– ρ23 ρ32–+( ) iΓρ33,–=

idρ13/dt +δ31ρ13 1/2iΓρ13– V ρ33 ρ11–( ) V23ρ12,–+=

idρ23/dt +δ32ρ23 1/2iΓρ23– V ρ33 ρ22–( ) V13ρ21,–+=

idρ12/dt +δ21ρ12 iγρ12– V ρ32 ρ12–( ).+=

y12 δV2Γ 1– δ2 γ 2⁄ 2V2 Γ⁄+( )2
+[ ]

1–
.=

S y12( ) V2 Γ γ 2 2V2 Γ⁄+⁄( )2
.⁄⁄=

S y12( )max 1 4γ( ).⁄=
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complicated and includes no less than four levels. The
simplest atomic system suitable for the method of dou-
ble radiooptical resonance is a helium atom in the meta-
stable triplet state. In a magnetic field, this state is split
into three equidistant sublevels with the spin projec-
tions 0 and ±1. This effect is conventionally used in
magnetometry. For the optical pumping of helium, the
closely spaced lines of the triplet 23S1  23P0,1,2 are
usually used. By means of a laser, the line 23S1  23P0
(D0 line, 1.083 µm) can be selectively excited, allowing
the realization of the simplest four-level system
(Fig. 3).

To achieve maximal magnetic sensitivity in the n

version, the excited level 23P0 must obviously be
related to the m = ±1 sublevels of the state 23S1 by two

Γ 0, P0

V V

–1

+1γ
0γ

γ

1, S1

Fig. 3. Transitions between the 23S1 and 23P0 levels in a
helium atom.
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+1
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S1
–1

0
+1

γ
γ

γ

Fig. 4. 23S1  23P1 transitions in a helium atom initiated
by two pairs of coherent optical fields.
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coherent optical harmonics with appropriate polariza-
tions (Fig. 4). In practice, this can be done most conve-
niently by exciting metastable helium along the mag-
netic field by a radiation whose plane of polarization
rotates with a frequency ω close to the Larmor fre-
quency ω10 = ω–10, which linearly depends on the field
with a proportionality coefficient of ≈28 Hz/nT.

The calculation of the discrimination curve steep-
ness optimized in terms of pumping radiation intensity
yields 0.071γ–1. This value is almost half as high as that
calculated for the idealized three-level system. The dif-
ference is due to the presence of the “idle” sublevel
23S1, m = 0, especially if it is taken into account that its
population increases because of the pumping and

P1
+1

–1
0

Ip

S1–1

V
0

V +1

P1

+1
0–1

–1

V

V

0

+1

S1

Ip

Fig. 5. 23S1  23P1 transitions in a helium atom. Orien-
tation due to pumping by incoherent light.

Fig. 6. Alignment due to the excitation of the 23S1, m = 0 

23P1, m = 0 transition by linearly polarized light.
reaches 0.42. The “leakage” of the atoms to the idle
sublevel can be suppressed in a more sophisticated
scheme using the transition 23S1  23P1 (D1 line,
1.083 µm). Here, for the same type of optical excita-
tion, the n scheme coexists with the V scheme owing to
the coherent excitation of the two transitions 23S1, m =
0  23P1, m = ±1. Since the excited state is wide, its
magnetic splitting does not resonate with the V scheme;
the role of the latter is to deplete the idle sublevel 23S1,
m = 0. The calculation of the discrimination curve
steepness yields ≈0.105γ–1 in this case, which is close to
the limiting value. The population of the idle level in
resonance is 0.152.

In passing to the situation of usual radiooptical res-
onance in helium, it is necessary to separately consider
the cases of optical alignment and orientation. When
pumping along the field is accomplished by circularly
polarized light (Fig. 5), the m = –1 sublevel is depleted,
while the m = 0 and +1 sublevels of the S1 state are
enriched. This causes the effect of optical orientation.
The orientation signal is observed at the frequency ω of
the applied radio field V. The calculation shows that the
coherence signal ρ0+1 between the sublevels m = 0 and
+1 has the maximal discrimination steepness, ≈0.062γ–1.

When the optical transition 23S1, m = 0  23P1,
m = 0 is initiated by linearly polarized light (Fig. 6),
alignment takes place, which is characterized by the
depletion of the m = 0 sublevel. The resonant rf field V
with the frequency of the transition 23S1, m = 0 
m' = ±1 partially restores the equilibrium populations
and generates coherences at the field frequency and at
the doubled frequency. The maximal discrimination
steepness, ≈0.06γ–1, is observed at the doubled fre-
quency. Longitudinal alignment of opposite sign
appears at the incoherent pumping of the transitions
23S1, m = ±1  23P0, m = 0, which occurs, for exam-
ple, when atoms are excited along the magnetic field by
linearly polarized light. In this case, the coherence at
the doubled frequency ρ–11 is also the coherence of
choice, since it provides a maximal discrimination
steepness of ≈0.038γ–1. Note that in this case, too, the
steepness is lower than for the n scheme (≈0.071γ–1).

CONCLUSION

Our mathematical simulation shows that the n

scheme (double resonance using two coherent fields)
does not have any distinct advantages over the conven-
tional approach (double radiooptical resonance with a
single coherent field) in terms of frequency discrimina-
tion. Therefore, in deciding on a particular method, one
should take into consideration the real atomic level
structure and also a number of experiment-related fac-
tors, such as optical pumping efficiency, quantum yield
of a photodetector, and the relaxation characteristics of
an operating transition and its frequency. As a rule,
TECHNICAL PHYSICS      Vol. 48      No. 3      2003
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magnetic resonance is easier to induce with an rf mag-
netic field rather than by producing two coherent har-
monics. Sometimes, however, it is more convenient to
do without an rf inductor. In this case, the all-optical n
scheme may appear to be preferable.
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Abstract—The transformation of a shear surface magnetoelastic wave by the motion of the 180° confining
domain wall in a ferromagnet is considered. Changes in the wave spectrum due to the motion of the wall are
correlated with the variations of the energies of the elastic and magnetic subsystems. The efficiency of surface
wave transformation by the domain wall motion is estimated in terms of energy. The frequency dependences
of the mean energy density of the wave are found. It is shown that the energy density grows with wall velocity.
© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Recently [1, 2], we considered (in the exchangeless
magnetostatic approximation) the dispersive properties
of a shear surface magnetoelastic wave (SSW) on a
180° geometrical domain wall moving with a nonrela-
tivistic velocity in a cubic ferromagnet. The approach
adopted in [1, 2] relies on the well-known fact in mag-
netodynamics [3–5] that a domain wall (DW) is fairly
stable against weak perturbations introduced by the
wave and control actions moving the wall. The sub-
threshold DW motion conditions and a low structural
sensitivity of DWs to external effects (which is usually
observed away from the phase transition [6]) make it
possible to consider the motions of the wave and DW
separately. The latter motion is included in the bound-
ary conditions of the problem. Naturally, with such a
statement, wave–wall interaction becomes incomplete
and can be described as a parametric action on the sys-
tem [7, 8] from an implicitly given source. In spite of
the disadvantages of this approach, it seems to be prom-
ising (especially when combined with the small-signal
approximation), since it allows one to avoid hard-to-
perceive magnetodynamic solutions and leaves room
for invoking analytical methods of Fourier spectros-
copy.

The aim of this work is to consider the energy
aspects of SSW transformation via DW motion, which
were not covered in [1, 2]. First of all, it would be of
interest to find a correlation between changes in the
SSW spectrum (including in the frequency dependence
of the factor of wave localization at the wall) and the
wall-motion-induced variations of the energy of the
elastic and magnetic subsystems. To estimate the effi-
ciency of SSW parametric transformation by DW
1063-7842/03/4803- $24.00 © 20354
motion, it is useful to discuss the variation of the mean
energy with DW velocity.

It is worth noting that, according to our approach
[1, 2] to treating an SSW on a moving DW, the wave
energy alone can be considered. Energy redistribution
between the wave and moving DW is virtually postu-
lated to be negligibly small. This does not mean that
such issues as the stability of a DW and the adequacy
of its geometrical (structureless) model are completely
ignored. For example, a large increment of the SSW
mean energy combined with a sharply enhanced local-
ization of the wave at the wall can serve as a heuristic
test for loss of the above properties.

A SHEAR SURFACE WAVE
IN THE COORDINATE SYSTEM RELATED

TO A MOVING DOMAIN WALL

In [1, 2], results were obtained for cubic ferromag-
nets with both a positive and negative magnetic anisot-
ropy constant K1. Accordingly, the appearance of inter-
nal magnetic fields Hi ||  in semi-infinite domains sep-
arated by the DW plane  = 0 (  is the frame of
reference related to the moving DW) is associated with
the effect of magnetic anisotropy. In other words, it is
assumed that Hi ≡ Ha, where Ha is the field of magne-
tocrystalline anisotropy: Ha = 2K1/M0 if K1 > 0 and Ha =
–4K1/3M0 if K1 < 0 [9] (M0 is the spontaneous magneti-
zation in the domains). The  axis coincides with the
direction of DW propagation and easy magnetic axis in
a ferromagnet.

Thus, in the laboratory frame of reference x0yz, a
DW is a (010)-oriented (if K1 > 0) or a (111)-oriented
(K1 < 0) wall. The renormalization of the shear modulus

z̃
ỹ x̃0 ỹz̃

ỹ

003 MAIK “Nauka/Interperiodica”



        

EFFICIENCY OF SHEAR SURFACE WAVE TRANSFORMATION 355

                                                                                                                                     
λ and magnetoelastic coupling coefficient β, which is
necessary in the latter case, is given in [10]. For an iso-
lated 180° DW in a ferromagnet to be considered as
geometrically thin and structureless, we impose the
restriction ksh∆ ! 1, where ksh is the wavenumber of
shear waves and ∆ is the DW thickness. This restriction
allows us to apply the exchangeless magnetostatic
approximation up to the bottom of the frequency gap in
the magnetoelastic wave spectrum [11, 12]. We also
assume that the DW structure remains unchanged as the
DW moves along the y axis. For bulk (nonfilm) ferro-
magnets like YIGs, this assumption is valid for DW
velocities VD < csh (csh is the shear wave velocity in the
absence of magnetoelastic coupling) [3] provided that
the DW structure is not too sensitive to external effects
near the phase transition [6].

To be definite, we assume that the magnetic anisot-
ropy constant of a ferromagnet is positive. Then, align-
ing the easy magnetic axis with the crystallographic
direction [001] || z, one can relate the DW to the moving
coordinate y = yD (yD = VDt, where t is time). Also, it can
be assumed that shear waves travel in the plane (001)
and that their displacements uj || z are collinear with

spontaneous magnetizations  in the domains

(  ↑↓   || [111], where j = 1, 2 is the domain
number). Accordingly, the internal magnetic fields

 || z of the domains and the spontaneous magneti-
zations are given by

(1)

where j = 1 at y = yD and j = 2 at y < yD.
Since VD < csh and csh ! c, where c is the velocity of

light, the rest frame of the DW can be related to the lab-
oratory frame by the Galilean transformation  = x,

 = y – VDt,  = z,  = t. Therefore, the transition to the
rest frame of the DW is accomplished by replacing the
differential operators: ∂/∂x  ∂/∂ , ∂/∂y  ∂/∂ ,
∂/∂t  ∂/∂  – VD∂/∂ . Then, the initial equations
[1, 2] are represented in the form

(2)

where  = ∂2/∂  + ∂2/∂ , γ is the gyromagnetic
ratio, ρ is the density, and ϕj is the potential of the
dynamic part of the magnetic field.

Equations (2) are supplemented by the standard
boundary conditions from the theory of ferrite magne-
toacoustics [10, 11]. They imply that the potentials,
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tangential displacements, normal components of shear
stresses, and dynamic component of the induction are
continuous at the DW (i.e., for ).

It was shown [1, 2] that Eqs. (2) have the unique
solution (in terms of field boundedness and SSW non-
collinearity due to DW motion)

(3)

where ω0 = γHa,  = ω0(ω0 + ωm), ωm = 4πγM0, and
Ω is the SSW frequency in the rest frame of the DW.

The parameters p and s are the transverse compo-
nent of the wave vector and the SSW amplitude decline
factor. Schematically, the wave front pattern and the
tangential displacement distribution in it (uj given by
(3)) are depicted in Fig. 1. From (3), it follows that the
motion of the DW has an orienting effect on the SSW
wave normal, which is deflected toward the vector VD

by an acute angle Θ = p/k). Such a wind-vane
effect indicates that the SSW wave vector K = k + p
(p || VD, pVD > 0) and the DW directrix are noncol-
linear; therefore, it can be said that we are dealing with
a new class of boundary waves—noncollinear bound-
ary waves [1, 2].

It has already been noted [2] that, according to (3),
an SSW possesses a unidirectional continuous energy
flux, which penetrates a DW; therefore, a DW cannot be
considered as an energy source or sink. As a result,
SSWs propagate along a moving DW in the steady
regime, i.e., without amplification or damping: Imk = 0
and Ω > 0. It has also been mentioned that the trans-
verse component of the energy flux (this component is
nonuniform along the  coordinate) is the energy of an
SSW coupled with the DW via the magnetic poles
(Fig. 1) (this energy component is transferred by the

ỹ

ϕ j Φ j

4πγβω0 1–( ) j 1+
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-----------------------------------------------------------------------------u j,–=
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ỹ

VD

p
K

k x~

y~

Θ

Fig. 1. Schematic pattern of a shear surface wave on a mov-
ing Bloch wall.
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DW), while the longitudinal component characterizes
energy transfer along the DW by the wave.

The SSW spectral parameters s, p, and Ω are related
to k by the dispersion relation Ω = Ω(k). It is obtained
by substituting field representations (3) into the bound-
ary conditions of the problem and equating the determi-
nant of the resultant set of homogeneous algebraic
equations to zero. In the laboratory frame of reference,
ω is substituted for Ω ,

(4)

and the dispersion relation ω = ω(k) takes the form

(5)

Here,

(6)

(7)

In (5)–(7), χ is the magnetoelastic coupling constant
and σ = +1, when the SSW propagates in the positive 
direction, or –1 when the SSW is directed oppositely.

ENERGY DENSITY OF A SHEAR SURFACE 
WAVE ON A MOVING DOMAIN WALL

In the rest frame of the DW, the efficiency of SSW
transformation by the DW motion can be estimated by
comparing the time-averaged energies per DW unit sur-
face area at VD = 0 and VD ≠ 0. The energies are found
from the expression for the energy density of a ferro-
magnet [12, 13]

(8)

which includes the Zeeman term, the magnetoelastic
energy density, and the elastic energy density. Here, mj
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and hj = –∇ϕ j are the dynamic magnetic moment and
magnetic field strength, respectively. The value of ϕj

depends on Φj and uj according to (3), and mj is
expressed through Φj and uj from the equation of
motion of magnetic moment:

(9)

In its turn, the amplitude factor of scattered field Φj,
which appears in (3) and (9), depends on uj through the
boundary conditions. Certainly, formula (8) applies if
the process is quasi-stationary. In our case, the quasi-
stationarity means that the change in the SSW ampli-
tude due to DW displacement is insignificant over the
period T of the wave at any fixed point of the crystal;
that is, exp(–sVDT) ~ 1 or sVD ! ω. The inequality has
been established to hold throughout the frequency
range of the spectrum, which validates formula (8) for
the SSW energy density in the rest frame of the DW.

Since expression (8) is quadratic in field, all its
terms must be written in real form. To this end, the com-
plex quantities are represented as the sum of complex
and complex conjugate components and the expres-
sions obtained are substituted into (8). Averaging ωj

over time and integrating over the  coordinate in the
first (j = 1) and second (j = 2) domains yields the time-
averaged SSW energy per DW unit surface area:

(10)

Specifically, for VD = 0, expression (10) takes the form

(11)

where U is the amplitude uj in the first or second
domain.
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In the case of a moving DW, the energy density is
the sum

where

(12)

is the elastic energy density and

(13)

is the magnetoelastic energy density. Here,
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The calculation of the energy densities for VD = 0
and VD ≠ 0 by formulas (11)–(13) and the discussion of
the results obtained are presented in the following sec-
tion.

NUMERICAL RESULTS AND DISCUSSION

Substituting (3) into (2) and separating the real and
imaginary parts gives

(14)

(15)

where K2 = p2 + k2 and  =  – χ .

Putting

(16)

in (5) and using (14) and (15), we can reduce the dis-
persion relation for SSWs to the form F(ω, s) = 0,
which is suitable when one-dimensional nonlinear
equations are solved by numerical methods [14, 15].

Numerical calculations have shown [1, 2] that the
spectrum of backward-propagating SSWs (σ = –1) is
affected by DW motion insignificantly. The weak non-
resonant transformation of the backward-propagating
SSWs shows up primarily as a change in the compo-
nents of the total wavevector K. Therefore, we will
restrict our analysis to the spectrum of forward-propa-
gating SSWs (σ = 1).

Figure 2 shows typical spectra of forward-propagat-
ing SSWs (in the reduced spectral variables ξ = ω/ω0
and η = Kcsh/ω0) for DWs moving with various veloci-
ties in Y–Ga and Bi–Ca–V garnet ferrites (which have
a low saturation magnetization at the usual degree of
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magnetic anisotropy). Horizontal dashed line I repre-
sents the line of ferromagnetic resonance (FMR) (ξ = 1,
ω = ω0) for a static DW; dashed line II, the SSW spec-
trum branch that tends to the asymptote ξ = 1 – χ when
η  ∞. Near-vertical dashed line III is a part of the
spectrum of volume shear waves ksh = ksh(ω) in the χ – η
representation.

The SSW dispersion spectra at VD ≠ 0 in Fig. 2 are
loops of quasi-linear volume shear wave spectrum III
that are cut off by FMR line I. In the frequency interval
1 – χ < ξ < 1, the loops are extended toward shorter
wavelengths the stronger, the smaller VD is. This fact
was associated [1, 2] with the twofold local degeneracy
of modes I and II [16] as a result of the DW motion. The
similar degeneracy of the FMR spectral doublet, ω = ω0
and ω = ω0 + ωm, was also observed for magnetostatic
surface waves on a moving DW [17].

Using the SSW parameters thus defined (ω, p, k, K,
and s), we will calculate the mean energy density by
formulas (12) and (13) and other relevant expressions.
The results of calculation for the dispersion spectra in
Fig. 2 are shown in Fig. 3 as the frequency dependences

of the dimensionless energy density  = Wcsh/(ωλU2)
for a static DW moving with low and moderate veloci-
ties (dashed lines 1 and 2 and thin continuous lines 3
and 4, respectively). It is seen that the SSW mean
energy density grows with ω, infinitely increasing as ω
approaches ω0 at VD ≠ 0 (dashed curve 2 and curves 3
and 4). As can be judged from the frequency depen-
dences of the SSW localization coefficient in Fig. 4,
this is explained by the coming delocalization of the
wave (s  0, ω  ω0).

W̃

1.01

1.00

0.99

0.98

0.97

0.96
0 1 2 3 4 5

η

5 4 3 2 1

I

II

III

ξ

Fig. 2. Fragment of forward-propagating SSW spectrum on
the moving DW. VD/csh = 0.0007 (1), 0.001 (2), 0.003 (3),
0.01 (4), and 0.1 (5). Here and in Figs. 3–5, ωm/ω0 = 0.5 and
χ = 0.01.
It is of interest that, in the static case and at low DW
velocities, W may change sign from positive (see the
initial portions of curves 1 and 2 in Fig. 3) to negative.
The reason is that the negative energy Wm starts exceed-
ing the always positive energy We of the elastic sub-
system as the SSW spectrum for the static DW
approaches its asymptote. Once can check this supposi-
tion most easily by turning to expression (11) for W0,
where the first term in the braces is the contribution to
We. Note that the value of We at VD = 0 is found from
(12) with p = 0. Accordingly, the brackets in (11) will
define the sign of Wm at VD = 0; it is then easy to see that
we actually have Wm < 0 with ω < ω0.

In nonconservative energy-transferring systems,
energy negativity is known [18, 19] to indicate the
redistribution of the total kinetic energy among the sys-
tem’s constituents and instability development because
of the excitation of negative-energy waves. From the
standpoint of an observer moving together with the
DW, the wave–wall system appears to be an energy-
transferring system and seemingly can be treated in
terms of the concepts put forward in [18, 19] in order to
explain negative values of W (W < 0) at VD ≠ 0 (Fig. 3,
dotted curve). However, the fact that W becomes posi-
tive as VD increases (thin solid lines 3 and 4 in Fig. 3)
casts some doubt on such an approach. Note also that
our model of a geometrically thin and structureless DW
virtually excludes the energy redistribution among the
SSW and DW. To do this, it would be necessary to con-
sider the internal degrees of freedom, i.e., virtually to
pass to the problem of magnetodynamics [3–5].

This contradiction cannot be removed by introduc-
ing losses. For example, the replacement of ω by ω' – iω"

20

W
~

0

–20

0.980 0.984 0.988 0.992 0.996 1.000
ω/ω0

1

2

3

4

2

1

Fig. 3. Dimensionless energy density vs. reduced fre-
quency. VD/csh = 0 (1), 0.01 (2), 0.04 (3), and 0.1 (4).
TECHNICAL PHYSICS      Vol. 48      No. 3      2003



EFFICIENCY OF SHEAR SURFACE WAVE TRANSFORMATION 359
(ω"/ω' ! 1) in (11) does not remove the negativity of
W0. Turning to dispersion spectrum II in Fig. 2, one can,
however, note that W0 changes sign exactly when the
quasi-acoustic behavior of the SSW changes to magne-
tostatic. It is logical to assume that the exchangeless
approximation, which is fairly accurate for the calcula-
tion of the SSW spectrum, turns out to be inadequate in
determining the SSW mean energy. In a sense, the situ-
ation is akin to those encountered in acoustoelectronics
[20, 21] when the conventional quasi-static description
of electric fields in piezoelectrics, which well applies to
treating solutions to boundary-value problems in the
linear field statement, introduces almost 100% errors in
energy characteristics that are quadratic in field (e.g.,
energy fluxes), whose correct finding requires exact
electrodynamic analysis.

Supposing that the negativity of W in the static case
and at low DW velocities is removed by taking into
account exchange interaction, we will correct the
results by substituting ω0 + αk2 for ω0 in formulas (14)
and (15) (α is the exchange constant and k is the SSW
wavenumber corresponding to the exchangeless
approximation). Essentially, such a correction is the
iterative redefinition of the SSW spectral parameters by
invoking formulas (5) and (6). Certainly, such a proce-
dure does not change our approach, which, in essence,
remains exchangeless.1 It is therefore natural that this
procedure does not significantly change the SSW spec-
trum in the transition region even at the first iteration.
Nevertheless, the subsequent substitution of the SSW
spectral characteristics thus corrected into (10)–(13)
removes, as was expected, the negativity of W. This fact
indirectly validates the above supposition that, in the

1 Otherwise, it is necessary to include the exchange energy density
in (8), introduce its associated terms into initial equations (2), and
set additional boundary conditions.
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Fig. 4. Frequency dependence of the dimensionless local-
ization factor. VD/csh = 0.001 (1), 0.01 (2), 0.1 (3), and
0.5 (4).
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presence of exchange interaction, the energy character-
istics that are quadratic in field are more sensitive to the
variation of the SSW spectrum than the spectra them-
selves. This is clearly illustrated in Fig. 3, which dem-

onstrates the frequency dependences of  (curves 1, 2)

obtained after the correction of  (α = 0.1) corre-
sponding to dashed lines 1 and 2.

Figure 5 shows typical dependences of  on the
DW velocity for several frequency values with the cor-
rection procedure applied. It is seen that the motion of
the DW always raises the SSW energy and has the most
pronounced effect in the vicinity of the FMR frequency.
Physically, an increase in the SSW energy due to DW
motion, which shows up as a decrease in the wave
localization strength and as a Doppler gain in the wave
frequency, can be considered as the result of the work
done on the parametrically transforming wave field
during the motion of the confining DW.

The results given above were obtained for ωm/ω0 < 1.
With ωm/ω0 > 1, the resonance frequencies ωk and ω0

will be separated still further in comparison with the
case described. Qualitatively, the spectrum of SSWs on
a moving wall will not change. The limiting cases
ωm/ω0 ! 1 (ωm/ω0 = 0.01, χ = 0.01 and ωm/ω0 = 0.01,
χ = 0.3) were studied in [2]. In these cases, the SSW
spectrum is severely modified: it is cut off by the dis-
persion curve of volume shear waves on the vicinity of
magnetoacoustic resonance frequency lying below the
FMR frequency. However, the frequency dependence
of the energy density remains the same as for the SSW
spectrum parameters in Fig. 2.

W̃

W̃

W̃

8

6

4

2

0.04 0.08 0.12 0.16
VD/csh

W
~

2
1

3

4

5

Fig. 5. Dimensionless energy density vs. reduced DW
velocity. ωm/ω0 = 0.98 (1), 0.984 (2), 0.988 (3), 0.992 (4),
and 0.996 (5).
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CONCLUSION
We studied the energy efficiency of transforming

SSWs by the motion of the confining DW. It was shown
that the SSW transformation by DW motion is largely
due to FMR appearing in scattered fields when the
wave propagates in the forward direction. An increase
in the DW velocity near the FMR frequency causes a
substantial increase in the energy and phase velocity of
the SSW compared with the same parameters for a
static DW. The degree of delocalization of the wave
also grows. It was demonstrated that negative values of
the SSW energy, which are possible in the formally
strict exchangeless approximation, can be removed by
correcting the spectrum with allowance for exchange
interaction.
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Abstract—The effect of carrier drift on the dispersive properties and instability of electromagnetic waves and
plasma polaritons in infinite layered periodic semiconductors are considered. It is assumed that in similar semi-
conductor layers, carriers drift parallel to the interfaces. Drift waves are shown to have a specific band structure
of the spectrum. The dispersive properties of collective plasma polaritons under drift are considered, the insta-
bility of the polaritons and drift waves is studied, and the instability increments are determined. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The production of millimeter- and sub-millimeter-
wave devices faces a number of physical and technical
difficulties. Millimeter lasers are bulky, and vacuum
tubes lack efficient coupling between the electron flow
and electrodynamic system. In solid-state (semicon-
ductor) carrier-drift devices, one cannot provide Ceren-
kov interaction between drift and natural waves, since
it is impossible to realize synchronism between the
wave’s drift and phase velocities. However, the creation
of long-term-interaction semiconductor devices similar
to TWTs is necessary for advancing solid-state technol-
ogy into the millimeter- and sub-millimeter-wave
range.

Physical phenomena that could serve as the basis for
solid-state microwave amplifiers and oscillators have
been sought for several decades [1, 2]. In [3, 4], the
effect of beam instability was predicted. Later [5],
beam instability due to wall losses in a metallic
waveguide carrying an electron current was studied the-
oretically and experimentally. Resistive instability aris-
ing when an electron current passes through a channel
in a germanium crystal was investigated in [6]. It was
shown that instability increments predicted theoreti-
cally agree well with those found experimentally. The
recent theoretical work [7] on the instability of waves in
a beam propagating through a hole in a cylindrical
semiconductor specimen also merits notice. It was
demonstrated that colliding space-charge waves are
unstable at any frequency if the thermal velocity of car-
riers in a semiconductor is ignored.

It was also shown [8–11] that the instability of drift
waves in a two-component semiconductor plasma or in
layers with drifting carriers is Buneman instability
[8, 12]. Finally [11], the instability of a semiconductor
superlattice with a period much smaller than the wave-
1063-7842/03/4803- $24.00 © 20361
length, as well as the instability of drift waves propagat-
ing along the drift direction in a superlattice with arbi-
trary thicknesses of the layers, was investigated. It
turned out that Buneman instability may also occur in
periodic structures. Conditions for instability develop-
ment depending on the thermal velocity of carriers in
different layers were found, and instability increments
were determined.

In this work, we consider a layered periodic semi-
conductor structure (superlattice) whose period equals
or exceeds the length of a natural electromagnetic wave
propagating in the layered structure. It is assumed that
the Debye radius and free path of carriers are much less
than the thickness of the layers. This assumption sim-
plifies the problem, allowing one to treat semiconduc-
tors in the hydrodynamic approximation. It is known
that the hydrodynamic equations are valid at frequen-
cies ω @ ν (collisionless plasma [13]) and ω ! ν (ν is
the collision frequency) if only the collective behavior
of particles is studied and effects like Landau damping
are ignored [14]. The effect of thermal motion of carri-
ers can also be included in the hydrodynamic approxi-
mation. As was shown [11], even at νλ/2πv th ≥ 3 (λ is
the wavelength under study and v th is the thermal veloc-
ity), the discrepancy between the hydrodynamic and
kinematic descriptions is no more than 10%. With the
plasma frequency ωp = (4πe2n0/mε0)1/2 = 1012–1013 s–1,
effective mass m = 10–28–10–29 g, and collision fre-
quency ν = 5 × 1010–1013 s–1(typical values for semi-
conductors [15]), we have v th = 107–108 cm/s, the
Debye radius RD = v th/ωp ≈ 10–5 cm, and the free path
l = v th/ν ≈ 10–4–10–5 cm. Thus, we consider layers of
thickness between 5 × 10–4–10–1 cm and frequencies
ranging from 1 × 1011 to 5 × 1013 s–1. Landau damping
is ignored, therefore, drift waves can be considered as
003 MAIK “Nauka/Interperiodica”
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van Kampen waves [16]. In other words, we suppose
that the drifting-carrier flow is modulated with the fre-
quency ω. We show that the translational symmetry of
the medium is responsible for a specific band structure
of the spectrum of drift waves, which turn out to be sta-
ble when collisions are disregarded. Instability arises
when collisions are taken into account; i.e., we deal
with resistive instability. The effect of dissipation on
the propagation of natural waves in the superlattice,
collective plasma polaritons, is also studied.

1. STATEMENT OF THE PROBLEM 
AND BASIC RELATIONSHIPS

Consider an infinite periodic structure composed of
alternating layers of different semiconductors with
thicknesses d1 and d2. In our coordinate system, the 0z
axis is directed normally to the interfaces and the 0x
axis, parallel to them. We assume that all layers of
semiconductor 1 are exposed to an electric field that is
aligned with the 0x axis and causes carriers to drift with
a velocity v0 = (v 0, 0, 0). The associated set of equations
includes the Maxwell equations, as well as the continu-
ity equation and equation of motion of carriers:

(1)

where n01 is the equilibrium carrier concentration in
layers 1 and ν1 is the collision frequency.

For layers of semiconductor 2, all equations have
the same form except that v0 = 0 and ν2 = 0. Since the
medium is homogeneous in the 0y direction, we will
assume that ∂/∂y = 0; then, the initial set of equations
splits into two polarizations. In what follows, the polar-
ization with the components Ex, Ez, and Hy is consid-
ered.

The initial set of equations must be complemented
by boundary conditions. The feature of our situation is
that drift in one of the layers causes interfacial currents.
Assuming that the transition region thickness is much
less than the wavelength (i.e., the interface is sharp), we
can apply the boundary conditions from [17], which
include a step in the normal components of the electric
induction and the continuity of the tangential compo-
nents of the electric field. For plane waves of form
exp(–iωt + ikxx + ikz1, 2z), we have

(2)

∂n1

∂t
-------- div n01v1 n1v0+( )+ 0,=

∂v1

∂t
-------- v0 ∇⋅( )v1 ν1v1+ +

e
m
----E1,=

Dz2 Dz1–
ωL1

2 kxv 0

ω kxv 0–( )2ω
--------------------------------Ez1 at interface,–=

Ex1 Ex2 at interface.=
Here,

ε01, 02 are the lattice permittivities of the semiconductor,
and ωL1, 2 are the Langmuir frequencies.

To derive a dispersion relation, we take advantage of
the method of transmission matrix [18, 19], which
relates the fields at the beginning and end of the struc-
ture period (d = d1 + d2):

(3)

The relationships for the matrix components can be
found in [19]. Using the Floquet theorem

where  is the Bloch wavenumber, we arrive at a dis-
persion relation, which relates the frequency ω to the
wavenumbers kx and :

(4)

Here,

ε2 = εs2.

It is seen that  is the averaged wavenumber, which
describes the structure periodicity instead of kz1, 2.

2. DRIFT WAVES IN THE SEMICONDUCTOR 
SUPERLATTICE

Relationship (4) will be studied for space-charge
waves with ω ≈ kxv 0. Let ν1 = 0. In this case, as follows
from the formula for εs1, the transverse wavenumber kz1
may be infinitely large. If ω – kxv 0 ≥ 0 and
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kz1 can be represented as

In view of the fact that kz1 is an imaginary number,
Eq. (4) can be recast in the same approximation:

(5)

The absolute value of the right-hand side of this
relationship far exceeds unity; therefore,  must be
imaginary. Consequently, the frequency range ω ≥ kxv 0
is forbidden and fast drift waves do not propagate in the
0z direction (note that if sinkz2d2 ≈ 0, a transmission
band for fast drift waves may exist).

If ω ≤ kxv 0, kz1 is real. We represent it as

(6)

Let δkz ! π/d1. Then, Eq. (5) takes the form

(7)

This equation has many solutions for  at given n.

If the right-hand side is less than or equal to unity,  is
a real number from the 0–π interval. Thus, in this case,
the spectrum of drift waves has a band structure. The
width of transmission bands is inversely proportional to
n. Certainly, the frequency band width cannot be less
than the collision frequency ν1. This remark allows one
to estimate the number of transmission zones from the
condition (ωn + 1 – ωn)/ν1 ≈ 1. Substituting ν1 into the
expression for εs1 and assuming that ωL1 @ ν1, we get

From this formula, it follows that the formation of
the band structure for drift waves depends significantly
on the lattice parameters. If the Langmuir frequency
ωL1 is low and the collision frequency ν1 is high, the
band structure may be absent.

Figure 1 shows the band structure in the presence
and absence of drift. The dispersion relations are given
for the following cases: (a) v 0 = 0; (b) v 0 ≠ 0, ωp1 ! ωp2;
(c) v 0 ≠ 0, ωp1 ≤ ωp2; and (d) v 0 ≠ 0, ωp1 ≥ ωp2. In the
calculations, we used the following numerical values of
the parameters: ε01 = 17.8, ε02 = 10, d1 = 0.006 cm, and
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d2 = 0.002 cm. In Fig. 1a (ωp1 = 2.5 × 1012 s–1, ωp2 = 3 ×
1012 s–1), where drift is absent, one can see two dashed
bands where natural waves, collective plasma polari-
tons, can propagate [19]. The symbol “+” corresponds
to  = π; the symbol “s,” to  = 0. Both transmis-
sion bands asymptotically tend to the line ω = ωps =

, where ωps1, 2 = ωL1, 2(ε01 + ε02)–1/2 are the
frequencies of interfacial plasmons propagating at the
interface between the semiconductor layers. It should
be noted that in the upper band, the group velocity of
the waves is negative. The existence of polaritons of
two types can be explained as follows. Let us write the
expression for the power flux:

(8)

From (8), it follows that the Px component of the
flux is other than zero and that its sign coincides with
that of the permittivity. In the range of interest (between
ωp1 and ωp2), ε1 is positive and ε2, negative. In addition,

 < 0 throughout the frequency range, while  < 0

if  > (ω2/c2)εs1. From (8), it also follows that the Pz

component equals zero. The flux in layers 1 coincides
with the positive 0x direction, while in layers 2 it is
directed oppositely. Thus, in the lower transmission
band, the major portion of the energy is transferred by
layers 1, while in the upper band most of the energy
concentrates in layers 2. This circumstance also defines
the direction of the group velocity v g = dω/dkx.

When constructing Fig. 1b, we took the drift veloc-
ity v 0 = 5 × 109 cm/s, ωp1 = 6 × 1010 s–1, and ωp2 = 3 ×
1012 s–1. Here, the dashed line is given by the equation
ω = kxv 0; that is, this line reflects the dispersion relation
for a drift wave without considering the structure peri-
odicity. The interaction between drift waves and plasma
polaritons shows up in that the curves move apart at the
points where this line crosses the dispersion lines of
natural lattice waves. As a result, the allowed bands for
plasma polaritons change their form and transmission
bands appear near the line ω = kxv 0 (see inset). These
bands have been mentioned in the analysis of Eqs. (6)
and (7). Note that the equation for the boundary of these
bands is ω = kxv 0 + const. The bands are situated to the
right of the dashed line and correspond to slow drift
waves. To the left of this line, transmission bands are
absent up to the transmission bands for plasma polari-
tons. Thus, fast drift waves fall into the forbidden band
and are absent in layered semiconductors with transla-
tional symmetry.

In Fig. 1c, the range of drift waves is much wider
than in Fig. 1b. In Fig. 1d, it is assumed that the waves
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Fig. 1. Graphical representation of the dispersion relation.
drift in layers with a high carrier concentration; there-
fore, the range of drift waves is still wider. In this figure,
the asymptote for kxd  ∞ is the frequency ωps2,
rather than ωps as in Figs. 1a–1c.

To obtain analytical results for the case ω ≤ kxv 0, we
assume that ωL1 ! ωL2 and represent Eq. (4) in the form

(9)

(10)

ω kxv 0–( )2 ε01ω
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Formula (10) was derived in view of relationship (6).
For drift waves, (9) gives

(11)

(the plus sign outside the second term is absent,
because the slow drift wave propagates in the structure
as was indicated above). Since δkzd1 is small and |A| @ 1,
expanding the radicands in (9) in A–1 yields

(12)
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In the frequency range under study, kz2 is an imagi-
nary number and

Then, F1 is inversely proportional to the small quan-
tity |δkz|d1. Therefore,

The value of F2 is inversely proportional to |δkz|d1

and, hence, is large. In this case,

(13)

Consequently, at δkz < 0, the slow drift wave is
stable.

Let us define δkz. To do this, we construct the depen-
dence of (m11 + m22)/2 on kz1d1/π (Fig. 2), from which it
follows that |(m11 + m22)|/2 ≤ 1 at points where the argu-
ment is an integer number. As is seen from dispersion
relation (4), this implies the presence of a transmission
band. At the points kz1d1/π = 1, 2, and 3, the bands arise
to the left of them and δkzd1 < 0; that is, the drift waves
are stable. The negativity of δkzd1 can be shown analy-
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tically. From (7), we have for the right-hand side

(14)

Here, we took into account that kz2 is imaginary and
ε2 < 0 in the range of interest. Thus, with dissipation not
taken into consideration, drift waves in the periodic
structure are stable.

3. THE EFFECT OF DRIFT ON PLASMA 
POLARITONS

Figure 1a shows the transmission bands for plasma
polaritons without drift. In this section, we consider the
numerical solution to the equation

(15)

in the presence of drift. In (15), ε1 is large in magnitude
at frequencies near ω ≈ kxv 0; therefore, kz1 can be rep-
resented by formula (6) and F1, 2, by (10). Figure 3 dem-
onstrates the solutions to (15) for two drift velocities.
At the lower velocity (Fig. 3a), the transmission bands
change in shape insignificantly as compared with
Fig. 1a. The basic difference between Fig. 1a and
Fig. 3a is that the asymptote to which the boundaries of
the bands tend at kxd  ∞ depends on the frequency
of the surface plasmon in layer 2, and not on the hybrid
frequency ωps2. In Fig. 3b, the band ω ≈ kxv 0 is seen to

kz2 d2( )exp 1 δkzd1

kz2

2 ε2
---------- c4
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2 ω2

---------------
d1

nπ
------ 

 
3
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Fig. 3. Band structure of the plasma polariton spectrum in the presence of drift: v0 = 1 × 109 (a) and 5 × 109 cm/s (b).
be in the range of small kxd. Also, the bands are notice-
ably extended along the line ω = kxv 0. It is of interest
that the bands where plasma polaritons have a negative
or positive group velocity are also retained in the pres-
ence of drift.

Now we will consider a solution to Eq. (9) for col-
lective plasma polaritons. From (9), it follows that car-
rier drift does not cause the instability of natural waves
but merely shifts the frequency by a small quantity on

the order of /(ωps2 – kxv 0)2.ωL1
2

4. TAKING ACCOUNT OF DISSIPATION

The above results were obtained without consider-
ing losses, which are certainly present in any semicon-
ductor. Dissipation is known to considerably affect
wave dispersion and damping, conditions under which
instability develops, etc. Specifically, it has been shown
[20–22] that taking into account the collision frequency
limits the maximal wavenumber and hence introduces
some minimal value of the phase velocity of a wave
v ph = ω/(kx)max. Because of this, the instability condi-
tion (ω/(kx)max < v 0) fails even in high-mobility semi-
TECHNICAL PHYSICS      Vol. 48      No. 3      2003
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conductors like InSb and PbTe, where the drift velocity
may be as high as (3–5) × 107 cm/s and the lowest
velocity of interfacial polaritons in the homogeneous

material may reach c/  ≈ 5 × 109 cm/s. Therefore,
the instability described in Section 1 may apparently
arise only in structures where electron currents pass
between semiconductor layers.

To examine the effect of dissipation on the plasma
polariton properties, we proceed as follows. Let the col-
lision frequency in semiconductor 1 be ν1 ! ωL1 and
semiconductor 2 be lossless. Let also v0 = 0. Equation (9)
will be solved numerically. The solution is illustrated in
Fig. 4, where kx =  + i . Figure 4a shows the depen-

dence of the frequency on the real part d of the wave-

number, and Fig. 4b displays the dependence ω( d) at

ν1 = 3 × 1011 s–1 with  = 0. Comparing Fig. 4 with
Fig. 1, we see that the dispersion curves with the posi-
tive (curve 1) and negative (curve 2) group velocities
run in the same manner at d ≈ 0, …, 20. The damping
in this range is described by curves 1 and 2 in Fig. 4b.
For curve 1 in Fig. 4a, the damping is positive and small
in the frequency range ω = 1.25 × 1012–1.75 × 1012 s–1

and equals /  ≈ 0.04. Beyond this range, the damp-

ing grows considerably, reaching /  ≈ 0.38 by the

end of curve 1 (ω ≈ 1.86 × 1012 s–1, d = 19.98). For
curve 2 in Fig. 4a, the damping curve is curve 2 in Fig.
4b, which is near the vertical axis, and d ≈ 0. Subse-

quently, for ω ≈ 2 × 1012 s–1,  becomes negative and

grows in magnitude. The negative value of  means
that the wave amplitude increases along the positive 0x
axis and decreases in the opposite direction. Such
behavior of these polaritons is explained by the fact that

for d > 5 (Fig. 4a), the group velocity is negative; that
is, the natural wave decays in the direction of energy
propagation [22, 23]. An importance feature of the

curves is the presence of a bend at large values of d.

In this range, | d| is seen to grow significantly. Thus,

damping limits the value of d and introduces a min-
imum of the phase velocity.

Let us estimate (kx)max assuming that the collision
frequency in semiconductor 1 ν1 ! ωL1. Let ω ≈ ωps; in
other words, we consider the range near the asymptote
in Fig. 1a. Then, we can put

With this inequality taken into account,

(16)
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and Eq. (4) takes the form

(17)

For large values of kx d ≈ d ≈
exp(kxd)/2 and with ωL2 > ωL1, we have

(18)

Here, |cos | ≈ 1. From (18), it follows that at ν1  0,

d  ∞ and d  π/2. The bend in the curve can

be explained as follows. With ν1 ≠ 0, d takes a finite
value and the phase shift over the period is somewhat
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less than π when the wave travels in the negative z
direction. Thus, the reflected wave “quenches” the inci-
dent one. This causes a forbidden band, i.e., a bend in
the dispersion curve, to form.

The minimal phase velocity vs. ratio ν1/ωps is
depicted in Fig. 5. As this ratio grows, the phase veloc-
ity approaches the velocity of light. However, even at
ν1 > ωps, it amounts to only several percent of the veloc-
ity of light. As the numerical calculations show, the
shape of the curve at high dissipation values depends on
the structure geometry. Physically, this is explained by
the fact that a portion of the energy is transferred in lay-
ers 2, where the damping was set equal zero.

Figure 4a shows two more waves with their disper-

sion curves located at d ≈ 0 (curve 3) and | d| ≈ 10
(curve 4). This solution appears when only dissipation
processes are included [24]. As follows from (8), the
power flux along the 0x axis Px = 0; along the 0z axis,
its direction reverses in adjacent layers. The latter cir-
cumstance stems from the fact that ε1 > 0 and ε2 < 0 in
the range of interest. Therefore, polaritons of this type
do not propagate in the structure and decay near the
point of origination.

Now consider the instability of natural waves in the
presence of drift and dissipation. If ωL2 @ ωL1, the dis-
persion relation takes the form

(19)

kx' kx
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2 ω2
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Fig. 5. Minimal polariton phase velocity vs. ν/ωps.
Substituting ω = kxv 0 + δω for drift waves yields

(20)

In formulas (19) and (20), the value of F1, 2 found
from Eq. (4) has the form

(21)

Since v 0 ! c/ ,

and, hence, F1, 2 ≈ –1. Then,

(22)

Thus, we have found that drift waves are unstable
for frequencies below ωps2. The increment is maximal
at frequencies near ωps2. This effect is accounted for by
Fig. 3b. Near ωps2, a polariton band exists for which the
associated equation is obtained by equating the expres-
sion in the brackets on the left of (19) to zero. The
increment grows as the frequency approaches the reso-
nance between a drift wave and polariton. At this point,
the increment is maximal and is proportional to the
square root of the right of (19). Note that the condition
kxv 0 = ωps2 cannot be fulfilled, since δω/ω must be less
than unity. The conclusion that space-charge waves are
unstable at any frequency if the collision frequency is
nonzero has been drawn in [7].

For collective plasma polaritons, we find from (19)

(23)

Here, ωF =  is the solution to the
polariton equation. |F| takes into account the periodicity
of the structure. |F|  1 if d  ∞; in this case,
ωF  ωps2. Polaritons are unstable if kxv 0 > ωF.

CONCLUSION

Our results can be of interest in designing solid-state
millimeter- and sub-millimeter-wave devices, where
long-term interaction between drift or natural waves of
the periodic structure (superlattice) is a crucial issue as
in TWTs. The materials of choice for the layers are
InSb, PbTe, or GaAs, and the layer thickness must be
about several micrometers.
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Abstract—Results of processing photoemulsion plates exposed in several experiments that were performed on
the MAS-1 automated complex with a microscope are reported. Specifically, the case of detecting a charmed
meson in the WA-95 (CERN) experiment is considered. Also, the processing of internal conversion electron
spectrograms that are recorded with a beta-ray spectrograph equipped with a precision image-sensing TV sys-
tem providing an accuracy of 1 µm in three coordinates is described. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Earlier, the MAS-1 universal setup [1], designed in
the Institute of Theoretical and Experimental Physics,
was used to search for neutrino interaction in nuclear
photoemulsion exposed to a neutrino beam in the
CERN SPS accelerator [2].

The basic parameters of the MAS-1 are as follows:
the size of the objective table for emulsion scanning
and making measurements is 450 × 450 mm, the scale
reading in three coordinates is 1 µm, and the upward
stroke is 50 mm. The setup is provided with a vacuum
clamp to fix a photoemulsion plate and a TV system for
image observation and memorizing.

The setup was designed for processing events in the
WA-95 (CERN) experiment organized by the CHO-
RUS collaboration to search for neutrino oscillations
[3]. In that experiment, the exposed photoemulsion
chamber was glued to a 400 × 400-mm polystyrene
substrate in a definite order and events were sought in
the semi-automatic regime (tuning to a desired coordi-
nate was made automatically, and event coordinates
were fixed by the operator). As an illustration, we will
demonstrate a charmed meson (Fig. 1) detected in that
experiment. Here, the blackening of each photoemul-
sion grain was measured.

However, the technique developed also allows one
to measure the blackening of a set of grains and eventu-
ally to record spectral lines. In this work, we apply the
MAS-1 setup to scan nuclear photoemulsion plates on
which the internal conversion electron (ICE) lines of
various radioactive nuclides were recorded with a beta-
ray spectrograph and show the advantages of our
approach over the microphotometry technology [4].
The photoplates used measured 400 × 15 mm and had
1063-7842/03/4803- $24.00 © 20370
a P-type emulsion layer 50 µm thick (available from the
FOMOS Research and Production Amalgamation).

The parameters of beta-ray spectrographs were
carefully considered in [4]. The basic ones are the fol-
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Fig. 1. Birth of a charmed meson in the MAS-1. Event
1272 = 1925, chamber 54, prediction track 212 (6)-hadron.
(1–4) Track numbers. I, photoemulsion; II, polystyrene;
A, direction of search for interaction vertex.
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Table 1.  169Yb spectrum lines

Line Position, µm Width, µm Intensity Signal/background 
ratio

K 264100 ± 50 1500 1 11.40

L1 273300 ± 50 400 0.0175 ± 0.0002 2.20

L2 275000 ± 50 300 0.0019 ± 0.0002 0.76

L3 278200 ± 50 300 0.0026 ± 0.0002 0.93
lowing: the energy resolution is 0.03%, the energy
range of electrons detected is 0–3000 keV, and the
source activity is 5–30 mCi. As an electron recorder,
plates with nuclear emulsion are used. The use of a pho-
torecorder to detect electrons makes it possible to gain
information about conversion electron energy spectra
over a wide energy range and with a high resolution.
However, to extract data of interest from photorecord-
ers, one needs precision instruments equipped with
sensing TV systems and tools for digitizing optical
images. The TV camera must offer a high spatial reso-
lution in order to provide good images of individual
emulsion grains of size about 1 µm.

TV SYSTEM FOR IMAGE SENSING

The MAS-1 intended to perform measurements in
nuclear photoemulsion was equipped with a special
spectrophotometric CCD-based TV camera. Data pro-
cessing with this camera is accomplished using dedi-
cated algorithms that decompose an image into 512 ×
512 cells, each memorizing the brightness in the inter-
val 0–255 units.

The CCD-based TV camera operates in the optical
range and has a maximal sensitivity at λ = 0.5 µm.
A SONY CCB-M27B/CE camera with a CCD array is
designed for the high-quality entry of black-and-white
images into a PC. It generates a video signal and auxil-
iary signals and has the following parameters: the size
of a CCD array is 1/2", the number of cells is 768 × 576,
the sensitive area is 6.46 × 4.83 mm, the time of
response of an electronic shutter is 1/10000–1/50 s, the
time of signal accumulation is about 1 min, and the sen-
sitivity is 0.251. The camera provides external synchro-
nization for frame scan and automatic gain control. The
camera is directly connected to its controller (placed in
a computer), which digitizes the signals. The controller
and camera operate with the same clock frequency,
which provides high-quality imaging and precise
matching between a digitized image and the physical
raster of the CCD array.

The image-sensing TV system, which provides
image entry, has the following parameters: the total
number of pixels in the raster of the camera is 768 ×
576, the time of image entry is 40 ms, the number of
storage screens in the buffer is ~8, the number of tonal
gradations is 256, and the clock frequency of frame
decomposition is 14.1875 MHz. The system has input
TECHNICAL PHYSICS      Vol. 48      No. 3      2003
and output data coding tables, electronic control of
tonal gradations, a 16-bit interface with the IBM PC
bus, and a 4-bit data overlay.

The TV camera includes a CCD card, CCD control
card, power supply card, and interface-and-controller
card. The functions of the controller are changed by
reprogramming. Some of the functions are user-pro-
grammable, and the others depend on programs wired
in a programmable gate array. The wired-in programs
specify the controller’s operating parameters. They can
be loaded into the controller at any time instant and as
many times as desired. One loading of a wired-in pro-
gram takes 80 ms.

TECHNIQUE FOR SCANNING BETA-RAY 
SPECTROGRAMS

Photoplates that recorded the ICE spectra from
radioactive isotopes when exposed in the beta-ray spec-
trograph contained information on the energy, width,
and intensity of the lines. After development and dry-
ing, they were rigidly fixed on the MAS-1 table. The
thickness of the emulsion layer developed was ≈25 µm

0 584
µm

Fig. 2. Conversion electron lines in the photoemulsion in
the MAS-1.
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Fig. 3. Results of scanning (a) the ICE beta-ray spectrogram for the 169Yb isotope (N is the number of black cells) and (b) the same
spectrogram extended along the Y axis (the transition multipolarity is found from the ratio of the L line intensities).
at a glass substrate thickness of 2 mm. The photoemul-
sion exhibited black grains, whose density directly
depends on the rate of nuclear transitions. Actually, the
grain size displayed on the TV camera was ≈1 µm,
occupying about ten cells of the CCD array. Such a res-
olution is sufficient for separating individual grains
even if their sizes fluctuate considerably. The photo-
emulsion was illuminated by a parallel light beam
formed by an optical system consisting of a 100-W
incandescent lamp, condenser, and field objective. The
image quality was electronically controlled with a spe-
cial software suite. The tonal gradation was selected so
that “dark” and “light” cells have brightnesses in the
interval 0–127 and 128–255 units, respectively. An
image recorded with the optical path of the TV camera
under these conditions was fixed as a 512 × 512-cell
frame and, after digitizing, filed. Figure 2 shows the
photographic image of electrons for the Lu element that
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Fig. 4. Results of scanning the ICE beta-ray spectrogram for
the 111In isotope with an energy of 171.29 keV (N is the
number of dark cells).
was displayed on the TV screen after appropriate tun-
ing. Images recorded were processed by the special
algorithm in several steps.

(1) The frame with an image is filtered to remove
contaminants, defects, and emulsion damage.

(2) The brightness distribution on the frame is
equalized; i.e., the distribution function is analytically
extended over the entire possible range.

(3) The brightness of the frame is reduced to binary
representation; that is, the brightness takes only the
value 0 or 1.

(4) The number of dark cells (brightness 0) on the
frame is calculated in the projection onto the axis nor-
mal to a spectral line being scanned (the number of
these cells depends on the scan step).

The spectrum thus obtained (Fig. 2) exhibits closely
spaced intense and faint lines. Usually, faint lines can
be recorded by decreasing both the scan step and the
optical magnification. This is because the lines diffuse
greatly under a high magnification and closely spaced
ones become indistinguishable because of insufficient
statistics. The field of vision in Fig. 2 is 584 × 584 µm,
and the spacing between the lines is 53 µm. Therefore,
such spectrograms should be scanned with a step of no
more than 25 µm because of the presence of faint lines.
However, if the background noise is weak, the scan step
can be selected in view of the signal-to-noise ratio.

During the scanning of photoplates on the MAS-1,
the operator fixes the coordinates and determines the
number of black spots in each field of vision with a
computer operating in real time. Beta-ray spectrograms
are scanned along the full length of the photoplate with
the sensing system tuned once. In this case, the posi-
tions of ICE spectrum lines are determined with the
same accuracy.

The results of scanning the beta-ray spectrograms of
the 169Yb isotope in the energy range above 50 keV with
our technique are shown in Fig. 3. Table 1 lists data
TECHNICAL PHYSICS      Vol. 48      No. 3      2003



        

PROCESSING OF TRACKS AND BETA-RAY SPECTROGRAMS 373

                           
obtained by processing the lines in Fig. 3. Note that
qualitatively our data are in good agreement with pub-
lished data [5]; however, the lines are sharper and their
location is much more accurate.

The intensities of the ICE spectrum lines for a
≈163, 165Tm isotope mixture are presented in [6]. Due to
the high sensitivity of the technique suggested, high-
reliability measurements of the faint lines were per-
formed.

New results were obtained by us when the beta-ray
spectrogram of the 161Hp isotope was scanned in the
energy range up to 100 keV. The associated data are
also presented in [6].

Figure 4 demonstrates the results of scanning the
photoplate with the ICE spectrum for the 111In isotope
at energies of up to 500 keV. The intensities of three
lines from this spectrum were calculated by approxi-
mating the lines by the Lorentz function under the
assumption of linear background near these lines. The
positions of the lines and their relative intensities are
listed in Table 2. Earlier, these data were absent in the
literature.

CONCLUSION

Thus, we pioneered the use of the MAS-1 universal
setup for processing beta-ray spectrograms recorded on
photoplates in beta-ray spectrographs in order to deter-

Table 2.  111In spectrum lines

Line Position, µm Width, µm Intensity

L 81 395 ± 12 607 1

M 82 975 ± 5 216 0.340 ± 0.001

N + O 83 281 ± 8 273 0.048 ± 0.002
TECHNICAL PHYSICS      Vol. 48      No. 3      2003
mine the relative intensities of spectral lines for a num-
ber of beta-ray isotopes. The MAS-1 is much more sen-
sitive and provides much more accurate data than
microphotometers [7].
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Abstract—On the assumption that a spark discharge in water is quasi-steady, its pressure and channel radius

are calculated. It is shown that the key discharge parameter is the action integral S = dt, where i is the cur-

rent in the channel. The conductivity only slightly affects the computational results and thus can be assumed to
be constant. The formulas obtained can be applied to a discharge along the axis of a cylindrical water-filled
chamber if the deformation of its walls over the discharge time is negligibly small and the pulse duration is sev-
eral times greater than the time of sound propagation in water from the axis of the chamber to its wall. At rela-
tively low pressures (P ≤ 108 Pa), P ~ R–4/3, where R is the chamber radius. © 2003 MAIK “Nauka/Interperi-
odica”.

i2
0
t∫
The pressure due to an electrical discharge in a
water-filled cylindrical chamber with undeformable
walls can be approximately calculated if it is assumed
that the discharge is quasi-steady. This means that the
discharge current rise time is much longer than the time
of sound propagation from the axis of the chamber to its
wall. It can also be assumed that the discharge channel
is a cylinder of radius rc that is coaxial with the chamber
of constant radius R. It is known that the density of a
medium inside the discharge channel is much lower
than that of surrounding water; therefore, the plasma
mass in the channel can be neglected. Under these
assumptions, the water mass conservation law can be
written as ρV ' = const, where ρ is the water density in

the region rc < r < R and V' = π(R2 – ) is the water vol-
ume (per unit length). Hence,

(1)

The simplest equation of state for water (Tait’s
equation) has the form

where P is the pressure in the chamber, which is equal
(in the quasi-steady regime) to the pressure in the dis-
charge channel; ρ0 is the initial water density; P0 is the
initial pressure; and A = 3.05 × 108 Pa and α = 7.15 [1].
If it is assumed that P0 ! P, the first term in the equation
for pressure can be neglected.

Equation (1) can be transformed into

(2)

rc
2

dρ
ρ

------ dV'
V'

--------– .=

P P0 ρ/ρ0( )α A ρ/ρ0( )α 1– ,+≈

ρ ρ0V0' /V ' ρ0
R2

R2 rc
2–

----------------,= =
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then,

(3)

where x = /R2.

This equation can be solved jointly with the energy
balance equation [2]

(4)

where γ = 1.22–1.30 is the adiabatic exponent of the
plasma, σ is the plasma conductivity, and i(t) is the dis-
charge current.

In terms of the new variable

Eq. (4) takes the form

(5)

where θ = P/A = (1 – x)–α – 1. The solution to this equa-
tion is

(6)
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The applied energy per unit channel length is given
by

(7)

The computational results shown in the figure are
represented as the channel radius and pressure vs. the
parameter τ (the graphs are plotted for the special case
γ = 1.25 and α = 7.15).

If the conductivity varies insignificantly over most
of the discharge time, one can put σ = const = (0.3–3.0) ×
104 (Ω m)–1 [3]. In this case,

where S = dt is the so-called action integral, which

is commonly encountered in the problems of electrical
explosion of semiconductors and breakdown in gases.

Consider the case rc/R ! 1, when only the dominant
term in binomial expansion (3) can be left:

Here, P ≈ Aα(rc/R)2 and Eq. (4) takes the form

(8)

Thus, we arrive at the relationships for the channel
radius and pressure:

(9)

(10)

It is noteworthy that, other conditions being equal,
the pressure rises with diminishing radius as P ~ R–4/3.
The above expansion provides a reasonable estimate
for many applications if rc/R ≤ 0.2, which corresponds
to P ≤ 108 Pa.
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By way of example, let us estimate the pressure in
the channel and the channel radius for a discharge in a
cavity of radius R = 2 × 10–2 m at the instant the current
reaches a maximum amplitude of 10 kA. The current
rise time is tm = 2 × 10–4 s, which is 15 times that of
sound propagation from the axis of the chamber to its
wall. Thus, the process is quasi-steady. In this case, S ≅

tm/2 = 104 A2/s. At σ = 3 × 104 (Ω m)–1, the pressure
estimated by formula (10) at the instant of current max-
imum is P(tm) ≈ 1.5 × 108 Pa. The pressure is seen to
depend on the conductivity only slightly, allowing the
use of estimates for σ.
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