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A DNA molecule is simulated by an anisotropic elastic fiber which defines the configuration of
the molecule central line and is supplemented with a chain of quantum two-level systems
imitating hydrogen bonds between two polynucleotide chains in the DNA double helix. The system
Hamiltonian consists of Kirchhoff's classical elastic energy and the energy of a quantum
anisotropic chain of “spins” 1/2. The two-level systems and macroscopic vector variables which
determine the conformation of the central line are coupled by a classical vectogfield

which is introduced to take into account the existence of two polynucleotide strands. Averaging
over fast(microscopig¢ variables yields an effective potentidl(q). In the approximation

of weak coupling between the systems, the spectrum of elementary excitations and effective
potentialU(q) have been calculated in explicit form. The relation between elementary
excitations in the “magnetic” subsystem and so-called breathing mgdeMandel, N. R.
Kallenbach, and S. W. Englander, J. Mol. Bib85 391(1980; G. Manning, Biopolymer22, 689
(1983] corresponding to low-frequency excitations in DNA molecules is discussed.
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1. INTRODUCTION ken, and two single-chain molecules are formed from one
double helix. As noted above, lengths of hydrogen bonds are

monograpfand the revied; and references thergijra DNA microscopic, hen_ce the description of their rupture is a
molecule consists of two polynucleotide chaistrands in- guantum-mechanical problem. Furthermore, the two comple-

tertwined in a double helix. The strands are connected t&"€Ntary chains should separate in the process of replication,

each other by relatively weak hydrogen bonds, and elementferefore they should bend with respect to each other, and
of the chains are connected to one another by much strongd}iS Process is, obviously, controlled by elastic energy, i.e.,
covalent bonds. This structure is characterized by three sp&/0cesses on the mesoscopic scale should be taken into con-
tial scales, namelyl) a microscale no larger than 10 (his S|derat|on. Mode!s taking into account such interaction be-
is the diameter of the double helix or the distance of 3.4 Alween microscopi¢hydrogen bondsand mesoscopicelas-
between two neighboring bases in a chai@) a mesoscopic tic energy scales have been studied by several authdfs.
scale of the order of the persistence length of a DNA mol-Dauxois et al.”® described this interaction as softening of
ecule (this is the length over which the elastic energy isthe elastic bending constant at high amplitudes of normal
comparable to the temperaturef about 16 A; and (3) a  oscillations, whereas Marky and Manntfigascribed this
macroscopic scale equal to the total molecule length, whicigoftening to the rupture of hydrogen bonds.
can be up to 19 A. In our previous brief report: we described this behavior

Given these large differences among the scales, one cdh terms of a classical vector fieglintroduced to account for
adopt a variety of approaches in describing DNA propertieghe existence of two polynucleotide chains. The stability of a
on different scales. For example, hydrogen bonds must bBNA molecule against replication was provided by an exter-
analyzed using the quantum-mechanical approach, the propal potentialu(q) described in the harmonic approximation,
erties on the mesoscale are determined by the elastice., an additional parameter was introduced to the theory.
energy, and on the macroscopic scale a DNA molecule isThe aim of the present work is to calculate the potential
similar to a conventional polymer molecule, and most of itsU(q) using the microscopic approach and to study the effect
features can be interpreted using well-known scaling fawsof hydrogen bonds on the mesoscopic elastic parameters of
and are largely determined by the conformational entropy. DNA.

On the other hand, the differences among these scales do This paper is organized as follows. In S@€ca model of
not mean that the respective properties are fully independerd. DNA-like molecule is formulated. The molecule is de-
In some phenomena, two of the scales or even all three castribed as an anisotropic elastic fiber which defines the con-
be important. One of them is the well-known and biologi- figuration of the double-helix backbone. Hydrogen bonds be-
cally very important division(replicatior) of two comple- tween two polynucleotide chains are simulated by quantum
mentary polynucleotide chains of a DNA molecule. At two-level systems, i.e., we assume that a hydrogen bond can
higher temperature®r in an appropriate chemical environ- be only in two states, closed and open. A bilinear spin—orbit
men) hydrogen bonds holding two strands together are brointeraction leads to coupling between the two subsystems.

According to Crick and Watson’s modelsee the
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Thus, we consider the DNA molecule to be a combination of  The vectorw in Eq. (1) describes variation of the local
two systems, one of which is classical and determines th&renet frame along the fiber:
molecule elasticity, and the other of which is a quantum
system responsible for binding the strands in the double he- d
lix. We assume that the spatial configuration of the molecule ds
is largely determined by the classical system, while the quan-
tum system is “tuned up” to this configuration, i.e., an ana-Equation(3) means that all admissible deformations of the
log of the Born—Oppenheimer approximation can be used. fiber can be described in terms of rotations of the Frenet

In Sec. 3 the proposed model is investigated. Averagindgrame, i.e., the elastic fiber is incompressible, which is a
over the microscopic variables, which are faster than mesdairly good approximation for a DNA molecule, whose tor-
scopic ones, yields the effective potentla(q) stabilizing sional and bending elastic constants are several orders of
the DNA molecule. An explicit expression fdd(q) has magnitude less than the compressibility consfdt.
been obtained in the limit of weak “spin—orbit” coupling. Note another important factor. The term in E#) linear

In Sec. 4 the spectrum of elementary excitations for thén w; indicates that there is a preferred alignment of a DNA
model is calculated. Finally, in the last section, physical conhelix adsorbed on a nucleosome. Indeed, a DNA molecule
sequences of our results are discussed, particularly the reladsorbed on a protein cylinder composed of histons is a
tionship between elementary excitations of two-level sysDNA section of 146 base paifdp) wound in the shape of a
tems and the so-called breathing modes of the DNAleft-handed helix of 1.8 turns on the cylind@Therefore the
molecule, which were discussed in Ref. 2 in order to inter-expression for the elastic energy containing a homogeneous
pret the experimental ddteon fluctuations of hydrogen quadratic form inw;, which is used by some authdrsjs
bonds. probably an oversimplification.

At constanta;; andb, the minimum of the energy de-
scribed by Eq(1) corresponds to a constant valuewf

2. TWO-LEVEL SYSTEMS AND HYDROGEN BONDS

BETWEEN STRANDS IN A DNA MOLECULE ;= b

1]

i

Following Marky and Manning® we consider the cen-
tral line of the DNA molecule to be an elastic fiber or rod. As which describes the helical conformation of the molecule.
noted above, the conformation of this fiber on the intermedi-  Thus far, we have not taken into account the existence of
ate (mesoscopicscale is largely controlled by its elastic en- two strands forming the DNA double helix and hydrogen
ergy. The latter can be expanded, as usual, in terms of thgonds between them; we have only discussed the conforma-
strain tensor, and these expansions can be conveniently egen of the central axis. A minimal extension of the elastic
pressed in a form which is a generalization of the solution tanodel that facilitates the simulation of hydrogen bonds and
Kirchhoff's classic problem of equilibrium of an elastic double helix might be as follows. We assume that hydrogen

rod'?~*4 bonds between two polynucleotide chains can be modeled as
L1 two-level systems. The two states of such a system corre-

EO:f ds Eaijwiwj+biwi)- (1) spond to open(broken and closed hydrogen bonds. The
0 strength of the hydrogen bond is about 5 kcal/mol, and under

natural physiological conditions about 1% of such bonds are
virtually broken®?

Thus, imagine that two-level systems are associated with
points on the central axis, whose conformation is determined
| by the energy defined in Eql). This compound system of
the elastic fiber plus the two-level systems is a minimal gen-
eralization of the model described by H@), taking hydro-

en bonds into account, and it allows us to calculate the

NA conformation on the mesoscopic scale. Our goal is to
describe Kirchhoff’s elastic fiber supplemented with the two-
level systems.

It is convenient to replace Kirchhoff’'s continuous fiber
with a discrete chairinote that Kleninet al’ and Chirico

In order to describe the conformation of the DNA mol- 2 Langowsky studieq a discrete version of the elastic
ecule central line, one can introduce the moving Frene'En.Odel (.1))' Thus, therg IS a twp-level system, which can be
frame® vy, v,, Vs, where thev is the tangent vector, and either in an open(excited or in a closed(ground state,

vV, andvs are aligned with the principal deformation axes of |1_> 0r_|0>, at each site of th_e chamn,=_0,i 1:2. e In
the elastic rod® ie. this Hilbert space, at each site we define a basis:

HerelL is the length of the elastic fibéthe condition that the
mechanical model apply limits this length to several persis
tence lengths s is the distance measured along the fiber
axis, a;, is the matrix of elastic constants of the ré¢ihe
anisotropy ofa;, reflects the existence of two nonidentica
heliceg, and the vectob describes spontaneous deformation
of the DNA molecule, which leads to its superhelical struc-
ture. A physical cause of spontaneous deformation can b
for example, adsorption of a DNA molecule on a nucleo-
some, which is usually described as a cylindrical surfaee
Ref. 10, where the equilibrium configuration of a nucleo-
some is studied using the models of an elastig.robdroduc-
tion of the vectorw requires some clarification.

d 0 1
Vl ' Vi-Vj=5ij. (2) |0>:(1)' |1>:(0 ! (4)

:d_s’
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and the Hilbert space of the entire system is defined by thbonds are described, from an outsider’s viewpoint, by the
basis which is a direct product of all eigenvectors defined iroperatorsS,, which are related to the local operatw‘ﬁﬁ) by
Eqg. (4) at all sites. the canonical transformatiéh

The following simple relationships are obviously valid:

o_|1)=1]0); o,]|0)=]|1), where the operators_, o in Si=Unoy + Anery AT, @)
the basis defined by Eg4) take the form Here ¢P=(1/2) (o} —07), oM=(1/2)(07 +0,))), and
0 0 0 1 u, is the unit vector of the “quantization” axis, i.e., the
o_=( ) ’ U+=( ) ' direction in which the hydrogen bond at sitecan be broken
10 00 (openedl. The complex vectorA, is orthogonal tou,

o (A,-u,=0, A} - u,=0).Furthermore, if
The Hamiltonian of the two-level systems can be also pre-

sented in the same bagits reference frame is defined by the
conformation of hydrogen bonds in the molecule and ther-

fore is local, i.e., it depends on the position of a specific . .
nucleotide pair the vector operatorS, obey the usual commutation relations

for spin operators:

_ _ () c(i)]—j k)
Ho,=—¢ E 0'E13)+2 V1(0:0n+1+0'n Tri1) [Sh 'Sm]_lsijk8§1 Smn
n

n

1
An-An=0, Ay-Ar=3,

which justifies our using the terminology usually applied to
- o magnetic materials.
tre ; (On Ony1+ 0y 0py). (5) The choice of the vectoA, is somewhat arbitrary,
which enables us to introduce a reference frame
The meaning of components of the Hamiltoni@ is quite W', W, W determined by the hydrogen bonds,
clear. The first term determines the energy of two-level sys-
tems,e is the energy required to break a hydrogen bond, angy =¥ E(AﬁAﬁ)zWﬁﬁ) , i.(An—A;‘)EWEf) ,
the operatow(® has the form 2 2i ®

and, in addition, to choose the vect!, which coincides
with the tangent to the central line, i.e.,

1 0
0 -1

0(3):<

whereas the second and third terms determine the transition Wy"=v,", 9
rates to neighboring sites with and without a change in th%vhilev
states of the two-level systems,( and v, are the corre- Eq. (2).”
sponding matrix elements, and we assume, for simplicity,

thatlontl%/.nefarest ?he |gubor§|t|nt9r)a%t . licateq. n@ve introduced two local reference frames, namgh)!,
n this form, the Hamiltonian(s) is too complicated, defined by the deformation of the molecule central line, and

even in the one-dimensional case. It corresponds to the s?— G0) : .
. , “{W)’}, determined by hydrogen bonds. Notably, in our
called XY Zmodel in an external field, and although this “gauge” defined by Eq/(9), ng) coincides with the vector

model enables one to obtain an exact solutibit, is too - (1)
.tangent to the central ling; .

f;{:gggrﬁﬁgn%:&i,\g ”IS ni(;t Egr#slee C:(:; ?:L:;nsﬁjed)il;wttZ?eus%irr]l exft(:)lr- Both these referencdsr, what is the same, Kirchhoff's
P P 9 "9 amiltonian of the elastic fiber in Eql) and the Hamil-

studies of nonlinear effects in DNA conformatitthese phe- fonian (6) of the two-level systemshave so far been inde-

Egmﬁnez;,vs:\?:#gﬁgrgzﬁsome authors in the framework of Sendent. Recall that we are dealing with the DNA model in

We assume for simplicity that,=0, i.e., the matrix which the two-level systems are defined in the reference

" : . frame{W.}, and deformation of the central line is described
element of the transition between sites with, for example Kirchhoff tor fielde in the ref ¢ ()
two broken hydrogen bonds, is zero. In this case, our model” irchhoff's vector fielde in the reference framévy .

transforms to the so-calleiX Z-model, which was first stud- Agt r?oi'zﬁnmgﬁcglrz\;gﬂzsgi;{Ctg%ﬁoallyzgggzg?evgggrs'
i Betheé®® Thus, in thi = = h . . P * )
ied by Bethe?” Thus, in this casesy=v, »,=0) we have field g should be included in Kirchhoff's model of a single

. L . elastic fiber. This field also acts as a mediator between the
Hp=—¢ >, o ¥+ > (On Onp1t 0004 1) (6) Kirchhoff and “magnetic” subsystems. In the simplest man-
n n P . - - -1:
ner, this interaction can be described by the following bilin-

Let us determine how the operators®, ¢,  €ar contribution to the energy:
n=0,1, 2,...N—1 are related to the DNA conformation.
To this end, let us take into account the fact that the breaking Hin=7 > Up, "0y oy (10
of a hydrogen bond at site, which is described viar{® as "
a transition to the excited state, has, from an outsider’s viewHere v is the effective coupling constan,, is the vector
point, a certain preferred direction defined by a unit vectordefining the direction in which a bond is broken in Kirch-

u, in the laboratory frame. Therefore, the states of hydrogemoff's reference framévﬂ)}, o, is defined by Eq(7) in the

is defined in accordance with the discrete version of

Thus, as a result of the calculations in this section, we
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reference framgW(}, and the rotation matrixJ,, which ~ The operator®, are Bose operators in the approximation of

transforms one reference frame into the other, is low density of excited bond&vhich means, from the physi-
1 0 0 cal viewpoint, that the temperature is much lower than the

DNA denaturation energy Note also that these exitations
U,=| 0 cose, —sing, are formally similar to excitons in dielectriés.
Substituting Eq.(13) into (12) and taking a Fourier

_ _ transform, with
where ¢, is the local angle of rotation about the tangent

0 sing, cose¢,

vector of the curve, which is a vector common to both ref- 1 < _2mnk
erences. Note that the interaction described by(E@). has a bn__N e exn ! ko
structure similar to that of the spin—orbit coupling, and con-

tainsq,, and a7, in the lowest powers allowed by the symme- L1 N1 2mnk)
try of the system. b, "N & exp( —i T) by

we obtain the following Hamiltonian in the
k-representation:

The model described in the previous section thus in- 1 N2
glude; the energy of elastic dgformatlon of the DNA central | — 57 2 (—sin ¢nq§12)+c05q>qf13))
line given by Eq.(1), the Hamiltonian(6) of the two-level n=0
systems on this curve, and “spin—orbit” couplifg0). Gen-
erally speaking, it must also include the energy due to inho- + E &x. kb by +E (Db +Diby). (14)

. . . . . 2 R1 ™2

mogeneity of the vector field|, which is expressed in the kak k
harmonic approximation as

3. CONFORMATION ENERGY

Here we have used the notation

K
=5 2 (Vay)?, (1

e _
e+2v cos 1) - % E —sin ¢,q'?

8k1k2= 5k1k2
whereV is a covariant derivative, since the change in the

vectorq, dug to motion a_Iong the line can be ascribed both +cos<pnq(3))exr(i Zw(kz_kl)n) (15)
to the rotation of the Kirchhoff reference frame and the N

change inq, with respect to the local reference. In the con- ;g

tinuous limit
2mnk
J D E exp —i (cos ¢,q'?
=_ K= endn
Vg= (93q+ wX(q 2 \/— N n
(in the discrete version, we should use andq, and replace +sin ¢,q'Y). (16)

the derivatived/ ds with a finite difference

Here we will not fully investigate the model that takes
all the contributions to the energy given by Ed$), (6),
(10), and(11) into account, but limit our study to the case of by=By+lx, bg=B;+I}, (17)
a closed non-superhelical conformation supplemented b
two-level systems. In this case, the Hamiltonian contain
only the terms defined by Eg#6) and (10), which can be
expressed as

In order to diagonalize the Hamiltonian in E{.4), we
have to perform a canonical transformation

herel, are not operators but-numbers, which should be
chosen so as to exclude the Hamiltonian components linear
in the operatord, andb, . This condition yields

N—-1

k=2 (£,40Di), (18)
H=7 3 [(coseqa?+sin enaf) oy T
and yields the following result, apart from inessential con-
stants:
+(—sin enaY +cosepg ) o] —e > ol
n=0 1 N—-1
N-1 H= 27 Z (—sin nai? +cos eaqy)
> (g o1t ononiy). (12
n=0
+ -1
All the notations in Eq(12) have been described above, and +k12kz 8k1k2Blek2+3 klzkz Dy, (e )klkszz' (19)

the chain ofN sites is closed. ] )
It is convenient to transform the operators in E#2) The last term in Eq(19) determines the vacuum energy, and

into Bose operators of approximate second quantizdtion the canonical transformation given by Ed.7) corresponds
to a transition to coherent states. The first term on the right-

b= g* b = o= I 1 bbb (13 hand side of Eq(19) describes collective excitatiori$spin
nouneoFno e no2 “Tnene waves”) in the two-level systems associated with the elastic
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fiber. At temperatures sufficiently low in comparison with arbitrary parameters of the subsystems and energy of inter-
the temperaturd ,, of total denaturation of DNA, one can action between them, the spectrum of elementary excitations
ignore excited spin waves, and E49) yields the conforma- can be calculated only numerically. In the limit of weak
tion energyE ., of the molecule. spin—orbit coupling, however, it can be derived approxi-
In order to make our calculations easily understandablemately by analytic methods, the Kirchhoff elastic energy
we suppose that the “spin—orbit” coupling is weak, i.e., then being much higher than the energy of hydrogen bonds.
y<1. Then we can derive from E@19) the following ex-  Therefore, when spin—orbit coupling is weak, the vector field

pression to ordey?: g due to the Kirchhoff energy can be considered an external
N—1 field acting on the magnetic systdidamiltonians in Eqs(5)
Econf=§7 nZo (sin @nq§12>+cos<pnqg3)) 322((110)), i.e., the Born—Oppenheimer approximation can be
N—1 In this approximation, the magnetic subsystem can be
T § 1 described by the one-dimensiondl Zmodel (or XX2) in
4 =0 e+2v cog27k/N) an inhomogeneousn the general cagexternal field, which
N—1 should be determined by solving the classical problem of an
xi S ex izw(m_n)k)(co&p q@ elastic Kirchhoff fiber supplemented with the vector field
N nm=0 N nn g, i.e., by minimizing the energies determined by E(s.

_ 3) @ 4 3) and (11). If the field configuration is arbitrary, an exact so-
+sin 0,0 (cos ¢pq'? + sin ©nq'Y). (200 |ution for the XXZ-model is too cumbersome, even in one
In order to make further progress, we make one more naturdlimension, so we analyze the special case of a nonsuper-
assumption}v/e|<1, which means that the transition matrix coiled closed DNA molecule, for which=const, i.e., a one-
element between two neighboring sites is smaller than théimenSionaKXZ-Chain in a constant external field. An exact

energy of a broken hydrogen bond. solution in this case can be obtained using the Bethe
; . 0
To the lowest order in this small parameter, one carRnsatz.
eas”y derive from Eq(20) the fo”owing formula: As follows from a more accurate solution, the SpeCtrUm
N-1 ,N-1 of elementary excitations consists of a branch of one-particle

Y

Y i i 3 excitations (magnons with the dispersion relationvk?,
Econf:Z ngo (e"ann+e '“’”q:)‘*‘ % ngo 2|qn|2 ( d ¢ B

wherek is the quasimomentum or, in the continuous limit,
the wave vector, as well as more complicated excitations
+2[(a)2 = (ar)?]cos 2p, (so-called complexéswhich are propagating bound states of
two or more broken bondéwvith opposite spins The latter

2)4(3) o
+4q§1 )qg)sm 2n- (21) excitations always have higher frequencies than single-

Here we have introduced the notation particle excitations, and at temperatures far from the dena-
4=q2 +ig® tqration temperature they can be ignored. Here we do not
nn ne give exact expressions for the spectrum of elementary exci-

Finally, we take into account the large difference be-tations but, as in the previous section, limit our discussion to
tween the mesoscopic and microscopic scales mentioned the mean-field approximation.

the introduction. This means that the variaklg is rapidly The spectrum of hydrogen-bond excitations derived
oscillating on the mesoscopic scale, and &1) can be av- from Eg. (15 contains topological information about the
eraged over this variable, which yields state of the molecule. Note that in deriving the spectrum, we
3,2 N1 have to diagonalize the matrbq(lkz. In first-order perturba-
Econf:% 20 qﬁ_ (22) tion theory with respect tg, we derive from Eq(15)
A=
.. . . L 2 27Tk Y Nl
Note that a similar harmonic potentiat{ [ ;ds q°) was used e=¢e+2v oSN 20 (—sin ¢p,q'?
A=

in our previous work! where a model of DNA splitting was
studied. The calculations in this section can be considered a
derivation of this effective potential using the microscopic
approach. The last term is none other than the scalar prodyct u,,,

Note that for stability of a DNA molecule with respect to which can be interpreted as follows. Sinbe>1, we can
the conformation energy given by E2), the conditions consider the continuous model of the molecule as a closed
£>0 andv>0 (the latter derives from Eq20)) should hold.  curve in space, and the vector fialdhs a continuous field of
Both conditions are quite natural. vectors normal to the curve. Then the scalar prodyat
describes rotation of the fielg, which, as noted above, de-
fines the two-chain structure of the molecule in the normal-
coordinate reference frame determined by the field the
neighborhood of the curve.

Elementary excitations are due to variations over time  Note that the dispersion relation fey in first-order per-
and space in the variables in Ed4), (5), (10), and(11), turbation theory with respect t¢ yields only the average
which determine the total energy. In the general case, witlvalue of this rotation. The last term in E@.5) is the Fourier

3
+cosenqlY).

4. ELEMENTARY EXCITATIONS AND TOPOLOGICAL
STRUCTURE OF THE MODEL
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coefficient of the periodic function of the coordinate on thewith the low-frequency part of the elementary excitation
curve,g-u, and yields complete information about rotation spectrum(spin wave due to the magnetic enerdizq. (6)).

of the system of two strands. An important point is that Eq.The parametet (the bond rupture energyn this energy is
(15) takes account of rotation of the fielglin the normal-  well known?° and equals about 5 kcal/mdi.e., about
coordinate reference frame defined by the conformation ol0? K per bond.

hydrogen bonds between the chains of the double helix. It is more difficult to determine the parameter(transi-

A change in the conformation or topology of the DNA tion matrix element between neighboring sjteGiven the
molecule leads to a change in the spectrum of excitationeemperature coefficient of the length of the closed-bonds
g, if it changes the value of rotatioNq of the fieldq. Note ~ segmerft(—1.1+0.1 bp/deg, where bp is the separation be-
the relationship between the rotatitdg of the fieldq and  tween neighboring base pairs along the DNA central line
the so-called linking numbérk, which has been studied by equal to 3.4 A, one can estimate as follows. Suppose that
several author$>!” In our model, the fieldy simulates the the temperature has changed by one degree. In accordance
structure of the double helix, i.e., the presence of two chainsyith the temperature coefficient given above, the boundary
thereforeNq describes the linkage between these chainsof the closed-bonds segment has shifted through a length
Hence, the change in the spectragreflects a change in the equal to the distance to the next bond. On the other hand, this
topology of the DNA conformation. The behavior of breath- small change in the temperaturauch smaller than the bond
ing modes introduced by Mannifitp describe the dynamics energy, which equals, as noted abovel(®® K) does not
of hydrogen bonds is probably also related to the topology oEhange the gap in the spectrum of excitations, and this allows
DNA conformation. At present, the connection betweenus to estimater. Comparison with the dispersion relation in
DNA topology and mobility has been established with cer-the previous section yields=10"1"-101° erg.
tainty (see Ref. 4 and references thejeiAn experimental From this estimate of, we can derive the group veloc-
discovery of a relationship between DNA topology and theity v, of the breathing mode at a wave vector of approxi-
spectrum of elementary excitations would undoubtedly be ofmately the inverse lengthof the closed-bond segment:
great interest. 2

vd<q
vp~ 7 ~1-10 cm/s.

5. CONCLUSIONS
Manning published detailed data about two types of el-For comparison, the group velocity of the bending mode at
ementary excitations observed in real DNA molecules. Thesthe same wavelength is
are so-called bending and breathing modes. The former are Uper— 10Pcm/s.
due to bending of a DNA moleculge., a transition from the ) ]
state with zero mean curvature to a state with a definite rms ~ Thus, we have come to the conclusion that spin waves of
curvature, whereas the latter are due to the breaking of &N€ magnetic subsystem described by the Hamiltonian in Eq.
hydrogen bond and unwinding of the double helix to the nex{6) describe breathing modes, which are really observed in
closed bond. DNA molecules, and the fast bending modes are elastic
The bending energy of a segment of length260 A ~ Waves determined by the Kirchhoff energy. Note that the

(the mean distance between open hydrogen bonds at terpXistence of fast and slow modes with very different veloci-
peratures close to the denaturation ppfot the rms curva- €S may be important, in view of the role DNA plays in the
ture of a DNA molecule ({1r%)~1/200 A1) is  cell biophysics. o
AG~0.59 kcal/mof-2-10 This work was performed as a part of ti&tatistical

Using standard concepts of bending in elastic rods, wé nysicsstate-sponsored program, and was supported by IN-
can estimate the bending elastic constaii the Kirchhoff ~ TAS (Grant No. 94-40-78and the Russian Fund for Funda-
energy given by Eq(1): mental ResearctGrant No. 96-02-16207a

a~IAG~10 %-10 ®erg cm. o _ _
YIn a recent publicaticha detailed analysis of the DNA molecule confor-
Hence, the dispersion relation for bending modes is mation in terms of an elastic model taking into account thermal fluctua-

tions was described.
a 2
w~"\/—0q".
P1
(1980.

Here w is the frequencyg is the wave vector, ang, is the 2G. Manning, Biopolymerg2, 689 (1983.

molecular mass per unit length: 3B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. Watshto-
— »d2~10"%5 g/cm lecular Biology of the CellGarland Publishers, New Yor{d989.
p1=pu= gicm, 4A. V. Vologodskii, S. D. Leven, K. V. Kleniret al, Ann. Rev. Biophys.
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Cutoff of long-wave phonons in a nanocrystal due to a nonuniform strain field
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This paper considers the effect of extended monopole and dipole strain fields on the low-
frequency boundary of the phonon spectrum in a crystal of finite dimensions. The boundary shift
depends on the dynamical volume of the nonuniform strain region, which is determined by

the parameters of the crystal and the sources of stress. An increase in the volume of the deformed
region leads to a decrease in the undistorted part of the crystal, where a phonon with the

largest wavelength can be produced. A monopole strain field is more efficient in cutting off long-
wave phonons than a dipole strain field, and can “soften” the phonon spectrum. If a source
generates stresses of the order of those on an interatomic scale, these effects can be the strongest
and most diverse in crystals or phase precipitates with dimensions of less th&ecrh0

© 1997 American Institute of Physids$1063-776(97)02205-1

1. INTRODUCTION lead to greater changes in material properties.
The present paper demonstrates that in nanocrystals con-
The phonon spectrum of an ideal macroscopic crystataining static strain sources, the estimate of the lower bound-
extends fromw =2ac/L, wherec is the speed of sound and ary of the phonon spectrum given above is not valid. The
L is the sample length, to the Debye frequensgy= mc/a, reason is the cutoff of long-wave phonons by nonuniform
wherea is the interatomic spacingFor example, ifL~1  strain fields occupying finite volumes, which reduce the vol-
cm, a~10"8 cm, andc~10° cm/s, thenwp~102s ' and  ume of the undistorted crystal, where harmonic lattice vibra-
o, ~10° s L, tions with the lowest frequecies occur. The problem is solved
If L is reduced to nanocrystal dimensions that can beising a phonon Hamiltonian with terms due to point-like
achieved by existing technologies, low-frequency phononsnonopole and dipole sources of strain. Only if both of these
should be cut off from the spectrum, and the low-frequencystrain sources are taken into account one can describe the
boundary of the phonon spectrum should shift towardsionuniform strain in terms of a superposition of harmonic
higher frequencies. For example, in a crystal withoscillators after some canonical transformations of the
L~10 6 cm, the cutoff frequency i ~10? s 1, Hamiltonian. The condition that the displacements and mo-
A real crystal always contains strain sources that genementa associated with these oscillators be real is used in
ate long-range static fields, in which atoms are displaceéstimating cutoff frequencies.
from their equilibrium positions. For example, vacancies, in-  The cutoff of the phonon spectrum is interpreted in
terstitial atoms, and impurities generate strain figdsypi-  terms of the stationary volume where a steady nonuniform
cal of dipole center$,decaying over a range of several na- strain occurs. It has been proved that the stationary volumes
nometers as a power of the distan€esr ~2. Such a source due to arbitrary strain sources in a quantized medium are
of strain in a macroscopic crystal shifts phonon modes by thénite. The relation of this result to the classical description of
energy of static lattice deformatidnhence it does not deformation fields is discussed.
change the shape of the phonon spectrum. If the crystal size This paper also describes an attempt to explain the
is in the nanometer range, the strain field region may occupglamping property of alloys in terms of a band gap in the
an appreciable part of its volume. Does the above-cited estphonon spectrum, and suggests a feasible reason for a “soft”
mate of the lower spectrum boundary apply to this casemode in structural transitions in solids.
Should the phonon spectrum shift as a whole in the presence
of a dipole-like point defect? 2. STEADY STATES OF EXTENDED NONUNIFORM STRAIN
These questions are also appropriate in the case of | A DYNAMIC CONTINUUM
monopole static source, especially because no research, it

seems, has been performed in this field, whereas regions with _fLEt us m_od_lfy the %r_e\g](;usly I|<n_ownhdescr|pt|on of ngn-
strain fields similar to those produced by a monopole sourc niferm _S”a”_‘ In a mediufnior Soving t € quantum_ prob-
m of vibrations in a crystal by introducing a static strain

should be generated by external forces acting on a crysta. tribution. taking int t th f. i f the lat
(for example, in an atomic-force microsc8peby forces on istribution, taking Into account the configuration of the fat-
tice static deformation.

rain boundaries in polycrysta{for example, during plastic . . . . .
g polycrystal P gp For a medium with given density and elastic constant

deformation and destruction of materd|sby forces on S L o i X
alsby x, the Hamiltonian describing oscillations of its particles and

boundaries between different phasés alloys in pre- their linear displacements due to aiven nonuniform strain can
martensitic statéy, etc. In an isotropic infinite medium, a N car displacements due o given honunitorm strain ca
be expressed as

monopole source generates a fle@l « r 1, i.e., the mono-
pole field has a longer range than the dipole field, so it can H=H;+Hy, (D)
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3 e [k , P2(r,1) and the Hamiltonian

Hi= 23 J dr| 5(VQq(r, )%+ =5, 2 .

a=1Jo 2 2p B o . .
Hf—; 5 (AkaBia BiaBhka)- (6)
3 s @
Hq=— 2 : dr F(r,t)Q,(r,t). 3 The dimensionless amplitudg,, in Eq. (6) is related to the
a=1.J0 amplitude in the expansiofb) via

The functionP ,(r,t) in Eqg. (2) is the momentum density, Aea=(2pwy /1) Y2A,,, .

andQ,(r,t) is the displacement of a point of the continuum.

The functionH; describes the motion of points with har-

monic interactions among them, attl; characterizes the

nonuniform strain of the continuum generated by the force

densityF (r). Hd:%
Let us express the force density in the form of a static

multipole expansioh

Fa(r)=F1,6(r) = F2(R-V)4(r), 4

whereF, is the component of the monopole forde,, is xf dr e“”(R-V)é(r)—F:aa’k‘ae“"k‘
the component of the dipole force, aRdis the dipole sepa-
ration vector. )
The monopole term in Eq4) determines the density of Xf dr e'k'r(R'V)5(f)}
a stress monopole or a “single force,” which is applied to a _.
point of the continuum in a given direction and deforms theSINce
continuum without changing its volume. This force does not Cier
satisfy the condition of crystal equilibrium, and it can only dre™"a(r)=1,
be an external force applied to a crystal from the outside.
The .dipole term in Eq(4) determine; the dgnsity of a f dr e**(R.V)8(r) = Fik-r,
stress dipole or a “double forcé"which is applied to the
points defined by the vectorsR with respect to the origin  the functionH4 can be expressed in the form
and generate bulk deformation of the continuum. 12
The_expansion g_iven by Ecj4? provides_ an exhaustiv_e - (2 [Fra(tag,+ Fi (Hak,]. (7)
description of an arbitrary nonuniform strain due to a point- ka \2ZM oy

like source, since the force density in a physical system ighjs formula contains new variables, namely the crystal

Let us discuss in detail the calculationldf. Substitut-
ing the expansior5) into Eg.(3), we obtain

1/2
— iyt ik-r
2prk> Fra@ka€ fdr e "o(r)

+F’k*aa’|:ae“”ktf dr e 'K T8(r) — Fyaay,e ' o

bounded by the first two multipoles. massM = pV and generalized forces
Thus, our study addresses a nonuniform strain defined i ot
by Eq. (4), generating a potential component in the Hamil- Fra()=(Fyatik-rFy,)e ",

tonian in Eq.(1), which belongs to thg class pf problems F¥ (1) =(Fa—ik-rFy,)elex,
concerning the effect of local lattice irregularities on free

oscillations of the atom¥ This distinguishes the paper from : : .
previous investigations of kinetic nonuniformititst? mity defined by Eq(4) is transformed into steady-state os-

Let us define the canonically conjugate momentum dencillations in a dynamic continuum. This justifies our attempt
sity and displacement in the form of an expansion in terms of© transform the surt) to a canonical Hamiltonian in terms

plane monochromatic waves: of a set of harmonic oscillators.
With this end in view, let us introduce new amplitudes

Expression(7) demonstrates that the static nonunifor-

Qa(r,t)=§k: V—llf—z[Akae*i“’kteik‘UrAﬁaei“’kte’ik‘r], Joke=~F1a/Mwi, Poka=—F2.K-Rlwy, (8)
which transform the sunfi7) to
Pa(r.t)=§ I\%)fk[—Akae“‘"k‘e‘k'f+A’Qae‘“’kte“k"], S 2_‘|\‘;Ik> 1/2[(kaq0ka+ipOka)akaefiwkt
©) ko |
whereV is the crystal volume. (M oyGoka~ iPoka) 8k ] ©
By substituting Eq.(5) into Eqg. (2) and using the or- Introducing the functions

thogonality condition 1

12
YKaz(—) (kaqoka+ip0ka)e7iwktv
%f ei(k—k’)-rdrzgkk', 2MA wy

1/2
* i it
wherek,=2mn,/L, is a wave vector component amg is Yka™ ( 2M_hwk) (M @y oka—1Poka) €'

an integer, we obtain the dispersion relation . .
g P enables us to write the suf®) in a well-known fornf and,

kk?—pw?(k)=0 with due account of Eq(6), we obtain
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hoy . . dynamic medium can be described in terms of a superposi-
H=kz = (BkaBat AaBka) tion of harmonic oscillators governed by the Hamiltonian
Hg4. But the motion described by, is not purely classical.
Let us reconsider the amplitudes defined by E#S). Using

+% hond Yka(Daka T ViealDAal- 19 ihe definitions 0fgok, andpok, iN Eq. (8), we obtain
Let us use the transformations Oke=(ah/Mwy—F2 IM2wi)?, a7
e Aka™ Vhar  Ba™ Ba™ Ya Pra=(DAM 0 —F3 (k- R)% i) M2,
which allow us to get rid of the constant factoag, and These amplitudes determine real displacements and mo-

ag, in the second term on the right-hand side of Bdf)) and  menta only if the ground-state energy of crystal vibrations,
transform the Hamiltonian to a form convenient for introduc-which has a purely quantum nature, is taken into account.

ing quantization operators: For F,,=F,, the productp,,qx,=#%/2 is consistent with
o, the uncertainty principle, according to which a material point
H=>, T(akaafgaJr ag,aka) in the phonon mode characterized by the vedtocannot
ka

have a definite position and momentum at the same time. We
therefore conclude that steady states of a region with nonuni-
=2 o YialD) Vial(D). (1))  form strain are related to collective oscillations of a de-
ke formed continuum.
In order to quantize continuum vibrations, let us intro-

duce Bose second quantization operators:

~ . — _ — 3. ENERGY SPECTRUM OF THE DEFORMED CONTINUUM
akae_lwkt_) bka ’ azaelwkt_) bka ' (12)
The spectrum of eigenvalues of the operatois

eka(wrg):Sfa(w)+80(w)+sla(w)+82a(0)v (18)

which satisfy the commutation relations

[BKQYB;’Q’]:ékk’aaa’! [Bka!’Bk’a’]:[’slja!’b‘l:af]zo' ) .
(13)  wheres;,=hwyny, is the energy oh,, phonons in the state
Using Eq.(13), substituting Eq(12) into Eq. (11), and with wave vectok, eg=% /2 is the ground-state energy of

expressingy,,, and -, in explicit form, we obtain the op- lattice vibrations with vectok, &;,=—F1,/2Mwj is the
erator

Fourier component of the monopole strain energy, and
) , &2,=—F3,R?cosi2Mc? is the Fourier component of the
_z (kaQOka pom) dipole strain energy. In calculating,, we have taken into
2 2M /- account the phonon dispersion relation and introduced the
(14) polar angled between the plane-wave vectorand the di-

The first term on the right-hand side of Ed4) is the poIeT\rgectorR.. t that the displ ¢ d A
Hamiltonian in the second quantization representation, whicfl1:_q € requirement that e displacements and momenta in

describes a superposition of noninteracting oscillatorae (17) be real imposes constraints on the spectrum defined

second term looks like the Hamiltonian of a classical har-by Eq. (18). These are related to the boundary frequencies

monic oscillator, but it is not, since the condition that dis- that derive from the conditions,,=0 andpj,=0:

. =, 1
H=> ﬁwk(bkab,favLE
ko

ka

placements and momenta are real, which is implied by the  w,,=(F2_/AM)*3, (19
expansion in Eq(5), means that the displacements and mo- 2 o )

menta squared should be positive definite, and the functions ©2«=F2,R?COS 6/fiMc?, (20

~ 0. and —py,, do not satisfy this condition. where we have pua=b=1. Having thus determined the

~ One of the ways to obtain a Hamiltonian of noninteract-coefficientsa and b, we assume that the crystal contains
ing harmonic oscillators in canonical form is to use the transgijther a monopole or dipole source. Then, after eliminating

formation the unobservable zero-point energy, we derive from Egs.
02, =ak/Mwy— 3, (15 (18)—(20) the energy of the excited phonon states:
2 _ 2 hod,
pka_bhwkM Poke » 8ka:hwknk_ _12 (21)
Zwk

wherea and b are unspecified constant factors that satisfy
the conditiona+b=1. After this transformation, we derive in the frequency bandy=w= w4, for a crystal containing

from Eq. (14) a stress monopole, and
~ - —~ ~ o~ Mwﬁqﬁa pﬁa ﬁwza
H=Hi+Ho=2 hobiubi + 2 | ——+ 57/ Ska= RNk~ — (22
(16)

in the frequency bandvp=w=w,, for a crystal with a
Let us discuss a plausible interpretation of the Hamil-stress dipole.

tonianH, in Eq. (16). The form of the transformation given It follows from Eg. (22) that the energy of phonon
by Egs.(15) shows that a region of nonuniform strain in a modes shifts by a constant valueh w,,/2 owing to a stress
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dipole, i.e., the energy of a mode with a given absolute value  On the other hand, the phonon spectrum cutoff due to

of the wave vector does not change. This result is knowreither type of strain source is similar. This is consistent with

from the dynamics of a linear crystal containing a pointthe proximity between the estimates of the limiting masses in

defect® But Eq.(22) also yields another result. Owing to the Egs.(23) and(24). Therefore the cutoff should be described

frequency boundv= w,,, modes with energies ranging be- using a common approach in the two cases.

tween zero(or g, =hw_ due to finite crystal sizeand One can try to calculate the displacement field around

hw,,/2 are cut off. sources and estimate the volume of the deformed region us-
In addition to the frequency cutoff, the spectrum defineding the displacement as a function of the distance from the

by Eqg. (21) contains a term that lowers energies of phononsource. This can be easily done by replacing the Hamiltonian

modes byAg, because the bottom of the phonon band is an Eq. (1) by the Lagrangian

function of w. This effect may be responsible for “soften- 3

ing” of the phonon spectrum near its long-wave boundary. _ : _

For n,=1 andwy= w4, the softening iAe, = —fiw,/2. - azl dr Qulr)P4(r)—H,

We now try to understand the nature of the frequency h h lized velociti defined h iational
limitations in the spectra decribed by Eq81) and (22). where the generalized velocities are defined as the variationa

derivatives Q,(r)=6H/8P(r). Calculating these deriva-
tives and the functioh and deriving the Lagrange equations
for the generalized coordinates and velocities, we obtain the
equations for displacements of material points of the medium
due to given nonuniform stress:

Note that the crystal madd in Egs.(19) and(20) takes 220(r)
certain limiting values if we assume that all frequencies be- >——kV2Q(r)=F18(r)— F»(R-V)&(r).
low the Debye frequency are cut off, and we adopt typical t
values of parameteis, F,, andR for point-like sources. In These equations can be solved by using the Fourier
order to calculate the limiting masses, we determine forcegansform or Green’s function for the linear differential equa-

F1 andF, which to order of magnitude are no greater thantion, As a result, we have static fields of displacements due
the forcef, needed to eject an atom from its crystal cell. Thetg a monople source

justification is that the medium is continuous or, in other
words, interatomic bonds are not broken. This force can be  Qu(r)=Fi/4m«r (25
estimated to be f,~ «xQ0?3 whereQ is the atomic volume.
By taking typical values for condensed matter=10

dyn/cn? and Q~10" 23 cn®, we obtainf,~10"2 dyn. This Qu(r)=Fy(R-r)/4mkr3. (26)
estimate is within the range of experimentally observed in-

teratomic forces in condensed matter, which are usually be- The c_onﬁguraﬂon of the vector field _defmed by I.ﬁ.‘S)
tween 102 dyn for ionic bonds and TG dyn for Van der is determined by the vectd¥,, which defines the unidirec-

Waals bonds? The valueF;~f, yields the limiting mass of tional field of the continuum displacement, whose amplitude
) drops with distance from the application point. The displace-
a crystal deformed by a monopole source:

ments defined by Eq26) form a dipole field and describe

4. ESTIMATES OF MASS LIMITS AND SOME STATIC
CHARACTERISTICS OF STRAIN REGIONS

and a dipole source

F2, 50 compressive, tensile, or shear deformation in the vicinity of
— ~ ~ — 19, . .
Mio=7"5~ =3p3~10 0. (23 the source, depending on the mutual alignment of the vectors
P F, andR
. . 2 :
By taking Fo~f, and the dipole armR equal to the The derivation of these well-known results has been de-

interatomic distancé)'®, we obtain the highest valudor  scribed to demonstrate that the fields defined by E2)
cog6=1, i.e., for a plane wave propagating aloR} of the  and(26) are static, although the medium was originally mod-
limiting mass of a crystal deformed by a dipole source:  gled by Eq.(1) as a dynamic continuum. In the solution of
F2R? 120 classical Lagrange gqu'atigns,_the time derivative vanishes
i W~1O*18g. (24)  when the force density is time-independent.
b One can say that in solving the classical problem, pos-
These estimates indicate that the cutoff of phonon fresible relationships between the dynamic parameters of the
guencies should be important in crystals with typical dimen-medium and nonuniform strain field are lost. In the simplest
sions of the order of nanometers. This value is close to typimodel introduced by Ed1), this shows up as the absence of
cal dimensions of regions deformed by point-like sourcesthe densityp in the strain fields defined by Eq&5) and
Thus, the cutoff frequency of the phonon spectrum can b€26). Mathematically, this difficulty is overcome by using the
estimated by comparing the parameters of a small crystal aneljuations for the eigenvaluése., by reverting to the quan-
deformed regions. One must first estimate the change in votum Hamiltonian and quantization of continuum vibrations.
ume of the crystal due to deformation, but this approach doek this case, as follows from Sec. 2, the static nonuniformity
not apply to a monopole source, since the crystal volume iss described in terms of a nonuniform steady state and is thus
not changed by the monopole deformation, although the lorelated to the system dynamics.
cal density can be changed. This change, however, cannot be According to Eq.(26), the displacement at a distance
described in terms of Eq1). r~10"7 from the source i€Q,(10")-100%/a~1%. Ac-

2
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cording to Eq.(25), we haveQ(10 )-100%/A~10% at w,,>w,,. This means that in relatively large crystals the
the same distance. These estimates indicate that the typidahg-wave cutoff frequency is determined by strain fields
dimension of regions deformed by sources with forces nagenerated by monopole sources. On the other hand, if
greater than the interatomic force Is=107'-10° cm.  w;,=w,,, we haveV,,=V3 /V? andV,,<V,,, ie., the
Hence their volume i&/=13~1022-10"'8 cm® and mass same cutoff frequency requires a larger volume of deformed
M~10 20-10"1"g. regions due to dipole sources than due to monopole sources.
One can see that the previous estimates of the masses Diiis is in agreement with the conclusion of the previous
deformed crystals, in which all phonon modes except the&ection that monopole sources of strain are more efficient.
Debye mode are excluded, are quite close to the masses cor- Thus, unlike the long-wave boundary frequensy of
responding to the volumes of deformed regions. This indithe phonon spectrum of an undistorted crystal, the boundary
cates that the boundary frequencies or wavelengths must Beequenciesw,, and w,, of a deformed crystal depend on
sought as functions of the volumes related to the boundarshe ratiosV,,/V,,, Vi./V, andV,,/V. This leads us to
massesM; and M,. But first, we note that the range of believe that the long-wave cutoff results from a decrease in
monopole deformation is larger than that of dipole deformathe volume of the undistorted crystal region due to both
tion. This difference shows up in the formation enetdy of  monopole and dipole strain fields. An increase in the vol-
strain fields. Substituting the amplitudes in Ef8) into Eq.  umesV,, andV,,, which have the sense af-wave orien-

(14), we obtain tation of stationary volumes in steady-state extended objects,
F2 +F2 (k-R)? leads to a decrease in the volume of the part of the crystal
AE=-D % where the phonon with the longest wavelength can be

ka Wy

formed. This cutoff should shift the lower edge of the pho-

For example, in the Debye approximation, we obtain af-non spectrum to the high-frequency side without shifting its
ter changing from summation to integration high-frequency edge. If we use the model of a “rigid” band,

(Cra—V Jdk/(27)3): which shifts as a whole without interchanges between pho-
non modes, depending on the formation energy of a static

AE=AE1+AE2=—% |:2£+ EF%(kDR)Z} defect® one can say that in addition to the band shift, a
(2m)°cp 9 steady-state nonuniform strain field should also cut off its

(27) long-wave edge. Moreover, the position of the phonon-band

Substituting Fy~F,~f,, kp~m/QY*~10® cm !, and bottom is a function ofw near the long-wave edge of the
R~Q' into Eq. (27), we obtain AE;~—10 eV and spectrum of a crystal deformed by a monopole strain field.
AE,~—1 eV. This “softening” of the spectrum due to the force applied to

The value ofAE, is in agreement with measurements of a crystal and its small dimension is reminiscent of the results
the energy required to produce a point defect, such as a vaeported in Refs. 18—21, where the disappearance of struc-
cancy or an impurity:>**15AE; is in qualitative agreement tural instability of small particles on substrates and localized
with the deformation energy needed for structural fluctuategions in aged alloys as their size increased was described.
tions of small particles with dimensions of 10cm 1617 It is possible that the mechanism based on monopole strain

It follows from these estimates that, given the longersources allows formation of the “soft” mode phenomeno-
range of monopole strain fields and their formation energylogically introduced in the theory of structural
larger than that of dipole fields, the monopole strain shouldransformationg? On the other hand, the high damping ca-
have a stronger effect on the phonon spectrum cutoff frepability of some alloys, such as copper—mangariesan be
guency. interpreted in terms of the long-wave cutoff of the phonon
spectrum. Empirical studiéSindicate that the damping is
caused by irregularity and high defect concentration in ma-
terials. In fact, if there is a low-frequency gap in the acoustic
phonon spectrum of a dispersitespecially decayingmate-

Given the frequencies determined by EGk9) and(20) rial with a large number of strain sources, vibrations at fre-
and with the intent of expressing the final result in terms ofquencies below some boundary frequency are forbidden.

5. DYNAMICAL VOLUMES OF NONUNIFORM STRAIN
FIELDS IN CRYSTALS

volumes of deformed regions, we obtain This conclusion applies to vibrations of a crystal. This is
v, |13 2 probably also true when elastic vibrations are generated by
wla:wD(ﬂ) , where Vla:%’ (29) an external source, the only difference being the damping of
v hmc p forced vibrations, which leads to the damping effect of the
Vs, F%anchos’-a material. _ .
®20= WD ;s where VZQ=W. (29 More experimental data are needed for a more detailed

analysis of anticipated frequency cutoffs and softening of the
With the parameters adopted abowé,,~10 2° cm® phonon spectrum in materials distorted by nonuniform strain

and V,,~10"1% cn®, and at crystal volume¥=V,, and fields.

V=V,,, all the phonon modes up to the Debye frequency Let us again discuss the volum¥g, andV,, in Egs.

are cut off. The respective crystal masses llrg,=pV4, (28) and (29) and some of their features.

and M,,=pV,,. If V,=V,,<V, it turns out that V,, andV,, are the dynamical volumes of steady-state

W= wialwé because of the cube root in E®8), so that extended entities formed by forces acting on a crystal. Being
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geometrical characteristics alternative to the elastic displacespectrum cutoff remains a current problem. As concerns the
ment fields described by Eq&5) and (26), these volumes, latter statement, it is noteworthy that, first, relaxation of sur-
unlike displacement fields, are expressed in terms of all dyface atomic layers should also lead to a freqency shift in bulk
namic characteristics of the medium included in EL. phonon modes. It seems probable that the cutoff will take

The finite values oW/, andV,, indicate that the strain place at the highest frequency, owing to the superposition of
field generated by a point-like source is also bounded. This iatomic diplacements due to point-like sources and relaxation
a consequence of continuum quantization and can easily b surface layers. Second, frequencies of surface modes can
generalized: an arbitrary static force acting on a crystal withalso shift owing to various stress sources. It is clear, how-
out breaking its interatomic bonds generates a finite regioever, that dedicated investigation needed to address these
where atoms are displaced from their equilibrium positionsissues would be labor-consuming.
On the contrary, i#i—0, the volumes/,, andV,,, tend to The author is grateful to O. A. Kazakov and M. A.
infinity, i.e., in the classical approach to an extended bodyShtremel for heated discussiofexhaustive information on
the strain field should extend to infinity, which is in agree-damping alloys provided by M. A. Shtremel in due time is
ment with results in the theory of elasticitigs. (25) and  also acknowledgedand to I. Ya. Polishchuk for his friendly
(26)). This conclusion holds even when Kanzaki's methodand constructive criticism of the manuscipt.
and its varied atomistic modificatich$are used. Thus far,
although improved to some extent by microscopic calcula- E-mail: Meshcheryakov@tri. misa.ac.ru
tions of interatomic potentials, these methods have belong _ _ _
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Scanning tunneling microscopy is applied for the first time to an atomic-resolution investigation
of the 4X2 and 4x 6 phases on a gallium-rich Ga@91) surface obtained by molecular-

beam epitaxy and migration-enhanced epitaxy. A unified structural model is proposed with
consideration of the results of experiments and first-principles calculations of the total

energy. In this model the 42 phase consists of two Ga dimers in the top layer and a Ga dimer
in the third layer, and the 46 phase is matched to periodically arranged Ga clusters at

the corners of a 46 unit cell on top of the &2 phase. ©1997 American Institute of Physics.
[S1063-776(97)02305-9

1. INTRODUCTION of traditional molecular-beam epitaxy, making it possible to
obtain a smooth gallium-rich surface and to observe revers-

The polar GaAf01) surface is widely employed in the jpje phase transitions between different phase&tk4),
fabrication of semiconductor devices and often serves as x4, 2x6, 4x2, and 4<6) on it simply by regulating the

substrate in molecular-beam epitaxy.Its atomic structure [As,)/[Gd] concentration ratio in the beafh:2*
is of considerable interest, since most devices based on GaAs | the present paper we report the experimental discov-

are grown on this surface by just such a method. Theyy of two types of 46 phases, viz., the so-calledx®
GaAq00Y) surface itself exhibits a large number of phasesyseydophase, i.e., a structure with a smaller gallium content
and structural phase transitions between them that are intyn the surface in comparison with thex2 phase, and a true
mately related to the stoichiometric composition, which cang g phase, i.e., a phase with a larger gallium content. Both
be controlled by varying the temperature of the sample a”‘E)hases consist of a subcell with two Ga dimers and two
the ratio between the atomic concentrations of Ga and As idimeric Ga vacancies at the top of the surface layer, as well
the beam, i.e., the surface treatment conditibfise mecha- a5 another Ga dimer in the third layer, i.e., they appear as the
nism of coherent growth during molecular-beam epitaxy on gnirror image of the unit cell of the As-rich 24 phase,
GaAg001) surface was first proposed in Ref. 4. whose structural model was proposed in Ref. 24. We inter-
While the structure of the As-stabilized GaB81-  pret the significant differences between the STM images of
2x4 surface grown by molecular-beam epitaxy has beefhe 4x 2 and 4<6 phases on the basis of models of charge
studied quite extensivef};;'® there are only a few known transfer between the second-layer As atoms, the top-layer Ga
successful attempts at investigating the phases on th@mers, and the Ga adatoms. These models were a result of
gallium-rich GaA$001) surface, such as the Gal@®))-  the performance of theoretical calculations and computer

4x2 and GaAg01-4x6 phases, because of the formi- simylation of the image® A new structural model of the
dable difficulties in preparing such surfaces and studyingyx 6 and 4x2 phases is proposed.

them in detail. For example, it is essentially impossible to
obtain a GaAs surface with a freshly sputtered Ga layer uns ETHoD
der the conditions of standard molecular-beam epitaxy at the’

high partial pressures of As vapor typical of this method, All the experiments were performed in the ultrahigh-
10 —10* Torr, although the growth of such phases undervacuum(with a residual pressure in the measuring chamber
nearly equilibrium conditions is of considerable inter@st®  equal to 5< 10! Torr) scanning tunneling microscope of
We were able to overcome the experimental difficulties in-Tohoku University?® which is connected directly to a spe-
dicated by employing migration-enhanced epitdkwyhich  cially developed molecular-beam epitaxy chamber with a
has made it possible to create a universal approach to thauilt-in reflection high-energy electron diffractometer for
preparation of such surfaces and to perform the first succesmionitoring and controlling the substrate surface growth
ful in situ investigations(in the same vacuum systérof  process$’ The tunneling microscope was also equipped with
gallium-rich GaA$001)-4x2 and GaA§01)-4x6 phases an additional chamber with analyzers for low-energy elec-
by scanning tunneling microscopySTM). Migration-  tron diffraction and Auger electron spectroscopy. The quality
enhanced epitaxy significantly increagby tenfold the mi-  of the scanning tips was monitored on the atomic level using
gration distance of the Ga atoms in comparison with the casa miniature field-ion microscope, which is an integral part of
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FIG. 1. 38 STM image of a GaA®01)-4X 2 surface of large area (98®00 A?). b) Magnified STM image of a portion of the same surface showing its
detailed structuréthe rectangle demarcates the unit tellhe rate of deposition of the layer was 0.25/h, and the growth temperature was 500 °C. The
migration-enhanced epitaxy cycle was carried out Whls,]/[Ga]=8 andVs=—-1.8 V.

the microscopé®”® The high cooling rate of the apparatus with a concentration rati¢As,]/[Ga]=8 in the beam and
permitted in situ STM investigations of different surface exposures to As and Ga alternatirtg2as intervals. As long
phases during their growffi=>* _ ~ as the growth temperature was relatively low, only three ter-
~ Typen GaA85(001) SUESUQISGS, which were doped with races with an almost ideal degree of ordering, which were
silicon to 110"~ 2x10'® cm™® and measured10 mm,  separated from one another by steps with a hegkgual to
were degreased and etched using standard cleaning proGge thickness of a double GaAs monolayéi £2.8 A),
dures before being placed in the molecular-beam epitaxyyrmed within an area of 900900 A2. An attentive exami-
_chamber. After the oxide layer on the substrate was _remove{;jation of the image readily reveals bright lines arranged pe-
in a beam of Ag, a buffer layer ofn-type GaAs with a (jqgjcally in the[110] direction and regular spaces between
th'CkneSSéOf Qg—l-@m (which was also doped with silicon o \with a width of~16 A in the[110] direction, which
to 2X10°° cm™®) was grown using the traditional method of correspond to a fourfol@x ) increase in the periodicity of

molecular-beam epitaxy at 600 °C under optimal conditionsy,, ¢, face, as was observed in other stutfié&This can be
Before the growth process was completed, all the shlelda

. ttributed to the formation of well ordered domains of a
were closed, the heating of the substrate was stopped, and t

&2 structure. Thus, the structure of the2 surface does
As and Ga sourceKnudsen cellswere brought to the tem- not appear excessively complicated in comparison to the

peratures needed. to obtain s, J[Gal concentration ratio structure of the X 4 phasé® The islands on this essentially
in the beam required for low-temperature growth under the

conditions of migration-enhanced epits8yAfterwards, the defect-free surface are most likely isotropic and form smooth

sample was annealed at 500 °C in a beam of Uil a well steps of both typetsee A and B in Fig. 2 in contrast E%J?ge

ordered X4 reflection high-energy electron diffraction ZXL::.S ur::clet; W:]eesrgr;[ths et'hséa.?:as Zr%? Itazl};ggzg;rsaéface
(RHEED) pattern appeared, and 12 growth cycles were car; 'gu b 'mag . ~su X
ried out (usually under the conditions of migration- but with a far hlgher resolution, on _Whlch the unit cell of the
enhanced epitaxy. After the concluding cycle with the depo-4 X2 stucture is demarcated. It is clearly seen that each
sition of gallium was performed, the sample was rapidlybrlght line observed in Fig. 1a actuqlly COI"ISIS.tS o_f a pair of
(within 2 s cooled to room temperature and moved into the'OWS separated by a 5.1 A gap, and in fhiz0] direction the

chamber of the tunneling microscope. All the images Weres_urf_ace has a2 periodicity. We_note that this im_age s
obtained at room temperature at a constant tunneling curreffmilar as awhole to the one obtained by Sletial. (Fig. 1
|,=4x 10" A with a negative bia¥/, on the sample. After N Ref. 19.

the STM investigations were performed, the structure of the ~Although the STM images obtained are similar to the
sample surface was repeatedly monitored by RHEED. ones previously observed, in this paper we propose another
model, totally different from Skala’s As mod¥ which has

been used hitherto to describe thx 2 phase. On the basis

of a careful analysis of the images, we arrived at the funda-
Figure la presents a typical filled-states STM image of anentally different conclusion that the bright spots are images

4x2 surface prepared using migration-enhanced epitaxpf the second-layer As atoms, rather than the first-layer Ga

3. RESULTS AND DISCUSSION
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FIG. 2.

atoms, and that the darker spots are images of the first-lay@btained in Ref. 19clearly exhibit two isolated peaks sepa-
Ga dimers. The most acceptable atomic model for this phaseted by a 5.% 0.3 A gap in the[110] direction (Fig. 1b).
is the two-layer Ga model, which was first proposed byTherefore, the As model should be categorically ruled out.
Biegelsef® (Fig. 28. The basic arguments supporting this However, there is also a problem in interpreting the
model for interpreting the images obtained are as follows. STM images with the Ga model. The STM images are

1) The surface-preparation procedure that we used faelearly inconsistent with the Ga model, because the spots
vors a gallium-rich surface, since the final exposure was t@omprising the dark rows are located in the gaps between the
the Ga beam. spots forming the brighter rows along th#&10] direction,

2) The difference that we observed between the heightsvhile, according to the Ga model, the Ga and As atoms
of the bright and dark rows is only 0.6 A. In this case Asshould be aligned in the row§ig. 2a.
atoms with completely filled dangling bonds will appear in To account for this inconsistency, we performed first-
the filled-states STM images as bright spots, while the Garinciples calculations of the total energy. The details of the
atoms with unfilled dangling bonds will be relatively dark. approach used were described in Refs. 25 and 30, and the
Thus, if the brighter spots correspond to the first-layer Asresults of the calculations themselves are presented in Figs.
atoms, much greater contrast-1.4 A=H/2) is expected 2b-e. A comparison of the theoretically calculated surface
between the first-layer As atoms and the second-layer Ganergy bands and the STM images obtained in the filled-
atoms, which have considerably less charge, and only thstates regime\(;= —1.8 V) revealed that the main contribu-
first-layer As dimers should actually have bright images, adion to the STM image shown in Fig. 1b is made by states
was observed in the case of the arsenic-riech42surface in  located between the 71th and 76th bafig. 2b-d. Band
Ref. 24. 75 is the band of the HOM@he highest occupied molecular

3) According to the As model, the first-layer As atoms orbital), and it contributes to the charge localized in the
form dimers. For this reason, a structure in the form of clussecond-layer As atom@eakB in Fig. 29. The distribution
ters or a structure in the form of a corona was expected foof the charge density from the 74th, 73rd, and 72nd bands,
the As dimers on the filled-states imadé8-182*2>How-  generally overlaps the distribution of the charge density from
ever, the STM images presented ab@gwell as the images the HOMO band. The contribution of the Ga dimer located at
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the top of the layer becomes appreciable in the 71th bandhecome darker. As the number of such oval features in-
and a maximum of the charge-density distribution appears aireases, the contrast in the image of the As and Ga atoms on
the midpoint of the Ga dimdpeakC in Fig. 2d. Since there the 4X2 surface varies and ultimately becomes completely
is considerable charge transfer from the surface defects andversed, giving the same picture as the &} surface as a

the adsorbate ator{svhich are indicated by arrows in Fig. result.

1b), the 76th bandi.e., the band of the LUMO - the lowest To determine what the large clusters localized at each
unoccupied molecular orbitaturns out to be partially filled corner of the 46 unit cell represent, we performed another
at the dangling-bond levepeakA in Fig. 2b and makes a series of experiments to observe the evolution of the64
contribution to the image. It is strongly bent due to the presphase as the annealing temperature is gradually increased
ence of the third-layer Ga dimers. The size of the contribufrom 500 °C and a larger amount of Ga is simultaneously
tion of the LUMO band to the filled-states STM image de-deposited on the ¥ 6 surface. As the temperature was in-
pends on the amount of charge transferred to the Ga dimersreased, the bright features mentioned above became increas-
Since the calculated density of states presented in Figs. 2biegly more distinct on the flat terraces, and even individual
actually reflects the charge distribution at a distance of onlydrops of Ga could be observed. Figure 4a presents the STM
0.9 A from the surface, while the STM image reproduces thémage obtained after the annealing of the @ phase for 20
distribution of the electron density at a distance of approxi-min at 600 °C. The RHEED patterns from this surface dis-
mately 10 A from the surface of the sample, maxiand played fourfold symmetry in thE110] direction, but did not

B can be shifted by a certain distance from the true atomidisplay low symmetry in th¢110] direction. When Ga was
positions. When this circumstance is taken into account, theeposited alone on the As-k%6) surface at 500 °C in an
STM image in Fig. 1b agrees quite well with the two-layer amount equal to three or more monolayers, the same STM
Ga model(Fig. 23. image as in Fig. 4a was generally observed. When the sub-

Additional weighty evidence supporting the conclusionstrate temperature was increased to 600 °C, it was logical to
drawn above that the @201)-4X 2 phase is described well expect the zigzag rows of As on thex® surface to vanish
by the Ga modéf was provided by the following experi- completely as a result of the desorption of a considerable
ment. When a beam with a higher Ga contgmith amount of As. During the further deposition of excess Ga, it
[As,]/[Ga]=6 instead of the previous value of ®as used was no longer possible to accommodate the entire quantity of
in the migration-enhanced epitaxy cycle or when the®  Ga on the surface with the formation of stable Ga—As bonds.
phase prepared by the migration-enhanced epitaxifhis provided a convincing argument for the resultant bind-
technology® was annealed in a vacuum ferl5 min, both  ing of the excess Ga atoms to one another with the formation
the STM images and the RHEED patterns exhibited<é64 of clusters over the As layer. They ultimately join to form
phase with an even greater Ga content. A typical STM imagéarge drops of Gdsome of them are indicated by arrows in
of this “true” 4 X6 phase can be seen in lower right-handFig. 43.
corner of Fig. 3a, whose central portion displays & & On the basis of the foregoing results of a systematic
phase. STM investigation of the detailed structure of tt@01) sur-

It is interesting that the A 6 phase is the only phase of face of a GaAs crystal grown by molecular-beam epitaxy, we
its kind and is characterized by rows of large oval spotsdeveloped the first atomic model of thex4 phase in the
which are regularly arranged at each corner of the unit cellform presented in Fig. 4b. Taking into account all the diffi-
as is clearly seen in the high-quality high-resolution STMculties involved in the preparation of the new<# phase
image(Fig. 3b. The features of oval shape ared.1 A (i.e.,  under the conditions of strong enrichment with gallium, we
~H/2) above the Ga dimers and 0.9 A below the As-ascribe the characteristic oval features to clusters of Ga ada-
(2% 6) rows. Comparing the images in Figs. 1b and 3b, weoms. Accordingly, the X6 phase is a gallium-rich form of
can assign the rows of bright pairs of points oriented in thehe 4X2 phase with additional Ga clusters, which are ar-
[110] direction in Fig. 3b to the first-layer Ga dimefthey  ranged in an ordered fashion on the G&XH) surface. At
are marked by two black arroywsrather than the second- the same time, we cannot determine the exact size of the Ga
layer As atoms, in contrast to the case of the 2 phase. cluster, but we assume that it must consist of six or eight
The large bright features of oval shape occupy the midpointatoms and must have a structure similar to the structure of
of the As rows(in Fig. 3b these rows are marked by threethe arsenic-rickc(4x4) subcell.
black arrow$, frequently overlapping therfan instance of It was presumed in Refs. 10—-13 that thx @ phase is
this is indicated by a white arrgwWe note here that each simply a result of the superposition ofx4L and 1x6 do-
individual Ga dimer is clearly resolved in Fig. 3b and that mains or that the domain of thex4l structure is essentially
the appearance of such high contrast in their images can m4X 2 phase that has been disordered in[tH] direction.
attributed to charge transfer from the oval spots to the G&imilarly, the idea that a 4 12 superstructure exists was
dimers. An example of a similar situation can be seen in Figadvanced in some earlier investigatifhs to account for
1b. The profile presented in Fig. 3b of a scan along the whit¢he streaked 1/4 or 1#6r* lines on the X6 RHEED pat-
AA’ line clearly demonstrates that the arrangement of the Geerns. Our STM investigationéee Fig. 3 clearly demon-
atoms is consistent with the underlying GaAs lattice. In thestrated that these structures are mixed&and 4x 2 (and/or
cases in which the originalX42 surface has one oval spot on 4X6) phases, which are observed under the conditions of a
the As rows(which is identified by a white arrow the smaller Ga content than thex® phase and that there is a
neighboring Ga dimers become brighter, and the As rowslearcut “true” 4X6 phase, which is obtained under the
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FIG. 3. Filled-states STM imagesvV(=—1.8 V): a) 4X6
phases with residues of a locally arrangeck @ phase
(380%x 380 A?); b) high-resolution image of a surface with a
4X6 structure, showing detailed features of this phase
(140x 140 A?).

conditions of migration-enhanced epitaxy with a larger Ga4 X 2/c(8x 2) reconstruction or the 46 phase, so that the

content than the A 2 phase. Ga content can vary over a broad range and depends strongly
Thus, in accordance with our proposed structural modelpn the procedure used to prepare the surface.
the “true” 4 X6 phase, which has>6 translational sym- The surface stoichiometry of different gallium-rich

metry, is described by the deposition of a well ordered periGaAg001) surfaces has been debated for a long Até.
odic array of Ga clusters at each corner of the&tunit cell ~ The idea of superimposing different superstructures to form
at the top of the Ga double layer of the<2 surface. The a 4X6 phase suggests that the surface stoichiometry should
4x 6 pseudophase with a smaller Ga content is, in fact, &e the same for theXt6, 4x 6, and 4< 2 phases? This, of
mixture of the arsenic rich'26 phase and the gallium-rich course, is untrue, and on the basis of the results of the STM
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O Second-layer As
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FIG. 4. 9 STM image of a surface of large area (1300800 A2) with an unordered 4 6 phase formed after the annealing of a well ordereds4phase
at 600 °C for 20 min in an ultrahigh vacuum, showing many Ga clustérs;— 1.8 V. b) Structural model of the 46 phase.
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Helical instability of a straight Abrikosov vortex in an anisotropic superconductor
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Because of attraction of the parallel currents forming an Abrikosov vortex, the vortex energy per
unit length decreases, under bending of the vortex, by a quantity proportional to the square

of the curvature. Solving the London equation in an approximation allowing for this effect makes
it possible to calculate the energy of an Abrikosov vortex in the form of a helix whose

length and pitch are much larger than the correlation length, whose curvature is small compared
to the reciprocal London length, and whose slope in relation to an axis coinciding with the
direction in which the vortex energy is the highest is also small. When the anisotropy is large,
which is characteristic of higiiv.superconductors, the energy of such an Abrikosov vortex

is lower than that of a straight Abrikosov vortex. Certain consequences of the fact that the
Abrikosov vortices in a higli-. superconductor are helical are discussed. Among these is

a phase transition that breaks the symmetry between Abrikosov vortices shaped like right- and left-
hand helixes in relation to the magnetic field. 197 American Institute of Physics.
[S1063-776(97)02405-0

1. INTRODUCTION and the parameters of the superconductor and can affect the
result. A general model of Abrikosov vortices was employed

g - ; . ' in Ref. 5 to calculate the corrections to the logarithmic ap-
whether the helical configuration of an Abrikosov vortex in aproximation for the energy of a straight oblique vortex in an
uniaxial anisotropic London superconductor is an equilib-nisotropic superconductor. The same approach is adopted
fium configuration V\(hen, on thg average, the vo'rtex IS C_",'here to allow for corrections to the energy of an Abrikosov
rected along the anisotropy axis, in which case its SpeCIfI‘?/ortex that are associated with bending of the vortex axis.
energy is the highest. The single factor taken into account The dependence of the specific energy of an Abrikosov

was that the helix is deflected from its average direction by g, ey on the curvature of the vortex axis has not been stud-
constant angle. Then, as demonstrated by Brafidhe en- ied. Usually it is assumed that no such dependence exists,

ergy of a helical Abrikosov vortex per unit length along the and the increase in the energy of an Abrikosov vortex caused
average direction is higher than that of a straight Abrikosovby the bending of the vortex axis in which the average di-
vortex. Indeed, in the logarithmic approximatibithe spe-

ific ener { an Abrikosov vortex deflected b 0 IIrection of the axis remains unchanged is related only to elon-
ciiic energy ot an 7 osov vortex detiected by a sma gation of the axis. De Genrfesnentions the fact that an
angle from the axis is

Abrikosov vortex has a rigid core, i.e., the specific energy
D, |2 increases under bending, but does not justify the statement
SZ(M) In k and does not use it. Qualitative considerations point to an
opposite effect: bending drives the specific energy of a vor-
tex down. Under axis bending, the parallel circular currents
forming an Abrikosov vortex condense at the curvature cen-
ter and become rarefied on the opposite side. Since the force
of attraction of parallel currents is inversely proportional to
the distance between the currents, the energy must decrease
‘ . i as a result of axis bending. These ideas can be corroborated
Landau constant. The relative elongation of the helix in "y calculating the energy of a circular Abrikosov vortex by

lation to the straight line is + #%/2. Then the variation of expanding in powers of the curvatuigee Appendix When
the energy per unit length along the average direction due t§,q 5 iys is large, the energy of the interaction of two dia-

the transition from a straight Abrikosov vortex to a helical metrically opposite sections of the circular vortex is expo-

Abrikosov vortex is nentially low, so that the dependence on the curvature can be
6242 explained only by the presence of bending. The factor of the
2 o In . 2 second power of the curvatufine factor of the first power is
zero, i.e., the bending modulus of the vortex, proves to be
Here, howevery?In k<1 may be much less than unitg.g.,  negative.
for YBCO we havey=1/8 and«x=50), so that the logarith- Not only is the slope of the helix constant in relation to
mic approximation may be inadequate, i.e., the corrections tthe average direction, but so is the curvature. The negative
this approximation, while being small, exhibit a different de- correction to the Abrikosov-vortex energy, which is related
pendence on the position and shape of the Abrikosov vorteto the curvature, exhibits only a slight dependence on anisot-

Several researchéfs have examined the problem of

02
(1 —_ A2
1- 5 (19

2

o 2
1= (1= |In «. 1)

=gy

Here @, is the quantum of magnetic fluy, is the London
length along the anisotropy axig=1 is the anisotropy con-
stant (y=1 in the isotropic cageandx>1 is the Ginzburg—

02
1+ >

e—¢ggln k=

1022 JETP 84 (5), May 1997 1063-7761/97/051022-05%$10.00 © 1997 American Institute of Physics 1022



ropy, with the result that for small values of the helical YoV sin(@— ,) —sin(@— ;)
configuration of an Abrikosov vortex may prove to be more - = - <afp.
energeticallyfavored than the straight configuration. 2 2 7 9)

The helical configuration of Abrikosov vortices was also ] ) )
examined in Refs. 7—9 in situations when an external magtience, forap<<1, the straight linegy(y) = B¢ intersects the

netic field and a transport current act on a superconductotinusoid only at one point, and_the condition that the solution
simultaneously. However, the estimates of the energy of &f Ed. (7) be unique can be written as

h_elical Abrikosov vortex done in these papers are not suffi- p<a 1. (10)
ciently accurate to solve the problem. To calculate the en-

ergy more accurately, we introduce the model of a helicaln this region of space, planes perpendicular to the helix can
vortex in a London superconductor. If the axis of an Abriko-Pe interpreted as level surfacg¢s=const of the new curvi-
sov vortex is a helix of small curvature and slope, this can bédinear system of coordinates. In what follows,is assumed
done by introducing a special system of curvilinear coordi-small, so that the regiop=a*, i.e., \X*+y*>\a"!, is
nates. In this system we first solve the inhomogeneous LorHnimportant.

don equation, which determines the magnetic field of the = We calculate the magnetic induction field and the energy
vortex, a solution in the form of an expansion in powers ofof a helical Abrikosov vortex in the form of series expan-
the curvature, and then calculate the energy of the Abrikoso®ions in powers ot to within terms proportional ta”. We

vortex. also assume that
a a
af=p=tan g~ o<1, aﬁ2=x< 1. (12)

2. HELICAL COORDINATES _ . .
Then, to the same accuracy, the dimensionless curvature is

Helical coordinates can be considered the result of de-

formation of cylindrical coordinates whose axis becomes a ) c= %~a. (12)
helix. Suppose that the helix is specified in Cartesian coor- a+b
dinates by the following equations: In the planey=const, we introduce polar coordinates cen-

tered at the point where the plane intersects the helix. Then

I
X,=acosy, y,=asinyg, z,=by, =—— the radiusr=|r—r | is determined by the equation
oy Y o Y Vo [r=r,] y the eq
3) m=p?=2ap%p codp—y)+a’p’
Herel is the length of the arc of the helix measured from the + a?B2p®sirt (o — ). (13

point of its intersection with the plare=0, anda andb are
the parameters of the helix, withthe radius of the cylinder
formed by the helix, and &b the pitch of the helix.

The azimuthal angle is measured from the direction oppo-
site the principal normal to the helix. Then

Let us introduce dimensionless cylindrical coordinates (r—r,)d?r,/dy? ,
P, ¢, and¢: COSw= |r—rV||d2r,,/dz//2| _;[P COE{‘P_#/I)_CV,B ]r
VXP+y? z
p= = @ 14

P T 22
we also introduce the dimensionless quantities sin o= T sin(e=¢) V1= a”p".

! B b In deriving Egs.(14) we used Eqs(7) and(13). The sign of
T p? B= N ) sinw in defined in such a way that it coincides with the sign
of the mixed product

o

The pointr, at which the plane passing throughperpen-

dicular to the helix intersects the helix is determined b d°r, .
Y ((f—fy)'F)Z:P sin(— ), (19
dr, ¥
(r_rv)'_:O- (6) . . . .
dy wherez is the unit vector along the axis. Solving Eqs(7),

(13), and(14) in the adopted approximation, we arrive at the

In terms of the variablep, ¢, £, andy, Eq. (6) assumes the following expressions of the cylindrical coordingte ¢, ¢

form in the region wherg<a ™1, 0</<2#f, and 0< <27 in
aBp sin(o— )+ {—Bi=0. (7)  terms of the new curvilinear coordinates w, i:

Let us see when the solution of this equationyirior fixed 232 _

o< ; : p=T1+ aBZCOSaH— (,BZ—TZ)SInzw

< <2 and 0<{<2wg is unique. All the chords of the 2 '
sinusoid
) aﬂ2 . aZ 4 . aZ 2 .

y(¥)=aBp sin(e— )+ (8) (p=a)+l//—TSIn o+ 52 sin 2w — 7 sin 2w,

have a slope whose absolute value obeys the condition (16
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(=B¢—aBT sinw. The initial formula for calculating the specific energyer

. . . unit length along the average directjoof a helical Abriko-
To use the notation of tensor analysis we introduce the foI—SOV vortex is

lowing indices:

A3 .
—1, 0—2, ¢¥—3. 17 szmﬁ/(VXh)-(/LVXh)dV. (23
The fundamental tensor of this coordinate system has the
following form: whereV is the volume of a Zb-thick layer, i.e., one turn of

. o 5 the helix. Integrating the second term by pagdee Ref.
9u=1 015=9a1=012=921=0, G22=7", and allowing for(19), we get
Q3= 72+ B2+ 27aB? cosw+ a?B*— a?B? 7 sirfw, P
(18 s=—%f A(7)(n-hydV. (24)
2.9 2 327 ,8 \Vi

, @ BT
023=032= 7"~ > - If we now express the scalar product in terms of the covari-

) _ ~ ant components of the vectansandh via (18) and(22) and
Thus, the new system of coordinates is not orthogonal, Wh'Clihtegrate(24) with respect toy, we get

means one must distinguish between covariant and contra-

variant components of a vector. Do fZ”f”A hee | 1 o’ p? hol- dod
Equation(3) describe a right-handed helix in relation to ™ 16x28J, Jo (7| hg=| 1= —5=|hz|7 drdw.

the direction of thez axis. Since here the direction of tze (25)

axis is fixed by the physics of the problefit coincides with . .

the direction of the average magnetic induction field of the, To |r_1tegrate W.'th respect tg, we reason along the same

Abrikosov vortey, one must distinguish between right- and Ilnes§f n R.e‘c' 5 l.e., we note _tm( 7 h.as a shgrp peak at

left-handed helices. If the above calculations are done for & Taking the otlher functions outside the integral with

left-handed helix, the sign of the componegis= g3, of the respect tor and allowing for(21), we get

fundamental tensor is reversed. &, (or . a?B? .

s—m . hs(x ,w)—(l— 5 )hz(K o) [dw.
3. MODEL OF A HELICAL ABRIKOSOV VORTEX AND THE (26)
VORTEX ENERGY

By writing Egs.(19) in the form of equations for the cova-
riant components dfi and expanding in powers af, we find
a solution of the form

The magnetic induction field of an Abrikosov vortex for
x>1 is described by the equation

P

h+ VX (4 VXh)= 5—5A(R)N(R). (19) hi(7,0)=ah{(7)sin o,
— h® 2rn(2)
Here the coordinates are measured in unita ofhe tensor hy(7,w)=ah;"(7)cos w+aThy™(7)
4 in terms of the major axes has the form +ﬁ(22)(7)cos W],

. 2 (27)
pu=pa=l gy 0 ha(7,0)=hQ () + ah$()cos w+ a?[hP)(7)
and the anisotropy axis is selected as axis 3. The vector field
A(R)-n(R) is determined by the complete system of +hP?(7)cos w].
Ginzburg—Landau equations. Fee>1 and a straight Abri- _ _ . . .
kosov vortex this field is parallel to the vortex axis, occupiesplqumg(ﬂ) into (26) and integrating with respect t, we

a region near the axis of a size of order?, and its flux Pt

through a plane perpendicular to the axis i)\2. d, o ) )
The principal assumption of the proposed model can be &= %{hg (k™ + a2 (kY =hP (D1}
formulated as follows: if the parameters of the helix are such (28)

thata/\ = a8?>« ! andb/\ = B>« 1, the structure of the _ _ . _
Abrikosov vortex core does not change, i.e., the value offhe system of ordinary differential equations for the
A(R) depends only orr, is negligible whenr>«~1, and hi(m)(r) simplifies considerably if we introduce the functions

- d
fo A(r)7dr=1, (21) ub(r)=-hs"=hi", o@(n=hP-n?. (29

while the vectom(R) is always perpendicular to the coordi- Then
nate surface/= const(a plang and is equal to unity in ab- dzh(3°) 1 dh(3°)

solute value. Them(R) in helical coordinates has only one S+ _ h(go)= —f
covariant component: dr T dr ’
292 2,,(1) (1)
/g apB d<u 1du
=\/—=—~al1+ 4 22 - T 2y
N . B a7 COSw > (22 e ~ 4, 7y
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d 21 (0) ) Ak~ ! near the vortex line. If we assume that the order pa-
=73 [(1=79)hs" = (1= y)f], rameter is zero inside this region and equal to its equilibrium
(30 value outside, we get
d2hv 1 dh® hd
_?é+__3_52h(31)_i _ (O Z_E
dr T dr n=lgan| —afo (34)
0
— 7(h®—f)— 7 dzh(s : n 1+97 e 1—v* du® This is the upper bound—actually, is somewhat smaller.
3 Y2 dr? v N Allowing for the fact that 1 a?8%/2 of the vortex line fits
2 (@ 2 into a unit length of the helix, the term (a?B?%/2)e.d,
v = 1d™ o with d<1/4, should be added t83). This, however, does
d7? T dr not alter the qualitative conclusions that follow frdi33).
(0) (1)
= i(Th<31> _rdhs” _u
27d 2 d 2
e T 4. CONCLUSIONS AND PHYSICAL EFFECTS
1 du® h{
+8% -1 f_Z_d__T , Equation (33) shows that for ally<1 there exists a
T AT range of values of3 sufficiently small for the energy of a
where we have introduced the following notation: helical Abrikosov vortex to be lower than that of a straight
by Abrikosov vortex. Note, however, that E3) was derived
0 _ _ - _ on the assumption thg#> « 1. For instance, aty=1 the
—A(n)=f, &#=1+B72 5=vé. 31 P ’
27\ (7) A =y S second term in(33) is negative for3<« "1, with the result

The boundary conditions for all the functions are thef[hat for an isotropic superconductor the above conclusion is

following: the functions tend to zero as— and are finite invalid. .At y=1/8 andx=50 a heIicaI.Abrikoso_v vort_ex Is
and continuous. The fundamental solutions of the Corre_energetlcally favored over the straight configuration for
sponding homogeneous equations are well-known, the right@<l'4'

hand side of the first equation is a known function, and theh i I Ivvzk;glr(lore the ?endlng egergy, tt::i?] t?efener?yp;ta
right-hand side of every successive equation can be e ielica rikosov vortex coincides wi at of a straig

X= o . .
pressed in terms of the solutions of the preceding equatiore‘b”kosov vortex inclined to the anisotropy axis by an angle

Now the solution of the systerf80) can easily be obtained. 2: da'B .tgoin(;iarlwli(im?r:e (t;;]gl,)s %nu?r%/&genguztﬁt?ﬁeto rzo(?jrgct
After certain transformations via integration by parts are per- L';I'his resultycoincidés with the one obtained [lzrom the
formed, the solution can be expressed in terms of the modf—“'g'

) . . respective formula in Ref. 5. The energy is always higher
fied Bessel functions,(é7) andK,(£7) and the following . . .
integrals of these functions: than that of a straight Abrikosov vortex directed along the

anisotropy axis, as is the case in Ref. 3. Thus, the lowering

T i1 of the Abrikosov vortex energy in the transition to the helical
Ln(&,7)= Jo Tn(£X)A ()™ dx, configuration reveals itself only if we allow for the negative
(32 bending energy.
* i1 The above suggests that when the anisotropy is strong, a
Mn(€,7)= L Kn(£X)A ()X “dx. straight Abrikosov vortex directed along the anisotropy axis

is unstable. Its true configuration can be found by solving the
Here ¢ can bey, 8, 7, andn=0, 1. When this solution is corresponding variational problem, but such a problem has
plugged into(28) and the integralé32) are to be evaluated, yet to be formulated. If, on the average, the induction is
we employ the fact thatA(7) has a sharp peak a=«x"*.  directed along the anisotropy axis, symmetry considerations
For B>k~ * the parameters and » cannot be largey<1,  suggest that the helical configuration is a stable one. To find
so that for the modified Bessel functions we can take theithe values of its parameters and 8 that minimize the free
approximate expressions for a small argument. Then, if wenergy, we must calculat(«, ) without resorting to per-
allow for (21), we arrive at the final expression for the en- turbation techniques. When the average direction of induc-
ergy of a helical Abrikosov vortex per unit length along the tion deviates from the anisotropy axis, the equilibrium Abri-

axis of the helix: kosov vortex configuration differs from the helical. This,

> 252 possibly, brings together the results of the anisotropic Lon-
kK a°B 2k . .
= 80( In— + [72 In — don model and those of the step model of Abrikosov vortices
e 2 e in a layered superconductor examined in Ref. 10.

1 1 The fact that the axial line of an Abrikosov vortex is

+ E(,BZ— Y)In(1+B7%) — EH (33)  curvilinear may be important for quantitative calculations of

the interaction of this vortex with various inhomogeneities in
whereC is Euler’s constant. the superconductor and with the transport current, i.e., for

Let us estimate the contributios, to the Abrikosov- analyzing the mechanisms of pinning and the penetration of
vortex energy per unit length caused by a decrease in thihe superconductor by the vortex. New phenomena involving
absolute value of the order parameter in a region of radiushe system of Abrikosov vortices are also related to this fact.
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As noted earlier, an Abrikosov vortex can be either aof the axial line of the vortex perpendicular to its plane, these
left- or right-handed helix in relation to the direction of mag- coordinates can be expressed in terms of the toroidal coordi-
netic induction. In the absence of a transport current alongatest, ¢, as follows:
the direction of induction, the energies of these left- and 1-12 2Rt sin
. . . . w
right-handed vortices are equal. The repulsion of unlike r=R
Abrikosov vortices must be stronger than that of like vorti-
ces, since similarly directed circular vortices lying in the The single component of the induction fieldhg(t,w). The
same plane attract each other. Right- and left-handed Abriequation for the functiom (t,w)=h,\I/R has the form
kosov vortices can transform into each other by passing 2

1-2tcosw+t?’ *“ 1-2tcoswtt2 (A1)

2
through the stage of a topological soliton. When the Abriko-H — — (1—2t cosw+1?)? t2‘9_|;+tﬁ
sov vortex number density is low, the number of right- and R Jt at
left-handed vortices must be the same, to within fluctuations, 9?H 3t4
while as the number density increases, a phase transition +W—WH}
occurs with spontaneous breaking of left—right symmetry.
The driving field for this transition is a transport current D, 2R \/?
parallel to the magnetic induction, since it changes the ener- = mA<Tt) nt,w) \ g (A2)

gies of right- and left-handed vortices differently.

A lattice consisting of helical Abrikosov vortices cannot Where A(7) is the same function as in the main text, and
be interpreted as a deformation of a lattice of straight vorti-n(t,@) can be determined from the condition that the mag-
ces. When the Abrikosov vortex number density is low, sucHetic flux through the half-plange= const is equal to the flux
a lattice differs little, both in its energy and elastic properties duantum®,. The dimensionless curvature=\/R is the
from a lattice of straight vortices, since left- and right-handedsmall parameter needed for solving this equation. Substitut-
Abrikosov vortices are mixed at random and the energy ofnd 7a/2 fort in Eq.(A2) and employing perturbation-theory
interaction of their circular components decreases with inf€chniques, we can calculate the magnetic induction in the
creasing distance much faster than that of straight Abrikoso$€cond order and the specific energy of a circular Abrikosov
vortices. vortex. The result is

At the phase transition to an ordered state the depen- 2« 3
dence of the lattice’s elastic moduli on the magnetic field 8280("1 Pl §a2>- (A3)
strength experiences a singularity. In a lattice ordered in the

direction of the helix the interaction energy is lower, due toThus, the bending modulus for an Abrikosov vortex in an
the attraction of the circular components of helical Abriko-isotropic London superconductor is negative.

sov vortices, Fhan ina Iattit_:e of straight vortices of_ the_ SAME17 K gyama and M. Tachiki, Solid State Commg, 1949 (1997.
number density. The elastic properties are also diffef@nt  2m. L. Kuli§ and A. Kramer, Solid State Commun, 1949 (1991).
relation to bending, in particular The appearance of new iE- H. Brandt, Phys. Rev. Let69, 1105(1999. . _
singularities can be expected when the lattice constant be-2 V: Eagl?glgéL['slé\?ugﬁcshk;\z/%?ensd 'S-ég(- 1‘33%'50"' Zh.ksp. Teor. Fiz.
comes equal to the radius of the helix. The overlap of helicess; "\ puprovski, zh. El(gp" Teor. Fiz.111, 954 (1997 [JETP84, 525

must lead to an enhancement of repulsion, which, possibly, (1997].

is balanced by the straightening of the vortices. P. G. de GennesSuperconductivity of Metals and AllgyBenjamin, New
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"Yu. A. Genenko, JETP LetB9, 841(1994.
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Phase transitions in a system of spatially separated electrons and holes
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The formation of a superfluid exciton liquid in a system of spatially separated electrons and
holes in a system of two coupled quantum wells is predicted and its properties are investigated.
The ground-state energy and the equilibrium density of the exciton liquid are calculated as
functions of distanc® between the quantum wells. The properties of a rarefied exciton gas with
dipole—dipole repulsions are considered, where this gas is the metastable phase for

D<1.9a* and the stable phase far>1.9a* (a* is the radius of the two-dimensional excijon

The gas—liquid quantum transition is examined for increaSingrhe

Berezinski—Kosterlitz—Thouless transition temperatures, at which superfluidity arises in the
system, are found for different values Bf Possible experimental manifestations of the predicted
effects are discussed. @997 American Institute of Physid$$1063-776(97)02505-3

1. INTRODUCTION and discusses the gas-liquid quantum transition as a function
of the distanceD between the wells. In addition, it predicts

Systems with spatially separated electrons and holes ithe temperature of the topological transition to the superfluid

systems of double quantum wells have attracted a great desiate, which depends d.

of attention recently;# particularly in connection with the

predicted superfluidity in such systemand in connection

V.V'th quasi-Josephson pheno_m%ﬁand the “““.S“‘T’" PTOPEr™ 5 HAMILTONIAN OF THE SYSTEM. HARTREE-FOCK

ties such systems manifest in strong magnetic fiéltlsere APPROXIMATION

exist a number of physical realizations of systems with spa-

tially separated electrons and holes. The electrons and holes To determine the existence conditiofa zero tempera-

can be created by laser radiation, they enter into a state afire) of a liquid consisting of excitons with spatially sepa-

partial thermodynamic equilibrium in the system of coupledrated electron and holes, it is necessary to calculate the de-

guantum wells and are found in the equilibrium state at timependence of the ground-state ener@y on the (non-

substantially longer than their energy relaxation times bukquilibrium) concentratiom and determine the minimum of

shorter than their recombination times. Their recombinatiorE(n) for various values of the distan&ebetween the layers.

times can be quite long due to the spatial separation of the The Hamiltonian of a system of spatially separated elec-

electron and hole wave functionidut for some coupled trons and holes can be written in the second-quantization

quantum welld—due to localization of the electrons and representation

holes in different regions of momentum spaaghich makes

the quasi-equilibrium state of the electron—hole system eas- -~ p? p?

) _ . H=> || 0—— tay+| 5——pun|bgb

ily accessible. In this case the electrons and holes are char- = Me|8pap 2my, Hn | Bp Pp
acterized by non-coincident quasi-equilibrium chemical po-

tentials. It is also possible for spatially separated electrons 1 .+

and holes to be found in a state of thermodynamic equilib- + 2 r%’:k V(kla, &,/ 8p’ +kAp—k

rium such that their chemical potentials coincide. This can . _ .

happen in second-order coupled quantum wédlsy., for +by by by kb 1= 2V(K)agb by ap i, (1)

structures based on InAs/GaSh

In connection with the experiments which have been unwherea; and b; are the creation operators of the electron
dertaken to date, the greatest interest has lain in the as-ya@hd hole;me=m,=m is the effective mass of the electron
unexamined properties of the double-quantum-well strucnd hole;V(k) =2me?/ek is the Coulomb interaction in one
tures, in particular the question of condensed phases of tHayer; V(k)=V(k)e *P is the interaction between an elec-
excitons in the given system, the form of the phase diagranffon and hole located in different layer; is the distance
etc. These questions are the subject of the present studgetween the layers of electrons and holesis the static
which considers a two-layer system in the absence of a maglielectric constantu, and uy, are the chemical potentials,
netic field. Such a system was recently investigatedvhich are governed by the normalization conditi¢n® as-
experimentally:? The behavior of a spatially separated Sume the electron and hole concentrations to be equal,
electron—hole system in a strong magnetic field is discussele=Nn)
in Ref. 8.

The pres_ent stu_dy predicts the properties of the liquid 2 (ata >:2 (bby)= } N,
phase of excitons with spatially separated electron and holes PP p pER2
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where N=N.+ Ny, is the total number of particles in the 5 » pdp 5
system;n=N/S is the surface concentration of the particles Po=2 o 1122 Pr=V27h n;
in the system; an& is the area of the system. P

To calculate the ground-state energy of an exciton liquidall momenta are expressed in units pgE/pg. In the
consisting of spatially separated electrons and holes, it islartree—Fock approximation the gapis determined from
necessary to take their pairing into accothtToward this  the self-consistency condition. In the approximation we are
end, we use the Gor’kov technique for the normal andusing for an intermediate type of coupling the gap is deter-

anomalous Green’s function$! mined from a variational calculation with allowance for the
’ o~ = correlation energysee also Refs. 9 and 12As the function
Gap(X,X") == (T (o ()5 (X"))), being varied it is convenient to use the functiep (see
) _ ~ above.
Fap(X—=X") = (N[T(a(x)5(x"))IN+2), The energy can be expressed in terms of the Gor'kov—

i ~ ~ ., Nambu functionG of the system
Fap(x=x") =€ {N+2|T(yy ()95 (X )IN), Y

_ 2de’? (= dw d?p
whereG,4(x,x") andF,45(x—x') are respectively the nor- E=—-Tr f Ff 27 ) @n?
mal and anomalous Green’s functions, agg(x) and 0 0
- (x) are the single-particle Fermi operatogs= ue+ - X[GO(w,p)] YG(w,p)— G (w,p)]e'“t, (4)

To start with, let us consider the Hartree—Fock approxi- - -
mation, which we will treat as an initial approximation. In a Wheret—+0; G©(w,p)=G"(w,p)1 is the free-particle
homogeneous system the diagrams of the Hartree approx@reen’s function, and 1s the unit matrix(in the integrand
mation give zero contribution to the energy, as follows fromwe make use of the standard substitution of the physical
electrical neutrality. Let us consider the exchange diagramghargee’—e’? with subsequent integration ovef® up to
of the Hartree—Fock approximation. the physical value?).

With the intention of departing from the framework of _  In the Hartree—Fock approximation the Green'’s function
the BCS approximatiorifor weak coupling, we will solve G is given by Eq.(2). Taking Eqs(2)—(4) into account, we
the equations for the normal and anomalous Green's fundind the functionalE,£{n} in the Hartree—Fock approxima-
tions in the general case without assuming that the quasipation:
ticle momenta are small in comparison Wltl”l the Fgrm|.mo— Epe{n} 4 = pdp V3
mentum. The normal and anomalous Green’s functions in thg(_ +M) e — —
generalized Hartree—Fock approximatidwith possible n r“po Jo 1+z, =7r°p
spontaneous symmetry breaking and gap 0) are solutions
of the equations for the Gor'’kov—Nambu matrix function

3JO pgdpdq

o j?wlv(p—q)+v(p—q)zpzq|d¢_ )

G: 0 (1+25)(1+25)
A G FE* ot £ As will be shown below, at larg®=D,,=1.9* the
= G(p)=———— liquid phase is absent and the electron and hole concentra-
—F G ’ (p) 2__ 2( ) ’ X A X
"~ €X(p tions are free parameters of the problem. In this case, at high
2 concentrationsna*?>1 the quasiparticle spectrura(p)
|A(p)]
Fr'(p)= 55—, 2) = J&+A?(p), whereA(p) is the gap in the quasiparticle
w”—€e(p) spectrum found by minimizing the Hartree—Fock functional.
Here £=p2/2m— In particular, forD>a* we have(see Ref. b
1 V2 2 A(p) p( 160°py 6)
ro(= m =expg — .
€(p)= 7 { (za—=1)(p?~r?up)) if dp’f de P ma*
Zp+1 \/; 0 0 ) )
However, atD=<a* correlation effects turn out to be impor-

(Z2—1-22,2, ex —Dpe\p?—2pp’ cos¢p+p’?)p’  tant

X
(zf,,+1)\/p2—2pp’ cos¢p+p'?

p2 3. ALLOWANCE FOR CORRELATION EFFECTS
X—, ()

4 We consider the results obtained in the Hartree—Fock
r=1/J7n is the mean distance between the electron an&\pproximation for the exciton phase as an initial approxima-
hole layers,z,=u, /v, and the functionas? and v2 are tion. We use the Green’s functions obtained in Sec. 2 in the

LA AL P P Hartree—Fock approximation to calculate the correlation en-

defined by the relations ergyE®(z,). We wish to know what classes of diagrams for

I3 1 I3 the correlation energy are important.

2 _ 2 _ . .

Up—§ + Tp) » UpTh 1- ep) | For small momentum transfer we estimate the ratio of
the minimum momentum transféde=A/ve (A is the gap

We have introduced the notation obtained by a variational calculation; see beléavthe Fermi
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b FIG. 1. Diagrams for the correlation
energy of an electron—hole system:
a—diagrams of the random-phase ap-
proximation, taken into account for
k/pe<1; b—polarization operator in
the random-phase approximation;
c—second-order diagrams, taken into

Q """" G account fork/pg>1.

radius pg . At the equilibrium concentration point for the
interlayer distanc® =0, for which the gap is greatest, using +K, e+ w)+Fyp(p,e)Fur(p—k,e—w)],
the results obtained below, we have

k A Am

—_—=

PE~ UEPF " 2mh’n

(10

~0.07<1. In the absence of pairing and neglecting tunneling between
the layers the mixed operatdl,,=0.

Consequently, the separability condition for the diagrams of ~ The correlation energi:* for small momentum transfer

the random-phase approximatiriFig. 18 holds for small  (k/pg<1) is given by relation§7)—(10) and depends on the

values of the momentum transfkr(k/pg<1) and for our functionz,, which we take as the variational function.

system. The correlation energgs5® for large momentum transfer
For the correlation energy in the random-phase approxi(k/pg>1) is given by relation4), where the Green’s func-
mation we have tion G(w,p) is approximated by the sum of a ring diagram
and an exchange diagram, both of second of8ee Fig. 1&

2 ©
ESor= — E d k2 J+ d_“’ {IN[1-V,I1(k,w)] We will use an interpolation for the correlation energy
n) (2m)? ). 27 E" (successfully employed by Brinkman and Rice to calcu-
late a metallic electron—hole liguitland also used in Refs. 9
~Vidl(k,w)}, @) and 13 for all values of the momentum transfer:

where TI(k,w) is the polarization operator of a two-

corg=cor
component electron—hole system with allowance for  pcor— EiE2 (11)
electron—hole pairingFig. 1b): EF"+ES"
II(K,w)=Tlo(k,w) + (ko) + T (K o). (8) Next, for various values of the interlayer distarigeand the
For the electron—electron and hole—hole polarization operaquaSIpartICIe momentum the total energy
tors we have E,=Enp+E®, (12
M. (Kow)= _zf d’p f” de is defined as a functional of the functiag=u,/v,.
ee(hh){ % @ (2m)? ). 2mi Some remarks are in order at this point regarding the
relationship between the present approach and Bogolyubov's
X{[GHr(p,€)Ghe(—p+k,—et+w) principle of cancellation of dangerous diagrams. The appear-
+Gue(p,€)Gur(—p—k, —e— )] ance in the diagrams of parts connected to the reset of the
diagram by only one pair of lines corresponding to an elec-
+[Fue(p,e)Fur(ptk, e+ w) tron and hole with zero total momentum leads to a diver-

L gence of the corresponding diagram. This pair of lines can be
+Fur(p.OFue(p—kie—w)]}, ©) replaced by a total two-particle Green’s functi@y that
whereF 4 andGy are the anomalous and normal Green’sdescribes the bound states of the electron and (awieexci-
functions in the Hartree—Fock approximati¢®). For the ton). The exciton energy levels are poles of the function
electron—hole polarization operator we obtain G, as a function of the total energy of the pair. For an
) electron—hole pair created from the vacuum, the total mo-
d°p [+= de mentum is zero and the total energy + The
Henkw)==2[ ——5 | ——[Fue(p.e)Fue(p and th Y fA5= fle fin- 1€
(2m)° ) - 2mi energy of an exciton with zero momentum is by definition
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equal tou. That means that an electron—hole pair with zeroparametersA and B were assigned the new values
total momentum and energy corresponds to a pole of the A+kAA andB+kAB, where the random numb&rwas set
function G,. Consequently, diagrams incorporating virtual equal to 0.1 or-1. The new values of the parameté&rsnd
processes of creation from vacuum of electron—hole pair8 were accepted if the corresponding value of the energy
with zero total momentum diverge. was less than the value corresponding to the previous values

To eliminate the divergence, it is necessary to ensure thef the parameters. Otherwise, the new values were rejected.
mutual cancellation of diagrams that lead to virtual creationThe quantitiesAA andAB (periods of the grid in which the
from the vacuum of electron—hole pairs with zero total mo-randomly varying parameters were chosarere chosen to
mentum. The application of this cancellation principle with be equal to 103-10 2 times the values of the correspond-
allowance for only the first order in the interaction is equiva-ing parameteré\ andB.
lent to solving the self-consistent equations in the Hartree— By means of these variational calculations we evaluated
Fock approximationwith allowance for spontaneous sym- the ground-state energy of systdinfor different values of
metry breaking, and # 0) for the functionz,, which can  the parameter = 1/{zn and various distance® between
also be found in this approximation from the variational prin-the electron and hole layers.
ciple. For D=0 in the limit r¢—o (concentratiom—0) the

If we take account of diagrams corresponding to dy-ground-state energyin the calculation, per electron—hole
namic correlation processes between the quasiparticles, th@air) tends to the energy of the two-dimensional exciton. The
the cancellation of divergent diagrams will correspond in ourauthors of Ref. 15 calculated the dependence of the energy of
approximation to taking account of the diagrams in Fig. 1.one exciton in a system of spatially separated electron and
The minimization of the total energy of the system relative toholes on the distance between the planes. The results ob-
the functionz, carried out below(with allowance for the tained in our studysee Fig. 2in the limit of larger; are in
correlation energlyis an approximation to the solution of the good agreement with the results of Ref. 15. The variationally
equation for cancellation of divergent diagrams. calculated values oA andB indicate that the exciton phase
is stable for the above-considered isotropic electron—hole
system for allD.

A gap appears in the spectrum of new quasiparticles for
The variational calculation of the total energ was all n andD, which grows with decreasing and increasing
performed numerically. First, all expressions were reduced t®. Asn—0, this gap becomes equal to the binding energy of
dimensionless form using the radius and energy of the twothe two-dimensional exciton. This means that the above-

dimensional exciton, respectively, as our units of length andonsidered isotropic electron—hole system is an insuléor
energy: all n andD).
To conclude this section, note that taking anisotropy into

4. VARIATIONAL CALCULATION

eh? 2met : .
a*=-—, E,=—o, account leads to a more complicated phase diagram of the
2me? eh system. Specifically, in an anisotropic system at concentra-
wherem=m,m;,/(me+m,,) is the reduced mass. tions greater than some concentration that depends on the

To minimize E; we used various test functiomzs. The  distance between the layers of electrons and halgtD), a
results did not differ greatly, but the best value was obtainedransition from the excitorinsulating phase to the metallic

using a test function of the form pha_se should tgke place. The latter phase, i.n contrast to he
0\ 32 exciton phase, is no superfluid. A treatment within the frame-
2 =Al1+ P +B (13) work of a model of Keldysh—Kopaev typdor an aniso-
P ) .
4 tropic, dense electron—hole system shows that the metal—

insulator transition is continuous, while. (D) is a
monotonically decreasing function amg, (D) « 1/D for
D>a*.

where A and B are the variational parametéfsThe test
function (13) was chosen in such a way that fB=0 the
function z;l coincides with the Fourier transform of the
wave function of the Wannier—Mott two-dimensional exci-
ton (v,=0, i.e., z,—=, corresponds to the semimetallic
statg.

The two-dimensional integrals over momentum for find-
ing the polarization operators, energy, and Green’s functions At low electron and hole concentrations?<1 and low
were calculated by the Monte Carlo method. Inside theemperatures, the system is a weakly non-ideal excitoH gas
square from 0 t@g over both coordinates 2000 points were with dipole moments in the ground state that are perpendicu-
randomly chosen, the values of the functions at these pointar to the layersd=eD and grow with increasing interlayer
were summed, and the sum was divided by the area of theistanceD (a(D) is the radius of the excitons in the layers;
square in momentum space. a~a* for D<a* anda~a*'“D%*for D>a*). In this case

Minimization with respect to the variational parametersthe approximation described in Sec. 1 must be replaced by an
A and B was also performed by the Monte Carlo method.approximation that takes account to first order of the ex-
The energy of the system was calculated for randomly choehange interaction an@n the ladder approximatigrthe di-
sen values oA andB. The incrementd\A andAB in the rect interaction between the two-dimensional excitons. In
parametersA and B were assigned. In the next step, the contrast to ordinary electron—hole systetrig, a spatially

5. LOW-DENSITY SYSTEM OF EXCITONS IN A TWO-LAYER
STRUCTURE
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FIG. 2. g EnergyE of a system of spatially
separated electrons and holes as a function
of concentrationE in units of the binding
energy of a two-dimensional exciton
Rys =2mée* /%2, n in units of @*) 2

a* =h2e/2me?. Curves1-5 correspond to

D equal to 0(1), 0.5(2), 1.1(3), 1.9(4), and

5 (5). The pointE=0 for all five curves cor-
responds to the exciton energigg (D) for

the corresponding value & (see Fig. 2h

b) The binding energ¥,,(D) of an exciton
with spatially separated electrons and holes

-

as a function of distanc® between the lay-

12 ers; Eg, in units of Ry, , D in units ofa*.

separated electron—hole system, calculations show that the In the expressions for:|0 the functional ofu and v
main contribution to the energy comes from the directstanding in front of the combinatiors, a, andb, b, is the

dipole—dipole repulsior 4=e?D?/er®, while the van der

energy spectrum of the transformed quasipartidipsasi-

Waals attraction of the excitons and the exchange interactioslectrons and quasiholes

are already negligible @=0.5—less than one-hundredth of
the contribution of the direct dipole—dipole interaction a

narrow region of smalh the dipole—dipole repulsion leads
to crystallization; see Sec).6The smallness of the exchange

interaction in a spatially separated electron—hole system is
related to the smallness of the tunneling exponential for pen-

etration of quasiparticles through the dipole—dipole interac
tion barrier.
To calculate the exchange interaction energy, we tak

account of pairing of the electrons and holes by way of the
canonical Bogolyubov transformation over the electron anqci|

hole operators, which is described by the unitary oper‘é‘tor
(see Ref. 12

AS=exp{2p dp(agh’ —b_a,) |, (14)

Sa,S" =uya,tu,b’,, (15)

SbpS™=upb,tv,a’,, (16)
where

Up=COS,, vp=SiN¢,, Us+vo=L1. (17

Eg’h:(us_vg){ Ee’h(p)_ﬂe,h_z Vp—p’vlzy
p/

22U Vi prvprlp (20)
p

To calculate the exchange interaction energy, we can
take advantage of the fact thigs vanishes in pairwise com-
inations of operatora; b’ +b_a, (which yield singular
ontributions to the energyin the modified Hamiltonian
o Of (18) that takes electron—hole pairing into account. We
neglect tunneling transitions between the bands of paired
electrons and holes in different layers. It follows from the
above conditiork,=0 that

€(p)— =22 Vp_pv2 [upup
pl

— (U=} Vo prtipvp =0. (21)
p

For a low-density systemy, is of order unity, while
vp is small in the dimensionless parametér (na? in ordi-

Using the anticommutation relations for the Fermi op-nary units; see Eq19)). To lowest order i, i.e., accurate
erators in the standard way, we obtain the transformegy terms of orden/n, Eq. (21) reduces to

Hamiltonian
H=Ho+H'+U, (18)

whereU is a numerical functional ofi andv, andH, and

d2/
V P

p,p,vp, W—O (22)

(et~ ol |

Equation(22) together with the normalization conditidth9)

H' are respectively the quadratic Hamiltonian and the quapas the form

dratic Hamiltonian in the new operators.
The functionv, obeys the normalization condition

v

p

n
2__

which follows from the relations

2 <éa;,sap,sé+>:z <ASb;’prYSAS+>:22 U‘%:n,
p.s .S 5

vp:\/ﬁ¢0(p)! Moo=~ €, 23

where ey and (p) are the binding energy and wave func-
tion of the ground state of an isolated exciton with spatially
separated electrons and holes. The wave funafigiip) and
energy g were calculated for various interlayer distances
D in Ref. 15. The next order im, in Eq. (21) contains
exchange interaction effects. The exchange corregtigrio
the chemical potential can be found from Eg1) via ordi-

wheren is the dimensionless surface charge concentratiomary perturbation theory if we substitute the zeroth approxi-

(na? in ordinary units.
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dropped in Eq(22), and treat them as a small perturbation.

As a result, for the contribution of the exchange interaction B ’ RO B =T+ +
to the chemical potentigh.,, at low concentrations and a ¥ r
small interlayer distance® we obtain h:& B

tex=4.7Ine P, (24 e .

h
For largeD the electron—hole interaction has the form b ¢ =
o) e? e2+ e’r? ’ —— ' —_——
r=———~— — —-—, i i
JDZ+ 1?2 D 2D° c g d —r

so that the ground state of the exciton can be described by

the wave function of an oscillator with radis FIG. 3. @ Important diagrams for a rarefied exciton system;Ladder

_ %\ 1/4 3/4 diagrams for one exciton;) dnteractionV between excitongv~ D?/r3 for
p=(4a*)""D™" (25 r>D); d) Unimportant diagram in the limih— 0.
As a result, for the contribution of the exchange interaction
Mey @t low n and largeD we obtain

centrationn at low n characteristic of the three-dimensional
fe=11.31D1" exp( ——. (26)  case; in the two-dimensional system the potential is propor-
V2 tional to n/Inn in the limit n—0 (the specific region of
The exchange interaction in a spatially separated syste@pplicability of the ladder approximation in the two-
is suppressed in comparison with a two-dimensionadimensional case is related to this
electron—hole system in one layer. This has to do with the In the estimate of the contribution of the van der Waals
small tunneling exponential for penetration through theinteraction to the chemical potentialy, the arguments are
dipole—dipole interaction barrier. completely analogous to the above analysis of the dipole—
The contribution of the dipole interaction can be repre-dipole interaction. As a resul€29) turns out to be valid for
sented by the sum of diagrams shown in Fig. 3. For smalthe contribution of the van der Waals interaction, with
values of the momentum transfgr—0, which are the most n=6 andA=Cg—the coefficient of the van der Waals in-
important at low concentrations, the integrand correspondinégraction. Let us find the coefficiei@s for small and large
to the diagram in Fig. 3c is proportional tog¥/ and in Fig. D. For a two-dimensional system the coeffici&®y is re-
3d to 14%. Consequently, the diagrams depicted in Fig. 3clated to the polarizabilityr of the ground state:
make a larger contribution to the energy than the diagrams in 3
Fig. 3d, and to account for the direct dipole—dipole interac- Cg=— > ap?, (30
tion between excitons we may apply the theory of a two-
dimensional Bose gdg.The relation between the vertdx  wherep is the exciton radius.

D 1/4

and the two-dimensional scattering amplituidg€«) for an The polarizability is
interaction potential of the forrd(r)=Ar~" (n>2) has the X2 2ime?
form a=-—2e2> % _ ——— (Xxb)go, (31
k EO_ Ek ﬁ
27k
I'=—-2fy(k) - (27)  wherex is the coordinate along the filnk, is the energy of

the unperturbed levels, ardl is an auxiliary operatofsee
where the two-dimensional scattering amplitude is given byRef. 18:

; B Vil 2x 08 . m db 32
o(K)—W- (28) =7 gt (32
The contribution of the dipole interaction to the chemical ~ The function f(r), introduced via the equality
potential isug=In= k?/2. byo=1(r)yy cos¢, obeys the equation
We estimate the contribution of the dipole—dipole inter- ,
action to the chemical potential under the condition ir = 1 T i fro iy ﬁ £/ (33)
-1 2 2r 2r? ;
In[(xA)"1>1 to be o

AN where ¢ is the ground-state wave function of the exciton.
g™~ In(1/8mnAZ-2)) (290 The unperturbed functiony, for small D is calculated in
first-order perturbation theory fad(r)=2e?D?/er® in the
wheren=3 andA=D? for the dipole—dipole interaction. ~ wave functions of the two-dimensional excit¢ior D =0).
The specifics of a two-dimensional Bose system includd~or largeD the ground state of the exciton is described by
divergence of the exciton scattering amplitude at low enerthe wave function of an oscillator with radius given {2f).
gies (see EQ.(28)) and a corresponding deviation from the Employing the solution of the differential equation for
linear dependence of the chemical potent#)) on the con-  f(r), we find a from Eq. (31). For smallD we have
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Eliq n lig

0.10¢ 0.101 b FIG. 4. g Energy of an exciton liquidEy
with spatially separated electrons and holes
0.08 0.08r as a function of distanc® between the lay-

0.06

ers; Ejq in units of Ry , D in units ofa*.
0.06} For D=D,,=1.1 a first-order transition in
D occurs, forD.<D<Dj, the exciton lig-

0.04 0.04+ g ! uid is metastable, fob = D¢,=1.9 the exci-
1 l ton liquid becomes unstable) Equilibrium
1 i ! concentrationn;; of an exciton liquid (in
0.02 0.02 !D ;D units of @*)~!) as a function of distance
0 0 ) § o . i D between the layerén units of a*).
0 0.80 1.60 D
21 5 64mm2e*D4 The binding energy of an isolated biexciton with spa-
a= e\ 1t — 77—, (34  tially separated electrons and hdleglecreasing with in-
creasingD) is less than the binding energy of the exciton
and for largeD liquid, i.e., the liquid phase in the system under consideration
= 0.9 Y4g* 34 (35) Is also stable against decay into isolated biexcitons. For

o ) _ D=D~1.1 the binding energy of the exciton liquid be-
Substituting(34) and (35) into (30) and (29), we find the  comes comparable to the energy of an isolated exciton, and
contribution of the van der Waals interaction to the chemical; this point the discontinuous quantum phase transition
potential. , _ . “quantum liquid—exciton gas” takes place with an increase

The chemical potential of the system=dE/dn is ob- ¢ gecrease inD. However, over the narrow range
tained as the sum of the above-considered contributions %cr<D<Dsp (Dep=1.9, D;=1.1) the minimum corre-
the exchange, dipole—dipole, and van der Waals interactiongyonding to the exciton liquid phase still exists, i.e., the lig-
of the excitons: uid phase remains metastable. At lar§e¢D>1.9) the lig-

U= oy g+ o - (36)  uid phase is absolutely unstable and only the gas phase is

. _ ) stable, with the exciton density being determined only by

Employing the chemical potentidB6) and EQs.(24),  gyternal conditions. In the latter case all regimes are

(26), (29), (34), and (35), we calculate the velocitg of ) sqipie from a low-density Bose gas to a dense exciton
acoustic excitations in the systeor \(n/m)du/dn as a

) phase of BCS type.
function ofn andD. We emphasize that the presence of a quantum transition
~ To calculate the ground-state energfn) over the en- it respect to the paramet® and the instability of the
tire range of equilibrium concentratioms we combined the liquid for D>Ds, are a specific feature of excitons with

results of the calculations at high and intermediate concengpaiia|ly separated electrons and holes associated with their
trations (see Sec. ¥with the results obtained for low con- dipole—dipole repulsion at large distanés.
centrations. Figure 4 shows that an exciton liquid can exist * The formation of a liquid exciton phase can be detected
for D<Ds,=1.9 while for D=Dg,, the liquid phase is ab- 1 5 photoluminescence line shift or by discontinuous varia-
sent. tion of the exciton diffusion coefficient. The onset of the
Calculated values of the energy(n) that allow for the jiq,ig phase is also characterized by the formation of liquid
contribution of the dipole—dipole interaction and the van dergyciton droplets that can be detected experimentally from the
Waals and exchange interactions are plotted in Fige2 the 451 fiyctuations, corresponding to the motion of the drop-
range of lown, wheredE/dn>0 by virtue of the dipole— |gt5 of the photoluminescence by means of local observation
dipole repulsion of the excitons of the photoluminescence using an opaque mask with pin-
holes or with the help of an optical fiber. It should also be
possible to observe exciton droplets from large fluctuations
of the current along the layers in a system of two quantum
wells. Interlevel resistance due to the entrainment of elec-
The calculated curves(n) (see Fig. 2have a minimum  trons and holes may also be a sensitive indicator of a gas—
whose depth corresponds to the binding energy of the exciiquid phase transition and a transition to the superfluid and
ton liquid. The binding energy decreases with increasingther phases of an electron—hole system.
D, the minimum becomes shallower, and the equilibrium

concentrations;,(D) decrease. FoD<D.,=1.1 the en-
7. TRANSITION TO THE SUPERFLUID STATE AND

ergy of the liquid phase is greater than the endfg) of an g5 5 pHASES OF A TWO-LAYER EXCITON SYSTEM
isolated exciton with spatially separated electrons and holes,

i.e., in this range oD the stable phase is the exciton liquid, As was shown above for=0, the system under consid-
and the metastable phase is the exciton gas. eration has a gap in its energy spectrum. For this reason, at

6. GAS-LIQUID QUANTUM TRANSITION IN A TWO-LAYER
EXCITON SYSTEM
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T=0 the system is a superfluid. With increasing temperaturédeal Bose gas. In this case the Bose distribution function
the superfluidity of the excitons in the quasi-two-dimensionalmust be substituted in the integi@8) in place of the Fermi
system under consideration is preserved up to the temperdistribution function. We then have faor

ture T, of the Kosterlitz—Thouless topological phase

transition!® at which depairing of the vortex pairs takes 2T-T2 72T 2mTa? @1
i i i is Qi Ng=n-—n - - \

place in the exciton system. This temperature is given by s T? 30n%c* m  3(27h)2
_ 0.457h°%ng

, (370  Wherec=+y(n/m)du/dn is the speed of sound andis the
kgm chemical potential of the system determined for intermediate

densities by variational calculatidsee Sec. ¥

For a low-density exciton gas the overall approach is
analogous to that at intermediate densities, but we take ac-
count of the contribution to the normal density only from
collective acoustic oscillations. Then

C

whereng is the concentration of the superfluid component,
kg is the Boltzmann constant, amd is the reduced mass of
the quasiparticle.

The concentratiomg depends closely on temperature,
and the value ofig that enters into E(37) is its value at the
Kosterlitz—Thouless transition temperatdrg, i.e., Eq.(37) 2273
is an equation for finding . Ng=n

The functionng(T) can be found from the relations
ns=n-—n, (n andn, are the total density and the density of
the normal componentn,=j,/v, (j, andv, are the current
and velocity of the normal compongntUsing these rela-
tions, the superfluid density;(T) can be expressed in term
of the electron and hole concentrations=n,=n and the
interaction parameters in the electron—hole system. Let al
the quasiparticles move with velocity. In this case the ar-
gument of the distribution function will be nat(p), but
e(p) —pu. Motion of the quasiparticles will lead to a mo-

2mTw?
30k°c*m  3(27h)?’

(42

wherec is the speed of sound for a low-density exciton gas,
and the chemical potential of the systentin contrast to the

s previous case of intermediate densitissdefined as the sum
(36) of contributions of the exchange, dipole—dipole, and
yan der Waals interactions of the excitons.

As a result, substituting41) or (42) into (37), it is pos-
sible to estimate the temperature of the Kosterlitz—Thouless
phase transitiofsee Table)l The magnitude of ; decreases
appreciably as the distance between the wbBll$ncreases

mentum . X o
and the exciton concentration decreases. The transition to the
g2 superfluid state fob<D.,~ 1.1 in the metastable gas phase,
PZZI pne(e—pu) @)’ (38 and in the stable gas phase @D, , will depend on the

concentration, which is determined by external conditions

(ng is the Fermi function Taking the velocityu to be low and given by the formula derived ab.ove for. the.superfluid
and expanding i, it is possible to find the coefficiemt, in ~ density. ForT=T, the global superfluid density disappears
the expressioP=n,mu, which is the concentration of the With a (universat®) jump, and at somewhat higher tempera-
normal component. tures the fluctuational local superfluid densityL), deter-
To start with, we consider high and intermediate densi/mined by the renormalizations at all lower intermediate
ties. As our estimate of the contribution of single-particleScales., disappears. ' _
excitations at high and intermediate densities, we use the Thelocal superfluid density abolle can be manifested,
relation betweemg(T) and Tg in the BCS approximatidil for example, in observations of exciton diffusion to interme-

for TS—TC<T81 diate distances$with the help of local measurements of ex-
citon photoluminescence at two points using optical fibers or
Ne 2(T8—T) pinholes(in experiments like those in Ref))3 Discontinu-
noT o (39 ous growth of the coefficient of mutual Coulomb entrain-
€ ment of the electrons and holes in a two-layer system should
and the relation correspond to the appearance of a global superfluid density at
T=T.. In contrast to ordinary superconductors, nonzero
A(o)zljsrg_ (40) (and equal electric fields are created in the superfluid phase

by the entrainment of particles of one layer by the other. The
For A(0) we substitute the value of the gap at zero temperasuperfluid state alT <T, is manifested in the existence of
ture obtained by variational calculation. non-decaying*superconducting’) oppositely directed elec-

It is also possible to take account of the contribution oftric currents in each layer. Taking tunneling into account in
collective excitations to the concentration of the normalan equilibrium electron—hole systerfin a second-order
component. In contrast to superconductors, where, as a codeuble quantum wellleads to interesting Josephson phe-
sequence of the charge of the Cooper pairs, instead of amomena in the system: a transverse Josephson current, inho-
acoustic spectrum of collective oscillations a plasma brancimogeneous longitudinal currerftsliamagnetism in a mag-
of oscillations arises, in the exciton phase the pairs are newetic field H parallel to the junctionwhere this magnetic
tral and the acoustic branch exists. At low temperatures théeld is less than some critical valu¢;; depending on the
contribution of the elementary excitations in thermodynamictunneling coefficient and a mixed state with Josephson vor-
equilibrium can be described in the approximation of antices forH>H.; (Ref. 8 (in addition, taking tunneling into
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TABLE I.

D —Ee[Ry3] —E, [Ry}] Ep [Ry3] ren keTOX 1072 [Ry3] keTcx 107 [Rys]
0 1.0 1.06 0.06 2.2 1.7 1.3

0.5 0.80 0.84 0.04 2.6 1.3 1.1

1.0 0.50 0.51 0.01 3.2 0.8 0.7

5.0 0.26 - - - - 0.2

Note.The dependence on the interlayer distabDcis given here in tabular form for the energy of an isolated exdigpn the total energ¥, per electron—hole
pair, the binding energf, = E., — E, of the liquid phase per pair, the equilibrium distance between the excitons in the ground ®tatel™"

= 1a* \mNm, a* = hel2me?; Ny, is the equilibrium density and the Kosterlitz—Thoules§ ) and BCS (I'S) critical temperatures. Regarding notation,
m is the reduced mass agds the dielectric constant. The valuesTQfandTg in the first three rows correspond to the equilibrium concentrations of the liquid
phaseezat the given distanc&s the fourth row corresponds to the fixed valug = 100.0 (the liquid phase does not exist Bt = Dy, = 1.9); Ry;
=2melte.
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Asymptotically accurate results have been obtained for the average Green’s function and the
density of states in a Gaussian random potential for dimensionality of spade- ¢ over the
entire energy region, including the vicinity of the mobility threshold. Rer1 (N is the

order of the perturbation thegrgnly parquet terms corresponding to higher terms inaké taken
into account. For larg&l all powers of 1¢ are taken into account with their coefficients
calculated in the main asymptotic limit M. This calculation is performed by combining the
condition of renormalization theory with the Lipatov asymptotic limit. 1®97

American Institute of Physic§S1063-776(97)02605-X]

1. INTRODUCTION W is the amplitude of the random potent{a what follows

) kit . we takecy=1). The “incorrect” sign of the coefficient of
According to generally accepted thinkifig the single- ¢|* leads to the inapplicability of the usual mean-field

electron density of states does not have a singularity at thf?]eory and the necessity of a fluctuational treatefiover
Anderson transition, in contrast to the conductivity and the,e entire parameter space; the functional integrals for

localization radius of the wave functiois? Nevertheless, its |, — are understood in the sense of an analytic continuation
calculation is of fundamental significance since all knowng. g, positiveu, which for a retarding Green’s function is
methods break down in the vicinity of the transition. In ad- . ried out thro,ugh the lower half-plaf.

dition, t_he density of states and the cor}ductivity, defined The present paper completes the program of constructing
respectively by thgeAaverage Green's functi@(x,x")) and 5 (4— €)-expansion initiated in Refs. 14—16. The dimension-
the correlator(G"G™), are not completely independent. A iy of the spacal=4 is singled out for the Hamiltoniaf1)
study in the parquet approximation shdwhat the math-  fom considerations of renormalizability: for>4 the theory
ematical difficulties in both cases are of the same nature and ot renormalizable and the discreteness of the lattice is of
are connected with the “ghost” pole problem. On the othergnqamental significance, ensuring the existence of a cutoff
hand, to satisfy the Ward identity linking the e'ge”e”ergyparamete[/\~a51 at high moment4; for d=4 a logarith-
part \,N'th the |rredu.0|ble vertex in the Bethe—SaIpetermiC situation holds sway, admitting the existence of both
equatiof would require exact agreement of the diagrams, on_renormalizabl® and renormalizable modéfs for
taken into account in the calculation of the conductivity andy 4 the theory is renormalizable with the help of one sub-
density of states; this circumstance is not dealt with in any o}, tion.  and passage to the continuum limg—0

the presently existing theoriesith the exception of the agW2—>c0nst is possible. The use of simplifications arising

theory recently _proposed in Ref._9. o . at high dimensionalities to construct a{4)-dimensional
For weak disorder the mobility threshold lies in the Vi- o4y requires the successive consideration of all four types

cinity of the starting boundary of the spectrum, at which the ¢ heories: this was done in Refs. 14—16 and in the present

random potential can be taken to be Gaussian by virtue of thg,, The results of this work have already been published

possibility of averaging over scales that are small in COM4n a brief exposition in Ref. 17.

parison with the wavelength of the electron, but large in
comparison with the distance between scatteféns so-
called Gaussian segment of the spectfimCalculation of
the average Green's function for the Safirmer equation The calculation of the average Green’s function
with Gaussian random potential reduces to the problem of 4G (p,«)) (p is the momentum and is the renormalized
second-order phase transition withrzomponent order pa- value of k) reduces in the standard way to a calculation of
rametere=(¢1,@y, . ...y in the limit n—0"'%In this  the eigenenergys (p,«), for which the structure of the
case the coefficients in the Ginzburg—Landau Hamiltonian perturbation-theory series in four-dimensional space at
p=0 has the forr?

2. STRUCTURE OF THE APPROXIMATION

1 1 1
H{w}:f ddX(z C|VGD|2+§K3|<P|2+ZU|<P|4 1

) N K
A
3(0,k)—2(0,0=k2>, uN> Aﬁ(m —) . ©)
are linked with the parameters of the disordered system by N=1  K=0 K
the relations Reference 16 established the structure of the approximation
co=1/2m, k2=—E, u=-—alw?2, 2 which allows one to obtain asymptotically accurate results

(in the limit of weak disorderfor a renormalizable class of
whered is the dimensionality of the spacey andE are the  models, this being the zeroth approximation for the
mass and energy of the partichg, is the lattice constant, and (4— €)-dimensional theory. FON~1 it is sufficient to take
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account of the Coefficienbsm corresponding to the “leading which expresses the condition of renormalizability of the

logarithms;” for largeN this approximation is insufficient in theory, and Eq(15) of Ref. 16, which was obtained in an

light of the higher rate of growth with respect b of the  analogous way. The functio(gg,€) andV(gg,€) can be

coefficients of the lower-order logarithms: therefore it is gen-expanded in the following series:

erally speaking necessary to take account of all the coeffi- w o

cientsAf, but it suffices to calculate them in the leading le D AL M
=lwm'=0

W(go,e)= > W )=
asymptotic limit inN. The latter is possible by combining (90.€) MEzl m(€)8o

the condition of renormalizability of the theory with the Li- " 0
patov asymptotic limit® _

The sum of the high-order terms of the perturbation- V(9o.€) Mzzl Vu()g5 = 2 MEEO Vi o€
theory series gives a nontrivial contribution associated with Lh G . lculated in Ref. 21:
the divergence of the series and is important only for nega ose first coefficients were calculated in Re
tive u; this latter result explains why in the usual theory of W, (e)=—€, W,o=K4(n+8), ®)

phase transitions it is possible to restrict the calculation to
the leading logarithmic approximatidr?°

For d=4-— € the expansion analogous {8) has the
form

W5 0= —3K3(3n+14), Vig=—K,n+2)

(according to Ref. 16 the functio¥(gg,€) coincides with
the functionz,(gg,€) introduced in Ref. 2t the quantity
K, is defined in Eqs(14). Substituting expansiong}) and
(7) into Eq. (6) leads to a system of equations for the coef-
ficients AN(e):

(K+1DAJ (e)=(N—K)eAf(e)
K N—K
: @ = 3 [(N=M)Wy,1(e)

k%+3(0,6)—3(0,0=«?Y(k)

—KZZ (uUA =N 2 Af(e)

{(A/K)E—l
X e —

€

Wgere the coefficientd(e) are finite in the limite—0 and +Vu(e)]AK (e, 9)
Ay(€)=1. Expansior(4) follows from the fact that the quan- L

tity Y in Nth-order perturbation theory is a homogeneousor for the coefficientsy

polynomial of degre& built up fromA ™€ and«™ €. indeed, K+1L _ N K.L—1/q _

in the transition from theNth-order diagram to the (K+ DAy (N=K)AV™ H(1=dL0)
(N+1)-th—order diagram the dimensionality in the momen- N"Ko L

tum decreases by (Ref. 21, which gives the factoA ™€ or - 2 > [(N- M)Wy s 1M

«~ € depending on whether high or low momenta determine “tm=o

the corresponding contribution. Separating out the factor + Vi, M,]AKL M’ (10)

e K ensures the correct limit in expansi@®) as e— 0.
The standard procedure for carrying out the  Wilson’s method™!? is based on the fact that in the

e-expansioit*® consists in expanding the coefficients nth e-approximation one needs to know the coefficients

AX(e) in powers ofe

A= 2, A"e"

©)

ANt for K+L=<n—1, for which Egs.(10) yield the
closed system of difference equations

—NxXN=[W5o(N—=1)+V;g]XN-1,
—(N=Dyn=[Woo(N=1)+Vyolyn—1+[W3oN—-2)

and preserving in each order of the perturbation theory some

of the higher orders in & the first eapproximation corre-
sponds to taking account of only the coefficieAﬁ#o, which

coincide with the coefficients of the leading logarithms in

expansion(3). As is the case fod=4, such an approxima-
tion is insufficient foru<<0 due to the higher rate of growth
with N of the coefficients of the lower terms inel/limiting
the expansion to the coefficient!#l,"o is possible only for
N~1, whereas for largeN it is necessary to take into ac-
count all the coefficientdX'", calculating them in the lead-
ing asymptotic limit inN.

According to Eq.(4) the quantityY is a function of

0o=UA" ¢ andA/k; it satisfies the Callan—Symanzik equa-

tion

d
+W(go.€) — - +V(go,e) (6)

0
an A
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+VoalXn-2,
—Nzy=[W,(N—1)+V;0lzy_1+[W;(N—1)

YN (11)

(where xy=AN?, yy=AN"1?, zy=AN",...), which is
solvable by the method of variation of paramet&rassign-
ing the initial conditions and determining the quantities
W0, V10, ... requires the calculation of some lower or-
ders of the perturbation theory. In particular, for the coeffi-
cientsAN® we easily obtain

+VialXn-1—

I'(N- Bo)
ANO— (7, N ,
VW R NE DT (- o)
Vip n+2
Po=~W,, " nis (12
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To investigate the higher orders énthe Wilson method —R €
turns out to be ineffective, and it is more convenient to start =exp 2Kyl 4(R) ——
with (9). Information about the coefficient#\(e) for

N>1 can be obtained by the Lipatov methtSdaccording to 5 {2Kglf(RIR™ K [1—(A/k) <X
which the later coefficients of the expansioruiof the func- X KZO Kl 6 ' (17)
tional integrals with the Hamiltoniafil) are determined by
the saddle-point configurations—instantons—and have fagwe obtain for the coefficientB(e) at largeN
torial growth inN. For factorial series there exists a simple 1 (=
algebra that enables one to manipulate them as simply @{(e)=C,I'(N+b)a -~ J d In R?R™?2
finite expressions> which in turn enables one to find the Kt Jo
expansion coefficients of arbitraiyl-point Green’s func- X (2K 4l 4(R)R™)K
tions, proceed from them to the eigenenergy and the vertex
parts, etc. According to Sec. 6, tidth coefficient of the -R™¢
expansion o (p,«) in powers ofu has the form ><exp< ~NF(R)+Ne In R+ 2Kql4(R) ———.,
[2(p,x)]n=CoI'(N+b) (18)
. whereT,=c,($2)3. By analogy with the casd=4 (Ref.
XaNf d In R2R™%($pHr (b3 _rp 16), the Lipatov method reproduces the coefficieBf{ e)
0

well only for K<N, which is connected with their rapid

falloff with K and the limited accuracy~1/N) of the lead-
xex;{ —Nf(kR)+NeIn R ing asymptotic behavior. Substitutir{@8) into Eqg. (16), we
obtain the following result for the coefficientsﬁ(e) with
1-(AR)™ € N>1:
+2Kgly(kR) ———— |, (13
Aﬁ(e)z"c‘zr(Ner)aNcﬁf dIn R?R™2
where 0
d+2 2Kgly . K
a:_3K4, b= _2 y C2:C(3K4)7/21 X 6+Tef(R) <hR
€ 1 X —R°°
f(x)==5 (C+2+In m)—3x% C+ >+ E)' XeXP( —Nf(R)+Ne In R+2Kyl4(R) ——,
(19
3 2
=8v2 K , . "
<¢°>p mPKa(p) which follows from Eq.(18) under the condition that the sum
- -~ 16 in Eq. (16) is determined by values dk’<N. Retaining
14(x)=14 exp(f(x)), I4=§ S, only the term withM =1 in the sum(9), it is easy to con-
vince oneself that the equation so obtained is satisfied by the
Sy=27YT (dI2), Ky=Sy(2m) Y, (14)  result(19) for K<N in the caseNe<1 and for allK for

Ne>1. The latter has to do with the fact that fde>1, the
C is Euler’s constant,(x) is the modified Bessel function, sum in Eq.(16) is determined by values df’~K/eN<N
and the constartt is defined below in Sec. VI. Re-expanding for all K in the region of applicability of formul#18). The
series(4) indicated reduction of Eq9) is possible at larg&l by virtue
- N of the factorial growth ofAﬁ(e) under thez) assumption that
2 _ _ .2 —e\N K Wy(€) andVy(€) grow more slowly thary(e). This latter
+2(040-2(0.0=x NE:O (ux™) KZO Brle) result can be assumed to be a consequence of the validity of
K formula (19) for K=0, 1, 2(see Ref. 16 for a more detailed
, (15) exposition.

The system of equation®) determines the coefficients
AK(e) with K>0 for prescribedAd(e). Since Eq.(19) is
valid for the latter for allN>1, it can be used as a boundary
condition on system of equatiort8), which enables one to

K determine all theAl(e) with large N. Thus, retaining only
A(e)= 2, CN_xBE (e)e X, (16)  the leading order in ¥for N~1, defined by the coefficients
K'=0 (12), it is not hard to find the sum of seri¢4).

[1—(A/K)E
>< S —

€

in such a way that the coefficienﬁi(e) are related to the
coefficientsAK(e) by

settingp=0 in Eq. (13), making the substitutio®R— R/«,

and transforming the exponential 3. STUDY OF THE COEFFICIENTS AX(e)

1-(AR/k)"¢ We will limit the sum (9) to terms withM=1 and
exp{ZKdI4(R) — Vo 9
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KAﬁ(e) (N— K+1)eA (€)—Wy(e)[N—1—pB(e)] tion to the sum comes from terms with a small number of
operatorsd, which are not difficult to calculate. The result

AL~ 1)~ Wa(e)NAK3(e), (20)
M’ =M
Here ImImsa-dmr-1= LEO C,b,,_MthMH...hM,_,__le‘in,
Vi(e) €70 29
BlO=~ i — Po (21 29

which determines the zeroth-order term&nfollows by in-
We setAy"(€)=0 by definition in order to account for the duction. For products with oné operator we have
absence of the last term in EQO) with K=N. The last term ~ .

in Eq. (20) is of order~ 1/N in comparison with the previous Iy ...l plflépll p1+1...| M1

term and is taken to lowest order inNL/the need to take it
into account has to do with the fact that to calculaty{ ¢)
with K~N from the assigned values oﬁﬁ(e) requires
~N iterations, and for an accuracy of each iteration of

p1—M M'—p;-1

L Ly
= ct C hy...h, - _
L1=0 L5=0 P1=M=M—py -1 M TPy gl

~1/N the errors build up. In what follows we will drop the fo-1L, L Losars
argumente in the intermediate formulas. XL Mou-ty-1e o, —ge T2 2P,
Making the substitution !
(30)
K K I'(N-8) 0 . .
AN=(—W,) F(K+ 1T (N—K—=3) AN= K XNN-K Noting that by virtue of(23)
(22 eW3
in Eqg. (20) and introducing the notation fprLlhprLrlz w2 | (P~ L), (3D
0
he = — € Am+1 M+1 we reduce the resu(B0) to the form
Mow, AY M-p° W
€ . ~
W3 A&_l ( 3)2 By ...y —ge”(HF2P
tw=w, a0 (M—1-5), (23
2 M pi— L
. L L-L, 17 L
we obtain X% Cor-mCmr—p -1 N—L," (32)
Xnom=huXnom 41+ Xn- TR i XN-2M-1 (24 The sum over L; has a saddle-point at
L.=L(p;—M)/(M'—=M—1); replacingL, by L. in the last
with boundary condition fraction in (32) and making use of the addition theorem for
binomial coefficientdRef. 22, p. 745 we obtain
XN,N: 1 (25)
o . W. : -
Rewriting Eq.(24) in the form ( e\Nj) > CkA,_M_th oy gei(LF20P
Xnm=(m+ ) XM+ 1 (26)
P1—(P1—M)7
where XN=(o =M= (33
¢ (P1 )7 r=LI(M'=M-1)

Inv=hy+te P, oy= N e 2P, (27)  Result(33) has the same structure &9), and by induction
. it is not hard to find products with a moderate numbef
e”'P is the shift operator by-1, which operates on both § operators; from Eq(28) we obtain
arguments, and invoking the boundary conditi@9), it is

easy to obtain - W, STNNTM SN 2s)
1 S N1 y 1 g XN’M:ZO W2 LZO
Xnm=Um+ ) Umr1tms1) - (Inc1+ 1) XnN 5= 2 B
o A N-1 A ><CN M—sm ---NNCL—2s—1
=l N NP VI 5 | dneql _ _
MIM+1 N-1 ple M p1—1%%; " py+ N—-1 y N-s pl—(pl—M)T N—-s+1
N-2  N-1 pi=M N—=(p1—=M)7 p, 55 +1

po—2—(po—M-1)r e

X
7 N—2—(p,—M—1)7 p-
X Sl e1 - Inoal o . (28) (P2 )T pe=bey+1

p 2s+2—(ps—M— s+1)r‘

We do not indicate the argumeNtof the operatofé, which
“N—2s+2— (p—M~— s+1)7|

is shown on the left side of the equation. The main contribu-

(34)

=L/(N-M—s)

1039 JETP 84 (5), May 1997 I. M. Suslov 1039



formation about the coefficien#sy with N~1 is important.
Region Il does not make a substantial contribution to the
sum(4).

The conditions N—L—2s>1, maX{7NM}>1, and
N—M—L>s are satisfied in region | foNe=1. This en-
ables one to usé€l9) for Aﬁ and (35) for the sum overp;,
and neglect the magnitude sfin the slowly varying func-
tions within the summation range i{84) and to sum over
s. After substituting the result back in{@2), we obtain

N—M N-M

_ - (N—=L)!
N-M_ N
1/t k%au N Av = CI(N=p)a LZO LI(N—L—M)!
FIG. 1. Regions | and I, which give nonperturbative and quasiparguet con- W\ L
tributions to the sunt4); the parametetr~ € is defined by formuld42). The X __2) J(N—L)(N— L)bH?eS(L)’ (38
nonperturbative contribution is estimated in effect fo= «/au; the in- ae
equality k/au> 1/t corresponds to a positive value Af(see Eq(45)).
where
. : J(N)= denRZR‘ZeX[{—NfRJrN In R
Calculating the sum oveg,,p,, - . . ,ps in the two over- (N) fo (R)+Ne
lapping regions of parameter space, we obtain the following R
results for it ¢'=1—17): + 2Kyl 4(R) . ) (39
1 (M+7(N=-M) | N
s T @7 "EINTA-OM suy= o [N-L-M 2
) s ea’L | N-L
7 (N—=M) )
X1+
1 LIN—-M-L) N (40
1 I'(M+7'N+1) N _ _
S T(M+ 7 N=s+1) In TNFM—s For N-M<N or Ne>1, the sum ovel in (38) is
determined by valuesk<N, and(38) goes over tq19). For
N |° ) M~1, (38) becomes
- m 7 N~M~s. (36)
N-M( )= _—_ [N-Mg
In the first case it is possible to neglect quantities in the Av (6= M! cI'(N
fractions within the summation range, and transform from 1
sums to integrals; in the second case it is possible to calcu- N F{
—B)a " \Jtl2m exp f (Nt In N—1)+ —
late the sums systematically by separating out the two high- A) m ( ) t
est powers of the large logarithms. Formy6) is valid . i 1 2
literally for s>1, whereas fos~1 the difference between dx exp{ S (N— ——x)
the expression in braces andNrexceeds the accuracy of the 0 2 t
calculation. M+b+ B f, Nt
XX =NJ(X), 41
The product (x) @D
where
- A :<_6)NLZSMANL25
MHIM+1---lIN-L—-2s5-1 W, A(lz/l - ea 0 3e . W, =0  3n+14
I'(M—pg) [(N—L—2s+1) Wa n+8"  aWw ”*812)

I(M+1) T(N—L—2s-3)

3 The assumptions made in the derivation(4f) are fulfilled
B?in the regionNt>1 or 1— Nt<e®?

entering into expressioti34) depends on the coefficients ForNe<1, the sum oveL in (34) is determined by the

A%, which are assumed to be known. By analogy with theneighborhood of the upper limit of the sum, so that<1;

cased=4 (Ref. 16, in the (N,K) plane it is possible to for M>In N andM~In N, Egs.(35 and(36) apply, respec-

distinguish two regions in Fig. 1: region I, in which the sum tively. ForM<In N, terms withs=M, L=N-2s dominate,

in (34) is determined by indicel—L —2s>1, such that the and by virtue of the equalithd=1 we have the following

Lipatov asymptotic limit is valid for the coefficients}, and  result for region II:

region Il (M<In N, Ne<1), “controlled” by the trivial co-

e1‘f|C|entA0 1. Between regions | and Il lies the region of AN-M( oy = (— W, )N I'(N—-5) 2
N (€)=( 2)
non- unlversallty—reglon M ~In N, Ne<1), in which in- F(IN+1T(=B) =0
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3 M+L
w| - 2 M+L
Wg) (N In N)M+L, (43)

which can be obtained from the system of equatidris by

separating out the leading asymptotic behaviorNnfor

ANt For Ne In N<1, terms withs<M dominate, and
for arbitraryM we have the result

r(M-B8) &
N.M ™ ARA SZO

Am-s 1
'M-s—p) s!

S

W3
gtN=M)M

X | —
Wzl

M"M—s+1 (44

whose region of applicability expands without limit as

€—0, and this result transforms to Eqd2) and(43) of Ref.
16 ford=4.

4. ENERGY RENORMALIZATION AND DECAY

As in the casad=4 (Ref. 16, there are two important

contributions to the surtd)—a nonperturbative and a quasi-
parquet contribution, arising respectively from regions | an
Il (Fig. 1). We restrict the discussion to the continuum limit

A—o, in which only the coefficients\m(e) remain in the

sum (4). The quasiparguet contribution is calculated on the

basis of formula43), and has the form

W3(€) . B(e)
[Y(K)]quasiparq: A+ W,(e) uk €In A ,

K*E

A=1+W,(e)u

, (45
€
where the coefficient®/,(€), Ws(€), andB(e) can be taken
to zeroth order ine. Within the limits of accuracy of the
calculations, the argument of the logarithm can be re-
placed by its minimum valua ~ € In e (defined by Eqgs(51)
and(52) below), since forA>A the logarithmic term is un-
important. Thereforé45) can be rewritten in the form

LY( K)]quasiparq: [1+ WZ,ﬁK_Elf]ﬁoi

W -
1+ %) eln A
W20

u=u ) (46)

which differs from the parquet forfi only by the substitu-
tion of U for u.
To calculate the nonperturbative contribution, we set

AN(€)=T,I'(N+b)eNaNF(N) 47

and sum(4) from some large\ to infinity according to Eq.
(46) in Ref. 16:

[E(OW)]nonpertE iTo( KZ)
=imC,k?(kau)Pe” *7F (k¢lau).
(48)

ing (41) from (19) is evaluated in effect foN=x/au and

turns out to be substantial. | did not recognize this circum-

stance in Ref. 17; therefore, Eq22) and (23) in Ref. 17
differ from Egs.(52), (53), and(55) below.

Approximating the serie&) by the sum of contributions
(46) and (48), we obtain

K(Z)— KEZ K’ [1+8K Uk~ ] +iTo(k?),

k?=—E—iT, (49
where K§=E(0,O) and we have allowed for the fact that
k&= K?+3(0,k). Equation(49) is solved like EQ.(93) in
Ref. 15. Setting

2

) |K|2 €l2 8K4|’J| 2le
2_ 20— i@ — — =
K |K| e '’ x . ( T, 1|, T, p

(50)

and separating the real and imaginary part$4®, we ob-
tain a connection between the dedaynd the renormalized
energyE with the unrenormalized enerdyg= — KS in para-

0metric form:
2le . ex 2le
=T, 1+? sing, E=-T¢ 1+7 CoS o,
E4E-T |1 ex\ %[ ex/2 \Y 10
“EeTESL M) Trexz) %9997 ax
p(1+2ex) | ¢
— — +_
tan 3 sinf e+ 2] | (51)

whereE, is defined by Eq(108 in Ref. 15, andk(¢) is a

single-valued function in the intervakOp << 7, analogous to
the function shown in Fig. 2 of Ref. 15, and implicitly defined
by the equation

, | e B @(1+2€x)
sin go-l—& =1 I(x)cosT, (52
where
_ 3 1/4 at 1/2
o-alg) (3
Xexq—fmvtfm 1+ i3 1+ < /t”
2 2
xf:dz exp{—% (%—2)2 2P L1t exi2)g(7),
(53

Equations(51) and (52) simplify substantially in two over-
lapping regions. Fok>In(1/e), i.e., at high|E|, where the
right-hand side of Eq52) is small and the quantity is near
0 or m, we obtain the asymptotic behavior B{E),

The nonperturbative contribution is associated with the di-

vergence of the series, and formally arises from the region of
arbitrarily largeN. However, it must be calculated on the
basis of(41), not(19), since the correction factor distinguish-
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which  produce the illusion of a ghost pble 3] t(x) —3/4
(To(E)=To(|«|?). For large positiveE the result of the E(IJ,K)—E(O,K):KZ[l—E 100) ]
kinetic equation is reproduced; for large negativéhe de- -

cay becomes purely nonperturbative. —iTo(x?)0(p— xRy ) (60)

—-1/4 1

3

t(x)
t(X=0)

At low energiesx<e 2, we have _
i3 (cf. Eq. (116 in Ref. 15, where
. @ e ™ -
Sln(QDJF& =1(0) @& C0s3. t(X)=1+8K, Ux/e, X=p ¢ Xo,=k (61)
1\ 17112 Substituting(60) into Egs.(117) and (118 of Ref. 15 for
1(0)~ 67/12( In —) , (550 d=4—¢, we obtain
€
2le —-1/4 €
which describes the neighborhood of the ghost pole and has | _ FC~ <1+ E_X) 1+ 3 ( _ Ro
the same functional form as the four-dimensional equation 4r[ul 2 X 2+ ex
(see Eq(5]) in Ref. 16 forx<x, and Eq.(100 in Ref. 15. o\~ 34 3
The minimum values oA andx are reached simultaneously, X sin| ¢+ L 14+ — sin ¢+ °¢ } (62)
and to logarithmic accuracy they are 4x €X 4x
-~ 7 1 7 1 which together with(51) and(52), determines the density of
Amp=A=geln—, Xmp=7gIN—, (56)  statesy(E) in parametric form.

. Let us now turn our attention to the presence of scaling:
so that the detour about the pole must be taken at a distanggy the energy measured in units Bf and the density of

of the order ofe In(1/e). states in units of ./[u|, all dependences are determined by
universal functions that are independent of the degree of dis-
5. DENSITY OF STATES order. For|[E|>T, we have the asymptotic behavior
To calculate the density of states requires a knowledge 1 E\—€2]-14
of the eigenenerg¥ (p, «) for finite moment&’; like p=0, > K4E(d2)/2[1—( ) } , E>T,
this quantity consists of a nonperturbative and a quasiparquet . ¢ o2 212
contribution. The quasiparquet contribution is given by the’'=/~ i@[ _ & (U) _[1_(E) } }
parquet equationgRef. 15, Sec. ¥ with the substitution 4[ul 2 \T¢ I'e ’
u—U; the proof of this is completely analogous to the situ- —E>T,
ationd=4 (Ref. 16, Sec. b The nonperturbative contribu- (63)

tion turns out to be important only in the region of large jgicating a ghost pole. For large positi& the function
negativeE, where it is directly determined by the Lipatov ) transforms into the density of states of an ideal system,
asymptotic behavior, and can be calculated on the basis of,4 4t large negative energi& we obtain the following
formula (13) (for N=«¢/au>1/e the correction factor dis- result for the fluctuation tail:

tinguishing results of the typ@ll) and(19) is equal to unity

KE

i 2 ° —k€lau v(E)= & I‘O(E)|E|76/2 In i
[E(pyK)]nonpertzlﬂ'CzK au € T Ro

o 1/2 T4|E|e/2 (d+1)/2
o _= -3z (d-2)/2
x JO d In RPR™2($2) pr{ 63)  pra —C2K4<? In R_O) Ro“IEI™ 1y
p 2Kl 4(Ro) |4(R0)|E|6/2)
K xex;{ - , (64)

xexp{—a[f(R)—eln R] € 4|u|R§

2K 41 4(R) whose energy dependence coincides with that obtained in
+T]. (57 Refs. 25-27, and corresponds to the well-known Lifshits

law?®: the discrepancy a— 0 is eliminated for finite cutoff
For p=0 the integral is governed by the neighborhood of theparameterA. Oddly enough, forex<1 Egs.(51)—(53) and
saddle poinR,, which is a root of the equation (62 have the same functional form as those dor4 (Ref.
P 16), i.e., the behavior of all physical quantities in the vicinity
€=6Ry(~In Ro+In2-C—1), B8 ot the mobility threshold turns out to be effectively four-
so thatRy~e/3 In(1/e). For p=< KRgl, Eq. (57) does not dimensional. As in Refs. 15 and 16, the phase transition
depend omp; for p= xRy * it falls off rapidly with increasing ~ point is shifted into the complex plane, which ensures regu-
p. By virtue of the logarithmic accuracy of the following larity of the density of states at all energies.
calculations(Ref. 15, Sec. Bthe result R; differs substantially from unity only when
_ 1 k€lu<l/e, the terms in braces i63) cancelling almost
[Z(P, %) Inonpert=[2(0,4) Inonper?( KRy = P). (59 exactly. LettingR,—1 in (60) is tantamount to completely
suffices. Taking the above into account, the final expressioneglecting 2 (p, ) Inonpen Since the domain of integration in
for 3(p,«) has the form Eq. (118 of Ref. 15 is p=«. Thus, [Z(p,«)]nonpert iS
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significant only for large-magnitude negatize and can be
calculated using the Lipatov asymptotic form.

the main difference of which fronl.83) consists in the ap-
pearance of the teriNe In R in the exponential. The choice
of instanton, as before, is dictated by EQ94), which after
transforming to the functiom.(x) according to(l.72) takes

6. LIPATOV ASYMPTOTIC LIMIT the fO”OWing form in Spherical coordinatesz(5|x|):

Calculation of the Lipatov asymptotic limit in
(4—€)-theory closely follows the scheme fat=4 de-
scribed in detail in Ref. 16. Therefore we discuss only the
differences that arise, denoting by the numeral | references
equations from Ref. 16.

In massless four-dimensional theory there exists a spe-

” 3—€ ’ 2 3 3 2
¢c(r)+T¢c(r)_KR¢c(r)+¢c(x)_/~40¢c(r)|n r<=0.
(68)

™ the regionr<;<§ , terms withe, kg, and ug are treated
as a perturbation, and by analogy wilt99) we obtain

cific zero mode—the dilatation mode, corresponding to 2V2 1 z
variation of the radiuR of the instantort®82°As in the (=711 157 (Z) )
massive four-dimensional theot§ for d=4— e this mode =T
becomes spft and the integrgtion over it bears a substar)tia}lly :  (1+2)°* 22(2—3)
non-Gaussian character. It is necessary to carry out this in- v(Z)=J dz (1-222 € 121+2)°
tegration correctly to ensure that the correct limit is reached
asd—4. _ _ _ K2 74272
By analogy with(1.82), we introduce three expansions of +— | =In(1+2)+ ——
LT . . ] 4 (1+2)
unity inside the functional integral:
d Inz z+3 )
1:( f ddX|(p(X)|4 f ddXo +Iu’0 (Z+ 1)4_ 6(Z+ 1)3 z7 . (69)

d
<T1 o - [ aodecolocra ).
u=1

=f ddx|<p(x)|4fmd In R?
0

=

—f d%|@(x)[* In(x

1=J d"us(u—vie}), (65
and in place ofl1.82) we make the substitutions
X=Xo=RX, @, (X+RX)=R 9727 (¥),
g=gR%™*. (66)
As a result, we have
[GM]Nfl:J' d In R?Zy(kg) "t
0
dg
d n,p-4-d-2m2 | 29
xfdxofduR f27ri
d
XJ Dell 5(—J’ddX|(p(X)|4XM
u=1
xﬁ(—f d|e(x)|* In 2| 5(u—v)
d+1 X1 —X
d 4 1 70
XUd X e (x)| ¢a| TR )---%M
XM~ Xo
X R exd —H{«gr,0,¢}—NlIng
+Ne In R], (67)
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Calculation of the asymptotic limit of(z) for z>1 with
allowance for only the growing terms ingives for the re-
gion 1<r<kg!

x/i le1 2020 ¢4 3 , 1 |,
(1) = S KRITINTT e o™ 7 KR™ 5 €
11 1
+3k3 In?r+ 2,(1,0—7KR Inr— 2 (70

In the regionr>1, treating the nonlinear terms {B8) as a
perturbation, we obtain after separating out the asymptotic
limit for r<xg?!

2v2
¢o(r)=—7

r2

1+3 k&2 inr

2C—1+2 In(kp/2)
4

k&r2+3k% In? r

1
+| e+ k2| 6C+ = +6In

1
Inr— rj] (71

The matching condition fo(70) and(71) has the form

2uo=€+6k3 (INn kg+C+1-1In2) (72)

Using Eq.(69) to calculate the integral ifi.70) (making the
substitutiond*x—d%x), we obtain

+Nf(xR), (73

1,
N In g.=N In(—m

wheref(x) andl, are defined by14). In comparison with
the cased=4, the functionf(x) differs by a constant-e.

Another modification arises when the divergences are
separated out of the determinants defined by the sunjctile
(1.114)]
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y fAR ddq (62)o( D) —q
o (2m)9 (KP+ kB)[(k+a)%+ 3]

1-(AR)" €

1
+12 = +C—

~9Kgl4(kR) 3

l

(74

For theNth coefficient of the expansion of the Green’s func-

tion, instead of(1.113) we obtain

[Cm(X1, a1, Xmam) In

M+n+d
2

'l N+

fdln R?

MJo

xl—xo)
=

n+8 1—(AR)"€
+ e Kgla(kg) ———

4 ) N+(M+d+1)/2

=c(—1) (

lg
xf d”u5(|u|—1)ual...ua

XM~ Xo
R

X J ddXOR—d— M(d—2)/2¢)C

Xexp{ —Nf(kg)+Neln R

: (79

where the constart is calculated in the lowest order ia
and is given by formulal.114). Going over to the vertex
part, instead ofl.127) we obtain

[TO™(py,....pom) In
211_”/2 4 N+M+5/2
=c(—- )N ——— | —
2MT(M+n/2)\ 1,

2M+n-+d
XF(N T)I d In RZR-4+(@=2M

X<¢§>Rpl---<¢g>Rp2Mexp{ —Nf(kg)+Neln R

1—(AR)" €

€

n
+ e Kala(kr) , (76)

where ($2 )p is the Fourier component of the function
#3(x). To lowest order ire this Fourier component is given

by (14). The vertex"(®? coincides with the eigenenergy and

for M=1, n=0, (76) follows from (13).

7. INSTANTON RESULTS FOR €~1

meral 1)), with the replacement®,— fd% and e(p)— p?.

The difference has to do with the need to separate out the
zero translational modes along with the rotational modes; the
dilatation mode is considered here, in contrast to the previ-
ous section, on general grounds. Accordingly, of the three
expansions of unity65) we use only the first and the third,
but the substitution of variable&6) is carried out with
R=1. In addition to(l1.65), a transformation of the determi-
nantD, is required:

2
D’ d fddx(w)
—L:_(l) H C;'X,u 2
Po T gl )(aﬁ;(x))

"

(77

The prime denotes omission of the contribution of the trans-
lational modes. The instanton equation reduces by this sub-
stitution of variables to the form

Ape(X)+ P3(X) — k2 pe(x) =0,

where k is an arbitrary parametdsee below. For the ex-
pansion coefficients of the Green'’s function we obtain

(78)

[Gm(X1,a1,... Xm am) In
on-1 lg— 121 4| 92 4| (M+d)12
:(277)(n+d+1)/2 d ) (E)
-1/2

| (d=2)M/2
K

4 [K\d4N M+n+d—1
== [N+ ————
K 2

Iy
K
—xo)...¢c(;—xM—xo)

xfddx¢ “x
OcKl

X f d"ud(|ul=1)ug,.. .U,

X

—D_(l)ﬁl(llia)}

X

(79

where

Ipzj d9xpP(x). (80)
Ford=4—¢, (75 and(79) are equivalent only foNe>1,
when the integration oveR in (75), corresponding to the
dilatation mode, can be carried out in the saddle-point ap-
proximation. The saddle point occurs faizr=R,, where

Ry is a root of Eq(58). In this case, by virtue of Eq72), we
have uy=0 and the instanton equatid68) reduces to Eq.
(78) with k=R, . Expressiorn(79) with k=R, after estimat-
ing the pre-exponential in the zeroth ordereindiffers from

In order to compare with the results of other the result for the saddle-point approximation(#t) by the

authors*>=?’ et us discuss instanton calculations tbx4
without assuming thatl is close to 4. Such calculations
closely follow the scheme fat>4 described in Ref. 1ve

denote references to the corresponding formulas by the n
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constant factor

1/2

d L 2
31,4R5(—In Ry+In2—C—3/2) fdx[eo(x)]
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1/2

R3—p? In
0 AN (81)

—
R; Ine

whereh 5= — p? andej(x) are the eigenvalue and eigenfunc-
tion of the operatonLA—Bgég(x) corresponding to the dila-

tation mode. The normalization of the functief(x) is cho-
sen so as to coincide withd¢.(x)/dR]r=1 in the region
|x|=1. The quantity(81) is equal to unity forp~e or

—)\|6~62; from perturbation theory it is easy to convince

oneself that the contribution tag that is first-order ine

(s+3)(s-2) 1

D(l)zsﬂl s(s+1) 5

S#

N

D_(1/3)= H (s+2)(s—1) _ E

522 s(s+1) 3’

_16 128
=3 75

yields the result

(89

vanishes, due to the divergence of the normalization integral

for e}(x) for d=4. o o
For 2<d<4, the determinant® (1) andD(1/3) con-

tain divergence®® which can be eliminated by renormaliza-
tion according tdll.75) with simultaneous transformation to
the renormalized energf (the Thomas—Fermi method

yields us~s?® for s>1, and the first sum ir(1.69) di-

verges. Settingk=1 and summing the non-leading terms of

the perturbation-theory series for the two-poir¥l€2)
Green'’s function according td1.90), it is not hard to obtain

3/2
8|Eg| ] -

v(E )=i—d—|EB| exp — =g
B ajw? 3ajw?
which agrees with the exact solution due to Halpé?irf
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an expression for the fluctuation tail of the density of states;n this work.

dr2 12

|E|d-272

E)_(4—d)2dl(|6—l4 DR(1/3)|
Pyl Ry N e

_ (d+1)/2 _
" |4|E|(4 d)/2 exd — |4|E|(4 d)/2
2adw? 2a3w?

) (82
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(where 4,=(4—d)l,). The energy dependence of this ex- YThe left-hand sides of the final formul#$6) of Ref. 26 contain obvious

pression for the fluctuation tail of the density of states coin-

cides with that obtained by Cardy.Normalization to the

unperturbed density of stateg(E) and changing over from
the renormalized energf to the unrenormalized energy

Eg with a simultaneous shift of the origifsee formula(12)
in Ref. 26 gives the results of Bmn and ParisiRef. 26Y

1/2

I —
v(Eg) |6—|4) | Dr(1/3)| " |Eql
- , ”
vo(—Epg) 3 DR(]-)‘ (adw?)?
| 1E 1/2
X ex —i_g, d=3,
16m  2agWA3
V(EB) =|6_|4 D_R(]-/S)‘llz 47T|EB| 3/2—1 4187
vo(~Eg) 87 | ' Dp(1)| | afw?
| 14E
xexp — —— 4|d B|2  d=2, -
8w 2ayW

typographical errors; substitution in expressi®@3) of the numerical val-

Ref. 26 on the right-hand sides ¢i6).

LA, Aharony and Y. Imry, J. Phys. @O, L487 (1977).

2A. L. Efros, Usp. Fiz. Nauki26, 41 (1978 [Sov. Phys. Usp21, 746
(1978].

3pP. W. Anderson, Phys. Re®09, 1492(1958.

4D. J. Thouless, Phys. Rep3, 92 (1974.

SM. V. Sadovski, Usp. Fiz. Naukl33 223(1981) [Sov. Phys. Usp24, 96
(1981)].

5D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phy86, 261 (1994.

"M. V. Sadovskii, Sov. Sci. Rev. A. Phyg, 1 (1986.

8D. Vollhardt and P, Wiile, Phys. Rev. B22, 4666(1980.

°l. M. Suslov, Zh. Ksp. Teor. Fiz.108 1686 (1995 [JETP 81, 925
(1995].

101, M. Lifshits, S. A. Gredeskul, and L. A. Pastumtroduction to the
Theory of Disordered System#/iley, New York (1988.

115.-K. Ma, Modern Theory of Critical Phenomen®enjamin, Reading,
Mass.(1976.

12A. Nitzan, K. F. Freed, and M. N. Cohen, Phys. RevlB 4476(1977.

18K, G. Wilson and J. Kogut, Phys. Rep2C, 75 (1974.

141, M. Suslov, Zh. Ksp. Teor. Fiz102, 1951(1992 [Sov. Phys. JETRS,
1049(1992].

Ford<2, there are no divergences in the determinants, an#. M. Suslov, zh. EKsp. Teor. Fiz106 560(1994 [JETP79, 307(1994)].

(82) holds in terms of the unrenormalized quantitié®.,
after the substitutions E—Eg, Dg(1)—D(1), and
Dg(1/3)—D(1/3)). Ford=1, Eq.(78) with k=1 has the
solution ¢.(x) =v2/coshx, and Eq.(11.64)

Ms
"_y4
Y 7Y™ CosH x

y=0 (84)

has eigenvalueg,=s(s+1), s=1,2,...since by the substi-

tution y=y cosh °x it reduces to a form analogous to

(1.122). Calculation of the parameters entering if82)

1045  JETP 84 (5), May 1997

161, M. Suslov, Zh. Kksp. Teor. Fiz111, 220(1997 [JETP84, (1997].

171, M. Suslov, JETP Lett63, (1996.

181, N. Lipatov, Zh. Esp. Teor. Fiz72, 411(1977 [Sov. Phys. JETRS5,
216 (1977)]. ;

19A. 1. Larkin and D. E. Khmelnitski Zh. Eksp. Teor. Fiz56, 2087(1969
[Sov. Phys. JETRY, 1123(1969]; A. M. Polyakov, Zh. Kksp. Teor. Fiz.
57, 271(1969 [Sov. Phys. JETRO0, 151 (1969].

20, 7. Patashinskiand V. L. Pokrovski Fluctuation Theory of Phase
Transitions transl. of 1st Russ. ed., Pergamon Press, Oxfd8d9; 2nd
Russ. ed., Nauka, Mosco#982.

2LE. Brezin, J. C. Le Guillou, and J. Zinn-Justin, Phase Transitions and
Critical PhenomenaVol. VI, C. Domb and M. S. Gree(eds), Academic
Press, New York1976.

I. M. Suslov 1045

ues of the parameters obtained in Ref. 25 yields the coefficients shown in



22p. 0. Gel'fond, Calculus of Finite Differencefin Russian, Nauka, Mos-  27J. L. Cardy, J. Phys. @1, L321 (1978.

cow (1967. 28| M. Lifshitz, Usp. Fiz. Nauk83, 617 (1964 [Sov. Phys. Usp7, 549
BG. A. Korn and T. M. Korn,Mathematical Handbook for Scientists and  (1964)].

Engineers McGraw—Hill, New York (1961). 29E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, Phys. Rev.1R 1544
243, L. Ginzburg, Zh. Esp. Teor. Fiz66, 647 (1974 [Sov. Phys. JETR9, (1977.

312(1974)]. %0B. I. Halperin, Phys. Rev139, A104 (1965.
25E. Brezin and G. Parisi, J. Stat. Phyk9, 269 (1978.
26E. Brezin and G. Parisi, J. Phys. €3, L307 (1980. Translated by Paul F. Schippnick

1046 JETP 84 (5), May 1997 I. M. Suslov 1046



The effective action of Wjs-gravity
D. P. Karakhanyan*)

Erevan Institute of Physics, 375036 Erevan, Republic of Armenia
(Submitted 24 August 1996
Zh. Eksp. Teor. Fiz111, 1537-1553May 1997

A new method for integrating anomalous Ward identities and finding the effective action is
proposed. Two-dimensional supergravity aigd-gravity are used as examples to demonstrate its
potential. An operator is introduced that associates each physical quantity with a Ward
identity, i.e., a quantity that is transformed without anomalous terms and can be nullified in a
consistent manner. A covariant form of the action for matter fields interacting with a
gravitational and/\;-gravitational background is proposed.1®97 American Institute of Physics.
[S1063-776(97)00105-4 © 1997 American Institute of Physics.

1. INTRODUCTION will help to overcome the strong-coupling barriee 1 for a
system consisting of conformal matter and two-dimensional
The tremendous upsurge of interestify-algebrabthat  gravitation, which will probably make it possible to avoid
followed their discovery by Zamolodchikov can be explainedthe fractional dimensionality established by Knizheikal®
by the fact that the basic relationships \My-algebras, in  for quantum gravity in the weak-coupling mode. Direct gen-
contrast to those of ordinary Lie algebras, are multilinear an@ralization of the results of Ref. 9 té/-gravity in the ab-
that the mathematical aspects had not been systematicaldence of matter fields was done by Mats@o.
studied. A big achievement in this area of research was the The present investigation develops a method for inte-
use of the Drinfel'd—Sokolov reduction scheferhich re-  grating two-dimensional anomalous Ward identities. Its ap-
ducesW-algebras to Lie algebras and relates them to thelication is illustrated by examples of two-dimensional grav-
second Hamiltonian structure of the generalizedity, supergravity, andVs-gravity. The essence of the method
Korteweg—de Vries hierarchie#/y-algebras contain the Vi- consists in the following. By expressing anomalous currents
rasoro algebra as a subalgebra. In the context of stringh terms of free fields via bosonization formulas, we can
theory, the appearance of the latter is a reflection of invarifower the order of these differential equations and integrate
ance under reparametrization of the string world surface. Thehem. The resulting effective action reproduces the anomaly
extension of this symmetry to invariance under thecorrectly. When the regularization scheme changes, local
W-gravity transformations leads to the theoryWgfstrings in - counterterms are added to the nonlocal effective action, and
the Polyakov approach, i.e., to the theory of the interactionhe emergence of these counterterms changes the form and
of matter fields with gravitational (spin-2 and  symmetry of the Ward identities. The bosonized fields, being
W-gravitational(spinN) background fields. Thus, symmetry free in one regularization scheme, in another scheme are re-
under transformations oN-gravity is the leading principle lated by the fact that they satisfy certain Ward identities.
that makes it possible to write the interaction for fields withwWhen the chiral Weyl-invariant regularization scheme is re-
spins=2, at least in two dimensions. placed by the diffeomorphism-invariant scheme, local coun-
However, progress in this area of research was fraughterterms are added in such a way that the kinetic part of the
with considerable difficulties. First the chiral theory of the effective action becomes invariant both under diffeomor-
interaction of matter anw-gravity was formulated by Hull. ~ phisms and under Weyl transformations. The remairttng
Then Schoutengt al? generalized the theory to the non- pologica) part of the effective action is fixed by the require-
chiral case but encountered significant technical difficultiesment that the total action, being diffeomorphism-invariant
the action in the theory proved to be infinitely nonlinear in under Weyl transformations, be symmetric in the quantum or
the matter fields and nonlocal, so that any further analysis iprojective sense, i.e., is transformed as a 1-cocycle.
extremely complicated. By calculating the functional integral  In Secs. 2 and 3 the application of this method is dem-
over the matter fields with a central chamgeteracting with  onstrated using the well-known examples of ordinary and
Wj,-gravity Schoutenst al® also found the induced action of (N=1)-supergravity, and a differential operaf@ris intro-
W,-gravity in the form of a 1d-expansion. The same re- duced, which with each physical quantity associates its Ward
searcherqgsee Ref. § found the induced action of chiral identity. The operator is actually a Slavnov operator, which
W,-gravity, a direct analog if the Polyakov’s actiofor or-  was studied by Zucchihi in connection with two-
dinary gravity, by integrating the anomaly in the limit dimensional gravity in conjunction with an auxiliary inho-

C— o, mogeneous term that destroys the anomalous contribution in
Clarification of the geometric meaning of the transformation law.
W-transformations would helpV-gravity studies consider- In Sec. 4 these calculations are generalized to the case of
ably. This aspect was studied by Figueroa-O’Fareillal.  chiral W5-gravity. It is found that the result is in full agree-
and Hull® ment with that of Ooguret al®
At present it is generally hoped the¥-gravity studies Finally, Sec. 5 deals with the covariant action of matter
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interacting with nonchiraWs-gravity. In addition to exhib- Clearly, this definition for the fieldp coincides with(2.7).
iting parametrization symmetry al-diffeomorphism sym-  The bracket of tensof with itself is

metry, this action iSV-Weyl invariant and can serve as the . INL— S (v ! NS g o
kinetic part of the effective action diV5-gravity calculated {TOQTO)}= 8" (x=x ) FIT() +T(X) ]9 (X X(%.10)

in the diffeomorphism-invariant regularization scheme.
Although the energy—momentum tensor can be expressed in

terms of ¢, there is no way in which we can express the
gauge fieldh in Eq. (2.5 in terms ofe in a local manner. To
do this we must introduce a quantity that satisfies the regular

The Polyakov action, which was derived in Ref. 7 as theWard identity, i.e., a quantity that transform_s asa scalqr. The
effective action induced by chiral matter interacting with @nomaly can be removed from the Ward identity by intro-

two-dimensional gravity, is the determinant of the two-9ucing a scalar field in the following way:

dimensional Laplacian calculated in a regularization scheme  ¢=In of. (2.1

that conserves Weyl symmetry and half the reparametriza- ) )

tion symmetry. The presence of a conformal anomaly mani;rhe Fransformatlon law fof and the corresponding Ward

fests induces an explicit dependence of the Polyakov actionem'ty have the form

on one of the reparametrization functions. In other words,  §_f=edf,

this effective action can be calculated by integrating the ap- _

propriate variational equation, the Ward identity. Ri=(d—ha)f=0, (212
The Ward identity of two-dimensional gravitation theory

. . . . . 56 Rf: E(?Rf .

in the lightlike gauge is well known:;

2. TWO-DIMENSIONAL GRAVITY

— 3 Now, when all the quantities are expressed in terms of the
Rr=(d—hd—20h)T—a°h=0. 2D function f locally, we can integrate the variational equation
It expresses the anomalous conservation of the systemfér the effective action of the theory, which can also be ex-
energy—momentum tensdt. The fieldh in this expression Pressed in terms of locally and is given by the Polyakov
denotes the nonvanishing metric component that remains aformula. Detailed calculations are given in Sec. 3 for the
ter the lightlike gauge is specified. It is covariant under themore interesting case of supergravity.

transformations Comparing Egs(2.3), (2.6) and(2.12, we see that the
_ gauge variatiord and the Ward identitieR are commutative
oh=(d—hao+oh)e, 2.2 operations on the field§, ¢, andf.

The relationship betweeR;, R, andRy is specified by
the following formulas:

IRy
5.Ry=(€d+2d€)Ry. (2.3 Re=—"

ST=(3*+2Ta+dT)e,

(2.13

Equation(2.3) expresses the Wess—Zumino self-consistency R
condition. If we use the bosonization formula and param-  R;=(9°+2Td+ aT)—f,
etrize the energy—momentum tensor via a scalar field, of
T=02p— Yd0)?, (2.4) We see that the o_peratcR assqciates.with each physical
quantity X a covariant expressioRy, its Ward identity,
the order of the anomalous term (@.1) can be reduced: which in view of its covariance under gauge transformations
can be consistently made to vanish. But since the theory

R,=(0=hd)e—dh=0, (2.5 lacks quantities of the required dimensionality, this expres-

SR,=€iR,. sion must be set to zero. Comparit®y13 with (2.11) and
i ) ) (2.6) with (2.4), we see thaR obeys the Newton-Leibniz

Comparing(2.1) with (2.4) and(2.5), we obtain rule. This property oR makes it possible to write the Ward

Ry= (92R¢— IR, . (2.6)  identities for the correlation functions of the fiel@is ¢, etc.

) o immediately.

IThe transformation law for the scalar fiefdis also anoma- If we apply the Legendre transformation
ous:

So=de+ edg. 2.7 Z[hjzr[h]+f d?x Th, (2.19
If for the field ¢ we postulate the free-field Poisson bracket,Eq_ (2.1) can be written as

{99(x);00(x')} =8 (x=X), 2.9 . ST
the e-variation of any quantityA can be determined by its (4 +2T’9+'9T)ﬁ: —aT, (2.19

Poisson bracket with the energy—momentum tensor: . .
9y where the Bol operatdt on the left-hand side is the covari-
B 2y . ant form of > on an arbitrary Riemann surface, and contains

Oc A(X)_f d*x"e(x"){T(x"); A} (2.9 a projective connection, for which we may take This no-
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tation expresses the covariance of the Ward iderigity), {a@(X);dp(x" ) =6"(x—X"),
just as the Wess—Zumino self-consistency conditigarB) 3.7
does. INX); N (X))} == 8(x—x").

Then, with respect to this bracket, Eq8.5 suggest the
existence of the following algebra for the current fields:
In this section we generalize all the ideas of Sec. 2 to the (T T(x)} = 8" (x—x )+(T(X)JFT(X’))‘S’(X_X’)(g,g)
case of simple supergravity and calculate the effective action {1(x):5(x’)} = (S(x) + 1S(x)) 8’ (x—x'),
of the theory.
Polyakov's result was generalized by Polyakov and—{S(x);S(x’)}=8"(x—x")—3T(X)8(x—x").
Zamolodchikov® to the case of1.0)-supergravity. The cor- - : o .
o parametrize the gauge fields in a convenient manner, we

responding generalization of the Polyakov action representrsnust introduce a scalar multiplef ) without anomalous
the effective action obtained in a regularization scheme thaéimensionality '

conserves the Weyl and super-Weyl symmetries and half the

3. SIMPLE SUPERGRAVITY

supercoordinate symmetH.The nontrivial dependence of St=edf + 3xip,
the action on the other coordinate functiqosld- and even- L L
parity) is determined by a superconformal anomaly. Oy=edyr+ 30€y+ 3x0f, 3.9

The Ward identities of two-dimensional supergravity in

—(T—ho)f—1
the lightlike gauge can be written®s Ri=(d—ha)f—2x¢,

Rr=(d—ha—2dh)T—(iyd+ 29x)S—°h=0, 3.0 Ry=(d—ha—3oh)y—5xdf.
Rs= (9= ha—20h)S— 1 T— 0%y =0 ' This multiplet is related to the matter fields as follows:
ST 2 2 Y
They are covariant under the transformations o=In of + ﬂ‘i

— (of)”

sh=(d—hao+oh)e+ 3kyx, (3.10
_ ) . = I J*f

Sx=(d—hd+30h)k+ (ed—30¢€)x, (32 = é—f—lﬂ—z([?f) .

ST=(*+2To+dT) e+ (:xkd+39k)S, There is no simple way in which we can deduce such a

complicated relationship from the condition that the appro-

_ 3 2, 1
05=(ed+30€)S+(9"+3T)«, priate terms appear in the transformation laws. However, the

ie., problem can be simplified if superfields are introduced.

L s Since the superfield formulation of chiral supergravity
ORr=(€d+29€)Rr+(3xd+ 3dK)Rs, (3.3  contains no auxiliary fields, the meaning of all previous ex-
SRs=(€d+ 39€)Rg+ 3xRy, pressions is not altered when we go over to superfields:

which means that the Ward identifg, transforms in the Ry=(d—Hd—%DHD—2H)U—#°DH,

same way as the quantifybut without the anomalous terms.
Going over to the scalar multiplet of matter fields
(@,N\), with

So=(d+dp)e+ 3K\,

sU=(Dd#*+2Us—3DUD+0U)E, (3.11

SH=(d—HJ— % DHD+JH)E,
(3.4 whereU=S+6T, H=h+6x, D=9dy+ 69, andE= €+ 6k,

SN=(€d+39€)\+(d+ 39¢p)k, with 6 the anticommuting coordinate. Then the current su-
which are related to the current fields by the rule Foeilrgvevlsd'u Is related to the matter superfiebl=¢+ 6\ as

T=d%¢—5(d@)*+3NdX,

p—3(dp)°+3 (3.5 U=Dod— DD osd, (3.12
S=dN—3\de, .
2hoP and accordingly,

we can reduce the order of the derivativeg3nl). The op- L
eratorR acts on the fieldg andX in the following manner: 0P =JE+EsD+3DED?, (3.13

(3.6 ) )
The scalar multipleF =f + 6, with

Ry=(d—ha—3sh)\ — 3xde—ax.
- 1
We see that the gauge fieldsand y cannot be expressed in oF=EdF+;DEDF, (3.14
terms ofe and\ locally, a situation resembling that of Sec. s related to the superfield by
2.
The fields ¢ and A form an algebra of free fields in _ DF
Poisson brackets: ®=In 9F+—=D In JF, (3.19
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while the relationship between the corresponding Ward ideng and\ are unconstrained, but the Ward identitRg and

tities is R, still play an important role. MultiplyingR, by E and
i DE aD+( 1 , DEDSE ) D oE - integrating by parts, we obtain
o= | T2 e 3 - 2 F- 1 1
(9F) JF T (9F) (9F) f 2 :j et
(3.16 d°x do RyE E| D¢ 2DCI>(9 zad)D Re
The formulas that link the current Ward identities with 5 1
Rf ande are :f d X d0 R(D DoE+ E(?(EDq))
Ry yoy YR, (3 1
3 —
Ry=(9°+2Td+dT) 5 Rf(o_,f)3 (ﬂf) 250 + ED(E&@))
1 R, ¥ [Rs AYR;
+2&S)(23—a—fﬁ(ﬁ)—2(ﬁf)z , 81 :fdzx df RyD 5P, (3.22
, 1 R, ¢ [Rs YR, If we “err” twice, i.e., take (3.22 for 6Z rather than3.21)
Rs=| o+ 2T 25_ Fraaiery e W and ignore the relationship betwekhand ®, expressed by
the fact thatRy, is zero, we can integrate this variational
(SS(H&S A R (zg(:;//s N (1/;?)%) equation and arrive at the following expression ZjH ]:

1 —
—— | g2 _ —
If we now use the Legendre transformations to proceed from ZlH]= Zf dxdo(9—Ho®—-25H)D®.  (3.23

the partition function to the effective action, The fact that(3.17) reproduces the anomaly correctly can

easily be verified. Thus, assuming that the superfields
F[T,S]:Z[h,X]—f d>x(hT+xS), (3.18  independent, we can reproduce the anomaly by directly add-
ing the appropriate term to the action.
the Ward identity becomes This conclusion agrees with our ideas about the “trans-
ST fer” of the anomaly from one regularization scheme to an-
(¢?’D+3Ugd+DUD+20U) — =0 (3.19  other. A detailed description of the process in which a con-
ou formal anomaly is transformed into a gravitational anomaly
or, in components, in the two-dimensional gravitation theory can be found in
Ref. 15.
oI (3 1 or _
(3+2To+ aT)ﬁ+ =So+ = as) 5= aT,
(3.20 4. Ws-GRAVITY
o, 1y (3 _ _ ¢ The difference between the theory\dk-gravity and the
o 2T ot " SOH IS 6S 95, above cases is that the chiral formulation of this theory is not

only more convenient but is also the only one amenable to
uantum analysis. The nonchiral version formulated in Ref.
contains an infinite number of arbitrary matter fields and is
too complicated even at the classical level.

The Ward identities of chiraiVs-gravity are

i.e., there emerges a supersymmetric Bol operator, which has
also been described in Ref. 12. In this form the covariance oﬁ
Ward identities under the gauge transformati¢g), which
is equivalent to the Wess—Zumino conditions for an
anomaly, becomes explicit.

Now let us turn to the problem of finding the partition RT:((g__h,g_z,yh)T_(Zba+ 3db)W—°h,

function of the theory: o (4.1)
Rw= (9 —hd—3dh)W+ (2ba%+99B3?+ 155°ba
5Z=f dZX(T5h+85x)=f d’xd6U oH +105°b+160To+16 b T)T—d°h.
. 1 1 Here b denotes the single nonvanishing component of a
—f dzxdaE( d—Hd— EDHD+ EaH) U third-rank symmetric tensor—the gauge field \@fgravity,

the partner of the metric in the multiplet—akid denotes the
(3.21 corresponding spin-3 current, the partner of the energy—

We see that the integrand is the Ward idenfy without momentum tensor. The chiral general-coordinate and
the anomalous term. In the chiral scheme, i.e., a regulariza- W transformations have the form

tion scheme that conserves half the reparametrization sym- 6T=(3%+ 2T+ dT)e+ 3WI\ +20WN,

metry and the Weyl symmetry as well as their superpartners,

_ 5 3 2, g2
the fieldse and\ are related by3.10, and the correspond- SW=0We+3Woe+(5°+10T9"+155T5"+ 99°Td

ing Ward identitiesR, andR, vanish. On the other hand, in +23°T+16T29+ 16TJT)X,
a regularization scheme that preserves supercoordinate sym- o
metry the group parametefsand ¢ vanish and the fields Sh=(d—hao+dh)e+2x3°b—3 INd?b+35°\db
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—23%b+16T(Adb—boN),

Sb=edb—2deb+(d—ha+2 dh)\. (4.2

The quantitieR; and Ry, are covariant under the transfor-

mations(4.2), i.e.,
SRw= (€d+ 3d€)Ryy+ (2N 33+ 99N 9%+ 159°\ 9

+ 1093\ + 32T\ +16TA G+ 16MIT)Ry.

Thus, takingR as the differential operator, we conclude that

(4.3 yields a universal relation
[6,R]=0

on the current fieldg andW.
The transformation$4.2) of an arbitrary quantity;A are
generated by the currentsandW via Poisson brackets:

4.9

5A=J d2X[ e(X){T(x); A+ N (X){W(x);A}]. (4.5

In terms of these brackets, the transformatioh®) them-

selves become

—{T(X);T(X")}=8"(Xx=x") +[T(X)+T(x")]8" (Xx=x"),

—{T(X); W(Xx")}=[W(x) +2W(x")]8" (x—x"),

—{W(x); T(x")}=[2W(x) + W(x")] 8" (x—=X"), (4.6)

—{W(x);W(x")}=8"(x—x") +5[T(Xx) + T(x")]8" (x—x')
+8[T2(x)+T2(x")]8" (x—x")
=3[T"(X)+T"(x")]8" (x—x").

This algebra can be reproduced by expressing the curre
fields in terms of the matter fields and, which induce the

algebra of free fields,
{o' (X" (X")}=6"(x=x),
{e’(x);¢'(x")}=0,
{&' ()¢ (X" )} == 6" (x=x),
if we defineT(x) andW(x) in the following manner:
T(x)=%¢ = 3(0¢)*+ ()%, 8

W(X)= 3+ 39@d?y— P+ 2(d@)2ay+ 3 ay)S.

(4.7

This corresponds to the following transformation law for

the matter fields:

Sp=3de+ dpe—ANI@IY+ 2N % Y— INIY, 9

=€+ PN+ 3INdp+ 2N[ o+ (d)?+ ()?].

With respect toe- and \-diffeomorphisms, these relation-
ships are also covariant:

5R¢=(e&—4)\8¢&)R¢+(2)\82—8)\—4)\&90&)R¢(,4 12
SR, = (€d+ANIPY)R,+ (3INI+2NI*+ ANIpI)R,, .

This also establishes the validity of E@Gt.4) when matter
acts on the multiplet.
The Ward identitieg4.1) can easily be transformed into
Rr=(d%°—d@)R,— dpdR,,,
= ®) 0 1 W (4.12
Rw= (4 d9ddpd— dpd*—3 *Ppd)R,+[ 9> —3 dpd?

+2(99)?9+2(3)%IIR,,.

The e- and A -transformations constitute a closed algebra on
the multiplets of currents{T,W}), matter fields {¢,y}),
and gauge fields{f,b}):

[S(€1),0(€2)]= O(€3= €20€1— €10€5),
[6(€1),0(N2)]= 6(A3=2Nd€1— €20\ 1), 4.13
[8(N1),8(N5)]=6(€e3=16T(NydN1—N1INp) + 2N 3°N

—3 0Np0°N1+ 3 PN20N1— 2 °No\1).

The partition function of the theory is calculated in the same
way as in supergravitation theory: by multiplying Egs.
(4.12, respectively, by and\, we obtain

f dzx(eRTH\RW):f d?x(R,8d¢—R,591). (4.14

If the Ward identities(4.1) were to have no anomalous
terms, the left-hand side of EG}.14) would be the variation
of the partition function multiplied by minus one. If, in ad-
rqgtion, the fieldse and ¢ were to be free and Eq$4.10
were not to link them with the gauge fields and b, the
right-hand side of Eq4.14 would be the total variation of
the following expression:

, (1 — 1
Z[h,b]=f d-x E(?(p((?(p—hﬁ(p)—zﬁl//(ﬁl//—h(?lﬁ)

—dhde+ d*bay+b| 2(d@)?dp— d? @y

2
—30¢%Y+ 5(07@11)3})

=jd&
(4.1

Equation(4.15 is the action of the matter fields interact-
ing with two—dimensional chiral gravity andV;-gravity.
The variation of(4.195 with respect ta4.2) and(4.9) is

1 — _
E(r?(pr?(p— AYdy)+hT+bW]|.

The anomalous equations of motion of the matter mul-

tiplet have the form
R,= d—hdg+ dbay—2b(a2y—2a¢ap) — oh,
Ry= d—hay—3 dbde—2b[>p+ (@) 2+ (ah)?]
—3°b. (4.10
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5Z2= f d?x [ha3e+ b\ + 16\ (T20b+bTaT)].
(4.16

This expression differs from that for the quantum anomaly of
the minimum type by the presence of terms quadrati€.in
This discrepancy is due to the differences in defining the
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transformation law for the field h  under
\-diffeomorphisms. The transformation la@.2) is moti- X 9t In(1+8%g) — (9f)?— d°g
vated by the closure of the algeb#@a13 on the fieldsh and
b and by the Wess—Zumino self-consistency condition, withSettingRt andR, to zero, we can express the gauge multip-
Egs. (4.3 being valid. let in terms off andg:

The following line of reasoning can motivate another _13—9_(5/“)&9

definition of 6, h: if we perform the Legendre transformation b=1y m (4.23
Z[h,b]:r[T,W]+f d?x (hT+bWw), (4.17) 9f Pt 2
hzﬁ'f'zﬁb‘f"yb W+§&In(1+6zg) . (4.29
the expressions foR; and Ry, acquire the Bol operators
L; andLg: These formulas coincide, to within renormalizationjofind
X\, with the solution found by Oogust al.® who interpreted
RT=ﬁ+(a3+2Ta+aT)%+(3Wa+2&W)%, W;-gravity as a connected Wess—ZumiBa(3,R)-theory.

Plugging(4.20 and(4.2)) into (4.15), we reproduce the chi-
(4.19  ral action of Ooguret al.® which must be interpreted as the
. ST effective action induced by quantum fluctuations of the mat-
Rw= d W=+ (3Wd+ dW) ST (°+ 10T 93+ 159T 92 ter fieldse andy, which interact with the multiplet of chiral
W;-gravity via (4.15. The anomalous dependence of this
ST action on the “coordinate” function$ andg is due to the
+(99°T+16T%)d+(25°T + 16T4T)) W W-gravity anomaly. Continuing the analogy with the cases of
two-dimensional gravity and supergravity, we can assume
Thus, that this action is a result of choosing a regularization
scheme that conserves the Weyl &deVeyl symmetries, as
7= f d?x(Tsh+Wséb) well as half the coordinate symmetries of the covariant ac-
tion that describes the interaction of matter fields and ordi-

nary gravity andw-gravity.
=— f d’x[ €d*h+X3°b— 16N (T?+bToT)]. (4.19

To obtain an anomaly of the minimum type it appears rea-
sonable to defind,h with e 1= —8T(Adb—ba\). 5. CONCLUSION

The anomaly can be completely removed from the trans- gy generalizing some of the laws governing ordinary
formation laws and the Ward identities if we transform to g gyitation we were able to find the effective action of chiral
variables €,g), which form a scalar multiplet: W,-gravity. It would be more interesting, however, to con-

e=In of + } In(1-87%g), tinue the analogy and find thé/-analog of the Liouville
(4.20 action; namely, the covariant action that describes the inter-
y=7y"'In(1+8%g), action of matter fields with a gravitational and

W-gravitational background.

where To understand the nature of the symmetry properties of
1 ) W-gravity theory it is advisable to first turn to classical
0= 559 and y°=-12. theory.
As a classical gauge theorW-gravity was first exam-
The transformation law for the fieldsandg is ined by Hull® The nonchiral formulation of this theory was
1 2 later performed by Schouteret al? They started with the
5f=eaf—y[>\azf+§amf+ §>\afa In(1+3%g) |, action
(4.21 S= %J d?x 9, @d_e. (5.1

1 2
i _ 2_ 5244 2
0g=e€dg— 5 yiNig 7)‘[('”) 9°g+ 3999 In(1 With respect to the ordinary diffeomorphisnée=€%d,,¢,
2 the variation of(5.1),

2 P
+0°g)+ 249 of

ds= f d?X [9,(€%, @d_@)+d, e (I_¢@)?

Accordingly, the Ward identities are N )
+dc(0+0)7], (5.2

2
&% + §ﬁf<9 In(1+8%g) |, vanishes i), e =d_e" =0. To generalize this symmetry to
(4.22  alocal one, we must, in accordance with Noether’s theorem,
P2f 2 add to(5.1) the currents

20—+ =
9% "3 =302 t__=%d_9)2

Re=3f—haf+ %abaf+ vb

Ry= 99— hag-+ %abau vb
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multiplied by the corresponding gauge fieltd, , and we require that the theory be Weyl-invariant, so that the
kh__. Herek is an expansion parameter, which is set toequation

unity in the final result. After an infinite number of steps the

action can be summed as a geometric progression to produce pas 65

- shep O
1( , (dy¢—kh""d_¢)(d_¢—kh""d,¢)
S= Ej X 1-12h " h : has a functional of the typ&=S(yhh*f) as a solution,
(5.3y  which is equivalent to invariance undbeff—e’h*? trans-
formations. In this way the final expression for the invariant

Schoutenet al? then stated that the actid®.1) for n

. X . ) . action is
real fields is invariant under holomorphic
W-diffeomorphisms. Indeed, under the transformations )
- 4 . S= | vhd®x h*#g,0d40. (5.10
Sl =d*(N "9, 010, o+ N a_pla_ k) (5.9
the action transforms as In the case ofW;-gravity we propose introducing the

h*~, b**, andb™~" components of the gauge fields, in
order to produce the total tensdr&® andb®?”. The Noether
procedure terminates after the first step, and the invariant
action has the form

1 o
5S= §f d2X dijy (94¢'d, @l d "9 _NTT

+0_@'d_@la_eXa. N 7). (5.5
The fact that the algebra of holomorphie- and S:f d2x (haﬁtaﬁ+baﬁywaﬁ ), (5.11)
\-diffeomorphisms is closed imposes the following con- §
straint on the symmetric constards(see Ref. 3 where
k(i ghmk= 51 ghm (5.6

taﬁ’: %(%QD(?BQD_%W?/;(P),
The action(5.1) can be made invariant under local and )
\-transformations via the Noether procedure by introducing ~ @apy= 3(0a®dp@dy bt dapdghd @+ dathdppd ¢

; : ++ p—— Rpt++ ———
the approprlatg gauge.fleldhs , h ,.b i andp . + 3o g ).
Unfortunately, in the given case the invariant action can be
summed only by using auxiliary fields', : The action (5.11) is assumed to be invariant under the
w-diffeomorphisms
S=szxe<9+<pi(9,cpi+|:i+|:i, S :_4)\aﬁa J
AP P9, (5.12

8\Y=2N"P(340d 50+ 30,

defined with a traceless parameteri.e., )\“ﬁhaﬁzo. The
1 _ variation of (5.11) under the transformation&.12 can be
i@ — §dijkaJFk”. (6.7 written in the form

. o1 .
+F'+(a_¢'—§dijkb+++FJ+F';)

+F.

After the auxiliary fields are eliminated, they are replaced by 5S= J dzx[é b, 5 — @, g (WY \BY
“nested” covariant derivatives, » apy Taby "

FLodgh=eli,p—b dydgligt, (69 RO N ERT NP~ (hNP
and the action becomes infinitely nonlinear. To avoid diffi- +hPN)Y 045, 8NP
cuItles. and operate from the St:’?lrt in a covanant' setting, we +16baﬁy)\,u1/(2tyvv tus—ts,Val )
must introduce more gauge fields than required by the
Noether approach. Specifically, in the case of pure gravita- +160°P7V N (2t gt~ tgt,,) ] (5.13

tion, we must introduce the full tenshy,; instead of the two
component* ™ andh™ . Then the Noether procedure ter-
minates after the first step, and the invariant action has th
form

Defining the\-variations of the gauge fields in such a
way that the coefficients of the curretfg andw, g, vanish,
we ensure that the actigh.1]) is invariant. The transforma-
tions (5.12 represent a specific realization of the constants
d'¥ in (5.4) for the case of two fields. Such a restriction is
not accidental, the point being that when there are three or
more fields, the condition that the covariant algebra of the

-transformations

S=J d?x h“ﬂﬁa(p(?ﬂ@.

Here we expect a new symmetry to appear, a symmetr
that would balance the superfluous degree of freedom relate
to the h™ ~-component of the metric. By requiring that the 5(p|=d”k)\aﬁ(9a(p]o7ﬁ(pk (5.19

energy—momentum tensor of the theory be traceless,

be closed imposes additional constraints ondi, restric-
a«_ aB_ 65 tions which together with the conditior(5.6) have only a
Te=T,h"?=0, T.5= =23, (5.9 o . i

@ sh vanishing solution. In addition, the algebra becomes closed
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on the gauge fields only if the equations of motion are in-corresponding curvatures vanish. The resulting theory has a

cluded, as happens in the simpler case of two-dimensiondinite number of degrees of freedom and, in addition to being

supergravitatiort® ordinary-invariant andV-diffeomorphism invariant, it is lo-
Thus, to guarantee invariance under ordinary andally Weyl- and Lorentz-symmetric andV-Weyl and

\-diffeomorphisms, we introduced seven gauge fields. NowV-Lorentz symmetric.

we would like to impose constraints on the theory in such a It would also be interesting to study this theory as a

way so as to obtain a three-parameter symmetry group thatystem with constraints.

“balances” the three superfluous degrees of freedom. Many thanks go to R. L. Mkrtchyan and O. M. Khudav-
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We obtain an approximate solution for the drift and oscillatory components of the motion of
relativistic electrons in the field of temporally extended high-power laser light under strong
focusing of the light(the size of the focal region is of the order of the light wavelepgth

This makes it possible to start numerically integrating the equations of electron motion near the
focal region. We estimate the impact parameters of the electrons when they are still

efficiently accelerated in the focal region. 897 American Institute of Physics.
[S1063-776(197)00205-9

1. INTRODUCTION beam waist, which can be used as initial data for numerical
integration of the equations of motion. By applying this
Investigations of the acceleration of electrons by high-method, the number of calculated field oscillations is reduced
power laser radiation §>e/a?, where e is the electron by a factor of almost one hundred. For a short pitse0.1
charge, andy, is the Bohr radiusin the focal region of a ps) we compare the direct method of calculation with the
lens have a long history approximate one, and demonstrate that the accuracy of the
The mechanism of such acceleration is fairly simple. In aapproximation is satisfactory. For a long pulse~(200 ps)
strong electromagnetic field the oscillatory motion of anwe give an example of calculating the spectrum of acceler-
electron is relativistic, and the energy of this motion can beated electrons and estimate the size of the region from which
as high as desire¢in comparison to the initial energy of the electrons are drawn into the acceleration process.
electron motioh If the amplitude of the electron oscillations
becomes comparable to the beam waist radigsthe elec-
tron can leave the focgl region WiFh an energy comparable 9 STATEMENT OF THE PROBLEM
the energy of the oscillatory motidhwhich in turn is pro-
portional to the light intensity in the focal spot. By measur-  We take a beam of relativistic electrons moving with
ing the spectrum of the scattered electrons one can estimaitgitial velocity 8,=v,/c= B, (8x=B8y=0) along the axis of
the parameters of the laser pulse in the waist region. a lens(the z axis) with impact parametex,, and interacting
The feasibility of such measurements strongly dependsvith a laser pulse whose field we descritiellowing the
on the number of accelerated electrons, i.e., in other wordgipproach adopted in Ref) Th the paraxial approximation
on the volume of the region from which the electrons arefor a linearly polarized Gaussian beam:
drawn into the acceleration process.
The size of this region is usually estimated by numeri- EX=Q(¢,x,z)sin( b—
cally integrating the equations of electron motion in the field

2 z

——— —arctan—
z+zy/z Zy

of the focused laser light. H.—E @)
Most studies of this problem are devoted to investigating o

ultrashort pulsestens to hundreds of femtosecohdsately, Eog( ) X2

however, it has become possible, thanks to the development Q(¢,x,z)= — ;{— ——. 2

of wavefront reversal methodsto focus laser light with an Vi+29/z4 wi(2)

energy~500 J and a pulse length200 ps into a spotwith & ere ¢— w[t—z(t)/c] is the phase of the field at the point
diameter of(3-5\ (see Ref. & This makes it possible 10 occypied by the electrork is the wave vector of the light,

reach intensigﬁle~1019 chm_zz and electric field 7y 157272 is the beamwidth at distanaefrom the
strengthsE~10™ V/icm (E~10e/ag) in the focal region. ¢,cq1 noint, andzy= mw2/\ is the length of the beam waist,

The number of field oscillations for a pulse of such a length 1, W, the waist radius. The functiog(¢) specifies the
reaches 1Dand even higher values, with numerical imegra‘temporal pulse shape.

tion encountering difficulties related to round-off errors and |, terms of the dimensionless electron velogity: v/c

long computation times. and electron energy
In the present paper we develop a method for calculating
the electron spectrum and the size of the region from which 1

the electrons are drawn into the acceleration process. The Y= Nk

method is based on separating the electron motion into drift

and oscillatory components. It makes it possible to derivehe equation of electron motiofwith radiative corrections
analytic expressions for the state of electron motion near thignored have the following fornf
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d e Wy, and since the solution will be set up fee=>1, for the
G 7B =~ (BT BXH), function Q in (1) we take the first two terms in the expan-
3 sion:
d e
—y=——pB-E. dQ
at”” " mcP QéxD=Qbxo 2+ 5= (x=X0),
X:XO

For short pulses, the scattered-electron spectrum can be
obtained by numerically integrating the equations of electrorwith the exponentials iMQ(x,) and ﬂQ/ﬁxlX:XO assumed
motion (3) in the field of the light beam. For long pulses, equal to unity.
where the number of field oscillations reache$ aad may In Eq. (6) we select the term that is linear it by intro-
even be higher, numerical integration encounters difficultiegiucing a new variabley’ = »—a¢— 7,, for which we have
related to round-off errors and long computation times. ,

However, the fact that the pulses are long makes it pos- dl=a1+,80(%8 )2 @)
sible to approach this problem from another perspective. d¢ 2pBo X

Wi th puse et i g, the et aratn of i il coniion 1'_=0. Now we separat the mo-
: 0 ’ | ! ﬁion into an oscillatory componentyB,, £,7') and a drift

and electron motion can be separateql in oscillatory anql dri Lomponent (v8,), (&), (»'}). To this end in Eqsi4), (5),
components, for which one can easily set up approximatée : !

X . : ) : and (7) we group terms that vanish under averaging over
solutions in the form of series of increasing orders of the

phase derivatives of the field amplitude, e.g.,

¢, and terms that do not. The result is

S dQ 4 By=—G(¢,n)sin ¢— ﬁ(g‘ﬁg)z” —arctan ®
YBx= annw dep 7P & wo(1+ 7°) 7y
n=
Here the derivatived"Q/d¢" depend on the temporal enve- i"': ¥Bx _ ag(¢) o= ek ©)
lope (or profile) of the pulse,g(¢), and the profile of the d¢ B’ N mco'’

light beam formed by the lens. Below we establish that for

long pulses, terms id"g/d¢" are negligible in comparison wherego=Xo/X. . . . .
with terms ind"Q/dZ". The latter depend omnas 12", so Now we can easily obtain the approximate solution by

that the series rapidly converge. This makes it possible tguccesswely integrating these equations by parts. Thus,

start numerically integrating the electron paths near the focal - o d o
region (~200—-300 periods taking the initial conditions YBx~=G cos¢’'|§—sin ¢'@[G(¢)]|o
from the approximate solution.

J'¢ o g
+ 05"1(/’ dTSZ[G(d))] @,

3. APPROXIMATE SOLUTIONS FOR THE OSCILLATORY where
AND DRIFT COMPONENTS OF ELECTRON MOTION
(&—£)%7
Replacing the time variabkeby the phaseb in the equa- ¢ =¢— m —arctany.
tions of motion(3), we arrive at the following system of 0 n
equations: Clearly, the third term is~1/7°. Restricting the series to
d eE terms quadratic in ¥ and performing the elementary differ-
— =_ = 4 entiation of Q (we limit ourselves to the case in which
(¥Bx) , 4
dé mcw Qly—o=dQ/de| ,_o=0), we find that
dé  vB« na 1dg
—=-—, B=27yy(1- By, 5 B~ ’ _- =
d6_ B Yo(1=Bo) 5 ¥Bx~G()cos ¢ +G(¢)(mz g d¢>
d—7’=a 14 (1+ Bo)(¥By)? ae Bo SN 1O 1) 10
ds 280 ' 7 2awWE(1-po) sin &+ 03]

6
©) where we have replacetly/d¢ by a, allowing for the fact
Hereé&=(x—Xp)/\ and p=12/z,. In deriving(6) we used the pat

constant of the motior(1— B,) = vo(1— By), from which it

follows that dp" ., 1
d_N( By~ 2
y . 1tBo, ? 7
y—0:1+ T2 (vB)*. Similarly, integrating(9) by parts and restricting the se-
o N ries to terms quadratic in %/ we obtain
The initial conditions for Eqgs.(4)—(6) are yBy|4-0=0, q
= = i i -~ G 1 a
£l4=0=0, and 7| 4—o=17,. Since the values of the impact i (¢) sin ¢’ +2 cos g’ +4d9 A )
parameterx, of practical interest are those not exceeding B gde¢ 1+7g
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The drift components of motion can easily be found by

averaging Egs(4), (5), and (7) over one period. The first
nonvanishing term on the right-hand side of E4) after
averaging is

dQ o

X (X=Xp)sin ¢',

x=0
since, as Eq(11) shows,x—xy~sin ¢'. Changing the vari-
able ¢ in (4) again tozg, we find that
)

2&, G2< sirfg’
aBwZ 1+ 77\ 1+ 0.51+Bo)(vB,)

wherewy,=wg/\. The angle brackets denote averaging ove
phase, and the functiog(¢), which changes little in the
21 interval, is taken outside the averaging sign.

Allowing only for the first term in the denominator of
the expansion foryB, from (10), and averaging, we obtain

d
ﬁ<'y,8x>:

28 2Bo (7 14Bo ., .| d7
YBI= 5w 1+ Bo L,( N1 55, € 1wy
280 2PBo
= 0 ey, 2
aBvZ 1+ B er(7) 12

Similarly, for drift along thex andz axes we have

B 1 (¥Bx)
(=28 Lod” <1+(%6’x)2(1+,30)/2>
_ 28 zﬂof en ») q
a®B?wj 1+ Bo J 5o\1+G2(1+ Bo)/28,
<1+(7,3x)2(1+/30)/2/30>
1

n
i

70
1+ GA(1+ Bo)I2B,

1
It is sufficient to replace the argument gf¢) in the
integrals in Eqs(12)—(14) by the approximate expression

d=(n—no)la.

n

n

13

1+ Bo ('YIBX)Z

<n’>:—230

J.

n
dn

(14

rFIG. 1. The paths of electron motion with an impact paraméter1l ob-
tained by numerical calculatior{surve 1) and by an approximate method
(curve 2) for the case of a short laser pulse=3.41, A ¢=60m, wy= 20,
and y,=10).

this point determined by solving Eq&l0)—(14), which are
actually an expansion of the solution in inverse powers of
7.

Figures 1 and 2 depict the paths of an electron and the
electron drift along the axis as functions of the distance to
the focal point calculated by Eq&t)—(7) and (10)—(14). In
all numerical examples we used
s
Ap)’

Clearly, the electron path is described fairly well up to
the waist region =2). At the same time, the accuracy of
Eq. (14) is not sufficient for determining the phase of mo-
tion, p=a " 1(n— no— '), at such distances from the focal
point, which leads to a considerable uncertainty in the energy
with which the electron is scattered by the focal region.

If, however, we are less interested in the result of an
individual scattering event than in the spectrum of the elec-
trons that begin to interact with the laser pulse at different
points 7, on the lens axis, there is no need to accurately
determine the phase. Indeed, the relationship between the
phase with which an electron arrives at the pojptand the
coordinatez, at which the electron begins to interact with
the field is#%j,= no+a¢+ n'. This yields

g(¢)=sin’

™
2

Thus, an electron that was initially deflected away

from the axis by¢, drifts in the transverse direction. Its
displacement along the axis is determined largely by the
paramete?
5 48, 47w
a’B*W3(1+Bo)  ¥oBo(1+Bo)’
which depends on the initial electron energyand the beam
waist radiuswg. The integral in(13) determines the depen-

dence of the traverse electron drift on the characteristics of

the laser pulseq andA ¢.

Now it is clear that for temporally extended laser pulses

(lg~*dg/d¢|<1) there is no need to numerically integrate

the equations of motion over the entire electron—field inter

'
2.0}
1.6}
1.2}
0.8}
0.4}

0
-6

FIG. 2. The dependence of electron drify’) along thez axis on the
distance from the focal points. The curves were obtained by numerical in-

action range. Instead the integration can start from a certaifygration of Eqs(3)—(6) (curvel) and by an approximate method of solving

value 7, (| 7in/>1), with the initial state of the electron at
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Eq. (13) (curve2) with the same parameters of the laser pulse as in Fig. 1.
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% Y We see that for fixed parameters of the laser pulse there
160 exists an optimum value of the initial electron energy at
140t which the electron acquires the maximum possible energy
120t when it is scattered in the field of the focused laser pulse.
100 Thus, in the case of the short laser pulse under discus-
sion (A ¢=60m, wy= 20, anda=3.41), the optimum initial
80 electron energy is yo~10, and for a long pulse
601 (A ¢=46 0007, wo~2.55, anda~6) the optimum value is
407 vo~1.8.
20t For the transverse drift not to have a significant effect on
ol . — the electron—field interactio¢) at the waist much be much
0020406081 121416 1'2/73 smaller than the electron oscillation amplitualéB (see Eq.
(12)). Since the integral in14) is of order unity, we can
FIG. 3. The spectrum of an electron arriving at the focal point simulta-€asily see that the value of the impact parameter at which the

neously with the peak of the laser pulser<5.97, A¢=460007,  electron is still accelerated satisfies the inequality
wy=2.55, andy,=1.8) for the following values of the impact parameter:
£0=0 (curvel), and ;= 0.01(curve2).

04
€0< == YoBo(1+ Bo)?, (15)

d¢ 1 dn’ 8T Wy

dno a dno

Using Eq.(14), we can easily show thal( ' )/d 7, does so that the effective electron cross section rapidly increases
not exceed &/ 7,,)2, and at distances where this parameter jgVith initial electron energy. _ _ _
much smaller than unity there exists a linear relationship  FOr the long pulse under discussion, plugging numerical
between the coordinate at which the electron begins to intef/@lues into(15) yields £,<0.07, while for the short pulse we
act with the field and the phase with which the electron arobtain§,<0.33. _— _ _
rives at the pointy;,. By going through all the phases be- Hartemannret al.” studied a picosecond Ias_er pulse with
longing to the interva[0,27] in specifying the initial data @=5-33,A7=0.8 pc, andwp=4.95 um. According to(15),
needed for numerical calculations, we reproduce the spedh® €lectrons withy,=10 reach the waist of such a pulse
trum of scattered electrons that started their interaction witd"om the region around the axis wiigy<9, which consti-
the beam in the interval = — 2a. tutes a considerable fraction of the waist size.

Figure 3 depicts an example of the spectra calculated in  FOr the long pulse £ ¢=60m, wo=20, anda=3.41),
this manner, for electrons that arrive at the beam waist regioW® NOW estimate the volume occupied by electrons that can
together with the pulse peakyf~—aA ). Clearly, in the be accelerated by the field of the laser light to energies
case at hand an electron moving along the axis can becon%_gher than half the peak energy that an electron.can acquire.
accelerated to energies that exceed the initial electron energg/"ce the peak energy that an electron can acquire as a result
by a factor of about 160. However, for an impact parametePf acceleration is proportional to the square of the field, the
£,=0.01, the electron energy drops by a factor of about lectrons of interest must arrive at the waist when the field

after scattering. there is no lower thai /2, which means that
4. ELECTRON SCATTERING CROSS SECTION AT THE b 1
FOCAL POINT OF A LASER PULSE sin(— _) >

284" 12

As noted in the Introduction, for an electron to be scat-
tered in the beam waist region, its oscillation amplitude in
the waist must exceed the waist radius: Thus, the size of the region of interestAsp/2, or (in

terms of length ~aA ¢/2, and the radius amounts to roughly

. 0.01n. For the long pulse under discussion, this yields
21yo(1= Bo) V~m(0.01x 10" 4)2x 5.5=1.7x 10~ * cn?.
It is clear, however, that if the electron oscillation am- ~ Figure 3 shows that only roughly half the electrons be-

plitude is too large, the electron will scatter even before itlonging to the specified region will be accelerated to the
gets to the region of peak field strength in the waist, and willrequired energiegfor this to occur, the electrons must enter
not acquire the energy it could if it reached the waist regionthe waist region with specific phageghus, for the pulse
Thus, having the highest possible energy imparted to th&nder discussion, the number of electrons accelerated to sig-
electron when it is scattered at the focal point imposes afificant energies in the waist region to significant energies is
additional constraint on the electron’s maximum oscillationN=~0.5Vn, or N~0.85x 10 *!n, wheren is the electron
amplitude: beam density.
We see that studying the intensity of such a laser pulse at
@ <wy( 1.5-1.7). the focal point requires using an electron beam with a par-
2myo(1—Bo) ° ticle number density much greater than**tbn™3.
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5. CONCLUSION The authors are grateful to G. G. Kochemasov for useful

We have studied the problem of electron scattering b emarks.. The present work was sponspred by the Interna-
P g%y E5“Pnal Science and Technology Centeroject 111.

temporally extended laser pulse focused to a region severd
wavelengths long. We have found that for extended pulses
the electron motion at Iarge distances from the waist regioﬁ)The dependence of drift oD is clear from the start. Indeed, in the non-

can be represented to high accuracy by the superposition Ofelativistic limit the ponderomotive force acting on an electron in a plane

f ion: drif dicul he | . d wave istond=(e2/4mow2)VE§. Since the ponderomotive force is signifi-
two types of motion: drift perpendicular to the lens axis, an cant only in the waist region, the displacement of the electron due to the

oscillatory motion. force is Xg=(F pona/Mo) (t%/2), wheret=z,/v, is the time it takes the

For both types of motion we have derived analytic ex- electron to travel through the beam waist region. Pluggirg, iamw3 and
pressions in the form of series in inverse powers of the dis-noting thatVEj=(4£,/w§)E§, we find thatéy~ £wia/ 83, which coin-
tance to the waist, which makes it possible to calculate thecides with(13) calculated in the approximation in whi€?< 1. The factor
initial values of the electron coordinates and velocity for nu- 5 2 in the formula forD simply allows for the increase in the inertial mass
merical integration of the equations of motion in the vicinity °' e electron.
of the waist. —

For various values of the impact parameter of electrons gi\(/i 9A8%°”°”°V' A. 1. Arter’ev, Yu. L. Kalacheset al, JETP Lett47,
that arrive at the waist region together with the peak of thezy " Fedorov, Electrons in a Strong Light Fieldin Russiai, Nauka,
laser pulse, we give the electron spectra after scattering.  Moscow(1991).

The expressions for electron drift perpendicular to the jW- Scheid and H. Hora, Laser Part. Beams315(1989.
lens axis enables one to estimate the electron scattering crosgé?:g(Tg‘snsema””' J. Woodworth, M. D. Pergt al, Phys. Rev. B51,
section. For a pulse-0.2 ns long and a waist diameter of sy, v. polgopolov, A. M. Dudov, L. I. Zykovet al, Izv. Ros. Akad.
about 3\, the volumeV occupied by electrons that can be- Nauk, Ser. Fiz58, 35 (1994.
come accelerated at the focal point of the lens and can béG. G. A. Kirilov, G. G. Kochemasov, and S. M. Kulikov, #roc. 12th

. . . . . Int. Conf. on Laser Interaction Plasma Phenomena, Osaka, Japan, 1995
used to estimate the light intensity at the focal point has beenAlP Conf. 369, II. p. 866.

1
found to be about 10" cm. M. V. Vinogradova, O. V. Rudenko, and A. P. Sukhorukdheory of
Hence determining the peak light intensity in such pulses Wavedin Russiai, Nauka, Moscow(1979.
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from the scattered electron spectrum becomes possible wher‘lg- D. '-a”daFl)‘ and g- ?"( é—g;g”ﬂhe Classical Theory of Fieldsth ed.,
beams with an electron number density 101t cm™3 are ergamon Fress, LXIoKE=19.
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Evolution of the width of the wave packet of a charged particle interacting with a
quantum electromagnetic field
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Novosibirsk, Russia
(Submitted 17 September 1996
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The path integral method is used to study the width of the wave packet of a relativistic charged
particle interacting with a quantum electromagnetic field. A general expression is derived

for the density distribution of a particle moving in arbitrary external potentials. An electron
synchrotron with weak focusing is studied as a specific example, and the width of the

wave packet of an electron moving in this accelerator is found9@7 American Institute of
Physics[S1063-776(97)00305-3 © 1997 American Institute of Physics.

1. INTRODUCTION forces and whose width falls off exponentially with the pas-
sage of time. One the other hand, the coordinates of the
The width of the wave packet of an electron moving in acenter of this distribution as a whole depend strongly on the
circular accelerator is known to be determined, after a londluctuation forces, and in averaging over these forces we ar-
enough time, by two competing factors, classical radiationive at what is known as the “Brownian” contribution to the
damping}? and an increase in packet width due to the quanpacket width, the principal contribution a large times.
tum nature of radiatiof. However, the method used by The system we consider here is an example of a dissipa-
Sand$ and Kolomenski and Lebede¥ to calculate the tive quantum system. The simplest model of a dissipative
wave-packet width was semiclassical and statistical. Theguantum system, a particle linearly coupled to an ensemble
electron in this approach is a classical particle that spontanef independent harmonic oscillators, was studied by Caldeira
ously emits photons with a giveftlassical average radia- and Leggetf. Despite the formal differences between the
tion intensity. Strictly speaking, in such an approach oneresent model and model discussed in Refa@Gelativistic
must use such a notion as the width of a particle beam insetting and a more complicated coupling scherie packet
stead of the width of the wave packet of a single particle. width in both cases has the same structure, i.e., it can be
The present investigation develops the general methodeparated into “Brownian” and “intrinsic” parts, each of
for a rigorous quantum calculation of the wave packet denwhich has a characteristic time dependence.
sity of a relativistic charged particle interacting with a quan-
tum electromagnetic field. To solve this problem it is conve-
nient to formulatg relativistic quantum mechanics using thez_ THE INFLUENCE FUNCTIONAL
language of path integrals. To allow for the effect of a quan-
tum electromagnetic field on the particle in this approach one  The action of the system under investigation is given by
can use the influence functional technidtfe. the following expression:
In Sec. 2 we derive an expression for the influence func-
tional for the case where initially the electromagnetic field isSL9-A]=Sold]+ S[q,A]+ Sa[A]
in thermal equilibrium and is characterized by a temperature t i .
T. In the semiclassical approximation, where the packet is :f dr(—MV1-g*+ecA®™(q,7)—eU*(q,7))
much narrower than the characteristic scale on which the 0
external potentials vary, the fact that the interaction with a t . 1t
quantum electromagnetic field is taken into account leads to +ej d7 gA(qQ,7)— Zj de d*x(F (X, 7))?,
the emergence of three additional forces in the equation for 0 0
the particle’s classical path: the radiative reaction force and (1)
two fIL_Jct_uation fo_rces,_which allow fpr Fhe gquantum naturewhereq, e, andM are the position, electric charge and mass
of radiation. Section 3 is devoted to finding a general expresy¢ o ojectron A andU(® are external vector and scalar
sion (in the form of path integrals of the fluctuation forges

L otentials, andF ,,(x,7)=4d,A,(X,7)—d,A,(X,7) is the
v u v v tu
for t_he denS|_ty d!stnbufuon of the wave pack_et of a Charg_e({q)uantum electromagnetic field tensor. The speed of light and
particle moving in arbitrary external potentials. Finally, in

Sec. 4 di h luti £ th K ¢ the Planck constant in the present paper are set equal to
ec. 4 we discuss the evolution of the wave packet o Mynity: =c=1. Here and in what follow$where possible
electron moving in a specific system—a synchrotron with

K f ; find that f h fixed G _ fvector indices for the electron position vectqr electromag-
weak focusing. We find that for each fixed configuration of yqyic field A, etc. are dropped. We also select the most con-
the fluctuation forces the wave packet has an “inherent”

i L EEEe o P X -'* venient(for our purposesCoulomb gauge for the field:
relative density distribution, which is determined by the ini-

tial wave function and is independent of the fluctuation Ay=0 and V-A(x)=0. (2)
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We express the Lagrangian of the electromagnetic field, , . )
Ln, in terms of the field's Fourier transform F[d.d ]=f k1_>[O dAs(k) dAi(k) dA(K) pa(AA))
A(k,7) = [d3XA(X, ) exp(—ikx): :

_ . X Il DA(k) DA’(k) expii(S[q.A]
LA[A]=kE>O((Re[A(k,r>]>2+(Im[A(k,m)Z f f k>0

—S[q", A" ]+ S[A]=SA[A']). )

All path integrals in(5) and(7) are evaluated along the paths

q(7),q'(7), A(7), and A’(7r) with boundary points
where for the sake of computational convenience we makq(t):qf, a’(t)=qf, q(0)=q;, q'(0)=q/, A(t)=A'(t)

the momentunk discrete and replace the integral okeby = A, A(0)=A,, andA’(0)=A/ .

—K(REAk, ND?=K(IM[Ak,T)]?), (3

a sum ovek: If we set the influence functional to unit§[q,q’']=1,
43K the path integra_ﬂG) corresponds tq the “positive-frequency”
_3_)2 . part of the Klein—Gordon equation for the particdevave
(2m)° % function.
The notation for the summation range3q -, in (3) means [(i9,—eU®)—\(—iV—eAl®)2+M?]y(q,t)=0.
that for the independent variables we take the real and imagi- ()
nary  parts of the  Fourier ~ components Note that we can speak of the wave function of a single

A(k)=RgA(k)]+i Im[A(k)] in the half-spacek,>0  particle only if the particle energy is much higher than the
(A(=k)=RdA(k)]—i Im[A(k)], since the fieldA(x) is @  yncertainty in energy, which is related to both photon emis-
real quantity. sion and the finite size of the wave packet. Otherwise we
In terms of the variables RA(K)] and InfA(k)], the  myst use field theory with an arbitrary number of electron—
interaction Lagrangiah, can be written positron pairs. Thus, in a comoving reference frame the en-
ergy of the emitted photons and the reciprocal wave-packet
leef d3x q(7)83(x—q(7))A(X) width expressed in energy units must be much less than the
particle’s rest mas$/c?. In a circular accelerator the first
condition yields the following restriction on the electron en-

=ek2>o (2 coskq)RGA(K)] ergy:
v4 - 2<RMC)1/2
, K E<E,,=Mc? ——| |
-2 sirtkq)lm[A(k)])(q—k(?(—z) . @ 2 h

whereR is the accelerator’s radius.
The choice of gaug€2) (A(k)-k=0) makes it possible to Another restriction on the applicability of our approach
add a term proportional b to the right-hand side of Eq4).  is the fact that the time intervals considered cannot be too
After doing so, we can assume that we also have longitudinahort. The function
polarization of fieldA(k)«k, which, however, does not in-

teract with the electron. W(gs )= quDq exp(iSe[q]) 9
Suppose that initially an electron is in a pure state with

wave functiong(q), and that the electromagnetic field is in js the solution of Eq(8) only in the limit dtM>1, where
thermal equilibrium at temperatufieand is described by the ¢ is the length of the time intervals into which the entire
density matrixp(A,A"). time intervalt in the path integral with respect @q in (9)
The electron density matrix at timeis given by the s partitioned. Furthermore, atM~ 1 the path integrai9)
given by the convolution of the density matrix propagatoris generally ill-defined. Thus, within our approach we cannot
and the initial particle density matrix: derive a correct expression for tliefinite) correction to the
particle mass, which builds up precisely on short time inter-

p(ds.0s ,t)=J dqg dai J(q¢,qs ,t;0i,9{,0)(qi) ¥* (a;). vals (see the discussion following EGL7)).
As noted earlier, the electron does not interact with the

(5) longitudinal polarization of the electromagnetic fi¢tte the
The density matrix propagator can be expressed in terms dfagrangian(4)), so that in(7) we can integrate over all three
path integrals over the electron paths: polarizations of the fielth(k).
The electromagnetic-field LagrangidB) consists of a
J(9¢,9¢ ,t;0i,q; ,0) set of Lagrangians of independent harmonic oscillators. The

problem of calculating the influence functional for a har-
_ Da Dg’ exniS —is[q’DF[a.a'], 6 monic oscillator linearly coupled to another systésee Eq.
f J’ a4 KiSola] old'DFLa.q] ®) (4)) was solved exactly in Refs. 4 and 5. Thus, we can obtain

where the influence function&i[q.q’] can be expressed in the following expression for the influence functiorid@):

terms of integrals over the fields(k):*° Flq,q9']=expil) exp(—R), (10)
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where

=1 _Iq/q/+|qq1_|q/q

qq
d3k Tt ;e
B f (2#)§J0d7j0 dsm sin(|k|(7—s)){cogk(q,—qs))

X (0,05~ (9.)(gsn)) —cogk(q,—g¢)) (g4~ (d;n)
X(dsn)) +cogk(d,~q¢))(d,ds = (d)(dgn))
—cogk(q,—0s) (05— (a:n)(qsn))} (12)
and
d3k [t t e
szwfodrfodsm cog|k|(7—s))
xcoth%{cos(k(qf—qs»(mqs—(qu(qsn))

+cogk(q.—92))(g.as—(qin)(gan))

—2c0gk(q,—94))(a,9:— (9,n)(ain))}. (12)

Heren=k/|k|, kg is Boltzmann’s constant, and for the sake

of brevity we have put),=q(7).
We start with the contribution of the terig, . In inte-
grating by parts the expression

sin([k|(7—s))cogk(q,—q2))(q.n)(q.n)
2

d
=sin(|K|(7=$)) g costk(a,~a)k 2

in (11) we can replace the terng{ n)(g.n) in the integrand
of (11) by unity. Then the dependence on the vectam (11)
becomes trivial, and the integral witi®k can easily be
evaluated:

a (t t 1 ,
lgg —lgq= Efodeodsm{g(T_s_|q7_q5|)
—8(r=s+]q,~q5)}(d.as— 1) (13
Here
€ 1
Y= 4mhc 137

is the electromagnetic coupling constant. The contribution o
|4 €nters into(13) by virtue of the fact that the domain of
integration with respect te extend over the entire time in-

tervalt.
The particle-path variationsq,=q,—q., which coin-

v(vv)
(1-v%)?

3v(vv)? (89)2
S0 (1ol S
(14)

wherev:d_is the velocity of the “average” particle path

q,=(9,+q.)/2. Clearly, the contribution of14) to the in-
fluence functional leads to the appearance of the well-known
radiative reaction forcésin the equation for the classical
path.

Let us write the termlyq in (11) in Lorentz-invariant
form:

t t
Iqq=—af0drf0dsf d3rf d3r'j,(r,7)j*(r",s)

X 8((1=8)*=(r—r")?), (15
wherej ,=(p.]) is the “particle” density four-vector, with
p(r,7)=58%r-q,
and
j(r,m)=0.8(r—a,).

We calculate the relativistic scaldy, in the comoving ref-
erence frame:

t -
lgq= JOdT V1-g3(— M),

wheredr/1—¢? is the “proper-time” differential, and

(16)

1
6M=f d3rf & po(1)polT ') 7 (17)

[r—r’|’
wherep(r) is the “particle” density distribution in the par-
ticle’s rest frame. We see thgj, in (16) leads to the renor-
malization of the electron mash] + §M — M, with the ex-
pression foréM coinciding with the classical expression for
the self-energy of a distributed charge. In our case the cor-
rection to the mass proves to be infinite, since the “charge”
is a point chargepo(r)=4(r).

In Eq. (17) we have the classical linear divergence of the
electron mass¢M ~e?/r,, wherer , represents the electron
“radius.” This contradicts the quadratic divergence of the
particle mass in scalar QE(M?)~ aA?, whereA is the
cutoff in integrals over momenta in QED. The reason for this
jnconsistency is that, as noted earlier, the path integigal
does not describe very short time intervats—s|<1/M,
which, as Eq(15) shows, contribute to the divergence of the
electron self-energy.

The expressioril2) for R in leading (quadratic in5q)

cides in order of magnitude with the size of the wave packet?rder has the following form:

is much smaller than the characteristic scale over which the
external potentials varyl.. This means that it suffices to R=

keep only terms that are linear #g in (13). Further calcu-
lations yield

o _2aftd 5 v +3i1(vi))
aq’ " 'a’qT "3 o T oq; 1—02 (1_02)2
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d3k J’td ftd e’cod |[k|(7—s)) " K|
(2m)3), T 0 s 4/K| €0 2kgT

X cogk(q,— qs)){(89,8qs— (8qsn)(8q.n)) + (kdq,)

A o (89)2
X(kége)[q,9s—(qsn)(g.n)]H 1+0 z | (18
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To leave only terms that are linear i#g in the effective 3. DENSITY DISTRIBUTION
action, we write the exponential R in terms of several new ) ) ) )
path integrals of what is known as fluctuation forcEg(r) In the'path integrals irf6) we introduce new variables
andF , (7), with weight functionsP|[F|] andP, [F, ] given ~ q and4q instead ofq(7) andq’():
by the identity ,
— _a(n+a’(7) .

qQ(n=——7—— da(n)=a(1)=a'(7). (22)
e’REfdeDFPFPF _

| L PILFIPLLF,] In terms of these new variables, the expresg@nfor the
particle density distribution is

XEX[{ i fth FH(T) 8q(7)
0 ql
q|+_

e

Xf DF” DF, PH[FH]PL[FL]

p(ar.0= [ da,acaa) v
t
—ijodT FL(T)&](T)]. (19

The correlation functions df | andF, at different times can
easily be found by employing the second functional deriva- XJ Dq D(89) exp(iSed d,59]). (23
tive of the exponential19) with respect tosq and 5q:
The path integrals in(23) are along the path and
&k ecos|K/(7—9)) p grals in23) ong the pathg(7)

<F|“(T)F||j(s)>=f 533 Tk 8q(7) the boundary points q(0)=q;, q(t)= . qr,
(2m) K| 6q(0)=4q;, and 6q(t)=0. The effective actiorB. in an

K| L approximation linear infq was obtained in Sec. &ee Egs.
xcot?-( m) cogk(g,—Qs)) (10), (14), and(19)):
B
. o S t . Mv —
i@ A @@, @0 Sea.oa= [ dr |02 ae@)
3 @2 _ — .
FonFo)= [ s g +efv H(Q) ]+ Fyc+ Fy)— 50F,
K| +e—(6qux>(q))} (24)
Xcotl'<2kBT)cos{k( qs))
X(&j—nin;). (21) wherev(r)zar), E(q) andH(q) are the external electric

and magnetic fields, anié;, is the radiative reaction force,
These correlation functions clearly show that in the ultrarela-

tivistic case, with the photons emitted chiefly along the par- = :2_6“ v n 3v(vv) n v(vv) n 30(00)2)
ticle velocity vector, the forc& acts parallel to the velocity 3 \1-0v2 " (1-v%? (1-v9? (1-0%)°
and the forceF, perpendicular to the velocity. (29

In the nonrelativistic limit we can ignore the contribution
of F, since it contains two extra powers of the velocity over
and above the contribution &f, . On the other hand, in the
ultrarelativistic casefF| provides the principal contribution,
since it contains the frequendl| of the emitted photons as
a factor, and this frequency is much higher than the charac- S _ S _
teristic frequencies of particle motion in external potentials. mseff[q ¢,69a]=0, 5_—Seff[QC|15qcl]:O (26)

In the semiclassical limit we are examining here, where q
the wave-packet width can be assumed small compared igith appropriate boundary conditions. The first equation in
the scale on ﬂhich the external potentials vary, we can inter26) is independent obq,, and has the form of a classical
pret the pathg in (20) and(21) as a classical path obtained equation of motion in external fields with a radiative reaction
by solving classical equations of motion without allowing for force and fluctuation forces on the right-hand side:
corrections associated with fluctuation forces.

The physical meaning of fluctuation forces is clear. d
These forces allow for the quantized, fluctuating nature of at = 1—
the radiation. In connection with the problem of electron q
motion in a circular accelerator, such forces were introduced The saddle-point value of the effective actit@¥) cal-
in Refs. 1 and 2 Statistica”y on the baSiS Of the faCt tharcu|ated a|ong the C|assica| paal is independent Oﬁqcl
photons are emitted independently of one another. In th@nd is purely a surface term:
present work the fluctuation forces appeared in a natural
manner from exact quantum calculations. eff[qc,] (p|+eA(ex(q )—F,(0)), (28

The path integrals along the electron path&28) can be
evaluated by the saddle-point method in the semiclassical
approximation. The saddle point of the effective actf®y
can be found by solving the equations

—eE+e[q H]JreFfrJrF”JrFl (27)
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where p;= pi(a,a;tﬂ:u :F,) is the initial momentum of tially by the distribution function30) in the phase space, Eq.
the classical path that satisfies E87) with boundary con-  (27) becomes linear in this deviation and contains fluctuation
ditionsaO)zaandatha. forces on its right-hand side.

Clearly, the path integrals along the particle paths in Eq. 1€ solution of the resulting linear equation with the
(23), written in terms of variables shifted by their classical SPecified right-hand side can be represented by the sum of a

values.q— g andsq— 8qy, do not depend in the semiclas- particular solutionéq,, which depends on the fluctuation

. g . forces, and the general solution of the linear equafisith
sical approximation on the fluctuation forces and the bound- ) . - .

L — — zero on the right-hand sigi¢hat satisfies the corresponding
ary pointsqs, q;, anddq;,

, and reduce to a function that ,,,n4ary conditions. In this way we arrive at an expression
depends only on time.

similar to the expressioii4l) in Sec. 4 that relates the
Thus, only path integrals of the fluctuation forces remain( al ﬂ ) 3

. . IR boundary pointsg; and q; to the initial momentump;
in the expression for the electron density distribution: (which is an argument of the distribution function @9)),

with the final pointq and the particular solutioaq, enter-
ing into the expression fomp; only as the difference
o dqs— 69, wheresqs=q;—( is the deviation of the final

Xf da; f(qipi(qi,qs;tF),FL)), (29 point from the classical path. Since the particular solution

dq, is the only quantity that depends on the fluctuation

where the functionf(q,p) signifies the initial distribution forces, for any fixed configuration of these forces the wave

p(qs,t)=Nq(t) f DF| DF, P|[F/IP.[F,]

function in the phase space, packet has an “intrinsic” relative density distribution that is
5q 5q independent of the fluctuation forces and is determined by
f(q,p):J d(sq) ¢*| q— _)¢ q+ — the initial wave function. The role of the fluctuation forces
2 2 reduces to simply shifting the derivédiassical distribution

xexp{—i8q(p+eA®(q)—F,(0)}. (30 asawhole.
4 a(p (@ 100 Thus, the square of the packet widthlong the axes
The presence of a term in braces that is proportional tq=yx y, z)

F, (0) can be explained by the fact that, as E2j() clearly

shows, the time derivative-, is actually a force, and 0125< f d3as p(as ,t)(gqif)2>
—F, /e is thereby an addition to the vector potential of the
external field. separates into what is known as the “Brownian” part and the

As EQ.(29) clearly shows, for any fixed configuration of intrinsic part. The Brownian contribution to the square of the
the fluctuation forces, the wave function has a density distripacket width is given by the radiation fluctuations and is
bution coinciding with that of a beam of classical particles, adetermined by the average over the fluctuation forces of the
distribution that was initially specified by the distribution square of the particular solution obtained earlier:
function (30) in the phase space, and that then evolved Witl’(o'J(Br))zE<(5qu)2>_ The intrinsic width, on the other hand, is
the passage of time in accordance with the classical equatidndependent of the fluctuation forces and hence coincides
of motion(27) with a radiative damping force and fluctuation with the width of a beam of classical particles that initially is
forces on the right-hand side. specified by the distribution functiof30) in the phase space

Thus, in this section we have derived a closed expresand evolves with time in accordance with the classical equa-
sion, consisting of29) and(30), for the density distribution tion of motion (27) with the radiative reaction force on the
of the wave packet of a charged scalar particle moving irright-hand side but without the fluctuation forces.
arbitrary external potentials with an arbitrary initial tempera-
ture of the quantum electromagnetic fidlthe temperature
enters into the expressions for the correlation functi@s
and(21)).

Now let us recall the principal assumptions made in de- In this section we attempt to use the general formulas
riving Eq. (29) for the wave-packet density distribution. In obtained earlier to calculate the width of the wave packet of
the particle’s rest frame, the characteristic energy of thean ultrarelativistic electron moving in a circular accelerator,
emitted photons and the reciprocal wave-packet width ext.e., a synchrotron with weak focusing.
pressed in energy units must be much less than the particle’s Suppose that an electron is moving in a uniform mag-
rest masMc? (only then can we sensibly speak of a single netic fieldH=(0,0,H) directed along the axis. The radius
particle). On the other hand, the packet width must be smalR of an equilibrium path determines the electron velocity
compared to the scale on which the external potentials vary,=Rw and the Larmor frequency= (e H/I\/I)\/l—voz. Let
(only then can we speak of a wave pagket us assume that within a small range of angles about an

It is not very difficult to calculate the width of a wave angle 8 measured clockwise in thry plane from thex
packet for a specific system of external fields using thesemiaxis pe[B—A¢/2,8+ A¢/2]) there exists a nonvan-
adopted method, since the entire calculation reduces to solishing accelerating electric field that is a harmonic function
ing the classical equation of motid27). In the approxima- of time (i.e., varies with the Larmor frequenay). Within
tion of a small deviationsq from the pathq. followed by this interval the electric field is described by the following
the center of a beam of classical particles that is fixed inipotential:

4. WIDTH OF THE ELECTRON WAVE PACKET IN A
CIRCULAR ACCELERATOR
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U(dy.dy,7)=Eo(R+T1)(¢—B)coswr, dently. Hence the density distribution can be factorized. Be-

o o ) . ] low we are interested in the electron density distribution
wh.ereR+r=(qxl+ qy)~“is the ra(_ilus ana is the arjglg N 5(r;, ;¢ ,t) only in thexy plane.
F:ylmdncal cpordmates. The amplitudg, of the electric field " Inan approximation that is linear mandé the classical
is s_elected in such a way that, whe_n moving along _the eqUigquation of motion(27) is cumbersome:
librium path from pointR=(R,0,0), in the acceleration re-
gion the electron acquires an amount of energy that exactly .. T T T P U

o = + +— -

balances the radiative losses: ry=wRey +vpwTy 3M T =»"Gre

27 G20 2
le|E;RA ¢ COS B jWo- (31) +3wRp+vgre)}+14, 36)

. . 2a . .
Here W= (2/39aw?v3y* is the average power of radiative Repy®=—wry’+ m( ¥*(3wr —3Rpw’~rw’+Re)
losses, and y=(1—v3) "*?is the(large relativistic factor.
Electron motion along the axis is regulated by a poten- —4v2w? Y (Rp+1w)+vow’y*
tial of the general typ&J,(q,), with absolute minimum at
g,=0. Thus, the electron actio®[q] is

t — 1 .
SO[Q]:deT[_M 1-g*+5eq-(Hxq) where
_ Fxcosor+F)y sinwr
—eU(ay,ay,7)—eU,(q,) . (32 ! M ’

As noted at the end of Sec. 2, in the ultrarelativistic case  f,=— Fi Sin @7+ Fjy coser

being investigatedy>1, we can ignore the forcé, . The M

contributionzof tgis f%rce is smaller th;;ln thatfef atleast by |n Eq. (36) we left only the first harmonic from the Fourier
a factor ofkg/w ~y”, whereke,~wy” is the characteristic  expansion in the angle of the accelerating electric field.

(37

frequency of the photons emitted in the accelerator. The contribution of other harmonidsay, = cos 2p cosw7)
Suppose that |n|t|a”y the electron is in a pure state devanish in averaging over the rotation period_
scribed by a Gaussian wave packet with its cent®, atidth We write Eq.(36) in matrix form:
oo, and momentunpy=(0,Mv4v,0): R
1 B 1 (q-R)? Mij(m)ej(7)=1i(7). (38
P(q)= —ZMeXp{ iq| Pot+ 5eHXR | — —2] Here the indices andj run through the values 1 and 2, and
(2moy) 2 4oy

¢i=(r(7),R¢(7)). The homogeneous equatiofy£0) has
(33 four solutions:

The second term in braces allows for the fact that in the (1), \_ . _

presence of a magnetic field the momentum operator must be #i~ (7)=(CoSw7,—sin w7)e

“extended’:

YT
1

¢! ?(r)=(sin wr,coswT)e” ",

(39
f)=—ii—eA(eX)(q) v(z)w
aq ' ()= ( cos{7,— - sin Qr) e e,
The wave function(33) specifies the distribution function in )
. UogWw
phase spacésee Eq(30)): <pi(4)(7')=(8in ar 0% 0sOr|ever
(q—R)? o
f(Q-Pi)“eXFﬂ’ T 202 —203< Pi— Po The first two are what is known as radial betatron oscilla-

tions with Larmor frequencys and damping constang, .
2 These solutions correspond to translation of the orbit center
+ EeHx(q—R) . (34) in a uniform magnetic field and are damped because of the

correct choice of the dependence of the amplitude of the
Now we must express the initial momentum of a classi-accelerating voltage on the radial deviatian

cal path,p;, in terms of the boundary points, i.e., we must )
solve the equation of motiof27). To this end we introduce UxR+ar with a=1.
new variables—the deviation from the equilibrium radius,Clearly, if a=0 (the energy acquired by the electron in the
r, and the deviation from the equilibrium phas, acceleration interval does not depend on the radial devia-
— — , tion), the radial oscillations are undampeg, €0), and if
dx=(R+r)cogwr+ ), qy=(RFr)siwr+ ¢)'35 a<0, the become exponentially increasing,€0). The
(39 third and fourth solutions i39) correspond to synchrotron
Since deviations from the equilibrium path are small, theradial-phase oscillations with frequenfy< » and damping
electron moves along theaxis and in thexy plane indepen-  constanty,. The following expressions can be obtained for

861 JETP 84 (5), May 1997 S. V. Faleev 861



the radial damping constant , the phase damping constant to q; in (29) becomes trivial, and the final result for the
¥4, and the frequency of synchrotron oscillations: density distribution in the electron wave packet in g

plane assumes the form

a5 3 2a , 4

=g @Y YeT g @
P(ff,¢f't)=N(t)f DF(n)PLF]

92:2—aw3y3tan B (40) )
M . 2(Moyyw)
X ex —m([A(rf—fp)
The solution of the inhomogeneous equati®®) with
given initial conditions in an approximation in which +BR(¢i— ¢p) 12+[C(ri—r)
Y, Ye<Q<w has the form

—AR(¢i— )19 |, (45
opy Py = ®p
()= S A PN X ) (@)
@i(t)=|r(0) wMy)‘P' + R¢(O)+wMy @i
where
opy Qép
(3)_ X (4)
oM Yy T 202y P + @pis (42) A= —coswte” "'+cosQte 7!, B=sin wte ",
where 8p=p;—p, is the deviation of the initial classical- (46)

path momentunp; from the equilibrium momenturp,:

8p,=YM(r(0)— wR¢(0)),
: Equation(45) clearly shows that for any fixed configuration
— A3
py=7"M(RS(0)+1(0)w). of Fj(7) the wave packet has an “intrinsic” relative density
The last term on the right-hand side of Ed41l), distribution, which is independer_n (ff_H. _Onl_y the coordi-
@pi(t) = (r(t),Rey(1)), is the particular solution of E438) nates (,,¢p) of thg center of this distribution as a whole
with initial conditionse;(0)= ¢pi(0):0_ This solution can depend on fluctuauon forges. _As.notgd gt the end .of Sec. 3,
be found by the Green’s functions technique: such behavior of the density distribution is general in nature,
and does not depend on the shape of the external potentials.

2
ol -yt (UUO H — vyt
C=sin wte r—?sm Ote ¢,

Ty , , For the radial and angular dispersions of the electron
epil7)= fo dr’ Gij(m7)fi("). (42 coordinate we have the following expressions:
The Green’s functior;;(7,7") must satisfy the equation ) Jdr:d(Re¢)p(r¢,ds ,t)rf
o ()=
. dr;d(R re,ds,t
Mij(T)ij(TaT,)zéiké(T_ T’) (43) f f ( d’f)P( f ¢f )
= (1™ +(rg(t), 47

with initial conditions

, dG;j(7,7") o2 (1) = Jdrid(Repp)p(ry, s ,t)(Repy)?
Gy(07)=0. —q—| =0 s JArd(Re)p(r 11 D
— ( A (int)y2 2
Writing the Green’s function in the form of an expansion in _(‘Ta;n ) +<(R¢p(t)) )- (48)

the solutions (39) of the homogeneous equation with

Arz ' >0. we obtain The intrinsic widthso{™ and o™ are determined by the

initial velocity spread; they decay exponentially with time

sinwAT —cosSwA7T) e AT because of classical radiative reaction:
G“ 1 ! = .

i(n ) CoOSwA7T SinwAr wy _ 1

0 —cosQA 7 (UE'nt))ZZW{(COSwt67 nt—cosQte” 742
e 'yd)AT
2
VoW H -yt 2
cosQAT %sin QAr] oy +(sin wte” )7}, 49

, 1

(44) (U&nt))zzm( (coswte™ 7'—cosQte 7¢)2
0

To avoid cumbersome formulas in the final result, we
assume that initially the packet is very narroméwM<1.
Then, in times of order of a single rotation period the width
of the wave packet becomes much larger than the initial
width o, and we can ignore terms proportional to the initial The Brownian contributions to the radial and angular
deviationsr (0) and ¢(0) in Eq.(41) and the term in34)  widths,o®” anda'", are determined by quantum radiation
proportional toeH X (q— R). Here the integral with respect fluctuations:

+

2 2
. oyt 9V . gt
sin wte™ "t — o sin Qte™ ¢ .
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B2 2 1 1-e 2nt 1-e 24! RMc| 2
(o B)2=(ri(t))= 2 :
2(Myw) 2y, 274 fi

. |\ dI For an estimate, we take the accelerator radius equal to ten
f d°k cot FEALE meters. We see that all existing accelerators meet this condi-

E<Ey,=Mc (

2kgT) d ,
(50)  tion: E<E,~10° MeV.
(B2 e 1-e 279t As for restrictions on the packet width, Eq§0) show
(o) =((Repp(1))%)= 2(MyQ)2 2y, that our results are valid only for times much shorter than
t<l/y,. For timest~1/y,~MR?/ afiy*~10 's (for pa-
J’ K cotl‘( IN ) K. rameter value®~ 10° cm andy~ 10°), the Brownian width
2kgT d3k reaches a value comparable to the accelerator's radius,

oV =R/\ay. This constitutes the main drawback of accel-
erators with weak focusing. To reduce the angular spread of
the beam to values much smaller than the accelerator dimen-
sions, accelerators with strong focusing are used.

The intrinsic contribution to the packet's angular width
(see the second equation(49)) is inversely proportional to
the initial packet width and rapidly falls off as the relativistic

dl - factor y i :
i~ az| _dramao—@mm@omny e )1/2

U%M cay®

To average the squares of the particular soluti@® over
the forcesF| we use(44) for the Greefs function and
Eq. (20) for the correlation function of fluctuation forces.

The expression for the functiahl/dk in (50) coincides
with the well-known formula for the classical radiation
intensity’

it _
xexp{ilk|7—ik-(q(7)—q(0))}, (51 ¢

whereq(7) is the classical electron path. At all reasonableFor typical parameter valueR~ 10 cm, y~ 10°, and
temperatures we have the strong inequalityoy~10"* cm, the intrinsic angular Widthrﬁ;,m) is of order
kg T<ky~w7¥>. In this limit the expression for the integral 1073

in (50) is known? The characteristic values of the Brownian and intrinsic
55 radial widths are smaller than the corresponding angular
; 3172
a3k K= w3y, 5p) Wwidths by a factor of w/Q~(RMdhay®)*~10° (at
f d3k| = 24,3 4 %2 R~10® cm andy~10%).
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In the problem under investigation and for times of the
order of the photon emission timje—s|~(w7y) ! we can
ignore the structure of the correlation functi®0), since in
calculating the average(sﬁ(t)) and((qup(t))z) the given
function is present in the integral overands, together with
functions whose characteristic time scale isl/w or
~1/Q). Bearing this in mind, we can simplify the expression *)e-mail: S. V. Faleev@INP.NSK.SU
(20) for the correlation function:
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Possibility of suppressing quantum light fluctuations when excess photon fluctuations
occur inside a cavity
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Using the optical excitation of a high-Q cavity as an example, it is shown that when light is
observed at the output of this cavity, effective suppression of the photocurrent shot noise below the
quantum limit is in general independent of the parameters of the stationary state of the field
oscillator (in particular, it is independent of the rms photon fluctuatjdnside the cavity and can
occur not only at any allowed negative value but even at a positive value of the Mandel
parameter. It was assumed in solving the problem that the cavity is optically excited by
superimposing the radiation of a sub-Poisson laser and a laser with excess photon noise.

A formal solution was obtained in terms of the kinetic equation for the density matrix of the actual
fields (inside the laser cavities and the empty cayityhich is derived here on the basis of

the Heisenberg—Langevin quantum equations, taking into account directed propagation of the field
from the laser cavities inside the empty cavity. The resulting kinetic equation can also be

used to solve other physical problems, since it is applicable to optical systems that contain, in
principle, an arbitrary number of coupled cavities and interference mixersl9@r

American Institute of Physic§S1063-776(97)00405-§

1. INTRODUCTION linear medium inside the cavity, external optical effects, in-
teraction with the cavity, etg. As can be understood from
A typical problem of quantum optics is to study the the most general considerations, the predictive role of the
properties of the electromagnetic radiation coming out of astationary state ceases to be absolute in this case, since the
high-Q cavity. Depending on the specific physical condi-kinematic processes that bring the oscillator into a specific
tions, an intracavity field oscillator is excited either by inter- stationary state can now contribute to the averaged field
acting with an active medium—for example, in lasers andcharacteristics. We shall give several specific examples that
micromasers—or by external electromagnetic action with oclearly illustrate this.
without the participation of a linear or nonlinear medium, as  For qualitative treatments, it is convenient to introduce
in narrow-band amplifiers, bistable systems, etc. If phenomthe so-called Mandel parametér which characterizes the
ena such as chaos are not involved, in many physical situdetal photon fluctuations inside a cavity:
tions, and in particular in those of interest here, the field
oscillator after some time enters a stationary state, while con-  An2=n(1+ ¢). 1
tinuing to interact with the other subsystems. At first glance,
it seems quite natural to compare the observable effects in  We now consider the limiting case= — 1, in which the
the radiation field and this stationary state. In any case, this istationary state of an oscillator is close to the Fock state in its
precisely the tradition. For example, in an ordinary Poissorproperties(this occurs, for example, in a micromaYefThe
laser, it is said that a completely random intracavity flux offact that a field oscillator is in a Fock stai¢ is possible to
photons, in the final analysis, generates a completely randomeat the state witf=—1 in this way, since it means that
Poisson flux of photoelectrons in the photodetector circuitthere are no photon fluctuationghile undergoing continu-
However, in a sub-Poisson laser, a partially regulated photopus interaction with other subsystems can mean only one
flux inside the cavity generates a partially regulated flux ofthing: any photon fluctuation inside the cavity damps out
photoelectrons. infinitely quickly. The emission of a photon from the cavity
Following this logic, we would have to assume that theis perceived as a fluctuation inside the cavity, which is
farther the state of an oscillator departs from the classicafjuickly compensated by relaxation processes. Therefore, any
state, the more pronounced must be the observed quantusobsequent photon leaving the cavity can in no way be cor-
effect. This would undoubtedly be so if we were dealing withrelated with the previous one, and this means that the flux of
ensemble measurements of an isolated quantum oscillatgshotons leaving the cavity can only be a Poisson flux. Thus,
However, here we are considering quite a different situationeven though the field oscillator is in a limiting quantum sta-
in which the field oscillator experiences conditions of steady+tionary state, no quantum effects can be expected to be ob-
state action from other important subsysteggisch as a non-  served.
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It can already be seen from these considerations that arero, and here by a factor of tw@ reduced because of the
observable quantum effect is associated, at least, not onlyegative effect of intracavity relaxation processes. This ef-
with a stationary state of the field oscillator but also with thefect can be reduced to zero if the active medium is signifi-
relaxation properties of the system. Of course, the same comrantly excited, and the depth of the quantum dip then reaches
clusion can also be reached formally. In fact, it is wellits maximum.
known that the photocurrent fluctuation spectrum during per-  All the examples given here allow a physically transpar-
fect photodetection of the radiation, for example, of the sim-ent treatment: when light leaves a cavity, its quantum prop-
plest laser or the simplest micromaser is represent®dl as erties can break down for different reasons.

However, this is far from complete and is far from the
) 2) most interesting conclusion that can actually be drawn. The
very form of Eq.(3) compels us to think about situations in

If £is negative, a nonclassical singularity occurs here afVhich the kinematic coefficients obey the inequality- .
zero frequency: a dip, with a relative depth equal to If such cases are encountered in physics, it means that the
shot noise can be completely suppressed even when the

i2 K Mandel parameter is negative but close to zghe station-

o=1- i(_2)22|§| T 3) ary state of the intracavity field oscillator is essentially a

shot Poisson stade Nothing prevents this formally, but of course

This explicitly illustrates that an observable quantum ef-it is important to have some specific physical examples here;
fect is associated not only with the stationary state of a fieldn fact, there already are such examples. Thus, Ref. 5 treats
oscillator (the Mandel parametef) but also with the kine- the excitation of the active medium of an ordinary laser by
matic properties of the system, namely the ratat which  the radiation of a sub-Poisson laser. Using the formulas ob-
photons leave the cavity in the direction of the photocathodeained in Ref. 5, we show in Appendix B that the physical
and the damping rate of the intracavity photon fluctuations. parameters can be chosen so that a situation is possible in
At the same time, it can also be seen that with widely varywhich the Mandel parameters, although negative, are close to
ing & values, i.e., with widely varying stationary states of thezero, and, at the same time, the observable quantum effect is
field oscillator, one can in principle produce the same quancomplete,5=1. A completely analogous situation also oc-
titative quantum effectthe sames value by suitably choos-  cyrs for a micromaser when its active medium is excited by
ing the kinematic parameters. the radiation of a sub-Poisson lager.

There can be different relationships betweenlttend « Al this compels us to conclude that, in general, there is
values, depending on the physical situation. For example, fofq pasis for associating the quantum optical effect observed
the optimal sub-Poisson lasdri=«. This equality can be  gajier with the stationary state of an intracavity field oscil-
treated in the same way as the damping of photon fluCtugz,, The example of optically exciting an empty cavity by
tions inside a cavity except for processes associated with th§uperimposing the radiation from two laséessub-Poisson
emission of photons from the cavity. However, if not all the laser and a laser with excess nojsehich will be considered

;ai'at'%nncjgr;gf‘ d;ﬁile trl1$e jc,r':;idoenr:ryogtaigeofF;hgte(ljgeotsetc::itlloarhere’ clearly illustrates this idea. We shall show that the shot
K. , - .
tor cannot be dependent on this, and tiiss— 1/2 whether noise in the photocurrent can be completely suppressed with

all the radiation leaving the cavity is incident on a photode-the most variedand even positivevalues of the Mandel

tector or whether it is partially recorded. Also, as can be SeeRarameter. n partlcglar_, for example, largriper-Poisson
from Eq. (3), the depth of the quantum dip can differ for the photon fluctuauons |nS|_de a cawty_can correspond to the
same Mandel parameter. This example already compels us ?6“‘"‘”9“ possiblésub-Poissortluctuations of the photoelec-
think that the observation and the stationary state of a fieldfons:

oscillator are not associated with each other entirely unam- Section ,2 of thls'paper desgnbes the formu!atlon O.f the
biguously. problem, using the kinetic equation for the density matrix of

Another situation arises in a micromaser. Conditions inthe field in cavities associated with directed optical signals.

which ¢=—1 can be ensured there, but it turns out in this The derivation of this equation is given in Appendix A. Sec-
case thail’> x even when the radiation is recorded com-tions 3 and 4 give calculations of the steady-state dispersion
pletely. As a result, the depth of the observable quantum dif the distribution of the number of photons and of the Man-
almost equals zero; i.e., the field inside the cavity is a totallydel parameter of the internal field, as well as of a quantity
quantum field, while it is actually a Poisson field outside it.that is observable during the photodetection of the output
The quantum properties of the radiation also break dowradiation—the spectrum of the photocurrent fluctuations. The
when it leaves the cavity—not because the output mechaimplest optical system, in which a passive cavity is illumi-
nism itself is stochastic, but because the processes inside thated by one laser source, is studied fiSéc. 3. A treat-
cavity are too rigidly correlated. ment is then giveriin Sec. 4 of the illumination of a passive

We shall give one more example, which in some sense isavity by the light flux formed by optically mixing the radia-
intermediate between a sub-Poisson laser and a micromas#nn of an ordinary laser and a sub-Poisson laser. Section 5 of
The equalityé=—1/2 is also true in a superradiant lader, the paper is devoted to a discussion of the physical results.
andI’ =2« for weak excitation of the active medium. Here, Appendix B shows the results of Ref. 5, rewritten from the
as in a micromaser, the depth of the quantum (tygre to  viewpoint that interests us here.

K
i(2) (2
|§,>—|ghg(1+2g—2—zr o
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2. COMBINED KINETIC EQUATION FOR OPTICAL CAVITIES

y ) .
EXCHANGING NONCLASSICAL LIGHT SIGNALS a » Xy Photomultiplier

The question of how a quantum kinetic equation for a a b
light field could be used to describe the directed transfer of
an optical signal from one cavity to another was first dis-
cussed by Kolobov and Sokoldand later by Carmichagl
and Gardinef. These papers considered the situation in
which there are two cavities. One of theffior example, a
lase) forms the source, and the other forms a detector of the,,, 1t represents energy transfer from one oscillator to the
light emitted by the source, which in general is nonclassicahiner and not the reverse.

(sub-Poisson, squeezed, gtc. It will be shown that for a multi-oscillator density ma-

Here we shall discuss a somewhat more complex physigix in the case of many optically coupled cavities, the basic
cal situation, in which a passive optical cavity is excited byyjnetic equation can be written as

radiation from two laser sources. Therefore, Appendix A
generalizes the theory of Ref. 6 to the case of several reso- . _ > Do D 3
nant(or almost resonaifield oscillators concentrated in dif- P =1 " mEmg o p
ferent cavities and exchanged in an arbitrary geometry by N . ) )
directed optical signals. The starting point of this treatment  OPeratorL, describes the evolution of oscillater (the
differs from that of Ref. 6. The theory of Ref. 6 was con- f|elq oscillator inside cavitym) in the absence of all other
structed in some sense from first principles. The quantizatioRScillators. _ . .
was carried out over the modes of the continuous spectrum OperatorLy ., describes the action of oscillatan, on
of the entire space, taking into account the boundary condioscillator m:
tions at the mirrors of the cavities, without isolating the ear- " _ +
lier local oscillators of the modes in the cavities. The com- Lmgm £=Gmmyl 8m 8my p]+H.C. ©
mutation relations of the light-field operators inside andHerea; anda;” (i=m,m,) are the photon operators of the
outside the optical cavitiesee Ref. 9 for the relations with corresponding localized oscillator, agghy, is a factor that
the participation of the external fieldsvere obtained from gescribes the penetration of the signal from cavity into
this. The kinetic equation was also derived on the basis Oéavity m. It is given in the Appendix in the most general
these commutation relations. form, taking into account the possible presence of any opti-
In Appendix A, we use the simpler and more instructivecg| elements in the spaces between the cavities. We shall
method of the Heisenberg—Langevin gquantum equationsyow indicate what it equals for the two physical situations
which recently have been widely used for quantum opticgjiscussed below. For example, we are interested in a system
problems. These equations are similar to the equations Qonsisting of just two cavitie¢Fig. 1): cavity a, in which
classical electrodynamics. They can be used in quantur§ub-Poisson lasing occurs and whose radiation enters the

theory to give a transparent description of such wave phegther, passive cavitp. Then only one of all the constants
nomena as interference, diffraction, partial dispersion of &),,m. IS NONZero:

signal as it propagates, etc. The theory of the input and out-

put of radiation from a cavity has been developed by Refs.  Gpa= VKpKa- (6)
10 aqd 1. we shall show that thg Helsenberg—LangevnP_'ere K, 1 are the lifetimes of a photon inside cavitizsand
equations can easily be combined with the approach used ? :

Ref 6 he basis of the Kineti ion for th . The value ofk, results from transmission through the
ef. 6 as the basis of the kinetic equation for the case Othput and the output mirrors, which in the theory for cavity
directed radiation transfer. This makes it easy to obtain th

Kineti tion f | field oscillat rated % we shall separate ag,= x|, + «}..
inetic equation for several field oscillators concentrated i~ A e complex system, which will also interest us

dlfferent_ca_\wnes and e_xchangeq by d|r_ected optical agnalshere, consists of three cavitiégig. 2. Two of them(L and
When this is done, the intermediate optical elements used for

beam splitting, signal mixing, etc. can be taken into account

in a natural way.

FIG. 1.

4

When we deal with a system of cavities between which N RT 5 X, Photomultiplier
electromagnetic energy is exchanged along definite direc- C
tions, this can be formally represented as a set of quantum 1 b
electromagnetic field oscillators each of which is localized in
its own cavity. To describe this situation, it is possible to X,

introduce into the discussion a multi-oscillator density matrix

and to attempt to construct a closed equation for it. Here the
main problem of the theory is to make it adequately reflect

the fact that the motion of the light wave is directed: this is

not the simple standard interaction of any two localized os-
cillators, leading to the interchange of electromagnetic enFiG. 2.

[ %)
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2) form independent laser sources, while the thiodl, (as in  damping operator in cavitlg, Ry, is obtained from operator
the preceding case, is passive and is excited by the electrq;Qa by replacing photon operatoes with photon operators
magnetic fields from the sources. There are now two nonzerg, and K,;l and Kgl are the photon lifetimes in cavities
constants: andb because of their finite Q values.

9o1=T /_K{Jxl, Gpa= Rk k. 7) . An exphqt expression fqr operatdr.aéb, which Qeter-

. mines the unidirectional action of oscillataron oscillator

HereT andR (T?+R?=1) are the transmission and reflec- b, recorded in the previous section, can be writteh as
tion coefficients of the additional mirror at which the radia-

tion from the two laser sources mixes before it enters cavity L, ,=ab*+a*b—ab™—ba". (11
b (Fig. 2. o e e e o
3. EXCITATION OF A PASSIVE CAVITY BY SUB-POISSON The concomitant force is determined by the constgjatof
LASER RADIATION Eq. (6).

The total spectral width of cavitly depends on the trans-
3.1. The basic kinetic equation mission of the input and output mirrors:

We initially assume that the physical system consists of
only two optical cavities in serie§-ig. 1). Sub-Poisson las-
ing occurs in ce_mt)a. The radiation of the s_ub-P0|_sson laser We transform Eq(8) to the diagonal Glauber represen-
enters cavityb, is accumulated there, and, in the final analy-tation using the integral relation
sis, being reflected from it or passing through it, is incident '
on a photodetector, by means of which it is analyzed. We are

Kp=Kp+ Kp . (12

only interested in the part of the light that passes completely p(t)=f d?a d?B P(a,B,t)| )| B){B|{«l, (13
through the cavity. For simplicity, we assume that all the
actual frequencies in this system coincide. where

Accordingly, the following equation can be written for
the two-oscillator field density matrig that describes both d?a=d(Re a)d(Im a), d?B=d(Rep)d(Im B),
the intracavity lasing field of the sub-Poisson laser and the
field inside the second empty cavity: ala)y=ala), b|B)=p|B).

We use the approximation of small photon fluctuations:

~ 1., Ka ~ Kp ~ N
La— 2 La]p— 3 Rap— 5 Rp ptOpala b p-
(8 a=\Nyte, explie,), €,<n,,

OperatorI:a determines the development of the sub- _ .
Poisson lasing inside cavity produced by the active me- B=np+e, expliep),
dium. It is derived in Ref. 2 and can be written as

b:ra

8b<nb. (14)

Heren, andn, are the steady-state solutions of the semiclas-

- 1 sical laser problem:
L,=|2a"a—aa"—aa"— > Ba(aat—aat)?
— — — — — d .
1 1 gt o= ~ KbNp+ 2Gap\NaNy COS@a— ¢p) =0, (15
X|aaT+aa’+ > Ba(aat—aat)? 9

The damping of the quantum oscillator is described by the —g¢ $o~ 9ba o Sin(a— ¢p) =0, (16)
well-known operator of the form

D ot + + d d

Ra_aﬁa"_ aga—Zii : (10) gi Na=ra=KaMa=0, — ¢,=0. (17

Herer, ii the mean excitation rate of the upper laser level, Tpese equations can be directly obtained fromByby
a and a” are the photon operators for the laser modemtiplying it by operatom and taking the trace, and then by

[a,a"]=1, and operatorb and again taking the trace. Neglecting the fluctua-
1 YbYab tions of the field variables in the expressions thus obtained,
Ba = 2¢2 we get a closed system of equations for the complex ampli-

. _ tudesa and B. Transforming to amplitudes and phases, we
is the number of photons that saturates the laser transition iget the required expression.

the active medium of the sub-Poisson laégs and v, are It is easy to see that the following stable steady-state
the longitudinal relaxation constants relating to the upper andgutions are valid:
lower laser levelsy,= 0, andy,, is the transverse relaxation

constant The arrows under the operators determine the di- ¢,= ¢y, (18
rection of action with respect to the operator expressions,
including the density matrix standing at the right. The field- Ny=r./x,, (29
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2 2 when x> kp, (Which approaches-1/2 in the case of a sym-

Ny Ky Ky 20 . . . ’ "
o 492, drpry (200 metricalb cavity, with ;= «}) and
- . 2KpKa
For the photon density matrix, Eo=— o |E<1, (31)

b
R(Savsbut):f dea dep P(a,&h,¢0a,@p,t) 21)  whenk,<xp.

the following equation can be obtained in these approxima-
3.3. Photocurrent spectrum

tions:
IR Ky 0 Ny P _To unde_rstqnd the lroIe p!ayed py the stationary sf[ate of
T2 den (sb—  fa R+ Ky e (eaR) theT intracavity fleld. osc!IIa_Ltor in .fqrmmg the quantum singu-
b a a larities in observation, it is sufficient to analyze any one of
1 ’R the actually observed singularities. For example, this can be
2 KalNa EJF{---}- (22)  the photocurrent noise spectrum, which, when the radiation

from cavityb is observed with perfect photodetection, can be
This is the basic kinetic equation, which makes it pos-represented By
sible in what follows to obtain all the necessary information 2k B
on the field in the seconpl cavity. The_notatlb.n _.} denotes if):i(sﬁ%{ 1+ P Ref dt eiwtab(o)sb(t)} (32)
the complete set of derivatives of third and higher orders Np 0
that appear on the diagonal of the Glauber representation for

. . S The basic kinetic equation, E§22), and the standard
gg:s:\lj;nbréelvd;jhlzﬁgttsv?ihg'|l|l (':)?]l;? dr;cr) gglnot \:\l/butmn to theprocedure can be used to obtain the system of equations

d —— Kp —————— Kp Ny —
at en(0)ep(t)=— 5 ep(0)en()+ = . ep(0)ea(t),

3.2. Mandel parameter (33)
; ; L lineti ; d
Starting with the basic kinetic equa’Flon,. E@2), the — ep(0)ea(t) = — kaep(0)ea(t). (34)
standard procedure can be used to multiply it by the appro- dt
priate quantity,.after which it is integra}ted over the variables  Erom this we can obtain
e and ¢ to obtain the system of equations
d n op(0)z (t)=?exp<—ﬂt)+ss o Mo
asg=—Kb8§+Kbn—bsasb=0, (23 b b b 2 R P
a
d x| exp— xat) p< Kbt” (35)
K Kp Np — exXpl—kal)—exp — =+ .
gt Eafb= " Ka+?b sasb-i-?bn—bsg:O, (249 2 2
: After substituting this expression into E@2) and using
d — _ .
" 85: B 2Kas§— kan,=0. 25 Egs.(27) and(28), we find
. 2@ 5 K2 KE 2_4K{3K't;
The steady-state solution has the form Iy =lishot 1—K W2+ K2 dolt K2 prak T2
— 1 (36)
2=~ 3 Na=&aMa, (26) When oscillatotb is symmetric k?=1), it can be seen
that the relative depth of the quantum dip at zero frequency
£aE0=— 1 & 27) is 6=1 regardless of any other physical conditions, includ-

5 .. n 1 . . . . . .
2 kpt2ky ing the ratio of the cavity widthsc, and «,. This is an

1 important fact for our subsequent calculations.
— Np  Kp

8b=—§n—amnb=§bnb- (28)

_ . o 4. EXCITING A PASSIVE CAVITY WITH THE LIGHT FROM
Using Eg.(20), we find that the statistical Mandel pa- Two LASER SOURCES

rameter in cavityp can be written as o _
4.1. Kinetic equation

2KpKa (29 We now consider the physical system schematically

€=~ e ox])
Kp(Kpt+2Ky) shown in Fig. 2. We discuss the case in which empty cavity
Varying the ratio between the cavity widthe, and P is excited by the light of two laser sources. We assume that
Ky, We can get very differertnegativé values of the Man-  regular(noiselesspumping of the upper laser level occurs in

) parameteré; that under optimum conditions can become
£o= Kb_} 1 (30 equal to—1/2. In the active medium of laser 2, ordinary,
p=— ——— =

completely random pumping of the active atoms to the upper
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laser level occurs. In this case, Mandel paraméjes large Herer; is the mean excitation rate of the upper laser
in weak lasing fields and goes to zero during saturation. Inevel, a; anda;” are the photon operators for the laser mode,
the final formulas, we shall be interested in the case wherand «; * are the photon lifetimes in the cavities resulting

&1=—1/2 andé,~1. from their finite Q values. .

The equation for the three-oscillator density matpix Recall that the presence of a term with the operhtoin
that describes the intracavity fields of the two laser sourcethe basic kinetic equation indicates that the pumping of the
and the passive cavity can be written as active atoms in the first laser source is regsith no fluc-

tuationg. Whenvy,,=0, we have an ideal sub-Poisson laser,

. c 1, K1 L L and operatot., will coincide in form with operatot , from

p=ri|Li=5L1|p= 5 Rip+Gmlaipbp+ralap op T L \ b e

the first case, in which it was precisely the radiation of an

Ky R Kp ideal sub-Poisson laser that excited the passive cavity.
-5 Rop—Gpslopp— > Rpp. (37) An explicit expression for operatdr;_.,,, which deter-
mines the unidirectional action of the radiation from cavity 1
Operatorsl , , and R, , determine the evolution of the ©n cavityb described in the preceding section, can be written

electromagnetic field inside the laser cavities: as
1 Llﬂb:a1b++al+b_alb+_ba1+. (43)
L]_:_Bla 2al+al_alal+_alal+ — — — — — — —
2 — — — — H .
Likewise,
1 1

_ (38) I:Z*,b:azb++a2+b_a2b+_ba2+. (44)

— — — = e —

+ +\2
_Eﬁlb(alal -1 )

The resulting force is determined by the constaptof Egs.

~ 1
Q=1+ > Bi+ alal++a1a1+) (@)

—

The semiclassical equations can be obtained in the same
way as before from the basic kinetic equation, EY), ne-
glecting all field fluctuations:

d -
gt M= KpNp+2g15 VNN, COK 91— ¢p)

—

1
+ 1 BlaBlb(a1a1+ - alal+)21

~ 1
Lo== Boa| 28, @y~ aya, " —aya, " — —
720 RSO - + 205, VN2Np COSL 0o~ ¢p) =0, (45)
1 . ol 1 d — n _.— — npg . — —
- sz ara, —ajar =, (39) & Pp=0Y1p n_ Sln((pl_ QDb) +ga n_ SIr((PZ_ ¢b):01
2 R - Q, b b
(46)
A 1
— _ + + d rl,[31 d —_—
Qo=1+7 Bov[ @222 + 323, ) 0t n1=(—f<1+ W:nl)nl:O, g #1=0, (47)
1 d r d —
+Zﬁ2aﬂ2b(aia2+_aia2+)21 a nzz(—Kz‘l' %) n2:0, a @2:0, (48)
&l:afal—l— aIal—Zalal'*" (40 ar=|aq|explier), a,=|as|expie,). (49
. 4.2. Mandel parameter and photocurrent spectrum
R,=a; a,+a, a,— 2aa," . (41

Here, as above, we transform to the diagonal Glauber
representation, introducing into the formal scheme, in place
The nonlinear parameters for the laser sources have the photon operators; anda;” the corresponding-number
form field amplitudesa; and @ and the derivatives with respect

to them. Neglecting small photon fluctuations,

— — — —

8 :2|giab|2 A :2|giab|2 ,
2 YiaYiab " YibYiab |ail*=ni+ei, ei<n (50)
. and using the semiclassical equations for the photon density
Bi+=PBia* Bip, 1=12, (42) matrix,
wherevy;, andy,, are the widths of the upper and lower laser R(s1,80,8p,1)
levels, yiap is the homogeneous width of the gain curve of e
the working transition, and;,;, is the interaction constant of — | do do- do. P ¢ (51)
an atom with a plane laser wave in the dipole approximation. | d¢1 492 dey P(21.22.85.01,¢2,¢5.1)
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we get the following basic kinetic equation, provided that Kﬁ
there is a phase shift between the laser waves that is a muts(0)ep(t) = &2 212

Ky 1
tiple of 7 (otherwise, we would have to write an equation

o1,
exp(—T't)— —
Kp

2

that simultaneously describes both the amplitude fluctuations k6 \|= - b
and the phase fluctuations X ex;{ — 5 g1t 9 o7 | exp(— 1)
Kp 2
JR Kb J r J oT p o
Gt 2 N (ep— 6181~ 6282) R+ 151(81R) _ 2 x%——bt 67)
Kp 2
’R J R Carrying out all th lculati t th
+T,640; 2 +T, — 7o; (85R) + ooy —5 arrying out all the necessary calculations, we get the
de following expressions for the photocurrent spectrum and for
the Mandel parameter:
+{...}. (52) p
2 2
Here we have introduced the notation (221 _p2r2_ K1 Kb
Ly Zlghot 1=KT =5 "
w°+ k] 4o+ kg
5= Mo (53 2 2
bk Vg s lege T2t 68
Ig w2+T§ 4w’ + Kg '
5,= 2020 [ (54
27k ny' ) ¢ __2_Kt,) Ky T 4_"{) 1R 1+1;
| L1 b7k kpt2k; K Kp(1+1o)+F2k0l5 |
1 Y1b
Dy=rxig 0 &= 2 vt v (55) (69)
! ! la® 7ib In the last two formulas, we have assumed that
I, 1 v1a<<Y1p, &S a consequence of which the first source is con-
Iy=x; T+, §z=E' (56)  verted into an ideal sub-Poisson laset;— and
i=Bin;. (57
We get from the basic kinetic equation that
g 5. DISCUSSION
2_ 2 - —
T Kpept O1818p+ 5o828p=0, (58) We first consider a physical situation with two cavities: a
cavity with a laser source and an empty cayfyg. 1). As is
d B Kp|\—— well known, if the frequency of the external figlith this case
FrE L R ey 818b+ 2 5181 0, 59 the laser fieldl coincides with the natural frequency of the
cavity and the cavity is symmetricék, = «j, andk?=1), as
d Kp a consequence of interference phenomena, the radiation in-
i 2200~ | T2t 5 828b+ 2 52550, 60 Gident on the input mirror from outside is not reflected from

this mirror but passes completely through the cavity via the
d - output mirror. Since no uncontrolled losses occur in this

— 2T &2+ 2T = 1 . . o
dt? 181 161M= (62) case, and the empty cavity, as it were, does nothing, it can be
assumed that the radiation from the sub-Poisson laser will
2F232+2F2§2n2— (62) not be Qistorted. We should see the photocurrent shot nqise,
dt ® which is completely suppressed at the lower frequencies,

both when the radiation is observed immediately after the
d — ey(0)ep(t)= _K_ Sb(o)sb(t)+ 51%(0)61( ) laser cavity and when it is observed after the additional
dt empty cavity. This fact is probably independent of any other

circumstances and, in particular, of the ratio betwegrand

il S2ep(0) (1), (63)  «kp. Itis easy to convince oneself of this if we assume that
2 k?=1 in the formula for the photocurrent spectrum, E3f).
d The depth of the dip in the shot noise at zero frequency is
gt ep(0)eq1(t)=—T1e,(0)e4(1), (64) then a maximum and reaches the zero mark, regardless of
K, andkp .
At the same time, it is clear even from qualitative con-
gt e0(0)e2(t) = —Taep(0)ea(t). (65  siderations that the stationary state of a field oscill&md,
in particular, the Mandel parametemust depend on what
Solving this system, we find kinematic constants are actually chosen. In fact, let
K,> Ky, for example. The spectral profile of the empty cav-
£=5° Kp M £+ 52 Kb M2 2¢,, (66) ity is then filled with Fourier components correlated in the

L kpt20 Ny Kp 205 Ny same way as in the cavity of the sub-Poisson laser. The int-
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racavity field situation is therefore the same as it is inside the

sub-Poisson laser, and we can expect fat —1/2 in this S
limiting case. m X"TL s

However, in the other limiting case ot,<«,, the ‘ é]—*xs
“correctly organized” Fourier components occupy only a y ’ "
very narrow central part of the spectral profile of the empty "

cavity, and all the other componentshich are far larger

are occupied by vacuum fluctuations. It can thus be expected
that the Mandel parameter is close to zero. We now see thgic. 3.
for a symmetrical passive cavity, shot noise is completely
suppressed at the lower frequencies for any ratios between
the cavity widths. At the same time, the Mandel parameter

can vary from— 1/2 to zero. It is easy to show that EG29) APPENDIX A: CONSTRUCTING THE COMBINED KINETIC

and(36) confirm these qualitative conclusions: EQUATION FOR THE DENSITY MATRIX OF THE
q : ELECTROMAGNETIC FIELD IN THE CASE OF OPTICALLY

2! COUPLED CAVITIES
. Kp Ka
fp=——— — (70)

Ky Kp' Let there be local field oscillators in the cavities, and let
. the annihilation operatorgositive-frequency slow operator
Le., |&p/<1. . amplitude$ be aq(t), m=1,... M. Since the cavity-

We can now go even further by assuming, for examplecoypling mirrors possess finite transmittance, damping of the
that the “free” Fourier components in the limiting case mnode oscillators arises in the Heisenberg—Langevin-equation
Ka<Kp are excited not by vacuum fluctuations but by fluc- method, and random quantum forces simultaneously appear

tuations from an additional laser source. This can be accomyat are responsible for coupling to the heat bath of the quan-
plished in the system shown in Fig. 2 by mixing at an inter-tjzgq light modes of the external space.

mediate mirror the light from a sub-Poisson laser and from a 14 gescribe the light field inside cavity and on the
laser with excess noise. Understandably, if the addition fromtside in the neighborhood of its coupling mirror, it is con-
the super-Poisson laser is negligillehich can be the case enjent to introduce longitudinal coordinatgs andx,,, as

in which T~1 andR<1), it must not appreuqbly degrade shown in Fig. 3. Here &y, <l and —»<x,<, where

the observable quantum effect. At the same tifiecan be | s the round-trip length of the cavity. We assume that the
expected to become completely positive, since it is precisely,oymal frequencies,, of the cavities are close to one an-

the radiation of the super-Poisson laser that forms the maiginer. Their difference must be much less than intermode
part of the spectral profile of the empty cavity. We now gpjitting in each of the cavities.

proceed to specific formulas and write them for a symmetric | ot us choose some carrier frequenay;, equal (or

empty cavity in the limiting case of;<x, <k, assuming  ¢jose in the nondegenerate catew,,. The field of the light
that the dimensionless lasing powerof the super-Poisson \yave with X, <0, i.e., incident on the coupling mirror, is

laser is intermediate and has the order of unity: related to the slow amplitudd%”)(xm t) by
Kq 1+1 2 27Tfl/(.l)
=- =Tt R? 71 =i/ 0
&b Py iz R (71 E(Xy,t)=—1i 5
2 2 X expli (KoXm— wot) YelM (X, t). Al
I(Z):I(z) 1_T2 Kl +21+|2 R2 Kb . (72) p{ ( 0Am— Wo )} m ( m ) ( )
© - sho w?+ K2 15 40+ K For x>0, a similar definition gives the slow amplitude

N ) . eﬁﬁ”t)(xm,t) of the field leaving the cavity. Her§& is the
Writing the latter relationship for zero frequency, we getcross section of the light flux. In this normalization, the mean
an expression for the depth of the quantum dip in the formy5j,e of €*e) corresponds to the number of photons per

141 unit length of the ray. For the field inside the cavity, we use
_1_p2 2
6=1-R?|1+2 iz ) (73 . [27hag

If R?<1, thend~1. At the same time, if this value is

still not too small and if . 1
X exp{'(kmym_ wot)}\/_— am(t). (A2)
M re<r 74 "
Py ! 7% The conditionE(y,=1,,.t)= — E(y,=04) is satisfied: i.e.,

when the phase shift by accompanying reflection from the
then the Mandel parametef,, as we assumed, becomes yeakly transmissive coupling mirror is taken into account,

positive: the field is periodic after a round trip around the cavity. The
141 reflection a_nd transmission coefficie_nt_s of the _coupling mir-
§b=—2—2 R2. (75)  ror of cavity m are taken for definiteness in the form
I Pm=—pmls Tm=1]7ml-
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The relationship between fields,, el , ande{®™ is We consider below the question of how consistent the

giverf® by description introduced above is from the viewpoint of quan-
tum theory.
. CTm (i Let us transform Eq94A3), keeping in mind Eqs.A4)—
am ('A Ty am+ T\/— ei" (o), (A3) (A6). We represent the input field of each cavity as a sum of
" the fields of the cavities that act as the signal sources for that
cavity and the fields at the inputs of the optical system:
e (0)=—ep’(0) - J__ (A4)
m

am= |A+

|ant 25 Gnmam, + 2 T (0D,

Here A,=w,—wo Iis the frequency offset, and
Km=C|7m|?/l , is the damping rate of the field energy. It is (A8)
assumed that 4 |p,| <1, which is necessary for systematic Heregmm, is the propagator that describes the penetration of
isolation of the mode oscillators. These relationships reflecthe signal from cavitym, into cavity m:
the field-addition rules at the coupling mirror. On the other
hand, Egs.(A3) and (A4) can be thought of as the [ 7 m0 -
Heisenberg—Langevin equations in the absence of an active 9mm,=C ——— N g {exp(lkodpath)s Pp-t, Suy b+
substance in the cavities. mem

Let the optical system contain=1...,N nodes, where (A9)
N=M. They are linear elements; i.e., cavities of the formThe summation in this equation is over all signal paths from
described above, as well as lossless interference mixers. i, to m. If a path passes through intermediate elements
there are any partially absorbing linear filters, we represent,, . .. Ny, the summation includes the product of the trans-
them as mixers that extract part of the light flux from themission coefficients of these elements. AccordingAd),
system. We do not consider optical configurations in whichye havesr.r. 1= —1 for the reflection from the cavity. The
the light signals connecting the elements of the system for

rEath Iength is

closed paths. Moreover, we exclude any complex cavitie
that explicitly or implicitly appear. Apar=d 0 - +...+d P (A10)

We number the inputs of an optical system on which ot P
independent light fluxes in the vacuum state are incident witifhe propagator that describes the penetration of the vacuum
the superscript=1,... R. Starting with each input of the field from inputr of the optical system into cavityn has a
system, we trace to its output the light rays with the samesimilar form:
numbers. This can be done by various means, since each of ]
the n elements of the system has an equal number of inputs ¢ _ . '1™m ; rofp-1  o'1f
and outputs: one each for cavities and two each for mixers. fm=c N pé {explikodpan Sp %Syt (ALD

For mixern, we introduce longitudinal coordinates,
and x; connected with it, lying along rays ands, which
intersect in it(see Fig_. 3 We define by an expression_anal_o- dparr= d:]ln +. "’d:]pm- (A12)
gous to Eq.(Al) the input and output fields of the mixer in 1
its normal coordinates. They are related by the transforma- We now proceed from these constructions to the kinetic
tion equation. We assume that unless there is an active substance

in the cavities, the evolution of the fields,(t) according to
el t)=> RSeSM(0y), (A5)  the Heisenberg—Langevin equations is equivalent to their
s evolution in the form

where

where{R,} is a unitary matrix of the mixer. On the path an(t)~expiHot/A)a, exp —iHt/h). (A13)
from elementn to the neighboring elememh along rayr,
the light signal is delayed only by distandg,,, which can
be expressed by

The unperturbed field-energy operatdy includes the en-

ergy of undamped oscillatogs,, in cavities with perfect mir-

rors, the energy of the heat bath field, and also the effective
elliMot)=exp(ikod' el (0t—d. /c). (A6) interaction energy, which connects the internal and external

fields when the mirrors have finite transmittance. We assume

Below we assume that the delay time is small compared withhat before the interaction was turned an=0), the total

the other times involved in the problem, and neglect it. |ignt field of the isolated oscillators and of the heat bath was
Equations(A3)—(A6) must be considered along with the i the ground staté{0}).

commutation relations for the independent light fields that  \ye introduce perturbatiol, which couples the field in

come from free space to the inputs of the optical system: the cavities to the substance located in the cavities. The den-

it trix of th t i
[ M (x,1)8 70 (x 17)]= 8, 1 S((X—X')—c(t—1')). sity matrix of the system is

(A7) M) =0} ({0} & |} ulv™ (1), (A14)
Here® "M(x,t)=e'(M(x,t) are the input fields of the ele- where|u)(u| is the initial density matrix of the substance,
ments placed first in the ray paths. anduv (t) is the evolution operator,
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T only positive-frequency contributions and can be permuted
with the amplitudes,(t), and the negative-frequency quan-
L SR tities can likewise be permuted.
xex 5 Jl)dt VI | (A15) Using Eqs.(A8), factors appear in Eq§A20) that equal
the field amplitudes in the cavities, as well as the factors
Superscript i) indicates the interaction picture, in whish 7z andz*, which can easily be converted into operators. It
serves as the perturbation. We exclude the oscillators of thllows from Eq.(A17) that multiplying byz,, is equivalent

iHot\ . iH ot Here it is taken into account that the quantitiggt) contain
v(t)=exp — )v<'>(t)=exp(

heat bath field, proceeding to the density matrix to replacingB with Ba,,, and multiplying byz* is equiva-
p= Tr M. (A16) lent to replacingd with a.,A. Moreover, factgrs proportional
tterm to the incident fields (random forces & '(™(t) and

_ , ... @r"imt(t) appear in part of the contributions. All the contri-
We transform the density matrix of the explicitly identified  tions from the given factors equal zero. Actually, it fol-

modes into. the antinormal representation. over cohere%WS from Egs.(A8) that the solutions for the amplitudes
states. We introduce the coherent stdtg,}) in the usual a,(t') for t'<t must have the form of a convolution of

way by means of shift operators Dun(zm),  random forces over time, with these being taken at an instant
D({zw}) =IIDn(zy). Instead of the density matrix, itis con- ¢/ —+ |t follows that. fort’ <t

venient to consider the somewhat more general quantity

{({zm}|ApB[{zm}) =({0}|D " ({zw}) ApBD({zn}) {O}),
(A17) Therefore, the positive-frequency random forces can be car-

whereA andB are operators related to the identified modesied to the right through the amplitudes of the isolated modes
In order to consider the averagal7) as the trace over all €ntering at times’ <t into the evolution operatar®)(t); see

[am(t’),€ "M+ (01)]=0 (A21)

degrees of freedom of the field, we use the equation Eq. (A15). The negative-frequency random forces are like-

wise carried to the left. When they act on the initial vacuum

oV HoW= T _ A ALS state, the given factors annihilate the contributions in which
({o}l--Itoh {ar:}[ exp( % imai“) ] (A18) they are contained.

. . Thus, by differentiating with respect to time, the ampli-
Here the operatora,, anda,, are placed to the left and right tudes of the isolated modes that are attached to operators

. - - . ) . andB in Eqg. (A17) can be separated out. It is easy to show
of the quantity to be averaged. Using simple transformanonst,hat the kinetic equation in the form of E(l) (see Section

Eq. (A17) becomes II) follows from the described construction and the explicit

. iH ot form of the Heisenberg—Langevin equations, E&®8). The
({zmH ApB[{zm}) = ({0} (t)exp ——|B: Liouville evolution operator of isolated mode has the
i
usual form:
xexp — > (ar—z%)(a . K K
W’ momem me:{ —(iAm+7m a,;amp+7m ampa+H.c.
-z )]'A exp(—”_'—ot)u<i>(t)|{0}> i
m h 1 _ g [Vmap] (AZZ)
(A19)
) HereV,, is the interaction-energy operator of mogtewith
where the symbot ...: denotes normal ordering. Let us

. X . . _the active substance in the cavity. The fadgy, entering
consider the antinormal representation of the density matrix

ie., A=B=1. As follows from Eq. (A13), the time- into operatot,  of Eq. (5) is nonzero only when there are
dependent field operatoes,(t) anda;’(t) appear in the en- Paths in the optical system from cavity, to cavity m [see
closing functions expklt/%) and expliHot/4) in Eq.(A19).  EQ. (A9)].
They satisfy the Heisenberg—Langevin equations for cavities N the special case of two cavitiéa source and a signal
coupled by optical signals in the absence of an active suletecto), the kinetic equation, Eq(A22), transforms into
stance. that obtained earli¢t-®

In order to obtain the kinetic equation, we take the de- Based on the approach used above, we assumed the
rivative with respect to time in Eq. (A19), expanding the Heisenberg—Langevin equations, E3), the coupling
resulting derivatives of the field amplitudes by means of the2guations, EqG4A4)—(A6), and the commutation relations of
Heisenberg—Langevin equations, E@a8). On the right- the input free fields, EqA7). We now show that the given
hand side, in particular, we get formulation of the problem is consistent in the case of optical
systems in which the light signal does not close on itself. The
elucidation of this question is of interest not only in justify-
ing the kinetic equatiosee abovg but also for understand-

N . ) ing the limits of applicability of the Heisenberg—Langevin-
+(an(h—zp)expl...}:an(t).  (A20)  equation method.

d y
a:exp{...}:: —%‘, (am(t):expl...}:(am(t) —zy)
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We form a vector from the set of input amplitudes appears. Reference 5 discusses in detail the conditions under
€ "(M(0t), wherer=1,... R. The transformation of the which the secondary lasing becomes ideally sub-Poisson
fields at the elements of the optical system, beginning wittwith a Mandel parameter gf=—1/2, i.e., it becomes simi-
its inputs, can be thought of as a linear transformation of thidar in its statistical properties to the primary radiation as it
vector. We replace the linear attenuating elements with pamwas before the secondary radiation arose. Using the formulas
tially transmitting mixer devices, which extract part of the obtained in Ref. 5, we can find an explicit expression for the
light flux from the optical system and simultaneously intro- photocurrent spectrum during recording of the radiation of
duce the vacuum field into the light flux. This is required tothe secondary lasing in the form
take into account in the calculation the number of inputs,

. . 2 2
internal rays, and outputs of the system. For elements acting (2 _i@]q_ K (K1t k) K3
on independent sets of rays, the order in which the corre- @  sho k+ Kk 0+ (k1 + k)% 02+ k5]
sponding transformations are applied is not fixed. It can be .

chosen arbitrarily, since such transformations obviouslyHere«: andx, are the spectral widths of the primaipnen
commute with each other. and secondarfouten laser cavity, and is the linear absorp-

The transformation of the fields in a mixer, E&5), is tion coefficient for the primary laser light in the medium of
unitary. It is convenient to consider the transformation of thethe secondary laseit determines the population rate of the
fields at the coupling mirror of the cavity, given by E¢a3) upper active level of the medium of the secondary laser
and (Ad), in a particular representation. For the Fourier ~ We use for our analysis the formula obtained in Ref. 5
transforms of the amplitudes,—Q, it is easy to obtain for the Mandel parameter of the secondary lasing:

Kml2—i(An—Q) 1 K
T oL (A23) o=—5 -
Kl2+1(A—Q) 2 kit Kyt k

which is also a unitary transformation. The vector of the  The most interesting case for us is that in which the

initial amplitudes thus undergoes a unitary transformation agayity losses of the primary lasing are mainly associated with
the field passes through an arbitrary number of elements. It ighsorption in the medium of the secondary laser:
easy to obtain from this that the commutation relations for

the components of the transformed vector of the input am-  «>k;. (B3)

litudes have the form of EqgA7) for the fields of free
gpace. AsAT) Then the quantum singularity in the form of a dip in the

This in turn provides the necessary commutation relaphotocurrent spectrum, E_qu_)’ Wi[ be the most pro-
tions for the amplitudes of the isolated modes. Amplitudenou.nCedthe depth of thg dip V\.”” bé=1). As for a passive
a,, can easily be expressed by means of @) via a con- cavity (see Section Y, this fact is not at all dependent on the
volution of the input fielde(0t) over time. As we have ratio between the cavity widthe, and«; of the primary and

- - . - econdary lasers.
just explained, the input fields of any elements of the systen? ; .
(and not only the initial elements on the ray patibey the At the same time, the Mandel parameter depends on this

commutation relations for the fields of free space. From thigdt0- I fact, if x>« Ky, £=—1/2. However, if
it is easy to find K> k> Ky, then|£|<1.

(B1)

e?(0,0)=el"(0,0) (B2)

aq(t),a (") ]=expl—iA(t—t')— (k/2)|[t—t'|}. This work was carried out with the partial support of
[Bn(t), 2n(t)]=exp =14 2| &24) INTAS (93-1914-EXT.

Whent=t’, the usual commutation relation for an oscillator
appears.
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Rydberg matter—a long-lived excited state of matter
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The theory of condensed excited matter, the so-called Rydberg nlai®r is examined briefly.
Explicit results are given for several physical quantities, notably, the work function and the
resistivity, for which experimental results exist. The most important aspects of the experiments,
which are fully described elsewhere, are discussed. Large densities of Rydberg species are
formed in the experiments with cesium vapor in contact with cartgvaphite surfaces. The
resistivity of the RM formed is found to be 16—10 2 Q-m under varying conditions,

while theory gives the order of 1§ Q-m. The work function is experimentally found to be less
than 0.7 eV, perhaps even less than 0.5 eV. Two different methods were used to extract

this quantity from thermionic diode data. These work function values are much lower than reported
for any known material, especially at the high temperatures, and they thus give strong

support for the description of RM as a very dilute metal. Theory gives values ranging from 0.6
down to 0.2 eV, depending on the principal quantum number, which is estimated to be
n=12-14 from the lifetime calculations and from the known pressure. Supporting evidence is
found from spectroscopic studies of RM, from jellium calculations, and from recent

confirming experiments. From the good agreement between theory and experiment we conclude
that RM exists. ©1997 American Institute of Physid$$1063-776(97)00505-2

1. INTRODUCTION Rydberg species has now led to this achievement, and in our

The theoretical treatment of a phase consisting of highIpre”mentS' a vol_ume 9f 30 nfof RM of cesium ?‘toms
excited atoms of the so-called Rydberg typgdrogenic at- can be formed rout-mely in a flow system which contlnupusly
oms with one excited electrpindicates that a metal with a "€"€Ws RM. We will show that the accumulated experimen-
density as low as a gas can exist. Recent experimental resuldl €vidence now shows good agreement with theoretical pre-
on the resistivity and work function indicate that such metalgictions, and that this, by itself, proves the existence of RM.
do exist, in the form of Rydberg mattéRM). We will here HOWever, it may be even more convincing if unique results

consider the new theoretical and experimental arguments f&@2" be provided by experiments, i.e., results which cannot be
the existence of RM. attributed to any known material. This is found, we believe,

The theoretical reason for introducing RM is that local N the case of the work function of RM. Of course, low work

excitations cannot satisfactorily explain the behavior of elecfunctions of surfaces have been studied for a long time. In
tronically highly excited systems. Instead, the interactiongn@ny technical applications of electron physics low work
between the excitations in the system must be taken intinctions of electrodes are required, and the combination of
account. Such a collective or condensed state of mattefow work function and metallic properties is extremely im-
which is formed from excited atoms or other excited speciefortant in many situations. Examples are provided by ther-
was proposed in a series of theoretical studiédhen at- mionic energy converters and MHD generators, where cur-
oms are excited to high electronic states of the Rydberg typgent densities up to the order of 100-¢n™? should be
their size increases rapidly. Since the excited electrons sperbtained to make the devices work efficiently. The difficul-
almost all their time far from the core ions in the atoms, theties in forming or constructing such surfaces have for a long
wave functions of highly excited atoms overlap stronglytime been serious obstacles for the technical development.
when such atoms are brought together. At large densities anthus, several approaches have been tested, but with very
moderately high temperatures, excited atoms can form Bmited success. The alkali metals have the lowest work
solid-like condensed phase with the ions in a regular latticefunctions among the elements, at approximately 1.8 eV for
which we call a Rydberg crystal, as shown in Fig. 1. AtCs, and a layer of Cs on metallic surfaces can have an even
higher temperatures, a liquid state of excited matter, which isower work function, at 1.5 eV for nearly a monolayer. The
another form of RM, should exist. standard theory for work functions of metaltates that the

A prerequisite for valid experimental tests of the exis-average electron density, or the corresponding positive ion
tence of RM is that RM can be formed in macroscopic quan-density in the material, should be decreased if very low work
tities, which in turn requires that large densities of Rydbergfunctions are found. This explains, at least in part, why the
species can be obtained. The use of new methods of formingw density monolayers of alkali metals deposited on other
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CLUSTER

ATOM

FIG. 1. The electron density in a
Rydberg atom as a function of distance
(top panel and a cluster of RM. The
central positive core ions are indicated
by plus signs. The interatomic distance
in RM with atoms in state 13 S is 15 nm

1/2 - according to theory.

metals have lower work function than the pure alkali metals  The different properties of RM are well described by
themselves. Following this idea, various experiments hav@seudopotential theory and density functional theory similar
attempted to decrease the work function by diluting theto the theory of simple metafsThe Rydberg matter is there-
alkali-metal atoms with other nonmetal atoms, and very lowfore assumed to consist of identical Rydberg atoms. A sub-
work functions, down to 1.2 eV, have also been obtained foktantial role should be played by effects due to the inhomo-
various oxides and alkali metal-oxygen coadsorbed phasggeneity of the electron density. This is a new aspect, which is
on metal surface$.0f course, the resistivity increases for characteristic of far-from-equilibrium matter like RM, while
such materials, but at high temperatures and for thin layergjs effect is very small for ordinary condensed matter. The
this drawback is not of great importance. The goal to reachheory of RM shows that the exchange and correlation effect
even lower work functions is thus clear: to further increasgeaqs to self-trapping of the electrons where the electron den-
the distance between the alkali atoms. This is where thgy gitfers substantially from zerbFigure 3 shows the re-
theory of RM is important also from an applied point of gy of a4 numerical calculation within the framework of the
view, since it states that a low density, and thus low WorlfWigner-Seitz cell potential for RM with the excitation level

function, metallic material can be constructed. The prerequi- 7 4 (Refs. 4 and ¥, as well as the relevant energy param-

site is that Rydberg states should be formed in large densmegterS as a function of. The question of applying the density

and be condensed on a surface which can remove the “Rinctional theory to the RM problem is discussed in detail in

densation energy. Ref. 4. It is shown there, that the problems of describing
excited states by density-functional methods can be over-
come by combining this theory with the pseudopotential con-
In Rydberg matter the excited valence electrons areept.
shared between many atoms in the material and form a de- The lifetime of the Rydberg crystal is, of course, of great
generate Fermi liquid. Due to delocalization, the kinetic enimportance. The decay of RM is caused by electron transi-
ergy of the electrons decreases considerably when the coflons to low-lying unfilled energy levels. The Rydberg matter
densed phase is formed. As a result, the binding energies ¢f therefore inherently unstable and has a finite lifetime. At
the excited atoms become high enough to keep the atoms f}st glance, the lifetime of RM seems to be shorter than that
place. The potential energy for the valence electrons in Fig. ¢ the isolated atoms, which is attributable to the strong Cou-
shows that the probability of these electrons coming close tgymp interaction of the electrons. As the excitation level in-
the core ions is very small. creases, however, the lifetime of RM is expected to increase
rapidly due to the spatial separation of the initial and final
states of the electrons, as in free Rydberg atoms, and due to
specific effects on the local field in the strongly nonuniform
/\ electron liquid of RM. The higher the level of excitation, the
| stronger the electrons are drawn to the boundaries of the unit
cells, while the final states for the decay transitions remain
localized at the core ions. Recombination, therefore, cannot
occur into all low-lying states corresponding to isolated at-
oms. The interaction between the electrons leads to the for-
mation of an effective potential barrier to the penetration of
Y valence electrons into the region close to the core ions. Thus,
Core ion position RM can be a long-lived excited state of matter. The high
excitation energy in the condensed matter also makes pos-
sible decay processes involving several electrons, for ex-

FIG. 2. Potential energy diagram for the electrons in RM, along the line@Mple, the Auger processes. The ”fetimes_indUding such
A-A in Fig. 1. The electron density is indicated. processes are calculated in Ref. 8 and are still found to be of

2. THEORY OF RYDBERG MATTER

Core electron states

| Energy

Rydberg metallic
electron states

Distance
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= 0.0 FIG. 3. One-electron potential energy for
&-1.0r o2t 1 the excited electrons in RM with=10. The
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the order of several seconds or longer for some excitatiosimplest to form because of the low ionization energy of

levels. alkali atoms. The new techniques employ diffusion of alkali
ions from the bulk of nonmetallic materials. For example, in
3. CALCULATED QUANTITIES the case of graphite surfaces it was shown that the emission

Various parameters characterizing the Rydberg crysta?' Cs" ions gives rise to a near-resonant process that forms
state can be calculated by the methods mentioned ghove?ydberg Species from the emitted ions and thermal
Some examples are represented in Table I. The Rydber@fectrons.’~*“By increasing the pressure of Cs vapor in con-
crystal is a good electrical conductband its work function ~ tact with such surfaces and by ensuring that diffusion in the
is thus a well-defined quantity of great interest. Due to thenaterial takes place, large densities of Rydberg species of Cs
low electron density, the Rydberg crystal is transparent t&nd K have been formed. Small particlésusters™® and
visible light. It becomes opaque to electromagnetic radiatiornacroscopic amounts of RMC can be formed by using Cs
only at frequencies lower than its own plasma frequency ovapor. Also, alkali-doped metal-oxide surfacesg., pro-
at wavelengths longer than some transparency boundafyoted catalyst surfacebave been shown to give large den-
wavelength, which is far out in the IR for the excitation sities of Rydberg species of K® The behavior observed
levels in Table I. for RM formed by such methods is qualitatively the same as

A basic problem with this type of calculation is that the the predicted behavior: it is, for example, transparent to vis-
excitation level, i.e., the principal quantum number for theible light, and it emits much less light than an ordinary
combining atoms, must be assumed. This parameter is nglasma when it carries a large current. That the observed
known directly from the experiments. However, the vapormatter is very energetic is easy to observe through explo-
pressure before condensation in the experiments in Refs. §lons of the matter under simultaneous emission of visible
and 10 is of the order of 1 mbar. Assuming that the diameteright or charged particles, both for small particles of EM
of the Rydberg atoms are the same as the interatomic disind for large layers of RM on surfacksin one experiment
tances in a gas of this pressure, one findapproximately clusters of RM were collected on a liquid-nitrogen-cooled
equal to 16. Itis Ilkely that some contraction is taking p|acesurfacel_7 They were de-excited by ion impact, which gave
as a result of the condensation, and it is thus reasonable ¥mall microflashegsmall white explosionswith an energy
perform the calculations fon=12-14. The calculated val- content approximately as expected from RM theory. Collec-
ues for the density ah=13 in Table I, correspond to a tjon times longer than a few minutes gave no increase in the
pressure of 60 mbar or an equivalenvalue of 9. Thusn  nymper of flashes during de-excitation, and the intrinsic life-
=12—14 appears.to pe a goqd choice of ex0|ta}t|on levelime of RM at that temperature was estimated to be a few
lacking more de.talled.qurmatmn from the experiments. Aminytes. This lifetime is of the same order of magnitude as
more detailed discussion is found in Ref. 8. that given in Table I, with values ranging betwe® s and 80
h. The main recombination channels for the kind of RM,
which consists of highly excited Cs atoms, have been re-

The experimental results have been obtained using newently investigated. A detailed description of this study is
technigues to create large densities of highly excited Rydfound in Ref. 8. The decay proceeds, as a rule, by the Auger
berg species. Alkali atom Rydberg species are generally theecombination mechanism.

4. RESULTS AND DISCUSSION

TABLE I|. Parameters of the cesium RM crystal.

State of  Density Binding energy  Melting point  Work function Transparency  Lifetime

atoms p, cm 3 B, eV/atom Tm, K o, eV boundaryn, um 7, S
12S 1.1x10% 0.14 460 0.23 32 25
13S 5.3 10 0.11 460 0.2 46 5
14 'S 2.8 10" 0.1 540 0.18 63 80 h
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‘\—-\ FIG. 4. Current—voltagél-V) char-
Uivy uw acteristics of the cesium-vapor-filled
thermionic diode. The ordinary be-
havior, together with a description of
the energetics for the electrons in the
diode, is shown in(a). The signs
used are conventional; the positive
current visible in the second quad-
' v’ 1% rant is emitted from the hot elec-
o ouour trode. The special behavior caused
by RM formation, with two break
points in the curves and a very large
electron current from the cold elec-
—_— -— trode in the fourth quadrant, is
shown in(b). The energetics shown
A Y in (b) corresponds to the break point
— farthest to the right.

Electron energy
S
|
I
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Of special importance are the values of the resistivity,rent density is very large, up to 500-&n 2 at an applied
which were determined for RM of cesium at a temperature ofoltage of 30 V. As stated in the introduction, the extremely
approximately 800 K. These measurements were made in g values of the work function found in the experiments are

flow system which renews the RM continuously betweenconcusive evidence that RM exists. We must therefore ex-
two partially graphite-covered electrodes in a vacuum chamzmine the measurement methods in detail.

ber. This chamber is a thermionic diode, which is character-  1\o different methods were used to extract the work
ized as a thermionic energy converter. The complete appargjnction from the current-voltage behavior observed: 1
tus has recently been described elsewtigréhe electron maximum current density method, angiahalysis of the di-
ctjrrent dﬂOWS from ths cotl)d to tr&e .hOt ﬁle((j:trc_)de. J he INter-4e characteristics of the plasma-RM setup. From the Rich-
electrode space can be observed visually during the measurgzyqqn formula for the electron emission current density, we

ments; this space is not glowing//hen a plasma is formed clearly see that a current density,, =500 A-cm 2, corre-

between the electrodes, this region is glowing and the max'éponds to a work function of 0.82 eV at 800 K, which is the
mum possible conducted current is much low&he experi-

: : : : . . temperature of the cold emitting surface. This value,@f.is
[222; IZ di;?g”gg ilgofz;cg?sacgﬁybteh?;'sg; S(:;b(;?r;:;fa]?r t)sr’n“tlﬁhe highest current density measured in the setup because of
9e b ' J y ?ne experimental limitations like power supply availability

experimental results. Further, the hot electrode is heated b . : .
b nd melting of the electrodes. The current density at this

the impinging electrons, which shows that the current passes . A . . .
pinging b oint still increases linearly with the applied current. We

through the interelectrode space. A resistivity of P . . . .
10-3-10°2 O-m is found from the linear resistive behavior thus can state that the work function of RM in this experi-

of the current-voltage characteristt3he range in values is Ment is<0.8 V. The measurement of the current density
due to the varying conditions for a large number of experi-depe”ds on the correct determination of the electron emitting
ments done at different electrode temperatures and cesiuff€@- Through a window of the apparatus we can observe the
pressures. The resistive behavior is found only with graphitd@int glow from the current-carrying part of the interelectrode
layers on the electrodes. Calculations give the resistivity ofPace, and thus ascertain that there is no large current emis-
RM for the levelsn= 12— 14 of the order of T Q-m. The Sion from adjacent parts of the apparatus. If the emitting area
agreement between theory and experiment is therefore vef§ 50% larger in reality, the work function would be 0.85 eV.
good. In fact, the area used in the calculation is not emitting ho-
The surface work function of RM was determined in mogeneously, so the central part, which has a larger emis-
similar experiments in the same kind of appardfushich  sion, also has a somewhat lower work function.
forms RM from Cs vapor in contact with a pair of electrodes ~ The diode analysis procedure is carried out in the fol-
that are partially covered with graphite. It is worth noting lowing way. The typical current-voltage characteristics of
that the colder electrode of the two plane-parallel electrodethe plasma diode is shown in Fig. 4a. In the first and second
supports the RM, and that the electron current which is obguadrants, the electron current from the hot electrode is mea-
served is emitted from the cold surface to the hot surfde®  sured as a positive current by definition. With an increase in
reverse current is usually much smallérhe maximum cur- the voltage to the right, i.e., with a more negative voltage on
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the cold electrode, the thermal current from the hot electrod
will decrease, showing a Boltzmann tail. The steepest de
scent of this decay curve indicates the approximate outpt
voltage, at which the work functio®g of the hot electrode

is equal to the sum of the so-called barrier indghich
contains the work functiod ¢ of the cold electrode and the

plasma dropand the output voltag¥/,:

D=V +V! ()

out*

The decay curve must be limited by the density of the ther 2
mally emitted electron current from the hot electrode, as ex %6
pressed by the Richardson equation: '&e

ie=ATZ exp(—Vp/kgTe), 2)

which gives the barrier inde¥}, from the measured current
density and the hot electrode temperatlige This can be
understood more easily from the lower part of Fig. 4a, where
the energy of the electrons is shown. This analysis is a star
dard procedure for the study of thermionic converter perfor-
mance. . . L . FIG. 5. A plot of the barrier inde¥,, versus the voltage difference&/

In the case of RM formation in the thermionic diode, —V{.) for the two break points in the |-V characteristics for the thermionic
there exist two break points or knees on the curve, as seen ibde with RM formation. The two lines demonstrate the linear relationship
Fig. 4b. The break point at the lowest VOnaggjt (to the left between the two parameters at moderately high temperatures of the hot
in the figure corresponds to the point at which the electron®'ctrode:
emission from the hot electrode is small, i.e., to a case simi-
lar to that analyzed with the help of Fig. 4a. The right-handyalue ofn approaching 20, as shown in Table | and Fig. 3.
break point atV,,, indicates the onset of electron emission This value is just below the upper limit found experimen-
from the cold electrode, which increases approximately lintally. Similar diode experiments, performed recently by a
early with the applied voltage above this voltage point. Heregroup in the Kurchatov Institute using graphite surfaces,
another relation can be found from the lower part in Fig. 4biwere shown to give extremely large current dens#tfeBhis

D=+ Vyy. ) confirms the results of our experiments.
- ' Very low values of work function have also been found
Combining Eqgs(1) and(3), we obtain recently in simple jellium calculatiorfé:?2Such calculations
/ are preformed for a dilute alkali metal, replacing the inho-
V= (Vour Vou) + Pc. ¢ P pachd

mogeneous electron density in RM with a constant, smeared-
This relation indicates that the work function of the cold out, electron density in the jellium approximation. In Ref. 22,
electrode covered with RM should be regarded a constarthe same densities of RM were used for the jellium calcula-
(axis cutoff in a linear relationship between the barrier indextions, as in the more accurate calculations in Refs. 1-4, 7,
and the voltage difference between the break points. The datnd 8. The work function from the jellium calculation fol-
from a large number of runs with different temperatures oflows the same trend with the excitation levealue ofn) as
the hot electrode is plotted in Fig. 5, with the barrier indexthe RM calculations. However, the work function values are
and the break-point voltage difference on thandy axes, even lower, which is expected since the volume over which
respectively. As in Ref. 10, an approximate linear relation-the electrons can move is much larger in the jellium model,
ship is observed. In the figure, the temperature of the howvhere there is no excluded volume around the ion cores.
electrode is now plotted in thedirection. We see that most This point is discussed in greater detail in Ref. 22. It is en-
of the results fall within a band with the work functiesb: ~ couraging that the two widely different theoretical methods
(barrier index value at zero difference voltagetween zero give similar values of the work function, and the results in
and 0.7 eV. The few data points at low difference voltageRef. 22 strongly support the correctness of the RM theoreti-
and high barrier index are found for higher temperatures otal treatment. The real work function for RM is likely to be
the hot electrode than the other data points, which mighbetween 0.5 and 0.1 eV at £h< 20 (Ref. 22.
mean that the plasma voltage drop has a somewhat different A direct spectroscopic study of RM in the same appara-
character in those cases. It is important to realize that no datas as used for the other experiments discussedtisrguite
point with V,<(Vou— V4,0 should exist. This condition is instructive®? In this test, the spectra of the free Cs atoms
satisfied(excluding one data poiptthis strongly supports were recorded under conditions of an ordinary plasma and
the analysis of the data. The work function of the RM wasalso during conditions of RM formation with no glowing
thus found to be less than 0.7 é¥No known material has plasma. With RM, the current was generally higher and the
such a low work function, especially at such a high temperavoltage drop lower than for the plasma. It was barely pos-
ture. The calculated value of the work function for RM is sible to run comparison experiments where the current in the
extremely small, ranging from 0.6 eV down to 0.2 eV for a presence of RM was as low as that during plasma conditions.
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Transverse instability threshold in counterpropagating light beams for a nonlinear
medium with local photorefractive response

B. I. Sturman and A. I. Chernykh

Siberian Branch of the International Institute of Nonlinear Studies, 630090 Novosibirsk, Russia
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Zh. Eksp. Teor. Fiz111, 1611-1623May 1977

We derive the threshold conditions for the instability of counterpropagating waves in a nonlinear
medium with local photorefractive response against the excitation of transverse small-angle
structures. These conditions allow for all the important types of diffraction from refractive-index
reflection gratings and are not limited to the case of strict frequency degeneracy of the

waves. We study the dependence of the crystal-thickness threshold and the secondary wave
emission angle on the crystal parameters and the pump conditions. We show that when the pump
wave intensities differ considerably, excitation of standing light structures is replaced by

excitation of traveling structures. Finally, we discuss the applications of the theory to experiments
with the photorefractive crystals LiINband LiTaG,. © 1997 American Institute of
Physics[S1063-776197)00605-7

1. INTRODUCTION light pattern. What determines the specific type of photore-
fractive response is the electr@mole) transport mechanism.

It is well known that counterpropagating waves in a cu-For instance, photoelectron diffusion results in nonlocal pho-
bic nonlinear medium can be unstable against the spontanesrefractive response. This is characteristic of experiments
ous generation of small-angle structute$This transverse involving KNbO, and BaTiQ crystals. Local response usu-
instability is absolute and has a threshold in crystal thick-ally occurs when the dominant effect is electron drift in an
ness; positive distributed feedback lies at the basis of thiexternal field or the photovoltaic effettA typical example
phenomenon. By its nature, transverse instability is similar taf a photorefractive medium with local photorefractive re-
what is known as cavityless lasing due to four-wave mixing. sponse is represented by LiNp@rystals, which exhibit a

Experiments have shown that the result of the developstrong photovoltaic effect.
ment of transverse instability is sensitive to the experimental  Here is a brief history of studies of transverse instability
conditions and the type of nonlinearity. The formation ofin photorefractive media. The formation of traveling ring
ring, hexagonal, and more complicated small-angle lighttructures around counterpropagating pump beams was dis-
structure near the pump beams has been observed under vasbvered in 1985 in LINb@ crystals® A similar effect in the
ous conditions:*®7 same material was described later in Refs. 14 and 15. Unfor-

Theoretical studies of transverse instability have focusedunately, no meaningful interpretation of these results was
on finding the threshold conditions for the formation of light given at the time, nor was there any further development.
structures. These conditions were first established and studhe conditions under which the observations were conducted
ied in relation to Kerr and Brillouin media and to gases neamwere not recorded. In 1993 transverse instability was ob-
absorption line$~* Lately there has been an upsurge of in-served in KNbQ crystals, which differ considerably in their
terest in transverse instability in media with photorefractivephotorefractive properties from LiNbQrystals’ The result
nonlinearity®1* of such instability is the formation of hexagonal standing

The interest in photorefractive nonlinear media is notlight patternghexagons Both in Ref. 7 and in the work that
accidental. Such media are important in various applicationfollowed!®!” a detailed study was made of emergent light
and present exceptionally favorable conditions for studyingstructures. In particular, the possibility of controlled rotation
secondary light structures. The required light intensities arand drift of hexagons was established. Honda and
within the intensity range of continuous-wave lasers, andvlatsumotd® reported on the formation of hexagons in
typical nonlinear lengths amount to several millimeters. TheBaTiO; crystals, which are similar to KNbQn the type of
mechanisms of photorefractive nonlinearity are well-studiedpbhotorefractive response.
and controllablé? Note that in all the experimental conditions described

Nonlinear variations of the refractive index in a photo- above, the formation of secondary light structures was re-
refractive medium are due to the formation of a space-chargkated to the diffraction of light by refractive-index reflection
field by light and the linear electrooptical efféétTwo lim-  gratings with a period close to half the wavelength of light in
iting types of photorefractive linear response are usually disthe medium. Transmission gratings with large periods,
tinguished: the local and the nonlodalln the case of local formed by accompanying waves, are extremely weak here.
response, a standing sinusoidal light pattern inducgsna- Hondd was the first to study photorefractive transverse
soida) spatial modulation of the refractive index. In the non- instability theoretically. The case of dominant rerfractive-
local photorefractive response, the induced refractive-indeindex transmission gratings was studied, which had little re-
pattern is shifted by a quarter of the period relative to thdation to experiments. Next, in Refs. 9 and 10 the threshold
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conditions for transverse instability were derived indepen- Y a7 Y  a ¥
dently for dominant reflection gratings. Local photorefractive p d
response was studied in Ref. 10, while the studies in Ref. 9
were of a more general nature. The application of the results
of Saffmanet al® to the case of nonlocal response revealed a 7
total lack of instability, which was in sharp contrast to the

5
o

o]

[

results of the experiments with KNkCand BaTiQ. Re- ad Q
cently it was showh that the previous work in Refs. 9 and d »
10 contains an elementary error, i.e., a number of important 4 i} 5 5 B 5

contributions related to the transverse modulation of the light
intensity were omitted from the initial system of equationsgig, 1. Geometry of the problem: a—wave vectors of the pump waves
for the weak secondary waves. Honda and Bangrjde-  (a,) and the side wavesy{y’ ands,8'); b—vectors of the spatial reflec-
rived a general system of equations for the amplitudes ofion gratingsf, p, andd. The frequency detunings for the side waves are
weak waves that allow for all important contributions. They * -

applied it successfully in analyzing the transverse instability

threshold in KNbQ with nonlocal photorefractive response.

The threshold conditions for instability were obtained i”ing type. Generally, the side wave frequencies differ from
Ref. 11 with two restrictions(a) the reflection of light from  , "The corresponding frequency detunings, however, cannot
the feedback mirror positioned behind the crystal is comonsiderably exceed the reciprocal relaxation time of the
plete, and(b) the waves are strictly frequency degeneratespace-charge fieldg !, since otherwise, as shown in Ref.
Condition (@) is important for media with nonlocal photore- 12 photorefractive nonlinearity becomes ineffective. In the
fractive response. The point here is that the pump beams igyxperiment the important detuning values do not exceed
such media exchange energy due to diffraction by thqj?_10%) s 1. Such small detunings have little effect on the
refractive-index reflection grating shifted by/2 in relation wavelengths of the light.
to the light intensity distributioni? In this way the contrast of The wavese, B, 7, v', 8, and &' form three reflection
the initial interference light pattern varies in space. StUdie%ratings of the space-charge figlgee Fig. 1l the funda-
of the stability of such a spatially inhomogeneous initial statey,enta] gratingf, with spatial frequency =k, —kg, writ-
are extremely difficult, however. For media with nonlocal {gp, by the pump beams, and gratirrgsandd,[z/vith vectors
response, conditiofe) realizes the only known special case g =ks—Ko,=kg—k, and Kg=k,—kz=k,—Ky, formed
where the contrast of the interference light pattern is conpy the weak side waves. Here we ignore reflection gratings
stant. Condition(b) involves not the experimcental condi- \yitten by pairs of weak waves and transmission gratings.
tions but the type of solution corresponding to instability. the weakness of the latter in experiments with LiNbi©®
We believe that this condition is justified for media with y,e to the special features of electron transpolt.
nonlocal photorefractive response, since the secondary light The siow wave amplituded;(j = a,B,7.7',6,5') con-
structures observed with the experiment are immobile.  sjgered as functions of positianand timet vary because of

The goal of this paper is to correct the error we made inye giffraction of light by the spatial gratings. If i , 4 we
Ref. 10 and to study threshold conditions for the emergencgenote the complex-valued amplitudes of the space-charge
of transverse instability in a medium with local photorefrac-fiq|q at frequencies , ¢, then according to the results of

tive response. This is most important for LiNg@nd LiTaO  Ref. 10 we have the following expressions for the side wave
3 crystals, where the photovoltaic effect is the dom'”a”tamplitudes in the paraxial approximation:

transport mechanistt. The case of local response is also

interesting from the theoretical viewpoint. Energy exchange d | )

between pump beams is absent here, so that stability of the d_z+'A Ay=—is(BsAgtErAy),

initial state of the light field can be studied without restric-

tions on the experimental conditions. In particular, the pump d | .

beam intensity ratio can be assumed arbitrary. On the other d_z+'A Ay =—Is(EpAgtErAs),

hand, there is no reason to assume that the secondary light @
patterns are of the standing type in the case of local response.

The frequency detunings between the side waves and the (__iA)Al;:iS(E A +FEFA),

pump waves at the instability threshold are obtained through dz e 7

calculations.

d
(__|A)Agr:|S(E§Aa+ E?Ayr),
2. THEORETICAL PREREQUISITES dz

The geometry of the problem is given in Fig. 1. Therewhere s=7n®/\, and A=wné?/\, with n the refractive
are two counterpropagating pump wavesand 8, and two  index, A the vacuum wavelength of the light, the corre-
symmetric pairs of weak side wavesg,y’ and 6,6’. All sponding component of the electrooptical tensor, artte
waves are assumed to have the same polarization. We algoopagation angle for weak waves in the crysif#dg. 13.
assume that the pump waves have equal frequengié®., As applied to lithium niobate and lithium tantalate crystals,
the interference pattern formed by the waves is of the standi=ng is the ordinary refractive index, amd=r 3 is the tabu-
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lated electrooptical constant. The paramet€p) is simply  taken into accountfor the case of strict frequency degen-
the differencek— |k,| for the wave vectors of the side waves eracy in Ref. 11. Clearly, the amplitudes of the intensity
(see also Ref. 10 gratings at the spatial frequenciksg 4 ; are

The pump wave amplitudes are not constants. They

change because of diffraction by the gratihg Ip:AzAﬁ's‘ﬁA;’ , d:AaAg' +2A’,5A7,
) aa, |AlS |AlS ©)
4z = ISEAs. g TISEfA,. ) | CALALAAY HASAAGA,
v K ’

Equationg1) and(2) for the wave amplitudes do not contain h AZ=|A 24 |A2 Si th litud&. is ind
time derivatives, since in the case of photorefractive nonlin¥ ere|Als=|A,| . | r3| - >ihce the amplitude 1S inde-
endent oft, the time dependence &f ; fully determines

earity they are small because of the large inertia of the spac@ . i i
charge field?13 the time dependence of the amplitudgs, . Equations(5)

readily suggest that only when the frequency detunings of

Equations(1) and(2) for the wave amplitudes are not a X . »
. s @ P fhe side waves(); = w— w;, satisfy the conditions

complete set. They must be augmented by relationships e
pr_essing the grating_ amplitude; , 4 ir! terms of wave am- Q,=0;=—0,=-0;=0, (6)
plitudesA; . To obtain these expressions we use the follow- ) ) . .
ing starting relationship for the space-charge figtd each of the gratingp andd consists of a singlétraveling
component, and each side wave contains only one temporal

harmonic(see also Fig. )1 Assuming that these conditions

E —~
EHE: Epnl, (3)  are metand the, 4 = exp(—iQt), we see that Eq3) yields
. . L . . Epnl p—Ef 1t Epnla—Eflt
where r=t/ty is dimensionless timd, is the light intensity Ep:T1 =11, (7)

normalized to the total intensity of the pump bearg,, is

the characteristic photoinduced field, and the tilde stands fovherev=Qty. The dimensionless detuningcan be inter-
the spatially oscillating part of the particular quantity. For preted as an internal degree of freedom for the side waves.
lithium tantalate and lithium niobat&,,, is the photovoltaic Plugging (4) and (7) into (1) and allowing for(5), we
field (an important characteristic of the crystaindty is the  arrive at a closed system of linear equations for the side
dielectric relaxation time, which is inversely proportional to wave amplitudes. This system can be additionally simplified
the pump intensity. The fact that the fielih, in (3) is real by going over to normalized wave amplitudes,
guarantees that the photorefractive response is local, i.e., that,,yr=Aer;1 and as,(sf:A(s,g'A/;l- Allowing for phase
there is no phase shift between the standing intensity gratingrodulation of the amplitudes,, z via Egs.(2) and doing

and the distribution of the space-charge field. simple calculations, we arrive at the following system of
Equation(3) implies that the amplitude of the standing homogeneous linear equations with constant coefficients:
gratingf induced by the pump waves and g is d
A Ag (d—z+iA ayzig(VﬂaerVa’;,—Vﬁaﬁ—Va’;,),
Ei=E 0. 4
= oA [ZH AP @ R . .
d—z—|A ay,z—|g(Vay+VBay,—Va5—VBa5,),
In deriving (4) we ignored higher spatial harmonics with (8)

wave vectors that are multiples Kf; . As is known, even if .

|A4l?=|A4|? and we allow for such harmonics, they provide (d_z_'A

no significant contribution td;. In accordance with Egs.

(2) and (4), the pump wave intensitig#\,, 5|2 are indepen- d A

dent of positionz. az"
Generally, the reflection gratingsandd are not of the

standing type. Their amplitudes can be found in the Ieadiné\_/|

(linean approximation from the side wave amplitudes. As

Eqg. (3) implies, there are two types of contribution to the m? m?2 iv

amplitudesE, andE,. First, to obtain thep andd harmon- V= A(1tiv)’ Vep=7 + 1575 las 9

ics we must allow for modulation of intensityat the spatial

frequencie, andK4 on the right-hand side of E¢3) and ~ Where I, ; are the normalized pump wave intensities

ignore intensity modulation in the second term on the left-(I,+15=1), andm=2yl,,l; is the original interference

hand side. Contributions of this type were taken into accounpattern contrast.

in Refs. 9 and 10. Second, we can take into account the The system of equation) couples four amplitudes:

fundamental harmonic oE in the second term and at the a,, a’;,, as, and a’(;,. The presence of at least one side

same time allow for transverse intensity modulation at thewvave means that the other three are also present. In the case

spatial frequencK;=Ky— K=K+ K (Fig. 1b. Contribu-  of strict frequency degeneracy€0) we haveV=V, ;

tions of this type were ignored in Refs. 9 and 10 but were=m?/4; the system of equatior(8) coincides with the one

a,=ig(V,a,+Vaj, —V,a,~Vaj,),

aj,=—ig(Va,+V,a},—Va,~V,aj,).

ere g=7rn3rEph/)\ is the couping constant, and, V,,
p are dimensionless parameters:
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obtained in Ref. 11 for a real coupling constant. When theThis type is most easily realized in experiments.

pump wave intensities are equaj,=1z=1/2, with m=1, Generally the threshold condition is complex-valued and
we have includes external parametefthe crystal thicknesk and the
1 142ip pump beam intensity ratip=14/1,) and internal param-

e V= V= (10)  eters, which allow for automatic adjustment of the secondary

4(1+iv) 4(1+iv) waves(the propagation anglé and the dimensionless detun-

The sign of the coupling constagtin (8) depends on the ing v). Solution of the threshold equation yields the func-

type of crystal and experimental conditions. The cgsed  tionsl=I(p,#) andv=v(p, ). Minimization of| as a func-

corresponds to a defocusing nonlinearity, and the caston of ¢ yields the threshold valuky(p) and the threshold

g<0 to a focusing nonlinearity. In LiNbQand LiTag, with ~ values of the emission angle and detunirg,(p) and

dominant photovoltaic transport, the nonlinearity is of thev(p). When finding the threshold values one must bear in

defocusing typeg>0. mind that the solution of the threshold equation may consist
Let us examine some properties (). At »=0 and of a sequence of branches fd®,p) and v(6,p).

m=1 the directionst z and — z prove physically equivalent.

As a result of this spatial symmetry, the systéBh allows

for solutions in the form of symmetricS) and antisymmetric  3-2. Standing light patterns

(A) modes,a,,, (2)=*as4,(—2). As shown later, this What is important is that for strict frequency degeneracy
symmetry property simplifies the structure of the thresholde threshold equation becomes real. This means that it al-
equations for transverse instability considerably. Fo# 0 lows for the solutionv=0 andl =1(4,p). As noted in Sec. 2,
andm # 1 the property of spatial symmetry is lost. at v=0 the system of equatior(8) is symmetric under the
Note that in the case of strict frequency degeneracy, ,_; transformation and a simultaneous permutation of
(,,:9) each of the parametevs V., andV is proportional  jngicesy, ' < 8,8". As a result the system is invariant un-
to m?. However, wherv # 0, only two of these parameters ger the substitution op~* for p. The vanishing boundary
tend to zero asn decreases. This means that fof<1 the  conditions (11) are also invariant under reflection in the
mutual coupling of the wavey, ', 6, and " strengthens  ;—q plane. For this reason the threshold condition can be
because a frequency detuning is introduced. As shown lateyy itten as
this leads to the formation of traveling light patterns near the
transverse instability threshold. S(1,6,m)A(l, 6,m) =0, (12
i.e.,, it splits into two equations,S(1,,m)=0 and
A(l,6,m)=0, where the first corresponds to the symmetric
mode and the second to the antisymmetric. Calculations lead

V=

3. THRESHOLD CONDITIONS

3.1. General considerations to the following expressions for the factoBsand A:
A threshold equation for transverse instability can be AL T Al Il
obtained from the condition that there can be nonzero output S=4 Sin - sinh—-+1I" cos—- cosh—-,
amplitudes of the side waves for zero input amplitudes. In 13
other words, the equation corresponds to a situation in which Al 'l AL T
o - e . A=A cos—= cosh——T sin—- sinh—,
the transmission coefficient for an infinitely weak signal 2 2 2 2

(say, the wavey) at the input becomes infinitely strtong.
The possibility for transverse instability to manifest it-
self is related solely to the fact that the boundary conditions T'=\Agm’—A?Z. (14)
for the wavesy, y’ and 5,4" are fixed on the opposite faces . . qrs5 and A are real for all values of the angular
of the crystal. To be definite, let us suppose that the entrance . .
and exit faces are a=—1/2 andz=1/2, so thatl is the parameter, and any sign of the coupling constaitAt the
. ) ' : same time, their structure depends on the sign of the differ-
thickness of the nonlinear layer. Then, by solving the system

: . . : encegm?—A. If the difference is negative, the hyperbolic
of homogeneous linear differential equatiags we can ex- functions ofI'l/2 in (13) become the corresponding trigono-
pressa;(1/2) with j=1v,y’,6,6" in terms ofa;(—1/2) via a P 9ng

a ) metric functions. Note that the pump wave intensity ratio
fourth-order matrixT (1). Next we must express algebraically gnters into(13) through the interference pattern contrast
the exit valuesas s (—1/2) in terms of the entrance values

'e) > m=2/(p*?+ p~*?). This fact is a direct consequence of the
as s (1/2). The transmission coefficient for weak waves be-

i : : spatial symmetry of the problem mentioned earlier.
comes infinite if the second-order determinant

) e : Clearly, the parameters |, andm enter into(13) as two
TssTsrsr— Tss Tsrs vVanishes. A similar procedure for find- jimensionless combinations:

ing the threshold condition of cavityless lasing has been used

earlier for a number of six-beam configuratiotsee, e.g., A _ 2

Refs. 19 and 20 *= g y=lgm- (15

The type of threshold equation depends on the type 0ﬁ'his simplifies the analysis of threshold conditions. If we

boundary condition. Below we discuss only vanishing .
boundarv conditions: know the valuesx, andyy, corresponding to the absolute
y ' minimum of the functiory(x), we use(15) and immediately
a, ,(—112)=0, a;s(1/12)=0. (11 arrive at the dependence lgf and 6,;, on m andg. We note,

where
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FIG. 2. The parameter=Igm? as a function ok=A/gn? for the antisym-
metric (solid curvg and symmetriddashed curyemodes.

however, that thg, « m? and# « m dependences that follow
from (15) are sharper than those found in Ref. 10.

Each of the equation§(x,y)=0 and A(x,y)=0 pro-
duces a sequence of branches for the functigs).
Branches belonging to one symmeti$ ¢r A) never inter-
sect, but those belonging to different symmetri€said A)
do. The two lowest branchegx) corresponding t&- and

S=A s kel okl kik_ Kyl K_|
=A sIn T Sin T + A COST COST,
(18
Kyl k|l kyxk_ kil k_I
A=A COST COST'F T smT SInT,
where
K+:VA(A_Eg)! K_:\/A(A_g), (19)

with e=iv/(1+iv). At v # 0 the factorsA and S are
complex-valued, while ab=0 they are given by the previ-
ous formulag13) if we setm to unity. The first problem that
emerges in studying the threshold equatton0 andS=0 is
whether these equations have at least one solutio{A)

and v=v(A) with v # 0. Numerical calculations reveal a
lack of such solutions. In other words, at=1 the light
patterns emerging near the instability threshold are of the
standing type.

Investigation of the instability threshold in the general
case ofv # 0 andp # 1 entails enormous difficulties in view
of cumbersome calculations resulting from the lack of spatial
symmetry. Such an investigation can probably only be nu-
merical. But when the pump wave intensities differ consid-

A-modes are the most interesting. Their points of intersectiograPly, the problem can be simplified. Furthermore, from

can be found from the condition th&(x,y)=S(x,y)=0.
The answer is

(12
=41

_2j+1 18
Yi= Wj+—1’ (16)
wherej is a positive integer.

We can now easily see that fayg>0 the equation
A(X,y)=0 has a solutiory=7r atx=1, with this point cor-
responding to a local minimum of the functigiix). More-

general considerations it follows that in this limit traveling
light patterns correspond to a lower threshold than standing
patterns. This becomes clear if we again turn to the original
system(8) and assume, for the sake of definiteness, that
p=15/1,<1. From(9) it follows that the dimensionless pa-
rametersV, V,,, andV, are

v p iv
T 1l+tiv! @ 1+ip’

Vg=p. (20

over, numerical calculations show that the particular solutiorOnly the parametey, remains finite ap—0. On the other
established above corresponds to the absolute minimum dfand, the structure of the system of equati@smplies that

y(x). Hence for the threshold valuég, and 6,,, we have

7

Ith:W, ch=mn rEph.
Note that atm=1, the angleé,, coincides with the value
found in Ref. 10, and the thickneg exceeds the previous
value by a factor ofy/2.

Figure 2 depicts the two lower branchesygi) corre-

sponding to théA- and S-modes. They fully agree with the

above properties and are qualitatively similar in structure to
the branches obtained in Ref. 10. Note that each branch of

y(x) exhibits a sequence of minima, with the valuesyddt

for V,>V, V, the coupling between pairs of counterpropa-
gating waves, which is needed for instability, becomes much
stronger that fovV,=0 (i.e., aty=0).

To find the threshold condition we must calculate each
of the matrix element§ 55, Ts 5, Tss, and T s 5, Which
couple the amplitudea; andag, in the leading approxima-
tion in p. This can easily be done by employing the Laplace
transformation in the coordinate As a result we arrive at
the threshold equation
2A—ge(A—ge)2

COiZ'(A—ge)]:Z—gzp—A TE (21)

adjacent minima being close. This fact is important for un-wheree=i»(1+iv) %, in accordance with the adopted no-
derstanding the nonlinear stage in transverse instability, i.etation.

the structure of the emergent secondary light patterns.

3.3. Traveling light patterns

Let us assume that the dimensionless detumirig non-

Equation(21) is complex-valued. Its solution consists of
a sequence of branches g\) and v(A). Figure 3 depicts
the two lowest branches fd{A) and the corresponding
branches forv(A). We see that the functiol(A) for each
branch is characterized by a single smooth minimum and the

zero. We begin with the case of equal pump wave intensitieglimensionless detuning corresponding to this minimum is

p=1. Here the systen®) still allows for a solution in the

of order unity. The minimum values ¢ffor the branched

form of A- and S-modes, while the threshold condition may and2 are close to each other, but correspond to substantially
be written in the form12). Calculations lead to new expres- different values of the angular parametr Calculations

sions for the factor®\ andS:
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FIG. 3. (a) Two lowest branche&urvesl and?2) of the functionl (A) at p=

0.1. (b) The corresponding branches of the functiefa). FIG. 4. The threshold values @) the thickness$,;,, (b) the angular param-

eterA,=wnoi/\, and(c) the dimensionless detuning,=tyQ, as func-
tions of the pump wave intensity ratje. The solid curves correspond to

. . traveling light patterns and the dashed curves to standing light patterns.
value of the thicknesd,, corresponds to the right-hand g lgmp glgmp

branch ofl(A) (branchl in Fig. 33. Figure 4 depictd;;,

Ay, andyy, as functions op. As p decreases, the threshold

thicknessly, grows monotonically, tending to infinity loga- r;;=8.6x1071°cm/V, we arrive at the following estimates
rithmically, while Ay, and v, remain finite, with the former for the thicknessl,, and the emission angle in air,
slowly increasing and the latter slowly decreasing. 05,=noby,, at equal pump beam intensities:

The dashed curves in Figs. 4a and 4b depict the func- N .
tionsl(p) andA,(p) at v=0 corresponding to Eq$17). lw=2mm, 65=1.5°. (23
Clearly, over the entire range gf considered here, the For the adopted values of the parameters, the coupling con-
threshold values,, and Ay, for traveling light patterns are stantg is approximately 16 cm®. The estimates do not de-
smaller than for standing light patterns. The intersections bepend on the intensity of the light, and the low value of the
tween the solid and dashed curves are outside this rangghreshold thickness suggests that the conditions for the exci-
where the adopted approximation of small valuespofs  tation of standing and traveling light patterns can easily be
probably inapplicable. met in the experiment.

The velocity of the light pattern on a screen near the exit  To estimate the velocity of a light pattem,,, we must,
surface of the crystal is=/K,, whereK;=2mn6/\. Us-  additionally, know the space-charge field relaxation time
ing the definitions ofy and A adopted earlier, we arrive at t,. In LiINbO; crystalsty usually coincides with the dielec-
the following expression for this velocity at the instability tric relaxation time and is inversely proportional to the pump
threshold wave intensity. For LiNb@ samples with higtE,,j,, tq at an

intensity of 1 W/cm can roughly be estimated at 1 s. This, in
(22) accordance with{22), corresponds to a velocity,, of order
10 3cm/s. The accurate detection of such slow motion is
improbable. This estimate means that laser beams in the ex-
periments must be focused to a power density of order
10 W/cn?.

As noted in the Introduction, we know of three experi-
mental papers, Refs. 6, 14, and 15, which with high prob-

Let us first estimate the main parameters of the theory aability can be classified as reports on observations of trans-
applied to experiments with LiNbQOcrystals. Here the val- verse instability in LiNbQ crystals. The most detailed
ues of the photovoltaic fiel&,, reach 18 kv/cm (see Ref.  description of the observations can be found in Ref. 6. In this
13). Setting E,, at 25 kV/cm, assuming that=n, and  experiment one focused pump beam was directed at the crys-
r=rq3, and using the tabulated values,=2.3 and tal, while the counterpropagating beam emerged because of

1 )\ Vth
Uith=— — .
" 2mn?\rEpn ta VA /g

The dimensionless combinatiom,,/\A,/g slowly de-
creases ap grows, and remains close to unity fpr0.2.

4. DISCUSSION
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the relatively weak effect of nonlinear reflectiéi?? The The authors are grateful to M. G. Stepanov for expert
intensity of the counterpropagating beam was not monitorechelp with computer graphics. This work was sponsored by
but it was certainly much lower than that of the incidentthe Russian Fund for Fundamental Resedfgtant No. 96-
beam. The ring light structures observed in the experimen®2-19126.
were of the traveling type, and their velocity increased with
pump wave intensity. The characteristic emission angle was
1.5-2°. Thus, we can claim qualitative agreement between
the observed quantities and those calculated by the aboV8hese are also known as the cases of real and imaginary coupling con-
theory. stants.

We believe that it would be extremely interesting to con-
duct well-planned experiments on transverse instability in
LiINbOs cr.ystals, e>1<é)eriments similar in quality to thsos? done 1w. J. Firth, A. Fitzgerald, and C. Pare, J. Opt. Soc. An7,B087(1990.
by Banerjeeet al,'* and Honda and Matsumd{o'® with  2G . Luther and C. J. McKinstrie, J. Opt. Soc. Am7B1125(1990.
KNbO; and BaTiQ. The goal of such experiments would be 3G. Grynberg, Opt. Commuré6, 3231(1988.
to detect secondary light structures emerging near countergJ- Pender and L. Hesselink, J. Opt. Soc. Am7,B.361(1990.
propagating pump beams and to study the properties of these ;[ 10C. /03 v\ ObukhovsiPiema 75, Tekh, FiziL 1389
structures as functions of the intensity rapipthe total light (1985 [Sov. Phys. Tech. Phys. Lettl, 573(1985)]. '
intensity, the photovoltaic fiel&,,, and the sample thick- ;T. Honda, Opt. Lett18, 598 (1993. _
nessl. The existing preliminary observations and theoretical “M- Saffman, D. Montgomery, A. A. Zozuljat al, Phys. Rev. A48, 3209
caIcuIati.ons suggest that the transverse instability _thresholdfvl. Saffman, A. A. Zozulya, and D. A. Anderson, J. Opt. Soc. ATl B
can easily be exceeded, and that above-threshold light struc-409(1994.
tures are many and varied. 108, Sturman and A. Chernykh, J. Opt. Soc. Am1B 1384(1995.

ET. Honda and P. P. Banerjee, Opt. L&, 779(1996.
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13 o ; . A

We have shown that when propagating in LiNb@’]d B. I. Sturman and V. M. FridkinThe Photovoltaic ‘Effect in Media With-

LiTaO; crystals with dominant photovoltaic transport, coun- ﬁﬂugsiofvﬂngggt.ry Center and Related PhenomgnaRussiar, Nauka,

terpropagating laser beams become unstable against the fétv. Bazenov, S. Lyuksutov, R. Jungenal, Proc. SPIEL273 48 (1990.

mation of small-angle ¢*=1°-2°) light structures, starting °S-M.Liu, G. Y. Zhang, J. L. Wangt al, Opt. Commun70, 185(1989.

at interaction length$=1-2 mm. As the original interfer- ,,~ P- Baneree, H.-L. Yu, D. A. Gregowt al, Opt. Lett.20, 10 (1995.
I . YT, Honda, Opt. Lett20, 851(1995.

ence pattern contrast decreases, the excitation of standing onda and H. Matsumoto, Opt. Lef0, 1755(1995.

light structures is replaced by the excitation of traveling®A. D. Novikov, V. V. Obukhovski, S. G. Odulov, and B. I. Sturman,

structures. Published data suggest that it is easy to excitgETP Lett.44 536 (1986.

the discussed transverse instability in LiNpBe and  ° Stj)”ma”' S. Odulov, U. van Olfest al, J. Opt. Soc. Am. Bl1, 1700

LiNbO3:Cu crystals, and they agree qualitatively with thez:| g kanaev, v. K. Malinovski and B. I. Sturman, zh. I&p. Teor. Fiz.

results of the theory. Thorough research on transverse insta-74, 1599(1978 [Sov. Phys. JETR7, 834(1978].

bility (similar to the experiments involving KNhQand Ba- ~ ““K: R. MacDonald, J. Feinberg, M. Z. Zha, and P.r@r, Opt. Commun.

TiO5 crystals with dominant diffusive transpprin these 50, 146(1984.

nonlinear materials has yet to be conducted. Translated by Eugene Yankovsky
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Multilevel rotational transitions in the intermediate stage of three-photon ionization of
molecules

G. K. lvanov, G. V. Golubkov, S. V. Drygin, and I. E. Cherlina

N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russia
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Zh. Eksp. Teor. Fiz111, 1624-1632May 1997

lonization and dissociation of diatomic molecules induced by a weak (&tdr preliminarily
populating an intermediate leyednd by intense, linearly polarized monochromatic

radiation have been studied. Field-induced mixing of rotational components of various
electronic—vibrational states of moleculesich as CO, NO, etcat field strengthf ~10 4-10"°
atomic units can lead to migration among states with different angular mordenteerefore,

ions with rotational momentd® much higher than those prescribed by selection rules for three-
photon absorption can be formed from molecules in the ground state. The possibility of
selective formation of ions witd*>1 and zero projection of the angular momentum on the
polarization vector of the external electromagnetic radiation has been investigateti997
American Institute of Physic§S1063-776(97)00705-]

1. INTRODUCTION rotation can lead to a higher reaction rate because new reac-
tion channels can be involved, owing to nonadiabatic cou-
In this paper, we discuss a new class of phenomena repling between electronic and rotational degrees of freedom.
lated to the emergence of rotational structure in diatomidA similar situation occurs when molecules in excited elec-
molecules subject to resonant multiphoton ionization andronic states are produced in an intermediate stage of a reac-
dissociation. The behavior of diatomic molecules in strongtion. In some cases, rotation can lead to effective inhibition
electromagnetic fields has attracted a lot of researchers’ a¢f a reaction. This occurs in resonant photoionization of di-
tention, primarily because these effects have numerous agtomic molecules XY when laser-induced bound states over-
plications in various fields of modern physitSpecial atten-  [apping with the dissociative continuum of4XY states are
tion has been focused on analyzing the feasibility of controproduced.® In most publications on multiphoton ionization
over elementary chemical reactions through external radig@nd dissociation, this issue has essentially been igridred,
tion, and the generation of reaction products with Speciﬁe@ince molecular spectra can be interpreted in terms of fixed
properties™ molecular orientation owing to the small rotational constants

In recent years, several effects which show up most most molecules. Molecular rotation was taken into ac-
1 - . 115 .
clearly in the ionization continuum have been detectedCOUNt by the authors of some recent publicatitir, *but it

These include, above all, the above-threshold dissociatiol*l?‘1 not ibmportant.folr tf:je t¥V0-ph|<|)t0n ?bsorption %i.?.cus'sed bfy
(ATD) reaction>~’ which is an analog of above-threshold : em.t. ecauste' it Iea S torma y only tg. a mo |t|'cat|on 0
ionization in atom& which has been studied in detail. Note " an=1on Matfix elements in corresponding equations.

: L . . The situation is radically different in processes of three-
that dissociation rate is appreciable at an external eleCtro_hoton(1+2) absorotion described by the following chain of
magnetic field intensity of ordet~10' Wicn?. Further- P00 P y g

79 reactions:

more, a process termed molecular bond softeriB® "~ is
dominant at higher intensities;~ 104 W/cn?. . oy hor( XY+ + o

In addition to these phenomena, the effects of molecular XY (i)—XY* (pouodg) — XY * (prv1J;) — X+Y
stabilizatiori*~**and dissociation of molecules aligned with o
the electromagnetic field polarization vectarolecule align-

2

meny have been observéd” The former process occurs at wherel[i) is the initial state of the molecule XY. The states

high radla'qon |ntens|t|(_—:<~:l,~1014 W/cn?, and results from lpovodo) can either be highly excited Rydberg states or low-
the formation of laser-induced bound states. The latter PrOying electronic states. Rovibrational levels of the same
cess is characterized by a maximum in the angular distribugrou|o (bov0do) populated after absorption of a photbf of
tion of dissociation products in the direction of the polariza-ine weak (probing field are coupled to the higher-lying
tion vector. group of levels p,v4J41) by the intense electromagnetic field

Theoretical methods of investigation of molecules in an(here p, and v, are the electronic and vibrational quantum
electromagnetic field and recent experimental results wergumbers, and, is the total angular momentum of the mol-
discussed in detail in the comprehensive revitand in the  eculd. If the coupling between vibrational components of
recent series of publicatior}$**® these two groupslabeled 0 and Jldue to the field is com-

Note that the role of molecular rotation, whose effect onparable to the energy differendeE ; between rotational sub-
elementary chemical reactions cannot be predietguiori, levels within these groups, many states will be involved in
has been widely discussed in the literature. In most casethe process. The corresponding criterion is as follows:
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FIG. 1. (a) Diagram of intramolecular transitionéy) groups of rotational levels of vibronic states “0J¢=1, 3, 5) and “1” (J,=0, 2, 4, 6) resonant with
the intense optical field. The levéj=1 is populated by a photon of the probe optical field from a state of the XY molecule. The ionization continuum
corresponds to the states with total angular momeniyml, 3, 5, 7 of the molecule.

VIL =AE,, 2. MULTILEVEL ROTATIONAL TRANSITIONS IN
o1 THREE-PHOTON IONIZATION OF MOLECULES
where V', is the matrix element of the field coupling be-
tween states “0” and “1.” If py and p, are highly excited
(Rydberg states, the matrix element can be estimated by th
simple analytic formul#

Let us assume that the initial molecule XY in tigM
gtate is simultaneously exposed to two monochromatic
sources of linearly polarized light, namely, a weak source
emitting light with a frequency) and a powerful one at a

o1 f frequencyw;. As a result of multiple absorption with reso-
Vi ™ mno 32,53 (2} nant excitation of two groups of intermediate rovibrational

states “0” and “1,” the speciese” +XY* or X+Y are
wheref is the external field strength, amg andn, are the produced. A diagram of the studied reaction described by Eq.
principal quantum numbers of states “0” and “1” (1) is given in Fig. 1.

(h=m,=e=1). For example, in the case of the atmospheric  Let us calculate the amplitude of the transition from the
molecules N, NO, CO, and @, the parameteAE;~ 10 ° initial state of the molecule XY with the quantum numbers
and 104 at J=1 andJ=10, respectively. Therefore, start- Av;J;M to the final statee” +XY ™ characterized by the
ing with the valuesiy=5 andn;~10 and the external field quantum numbersA v,J,M with the quantization axis
frequencyw;~ 102, the condition(2) is satisfied at field aligned with the vectof (herev; andv,, identify the vibra-
strengths as low aé~10 °-~10 4. Under these conditions, tional states of XY and XY, respectively, and\ is the

the two-level resonant approximation does not apply, angbrojection of the electron angular momentum on the molecu-
more complex schemes of multilevel transitions must bdar axig. Supposing that S-coupling takes place in the mol-
used. An important point is that the intermediate states of thecule, let us apply, as usual, the approximation adiabatic
process are close to the boundary of the ionization conwith respect to nuclear rotation. In accordance with the sum
tinuum of the state®™ +XY* and can predissociate; the rules, the total angular momentudy and its projectionvi
interacting resonant states have comnioarrelated con-  correlate in the usual manner with the angular momenta of
tinua of final states. Therefore, introduction of phenomenothe ion @*, M™) and of the emitted photoelectroh, (m).
logical parameters for description of level broadening widelySince the radiation of the frequen€y is weak by definition
used in multilevel resonant approximation cannot be used iff,<f), the transition amplitud®l;, can be expressed as
this case. The solution of the formulated problem is de-
scribed below in terms of the stationary method of radiative-
collision matrix®~2*which uses information about coupling
between bound states and amplitudes of direct transitions
between bound and free states. Since the process is describelereD is the dipole-moment operator. The wave function
in terms of transition amplitudes, the contributions of corre-¥ , should be constructed with account of the field-induced
lated and uncorrelated continua of final states to effectiveoupling between the groups of states “0” and “1.” There-
interactions between unstable states can be consistently takéare, we use the technigtf?®in which the wave functions
into account. This allows us to investigate in detail featuref the continuum are expressed in terms of elements of the
of photoionization spectra and the shape of the distributiom -matrix of radiative collisions, which describes the transi-

Mip:<i|D|qu>1 )

of produced ions over the angular momentlim The appli-  tions in the systene™ + XY * taking into account the change
cation of the theory is illustrated by taking CO molecule asin the number of photons of the external field. The transition
an example. rate is high when the distance between the electron and ion is
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small, since our model presumes that separated species bronic) levels Epovo and Epo, (Epovow Eplvl—wf) are

and XY' do not interact with the external field. The latter formed during the intermediate stage, owing to the field-
condition holds provided that induced coupling. An important point is that at a field
ngw;5/3<1. (4 strengthf ~ 10 “ the contribution of states with higheris

negligible because the matrix elemekftg are much smaller
This condition allows us to construct a wave function takingthan the distance to the nearest level not included in our

into account the coupled states “0” and “1” without using scheme. In our model, the working lev@k., the one previ-

the perturbation theory. ously populated by the weaker radiation at the frequefcy
The ionization amplitude can be expressetf as from the initial state of the molecule XYis the vibronic
level (pgvodo=1). The field-induced coupling between the
Mip:D‘OE——EOTOp’ (5)  groups of vibrational states “0” and “1” is shown in Fig.

1b by solid arrows, and the exchange with photons between
whereD;,=(i|D|0) is the dipole matrix element of the tran- the state “1” and continuum is shown by dashed arrows. As
sition (i—0), E is the system energy after absorption of thenoted above, rotational sublevels of the groups “0” and “1”
photon(}, andE, is the unperturbed energy of the “0” state corresponding to different can be, generally speaking, pre-
measured with respect to the ground state of the"Xon.  dissociative levels with natural widtﬂ§e=2|tsk'd|2.

The elementsT, are derived from the equation for the ra-  Above all, we wish to study the feasibility of formation
diative collision matrix and separation of ions in states with high angular momentum
I5(si] J*. With this end in view, we ignore nonadiabatic vibronic
T:T’+T’§ E—E.—ka, (6)  coupling, which has little effect on the essential features of

the process and only shifts the resonant levels in the resulting
where the resonant discrefer quasi-discretestates are ex- ionization spectrum. In our calculation, we take as an ex-
plicitly separated(in this specific case, these are “0” and ample the CO molecule, whose optical and electron spectra
“1” ). Nonresonant terms are included in the weakly energyhave been studied in detaf-**

dependent matrixd’, whose elements, if the conditiod) In selecting the intermediate states “0” and “1,” we
holds, can be expressed as consider two simple and illustrative physical situations. In
the first case, these states are the lower levelp ahd s
Téksk’:tsksk'_ i> toprtps,: - 7) Ryijberg series v!th the effective principal quantqm pumpers
p.K" vo=3.321 andv,=5.123. In the second case, which is quite

The parameterk, . , with k' =k+1 characterize the di- different, multiphoton absorption populatssand p series
k=K’

rect field-induced coupling between the staggsands,,, Wit quantum numbers 1o=4.099 o series and
which have different numbers of photons in the system”1:6'337 (o series, respectively. For definiteness, let us

(k<0 corresponds to a decrease in the number of photon?nal.yze the following two schemes of optical transitions,. as-
i.e., absorption In order to characterize the partial ampli- suming that the vectors of the weaker and stronger fields

tudests ,, which describe the transition from the interme- fo andf are aligned with each other:

diate|sy) state to thg-continuum, the equations include, in I~tr1 PRI _

addition to the quantum numbedg, A, andM, the index X2 (3=00;=0)—"2"(4po,Jo,vo=1)

k, which identifies the change in the number of photons in s

the system. These amplitudes are related, as usual, to the :’12*(650,J1,v1:1)—>continuuijp,vpzl), 9
total width of the level:

QO
X3 (Ji=0p;=0)—13"(5s0,J9,v0=1)
Fsk=2ysk=2§ Its, ol 8)

wf

of
Iy + _ : _
which includes, accordingly, natural linewidths due to pre-  — 27(7p,dy,v,=1)—continuuniJ, ,vp=1), (10

dissociation of the molecule XY. where the initial state i*’ is the ground state&'3, of the CO
molecule, with qguantum numbed&=M =0. Then the state
“0” is the set of rotational sublevels with oddy=1, 3, 5,
and the state “1” is the set witi; =0, 2, 4, 6. In accordance
with the selection rules, dipole transitions fsf=0 (when
Let us investigate the possibility of populating high ro- AJ==1, AA=0,=1) will populate continuum states with
tational states in the process of multiphoton ionization. It isJ,=1, 3, 5, 7. The predissociation states in this case belong
sufficient to limit our discussion to a simple seven-levelto thes series, in which the natural widths of the levels with
scheme of three-photon absorptidn() + 2% w;, whose dia- n;=6, v=1 (scheme(9)) and ny=5, v=1 (scheme(10))
gram is given in Fig. 1b. Then the transition of the moleculeareT' =2.4 cm * andI",=1.9 cm *.2% The transition prob-
XY from the lowest rotational state with =0 occurs under abilities to the states with variouk, as functions of optical
the conditions when groups of rotational sublevels withfrequency are shown in Fig. 2.
Jo=1,3,5 andJ;=0, 2, 4,6 of the states “0” and “1” Figure 2a illustrates the first case, when theeries of
identified with the two respective electronic—vibratiofat the intermediate group “1” interacts with the ionized con-

3. FIELD-INDUCED POPULATION OF HIGH ROTATIONAL
STATES OF IONS IN MULTIPHOTON IONIZATION
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FIG. 2. Photoelectron spectra of CO molecule for continuum statesdyitii, 3, 5, 7. The solid line corresponds to the states jth 1, the dashed line
to J,=3, triangles taJ,=5, and squares td,=7. The ionized states belong ta) so series(scheme(9)) and (b) po series(scheme(10)).

tinuum. Similar curves for the second cdsweth the popula- One can see that at low applied field strength,
tion of the p serieg are given in Fig. 2b. The spectra of f~10 °, resonances with intermediate statds=5 and
multiphoton ionization have been calculated with the initialJ;=6, and final stategd,=1, 3, 5 are essentially indistin-
data taken from Ref. 23 and frequeney of the strong field guishable. When the final state hijs=7, the resonances in
close to the energy difference between unperturbed levelthe spectrum are well resolved. The ratio between the tran-
povo and pjvy with a detuningA=w¢—(E, , —E, ).  sition probability to the state witd,=5 and the sum of
These conditions are optimal for populating states with largdransition probabilities tal,=1 and 3 is as high as 4. An
J*. For example, in the first cade=1 (scheme(9)), and  additional characteristic of the multiphoton ionization spec-
these conditions are satisfied & =105287.1 cm?, trumis the distribution function of produced ions over rota-
w;=5793.0 cm?, which correspond to a detuning tional states with angular momendd described by the ex-
A=12.0B (B is the rotational constant of the ion Cpand  pression
f=7.2.10"°. In the second case=0, 2 (scheme(10)), and
these conditions are satisfied at{)=108696.1
cm !, w;=3797.2 cm?! (A=—-0.4-B), andf=1.1.10"*. F(E)lem%J (137 mMT|3M)(17A 0| 3pA ) Mg %

Now let us discuss features of the resulting ionization ’ (11
spectra. Note that these spectra consist of typical resonant
peaks, whose positions correspond to groups of rotationathere 4J+mM+|JpM) are the coefficients of vector addi-
sublevels of the intermediate states “0” and “1” perturbed tion. The resulting histograms of ion distribution ovkr are
by the applied field. The peaks corresponding to laiger shown in Fig. 3 The function normalization to unity means
due to the multiphoton absorption are localized near thesthat the sum of the function values at differeht equals
groups of states. The sidebands of the spectra are due tmity. In the first case, when the angular momentum of the
conventional three-photon absorptiof ¢ 2w¢) with final ~ emitted electronl=1, the ion rotational momentund™
statesJ,=1, 3. We are mostly interested in bands whereranges between 0 and 6. In the second case, the electron
transitions to states with highép, are dominant. In the first angular momenturh can be 0 or 2, and, in accordance with
case(Fig. 29 these bands are near the probe frequenciethe sum rules, the ion rotational momenta,
(1=105287.0 cm* and ) =105357.5 cm*; in the second |J,—1|<J"<|J,+I|, ranges between 0 and 7.1k 1, ions
case, illustrated by Fig. 2b, they are ne@Qr=108719.0 in excited rotational states with" =4, 6 are generated with

cm L. higher probabilities in the discussed spectral ranges, where
0.41 0.4
a b
5§03 5§03
° °©
5 5
02 = 0.2
S S
2 2
%0.% %0.1-
a8 &
0 | l 1 l l f—— 0 i I } l I
0 1 2 3 4 5 6 7 8 9 01t 2 3 45 6 7 8 910
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FIG. 3. Distribution of ions over angular momentulh normalized to unitythe angular momentum of the ejected electrofald =1, (b) 1=0, 2.
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We study the relaxation two-parameter one-dimensional solitons in antiferromagnets using the
phenomenological theory. Allowing for relaxation terms of a relativistic and exchange

nature, we set up a system of evolution equations for the constants of the motion of a soliton
and calculate the corresponding integral curves, which describe the variation of the

soliton parameters in the relaxation process. 1897 American Institute of Physics.
[S1063-776(197)00805-9

1. INTRODUCTION excitation. Within the phenomenological macroscopic ap-
proach, energy dissipation processes were taken into account
One of the most important problems of the physics ofby introducing what became known as relaxation terms into
magnetically ordered crystals, from both the theoretical andhe dynamical equations of motion for magnetizatigine
experimental viewpoints, is the group of questions associatedandau-Lifshitz equations
with the analysis of relaxation processes in magnetic materi- They proposed the following equation for the magneti-
als, which determine such characteristics of magnetic matezation vectoM in a one-sublattice ferromagnet:
rials as ferromagnetic and antiferromagnetic resonance line-
widths, spin-wave parametric excitation thresholds, and the N = —gMXH+R, )
width of the neutron scattering intensity peak. Lately there
has been an upsurge of interest in studies of the relaxatiowhereH=— W/ M is the effective fieldW is the energy
characteristics of various nonlinear excitations, such as thfunctional of the ferromagneg is the gyromagnetic ratio,
mobility of domain walls and the soliton diffusion coeffi- and the dot stands for the time derivative. In this equation the
cient. first term on the right-hand side describes the dynamics of
There are two basic approaches to investigating relaxvector M and the second is the dissipative term, which de-
ation processes theoretically: the microscopic and the phescribes how magnetization approaches its equilibrium value.
nomenological. The first is based on a detailed microscopid@his dissipative term was written in Ref. 1 as
study of the interactions of various excitations of the mag-
netic materiallinear or nonlinearwith one another and with \Q
: R=-—MX(HXM), 2
other subsystems of the crys{ahy, the elastic subsysteém M
The advantage of the microscopic approach is that it makes it
possible to find the dependence of the relaxation charactewhere\ is the only constant of the theory, the dimensionless
istics under investigation on the temperature, the defect conelaxation constant.
centration, and other parameters of the magnetic material, Gilberf suggested a slightly different form for the dissi-
which in turn can be found from independent measurementspative term, which, howevdand this can easily be verifigd
However, when applied to nonlinear waves, the micro-is equivalent ta(2):
scopic approach is much more complicated and can actually
be used only to study the simplest solitons of the kink or N . , A
domain-wall type. Describing the relaxation of more compli- R= MM XM, N'= 1+2\2"
cated solitongsay, of the two-parameter bion typend gen-
eralizing to multidimensional excitations are nontrivial prob- An important property of the equation of motion with a
lems in the microscopic setting, since this requires knowinglissipative term of the Landau—Lifshitz tyg2) or of the
the exact spectrum and wave functions of the magnon&ilbert type(3) is that the equation conserves the length of
against the soliton background, and these are known only fahe magnetization vectotfM|=const. Hence, as noted by
a relatively small number of one-dimensional problems.  Landau and LifshitZ,Eq. (1) is actually an equation for the
An alternative approach is the phenomenological theorynit vectorm=M/M, M=|M|, which describes the state of
proposed in the classic work of Landau and Lifshiang  the spin system. Moreover, they also ndtetat the dissipa-
before the microscopic approach was developed. Theitive term only describes relaxation that emerges because of
theory did not yield the detailed characteristics of relaxatiorrelativistic interactions. Indeed, calculating the energy dissi-
processes of the microscopic theory, but it made it possiblpation rateW=—2Q, where Q is what is known as the
to give a general picture of the relaxation of a nonlineardissipative function, vid2) and(3), we obtain

()
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1 . 1 components of the magnetization vector has the féion
Q=-3 f drH-M=— EJ drH-R crystals with a symmetry center
A . M=—gMxH+gM{\yHie&—Nea’AH}. 5
- _ 2
ZQMJ dr M= @ The last term on the right-hand side, proportional to

AH, describes relaxation processes caused by exchange in-
teractions in the magnetic mateffa(“minus” is chosen for

Hence energy dissipation occurs in uniform precessiori€ sake of convenience, so that>0), and the symmetric
of magnetization, too. Since only relativistic interactions canfeNSOrhik (Aix=A;) describes the contribution of various
lead to the relaxation of uniform magnetization motion, thelntéractions of a relativistic nature to the dissipation pro-
dissipative ternR in form (2) or (3) is of a relativistic na- c€sses. The form of the tensoy is determined by the sym-
ture. metry of the magnetic material: in a rhombic magnetic ma-

Starting out with Eq(1) and the expressiof2) or (3) for terial Fhe tensor\;, is diagonal along the principal axes:
R, we can easily derive such important relaxation charactertik=diag(\1, 2, 3). _ _
istics of magnetic materials as the ferromagnetic resonance Dynamical symmetry plays an important role in select-
linewidth A w =\ w, (herew, is the ferromagnetic resonance INg the constants; . In particular, in the exchange approxi-
frequency, the dynamic braking coefficien for a domain ~ mation we have conservation of the total magnetic moment
wall,* and the damping constant for spin waddsowever, a  Mota Of the body:
detailed comparison of the results with the experimental data
and the results of microscopic calculations have revealed a Mtotalzf dr M(r), (6)
number of striking contradictions. The most significant
among these is the incorrect dependence of the damping coihich means thak; =0 (this suggests that the corresponding
stant of spin waves on the wave vecta(k) ~k?), while the ~ term in Eq.(5) is of a relativistic nature In the model of a
microscopic calculations conducted by Dy8aand Kosh-  purely uniaxial magnetic materiéC.. symmetry, one of the
cheev and Krivoglaz(see also Refs. 1 and @ield the result components of the vectdd i, preciselyM g, (herez is
y(K) ~ w?(k) ~k* for short-wave magnonsi,>1). In fer- the selected axjsis a constant of the motion. This implies
romagnets of the easy-plane type the result is really absurdhat in a uniaxial magnetic material, = diag(x 1,1 1,0) (the
in the long-wave limit k—0), whenw(k) ~|k|—0, the cal- fact that\, and\ are equal follows from the equivalence of

culation of y(k) on the basis of2) yields y(k)—const# 0, the axeg

i.e.,[ v(k)/w(k)]—o ask—0 (on the contrary, microscopic Allowing for anisotropy in the basal plane changes both
calculations lead to the “hydrodynamic” result the dynamical and relaxation terms in the equation of mo-
y(K) ~ w?(k) ~k?; see Ref. 7. tion. If the uniaxial anisotropy energy is much higher than

We also note that the relaxation constantobtained the energy of the interactions violating the above invariance,
from data on the ferromagnetic resonance linewidth and tha?e Corresponding relaxation constants must exhibit a similar
mobility of domain walls in high-quality ferrite films may hierarchy. Here the tensar has the form

differ considerabb(by a fa}ctor of teq or even more; see Ref. Nie=diag Ny A1 hs),  Aa<hy. @)
8). Moreover, microscopic calculations of the coefficient
by Abyzov and Ivanov and Ivanovet al° have revealed The ferromagnet’s dissipative function corresponding to

that exchange processes also contribute to the braking &) can be written s+
domain walls(in addition to relativistic processes 1
Thus, the above contradictions suggest that a phenom- Q= > dr gM{\; H{H+\ea2(V-H)?}, (8
enological description of many relaxation phenomena in
magnetic materials based on a dissipative term of the typwhere the factorgM anda? (a is the lattice constahhave
(2) or (3) is inadequate. been introduced so that the relaxation constantsand \ .
Considerable progress in developing the phenomencare dimensionless.
logical approach was achieved in Refs. 11-14. There a new Clearly, using Eq.(5) in the exchange approximation
type of relaxation terms consistently describing dissipation\;;=0) and in the case of a uniaxial ferromagnet leads to
processes of both relativistic and exchange nature was proke proper dependence of the spin-wave damping constant on
posed. Moreover, the studies revealed how the symmetry dhe wave vector in the long-wave approximation, consistant
the crystal and the hierarchy of various interactions affect thevith the one obtained by microscopic calculations. More-
structure of the dissipative terns and the hierarchy of thever, the presence of at least two relaxation constants in the
corresponding relativistic constants. theory makes it possible to match experimental data on the
In Refs. 11 and 12, Onsager equations with the compoferromagnetic resonance linewidth and the braking of a do-
nents of the vectoM taken as the independent generalizedmain wall*
coordinates were used to find the relaxation terms. In this It is important to note that the equation of motis), in
case the components of the effective fieldare, as can eas- contrast to equations with a relaxation term of the t¢)eor
ily be shown, the generalized forces. It was found that wher{3), does not conserve the length of the magnetization vector,
there is weak spatial dispersidthe effective fieldH(r,t) M| # const, which complicates the study of relaxation in the
slowly varies with the coordinatgsthe equation for the system considerably.
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For two-sublattice antiferromagnets, objects that we ardHere H=—6W/S6M and F=—6W/SL are the effective
studying in this paper, similar relaxation terms and a dissifields; Ry, andR, are relaxation terms determined by a dis-
pative function allowing for the symmetry of the magnetic sipative function Ry=6Q/éH and R =8Q/6F). The
material and exchange relaxation were obtained in Refs. 18tructure of the dissipative functid, which allows for both
and 14. There, on the basis of Onsager equations in whicbxchange and relativistic relaxation, was determined in Refs.
the generalized coordinates were the components of the ve&2 and 14 and can be written in the fok@).
tos M and L, where M=(M;+My)/2 and As in ferromagnets, the symmetry of the tensor of the
L=(M;—M,)/2 are, respectively, the vectors of weak fer- relativistic relaxation constants,;., is determined by the
romagnetism and antiferromagnetism, with, , the sublat- symmetry and hierarchy of relativistic interactions. In par-
tice magnetization vectors, and the generalized forces wetticular, in the case of the uniaxial antiferromagnet under con-
the effective fielddH=—6W/6M andF=—-6W/SL (W is  sideration, the tensox;, has the form(7), just as it does in
the antiferromagnet’'s energy functiopat was established the case of ferromagnets. Here the dissipative tédRpsand
that the dissipative function of the antiferromagnet has th&}, are expressed as follows:

form 2
Rm=0|L|(A{H; —\eaAH),

. (11)
QZZJ dr g [LI{NicHH+ N ea®(V-H)2+\F?},  (9) Ri=g|L[\oF,

where the tensok,, is of a relativistic nature, and the con- whereH, is the component of the effective fieldl perpen-
stantsA, and A, of an exchange nature. The dissipative dicular to theZ axis.

terms in the equations of motion for the vectdsandL are In the nondissipative approximation, the magnetization
determined by the relationshipsR,,=6Q/6H and vectors in an antiferromagnet whose temperature is much
R_ = 6Q/ 6F (see below. lower than the Nel temperaturdly have a constant length,

In the present study we use a dissipative function of typgM; J =M, with the result that there are two identities link-
(9) to develop the phenomenological approach for describingng the vectordVl andL:
the relaxation of nonlinear excitations in two-sublattice anti-
ferromagnets. As an example we study the relaxation of two-
parlamet(.er solitons. A_ similar problem for two-para.meter An important aspect of Eq€10) with the dissipative
solitons in one-sublattice ferromagnets was studied in Refgrm (11) is the fact that these equations do not conserve the

15. length of the magnetization vectors of the sublatti¢geshe

As in Ref. 15, to describe the evolution of the parameters;; me way as Eq5) does not conserve the length of vector
of the excitations being considered we use the fact that thg; i 4 ferromagnét

corresponding relaxation constants are small, which makes it

possible to invoke perturbation theory techniques. For soli- M1=m1- (Ry+RL), M2=m2~ (Ry—RL), (13

tons in exactly integrable systems, there exists a specific

form of perturbation theory based on the inverse scattering i

problem(see, e.g., Refs. 16 and )1 Here we use a simpler mi:w'

version of that theory, which amounts to setting up evolution

equations for the constants of the motion of the unperturbedith dM;/dt # 0 for vectorsRy andR, of the form(11).

system. The equations describe the slow evolution of the ~Consequently, the quantitigsands are not conserved

parameters of the initial excitation as a result of dissipationgither:

The simplest variant of this approach was used by McLaugh- . .

lin and Scott® to study fluxon damping in Josephson junc- P=Rw-L+R-M, s=2(Ry-M+R.-L). (14)

tions by applying the perturbed sine—Gordon equation. The  pescribing the relaxation of a magnetic excitation re-

advantage of such an approach is that it can be used evepjires solving Eqs(11) with dissipative terms. In most cases

when the initial equation is not exactly integrable, say, iNthe problem cannot be solveexcept in the case of simple

analyzing three-dimensional magnetic soliths. linear spin waves Hence, allowing for the smallness of the
relaxation constants, we can employ perturbative techniques.
In this paper we analyze the relaxation of nonlinear waves in

2. THE GENERAL EQUATIONS an antiferromagnet in an approximation that is linear in the

. . relaxation constants and uses a simple perturbation scheme
If we use the two-sublattice antiferromagnet model, th - . .

: . . ; ased on building evolution equations for the constants of
equations of motion for the ferromagnetism and an'uferro-,[he motion of the unperturbed system. The essence of this
magnetism vectors with allowance for dissipative terms have . '
the form approach is as follgwg. S _

Let the magnetization distribution in a nonlinear wave be
determined by a set of parameters, a-, ... ,a, thatin the
nondissipative approximation are constants. When the relax-

(10 ation terms are taken into account, these parameters become
time-dependent. The corresponding evolution equations for
@; (j=1,... ) can be obtained from the constants of the

p=M.L=0, s=M?+L%-M3=0. (12

i=1,2,

2
— g M=MXHALXF+Ry,

2 .
g LEMXFHLXH R,
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motion for the unperturbed system, 1,, ... |, (if the sys- the motion, obtained from the equations of motion with al-

tem has a solution witln parameters, there are at least lows for relaxation, and leave only the first term.

constants of the motion For instance, instead of E() for the dissipative func-
One such constant of the motion is the magnetic excitation Q, we obtain the following after performing some

tion energyE(«;). The rate at which this energy varies is simple calculations:

determined by the dissipative functi@p,

— 1/dE 1 : :
dE B . : = %l at :Ef drfMym;-H;+Mom;-Hy]
E__ZQ_ dr (H-M+F-L) M, =const
1 d 1
:f dr (H-Ry+F-Ry). (15) _Ej | HRut PR Gl (Mt FUM-Ry
On the one hand, we findE/dt as a linear combination +L-R)+(H +Fy)(L-Ry+M-R.)] ] (16)
of the rates of variation of the nonlinear wave parameters,

dea; /dt; on the other, we calculate the value@fas a func-
tion of these parameters. Then we equate the two and arriy¥"€€HL=(H - L), F, =(F - L), Hy=(H - M), andFy,
at an energy balance equation, which is one of the desired (F - M) (the first FWQ ter_ms in the integrand {46) corre-
evolution equations, describing the variation of the param>PCNd to the total dissipative fur.1ctu).n _ _
etersa; caused by relaxation processes. Similar equations In calculatingQ in an approximation linear in the relax-
can be derived by calculating the rates of variation of othe@tion constants, the effective fiel#sandF in Egs.(11) and
constants of the motion. As a result we arrive at a system ofL6) must be calculated in the leadifzerott) approximation
n first-order differential equations for the parametefsof N these constantéthis fact has already been employed in
the nonlinear wave. deriving Eqg.(16) by assuming thaM;=M,=My). In the
The simplest variant of such an approach that uses onlffondissipative approximation, botH and F can be ex-
one constant of the motiofthe energywas used in Ref. 20 Pressed in terms of the two scalar quantitits andF, as
to analyze the dissipation of one-parameter nonlinear wavef!lows:
domain walls(the parameter here is the velocity of the do- 1(2
main wallg with allowance for relaxation and a driving H:—z[ —[L-L]+LH,_+MF,_],
force. In Ref. 15 this approach was used to study the relax- L1 g
ation of two-parameter solitons in one-sublattice ferromag-
nets, and in Ref. 19 to analyze the relaxation of multidimen-  g_— _12[ E[L ‘M]+MH, + LFL], (17)
sional precession solitons. Ll g
An important remark is in order. As noted earlier, the
structure of the dissipative ternikl) is such that they do not
conserve the lengths of the magnetization vectors of the sul%_-
lattices. SinceM; and M, are temperature-dependent, the el
equations for the vector! and L with allowance for the
relaxation termg11) cannot, generally speaking, be studied
independently. The system of equations must incorporate W= dr[f(M§)+f(M§)+wo(M-L)]. (18
Egs. (10), heat equationgfor the lattice and spin specific

heats, and the entropy balance equation. However, when Wejere the functionf(M?2) determines the energy density of
study the relaxation of a magnetic excitation in a temperaturghe uniform exchange interaction inside the sublattices, and
range far from the Nel temperature, we implicitly assume s the main factor forming the length of the magnetization
that relaxation leads only to changes in the parameters Cha&ectorlez=|M12|. The termwy(M - L) describes the en-
acterizing the corresponding solution of the dynamical equagrgy of nonuniform exchange interaction, the anisotropy en-

tions (“slow™ relaxation). Here both the initial excitation ergy, the energy of the interactions with an external magnetic
and the final state of the magnetic system are found by sol\ie|d, etc.:

ing the dynamical equations of motion in which the length of

the magnetization vector is fixed. In this way we tacitly as- @ ) )

sume that the magnetic system is in contact with a heat bath Wo(M-L)= E(V'L) + §M +Wa—2M-He, (19
that instantly balances all variations fh, , by supplying or

removing a certain amount of heat to or from the magnetiovherew, is the anisotropy energy, and, is the external
system. magnetic field.

To effectively allow for this implicit assumption, it is At temperatures far from the etemperature the func-
sufficient, in calculating the rate of variation of a constant oftion f(x) in (18) has a deep minimum at= MS(T), where
the motion, to take into account only relaxation not related tdM 4(T) is the equilibrium value of the length of the sublattice
changes ifM 4. magnetization vectors. In this case we can assume that only

Here we must setM;/dt=M;dm;/dt+m;dM;/dt in  values ofM; and M, close toM play an important role.
the expressions for the rates of variation of the constants dfience, approximating(x) by the expression

whereL=|L]|.

To calculateH, and F_, which we call the collinear
ds, we turn to an explicit expression for the energy of a
ferromagnet:
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(x—Mp)?
=——>, (20)
4)(”Mg
wherey <1 has the meaning of the longitudinal susceptibil-
ity of the antiferromagnet, we use E(L8) and readily ob-
tain, in the linear approximation in the parametprands,
expressions for the collinear fieldt, andF | :

4 btHo H (MO L
H=—p 01 0= —
SM
X| (21)
FL=2s+Fy, F (&NO L)
:—S s = —
XH 0 0 5L

Naturally, in the final expressions we must jgtgo to zero.
Nevertheless, the contribution of the first terms(#1) is
finite, sincep~ x| ands~ .

In the static limitH, =F =0, and the quantitiep and
s are finite:

Xl
4

XII

—Hy, >

p=- = Fo.

3. RELAXATION OF A TWO-PARAMETER SOLITON

For an example of how the above relationships can be
used to analyze the relaxation of magnetic excitations in a
uniaxial antiferromagnet, we examine the relaxation of a
two-parameter soliton.

As is known, the relativistic interaction energy in anti-
ferromagnets is low compared to that of exchange interac-
tion, B, b<<§, with the result that over the entire range of
applicability of the phenomenological theory of magnetism
(xg>a, wherex, is the characteristic relaxation size, amd
is the lattice constahtwe have|M|<|L|~M,. Using this
fact, we can show, following the results of Refs. 20, 22, and
23, that nonlinear dynamical excitations in two-sublattice an-
tiferromagnetgand weak ferromagnetsan be analyzed by
using the effective Lagrangiat®’

_Z 2
fdr( 2L (V L) Wa(L)+g§M0

. 4
><(he(L-L))—5(he'L)2 (24)

wherec=gM(a8)Y%2 is a characteristic velocity coincid-

In the presence of a dynamical magnetization wave, théng with the minimum phase velocity of linear spin waves,

quantitiesH, andF are usually finite. We can easily derive

andh,=H./Mg. Here, in the leading approximation in the

an equation for these quantities by finding the time derivativesmall parameter £/ 5)<1, the length of vectoL remains

of Egs. (21) and using the explicit form of the dissipative
terms(11) and Eq.(14):

constant,|L|=M,, and the ferromagnetism vectd is
linked to the unit vectot=L/|L| by the following relation-
ship:

’;LHL Nea?L2AH, —27,a2[(LV-L) (1 .
9 Mz—a(IXIH(I-He)X (25)
XVH_+(LV-M)VF ]+ H [N ;L2 +\oM? , o ,
We write the magnetic anisotropy energy of a magnetic
—)\eaZ(LAL)]Jr FUIAL, -M, —N.a%(LAM)] material,w,(l), in the following way:
XH 1 2 1 272
ag 4o+ {MLZ(L L)Z+)\0M (L><M) w,(L)= EBLL— 4—,\,“2)b(|-i) , B>0, b>0, (26
+Ned2L-A(LX |'_)}, (22) where 8 andb are the second- and fourth-order anisotropy
constants, respectively.
X Using the angular variablesand ¢ that parametrize the
%FL Nea2M2AF, — 2\ 2 (MV-M) vector.
XVFL+(MV-L)VHL]JFFL[MMfH\oLz I=(sin # cos ¢, sin 4 sin ¢, c0s¥H), (27
a2 MAMYTH VM oL —Naa2(MAL we can write the_ equaFionfs of the dyngmics of the antiferro-
el )] LMLy = hea™ )] magnet under discussion in the following form:
_xt . 2M-A(L -1 ) .
49 aghot {)\ Mo (LeL)yFaea®™-AL-LT} (29 c2A 60— 6+sin 6 cos O] (¢—Qe)2—c%(Ve)?
The solution of the system of equatiof®2) and (23) b
with zero right-hand sides describes the relaxatiod pfand - wg( 1-— sinza) } =0, (28)
F_ to the equilibrium values. The inhomogeneous solution of B
this system of equations is finite only in the presence of a 4h,
dynamical magnetization wave. aV (sirtove)— 2 at(Slnzﬁgo) SgM: at(smza) 0,

We note once more that the system of equati@2sand
(23) was derived to the lowest orders of the small relaxationwy= c/Xq, Xo= (a/B)*4, andQ.=gH.. The external mag-
constant\ and the quantityy;. Hence all coefficients and netic field is assumed directed along the easy-magnetization
right-hand sides of these equations are determined by thexis (the Z axis).
distribution of magnetization in the particular excitation, cal- Next we consider only one-dimensional soliton solutions
culated in the nondissipative approximation. of Egs.(28), corresponding to the boundary conditions

)1/2
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do EIE,
#—0 or *m; =* as |X|— 0. (29
We start with the case whebe=0. Then the solution of
the equations of motiof28) that satisfies the boundary con-
ditions (29) has the following fornt?

e=kx—Qt, cosf=—tan x(x—V1t)], 30
B B (240
a N E VTR cc

This solution describes the distribution of magnetization
in a two-parameter topological soliton of the kink type
(0(—x»)=0 and #(+«)==x17), which sets this solution
apart from a dynamical two-parameter soliton in a ferromag- Ni-p 1 o
net, whose relaxation was studied in Ref. 15.

The parameters determining the soliton’s structure are it§!G. 1. Soliton energyE as a function of precession frequencyvat 0.
translational velocityv and the precession frequengy.

The soliton solution(30) exists if k2>0, or

wherew=Q/w, andu=(V/c)? are the dimensionless soli-

wﬁ ton parameters, which prove useful in the calculations below.
(Q+Qe)2<m- (3D The dependence of the soliton enefgyon precession

frequencyw given by(33) with V=0 andH.=0 is depicted
The strength of the external magnetic fieldi,, is lim- in Fig. 1 (the dashed curye

ited by the condition that there is an immobile soliton, In the leading approximation in the small parameter
He<Mo(B8)Y2 or Q.<Q,, i.e., by the spin-flop transition B/5, we can drop all terms in the expression for the reduced
field. dissipative function16) that are proportional t&1. Allow-

Since the solution is two-parameter, to analyze its relaxing for (11) and(17), we can then write this function in the
ation we must examine two constants of the motion of theform
unperturbed system. For the constants, which we use to set

up the evolution equations for the soliton parametérand Q= L 5 f drRy(LXL)= 5gMo Eoq(u, ). (34)
), we take the soliton energy and a quantityN propor- 2gMg 2
tional to the totak-projection of magnetization, which in the The function q(u,w) consists of two terms

nondissipative case is conserved because the antiferromagrgﬂh w)=0,(u,®) +ge(u,w), the relativistic term and the
is uniaxial: exchange term:

=—— | drm,, (32 gr=N1{((IXD) )2 =hyl(1X1),),
20

N RYAYA 1’ ' ” i

where uo=%g/2 is the Bohr magneton. Note that just as in de=Ne{((IXD) )N (1" (IXI") = 1"(1X1))),
the case of ferromagnets, the constant of the mdtiman be ~ where\,=\q(a/xy)?, andh, =gH, /2Myw; the prime and
interpreted as the number of magnons bound in the sdifton. the angle brackets stand for, respectively, differentiation and

Note that using another constant of the motion, the mointegration with respect to the dimensionless spatial variable
mentum P, results in no new equations becauseé=x/Xq, and the dot indicates differentiation with respect to
dE=%»dN+VdP, which is true of any ferromagnet or an- the dimensionless time variable= wqt.
tiferromagnet that allows for the existence of two-parameter  Reasoning along similar lines, for the reduded., cal-
solitons?* To analyze two-parameter nonlinear waves in aculated with M, ,=const) rate of variation of the second
biaxial magnetic material, whetg is not a constant of the ¢onstant of the motiorl\, we obtain
motion, one can use the equations é&/dt anddP/dt.

N (35

The values of the constants of the motigrand N cor- X 1 f
=———— [ drL,(RyL)=6gMyngy7,
responding to the soliton solutiof80) can easily be calcu- 2ugM3 ARul)=0gMono7
lated:
n=1t e, (36)
2Ey( 1 2ng ,
E=—r" Tﬂ—we(wwe) , N=——(0twe), 7e=N1(12(1x1),—h 1,1%), (37)
5 Eo a3 ne= Nl 11X D)) +h(15=1,1"2).
Eo=ABMoxo, nO_Zﬁwo’ (33 On the other hand, differentiating the expressi¢dd
Q for E and N with respect to time, we can write the deriva-
2= —(w+ wg) wa=—2 tivesdE/dt anddN/dt as linear combinations of the deriva-
1-u ¢ ¢ wg tivesdu/dt anddw/dt. Equating the resulting expressions to
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(34) and (36), respectively, we arrive at the desired equa-
tions, which describe the evolution of the soliton parameters
o andu:

u=—3x(1-w(q+wn), (38)

. Ok
=0+ o) (1-U)q

—[1-(1-u)(0+ we)(2w+ 7e) I 7} (39

To calculate the expressions on the right-hand sides of
Eqgs.(38) and(39), we must find the collinear field, . Equa-
tions (22) and (23), which yield the quantitiesd, andF,
become independent in the leading approximation in the
small parametep/ s, with the result that the dimensionless
quantityh, in Egs.(35) and (37) obeys the equation

FIG. 2. Evolution of soliton parameters due to relativistic relaxation
(b=0 and\,=0).

Xhu = NGh!+h N2+ N0 2 =Nl (X D+ (- (1X D))

+;weiz, (40 u=f(uo)tfu,w), 0=9,(u0)+gy(uw),
wherey = x|wo/4g M. fr=—2\0uk*(1-u)%  gr=—\16k%0(1-Uu)(3+U),

Equation(40) is a homogeneous linear diffusion equa- (42)
tion with a right-hand side. The general solution of this equa-
tion without a right-hand side describes the relaxation of  fe=—2\¢dur’(1—u)[5+w*(1—u)?],
h, to the equilibrium valueh, =0 with a characteristic re- u
laxation time 7. of order x;/\;gMg, which becomes very ge=—2>\é5f<2w 1—5— 0?(1+u)(1—-u)?|.
short asy,—0 (see Ref. 11

The inhomogeneous solution of EO) differs from Each of the right-hand sides of the evolution equations

zero only when there are dynamical magnetization waveg42) consists of two termgust as the functiong(u, ) and
Note that we are interested in the leading approximation for(u, w) in (34)—(37) do), one related to relaxation processes
h_ in the relaxation constants, so that in the functions in thecaused by relativistic interaction and the other to the relax-
coefficients and the right-hand side of this equation we musétion processes of an exchange nature.
use the magnetization distributiofx,t) in the soliton calcu- An analysis of the evolution equations shows that the
lated in the nondissipative approximation. We also note thatwo types of dissipative terms, one due to relativistic inter-
in addition to having small relaxation constants, E40)  action and the other to exchange interaction, have quite dif-
contains the small parametg. Hence the structure of the ferent effects on the evolution of the soliton parameters.
solution strongly depends on the relationship betwgeand  Over the entire range of soliton parametésse (31)), the
A and the nature of the excitation of the magnetic material.relaxation caused by relativistic interaction and described by
Apart from a difference in notation, Eq40) coincides the functionsf,(u,w) and g,(u,w) leads to a monotonic
with the equation for the collinear component of the effectivedecrease in both the soliton velocitf; €0) and the absolute
field in a uniaxial ferromagnet studied in Ref. 15, so that wevalue of the precession frequency (sgpE —sgn()).
do not analyze this equation here in detail. The results of  The nature of relativistic relaxation manifests itself most
such an analysis in connection with the problem under CONgividly in the integral curves of the equations= f,(u,w)

S|de|rfatr|]on c?n b,e reducleq to tlhe IfOH.OW.m%'. her th andcb=g,(u,w), which can be obtained by direct integration
the soliton’s translational velocity is higher than a cer- . equations

tain characteristic valu¥, ~\weXq/ x|, thenh, is given by

the simple formula: 3

: (43)

u
u(0)

whereu(0) and w(0) are the initial values of the soliton

Obviously, such a situation occurs only ¥\ and in  parameters. Schematically these curves are depicted in Fig.
an external magnetic field. But ff<\, we can seh, to zero 2.
in Egs. (35) and (37) irrespective of the presence of an ex- The contribution of exchange relaxation is described in
ternal field and the soliton velocity. Egs. (42 by the alternating functionsfe(u,») and

The evolution equations for the soliton parameters arde(U, ), with the result that the relaxation parameterand
simplest wherH = 0. Plugging the explicit form of the mag- @ vary nonmonotonically during the exchange relaxation
netization distribution in the solitodEq. (38)) first into ~ Process. The cc_;rresponding integral curves of the equations
(35—(37) and then inta38) and(39) and settinch, to zero, u=f,(u,w) andw=g.(u,w) obtained through numerical in-
we obtain tegration are depicted in Fig. 3.

w=w(0)

V8 1 —u(0)
1-u

h = w, cosé. (41)
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- 0(0+ 0o A(1-U)*— wgw+ v (3-U)], 45

K2<w—g(w+ we)

ge=—2\.6k%(1—u) 3

+u(w

w
oAUt 00~

Clearly, the evolution of the soliton parameters de-
scribed by Egs. (45 leads to the equilibrium state
u=w=0, as expected.

If the characteristic velocity, is higher thanc, which
is possible ify<\ or if the external field is really weak, Egs.
(45) describe soliton relaxation for the entire ran@d) of
possible soliton parameters.

But if V, <c, then forV>V_ relaxation is described by
Egs.(44) and forV<V, by Egs.(45). It is natural, then, for
a transient region to exist in which the one relaxation mode

We also note that if the soliton was initially at rest, i.e., changes to the other. To analyze this region we must use Eq.
u(0)=0, thenf (u,0)=f(u,w)=0, which means that the (40) to calculateh, in general form, which constitutes a
soliton remains at rest at all future moments in time. Here thgroblem beyond the scope of the present investigation.
corresponding integral curves in Figs. 2 and 3 are sections of et us now examine a more general model of an antifer-
the vertical axis. Similarly, if the precession frequency wasromagnet, a model that allows for fourth-order terms in the
initially zero, w(0)=0, theng,(u,w)=gc(u,w)=0, and a  anisotropy energy, i.e., a model with+ 0 (see Eq(26)). In
soliton that initially does not precess will not do so duringthis case the solution of the dynamic equations of motion
relaxation; in this case the integral curves are sections of th@8) can be written in the following forntat H,=0; see Ref.
horizontal axis. 22):

If the external magnetic field is finite and sufficiently
high for V, to be smaller thar, the soliton relaxation pat-

FIG. 3. Evolution of soliton parameters due to exchange relaxatien0(
and\,=0).

. . O (
tern is more complicated. F&f=V, , whenh, is given by K ,
(41), the functionsg(u,w) andf(u,w) have the form Allzsim_<£(x_\/t)) A>0,

X
f,=—2\;0uk’(1—u)?, tan 6= { ° (46)
K

0r= — M0k (0 + we)(1-u)(3+Uu), AL <A<O,

r ° |A|1’2cos>'(£(x—Vy)) mn

fo= — 2N LOUKA(1—U)[ 3+ (0 + we)2(1—u)2],  (44) \ Xo

Je= 2\ Sk (w+ we) where A=(1-p)/(1—u)—w?, with p=b/2B, and the di-

mensionless parametegs u, and « have been defined ear-

X 1—%—(w+we)2(1+u)(1—u)2 : lier.
The solution(46) exists if <>>0, which imposes a lower

Clearly, the right-hand sides ¢44) can be obtained from the bound onA, i.e. A=A ;,=—p/(1—u).

corresponding right-hand sides @f2) by simply replacing If A>0, the solution(46) still describes a soliton of the

o With @+ we. Since the rangé31) in which a soliton can  kink type with a topological chargga domain wall,

exist withw, # 0 is actually obtained from the corresponding 8(—=)=0 and 6(+«<)=a). But if A<0, we have

range withw.= 0 through a shift along the frequency axis by 6(*«)=0, and the solutior{46) describes a dynamic soli-

— we, the integral curves of Eq$44) are the same as those ton without a topological charge.

of Egs. (42), the only difference being that they are shifted The values of the soliton enerdy and the constant of

by (— we). the motionN corresponding to the solutio@6) are

Here the limit in the soliton state to which relaxation

leads is a state with precession£¢0 and w— —w, as 1/1-p

t—o). We must bear in mind, however, that fgx<V,, the E= EO{ E(EJ””Z) D+«

value ofh; must be set to zero. Then instead 44) we have

f,=—2N;0uk?(1—u)?

, N=nowDs, (47

wheres=1, 2; the caséd>0 (a soliton with a topological

0= —M02(1—u)[U(w+ we) + 2], charge corresponds te=1, and the casé<0 (a soliton
) ) without a topological chargeto s=2; and the functions
fe=—2\eoux“(1-u) D, andD, are given by
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p 1/2
inh Y —— s=1,
(1—u 2| SR (1—u);<2—p} ’
D=2 — 1/2
P cosh Y ————— s=2.
p—(1-u)k '
(48)

The dependence of the soliton enefgyon the preces-
sion frequencyw described by(48) at V=0 is depicted in
Fig. 1 by the solid curves. Note the important difference
between this dependence and the one er0 (see Egs.
(33)). In contrast ta33) and the corresponding dashed curve
in Fig. 1, thew-dependence dE for b # 0 not only has a
minimum atw=0 corresponding to an antiferromagnet state
with a domain wall at rest, but also an absolute minimum at
w=1 corresponding to the ground state of the magnetic ma-
terial. We also note that the parameter ranges correspondinF%; ) ) o )
to the two types of solitorfwith a topological charge and q&g) 4. Evolution of soliton parameters due to relativistic relaxatibn (
without) are separated by an infinitely high energy barrier,
E(A— £0)—o0. Hence a dynamical soliton cannot become
a topological soliton as a result of a relaxation process; nomaterial (a similar situation occurs in the relaxation of a
can a topological soliton become a dynamic soliton. one-dimensional dynamical soliton in a ferromaghét the
Soliton relaxation fob # 0 can be analyzed in the same process of relaxation of multidimensional solitons at the
way as we did forb=0. For this reason we list only the edge of their existence range, the solitons decay into a finite
results. The evolution equations for the soliton parameteraumber (\ # 0)) of independent linear spin wavés
u and o for the case of relativistic relaxation are The authors are sincerely grateful to B. I. Ivanov for
numerous discussions and useful remarks. The present work
(1— p 2 was sponsored by the International Science Foundation
1-u “ (Grant UB2300(V.G.B.)) and the International Soros Sci-
) ence Education PrograiSSEP, Grant No. 45¢E.Yu.M.)).
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Theory of magnetic-breakdown oscillations of the galvanomagnetic properties
of aluminum taking account of the spin of the conduction electrons
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The theory of magnetic breakdown, taking account of the spin of the conduction electrons, is
used to calculate the galvanomagnetic properties of aluminum, where the system of

electron trajectories in a magnetic field contains srpadirbits. Expressions are obtained for the
magnetoresistance and Hall resistance in the case of a two-dimensional magnetic-

breakdown network of trajectories on the basis of stochastic electron motion on large orbits and
coherent electron motion on th# orbits. Qualitative agreement is obtained with the

existing experimental data. @997 American Institute of Physid$$1063-776(197)00905-0

1. INTRODUCTION action agree better with the experimental data on the de

Haas—Alphen effect and on the spin resonance of the con-

It is well known that magnetic breakdown changes theduction electrons.
character of the field dependences of the magnetoresistance A more complete list of the literature devoted to the
of metals™* The study made in Refs. 3-8 of magnetic break-effect of the spin of the conduction electrons and the spin—
down in aluminum T=4.2 K) showed that foH || [001] a  orbit interaction on the energy spectrum and the galvano-
narrow magnetic-breakdown layer of open trajectorie& in magnetic and other properties of metals under magnetic-
space withsk~4x 1072 a. u. is formed in fields exceeding breakdown conditions is given in Ref. 9.
20 kG and coherence with a breakdown fiélg~4 kG is Thus there arises the problem of re-examining the theo-
present. However, in explaining the magnetic breakdown osretical interpretation of the field-dependences of the magne-
cillations and in the calculation of the galvanomagnetic chartoresistance of Al taking account of the electronic spin de-
acteristics of Al the spin of the conduction electrons and theyrees of freedom. For this, it is necessary to calculate the
spin—orbit interaction were neglected in these papers. conductivity tensor for the two-dimensional system of open

A detailed review of the theory of magnetic breakdown, electronic trajectoriegsee Fig. 1 that arise in Al during
taking account of the spin degrees of freedom of the conduanagnetic breakdown, taking into account in a natural manner
tion electrons, has been given receritlywas shown, on the  the orientation of electron spin in a magnetic field and incor-
basis of an analysis of the dispersion relation in regions oporating the spin—orbit interaction. This can be done on the
anomalous convergence of the trajectories in different zonesasis of the results in Refs. 9 and 11, where the particular
that the spin—orbit interaction leads to the possibility ofoscillatory characteristics of a real metainc) were calcu-
breakdown with spin flip, the main dynamical characteristiclated from first principles on the basis of the theory of mag-
of magnetic breakdown was obtained — thenatrix is of  netic breakdown, taking account of the spin degrees of free-
rank 4, the basic principles of the theory of coherent magdom of the conduction electrons by the “effective path”
netic breakdown were generalized, and the magneticmethod(simple examples of this method are given in Refs. 1
breakdown spectrum of the conduction electrons was invesand 13.
tigated. Applications of the theory to galvanomagnetic  But the application of the effective-path method is com-
phenomena, the de Haas—van Alphen effect, and paramaglicated by the fact that for each particular real metal, de-
netic resonance in conduction electrons were examined. pending of the geometry of the Fermi surface, a separate

In the case of aluminum, the transverse cross-sectiongdrocedure must be developed for calculating the conductivity
areas of thegB orbits and the corresponding magnetic- tensor. For this reason, this paper develops a more general
breakdown fields as a function of the wave vedtgrwere  method that makes it possible to unify this procedure for an
calculated in Ref. 8, which is devoted to explaining thearbitrary two-dimensional system of electronic trajectories
anomalies of the magnetic-breakdown oscillations of thearising under magnetic-breakdown conditions that possesses
magnetization, from a calculation of the band structure bydefinite symmetry propertie@nd that is faithful to the to-
the pseudopotential method, including the spin—orbit interpology of the Fermi surfageWe underscore that the calcu-
action. It was noted that the energy gap through which eleclations of the components of the conductivity tensor in this
trons tunnel in a magnetic field appears on account of thease can be performed independently for each spin orienta-
weak spin—orbit interaction. In Ref. 10 tlgefactor of the  tion. This is especially important in studying transport phe-
conduction electrons was calculated on the entire Fermi sumomena in the case of transition and ferromagnetic metals,
face of aluminum, using a scheme with four orthogonalizedvhere as a result of exchange and the spin—orbit interaction,
plane waves, taking the spin—orbit interaction into account athe sheets of the Fermi surface with oppositely-directed spins
a perturbation. In Refs. 8 and 10 it was concluded that thare shifted.
guantities calculated taking account of the spin—orbit inter-  We note that in Ref. 9 the method proposed here is il-
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FIG. 1. Transverse sections of the Fermi surface in Al: a —
from the second hole and third electron zgnes— enlarged
views of they and B orbits. The sections from the third zone
are filled. The arrows show the direction of motion of the elec-
trons.

lustrated in detail for a simple model of a metal with a peri-of the trajectories(1) changes under magnetic-breakdown

odic one-dimensional network of electronic trajectories assoeonditions: a planar network consisting of sections of semi-

ciated with magnetic breakdown, taking account of the spirclassical motion, which belong to different zones and are

degrees of freedom of the conduction electrons. associated with magnetic-breakdown sites, is formed. The
The present paper is essentially a continuation angbrobability of electron tunneling into a neighboring zone at a

elaboration of the review in Ref. 9 for the case of a two-magnetic-breakdown site isw=exp(—Hy/H), where

dimensional system of trajectories in Al. In Sec. 2 the re-Hy=Hg(eg, k;) is the breakdown field. The network of tra-

quired definitions and quantities, aiding in understanding thgectories which appears upon breakdown is called a

calculation of the conductivity tensor, are introduced on thanagnetic-breakdown configuration or a magnetic-breakdown

basis of the theory of magnetic breakdown. Sngalbrbits  network.

are replaced by effective magnetic-breakdown gjpesnts. When the spin—orbit interaction is included in the theory

The effective breakdown probabilities calculated in Ref. 13of magnetic breakdowh sections with different projections

taking account of the electron spin and the spin—orbit interof the electronic spins are united into a single magnetic-

action are used to describe the sites mathematically. The sybreakdown network. In this case the tunneling probability

tem of electronic trajectories in Al withl || [001] is replaced  equals the sum of the probability® of breakdown without

by a two-dimensional reduced magnetic-breakdown networkspin flip and the probabilityv® of breakdown with spin flip

In Sec. 3 a more general expression is obtained for the com-

ponents of the conductivity tensor on the basis of the Boltz- W a’w

mann equation and the theory of stochastic magnetic break- WO:m, WS:m, (2

down. In Sec. 4 these components of the tensor are

systematically calculated under the assumption that the elec-

tron motion on the two-dimensional reduced magnetic-Wherea is the spin—orbit interaction parameter, which is

breakdown network is stochastic and the motion on ghe determined by the ratio of the off-diagoriai the zone num-

o . . ber and spin indegxmatrix elements of the electron velocity
orbits is coherent. In Sec. 5 the required computational pa- : . .
operator near the maximum convergence of the trajectdries.

rameters are introduced, the components of the resistam;b\n estimate ofe shows that for a weak spin—orbit interac-
tensor are calculated, and the results are compared with thﬁ-

oretical and experimental data. onOsa<1. . . .
The Fermi surface of Al is well known. It consists of a

closed hole surface in the second zone and three electronic
surfaces in the third zone, centered, respectively, at the
pointsI" and X of the Brillouin zone. The third zone forms

It is well knownt*1that many properties of metals in a closed “quarter rings” or “sleeves” which are arranged
magnetic field can be described by means of semiclassicalong the edges and connect near the pdiitsee Fig. 1a
equations. In this approximation the electrons move in the Electron tunneling during magnetic breakdown occurs
reciprocal space on trajectories which arise from the interbetween they orbit of the second zone and tjgeorbit of the
sections of the Fermi surface and a surface perpendicular third zone, the splitting between which, shown in Fig. 1b, is
the magnetic fieldd =(0,0,H) due to the weak spin—orbit interacti8rThis results in the
formation of diverse closed and open orbits with two, four,

emdK)=2r,  kz=kzo=const, @ or more magnetic-breakdown site3he enlarged and open
wheree (k) is the dispersion relatiomm is the zone num- orbits in turn change the period of the oscillations, decrease
ber,s is the spin indexgg is the Fermi energy, anklis the  the amplitude of the de Haas—van Alphen effect, and pro-
wave vector. In Refs. 1 and 2 it was shown that the topologyduce large changes in the galvanomagnetic properties, mani-

2. MAGNETIC-BREAKDOWN NETWORK AND EFFECTIVE
PROBABILITIES
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FIG. 3. Effective magnetic-breakdown site from a sm@llorbit, taking
FIG. 2. Reduced two-dimensional magnetic-breakdown network within theaccount of the electron spin, which connects the lafgarbits (see Fig. L
first Brillouin zone, corresponding to Fig. 1a. The dots represent the effecThe arrows show the direction of electron motion and spin orientation.
tive magnetic-breakdown sites. The numbers denote sections of the
magnetic-breakdown network.

) o ) own direction of spin. These probabilities were obtained in
fested in oscillations as a result of the quantum interferenc®ef. 13 for a symmetric double-angle orbit with equivalent
of the conduction electrons. magnetic-breakdown sites. In the case @forbits with

Figure 1 gives a schematic representation of theqyivalent magnetic-breakdown sites they have the same
magnetic-breakdown network in Al in a magnetic figdd|  torm

[001]. The network consists of a large closed hgleorbit

and small electronigd orbits. One can see from Fig. 1 that pli— w? [ 1

the Larmor periodT,,; of electron motion on g3 orbit is T 1+a?| |1—(1—w)ex;1i7ﬂﬁ)|2
much shorter than the electron residence timeon large

sections of the/ orbit. A large difference of the periods is n o )
also observed in other metalsee, for example, Refs. 1, 2, [1-(1—w)exp(i y%)|2 ' 3
and 9.
In such a situation it is possible to simplify the calcula- I w? / o?
tion of the conductivity tensor by applying the theory of 1+a®| [1-(1-w)expliyp)|?
stochastic magnetic breakdowA.In this theory it is as-
sumed that small-angle scattering has no effect on the phase + 1 )
of the wave function of an electron in a small orbit, and on |1-(1-w)exp(iyp)[?)’

large sections of the trajectory it transforms the electron mo- - -
tion into a random walk. In other words, two types of elec- Q=1-P",

tron motion exist in metals: coherent motion within small \yhere the arrowsg, | show the direction of the spin of an
orbits and stochastic motion on large sections. electron approaching an effective magnetic-breakdown site

In this case a reduced magnetic-breakdown networkisee Fig. 3. The phases acquired by an electron g8 arbit
where small orbits are replaced by effective magnetichave the form

breakdown sites, is used. Such a reduced two-dimensional "

magnetic-breakdown network for Al within the first Brillouin _ off

zone is shown in Fig. 2. Each effective magnetic-breakdown yy_ﬁAﬁ(kZ)i TG 2A, @

site ‘“switches” the electron motion on the reduced ) s Y . .

magnetic-breakdown network. The corresponding effectivéNhereAﬁ(kZ) IS th_e spinless” area of t_he orbit ang®" is .

breakdown probabilities are periodic functions of the phaséhe Spin COﬂtl‘IbutIO!’] to the ph_ase_ and is called the effective

acquired by an electron during coherent motion on a smaf¥ factor. The effectivey factor is given by

orbit; this results in oscillations of the transport coefficients 1 m

with a period corresponding to the area of the small drbit. geﬁ=§93 &
In studying the electron dynamics in Al, taking account

of the spin degrees of freedom and the spin—orbit interactioniwherem.; and g, are the electron cyclotron mass and the

we assume that there exist two independent reducedlectrong factor associated with thg orbit, andmy is the

magnetic-breakdown networkene embedded in the other free-electron mass. The plus sign in E4) corresponds to

on which an electron moves with spin up on one and spirelectron motion along a small orbit with spin up, and the

down on the other. In this case, for each reduced magnetiminus sign corresponds to motion with spin do(gee Fig.

breakdown network we must know the effective probabilities3). The third term in Eq.(4) determines the jump in the

of traversing small orbits or reflecting from them with their phase of the wave function when the electron passes through

®)

my ’
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a magnetic-breakdown site, and is a function ofH and  must obviously be a periodic function of. If a trajectory is

H, that is not important for us here; the exact form of thisopen, however, then the boundary condition is tlgtre-

function is presented in Ref. 9. mains finite at; = x . When the magnetic field is parallel

In closing this section, we note that the introduction ofto the z axis, the function®; should be periodic with the

effective breakdown probabilitie€3) and the reduction of period of the reciprocal lattice. The difference from the semi-

the magnetic-breakdown network to a reduced network witltlassical situationsee Ref. 1#lies in the fact that under

stochastic electron motion make it possible to study electrostochastic magnetic-breakdown conditions the functids

motion with spin up and down independently. For this rea-on different sections are related by the equafions

son, in what follows we calculate the conductivity tensor for

a single reduced magnetic-breakdown network with a defi-

nite direction of spin. In so doing, we do not indicate the spin ~ ¥;/(0)=> w;,,¥;(T)), (8)

index s=1, |, but we average the final result over spin. '

Furthermore, in addition to the termeduced magnetic- )

breakdown network we employ the term magnetic- whereW;,(0) are the values of the functionB;, (k) on the

breakdown network initial sections leaving a magnetic-breakdown sitg; is the
probability of magnetic breakdown¥;(T;) are the values of
W;(k(t;)) at the ends of the sections entering a magnetic-

3. STATIC CONDUCTIVITY TENSOR UNDER STOCHASTIC breakdown site; andr; is the time during which an electron

MAGNETIC BREAKDOWN CONDITIONS moves along theé-th section. The boundary conditior8)

The stochastic character of the electron motion exam-ShOW that the particle flux leaving a magnetic-breakdown
ite, for example, on the sectioh=1', consists of particles

ined above makes it possible to calculate the conductivitf

tensor in the semiclassical approximatfoim this case mag- Eoungnfwn?esﬁggms sections=1, 2 with weights
netic breakdown starts to play the role of a stochastic factor, - _ .
piay The solution of Eqs(7) with the boundary condition@)

mixing the electrons over all sections of the magnetic- kes it ible to obtain th f th
breakdown network. The time between two successivé2kes It POSSIDIE o obtain ecomponeq[;%o € con-
ductivity tensor, which can be expressed in termalpf

magnetic-breakdown scatterings plays the role of the free-
flight time. It is determined by the characteristic cyclotron

frequency . and the corresponding magnetic-breakdown _ e? ME J"” _ ot d

probabilities. The components, ; of the conductivity tensor Tt~ 2m)3 Hm 4 o ge | °°

depend on the topology of the magnetic-breakdown network. ) :

In the Ii_miting caseH<H, or H>H, the_section_s of the Xf 0 dsz IUia(ti)\PiB(ti)dta 9)
magnetic-breakdown network transform into ordinary open —ko 0

or closed trajectories. Then the field dependencerpf

starts to determine the true momentum relaxation ime  \yhereh=eH/ch and the summation over extends up to
The Boltzmann equation with a linearized collision inte- N the total number of nonequivalent sections of the

gral corresponds to this picture. The general solution of thi?nagnetic—breakdown network. Here it must be noted that to

equation under the conditioa.7 >1 can be sought in the qptain the total conductivity it is also necessary to sum over

form spin. At low temperaturesT=4.2 K) it is assumed that
. (—dfelde) in Eq. (9) behaves like a delta function with
fm(k)=fr(k) = ——~€E-Wy(k), (6)  arguments—er; we assume that this is the case in what

follows. However, this substitution is generally inadmissible,
where f (k) is the nonequilibrium distribution function, since the finiteness of the temperatdraffects the charac-
fr(k) is the Fermi—Dirac distribution functiol, is the elec-  teristic electron energkgT, whose ratio tofiwg, Where
tric field, W, (k)is the vector distribution function of the w is the cyclotron frequency of an electron irBaorbit, can

electrons over the magnetic-breakdown netw@kalog of  be arbitrary. We take this circumstance into account at the
the density matrix It is convenient to write the Boltzmann end of the next section.

equation in the electric and magnetic fields in the variables
e, k,, andt,,. Then to lowest order it ,(k) the equations

acquire the forri+1°
4. CALCULATION OF THE CONDUCTIVITY TENSOR OF A

ow, . afe\ L[ ofe TWO-DIMENSIONAL MAGNETIC BREAKDOWN-
_i'Hk{lI’i}:Vir hd .. = o) Nae 1 NETWORK IN ALUMINUM

™ We apply the above theory to the reduced two-
whereW; are the values of the functionB,(k) on the sec-  dimensional magnetic-breakdown network in Al, portrayed
tions of the magnetic-breakdown networiksi(m) is the in Fig. 2. First, we obtain the dissipative component, of
number of the sectior, is the linear collision integral, and the conductivity tensor. For this, we must find the compo-

v; is the velocity vector. nentsW; as functions of the effective probabilitidd and
Boundary conditions are required to solve EGR. If a  Q and the reciprocal-lattice vectors.
trajectory for given values of andk, is closed, theri¥; Neglecting the collision integral in Eq§7), we obtain
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. . 1. i Now we write the boundary condition®) for the re-
Wi(t) =Wi(0) = [ky(t) —ky(0)], duced magnetic-breakdown network with stochastic electron
motion over large sections:

1 .
Y(t) =Y —[k'(t:)—k'
P =PO0F Flis(t) ~k(0)]. (19 W,(0)=PWs(Ts)— QWy(T,),

Here ¥)(0) and ¥Y(0) are the values of the distribution W,(0)=QW,(T,)—PW,(T,),

function at the start of théh section; the second terms fol- (15
low from the semiclassical equations of motign. W,(0)=QWy(T,)— PW(Ty),
At t;=T,; the expression§&l0) assume the form
Wy (0)=QW;5(T3) — PWy(T,),
AY AX
WX(T,)="(0)+ F' WY (T;)=v¥Y(0)— WI (11)  To obtain these relations we employed the periodic equiva-

lence of the sections of the magnetic-breakdown network
where Af and A} are the increments in the coordinates anq the symmetry _propert|e(§3). Furthermore, these prop-
erties make it possible to decrease the number of terms in the

ﬁﬂdslfayc;ina result of the passage of an electron through thgum overi in the expressior{14). Substituting the expres-

We note that for the magnetic-breakdown networks ofSionS (15 and then the expressioii$2) into Eq. (14) and
- using the fact thaP+Q=1, we obtain an expression for
some metals one of the conditions ) N
Oyx in terms of ' (0)=V;:

N N N N
2
X__ = y__ = e |h| kzm
Ei Ai=0x Z ni=0, 2. Af=g, Z ni=0, “XX:2(2W)3 7ﬁk dk,QP[(¥3+W¥3+36)2
is often satisfied, or these two conditions are satisfied simul- +(V3+¥5+36)7]. (16)

taneously, as in our case. Heggandg, are components of . N .
a reciprocal lattice vector, ang=0 if i is the number of an  To determine the unknown quantitids’ (i=1, 2, 3, 4X), the
interior section anch;=+1 if the sectioni intersects the Vvalues of the function$12) must be substituted fo¥{(T;)

boundary of the unit cell. For Al, obviouslg,=g,=g. in the boundary conditiondl5) and the system of four equa-
In the case at hantsee Fig. 2 the increments\¥ and tions must be solved. The determinant of this system de-

AY in the coordinates are easy to find, provided that the coPends on the effective probabilities As= Q2+4P2, and the
ordinates of the start and end of each of the eight sections afistribution functions at the start of the sections 1, 2, 3, and
known. For example, the componentg11) of four sections 4 have the form

have the form 5 5

Wi=2rQ(3P-1), Wi=4TPQ-5,

Vi(Ty)=VI(0)+68, Wi(T,)="350)+25, (12 17)

- - ) 6
‘I’)é(Tg,)—\Ifé(O)—l—é, ‘I’E(Tz;)—‘l’i(o), \Pé:4KP(1_3P)+5’ \Pi:ZKQZ-

where the notation=g/4h is introduced to simplify the o ) ) _
equations. The remainingandy componentaP,(T;) can be ~ Substituting(17) into Eq. (16) we arrive at the expression
easily found by an elementary calculation or from the sym-

2
metry properties of the magnetic-breakdown netw(ske Uxx=§ 9_3 f am Z%_ (18)
Fig. 2 H (2m)3) ., *Q?+4P
W, +W.=0, W;+W,=0, We now obtain the Hall component of the conductivity
(13)  tensor. In terms of the unknown distribution functions
W,+W,=0, W,+Wy=0. Wi(t;) andWY(t;) it has the form
o 2 8 _ Yt
Using Eqs._(9) and(7) with 1=0 for a 2I<2mthick layer nyze_g M > szm dele M‘I’f(ti) ..
of the magnetic-breakdown network, taking account of the (2m)° =1 )k, 0 at
fact that the magnetic-breakdown parameters and the cross- (19
sectional are#; of a small orbit are functions ok,, we L ) )
obtain Substituting(10) into Eq.(19) we obtain
2 |hS (kem
1 € |h & [k S In f di| (WY(T) =) wX
UXX:E (27T)3 7 izl f—kzmdkz{[‘l,ix(-ri)]z 7 (271-)3 h 'zEl —kzm ‘ ( I( I) I) I
kl(0)| 1 .
—[¥}(0)1%. (14 + yﬁl — 2 J k'ydk'x}, (20)
(g.ky)
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Wherekiy(O) is the coordinate of the wave vector at the startspin degrees of freedom of the conduction electrons. Finally,
of theith section, and the second term in brackets determineassuming that the density of electrons that move @naabit
the transverse cross-sectional area of the Fermi suffaee  within a narrow magnetic-breakdown layer does not depend

Eq. (2)). onk, (the second term in Eq22)), we obtain finally
To calpulate the 1;|r.st term in EqZO), it is necessary to A(T)b (km 2QP a
know the incremenfA? in the coordinatek, when an elec- Tov= T o= dk,+ (24)
Hh cocti i : oYY HK Q%+4P2™ "% H%’
tron traverses thih section. In a manner similar to the deri- zm JO
vation of the equation§l2), we obtain for they component A(T)b (kum 4P2
of the distribution functions =—0g,,= —_—
T T Hig, fo Zra ¥t gy

WY(T)=Wi(0)+45, Wi(Ty)=V%0), (21) whereb=4g°k,ec/(2)® characterizes the unbalance be-
tween electrons and holes in thé&,2, layer as a result of

WY(T3)=V%0)—6, Wi(T,)="}0)—-26. magnetic breakdown. We stress that the second term in Eq.

(25) includes not only the conductivity arising from the
Using Egs.(13), substituting(21) and(17) into Eq.(20), and  closedy orbit in the magnetic breakdown layer but also the
expressing (0)/h in terms of 5 (see Fig. 2 we obtain for  conductivity from closed orbits on the rest of the Fermi sur-
the Hall component face.
In summary, neglecting the electron spin and the spin—
nyzi: 1 3szm dk| Ak, (22) orbit interaction, for_gﬁ=0 anda=0 the formulas(24) and
H (2m)°) «,,, 1Q°+4P (25 can be used directly to calculate the field dependences
of the components of the conductivity tensor of Al under
HereA(e, k) is the cross-sectional area of tiieorbit, tak- ~ magnetic breakdown conditions. Fgg # 0 anda # 0 the
ing account of the sign determined by the sign of the effecentire calculation ofr,, and o, can be performed from the
tive mass. For a/ orbit in Al the effective mass is negative, outset by equippingd and P with a spin index. Then the
m,,,<0; therefore a plus sign appears in the brackets in Eqnagnetic breakdown terms in Eq24) and(25) must be two
(22). times smaller.

We note that if the calculation starts with the Hall com-
ponento,,, then it would be necessary to calculate the
component of the distribution function&) at the start of the
sectionsi=1, 2, 3, 4, substituting21) into the boundary
conditions (15). However, this is not necessary, since In this section we shall obtain, using the theoretical and
oxy=—0yx. This assertion can be proved by a direct calcu-experimental data obtained in Refs. 3-8 and 16-18, theoret-
lation, and it also follows from the Onsager relatidhdt ical relations for the galvanomagnetic characteristics of Al in
follows from the calculation of¢? and from the symmetry order to substantiate the correctness(24) and (25). We

492P2

5. MAGNETIC-BREAKDOWN OSCILLATIONS OF THE
GALVANOMAGNETIC PROPERTIES OF ALUMINUM

of the magnetic-breakdown netwofkee Fig. 2 that compare the theoretical relation for the magnetoresistance
with the experimental curvdéand we also discuss the effect
Vi=—-"Y, Wvi=v), of the spin degrees of freedom of the conduction electrons on
the period and amplitude of the magnetic-breakdown oscil-
Pi=—WvY, Wi=VY. (23) lations.

Substituting into Eqs(24) and (25) the effective prob-

To compare this result with the data for the real situationabilities (3) with each direction of spin and averaging, we
in Al, the expression$18) and(22) must be modified some- o0btain the total conductivities, taking account of the electron
what. First, we take account of the contributionag, and  Spin and the spin—orbit interaction:
oy due to the corresponding conductivities arising from the 1
electrons that do not participate in magnetic breakdown, i.e. axxzz(o)ﬂﬁ U)l(x), zryxzz(a;er oix). (26)
electrons moving along closed trajectories. As is well
known!* for uncompensated metals the components of the To calculate the integrals in Eq&4) and (25) within
conductivity tensor for w.7>1 are determined by the magnetic-breakdown layer, we find the functions
oy ~alH? and oy~ 1/IRH, wherea is a constant an® is ~ Hg(k,) andAg(k,), using the results of Refs. 3 and 8. In Ref.
the Hall coefficient. Second, we take account of the temperas, the cross sections of the Fermi surface of Al alepgear
ture factorA(T) = X/sinhX, whereX=147.0m.sT/moH is a  the pointsW were calculatedsee Fig. 1 neglecting the
known expressior(see, for example, Ref. 12The factor spin—orbit interaction, and plots of the cross-sectional areas
A(T) (see the remark after EQ)) is always present in the of the 8 orbits and the width of the band gap as functions of
general expressions fat,, ando,, and it follows from the  k, were presented. The latter makes it possible to determine
systematic quantum theory in the derivation of the oscillathe breakdown field in different sections in the direction
tory parts of the transport coefficierftsthird, we multiply k.

(18) and(22) by 2 (the factor of 2 is taken into account in the As follows from the general theory of magnetic break-
standard derivation ofr,, and oy,) in order to study the down with spin flip? taking account of the spin—orbit inter-
theory of magnetic breakdown in Al while neglecting the action at the locations of breakdown results in a renormal-
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ization of the breakdown fieldH,=HY/ (1+ a?)'?, where
Hg is the breakdown field neglecting the spin—orbit interac-
tion (a«=0). However, we do not employ this renormaliza-
tion for Hy in the calculations of Eq(26), but instead we
employ the results of Ref. 8, where the functidtg(k,) and
Ag(k,) with k, oriented in the directiof001] were obtained
from a calculation of the band structure of Al taking account
of the spin—orbit interaction.

We expand the breakdown fieldy(k,) and the trans-
verse cross-sectional arég(k,) to lowest order irk,:

1
Ho(kz) =Ho(0)+ 5 H3kZ, @)

1
Ag(ky)=Ag(0)+ EAgki, (28)
whereHy(0) andAg(0) are the extremal values fé,=0;
Hy and A” are the second derivatives with respectktq
calculated ak,=0. We callHj andA” the variation param-

eter of the breakdown field and the curvature parameter g

the B orbit in the directiork, . Fitting the functiong27) and
(28) with a half-width of the magnetic-breakdown layer
K,m~(1.3—2.0)X10 2 a.u. to the data of Refs. 3 and 8
givesHj~4.64x 10° kG/(a.u)? and A"~ —(0.37-0.17).

We now determine the parametexsb, andR in Egs.
(24) and(25). We start with the Hall coefficierR. The value
of R is taken from Ref. 16, where it is shown tHatdepends
on the magnetic field aT=4.2 K. For H>5 kG, R ap-
proaches 10.2 10 1° Q- cm/kG, which agrees with the re-
sults obtained by other investigatdisee, for example, Ref.
3). The parameters anda can be determined in terms of the
Hall coefficient. It follows from Ref. 17 that in strong fields
with w.7>1 the Hall coefficient in Al asymptotically ap-
proaches ¥cny, whereng; is the effective number of car-

riers per unit cell. We assume that this is the number of

electrons participating in breakdown in the layéde,@. On
the other hand, it follows from the definition bf(see above
thatb=ecny. Equating the effective electron densities, we
obtainb=3/R.

To determinea and check the validity of24) and (25),
we find the components of the resistance tensor, which, as
well known* are given by

Py 107% Q-cm
100f
90}
g0}
70}
60}
50
a0}
30}
20t
10

50 60
H, kG

FIG. 4. Experimental oscillatory curve of the magnetoresistance of Al at
T=4.2 K with current LH, H || [001].*

tﬁwe guantitie29) and finding the microscopic parameters of
the model. The experimental curve from Ref(ske Fig. 4
was used to improve the values of the parameters.

Such a calculation was performedTat 4.2 K, with cy-
clotron massm,z=0.102n, for an electron in g3 orbit*®
using the known values of the paramet&se Table)l

A least-squares fit gb,, (see Fig. 5ato the experimen-
tal magnetoresistand€ig. 4 was made for a wide range of
values of the microscopic parameters. In so doing, the sim-
plex method was used to find the optimal values of the pa-
rameters. Equation&4) and (25) were integrated numeri-
cally by Simpson’s method. The relative error did not exceed
1%, and the number of layers in the intervak®,<k,,
reached 400.

Curves of the magnetic-breakdown oscillations of the
magnetoresistancg,, and Hall resistancg,, with g°f'=0

and a=0 are displayed in Fig. 5. One can see from Fig. 5a
that the field dependence pf, is qualitatively identical to
the experimental curvesee Fig. 4, and the parameters agree
quantitatively with the published dafaee Table ), which
supports the model adopted. The parameifsndA” have

{ﬁe greatest effect on the amplitude and form of the oscilla-
tions of p,,. For example, exponential growth of the ampli-

Oxx Tyx tude of the oscillations does not occur tdf=0; the curve
Pxx= 2 2 PyxT oz 2 (29
O-X)( ny O-XX ny
Substituting the conductivity from closed orbithe second 15, g
terms in Eqs(24) and (25)) into p4, and neglecting the in-
. . . 2 . — 2 .
f!n|te5|mal @R/H)“ for H>Hg,, we optalnpXX aR°. The_ Computational Published Theoretical curves
field depen_der_me of the_magnetoress?ance correspondmg §Qrameters data Fig. 5 Fig. 6
closed orbits is shown in Ref. 4. In fields up to 60 kG it —
remains constant with,,~ 3.5p0, Wherep is the resistance 2107 kG¥/..cm 0.034 0034 0034
tH=0. At T=4.2 K po~1x10"1° Q- cm, which, as indi- 2107, k&74-cm 029 o014 016
a e < R Po oo TR . Rx107'% Q.cm/kG  10.2(Refs. 3, 16, and 37  10.2 10.2
cated |n.Refs. 3 and 4, agrees well WI'Fh existing calculationsy (o), 6 3.6-4.0(Refs. 2 and B 3.6 36
Comparing the results fqs,,, we obtaina~3.5p/R?. HyXx 10, kGla.u)? ~4.8 (Ref. 8 2.16 4.88
In summary, the technology for calculating the galvano-As(0)x107% (a.u)>  1.24(Refs. 3, 7, and B 1.24 0.65
magnetic characteristics of Al under magnetic-breakdowrf” ~—3.3(Ref. § ~lr4 —l23
. . . %me 104, a.u. 2.0(Refs. 4 and 8 2.0 2.0
conditions, taking account of the spin degrees of freedom of%¥ ~ 0 0.49
the conduction electrons, has been reduced to numericgl _ 0 -0
modeling of the theoretical magnetic-field dependences of
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p, 1070 Q-cm

¥x

p10% Q.cm

100 500
a b b
80f 400
FIG. 5. Theoretical curves of magnetic-
60 F 300 breakdown oscillations in Al aT=4.2 K,
H | [001]: a — magnetoresistance
w0l 200 Pxx=Pyy, b — Hall resistance,= —p,, -
The parameters for which the curves were
obtained are presented in Table I.
20+ 100
0 20 40 60 0 20 40 60
H, kG H, kG

of p,, Oscillating, saturates below 200" Q) .cm. For
"=0 the peaks of the oscillations are asymmetric.

Fig. 5, with g®"=

Knowing the cyclotron massn.z=0.102n,, the value

of the g factor of an electron in @ orbit can be estimated
The oscillatory curves opy, andpy,, corresponding to from the value obtained fa®" (see Table)t g5~9.8. How-

0.49 anda~0 are shown in Fig. 6. One ever, there is still some uncertainty here, since the spin con-

can see from Fig. 6a that qualitative agreement with the extribution to the phasé4) can only be found to within 2n,

perimental curve obtains in this case as well, but the ampliwheren is an integer.
tudes of the oscillations are somewhat smaller than in Fig.
5a. If « falls in the range 8 a<1, then the oscillations of

Pxx are less symmetric, but the average values of the osci

The effect of temperature is observed in the monotonic
art and in the character of the oscillationspig, below 30
KG. At temperature§ <4.2 K the intensity of the oscilla-

lations are shifted upwards, approaching the average Va'“‘?‘r%ns increases and the average field dependenge, dfe-

of the experimental curve. In order for the periods of the
oscillations of p,, in Figs. 6a and 4 to be the same, the
experimental transverse cross-sectional aged) must be
halved. If for g®"=0.49 the areaA(0)=1.24x103
(a.u)? is retained, which corresponds to the ordinarily ob-
served period\ (1/H) =2.15x 10" ® G, then the number of
peaks inp,, and py, doubles. Therefore, taking account of
the g factor of conduction electrons inf orbit changes the
extremal areaA,4(0), provided that the expansiof28) is

valid.

comes linear. At temperatures above 4.2 K the oscillatory
part becomes small, in agreement with the results of the tem-
perature investigatiorfsTherefore a comparison of the the-
oretical field-dependences pf, in Figs. 5a and 6a with the
experimental curve shows that the introduction of the tem-
perature factoA(T) in our model is justified.

Qualitative agreement with experiment also obtains for
the Hall effect, shown in Figs. 5b and 6b, computed with
H || [001]. In both cases the Hall resistanpg, oscillates

It can be assumed that a doubled structure of the oscil‘l"‘ifalkly about a value proportional to the field, but since
. .
lation peaks, which arises on account of the lifting of the9~ # O for 0<a=<1, as one can see from Fig. 6D, the aver-
double spin degeneracy of the Landau levels by the magnetRde magnetic field dependencegf, is more linear, which

field, is observed in experiments. This can be verified byagdrees better with the results of Refs. 3 and 18.

studying the experimental cur¢€ig. 4 more carefully. The In summary, the plots presented show that a systematic
amplitudes of two successive oscillation peaks differ by aheory of magnetic breakdown that takes account of the spin
small amount. Furthermore, we note that a situation wher@f the conduction electrons and the spin—orbit interaction, as
the spin splitting exactly equals the splitting between thewell as the more general method presented above for calcu-
Landau levels is possible. This is approximately the case folating the conductivity tensor for a two-dimensional system

energy bands whene,/my<1 .2

P, 107 Q-cm

100

yx

p 107 Q-cm

500

of electronic trajectories in Al, also explain well not only the

a b
80T 400
FIG. 6. Theoretical curves of magnetic-
60t 300 breakdown oscillations in Al aT=4.2 K,
H || [001]. The curves correspond to Fig. 5
but were obtained taking account of the
40t 200 electron spin; the computational parameters
are given in Table I.
201 100
0 20 40 60 20 40 60
H, kG H, kG
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Modification of the spin-wave dispersion law in multilayer films by changes in the
symmetry of the boundary conditions

A. M. Zyuzin and A. G. Bazhanov

N. P. Ogaryov Mordovian State University, 430000 Saransk, Russia
(Submitted 28 August 1996

Zh. Eksp. Teor. Fiz111, 1667-1673May 1997

The present paper is the first attempt to study the transformation of spin-wave resonance spectra
when symmetric boundary conditions are smoothly replaced by asymmetric. The transition

is done by gradually reducing the thickness of one of the layers in a three-layer film. Spin
deexcitation is caused by a dissipation mechanism. We find that in the transition region

between symmetric and asymmetric boundary conditions the dispersion curve experiences a break,
whose position depends on the degree of deexcitdtlmnthickness of the upper layeihe

break is caused by the appearance of asymmetric transitional spin-wave modes, which cannot be
excited under symmetric boundary conditions. 1®97 American Institute of Physics.
[S1063-776097)01005-9

The boundary conditions constitute the most importanthe dependence of the degree of deexcitation on the values of
factor determining the characteristics of spin-wave resonancée wave number.
spectra. This problem has been studied by many researchers The spin-wave resonance spectra for symmetric bound-
(see, e.g., Refs. 133who, in particular, investigated spin- ary conditions differ from those for antisymmetric boundary
wave resonance spectra for the following boundary condiconditions, in that in the former case a uniform microwave
tions: symmetric, asymmetritspins deexcited only at one field excites standing harmonic modes with an odd number
boundary of the excitation laygrand antisymmetric. The of half-waves fitting into the thickness of the excitation
analysis of the spectra in the majority of the papers is basel@yer, while in the latter case such a field excites modes with
on a surface anisotropy model, in which the degree of deex@n 0dd number of quarter-waves. Hence, other things being
citation is described by a phenomenological parameter, th@dual, twice the number of spin-wave modes are excited in
surface anisotrop$® which, however, is difficult to measure the same interval of wave numbeksn the latter case as in
and monitor. Such analysis does not allow for such physicaine former. _ o
parameters as the resonant field, the magnetization, the 1N€ decrease in the degree of deexcitation at one of the

damping constant, and the film thicknggghich is assumed boundaries of an excitation layer with initia.II.y symmetr?c
to be negligible. boundary conditions should I_ead t?‘ a tr_an3|t|,c,mal 5|tuat|gn
Schianant? studied the dynamical mechanism of spin and to the_ emergence of p_rewously forbldQen asymmetric
deexcitation, which is related to the nonuniformity of the mades, with _the conf|gura_t|0n transformed in such a way thf.it
distribution of the resonant field over the film thickness. Thethe.’ total variable magnetic r_noment. becomes NONZzero. Itis
most detailed analysis of spin-wave resonance spectra féarwdent, then, that the earlier ?XCIt.ed’ _symmetnc, modes
multilayer films has been done by Wiltz and Prdsadd must also undergo a transformation in this case.

Hoecstraet al.® who found that under the dvnamical mecha- The aim of our research was to study the transformation
7 y of spin-wave resonance spectra and the modification of the

nism thgre IS a strong dependenge O.f the spgctrum on th(‘ﬁspersion law for spin waves when symmetric boundary
quentatlon of the .external me}gnetlc_ fiekd relative to the . conditions gradually become asymmetric. The transition was
film, and a deviation of the dispersion law from quadratic. 4o by lowering the degree of deexcitation at one of the
The reason is the dependence of the spin-wave localizatiog, \ngaries of the excitation layer via gradual reduction of
region onH and on the orientation oH. In Refs. 4, o thickness of the upper layer with strong damping.
9 and 10 and in a number of other papers, spin-wave reso- The studies involved three-layer single-crystal films of
nance was studied in films with fluctuations of the magneti<gyite garnets, where spin deexcitation is achieved by a dis-
zation and the exchange parameter, and in multilayer ﬁlm%ipation mechanist: The films were grown by the liquid-
with one-dimensional modulation of the magnetic param-phase epitaxy method on(a11) gadolinium—gallium garnet
eters. The presence of fluctuations leads to a break in thgpstrate by subsequent immersion into two differing melts.
diSperSion curve, with the wave vector at the break related tq'o measure and monitor the parameters’ we grew One-|ayer
the correlation radius of the fluctuations or the spatial moduanalogs of each layer of the three-layer film on pure sub-
lation parameter. strates. The lower and upper layétise deexcitation laye)s
Despite the large number of papers on spin-wave resoyhich had a large damping parametar=AHy/w=0.2
nance, the features of the spectra in the transitional regiothereAH is the absorption-line halfwidthy is the gyromag-
between symmetric and asymmetric boundary conditionsetic ratio, andw is the circular frequency of the microwave
have yet to be studied. Such a situation is quite commorfjeld), had the composition (SmEfe0;,, thickness
however. We also believe that it is extremely important,h=0.74-1.2.m, saturation magnetization7M =1328 G,
when analyzing spin-wave resonance spectra, to allow foeffective uniaxial anisotropy field HE"=96 Oe, and
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dpP orientations were found to be lined#ig. 2,1). In the process

Tﬁi x1 x1 I of etching the upper level down to 0.Q/m, no appreciable
variations were observed. When the layer was made even
x50 x50 x50 thinner, the spin-wave resonance spectrum for the case of
M a perpendicular orientation was found to acquire peaks be-
tween those that existed earligfig. 1, 2).
H,k0e H, koe H, kOe These new peaks emerged in the following manner. The
40 45 40 45 40 45 first peaks to appear were those with higher numhbef&hey
grew in height as the upper layer became thinner, and then
ra‘% i I i new modes with lower numbens appeared. All this was
accompanied by a slight increase in the resonant field
x50 x50 =50 strength and a decrease in the height of the peaks that had
W\’\M \N\,\/‘ “ b appeared earlier. As a result, the monotonic dependence of
V‘ Vl the amplitude of spin-wave modes on the mode number dis-
H.kOe H.kOe H.KOe appeared. _ _ _ _
20 2.3 20 25 R There is a dramatic effect accompanying this process.

Within the transitional region between symmetric and asym-

1 2 3 . " ; ) .
metric boundary conditions, a break appears in the dispersion

FIG. 1. Changes in the spin-wave resonance spectrum induced by a decre. : :
in the thickness of the upper deexcitation lay&sh=0.74 um, 2— a}?ﬁrve(Flg' 2,2), and it moves toward smaller valuesrois

h=0.0422m, and3—the layer has been etched away completayper-  the thickness of the upper layer and hence the degree of
pendicular orientation ofi relative to the plane of the film, ar@) parallel ~ deexcitation become smaller. The bre@nd this can be
orientation. verified is due to the emergence of previously “forbidden”
intermediate modes. When the upper layer is etched away
_ S i ) ] completely, all intermediate modes are presghg. 1, 3),
y=1.38<10" Oe °s " The middle layer(where standing he gistribution of the amplitude becomes monotonic, and the
harmonic modes are excn}ed.had the composition preak in the dispersion curve disappedFig. 2, 3). The
Y2.985M.0F €01, thickness ranging from 0.6 t0 0.98m  gj5ne of the entire dispersion curve built on the basis of the

for differe7nt j{TD'es, a:ﬁO-OO& 4TM=1730G,  fynctional dependence corresponding to symmetric boundary
y=1.76x10" Oe *s -, and H'=—1715Oe. The thick- qnditions

ness of the various layers was measured interferometrically

using the one-layer analogs. The etching rate was estimated )

by the time it took to etch away the layer completely. The ~ Ho~Hn=17(2n+1)% 1,

etching step amounted to 0.01#m. The spectra were re-

corded at room temperature at a frequency ofchanges. Clearly, the modification of the dispersion law is

9.34x 10° Hz. Since the spin-wave resonance spectra werdue to the transition from symmetric boundary conditions to

recorded at constanb, and the difference in the resonant asymmetric, rather than to a change inA(®1)(w?/h?) or

fields of the zeroth andth modesHy—H,,, is quadratic in some other influence. The dispersion curves set up for asym-

k (like the frequency of spin waves for constad), the  metric boundary conditions, for which the wave numker

dispersion curves were plotted in thel,—H,,(2n+1)?} assumes valuesn( + 3)«/h rather than (2+1)w/h

plane, wheren is the mode numbé¥!213 (n=0,1,2 ... is themode number coincide to high accu-
Six spin-wave modes were confidently registered in theacy with the original curves set up for symmetric boundary

spectrum of the initial three-layer field with symmetric conditions.

boundary conditions, in both perpendicular and parallel ori-  Note that the number of modes was found to be the same

entations(Fig. 1, 1). The dispersion relations for the two for both perpendicular and parallel orientations, but certain

2

HO - Hn. Oe

1000}

750 1

500t

2501

200 0 100 200 0 100 200 5
2n+ 1)

0 A
0 100

FIG. 2. Changes in thel,—H, vs (2n+1)? dependence induced by a decrease in the thickness of the upper deexcitation layer. The dispersianurves
and3 correspond to the spectia 2, and3 in Fig. 1. A—perpendicular orientation, ané—patrallel orientation.
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Using Eqg.(1), we can easily show that in the case of

™ - | symmetric boundary conditions, only modes with an odd
. L~ | number of half-waves in the thickness of the excitation layer
77 4 ] ~— | (Fig. 3, 1) have nonzero intensity when the total variable
magnetic moment is nonzero. Modes with an even number of
- s B half-waves (asymmetric modes, depicted in Fig. 3 by
hatched rectanglesre not excited.
- - The damped spin wave in the deexcitation layer is char-
/4 I I :J ’ 7 :, acterized by a certain penetration depthwhich generally
A A depends on the wave number in the excitation lakgr; n.
QUQUQI Bl A vaave lng QVQULI A drop in the thickness of the upper layer to values compa-
] 2 3 rable to, or less thar, leads to a drop in the degree of

FIG. 3. Transformation of the first five spin-wave modes as a result ofdeexCitaticm at the CorrESponding boundary of the excitation
transition from symmetric boundary conditions to asymmetric. The hatchedayer. This in turn changes the wave numbers of the har-
areas dgpict modes that are not excited when the boundary conditions araonic spin waves and their phases at the given boundary
symmetric. (Fig. 3,2). As a result, the total variable magnetic moment of
the spin-wave modes that earlier were asymmetric becomes
nonzero, with the corresponding peaks appearing in the spin-
differences in the slopes of the dispersion curves wergvave resonance spectra. This is accompanied by an increase
present. Establishing the reason for these differences, relategl the resonant field strengths and a decrease in the intensity
to the additional effect of the fact that the deexcitation layerof the peaks of the modes that were symmetric under sym-
is in one case a dispersive medium and in the other a reactiv@etric boundary conditions. Figure 3 depicts the change in
medium, requires further analysis. configuration of a few first spin-wave modes when symmet-

Another interesting result of our investigation is the ric boundary conditions are replaced by asymmetric.
qualitatively different way in which the intermediate modes  To explain the change in the way in which intermediate
for one orientation appear as compared with those for thenodes appear when there is a change in orientation, we al-
other. While for perpendicular orientation the modes, as detowed not only for the dissipation mechanism of spin deex-
scribed earlier, emerged sequentially starting with those witlgitation, but also for the dispersive and reactive properties of
higher numbers, for parallel orientation no such pattern wasayers with a largex. Depending on the orientation in the
observed, up to approximately the middle of the process ofange of field strengths that excite spin-wave modes, the de-
mode emergence for perpendicular orientation. Only then di@xcitation layer is a reactive or dispersive medium with
all the intermediate modes suddenly appear, with a monostrong dissipation for spin waves excited by standing har-
tonic intensity distribution. monic waves localized in the excitation layer.

In analyzing the results we approximated spin waves by  Figure 4 depicts théi-dependence of the wave vectors
harmonic waves in the excitation layer and exponentiallyin the excitation and deexcitation layers with no allowance
damped waves in layers with large The intensity of exci-  for dissipation. The calculations df for each layer were
tation of spin-wave modes in a linearly polarized microwavedone via the dispersion relations
field can be described by

1) 2H 2A
(ym, dz)? S mHIHE =5 @
" J(al2yM)(mZ+m2) dz’ .
, o w)? 2A ot Hia 2A
wherem; are the components of the variable magnetization ; =|H+ Vk H—H/— 7+ Vk , 3

in a system of coordinates in which the direction\fcoin-
cides with that of the axis and the direction dfi with that  for the perpendicular and parallel orientations, respectively.
of the x axis. HereH,, is the cubic anisotropy field, which was found by

5 -1 5 -t
ke, kd, 10 cm ke, kd. 10 cm

2

o A 0 ! . \
3 4 5 H, kOe 1 2 3 H, kOe
FIG. 4. TheH-dependence of wave numbers in an excitation lagegr () and a deexcitation layek, 2) for parallel(a) and perpendiculatb) orientations.

The dashed curve corresponds to imaginary valuds; pfand the dot-dash straight lines specify an interval of field strengths corresponding to the observed
spin-wave resonance spectrum.
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the method described in Ref. 14, aAds the exchange con- tion layer became approximately equal to 008, which
stant. For perpendicular orientation, the wave vector in theymounts to roughly half of, or a quarter of the wavelength
deexcitation layer with fieIQs h.igher than that ngeded for & in this layer. Etching with a smaller step would probably
homogeneous resonance in this layelp), is imaginary: lead not to a sudden rise in the intensities of all intermediate

kg=—ik} modes, but to a more gradual rise. Note that for parallel
orientation, the spin waves are transverse—longitudinal, and
are generally elliptically polarized.

The large damping coefficients for modes with a small
kq=k{ n in the event of perpendicular orientation ensure fairly
strong deexcitation for thinner deexcitation layers.

Thus, on the basis of our results, we can draw the fol-
lowing conclusions.

(1) The madification of the law of dispersion of the spin-

(the spin wave is an exponentially damped waweor par-
allel orientation of the field,

is a real quantitfa harmonic waveover the entire range of
field strengths.

Allowing for the dissipative properties of the deexcita-
tion layer leads to a situation in which for perpendicular , ) .
orientation the damping coefficient for the spin wave in-"Wave spectruniin particular, the appearance of a break in
creases, while for parallel orientatidy becomes complex- the dispersion curyemay be due only to fluctuations iA
valued, and the spin wave becomes an exponentially dampék!‘d M, but also to a situation in which the boundary condi-
harmonic wave. tions are in the “transition” region between symmetric and

Figure 4a implies that for perpendicular orientation, as@symmetric boundary conditions.
the wave numbek, of the harmonic wave excited in the (2) The influence of the dispersive or reactive properties
middle layer increases, the strength of the external magnetief a layer with a larger, in addition to the dominant dissi-
field H approachesH, in the deexcitation layer, which pation mechanism of deexcitation, leads to a qualitative
makes the layer less reactive. Clearly, there is a sharp dehange in the way in which asymmetric intermediate modes
crease inky, which corresponds to an increase in the pen-appear as the thickness of this layer decreases.
etration depth. For this reason the modes with the higher Note that an intermediate situation similar to the one
values ofn are the most sensitive to the thickness of thediscussed above can emerge for antisymmetric boundary
deexcitation layer. Note that &g increases, the amplitude of conditions. The reason may be the small thickness of one of
the variable magnetization of the harmonic spin wave is rethe |ayers or another factor leading to an inequalityab-

duced and, simultaneously, as the strength of the externapjyte values between the degrees of deexcitation at the
magnetic fieldH approachesl, in the deexcitation layer, the poundaries.

variable magnetization in this layer excited directly by the
microwave field grows, i.e., the difference in the magnetiza-
tion precession angles of two media becomes smaller. All
this causes the degree of deexcitation to decrease as the

mode number increases. IN. M. Salanski and M. Sh. ErukhimovPhysical Properties and Appli-
For parallel orientation, the relative variation &f cations of Magnetic Film§in Russian, Nauka, Novosibirsk1975.

within the range of field strengths corresponding to the ob-?V. M. Sokolov and B. A. Tavger, Fiz. Tverd. Telaeningrad 10, 1793

served spin-wave resonance spectifiiig. 4b) is moderate, (1968 [Sov. Phys. Solid Stat£0, 1412(1968 . _ _

and amounts to roughly 20%. The deﬂ)tbf penetration of Yu. A. Korchagin, R. G. Khlebopros, and N. S. Chistyakov, Fiz. Tverd.

o . . Tela (Leni 14, 2121 (1972 [Sov. Phys. Solid Statd4, 1826
the deexcitation layer by the spin waygetermined by the (1e932)(]_enmgrad (1972 [Sov. Phys. Solid Sta

. . . . 2
dissipative propertigs 4V. A. Ignatchenko, R. S. Iskhakov, L. A. Chekanova, and N. S. Chistya-
1 AA kov, Zh. Eksp. Teor. Fiz.75, 653 (1978 [Sov. Phys. JETR48, 328
_ Ay @) (1978].

5G. Suran, H. Daver, and J. Sztern AtP Conf. Proc, Vol. 34, AIP, New
York (1976, p. 310.

is therefore only slightly dependent on the mode number. In®E. Schlanann, J. Appl. Phys35, 159 (1964.

contrast to the purely exponential wafgerpendicular orien- ;C- H. Wiltz and S. Prasad, IEEE Trans. Mag#AG-17, 2405(1981).
tation), the exponentially damped harmonic wave in the de- gé;a‘;f%ra' R.P. van Stapele, and J. M. Robertson, J. Appl. BBys.
excitation layer for parallel orientation of the field has a nodes,, "5’ Ignétchenko and R. S. Iskhakov, Zhkp. Teor. Fiz.72, 1005
near the boundary between layers. This leads to a consider{1977 [sov. Phys. JETRS, 526 (1977].

ably weaker dependence of the degree of deexcitation on tHeRr. S. Iskhakov, A. S. Chekanov, and L. A. Chekanova, Fiz. Tverd. Tela
mode number and a lower sensitivity of deexcitation to the (Leningrad 32, 441(1990 [Sov. Phys. Solid Statg2, 255(1990).
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Estimates support this conclusion. All the intermediate
modes emerged when the thicknéssef the upper deexcita- Translated by Eugene Yankovsky
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Long-range intensity correlations for the multiple scattering of waves in unordered
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The long-range correlations in the reflected and transmitted fluxes in the case of the coherent
transport of waves in an unordered medium with discrete inhomogeneities are considered.

The correlator and spectrum of the intensity fluctuations are expressed in a general form in terms
of the one-center scattering amplitude and the propagators of the mean radiated intensity.

The random interference of the waves and the fluctuations of the number of scattering centers in
a microvolume of the medium are taken into account simultaneously. Detailed calculations

are performed for two limiting radiation propagation regimes, viz., spatial diffusion and small-
angle multiple scattering. It is shown that the conservation of the total flux upon elastic
scattering leads to the formation of a dip in the spectrum and, accordingly, a negative correlation
between the intensities at large distances. In the case of spatial diffusion this feature is
displayed upon reflection, and in the case of small-angle multiple scattering it is displayed upon
transmission through a slab. The relative roles of the various sources of intensity

fluctuations, as well as the sensitivity of the correlations to factors that influence the wave
propagation regime, viz., the finite size of the scattering sample, absorption in the medium, and
the presence of a frequency shift in the incident waves, are analyzed. We find that

fluctuations in the distribution of the scatterers show up most strongly in a medium with strong,
i.e., “non-Born,” centers, especially if they exhibit absorption. 1®97 American

Institute of Physicg.S1063-776(97)01105-0

1. INTRODUCTION proximation cannot work for scattering by an individual cen-
ter, and the effects caused by the absorption of radiation can
The interference of waves upon multiple elastic scatterplay a significant role.
ing is known to be the cause of a whole list of unusual  Despite the large number of publications devoted to the
“mesoscopic” effects, which appear when electrons andstudy of intensity fluctuations in unordered media;4-33
classical waves are transported in unordered mediome  the corresponding general theory has been developed to only
examples of these effects are the universal conductivity fluca small extent beyond the work in Refs. 10—13. The existing
tuations of small metallic samplés® the correlations in theoretical resultésee, for example, Refs. 14 and) Pertain
speckles, i.e., intensity distributions that fluctuate strongly irto the Born approximation for one-center scattering and, with
space, in the case of the multiple scattering of coherent lighthe exception of Ref. 32, were obtained directly for a par-
and microwave radiatioh!™® ticular limiting regime of wave propagation in the medium.
Interest in the analysis of the correlations of multiply Because of the use of the Born approximation, the question
scattered wave fields first arose quite long ago in connectioof the intensity fluctuations associated with the random mi-
with the study of the scintillation of coherent laser radiationcroinhomogeneity of the medium, in particular, was not con-
and radio waves in turbulent medi&This question has been sidered.
investigated in extreme detail within the model of a random  In the Born approximation only one source of large-scale
continuous medium with large-scdleith a dimensiora that  intensity fluctuations in the observation plane is taken into
is much greater than the wavelength weakly refracting account, viz., spatial spreading of a local intensity surge that
inhomogeneitiegsee the reviews in Refs. 10913he re-  appears in the bulk of the medium due to interference of the
gion of applicability of the theoretical resulfs'®is re-  waves upon multiple scattering. Such a fluctuation source is
stricted by conditions which are characteristic of turbulentpresumed in both the Langevitr!® and diagrarf!’ de-
media (very large inhomogeneities of the refractive index, scriptions of the long-range correlation between diffusion
the Born approximation for single scattering, and the absenciuxes in an unordered medium. As is shown below, when a
of absorption. departure is made from the Born approximation for one-
The analogous problem for media with discrete scattereenter scattering, another source of intensity fluctuations is
ers became a topic of investigation comparatively recently inncluded, viz., local perturbations of the spatial distribution
connection with the research on the diffusive transport obf the intensity and the bulk speckle structure due to Poisson
electrons and classical waveherent light, microwave ra- fluctuations of the number of scatterers in a microvolume of
diation) in unordered systems®4-22The conditions char- the medium. This source of fluctuations is of the same nature
acteristic of turbulent media are not satisfied in this case, ands the variation of the transmission coefficient appearing
the wave correlation regime is different. Here the Born ap-when an additional scatterer is added to the medium, which
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was considered in Refs. 34 and 35. Unlike the Born approxiformation of a dip in the spectrum and, accordingly, to a
mation, in which only the pairwise correlations of the wavenegative correlation between the intensities at large dis-
fields are taken into account, the inclusion of the local inhotances. One consequence of the conservation of the flux is
mogeneity of the medium in the treatment requires considerthe fact that the fluctuations of the diffuse reflectance are
ation of the correlations between all four fields appearing indetermined only by long ray trajectories and therefore, unlike
the definition of the intensity correlator. the conclusions in Refs. 14 and 19, are sensitive to any fac-
Below we present the solution of the problem of calcu-tors that constrain the length of the trajectories.
lating the spectrum and the correlation function of the inten-  The phenomena considered in the present work should
sity fluctuations for the multiple scattering of coherent radia-be observed under conditions that are typical of many experi-
tion in an unordered medium with discrete inhomogeneitiesments on the multiple scattering of coherent light and micro-
The approach previously developed to describe fluctuationgave radiationsee, for example, Refs. 3, 7, 9, 20-25, and
in the case of small-angle scattering in a turbulent30) and can be of interest for investigating the properties of
medium®-3is generalized to the case of an arbitrary distri-unordered media.
bution of multiply scattered waves. The transport equation
for an intensity correlator free of restrictions on the one-
c_enter scattering force i§ derivgd in the Iadder. approxima-z_ GENERAL RELATIONS
tion, and a closed analytic solution of that equation is found.
The solution is expressed in a general form in terms of scat- Let a plane wave of unit amplitude fall on the slab
tering amplitudes and ladder propagators and, thus, makes@tz<L.
possible to reduce the problem of calculating the spectrum The problem of calculating the spectrum and the corre-
and the correlation function of the intensity fluctuations tolation function of the intensity fluctuations reduces to finding
the solution of the transport equatidri’ for the mean inten- the moments of the wave fiel#;, <,, and &, averaged
sity. The relations found in this work generalize the basicover the positions of the scatterers, where
formulas®*to the case of strong scatterers and include the  _ W1 T !
previously obtained resul{see, for example, Refs. 1, 3, 14, n= (¥ (D). ¥ (). @)
17, and 18 as the corresponding limiting cases. Under the conditions of weak localization of the waves
Departure from the Born approximation for one-center(kqgl>1, where | is the elastic scattering length and
scattering enables us to take into account the mechanism fé&g=27/\) the main contribution to the moments of the
intensity fluctuations caused by the random microinhomogewave field is made by the ladder diagrams. Their summation
neity of the medium along with the purely interference leads to a system of transport equatidRgy. 1).
mechanism. On the one hand, this opens up an incoherent The equations for the first two moments, i.e., the mean
channel of fluctuationgin the Born approximations there field and the mutual coherence function, are well known
was no such channeand, on the other hand, this can have a(see, for example, Refs. 37 and)38he mean field in a
significant effect on fluctuations of a coherent nature. Inho-substance satisfies the following equatiéig. 13:
mogeneity effects are displayed most strongly in media with
large centergwith dimensions greater than the wavelength =9+ Gy D, Talh, ®)
especially if they are absorbing centers. The contribution of a
thg incoherent fluctuat[ons can also be.|mportant for th?_scabvhere A9 is the field in the incident wave,
tering of frequency-shifted waves, which has the additionalg = (v2+k2+i0)~! is the Green’s function of the free
problem of interpreting the experimentally observed damp
ing of the fluctuations as the frequency shift incre#8e$
A detailed investigation of long-range intensity correla-

wave equation, an;:ﬁi"a is the matrix for scattering on a cen-
ter located at the poimt, . In the case in which the free term

. . ; qf imiti ! ¢ multiol in (2) corresponds to the field of a point source, i.e.,
tions s performed for two limiting regimes of multiple scat- f';(lo):Go, Eq. (2) defines the Green’s function of the elastic

tering of waves, viz., spatial diffusion of radiation in a sys- scattering probler’ Knowing G, we can write the equation
tem of centers of small radilhe case of arbitrary scattering for the second moment in the following manner:

centers is considered in Appendi¥ Bnd small-angle mul-

tiple scattering in a medium with large-scale inhomogeneity. . g . PP

The dependence of the correlations on such factors as the ‘52_‘5(2 '+GG Ea Ta7a 02 ©)
restricted size of the scattering samples, absorption in the O
medium, and the presence of a frequency shift in the inciden'hére-#3”=21.71 is the second moment of the unscattered
waves is analyzed. It is shown that the form of the fluctuafield- Equation(3) is depicted in Fig. 1b in diagram symbol-
tion spectrum at low spatial frequencies and, accordingly, th&™- o _ _
asymptote of the intensity correlator depend significantly on It is also not difficult to denve_ the transport equanon for
the conservation of the total radiation flux. In the case ofthe fourth moment of the wave field by successive summa-
spatial diffusion this feature is displayed in the fluctuationtion of the ladder diagramé-ig. 10:

spectrum of the intensity reflected from the medium, and in .

the case of small-angle multiple scattering it is displayed in 2= %%+ %55, 2, hahy <4, (4)

the spectrum of the transmitted intensity. In both cases con- 2

servation of the flux during elastic scattering leads to thewhere
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(5) variables is specified by the characteristic spatial deflection

. - of the ray trajectories in the scattering sample
Equations(3) and(4) have a similar structure. In E@) the (rspat>10>1 o). Taking the Fourier transform with respect

second moment of the wave field, plays the same role as (,yhe fast variables, we arrive at the Q) representatiorr

the Green’s functiorG in Eq. (3) for the second moment. yonates the coordinates, asd denotes the directions of
The free terms in Eq$3) and(4) describe the propagation of .02 4ation of the wavigsand we express all the observable
the unscattered fields and the uncorrelated intensities, reSp%antmes in terms of a smooth function of the directions and
tively. In Eq. (4) the matrixh, plays the role of the scattering coordinates, i.e., the “ray” radiated intensityr, ().

matrix.7,. The quantity> .7, ”; in (3) specifies the pair Equation(3) can be transformed into an ordinary trans-
correlat|on of the fields, while the quantiff=3,h,h; in  port equatior’® *®For this purpose, we must use the explicit
(4) specifies the correlation of the intensities. form of the Green’s function of the scattering probl&m:

Equationg2)—(5) are general transport equations, which
describe the correlation of the intensity values of the coher- _ .
ent radiation in an unordered medium. They are valid for any (r.ry)=- Eexr{ ikolr =] = 5 nowlr—ry|
multiple-scattering regime of waves, including spatial diffu-
sion and small-angle multiple scattering. In the latter case
System(Z)_(S) can be regarded as a genera"zation of théNheren is the number of scatterers per unit volume and
known transport equation for the fourth moment of the waveZtt iS the total cross section of the one-center interaction,
field, which was studied in detail in the context of the prob-and go over to the mixed (€2) representation. Taking into
lem of the intensity fluctuations in the case of wave propaaccount the equality which is valid fogl>1
gation in a turbulent mediut?*3to the case of strong dis- ,
. lg Vg
G ( > -0 2)

crete scatterers. In the small-angle approximation Edjs. f fdr dr’
adrg G
><exp(—ik«rd+ik’~r(’,)=47-r4

[r—rql’

!

r
r+
1t

and (5) transform into the corresponding equations of the
theory in Refs. 10—13, if only the terms responsible for the
pair correlations of the fields are left in the quantity
H=3,h,h} . For this purpose, the term that is quadratic in exp(—Na|r —rq)) F—r,
7. must be neglected i), and the expression for, in the X ( k—ko = r1|)
Born approximation must be inserted.

We transform Eqgs(3), (4), and (5), assuming that the
scatterers are found at sufficient distances from one another,
so that each successive scattering act takes place in the
Fraunhofer zone of an individual scattering center,and introducing the notatio®2=k/k and Q'=k’/k’, we
I>max(k51,k0a2), i.e., a condition opposite to the one write Eq.(3) in the form
adopted in Refs. 10—13 is satisfied. In this case, assuming
that the scattering is multiple, we can separate the fast and o
slow spatial variables in the problefsee, for example, Refs. (T Q)= (r,.(),)+nf dr’f dQ' 49
37 and 38. The scale of variation of the fast variables is
specified by the coherence radius of the scattered fields X(Q.Q,\EXD(—”UmJT—V'D
(reor—= N6, where 6 is the characteristic multiple-scattering / [r—r’]?

[r—ry]?

)

K’ — kgt 7
ofr—ry] (7
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The equations forwo(r,Q,Aw) defined in accordance with
Q_| |)I(r Q), ® (9 can then be obtained from Eq@®) or (11), if
No— i (Aw)/c is substituted into them instead ofo;.

wherel (r,Q)=(I(r,Q)) is the radiated intensity at the point pnpysically,| ,, (1. Q2,4 0) is the intensity of the signal modu-
r in the directionQ), averaged over the positions of the scat- lated with the frequencyk w.

terers,

X6

To pass from Eq(4) to the equation in ther(Q) rep-
do resentation, the fast and slow variables must be separated in
d—Q(Q'Q')=|f(9‘ﬂ')|2 the fourth moments, of the field. Under the conditions of
multiple scatterings, is an abruptly varying function of the
is the differential elastic scattering cross sectiqi€) - ') is  difference variables and a smooth function of the summed
the scattering amplitude, arf= — (47) .7 For the sake Vvariables, which decreases on the saglg. When the val-
of brevity, in (8) and below we omit the averaging sign ues ofr;—r, andrz—r, are small.7, is a smooth function
(...} in the notation of the mean intensity, leaving it in Of the variables i(; +1,)/2 and {3+r,4)/2. In addition, .7,
explicit form only in the second moment of the intensity. ~depends on the variables which are obtained,ifand r,
In deriving (8) we took into account the presence &f change places. This follows from the symmetry condition
functions in(7), which enables us to write the relation be- B B
tweenl! (r,Q) and ,(r,r,) in the form®’ 24(1,2,3,4=.74(1,4,3,2, (13

k| 6(k—kgq) 1 o which corresponds to transposition of the conjugate wave
'(r'ﬂz E) K2 :(ZW)SJ dRJ dR;72(R,Ry) fields appearing in the definitiofl). At small values of the
difference variables the main contribution g, is made by
the diagrams containing at least one scattering act in the
“outgoing” ladder propagators. The sum of such diagrams
specifies a part of the fourth moments (see Appendix A
It is more convenient to work witty'$°® than with ;. Un-
like &, <% does not obey the conditioi3), and the fast

] R+R;
Xexp[—lk'(R—Rl)}é(r— 5 ) 9

For directed point and planar sources of unit power, the un:,
scattered intensity i8) equals, respectively,

(0) expl—Noell —r4)) and slow variables can be unequivocally separated in
1O(r,Qry,2y)= r—r, 5(Q—1Qy) 29 In addition, under multiple-scattering conditiofis,
can be expressed in terms &%°, and a closed equation
slo— r—r similar to (4) can be written fors{s9.
r—rq)’ In the problem of long-range spatial correlations the ob-
1 p g-range sp

. 12— 2, (10 servable quantities can be expressed in terms of a smooth
10(2.0|z, Q)= —e p( )5 0-0 function of the coordinates and the angles, i.e., the second
(2,02, 9) Q| XA TN%eTo T [Q, ( v moment of the intensity. It is related t6'°° by the equality

After applying the operator@ - V,+nay,) to both sides K K
of Eq. (8), we obtain the transport equation in the ordinary<|w0+Aw,2( r,Q= E)Iwo—Aw/Z( r1,91=—1)>

integrodifferential form. For a directed point sourfsee Ky
(10)] it has the form® 5(k ko) 8(k;—ko)
(Q-Vi+no) (1, Qr,2,) = Q- Q) 5(r—ry) 5 ki
+nJ dQ’ dﬂ,l(r Q'|r, Q). (12) = 2m)° f del
_ In_the case in which the fields |_mp|ng|ng on the_ medium % .%SC) Ry, wo+ —w.Rz,wo
differ in frequency byA w<wg (wg=cky is the carrier fre- 2
qguency, andc is the speed of light in going over to the
(r,Q) representation instead ¢f) we must use the relation A_‘*’ . _ A_“’ _ A_‘"
+ 2 ,R3,w0 2 ,R4,w0 2
rg
f fdrddrde +Awl2 2 Tt sl r— Ri+R; - R3+Ry
2 2
r r
XGMO_Aw/Z(r_Ed,rl_ §d> exq—lkl’d-i-lk'l’é) Xexp{_”((Rl_Rz)_|k1(R3_R4)}
. (14
XA - (nog—i(Aw)/c)|r—ry]]
—am [r=ry]2 The quantity (I, 1 aw2(F )14, 2w2r1,€2)) satisfy the
equation
_ , -,
8 k= ko| |) (k k°|r |) (12 00+ Aw2(r, Q)1 00— Aw/2(r1,01))
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=1y +202(F Q) o — pwa(F1,24]0)) 0 series with respect to the multiplicity of the interaction of the
WoT AW/ woT AW ! “ ” ; ; i
rays.” The small parameters in this expansion are
, i, b en 1/(kol)? anda/12, which characterize the coherent and inco-
+nf dr f f e dﬂlf f dQ’d; herent interactions of the “rays,” respectively.

The principle contribution to the correlation function is
made by the first iteration cycle. In this approximation for
the second moment of the intensity we obtain the following
expression:

X (1 202 QU Q) a1, @17, 27))
X[h(Q',Q']Q",Q")h(Q],Q;|Q],Q7)
X (Vg aar2r ) - w1 €27))

1, il QIR (1, 0] Q) (log+ w214 —awar1,€21))

+h(Q',Q'[Q",Q)h(Q], 04| 0QF, Q") = (log+ 2021 QIR0 - 01211, 2] R))
><(|wo(r’,Q",Aw)lwo(r',ﬂ",—Aw»], (15) +nj dr,f f dQ,inj fdﬂ”dﬂg

where PP " OV (sO
( | o | | X (g 02T Q) a1, Q41" €21))
w0+Aw/2 wO—Aw/Z - w0+Aw/2 wo—Aw/Z

X[h(Q',Q'|Q",Q")h(Q},Q)]
X1 ot dar2T Q' [Q0) - awa(r, Q7] Q0)

_|(0) | (0
otAw/2 wo Awl2»

2i
(.07, 0) = TR0 30y 0y +h(Q',Q'[Q",Q)h(Q],0}0],0")
0
— (- Q) (0,0))] X1 (1, | Q0, A0, (17,0 R, — A)) ],
(7
+HQQ) P (0,0)). (16

The expressiolil7) describes the long-range correlations of
the intensity for an arbitrary law of single and multiple scat-

. . . i i . tering of waves in an unordered medium. It enables us to
intensity at the frequency at the pointr in the direction g, oqq the intensity correlator in a general form in terms of
Q_ wh_en a ple_me wave Impinges on _the surfa_ce of the meme yalue of the mean intensity and to thereby reduce the
d|u_m in the directionf,: Iw(r',‘m,ﬂ(’) is normalized to th? problem of calculating the correlation function to solving the
unit z component of the incident flux. The quantity o qinary transport equatidh® with the respective sources.
I‘?(r’mr V') is the rgdlated Intensity at the poinin _the. We are interested only in values of the frequency shift
direction & from a point source of unit POWer, W_h'Ch, 'S" that are so small that it is reasonable to refer to the interfer-
located at the point’ and emits a wave in the direction .o of multiply scattered wavés w<w/(kol)]. There-
Q'. The quantities! Evo)(r’ﬂlﬂo_) and I)(r, QIr", Q') are o0 we can setwy+ Aw/2~ w, everywhere on the right-
the values of the unscattered intensity). hand side of(17), leaving the frequency difference finite
There will be an equation similar {d5) for the moment only in the argument of the propagators
of the intensity(l, (1,2, Aw)l, (11,21, ~Aw)) appearing | (; 0|0, +Aw) in the last(interference term.
in the second integral term in E@L5). Unlike (15), it will The h function appearing in the incoherent part(af)

contain the intensity propagators, (r,€2,£Aw) COITe-  an e prought, using the optical theorésee, for example,
sponding to incident waves with the frequency shifb. Ref. 39, into the form

The first term on the right-hand side of E45), i.e., the
product of the mean values of the intensity, describes the
independent propagation of two “rayseach “ray” corre- s e e , .. do "
sponds to an intensity and is described by a sum of ladder h(Q', Q]2 Q") =~ 01a6(Q' - Q) + dQ(Q €.
diagrams, see Figs. 1b and)land the next two integral (18
terms describe the correlation of the respective “rays” due
to incoherent scattering on an individual center and interfer-
ence.

As an analysis shows, under the condition
|>max(, !, ksa?), the amplitude of the correlations must be
much smaller than the mean value of the intensity:

The intensity propagators appearing i) have the fol-
lowing meaning. The quantity,(r,Q|Q,) is the radiated

We note that the incoherent contribution (b7) de-
scribes the intensity fluctuations caused only by Poisson
fluctuations of the number of scatterers in a microvolume.
This contribution could be obtained using the approach pre-
viously developed to describe fluctuations of the distribution
(Hr, @)1 (ry,Q9)) = 1(r, Q)1 (ry,Q4) function of the Boltzmann kinetic equation in a nonequilib-
rium gas?® For this purpose, the disturbed, locally nonuni-
<I(r,Q)I(r,9Q4). ; o T _
orm distribution of the scatterers+ sn(r) must be substi-
Therefore, Eq.(15 can be solved by an iterative method tuted into the transport equation for the intensgge(8) or
with expansion of the second moment of the intensity into &11)), and then the correlatdél 51 ,) can be calculated using
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the known relation(sn(r)on(ry))=né(r—r,), which is Using the relation between the fluctuation spectrum and

valid for an uncorrelated arrangement of the scattering certhe second moment of the intensigee Appendix B at low

ters. spatial frequenciesg<ky) in a first approximation we ob-
Knowing the second moment <Iwo+Aw,2(r,Q) tain

xIwO_Aw,z(rl,Ql)}., we can calcglate stome experime.ntally M(z;,9,Aw)=MNz q,Aw)+M"Nz q), (23)

observable quantitiesee Appendix B viz., the correlation h

function between the local values of the radiation flux den-V"€®

sity emerging from the mediur@(p) and its Fourier trans- w0 L e ,
form, i.e., the spatial fluctuation spectruvh(q): Mz ,q,Aw)znfo dz f f dQ"da; f dQ
_ 2 ; 2
M(q)—f d p exr(—lq-p)C(p), (19) Xlwo(Zf,q|Z,,Q,)h(Q,,QI|Q”,

wherep=(r—ry)| is a vector in thexy plane, which is par-

X ”n /
allel to the boundary of the slab. The asymptoteGifp), Qo A0l 1%,
which characterizes the long-range spatial correlations, is re- —Aw), (24)
lated to(l 4+ a w21 ) o - awi(T1,€21)) by )
C(Zf yP:(l'—l'l)H,Aw) MinCOF(Zf,q):nfo dz f dﬂ,f dﬂ,llwo(zf1q|zlvﬂl)
= dQ f dQ,(QQ,)(Q,Q , do ,
J 52 g0, -o 00 1820 X| 7o Q- @)= 2 (00 )}

X[ g+ 802 Ze 1y - awi2(Ze 1T 1), Q1))

(Lot 202(Z1 2| Q) oy~ a2 21, 21]Q0)) T,
(20) !n (24) and '(25) it was taken into account that the “incom-

_ _ . ing” intensity propagatorl wo(z’,ﬂ’mo,tAw,) does not

wherez; is the coordinate of the slab boundag€ 0 inthe  jepend on the coordinates in the plane parallel to the bound-

reflection geometry anzk =L in the transmission geomelty  o.ias of the slab and that the “outgoing” propagator
and{}, is an external normal to the corresponding boundary, (z,qz', Q') equals

Although (20) defines the correlation function between local “°
values of the flux density, in keeping with established tradi- D ) i L
tion (see, for example, Refs. 10—13, 18, and @& shall use | wo(Z:012", 2 ):j d*p exp(—iq-p)ly(2r,pl2", Q)
the term “intensity correlation function.”

Henceforth it will generally be more convenient for us to :f d2p exp(—iq~p)f dQ(QQ,)
work with the correlation functiorC(p) and with the fluc- 00,)>0
tuation spectrunM(q). The shape of the spectrum at low
spatial frequencyy contains information on the long-range
spatial correlations of the intensity and is very sensitive tQNhereI (zf plz', Q') is the spatial distribution of the ra-
variation of the wave propagation regime in an unordereddlatlon flux density emerging from the medium at the surface
medium. The amplitude of the spectrum at zero spatial fre-

guency specifies the fluctuations of the total reflection or 7=2. The amplitude of the spectruf@3)—(25) is normal-
transmission coefficients: ized to the unitz component of the incident flux.

The expression$l7) and (23)—(25) were derived with-
1 out any assumptions regarding the form of the intensity
(0T + 8020 T wy—Awi2) = AM(z=L,9=0,0), propagators and are the most general of the results that have
(21 been proposed hitherto to describe long-range intensity cor-
1 relations in unordered media. Formul@8)—(25) generalize
(OR o+ 20/20Rw— Awi2) = AM(z=049=0, Aw), the known results reported in Refs. 1, 14, 17, 18, 29, 32, and
33 in two respects. On the one hand, they take into account
whereA is the surface area of the slab. We define the reflecthe effects caused by strong, i.e., non-Born, one-center scat-
tion R and transmissio coefficients as the values of the tering, and, on the other hand, they are valid for any regime
total reflected and transmitted radiation fluxes normalized t@f multiple scattering of waves in a medium. The results
the unitz component of the incident flu¥:*" In particular,  obtained for the spatial diffusion of radiatioh1":*8 and
small-angle multiple scatterifgfollow from (23)—(25) as
(R,)= dQ((QQ)1,(2:=0,02|z=0,Q), limiting cases when the corresponding approximate expres-
(Q9,)>0 (22) sions for the intensity propagators are plugged into them.
In the Born approximation, in which only pairwise cor-
<Tw>:J dQ(QQ)1,(z:=L,0Q|z=0,0,). relations of the wave fields are taken into account in the
(©Q,)>0 diagrams presented in Fig. 1c, the incoherent contribution to

2

X1 (2, Q) (25)

X1,(21,p,Q[2',Q"), (26)
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the fluctuation spectrum vanishese, for example, Ref. 4,1 This type of behavior of the spectruM,(q) is most

and the coherent contribution takes the following fofm: pronounced in the case of small-angle multiple
b2 scattering'®~*?%n this case the probability of the reflection
Moz, g Aw)= _77) nf dzf fdﬂ’dﬂil of waves is negligible, and the featureNi«(q) is observed
ko 0 in the fluctuation spectrum of the transmitted intensity.
, 12 We have been dealing with the long-range spatial corre-
X1(z;,9]2,Q") = 1(z;,09/2,Q)| lations of the intensity, for which information is contained in
do the coordinate dependence (I w0+Aw/2(r Q)
Xm(ﬂ'ﬂiﬂ(z,ﬂ’mO,Aw) X1 oy~ 202(f1,€21)). However, knowing the second mo-
ment, we can also investigate the short-range
X1(z,Q1|Qp,—Aw). (27)  (p<ren~\/6) intensity correlations in speckles. The small-

scale structure of a speckle image in the observation plane is
determined by the interference of waves with different angles
X . - of incidence. Therefore, information regarding the short-
to the terms. that are linear with respect to the amp.htude. range correlations between the local values of the flux den-
Expressions like24), (25), and (27) are also valid for sity can be obtained from the angular dependence of the

the correlations between values of the intensity on OppOSitgecond moment of the intensity. The corresponding correla-

boundaries of the slab and for the fluctuation spectrumy . ¢ nction is defined by the expressitsee Appendix
M.(q) of the total scattered intensity, i.e., the sum of the y P @ee App B

reflected and transmitted intensities. In the latter case th
sum|(0,g|z, Q) +1(L,q|z,2) must be substituted int(24),
(25), and(27) instead ofl (z;,q|z, Q) .32

This result is obtained froni24), if we substitute the Born
scattering amplitude into the function and restrict attention

1
&z .p=(r-11)) 20)= zf dﬂf dQ,[Q, (Q+Q)))

Relations(23)—(27) enable us to draw several conclu- X exp{iko(2— Q) p}
sions at once regarding the general properties of the fluctua- 1
tion spectrum. ><<Iwo(zf,E(r+r1)”,Q,Aw)lw0

In the case of purely elastic backscattering of the waves
by a semi-infinite medium, the incident flux is completely
reflected, and the reflection coefficigRt=1. Therefore, its X
dispersion((sR)?)=0, and wheng=0, the expressions
(23)—(25) and (27) should vanish. In fact, in this case the In a first approximation, frong28) there follows the formula
value ofl (0,g|z,€) for g=0 does not depend a®,***?and

1
zf,z(r+r1),91,—Aw)>. (28)

1
we obtain M(z;=0,q=0)=0 (the contribution (24) for C(zf,p,Aw)=Zf dﬂf dQ,[Q,- (2
M vanishes by virtue of the optical theorem for the scat-
tering amplitudé®. When gq>0, a dependence of +Q,)1? expliko(Q— Q) - p}

1(0,q/z,Q) on Q appears, and(z;=0,q) increases as a
result. Thus, conservation of the flux upon elastic scattering
leads to the appearance of a minimum on the spectrum of the (s9
- - —Aw))™Y, (29

reflected intensity.

Consideration of subsequent iteration cycles in @§)  which, with consideration of9), can also be written in the
does not destroy the feature of the fluctuation spectrum jugorm
mentioned, since factors of the form

X(Iwo(zf !Q|QO!Aw)| wo(zf 191|QO!

2
(l'(g/Z(rlrl!A('o”2

1 d
C(zs,pAw)=— w|\z oz,

fdn'l(o,q|z,9')h(n',Q'm",m)

—1Z9(r,r,Aw)|?) (30)

Z2=Z1=Z¢

| dou0aizepneroqer.op
In the case of small-angle scattering E@®) and(30) trans-

are present explicitly in all the terms of the expansion of theform into the familiar formula previously obtained in Refs.
fluctuation spectrum into a series with respect to the multi-L0-13 and 37.
plicity of the intensity interaction. It can be seen by a direct calculation that the fluctuation

When waves are elastically scattered by a finite slab, thepectrum corresponding to Eq29) and(30) in the range of
conservation of the flux has exactly the same effect on thepatial frequencieq<k, coincides with the high-frequency
behavior of the fluctuation spectrum of the total intensityasymptote of the spectru24) or (27) [at small values of
Mo(Q). In this caseR+T=1, and((SR+ 6T)?)=0. There- q the asymptotes of24) and (27) do not differ from one
fore, wheng=0, the spectrunM,(q) should vanish. This anothet.
follows formally from the fact that whem=0, the sum The general relation@3)—(25) and(29) solve the prob-
1(0,0/z,Q)+1(L,q|z,Q) appearing inM,(q) defines the lem of calculating the spectrum and the correlation function
total radiation flux through both boundaries of the slab andf the intensity fluctuations in an unordered medium with
does not depend of® in the absence of absorption. discrete scatterers. According (@83)—(25) and (29), to in-
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vestigate the correlations it is sufficient to know the corre- 3
sponding solutions of the transport equation for the propaga- =~ EUQ”J(O,OHZ), (34
tors.

Below we shall consider the qualitative features of thewhere o is the elastic scattering cross section and
long-range correlations for the limiting wave propagation re-no=1"1. At small g<|~! the characteristic scale of the
gimes, for which approximate analytic expressions for thevariation of J(0,q|z) with respect toz is of the order of
intensity propagators are known in explicit form. The nextq~!. Therefore, the range for integration owein (24) and
sections of this paper are devoted to calculating the spectruif25) will be much greater than the mean free phtfihis, in
and the correlation function of the intensity fluctuations forturn, allows us to use an expansion li) for the propa-
two types of unordered media, which consist, respectively, ofjator| (z,£]0,02,). As a result, forM " and M 13" we find
centers of small radius and large-scale scatterers.

3 =dz
MEON(Q)wa |—|J(0,Q|Z)|2||:(Z|0,90,Aw)|2
ar 0/0

3. INTENSITY FLUCTUATIONS FOR THE SCATTERING OF 9 21T odz
WAVES ON A SYSTEM OF CENTERS OF SMALL 62l T f |—|J(0,0||Z)
RADIUS o/’0
X J(2/0,Q0,Aw)|?, (35

Let us consider the long-range intensity correlations for
the scattering of a plane wave by a slab of a medium con- ' 9 »dz
taining unordered small-scal(ith dimensions smaller than Mincoh ) = Faf |—|J(O,q|z)J(z|0,Qo)|2. (36)
the wavelengthcenters. We assume that the slab is optically g 0
thick (L>1) and that scattering on each center has an isotrorne jgentity indicated abovég(q=0)=0 follows from
pic character. _ _ (33)—(36), becauséJ(0,9|2)| ~g? wheng—0.

The intensity correlations at the large distanpesl are When the waves are reflected from a thick slab>() or
determingd by the behavior of the spectrum at low spatiay weakly absorbing medium €I ,, wherel, is the absorp-
frequenciesy<I~*. At q<I"* (24) and (25) can be trans- jon jength, the foregoing arguments remain in force. This is
formed in the following manner. because the dependencel ¢0,q/z, Q) on © remains weak

Let us first consider the fluctuation spectrum of the re-at g<I -1 in those cases and the expansiéd) is value for
flected intensity for purely elastic scattering in asemi-infinite|(01q|z,ﬂ) at anyz. In the case of absorbing centers an

medium (—). In this case the intensity propagator yqgitional term appears if83) and (34):
I(zs=0,4|z,Q) for g=0 does not depend om or on the

directionQ.3*2Herel (0,0=0|z,Q) is the total flux through
the surface from a point source which is located at a dept
z and emits in the directio). Therefore, the statement
made means that all the radiation emerges from the medium.
As q increases, a weak dependencel (d,g/z,Q2) on Q
appears atj<| !, and we can utilize the expansion lofn (37)
spherical harmonics. The first terms of such an expansion

have the formy’
ave the for fd9'|(o,q|z,9')h(Q',Q'm",n")

I,)(dQ’I(O,q|z,ﬂ’)h(ﬂ’,Q’|Q”,Q[)

3 2xi

_E _ "__ g% O
47_rF(O,q|Z)+47_r kg (fQ"—f*Q1)J(04|2),

1
1001z 2)= —(F(0g2)+3Q-J(0ql2)+ ...), . S0,
(3D) == 7. F (002 ——0"3(04[2), 38)

where where o,=0,— o is the cross section for one-center ab-

sorption anchoa=I;1. The first term in(37) and (38) de-
F(O,Q|Z)=f dQ 1(0,4|z,9), scribes the influence of the inhomogeneddse to the ran-

dom arrangement of the centeabsorption in the medium
on the coherent and incoherent intensity fluctuations. The
presence of the additional term(87) and(38) does not alter
the trend of our reasoning. The range for integration aver
in (24) and(25) remains much greater thanand, as before,

J(O,q|z):j dQ Q1(0,4|z,Q). (32

Substituting the expansia3l) into (24) and(25), we obtain

an expansion likg31) can be used fot(z,€|0,Q,). Ulti-
f dQ’1(04|z,2')h(Q',Q'|Q",Q)) mately, we obtain
3 27i " ” co — 3 JLd_Z 2 2
= kg (10 —£*Q)J(04|2), (33 ME"q) oy B 19(0,a|2)|?[F (20,0, A w)]|
9 [(Ldz 5
fdQ'|(o,q|z,n')h(9',9'|9",9”) —Wf 7 19(04[2)3(z[0.0Q0,A0))|
0J/0
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Stephen and Cwilic¥ did not distinguish between the en-

n
* 1672 f dzlo,F(0,0|2)F(7|0,Q,Aw) ergy density at the surface and the flux density through the
surface. Their calculations refer to fluctuations of the energy
+301J(0,0]2) - 3(2/0,Q0,Aw)|?, (39 density, and conclusions regarding the fluctuations of the re-

flection coefficient cannot be drawn on their basis.

When waves are transmitted through a thick slab
(L>1), the situation is simpler than in the case of reflection.
The main contribution to the integrals (24) and (25) is
+3Utot‘](0,q|z)'J(Z|O’QO)|2' (40 made by the regiom, L—z>I. The contribution from the

.- ; ; -surface layerg(< |,L—2z < |) to the integrals in24)
Formulas(39) and (40) explicitly describe the physical near-surt - o
mechanism for the appearance of large-scale quctuationé‘.nd(zs) is I/L times smaller than the bulk contribution. Ex-

The source is a local disturbance of the intensity distributior{:"”mSions Iikez(il) anzge Aused at cl)m;emf/lor the pro%agators
in the bulk of the medium. The intensity surge can be attrib- appearing in(24) and(25). As a result, foM +(q) we obtain

uted to interference between the wavés., to the bulk an expression which is distinguished fr@¢@®) and(40) only

specklé), as well as to the local inhomogeneity of the Scat_bydtgel_replacement oF (0.d|2) and J(0.al2) by F(L,q[2)
tering and absorbing properties of the substance due to flu@" (L.9/2).

tuations of the number of centers in a small volume. Thet In tfgsba%?rofxwrtl?tlorl n Wh'ctr] the mteng;y i?n f?e de-
inhomogeneity of the medium disturbs both the “mean” in- ermined by the first two terms in the expansiGd), the flux

tensity distribution with resultant fluctuations of incoherent‘] can be expressed in terms of the density gradferitand

origin (40) and the bulk interference pattefsee the last term the ql_Jant|t!es](z|O,Qo) .andJ(zf ,q|.z) in (39) and(40) can
in Eq. (39)). As for the first two terms in39), they are not be written in the following manner:
related to fluctuations of the density of the scattering centers
and are governed di_rectly_by the bulk speckle. They corre- 347|000, Aw) = — I 5kz F(z|0ﬂo Aw),
spond to the expansiai@l) in Eq. (27). Jz

We note that the possibility of representih@,g|z, Q)
in form (31) is a necessary condition for going frai@4) and | 9
(25) to (39) and(40).3 In the reflection geometry this equal- J(z1,9|2)= §< Skz g, Tidk
ity is valid for anyz, if and only if 1(0,q/z,Q) specifies the
radiation flux through the boundary of the mediusee
(26)). If, conversely,|(0,q/z,Q) is defined simply as the
radiated energy density on the boundary, it is no longer po
sible to go from(24) and(25) to (39) and(40). In particular,
in the case of purely elastic backscattering from a semi;
infinite medium, the value of(0,g|z,Q) for g=0 will de-
pend on{) in the rangez < |, and, therefore, the dip dis-
cussed above is not observedjat 0. The contribution to the
integral overz will be determined by the near-surface region
z < |. This does not contradict the arguments presented above

M mcoh( q

0aF(00]2)F(2/0.£0)

F(Zf1q|z)v (41)

where the functions=(z|0,Q,,Aw) and F(z,q|z) can be
expressed in terms of the diffusion asymptotes of the solu-
Sion of the transport equatidh.

In the case of the transport of waves of a different na-
ture, for example, electrons or neutrons, the relatigti
can be more complicated and contain terms that are propor-
tional to the external fields.

With consideration of41), from (39) and(40) we obtain

2
regarding the dispersiof( 5R)?), since the radiated energy Mz ,q)= ! — f dz( _|: (z¢,9/2)
density at the surface of the medium is not related in any 247kq
way to the reflection coefficient.

It is important to bear this in mind in comparing our +q2||:(zf,q|z)|2)||:(z|0,QO,Aw)|2
results with Refs. 14 and 19. The analogous calculations per-
formed in Refs. 14 and 19 do not produce the dip for |3 L | g
g— 0. The contribution of the near-surface regios | to the T 7ol f z a_F(Zf .alz)

. - . . T z

spectrum remains nonvanishing whgr-0. On this basis 0
Stephen and Cwilict and Wang and Ferdgdrew qualita- P 2 g
tively incorrect conclusions regardingsR)?), the form of X——F(200,A0)| + 75—
the fluctuation spectrum of the reflected intengityRef. 14
a maximum, instead of a dip, was predicted|at0), and the L
behavior of the intensity correlator. J dz 0aF(21,0|2)F(20.00,A0)

There are two reasors,which could have led these
investigator§*!°to conclude that the surface contribution is
important for the reflection geometry. One reason is that, as
was shown in Ref. 33, not all the diagrams which make
contributions to the intensity correlator were taken into ac-
count in Ref. 14 and 19, and, as a result, the dispersion of the
reflection coefficient does not satisfy the condition for flux Mol 7. q) = n JLdZ|O' F(z,q|2)F
conservation. The other possible reason was just discussed. ’ 16 é ’

! IZaF ﬂF 0,94,A i

(42

)
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1 .4 J ) of fluctuations of the electronic conductivity of small metal
—30l"—F(z ,Q|Z)EF(Z|0,90)| : objects(see, for example, Refs. 1, 4, 5, and 41
We note that the incoherent contributié®5) tends to
(43 zero as the value of the spatial frequenqyincreases

According to Eqgs(39) and (40) and Eqgs(42) and (43), the (I _1<q<k0), while the coherent contributiof24) tends to a

coherent and incoherent contributions to the fluctuation spe€rtain constant value, which coincides with the V?J#e found
trum can be represented in the following form: in Ref. 33 using Eq(27). This asymptotic value df1®"can
also be obtained by taking the Fourier transform(28) for

M €oN= |\ Cofsp) - g coh@) 4 g con@,s) 4 conts) (44  qg<k, and corresponds to the short-range intensity correla-
incoh_ y sincolta) incofta.s) incolts tions previously discussed in Refs. 1, 8, and 17, and 31.
MT=M +M ~+M : (49 Thus, we see that the spectri(z; ,q) cannot be regarded

simply as the sufi'*® of the high- and low-frequency con-
tributions. This is not so important for the transmission ge-

i -1 -1y 1,16-19,31,
M (&) appearing in both equalities are caused by the Poissofimety: S_'nCd_Vl T_(q%_l )< M_T(q<| . )- However,_
the situation is significantly different in the case of reflection,

fluctuations of the spatial distribution of the particles in the . : _ T o
unordered medium; these terms correspond to different flucs—'nC(':'sztgge reverse inequalitMg(q>1"")>Mg(q=<I"")
tuations of the absorbing and scattering properties of the m@_olds. '

dium, as well as the correlation between them.

As an analysis shows, the first term(#2) is the domi-
nant term in the expansion of the spectrum defined48y
and(43). In fact, this term coincides with the Fourier trans-
form of the formula derived by Pnini and Shapiro derived in
Ref. 18 for the correlation function in the transmission ge-
ometry. This is because the low-frequenay<(l "!) behav-
ior of the fluctuation spectrum, as was shown above, is de- sind yo(L—2)]
termined only by the long ray trajectories both in the case of  F(Z]0,02,Aw)=3H(0,1)

The first term in(44) describes intensity fluctuations whose
source is the bulk speckle. The tern®, M®, and

The values of the functionsF(z|0,Qy,Aw) and
F(z:,9|2) in (42) and(43) can be found using relations ob-
tained by solving the problem of the coherent backscattering
of waves from a slab of an unordered medium containing
centers of small radiu§~*°In accordance with the solution

in Ref. 45, the expressions for these functions have the
form33

sinhyoL °’
transmission and in the case of reflection, and the contribu- o
tion to the spectrum from the near-surface regiea | can be sinf y(L—1z;—2])]
neglected. The corresponding formula in Ref. 18 was derived  F(z,0(2) =4 sinh L , (46)

within the Langevin approach previously proposed by

Zyuzin and Spivak™®to describe the correlation functions of where H(uo,1) is  Chandrasekhar's  functidh;”
the diffusion fluxes in an unordered substance. In this apto=|2.€| is the cosine of the angle of incidence of the
proach only long ray trajectories are considered, and it igadiation to the surface of the medium,

assumed a priori that the contribution of the short trajectories A
is negligibly small. Vo= /|52+ 3i Twrl, y=\152+¢?

The differences between the first term (#2) and the
corresponding result in_ Ref._18 affect only the defi_nition of and I is the diffusion length. We note that the function
F(z:,q/z). The correlations in the buII_< of the med|L_Jm be'_H(,uo,l) satisfies the equaliti&®2
tween the values of the energy density were considered in
Ref. 18, while Eq.(42) was written for the flux density
through the surface. In the case of the transmission of waves 47 0,050
through a thick slab, this difference is of no fundamental
significance, but it is significant in the case of reflection. As 1 1
was pointed out above, E¢42) is valid for the reflection yy=y N Q>O(Qnﬂ)H(QnQvl)dQ= Nk
geometry only if the fluctuations of the radiation flux density "
are considered. The statements pertaining to the influence ahe latter equality ensures fulfilment of the reciprocity
flux conservation on the fluctuations of the reflected andheoremi® for the  functions F(z|0,2,) and
transmitted intensity remain valid in just this case, and theF(z;=0,0=0|z).
contribution from the regiorz < |, in which the intensity Substituting the function$46) into (42) and (43), we
propagators are specified by the short ray trajectories, can karive at the following results.
neglected in(24) and (25).

The second and third terms {@2) and the incoherent
spectrum(43) are corrections to the dominant coherent con-  When monochromatic coherent radiatiahg=0) is re-
tribution in (42). Under the condition mi(lp) < I(k)?> flected from a thick slab of an unordered medium, the coher-
(Io=11,/3 is the diffusion lengtf?*) the contribution of ent contribution to the fluctuation spectrum is always the
these terms to the fluctuation spectrum exceeds the secondeminant contribution. It is described by the expression
order contribution with respect to the interaction of the ol 1
“rays” (i.e., the contrlbuuon_ of the next iteration cycle in MENq) = H2(uo,1) "z E}l/,ﬁ,R(qL)_ 3l
Eqg.(15)). The latter was previously considered in the context 0

H(Q,Q,1)dQ=1,

3.1. Nonabsorbing medium

3
7(qL)
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1 3

+ . +§0' E) FqL)+ ... ¢, (47) 10733
where 107
lo-ll_

Fr(x)= m(sinh X—2x cosh X
-107
+2x2sinh ), (48) 10~
F(X) = ———(sinh X+2 (49) -107
T(X)= 7 sink?x(sm X). ]

The terms in square brackets (i#7) describe the contribu- FIG. 2. Plots of the functionsg(x), v1(x), and v(x).
tion of purely interference origin, and the last term(#v)
describes the contribution due to the disturbance of the bulk
interference pattern by the local inhomogeneity of the me-
dium. The expressiort47) is an expansion in powers of
[/L. In the case of scatterers of small radius the inequalit
o < 4m/k3 holds, and, therefore, the main contribution to the
spectrum(47) is always made by the first term in the square
brackets. vR(X)=—5—3- (53

The expressior(47) is valid in the rangeq<I~?!. At
q>1"1 the M‘f{’”(q) curve has a plateau, where Whenx~6, it changes sign and then decreases exponen-

The main contribution t@52) is made by the term pro-

ortional tovg. Whenl/L<x<1, the functionvg(x) is a

ower law3233

M q) ~ 1/k3 3233 tially:
The spectrumMg(g) has a minimum atj=0. Accord- ”
ing to Eq.(21), Mr(q=0) specifies the dispersion of the Vr(X)= \ﬁ exp( — mX) (54)
reflection coefficient: 8
1 (1—(R))? The function w»(x) appearing in (520 equals
(6R =—Mgr(q=0)= —717— v(x)=—1/(47x>) at smallx, changes sign at~1, and de-
))*"= 2 Mg(q=0) A J(4mx3 lIx, ch i dd

creases at Iarg)e as

X 277(" - )+ ' (50) X
e W A | y(x):qT?\[gexp(—wx).
where Plots of vg(x) and »(x) are shown in Fig. 2.
| We note that the shape of the dip in the spectrum of the
(Ry=1— —H(uo,1) spatial functiong47) and (51) is reminiscent of an inverted
coherent backscattering peak:=~ is similarity is a con-
VaL herent backscattering pedk?®*~*"This similarity |

is the mean reflection coefficient of the slab for elasticS€4YeNce c.)f the Iong-range character of th.e.correlations. At
scattering? The value of the dispersiof§0) is significantly the same time, the physical factors determining the features

ller th SR~ 1/AKZ. which foll f Refs. 14 in thg intensity fluctuation spectru_m anq ir! .the angular dis-
2:10? fg_t an((9R)*)~ 1/Aky, which follows from Refs tribution of backscattered waves differ significantly. The fact

In the limit of a semi-infinite mediuml(— o, R— 1) the that thg triangular featurés1) corresponds t'o a minimum in
fluctuations of the reflection coefficient vanish MR(q) is a consequence Of_ the cons_ervgtlon of the_ total en-
({(8R)?)—0). In this case the dip in the spectrum acquires a9y flux upon purely el?St'c scz_;\ttenng in the medium. For
triangular shapd?33 the same reason, an antlcorrelat_|on eff_ect_ should be obser_ved
between the local values of the intensity in the range of dis-
21 tanced <p<L (see(52)—(54)).
MR(Q):HZ(MO,U?M“- (51) ~ The incoherent contribution to the fluctuation spectrum,
0 Min(q), coincides with the term iV (q) that is caused
For a slab of finite thickness the linear lal1) holds at by the local inhomogeneity of the medium
q>L"! (see Eq(47)). 3
The intensity correIaFor corresponding to the spectrum MLQ“"’h(q): EUHZ(M011)<I_) 7(qL), (55)
(47) can be represented in the form 3 L

2l | p\ 113 (p where the function7(x) is defined by(49). The correlation
CS’”(p)=H2(,uo,1)[?2‘ FVR<E) ~3 FV(E) function corresponding t¢65) equals
0
) 1 13 [p
1 I3 inco — 2 — | =
v +§UF”(E>+ ] (52 CR™p) 3a'H (,U~0,1)L5V<L) (56)
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and is (@k3)(I1/L)? times smaller thaitC<p) (52). There-  transmission geometry. Comparitt47) and (58) with (55)
fore, the role of the incoherent fluctuations for the case ofind(49), we obtainM T M~ k3c-(ql)2> M M &N,
reflection is insignificant. As a consequence of the conservation of the total radia-

When the waves incident upon the medium differ in fre-tion flux for purely elastic scatteringR+T=1), the disper-
guency, additional weakening of the long-range correlationsion of the fluctuations of the transmission coefficient satis-
should be observed, at variance with the conclusions in Refies the identity
14.

In this case the range of deptlzswhere the incident ((8T)%)=—((8T)(8R)=((dR)?). (59
waves form the bulk speckle structure is restricted by'rherefore,« 6T)?)°" coincides with(50).
lao=(2lc/Aw)"2 An appreciable dependence of the spec-  Some attention must be focused here on one fundamen-
trum of M¥" on Aw appears when,,,<L. The value of ta| difference between the cases of wave transmission and
ME" at the minimumM #"(q=0) decreases with increasing reflection. In the transmission geome€§°"(p) decreases as
Aw proportionally tol,,, /L. Equation(51) becomes valid 1/, and the main contribution t( 5T)?)°"is made by the
only for g>15,. As for the spatial correlationsx(x,Aw) is  |ong-range correlations. The contribution of the short-range
specified, as before, b{p3) at I/L<x<l,,/L, and it de-  correlations is of the next smaller order of magnitude with
creases more rapidly &f,,/L<x<1: respect td/L and can be neglected.

The situation in the reflection geometry is different. The

(57) long-range and short-range correlations make contributions
of the same order, Ak3, but of different sign, to
((6R)2)°" In the case of reflection from a semi-infinite me-
dium, these contributions compensate one another exactly,
and in the case of a finite slab the total contribution is of the
order ofI/(AkSL) and is specified by the variation of the
correlations at large.

When waves differing in frequency pass through the me-

313, 1
vRCAR) =T o T e
The tail of the correlation function at largedecreases ac-
cording to the same law as farw=0 (see(54)); however,
the amplitude of the correlations decreasdéshen
x=plL>1, vr(X,Aw)=(7?l,,/3YL) vr(X,Aw=0)). The
incoherent intensity correlations do not dependdon, but

as Iopg ads,>1, their amplltudg remains sma!lgr than the dium, the amplitude of the intensity correlations caused by
amplitude of the correlations of interference origin.

When the waves are transmitted through the slab, thmterference decreases. In this situation the incoherent corre-

i L 'fation mechanism becomes especially important. When
expression for the coherent contribution to the spectrum |? <L it can become the main mechanism
Aw ’ .

o : .
specified, as before, by EG7), in which.7g(x) must now The frequency shif\ w has different effects on different

be replaced by the function portions of the fluctuation spectruM%O“(q). The equality
Mgr(g=0)=M1(g=0) remains valid for nonzero values of
m(sinh X—2X). (58)  Aw, since the total radiated energy flux is conserved. The
height of the maximum oM<°" is lowered by a factor of

A contribution to the fluctuation spectrum proportional to v3l,,/2L. As q increases, the spectral dependencé/§f"
7+1(x) has been obtained by different methods in many studat first decreases exponentially,
ies (see, for example, Refs. 14, 17, 18, and.3lhe spec- coh 1.—-2.92
trum M%"”(q) decreases with increasingaccording to the M7 ko "0% 10l exp(—2qL),
law M$(q) ~ ko 2(1/L)%(al) down to  and then ag>I,? it decreases asd’/
MY g~1"1)~ky 2(1/L)?, which corresponds to the short-
range intensity correlationf<17:3! i 3 ﬂ)

The spatial correlations of the radiation transmitted lhe ex lho
through theh(slab always remain positive. The correlation
functionC$*"(p) is obtained from(52) by replacingrg(x) by - : .
vr(x), Where vr(x) = 1/(4x) whenx<1, while ry(x) is MT . =Mg"", which does not depend diw (see(55)), we
specified by the same asymptotic expressiongs) (see find thqt the |n.coh.erent confrllbgtlon to the spectrum will be
(54)) whenx>1; a plot of »r(x) is shown in Fig. 2. The fit the main contribution aj>1,,, if 15, <L/In(L/ \/E,OTU)'
between the asymptotes of the intensity correlators of the Similar conclusions can be dra\éxp by analyzilpcghthe cor-
reflected and transmitted waves can be attributed to the fagglation  function  C+(p,Aw) =C0(h:T (p,Aw)+C7(p).
that in the case of elastic scattering in the slab the wavdVnenla,<L, a dependence 7™ on the frequency shift
propagation regime at large distances;L, does not depend Aé‘(’) is displayed for any. In the range <p<L the fUQCt'O”
on the position of the source and has a universal characterCT "(p,Aw) decreases very slowly with increasipg’

The coherent apd incohergnt intensity fluctuations NV 3( L J3L\ 12
caused by the local inhomogeneity of the medium are de- v(x,Aw)~-———¢(3)+ — —exp( - ) ,
scribed by the same relations in the case of transmission as in Bm L ™50 50
the case of reflection: in particulam "= M{R" and
cineoh— cincoh - Since the corresponding contribution to the whereZ(3)=1.202 and/(z) is the Riemann zeta functidfi.
spectrum increases with increasiggthe role of the local Whenp>L, the behavior oIC-Cro"(p,Aw) is the same as in
inhomogeneity of the medium is more appreciable in thethe case of reflection(i.e., when x>1, v(X,Aw)

T(x)=

2
Mf:l_ohwkaZ(ql)*l .

Comparing these results with the contribution
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=vr(X,Aw)= (72, /\3L) vr(X,Aw=0), where g
X (X,Aw=0) is determined from Ed54)). A comparison of
C%Np,Aw) with CI"N(p)=Cip) (56) shows that for
p< L(Izkga/LlAw)1’3 the correlation functiorC+(p) is de-
termined by the incoherent contribution.

3.2. Absorbing medium

always dominant. The contributions caused by nonunifor-
mity of the medium,(62) (64), have additional smallness of
the order ofok? ol )2. In (61)—(64) the diffusion length
I o qualitatively plays the same role as the thicknkesa the
case of purely elastic scattering. Whgr 15, the dominant
contribution in the spectrurt6l) transforms inta51).

As for the behavior of the intensity correlation function,

There are two mechanisms by which absorption influ_the analogy to a slab of finite thickness is completely suited

. . . 0 it, since the anticorrelation of the intensities is also main-
ences the intensity fluctuation spectrum. On the one han(ﬁamed for largep (p>1p):
absorption influences the wave propagation regime in the D
medium. It restricts the spatial scale of the long-range corre
lations and leads to violation of the conservation of the ra-Cr(P)=

CR™(p)=—H(p0.1) 173
diation flux. On the other hand, if the scattering centers °

themselves exhibit absorption, the local spatial inhomogene- 1, [<p<lp,
ity of the absorption properties of the medium becomes x{ p p (65)
significant?® o1 ex;{ |—) , p>lp

D D

The influence of absorption on the propagation regime is
reflected in the value of the functiori46) appearing inf42)  When waves are transmitted through a thick absorbing slab
and(43). The inhomogeneity of the absorption is responsible(L>1p), the terms in the fluctuation spectrum equal
for the appearance of new terms, which are proportional to

) X . . 3m |
the absorption cross sectiaer),, in the fluctuation spectrum MPFONSF’):_Z |_D< )2 1[[2512()()_1]
described by(42) and (43). 4kp a(x)—
When waves are reflected from a relatively thin slab 2 oL
(L<lp), the role of absorption is essentially imperceptible. X m—exr{ - l—[a(x)— 1]”
The laws governing the intensity correlations that were con- D
sidered above for the case of purely elastic scattering remain 112 2L
unchanged. Absorption has a significant influence on the in- —3 IT %(x) 1—exp< - |—[a(X)— 1]”],
tensity fluctuations only when the thickness of the scattering b
slab exceeds the characteristic length for weakening of the (66)
radiation flux in the medium, >1 . In this case the various 3 1
contributions to the spectrum of spatial fluctuations of the ~ M@= M'“CO*T*’”— ( )2
reflected intensity(see (44) and (45)) are specified by the a(x)—1
expressions 2L
o X 1—exp{—|—[a(x)—1] } (67
cosp _o " D g 2 2(y) — b
Mg 3kO I (1-(R)) a) +1 2a“(x)—1 a0
Mcor(a,s) Mmcor(as < >2
2 T 2727 a(x)—1
3 —a(x) |, (62)
I5 2L
3 | X|1l—expg — l—[a(x)—l] , (68
coh(a) _ pgincoha)_ > _ D, 2 D
M =Mg oa IR s (62 2200
Mglz_or(s) Mlncor(s)_ < >2 ( ) I
. I a(x)—
coh(a,s) _ pgincoh(a,s) _ __ _D _ 2
MRz Mg 30, I (1-(R)) a0+ oL
(63 X 1—exr{—|—[a(x)—1]”, (69)
D
MENS) = M'”CO“S)— —(1 (R))? 2% (64)  where
R a(x)+1’
2l L
wherex=qlp, a(x)=\/1+x2, and (Ty= — 5 H(po,1 )exp( )
I D ID

(Ry=1-—— \/— H(wo,1) is the transmission coefficient through a thick absorbing slab
o (L>1p, (Ty<1—(R)).*

is the reflection coefficient from an absorbing meditfm. The main contribution to the fluctuation spectrum of the
In Egs. (61)—(64) passage from the case of discrete ab-transmitted intensity is made K$6). The spectrumM(q)

sorbing particles to bulk absorption in the medium is attainectan be divided into three sections. §& (IpL) Y2 the am-

in the limit 0,—0: naa=I;1:c0nst. plitude of M4(g) remains essentially unchanged, in the
In the case of centers of small radius under considerrange (DL)*1’2<q<I51 the fluctuation spectrum decreases

ation, the contribution of purely interference origiel) is  as 162, and, finally, atq>|51 it decreases as/
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The correlation function corresponding to the spectrum  Although the results presented above were obtained for

(66) behaves in the following manner: an unordered medium consisting of centers of small radius,
T2 | many qualitgtive gonclusions regarding the pharacter of the
CLNsP(p) = ; — long-range intensity correlations remain valid, as a whole,
2(ko)* Ip for scatterers of arbitrary size. It is only necessary that the
b 1 L wave propagation regime in the medium be a diffusion re-

—+ Zln T [<p<lp, gime. The conditionr < 47/k3 cannot be satisfied for large
«{ P b (70)  Scatterers; therefore, the role of the terms resulting from the
Lip p? NS local inhomogeneity of the medium is more appreciable for
2 °E 4Ll p=Llo. them. This point is discussed in greater detail in the next

section.

In the rangel ,<p< /LI the functionC%"Pp) remains

essentially constant. Such behavior of the correlation func-

tion differs significantly from the predictions in Ref. 18. 4. INTENSITY FLUCTUATIONS IN A MEDIUM WITH LARGE
The contribution to the correlation function due to the SCATTERERS

inhomogeneity of the medium can be important only for

In th f the multipl ring of waves in a me-
smallp, 1<p<lp, where the case of the multiple scattering of waves in a me

dium with large particleshaving dimensions greater than the
. 1 [)3 wavelength, two limiting propagation regimes are possible.
CSNS)(p) = Clncos) () = — E(UZE(;) . (M In tr?e case in v?h?chptr?e scatt(gring slab pis thick
_ _ (L>1y, wherel,=1/(1—{cos®)) is the transport length in
It is noteworthy that, according to Eqé53) and (68),  elastic scattering andcosd) is the mean cosine of the
simultaneous fluctuations of the scattering and absorptio@ingle-scattering anglend the absorption in the medium is
properties of the medium act differently in the reflection ge-\yeak (,<l,), the angular distribution of the scattered waves
ometry and in the transmission geometry. Local increases igjffers only slightly from an isotropic distributio?:*’ and a
the scattering and absorption coefficients cause changes Rigime of spatial diffusion of the radiation similar to the one
opposite sign in the reflected intensity: an increase in th@onsidered in Sec. 3 for scatterers of small radius is realized.
scattering power of the medium decreases the value of thene structure of the expressions for the fluctuation spectrum
intensity, while an increase in absorption coefficient reducegemains the same as in Eq&2) and (43); however, the
the intensity. Therefore, in the reflection geometry the flucgefficients of the various contributions are somewhat al-
tuations caused by the local inhomogeneity of the mediU”ﬂered(see Appendix ©
are suppresse@ee the sum of contributiort62)—(64)). The At the same time, the coefficients of the dominant coher-
dispersion of the reflection coefficient in the approximationgnt and incoherent contributions to the fluctuation spectrum
under consideration is determined by a purely interferencgifter from the corresponding coefficients in Eq42) and

mechanism: (43) only by the replacement of and o by I, and
, 3 o |2 atr:cr_(l—_(cqsﬁ)). _ _
((6R)%)= 2Ak(2,(1_<R>) T 1- 3|—2+ (72 It is significant that there can be an arbitrary relation
D

betweenk, 2 and oy, for large particles. In particular, for
The situation is different in the case of transmission. Locahon-Born scattererskéat,~ k§a2|n0—1|2>1 (ng is the re-
increases in the scattering and absorption coefficients lead feactive index of the particlgsand the incoherent contribu-
effects of the same sign, i.e., they decrease the value of tH®n becomes just as important as the dominant coherent con-
transmitted intensity. Therefore, the fluctuations only in-tribution to the fluctuation spectrum.

crease in the presence of absorbing partitdes(67)—(69)]. When kgat,>1, a comparison of the expressions for the
The dispersion of the transmission coefficient is coherent and incoherent contributions to the correlation func-
3 Ll 2 tion (see Eqgs(52), (56), (57), (60), (65), (70), and(71)) with
(8T)D) = (T2 < _2< 1— =+ ... ) consideration of the replacement bfand o by |, and oy,
2A I kg 3Ip leads to the following conclusions.

| 2

O,to—=+ ...
T

In the case of the transmission of waves through a slab
43 }

(73 either with purely elastic scattering or with absorption the
contribution to the correlation functio8(p) dominates in

In contrast to(59), ((8R)2)>((8T)2). However, the relative the rangel<p<ly\kpoy,. If the incident waves differ in
fluctuations of the transmission coefficient are much greateffequency byAw, the upper bound of this range shifts to

((BR)AI(RY2<((8T)?)/(T)?, and they increase linearly ERED
) >1 VKo

with thicknessL. leVkeoy| —37—

When waves differing in frequency propagate in an ab- Clykooy
sorbing medium, the coherent contribution to the fluctuation  In the case of the reflection of monochromatic radiation
spectrum varies precisely as in the case of elastic scatterinfom the medium, the coherent and incoherent contributions
In particular, M®(q=0Aw) acquires the additional factor to the correlation functiof€x(p) have the same dependence
214, /(+/3lp) in the case of reflection orlg,/(y/3L) inthe  on p, and therefore the incoherent contribution dominates
case of transmission. only for relatively thin slabs and for sufficiently strong ab-
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sorption: min(,lp)<lyvk3ay, wherelp=\I,1,/3 is the dif- X1(z,0"6,=0)|?, (79
fusion length for particles of arbitrary siZé*? If the fre-

quencies of the incident waves differ, the coherentwhere

contribution begins to decrease more rapidly with increasing

- . . ._ 27Ti
p (see(57)), and the incoherent contribution becomes domi he.ol0".07)= k_[f(o,_ 0" 50— 8)
0

nant at the sufficiently large distances

p>L(Awlkio,/c)"Y  when the frequency shift I ,

Aw>cl(lykdoy). —f*(0—-07)5(0—-0")]+f(0
In the case in which the thickness of the scattering slab —0")*(0—07). (76)

is small L<Iy), as well as under the conditions of fairly
strong absorptionl{<l,), another limiting wave propaga-

tion regime, viz., 27@,2";?”9"9 multiple scattering, is, rea_lizedtion’ the fluctuation spectrum in a medium with large-scale
for any value ofl..“*"*"In contrast to the spatial-diffusion .onierq s sensitive to the form of the single-scattering am-
regime for small-angle multiple scattering, the angular d'Str"pIitude. Therefore, calculations based on Eqd) and (75)

but.ion s highly anis_ot.ropic, i.e, extended in the direction ,inmust be performed with consideration of the specific angular
which the waves originally propagated. In this case the 'n'dependencé(o).

tensity of the forward-scattered radiation can be negletted. The qualitative features of the intensity correlations for

. The |nte_n3|ty fluctuaﬁtlons for small-angle m_u_ltlple scat- small-angle scattering can be understood within the simplest
tering were investigated in extremely great detail in referenc?“OOIeIS corresponding to the Fokker—Planck approximation

to (;[_he 15{?3‘"?]”‘ Ofl_wz\_/ﬁ p;oEagatm? In af turbulent 5 e gitfusion approximation with respect to the angular
medium.=The applicability of the results in Refs. 1013 | 5 j3p|e3742.50-53, this approximation, on the one hand, the

is restricted by the same conditions which are characteristiaifferent contributions to the fluctuation spectrum can be

of turbulent media: very large spatial inhomogeneities of theseparated fairly simply, and, on the other hand, it is possible

refractive index, the absence of absorption, and Born S'ngl?o avoid the computational difficulties associated with a spe-

scattering. . i _cific form of the scattering amplitude.

As the analysis in Ref. 29 shows, the resuilts obtained N | et us assume that the deflection angle in one collision is
Refs. 10-13 are applicable as long as the transverse digy,q compared with the characteristic multiple-scattering
placem_ent of_ the ray trz_;uectorles do_e_s no"E exceed”the maxé{ngle and that the intensity propagators appearirig4nand
mum dimension of the inhomogeneitiean _exterrjal tur- (75) are smoother functions of the angles than is the ampli-
bulence scale In an mhomogene(_)us medium with d|scretetudef(0)_ Then in the transport equatia@) (or (11)), as
scatterers the assumptlons used in Refs. 10-13 generally Well as in Eqs(74) and(75), the intensity propagators can be
not hold, and a different scheme must be employed to solvg, o e into a series in the small single-scattering angle.
the equation fots,. The question of going from the approxi- The transport equatiofiLl) is transformed in this ap-

.matlrc:pshproposed. in Rel1;_s..10—13 to the %as?:consrl]d(:red he ximation into the Fokker—Planck equation or into an an-
In which successive collisions occur in the Fraunholer zong, 1. gifr,sion equatioft? Its solution was found with con-

of an individual scatterer, was analyzed in Refs. 29 and 49'sidera'[ion of absorption in the medium in Refs. 50 and 51.

Let us Cons_iQer the gen_eral expres_sicﬁﬁs) and (25 Using the results in Ref. 51, we can write the propagators
under the conditions of multiple scattering at small anglesappearing in(74) and (75) in the form

To avoid cumbersome calculations, we assume that the
waves impinge on the medium along a normal to the surface. -1
In this case it is convenient to go over from the unit vectors |z g0 Aw=0)= ( om sinhi> \/E ex;{ _z
Q to the two-dimensional vectog= € and to assume that N la la
the components of vary over an infinite range. In the new

variables the general expressiq@d) and(25) for the inten- _ laz\ﬁ coth z (77)
sity fluctuation spectrum of the radiation transmitted through 2 la \/E '

the slab take the form

In contrast to the case of the spatial diffusion of radia-

L—z| " L—z
I(L,q|z,0)=(cosh ) exr{—

L
M%"”(q):nf dzf dze"f dzo’l’fdza'l(L,q|z,0') NP I
0
ol al ” 02 [ L—7 L_>
Xh(0 06,002 (2,0"|6=0Aw) _7#tanh g0y
X1(z,0 1| 6,=0,— Aw), (74) a Vialy Vil
L1l L= 2= i, tanh ==~ 79)
5 —Z— anh—| |.
2q a altr ,—Ialtr

i L
M$°°”(q)=nj0 dz|J dza'f d?0"1(L,q|z,0")
The value ofi (z,8|0,A ) for a finite value of the frequency

shift Aw can be obtained from{(77) by replacingl, by

x L /[1—i(Aw/c)l,].

do ,
Tl —0") = 310~ 0”)
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We transform the coherent contribution to the fluctuation ~ The first term in(81) is the contributionM$*"® due to
spectrum(74) by expandind (L,q|z,#’) in series in the vi- the disturbance of the bulk speckle structure by fluctuations
cinity of the direction®’.=(6#"+07)/2. As a result, we of the number of absorbing particles in a small volume of the

obtain medium. WhenAw=0, the expansion of the spectrum of
MS"@ at smallq to first order inl/L has the form
f d29’|(L,q|2,0')h(0'|0’,01') M_?_or(a)(q)
do, i L 2 212
=1(L,q|z,0,)—=(0_)+{ — —[f(—0_) =na, | dz| d26|I(L,q|z,0)|21%(z 60A0=0)
dQ ko 0
L 1,13
+f*(0_)]0_+fd20'(0'—0+)f -0, nTli-za—+ ..., L=<\
na tr
1 - a( >2|tr 1
—=0_ 2—— (1—— 2L at - ), L>+L,ly.
2 ) . aq altr
1 (82
Xt 0 —0,+-0_|+
2 where
d do 2 (2m)?
X7q, (LAlz 00 (79 aa=fd2 o fd?p(l—lsplzﬂ (83)

whered_=0"-017,

Lo\t L
do, o (TYy= ( coshm) exp( - E) (89

a0 %)= (-0~ 1(0.))
is the transmission coefficient through a slab of thickness

a1 N L.5%%1 The expression for the spectrum at zero,
f d®0'f| &' — 50 1%| 0'+ 50 MS°"®(q=0), was obtained in a somewhat different form in
Ref. 49.
1 (= . The coefficienta, (93) is proportional to the difference
~ 2 A _ 2 a
- kgf 0 d“pexplip- 0)(1 |Sp| ) (80) between the total cross section for the absorption of two

“rays” propagating independently and the cross section for
is the “differential” absorption cross section in the small- the absorption of two “rays” passing through one center:

angle approximation,
4qr 2

2 1
— _ 2 _ 2
Sp=|S,|exp(2i 8,) = 1+ 2ik,f *%=TZ (20— 037), O'a_k_gfd P(1-[Sp|%),

and S, and f, are the expansion coefficients of the
S-matrix and the partial-wave scattering amplitfd&ubsti- o2 =
tuting the expansiofi79) into (74), we arrive at the following

series for the coherent contribution to the fluctuation specwe note that for “black” spherical particles of radias

trum: 2
(2 2 2m
=0, '=ma%, aa=|7—| 0,

COl z 2 kO
MY g)=n Odz d?e

&lL 0
&—0(,q|z,)

i) $PA-ISl. (85)

aa| I (L,q|z,0)|2
The second term in81) is the contributionMS°"(sP),
2 which originates from the intensity peaks in the bulk speckle
structure. In the same approximation in whi@g) was ob-
tained, the contributio $°"P has the form

+asp

52 2
_ _ 2 coh(sp)
aa,5602||(L!Q|Z!0)| +a$ aelaak MT (q)
Sk 0 =na dezJ’ d?e i I(L,q|z,6) 2 2(2,000A0=0)
_n . - sp o ] I ] 3 -
+2 (902)&0|(LQ|20) I*(L,q|z,0) 0 06
8 L
2| 2|y —
+...1%(2,00Aw). (81 nag, ., |2|tr+q L<In I o Ll
(M)
4 1
Equation (81) is the sum of the contribution§44) corre- T (1——q2LI + . ) L> L lg-
sponding to different mechanisms for the appearance of in- a
tensity fluctuations. (86)
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where (2w)2f ) (d&)“. ©1)

=——g— p| —
2m\2  _(2m2[ , (d8\% * kg dp
aSp_(k_o) Tu=2 kg Jd p(@) ISpl" @) the contributionM $°"® is proportional to the fourth power
of the scattering amplitude and is not included in the usual
Equation(86) was previously obtained in Ref. 29 in the Born gorn approximation for single scatteriRy.
approximation for the single-scattering cross section using Equation(81) represents only the dominant terms corre-
the solution of the small-angle transport equation for thesponding to contributions of different nature to the fluctua-
fourth moment. tion spectrum. For this reason, the termdl/@6)
The *“cross” contribution to the spectrunM '@ s X (8%1*196°%) + c.c., which has the same origin as the contri-
specified by the third term ir681). It is governed by the pution (86) and is only a correction to it, is not written out

correlation between disturbances to the bulk speckle struGeparately in(81). To see this, it is sufficient to perform the
ture by the fluctuations of the absorbing and scattering propsmall-angle expansion in ER7).

erties of the medium. The expression Md5°"®9 has the Using the relations obtained above for the various con-
form tributions to the fluctuation spectrum and Eg1), we find
MEeNE)(q) ((6T)2)*
1 M Ak
e o (220 s 102 S0
—_] — —_— — J— pa— n_,
7 3ldp/ il Sp dp) 1] 1
X W\I(L,q|z,0)|2)IZ(Z,OIO,Aw:O) , L<ylly,
( 3 4 xf @p 2 ds\? fi,]? L
L L 8L 4 L* L 2(_ = +2/(1-8?) + _) \/E} —
T Nm— e — —?——In— P '
AR I T L WAL IR dp/ 1a dp/ Vla] Il
_Nags L< Iy, L L=l
T 4n ( > tr L 1 (92
4—|1— =L+ ) ! . . . . .
la 2 The first term in(92) is associated with the formation of a
(L> N random interference pattern in the bulk of the medium, and
89) the term in square brackets is associated with the disturbance
of this pattern by Poisson fluctuations of the distribution of
where the scatterers. The contribution to the dispersioéiT)?2)con
caused by the local inhomogeneity of the medium is actually
_(277)2 42 ds\? 1-152 89 an expansion in powers of a small parameter, viz., the mean
®a,s™ kd p dp (1=[Spl). (89) multiple-scattering angle in the sl&i6?), ((6%), =2L/l, for

L<\lly and(6?), =2\, /1, for L> I, (Refs. 50-53)].
The fourth term in(81) corresponds td)/l%"h(s) , which is If the absorption is caused by the particles of the me-
associated with the disturbance of the bulk speckle by flucdium, the first of the terms associated with Poisson fluctua-
tuations of the scattering properties of the medium. The foltions, which originates from fluctuations of the absorbing

lowing expansion is valid foM$°"®) : properties of the medium, will be dominant. As a result, only
worts two contributions, viz.M P andM$°"® | can compete in
M7 (q) Egs. (81) and (92). A comparison of these contributions
L 72 S 32 gives the following universal estimate for the ratio between
ik )
ZTWSJ dzj d20< +——) them:
360,060, 2 96
° o M ()]
d J _—
><W'(L,q2,49)ﬁl*(L,q|z,45?)I2(2,0|O,Aw=0) M@ (99)
i k
p ) 3 where(92)~2(1—(cos®)) is the mean square of the single-
L|/L L 3 . - : .
4 1n— (_ +q2—+ —giL4+ .. } scattering angle. It follows from this estimate that the ratio
[\ la la 8 betweenM 'SP and M@ can take any value. However,
N L<lly as the thickness increases, the roleM$*"*P) increases in
— 2
T 4n (M) L i, 1 the general case. In particular, wher- /I | ;, this contribu-
= 1— =L+ ... ], tion is always dominant, if the scattering cross section is not
Ia Itr 2 ver 1/3
y greato,<o(oy/o)""<o.
| L> Vlaly If the particles only scatter radiation, and the continuum

(90) between them absorbs radiation, only two contributions, viz.,
MNP andM ") | remain in the expansior{81) and(92).
where The ratio between them in order of magnitude equals
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MEP(62),

—is ~ o> 1 L2 1
M (9%) T aa L<\Toly,
a
In this case all the qualitative conclusions obtained in the —Mas(d)= I 1 (98)
Born approximation for the cross sectiéhisemain valid. L \ﬁ( 1- EqZLIaJr e ) L>l g,
The following asymptotes of the correlation functions a
correspond to the main contribution to the spectrum:
T>2 3 4
coh(sp)( ) — <_ 1L 1 L 1
=2 STt P+ gL+ ., L<\lly,
0 315 47 1, 20
( L2 L p2 p2 ms(q): 1 | 1 (99)
4— In | 1—- exp — , B I Iy L> 1.
o7 |( ;E) P( ;E) 4Lla(1 >4 Lig+ ..., altr
L<la
X

4
p? Vlal 81477 o/’

Whenqg=0, Egs.(96)—(99) specify the dispersion of the
transmission coefficient across the s[ake Eq.(21)]:

L L>
(93 1+L+1 L)Z L< Il
((8T)Zyincoh 5 L e 3lly) o
(1 L p? MZ Al la 11 (109
—In—exp(——), a \E - N
pE I pE + |tr+4 I’ L>Vlaly .
Ccofta)( )= Na, <-|->2| L<Vlaly (94)
T 2?2 2L It follows from (96)—(100) that if absorption is caused by the

2
s 280 — 3|,
13457 pt p( pf)

a

L L> Tl

where p2=4L%/(3l,) for L<\l,l, and p?=4Ll,

L> Ty

for

particles of the unordered medium themselves, the fluctua-
tions of the absorption coefficient of the medium are the
source of the incoherent intensity fluctuations. Conversely, if
the particles of the medium only scatter radiation, and the
continuum between them absorbs radiation, there are no fluc-

Let us now consider the incoherent contribution to thetuations of the absorption, and only the term proportional to

fluctuation spectrum. Assuming that the intensity propagaMs(d) remains in(96). In this case the dispersion of the
tors appearing in75) are smoother functions of the angles transmission is determined by the third terms in Ed)0).

than the differential single-scattering cross section, we write

incol

the expression foM'(q) in the following form:

) L
M?”'Kq):nfodzfd20<oal(L,QIZ,0)'(Z'0|O)

The asymptote of the correlation function for the spec-
trum (96)—(99) has the form:

. exp( — p?lp?)
ot =n(r2 ZB_L I,

mp
2 4
Oy d J 2 2 Pl pily ,\1 Jmp
+ = — — . -3 — +9 4 —oy|s\V5—
> §0|(L,q|2,0)&0|(2,0|0)) (95 (O'a /?L La'aa'tr Pﬁ LUtr 2 3,
The first term under the absolute-value sign(@%) corre- X§ L<Vlaly
sponds to fluctuations of the absorption properties of the me- ) Ly 1y
dium, and the second term corresponds to the scattering oat |_Ua0'tr+Z|_Utr1 L>Vlaly
properties of the medium. For this reason, E2f) can be a a
written as the sum of contribution@5). Substituting(77) (10D

and(78) into (95), we obtain

MO q) = n(T)?[ 62M4(q) + 20Ma ()

+ogmg(a)], (96)
where
1Lt
L-g@+ - L<ldly,
t
my(Q)= L (@7
L 1—§q2LIa+ U I T (B
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where the meaning qf? is the same as i93) and(94), and
p>p_ is assumed. As follows front101), at small thick-
nessesl(< \I,l,) the long-range asympto@°°"(p) is de-
termined by the fluctuations of the scattering properties of
the mediumwhenp>p, (I,L/12)Y4 the last term dominates
in (101). WhenL>\l,l,, the correlation function, as well
as the fluctuation spectrum, are determined primarily by the
fluctuations of the absorption.

In the case in which the incident waves differ in fre-
quency, the fluctuations of interference origin weaken, and
the incoherent fluctuations remain unchanged. The spectrum
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<T>2'A—”’ (104)

1
v

MS°(g,Aw) can be calculated using E@1) after substitut- T

ing into it the value ofl (z,60,A w), which is obtained from Cr(Aw)= 2AK2
(77) by replacingl, by l1,(1—i(Aw/c)l,) 1. We shall not . o - o
dwell on the analysis of the spectrum, and we shall considefnere(T) is the transmission coefficient of radiation through
only the correlations between the values of the total flux a@ thick (L>1) slab of the medium under normal incidence.
different frequencies. In connection with the experiments in> Similar formula can be obtained for the case of reflection,

Refs. 20—25 it is interesting to understand how sensitive thd the values of the “outgoing” propagators at=0, rather
frequency correlations of the intensity are to the features of@n z=L, are substituted intd81). When L<l,l, the

the scattering of the waves in the unordered medium. results of the calculations do not differ frofh04), as a con-
The asymptote of the correlation function sequence of the conservation of the flux. _
It would be interesting to compare E(L04) with the
CT(Aw):<(TwO+Aw/2_<Tw0+Aw/2>)(Tw0—Aw/2 value of Ci(Aw) for small frequency shifts I, >14),

which can easily be obtained using the formulas in Sec. 3
after replacingl by I, in them. The corresponding results

h_ hy oy —
(Tog-202))% _KM$O (9=0Aw) differ only with respect to a common numerical factdris
three times smaller ifil04)) because of the differences in the
has the following form: propagation regime of the interfering waves in the region
Z<lp,-
T o (| [d8) s, L
Cr(Aw)=——(T), | d?p|3|—=| — tanF— 5. DISCUSSION
A ko dp la VIaly . . . .
General relations were derived above, which make it
sol o Naw lpe L possible to reduce the problem of calculating the fluctuation
+(1=[S[9)? In |_+2J_tanh\/_ spectrum to the solution of the transport equation for the
Lal i lal

mean intensity, and the results of calculations performed for

two characteristic regimes for the multiple scattering of
(102 waves in an unordered medium, viz., spatial diffusion and
small-angle scattering, were presented. The results obtained
provide a fairly complete picture of the long-range intensity
correlations when coherent radiation propagates in a medium
with discrete scatterers.

In the general case there are two sources of intensity
| L fluctuations, viz., random interference of the multiply scat-

_°7 2 A0 - tered waves and random spatial inhomogeneity of the scat-
Crlfe)= mg(D I tanﬁ\/E' (103 tering and absorption coefficients of the medium, which is
caused by fluctuations of the number of scatterers per unit
Comparing(102 and (103, we can conclude that the fluc- volume. Both sources make contributions to the coherent in-
tuations of the absorption properties of the medium lead tdensity fluctuations, and only the latter source makes a con-
the appearance of a contribution @ Aw) that depends tribution to the incoherent fluctuations.
weakly on the frequency. It is fairly simple to account for The relative role of each of the mechanisms for the ap-
this effect. At relatively large values adfw the region in  pearance of fluctuations indicated above, as well as the fea-
space where the waves interfere and form the bulk speckle isires of the behavior of the correlation function and the in-
bounded by the depths<l,,. Therefore, in the case under tensity fluctuation spectrum depend on the regime for the
consideration the length, , plays the same role as the slab multiple scattering of waves in the medium, the presence of
thicknessL in the caseAw=0 for L<\/l,, (see(82) and  absorption, the dimensions of the scattering particles, and the
(92). degree of monochromaticity of the incident radiation.

We note that when waves which differ fairly strongly in When waves propagate in the spatial-diffusion regime
frequency (,,<l) propagate, the general formui@l) can  (lx<min(L,l,)), the purely interference mechanism for the
be used to calculate the fluctuation spectrum not only foappearance of intensity fluctuations predominates. The fluc-
small-angle scattering, but also in the case of the diffusivduations caused by the random inhomogeneity of the medium
transport of the waves in a thick &1,,) slab. In this situa- generally comprise a correction to the purely interference
tion the “incoming” propagators ir{81) describe the small- contribution. Their role is most important for the diffusion of
angle scattering of waves in the case of propagation in relawaves in a medium with strong (“non-Born,”
tively thin (with a thickness of the order of ) slabs, while  koa|ng—1|>1) scatterers. In this situation the incoherent
the “outgoing” propagators correspond to the propagationcontribution to the spectrum becomes appreciable, and when
of waves in a spatial-diffusion regime. The main contributionq>|glx/kozotr, it exceeds the contribution associated with
will be made by the second term {81), since the diffusion interference in the transmission geomefsge Fig. 3.
regime presumes fulfilment of the conditions of weak ab-  We note that when the length of the ray trajectories is
sorption[ | <1, or 1—|S,|2<(d&/dp)?]. In the transmission  bounded (min,1,ly) <ly(koly)*(kjoy)), the fluctuations
geometry caused by the random inhomogeneity of the medium, which

.

In (102 I,,=v2cly/Aw, and it is assumed that
[ <l <min(L,yl,ly). If the particles of the medium do not
absorb radiation, front102) we obtain
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kgMR Aaqy2n tions to the spectrum depends on the vaIuek@rf-tr; for
' weakly refractive particles of large radius

k3oy=8(koa|no—1/)? In !
o0tr od|Mo |n0—1|

(Ref. 53. In the Born casekpa|ng— 1|<1) the interference
contribution predominates, and in the opposite case of strong
scatterersKya|ng— 1|>1) the incoherent contribution to the
fluctuation spectrum predominates. For strong scatterers the
interference contribution is important only in thin slabs
(L<\,ly), where it determines the dependence of the spec-
trum on the spatial frequenay at q< (k3o L%/1;) 22
FIG. 3. Fluctugtion spectra of th_e reflecte_q)pgr curvesand transmitted If the particles of the unordered medium themselves ab-
(lower curves intensity for elastic scattering in a layer of an unordered L. .
medium. The thickness of the slab=10l,,, and absorption is absent. Solid sorb radiation, the role of the fluctuations of the number of
curves — strong scattererkga|ny,— 1|=2), dashed lines — limiting case  particles per unit volume becomes especially important. The
of “Born” centers (koa|np—1|<1). spatial fluctuations of the absorption coefficient appearing in
this case is manifested in both the coherent and incoherent
contributions to the fluctuation spectrum, but the coherent
contribution is determined to the same extent by the random
interference of the waves and by the disturbance of the in-
%erference pattern by fluctuations of the absorption in the
the “rays.” medium. In the situatioq under consideratiqn the ratio be-
The incoherent contribution to the fluctuation spectrumtween the coherent and incoherent contributions to the spec-
plays the principal role when the incident waves differ intrum changes. The incoherent contribution can turn out to be
frequency, and the dominant coherent contribution decreas&®minant even in the Born castg,~ (koa|no—1[)?<1)
as the frequency shifAw increases. Consideration of the provided the absorption cross section is large enough
incoherent contribution can account for the experimentally(k3o,~ (koa)Im ng>1).
observed horizontal segméht*on the decay of the correla- We note that the various terms in the coherent and inco-
tion curve with increasingdw and can alter the quantitative herent contributions to the fluctuation spectrum should be
results for the intensity correlator. For this reason, the prozomparable to one another under the intermediate conditions
cedure used in Refs. 23 and 24 to extract the values of thg_N Oy~ Gy k82 (Koa~|No—1|~Im ny~1), under which

transpo_rt coefficients of the med'lum from _the decay of th. he wave propagation regime does not reduce to diffusion or
correlation curve, as well as the interpretation of the experi-

mental data in Refs. 23 and 24, should be re-examined. small-angle scattering.

The occurrence of absorption when waves propagate in As follows from the results obtained above, an increase
the spatial-diffusion regime is manifested mainly in the al-In absorption(when the other optical parameters of the me-

teration of the distribution of the multiply scattered radiationdium are left unchanggdyenerally leads to enhancement of
in the medium. The additional fluctuations appearing bethe intensity fluctuations. The simplest reason for this is the
cause of absorption in the scattering particles themselves cdlictuations of the absorption coefficient in the case in which
be appreciable only for fairly large particles, if the condition absorption takes place in the particles of the unordered me-
k3oa~(koa)®Im ny>1 is satisfiedthe assumption for a dif-  dium. If the continuum between the particles absorbs radia-
fusion regime,o,<oy, must be satisfied simultaneously tion, only the distribution of the radiation in the medium
As an analysis shows, similar conditions were achieved iyaries as the absorption increases. The effective lengths of
the experiments in Refs. 23 and 24. , _ the ray trajectories decrease, and the fluctuation spectrum
In the case of the strongly anisotropic multiple scattering, , rows. However, the relative magnitude of the dispersion

of waves (,>min(L|,)), the purely interference source of ;o 4 ansmission coefficient fluctuatiosST)2)/(T)? ex-
fluctuations remains important, as before, but the role of the . . : DA
ibits nonmonotonic behavior as the absorption in the me-

effects caused by fluctuations of the number of scatterers. ) ) )
become more appreciable than in the spatial-diffusion redium increases. For large-scale scattefgér))/(T)” can
gime. be estimated by taking into account only the purely interfer-

If radiation is absorbed in the continuum, and the scatence and incoherent contributiothe additional terms of
tering particles themselves do not absorb radiation, the ratithe coherent contribution are smaller than the incoherent
between the dominant interference and incoherent contribuzontribution in this case As a result, we obtain

are primarily of incoherent origin, are greater than the previ
ously discussedsee, for example, Refs. 16, 17, and) 19
second-order interference contribution to the interaction o
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(2 Iy ? “incoming” propagators instead of-iAw/c in Egs. (24),
wZtoul 7 M altr , an see, for example, Refs. 3, 37, 54, and.

2 o o] lesL<ildl (42), and(74) (see, f le, Refs. 3, 37, 54, and.56
< 2 30 | the most interesting case of small valuest eft;, in which
(6T) L ™ tr

the interference is still not suppressed,
v P A ly< Talg<L, PP
! 0 : na'gdd(t—tl)=natrkg((Ax)2>t,tl<nat,,
m e
2o Vlaly<ly<L. where ((Ax)?), is the mean square displacement of a scat-
\ Ko a

(105 tering particle during the time. For Brownian motion
((Ax)?);=2Dt, whereD is the diffusion coefficient of the

. e . ticles.
It follows from (109 that in the diffusion regime the par . L
interference contribution decreases with increasing absorp-. _V|Ve thankf 'Vrl] Yu. Cli(h?,\r/kas;)v f(;]r hféogpeGratlog |_nhthe
tion, and after going over to the propagation regime with anitial stage of this work. We also thank E. E. Gorodnichev,

strongly anisotropic angular distribution of the radiation itS' L. Dudarev, and A. I Kuzovlev for their interest in this
work and valuable advice, as well as S. Feng for a useful

begins to increase. As for the incoherent contribution ind. . ¢ bl - hi K. Thi

(105), it increases monotonically with increasing absorption Iscussion of some problems pertaining to this work. (IS

in the medium, and wheh > I, the formulas obtained re;earch was car.rled out with the support of the International

for the cases of spatial diffusion and small-angle multiplescIence Eoundatlo(Grgnts Nos. N3U000 and N3U3pand

scattering coincide. the Russian Foundation for Fundamental Resed€fant
One more important qualitative law is associated withNO' 95.02.0553p

the influence of the conservation of the flux on the form of

the intensity fluctuation spectrum. If almost the entire inci-

dent flux is reflected (+(R)<1), the fluctuation spectrum APPENDIX A

of the reflected intensity contains a dipig. 3. There is a ) ) -
similar feature in the spectrum of the transmitted radiation ~ 1he series of diagrams specifying the fourth moment of

scattered at small angles when almost the entire flux pass&€ field (Fig. 19 can be regrouped, and, can be repre-
through the medium (2(T)<1, see Eqs(82), (86), and sented in the form of a sum of three contributidf&y. 4):
(96)). “4(1,2,34=259(1,2; 3,4+ 559(1,4; 3

If absorption occurs in the continuum, the dip in the (1.234=77(1.2:34+ 77(14: 3.2
fluctuation spectrum ag=0 is maintained to large depths. +24°7(1,2,3,9, (A1)

The form of the spectrum in latter case will now depend on here %9 i ified by di aini t least
the value of the “reduced” transmission coefficie(w?) where.z, 1S specilied by diagrams containing at least one

B — _ ) _ scattering event in the “outgoing” ladder propagators, and
(Ty=exp(=L/N)T)), which describes the decrease in the%non) is specified by diagrams in which the “outgoing”

transmission of radiation by the layer of the medium due 19,24 at0rs correspond to the unscattered field. The repre-
the bending of the ray trajectories that appears upon scaltefantationAl) does not violate the symmetry conditiog),
ing. As long as 1(T)<1, random redistribution of the in-  githough the termsr, taken individually, do not satisfy
tensity in the observation plane will occur at an assignednat condition.
transmitted flux equal to~the incident flux reduced by the  ynder multiple-scattering conditiond <L) the main
factor exp¢-L/ly). When(T)<1, the condition associated contribution to the fourth moment of the field is made by the
with the conservation of the flux becomes insignificant, and a5, This allows us to write a closed equation @i
maximum appears in the spectrum instead of the dip. A simi(Fig. 5):
lar maximum is always found in the transmitted intensity
spectrum when the waves propagate in the spatial-diffusior s~ (1,2:3.4= (1,2 %534~ £1(1,2 25" (3,4
regime, since in that casd)<1. o _ _A0) A0

The behavior of theisz)ectrum in the vicinity gf=0, 7212 %,(34 - 75(12 757 (34)]
like the form of the coherent backscattering pdak3—+’is
determined by the length of the ray trajectories in the me-
dium. In particular, in the case of reflection from a semi-
infinite nonabsorbing medium, in which the trajectory length X(1,4;3,2+21(1) 47 (2)1(3) <5 (4)],
is unbounded, the dip in the spectrum has a triangular shape. (A2)

In conclusion, we note that the results obtained above
can also be used to describe the correlations between timghere the numbers, 1. . ,4 denote the variables related to
shifted intensity valueg! (r,Q,t)I(r,,Q4,t;)) in an unor- the fieldsW(1), ... ,¥*(4) appearing in the definitiofd).
dered medium with slowly moving particles. The corre- Equation(A2) follows from (4), if £, in the form (Al) is
sponding changes affect only the coherent contribution to theubstituted into the integral term in E@}) and the approxi-
fluctuation spectrum. To calculatd®z; ,q,t—t,) the ad- mation £{"V= (1) <% (2)%1(3) <% (4) is adopted.
ditional “effective absorption” ng3%(t—t;), which de- By definition, £{°9(1,2;3,4) is an abruptly varying func-
scribes the breakdown of the coherence of the waves due ton of the difference variables,—r, andr;—r, (the scale
the motion of the scatterers, must be substituted into thef variation of <{° with respect to these variables is of the

X > ha(1,2h(3,4[ £459(1,2;3,4 + L9
a
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== (1%E -

_— | A
order ofrg,) and a smooth function of ther {+r,)/2 and 1 g d\l J
(r3+r4)/2. Therefore, to treat’ s, we can go over to the T 4_|<§[ (5_ ﬁ) (a_zl_ (9_21)

(r,Q) representation. For this purpose, the Fourier transform
with respect to the difference variables must be taken in
(A2). As a result, for the second moment of the intensity,
which is related ta<$°% by Eq.(14), we obtain Eq(15) from

> . . Lot
X[.(//4(Z,I‘H ,Z’,I’“ ,Zl,l']_H ’lerlH)

2 AT AN (VRGN ST ,I’1|)]]
z:z’:zlzzi:zf

(A2).
(B2
APPENDIX B If we substitute the expressions for the components of
We define the flux density at the poin@as’ %, (see(Al)) into (B2), we obtain the correlation function
i p p C(z;,p) in the form of a sum of three contributions. The
= P () =P* (1) — substitution of
3(r) Zko[w)mkw (N-v (r)arkw)}

_ SO ) = [ Fo(rr) Zo(rary)
|

~ 2k, (B1) — O ) eO(r )]

J J ()
m—ﬂ (r’)yw=(r)

r=r’
into (B2) with consideration of(9) and (14) leads to(20),

Then for the correlation function between the values of the . :
. o . which defines the long-range¥$ 16, whered is the charac-
radiation flux density in the observation plane z; we ob-

tain the formula teristic multiple-scattering angléntensity correlations. The
substitution of <{$9(r,r];r,r') into (B2) gives the contri-
C(ze,p=(r—11))=(IoZ5 1) IZ5 .1 1) —(I(Zp))? bution (28), which describes short-range correlations that de-

1 ——— - —_—

(sc) 2 . ) P

g, (1,2:34)=

3 — s _ -

x FIG. 5.
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crease on the scales p~N\/¢6. Finally,  replaced by,) into the general expressiof®4) and(25), we
CEr,r ) — 0(r,r') 9(ry,r;) defines the part obtain the following expansion for the fluctuation spectrum:
of the correlation functioi©(z; ,p) which must be taken into

account wherp<l 6, although it does not play an indepen- M;"h(zf ,d)
dent role like the first two contributions.

. . . . | 2
The Fogner transform of the correlatpn function, i.e., __ , [ —F(zf,q|z 24+ o?|F(z,9|2)
the fluctuation spectrunil9), is expressed in terms of the 247Tk
second moment of the intensity in the following manner.
At low spatial frequenciesq<ky6) contributions to the X |F(2]0,00,Aw)|?+ ——ne,
fluctuation spectrum are made by all the components of the 16w
correlation function. Substituting the relation 2
T4(1,2,34— 55(1,2 55(3,8)="%5(1,2 5,(3,4) f dZF(z,9]2)|?|F(20.020,Aw)|*~ 67_’_2n8as
x 2 ha(1,204(39[ £59(1,2;3,4 f 4,0 29 2
- X OdzaZ|F(zf,q|z)| az|F(z|0,QO,Aw)|
+9859(1,4;3,2+ 91(1) £ (2) £1(3) £% (4)] 14 2
(0) —_
into (B2) and using Eqs(9) and (14), we obtain t 14472 nf dz e ZF(Zf q2)
2¢V|F(z:,q]2)|? —-F(Zl0.00,Aw), (C1)
=f dﬂf dﬂlf d?p
(29Q,)>0 (2,9,)>0
Xexp(—ig-p)(Q-Q.)(Q-Q,) Mz ,q) = 1%4 dzloaF(z,9|2)F(2]0.20)
Xin dr’deQ’dﬂ’ 1
[ J ' —zouli— " F (2l F (0002 (€2
1
Xf f defdQ'l'lw0+Aw/2( z; ,§(r+rl)u The functions in(C1) and(C2) can be calculated using6),
in which | must be replaced bi,. The coefficients in the
1 o 1 expansion(C1) are defined by the expressions
+§P,Q|r A~ w2 Zf,z(r+r1)|\
1 .= 2>, (2p+1)(oh)? (C3)
_Ep,ﬂﬂrr'ﬂi)[h(ﬂrlﬂr|ﬂ//'ﬂ//) a pgo p ( a
xh(Q},Q}| Q1 Q) -
(.04 =3, [(p+ 1102 +potla?, c4)
Xl g+ aw2(1 Q) —awp(r", Q1)) P=0
+h(Q',Q'|Q",Q))h(Q],01|Q7,Q") 3 o
R ) il ed=¢ ,Zo [APY(AAF_;+c.c)+BPY(AZ+c.c)l,
><(|wo(r’,Q”,Aw)lwo(r’,ﬂl,—Aw)) (C5)

+h(Q',2'[Q",Q")h(Qy, ] where ¢ and o} are the partial absorption and transport

Cross sections,
X1 cu 9 pwrr Q[ Q)1Y Awlz(r Q1[Q0)] ;.

aa
(B3) Ua 2(1 |Sp|2)r UR:_2|Sp_Spfl|21 (C6)
k& k&
At high spatial frequenciesqtky6) contributions to the

fluctuation spectrum are made only by the short-range corre- 0 dp(p—1) ) p(4p2+1)
lations, andM (z;,q) is specified as the Fourier transform of P 2p—1 By = 4p?-1 (C7)
(28).
3p(p—1) 2p(p°—1)
APPENDIX C (1)_ (1_
AV=—r " Bl=—"® —° (C8)

In the case of weak absorptiom,&!,) the regime of P 2p-1 P 4p -1
spatial diffusion of waves in a medium with scatterers of o
arbitrary size operates if the thickness of the slabl,,. _eml *

. : ) . L =— + -

Substituting the intensity propagators in the diffusion Ap ko (fo=fp-a)Hamfpfy = kZ(S"SF”l b,
approximatiori’ (see Eqgs(31) and (41), wherel must be (C9
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Generalized Jordan—Wigner transformations and the Ising—Onsager problem
M. S. Kochmanski

Institute of Physics, Pedagogical University, 35-310, RagsRwnland
(Submitted 6 March 1996; resubmitted 26 July 1996
Zh. Eksp. Teor. Fiz111, 1717-1731(May 1997

Another possible method for obtaining Onsager’s solution for thel&ing model is presented.

In contrast to previous methods, the method proposed here makes it possible to study the
problem in a weak external magnetic field. Generalized Jordan—Wigner transformations in the
form introduced by Kochmaski [J. Tech. Phys36, 485(1999] are employed. ©1997

American Institute of Physic§S1063-776(197)01205-5

1. INTRODUCTION 2. PARTITION FUNCTION

Methods for solving the two-dimensional Ising model in 2-1. Analytic representation
the absence of an external magnetic field are well known Consider a simple cubic lattice witi rows,M columns,
(see, for example, Refs. 2—6 and the references cited)ther@nd K planes(layers at whose sites the “spinsrm are
Unfortunately, essentially none of these approaches has I&ven and assume two values,n,=+1. The Hamiltonian
to success in solving the Ising—Onsager problem in an extefor the 3D Ising model with nearest-neighbor interaction is

nal magnetic field or to a solution of the three-dimensional NMK

Ising model. More precisely, these methods did not make 75:—””%:1 (J10amkTn+ 1mk T 20 nmkTn,m+ 1k

possible further advances in the solution of the Ising— o

Onsager problem, despite the great efforts of physicists and + 330 nmkTnmk+1) (2.
mathematicians. where the collective indexmk enumerates the sites of a

The work by Schultz, Mattis, and Liélshould be espe- simple NX M XK cubic lattice and the constanis>0 ac-
cially noted. In my opinion, this work is one of the most count for the anisotropy of the interaction of the Ising spins.
beautiful and elegant in the theoretical physics of the Ising-As usual, periodic boundary conditions are imposed on the
Onsager problentanother example of the deep relationshipvariableso,, . We write the partition functiorZ; of the
between theoretical physics and)affhe method employed system in the form
in Ref. 7 is based on the application of a transfer matrix
followed by a transition to the Fermi representation by  Z;= E 2 e B”
means of one-dimensional Jordan—Wigner transformafions. sl onmk= =L
On the other hand, combinatorial methods have been
used ! in one form or another to calculate the partition T E=+1} exp{ r%:k(Kltfnmkffnu,,m(
function for the D Ising model using a diagrammatic rep- i
resentation for the initial sum. | realize and “remember”
perfectly well that a large number of approaches and meth-
ods for solving the three-dimensional problem have NOW, 1 ere the quantitie; are defined aT is the temperatuje
been accumulated but nonetheless have led nowhere. How-
ever, as is well known, most of these approaches and meth- Ki23=8J123, B=1KkgT. 2.3
ods (see, for example, Ref. 12re limited in scope, which (Here and below, summation ovemk (or nm) and a prod-
makes it impossible even to study the problem in a weakct overnm will involve a summation or a product over a
external magnetic field in two dimensions, to say nothing ofcomplete set of integers from 1 td, M and K for each
the three-dimensional problem. index)

The present paper develops another possible approach to Using the well-known transfer-matrix methédthe par-
the Ising—Onsager problem and gives as an example the stition function Z; in Eq. (2.2 can easily be written in the
lution for the 2D Ising model, using ideas from Ref. 7 as form
well as Refs. 9—-11. The idea is to formulate the problem in 7 _ 1y (T)K (2.4
three dimensions in the second-quantization representation ) ]
and then let one of the interaction constats ; 9o to zero. whereT is a transfer matrix whose elements are
Generalized Jordan—Wigner transformations are employedin -~ _,, .
the form introduced in Ref. 1. It is hoped that this approach {(Camis1) X
will make it possible to advance substantially in the solution
of the Ising—Onsager problem in an external magnetic field.
More will be said about this in the concluding section.

+Kzo'nmko'n,m+1,k+KSO'nmko'nm,k+1) ) (2.2

%} (Klo'n+1,mk+ Kzo'n,m+1,k)0'nmk

. (2.5

X ex;{ KB% OnmkInmk+1
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The transfer matrix elements of the layer—layer Ising model ~ Schultz, Mattis, and Liebshowed that th& matrix in

can also be written in a somewhat different fotiout these its standard representation can be expressed in terms of
representations are actually all equivalent. According td=ermi second-quantization operators. They employed the
(2.5), the matrixT can be represented as a product of matri-well-known Jordan—Wigner transformatinghich make it
cesT, ,30f the same dimension {2 x 2NM), possible to express the Fermi operatofsandc,, of a one-
dimensional system in terms of the Pauli operatgys®

T:T3T2T1, (26)
heré i
W cmzexp(iw2 TrTj_)T;,‘,
=1
T]_: EX[{ KlE Tf]mTfH» 1'm) y m—1 (213
nm
C;ZGX[{i’iTE TrTj_)Tr-;.
=1
T2= eX[{ Kzgn Tﬁm’rﬁ’m_'_l), (27)

In Ref. 1 Jordan—-Wigner type transformatio(&13, ex-
_ tended to two-, three-, and-dimensional systems, were in-
T3=(2 sinh K 3)NM?2 exr{ Ké‘z Tﬁm), 2.9 troduced in a form convenient for application to lattice sys-
nm . . . . .
tems. Introducing, just as in the one-dimensional Caibe,

where 7Y% are three sets of"-dimensional matrices of two-index Pauli operators
the form 1
2Y=1918...0 7V7®...0181, (2.9 TﬁFE(ﬁmi”%% (2.14

in which the Pauli matrices*¥* appear in thenmth place.

" which satisfy anticommutation relations at any one site and
In Eq. (2.8 the quantitiesK; and K} are related to one fy y

commutation relations for different sites, we write the matri-

anather by cesTy,andT3 in the form
tanh(Kz) =exp(—2K3) or sinh2K3)sinh(2K3)=1.
(2.10 T1=exp[|<12 (Tt Tom) (Teim® Traam) | (2.19
The Pauli spin matrices)?* (2.9 commute with one an- n
otherifnm# n’'m’, while for givennmthey satisfy the stan-
dard propertieé.It is easy to see that the matric€sg, (2.7) T2=ex;{K2nEm (Tom+ rn‘m)(T,T’mH+ Tom+d) |r  (2.16

commute with one another, but they do not commute with
T3 (2.8). The transition to the R Ising model with respect to
the interaction constant&; or K, corresponds to setting T’3‘=H [1+(1—27 7w ] (2.17
K;=0 or K,=0 and removing the summation over nm

(N=1) or m (M=1), respectively. Then the standard as noted above, the Pauli operator$, behave as Fermi

. 7 . .
expressiori¥’ for the 2D Ising model are obtained, the 0p- gnerators at one site and Bose operators at different sites.
eratorT; (2.7) being identically 1 T;=1) in the first case, Next, using the two-dimensional Jordan—Wigner

A somewhat different situation obtains a transition to the

2D Ising model with respect to the interaction constant n-1M m-1
. . + _ ; + = + -+
Kj. In this case we must sé;=0, K=1, i.e., the summa- Apm= €X 'Tszl 241 TkITkI'HWIZl ToiTal | Tams
tion overk must be removed, as a result of which it is easy to (2.18
obtain for the operatof; (2.8 n-1 M m-1
anm=exp(iﬂ'2 E T;]Tk_|+i7T2 T:|T;|)T;m,
k=11=1 =1

T§ET3<K3=0>=IH1 (14750, (2.11)

where the relation$2.10 were used. This structure of the Brm
operatorT3 makes it possible ultimately to see a somewhat
different way to solve the Ising problem, and to advance N m-1 n—1

Bom= exp(i )r

N m-1 n-1
ex;{iwz T;ﬂﬁ-FiWZ T;mTkm) T:{m,
k=1 =1 k=1
(2.19

substantially in the solution of the Ising—Onsager problem in
an external magnetic fieldl. Thus, according to Eq2.4),

the partition function of the Ising model can be ex- . .
partti unct 2 1sing X after a series of transformatidrishe operator$2.14—(2.16

pressed as
assume the form
22: Tr(T§ T2T1), (212 M N—1
where the matrice¥, , are given by(2.7) andTj3 is given by T1=exp[ Ky E E (B Bam) (B 1mT Bnrim)
(2.12). The advantage of representing the partition function m=1]n=1
in the form(2.12), it seems to me, is in some sense obvious;
| shall have more to say about this below. ~ Im(Brm— Bum) (Bim+ ,B’Lm)” , (2.20
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M-1

+ +
El (apm— anm)(an,m+1+ a’n,m+1)
m=

N
T2=exp{ KZZ
n=1

, (2.29)

~ + +
- gn(anM_ anM)(an,1+ an,l)

T3 =1n_r[n [1+(—1)a§manm]:1;[n [1+(—1)Bambom],
(2.22

where

The commutation relations between theand 8 operators
have the forrh

{ar:—mugnm}+:{ﬁr?mranm}+:(_ 1)%nm,
[anm,ﬁn/mr],z...Z[LY;m,,BrT,m,],:O,

(n’$n—1, m'=m+1

n=n+1, ms=m-1
{anmvﬂn’m’}-%—:---:{a:milg:'mf}+:01 (2.23
and in all other cases, when the operators are defined as

a;m: exp(i W@nm)ﬁ;mv Anm=eXp(i T¢nm) Bam,

N m—1 n—-1 M
Pnam= E E + E 2 a'k+pakp
k=n+1 p=1 k=1 p=m+1
=[*1BkpBrp> (2.24

and @, @nm=BrmBnm, the operatorsp,,, obviously com-
mute with the operatora,. ., anmand B ., Bom., i-€.,

[‘anva:m]—:-":--':[QDnmvﬁnm]—:O-

Introducing, just as in the one-dimensional casehasis
in the occupation number representation foand 8 fermi-
ons (2NM-dimensional space in the Fock representafion

in the case at hand can always be chosen to be 1. Finally, it
is easy to show that in the case of “free end” boundary
conditions for thew and 8 operatorga, ;=0 and so on

the expressiofi2.29 for the partition functiorZ, can finally

be represented as

Z,=2"M[(1-Z)(1-25)1 "™X0|T5 T1|0),

(2.27
z;=tanh(Ky), z;=tanhKy),
where the operator¥y , are given by
N M N-n
en 3, 3 5 Asisil. (228
n=1m=1 |=1
N M M-m
TZZeXp[E 2 2 Zgan,m-%—kanm]- (2.29
n=1m=1 k=1

In deriving the expression$2.27), all creation operators
a, . were “passed through” the bra vectd| and all anni-
hilation operatorsB,,,, were passed through the ket vector
|0), using the equalitieg0| . ,=0 and B,,/0)=0 for all
n,m.

2.2. Diagrammatic representation

Let S denote the vacuum matrix element in the formula
(2.27 for Z, and letG denote the product of the operators
T3, ie.

S=(0|T3 T$/0)=(0/G/0). (2.30

Therefore we must calculate the vacuum matrix eleng&nt
(2.30 of a sum of products of Fermi creation and annihila-
tion operators. The operat@ in Eq. (2.30 is a polynomial
inzy, Z,, anm, andg,,,. SinceG appears in Eq:30) in the
brackets(0|G|0), not all terms of the polynomial give a
nonzero contribution to the matrix elemest Writing out
the productG and substituting into Eq(2.30, S can be
represented as a sum of vacuum matrix eleme&ys,,
whereS, is the vacuum matrix element of théh term of the
polynomialG. As follows from Eqs(2.28 and(2.29, each
term of the polynomialG is a product of different pairs
25y m+k@nm and 2y BB+ m» Which will be convention-
ally termed below ag pairs andB pairs. It is obvious that all
terms of the polynomia with unequal numbers af andg

and then calculating the corresponding matrix elementgairs make a zero contribution ®and not all terms of the
(I|T|Iy it is easy to see that on account of the multlpllcatlvepo|ynomia|G with equal numbers of and 3 pairs will give

character of the operatdr; (2.22 all matrix elements with
the exception of the vacuum matrix eleme&n{T|0) equal

a nonzero contribution t&. Indeed, only terms of the poly-
nomial G with equal numbers of and g pairs in which each

zero. For the vacuum matrix element the contribution of thegnninilation operatot,,, is paired with a corresponding cre-

operatorT} simply equals M, andZ, (2.12) can be written
in the second-quantization representation as

Z,=2""(0|(T,T1)[0), (2.29

where the vacuum sta@) is defined in the standard manner:

n=12,...N, m=12,..M,

(2.2

anm|0>:,8nm|0> =0,

and the operatorsTy, are determined by the formulas

ation operatoqerf,m, with identical indicesn=n’, m=m"')
will give a nonzero contribution t&. In the opposite case,
such a term will give a zero contribution &

In this manner, we arrive at a diagrammatic representa-
tion, noting that to each vacuum matrix elem&pthere can
be associated a unique collection of lifesnds connecting
pairs of lattice sites. For example, the diagrams in Figs.
la—1d correspond to the matrix elements

(2.20—(2.22). Here | call attention especially to the fact that a) Zizg<0|an,m+3anmﬁr-:,m+3ﬁr-:+2,m+3|O>’

the vacuum state®.26) for the @ and 8 fermions can differ

. 4_4
from one another by at most a constant phase factor, whicB) Z12(0]@n m+ 1@ m@nt 1m+1®n+1m-1
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nm nm+3 nm n,m+1

n+l,m-1
n+l,m+1
T n+2,m+3 n+2,m- 1" m
a b

nm n, m+l
nr lim-4 n+l.m-2 Kj . T s m+2 FIG. 1. Hamiltonian circuits on a simplx M square
lattice with variable step length: a—Example of a
Hamiltonian chain; b—example of a simple loop with
intersection of horizontal and vertical bon@sges; c,
d—examples of simple loops with no self-intersections
of the bonds; e, f—simple loops with intersection of
. . . . . . . two superposed horizontal or two superposed vertical
n+5 m-4 n+5 m-2 n+4,m-3 n+4,m+2  ponds.

’n+l, m n+i, m+1

n+2,m

ﬁ+2,h—3'

c d

m m+l m+2 m+3

self-intersection of linegbondsg being prohibited at any site

X &ns2m@n+2m-1Bn+ 1m-1Bn+ 2m-1
’ ' ' ' sincea? = (B)?=0. From the standpoint of graph theory,

+ ot + + . . )
X BamBn+2mBrm+ 180+ 1m+1/0), the closed diagrams described above correspond to unori-
10-6 ented Hamiltonian circuitsthe vertices having valences
c) z;zx(0|
1 22381 %n,m+1%nmEn+1m+1%n+1m 5=0,2) on a simple square lattic8-1’

X @n+1m-2%n+ 1m—4%n+5m—2%n+5m-—4 Thereforg the vacuum matrix eleme8t(2.30 can be
represented in the form

X Boy 1,m74BrT+5,m74ﬁrT+ 1m-2
X,3;+5,m72:3:mﬂ:+1,m/3r?m+1/3;+1,m+1|0>v SZEV: S (232

8,10
d) 27230l an m+2nm@n+2m@n+2m-3 and in the calculation any multiply-connected diagram is
considered to be one diagraffor example, the diagram in

Xa a _3B 3B _ . . . .
ntam2@n+am-3Bn+2m-3Fn+ am-3 Fig. 19. Every closed diagram gives the contribution

XB:mlgrr+2,mﬁrtm+zﬁr:+4,m+2|O>- (2-3])

S
As the expression€.29), (2.29, and(2.31) show, a factor (il)H lejZ;j, (2.33
z§ is associated with each horizontal line of “length’and =
a factorz) is associated with each vertical line of “length” wheres is the number of horizontal bonds, which is equal to
[. It was shown above that only matrix elemei8s with  the number of vertical bonds. Further, using the relation be-
equal numbers ofr and 8 pairs give a nonzero contribution tween theax and 8 operatorg2.23 and Wick’s theorent? it
to S, each annihilation operatak,,, being paired with a can be shown that an arbitrary vacuum matrix element giving
corresponding creation operat@’ . Geometrically, this a nonzero contribution to the sus1(2.31) decomposes into
means that from the entire collection of possible diagrams product of matrix elements corresponding to the connected
the only diagrams giving a nonzero contribution3are the parts of a diagranfwhich, for brevity, will be termed below
ones in which zero or two lineébonds meet at a “right simple loops without self-intersections at the lattice 3ités
angle” at each vertex of a diagram. In other words, diagramsan be verified directly, taking account of the commutation
in which two horizontal linegbonds or two vertical bonds relations(2.23 between thex and 8 operators, that, for ex-
meet at any vertex are not permitted. The simplest exampleample, the diagrams in Figs. 1b—f enter with a plus sign.
of such diagrams are shown in Figs. 1la—e. Therefore alDther diagrams, for example, the diagram in Fig. 1e, can
diagrams giving a nonzero contribution $omust be closed, enter with a minus sign as well. The commutation relations

943 JETP 84 (5), May 1997 M. S. Kochmanski 943



X X x X
x X x X
x X X X
x x x x ’
.. x X  xx
n nm ,
x x x x
x x' x
x x X x
x  x x X FIG. 3. Simple example of a diagrafEuler circuity contributing to the
x x x x partition functionZ(z,,z,).

FIG. 2. “Geometry” of the commutation relations for theand 8 opera-
tors:*—a operator,Xx — operator.
nearest sites of a square lattice, so that eatlond is asso-

ciated with a factor(weight) tanhK; and eachg bond is
associated with a factor tamdy. At some vertices of a dia-
gram a single self-intersection is possible, i.e., zero, two, or
four lines meet at one vertex of a diagram; this corresponds
to unoriented Eulerian circuits of degrée<4.1>’ Figure 3

between thea and B8 operators(2.23 are illustrated very
clearly in Fig. 2, where the distinguished operatgy,(*)

for a fixed site om) commutes with theB operators at the
(n'm’) sites, marked with a crossx(). For all other sites X X -
the a and B8 operators anticommute with one another. There—ShOWS one of the S|mples.t d|agrams contributing to the sum
fore the contribution of each diagram decomposes into 52'36) for Z,(K1,Ko). .Th's Igst circumstance makes the

product of contributions from simple loops, the contribution present case substantially different from the one described

of a simple loop withs horizontal ands vertical bonds being above, since in our case only zeroor two Iw(bsnzonFaI
and vertical can meet at a single vertex. As mentioned

e above, this corresponds to unoriented Hamiltonian circuits in
Hs:(il)jﬂl z)z;. (234 3 square lattic&’ Another difference is that the: and 8
bonds in Eq.(2.35 can connect not only the nearest-
Now S (2.32 can be expressed as neighbor lattice sites, which is manifested as a dependence of

) the weighting factorsz'lj and z;i on the distance$ and k
S= 1+{2 Mg+ 2 Tg+..=T™(z1,2,,), (239  petween the lattice sites in the vertical and horizontal direc-
o _{S}’{q} _ ) tions, respectively. As mentioned above, in the terminology
where the looplls is determined by the expressié®.34. o graph theor}f the problem of calculating the suf@.35
The expressior(2.35 contains, bes_ldes a summatlo_n ovVerig g problem of summing over Hamiltonian circuismple
the numbers of bonds, a summation over all admissable sjrcjitg) on a rectangular lattice withix M sites and vari-
lengths of these bondk} and{l} with fixeds. Itis easy to  gpje edge “length” in the horizontal and vertical directions.
see that the summation in E@.39 over the lengths of the A the same time, the problem of calculating the sum in Eq.
horizontal{k} and vertical{l} bonds is performed indepen- (2.36 is a problem of summing over all possible Eulerian
dently. In graph theory' the function(2.39 is called a cjrcyits of the type described abové<4) on the same
generating function, which we noted above, introducing foragice. As is well knowrl® there is a close relation between
it the notationl""(z,,2,), where the superscriphj indi-  Eyjerian and Hamiltonian graphs, and for some types of Eu-
cates that the generating function refers to Hamiltonian cirqgrian graphs it is possible to switch to Hamiltonian graphs,
cuits. Therefore the problem reduces to summing over all; not vice versa. A number of examples of a nontrivial
Hamiltonian circuits with a stefedge of variable length on  rg|ation between the generating functions for Eulerian and
a square lattice of the type described above. 'Hamiltonian cirsuits on a simple rectangular lattice are pre-
We note here that the above-described diagrammatigenied in Refs. 20 and 21. In Ref. 21 it was shown by com-
representation o, is very reminiscent of the diagrammatic paring that the generating functidd™(z,,z,) for Hamil-
representation for the partition function of thed2Ising  (ynian circuits, described above, equals exactly the
model in zero magnetic fielch=0) (see, for example, Refs. generating functiod(®)(z,,z,) for Eulerian circuits =<4)
11, 15, and 19 In this case, as is well knowt;" the par- ¢ the 2D Ising models <o that
tition function can be represented as '

N,M
Z(Kl:KZ):(Z COShKl COSth)NM F(h)(zllzz): H (1+Z§)(1+Z§)—221(1—Z§)
n,m=0
XD, gap tanit Ky tantf K, (2.36 2 2\ 1172
«h xcos( T) —222(1—z§)c05<7” ,
whereg, z is the number of closed diagrams consistinggof
horizontal anda vertical bonds, the bonds connecting the (2.37)
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wherez; ,=tanhK, ,. In what follows, the sum2.35 will along different pathgassigning to each path corresponding
be calculated directly and it will be shown that the equalityweights « and &~ * in turning left and right, respectively
(2.37) is satisfied. Here | note only that a number of ex-then all allowed diagrams will be taken into account and all
amples of the calculation of generating functions for Hamil-forbidden diagrams will be cancelled. Here it should be es-
tonian circuits with weights different from those examinedpecially emphasized that such complete cancellation of the

above are presented in Ref. 20. forbidden diagrams in any order will occur only if factorized
weights (,,z) are assigned to steps of lendtlandk, re-
3. SOLUTION spectively. In Ref. 20 it is shown that in an external magnetic

The Kac—Ward solutiofl, an excellent exposition of Eell(d H thhe we:ghtszlbaﬂd 2 alr(e renormalllzed bﬁ(rl]) :_:md
which can be found in Ref. 22, contains a well-known topo- (k), wherea(l) andb(k) are known functions of the inter-

logical argument. Specifically, if in a circuit around an arbi- action pgrameterKllz, the extelrnal fielh=BuH, a_nd .the

trary closed diagramhere we are talking about Eulerian positive integers apd k. For this case, the.above—lndlcated

graphs on a lattidea weight a=exp(/4) is assigned to complete cancellation of the forbidden diagrams does not

every turn to the left and a weight™=exp(—in/4) is as- oceur. , ,

signed to every turn to the right, then the closed diagrams Returning to our problem and following now the argu-

(i.e., the diagrams which we wish to take into accoumitl ments of Refs. 11 and 24, we can wrg2.39 as

be taken into account and the forbidden diagrams will be o

canceled, if these diagrams are transversed along different S= ex;{— E f,

paths. The complete proof of this theorem was given by r=1

Shermarf? A similar assertion also holds in the case of wheref, is a sum over all single simple loops of length

Hamiltonian graphs on a lattice with a step of variabler=2s, i.e., consisting o horizontal ands vertical bonds.

length, which were described above; this will be proved beEvery horizontal bond enters with weighfe'#? and every

low for simple cases. However, our arguments will follow vertical bond enters with weiglﬂle“”’z, wherep=*7/2 is

Refs. 11 and 24. the change in direction on passing to the next bond. Intro-
First, recall that some Hamiltonian loogir example,  ducing the quantityV,(n,m,»)—the sum over all possible

Fig. 18 enter with a minus sign in the expressi¢h39 for  transitions with r=s;+s, bonds from an initial site

S. Specifically, using the commutation relatidi2s23), itcan  (n,,my, »o) into the site f,m,v), wherev is an additional

be verified directly that each “double crossing bond” of the index associated with the four possible directighs?,3,4

type shown in Fig. 1e contributes a minus sign to the totabn a simple square lattice, we write

sign of the simple loog2.34) for all admissible diagrams. 1

This is also _true of the ver_tlcal “double crossing bonds.” At f=— > W, (Ng, Mg, ¥o)- (3.2

the same time, each “simple double bond” of the type

shown in Fig. 1f contributes a plus sign to the total sign of

the simple loop(2.34). All other simple loops without

“double bonds” of the type shown in Fig. 1b—d appear in

the sum(2.35 for S with a plus sign(l note here in passing

that every Eulerian graph on a lattice can be put into a one-  W+1(n,m,1)=0+ a_1|21 ZW,(n—1,m,2)+0

to-one correspondence with a Hamiltonian graph with a step -

of variable length and no “double bonds,” the Hamiltonian

graph consisting of one, two, and more simple loops. For +01|Zl Z|1Wr(n+|,m,4),

this, it is necessary to “cross out” in the Eulerian graph all

intermediate vertices, together with vertices where the hori- M

zontal and vertical edges of an Eulerian graph self-intepsect. W, 1(n,m,2)= az z'gwr(n,m— k,1)+0
Now it is easy to see that if in the expressi@35 for k=1

) (3.9

2r No-Mo .%o

It is easy to obtain the following recurrence relations
(a=exp(m/4)) for W,(n,m,v):
N

N

S all simple loops(2.34) are taken with a plus sign and a M

weight a=exp(n/4) (a l=exp(in/4)) is assigned to +a 1>, ZXW,(n,m+k,3)+0,

each turn to the leftright) in a circuit around a simple loop, k=1 (3.3

then the problem of calculating the su&(2.395 actually N

reduces to that of a “random walk” of a point along a lattice W, 1(n,m,3)=0+ aE z'lwr(n— I,m2)+0

with a step of variable length:?>2?4Indeed, for this method =1

of traversing simple loops, all loops with “double bonds” N

are cancelledfor example, loops in Fig. 1e and)lfas +a~ > AW, (n+1,m4),

should happen. By this method it is possible to traverse all =1

loops with “double bonds” and show that their total contri- M

bution will canc_el. - ' W,+1(n,m,4)=a‘12 zgwr(n,m—k,1)+0
Further, using arguments similar to those presented in k=1

Refs. 11, 22, and 24, it is easy to show for a number of M
specific examples that if all Hamiltonian-type loops with a +a> Z5W,(n,m+k,3)+0.
step of variable length and no “double bonds™ are traversed & '
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The meaning of the recurrence relatigids3) is completely and
obvious. For example, siten(m,1) can be reached from sites 1 1
(n’,m,2) and @”,m,4), i.e., from above and beloWwe fr—_rTr Ar__z AL (3.6

chose the direction “to the right” as the direction, Where 2 2r
n'=n—l, n"=n+l, andl runs through, strictly speaking, Using Egs.(3.2) and(3.6), we can now write foiS (3.1) the
the values from 1 tdN— 1. However, for largeN the sum- ;

. ) ) expression
mation overl can be extended tN, which was done in the
expression$3.3), since these boundary effects vanish in the B
thermodynamic limit. The Hamiltonian character of the S_l_i[ V1=,
simple loops shows up clearly in the structure of the recur- . _
rence relationg3.3); this should be compared with the case Where \; are the eigenvalues of the matrix(n,m,v),

(3.7)

of the Eulerian graph®?*Writing now the recurrence rela- 1=1.2,... ,ANM. The matrixA(n,m,») can be easily diago-
tions (3.3) in the matrix representation nalized with respect to the indicas m by switching to a
different representation with the aid of the Fourier transfor-
W, (nmy)= >  A(n,mz|n’,m’ v )W,(n’,m’,»’),  mation:
' NM 2w 2mi
a a
@4 W,(n,m,»)= >, exg—— ng+—— mp
it is easy to se¥ that a.p=0 N M
XW,(Q,p,v). (3.9
Tr Ar: 2 Wr(no,mo,Vo), (35) '
Ng.Mg,vg Substituting(3.9) into Eq. (3.3), we obtain for fixedq, p
- N N -
0 a 1 les_lq 0 a, leslq
=1 =1
M M
a Ko <P 0 a 1Y ZKw? 0
k=1 k=1
A(q,p,v|a,p,v")= N N : (3.9
0 a, Zys'd 0 a 'Y Zeld
=1 =1
M M
a D ZKw kP 0 ad ZKwkP 0
L k=1 k=1 i
where a=exp(m/4), e=exp(2mi/N), and o=exp(27i/M).
For fixedq, p it is obviously sufficient in our case to calculate the determinant okal 4natrix
4
[l (1-x)=Dets,, ~A,,)=A(a.p). (3.10
j=
and after simple calculations the following expression is obtained\arp) (3.10:
(14 22) (14 25) — 22,(1— 25)cog 2q/N) — 22,(1— z2) cog 2 wp/M )
A(q,p)= (3.11

[1—22z; cog2mwq/N)+2z5][1—22, cog 2mwp/ M)+ 25]

In deriving (3.11) terms proportional taQ‘ and zg" were dropped, since for asymptotically large valuesNoind M at
73,<1, szO andzg"wo. Finally, for asymptotically larg&l andM, substituting the expressid8.11), we obtain forS (3.7)

N,M N,M 2 2 2 2 1/2
(1+2z7)(1+25)—22,(1—2z5)cog27q/N) — 22,(1—z7)cog 27p/ M)
s=II vi-xi= I A"aq,p)= 11 — AT > :
i q,p=0 q,p=0 [1-2z, cog2mq/N)+2z7][1—22, cog27p/M)+z5]
(3.12
|
For asymptotically largdN and M, (3.12 obviously passes M 27p
into the expressiofi2.37), since H 1-2z, cosT+z§ =1
p=0
N
27
IT |1-22 cos—q+zf =1, _ .
q=0 N where N, M—«, z;,<1. Finally, taking account of Eq.
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(2.30 and substituting3.12) into Eq. (2.27), we obtain for plete proof of the analog of the Kac—Ward topological
the free energyf per Ising spin in the thermodynamic limit theoren?? as was done by Shernfarfor the case of Eule-
the well-known Onsager expression rian graphs on a simple square lattice.

| am deeply grateful to Professor Yan Mostovdkir his
guestions and doubts as well as his extraordinary patience in
listening to my “short” stories about the Ising—Onsager
XIn[cosh{2K;)cosh2K) problem. In large measure, this helped me to understand
(3.13 more deeply the essence and difficulties of this problem.

1 1 T (7
—Bf= Im —— InZ,=In2+ j J de, d
B m M 2 242 ), |, 991 de2

—sinh(2K)cos ¢, —sinh(2K,)cos ¢5],
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The paper reports on a comprehensive study of magnetic properties of GUF®, ferrites
(x=0.0,0.2,0.3,1.0, 1.4, 1.6, and 2.0he curves of magnetization versus temperature,

os(T), of the ferrites withx=1.0, 1.4, and 1.6 have anomalous shapes: the magnetization begins
to fall off at lower temperatures than the Curie polt. The experimental results and

analysis of exchange interactions suggest that in ferrites with hi§h Gsntent, magnetic

transitions to either a frustrated magnetic structure or a clustered spin glass can take place.
© 1997 American Institute of Physid$1063-776097)01305-X

The system of copper ferrites—chromites CuE€r,0  netization o5, coercive forceH., and the magnitudes of
4 have been studied for a long time, but researchers’ attentiolongitudinal (AR/R) and transverseAR/R), galvanomag-
has been focused mostly on their structtiréwhereas little  netic effects for the CuFeCyOsample as functions of the
information on magnetic and electric properties of these systemperature. One can see that the coercive force remains
tem is available. For example, the Curie temperaflgehas  fairly high at temperatures where the spontaneous magneti-
been measured only in the two limiting cases of G  zation is low. As concerns galvanomagnetic effects, their
and CuCyO,.* It seemed interesting to us, therefore, to un-magnitudes drop at the same temperature as the decrease in
dertake a comprehensive study of magnetic paramédeth  magnetizationo(T). The negative signs of the two galva-
as magnetization, coercive force, and magnetoresistarice nomagnetic effects at H=10.5 kOe and their
CuFe_,Cr,O, system. approximate equality indicate that the sample behavior in

We selected for our study samples of thegiong magnetic fields can be described in terms of a para-
CuFe_,Cr,0, system withx=0.0, 0.2, 0.3(distortion pa-  process. Similar effects were detected in ferrites—chromites
rameter C3/a>l)' x=10 (c/a=1), and x=1.4,1.6,2.0 \ith =14 and 1.6. The spontaneous magnetizatign )
(c/a<1).” The samples were prepared using ceramic techae ine cyFg Cr, O, sample versus temperature is plotted as
nology. The first anneal was performed at 750 °C for 20 ha dashed line in Fig. 1.

the second at 900 °C also for 20 h. Both anneals were per- These results suggest that there are two magnetic phase

formed in air, and the samples were then cooled gradua”ytTansitions in ferrites—chromites with highCrcontent, i.e.,

X_—ray diffraction patterns recordgd at room temperature "in addition to the transition at the Curie temperatdig,
dicated that the samples were single-phase spinels.

L . . another magnetic transition occurs at the lower temperature
Magnetization was measured by the ballistic technique 9 P

. . . . . T=T,. The Curie temperature of such samples was defined
and magnetoresistance using a resistance bridge, since the

sensitivity of this method is higher than that of the potenti-as the temperature at which both the magnetizatigrand

ometer technique. The remanent magnetizatip@nd coer- cqer(;lvte): forcteHc vla?lsh,t;\ n(il. the tem;?[er?ttL;]Te was dett.er-t.
cive forceH. were derived from the shapes of hysteresismlne y extrapolating the Iinear part of the: magnetization
loops. Contacts were fabricated on the samples fronﬁ:uwe‘TS(T) to its intercept with the temperature axis.

indium—gallium conducting paste. Magnetic fields of up to Figure 2 shows ¢/ o) (T/Tc) for three sample; and
10 kOe were generated by an electromagnet. demonstrates that for Cuf@, and CuFegCr,,0, ferrites

Our measurements indicate that throughout the investit€Se curves arQ-type (according to Nel's classificatiof
gated temperature range, the magnetization of coppe¥hereas the_ behavior for_the CuFeGréample is anoma-
ferrites—chromites in strong magnetic fields(H), is not lous: the ratioog/oy begins to fall off at a temperature
saturated, i.e., the paraproce$sie magnetizationis ob- ~ considerably lower than the Curie temperature. Note that
served. In this case, the spontaneous magnetizaticat all ~ CuUrves of @s/a)(T/T¢) for the samples wittx=1.4 and
temperatures was determined by extrapolating the linear pa#:6 are not given in Fig. 2 since they are essentially identical
of the o(H) curve toH=0. The values ofrs determined by to the curve for the sample witk=1.0.
this method were plotted against temperature. It turned out Measurements of the remanent magnetizatign in
that theos(T) curves for samples with high chromium con- samples withk=1.0, 1.4, and 1.6 have demonstrated that the
tent (x=1.0, 1.4, 1.6, and 2)0have anomalous shapes. As sign of o, does not change anywhere within the temperature
the temperature rises, the falloff in magnetizationtakes range studied. We thus conclude that the observed drop in
place at temperatures lower than those at which the coerciv@agnetization is not due to the compensation temperature,
force H, decreases. but has a different cause.

Figure 1 shows measurements of the spontaneous mag- In the reported work, we attempted to discover the cause
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3g An ideal spin glass is a magnetic structure which has
y zero spontaneous magnetization ld&=0. No ideal spin
o G, glass, however, has been detected in real materials, but clus-
tered spin glasses are observed. In this case, there are small
magnetized regions due to short-range exchange, i.e., short-
range magnetic ordering occurs. Therefore, materials with
the magnetic structure of clustered spin glass hav¢=a0 a
spontaneous magnetizatiery considerably lower than that

of materials with frustrated magnetic structures. In frustrated
magnetic structures, regions with spontaneous magnetization
are fairly large and have long-range magnetic order. Accord-
ing to Coey’ the necessary condition for formation of such

#7400 500 600

’

-30r anomalous magnetic structures is the presence of two or
more types of magnetic ions, with the exchange interactions
_100t ( among them of different magnitudes and signs.
It is known that ferrites with the spinel structure usually
contain two or more types of magnetic cations, and direct
-150f BB-exchange is possible, beside the indirect AB-, BB-, and
AA-interactions. Therefore, we assume that the probability
of forming both a frustrated magnetic structure and a clus-
~-200¢ tered spin glass in these magnetic materials is fairly high.
AR ¢t It is of interest to check whether the prerequisites for
R forming such anomalous magnetic structures are satisfied in

FIG. 1. Spontaneous magnetization, coercive forceH., longitudinal the studied ferrites—chromites. USing the GOOdenOUQh_
(AR/R); and transverseR/R), magnetoresistances versus temperature Kanamori rule§ 0 and the distribution of cations in copper
measured in CuFeCrOn a magnetic fieldtH =10.5 kOe. The spontaneous ferrites—chromites described by Ohnishi and Terarﬁshi,
magnetizations; ¢) Of CuFe..Cry 6O, is shown by the dashed curve. we have qualitatively estimated the exchange interactions
that might occur in CuFeCrQ CuFgLr 0, and

. . . Fe 4Cri ¢O4.
of the anomalous behavior of magnetic properties of co e?u @.4-T1.6%% .
ferrites—chromi?es with\;:igh ot cgntelntp pert PPET According to the Goodenough—Kanamori rufe? the

Recently a lot of attention has been focused on materialgegf“\ée 2e>_<change coupling between /3\1:@5'[_39) and
with frustrated magnetic structuréspero-, speri-, and as- Fe; (1248) ions should be strongest, since it involves the
peromagnetigsand on spin-glass-like structures. According haIf-f|Iqu t_29 aqdeg Ort?”a's- The second Stgongfgt should be
to the theoretical work of Van Hemmés,if a transition the+ p(s)sn(;ve_ interaction betweezl Sthe AF’(aegt%g)G agd
from a paramagnetic to spin-glass state occurs in a magnetff:’g (t24€) ions. Since the Cif (egt3y) and C§"(t3.ep)
material, a second transition from the spin glass to a mixedPnS have orbitals that are more than half full, all the other
magnetic phase should take place as the temperature contjfdirect AB-exchange interactioriall of them negativewill

ues to fall. The mixed phase, for example, might be eithef® weaker than the first two. Along with strong negative

e . It
ferromagnet plus spin glass or ferrimagnet plus spin glass.'”d'J[ect BB—eerchange_s like %é__oz —F% and
Fe -7 —Cri", negative direct cation—cation couplings

Cry"—Ce*" and F§"—F&" can occur in spinel structures.
G,/C, Since the angle between cations at A-sites in spinels is small,
1.0 indirect AA-exchanges are weak and are usually omitted
from calculations.

It follows from the data given above that both frustrated
magnetic structures and clustered spin glasses can be formed
in the ferrites—chromites discussed here, since they contain
magnetic cations of three types, namely’*FeCr’*, and
CW ", with exchange interactions of different signs and mag-
nitudes among them.

Since ferrimagnetic order in ferrites with the spinel
structure is due to the negative AB-interaction between the
sublattices, a positive AB-interaction and negative BB-

0 N interaction tend to disrupt this magnetic ordering. Therefore,
0.5 - 1.0 we assume that the transition to the clustered spin glass at the
¢ temperaturé =T, during sample heating occurs because the

: : : : - +
FIG. 2. Relative spontaneous magnetization versus relative temperaturStrong negative direct AB Interactlonsﬁ'—"e—oz F% and

8 - 3 At
(0-/0a)(TITe), for the samplesl) CuFeO,: (2) CuFa Cro,0. (33 F& —O° —Clg" are counteracted by the negative direct
CuFeCrQ. crh'—ce* and F§'-F&', negative indirect

0.5
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FIG. 3. The plot of Inp(1/T) for the CuFgCr, O, sample. CuFe,0, 05 10 L5 C:C&O“

FIG. 4. Temperatures of structural transitidg, Curie temperaturf ¢,
and temperature of magnetic transitiol; as functions of the
Fe&'—O? —Fg" and F§" -0 —Cr* BB-exchange inter- CuFe_,Cr,0, system composition.
actions, and by the positive ¥e-O?~—Cry* AB-exchange.

Thus we assume that in copper ferrites—chromites witlcan see that the largest difference between the temperatures
high C2* content, a transition from a paramagnetic to clus-T¢ and T, was measured in CuFeCyO(c/a=1) and
tered spin-glass state occursTat, and atT; the material CuFegCr; /O, (c/a<1), and this difference drops with in-
transforms to a mixedferrimagnetic plus clustered spin creasing concentration of €r ions up to the composition
glass or purely ferrimagnetic phase. CuCr0O, (c/a<l). It is interesting that the ratio between

It is known that neither galvanomagnetic effects norT; and the Curie temperaturg=T,/Tc=0.71*+0.03, is ap-
magnetostriction(even-order effecjsare observed in the proximately the same for the samples witk 1.0, 1.4, and
state of clustered spin glass. Therefore, we assume that tHe6.
lack of galvanomagnetic effectsAR/R); and AR/R), in We would like to express our gratitude to Prof. P. N.
CuFeCrQ ferrites (Fig. 1) at T>T, also provides evidence Stetsenko for valuable remarks made in discussing the re-
in favor of the formation of a clustered spin glass magneticsults of this work. This work was supported by the Russian
phase. Fund for Fundamental Research, Project No. 96-02-19684a.

Good confirmation of the existence of two phase transi-
t!ons in these ferrltes—phromltes Is the change in the aCtlva_1V. I. Nikolaev, N. N. Oleinikov, V. S. Rusakov, and A. M. Shipilin, Fiz.
tion energy detected in CukgLr, ¢O,. We measured the  tyerd. Tela(Leningrad 29, 1523(1987 [Sov. Phys. Solid Stat29, 872
resistivity of this sample and concluded from the shape of (1987
the |np(1/'|') curve that at a temperature of about 244 K the 2N. T. Malafaev, A. A. Murakhovskii, Yu. A. Popkov, and V. V. Vorob’ev,
activation energy jumps from 0.14 to 0.19 eV, and one more, JK/ainski Fiz. Zh. 29, 286 (1984.

. . H. Ohnishi and T. Teranishi, J. Phys. Soc. Jbf.35 (1961).

jump occurs aff~355 K (from 0.19 to 0.26 ey (F|g- 3. 4S. Krupitka, Physik der Ferrite und der Verwandten Magnetische Oxide
(Note the behavior ofrg;(T) for the composition with [in Germar, Academia, Prah&l973.

x=1.6 in Fig. 1) Unfortunately, the transition temperatures 23- L. Van Hemmen, Phys. Rev. Led9, 409 (1982.

. A. C. D. Van Enter and J. L. Van Hemmen, Phys. Re\23 355(1984).
T; and T for the CuFeCr@ sample are too high to measure 73 M. D. Coey, J. Appl. Physio, 1646(1978.

phanges in activation energy using indium—gallium conduct-8; g Goodenoughyiagnetism and the Chemical Borldterscience, New
ing paste contacts. York (1963.
Figure 4 shows Tt(X), Tc(X), and Tcr(x) for 121 Kanamori, Phys. Chem. S_dJO, 87 (1959.
CuFe_,Cr,0O, ferrite systems, wheré&_, is the temperature M. Kataoka and J. Kanamori, J. Phys. Sol. J&.113(1972.
of the tetragonal-to-cubic transition taken from Ref. 3. OneTranslation provided by the Russian Editorial office.
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A new kinetic phenomenon related to the effect of electron—electron scattering on the
thermoelectric coefficieny in a conductor with a small electron mean free path considered.
The effect is proportional to the electron—hole asymmetry factpr) ! and the real part

of the diffusion-enhanced Coulomb propagator with characteristic wave vectors of lug.to
Unlike weak localization effects, in the two-dimensional case this effect results in a
logarithmic temperature dependencezpfind yields the major contribution to the differential
thermoelectric power. €1997 American Institute of Physid$§1063-776(97)01405-4

1. INTRODUCTION corrections to the operator of heat flux due to interaction of

. , , all orders. The operator itself can be expressed in terms of
Numerous theoretical and experimental studies havg,e {ime derivatives of electron field operatéie., in terms

shown th‘f"t the' int_erferenpe be.tween. electron—electron ar‘& the electron frequengyIn another representation of the
electron—impurity interactions in an impure conductor ré-pea¢ flux operator, these derivatives can be recalculated
sults in a radical modification of both thermodynarttec- g9 the equations of motion, and the electron frequency
tron density of states and specific heaitd kinetic(conduc- 4 e expressed as the sum of the kinetic and potential
tivity, thermoelectric power, thermal conductivity, 8tC. gjectron energieSHsu et al* added terms to the first repre-

parameters of the systehf.In low-dimensional conductors, - sentation of the heat-flux operator that included the potential
this interference yields nontrivial corrections that differ from energy of the electron—electron interaction in the second rep-

those due to Fermi-liquid effectsin particular, it is pres-  resentation, and their results was erroneously large.
ently known that the interference corrections to the conduc- |, this paper we also discuss the effect of electron—

tivity have the form electron interaction on the thermoelectric coefficient. We

3d 112 2d have studied the effect which is fundamentally different from
Aog"e (T7) Aog e 1 ; o5 ;

~ =, ~—InTr, (1)  that analyzed previously® and described by a steeper func-

oo (e7) o €FT tion of (T7) ! than in Refs. 3 and 5. Unlike the authors of

where oy, is the residual conductivityT is the temperature, these papers, who determined the electron—hole asymmetry
7 is the electron momentum relaxation time due to impurityfactor by expanding all parameters near the Fermi surface,
scattering, ancee is the Fermi energy. Several studies We separate out the asymmetry by retaining in the first-order
were dedicated to the effect of the electron—electron interaccorrection the factor

tion on the thermoelectric coefficiestin an impure conduc- 1
tor, and attention was focused on the most interesting two- C,—=
dimensional case. In order to estimate the thermoelectric
coefficient starting from the correction to the conductivity, (in what follows, we assume that the conductor has a single
one must calculate two parameters, namely, the typical elegarabolic energy bandFor a conductor with equal numbers
tron energye* measured with respect to the Fermi energy,of electrons and holes, the latter expression, obviously, is
and the electron—hole asymmetry factny, which equals equal to zero by virtue of the analytic properties of the
the ratio of the difference between the number of electron&reen’s functions. Given the additional imaginary part of
and holes and the number of electrons. For noninteracting,s, we have to take into account in our calculations the real
electrons, e ~T and b~ Tleg, so  part of the diffusion-enhanced Coulomb propagator, whereas
7o~ (e*leT)b,woo~ (T/ee)o,. The expression obtained in the earlier studi€s®the imaginary part of this propagator
by Ting et al2 and Fabrizioet al® is similar to the formula was taken into account.

for noninteracting electrons, namely,»;,.~T/(eex) Aoy - The new effects can be defined as “renormalization” of
Hsu et al# derived a formula containing a steeper function.the thermoelectric coefficient due to electron—electron scat-
The difficulties in the calculations of the thermoelectric co-tering in an impure conductor. In our opinion, the similarity
efficient using the Kubo—Greenwood techniquinear to the renormalization of the electron density of states due to
responsg derive from the necessity to take into accountthe electron—phonon scattering is quite to the point. Recall

i
f dp GA(p,e)GA(p,e)= poe

mVT
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that the latter is proportiona! tlo the real part of the phonon §p=(p2—p'é)/2m, 3)
propagator(the kinetic coefficients are proportional to its

imaginary pa[): and is determined by the entire volume oc- where Te is the momentum relaxation time of an electron
cupied by phonons in the quasimomentum space, i.e., byith a frequencye due to impurity scattering, angk is the
virtual phonons with all wave vectors up to the Debye waveFermi momentum.

vector. The effect in question is also proportional to the real ~ The screened electron—electron interaction potential in
part of the boson propagator. The diffusion enhancement dhe case of small momenta and energiss 1, o7<1 (but

the Coulomb propagator is limited by the wave vectorsPe!>1, wherel=vg7), can be expressed’as

g~ 1/, wherel is the electron mean free path, hence the R A *

effect magnitude is determined by the volume of this region ViG,0)=[VH(q0)]

in conductors of various dimensionalities. Similarly to the k2Dg? |71
i : —4ne?| g+ ———— d=3
case of renormalization of the density of states due to e\ Q7T — 2] ,
. . - iw+Dq
electron—phonon interaction, the characteristic electron en- 4
ergy is much smaller than the boson energy; in calculations  VR(q,w)=[VA(q,w)]*
of the thermoelectric powes™ ~T. N
The correction to the thermoelectric coefficient can be —2me?| |q+ k:Dg ) d=2
estimated using the correction to the density of states, —iw+Dg? '

Av, , resulting from electron—electron interactfon . . . .
vini(€) 9 Here d is the dimensionality of the electron system,

€* Cas AVint D=v27/d is the electron diffusion factorkj=4me?vs,
A in ™ ?b_as 12 0 ky=2me%v, (vg=mpe/ 72, v,=mi2m, v,=v5a%), a is the
o]pharacteristic conductor dimension akg=k3a/2 in the
guasi-two-dimensional case.
If the electron system is in equilibrium,

Given the expressions for the correction to the density

states due to the diffusion-enhanced Coulomb interaction, w

obtain in the case of a two-dimensional conductor

A 928~ 9o(T7) "X(ep7) ~1IN(T7). As noted above, the effect GC(q,0)=Sy(e)[GA(p,e) — GR(p, )],

of renormalization exceeds the kinetic effect studied

previously® by the parameterT(r) ~* resulting from the dif- VE(g,0)=—(2N,+1)[VA(q,®) — V¥(q,®)], 5

ference in the electron—hole asymmetry factors. _ _ 1
In order to calculate the corrections to the thermoelectric So(€) =~ tani(e/2T), N, =(expw/T)—1) "

coefficient, we use the quantum kinetic equation techniquegince the quantum kinetic equation method was previously
which has, in the context of the discussed problem, severgjescribed in detafl,as well as its application to the problem
important advantages over the linear response method. I§f the thermoelectric powéf, we give only the equations
calculating the electric current as a response to the tempergzcessary for this specific calculation. As in the earlier
ture gradient, there is no problem involving corrections topyplication'® our goal is to calculate the electron current
the heat-flux operator. resulting from the temperature gradient.

The effects of electron—electron interaction and the non-
equilibrium of the system are taken into account in first-
order perturbation theory. Without electron—electron interac-

In calculating corrections to the thermoelectric power intion, the nonequilibrium correction to the distribution func-
an impure metal due to electron—electron interactions, wdion is well known:
use the quantum kinetic equation method based in Keldysh's
diagrammatic techniqueThis method has been applied to bo(pe)=T VVT’?SO(G)
calculations of conductivity in impure conductors induced by ’ ¢ de T
electron—electrdh and electron—phonon interactidnand
was also used in calculations of the phonon renormalizatio
of thermoelectric powéf and corrections to the thermal con-

2. CALCULATION OF THERMOELECTRIC POWER

€

(6)

The system inhomogeneity in the momentum space naturally
E'/ields corrections in the form of Poisson brackets:

ductivity due to electron—electron interactidhs. JA B  GA B
In Keldysh'’s technique, the Green’s function and elec- {A.B}= JRIp  Ip iR’ (7
tron self-energy, as well as the electron—electron interaction
potential, are expressed in the form of matrices: andVg=VTd/JT in the presence of a temperature gradient.
0 GcA sC R 0 VA The correction to the thermoelectric power is related to
A :< ) 3 :( ) ) :( ) 2) both the additional terms in the distribution function and
GR G° A0 VR Ve various corrections to the electron density of states:
while the interaction vertices are tensors. 2e [ d3pde
If the electron—electron interaction is neglected, the elec- n= W W(v-n){qsl Im GQ
tron Green’s function averaged over the impurity coordinates
IS + o IM[ 6, GA(So) 1+ Sp IM[ 5, GA(b0) ]
Go(p,e)=(e—&+il2r) 1=[Gp(p,e)]*, + S IM[ 6GA(S) 1}, 8
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FIG. 1. Diagram of electron self-energy taking into account electron—FIG. 2. Electron—electron interaction vertex in which electron—impurity
electron interaction in the first order of perturbation theory. scattering is taken into account in the ladder approximation.

wheren is the unit vector aligned with'T, ¢;(p,e) is the ~Where the vertexI!=T'g+ 6" is exact in terms of the
correction to the electron distribution function in first-order €lectron—impurity interaction. The wavy line in Fig. 1 de-
perturbation theory with respect to the interaction: notes the screened potential of electron—electron interaction.
The electron—electron interaction vert@)g renormal-

b1(p &) =7l le-e(Sot o)+ dind e-imp(Sot b0)], (9 jzed for impurities(without corrections in the form of Pois-
son bracketscan be calculated in the ladder approximation
by solving the following matrix equation corresponding to
the diagrams in Fig. 2:

wherel._, is the electron collision integral with an effective
matrix element modified by the electron—electron interac-
tion, Sind ¢—imp is the additional term in the impurity collision
integral due to renormalization of the electron density of Yy 1 dip . L
states. The latter is determined By,G”, which is directly Fo=7"+ vt | (2m)3 oxG(p,e)T'§
related to the self-energy component: e

mGh=(Gp)*Z e o(So+ o). (10 . . _
where y¥ is the bare Coulomb vertex ang, is the Pauli
In the second term on the right-hand side of ), 34 .is  matrix. The components of the renormalized vertex are ex-
calculated using the equilibrium electron distribution func-pressed to first order inet7) " as
tion Sy(€), and the third term includes the correction to the

X G(p+0, e+ w) oy, (13

K
distribution functiong, (6). The fourth term in Eq(8) is Tk = Y22 T = Yl2R+S(e)72[ 1 1 o,
related to the corrections to the self-energy in the form of 1-¢ 1-¢ 1 1-¢
Poisson brackets3 A . :
K 721 1 1
EGA:(GQ)Z(SEA (11) 217~ 1— gA S(6+w)72 1_§_ (14)
e—e-*

As in the calculation of corrections to the electric and K ?’11 +S(et o) 1 —S(e) K

thermal conductivity due to electron—electron interaction, the e ©) 71, 1-R 1-¢ Yo

main correction to the thermoelectric power comes both

. : L e 1 1
Ergrinwtirgszvxlltlr\.a smgulgrlty in the f(_)rm of a dlf.fl.JSIon poI_e % 7 — o +S(€e)S(e+ w)7'§2
g“) " in the third power with the additional mo
mentum transfer squared in the numerator and terms with the
e 1 1 1 / 1 1
diffusion pole squared. X + — m x+
In contrast to the conductivity, the thermoelectric power 1=¢ 1=¢ 1-¢\1-% 1-¢

contains the electron frequenay in the power one unit where
higher, so integrating the product of electron distribution q¢
functions overe yields an even function ob. Thus, in cal- = LJ P GA(p,€)GR(p+q, e+ w)
culating the thermoelectric power instead of WR(q,w) (
X(—iw+Dg? ", which is an odd function of, one must —1+iwr—Dg?r
separate out terms in this function with a real part that is ' (15
even inw. When this is done, expanding the integrals of the A R
products of the electron Green’s functions in the parameter =) _m/ETJ (2m)d
(ex7) "1 yields an additional imaginary term.

The self-energy diagram, allowing for electron—electron
interaction in the random phase approximation, is shown in
Fig. 1. The corresponding equation has the form

GA(p,e)GA(p+q,e+w)

=(2-0) dept

provided thatgl<1 andwr<1. As follows from Eq.(14),

‘ | the terms in the verteK, of the first order in €-7) ~* do not
I'i/Girj(pta,et o)l contain diffusion-pole singularities, and therefore can be ne-
glected in our calculations.

It follows from Eq.(13) that the equation for the correc-

tions to the verte>f'3 due to Poisson brackets is

=i f WVK'W*“’)

i
+ EF:(I’{G|’I’(p+q’€+ w),FI]/J}

é(p,e) 5fké(p+ g,e+w)

- 1 dp .
+3 {F../,G. i(p+a, €+w)}FJ ,}, (12) 5FKZHJ 2m)3%x
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+ = {G(p € 0}G(p+q €+ w) / \‘
I . AL A ~
+ E G(p,e){FE,G(p-ﬁ-q,e—i- a))} Oy - (16) FIG. 3. Diagram of electron self-energy, illustrating renormalization of the

impurity collision integral due to electron—electron interaction. The double

solid line represents the electron Green’s function with due account of
Proceeding to the final stages of our calculation, note that thgectron—electron interaction.

first order in (7)1 in the integral of the product of

Green's functions over the electron momentum appears due

to expansion of the electron velocity and density of states

near the Fermi level, the finite lower limit in the integral over d¢ A 2R
&,, and expansion in powers gf pg in terms where angular f (—d(v-n)(q-n)[G (P.€)°GT(p+a,etw). (20
integration would yield terms of ordeyl<1 without this

expansion. Expressions required for subsequent integrals arb€ latter express?n does not contain imaginary terms pro-
portional to (r7) -, hence the corrections containing the

p - R third power _of the diffusion pole do not contribute to the
e f W(Vn) [G™(p,e)]°G™(p+0q,etw) thermoelectric power.
Now let us consider the terms containing the diffusion
[ 3i pole squared. The collision integral corresponding to the
=guFT 1t derr)’ self-energy diagram in Fig. 1 can be expressed as

7

B d’q d
- —d<vn)2[GA<p oFtepraerap 9= 0uen [ G

A A
X (S(e+w)—9(¢€)) Rev (9,0)G"(p+0,et+w)

:a”f”z (1=

(21)

réubstltutlng Eq(21) into Eq. (9) and integrating over elec-
tron momentum, we obtain, taking into account E2),

As noted above, one must take into account both terms co
taining the cube of the diffusion pole with additional powers
of g in the numerator and terms with the diffusion pole

squared. It was shown in Ref. 7 that the correction with the , ey
triple diffusion pole is due taI'2,, i.e., a correction to the An= T dead d ef 2 )z(So(6+ w)
equilibrium component of the verteb“(f1 proportional to the
diffusion pole squared, which can be derived from Ef): 3 ) ISo(€) € d%g VR(g,0) 22
L . . Sl e T Zmd 1-07°
or%,= BT Fe —(S(etw)— S(E))Wz p—— The first term in Eq(8) also contains a nonequilibrium dis-
e tribution function due to the correctioh 7] to the impurity
A J s collision integral resulting from electron—electron interaction
X (zw)an G (p+q,e+w)%6 (p.€) (the corresponding self-energy diagram is shown in Fig. 3
Ap )2 GR S0l dk de g K,
-G (p,e)%G (p+a,etw)]. (18) e-ele-mp= 5 | G 24 5-[S(k,€)=S(p,e€)]
X 8inGA (K, €). (23

Using the integrals in Eq17), we find thatsT'}; does not
contain any corrections of the first order iegr) 1. As a Substituting Eq(23) into Eq. (9) and then into Eq(8), and
result, integrating ovemp, taking into account Eq.17), we have

1 |§ (9_§ 050(6)5 A ":EA ’ 24
§F22_ m&ql Tl Je T 7 3 71- ( )

The second term in E¢8)—an equilibrium correction to the
(190 density of states due to the interaction—also contributes to

the thermoelectric power:

Nonlocal corrections to the collision integrél containing — A (25)
oT'2, cancel, as in the calculation of electric conductivity. 2 m:

Finally, the third term in Eq(8) — a correction to the den- Note also that the third term in E¢8)—a nonequilibrium,
sity of states in the form of Poisson brackets, which made the@onlocal contribution to the density of states, which is im-
main contribution to the conductivity whezii‘i“f1 was taken portant in calculating the conductivity and is proportional to
into account — contains the following integral of the productthe integral(20)—also contains no imaginary part propor-
of the electron Green'’s functions: tional to (eg7) L.

ISy(e+w) et w
+ —_—
de T
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After integrating overe, we obtain the total contribution tegration contributed only a temperature-independent con-

to the thermoelectric coefficient in the form stant to the conductivity, i.e., only the residual conductivity
ev.D q was renormalized. In calculating the thermoelectric power,
Apt=—— 8 f dw( w?— (2N, +1)+2T one must bear in mind that the diffusion component is linear
16mepra’ T do in temperature, and therefore the correction described by Eq.
ddg VR(g,w) (28) is nontrivial. C_ertainly, the_ range of applicability of
xRej 2m)° (it D)2 (26)  first-order perturbation theory with respect to the electron—

electron interaction constrains the correction magnitude:
In accordance witl{4), in the case of three-dimensional in- A 7<< 7o, Whereny=—(2/9)e Trpg is the thermoelectric co-

teraction atg<kz; andq~ (w/D)*?, efficient of a metal without electron—electron interaction.
) Thereby one can determine the applicability range of Eq.
Dq VR(q w)%i 27) (28): 1/(ep7)?°<T7<1 (the second inequality is due to the
—iw+Dg? ’ vy’ diffusion approximation

We now integrate Eq.22) overg and w. Note that the inte-

gral overw is formally divergent at the upper limit. None- 3. CONCLUSIONS

theless, as in the calculation of corrections to the density of The main result of this work is the calculation of the
states and conductivity due to electron—electron interactionmultiparticle correction to the thermoelectric coefficient due
the divergence should be cut off atrlivhich is the limit of  to diffusion-enhanced electron—electron interaction. The
applicability of the diffusion approximation. Finally, we “renormalization” effect proportional to the real part of the

have Coulomb propagator with the electron—hole asymmetry fac-
612 o tor i/(ep7) is a steeper function ofT(r) "1 than the “ki-
A773d:F e (28)  netic” effect studied previously:>®
T EET

The parameter usually measured in experiments is the
The electron gas with a two-dimensional spectrum haglifferential thermoelectric ~ power (Seebeck factor
no electron—hole asymmetry, and in accordance Wis), S= — gl o, which is expressed, with due account of the cal-
the correction to the thermoelectric coefficient is zero. Weculated corrections, as
connect the dimensionality reduction in this problem with Ac Ay
that of the Coulomb interaction Hg), and assume that the sto( 1-—+ —)
electron spectrum remains three-dimensional. %0 7o
Let us dwell on the two-dimensional case. Note thatwhereSy,=— 7,/0o=m°T/3eer. In a disordered metal, the
since the characteristic energy~ 1/7, the distinction be- multiparticle corrections to the thermoelectric coefficient and
tween the three-dimensional and two-dimensional cases ionductivity in Eq.(31) are due to both electron—electron
determined by the  critical sample thicknessinteraction and weak localization. In order to compare their
d~(D/w)¥?~1. As in the calculations of corrections to the contributions, we write the corrections to the thermoelectric
density of states and thermal conductivity due to electron-coefficient calculated in this paper:
electron interaction, the integral overis divergent at the A 30 2d
oo S : . 7 1 Any
lower limit if the approximation defined by EqR7) is used. ~— 5, ~— InTr.
In this case,|q| in the denominator in Eq(4) cannot be o (T7)(er7) 70 (T7)(er)
omitted. But since the parity of the integrand with respect to (32
w is different from the parity in the calculation of thermal In the two-dimensional case, the relative correction is en-
conductivity>® we need, as was noted above, the real part ohanced by the large logarithmic factor. For comparison, we
the integral of the diffusion pole squared times the screenedive the expressions for corrections to the conductivity and
Coulomb potential. For this reason, we cannot use the logaghermoelectric coefficient due to weak localizatibt?:

(31)

rithmic approximation in the integral ovey, as was done in A3l 1 Ag2d 1 L
Ref. 6. An exact calculation of the required integral yields in loc _ _ , T —¢
the lowest order in §-7) <1 0o (er7)(PeLy) oo T |
Re - - =— .
o (—iw+Dg*)(—iw+Dkyq]) 4k,D|o| Ar]ﬁ,dcw 1 Anﬁ,dcwi
(29) 7o (€e7)(PeL ) ’ 70 €T’
Finally, wherelL , is the dephasing range. Comparing the corrections
e 1 to the thermoelectric coefficient due to electron—electron in-
An2d=% o In Tr. (30 teraction Eq.(32), weak localization Eq(33), and the cor-
E

rections to the conductivity Eq$l) and (33), we conclude
Note that in contrast to the calculation of conductifity that in the two-dimensional case the correction to the ther-
in both the three- and two-dimensional configurations, thanoelectric coefficient calculated in this paper yields the larg-
result strongly depends on the upper limit of integration overest contribution to the thermoelectric power, whereas in the
w. The reason is that in the three-dimensional case, this irthree-dimensional case the localization corrections can play
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Luminescence detection of multiphoton ionization—fragmentation of the molecular
CrOff anions adsorbed on the surface of dispersed SIO ,

Yu. D. Glinka
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It is shown that luminescence detection of multiphoton ionization—fragmentation of the

molecular Crci‘ anions adsorbed on the surface of dispersed, &@ossible under excitation

with the fundamental frequency of a Nd:YAG pulsed laser(1.064 um). The structure

and the process of formation of the adsorbed complexes under thermal activation of the surface
and the nature of luminescence transitions in £r@nions are studied in detail. It is

shown that luminescence is excited as a result of the recombination of photoelectrons and ionized
chromate ions. Multiphoton ionization of the ions occurs under three-photon resonance
conditions. The resonance level is an antibonding state of the adsorption complex formed with
the participation of an oxygen vacancy on the Sgnrface. The dynamics of the

multiphoton luminescence excitation process includes autoionizédtomulated by intercomplex
electronic excitationin superexcited states, fragmentation of chromate anions, and annealing

of surface oxygen vacancies. The rate equations for three-photon-resonance multiphoton ionization
are studied. The cross sections for two- and one-photon transitions on the nonresonance

steps of multiphoton absorption are obtained. It is concluded that the nonlinear polarizability of
the donor—acceptor adsorption bond in “chromate anion—oxygen vacancy” complexes is

very important. ©1997 American Institute of Physid$$1063-776(97)01505-9

1. INTRODUCTION allow for photoionization processes in solids with the partici-
pation of excitons and local levels of impurities and lattice
In recent years, substantial progress has been made iefect$® as well as the resonance photoionization of absorb-
photoionization laser spectroscopy of molecdiesThis is ing centers on a surfacé.
explained, first, by the progress made in laser technology, We recently proposed a method of multiphoton laser
especially UV- and VUV-range excimer lasers. Second, thgphotoionization spectroscopy of molecular GrOions ad-
combination of the method of resonance laser photoionizasorbed on the surface of dispersed Si®a monochromatic
tion of molecules with mass-spectroscopic identification oflaser field ¢ =1.064 um). In this method, intracenter lumi-
the photoions produced has been found to be very effectivenescence of the ions, which is excited in a recombination
Simple inorganic molecules are of greatest interest foprocess, was used to identify the photoionization
the investigation of resonance multiphoton ionization pro-processe$>~" Just as in the case of mass-spectrometric de-
cesses which are followed by fragmentation, since for suckection of organic molecule$, the intensity of the lumines-
molecules the energy structure of the electronic states hasence bands is characterized by power-law functions of ex-
been studied quite well and some states absorb in the visiblgitation radiation intensity. The exponent lies in the range
region of the spectrum, thereby eliminating a number of ex5—71° This paper reports the results of a further investigation
perimental difficulties. For example, NQRefs. 4 and band  of the luminescence properties of the $iC@rQ;~ adsorp-
NO (Refs. 6 and ¥ molecules have been found to be very tion system under excitation at the fundamental frequency of
convenient objects for such investigations. a pulsed Nd:YAG laser \=1.064m). Special attention
However, there are few such examples. Moreover, sincqill be devoted below to analysis of the power dependence
this method is usually employed in combination with mass+(dependence of the luminescence yield on the power density
spectrometric detection, the molecules investigated must béf the laser radiationand dose dependenégependence of
in a gaseous state. This makes it impossible to study by laséfie luminescence yield on the number of laser pylsEise
photoionization spectroscopy a host of inorganic moleculatesults of an investigation of the luminescence spectra of the
ions that are difficult to produce in the gaseous state. On thgioz_Croff adsorption system under UV excitatigthird
other hand, molecular ions such as, for example,ZCrand  and fourth harmonics of the Nd:YAG lasex=0.3547 and
U053, can be easily recorded on the surface of wide-gam.266.m, respectivelyas well as IR- and Raman scattering
oxides?® Such molecular ions are luminescence probes angpectroscopy data will be used to construct a model of the
have been used to assess adsorption activity of the surfacgdsorption complexes.
of dispersed substanc¥s12Since the adsorption energy for
molecular ions €1.0 eV) is much lower than their ioniza-
tion potential and the band gap for the oxides10 eV), the
multiphoton ionization parameters of such ions will corre- The experimental samples were prepared by the follow-
spond roughly to the gas-state approximation. We must alsmmg procedure. Dispersed Si@Aerosil) with a specific sur-

2. EXPERIMENT
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face area of 220 ﬁqg*l was dehydrated at 700 Kif@ h in 3.1. Luminescence properties of the SiO  ,—CrO3™ adsorption
air. Croff molecular ions were adsorbed onto the dehy-System under intense IR laser excitation ( A=1.064 um)

drated surface from a water solution of the salt,GiD,. As previously determinetf, two emission bands with
Next, the modified sorbent was dehydrated in air at a heatmaxima at~540 and~ 640 nm are observed in the lumines-
treatment temperature o, ; =350-1300 K far 2 h and  cence spectrum of the SJOCrC;~ samples under intense IR
compacted into tablets under a pressure of X4®°  |aser excitation. The emission band at 540 nm can also be
N-m~2. According to our estimates, the surface density ofexcited for pure dispersed Si®® The emission band at 640
the CrG~ ions was<1.0 nm 2. nm, however, is due to an electronic transition in the molecu-
A computer-controlled laser spectrometer was used tar jon and can also be excited by UV radiatfol?. These
measure the luminescence spectra. A pulsed Nd:YAGands are characterized by power-law dependences of the
laser with an amplifier X=1.064um, 1=10°-2  |yminescence response of the system on the power density of
x10° W-cm™, r=20ng and harmonic generators the exciting radiatiorpower dependenceéFigs. 1a and 1b,
(A=0.3547um, 1=10° —10" W-cm 2 and\=0.266um,  curves1). The exponents are;=7+0.2 anda,=5+0.2
|=10—10° W-cm?) were used as a source of excitation. for the 540 and 640 nm bands, respectively.
A S1-70 oscillograph was used to investigate the decay ki- |t is well knowr*3that the probability ofx-photon ion-
netics of the luminescence. The IR absorption spectra wergation can be represented as
recorded with Specord M-80 and LAFS-1000 spectrometers,
and the Raman scattering spectra were recorded with a

a)__ (o))«
DFS-24  spectrometer and an LGN-503 laser Wi" =ai™l, €y
(A=0.5145um). All measurements were performed in air
at room temperatureT(= 300 K). whereo{® is the cross section fot-photon ionization and

| is the laser radiation intensity. For this reason, we previ-
ously proposetf that the power dependences are a result of
multiphoton absorption. The exponent here is the photonicity
3. EXPERIMENTAL RESULTS of the process. Note that if the indicated process were not
associated with multiphoton absorption and were deter-
First we study the luminescence properties of themined, for example, by laser-induced heating of the surface
SiOz—CrOf[ adsorption system under intense IR laser exci-with a corresponding desorption process, then the power de-
tation (\ =1.064 um). Models of adsorption complexes will pendences would be described by an exponential funttion.
be constructed to interpret these results. The models are In our case, however, first, the wavelength of the laser
based on data from luminescence spectroscopy with UV exadiation falls in the transmission range of the substrate and
citation, IR absorption spectroscopy, and Raman scatterinip the range where there are no absorption bands of the mo-
spectroscopy. Then the energy structure of adsorption contecular ion. Since the reagents employed are highly pure,
plexes will be studied and the radiative electronic transitionsbsorption of laser radiation by uncontrollable impurities can
will be systematized. The experimental results on the multibe neglected. Therefore laser-induced heating of the surface,
photon ionization of adsorption complexes will be inter-if it contributes to the interaction of radiation with the ad-
preted on the basis of the proposed models, after which isorption system, does not dominate.
the last section the rate equations for such a system will be Second, the power-law dependence presented is ob-
studied and the cross sections for two- and one-photon trarserved over a wide range of laser radiation intensities, which
sitions for nonresonance steps of multiphoton ionization willrules out the possibility that it has been improperly identi-
be determined. fied. The same high photonicities were observed in the case
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of mass-spectrometric detection of organic molecules desN=6.5. Therefore the experimental results attest to multi-
orbed by powerful laser radiatidfi. photon absorption of intense IR radiation in the
However, it must be noted that the exponent in theseSiOz—CrOf[ adsorption system, as well as to the compli-
experiments is a formal quantity, not at all a consequence ofated relaxation scheme of the multiphoton excitation en-
real multiphoton processes but rather reflecting primarily theergy.
heating of surfaces by the laser radiatfSwhen the laser
radiation reaches an intensity8x 10" W-cm~2, the inten- _ _ .
sity of the emission bands reaches a platésaturation of a  3-2- Models of adsorption complexes for the SO ,—~CrOj
multiphoton transitio and as the laser intensity increasesSYStem
further, the intensity of the bands drops sharply and then Dispersed SiQis a complicated heterogeneous system,
once again increases. However, this time the photonicitieahose surface contains both intrinsic and impurity defétts.
arew;=7*+0.2 anda,=6+0.2. The surface of the initial dispersed silicon dioxide is hy-
Thus, a dip forms in the power dependetiEey. 1a and  droxylated (=Si—OH group$ with a high content of ad-
1b). This dip is due to a sharp resonance decrease, as a furearbed water molecules. The=Si—OH groups are the pri-
tion of the intensity of the laser radiation, in the density of mary water adsorption centers, and the diversity of the
luminescing centers. Then the situation repeats, and a secordriants of adsorption complexes gives rise to various forms
dip forms in the power dependenéite dips are marked in of adsorbed water and, in consequence, to the complicated
Figs. 1a and 1b by arrowsHowever, after the second dip form of the IR absorption spectra in the region of the stretch-
the photonicity of the processesdg=a,=7+0.2. ing vibrations of the=Si—OH groups and D molecules.
Note that a time delayA 7 of the luminescence pulse The structure of the surface layer is a function of the
with respect to the laser excitation pulse is also observetieat-treatment temperature of the dispersed silicon dioxide.
(Figs. 1c and 1f the magnitude of this delay also dependsWe therefore investigated the spectroscopic properties of the
on the power density of the laser radiation. Since at roommodified dispersed materials as a function of their prelimi-
temperature the afterglow time of the CﬁanoIecuIar ionis  nary heat treatment temperaturg, ().
less than 20 ns, the luminescence response has the same form The dynamics of the variation of the spectral and lumi-
as the laser pulse but it is delayed with respect to the lasatescence properties of SIGCrQ;~ samples under UV exci-
pulse byAr. tation as a function of the heat-treatment temperature is dis-
Moreover, dips are also observed in this dependence gilayed in Fig. 3a. For the original sample, a luminescence
positions corresponding to the dips in the power depenband with a maximum at 510 nm dominates the lumines-
dences. As established previouslythe intensity of the lu-  cence spectrum. As the preliminary heat-treatment tempera-
minescence bands decreases with each subsequent excitatiare of the samples increases, bands with maxima 620
pulse(dose dependengeHowever, when the laser intensity and~690 nm appear in the luminescence spectrum. The ap-
corresponds to the position of the dips, the rate of “fading” pearance of red luminescence is a characteristic indicator of
of the luminescence bands increases by more than a factor tife fact that the chromate ions form complexes with active
10 (Fig. 2. The dose dependence can be described well bgenters on the surface, i.e., thermal activation of the surface

an exponential function of the form of dispersed Si@ occurs, as a result of which adsorption
_1(0) o—nIN complexes are formed. Since the (ifOnoIecuIar ions are
l lum™— I lum€ ' (2)

selective luminescence probisey luminescence only when
wherelff,)rz1 is the initial luminescence intensity,is the num-  adsorption complexes form on the surfgte¢he possibility
ber of laser pulses, ard characterizes the rate of fading of of radiative transitions in the chromate ion must be attributed
the luminescence bands. For pure SEamplesN=3>1°  to a lowering of its local symmetry.

For the SiQ—CrOﬁ‘ adsorption system\N=90, and when The intensity of the radiation bands with maxima at 510,
the laser intensity corresponds to the position of the dips620, and 690 nm is plotted in Fig. 3b. Note the inverse pro-
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portionality of the intensities of the 510 and 620 nm radia-lyze the dehyroxylation process. Figure 4 displays the inte-
tion bands. This indicates that these bands belong to lumigrated intensity of the IR absorption band that peaks at
nescence centers that interact with the same active center 8748 cm® (free =Si—OH group versus the preliminary
the surface. The decrease in the intensity of the 620 and 69@eat-treatment temperature for pure Sgdd the adsorption
nm emission bands at high,; is due to the desorption of system SiQ—CrOﬁ‘. For pure SiQ, the destruction of the
the CrCﬁ_ molecular ion. The intensity of the luminescence hydroxyl cover starts &t} ;, =900 K,?? while for the modi-
bands is proportional to the density of adsorption complexedjed sorbent the onset of this process is shifted in the direc-
which in turn is proportional to the probability -1Wes, tion of lower temperatures by 100 K (Fig. 4, curve2).
whereWgqsis the probability of desorption per unit time and Thus, the Cr@’ ions stimulate dehyroxylation, and it is
is given by the Arrhenius formula therefore logical to assume that they will form an adsorption
_ complex with the products of the dehydroxylation reaction.
10g Woes=log 2~ E/2.30R T, ® " The fact that the Cr® ions form a strong chemical bond
where(Q is a frequency factor is the adsorption energy of with surface active centers is confirmed by the fact that the
CrO;~ on the surface at absolute temperatlg, , andRis  vibrational frequencies of Cr ions as a whole relative to
the gas constant. the surface of the dispersed SiQppear in the long-
The following values of the adsorption energy and fre-wavelength IR absorption spectruffig. 5). The frequencies
quency factor were obtained for the adsorption complexes 162 and 206 cm' (marked by arrowscorrespond to such
(radiation band at 620 nnand Il (radiation band at 690 nm  vibrations for adsorption complex I. This is in good agree-
E,=—88.18 kmole ™, 0,=6.39x10 ° st and  ment with low-temperaturé4.2 K) investigations of lumi-
Ey=—39.03 kimole !, Q,=6.64x10"%s % We note nescence spectra, where the frequency 170'cappeared.
that the adsorption energies are of the same order of magni-
tude as the adsorption energies for different forms of ad-
sorbed water and are approximately half the binding energies
for =Si—OH groups? D, . cmt
Therefore thermal activation of the surface is required
for the formation of chemically bound adsorption complexes
involving CrQ;~ ions. Prior to thermal activation of the sur-
face, the Cr@ ions are secured to the surface by weak 2r
hydrogen bondgphysisorbed form Their structure and lo-
cal symmetry are essentially undistorted, and therefore the
molecular ions do not radiate. Thermal activation results in 1F
the formation of active centers, with which the GrOions
form a chemical bondchemisorption of Cr@_ ions), on the

surface. The local symmetry of the molecular ions is lowered 0 m . . L
with respect to the unperturbed ion, and this lifts the forbid- 00 600 800 100;) :<200
denness for radiative electronic transitions. he?

The presence of phySI_Cf_i”y sorbed C;Z,r()ons (_)n the FIG. 4. Integrated optical densify;,; of the 3748 cm? IR absorption band
surface als‘? affects the efﬂC'en_Cy of dehydroxylaupn of thesor pure dispersed Sig1) and the SiG-Crc;~ adsorption systert?) as a
surface during heat treatment, i.e., the molecular ions catdunction of the heat-treatment temperatilig, .
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04t FIG. 5. g IR absorption spectra for the

’ SiOz—CrOf( adsorption systerfil) and pure
2 g dispersed Si® (2) (T, =900 K). b Dif-

1 ference of the spectraand?2.

0.2}

0 X X . : 0 . A A .
100 200 300 100 200 300
v, cm-! v, cm-!

To determine the local symmetry of the GrOions in The effect of intense IR radiatioln& 1.064 wm) on the

the | and Il complexes, we also investigated the Raman scaluminescence of adsorption complexes excited by UV radia-
tering spectra in the region of the stretching vibrations of thetion was demonstrated in a two-frequency experin(&ig.
molecular iongFig. 6). We selected samples with the same7a). The luminescence intensity of type-l complexes
values of Tp,, where according to Fig. 3 type | (C; -I, Cj -1) decreases with increasing IR radiation dose,
(Th. =900 K) and type Il T =1200 K) adsorption com- jyst as in the case of one-frequency IR excitatiGigs. 2b
plexes dominate.. The Raman structure due to the f_ormatiognd 7b; the intensity of the radiation from IR excitation
of complexes with the local symmetry of the Groions  ¢ould be neglected, since the radiation from UV excitation
lowered from Ty to C, and Cp, was identified by the g an order of magnitude higher. The emission band with a
method described in Ref. 23. The results of the identification ...\ at 690 nmtype-Il complex C,,-1l)) does not

are presented in Table I. : : Ry
According to these results, two types of complexes withChange f{ppreuably under IR iradiatighg. 7b. Thgrefore i
T the Crd ions form chemically bound adsorption com
C3, local symmetry can be distinguished for samples pre-

pared with T, =900 K and complexes of one type with plexes at the surface with dehydroxylation reaction products.
h.t.—

C,, local symmetry can be distinguished for samples pre—T wo types of complexes witlt;, local symmetry Cs,-|

pared with T, , =1200 K. We designate these adsorption®"dCs,-1) and complexes of one type wity, local sym-
complexesC}, -1, Cl,-1, andC,,-1I, respectively. Note that Metry (Cz,-Il) are formed. _

the impurity Raman scattering efficiency was low for the ~ Low-temperature investigatior.2 K) of the lumines-
Th.. =900 K samples. This resulted in the appearance of vi€énce properties of adsorption complexes in the
brational frequencies of the Sj@natrix in the spectrum. For SIO,~CrQ;~ system have establistfedthat a distinct
this reason, the difference of the Raman spectra for thé&lectronic—vibrational structure of the luminescence spectra
SiO,—CrQ;~ system and pure Sis presented in Fig. 5a. is only typical of emission bands with a maximum of 620
The impurity scattering efficiency in thd,,=1200 K nm; this was attributed to the weak electron—phonon inter-
samples was so high that it was best to neglect Raman scatetion in a complex. On the other hand, experiments on the
tering by the SiQ matrix. luminescence properties of tetrahedral impurity molecular

l FIG. 6. Raman scattering spectra for the
1 SiOz—CrOf{ absorption system: a—
Tht =900 K; b—T,;=1200 K. The arrows
mark the positions of the vibrational peajsee
Table ).

i 1 L i " 1 ‘ 1 " 1 2 1 . 1 "
800 840 880 920 840 880 920 960 1000
v, cm-?
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TABLE I. Positionsy; [cm™'] of Raman bands and their interpretation for intensity of the IR absorption band, corresponding to free

the SIQ—-CrG; adsorption system. surface hydroxyl groups, attests to the occurrence of the pro-
Type of center Interpretation T, ; =900 K Thy=1200 K cess
Th.t.

vi(Ay) 855 . e O
col o~ 009 =Si-OH— =Si-O++H (4)

”3(AE) géi where three bars denote a triple bond, the black dot denotes
cr ol ZlgA% 908 i an unpaired spin, and the superscript denotes the charge state

" v33(E1) 891 ; of the atom.

v1(A) - 858 The 510 nm emission band for the SIGCrQ;~ system

v3(B4) - 911 (Fig. 3) also appears in the luminescence spectrum of pure
Cap-ll Vagglg - gg‘l‘ Si0,.1® The nonmonotonic dependence of the intensity of

V3 b2 -

this band oril, ; is displayed in Fig. 8. This dependence can
be explained by assuming that the 510 nm emission band is
due to=Si—H centers. Then its decreaselas increases to
900 K is a result of the reaction

Th.t.
=Si-H— =Sis+H". (5)

ions in crystals establish&tthat complexes with the maxi-
mum possible local symmetry of the ion€4,) are charac-
terized by the weakest electron—phonon interactitme
electronic—vibrational structure is clearly manifested in theHowever, after the density of atomic hydrogen increases as a
luminescence specirarherefore, multiphoton absorption in result of the reaction4), the reverse process
the SiQ—CrOﬁ’ adsorption system is due to the formation of Tos
adsorption complexes wit 5, local symmetry. —Sje+HO —Si_H (6)

As mentioned above, chromate ions form complexes
with dehydration and dehydroxylation reaction products. We$S also possible. This explains the simultaneous increase in
now examine in greater detail the thermal activation of thethe density of nonbridge oxygen atoms amebi—H centers
surface during heat treatment, basing the analysis on IR ar@f Th...=1000 K (Fig. 8). Dehyroxylation of the surface can
luminescence spectroscopy data for pure and modified digilS0 occur by the traditional chanfil
persed SiQ Th.t.

As shown abovéFig. 4), the density of surface hydroxyl 2(=Si-OH) —— (=Si—-0-Si=)+H,0 @)
groups decreases atf,; =900 K for pure SiQ and

Tht =800 K forthe SiQ—CrOﬁ’ system. For pure SiCthis or
process is accompanied by an increase in the intensity of the . Tht. _ .
685 nm luminescence bartig. 8), which is typical of non- 2(=Si-OH) ——— =Si-0-+=Si*+H,0. 8

bridge oxygen atom&:**We note that the 620 and 690 Nnm  The destruction o£=Si—H centers can also occur in the
emission bands for the SIOCrO;~ adsorption system are process’

much more intense than the 685 nm luminescence band for
pure SiQ. Therefore the contribution of this emission band

in the case of an impurity system can be neglected. The
antibatic character of the increase in the intensity of the 68%here Si—SE=) is an oxygen vacancy. According to Ref.
nm luminescence band for pure Si®ith respect to the total 28, for “wet” glassy SiG,, whose spectroscopic characteris-

Th.t.
2(=Si-H) —— (=Si-S&=)+H,, (9

I, arb. units
lum

1.0

a

FIG. 7. a3 Luminescence spectra for the
SiOz—CrOff absorption systemT{, , =900 K) with
Nexc=266 nm as a function of the IR irradiation
dose  Qe=1.064um, [1=5%x10" W.-cm ?):
1—0, 2—50, 3—300 pulses. b Intensities of the
620 (0) and 690 nm(A) luminescence bands ver-
sus the IR irradiation dose.

0.5

700
A, nm n

400 500 600
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viously there can be two types of such complekes). 9).

f""‘ om’” . i 3 un'tzs The interaction of the, orbitals of the Cr& ion with the
] px or py orbitals of two nonbridge oxygen atoms results in
E + 1 the formation of a complex witlC,, local symmetry of the
3l ‘n‘ ,/ ion. We note that in the case of both the type-I complexes
/ (C3,-1) and type-ll complexes, the interacting orbitals are
+52 characterized by identical symmetry properties. This maxi-
2t y \"\ﬂ, 11 mizes their overlap and gives rise to the formation of a
mr-type adsorption bond.
! The characteristic features of the interaction of intense
Ir + 3 IR laser radiation with the Sig}CrOf[ adsorption system
+ can be understood on the basis of the proposed models of
adsorption complexes. For example, the excitation of lumi-
%oo . 750 * 1150 TMO nescence is due to multiphoton ionization of molecular ions

and oxygen vacancies. The “fading” of the luminescence is
due to laser annealing of the vacanciesstoration of the
FIG. 8. Integrated optical density of the 3748 thiR absorption bandl), =Sj—0-Si&= bond, which are stabilized by C'b ions
intensities of the 5102) and 680 nm(3) luminescence bands for pure Th teN i ’E 2 ch teri th tabili t"
dispersed SiQas a function o, , . e parameteN in Eqg. (2) charac erizes the stabilization
level of the vacancies. The characteristic dips in the power
dependences are, in my opinion, due to fragmentation of the

tics are closest to those of dispersed silicon dioxide, heagoﬁ* ion accompanying saturation of a multiphoton transi-
treatment releases,#nd HO molecules. Therefore the pro- tion. Obviously, for laser radiation intensity corresponding to

cesseq7)—(9) as well as a combined reaction of the type the position of the dips, the rate of “healing” of the oxygen
N vacancies should increase rapidly, as is in fact observed ex-
h.t

. . - R erimentally.
(=Si-OH+(ESi-H) —— (=Si-S5)+H,0 P The exii‘tence of two dips attests to the existence of sev-
(10 . )
eral channels for fragmentation of CfOions. We also note

must be considered first and foremost. that complete annealing of the surface vacancies can be

In summary, dehydration and dehyroxylation of the sur-achieved under high laser doses400 pulses), after which
face during heat treatment of dispersed Si@sult in the weak wide-band luminescence correlated with multiphoton
appearance of centers with unpaired spins as well as oxygejeneration of elementary electronic excitations in particles of
vacancies, which are characterized by a high reactfVion  dispersed silicon dioxide is observed in the luminescence
it. We regard such centers as active in the adsorption o§pectrum under intense IR laser excitatifn.
CrO;~ ions. The two electrons of the chromate ion that de- ,
fine its charge state occupy a nonbondingrbital?® This ;3 Energy structure of adsorption complexes and nature

. . L of radiative electronic transitions
orbital has the same energy as an atomic orbital in an oxygen
atom (atomic type,p or py). In my opinion, the interaction The luminescence of CHO ions was discovered com-
of these orbitals with hybricsp® orbitals, which form an paratively recently, so before examining the characteristic
oxygen vacancy, results in the formation of an adsorptiorfeatures of multiphoton absorption in the gmroﬁ‘ ad-
complex withC,, local symmetry of the molecular ion. Ob- sorption system and the excitation-energy relaxation chan-

L) FIG. 9. Proposed models of adsorp-
K . .
' C, Axis tion complexes on the surface of dis-
O persed SiQ
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nels, we examine the energy structure of the adsorption com-

. . . n, arb. units
plexes and the nature of radiative transitions in them. :
The low-temperaturé4.2 K) luminescence of the chro- i ;
mate salt CaCr@and of the KBr—KCrQ, impurity system o8k ;,05..., ..... /
was first observed in Ref. 31. The weak and structureless ' g © ey
luminescence bands at620 and~650 nm with decay con- L Q.,Q X
stants ~100us and ~10ms for CaCrQ and "o, 5 '-.
KBr—K,CrQ,, respectively, were referred to the spin- and 0.4+ ‘~.,,°° '~..
symmetry-forbidden electronic transitiofT;—'A; in the I °°-o°% .
CrO;~ molecular ion, which hasly symmetry. The salt ®o-3e.
K,CrO, and the MgO—-KCrO, impurity system did not lu- oL . " . i e
i 0 20 40 60 80
minesce. T K

To determine the characteristic features of the radiative
dynamics in the Crﬁf ion, a number of inorganic crystals FIG. 10. Temperature dependences of the quantum yield at12thd 690
doped with chromate ions were investigated. As is wellnm (2) for the SIQ~CrG;™ adsorption systemk ;=377 nm.
known, molecular ions in inorganic crystals are convenient
model systems for investigating the spectra of impurity cen-
ters and their interaction with their environméftFor ex-  transitions, to which it is logical to attribute the spin—lattice

ample, luminescence spectra with a distinct vibronic strucre|axation between the spin sublevels of the triplet state. The
ture were first obtained for the CsCgENa,CrO, impurity  stapilization of the yield in the temperature range 15-30 K is
systeni*** and then also for alkali-halide crystals dopedqye to the spin selectivity of relaxation processes. We note
with chromate salt§>*° that on account of the low density of excited centers, the
Luminescence spectra with vibronic structure have alsqueakness of the spin—orbit interaction, and the large splitting
been observed for &rO~ and CrQCI™ complexes in dif-  petween the triplet levels and the singlet levels, the conven-
ferent salts, where @D~ ions were preserif,® but the  tional Waller and van Vleck spin—phonon coupling mecha-
nature of the luminescence centers was not definitively esnisms are negligible.
tablished. A comparative analysis of the vibrational spectra \We now examine radiative and nonradiative transitions
of impure crystals and their radiative characteri$fié§es-  in adsorption complexes in greater detail. According to a
tablished that the luminescence is due to electronic transigroup-theoretic analysfsthe Cj,-1 and Cj,-1 type com-
tions in Cl’(j_ ions. Furthermore, the differences in the spec-plexes are characterized by a:hground state and'2e! and
troscopic and kinetic characteristics for the luminescencele*! excited-state configurations. The following types of
spectra of different chromate salts and impure crystals have @ave-function symmetries were obtained for #feground-
logical explanation on the basis of the concept that severatate configurationtA;, *E, and®A,. For thee!2e! excited
types of complexes with impurity and intrinsic defects in state configuration the wave-function symmetries g,
crystals form a molecular ion. The formation of complexesa, E, 3A;, 3A,, and3E. The ele*! excited-state con-
results in a lowering of the local symmetry of an ion and, asfiguration is not characterized by equilibrium states, and
already mentioned, lifting of the forbiddenness for radiativetherefore there are no symmetry types fdithis corresponds
electronic transitions. The triplet nature of the red luminesto a transition from a bonding orbital to an antibonding
cence for CaCr@and SrCrQ salts and a water solution of e* orbital of the adsorption complgxTherefore the orbital
K2CrO, was checked in optically detected magnetic resosymmetry of the excited state with the lowest energ§ is

nance experimeritSand in kinetic experiment?. Here we The types of symmetry of the total wave functions of the
present another experimental fact confirming the triplet natriplet spin sublevels can be easily obtained by taking into
ture of luminescence transitions in the Grdion. account the symmetry of the spin wave functios,, E

It is well known that nonradiative transitions between (Ref. 43): A;(z), E(x,y), where the symbols in parentheses
energy states of different multiplicity are due to the spin—indicate the polarization of the radiative transitions. Since the
orbit mechanisni' On account of the spin selectivity of the spin—orbit operator mixes states possessing identical total
relaxation processes, the distribution of population amongymmetry* the nearest singlet state of the excited configu-
the spin sublevels is ordinarily different from a Boltzmann ration *E will interact only with the lowest spin sublevels
distribution?? This feature of triplet states should obviously E(x,y). This fact gives rise to spin selectivity of both non-
be manifested in nonradiative excitation energy relaxationadiative and radiative intercombination transitions. Using
processes. the selection rules for radiative transitichst can be shown

The temperature dependence of the relative quanturthat all three spin sublevels of the excited triplet state with
yield of luminescence for adsorption complexes of the typeshe lowest energy must be active for radiative and nonradia-
Cév—l, 5,-1, andC,,- 1l is presented in Fig. 10. One typical tive transitions. However, the probability of the radiative
feature of such temperature dependences is a sharp drop timnsitionsE(x,y) — XA, will be much higher than that of the
intensity at low temperaturggd.2—15 K), followed by stabi-  transitionsA;(z)—*A;; as already mentioned above, this is
lization of the yield and another decrease at higher temperadue to the spin selectivity of the intercombination transitions.
tures. The low-temperature drop in the luminescence inten- Therefore two processes will participate in the relaxation
sity is due to the low activation barrier for nonradiative of the excitation energy of the lowest triplet level. One is
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associated with spin—lattice relaxation and will dominate aformed exclusively for pure and impure molecular crystils.
low temperatures. The other is the standard relaxation prd-or this reason, the present results extend the range of ob-
cess associated with the excitation of the phonon subsystejacts suitable for such investigations.
of the matrix on account of the electron—phonon interaction
and appears at higher temperatures.

As is well known® in a direct one-phonon process the
dependence of the spin—lattice relaxation rate on the ener

splitting between the spin sublevéls and|j) has the form
Analysis of the experimental results shows that the lu-

3
e (hwi)) (11 minescence response of the system is a result of the recom-
" 1-exp—hwij/KgT) bination between the photoelectron and ionized chromate ion

wherekg is Boltzmann’s constant ariHlis the absolute tem- (the emission band at 640 nmnd an ionized oxygen va-
perature. The relaxation process associated with the excitg&ncy(luminescence band at 540 jin the general case the
tion of phonons is conventionally taken into account by theluminescence intensity can be represented as

Mott formula

3.4. Characteristic features of multiphoton absorption in the
SiOz—CrOff adsorption system and excitation-energy
grXIaxation channels

W

lym=NW( " 77 J Lum( @) dw, (14)

w

70
7T 1+a exp—EnlkgT)’ 13 whereN is the density of adsorption complexes,* is the
where 7, is the quantum vield aT =0, a is a frequency Probability that a photoelectron is captured by an ionized
factor, andE,, is the activation energy. Therefore the tem- center, and () is the intensity of the intrinsic lumines-
perature dependence of the relative quantum yield for such @nce of a Crg ion excited in a recombination process.

system can be written in the form Then the excitation of luminescence can be represented in
the form
1+ [{ EA)+ b(ﬁwij)?’ -1
n=mo ltaexpg - = — 7 ' 5hw
KeT/ = 1—exp(—fawilkeT) (=Si-S=)-Cr0, — =Si-S=+(Cre2 ) +e-,
(15
where the constants andb determine the contributions of
the two indicated relaxation processes to the overall relax- —si_si— The —Sjet—Sit+e (16)

ation process.
As one can see from Fig. 10, the temperature depenHere we took account of the fact that the molecular ions
dence of the relative quantum yield can be satisfactorily apform a strongly polarr-type adsorption bond, and the two
proximated by Eq. (13). Then E,=247 cm! and electrons occupying & nonbonding molecular orbital that
fiw;=2.6 cm! for complex | andE,=279 cm! and form this bond also participate in the absorption of
fiw;;=5.0 cm ! for complex Il. Comparing the values ob- radiation®
tained forE, with the theoretically computed spectrum of The antibonding component of ther-bond lies
the photon density of states in quartz gl&%#,can be stated ~3.5 eV above the bonding componérithe total energy of
that for complex | the activation barrier for nonradiative tran-the three laser photons likewise equal8.5 eV. Therefore
sitions is associated with the excitation of silicon vibrations,we assume that multiphoton absorption followed by ioniza-
and for complex Il it is associated with deflections of a non-tion proceeds under conditions of excitation of a three-
bridge oxygen atoms. photon resonance. Here the nonbonding state of the adsorp-
The theory of spin—lattice relaxation in local triplet- tion complex appears as a resonance level.
excited centers of organic crystals can be used to interpret The presence of this antibonding state is, in my opinion,
the low values of# wj; A47-%% According to this theory, a decisive factor in the multiphoton ionization process. For
acoustic-phonon-induced mixed translational—rotational mothis reason, desorbed molecular ions, as well as ions that are
tions of molecules are responsible for spin—lattice relaxationpart of a type-Il complex, do not participate in multiphoton
In our case, however, in which the lowest components of absorption. We also note that according to Ref. 51 the ab-
triplet are degenerate with energyx,y), thermal activation sorption band at 7.6 eV for highly pure quartz glasses, whose
of the componenty) will cause the Cr(ﬁ)’ ion to rotate by  properties are closest to those of dehydrated dispersed silicon
90° (the x andy orbitals are orthogonglwhile the complex dioxide, is due ta&=Si—SE bonds.
as a whole possess€g, symmetry(the complex transforms In our case the total seven-photon absorption energy is
into itself under a rotation by 60° around ti@(z) axis), ~8.15 eV, thereby confirming the luminescence excitation
i.e., the thermal population of the componéyy will result  scheme proposed above. Now it becomes understandable
in a modulation of the fine structure of the levels and transithat annealing of the surface oxygen vacangiestoration of
tions between the magnetic sublevels with the emission athe silicon—oxygen—silicon bridge bonds possible only
resonance phonons. under the processg45) and (16). We also note that two-
In summary, the experimental results presented in thighoton ionization of the oxygen vacancies under excitation
section can be explained on the basis of the triplet nature dfy an excimer laser was observed in Refs. 51-55.
the lowest excited electronic state of the @T@on. We note The luminescence response of the adsorption system can
that previous investigations of triplet excitations were per-be represented as being the result of the processes
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540 nm scheme of multiphoton luminescence excitation accompany-

=Sis+(=Si*+e”) —— =Si-Si=, (17)  ing fragmentation of a molecular ion can be represented as
follows:
640 nm 5hw
(CrO§ )" +e —(CrQf )* —— Cr0;, (18 (=Si-SE=)-CrO, —— =Si—Si=+0%" +Cr0,
—=Si—0-S&=+Cr0;,
=Si-Si=+Cr0; —(=Si-Sk&=)-Cr0,, (19 (20

6hw

where the asterisk denotes an excited state. As already men- (=Si-Si=)-Cro, —Si_Si= 1202 +CrO§+

tioned above, the formation of an adsorption complex re-

quires thermal activation of the surface of the dispersed sili- —=Si-0-S=+0?"
con dioxide. Multiphoton ionization destroys type-I

ing i i - +Cros”. (21)
complexes, resulting in the formation of photoions and pho- 2

toelectrons. Photoions are retained on the surface by the The jJuminescence response of the system obviously de-

weaker hydrogen bonds, i.e., multiphoton absorptioends on the lifetime of a photoelectron in the conduction
changes the type of interaction between a molecular ion anggnds

the surface of the dispersed oxide. The fixation of a photoion .
on the surface increases the probability of recombination of Ar=(vang) 7, (22)

the ion with a photoelectron, followed by excitation and de-wherey is the velocity of the photoelectromy is the cross
excitation, after which the adsorptlon.bond is restored |.n th%ection for photoe|ectr0n capture by an ionized center, and
type-l complex. The processes described above comprise the is the density of ionized centers. For the gas-kinetic case,

feature that diStingUiSheS multiphoton ionization of mOlecuWhich is a good approximaﬁon to such a System, the Capture
lar ions adsorbed on the surface of wide-gap dispersed maross section is given by

terials from multiphoton ionization in the gaseous state. )
We now turn to an analysis of the dips in the power  9t= 7Rg, (23

dependences. As already mentioned, these dips are due tq\@ereR, is the interaction length between an ionized center
rapid increase in the probability of annealing of surface oxy-on the surface and a photoelectron. The interaction length is
gen vacancies. In my opinion, this process is due to fragmenyrdinarily found by equating the kinetic energy of a free

tation of CrGj~ ions accompanying saturation of a multipho- electron to the interaction potential energy between the elec-
ton transition. In the process, the density of luminescingron and an ionized center,

centers decreases because onlyZrions bound to the sur- )

face of an adsorption complex can luminesce and participate E UZZe_ (24)

in multiphoton absorption. However, as the density of type-l 2 Ro’

complexes decreases, a photoelectron can absorb an adginerem ande are the electron mass and charge. Then Egs.
tional photon from the laser field, as explained by the fol-(23) and (24) yield

lowing model.

A photoelectron passes into a superexcited state in a _ 2e?\?
multiphoton absorption process. There exist two channels for =T me?) 29
relaxation of the excitation energy in this superexcited . .
state—autoionization and fragmentation. As is well knétn, yielding
superexcited states are characterized by large electronic or- m?y3 3
bitals (~10 nm). | therefore suggest that the interaction be- Ar= 47Tnse4°”’ : (26)

tween these orbitals in a system of adsorption complexes
results in mutual perturbation of the orbitals, which stimu-
lates autoionization. lonization therefore results from multi-
photon absorption and electronic perturbation between com- 2

plexes in their superexcited states. For this reason, when the vZ=v5+ 5 Cmax (27)
density of luminescing centers decreases, the intercomplex

electronic perturbation parameter becomes too small t#herevq is the initial velocity of the photoelectron after
stimulate autoionization, and the intensity of the correspondphotoionization. This velocity does not depend on the inten-
ing luminescence response of the system decreases. Howity of the laser radiation, and is solely determined by the
ever, a photoelectron can still be transferred to the nexparameters of the photoionized syst&ém:

higher (in energy superexcited state by the absorption of an

The velocity of a photoelectron can be represented as the
sum

additional photon(increase in the size of the electronic or- vgz— [kfiw—Ejgn—(1;—E(ed 1 (28
bital), where the intercomplex electronic perturbation param-
eter will be large enough to stimulate autoionization. wherel; is the ionization potentiak, is the energy of the

This model explains the unit increase in the photonicityresonance excited staté,,, is the vibrational energy of the
of the processes after each dip in the power dependence. Thanic state,fiw is the laser photon energy, akd=2 is the
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number of laser photons required for ionization from the

resonance state. I(27), £ ax S the maximum energy of an S
electron heated by the laser radiatfn, A—
M INZr, 3 e '! - Crop' 2077 -
& max mZWcMI’ (29 b €Y
. . o $ Cro, + 0%
wherer is the classical electron radius,is the wavelength )
of the laser radiation of intensity M is the mass of the ion |
or regular surface atoms, amdis the speed of light. Then 7 ¢ (AC)
(26) and(27) yield 4
—————— 28(MI)
312
At U%"' m gmax) . (30

() Seeet— e(AC)

It is well knowrP* thatv,~0 for vibrationally autoion-
ized photoelectrons. Therefové<2‘é’ma>jm and(30) can be
rewritten in the form

Ar=Ar+ATy, (31

where

FIG. 11. Energy level scheme for the $i€£r0§[ adsorption system and
2 3/2 observed multiphoton ionization—fragmentation procesa€s—adsorption
Amoc| = & |32 32 complex, Ml—molecular ion
1 m max

ATyx E .
2 a five-photon process plays the role of a resonant state. The
Note that(32) describes most accurately the dependence ofélaxation ratey, of this process is a total constant charac-
the time delay of the luminescence response of the adsorf€/zINg all loss mechanlsm.s., including dissociation. qu the
tion system on the intensity of the laser radiati®ig. 10: seven-photon procesdransition to the next superexcited
this confirms the validity of the condition,=0. However, Staté at a rater{"l), there are three resonance levels: an
after the first dip, the time delay also increases as a powe@ntibonding state of the adsorption complex and two super-
law function, but with the exponent 4. This is probably due €Xcited states with relaxation ratgg and y, v3.

1/2
vé(a /m) «| 2, (33

to the nonlinear dependence6f,,, 0N laser intensity, which Thus, to describe the variation of the intensity of the
is possible in the case of strong heating of free electrons in kiminescence of a Crf ion as a function of laser power
laser field®® density, we model the process as seven-photon ionization

with three intermediate states, of which one is an antibond-
ing state of the adsorption complex and the other two are
3.5. Rate equations for multiphoton resonance ionization of superexcited states of the molecular ion. The time-dependent
adsorption complexes behavior of the system is described by the system of equa-

In the present section we examine the rate equations fgions
5-7-photon ionization of type-l complexes excited under dNy(t)
three-photon resonance conditions. As noted above, multi-  — =P I3[N1 (1) — Ng(1)],
photon absorption of laser radiation can transfer the system t
of adsorption complexes into a multitude of superexcited dNy(t)
states in which the complexes can autoionize, dissociate, or ——~
absorb an additional laser photon. Therefore ionization of dt
CrOﬁ_ ions followed by excitation of the ions in a recombi- — 1Ny (1),
nation process and radiation emission will depend on the
nonradiative relaxation rate of the resonance state, as well as  dN,(t) 22 1
on the fragmentation rate of the molecular ions in the super- —q¢  ~ 92 | "TNa(D) =Na() ] =057 IN5(1) = ¥5N5(1),
excited states.

Photoionization of molecular ions requires at least five  dNj(t)

=P 13[Ng(t) — N1 (1) ]— 022 12Ny (1)

laser photons. | therefore assume that resonance le\t)1 TR aSPIINL(t) = Na(t)]— 03" IN3(t) — y3Na(b),
11) is populated from the ground state 0 at a raf®1 %, and

ionizes at a rater(zz)lz. Nonradiative relaxation of the reso- dN,(1) "

nance state at ratg, efficiently depletes this level, since the gr 94 INs(b), (34

level is due to the antibonding orbital of the adsorption com-

plex, which is typified by nonactivational nonradiative pro- where N, (t) is the population of the corresponding levels
cesses. In the case of six-photon ionizatitransition to the  (Fig. 11). This system of equations simplifies in the case of
next superexcited state at the rat§’l), the state excited in five-photon ionization:
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dNo(t) @3 ionized molecular ions in the case of six- and seven-photon
—ar o1 FINa(D)=No(D)], ionization. If there is no saturation of the transitions, we
have, respectively,

dNy(t)
598 _ _ (@2)2 r
gr ot PINo(D) =Ny (1) ]= 03 1Ny (1) Ny= 0P @ V1N, — 2 (a1
Y172
= v1Na (1), ,
Ny=oP P oo 1Ny ——. (42)
sz(t):U(2>|2N (t) (35) Y1Y273
dt 2 v In deriving Eqgs.(41) and (42), high rates of nonradiative
whereN,(t) is the number of ionized chromate ions in the deactivation were assumed, but this time for the resonance
five-photon ionization process. levels 2(for six-photon ionizationand for 2, 3(for seven-

The lifetime of the adsorption complex in the resonancd®hoton ionizatioh on account of the possibility of fast dis-
level, which is its antibonding state, will be of the order of sociation. The saturation of multiphoton transitions for these

the vibrational relaxation time. Thereforg,~10 s, cases is governed by the saturation of the last excitation

which according to Ref. 53 suggests quasistationary varigSt€PS since they are due to one-photon transitions. There-
tion of the populaton of the resonance level fore, in the case of saturatio}1) and(42) become

(dN(t)/dt=0). The solution of the system of equations

;
i p
(35) will be N3= o0 a?1°Ng o (43)
dNa(t) o 1%No(1) i
= . (36) — (3 (2) (16N P
dt U&3)|3+0_(22)|2+,y1 N4 1 0503 | NO 7172, (44)

In the absence of saturation of two- and three-photorwhich is equivalent to the case of five- or six-photon ioniza-
transitions, taking account of the fact that the typical crossion, respectively, in the absence of saturation. As in the case
sections of such transitions are-10 *°cmf-s and  of five-photon ionization, saturation of the last steps for six-
~10 8 cmP. &, respectively’, and the intensity of the laser and seven-photon ionization occurs with the transitions from
radiation ~107"cm 2s! it can be assumed that (41) to (43) and (42) to (44) at points with intensities
oP13<y; and o?1?<y;. Then the number of ionized 1= v,/08Y and lgye=ys/os?, respectively, where
chromate ions over the time of the laser pulse in the procesis,,) and | s3) are the laser intensities before the first dip

of five-photon ionization is and at maximum power density, where, in my opinion, onset
(3) (25 of saturation for the fourth excitation step occurs. We obtain
o O-l 0-2 | Nodt Tp . .y
N,= e 525N, 2 (37)  for the cross sections of the one-photon transitions
2 0103 0
p4! "1 (1)
3= Y2/l sar2) s (45)

As already mentioned, however, when the laser intensity @

reaches~8x 10" W-cm™2, the five-photon ionization pro- o4 =v3llsaa) - (46)
cess saturates. In my opinion, this is due to saturation of the  Note that since the luminescence intensity is propor-
second stefio{P13<o$?12 and y;<012), since it is im-  tional to the number of ionized molecular ions, EY) and

possible to saturate the first step becgu_se of the antibondingy), (42) describe the dependence of the intensity of the
nature of the resonance level. With this in mii86) can be  |yminescence response on the laser power density under

rewritten in the form five-, six-, and seven-photon ionization, respectively.
dN,(t) , psing (40), (45), and (,46)1 we now estimate the cross
at =0'(1 )I3N0(t), (38 sgcuons for mul_tlphoto_n |on|z_a_t|on a’g nonresonance steps.
Since the photoionization efficiency in this case is deter-
and therefore mined by the relaxation rates of the intermediate resonance
_ @) levels, the validity of the estimates will depend on the chosen
Npo=07"1"NoTp. B9 values ofy,, v», andy;. As already mentionedy, can be

; ; i 1013 o1
The second step saturates with the transition f@fto ~ S€t €qual to the vibrational relaxation rafe; 10%s7, The
(39 at the point with intensitylﬁat(l)z ! 0(22)' where values ofy, and y5 can be estimated as the average disso-

I sarc1) is the laser intensity before the first dip in the power(?'at'On rate of OsQand Sk molecules in an infrared laser

T ~157 ; ;
dependence. Hence the cross section for two-photon ioniz4ield: 10°-10° s*.*" The estimates are presented in Table
tion from a resonance level of the adsorption complex bell-

comes
4. DISCUSSION
@_ N 40 . L .
92 72 (40) In the present multiphonon ionization experiment the ra-

sa(l) diation intensity is the main variable in tuning the laser to

Arguing similarly and using the general system of rateresonance. In five-photon ionization the process occurs in a
equations(34), we can obtain formulas for the number of one-frequency field, with one resonance step and two-photon
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TABLE Il. Saturation numbeNj in the power dependence corresponding to show, despite their approximate character, that the cross sec-
Igser intensityl satNy) and cross sectionr for two- and one-photon transi- tions correspond to typical values for one-photon processes.
tions. . . .
In two-photon transitions, however, the derived absorption
N, lsatny o@, cnf's oD, on? o, en? cross section is much greater than the typical values. As a
result, the typical probability of multiphoton transitions in an
1 7.5x10° 7.1x10°% - ; o i : ;
5 Lo 1P ) 10-15_10-19 i adsorption system is high. This anomalous phenomenon, in
3 2 ax 108 ] ; 10-18_1019 my opinion, can be explained by two factors.

1) The large nonlinear polarizability of the adsorption
bond, which, as shown above, arises during thermal activa-
tion of the surface and is of a donor—acceptor nature. There-
excitation at the second nonresonance step. In six-photdi@re Such a bond should be characterized by high asymmetry
ionization the process proceeds with two resonance stefd the electronic cloudthere is no center of inversiprnd,
(three and two photons, respectivel@nd one-photon exci- 1N consequence, t_he dllspIaC(_ament of the e!ectrons glong the
tation at the third nonresonance step. In seven-photon ionizg°nd in different directions will be characterized by different
tion there are three resonance stéfpsee and two photons force constants. As a result, vibrations will be highly anhar-
and one photon, respectivélgnd a one-photon excitation at m_onic, a_nd therefore the probability of nonlinear processes
the fourth nonresonance step. will be high.

Note that the resonance nature of the second and third Thus, the proposed method makes it possible to obtain
excitation steps in the case of six- and seven-photon ionizdhformation about strongly polar bonds on a surface, i.e.,
tion is conditional, since the energy levels of the superex@bout bonds in chemisorbed complexes. Note that this
cited states are determined by the energy of the laser photofethod is selective with respect to the intensity of the inci-
However, as noted above, the superexcited states are charg&nt radiation. Since the probability of observing a response
terized by the total relaxation rate constant, including dissoOf the system for polar and nonpolar bonds can differ by ten
ciation of the molecular ions in these states, i.e., the molecuerders of magnitud®; the response of the system will only
lar ions in the superexcited states have a certain lifetime, angontain information about the chemisorbed complexes.
in the general case, they can therefore be regarded as reafructural defects are also characterized by strongly polar
resonance levels in a mu|tiphoton absorption process f0|b0nd5 on a Surfa(?é.Such defects will also contribute to the
lowed by ionization. nonlinear polarizability of the dispersed medium.

Note that adsorption systems of this type are unique for ~2) The specific nature of the interaction of intense laser
photoionization spectroscopy, since multiphoton ionizationradiation with dispersed wide-gap oxides, manifested as an
of molecular ions occurs as a result of a strongly po|a,1'ntensification of the local fields on account of the induced
donor—acceptor adsorptianbond, whose antibonding state dipole moments of the particles of the dispersed medium.
fulfills the function of a resonance level. Since the resonancdhese effects must be very important in our dispersed sys-
state is essentially an electron—vibrational stdterge tem, since the wavelength of the laser radiation in our case is
width), the stringent requirements on the selectivity of themuch greater than the size of the dispersed partides 50
multistep photoionization are lifted. Such multiphoton pro-nm (Ref. 21). Moreover, such processes, which lead to the
cesses can therefore be detected in a one-frequency lagggneration of surface polaritons, can be excited according to
field. In this sense, a three-photon luminescence excitatiod stimulated schemstimulated Raman scattering by surface
process should also be observed for type-I adsorption conpolaritons. The latter circumstance will result in a substan-
plexes; the luminescence would not “fade” and its param-tial increase in the local electric fields in the dispersed matrix
eters would be identical to those of the luminescence wittwith respect to the applied laser field; this is a decisive factor
excitation by the third harmonic of the Nd:YAG laser. How- in multiphoton absorption of intense laser radiation. As is
ever, the probability of radiative transitions in this case will well known?>® such processes sharply increase the intensity
be determined by the specific nature of the channels of emf the system response, as has been demonstrated for various
ergy relaxation from the resonance level. For example, whenrganic molecules adsorbed on metal surfaces. However, for
nonradiative relaxation occurs without an interaction withthe adsorption system studied here these questions also re-
excited valence levels of the molecular idtise correspond- quire further experimental and theoretical study.
ing adiabatic potentials do not crgsshe probability of ra- | also call attention to the fact that luminescence obser-
diative transitions will be low and vice versa. These pro-vation of multiphoton ionization—fragmentation of Cf{D
cesses require detailed analysis, which falls outside the scopeolecular ions and, on the whole, room-temperature lumi-
of the present paper. nescence spectra for such an adsorption system are unusual

As noted in the Introduction, the production of GrO  from the standpoint of the triplet nature of the luminescence.
ions in the gaseous state is problematic, so there is no infolFor example, previously, the luminescence spectra of such
mation on their ionization potential. It follows from our ex- ions were recorded only at low temperatuté$33-3"-3%0p-
periments that the ionization potential for such ions shouldsiously, in the case at hand, intense laser beams were used,
be <54 w=5.8 eV. Therefore this method can be used towhich made it possible to increase substantially the intensity
estimate the ionization potential of the Cf,rO'on. of the luminescence response. Note also, however, that a

The estimated absorption cross sections for one-photodispersed matrix makes it possible to investigate lumines-
transitions at the nonresonant multiphoton absorption stepsence spectra with laser intensities for which optical break-
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down followed by damage to the material is observed in in Crystalline and GlasssiO, [in Russiaf, Zinatne, Riga(1985.

crystals with Cr(ﬁ impurity ions and ions of the corre-

sponding chromate salts. Therefore the fixation of inorganic,
molecular ions on the surfaces of wide-gap dispersed oxides

2. J. Moulson and J. P. Roberts, J. Chem. Soc. Faraday T5@n4208
(1962.

H. Imai, K. Arai, H. Imagava, and Y. Abe, Phys. Rev3B, 12772(1988.

Yu. Morimoto, |. Igarashi, H. Sagahara, and S. Nasu, J. Non-Crys. Sol.

is a promising method for investigating spectroscopic char- 139, 35(1992.

acteristics of such ions.

29A. B. P. Lever,Inorganic Electronic Spectroscoplsevier, N.Y.(1968.
30Yu. D. Glinka, V. Ya. Degoda, and S. N. Naumenko, J. Non-Crys. Sol.

In conclusion, | thank my colleague S. N. Naumenko of, 152 219(1993.
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Kinetics of vortex structure formation in magnetic materials
A E. Filippov

Donetsk Physicotechnical Institute, Ukrainian National Academy of Sciences, 340114 Donetsk, Ukraine
(Submitted 24 June 1996
Zh. Eksp. Teor. Fiz111, 1775-1786May 1997

A kinetic scenario for the formation of a vortex phase in magnetic materials is discussed. It is
found that such a phase can be generated from fluctuations at the kinetic stage of evolution
and can subsequently be fixed as a thermodynamically stable phasEQ9®American Institute
of Physics[S1063-776097)01605-3

1. INTRODUCTION 1
.ﬂ¢]=f dr [—cp(f)f dr’ J(r—r")e(r’)

Until recently, the feasibility of describing phase transi- 2
tions was severely limited to obtaining analytic solutions for
equilibrium configurations of théaverage order parameter +F(<p(r))}, (1.3
¢ under well-known thermodynamic assumptidrisThis
made it impossible to study processes that take place at in-, .
termediate times and spatial scales, as well as processes hich we use belpw.
volving several moderate interactions. Later it was found that Under relaxation of the system, the ordered structures of

the interaction of fluctuations can lead to stabilization ofthgf order parametep are selected from the fluctuation

16,17 1 -
phases that differ from those of the mean-field theofyThe n0|st<_e. .t'l'_hes:le ZFruc:p res a;cethattrfactot(s for the f@lfﬁt h
theory of critical phenomena that predicts the existence offacting it'in all directions of the function space wi €

such phases is based on coarsening the description by app hc.eﬁt'tﬁn of a der:utr)r: erab(ljélnlte)t set.tpf dtlrectlons, 'In el
ing the renormalization-group method. Such a theory is un- Ich they are unstable under a fransition 1o an absolutely

able to “follow” the structuring of the fluctuating field at the stadb[; stattlé‘?lTThe Tystem rtﬁpidly retla>;ﬁs to _'stichhattractors
mesoscopic scaf€,which in the kinetic picture actually re- and then siowly evolves on them up to the point where a new

sults in the emergence of anomalously ordered phdses instability develops and a transition to a lower-lying attractor
' _occurs.

the generation of nonlocal structures in the Ginzburg— . . S
Landau functional and in anomalous effective The latter feature makes it possible, at least in principle,
dimensionalitied? ' to develop various kinetic scenarios by varying the external
On the other hand, statistical theory does not allow fofParameters in .the transmon: .Ir.1 this paper we examine,
“virtual phases'®>!4 (see also Ref. 15that appear as the among other things, the possibility of a vortex structure be-
' ing formed in magnetic materials. For an analogy that has

system proceeds to equilibrium. The formation of such , .
phases is of a purely kinetic nature been found useful, we first recall certain facts of the theory
’ ﬂf superconducting systems.

In the simplest case the corresponding kinetic effects ca ! : .
Vortex configurations of the order parameter play an im-

be obtained by describing the order-parameter relaxation . - o
ortant role in the kinetics of the phase transition to super-

ith the following equation(for a review of this topic see P . . .
w wing equation view IS fopic:s conductivity. This is especially true of a plan@r layered

Refs. 16-2) superconductor, where because of suppression by large long-
‘ range order fluctuatiorS,the presence of a phase transition
8_902_@4_5(»[ r. (1.1 is usually related to the production of vortex—antivortex
ot o¢ ’ pairs and their possible unpairing under certain

conditions?’~2° Analytic vortex-like solutions for a super-
Usually the structure of the spectrum of the noise sourcegonductor in an external fielhbrikosov vortice$™ are well
&(t,r), is unimportant®®, so that for the sake of simplicity known, and the concept of vortex pairs has been corrobo-

we assume that we are dealing with white noise: rated by numerous experiments.
Mesoscopic structureg@nd a pair is such a structigre
(&(t,r))=0, (&t,r)ét,r'))=Ds(r—r")s(t—t"). cannot form instantly. The formation of such a structure con-

1.2 stitutes a regular stage in the relaxation of a relatively large
order-parameter region, in which the consistent evolution of
Generally, the functional{ ¢] is a nonlocal form in powers the order parameter and the vector potential develops in the
of the fluctuating fieldp(r), a form that for the magnetic process of fluctuation pair production. However, vortices of
systems considered here can be derived from the microscopapposite signs attract each other, so that the pair being pro-
theory?>=2°To get a qualitative idea of the problem we keepduced is unstable against collapse. Nevertheless, as shown
only the lowest-order terms, with nonlocality allowed only in by recent research;®* a vortex structure emerges in a natu-
terms quadratic inp. The corresponding form then reducesral and probably inevitable manner. The researchers found
to that the corresponding configurations of the fluctuating field

971 JETP 84 (5), May 1997 1063-7761/97/050971-07$10.00 © 1997 American Institute of Physics 971



are attractors. In the context of the present paper, the vortesisely, a vortex(and even more so, a lattice consisting of
phase of a superconductor in many respects can be considerticeg is a mesoscopic structure, i.e. it cannot emerge fully
ered a virtual phase. Vortices are stably formed from arbiformed. One can easily imagine and reproduce kinetically
trary (relatively small-scale fluctuations, produce a mini- the growth of such a simple topological structure as a wave
mum of dissipation, and constitute the longest stage in thef spin rotations, but it is much more difficult to do the same
“journey” of the order parameter to equilibrium. And be- in connection with the spontaneous growth of a system of
cause of this, actually, a vortex state manifests itself as &ortices formed by rotations of moments in all three direc-
stable state in the thermodynamic properties of real supetions. Nevertheless, as demonstrated below, such a process is
conductors. possible.
For our subsequent analysis it is convenient to briefly list

some results describing the static radial structure of a solitary
2. KINETICS OF FORMATION OF A VORTEX STRUCTURE. vortex. The functional for the system’s energy in the notation
BOGDANOV-HUBERT PHASE adopted in Ref. 37 has the form

From a formal viewpoint, the vortex configuration of 1
¢(r) in superconductors emerges because of the interaction W= | d9 [A(Vm)z—Kmf—JzHg—EJ Hy+DWp 1,
of the order-parameter current and fluctuations of the gauge
electromagnetic fieldj¢A), fluctuations whose contribution (2.2
to the Ginzburg—Landau functional of the system has a rotawhere the reduced magnetizationf(r)=1, JH4 is the de-
tional structure: (curA)?. In magnetic systems, the magnetization energy, and it is convenient to write the

Dzyaloshinski-Morya interaction Dzyaloshinski energy density in terms of spherical coordi-
W o1 nates:
P kar Tar ' m=(sin 6 cos ¢, sin 6 sin ,cos 6),

can serve as a sort of analogy to the energy t€sas Refs.
32-36. Over the years many substances have been shown to
contain numerous one-dimensional modulated structures tha§ince we intend to analyze a lattice consisting of localized

are products of such interaction. Recently Bogdanov anghagnetic structures, we limit ourselves to the case of a

Hubert”3® established that in addition to exhibiting one- strongly localized vortex witlC,,, symmetry(see Refs. 35—

dimensional order-parameter configurations, systems wit@s)_ Here the Dzyaloshinskienergy in terms of the new
the interaction(2.1) may have two-dimensional structures of |5 iaples has the form

the vortex type(see Figs. 2 and 3 in Ref. 38, which depict
the corresponding configurations of the magnetization vec- Wp=cog¢— ) 6,+sin 6 cos b sin (¢— )
tor).

r=(r cose, r sin ¢,z).

According to Bogdanov and Hubeftjn contrast to pe- " sin(e— ) b, il 0 cos§ codp—¢) %_
riodic magnetic structures, which can exist only with a fairly r r
strong Dzyaloshinskiinteraction, isolated magnetic vortices 2.3

can exist for arbitrarily small strengths of this interaction.
This fact was mentioned in the papers cited above as being We are in fact dealing with a lattice consisting of hex-
preferable from the standpoint of applications when used if@gonal cells in which the magnetization vector is parallel to
interpreting the experimental data, since a formal solution fothe external field at the boundaries of the cells and is anti-
a solitary vortex line can exist even when there is no externaparallel at the center of each cell. Such a magnetization dis-
field. Bogdanov and Hubéftcompared the energies of the tribution suggests a certain analogy to a lattice consisting of
modulated phase and the phase formed by a hexagonal lattié®rikosov vortices, and has been examined in Ref. 37.
of magnetic vortices. They also established how the regions If we assume that the magnetic moment distribution is
of thermodynamic stability of these phases depend on theharacterized by strictly radial symmetry, the problem re-
external field strength and the relative contribution of theduces to solving only one equation,
Dzyaloshinski energy(see Fig. 10 in Ref. 37 Estimates of 5 ) -
the free energy have shown that for certain values of thé’¢ 1dé siné C°50+ 4x sm20_ . _
. . : Tt = — > sin 6 cos 6=0,

external field and for certain ratios of the parameters of thedr r dr r ar
interaction and anisotropy, vortex structures are preferable to (2.4
one-dimensional. . : . )

Here there are at least two big problems. First, thus fa\‘f’Vh'Ch describes the rotation of a moment vector of fixed

only one-dimensional structures have been observed in ex(_ength in relation to the angle. Here, as in Ref. 38, Eq2.4)

periments. In addition, Bogdanov and HuB&# assumed Is the Eule_r equation for the functiond.l) er_tten in terms

. . .__of the variablesr, ¢, and #, and we have introduced the
that magnetic vortices form a regular hexagonal Iattlcehotation
which (if the lattice had already been formed in some yay

are thermodynamically stable. =D
Here, however, we are confronted with the same prob- x= >
lem as in the case of superconducting vortices. More pre- ANAK+I9) 200
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FIG. 1. Solution of Eqgs(2.4) and (2.5. a—The dependence of phageon radiusr for physically interesting solutions close to the saddle-point localized
distribution8(r). b—The projections of the same solutions on the phase portrait in#ér, ) plane. c—Projections on the phase portrait of the trajectories
describing evolution of aarbitrary distribution 6(r) in accordance with Eq2.5).

for the parametek describing the relative contribution of Static equation selects only those that correspond to physi-
the Dzyaloshinski energy. cally realizable structures.

Localized solutions of Eq(2.4) are saddle-point trajec- In terms of the variableg andr, such a solution has the
tories in the ¢6/dr,6) phase plane. They can be found by form
the method of successive approximations, in which one of
the constant terms for the second-order equation is fixed as df (dzﬁ 1dé

1 4k
the initial condition, while the other is used as a fitting pa-  dt WJF Tar 2 ¢ cos 6+ Fsng
rameter(shooting methoyd

The solution of this equation with the boundary condi-
tion 6(0)== is summarized in Fig. 1. Figure la depicts
several branches of the solutions for the phaée), solu-
tions that are close to the desir¢shddle-point localized In Fig. 1c the trajectories describing the evolution of(arn
distribution and that demonstrate the successive approximdpitrary) distribution 6(r) in accordance with the relaxation
tions of the shooting method. The corresponding saddle iequation are projected onto the same phase plane
clearly visible in the projection of these solutions on the(d6/dr,0) as the solutions of the static equation. Formally
phase portrait in thed@/dr, 6) plane depicted in Fig. 1b. this approach generalizes the study of the stability of the

Note that the localized solutions whose phase trajectostatic solutions, which in a special case amounts to analyzing
ries in the @6/dr,6) plane are saddle-points do not neces-the equation linearized near some special solution of the
sarily correspond to a saddle poiitt the function spagefor  static equation. In our case such an equation coincides with
the free energy being solved for. The desired energy calcuthe Schradinger equation with some effective potential. The
lated in such a realization of the distributia@iir) is finite. = general form of the relaxation equation makes it possible not
This distributiond(r) is only a point that can be suspected of only to study stability against small deviations, but also to
being a minimum, and its stability must be studied separatelanalyze the global stability of the desired localized solutions.
by employing a time-dependent relaxation version of the Figure 1c shows that a strictly localized solution of the
equation for the order parameter. Such an equa@mme- static equation satisfying the conditiaf()=0 is also a
times called the time-dependent Ginzburg—Landau modelsaddle-point solution, with the result that it is unstable. The
reflects the real evolution of the order-parameter field, artypical solutions are those that in their behavior are close to
evolution that among all formally admissible solutions of thethis saddle-point solution for sma#l and degenerate at in-

—sin 6 cos 0). (2.9
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finity into an essentially periodic waven,(r), which, inci-  concentrically diverging waves far from=0. For the sake
dentally, is quite natural from a physical standpoint. It can beof comparison, in Fig. 2d we depict the surfaog(r) at an
shown(see, e.g., the phase portrait in Fig) teat a fairly  earlier stage in the growth of the vortex.

arbitrary configuratiord(r,t=0) rapidly relaxes to the local- Naturally, the idea of a solitary vortex growing indefi-
ized solution described above, which, however, is unstablgitely is an extreme idealization. In reality, vortices begin to
and in time collapses to=0. grow out of many local fluctuations ah(r) essentially si-

The fact that a solitary vortex is unstable and generates gultaneously. As they expand, they come into contact with
periodic wave at infinity does not mean, however, that aone another, the circular distributionsmir) are disrupted,
lattice consisting of such vortices is also unstable. In thisand a pattern is formed that resembles the striped structure of
context, further study of Eq2.5) is of little interest, since it magnetic domains. Figures 3a—d depict the evolution of a
does not allow for a study of the stability against deviationsystem of magnetic vortices produced by fluctuation noise,
from radial distributions at fixedn?=1. With the aim of where the density of one of the components,) is shown
analyzing the spontaneous onset of a vortex structure, we dgy changes in the shades of gray.
back to the initial equations for the components of the order  |n the context of the present investigation it is important
parametem={m,,m,,m,}. Note that when the system pro- to note that a stage at which solitary circular configurations
ceeds from the paraphase to the ordered phase, as the tesithe magnetic moments show up clearly does indeed exist.
perature decreases, the absolute value of the moment autphis intermediate stage originates in the relatively small-
matically becomes fixed and cannot be achieved by formallgcale local fluctuations fixed by the relaxing field for a fairly
stating thatm?=const. This means that in the equations forlong time.
the componentgm,,m,,m;} we must keep the nonlinear Such a fluctuation state of the system can establish itself
(local) contributions#m] to the free energy, which in and for an indefinitely long time if the phase transition to it is
of itself ensures thain? is fixed in the final stages of order- first-order and the ratio of the nois@emperaturg to the

ing of the system. height of the barrier in the energy[m] is such that the
In other words, we again study an equation of the exgrowth of supercritical nucleation centers becomes impos-
tremely general form sible. In computer simulations of such a system one can ob-
serve how the constantly “flickering” but long-lived vorti-

o7Im] 4 Er 5 ces gradually order into a close-packed hexagonal lattice.
om UL (2.6 These observations can be used constructively in developing
a kinetic scenario that leads to stabilization of the
This equation is similar to the originalscalaj equation Bogdanov—Hubert phase.
(1.2), but is written for the three interacting components of  Indeed, if we lower the barrier after keeping the system
the order parametem,, m,, andm,. The gradient terms in for a fairly long time in the fluctuation region, the system
Eg. (2.6) are specified explicitly, while the local form of proceeds to a low-temperature state, and both the symmetry
71m] is restricted only by the requirement that at equilib- of the distributionm(r) (on the averageand individual vor-
rium m? must be fixed. tices inside the striped structure become frozen in. For in-
The choice of the form of#[m] is fairly arbitrary  stance, such patches consisting of individual vortices of both
within the model. For real systemsz[m] can be derived signs ofm, are clearly visible in Fig. 3d. In this context the
from the microscopic Hamiltonian of Refs. 22—25. Usually structure of the correlation function

only the lower-order terms in the expansion in powers of B ., , ,
m are kept in the local form o7/ m], e.qg., GOxy)=(m(x"y")m(x+x"y+y")) 2.7

am
E=aAm—,3 VXm+h—

for a state consisting of vortices and stripes simultaneously is
especially indicative.

Such a function for then, component was calculated
numerically, and its typical shape is depicted in Fig. 4.
In this sense the microscopic theory actually fixes the value€learly visible is the sixfold symmetry for small-scale cor-
of the constants=(T—T,.)/T., a, andb>0 in this expan- relations, which is somewhat distorted because of the pres-
sion. The theory also determines the values of the parameteesice of stripes, which fix the twofold symmetry for
a and B fixed by the spatial dispersion of the exchange in-intermediate-scale correlations. One can expect that for large
teraction and the Dzyaloshingkénergy, respectively. arrays, the arbitrary nature of the orientation of the stripes

Above all, it is advisable to reproduce the process ofmakes the effect of these stripes on the symmetry of
nucleation of a solitary vortex from a local nucleation centerG(x,y) negligible. However, for accessible moderate scales
in the absence of noise. Figure 2 depicts the correspondintfpis does not happen, as Fig. 4 clearly demonstrates.
results, which were obtained at the intermediate stage of The problem of the size and shape of the computational
growth of such a vortex in space. The results for each comgrid (which is fourfold symmetritis important for numeri-
ponentm; are shown by the corresponding changes in thecal calculations. Figure 4 indicates that fourfold symmetry
shades of gray. The distribution of, is radially symmetric, begins to show up on scales greater by a factor of ten than
while the other two components change sign at the center dhe characteristic size of the structures described above. For
the vortex. This indeed corresponds to a “fountain” of the specific calculations we used arrays of 2586 cells; the
vectorm(r) at the center, described in Refs. 37 and 38, withcharacteristic size of a vortex 83 cells, while the corre-

o7 m]
om

=m(7—am+bn?).
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FIG. 2. Evolution of a solitary vortex. a—Projection in thg plane of the componemh,, shown by changes in the shades of gray. Clearly visible are the
central peak irm, and the concentrically diverging waves. b—The same as in Fig. 2a fontltemponent. c—The same as in Fig. 2a for tiyecomponent.
Comparison of Figs. 2a—c makes it possible to determine the rotationimfspace corresponding to the vortex described in the text. d—The relatively early
stage in the formation of the vortex. The isometric system is used to depiot,themponent.

lation function depicted in Fig. 4 was calculated on an arraypy modeling. In the process, the ordered system fixes the
of 64X 64 cells, which amounts to one-sixteenth the area of/ortex structures formed in the previous stages.
the computational grid fom(x,y). Figure 5 depicts the typical result of a process of this
Most vortices nevertheless disappear with time. To avoidype, obtained for the sake of definiteness for the local func-
this, an external fielth # O can be used to strengthen thosetion
vortex nucleation centers that point in the same direction as
the field. However, as expectét®a low-temperature phase o7Tm]
with vortices directed along the field is unstable and degen- om
erates, depending on the strength of the flelihto either a
striped structure or a homogeneously ordered state. To stabisth the constants=0.14,a=2.0, andb=1.0 and for a
lize the desired phase, we must ensure that vortices with thigeld strengthhy=0.35 in the ordered phase. Naturally, these
same sign are fairly close-packed and are directed opposifarameter values are within the stability range for the desired
the field. vortex phase, found earlier by Bogdanov and HuiéFhe
The latter requirement does not contradict the idea ofvalue ofh used in the initial stages of the process can vary
strengthening vortices pointed in the same direction by aver a broad range, and usually amounts to approximately
field parallel to them, and it yields a recipe for creating the0.2h,,.
desired phase. In the initial stage of the ordering process one Figure 5 depicts the distribution ofi, with an isometric
must use a moderate field whose strength can be chosen system of constant-level curves. This reveals the universal
by numerical modeling with a fixed structurg[m]. Then  form of the majority of vortices, which are attractors of the
the field is reversed and increased in amplit(aleo selected corresponding nonlinear systg@2.6). Moreover, we see that

=m(7—am+bn?) (2.9
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FIG. 3. Evolution of the magnetic vortices produced by fluctuation noise. The density of one of the compomgrgsshown by changes in the shades of
gray.

lattice imperfections are usually accompanied by the adhekinetic competition with one-dimensional modulated order-
sion of two (or more vortices, caused by the inadequateing, which occurs spontaneously in the system if the transi-
preparation of the intermediate virtual state. Physically, theion process is not arranged in the special manner described

adhesion of vortices can be interpreted as a consequence above.
It would be quite natural to extend the kinetic scenario

described in this paper to the preparation of such structures
in real samples. Here the virtual phase may be replaced by a
similar state in the fluctuation region. The way to do this is to

FIG. 4. A typical structure of the correlation functi@(x,y) of the com-
ponentm, for a state containing vortices and stripes simultaneously. Clearly
visible are the sixfold symmetry for small-scale correlations, the twofold
symmetry for intermediate-scale correlations, and the fourfold symmetry for
correlations whose scales range from roughly one-tenth to the full size of the
computational grid fom(x,y) (this in turn is greater by a factor of ten than FIG. 5. Typical configuration ofn,(x,y) obtained as a result of the special

the array used in calculating(x,y)). kinetic process described in the text.

976 JETP 84 (5), May 1997 A. E. Filippov 976



keep the system near the transition point in a weak field!*T. M. Rogers, K. R. Elder, and R. C. Desai, Phys. Re@7B9638(1989.
Then, after the direction of the field is reversed and its am”K R. Elder and R. C. Desai, Phys. Rev.4B, 243(1989.
plitude is increased, the system must be rapidly transferred to?: E: Filibpov, Yu. E. Kuzovlev, and T. K. Soboleva, Phys. Lett178

a low-temperature state.

I am deeply grateful to A. N. Bogdanov, who drew my

301 (1993. 3 i
¥Yu. E. Kuzovlev, T. K. Soboleva, and A. Eilippov, Zh. Eksp. Teor. Fiz.
103 1742(1993 [JETP76, 858(1993].

attention to the problem of magnetic vortices and kindly pro-°A. s. Zel'tser, T. K. Soboleva, and A..Eilippov, Zh. Esp. Teor. Fiz.
vided the results of his studies prior to publication. Many, 108 356 (1995 [JETP81, 193(1995].

thanks go to A. S. Zel'tser for the top-quality computer pro-
grams, which made all necessary computer simulation pos»
sible, and to Yu. E. Kuzovlev for writing the application

21, D. Landau and I. M. Khalatnikov, ifh. D. Landau: Collected Papers
Pergamon Press, Oxfofd969, p. 626.

Yu. M. Ivanchenko and A. EFilippov, Fiz. Tverd. TelaLeningrad 31,
51 (1989.

programs used in processing and graphical representation &fi. Aharony and M. E. Fisher, Phys. Rev.® 323(1973.
the data. The present work was sponsored by the InternatYu. A. Izyumov and Yu. N. SkryabinStatistical Mechanics of Magneti-

tional Science FoundatiofGrant No. K5810D.

IL. D. Landau and E. M. LifshitzStatistical PhysicsPart 1, 3rd ed.,
Pergamon Press, Oxfod980).

2V. L. Ginzburg and L. D. Landau, Zh. K8p. Teor. Fiz20, 1064(1950.
3K. Wilson and J. Kogut, The Renormalization Group and the
e-Expansion Wiley, New York (1974).

4S. K. Ma,Modern Theory of Critical Phenomen#/. A. Benjamin, Read-
ing, Mass.(1976.

5A. Z. Patashinski and V. L. Pokrovski Fluctuation Theory of Phase
Transitions Pergamon Press, Oxfofd979.

81, F. Lyuksyutov, V. L. PokrovsKj and D. E. Khmel'nitski, Zh. Eksp
Teor. Fiz.69, 1817(1979 [Sov. Phys. JETR2, 923(1975].

"A. 1. Sokolov and A. K. Tagantsev, Zh.k&p. Teor. Fiz.76, 181 (1979
[Sov. Phys. JETR9, 92 (1979].

8p. Bak, S. Krinski, and D. Mukamel, Phys. Rev.1B, 5065(1975.

°P. Bak, S. Krinski, and D. Mukamel, Phys. Rev. L&8, 52 (1975.

A, E. Filippov, J. Stat. Physz5, 241(1994.

YA, S, Zeltser and A. EFilippov, Zh. Eksp. Teor. Fiz106, 1117 (1994
[JETP79, 605(1994)].

12p. 3. Zel'tser and A. EFilippov, Pis'ma zh. Esp. Teor. Fiz.62, 604
(1995 [JETP Lett.62, 627 (1995].

133, Semenovskaya and A. G. Khachaturyan, Phys. Rev. G&tt2223
(1991.

Long-Qing Chen and A. G. Khachaturyan, Phys. Revi@35889(1992.

15A. G. Khachaturian,Theory of Structural Transformations in Solids
Wiley, New York (1983.

977 JETP 84 (5), May 1997

cally Ordered Systen{sn Russian, Nauka, Moscow(1987).

2yu. A. Izyumov and Yu. N. Skryabin, Teoret. Mat. Fi&, 110(1970.

2N, D. Mermin and H. Wagner, Phys. Rev. Leti7, 1133(1966; P. C.
Hohenberg, Phys. Rel58 383 (1967).

2y, L. Berezinski, Zh, Eksp. Teor. Fiz59, 907 (1970 [Sov. Phys. JETP
32, 493(1971)]; Zh. Eksp. Teor. Fiz61, 1144 (1971 [Sov. Phys. JETP
34, 610(1972].

283, M. Kosterlitz and D. J. Thouless, J. Phys6C1181(1973.

293, M. Kosterlitz, J. Phys. @, 1046(1974).

30A. A. Abrikosov, Modern Theory of MetalsNorth-Holland, Amsterdam
(1990.

1A, E. Filippov, A. V. Radievsky, and A. S. Zeltser, Phys. Lett182, 131
(1994. )

32|, E. Dzyaloshinski Zh. Eksp. Teor. Fiz.32, 1547 (1957 [Sov. Phys.
JETPS5, 1259(1957)]. )

33|, E. Dzyaloshinski Zh. Eksp. Teor. Fiz.46, 1420 (1964 [Sov. Phys.
JETP19, 960 (1964].

34T, Morya, Phys. Rev120, 91 (1960.

A, N. Bogdanov and D. A. Yablonski Zh. Eksp. Teor. Fiz.95, 178
(1989 [Sov. Phys. JETRS, 101 (1989)].

36A. N. Bogdanov, M. V. Kudinov, and D. A. YablongkiFiz. Tverd. Tela
(Leningrad 31, No. 10, 105(1989 [Sov. Phys. Solid Stat81, 1707
(1989].

S7A. N. Bogdanov and A. Hubert, J. Magn. Magn. Mat&88 255 (1996.

38A. N. Bogdanov and A. Hubert, Phys. Status SolidiL86, 527 (1994.

Translated by Eugene Yankovsky

= Filippov 977



Localization and space-time dispersion of the kinetic coefficients of a two-dimensional
disordered system
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A generalization of the Vollhardt—Wite self-consistent localization theory is proposed to take
into account spatial dispersion of the kinetic coefficients of a two-dimensional disordered
system. It is shown that the main contribution to the singular part of the collision integral of the
Bethe—Salpeter equation in the limib—0 is from the diffusion pole
io=(p+p')?D(|p+p’|,»), which provides an anomalous increase in the probability of
backscatteringg— —p’. In this limit the dependence of the diffusion coefficient @and w

exhibits localization behavioD (q,») = —iwf(I5q), where|f(z)|<(0)=d? (d is the

localization length According to the BerezinskiGor’kov criterion,D(q,0)=0 for all g. Spatial
dispersion ofD(q,w) is manifested on a scatp>< 1/, wherel is the frequency-

dependent diffusion length. In the localization sthie!, wherel is the electron mean free path;
Ip « w asw—0, suggesting the suppression of spatial dispersion of the kinetic coefficients
down to atomic scales. Under the same conditiofg, w) exhibits a strong dependence qron

a scaleg « 1/d, i.e., the nonlocality range of the electrical conductivity is of the order of the
localization |lengthd. At the microscopic level these results corroborate the main conclusions of
Suslov(Zh. Eksp. Teor. Fiz108 1686(1995 [JETP81, 925(1995]), which were

obtained to a certain degree phenomenologically in the lisrit0. A major advance beyond the
work of Suslov in the present study is the analysis of spatial dispersion of the kinetic
coefficients at finitgrather than infinitely low frequencies. ©1997 American Institute of
Physics[S1063-776(97)01705-9

1. INTRODUCTION at all to date’ Qualitative estimates of the dependence of the
diffusion coefficient orq D(q,w—0) on the basis of scaling
The last twenty years have witnessed enormous progreg®nsideratiorfslead to contradictory results and in fact de-
in our understanding of the Anderson localizationstroy the structure of self-consistent localization theory.
phenomenon.Today this field of research has grown into an A host of problems arise in this connection: G@an the
expansive branch of physics of the condensed $sa, e.9., spatial dispersion of the kinetic coefficients be systematically
Refs. 2—5. One of the most productive approaches to thetaken into account within the framework of self-consistent
investigation of the problem is afforded by the Vollhardt— |ocalization theory? PHow does the character of such dis-
Waolfle self-consistent localization theofy® Results cor-  persion change in transition from the metallic to the insulator
roborating the hypothesis of total localization of charge carstate? 3 What restrictions are imposed on the Vollhardt—
riers in two-dimensional disordered systems have beeRvolfle theory when spatial dispersion is ignored?
obtained on the basis of this thedr{ The critical behavior The first serious discussion of these problems appears to
predicted by the Vollhardt—Wfbe theory near the Anderson have been undertaken in a recent publicatiin, which it is
transition in systems of dimensial®™>2 (Ref. § is consistent  concluded that spatial dispersion of the diffusion coefficient
with results obtained in the field-thedrand scalin§® ap- s insignificant on scaleg « 1/d (whered is the localization
proaches to the problem. Its ideas form the basis of microlength, and its presence fay « 1/kg (kg is the Fermi momen-
scopic localization theory in the presence of an external magum) does not influence the critical behavior near the Ander-
netic field®'? and the modern theory of “dirty” son transition. Indeed it is stated in Ref. 15 that the
superconductors®14 Vollhardt—Wdfle theory becomes asymptotically exact in a
One of the drawbacks of self-consistent localizationsufficiently small neighborhood of the mobility threshold
theory in its present formulation is the impossibility of sys- (for systems of dimensiod>2). An important result of Ref.
tematically taking into account spatial dispersion of the ki-15 is proof of the fact that, in accordance with the
netic coefficients. The problem is that the basic equation oBerezinski—Gor’kov*® criterion, D(q,«=0)=0 for all q in
this theory establishes an integral relation between the locdhe localized phase.
diffusion coefficientD (w)=D(q=0,w) and the generalized In this paper we propose an alternative approach to the
diffusion coefficient D(qg,w). Following Vollhardt and solution of the above-stated problems, which represents a
Wolfle,® one can circumvent this difficulty by replacing direct generalization of the Vollhardt—\Wie localization
D(q,w) everywhere byD(w), i.e., by assuming that spatial theory’ such as to facilitate investigation of the space-time
dispersiond(q, w) is insignificant in the localized phase. It is dispersion of the electrical conductivity(q, ) and the dif-
important to note that this problem has scarcely been studiefision coefficientD(q,w) of a two-dimensional disordered
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system in the low-frequency limib<<Z¢ (£¢ is the Fermi o .

energy and in the long-wavelength limg<kg. Our results e /\ = e R e a
agree with the main conclusions of Ref. 1bX2). In addi-

tion, our approach can be used to find explicit low-frequency

and long-wavelength asymptotic forms of the kinetic coeffi- v _
cients in the localization state. ¢ B _ L b

We close this discussion with the observation that spatia
dispersion of the kinetic coefficients must be taken into ac:
count not only for the generalization or substantiation of self- = , = = e
consistent localization theory, but also for the solution of . é ‘

) B g R (AN v = i + P .. + . o+
certain problems of practical interest, for example, the influ- ¥ = = & \ %
ence of carrier localization on the spectrum of long- - . c
wavelength “acoustic” plasmons in systems containing a = _—
quasi-two-dimensional electron gHs. U . U
1 L J

2. STATEMENT OF THE PROBLEM AND GENERAL

EQUATIONS FIG. 1. 3 Series of one-particle, irreducible Edwards diagréhfier the
We consider a two-dimensional, degenerate, ideal gas ¢fectron self-energy pail ,(#); b) graphical form of the Bethe—Salpeter
inless electrons subiect to elastic scattering b immobilequatlo_n for _the two-particle Green'’s functiéf); c) series of_two-pamcle,
_Spm e . | . 9 . y . ﬁreduuble diagrams for the verted,, (q,w). The conventional rules of
impurities, which have a concentration and a Poisson dis-  correspondence between the analytic expressions for the terms of the per-
tribution function in the sample. The one-electron Hamil-turbation series and their graphical representations are used here.

tonian of the system has the form

2
H= ;—erzR‘, U(r—R). (1)  terms of Kubo correlation functions. In the low-frequency,
long-wavelength limit @<Zg, g<kg) they satisfy the

HereU(r —R) is the potential of an isolated impurity local- asymptotic expressior [m=0,1)
ized at the poinR. We assume that it is short- lived and can f
be approximated by a delta functiod(r)=Uq45(r), which Kim(q, @)= _f dZ—(Kim(Q,®)); . (5)
is a good approximation under the conditigj A\ g,l, where &
ro is the range of the potentidd(r), A¢ is the de Broglie Heref(¥) is the Fermi—Dirac function,
wavelength, andiis the electron mean free path at the Fermi A \lfa _am
level. We also assume that the scattering of an electron b%’K ( w)>:i (ﬁ) (ﬂ)
the isolated impurity is weak and that the first Born approxi-' '™ 9 A pp M m
mation is sufficient for calculating its amplitude. . iy o

Inasmuch as the given system is spatially homogeneous X{2¢p, (0,0) = ¢y, (4,0) =@, (0, 0)},
on the average, the averaged one-electron Green'’s function is (6)

diagonal in the momentum representation: .
the volume(area of the system i8/=1, andqg=9/q.

Gy (D) ={PIR* (AP =[£=4=3, (D] (2 The correlation functiong5) and (6) satisfy the equa-
where tions of continuity derived from conservation of the number
+ : Y of particles
R (£)=(£—H=xid)~*, 6—+0, (3

is the resolvent of the Hamiltoniafl), the angle brackets —wKoo(q,w) +qKey(q,w)=—ing+0
(), signify averaging over the distribution of the impurities,
and E;(/) is the electron free-energy part, which in the
language of Edwards diagratfisis defined by the series — wKgy(Q, @) +qKys(q w)zo[ﬂ ﬂ}
shown in Fig. 1a. Information on the kinetic properties of the or: R Zr Ke
system is contained in the two-particle Green'’s function (ne is the density of states at the Fermi levahd are related
oo’ o rog o (! . impl ion h neralized kineti fficien
‘Ppp’(q’w):<R (P P3 iR (PL P 27)), (4 ?(/q,sw)paide&uea::gnzugi\:it;(%?w?:a . eile coeticient

® 2
Z: )

(7)

where o,0'=%+, p.=p*ql2, £ =L*+wl2, and 1

R*(p,p’; ) is the matrix element of the resolve(® of the L(g,0)= —K:(q,0), o(q,0)=e?ne L(q,0) (8)

Hamiltonian (1). They satisfy the Bethe—Salpeter equation, Ne

which is shown in graphical form in Fig. 1b. The vertex and to the Green's function of the diffusion equation

Ugg (9,w) in this equation is defined by the series of irre- 1 1

ducible diagrams shown in Fig. 1c. G(g,w)= —Kpi(q,w)=
According to the modern theory of irreversible Ne

processed’ the kinetic coefficients can be expressed inHereD(q,) is the generalized diffusion coefficiéfit

—l0+9°D(q,0)’ ©
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L(g,®) -
DA = T (@)L (o) w0 >

n'=0

(14 Sno+ don'— 5n050n’) ®Opn —( 5n+1,n’

It is a well-known fact that the diffusion pole
io=0°D(q,) of the Green’s function(9) is described by +Snnr+1)
the first three terms in the correlation functio(6)
(I=m=0), whereas the contribution of the last two terms k
remains finite at the points=0, q=0. Consequently, all =(m) S 1+ o) (16)
necessary information on the low-frequency and long-
wavelength asymptotic representations of our kinetic coeffiHere
cients is contained in the two-particle Green’s function 1 (2n on
Ppp (A,@) (4). Mnn,(q,w):?fo dafo dé’cogne)cogn’9’)
We use the relation

gk
om +Mnnr<q,w>]¢>g@<k,q.w>

~ k
- q-p’ X! mAZ(q,w)8(6— 0’
AGK(q,0)PM(p,giw) =2 @rfp,(q,w)(?) , [W o) 2607
pl
k=0,1, (11 - u;p,(q,w)AGp,(q,w)] (17
to determine the relaxation functionB®(p,q;w) of the p’

density k=0) and the currentk=1) in satisfaction of the is the matrix of memory functions. The symiwl under the
transport equation summation sign in(17) indicates that the summation is car-
ried out only over the modulus of the vecfor. To calculate
®M(p,q,w) the conductivity(8) and the diffusion coefficient10), it is
sufficient to know only the one Fourier coefficient
~ \k ®{V(k,q,w). It is therefore customary, following the work
- (_p +3 U (q,0)AG, (g,0) P (p',q,), of Vollhardt and Wifle,®” to retain only the first two terms
m PP b (n=0,1) in the expansiofl5), whereupon a system of two
(12) linear equations is obtained in place(@b). It will be shown
o . . . below that this approximation can be used to calculate the
Wh'Ch is easily obtained from the Bethe—Salpeter equationineric coefficients only if their spatial dispersion is ignored.

for ¢g, (0,@) (see Fig. 1b Here we have introduced the otherwise it is necessary to solve the complete system of

w—

+A%,(9,w)

(qp

notation equations(16).
AGH(Q,0)=G, ()~ G; (£4), It is readily shown with the aid of the Ward identit¥4)
- * thatM ,o(q,w)=0 for anyn. All other matrix element$17),
Agp(q,w)zz— (g—)_y (£1). (13 generally speaking, are nonvanishing and depend both on the

choice of approximation for the vertex functithh;pT(q,w)
The self- -energy park; (#) and the kernel of the integral and on the series representing the impurity potektial). In
equation(12) U o (O, w) are related by the Ward identfty  the next two sections we analyze the solution of the system
of equations(16) and the calculation of the kinetic coeffi-
AEp(q,w)zz U;p7(q,w)AGp/(q,w). (14 cients of a two-dimensional disordered system in the ladder
P’ approximation and in the approximation of self-consistent
This relation plays an important role in the ensuing calculalocalization theory.
tions; in particular, it ensures conservation of the number of
particles. 3. LADDER APPROXIMATION
In contrast with the customary definition of the relax-
ation function$® the delta singularity in them dp|=kg
(g<<kp) is explicitly separated out in Eq11). Therefore,
assuming tha®(p,q,w) is a sufficiently smooth function
of p near the Fermi surface, we seek a solution of the trans- pp, L (q,w)= n||Up_p,| .
port equation(12) in the Fourier series form

Retaining only the first terms in the diagram series in
Figs. 1a and 1c, we obtain the following expressions for the
electron self-energy paE (#) and the verte>U (q w):

* UP:J U(r)exp(—ip-r)dr, (18
M(p.g,0)= 2 ®(ke,q,0)co8n0),
n=0
_ S5(2)=n2 |Up_|?G ().
6=p,q. (15) (7 '% Vompl "Gy ()

Substituting Eq(15) into (10), we readily obtain a sys- This approximation was first proposed by Edwaltibut so
tem of nonlinear algebraic equations for the Fourier coeffifar it has been used to calculate the kinetic coefficients with-
cients (for brevity we drop the subscrige from the Fermi  out regard for their spatial dispersion. Using Etf), we can
momentum from now on easily verify that all off-diagonal elements of the matrix of
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memory functions (17) can be ignored in the long- 2D,

wavelength limit. Indeed, to within terms of ordey/k)? we D(g,w)= ,
have J W) (9.0) 1-iwm+J(1—iw7)?+29°Dy7
i b 1, ’s
Mnn(quw):T_:mE |Up,p,|2AGp,(?§) O_EUFT (23)
n p’

_ and, related to it by Eq(10), the generalized kinetic coeffi-
X[1=cogne)], (19 cient (Lq,w) or the electrical conductivityo(q,w). For
where o= 6—6'=pp ', and r, has the significance of the g=0, from Eq.(23) we obtain the usual Drude equations for

nth-order relaxation time; in particular,= 7 is the transport e frequency-dependent electrical conductivity and diffu-
relaxation time. To estimate the relative value of Sion coefficient, which are related to each other by the Ein-

M, (9,®) (0 # n'), we use a Gaussian model potential with Stein relation:

the Fourier transforn,=Ugexp(— erSIZ). Expanding the oo ner
off-diagonal elementél7) in powers of the small parameters o(w)=e’nD(w)= 00= (24)
ro/Ng, Ng/l, andg/kg, we obtain

l1-iwr’
where gy is the static conductivity, and is the density of

N aq k-t electrons. The spatial dispersion of the kinetic coefficients

Ke calculated here is of a less trivial nature. Whereas the gener-

(20) alized diffusion coefficien{23) as a function ofw andq is

- . continuous aiw=0 andq=0, the conductivity suffers a dis-
Consequently, within the error limits stated here, only the

continuity at this point:

diagonal elements of the matrix of memory functiogiis) y _ P o
need to be included in the system of equati¢h). It is o= lim limo(q,w)# lim lim o(q,w)=0. (29
important to note that the inequalitieg<\g<| are the con- ©=0q-0 4—0 0—0
ditions governing the validity of classical kinetic theory.  The fact that the second limit i25) is zero follows from the

In the limit of the delta-function impurity scattering po- low-frequency asymptotic behavior of the conductivity:
tential (ro—0) all the off-diagonal elementdl .- (q,®) (n |

’ . . . . w
# n') are identically zero, and all the relaxation times are (g w)ox— —e?nz, w—0, q#0, (26)
equal (-,= 1), because the integral of the second term over

the anglee vanishes alJy,=Uq=const. These simplifica- \yhich is readily deduced from relatior(8) and (10) with

tions permit us not only to obtain an exact solution of theg|iowance for the finiteness of the static diffusion coefficient
system of equation€l6), but also to sum the corresponding p(q) (23).

‘ Mn,ntl(qyw)

E)\F ’ Mn,nik(Q1w)
que

X — —,
)\F | Mn,ntl(qvw)

Fourier serieg15)) (see Appendix A Consequently, the expressions obtained here for the ki-
1 1 netic coefficients correctly reproduce their behavior in the
®O(p,q,w)= vicinity of the pointw=0, q=0. The equationr(q,0)=0

1—(i/H®Y(k,q,0+i/7) 0—q-p/m+i/7’

21) has a simple physical significance. In the inhomogeneous

steady state without any forces of nonelectrical origin, the
1 o diffusion and drift currents exactly cancel one another, cre-
M (p,q,w)=— q + aq)(o)(p,q,w)- ating zero net current.

Here the symboib9(k,q,z) denotes the zeroth Fourier coef- 4. SELF-CONSISTENT LOCALIZATION THEORY
ficient of the density relaxation function without scattering APPROXIMATION

by impurities: Of utmost importance in the set of diagrams contributing
1 (on do to the irreducible verte)U;pT(q,w) is the series shown in
0 — |7 2 42,2\-12 ; ; ; . P
®y(k,0,2) 277J0 7—Qu; CoS 0 (z—Qg“vp) ™7~ the first row of Fig. 1c(maximum crossing or “fan” dia

grams. The sum of the series can be determined exactly in

(22) the case of scattering of electrons by impurities with a short-
The factor containing this function ib(®(p,q,») (21) lived potential. When this sum is taken into account,
plays an important role. Because of it, the density and curd ;pT(q,w) acquires a term containing a diffusion pole at the
rent scattering functions are coupled by the equation of conpoint iw=(p+p’)2Do(|p+p’|,®), Where Do(q,w) is the
tinuity (21) and, hence, conserve the number of particles. Aclassical diffusion coefficien23). When the Bethe—Salpeter
similar structure is found in the solution of the classical ki- equation is solved iteratively, this term yields logarithmically
netic equation for a spatially nonuniform nonequilibrium divergent(asw—0) corrections to the kinetic coefficients. It
distributiorf® and in the expression for the density relaxationhas been showfthat the phenomenon of weak localization
function obtained by Ge?! in the interacting-mode ap- in low-dimensional disordered systems is intimately related
proximation. to these corrections.

Using the expression@1) for the density and current This idea has been elaborated by Vollhardt and
relaxation functions, we readily calculate the generalized difWoalfle,>~8 who proposed a self-consistent generalization of
fusion coefficient the “fan” series for the irreducible vortex, augmenting it
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B Xifzqr G, (g,w)cogne)de
— = NV 2m)o —iot+(p+p)?D(p+ple)

uytte U< ' + /\/ o

] — & ) oo ¥ . The substitutiorz=exp(¢) reduces the integral over the po-

lar angle in(29) to an integral over the circle of unit radius
|zl=1 in the complex plane. We assume that the main con-
tribution to it is from the diffusion poldthis approximation

is justified in Appendix B. Then, invoking the residue theo-
rem, we obtain the following expression for a diagonal ele-
ment of the memory function matrix:

FIG. 2. Graphical form of the equation for the vertl +p7(q,w) in the
approximation of the Vollhardt—VAthe self-consistent localization theofy.

with all possible diagrams containing two outwardly inter- i

secting lines of interaction. As a result, the equation showMnn(9,@)=—~—(~ 1)”
graphically in Fig. 2 is obtained foU (q ). Here the

diagram unit between the lines of |nteract|on in the second w

term on the right-hand side represents the convolution over ~ 2

momentak andk’ of the two-particle Green’s function in the
Cooper channel or in the particle—particle chan(egop-
eron:

V(q,0)= > (RY(ky K\ 2R (—k_,—k";27)),,
“ @7

where k. =k*q/2 and q=p+p’. In systems with time-
reversal invariance, however, we hawr’(—k,—k’;%)
=R7(k’,k;#), so that the cooperofR7) exactly coincides
with the Green'’s function of the diffusion equati®(q, »)
(9), and the irreducible vertex acquires the form

1

7 —iw+(p+p)?D(lp+p'|,®)
(28)

o (0,@) =W+

whereW= mUS, =(2wWng) "1 is the bare relaxation time,
andD(q,w) is the exact diffusion coefficient.

In approaching the calculation of the matrix elements of

the memory function$17), we call attention to the fact that
according to the Ward identity14), A3 (q,») has a term
that contains the diffusion pol€8). At first glance, this
property should lead to a singulariy2.,(q,w) = l/w in the
localized phas€g D(qg,w)x—iw], contradicting the well-

AG, (0, @)k’ dK’

8 fo {{—io+(k—k)’D][—iw+(k+k)?DJ}H?
(30)

Here D is the value of the diffusion coefficient at the pole
iw=0°D(q,®). The asymptotic expressidB0) holds in the
limit w—0 under the conditionw<4k?/D| (k=k’'=kg).
This inequality is satisfied automatically in the metallic state,
and Eg. (30) remains valid in the localized phaseD (
«— iwd?) for d>\g, whered is the localization length. To
calculate the integral with respect kb in A (30), we ap-
proximately set?= k2/2rrlin AG/(q,). If, in addition to
the inequality w<4k?D|, the condition k>>m/7 (or
I=k7/m>\g) also holds, the lower limit of integration with
respect tox=k’2—k? can be replaced by . We finally
obtain

|2\ ~1/2
1+4|w’=r) In
D

14 (1+4i wl2/D)V2

1—(1+4iwl?/D)Y?
(3D

We therefore obtain a system of equations for the Fou-
rier coefficientsd(*)(k,q, »), whose exact solutiofsee Ap-
pendix A yields the following expression for the desired
correlation function:

_AeDg

™ D D

known analytic properties of the averaged one-particle

Green's function(2). For 2<d<4 this paradox has been g,

resolved recently in Ref. 15, where it is shown that a d|ver-

gence of the type &/ on the right-hand side of the Ward

identity (14) in the localized phase is precluded by the ap-

proximate(to orderw) orthogonality of the singular part of
the vertexU (q o) relative toAG,(q,w). We therefore
replace the flrst term iql7) by i/~ and for simplicity, iden-
tify 7 with the bare relaxation time present(8), since this
substitution does not qualitatively affect the main results.

Here again, as in the ladder approximation, a major role
is played by the diagonal elements of the memory function
matrix (17), which after simple transformations assume the

form

+ o

k'dk’

T 2mT)o

Mn(Q, @)=
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1
1—(i/m)(1—-A)D

Ppaw)= Ok wtil7)

o+ilT+iAl/T+p-g/m
X TT A2 2 2
(o+il7)*+ A% 7—(p-g/m)

(32

where

i _A)Z
w+——i—
T T

0 i
CI)O( k,q,w+ ; =

2w+i/7—iA/T 1z

Fo+ilr+iAlT

2

—q7v (33

The current relaxation functiod®(p,q,) is related to
®©(p,q,w) by the continuity equatiori21). With the help
of these relations and Eq&)—(10) we readily find an ex-
pression for the diffusion coefficient;
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D(gw)= 0
(@0)= T Torra
2
X T+{1+ 2Dl [(1-iwr)2— AL} 2

(39

For q=0 the substitutiorD—D (o) [|iwl?/D(w)|<1]
takes Eq(34) into the well-known equation for the diffusion
coefficientD (w) obtained on the basis of self-consistent lo-
calization theory:” For A=0 Eq. (34) coincides with the
expression(23) for the diffusion coefficient in the ladder
approximation.

5. DISCUSSION

The value of the diffusion coefficient at the pole
io=0°D(q,w) enters into the right-hand side of E(B4)
through the parametex (31). To calculateD(q,w), there-
fore, it is first necessary to solve the self-consistent equatio
for D obtained from (34) for g°=iw/D. In the low-
frequency limit its solution has a localized charactBr,
*— iwd?. In fact, substituting this asymptotic representation
into the equation foD, we readily verify that it exists when
w7<12/d?, where the localization lengtthfor | >\ has the
form

7 |
d=I ex

2 )¢

d>1>\p. (35)

The next iteration of the equation f@ enables us to deter-

the mean free path (or the classical diffusion length
Ip=1/\2=\Dy7) in the ladder approximation, in the local-
ization state it is equal top(w)=Do7|D(w)/Dy|<l<d.
Consequently, in accordance with the conclusions of Ref. 15,
the spatial dispersion dD(q,w) is insignificant on scales
qecl/d.

The parametelp in the localized phase has the signifi-
cance of a frequency-dependent diffusion length. According
to Eq.(36), the low-frequency asymptotic representati8i)
has the formD(q,w)=—iwf(qw), which ensures the sup-
pression of spatial dispersion of the diffusion coefficient in
the localized phasd () « w—0). This result is valid over
the range of frequencies satisfying the condition
Ip(@)>\g. Y

The conductivity presents a different situation. In the
metallic state the nonlocality range characterizing its spatial
dispersion is equal to the mean free patlin the limit
g—0, o # 0 (23) and becomes infinite in the limib—0,

g # 0 (26). In the insulator phase(q,») (37) as a function

of g and w is continuous at the poig=0, w=0, and the

role of the nonlocality range is taken by the localization
lengthd.?’ Consequently, unlike the diffusion coefficient, the
conductivity exhibits appreciable spatial dispersion even on
scalesq o« 1/d in the localization state. We assume on this
basis that the electrodynamic properties of two-dimensional
disordered systems in the localization phasedfel must be
much stronger than in the metallic state and depend on spa-
tial dispersion effects.

It helps to understand the difference in the dependences
of the diffusion coefficient and the conductivity an(37)

mine the low-frequency asymptotic behavior of its real partwhen we consider that they determine different fluxes. Thus,

Thus,
~ ~ m
Im D(w)x —d?w, RED(w)OCWzdLle,

d2
(uTI—z' <1.
Equations(35) and (36) do in fact reproduce the results of
Vollhardt and Wifle,® differing only by the numerical factor
1/2 in the exponent of35) and the absence of an artificially
introduced cutoff parameter.

(36)

D(g,w) as a kinetic coefficient determines the magnitude of
fluxes strictly of a diffusion nature, so that the scale of its
spatial dispersion is governed by the diffusion length
Ip(w). The conductivityo(q,w) determines the total mag-
nitude of diffusion and drift fluxes, the latter type dominating
in the long-wavelength limit. The spatial nonlocality range of
the constitutive equation relating the current density to the
electric field in the medium is equal to the mean distance
over which the electrons “remember” their previous states.
The coherent scattering of electrons by randomly distributed
impurities plays a major role in the localization state, pro-

Consequently, the inclusion of spatial dispersion in thegycing an anomalous increase in the backscattering probabil-
self-consistent equations for the kinetic coefficient does nofy (p'= —p) (Ref. 22 [see(28)]. Of course, the nonlocality

alter their low-frequency behavigi36) in the localization
state forg=0; this fact concurs with one of the conclusions

radius in this case is determined by the coherence length, i.e.,
by the average size of the closed loops of self-intersecting

ture of the spatial dispersion of the conductivit{q,») and
the diffusion coefficientD(q,w) in different ways. Thus,
substituting the asymptotic representatiof®§) into Egs.
(10) and (34), we obtain

o(g,w)=€’n D(w)

TE TP+ d2g?

_ (37
2D(w)

T 11+ 23 ()

D(q,w)

Whereas the nonlocality range, which characterizes th
spatial dispersion of the diffusion coefficigf@3), is equal to
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order of magnitudé.

It follows from the asymptotic expressiofi36) and(37)
that the static limit of the diffusion coefficient is equal to
zero in the localization state for any finite wave vector, i.e.,
lim,_oD(q,w)=D(q,0)=0. This result agrees with the
Berezinski—Gor'kov criterion'® which stipulates that the
Green'’s function of the diffusion equatig®) manifests the
asymptotic behavioG(q,w) « 1l/w in the limit w—0 in the
localized state.

The present study is based on the Vollhardt4Wo
¢heory, the justification of which poses a timely prob2m.
An important step toward that goal has been made in Ref. 15,
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where it is shown that the singular structure of the quantity gk
(28) is a direct consequence of time-reversal symmetry. All
the same, there are still a number of problems associated

with checking out the approximate procedure for establishingaind is solved analogously. The final expressions for the den-

self-consistency® The results obtained here can contributesity and current relaxation functions in the ladder approxi-

to the solution of some of them. In particular, inequalBg) mation have the forn21) and(22)).

in Appendix B defines the frequency range in which not only  According to Eq.(30), the system of equations for the

the Vollhardt—Wdfle procedureD(q,w)=D(w), but also  Fourier coefficientsd(?) in the self-consistent localization

(subject to the additional conditiofb(w)>)\,:) the above- theory approximation has the form

proposed approximate scheme for taking into account weak

spatial dispersion of the electrical conductivity and the dif- 0) gk 0)_

fusion coefficient(37) is valid. As for the dependence of the wbq’ - ﬁq)l =1

kinetic coefficients ong, estimates of our discarded off-

diagonal elements of the matrix of memory functiogiis) gk

show that the asymptotic representat{8i) remains valid in E‘Do R

the rangeg<<1/1. (A5)
The authors are grateful to A. K. Arzhnikov and L. I.

Danilov for profitable discussions and support during thez—mfb(z?,l—

present study.

k k
e (A4)

1 _
Pg 2m

i
w+ —
T

m

i qk
w+ ;— ;A)CD(Z?-F %q)é?(Ll:O,

ak qk
S P - R+ 5 PR ,=0, k=1,

2m

i
wt-—+-A
T T

APPENDIX A: SOLUTION OF THE SYSTEM OF RECURSION
RELATIONS whereA is defined in Eq(31). It is easily shown, using the
last two equations of the systefA5), that all the Fourier

In the case of scattering of electrons by impurities with acefficients of odd or even order are interrelated by the ho-
delta-function potential the system of equations for the coef-rnogeneous second-order recursion relations

ficients®(?) in the ladder approximation has the form

k)2 i\2 A2 gk \?
k ) o S I PN B L I P )
w‘DBO)—;—m@(lo):l, (Zm) n (w+ P 2(Zm n+2
Kk i K ak|® o
I — =
o P8+ 2|0 50 =0, (A1) +(2m) Pora=0, (A0)
ak i ak wheren=2k—1 or n=2k (k=1). In this case, by analogy
— 00— o+ |0 + —00. =0, n=1. with (A2), the solution of the system of equatiofs6) must
2m T 2m be of the form
This is an infinite system of homogeneous difference equa- 0 0 ‘ 0 e 2k
tions with constant coefficients. We seek a solution in the PR =0'CZ*, R =0BZ (A7)

form?3 - o .
The substitution of these expressions ifd®) yields a qua-

PV=pPcC2" (A2)  dratic equation inz2. Its solution subject to the condition
®®(q=0)=0 (n=1) has the form
1/2]

i 2 AZ 1/2
<w+—) +?—q2v§} -
(A8)

The substitution of Eq(A2) into the last equation of the

system(Al) yields a quadratic equation iy which has two 1 ( 12 A2

i
solutions, the correct choice being the one that satisfies the= — (w+ o + o

Que

T

2
22
—q7vg

12

condition®{?(q=0)=0 (n=1)
w+ ! ) (A3)  The constant€ andB are again determined from the bound-
r

1
i qu F{ ary conditions, i.e., from the first two equations in the system
The undetermined consta@tand the zeroth Fourier coeffi- (A5). The system of equations for the coefficierdt§") is
cient®(® can be found by means of the first two equationsSolved analogously. The final expressions for the density and
in the system(A1), which serve as boundary conditions for current relaxation functions in the self-consistent localization
the system of difference equations. The Fourier series ogheory approximation have the for82) and(33).

o+ —
-

tained by substituting the resulting solution irfi®) reduces I closing, we note that to calculate the diffusion coeffi-

to a geometric progression and is easily summed. cient D(w) and the conductivityo(w) without regard for
The system of equations for the coefficiert§" differs spatial dispersion, it is sufficient to retain only the first pairs

from (A1) only in the boundary conditions: of equations in the system@Al) and (A5) and to set

®=0 (n=2). In this case Eq/A1) gives the well-known
Drude limit (24)), and Eq.(A5) gives the Vollhardt—\Wifle
approximatiofi’ (see relatior(34) with q=0).

k
W}~ o #1=0,
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APPENDIX B: ESTIMATION OF THE INTEGRALS ALONG so that the principal contribution to the matrix elements of
THE BRANCH CUTS the memory function is from the diffusion pole. Conse-

The explicit expression(37) for the low-frequency duently, the scheme developed above for the calculation of
asymptotic behavior of the generalized diffusion coefficientP(d,®) works when the inequalityB6) is satisfied. The
D(q,w) can be used to estimate the contribution from thesame condition defines the limits of validity of the
previously discardedin calculating the matrix elements of Vollhardt-Wdfle approximatiofi® D(q, ) =D(w). Other-
the memory function$29)) integrals along the branch cuts. wise the complex analytic structure of the generalized diffu-
After substituting(37) into the integral over the polar angle Sion coefficient can significantly alter the value of the inte-
¢ (29), we set gral (29).

2= (p+p')2=2k2+k%z+z 1Y), z=expi¢p). (B1)

In th?f plane the integrand is symmetric under_the_ INVETSIOMThig restriction is a consequence of the wave nature of the laws governing
z—z * and has two branch cufS; (z;=z=<0) inside the  the motion of microscopic particles. Estimates in AppendiXsBe Eq.
unit circle |Z|=1 andC, (—w=<2z=<z,) outside this circle. (B6)) show that forI>\g there is a frequency interval in which

Herez, andz, are the roots of the equation A\e<lp<<l and|D(w)|<D, hold simultaneously.
IThe only effect of including spatial dispersion of the kinetic coefficients
1+213(w)k?(2+z+2 1) =0,

(37) in the calculation ofr(qg,w) is a weak renormalization af in (37).
31In our opinion, these considerations do not apply to spatial nonlocality of
7,,2,=1, |Zl| <1 and|22| >1. the diffusion coefficient, because the concentration gradient is not a force
After straightforward manipulations the contribution acting on electrons, and the relationship between it and the magnitude of
from the branch cuts t™M (g, ) (29) can be written in the ~ the diffusion fluxis statistical in nature.
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A nonlocal integrodifferentical equation describing the electrodynamics of a Josephson junction
between superconductors of finite thickness in the direction of the magnetic field is

derived. It is shown that the interaction of kinks always exhibits long-range power-law asymptotic
behavior, which can strongly influence the motion of vortices in and the current—voltage
characteristic of even a thick contact. The spectrum of low-amplitude excitations is studied.

© 1997 American Institute of Physids$1063-776(97)01805-3

1. The nonlocal electrodynamics of Josephson junctiongurrent extends, of course, to the interjunction interaction.
has undergone rapid development in recent years. Thrdeurthermore, in sufficiently wide junctions with nonballistic
cases have been investigated thus fam unnel junction at  transport of vortices, the indicated long-range action should
a butt-joint of two ultrathin superconducting films whose be reflectedsee below in the form of the current—voltage
thickness is much less than the London lengthaZunnel  characteristic of the contact at low voltages and currents.
junction between bulk superconductors whose thickness is We reduce the problem posed above to a problem of an
much greater than the London length; angagunnel junc- Abrikosov vortex in a plane-parallel plate. Although this
tion between superconducting layers of finite thickness in @roblem has already been studied in Refs. 14-16, for our
direction perpendicular to the magnetic field. For example, irpurposes additional calculations were required. The final re-
Refs. 1-8 it is shown that nonlocality effects can be largesults concern a butt-joint conta@he plane of the joint is
even in junctions with a large thicknedd>\, where\ is  perpendicular to the plane of the plgtéut the formulas
the London penetration deptin the direction of the mag- Presented below make it possible to extend the results to the
netic field (along the direction of the vorticsi.e., in cases case of a beveled junction and to pass to the limiting case of
previously studied in the local approximation. In the opposite lap-joint junction.
case of junctions in thin filmsd<\), nonlocality becomes a 2. The magnetic field of a linear Abrikosov vortein
decisive factor. The corresponding equations were derivefhe London approximatigrsatisfies the equation
and studied in Refs. 9-12.

A Josephson junction between two superconducting lay- h=\?Ah=w(r), @
ers of finite thickness in a direction perpendicular to the
magnetic field of the vortices was studied in Ref. 13. None- o

_ %o . @,
theless, the theory remains inadequately developed. It is nec- w(r)= Zcurl Vo= 2w f S(r=R(p)) dR(p)

essary to go beyond the limiting cases mentioned above,

since in practice junctions whose size in the direction of then the superconductor, wheré is the phase of the order

orientation of the Josephson vortices is comparable\ to parameter an&(p) is the parametrically defined radius vec-

(such a geometry is realized in, for example, single-crystator of the points of the vortex core. The core of the Joseph-

Y-Ba-Cu-0 chips with twinsare often used in practice. son vortex spreads out along the weak-link surf8adivid-

The present paper gives a derivation and a preliminary analyng the superconductor, i.e., it is a two-dimensional object.

sis of the equations for a Josephson junction in a plate witA’he corresponding source(r), “smeared” over this sur-

an arbitrary ratiod/\. face, in Eq.(1) can be expressed, as one can easily show, by
It is shown that the relation between the jump in thethe formula

phase of the order parameter at the junction and the current

density always contains a strongly nonlocal component due ®,

to the long-range character of the field in free space, the =5 f S(r—R(@,b))

amplitude of the component exhibiting only a weédp-

proximately linear dependence on the paramelgid, and  wherea andb are the arguments of the parametric represen-

its form being completely independentiofd. In view of the  tation of S, R(a,b) is the radius vector of the points @)

latter circumstance, the nonlinear component of the currentiS(a,b) is a vector element of area 8f and¢ is the phase

albeit small in amplitude, can play an important role in sev-difference between the edges of the junction. Since in any

eral respects: first, to take account of the total transport curease diw=0, this source can either be represented as a con-

rent of the junction and the external field in the boundarytinuous sum along linear coréandh can be represented as

conditions correctly and, second, in describing structures linear combination of the fields of the Abrikosov vortices

consisting of parallel Josephson junctions connected in sesr, conversely, it can be treated as a three-dimensional vector

ries, since the nonlocal long-range coupling of the phase anfield. For a butt-joint junction with the magnetic flux directed

(9—(pdS(a,b)

JR ’ @
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perpendicular to the plate, orienting tzeaxis along the where, as a simplification, we skt=k/|k| andk=|k|. The
thickness and the axis along the junction, we have from Eq. formulas (4)—(8) make is possible to find the supercurrent

(2 and the field(inside the plateof an arbitrary source.
®, do(X) Substituting(3) into Eg. (5) and transforming to the co-
v,(r)= E&(y) w0 vy=0. 3 ordinate representation, we obtain for the aver@mer the

thickness of the plajecurrent density through the junction
Here, in accordance with the condition di#0, the phases from Egs. (4)—(8) j(X)=J,(X)+J(X), where J,, is the
at the edges and the phase jumpgXx)=460(x,+0) “seed” Meissner current, determined by the figfg,, and
— 6(x,—0) are independent of the coordinate
. : . chb, 4 d

Ultimately, the phase jump and thereby the source will  j(x)= _3_2_J Q(Xx—x")—r @(x")dx’ (9)
be found by solving the complete nonlinear equation for the 16 N7 9x 2
junction. But since Eq(1) is linear, we can write the field as s the current due to the source. The nonlocal source—current
h= Hm+ H, WhereHm is the “seed” Meissner f|e|d, which is Coup“ng kernel here is given by
engendered by the prescribed transport supercurrent and the
external magnetic field and is determined by solving the ho- Q(x)=K (M) i fw dk Jo(kx) (10)
mogeneous equatiofl) as if there were no weak link at all MY d\? Jo k3(k+k cothkd)’
and the superconductor were continuous, &hds engen-
dered by the sourcét vanishes forv=0). Taking a two-
dimensional Fourier transform in the plane of a plate of
thickness 2, |z|<d, we find

whereK, andJ, are a modified Bessel function and a Bessel
function of order zero. Here the first term corresponds to the
limit of two bulk superconductors of thicknesis>\ and is

the kernel, first obtained in Ref. 1 and extrapolated in Refs.
H=H,+a expxz)+b exp — kz), 4 2-8, in the integral term of the equation. In the opposite limit
of ultrathin films of thicknessi<\, the sum of both terms

Ho=— ‘ Mﬂy(k,zf)dz/' gives the kernel, first studied in Refs. 9-11, in the integral
—d 2K\ term of the equation and equal to
k=(N"2HKA)Y2 KP=KE+K2, (5

Q00+ 22 [ ak otk
wherek is a two-dimensional wave vector. The vector coef- T Jo o 14 2KNe
ficientsa and b are determined, first, by the condition that where\.;r=\2/2d is the Peierls penetration depth.
the field be divergence-free and continuous at the edge of the o ¢josed equation for the phase difference at the junc-
plate and, second, by the_ pqtential nature of the tangentiglon can be obtained, as usual, by equajig to the sum of
component of the magnetic field at the boundary of the Sug,e josephson supercurrent, the normal current, and the ca-
perconductorwhich means that the component of the cur-paitive displacement current, all regarded as internal char-

rent normal to the surface vanisheand by the potential 5 teristics of the contact, and has the form, in standard nota-
nature of all three components of the field in free space. o

From the latter condition we obtain )
Bde 0

H“/Hzlzzidziik/lkL (6) sine+——+w; " —=
wj at ot
which accounts for the effect of free space on the field and 5
current distributions in the superconductor. Here and below Im(X) A5 @ .0 o
. o =—+—— | Q(X—X')—o(x")dx’. (17
the subscripll denotes thet andy projections of the vectors. jc TN IX X

All iti k her yiel o
conditions taken together yield Herej. is the Josephson current densiky, and w; are the

a,=A " —(dHy,/9z+kHq,)|,— ¢ k + K)exp( kd) Josephson length and frequency, ahds a dissipative pa-
B _ _ rameter. The integral kern€)(x) describes excitations in a
* (9Hoz/ 92 KHoz) =~k —K)expl — xd) ], (7)  Josephson junction in a consistent manner, both in a thin film

b,=A" Y —(dHg,/ 92— kHog,)| = _q(k +K)exp( kd) and in a sample which is thick in the direction of the mag-
netic field. In the general intermediate case, it consists of the
—(0Ho,/ 92+ kHop) |- a(k = k)exp(— kd)], sum of a well-localized and nonintegrable strongly nonlocal
A=2(k2+k2)sinh(2xd) + 4k cost(2xd), term (seconq term on the right-hanq side in E-'Jp)), which
originates with the slowly decreasing tangential component
=(2 sinh(2xd)) " Y —iKk[H,|,—q exp( xd) of the magnetic field at the surface of the plate. It is easy to
see that folx|>\ the kernel has the asymptotic form
+Hz|z=fd qu_Kd)]_HOMz:dquKd) \2
+Hojlz=—q eXp(— «d)}, @® Q(X):W- (12)
by=(2 sinh(2xd)) " ik[H,|,—4 exp(— xd) Accordingly, as follows from Eqs(9) and (11), the current
density of an isolated static kink and the phase of the current
+H,| - d)]+Hgyl,= —kd
zlz=—a Xp(xd)]+ Hoy|z-q exp(— xd) (near their limiting valuesfar from the center of the kink
—Hojl,— —q exp(xd)}, decrease ax| 2.
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3. We shall now discuss the role of the first term on thede/dt and the voltage on the junction in the indicated local
right-hand side of Eq(11). Since the total current flowing approximation, are proportional to the small factor
from an arbitrary sourcdjust like the current of an indi- exp(—Ax/\;) (Ax is the characteristic distance between the
vidual Abrikosov vortex through an arbitrary cross section vortices, i.e., they are exponentially weak. Thus, the central
of the superconductor equals zero, the integral of the secorphrt of a junction plays the role of a “bottleneck” that de-
term in Eq.(11) over x should be zero. Therefore the first termines the current—voltage characteristic of the junction in
term introduces the transport current into the equation. It ishe given regime. SincAx is approximately inversely pro-
clear that this holds as well for a plate of finite width the  portional to the transport current, it is easy to see that the
direction of thex axis), though the kernel in Eqg9) and  Josephson frequency will be an exponential function of the
(11) loses translational invariance and becomes a function ofeverse current, and the dependence of the transport current
two argumentsQ(x,x'). However, our ansat@s for other | on the voltage U will have the qualitative form
authors that the Josephson vortices are oriented across the=1q[In(Uy/U)]~* with some constantk, and U,
thickness of the plate presumes implicitly that the thickness However, the nonlocal interaction of the vortices can
is small compared with the widtkotherwise the vortices qualitatively change this picture. Since in the zeroth approxi-
generated by the transport current in the absence of an extghation do/dx~x far from the center of the junctiofif
nal field would in any case be aligned along thand notthe ~X=0 corresponds to the centend, on account of Ed12),

z axi9). Then the currend,(x) is concentrated mainly at the at the center of the junction the contribution of the second
edges of the plate, and in the local approximatidor  termin Eq.(11) is determined by its periphery, the nonlocal-
d>\), in which the second term in E(L0) can be dropped, ity, as is clear from Eqg11) and(12), effectively results in
the kernel as a whole is replaced ®yx) — 7w\ 8(x), and the ~ the appearance in E(L1) of a distributed current source that
right-hand side of Eq.(11) can be put into the form Pushes the vortices toward the center of the junction. As a
)\332¢/(yx2 everywhere except at the edges; then the totafesult, the viscous transport of flux should accelerate and,
transport currentthe integral of the right-hand side of Eq. accordingly, the actual current—voltage characterlgtit) at
(11)) can be introduced in the form of boundary conditions/ow voltages should become smoottepmpared with the

on the gradient¢/dx of the phase. local-approximation estimakelt is important that such a cor-

In taking account of the nonlocality, in order to formu- rection can be very substantial even for a thick plate, since
late the boundary conditions correctly, the real distributionthe nonlocal correction, competing with the exponentially
Jn(x) of the seed current, which is determined to the samaveak “local” interaction, decreases with increasing thick-
extent by the geometry of the system as is the form of thd€Ss only linearly, and the effect of the nonlocality on the
kernel, must obviously also be taken into consideration. Buform of the IVC should intensify, together with the param-
then the edges of the plate, i.e., the finiteness of its width€terr/d, with increasing temperature. |
should also be taken into account. This problem merits a4 Let us examine the low-amplitude electromagnetic ex-
separate analysis. Nonetheless, even without solving thgtations propagating along the junction. The dispersion re-
problem, we note that under certain conditions, even in théation follows from Eq.(1D):
cased> \, nonlocality is capable of strongly influencing the
current—voltage characteristic of the resistive state of a wide
junction at low voltages, when the Josephson supercurrent

A2q2 A2q2 172
1+(1+)\2q2)1/2+ N Fla)| ,

=w;

through the junction is greater than the norri@uasiparti- (13
cle”) current. 1 (=1 1 1 dk
We shall regard a junction as wide if its width is much F(a)= d\? Jq &% [k+keoth(kd)] (K2—g?)72 "™

greater than the characteristic distance traversed by an indi-

vidual kink before it stops as a result of viscosity due to theThe functionF(q) has the asymptotic form

dissipation of the normal current in the junction and, more-

over, much greater thax;. Ford>\ we treat the nonlocal- 2 1

ity as a weak perturbation of the dynamics of the resistive  F(Q)= W(Q—m), F(gq)=4Nes In E(Qﬁo)-

state, described in the zeroth approximation by @d) with

the right-hand side replaced byd? ¢/ 9x°. From Eq.(12) we have for the corresponding asymptotic
As shown in Ref. 17, the viscoyaonballistig character  behavior of the spectrum of electromagnetic waves

of the motion of the vortices gives rise to a strong nonuni-

formity of the vortex densityi.e., of the magnetic field and w=w\,q(1+\%q?) "

gradient of the phagethese quantities all grow toward the

~w; 1+N\3g? 1+ 2\ |
W=wj 19 —d n)\q

edges of the junction approximately as the distance from théor sufficiently large wave numbers and
center of the contact. At low voltages in the central region of

the junction, where the density is low, the vortices are far 2

from one another and their shape is close to that of an iso-

lated kink. The interaction of such vortices and their corre-

sponding viscous velocity toward the center of the junctionfor long-wavelength excitations.

(where they annihilate with antivortices moving from the In closing, | thank Yu. A. Genenko for helpful discus-
other sidg, as well as the time-averaged slip rate of the phassions and Yu. V. Medvedev for his interest and support.
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The electromagnetic excitation of sound in magnetically ordered dielectrics—ferro- and
antiferromagnets—is investigated theoretically. It is shown that sound generation in dielectrics by
the Lorentz mechanisndisplacement currents much less efficient than in metals. The
magnetoelastic mechanism of sound excitation in dielectrics is just as efficient as in metals. In
antiferromagnets the amplitude of the excited sound depends on the relaxation parameter

in the magnetic subsystem. The sound excitation efficiency increases as the orientational phase
transition point or the ferromagnetic resonance frequency is approached99®

American Institute of Physic§S1063-776(97)01905-7

1. INTRODUCTION 1 oD

A great deal of theoretical and experimental work has ' Amc at
been devoted to noncontact excitation of ultrasound in magss the analog of the Lorentz force in metals on account of the
netically ordered mediésee, for example, the review in Ref. displacement curren andE are the magnetic and electric

1). In this body of work, electromagnetoacoustic conversionfie|d intensities in the magnet; is the speed of light in
(EMAC) processes in magnetic metals are studied. It is ofacuum,

interest to investigate the efficiency in magnetic dielectrics 1 1
theoret_lcally in order to study.ultrasound generation mecha- D=¢E+ = eUXB— = UXH, B=H+4mM,
nisms in this class of magnetically ordered substances. c

The present paper is devoted to a study of EMAC proy are o s the permittivity (it is assumed that at ultrasonic

cesses in ferromagnetic and antiferromagnetic dielectrics. frequencies the permittivity tensor is a constant scalar quan-
tity), g is the gyromagnetic ratio,

JoF N J JoF

M X I(IM/]3x;)

X B

2. FERROMAGNETIC DIELECTRIC Heff= —

Let a uniform electromagnetic plane waveg=h . _ _ . S
g P Ve, =ho is the intensity of the effective magnetic field in the magnet,

X exp(—iwt+ikz) be normally incident on the surface of a
pCiw ) y andF is the free energy density of the dielectric. This system

semi-infinite ¢>0) cubic single-domain ferromagnetic di- ¢ X b | d by th dard bound
electric. In the ground state of the ferromagnetic dielectric® equations must be supplemented by the standard boundary

the magnetization vectd¥l, and the external constant mag- conditions for the intensity and induction vectors of the elec-

netic field intensity vectoH, are parallel to the wave vector tric and' mggneUc fields, and for the stress tensor and the

K and thez axis. magnetization vectar. . .
In studying EMAC processes in magnets, it is necessary . We_w_rlte the free energy density of the ferromagnetic

to solve a system of coupled equations describing the propa‘j—'eIeCtrIC in the form

gation and interaction of electromagnetic, spin, and elastic F=F(M2)+,8(M§Mf,+ M§M§+ M§M§)+b1(M)2(uxx

waves in the magnet. This system includes the equation of 5 5

elasticity, Maxwell's equations, and the Landau-Lifshitz +Mjuyy+Mju,,) +by(MyMyuyey+ MM, Uy,

equation for the magnetization vector
q 9 + M Myu,y) + (1/2) €Ut Uy +UZ,) + Coo Uyyllyy

. &O'ik 1 (?D 2 2 2
pu‘:a_><k+f" curlH= Pl F UyUzzH Uzlyy) +2Ca4(Usy + UG+ U5, (2
whereg is the first cubic anisotropy constaiit, are magne-
curl E= — l ﬁ divB=0 (1) tostriction constants, and,, are elastic moduli. In writing
c ot out the energy, we neglect the nonuniform exchange energy.

o o off As a result, there is no spatial dispersion of the dynamic
div D=0, M=gMxH™. magnetic permeability tensor of the ferromagnetic dielectric
Herep is the density of the dielectria) is the displacement and the boundary condition for the magnetization can be
vector, o, = dF/du;, is the stress tensowy;, is the strain  neglected. This approximation holds well far from various
tensor, resonance$?
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The expressior2) for the free energy density does not Lorentz mechanism the sound excitation amplitude is ap-
explicitly contain a term describing the volume magneto-proximately ¢/s.)%/eB=4molsw (o is the conductivity of
striction (this term is included inF(M?)), since in the the metal times greater in metals than in dielectrics. A simi-
present geometry, where the constant and variable magnetiar comparison for the magnetoelastic mechanism shows that
fields are perpendicular to one another, this term does ndhe efficiency of this mechanism of ultrasound excitation in
affect EMAC processes in ferromagnetic metals and dielecdielectrics is of the same order of magnitude as in metals.
trics. The amplitude of ultrasound excited by the magnetoelas-

The system of equatior@), linearized near the position tic mechanism increases rapidly as the orientational phase
of equilibrium and describing the propagation of interactingtransition point is approache¢Hy/My—0). This hap-

electromagnetic, spin, and other waves, has the form pens because the magnetic susceptibjlityand the magne-
, , Pu.  Hg dh. b,Mgam. . ';%enlzlsgz ;r;f;?;:::gigop;]arametég increase near an orienta-
Ue+s) —+——+ =0, .
OHETS 5T T Amp oz p 9z
#h.  ew? w? du
72 Tz hemzlle=DHot4meM] —— 3. ANTIFERROMAGNETIC DIELECTRIC
dire w2 EMAC processes in antiferromagnetic dielectrics are of
+ 2 m. =0, greatest interest, since the overwhelming majority of known
antiferromagnets are dielectrics. Moreover, in antiferromag-
U nets many effects are usually intensified by uniform
M. =x-h.—=baMox - 97 () exchangé‘; this can also influence ultrasound transformation

processes. This paper investigates EMAC processes in a

wherea. =a,*ia, (a=u,h,m) are small cyclic displace- semi-infinite two-sublattice antiferromagnetic dielectric.
rr;ent, magpeuc field, and magnetization variables, |et a uniform electromagnetic ~ waveh,=h,
s3=Caulp is the speed of transverse sound, x exp(—iwt+iwz) be incident on the surface of an elastic
X+=9gMo(wg+ w) is the dynamic magnetic permeability, and magnetoelastic isotropic easy-plane antiferromagnetic
wso=gMg(B+Ho/Mg+b3M3/c,,) is the frequency of spin  dielectric in the ground state, in which the antiferromag-
waves(B is the magnetostriction-renormalized cubic anisot-netism vectoi. and the ferromagnetism vectit lie in the
ropy constar. The third term in the elasticity equation is plane of the sampléalong they and x axes, respectively
responsible for the Lorentz mechanism of ultrasound excitaand are perpendicular to the wave veckorThe external
tion and the fourth term is responsible for the magnetoelastimagnetic fieldH, is directed along the axis.
mechanism. In the initial system of equation§l), we write the

Solving the system of equatioi3) under the linearized Landau-Lifshitz equations for an antiferromagnetic dielec-
boundary conditions gives the following results for the am-tric in the form
plitude of ultrasound excited in the ferromagnetic dielectric. .
In the case of ultrasound excitation by the displacement cur- M=g{MxHy+LxH}+rHugL,
rent(Lorentz force mechanism, the amplitude of the excited | _ gIMXH_+L X Hy}+rH,glL. (6)
ultrasound is

2
S+ H L] +h +
U+=<—> M(Pr &
o 2TpwS+

HereH),  are the effective magnetic fields for the ferro- and
antiferromagnetism vectors, respectively, anid the relax-
ation parameter of the magnetic subsystem. For brevity, the
relaxation term in Eq96) is written in its simplest form. The
free energy density of an antiferromagnetic dielectric has the

, (4)

&

where s2=s2(1—¢.) is the magnetoelastic-interaction-
renormalized transverse sound velocity,=b,M2y . /psf1 form
is the dynamic magnetoelastic interaction parameter, anc?

=14 L i i ility. 1 1 1 1
u+=1+4my. is the dynamic magnetic permeability Fe = AL24 - BL4+ 5 DM X L2+ 5 D'M2L2

In magnetically ordered media, a magnetoelastic EMAC 2
mechanism that is specific to these media appears. On ac- 1 1 1
count of this mechanism, transverse sound with amplitude +Z aM2—HyXM— > BL§+ > boL2u;,
_ boMox-hg

U:s= Amxslat

1+ \/ﬂ) N }

pSaw €
(5

is excited in a ferromagnetic dielectric. Let us compare theHere A, a, B, D, andD’ are uniform exchange constants
results for the amplitude of the excited ultrasound in dielecwithin and between the sublattice8,is the uniaxial anisot-
trics with the analogous formulas for metalst should be  ropy constantb, and b are the exchange and relativistic
noted that in dielectrics the skin-layer thickne8xan be magnetostriction constants, akgdare the moduli of elastic-
formally assumed always to be greater than the wavelengthity. Just as in the case of a ferromagnetic dielectric, the non-
\ of the electromagnetic and ultrasonic waves. This correuniform exchange energy is neglected in Ef). This makes
sponds to the casg>1 in Ref. 1. Then, in the case of a it possible to neglect the spatial dispersion of the dynamic

1 2 2
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magnetic susceptibility of an antiferromagnetic dielectric and 2ibLrhowex| ’
ignore the boundary conditions for the ferro- and antiferro-  uy=——=———
magnetism vectors.
- VrYetif|rst l|3nveftlrgrj1aite theI (;aseir:nt\;\;]hl(r?h irelna>f[at|:n 'nhttri‘eis excited, by the magnetoelastic mechanism, in antiferro-
fo?gt]h: f(e:zrsr(l; Sa):wsdeanti?‘:esr?osagenet?sm \G/Ee?:tjrscioefoﬁg\?v the agnetic dielectrics. At high temperatures, including near
chanaes in the displacement gand electromaanetic field ethe Nesl point, where relativistic magnetostriction can be

ges | ISP ectromagnetic Tield v eglected, and foH,+ 0, only longitudinal ultrasound with
tors. This corresponds to the approximatiof rowg, where .

LA . amplitude

wg=0gMg(a+D’'L") is the exchange frequency amdi, is
the saturation magnetization of the sublattices.

(€)

PSww1g

. . . 5\2 Boe ! hg o
The original system of Eqg1) and (6) linearized near u,= —i(—') Eh oL (10)
the position of equilibrium can be written in the form c/ 2mpws €
. —, U, bobLMrwg , #°u, blLrwg , dh, is excited.
Uy=S¢ 522 2pw1e Xt 02 pag XLz Comparing the amplitudes of transverse sound excited in
ferromagnetid5) and antiferromagneti®) dielectrics by the
. ibpLMw a*uy -5 J*u, magnetoelastic mechanism shows that they differ by the fac-
U=~ D omwg PN 922 TS 2 tor rwg/wyo, Which need not be small if the relaxation pa-
rameter of the magnetic subsystem is not too small. How-
_E (i B +M_b0 '’ 5_hx ever, in antiferromagnetic dielectrics the static magnetic
p\am % wg VEXL] To7 susceptibility x| is ordinarily small, so that the efficiency
5 . ] _ 8) with which transverse sound is generated in an antiferromag-
‘9_hx: _lew 2imwbL ﬂ netic dielectric cannot be much greater than the analogous
9z° c? w10 S efficiency in a ferromagnetic dielectric. In the case of gen-
: eration by the Lorentz force mechanigassuming that in the
du, ahy o . Lo . .
+(Bo+47mMbgy!) — +u! _} ferromagnetic dielectric longitudinal sound will be excited
9z at with the same efficiency as transverse sguttte ultrasound
where generation efficiency is essentially the same in ferromagnetic
and antiferromagnetic dielectrics.
~, N(1=§) b’L%wg | In the opposite case, when there is enough time for the
St= P v &tT dwoh, X1 magnetic subsystem to adjust to the changes occurring in the
elastic and electromagnetic subsystems>{ wg), the lin-
—, (MT20)(1-§) bgMZ wpX| earized system of equations has the form
S| = y 1= NI
P @ Mt2h . _,du, ibLMbew U, iwbL dh,
" , Uy_st (922 * prlo X 1922 + 2pw10X 0z ’
W= wg+ 5 wp,
, _ _ _ _ - . ibboLMe  #u, _, d°u,
X! =gL/wg is the static perpendicular magnetic susceptibil- U= — p X 572 +s 972
ity, u| =1+47x|, w10= wa+T ®me, wa=0gBL is the an- P®10
isotropy frequencywme.=gb?L3/4\, is the magnetoelastic 1 1 ahy
frequency, - (bOMX+ a5 580 5
wt=wg—2M?w)/L?, wl’szw,’D—FEwE, 3h, iew [27ibLew  du,
92T | wyp Xz
wp=gL’D’, wg=gL3B Pu,  ah,
are the exchange frequencies, and *(Bot 4mMboyx) Jz T at } (3
BOZH0+47TM, M=gHO/wE, L:2MO Where

are the equilibrium values of the magnetic induction, the
magnetization, and the modulus of the antiferromagnetism
vector.

Solving (8) together with the linearized system of
boundary conditions for the displacement and electromaght 10w temperatures an(_j de:Q, M =0, andby=0 only
netic field vectors leads to the following results. transverse ultrasound with amplitude

At low temperatures, when exchange magnetostriction
can be neglected, and fét;=0 (M=0), only transverse U= bLxho <1+ \/E)
sound with amplitude Y 2pwics; g)’

_ nglO 2 ’ _
X= 73, O sTowg, u=1l+4my.
wis—

(12
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is once again excited. Fdr=0, H+0, andby#0 only lon- Note that in the present geometry, a quasiantiferromag-
gitudinal sound with amplitude determined t0) with the  netic (high-frequency spin branch appears in the final for-
magnetic permeability and susceptibilities from Efjl) is  mulas for ultrasound excitation in an antiferromagnetic di-
excited in antiferromagnetic dielectrics. electric. The frequency of this branch is ordinarily several

Comparing the results for this case with the analogousrders of magnitude higher than that of the quasiferromag-
results for ferromagnetic dielectrics shows that in the case afetic (low-frequency spin branch. In other geometries of the
transverse sound generation by the magnetoelastic mecharoblem (for example, withklIM), where the frequency of
nism, the amplitude of the excited waves in antiferromag-the quasiferromagnetic branch of the spin waves will appear
netic dielectrics differs from5) by the factorw,o/w, pro- in the final formulas, it may happen that the ultrasound gen-
vided that the magnetic susceptibility in the magnets studie@ration efficiency will be much higher in an antiferromag-
is identical. In the case of the Lorentz mechanism, the amnetic dielectric.

plitudes of the excited longitudinal sound are once again of ) . )
the same order of magnitude. This work was supported in part by Russian Fund for

Note that according t610) and(12) the amplitude of the Fundamental Research, Grants No. 96-02-19474 and No. IP-

excited ultrasound increases near the orientational phas"é)95 ISSEP.
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Influence of disorder in crystal structure on ferroelectric phase transitions
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A new model of ferroelectric phase transitions in disordered crystals is developed. The model
takes into account the nonequivalence of the structural environment of identical ions,

which alters the balance of forces governing ferroelectric structural instability. In contrast with

its predecessors, the new model can be used for qualitative and, in many cases, quantitative
predictions of the temperature range of the diffuse ferroelectric phase transition and the value of
the disorder-induced shift of the average transition temperature as a function of the degree

of disorder and chemical composition. This conclusion is confirmed by a comparison of the
theoretical results with an abundance of known experimental facts19€y American

Institute of Physicg.S1063-776(97)02005-3

1. INTRODUCTION perature, which lead to the formation—at temperatures much
higher than the average Curie point—of “new phase” mi-
The influence of disorder in the structure of crystals oncrodomains: randomly oriented polar clusters, whose number
the ferroelectric phase transition can be manifested both asghq size increases as the temperature is lowered. The emer-
change in the transition temperature and as broadening of trgfence of such polar clusters of diametet0 nm is corrobo-

transition temperatur@iffuse transition.> 3 In contrast with rated by a great many experimental factésee, e.g., Refs
normal ferroelectric phase transitions, where the structur@_m ' '

and properties of the crystal change sharply at a certain tem-

Iy The standard models of the evolution of ferroelectric
perature(or at a definite value of some other external param_transitions differ primarily in causes postulated as respon-
etep, such a point cannot be found in the case of diffuse . P Y P c P

ble for fluctuations of the local Curie temperatuFg®.

phase transitions. Anomalies of the physical characteristics

of a substance as a result of diffuse phase transitions af@iStorically the first and l”}g?g universally recognized is the
observed over a broad temperature range spanning tens alfyPoOv—Smolenskimodel,"*"“which attributes the fluctua-
sometimes hundreds of kelvih€.One of the fundamental tions of T¢® to fluctuations of composition. Spatial fluctua-
problems attending the investigation of diffuse transitions igions of composition(e.g., fluctuations of the densities of
to establish which factors govern the width of such an interB’ and B’ cations in solid solutions @;_,B})O; with a
val. This problem is interesting not only from a fundamentalperovskite-type structuyamust occur as a result of compo-
point of view, but also from a practical standpoint, sincesitional disorderin the given example, disorder in the posi-
many potential applications of ferroelectric materials are ditions of the B and B’ iong). If the Curie temperature de-
rectly associated with the diffuse transition effect. pends onx, phase transitions take place at different
Factors that can contribute to broadening of the ferrotemperatures in microdomains with differing valuesxof
electric transition in real samples are large-scale inhomoge-  Critical surveys of other transition broadening models
neities of the chemical composition and distribution of are given in Refs. 1, 16, and 17. More or less successfully,
defects] size effects(e.g., in thin films and intergranular each explains distinct phenomena in individual substances,
ceramic$,™ apd nonuniform internal and external strt_as‘ées. but cannot be used to calculagepriori the width of the
In mqqroscoplcally homogeneogs samples ferroglectnc _pha&ifroadening temperature intervaegree of broadeningn a
tran.s[tlons are §meared by point defgcts if their density 'Substance having a certain composition, or at least to make
sufficiently high: These factors are directly related to the some kind of qualitative prediction along these lines. We

technology of preparation and processing of real sampleg, . proposed*® a new model of ferroelectric phase tran-
and their role can be minimizetht least in principlg by . . . . :
itions in compositionally disordered crystals, where spatial

technological measures. However, there are more fundameﬁ- . floc ated with d ic di
tal causes responsible for the broadening of phase transition L,Jctuauons of T~ are associated with random static dis-

including disorder in the distribution of ions of different spe- placements of ions from lattice sites as a result of differences
cies among identical crystallographic sitésompositional in the sizes of the disordered ions. Here, on the basis of these

disordej.*3 notions, we explain the known characteristics of the influ-

Despite the enormous abundance of experimental dat@nce of disorder on ferroelectric transitions in specific com-
gathered in studies of diffuse phase transitions, to date theounds and solid solutions having the most thoroughly in-
is a lack of clarity in regard to the influence of compositional vestigated perovskite structure of all ferroelectrics. We show,
disorder on ferroelectric transitions. The broadening effect idn particular, that the simple model equations can be used to
usually identified with spatial fluctuations of the Curie tem- calculatea priori the degree of broadening.
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FIG. 1. Arrangement of Bcations(small
dark circles, B” cations (large dark
circles, and oxygen ionglight circles in

the (200) plane of an oxide B 5By 5) Oz
with a perovskite structure in the compo-
sitionally ordered(a) and disorderedb)
states. The line segments represent projec-
tions of the basal planes, at whose inter-
sections A cations are situated.

a b
2. NATURE OF THE BROADENING OF PHASE cation?>??|n the ordered statéFig. 13 the arrangement of
TRANSITIONS IN COMPOSITIONALLY DISORDERED the ions is identical in all unit cells. In the disordered state
FERROELECTRICS (Fig. 1b, B cations of one species are located in certain

&eighboring unit cells, and the oxygen ions situated between

To investigate the causes of spatial fluctuations of th h {in the first imationdisplaced f h
Curie temperature, which result in the creation of polar clus- em are nolin the Tirst approximationdisp'aced from the

ters in compositionally disordered crystals, we proceed Olpasal A planes. The size and shape of different oxygen oc-

the assumption that the nature of the spontaneous polariz}:{”}hedra W'th. 'def‘“c.a' B cations therefqre differ, and for this
reason the interionic distances also differ, as do the forces

tion is exactly the same in ordered ferroelectrics and in fer- i the i hich the short I as |
roelectrics with diffuse phase transitions. This hypothesis i§C- 19 0N the 1ons, which are the short-range as wetl as iong-
entirely reasonable in view of the well-known fact that if range forces responsible for the ferroelectric transition. In
disorder is introduced in an ordered crystelg., by anneal- addition, the random configuration of disordered ions in

ing a complex compourtd or by varying the concentration g_efz]ighborlng_ ar;r(il rréorel dlst';afnt cells W'II_I getce§(jsarltl_y (I:r_eate
of a solid solutioR?), the variation of the properties of the inerences in the L.oulomb forces applied fo identical lons

substance in the vicinity of the ferroelectric transition as the(_even when the dimensions of the dlsordgred lons are iden-
cal and the oxygen octahedra are not distortddhe local

degree of disorder varies is generally a gradual process. rie temperature in any microdomain of the crystal will be
can therefore assume that a cluster acquires a dipole mome ¢ P y y

through the loss of balance between the forces tending tE;etermined by the forces acting on the ions located inside it,
displace ions from sites occupied by them in the paraelectri%nd. because these forces are of a random nature, the local
phase(usually long-range Coulomb dipole—dipole interac- urie temperature will also be random.
tion forceg and forces tending to stabilize the highly sym-
metrical structurgshort-range repulsive forces 3. DESCRIPTION OF THE EFFECTS OF BROADENING OF

AII ions in an qrdered crystal ha_ve the same struct_uraq:ERROELECTRIC PHASE TRANSITIONS IN
environment, but disorder leads to distortion of the configuperovskiTES OF THE TYPE AB_,B")Os
ration of neighboring ions. We illustrate this process for ox-
ides of the perovskite family, which have the general for- T analyze the qualitative notions set forth in the pre-
mula ABO, and in the paraelectric phase are endowed with £eding section, we use the model of coupled anharmonic
cubic structur® formed by a shell of oxygen octahedra Oscillators for displacive ferroelectrics with one soft
joined at the vertices. The B cations are situated at th&ode?>** In this model the effective Hamiltonian in the
centers of the octahedra, and the positions between octahedigan field approximation is the sum of the Hamiltonians of
are occupied by A cations. The perovskite structure ig?ll unit cells of the crystal:
shown schematically in Fig. 1 for an
A(Bg Bp 9 O3 crystal, in which the centers of the oxygen H=> H,, @)
octahedra are occupied by different catiorisa®d B'. If an !
octahedron containing a’Bation is in the neighborhood of and the Hamiltonian of théh cell has the form
an octahedron containing a Bation, the oxygen ion situ- 1 A B
ated between the_se cat|ons_ is displaced from the bas_al plane H|=§H|2+ §§|2+ ng‘_E v EED),
formed by A cations, moving toward a smaller-radius B I
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wherell; and ¢, are the generalized momentum and coordi-depends on the conditions at its boundariekhe Hamil-

nate of the displacement for the soft mode>0 andB>0  tonian describing interaction with the macroscopic field is a

are parameters of the one-particle potential, which are deteconstant, which can be discarded in microscopic analysis and

mined by interactiongmainly short-rangebetween ions of then taken into account in corrections to the macroscopic

one unit cell, andy;, are parameters characterizing the in- characteristics of the system. The dependence of the param-

teraction(long-range dipole—dipo)ebetween different cells. eters ofH . on x is determined by the type of impurity”B
The transition temperature can be expressed as follow®ns.

in this modef®: Multiplying the numerator and denominator in the ex-
pression forH,,. by =,,c,=1—x and discarding constant
V(V—-A) .
kTO%OBT’ V=2 vy (2) termsH, andHg, we obtain
|!
. , _ 1 2 Aloc 2 BIoc 4

Let us assume that the soft mode in an’&B perov- Hioe=N(1—x) 5L Jloct — ¢ (x)+ R (x)
skite crystal with a sharp ferroelectric transition described by
the Hamiltonian(1) is associated with displacements of B N(1-X)
iqns relatiye to the oxygen octa_hec{iee_., B’ is a ferroelec- - > U:ffgl(x)<§|,(x)> ,
trically active ion. When impurity B ions are added, the I'=1

A(B;_,By)O; crystal becomes disordered and, as mens bare
tioned, the dipole—dipole interaction forces and the short-

range restoring forces responsible for the ferroelectric tran-

sition become different in different unit cells. This means % CnAm(X) % CmBrm(X)
that the HamiltoniarH, for each cell must be characterized Ape=—, Bipem=—,
by different values of the parameters. % Cm % Cm

We refer to a cell containing a'Bcation and having
among its nearest neighbarscells containing a Bcation as
anm-type cell (m=0,1,2 ... ,2); Zis the coordination num- 2 CmVm(X) E Colll'm
ber (in our caseZ=6). Vipe= m L 0= m
It is known from experimental worksee abovgthat the
phase transition in a disordered perovskite is diffuse, i.e.,

> Cm > Cm

m m
local phase transitions take place at different temperatures iQre arameters averaged over all ferroelectrically active cells
separate microdomaingn other words, polar clusters ap- P 9 y

pead. In writing the HamiltonianH,,. of such a micro- of the given_ microdomain. Consequently, the H_amiltoniqn
domain, we assume for simplicity that the number of unitHloc Of the microdomain represents a sum of identical Hamil-
cells is the same and equal kbin all unit cells, the param- tonians, .., s form_ally the same as the Hamﬂto_man of an
eters of the Hamiltonian are also identical for all cells of oneorder.eld macroscoplc_crystal. We t.h.erefore obtain the local
type (i.e., for all cells having the same), and the critical transition temperaturé.e., the transition temperature in the

coordinates; do not depend on the type of cell. We then microdomain in the form

loc__

obtain kTI(?CNOB Vloc(Vgc_ Ajoc) . &)
1 An(X) Bm(X) loc
_ 2 m 2 m 4
H|0C—N§ Cm EHIm(X)Jr 2 &r(x)+ 4 &'(x) According to Ref. 18, the fluctuations of the density of

mtype cells in the investigated microdomains
Acy,=cn—{cy (angle brackets are used everywhere to de-
- > '|m(X)§|(X)<§|/(X)>) +H,+Hg. note averaging over the macroscopic voljiraeey a normal
I'=1 distribution or a Poisson distribution with variance

N(1-x)

Herecy, is the density ofmtype cells in the microdomain_, ((Acm)?)=(1=X)(1—pm)Pm/N, (4)
I, Am, Bm, andu ., are the parameters of the Hamil-

tonian for anmrtype cell, the summation ovef encom- Where

passes only interactions with ferroelectrically active ions be- vd|

longing to the same microdomainH, is the total szm[(l—a)X]m[l—(l—a)X]me, (5)
Hamiltonian of cells containing impurity ions, which are

nonferroelectrically active by assumpti¢H,, does not de- anda is the compositional short-range order parameter.
pend on the critical coordinatesandHg is the contribution Inasmuch ag¢° is a function ofc,,, the same distribu-
associated with long-range interactions of ferroelectricallytion can be used to approximate the probabifify(Tg®) of
active ions of the microdomain with ions situated outside théluctuations of the local Curie temperatur§® (subject to the

microdomain. condition that the nonlinearity of the functid’dg’c(cm) is not
We know® that Coulomb interactions with distant do- too pronounced

mains can be taken into account by introducing a macro- (ATI%)2

scopic electric field that does not change within the confines g (To%) = exr{ _ 0 (6)

of the unit cell(and in the case of a homogeneous crystal NLTo V2o’ 20

996 JETP 84 (5), May 1997 A. A. Bokov 996



where we have introduced the notatid@°=T°—(T,), in this case assume values intermediate between the values

and 025<(AT{§’ 2) (o is called the broadening parameter of the corresponding parameters of the 0-type and 6-type
We note that the quantity° defined by Eq(3) is the  cells. By analogy with9) we assume that

thermodynamic phase equilibrium temperature, at which the a\f a\9

densities of volume free energies of the two phases are equal. A,=Aq 7) , Bm=Bg TR (10

To determine the temperature at which a new-phase cluster m m

emerges in some microvolume, as mentioned above, we ne&¢here | ,=a/2—mb/Z is the average distance betweeh B

to take into account the energy of the macroscggepolar- ~and O ions in anm+type unit cell(of course, the actual rela-

izing) field, along with the surface and elastic energies of thdionship between the parameters will necessarily be more

cluster. Allowance for these factors within the framework of complicated; in particular, it must depend on the configura-

the macroscopic approach has shéwihat for all clusters tion of B” ions in neighboring cells

their onset temperature differs froﬁ{fc by the same amount, Using Egs.(10), we obtair®

so that the distributior|1 of the cluster-onset temperatures has 1+ 2fmblaz

the same form af \(T5°) and the same value of. Hm= :
Equation(3) can bg used to obtdifhan approximate ex- 1+2f(1~a)xbia

pression for the broadening parameter, Expanding,um in powers of the small ratib/a and re-
taining only the linear term, we obtain

(11)

<To>)2
2_ 2 2 2
o= — Ac +oy, 7 m b
(1—x % Qn (Acm)") + oy @ pm=142f| > = (1= a)x|_. (12)
where To estimatey,,, in general, interactions between ions of
(V) — (A different cells must be taken into account — by no means a
m~ (VY—(A) simple undertaking. We therefore assume, as in the case of

short-range interactions, that the relative variations of
dipole—dipole forces acting on a ferroelectrically active ion
are determined entirely by the average size of the oxygen
octahedron surrounding that ion, and do not depend on the
composition of nearest-neighbor and more distant unit cells
(the assumption is far from obvious but, as will be shown

m=An/{A), vn=Vm/(V), andao? is the contribution asso-
ciated with composition fluctuations, which according to
Ref. 18 are usually so small as to be negligible.

From Eq.(7), making use of4) and assuming for sim-
plicity that A=V (in fact A=V; Ref. 25, we obtain the final

expression below, works quite well for the qualitative description of
5 0.25(A>4 5 experimental daja By analogy with(12) we then readily
o Zm% (Vm= m) “Pm(1—Pm). (8 obtain
To make the model useful for quantitative estimates, we  ;,_=1+2h T—(l—a)x 9 (13)
attempt to express the parameters and v, in terms of Z a

structural characteristics. Since the parametesiadB of the ~ whereh<f (the short-range forces vary more rapidly with
one-particle potential describe short-range repulsive forceslistance than the dipole—dipole forgeSubstituting Egs.
we can assume that the latter act between the ferroelectri12) and(13) into (8), we obtain

cally active B ion and neighboring oxygen ions forming the b

octahedron about B The parameter#\ and B then vary o=6D—, (14
according to a power law as functions of the distance a

B’'—0 inside the unit cefl’ and the relations between the where

parameters associated with O-type and 6-type cells can be

25 _
written in the form = —<A> If—hi ,
f L k(B)VN
As=Aol —5r| » Be=Bol 75| - C) 1 2
—2b —2b m
a a D= mz z_(l_a)x Pm(1—=Pm)- (15
m

wherea is the average unit cell parameteéris the displace-
ment of oxygen ions from the basal planes formed by A ions, The ratioa/b can be determined by a method proposed
andf~f>1. In other types of unit cells the oxygen octahe-by Sakhnenko et af2 who expressea andb in an ordered
dra are distorted, and the distancés-B differ even within ~ A(B{ iBg 5 Oz perovskite in terms of the known parameters
the same cell. Presumably the parameters of the Hamiltoniaof the ions. Using the same approach, we find

= ; (16)

9 (1/\/§)LA)\A[}\BI_)\B/r]+LBII)\BII[)\A+)\B/]_ LB/)\BI()\A+ )\B//)
a ()\B’+)\B”)[\/ERALA—’—2(1_X))\B’LB’+2X)\B”LB”]
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TABLE |. Broadening parameters of ferroelectric phase transitions and structural characteristics of compounds
and solid solutions with #8;_,B})O; perovskite structure.

La, Lg, Lg, (b/a) D 0ep  ocan

No. Composition s A A A .10 -108 K K Refs.

1 PbNhFe:O; O  2.83 201 200 13 270 8 4 32,33
2 PbTa F&, :O; 0 283 202 200 26 270 11 8 33 34
3 PbNB, <SG 05 0 283 201 211 106 270 26 31 35
4 PbT4 :SG Os 0 283 202 211 93 270 25 27 36

5 PbTa:SqO; 040 283 202 211 93 267 25 27 37,38
6 PbTa:SGO; 052 283 202 211 93 259 20 26 36
7 PbTasSqs0; 074 283 202 211 93 221 17 23 36
8 PbTa:SqO; 0.85 283 202 211 93 176 11 18 37,38
9 PbTasSq0s 094 283 202 211 93 115 8 12 36
10 PbNI dlng 05 0 283 201 215 148 270 49 44 33
11 PbNRLu,Os O 283 201 220 200 270 26 59 33
12 PbNB:Yby:O; O 283 201 221 211 270 46 63 33
13 PbNBMg,0; O 283 201 214 102 219 30 25 1,35
14 PbNBZn:0s O  2.83 201 215 112 219 22 27 39
15 PbFg,W, .0, 0 283 200 1.89 156 219 37 38 40
16 BaThoSmhoOs O 291 197 206 112 78 10 10 4
17 BaThoSm. s O 291 197 206 112 111 12 14 4
18 BaTheSm.O0s O 291 197 206 112 123 14 15 4
19 BaTheSm.O; O 291 197 206 112 140 18 17 41
20 BaThoZlooOs O 291 197 211 174 77 13 14 41
21 BaThoZlond®s O 291 197 211 174 111 19 21 4
22 BaThsZlon®s O 291 197 211 173 166 30 32 4
23 BaTh,Zlos®® O 291 197 211 172 207 42 39 4

Notes:In Ref. 36 the broadening temperature interval is characterized by the width of the permittivity curve at
3/4 of the maximum; we have calculated,, by dividing this width by 1.633; the broadening parameter used
in Ref. 38 is, by definition, twice the value of our parameter

where\a, Agr, andAg» are the valences of A,'Band B

ions, respectively, antd,, Lg,, andLg» are the “lengths of (V(s))=(V(0))
unstressed cation—anion bonds” which characterize the size

of the ions and are defined in Refs. 21 and @he relations  \yhere, as in the analysis of the influence of disorder on the
La~Ro+Ra, Ler=Ro+Rg/, and Lg:~Ro+Rg:, Where  gegree of broadening of the phase transition, for simplicity
Ro, Ra, Re/, andRgs are the ionic radii of the oxygen, e ignore effects associated with disorder-induced changes
A, B', and B ions, can be used for approximate calcula-j, the configuration of cations in neighboring and more dis-
tions) tant unit cells. Substitutingl7)—(19) into Eq.(2), we obtain

1+2hx529), (19
a

a hVy—fA
(To(8)=(To(O)| 1+ 285 =3 =

4. VARIATIONS OF THE AVERAGE CURIE TEMPERATURE ' (20)

IN THE PRESENCE OF COMPOSITIONAL DISORDER

Normally in experimental work the degree of long-range5. COMPARISON WITH EXPERIMENTAL DATA FOR
compositional disordesis to be determinéd?®?? we there- ~ PEROVSKITES OF THE TYPE A(B;_,B})Os
fore analyze the dependence of the average ferroelectric tran-
sition temperaturéT,) ons. For ordering of the NaCl type
(as in Fig. 1& which is observed in 8By O; perovs-
kites and which we propose to consider belaws —s? for

In the vicinity of a diffuse ferroelectric phase transition
the temperature dependence of the dielectric permittivity
described by the well-known expresston

large enougts.®° Using this relation and Eq12), we find 1 )
the average of the paramet&rver the volume of the crys- e e’ K(T=Tm)%, (21)
tal:

whereT,, is the temperature at whichattains its maximum
(A(s))=(A(0)) , (17) valuee,,, andK is a parameter that differs in different sub-

stances. It has been shol that for polar microdomains
where(A(0)) is the average parametérin the completely haviqg a no'rmal distribution i.n the vicini'Fy of a diffuse phase
ordered crystal. We similarly obtain f[ransmon Wlth respe(_:t tp th_elr local _Curle t_emperatL(msd
indeed such is the distribution considered in our mpdbe
parameteK can be related to the variane€ of the normal
distribution:

b
14 2fxs?2—
a

(B(s))=(B(0))

1+2gx32§), (18
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by the parameterg,,, and v,,, which in turn depend on the
local strains of the structure and on the rate of change of the
interatomic interactions with distance. The latter rate is dic-
tated by fundamental parameters that are the same in differ-
ent compounds of identical structufe.g., the power expo-
nent in the expression for the energy of interatomic repulsion
in the Born—Landdorm B/r" (Ref. 49, which is often used
for perovskites With regard to local strains, we have stimu-
lated them in such a way as to haug, andv,, described by
relations(12) and (13). Of course, this procedure introduces
errors, which are not very likely to be small. However, the
local strains are similar in all structurally similar compounds,
so the relative errors are equal. As a result, the quaatity
0 2 ' |6 the expressioii14) for o can be regarded si_mply as a fitting
D(bla)-10 parameter to be evaluated from the experimental data.
We now consider the influence of the degree of disorder
FIG. 2. Broadening parameter versusDb/a for compounds and solid o the average ferroelectric transition temperature. The
solutions AB;_,By)Os having a perovskite structure and ferroelectric cat- . .
ions in the B sublattice. The points represent experimental values and model predlcts(see (20) a quadratlc dependenc_éO(S)'
the straight line corresponds to EG4) for §=1.1.10* K. The points are  which is consistent with the results of a thermodynamic
numbered in accordance with the numbering of the compositions in Table 'analysi§5 and with experimental result® The influence of
s on the transition temperature should be stronger for higher
values of the rati@/b, i.e., for a greater difference between
1 the sizes of the ordered ions, and this too is consistent with
(22) experimental result®

Table | summarizes all the results of experimental measure- Thls.behawor makes s.ense at the qualitative level when
ments ofo (using Eqs(21) and(22)) that we have been able W€ consider the fact that disorder changes the average diam-
to find in the literature for perovskites of the type €ter of the oxygen octahedra surrounding the ferroelectrically
A(B]_,B})0;. Where different authors have given different active B cations, causing the average Hamiltonian param-
values ofo for one compound, we have chosen the smalleseters governing the transition temperature to change as well.
value (higher values are most likely found in samples whereln the known compositionally ordered @3 B; )O3 per-
defects other than compositional disorder also contribute t@vskites(Refs. 3 and 19 the B’ cations are larger than the
broadening of the transition ferroelectrically active B cations; in the presence of order-
Figure 2 showsr as a function of the paramet®rb/a,  jng, the average diameter of the oxygen octahedra around the
calculated fgr tge correspgndmg gohmpo]tjndzs according e cations decreases, the short-range restoring forces in-
Egs. (15 an (16). In accordance wit .Re - 42, We assume crease, and the ferroelectric transition temperature is there-
that the Ti, Nb, or Ta ion is ferroelectrically active. To cal- - : .
. . . fore lowered.(For a similar reason, the ferroelectric transi-
culate the ratidb/a, we use the values given in Ref. 43 for . _ . .
Jign temperature drops in perovskites under the influence of

than those in Refs. 22 and 23. The resulting graph is found tydrostatic pfess?@) In contrast, the antiferroelectric—
be linear, so that, according (t4), the model parametetis ~ Paraelectric transition temperature must increases as-
approximately the same for all compositions. Calculated byereasesin fact, hydrostatic pressure raises this temperature
the least-squares method from the slope of the lindn perovskite$?).
o=F(Db/a), it is found to be 1.110* K. Experimental resulfs'® concur with these conclusions.
The broadening parametercan be determined with Eq. Special consideration must be given to lead scandium titan-
(14) for any perovskite of the type (8;_,B,)O; with fer-  ate PlfTa,55¢ 905 (PST), in which the phase transition
roelectrically active cations in the B sublattice by settingtemperature, in contrast with other known ferroelectrics,
§=1.1-10" K. The results of such calculations are given inyises in the presence of ordering. This is probably attribut-
Table I and exhibit good agreement with experiment in MOShile to the fact, demonstrated in Ref. 47, that as the tempera-
cases. . o )
tPre is lowered, the crystal initially enters a modulated anti-

We now analyze the reasons why such a crude mOd(?a rroelectric(incommensurajephase and, from there, makes
can be used to calculate the broadening parameter in resl ' '

compounds. The crux of the matter, in our opinion, is thatthe transition to'the ferroelecFric.phase. But the Curie—Weiss
the primary factor governing broadening is not the absolutdemperaturgwhich has the significance of the threshold of
strengths of interatomic interactiofs.g., the Curie tempera- Stability of the paraelectric phase and whose dependence on
ture), but their relative variations induced by variations of S, strictly speaking, is treated in the simple models of this
the interatomic distances in the locally deformed disorderedgtudy diminishes when ordering takes place in P§Es in
structure. In our model these relative variations are describedther ferroelectrics.

2e,0°"
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6. GENERAL LAWS IN THE BROADENING OF the impurity concentration is increaséds should be ex-
FERROELECTRIC TRANSITIONS IN PEROVSKITES pected in solid solutions of a ferroelectric and a nonferro-

We now summarize qualitative trends in the broadeningelecmc or two ferroelectrics with identical ferroelectrically

of the phase transition, which are valid for disordered perCtive ion3, then:

ovskites, and we determine the extent to which the theoreti- & replacement of the ferroelectrically active cation
cal conclusions agree with the available experimental data.Should cause the degree of broadening to increase monotoni-

In the case of AB]_B!)O, perovskites with ferroelec- cally with the concentratiofsuch an increase is described by
— X=X

trically active cations in the B sublattice, an analysis of Eq.Ed- (14), and indeed this kind of behavior has been ob-
(16) shows as the difference in the length of the unstressegerved experimentally, for example, when the ferroelectri-
cation—anion bonddLg=|Lg —Lgs| (or the difference in cally active Ti gaﬂon in BaTi@ was replaced by Zr and Sn
the radi) of the B and B’ cations increases, the relative (S€€ the table in Ref. 41 _ _ _
displacement of the oxygen ions from the basal A planes b) replacement of the nonferroelectrically active cation

(b/a) increases, so that, according(ia), the broadening of should lead to slight broadening with a maximum at the con-
the transition increases as well. centrationx= 0.5 (obviously, the oxygen environment of the

As a result of substitution in the A sublatticeom- ferroelectrically active cations is deformed to the maximum
pounds or solid solutions of the tyga, A’ )BOs), oxy- at this cqncentratidm and such a maxi_mum of the degree of
gen ions are displaced in the A planes without ever leavingroadening has been observed in (&b Ti)O; and
them. It is clear from geometrical considerations that sincdBa, SHTiOs (Ref. 58j _ _
the displacements of the oxygen ions are perpendicular to the 2) If a ferroelectrically active cation changes when the
B-O segment, the length of this segment changes Or1|g/‘oncent.ratlon is mcrease(d_s shquld be .expected at a mor-
slightly (in comparison with the case of substitution in the B photropic phase boundary in solid solutions of two ferroelec-
sublattice, so that comparatively very little difference exists trics with different ferroelectrically active cationshen:
among the B—O distances. Consequently, if the B sublattice a) The replacement in the ferroelectrically active sublat-
is ferroelectrically active, the ferroelectric transition shouldtice can be described by equations of the typ®, in which
not broaden appreciablyeven though its broadening in- different cations must be interpreted as ferroelectrically ac-
creases with an increase &l ,=|La/ — Las|). tive at low and high concentrations Thus, the broadening

If the A ions are ferroelectrically active, then for similar Parameter should tend to zero in the limits>0 andx—1,
reasons substitution in the B sublattice should not induc&nd a maximum should be observed at the concentration at
significant broadening of the phase transition, whereas subvhich replacement of the ferroelectrically active cation takes
stitution in the A sublattice, resulting in a relatively marked place. This kind of behavior has been observed in solid so-
variation of the A—O distances, should induce broadening. lutions(Pb, SyTiO3 (Ref. 51 (as in PbTiQ, the A sublattice

Consequently, in different binary solid solutions with is ferroelectrically active in SrTiQ (Ref. 42);
identical concentrations the broadening is greater, the greater b) if not only the ferroelectrically active cation, but also
the difference in the sizes of the disordered ions; it should béhe ferroelectrically active sublattideearing in mind the A
relatively large if ferroelectrically active ions are replaced,and B sublatticesis replaced at a certain concentration, sud-
and it should be small if nonferroelectrically active ions areden jumps in the degree of broadening can be observed at
replaced. that concentration. This behavior is inherent in solid solu-

Good examples of this kind of behavior are solid solu-tions (1-x)BaTiO;—xSrTiO;. In this case the transition
tions based on BaTig in which the replacement of the fer- broadens slightly ax<0.8 (Refs. 51 and 59 because the A
roelectrically active(according to Ref. 42Ti cation by Sn,  sublattice, in which replacement occurs, is not ferroelectri-
Zr (Ref. 41), Hf, and Th(Ref. 48 ions diffuses the transition cally active(detailed studie$ have disclosed a maximum of
substantially, whereas the replacement of the nonferroelectrine degree of broadening at-0.5, which should be ob-
cally active Ba cation by Ca ions leaves the transitionserved in accordance with case 1b ahové x=0.8 the Sr
sharp?®®° and its replacement by Sr ions produces slightion probably becomes ferroelectrically activas in pure
broadening of the transitich:>* In PbTiO;, (in which the Pb  SrTiO;), as a result of which the transition broadens consid-
ion is ferroelectrically activ®) the transition becomes dif- erably (the possibility of a morphotropic phase boundary at
fuse when Pb is replaced by Ca and(Bef. 5] and remains x~0.8 is suggested in Ref. h9The broadening diminishes
sharp when the nonferroelectrically active Ti ion is replacedwith a further increase ir (Refs. 51 and 59 a trend that can
by Sn(Refs. 52 and 58and Zr(Refs. 53 and 54 Here the be attributed to an increase in the concentration of the newly
transition in(Pb, S§TiO3; broadens only slightly in compari- ferroelectrically active Sr ion.
son with the transition iflPb, CaTiO;, because the differ- If ions of three or more different species are present in a
ence in the sizes of the cations in the A sublattice is smalleferroelectrically active sublattice, an increase in the impurity
in the first case. IMKysBig5) TiO3 and (Na, iBip 5 TiO3, in concentration can lead to a monotonic decrease in the degree
which the disordered cations differ markedly in size and areof broadening. Indeed, impurity ions whose size differs little
situated in a ferroelectrically active sublattfttethe transi-  from that of the ferroelectrically active ion contribute little to

tion is substantially broadenéd®’ broadening; consequently, if their concentration increases at
Different cases can be considered as the concentration tiie expense of the concentration of ions with distinctly dif-
binary solid solutions is varied. ferent sizes, the degree of broadening must decrease. Good

1) If a ferroelectrically active ion does not change whenexamples are the solid solutions
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(1—x)Pb(Mg1/3Nb2/3) O3 ¥PbTiO; ration of ions in the units cells due to the difference in the
and sizes of the compositionally disordered ions or to the exis-
, tence of vacancies, interstitial ions, dislocations, and other
(1=x)Pb(Mg1/3Zn2/3) O3 %PbTiC;, defects. The influence of the degree of compositional disor-
which display®%2a decrease in the broadening»ass in-  der on the average transition temperature can be attributed to
creased, where the concentration threshold separating solthe disorder-related variation of the average diameter of the
tions that exhibit behavior typical of diffuse phase transitionoxygen octahedra surrounding ferroelectric ions in the per-
from solutions with a sharp phase transition coincides withovskite structure. The degree of broadening of the ferroelec-
the morphotropic phase boundawy=0.35 for the first solu- tric phase transition can be determined for perovskites hav-
tion, andx=0.1 for the second ing the general formula @;_,B;)03, using only data on
Within the framework of our model the decrease in thethe chemical composition, degree of compositional disorder,
degree of broadening with increasingis explained by a and ionic radii in the calculations.
decrease in the concentration of My £2.14 A or zZn The work described in this publication has been made
(L=2.15 A) ions, which differ sharply in size from the fer- possible by a grant from the International Science Founda-
roelectrically active Nb ionsl(=2.01 A). The contribution tion and the Russian government, No. J35100.
of Ti ions (L=1.97 A to broadening of the transition is
InSImelcant' be.cause their size is Cl.o.se to that of Nb. AfterlG. A. Smolenski, V. A. Bokov, V. A. Isupovet al, Physics of Ferroelec-
the morphotropic bouqdary the transition becomes sharp.as 8ric Phenomendin Russiai, Nauka, Leningrad1985.
result of the change in the type of ferroelectrically active 2L. E. Cross, Ferroelectric6, 241 (1987.
sublattice: In pure lead titanate the A sublattice is ferroelec-°A. A. Bokov, Ferroelectric483 65(1996. o
tricaIIy activef‘z and it is reasonable to assume that the same B. N._Rolov and V. EYurk_ewch,Physms of Diffuse Phase Transitiofis
. . . . T . Russian, 1zd. Rostov. Univ., Rostov-on-Do(1983.
suplattlce will remain ferroelgctrlcally active in the solld'so— 5v. P. Dudkevich, and E. G. FesenkBhysics of Ferroelectric Filméin
lution up to the morphotropic boundary. In solid solutions Russiad, Izv. Rostov. Univ., Rostov-on-Dof1.979.
(1—x) Pb(Fg,,Nb;,) O3—xPbTiO;, on the other hand, the Ti jS.CA:;It, Te&o??lectncaozl,dzll\l? (81930- . lecifise, 343 (1994
. . . . u, I. M. Reaney, an . Setter, Ferroelec .
|mpur|ty increases the d_egree Of_ broaderﬁﬁ@’ecause the 8C. A. Randall, D. J. Barber, P. Groves al, J. Mater. Sci.23, 3678
difference between the sizes of Ti and Nb may be small, but (19gg.
it is still greater than the difference between Nb and Fe®C. A. Randall, D. J. Barber, and R. W. Whatmore, J. Metedrd§, 275
L=2.00 A). (1987.
( A) . 105, B. Vakchrushev, B. E. Kvyatkovsky, A. A. Naberezreival, Physica
According to the given model, strong local structural g'jce 1= 90 (1989,
distortions, and hence marked broadening of the phase trams. g, Vak'chrushev, B. E. Kvyatkovsky, A. A. Nabereznewal, Ferro-
sition, are producedat high concentrationsby vacancies, lectricsa, 173(1989.
interstitial atoms, dislocations, and other extended defects. AC- N- W. Darlington, J. Phys. @1, 3851(1988.
| . in the dearee of broadening due to the a eauc' N. W. Darlington, Phys. Status Solidi A3 63 (1989.
arge increase '_n g g - _pp G. A. Smolenskiand V. A. Isupov, Zh. Tekh. Fi24, 1375(1954).
ance of vacancies has been observed experimentally, in pafy. A. Isupov, Ferroelectric80, 113 (1989.
ticular, in  PHSc,Nb;)O; and PlSc,Tay,) 0 ijz.-G. Ye, Ferroelectricd84, 193 (1929@.3
i od 64 ,66 ; ; A. A. Bokov, Ferroelectricd31, 49 (1992.
cerfamlcs7. It has been .shovfﬁ that dislocations are the g, - 20 (e g0, 667 (1994,
main cause of broadening in BalyO(Ba, ShTiOz, and 195 A pokov, Izv. Ross. Akad. Nauk Ser. Fis7, 25 (1993.
PbZr, Ti)Os thin films (compositional disorder, as men- 2v. E. Yurkevich, Physics of Phase Transitions in Ferroelectrically Active
tioned apolve, .ShOU|d not .Contriblljte much [o broadening ongOIid Solutiondin Russian Izv. Rostov. Univ. ROStOV-OI-’l-DIO(‘ﬂ_QBS-.
the transition in these solid solutionsA significant contri- E. G. FesenkoThe Perovskite Family and Ferroelectricifin Russian
. . ) ) Atomizdat, Moscow(1972.
bution f_rom dislocations an_d othe_r _ structural defects o2y p. sakhnenko, E. G. Fesenko, A. T. Shuvael, Kristallografiyal?,
broadening of the ferroelectric transition has been observed316 (1972 [Sov. Phys. Crystallogr7, 268 (1972].

in Ph(Sc;,Nby,) O5 crystals®’ 2°M. E. Lines, Phys. Rev177, 797 (1969. o
24M. E. Lines and A. M. GlassPrinciples and Applications of Ferroelec-

trics and Related MateriaJ]sClarendon Press, Oxford977).
7. CONCLUSION V. G. Vaks, Introduction to the Microscopic Theory of Ferroelectriia

. . Russian, Nauka, Moscow(1973.

. To summarlze, all Fhe fundamental laws underlying the%A. A. Bokov, Fiz. Tverd. TelgSt. Petersbung36, 36 (1994 [Phys. Solid
influence of disorder in crystal structure on ferroelectric state3s, 19 (1994].
phase transitions have been successfully explained, where, ifH. Braeter, N. M. Plakida, and W. Windsch, Solid State Comngif.
contrast to the work of other authors, different types of dis-,,1219(1988. :
order (point and extended defects and compositional disor- C. G. F. Stenger, F. L. Scholten, and F. J. Burggraaf, Solid State Commun.

P e P _ 32, 989(1979.
der) have been treated within the context of a single ap2°N. Setter and L. E. Cross, J. Appl. Phy, 4356(1980.
proach. A distinctive feature of this approach is that it takes°G. S. ZhdanovPhysics of the Solid Stafén Russiaf, Izd. MGU, Mos-
; ; : ; ; cow (1962, p. 349.
|nto. account dIS.OI'de.I' md.uced dn‘ferepces in the Str.UCturailv. V. Kirilov and V. A. Isupov, lzv. Akad. Nauk Ser. Fiz35, 2602
environment of identical ions, such differences altering the (1979,
balance of forces governing ferroelectric structural instabil-*2N. Yasuda and Y. Ueda, Phys. Lett34, 501 (1989.
ity. According to the model developed here, the cause of®v. Yu. Shonov Dissertation for the Degree of Candidate of Physicomath-
spatial fluctuations of the local transition temperature, which elrggt'ca' Sciencedin Russiaf), Rostov. Gos. Univ. Rostov-on-Don
lead to the formation of polar microclusters and broadeningsy yasuda, s. Fujimoto, and H. Terasawa, Trans. |[EEE Ultrason. Ferro-

of the transition, are random static distortions of the configu- electr. Freq. ControUFFC-36, 402 (1989.

1001 JETP 84 (5), May 1997 A. A Bokov 1001



35M. Yu. LeshchenkoAuthor's Abstract of Dissertation for the Degree of %2G. A. Smolesnkij, A. I. Agranovskaya, and A. M. Kalinina, Zh. Tekh. Fiz.

Candidate of Physicomathematical Sciendé@s Russiar, Uzhgorod.
Univ. Uzhgorod(1993.

36C. G. F. Stenger, and A. J. Burggraaf, Phys. Status Solid1A653
(1980.

37N. Setter and L. E. Cross, Phys. Status Solids® K71 (1980.

38p . Groves, Ferroelectricgs, 81 (1987.

393, Nomura, J. Kuwata, S. J. Jaagal, Mater. Res. Bull14, 769(1979.

4ON. Yasuda, S. Fujimoto, and K. J. Tanaka, J. Phy4.831909(1985.

4. A. Isupov, Fiz. Tverd. TelgLeningrad 28, 2235(1986 [Sov. Phys.
Solid State28, 1253(1986].

42yu. N. Venevtsev, E. D. Politova, and S. A. Ivanderroelectrics and
Antiferroelectrics of the Barium Titanate Familin Russian, Khimiya,
Moscow (1985, p. 114.

43G. A. Geguzina, V. P. Sakhnenko, E. G. Feseskal, All-Union Insti-
tute of Scientific and Technical Informati@gWINITI ) No. 3049-76, Mos-
cow (1976.

44]. Slater, Insulators, Semiconductors, and SoliddcGraw-Hill, New
York (1967).

4SA. A. Bokov, I. P. RaevsKkj and V. P. Smotrakov, Fiz. Tverd. Telaen-
ingrad 25, 2025(1983 [Sov. Phys. Solid Stat25, 1168(1983].

“A. A. Bokov and I. P. Raevski Pis'ma zh. Tekh. Fiz16(17), 44 (1990
[Sov. Tech. Phys. Lettl6, 660(1990].

47K, Z. Baba-Kishi and D. J. Batber, J. Appl. Crystallogg, 43 (1990.

480. 1. Prokopalo and E. G. Fesenko, ferroelectrics[in Russian, Izd.
Rostov. Gos. Univ., Rostov-on-Dgi961), p. 123.

497. A. Takare, inFerroelectric Phase Transitiongn Russian, 1zd. Latv.
Univ., Riga(1978, p. 149.

50K. Ya. Borman, inFerroelectric Phase Transitior{n Russian, Izd. Latv.
Univ., Riga(1978, p. 162.

51D, M. Kazarnovski, Ferroceramic Capacitor§in Russian, Gos@ergoiz-
dat, Moscow—Leningra1956.

1002  JETP 84 (5), May 1997

25, 2134(1955.

3V. Ya. Fritsberg, inPhase Transitions in Ferroelectric Solid Solutidins
Russian, Izd. Latv. Univ., Riga(1976), p. 5.

54K, Tsuzuki, K. Sakat, and M. Wada, Ferroelectr&;s501 (1974.

55G. A. Smolenshi, V. A. Bokov, V. A. Isupovet al, Ferroelectrics and
Antiferroelectrics[in Russian, Nauka, Leningrad1971).

561, P. Pronin, P. P. Syrnikov, V. A. Isupceat al, Pis'ma zh. Tekh. Fiz5,
705(1979 [Sov. Tech. Phys. Letb, 289(1979].

57s. M. Emel'yanov, I. P. Raevskiand O. I. Prokopalo, Fiz. Tverd. Tela
(Leningrad 25, 1542(1983 [Sov. Phys. Solid Stat25, 889(1983].

%8V, Ya. Gritsberg and K. Ya. Borman, iRhase Transitions in Ferroelec-
trics with a Perovskite Structurlén Russian, Uch. Zap. Latv. Gos. Univ.
189, 99 (1974.

59V, V. Lemanov, E. P. Smirnova, and E. A. Tarakanov, Fiz. Tverd. Tela
(St. Petersbupg37, 1854 (1995 [Phys. Solid Stat@7, 1010,(1995].

6035, W. Choi, T. R. Shrout, S. J. Jaeg al, Mater. Lett.8, 253(1989.

1C. A. Randall, A. S. Bhalla, T. R. Shroet al, J. Mater. Res5, 829
(1990.

62J. Kuwata, K. Uchino, and S. Nomura, Jpn. J. Appl. PHg%. 1298
(1982.

83A. A. Bokov, L. E. Shpak, and I. P. Rayevsky, J. Phys. Chem. S@litls
495 (1983.

84F. Chu, I. M. Reaney, and N. Setter, J. Am. Ceram. 38c1947(1995.

57. Surowiak, E. Nogas, A. M. Margoliret al, Ferroelectrics115, 21
(1992).

667. Surowiak, D. Czekaj, A. A. Bakiroet al, Integr. Ferroelectr8, 267
(1995.

7K. G. Abdulvakhidov and M. F. Kupriyanov, Izv. Ross. Akad. Nauk Ser.
Fiz. 59, 73 (1995.

Translated by James S. Wood

A. A. Bokov 1002



	1003_1.pdf
	1010_1.pdf
	1016_1.pdf
	1022_1.pdf
	1027_1.pdf
	1036_1.pdf
	843_1.pdf
	851_1.pdf
	856_1.pdf
	864_1.pdf
	875_1.pdf
	881_1.pdf
	888_1.pdf
	893_1.pdf
	903_1.pdf
	912_1.pdf
	916_1.pdf
	940_1.pdf
	948_1.pdf
	951_1.pdf
	957_1.pdf
	971_1.pdf
	978_1.pdf
	986_1.pdf
	990_1.pdf
	994_1.pdf

