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A DNA molecule is simulated by an anisotropic elastic fiber which defines the configuration of
the molecule central line and is supplemented with a chain of quantum two-level systems
imitating hydrogen bonds between two polynucleotide chains in the DNA double helix. The system
Hamiltonian consists of Kirchhoff’s classical elastic energy and the energy of a quantum
anisotropic chain of ‘‘spins’’ 1/2. The two-level systems and macroscopic vector variables which
determine the conformation of the central line are coupled by a classical vector fieldq,
which is introduced to take into account the existence of two polynucleotide strands. Averaging
over fast~microscopic! variables yields an effective potentialU(q). In the approximation
of weak coupling between the systems, the spectrum of elementary excitations and effective
potentialU(q) have been calculated in explicit form. The relation between elementary
excitations in the ‘‘magnetic’’ subsystem and so-called breathing modes@C. Mandel, N. R.
Kallenbach, and S. W. Englander, J. Mol. Biol.135, 391~1980!; G. Manning, Biopolymers22, 689
~1983!# corresponding to low-frequency excitations in DNA molecules is discussed.
© 1997 American Institute of Physics.@S1063-7761~97!02105-7#
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According to Crick and Watson’s model~see the
monograph3 and the review4, and references therein!, a DNA
molecule consists of two polynucleotide chains~strands! in-
tertwined in a double helix. The strands are connected
each other by relatively weak hydrogen bonds, and elem
of the chains are connected to one another by much stro
covalent bonds. This structure is characterized by three
tial scales, namely~1! a microscale no larger than 10 Å~this
is the diameter of the double helix or the distance of 3.4
between two neighboring bases in a chain!; ~2! a mesoscopic
scale of the order of the persistence length of a DNA m
ecule ~this is the length over which the elastic energy
comparable to the temperature! of about 103 Å; and ~3! a
macroscopic scale equal to the total molecule length, wh
can be up to 1010 Å.

Given these large differences among the scales, one
adopt a variety of approaches in describing DNA proper
on different scales. For example, hydrogen bonds mus
analyzed using the quantum-mechanical approach, the p
erties on the mesoscale are determined by the ela
energy1!, and on the macroscopic scale a DNA molecule
similar to a conventional polymer molecule, and most of
features can be interpreted using well-known scaling la6

and are largely determined by the conformational entrop
On the other hand, the differences among these scale

not mean that the respective properties are fully independ
In some phenomena, two of the scales or even all three
be important. One of them is the well-known and biolog
cally very important division~replication! of two comple-
mentary polynucleotide chains of a DNA molecule.
higher temperatures~or in an appropriate chemical environ
ment! hydrogen bonds holding two strands together are b
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double helix. As noted above, lengths of hydrogen bonds
microscopic, hence the description of their rupture is
quantum-mechanical problem. Furthermore, the two com
mentary chains should separate in the process of replica
therefore they should bend with respect to each other,
this process is, obviously, controlled by elastic energy, i
processes on the mesoscopic scale should be taken into
sideration. Models taking into account such interaction
tween microscopic~hydrogen bonds! and mesoscopic~elas-
tic energy! scales have been studied by several authors.7–10

Dauxois et al.7–9 described this interaction as softening
the elastic bending constant at high amplitudes of norm
oscillations, whereas Marky and Manning10 ascribed this
softening to the rupture of hydrogen bonds.

In our previous brief report,11 we described this behavio
in terms of a classical vector fieldq introduced to account for
the existence of two polynucleotide chains. The stability o
DNA molecule against replication was provided by an ext
nal potentialU(q) described in the harmonic approximatio
i.e., an additional parameter was introduced to the the
The aim of the present work is to calculate the poten
U(q) using the microscopic approach and to study the eff
of hydrogen bonds on the mesoscopic elastic parameter
DNA.

This paper is organized as follows. In Sec. 2 a model of
a DNA-like molecule is formulated. The molecule is d
scribed as an anisotropic elastic fiber which defines the c
figuration of the double-helix backbone. Hydrogen bonds
tween two polynucleotide chains are simulated by quant
two-level systems, i.e., we assume that a hydrogen bond
be only in two states, closed and open. A bilinear spin–o
interaction leads to coupling between the two subsyste
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two systems, one of which is classical and determines
molecule elasticity, and the other of which is a quantu
system responsible for binding the strands in the double
lix. We assume that the spatial configuration of the molec
is largely determined by the classical system, while the qu
tum system is ‘‘tuned up’’ to this configuration, i.e., an an
log of the Born–Oppenheimer approximation can be use

In Sec. 3 the proposed model is investigated. Averag
over the microscopic variables, which are faster than me
scopic ones, yields the effective potentialU(q) stabilizing
the DNA molecule. An explicit expression forU(q) has
been obtained in the limit of weak ‘‘spin–orbit’’ coupling.

In Sec. 4 the spectrum of elementary excitations for
model is calculated. Finally, in the last section, physical c
sequences of our results are discussed, particularly the
tionship between elementary excitations of two-level s
tems and the so-called breathing modes of the D
molecule, which were discussed in Ref. 2 in order to int
pret the experimental data1 on fluctuations of hydrogen
bonds.

2. TWO-LEVEL SYSTEMS AND HYDROGEN BONDS
BETWEEN STRANDS IN A DNA MOLECULE

Following Marky and Manning,10 we consider the cen
tral line of the DNA molecule to be an elastic fiber or rod. A
noted above, the conformation of this fiber on the interme
ate~mesoscopic! scale is largely controlled by its elastic e
ergy. The latter can be expanded, as usual, in terms of
strain tensor, and these expansions can be conveniently
pressed in a form which is a generalization of the solution
Kirchhoff’s classic problem of equilibrium of an elast
rod12–14:

E05E
0

L

dsS 12 ai jv iv j1biv i D . ~1!

HereL is the length of the elastic fiber~the condition that the
mechanical model apply limits this length to several pers
tence lengths!, s is the distance measured along the fib
axis, aik is the matrix of elastic constants of the rod~the
anisotropy ofaik reflects the existence of two nonidentic
helices!, and the vectorb describes spontaneous deformati
of the DNA molecule, which leads to its superhelical stru
ture. A physical cause of spontaneous deformation can
for example, adsorption of a DNA molecule on a nucle
some, which is usually described as a cylindrical surface~see
Ref. 10, where the equilibrium configuration of a nucle
some is studied using the models of an elastic rod!. Introduc-
tion of the vectorv requires some clarification.

In order to describe the conformation of the DNA mo
ecule central line, one can introduce the moving Fre
frame15 v1 , v2 , v3, where thev1 is the tangent vector, an
v2 andv3 are aligned with the principal deformation axes
the elastic rod,16 i.e.,

v15
dr

ds
, vi•vj5d i j . ~2!
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Frenet frame along the fiber:

d

ds
vj5v3vj . ~3!

Equation~3! means that all admissible deformations of t
fiber can be described in terms of rotations of the Fre
frame, i.e., the elastic fiber is incompressible, which is
fairly good approximation for a DNA molecule, whose to
sional and bending elastic constants are several order
magnitude less than the compressibility constant.4,17

Note another important factor. The term in Eq.~1! linear
in v i indicates that there is a preferred alignment of a DN
helix adsorbed on a nucleosome. Indeed, a DNA molec
adsorbed on a protein cylinder composed of histons i
DNA section of 146 base pairs~bp! wound in the shape of a
left-handed helix of 1.8 turns on the cylinder.10 Therefore the
expression for the elastic energy containing a homogene
quadratic form inv i , which is used by some authors,12 is
probably an oversimplification.

At constantai j and b, the minimum of the energy de
scribed by Eq.~1! corresponds to a constant value ofv:

v i5S 1aD
i j

bj ,

which describes the helical conformation of the molecule
Thus far, we have not taken into account the existenc

two strands forming the DNA double helix and hydrog
bonds between them; we have only discussed the confor
tion of the central axis. A minimal extension of the elas
model that facilitates the simulation of hydrogen bonds a
double helix might be as follows. We assume that hydrog
bonds between two polynucleotide chains can be modele
two-level systems. The two states of such a system co
spond to open~broken! and closed hydrogen bonds. Th
strength of the hydrogen bond is about 5 kcal/mol, and un
natural physiological conditions about 1% of such bonds
virtually broken.1,2

Thus, imagine that two-level systems are associated w
points on the central axis, whose conformation is determi
by the energy defined in Eq.~1!. This compound system o
the elastic fiber plus the two-level systems is a minimal g
eralization of the model described by Eq.~1!, taking hydro-
gen bonds into account, and it allows us to calculate
DNA conformation on the mesoscopic scale. Our goal is
describe Kirchhoff’s elastic fiber supplemented with the tw
level systems.

It is convenient to replace Kirchhoff’s continuous fib
with a discrete chain~note that Kleninet al.17 and Chirico
and Langowski18 studied a discrete version of the elas
model ~1!!. Thus, there is a two-level system, which can
either in an open~excited! or in a closed~ground! state,
u1& or u0&, at each site of the chain,n50,61,62 . . . . In
this Hilbert space, at each site we define a basis:

u0&5S 01D , u1&5S 10D , ~4!
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basis which is a direct product of all eigenvectors defined
Eq. ~4! at all sites.

The following simple relationships are obviously vali
s2u1&5u0&; s1u0&5u1&, where the operatorss2 , s1 in
the basis defined by Eq.~4! take the form

s25S 0 0

1 0D , s15S 0 1

0 0D .
The Hamiltonian of the two-level systems can be also p
sented in the same basis~its reference frame is defined by th
conformation of hydrogen bonds in the molecule and th
fore is local, i.e., it depends on the position of a spec
nucleotide pair!:

Hm52« (
n

sn
~3!1(

n
n1~sn

1sn11
2 1sn

2sn11
1 !

1n2 (
n

~sn
1sn11

1 1sn
2sn11

2 !. ~5!

The meaning of components of the Hamiltonian~5! is quite
clear. The first term determines the energy of two-level s
tems,« is the energy required to break a hydrogen bond,
the operators (3) has the form

s~3!5S 1 0

0 21D ,
whereas the second and third terms determine the trans
rates to neighboring sites with and without a change in
states of the two-level systems (n1 and n2 are the corre-
sponding matrix elements, and we assume, for simplic
that only nearest neighbors interact!.

In this form, the Hamiltonian~5! is too complicated,
even in the one-dimensional case. It corresponds to the
called XYZ-model in an external field, and although th
model enables one to obtain an exact solution,19 it is too
cumbersome and will not be used in our study, though e
tations like Bethe’s spin complexes can be interesting
studies of nonlinear effects in DNA conformation~these phe-
nomena were studied by some authors in the framework
nonlinear DNA model7–9,17!.

We assume for simplicity thatn250, i.e., the matrix
element of the transition between sites with, for examp
two broken hydrogen bonds, is zero. In this case, our mo
transforms to the so-calledXXZ-model, which was first stud
ied by Bethe.20 Thus, in this case (n1[n, n250) we have

Hm52« (
n

sn
~3!1n (

n
~sn

1sn11
2 1sn

2sn11
1 !. ~6!

Let us determine how the operatorssn
(3), sn

6 ,
n50, 1, 2, . . . ,N21 are related to the DNA conformation
To this end, let us take into account the fact that the break
of a hydrogen bond at siten, which is described viasn

(3) as
a transition to the excited state, has, from an outsider’s vi
point, a certain preferred direction defined by a unit vec
un in the laboratory frame. Therefore, the states of hydro
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operatorsSn, which are related to the local operatorssn by
the canonical transformation21

Sn5unsn
~3!1Ansn

11An*sn
2 . ~7!

Here sn
(2)[(1/2i )(sn

12sn
2), sn

(1)[(1/2)(sn
11sn

2)), and
un is the unit vector of the ‘‘quantization’’ axis, i.e., th
direction in which the hydrogen bond at siten can be broken
~opened!. The complex vectorAn is orthogonal to un
(An • un50, An* • un50).Furthermore, if

An•An50, An•An*5
1

2
,

the vector operatorsSn obey the usual commutation relation
for spin operators:

@Sn
~ i ! ,Sm

~ j !#5 i« i jkSn
~k!dmn ,

which justifies our using the terminology usually applied
magnetic materials.

The choice of the vectorAn is somewhat arbitrary,
which enables us to introduce a reference fra
Wn

(1), Wn
(2), Wn

(3) determined by the hydrogen bonds,

un[Wn
~3! ,

1

2
~An1An* ![Wn

~1! ,
1

2i
~An2An* ![Wn

~2! ,

~8!

and, in addition, to choose the vectorWn
(1) , which coincides

with the tangent to the central line, i.e.,

Wn
~1![vn

~1! , ~9!

while vn is defined in accordance with the discrete version
Eq. ~2!.

Thus, as a result of the calculations in this section,
have introduced two local reference frames, namely,$vn

( i )%,
defined by the deformation of the molecule central line, a
$Wn

( j )%, determined by hydrogen bonds. Notably, in o
‘‘gauge’’ defined by Eq.~9!, Wn

(1) coincides with the vector
tangent to the central linevn

(1) .
Both these references~or, what is the same, Kirchhoff’s

Hamiltonian of the elastic fiber in Eq.~1! and the Hamil-
tonian ~6! of the two-level systems! have so far been inde
pendent. Recall that we are dealing with the DNA model
which the two-level systems are defined in the refere
frame$Wn

j %, and deformation of the central line is describ
by Kirchhoff’s vector fieldv in the reference frame$vn

( i )%.
But a DNA molecule consists of two polynucleotide chain
As noted in our previous publication,11 a classical vector
field q should be included in Kirchhoff’s model of a singl
elastic fiber. This field also acts as a mediator between
Kirchhoff and ‘‘magnetic’’ subsystems. In the simplest ma
ner, this interaction can be described by the following bil
ear contribution to the energy:

H int5g (
n

Un
21qn•sn . ~10!

Here g is the effective coupling constant,qn is the vector
defining the direction in which a bond is broken in Kirch
hoff’s reference frame$vn

( i )%, sn is defined by Eq.~7! in the
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reference frame$Wn
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Un5S 1 0 0

0 coswn 2sin wn

0 sinwn coswn

D ,
where wn is the local angle of rotation about the tange
vector of the curve, which is a vector common to both r
erences. Note that the interaction described by Eq.~10! has a
structure similar to that of the spin–orbit coupling, and co
tainsqn andsn in the lowest powers allowed by the symm
try of the system.

3. CONFORMATION ENERGY

The model described in the previous section thus
cludes the energy of elastic deformation of the DNA cen
line given by Eq.~1!, the Hamiltonian~6! of the two-level
systems on this curve, and ‘‘spin–orbit’’ coupling~10!. Gen-
erally speaking, it must also include the energy due to in
mogeneity of the vector fieldq, which is expressed in the
harmonic approximation as

Eg5
K

2 (
n

~¹qn!
2, ~11!

where¹ is a covariant derivative, since the change in t
vectorqn due to motion along the line can be ascribed b
to the rotation of the Kirchhoff reference frame and t
change inqn with respect to the local reference. In the co
tinuous limit

¹q[
]

]s
q1v3q

~in the discrete version, we should usevn andqn and replace
the derivative]/]s with a finite difference!.

Here we will not fully investigate the model that take
all the contributions to the energy given by Eqs.~1!, ~6!,
~10!, and~11! into account, but limit our study to the case
a closed non-superhelical conformation supplemented
two-level systems. In this case, the Hamiltonian conta
only the terms defined by Eqs.~6! and ~10!, which can be
expressed as

H5g (
n50

N21

@~coswnqn
~2!1sin wnqn

~3!!sn
~2!

1~2sin wnqn
~2!1coswnqn

~3!!sn
~3!#2« (

n50

N21

sn
~3!

1n (
n50

N21

~sn
1sn11

2 1sn
2sn11

1 !. ~12!

All the notations in Eq.~12! have been described above, a
the chain ofN sites is closed.

It is convenient to transform the operators in Eq.~12!
into Bose operators of approximate second quantization21:

bn5sn
1 , bn

15sn
2 , sn

~3!5
1

2
2bn

1bn . ~13!
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low density of excited bonds~which means, from the physi
cal viewpoint, that the temperature is much lower than
DNA denaturation energy!. Note also that these exitation
are formally similar to excitons in dielectrics.22

Substituting Eq.~13! into ~12! and taking a Fourier
transform, with

bn5
1

AN (
k50

N21

expS i 2pnk

N Dbk ,
bn

15
1

AN (
k50

N21

expS 2 i
2pnk

N Dbk1
we obtain the following Hamiltonian in the
k-representation:

H5
1

2
g (

n50

N21

~2sin wnqn
~2!1coswqn

~3!!

1 (
k1k2

«k1k2bk1
1bk21(

k
~Dkbk

11Dk* bk!. ~14!

Here we have used the notation

«k1k25dk1k2S «12n cos
2pk1
N D2

g

N (
n50

N21

~2sin wnqn
~2!

1coswnqn
~3!!expS i 2p~k22k1!n

N D ~15!

and

Dk5
i

2

g

AN (
n50

N21

expS 2 i
2pnk

N D ~coswnqn
~2!

1sin wnqn
~3!!. ~16!

In order to diagonalize the Hamiltonian in Eq.~14!, we
have to perform a canonical transformation

bk5Bk1 l k , bk
15Bk

11 l k* , ~17!

where l k are not operators butc-numbers, which should be
chosen so as to exclude the Hamiltonian components lin
in the operatorsbk andbk

1 . This condition yields

l k5(
k8

~«kk8
21Dk8!, ~18!

and yields the following result, apart from inessential co
stants:

H5
1

2
g (

n50

N21

~2sin wnqn
~2!1coswnqn

~3!!

1 (
k1k2

«k1k2Bk1
1Bk2

13 (
k1k2

Dk1
~«21!k1k2Dk2

. ~19!

The last term in Eq.~19! determines the vacuum energy, an
the canonical transformation given by Eq.~17! corresponds
to a transition to coherent states. The first term on the rig
hand side of Eq.~19! describes collective excitations~‘‘spin
waves’’! in the two-level systems associated with the elas
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the temperatureTm of total denaturation of DNA, one ca
ignore excited spin waves, and Eq.~19! yields the conforma-
tion energyEconf of the molecule.

In order to make our calculations easily understanda
we suppose that the ‘‘spin–orbit’’ coupling is weak, i.e
g!1. Then we can derive from Eq.~19! the following ex-
pression to orderg2:

Econf5
1

2
g (

n50

N21

~sin wnqn
~2!1coswnqn

~3!!

1
3

4 (
n50

N21
1

«12n cos~2pk/N!

3
1

N (
n,m50

N21

expS i 2p~m2n!k

N D ~coswnqn
~2!

1sin wnqn
~3!!~coswnqn

~2!1sin wmqm
~3!!. ~20!

In order to make further progress, we make one more nat
assumption:un/«u!1, which means that the transition matr
element between two neighboring sites is smaller than
energy of a broken hydrogen bond.

To the lowest order in this small parameter, one c
easily derive from Eq.~20! the following formula:

Econf5
g

4 (
n50

N21

~eiwnqn1e2 iwnqn* !1
3g2

64« (
n50

N21

2uqnu2

12@~qn
~2!!22~qn

~3!!2#cos 2wn

14qn
~2!qn

~3! sin 2wn . ~21!

Here we have introduced the notation

qn[qn
~2!1 iqn

~3! .

Finally, we take into account the large difference b
tween the mesoscopic and microscopic scales mentione
the introduction. This means that the variablewn is rapidly
oscillating on the mesoscopic scale, and Eq.~21! can be av-
eraged over this variable, which yields

Econf5
3g2

32« (
n50

N21

qn
2 . ~22!

Note that a similar harmonic potential (} *0
Lds q2) was used

in our previous work,11 where a model of DNA splitting was
studied. The calculations in this section can be considere
derivation of this effective potential using the microscop
approach.

Note that for stability of a DNA molecule with respect
the conformation energy given by Eq.~22!, the conditions
«.0 andn.0 ~the latter derives from Eq.~20!! should hold.
Both conditions are quite natural.

4. ELEMENTARY EXCITATIONS AND TOPOLOGICAL
STRUCTURE OF THE MODEL

Elementary excitations are due to variations over ti
and space in the variables in Eqs.~1!, ~5!, ~10!, and ~11!,
which determine the total energy. In the general case, w
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action between them, the spectrum of elementary excitat
can be calculated only numerically. In the limit of wea
spin–orbit coupling, however, it can be derived appro
mately by analytic methods, the Kirchhoff elastic ener
then being much higher than the energy of hydrogen bon
Therefore, when spin–orbit coupling is weak, the vector fi
q due to the Kirchhoff energy can be considered an exte
field acting on the magnetic system~Hamiltonians in Eqs.~5!
and~10!!, i.e., the Born–Oppenheimer approximation can
used.

In this approximation, the magnetic subsystem can
described by the one-dimensionalXYZ-model ~or XXZ) in
an inhomogeneous~in the general case! external field, which
should be determined by solving the classical problem of
elastic Kirchhoff fiber supplemented with the vector fie
q, i.e., by minimizing the energies determined by Eqs.~1!
and ~11!. If the field configuration is arbitrary, an exact s
lution for theXXZ-model is too cumbersome, even in on
dimension, so we analyze the special case of a nonsu
coiled closed DNA molecule, for whichq5const, i.e., a one-
dimensionalXXZ-chain in a constant external field. An exa
solution in this case can be obtained using the Be
ansatz.20

As follows from a more accurate solution, the spectru
of elementary excitations consists of a branch of one-part
excitations ~magnons! with the dispersion relationnk2,
wherek is the quasimomentum or, in the continuous lim
the wave vector, as well as more complicated excitatio
~so-called complexes!, which are propagating bound states
two or more broken bonds~with opposite spins!. The latter
excitations always have higher frequencies than sing
particle excitations, and at temperatures far from the de
turation temperature they can be ignored. Here we do
give exact expressions for the spectrum of elementary e
tations but, as in the previous section, limit our discussion
the mean-field approximation.

The spectrum of hydrogen-bond excitations deriv
from Eq. ~15! contains topological information about th
state of the molecule. Note that in deriving the spectrum,
have to diagonalize the matrix«k1k2

. In first-order perturba-
tion theory with respect tog, we derive from Eq.~15!

«k5«12n cos
2pk

N
2

g

N (
n50

N21

~2sin wnqn
~2!

1coswnqn
~3!!.

The last term is none other than the scalar productqn • un ,
which can be interpreted as follows. SinceN@1, we can
consider the continuous model of the molecule as a clo
curve in space, and the vector fieldu as a continuous field o
vectors normal to the curve. Then the scalar productq–u
describes rotation of the fieldq, which, as noted above, de
fines the two-chain structure of the molecule in the norm
coordinate reference frame determined by the fieldu in the
neighborhood of the curve.

Note that the dispersion relation for«k in first-order per-
turbation theory with respect tog yields only the average
value of this rotation. The last term in Eq.~15! is the Fourier

1007V. L. Golo and E. I. Kats
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curve,q–u, and yields complete information about rotatio
of the system of two strands. An important point is that E
~15! takes account of rotation of the fieldq in the normal-
coordinate reference frame defined by the conformation
hydrogen bonds between the chains of the double helix.

A change in the conformation or topology of the DN
molecule leads to a change in the spectrum of excitati
«k if it changes the value of rotationNq of the fieldq. Note
the relationship between the rotationNq of the fieldq and
the so-called linking numberLk, which has been studied b
several authors.4,5,17 In our model, the fieldq simulates the
structure of the double helix, i.e., the presence of two cha
thereforeNq describes the linkage between these cha
Hence, the change in the spectrum«k reflects a change in th
topology of the DNA conformation. The behavior of breat
ing modes introduced by Manning2 to describe the dynamic
of hydrogen bonds is probably also related to the topology
DNA conformation. At present, the connection betwe
DNA topology and mobility has been established with c
tainty ~see Ref. 4 and references therein!. An experimental
discovery of a relationship between DNA topology and t
spectrum of elementary excitations would undoubtedly be
great interest.

5. CONCLUSIONS
Manning2 published detailed data about two types of

ementary excitations observed in real DNA molecules. Th
are so-called bending and breathing modes. The former
due to bending of a DNA molecule~i.e., a transition from the
state with zero mean curvature to a state with a definite
curvature!, whereas the latter are due to the breaking o
hydrogen bond and unwinding of the double helix to the n
closed bond.

The bending energy of a segment of lengthl5260 Å
~the mean distance between open hydrogen bonds at
peratures close to the denaturation point! for the rms curva-
ture of a DNA molecule (A^1/r 2&'1/200 Å21) is
DG'0.59 kcal/mol.1,2,10

Using standard concepts of bending in elastic rods,
can estimate the bending elastic constanta in the Kirchhoff
energy given by Eq.~1!:

a' lDG'10220–10219 erg•cm.

Hence, the dispersion relation for bending modes is

v'A a

r1
q2.

Herev is the frequency,q is the wave vector, andr1 is the
molecular mass per unit length:

r15rd2'10215 g/cm,

whered is the molecular diameter (;10 Å!.
For wave vectorsq of the order of the inverse segme

length l , we have a mode of very high frequenc
v;1010–1011 s21.

Thus, bending modes can be identified with eigenmo
determined by the Kirchhoff component of the energy in E
~1!. As for breathing modes, they are naturally associa
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spectrum~spin waves! due to the magnetic energy~Eq. ~6!!.
The parameter« ~the bond rupture energy! in this energy is
well known1,2,10 and equals about 5 kcal/mol~i.e., about
102 K per bond!.

It is more difficult to determine the parametern ~transi-
tion matrix element between neighboring sites!. Given the
temperature coefficient of the length of the closed-bon
segment2 (21.160.1 bp/deg, where bp is the separation b
tween neighboring base pairs along the DNA central l
equal to 3.4 Å!, one can estimaten as follows. Suppose tha
the temperature has changed by one degree. In accord
with the temperature coefficient given above, the bound
of the closed-bonds segment has shifted through a len
equal to the distance to the next bond. On the other hand,
small change in the temperature~much smaller than the bon
energy, which equals, as noted above,;102 K! does not
change the gap in the spectrum of excitations, and this all
us to estimaten. Comparison with the dispersion relation
the previous section yieldsn.10217–10216 erg.

From this estimate ofn, we can derive the group veloc
ity vb of the breathing mode at a wave vector of appro
mately the inverse lengthl of the closed-bond segment:

vb;
nd2q

\
'1–10 cm/s.

For comparison, the group velocity of the bending mode
the same wavelength is

vben;105cm/s.

Thus, we have come to the conclusion that spin wave
the magnetic subsystem described by the Hamiltonian in
~6! describe breathing modes, which are really observed
DNA molecules, and the fast bending modes are ela
waves determined by the Kirchhoff energy. Note that t
existence of fast and slow modes with very different velo
ties may be important, in view of the role DNA plays in th
cell biophysics.

This work was performed as a part of theStatistical
Physicsstate-sponsored program, and was supported by
TAS ~Grant No. 94-40-78! and the Russian Fund for Funda
mental Research~Grant No. 96-02-16207a!.

1!In a recent publication5 a detailed analysis of the DNA molecule confo
mation in terms of an elastic model taking into account thermal fluct
tions was described.
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Cutoff of long-wave phonons in a nanocrystal due to a nonuniform strain field

V. V. Meshcheryakov1)

Moscow Institute of Steel and Alloys, 117936 Moscow, Russia
~Submitted 19 December 1995; resubmitted 19 December 1996!
Zh. Éksp. Teor. Fiz.111, 1845–1857~May 1997!

This paper considers the effect of extended monopole and dipole strain fields on the low-
frequency boundary of the phonon spectrum in a crystal of finite dimensions. The boundary shift
depends on the dynamical volume of the nonuniform strain region, which is determined by
the parameters of the crystal and the sources of stress. An increase in the volume of the deformed
region leads to a decrease in the undistorted part of the crystal, where a phonon with the
largest wavelength can be produced. A monopole strain field is more efficient in cutting off long-
wave phonons than a dipole strain field, and can ‘‘soften’’ the phonon spectrum. If a source
generates stresses of the order of those on an interatomic scale, these effects can be the strongest
and most diverse in crystals or phase precipitates with dimensions of less than 1026 cm.
© 1997 American Institute of Physics.@S1063-7761~97!02205-1#
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The phonon spectrum of an ideal macroscopic cry
extends fromvL52pc/L, wherec is the speed of sound an
L is the sample length, to the Debye frequencyvD5pc/a,
wherea is the interatomic spacing.1 For example, ifL'1
cm, a'1028 cm, andc'105 cm/s, thenvD'1013 s21 and
vL'106 s21.

If L is reduced to nanocrystal dimensions that can
achieved by existing technologies, low-frequency phon
should be cut off from the spectrum, and the low-frequen
boundary of the phonon spectrum should shift towa
higher frequencies. For example, in a crystal w
L'1026 cm, the cutoff frequency isvL'1012 s21.

A real crystal always contains strain sources that gen
ate long-range static fields, in which atoms are displa
from their equilibrium positions. For example, vacancies,
terstitial atoms, and impurities generate strain fieldsQ typi-
cal of dipole centers,2 decaying over a range of several n
nometers as a power of the distance,Q}r22. Such a source
of strain in a macroscopic crystal shifts phonon modes by
energy of static lattice deformation,3 hence it does no
change the shape of the phonon spectrum. If the crystal
is in the nanometer range, the strain field region may occ
an appreciable part of its volume. Does the above-cited e
mate of the lower spectrum boundary apply to this ca
Should the phonon spectrum shift as a whole in the prese
of a dipole-like point defect?

These questions are also appropriate in the case
monopole static source, especially because no researc
seems, has been performed in this field, whereas regions
strain fields similar to those produced by a monopole sou
should be generated by external forces acting on a cry
~for example, in an atomic-force microscope4!, by forces on
grain boundaries in polycrystals~for example, during plastic
deformation and destruction of materials5!, by forces on
boundaries between different phases~in alloys in pre-
martensitic states6!, etc. In an isotropic infinite medium,
monopole source generates a field7 Q } r21, i.e., the mono-
pole field has a longer range than the dipole field, so it
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The present paper demonstrates that in nanocrystals
taining static strain sources, the estimate of the lower bou
ary of the phonon spectrum given above is not valid. T
reason is the cutoff of long-wave phonons by nonunifo
strain fields occupying finite volumes, which reduce the v
ume of the undistorted crystal, where harmonic lattice vib
tions with the lowest frequecies occur. The problem is solv
using a phonon Hamiltonian with terms due to point-li
monopole and dipole sources of strain. Only if both of the
strain sources are taken into account one can describe
nonuniform strain in terms of a superposition of harmon
oscillators after some canonical transformations of
Hamiltonian. The condition that the displacements and m
menta associated with these oscillators be real is use
estimating cutoff frequencies.

The cutoff of the phonon spectrum is interpreted
terms of the stationary volume where a steady nonunifo
strain occurs. It has been proved that the stationary volu
due to arbitrary strain sources in a quantized medium
finite. The relation of this result to the classical description
deformation fields is discussed.

This paper also describes an attempt to explain
damping property of alloys in terms of a band gap in t
phonon spectrum, and suggests a feasible reason for a ‘‘s
mode in structural transitions in solids.

2. STEADY STATES OF EXTENDED NONUNIFORM STRAIN
IN A DYNAMIC CONTINUUM

Let us modify the previously known description of no
uniform strain in a medium8 for solving the quantum prob
lem of vibrations in a crystal by introducing a static stra
distribution, taking into account the configuration of the la
tice static deformation.

For a medium with given densityr and elastic constan
k, the Hamiltonian describing oscillations of its particles a
their linear displacements due to given nonuniform strain
be expressed as

H5Hf1Hd , ~1!

1010$10.00 © 1997 American Institute of Physics
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Hf5 (
a51

E
0
dr F2 ~¹Qa~r ,t !! 1

2r G , ~2!

Hd52 (
a51

3 E
0

L3

dr Fa~r ,t !Qa~r ,t !. ~3!

The functionPa(r ,t) in Eq. ~2! is the momentum density
andQa(r ,t) is the displacement of a point of the continuum
The functionHf describes the motion of points with ha
monic interactions among them, andHd characterizes the
nonuniform strain of the continuum generated by the fo
densityFa(r ).

Let us express the force density in the form of a sta
multipole expansion9:

Fa~r !5F1ad~r !2F2a~R•¹!d~r !, ~4!

whereF1a is the component of the monopole force,F2a is
the component of the dipole force, andR is the dipole sepa-
ration vector.

The monopole term in Eq.~4! determines the density o
a stress monopole or a ‘‘single force,’’ which is applied to
point of the continuum in a given direction and deforms t
continuum without changing its volume. This force does n
satisfy the condition of crystal equilibrium, and it can on
be an external force applied to a crystal from the outside

The dipole term in Eq.~4! determines the density of
stress dipole or a ‘‘double force’’2 which is applied to the
points defined by the vectors6R with respect to the origin
and generate bulk deformation of the continuum.

The expansion given by Eq.~4! provides an exhaustive
description of an arbitrary nonuniform strain due to a poi
like source, since the force density in a physical system
bounded by the first two multipoles.

Thus, our study addresses a nonuniform strain defi
by Eq. ~4!, generating a potential component in the Ham
tonian in Eq.~1!, which belongs to the class of problem
concerning the effect of local lattice irregularities on fr
oscillations of the atoms.10 This distinguishes the paper from
previous investigations of kinetic nonuniformities.11,12

Let us define the canonically conjugate momentum d
sity and displacement in the form of an expansion in terms
plane monochromatic waves:

Qa~r ,t !5(
k

1

V1/2@Akae
2 ivkteik–r1Aka* e

ivkte2 ik–r#,

Pa~r ,t !5(
k

irvk

V1/2 @2Akae
2 ivkteik–r1Aka* e

ivkte2 ik–r#,

~5!

whereV is the crystal volume.
By substituting Eq.~5! into Eq. ~2! and using the or-

thogonality condition

1

VE ei ~k2k8!•rdr5dkk8,

whereka52pna /La is a wave vector component andna is
an integer, we obtain the dispersion relation

kk22rv2~k!50
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Hf5(
ka

\vk

2
~akaaka* 1aka* aka!. ~6!

The dimensionless amplitudeaka in Eq. ~6! is related to the
amplitude in the expansion~5! via

aka5~2rvk /\!1/2Aka .

Let us discuss in detail the calculation ofHd . Substitut-
ing the expansion~5! into Eq. ~3!, we obtain

Hd5(
ka

S \

2rVvk
D 1/2FFkaakae

2 ivktE dr eik•rd~r !

1Fka* aka* e
ivktE dr e2 ik•rd~r !2Fkaakae

2 ivkt

3E dr eik•r~R•¹!d~r !2Fka* aka* e
ivkt

3E dr e2 ik•r~R•¹!d~r !G .
Since

E dr e6 ik•rd~r !51,

E dr e6 ik•r~R•¹!d~r !57 ik–r ,

the functionHd can be expressed in the form

2(
ka

S \

2Mvk
D 1/2@Fka~ t !aka1Fka* ~ t !aka* #. ~7!

This formula contains new variables, namely the crys
massM5rV and generalized forces

Fka~ t !5~F1a1 ik•rF2a!e2 ivkt,

Fka* ~ t !5~F1a2 ik•rF2a!eivkt.

Expression~7! demonstrates that the static nonunifo
mity defined by Eq.~4! is transformed into steady-state o
cillations in a dynamic continuum. This justifies our attem
to transform the sum~7! to a canonical Hamiltonian in term
of a set of harmonic oscillators.

With this end in view, let us introduce new amplitude

q0ka52F1a /Mvk
2 , p0ka52F2ak•R/vk , ~8!

which transform the sum~7! to

(
ka

S \vk

2M D 1/2@~Mvkq0ka1 ip0ka!akae
2 ivkt

1~Mvkq0ka2 ip0ka!aka* e
ivkt#. ~9!

Introducing the functions

gka5S 1

2M\vk
D 1/2~Mvkq0ka1 ip0ka!e2 ivkt,

gka* 5S 1

2M\vk
D 1/2~Mvkq0ka2 ip0ka!eivkt

enables us to write the sum~9! in a well-known form8 and,
with due account of Eq.~6!, we obtain

1011V. V. Meshcheryakov
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ka

\vk@gka~ t !aka1gka* ~ t !aka* #. ~10!

Let us use the transformations

aka5 ãka2gka* , aka* 5 ãka* 2gka ,

which allow us to get rid of the constant factorsaka and
aka* in the second term on the right-hand side of Eq.~10! and
transform the Hamiltonian to a form convenient for introdu
ing quantization operators:

H5(
ka

\vk

2
~ ãka ãka* 1 ãka* ãka!

2(
ka

\vkgka~ t !gka* ~ t !. ~11!

In order to quantize continuum vibrations, let us intr
duce Bose second quantization operators:

ãkae
2 ivkt→ b̃ka , ãka* e

ivkt→ b̃ka
1 , ~12!

which satisfy the commutation relations

@ b̃ka , b̃k8a8
1

#5dkk8daa8, @ b̃ka , b̃k8a8#5@ b̃ka
1 , b̃k8a8

1
#50.

~13!

Using Eq.~13!, substituting Eq.~12! into Eq. ~11!, and
expressinggka andgka* in explicit form, we obtain the op-
erator

Ĥ5(
ka

\vkS b̃ka b̃ka
1 1

1

2D2(
ka

SMvk
2q0ka

2

2
1
p0ka
2

2M D .
~14!

The first term on the right-hand side of Eq.~14! is the
Hamiltonian in the second quantization representation, wh
describes a superposition of noninteracting oscillators.8 The
second term looks like the Hamiltonian of a classical h
monic oscillator, but it is not, since the condition that d
placements and momenta are real, which is implied by
expansion in Eq.~5!, means that the displacements and m
menta squared should be positive definite, and the funct
2q0ka

2 and2p0ka
2 do not satisfy this condition.

One of the ways to obtain a Hamiltonian of nonintera
ing harmonic oscillators in canonical form is to use the tra
formation

qka
2 5a\/Mvk2q0ka

2 ,
~15!

pka
2 5b\vkM2p0ka

2 ,

wherea and b are unspecified constant factors that sati
the conditiona1b51. After this transformation, we deriv
from Eq. ~14!

Ĥ5 Ĥ̃ f1H̃d5(
ka

\vk b̃ka b̃ka
1 1(

ka
SMvk

2qka
2

2
1
pka
2

2M D .
~16!

Let us discuss a plausible interpretation of the Ham
tonianH̃d in Eq. ~16!. The form of the transformation give
by Eqs.~15! shows that a region of nonuniform strain in
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tion of harmonic oscillators governed by the Hamiltoni
H̃d . But the motion described byH̃d is not purely classical.
Let us reconsider the amplitudes defined by Eqs.~15!. Using
the definitions ofq0ka andp0ka in Eq. ~8!, we obtain

qka5~a\/Mvk2F1a
2 /M2vk

4!1/2,
~17!

pka5~b\Mvk2F2a
2 ~k•R!2/vk

2!1/2.

These amplitudes determine real displacements and
menta only if the ground-state energy of crystal vibratio
which has a purely quantum nature, is taken into acco
For F1a5F2a the productpkaqka5\/2 is consistent with
the uncertainty principle, according to which a material po
in the phonon mode characterized by the vectork cannot
have a definite position and momentum at the same time.
therefore conclude that steady states of a region with non
form strain are related to collective oscillations of a d
formed continuum.

3. ENERGY SPECTRUM OF THE DEFORMED CONTINUUM

The spectrum of eigenvalues of the operatorĤ is

«ka~v,u!5« fa~v!1«0~v!1«1a~v!1«2a~u!, ~18!

where« fa5\vknka is the energy ofnka phonons in the state
with wave vectork, «05\vk/2 is the ground-state energy o
lattice vibrations with vectork, «1a52F1a

2 /2Mvk
2 is the

Fourier component of the monopole strain energy, a
«2a52F2a

2 R2cosu/2Mc2 is the Fourier component of th
dipole strain energy. In calculating«2a , we have taken into
account the phonon dispersion relation and introduced
polar angleu between the plane-wave vectork and the di-
pole vectorR.

The requirement that the displacements and moment
Eq. ~17! be real imposes constraints on the spectrum defi
by Eq. ~18!. These are related to the boundary frequenc
that derive from the conditionsqka

2 50 andpka
2 50:

v1a5~F1a
2 /\M !1/3, ~19!

v2a5F2a
2 R2cos2u/\Mc2, ~20!

where we have puta5b51. Having thus determined th
coefficientsa and b, we assume that the crystal contai
either a monopole or dipole source. Then, after eliminat
the unobservable zero-point energy, we derive from E
~18!–~20! the energy of the excited phonon states:

«ka5\vknk2
\v1a

3

2vk
2 ~21!

in the frequency bandvD>v>v1a for a crystal containing
a stress monopole, and

«ka5\vknk2
\v2a

2
~22!

in the frequency bandvD>v>v2a for a crystal with a
stress dipole.

It follows from Eq. ~22! that the energy of phonon
modes shifts by a constant value2\v2a/2 owing to a stress

1012V. V. Meshcheryakov
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of the wave vector does not change. This result is kno
from the dynamics of a linear crystal containing a po
defect.3 But Eq.~22! also yields another result. Owing to th
frequency boundv>v2a , modes with energies ranging be
tween zero~or «L5\vL due to finite crystal size! and
\v2a/2 are cut off.

In addition to the frequency cutoff, the spectrum defin
by Eq. ~21! contains a term that lowers energies of phon
modes byD«k because the bottom of the phonon band i
function of v. This effect may be responsible for ‘‘soften
ing’’ of the phonon spectrum near its long-wave bounda
For nk51 andvk5v1a the softening isD«k52\v1a/2.

We now try to understand the nature of the frequen
limitations in the spectra decribed by Eqs.~21! and ~22!.

4. ESTIMATES OF MASS LIMITS AND SOME STATIC
CHARACTERISTICS OF STRAIN REGIONS

Note that the crystal massM in Eqs.~19! and~20! takes
certain limiting values if we assume that all frequencies
low the Debye frequency are cut off, and we adopt typi
values of parametersF1, F2, andR for point-like sources. In
order to calculate the limiting masses, we determine for
F1 andF2 which to order of magnitude are no greater th
the forcef 0 needed to eject an atom from its crystal cell. T
justification is that the medium is continuous or, in oth
words, interatomic bonds are not broken. This force can
estimated9 to be f 0'kV2/3, whereV is the atomic volume.
By taking typical values for condensed matter,k'1012

dyn/cm2 andV'10223 cm3, we obtainf 0'1023 dyn. This
estimate is within the range of experimentally observed
teratomic forces in condensed matter, which are usually
tween 1022 dyn for ionic bonds and 1026 dyn for Van der
Waals bonds.13 The valueF1' f 0 yields the limiting mass of
a crystal deformed by a monopole source:

M1a5
F1a
2

\vD
3 '

f 0
2V

p3\c3
'10219g. ~23!

By taking F2' f 0 and the dipole armR equal to the
interatomic distanceV1/3, we obtain the highest value~for
cos2u51, i.e., for a plane wave propagating alongR) of the
limiting mass of a crystal deformed by a dipole source:

M2a5
F2a
2 R2

\vDc
2'

f 0
2V

p\c3
'10218g. ~24!

These estimates indicate that the cutoff of phonon
quencies should be important in crystals with typical dime
sions of the order of nanometers. This value is close to ty
cal dimensions of regions deformed by point-like sourc
Thus, the cutoff frequency of the phonon spectrum can
estimated by comparing the parameters of a small crystal
deformed regions. One must first estimate the change in
ume of the crystal due to deformation, but this approach d
not apply to a monopole source, since the crystal volum
not changed by the monopole deformation, although the
cal density can be changed. This change, however, cann
described in terms of Eq.~1!.
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either type of strain source is similar. This is consistent w
the proximity between the estimates of the limiting masse
Eqs.~23! and~24!. Therefore the cutoff should be describe
using a common approach in the two cases.

One can try to calculate the displacement field arou
sources and estimate the volume of the deformed region
ing the displacement as a function of the distance from
source. This can be easily done by replacing the Hamilton
in Eq. ~1! by the Lagrangian

L5 (
a51

3 E dr Q̇a~r !Pa~r !2H,

where the generalized velocities are defined as the variati
derivatives Q̇a(r )5dH/dPa(r ). Calculating these deriva
tives and the functionL and deriving the Lagrange equation
for the generalized coordinates and velocities, we obtain
equations for displacements of material points of the med
due to given nonuniform stress:

r
]2Q~r !

]t2
2k¹2Q~r !5F1d~r !2F2~R•¹!d~r !.

These equations can be solved by using the Fou
transform or Green’s function for the linear differential equ
tion. As a result, we have static fields of displacements
to a monople source

Q1~r !5F1/4pkr ~25!

and a dipole source

Q2~r !5F2~R•r !/4pkr 3. ~26!

The configuration of the vector field defined by Eq.~25!
is determined by the vectorF1, which defines the unidirec
tional field of the continuum displacement, whose amplitu
drops with distance from the application point. The displa
ments defined by Eq.~26! form a dipole field and describe
compressive, tensile, or shear deformation in the vicinity
the source, depending on the mutual alignment of the vec
F2 andR.

The derivation of these well-known results has been
scribed to demonstrate that the fields defined by Eqs.~25!
and~26! are static, although the medium was originally mo
eled by Eq.~1! as a dynamic continuum. In the solution o
classical Lagrange equations, the time derivative vanis
when the force density is time-independent.

One can say that in solving the classical problem, p
sible relationships between the dynamic parameters of
medium and nonuniform strain field are lost. In the simpl
model introduced by Eq.~1!, this shows up as the absence
the densityr in the strain fields defined by Eqs.~25! and
~26!. Mathematically, this difficulty is overcome by using th
equations for the eigenvalues~i.e., by reverting to the quan
tum Hamiltonian! and quantization of continuum vibrations
In this case, as follows from Sec. 2, the static nonuniform
is described in terms of a nonuniform steady state and is
related to the system dynamics.

According to Eq.~26!, the displacement at a distanc
r'1027 from the source isQ2(10

27)•100%/a'1%. Ac-
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cording to Eq.~25!, we haveQ1(10
27)•100%/a'10% at
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the same distance. These estimates indicate that the ty
dimension of regions deformed by sources with forces
greater than the interatomic force isl'1027–1026 cm.
Hence their volume isV5 l 3'10221–10218 cm3 and mass
M'10220–10217 g.

One can see that the previous estimates of the mass
deformed crystals, in which all phonon modes except
Debye mode are excluded, are quite close to the masses
responding to the volumes of deformed regions. This in
cates that the boundary frequencies or wavelengths mus
sought as functions of the volumes related to the bound
massesM1 and M2. But first, we note that the range o
monopole deformation is larger than that of dipole deform
tion. This difference shows up in the formation energyDE of
strain fields. Substituting the amplitudes in Eq.~18! into Eq.
~14!, we obtain

DE52(
ka

F1a
2 1F2a

2 ~k•R!2

2Mvk
2 .

For example, in the Debye approximation, we obtain
ter changing from summation to integratio
((ka→V *dk/(2p)3):

DE5DE11DE252
kD

~2p!2c2rFF1
21

2

9
F2
2~kDR!2G .

~27!

Substituting F1'F2' f 0, kD'p/V1/3'108 cm21, and
R'V1/3 into Eq. ~27!, we obtain DE1'210 eV and
DE2'21 eV.

The value ofDE2 is in agreement with measurements
the energy required to produce a point defect, such as a
cancy or an impurity.2,3,14,15DE1 is in qualitative agreemen
with the deformation energy needed for structural fluct
tions of small particles with dimensions of 1027 cm.16,17

It follows from these estimates that, given the long
range of monopole strain fields and their formation ene
larger than that of dipole fields, the monopole strain sho
have a stronger effect on the phonon spectrum cutoff
quency.

5. DYNAMICAL VOLUMES OF NONUNIFORM STRAIN
FIELDS IN CRYSTALS

Given the frequencies determined by Eqs.~19! and ~20!
and with the intent of expressing the final result in terms
volumes of deformed regions, we obtain

v1a5vDSV1a

V D 1/3, where V1a5
F1a
2 V

\p3c3r
, ~28!

v2a5vD

V2a

V
, where V2a5

F2a
2 V1/3R2cos2u

\pc3r
. ~29!

With the parameters adopted above,V1a'10220 cm3

and V2a'10219 cm3, and at crystal volumesV5V1a and
V5V2a , all the phonon modes up to the Debye frequen
are cut off. The respective crystal masses areM1a5rV1a

and M2a5rV2a . If V1a5V2a!V, it turns out that
v2a5v1a

3 /vD
2 because of the cube root in Eq.~28!, so that
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long-wave cutoff frequency is determined by strain fiel
generated by monopole sources. On the other hand
v1a5v2a , we haveV1a5V2a

3 /V2 andV1a!V2a , i.e., the
same cutoff frequency requires a larger volume of deform
regions due to dipole sources than due to monopole sour
This is in agreement with the conclusion of the previo
section that monopole sources of strain are more efficien

Thus, unlike the long-wave boundary frequencyvL of
the phonon spectrum of an undistorted crystal, the bound
frequenciesv1a andv2a of a deformed crystal depend o
the ratiosV1a /V2a , V1a /V, andV2a /V. This leads us to
believe that the long-wave cutoff results from a decrease
the volume of the undistorted crystal region due to bo
monopole and dipole strain fields. An increase in the v
umesV1a andV2a , which have the sense ofa-wave orien-
tation of stationary volumes in steady-state extended obje
leads to a decrease in the volume of the part of the cry
where the phonon with the longest wavelength can
formed. This cutoff should shift the lower edge of the ph
non spectrum to the high-frequency side without shifting
high-frequency edge. If we use the model of a ‘‘rigid’’ ban
which shifts as a whole without interchanges between p
non modes, depending on the formation energy of a st
defect,3 one can say that in addition to the band shift,
steady-state nonuniform strain field should also cut off
long-wave edge. Moreover, the position of the phonon-ba
bottom is a function ofv near the long-wave edge of th
spectrum of a crystal deformed by a monopole strain fie
This ‘‘softening’’ of the spectrum due to the force applied
a crystal and its small dimension is reminiscent of the res
reported in Refs. 18–21, where the disappearance of st
tural instability of small particles on substrates and localiz
regions in aged alloys as their size increased was descri
It is possible that the mechanism based on monopole st
sources allows formation of the ‘‘soft’’ mode phenomen
logically introduced in the theory of structura
transformations.22 On the other hand, the high damping c
pability of some alloys, such as copper–manganese,21 can be
interpreted in terms of the long-wave cutoff of the phon
spectrum. Empirical studies23 indicate that the damping is
caused by irregularity and high defect concentration in m
terials. In fact, if there is a low-frequency gap in the acous
phonon spectrum of a dispersive~especially decaying! mate-
rial with a large number of strain sources, vibrations at f
quencies below some boundary frequency are forbidd
This conclusion applies to vibrations of a crystal. This
probably also true when elastic vibrations are generated
an external source, the only difference being the damping
forced vibrations, which leads to the damping effect of t
material.

More experimental data are needed for a more deta
analysis of anticipated frequency cutoffs and softening of
phonon spectrum in materials distorted by nonuniform str
fields.

Let us again discuss the volumesV1a andV2a in Eqs.
~28! and ~29! and some of their features.

V1a andV2a are the dynamical volumes of steady-sta
extended entities formed by forces acting on a crystal. Be
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geometrical characteristics alternative to the elastic displace-
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ment fields described by Eqs.~25! and ~26!, these volumes
unlike displacement fields, are expressed in terms of all
namic characteristics of the medium included in Eq.~1!.

The finite values ofV1a andV2a indicate that the strain
field generated by a point-like source is also bounded. Th
a consequence of continuum quantization and can easil
generalized: an arbitrary static force acting on a crystal w
out breaking its interatomic bonds generates a finite reg
where atoms are displaced from their equilibrium positio
On the contrary, if\→0, the volumesV1a andV2a tend to
infinity, i.e., in the classical approach to an extended bo
the strain field should extend to infinity, which is in agre
ment with results in the theory of elasticity~Eqs. ~25! and
~26!!. This conclusion holds even when Kanzaki’s meth
and its varied atomistic modifications2,3 are used. Thus far
although improved to some extent by microscopic calcu
tions of interatomic potentials, these methods have belon
to the field of classical theories of deformation of solids.

The cutoff frequency determined by the field due to
dipole source is replaced by the value due to a monp
source at a crystal volume

V0a5~V2a
3 /V1a!1/25F2a

2 R3/\F1ac
3r.

In the case of sources with forcesF1'F2' f 0 and the dipole
arm R'V1/3, we have V0a'10219 cm and L0a'1026

cm3. This result demonstrates that the cutoff frequency a
function of the shape of the strain field can be nontrivial
crystals or small sections with dimensions in the nanom
range.

Note also that in the case of purely shear dipole de
mation, the dynamical volumeV2a vanishes. A tentative ex
planation of this is that atoms driven by a plane wave acr
the deformation region have additional displacements of
posite sign when the deformation is generated by a sh
dipole, whereas all displacements have the same sign in
strain field generated by a monopole or a longitudinal dipo

In conclusion, given the small dimensions of the crys
let us estimate the effect of the nanocrystal surface on
bulk properties, hence on the cutoff frequency and soften
of the phonon spectrum calculated neglecting surface effe
Since the volumeV0a containsN0a5V0a /V atoms, this
number equals about 103 for the value ofV given above.
This means that the surface effect on a sample with a volu
of 10219 cm3 can be measured by the parame
(N0a

2/3/N0a)•100%'10%, which does not affect the qualita
tive results of our study in the sense that the discussed ef
are controlled by the bulk properties of the crystal.

At the same time, we cannot rule out, on the base of
results, the possibility that surface or other effects can p
an important role, for example, in restructuring sm
particles,24 and the effect of the surface on the phono
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latter statement, it is noteworthy that, first, relaxation of s
face atomic layers should also lead to a freqency shift in b
phonon modes. It seems probable that the cutoff will ta
place at the highest frequency, owing to the superposition
atomic diplacements due to point-like sources and relaxa
of surface layers. Second, frequencies of surface modes
also shift owing to various stress sources. It is clear, ho
ever, that dedicated investigation needed to address t
issues would be labor-consuming.

The author is grateful to O. A. Kazakov and M. A
Shtremel for heated discussions~exhaustive information on
damping alloys provided by M. A. Shtremel in due time
also acknowledged!, and to I. Ya. Polishchuk for his friendly
and constructive criticism of the manuscipt.
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Atomic structures of gallium-rich GaAs(001)-4 32 and GaAs(001)-4 36 surfaces
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Scanning tunneling microscopy is applied for the first time to an atomic-resolution investigation
of the 432 and 436 phases on a gallium-rich GaAs~001! surface obtained by molecular-
beam epitaxy and migration-enhanced epitaxy. A unified structural model is proposed with
consideration of the results of experiments and first-principles calculations of the total
energy. In this model the 432 phase consists of two Ga dimers in the top layer and a Ga dimer
in the third layer, and the 436 phase is matched to periodically arranged Ga clusters at
the corners of a 436 unit cell on top of the 432 phase. ©1997 American Institute of Physics.
@S1063-7761~97!02305-6#

1. INTRODUCTION of traditional molecular-beam epitaxy, making it possible
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The polar GaAs~001! surface is widely employed in th
fabrication of semiconductor devices and often serves a
substrate in molecular-beam epitaxy.1–3 Its atomic structure
is of considerable interest, since most devices based on G
are grown on this surface by just such a method. T
GaAs~001! surface itself exhibits a large number of phas
and structural phase transitions between them that are
mately related to the stoichiometric composition, which c
be controlled by varying the temperature of the sample
the ratio between the atomic concentrations of Ga and A
the beam, i.e., the surface treatment conditions.3 The mecha-
nism of coherent growth during molecular-beam epitaxy o
GaAs~001! surface was first proposed in Ref. 4.

While the structure of the As-stabilized GaAs~001!-
234 surface grown by molecular-beam epitaxy has b
studied quite extensively,5–19 there are only a few known
successful attempts at investigating the phases on
gallium-rich GaAs~001! surface, such as the GaAs~001!-
432 and GaAs~001!-436 phases, because of the form
dable difficulties in preparing such surfaces and study
them in detail. For example, it is essentially impossible
obtain a GaAs surface with a freshly sputtered Ga layer
der the conditions of standard molecular-beam epitaxy at
high partial pressures of As vapor typical of this metho
102621024 Torr, although the growth of such phases und
nearly equilibrium conditions is of considerable interest.15–19

We were able to overcome the experimental difficulties
dicated by employing migration-enhanced epitaxy,20 which
has made it possible to create a universal approach to
preparation of such surfaces and to perform the first succ
ful in situ investigations~in the same vacuum system! of
gallium-rich GaAs~001!-432 and GaAs~001!-436 phases
by scanning tunneling microscopy~STM!. Migration-
enhanced epitaxy significantly increases~by tenfold! the mi-
gration distance of the Ga atoms in comparison with the c
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obtain a smooth gallium-rich surface and to observe rev
ible phase transitions between different phases (c(434),
234, 236, 432, and 436! on it simply by regulating the
@As4#/@Ga# concentration ratio in the beam.21–24

In the present paper we report the experimental disc
ery of two types of 436 phases, viz., the so-called 436
pseudophase, i.e., a structure with a smaller gallium con
on the surface in comparison with the 432 phase, and a true
436 phase, i.e., a phase with a larger gallium content. B
phases consist of a subcell with two Ga dimers and t
dimeric Ga vacancies at the top of the surface layer, as w
as another Ga dimer in the third layer, i.e., they appear as
mirror image of the unit cell of the As-rich 234 phase,
whose structural model was proposed in Ref. 24. We in
pret the significant differences between the STM images
the 432 and 436 phases on the basis of models of char
transfer between the second-layer As atoms, the top-laye
dimers, and the Ga adatoms. These models were a resu
the performance of theoretical calculations and compu
simulation of the images.25 A new structural model of the
436 and 432 phases is proposed.

2. METHOD

All the experiments were performed in the ultrahig
vacuum~with a residual pressure in the measuring cham
equal to 5310211 Torr! scanning tunneling microscope o
Tohoku University,26 which is connected directly to a spe
cially developed molecular-beam epitaxy chamber with
built-in reflection high-energy electron diffractometer f
monitoring and controlling the substrate surface grow
process.27 The tunneling microscope was also equipped w
an additional chamber with analyzers for low-energy el
tron diffraction and Auger electron spectroscopy. The qua
of the scanning tips was monitored on the atomic level us
a miniature field-ion microscope, which is an integral part

1016$10.00 © 1997 American Institute of Physics
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FIG. 1. a! STM image of a GaAs~001!-432 surface of large area (9003900 Å2). b! Magnified STM image of a portion of the same surface showing
detailed structure~the rectangle demarcates the unit cell!. The rate of deposition of the layer was 0.25mm/h, and the growth temperature was 500 °C. T
migration-enhanced epitaxy cycle was carried out with@As4#/@Ga#58 andVs521.8 V.
the microscope.26,28 The high cooling rate of the apparatus
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permitted in situ STM investigations of different surfac
phases during their growth.22–24

Type-n GaAs~001! substrates, which were doped wi
silicon to 1310182231018 cm23 and measured 4310 mm,
were degreased and etched using standard cleaning p
dures before being placed in the molecular-beam epit
chamber. After the oxide layer on the substrate was remo
in a beam of As4, a buffer layer ofn-type GaAs with a
thickness of 0.5–1.0mm ~which was also doped with silicon
to 231018 cm23) was grown using the traditional method
molecular-beam epitaxy at 600 °C under optimal conditio
Before the growth process was completed, all the shie
were closed, the heating of the substrate was stopped, an
As and Ga sources~Knudsen cells! were brought to the tem
peratures needed to obtain the@As4#/@Ga# concentration ratio
in the beam required for low-temperature growth under
conditions of migration-enhanced epitaxy.21 Afterwards, the
sample was annealed at 500 °C in a beam of As4 until a well
ordered 234 reflection high-energy electron diffractio
~RHEED! pattern appeared, and 12 growth cycles were c
ried out ~usually! under the conditions of migration
enhanced epitaxy. After the concluding cycle with the de
sition of gallium was performed, the sample was rapid
~within 2 s! cooled to room temperature and moved into t
chamber of the tunneling microscope. All the images w
obtained at room temperature at a constant tunneling cur
I t54310211 A with a negative biasVs on the sample. After
the STM investigations were performed, the structure of
sample surface was repeatedly monitored by RHEED.

3. RESULTS AND DISCUSSION

Figure 1a presents a typical filled-states STM image o
432 surface prepared using migration-enhanced epit
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exposures to As and Ga alternating at 2 s intervals. As long
as the growth temperature was relatively low, only three t
races with an almost ideal degree of ordering, which w
separated from one another by steps with a heightH equal to
the thickness of a double GaAs monolayer (H52.8 Å!,
formed within an area of 9003900 Å2. An attentive exami-
nation of the image readily reveals bright lines arranged
riodically in the @110# direction and regular spaces betwe
them with a width of;16 Å in the @1̄10# direction, which
correspond to a fourfold~43) increase in the periodicity o
the surface, as was observed in other studies.16,19This can be
attributed to the formation of well ordered domains of
432 structure. Thus, the structure of the 432 surface does
not appear excessively complicated in comparison to
structure of the 234 phase.29 The islands on this essentiall
defect-free surface are most likely isotropic and form smo
steps of both types~see A and B in Fig. 2!, in contrast to the
234 surface, where the islands are highly anisotropic.22–24,29

Figure 1b presents the image of the same 432 surface,
but with a far higher resolution, on which the unit cell of th
432 structure is demarcated. It is clearly seen that e
bright line observed in Fig. 1a actually consists of a pair
rows separated by a 5.1 Å gap, and in the@110# direction the
surface has a 23 periodicity. We note that this image i
similar as a whole to the one obtained by Skalaet al.. ~Fig. 1
in Ref. 19!.

Although the STM images obtained are similar to t
ones previously observed, in this paper we propose ano
model, totally different from Skala’s As model,19 which has
been used hitherto to describe the 432 phase. On the basi
of a careful analysis of the images, we arrived at the fun
mentally different conclusion that the bright spots are ima
of the second-layer As atoms, rather than the first-layer

1017Bakhtizin et al.



FIG. 2.
atoms, and that the darker spots are images of the first-layer
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Ga dimers. The most acceptable atomic model for this ph
is the two-layer Ga model, which was first proposed
Biegelsen16 ~Fig. 2a!. The basic arguments supporting th
model for interpreting the images obtained are as follows

1! The surface-preparation procedure that we used
vors a gallium-rich surface, since the final exposure was
the Ga beam.

2! The difference that we observed between the heig
of the bright and dark rows is only 0.6 Å. In this case A
atoms with completely filled dangling bonds will appear
the filled-states STM images as bright spots, while the
atoms with unfilled dangling bonds will be relatively dar
Thus, if the brighter spots correspond to the first-layer
atoms, much greater contrast (.1.4 Å5H/2) is expected
between the first-layer As atoms and the second-layer
atoms, which have considerably less charge, and only
first-layer As dimers should actually have bright images,
was observed in the case of the arsenic-rich 234 surface in
Ref. 24.

3! According to the As model, the first-layer As atom
form dimers. For this reason, a structure in the form of cl
ters or a structure in the form of a corona was expected
the As dimers on the filled-states images.8,16–18,24,25How-
ever, the STM images presented above~as well as the image
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rated by a 5.160.3 Å gap in the@1̄10# direction ~Fig. 1b!.
Therefore, the As model should be categorically ruled ou

However, there is also a problem in interpreting t
STM images with the Ga model. The STM images a
clearly inconsistent with the Ga model, because the sp
comprising the dark rows are located in the gaps between
spots forming the brighter rows along the@1̄10# direction,
while, according to the Ga model, the Ga and As ato
should be aligned in the rows~Fig. 2a!.

To account for this inconsistency, we performed fir
principles calculations of the total energy. The details of
approach used were described in Refs. 25 and 30, and
results of the calculations themselves are presented in F
2b-e. A comparison of the theoretically calculated surfa
energy bands and the STM images obtained in the fill
states regime (Vs521.8 V! revealed that the main contribu
tion to the STM image shown in Fig. 1b is made by sta
located between the 71th and 76th bands~Fig. 2b-d!. Band
75 is the band of the HOMO~the highest occupied molecula
orbital!, and it contributes to the charge localized in t
second-layer As atoms~peakB in Fig. 2c!. The distribution
of the charge density from the 74th, 73rd, and 72nd ban
generally overlaps the distribution of the charge density fr
the HOMO band. The contribution of the Ga dimer located
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and a maximum of the charge-density distribution appear
the midpoint of the Ga dimer~peakC in Fig. 2d!. Since there
is considerable charge transfer from the surface defects
the adsorbate atoms~which are indicated by arrows in Fig
1b!, the 76th band~i.e., the band of the LUMO – the lowes
unoccupied molecular orbital! turns out to be partially filled
at the dangling-bond level~peakA in Fig. 2b! and makes a
contribution to the image. It is strongly bent due to the pr
ence of the third-layer Ga dimers. The size of the contri
tion of the LUMO band to the filled-states STM image d
pends on the amount of charge transferred to the Ga dim
Since the calculated density of states presented in Figs.
actually reflects the charge distribution at a distance of o
0.9 Å from the surface, while the STM image reproduces
distribution of the electron density at a distance of appro
mately 10 Å from the surface of the sample, maximaA and
B can be shifted by a certain distance from the true ato
positions. When this circumstance is taken into account,
STM image in Fig. 1b agrees quite well with the two-lay
Ga model~Fig. 2a!.

Additional weighty evidence supporting the conclusi
drawn above that the Ga~001!-432 phase is described we
by the Ga model16 was provided by the following experi
ment. When a beam with a higher Ga content~with
@As4#/@Ga#56 instead of the previous value of 8! was used
in the migration-enhanced epitaxy cycle or when the 236
phase prepared by the migration-enhanced epit
technology20 was annealed in a vacuum for>15 min, both
the STM images and the RHEED patterns exhibited a 436
phase with an even greater Ga content. A typical STM im
of this ‘‘true’’ 436 phase can be seen in lower right-ha
corner of Fig. 3a, whose central portion displays a 236
phase.

It is interesting that the 436 phase is the only phase o
its kind and is characterized by rows of large oval spo
which are regularly arranged at each corner of the unit c
as is clearly seen in the high-quality high-resolution ST
image~Fig. 3b!. The features of oval shape are;0.1 Å ~i.e.,
;H/2) above the Ga dimers and 0.9 Å below the A
(236) rows. Comparing the images in Figs. 1b and 3b,
can assign the rows of bright pairs of points oriented in
@110# direction in Fig. 3b to the first-layer Ga dimers~they
are marked by two black arrows!, rather than the second
layer As atoms, in contrast to the case of the 432 phase.
The large bright features of oval shape occupy the midpo
of the As rows~in Fig. 3b these rows are marked by thr
black arrows!, frequently overlapping them~an instance of
this is indicated by a white arrow!. We note here that eac
individual Ga dimer is clearly resolved in Fig. 3b and th
the appearance of such high contrast in their images ca
attributed to charge transfer from the oval spots to the
dimers. An example of a similar situation can be seen in F
1b. The profile presented in Fig. 3b of a scan along the w
AA8 line clearly demonstrates that the arrangement of the
atoms is consistent with the underlying GaAs lattice. In
cases in which the original 432 surface has one oval spot o
the As rows ~which is identified by a white arrow!, the
neighboring Ga dimers become brighter, and the As ro
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creases, the contrast in the image of the As and Ga atom
the 432 surface varies and ultimately becomes complet
reversed, giving the same picture as the 436 surface as a
result.

To determine what the large clusters localized at e
corner of the 436 unit cell represent, we performed anoth
series of experiments to observe the evolution of the 436
phase as the annealing temperature is gradually incre
from 500 °C and a larger amount of Ga is simultaneou
deposited on the 436 surface. As the temperature was i
creased, the bright features mentioned above became inc
ingly more distinct on the flat terraces, and even individu
drops of Ga could be observed. Figure 4a presents the S
image obtained after the annealing of the 436 phase for 20
min at 600 °C. The RHEED patterns from this surface d
played fourfold symmetry in the@110# direction, but did not
display low symmetry in the@1̄10# direction. When Ga was
deposited alone on the As-(236) surface at 500 °C in an
amount equal to three or more monolayers, the same S
image as in Fig. 4a was generally observed. When the s
strate temperature was increased to 600 °C, it was logica
expect the zigzag rows of As on the 236 surface to vanish
completely as a result of the desorption of a considera
amount of As. During the further deposition of excess Ga
was no longer possible to accommodate the entire quantit
Ga on the surface with the formation of stable Ga–As bon
This provided a convincing argument for the resultant bin
ing of the excess Ga atoms to one another with the forma
of clusters over the As layer. They ultimately join to for
large drops of Ga~some of them are indicated by arrows
Fig. 4a!.

On the basis of the foregoing results of a systema
STM investigation of the detailed structure of the~001! sur-
face of a GaAs crystal grown by molecular-beam epitaxy,
developed the first atomic model of the 436 phase in the
form presented in Fig. 4b. Taking into account all the dif
culties involved in the preparation of the new 436 phase
under the conditions of strong enrichment with gallium, w
ascribe the characteristic oval features to clusters of Ga
toms. Accordingly, the 436 phase is a gallium-rich form o
the 432 phase with additional Ga clusters, which are
ranged in an ordered fashion on the GaAs~001! surface. At
the same time, we cannot determine the exact size of the
cluster, but we assume that it must consist of six or ei
atoms and must have a structure similar to the structure
the arsenic-richc(434) subcell.

It was presumed in Refs. 10–13 that the 436 phase is
simply a result of the superposition of 431 and 136 do-
mains or that the domain of the 431 structure is essentially
a 432 phase that has been disordered in the@1̄10# direction.
Similarly, the idea that a 4312 superstructure exists wa
advanced in some earlier investigations10,11 to account for
the streaked 1/4 or 1/6nY* lines on the 136 RHEED pat-
terns. Our STM investigations~see Fig. 3! clearly demon-
strated that these structures are mixed 236 and 432 ~and/or
436) phases, which are observed under the conditions
smaller Ga content than the 432 phase and that there is
clearcut ‘‘true’’ 436 phase, which is obtained under th
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se
FIG. 3. Filled-states STM images (Vs521.8 V!: a! 436
phases with residues of a locally arranged 236 phase
(3803380 Å2); b! high-resolution image of a surface with
436 structure, showing detailed features of this pha
(1403140 Å2).
conditions of migration-enhanced epitaxy with a larger Ga

de

er

t,
h

432/c(832) reconstruction or the 436 phase, so that the
ngly

h

rm
ould

TM
content than the 432 phase.
Thus, in accordance with our proposed structural mo

the ‘‘true’’ 436 phase, which has 436 translational sym-
metry, is described by the deposition of a well ordered p
odic array of Ga clusters at each corner of the 436 unit cell
at the top of the Ga double layer of the 432 surface. The
436 pseudophase with a smaller Ga content is, in fac
mixture of the arsenic rich 236 phase and the gallium-ric
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Ga content can vary over a broad range and depends stro
on the procedure used to prepare the surface.

The surface stoichiometry of different gallium-ric
GaAs~001! surfaces has been debated for a long time.9–12

The idea of superimposing different superstructures to fo
a 436 phase suggests that the surface stoichiometry sh
be the same for the 136, 436, and 432 phases.12 This, of
course, is untrue, and on the basis of the results of the S
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7

FIG. 4. a! STM image of a surface of large area (130031300 Å2) with an unordered 436 phase formed after the annealing of a well ordered 436 phase
at 600 °C for 20 min in an ultrahigh vacuum, showing many Ga clusters;Vs521.8 V. b! Structural model of the 436 phase.
investigation presented above, we concluded that the surface
st

h
v

i
,
o

f

le

e
he

Sc

d

l.
J.

P. K. Larsen and D. J. Chadi, Phys. Rev. B37, 8282~1988!.

ys.

ys.
concentration of Ga increases along the sequence consi
of the 234, 432, and 436 phases.

4. CONCLUSIONS

The 432 and 436 phases on the gallium-ric
GaAs~001! surface have been investigated at the atomic le
by scanning tunneling microscopy.

The only satisfactory model of the 432 phase is Bie-
gelsen’s Ga model.

As for the 436 phase, we have established the atom
structural model of a separate 436 phase for the first time
which is characterized by Ga clusters regularly arranged
the 432 surface.
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Helical instability of a straight Abrikosov vortex in an anisotropic superconductor

t the
I. M. Dubrovski 

Institute of Metal Physics, Ukrainian National Academy of Sciences, 252142 Kiev, Ukraine
~Submitted 25 September 1996!
Zh. Éksp. Teor. Fiz.111, 1869–1878~May 1997!

Because of attraction of the parallel currents forming an Abrikosov vortex, the vortex energy per
unit length decreases, under bending of the vortex, by a quantity proportional to the square
of the curvature. Solving the London equation in an approximation allowing for this effect makes
it possible to calculate the energy of an Abrikosov vortex in the form of a helix whose
length and pitch are much larger than the correlation length, whose curvature is small compared
to the reciprocal London length, and whose slope in relation to an axis coinciding with the
direction in which the vortex energy is the highest is also small. When the anisotropy is large,
which is characteristic of high-Tcsuperconductors, the energy of such an Abrikosov vortex
is lower than that of a straight Abrikosov vortex. Certain consequences of the fact that the
Abrikosov vortices in a high-Tc superconductor are helical are discussed. Among these is
a phase transition that breaks the symmetry between Abrikosov vortices shaped like right- and left-
hand helixes in relation to the magnetic field. ©1997 American Institute of Physics.
@S1063-7761~97!02405-0#
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Several researchers1–3 have examined the problem o
whether the helical configuration of an Abrikosov vortex in
uniaxial anisotropic London superconductor is an equi
rium configuration when, on the average, the vortex is
rected along the anisotropy axis, in which case its spec
energy is the highest. The single factor taken into acco
was that the helix is deflected from its average direction b
constant angleu. Then, as demonstrated by Brandt3, the en-
ergy of a helical Abrikosov vortex per unit length along t
average direction is higher than that of a straight Abrikos
vortex. Indeed, in the logarithmic approximation,4 the spe-
cific energy of an Abrikosov vortex deflected by a sm
angle from the axis is

«5S F0

4pl D 2F12
u2

2
~12g2!G ln k

5«0F12
u2

2
~12g2!G ln k. ~1!

HereF0 is the quantum of magnetic flux,l is the London
length along the anisotropy axis,g<1 is the anisotropy con
stant (g51 in the isotropic case!, andk@1 is the Ginzburg–
Landau constant. The relative elongation of the helix in
lation to the straight line is 11u2/2. Then the variation of
the energy per unit length along the average direction du
the transition from a straight Abrikosov vortex to a helic
Abrikosov vortex is

S 11
u2

2 D «2«0 ln k5
u2g2

2
«0 ln k. ~2!

Here, however,g2ln k!1 may be much less than unity~e.g.,
for YBCO we haveg51/8 andk550), so that the logarith-
mic approximation may be inadequate, i.e., the correction
this approximation, while being small, exhibit a different d
pendence on the position and shape of the Abrikosov vo
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result. A general model of Abrikosov vortices was employ
in Ref. 5 to calculate the corrections to the logarithmic a
proximation for the energy of a straight oblique vortex in
anisotropic superconductor. The same approach is ado
here to allow for corrections to the energy of an Abrikos
vortex that are associated with bending of the vortex axi

The dependence of the specific energy of an Abrikos
vortex on the curvature of the vortex axis has not been s
ied. Usually it is assumed that no such dependence ex
and the increase in the energy of an Abrikosov vortex cau
by the bending of the vortex axis in which the average
rection of the axis remains unchanged is related only to e
gation of the axis. De Gennes6 mentions the fact that an
Abrikosov vortex has a rigid core, i.e., the specific ener
increases under bending, but does not justify the statem
and does not use it. Qualitative considerations point to
opposite effect: bending drives the specific energy of a v
tex down. Under axis bending, the parallel circular curre
forming an Abrikosov vortex condense at the curvature c
ter and become rarefied on the opposite side. Since the f
of attraction of parallel currents is inversely proportional
the distance between the currents, the energy must decr
as a result of axis bending. These ideas can be corrobor
by calculating the energy of a circular Abrikosov vortex b
expanding in powers of the curvature~see Appendix!. When
the radius is large, the energy of the interaction of two d
metrically opposite sections of the circular vortex is exp
nentially low, so that the dependence on the curvature ca
explained only by the presence of bending. The factor of
second power of the curvature~the factor of the first power is
zero!, i.e., the bending modulus of the vortex, proves to
negative.

Not only is the slope of the helix constant in relation
the average direction, but so is the curvature. The nega
correction to the Abrikosov-vortex energy, which is relat
to the curvature, exhibits only a slight dependence on ani

1022$10.00 © 1997 American Institute of Physics
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configuration of an Abrikosov vortex may prove to be mo
energeticallyfavored than the straight configuration.

The helical configuration of Abrikosov vortices was al
examined in Refs. 7–9 in situations when an external m
netic field and a transport current act on a supercondu
simultaneously. However, the estimates of the energy o
helical Abrikosov vortex done in these papers are not su
ciently accurate to solve the problem. To calculate the
ergy more accurately, we introduce the model of a heli
vortex in a London superconductor. If the axis of an Abrik
sov vortex is a helix of small curvature and slope, this can
done by introducing a special system of curvilinear coor
nates. In this system we first solve the inhomogeneous L
don equation, which determines the magnetic field of
vortex, a solution in the form of an expansion in powers
the curvature, and then calculate the energy of the Abriko
vortex.

2. HELICAL COORDINATES

Helical coordinates can be considered the result of
formation of cylindrical coordinates whose axis become
helix. Suppose that the helix is specified in Cartesian co
dinates by the following equations:

xn5a cosc, yn5a sin c, zn5bc, c5
l

Aa21b2
.

~3!

Herel is the length of the arc of the helix measured from t
point of its intersection with the planez50, anda andb are
the parameters of the helix, witha the radius of the cylinder
formed by the helix, and 2pb the pitch of the helix.

Let us introduce dimensionless cylindrical coordina
r, w, andz:

r5
Ax21y2

l
, z5

z

l
; ~4!

we also introduce the dimensionless quantities

a5
la

b2
, b5

b

l
. ~5!

The point r n at which the plane passing throughr perpen-
dicular to the helix intersects the helix is determined by

~r2r n!•
dr n

dc
50. ~6!

In terms of the variablesr, w, z, andc, Eq. ~6! assumes the
form

abr sin~w2c!1z2bc50. ~7!

Let us see when the solution of this equation inc for fixed
0<w,2p and 0<z,2pb is unique. All the chords of the
sinusoid

y~c!5abr sin~w2c!1z ~8!

have a slope whose absolute value obeys the condition
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c22c1 c22c1
~9!

Hence, forar,1, the straight liney(c)5bc intersects the
sinusoid only at one point, and the condition that the solut
of Eq. ~7! be unique can be written as

r,a21. ~10!

In this region of space, planes perpendicular to the helix
be interpreted as level surfacesc5const of the new curvi-
linear system of coordinates. In what follows,a is assumed
small, so that the regionr>a21, i.e., Ax21y2.la21, is
unimportant.

We calculate the magnetic induction field and the ene
of a helical Abrikosov vortex in the form of series expa
sions in powers ofa to within terms proportional toa2. We
also assume that

ab5
a

b
5tan u'u!1, ab25

a

l
,1. ~11!

Then, to the same accuracy, the dimensionless curvatur

lC5
la

a21b2
'a. ~12!

In the planec5const, we introduce polar coordinates ce
tered at the point where the plane intersects the helix. T
the radiust5ur2r nu is determined by the equation

t25r222ab2r cos~w2c!1a2b4

1a2b2r2sin2~w2c!. ~13!

The azimuthal anglev is measured from the direction oppo
site the principal normal to the helix. Then

cosv5
~r2r n!d2r n /dc2

ur2r nuud2r n /dc2u
5
1

t
@r cos~w2c!2ab2#,

~14!

sin v5
r

t
sin~w2c!A12a2b2.

In deriving Eqs.~14! we used Eqs.~7! and~13!. The sign of
sinv in defined in such a way that it coincides with the si
of the mixed product

S ~r2r n!•
d2r n

dc2 D z5r sin~w2c!, ~15!

wherez is the unit vector along thez axis. Solving Eqs.~7!,
~13!, and~14! in the adopted approximation, we arrive at th
following expressions of the cylindrical coordinater, w, z
in the region wherer,a21, 0<z,2pb, and 0<w,2p in
terms of the new curvilinear coordinatest, v, c:

r5t1ab2cosv1
a2b2

2t
~b22t2!sin2v,

w5v1c2
ab2

t
sin v1

a2b4

2t2
sin 2v2

a2b2

4
sin 2v,

~16!
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To use the notation of tensor analysis we introduce the
lowing indices:

t→1, v→2, c→3. ~17!

The fundamental tensor of this coordinate system has
following form:

g1151, g135g315g125g2150, g225t2,

g335t21b212tab2 cosv1a2b42a2b2t2 sin2v,
~18!

g235g325t22
a2b2t2

2
.

Thus, the new system of coordinates is not orthogonal, wh
means one must distinguish between covariant and con
variant components of a vector.

Equation~3! describe a right-handed helix in relation
the direction of thez axis. Since here the direction of thez
axis is fixed by the physics of the problem~it coincides with
the direction of the average magnetic induction field of
Abrikosov vortex!, one must distinguish between right- an
left-handed helices. If the above calculations are done fo
left-handed helix, the sign of the componentsg235g32 of the
fundamental tensor is reversed.

3. MODEL OF A HELICAL ABRIKOSOV VORTEX AND THE
VORTEX ENERGY

The magnetic induction field of an Abrikosov vortex fo
k@1 is described by the equation

h1¹3~m̂ ¹3h!5
F0

2pl2D~R!•n~R!. ~19!

Here the coordinates are measured in units ofl, the tensor
m̂ in terms of the major axes has the form

m115m2251, m335g22, ~20!

and the anisotropy axis is selected as axis 3. The vector
D(R)•n(R) is determined by the complete system
Ginzburg–Landau equations. Fork@1 and a straight Abri-
kosov vortex this field is parallel to the vortex axis, occup
a region near the axis of a size of orderk21, and its flux
through a plane perpendicular to the axis is 2pl2.

The principal assumption of the proposed model can
formulated as follows: if the parameters of the helix are su
thata/l5ab2@k21 andb/l5b@k21, the structure of the
Abrikosov vortex core does not change, i.e., the value
D(R) depends only ont, is negligible whent.k21, and

E
0

`

D~t!t dt51, ~21!

while the vectorn(R) is always perpendicular to the coord
nate surfacec5const~a plane! and is equal to unity in ab
solute value. Thenn(R) in helical coordinates has only on
covariant component:

n35A g

g22
'bS 11at cosv1

a2b2

2 D . ~22!
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unit length along the average direction! of a helical Abriko-
sov vortex is

«5
l3

16p2bEV~¹3h!•~m̂¹3h!dV. ~23!

whereV is the volume of a 2pb-thick layer, i.e., one turn of
the helix. Integrating the second term by parts~see Ref. 6!
and allowing for~19!, we get

«5
F0

32p3bEVD~t!~n•h!dV. ~24!

If we now express the scalar product in terms of the cov
ant components of the vectorsn andh via ~18! and~22! and
integrate~24! with respect toc, we get

«5
F0

16p2bE0
2pE

0

`

D~t!Fh32S 12
a2b2

2 Dh2Gt dtdv.

~25!

To integrate with respect tot, we reason along the sam
lines as in Ref. 5, i.e., we note thatD(t)t has a sharp peak a
t5k21. Taking the other functions outside the integral wi
respect tot and allowing for~21!, we get

«5
F0

16p2bE0
2pFh3~k21,v!2S 12

a2b2

2 Dh2~k21,v!Gdv.

~26!

By writing Eqs. ~19! in the form of equations for the cova
riant components ofh and expanding in powers ofa, we find
a solution of the form

h1~t,v!5ah1
~1!~t !sin v,

h2~t,v!5ah2
~1!~t !cosv1a2@h2

~2!~t !

1 h̃2
~2!~t !cos 2v#,

~27!
h3~t,v!5h3

~0!~t !1ah3
~1!~t !cosv1a2@h3

~2!~t !

1 h̃3
~2!~t !cos 2v#.

Plugging~27! into ~26! and integrating with respect tov, we
obtain

«5
F0

8pb
$h3

~0!~k21!1a2@h3
~2!~k21!2h2

~2!~k21!#%.

~28!

The system of ordinary differential equations for th
hi
(m)(t) simplifies considerably if we introduce the function

u~1!~t !5
d

dt
h2

~1!2h1
~1! , v ~2!~t !5h3

~2!2\2
~2! . ~29!

Then

d2h3
~0!

dt2
1
1

t

dh3
~0!

dt
2h3

~0!52 f ,

d2u~1!

dt2
2
1

t

du~1!

dt
2h2u~1!
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ct.
dt 3

~30!
d2h3

~1!

dt2
1
1

t

dh3
~1!

dt
2d2h3

~1!2
h3

~1!

t2

5t~h3
~0!2 f !2

t

g2

d2h3
~0!

dt2
1
11g2

g2t
u~1!2

12g2

g2

du~1!

dt
,

d2v ~2!

dt2
1
1

t

dv ~2!

dt
2v ~2!

5
1

2t

d

dt
~th3

~1!!2
t

2

dh3
~0!

dt
2
u~1!

2

1b2S 1g2 21D S f2 1

2t

du~1!

dt
2
h3

~0!

2 D ,
where we have introduced the following notation:

F0b

2pl2D~t!5 f , d2511b22, h5gd. ~31!

The boundary conditions for all the functions are t
following: the functions tend to zero ast→` and are finite
and continuous. The fundamental solutions of the co
sponding homogeneous equations are well-known, the ri
hand side of the first equation is a known function, and
right-hand side of every successive equation can be
pressed in terms of the solutions of the preceding equat
Now the solution of the system~30! can easily be obtained
After certain transformations via integration by parts are p
formed, the solution can be expressed in terms of the m
fied Bessel functionsI n(jt) andKn(jt) and the following
integrals of these functions:

Ln~j,t!5E
0

t

I n~jx!D~x!xn11dx,

~32!

Mn~j,t!5E
t

`

Kn~jx!D~x!xn11dx.

Here j can beg, d, h, andn50, 1. When this solution is
plugged into~28! and the integrals~32! are to be evaluated
we employ the fact thattD(t) has a sharp peak att5k21.
For b@k21 the parametersd andh cannot be large,g,1,
so that for the modified Bessel functions we can take th
approximate expressions for a small argument. Then, if
allow for ~21!, we arrive at the final expression for the e
ergy of a helical Abrikosov vortex per unit length along t
axis of the helix:

«5«0H ln2k

eC
1

a2b2

2 Fg2 ln
2k

eCg

1
1

2
~b22g2!ln~11b22!2

1

2G J , ~33!

whereC is Euler’s constant.
Let us estimate the contribution«n to the Abrikosov-

vortex energy per unit length caused by a decrease in
absolute value of the order parameter in a region of rad
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rameter is zero inside this region and equal to its equilibri
value outside, we get

«n>S F0

8pl D 251

4
«0 . ~34!

This is the upper bound—actually«n is somewhat smaller
Allowing for the fact that 11a2b2/2 of the vortex line fits
into a unit length of the helix, the term (11a2b2/2)«0d,
with d,1/4, should be added to~33!. This, however, does
not alter the qualitative conclusions that follow from~33!.

4. CONCLUSIONS AND PHYSICAL EFFECTS

Equation ~33! shows that for allg<1 there exists a
range of values ofb sufficiently small for the energy of a
helical Abrikosov vortex to be lower than that of a straig
Abrikosov vortex. Note, however, that Eq.~33! was derived
on the assumption thatb@k21. For instance, atg51 the
second term in~33! is negative forb<k21, with the result
that for an isotropic superconductor the above conclusio
invalid. At g51/8 andk550 a helical Abrikosov vortex is
energetically favored over the straight configuration
b,1.4.

If we ignore the bending energy, then the energy o
helical Abrikosov vortex coincides with that of a straig
Abrikosov vortex inclined to the anisotropy axis by an ang
u5ab. To calculate this energy, we must leta go to zero
and b to infinity in ~33!, but must not alter the produc
ab. This result coincides with the one obtained from t
respective formula in Ref. 5. The energy is always high
than that of a straight Abrikosov vortex directed along t
anisotropy axis, as is the case in Ref. 3. Thus, the lowe
of the Abrikosov vortex energy in the transition to the helic
configuration reveals itself only if we allow for the negativ
bending energy.

The above suggests that when the anisotropy is stron
straight Abrikosov vortex directed along the anisotropy a
is unstable. Its true configuration can be found by solving
corresponding variational problem, but such a problem
yet to be formulated. If, on the average, the induction
directed along the anisotropy axis, symmetry considerati
suggest that the helical configuration is a stable one. To
the values of its parametersa andb that minimize the free
energy, we must calculate«(a,b) without resorting to per-
turbation techniques. When the average direction of ind
tion deviates from the anisotropy axis, the equilibrium Ab
kosov vortex configuration differs from the helical. Thi
possibly, brings together the results of the anisotropic L
don model and those of the step model of Abrikosov vortic
in a layered superconductor examined in Ref. 10.

The fact that the axial line of an Abrikosov vortex
curvilinear may be important for quantitative calculations
the interaction of this vortex with various inhomogeneities
the superconductor and with the transport current, i.e.,
analyzing the mechanisms of pinning and the penetration
the superconductor by the vortex. New phenomena involv
the system of Abrikosov vortices are also related to this fa
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As noted earlier, an Abrikosov vortex can be either a
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of the axial line of the vortex perpendicular to its plane, these
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an
left- or right-handed helix in relation to the direction of ma
netic induction. In the absence of a transport current al
the direction of induction, the energies of these left- a
right-handed vortices are equal. The repulsion of unl
Abrikosov vortices must be stronger than that of like vor
ces, since similarly directed circular vortices lying in th
same plane attract each other. Right- and left-handed A
kosov vortices can transform into each other by pass
through the stage of a topological soliton. When the Abrik
sov vortex number density is low, the number of right- a
left-handed vortices must be the same, to within fluctuatio
while as the number density increases, a phase trans
occurs with spontaneous breaking of left–right symme
The driving field for this transition is a transport curre
parallel to the magnetic induction, since it changes the e
gies of right- and left-handed vortices differently.

A lattice consisting of helical Abrikosov vortices cann
be interpreted as a deformation of a lattice of straight vo
ces. When the Abrikosov vortex number density is low, su
a lattice differs little, both in its energy and elastic properti
from a lattice of straight vortices, since left- and right-hand
Abrikosov vortices are mixed at random and the energy
interaction of their circular components decreases with
creasing distance much faster than that of straight Abriko
vortices.

At the phase transition to an ordered state the dep
dence of the lattice’s elastic moduli on the magnetic fi
strength experiences a singularity. In a lattice ordered in
direction of the helix the interaction energy is lower, due
the attraction of the circular components of helical Abrik
sov vortices, than in a lattice of straight vortices of the sa
number density. The elastic properties are also different~in
relation to bending, in particular!. The appearance of new
singularities can be expected when the lattice constant
comes equal to the radius of the helix. The overlap of heli
must lead to an enhancement of repulsion, which, possi
is balanced by the straightening of the vortices.

APPENDIX

The energy of a circular Abrikosov vortex of large r
dius R in an isotropic superconductor can be calculated
the same method as that of a helical vortex~see the main
text!. Here toroidal coordinates are the natural system of
ordinates~see Ref. 11!. If the axis of the cylindrical coordi-
natesr , w, z passes through the center of the circumfere
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coordinates can be expressed in terms of the toroidal coo
natest,w,v as follows:

r5R
12t2

122t cosv1t2
, z5

2Rt sin v

122t cosv1t2
. ~A1!

The single component of the induction field ishw(t,v). The
equation for the functionH(t,v)5hwAr /R has the form

H2
l2

4R2t2
~122t cosv1t2!2F t2 ]2H

]t2
1t

]H

]t

1
]2H

]v2 2
3t4

~12t2!2
HG

5
F0

2pl2DS 2Rl t Dn~ t,v!A r

R
, ~A2!

whereD(t) is the same function as in the main text, a
n(t,v) can be determined from the condition that the ma
netic flux through the half-planew5const is equal to the flux
quantumF0. The dimensionless curvaturea5l/R is the
small parameter needed for solving this equation. Subst
ing ta/2 for t in Eq. ~A2! and employing perturbation-theor
techniques, we can calculate the magnetic induction in
second order and the specific energy of a circular Abriko
vortex. The result is

«5«0S ln 2k

eC
2
3

8
a2D . ~A3!

Thus, the bending modulus for an Abrikosov vortex in
isotropic London superconductor is negative.
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Phase transitions in a system of spatially separated electrons and holes

tion
Yu. E. Lozovik*) and O. L. Berman

Institute of Spectroscopy, Russian Academy of Sciences, 142092 Troitsk, Moscow Region, Russia
~Submitted 14 December 1996!
Zh. Éksp. Teor. Fiz.111, 1879–1895~May 1997!

The formation of a superfluid exciton liquid in a system of spatially separated electrons and
holes in a system of two coupled quantum wells is predicted and its properties are investigated.
The ground-state energy and the equilibrium density of the exciton liquid are calculated as
functions of distanceD between the quantum wells. The properties of a rarefied exciton gas with
dipole–dipole repulsions are considered, where this gas is the metastable phase for
D,1.9a* and the stable phase forD.1.9a* ~a* is the radius of the two-dimensional exciton!.
The gas–liquid quantum transition is examined for increasingD. The
Berezinski�–Kosterlitz–Thouless transition temperatures, at which superfluidity arises in the
system, are found for different values ofD. Possible experimental manifestations of the predicted
effects are discussed. ©1997 American Institute of Physics.@S1063-7761~97!02505-5#
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Systems with spatially separated electrons and hole
systems of double quantum wells have attracted a great
of attention recently,1–4 particularly in connection with the
predicted superfluidity in such systems,5 and in connection
with quasi-Josephson phenomena5,6 and the unusual proper
ties such systems manifest in strong magnetic fields.7 There
exist a number of physical realizations of systems with s
tially separated electrons and holes. The electrons and h
can be created by laser radiation, they enter into a stat
partial thermodynamic equilibrium in the system of coupl
quantum wells and are found in the equilibrium state at tim
substantially longer than their energy relaxation times
shorter than their recombination times. Their recombinat
times can be quite long due to the spatial separation of
electron and hole wave functions~but for some coupled
quantum wells3—due to localization of the electrons an
holes in different regions of momentum space!, which makes
the quasi-equilibrium state of the electron–hole system e
ily accessible. In this case the electrons and holes are c
acterized by non-coincident quasi-equilibrium chemical p
tentials. It is also possible for spatially separated electr
and holes to be found in a state of thermodynamic equi
rium such that their chemical potentials coincide. This c
happen in second-order coupled quantum wells~e.g., for
structures based on InAs/GaSb!.

In connection with the experiments which have been
dertaken to date, the greatest interest has lain in the as
unexamined properties of the double-quantum-well str
tures, in particular the question of condensed phases o
excitons in the given system, the form of the phase diagr
etc. These questions are the subject of the present s
which considers a two-layer system in the absence of a m
netic field. Such a system was recently investiga
experimentally.1,2 The behavior of a spatially separate
electron–hole system in a strong magnetic field is discus
in Ref. 8.

The present study predicts the properties of the liq
phase of excitons with spatially separated electron and h
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of the distanceD between the wells. In addition, it predict
the temperature of the topological transition to the superfl
state, which depends onD.

2. HAMILTONIAN OF THE SYSTEM. HARTREE–FOCK
APPROXIMATION

To determine the existence conditions~at zero tempera-
ture! of a liquid consisting of excitons with spatially sep
rated electron and holes, it is necessary to calculate the
pendence of the ground-state energyE on the ~non-
equilibrium! concentrationn and determine the minimum o
E(n) for various values of the distanceD between the layers

The Hamiltonian of a system of spatially separated el
trons and holes can be written in the second-quantiza
representation

Ĥ5 (
p50

` F S p2

2me
2meDap1ap1S p2

2mh
2mhDbp1bpG

1
1

2 (
pp8k

$V~k!@ap
1ap8

1 ap81kap2k

1bp
1bp8

1 bp81kbp2k#22Ṽ~k!ap
1bp8

1 bp81kap2k%, ~1!

whereap
1 andbp

1 are the creation operators of the electr
and hole;me5mh5m is the effective mass of the electro
and hole;V(k)52pe2/«k is the Coulomb interaction in one
layer; Ṽ(k)5V(k)e2kD is the interaction between an ele
tron and hole located in different layers;D is the distance
between the layers of electrons and holes;« is the static
dielectric constant;me andmh are the chemical potentials
which are governed by the normalization conditions~we as-
sume the electron and hole concentrations to be eq
Ne5Nh!

(
p

^ap
1ap&5(

p
^bp

1bp&5
1

2
N,

1027$10.00 © 1997 American Institute of Physics



whereN5Ne1Nh is the total number of particles in the
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system;n5N/S is the surface concentration of the particl
in the system; andS is the area of the system.

To calculate the ground-state energy of an exciton liq
consisting of spatially separated electrons and holes,
necessary to take their pairing into account.5,9 Toward this
end, we use the Gor’kov technique for the normal a
anomalous Green’s functions:10,11

Gab~x,x8!52 i ^T~ c̃a~x!c̃b
1~x8!!&,

Fab~x2x8!5eimt^NuT~ c̃a~x!c̃b~x8!!uN12&,

Fab
1 ~x2x8!5e2 imt^N12uT~ c̃a

1~x!c̃b
1~x8!!uN&,

whereGab(x,x8) andFab(x2x8) are respectively the nor
mal and anomalous Green’s functions, andc̃a(x) and
c̃a

1(x) are the single-particle Fermi operators:m5me1mh .
To start with, let us consider the Hartree–Fock appro

mation, which we will treat as an initial approximation. In
homogeneous system the diagrams of the Hartree app
mation give zero contribution to the energy, as follows fro
electrical neutrality. Let us consider the exchange diagra
of the Hartree–Fock approximation.

With the intention of departing from the framework o
the BCS approximation~for weak coupling!, we will solve
the equations for the normal and anomalous Green’s fu
tions in the general case without assuming that the quas
ticle momenta are small in comparison with the Fermi m
mentum. The normal and anomalous Green’s functions in
generalized Hartree–Fock approximation~with possible
spontaneous symmetry breaking and gapD Þ 0! are solutions
of the equations for the Gor’kov–Nambu matrix functio
Ĝ:

Ĝ5S G F1

2F G D , G~p!5
v1j

v22e2~p!
,

F1~p!5
uD~p!u2

v22e2~p!
, ~2!

Herej5p2/2m2m,

e~p!5
1

zp
211 H ~zp

221!~p22r 2mp0
2!
&p0r

Ap
E
0

`

dp8E
0

2p

df

3
~zp

22122zpzp8 exp@2DpFAp222pp8 cosf1p82# !p8

~zp8
2

11!Ap222pp8 cosf1p82

3
pF
2

4
, ~3!

r51/Apn is the mean distance between the electron
hole layers,zp5up /vp , and the functionsup

2 and vp
2 are

defined by the relations

up
25

1

2 F11
j

e~p!G , vp
25

1

2 F12
j

e~p!G .
We have introduced the notation
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all momenta are expressed in units ofpF /p0 . In the
Hartree–Fock approximation the gapD is determined from
the self-consistency condition. In the approximation we
using for an intermediate type of coupling the gap is det
mined from a variational calculation with allowance for th
correlation energy~see also Refs. 9 and 12!. As the function
being varied it is convenient to use the functionzp ~see
above!.

The energy can be expressed in terms of the Gor’ko
Nambu functionĜ of the system

E52Tr E
0

e2 de82

e82
E
0

` dv

2p E d2p

~2p!2

3@Ĝ~0!~v,p!#21@Ĝ~v,p!2Ĝ~0!~v,p!#eivt, ~4!

where t→10; Ĝ(0)(v,p)5G(0)(v,p)1̂ is the free-particle
Green’s function, and 1ˆ is the unit matrix~in the integrand
we make use of the standard substitution of the phys
chargee2→e82 with subsequent integration overe82 up to
the physical valuee2!.

In the Hartree–Fock approximation the Green’s functi
Ĝ is given by Eq.~2!. Taking Eqs.~2!–~4! into account, we
find the functionalEHF$n% in the Hartree–Fock approxima
tion:

2SEHF$n%

n
1m D5

4

r 2p0
4 E

0

` p3dp

11zp
22

&

p2r 2p3E0
`

pqdpdq

3E
0

2p uV~p2q!1Ṽ~p2q!zpzqudf

~11zp
2!~11zq

2!
. ~5!

As will be shown below, at largeD>Dsp51.9a* the
liquid phase is absent and the electron and hole concen
tions are free parameters of the problem. In this case, at
concentrationsna* 2@1 the quasiparticle spectrume(p)
5 Aj21D2(p), whereD(p) is the gap in the quasiparticl
spectrum found by minimizing the Hartree–Fock function
In particular, forD@a* we have~see Ref. 5!

D~p!5expS 2
16D2p0

pa* D . ~6!

However, atD&a* correlation effects turn out to be impor
tant.

3. ALLOWANCE FOR CORRELATION EFFECTS

We consider the results obtained in the Hartree–F
approximation for the exciton phase as an initial approxim
tion. We use the Green’s functions obtained in Sec. 2 in
Hartree–Fock approximation to calculate the correlation
ergyEcor(zp). We wish to know what classes of diagrams f
the correlation energy are important.

For small momentum transfer we estimate the ratio
the minimum momentum transferk>D/vF ~D is the gap
obtained by a variational calculation; see below! to the Fermi
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FIG. 1. Diagrams for the correlation
energy of an electron–hole system
a—diagrams of the random-phase ap
proximation, taken into account fo
k/pF!1; b—polarization operator in
the random-phase approximation
c—second-order diagrams, taken int
account fork/pF@1.
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the results obtained below, we have

k

pF
>

D

vFpF
5

Dm

2p\2n
'0.07!1.

Consequently, the separability condition for the diagrams
the random-phase approximation13 ~Fig. 1a! holds for small
values of the momentum transferk (k/pF!1) and for our
system.

For the correlation energy in the random-phase appr
mation we have

E1
cor52

1

n E d2k

~2p!2
E

2`

1` dv

2p
$ ln@12VkP~k,v!#

2VkP~k,v!%, ~7!

where P(k,v) is the polarization operator of a two
component electron–hole system with allowance
electron–hole pairing~Fig. 1b!:

P~k,v!5Pee~k,v!1Phh~k,v!1Peh~k,v!. ~8!

For the electron–electron and hole–hole polarization op
tors we have

Pee~hh!~k,v!522E d2p

~2p!2
E

2`

1` de

2p i

3$@GHF~p,e!GHF~2p1k,2e1v!

1GHF~p,e!GHF~2p2k,2e2v!#

1@FHF~p,e!FHF~p1k,e1v!

1FHF~p,e!FHF~p2k,e2v!#%, ~9!

whereFHF andGHF are the anomalous and normal Green
functions in the Hartree–Fock approximation~2!. For the
electron–hole polarization operator we obtain

Peh~k,v!522E d2p

~2p!2
E

2`

1` de

2p i
@FHF~p,e!FHF~p
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1k,e1v!1FHF~p,e!FHF~p2k,e2v!#,

0!

In the absence of pairing and neglecting tunneling betw
the layers the mixed operatorPeh50.

The correlation energyE1
cor for small momentum transfe

(k/pF!1) is given by relations~7!–~10! and depends on the
function zp , which we take as the variational function.

The correlation energyE2
cor for large momentum transfe

(k/pF@1) is given by relation~4!, where the Green’s func
tion G(v,p) is approximated by the sum of a ring diagra
and an exchange diagram, both of second order~See Fig. 1c!.

We will use an interpolation for the correlation energ
Ecor ~successfully employed by Brinkman and Rice to calc
late a metallic electron–hole liquid14 and also used in Refs. 9
and 12! for all values of the momentum transfer:

Ecor5
E1
corE2

cor

E1
cor1E2

cor. ~11!

Next, for various values of the interlayer distanceD and the
quasiparticle momentumn the total energy

Et5EHF1Ecor, ~12!

is defined as a functional of the functionzp5up /vp .
Some remarks are in order at this point regarding

relationship between the present approach and Bogolyub
principle of cancellation of dangerous diagrams. The appe
ance in the diagrams of parts connected to the reset of
diagram by only one pair of lines corresponding to an el
tron and hole with zero total momentum leads to a div
gence of the corresponding diagram. This pair of lines can
replaced by a total two-particle Green’s functionG2 that
describes the bound states of the electron and hole~an exci-
ton!. The exciton energy levels are poles of the functi
G2 as a function of the total energy of the pair. For
electron–hole pair created from the vacuum, the total m
mentum is zero and the total energy ism5me1mh . The
energy of an exciton with zero momentum is by definiti
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total momentum and energym corresponds to a pole of th
function G2 . Consequently, diagrams incorporating virtu
processes of creation from vacuum of electron–hole p
with zero total momentum diverge.

To eliminate the divergence, it is necessary to ensure
mutual cancellation of diagrams that lead to virtual creat
from the vacuum of electron–hole pairs with zero total m
mentum. The application of this cancellation principle w
allowance for only the first order in the interaction is equiv
lent to solving the self-consistent equations in the Hartre
Fock approximation~with allowance for spontaneous sym
metry breaking, andD Þ 0! for the functionzp , which can
also be found in this approximation from the variational pr
ciple.

If we take account of diagrams corresponding to d
namic correlation processes between the quasiparticles,
the cancellation of divergent diagrams will correspond in o
approximation to taking account of the diagrams in Fig.
The minimization of the total energy of the system relative
the functionzp carried out below~with allowance for the
correlation energy! is an approximation to the solution of th
equation for cancellation of divergent diagrams.

4. VARIATIONAL CALCULATION

The variational calculation of the total energyEt was
performed numerically. First, all expressions were reduce
dimensionless form using the radius and energy of the t
dimensional exciton, respectively, as our units of length a
energy:

a*5
«\2

2me2
, Ex5

2me4

«\2 ,

wherem5memh /(me1mh) is the reduced mass.
To minimizeEt we used various test functionszp . The

results did not differ greatly, but the best value was obtain
using a test function of the form

zp5AS 11
p2

4 D 3/21B, ~13!

where A and B are the variational parameters.12 The test
function ~13! was chosen in such a way that forB50 the
function zp

21 coincides with the Fourier transform of th
wave function of the Wannier–Mott two-dimensional exc
ton ~vp50, i.e., zp→`, corresponds to the semimetall
state!.

The two-dimensional integrals over momentum for fin
ing the polarization operators, energy, and Green’s functi
were calculated by the Monte Carlo method. Inside
square from 0 topF over both coordinates 2000 points we
randomly chosen, the values of the functions at these po
were summed, and the sum was divided by the area of
square in momentum space.

Minimization with respect to the variational paramete
A andB was also performed by the Monte Carlo metho
The energy of the system was calculated for randomly c
sen values ofA andB. The incrementsDA andDB in the
parametersA and B were assigned. In the next step, t
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A1kDA andB1kDB, where the random numberk was set
equal to 0.1 or21. The new values of the parametersA and
B were accepted if the corresponding value of the ene
was less than the value corresponding to the previous va
of the parameters. Otherwise, the new values were rejec
The quantitiesDA andDB ~periods of the grid in which the
randomly varying parameters were chosen! were chosen to
be equal to 1023–1022 times the values of the correspon
ing parametersA andB.

By means of these variational calculations we evalua
the ground-state energy of systemEt for different values of
the parameterr s51/Apn and various distancesD between
the electron and hole layers.

For D50 in the limit r s→` ~concentrationn→0! the
ground-state energy~in the calculation, per electron–hol
pair! tends to the energy of the two-dimensional exciton. T
authors of Ref. 15 calculated the dependence of the energ
one exciton in a system of spatially separated electron
holes on the distance between the planes. The results
tained in our study~see Fig. 2! in the limit of larger s are in
good agreement with the results of Ref. 15. The variationa
calculated values ofA andB indicate that the exciton phas
is stable for the above-considered isotropic electron–h
system for allD.

A gap appears in the spectrum of new quasiparticles
all n andD, which grows with decreasingn and increasing
D. As n→0, this gap becomes equal to the binding energy
the two-dimensional exciton. This means that the abo
considered isotropic electron–hole system is an insulator~for
all n andD!.

To conclude this section, note that taking anisotropy in
account leads to a more complicated phase diagram of
system. Specifically, in an anisotropic system at concen
tions greater than some concentration that depends on
distance between the layers of electrons and holes,ncr(D), a
transition from the exciton~insulating! phase to the metallic
phase should take place. The latter phase, in contrast t
exciton phase, is no superfluid. A treatment within the fram
work of a model of Keldysh–Kopaev type9 for an aniso-
tropic, dense electron–hole system shows that the me
insulator transition is continuous, whilencr(D) is a
monotonically decreasing function andncr(D) } 1/D for
D@a* .

5. LOW-DENSITY SYSTEM OF EXCITONS IN A TWO-LAYER
STRUCTURE

At low electron and hole concentrationsna2!1 and low
temperatures, the system is a weakly non-ideal exciton g1!

with dipole moments in the ground state that are perpend
lar to the layersd5eD and grow with increasing interlaye
distanceD ~a(D) is the radius of the excitons in the layer
a'a* for D!a* anda'a* 1/4D3/4 for D@a* !. In this case
the approximation described in Sec. 1 must be replaced b
approximation that takes account to first order of the
change interaction and~in the ladder approximation! the di-
rect interaction between the two-dimensional excitons.
contrast to ordinary electron–hole systems,9 in a spatially
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FIG. 2. a! EnergyE of a system of spatially
ion

es
separated electrons and holes as a funct
of concentration;E in units of the binding
energy of a two-dimensional exciton
Ry2*52me4/\2«, n in units of (a* )22,
a*5\2«/2me2. Curves1–5 correspond to
D equal to 0~1!, 0.5~2!, 1.1~3!, 1.9~4!, and
5 ~5!. The pointE50 for all five curves cor-
responds to the exciton energiesEex(D) for
the corresponding value ofD ~see Fig. 2b!.
b! The binding energyEex(D) of an exciton
with spatially separated electrons and hol
as a function of distanceD between the lay-
ers;Eex in units of Ry2* , D in units ofa* .
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c

tio
f

s
e

e
ac

ak
th
n
r

p
e

ua

tio
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main contribution to the energy comes from the dire
dipole–dipole repulsionUd5e2D2/er 3, while the van der
Waals attraction of the excitons and the exchange interac
are already negligible atD>0.5—less than one-hundredth o
the contribution of the direct dipole–dipole interaction~in a
narrow region of smalln the dipole–dipole repulsion lead
to crystallization; see Sec. 6!. The smallness of the exchang
interaction in a spatially separated electron–hole system
related to the smallness of the tunneling exponential for p
etration of quasiparticles through the dipole–dipole inter
tion barrier.

To calculate the exchange interaction energy, we t
account of pairing of the electrons and holes by way of
canonical Bogolyubov transformation over the electron a
hole operators, which is described by the unitary operatoŜ
~see Ref. 12!:

Ŝ5expF(
p

fp~ap
1b2p

1 2b2pap!G , ~14!

ŜapŜ
15upap1vpb2p

1 , ~15!

ŜbpŜ
15upbp1vpa2p

1 , ~16!

where

up5cosfp , vp5sin fp , up
21vp

251. ~17!

Using the anticommutation relations for the Fermi o
erators in the standard way, we obtain the transform
Hamiltonian

Ĥ5Ĥ01Ĥ81U, ~18!

whereU is a numerical functional ofu andv, andĤ0 and
Ĥ8 are respectively the quadratic Hamiltonian and the q
dratic Hamiltonian in the new operators.

The functionvp obeys the normalization condition

(
p
vp
25

n

2
, ~19!

which follows from the relations

(
p,s

^Ŝap,s
1 ap,sŜ

1&5(
p,s

^Ŝbp,s
1 bp,sŜ

1&52(
p
vp
25n,

wheren is the dimensionless surface charge concentra
(na2 in ordinary units!.
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standing in front of the combinationsap
1ap andbp

1bp is the
energy spectrum of the transformed quasiparticles~quasi-
electrons and quasiholes!:

Ep
e,h5~up

22vp
2!F ee,h~p!2me,h2(

p8
Vp2p8vp8

2 G
12upvp(

p8
Ṽp2p8vp8up8 . ~20!

To calculate the exchange interaction energy, we
take advantage of the fact thatkp vanishes in pairwise com
binations of operatorsap

1b2p
1 1b2pap ~which yield singular

contributions to the energy! in the modified Hamiltonian
Ĥ0 of ~18! that takes electron–hole pairing into account. W
neglect tunneling transitions between the bands of pa
electrons and holes in different layers. It follows from th
above conditionkp50 that

F e~p!2m22(
p8

Vp2p8vp8
2 Gupvp

2~up
22vp

2!(
p8

Ṽp2p8up8vp850. ~21!

For a low-density system,up is of order unity, while
vp is small in the dimensionless parameterAn ~na2 in ordi-
nary units; see Eq.~19!!. To lowest order invp , i.e., accurate
to terms of orderAn, Eq. ~21! reduces to

@e~p!2m0#vp2E Ṽp2p8vp8
d2p8

~2p!2
50. ~22!

Equation~22! together with the normalization condition~19!
has the form

vp5Anc0~p!, m052e0 , ~23!

wheree0 andc0(p) are the binding energy and wave fun
tion of the ground state of an isolated exciton with spatia
separated electrons and holes. The wave functionc0(p) and
energy e0 were calculated for various interlayer distanc
D in Ref. 15. The next order invp in Eq. ~21! contains
exchange interaction effects. The exchange correctionmex to
the chemical potential can be found from Eq.~21! via ordi-
nary perturbation theory if we substitute the zeroth appro
mation for vp from Eq. ~23! into the terms of ordern3/2,
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dropped in Eq.~22!, and treat them as a small perturbation.
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As a result, for the contribution of the exchange interact
to the chemical potentialmex, at low concentrationsn and
small interlayer distancesD we obtain

mex54.71ne2D. ~24!

For largeD the electron–hole interaction has the form

Ṽ~r !52
e2

AD21r 2
'2

e2

D
1
e2r 2

2D3 ,

so that the ground state of the exciton can be described
the wave function of an oscillator with radius15

r5~4a* !1/4D3/4. ~25!

As a result, for the contribution of the exchange interact
mex at low n and largeD we obtain

mex511.31D17/4n expS 2
D1/4

&

D . ~26!

The exchange interaction in a spatially separated sys
is suppressed in comparison with a two-dimensio
electron–hole system in one layer. This has to do with
small tunneling exponential for penetration through t
dipole–dipole interaction barrier.

The contribution of the dipole interaction can be rep
sented by the sum of diagrams shown in Fig. 3. For sm
values of the momentum transferq→0, which are the mos
important at low concentrations, the integrand correspond
to the diagram in Fig. 3c is proportional to 1/q3, and in Fig.
3d to 1/q2. Consequently, the diagrams depicted in Fig.
make a larger contribution to the energy than the diagram
Fig. 3d, and to account for the direct dipole–dipole inter
tion between excitons we may apply the theory of a tw
dimensional Bose gas.17 The relation between the vertexG
and the two-dimensional scattering amplitudef 0(k) for an
interaction potential of the formU(r )5Ar2n (n.2) has the
form

G522 f 0~k!A2pk

i
, ~27!

where the two-dimensional scattering amplitude is given

f 0~k!5
Ap i /2k

ln~kA1/~n22!!
. ~28!

The contribution of the dipole interaction to the chemic
potential ismd5Gn5k2/2.

We estimate the contribution of the dipole–dipole inte
action to the chemical potential under the conditi
ln@(kA)21#@1 to be

md'
4pn

ln~1/8pnA2/~n22!!
, ~29!

wheren53 andA5D2 for the dipole–dipole interaction.
The specifics of a two-dimensional Bose system inclu

divergence of the exciton scattering amplitude at low en
gies ~see Eq.~28!! and a corresponding deviation from th
linear dependence of the chemical potential~29! on the con-
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centrationn at low n characteristic of the three-dimension
case; in the two-dimensional system the potential is prop
tional to n/ ln n in the limit n→0 ~the specific region of
applicability of the ladder approximation in the two
dimensional case is related to this5!.

In the estimate of the contribution of the van der Wa
interaction to the chemical potentialmW, the arguments are
completely analogous to the above analysis of the dipo
dipole interaction. As a result,~29! turns out to be valid for
the contribution of the van der Waals interaction, wi
n56 andA5C6—the coefficient of the van der Waals in
teraction. Let us find the coefficientC6 for small and large
D. For a two-dimensional system the coefficientC6 is re-
lated to the polarizabilitya of the ground state:

C652
3

2
ar2, ~30!

wherer is the exciton radius.
The polarizability is

a522e2(
k

8
ux0ku2

E02Ek
5
2ime2

\2 ~xb̂!00, ~31!

wherex is the coordinate along the film;Ek is the energy of
the unperturbed levels, andb̂ is an auxiliary operator~see
Ref. 18!:

ẑ5
m

\

db̂

dt
. ~32!

The function f (r ), introduced via the equality
b̂c05 f (r )c0 cosf, obeys the equation

ir5
1

2
f 91

1

2r
f 82

1

2r 2
f1

c08

c0
f 8, ~33!

wherec0 is the ground-state wave function of the excito
The unperturbed functionc0 for small D is calculated in
first-order perturbation theory forU(r )52e2D2/«r 3 in the
wave functions of the two-dimensional exciton~for D50!.
For largeD the ground state of the exciton is described
the wave function of an oscillator with radius given by~25!.

Employing the solution of the differential equation fo
f (r ), we finda from Eq. ~31!. For smallD we have

FIG. 3. a! Important diagrams for a rarefied exciton system; b! Ladder
diagrams for one exciton; c! InteractionV between excitons~V;D2/r 3 for
r@D!; d! Unimportant diagram in the limitn→0.
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FIG. 4. a! Energy of an exciton liquidEliq

with spatially separated electrons and hol
as a function of distanceD between the lay-
ers;Eliq in units of Ry2* , D in units of a* .
For D5Dcr51.1 a first-order transition in
D occurs, forDcr,D,Dsp the exciton liq-
uid is metastable, forD5Dsp51.9 the exci-
ton liquid becomes unstable. b! Equilibrium
concentrationnliq of an exciton liquid ~in
units of (a* )21! as a function of distance
D between the layers~in units ofa* !.
21
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a* S 11
\4a* 2 D , ~34!

and for largeD

a50.93D9/4a* 3/4. ~35!

Substituting~34! and ~35! into ~30! and ~29!, we find the
contribution of the van der Waals interaction to the chemi
potential.

The chemical potential of the systemm5dE/dn is ob-
tained as the sum of the above-considered contribution
the exchange, dipole–dipole, and van der Waals interact
of the excitons:

m5mex1md1mW . ~36!

Employing the chemical potential~36! and Eqs.~24!,
~26!, ~29!, ~34!, and ~35!, we calculate the velocityc of
acoustic excitations in the systemc5A(n/m)dm/dn as a
function ofn andD.

To calculate the ground-state energyE(n) over the en-
tire range of equilibrium concentrationsn, we combined the
results of the calculations at high and intermediate conc
trations ~see Sec. 4! with the results obtained for low con
centrations. Figure 4 shows that an exciton liquid can e
for D,Dsp51.9 while forD>Dsp the liquid phase is ab
sent.

Calculated values of the energyE(n) that allow for the
contribution of the dipole–dipole interaction and the van d
Waals and exchange interactions are plotted in Fig. 2~see the
range of lown, wheredE/dn.0 by virtue of the dipole–
dipole repulsion of the excitons!.

6. GAS–LIQUID QUANTUM TRANSITION IN A TWO-LAYER
EXCITON SYSTEM

The calculated curvesE(n) ~see Fig. 2! have a minimum
whose depth corresponds to the binding energy of the e
ton liquid. The binding energy decreases with increas
D, the minimum becomes shallower, and the equilibriu
concentrationsnliq(D) decrease. ForD,Dcr51.1 the en-
ergy of the liquid phase is greater than the energyE(0) of an
isolated exciton with spatially separated electrons and ho
i.e., in this range ofD the stable phase is the exciton liqui
and the metastable phase is the exciton gas.
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tially separated electrons and holes8 ~decreasing with in-
creasingD! is less than the binding energy of the excito
liquid, i.e., the liquid phase in the system under considera
is also stable against decay into isolated biexcitons.
D5Dcr'1.1 the binding energy of the exciton liquid be
comes comparable to the energy of an isolated exciton,
at this point the discontinuous quantum phase transi
‘‘quantum liquid–exciton gas’’ takes place with an increa
or decrease inD. However, over the narrow rang
Dcr,D,Dsp ~Dsp51.9, Dcr51.1! the minimum corre-
sponding to the exciton liquid phase still exists, i.e., the l
uid phase remains metastable. At largerD (D.1.9) the liq-
uid phase is absolutely unstable and only the gas phas
stable, with the exciton density being determined only
external conditions. In the latter case all regimes
possible—from a low-density Bose gas to a dense exc
phase of BCS type.

We emphasize that the presence of a quantum trans
with respect to the parameterD and the instability of the
liquid for D.Dsp are a specific feature of excitons wit
spatially separated electrons and holes associated with
dipole–dipole repulsion at large distances.2!

The formation of a liquid exciton phase can be detec
by a photoluminescence line shift or by discontinuous va
tion of the exciton diffusion coefficient. The onset of th
liquid phase is also characterized by the formation of liqu
exciton droplets that can be detected experimentally from
giant fluctuations, corresponding to the motion of the dro
lets, of the photoluminescence by means of local observa
of the photoluminescence using an opaque mask with
holes or with the help of an optical fiber. It should also
possible to observe exciton droplets from large fluctuatio
of the current along the layers in a system of two quant
wells. Interlevel resistance due to the entrainment of el
trons and holes may also be a sensitive indicator of a g
liquid phase transition and a transition to the superfluid a
other phases of an electron–hole system.

7. TRANSITION TO THE SUPERFLUID STATE AND
SUPERFLUID PHASES OF A TWO-LAYER EXCITON SYSTEM

As was shown above forT50, the system under consid
eration has a gap in its energy spectrum. For this reaso
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T50 the system is a superfluid. With increasing temperature
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the superfluidity of the excitons in the quasi-two-dimensio
system under consideration is preserved up to the temp
ture Tc of the Kosterlitz–Thouless topological pha
transition,19 at which depairing of the vortex pairs take
place in the exciton system. This temperature is given b

Tc5
0.45p\2ns

kBm
, ~37!

wherens is the concentration of the superfluid compone
kB is the Boltzmann constant, andm is the reduced mass o
the quasiparticle.

The concentrationns depends closely on temperatur
and the value ofns that enters into Eq.~37! is its value at the
Kosterlitz–Thouless transition temperatureTc , i.e., Eq.~37!
is an equation for findingTc .

The function ns(T) can be found from the relation
ns5n2nn ~n andnn are the total density and the density
the normal component!; nn5 j n /vn ~j n andvn are the current
and velocity of the normal component!. Using these rela-
tions, the superfluid densityns(T) can be expressed in term
of the electron and hole concentrationsne5nh5n and the
interaction parameters in the electron–hole system. Le
the quasiparticles move with velocityu. In this case the ar-
gument of the distribution function will be note(p), but
e(p)2pu. Motion of the quasiparticles will lead to a mo
mentum

P52E pnF~e2pu!
d2p

~2p\!2
~38!

~nF is the Fermi function!. Taking the velocityu to be low
and expanding inu, it is possible to find the coefficientnn in
the expressionP5nnmu, which is the concentration of th
normal component.

To start with, we consider high and intermediate den
ties. As our estimate of the contribution of single-partic
excitations at high and intermediate densities, we use
relation betweenns(T) andTc

0 in the BCS approximation20

for Tc
02Tc!Tc

0 :

ns
n

5
2~Tc

02T!

Tc
0 , ~39!

and the relation

D~0!51.76Tc
0. ~40!

For D~0! we substitute the value of the gap at zero tempe
ture obtained by variational calculation.

It is also possible to take account of the contribution
collective excitations to the concentration of the norm
component. In contrast to superconductors, where, as a
sequence of the charge of the Cooper pairs, instead o
acoustic spectrum of collective oscillations a plasma bra
of oscillations arises, in the exciton phase the pairs are n
tral and the acoustic branch exists. At low temperatures
contribution of the elementary excitations in thermodynam
equilibrium can be described in the approximation of
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must be substituted in the integral~38! in place of the Fermi
distribution function. We then have forns

ns5n2n
2T2Tc

0

Tc
0 2

p2T3

30\2c4m
2

2mTp2

3~2p\!2
, ~41!

wherec5A(n/m)dm/dn is the speed of sound andm is the
chemical potential of the system determined for intermed
densities by variational calculation~see Sec. 4!.

For a low-density exciton gas the overall approach
analogous to that at intermediate densities, but we take
count of the contribution to the normal density only fro
collective acoustic oscillations. Then

ns5n2
p2T3

30\2c4m
2

2mTp2

3~2p\!2
, ~42!

wherec is the speed of sound for a low-density exciton g
and the chemical potential of the systemm ~in contrast to the
previous case of intermediate densities! is defined as the sum
~36! of contributions of the exchange, dipole–dipole, a
van der Waals interactions of the excitons.

As a result, substituting~41! or ~42! into ~37!, it is pos-
sible to estimate the temperature of the Kosterlitz–Thoul
phase transition~see Table I!. The magnitude ofTc decreases
appreciably as the distance between the wellsD increases
and the exciton concentration decreases. The transition to
superfluid state forD,Dcr'1.1 in the metastable gas phas
and in the stable gas phase forD.Dcr , will depend on the
concentration, which is determined by external conditio
and given by the formula derived above for the superfl
density. ForT5Tc the global superfluid density disappea
with a ~universal19! jump, and at somewhat higher temper
tures the fluctuational local superfluid densityns(L), deter-
mined by the renormalizations at all lower intermedia
scalesL, disappears.

The local superfluid density aboveTc can be manifested
for example, in observations of exciton diffusion to interm
diate distances~with the help of local measurements of e
citon photoluminescence at two points using optical fibers
pinholes~in experiments like those in Ref. 3!!. Discontinu-
ous growth of the coefficient of mutual Coulomb entrai
ment of the electrons and holes in a two-layer system sho
correspond to the appearance of a global superfluid densi
T5Tc . In contrast to ordinary superconductors, nonze
~and equal! electric fields are created in the superfluid pha
by the entrainment of particles of one layer by the other. T
superfluid state atT,Tc is manifested in the existence o
non-decaying~‘‘superconducting’’! oppositely directed elec
tric currents in each layer. Taking tunneling into account
an equilibrium electron–hole system~in a second-order
double quantum well! leads to interesting Josephson ph
nomena in the system: a transverse Josephson current,
mogeneous longitudinal currents,6 diamagnetism in a mag
netic fieldH parallel to the junction~where this magnetic
field is less than some critical valueHc1 depending on the
tunneling coefficient!, and a mixed state with Josephson vo
tices forH.Hc1 ~Ref. 8! ~in addition, taking tunneling into
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TABLE I.

n,
uid
7 ´

D 2Eex @Ry2* # 2Et @Ry2* # Eb @Ry2* # r s
min kBTc

031023 @Ry2* # kBTc31023 @Ry2* #

0 1.0 1.06 0.06 2.2 1.7 1.3
0.5 0.80 0.84 0.04 2.6 1.3 1.1
1.0 0.50 0.51 0.01 3.2 0.8 0.7
5.0 0.26 - - - - 0.2

Note.The dependence on the interlayer distanceD is given here in tabular form for the energy of an isolated excitonEex , the total energyEt per electron–hole
pair, the binding energyEb 5 Eex 2 Et of the liquid phase per pair, the equilibrium distance between the excitons in the ground stater s

min ~r s
min

5 1/a*Apnmin; a* 5 \«/2me2; nmin is the equilibrium density!, and the Kosterlitz–Thouless (Tc) and BCS (Tc
0) critical temperatures. Regarding notatio

m is the reduced mass and« is the dielectric constant. The values ofTc andTc
0 in the first three rows correspond to the equilibrium concentrations of the liq

phase at the given distancesD; the fourth row corresponds to the fixed valuer s 5 100.0 ~the liquid phase does not exist atD > Dsp . 1.9!; Ry2*
52me2/\«.
account leads to a loss of symmetry of the order parameter
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and to a change in the character of the phase transition!.
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Density of states near the Anderson transition in a space of dimensionality d542e
I. M. Suslov
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Asymptotically accurate results have been obtained for the average Green’s function and the
density of states in a Gaussian random potential for dimensionality of spaced542e over the
entire energy region, including the vicinity of the mobility threshold. ForN;1 ~N is the
order of the perturbation theory! only parquet terms corresponding to higher terms in 1/e are taken
into account. For largeN all powers of 1/e are taken into account with their coefficients
calculated in the main asymptotic limit inN. This calculation is performed by combining the
condition of renormalization theory with the Lipatov asymptotic limit. ©1997
American Institute of Physics.@S1063-7761~97!02605-X#
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According to generally accepted thinking,1,2 the single-
electron density of states does not have a singularity at
Anderson transition, in contrast to the conductivity and
localization radius of the wave functions.3–6Nevertheless, its
calculation is of fundamental significance since all kno
methods break down in the vicinity of the transition. In a
dition, the density of states and the conductivity, defin
respectively by the average Green’s function^G(x,x8)& and
the correlator̂ GRGA&, are not completely independent.
study in the parquet approximation shows7 that the math-
ematical difficulties in both cases are of the same nature
are connected with the ‘‘ghost’’ pole problem. On the oth
hand, to satisfy the Ward identity linking the eigenener
part with the irreducible vertex in the Bethe–Salpe
equation8 would require exact agreement of the diagra
taken into account in the calculation of the conductivity a
density of states; this circumstance is not dealt with in any
the presently existing theories7 with the exception of the
theory recently proposed in Ref. 9.

For weak disorder the mobility threshold lies in the v
cinity of the starting boundary of the spectrum, at which t
random potential can be taken to be Gaussian by virtue of
possibility of averaging over scales that are small in co
parison with the wavelength of the electron, but large
comparison with the distance between scatterers~the so-
called Gaussian segment of the spectrum10!. Calculation of
the average Green’s function for the Schro¨dinger equation
with Gaussian random potential reduces to the problem
second-order phase transition with ann-component order pa
rameterw5(w1 ,w2 , . . . ,wn) in the limit n→0.11,12 In this
case the coefficients in the Ginzburg–Landau Hamiltonia

H$w%5E ddxS 12 cu¹wu21
1

2
k0
2uwu21

1

4
uuwu4D ~1!

are linked with the parameters of the disordered system
the relations

c051/2m, k0
252E, u52a0

dW2/2, ~2!

whered is the dimensionality of the space,m andE are the
mass and energy of the particle,a0 is the lattice constant, an
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we takec051!. The ‘‘incorrect’’ sign of the coefficient of
uwu4 leads to the inapplicability of the usual mean-fie
theory and the necessity of a fluctuational treatment11,13over
the entire parameter space; the functional integrals
u,0 are understood in the sense of an analytic continua
from positiveu, which for a retarding Green’s function i
carried out through the lower half-plane.12

The present paper completes the program of construc
a (42e)-expansion initiated in Refs. 14–16. The dimensio
ality of the spaced54 is singled out for the Hamiltonian~1!
from considerations of renormalizability: ford.4 the theory
is not renormalizable and the discreteness of the lattice i
fundamental significance, ensuring the existence of a cu
parameterL;a0

21 at high momenta14; for d54 a logarith-
mic situation holds sway, admitting the existence of bo
non-renormalizable15 and renormalizable models16; for
d,4 the theory is renormalizable with the help of one su
traction, and passage to the continuum limita0→0,
a0
dW2→const is possible. The use of simplifications arisi
at high dimensionalities to construct a (42e)-dimensional
theory requires the successive consideration of all four ty
of theories; this was done in Refs. 14–16 and in the pres
work. The results of this work have already been publish
in a brief exposition in Ref. 17.

2. STRUCTURE OF THE APPROXIMATION

The calculation of the average Green’s functi
^G(p,k)& ~p is the momentum andk is the renormalized
value ofk0! reduces in the standard way to a calculation
the eigenenergyS(p,k), for which the structure of the
perturbation-theory series in four-dimensional space
p50 has the form15

S~0,k!2S~0,0!5k2(
N51

`

uN(
K50

N

AN
KS ln L

k D K. ~3!

Reference 16 established the structure of the approxima
which allows one to obtain asymptotically accurate resu
~in the limit of weak disorder! for a renormalizable class o
models, this being the zeroth approximation for t
(42e)-dimensional theory. ForN;1 it is sufficient to take

1036$10.00 © 1997 American Institute of Physics



account of the coefficientsAN
N corresponding to the ‘‘leading
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logarithms;’’ for largeN this approximation is insufficient in
light of the higher rate of growth with respect toN of the
coefficients of the lower-order logarithms: therefore it is ge
erally speaking necessary to take account of all the co
cientsAN

K , but it suffices to calculate them in the leadin
asymptotic limit inN. The latter is possible by combinin
the condition of renormalizability of the theory with the L
patov asymptotic limit.18

The sum of the high-order terms of the perturbatio
theory series gives a nontrivial contribution associated w
the divergence of the series and is important only for ne
tive u; this latter result explains why in the usual theory
phase transitions it is possible to restrict the calculation
the leading logarithmic approximation.19,20

For d542e the expansion analogous to~3! has the
form

k21S~0,k!2S~0,0![k2Y~k!

5k2(
N50

`

~uL2e!N(
K50

N

AN
K~e!

3F ~L/k!e21

e GK, ~4!

where the coefficientsAN
K(e) are finite in the limite→0 and

A0
0(e)[1. Expansion~4! follows from the fact that the quan

tity Y in Nth-order perturbation theory is a homogeneo
polynomial of degreeN built up fromL2e andk2e: indeed,
in the transition from theNth-order diagram to the
(N11)-th–order diagram the dimensionality in the mome
tum decreases bye ~Ref. 21!, which gives the factorL2e or
k2e depending on whether high or low momenta determ
the corresponding contribution. Separating out the fac
e2K ensures the correct limit in expansion~3! ase→0.

The standard procedure for carrying out t
e-expansion11,13 consists in expanding the coefficien
AN
K(e) in powers ofe

AN
K~e!5 (

L50

`

AN
K,LeL ~5!

and preserving in each order of the perturbation theory so
of the higher orders in 1/e; the first e-approximation corre-
sponds to taking account of only the coefficientsAN

N,0 , which
coincide with the coefficients of the leading logarithms
expansion~3!. As is the case ford54, such an approxima
tion is insufficient foru,0 due to the higher rate of growt
with N of the coefficients of the lower terms in 1/e: limiting
the expansion to the coefficientsAN

N,0 is possible only for
N;1, whereas for largerN it is necessary to take into ac
count all the coefficientsAN

K,L , calculating them in the lead
ing asymptotic limit inN.

According to Eq.~4! the quantityY is a function of
g0[uL2e andL/k; it satisfies the Callan–Symanzik equ
tion

S ]

] ln L
1W~g0 ,e!

]

]g0
1V~g0 ,e! DY50, ~6!
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theory, and Eq.~15! of Ref. 16, which was obtained in a
analogous way. The functionsW(g0 ,e) andV(g0 ,e) can be
expanded in the following series:

W~g0 ,e!5 (
M51

`

WM~e!g0
M5 (

M51

`

(
M850

`

WM ,M8g0
MeM8,

~7!

V~g0 ,e!5 (
M51

`

VM~e!g0
M5 (

M51

`

(
M850

`

VM ,M8g0
MeM8,

whose first coefficients were calculated in Ref. 21:

W1~e!52e, W2,05K4~n18!,
~8!

W3,0523K4
2~3n114!, V1,052K4~n12!

~according to Ref. 16 the functionV(g0 ,e) coincides with
the functionh2(g0 ,e) introduced in Ref. 21!; the quantity
K4 is defined in Eqs.~14!. Substituting expansions~4! and
~7! into Eq. ~6! leads to a system of equations for the co
ficientsAN

K(e):

~K11!AN
K11~e!5~N2K !eAN

K~e!

2 (
M51

N2K

@~N2M !WM11~e!

1VM~e!#AN2M
K ~e!, ~9!

or for the coefficientsAN
K,L :

~K11!AN
K11,L5~N2K !AN

K,L21~12dL,0!

2 (
M51

N2K

(
M850

L

@~N2M !WM11,M8

1VM ,M8#AN2M
K,L2M8 . ~10!

Wilson’s method11,13 is based on the fact that in th
nth e-approximation one needs to know the coefficien
AN
N2K,L for K1L<n21, for which Eqs. ~10! yield the

closed system of difference equations

2NxN5@W2,0~N21!1V1,0#xN21 ,

2~N21!yN5@W2,0~N21!1V1,0#yN211@W3,0~N22!

1V2,0#xN22 ,

2NzN5@W2,0~N21!1V1,0#zN211@W2,1~N21!

1V1,1#xN212yN , ~11!

~where xN[AN
N,0 , yN[AN

N21,0, zN[AN
N,1 , . . . !, which is

solvable by the method of variation of parameters;22 assign-
ing the initial conditions and determining the quantiti
W2,0, V1,0, . . . requires the calculation of some lower o
ders of the perturbation theory. In particular, for the coe
cientsAN

N,0 we easily obtain

AN
N,05~2W2,0!

N
G~N2b0!

G~N11!G~2b0!
,

b052
V1,0

W2,0
5
n12

n18
. ~12!
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To investigate the higher orders ine, the Wilson method
ta

fa
le
y
e

rt

,
g

5exp 2K I ~R!
12R2e

the

t

ty of
d

s

ry
turns out to be ineffective, and it is more convenient to s
with ~9!. Information about the coefficientsAN

K(e) for
N@1 can be obtained by the Lipatov method,18 according to
which the later coefficients of the expansion inu of the func-
tional integrals with the Hamiltonian~1! are determined by
the saddle-point configurations—instantons—and have
torial growth inN. For factorial series there exists a simp
algebra that enables one to manipulate them as simpl
finite expressions,15 which in turn enables one to find th
expansion coefficients of arbitraryM -point Green’s func-
tions, proceed from them to the eigenenergy and the ve
parts, etc. According to Sec. 6, theNth coefficient of the
expansion ofS(p,k) in powers ofu has the form

@S~p,k!#N5c2G~N1b!

3aNE
0

`

d ln R2R22^fc
3&Rp̂ fc

3&2Rp

3expS 2Nf~kR!1Ne ln R

12KdI 4~kR!
12~LR!2e

e D , ~13!

where

a523K4 , b5
d12

2
, c25c~3K4!

7/2,

f ~x!52
e

2
~C121 ln p!23x2SC1

1

2
1 ln

x

2D ,
^fc

3&p58&p2pK1~p!,

I 4~x!5 Ĩ 4 exp~ f ~x!!, Ĩ 45
16

3
S4 ,

Sd52pd/2/G~d/2!, Kd5Sd~2p!2d, ~14!

C is Euler’s constant,K1(x) is the modified Bessel function
and the constantc is defined below in Sec. VI. Re-expandin
series~4!

k21S~0,k!2S~0,0!5k2(
N50

`

~uk2e!N(
K50

N

BN
K~e!

3F12~L/k!2e

e GK, ~15!

in such a way that the coefficientsBN
K(e) are related to the

coefficientsAN
K(e) by

AN
K~e!5 (

K850

K

CN2K8
N2K BN

K8~e!eK2K8, ~16!

settingp50 in Eq. ~13!, making the substitutionR→R/k,
and transforming the exponential

expH 2KdI 4~R!
12~LR/k!2e

e J
1038 JETP 84 (5), May 1997
rt

c-

as

ex

H d 4 e J
3 (

K50

`
$2KdI 4~R!R2e%K

K! F12~L/k!2e

e GK, ~17!

we obtain for the coefficientsBN
K(e) at largeN

BN
K~e!5 c̃2G~N1b!aN

1

K! E0
`

d ln R2R22

3~2KdI 4~R!R2e!K

3expS 2Nf~R!1Ne ln R12KdI 4~R!
12R2e

e D ,
~18!

where c̃25c2^fc
3&0

2 . By analogy with the cased54 ~Ref.
16!, the Lipatov method reproduces the coefficientsBN

K(e)
well only for K!N, which is connected with their rapid
falloff with K and the limited accuracy (;1/N) of the lead-
ing asymptotic behavior. Substituting~18! into Eq. ~16!, we
obtain the following result for the coefficientsAN

K(e) with
N@1:

AN
K~e!5 c̃2G~N1b!aNCN

KE
0

`

d ln R2R22

3S e1
2KdĨ 4
N

ef ~R!2e ln RD K
3expS 2Nf~R!1Ne ln R12KdI 4~R!

12R2e

e D ,
~19!

which follows from Eq.~18! under the condition that the sum
in Eq. ~16! is determined by values ofK8!N. Retaining
only the term withM51 in the sum~9!, it is easy to con-
vince oneself that the equation so obtained is satisfied by
result ~19! for K!N in the caseNe&1 and for allK for
Ne@1. The latter has to do with the fact that forNe@1, the
sum in Eq.~16! is determined by values ofK8;K/eN!N
for all K in the region of applicability of formula~18!. The
indicated reduction of Eq.~9! is possible at largeN by virtue
of the factorial growth ofAN

K(e) under the assumption tha
WN(e) andVN(e) grow more slowly thanAN

0 (e). This latter
result can be assumed to be a consequence of the validi
formula ~19! for K50, 1, 2 ~see Ref. 16 for a more detaile
exposition!.

The system of equations~9! determines the coefficient
AN
K(e) with K.0 for prescribedAN

0 (e). Since Eq.~19! is
valid for the latter for allN@1, it can be used as a bounda
condition on system of equations~9!, which enables one to
determine all theAN

K(e) with largeN. Thus, retaining only
the leading order in 1/e for N;1, defined by the coefficients
~12!, it is not hard to find the sum of series~4!.

3. STUDY OF THE COEFFICIENTS AN
K(e)

We will limit the sum ~9! to terms withM51 and
M52:
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KAN
K~e!5~N2K11!eAN

K~e!2W2~e!@N212b~e!#

e

s

o
e

bu

tion to the sum comes from terms with a small number of
ˆ

t

or
3AN21
K21~e!2W3~e!NAN22

K21~e!, ~20!

Here

b~e!52
V1~e!

W2~e!
——→

e→0

b0 . ~21!

We setAN
N11(e)50 by definition in order to account for th

absence of the last term in Eq.~20! with K5N. The last term
in Eq. ~20! is of order;1/N in comparison with the previou
term and is taken to lowest order in 1/N; the need to take it
into account has to do with the fact that to calculateAN

K(e)
with K;N from the assigned values ofAN

0 (e) requires
;N iterations, and for an accuracy of each iteration
;1/N the errors build up. In what follows we will drop th
argumente in the intermediate formulas.

Making the substitution

AN
K5~2W2!

K
G~N2b!

G~K11!G~N2K2b!
AN2K
0 XN,N2K

~22!

in Eq. ~20! and introducing the notation

hM52
e

W2

AM11
0

AM
0

M11

M2b
,

f M5
W3

W2

AM21
0

AM
0 ~M212b!, ~23!

we obtain

XN,M5hMXN,M111XN21,M1
f M
N

XN22,M21 ~24!

with boundary condition

XN,N51. ~25!

Rewriting Eq.~24! in the form

XN,M5~ l̂ M1 d̂M !XN,M11 , ~26!

where

l̂ M[hM1e2 i p̂, d̂M[
f M
N

e22i p̂, ~27!

e2 i p̂ is the shift operator by21, which operates on both
arguments, and invoking the boundary condition~25!, it is
easy to obtain

XN,M5~ l̂ M1 d̂M !~ l̂ M111 d̂M11!...~ l̂ N211 d̂N21!XN,N

5 l̂ M l̂ M11 ...l̂ N2111 (
p15M

N21

l̂ M ...l̂ p121d̂p1
l̂ p111 ...l̂ N211

1 (
p15M

N22

(
p25p111

N21

l̂ M ...l̂ p121d̂p1
l̂ p111 ...l̂ p221

3 d̂p2
l̂ p211 ...l̂ N2111... . ~28!

We do not indicate the argumentN of the operatord̂, which
is shown on the left side of the equation. The main contri
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operatorsd, which are not difficult to calculate. The result

l̂ M l̂ M11 ...l̂ M8215 (
L50

M82M

CM82M
L hMhM11 ...hM82L21e

2 iLp̂,

~29!

which determines the zeroth-order term ind̂, follows by in-
duction. For products with oned̂ operator we have

l̂ M ...l̂ p121d̂p1
l̂ p111 ...l̂ M821

5 (
L150

p12M

(
L250

M82p121

Cp12M
L1 C

M82p121

L2 hM ...hp12L121

3
f p12L1

N2L1
hp12L121 ...hM82L12L223e

2 i ~L11L212!p̂.

~30!

Noting that by virtue of~23!

f p12L1
hp12L1215S 2

eW3

W2
2 D ~p12L1!, ~31!

we reduce the result~30! to the form

S 2
eW3

W2
2 D(

L
hM ...hM82L23e

2 i ~L12!p̂

3(
L1

Cp12M
L1 C

M82p121

L2L1
p12L1
N2L1

. ~32!

The sum over L1 has a saddle-point a
Lc5L(p12M )/(M 82M21); replacingL1 by Lc in the last
fraction in ~32! and making use of the addition theorem f
binomial coefficients~Ref. 22, p. 745! we obtain

S 2
eW3

W2
2 D(

L
CM82M21
L hM ...hM82L23e

2 i ~L12!p̂

3
p12~p12M !t

N2~p12M !t U
t5L/~M82M21!

. ~33!

Result~33! has the same structure as~29!, and by induction
it is not hard to find products with a moderate numbers of
d̂ operators; from Eq.~28! we obtain

XN,M5(
s50

` S 2
eW3

W2
2 D s (

L50

min$N2M2s,N22s%

3CN2M2s
L hM ...hN2L22s21

3 (
p15M

N2s
p12~p12M !t

N2~p12M !t (
p25p111

N2s11

3
p2222~p22M21!t

N222~p22M21!t (
ps5ps2111

N21

3
ps22s122~ps2M2s11!t

N22s122~ps2M2s11!t U
t5L/~N2M2s!

. ~34!
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formation about the coefficientsAN
0 with N;1 is important.

the

o

Calculating the sum overp1 ,p2 , . . . ,ps in the two over-
lapping regions of parameter space, we obtain the follow
results for it (t8[12t):

1

s! HM1t8~N2M !

~12t8!2
ln

N

t8N1~12t8!M

2
t8~N2M !

12t8 J s, max$t8N,M %@s, ~35!

1

s!

G~M1t8N11!

G~M1t8N2s11! H ln N

t8N1M2s

2
t8N

t8N1M J s, t8N;M;s. ~36!

In the first case it is possible to neglect quantities;s in the
fractions within the summation range, and transform fro
sums to integrals; in the second case it is possible to ca
late the sums systematically by separating out the two h
est powers of the large logarithms. Formula~36! is valid
literally for s@1, whereas fors;1 the difference between
the expression in braces and lnN exceeds the accuracy of th
calculation.

The product

hMhM11 ...hN2L22s215S 2
e

W2
D N2L22s2M AN2L22s

0

AM
0

3
G~M2b!

G~M11!

G~N2L22s11!

G~N2L22s2b!

~37!

entering into expression~34! depends on the coefficient
AN
0 , which are assumed to be known. By analogy with

cased54 ~Ref. 16!, in the (N,K) plane it is possible to
distinguish two regions in Fig. 1: region I, in which the su
in ~34! is determined by indicesN2L22s@1, such that the
Lipatov asymptotic limit is valid for the coefficientsAN

0 , and
region II ~M! ln N, Ne!1!, ‘‘controlled’’ by the trivial co-
efficientA0

051. Between regions I and II lies the region
non-universality—region III~M; ln N, Ne&1!, in which in-

FIG. 1. Regions I and II, which give nonperturbative and quasiparquet c
tributions to the sum~4!; the parametert;e is defined by formula~42!. The
nonperturbative contribution is estimated in effect forN5ke/au; the in-
equalityke/au.1/t corresponds to a positive value ofD ~see Eq.~45!!.
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Region III does not make a substantial contribution to
sum ~4!.

The conditions N2L22s@1, max$t8N,M%@1, and
N2M2L@s are satisfied in region I forNe*1. This en-
ables one to use~19! for AN

0 and ~35! for the sum overpi ,
and neglect the magnitude ofs in the slowly varying func-
tions within the summation range in~34! and to sum over
s. After substituting the result back into~22!, we obtain

AN
N2M5

eN2M

M !
c̃2G~N2b!aN (

L50

N2M
~N2L !!

L! ~N2L2M !!

3S 2
W2

ae D LJ~N2L !~N2L !b1beS~L !, ~38!

where

J~N!5E
0

`

d ln R2R22 expS 2Nf~R!1Ne ln R

12KdI 4~R!
12R2e

e D , ~39!

S~L !5
W3

ea2L SN2L2M

N2L D 2
3F11

~N2L !~N2M !

L~N2M2L !
ln
N2L

N G . ~40!

For N2M!N or Ne@1, the sum overL in ~38! is
determined by valuesL!N, and~38! goes over to~19!. For
M;1, ~38! becomes

AN
N2M~e!5

1

M !
eN2Mc̃2G~N

2b!aNAt/2p expF f `~Nt ln N21!1
1

t G
3E

0

`

dx expF2
t

2 SN2
1

t
2xD 2G

3xM1b1b2 f`NtJ~x!, ~41!

where

t52
ea

W2
——→

e→0 3e

n18
, f `5

W3

aW2
——→

e→0 3n114

n18
.

~42!

The assumptions made in the derivation of~41! are fulfilled
in the regionNt.1 or 12Nt!e1/2.

ForNe!1, the sum overL in ~34! is determined by the
neighborhood of the upper limit of the sum, so thatt8!1;
for M@ ln N andM; ln N, Eqs.~35! and~36! apply, respec-
tively. ForM! ln N, terms withs>M , L5N22s dominate,
and by virtue of the equalityA0

051 we have the following
result for region II:

AN
N2M~e!5~2W2!

N
G~N2b!

G~N11!G~2b! (
L50

`

eL
1

M !L!

n-
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3 2
W3

M1L

~N ln N!M1L, ~43!
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ing ~41! from ~19! is evaluated in effect forN5ke/au and
m-

at

d

S W2
2D

which can be obtained from the system of equations~11! by
separating out the leading asymptotic behavior inN for
AN
N2K,L . For Ne ln N!1, terms withs<M dominate, and

for arbitraryM we have the result

XN,M5
G~M2b!

AM
0 (

s50

M AM2s
0

G~M2s2b!

1

s!

3SW3

W2
ln

N

M2s11D
s

et~N2M !M, ~44!

whose region of applicability expands without limit a
e→0, and this result transforms to Eqs.~42! and~43! of Ref.
16 for d54.

4. ENERGY RENORMALIZATION AND DECAY

As in the cased54 ~Ref. 16!, there are two importan
contributions to the sum~4!—a nonperturbative and a quas
parquet contribution, arising respectively from regions I a
II ~Fig. 1!. We restrict the discussion to the continuum lim
L→`, in which only the coefficientsAN

N(e) remain in the
sum ~4!. The quasiparquet contribution is calculated on
basis of formula~43!, and has the form

@Y~k!#quasiparq5FD1
W3~e!

W2~e!
uk2e ln D Gb~e!

,

D[11W2~e!u
k2e

e
, ~45!

where the coefficientsW2(e), W3(e), andb~e! can be taken
to zeroth order ine. Within the limits of accuracy of the
calculations, the argumentD of the logarithm can be re
placed by its minimum valueD̃;e ln e ~defined by Eqs.~51!
and~52! below!, since forD@D̃ the logarithmic term is un-
important. Therefore~45! can be rewritten in the form

@Y~k!#quasiparq5@11W2,0ũk2e/e#b0,

ũ[uF11
W3,0

W2,0
2 e ln D̃G , ~46!

which differs from the parquet form23 only by the substitu-
tion of ũ for u.

To calculate the nonperturbative contribution, we set

AN
N~e!5 c̃2G~N1b!eNaNF~N! ~47!

and sum~4! from some largeN0 to infinity according to Eq.
~46! in Ref. 16:

@S~0,k!#nonpert[ iG0~k2!

5 ip c̃2k
2~ke/au!be2ke/auF~ke/au!.

~48!

The nonperturbative contribution is associated with the
vergence of the series, and formally arises from the regio
arbitrarily largeN. However, it must be calculated on th
basis of~41!, not ~19!, since the correction factor distinguish
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turns out to be substantial. I did not recognize this circu
stance in Ref. 17; therefore, Eqs.~22! and ~23! in Ref. 17
differ from Eqs.~52!, ~53!, and~55! below.

Approximating the series~4! by the sum of contributions
~46! and ~48!, we obtain

k0
22kc

25k2@118K4ũk2e/e#1/41 iG0~k2!,

k252E2 iG, ~49!

where kc
25S(0,0) and we have allowed for the fact th

k0
25k21S(0,k). Equation~49! is solved like Eq.~93! in

Ref. 15. Setting

k25uku2e2 iw, x5
2

e F S uku2

Gc
D e/2

21G , Gc5S 8K4uũu
e D 2/e

~50!

and separating the real and imaginary parts of~49!, we ob-
tain a connection between the decayG and the renormalized
energyE with the unrenormalized energyEB52k0

2 in para-
metric form:

G5GcS 11
ex

2 D 2/e sin w, E52GcS 11
ex

2 D 2/e cosw,

2EB1Ec5GcS 11
ex

2 D 2/eS ex/2

11ex/2D
1/4FcosS w1

w

4xD
2tan

w~112ex!

3
sinS w1

w

4xD G , ~51!

whereEc is defined by Eq.~108! in Ref. 15, andx(w) is a
single-valued function in the interval 0,w,p, analogous to
the function shown in Fig. 2 of Ref. 15, and implicitly define
by the equation

sinS w1
w

4xD5
e24x/3

x1/4
I ~x!cos

w~112ex!

3
, ~52!

where

I ~x!5 c̃2S 34D
1/4S pt

2 D 1/2
3expH 2 f `1 f `S 11

ex

2 D lnF D̃S 11
ex

2 D Y t G J
3E

0

`

dz expF2
t

2 S ex

2t
2zD 2Gzb1b2 f`~11ex/2!J~z!.

~53!

Equations~51! and ~52! simplify substantially in two over-
lapping regions. Forx@ ln(1/e), i.e., at highuEu, where the
right-hand side of Eq.~52! is small and the quantityw is near
0 or p, we obtain the asymptotic behavior ofG(E),

G~E!5H 1

8
peE@~E/Gc!

e/221#21, E@G,

G0~E!@12~ uEu/Gc!
2e/2#21/4, 2E@G,

~54!
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which produce the illusion of a ghost pole7
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S~p,k!2S~0,k!5k2 12
3 t~x! 21/4

1
1 t~x! 23/4
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by
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m,

d in
its

ty
r-
ion
gu-
(G0(E)[G0(uku )). For large positiveE the result of the
kinetic equation is reproduced; for large negativeE the de-
cay becomes purely nonperturbative.

At low energies,x&e21/2, we have

sinS w1
w

4xD5I ~0!
e24x/3

x1/4
cos

w

3
,

I ~0!;e27/12S ln 1e D 17/12, ~55!

which describes the neighborhood of the ghost pole and
the same functional form as the four-dimensional equa
~see Eq.~51! in Ref. 16 forx!x0 and Eq.~100! in Ref. 15!.
The minimum values ofD andx are reached simultaneousl
and to logarithmic accuracy they are

Dmin[D̃'
7

8
e ln

1

e
, xmin'

7

16
ln
1

e
, ~56!

so that the detour about the pole must be taken at a dist
of the order ofe ln(1/e).

5. DENSITY OF STATES

To calculate the density of states requires a knowle
of the eigenenergyS(p,k) for finite momenta15; like p50,
this quantity consists of a nonperturbative and a quasipar
contribution. The quasiparquet contribution is given by t
parquet equations~Ref. 15, Sec. 7! with the substitution
u→û; the proof of this is completely analogous to the si
ation d54 ~Ref. 16, Sec. 5!. The nonperturbative contribu
tion turns out to be important only in the region of larg
negativeE, where it is directly determined by the Lipato
asymptotic behavior, and can be calculated on the basi
formula ~13! ~for N5ke/au@1/e the correction factor dis-
tinguishing results of the type~41! and~19! is equal to unity!

@S~p,k!#nonpert5 ipc2k
2S ke

auD
b

e2ke/au

3E
0

`

d ln R2R22^fc
3&pR/k^fc

3&2pR/k

3expH 2
ke

au
@ f ~R!2e ln R#

1
2KdI 4~R!

e J . ~57!

For p50 the integral is governed by the neighborhood of
saddle pointR0 , which is a root of the equation

e56R0
2~2 ln R01 ln 22C21!, ~58!

so thatR0'Ae/3 ln(1/e). For p&kR0
21, Eq. ~57! does not

depend onp; for p*kR0
21 it falls off rapidly with increasing

p. By virtue of the logarithmic accuracy of the followin
calculations~Ref. 15, Sec. 8! the result

@S~p,k!#nonpert'@S~0,k!#nonpertu~kR0
212p!. ~59!

suffices. Taking the above into account, the final express
for S(p,k) has the form
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n

H 2 F t~x`!G 2 F t~x`!G J
2 iG0~k2!u~p2kR0

21! ~60!

~cf. Eq. ~116! in Ref. 15!, where

t~x!5118K4ũx/e, x5p2e, x`5k2e. ~61!

Substituting~60! into Eqs. ~117! and ~118! of Ref. 15 for
d542e, we obtain

n5
Gc

4puũu S 11
ex

2 D 2/eH S 11
2

exD
21/4S 12

R0
e

21exD
3sinS w1

w

4xD2S 11
2

exD
23/4

sinS w1
3w

4x D J , ~62!

which together with~51! and~52!, determines the density o
statesn(E) in parametric form.

Let us now turn our attention to the presence of scali
for the energy measured in units ofGc and the density of
states in units ofGc /uũu, all dependences are determined
universal functions that are independent of the degree of
order. ForuEu@G, we have the asymptotic behavior

n~E!55
1

2
K4E

~d22!/2F12S EGc
D 2e/2G21/4

, E@G,

G0~E!

4puũu H 12
R0

e

2 S uEu
Gc

D 2e/2

2F12S uEu
Gc

D 2e/2G1/2J ,
2E@G,

~63!

indicating a ghost pole. For large positiveE, the function
n(E) transforms into the density of states of an ideal syste
and at large negative energiesE we obtain the following
result for the fluctuation tail:

n~E!5
K4

p
G0~E!uEu2e/2 ln

1

R0

5 c̃2K4S 2p

3
ln

1

R0
D 1/2R0

23uEu~d22!/2F Ĩ 4uEue/2

4uuu G ~d11!/2

3expS 2KdI 4~R0!

e
2
I 4~R0!uEue/2

4uuuR0
e D , ~64!

whose energy dependence coincides with that obtaine
Refs. 25–27, and corresponds to the well-known Lifsh
law28; the discrepancy ate→0 is eliminated for finite cutoff
parameterL. Oddly enough, forex!1 Eqs.~51!–~53! and
~62! have the same functional form as those ford54 ~Ref.
16!, i.e., the behavior of all physical quantities in the vicini
of the mobility threshold turns out to be effectively fou
dimensional. As in Refs. 15 and 16, the phase transit
point is shifted into the complex plane, which ensures re
larity of the density of states at all energies.

R0
e differs substantially from unity only when

ke/u!1/e, the terms in braces in~63! cancelling almost
exactly. LettingR0→1 in ~60! is tantamount to completely
neglecting@S(p,k)#nonpert, since the domain of integration in
Eq. ~118! of Ref. 15 is p*k. Thus, @S(p,k)#nonpert is
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significant only for large-magnitude negativeE, and can be
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the main difference of which from~I.83! consists in the ap-

otic

are
calculated using the Lipatov asymptotic form.

6. LIPATOV ASYMPTOTIC LIMIT

Calculation of the Lipatov asymptotic limit in
(42e)-theory closely follows the scheme ford54 de-
scribed in detail in Ref. 16. Therefore we discuss only
differences that arise, denoting by the numeral I reference
equations from Ref. 16.

In massless four-dimensional theory there exists a s
cific zero mode—the dilatation mode, corresponding
variation of the radiusR of the instanton.16,18,29 As in the
massive four-dimensional theory,16 for d542e this mode
becomes soft and the integration over it bears a substant
non-Gaussian character. It is necessary to carry out this
tegration correctly to ensure that the correct limit is reach
asd→4.

By analogy with~I.82!, we introduce three expansions
unity inside the functional integral:

15S E ddxuw~x!u4D dE ddx0

3 )
m51

d

dS 2E ddxuw~x!u4~x2x0!m D ,
15E ddxuw~x!u4E

0

`

d ln R2

3dS 2E ddxuw~x!u4 lnS x2x0
R D 2D ,

15E dnud~u2v$w%!, ~65!

and in place of~I.82! we make the substitutions

x2x05Rx̃, wa~x01Rx̃!5R2~d22!/2w̃a~ x̃!,

g5g̃Rd24. ~66!

As a result, we have

@GM#N215E
0

`

d ln R2Z0~kR!21

3E ddx0E dnuR242~d22!M /2E dg

2p i

3E Dw )
m51

d

dS 2E ddxuw~x!u4xm D
3dS 2E ddxuw~x!u4 ln x2D d~u2v!

3S E ddxuw~x!u4D d11

wa1S x12x0
R D ...waM

3S xM2x0
R Dexp@2H$kR ,g,w%2N ln g

1Ne ln R#, ~67!
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pearance of the termNe ln R in the exponential. The choice
of instanton, as before, is dictated by Eq.~I.94!, which after
transforming to the functionfc(x) according to~I.72! takes
the following form in spherical coordinates (r[uxu):

fc9~r !1
32e

r
fc8~r !2kR

2fc~r !1fc
3~x!2m0fc

3~r !ln r 250.

~68!

In the regionr!kR
21, terms withe, kR , andm0 are treated

as a perturbation, and by analogy with~I.99! we obtain

fc~r !5
2&

z11 F11
12z

11z
v~z!G

z5r2
,

v~z!5E
0

z

dz
~11z!4

~12z!2z2 H e
z2~z23!

12~11z!3

1
kR
2

4 F2 ln~11z!1
z12z2

~11z!2G
1m0F ln z

~z11!4
2

z13

6~z11!3Gz2J . ~69!

Calculation of the asymptotic limit ofv(z) for z@1 with
allowance for only the growing terms inz gives for the re-
gion 1!r!kR

21

fc~r !5
2&

r 2 H 11
1

2
kR
2r 2 ln r1F16 m02

3

4
kR
22

1

12
eG r 2

13kR
2 ln2 r1F2m02

11

2
kR
2 G ln r2

1

r 2J . ~70!

In the regionr@1, treating the nonlinear terms in~68! as a
perturbation, we obtain after separating out the asympt
limit for r!kR

21

fc~r !5
2&

r 2 H 11
1

2
kR
2r 2 ln r

1
2C2112 ln~kR/2!

4
kR
2r 213kR

2 ln2 r

1Fe1kR
2 S 6C1

1

2
16 ln

kR

2 D G ln r2
1

r 2J . ~71!

The matching condition for~70! and ~71! has the form

2m05e16kR
2 ~ ln kR1C112 ln 2! ~72!

Using Eq.~69! to calculate the integral in~I.70! ~making the
substitutiond4x→ddx), we obtain

N ln gc5N lnS 2
Ī 4
4ND 1Nf~kR!, ~73!

where f (x) and Ī 4 are defined by~14!. In comparison with
the cased54, the functionf (x) differs by a constant;e.

Another modification arises when the divergences
separated out of the determinants defined by the sum rule@cf.
~I.114!#
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meral II!, with the replacements(x→*ddx and e(p)→p2.
the
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vi-
ree
,

-

ns-
ub-

ap-
(
s ms

2
0 ~2p!d

3E
0

LR ddq

~2p!d
^fc

2&q^fc
2&2q

~k21kR
2 !@~k1q!21kR

2 #

'9KdI 4~kR!
12~LR!2e

e
112S 131C2 ln 2D .

~74!

For theNth coefficient of the expansion of the Green’s fun
tion, instead of~I.113! we obtain

@GM~x1 ,a1 ,...,xM ,aM !#N

5c~21!NS 4
Ī 4
D N1~M1d11!/2

GS N1
M1n1d

2
D

3E dnud~ uuu21!ua1
...uaM

E
0

`

d ln R2

3E ddx0R
2d2M ~d22!/2fcS x12x0

R
D ...S xM2x0

R
D

3expH 2Nf~kR!1Ne ln R

1
n18

4
KdI 4~kR!

12~LR!2e

e
J , ~75!

where the constantc is calculated in the lowest order ine
and is given by formula~I.114!. Going over to the vertex
part, instead of~I.127! we obtain

@G~0,2M !~p1 ,...,p2M !#N

5c~21!N
2pn/2

2MG~M1n/2!
S 4
Ī 4
D N1M15/2

3GS N1
2M1n1d

2
D E

0

`

d ln R2R2d1~d22!M

3^fc
3&Rp1...^fc

3&Rp2MexpH 2Nf~kR!1Ne ln R

1
n18

4
KdI 4~kR!

12~LR!2e

e
J , ~76!

where ^fc
3&p is the Fourier component of the functio

fc
3(x). To lowest order ine this Fourier component is give

by ~14!. The vertexG (0,2) coincides with the eigenenergy an
for M51, n50, ~76! follows from ~13!.

7. INSTANTON RESULTS FOR e;1

In order to compare with the results of oth
authors,7,25–27 let us discuss instanton calculations ford,4
without assuming thatd is close to 4. Such calculation
closely follow the scheme ford.4 described in Ref. 15~we
denote references to the corresponding formulas by the
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u-

The difference has to do with the need to separate out
zero translational modes along with the rotational modes;
dilatation mode is considered here, in contrast to the pre
ous section, on general grounds. Accordingly, of the th
expansions of unity~65! we use only the first and the third
but the substitution of variables~66! is carried out with
R51. In addition to~II.65!, a transformation of the determi
nantDL is required:

DL8

D0
5D̄~1! )

m51

d *ddxS ]fc~x!

]xm
D 2

3*ddxfc
2~x!S ]fc~x!

]xm
D 2 ,

D̄~1!5)
s

8S 12
1

ms
D . ~77!

The prime denotes omission of the contribution of the tra
lational modes. The instanton equation reduces by this s
stitution of variables to the form

Dfc~x!1fc
3~x!2k̄2fc~x!50, ~78!

where k̄ is an arbitrary parameter~see below!. For the ex-
pansion coefficients of the Green’s function we obtain

@GM~x1 ,a1 ,...,xM ,aM !#N

5
2n21

~2p!~n1d11!/2 S I 62k̄2I 4
d D d/2S 4I 4D

~M1d!/2

3S k

k̄ D ~d22!M /2F2D̄~1!D̄n21~1/3!G21/2

3F2
4

I 4
S k

k̄ D d24GNGSN1
M1n1d21

2 D
3E ddx0fcS k

k̄
x12x0D ...fcS k

k̄
xM2x0D

3E dnud~ uuu21!ua1
...uaM

, ~79!

where

I p5E ddxfc
p~x!. ~80!

For d542e, ~75! and ~79! are equivalent only forNe@1,
when the integration overR in ~75!, corresponding to the
dilatation mode, can be carried out in the saddle-point
proximation. The saddle point occurs forkR5R0 , where
R0 is a root of Eq.~58!. In this case, by virtue of Eq.~72!, we
havem050 and the instanton equation~68! reduces to Eq.
~78! with k̄5R0 . Expression~79! with k̄5R0, after estimat-
ing the pre-exponential in the zeroth order ine, differs from
the result for the saddle-point approximation in~75! by the
constant factor

F l0
L1R0

2

3I 4R0
2~2 ln R01 ln 22C23/2!

E ddx@e0
L~x!#2G1/2
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R0
22r2 ln r 1/2

, ~81!
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-
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o
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x-
in

y

an

o

¯
`

~s13!~s22! 1

the

of
ov-

n in
F R0
2 ln e G

wherel0
L[2r2 ande0

L(x) are the eigenvalue and eigenfun
tion of the operator2D23fc

2(x) corresponding to the dila
tation mode. The normalization of the functione0

L(x) is cho-
sen so as to coincide with@]fc(x)/]R#R51 in the region
uxu&1. The quantity~81! is equal to unity forr;e or
2l0

L;e2; from perturbation theory it is easy to convinc
oneself that the contribution tol0

L that is first-order ine
vanishes, due to the divergence of the normalization inte
for e0

L(x) for d54.
For 2<d,4, the determinantsD̄(1) and D̄(1/3) con-

tain divergences,25 which can be eliminated by renormaliza
tion according to~II.75! with simultaneous transformation t
the renormalized energyE ~the Thomas–Fermi metho
yields ms;s2/d for s@1, and the first sum in~II.69! di-
verges!. Settingk̄51 and summing the non-leading terms
the perturbation-theory series for the two-point (M52)
Green’s function according to~II.90!, it is not hard to obtain
an expression for the fluctuation tail of the density of stat

n~E!5
~42d!2d21

~2p!~d11!/2 S I 62I 4

I 4d
D d/2UD̄R~1/3!

D̄R~1!
U1/2uEu~d22!/2

3S I 4uEu~42d!/2

2a0
dW2 D ~d11!/2

expS 2
I 4uEu~42d!/2

2a0
dW2 D ~82!

~where 4I 25(42d)I 4!. The energy dependence of this e
pression for the fluctuation tail of the density of states co
cides with that obtained by Cardy.27 Normalization to the
unperturbed density of statesn0(E) and changing over from
the renormalized energyE to the unrenormalized energ
EB with a simultaneous shift of the origin~see formula~12!
in Ref. 26! gives the results of Bre´zin and Parisi~Ref. 26!1!

n~EB!

n0~2EB!
5S I 62I 4

3
D 3/2U I 4 D̄R~1/3!

D̄R~1!
U1/2 uEBu

~a0
dW2!2

3expS 2
I 4

16p
2
I 4uEBu1/2

2a0
dW2 D , d53,

n~EB!

n0~2EB!
5
I 62I 4

8p2 U I 4 D̄R~1/3!

D̄R~1!
U1/2S 4puEBu

a0
dW2 D 3/22I4/8p

3expS 2
I 4

8p
2

I 4uEBu

2a0
dW2D , d52. ~83!

For d,2, there are no divergences in the determinants,
~82! holds in terms of the unrenormalized quantities~i.e.,
after the substitutions E→EB , D̄R(1)→D̄(1), and
D̄R(1/3)→D̄(1/3)). Ford51, Eq. ~78! with k̃51 has the
solutionfc(x)5&/coshx, and Eq.~II.64!

y92y1
ms

cosh2 x
y50 ~84!

has eigenvaluesms5s(s11), s51,2,... since by the substi-
tution y5 ỹ cosh2s x it reduces to a form analogous t
~I.121!. Calculation of the parameters entering into~82!
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al

:

-

d

D~1!5)
s51
sÞ2

s~s11!
52

5
,

D̄~1/3!5)
s52

`
~s12!~s21!

s~s11!
5
1

3
,

I 45
16

3
, I 65

128

15
~85!

yields the result

n~EB!5
4

p

uEBu
a0
dW2 expH 2

8uEBu3/2

3a0
dW2 J , ~86!

which agrees with the exact solution due to Halperin.10,30
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The effective action of W3-gravity
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A new method for integrating anomalous Ward identities and finding the effective action is
proposed. Two-dimensional supergravity andW3-gravity are used as examples to demonstrate its
potential. An operator is introduced that associates each physical quantity with a Ward
identity, i.e., a quantity that is transformed without anomalous terms and can be nullified in a
consistent manner. A covariant form of the action for matter fields interacting with a
gravitational andW3-gravitational background is proposed. ©1997 American Institute of Physics.
@S1063-7761~97!00105-4# © 1997 American Institute of Physics.
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The tremendous upsurge of interest inWN-algebras
1 that

followed their discovery by Zamolodchikov can be explain
by the fact that the basic relationships inWN-algebras, in
contrast to those of ordinary Lie algebras, are multilinear a
that the mathematical aspects had not been systemati
studied. A big achievement in this area of research was
use of the Drinfel’d–Sokolov reduction scheme,2 which re-
ducesW-algebras to Lie algebras and relates them to
second Hamiltonian structure of the generaliz
Korteweg–de Vries hierarchies;WN-algebras contain the Vi
rasoro algebra as a subalgebra. In the context of st
theory, the appearance of the latter is a reflection of inv
ance under reparametrization of the string world surface.
extension of this symmetry to invariance under t
W-gravity transformations leads to the theory ofW-strings in
the Polyakov approach, i.e., to the theory of the interact
of matter fields with gravitational ~spin-2! and
W-gravitational~spin-N) background fields. Thus, symmetr
under transformations ofW-gravity is the leading principle
that makes it possible to write the interaction for fields w
spins>2, at least in two dimensions.

However, progress in this area of research was frau
with considerable difficulties. First the chiral theory of th
interaction of matter andW-gravity was formulated by Hull.3

Then Schoutenset al.4 generalized the theory to the non
chiral case but encountered significant technical difficulti
the action in the theory proved to be infinitely nonlinear
the matter fields and nonlocal, so that any further analys
extremely complicated. By calculating the functional integ
over the matter fields with a central chargec interacting with
W3-gravity Schoutenset al.

5 also found the induced action o
W3-gravity in the form of a 1/c-expansion. The same re
searchers~see Ref. 6! found the induced action of chira
W3-gravity, a direct analog if the Polyakov’s action7 for or-
dinary gravity, by integrating the anomaly in the lim
c→`.

Clarification of the geometric meaning o
W-transformations would helpW-gravity studies consider
ably. This aspect was studied by Figueroa-O’Farrillet al.
and Hull.8

At present it is generally hoped thatW-gravity studies
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system consisting of conformal matter and two-dimensio
gravitation, which will probably make it possible to avo
the fractional dimensionality established by Knizhniket al.9

for quantum gravity in the weak-coupling mode. Direct ge
eralization of the results of Ref. 9 toW-gravity in the ab-
sence of matter fields was done by Matsuo.10

The present investigation develops a method for in
grating two-dimensional anomalous Ward identities. Its a
plication is illustrated by examples of two-dimensional gra
ity, supergravity, andW3-gravity. The essence of the metho
consists in the following. By expressing anomalous curre
in terms of free fields via bosonization formulas, we c
lower the order of these differential equations and integr
them. The resulting effective action reproduces the anom
correctly. When the regularization scheme changes, lo
counterterms are added to the nonlocal effective action,
the emergence of these counterterms changes the form
symmetry of the Ward identities. The bosonized fields, be
free in one regularization scheme, in another scheme are
lated by the fact that they satisfy certain Ward identitie
When the chiral Weyl-invariant regularization scheme is
placed by the diffeomorphism-invariant scheme, local co
terterms are added in such a way that the kinetic part of
effective action becomes invariant both under diffeom
phisms and under Weyl transformations. The remaining~to-
pological! part of the effective action is fixed by the requir
ment that the total action, being diffeomorphism-invaria
under Weyl transformations, be symmetric in the quantum
projective sense, i.e., is transformed as a 1-cocycle.

In Secs. 2 and 3 the application of this method is de
onstrated using the well-known examples of ordinary a
(N51)-supergravity, and a differential operatorR is intro-
duced, which with each physical quantity associates its W
identity. The operator is actually a Slavnov operator, wh
was studied by Zucchini11 in connection with two-
dimensional gravity in conjunction with an auxiliary inho
mogeneous term that destroys the anomalous contributio
the transformation law.

In Sec. 4 these calculations are generalized to the cas
chiralW3-gravity. It is found that the result is in full agree
ment with that of Ooguriet al.6

Finally, Sec. 5 deals with the covariant action of mat

843$10.00 © 1997 American Institute of Physics
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iting parametrization symmetry andW-diffeomorphism sym-
metry, this action isW-Weyl invariant and can serve as th
kinetic part of the effective action ofW3-gravity calculated
in the diffeomorphism-invariant regularization scheme.

2. TWO-DIMENSIONAL GRAVITY

The Polyakov action, which was derived in Ref. 7 as
effective action induced by chiral matter interacting w
two-dimensional gravity, is the determinant of the tw
dimensional Laplacian calculated in a regularization sche
that conserves Weyl symmetry and half the reparametr
tion symmetry. The presence of a conformal anomaly ma
fests induces an explicit dependence of the Polyakov ac
on one of the reparametrization functions. In other wor
this effective action can be calculated by integrating the
propriate variational equation, the Ward identity.

The Ward identity of two-dimensional gravitation theo
in the lightlike gauge is well known:

RT5~ ]̄ 2h]22]h!T2]3h50. ~2.1!

It expresses the anomalous conservation of the syste
energy–momentum tensorT. The fieldh in this expression
denotes the nonvanishing metric component that remains
ter the lightlike gauge is specified. It is covariant under
transformations

dh5~ ]̄ 2h]1]h!e,
~2.2!

dT5~]312T]1]T!e,

i.e.

deRT5~e]12 ]e!RT . ~2.3!

Equation~2.3! expresses the Wess–Zumino self-consiste
condition. If we use the bosonization formula and para
etrize the energy–momentum tensor via a scalar field,

T5]2w2 1
2~]w!2, ~2.4!

the order of the anomalous term in~2.1! can be reduced:

Rw5~ ]̄ 2h]!w2]h50,
~2.5!

deRw5e]Rw .

Comparing~2.1! with ~2.4! and ~2.5!, we obtain

RT5]2Rw2]w]Rw . ~2.6!

The transformation law for the scalar fieldw is also anoma-
lous:

dw5]e1e]w. ~2.7!

If for the field w we postulate the free-field Poisson brack

$]w~x!;]w~x8!%5d8~x2x8!, ~2.8!

the e-variation of any quantityA can be determined by it
Poisson bracket with the energy–momentum tensor:

de A~x!5E d2x8e~x8!$T~x8!;A~x!%. ~2.9!
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The bracket of tensorT with itself is

2$T~x!;T~x8!%5d-~x2x8!1@T~x!1T~x8!#d8~x2x8!.
~2.10!

Although the energy–momentum tensor can be expresse
terms ofw, there is no way in which we can express t
gauge fieldh in Eq. ~2.5! in terms ofw in a local manner. To
do this we must introduce a quantity that satisfies the reg
Ward identity, i.e., a quantity that transforms as a scalar. T
anomaly can be removed from the Ward identity by intr
ducing a scalar fieldf in the following way:

w5 ln ] f . ~2.11!

The transformation law forf and the corresponding War
identity have the form

de f5e] f ,

Rf5~ ]̄ 2h]! f50, ~2.12!

de Rf5e]Rf .

Now, when all the quantities are expressed in terms of
function f locally, we can integrate the variational equatio
for the effective action of the theory, which can also be e
pressed in terms off locally and is given by the Polyakov
formula.7 Detailed calculations are given in Sec. 3 for th
more interesting case of supergravity.

Comparing Eqs.~2.3!, ~2.6! and ~2.12!, we see that the
gauge variationd and the Ward identitiesR are commutative
operations on the fieldsT, w, and f .

The relationship betweenRf , Rw , andRT is specified by
the following formulas:

Rw5
]Rf

] f
,

~2.13!

RT5~]312T]1]T!
Rf

] f
.

We see that the operatorR associates with each physic
quantity X a covariant expressionRX , its Ward identity,
which in view of its covariance under gauge transformatio
can be consistently made to vanish. But since the the
lacks quantities of the required dimensionality, this expr
sion must be set to zero. Comparing~2.13! with ~2.11! and
~2.6! with ~2.4!, we see thatR obeys the Newton–Leibniz
rule. This property ofR makes it possible to write the War
identities for the correlation functions of the fieldsT, w, etc.
immediately.

If we apply the Legendre transformation

Z@h#5G@h#1E d2x Th, ~2.14!

Eq. ~2.1! can be written as

~]312T]1]T!
dG

dT
52 ]̄ T, ~2.15!

where the Bol operator12 on the left-hand side is the covar
ant form of]3 on an arbitrary Riemann surface, and conta
a projective connection, for which we may takeT. This no-
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tation expresses the covariance of the Ward identity~2.1!,
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$]w~x!;]w~x8!%5d8~x2x8!,
~3.7!
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a
ro-
the

ity
x-
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just as the Wess–Zumino self-consistency condition~2.3!
does.

3. SIMPLE SUPERGRAVITY

In this section we generalize all the ideas of Sec. 2 to
case of simple supergravity and calculate the effective ac
of the theory.

Polyakov’s result was generalized by Polyakov a
Zamolodchikov13 to the case of~1.0!-supergravity. The cor-
responding generalization of the Polyakov action repres
the effective action obtained in a regularization scheme
conserves the Weyl and super-Weyl symmetries and half
supercoordinate symmetry.14 The nontrivial dependence o
the action on the other coordinate functions~odd- and even-
parity! is determined by a superconformal anomaly.

The Ward identities of two-dimensional supergravity
the lightlike gauge can be written as6

RT5~ ]̄ 2h]22]h!T2~ 1
2x]1 3

2]x!S2]3h50,
~3.1!

RS5~ ]̄ 2h]2 3
2]h!S2 1

2xT2]2x50.

They are covariant under the transformations

dh5~ ]̄ 2h]1]h!e1 1
2kx,

dx5~ ]̄ 2h]1 1
2]h!k1~e]2 1

2]e!x,
~3.2!

dT5~]312T]1]T!e1~ 1
2k]1 3

2]k!S,

dS5~e]1 3
2]e!S1~]21 1

2T!k,

i.e.,

dRT5~e]12]e!RT1~ 1
2k]1 3

2]k!RS ,
~3.3!

dRS5~e]1 3
2]e!RS1

1
2kRT ,

which means that the Ward identityRA transforms in the
same way as the quantityA but without the anomalous terms

Going over to the scalar multiplet of matter field
(w,l), with

dw5~]1]w!e1 1
2kl,

~3.4!
dl5~e]1 1

2]e!l1~]1 1
2]w!k,

which are related to the current fields by the rule

T5]2w2 1
2~]w!21 1

2ldl,
~3.5!

S5]l2 1
2l]w,

we can reduce the order of the derivatives in~3.1!. The op-
eratorR acts on the fieldsw andl in the following manner:

Rw5~ ]̄ 2h]!w2 1
2xl2]h,

~3.6!
Rl5~ ]̄ 2h]2 1

2]h!l2 1
2x]w2]x.

We see that the gauge fieldsh andx cannot be expressed i
terms ofw andl locally, a situation resembling that of Se
2.

The fieldsw and l form an algebra of free fields in
Poisson brackets:
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$l~x!;l~x8!%52d~x2x8!.

Then, with respect to this bracket, Eqs.~3.5! suggest the
existence of the following algebra for the current fields:

2$T~x!;T~x8!%5d-~x2x8!1~T~x!1T~x8!!d8~x2x8!,
~3.8!

2$T~x!;S~x8!%5~S~x!1 1
2S~x8!!d8~x2x8!,

2$S~x!;S~x8!%5d9~x2x8!2 1
2T~x!d~x2x8!.

To parametrize the gauge fields in a convenient manner,
must introduce a scalar multiplet (f ,c) without anomalous
dimensionality,

d f5e] f1 1
2kc,

dc5e]c1 1
2]ec1 1

2k] f ,
~3.9!

Rf5~ ]̄ 2h]! f2 1
2xc,

Rc5~ ]̄ 2h]2 1
2]h!c2 1

2x] f .

This multiplet is related to the matter fields as follows:

w5 ln ] f1
c]c

~] f !2
,

~3.10!

l52
]c

] f
2c

]2f

~] f !2
.

There is no simple way in which we can deduce such
complicated relationship from the condition that the app
priate terms appear in the transformation laws. However,
problem can be simplified if superfields are introduced.

Since the superfield formulation of chiral supergrav
contains no auxiliary fields, the meaning of all previous e
pressions is not altered when we go over to superfields:

RU5~ ]̄ 2H]2 1
2 DHD2 3

2]H !U2]2DH,

dU5~D]21 3
2 U]2 1

2 DUD1]U !E, ~3.11!

dH5~ ]̄ 2H]2 1
2 DHD1]H !E,

whereU5S1uT, H5h1ux, D5]u1u], andE5e1uk,
with u the anticommuting coordinate. Then the current s
perfieldU is related to the matter superfieldF5w1ul as
follows:

U5D]F2 1
2DF]F, ~3.12!

and accordingly,

dF5]E1E]F1 1
2DEDF,

~3.13!
RU5D]RF2 1

2DF]RF2 1
2]FDRF .

The scalar multipletF5 f1uc, with

dF5E]F1 1
2DEDF, ~3.14!

is related to the superfieldF by

F5 ln ]F1
DF

]F
D ln ]F, ~3.15!
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RF5F DF

~]F !2
]D1S 1

]F
22

DFD]F

~]F !3 D ]2
D]F

~]F !2
DGRF .

~3.16!

The formulas that link the current Ward identities wi
Rf andRc are

RT5~]312T]1]T!SRf

] f
2Rf

c]c

~] f !3
1

cRc

~] f !2D2S 32S]

1
1

2
]SD S 2Rc

] f
2

c

] f
]SRf

] f D22
]cRf

~] f !2D ,
~3.17!

RS5S ]21
1

2
TD S 2Rc

] f
2

c

] f
]SRf

] f D22
]cRf

~] f !2D
2S 32S]1]SD SRf

] f
2Rf

c]c

~] f !3
1

cRc

~] f !2D .
If we now use the Legendre transformations to proceed fr
the partition function to the effective action,

G@T,S#5Z@h,x#2E d2x~hT1xS!, ~3.18!

the Ward identity becomes

~]2D13U]1DUD12]U !
dG

dU
50 ~3.19!

or, in components,

~]312T]1]T!
dG

dT
1S 32S]1

1

2
]SD dG

dS
52 ]̄ T,

~3.20!

S ]21
1

2
TD dG

dT
1S 32S]1]SD dG

dS
52 ]̄S,

i.e., there emerges a supersymmetric Bol operator, which
also been described in Ref. 12. In this form the covarianc
Ward identities under the gauge transformations~3.2!, which
is equivalent to the Wess–Zumino conditions for
anomaly, becomes explicit.

Now let us turn to the problem of finding the partitio
function of the theory:

dZ5E d2x~Tdh1Sdx!5E d2xduUdH

52E d2xduES ]̄ 2H]2
1

2
DHD1

1

2
]H DU.

~3.21!

We see that the integrand is the Ward identityRU without
the anomalous term. In the chiral scheme, i.e., a regular
tion scheme that conserves half the reparametrization s
metry and the Weyl symmetry as well as their superpartn
the fieldsw andl are related by~3.10!, and the correspond
ing Ward identitiesRw andRl vanish. On the other hand, i
a regularization scheme that preserves supercoordinate
metry the group parametersf and c vanish and the fields
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Rl still play an important role. MultiplyingRU by E and
integrating by parts, we obtain

E d2x du RUE5E ESD]2
1

2
DF]2

1

2
]FD DRF

5E d2x du RFSD]E1
1

2
]~EDF!

1
1

2
D~E]F! D

5E d2x du RFDdF. ~3.22!

If we ‘‘err’’ twice, i.e., take ~3.22! for dZ rather than~3.21!
and ignore the relationship betweenH andF, expressed by
the fact thatRF is zero, we can integrate this variation
equation and arrive at the following expression forZ@H#:

Z@H#52
1

2E d2xdu~ ]̄ F2H]F22 ]H !DF. ~3.23!

The fact that~3.17! reproduces the anomaly correctly ca
easily be verified. Thus, assuming that the superfieldF is
independent, we can reproduce the anomaly by directly a
ing the appropriate term to the action.

This conclusion agrees with our ideas about the ‘‘tra
fer’’ of the anomaly from one regularization scheme to a
other. A detailed description of the process in which a co
formal anomaly is transformed into a gravitational anom
in the two-dimensional gravitation theory can be found
Ref. 15.

4. W3-GRAVITY

The difference between the theory ofW3-gravity and the
above cases is that the chiral formulation of this theory is
only more convenient but is also the only one amenable
quantum analysis. The nonchiral version formulated in R
4 contains an infinite number of arbitrary matter fields and
too complicated even at the classical level.

The Ward identities of chiralW3-gravity are

RT5~ ]̄ 2h]22]h!T2~2b]13]b!W2]3h,
~4.1!

RW5~ ]̄ 2h]23]h!W1~2b]319]B]2115]2b]

110 ]3b116bT]116 ]bT!T2]5h.

Here b denotes the single nonvanishing component o
third-rank symmetric tensor—the gauge field ofW-gravity,
the partner of the metric in the multiplet—andW denotes the
corresponding spin-3 current, the partner of the energ
momentum tensor. The chiral general-coordinate a
W-transformations have the form

dT5~]312T]1]T!e13W]l12]Wl,

dW5]We13W]e1~]5110T]3115]T]219]2T]

12]3T116T2]116T]T!l,

dh5~ ]̄ 2h]1]h!e12l]3b23 ]l]2b13]2l]b
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db5e]b22]eb1~ ]̄ 2h]12 ]h!l. ~4.2!

The quantitiesRT andRW are covariant under the transfo
mations~4.2!, i.e.,

dRT5~e]12]e!RT1~2l]13]l!RW ,
~4.3!

dRW5~e]13]e!RW1~2l]319]l]2115]2l]

110]3l132T]l116Tl]116l]T!RT .

Thus, takingR as the differential operator, we conclude th
~4.3! yields a universal relation

@d,R#50 ~4.4!

on the current fieldsT andW.
The transformations~4.2! of an arbitrary quantityA are

generated by the currentsT andW via Poisson brackets:

dA5E d2x@e~x!$T~x!;A%1l~x!$W~x!;A%#. ~4.5!

In terms of these brackets, the transformations~4.2! them-
selves become

2$T~x!;T~x8!%5d-~x2x8!1@T~x!1T~x8!#d8~x2x8!,

2$T~x!;W~x8!%5@W~x!12W~x8!#d8~x2x8!,

2$W~x!;T~x8!%5@2W~x!1W~x8!#d8~x2x8!, ~4.6!

2$W~x!;W~x8!%5dV~x2x8!15@T~x!1T~x8!#d-~x2x8!

18@T2~x!1T2~x8!#d8~x2x8!

23@T9~x!1T9~x8!#d8~x2x8!.

This algebra can be reproduced by expressing the cur
fields in terms of the matter fieldsw andc, which induce the
algebra of free fields,

$w8~x!;w8~x8!%5d8~x2x8!,

$w8~x!;c8~x8!%50, ~4.7!

$c8~x!;c8~x8!%52d8~x2x8!,

if we defineT(x) andW(x) in the following manner:

T~x!5]2w2 1
2~]w!21 1

2~]c!2,
~4.8!

W~x!5]3c13]w]2c2]2w]c12~]w!2]c1 2
3~]c!3.

This corresponds to the following transformation law f
the matter fields:

dw5]e1]we24l]w]c12l]2c2]l]c,
~4.9!

dc5e]c1]2l13]l]w12l@]2w1~]w!21~]c!2#.

The anomalous equations of motion of the matter m
tiplet have the form

Rw5 ]̄ w2h]w1]b]c22b~]2c22]w]c!2]h,

Rc5 ]̄ c2h]c23 ]b]w22b@]2w1~]w!21~]c!2#

2]2b. ~4.10!
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dRw5~e]24l]c]!Rw1~2l]22]l24l]w]!Rc ,
~4.11!

dRc5~e]14l]c!Rc1~3]l]12l]214l]w]!Rw .

This also establishes the validity of Eq.~4.4! when matter
acts on the multiplet.

The Ward identities~4.1! can easily be transformed int

RT5~]22]w!Rw2]c]Rc ,
~4.12!

RW5~4 ]w]]c]2]c]223 ]2c]!Rw1@]323 ]w]2

12~]w!2]12~]c!2]#Rc .

The e- andl-transformations constitute a closed algebra
the multiplets of currents ($T,W%), matter fields ($w,c%),
and gauge fields ($h,b%):

@d~e1!,d~e2!#5d~e35e2]e12e1]e2!,

@d~e1!,d~l2!#5d~l352l2]e12e2]l1!,
~4.13!

@d~l1!,d~l2!#5d~e3516T~l2]l12l1]l2!12l2]
3l1

23 ]l2]
2l113 ]2l2]l122 ]3l2l1!.

The partition function of the theory is calculated in the sa
way as in supergravitation theory: by multiplying Eq
~4.12!, respectively, bye andl, we obtain

E d2x~eRT1lRW!5E d2x~Rwd]w2Rcd]c!. ~4.14!

If the Ward identities~4.1! were to have no anomalou
terms, the left-hand side of Eq.~4.14! would be the variation
of the partition function multiplied by minus one. If, in ad
dition, the fieldsw and c were to be free and Eqs.~4.10!
were not to link them with the gauge fieldsh and b, the
right-hand side of Eq.~4.14! would be the total variation of
the following expression:

Z@h,b#5E d2xS 12 ]w~ ]̄ w2h]w!2
1

2
]c~ ]̄ c2h]c!

2]h]w1]2b]c1bF2~]w!2]c2]2w]c

23 ]w]2c1
2

3
~]c!3G D

5E d2xF12 ~ ]̄ w]w2 ]̄ c]c!1hT1bWG .
~4.15!

Equation~4.15! is the action of the matter fields interac
ing with two2dimensional chiral gravity andW3-gravity.
The variation of~4.15! with respect to~4.2! and ~4.9! is

dZ5E d2x @h]3e1b]5l116l~T2]b1bT]T!#.

~4.16!

This expression differs from that for the quantum anomaly
the minimum type by the presence of terms quadratic inT.
This discrepancy is due to the differences in defining
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l-diffeomorphisms. The transformation law~4.2! is moti-
vated by the closure of the algebra~4.13! on the fieldsh and
b and by the Wess–Zumino self-consistency condition, w
Eqs.~4.3! being valid.

The following line of reasoning can motivate anoth
definition ofdlh: if we perform the Legendre transformatio

Z@h,b#5G@T,W#1E d2x ~hT1bW!, ~4.17!

the expressions forRT and RW acquire the Bol operator
L3 andL5:

RT5 ]̄ T1~]312T]1]T!
dG

dT
1~3W]12 ]W!

dG

dW
,

~4.18!

RW5 ]̄W1~3W]1]W!
dG

dT
1~]5110T]3115]T]2

1~9]2T116T2!]1~2]3T116T]T!!
dG

dW
.

Thus,

dZ5E d2x~Tdh1Wdb!

52E d2x@e]3h1l]5b216l~T21bT]T!#. ~4.19!

To obtain an anomaly of the minimum type it appears r
sonable to definedlh with dextrah528T(l]b2b]l).

The anomaly can be completely removed from the tra
formation laws and the Ward identities if we transform
variables (f ,g), which form a scalar multiplet:

w5 ln ] f1 1
2 ln~12Z2g!,

~4.20!
c5g21ln~11Z2g!,

where

Z[
1

] f
] and g25212.

The transformation law for the fieldsf andg is

d f5e] f2gFl]2f1
1

2
]l] f1

2

3
l] f ] ln~11Z2g!G ,

~4.21!

dg5e]g2
1

2
g]l]g2glF ~] f !22]2g1

2

3
]g] ln~1

1Z2g!12]g
]2f

] f G .
Accordingly, the Ward identities are

Rf5 ]̄ f2h] f1
g

2
]b] f1gbF]2f1 2

3
] f ] ln~11Z2g!G ,

~4.22!

Rg5 ]̄ g2h]g1
g

2
]b] f1gbF2]g

]2f

] f
1
2

3
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SettingRf andRg to zero, we can express the gauge mult
let in terms off andg:

b5g21
]̄ g2~ ]̄ f /] f !]g

~] f !2~11Z2g!
, ~4.23!

h5
]̄ f

] f
1

g

2
]b1gbF]2f] f

1
2

3
] ln~11Z2g!G . ~4.24!

These formulas coincide, to within renormalization ofg and
l, with the solution found by Ooguriet al.,6 who interpreted
W3-gravity as a connected Wess–ZuminoSL(3,R)-theory.
Plugging~4.20! and~4.21! into ~4.15!, we reproduce the chi-
ral action of Ooguriet al.,6 which must be interpreted as th
effective action induced by quantum fluctuations of the m
ter fieldsw andc, which interact with the multiplet of chira
W3-gravity via ~4.15!. The anomalous dependence of th
action on the ‘‘coordinate’’ functionsf andg is due to the
W-gravity anomaly. Continuing the analogy with the cases
two-dimensional gravity and supergravity, we can assu
that this action is a result of choosing a regularizati
scheme that conserves the Weyl andW-Weyl symmetries, as
well as half the coordinate symmetries of the covariant
tion that describes the interaction of matter fields and o
nary gravity andW-gravity.

5. CONCLUSION

By generalizing some of the laws governing ordina
gravitation we were able to find the effective action of chi
W3-gravity. It would be more interesting, however, to co
tinue the analogy and find theW-analog of the Liouville
action; namely, the covariant action that describes the in
action of matter fields with a gravitational an
W-gravitational background.

To understand the nature of the symmetry properties
W-gravity theory it is advisable to first turn to classic
theory.

As a classical gauge theory,W-gravity was first exam-
ined by Hull.3 The nonchiral formulation of this theory wa
later performed by Schoutenset al.4 They started with the
action

S5
1

2E d2x ]1w]2w. ~5.1!

With respect to the ordinary diffeomorphismsdw5ea]aw,
the variation of~5.1!,

dS5E d2x @]a~ea]1w]2w!1]1e2~]2w!2

1]e
1~]1w!2#, ~5.2!

vanishes if]1e25]2e150. To generalize this symmetry t
a local one, we must, in accordance with Noether’s theor
add to~5.1! the currents

t115 1
2~]1w!2, t225 1

2~]2w!2,
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kh22 . Here k is an expansion parameter, which is set
unity in the final result. After an infinite number of steps t
action can be summed as a geometric progression to pro

S5
1

2E d2x
~]1w2kh22]2w!~]2w2kh11]1w!

12k2h11h22 .

~5.3!

Schoutenset al.4 then stated that the action~5.1! for n
real fields is invariant under holomorph
W-diffeomorphisms. Indeed, under the transformations

dw i5di jk~l11]1w j]1wk1l22]2w j]2wk! ~5.4!

the action transforms as

dS5
1

3E d2x di jk ~]1w i]1w j]1wk]2l11

1]2w i]2w j]2wk]1l22!. ~5.5!

The fact that the algebra of holomorphice- and
l-diffeomorphisms is closed imposes the following co
straint on the symmetric constantsd ~see Ref. 3!:

dk~ i j dl )mk5d~ i jd l )m. ~5.6!

The action~5.1! can be made invariant under locale- and
l-transformations via the Noether procedure by introduc
the appropriate gauge fieldsh11, h22, b111, andb222.
Unfortunately, in the given case the invariant action can
summed only by using auxiliary fieldsF6

i :

S5E d2x eF]1w i]2w i1F1
i F2

i

1F1
i S ]2w i2

1

3
di jkb

111F1
j F1

k D
1F2

i S ]1w i2
1

3
di jkb

222F2
j F2

k D G . ~5.7!

After the auxiliary fields are eliminated, they are replaced
‘‘nested’’ covariant derivatives,

F6
i → ]̂w6

i 5e6
a ]aw2b777di jk ]̂6w j ]̂6wk, ~5.8!

and the action becomes infinitely nonlinear. To avoid di
culties and operate from the start in a covariant setting,
must introduce more gauge fields than required by
Noether approach. Specifically, in the case of pure grav
tion, we must introduce the full tensorhab instead of the two
componentsh11 andh22. Then the Noether procedure te
minates after the first step, and the invariant action has
form

S5E d2x hab]aw]bw.

Here we expect a new symmetry to appear, a symm
that would balance the superfluous degree of freedom rel
to the h12-component of the metric. By requiring that th
energy–momentum tensor of the theory be traceless,

Ta
a5Tabh

ab50, Tab[
dS

dhab , ~5.9!
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hab
dS

dhab 50

has a functional of the typeS5S(Ahhab) as a solution,
which is equivalent to invariance underhab→eshab trans-
formations. In this way the final expression for the invaria
action is

S5E Ahd2x hab]aw]bw. ~5.10!

In the case ofW3-gravity we propose introducing th
h12, b11, and b221 components of the gauge fields,
order to produce the total tensorshab andbabg. The Noether
procedure terminates after the first step, and the invar
action has the form

S5E d2x ~habtab1babgvabg!, ~5.11!

where

tab5 1
2~]aw]bw2]ac]bw!,

vabg5 2
3~]aw]bw]gc1]aw]bc]gw1]ac]bw]gw

1]ac]bc]gc!.

The action ~5.11! is assumed to be invariant under th
w-diffeomorphisms

dlw524lab]aw]bc,
~5.12!

dlc52lab~]aw]bw1]ac]bc!,

defined with a traceless parameterl, i.e., labhab50. The
variation of ~5.11! under the transformations~5.12! can be
written in the form

dS5E d2x@dlb
abgvabg2vabg~ham¹mlbg

1hbm¹mlag1hgm¹mlab!2~hamlbg

1hbglam!¹mvabg1dlh
abtab

116babglmn~2tgn¹mtab2tbg¹atmn!

116babg¹almn~2tbmtgn2tbgtmn!#. ~5.13!

Defining thel-variations of the gauge fields in such
way that the coefficients of the currentstab andvabg vanish,
we ensure that the action~5.11! is invariant. The transforma
tions ~5.12! represent a specific realization of the consta
di jk in ~5.4! for the case of two fields. Such a restriction
not accidental, the point being that when there are three
more fields, the condition that the covariant algebra of
W-transformations

dw i5di jklab]aw j]bwk ~5.14!

be closed imposes additional constraints on thedi jk , restric-
tions which together with the conditions~5.6! have only a
vanishing solution. In addition, the algebra becomes clo
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cluded, as happens in the simpler case of two-dimensio
supergravitation.16

Thus, to guarantee invariance under ordinary a
l-diffeomorphisms, we introduced seven gauge fields. N
we would like to impose constraints on the theory in suc
way so as to obtain a three-parameter symmetry group
‘‘balances’’ the three superfluous degrees of freedom.

By imposing the conditions that the energy–moment
tensor andW-current be traceless,

hab
dS

dhab 50, hab
dS

dbabg 50, ~5.15!

conditions with a solution of the formS5S(ĥab,b̂abg), with
the quantities

ĥab[Ahhab,

b̂abg[babg2 1
4hmn~habbgmn1hbgbamn1hagbbmn!

invariant under Weyl andW-Weyl transformations, respec
tively, i.e.,

hab→eshab ~Weyl!,
~5.16!

babg→babg1~zahbg1zbhag1zghab! ~W-Weyl!,

we reduce the number of degrees of freedom. Howe

comparison of the variationsdS(ĥ,b̂) with ~5.13! shows that
the symmetry of the action underl-diffeomorphisms is in-
compatible with Weyl invariance, since if the variatio
dltab is traceless, the variationdlvabg is not, with the result
that the latter cannot be made equal to the traceless varia

dĥ. Thus, Weyl invariance is incompatible wit
W-symmetry even at the classical level, and to reduce
number of degrees of freedom we must replace the requ
ments that the energy–momentum tensor be traceless
different one.

Schoutenset al.17 proposed a covariant formulation o
W-gravity. With each annihilation operator of the classic
W3-algebra they associated a gauge field and a local pa
eter, and with each annihilation operator they associate
field in the adjoint representation. Then they required that
850 JETP 84 (5), May 1997
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finite number of degrees of freedom and, in addition to be
ordinary-invariant andW-diffeomorphism invariant, it is lo-
cally Weyl- and Lorentz-symmetric andW-Weyl and
W-Lorentz symmetric.

It would also be interesting to study this theory as
system with constraints.

Many thanks go to R. L. Mkrtchyan and O. M. Khuda
erdyan for fruitful and stimulating discussions and especia
to A. G. Sedrakyan for a thorough review of the manuscr
and for the critical remarks. The present work has in p
been supported by grants 211-5291 YPI~German
Bundesministerium fu¨r Forschung und Technologie! and
INTAS-2058.

* !e-mail: karakhan@vx2.yerphi.am

1A. B. Zamolodchikov, Teoret. Mat. Fiz.65, 347 ~1985!.
2I. M. Gel’fand and L. A. Diki�, Preprint IFM of the USSR Academy o
Sciences, Moscow~1978!; V. G. Drinfel’d and V. V. Sokolov,Current
Problems of Mathematics@in Russian#, Vol. 24, VINITI, Moscow ~1984!.

3C. M. Hull, Phys. Lett. B240, 110 ~1990!.
4K. Schoutens, A. Servin, and P. van Nieuvenhuizen, Phys. Lett. B243,
248 ~1990!.

5K. Schoutens, A. Servin, and P. van Nieuvenhuizen, Nucl. Phys. B364,
584 ~1991!; 371, 315 ~1992!.

6H. Ooguri, K. Schoutens, A. Servin, and P. van Nieuvenhuizen, Com
Math. Phys.145, 515 ~1992!.

7A. M. Polyakov, Mod. Phys. Lett. A2, 893 ~1987!.
8J. M. Figueroa-O’Farrill, S. Stauciu, and E. Ramos, Phys. Lett. B297, 289
~1992!; C. M. Hull, Phys. Lett. B269, 257 ~1991!.

9V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolodchikov, Mod. Phys
Lett. A 3, 819 ~1988!.

10Y. Matsuo, Phys. Lett. A227, 117 ~1991!.
11R. Zucchini, Phys. Lett. B260, 296 ~1991!.
12F. Gieres, Preprint CERN 366~1991!.
13A. M. Polyakov and A. B. Zamolodchikov, Mod. Phys. Lett. A3, 819

~1988!.
14D. R. Karakhanyan, Phys. Lett. B365, 56 ~1996!.
15D. R. Karakhanyan, R. P. Manvelyan, and R. L. Mkrtchyan, Phys. Let
329, 185 ~1994!.

16S. Deser and B. Zumino, Phys. Lett. A65, 369 ~1976!.
17K. Schoutens, A. Servin, and P. van Nieuvenhuizen, Nucl. Phys. B349,
791 ~1991!.

Translated by Eugene Yankovsky
850D. P. Karakhanyan



Scattering of relativistic electrons by high-power laser light tightly focused

ical
Yu. N. Eremenko and L. S. Mkhitar’yan

Russian Federal Nuclear Center, National Research Institute of Experimental Physics, 607190 Sarov,
Nizhni� Novgorod Region, Russia
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We obtain an approximate solution for the drift and oscillatory components of the motion of
relativistic electrons in the field of temporally extended high-power laser light under strong
focusing of the light~the size of the focal region is of the order of the light wavelength!.
This makes it possible to start numerically integrating the equations of electron motion near the
focal region. We estimate the impact parameters of the electrons when they are still
efficiently accelerated in the focal region. ©1997 American Institute of Physics.
@S1063-7761~97!00205-9#
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Investigations of the acceleration of electrons by hig
power laser radiation (E@e/a2, where e is the electron
charge, anda0 is the Bohr radius! in the focal region of a
lens have a long history.1–3

The mechanism of such acceleration is fairly simple. I
strong electromagnetic field the oscillatory motion of
electron is relativistic, and the energy of this motion can
as high as desired~in comparison to the initial energy o
electron motion!. If the amplitude of the electron oscillation
becomes comparable to the beam waist radiusw0, the elec-
tron can leave the focal region with an energy comparabl
the energy of the oscillatory motion,4 which in turn is pro-
portional to the light intensity in the focal spot. By measu
ing the spectrum of the scattered electrons one can esti
the parameters of the laser pulse in the waist region.

The feasibility of such measurements strongly depe
on the number of accelerated electrons, i.e., in other wo
on the volume of the region from which the electrons a
drawn into the acceleration process.

The size of this region is usually estimated by nume
cally integrating the equations of electron motion in the fie
of the focused laser light.

Most studies of this problem are devoted to investigat
ultrashort pulses~tens to hundreds of femtoseconds!. Lately,
however, it has become possible, thanks to the developm
of wavefront reversal methods,5 to focus laser light with an
energy;500 J and a pulse length;200 ps into a spot with a
diameter of~3–5!l ~see Ref. 6!. This makes it possible to
reach intensities I L;1019 W/cm22 and electric field
strengthsE'1011 V/cm (E;10e/a0

2) in the focal region.
The number of field oscillations for a pulse of such a len
reaches 104 and even higher values, with numerical integr
tion encountering difficulties related to round-off errors a
long computation times.

In the present paper we develop a method for calcula
the electron spectrum and the size of the region from wh
the electrons are drawn into the acceleration process.
method is based on separating the electron motion into
and oscillatory components. It makes it possible to der
analytic expressions for the state of electron motion near
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integration of the equations of motion. By applying th
method, the number of calculated field oscillations is redu
by a factor of almost one hundred. For a short pulse~t;0.1
ps! we compare the direct method of calculation with t
approximate one, and demonstrate that the accuracy of
approximation is satisfactory. For a long pulse (t;200 ps)
we give an example of calculating the spectrum of acce
ated electrons and estimate the size of the region from wh
the electrons are drawn into the acceleration process.

2. STATEMENT OF THE PROBLEM

We take a beam of relativistic electrons moving wi
initial velocity bz5vz /c5b0 (bx5by50) along the axis of
a lens~thez axis! with impact parameterx0, and interacting
with a laser pulse whose field we describe~following the
approach adopted in Ref. 7! in the paraxial approximation
for a linearly polarized Gaussian beam:

Ex5Q~f,x,z!sinS f2
kx2

z1z0
2/z

2arctan
z

z0
D ,

~1!
Hz5Ex ,

Q~f,x,z!5
E0g~f!

A11z2/z0
2
expF2

x2

w2~z!G . ~2!

Heref5v@ t2z(t)/c# is the phase of the field at the poin
occupied by the electron,k is the wave vector of the light
w(z)5w0A11z2/z0

2 is the beamwidth at distancez from the
focal point, andz05pw0

2/l is the length of the beam wais
with w0 the waist radius. The functiong(f) specifies the
temporal pulse shape.

In terms of the dimensionless electron velocityb5v/c
and electron energy

g5
1

A12b2
,

the equation of electron motion~with radiative corrections
ignored! have the following form:8

851$10.00 © 1997 American Institute of Physics



d
~gb!52

e
~E1b3H!,

n
ro
s,

tie

o
iv
th

dr
a
th

-

fo

c

f

t
ng

w0, and since the solution will be set up forh@1, for the
-

-

ver

by

-
h

-

dt mc
~3!

d

dt
g52

e

mc
b–E.

For short pulses, the scattered-electron spectrum ca
obtained by numerically integrating the equations of elect
motion ~3! in the field of the light beam. For long pulse
where the number of field oscillations reaches 104 and may
even be higher, numerical integration encounters difficul
related to round-off errors and long computation times.

However, the fact that the pulses are long makes it p
sible to approach this problem from another perspect
When the pulse length is large, the relative variation of
field amplitude over one period, (1/Q)(dQ/df), is small,
and electron motion can be separated in oscillatory and
components, for which one can easily set up approxim
solutions in the form of series of increasing orders of
phase derivatives of the field amplitude, e.g.,

gbx5 (
n50

`

an
dnQ

dfn .

Here the derivativesdnQ/dfn depend on the temporal enve
lope ~or profile! of the pulse,g(f), and the profile of the
light beam formed by the lens. Below we establish that
long pulses, terms indng/dfn are negligible in comparison
with terms indnQ/dzn. The latter depend onz as 1/zn11, so
that the series rapidly converge. This makes it possible
start numerically integrating the electron paths near the fo
region (;200–300 periods!, taking the initial conditions
from the approximate solution.

3. APPROXIMATE SOLUTIONS FOR THE OSCILLATORY
AND DRIFT COMPONENTS OF ELECTRON MOTION

Replacing the time variablet by the phasef in the equa-
tions of motion ~3!, we arrive at the following system o
equations:

d

df
~gbx!52

eEx
mcv

, ~4!

dj

df
5

gbx

B
, B52pg0~12b0!, ~5!

dh

df
5aF11

~11b0!~gbx!
2

2b0
G , a5

b0

2p2w0
2~12b0!

.

~6!

Herej5(x2x0)/l andh5z/z0. In deriving~6! we used the
constant of the motiong(12bz)5g0(12b0), from which it
follows that

g

g0
511

11b0

2
~gbx!

2.

The initial conditions for Eqs.~4!–~6! are gbxuf5050,
juf5050, andhuf505h0. Since the values of the impac
parameterx0 of practical interest are those not exceedi
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functionQ in ~1! we take the first two terms in the expan
sion:

Q~f,x,z!5Q~f,x0 ,z!1
]Q

]x U
x5x0

~x2x0!,

with the exponentials inQ(x0) and ]Q/]xux5x0
assumed

equal to unity.
In Eq. ~6! we select the term that is linear inf by intro-

ducing a new variable,h85h2af2h0, for which we have

dh8

df
5a

11b0

2b0
~gbx!

2 ~7!

with initial conditionh8uf5050. Now we separate the mo
tion into an oscillatory component (gb̃x , j̃ ,h̃8) and a drift
component (̂gbx&, ^j&, ^h8&). To this end in Eqs.~4!, ~5!,
and ~7! we group terms that vanish under averaging o
f, and terms that do not. The result is

d

df
gb̃x52G~f,h!sinFf2

~j01j!2h

w0
2~11h2!

2arctanhG , ~8!

d

df
j̃ 5

gb̃x

B
, G5

ag~f!

A11h2
, a5

eE0
mcv

, ~9!

wherej05x0 /l.
Now we can easily obtain the approximate solution

successively integrating these equations by parts. Thus,

gb̃x'G cosf8u0
f2sin f8

d

df
@G~f!#u0

f

1E
0

f

sin f8
d2

df2 @G~f!# df,

where

f85f2
~j02j!2h

w0
2~11h2!

2arctanh.

Clearly, the third term is;1/h3. Restricting the series to
terms quadratic in 1/h and performing the elementary differ
entiation of Q ~we limit ourselves to the case in whic
Quf505dQ/dfuf5050), we find that

gb̃x'G~f!cosf81G~f!S ha

11h2 2
1

g

dg

df D
3sin f81OS 1h3D , ~10!

where we have replaceddh/df by a, allowing for the fact
that

dh8

df
;~gb̃x!

2;
1

h2 .

Similarly, integrating~9! by parts and restricting the se
ries to terms quadratic in 1/h, we obtain

j̃ 5
G~f!

B Fsin f812 cosf8S 1g dg

df
2

ah

11h2D G . ~11!
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averaging Eqs.~4!, ~5!, and ~7! over one period. The firs
nonvanishing term on the right-hand side of Eq.~4! after
averaging is

]Q

]x U
x50

~x2x0!sin f8,

since, as Eq.~11! shows,x2x0;sinf8. Changing the vari-
ablef in ~4! again toh0, we find that

d

dh
^gbx&5

2j0

aBw̄0
2

G2

11h2 K sin2f8

110.5~11b0!~gbx!
2 L ,

wherew̄05w0 /l. The angle brackets denote averaging o
phase, and the functiong(f), which changes little in the
2p interval, is taken outside the averaging sign.

Allowing only for the first term in the denominator o
the expansion forgbx from ~10!, and averaging, we obtain

^gbx&5
2j0

aBw̄0
2

2b0

11b0
E

h0

h SA11
11b0

2b0
G221D dh

11h2

[
2j0

aBw̄0
2

2b0

11b0
er~h!. ~12!

Similarly, for drift along thex andz axes we have

^j&5
1

aB E
h0

h
dh K ^gbx&

11~gbx!
2~11b0!/2

L
5

2j0

a2B2w̄0
2

2b0

11b0
E

h0

h er~h!

A11G2~11b0!/2b0

dh,

~13!

^h8&5
11b0

2b0
E

h0

h
dh K ~gbx!

2

11~gbx!
2~11b0!/2b0

L
5E

h0

h
dh F12

1

A11G2~11b0!/2b0
G . ~14!

It is sufficient to replace the argument ofg(f) in the
integrals in Eqs.~12!–~14! by the approximate expressio
f5(h2h0)/a.

Thus, an electron that was initially deflected aw
from the axis byj0 drifts in the transverse direction. It
displacement along thex axis is determined largely by th
parameter1)

D5
4b0

a2B2w0
2~11b0!

5
4p2w0

2

g0
2b0~11b0!

,

which depends on the initial electron energyg0 and the beam
waist radiusw0. The integral in~13! determines the depen
dence of the traverse electron drift on the characteristic
the laser pulse,a andDf.

Now it is clear that for temporally extended laser puls
(ug21dg/dfu!1) there is no need to numerically integra
the equations of motion over the entire electron–field int
action range. Instead the integration can start from a cer
valueh in (uh inu@1), with the initial state of the electron a
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this point determined by solving Eqs.~10!–~14!, which are
actually an expansion of the solution in inverse powers
h.

Figures 1 and 2 depict the paths of an electron and
electron drift along thez axis as functions of the distance t
the focal point calculated by Eqs.~4!–~7! and ~10!–~14!. In
all numerical examples we used

g~f!5sin2S p

2

f

Df D .
Clearly, the electron path is described fairly well up

the waist region (h>2). At the same time, the accuracy o
Eq. ~14! is not sufficient for determining the phase of m
tion, f5a21(h2h02h8), at such distances from the foca
point, which leads to a considerable uncertainty in the ene
with which the electron is scattered by the focal region.

If, however, we are less interested in the result of
individual scattering event than in the spectrum of the el
trons that begin to interact with the laser pulse at differ
points h0 on the lens axis, there is no need to accurat
determine the phase. Indeed, the relationship between
phase with which an electron arrives at the pointh in and the
coordinateh0 at which the electron begins to interact wi
the field ish in5h01af1h8. This yields

FIG. 1. The paths of electron motion with an impact parameterj051 ob-
tained by numerical calculations~curve1! and by an approximate metho
~curve2! for the case of a short laser pulse (a53.41,Df560p, w0520,
andg0510).

FIG. 2. The dependence of electron drift^h8& along thez axis on the
distance from the focal points. The curves were obtained by numerica
tegration of Eqs.~3!–~6! ~curve1! and by an approximate method of solvin
Eq. ~13! ~curve2! with the same parameters of the laser pulse as in Fig

853Yu. N. Eremenko and L. S. Mkhitar’yan
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Using Eq.~14!, we can easily show thatd^h8&/dh0 does
not exceed (a/h in)

2, and at distances where this paramete
much smaller than unity there exists a linear relations
between the coordinate at which the electron begins to in
act with the field and the phase with which the electron
rives at the pointh in . By going through all the phases be
longing to the interval@0,2p# in specifying the initial data
needed for numerical calculations, we reproduce the sp
trum of scattered electrons that started their interaction w
the beam in the intervalDh0522pa.

Figure 3 depicts an example of the spectra calculate
this manner, for electrons that arrive at the beam waist reg
together with the pulse peak (h0'2aDf). Clearly, in the
case at hand an electron moving along the axis can bec
accelerated to energies that exceed the initial electron en
by a factor of about 160. However, for an impact parame
j050.01, the electron energy drops by a factor of abou
after scattering.

4. ELECTRON SCATTERING CROSS SECTION AT THE
FOCAL POINT OF A LASER PULSE

As noted in the Introduction, for an electron to be sc
tered in the beam waist region, its oscillation amplitude
the waist must exceed the waist radius:

a

2pg0~12b0!
.w0 .

It is clear, however, that if the electron oscillation am
plitude is too large, the electron will scatter even before
gets to the region of peak field strength in the waist, and w
not acquire the energy it could if it reached the waist regi
Thus, having the highest possible energy imparted to
electron when it is scattered at the focal point imposes
additional constraint on the electron’s maximum oscillati
amplitude:

a

2pg0~12b0!
,w0~ 1.521.7!.

FIG. 3. The spectrum of an electron arriving at the focal point simu
neously with the peak of the laser pulse (a55.97, Df546 000p,
w052.55, andg051.8) for the following values of the impact paramete
j050 ~curve1!, andj050.01 ~curve2!.
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exists an optimum value of the initial electron energy
which the electron acquires the maximum possible ene
when it is scattered in the field of the focused laser pulse

Thus, in the case of the short laser pulse under disc
sion (Df560p, w0520, anda53.41), the optimum initial
electron energy is g0'10, and for a long pulse
(Df546 000p, w0'2.55, anda'6) the optimum value is
g0'1.8.

For the transverse drift not to have a significant effect
the electron–field interaction,^j& at the waist much be much
smaller than the electron oscillation amplitudea/B ~see Eq.
~12!!. Since the integral in~14! is of order unity, we can
easily see that the value of the impact parameter at which
electron is still accelerated satisfies the inequality

j0!
a

8p3w̄0
2
g0
3b0~11b0!

2, ~15!

so that the effective electron cross section rapidly increa
with initial electron energy.

For the long pulse under discussion, plugging numeri
values into~15! yieldsj0!0.07, while for the short pulse we
obtainj0!0.33.

Hartemannet al.4 studied a picosecond laser pulse wi
a55.33,Dt50.8 pc, andw054.95mm. According to~15!,
the electrons withg0510 reach the waist of such a puls
from the region around the axis withj0!9, which consti-
tutes a considerable fraction of the waist size.

For the long pulse (Df560p, w0520, anda53.41),
we now estimate the volume occupied by electrons that
be accelerated by the field of the laser light to energ
higher than half the peak energy that an electron can acq
Since the peak energy that an electron can acquire as a r
of acceleration is proportional to the square of the field,
electrons of interest must arrive at the waist when the fi
there is no lower thanEmax/A2, which means that

sinS p

2

f

Df D>
1

A2
.

Thus, the size of the region of interest isDf/2, or ~in
terms of length! ;aDf/2, and the radius amounts to rough
0.01l. For the long pulse under discussion, this yiel
V'p(0.0131024)235.551.7310211 cm3.

Figure 3 shows that only roughly half the electrons b
longing to the specified region will be accelerated to t
required energies~for this to occur, the electrons must ent
the waist region with specific phases!. Thus, for the pulse
under discussion, the number of electrons accelerated to
nificant energies in the waist region to significant energie
N'0.5Vn, or N'0.85310211n, where n is the electron
beam density.

We see that studying the intensity of such a laser puls
the focal point requires using an electron beam with a p
ticle number density much greater than 1011cm23.

-
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We have studied the problem of electron scattering b
temporally extended laser pulse focused to a region sev
wavelengths long. We have found that for extended pu
the electron motion at large distances from the waist reg
can be represented to high accuracy by the superpositio
two types of motion: drift perpendicular to the lens axis, a
oscillatory motion.

For both types of motion we have derived analytic e
pressions in the form of series in inverse powers of the
tance to the waist, which makes it possible to calculate
initial values of the electron coordinates and velocity for n
merical integration of the equations of motion in the vicin
of the waist.

For various values of the impact parameter of electr
that arrive at the waist region together with the peak of
laser pulse, we give the electron spectra after scattering

The expressions for electron drift perpendicular to
lens axis enables one to estimate the electron scattering
section. For a pulse;0.2 ns long and a waist diameter o
about 3l, the volumeV occupied by electrons that can b
come accelerated at the focal point of the lens and can
used to estimate the light intensity at the focal point has b
found to be about 10211 cm3.

Hence determining the peak light intensity in such pul
from the scattered electron spectrum becomes possible w
beams with an electron number densityn@1011 cm23 are
employed.
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1!The dependence of drift onD is clear from the start. Indeed, in the non
relativistic limit the ponderomotive force acting on an electron in a pla
wave isFpond5(e2/4m0v

2)¹E0
2. Since the ponderomotive force is signifi

cant only in the waist region, the displacement of the electron due to
force is xdr5(Fpond/m0)(t

2/2), where t5z0 /v0 is the time it takes the
electron to travel through the beam waist region. Plugging inz05pw0

2 and
noting that¹E0

25(4j0 /w0
2)E0

2, we find thatjdr;j0w0
2a2/b0

2, which coin-
cides with~13! calculated in the approximation in whichG2!1. The factor
g0

22 in the formula forD simply allows for the increase in the inertial mas
of the electron.
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Evolution of the width of the wave packet of a charged particle interacting with a

s-
quantum electromagnetic field
S. V. Faleev* )

G. I. Budker Nuclear Physics Institute, Siberian Branch of the Russian Academy of Sciences, 630090
Novosibirsk, Russia
~Submitted 17 September 1996!
Zh. Éksp. Teor. Fiz.111, 1563–1578~May 1997!

The path integral method is used to study the width of the wave packet of a relativistic charged
particle interacting with a quantum electromagnetic field. A general expression is derived
for the density distribution of a particle moving in arbitrary external potentials. An electron
synchrotron with weak focusing is studied as a specific example, and the width of the
wave packet of an electron moving in this accelerator is found. ©1997 American Institute of
Physics.@S1063-7761~97!00305-3# © 1997 American Institute of Physics.
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The width of the wave packet of an electron moving in
circular accelerator is known to be determined, after a lo
enough time, by two competing factors, classical radiat
damping,1,2 and an increase in packet width due to the qu
tum nature of radiation.3 However, the method used b
Sands1 and Kolomenski� and Lebedev2 to calculate the
wave-packet width was semiclassical and statistical. T
electron in this approach is a classical particle that sponta
ously emits photons with a given~classical! average radia-
tion intensity. Strictly speaking, in such an approach o
must use such a notion as the width of a particle beam
stead of the width of the wave packet of a single particle

The present investigation develops the general met
for a rigorous quantum calculation of the wave packet d
sity of a relativistic charged particle interacting with a qua
tum electromagnetic field. To solve this problem it is conv
nient to formulate relativistic quantum mechanics using
language of path integrals. To allow for the effect of a qua
tum electromagnetic field on the particle in this approach
can use the influence functional technique.4,5

In Sec. 2 we derive an expression for the influence fu
tional for the case where initially the electromagnetic field
in thermal equilibrium and is characterized by a temperat
T. In the semiclassical approximation, where the packe
much narrower than the characteristic scale on which
external potentials vary, the fact that the interaction with
quantum electromagnetic field is taken into account lead
the emergence of three additional forces in the equation
the particle’s classical path: the radiative reaction force
two fluctuation forces, which allow for the quantum natu
of radiation. Section 3 is devoted to finding a general expr
sion ~in the form of path integrals of the fluctuation force!
for the density distribution of the wave packet of a charg
particle moving in arbitrary external potentials. Finally,
Sec. 4 we discuss the evolution of the wave packet of
electron moving in a specific system—a synchrotron w
weak focusing. We find that for each fixed configuration
the fluctuation forces the wave packet has an ‘‘inhere
relative density distribution, which is determined by the in
tial wave function and is independent of the fluctuati
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sage of time. One the other hand, the coordinates of
center of this distribution as a whole depend strongly on
fluctuation forces, and in averaging over these forces we
rive at what is known as the ‘‘Brownian’’ contribution to th
packet width, the principal contribution a large times.

The system we consider here is an example of a diss
tive quantum system. The simplest model of a dissipat
quantum system, a particle linearly coupled to an ensem
of independent harmonic oscillators, was studied by Cald
and Leggett.6 Despite the formal differences between t
present model and model discussed in Ref. 6~a relativistic
setting and a more complicated coupling scheme!, the packet
width in both cases has the same structure, i.e., it can
separated into ‘‘Brownian’’ and ‘‘intrinsic’’ parts, each o
which has a characteristic time dependence.

2. THE INFLUENCE FUNCTIONAL

The action of the system under investigation is given
the following expression:

S@q,A#5S0@q#1SI@q,A#1SA@A#

5E
0

t

dt~2MA12q̇21eq̇A~ex!~q,t!2eU~ex!~q,t!!

1eE
0

t

dt q̇A~q,t!2
1

4E0
t

dtE d3x~Fmn~x,t!!2,

~1!

whereq, e, andM are the position, electric charge and ma
of the electron,A(ex) andU (ex) are external vector and scala
potentials, andFmn(x,t)5]mAn(x,t)2]nAm(x,t) is the
quantum electromagnetic field tensor. The speed of light
the Planck constant in the present paper are set equa
unity: \5c51. Here and in what follows~where possible!,
vector indices for the electron position vectorq, electromag-
netic field A, etc. are dropped. We also select the most c
venient~for our purposes! Coulomb gauge for the field:

A050 and ¹•A~x!50. ~2!
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LA , in terms of the field’s Fourier transform
A(k,t)5*d3xA(x,t)exp(2ikx):

LA@A#5 (
kz.0

~~Re@Ȧ~k,t!#!21~ Im@Ȧ~k,t!#!2

2k2~Re@A~k,t!#!22k2~ Im@A~k,t!#!2!, ~3!

where for the sake of computational convenience we m
the momentumk discrete and replace the integral overk by
a sum overk:

E d3k

~2p!3
→(

k
.

The notation for the summation range in(kz.0 in ~3! means
that for the independent variables we take the real and im
nary parts of the Fourier componen
A(k)5Re@A(k)#1 i Im@A(k)# in the half-space kz.0
(A(2k)5Re@A(k)#2 i Im@A(k)#, since the fieldA(x) is a
real quantity!.

In terms of the variables Re@A(k)# and Im@A(k)#, the
interaction LagrangianLI can be written

LI5eE d3x q̇~t!d3~x2q~t!!A~x!

5e(
kz.0

~2 cos~kq!Re@A~k!#

22 sin~kq!Im@A~k!# !S q̇2k
~ q̇k!

k2
D . ~4!

The choice of gauge~2! (A(k)•k50) makes it possible to
add a term proportional tok to the right-hand side of Eq.~4!.
After doing so, we can assume that we also have longitud
polarization of fieldA(k)}k, which, however, does not in
teract with the electron.

Suppose that initially an electron is in a pure state w
wave functionc(q), and that the electromagnetic field is
thermal equilibrium at temperatureT and is described by the
density matrixr(A,A8).

The electron density matrix at timet is given by the
given by the convolution of the density matrix propaga
and the initial particle density matrix:

r~qf ,qf8 ,t !5E dqi dqi8 J~qf ,qf8 ,t;qi ,qi8,0!c~qi !c* ~qi8!.

~5!

The density matrix propagator can be expressed in term
path integrals over the electron paths:

J~qf ,qf8 ,t;qi ,qi8,0!

5E E Dq Dq8 exp~ iS0@q#2 iS0@q8# !F@q,q8#, ~6!

where the influence functionalF@q,q8# can be expressed i
terms of integrals over the fieldsA(k):4,5
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3E E )
kz.0

DA~k! DA8~k! exp~ i ~SI@q,A#

2SI@q8,A8#1SA@A#2SA@A8# !!. ~7!

All path integrals in~5! and~7! are evaluated along the path
q(t), q8(t), A(t), and A8(t) with boundary points
q(t)5qf , q8(t)5qf8 , q(0)5qi , q8(0)5qi8 , A(t)5A8(t)
5Af , A(0)5Ai , andA8(0)5Ai8 .

If we set the influence functional to unity,F@q,q8#51,
the path integral~6! corresponds to the ‘‘positive-frequency
part of the Klein–Gordon equation for the particle8s wave
function.

@~ i ] t2eU~ex!!2A~2 i¹2eA~ex!!21M2#c~q,t !50.
~8!

Note that we can speak of the wave function of a sin
particle only if the particle energy is much higher than t
uncertainty in energy, which is related to both photon em
sion and the finite size of the wave packet. Otherwise
must use field theory with an arbitrary number of electro
positron pairs. Thus, in a comoving reference frame the
ergy of the emitted photons and the reciprocal wave-pac
width expressed in energy units must be much less than
particle’s rest massMc2. In a circular accelerator the firs
condition yields the following restriction on the electron e
ergy:

E!E1/2[Mc2SRMc

\ D 1/2,
whereR is the accelerator’s radius.

Another restriction on the applicability of our approac
is the fact that the time intervals considered cannot be
short. The function

c~qf ,t !5Eqf
Dq exp~ iS0@q# ! ~9!

is the solution of Eq.~8! only in the limit dtM@1, where
dt is the length of the time intervals into which the enti
time intervalt in the path integral with respect toDq in ~9!
is partitioned. Furthermore, atdtM;1 the path integral~9!
is generally ill-defined. Thus, within our approach we cann
derive a correct expression for the~infinite! correction to the
particle mass, which builds up precisely on short time int
vals ~see the discussion following Eq.~17!!.

As noted earlier, the electron does not interact with
longitudinal polarization of the electromagnetic field~see the
Lagrangian~4!!, so that in~7! we can integrate over all thre
polarizations of the fieldA(k).

The electromagnetic-field Lagrangian~3! consists of a
set of Lagrangians of independent harmonic oscillators. T
problem of calculating the influence functional for a ha
monic oscillator linearly coupled to another system~see Eq.
~4!! was solved exactly in Refs. 4 and 5. Thus, we can obt
the following expression for the influence functional~7!:

F@q,q8#5exp~ i I ! exp~2R!, ~10!
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I5I qq2I q8q81I qq82I q8q

5E d3k

~2p!3
E
0

t

dtE
0

t

ds
e2

2uku
sin~ uku~t2s!!$cos~k~qt2qs!!

3~ q̇tq̇s2~ q̇tn!~ q̇sn!!2cos~k~qt82qs8!!~ q̇t8q̇s82~ q̇t8n!

3~ q̇s8n!!1cos~k~qt2qs8!!~ q̇tq̇s82~ q̇tn!~ q̇s8n!!

2cos~k~qt82qs!!~ q̇t8q̇s2~ q̇t8n!~ q̇sn!!% ~11!

and

R5E d3k

~2p!3
E
0

t

dtE
0

t

ds
e2

4uku
cos~ uku~t2s!!

3coth
uku
2kBT

$cos~k~qt2qs!!~ q̇tq̇s2~ q̇tn!~ q̇sn!!

1cos~k~qt82qs8!!~ q̇t8q̇s82~ q̇t8n!~ q̇s8n!!

22cos~k~qt2qs8!!~ q̇tq̇s82~ q̇tn!~ q̇s8n!!%. ~12!

Heren[k/uku, kB is Boltzmann’s constant, and for the sa
of brevity we have putqt[q(t).

We start with the contribution of the termI qq8. In inte-
grating by parts the expression

sin~ uku~t2s!!cos~k~qt2qs8!!~ q̇tn!~ q̇s8n!

5sin~ uku~t2s!!
d2

dtds
cos~k~qt2qs8!!k22

in ~11! we can replace the term (q̇t n)(q̇s8n) in the integrand
of ~11! by unity. Then the dependence on the vectorn in ~11!
becomes trivial, and the integral withd3k can easily be
evaluated:

I qq82I q8q5
a

2E0
t

dtE
0

t

ds
1

uqt2qs8u
$d~t2s2uqt2qs8u!

2d~t2s1uqt2qs8u!%~ q̇tq̇s21!. ~13!

Here

a[
e2

4p\c
.

1

137

is the electromagnetic coupling constant. The contribution
I q8q enters into~13! by virtue of the fact that the domain o
integration with respect tos extend over the entire time in
terval t.

The particle-path variationdqt[qt2qt8 , which coin-
cides in order of magnitude with the size of the wave pack
is much smaller than the characteristic scale over which
external potentials vary,L. This means that it suffices t
keep only terms that are linear indq in ~13!. Further calcu-
lations yield

I qq82I q8q5
2a

3 E
0

t

dt dqtS v̈
12v2

1
3v̇~vv̇ !

~12v2!2
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1
~12v2!2

1
~12v2!3D S 11OS L2 D D ,

~14!

wherev5 q̇̄ is the velocity of the ‘‘average’’ particle path
q̄ t[(qt1qt8)/2. Clearly, the contribution of~14! to the in-
fluence functional leads to the appearance of the well-kno
radiative reaction forces7 in the equation for the classica
path.

Let us write the termI qq in ~11! in Lorentz-invariant
form:

I qq52aE
0

t

dtE
0

t

dsE d3rE d3r 8 j m~r ,t! j m~r 8,s!

3d~~t2s!22~r2r 8!2!, ~15!

where j m5(r,j ) is the ‘‘particle’’ density four-vector, with

r~r ,t!5d3~r2qt!

and

j ~r ,t!5q̇td~r2qt!.

We calculate the relativistic scalarI qq in the comoving ref-
erence frame:

I qq5E
0

t

dt A12q̇2~2dM !, ~16!

wheredtA12q̇2 is the ‘‘proper-time’’ differential, and

dM5E d3rE d3r 8r0~r !r0~r 8!
a

2

1

ur2r 8u
, ~17!

wherer0(r ) is the ‘‘particle’’ density distribution in the par-
ticle’s rest frame. We see thatI qq in ~16! leads to the renor-
malization of the electron mass,M1dM→M , with the ex-
pression fordM coinciding with the classical expression fo
the self-energy of a distributed charge. In our case the c
rection to the mass proves to be infinite, since the ‘‘charg
is a point charge:r0(r )5d(r ).

In Eq. ~17! we have the classical linear divergence of t
electron mass,dM;e2/r e , wherer e represents the electro
‘‘radius.’’ This contradicts the quadratic divergence of th
particle mass in scalar QED,d(M2);aL2, whereL is the
cutoff in integrals over momenta in QED. The reason for t
inconsistency is that, as noted earlier, the path integral~6!
does not describe very short time intervalsut2su<1/M ,
which, as Eq.~15! shows, contribute to the divergence of th
electron self-energy.

The expression~12! for R in leading~quadratic indq)
order has the following form:

R5E d3k

~2p!3
E
0

t

dtE
0

t

ds
e2cos~ uku~t2s!!

4uku
cothS uku

2kBT
D

3cos~k~ q̄ t2 q̄ s!!$~dq̇tdq̇s2~dq̇sn!~dq̇tn!!1~kdqt!

3~kdqs!@ q̇̄ t q̇̄ s2~ q̇̄ sn!~ q̇̄ tn!#%S 11OS ~dq!2

L2 D D . ~18!
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To leave only terms that are linear indq in the effective
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3. DENSITY DISTRIBUTION
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l
on
action, we write the exponentiale in terms of several new
path integrals of what is known as fluctuation forces,F i(t)
andF'(t), with weight functionsPi@F i# andP'@F'# given
by the identity

e2R[E E dFi DF' Pi@F i#P'@F'#

3expH i E
0

t

dt F i~t!dq~t!

2 i E
0

t

dt F'~t!dq̇~t!J . ~19!

The correlation functions ofF i andF' at different times can
easily be found by employing the second functional deri
tive of the exponential~19! with respect todq anddq̇:

^F i i~t!F i j~s!&5E d3k

~2p!3
e2cos~ uku~t2s!!

2uku

3cothS uku
2kBT

D cos~k~ q̄ t2 q̄ s!!

3kikj~ q̇̄ t q̇̄ s2~ q̇̄ tn!~ q̇̄ sn!!, ~20!

^F' i~t!F' j~s!&5E d3k

~2p!3
e2cos~ uku~t2s!!

2uku

3cothS uku
2kBT

D cos~k~ q̄ t2 q̄ s!!

3~d i j2ninj !. ~21!

These correlation functions clearly show that in the ultrare
tivistic case, with the photons emitted chiefly along the p
ticle velocity vector, the forceF i acts parallel to the velocity
and the forceF' perpendicular to the velocity.

In the nonrelativistic limit we can ignore the contributio
of F i , since it contains two extra powers of the velocity ov
and above the contribution ofF' . On the other hand, in the
ultrarelativistic case,F i provides the principal contribution
since it contains the frequencyuku of the emitted photons a
a factor, and this frequency is much higher than the cha
teristic frequencies of particle motion in external potentia

In the semiclassical limit we are examining here, whe
the wave-packet width can be assumed small compare
the scale on which the external potentials vary, we can in
pret the pathq̄ in ~20! and ~21! as a classical path obtaine
by solving classical equations of motion without allowing f
corrections associated with fluctuation forces.

The physical meaning of fluctuation forces is cle
These forces allow for the quantized, fluctuating nature
the radiation. In connection with the problem of electr
motion in a circular accelerator, such forces were introdu
in Refs. 1 and 2 statistically on the basis of the fact t
photons are emitted independently of one another. In
present work the fluctuation forces appeared in a nat
manner from exact quantum calculations.
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In the path integrals in~6! we introduce new variables
q̄ anddq instead ofq(t) andq8(t):

q̄~t!5
q~t!1q8~t!

2
, dq~t!5q~t!2q8~t!. ~22!

In terms of these new variables, the expression~6! for the
particle density distribution is

r~ q̄ f ,t !5E d q̄i d~dqi ! cS q̄ i1
dqi
2 Dc* S q̄ i2

dqi
2 D

3E DF i DF' Pi@F i#P'@F'#

3E D q̄ D~dq! exp~ iSeff@ q̄ ,dq# !. ~23!

The path integrals in~23! are along the pathsq̄ (t) and
dq(t) the boundary points q̄ (0)5 q̄ i , q̄ (t)5 q̄ f ,
dq(0)5dqi , anddq(t)50. The effective actionSeff in an
approximation linear indq was obtained in Sec. 2~see Eqs.
~10!, ~14!, and~19!!:

Seff@ q̄ ,dq#5E
0

t

dt H dq̇
Mv

A12v2
1dq~eE~ q̄ !

1e@v,H~ q̄ !#1F fr1F i!2dq̇F'

1e
d

dt
~dqA~ex!~ q̄ !!J , ~24!

wherev(t)[ q̇̄ (t), E( q̄ ) andH( q̄ ) are the external electric
and magnetic fields, andF fr is the radiative reaction force,

F fr5
2a

3
S v̈
12v2

1
3v̇~vv̇ !

~12v2!2
1

v~vv̈ !

~12v2!2
1
3v~vv̇ !2

~12v2!3D .
~25!

The path integrals along the electron paths in~23! can be
evaluated by the saddle-point method in the semiclass
approximation. The saddle point of the effective actionSeff
can be found by solving the equations

d

d~dq!
Seff@ q̄ cl ,dqcl#50,

d

d q̄
Seff@ q̄ cl ,dqcl#50 ~26!

with appropriate boundary conditions. The first equation
~26! is independent ofdqcl, and has the form of a classica
equation of motion in external fields with a radiative reacti
force and fluctuation forces on the right-hand side:

d
dt

M q̇̄

A12 q̇̄2
5eE1e@ q̇̄ ,H#1eFfr1F i1Ḟ' . ~27!

The saddle-point value of the effective action~24! cal-
culated along the classical pathq̄ cl is independent ofdqcl
and is purely a surface term:

Seff@ q̄ cl#52dqi~pi1eA~ex!~ q̄ i !2F'~0!!, ~28!
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where pi5pi( q̄ i , q̄ f ;t;F i ;F') is the initial momentum of
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the classical path that satisfies Eq.~27! with boundary con-
ditions q̄ (0)5 q̄ i and q̄ (t)5 q̄ f .

Clearly, the path integrals along the particle paths in
~23!, written in terms of variables shifted by their classic
values,q̄2 q̄ cl anddq2dqcl , do not depend in the semiclas
sical approximation on the fluctuation forces and the bou
ary points q̄ f , q̄ i , anddqi , and reduce to a function tha
depends only on time.

Thus, only path integrals of the fluctuation forces rem
in the expression for the electron density distribution:

r~ q̄ f ,t !5Ñ~ t !E DF i DF' Pi@F i#P'@F'#

3E d q̄i f ~ q̄ ipi~ q̄ i , q̄ f ;t;F i ,F'!!, ~29!

where the functionf (q,p) signifies the initial distribution
function in the phase space,

f ~q,p!5E d~dq! c* S q2
dq

2 DcS q1
dq

2 D
3exp$2 idq~p1eA~ex!~q!2F'~0!!%. ~30!

The presence of a term in braces that is proportiona
F'(0) can be explained by the fact that, as Eq.~27! clearly
shows, the time derivativeḞ' is actually a force, and
2F' /e is thereby an addition to the vector potential of t
external field.

As Eq.~29! clearly shows, for any fixed configuration o
the fluctuation forces, the wave function has a density dis
bution coinciding with that of a beam of classical particles
distribution that was initially specified by the distributio
function ~30! in the phase space, and that then evolved w
the passage of time in accordance with the classical equa
of motion~27! with a radiative damping force and fluctuatio
forces on the right-hand side.

Thus, in this section we have derived a closed expr
sion, consisting of~29! and~30!, for the density distribution
of the wave packet of a charged scalar particle moving
arbitrary external potentials with an arbitrary initial tempe
ture of the quantum electromagnetic field~the temperature
enters into the expressions for the correlation functions~20!
and ~21!!.

Now let us recall the principal assumptions made in
riving Eq. ~29! for the wave-packet density distribution. I
the particle’s rest frame, the characteristic energy of
emitted photons and the reciprocal wave-packet width
pressed in energy units must be much less than the parti
rest massMc2 ~only then can we sensibly speak of a sing
particle!. On the other hand, the packet width must be sm
compared to the scale on which the external potentials v
~only then can we speak of a wave packet!.

It is not very difficult to calculate the width of a wav
packet for a specific system of external fields using
adopted method, since the entire calculation reduces to s
ing the classical equation of motion~27!. In the approxima-
tion of a small deviationdq from the pathqcl followed by
the center of a beam of classical particles that is fixed
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~27! becomes linear in this deviation and contains fluctuat
forces on its right-hand side.

The solution of the resulting linear equation with th
specified right-hand side can be represented by the sum
particular solutiondqp, which depends on the fluctuatio
forces, and the general solution of the linear equation~with
zero on the right-hand side! that satisfies the correspondin
boundary conditions. In this way we arrive at an express
~similar to the expression~41! in Sec. 4! that relates the
boundary pointsq̄ i and q̄ f to the initial momentumpi
~which is an argument of the distribution function in~29!!,
with the final pointq̄ f and the particular solutiondqp enter-
ing into the expression forpi only as the difference
dqf2dqp , wheredqf[ q̄ f2qcl is the deviation of the final
point from the classical path. Since the particular solut
dqp is the only quantity that depends on the fluctuati
forces, for any fixed configuration of these forces the wa
packet has an ‘‘intrinsic’’ relative density distribution that
independent of the fluctuation forces and is determined
the initial wave function. The role of the fluctuation force
reduces to simply shifting the derived~classical! distribution
as a whole.

Thus, the square of the packet width~along the axes
j5x,y,z)

s j
2[ K E d3qf r~qf ,t !~dqf

j !2L
separates into what is known as the ‘‘Brownian’’ part and t
intrinsic part. The Brownian contribution to the square of t
packet width is given by the radiation fluctuations and
determined by the average over the fluctuation forces of
square of the particular solution obtained earli
(s j

(Br))2[^(dqp
j )2&. The intrinsic width, on the other hand, i

independent of the fluctuation forces and hence coinci
with the width of a beam of classical particles that initially
specified by the distribution function~30! in the phase space
and evolves with time in accordance with the classical eq
tion of motion ~27! with the radiative reaction force on th
right-hand side but without the fluctuation forces.

4. WIDTH OF THE ELECTRON WAVE PACKET IN A
CIRCULAR ACCELERATOR

In this section we attempt to use the general formu
obtained earlier to calculate the width of the wave packe
an ultrarelativistic electron moving in a circular accelerat
i.e., a synchrotron with weak focusing.

Suppose that an electron is moving in a uniform ma
netic fieldH5(0,0,H) directed along thez axis. The radius
R of an equilibrium path determines the electron veloc
v05Rv and the Larmor frequencyv5(eH/M )A12v0

2. Let
us assume that within a small range of anglesDw about an
angle b measured clockwise in thexy plane from thex
semiaxis (wP@b2Dw/2,b1Dw/2#) there exists a nonvan
ishing accelerating electric field that is a harmonic functi
of time ~i.e., varies with the Larmor frequencyv). Within
this interval the electric field is described by the followin
potential:

860S. V. Faleev



U~qx ,qy ,t!5E0~R1r !~w2b!cosvt,
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dently. Hence the density distribution can be factorized. Be-
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whereR1r[(qx
21qy

2)1/2 is the radius andw is the angle in
cylindrical coordinates. The amplitudeE0 of the electric field
is selected in such a way that, when moving along the e
librium path from pointR5(R,0,0), in the acceleration re
gion the electron acquires an amount of energy that exa
balances the radiative losses:

ueuE0RDw cosb5
2p

v
W0 . ~31!

HereW05~2/3!av2v0
2g4 is the average power of radiativ

losses,7 andg5(12v0
2)21/2 is the ~large! relativistic factor.

Electron motion along thez axis is regulated by a poten
tial of the general typeUz(qz), with absolute minimum at
qz50. Thus, the electron actionS0@q# is

S0@q#5E
0

t

dt H 2MA12q̇21
1

2
eq̇•~H3q!

2eU~qx ,qy ,t!2eUz~qz!J . ~32!

As noted at the end of Sec. 2, in the ultrarelativistic ca
being investigated,g@1, we can ignore the forceF' . The
contribution of this force is smaller than that ofF i at least by
a factor ofkch

2 /v2;g6, wherekch;vg3 is the characteristic
frequency of the photons emitted in the accelerator.

Suppose that initially the electron is in a pure state
scribed by a Gaussian wave packet with its center atR, width
s0, and momentump05(0,Mv0g,0):

c~q!5
1

~2ps0
2!3/2

expH i q̇S p01 1

2
eH3RD2

~q2R!2

4s0
2 J .

~33!
The second term in braces allows for the fact that in
presence of a magnetic field the momentum operator mus
‘‘extended’’:

p̂52 i
]

]q
2eA~ex!~q!.

The wave function~33! specifies the distribution function in
phase space~see Eq.~30!!:

f ~q.pi !}expH 2
~q2R!2

2s0
2 22s0

2S pi2p0

1
1

2
eH3~q2R! D 2J . ~34!

Now we must express the initial momentum of a clas
cal path,pi , in terms of the boundary points, i.e., we mu
solve the equation of motion~27!. To this end we introduce
new variables—the deviation from the equilibrium radiu
r , and the deviation from the equilibrium phase,f:

q̄ x5~R1r !cos~vt1f!, q̄ y5~R1r !sin~vt1f!.
~35!

Since deviations from the equilibrium path are small, t
electron moves along thez axis and in thexy plane indepen-
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low we are interested in the electron density distributi
r(r f ,f f ,t) only in thexy plane.

In an approximation that is linear inr andf the classical
equation of motion~27! is cumbersome:

r̈g5vRḟg31v0
2v2rg31

2a

3M
$g2r̈̇ 2g4~3ṙv2

13vRf̈1v0
2ṙv2!%1 f 1 ,

~36!

Rf̈g352v ṙg31
2a

3M H g4~3v r̈23Rḟv22rv31Rf̈̇ !

24v0
2v2g6~Rḟ1rv!1v0v

2g4

3S 211
cos~f2b!

cosb D J 1 f 2 ,

where

f 15
F ix cosvt1F iy sin vt

M
,

~37!

f 25
2F ix sin vt1F iy cosvt

M
.

In Eq. ~36! we left only the first harmonic from the Fourie
expansion in the anglew of the accelerating electric field
The contribution of other harmonics~say,} cos 2w cosvt)
vanish in averaging over the rotation period.

We write Eq.~36! in matrix form:

M̂ i j ~t!w j~t!5 f i~t!. ~38!

Here the indicesi and j run through the values 1 and 2, an
w i[(r (t),Rf(t)). The homogeneous equation (f i50) has
four solutions:

w i
~1!~t !5~cosvt,2sin vt!e2grt,

w i
~2!~t !5~sin vt,cosvt!e2grt,

~39!

w i
~3!~t !5S cosVt,2

v0
2v

V
sin Vt De2gft,

w i
~4!~t !5S sin Vt,

v0
2v

V
cosVt De2gft.

The first two are what is known as radial betatron oscil
tions with Larmor frequencyv and damping constantg r .
These solutions correspond to translation of the orbit ce
in a uniform magnetic field and are damped because of
correct choice of the dependence of the amplitude of
accelerating voltage on the radial deviationr :

U}R1ar with a51.

Clearly, if a50 ~the energy acquired by the electron in th
acceleration interval does not depend on the radial de
tion!, the radial oscillations are undamped (g r50), and if
a,0, the become exponentially increasing (g r,0). The
third and fourth solutions in~39! correspond to synchrotron
radial-phase oscillations with frequencyV!v and damping
constantgf . The following expressions can be obtained f
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gf , and the frequency of synchrotron oscillations:

g r5
a

3M
v2g3, gf5

2a

3M
v2g3,

V25
2a

3M
v3g3tanb. ~40!

The solution of the inhomogeneous equation~38! with
given initial conditions in an approximation in whic
g r ,gf!V!v has the form

w i~ t !5S r ~0!2
dpy

vMg Dw i
~1!1SRf~0!1

dpx
vMg Dw i

~2!

1
dpy

vMg
w i

~3!2
Vdpx

v0
2v2Mg

w i
~4!1wpi , ~41!

where dp5pi2p0 is the deviation of the initial classical
path momentumpi from the equilibrium momentump0:

dpx5gM ~ ṙ ~0!2vRf~0!!,

dpy5g3M ~Rḟ~0!1r ~0!v!.

The last term on the right-hand side of Eq.~41!,
wpi(t)5(r p(t),Rfp(t)), is the particular solution of Eq.~38!
with initial conditionswpi(0)5ẇpi(0)50. This solution can
be found by the Green’s functions technique:

wpi~t!5E
0

t

dt8 Gi j ~t,t8! f j~t8!. ~42!

The Green’s functionGi j (t,t8) must satisfy the equation

M̂ i j ~t!Gjk~t,t8!5d ikd~t2t8! ~43!

with initial conditions

Gi j ~0,t8!50,
dGi j ~t,t8!

dt U
t50

50.

Writing the Green’s function in the form of an expansion
the solutions ~39! of the homogeneous equation wi
Dt[tt8.0, we obtain

Gi j ~t,t8!5S sin vDt 2cosvDt

cosvDt sin vDt D e2grDt

vg

2S 0 2cosVDt

cosVDt
v0
2v

V
sin VDtD e2gfDt

vg
.

~44!

To avoid cumbersome formulas in the final result, w
assume that initially the packet is very narrow:s0

2vM!1.
Then, in times of order of a single rotation period the wid
of the wave packet becomes much larger than the in
width s0, and we can ignore terms proportional to the init
deviationsr (0) andf(0) in Eq. ~41! and the term in~34!
proportional toeH 3 (q2R). Here the integral with respec

862 JETP 84 (5), May 1997
l
l

density distribution in the electron wave packet in thexy
plane assumes the form

r~r f ,f f ,t !5N~ t !E DF i~t!Pi@F i#

3expH 2
2~Ms0gv!2

~A21BC!2
~@A~r f2r p!

1BR~f f2fp!#
21@C~r f2r p!

2AR~f f2fp!#
2!J , ~45!

where

A52cosvte2gr t1cosVte2gft, B5sin vte2gr t,

~46!

C5sin vte2gr t2
vv0

2

V
sin Vte2gft.

Equation~45! clearly shows that for any fixed configuratio
of F i(t) the wave packet has an ‘‘intrinsic’’ relative densi
distribution, which is independent ofF i . Only the coordi-
nates (r p ,fp) of the center of this distribution as a who
depend on fluctuation forces. As noted at the end of Sec
such behavior of the density distribution is general in natu
and does not depend on the shape of the external poten

For the radial and angular dispersions of the elect
coordinate we have the following expressions:

s r
2~ t ![

*dr fd~Rf f !r~r f ,f f ,t !r f
2

*dr fd~Rf f !r~r f ,f f ,t !

5~s r
~ int!!21^r p

2~ t !&, ~47!

sf
2 ~ t ![

*dr fd~Rf f !r~r f ,f f ,t !~Rf f !
2

*dr fd~Rf f !r~r f ,f f ,t !

5~sf
~ int!!21^~Rfp~ t !!2&. ~48!

The intrinsic widthss r
(int) and sf

(int) are determined by the
initial velocity spread; they decay exponentially with tim
because of classical radiative reaction:

~s r
~ int!!25

1

~2s0Mgv!2
$~cosvte2gr t2cosVte2gft!2

1~sin vte2gr t!2%,
~49!

~sf
~ int!!25

1

~2s0Mgv!2 H ~cosvte2gr t2cosVte2gft!2

1S sin vte2gr t2
vv0

2

V
sin Vte2gftD 2J .

The Brownian contributions to the radial and angu
widths,s r

(Br) andsf
(Br), are determined by quantum radiatio

fluctuations:
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D

3E d3k cothS uku
2kBT

D dI

d3k
uku,

~50!

~sf
~Br!!2[^~Rfp~ t !!2&5

1

2~MgV!2
12e22gft

2gf

3E d3k cothS uku
2kBT

D dI

d3k
uku.

To average the squares of the particular solutions~42! over
the forcesF i we use ~44! for the Green8s function and
Eq. ~20! for the correlation function of fluctuation forces.

The expression for the functiondI/d3k in ~50! coincides
with the well2known formula for the classical radiatio
intensity8

dI

d3k
5

a

4p2E
2`

`

dt $q̇~t!q̇~0!2~ q̇~t!n!~ q̇~0!n!%

3exp$ i ukut2 ik•~q~t!2q~0!!%, ~51!

whereq(t) is the classical electron path. At all reasonab
temperatures we have the strong inequa
kBT!kch;vg3. In this limit the expression for the integra
in ~50! is known:1

E d3k
dI

d3k
uku5

55

24A3
av3g7. ~52!

In the problem under investigation and for times of t
order of the photon emission timeut2su;(vg)21 we can
ignore the structure of the correlation function~20!, since in
calculating the averageŝr p

2(t)& and ^(Rfp(t))
2& the given

function is present in the integral overt ands, together with
functions whose characteristic time scale is;1/v or
;1/V. Bearing this in mind, we can simplify the expressi
~20! for the correlation function:

^F i~t!F i~s!&5d~t2s!E d3k
dI

d3k
uku. ~53!

Clearly, the correlation function~53! is the same as the cor
relation function for the fluctuation forces introduced
Sands1 and Kolomenski� and Lebedev2 on the basis of sta
tistical ideas. Thus, the expressions~50! for the Brownian
contributions to the packet width, which were obtained
rigorous quantum calculation, coincide with the correspo
ing expressions obtained by the semiclassical method.

Let us now assess the applicability of our results. T
energy of the emitted photons,;vg3, must be much lower
than the electron energyE5Mg. This leads to an uppe
bound on the electron energy,
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For an estimate, we take the accelerator radius equal to
meters. We see that all existing accelerators meet this co
tion: E!E1/2;106 MeV.

As for restrictions on the packet width, Eqs.~50! show
that our results are valid only for times much shorter th
t!1/gf . For times t;1/gf;MR2/a\g3;1021s ~for pa-
rameter valuesR;103 cm andg;103), the Brownian width
reaches a value comparable to the accelerator’s rad
sf
(Br).R/Aag. This constitutes the main drawback of acce

erators with weak focusing. To reduce the angular sprea
the beam to values much smaller than the accelerator dim
sions, accelerators with strong focusing are used.9

The intrinsic contribution to the packet’s angular wid
~see the second equation in~49!! is inversely proportional to
the initial packet width and rapidly falls off as the relativist
factorg increases:

sf
~ int!;S R3\

s0
2Mcag5D 1/2.

For typical parameter valuesR;103 cm, g;103, and
s0;1024 cm, the intrinsic angular widthsf

(int) is of order
1023 cm.

The characteristic values of the Brownian and intrin
radial widths are smaller than the corresponding angu
widths by a factor of v/V;(RMc/\ag3)1/2;103 ~at
R;103 cm andg;103).

The author is grateful to I. V. Kolokolov for suggestin
the topic and for the useful remarks, and to I. B. Khriplovi
for attending to this work and for valuable remarks. T
present work supported in part by INTAS Grant No. 9
2492-ext.

* !e-mail: S. V. Faleev@INP.NSK.SU

1M. Sands, Phys. Rev.97, 470 ~1955!.
2A. A. Kolomenski� and A. N. Lebedev, Zh. E´ksp. Teor. Fiz.30, 205
~1956! @Sov. Phys. JETP3, 130 ~1956!#.

3A. A. Sokolov and I. M. Ternov, Zh. E´ksp. Teor. Fiz.25, 698 ~1953!.
4R. P. Feynman and F. L. Vernon, Ann. Phys.~N.Y.! 24, 118 ~1963!.
5R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals,
McGraw-Hill, New York ~1965!.

6A. O. Caldeira and A. J. Leggett, Physica A121, 587 ~1983!.
7L. D. Landau and E. M. Lifshitz,The Classical Theory of Fields, 4th ed.,
Pergamon Press, Oxford~1975!.

8V. B. Berestetski�, E. M. Lifshitz, and L. P. Pitaevski�, Quantum Electro-
dynamics@in Russian#, 3rd ed., Nauka, Moscow~1989!, p. 432@English
edition: Pergamon Press, Oxford~1991!#.

9S. A. Khe�fets,Electron Synchrotron@in Russia#, Armenian SSR Acad-
emy of Sciences Publishing House, Erevan~1963!.

Translated by Eugene Yankovsky
863S. V. Faleev



Possibility of suppressing quantum light fluctuations when excess photon fluctuations

in-
occur inside a cavity
Yu. M. Golubev and I. V. Sokolov
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Gesamthochschule
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Zh. Éksp. Teor. Fiz.111, 1579–1600~May 1997!

Using the optical excitation of a high-Q cavity as an example, it is shown that when light is
observed at the output of this cavity, effective suppression of the photocurrent shot noise below the
quantum limit is in general independent of the parameters of the stationary state of the field
oscillator ~in particular, it is independent of the rms photon fluctuations! inside the cavity and can
occur not only at any allowed negative value but even at a positive value of the Mandel
parameter. It was assumed in solving the problem that the cavity is optically excited by
superimposing the radiation of a sub-Poisson laser and a laser with excess photon noise.
A formal solution was obtained in terms of the kinetic equation for the density matrix of the actual
fields ~inside the laser cavities and the empty cavity!, which is derived here on the basis of
the Heisenberg–Langevin quantum equations, taking into account directed propagation of the field
from the laser cavities inside the empty cavity. The resulting kinetic equation can also be
used to solve other physical problems, since it is applicable to optical systems that contain, in
principle, an arbitrary number of coupled cavities and interference mixers. ©1997
American Institute of Physics.@S1063-7761~97!00405-8#

1. INTRODUCTION linear medium inside the cavity, external optical effects,
e
f
di
r-
n
o
a
m
tu
el
o
ce
s
is
o
o
do
ui
to
o

he
ic
nt
ith
at
ion
dy
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-11
A typical problem of quantum optics is to study th
properties of the electromagnetic radiation coming out o
high-Q cavity. Depending on the specific physical con
tions, an intracavity field oscillator is excited either by inte
acting with an active medium—for example, in lasers a
micromasers—or by external electromagnetic action with
without the participation of a linear or nonlinear medium,
in narrow-band amplifiers, bistable systems, etc. If pheno
ena such as chaos are not involved, in many physical si
tions, and in particular in those of interest here, the fi
oscillator after some time enters a stationary state, while c
tinuing to interact with the other subsystems. At first glan
it seems quite natural to compare the observable effect
the radiation field and this stationary state. In any case, th
precisely the tradition. For example, in an ordinary Poiss
laser, it is said that a completely random intracavity flux
photons, in the final analysis, generates a completely ran
Poisson flux of photoelectrons in the photodetector circ
However, in a sub-Poisson laser, a partially regulated pho
flux inside the cavity generates a partially regulated flux
photoelectrons.

Following this logic, we would have to assume that t
farther the state of an oscillator departs from the class
state, the more pronounced must be the observed qua
effect. This would undoubtedly be so if we were dealing w
ensemble measurements of an isolated quantum oscill
However, here we are considering quite a different situat
in which the field oscillator experiences conditions of stea
state action from other important subsystems~such as a non-
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the most general considerations, the predictive role of
stationary state ceases to be absolute in this case, sinc
kinematic processes that bring the oscillator into a spec
stationary state can now contribute to the averaged fi
characteristics. We shall give several specific examples
clearly illustrate this.

For qualitative treatments, it is convenient to introdu
the so-called Mandel parameterj, which characterizes the
total photon fluctuations inside a cavity:

Dn25n̄~11j!. ~1!

We now consider the limiting casej521, in which the
stationary state of an oscillator is close to the Fock state in
properties~this occurs, for example, in a micromaser1!. The
fact that a field oscillator is in a Fock state~it is possible to
treat the state withj521 in this way, since it means tha
there are no photon fluctuations! while undergoing continu-
ous interaction with other subsystems can mean only
thing: any photon fluctuation inside the cavity damps o
infinitely quickly. The emission of a photon from the cavi
is perceived as a fluctuation inside the cavity, which
quickly compensated by relaxation processes. Therefore,
subsequent photon leaving the cavity can in no way be c
related with the previous one, and this means that the flu
photons leaving the cavity can only be a Poisson flux. Th
even though the field oscillator is in a limiting quantum s
tionary state, no quantum effects can be expected to be
served.

864$10.00 © 1997 American Institute of Physics
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observable quantum effect is associated, at least, not
with a stationary state of the field oscillator but also with t
relaxation properties of the system. Of course, the same
clusion can also be reached formally. In fact, it is w
known that the photocurrent fluctuation spectrum during p
fect photodetection of the radiation, for example, of the s
plest laser or the simplest micromaser is represented as2,3

iv
~2!5 i shot

~2! S 112j
kG

G21v2D . ~2!

If j is negative, a nonclassical singularity occurs here
zero frequency: a dip, with a relative depth equal to

d512
iv50
~2!

i shot
~2! 52uju

k

G
. ~3!

This explicitly illustrates that an observable quantum
fect is associated not only with the stationary state of a fi
oscillator ~the Mandel parameterj! but also with the kine-
matic properties of the system, namely the ratek at which
photons leave the cavity in the direction of the photocath
and the damping rateG of the intracavity photon fluctuations
At the same time, it can also be seen that with widely va
ing j values, i.e., with widely varying stationary states of t
field oscillator, one can in principle produce the same qu
titative quantum effect~the samed value! by suitably choos-
ing the kinematic parameters.

There can be different relationships between theG andk
values, depending on the physical situation. For example
the optimal sub-Poisson laser,G5k. This equality can be
treated in the same way as the damping of photon fluc
tions inside a cavity except for processes associated with
emission of photons from the cavity. However, if not all t
radiation in this case is incident on the photodetec
G.k. Understandably, the stationary state of a field osci
tor cannot be dependent on this, and thusj521/2 whether
all the radiation leaving the cavity is incident on a photod
tector or whether it is partially recorded. Also, as can be s
from Eq. ~3!, the depth of the quantum dip can differ for th
same Mandel parameter. This example already compels
think that the observation and the stationary state of a fi
oscillator are not associated with each other entirely un
biguously.

Another situation arises in a micromaser. Conditions
which j521 can be ensured there, but it turns out in th
case thatG@k even when the radiation is recorded com
pletely. As a result, the depth of the observable quantum
almost equals zero; i.e., the field inside the cavity is a tota
quantum field, while it is actually a Poisson field outside
The quantum properties of the radiation also break do
when it leaves the cavity—not because the output mec
nism itself is stochastic, but because the processes insid
cavity are too rigidly correlated.

We shall give one more example, which in some sens
intermediate between a sub-Poisson laser and a microm
The equalityj521/2 is also true in a superradiant lase4

andG52k for weak excitation of the active medium. Her
as in a micromaser, the depth of the quantum dip~there to
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negative effect of intracavity relaxation processes. This
fect can be reduced to zero if the active medium is sign
cantly excited, and the depth of the quantum dip then reac
its maximum.

All the examples given here allow a physically transp
ent treatment: when light leaves a cavity, its quantum pr
erties can break down for different reasons.

However, this is far from complete and is far from th
most interesting conclusion that can actually be drawn. T
very form of Eq.~3! compels us to think about situations
which the kinematic coefficients obey the inequalityG,k.
If such cases are encountered in physics, it means tha
shot noise can be completely suppressed even when
Mandel parameter is negative but close to zero~the station-
ary state of the intracavity field oscillator is essentially
Poisson state!. Nothing prevents this formally, but of cours
it is important to have some specific physical examples h
in fact, there already are such examples. Thus, Ref. 5 tr
the excitation of the active medium of an ordinary laser
the radiation of a sub-Poisson laser. Using the formulas
tained in Ref. 5, we show in Appendix B that the physic
parameters can be chosen so that a situation is possib
which the Mandel parameters, although negative, are clos
zero, and, at the same time, the observable quantum effe
complete,d51. A completely analogous situation also o
curs for a micromaser when its active medium is excited
the radiation of a sub-Poisson laser.3

All this compels us to conclude that, in general, there
no basis for associating the quantum optical effect obser
earlier with the stationary state of an intracavity field osc
lator. The example of optically exciting an empty cavity b
superimposing the radiation from two lasers~a sub-Poisson
laser and a laser with excess noise!, which will be considered
here, clearly illustrates this idea. We shall show that the s
noise in the photocurrent can be completely suppressed
the most varied~and even positive! values of the Mandel
parameter. In particular, for example, large~super-Poisson!
photon fluctuations inside a cavity can correspond to
smallest possible~sub-Poisson! fluctuations of the photoelec
trons.

Section 2 of this paper describes the formulation of
problem, using the kinetic equation for the density matrix
the field in cavities associated with directed optical signa
The derivation of this equation is given in Appendix A. Se
tions 3 and 4 give calculations of the steady-state disper
of the distribution of the number of photons and of the Ma
del parameter of the internal field, as well as of a quan
that is observable during the photodetection of the out
radiation—the spectrum of the photocurrent fluctuations. T
simplest optical system, in which a passive cavity is illum
nated by one laser source, is studied first~Sec. 3!. A treat-
ment is then given~in Sec. 4! of the illumination of a passive
cavity by the light flux formed by optically mixing the radia
tion of an ordinary laser and a sub-Poisson laser. Section
the paper is devoted to a discussion of the physical res
Appendix B shows the results of Ref. 5, rewritten from t
viewpoint that interests us here.
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2. COMBINED KINETIC EQUATION FOR OPTICAL CAVITIES
EXCHANGING NONCLASSICAL LIGHT SIGNALS
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The question of how a quantum kinetic equation for
light field could be used to describe the directed transfe
an optical signal from one cavity to another was first d
cussed by Kolobov and Sokolov6 and later by Carmichael7

and Gardiner.8 These papers considered the situation
which there are two cavities. One of them~for example, a
laser! forms the source, and the other forms a detector of
light emitted by the source, which in general is nonclass
~sub-Poisson, squeezed, etc.!.

Here we shall discuss a somewhat more complex ph
cal situation, in which a passive optical cavity is excited
radiation from two laser sources. Therefore, Appendix
generalizes the theory of Ref. 6 to the case of several r
nant~or almost resonant! field oscillators concentrated in dif
ferent cavities and exchanged in an arbitrary geometry
directed optical signals. The starting point of this treatm
differs from that of Ref. 6. The theory of Ref. 6 was co
structed in some sense from first principles. The quantiza
was carried out over the modes of the continuous spect
of the entire space, taking into account the boundary co
tions at the mirrors of the cavities, without isolating the e
lier local oscillators of the modes in the cavities. The co
mutation relations of the light-field operators inside a
outside the optical cavities~see Ref. 9 for the relations with
the participation of the external fields! were obtained from
this. The kinetic equation was also derived on the basis
these commutation relations.

In Appendix A, we use the simpler and more instructi
method of the Heisenberg–Langevin quantum equatio
which recently have been widely used for quantum op
problems. These equations are similar to the equation
classical electrodynamics. They can be used in quan
theory to give a transparent description of such wave p
nomena as interference, diffraction, partial dispersion o
signal as it propagates, etc. The theory of the input and
put of radiation from a cavity has been developed by Re
10 and 11. We shall show that the Heisenberg–Lange
equations can easily be combined with the approach use
Ref. 6 as the basis of the kinetic equation for the case
directed radiation transfer. This makes it easy to obtain
kinetic equation for several field oscillators concentrated
different cavities and exchanged by directed optical sign
When this is done, the intermediate optical elements used
beam splitting, signal mixing, etc. can be taken into acco
in a natural way.

When we deal with a system of cavities between wh
electromagnetic energy is exchanged along definite di
tions, this can be formally represented as a set of quan
electromagnetic field oscillators each of which is localized
its own cavity. To describe this situation, it is possible
introduce into the discussion a multi-oscillator density mat
and to attempt to construct a closed equation for it. Here
main problem of the theory is to make it adequately refl
the fact that the motion of the light wave is directed: this
not the simple standard interaction of any two localized
cillators, leading to the interchange of electromagnetic
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ergy, but represents energy transfer from one oscillator to
other, and not the reverse.

It will be shown that for a multi-oscillator density ma
trix, in the case of many optically coupled cavities, the ba
kinetic equation can be written as

ṙ5S (
m51

M

L̂m1 (
mÞm0

M

L̂m0mD r. ~4!

OperatorL̂m describes the evolution of oscillatorm ~the
field oscillator inside cavitym! in the absence of all othe
oscillators.

OperatorL̂m0m
describes the action of oscillatorm0 on

oscillatorm:

L̂m0m
r5gmm0

@am
1 ,am0

r#1H.c. ~5!

Hereai andai
1 ( i5m,m0) are the photon operators of th

corresponding localized oscillator, andgmm0
is a factor that

describes the penetration of the signal from cavitym0 into
cavity m. It is given in the Appendix in the most gener
form, taking into account the possible presence of any o
cal elements in the spaces between the cavities. We s
now indicate what it equals for the two physical situatio
discussed below. For example, we are interested in a sys
consisting of just two cavities~Fig. 1!: cavity a, in which
sub-Poisson lasing occurs and whose radiation enters
other, passive cavityb. Then only one of all the constant
gmm0

is nonzero:

gba5Akb8ka. ~6!

Hereka,b
21 are the lifetimes of a photon inside cavitiesa and

b. The value ofkb results from transmission through th
input and the output mirrors, which in the theory for cavi
b we shall separate askb5kb81kb9 .

A more complex system, which will also interest u
here, consists of three cavities~Fig. 2!. Two of them~1 and

FIG. 1.

FIG. 2.
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2! form independent laser sources, while the third (b), as in
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damping operator in cavityb, R̂b , is obtained from operator
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the preceding case, is passive and is excited by the ele
magnetic fields from the sources. There are now two nonz
constants:

gb15TAkb8k1, gb25RAkb8k2. ~7!

Here Ṫ andR (T21R251) are the transmission and refle
tion coefficients of the additional mirror at which the radi
tion from the two laser sources mixes before it enters ca
b ~Fig. 2!.

3. EXCITATION OF A PASSIVE CAVITY BY SUB-POISSON
LASER RADIATION

3.1. The basic kinetic equation

We initially assume that the physical system consists
only two optical cavities in series~Fig. 1!. Sub-Poisson las
ing occurs in cavitya. The radiation of the sub-Poisson las
enters cavityb, is accumulated there, and, in the final ana
sis, being reflected from it or passing through it, is incide
on a photodetector, by means of which it is analyzed. We
only interested in the part of the light that passes comple
through the cavity. For simplicity, we assume that all t
actual frequencies in this system coincide.

Accordingly, the following equation can be written fo
the two-oscillator field density matrixr that describes both
the intracavity lasing field of the sub-Poisson laser and
field inside the second empty cavity:

ṙ5r aS L̂a2 1

2
L̂a
2D r2

ka

2
R̂a r2

kb

2
R̂b r1gbaL̂a→b r.

~8!

Operator L̂a determines the development of the su
Poisson lasing inside cavitya produced by the active me
dium. It is derived in Ref. 2 and can be written as

L̂a5F2a
→

1a
←

2aa
→

12aa
←

12
1

2
ba~aa

→

12aa
←

1!2G
3Faa

→

11aa
←

11
1

2
ba~aa

→

12aa
←

1!2G21

. ~9!

The damping of the quantum oscillator is described by
well-known operator of the form

R̂a5a1a
→

1a1a
←

22a
→
a
←

1. ~10!

Here r a is the mean excitation rate of the upper laser lev
a and a1 are the photon operators for the laser mo
@a,a1#51, and

ba
215

gbgab

2g2

is the number of photons that saturates the laser transitio
the active medium of the sub-Poisson laser~ga andgb are
the longitudinal relaxation constants relating to the upper
lower laser levels,ga50, andgab is the transverse relaxatio
constant!. The arrows under the operators determine the
rection of action with respect to the operator expressio
including the density matrix standing at the right. The fie
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Ra by replacing photon operatorsa with photon operators
b, andka

21 and kb
21 are the photon lifetimes in cavitiesa

andb because of their finite Q values.
An explicit expression for operatorL̂a→b , which deter-

mines the unidirectional action of oscillatora on oscillator
b, recorded in the previous section, can be written as9

L̂a→b5 a
→
b
→

11 a
←

1b
←

2 a
→
b
←

12 b
→
a
←

1. ~11!

The concomitant force is determined by the constantgba of
Eq. ~6!.

The total spectral width of cavityb depends on the trans
mission of the input and output mirrors:

kb5kb81kb9 . ~12!

We transform Eq.~8! to the diagonal Glauber represe
tation, using the integral relation

r~ t !5E d2a d2b P~a,b,t !ua&ub&^bu^au, ~13!

where

d2a5d~Rea!d~ Im a!, d2b5d~Reb!d~ Im b!,

aua&5aua&, bub&5bub&.

We use the approximation of small photon fluctuation

a5Ana1«a exp~ iwa!, «a!na ,

b5Anb1«b exp~ iwb!, «b!nb . ~14!

Herena andnb are the steady-state solutions of the semicl
sical laser problem:

d

dt
nb52kbnb12gabAnanb cos~ w̄a2w̄b!50, ~15!

d

dt
wb5gbaAna

nb
sin~ w̄a2w̄b!50, ~16!

d

dt
na5r a2kana50,

d

dt
wa50. ~17!

These equations can be directly obtained from Eq.~8! by
multiplying it by operatora and taking the trace, and then b
operatorb and again taking the trace. Neglecting the fluctu
tions of the field variables in the expressions thus obtain
we get a closed system of equations for the complex am
tudesā and b̄. Transforming to amplitudes and phases,
get the required expression.

It is easy to see that the following stable steady-st
solutions are valid:

w̄a5w̄b , ~18!

na5r a /ka , ~19!
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na
5

kb
2

5
kb
2

. ~20!
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-

whenka@kb ~which approaches21/2 in the case of a sym-
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nb 4gab
2 4kb8ka

For the photon density matrix,

R~«a ,«b ,t !5E dwa dwb P~«a ,«b ,wa ,wb ,t ! ~21!

the following equation can be obtained in these approxim
tions:

]R

]t
5

kb

2

]

]«b
S «b2

nb
na

«aDR1ka

]

]«a
~«aR!

2
1

2
kana

]2R

]«a
2 1$...%. ~22!

This is the basic kinetic equation, which makes it po
sible in what follows to obtain all the necessary informati
on the field in the second cavity. The notation$ . . . % denotes
the complete set of« derivatives of third and higher order
that appear on the diagonal of the Glauber representation
quantum fields. These terms will make no contribution to
observable values that we shall consider below.

3.2. Mandel parameter

Starting with the basic kinetic equation, Eq.~22!, the
standard procedure can be used to multiply it by the app
priate quantity, after which it is integrated over the variab
« andw to obtain the system of equations

d

dt
«b
252kb«b

21kb

nb
na

«a«b50, ~23!

d

dt
«a«b52S ka1

kb

2 D «a«b1
kb

2

nb
na

«a
250, ~24!

d

dt
«a
2522ka«a

22kana50. ~25!

The steady-state solution has the form

«a
252

1

2
na5jana , ~26!

«a«b52
1

2

kb

kb12ka
nb , ~27!

«b
252

1

2

nb
na

kb

kb12ka
nb5jbnb . ~28!

Using Eq. ~20!, we find that the statistical Mandel pa
rameter in cavityb can be written as

jb52
2kb8ka

kb~kb12ka!
. ~29!

Varying the ratio between the cavity widthska and
kb , we can get very different~negative! values of the Man-
del parameter. In particular, in the two limiting cases,

jb52
kb8

kb
→2

1

2
~30!
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jb52
2kb8ka

kb
2 , uju!1, ~31!

whenka!kb .

3.3. Photocurrent spectrum

To understand the role played by the stationary state
the intracavity field oscillator in forming the quantum sing
larities in observation, it is sufficient to analyze any one
the actually observed singularities. For example, this can
the photocurrent noise spectrum, which, when the radia
from cavityb is observed with perfect photodetection, can
represented by2

iv
~2!5 i shot

~2! F11
2kb9

nb
Re E

0

`

dt eivt«b~0!«b~ t !G . ~32!

The basic kinetic equation, Eq.~22!, and the standard
procedure can be used to obtain the system of equation

d

dt
«b~0!«b~ t !52

kb

2
«b~0!«b~ t !1

kb

2

nb
na

«b~0!«a~ t !,

~33!

d

dt
«b~0!«a~ t !52ka«b~0!«a~ t !. ~34!

From this we can obtain

«b~0!«b~ t !5«b
2 expS 2

kb

2
t D1«a«b

kb

kb22ka

nb
na

3Fexp~2kat !2expS 2
kb

2
t D G . ~35!

After substituting this expression into Eq.~32! and using
Eqs.~27! and ~28!, we find

iv
~2!5 i shot

~2! F12k2
ka
2

v21ka
2

kb
2

4v21kb
2G , k25

4kb8kb9

kb
2 .

~36!

When oscillatorb is symmetric (k251), it can be seen
that the relative depth of the quantum dip at zero freque
is d51 regardless of any other physical conditions, inclu
ing the ratio of the cavity widthska and kb . This is an
important fact for our subsequent calculations.

4. EXCITING A PASSIVE CAVITY WITH THE LIGHT FROM
TWO LASER SOURCES

4.1. Kinetic equation

We now consider the physical system schematica
shown in Fig. 2. We discuss the case in which empty cav
b is excited by the light of two laser sources. We assume
regular~noiseless! pumping of the upper laser level occurs
the active medium of laser 1, which provides some Man
parameterj1 that under optimum conditions can becom
equal to21/2. In the active medium of laser 2, ordinar
completely random pumping of the active atoms to the up
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laser level occurs. In this case, Mandel parameterj2 is large
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in weak lasing fields and goes to zero during saturation
the final formulas, we shall be interested in the case wh
j1521/2 andj2;1.

The equation for the three-oscillator density matrixr
that describes the intracavity fields of the two laser sour
and the passive cavity can be written as

ṙ5r 1S L̂12 1

2
L1
2D r2

k1

2
R̂1r1gb1L̂1→br1r 2L̂2r

2
k2

2
R̂2r2gb2L̂2→br2

kb

2
R̂br. ~37!

OperatorsL̂1,2 and R̂1,2 determine the evolution of the
electromagnetic field inside the laser cavities:

L̂15
1

2
b1aF2a1

→

1a1
←

2a1a1
→

12a1a1
←

1

2
1

2
b1bS a1a1→ 12a1a1

←

1 D 2G 1

Q̂1

, ~38!

Q̂1511
1

2
b11Sa1a1→ 11a1a1

←

1 D
1
1

4
b1ab1bSa1a1→ 12a1a1

←

1 D 2,

L̂25
1

2
b2aF2a2

→

1a2
←

2a2a2
→

12a2a2
←

1

2
1

2
b2bS a2a2→ 12a2a2

←

1 D 2G 1

Q̂2

, ~39!

Q̂2511
1

2
b21Sa2a2→ 11a2a2

←

1 D
1
1

4
b2ab2bSa2a2→ 12a2a2

←

1 D 2,
R̂15a1

1a1
→

1a1
1a1
←

22a1
→
a1
←

1, ~40!

R̂25a2
1a2
→

1a2
1a2
←

22a2
→
a2
←

1. ~41!

The nonlinear parameters for the laser sources have
form

b ia5
2ugiabu2

g iag iab
, b ib5

2ugiabu2

g ibg iab
,

b i65b ia6b ib , i51,2, ~42!

whereg ia andg ib are the widths of the upper and lower las
levels,g iab is the homogeneous width of the gain curve
the working transition, andgiab is the interaction constant o
an atom with a plane laser wave in the dipole approximati
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level,ai andai are the photon operators for the laser mod
and k i

21 are the photon lifetimes in the cavities resultin
from their finite Q values.

Recall that the presence of a term with the operatorL̂1
2 in

the basic kinetic equation indicates that the pumping of
active atoms in the first laser source is regular~with no fluc-
tuations!. Wheng1a50, we have an ideal sub-Poisson las
and operatorL̂1 will coincide in form with operatorL̂a from
the first case, in which it was precisely the radiation of
ideal sub-Poisson laser that excited the passive cavity.

An explicit expression for operatorL̂1→b , which deter-
mines the unidirectional action of the radiation from cavity
on cavityb described in the preceding section, can be writ
as

L̂1→b5a1
→
b
→

11a1
←

1b
←

2a1
→
b
←

12 b
→
a1
←

1. ~43!

Likewise,

L̂2→b5a2
→
b
→

11a2
←

1b
←

2a2
→
b
←

12 b
→
a2
←

1. ~44!

The resulting force is determined by the constantsgbi of Eqs.
~7!.

The semiclassical equations can be obtained in the s
way as before from the basic kinetic equation, Eq.~37!, ne-
glecting all field fluctuations:

d

dt
nb52kbnb12g1bAn1nb cos~w12wb!

12g2bAn2nb cos~w22wb!50, ~45!

d

dt
wb5g1bAn1

nb
sin~w12wb!1g2bAn2

nb
sin~w22wb!50,

~46!

d

dt
n15S 2k11

r 1b1a

11b11n1
Dn150,

d

dt
w150, ~47!

d

dt
n25S 2k21

r 2b2a

11b21n2
Dn250,

d

dt
w250, ~48!

a15ua1uexp~ iw1!, a25ua2uexp~ iw2!. ~49!

4.2. Mandel parameter and photocurrent spectrum

Here, as above, we transform to the diagonal Glau
representation, introducing into the formal scheme, in pl
of photon operatorsai andai

1 the correspondingc-number
field amplitudesa i anda i* and the derivatives with respec
to them. Neglecting small photon fluctuations,

ua i u25ni1« i , « i!ni ~50!

and using the semiclassical equations for the photon den
matrix,

R~«1 ,«2 ,«b ,t !

5E dw1 dw2 dwb P~«1 ,«2 ,«b ,w1 ,w2 ,wb ,t ! ~51!
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we get the following basic kinetic equation, provided that
m
n
ion

« ~0!« ~ t !5d2
kb
2

exp~2G t !2
2G1
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t
let
v-
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there is a phase shift between the laser waves that is a
tiple of p ~otherwise, we would have to write an equatio
that simultaneously describes both the amplitude fluctuat
and the phase fluctuations!:

]R

]t
5

kb

2

]

]«b
~«b2d1«12d2«2!R1G1

]

]«1
~«1R!

1G1j1n1
]2R

]«1
2 1G2

]

]«2
~«2R!1G2j2n2

]2R

]«2
2

1$...%. ~52!

Here we have introduced the notation

d15
2g1b
kb

Anb
n1
, ~53!

d25
2g2b
kb

Anb
n2
, ~54!

G15k1

I 1
11I 1

, j15
1

I 1
2
1

2

g1b

g1a1g1b
, ~55!

G25k2

I 2
11I 2

, j25
1

I 2
, ~56!

I i5b i1ni . ~57!

We get from the basic kinetic equation that

d

dt
«b
252kb«b

21d1«1«b1d2«2«b50, ~58!

d

dt
«1«b52S G11

kb

2 D «1«b1
kb

2
d1«1

250, ~59!

d

dt
«2«b52S G21

kb

2 D «2«b1
kb

2
d2«2

250, ~60!

d

dt
«1
2522G1«1

212G1j1n150, ~61!

d

dt
«2
2522G2«2

212G2j2n250, ~62!

d

dt
«b~0!«b~ t !52

kb

2
«b~0!«b~ t !1

kb

2
d1«b~0!«1~ t !

1
kb

2
d2«b~0!«2~ t !, ~63!

d

dt
«b~0!«1~ t !52G1«b~0!«1~ t !, ~64!

d

dt
«b~0!«2~ t !52G2«b~0!«2~ t !. ~65!

Solving this system, we find

jb5d1
2 kb

kb12G1

n1
nb

j11d2
2 kb

kb12G2

n2
nb

j2 , ~66!
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ul-

s

b b 1 kb
222G1

2 F 1 kb

3expS 2
kb

2
t D G«121d2

2
kb
2

kb
222G2

2 Fexp~2G2t !

2
2G2

kb
expS 2

kb

2
t D G«22. ~67!

Carrying out all the necessary calculations, we get
following expressions for the photocurrent spectrum and
the Mandel parameter:

iv
~2!5 i shot

~2! F12k2T2
k1
2

v21k1
2

kb
2

4v21kb
2

12k2
11I 2
I 2
2 R2

G2
2

v21G2
2

kb
2

4v21kb
2G , ~68!

jb52
2kb8

kb

k1T
2

kb12k1
1
4kb8

kb

k2R
2

kb~11I 2!12k2I 2

11I 2
I 2

.

~69!

In the last two formulas, we have assumed th
g1a!g1b , as a consequence of which the first source is c
verted into an ideal sub-Poisson laser:I 1→` and
j1→21/2.

5. DISCUSSION

We first consider a physical situation with two cavities
cavity with a laser source and an empty cavity~Fig. 1!. As is
well known, if the frequency of the external field~in this case
the laser field! coincides with the natural frequency of th
cavity and the cavity is symmetrical~kb85kb9 andk

251!, as
a consequence of interference phenomena, the radiation
cident on the input mirror from outside is not reflected fro
this mirror but passes completely through the cavity via
output mirror. Since no uncontrolled losses occur in t
case, and the empty cavity, as it were, does nothing, it ca
assumed that the radiation from the sub-Poisson laser
not be distorted. We should see the photocurrent shot no
which is completely suppressed at the lower frequenc
both when the radiation is observed immediately after
laser cavity and when it is observed after the additio
empty cavity. This fact is probably independent of any oth
circumstances and, in particular, of the ratio betweenka and
kb . It is easy to convince oneself of this if we assume th
k251 in the formula for the photocurrent spectrum, Eq.~36!.
The depth of the dip in the shot noise at zero frequency
then a maximum and reaches the zero mark, regardles
ka andkb .

At the same time, it is clear even from qualitative co
siderations that the stationary state of a field oscillator~and,
in particular, the Mandel parameter! must depend on wha
kinematic constants are actually chosen. In fact,
ka@kb , for example. The spectral profile of the empty ca
ity is then filled with Fourier components correlated in t
same way as in the cavity of the sub-Poisson laser. The
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racavity field situation is therefore the same as it is inside the
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sub-Poisson laser, and we can expect thatjb521/2 in this
limiting case.

However, in the other limiting case ofka!kb , the
‘‘correctly organized’’ Fourier components occupy only
very narrow central part of the spectral profile of the em
cavity, and all the other components~which are far larger!
are occupied by vacuum fluctuations. It can thus be expe
that the Mandel parameter is close to zero. We now see
for a symmetrical passive cavity, shot noise is complet
suppressed at the lower frequencies for any ratios betw
the cavity widths. At the same time, the Mandel parame
can vary from21/2 to zero. It is easy to show that Eqs.~29!
and ~36! confirm these qualitative conclusions:

jb52
2kb8

kb

ka

kb
, ~70!

i.e., ujbu!1.
We can now go even further by assuming, for examp

that the ‘‘free’’ Fourier components in the limiting cas
ka!kb are excited not by vacuum fluctuations but by flu
tuations from an additional laser source. This can be acc
plished in the system shown in Fig. 2 by mixing at an int
mediate mirror the light from a sub-Poisson laser and from
laser with excess noise. Understandably, if the addition fr
the super-Poisson laser is negligible~which can be the cas
in which T;1 andR!1!, it must not appreciably degrad
the observable quantum effect. At the same time,jb can be
expected to become completely positive, since it is precis
the radiation of the super-Poisson laser that forms the m
part of the spectral profile of the empty cavity. We no
proceed to specific formulas and write them for a symme
empty cavity in the limiting case ofk1!kb!k2 , assuming
that the dimensionless lasing powerI 2 of the super-Poisson
laser is intermediate and has the order of unity:

jb52
k1

kb
T21

11I 2
I 2
2 R2, ~71!

iv
~2!5 i shot

~2! F12T2
k1
2

v21k1
2 12

11I 2
I 2
2 R2

kb
2

4v21kb
2G . ~72!

Writing the latter relationship for zero frequency, we g
an expression for the depth of the quantum dip in the fo

d512R2S 112
11I 2
I 2
2 D . ~73!

If R2!1, thend'1. At the same time, if this value i
still not too small and if

k1

kb
!R2!1, ~74!

then the Mandel parameterjb , as we assumed, becom
positive:

jb5
11I 2
I 2
2 R2. ~75!

871 JETP 84 (5), May 1997
y

ed
at
y
en
r

,

-
-
a

ly
in

c

t

APPENDIX A: CONSTRUCTING THE COMBINED KINETIC
EQUATION FOR THE DENSITY MATRIX OF THE
ELECTROMAGNETIC FIELD IN THE CASE OF OPTICALLY
COUPLED CAVITIES

Let there be local field oscillators in the cavities, and
the annihilation operators~positive-frequency slow operato
amplitudes! be am(t), m51, . . . ,M . Since the cavity-
coupling mirrors possess finite transmittance, damping of
mode oscillators arises in the Heisenberg–Langevin-equa
method, and random quantum forces simultaneously ap
that are responsible for coupling to the heat bath of the qu
tized light modes of the external space.

To describe the light field inside cavitym and on the
outside in the neighborhood of its coupling mirror, it is co
venient to introduce longitudinal coordinatesym andxm , as
shown in Fig. 3. Here 0,ym, l m and2`,xm,`, where
l m is the round-trip length of the cavity. We assume that
normal frequenciesvm of the cavities are close to one an
other. Their difference must be much less than intermo
splitting in each of the cavities.

Let us choose some carrier frequencyv0 , equal ~or
close in the nondegenerate case! to vm . The field of the light
wave with xm,0, i.e., incident on the coupling mirror, i
related to the slow amplitudeem

(in)(xm ,t) by

E~xm ,t !52 iA2p\v0

S

3exp$ i ~k0xm2v0t !%em
~ in!~xm ,t !. ~A1!

For xm.0, a similar definition gives the slow amplitud
em
(out)(xm ,t) of the field leaving the cavity. HereS is the
cross section of the light flux. In this normalization, the me
value of (e1e) corresponds to the number of photons p
unit length of the ray. For the field inside the cavity, we u

E~ym ,t !52 iA2p\v0

S

3exp$ i ~kmym2v0t !%
1

Al m
am~ t !. ~A2!

The conditionE(ym5 l m ,t)52E(ym50,t) is satisfied; i.e.,
when the phase shift byp accompanying reflection from th
weakly transmissive coupling mirror is taken into accou
the field is periodic after a round trip around the cavity. T
reflection and transmission coefficients of the coupling m
ror of cavity m are taken for definiteness in the form
rm52urmu, tm5 i utmu.

FIG. 3.
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The relationship between fieldsam , em
(in) , andem

(out) is
8,9
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given by

ȧm52S iDm1
km

2 Dam1
ctm

Al m
em

~ in!~0,t !, ~A3!

em
~out!~0,t !52em

~ in!~0,t !2
tm

Al m
am~ t !. ~A4!

Here Dm5vm2v0 is the frequency offset, and
km5cutmu2/ l m is the damping rate of the field energy. It
assumed that 12urmu!1, which is necessary for systemat
isolation of the mode oscillators. These relationships refl
the field-addition rules at the coupling mirror. On the oth
hand, Eqs. ~A3! and ~A4! can be thought of as th
Heisenberg–Langevin equations in the absence of an a
substance in the cavities.

Let the optical system containn51...,N nodes, where
N>M . They are linear elements; i.e., cavities of the fo
described above, as well as lossless interference mixer
there are any partially absorbing linear filters, we repres
them as mixers that extract part of the light flux from t
system. We do not consider optical configurations in wh
the light signals connecting the elements of the system f
closed paths. Moreover, we exclude any complex cavi
that explicitly or implicitly appear.

We number the inputs of an optical system on wh
independent light fluxes in the vacuum state are incident w
the superscriptr51, . . . ,R. Starting with each input of the
system, we trace to its output the light rays with the sa
numbers. This can be done by various means, since eac
then elements of the system has an equal number of inp
and outputs: one each for cavities and two each for mixe

For mixer n, we introduce longitudinal coordinatesxn
r

and xn
s connected with it, lying along raysr and s, which

intersect in it~see Fig. 3!. We define by an expression anal
gous to Eq.~A1! the input and output fields of the mixer i
its normal coordinates. They are related by the transfor
tion

en
r ~out!~0,t !5(

s
Rn
rsen

s~ in!~0,t !, ~A5!

where $Rn% is a unitary matrix of the mixer. On the pat
from elementn to the neighboring elementm along rayr ,
the light signal is delayed only by distancednm

r , which can
be expressed by

em
r ~ in!~0,t !5exp~ ik0dnm

r !en
r ~out!~0,t2dnm

r /c!. ~A6!

Below we assume that the delay time is small compared w
the other times involved in the problem, and neglect it.

Equations~A3!–~A6! must be considered along with th
commutation relations for the independent light fields t
come from free space to the inputs of the optical system

@ ẽ r ~ in!~x,t !,ẽ r 8~ in!1~x8,t8!#5d r ,r 8d~~x2x8!2c~ t2t8!!.
~A7!

Here ẽ r (in)(x,t)5en
r (in)(x,t) are the input fields of the ele

ments placed first in the ray paths.
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description introduced above is from the viewpoint of qua
tum theory.

Let us transform Eqs.~A3!, keeping in mind Eqs.~A4!–
~A6!. We represent the input field of each cavity as a sum
the fields of the cavities that act as the signal sources for
cavity and the fields at the inputs of the optical system:

ȧm52S iDm1
km

2 Dam1 (
m0Þm

gmm0
am0

1(
r

f m
r ẽ r ~ in!~0,t !.

~A8!

Heregmm0
is the propagator that describes the penetration

the signal from cavitym0 into cavitym:

gmm0
5c

utmtm0
u

Al ml m0

(
path

$exp~ ik0dpath!Snp
r pr p21...Sn1

r1r0%.

~A9!

The summation in this equation is over all signal paths fr
m0 to m. If a path passes through intermediate eleme
n1 , . . . ,np , the summation includes the product of the tran
mission coefficients of these elements. According to~A4!,
we haveSni

r i r i21521 for the reflection from the cavity. The

path length is

dpath5dm0n1

r0 1...1dnpm
r p . ~A10!

The propagator that describes the penetration of the vac
field from input r of the optical system into cavitym has a
similar form:

f m
r 5c

i utmu

Al m
(
path

$exp~ ik0dpath!Snp
r pr p21...Sn1

r1r%, ~A11!

where

dpath5dn1n2
r1 1...1dnpm

r p . ~A12!

We now proceed from these constructions to the kine
equation. We assume that unless there is an active subs
in the cavities, the evolution of the fieldsam(t) according to
the Heisenberg–Langevin equations is equivalent to th
evolution in the form

am~ t !;exp~ iH 0t/\!am exp~2 iH 0t/\!. ~A13!

The unperturbed field-energy operatorH0 includes the en-
ergy of undamped oscillatorsam in cavities with perfect mir-
rors, the energy of the heat bath field, and also the effec
interaction energy, which connects the internal and exte
fields when the mirrors have finite transmittance. We assu
that before the interaction was turned on (t50), the total
light field of the isolated oscillators and of the heat bath w
in the ground stateu$0%&.

We introduce perturbationV, which couples the field in
the cavities to the substance located in the cavities. The d
sity matrix of the system is

M ~ t !5v~ t !u$0%&^$0%u ^ um&^muv1~ t !, ~A14!

where um&^mu is the initial density matrix of the substanc
andv(t) is the evolution operator,
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v~ t !5exp 2
iH 0t

v ~ i !~ t !5exp 2
iH 0t
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S \ D S \ D
3expH 2

i

\ E
0

t

dt8V~ i !~ t8!J . ~A15!

Superscript (i ) indicates the interaction picture, in whichV
serves as the perturbation. We exclude the oscillators of
heat bath field, proceeding to the density matrix

r5 Tr
$term%

M . ~A16!

We transform the density matrix of the explicitly identifie
modes into the antinormal representation over cohe
states. We introduce the coherent stateu$zm%& in the usual
way by means of shift operators Dm(zm),
D($zm%)5PDm(zm). Instead of the density matrix, it is con
venient to consider the somewhat more general quantity

^$zm%uArBu$zm%&5^$0%uD1~$zm%!ArBD~$zm%!u$0%&,
~A17!

whereA andB are operators related to the identified mod
In order to consider the average~A17! as the trace over al
degrees of freedom of the field, we use the equation

^$0%u..u$0%&5 Tr
$am%

H expS 2(
m

am
→
am

1

←
D ...J . ~A18!

Here the operatorsam
→

andam
1

←
are placed to the left and righ

of the quantity to be averaged. Using simple transformatio
Eq. ~A17! becomes

^$zm%uArBu$zm%&5^$0%uv ~ i !1
~ t !expS iH 0t

\ DB:
3expH 2(

m
~am

12zm* !~am

2zm!J :A expS 2
iH 0t

\ D v ~ i !~ t !u$0%&,

~A19!

where the symbol: . . . : denotes normal ordering. Let u
consider the antinormal representation of the density ma
i.e., A5B51. As follows from Eq. ~A13!, the time-
dependent field operatorsam(t) andam

1(t) appear in the en-
closing functions exp(iH0t/\) and exp(2iH0t/\) in Eq. ~A19!.
They satisfy the Heisenberg–Langevin equations for cavi
coupled by optical signals in the absence of an active s
stance.

In order to obtain the kinetic equation, we take the d
rivative with respect to timet in Eq. ~A19!, expanding the
resulting derivatives of the field amplitudes by means of
Heisenberg–Langevin equations, Eqs.~A8!. On the right-
hand side, in particular, we get

d

dt
:exp$...%:52(

m
~ ȧm

1~ t !:exp$...%:~am~ t !2zm!

1~am
1~ t !2zm* !:exp$...%:ȧm~ t !. ~A20!
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only positive-frequency contributions and can be permu
with the amplitudesan(t), and the negative-frequency qua
tities can likewise be permuted.

Using Eqs.~A8!, factors appear in Eqs.~A20! that equal
the field amplitudes in the cavities, as well as the fact
zm andzm* , which can easily be converted into operators
follows from Eq.~A17! that multiplying byzm is equivalent
to replacingB with Bam , and multiplying byzm* is equiva-
lent to replacingA with am

1A. Moreover, factors proportiona
to the incident fields ~random forces! ẽ r (in)(t) and
ẽ r (in)1(t) appear in part of the contributions. All the contr
butions from the given factors equal zero. Actually, it fo
lows from Eqs.~A8! that the solutions for the amplitude
am(t8) for t8,t must have the form of a convolution o
random forces over time, with these being taken at an ins
t9,t8,t. It follows that, for t8,t,

@am~ t8!,ẽ r ~ in!1~0,t !#50 ~A21!

Therefore, the positive-frequency random forces can be
ried to the right through the amplitudes of the isolated mo
entering at timest8,t into the evolution operatorv ( i )(t); see
Eq. ~A15!. The negative-frequency random forces are lik
wise carried to the left. When they act on the initial vacuu
state, the given factors annihilate the contributions in wh
they are contained.

Thus, by differentiating with respect to time, the amp
tudes of the isolated modes that are attached to operatoA
andB in Eq. ~A17! can be separated out. It is easy to sho
that the kinetic equation in the form of Eq.~4! ~see Section
II ! follows from the described construction and the expli
form of the Heisenberg–Langevin equations, Eqs.~A8!. The
Liouville evolution operator of isolated modem has the
usual form:

L̂mr5H 2S iDm1
km

2 Dam1amr1
km

2
amram

11H.c.J
2

i

\
@Vm,r#. ~A22!

HereVm is the interaction-energy operator of modem with
the active substance in the cavity. The factorgmm0

entering

into operatorL̂m0m
of Eq. ~5! is nonzero only when there ar

paths in the optical system from cavitym0 to cavitym @see
Eq. ~A9!#.

In the special case of two cavities~a source and a signa
detector!, the kinetic equation, Eq.~A22!, transforms into
that obtained earlier.6–8

Based on the approach used above, we assumed
Heisenberg–Langevin equations, Eq.~A3!, the coupling
equations, Eqs.~A4!–~A6!, and the commutation relations o
the input free fields, Eq.~A7!. We now show that the given
formulation of the problem is consistent in the case of opti
systems in which the light signal does not close on itself. T
elucidation of this question is of interest not only in justif
ing the kinetic equation~see above!, but also for understand
ing the limits of applicability of the Heisenberg–Langevi
equation method.
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e (0,t), where r51, . . . ,R. The transformation of the
fields at the elements of the optical system, beginning w
its inputs, can be thought of as a linear transformation of
vector. We replace the linear attenuating elements with p
tially transmitting mixer devices, which extract part of th
light flux from the optical system and simultaneously intr
duce the vacuum field into the light flux. This is required
take into account in the calculation the number of inpu
internal rays, and outputs of the system. For elements ac
on independent sets of rays, the order in which the co
sponding transformations are applied is not fixed. It can
chosen arbitrarily, since such transformations obviou
commute with each other.

The transformation of the fields in a mixer, Eq.~A5!, is
unitary. It is convenient to consider the transformation of
fields at the coupling mirror of the cavity, given by Eqs.~A3!
and ~A4!, in a particular representation. For the Four
transforms of the amplitudes,t→V, it is easy to obtain

em
~out!~0,V!5em

~ in!~0,V!
km/22 i ~Dm2V!

km/21 i ~Dm2V!
, ~A23!

which is also a unitary transformation. The vector of t
initial amplitudes thus undergoes a unitary transformation
the field passes through an arbitrary number of elements.
easy to obtain from this that the commutation relations
the components of the transformed vector of the input a
plitudes have the form of Eqs.~A7! for the fields of free
space.

This in turn provides the necessary commutation re
tions for the amplitudes of the isolated modes. Amplitu
am can easily be expressed by means of Eq.~A3! via a con-
volution of the input fieldem

(in)(0,t) over time. As we have
just explained, the input fields of any elements of the sys
~and not only the initial elements on the ray path! obey the
commutation relations for the fields of free space. From t
it is easy to find

@am~ t !,am
1~ t8!#5exp$2 iDm~ t2t8!2~km/2!ut2t8u%.

~A24!

Whent5t8, the usual commutation relation for an oscillat
appears.

We should point out that it is important for these co
siderations that there be no light rays closed on themselve
the optical system. It can be assumed that in the cas
completely or partially closed system, a description based
the coupled Heisenberg–Langevin equations and the
commutation relations for the intermediate light fields w
not be valid.

APPENDIX B: EXCITING THE ACTIVE MEDIUM OF A LASER
WITH RADIATION FROM AN AUXILIARY SUB-POISSON
LASER

The following physical model is considered in Ref.
Inside a high-Q cavity with a resonant medium is plac
another high-Q cavity with another resonant medium. Id
sub-Poisson lasing is provided in the inner cavity, and t
excites the resonant medium of the large cavity in the abo
threshold state, as a consequence of which secondary la
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which the secondary lasing becomes ideally sub-Pois
with a Mandel parameter ofj521/2, i.e., it becomes simi-
lar in its statistical properties to the primary radiation as
was before the secondary radiation arose. Using the form
obtained in Ref. 5, we can find an explicit expression for
photocurrent spectrum during recording of the radiation
the secondary lasing in the form

iv
~2!5 i shot

~2! F12
k

k1k1

~k11k!2

v21~k11k!2
k2
2

v21k2
2G . ~B1!

Herek̇1 andk2 are the spectral widths of the primary~inner!
and secondary~outer! laser cavity, andk is the linear absorp-
tion coefficient for the primary laser light in the medium
the secondary laser~it determines the population rate of th
upper active level of the medium of the secondary laser!.

We use for our analysis the formula obtained in Ref
for the Mandel parameter of the secondary lasing:

j252
1

2

k

k11k21k
. ~B2!

The most interesting case for us is that in which t
cavity losses of the primary lasing are mainly associated w
absorption in the medium of the secondary laser:

k@k1 . ~B3!

Then the quantum singularity in the form of a dip in th
photocurrent spectrum, Eq.~B1!, will be the most pro-
nounced~the depth of the dip will bed51!. As for a passive
cavity ~see Section V!, this fact is not at all dependent on th
ratio between the cavity widthsk1 andk2 of the primary and
secondary lasers.

At the same time, the Mandel parameter depends on
ratio. In fact, if k@ka ,kb , j521/2. However, if
k2@k@k1 , thenuju!1.
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Rydberg matter—a long-lived excited state of matter
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The theory of condensed excited matter, the so-called Rydberg matter~RM!, is examined briefly.
Explicit results are given for several physical quantities, notably, the work function and the
resistivity, for which experimental results exist. The most important aspects of the experiments,
which are fully described elsewhere, are discussed. Large densities of Rydberg species are
formed in the experiments with cesium vapor in contact with carbon~graphite! surfaces. The
resistivity of the RM formed is found to be 1022–1023 V•m under varying conditions,
while theory gives the order of 1023 V•m. The work function is experimentally found to be less
than 0.7 eV, perhaps even less than 0.5 eV. Two different methods were used to extract
this quantity from thermionic diode data. These work function values are much lower than reported
for any known material, especially at the high temperatures, and they thus give strong
support for the description of RM as a very dilute metal. Theory gives values ranging from 0.6
down to 0.2 eV, depending on the principal quantum number, which is estimated to be
n512–14 from the lifetime calculations and from the known pressure. Supporting evidence is
found from spectroscopic studies of RM, from jellium calculations, and from recent
confirming experiments. From the good agreement between theory and experiment we conclude
that RM exists. ©1997 American Institute of Physics.@S1063-7761~97!00505-2#

1. INTRODUCTION Rydberg species has now led to this achievement, and in
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The theoretical treatment of a phase consisting of hig
excited atoms of the so-called Rydberg type~hydrogenic at-
oms with one excited electron! indicates that a metal with a
density as low as a gas can exist. Recent experimental re
on the resistivity and work function indicate that such met
do exist, in the form of Rydberg matter~RM!. We will here
consider the new theoretical and experimental arguments
the existence of RM.

The theoretical reason for introducing RM is that loc
excitations cannot satisfactorily explain the behavior of el
tronically highly excited systems. Instead, the interactio
between the excitations in the system must be taken
account. Such a collective or condensed state of ma
which is formed from excited atoms or other excited spec
was proposed in a series of theoretical studies.1–4 When at-
oms are excited to high electronic states of the Rydberg ty
their size increases rapidly. Since the excited electrons sp
almost all their time far from the core ions in the atoms, t
wave functions of highly excited atoms overlap strong
when such atoms are brought together. At large densities
moderately high temperatures, excited atoms can form
solid-like condensed phase with the ions in a regular latt
which we call a Rydberg crystal, as shown in Fig. 1.
higher temperatures, a liquid state of excited matter, whic
another form of RM, should exist.

A prerequisite for valid experimental tests of the ex
tence of RM is that RM can be formed in macroscopic qu
tities, which in turn requires that large densities of Rydbe
species can be obtained. The use of new methods of form
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experiments, a volume of 30 mmof RM of cesium atoms
can be formed routinely in a flow system which continuou
renews RM. We will show that the accumulated experime
tal evidence now shows good agreement with theoretical
dictions, and that this, by itself, proves the existence of R
However, it may be even more convincing if unique resu
can be provided by experiments, i.e., results which canno
attributed to any known material. This is found, we believ
in the case of the work function of RM. Of course, low wo
functions of surfaces have been studied for a long time
many technical applications of electron physics low wo
functions of electrodes are required, and the combination
low work function and metallic properties is extremely im
portant in many situations. Examples are provided by th
mionic energy converters and MHD generators, where c
rent densities up to the order of 100 A•cm22 should be
obtained to make the devices work efficiently. The difficu
ties in forming or constructing such surfaces have for a lo
time been serious obstacles for the technical developm
Thus, several approaches have been tested, but with
limited success. The alkali metals have the lowest w
functions among the elements, at approximately 1.8 eV
Cs, and a layer of Cs on metallic surfaces can have an e
lower work function, at 1.5 eV for nearly a monolayer. Th
standard theory for work functions of metals5 states that the
average electron density, or the corresponding positive
density in the material, should be decreased if very low w
functions are found. This explains, at least in part, why
low density monolayers of alkali metals deposited on ot

875$10.00 © 1997 American Institute of Physics
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FIG. 1. The electron densityr in a
Rydberg atom as a function of distanc
~top panel! and a cluster of RM. The
central positive core ions are indicate
by plus signs. The interatomic distanc
in RM with atoms in state 13 S is 15 nm
according to theory.7
metals have lower work function than the pure alkali metals
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themselves. Following this idea, various experiments h
attempted to decrease the work function by diluting
alkali-metal atoms with other nonmetal atoms, and very l
work functions, down to 1.2 eV, have also been obtained
various oxides and alkali metal-oxygen coadsorbed pha
on metal surfaces.6 Of course, the resistivity increases fo
such materials, but at high temperatures and for thin lay
this drawback is not of great importance. The goal to re
even lower work functions is thus clear: to further increa
the distance between the alkali atoms. This is where
theory of RM is important also from an applied point
view, since it states that a low density, and thus low wo
function, metallic material can be constructed. The prereq
site is that Rydberg states should be formed in large dens
and be condensed on a surface which can remove the
densation energy.

2. THEORY OF RYDBERG MATTER

In Rydberg matter the excited valence electrons
shared between many atoms in the material and form a
generate Fermi liquid. Due to delocalization, the kinetic e
ergy of the electrons decreases considerably when the
densed phase is formed. As a result, the binding energie
the excited atoms become high enough to keep the atom
place. The potential energy for the valence electrons in Fi
shows that the probability of these electrons coming clos
the core ions is very small.

FIG. 2. Potential energy diagram for the electrons in RM, along the
A–A in Fig. 1. The electron densityr is indicated.
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pseudopotential theory and density functional theory sim
to the theory of simple metals.4 The Rydberg matter is there
fore assumed to consist of identical Rydberg atoms. A s
stantial role should be played by effects due to the inhom
geneity of the electron density. This is a new aspect, whic
characteristic of far-from-equilibrium matter like RM, whil
this effect is very small for ordinary condensed matter. T
theory of RM shows that the exchange and correlation ef
leads to self-trapping of the electrons where the electron d
sity differs substantially from zero.4 Figure 3 shows the re
sult of a numerical calculation within the framework of th
Wigner-Seitz cell potential for RM with the excitation leve
n510 ~Refs. 4 and 7!, as well as the relevant energy param
eters as a function ofn. The question of applying the densit
functional theory to the RM problem is discussed in detail
Ref. 4. It is shown there, that the problems of describ
excited states by density-functional methods can be o
come by combining this theory with the pseudopotential c
cept.

The lifetime of the Rydberg crystal is, of course, of gre
importance. The decay of RM is caused by electron tran
tions to low-lying unfilled energy levels. The Rydberg matt
is therefore inherently unstable and has a finite lifetime.
first glance, the lifetime of RM seems to be shorter than t
of the isolated atoms, which is attributable to the strong C
lomb interaction of the electrons. As the excitation level
creases, however, the lifetime of RM is expected to incre
rapidly due to the spatial separation of the initial and fin
states of the electrons, as in free Rydberg atoms, and du
specific effects on the local field in the strongly nonunifor
electron liquid of RM. The higher the level of excitation, th
stronger the electrons are drawn to the boundaries of the
cells, while the final states for the decay transitions rem
localized at the core ions. Recombination, therefore, can
occur into all low-lying states corresponding to isolated
oms. The interaction between the electrons leads to the
mation of an effective potential barrier to the penetration
valence electrons into the region close to the core ions. T
RM can be a long-lived excited state of matter. The hi
excitation energy in the condensed matter also makes
sible decay processes involving several electrons, for
ample, the Auger processes. The lifetimes including s
processes are calculated in Ref. 8 and are still found to b
e
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FIG. 3. One-electron potential energy fo
the excited electrons in RM withn510. The
energy parameters indicated are also sho
separately as functions ofn. The work func-
tion F is the absolute value of the Ferm
energyEF .
the order of several seconds or longer for some excitation
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3. CALCULATED QUANTITIES

Various parameters characterizing the Rydberg cry
state can be calculated by the methods mentioned abo4

Some examples are represented in Table I. The Rydb
crystal is a good electrical conductor,8 and its work function
is thus a well-defined quantity of great interest. Due to
low electron density, the Rydberg crystal is transparen
visible light. It becomes opaque to electromagnetic radiat
only at frequencies lower than its own plasma frequency
at wavelengths longer than some transparency boun
wavelength, which is far out in the IR for the excitatio
levels in Table I.

A basic problem with this type of calculation is that th
excitation level, i.e., the principal quantum number for t
combining atoms, must be assumed. This parameter is
known directly from the experiments. However, the vap
pressure before condensation in the experiments in Re
and 10 is of the order of 1 mbar. Assuming that the diame
of the Rydberg atoms are the same as the interatomic
tances in a gas of this pressure, one findsn approximately
equal to 16. It is likely that some contraction is taking pla
as a result of the condensation, and it is thus reasonab
perform the calculations forn512–14. The calculated val
ues for the density atn513 in Table I, correspond to a
pressure of 60 mbar or an equivalentn value of 9. Thus,n
512–14 appears to be a good choice of excitation le
lacking more detailed information from the experiments.
more detailed discussion is found in Ref. 8.

4. RESULTS AND DISCUSSION

The experimental results have been obtained using
techniques to create large densities of highly excited R
berg species. Alkali atom Rydberg species are generally

TABLE I. Parameters of the cesium RM crystal.
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alkali atoms. The new techniques employ diffusion of alk
ions from the bulk of nonmetallic materials. For example,
the case of graphite surfaces it was shown that the emis
of Cs1 ions gives rise to a near-resonant process that fo
Rydberg species from the emitted ions and therm
electrons.10–12By increasing the pressure of Cs vapor in co
tact with such surfaces and by ensuring that diffusion in
material takes place, large densities of Rydberg species o
and K have been formed. Small particles~clusters!13 and
macroscopic amounts of RM9,10 can be formed by using C
vapor. Also, alkali-doped metal-oxide surfaces~e.g., pro-
moted catalyst surfaces! have been shown to give large de
sities of Rydberg species of K.14–16 The behavior observed
for RM formed by such methods is qualitatively the same
the predicted behavior: it is, for example, transparent to v
ible light, and it emits much less light than an ordina
plasma when it carries a large current. That the obser
matter is very energetic is easy to observe through ex
sions of the matter under simultaneous emission of vis
light or charged particles, both for small particles of RM17

and for large layers of RM on surfaces.18 In one experiment
clusters of RM were collected on a liquid-nitrogen-cool
surface.17 They were de-excited by ion impact, which gav
small microflashes~small white explosions! with an energy
content approximately as expected from RM theory. Coll
tion times longer than a few minutes gave no increase in
number of flashes during de-excitation, and the intrinsic li
time of RM at that temperature was estimated to be a
minutes. This lifetime is of the same order of magnitude
that given in Table I, with values ranging between 5 s and 80
h. The main recombination channels for the kind of R
which consists of highly excited Cs atoms, have been
cently investigated. A detailed description of this study
found in Ref. 8. The decay proceeds, as a rule, by the Au
recombination mechanism.
877Manykin
State of
atoms

Density
r, cm23

Binding energy
B, eV/atom

Melting point
Tm , K

Work function
F, eV

Transparency
boundaryl, mm

Lifetime
t, s

12 S 1.131018 0.14 460 0.23 32 25
13 S 5.331017 0.11 460 0.2 46 5
14 S 2.831017 0.1 540 0.18 63 80 h

(5), May 1997 L. Holmlid and E. A.
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FIG. 4. Current–voltage~I–V! char-
acteristics of the cesium-vapor-filled
thermionic diode. The ordinary be
havior, together with a description o
the energetics for the electrons in th
diode, is shown in~a!. The signs
used are conventional; the positiv
current visible in the second quad
rant is emitted from the hot elec
trode. The special behavior cause
by RM formation, with two break
points in the curves and a very larg
electron current from the cold elec
trode in the fourth quadrant, is
shown in ~b!. The energetics shown
in ~b! corresponds to the break poin
farthest to the right.
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which were determined for RM of cesium at a temperature
approximately 800 K. These measurements were made
flow system which renews the RM continuously betwe
two partially graphite-covered electrodes in a vacuum cha
ber. This chamber is a thermionic diode, which is charac
ized as a thermionic energy converter. The complete app
tus has recently been described elsewhere.19 The electron
current flows from the cold to the hot electrode. The int
electrode space can be observed visually during the mea
ments; this space is not glowing.~When a plasma is formed
between the electrodes, this region is glowing and the m
mum possible conducted current is much lower.! The experi-
ment is designed in such a way that possible artifacts,
leakage paths on isolators, can be rejected directly from
experimental results. Further, the hot electrode is heated
the impinging electrons, which shows that the current pas
through the interelectrode space. A resistivity
1023–1022 V•m is found from the linear resistive behavio
of the current-voltage characteristics.9 The range in values is
due to the varying conditions for a large number of expe
ments done at different electrode temperatures and ce
pressures. The resistive behavior is found only with grap
layers on the electrodes. Calculations give the resistivity
RM for the levelsn512–14 of the order of 1023 V•m. The
agreement between theory and experiment is therefore
good.

The surface work function of RM was determined
similar experiments in the same kind of apparatus,19 which
forms RM from Cs vapor in contact with a pair of electrod
that are partially covered with graphite. It is worth notin
that the colder electrode of the two plane-parallel electro
supports the RM, and that the electron current which is
served is emitted from the cold surface to the hot surface~the
reverse current is usually much smaller!. The maximum cur-
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voltage of 30 V. As stated in the introduction, the extreme
low values of the work function found in the experiments a
conclusive evidence that RM exists. We must therefore
amine the measurement methods in detail.

Two different methods were used to extract the wo
function from the current-voltage behavior observed:!
maximum current density method, and 2! analysis of the di-
ode characteristics of the plasma-RM setup. From the R
ardson formula for the electron emission current density,
clearly see that a current density,imax5500 A•cm22, corre-
sponds to a work function of 0.82 eV at 800 K, which is t
temperature of the cold emitting surface. This value ofimax is
the highest current density measured in the setup becau
the experimental limitations like power supply availabili
and melting of the electrodes. The current density at t
point still increases linearly with the applied current. W
thus can state that the work function of RM in this expe
ment is,0.8 eV. The measurement of the current dens
depends on the correct determination of the electron emit
area. Through a window of the apparatus we can observe
faint glow from the current-carrying part of the interelectro
space, and thus ascertain that there is no large current e
sion from adjacent parts of the apparatus. If the emitting a
is 50% larger in reality, the work function would be 0.85 e
In fact, the area used in the calculation is not emitting h
mogeneously, so the central part, which has a larger em
sion, also has a somewhat lower work function.

The diode analysis procedure is carried out in the f
lowing way. The typical current-voltage characteristics
the plasma diode is shown in Fig. 4a. In the first and sec
quadrants, the electron current from the hot electrode is m
sured as a positive current by definition. With an increase
the voltage to the right, i.e., with a more negative voltage

878L. Holmlid and E. A. Manykin



the cold electrode, the thermal current from the hot electrode
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will decrease, showing a Boltzmann tail. The steepest
scent of this decay curve indicates the approximate ou
voltage, at which the work functionFE of the hot electrode
is equal to the sum of the so-called barrier index~which
contains the work functionFC of the cold electrode and th
plasma drop! and the output voltageVout8 :

FE5Vb1Vout8 . ~1!

The decay curve must be limited by the density of the th
mally emitted electron current from the hot electrode, as
pressed by the Richardson equation:

i e5ATE
2 exp~2Vb /kBTE!, ~2!

which gives the barrier indexVb from the measured curren
density and the hot electrode temperatureTE . This can be
understood more easily from the lower part of Fig. 4a, wh
the energy of the electrons is shown. This analysis is a s
dard procedure for the study of thermionic converter perf
mance.

In the case of RM formation in the thermionic diod
there exist two break points or knees on the curve, as see
Fig. 4b. The break point at the lowest voltageVout8 ~to the left
in the figure! corresponds to the point at which the electr
emission from the hot electrode is small, i.e., to a case s
lar to that analyzed with the help of Fig. 4a. The right-ha
break point atVout indicates the onset of electron emissi
from the cold electrode, which increases approximately
early with the applied voltage above this voltage point. H
another relation can be found from the lower part in Fig. 4

FE5FC1Vout. ~3!

Combining Eqs.~1! and ~3!, we obtain

Vb5~Vout2Vout8 !1FC . ~4!

This relation indicates that the work function of the co
electrode covered with RM should be regarded a cons
~axis cutoff! in a linear relationship between the barrier ind
and the voltage difference between the break points. The
from a large number of runs with different temperatures
the hot electrode is plotted in Fig. 5, with the barrier ind
and the break-point voltage difference on thex andy axes,
respectively. As in Ref. 10, an approximate linear relatio
ship is observed. In the figure, the temperature of the
electrode is now plotted in thez direction. We see that mos
of the results fall within a band with the work functionFC

~barrier index value at zero difference voltage! between zero
and 0.7 eV. The few data points at low difference volta
and high barrier index are found for higher temperatures
the hot electrode than the other data points, which mi
mean that the plasma voltage drop has a somewhat diffe
character in those cases. It is important to realize that no
point with Vb,(Vout2Vout8 ) should exist. This condition is
satisfied~excluding one data point!; this strongly supports
the analysis of the data. The work function of the RM w
thus found to be less than 0.7 eV.10 No known material has
such a low work function, especially at such a high tempe
ture. The calculated value of the work function for RM
extremely small, ranging from 0.6 eV down to 0.2 eV for
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value ofn approaching 20, as shown in Table I and Fig.
This value is just below the upper limit found experimen
tally. Similar diode experiments, performed recently by
group in the Kurchatov Institute using graphite surface
were shown to give extremely large current densities.20 This
confirms the results of our experiments.

Very low values of work function have also been foun
recently in simple jellium calculations.21,22Such calculations
are preformed for a dilute alkali metal, replacing the inh
mogeneous electron density in RM with a constant, smear
out, electron density in the jellium approximation. In Ref. 22
the same densities of RM were used for the jellium calcu
tions, as in the more accurate calculations in Refs. 1–4,
and 8. The work function from the jellium calculation fol
lows the same trend with the excitation level~value ofn! as
the RM calculations. However, the work function values a
even lower, which is expected since the volume over whi
the electrons can move is much larger in the jellium mod
where there is no excluded volume around the ion cor
This point is discussed in greater detail in Ref. 22. It is e
couraging that the two widely different theoretical method
give similar values of the work function, and the results
Ref. 22 strongly support the correctness of the RM theore
cal treatment. The real work function for RM is likely to be
between 0.5 and 0.1 eV at 10,n,20 ~Ref. 22!.

A direct spectroscopic study of RM in the same appar
tus as used for the other experiments discussed here19 is quite
instructive.22 In this test, the spectra of the free Cs atom
were recorded under conditions of an ordinary plasma a
also during conditions of RM formation with no glowing
plasma. With RM, the current was generally higher and t
voltage drop lower than for the plasma. It was barely po
sible to run comparison experiments where the current in
presence of RM was as low as that during plasma conditio

FIG. 5. A plot of the barrier indexVb versus the voltage difference (Vout

2Vout8 ) for the two break points in the I–V characteristics for the thermion
diode with RM formation. The two lines demonstrate the linear relationsh
between the two parameters at moderately high temperatures of the
electrode.
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Under these conditions, the spectral lines were a factor of
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4É. A. Manykin, M. I. Ozhovan, and P. P. Polue´ktov, Zh. Éksp. Teor. Fiz.
84, 442 ~1983! @Sov. Phys. JETP57, 256 ~1983!#.

e-

hys.

with
10–20 weaker in RM mode than in the plasma mode. Si
the emitting Cs atoms must exist outside the RM within
viewing angle of the optical fiber, the fraction of free C
atoms in the diode interelectrode space becomes very
i.e., probably lower than 0.05 of all atoms there. This clea
indicates that the other atoms there are not free, i.e., they
bound in the RM, which is a much better conductor than
plasma.

5. CONCLUSIONS

The good agreement between theory and experim
makes it possible for us to conclude confidently that R
exists. Even if the discussion here has mainly described
of cesium, it is now clear that RM can also be formed fro
other atoms and molecules. The Rydberg matter of hydro
bons as clusters24 and of hydrogen as surface layers has be
reported.18 It is likely that RM appears naturally in man
situations, e.g., RM seems to be the likely explanation for
phenomena known as ball lightning.25 This explanation was
proposed by Manykinet al.3
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Transverse instability threshold in counterpropagating light beams for a nonlinear

re-
medium with local photorefractive response
B. I. Sturman and A. I. Chernykh

Siberian Branch of the International Institute of Nonlinear Studies, 630090 Novosibirsk, Russia
~Submitted 3 September 1996!
Zh. Éksp. Teor. Fiz.111, 1611–1623~May 1977!

We derive the threshold conditions for the instability of counterpropagating waves in a nonlinear
medium with local photorefractive response against the excitation of transverse small-angle
structures. These conditions allow for all the important types of diffraction from refractive-index
reflection gratings and are not limited to the case of strict frequency degeneracy of the
waves. We study the dependence of the crystal-thickness threshold and the secondary wave
emission angle on the crystal parameters and the pump conditions. We show that when the pump
wave intensities differ considerably, excitation of standing light structures is replaced by
excitation of traveling structures. Finally, we discuss the applications of the theory to experiments
with the photorefractive crystals LiNbO3 and LiTaO3. © 1997 American Institute of
Physics.@S1063-7761~97!00605-7#
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It is well known that counterpropagating waves in a c
bic nonlinear medium can be unstable against the spont
ous generation of small-angle structures.1–4 This transverse
instability is absolute and has a threshold in crystal thi
ness; positive distributed feedback lies at the basis of
phenomenon. By its nature, transverse instability is simila
what is known as cavityless lasing due to four-wave mixin5

Experiments have shown that the result of the devel
ment of transverse instability is sensitive to the experime
conditions and the type of nonlinearity. The formation
ring, hexagonal, and more complicated small-angle li
structure near the pump beams has been observed under
ous conditions.3,4,6,7

Theoretical studies of transverse instability have focu
on finding the threshold conditions for the formation of lig
structures. These conditions were first established and s
ied in relation to Kerr and Brillouin media and to gases n
absorption lines.1–4 Lately there has been an upsurge of
terest in transverse instability in media with photorefract
nonlinearity.8–11

The interest in photorefractive nonlinear media is n
accidental. Such media are important in various applicati
and present exceptionally favorable conditions for study
secondary light structures. The required light intensities
within the intensity range of continuous-wave lasers, a
typical nonlinear lengths amount to several millimeters. T
mechanisms of photorefractive nonlinearity are well-stud
and controllable.12

Nonlinear variations of the refractive index in a phot
refractive medium are due to the formation of a space-cha
field by light and the linear electrooptical effect.12 Two lim-
iting types of photorefractive linear response are usually
tinguished: the local and the nonlocal.1) In the case of local
response, a standing sinusoidal light pattern induces a~sinu-
soidal! spatial modulation of the refractive index. In the no
local photorefractive response, the induced refractive-in
pattern is shifted by a quarter of the period relative to
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fractive response is the electron~hole! transport mechanism
For instance, photoelectron diffusion results in nonlocal p
torefractive response. This is characteristic of experime
involving KNbO3 and BaTiO3 crystals. Local response usu
ally occurs when the dominant effect is electron drift in
external field or the photovoltaic effect.13 A typical example
of a photorefractive medium with local photorefractive r
sponse is represented by LiNbO3 crystals, which exhibit a
strong photovoltaic effect.

Here is a brief history of studies of transverse instabil
in photorefractive media. The formation of traveling rin
structures around counterpropagating pump beams was
covered in 1985 in LiNbO3 crystals.

6 A similar effect in the
same material was described later in Refs. 14 and 15. Un
tunately, no meaningful interpretation of these results w
given at the time, nor was there any further developme
The conditions under which the observations were conduc
were not recorded. In 1993 transverse instability was
served in KNbO3 crystals, which differ considerably in thei
photorefractive properties from LiNbO3 crystals.

7 The result
of such instability is the formation of hexagonal standi
light patterns~hexagons!. Both in Ref. 7 and in the work tha
followed,16,17 a detailed study was made of emergent lig
structures. In particular, the possibility of controlled rotati
and drift of hexagons was established. Honda a
Matsumoto18 reported on the formation of hexagons
BaTiO3 crystals, which are similar to KNbO3 in the type of
photorefractive response.

Note that in all the experimental conditions describ
above, the formation of secondary light structures was
lated to the diffraction of light by refractive-index reflectio
gratings with a period close to half the wavelength of light
the medium. Transmission gratings with large perio
formed by accompanying waves, are extremely weak he

Honda7 was the first to study photorefractive transver
instability theoretically. The case of dominant rerfractiv
index transmission gratings was studied, which had little
lation to experiments. Next, in Refs. 9 and 10 the thresh

881$10.00 © 1997 American Institute of Physics
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dently for dominant reflection gratings. Local photorefracti
response was studied in Ref. 10, while the studies in Re
were of a more general nature. The application of the res
of Saffmanet al.9 to the case of nonlocal response reveale
total lack of instability, which was in sharp contrast to t
results of the experiments with KNbO3 and BaTiO3. Re-
cently it was shown11 that the previous work in Refs. 9 an
10 contains an elementary error, i.e., a number of impor
contributions related to the transverse modulation of the li
intensity were omitted from the initial system of equatio
for the weak secondary waves. Honda and Banerjee11 de-
rived a general system of equations for the amplitudes
weak waves that allow for all important contributions. Th
applied it successfully in analyzing the transverse instab
threshold in KNbO3 with nonlocal photorefractive respons

The threshold conditions for instability were obtained
Ref. 11 with two restrictions:~a! the reflection of light from
the feedback mirror positioned behind the crystal is co
plete, and~b! the waves are strictly frequency degenera
Condition ~a! is important for media with nonlocal photore
fractive response. The point here is that the pump beam
such media exchange energy due to diffraction by
refractive-index reflection grating shifted byp/2 in relation
to the light intensity distribution.12 In this way the contrast o
the initial interference light pattern varies in space. Stud
of the stability of such a spatially inhomogeneous initial st
are extremely difficult, however. For media with nonloc
response, condition~a! realizes the only known special cas
where the contrast of the interference light pattern is c
stant. Condition~b! involves not the experimcental cond
tions but the type of solution corresponding to instabili
We believe that this condition is justified for media wi
nonlocal photorefractive response, since the secondary
structures observed with the experiment are immobile.

The goal of this paper is to correct the error we made
Ref. 10 and to study threshold conditions for the emerge
of transverse instability in a medium with local photorefra
tive response. This is most important for LiNbO3 and LiTaO

3 crystals, where the photovoltaic effect is the domina
transport mechanism.13 The case of local response is al
interesting from the theoretical viewpoint. Energy exchan
between pump beams is absent here, so that stability o
initial state of the light field can be studied without restr
tions on the experimental conditions. In particular, the pu
beam intensity ratio can be assumed arbitrary. On the o
hand, there is no reason to assume that the secondary
patterns are of the standing type in the case of local respo
The frequency detunings between the side waves and
pump waves at the instability threshold are obtained thro
calculations.

2. THEORETICAL PREREQUISITES

The geometry of the problem is given in Fig. 1. The
are two counterpropagating pump waves,a andb, and two
symmetric pairs of weak side waves,g,g8 and d,d8. All
waves are assumed to have the same polarization. We
assume that the pump waves have equal frequenciesv, i.e.,
the interference pattern formed by the waves is of the sta
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ing type. Generally, the side wave frequencies differ fro
v. The corresponding frequency detunings, however, can
considerably exceed the reciprocal relaxation time of
space-charge field,td

21 , since otherwise, as shown in Re
12, photorefractive nonlinearity becomes ineffective. In t
experiment the important detuning values do not exc
(102–103) s21. Such small detunings have little effect on th
wavelengths of the light.

The wavesa, b, g, g8, d, andd8 form three reflection
gratings of the space-charge field~see Fig. 1b!; the funda-
mental gratingf , with spatial frequencyK f5ka2kb , writ-
ten by the pump beams, and gratingsp andd, with vectors
K p5kd2ka5kb2kg8 and Kd5kg2kb5ka2kd8, formed
by the weak side waves. Here we ignore reflection grati
written by pairs of weak waves and transmission gratin
The weakness of the latter in experiments with LiNbO3 is
due to the special features of electron transport.12,13

The slow wave amplitudesAj ( j5a,b,g,g8,d,d8) con-
sidered as functions of positionz and timet vary because of
the diffraction of light by the spatial gratings. If byEf ,p,d we
denote the complex-valued amplitudes of the space-ch
field at frequenciesK f ,p,d , then according to the results o
Ref. 10 we have the following expressions for the side wa
amplitudes in the paraxial approximation:

S ddz1 iD DAg52 is~EdAb1EfAd!,

S ddz1 iD DAg852 is~Ep*Ab1EfAd8!,
~1!

S ddz2 iD DAd5 is~EpAa1Ef*Ag!,

S ddz2 iD DAd85 is~Ed*Aa1Ef*Ag8!,

where s5pn3r /l, and D5pnu2/l, with n the refractive
index, l the vacuum wavelength of the light,r the corre-
sponding component of the electrooptical tensor, andu the
propagation angle for weak waves in the crystals~Fig. 1a!.
As applied to lithium niobate and lithium tantalate crysta
n5n0 is the ordinary refractive index, andr5r 13 is the tabu-

FIG. 1. Geometry of the problem: a—wave vectors of the pump wa
(a,b) and the side waves (g,g8 andd,d8); b—vectors of the spatial reflec
tion gratingsf , p, andd. The frequency detunings for the side waves a
6V.
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the differencek2ukzu for the wave vectors of the side wave
~see also Ref. 10!.

The pump wave amplitudes are not constants. T
change because of diffraction by the gratingf ,

dAa

dz
52 isEfAb ,

dAb

dz
5 isEf*Aa . ~2!

Equations~1! and~2! for the wave amplitudes do not conta
time derivatives, since in the case of photorefractive non
earity they are small because of the large inertia of the sp
charge field.12,13

Equations~1! and ~2! for the wave amplitudes are not
complete set. They must be augmented by relationships
pressing the grating amplitudeEf ,p,d in terms of wave am-
plitudesAj . To obtain these expressions we use the follo
ing starting relationship for the space-charge fieldE:

]E

]t
1IẼ5Eph Ĩ , ~3!

wheret5t/td is dimensionless time,I is the light intensity
normalized to the total intensity of the pump beams,Eph is
the characteristic photoinduced field, and the tilde stands
the spatially oscillating part of the particular quantity. F
lithium tantalate and lithium niobate,Eph is the photovoltaic
field ~an important characteristic of the crystal!, andtd is the
dielectric relaxation time, which is inversely proportional
the pump intensity. The fact that the fieldEph in ~3! is real
guarantees that the photorefractive response is local, i.e.,
there is no phase shift between the standing intensity gra
and the distribution of the space-charge field.

Equation~3! implies that the amplitude of the standin
grating f induced by the pump wavesa andb is

Ef5Eph

AaAb*

uAau21uAbu2
. ~4!

In deriving ~4! we ignored higher spatial harmonics wi
wave vectors that are multiples ofK f . As is known, even if
uAau25uAbu2 and we allow for such harmonics, they provid
no significant contribution toEf . In accordance with Eqs
~2! and ~4!, the pump wave intensitiesuAa,bu2 are indepen-
dent of positionz.

Generally, the reflection gratingsp andd are not of the
standing type. Their amplitudes can be found in the lead
~linear! approximation from the side wave amplitudes. A
Eq. ~3! implies, there are two types of contribution to th
amplitudesEp andEd . First, to obtain thep andd harmon-
ics we must allow for modulation of intensityI at the spatial
frequenciesK p andKd on the right-hand side of Eq.~3! and
ignore intensity modulation in the second term on the le
hand side. Contributions of this type were taken into acco
in Refs. 9 and 10. Second, we can take into account
fundamental harmonic ofE in the second term and at th
same time allow for transverse intensity modulation at
spatial frequencyK t5Kd2K f[K f1K p ~Fig. 1b!. Contribu-
tions of this type were ignored in Refs. 9 and 10 but we
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eracy! in Ref. 11. Clearly, the amplitudes of the intensi
gratings at the spatial frequenciesK p,d,t are

I p5
Aa*Ad1AbAg8

*

uAuS
2 , I d5

AaAd8
* 1Ab*Ag

uAuS
2 ,

~5!

I t5
Aa*Ag1AaAg8

* 1Ab*Ad1AbAd8
*

uAuS
2 ,

where uAuS
25uAau21uAbu2. Since the amplitudeEf is inde-

pendent oft, the time dependence ofI p,d,t fully determines
the time dependence of the amplitudesEp,d . Equations~5!
readily suggest that only when the frequency detunings
the side waves,V j5v2v j , satisfy the conditions

Vg5Vd52Vg852Vd8[V, ~6!

each of the gratingsp andd consists of a single~traveling!
component, and each side wave contains only one temp
harmonic~see also Fig. 1!. Assuming that these condition
are met and thatEp,d } exp(2iVt), we see that Eq.~3! yields

Ep5
EphI p2Ef* I t

11 in
, Ed5

EphI d2EfI t
11 in

, ~7!

wheren5Vtd . The dimensionless detuningn can be inter-
preted as an internal degree of freedom for the side wav

Plugging ~4! and ~7! into ~1! and allowing for~5!, we
arrive at a closed system of linear equations for the s
wave amplitudes. This system can be additionally simplifi
by going over to normalized wave amplitude
ag,g85Ag,g8Aa

21 andad,d85Ad,d8Ab
21 . Allowing for phase

modulation of the amplitudesAa,b via Eqs. ~2! and doing
simple calculations, we arrive at the following system
homogeneous linear equations with constant coefficients

S ddz1 iD Dag5 ig~Vbag1Vag8
* 2Vbad2Vad8

* !,

S ddz2 iD Dag8
* 52 ig~Vag1Vbag8

* 2Vad2Vbad8
* !,

~8!

S ddz2 iD Dad5 ig~Vaag1Vag8
* 2Vaad2Vad8

* !,

S ddz1 iD Dad8
* 52 ig~Vag1Vaag8

* 2Vad2Vaad8
* !.

Here g5pn3rEph /l is the couping constant, andV, Va ,
Vb are dimensionless parameters:

V5
m2

4~11 in!
, Va,b5

m2

4
1

in

11 in
I a,b
2 , ~9!

where I a,b are the normalized pump wave intensiti
(I a1I b51), andm52AI a ,I b is the original interference
pattern contrast.

The system of equations~8! couples four amplitudes
ag , ag8

* , ad , and ad8
* . The presence of at least one sid

wave means that the other three are also present. In the
of strict frequency degeneracy (n50) we haveV5Va,b

5m2/4; the system of equations~8! coincides with the one
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obtained in Ref. 11 for a real coupling constant. When the

a

he

.

ol

ac

s

t
th

be
tp
I
ic
a

it-
n
s
n

te

ly
s
e
n
-
se

o
ng

This type is most easily realized in experiments.
nd

ary
-
c-

in
sist

cy
t al-

of
-

e
be

ric
lead

r

fer-
ic
-

st
e

e
e

pump wave intensities are equal,I a5I b51/2, with m51,
we have

V5
1

4~11 in!
, Va5Vb5

112in

4~11 in!
. ~10!

The sign of the coupling constantg in ~8! depends on the
type of crystal and experimental conditions. The caseg.0
corresponds to a defocusing nonlinearity, and the c
g,0 to a focusing nonlinearity. In LiNbO3 and LiTaO3 with
dominant photovoltaic transport, the nonlinearity is of t
defocusing type,g.0.

Let us examine some properties of~8!. At n50 and
m51 the directions1z and2z prove physically equivalent
As a result of this spatial symmetry, the system~8! allows
for solutions in the form of symmetric (S) and antisymmetric
(A) modes,ag,g8(z)56ad,d8(2z). As shown later, this
symmetry property simplifies the structure of the thresh
equations for transverse instability considerably. Forn Þ 0
andm Þ 1 the property of spatial symmetry is lost.

Note that in the case of strict frequency degener
(n50) each of the parametersV, Va , andVb is proportional
to m2. However, whenn Þ 0, only two of these parameter
tend to zero asm decreases. This means that form2!1 the
mutual coupling of the wavesg, g8, d, andd8 strengthens
because a frequency detuning is introduced. As shown la
this leads to the formation of traveling light patterns near
transverse instability threshold.

3. THRESHOLD CONDITIONS

3.1. General considerations

A threshold equation for transverse instability can
obtained from the condition that there can be nonzero ou
amplitudes of the side waves for zero input amplitudes.
other words, the equation corresponds to a situation in wh
the transmission coefficient for an infinitely weak sign
~say, the waveg) at the input becomes infinitely strtong.

The possibility for transverse instability to manifest
self is related solely to the fact that the boundary conditio
for the wavesg,g8 andd,d8 are fixed on the opposite face
of the crystal. To be definite, let us suppose that the entra
and exit faces are atz52 l /2 andz5 l /2, so thatl is the
thickness of the nonlinear layer. Then, by solving the sys
of homogeneous linear differential equations~8! we can ex-
pressaj ( l /2) with j5g,g8,d,d8 in terms ofaj (2 l /2) via a
fourth-order matrixT̂( l ). Next we must express algebraical
the exit valuesad,d8(2 l /2) in terms of the entrance value
ad,d8( l /2). The transmission coefficient for weak waves b
comes infinite if the second-order determina
TddTd8d82Tdd8Td8d vanishes. A similar procedure for find
ing the threshold condition of cavityless lasing has been u
earlier for a number of six-beam configurations~see, e.g.,
Refs. 19 and 20!.

The type of threshold equation depends on the type
boundary condition. Below we discuss only vanishi
boundary conditions:

ag,g8~2 l /2!50, ad,d8~ l /2!50. ~11!
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Generally the threshold condition is complex-valued a
includes external parameters~the crystal thicknessl and the
pump beam intensity ratior5I b /I a) and internal param-
eters, which allow for automatic adjustment of the second
waves~the propagation angleu and the dimensionless detun
ing n). Solution of the threshold equation yields the fun
tions l5 l (r,u) andn5n(r,u). Minimization of l as a func-
tion of u yields the threshold valuel th(r) and the threshold
values of the emission angle and detuning,u th(r) and
n th(r). When finding the threshold values one must bear
mind that the solution of the threshold equation may con
of a sequence of branches forl (u,r) andn(u,r).

3.2. Standing light patterns

What is important is that for strict frequency degenera
the threshold equation becomes real. This means that i
lows for the solutionn50 andl5 l (u,r). As noted in Sec. 2,
at n50 the system of equations~8! is symmetric under the
z→2z transformation and a simultaneous permutation
indicesg,g8↔d,d8. As a result the system is invariant un
der the substitution ofr21 for r. The vanishing boundary
conditions ~11! are also invariant under reflection in th
z50 plane. For this reason the threshold condition can
written as

S~ l ,u,m!A~ l ,u,m!50, ~12!

i.e., it splits into two equations,S( l ,u,m)50 and
A( l ,u,m)50, where the first corresponds to the symmet
mode and the second to the antisymmetric. Calculations
to the following expressions for the factorsS andA:

S5D sin
D l

2
sinh

G l

2
1G cos

D l

2
cosh

G l

2
,

~13!

A5D cos
D l

2
cosh

G l

2
2G sin

D l

2
sinh

G l

2
,

where

G5ADgm22D2. ~14!

The factorsS and A are real for all values of the angula
parameterD and any sign of the coupling constantg. At the
same time, their structure depends on the sign of the dif
encegm22D. If the difference is negative, the hyperbol
functions ofG l /2 in ~13! become the corresponding trigono
metric functions. Note that the pump wave intensity ratior
enters into ~13! through the interference pattern contra
m52/(r1/21r21/2). This fact is a direct consequence of th
spatial symmetry of the problem mentioned earlier.

Clearly, the parametersg, l , andm enter into~13! as two
dimensionless combinations:

x5
D

gm2 , y5 lgm2. ~15!

This simplifies the analysis of threshold conditions. If w
know the valuesxth and yth corresponding to the absolut
minimum of the functiony(x), we use~15! and immediately
arrive at the dependence ofl th andu th onm andg. We note,
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however, that thel th } m2 andu } m dependences that follow
from ~15! are sharper than those found in Ref. 10.

Each of the equationsS(x,y)50 andA(x,y)50 pro-
duces a sequence of branches for the functionsy(x).
Branches belonging to one symmetry (S or A) never inter-
sect, but those belonging to different symmetries (S andA)
do. The two lowest branchesy(x) corresponding toS- and
A-modes are the most interesting. Their points of intersec
can be found from the condition thatA(x,y)5S(x,y)50.
The answer is

xj5
~ j11!2

2 j11
, yj5p

2 j11

j11
, ~16!

where j is a positive integer.
We can now easily see that forg.0 the equation

A(x,y)50 has a solutiony5p at x51, with this point cor-
responding to a local minimum of the functiony(x). More-
over, numerical calculations show that the particular solut
established above corresponds to the absolute minimum
y(x). Hence for the threshold valuesl th andu th, we have

l th5
p

gm2 , u th5mnArEph. ~17!

Note that atm51, the angleu th coincides with the value
found in Ref. 10, and the thicknessl th exceeds the previou
value by a factor ofA2.

Figure 2 depicts the two lower branches ofy(x) corre-
sponding to theA- andS-modes. They fully agree with the
above properties and are qualitatively similar in structure
the branches obtained in Ref. 10. Note that each branc
y(x) exhibits a sequence of minima, with the values ofy at
adjacent minima being close. This fact is important for u
derstanding the nonlinear stage in transverse instability,
the structure of the emergent secondary light patterns.

3.3. Traveling light patterns

Let us assume that the dimensionless detuningn is non-
zero. We begin with the case of equal pump wave intensit
r51. Here the system~8! still allows for a solution in the
form of A- andS-modes, while the threshold condition ma
be written in the form~12!. Calculations lead to new expres
sions for the factorsA andS:

FIG. 2. The parametery5 lgm2 as a function ofx5D/gm2 for the antisym-
metric ~solid curve! and symmetric~dashed curve! modes.
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2 2 D 2 2
~18!

A5D cos
k1l

2
cos

k2l

2
1

k1k2

D
sin

k1l

2
sin

k2l

2
,

where

k15AD~D2eg!, k25AD~D2g!, ~19!

with e5 in/(11 in). At n Þ 0 the factorsA and S are
complex-valued, while atn50 they are given by the previ
ous formulas~13! if we setm to unity. The first problem that
emerges in studying the threshold equationA50 andS50 is
whether these equations have at least one solutionl5 l (D)
and n5n(D) with n Þ 0. Numerical calculations reveal
lack of such solutions. In other words, atm51 the light
patterns emerging near the instability threshold are of
standing type.

Investigation of the instability threshold in the gener
case ofn Þ 0 andr Þ 1 entails enormous difficulties in view
of cumbersome calculations resulting from the lack of spa
symmetry. Such an investigation can probably only be
merical. But when the pump wave intensities differ cons
erably, the problem can be simplified. Furthermore, fro
general considerations it follows that in this limit travelin
light patterns correspond to a lower threshold than stand
patterns. This becomes clear if we again turn to the origi
system ~8! and assume, for the sake of definiteness, t
r5I b /I a!1. From~9! it follows that the dimensionless pa
rametersV, Va , andVb are

V.
r

11 in
, Va.

in

11 in
, Vb.r. ~20!

Only the parameterVa remains finite asr→0. On the other
hand, the structure of the system of equations~8! implies that
for Va@V, Vb the coupling between pairs of counterprop
gating waves, which is needed for instability, becomes m
stronger that forVa50 ~i.e., atn50).

To find the threshold condition we must calculate ea
of the matrix elementsTdd , Td8d8, Tdd8, andTd8d , which
couple the amplitudesad andad8, in the leading approxima-
tion in r. This can easily be done by employing the Lapla
transformation in the coordinatez. As a result we arrive at
the threshold equation

cos@2l ~D2ge!#5
2D2ge

2g2rD S D2ge

12e D 2, ~21!

wheree5 in(11 in)21, in accordance with the adopted no
tation.

Equation~21! is complex-valued. Its solution consists o
a sequence of branches forl (D) andn(D). Figure 3 depicts
the two lowest branches forl (D) and the corresponding
branches forn(D). We see that the functionl (D) for each
branch is characterized by a single smooth minimum and
dimensionless detuningn corresponding to this minimum is
of order unity. The minimum values ofl for the branches1
and2 are close to each other, but correspond to substant
different values of the angular parameterD. Calculations
show that for each value ofr, the threshold, i.e., minimum
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value of the thicknessl th corresponds to the right-han
branch ofl (D) ~branch1 in Fig. 3a!. Figure 4 depictsl th ,
D th , andn th as functions ofr. As r decreases, the thresho
thicknessl th grows monotonically, tending to infinity loga
rithmically, whileD th andn th remain finite, with the former
slowly increasing and the latter slowly decreasing.

The dashed curves in Figs. 4a and 4b depict the fu
tions l th(r) andD th(r) at n50 corresponding to Eqs.~17!.
Clearly, over the entire range ofr considered here, the
threshold valuesl th andD th for traveling light patterns are
smaller than for standing light patterns. The intersections
tween the solid and dashed curves are outside this ra
where the adopted approximation of small values ofr is
probably inapplicable.

The velocity of the light pattern on a screen near the e
surface of the crystal isv5V/Kt , whereKt52pnu/l. Us-
ing the definitions ofg andD adopted earlier, we arrive a
the following expression for this velocity at the instabili
threshold

v th5
1

2pn2ArEph

l

td

n th

AD th /g
. ~22!

The dimensionless combinationn th /AD th /g slowly de-
creases asr grows, and remains close to unity forr,0.2.

4. DISCUSSION

Let us first estimate the main parameters of the theor
applied to experiments with LiNbO3 crystals. Here the val-
ues of the photovoltaic fieldEph reach 102 kV/cm ~see Ref.
13!. Setting Eph at 25 kV/cm, assuming thatn5n0 and
r5r 13, and using the tabulated valuesn0.2.3 and

FIG. 3. ~a! Two lowest branches~curves1 and2! of the functionl (D) atr5
0.1. ~b! The corresponding branches of the functionn(D).
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r 13.8.6310210 cm/V, we arrive at the following estimate
for the thickness l th and the emission angle in air
u th
a 5n0u th , at equal pump beam intensities:

l th52 mm, u th
a 51.5°. ~23!

For the adopted values of the parameters, the coupling c
stantg is approximately 16 cm21. The estimates do not de
pend on the intensity of the light, and the low value of t
threshold thickness suggests that the conditions for the e
tation of standing and traveling light patterns can easily
met in the experiment.

To estimate the velocity of a light pattern,v th , we must,
additionally, know the space-charge field relaxation tim
td . In LiNbO3 crystalstd usually coincides with the dielec
tric relaxation time and is inversely proportional to the pum
wave intensity. For LiNbO3 samples with highEph, td at an
intensity of 1 W/cm can roughly be estimated at 1 s. This
accordance with~22!, corresponds to a velocityv th of order
1023cm/s. The accurate detection of such slow motion
improbable. This estimate means that laser beams in the
periments must be focused to a power density of or
102 W/cm2.

As noted in the Introduction, we know of three expe
mental papers, Refs. 6, 14, and 15, which with high pro
ability can be classified as reports on observations of tra
verse instability in LiNbO3 crystals. The most detailed
description of the observations can be found in Ref. 6. In t
experiment one focused pump beam was directed at the c
tal, while the counterpropagating beam emerged becaus

FIG. 4. The threshold values of~a! the thicknessl th , ~b! the angular param-
eterD th5pnu th

2 /l, and~c! the dimensionless detuningn th5tdV th as func-
tions of the pump wave intensity ratior. The solid curves correspond t
traveling light patterns and the dashed curves to standing light patterns

886B. I. Sturman and A. I. Chernykh



the relatively weak effect of nonlinear reflection.21,22 The
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intensity of the counterpropagating beam was not monito
but it was certainly much lower than that of the incide
beam. The ring light structures observed in the experim
were of the traveling type, and their velocity increased w
pump wave intensity. The characteristic emission angle
1.5–2°. Thus, we can claim qualitative agreement betw
the observed quantities and those calculated by the ab
theory.

We believe that it would be extremely interesting to co
duct well-planned experiments on transverse instability
LiNbO3 crystals, experiments similar in quality to those do
by Banerjeeet al.,16 and Honda and Matsumoto17,18 with
KNbO3 and BaTiO3. The goal of such experiments would b
to detect secondary light structures emerging near coun
propagating pump beams and to study the properties of t
structures as functions of the intensity ratior, the total light
intensity, the photovoltaic fieldEph , and the sample thick
nessl . The existing preliminary observations and theoreti
calculations suggest that the transverse instability thres
can easily be exceeded, and that above-threshold light s
tures are many and varied.

5. CONCLUSIONS

We have shown that when propagating in LiNbO3 and
LiTaO3 crystals with dominant photovoltaic transport, cou
terpropagating laser beams become unstable against the
mation of small-angle (ua.1°–2°) light structures, starting
at interaction lengthsl.1–2 mm. As the original interfer-
ence pattern contrast decreases, the excitation of stan
light structures is replaced by the excitation of traveli
structures. Published data suggest that it is easy to ex
the discussed transverse instability in LiNbO3:Fe and
LiNbO3:Cu crystals, and they agree qualitatively with t
results of the theory. Thorough research on transverse in
bility ~similar to the experiments involving KNbO3 and Ba-
TiO3 crystals with dominant diffusive transport! in these
nonlinear materials has yet to be conducted.
887 JETP 84 (5), May 1997
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1!These are also known as the cases of real and imaginary coupling
stants.
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Multilevel rotational transitions in the intermediate stage of three-photon ionization of

eac-
molecules
G. K. Ivanov, G. V. Golubkov, S. V. Drygin, and I. E. Cherlina

N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russia
~Submitted 29 October 1996!
Zh. Éksp. Teor. Fiz.111, 1624–1632~May 1997!

Ionization and dissociation of diatomic molecules induced by a weak field~after preliminarily
populating an intermediate level! and by intense, linearly polarized monochromatic
radiation have been studied. Field-induced mixing of rotational components of various
electronic–vibrational states of molecules~such as CO, NO, etc.! at field strengthf;1024–1025

atomic units can lead to migration among states with different angular momentaJ. Therefore,
ions with rotational momentaJ1 much higher than those prescribed by selection rules for three-
photon absorption can be formed from molecules in the ground state. The possibility of
selective formation of ions withJ1@1 and zero projection of the angular momentum on the
polarization vector of the external electromagnetic radiation has been investigated. ©1997
American Institute of Physics.@S1063-7761~97!00705-1#
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In this paper, we discuss a new class of phenomena
lated to the emergence of rotational structure in diatom
molecules subject to resonant multiphoton ionization a
dissociation. The behavior of diatomic molecules in stro
electromagnetic fields has attracted a lot of researchers
tention, primarily because these effects have numerous
plications in various fields of modern physics.1 Special atten-
tion has been focused on analyzing the feasibility of con
over elementary chemical reactions through external ra
tion, and the generation of reaction products with specifi
properties.2–4

In recent years, several effects which show up m
clearly in the ionization continuum have been detect
These include, above all, the above-threshold dissocia
~ATD! reaction,5–7 which is an analog of above-thresho
ionization in atoms,8 which has been studied in detail. No
that dissociation rate is appreciable at an external elec
magnetic field intensity of orderI;1013 W/cm2. Further-
more, a process termed molecular bond softening~BS!7,9 is
dominant at higher intensities,I;1014 W/cm2.

In addition to these phenomena, the effects of molecu
stabilization3,9–11and dissociation of molecules aligned wi
the electromagnetic field polarization vector~molecule align-
ment! have been observed.2,12 The former process occurs a
high radiation intensities,I;1014 W/cm2, and results from
the formation of laser-induced bound states. The latter p
cess is characterized by a maximum in the angular distr
tion of dissociation products in the direction of the polariz
tion vector.

Theoretical methods of investigation of molecules in
electromagnetic field and recent experimental results w
discussed in detail in the comprehensive review13 and in the
recent series of publications.12,14,15

Note that the role of molecular rotation, whose effect
elementary chemical reactions cannot be predicteda priori,
has been widely discussed in the literature. In most ca
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tion channels can be involved, owing to nonadiabatic c
pling between electronic and rotational degrees of freed
A similar situation occurs when molecules in excited ele
tronic states are produced in an intermediate stage of a r
tion. In some cases, rotation can lead to effective inhibit
of a reaction. This occurs in resonant photoionization of
atomic molecules XY when laser-induced bound states o
lapping with the dissociative continuum of X1Y states are
produced.16 In most publications on multiphoton ionizatio
and dissociation, this issue has essentially been ignore17

since molecular spectra can be interpreted in terms of fi
molecular orientation owing to the small rotational consta
of most molecules. Molecular rotation was taken into a
count by the authors of some recent publications,12,14,15but it
is not important for the two-photon absorption discussed
them because it leads formally only to a modification
transition matrix elements in corresponding equations.

The situation is radically different in processes of thre
photon~112! absorption described by the following chain
reactions:

XY ~ i !→
\V

XY* ~r0v0J0!→
\v f

XY* ~r1v1J1!→
\v f HXY11e2

X1Y
,

~1!

whereu i & is the initial state of the molecule XY. The state
ur0v0J0& can either be highly excited Rydberg states or lo
lying electronic states. Rovibrational levels of the sam
group (r0v0J0) populated after absorption of a photon\V of
the weak ~probing! field are coupled to the higher-lying
group of levels (r1v1J1) by the intense electromagnetic fie
~herer0 and v0 are the electronic and vibrational quantu
numbers, andJ0 is the total angular momentum of the mo
ecule!. If the coupling between vibrational components
these two groups~labeled 0 and 1! due to the field is com-
parable to the energy differenceDEJ between rotational sub
levels within these groups, many states will be involved
the process. The corresponding criterion is as follows:

888$10.00 © 1997 American Institute of Physics



m

FIG. 1. ~a! Diagram of intramolecular transitions;~b! groups of rotational levels of vibronic states ‘‘0’’ (J051, 3, 5) and ‘‘1’’ (J150, 2, 4, 6) resonant with
the intense optical field. The levelJ051 is populated by a photon of the probe optical field\V from a state of the XY molecule. The ionization continuu
corresponds to the states with total angular momentumJp51, 3, 5, 7 of the molecule.
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whereVJ0J1
01 is the matrix element of the field coupling be

tween states ‘‘0’’ and ‘‘1.’’ If r0 andr1 are highly excited
~Rydberg! states, the matrix element can be estimated by
simple analytic formula18

VJ0J1
01 ;

f

n0
3/2n1

3/2v f
5/3, ~2!

where f is the external field strength, andn0 andn1 are the
principal quantum numbers of states ‘‘0’’ and ‘‘1’
(\5me5e51). For example, in the case of the atmosphe
molecules N2, NO, CO, and O2, the parameterDEJ;1025

and 1024 at J51 andJ510, respectively. Therefore, star
ing with the valuesn0'5 andn1'10 and the external field
frequencyv f;1022, the condition~2! is satisfied at field
strengths as low asf;1025–1024. Under these conditions
the two-level resonant approximation does not apply, a
more complex schemes of multilevel transitions must
used. An important point is that the intermediate states of
process are close to the boundary of the ionization c
tinuum of the statese21XY1 and can predissociate; th
interacting resonant states have common~correlated! con-
tinua of final states. Therefore, introduction of phenome
logical parameters for description of level broadening wid
used in multilevel resonant approximation cannot be use
this case. The solution of the formulated problem is d
scribed below in terms of the stationary method of radiati
collision matrix,19–21which uses information about couplin
between bound states and amplitudes of direct transit
between bound and free states. Since the process is desc
in terms of transition amplitudes, the contributions of cor
lated and uncorrelated continua of final states to effec
interactions between unstable states can be consistently t
into account. This allows us to investigate in detail featu
of photoionization spectra and the shape of the distribu
of produced ions over the angular momentumJ1. The appli-
cation of the theory is illustrated by taking CO molecule
an example.
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THREE-PHOTON IONIZATION OF MOLECULES

Let us assume that the initial molecule XY in theJiM
state is simultaneously exposed to two monochrom
sources of linearly polarized light, namely, a weak sou
emitting light with a frequencyV and a powerful one at a
frequencyv f . As a result of multiple absorption with reso
nant excitation of two groups of intermediate rovibration
states ‘‘0’’ and ‘‘1,’’ the speciese21XY1 or X1Y are
produced. A diagram of the studied reaction described by
~1! is given in Fig. 1.

Let us calculate the amplitude of the transition from t
initial state of the molecule XY with the quantum numbe
Lv iJiM to the final statee21XY1 characterized by the
quantum numbersLpvpJpM with the quantization axis
aligned with the vectorf ~herev i andvp identify the vibra-
tional states of XY and XY1, respectively, andL is the
projection of the electron angular momentum on the mole
lar axis!. Supposing thatLS-coupling takes place in the mol
ecule, let us apply, as usual, the approximation adiab
with respect to nuclear rotation. In accordance with the s
rules, the total angular momentumJp and its projectionM
correlate in the usual manner with the angular momenta
the ion (J1, M1) and of the emitted photoelectron (l , m).
Since the radiation of the frequencyV is weak by definition
( fV! f ), the transition amplitudeMip can be expressed as

Mip5^ i uDuCp&, ~3!

whereD is the dipole-moment operator. The wave functi
Cp should be constructed with account of the field-induc
coupling between the groups of states ‘‘0’’ and ‘‘1.’’ There
fore, we use the technique19,20 in which the wave functions
of the continuum are expressed in terms of elements of
T-matrix of radiative collisions, which describes the tran
tions in the systeme21XY1 taking into account the chang
in the number of photons of the external field. The transit
rate is high when the distance between the electron and io
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small, since our model presumes that separated speciese2

1 er

ng
g

-
he
e

a-

d
gy

-

em
on
li-
e-
in

i

re

o-
t i
e

ule

ith

bronic! levels Er0v0
and Er1v1

(Er0v0
'Er1v1

2v f) are
ld-
ld

our

e
.
een
As
’’
-

n
tum
ic
of
lting
ex-
ctra

In

ers
ite

s
as-
lds

ong
th

n-
and XY do not interact with the external field. The latt
condition holds provided that

j5 fv f
25/3!1. ~4!

This condition allows us to construct a wave function taki
into account the coupled states ‘‘0’’ and ‘‘1’’ without usin
the perturbation theory.

The ionization amplitude can be expressed as20

Mip5Di0

1

E2E0
T0p , ~5!

whereDi05^ i uDu0& is the dipole matrix element of the tran
sition (i→0), E is the system energy after absorption of t
photonV, andE0 is the unperturbed energy of the ‘‘0’’ stat
measured with respect to the ground state of the XY1 ion.
The elementsT0p are derived from the equation for the r
diative collision matrix

T5T81T8(
s,k

usk&^sku
E2Es2kv f

T, ~6!

where the resonant discrete~or quasi-discrete! states are ex-
plicitly separated~in this specific case, these are ‘‘0’’ an
‘‘1’’ !. Nonresonant terms are included in the weakly ener
dependent matrixT8, whose elements, if the condition~4!
holds, can be expressed as

Tsksk8
8 5tsksk82 i(

p,k9
tskpk9tpk9sk8 . ~7!

The parameterstsksk8 with k85k61 characterize the di
rect field-induced coupling between the statessk and sk8,
which have different numbers of photons in the syst
(k,0 corresponds to a decrease in the number of phot
i.e., absorption!. In order to characterize the partial amp
tudestsk ,p , which describe the transition from the interm
diate usk& state to thep-continuum, the equations include,
addition to the quantum numbersJp , Lp andM , the index
k, which identifies the change in the number of photons
the system. These amplitudes are related, as usual, to
total width of the level:

Gsk
52gsk

52(
p

utsk ,pu
2, ~8!

which includes, accordingly, natural linewidths due to p
dissociation of the molecule XY.

3. FIELD-INDUCED POPULATION OF HIGH ROTATIONAL
STATES OF IONS IN MULTIPHOTON IONIZATION

Let us investigate the possibility of populating high r
tational states in the process of multiphoton ionization. I
sufficient to limit our discussion to a simple seven-lev
scheme of three-photon absorption,\V12\v f , whose dia-
gram is given in Fig. 1b. Then the transition of the molec
XY from the lowest rotational state withJi50 occurs under
the conditions when groups of rotational sublevels w
J051, 3, 5 andJ150, 2, 4, 6 of the states ‘‘0’’ and ‘‘1’’
identified with the two respective electronic–vibrational~vi-
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formed during the intermediate stage, owing to the fie
induced coupling. An important point is that at a fie
strengthf;1024 the contribution of states with higherJ is
negligible because the matrix elementsV01 are much smaller
than the distance to the nearest level not included in
scheme. In our model, the working level~i.e., the one previ-
ously populated by the weaker radiation at the frequencyV
from the initial state of the molecule XY! is the vibronic
level (r0v0J051). The field-induced coupling between th
groups of vibrational states ‘‘0’’ and ‘‘1’’ is shown in Fig
1b by solid arrows, and the exchange with photons betw
the state ‘‘1’’ and continuum is shown by dashed arrows.
noted above, rotational sublevels of the groups ‘‘0’’ and ‘‘1
corresponding to differentJ can be, generally speaking, pre
dissociative levels with natural widthsGe52utsk ,du

2.
Above all, we wish to study the feasibility of formatio

and separation of ions in states with high angular momen
J1. With this end in view, we ignore nonadiabatic vibron
coupling, which has little effect on the essential features
the process and only shifts the resonant levels in the resu
ionization spectrum. In our calculation, we take as an
ample the CO molecule, whose optical and electron spe
have been studied in detail.22–24

In selecting the intermediate states ‘‘0’’ and ‘‘1,’’ we
consider two simple and illustrative physical situations.
the first case, these states are the lower levels ofp and s
Rydberg series with the effective principal quantum numb
n053.321 andn155.123. In the second case, which is qu
different, multiphoton absorption populatess and p series
with quantum numbers n054.099 (ss series! and
n156.337 (ps series!, respectively. For definiteness, let u
analyze the following two schemes of optical transitions,
suming that the vectors of the weaker and stronger fie
fV and f are aligned with each other:

X1S1~Ji50,v i50!→
V

1S1~4ps,J0 ,v051!

�
v f

1S1~6ss,J1 ,v151!→
v f

continuum~Jp ,vp51!, ~9!

X1S1~Ji50,v i50!→
V

1S1~5ss,J0 ,v051!

�
v f

1S1~7ps,J1 ,v151!→
v f

continuum~Jp ,vp51!, ~10!

where the initial state ‘‘i ’’ is the ground stateX1S of the CO
molecule, with quantum numbersJi5M50. Then the state
‘‘0’’ is the set of rotational sublevels with oddJ051, 3, 5,
and the state ‘‘1’’ is the set withJ150, 2, 4, 6. In accordance
with the selection rules, dipole transitions forM50 ~when
DJ561, DL50,61) will populate continuum states with
Jp51, 3, 5, 7. The predissociation states in this case bel
to thes series, in which the natural widths of the levels wi
n156, v51 ~scheme~9!! and n055, v51 ~scheme~10!!
areGe52.4 cm21 andGe51.9 cm21.23 The transition prob-
abilities to the states with variousJp as functions of optical
frequency are shown in Fig. 2.

Figure 2a illustrates the first case, when thes series of
the intermediate group ‘‘1’’ interacts with the ionized co

890Ivanov et al.



FIG. 2. Photoelectron spectra of CO molecule for continuum states withJp51, 3, 5, 7. The solid line corresponds to the states withJp51, the dashed line
to Jp53, triangles toJp55, and squares toJp57. The ionized states belong to~a! ss series~scheme~9!! and ~b! ps series~scheme~10!!.
tinuum. Similar curves for the second case~with the popula-
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tion of the p series! are given in Fig. 2b. The spectra o
multiphoton ionization have been calculated with the init
data taken from Ref. 23 and frequencyv f of the strong field
close to the energy difference between unperturbed le
r0v0 and r1v1 with a detuningD5v f2(Er1v1

2Er0v0
).

These conditions are optimal for populating states with la
J1. For example, in the first casel51 ~scheme~9!!, and
these conditions are satisfied atV5105287.1 cm21,
v f55793.0 cm21, which correspond to a detunin
D512.0•B (B is the rotational constant of the ion CO1) and
f57.2•1025. In the second casel50, 2 ~scheme~10!!, and
these conditions are satisfied atV5108696.1
cm21, v f53797.2 cm21 (D520.4•B), and f51.1•1024.

Now let us discuss features of the resulting ionizat
spectra. Note that these spectra consist of typical reso
peaks, whose positions correspond to groups of rotatio
sublevels of the intermediate states ‘‘0’’ and ‘‘1’’ perturbe
by the applied field. The peaks corresponding to largerJp
due to the multiphoton absorption are localized near th
groups of states. The sidebands of the spectra are du
conventional three-photon absorption (V12v f) with final
statesJp51, 3. We are mostly interested in bands whe
transitions to states with higherJp are dominant. In the firs
case~Fig. 2a! these bands are near the probe frequen
V5105287.0 cm21 andV5105357.5 cm21; in the second
case, illustrated by Fig. 2b, they are nearV5108719.0
cm21.
l

ls

e

nt
al

e
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s

f'1025, resonances with intermediate statesJ055 and
J156, and final statesJp51, 3, 5 are essentially indistin
guishable. When the final state hasJp57, the resonances in
the spectrum are well resolved. The ratio between the tr
sition probability to the state withJp55 and the sum of
transition probabilities toJp51 and 3 is as high as 4. An
additional characteristic of the multiphoton ionization spe
trum is the distribution function of produced ions over rot
tional states with angular momentaJ1 described by the ex-
pression

F~E!; (
l ,m,L,Jp

u~ lJ1mM1uJpM !~ lJ1L0uJpL!Mipu2,

~11!

where (lJ1mM1uJpM ) are the coefficients of vector add
tion. The resulting histograms of ion distribution overJ1 are
shown in Fig. 3.1! The function normalization to unity mean
that the sum of the function values at differentJ1 equals
unity. In the first case, when the angular momentum of
emitted electronl51, the ion rotational momentumJ1

ranges between 0 and 6. In the second case, the ele
angular momentuml can be 0 or 2, and, in accordance wi
the sum rules, the ion rotational moment
uJp2 l u<J1<uJp1 l u, ranges between 0 and 7. Ifl51, ions
in excited rotational states withJ154, 6 are generated with
higher probabilities in the discussed spectral ranges, wh
FIG. 3. Distribution of ions over angular momentumJ1 normalized to unity~the angular momentum of the ejected electron is~a! l51, ~b! l50, 2!.
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the final states with total momentumJp55, 7 dominate be-
1

n
e

n
tr

se
s
a

n
a
th
b
d
er

a
m
he
la
el
ed
o
ue
e
on
al
n

o
ry
-

This work was supported by the Russian Fund for Fun-

ion

er,

ys.

ett.

J.

ont,
causeJ 5Jp11. In the casel50, 2 it takes place for
J155, 7 ~hereJ15Jp ,Jp62).

It is important that the discussed scheme of calculatio
very sensitive to the basic parameters of the theory, nam
the applied field strengthf and detuningD. For example, at
f;1023 the levels are strongly broadened by the field, a
the shape of the ionization spectrum is affected by spec
diffusion, the relation between the parametersuMipu2 being
the same as in the spectrum wings. A similar effect is cau
by an increase in the detuning. Nonetheless, the sugge
scheme of calculation allows one to determine the optim
combination of frequenciesV, v f , and field strengthf for
each specific molecule.

4. CONCLUSIONS

Owing to the interaction between excited molecules a
intense monochromatic light, laser-induced states, which
coherent superpositions of rotational states coupled by
electromagnetic field, are formed when the separation
tween energy levelsD r is comparable to the field-induce
splitting, D r;Vi f

J0J1. Their number equals the total numb
of rovibronic statesCn5(sCs( f ,v f)Fs involved in the pro-
cess, which are autoionization or predissociation states
have lifetimes due to radiative decay longer than the lifeti
due to the most efficient optical transition. Owing to t
migration of population among states with different angu
momenta due to reemission of photons of the stronger fi
it is possible to bring about the optimal conditions requir
for generating molecular ions with high enough angular m
mentaJ1;5–7. This allows one to design a new techniq
for generating slow polarized ion beams with predetermin
distribution over rotational states through the multiphot
ionization of molecules in rotationally nonexcited initi
states~in states with zero projection of the angular mome
tum M on the polarization vector!. Generation of such
beams, certainly, would be interesting from the viewpoint
studying experimentally the role of rotation in elementa
reactions with molecular ions~reactions of dissociative re
combination of electrons and molecular ions,25 near-
threshold photodissociation of molecules, etc.!
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1!The function normalization to unity means that the sum of the funct
values at differentJ1 equals unity.
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Soliton relaxation in antiferromagnets
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We study the relaxation two-parameter one-dimensional solitons in antiferromagnets using the
phenomenological theory. Allowing for relaxation terms of a relativistic and exchange
nature, we set up a system of evolution equations for the constants of the motion of a soliton
and calculate the corresponding integral curves, which describe the variation of the
soliton parameters in the relaxation process. ©1997 American Institute of Physics.
@S1063-7761~97!00805-6#
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One of the most important problems of the physics
magnetically ordered crystals, from both the theoretical a
experimental viewpoints, is the group of questions associa
with the analysis of relaxation processes in magnetic ma
als, which determine such characteristics of magnetic m
rials as ferromagnetic and antiferromagnetic resonance
widths, spin-wave parametric excitation thresholds, and
width of the neutron scattering intensity peak. Lately the
has been an upsurge of interest in studies of the relaxa
characteristics of various nonlinear excitations, such as
mobility of domain walls and the soliton diffusion coeffi
cient.

There are two basic approaches to investigating re
ation processes theoretically: the microscopic and the p
nomenological. The first is based on a detailed microsco
study of the interactions of various excitations of the ma
netic material~linear or nonlinear! with one another and with
other subsystems of the crystal~say, the elastic subsystem!.
The advantage of the microscopic approach is that it mak
possible to find the dependence of the relaxation charac
istics under investigation on the temperature, the defect c
centration, and other parameters of the magnetic mate
which in turn can be found from independent measureme

However, when applied to nonlinear waves, the mic
scopic approach is much more complicated and can actu
be used only to study the simplest solitons of the kink
domain-wall type. Describing the relaxation of more comp
cated solitons~say, of the two-parameter bion type! and gen-
eralizing to multidimensional excitations are nontrivial pro
lems in the microscopic setting, since this requires know
the exact spectrum and wave functions of the magn
against the soliton background, and these are known only
a relatively small number of one-dimensional problems.

An alternative approach is the phenomenological the
proposed in the classic work of Landau and Lifshitz1 long
before the microscopic approach was developed. T
theory did not yield the detailed characteristics of relaxat
processes of the microscopic theory, but it made it poss
to give a general picture of the relaxation of a nonline
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proach, energy dissipation processes were taken into acc
by introducing what became known as relaxation terms i
the dynamical equations of motion for magnetization~the
Landau–Lifshitz equations!.

They proposed the following equation for the magne
zation vectorM in a one-sublattice ferromagnet:

Ṁ52gM3H1R, ~1!

whereH52dW/dM is the effective field,W is the energy
functional of the ferromagnet,g is the gyromagnetic ratio
and the dot stands for the time derivative. In this equation
first term on the right-hand side describes the dynamics
vectorM and the second is the dissipative term, which d
scribes how magnetization approaches its equilibrium va
This dissipative term was written in Ref. 1 as

R5
lg

M
M3~H3M !, ~2!

wherel is the only constant of the theory, the dimensionle
relaxation constant.

Gilbert2 suggested a slightly different form for the diss
pative term, which, however~and this can easily be verified!,
is equivalent to~2!:

R5
l8

M
M3Ṁ , l85

l

11l2 . ~3!

An important property of the equation of motion with
dissipative term of the Landau–Lifshitz type~2! or of the
Gilbert type~3! is that the equation conserves the length
the magnetization vector,uM u5const. Hence, as noted b
Landau and Lifshitz,1 Eq. ~1! is actually an equation for the
unit vectorm5M /M , M5uM u, which describes the state o
the spin system. Moreover, they also noted1 that the dissipa-
tive term only describes relaxation that emerges becaus
relativistic interactions. Indeed, calculating the energy dis
pation rateW522Q, whereQ is what is known as the
dissipative function, via~2! and ~3!, we obtain

893$10.00 © 1997 American Institute of Physics
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2gME dr Ṁ 2. ~4!

Hence energy dissipation occurs in uniform precess
of magnetization, too. Since only relativistic interactions c
lead to the relaxation of uniform magnetization motion, t
dissipative termR in form ~2! or ~3! is of a relativistic na-
ture.

Starting out with Eq.~1! and the expression~2! or ~3! for
R, we can easily derive such important relaxation charac
istics of magnetic materials as the ferromagnetic resona
linewidthDv5lv0 ~herev0 is the ferromagnetic resonanc
frequency!, the dynamic braking coefficienth for a domain
wall,1 and the damping constant for spin waves.3 However, a
detailed comparison of the results with the experimental d
and the results of microscopic calculations have reveale
number of striking contradictions. The most significa
among these is the incorrect dependence of the damping
stant of spin waves on the wave vector (g(k);k2), while the
microscopic calculations conducted by Dyson4 and Kosh-
cheev and Krivoglaz5 ~see also Refs. 1 and 6! yield the result
g(k);v2(k);k4 for short-wave magnons (kx0@1). In fer-
romagnets of the easy-plane type the result is really abs
in the long-wave limit (k→0), whenv(k);uku→0, the cal-
culation ofg(k) on the basis of~2! yieldsg(k)→constÞ 0,
i.e., @g(k)/v(k)#→` ask→0 ~on the contrary, microscopic
calculations lead to the ‘‘hydrodynamic’’ resu
g(k);v2(k);k2; see Ref. 7!.

We also note that the relaxation constantl obtained
from data on the ferromagnetic resonance linewidth and
mobility of domain walls in high-quality ferrite films may
differ considerably~by a factor of ten or even more; see Re
8!. Moreover, microscopic calculations of the coefficienth
by Abyzov and Ivanov9 and Ivanovet al.10 have revealed
that exchange processes also contribute to the brakin
domain walls~in addition to relativistic processes!.

Thus, the above contradictions suggest that a phen
enological description of many relaxation phenomena
magnetic materials based on a dissipative term of the t
~2! or ~3! is inadequate.

Considerable progress in developing the phenome
logical approach was achieved in Refs. 11–14. There a
type of relaxation terms consistently describing dissipat
processes of both relativistic and exchange nature was
posed. Moreover, the studies revealed how the symmetr
the crystal and the hierarchy of various interactions affect
structure of the dissipative terns and the hierarchy of
corresponding relativistic constants.

In Refs. 11 and 12, Onsager equations with the com
nents of the vectorM taken as the independent generaliz
coordinates were used to find the relaxation terms. In
case the components of the effective fieldH are, as can eas
ily be shown, the generalized forces. It was found that wh
there is weak spatial dispersion~the effective fieldH(r ,t)
slowly varies with the coordinates!, the equation for the
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crystals with a symmetry center!

Ṁ52gM3H1gM$l ikHiek2lea
2DH%. ~5!

The last term on the right-hand side, proportional
DH, describes relaxation processes caused by exchang
teractions in the magnetic material11 ~‘‘minus’’ is chosen for
the sake of convenience, so thatle.0), and the symmetric
tensorl ik (l ik5lki) describes the contribution of variou
interactions of a relativistic nature to the dissipation p
cesses. The form of the tensorl ik is determined by the sym
metry of the magnetic material: in a rhombic magnetic m
terial the tensorl ik is diagonal along the principal axes
l ik5diag(l1 ,l2 ,l3).

Dynamical symmetry plays an important role in sele
ing the constantsl i . In particular, in the exchange approx
mation we have conservation of the total magnetic mom
M total of the body:

M total5E dr M ~r !, ~6!

which means thatl i50 ~this suggests that the correspondi
term in Eq.~5! is of a relativistic nature!. In the model of a
purely uniaxial magnetic material~C` symmetry!, one of the
components of the vectorM total, preciselyM total,z ~herez is
the selected axis!, is a constant of the motion. This implie
that in a uniaxial magnetic materiall ik5diag(l1 ,l1,0) ~the
fact thatlx andly are equal follows from the equivalence o
the axes!.

Allowing for anisotropy in the basal plane changes bo
the dynamical and relaxation terms in the equation of m
tion. If the uniaxial anisotropy energy is much higher th
the energy of the interactions violating the above invarian
the corresponding relaxation constants must exhibit a sim
hierarchy. Here the tensorl ik has the form

l ik5diag~l1 ,l1 ,l3!, l3!l1 . ~7!

The ferromagnet’s dissipative function corresponding
~5! can be written as11,13

Q5
1

2E dr gM$l ikHiHk1lea
2~¹•H!2%, ~8!

where the factorsgM anda2 (a is the lattice constant! have
been introduced so that the relaxation constantsl ik andle

are dimensionless.
Clearly, using Eq.~5! in the exchange approximatio

(l ik50) and in the case of a uniaxial ferromagnet leads
the proper dependence of the spin-wave damping constan
the wave vector in the long-wave approximation, consist
with the one obtained by microscopic calculations. Mo
over, the presence of at least two relaxation constants in
theory makes it possible to match experimental data on
ferromagnetic resonance linewidth and the braking of a
main wall.11

It is important to note that the equation of motion~5!, in
contrast to equations with a relaxation term of the type~2! or
~3!, does not conserve the length of the magnetization vec
uM u Þ const, which complicates the study of relaxation in t
system considerably.
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For two-sublattice antiferromagnets, objects that we are
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studying in this paper, similar relaxation terms and a dis
pative function allowing for the symmetry of the magne
material and exchange relaxation were obtained in Refs
and 14. There, on the basis of Onsager equations in w
the generalized coordinates were the components of the
tors M and L , where M5(M11M2)/2 and
L5(M12M2)/2 are, respectively, the vectors of weak fe
romagnetism and antiferromagnetism, withM1,2 the sublat-
tice magnetization vectors, and the generalized forces w
the effective fieldsH52dW/dM andF52dW/dL (W is
the antiferromagnet’s energy functional!, it was established
that the dissipative function of the antiferromagnet has
form

Q5
1

2E dr g uL u$l ikHiHk1lea
2~¹•H!21l0F

2%, ~9!

where the tensorl ik is of a relativistic nature, and the con
stantsle and l0 of an exchange nature. The dissipati
terms in the equations of motion for the vectorsM andL are
determined by the relationshipsRM5dQ/dH and
RL5dQ/dF ~see below!.

In the present study we use a dissipative function of ty
~9! to develop the phenomenological approach for describ
the relaxation of nonlinear excitations in two-sublattice an
ferromagnets. As an example we study the relaxation of t
parameter solitons. A similar problem for two-parame
solitons in one-sublattice ferromagnets was studied in R
15.

As in Ref. 15, to describe the evolution of the paramet
of the excitations being considered we use the fact that
corresponding relaxation constants are small, which mak
possible to invoke perturbation theory techniques. For s
tons in exactly integrable systems, there exists a spe
form of perturbation theory based on the inverse scatte
problem~see, e.g., Refs. 16 and 17!. Here we use a simple
version of that theory, which amounts to setting up evolut
equations for the constants of the motion of the unpertur
system. The equations describe the slow evolution of
parameters of the initial excitation as a result of dissipati
The simplest variant of this approach was used by McLau
lin and Scott18 to study fluxon damping in Josephson jun
tions by applying the perturbed sine–Gordon equation. T
advantage of such an approach is that it can be used
when the initial equation is not exactly integrable, say,
analyzing three-dimensional magnetic solitons.19

2. THE GENERAL EQUATIONS

If we use the two-sublattice antiferromagnet model,
equations of motion for the ferromagnetism and antifer
magnetism vectors with allowance for dissipative terms h
the form

2
2

g
Ṁ5M3H1L3F1RM ,

~10!

2
2

g
L̇5M3F1L3H1RL .
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fields;RM andRL are relaxation terms determined by a d
sipative function (RM5dQ/dH and RL5dQ/dF). The
structure of the dissipative functionQ, which allows for both
exchange and relativistic relaxation, was determined in R
12 and 14 and can be written in the form~9!.

As in ferromagnets, the symmetry of the tensor of t
relativistic relaxation constants,l ik , is determined by the
symmetry and hierarchy of relativistic interactions. In pa
ticular, in the case of the uniaxial antiferromagnet under c
sideration, the tensorl ik has the form~7!, just as it does in
the case of ferromagnets. Here the dissipative termsRM and
RL are expressed as follows:

RM5guL u~l1H'2lea
2DH!,

~11!
RL5guL ul0F,

whereH' is the component of the effective fieldH perpen-
dicular to theZ axis.

In the nondissipative approximation, the magnetizat
vectors in an antiferromagnet whose temperature is m
lower than the Ne´el temperatureTN have a constant length
uM1,2u5M0, with the result that there are two identities link
ing the vectorsM andL :

p[M•L50, s[M21L22M0
250. ~12!

An important aspect of Eqs.~10! with the dissipative
term ~11! is the fact that these equations do not conserve
length of the magnetization vectors of the sublattices~in the
same way as Eq.~5! does not conserve the length of vect
M in a ferromagnet!:

Ṁ15m1•~RM1RL!, Ṁ25m2•~RM2RL!, ~13!

mi5
M i

uM i u
, i51, 2,

with dMi /dt Þ 0 for vectorsRM andRL of the form~11!.
Consequently, the quantitiesp ands are not conserved

either:

ṗ5RM•L1RL•M , ṡ52~RM•M1RL•L !. ~14!

Describing the relaxation of a magnetic excitation r
quires solving Eqs.~11! with dissipative terms. In most case
the problem cannot be solved~except in the case of simpl
linear spin waves!. Hence, allowing for the smallness of th
relaxation constants, we can employ perturbative techniq
In this paper we analyze the relaxation of nonlinear wave
an antiferromagnet in an approximation that is linear in
relaxation constants and uses a simple perturbation sch
based on building evolution equations for the constants
the motion of the unperturbed system. The essence of
approach is as follows.

Let the magnetization distribution in a nonlinear wave
determined by a set of parametersa1 , a2 , . . . ,an that in the
nondissipative approximation are constants. When the re
ation terms are taken into account, these parameters bec
time-dependent. The corresponding evolution equations
a j ( j51, . . . ,n) can be obtained from the constants of t
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motion for the unperturbed system,I 1 , I 2 , . . . ,I n ~if the sys-
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tem has a solution withn parameters, there are at leastn
constants of the motion!.

One such constant of the motion is the magnetic exc
tion energyE(a j ). The rate at which this energy varies
determined by the dissipative functionQ,

dE

dt
522Q5E dr ~H•Ṁ1F•L̇ !

5E dr ~H•RM1F•RL!. ~15!

On the one hand, we finddE/dt as a linear combination
of the rates of variation of the nonlinear wave paramete
da j /dt; on the other, we calculate the value ofQ as a func-
tion of these parameters. Then we equate the two and a
at an energy balance equation, which is one of the des
evolution equations, describing the variation of the para
etersa j caused by relaxation processes. Similar equati
can be derived by calculating the rates of variation of ot
constants of the motion. As a result we arrive at a system
n first-order differential equations for the parametersa j of
the nonlinear wave.

The simplest variant of such an approach that uses o
one constant of the motion~the energy! was used in Ref. 20
to analyze the dissipation of one-parameter nonlinear wa
domain walls~the parameter here is the velocity of the d
main walls! with allowance for relaxation and a drivin
force. In Ref. 15 this approach was used to study the re
ation of two-parameter solitons in one-sublattice ferrom
nets, and in Ref. 19 to analyze the relaxation of multidim
sional precession solitons.

An important remark is in order. As noted earlier, t
structure of the dissipative terms~11! is such that they do no
conserve the lengths of the magnetization vectors of the
lattices. SinceM1 andM2 are temperature-dependent, t
equations for the vectorsM and L with allowance for the
relaxation terms~11! cannot, generally speaking, be studi
independently. The system of equations must incorpo
Eqs. ~10!, heat equations~for the lattice and spin specifi
heats!, and the entropy balance equation. However, when
study the relaxation of a magnetic excitation in a tempera
range far from the Ne´el temperature, we implicitly assum
that relaxation leads only to changes in the parameters c
acterizing the corresponding solution of the dynamical eq
tions ~‘‘slow’’ relaxation!. Here both the initial excitation
and the final state of the magnetic system are found by s
ing the dynamical equations of motion in which the length
the magnetization vector is fixed. In this way we tacitly a
sume that the magnetic system is in contact with a heat
that instantly balances all variations inM1,2 by supplying or
removing a certain amount of heat to or from the magne
system.

To effectively allow for this implicit assumption, it is
sufficient, in calculating the rate of variation of a constant
the motion, to take into account only relaxation not related
changes inuM1,2u.

Here we must setdM i /dt5Midmi /dt1midMi /dt in
the expressions for the rates of variation of the constant
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lows for relaxation, and leave only the first term.
For instance, instead of Eq.~9! for the dissipative func-

tion Q, we obtain the following after performing som
simple calculations:

Q̄52
1

2 S dEdt D
Mi5const

5
1

2E dr @M1ṁ1•H11M2ṁ2•H2#

5
1

2E dr HH•RM1F•RL2
1

M0
2@~HM1FL!~M•RM

1L–RL!1~HL1FM !~L•RM1M•RL!# J , ~16!

whereHL5(H • L ), FL5(F • L ), HM5(H • M ), andFM

5 (F • M ) ~the first two terms in the integrand in~16! corre-
spond to the total dissipative function!.

In calculatingQ̄ in an approximation linear in the relax
ation constants, the effective fieldsH andF in Eqs.~11! and
~16! must be calculated in the leading~zeroth! approximation
in these constants~this fact has already been employed
deriving Eq. ~16! by assuming thatM15M25M0). In the
nondissipative approximation, bothH and F can be ex-
pressed in terms of the two scalar quantitiesHL andFL as
follows:

H5
1

L2 H 2g @L•L̇ #1LHL1MFLJ ,
F5

1

L2 H 2g @L•Ṁ #1MHL1LFLJ , ~17!

whereL5uL u.
To calculateHL and FL , which we call the collinear

fields, we turn to an explicit expression for the energy o
ferromagnet:

W5E dr @ f ~M1
2!1 f ~M2

2!1w0~M•L !#. ~18!

Here the functionf (Mi
2) determines the energy density o

the uniform exchange interaction inside the sublattices,
is the main factor forming the length of the magnetizati
vectorsM1,25uM1,2u. The termw0(M • L ) describes the en
ergy of nonuniform exchange interaction, the anisotropy
ergy, the energy of the interactions with an external magn
field, etc.:

w0~M•L !5
a

2
~¹•L !21

d

2
M21wa22M•He , ~19!

wherewa is the anisotropy energy, andHe is the external
magnetic field.

At temperatures far from the Ne´el temperature the func
tion f (x) in ~18! has a deep minimum atx5M0

2(T), where
M0(T) is the equilibrium value of the length of the sublattic
magnetization vectors. In this case we can assume that
values ofM1 andM2 close toM0 play an important role.
Hence, approximatingf (x) by the expression
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f ~x!5
~x2M0

2!2
, ~20!
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3. RELAXATION OF A TWO-PARAMETER SOLITON
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4x iM0
2

wherex i!1 has the meaning of the longitudinal susceptib
ity of the antiferromagnet, we use Eq.~18! and readily ob-
tain, in the linear approximation in the parametersp ands,
expressions for the collinear fieldsHL andFL :

HL5
4

x i
p1H0 , H052S dw0

dM
•L D ,

~21!

FL5
2

x i
s1F0 , F052S dw0

dL
•L D .

Naturally, in the final expressions we must letx i go to zero.
Nevertheless, the contribution of the first terms in~21! is
finite, sincep;x i ands;x i .

In the static limitHL5FL50, and the quantitiesp and
s are finite:

p52
x i

4
H0 , s52

x i

2
F0 .

In the presence of a dynamical magnetization wave,
quantitiesHL andFL are usually finite. We can easily deriv
an equation for these quantities by finding the time deriva
of Eqs. ~21! and using the explicit form of the dissipativ
terms~11! and Eq.~14!:

x iL

4g
ḢL2lea

2L2DHL22lea
2@~L¹•L !

3¹HL1~L¹•M !¹FL#1HL@l1L'
21l0M

2

2lea
2~LDL !#1FL@l1L'•M'2lea

2~LDM !#

5
x iL

4g
Ḣ01

2

g
$l1Lz~L•L̇ !z1l0M•~L3Ṁ !

1lea
2L•D~L3L̇ !%, ~22!

x iL

4g
ḞL2lea

2M2DF'22lea
2@~M¹•M !

3¹FL1~M¹•L !¹HL#1FL@l1M'
21l0L

2

2lea
2~MDM !#1HL@l1M'•L'2lea

2~MDL !#

5
x iL

4g
Ḟ01

2

g
$l1M'~ L̇•L !'1lea

2M•D~L•L̇ #%. ~23!

The solution of the system of equations~22! and ~23!
with zero right-hand sides describes the relaxation ofHL and
FL to the equilibrium values. The inhomogeneous solution
this system of equations is finite only in the presence o
dynamical magnetization wave.

We note once more that the system of equations~22! and
~23! was derived to the lowest orders of the small relaxat
constantl and the quantityx i . Hence all coefficients and
right-hand sides of these equations are determined by
distribution of magnetization in the particular excitation, c
culated in the nondissipative approximation.
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For an example of how the above relationships can
used to analyze the relaxation of magnetic excitations i
uniaxial antiferromagnet, we examine the relaxation o
two-parameter soliton.

As is known, the relativistic interaction energy in an
ferromagnets is low compared to that of exchange inter
tion, b, b!d, with the result that over the entire range
applicability of the phenomenological theory of magnetis
(x0@a, wherex0 is the characteristic relaxation size, anda
is the lattice constant! we haveuM u!uL u'M0. Using this
fact, we can show, following the results of Refs. 20, 22, a
23, that nonlinear dynamical excitations in two-sublattice a
tiferromagnets~and weak ferromagnets! can be analyzed by
using the effective LagrangianL

L5E dr H a

2c2
L̇22

a

2
~¹•L !22wa~L !1

4

gdM0

3~he~ L̇•L !!2
4

d
~he•L !2J , ~24!

wherec5gM0(ad)1/2/2 is a characteristic velocity coincid
ing with the minimum phase velocity of linear spin wave
andhe5He /M0. Here, in the leading approximation in th
small parameter (b/d)!1, the length of vectorL remains
constant, uL u.M0, and the ferromagnetism vectorM is
linked to the unit vectorl5L /uL u by the following relation-
ship:

M5
2

gH 1g ~ l̇3 l!1~ l•He!3 lG . ~25!

We write the magnetic anisotropy energy of a magne
material,wa( l), in the following way:

wa~L !5
1

2
bL'

22
1

4M0
2b~L'

2 !2, b.0, b.0, ~26!

whereb andb are the second- and fourth-order anisotro
constants, respectively.

Using the angular variablesu andw that parametrize the
vector l,

l5~sin u cosw, sin u sin w, cosu!, ~27!

we can write the equations of the dynamics of the antifer
magnet under discussion in the following form:

c2Du2 ü1sin u cosuF ~ ẇ2Ve!
22c2~¹w!2

2v0
2S 12

b

b
sin2u D G50, ~28!

a¹~sin2u¹w!2
a

c2
]

]t
~sin2uẇ!1

4he
dgM0

]

]t
~sin2u!50,

v05c/x0, x05(a/b)1/2, andVe5gHe . The external mag-
netic field is assumed directed along the easy-magnetiza
axis ~theZ axis!.

Next we consider only one-dimensional soliton solutio
of Eqs.~28!, corresponding to the boundary conditions
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u→0 or 6p;
]w

,` as uxu→`. ~29!

-

ion
e

ag

i

n

ax
th
s

e
g

in

n
o
se
-
te
a

-

i-
ow.

ter
ed

and
ble
to

d

-
-
to
]x

We start with the case whereb50. Then the solution of
the equations of motion~28! that satisfies the boundary con
ditions ~29! has the following form:22

w5kx2Vt, cosu52tanh@ k̃ ~x2Vt!#,
~30!

k5
~V1Ve!V

c2
, k̃25

b

a~12V2/c2!
2

~V1Ve!
2

c2
.

This solution describes the distribution of magnetizat
in a two-parameter topological soliton of the kink typ
(u(2`)50 and u(1`)56p), which sets this solution
apart from a dynamical two-parameter soliton in a ferrom
net, whose relaxation was studied in Ref. 15.

The parameters determining the soliton’s structure are
translational velocityV and the precession frequencyV.

The soliton solution~30! exists if k̃2.0, or

~V1Ve!
2,

v0
2

12V2/c2
. ~31!

The strength of the external magnetic field,He , is lim-
ited by the condition that there is an immobile solito
He,M0(bd)1/2, or Ve,V0, i.e., by the spin-flop transition
field.

Since the solution is two-parameter, to analyze its rel
ation we must examine two constants of the motion of
unperturbed system. For the constants, which we use to
up the evolution equations for the soliton parametersV and
V, we take the soliton energyE and a quantityN propor-
tional to the totalz-projection of magnetization, which in th
nondissipative case is conserved because the antiferroma
is uniaxial:

N5
1

2m0
E drMz , ~32!

wherem05\g/2 is the Bohr magneton. Note that just as
the case of ferromagnets, the constant of the motionN can be
interpreted as the number of magnons bound in the solito24

Note that using another constant of the motion, the m
mentum P, results in no new equations becau
dE5\vdN1VdP, which is true of any ferromagnet or an
tiferromagnet that allows for the existence of two-parame
solitons.24 To analyze two-parameter nonlinear waves in
biaxial magnetic material, whereI z is not a constant of the
motion, one can use the equations fordE/dt anddP/dt.

The values of the constants of the motionE andN cor-
responding to the soliton solution~30! can easily be calcu
lated:

E5
2E0

k H 1

12m
2ve~v1ve!J , N5

2n0
k

~v1ve!,

E05bM0
2x0 , n05

E0

2\v0
, ~33!

k25
1

12u
2~v1ve!

2, ve5
Ve

v0
,
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wherev5V/v0 andu5(V/c)2 are the dimensionless sol
ton parameters, which prove useful in the calculations bel

The dependence of the soliton energyE on precession
frequencyv given by~33! with V50 andHe50 is depicted
in Fig. 1 ~the dashed curve!.

In the leading approximation in the small parame
b/d, we can drop all terms in the expression for the reduc
dissipative function~16! that are proportional toM . Allow-
ing for ~11! and ~17!, we can then write this function in the
form

Q̄>
1

2gM0
2 E drRM~L3L̇ !5

dgM0

2
E0q~u,v!. ~34!

The function q(u,v) consists of two terms,
q(u,v)5qr(u,v)1qe(u,v), the relativistic term and the
exchange term:

qr5l1^~~ l3 l̇ !'!22hLl z~ l3 l̇ !z&,
~35!

qe5le8^~~ l3 l̇ !8!21hL~ l̇8~ l3 l8!2 l9~ l3 l̇ !!&,

wherele85le(a/x0)
2, andhL5gHL/2M0v0; the prime and

the angle brackets stand for, respectively, differentiation
integration with respect to the dimensionless spatial varia
j5x/x0, and the dot indicates differentiation with respect
the dimensionless time variablet5v0t.

Reasoning along similar lines, for the reduced~i.e., cal-
culated withM1,25const) rate of variation of the secon

constant of the motion,Ṅ̄, we obtain

Ṅ̄52
1

2m0M0
2 E drLz~RML !5dgM0n0h,

h5h r1he , ~36!

h r5l1^ l z
2~ l3 l̇ !z2hLl zl'

2 &, ~37!

he5le8^ l z• l~ l3 l̇ !9!1hL~ l z92 l zl8
2!&.

On the other hand, differentiating the expressions~33!
for E andN with respect to time, we can write the deriva
tivesdE/dt anddN/dt as linear combinations of the deriva
tivesdu/dt anddv/dt. Equating the resulting expressions

FIG. 1. Soliton energyE as a function of precession frequency atV50.
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tions, which describe the evolution of the soliton paramet
v andu:

u̇52dk~12u!2~q1vh!, ~38!

v̇52
dk

2
$~v1ve!~12u!q

2@12~12u!~v1ve!~2v1he!#h%. ~39!

To calculate the expressions on the right-hand side
Eqs.~38! and~39!, we must find the collinear fieldhL . Equa-
tions ~22! and ~23!, which yield the quantitiesHL andFL ,
become independent in the leading approximation in
small parameterb/d, with the result that the dimensionles
quantityhL in Eqs.~35! and ~37! obeys the equation

x̃ ḣL2le8hL91hL$l1l'
21le8l8

2%5l1l z~ l3 l̇ !z1le8~ l•~ l3 l̇ !9!

1 x̃vel̇ z , ~40!

where x̃5x iv0/4gM0.
Equation~40! is a homogeneous linear diffusion equ

tion with a right-hand side. The general solution of this eq
tion without a right-hand side describes the relaxation
hL to the equilibrium valuehL50 with a characteristic re
laxation timete of order x i /l1gM0, which becomes very
short asx i→0 ~see Ref. 11!.

The inhomogeneous solution of Eq.~40! differs from
zero only when there are dynamical magnetization wav
Note that we are interested in the leading approximation
hL in the relaxation constants, so that in the functions in
coefficients and the right-hand side of this equation we m
use the magnetization distributionl(x,t) in the soliton calcu-
lated in the nondissipative approximation. We also note t
in addition to having small relaxation constants, Eq.~40!
contains the small parameterx i . Hence the structure of th
solution strongly depends on the relationship betweenx i and
l and the nature of the excitation of the magnetic mater

Apart from a difference in notation, Eq.~40! coincides
with the equation for the collinear component of the effect
field in a uniaxial ferromagnet studied in Ref. 15, so that
do not analyze this equation here in detail. The results
such an analysis in connection with the problem under c
sideration can be reduced to the following.

If the soliton’s translational velocity is higher than a ce
tain characteristic valueV*;lvex0 /x i , thenhL is given by
the simple formula:

hL5ve cosu. ~41!

Obviously, such a situation occurs only ifx̃@l and in
an external magnetic field. But ifx̃!l, we can sethL to zero
in Eqs. ~35! and ~37! irrespective of the presence of an e
ternal field and the soliton velocity.

The evolution equations for the soliton parameters
simplest whenHe50. Plugging the explicit form of the mag
netization distribution in the soliton~Eq. ~38!! first into
~35!–~37! and then into~38! and~39! and settinghL to zero,
we obtain
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u̇5 f r~u,v!1 f e~u,v!, v̇5gr~u,v!1ge~u,v!,

f r522l1duk2~12u!2, gr52l1dk2v~12u!~ 1
31u!,

~42!

f e522le8duk2~12u!@ 1
31v2~12u!2#,

ge522le8dk2vF12
u

3
2v2~11u!~12u!2G .

Each of the right-hand sides of the evolution equatio
~42! consists of two terms~just as the functionsq(u,v) and
h(u,v) in ~34!–~37! do!, one related to relaxation process
caused by relativistic interaction and the other to the rel
ation processes of an exchange nature.

An analysis of the evolution equations shows that
two types of dissipative terms, one due to relativistic int
action and the other to exchange interaction, have quite
ferent effects on the evolution of the soliton paramete
Over the entire range of soliton parameters~see~31!!, the
relaxation caused by relativistic interaction and described
the functions f r(u,v) and gr(u,v) leads to a monotonic
decrease in both the soliton velocity (f r,0) and the absolute
value of the precession frequency (sgn(gr)52sgn(v)).

The nature of relativistic relaxation manifests itself mo
vividly in the integral curves of the equationsu̇5 f r(u,v)
andv̇5gr(u,v), which can be obtained by direct integratio
of the equations

v5v~0!F u

u~0!G
1/6F12u~0!

12u G1/3, ~43!

whereu(0) andv(0) are the initial values of the soliton
parameters. Schematically these curves are depicted in
2.

The contribution of exchange relaxation is described
Eqs. ~42! by the alternating functionsf e(u,v) and
ge(u,v), with the result that the relaxation parametersu and
v vary nonmonotonically during the exchange relaxati
process. The corresponding integral curves of the equat
u̇5 f e(u,v) andv̇5ge(u,v) obtained through numerical in
tegration are depicted in Fig. 3.

FIG. 2. Evolution of soliton parameters due to relativistic relaxati
(b50 andle50).
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We also note that if the soliton was initially at rest, i.e
u(0)50, then f r(u,v)5 f e(u,v)50, which means that the
soliton remains at rest at all future moments in time. Here
corresponding integral curves in Figs. 2 and 3 are section
the vertical axis. Similarly, if the precession frequency w
initially zero, v(0)50, thengr(u,v)5ge(u,v)50, and a
soliton that initially does not precess will not do so duri
relaxation; in this case the integral curves are sections of
horizontal axis.

If the external magnetic field is finite and sufficient
high for V* to be smaller thanc, the soliton relaxation pat
tern is more complicated. ForV>V* , whenhL is given by
~41!, the functionsg(u,v) and f (u,v) have the form

f r522l1duk2~12u!2,

gr52l1dk2~v1ve!~12u!~ 1
31u!,

f e522le8duk2~12u!@ 1
31~v1ve!

2~12u!2#, ~44!

ge522le8dk2~v1ve!

3F12
u

3
2~v1ve!

2~11u!~12u!2G .
Clearly, the right-hand sides of~44! can be obtained from the
corresponding right-hand sides of~42! by simply replacing
v with v1ve . Since the range~31! in which a soliton can
exist withve Þ 0 is actually obtained from the correspondin
range withve50 through a shift along the frequency axis b
2ve , the integral curves of Eqs.~44! are the same as thos
of Eqs. ~42!, the only difference being that they are shifte
by (2ve).

Here the limit in the soliton state to which relaxatio
leads is a state with precession (u→0 and v→2ve as
t→`). We must bear in mind, however, that forV,V* the
value ofhL must be set to zero. Then instead of~44! we have

f r522l1duk2~12u!2,

gr52l1dk2~12u!@u~v1ve!1 1
3v#,

f e522le8duk2~12u!

FIG. 3. Evolution of soliton parameters due to exchange relaxation (b50
andl r50).
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~45!

ge522le8dk2~12u!Fk2S v2
u

3
~v1ve! D1u~v

1ve!
2~u~v1ve!!2

v

3 G .
Clearly, the evolution of the soliton parameters d

scribed by Eqs. ~45! leads to the equilibrium state
u5v50, as expected.

If the characteristic velocityV* is higher thanc, which
is possible ifx̃!l or if the external field is really weak, Eqs
~45! describe soliton relaxation for the entire range~31! of
possible soliton parameters.

But if V*,c, then forV.V* relaxation is described by
Eqs.~44! and forV,V* by Eqs.~45!. It is natural, then, for
a transient region to exist in which the one relaxation mo
changes to the other. To analyze this region we must use
~40! to calculatehL in general form, which constitutes
problem beyond the scope of the present investigation.

Let us now examine a more general model of an antif
romagnet, a model that allows for fourth-order terms in t
anisotropy energy, i.e., a model withb Þ 0 ~see Eq.~26!!. In
this case the solution of the dynamic equations of mot
~28! can be written in the following form~atHe50; see Ref.
22!:

tan u55
k

A1/2sinhS k

x0
~x2Vt! D , A.0,

k

uAu1/2coshS k

x0
~x2Vy! D , Amin,A,0,

~46!

whereA5(12p)/(12u)2v2, with p5b/2b, and the di-
mensionless parametersv, u, andk have been defined ear
lier.

The solution~46! exists ifk2.0, which imposes a lower
bound onA, i.e.A>Amin52p/(12u).

If A.0, the solution~46! still describes a soliton of the
kink type with a topological charge~a domain wall,
u(2`)50 and u(1`)5p). But if A,0, we have
u(6`)50, and the solution~46! describes a dynamic soli
ton without a topological charge.

The values of the soliton energyE and the constant o
the motionN corresponding to the solution~46! are

E5E0H 12S 12p

12u
1v2DDs1kJ , N5n0vDs , ~47!

wheres51, 2; the caseA.0 ~a soliton with a topological
charge! corresponds tos51, and the caseA,0 ~a soliton
without a topological charge! to s52; and the functions
D1 andD2 are given by
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27,

(

Ds52S 12u

p D 1/2H F ~12u!k22pG
cosh21F p

p2~12u!k2G1/2, s52.

~48!

The dependence of the soliton energyE on the preces-
sion frequencyv described by~48! at V50 is depicted in
Fig. 1 by the solid curves. Note the important differen
between this dependence and the one forb50 ~see Eqs.
~33!!. In contrast to~33! and the corresponding dashed cur
in Fig. 1, thev-dependence ofE for b Þ 0 not only has a
minimum atv50 corresponding to an antiferromagnet sta
with a domain wall at rest, but also an absolute minimum
v51 corresponding to the ground state of the magnetic
terial. We also note that the parameter ranges correspon
to the two types of soliton~with a topological charge and
without! are separated by an infinitely high energy barri
E(A→60)→`. Hence a dynamical soliton cannot becom
a topological soliton as a result of a relaxation process;
can a topological soliton become a dynamic soliton.

Soliton relaxation forb Þ 0 can be analyzed in the sam
way as we did forb50. For this reason we list only th
results. The evolution equations for the soliton parame
u andv for the case of relativistic relaxation are

u̇522l1du~12u!

S 12p

12u
2v2DDs12k

S 12p

12u
1v2DDs12k

,

v̇52l1dvH uF S 12p

12u
2v2DDs12kG

S 12p

12u
1v2DDs12k

2

~12p2v22uv2!F S 12p

12u
2v2DDs22kG

2pF S 12p

12u
2v2DDs1

2v2

k G J .

~49!

The exchange terms have a similar but more cumbers
form, and we do not give them here.

The integral curves of Eqs.~49! are depicted in Fig. 4
Clearly, topological solitons relax, just as they did atb50,
to a state with an immobile domain wall, while dynamic
solitons relax to the homogeneous ground state of the a
ferromagnet. Such relaxation of a soliton is quite natural:
energy of a soliton with a topological charge drops to
local minimum atv50 andV50, corresponding to the an
tiferromagnetic state with an immobile domain wall~see Fig.
1!, while the evolution of the parameters of a soliton witho
a topological charge is terminated at the curvek50, on
which the soliton decays, i.e., its amplitude and energy~and
the numberN of magnons bound to it! vanish, which corre-
sponds to a transition to the ground state of the magn
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material ~a similar situation occurs in the relaxation of
one-dimensional dynamical soliton in a ferromagnet;15 in the
process of relaxation of multidimensional solitons at t
edge of their existence range, the solitons decay into a fi
number (N Þ 0)! of independent linear spin waves19!.
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Theory of magnetic-breakdown oscillations of the galvanomagnetic properties

de
of aluminum taking account of the spin of the conduction electrons
N. Kh. Useinov

Ul’yanovsk State University, 432700 Ul’yanovsk, Russia
~Submitted 16 August 1996!
Zh. Éksp. Teor. Fiz.111, 1651–1666~May 1997!

The theory of magnetic breakdown, taking account of the spin of the conduction electrons, is
used to calculate the galvanomagnetic properties of aluminum, where the system of
electron trajectories in a magnetic field contains smallb orbits. Expressions are obtained for the
magnetoresistance and Hall resistance in the case of a two-dimensional magnetic-
breakdown network of trajectories on the basis of stochastic electron motion on large orbits and
coherent electron motion on theb orbits. Qualitative agreement is obtained with the
existing experimental data. ©1997 American Institute of Physics.@S1063-7761~97!00905-0#
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It is well known that magnetic breakdown changes
character of the field dependences of the magnetoresist
of metals.1,2 The study made in Refs. 3–8 of magnetic brea
down in aluminum (T54.2 K) showed that forH i @001# a
narrow magnetic-breakdown layer of open trajectories ink
space withdk'431022 a. u. is formed in fields exceedin
20 kG and coherence with a breakdown fieldH0'4 kG is
present. However, in explaining the magnetic breakdown
cillations and in the calculation of the galvanomagnetic ch
acteristics of Al the spin of the conduction electrons and
spin–orbit interaction were neglected in these papers.

A detailed review of the theory of magnetic breakdow
taking account of the spin degrees of freedom of the cond
tion electrons, has been given recently.9 It was shown, on the
basis of an analysis of the dispersion relation in regions
anomalous convergence of the trajectories in different zo
that the spin–orbit interaction leads to the possibility
breakdown with spin flip, the main dynamical characteris
of magnetic breakdown was obtained — thes matrix is of
rank 4, the basic principles of the theory of coherent m
netic breakdown were generalized, and the magne
breakdown spectrum of the conduction electrons was inv
tigated. Applications of the theory to galvanomagne
phenomena, the de Haas–van Alphen effect, and param
netic resonance in conduction electrons were examined.

In the case of aluminum, the transverse cross-sectio
areas of theb orbits and the corresponding magnet
breakdown fields as a function of the wave vectorkz were
calculated in Ref. 8, which is devoted to explaining t
anomalies of the magnetic-breakdown oscillations of
magnetization, from a calculation of the band structure
the pseudopotential method, including the spin–orbit int
action. It was noted that the energy gap through which e
trons tunnel in a magnetic field appears on account of
weak spin–orbit interaction. In Ref. 10 theg-factor of the
conduction electrons was calculated on the entire Fermi
face of aluminum, using a scheme with four orthogonaliz
plane waves, taking the spin–orbit interaction into accoun
a perturbation. In Refs. 8 and 10 it was concluded that
quantities calculated taking account of the spin–orbit int
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Haas–Alphen effect and on the spin resonance of the c
duction electrons.

A more complete list of the literature devoted to th
effect of the spin of the conduction electrons and the sp
orbit interaction on the energy spectrum and the galva
magnetic and other properties of metals under magne
breakdown conditions is given in Ref. 9.

Thus there arises the problem of re-examining the th
retical interpretation of the field-dependences of the mag
toresistance of Al taking account of the electronic spin d
grees of freedom. For this, it is necessary to calculate
conductivity tensor for the two-dimensional system of op
electronic trajectories~see Fig. 1! that arise in Al during
magnetic breakdown, taking into account in a natural man
the orientation of electron spin in a magnetic field and inc
porating the spin–orbit interaction. This can be done on
basis of the results in Refs. 9 and 11, where the partic
oscillatory characteristics of a real metal~zinc! were calcu-
lated from first principles on the basis of the theory of ma
netic breakdown, taking account of the spin degrees of fr
dom of the conduction electrons by the ‘‘effective path
method~simple examples of this method are given in Refs
and 12!.

But the application of the effective-path method is co
plicated by the fact that for each particular real metal, d
pending of the geometry of the Fermi surface, a sepa
procedure must be developed for calculating the conducti
tensor. For this reason, this paper develops a more gen
method that makes it possible to unify this procedure for
arbitrary two-dimensional system of electronic trajector
arising under magnetic-breakdown conditions that posse
definite symmetry properties~and that is faithful to the to-
pology of the Fermi surface!. We underscore that the calcu
lations of the components of the conductivity tensor in t
case can be performed independently for each spin orie
tion. This is especially important in studying transport ph
nomena in the case of transition and ferromagnetic met
where as a result of exchange and the spin–orbit interact
the sheets of the Fermi surface with oppositely-directed sp
are shifted.

We note that in Ref. 9 the method proposed here is

903$10.00 © 1997 American Institute of Physics
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FIG. 1. Transverse sections of the Fermi surface in Al: a
from the second hole and third electron zones, b — enlarged
views of thec andb orbits. The sections from the third zon
are filled. The arrows show the direction of motion of the ele
trons.
lustrated in detail for a simple model of a metal with a peri-
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odic one-dimensional network of electronic trajectories as
ciated with magnetic breakdown, taking account of the s
degrees of freedom of the conduction electrons.

The present paper is essentially a continuation
elaboration of the review in Ref. 9 for the case of a tw
dimensional system of trajectories in Al. In Sec. 2 the
quired definitions and quantities, aiding in understanding
calculation of the conductivity tensor, are introduced on
basis of the theory of magnetic breakdown. Smallb orbits
are replaced by effective magnetic-breakdown sites~points!.
The effective breakdown probabilities calculated in Ref.
taking account of the electron spin and the spin–orbit in
action are used to describe the sites mathematically. The
tem of electronic trajectories in Al withH i @001# is replaced
by a two-dimensional reduced magnetic-breakdown netw
In Sec. 3 a more general expression is obtained for the c
ponents of the conductivity tensor on the basis of the Bo
mann equation and the theory of stochastic magnetic br
down. In Sec. 4 these components of the tensor
systematically calculated under the assumption that the e
tron motion on the two-dimensional reduced magne
breakdown network is stochastic and the motion on theb
orbits is coherent. In Sec. 5 the required computational
rameters are introduced, the components of the resist
tensor are calculated, and the results are compared with
oretical and experimental data.

2. MAGNETIC-BREAKDOWN NETWORK AND EFFECTIVE
PROBABILITIES

It is well known14,15 that many properties of metals in
magnetic field can be described by means of semiclass
equations. In this approximation the electrons move in
reciprocal space on trajectories which arise from the in
sections of the Fermi surface and a surface perpendicula
the magnetic fieldH5(0,0,H)

«ms~k!5«F , kz5kz05const, ~1!

where«ms(k) is the dispersion relation,m is the zone num-
ber,s is the spin index,«F is the Fermi energy, andk is the
wave vector. In Refs. 1 and 2 it was shown that the topolo
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conditions: a planar network consisting of sections of se
classical motion, which belong to different zones and
associated with magnetic-breakdown sites, is formed.
probability of electron tunneling into a neighboring zone a
magnetic-breakdown site isw5exp(2H0 /H), where
H05H0(«F , kz) is the breakdown field. The network of tra
jectories which appears upon breakdown is called
magnetic-breakdown configuration or a magnetic-breakdo
network.

When the spin–orbit interaction is included in the theo
of magnetic breakdown,9 sections with different projections
of the electronic spins are united into a single magne
breakdown network. In this case the tunneling probabi
equals the sum of the probabilityw0 of breakdown without
spin flip and the probabilityws of breakdown with spin flip

w05
w

11a2 , ws5
a2w

11a2 , ~2!

where a is the spin–orbit interaction parameter, which
determined by the ratio of the off-diagonal~in the zone num-
ber and spin index! matrix elements of the electron velocit
operator near the maximum convergence of the trajectori9

An estimate ofa shows that for a weak spin–orbit intera
tion 0<a<1.

The Fermi surface of Al is well known. It consists of
closed hole surface in the second zone and three electr
surfaces in the third zone, centered, respectively, at
pointsG andX of the Brillouin zone. The third zone form
closed ‘‘quarter rings’’ or ‘‘sleeves’’ which are arrange
along the edges and connect near the pointsW ~see Fig. 1a!.

Electron tunneling during magnetic breakdown occu
between thec orbit of the second zone and theb orbit of the
third zone, the splitting between which, shown in Fig. 1b,
due to the weak spin–orbit interaction.8 This results in the
formation of diverse closed and open orbits with two, fo
or more magnetic-breakdown sites.5 The enlarged and ope
orbits in turn change the period of the oscillations, decre
the amplitude of the de Haas–van Alphen effect, and p
duce large changes in the galvanomagnetic properties, m
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fested in oscillations as a result of the quantum interfere
of the conduction electrons.

Figure 1 gives a schematic representation of
magnetic-breakdown network in Al in a magnetic fieldH i
@001#. The network consists of a large closed holec orbit
and small electronicb orbits. One can see from Fig. 1 th
the Larmor periodTcb of electron motion on ab orbit is
much shorter than the electron residence timeTc on large
sections of thec orbit. A large difference of the periods i
also observed in other metals~see, for example, Refs. 1, 2
and 9!.

In such a situation it is possible to simplify the calcul
tion of the conductivity tensor by applying the theory
stochastic magnetic breakdown.1,2 In this theory it is as-
sumed that small-angle scattering has no effect on the p
of the wave function of an electron in a small orbit, and
large sections of the trajectory it transforms the electron m
tion into a random walk. In other words, two types of ele
tron motion exist in metals: coherent motion within sm
orbits and stochastic motion on large sections.

In this case a reduced magnetic-breakdown netwo
where small orbits are replaced by effective magne
breakdown sites, is used. Such a reduced two-dimensi
magnetic-breakdown network for Al within the first Brilloui
zone is shown in Fig. 2. Each effective magnetic-breakdo
site ‘‘switches’’ the electron motion on the reduce
magnetic-breakdown network. The corresponding effec
breakdown probabilities are periodic functions of the ph
acquired by an electron during coherent motion on a sm
orbit; this results in oscillations of the transport coefficien
with a period corresponding to the area of the small orbit.1,2,9

In studying the electron dynamics in Al, taking accou
of the spin degrees of freedom and the spin–orbit interact
we assume that there exist two independent redu
magnetic-breakdown networks~one embedded in the other!,
on which an electron moves with spin up on one and s
down on the other. In this case, for each reduced magn
breakdown network we must know the effective probabilit
of traversing small orbits or reflecting from them with the

FIG. 2. Reduced two-dimensional magnetic-breakdown network within
first Brillouin zone, corresponding to Fig. 1a. The dots represent the ef
tive magnetic-breakdown sites. The numbers denote sections of
magnetic-breakdown network.
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own direction of spin. These probabilities were obtained
Ref. 13 for a symmetric double-angle orbit with equivale
magnetic-breakdown sites. In the case ofb orbits with
equivalent magnetic-breakdown sites they have the s
form

P↑5
w2

11a2S 1

u12~12w!exp~ igb
↑ !u2

1
a2

u12~12w!exp~ igb
↓ !u2D ,

~3!

P↓5
w2

11a2S a2

u12~12w!exp~ igb
↑ !u2

1
1

u12~12w!exp~ igb
↓ !u2D ,

Q↑,↓512P↑,↓,

where the arrows↑, ↓ show the direction of the spin of a
electron approaching an effective magnetic-breakdown
~see Fig. 3!. The phases acquired by an electron on ab orbit
have the form

gb
↑↓5

c\

eH
Ab~kz!6pgeff12L, ~4!

whereAb(kz) is the ‘‘spinless’’ area of the orbit andgeff is
the spin contribution to the phase and is called the effec
g factor. The effectiveg factor is given by

geff5
1

2
gb

mcb

m0
, ~5!

wheremcb andgb are the electron cyclotron mass and t
electrong factor associated with theb orbit, andm0 is the
free-electron mass. The plus sign in Eq.~4! corresponds to
electron motion along a small orbit with spin up, and t
minus sign corresponds to motion with spin down~see Fig.
3!. The third term in Eq.~4! determines the jump in the
phase of the wave function when the electron passes thro

e
c-
he

FIG. 3. Effective magnetic-breakdown site from a smallb orbit, taking
account of the electron spin, which connects the largec orbits ~see Fig. 1!.
The arrows show the direction of electron motion and spin orientation.
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H0 that is not important for us here; the exact form of th
function is presented in Ref. 9.

In closing this section, we note that the introduction
effective breakdown probabilities~3! and the reduction of
the magnetic-breakdown network to a reduced network w
stochastic electron motion make it possible to study elec
motion with spin up and down independently. For this re
son, in what follows we calculate the conductivity tensor
a single reduced magnetic-breakdown network with a d
nite direction of spin. In so doing, we do not indicate the s
index s5↑, ↓, but we average the final result over sp
Furthermore, in addition to the termreduced magnetic-
breakdown network, we employ the termmagnetic-
breakdown network.

3. STATIC CONDUCTIVITY TENSOR UNDER STOCHASTIC
MAGNETIC BREAKDOWN CONDITIONS

The stochastic character of the electron motion exa
ined above makes it possible to calculate the conducti
tensor in the semiclassical approximation.2 In this case mag-
netic breakdown starts to play the role of a stochastic fac
mixing the electrons over all sections of the magne
breakdown network. The time between two success
magnetic-breakdown scatterings plays the role of the fr
flight time. It is determined by the characteristic cyclotr
frequencyvc and the corresponding magnetic-breakdo
probabilities. The componentssab of the conductivity tensor
depend on the topology of the magnetic-breakdown netw
In the limiting casesH!H0 or H@H0 the sections of the
magnetic-breakdown network transform into ordinary op
or closed trajectories. Then the field dependence ofsab

starts to determine the true momentum relaxation timet.
The Boltzmann equation with a linearized collision int

gral corresponds to this picture. The general solution of
equation under the conditionvct @1 can be sought in the
form

f m~k!5 f F~k!2
] f F
]«

eE–Cm~k!, ~6!

where f m(k) is the nonequilibrium distribution function
f F(k) is the Fermi–Dirac distribution function,E is the elec-
tric field, Cm(k)is the vector distribution function of the
electrons over the magnetic-breakdown network~analog of
the density matrix!. It is convenient to write the Boltzman
equation in the electric and magnetic fields in the variab
«, kz , andtm . Then to lowest order inCm(k) the equations
acquire the form14,15

]Ci

]t i
1 Î k$Ci%5vi , Î k$ . . . %5S ] f F

]« D 21

Î H ] f F
]«

. . . J ,
~7!

whereCi are the values of the functionsCm(k) on the sec-
tions of the magnetic-breakdown network,i5 i (m) is the
number of the section,Î is the linear collision integral, and
vi is the velocity vector.

Boundary conditions are required to solve Eqs.~7!. If a
trajectory for given values of« and kz is closed, thenCi
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open, however, then the boundary condition is thatCi re-
mains finite att i56`. When the magnetic fieldH is parallel
to the z axis, the functionCi should be periodic with the
period of the reciprocal lattice. The difference from the sem
classical situation~see Ref. 14! lies in the fact that under
stochastic magnetic-breakdown conditions the functionsCi

on different sections are related by the equations2

Ci 8~0!5(
i
wi 8 iCi~Ti !, ~8!

whereCi 8(0) are the values of the functionsCi 8(k) on the
initial sections leaving a magnetic-breakdown site;wi 8 i is the
probability of magnetic breakdown;Ci(Ti) are the values of
Ci(k(t i)) at the ends of the sections entering a magne
breakdown site; and,Ti is the time during which an electro
moves along thei -th section. The boundary conditions~8!
show that the particle flux leaving a magnetic-breakdo
site, for example, on the sectioni 8518, consists of particles
moving along incoming sectionsi51, 2 with weights
12w andw, respectively.

The solution of Eqs.~7! with the boundary conditions~8!
makes it possible to obtain the componentssab of the con-
ductivity tensor, which can be expressed in terms ofCi :

sab5
e2

~2p!3
uhu
\ (

i
E
0

`S 2
] f F
]« Dd«

3E
2k0

k0
dkzE

0

Ti
v i

a~ t i !C i
b~ t i !dt, ~9!

whereh5eH/c\ and the summation overi extends up to
N, the total number of nonequivalent sections of t
magnetic-breakdown network. Here it must be noted tha
obtain the total conductivity it is also necessary to sum o
spin. At low temperatures (T'4.2 K) it is assumed tha
(2] f F /]«) in Eq. ~9! behaves like a delta function with
argument«2«F ; we assume that this is the case in wh
follows. However, this substitution is generally inadmissib
since the finiteness of the temperatureT affects the charac-
teristic electron energykBT, whose ratio to\vb , where
vb is the cyclotron frequency of an electron in ab orbit, can
be arbitrary. We take this circumstance into account at
end of the next section.

4. CALCULATION OF THE CONDUCTIVITY TENSOR OF A
TWO-DIMENSIONAL MAGNETIC BREAKDOWN-
NETWORK IN ALUMINUM

We apply the above theory to the reduced tw
dimensional magnetic-breakdown network in Al, portray
in Fig. 2. First, we obtain the dissipative componentsxx of
the conductivity tensor. For this, we must find the comp
nentsCi as functions of the effective probabilitiesP and
Q and the reciprocal-lattice vectors.

Neglecting the collision integral in Eqs.~7!, we obtain
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C i
y~ t i !5C i

y~0!1
1

h
@kx

i ~ t i !2kx
i ~0!#. ~10!

Here C i
x(0) andC i

y(0) are the values of the distributio
function at the start of theith section; the second terms fo
low from the semiclassical equations of motion.14

At t i5Ti the expressions~10! assume the form

C i
x~Ti !5C i

x~0!1
D i
y

h
, C i

y~Ti !5C i
y~0!2

D i
x

h
, ~11!

whereD i
x andD i

y are the increments in the coordinateskx
andky as a result of the passage of an electron through
ith section.

We note that for the magnetic-breakdown networks
some metals one of the conditions

(
i

N

D i
x5gx (

i

N

ni50, (
i

N

D i
y5gy (

i

N

ni50,

is often satisfied, or these two conditions are satisfied sim
taneously, as in our case. Heregx andgy are components o
a reciprocal lattice vector, andni50 if i is the number of an
interior section andni561 if the sectioni intersects the
boundary of the unit cell. For Al, obviously,gx5gy5g.

In the case at hand~see Fig. 2! the incrementsD i
x and

D i
y in the coordinates are easy to find, provided that the

ordinates of the start and end of each of the eight sections
known. For example, thex components~11! of four sections
have the form

C1
x~T1!5C1

x~0!1d, C2
x~T2!5C2

x~0!12d,
~12!

C3
x~T3!5C3

x~0!1d, C4
x~T4!5C4

x~0!,

where the notationd5g/4h is introduced to simplify the
equations. The remainingx andy componentsCi(Ti) can be
easily found by an elementary calculation or from the sy
metry properties of the magnetic-breakdown network~see
Fig. 2!

C11C550, C31C750,
~13!

C21C650, C41C850.

Using Eqs.~9! and ~7! with Î50 for a 2kzm thick layer
of the magnetic-breakdown network, taking account of
fact that the magnetic-breakdown parameters and the cr
sectional areaAb of a smallb orbit are functions ofkz , we
obtain

sxx5
1

2

e2

~2p!3
uhu
\ (

i51

8 E
2kzm

kzm
dkz$@C i

x~Ti !#
2

2@C i
x~0!#2%. ~14!
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duced magnetic-breakdown network with stochastic elect
motion over large sections:

C1~0!5PC3~T3!2QC4~T4!,

C2~0!5QC1~T1!2PC2~T2!,
~15!

C3~0!5QC2~T2!2PC1~T1!,

C4~0!5QC3~T3!2PC4~T4!,

To obtain these relations we employed the periodic equi
lence of the sections of the magnetic-breakdown netw
and the symmetry properties~13!. Furthermore, these prop
erties make it possible to decrease the number of terms in
sum overi in the expression~14!. Substituting the expres-
sions ~15! and then the expressions~12! into Eq. ~14! and
using the fact thatP1Q51, we obtain an expression fo
sxx in terms ofC i

x(0)[C i
x :

sxx52
e2

~2p!3
uhu
\ E

2kzm

kzm
dkzQP@~C1

x1C2
x13d!2

1~C3
x1C4

x13d!2#. ~16!

To determine the unknown quantitiesC i
x ( i51, 2, 3, 4), the

values of the functions~12! must be substituted forC i
x(Ti)

in the boundary conditions~15! and the system of four equa
tions must be solved. The determinant of this system
pends on the effective probabilities asD5Q214P2, and the
distribution functions at the start of the sections 1, 2, 3, a
4 have the form

C1
x52

d

D
Q~3P21!, C2

x54
d

D
PQ2d,

~17!

C3
x54

d

D
P~123P!1d, C4

x52
d

D
Q2.

Substituting~17! into Eq. ~16! we arrive at the expression

sxx5
ec

H

g2

~2p!3
E

2kzm

kzm
dkz

2QP

Q214P2 . ~18!

We now obtain the Hall component of the conductivi
tensor. In terms of the unknown distribution function
C i

x(t i) andC i
y(t i) it has the form

syx5
e2

~2p!3
uhu
\ (

i51

8 E
2kzm

kzm
dkzE

0

Ti ]C i
y~ t i !

]t i
C i

x~ t i ! dti .

~19!

Substituting~10! into Eq. ~19! we obtain

syx5
e2

~2p!3
uhu
h (

i51

8 E
2kzm

kzm
dkzF ~C i

y~Ti !2C i
y!S C i

x

1
ky
i ~0!

h D 2
1

h2 E~«,kz!
ky
i dkx

i G , ~20!
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whereky
i (0) is the coordinate of the wave vector at the start
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of the ith section, and the second term in brackets determ
the transverse cross-sectional area of the Fermi surface~see
Eq. ~1!!.

To calculate the first term in Eq.~20!, it is necessary to
know the incrementD i

x in the coordinateskx when an elec-
tron traverses theith section. In a manner similar to the der
vation of the equations~12!, we obtain for they component
of the distribution functions

C1
y~T1!5C1

y~0!1d, C2
y~T2!5C2

y~0!,
~21!

C3
y~T3!5C3

y~0!2d, C4
y~T4!5C4

y~0!22d.

Using Eqs.~13!, substituting~21! and~17! into Eq.~20!, and
expressingky

i (0)/h in terms ofd ~see Fig. 2!, we obtain for
the Hall component

syx5
ec

H

1

~2p!3
E

2kzm

kzm
dkzF 4g2P2

Q214P2 1A~«,kz!G . ~22!

HereA(«, kz) is the cross-sectional area of thec orbit, tak-
ing account of the sign determined by the sign of the eff
tive mass. For ac orbit in Al the effective mass is negative
mcc,0; therefore a plus sign appears in the brackets in
~22!.

We note that if the calculation starts with the Hall com
ponentsxy , then it would be necessary to calculate they
component of the distribution functionsC i

y at the start of the
sectionsi51, 2, 3, 4, substituting~21! into the boundary
conditions ~15!. However, this is not necessary, sin
sxy52syx . This assertion can be proved by a direct calc
lation, and it also follows from the Onsager relations.15 It
follows from the calculation ofC i

y and from the symmetry
of the magnetic-breakdown network~see Fig. 2! that

C1
x52C3

y , C3
x5C1

y ,

C2
x52C4

y , C4
x5C2

y . ~23!

To compare this result with the data for the real situat
in Al, the expressions~18! and~22! must be modified some
what. First, we take account of the contribution tosxx and
syx due to the corresponding conductivities arising from
electrons that do not participate in magnetic breakdown,
electrons moving along closed trajectories. As is w
known,14 for uncompensated metals the components of
conductivity tensor for vct@1 are determined by
sxx;a/H2 andsyx;1/RH, wherea is a constant andR is
the Hall coefficient. Second, we take account of the temp
ture factorA(T)5X/sinhX, whereX5147.0mcbT/m0H is a
known expression~see, for example, Ref. 12!. The factor
A(T) ~see the remark after Eq.~9!! is always present in the
general expressions forsxx andsyx , and it follows from the
systematic quantum theory in the derivation of the osci
tory parts of the transport coefficients.2 Third, we multiply
~18! and~22! by 2 ~the factor of 2 is taken into account in th
standard derivation ofsxx and syx) in order to study the
theory of magnetic breakdown in Al while neglecting th
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assuming that the density of electrons that move on ac orbit
within a narrow magnetic-breakdown layer does not dep
on kz ~the second term in Eq.~22!!, we obtain finally

sxx5syy5
A~T!b

Hkzm
E
0

kzm 2QP

Q214P2dkz1
a

H2 , ~24!

syx52sxy5
A~T!b

Hkzm
E
0

kzm 4P2

Q214P2dkz1
1

RH
, ~25!

whereb54g2kzmec/(2p)3 characterizes the unbalance b
tween electrons and holes in the 2kzm layer as a result of
magnetic breakdown. We stress that the second term in
~25! includes not only the conductivity arising from th
closedc orbit in the magnetic breakdown layer but also t
conductivity from closed orbits on the rest of the Fermi s
face.

In summary, neglecting the electron spin and the sp
orbit interaction, forgb50 anda50 the formulas~24! and
~25! can be used directly to calculate the field dependen
of the components of the conductivity tensor of Al und
magnetic breakdown conditions. Forgb Þ 0 anda Þ 0 the
entire calculation ofsxx andsyz can be performed from the
outset by equippingQ and P with a spin index. Then the
magnetic breakdown terms in Eqs.~24! and~25! must be two
times smaller.

5. MAGNETIC-BREAKDOWN OSCILLATIONS OF THE
GALVANOMAGNETIC PROPERTIES OF ALUMINUM

In this section we shall obtain, using the theoretical a
experimental data obtained in Refs. 3–8 and 16–18, theo
ical relations for the galvanomagnetic characteristics of A
order to substantiate the correctness of~24! and ~25!. We
compare the theoretical relation for the magnetoresista
with the experimental curve,4 and we also discuss the effe
of the spin degrees of freedom of the conduction electrons
the period and amplitude of the magnetic-breakdown os
lations.

Substituting into Eqs.~24! and ~25! the effective prob-
abilities ~3! with each direction of spin and averaging, w
obtain the total conductivities, taking account of the electr
spin and the spin–orbit interaction:

sxx5
1

2
~sxx
↑ 1sxx

↓ !, syx5
1

2
~syx
↑ 1syx

↓ !. ~26!

To calculate the integrals in Eqs.~24! and ~25! within
the magnetic-breakdown layer, we find the functio
H0(kz) andAb(kz), using the results of Refs. 3 and 8. In Re
3, the cross sections of the Fermi surface of Al alongkz near
the pointsW were calculated~see Fig. 1! neglecting the
spin–orbit interaction, and plots of the cross-sectional ar
of theb orbits and the width of the band gap as functions
kz were presented. The latter makes it possible to determ
the breakdown field in different sections in the directi
kz .

As follows from the general theory of magnetic brea
down with spin flip,9 taking account of the spin–orbit inter
action at the locations of breakdown results in a renorm
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ization of the breakdown field:H05H0
0/(11a2)1/2, where
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H0 is the breakdown field neglecting the spin–orbit intera
tion (a50). However, we do not employ this renormaliz
tion for H0 in the calculations of Eq.~26!, but instead we
employ the results of Ref. 8, where the functionsH0(kz) and
Ab(kz) with kz oriented in the direction@001# were obtained
from a calculation of the band structure of Al taking accou
of the spin–orbit interaction.

We expand the breakdown fieldH0(kz) and the trans-
verse cross-sectional areaAb(kz) to lowest order inkz :

H0~kz!5H0~0!1
1

2
H09kz

2 , ~27!

Ab~kz!5Ab~0!1
1

2
A09kz

2 , ~28!

whereH0(0) andAb(0) are the extremal values forkz50;
H09 and A9 are the second derivatives with respect tokz ,
calculated atkz50. We callH09 andA9 the variation param-
eter of the breakdown field and the curvature paramete
theb orbit in the directionkz . Fitting the functions~27! and
~28! with a half-width of the magnetic-breakdown lay
kzm'(1.322.0)31022 a.u. to the data of Refs. 3 and
givesH09'4.643106 kG/~a.u.!2 andA9'2(0.3720.17).

We now determine the parametersa, b, andR in Eqs.
~24! and~25!. We start with the Hall coefficientR. The value
of R is taken from Ref. 16, where it is shown thatR depends
on the magnetic field atT54.2 K. For H.5 kG, R ap-
proaches 10.2310210 V•cm/kG, which agrees with the re
sults obtained by other investigators~see, for example, Ref
3!. The parametersb anda can be determined in terms of th
Hall coefficient. It follows from Ref. 17 that in strong field
with vct@1 the Hall coefficient in Al asymptotically ap
proaches 3/ecneff , whereneff is the effective number of car
riers per unit cell. We assume that this is the number
electrons participating in breakdown in the layer 2kzm. On
the other hand, it follows from the definition ofb ~see above!
thatb5ecneff . Equating the effective electron densities, w
obtainb53/R.

To determinea and check the validity of~24! and ~25!,
we find the components of the resistance tensor, which, a
well known,14 are given by

rxx5
sxx

sxx
2 1syx

2 , ryx5
syx

sxx
2 1syx

2 . ~29!

Substituting the conductivity from closed orbits~the second
terms in Eqs.~24! and ~25!! into rxx and neglecting the in-
finitesimal (aR/H)2 for H.H0, we obtainrxx;aR2. The
field dependence of the magnetoresistance correspondin
closed orbits is shown in Ref. 4. In fields up to 60 kG
remains constant withrxx;3.5r0, wherer0 is the resistance
atH50. At T54.2 K r0'1310210 V•cm, which, as indi-
cated in Refs. 3 and 4, agrees well with existing calculatio
Comparing the results forrxx , we obtaina'3.5r0 /R

2.
In summary, the technology for calculating the galvan

magnetic characteristics of Al under magnetic-breakdo
conditions, taking account of the spin degrees of freedom
the conduction electrons, has been reduced to nume
modeling of the theoretical magnetic-field dependences
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the quantities~29! and finding the microscopic parameters
the model. The experimental curve from Ref. 4~see Fig. 4!
was used to improve the values of the parameters.

Such a calculation was performed atT54.2 K, with cy-
clotron massmcb50.102m0 for an electron in ab orbit,2,6

using the known values of the parameters~see Table I!.
A least-squares fit ofrxx ~see Fig. 5a! to the experimen-

tal magnetoresistance~Fig. 4! was made for a wide range o
values of the microscopic parameters. In so doing, the s
plex method was used to find the optimal values of the
rameters. Equations~24! and ~25! were integrated numeri
cally by Simpson’s method. The relative error did not exce
1%, and the number of layers in the interval 0,kz,kzm
reached 400.

Curves of the magnetic-breakdown oscillations of t
magnetoresistancerxx and Hall resistanceryx with gef f50
anda50 are displayed in Fig. 5. One can see from Fig.
that the field dependence ofrxx is qualitatively identical to
the experimental curve~see Fig. 4!, and the parameters agre
quantitatively with the published data~see Table I!, which
supports the model adopted. The parametersH09 andA9 have
the greatest effect on the amplitude and form of the osci
tions ofrxx . For example, exponential growth of the amp
tude of the oscillations does not occur forH0950; the curve

FIG. 4. Experimental oscillatory curve of the magnetoresistance of A
T54.2 K with currentj'H, H i @001#.4

TABLE I.

Computational Published
Theoretical curves

parameters data Fig. 5 Fig. 6

a31010, kG2/V•cm 0.034 0.034 0.034
b31010, kG2/VIcm 0.29 0.14 0.16
R310210, V•cm/kG 10.2~Refs. 3, 16, and 17! 10.2 10.2
H0~0!, G 3.6–4.0~Refs. 2 and 8! 3.6 3.6
H093106, kG/~a.u.!2 '4.8 ~Ref. 8! 2.16 4.88
Ab~0!31023, ~a.u.!2 1.24 ~Refs. 3, 7, and 8! 1.24 0.65
A9 '23.3 ~Ref. 8! 21.74 21.23
kzm31022, a.u. 2.0~Refs. 4 and 8! 2.0 2.0
geff – 0 0.49
a – 0 '0
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of r , oscillating, saturates below 20310210 V•cm. For Knowing the cyclotron massm 50.102m , the value

FIG. 5. Theoretical curves of magnetic
breakdown oscillations in Al atT54.2 K,
H i @001#: a — magnetoresistance
rxx5ryy , b — Hall resistanceryx52rxy .
The parameters for which the curves we
obtained are presented in Table I.
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A950 the peaks of the oscillations are asymmetric.
The oscillatory curves ofrxx andryx , corresponding to

Fig. 5, with geff50.49 anda'0 are shown in Fig. 6. One
can see from Fig. 6a that qualitative agreement with the
perimental curve obtains in this case as well, but the am
tudes of the oscillations are somewhat smaller than in F
5a. If a falls in the range 0,a<1, then the oscillations o
rxx are less symmetric, but the average values of the os
lations are shifted upwards, approaching the average va
of the experimental curve. In order for the periods of t
oscillations ofrxx in Figs. 6a and 4 to be the same, t
experimental transverse cross-sectional areaAb(0) must be
halved. If for geff50.49 the areaAb(0)51.2431023

~a.u.!2 is retained, which corresponds to the ordinarily o
served periodD(1/H)52.1531026 G21, then the number of
peaks inrxx and ryx doubles. Therefore, taking account
theg factor of conduction electrons in ab orbit changes the
extremal areaAb(0), provided that the expansion~28! is
valid.

It can be assumed that a doubled structure of the os
lation peaks, which arises on account of the lifting of t
double spin degeneracy of the Landau levels by the magn
field, is observed in experiments. This can be verified
studying the experimental curve~Fig. 4! more carefully. The
amplitudes of two successive oscillation peaks differ by
small amount. Furthermore, we note that a situation wh
the spin splitting exactly equals the splitting between
Landau levels is possible. This is approximately the case
energy bands wheremc /m0!1.12
x-
li-
g.

il-
es

-

il-

tic
y
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of the g factor of an electron in ab orbit can be estimated
from the value obtained forgeff ~see Table I!: gb'9.8. How-
ever, there is still some uncertainty here, since the spin c
tribution to the phase~4! can only be found to within 2pn,
wheren is an integer.

The effect of temperature is observed in the monoto
part and in the character of the oscillations inrxx below 30
kG. At temperaturesT,4.2 K the intensity of the oscilla-
tions increases and the average field dependence ofrxx be-
comes linear. At temperatures above 4.2 K the oscillat
part becomes small, in agreement with the results of the t
perature investigations.4 Therefore a comparison of the the
oretical field-dependences ofrxx in Figs. 5a and 6a with the
experimental curve shows that the introduction of the te
perature factorA(T) in our model is justified.

Qualitative agreement with experiment also obtains
the Hall effect, shown in Figs. 5b and 6b, computed w
H i @001#. In both cases the Hall resistanceryx oscillates
weakly about a value proportional to the field, but sin
geff Þ 0 for 0,a<1, as one can see from Fig. 6b, the ave
age magnetic field dependence ofryx is more linear, which
agrees better with the results of Refs. 3 and 18.

In summary, the plots presented show that a system
theory of magnetic breakdown that takes account of the s
of the conduction electrons and the spin–orbit interaction
well as the more general method presented above for ca
lating the conductivity tensor for a two-dimensional syste
of electronic trajectories in Al, also explain well not only th
-

5
e
rs
FIG. 6. Theoretical curves of magnetic
breakdown oscillations in Al atT54.2 K,
H i @001#. The curves correspond to Fig.
but were obtained taking account of th
electron spin; the computational paramete
are given in Table I.
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behavior of the experimental curves,3–5,7 but they also yield
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surprising ~for such complicated oscillating functions~25!

and ~26!! qualitative agreement with experiment. The fac
presented show that in observations of the magne
breakdown oscillations of the transport and thermodyna
properties of Al, the electron spin and the spin–orbit int
action strongly influence the character of the magnetic-fi
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Modification of the spin-wave dispersion law in multilayer films by changes in the

s of
symmetry of the boundary conditions
A. M. Zyuzin and A. G. Bazhanov

N. P. Ogaryov Mordovian State University, 430000 Saransk, Russia
~Submitted 28 August 1996!
Zh. Éksp. Teor. Fiz.111, 1667–1673~May 1997!

The present paper is the first attempt to study the transformation of spin-wave resonance spectra
when symmetric boundary conditions are smoothly replaced by asymmetric. The transition
is done by gradually reducing the thickness of one of the layers in a three-layer film. Spin
deexcitation is caused by a dissipation mechanism. We find that in the transition region
between symmetric and asymmetric boundary conditions the dispersion curve experiences a break,
whose position depends on the degree of deexcitation~the thickness of the upper layer!. The
break is caused by the appearance of asymmetric transitional spin-wave modes, which cannot be
excited under symmetric boundary conditions. ©1997 American Institute of Physics.
@S1063-7761~97!01005-6#

The boundary conditions constitute the most importantthe dependence of the degree of deexcitation on the value
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factor determining the characteristics of spin-wave resona
spectra. This problem has been studied by many researc
~see, e.g., Refs. 1–3!, who, in particular, investigated spin
wave resonance spectra for the following boundary con
tions: symmetric, asymmetric~spins deexcited only at on
boundary of the excitation layer!, and antisymmetric. The
analysis of the spectra in the majority of the papers is ba
on a surface anisotropy model, in which the degree of de
citation is described by a phenomenological parameter,
surface anisotropy,4,5 which, however, is difficult to measur
and monitor. Such analysis does not allow for such phys
parameters as the resonant field, the magnetization,
damping constant, and the film thickness~which is assumed
to be negligible!.

Schlömann6 studied the dynamical mechanism of sp
deexcitation, which is related to the nonuniformity of th
distribution of the resonant field over the film thickness. T
most detailed analysis of spin-wave resonance spectra
multilayer films has been done by Wiltz and Prasad7 and
Hoecstraet al.,8 who found that under the dynamical mech
nism there is a strong dependence of the spectrum on
orientation of the external magnetic fieldH relative to the
film, and a deviation of the dispersion law from quadrat
The reason is the dependence of the spin-wave localiza
region on H and on the orientation ofH. In Refs. 4,
9 and 10 and in a number of other papers, spin-wave re
nance was studied in films with fluctuations of the magn
zation and the exchange parameter, and in multilayer fi
with one-dimensional modulation of the magnetic para
eters. The presence of fluctuations leads to a break in
dispersion curve, with the wave vector at the break relate
the correlation radius of the fluctuations or the spatial mo
lation parameter.

Despite the large number of papers on spin-wave re
nance, the features of the spectra in the transitional reg
between symmetric and asymmetric boundary conditi
have yet to be studied. Such a situation is quite comm
however. We also believe that it is extremely importa
when analyzing spin-wave resonance spectra, to allow
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the wave number.
The spin-wave resonance spectra for symmetric bou

ary conditions differ from those for antisymmetric bounda
conditions, in that in the former case a uniform microwa
field excites standing harmonic modes with an odd num
of half-waves fitting into the thickness of the excitatio
layer, while in the latter case such a field excites modes w
an odd number of quarter-waves. Hence, other things be
equal, twice the number of spin-wave modes are excited
the same interval of wave numbersk in the latter case as in
the former.

The decrease in the degree of deexcitation at one of
boundaries of an excitation layer with initially symmetr
boundary conditions should lead to a transitional situat
and to the emergence of previously ‘‘forbidden’’ asymmet
modes, with the configuration transformed in such a way t
the total variable magnetic moment becomes nonzero.
evident, then, that the earlier excited, symmetric, mo
must also undergo a transformation in this case.

The aim of our research was to study the transformat
of spin-wave resonance spectra and the modification of
dispersion law for spin waves when symmetric bound
conditions gradually become asymmetric. The transition w
done by lowering the degree of deexcitation at one of
boundaries of the excitation layer via gradual reduction
the thickness of the upper layer with strong damping.

The studies involved three-layer single-crystal films
ferrite garnets, where spin deexcitation is achieved by a
sipation mechanism.11 The films were grown by the liquid-
phase epitaxy method on a~111! gadolinium–gallium garnet
substrate by subsequent immersion into two differing me
To measure and monitor the parameters, we grew one-l
analogs of each layer of the three-layer film on pure s
strates. The lower and upper layers~the deexcitation layers!,
which had a large damping parametera5DHg/v50.2
~hereDH is the absorption-line halfwidth,g is the gyromag-
netic ratio, andv is the circular frequency of the microwav
field!, had the composition (SmEr)3Fe5O12, thickness
h50.74–1.2mm, saturation magnetization 4pM51328 G,
effective uniaxial anisotropy fieldHk

eff596 Oe, and

912$10.00 © 1997 American Institute of Physics
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g51.383107 Oe21s21. The middle layer~where standing
harmonic modes are excited! had the composition
Y2.98Sm0.02Fe5O12, thickness ranging from 0.6 to 0.95mm
for different samples, a50.003, 4pM51730 G,
g51.763107 Oe21s21, and Hk

eff521715 Oe. The thick-
ness of the various layers was measured interferometric
using the one-layer analogs. The etching rate was estim
by the time it took to etch away the layer completely. T
etching step amounted to 0.014mm. The spectra were re
corded at room temperature at a frequency
9.343109 Hz. Since the spin-wave resonance spectra w
recorded at constantv, and the difference in the resona
fields of the zeroth andnth modes,H02Hn , is quadratic in
k ~like the frequency of spin waves for constantH!, the
dispersion curves were plotted in the$H02Hn ,(2n11)2%
plane, wheren is the mode number.8,12,13

Six spin-wave modes were confidently registered in
spectrum of the initial three-layer field with symmetr
boundary conditions, in both perpendicular and parallel o
entations~Fig. 1, 1!. The dispersion relations for the tw

FIG. 1. Changes in the spin-wave resonance spectrum induced by a dec
in the thickness of the upper deexcitation layer:1—h50.74mm, 2—
h50.042mm, and3—the layer has been etched away completely;~a! per-
pendicular orientation ofH relative to the plane of the film, and~b! parallel
orientation.
lly
ed

f
re

e
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of etching the upper level down to 0.07mm, no appreciable
variations were observed. When the layer was made e
thinner, the spin-wave resonance spectrum for the cas
perpendicular orientation was found to acquire peaks
tween those that existed earlier~Fig. 1,2!.

These new peaks emerged in the following manner. T
first peaks to appear were those with higher numbersn. They
grew in height as the upper layer became thinner, and t
new modes with lower numbersn appeared. All this was
accompanied by a slight increase in the resonant fi
strength and a decrease in the height of the peaks that
appeared earlier. As a result, the monotonic dependenc
the amplitude of spin-wave modes on the mode number
appeared.

There is a dramatic effect accompanying this proce
Within the transitional region between symmetric and asy
metric boundary conditions, a break appears in the disper
curve~Fig. 2,2!, and it moves toward smaller values ofn as
the thickness of the upper layer and hence the degre
deexcitation become smaller. The break~and this can be
verified! is due to the emergence of previously ‘‘forbidden
intermediate modes. When the upper layer is etched a
completely, all intermediate modes are present~Fig. 1, 3!,
the distribution of the amplitude becomes monotonic, and
break in the dispersion curve disappears~Fig. 2, 3!. The
slope of the entire dispersion curve built on the basis of
functional dependence corresponding to symmetric bound
conditions,

H02Hn5
2A

M
~2n11!2

p2

h2
,

changes. Clearly, the modification of the dispersion law
due to the transition from symmetric boundary conditions
asymmetric, rather than to a change in (2A/M )(p2/h2) or
some other influence. The dispersion curves set up for as
metric boundary conditions, for which the wave numberk
assumes values (n 1 1

2)p/h rather than (2n11)p/h
(n50,1,2, . . . is themode number!, coincide to high accu-
racy with the original curves set up for symmetric bounda
conditions.

Note that the number of modes was found to be the sa
for both perpendicular and parallel orientations, but cert

ase
ves
FIG. 2. Changes in theH02Hn vs (2n11)2 dependence induced by a decrease in the thickness of the upper deexcitation layer. The dispersion cur1, 2,
and3 correspond to the spectra1, 2, and3 in Fig. 1.n—perpendicular orientation, and(—parallel orientation.
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differences in the slopes of the dispersion curves w
present. Establishing the reason for these differences, re
to the additional effect of the fact that the deexcitation la
is in one case a dispersive medium and in the other a rea
medium, requires further analysis.

Another interesting result of our investigation is th
qualitatively different way in which the intermediate mod
for one orientation appear as compared with those for
other. While for perpendicular orientation the modes, as
scribed earlier, emerged sequentially starting with those w
higher numbers, for parallel orientation no such pattern w
observed, up to approximately the middle of the process
mode emergence for perpendicular orientation. Only then
all the intermediate modes suddenly appear, with a mo
tonic intensity distribution.

In analyzing the results we approximated spin waves
harmonic waves in the excitation layer and exponentia
damped waves in layers with largea. The intensity of exci-
tation of spin-wave modes in a linearly polarized microwa
field can be described by1,7

I n;
~*mx dz!2

*~a/2gM !~mx
21my

2! dz
, ~1!

wheremi are the components of the variable magnetizat
in a system of coordinates in which the direction ofM coin-
cides with that of thez axis and the direction ofh with that
of the x axis.

FIG. 3. Transformation of the first five spin-wave modes as a resul
transition from symmetric boundary conditions to asymmetric. The hatc
areas depict modes that are not excited when the boundary condition
symmetric.
e
ted
r
ve

e
-
th
s
of
id
o-

y
y

n

symmetric boundary conditions, only modes with an o
number of half-waves in the thickness of the excitation la
~Fig. 3, 1! have nonzero intensity when the total variab
magnetic moment is nonzero. Modes with an even numbe
half-waves ~asymmetric modes, depicted in Fig. 3 b
hatched rectangles! are not excited.

The damped spin wave in the deexcitation layer is ch
acterized by a certain penetration depthl , which generally
depends on the wave number in the excitation layer,ke;n.
A drop in the thickness of the upper layer to values com
rable to, or less than,l leads to a drop in the degree o
deexcitation at the corresponding boundary of the excita
layer. This in turn changes the wave numbers of the h
monic spin waves and their phases at the given bound
~Fig. 3,2!. As a result, the total variable magnetic moment
the spin-wave modes that earlier were asymmetric beco
nonzero, with the corresponding peaks appearing in the s
wave resonance spectra. This is accompanied by an incr
in the resonant field strengths and a decrease in the inte
of the peaks of the modes that were symmetric under s
metric boundary conditions. Figure 3 depicts the change
configuration of a few first spin-wave modes when symm
ric boundary conditions are replaced by asymmetric.

To explain the change in the way in which intermedia
modes appear when there is a change in orientation, we
lowed not only for the dissipation mechanism of spin dee
citation, but also for the dispersive and reactive properties
layers with a largea. Depending on the orientation in th
range of field strengths that excite spin-wave modes, the
excitation layer is a reactive or dispersive medium w
strong dissipation for spin waves excited by standing h
monic waves localized in the excitation layer.

Figure 4 depicts theH-dependence of the wave vecto
in the excitation and deexcitation layers with no allowan
for dissipation. The calculations ofk for each layer were
done via the dispersion relations

v

g
5H1Hk

eff2
2Hk1

3
1
2A

M
k2, ~2!

S v

g D 25SH1
2A

M
k2D SH2Hk

eff2
Hk1

2
1
2A

M
k2D , ~3!

for the perpendicular and parallel orientations, respectiv
HereHk1 is the cubic anisotropy field, which was found b

f
d
are
served

FIG. 4. TheH-dependence of wave numbers in an excitation layer (ke , 1! and a deexcitation layer (kd , 2! for parallel~a! and perpendicular~b! orientations.
The dashed curve corresponds to imaginary values ofkd , and the dot-dash straight lines specify an interval of field strengths corresponding to the ob
spin-wave resonance spectrum.
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stant. For perpendicular orientation, the wave vector in
deexcitation layer with fields higher than that needed fo
homogeneous resonance in this layer (H0), is imaginary:

kd52 ikd9

~the spin wave is an exponentially damped wave!. For par-
allel orientation of the field,

kd5kd8

is a real quantity~a harmonic wave! over the entire range o
field strengths.

Allowing for the dissipative properties of the deexcit
tion layer leads to a situation in which for perpendicu
orientation the damping coefficient for the spin wave
creases, while for parallel orientationkd becomes complex
valued, and the spin wave becomes an exponentially dam
harmonic wave.

Figure 4a implies that for perpendicular orientation,
the wave numberke of the harmonic wave excited in th
middle layer increases, the strength of the external magn
field H approachesH0 in the deexcitation layer, which
makes the layer less reactive. Clearly, there is a sharp
crease inkd , which corresponds to an increase in the pe
etration depth. For this reason the modes with the hig
values ofn are the most sensitive to the thickness of t
deexcitation layer. Note that aske increases, the amplitude o
the variable magnetization of the harmonic spin wave is
duced and, simultaneously, as the strength of the exte
magnetic fieldH approachesH0 in the deexcitation layer, the
variable magnetization in this layer excited directly by t
microwave field grows, i.e., the difference in the magneti
tion precession angles of two media becomes smaller.
this causes the degree of deexcitation to decrease as
mode number increases.

For parallel orientation, the relative variation ofkd8
within the range of field strengths corresponding to the
served spin-wave resonance spectrum~Fig. 4b! is moderate,
and amounts to roughly 20%. The depthl of penetration of
the deexcitation layer by the spin wave~determined by the
dissipative properties!,12

l5
1

kd9
5

4Ag

avM
kd8 , ~4!

is therefore only slightly dependent on the mode number
contrast to the purely exponential wave~perpendicular orien-
tation!, the exponentially damped harmonic wave in the d
excitation layer for parallel orientation of the field has a no
near the boundary between layers. This leads to a cons
ably weaker dependence of the degree of deexcitation on
mode number and a lower sensitivity of deexcitation to
thickness of the deexcitation layer. Only when the thickn
h of the upper layer is diminished to values comparable to
smaller thanl is there a sharp decrease in the degree
deexcitation, which is accompanied by a change in the c
figuration of the spin wave near the boundary between
layers.

Estimates support this conclusion. All the intermedia
modes emerged when the thicknessh of the upper deexcita
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amounts to roughly half ofl , or a quarter of the wavelengt
l in this layer. Etching with a smaller step would probab
lead not to a sudden rise in the intensities of all intermed
modes, but to a more gradual rise. Note that for para
orientation, the spin waves are transverse–longitudinal,
are generally elliptically polarized.

The large damping coefficients for modes with a sm
n in the event of perpendicular orientation ensure fai
strong deexcitation for thinner deexcitation layers.

Thus, on the basis of our results, we can draw the
lowing conclusions.

~1! The modification of the law of dispersion of the spi
wave spectrum~in particular, the appearance of a break
the dispersion curve! may be due only to fluctuations inA
andM , but also to a situation in which the boundary cond
tions are in the ‘‘transition’’ region between symmetric an
asymmetric boundary conditions.

~2! The influence of the dispersive or reactive propert
of a layer with a largea, in addition to the dominant dissi
pation mechanism of deexcitation, leads to a qualitat
change in the way in which asymmetric intermediate mo
appear as the thickness of this layer decreases.

Note that an intermediate situation similar to the o
discussed above can emerge for antisymmetric bound
conditions. The reason may be the small thickness of on
the layers or another factor leading to an inequality~in ab-
solute values! between the degrees of deexcitation at t
boundaries.
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Long-range intensity correlations for the multiple scattering of waves in unordered

n-
media
D. B. Rogozkin

Moscow Engineering Physics Institute, 115409 Moscow, Russia
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Zh. Éksp. Teor. Fiz.111, 1674–1716~May 1997!

The long-range correlations in the reflected and transmitted fluxes in the case of the coherent
transport of waves in an unordered medium with discrete inhomogeneities are considered.
The correlator and spectrum of the intensity fluctuations are expressed in a general form in terms
of the one-center scattering amplitude and the propagators of the mean radiated intensity.
The random interference of the waves and the fluctuations of the number of scattering centers in
a microvolume of the medium are taken into account simultaneously. Detailed calculations
are performed for two limiting radiation propagation regimes, viz., spatial diffusion and small-
angle multiple scattering. It is shown that the conservation of the total flux upon elastic
scattering leads to the formation of a dip in the spectrum and, accordingly, a negative correlation
between the intensities at large distances. In the case of spatial diffusion this feature is
displayed upon reflection, and in the case of small-angle multiple scattering it is displayed upon
transmission through a slab. The relative roles of the various sources of intensity
fluctuations, as well as the sensitivity of the correlations to factors that influence the wave
propagation regime, viz., the finite size of the scattering sample, absorption in the medium, and
the presence of a frequency shift in the incident waves, are analyzed. We find that
fluctuations in the distribution of the scatterers show up most strongly in a medium with strong,
i.e., ‘‘non-Born,’’ centers, especially if they exhibit absorption. ©1997 American
Institute of Physics.@S1063-7761~97!01105-0#
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The interference of waves upon multiple elastic scat
ing is known to be the cause of a whole list of unusu
‘‘mesoscopic’’ effects, which appear when electrons a
classical waves are transported in unordered media.1–3 Some
examples of these effects are the universal conductivity fl
tuations of small metallic samples,4–6 the correlations in
speckles, i.e., intensity distributions that fluctuate strongly
space, in the case of the multiple scattering of coherent l
and microwave radiation.3,7–9

Interest in the analysis of the correlations of multip
scattered wave fields first arose quite long ago in connec
with the study of the scintillation of coherent laser radiati
and radio waves in turbulent media.10 This question has bee
investigated in extreme detail within the model of a rand
continuous medium with large-scale~with a dimensiona that
is much greater than the wavelengthl) weakly refracting
inhomogeneities~see the reviews in Refs. 10–13!. The re-
gion of applicability of the theoretical results10–13 is re-
stricted by conditions which are characteristic of turbule
media ~very large inhomogeneities of the refractive inde
the Born approximation for single scattering, and the abse
of absorption!.

The analogous problem for media with discrete scat
ers became a topic of investigation comparatively recentl
connection with the research on the diffusive transport
electrons and classical waves~coherent light, microwave ra
diation! in unordered systems.1–9,14–22The conditions char-
acteristic of turbulent media are not satisfied in this case,
the wave correlation regime is different. Here the Born a

916 JETP 84 (5), May 1997 1063-7761/97/050916
r-
l
d

c-

n
ht

n

t
,
ce

r-
n
f

d
-

ter, and the effects caused by the absorption of radiation
play a significant role.

Despite the large number of publications devoted to
study of intensity fluctuations in unordered media,1,7–9,14–33

the corresponding general theory has been developed to
a small extent beyond the work in Refs. 10–13. The exist
theoretical results~see, for example, Refs. 14 and 17! pertain
to the Born approximation for one-center scattering and, w
the exception of Ref. 32, were obtained directly for a p
ticular limiting regime of wave propagation in the medium
Because of the use of the Born approximation, the ques
of the intensity fluctuations associated with the random
croinhomogeneity of the medium, in particular, was not co
sidered.

In the Born approximation only one source of large-sc
intensity fluctuations in the observation plane is taken i
account, viz., spatial spreading of a local intensity surge t
appears in the bulk of the medium due to interference of
waves upon multiple scattering. Such a fluctuation sourc
presumed in both the Langevin1,15,18 and diagram14,17 de-
scriptions of the long-range correlation between diffusi
fluxes in an unordered medium. As is shown below, whe
departure is made from the Born approximation for on
center scattering, another source of intensity fluctuation
included, viz., local perturbations of the spatial distributi
of the intensity and the bulk speckle structure due to Pois
fluctuations of the number of scatterers in a microvolume
the medium. This source of fluctuations is of the same na
as the variation of the transmission coefficient appear
when an additional scatterer is added to the medium, wh

916$10.00 © 1997 American Institute of Physics
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mation, in which only the pairwise correlations of the wa
fields are taken into account, the inclusion of the local inh
mogeneity of the medium in the treatment requires consid
ation of the correlations between all four fields appearing
the definition of the intensity correlator.

Below we present the solution of the problem of calc
lating the spectrum and the correlation function of the int
sity fluctuations for the multiple scattering of coherent rad
tion in an unordered medium with discrete inhomogeneit
The approach previously developed to describe fluctuat
in the case of small-angle scattering in a turbule
medium10–13 is generalized to the case of an arbitrary dis
bution of multiply scattered waves. The transport equat
for an intensity correlator free of restrictions on the on
center scattering force is derived in the ladder approxim
tion, and a closed analytic solution of that equation is fou
The solution is expressed in a general form in terms of s
tering amplitudes and ladder propagators and, thus, mak
possible to reduce the problem of calculating the spect
and the correlation function of the intensity fluctuations
the solution of the transport equation36,37 for the mean inten-
sity. The relations found in this work generalize the ba
formulas32,33 to the case of strong scatterers and include
previously obtained results~see, for example, Refs. 1, 3, 1
17, and 18! as the corresponding limiting cases.

Departure from the Born approximation for one-cen
scattering enables us to take into account the mechanism
intensity fluctuations caused by the random microinhomo
neity of the medium along with the purely interferen
mechanism. On the one hand, this opens up an incohe
channel of fluctuations~in the Born approximations ther
was no such channel! and, on the other hand, this can have
significant effect on fluctuations of a coherent nature. In
mogeneity effects are displayed most strongly in media w
large centers~with dimensions greater than the wavelengt!,
especially if they are absorbing centers. The contribution
the incoherent fluctuations can also be important for the s
tering of frequency-shifted waves, which has the additio
problem of interpreting the experimentally observed dam
ing of the fluctuations as the frequency shift increases.20–25

A detailed investigation of long-range intensity corre
tions is performed for two limiting regimes of multiple sca
tering of waves, viz., spatial diffusion of radiation in a sy
tem of centers of small radius~the case of arbitrary scatterin
centers is considered in Appendix B! and small-angle mul-
tiple scattering in a medium with large-scale inhomogene
The dependence of the correlations on such factors as
restricted size of the scattering samples, absorption in
medium, and the presence of a frequency shift in the incid
waves is analyzed. It is shown that the form of the fluctu
tion spectrum at low spatial frequencies and, accordingly,
asymptote of the intensity correlator depend significantly
the conservation of the total radiation flux. In the case
spatial diffusion this feature is displayed in the fluctuati
spectrum of the intensity reflected from the medium, and
the case of small-angle multiple scattering it is displayed
the spectrum of the transmitted intensity. In both cases c
servation of the flux during elastic scattering leads to
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negative correlation between the intensities at large
tances. One consequence of the conservation of the flu
the fact that the fluctuations of the diffuse reflectance
determined only by long ray trajectories and therefore, unl
the conclusions in Refs. 14 and 19, are sensitive to any
tors that constrain the length of the trajectories.

The phenomena considered in the present work sho
be observed under conditions that are typical of many exp
ments on the multiple scattering of coherent light and mic
wave radiation~see, for example, Refs. 3, 7, 9, 20–25, a
30! and can be of interest for investigating the properties
unordered media.

2. GENERAL RELATIONS

Let a plane wave of unit amplitude fall on the sla
0,z,L.

The problem of calculating the spectrum and the cor
lation function of the intensity fluctuations reduces to findi
the moments of the wave fieldG 1, G 2, andG 4 averaged
over the positions of the scatterers, where

G n5^C~1! . . .C* ~n!&. ~1!

Under the conditions of weak localization of the wav
(k0l@1, where l is the elastic scattering length an
k052p/l) the main contribution to the moments of th
wave field is made by the ladder diagrams. Their summa
leads to a system of transport equations~Fig. 1!.

The equations for the first two moments, i.e., the me
field and the mutual coherence function, are well kno
~see, for example, Refs. 37 and 38!. The mean field in a
substance satisfies the following equation~Fig. 1a!:

G 15G 1
~0!1G0 (

a
T̂ aG 1 , ~2!

where G 1
(0) is the field in the incident wave

G05(¹21k0
21 i0)21 is the Green’s function of the free

wave equation, andT̂ a is the matrix for scattering on a cen
ter located at the pointra . In the case in which the free term
in ~2! corresponds to the field of a point source, i.
G 1

(0)5G0, Eq. ~2! defines the Green’s function of the elast
scattering problem.37 KnowingG, we can write the equation
for the second moment in the following manner:

G 25G 2
~0!1GG1 (

a
T̂ aT̂ a

1
G 2 , ~3!

whereG 2
(0)5G 1G 1 is the second moment of the unscatter

field. Equation~3! is depicted in Fig. 1b in diagram symbo
ism.

It is also not difficult to derive the transport equation f
the fourth moment of the wave field by successive summ
tion of the ladder diagrams~Fig. 1c!:

G 45G 4
~0!1G 2G 2 (

a
ĥaĥa

1
G 4 , ~4!

where
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FIG. 1.
G 4
~0!1G 2G 2 , ĥa5ĥa

15T̂ a~G
1!211G21T̂ a

11T̂ aT̂ a
1 .
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~5!

Equations~3! and~4! have a similar structure. In Eq.~4! the
second moment of the wave fieldG 2 plays the same role a
the Green’s functionG in Eq. ~3! for the second moment
The free terms in Eqs.~3! and~4! describe the propagation o
the unscattered fields and the uncorrelated intensities, res
tively. In Eq.~4! the matrixĥa plays the role of the scatterin
matrix T̂ a . The quantity(aT̂ aT̂ a

1 in ~3! specifies the pair
correlation of the fields, while the quantityĤ5(aĥaĥa

1 in
~4! specifies the correlation of the intensities.

Equations~2!–~5! are general transport equations, whi
describe the correlation of the intensity values of the coh
ent radiation in an unordered medium. They are valid for a
multiple-scattering regime of waves, including spatial diff
sion and small-angle multiple scattering. In the latter c
system~2!–~5! can be regarded as a generalization of
known transport equation for the fourth moment of the wa
field, which was studied in detail in the context of the pro
lem of the intensity fluctuations in the case of wave pro
gation in a turbulent medium,10–13 to the case of strong dis
crete scatterers. In the small-angle approximation Eqs.~4!
and ~5! transform into the corresponding equations of t
theory in Refs. 10–13, if only the terms responsible for
pair correlations of the fields are left in the quant
Ĥ5(aĥaĥa

1 . For this purpose, the term that is quadratic
T̂ a must be neglected in~5!, and the expression forT̂ a in the
Born approximation must be inserted.

We transform Eqs.~3!, ~4!, and ~5!, assuming that the
scatterers are found at sufficient distances from one ano
so that each successive scattering act takes place in
Fraunhofer zone of an individual scattering cent
l@max(k0

21, k0a
2), i.e., a condition opposite to the on

adopted in Refs. 10–13 is satisfied. In this case, assum
that the scattering is multiple, we can separate the fast
slow spatial variables in the problem~see, for example, Refs
37 and 38!. The scale of variation of the fast variables
specified by the coherence radius of the scattered fi
(r coh;l/u, whereu is the characteristic multiple-scatterin
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variables is specified by the characteristic spatial deflec
of the ray trajectories in the scattering samp
(r spat. lu@r coh). Taking the Fourier transform with respe
to the fast variables, we arrive at the (r ,V) representation~r
denotes the coordinates, andV denotes the directions o
propagation of the waves!, and we express all the observab
quantities in terms of a smooth function of the directions a
coordinates, i.e., the ‘‘ray’’ radiated intensityI (r ,V).

Equation~3! can be transformed into an ordinary tran
port equation.36–38For this purpose, we must use the explic
form of the Green’s function of the scattering problem:37

G~r ,r1!52
1

4p
expS ik0ur2r1u2

1

2
ns totur2r1u D 1

ur2r1u
,

~6!

where n is the number of scatterers per unit volume a
s tot is the total cross section of the one-center interacti
and go over to the mixed (r ,V) representation. Taking into
account the equality which is valid fork0l@1

E E drd drd8 GS r1 rd
2
,r11

rd8

2 DG* S r2 rd
2
,r12

rd8

2 D
3exp~2 ik•rd1 ik8•rd8!54p4

3
exp~2ns totur2r1u!

ur2r1u2
dS k2k0

r2r1
ur2r1u

D
3dS k82k0

r2r1
ur2r1u

D ~7!

and introducing the notationV5k/k and V85k8/k8, we
write Eq. ~3! in the form

I ~r ,V!5I ~0!~r ,V!1nE dr 8E dV8
ds

dV

3~V•V8!
exp~2ns totur2r 8u!

ur2r 8u2
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I ~r 8,V8!, ~8!
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The equations forIv0
(r ,V,Dv) defined in accordance with
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S ur2r 8u D
whereI (r ,V)[^I (r ,V)& is the radiated intensity at the poin
r in the directionV, averaged over the positions of the sc
terers,

ds

dV
~V•V8!5u f ~V•V8!u2

is the differential elastic scattering cross section,f (V • V8) is
the scattering amplitude, andf̂52(4p)21T̂ . For the sake
of brevity, in ~8! and below we omit the averaging sig
^ . . . & in the notation of the mean intensity, leaving it
explicit form only in the second moment of the intensity.

In deriving ~8! we took into account the presence ofd
functions in ~7!, which enables us to write the relation b
tweenI (r ,V) andG 2(r ,r1) in the form37

I S r ,V5
k

kD d~k2k0!

k2
5

1

~2p!3
E dRE dR1G 2~R,R1!

3exp$2 ik•~R2R1!%dS r2 R1R1

2 D . ~9!

For directed point and planar sources of unit power, the
scattered intensity in~8! equals, respectively,

I ~0!~r ,Vur1 ,V1!5
exp~2ns totur2r1u!

ur2r1u2
d~V2V1!

3dS V2
r2r1

ur2r1u
D ,

~10!

I ~0!~z,Vuz1 ,V1!5
1

uVzu
expS 2ns tot

uz2z1u
uVzu

D d~V2V1!.

After applying the operator (V • ¹ r1ns tot) to both sides
of Eq. ~8!, we obtain the transport equation in the ordina
integrodifferential form. For a directed point source@see
~10!# it has the form36

~V•¹ r1ns tot!I ~r ,Vur1 ,V1!5d~V2V1!d~r2r1!

1nE dV8
ds

dV8
I ~r ,V8ur1 ,V1!. ~11!

In the case in which the fields impinging on the mediu
differ in frequency byDv!v0 (v05ck0 is the carrier fre-
quency, andc is the speed of light!, in going over to the
(r ,V) representation instead of~7! we must use the relation

E E drddrd8Gv01Dv/2S r1 rd
2
,r11

rd8

2 D
3Gv02Dv/2S r2 rd

2
,r12

rd8

2 Dexp~2 ik•rd1 ik8•rd8!

54p4
exp@2~ns tot2 i ~Dv!/c!ur2r1u#

ur2r1u2

3dS k2k0
r2r1

ur2r1u
D dS k82k0

r2r1
ur2r1u

D . ~12!
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~9! can then be obtained from Eq.~8! or ~11!, if
ns tot2 i (Dv)/c is substituted into them instead ofns tot .
Physically,Iv0

(r ,V,Dv) is the intensity of the signal modu
lated with the frequencyDv.

To pass from Eq.~4! to the equation in the (r ,V) rep-
resentation, the fast and slow variables must be separate
the fourth momentG 4 of the field. Under the conditions o
multiple scatteringG 4 is an abruptly varying function of the
difference variables and a smooth function of the summ
variables, which decreases on the scaler coh. When the val-
ues ofr12r2 andr32r4 are small,G 4 is a smooth function
of the variables (r11r2)/2 and (r31r4)/2. In addition,G 4

depends on the variables which are obtained ifr2 and r4
change places. This follows from the symmetry condition

G 4~1,2,3,4!5G 4~1,4,3,2!, ~13!

which corresponds to transposition of the conjugate w
fields appearing in the definition~1!. At small values of the
difference variables the main contribution toG 4 is made by
the diagrams containing at least one scattering act in
‘‘outgoing’’ ladder propagators. The sum of such diagram
specifies a part of the fourth momentG 4

(sc) ~see Appendix A!.
It is more convenient to work withG 4

(sc) than withG 4. Un-
like G 4, G 4

(sc) does not obey the condition~13!, and the fast
and slow variables can be unequivocally separated
G 4

(sc) . In addition, under multiple-scattering conditionsG 4

can be expressed in terms ofG 4
(sc) , and a closed equation

similar to ~4! can be written forG 4
(sc) .

In the problem of long-range spatial correlations the o
servable quantities can be expressed in terms of a sm
function of the coordinates and the angles, i.e., the sec
moment of the intensity. It is related toG 4

(sc) by the equality

K Iv01Dv/2S r ,V5
k

kD Iv02Dv/2S r1 ,V15
k1
k1

D L
3

d~k2k0!

k2
d~k12k0!

k1
2

5
1

~2p!6
E . . . E dR1 . . .dR4

3G 4
~sc!SR1 ,v01

Dv

2
,R2 ,v0

1
Dv

2
;R3 ,v02

Dv

2
,R4 ,v02

Dv

2 D
3dS r2 R11R2

2 D dS r12 R31R4

2 D
3exp$2 ik•~R12R2!2 ik1•~R32R4!%.

~14!

The quantity ^Iv01Dv/2(r ,V)Iv02Dv/2(r1 ,V1)& satisfy the
equation

^Iv01Dv/2~r ,V)Iv02Dv/2(r1 ,V1)&
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5~ Iv01Dv/2~r ,VuV0!Iv02Dv/2~r1 ,V1uV0!!~sc!
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1nE dr 8E E dV8dV18E E dV9dV19

3~ Iv01Dv/2~r ,Vur 8,V8!Iv02Dv/2~r1 ,V1ur 8,V18!!~sc!

3@h~V8,V8uV9,V9!h~V18 ,V18uV19 ,V19!

3~^Iv01Dv/2~r 8,V9!Iv02Dv/2~r 8,V19!&

1Iv01Dv/2
~0! ~r 8,VuV0!Iv02Dv/2

~0! ~r 8,V1uV0!!

1h~V8,V8uV9,V19!h~V18 ,V18uV19 ,V9!

3^Iv0
~r 8,V9,Dv!Iv0

~r 8,V19 ,2Dv!&#, ~15!

where

~ Iv01Dv/2Iv02Dv/2!
~sc!5Iv01Dv/2Iv02Dv/2

2Iv01Dv/2
~0! Iv02Dv/2

~0! ,

h~V,V1uV8,V18!5
2p i

k0
@ f ~VV8!d~V12V18!

2d~V2V8! f * ~V1V18!#

1 f ~VV8! f * ~V1V18!. ~16!

The intensity propagators appearing in~15! have the fol-
lowing meaning. The quantityIv(r ,VuV0) is the radiated
intensity at the frequencyv at the pointr in the direction
V when a plane wave impinges on the surface of the m
dium in the directionV0: Iv(r ,VuV0) is normalized to the
unit z component of the incident flux. The quanti
Iv(r ,Vur 8,V8) is the radiated intensity at the pointr in the
direction V from a point source of unit power, which i
located at the pointr 8 and emits a wave in the directio
V8. The quantitiesIv

(0)(r ,VuV0) and Iv
(0)(r ,Vur 8,V8) are

the values of the unscattered intensity~10!.
There will be an equation similar to~15! for the moment

of the intensitŷ Iv0
(r ,V,Dv)Iv0

(r1 ,V1 ,2Dv)& appearing
in the second integral term in Eq.~15!. Unlike ~15!, it will
contain the intensity propagatorsIv0

(r ,V,6Dv) corre-
sponding to incident waves with the frequency shiftDv.

The first term on the right-hand side of Eq.~15!, i.e., the
product of the mean values of the intensity, describes
independent propagation of two ‘‘rays’’~each ‘‘ray’’ corre-
sponds to an intensity and is described by a sum of lad
diagrams, see Figs. 1b and 1c!, and the next two integra
terms describe the correlation of the respective ‘‘rays’’ d
to incoherent scattering on an individual center and inter
ence.

As an analysis shows, under the conditi
l@max(k0

21, k0a
2), the amplitude of the correlations must b

much smaller than the mean value of the intensity:

^I ~r ,V!I ~r1 ,V1!&2I ~r ,V!I ~r1 ,V1!

!I ~r ,V!I ~r1 ,V1!.

Therefore, Eq.~15! can be solved by an iterative metho
with expansion of the second moment of the intensity int
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‘‘rays.’’ The small parameters in this expansion a
1/(k0l )

2 ands/ l 2, which characterize the coherent and inc
herent interactions of the ‘‘rays,’’ respectively.

The principle contribution to the correlation function
made by the first iteration cycle. In this approximation f
the second moment of the intensity we obtain the followi
expression:

^Iv01Dv/2~r ,V!Iv02Dv/2~r1 ,V1!&

5~ Iv01Dv/2~r ,VuV0!Iv02Dv/2~r1 ,V1uV0!!~sc!

1nE dr 8E E dV8dV18E E dV9dV19

3~ Iv01Dv/2~r ,Vur 8,V8!Iv02Dv/2~r1 ,V1ur 8,V18!!~sc!

3@h~V8,V8uV9,V9!h~V18 ,V18uV19 ,V19!

3Iv01Dv/2~r 8,V9uV0!Iv2Dv/2~r 8,V19uV0!

1h~V8,V8uV9,V19!h~V18 ,V18uV19 ,V9!

3~ Iv0
~r 8,V9uV0 ,Dv!Iv0

~r 8,V19uV0 ,2Dv!!~sc!#.

~17!

The expression~17! describes the long-range correlations
the intensity for an arbitrary law of single and multiple sca
tering of waves in an unordered medium. It enables us
express the intensity correlator in a general form in terms
the value of the mean intensity and to thereby reduce
problem of calculating the correlation function to solving t
ordinary transport equation36,37with the respective sources

We are interested only in values of the frequency sh
that are so small that it is reasonable to refer to the inter
ence of multiply scattered waves@Dv!v0 /(k0l )#. There-
fore, we can setv06Dv/2'v0 everywhere on the right-
hand side of~17!, leaving the frequency difference finit
only in the argument of the propagato
Iv0

(r ,VuV0 ,6Dv) in the last~interference! term.
The h function appearing in the incoherent part of~17!

can be brought, using the optical theorem~see, for example,
Ref. 39!, into the form

h~V8,V8uV9,V9!52s totd~V82V9!1
ds

dV
~V8V9!.

~18!

We note that the incoherent contribution to~17! de-
scribes the intensity fluctuations caused only by Pois
fluctuations of the number of scatterers in a microvolum
This contribution could be obtained using the approach p
viously developed to describe fluctuations of the distribut
function of the Boltzmann kinetic equation in a nonequili
rium gas.40 For this purpose, the disturbed, locally nonun
form distribution of the scatterersn1dn(r ) must be substi-
tuted into the transport equation for the intensity~see~8! or
~11!!, and then the correlator^dIdI 1& can be calculated using
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the known relation^dn(r )dn(r1)&5nd(r2r1), which is
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valid for an uncorrelated arrangement of the scattering c
ters.

Knowing the second moment ^Iv01Dv/2(r ,V)
3Iv02Dv/2(r1 ,V1)&, we can calculate some experimenta
observable quantities~see Appendix B!, viz., the correlation
function between the local values of the radiation flux de
sity emerging from the mediumC(r) and its Fourier trans-
form, i.e., the spatial fluctuation spectrumM (q):

M ~q!5E d2r exp~2 iq•r!C~r!, ~19!

wherer5(r2r1) i is a vector in thexy plane, which is par-
allel to the boundary of the slab. The asymptote ofC(r),
which characterizes the long-range spatial correlations, is
lated to^Iv01Dv/2(r ,V)Iv02Dv/2(r1 ,V1)& by

C~zf ,r5~r2r1! i ,Dv!

5E
~VVn!.0

dVE
~V1Vn!.0

dV1~VVn!~V1Vn!

3@^Iv01Dv/2~zf ,r i ,V!Iv02Dv/2~zf ,r1i ,V1!&

2~ Iv01Dv/2~zf ,VuV0!Iv02Dv/2~zf ,V1uV0!!~sc!#,

~20!

wherezf is the coordinate of the slab boundary (zf50 in the
reflection geometry andzf5L in the transmission geometry!,
andVn is an external normal to the corresponding bounda
Although ~20! defines the correlation function between loc
values of the flux density, in keeping with established tra
tion ~see, for example, Refs. 10–13, 18, and 37! we shall use
the term ‘‘intensity correlation function.’’

Henceforth it will generally be more convenient for us
work with the correlation functionC(r) and with the fluc-
tuation spectrumM (q). The shape of the spectrum at lo
spatial frequencyq contains information on the long-rang
spatial correlations of the intensity and is very sensitive
variation of the wave propagation regime in an unorde
medium. The amplitude of the spectrum at zero spatial
quency specifies the fluctuations of the total reflection
transmission coefficients:

^dTv01Dv/2dTv02Dv/2&5
1

A
M ~zf5L,q50, Dv!,

~21!

^dRv01Dv/2dRv02Dv/2&5
1

A
M ~zf50,q50, Dv!,

whereA is the surface area of the slab. We define the refl
tion R and transmissionT coefficients as the values of th
total reflected and transmitted radiation fluxes normalized
the unitz component of the incident flux.36,37 In particular,

^Rv&5E
~VVn!.0

dV~VVn!Iv~zf50,Vuzi50,V0!,

~22!

^Tv&5E
~VVn!.0

dV~VVn!Iv~zf5L,Vuzi50,V0!.
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the second moment of the intensity~see Appendix B!, at low
spatial frequencies (q!k0) in a first approximation we ob-
tain

M ~zf ,q,Dv!5M coh~zf ,q,Dv!1M incoh~zf ,q!, ~23!

where

M coh~zf ,q,Dv!5nE
0

L

dz8E E dV9dV19U E dV8

3Iv0
~zf ,quz8,V8!h~V8,V8uV9,V19!U2

3Iv0
~z8,V9uV0 ,Dv!Iv0

~z8,V19uV0 ,

2Dv!, ~24!

M incoh~zf ,q!5nE
0

L

dz8U E dV8E dV9Iv0
~zf ,quz8,V8!

3Fs totd~V82V!2
ds

dV
~V8V9!G

3Iv0
~z8,V9V0!U2. ~25!

In ~24! and ~25! it was taken into account that the ‘‘incom
ing’’ intensity propagatorIv0

(z8,V8uV0 ,6Dv,) does not
depend on the coordinates in the plane parallel to the bou
aries of the slab and that the ‘‘outgoing’’ propagat
Iv0

(zf ,quz8,V8) equals

Iv0
~zf ,quz8,V8!5E d2r exp~2 iq•r!Iv0

~zf ,ruz8,V8!

5E d2r exp~2 iq•r!E
~VVn!.0

dV~VVn!

3Iv0
~zf ,r,Vuz8,V8!, ~26!

where Iv0
(zf ,ruz8,V8) is the spatial distribution of the ra

diation flux density emerging from the medium at the surfa
z5zf . The amplitude of the spectrum~23!–~25! is normal-
ized to the unitz component of the incident flux.

The expressions~17! and ~23!–~25! were derived with-
out any assumptions regarding the form of the intens
propagators and are the most general of the results that
been proposed hitherto to describe long-range intensity
relations in unordered media. Formulas~23!–~25! generalize
the known results reported in Refs. 1, 14, 17, 18, 29, 32,
33 in two respects. On the one hand, they take into acco
the effects caused by strong, i.e., non-Born, one-center s
tering, and, on the other hand, they are valid for any regi
of multiple scattering of waves in a medium. The resu
obtained for the spatial diffusion of radiation1,14,17,18 and
small-angle multiple scattering29 follow from ~23!–~25! as
limiting cases when the corresponding approximate exp
sions for the intensity propagators are plugged into them

In the Born approximation, in which only pairwise co
relations of the wave fields are taken into account in
diagrams presented in Fig. 1c, the incoherent contribution
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the fluctuation spectrum vanishes~see, for example, Ref. 41!,
32
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This type of behavior of the spectrumM tot(q) is most
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and the coherent contribution takes the following form:

M coh~zf ,q,Dv!5S 2p

k0
D 2nE

0

L

dzE E dV8dV18u

3I ~zf ,quz,V8!2I ~zf ,quz,V18!u2

3
ds

dV
~V8V18!I ~z,V8uV0 ,Dv!

3I ~z,V18uV0 ,2Dv!. ~27!

This result is obtained from~24!, if we substitute the Born
scattering amplitude into theh function and restrict attention
to the terms that are linear with respect to the amplitude

Expressions like~24!, ~25!, and ~27! are also valid for
the correlations between values of the intensity on oppo
boundaries of the slab and for the fluctuation spectr
M tot(q) of the total scattered intensity, i.e., the sum of t
reflected and transmitted intensities. In the latter case
sum I (0,quz,V)1I (L,quz,V) must be substituted into~24!,
~25!, and~27! instead ofI (zf ,quz,V).32,33

Relations~23!–~27! enable us to draw several concl
sions at once regarding the general properties of the fluc
tion spectrum.

In the case of purely elastic backscattering of the wa
by a semi-infinite medium, the incident flux is complete
reflected, and the reflection coefficientR51. Therefore, its
dispersion ^(dR)2&50, and whenq50, the expressions
~23!–~25! and ~27! should vanish. In fact, in this case th
value ofI (0,quz,V) for q50 does not depend onV,36,42and
we obtain M (zf50,q50)50 ~the contribution ~24! for
M coh vanishes by virtue of the optical theorem for the sc
tering amplitude39!. When q.0, a dependence o
I (0,quz,V) on V appears, andM (zf50,q) increases as a
result. Thus, conservation of the flux upon elastic scatte
leads to the appearance of a minimum on the spectrum o
reflected intensity.

Consideration of subsequent iteration cycles in Eq.~15!
does not destroy the feature of the fluctuation spectrum
mentioned, since factors of the form

E dV8I ~0,quz,V8!h~V8,V8uV9,V19!

E dV18I * ~0,quz,V18!h~V18,V18uV9,V19!

are present explicitly in all the terms of the expansion of
fluctuation spectrum into a series with respect to the mu
plicity of the intensity interaction.

When waves are elastically scattered by a finite slab,
conservation of the flux has exactly the same effect on
behavior of the fluctuation spectrum of the total intens
M tot(q). In this caseR1T51, and^(dR1dT)2&50. There-
fore, whenq50, the spectrumM tot(q) should vanish. This
follows formally from the fact that whenq50, the sum
I (0,quz,V)1I (L,quz,V) appearing inM tot(q) defines the
total radiation flux through both boundaries of the slab a
does not depend onV in the absence of absorption.
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pronounced in the case of small-angle multip
scattering.10–13,29In this case the probability of the reflectio
of waves is negligible, and the feature inM tot(q) is observed
in the fluctuation spectrum of the transmitted intensity.

We have been dealing with the long-range spatial co
lations of the intensity, for which information is contained
the coordinate dependence ^Iv01Dv/2(r ,V)
3Iv02Dv/2(r1 ,V1)&. However, knowing the second mo
ment, we can also investigate the short-ran
(r,r coh;l/u) intensity correlations in speckles. The sma
scale structure of a speckle image in the observation plan
determined by the interference of waves with different ang
of incidence. Therefore, information regarding the sho
range correlations between the local values of the flux d
sity can be obtained from the angular dependence of
second moment of the intensity. The corresponding corr
tion function is defined by the expression~see Appendix B!

C~zf ,r5~r2r1! i ,Dv!5
1

4E dVE dV1@Vn•~V1V1!#
2

3exp$ ik0~V2V1!•r%

3 K Iv0S zf , 12 ~r1r1! i ,V,Dv D Iv0

3S zf , 12 ~r1r1! i ,V1 ,2Dv D L . ~28!

In a first approximation, from~28! there follows the formula

C~zf ,r,Dv!5
1

4E dVE dV1@Vn•~V

1V1!#
2 exp$ ik0~V2V1!•r%

3~ Iv0
~zf ,VuV0 ,Dv!Iv0

~zf ,V1uV0 ,

2Dv!!~sc!, ~29!

which, with consideration of~9!, can also be written in the
form

C~zf ,r,Dv!52
1

4k0
2 F S ]

]z
2

]

]z1
D 2~ uG 2~r ,r1 ,Dv!u2

2uG 2
~0!~r ,r1 ,Dv!u2!GU

z5z15zf

. ~30!

In the case of small-angle scattering Eqs.~29! and~30! trans-
form into the familiar formula previously obtained in Ref
10–13 and 37.

It can be seen by a direct calculation that the fluctuat
spectrum corresponding to Eqs.~29! and~30! in the range of
spatial frequenciesq!k0 coincides with the high-frequenc
asymptote of the spectrum~24! or ~27! @at small values of
q the asymptotes of~24! and ~27! do not differ from one
another#.

The general relations~23!–~25! and~29! solve the prob-
lem of calculating the spectrum and the correlation funct
of the intensity fluctuations in an unordered medium w
discrete scatterers. According to~23!–~25! and ~29!, to in-
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vestigate the correlations it is sufficient to know the corre-
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3

sV9J~0,quz!, ~34!
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sponding solutions of the transport equation for the propa
tors.

Below we shall consider the qualitative features of t
long-range correlations for the limiting wave propagation
gimes, for which approximate analytic expressions for
intensity propagators are known in explicit form. The ne
sections of this paper are devoted to calculating the spec
and the correlation function of the intensity fluctuations
two types of unordered media, which consist, respectively
centers of small radius and large-scale scatterers.

3. INTENSITY FLUCTUATIONS FOR THE SCATTERING OF
WAVES ON A SYSTEM OF CENTERS OF SMALL
RADIUS

Let us consider the long-range intensity correlations
the scattering of a plane wave by a slab of a medium c
taining unordered small-scale~with dimensions smaller than
the wavelength! centers. We assume that the slab is optica
thick (L@ l ) and that scattering on each center has an iso
pic character.

The intensity correlations at the large distancesr@ l are
determined by the behavior of the spectrum at low spa
frequenciesq! l21. At q! l21 ~24! and ~25! can be trans-
formed in the following manner.

Let us first consider the fluctuation spectrum of the
flected intensity for purely elastic scattering in a semi-infin
medium (L→`). In this case the intensity propagat
I (zf50,quz,V) for q50 does not depend onz or on the
directionV.36,42HereI (0,q50uz,V) is the total flux through
the surface from a point source which is located at a de
z and emits in the directionV. Therefore, the statemen
made means that all the radiation emerges from the med
As q increases, a weak dependence ofI (0,quz,V) on V
appears atq! l21, and we can utilize the expansion ofI in
spherical harmonics. The first terms of such an expans
have the form37

I ~0,quz,V!5
1

4p
~F~0,quz!13V•J~0,quz!1 . . . !,

~31!

where

F~0,quz!5E dV I ~0,quz,V!,

J~0,quz!5E dV VI ~0,quz,V!. ~32!

Substituting the expansion~31! into ~24! and~25!, we obtain

E dV8I ~0,quz,V8!h~V8,V8uV9,V19!

5
3

4p

2p i

k0
~ fV92 f *V19!J~0,quz!, ~33!

E dV8I ~0,quz,V8!h~V8,V8uV9,V9!
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where s is the elastic scattering cross section a
ns5 l21. At small q! l21 the characteristic scale of th
variation of J(0,quz) with respect toz is of the order of
q21. Therefore, the range for integration overz in ~24! and
~25! will be much greater than the mean free pathl . This, in
turn, allows us to use an expansion like~31! for the propa-
gator I (z,Vu0,V0). As a result, forMR

coh andMR
incoh we find

MR
coh~q!5

3

8pk0
2E

0

`dz

l
uJ~0,quz!u2uF~zu0,V0 ,Dv!u2

1
9

16p2 S s2
2p

k0
2 D E

0

`dz

l
uJ~0,quz!

3J~zu0,V0 ,Dv!u2, ~35!

MR
incoh~q!5

9

16p2sE
0

`dz

l
uJ~0,quz!J~zu0,V0!u2. ~36!

The identity indicated aboveMR(q50)50 follows from
~33!–~36!, becauseuJ(0,quz)u;q2 whenq→0.

When the waves are reflected from a thick slab (L@ l ) or
a weakly absorbing medium (l! l a , wherel a is the absorp-
tion length!, the foregoing arguments remain in force. This
because the dependence ofI (0,quz,V) on V remains weak
at q! l21 in those cases and the expansion~31! is value for
I (0,quz,V) at any z. In the case of absorbing centers a
additional term appears in~33! and ~34!:

E dV8I ~0,quz,V8!h~V8,V8uV9,V19!

52
sa

4p
F~0,quz!1

3

4p

2p i

k0
~ fV92 f *V19!J~0,quz!,

~37!

E dV8I ~0,quz,V8!h~V8,V8uV9,V9!

52
sa

4p
F~0,quz!2

3s tot

4p
V9J~0,quz!, ~38!

wheresa5s tot2s is the cross section for one-center a
sorption andnsa5 l a

21 . The first term in~37! and ~38! de-
scribes the influence of the inhomogeneous~due to the ran-
dom arrangement of the centers! absorption in the medium
on the coherent and incoherent intensity fluctuations. T
presence of the additional term in~37! and~38! does not alter
the trend of our reasoning. The range for integration ovez
in ~24! and~25! remains much greater thanl , and, as before,
an expansion like~31! can be used forI (z,Vu0,V0). Ulti-
mately, we obtain

MR
coh~q!5

3

8pk0
2E

0

Ldz

l
uJ~0,quz!u2uF~zu0,V0 ,Dv!u2

2
9

8pk0
2E

0

Ldz

l
uJ~0,quz!J~zu0,V0 ,Dv!u2
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Stephen and Cwilich14 did not distinguish between the en-
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lu-
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por-
16p2
0

a 0

13s totJ~0,quz!•J~zu0,V0 ,Dv!u2, ~39!

MR
incoh~q!5

n

16p2E
0

L

dzusaF~0,quz!F~zu0,V0!

13s totJ~0,quz!•J~zu0,V0!u2. ~40!

Formulas~39! and ~40! explicitly describe the physica
mechanism for the appearance of large-scale fluctuati
The source is a local disturbance of the intensity distribut
in the bulk of the medium. The intensity surge can be attr
uted to interference between the waves~i.e., to the bulk
speckle1!, as well as to the local inhomogeneity of the sc
tering and absorbing properties of the substance due to
tuations of the number of centers in a small volume. T
inhomogeneity of the medium disturbs both the ‘‘mean’’ i
tensity distribution with resultant fluctuations of incohere
origin ~40! and the bulk interference pattern~see the last term
in Eq. ~39!!. As for the first two terms in~39!, they are not
related to fluctuations of the density of the scattering cen
and are governed directly by the bulk speckle. They co
spond to the expansion~31! in Eq. ~27!.

We note that the possibility of representingI (0,quz,V)
in form ~31! is a necessary condition for going from~24! and
~25! to ~39! and~40!.33 In the reflection geometry this equa
ity is valid for anyz, if and only if I (0,quz,V) specifies the
radiation flux through the boundary of the medium~see
~26!!. If, conversely,I (0,quz,V) is defined simply as the
radiated energy density on the boundary, it is no longer p
sible to go from~24! and~25! to ~39! and~40!. In particular,
in the case of purely elastic backscattering from a se
infinite medium, the value ofI (0,quz,V) for q50 will de-
pend onV in the rangez < l , and, therefore, the dip dis
cussed above is not observed atq50. The contribution to the
integral overz will be determined by the near-surface regi
z< l . This does not contradict the arguments presented ab
regarding the dispersion̂(dR)2&, since the radiated energ
density at the surface of the medium is not related in a
way to the reflection coefficient.

It is important to bear this in mind in comparing ou
results with Refs. 14 and 19. The analogous calculations
formed in Refs. 14 and 19 do not produce the dip
q→0. The contribution of the near-surface regionz< l to the
spectrum remains nonvanishing whenq→0. On this basis
Stephen and Cwilich14 and Wang and Feng19 drew qualita-
tively incorrect conclusions regardinĝ(dR)2&, the form of
the fluctuation spectrum of the reflected intensity~in Ref. 14
a maximum, instead of a dip, was predicted atq50), and the
behavior of the intensity correlator.

There are two reasons,33 which could have led thes
investigators14,19 to conclude that the surface contribution
important for the reflection geometry. One reason is that
was shown in Ref. 33, not all the diagrams which ma
contributions to the intensity correlator were taken into
count in Ref. 14 and 19, and, as a result, the dispersion o
reflection coefficient does not satisfy the condition for fl
conservation. The other possible reason was just discus
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ergy density at the surface and the flux density through
surface. Their calculations refer to fluctuations of the ene
density, and conclusions regarding the fluctuations of the
flection coefficient cannot be drawn on their basis.

When waves are transmitted through a thick s
(L@ l ), the situation is simpler than in the case of reflectio
The main contribution to the integrals in~24! and ~25! is
made by the regionz, L2z@ l . The contribution from the
near-surface layers (z < l ,L2z < l ) to the integrals in~24!
and~25! is l /L times smaller than the bulk contribution. Ex
pansions like~31! can be used at once for the propagato
appearing in~24! and~25!. As a result, forMT(q) we obtain
an expression which is distinguished from~39! and~40! only
by the replacement ofF(0,quz) and J(0,quz) by F(L,quz)
andJ(L,quz).

In this approximation, in which the intensity can be d
termined by the first two terms in the expansion~31!, the flux
J can be expressed in terms of the density gradientF,37 and
the quantitiesJ(zu0,V0) andJ(zf ,quz) in ~39! and ~40! can
be written in the following manner:

Jk~zu0,V0 ,Dv!52
l

3
dk,z

]

]z
F~zu0,V0 ,Dv!,

Jk~zf ,quz!5
l

3S dk,z
]

]z
1 iqkDF~zf ,quz!, ~41!

where the functionsF(zu0,V0 ,Dv) and F(zf ,quz) can be
expressed in terms of the diffusion asymptotes of the so
tion of the transport equation.33

In the case of the transport of waves of a different n
ture, for example, electrons or neutrons, the relations~41!
can be more complicated and contain terms that are pro
tional to the external fields.

With consideration of~41!, from ~39! and~40! we obtain

M coh~zf ,q!5
l

24pk0
2 E

0

L

dzS U ]

]z
F~zf ,quz!U2

1q2uF~zf ,quz!u2D uF~zu0,V0 ,Dv!u2

2
l 3

72pk0
2 E

0

L

dzU ]

]z
F~zf ,quz!

3
]

]z
F~zu0,V0 ,Dv!U21 n

16p2

3E
0

L

dzUsaF~zf ,quz!F~zu0,V0 ,Dv!

2
1

3
s l 2

]

]z
F~zf ,quz!

]

]z
F~zu0,V0 ,Dv!U2,

~42!

M incoh~zf ,q!5
n

16p2 E
0

L

dzusaF~zf ,quz!F~zu0,V0!
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~43!

According to Eqs.~39! and ~40! and Eqs.~42! and ~43!, the
coherent and incoherent contributions to the fluctuation sp
trum can be represented in the following form:

M coh5M coh~sp!1M coh~a!1M coh~a,s!1M coh~s!, ~44!

M incoh5M incoh~a!1M incoh~a,s!1M incoh~s!. ~45!

The first term in~44! describes intensity fluctuations whos
source is the bulk speckle. The termsM (a), M (s), and
M (a,s) appearing in both equalities are caused by the Pois
fluctuations of the spatial distribution of the particles in t
unordered medium; these terms correspond to different fl
tuations of the absorbing and scattering properties of the
dium, as well as the correlation between them.

As an analysis shows, the first term in~42! is the domi-
nant term in the expansion of the spectrum defined by~42!
and ~43!. In fact, this term coincides with the Fourier tran
form of the formula derived by Pnini and Shapiro derived
Ref. 18 for the correlation function in the transmission g
ometry. This is because the low-frequency (q, l21) behav-
ior of the fluctuation spectrum, as was shown above, is
termined only by the long ray trajectories both in the case
transmission and in the case of reflection, and the contr
tion to the spectrum from the near-surface regionz< l can be
neglected. The corresponding formula in Ref. 18 was deri
within the Langevin approach previously proposed
Zyuzin and Spivak1,15 to describe the correlation functions o
the diffusion fluxes in an unordered substance. In this
proach only long ray trajectories are considered, and i
assumed a priori that the contribution of the short trajecto
is negligibly small.

The differences between the first term in~42! and the
corresponding result in Ref. 18 affect only the definition
F(zf ,quz). The correlations in the bulk of the medium b
tween the values of the energy density were considere
Ref. 18, while Eq.~42! was written for the flux density
through the surface. In the case of the transmission of wa
through a thick slab, this difference is of no fundamen
significance, but it is significant in the case of reflection.
was pointed out above, Eq.~42! is valid for the reflection
geometry only if the fluctuations of the radiation flux dens
are considered. The statements pertaining to the influenc
flux conservation on the fluctuations of the reflected a
transmitted intensity remain valid in just this case, and
contribution from the regionz < l , in which the intensity
propagators are specified by the short ray trajectories, ca
neglected in~24! and ~25!.

The second and third terms in~42! and the incoheren
spectrum~43! are corrections to the dominant coherent co
tribution in ~42!. Under the condition min(L,lD) , l(k0l)

2

( l D5Al l a/3 is the diffusion length36,37! the contribution of
these terms to the fluctuation spectrum exceeds the sec
order contribution with respect to the interaction of t
‘‘rays’’ ~i.e., the contribution of the next iteration cycle
Eq. ~15!!. The latter was previously considered in the cont
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objects~see, for example, Refs. 1, 4, 5, and 41!.
We note that the incoherent contribution~25! tends to

zero as the value of the spatial frequencyq increases
( l21,q!k0), while the coherent contribution~24! tends to a
certain constant value, which coincides with the value fou
in Ref. 33 using Eq.~27!. This asymptotic value ofM coh can
also be obtained by taking the Fourier transform of~29! for
q!k0 and corresponds to the short-range intensity corre
tions previously discussed in Refs. 1, 8, and 17, and
Thus, we see that the spectrumM (zf ,q) cannot be regarded
simply as the sum17,19 of the high- and low-frequency con
tributions. This is not so important for the transmission g
ometry, sinceMT(q@ l21)!MT(q! l21).1,16–19,31However,
the situation is significantly different in the case of reflectio
since the reverse inequalityMR(q@ l21)@MR(q! l21)
holds.32,33

The values of the functionsF(zu0,V0 ,Dv) and
F(zf ,quz) in ~42! and ~43! can be found using relations ob
tained by solving the problem of the coherent backscatte
of waves from a slab of an unordered medium contain
centers of small radius.43–45 In accordance with the solution
in Ref. 45, the expressions for these functions have
form33

F~zu0,V0 ,Dv!5A3H~m0 ,1!
sinh@g0~L2z!#

sinhg0L
,

F~zf ,quz!54p
sinh@g~L2uzf2zu!#

sinhgL
, ~46!

where H(m0 ,1) is Chandrasekhar’s function,36,42

m05uVnV0u is the cosine of the angle of incidence of th
radiation to the surface of the medium,

g05Al D
2213i

Dv

c
l21, g5Al D221q2,

and l D is the diffusion length. We note that the functio
H(m0 ,1) satisfies the equalities36,42

1

4pEVnV.0
H~VnV,1!dV51,

1

4pEVnV.0
~VnV!H~VnV,1!dV5

1

A3
.

The latter equality ensures fulfillment of the reciproci
theorem36 for the functions F(zu0,V0) and
F(zf50,q50uz).

Substituting the functions~46! into ~42! and ~43!, we
arrive at the following results.

3.1. Nonabsorbing medium

When monochromatic coherent radiation (Dv50) is re-
flected from a thick slab of an unordered medium, the coh
ent contribution to the fluctuation spectrum is always t
dominant contribution. It is described by the expression

MR
coh~q!5H2~m0 ,1!H 2p

k0
2 F lLF R~qL!2

1

3 S lL D 3F ~qL!

925D. B. Rogozkin



1 . . . 1
1

s
l 3

F ~qL!1 . . . , ~47!

-

u
e
f
lit
he
re

e

e

tic

h
s

um

-

en-

the

. At
res
is-
ct

en-
or
rved
is-

m,
G 3 S L D J
where

F R~x!5
1

4x sinh2x
~sinh 2x22x cosh 2x

12x2sinh 2x!, ~48!

F ~x!5
x

4 sinh2x
~sinh 2x12x!. ~49!

The terms in square brackets in~47! describe the contribu
tion of purely interference origin, and the last term in~47!
describes the contribution due to the disturbance of the b
interference pattern by the local inhomogeneity of the m
dium. The expression~47! is an expansion in powers o
l /L. In the case of scatterers of small radius the inequa
s < 4p/k0

2 holds, and, therefore, the main contribution to t
spectrum~47! is always made by the first term in the squa
brackets.

The expression~47! is valid in the rangeq, l21. At
q. l21 the MR

coh(q) curve has a plateau, wher
MR

coh(q);1/k0
2 .32,33

The spectrumMR(q) has a minimum atq50. Accord-
ing to Eq. ~21!, MR(q50) specifies the dispersion of th
reflection coefficient:

^~dR!2&coh5
1

A
MR~q50!5

~12^R&!2

A

3F2p

k0
2 S Ll 2

l

L
1 . . . D1s

l

L
1 . . . G , ~50!

where

^R&512
l

A3L
H~m0 ,1!

is the mean reflection coefficient of the slab for elas
scattering.42 The value of the dispersion~50! is significantly
smaller than̂ (dR)2&;1/Ak0

2, which follows from Refs. 14
and 19.

In the limit of a semi-infinite medium (L→`,R→1) the
fluctuations of the reflection coefficient vanis
(^(dR)2&→0). In this case the dip in the spectrum acquire
triangular shape:32,33

MR~q!5H2~m0 ,l !
2p

k0
2 uqu l . ~51!

For a slab of finite thickness the linear law~51! holds at
q.L21 ~see Eq.~47!!.

The intensity correlator corresponding to the spectr
~47! can be represented in the form

CR
coh~r!5H2~m0 ,1!H 2p

k0
2 F lL3 nRS r

L D2
1

3

l 3

L5
nS r

L D
1 . . . G1

1

3
s
l 3

L5
nS r

L D1 . . . J . ~52!
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The main contribution to~52! is made by the term pro
portional tonR . When l /L,x,1, the functionnR(x) is a
power law:32,33

nR~x!52
1

2px3
. ~53!

When x'6, it changes sign and then decreases expon
tially:

nR~x!5Ax

8
exp~2px!. ~54!

The function n(x) appearing in ~52! equals
n(x)521/(4px3) at smallx, changes sign atx'1, and de-
creases at largex as

n~x!5p2Ax

8
exp~2px!.

Plots ofnR(x) andn(x) are shown in Fig. 2.
We note that the shape of the dip in the spectrum of

spatial functions~47! and ~51! is reminiscent of an inverted
coherent backscattering peak.3,7,43–47This similarity is a con-
sequence of the long-range character of the correlations
the same time, the physical factors determining the featu
in the intensity fluctuation spectrum and in the angular d
tribution of backscattered waves differ significantly. The fa
that the triangular feature~51! corresponds to a minimum in
MR(q) is a consequence of the conservation of the total
ergy flux upon purely elastic scattering in the medium. F
the same reason, an anticorrelation effect should be obse
between the local values of the intensity in the range of d
tancesl,r,L ~see~52!–~54!!.

The incoherent contribution to the fluctuation spectru
MR

incoh(q), coincides with the term inMR
coh(q) that is caused

by the local inhomogeneity of the medium

MR
incoh~q!5

1

3
sH2~m0 ,1!S lL D 3F ~qL!, ~55!

where the functionF (x) is defined by~49!. The correlation
function corresponding to~55! equals

CR
incoh~r!5

1

3
sH2~m0 ,1!

l 3

L5
nS r

L D ~56!

FIG. 2. Plots of the functionsnR(x), nT(x), andn(x).
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or-
fore, the role of the incoherent fluctuations for the case
reflection is insignificant.

When the waves incident upon the medium differ in fr
quency, additional weakening of the long-range correlati
should be observed, at variance with the conclusions in R
14.

In this case the range of depthsz where the incident
waves form the bulk speckle structure is restricted
lDv5(2lc/Dv)1/2. An appreciable dependence of the spe
trum of MR

coh on Dv appears whenlDv,L. The value of
MR

coh at the minimumMR
coh(q50) decreases with increasin

Dv proportionally to lDv /L. Equation~51! becomes valid
only for q. lDv

21 . As for the spatial correlations,nR(x,Dv) is
specified, as before, by~53! at l /L,x, lDv /L, and it de-
creases more rapidly atlDv /L,x,1:

nR~x,Dv!52
3

2p

lDv
2

L2
1

x5
. ~57!

The tail of the correlation function at largex decreases ac
cording to the same law as forDv50 ~see~54!!; however,
the amplitude of the correlations decreases~when
x5r/L@1, nR(x,Dv)5(p2lDv/3

1/2L)nR(x,Dv50)!. The
incoherent intensity correlations do not depend onDv, but
as long aslDv. l , their amplitude remains smaller than th
amplitude of the correlations of interference origin.

When the waves are transmitted through the slab,
expression for the coherent contribution to the spectrum
specified, as before, by Eq.~47!, in whichF R(x) must now
be replaced by the function

F T~x!5
1

4x sinh2 x
~sinh 2x22x!. ~58!

A contribution to the fluctuation spectrum proportional
F T(x) has been obtained by different methods in many st
ies ~see, for example, Refs. 14, 17, 18, and 31!. The spec-
trum MT

coh(q) decreases with increasingq according to the
law MT

coh(q);k0
22( l /L)2(ql)21 down to

MT
coh(q; l21);k0

22( l /L)2, which corresponds to the shor
range intensity correlations.1,8,17,31

The spatial correlations of the radiation transmitt
through the slab always remain positive. The correlat
functionCT

coh(r) is obtained from~52! by replacingnR(x) by
nT(x), wherenT(x)51/(4px) when x,1, while nT(x) is
specified by the same asymptotic expression asnR(x) ~see
~54!! whenx@1; a plot ofnT(x) is shown in Fig. 2. The fit
between the asymptotes of the intensity correlators of
reflected and transmitted waves can be attributed to the
that in the case of elastic scattering in the slab the w
propagation regime at large distances,r@L, does not depend
on the position of the source and has a universal charac

The coherent and incoherent intensity fluctuatio
caused by the local inhomogeneity of the medium are
scribed by the same relations in the case of transmission
the case of reflection: in particular,MT

incoh5MR
incoh and

CT
incoh5CR

incoh. Since the corresponding contribution to th
spectrum increases with increasingq, the role of the local
inhomogeneity of the medium is more appreciable in
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and ~49!, we obtainMT /MT ;k0s(ql) .MR MR .
As a consequence of the conservation of the total ra

tion flux for purely elastic scattering (R1T51), the disper-
sion of the fluctuations of the transmission coefficient sa
fies the identity

^~dT!2&52^~dT!~dR!&5^~dR!2&. ~59!

Therefore,̂ (dT)2&coh coincides with~50!.
Some attention must be focused here on one fundam

tal difference between the cases of wave transmission
reflection. In the transmission geometryCT

coh(r) decreases as
1/r, and the main contribution tô(dT)2&coh is made by the
long-range correlations. The contribution of the short-ran
correlations is of the next smaller order of magnitude w
respect tol /L and can be neglected.

The situation in the reflection geometry is different. T
long-range and short-range correlations make contributi
of the same order, 1/Ak0

2, but of different sign, to
^(dR)2&coh. In the case of reflection from a semi-infinite m
dium, these contributions compensate one another exa
and in the case of a finite slab the total contribution is of
order of l /(Ak0

2L) and is specified by the variation of th
correlations at larger.

When waves differing in frequency pass through the m
dium, the amplitude of the intensity correlations caused
interference decreases. In this situation the incoherent co
lation mechanism becomes especially important. Wh
lDv,L, it can become the main mechanism.

The frequency shiftDv has different effects on differen
portions of the fluctuation spectrumMT

coh(q). The equality
MR(q50)5MT(q50) remains valid for nonzero values o
Dv, since the total radiated energy flux is conserved. T
height of the maximum ofMT

coh is lowered by a factor of
A3lDv/2L. As q increases, the spectral dependence ofMT

coh

at first decreases exponentially,

MT
coh;k0

22q2lDvl exp~22qL!,

and then atq. lDv
21 it decreases as 1/q:

MT
coh;k0

22~ql !21F l

lDv
expS 2

A3L
lDv

D G2.
Comparing these results with the contributio

MT
incoh5MR

incoh, which does not depend onDv ~see~55!!, we
find that the incoherent contribution to the spectrum will
the main contribution atq. lDv

21 , if lDv,L/ ln(L/lAk02s).
Similar conclusions can be drawn by analyzing the c

relation function CT(r,Dv)5CT
coh(r,Dv)1CT

incoh(r).
When lDv,L, a dependence ofCT

coh on the frequency shift
Dv is displayed for anyr. In the rangel,r,L the function
CT
coh(r,Dv) decreases very slowly with increasingr:33

nT~x,Dv!'
A3
8p

lDv

L
z~3!1

3

pxF L

lDv
expS 2

A3L
lDv

D G2,
~60!

wherez(3)51.202 andz(z) is the Riemann zeta function.48

Whenr.L, the behavior ofCT
coh(r,Dv) is the same as in

the case of reflection ~i.e., when x@1, nT(x,Dv)
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5nR(x,Dv)5(p2lDv /A3L)nR(x,Dv50), where nR
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always dominant. The contributions caused by nonunifor-
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3(x,Dv50) is determined from Eq.~54!!. A comparison of
CT
coh(r,Dv) with CT

incoh(r)5CR
incoh(r) ~56! shows that for

r,L( l 2k0
2s/LlDv)

1/3 the correlation functionCT(r) is de-
termined by the incoherent contribution.

3.2. Absorbing medium

There are two mechanisms by which absorption infl
ences the intensity fluctuation spectrum. On the one ha
absorption influences the wave propagation regime in
medium. It restricts the spatial scale of the long-range co
lations and leads to violation of the conservation of the
diation flux. On the other hand, if the scattering cent
themselves exhibit absorption, the local spatial inhomoge
ity of the absorption properties of the medium becom
significant.49

The influence of absorption on the propagation regim
reflected in the value of the functions~46! appearing in~42!
and~43!. The inhomogeneity of the absorption is responsi
for the appearance of new terms, which are proportiona
the absorption cross sectionsa , in the fluctuation spectrum
described by~42! and ~43!.

When waves are reflected from a relatively thin sl
(L! l D), the role of absorption is essentially imperceptib
The laws governing the intensity correlations that were c
sidered above for the case of purely elastic scattering rem
unchanged. Absorption has a significant influence on the
tensity fluctuations only when the thickness of the scatter
slab exceeds the characteristic length for weakening of
radiation flux in the medium,L. l D . In this case the various
contributions to the spectrum of spatial fluctuations of
reflected intensity~see ~44! and ~45!! are specified by the
expressions

MR
coh~sp!53

p

k0
2

l D
l

~12^R&!2
1

a~x!11F2a2~x!21

2
1

3

l 2

l D
2 a

2~x!G , ~61!

MR
coh~a!5MR

incoh~a!5
3

2
sa

l D
l

~12^R&!2
1

a~x!11
, ~62!

MR
coh~a,s!5MR

incoh~a,s!523sa

l D
l

~12^R&!2
1

a~x!11
,

~63!

MR
coh~s!5MR

incoh~s!5
1

2
s
l

l D
~12^R&!2

a2~x!

a~x!11
, ~64!

wherex5qlD , a(x)5A11x2, and

^R&512
l

A3l D
H~m0 ,1!

is the reflection coefficient from an absorbing medium.42

In Eqs.~61!–~64! passage from the case of discrete a
sorbing particles to bulk absorption in the medium is attain
in the limit sa→0: nsa5 l a

215const.
In the case of centers of small radius under consid

ation, the contribution of purely interference origin~61! is
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mity of the medium,~62!–~64!, have additional smallness o
the order ofsk0

2( l / l D)
2. In ~61!–~64! the diffusion length

l D qualitatively plays the same role as the thicknessL in the
case of purely elastic scattering. Whenq. l D

21 , the dominant
contribution in the spectrum~61! transforms into~51!.

As for the behavior of the intensity correlation functio
the analogy to a slab of finite thickness is completely sui
to it, since the anticorrelation of the intensities is also ma
tained for larger (r@ l D):

CR~r!'CR
coh~sp!~r!52H2~m0 ,1!

l

k0
2r3

3H 1, l,r, l D ,

r

2l D
expS 2

r

l D
D , r. l D .

~65!

When waves are transmitted through a thick absorbing s
(L@ l D), the terms in the fluctuation spectrum equal

MT
coh~sp!5

3p

4kD
2

l D
l

^T&2
1

a~x!21 H @2a2~x!21#

3F 2

a~x!@a~x!11#
2expS 2

2L

l D
@a~x!21# D G

2
1

3

l 2

l D
2 a

2~x!F12expS 2
2L

l D
@a~x!21# D G J ,

~66!

MT
coh~a!5MT

incoh~a!5
3

8
sa

l D
l

^T&2
1

a~x!21

3F12expS 2
2L

l D
@a~x!21# D G , ~67!

MT
coh~a,s!5MT

incoh~a,s!5
3

4
sa

l D
l

^T&2
a~x!

a~x!21

3F12expS 2
2L

l D
@a~x!21# D G , ~68!

MT
coh~s!5MT

incoh~s!5
1

8
s
l

l D
^T&2

a2~x!

a~x!21

3F12expS 2
2L

l D
@a~x!21# D G , ~69!

where

^T&5
2l

A3l D
H~m0 ,1!expS 2

L

l D
D

is the transmission coefficient through a thick absorbing s
(L@ l D , ^T&!12^R&).42

The main contribution to the fluctuation spectrum of t
transmitted intensity is made by~66!. The spectrumMT(q)
can be divided into three sections. Atq,( l DL)

21/2 the am-
plitude of MT(q) remains essentially unchanged, in th
range (l DL)

21/2,q, l D
21 the fluctuation spectrum decreas

as 1/q2, and, finally, atq. l D
21 it decreases as 1/q.
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The correlation function corresponding to the spectrum
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~66! behaves in the following manner:

CT
coh~sp!~r!5

3^T&2

2~k0l !
2

l

l D

3H l D
r

1
1

4
ln

L

l D
, l,r, l D ,

Ll D
r2

expS 2
r2

4Ll D
D , r.ALl D.

~70!

In the rangel D,r,ALl D the functionCT
coh(sp)(r) remains

essentially constant. Such behavior of the correlation fu
tion differs significantly from the predictions in Ref. 18.

The contribution to the correlation function due to t
inhomogeneity of the medium can be important only
small r, l,r, l D , where

CT
coh~s!~r!5CT

incoh~s!~r!52
1

16p
^T&2

s

l Dl
S lr D 3. ~71!

It is noteworthy that, according to Eqs.~63! and ~68!,
simultaneous fluctuations of the scattering and absorp
properties of the medium act differently in the reflection g
ometry and in the transmission geometry. Local increase
the scattering and absorption coefficients cause change
opposite sign in the reflected intensity: an increase in
scattering power of the medium decreases the value of
intensity, while an increase in absorption coefficient redu
the intensity. Therefore, in the reflection geometry the fl
tuations caused by the local inhomogeneity of the med
are suppressed~see the sum of contributions~62!–~64!!. The
dispersion of the reflection coefficient in the approximati
under consideration is determined by a purely interfere
mechanism:

^~dR!2&5
3p

2Ak0
2 ~12^R&!2

l D
l S 12

l 2

3l D
2 1 . . . D . ~72!

The situation is different in the case of transmission. Lo
increases in the scattering and absorption coefficients lea
effects of the same sign, i.e., they decrease the value o
transmitted intensity. Therefore, the fluctuations only
crease in the presence of absorbing particles@see~67!–~69!#.
The dispersion of the transmission coefficient is

^~dT!2&5
3

2A
^T&2

L

l F p

k0
2S 12

l 2

3l D
2 1 . . . D

13S sa1s
l 2

9l D
2 1 . . . D G . ~73!

In contrast to~59!, ^(dR)2&@^(dT)2&. However, the relative
fluctuations of the transmission coefficient are much grea
^(dR)2&/^R&2!^(dT)2&/^T&2, and they increase linearl
with thicknessL.

When waves differing in frequency propagate in an a
sorbing medium, the coherent contribution to the fluctuat
spectrum varies precisely as in the case of elastic scatte
In particular,M coh(q50,Dv) acquires the additional facto
2lDv /(A3l D) in the case of reflection or 2lDv /(A3L) in the
case of transmission.
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an unordered medium consisting of centers of small rad
many qualitative conclusions regarding the character of
long-range intensity correlations remain valid, as a who
for scatterers of arbitrary size. It is only necessary that
wave propagation regime in the medium be a diffusion
gime. The conditions < 4p/k0

2 cannot be satisfied for larg
scatterers; therefore, the role of the terms resulting from
local inhomogeneity of the medium is more appreciable
them. This point is discussed in greater detail in the n
section.

4. INTENSITY FLUCTUATIONS IN A MEDIUM WITH LARGE
SCATTERERS

In the case of the multiple scattering of waves in a m
dium with large particles~having dimensions greater than th
wavelength!, two limiting propagation regimes are possibl

In the case in which the scattering slab is thi
(L@ l tr , wherel tr5 l /(12^cosq&) is the transport length in
elastic scattering and̂cosq& is the mean cosine of the
single-scattering angle! and the absorption in the medium
weak (l tr! l a), the angular distribution of the scattered wav
differs only slightly from an isotropic distribution,36,37and a
regime of spatial diffusion of the radiation similar to the o
considered in Sec. 3 for scatterers of small radius is realiz
The structure of the expressions for the fluctuation spect
remains the same as in Eqs.~42! and ~43!; however, the
coefficients of the various contributions are somewhat
tered~see Appendix C!.

At the same time, the coefficients of the dominant coh
ent and incoherent contributions to the fluctuation spectr
differ from the corresponding coefficients in Eqs.~42! and
~43! only by the replacement ofl and s by l tr and
s tr5s(12^cosq&).

It is significant that there can be an arbitrary relati
betweenk0

22 and s tr for large particles. In particular, fo
non-Born scatterers,k0

2s tr;k0
2a2un021u2@1 (n0 is the re-

fractive index of the particles!, and the incoherent contribu
tion becomes just as important as the dominant coherent
tribution to the fluctuation spectrum.

Whenk0
2s tr@1, a comparison of the expressions for t

coherent and incoherent contributions to the correlation fu
tion ~see Eqs.~52!, ~56!, ~57!, ~60!, ~65!, ~70!, and~71!! with
consideration of the replacement ofl and s by l tr and s tr

leads to the following conclusions.
In the case of the transmission of waves through a s

either with purely elastic scattering or with absorption t
contribution to the correlation functionCT(r) dominates in
the rangel tr,r, l trAk02s tr. If the incident waves differ in
frequency byDv, the upper bound of this range shifts to

l trAk02s trS DvL4

cl tr
3k0

2s tr
D 1/6. l trAk02s tr.

In the case of the reflection of monochromatic radiati
from the medium, the coherent and incoherent contributi
to the correlation functionCR(r) have the same dependen
on r, and therefore the incoherent contribution domina
only for relatively thin slabs and for sufficiently strong a
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sorption: min(L,lD),ltrAk02s tr, wherel D5Al al tr/3 is the dif-
37,42
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51.
ors
fusion length for particles of arbitrary size. If the fre-
quencies of the incident waves differ, the cohere
contribution begins to decrease more rapidly with increas
r ~see~57!!, and the incoherent contribution becomes dom
nant at the sufficiently large distance
r.L(Dv l trk0

2s tr /c)
21/2 when the frequency shif

Dv.c/( l trk0
2s tr).

In the case in which the thickness of the scattering s
is small (L, l tr), as well as under the conditions of fairl
strong absorption (l a, l tr), another limiting wave propaga
tion regime, viz., small-angle multiple scattering, is realiz
for any value ofL.37,50–53In contrast to the spatial-diffusion
regime for small-angle multiple scattering, the angular dis
bution is highly anisotropic, i.e, extended in the direction
which the waves originally propagated. In this case the
tensity of the forward-scattered radiation can be neglecte37

The intensity fluctuations for small-angle multiple sca
tering were investigated in extremely great detail in refere
to the problem of wave propagation in a turbule
medium.10–13The applicability of the results in Refs. 10–1
is restricted by the same conditions which are character
of turbulent media: very large spatial inhomogeneities of
refractive index, the absence of absorption, and Born sin
scattering.

As the analysis in Ref. 29 shows, the results obtained
Refs. 10–13 are applicable as long as the transverse
placement of the ray trajectories does not exceed the m
mum dimension of the inhomogeneities~an ‘‘external’’ tur-
bulence scale!. In an inhomogeneous medium with discre
scatterers the assumptions used in Refs. 10–13 general
not hold, and a different scheme must be employed to so
the equation forG 4. The question of going from the approx
mations proposed in Refs. 10–13 to the case considered
in which successive collisions occur in the Fraunhofer zo
of an individual scatterer, was analyzed in Refs. 29 and

Let us consider the general expressions~24! and ~25!
under the conditions of multiple scattering at small angl
To avoid cumbersome calculations, we assume that
waves impinge on the medium along a normal to the surfa
In this case it is convenient to go over from the unit vect
V to the two-dimensional vectorsu5Vi and to assume tha
the components ofu vary over an infinite range. In the new
variables the general expressions~24! and~25! for the inten-
sity fluctuation spectrum of the radiation transmitted throu
the slab take the form

MT
coh~q!5nE

0

L

dzE d2u9E d2u19U E d2u8I ~L,quz,u8!

3h~u8,u8uu9,u19…u
2I ~z,u 9uu050,Dv!

3I ~z,u 19uu050,2Dv!, ~74!

MT
incoh~q!5nE

0

L

dzu E d2u8E d2u9I ~L,quz,u8!

3Fs totd~u82u 9!2
ds

dV
~ uu82u 9u!G
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where

h~u8,u8uu 9,u 19!5
2p i

k0
@ f ~u82u 9!d~u82u19!

2 f * ~u82u 19!d~u82u 9!#1 f ~u 8

2u 9! f * ~u82u 19!. ~76!

In contrast to the case of the spatial diffusion of rad
tion, the fluctuation spectrum in a medium with large-sc
centers is sensitive to the form of the single-scattering a
plitude. Therefore, calculations based on Eqs.~74! and ~75!
must be performed with consideration of the specific angu
dependencef (u).

The qualitative features of the intensity correlations
small-angle scattering can be understood within the simp
models corresponding to the Fokker–Planck approxima
or the diffusion approximation with respect to the angu
variable.37,42,50–53In this approximation, on the one hand, th
different contributions to the fluctuation spectrum can
separated fairly simply, and, on the other hand, it is poss
to avoid the computational difficulties associated with a s
cific form of the scattering amplitude.

Let us assume that the deflection angle in one collisio
small compared with the characteristic multiple-scatter
angle and that the intensity propagators appearing in~74! and
~75! are smoother functions of the angles than is the am
tude f (u). Then in the transport equation~8! ~or ~11!!, as
well as in Eqs.~74! and~75!, the intensity propagators can b
expanded into a series in the small single-scattering ang

The transport equation~11! is transformed in this ap-
proximation into the Fokker–Planck equation or into an a
gular diffusion equation.42 Its solution was found with con-
sideration of absorption in the medium in Refs. 50 and
Using the results in Ref. 51, we can write the propagat
appearing in~74! and ~75! in the form

I ~z,uu0,Dv50!5S 2p sinh
z

Al al tr
D 21

Al tr
l a
expF2

z

l a

2
1

2
u2Al tr

l a
coth

z

Al al tr
G , ~77!

I ~L,quz,u!5S coshL2z

Al al tr
D 21

expF2
L2z

l a

2
u2

2
Al tr

l a
tanh

L2z

Al al tr
2 iquAl al tr tanh

L2z

Al al tr

2
1

2
q2l aS L2z2Al al tr tanh

L2z

Al al tr
D G . ~78!

The value ofI (z,uu0,Dv) for a finite value of the frequency
shift Dv can be obtained from~77! by replacing l a by
l a /@12 i (Dv/c)I a#.
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We transform the coherent contribution to the fluctuation

ll-

e
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i

The first term in~81! is the contributionMT
coh(a) due to

ons
the
f

ess
o,
in

wo
for
:

kle
spectrum~74! by expandingI (L,quz,u8) in series in the vi-
cinity of the directionu 19 5(u 91u 19)/2. As a result, we
obtain

E d2u8I ~L,quz,u8!h~u8uu9,u19!

5I ~L,quz,u1!
dsa

dV
~u2!1H 2

p i

k0
@ f ~2u2!

1 f * ~u2!#u21E d2u8~u82u1! f S u82u1

2
1

2
u2D

3 f * S u82u11
1

2
u2D1 . . . J

3
]

]u1
I ~L,quz,u1!1 . . . , ~79!

whereu25u 92u 19 ,

dsa

dV
~u2!5

2p i

k0
@ f ~2u2!2 f * ~u2!#

1E d2u8 f S u82
1

2
u2D f * S u81

1

2
u2D

'
1

k0
2E

0

`

d2pexp~ ip•u!~12uSpu2! ~80!

is the ‘‘differential’’ absorption cross section in the sma
angle approximation,

Sp5uSpuexp~2idp!5112ik0f p ,

and Sp and f p are the expansion coefficients of th
S-matrix and the partial-wave scattering amplitude.39 Substi-
tuting the expansion~79! into ~74!, we arrive at the following
series for the coherent contribution to the fluctuation sp
trum:

MT
coh~q!5nE

0

z

dzE d2uFaauI ~L,quz,u!u2

1aspU ]

]u
I ~L,quz,u!U2

2aa,s

]2

]u2
uI ~L,quz,u!u21asS ]2

]u i]uk

1
d ik
2

]2

]u2D ]

]u i
I ~L,quz,u!

]

]uk
I * ~L,quz,u!

1 . . . G I 2~z,uu0,Dv!. ~81!

Equation ~81! is the sum of the contributions~44! corre-
sponding to different mechanisms for the appearance of
tensity fluctuations.
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the disturbance of the bulk speckle structure by fluctuati
of the number of absorbing particles in a small volume of
medium. WhenDv50, the expansion of the spectrum o
MT

coh(a) at smallq to first order inl /L has the form

MT
coh~a!~q!

5naaE
0

L

dzE d2uuI ~L,quz,u!u2I 2~z,uu0,Dv50!

5
naa

4p
^T&2l tr5 ln

L

l S 12
1

3
q2
L3

l tr
1 . . . D , L,Al al tr,

2
L

Al al tr
S 12

1

2
q2Ll a1 . . . D , L.ALal tr.

~82!

where

aa5E d2uFdsa

dV
~u!G25~2p!2

k0
4 E d2p~12uSpu2!2, ~83!

^T&5S cosh L

Al al tr
D 21

expS 2
L

l a
D ~84!

is the transmission coefficient through a slab of thickn
L.50,51 The expression for the spectrum at zer
MT

coh(a)(q50), was obtained in a somewhat different form
Ref. 49.

The coefficientaa ~93! is proportional to the difference
between the total cross section for the absorption of t
‘‘rays’’ propagating independently and the cross section
the absorption of two ‘‘rays’’ passing through one center

aa5
4p2

k0
2 ~2sa2sa

~2!!, sa5
1

k0
2 E d2p~12uSpu2!,

sa
~2!5

1

k0
2E d2p~12uSpu4!. ~85!

We note that for ‘‘black’’ spherical particles of radiusa

sa5sa
~2!5pa2, aa5S 2p

k0
D 2sa .

The second term in~81! is the contributionMT
coh(sp),

which originates from the intensity peaks in the bulk spec
structure. In the same approximation in which~82! was ob-
tained, the contributionMT

coh(sp) has the form

MT
coh~sp!~q!

5naspE
0

L

dzE d2uU ]

]u
I ~L,quz,u!U2I 2~z,uu0,Dv50!

5
nasp

4p
^T&2l trH 1

3

L3

l a
2l tr

1q2L2ln
L

l
1 . . . , L,Al al tr,

L

l a
S 12

1

2
q2Ll a1 . . . D , L.ALal tr.

~86!
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m
iz.,
asp5S 2p

k0
D 2s tr52

~2p!2

k0
4 E d2pS dd

dpD
2

uSpu2. ~87!

Equation~86! was previously obtained in Ref. 29 in the Bo
approximation for the single-scattering cross section us
the solution of the small-angle transport equation for
fourth moment.

The ‘‘cross’’ contribution to the spectrum,MT
coh(a,s) , is

specified by the third term in~81!. It is governed by the
correlation between disturbances to the bulk speckle st
ture by the fluctuations of the absorbing and scattering pr
erties of the medium. The expression forMT

coh(a,s) has the
form

MT
coh~a,s!~q!

52naa,sE
0

L

dzE d2u

3S ]2

]u2
uI ~L,quz,u!u2D I 2~z,uu0,Dv50!

5
naa,s

4p
^T&2l tr5

4
L

l a
ln
L

l
2
8

3

L3

l a
2l tr

2
4

3
q2

L4

l al tr
ln
L

l
1 . . . ,

L,Al al tr,

4
L

l a
S 12

1

2
q2Ll a1 . . . D ,

L.Al al tr,
~88!

where

aa,s5
~2p!2

k0
4 E d2pS dd

dpD
2

~12uSpu2!. ~89!

The fourth term in~81! corresponds toMT
coh(s) , which is

associated with the disturbance of the bulk speckle by fl
tuations of the scattering properties of the medium. The
lowing expansion is valid forMT

coh(s) :

MT
coh~s!~q!

5nasE
0

L

dzE d2uS ]2

]u i]uk
1

d ik
2

]2

]u2D
3

]

]u i
I ~L,quz,u!

]

]uk
I * ~L,quz,u!I 2~z,uu0,Dv50!

5
nas

4p
^T&2l tr5

4 ln
L

l F S Ll aD
2

1q2
L3

l a
1
3

8
q4L41 . . . G ,

L,Al al tr ,

2
L

l a
Al a

l tr
S 12

1

2
q2Ll a1 . . . D ,

L.Al al tr ,
~90!

where
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s k0
4 S dpD

The contributionMT
coh(s) is proportional to the fourth powe

of the scattering amplitude and is not included in the us
Born approximation for single scattering.29

Equation~81! represents only the dominant terms corr
sponding to contributions of different nature to the fluctu
tion spectrum. For this reason, the term (]I /]u)
3(]3I * /]u3)1c.c., which has the same origin as the cont
bution ~86! and is only a correction to it, is not written ou
separately in~81!. To see this, it is sufficient to perform th
small-angle expansion in Eq.~27!.

Using the relations obtained above for the various c
tributions to the fluctuation spectrum and Eq.~21!, we find

^~dT!2&coh

^T&2
5

pn

Ak0
4 l tr

3E d2p5
2

3 S dd

dpD
2 L3

l a
2l tr

1F ~12uSpu2!12S dd

dpD
2 L

l a
G2lnLl ,

L!Al al tr,

2S dd

dpD
2 L

l a
12F ~12uSpu2!1S dd

dpD
2Al tr

l a
G2 L

Al al tr
,

L@Al al tr.
~92!

The first term in~92! is associated with the formation of
random interference pattern in the bulk of the medium, a
the term in square brackets is associated with the disturba
of this pattern by Poisson fluctuations of the distribution
the scatterers. The contribution to the dispersion^(dT)2&coh

caused by the local inhomogeneity of the medium is actu
an expansion in powers of a small parameter, viz., the m
multiple-scattering angle in the slab^u2&L ~^u2&L52L/ l tr for
L,Al al tr and^u2&L52Al a / l tr for L.Al al tr ~Refs. 50–53!!#.

If the absorption is caused by the particles of the m
dium, the first of the terms associated with Poisson fluct
tions, which originates from fluctuations of the absorbi
properties of the medium, will be dominant. As a result, on
two contributions, viz.,MT

coh(sp)andMT
coh(a) , can compete in

Eqs. ~81! and ~92!. A comparison of these contribution
gives the following universal estimate for the ratio betwe
them:

MT
coh~sp!

MT
coh~a! ;

^u2&L
3

^q2&
,

where^q2&'2(12^cosq&) is the mean square of the single
scattering angle. It follows from this estimate that the ra
betweenMT

coh(sp) andMT
coh(a) can take any value. Howeve

as the thickness increases, the role ofMT
coh(sp) increases in

the general case. In particular, whenL.Al al tr, this contribu-
tion is always dominant, if the scattering cross section is
very great,sa,s(s tr /s)

1/3,s.
If the particles only scatter radiation, and the continuu

between them absorbs radiation, only two contributions, v
MT

coh(sp)andMT
coh(s) , remain in the expansions~81! and~92!.

The ratio between them in order of magnitude equals
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MT
coh~s! ^q2&

In this case all the qualitative conclusions obtained in
Born approximation for the cross sections29 remain valid.

The following asymptotes of the correlation functio
correspond to the main contribution to the spectrum:

CT
coh~sp!~r!5

^T&2

k0
2

35
4
L2

rL
4 ln

L

l S 12
r2

rL
2DexpS 2

r2

rL
2D ,

L,Al al tr,
2

rL
2Al tr

l a
S rL

4

8l a
3/2l tr

1/2r2
21D expS 2

r2

rL
2D ,

L.Al al tr,
~93!

CT
coh~a!~r!5

naa

~2p!2
^T&2l tr5

1

rL
2 ln

L

l
expS 2

r2

rL
2D ,

L,Al al tr ,
2L

l a
1/2l tr

1/2

l

rL
2 expS 2

r2

rL
2D ,

L.Al al tr ,

~94!

where rL
254L3/(3l tr) for L,Al al tr and rL

254Ll a for
L.Al al tr.

Let us now consider the incoherent contribution to t
fluctuation spectrum. Assuming that the intensity propa
tors appearing in~75! are smoother functions of the angle
than the differential single-scattering cross section, we w
the expression forMT

incoh(q) in the following form:

MT
incoh~q!5nE

0

L

dzU E d2uS saI ~L,quz,u!I ~z,uu0!

1
s tr

2

]

]u
I ~L,quz,u!

]

]u
I ~z,uu0! D U2. ~95!

The first term under the absolute-value sign in~95! corre-
sponds to fluctuations of the absorption properties of the
dium, and the second term corresponds to the scatte
properties of the medium. For this reason, Eq.~95! can be
written as the sum of contributions~45!. Substituting~77!
and ~78! into ~95!, we obtain

MT
incoh~q!5n^T&2@sa

2ma~q!1sas trma,s~q!

1s tr
2ms~q!#, ~96!

where

ma~q!5H L2
1

6
q2
L4

l tr
1 . . . , L,Al al tr ,

LS 12
1

2
q2Ll a1 . . . D , L.Al al tr ,

~97!

933 JETP 84 (5), May 1997
e

-

e

e-
ng

ma,s~q!55 l a
1
3
q2L31 . . . , L,Al al tr,

LAl tr
l a

S 12
1

2
q2Ll a1 . . . D , L.Al al tr ,

~98!

ms~q!55 1

3

L3

l a
2 1

1

4
q2
L4

l a
1

1

20
q4L51 . . . , L,Al al tr ,

1

4
L
l tr
l a

S 12
1

2
q2Ll a1 . . . D , L.Al al tr,

~99!

Whenq50, Eqs.~96!–~99! specify the dispersion of the
transmission coefficient across the slab@see Eq.~21!#:

^~dT!2& incoh

^T&2
5

sa

A

L

l a 5 11
L

l tr
1
1

3S Ll trD
2

, L,Al al tr ,

11Al a
l tr

1
1

4

l a
l tr
, L.Al al tr .

~100!

It follows from ~96!–~100! that if absorption is caused by th
particles of the unordered medium themselves, the fluc
tions of the absorption coefficient of the medium are t
source of the incoherent intensity fluctuations. Conversely
the particles of the medium only scatter radiation, and
continuum between them absorbs radiation, there are no
tuations of the absorption, and only the term proportiona
ms(q) remains in~96!. In this case the dispersion of th
transmission is determined by the third terms in Eq.~100!.

The asymptote of the correlation function for the spe
trum ~96!–~99! has the form:

CT
incoh~r!5n^T&2

exp~2r2/rL
2!

pr2
L

35 S sa
223

r2

rL
2

l tr
L

sas tr 19
r4

rL
4

l tr
L

s tr
2D12Ap

3

r

rL
,

L,Al al tr ,

sa
21Al tr

l a
sas tr1

1

4

l tr
l a

s tr
2, L.Al al tr ,

~101!

where the meaning ofrL
2 is the same as in~93! and~94!, and

r.rL is assumed. As follows from~101!, at small thick-
nesses (L,Al al tr) the long-range asymptoteCT

incoh(r) is de-
termined by the fluctuations of the scattering properties
the medium~whenr.rL( l trL/ l a

2)1/4, the last term dominates
in ~101!!. WhenL.Al al tr, the correlation function, as wel
as the fluctuation spectrum, are determined primarily by
fluctuations of the absorption.

In the case in which the incident waves differ in fr
quency, the fluctuations of interference origin weaken, a
the incoherent fluctuations remain unchanged. The spect
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coh(q,Dv) can be calculated using Eq.~81! after substitut-
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ing into it the value ofI (z,uu0,Dv), which is obtained from
~77! by replacingl a by l a(12 i (Dv/c) l a)

21. We shall not
dwell on the analysis of the spectrum, and we shall cons
only the correlations between the values of the total flux
different frequencies. In connection with the experiments
Refs. 20–25 it is interesting to understand how sensitive
frequency correlations of the intensity are to the features
the scattering of the waves in the unordered medium.

The asymptote of the correlation function

CT~Dv!5^~Tv01Dv/22^Tv01Dv/2&!~Tv02Dv/2

2^Tv02Dv/2&!&coh5
1

A
MT

coh~q50,Dv!

has the following form:

CT~Dv!5
p

A

n

k0
4 ^T&2l trE d2pF3S dd

dpD 2 lDv

l a
tanh2

L

Al al tr

1~12uSpu2!2S ln lDv

l
12

lDv

Al al tr
tanh

L

Al al tr

1 . . . D G . ~102!

In ~102! lDv5A2cl tr /Dv, and it is assumed tha
l, lDv,min(L,Al al tr). If the particles of the medium do no
absorb radiation, from~102! we obtain

CT~Dv!5
3p

2Ak0
2 ^T&2

lDv

l a
tanh2

L

Al al tr
. ~103!

Comparing~102! and ~103!, we can conclude that the fluc
tuations of the absorption properties of the medium lead
the appearance of a contribution toC(Dv) that depends
weakly on the frequency. It is fairly simple to account f
this effect. At relatively large values ofDv the region in
space where the waves interfere and form the bulk speck
bounded by the depthsz, lDv . Therefore, in the case unde
consideration the lengthlDv plays the same role as the sla
thicknessL in the caseDv50 for L,Al al tr ~see~82! and
~92!!.

We note that when waves which differ fairly strongly
frequency (lDv, l tr) propagate, the general formula~81! can
be used to calculate the fluctuation spectrum not only
small-angle scattering, but also in the case of the diffus
transport of the waves in a thick (L@ l tr) slab. In this situa-
tion the ‘‘incoming’’ propagators in~81! describe the small-
angle scattering of waves in the case of propagation in r
tively thin ~with a thickness of the order oflDv) slabs, while
the ‘‘outgoing’’ propagators correspond to the propagat
of waves in a spatial-diffusion regime. The main contributi
will be made by the second term in~81!, since the diffusion
regime presumes fulfillment of the conditions of weak a
sorption@ l tr! l a or 12uSpu2!(dd/dp)2#. In the transmission
geometry
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where^T& is the transmission coefficient of radiation throug
a thick (L@ l tr) slab of the medium under normal incidenc
A similar formula can be obtained for the case of reflectio
if the values of the ‘‘outgoing’’ propagators atz50, rather
than z5L, are substituted into~81!. When L!Al al tr, the
results of the calculations do not differ from~104!, as a con-
sequence of the conservation of the flux.

It would be interesting to compare Eq.~104! with the
value of CT(Dv) for small frequency shifts (lDv@ l tr),
which can easily be obtained using the formulas in Sec
after replacingl by l tr in them. The corresponding resul
differ only with respect to a common numerical factor~it is
three times smaller in~104!! because of the differences in th
propagation regime of the interfering waves in the reg
z, lDv .

5. DISCUSSION

General relations were derived above, which make
possible to reduce the problem of calculating the fluctuat
spectrum to the solution of the transport equation for
mean intensity, and the results of calculations performed
two characteristic regimes for the multiple scattering
waves in an unordered medium, viz., spatial diffusion a
small-angle scattering, were presented. The results obta
provide a fairly complete picture of the long-range intens
correlations when coherent radiation propagates in a med
with discrete scatterers.

In the general case there are two sources of inten
fluctuations, viz., random interference of the multiply sc
tered waves and random spatial inhomogeneity of the s
tering and absorption coefficients of the medium, which
caused by fluctuations of the number of scatterers per
volume. Both sources make contributions to the coherent
tensity fluctuations, and only the latter source makes a c
tribution to the incoherent fluctuations.

The relative role of each of the mechanisms for the
pearance of fluctuations indicated above, as well as the
tures of the behavior of the correlation function and the
tensity fluctuation spectrum depend on the regime for
multiple scattering of waves in the medium, the presence
absorption, the dimensions of the scattering particles, and
degree of monochromaticity of the incident radiation.

When waves propagate in the spatial-diffusion regi
( l tr!min(L,la)!, the purely interference mechanism for th
appearance of intensity fluctuations predominates. The fl
tuations caused by the random inhomogeneity of the med
generally comprise a correction to the purely interferen
contribution. Their role is most important for the diffusion o
waves in a medium with strong ~‘‘non-Born,’’
k0aun021u.1) scatterers. In this situation the incohere
contribution to the spectrum becomes appreciable, and w
q. l tr

21Ak02s tr, it exceeds the contribution associated w
interference in the transmission geometry~see Fig. 3!.

We note that when the length of the ray trajectories
bounded (min(L,Al al tr), l tr(k0l tr)

2(k0
2s tr)!, the fluctuations

caused by the random inhomogeneity of the medium, wh
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are primarily of incoherent origin, are greater than the pre
ously discussed~see, for example, Refs. 16, 17, and 1!
second-order interference contribution to the interaction
the ‘‘rays.’’

The incoherent contribution to the fluctuation spectru
plays the principal role when the incident waves differ
frequency, and the dominant coherent contribution decre
as the frequency shiftDv increases. Consideration of th
incoherent contribution can account for the experimenta
observed horizontal segment23,24on the decay of the correla
tion curve with increasingDv and can alter the quantitativ
results for the intensity correlator. For this reason, the p
cedure used in Refs. 23 and 24 to extract the values of
transport coefficients of the medium from the decay of
correlation curve, as well as the interpretation of the exp
mental data in Refs. 23 and 24, should be re-examined.

The occurrence of absorption when waves propagat
the spatial-diffusion regime is manifested mainly in the
teration of the distribution of the multiply scattered radiati
in the medium. The additional fluctuations appearing
cause of absorption in the scattering particles themselves
be appreciable only for fairly large particles, if the conditio
k0
2sa;(k0a)

3Im n0.1 is satisfied~the assumption for a dif-
fusion regime,sa!s tr , must be satisfied simultaneously!.
As an analysis shows, similar conditions were achieved
the experiments in Refs. 23 and 24.

In the case of the strongly anisotropic multiple scatter
of waves (l tr@min(L,la)!, the purely interference source o
fluctuations remains important, as before, but the role of
effects caused by fluctuations of the number of scatte
become more appreciable than in the spatial-diffusion
gime.

If radiation is absorbed in the continuum, and the sc
tering particles themselves do not absorb radiation, the r
between the dominant interference and incoherent contr

FIG. 3. Fluctuation spectra of the reflected~upper curves! and transmitted
~lower curves! intensity for elastic scattering in a layer of an unorder
medium. The thickness of the slabL510l tr , and absorption is absent. Soli
curves — strong scatterers (k0aun021u52), dashed lines — limiting case
of ‘‘Born’’ centers (k0aun021u!1).
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weakly refractive particles of large radius

k0
2s tr.8p~k0aun021u!2 ln

1

un021u

~Ref. 53!. In the Born case (k0aun021u!1) the interference
contribution predominates, and in the opposite case of str
scatterers (k0aun021u.1) the incoherent contribution to th
fluctuation spectrum predominates. For strong scatterers
interference contribution is important only in thin slab
(L,Al al tr), where it determines the dependence of the sp
trum on the spatial frequencyq at q,(k0

2s trL
3/ l tr)

21/2.
If the particles of the unordered medium themselves

sorb radiation, the role of the fluctuations of the number
particles per unit volume becomes especially important. T
spatial fluctuations of the absorption coefficient appearing
this case is manifested in both the coherent and incohe
contributions to the fluctuation spectrum, but the coher
contribution is determined to the same extent by the rand
interference of the waves and by the disturbance of the
terference pattern by fluctuations of the absorption in
medium. In the situation under consideration the ratio
tween the coherent and incoherent contributions to the s
trum changes. The incoherent contribution can turn out to
dominant even in the Born case (k0

2s tr;(k0aun021u)2!1!
provided the absorption cross section is large eno
(k0

2sa;(k0a)
3Im n0.1!.

We note that the various terms in the coherent and in
herent contributions to the fluctuation spectrum should
comparable to one another under the intermediate condit
s;s tr;sa;k0

22 (k0a;un021u;Im n0;1), under which
the wave propagation regime does not reduce to diffusion
small-angle scattering.

As follows from the results obtained above, an increa
in absorption~when the other optical parameters of the m
dium are left unchanged! generally leads to enhancement
the intensity fluctuations. The simplest reason for this is
fluctuations of the absorption coefficient in the case in wh
absorption takes place in the particles of the unordered
dium. If the continuum between the particles absorbs rad
tion, only the distribution of the radiation in the mediu
varies as the absorption increases. The effective length
the ray trajectories decrease, and the fluctuation spect
narrows. However, the relative magnitude of the dispers
of the transmission coefficient fluctuations^(dT)2&/^T&2 ex-
hibits nonmonotonic behavior as the absorption in the m
dium increases. For large-scale scatterers^(dT)2&/^T&2 can
be estimated by taking into account only the purely interf
ence and incoherent contributions~the additional terms of
the coherent contribution are smaller than the incoher
contribution in this case!. As a result, we obtain
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^~dT!2&

^T&2
5

L

Al tr 5 k0
2 trS L D tr a tr

3p

2k0
2 1s tr

l tr
l a
, l tr,Al al tr,L,

p

k0
2 1s tr

l tr
l a
, Al al tr, l tr,L.

~105!

It follows from ~105! that in the diffusion regime the
interference contribution decreases with increasing abs
tion, and after going over to the propagation regime with
strongly anisotropic angular distribution of the radiation
begins to increase. As for the incoherent contribution
~105!, it increases monotonically with increasing absorpti
in the medium, and whenL.Al al tr, the formulas obtained
for the cases of spatial diffusion and small-angle multi
scattering coincide.

One more important qualitative law is associated w
the influence of the conservation of the flux on the form
the intensity fluctuation spectrum. If almost the entire in
dent flux is reflected (12^R&!1), the fluctuation spectrum
of the reflected intensity contains a dip~Fig. 3!. There is a
similar feature in the spectrum of the transmitted radiat
scattered at small angles when almost the entire flux pa
through the medium (12^T&!1, see Eqs.~82!, ~86!, and
~96!!.

If absorption occurs in the continuum, the dip in th
fluctuation spectrum atq50 is maintained to large depths
The form of the spectrum in latter case will now depend
the value of the ‘‘reduced’’ transmission coefficient^ T̃&
(^T&5exp(2L/la)^T̃&!, which describes the decrease in t
transmission of radiation by the layer of the medium due
the bending of the ray trajectories that appears upon sca
ing. As long as 12^ T̃&!1, random redistribution of the in
tensity in the observation plane will occur at an assign
transmitted flux equal to the incident flux reduced by t
factor exp(2L/la). When ^ T̃&,1, the condition associate
with the conservation of the flux becomes insignificant, an
maximum appears in the spectrum instead of the dip. A si
lar maximum is always found in the transmitted intens
spectrum when the waves propagate in the spatial-diffus
regime, since in that case^T&!1.

The behavior of the spectrum in the vicinity ofq50,
like the form of the coherent backscattering peak,3,7,43–47is
determined by the length of the ray trajectories in the m
dium. In particular, in the case of reflection from a sem
infinite nonabsorbing medium, in which the trajectory leng
is unbounded, the dip in the spectrum has a triangular sh

In conclusion, we note that the results obtained ab
can also be used to describe the correlations between t
shifted intensity valueŝI (r ,V,t)I (r1 ,V1 ,t1)& in an unor-
dered medium with slowly moving particles. The corr
sponding changes affect only the coherent contribution to
fluctuation spectrum. To calculateM coh(zf ,q,t2t1) the ad-
ditional ‘‘effective absorption’’ nsa

add(t2t1), which de-
scribes the breakdown of the coherence of the waves du
the motion of the scatterers, must be substituted into
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~42!, and~74! ~see, for example, Refs. 3, 37, 54, and 55!. In
the most interesting case of small values oft2t1, in which
the interference is still not suppressed,

nsa
add~ t2t1!5ns trk0

2^~Dx!2& t2t1
!ns tr ,

where^(Dx)2& t is the mean square displacement of a sc
tering particle during the timet. For Brownian motion
^(Dx)2& t52Dt, whereD is the diffusion coefficient of the
particles.
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APPENDIX A

The series of diagrams specifying the fourth moment
the field ~Fig. 1c! can be regrouped, andG 4 can be repre-
sented in the form of a sum of three contributions~Fig. 4!:

G 4~1,2,3,4!5G 4
~sc!~1,2; 3,4!1G 4

~sc!~1,4; 3,2!

1G 4
~non!~1,2,3,4!, ~A1!

whereG 4
(sc) is specified by diagrams containing at least o

scattering event in the ‘‘outgoing’’ ladder propagators, a
G 4

(non) is specified by diagrams in which the ‘‘outgoing
propagators correspond to the unscattered field. The re
sentation~A1! does not violate the symmetry condition~13!,
although the termsG 4

(sc) , taken individually, do not satisfy
that condition.

Under multiple-scattering conditions (l!L) the main
contribution to the fourth moment of the field is made by t
G 4

(sc) . This allows us to write a closed equation forG 4
(sc)

~Fig. 5!:

G 4
~sc!~1,2;3,4!5G 2~1,2!G 2~3,4!2G 2

~0!~1,2!G 2
~0!~3,4!

1@G 2~1,2!G 2~3,4!2G 2
~0!~1,2!G 2

~0!~3,4!#

3(
a

ĥa~1,2!ĥa~3,4!@G 4
~sc!~1,2;3,4!1G 4

~sc!

3~1,4;3,2!1G 1~1!G 1* ~2!G 1~3!G 1* ~4!#,

~A2!

where the numbers 1, . . . ,4 denote the variables related t
the fieldsC(1), . . . ,C* (4) appearing in the definition~1!.
Equation~A2! follows from ~4!, if G 4 in the form ~A1! is
substituted into the integral term in Eq.~4! and the approxi-
mationG 4

(non)5G 1(1)G 1* (2)G 1(3)G 1* (4) is adopted.
By definition,G 4

(sc)(1,2;3,4) is an abruptly varying func
tion of the difference variablesr12r2 and r32r4 ~the scale
of variation ofG 4

(sc) with respect to these variables is of th
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FIG. 4.
order of r coh) and a smooth function of the (r11r2)/2 and
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ity

th

52
1 ]

2
] ]

2
]

of

e

de-
(r31r4)/2. Therefore, to treatG 4
(sc) , we can go over to the

(r ,V) representation. For this purpose, the Fourier transfo
with respect to the difference variables must be taken
~A2!. As a result, for the second moment of the intens
which is related toG 4

(sc) by Eq.~14!, we obtain Eq.~15! from
~A2!.

APPENDIX B

We define the flux density at the pointr as37

Jk~r !5
i

2k0
FC~r !

]

]r k
C* ~r !2C* ~r !

]

]r k
C~r !G

5
i

2k0
F S ]

]r k
2

]

]r k8
DC~r 8!C* ~r !GU

r5r8

. ~B1!

Then for the correlation function between the values of
radiation flux density in the observation planez5zf we ob-
tain the formula

C~zf ,r5~r2r1! i!5^Jz~zf ,r i!Jz~zf ,r1i!&2^Jz~zf !&
2

m
n
,

e

4k0
2 H S ]z ]z8D S ]z1 ]z18

D
3@G 4~z,r i ;z8,r i ;z1 ,r1i ;z18 ,r1i!

2G 2~z,r i ;z8,r i!G 2~z1 ,r1i ;z18 ,r1i!#J U
z5z85z15z

185zf

.

~B2!

If we substitute the expressions for the components
G 4 ~see~A1!! into ~B2!, we obtain the correlation function
C(zf ,r) in the form of a sum of three contributions. Th
substitution of

G 4
~sc!~r ,r 8;r1 ,r18!2@G 2~r ,r 8!G 2~r1 ,r18!

2G 2
~0!~r ,r 8!G 2

~0!~r1 ,r18!#

into ~B2! with consideration of~9! and ~14! leads to~20!,
which defines the long-range (r@ lu, whereu is the charac-
teristic multiple-scattering angle! intensity correlations. The
substitution ofG 4

(sc)(r ,r18 ;r1 ,r 8) into ~B2! gives the contri-
bution ~28!, which describes short-range correlations that
FIG. 5.
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crease on the scales r;l/u. Finally,
(non) (0) (0)

n-

.,
e

th

rr
of

o

on

replaced byl tr! into the general expressions~24! and~25!, we
m:

rt
G 4 (r ,r 8,r1 ,r18)2G 2 (r ,r 8)G 2 (r1 ,r18) defines the part
of the correlation functionC(zf ,r) which must be taken into
account whenr, lu, although it does not play an indepe
dent role like the first two contributions.

The Fourier transform of the correlation function, i.e
the fluctuation spectrum~19!, is expressed in terms of th
second moment of the intensity in the following manner.

At low spatial frequencies (q!k0u) contributions to the
fluctuation spectrum are made by all the components of
correlation function. Substituting the relation

G 4~1,2,3,4!2G 2~1,2!G 2~3,4!5G 2~1,2!G 2~3,4!

3(
a

ĥa~1,2!ĥa~3,4!@G 4
~sc!~1,2;3,4!

1G 4
~sc!~1,4;3,2!1G 1~1!G 1* ~2!G 1~3!G 1* ~4!#

into ~B2! and using Eqs.~9! and ~14!, we obtain

M ~zf ,q!

5E
~VVn!.0

dVE
~V1Vn!.0

dV1E d2r

3exp~2 iq•r!~V•Vn!~V1•Vn!

3H nE dr 8E E dV8dV18

3E E dV9dV19Iv01Dv/2S zf , 12 ~r1r1! i

1
1

2
r,Vur 8,V8D Iv02Dv/2S zf , 12 ~r1r1! i

2
1

2
r,V1ur 8,V18D @h~V8,V8uV9,V9!

3h~V18 ,V18uV19 ,V19!

3^Iv01Dv/2~r 8,V9!Iv02Dv/2~r 8,V19!&

1h~V8,V8uV9,V19!h~V18 ,V18uV19 ,V9!

3^Iv0
~r 8,V9,Dv!Iv0

~r 8,V19 ,2Dv!&

1h~V8,V8uV9,V9!h~V18 ,V18uV19 ,V19!

3Iv01Dv/2
~0! ~r 8,V9uV0!Iv02Dv/2

~0! ~r 8,V19uV0!#J .
~B3!

At high spatial frequencies (q.k0u) contributions to the
fluctuation spectrum are made only by the short-range co
lations, andM (zf ,q) is specified as the Fourier transform
~28!.

APPENDIX C

In the case of weak absorption (l tr! l a) the regime of
spatial diffusion of waves in a medium with scatterers
arbitrary size operates if the thickness of the slabL@ l tr .
Substituting the intensity propagators in the diffusi
approximation37 ~see Eqs.~31! and ~41!, where l must be
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obtain the following expansion for the fluctuation spectru

MR
coh~zf ,q!

5
l tr

24pk0
2E

0

L

dzFU ]

]z
F~zf ,quz!U21q2uF~zf ,quz!U2G

3uF~zu0,V0 ,Dv!u21
1

16p2n«a

3E
0

L

dzuF~zf ,quz!u2uF~zu0,V0 ,Dv!u22
l tr
2

96p2n«a,s

3E
0

L

dz
]

]z
uF~zf ,quz!u2

]

]z
uF~zu0,V0 ,Dv!u2

1
l tr
4

144p2nE
0

L

dzF«a~0!U ]

]z
F~zf ,quz!U2

1q2«s
~1!uF~zf ,quz!u2GU ]

]z
F~zu0,V0 ,Dv!,U2 ~C1!

M incoh~zf ,q!5
n

16p2E
0

L

dzusaF~zf ,quz!F~zu0,V0!

2
1

3
s trl tr

2 ]

]z
F~zf ,quz!

]

]z
F~zu0,V0!u2. ~C2!

The functions in~C1! and~C2! can be calculated using~46!,
in which l must be replaced byl tr . The coefficients in the
expansion~C1! are defined by the expressions

«a5 (
p50

`

~2p11!~sa
p!2, ~C3!

«a,s5 (
p50

`

@~p11!sa
p111ps tr

p#sa
p , ~C4!

«s
~0,1!5

3

5 (
p50

`

@Ap
~0,1!~DpDp21* 1c.c.!1Bp

~0,1!~Dp
21c.c.!#,

~C5!

where sa
p and s tr

p are the partial absorption and transpo
cross sections,

sa
p5

p

k0
2 ~12uSpu2!, s tr

p5
p

k0
2 uSp2Sp21u2, ~C6!

Ap
~0!5

4p~p21!

2p21
, Bp

~0!5
p~4p211!

4p221
, ~C7!

Ap
~1!5

3p~p21!

2p21
, Bp

~1!52
2p~p221!

4p221
, ~C8!

Dp5
2p i

k0
~ f p2 f p21* !14p f pf p21* 5

p

k0
2 ~SpSp21* 21!,

~C9!
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Sp and f p are the coefficients in the expansions of the
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17S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett.61, 834
~1988!.

c

B

v,

h.
S-matrix and the partial wave scattering amplitude, a
Sp5112ik0f p .

39

In the case of scatterers of small radius, one term co
sponding to thes wave remains in each of the sums~C3!–
~C5!. As a result, we have

s tr5s, «a5sa
2 , «a,s5ssa , «s

~0!5s22
2ps

k0
2 ,

«s
~1!50, ~C10!

and formulas~C1! and ~C2! transform into~42! and ~43!.
In the case of large scatterers, in which deflection b

small angle occurs in each individual collision, a large nu
ber of terms must be retained in the sums~C3!–~C5!. If the
terms appearing in~C3!–~C5! are assumed to be smoo
functions ofp and the summation in~C3!–~C5! is replaced
by integration, the following relations can be obtained for t
coefficients«a , «a,s , and«s :

«a5
p

k0
4E d2p~12uSpu2!2, ~C11!

«a,s5
4p

k0
4 E d2p~12uSpu2!S dd

dpD
2

, ~C12!

«s
~0!5

4p

k0
4 E d2pF35S dd

dpD
2

1S dd

dpD
4G , ~C13!

«s
~1!5

4p

k0
4 E d2pF65S dd

dpD
2

2S dd

dpD
4G . ~C14!

It was assumed during the derivation of these relations
Sp5uSpuexp(2id) and that the condition for weak absorptio
12uSpu2!(dd/dp)2 is satisfied.
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Generalized Jordan–Wigner transformations and the Ising–Onsager problem

M. S. Kochmański

Institute of Physics, Pedagogical University, 35-310, Rzeszo´w, Poland
~Submitted 6 March 1996; resubmitted 26 July 1996!
Zh. Éksp. Teor. Fiz.111, 1717–1731~May 1997!

Another possible method for obtaining Onsager’s solution for the 2D Ising model is presented.
In contrast to previous methods, the method proposed here makes it possible to study the
problem in a weak external magnetic field. Generalized Jordan–Wigner transformations in the
form introduced by Kochman´ski @J. Tech. Phys.36, 485 ~1995!# are employed. ©1997
American Institute of Physics.@S1063-7761~97!01205-5#
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Methods for solving the two-dimensional Ising model
the absence of an external magnetic field are well kno
~see, for example, Refs. 2–6 and the references cited th!.
Unfortunately, essentially none of these approaches has
to success in solving the Ising–Onsager problem in an ex
nal magnetic field or to a solution of the three-dimensio
Ising model. More precisely, these methods did not m
possible further advances in the solution of the Isin
Onsager problem, despite the great efforts of physicists
mathematicians.

The work by Schultz, Mattis, and Lieb7 should be espe
cially noted. In my opinion, this work is one of the mo
beautiful and elegant in the theoretical physics of the Isin
Onsager problem~another example of the deep relationsh
between theoretical physics and art!. The method employed
in Ref. 7 is based on the application of a transfer ma
followed by a transition to the Fermi representation
means of one-dimensional Jordan–Wigner transformatio8

On the other hand, combinatorial methods have b
used9–11 in one form or another to calculate the partitio
function for the 2D Ising model using a diagrammatic rep
resentation for the initial sum. I realize and ‘‘remembe
perfectly well that a large number of approaches and m
ods for solving the three-dimensional problem have n
been accumulated but nonetheless have led nowhere. H
ever, as is well known, most of these approaches and m
ods ~see, for example, Ref. 12! are limited in scope, which
makes it impossible even to study the problem in a we
external magnetic field in two dimensions, to say nothing
the three-dimensional problem.

The present paper develops another possible approa
the Ising–Onsager problem and gives as an example the
lution for the 2D Ising model, using ideas from Ref. 7 a
well as Refs. 9–11. The idea is to formulate the problem
three dimensions in the second-quantization representa
and then let one of the interaction constantsJ1,2,3 go to zero.
Generalized Jordan–Wigner transformations are employe
the form introduced in Ref. 1. It is hoped that this approa
will make it possible to advance substantially in the solut
of the Ising–Onsager problem in an external magnetic fie
More will be said about this in the concluding section.
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2.1. Analytic representation

Consider a simple cubic lattice withN rows,M columns,
andK planes~layers! at whose sites the ‘‘spins’’snmk are
given and assume two valuessnmk561. The Hamiltonian
for the 3D Ising model with nearest-neighbor interaction

H52 (
n,m,k51

NMK

~J1snmksn11,mk1J2snmksn,m11,k

1J3snmksnm,k11!, ~2.1!

where the collective indexnmk enumerates the sites of
simpleN3M3K cubic lattice and the constantsJj.0 ac-
count for the anisotropy of the interaction of the Ising spin
As usual, periodic boundary conditions are imposed on
variablessnmk. We write the partition functionZ3 of the
system in the form

Z35 (
s111561

... (
sNMK561

e2bH

5 (
$snmk561%

expF(
nmk

~K1snmksn11,mk

1K2snmksn,m11,k1K3snmksnm,k11!G , ~2.2!

where the quantitiesKi are defined as~T is the temperature!

K1,2,35bJ1,2,3, b51/kBT. ~2.3!

~Here and below, summation overnmk ~or nm! and a prod-
uct overnm will involve a summation or a product over
complete set of integers from 1 toN, M and K for each
index.!

Using the well-known transfer-matrix method,4,5 the par-
tition function Z3 in Eq. ~2.2! can easily be written in the
form

Z35Tr ~T!K, ~2.4!

whereT is a transfer matrix whose elements are

T
$snm,k11%
$snmk% 5expF(

nm
~K1sn11,mk1K2sn,m11,k!snmkG

3expFK3(
nm

snmksnm,k11G . ~2.5!

940$10.00 © 1997 American Institute of Physics



The transfer matrix elements of the layer–layer Ising model
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Schultz, Mattis, and Lieb7 showed that theT matrix in
s of
the

-
s-

nd
ri-

ites.
er
can also be written in a somewhat different form,but these
representations are actually all equivalent. According
~2.5!, the matrixT can be represented as a product of ma
cesT1,2,3 of the same dimension (2NM32NM),

T5T3T2T1 , ~2.6!

where4

T15expSK1(
nm

tnm
z tn11,m

z D ,
T25expSK2(

nm
tnm
z tn,m11

z D , ~2.7!

T35~2 sinh 2K3!
NM/2 expSK3*(

nm
tnm
x D , ~2.8!

where tnm
x,y,z are three sets of 2NM-dimensional matrices o

the form

tnm
x,y,z51^1^ ...^ tx,y,z^ ...^1^1, ~2.9!

in which the Pauli matricestx,y,z appear in thenmth place.
In Eq. ~2.8! the quantitiesK3 and K3* are related to one
another by

tanh~K3!5exp~22K3* ! or sinh~2K3!sinh~2K3* !51.
~2.10!

The Pauli spin matricestnm
x,y,z ~2.9! commute with one an-

other ifnmÞ n8m8, while for givennm they satisfy the stan
dard properties.4 It is easy to see that the matricesT1,2 ~2.7!
commute with one another, but they do not commute w
T3 ~2.8!. The transition to the 2D Ising model with respect to
the interaction constantsK1 or K2 corresponds to setting
K150 or K250 and removing the summation overn
(N51) or m (M51), respectively. Then the standa
expressions5,7 for the 2D Ising model are obtained, the op
eratorT1 ~2.7! being identically 1 (T1[1) in the first case,
andT2[1 in the second.

A somewhat different situation obtains a transition to t
2D Ising model with respect to the interaction consta
K3 . In this case we must setK350, K51, i.e., the summa-
tion overk must be removed, as a result of which it is easy
obtain for the operatorT3 ~2.8!

T3*[T3~K350!5)
nm

~11tnm
x !, ~2.11!

where the relations~2.10! were used. This structure of th
operatorT3* makes it possible ultimately to see a somew
different way to solve the Ising problem, and to advan
substantially in the solution of the Ising–Onsager problem
an external magnetic fieldH. Thus, according to Eq.~2.4!,
the partition function of the 2D Ising model can be ex
pressed as

Z25Tr~T3*T2T1!, ~2.12!

where the matricesT1,2 are given by~2.7! andT3* is given by
~2.11!. The advantage of representing the partition funct
in the form~2.12!, it seems to me, is in some sense obvio
I shall have more to say about this below.
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its standard representation can be expressed in term
Fermi second-quantization operators. They employed
well-known Jordan–Wigner transformations8 which make it
possible to express the Fermi operatorscm

1 andcm of a one-
dimensional system in terms of the Pauli operatorstm

6 :5

cm5expS ip (
j51

m21

t j
1t j

2D tm
2 ,

~2.13!

cm
15expS ip (

j51

m21

t j
1t j

2D tm
1 .

In Ref. 1 Jordan–Wigner type transformations~2.13!, ex-
tended to two-, three-, andd-dimensional systems, were in
troduced in a form convenient for application to lattice sy
tems. Introducing, just as in the one-dimensional case,5 the
two-index Pauli operators

tnm
6 5

1

2
~tnm

z 6 i tnm
y !, ~2.14!

which satisfy anticommutation relations at any one site a
commutation relations for different sites, we write the mat
cesT1,2 andT3* in the form

T15expFK1(
nm

~tnm
1 1tnm

2 !~tn11,m
1 1tn11,m

2 !G , ~2.15!

T25expFK2(
nm

~tnm
1 1tnm

2 !~tn,m11
1 1tn,m11

2 !G , ~2.16!

T3*5)
nm

@11~122tnm
1 tnm

2 !#. ~2.17!

As noted above, the Pauli operatorstnm
6 behave as Fermi

operators at one site and Bose operators at different s
Next, using the two-dimensional Jordan–Wign
transformations1

anm
1 5expS ip (

k51

n21

(
l51

M

tkl
1tkl

21 ip (
l51

m21

tnl
1tnl

2 D tnm
1 ,

~2.18!

anm5expS ip (
k51

n21

(
l51

M

tkl
1tkl

21 ip (
l51

m21

tnl
1tnl

2 D tnm
2 ,

bnm
1 5expS ip(

k51

N

(
l51

m21

tkl
1tkl

21 ip (
k51

n21

tkm
1 tkm

2 D tnm
1 ,

~2.19!

bnm5expS ip(
k51

N

(
l51

m21

tkl
1tkl

21 ip (
k51

n21

tkm
1 tkm

2 D tnm
2 ,

after a series of transformations13 the operators~2.14!–~2.16!
assume the form

T15expHK1 (
m51

M F (
n51

N21

~bnm
1 2bnm!~bn11,m

1 1bn11,m!

2ĝm~bNm
1 2bNm!~b1,m

1 1b1,m!G J , ~2.20!
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T25expHK2(
n51

F (
m51

~anm2anm!~an,m111an,m11!

2ĝn~anM
1 2anM!~an,1

1 1an,1!G J , ~2.21!

T3*5)
nm

@11~21!anm
1 anm#5)

nm
@11~21!bnm

1 bnm#,

~2.22!

where

ĝn[~21!M̂n, M̂n5 (
m51

M

anm
1 anm ,

ĝm[~21!N̂m, N̂m5 (
n51

N

bnm
1 bnm .

The commutation relations between thea and b operators
have the form1

$anm
1 ,bnm%15$bnm

1 ,anm%15~21!wnm,

@anm ,bn8m8#25...5@anm
1 ,bn8m8

1
#250,

S n8<n21, m8>m11

n8>n11, m8<m21D ,
$anm ,bn8m8%15...5$anm

1 ,bn8m8
1 %150, ~2.23!

and in all other cases, when the operators are defined a

anm
1 5exp~ ipwnm!bnm

1 , anm5exp~ ipwnm!bnm ,

wnm5F (
k5n11

N

(
p51

m21

1 (
k51

n21

(
p5m11

M Gakp
1 akp

5@•••#bkp
1 bkp , ~2.24!

and anm
1 anm5bnm

1 bnm , the operatorswnm obviously com-
mute with the operatorsanm

1 , anm andbnm
1 , bnm , i.e.,

@wnm ,anm
1 #25...5...5@wnm ,bnm#250.

Introducing, just as in the one-dimensional case,7 a basis
in the occupation number representation fora andb fermi-
ons ~2NM-dimensional space in the Fock representation14!
and then calculating the corresponding matrix eleme
^ l uTu l & it is easy to see that on account of the multiplicati
character of the operatorT3* ~2.22! all matrix elements with
the exception of the vacuum matrix element^0uTu0& equal
zero. For the vacuum matrix element the contribution of
operatorT3* simply equals 2

NM, andZ2 ~2.12! can be written
in the second-quantization representation as

Z252NM^0u~T2T1!u0&, ~2.25!

where the vacuum stateu0& is defined in the standard manne

anmu0&5bnmu0&50, n51,2,...,N, m51,2,...M ,

~2.26!
and the operatorsT1,2 are determined by the formula
~2.20!–~2.21!. Here I call attention especially to the fact th
the vacuum states~2.26! for thea andb fermions can differ
from one another by at most a constant phase factor, w
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is easy to show that in the case of ‘‘free end’’ bounda
conditions for thea andb operators~an,M11

1 50 and so on!,
the expression~2.25! for the partition functionZ2 can finally
be represented as

Z252NM@~12z1
2!~12z2

2!#2NM/2^0uT2*T1* u0&,
~2.27!

z15tanh~K1!, z25tanh~K2!,

where the operatorsT1,2* are given by

T1*5expH (
n51

N

(
m51

M

(
l51

N2n

z1
l bnm

1 bn1 l ,m
1 J , ~2.28!

T2*5expH (
n51

N

(
m51

M

(
k51

M2m

z2
kan,m1kanmJ . ~2.29!

In deriving the expressions~2.27!, all creation operators
anm

1 were ‘‘passed through’’ the bra vector^0u and all anni-
hilation operatorsbnm were passed through the ket vect
u0&, using the equalitieŝ0uanm

1 50 andbnmu0&50 for all
n,m.

2.2. Diagrammatic representation

Let S denote the vacuum matrix element in the formu
~2.27! for Z2 and letG denote the product of the operato
T2*T1* , i.e.

S[^0uT2*T1* u0&[^0uGu0&. ~2.30!

Therefore we must calculate the vacuum matrix elemenS
~2.30! of a sum of products of Fermi creation and annihi
tion operators. The operatorG in Eq. ~2.30! is a polynomial
in z1 , z2 , anm , andbnm

1 . SinceG appears in Eq.~30! in the
brackets^0uGu0&, not all terms of the polynomial give a
nonzero contribution to the matrix elementS. Writing out
the productG and substituting into Eq.~2.30!, S can be
represented as a sum of vacuum matrix elements(nSn ,
whereSn is the vacuum matrix element of thenth term of the
polynomialG. As follows from Eqs.~2.28! and~2.29!, each
term of the polynomialG is a product of different pairs
z2
kan,m1kanm andz1

l bnm
1 bn1 l ,m

1 , which will be convention-
ally termed below asa pairs andb pairs. It is obvious that all
terms of the polynomialG with unequal numbers ofa andb
pairs make a zero contribution toS and not all terms of the
polynomialG with equal numbers ofa andb pairs will give
a nonzero contribution toS. Indeed, only terms of the poly
nomialG with equal numbers ofa andb pairs in which each
annihilation operatoranm is paired with a corresponding cre
ation operatorbn8m8

1 with identical indices~n5n8, m5m8!
will give a nonzero contribution toS. In the opposite case
such a term will give a zero contribution toS.

In this manner, we arrive at a diagrammatic represen
tion, noting that to each vacuum matrix elementSn there can
be associated a unique collection of lines~bonds! connecting
pairs of lattice sites. For example, the diagrams in Fi
1a–1d correspond to the matrix elements

a) z1
2z2

3^0uan,m13anmbn,m13
1 bn12,m13

1 u0&,

b) z1
4z2

4^0uan,m11anman11,m11an11,m21
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FIG. 1. Hamiltonian circuits on a simpleN3M square
lattice with variable step length: a—Example of
Hamiltonian chain; b—example of a simple loop wit
intersection of horizontal and vertical bonds~edges!; c,
d—examples of simple loops with no self-intersectio
of the bonds; e, f—simple loops with intersection o
two superposed horizontal or two superposed verti
bonds.
3an12,man12,m21bn11,m21
1 bn12,m21

1

’’

n

m

m

pl
a

self-intersection of lines~bonds! being prohibited at any site
y,
ori-
s

is

to
be-

ing

ted

on

gn.
an
ns
3bnm
1 bn12,m

1 bn,m11
1 bn11,m11

1 u0&,

c) z1
10z2

6^0uan,m11anman11,m11an11,m

3an11,m22an11,m24an15,m22an15,m24

3bn11,m24
1 bn15,m24

1 bn11,m22
1

3bn15,m22
1 bnm

1 bn11,m
1 bn,m11

1 bn11,m11
1 u0&,

d) z1
8z2

10^0uan,m12anman12,man12,m23

3an14,m12an14,m23bn12,m23
1 bn14,m23

1

3bnm
1 bn12,m

1 bn,m12
1 bn14,m12

1 u0&. ~2.31!

As the expressions~2.28!, ~2.29!, and ~2.31! show, a factor
z2
k is associated with each horizontal line of ‘‘length’’k and
a factorz1

l is associated with each vertical line of ‘‘length
l . It was shown above that only matrix elementsSn with
equal numbers ofa andb pairs give a nonzero contributio
to S, each annihilation operatoranm being paired with a
corresponding creation operatorbnm

1 . Geometrically, this
means that from the entire collection of possible diagra
the only diagrams giving a nonzero contribution toS are the
ones in which zero or two lines~bonds! meet at a ‘‘right
angle’’ at each vertex of a diagram. In other words, diagra
in which two horizontal lines~bonds! or two vertical bonds
meet at any vertex are not permitted. The simplest exam
of such diagrams are shown in Figs. 1a–e. Therefore
diagrams giving a nonzero contribution toSmust be closed,
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sinceanm
2 5(bnm

1 )250. From the standpoint of graph theor
the closed diagrams described above correspond to un
ented Hamiltonian circuits~the vertices having valence
d50,2! on a simple square lattice.15–17

Therefore the vacuum matrix elementS ~2.30! can be
represented in the form

S5(
n

Sn , ~2.32!

and in the calculation any multiply-connected diagram
considered to be one diagram~for example, the diagram in
Fig. 1c!. Every closed diagram gives the contribution

~61!)
j51

s

z1
l jz2

kj , ~2.33!

wheres is the number of horizontal bonds, which is equal
the number of vertical bonds. Further, using the relation
tween thea andb operators~2.23! and Wick’s theorem,18 it
can be shown that an arbitrary vacuum matrix element giv
a nonzero contribution to the sumS ~2.31! decomposes into
a product of matrix elements corresponding to the connec
parts of a diagram~which, for brevity, will be termed below
simple loops without self-intersections at the lattice sites!. It
can be verified directly, taking account of the commutati
relations~2.23! between thea andb operators, that, for ex-
ample, the diagrams in Figs. 1b–f enter with a plus si
Other diagrams, for example, the diagram in Fig. 1e, c
enter with a minus sign as well. The commutation relatio

943M. S. Kochmański
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between thea and b operators~2.23! are illustrated very
clearly in Fig. 2, where the distinguished operatoranm(* )
for a fixed site (nm) commutes with theb operators at the
(n8m8) sites, marked with a cross (3). For all other sites
thea andb operators anticommute with one another. The
fore the contribution of each diagram decomposes int
product of contributions from simple loops, the contributi
of a simple loop withs horizontal ands vertical bonds being

Ps5~61!)
j51

s

z1
l jz2

kj . ~2.34!

Now S ~2.32! can be expressed as

S511(
$s%

Ps1 (
$s%,$q%

PsPq1...[G~h!~z1 ,z2 ,!, ~2.35!

where the loopPs is determined by the expression~2.34!.
The expression~2.35! contains, besides a summation ov
the numbers of bonds, a summation over all admissab
lengths of these bonds$k% and$ l % with fixed s. It is easy to
see that the summation in Eq.~2.35! over the lengths of the
horizontal$k% and vertical$ l % bonds is performed indepen
dently. In graph theory15,16 the function ~2.35! is called a
generating function, which we noted above, introducing
it the notationG (h)(z1 ,z2), where the superscript (h) indi-
cates that the generating function refers to Hamiltonian
cuits. Therefore the problem reduces to summing over
Hamiltonian circuits with a step~edge! of variable length on
a square lattice of the type described above.

We note here that the above-described diagramm
representation ofZ2 is very reminiscent of the diagrammat
representation for the partition function of the 2D Ising
model in zero magnetic field (h50) ~see, for example, Refs
11, 15, and 19!. In this case, as is well known,11,19 the par-
tition function can be represented as

Z~K1 ,K2!5~2 coshK1 coshK2!
NM

3(
a,b

ga,b tanha K1 tanh
b K2 , ~2.36!

wherega,b is the number of closed diagrams consisting ob
horizontal anda vertical bonds, the bonds connecting t

FIG. 2. ‘‘Geometry’’ of the commutation relations for thea andb opera-
tors:*—a operator,3 —b operator.
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nearest sites of a square lattice, so that eacha bond is asso-
ciated with a factor~weight! tanhK1 and eachb bond is
associated with a factor tanhK2. At some vertices of a dia-
gram a single self-intersection is possible, i.e., zero, two
four lines meet at one vertex of a diagram; this correspo
to unoriented Eulerian circuits of degreed<4.15,17 Figure 3
shows one of the simplest diagrams contributing to the s
~2.36! for Z2(K1 ,K2). This last circumstance makes th
present case substantially different from the one descri
above, since in our case only zero or two lines~horizontal
and vertical! can meet at a single vertex. As mention
above, this corresponds to unoriented Hamiltonian circuits
a square lattice.15,17 Another difference is that thea andb
bonds in Eq. ~2.35! can connect not only the neares
neighbor lattice sites, which is manifested as a dependenc
the weighting factorsz1

l j and z2
kj on the distancesl and k

between the lattice sites in the vertical and horizontal dir
tions, respectively. As mentioned above, in the terminolo
of graph theory15 the problem of calculating the sum~2.35!
is a problem of summing over Hamiltonian circuits~simple
circuits! on a rectangular lattice withN3M sites and vari-
able edge ‘‘length’’ in the horizontal and vertical direction
At the same time, the problem of calculating the sum in E
~2.36! is a problem of summing over all possible Euleria
circuits of the type described above (d<4) on the same
lattice. As is well known,15 there is a close relation betwee
Eulerian and Hamiltonian graphs, and for some types of
lerian graphs it is possible to switch to Hamiltonian grap
but not vice versa. A number of examples of a nontriv
relation between the generating functions for Eulerian a
Hamiltonian cirsuits on a simple rectangular lattice are p
sented in Refs. 20 and 21. In Ref. 21 it was shown by co
paring that the generating functionG (h)(z1 ,z2) for Hamil-
tonian circuits, described above, equals exactly
generating functionG (e)(z1 ,z2) for Eulerian circuits (d<4)
of the 2D Ising model,15 so that

G~h!~z1 ,z2!5 )
n,m50

N,M F ~11z1
2!~11z2

2!22z1~12z2
2!

3cosS 2pn

N D22z2~12z1
2!cosS 2pm

M D G1/2,
~2.37!

FIG. 3. Simple example of a diagram~Euler circuits! contributing to the
partition functionZ(z1 ,z2).
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be calculated directly and it will be shown that the equa
~2.37! is satisfied. Here I note only that a number of e
amples of the calculation of generating functions for Ham
tonian circuits with weights different from those examin
above are presented in Ref. 20.

3. SOLUTION

The Kac–Ward solution,9 an excellent exposition o
which can be found in Ref. 22, contains a well-known top
logical argument. Specifically, if in a circuit around an arb
trary closed diagram~here we are talking about Euleria
graphs on a lattice! a weighta5exp(ip/4) is assigned to
every turn to the left and a weighta215exp(2ip/4) is as-
signed to every turn to the right, then the closed diagra
~i.e., the diagrams which we wish to take into account! will
be taken into account and the forbidden diagrams will
canceled, if these diagrams are transversed along diffe
paths. The complete proof of this theorem was given
Sherman.23 A similar assertion also holds in the case
Hamiltonian graphs on a lattice with a step of variab
length, which were described above; this will be proved
low for simple cases. However, our arguments will follo
Refs. 11 and 24.

First, recall that some Hamiltonian loops~for example,
Fig. 1e! enter with a minus sign in the expression~2.35! for
S. Specifically, using the commutation relations~2.23!, it can
be verified directly that each ‘‘double crossing bond’’ of th
type shown in Fig. 1e contributes a minus sign to the to
sign of the simple loop~2.34! for all admissible diagrams
This is also true of the vertical ‘‘double crossing bonds.’’ A
the same time, each ‘‘simple double bond’’ of the ty
shown in Fig. 1f contributes a plus sign to the total sign
the simple loop ~2.34!. All other simple loops without
‘‘double bonds’’ of the type shown in Fig. 1b–d appear
the sum~2.35! for Swith a plus sign.~I note here in passing
that every Eulerian graph on a lattice can be put into a o
to-one correspondence with a Hamiltonian graph with a s
of variable length and no ‘‘double bonds,’’ the Hamiltonia
graph consisting of one, two, and more simple loops.
this, it is necessary to ‘‘cross out’’ in the Eulerian graph
intermediate vertices, together with vertices where the h
zontal and vertical edges of an Eulerian graph self-interse!

Now it is easy to see that if in the expression~2.35! for
S all simple loops~2.34! are taken with a plus sign and
weight a5exp(ip/4) (a215exp(2ip/4)) is assigned to
each turn to the left~right! in a circuit around a simple loop
then the problem of calculating the sumS ~2.35! actually
reduces to that of a ‘‘random walk’’ of a point along a lattic
with a step of variable length.11,22,24Indeed, for this method
of traversing simple loops, all loops with ‘‘double bonds
are cancelled~for example, loops in Fig. 1e and 1f!, as
should happen. By this method it is possible to traverse
loops with ‘‘double bonds’’ and show that their total contr
bution will cancel.

Further, using arguments similar to those presented
Refs. 11, 22, and 24, it is easy to show for a number
specific examples that if all Hamiltonian-type loops with
step of variable length and no ‘‘double bonds’’ are travers
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weightsa and a in turning left and right, respectively!,
then all allowed diagrams will be taken into account and
forbidden diagrams will be cancelled. Here it should be
pecially emphasized that such complete cancellation of
forbidden diagrams in any order will occur only if factorize
weights (z1

l ,z2
k) are assigned to steps of lengthl andk, re-

spectively. In Ref. 20 it is shown that in an external magne
field H the weightsz1

l andz2
k are renormalized bya( l ) and

b(k), wherea( l ) andb(k) are known functions of the inter
action parametersK1,2, the external fieldh5bmH, and the
positive integersl andk. For this case, the above-indicate
complete cancellation of the forbidden diagrams does
occur.

Returning to our problem and following now the arg
ments of Refs. 11 and 24, we can writeS ~2.35! as

S5expF2(
r51

`

f r G , ~3.1!

where f r is a sum over all single simple loops of leng
r52s, i.e., consisting ofs horizontal ands vertical bonds.
Every horizontal bond enters with weightz2

keiw/2 and every
vertical bond enters with weightz1

l eiw/2, wherew56p/2 is
the change in direction on passing to the next bond. In
ducing the quantityWr(n,m,n)—the sum over all possible
transitions with r5s11s2 bonds from an initial site
(n0 ,m0 ,n0) into the site (n,m,n), wheren is an additional
index associated with the four possible directions~1,2,3,4!
on a simple square lattice, we write

f r5
1

2r (
n0 ,m0 ,n0

Wr~n0 ,m0 ,n0!. ~3.2!

It is easy to obtain the following recurrence relatio
(a[exp(ip/4)) forWr(n,m,n):

Wr11~n,m,1!501a21(
l51

N

z1
l Wr~n2 l ,m,2!10

1a(
l51

N

z1
l Wr~n1 l ,m,4!,

Wr11~n,m,2!5a(
k51

M

z2
kWr~n,m2k,1!10

1a21(
k51

M

z2
kWr~n,m1k,3!10,

~3.3!

Wr11~n,m,3!501a(
l51

N

z1
l Wr~n2 l ,m,2!10

1a21(
l51

N

z1
l Wr~n1 l ,m,4!,

Wr11~n,m,4!5a21(
k51

M

z2
kWr~n,m2k,1!10

1a(
k51

M

z2
kWr~n,m1k,3!10.
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The meaning of the recurrence relations~3.3! is completely
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obvious. For example, site (n,m,1) can be reached from site
(n8,m,2) and (n9,m,4), i.e., from above and below~we
chose the direction ‘‘to the right’’ as the direction 1!, where
n85n2 l , n95n1 l , and l runs through, strictly speaking
the values from 1 toN21. However, for largeN the sum-
mation overl can be extended toN, which was done in the
expressions~3.3!, since these boundary effects vanish in t
thermodynamic limit. The Hamiltonian character of th
simple loops shows up clearly in the structure of the rec
rence relations~3.3!; this should be compared with the ca
of the Eulerian graphs.22,24Writing now the recurrence rela
tions ~3.3! in the matrix representation

Wr11~n,m,n!5 (
n8,m8,n8

L~n,m,nun8,m8,n8!Wr~n8,m8,n8!,

~3.4!

it is easy to see24 that

Tr L r5 (
n0 ,m0 ,n0

Wr~n0 ,m0 ,n0!, ~3.5!
into the expression~2.37!, since
r-

f r5
1

2r
Tr L r5

1

2r (
i

l i
r . ~3.6!

Using Eqs.~3.2! and~3.6!, we can now write forS ~3.1! the
expression

S5)
i

A12l i , ~3.7!

where l i are the eigenvalues of the matrixL(n,m,n),
i51,2,. . . ,4NM. The matrixL(n,m,n) can be easily diago-
nalized with respect to the indicesn, m by switching to a
different representation with the aid of the Fourier transf
mation:

Wr~n,m,n!5 (
q,p50

N,M

expS 2p i

N
nq1

2p i

M
mpD

3Wr~q,p,n!. ~3.8!

Substituting~3.8! into Eq. ~3.3!, we obtain for fixedq, p
L~q,p,nuq,p,n8!53
0 a21(

l51

N

z1
l «2 lq 0 a(

l51

N

z1
l « lq

a(
k51

M

z2
kv2kp 0 a21(

k51

M

z2
kvkp 0

0 a(
l51

N

z1
l «2 lq 0 a21(

l51

N

z1
l « lq

a21(
k51

M

z2
kv2kp 0 a(

k51

M

z2
kvkp 0

4 , ~3.9!

wherea[exp(ip/4), «[exp(2pi/N), andv[exp(2pi/M).
For fixedq, p it is obviously sufficient in our case to calculate the determinant of a 434 matrix

)
j51

4

~12l j !5Det~dnn82Lnn8![A~q,p!, ~3.10!

and after simple calculations the following expression is obtained forA(q,p) ~3.10!:

A~q,p!5
~11z1

2!~11z2
2!22z1~12z2

2!cos~2pq/N!22z2~12z1
2!cos~2pp/M !

@122z1 cos~2pq/N!1z1
2#@122z2 cos~2pp/M !1z2

2#
. ~3.11!

In deriving ~3.11! terms proportional toz1
N and z2

M were dropped, since for asymptotically large values ofN andM at
z1,2,1, z1

N'0 andz2
M'0. Finally, for asymptotically largeN andM , substituting the expression~3.11!, we obtain forS ~3.7!

S5)
i

A12l i5 )
q,p50

N,M

A1/2~q,p!5 )
q,p50

N,M F ~11z1
2!~11z2

2!22z1~12z2
2!cos~2pq/N!22z2~12z1

2!cos~2pp/M !

@122z1 cos~2pq/N!1z1
2#@122z2 cos~2pp/M !1z2

2#
G1/2.

~3.12!

For asymptotically largeN andM , ~3.12! obviously passes M
2pp 2
122z cos 1z 51

.

)
q50

N S 122z1 cos
2pq

N
1z1

2D51,
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S 2 N 2D
where N, M→`, z1,2,1. Finally, taking account of Eq
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~2.30! and substituting~3.12! into Eq. ~2.27!, we obtain for
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,

the free energyf per Ising spin in the thermodynamic lim
the well-known Onsager expression

2b f5 lim
N,M→`

1

NM
ln Z25 ln 21

1

2p2 E
0

pE
0

p

dw1 dw2

3 ln@cosh~2K1!cosh~2K2!

2sinh~2K1!cosw12sinh~2K2!cosw2#, ~3.13!

whereb51/kBT is the reciprocal temperature.

4. CONCLUSIONS

Despite its relative inconvenience, the method propo
in this paper for obtaining the Onsager solution makes
possible to study analytically the Ising–Onsager problem
an external magnetic field for a number of limiting cases
both two and three dimensions. The last part of the propo
solutions still differs from the classical Sherman
Vdovichenko solution, which reduces to summing ov
closed diagrams. A substantial difference is that in our c
the summation is performed over closed Hamiltonian grap
while in the case of the Sherman–Vdovichenko solution
summation extends overclosed Eulerian graphs. This circ
stance~together with the representation of the partition fun
tion in the form~2.25!! makes it possible to take into accou
an external magnetic field effectively. In Refs. 13 and 20 i
shown, on the basis of this approach, how the operator
responding to the interaction of Ising spins with an exter
magnetic field can be maximally simplified in the secon
quantization representation. This in turn makes it possibl
renormalize effectively the interaction constantsK1,2 taking
account of the external magnetic fieldH. Such a renormal-
ization is made possible by the representation of the parti
function in the form~2.25!. Therefore, in my opinion, the
formalism presented in this paper and the solution of
2D Ising problem are not only of interest in themselves b
they also make possible a substantial advance in the solu
of the Ising–Onsager problem. These results can be app
to analysis of the thermodynamics of an Ising magnet in
external magnetic field. I have yet to be able to give a co
947 JETP 84 (5), May 1997
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theorem, as was done by Shermanfor the case of Eule-
rian graphs on a simple square lattice.

I am deeply grateful to Professor Yan Mostovski� for his
questions and doubts as well as his extraordinary patienc
listening to my ‘‘short’’ stories about the Ising–Onsag
problem. In large measure, this helped me to underst
more deeply the essence and difficulties of this problem.
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Anomalous magnetic properties of ferrites of the CuFe 22xCrxO4 system with high Cr 31

f

content
L. G. Antoshina, A. N. Goryaga, E. N. Kukudzhanova, and I. A. Filgus

M. V. Lomonosov Moscow State University, 119890 Moscow, Russia
~Submitted 5 May 1996!
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The paper reports on a comprehensive study of magnetic properties of CuFe22xCrxO4 ferrites
(x50.0, 0.2, 0.3, 1.0, 1.4, 1.6, and 2.0!. The curves of magnetization versus temperature,
ss(T), of the ferrites withx51.0, 1.4, and 1.6 have anomalous shapes: the magnetization begins
to fall off at lower temperatures than the Curie pointTC . The experimental results and
analysis of exchange interactions suggest that in ferrites with high Cr31 content, magnetic
transitions to either a frustrated magnetic structure or a clustered spin glass can take place.
© 1997 American Institute of Physics.@S1063-7761~97!01305-X#
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4 have been studied for a long time, but researchers’ atten
has been focused mostly on their structure,1–3 whereas little
information on magnetic and electric properties of these s
tem is available. For example, the Curie temperatureTC has
been measured only in the two limiting cases of CuFe2O4

and CuCr2O4.
4 It seemed interesting to us, therefore, to u

dertake a comprehensive study of magnetic parameters~such
as magnetization, coercive force, and magnetoresistanc! of
CuFe22xCrxO4 system.

We selected for our study samples of t
CuFe22xCrxO4 system withx50.0, 0.2, 0.3~distortion pa-
rameter c/a.1), x51.0 (c/a51), and x51.4, 1.6, 2.0
(c/a,1).3 The samples were prepared using ceramic te
nology. The first anneal was performed at 750 °C for 20
the second at 900 °C also for 20 h. Both anneals were
formed in air, and the samples were then cooled gradua
X-ray diffraction patterns recorded at room temperature
dicated that the samples were single-phase spinels.

Magnetization was measured by the ballistic techniq
and magnetoresistance using a resistance bridge, sinc
sensitivity of this method is higher than that of the poten
ometer technique. The remanent magnetizations r and coer-
cive forceHc were derived from the shapes of hystere
loops. Contacts were fabricated on the samples fr
indium–gallium conducting paste. Magnetic fields of up
10 kOe were generated by an electromagnet.

Our measurements indicate that throughout the inve
gated temperature range, the magnetization of cop
ferrites–chromites in strong magnetic fields,s(H), is not
saturated, i.e., the paraprocess~true magnetization! is ob-
served. In this case, the spontaneous magnetizationss at all
temperatures was determined by extrapolating the linear
of thes(H) curve toH50. The values ofss determined by
this method were plotted against temperature. It turned
that thess(T) curves for samples with high chromium co
tent (x51.0, 1.4, 1.6, and 2.0! have anomalous shapes. A
the temperature rises, the falloff in magnetizationss takes
place at temperatures lower than those at which the coer
forceHc decreases.

Figure 1 shows measurements of the spontaneous m
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longitudinal (DR/R) i and transverse (DR/R)' galvanomag-
netic effects for the CuFeCrO4 sample as functions of the
temperature. One can see that the coercive force rem
fairly high at temperatures where the spontaneous magn
zation is low. As concerns galvanomagnetic effects, th
magnitudes drop at the same temperature as the decrea
magnetizationss(T). The negative signs of the two galva
nomagnetic effects at H510.5 kOe and their
approximate equality indicate that the sample behavior
strong magnetic fields can be described in terms of a p
process. Similar effects were detected in ferrites–chrom
with x51.4 and 1.6. The spontaneous magnetizationss(1.6)

of the CuFe0.4Cr1.6O4 sample versus temperature is plotted
a dashed line in Fig. 1.

These results suggest that there are two magnetic p
transitions in ferrites–chromites with high Cr31 content, i.e.,
in addition to the transition at the Curie temperatureTC ,
another magnetic transition occurs at the lower tempera
T.Tt . The Curie temperature of such samples was defi
as the temperature at which both the magnetizationss and
coercive forceHc vanish, and the temperatureTt was deter-
mined by extrapolating the linear part of the magnetizat
curvess(T) to its intercept with the temperature axis.

Figure 2 shows (ss /ss0)(T/TC) for three samples and
demonstrates that for CuFe2O4 and CuFe1.8Cr0.2O4 ferrites
these curves areQ-type ~according to Ne´el’s classification!,
whereas the behavior for the CuFeCrO4 sample is anoma-
lous: the ratioss /ss0 begins to fall off at a temperatur
considerably lower than the Curie temperature. Note t
curves of (ss /ss0)(T/TC) for the samples withx51.4 and
1.6 are not given in Fig. 2 since they are essentially ident
to the curve for the sample withx51.0.

Measurements of the remanent magnetizations r in
samples withx51.0, 1.4, and 1.6 have demonstrated that
sign ofs r does not change anywhere within the temperat
range studied. We thus conclude that the observed dro
magnetization is not due to the compensation temperat
but has a different cause.

In the reported work, we attempted to discover the ca

948$10.00 © 1997 American Institute of Physics



p

ia
-
g

e
xe
n
he
s

An ideal spin glass is a magnetic structure which has

clus-
small
hort-
ith

t
ted
tion
rd-
h
or

ons

lly
ect
nd
lity
us-
.
for
d in
h–
r
hi,
ons

he
be

er

ve

s
.
all,
ted

ed
rmed
tain

g-

el
the
B-
re,
t the
the

ct

ur
s

tu
of the anomalous behavior of magnetic properties of cop
ferrites–chromites with high Cr31 content.

Recently a lot of attention has been focused on mater
with frustrated magnetic structures~spero-, speri-, and as
peromagnetics! and on spin-glass-like structures. Accordin
to the theoretical work of Van Hemmen,5,6 if a transition
from a paramagnetic to spin-glass state occurs in a magn
material, a second transition from the spin glass to a mi
magnetic phase should take place as the temperature co
ues to fall. The mixed phase, for example, might be eit
ferromagnet plus spin glass or ferrimagnet plus spin glas

FIG. 1. Spontaneous magnetizationss , coercive forceHc , longitudinal
(DR/R) i and transverse (DR/R)' magnetoresistances versus temperat
measured in CuFeCrO4 in a magnetic fieldH510.5 kOe. The spontaneou
magnetizationss(1.6) of CuFe0.4Cr1.6O4 is shown by the dashed curve.

FIG. 2. Relative spontaneous magnetization versus relative tempera
(ss /ss0)(T/TC), for the samples~1! CuFe2O4; ~2! CuFe1.8Cr0.2O4; ~3!
CuFeCrO4.
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zero spontaneous magnetization atH50. No ideal spin
glass, however, has been detected in real materials, but
tered spin glasses are observed. In this case, there are
magnetized regions due to short-range exchange, i.e., s
range magnetic ordering occurs. Therefore, materials w
the magnetic structure of clustered spin glass have atH50 a
spontaneous magnetizationss considerably lower than tha
of materials with frustrated magnetic structures. In frustra
magnetic structures, regions with spontaneous magnetiza
are fairly large and have long-range magnetic order. Acco
ing to Coey,7 the necessary condition for formation of suc
anomalous magnetic structures is the presence of two
more types of magnetic ions, with the exchange interacti
among them of different magnitudes and signs.

It is known that ferrites with the spinel structure usua
contain two or more types of magnetic cations, and dir
BB-exchange is possible, beside the indirect AB-, BB-, a
AA-interactions. Therefore, we assume that the probabi
of forming both a frustrated magnetic structure and a cl
tered spin glass in these magnetic materials is fairly high

It is of interest to check whether the prerequisites
forming such anomalous magnetic structures are satisfie
the studied ferrites–chromites. Using the Goodenoug
Kanamori rules8–10 and the distribution of cations in coppe
ferrites–chromites described by Ohnishi and Teranis3

we have qualitatively estimated the exchange interacti
that might occur in CuFeCrO4, CuFe0.6Cr1.4O4, and
CuFe0.4Cr1.6O4.

According to the Goodenough–Kanamori rules,8–10 the
negative exchange coupling between FeA

31(eg
2t2g
3 ) and

FeB
31(t2g

3 eg
2) ions should be strongest, since it involves t

half-filled t2g andeg orbitals. The second strongest should
the positive interaction between the FeA

31(eg
2t2g
3 ) and

CrB
31(t2g

3 eg
0) ions. Since the CuA

21(eg
4t2g
5 ) and CuB

21(t2g
6 eg

3)
ions have orbitals that are more than half full, all the oth
indirect AB-exchange interactions~all of them negative! will
be weaker than the first two. Along with strong negati
indirect BB-exchanges like FeB

31–O22–FeB
31 and

FeB
31–O22–CrB

31 , negative direct cation–cation coupling
CrB

31–CrB
31 and FeB

31–FeB
31 can occur in spinel structures

Since the angle between cations at A-sites in spinels is sm
indirect AA-exchanges are weak and are usually omit
from calculations.

It follows from the data given above that both frustrat
magnetic structures and clustered spin glasses can be fo
in the ferrites–chromites discussed here, since they con
magnetic cations of three types, namely Fe31, Cr31, and
Cu21, with exchange interactions of different signs and ma
nitudes among them.

Since ferrimagnetic order in ferrites with the spin
structure is due to the negative AB-interaction between
sublattices, a positive AB-interaction and negative B
interaction tend to disrupt this magnetic ordering. Therefo
we assume that the transition to the clustered spin glass a
temperatureT.Tt during sample heating occurs because
strong negative direct AB-interactions FeA

31–O22–FeB
31 and

FeA
31–O22–CuB

21 are counteracted by the negative dire
CrB

31–CrB
31 and FeB

31–FeB
31 , negative indirect

e

re,
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FeB
31–O22–FeB

31 and FeB
31–O22–CrB

31 BB-exchange inter-
actions, and by the positive FeA

31–O22–CrB
31 AB-exchange.

Thus we assume that in copper ferrites–chromites w
high Cr31 content, a transition from a paramagnetic to clu
tered spin-glass state occurs atTC , and atTt the material
transforms to a mixed~ferrimagnetic plus clustered spi
glass! or purely ferrimagnetic phase.

It is known that neither galvanomagnetic effects n
magnetostriction~even-order effects! are observed in the
state of clustered spin glass. Therefore, we assume tha
lack of galvanomagnetic effects (DR/R) i and (DR/R)' in
CuFeCrO4 ferrites ~Fig. 1! at T.Tt also provides evidence
in favor of the formation of a clustered spin glass magne
phase.

Good confirmation of the existence of two phase tran
tions in these ferrites–chromites is the change in the act
tion energy detected in CuFe0.4Cr1.6O4. We measured the
resistivity of this sample and concluded from the shape
the lnr(1/T) curve that at a temperature of about 244 K t
activation energy jumps from 0.14 to 0.19 eV, and one m
jump occurs atT'355 K ~from 0.19 to 0.26 eV! ~Fig. 3!.
~Note the behavior ofss(1.6)(T) for the composition with
x51.6 in Fig. 1.! Unfortunately, the transition temperature
Tt andTC for the CuFeCrO4 sample are too high to measu
changes in activation energy using indium–gallium condu
ing paste contacts.

Figure 4 shows Tt(x), TC(x), and Tcr(x) for
CuFe22xCrxO4 ferrite systems, whereTcr is the temperature
of the tetragonal-to-cubic transition taken from Ref. 3. O

FIG. 3. The plot of lnr(1/T) for the CuFe0.4Cr1.6O4 sample.
950 JETP 84 (5), May 1997
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can see that the largest difference between the tempera
TC and Tt was measured in CuFeCrO4 (c/a51) and
CuFe0.6Cr1.4O4 (c/a,1), and this difference drops with in
creasing concentration of Cr31 ions up to the composition
CuCr2O4 (c/a,1). It is interesting that the ratio betwee
Tt and the Curie temperature,g5Tt /TC50.7160.03, is ap-
proximately the same for the samples withx51.0, 1.4, and
1.6.
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sults of this work. This work was supported by the Russ
Fund for Fundamental Research, Project No. 96-02-1968
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FIG. 4. Temperatures of structural transitionTcr , Curie temperatureTC ,
and temperature of magnetic transitionTt as functions of the
CuFe22xCrxO4 system compositionx.
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Effect of electron–electron interaction on thermoelectric power in impure metals
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A new kinetic phenomenon related to the effect of electron–electron scattering on the
thermoelectric coefficienth in a conductor with a small electron mean free pathl is considered.
The effect is proportional to the electron–hole asymmetry factor (eFt)21 and the real part
of the diffusion-enhanced Coulomb propagator with characteristic wave vectors of up tol21.
Unlike weak localization effects, in the two-dimensional case this effect results in a
logarithmic temperature dependence ofh and yields the major contribution to the differential
thermoelectric power. ©1997 American Institute of Physics.@S1063-7761~97!01405-4#

1. INTRODUCTION corrections to the operator of heat flux due to interaction
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Numerous theoretical and experimental studies h
shown that the interference between electron–electron
electron–impurity interactions in an impure conductor
sults in a radical modification of both thermodynamic~elec-
tron density of states and specific heat! and kinetic~conduc-
tivity, thermoelectric power, thermal conductivity, etc!
parameters of the system.1,2 In low-dimensional conductors
this interference yields nontrivial corrections that differ fro
those due to Fermi-liquid effects.2 In particular, it is pres-
ently known that the interference corrections to the cond
tivity have the form

Dse2e
3d

s0
;

~Tt!1/2

~eFt!2
,

Dse2e
2d

s0
;

1

eFt
ln Tt, ~1!

wheres0 is the residual conductivity,T is the temperature
t is the electron momentum relaxation time due to impur
scattering, andeF is the Fermi energy. Several studies3–5

were dedicated to the effect of the electron–electron inte
tion on the thermoelectric coefficienth in an impure conduc-
tor, and attention was focused on the most interesting t
dimensional case. In order to estimate the thermoelec
coefficient starting from the correction to the conductivi
one must calculate two parameters, namely, the typical e
tron energye* measured with respect to the Fermi energ
and the electron–hole asymmetry factorbas, which equals
the ratio of the difference between the number of electr
and holes and the number of electrons. For noninterac
electrons, e*;T and bas;T/eF , so
h0;(e* /eT)bass0;(T/eeF)s0. The expression obtaine
by Ting et al.3 and Fabrizioet al.5 is similar to the formula
for noninteracting electrons, namely,Dh int;T/(eeF)Ds int .
Hsu et al.4 derived a formula containing a steeper functio
The difficulties in the calculations of the thermoelectric c
efficient using the Kubo–Greenwood technique~linear
response!4 derive from the necessity to take into accou
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all orders. The operator itself can be expressed in term
the time derivatives of electron field operators~i.e., in terms
of the electron frequency!. In another representation of th
heat-flux operator, these derivatives can be recalcula
through the equations of motion, and the electron freque
can be expressed as the sum of the kinetic and pote
electron energies.6 Hsuet al.4 added terms to the first repre
sentation of the heat-flux operator that included the poten
energy of the electron–electron interaction in the second
resentation, and their results was erroneously large.

In this paper we also discuss the effect of electro
electron interaction on the thermoelectric coefficient. W
have studied the effect which is fundamentally different fro
that analyzed previously3–5 and described by a steeper fun
tion of (Tt)21 than in Refs. 3 and 5. Unlike the authors
these papers, who determined the electron–hole asymm
factor by expanding all parameters near the Fermi surfa
we separate out the asymmetry by retaining in the first-or
correction the factor

cas5
1

pnt E dp GA~p,e!GA~p,e!5
i

eFt

~in what follows, we assume that the conductor has a sin
parabolic energy band!. For a conductor with equal number
of electrons and holes, the latter expression, obviously
equal to zero by virtue of the analytic properties of t
Green’s functions. Given the additional imaginary part
cas, we have to take into account in our calculations the r
part of the diffusion-enhanced Coulomb propagator, wher
in the earlier studies3–5 the imaginary part of this propagato
was taken into account.

The new effects can be defined as ‘‘renormalization’’
the thermoelectric coefficient due to electron–electron s
tering in an impure conductor. In our opinion, the similari
to the renormalization of the electron density of states du
the electron–phonon scattering is quite to the point. Re

951$10.00 © 1997 American Institute of Physics
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propagator~the kinetic coefficients are proportional to i
imaginary part! and is determined by the entire volume o
cupied by phonons in the quasimomentum space, i.e.
virtual phonons with all wave vectors up to the Debye wa
vector. The effect in question is also proportional to the r
part of the boson propagator. The diffusion enhancemen
the Coulomb propagator is limited by the wave vecto
q;1/l , where l is the electron mean free path, hence t
effect magnitude is determined by the volume of this reg
in conductors of various dimensionalities. Similarly to t
case of renormalization of the density of states due
electron–phonon interaction, the characteristic electron
ergy is much smaller than the boson energy; in calculati
of the thermoelectric powere*;T.

The correction to the thermoelectric coefficient can
estimated using the correction to the density of sta
Dn int(e), resulting from electron–electron interaction2:

Dh int;
e*

T

cas
bas

Dn int
n0

h0 .

Given the expressions for the correction to the density
states due to the diffusion-enhanced Coulomb interaction
obtain in the case of a two-dimensional conduc
Dh int

2d;h0(Tt)21(eFt)21ln(Tt). As noted above, the effec
of renormalization exceeds the kinetic effect stud
previously3,5 by the parameter (Tt)21 resulting from the dif-
ference in the electron–hole asymmetry factors.

In order to calculate the corrections to the thermoelec
coefficient, we use the quantum kinetic equation techniq
which has, in the context of the discussed problem, sev
important advantages over the linear response method
calculating the electric current as a response to the temp
ture gradient, there is no problem involving corrections
the heat-flux operator.

2. CALCULATION OF THERMOELECTRIC POWER

In calculating corrections to the thermoelectric power
an impure metal due to electron–electron interactions,
use the quantum kinetic equation method based in Keldy
diagrammatic technique.7 This method has been applied
calculations of conductivity in impure conductors induced
electron–electron8 and electron–phonon interaction,9 and
was also used in calculations of the phonon renormaliza
of thermoelectric power10 and corrections to the thermal con
ductivity due to electron–electron interactions.6

In Keldysh’s technique, the Green’s function and ele
tron self-energy, as well as the electron–electron interac
potential, are expressed in the form of matrices:

Ĝ5S 0 GA

GR GCD , Ŝ5S SC SR

SA 0 D , V̂5S 0 VA

VR VCD , ~2!

while the interaction vertices are tensors.
If the electron–electron interaction is neglected, the el

tron Green’s function averaged over the impurity coordina
is

G0
R~p,e!5~e2jp1 i /2te!

215@G0
A~p,e!#* ,
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where te is the momentum relaxation time of an electro
with a frequencye due to impurity scattering, andpF is the
Fermi momentum.

The screened electron–electron interaction potentia
the case of small momenta and energies,ql!1, vt!1 ~but
pFl@1, wherel5vFt), can be expressed as2

VR~q,v!5@VA~q,v!#*

54pe2S q21 k3
2Dq2

2 iv1Dq2D
21

, d53,
~4!

VR~q,v!5@VA~q,v!#*

52pe2S uqu1
k2Dq

2

2 iv1Dq2D
21

, d52.

Here d is the dimensionality of the electron system
D5vF

2t/d is the electron diffusion factor,k3
254pe2n3,

k252pe2n2 (n35mpF /p
2, n25m/2p, n15n3a

2), a is the
characteristic conductor dimension andk25k3

2a/2 in the
quasi-two-dimensional case.

If the electron system is in equilibrium,

GC~q,v!5S0~e!@GA~p,e!2GR~p,e!#,

VC~q,v!52~2Nv11!@VA~q,v!2VR~q,v!#, ~5!

S0~e!52 tanh~e/2T!, Nv5~exp~v/T!21!21.

Since the quantum kinetic equation method was previou
described in detail,7 as well as its application to the problem
of the thermoelectric power,10 we give only the equations
necessary for this specific calculation. As in the earl
publication,10 our goal is to calculate the electron curre
resulting from the temperature gradient¹T.

The effects of electron–electron interaction and the n
equilibrium of the system are taken into account in fir
order perturbation theory. Without electron–electron inter
tion, the nonequilibrium correction to the distribution fun
tion is well known:

f0~p,e!5tev¹T
]S0~e!

]e

e

T
. ~6!

The system inhomogeneity in the momentum space natur
yields corrections in the form of Poisson brackets:

$A,B%5S ]A

]R

]B

]p
2

]A

]p

]B

]RD , ~7!

and¹R5¹T]/]T in the presence of a temperature gradie
The correction to the thermoelectric power is related

both the additional terms in the distribution function a
various corrections to the electron density of states:

Dh5
2e

u¹Tu E d3pde

~2p!4
~v–n!$f1 Im G0

A

1f0 Im@d intG
A~S0!#1S0 Im@d intG

A~f0!#

1S0 Im@dGA~S0!#%, ~8!
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wheren is the unit vector aligned with¹T, f1(p,e) is the
correction to the electron distribution function in first-ord
perturbation theory with respect to the interaction:

f1~p,e!5te@ I e2e~S01f0!1d intI e2 imp~S01f0!#, ~9!

whereI e2e is the electron collision integral with an effectiv
matrix element modified by the electron–electron inter
tion, d intI e2 imp is the additional term in the impurity collision
integral due to renormalization of the electron density
states. The latter is determined byd intG

A, which is directly
related to the self-energy component:

d intG
A5~G0

A!2Se2e
A ~S01f0!. ~10!

In the second term on the right-hand side of Eq.~8!, Se2e
A is

calculated using the equilibrium electron distribution fun
tion S0(e), and the third term includes the correction to t
distribution functionf0 ~6!. The fourth term in Eq.~8! is
related to the corrections to the self-energy in the form
Poisson bracketsdSe2e

A :

dGA5~G0
A!2dSe2e

A . ~11!

As in the calculation of corrections to the electric a
thermal conductivity due to electron–electron interaction,
main correction to the thermoelectric power comes b
from terms with a singularity in the form of a diffusion po
(2 iv1Dq2)21 in the third power with the additional mo
mentum transfer squared in the numerator and terms with
diffusion pole squared.

In contrast to the conductivity, the thermoelectric pow
contains the electron frequencye in the power one unit
higher, so integrating the product of electron distributi
functions overe yields an even function ofv. Thus, in cal-
culating the thermoelectric power instead of ImVA,R(q,v)
3(2 iv1Dq2)2n, which is an odd function ofv, one must
separate out terms in this function with a real part tha
even inv. When this is done, expanding the integrals of t
products of the electron Green’s functions in the param
(eFt)21 yields an additional imaginary term.

The self-energy diagram, allowing for electron–electr
interaction in the random phase approximation, is shown
Fig. 1. The corresponding equation has the form

Se2e
i j 5 i E ddqdv

~2p!d11V
kl~q,v!H G i i 8

k Gi 8 j 8~p1q,e1v!G j 8 j
l

1
i

2
G i i 8
k $Gi 8 j 8~p1q,e1v!,G j 8 j

l %

1
i

2
$G i i 8

k ,Gi 8 j 8~p1q,e1v!%G j 8 j
l G , ~12!

FIG. 1. Diagram of electron self-energy taking into account electro
electron interaction in the first order of perturbation theory.
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where the vertexĜ l5Ĝ0
l 1dĜ l is exact in terms of the

electron–impurity interaction. The wavy line in Fig. 1 d
notes the screened potential of electron–electron interac

The electron–electron interaction vertexĜ0
k renormal-

ized for impurities~without corrections in the form of Pois
son brackets! can be calculated in the ladder approximati
by solving the following matrix equation corresponding
the diagrams in Fig. 2:

Ĝ0
k5ĝk1

1

pnete
E ddp

~2p!3
ŝxĜ~p,e!Ĝ0

k

3Ĝ~p1q,e1v!ŝx , ~13!

where ĝk is the bare Coulomb vertex andŝx is the Pauli
matrix. The components of the renormalized vertex are
pressed to first order in (eFt)21 as

G22
k 5

g 22
k

12z
, G12

k 5
g 12
k

12zR
1S~e!g 22

k F 1

12z
2

1

12zRG ,
G21
k 5

g 21
k

12zA
2S~e1v!g 22

k F 1

12z
2

1

12zAG , ~14!

G11
k 5

g 11
k

12z*
1S~e1v!g 12

k F 1

12zR
2

1

12z* G2S~e!g 21
k

3F 1

12z
2

1

12zRG1S~e!S~e1v!g 22
k

3F 1

12z
1

1

12z*
2

1

12z* S 1

12zA
1

1

12zRD G ,
where

z5
1

pnete
E ddp

~2p!d
GA~p,e!GR~p1q,e1v!

511 ivt2Dq2t,
~15!

zA5~zR!*5
1

pnete
E d2p

~2p!d
GA~p,e!GA~p1q,e1v!

5~22d!
i

4eFt

provided thatql!1 andvt!1. As follows from Eq.~14!,

the terms in the vertexĜ0 of the first order in (eFt)21 do not
contain diffusion-pole singularities, and therefore can be
glected in our calculations.

It follows from Eq.~13! that the equation for the correc

tions to the vertexĜ0
k due to Poisson brackets is

dĜk5
1

pnete
E ddp

~2p!d
ŝxF Ĝ~p,e!dĜkĜ~p1q,e1v!

FIG. 2. Electron–electron interaction vertex in which electron–impur
scattering is taken into account in the ladder approximation.
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Ĝ~p,e!$Ĝ0

k ,Ĝ~p1q,e1v!%G ŝx . ~16!

Proceeding to the final stages of our calculation, note that
first order in (eFt)21 in the integral of the product o
Green’s functions over the electron momentum appears
to expansion of the electron velocity and density of sta
near the Fermi level, the finite lower limit in the integral ov
jp , and expansion in powers ofq/pF in terms where angula
integration would yield terms of orderql!1 without this
expansion. Expressions required for subsequent integrals

1

pnete
E ddp

~2p!d
~vn!2@GA~p,e!#2GR~p1q,e1v!

5
i

d
vF
2tS 11

3i

4eFt D ,
~17!

1

pnete
E ddp

~2p!d
~vn!2@GA~p,e!#2@GR~p1q,e1v!#2

5
2

d
vF
2t2.

As noted above, one must take into account both terms c
taining the cube of the diffusion pole with additional powe
of q in the numerator and terms with the diffusion po
squared. It was shown in Ref. 7 that the correction with
triple diffusion pole is due todG11

2 , i.e., a correction to the
equilibrium component of the vertexG11

2 proportional to the
diffusion pole squared, which can be derived from Eq.~16!:

dG11
2 5

i

22/3
e

T

]

]e
~S~e1v!2S~e!!

1

~12z!2
1

pnete

3E ddp

~2p!d
nSGA~p1q,e1v!

]

]p
GR~p,e!

2GA~p,e!
]

]p
GR~p1q,e1v! D . ~18!

Using the integrals in Eq.~17!, we find thatdG11
2 does not

contain any corrections of the first order in (eFt)21. As a
result,

dG22
1 52

i z

21/2~12z!2
]z

]q
u¹TuS ]S0~e!

]e

e

T

1
]S0~e1v!

]e

e1v

T D . ~19!

Nonlocal corrections to the collision integraldI containing
dG11

2 cancel, as in the calculation of electric conductivi
Finally, the third term in Eq.~8! — a correction to the den
sity of states in the form of Poisson brackets, which made
main contribution to the conductivity whendG11

2 was taken
into account — contains the following integral of the produ
of the electron Green’s functions:
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E ddp

~2p!d
~v–n!~q–n!@GA~p,e!#2GR~p1q,e1v!. ~20!

The latter expression does not contain imaginary terms p
portional to (eFt)21, hence the corrections containing th
third power of the diffusion pole do not contribute to th
thermoelectric power.

Now let us consider the terms containing the diffusi
pole squared. The collision integral corresponding to
self-energy diagram in Fig. 1 can be expressed as

I e2e~S!5f0~e,p!E ddq dv

~2p!d11

3~S~e1v!2S~e!! Re
VA~q,v!GA~p1q,e1v!

~12z* !2
.

~21!

Substituting Eq.~21! into Eq. ~9! and integrating over elec
tron momentum, we obtain, taking into account Eq.~20!,

Dh1852
pentv2

4eFa
32d Re E dedv

~2p!2
~S0~e1v!

2S0~e!!
]S0~e!

]e

e

T E ddq

~2p!d
VR~q,v!

~12z!2
. ~22!

The first term in Eq.~8! also contains a nonequilibrium dis
tribution function due to the correctionDh19 to the impurity
collision integral resulting from electron–electron interacti
~the corresponding self-energy diagram is shown in Fig.!:

de2eI e2 imp5
2

pnete
E ddk

~2p!d
de

2p
@S~k,e!2S~p,e!#

3d intG
A~k,e!. ~23!

Substituting Eq.~23! into Eq. ~9! and then into Eq.~8!, and
integrating overp, taking into account Eq.~17!, we have

Dh195
1

3
Dh18 . ~24!

The second term in Eq.~8!—an equilibrium correction to the
density of states due to the interaction—also contributes
the thermoelectric power:

Dh252Dh18 . ~25!

Note also that the third term in Eq.~8!—a nonequilibrium,
nonlocal contribution to the density of states, which is im
portant in calculating the conductivity and is proportional
the integral~20!—also contains no imaginary part propo
tional to (eFt)21.

FIG. 3. Diagram of electron self-energy, illustrating renormalization of
impurity collision integral due to electron–electron interaction. The dou
solid line represents the electron Green’s function with due accoun
electron–electron interaction.
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to the thermoelectric coefficient in the form

Dhd5
endDd

16peFta32dT E dvS v2
d

dv
~2Nv11!12TD

3ReE ddq

~2p!d
VR~q,v!

~2 iv1Dq2!2
. ~26!

In accordance with~4!, in the case of three-dimensional in
teraction atq!k3 andq;(v/D)1/2,

Dq2

2 iv1Dq2
VR~q,v!'

1

n3
. ~27!

We now integrate Eq.~22! overq andv. Note that the inte-
gral overv is formally divergent at the upper limit. None
theless, as in the calculation of corrections to the density
states and conductivity due to electron–electron interact
the divergence should be cut off at 1/t, which is the limit of
applicability of the diffusion approximation. Finally, w
have

Dh3d5
61/2

16p2

e

l eFt
. ~28!

The electron gas with a two-dimensional spectrum
no electron–hole asymmetry, and in accordance with~15!,
the correction to the thermoelectric coefficient is zero. W
connect the dimensionality reduction in this problem w
that of the Coulomb interaction Eq.~4!, and assume that th
electron spectrum remains three-dimensional.

Let us dwell on the two-dimensional case. Note th
since the characteristic energyv;1/t, the distinction be-
tween the three-dimensional and two-dimensional case
determined by the critical sample thickne
d;(D/v)1/2; l . As in the calculations of corrections to th
density of states and thermal conductivity due to electro
electron interaction, the integral overq is divergent at the
lower limit if the approximation defined by Eq.~27! is used.
In this case,uqu in the denominator in Eq.~4! cannot be
omitted. But since the parity of the integrand with respec
v is different from the parity in the calculation of therm
conductivity,2,6 we need, as was noted above, the real par
the integral of the diffusion pole squared times the scree
Coulomb potential. For this reason, we cannot use the lo
rithmic approximation in the integral overq, as was done in
Ref. 6. An exact calculation of the required integral yields
the lowest order in (eFt)21!1

Re E
0

` dq

~2 iv1Dq2!~2 iv1Dk2uqu!
52

p

4k2Duvu
.

~29!

Finally,

Dh2d5
e

64p

1

aeFt
ln Tt. ~30!

Note that in contrast to the calculation of conductivit2

in both the three- and two-dimensional configurations,
result strongly depends on the upper limit of integration o
v. The reason is that in the three-dimensional case, this
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stant to the conductivity, i.e., only the residual conductiv
was renormalized. In calculating the thermoelectric pow
one must bear in mind that the diffusion component is lin
in temperature, and therefore the correction described by
~28! is nontrivial. Certainly, the range of applicability o
first-order perturbation theory with respect to the electro
electron interaction constrains the correction magnitu
Dh!h0, whereh052(2/9)eTtpF is the thermoelectric co-
efficient of a metal without electron–electron interactio
Thereby one can determine the applicability range of E
~28!: 1/(eFt)2!Tt!1 ~the second inequality is due to th
diffusion approximation!.

3. CONCLUSIONS

The main result of this work is the calculation of th
multiparticle correction to the thermoelectric coefficient d
to diffusion-enhanced electron–electron interaction. T
‘‘renormalization’’ effect proportional to the real part of th
Coulomb propagator with the electron–hole asymmetry f
tor i /(eFt) is a steeper function of (Tt)21 than the ‘‘ki-
netic’’ effect studied previously.3,5

The parameter usually measured in experiments is
differential thermoelectric power ~Seebeck factor!
S52h/s, which is expressed, with due account of the c
culated corrections, as

S5S0S 12
Ds

s0
1

Dh

h0
D , ~31!

whereS052h0 /s05p2T/3eeF . In a disordered metal, the
multiparticle corrections to the thermoelectric coefficient a
conductivity in Eq.~31! are due to both electron–electro
interaction and weak localization. In order to compare th
contributions, we write the corrections to the thermoelec
coefficient calculated in this paper:

Dh3d

h0
'2

1

~Tt!~eFt!2
,

Dh2d

h0
'2

1

~Tt!~eFt!
ln Tt.

~32!

In the two-dimensional case, the relative correction is
hanced by the large logarithmic factor. For comparison,
give the expressions for corrections to the conductivity a
thermoelectric coefficient due to weak localization11,12:

Ds loc
3d

s0
;2

1

~eFt!~pFLf!
,

Ds loc
2d

s0
;2

1

eFt
ln
Lf

l
,

~33!

Dh loc
3d

h0
;

1

~eFt!~pFLf!
,

Dh loc
2d

h0
;

1

eFt
,

whereLf is the dephasing range. Comparing the correctio
to the thermoelectric coefficient due to electron–electron
teraction Eq.~32!, weak localization Eq.~33!, and the cor-
rections to the conductivity Eqs.~1! and ~33!, we conclude
that in the two-dimensional case the correction to the th
moelectric coefficient calculated in this paper yields the la
est contribution to the thermoelectric power, whereas in
three-dimensional case the localization corrections can p
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an important role in the dependence onLf . Note that al-
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though the calculated correction is independent of temp
ture in the three-dimensional case, it can easily be extra
from measurements of the diffusion thermoelectric pow
which is linear in temperature. In the two-dimensional ca
unlike the correction due to weak localization, the calcula
correction contains a logarithmic factor and can be also
rived from experimental data.
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Luminescence detection of multiphoton ionization–fragmentation of the molecular

ci-
CrO4
22 anions adsorbed on the surface of dispersed SiO 2

Yu. D. Glinka

Institute of Surface Chemistry, Ukrainian National Academy of Sciences, 252650 Kiev, Ukraine
~Submitted 27 June 1996; resubmitted 30 October 1996!
Zh. Éksp. Teor. Fiz.111, 1748–1774~May 1997!

It is shown that luminescence detection of multiphoton ionization–fragmentation of the
molecular CrO4

22 anions adsorbed on the surface of dispersed SiO2 is possible under excitation
with the fundamental frequency of a Nd:YAG pulsed laser (l51.064mm). The structure
and the process of formation of the adsorbed complexes under thermal activation of the surface
and the nature of luminescence transitions in CrO4

22 anions are studied in detail. It is
shown that luminescence is excited as a result of the recombination of photoelectrons and ionized
chromate ions. Multiphoton ionization of the ions occurs under three-photon resonance
conditions. The resonance level is an antibonding state of the adsorption complex formed with
the participation of an oxygen vacancy on the SiO2 surface. The dynamics of the
multiphoton luminescence excitation process includes autoionization~stimulated by intercomplex
electronic excitation! in superexcited states, fragmentation of chromate anions, and annealing
of surface oxygen vacancies. The rate equations for three-photon-resonance multiphoton ionization
are studied. The cross sections for two- and one-photon transitions on the nonresonance
steps of multiphoton absorption are obtained. It is concluded that the nonlinear polarizability of
the donor–acceptor adsorption bond in ‘‘chromate anion–oxygen vacancy’’ complexes is
very important. ©1997 American Institute of Physics.@S1063-7761~97!01505-9#
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In recent years, substantial progress has been mad
photoionization laser spectroscopy of molecules.1–3 This is
explained, first, by the progress made in laser technolo
especially UV- and VUV-range excimer lasers. Second,
combination of the method of resonance laser photoion
tion of molecules with mass-spectroscopic identification
the photoions produced has been found to be very effec

Simple inorganic molecules are of greatest interest
the investigation of resonance multiphoton ionization p
cesses which are followed by fragmentation, since for s
molecules the energy structure of the electronic states
been studied quite well and some states absorb in the vis
region of the spectrum, thereby eliminating a number of
perimental difficulties. For example, NO2 ~Refs. 4 and 5! and
NO ~Refs. 6 and 7! molecules have been found to be ve
convenient objects for such investigations.

However, there are few such examples. Moreover, si
this method is usually employed in combination with ma
spectrometric detection, the molecules investigated mus
in a gaseous state. This makes it impossible to study by l
photoionization spectroscopy a host of inorganic molecu
ions that are difficult to produce in the gaseous state. On
other hand, molecular ions such as, for example, CrO4

22 and
UO2

21, can be easily recorded on the surface of wide-g
oxides.8,9 Such molecular ions are luminescence probes
have been used to assess adsorption activity of the surf
of dispersed substances.10–12Since the adsorption energy fo
molecular ions (<1.0 eV) is much lower than their ioniza
tion potential and the band gap for the oxides (;10 eV), the
multiphoton ionization parameters of such ions will corr
spond roughly to the gas-state approximation. We must
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defects13 as well as the resonance photoionization of abso
ing centers on a surface.14

We recently proposed a method of multiphoton las
photoionization spectroscopy of molecular CrO4

22 ions ad-
sorbed on the surface of dispersed SiO2 in a monochromatic
laser field (l51.064mm). In this method, intracenter lumi
nescence of the ions, which is excited in a recombinat
process, was used to identify the photoionizati
processes.15–17 Just as in the case of mass-spectrometric
tection of organic molecules,18 the intensity of the lumines-
cence bands is characterized by power-law functions of
citation radiation intensity. The exponent lies in the ran
5–7.15 This paper reports the results of a further investigat
of the luminescence properties of the SiO2–CrO4

22 adsorp-
tion system under excitation at the fundamental frequenc
a pulsed Nd:YAG laser (l51.064mm). Special attention
will be devoted below to analysis of the power depende
~dependence of the luminescence yield on the power den
of the laser radiation! and dose dependence~dependence of
the luminescence yield on the number of laser pulses!. The
results of an investigation of the luminescence spectra of
SiO2–CrO4

22 adsorption system under UV excitation~third
and fourth harmonics of the Nd:YAG laser,l50.3547 and
0.266mm, respectively! as well as IR- and Raman scatterin
spectroscopy data will be used to construct a model of
adsorption complexes.

2. EXPERIMENT

The experimental samples were prepared by the follo
ing procedure. Dispersed SiO2 ~Aerosil! with a specific sur-
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FIG. 1. Power dependences~a, b! and depen-
dences of the time shiftDt ~c,d! on the intensity
of excitation with (lexc51.064mm) for lumi-
nescence bands at 540 nm~a, c! and 640 nm~b,
d! for SiO2–CrO4

22 samples (Th.t.5900 K):
1—Initial sample; 2—after irradiation
(lexc51.064mm, I553107 W•cm22) with a
dose of 100 pulses.
face area of 220 m2•g21 was dehydrated at 700 K for 2 h in
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3.1. Luminescence properties of the SiO 2–CrO4
22 adsorption
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air. CrO4
22 molecular ions were adsorbed onto the deh

drated surface from a water solution of the salt Na2CrO4.
Next, the modified sorbent was dehydrated in air at a h
treatment temperature ofTh.t.535021300 K for 2 h and
compacted into tablets under a pressure of 4.03106

N•m22. According to our estimates, the surface density
the CrO4

22 ions was<1.0 nm22.
A computer-controlled laser spectrometer was used

measure the luminescence spectra. A pulsed Nd:Y
laser with an amplifier (l51.064mm, I510522
3108 W•cm22, t520 ns! and harmonic generator
(l50.3547mm, I5105 2107 W•cm22 andl50.266mm,
I51052106 W•cm22! were used as a source of excitatio
A S1-70 oscillograph was used to investigate the decay
netics of the luminescence. The IR absorption spectra w
recorded with Specord M-80 and LAFS-1000 spectromet
and the Raman scattering spectra were recorded wit
DFS-24 spectrometer and an LGN-503 las
(l50.5145mm). All measurements were performed in a
at room temperature (T5300 K).

3. EXPERIMENTAL RESULTS

First we study the luminescence properties of
SiO2–CrO4

22 adsorption system under intense IR laser ex
tation (l51.064mm). Models of adsorption complexes wi
be constructed to interpret these results. The models
based on data from luminescence spectroscopy with UV
citation, IR absorption spectroscopy, and Raman scatte
spectroscopy. Then the energy structure of adsorption c
plexes will be studied and the radiative electronic transitio
will be systematized. The experimental results on the mu
photon ionization of adsorption complexes will be inte
preted on the basis of the proposed models, after whic
the last section the rate equations for such a system wil
studied and the cross sections for two- and one-photon t
sitions for nonresonance steps of multiphoton ionization w
be determined.
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system under intense IR laser excitation ( l51.064 mm)

As previously determined,15 two emission bands with
maxima at;540 and;640 nm are observed in the lumine
cence spectrum of the SiO2–CrO4

22 samples under intense IR
laser excitation. The emission band at 540 nm can also
excited for pure dispersed SiO2.

19 The emission band at 64
nm, however, is due to an electronic transition in the mole
lar ion and can also be excited by UV radiation.8,15 These
bands are characterized by power-law dependences of
luminescence response of the system on the power densi
the exciting radiation~power dependences! ~Figs. 1a and 1b,
curves1!. The exponents area15760.2 anda25560.2
for the 540 and 640 nm bands, respectively.

It is well known3,13 that the probability ofa-photon ion-
ization can be represented as

Wi
~a!5s i

~a!I a, ~1!

wheres i
(a) is the cross section fora-photon ionization and

I is the laser radiation intensity. For this reason, we pre
ously proposed15 that the power dependences are a resul
multiphoton absorption. The exponent here is the photoni
of the process. Note that if the indicated process were
associated with multiphoton absorption and were de
mined, for example, by laser-induced heating of the surf
with a corresponding desorption process, then the power
pendences would be described by an exponential functio13

In our case, however, first, the wavelength of the la
radiation falls in the transmission range of the substrate
in the range where there are no absorption bands of the
lecular ion. Since the reagents employed are highly pu
absorption of laser radiation by uncontrollable impurities c
be neglected. Therefore laser-induced heating of the surf
if it contributes to the interaction of radiation with the a
sorption system, does not dominate.

Second, the power-law dependence presented is
served over a wide range of laser radiation intensities, wh
rules out the possibility that it has been improperly iden
fied. The same high photonicities were observed in the c
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FIG. 2. Dose dependence of the lumine
cence bands at 540 nm~a! and 640 nm~b!
for SiO2–CrO4

22 samples (Th.t.5900 K),
lexc51.064mm, I553107 ~1! and
93107 ~2! W•cm22.
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orbed by powerful laser radiation.18

However, it must be noted that the exponent in the
experiments is a formal quantity, not at all a consequenc
real multiphoton processes but rather reflecting primarily
heating of surfaces by the laser radiation.20 When the laser
radiation reaches an intensity;83107 W•cm22, the inten-
sity of the emission bands reaches a plateau~saturation of a
multiphoton transition!, and as the laser intensity increas
further, the intensity of the bands drops sharply and th
once again increases. However, this time the photonic
area15760.2 anda25660.2.

Thus, a dip forms in the power dependence~Fig. 1a and
1b!. This dip is due to a sharp resonance decrease, as a
tion of the intensity of the laser radiation, in the density
luminescing centers. Then the situation repeats, and a se
dip forms in the power dependence~the dips are marked in
Figs. 1a and 1b by arrows!. However, after the second di
the photonicity of the processes isa15a25760.2.

Note that a time delayDt of the luminescence puls
with respect to the laser excitation pulse is also obser
~Figs. 1c and 1d!; the magnitude of this delay also depen
on the power density of the laser radiation. Since at ro
temperature the afterglow time of the CrO4

22 molecular ion is
less than 20 ns, the luminescence response has the same
as the laser pulse but it is delayed with respect to the la
pulse byDt.

Moreover, dips are also observed in this dependenc
positions corresponding to the dips in the power dep
dences. As established previously,15 the intensity of the lu-
minescence bands decreases with each subsequent exc
pulse~dose dependence!. However, when the laser intensit
corresponds to the position of the dips, the rate of ‘‘fadin
of the luminescence bands increases by more than a fact
10 ~Fig. 2!. The dose dependence can be described wel
an exponential function of the form

I lum5I lum
~0!e2n/N, ~2!

whereI lum
(0) is the initial luminescence intensity,n is the num-

ber of laser pulses, andN characterizes the rate of fading o
the luminescence bands. For pure SiO2 samples,N53.15,19

For the SiO2–CrO4
22 adsorption system,N590, and when

the laser intensity corresponds to the position of the d
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photon absorption of intense IR radiation in th
SiO2–CrO4

22 adsorption system, as well as to the comp
cated relaxation scheme of the multiphoton excitation
ergy.

3.2. Models of adsorption complexes for the SiO 2–CrO4
22

system

Dispersed SiO2 is a complicated heterogeneous syste
whose surface contains both intrinsic and impurity defect21

The surface of the initial dispersed silicon dioxide is h
droxylated ~wSi–OH groups! with a high content of ad-
sorbed water molecules. ThewSi–OH groups are the pri
mary water adsorption centers, and the diversity of
variants of adsorption complexes gives rise to various for
of adsorbed water and, in consequence, to the complic
form of the IR absorption spectra in the region of the stret
ing vibrations of thewSi–OH groups and H2O molecules.

The structure of the surface layer is a function of t
heat-treatment temperature of the dispersed silicon diox
We therefore investigated the spectroscopic properties of
modified dispersed materials as a function of their prelim
nary heat treatment temperature (Th.t.).

The dynamics of the variation of the spectral and lum
nescence properties of SiO2–CrO4

22 samples under UV exci-
tation as a function of the heat-treatment temperature is
played in Fig. 3a. For the original sample, a luminescen
band with a maximum at 510 nm dominates the lumin
cence spectrum. As the preliminary heat-treatment temp
ture of the samples increases, bands with maxima at;620
and;690 nm appear in the luminescence spectrum. The
pearance of red luminescence is a characteristic indicato
the fact that the chromate ions form complexes with act
centers on the surface, i.e., thermal activation of the surf
of dispersed SiO2 occurs, as a result of which adsorptio
complexes are formed. Since the CrO4

22 molecular ions are
selective luminescence probes~they luminescence only whe
adsorption complexes form on the surface!,8 the possibility
of radiative transitions in the chromate ion must be attribu
to a lowering of its local symmetry.

The intensity of the radiation bands with maxima at 51
620, and 690 nm is plotted in Fig. 3b. Note the inverse p
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FIG. 3. a! Luminescence spectra o
SiO2–CrO4

22 samples withlexc5266 nm;
Th.t.5300 ~1!, 800 ~2!, 900 ~3!, and 1000 K
~4!. b! Intensities of the 510~s! 620 ~h!,
and 690 nm~n! luminescence bands versu
Th.t. .
portionality of the intensities of the 510 and 620 nm radia-
m
r
6
f
ce
e

d

f

re
es

g
ad
gi

e
e
r-
ak

th
i

re
id

th
at

lyze the dehyroxylation process. Figure 4 displays the inte-
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tion bands. This indicates that these bands belong to lu
nescence centers that interact with the same active cente
the surface. The decrease in the intensity of the 620 and
nm emission bands at highTh.t. is due to the desorption o
the CrO4

22 molecular ion. The intensity of the luminescen
bands is proportional to the density of adsorption complex
which in turn is proportional to the probability 12Wdes,
whereWdes is the probability of desorption per unit time an
is given by the Arrhenius formula

logWdes5 log V2E/2.303RTh.t. , ~3!

whereV is a frequency factor,E is the adsorption energy o
CrO4

22 on the surface at absolute temperatureTh.t. , andR is
the gas constant.

The following values of the adsorption energy and f
quency factor were obtained for the adsorption complex
~radiation band at 620 nm! and II ~radiation band at 690 nm!:
EI5288.18 kJ•mole21, V I56.3931026 s21 and
EII5239.03 kJ•mole21, V II56.6431023 s21. We note
that the adsorption energies are of the same order of ma
tude as the adsorption energies for different forms of
sorbed water and are approximately half the binding ener
for wSi–OH groups.21

Therefore thermal activation of the surface is requir
for the formation of chemically bound adsorption complex
involving CrO4

22 ions. Prior to thermal activation of the su
face, the CrO4

22 ions are secured to the surface by we
hydrogen bonds~physisorbed form!. Their structure and lo-
cal symmetry are essentially undistorted, and therefore
molecular ions do not radiate. Thermal activation results
the formation of active centers, with which the CrO4

22 ions
form a chemical bond~chemisorption of CrO4

22 ions!, on the
surface. The local symmetry of the molecular ions is lowe
with respect to the unperturbed ion, and this lifts the forb
denness for radiative electronic transitions.

The presence of physically sorbed CrO4
22 ions on the

surface also affects the efficiency of dehydroxylation of
surface during heat treatment, i.e., the molecular ions c
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grated intensity of the IR absorption band that peaks
3748 cm21 ~free wSi–OH group! versus the preliminary
heat-treatment temperature for pure SiO2 and the adsorption
system SiO2–CrO4

22 . For pure SiO2, the destruction of the
hydroxyl cover starts atTh.t.5900 K,22 while for the modi-
fied sorbent the onset of this process is shifted in the dir
tion of lower temperatures by;100 K ~Fig. 4, curve2!.

Thus, the CrO4
22 ions stimulate dehyroxylation, and it i

therefore logical to assume that they will form an adsorpt
complex with the products of the dehydroxylation reactio
The fact that the CrO4

22 ions form a strong chemical bon
with surface active centers is confirmed by the fact that
vibrational frequencies of CrO4

22 ions as a whole relative to
the surface of the dispersed SiO2 appear in the long-
wavelength IR absorption spectrum~Fig. 5!. The frequencies
162 and 206 cm21 ~marked by arrows! correspond to such
vibrations for adsorption complex I. This is in good agre
ment with low-temperature~4.2 K! investigations of lumi-
nescence spectra, where the frequency 170 cm21 appeared.8

FIG. 4. Integrated optical densityDint of the 3748 cm
21 IR absorption band

for pure dispersed SiO2 ~1! and the SiO2–CrO4
22 adsorption system~2! as a

function of the heat-treatment temperatureTh.t. .
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FIG. 5. a! IR absorption spectra for the
SiO2–CrO4

22 adsorption system~1! and pure
dispersed SiO2 ~2! (Th.t.5900 K). b! Dif-
ference of the spectra1 and2.
To determine the local symmetry of the CrO4
22 ions in
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the I and II complexes, we also investigated the Raman s
tering spectra in the region of the stretching vibrations of
molecular ions~Fig. 6!. We selected samples with the sam
values of Th.t. , where according to Fig. 3 type
(Th.t.5900 K) and type II (Th.t.51200 K) adsorption com-
plexes dominate. The Raman structure due to the forma
of complexes with the local symmetry of the CrO4

22 ions
lowered from Td to C3v and C2v was identified by the
method described in Ref. 23. The results of the identificat
are presented in Table I.

According to these results, two types of complexes w
C3v local symmetry can be distinguished for samples p
pared withTh.t.5900 K and complexes of one type wit
C2v local symmetry can be distinguished for samples p
pared withTh.t.51200 K. We designate these adsorpti
complexesC3v8 -I, C3v9 -I, andC2v-II, respectively. Note that
the impurity Raman scattering efficiency was low for t
Th.t.5900 K samples. This resulted in the appearance of
brational frequencies of the SiO2 matrix in the spectrum. Fo
this reason, the difference of the Raman spectra for
SiO2–CrO4

22 system and pure SiO2 is presented in Fig. 5a
The impurity scattering efficiency in theTh.t.51200 K
samples was so high that it was best to neglect Raman
tering by the SiO2 matrix.
t-
e

n

n

h
-

-

i-

e

at-

luminescence of adsorption complexes excited by UV rad
tion was demonstrated in a two-frequency experiment~Fig.
7a!. The luminescence intensity of type-I complex
(C3v8 -I, C3v9 -I) decreases with increasing IR radiation dos
just as in the case of one-frequency IR excitation~Figs. 2b
and 7b!; the intensity of the radiation from IR excitatio
could be neglected, since the radiation from UV excitati
was an order of magnitude higher. The emission band wi
maximum at 690 nm~type-II complex (C2v-II) ! does not
change appreciably under IR irradiation~Fig. 7b!. Therefore
the CrO4

22 ions form chemically bound adsorption com
plexes at the surface with dehydroxylation reaction produ
Two types of complexes withC3v local symmetry (C3v8 -I
andC3v9 -I) and complexes of one type withC2v local sym-
metry (C2v-II) are formed.

Low-temperature investigations~4.2 K! of the lumines-
cence properties of adsorption complexes in
SiO2–CrO4

22 system have established8 that a distinct
electronic–vibrational structure of the luminescence spe
is only typical of emission bands with a maximum of 62
nm; this was attributed to the weak electron–phonon in
action in a complex. On the other hand, experiments on
luminescence properties of tetrahedral impurity molecu
e
FIG. 6. Raman scattering spectra for th
SiO2–CrO4

22 absorption system: a—
Th.t.5900 K; b—Th.t.51200 K. The arrows
mark the positions of the vibrational peaks~see
Table I!.
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TABLE I. Positionsn i @cm21# of Raman bands and their interpretation for
the SiO2–CrO4

22 adsorption system.
ions in crystals established23 that complexes with the maxi
mum possible local symmetry of the ions (C3v) are charac-
terized by the weakest electron–phonon interaction~the
electronic–vibrational structure is clearly manifested in
luminescence spectra!. Therefore, multiphoton absorption i
the SiO2–CrO4

22 adsorption system is due to the formation
adsorption complexes withC3v local symmetry.

As mentioned above, chromate ions form complex
with dehydration and dehydroxylation reaction products. W
now examine in greater detail the thermal activation of
surface during heat treatment, basing the analysis on IR
luminescence spectroscopy data for pure and modified
persed SiO2.

As shown above~Fig. 4!, the density of surface hydroxy
groups decreases atTh.t.5900 K for pure SiO2 and
Th.t.5800 K for the SiO2–CrO4

22 system. For pure SiO2 this
process is accompanied by an increase in the intensity o
685 nm luminescence band~Fig. 8!, which is typical of non-
bridge oxygen atoms.24,25We note that the 620 and 690 n
emission bands for the SiO2–CrO4

22 adsorption system ar
much more intense than the 685 nm luminescence band
pure SiO2. Therefore the contribution of this emission ba
in the case of an impurity system can be neglected.
antibatic character of the increase in the intensity of the
nm luminescence band for pure SiO2 with respect to the tota

Type of center Interpretation Th.t.5900 K Th.t.51200 K

n1(A1) 855 -
C3v8 -I n3(A1) 900 -

n3(E) 922 -
n1(A1) 861 -

C3v9 -I n3(A1) 908 -
n3(E) 891 -
n1(A1) - 858
n3(B1) - 911

C2v-II n3(A1) - 934
n3(B2) - 961
e

s
e
e
nd
is-

he

or

e
5

surface hydroxyl groups, attests to the occurrence of the
cess

wSi–OH——→
Th.t.

wSi–O•1H0 ~4!

where three bars denote a triple bond, the black dot den
an unpaired spin, and the superscript denotes the charge
of the atom.

The 510 nm emission band for the SiO2–CrO4
22 system

~Fig. 3! also appears in the luminescence spectrum of p
SiO2.

19 The nonmonotonic dependence of the intensity
this band onTh.t. is displayed in Fig. 8. This dependence c
be explained by assuming that the 510 nm emission ban
due towSi–H centers. Then its decrease asTh.t. increases to
900 K is a result of the reaction

wSi–H——→
Th.t.

wSi•1H0. ~5!

However, after the density of atomic hydrogen increases
result of the reaction~4!, the reverse process

wSi•1H0 ——→
Th.t.

wSi–H ~6!

is also possible. This explains the simultaneous increas
the density of nonbridge oxygen atoms andwSi–H centers
at Th.t.>1000 K ~Fig. 8!. Dehyroxylation of the surface ca
also occur by the traditional channel26

2~wSi–OH! ——→
Th.t.

~wSi–O–Siw!1H2O ~7!

or

2~wSi–OH! ——→
Th.t.

wSi–O–1wSi•1H2O. ~8!

The destruction ofwSi–H centers can also occur in th
process27

2~wSi–H! ——→
Th.t.

~wSi–Siw!1H2, ~9!

where (wSi–Siw) is an oxygen vacancy. According to Re
28, for ‘‘wet’’ glassy SiO2, whose spectroscopic characteri
e

-

FIG. 7. a! Luminescence spectra for th
SiO2–CrO4

22 absorption system (Th.t.5900 K) with
lexc5266 nm as a function of the IR irradiation
dose (lexc51.064mm, I553107 W•cm22):
1—0, 2—50, 3—300 pulses. b! Intensities of the
620 ~h! and 690 nm~n! luminescence bands ver
sus the IR irradiation dose.
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tics are closest to those of dispersed silicon dioxide, h
treatment releases H2 and H2O molecules. Therefore the pro
cesses~7!–~9! as well as a combined reaction of the type

~wSi–OH!1~wSi–H! ——→
Th.t.

~wSi–Siw!1H2O
~10!

must be considered first and foremost.
In summary, dehydration and dehyroxylation of the s

face during heat treatment of dispersed SiO2 result in the
appearance of centers with unpaired spins as well as oxy
vacancies, which are characterized by a high reactivity,21 on
it. We regard such centers as active in the adsorption
CrO4

22 ions. The two electrons of the chromate ion that d
fine its charge state occupy a nonbondingt1 orbital.

29 This
orbital has the same energy as an atomic orbital in an oxy
atom ~atomic type,px or py!. In my opinion, the interaction
of these orbitals with hybridsp3 orbitals, which form an
oxygen vacancy, results in the formation of an adsorpt
complex withC3v local symmetry of the molecular ion. Ob

FIG. 8. Integrated optical density of the 3748 cm21 IR absorption band~1!,
intensities of the 510~2! and 680 nm~3! luminescence bands for pur
dispersed SiO2 as a function ofTh.t. .
at

-

en

of
-

en

n

The interaction of thet1 orbitals of the CrO4 ion with the
px or py orbitals of two nonbridge oxygen atoms results
the formation of a complex withC2v local symmetry of the
ion. We note that in the case of both the type-I complex
(C3v8 -I) and type-II complexes, the interacting orbitals a
characterized by identical symmetry properties. This ma
mizes their overlap and gives rise to the formation of
p-type adsorption bond.

The characteristic features of the interaction of inten
IR laser radiation with the SiO2–CrO4

22 adsorption system
can be understood on the basis of the proposed mode
adsorption complexes. For example, the excitation of lu
nescence is due to multiphoton ionization of molecular io
and oxygen vacancies. The ‘‘fading’’ of the luminescence
due to laser annealing of the vacancies~restoration of the
wSi–O–Siw bond!, which are stabilized by CrO4

22 ions.
The parameterN in Eq. ~2! characterizes the stabilizatio
level of the vacancies. The characteristic dips in the pow
dependences are, in my opinion, due to fragmentation of
CrO4

22 ion accompanying saturation of a multiphoton tran
tion. Obviously, for laser radiation intensity corresponding
the position of the dips, the rate of ‘‘healing’’ of the oxyge
vacancies should increase rapidly, as is in fact observed
perimentally.

The existence of two dips attests to the existence of s
eral channels for fragmentation of CrO4

22 ions. We also note
that complete annealing of the surface vacancies can
achieved under high laser doses (;400 pulses), after which
weak wide-band luminescence correlated with multipho
generation of elementary electronic excitations in particles
dispersed silicon dioxide is observed in the luminesce
spectrum under intense IR laser excitation.30

3.3. Energy structure of adsorption complexes and nature
of radiative electronic transitions

The luminescence of CrO4
22 ions was discovered com

paratively recently, so before examining the characteri
features of multiphoton absorption in the SiO2–CrO4

22 ad-
sorption system and the excitation-energy relaxation ch
-
-

FIG. 9. Proposed models of adsorp
tion complexes on the surface of dis
persed SiO2.

963 963JETP 84 (5), May 1997 Yu. D. Glinka



nels, we examine the energy structure of the adsorption com-

-

le

nd

tiv
s
e
en
en

uc

ed

ls

e
tr

ns
c
nc
ve
er
in
e
a
ive
es
f
so

na

en
n–
e
n
nn
ly
io

tu
pe
l
op

er
te
e

e
The
is
ote
the
ing
en-
a-

ns
a

of

nd

he
nto

es
the
otal
u-
s
-
ng

ith
dia-
e

is
ns.
ion
is
plexes and the nature of radiative transitions in them.
The low-temperature~4.2 K! luminescence of the chro

mate salt CaCrO4 and of the KBr–K2CrO4 impurity system
was first observed in Ref. 31. The weak and structure
luminescence bands at;620 and;650 nm with decay con-
stants ;100ms and ;10 ms for CaCrO4 and
KBr–K2CrO4, respectively, were referred to the spin- a
symmetry-forbidden electronic transition3T1→1A1 in the
CrO4

22 molecular ion, which hasTd symmetry. The salt
K2CrO4 and the MgO–K2CrO4 impurity system did not lu-
minesce.

To determine the characteristic features of the radia
dynamics in the CrO4

22 ion, a number of inorganic crystal
doped with chromate ions were investigated. As is w
known, molecular ions in inorganic crystals are conveni
model systems for investigating the spectra of impurity c
ters and their interaction with their environment.32 For ex-
ample, luminescence spectra with a distinct vibronic str
ture were first obtained for the CsCaCl3–Na2CrO4 impurity
system33,34 and then also for alkali–halide crystals dop
with chromate salts.23,35

Luminescence spectra with vibronic structure have a
been observed for O3CrO

2 and CrO3Cl
2 complexes in dif-

ferent salts, where Cr2O7
22 ions were present,36,37 but the

nature of the luminescence centers was not definitively
tablished. A comparative analysis of the vibrational spec
of impure crystals and their radiative characteristics23,38 es-
tablished that the luminescence is due to electronic tra
tions in CrO4

22 ions. Furthermore, the differences in the spe
troscopic and kinetic characteristics for the luminesce
spectra of different chromate salts and impure crystals ha
logical explanation on the basis of the concept that sev
types of complexes with impurity and intrinsic defects
crystals form a molecular ion. The formation of complex
results in a lowering of the local symmetry of an ion and,
already mentioned, lifting of the forbiddenness for radiat
electronic transitions. The triplet nature of the red lumin
cence for CaCrO4 and SrCrO4 salts and a water solution o
K2CrO4 was checked in optically detected magnetic re
nance experiments39 and in kinetic experiments.40 Here we
present another experimental fact confirming the triplet
ture of luminescence transitions in the CrO4

22 ion.
It is well known that nonradiative transitions betwe

energy states of different multiplicity are due to the spi
orbit mechanism.41 On account of the spin selectivity of th
relaxation processes, the distribution of population amo
the spin sublevels is ordinarily different from a Boltzma
distribution.42 This feature of triplet states should obvious
be manifested in nonradiative excitation energy relaxat
processes.

The temperature dependence of the relative quan
yield of luminescence for adsorption complexes of the ty
C3v

8 -I, C3v9 -I, andC2v-II is presented in Fig. 10. One typica
feature of such temperature dependences is a sharp dr
intensity at low temperatures~4.2–15 K!, followed by stabi-
lization of the yield and another decrease at higher temp
tures. The low-temperature drop in the luminescence in
sity is due to the low activation barrier for nonradiativ
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transitions, to which it is logical to attribute the spin–lattic
relaxation between the spin sublevels of the triplet state.
stabilization of the yield in the temperature range 15–30 K
due to the spin selectivity of relaxation processes. We n
that on account of the low density of excited centers,
weakness of the spin–orbit interaction, and the large splitt
between the triplet levels and the singlet levels, the conv
tional Waller and van Vleck spin–phonon coupling mech
nisms are negligible.

We now examine radiative and nonradiative transitio
in adsorption complexes in greater detail. According to
group-theoretic analysis,8 the C3v8 -I and C3v9 -I type com-
plexes are characterized by ane2 ground state ande12e1 and
e1e* 1 excited-state configurations. The following types
wave-function symmetries were obtained for thee2 ground-
state configuration:1A1 ,

1E, and3A2 . For thee
12e1 excited

state configuration the wave-function symmetries are1A1,
1A2 ,

1E, 3A1 ,
3A2, and

3E. The e1e* 1 excited-state con-
figuration is not characterized by equilibrium states, a
therefore there are no symmetry types for it~this corresponds
to a transition from a bondinge orbital to an antibonding
e* orbital of the adsorption complex!. Therefore the orbital
symmetry of the excited state with the lowest energy isE.

The types of symmetry of the total wave functions of t
triplet spin sublevels can be easily obtained by taking i
account the symmetry of the spin wave functions~A2 , E
~Ref. 43!!: A1(z), E(x,y), where the symbols in parenthes
indicate the polarization of the radiative transitions. Since
spin–orbit operator mixes states possessing identical t
symmetry,44 the nearest singlet state of the excited config
ration 1E will interact only with the lowest spin sublevel
E(x,y). This fact gives rise to spin selectivity of both non
radiative and radiative intercombination transitions. Usi
the selection rules for radiative transitions,43 it can be shown
that all three spin sublevels of the excited triplet state w
the lowest energy must be active for radiative and nonra
tive transitions. However, the probability of the radiativ
transitionsE(x,y)→1A1 will be much higher than that of the
transitionsA1(z)→1A1 ; as already mentioned above, this
due to the spin selectivity of the intercombination transitio

Therefore two processes will participate in the relaxat
of the excitation energy of the lowest triplet level. One

FIG. 10. Temperature dependences of the quantum yield at 620~1! and 690
nm ~2! for the SiO2–CrO4

22 adsorption system:lexc5377 nm.
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low temperatures. The other is the standard relaxation
cess associated with the excitation of the phonon subsys
of the matrix on account of the electron–phonon interact
and appears at higher temperatures.

As is well known,45 in a direct one-phonon process th
dependence of the spin–lattice relaxation rate on the en
splitting between the spin sublevelsu i & and u j & has the form

Wij;
~\v i j !

3

12exp~2\v i j /kBT!
, ~11!

wherekB is Boltzmann’s constant andT is the absolute tem
perature. The relaxation process associated with the ex
tion of phonons is conventionally taken into account by
Mott formula

h5
h0

11a exp~2EA /kBT!
, ~12!

whereh0 is the quantum yield atT50, a is a frequency
factor, andEA is the activation energy. Therefore the tem
perature dependence of the relative quantum yield for su
system can be written in the form

h5h0F11a expS 2
EA

kBT
D1

b~\v i j !
3

12exp~2\v i j /kBT!G
21

,

~13!

where the constantsa andb determine the contributions o
the two indicated relaxation processes to the overall re
ation process.

As one can see from Fig. 10, the temperature dep
dence of the relative quantum yield can be satisfactorily
proximated by Eq. ~13!. Then EA5247 cm21 and
\v i j52.6 cm21 for complex I and EA5279 cm21 and
\v i j55.0 cm21 for complex II. Comparing the values ob
tained forEA with the theoretically computed spectrum
the photon density of states in quartz glass,46 it can be stated
that for complex I the activation barrier for nonradiative tra
sitions is associated with the excitation of silicon vibration
and for complex II it is associated with deflections of a no
bridge oxygen atoms.

The theory of spin–lattice relaxation in local triple
excited centers of organic crystals can be used to inter
the low values of\v i j .

47–49 According to this theory,
acoustic-phonon-induced mixed translational–rotational m
tions of molecules are responsible for spin–lattice relaxat
In our case, however, in which the lowest components o
triplet are degenerate with energyE(x,y), thermal activation
of the componentuy& will cause the CrO4

22 ion to rotate by
90° ~thex andy orbitals are orthogonal!, while the complex
as a whole possessesC3v symmetry~the complex transforms
into itself under a rotation by 60° around theC3(z) axis!,
i.e., the thermal population of the componentuy& will result
in a modulation of the fine structure of the levels and tran
tions between the magnetic sublevels with the emission
resonance phonons.

In summary, the experimental results presented in
section can be explained on the basis of the triplet natur
the lowest excited electronic state of the CrO4

22 ion. We note
that previous investigations of triplet excitations were p
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For this reason, the present results extend the range of
jects suitable for such investigations.

3.4. Characteristic features of multiphoton absorption in the
SiO2–CrO4

22 adsorption system and excitation-energy
relaxation channels

Analysis of the experimental results shows that the
minescence response of the system is a result of the rec
bination between the photoelectron and ionized chromate
~the emission band at 640 nm! and an ionized oxygen va
cancy~luminescence band at 540 nm!. In the general case th
luminescence intensity can be represented as

I lum5NsWi
~g!t t

21E
v
I lum~v!dv, ~14!

whereNs is the density of adsorption complexes,t t
21 is the

probability that a photoelectron is captured by an ioniz
center, andI lum(v) is the intensity of the intrinsic lumines
cence of a CrO4

22 ion excited in a recombination proces
Then the excitation of luminescence can be represente
the form

~wSi–Siw!–CrO4 ——→
5\v

wSi–Siw1~CrO4
22!11e2,

~15!

wSi–Siw ——→
7\v

wSi•1wSi11e2. ~16!

Here we took account of the fact that the molecular io
form a strongly polarp-type adsorption bond, and the tw
electrons occupying at1 nonbonding molecular orbital tha
form this bond also participate in the absorption
radiation.8

The antibonding component of thep-bond lies
;3.5 eV above the bonding component.8 The total energy of
the three laser photons likewise equals;3.5 eV. Therefore
we assume that multiphoton absorption followed by ioniz
tion proceeds under conditions of excitation of a thre
photon resonance. Here the nonbonding state of the ads
tion complex appears as a resonance level.

The presence of this antibonding state is, in my opini
a decisive factor in the multiphoton ionization process. F
this reason, desorbed molecular ions, as well as ions tha
part of a type-II complex, do not participate in multiphoto
absorption. We also note that according to Ref. 51 the
sorption band at 7.6 eV for highly pure quartz glasses, wh
properties are closest to those of dehydrated dispersed si
dioxide, is due towSi–Siw bonds.

In our case the total seven-photon absorption energ
;8.15 eV, thereby confirming the luminescence excitat
scheme proposed above. Now it becomes understand
that annealing of the surface oxygen vacancies~restoration of
the silicon–oxygen–silicon bridge bonds! is possible only
under the processes~15! and ~16!. We also note that two-
photon ionization of the oxygen vacancies under excitat
by an excimer laser was observed in Refs. 51–55.

The luminescence response of the adsorption system
be represented as being the result of the processes
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wSi•1~wSi 1e ! ——→wSi–Siw, ~17!

~CrO4
22!11e2→~CrO4

22!* ——→
640 nm

CrO4
22, ~18!

wSi–Siw1CrO4
22→~wSi–Siw!–CrO4, ~19!

where the asterisk denotes an excited state. As already m
tioned above, the formation of an adsorption complex
quires thermal activation of the surface of the dispersed
con dioxide. Multiphoton ionization destroys type
complexes, resulting in the formation of photoions and p
toelectrons. Photoions are retained on the surface by
weaker hydrogen bonds, i.e., multiphoton absorpt
changes the type of interaction between a molecular ion
the surface of the dispersed oxide. The fixation of a photo
on the surface increases the probability of recombination
the ion with a photoelectron, followed by excitation and d
excitation, after which the adsorption bond is restored in
type-I complex. The processes described above comprise
feature that distinguishes multiphoton ionization of molec
lar ions adsorbed on the surface of wide-gap dispersed
terials from multiphoton ionization in the gaseous state.

We now turn to an analysis of the dips in the pow
dependences. As already mentioned, these dips are due
rapid increase in the probability of annealing of surface o
gen vacancies. In my opinion, this process is due to fragm
tation of CrO4

22 ions accompanying saturation of a multiph
ton transition. In the process, the density of luminesc
centers decreases because only CrO4

22 ions bound to the sur
face of an adsorption complex can luminesce and particip
in multiphoton absorption. However, as the density of typ
complexes decreases, a photoelectron can absorb an
tional photon from the laser field, as explained by the f
lowing model.

A photoelectron passes into a superexcited state
multiphoton absorption process. There exist two channels
relaxation of the excitation energy in this superexcit
state—autoionization and fragmentation. As is well known54

superexcited states are characterized by large electroni
bitals (;10 nm). I therefore suggest that the interaction b
tween these orbitals in a system of adsorption comple
results in mutual perturbation of the orbitals, which stim
lates autoionization. Ionization therefore results from mu
photon absorption and electronic perturbation between c
plexes in their superexcited states. For this reason, when
density of luminescing centers decreases, the intercom
electronic perturbation parameter becomes too smal
stimulate autoionization, and the intensity of the correspo
ing luminescence response of the system decreases. H
ever, a photoelectron can still be transferred to the n
higher~in energy! superexcited state by the absorption of
additional photon~increase in the size of the electronic o
bital!, where the intercomplex electronic perturbation para
eter will be large enough to stimulate autoionization.

This model explains the unit increase in the photonic
of the processes after each dip in the power dependence
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ing fragmentation of a molecular ion can be represented
follows:

~wSi–Siw!–CrO4——→
5\v

wSi–Siw1O221CrO3

→wSi–O–Siw1CrO3,

~20!

~wSi–Siw!–CrO4——→
6\v

wSi–Siw12O221CrO2
21

→wSi–O–Siw1O22

1CrO2
21. ~21!

The luminescence response of the system obviously
pends on the lifetime of a photoelectron in the conduct
band,55

Dt5~vs tns!
21, ~22!

wherev is the velocity of the photoelectron,s t is the cross
section for photoelectron capture by an ionized center,
ns is the density of ionized centers. For the gas-kinetic ca
which is a good approximation to such a system, the cap
cross section is given by

s t5pR0
2, ~23!

whereR0 is the interaction length between an ionized cen
on the surface and a photoelectron. The interaction lengt
ordinarily found by equating the kinetic energy of a fre
electron to the interaction potential energy between the e
tron and an ionized center,

1

2
mv25

e2

R0
, ~24!

wherem ande are the electron mass and charge. Then E
~23! and ~24! yield

s t5pS 2e2mv2D
2

, ~25!

yielding

Dt5
m2v3

4pnse
4}v3. ~26!

The velocity of a photoelectron can be represented as
sum

v25v0
21

2

m
Emax, ~27!

where v0 is the initial velocity of the photoelectron afte
photoionization. This velocity does not depend on the int
sity of the laser radiation, and is solely determined by
parameters of the photoionized system:3

v0
25

2

m
@k\v2Eion2~ I i2Eres!#, ~28!

whereI i is the ionization potential,Eres is the energy of the
resonance excited state,Eion is the vibrational energy of the
ionic state,\v is the laser photon energy, andk52 is the
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resonance state. In~27!, Emax is the maximum energy of an
electron heated by the laser radiation,56

Emax'
M

m

Il2r e
2pc

}I , ~29!

wherer e is the classical electron radius,l is the wavelength
of the laser radiation of intensityI , M is the mass of the ion
or regular surface atoms, andc is the speed of light. Then
~26! and ~27! yield

Dt }S v021 2

m
EmaxD 3/2. ~30!

It is well known54 that v0;0 for vibrationally autoion-
ized photoelectrons. Thereforev0

2!2Emax/m and~30! can be
rewritten in the form

Dt5Dt11Dt2 , ~31!

where

Dt1}S 2m EmaxD 3/2}I 3/2, ~32!

Dt2}
3

2
v0
2S 2m EmaxD 1/2}I 1/2. ~33!

Note that~32! describes most accurately the dependence
the time delay of the luminescence response of the ads
tion system on the intensity of the laser radiation~Fig. 1c!;
this confirms the validity of the conditionv050. However,
after the first dip, the time delay also increases as a pow
law function, but with the exponent;4. This is probably due
to the nonlinear dependence ofEmaxon laser intensity, which
is possible in the case of strong heating of free electrons
laser field.56

3.5. Rate equations for multiphoton resonance ionization of
adsorption complexes

In the present section we examine the rate equations
5–7-photon ionization of type-I complexes excited und
three-photon resonance conditions. As noted above, m
photon absorption of laser radiation can transfer the sys
of adsorption complexes into a multitude of superexci
states in which the complexes can autoionize, dissociate
absorb an additional laser photon. Therefore ionization
CrO4

22 ions followed by excitation of the ions in a recomb
nation process and radiation emission will depend on
nonradiative relaxation rate of the resonance state, as we
on the fragmentation rate of the molecular ions in the sup
excited states.

Photoionization of molecular ions requires at least fi
laser photons. I therefore assume that resonance level 1~Fig.
11! is populated from the ground state 0 at a rates1

(3)I 3, and
ionizes at a rates2

(2)I 2. Nonradiative relaxation of the reso
nance state at rateg1 efficiently depletes this level, since th
level is due to the antibonding orbital of the adsorption co
plex, which is typified by nonactivational nonradiative pr
cesses. In the case of six-photon ionization~transition to the
next superexcited state at the rates3

(3)I !, the state excited in
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a five-photon process plays the role of a resonant state.
relaxation rateg2 of this process is a total constant chara
terizing all loss mechanisms, including dissociation. For
seven-photon process~transition to the next superexcite
state at a rates4

(1)I !, there are three resonance levels:
antibonding state of the adsorption complex and two sup
excited states with relaxation ratesg1 andg2 ,g3.

Thus, to describe the variation of the intensity of t
luminescence of a CrO4

22 ion as a function of laser powe
density, we model the process as seven-photon ioniza
with three intermediate states, of which one is an antibo
ing state of the adsorption complex and the other two
superexcited states of the molecular ion. The time-depen
behavior of the system is described by the system of eq
tions

dN0~ t !

dt
5s1

~3!I 3@N1~ t !2N0~ t !#,

dN1~ t !

dt
5s1

~3!I 3@N0~ t !2N1~ t !#2s2
~2!I 2N1~ t !

2g1N1~ t !,

dN2~ t !

dt
5s2

~2!I 2@N1~ t !2N2~ t !#2s3
~1!IN2~ t !2g2N2~ t !,

dN3~ t !

dt
5s3

~1!I @N2~ t !2N3~ t !#2s4
~1!IN3~ t !2g3N3~ t !,

dN4~ t !

dt
5s4

~1!IN3~ t !, ~34!

whereNn(t) is the population of the corresponding leve
~Fig. 11!. This system of equations simplifies in the case
five-photon ionization:

FIG. 11. Energy level scheme for the SiO2–CrO4
22 adsorption system and

observed multiphoton ionization–fragmentation processes~AC—adsorption
complex, MI—molecular ion!.
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dN0~ t !
5s~3!I 3@N ~ t !2N ~ t !#,
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dt 1 1 0

dN1~ t !

dt
5s1

~3!I 3@N0~ t !2N1~ t !#2s2
~2!I 2N1~ t !

2g1N1~ t !,

dN2~ t !

dt
5s2

~2!I 2N1~ t !, ~35!

whereN2(t) is the number of ionized chromate ions in th
five-photon ionization process.

The lifetime of the adsorption complex in the resonan
level, which is its antibonding state, will be of the order
the vibrational relaxation time. Thereforeg1;1013 s21,
which according to Ref. 53 suggests quasistationary va
tion of the population of the resonance lev
(dN1(t)/dt50). The solution of the system of equation
~35! will be

dN2~ t !

dt
5

s1
~3!s2

~2!I 5N0~ t !

s1
~3!I 31s2

~2!I 21g1
. ~36!

In the absence of saturation of two- and three-pho
transitions, taking account of the fact that the typical cro
sections of such transitions are;10250 cm4

•s and
;10282 cm6

•s2, respectively,3 and the intensity of the lase
radiation ;1027 cm22

•s21, it can be assumed tha
s1
(3)I 3!g1 and s2

(2)I 2!g1 . Then the number of ionized
chromate ions over the time of the laser pulse in the proc
of five-photon ionization is

N25E
0

tp s1
~3!s2

~2!I 5N0dt

g1
5s1

~3!s2
~2!I 5N0

tp
g1

. ~37!

As already mentioned, however, when the laser inten
reaches;83107 W•cm22, the five-photon ionization pro
cess saturates. In my opinion, this is due to saturation of
second step~s1

(3)I 3!s2
(2)I 2 andg1!s2

(2)I 2!, since it is im-
possible to saturate the first step because of the antibon
nature of the resonance level. With this in mind,~36! can be
rewritten in the form

dN2~ t !

dt
5s1

~3!I 3N0~ t !, ~38!

and therefore

N25s1
~3!I 3N0tp . ~39!

The second step saturates with the transition from~37! to
~39! at the point with intensityI sat(1)

2 5g1 /s2
(2) , where

I sat(1) is the laser intensity before the first dip in the pow
dependence. Hence the cross section for two-photon ion
tion from a resonance level of the adsorption complex
comes

s2
~2!5

g1

I sat~1!
2 . ~40!

Arguing similarly and using the general system of ra
equations~34!, we can obtain formulas for the number
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ionization. If there is no saturation of the transitions, w
have, respectively,

N35s1
~3!s2

~2!s3
~1!I 6N0

tp
g1g2

, ~41!

N45s1
~3!s2

~2!s3
~1!s4

~1!I 7N0

tp
g1g2g3

. ~42!

In deriving Eqs.~41! and ~42!, high rates of nonradiative
deactivation were assumed, but this time for the resona
levels 2~for six-photon ionization! and for 2, 3~for seven-
photon ionization! on account of the possibility of fast dis
sociation. The saturation of multiphoton transitions for the
cases is governed by the saturation of the last excita
steps, since they are due to one-photon transitions. Th
fore, in the case of saturation,~41! and ~42! become

N35s1
~3!s2

~2!I 5N0

tp
g1

, ~43!

N45s1
~3!s2

~2!s3
~1!I 6N0

tp
g1g2

, ~44!

which is equivalent to the case of five- or six-photon ioniz
tion, respectively, in the absence of saturation. As in the c
of five-photon ionization, saturation of the last steps for s
and seven-photon ionization occurs with the transitions fr
~41! to ~43! and ~42! to ~44! at points with intensities
I sat(2)5g2 /s3

(1) and I sat(3)5g3 /s4
(1) , respectively, where

I sat(2) and I sat(3) are the laser intensities before the first d
and at maximum power density, where, in my opinion, on
of saturation for the fourth excitation step occurs. We obt
for the cross sections of the one-photon transitions

s3
~1!5g2 /I sat~2! , ~45!

s4
~1!5g3 /I sat~3! . ~46!

Note that since the luminescence intensity is prop
tional to the number of ionized molecular ions, Eqs.~37! and
~41!, ~42! describe the dependence of the intensity of
luminescence response on the laser power density u
five-, six-, and seven-photon ionization, respectively.

Using ~40!, ~45!, and ~46!, we now estimate the cros
sections for multiphoton ionization at nonresonance ste
Since the photoionization efficiency in this case is det
mined by the relaxation rates of the intermediate resona
levels, the validity of the estimates will depend on the chos
values ofg1 , g2 , andg3 . As already mentioned,g1 can be
set equal to the vibrational relaxation rate,g1;1013 s21. The
values ofg2 andg3 can be estimated as the average dis
ciation rate of OsO4 and SF6 molecules in an infrared lase
field:;1082109 s21.57 The estimates are presented in Tab
II.

4. DISCUSSION

In the present multiphonon ionization experiment the
diation intensity is the main variable in tuning the laser
resonance. In five-photon ionization the process occurs
one-frequency field, with one resonance step and two-pho
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TABLE II. Saturation numberNs in the power dependence corresponding to
laser intensityI sat(N ) and cross sections for two- and one-photon transi-
excitation at the second nonresonance step. In six-ph
ionization the process proceeds with two resonance s
~three and two photons, respectively!, and one-photon exci
tation at the third nonresonance step. In seven-photon ion
tion there are three resonance steps~three and two photons
and one photon, respectively! and a one-photon excitation a
the fourth nonresonance step.

Note that the resonance nature of the second and t
excitation steps in the case of six- and seven-photon ion
tion is conditional, since the energy levels of the super
cited states are determined by the energy of the laser pho
However, as noted above, the superexcited states are ch
terized by the total relaxation rate constant, including dis
ciation of the molecular ions in these states, i.e., the mole
lar ions in the superexcited states have a certain lifetime,
in the general case, they can therefore be regarded as
resonance levels in a multiphoton absorption process
lowed by ionization.

Note that adsorption systems of this type are unique
photoionization spectroscopy, since multiphoton ionizat
of molecular ions occurs as a result of a strongly po
donor–acceptor adsorptionp-bond, whose antibonding stat
fulfills the function of a resonance level. Since the resona
state is essentially an electron–vibrational state~large
width!, the stringent requirements on the selectivity of t
multistep photoionization are lifted. Such multiphoton pr
cesses can therefore be detected in a one-frequency
field. In this sense, a three-photon luminescence excita
process should also be observed for type-I adsorption c
plexes; the luminescence would not ‘‘fade’’ and its para
eters would be identical to those of the luminescence w
excitation by the third harmonic of the Nd:YAG laser. How
ever, the probability of radiative transitions in this case w
be determined by the specific nature of the channels of
ergy relaxation from the resonance level. For example, w
nonradiative relaxation occurs without an interaction w
excited valence levels of the molecular ions~the correspond-
ing adiabatic potentials do not cross!, the probability of ra-
diative transitions will be low and vice versa. These p
cesses require detailed analysis, which falls outside the s
of the present paper.

As noted in the Introduction, the production of CrO4
22

ions in the gaseous state is problematic, so there is no in
mation on their ionization potential. It follows from our ex
periments that the ionization potential for such ions sho
be <5\v55.8 eV. Therefore this method can be used
estimate the ionization potential of the CrO4

22 ion.
The estimated absorption cross sections for one-pho

transitions at the nonresonant multiphoton absorption s

s

tions.

Ns I sat(Ns) s2
(2), cm4

•s s3
(1), cm2 s4

(1), cm2

1 7.53107 7.1310241 - -
2 1.43108 - 10218–10219 -
3 2.43108 - - 10218–10219
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tions correspond to typical values for one-photon proces
In two-photon transitions, however, the derived absorpt
cross section is much greater than the typical values. A
result, the typical probability of multiphoton transitions in a
adsorption system is high. This anomalous phenomenon
my opinion, can be explained by two factors.

1! The large nonlinear polarizability of the adsorptio
bond, which, as shown above, arises during thermal act
tion of the surface and is of a donor–acceptor nature. Th
fore such a bond should be characterized by high asymm
of the electronic cloud~there is no center of inversion! and,
in consequence, the displacement of the electrons along
bond in different directions will be characterized by differe
force constants. As a result, vibrations will be highly anh
monic, and therefore the probability of nonlinear proces
will be high.

Thus, the proposed method makes it possible to ob
information about strongly polar bonds on a surface, i
about bonds in chemisorbed complexes. Note that
method is selective with respect to the intensity of the in
dent radiation. Since the probability of observing a respo
of the system for polar and nonpolar bonds can differ by
orders of magnitude,54 the response of the system will onl
contain information about the chemisorbed complex
Structural defects are also characterized by strongly p
bonds on a surface.25 Such defects will also contribute to th
nonlinear polarizability of the dispersed medium.

2! The specific nature of the interaction of intense la
radiation with dispersed wide-gap oxides, manifested as
intensification of the local fields on account of the induc
dipole moments of the particles of the dispersed mediu
These effects must be very important in our dispersed s
tem, since the wavelength of the laser radiation in our cas
much greater than the size of the dispersed particles~10–50
nm ~Ref. 21!!. Moreover, such processes, which lead to t
generation of surface polaritons, can be excited accordin
a stimulated scheme~stimulated Raman scattering by surfa
polaritons!.56 The latter circumstance will result in a substa
tial increase in the local electric fields in the dispersed ma
with respect to the applied laser field; this is a decisive fac
in multiphoton absorption of intense laser radiation. As
well known,58 such processes sharply increase the inten
of the system response, as has been demonstrated for va
organic molecules adsorbed on metal surfaces. However
the adsorption system studied here these questions als
quire further experimental and theoretical study.

I also call attention to the fact that luminescence obs
vation of multiphoton ionization–fragmentation of CrO4

22

molecular ions and, on the whole, room-temperature lu
nescence spectra for such an adsorption system are un
from the standpoint of the triplet nature of the luminescen
For example, previously, the luminescence spectra of s
ions were recorded only at low temperatures.8,23,33–37,39Ob-
viously, in the case at hand, intense laser beams were u
which made it possible to increase substantially the inten
of the luminescence response. Note also, however, th
dispersed matrix makes it possible to investigate lumin
cence spectra with laser intensities for which optical bre
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down followed by damage to the material is observed in
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26A. J. Moulson and J. P. Roberts, J. Chem. Soc. Faraday Trans.57, 1208
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crystals with CrO4 impurity ions and ions of the corre
sponding chromate salts. Therefore the fixation of inorga
molecular ions on the surfaces of wide-gap dispersed ox
is a promising method for investigating spectroscopic ch
acteristics of such ions.

In conclusion, I thank my colleague S. N. Naumenko
the Optics Department at Kiev State University for assist
in the luminescence measurements.
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Kinetics of vortex structure formation in magnetic materials

A. É. Filippov

Donetsk Physicotechnical Institute, Ukrainian National Academy of Sciences, 340114 Donetsk, Ukraine
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A kinetic scenario for the formation of a vortex phase in magnetic materials is discussed. It is
found that such a phase can be generated from fluctuations at the kinetic stage of evolution
and can subsequently be fixed as a thermodynamically stable phase. ©1997 American Institute
of Physics.@S1063-7761~97!01605-3#
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Until recently, the feasibility of describing phase tran
tions was severely limited to obtaining analytic solutions
equilibrium configurations of the~average! order parameter
w under well-known thermodynamic assumptions.1,2 This
made it impossible to study processes that take place a
termediate times and spatial scales, as well as processe
volving several moderate interactions. Later it was found t
the interaction of fluctuations can lead to stabilization
phases that differ from those of the mean-field theory.3–9The
theory of critical phenomena that predicts the existence
such phases is based on coarsening the description by a
ing the renormalization-group method. Such a theory is
able to ‘‘follow’’ the structuring of the fluctuating field at th
mesoscopic scale,10 which in the kinetic picture actually re
sults in the emergence of anomalously ordered phases,11 in
the generation of nonlocal structures in the Ginzbur
Landau functional, and in anomalous effecti
dimensionalities.12

On the other hand, statistical theory does not allow
‘‘virtual phases’’13,14 ~see also Ref. 15! that appear as the
system proceeds to equilibrium. The formation of su
phases is of a purely kinetic nature.

In the simplest case the corresponding kinetic effects
be obtained by describing the order-parameter relaxa
with the following equation~for a review of this topic see
Refs. 16–21!:

]w

]t
52

dF @w#

dw
1j~ t,r !. ~1.1!

Usually the structure of the spectrum of the noise sou
j(t,r ), is unimportant18,19, so that for the sake of simplicity
we assume that we are dealing with white noise:

^j~ t,r !&50, ^j~ t,r !j~ t,r 8!&5Dd~r2r 8!d~ t2t8!.
~1.2!

Generally, the functionalF @w# is a nonlocal form in powers
of the fluctuating fieldw(r ), a form that for the magnetic
systems considered here can be derived from the microsc
theory.22–25To get a qualitative idea of the problem we ke
only the lowest-order terms, with nonlocality allowed only
terms quadratic inw. The corresponding form then reduc
to
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1F~w~r !!G , ~1.3!

which we use below.
Under relaxation of the system, the ordered structure

the order parameterw are selected from the fluctuatio
noise.16,17 These structures are attractors for the fieldw, at-
tracting it in all directions of the function space with th
exception of a denumerable~finite! set of directions, in
which they are unstable under a transition to an absolu
stable state.18,19The system rapidly relaxes to such attracto
and then slowly evolves on them up to the point where a n
instability develops and a transition to a lower-lying attrac
occurs.

The latter feature makes it possible, at least in princip
to develop various kinetic scenarios by varying the exter
parameters in the transition. In this paper we exami
among other things, the possibility of a vortex structure b
ing formed in magnetic materials. For an analogy that h
been found useful, we first recall certain facts of the the
of superconducting systems.

Vortex configurations of the order parameter play an i
portant role in the kinetics of the phase transition to sup
conductivity. This is especially true of a planar~or layered!
superconductor, where because of suppression by large l
range order fluctuations,26 the presence of a phase transitio
is usually related to the production of vortex–antivort
pairs and their possible unpairing under certa
conditions.27–29 Analytic vortex-like solutions for a super
conductor in an external field~Abrikosov vortices!30 are well
known, and the concept of vortex pairs has been corro
rated by numerous experiments.

Mesoscopic structures~and a pair is such a structure!
cannot form instantly. The formation of such a structure co
stitutes a regular stage in the relaxation of a relatively la
order-parameter region, in which the consistent evolution
the order parameter and the vector potential develops in
process of fluctuation pair production. However, vortices
opposite signs attract each other, so that the pair being
duced is unstable against collapse. Nevertheless, as sh
by recent research,11,31 a vortex structure emerges in a nat
ral and probably inevitable manner. The researchers fo
that the corresponding configurations of the fluctuating fi

971$10.00 © 1997 American Institute of Physics
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phase of a superconductor in many respects can be co
ered a virtual phase. Vortices are stably formed from a
trary ~relatively small-scale! fluctuations, produce a mini
mum of dissipation, and constitute the longest stage in
‘‘journey’’ of the order parameter to equilibrium. And be
cause of this, actually, a vortex state manifests itself a
stable state in the thermodynamic properties of real su
conductors.

2. KINETICS OF FORMATION OF A VORTEX STRUCTURE.
BOGDANOV–HUBERT PHASE

From a formal viewpoint, the vortex configuration o
w(r ) in superconductors emerges because of the interac
of the order-parameter current and fluctuations of the ga
electromagnetic field (j–A), fluctuations whose contribution
to the Ginzburg–Landau functional of the system has a r
tional structure: (curlA)2. In magnetic systems, th
Dzyaloshinski�–Morya interaction

WD5Jk
]Jj
]r

2Jj
]Jk
]r

~2.1!

can serve as a sort of analogy to the energy terms~see Refs.
32–36!. Over the years many substances have been show
contain numerous one-dimensional modulated structures
are products of such interaction. Recently Bogdanov
Hubert37,38 established that in addition to exhibiting on
dimensional order-parameter configurations, systems w
the interaction~2.1! may have two-dimensional structures
the vortex type~see Figs. 2 and 3 in Ref. 38, which depi
the corresponding configurations of the magnetization v
tor!.

According to Bogdanov and Hubert,38 in contrast to pe-
riodic magnetic structures, which can exist only with a fai
strong Dzyaloshinski� interaction, isolated magnetic vortice
can exist for arbitrarily small strengths of this interactio
This fact was mentioned in the papers cited above as b
preferable from the standpoint of applications when used
interpreting the experimental data, since a formal solution
a solitary vortex line can exist even when there is no exte
field. Bogdanov and Hubert37 compared the energies of th
modulated phase and the phase formed by a hexagonal la
of magnetic vortices. They also established how the regi
of thermodynamic stability of these phases depend on
external field strength and the relative contribution of t
Dzyaloshinski� energy~see Fig. 10 in Ref. 37!. Estimates of
the free energy have shown that for certain values of
external field and for certain ratios of the parameters of
interaction and anisotropy, vortex structures are preferabl
one-dimensional.

Here there are at least two big problems. First, thus
only one-dimensional structures have been observed in
periments. In addition, Bogdanov and Hubert37,38 assumed
that magnetic vortices form a regular hexagonal latti
which ~if the lattice had already been formed in some wa!
are thermodynamically stable.

Here, however, we are confronted with the same pr
lem as in the case of superconducting vortices. More p
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vortices! is a mesoscopic structure, i.e. it cannot emerge fu
formed. One can easily imagine and reproduce kinetica
the growth of such a simple topological structure as a w
of spin rotations, but it is much more difficult to do the sam
in connection with the spontaneous growth of a system
vortices formed by rotations of moments in all three dire
tions. Nevertheless, as demonstrated below, such a proce
possible.

For our subsequent analysis it is convenient to briefly
some results describing the static radial structure of a soli
vortex. The functional for the system’s energy in the notat
adopted in Ref. 37 has the form

W5E ddr HA~¹•m!22Kmz
22JzHz

02
1

2
JHd1DWDJ ,

~2.2!

where the reduced magnetizationm2(r )51, JHd is the de-
magnetization energy, and it is convenient to write t
Dzyaloshinski� energy density in terms of spherical coord
nates:

m5~sin u cosc, sin u sin c,cosu!,

r5~r cosw, r sin w,z!.

Since we intend to analyze a lattice consisting of localiz
magnetic structures, we limit ourselves to the case o
strongly localized vortex withCnv symmetry~see Refs. 35–
38!. Here the Dzyaloshinski� energy in terms of the new
variables has the form

WD5cos~w2c!u r1sin u cosu sin ~w2c!c r

1
sin~w2c!uw

r
1
sin u cosu cos~w2c!cw

r
.

~2.3!

We are in fact dealing with a lattice consisting of he
agonal cells in which the magnetization vector is parallel
the external field at the boundaries of the cells and is a
parallel at the center of each cell. Such a magnetization
tribution suggests a certain analogy to a lattice consisting
Abrikosov vortices, and has been examined in Ref. 37.

If we assume that the magnetic moment distribution
characterized by strictly radial symmetry, the problem
duces to solving only one equation,

d2u

dr2
1
1

r

du

dr
2
sin u cosu

r 2
1
4k̃ sin2u

pr
2sin u cosu50,

~2.4!

which describes the rotation of a moment vector of fix
length in relation to the angleu. Here, as in Ref. 38, Eq.~2.4!
is the Euler equation for the functional~2.1! written in terms
of the variablesr , w, and u, and we have introduced th
notation

k̃5
pD

4AA~K1Jz
2!/2m0
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FIG. 1. Solution of Eqs.~2.4! and ~2.5!. a—The dependence of phaseu on radiusr for physically interesting solutions close to the saddle-point localiz
distributionu(r ). b—The projections of the same solutions on the phase portrait in the (]u/]r ,u) plane. c—Projections on the phase portrait of the trajecto
describing evolution of an~arbitrary! distributionu(r ) in accordance with Eq.~2.5!.
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the Dzyaloshinski� energy.
Localized solutions of Eq.~2.4! are saddle-point trajec

tories in the (]u/]r ,u) phase plane. They can be found b
the method of successive approximations, in which one
the constant terms for the second-order equation is fixe
the initial condition, while the other is used as a fitting p
rameter~shooting method!.

The solution of this equation with the boundary con
tion u(0)5p is summarized in Fig. 1. Figure 1a depic
several branches of the solutions for the phaseu(r ), solu-
tions that are close to the desired~saddle-point! localized
distribution and that demonstrate the successive approx
tions of the shooting method. The corresponding saddl
clearly visible in the projection of these solutions on t
phase portrait in the (]u/]r ,u) plane depicted in Fig. 1b.

Note that the localized solutions whose phase traje
ries in the (]u/]r ,u) plane are saddle-points do not nece
sarily correspond to a saddle point~in the function space! for
the free energy being solved for. The desired energy ca
lated in such a realization of the distributionu(r ) is finite.
This distributionu(r ) is only a point that can be suspected
being a minimum, and its stability must be studied separa
by employing a time-dependent relaxation version of
equation for the order parameter. Such an equation~some-
times called the time-dependent Ginzburg–Landau mo!
reflects the real evolution of the order-parameter field,
evolution that among all formally admissible solutions of t

973 JETP 84 (5), May 1997
f
as
-

a-
is

-
-

u-

ly
e

l
n

cally realizable structures.
In terms of the variablesu andr , such a solution has the

form

du

dt
52S d2u

dr2
1
1

r

du

dr
2

1

r 2
sin u cosu1

4k̃

pr
sin2u

2sin u cosu D . ~2.5!

In Fig. 1c the trajectories describing the evolution of an~ar-
bitrary! distribution u(r ) in accordance with the relaxatio
equation are projected onto the same phase p
(]u/]r ,u) as the solutions of the static equation. Forma
this approach generalizes the study of the stability of
static solutions, which in a special case amounts to analyz
the equation linearized near some special solution of
static equation. In our case such an equation coincides
the Schro¨dinger equation with some effective potential. Th
general form of the relaxation equation makes it possible
only to study stability against small deviations, but also
analyze the global stability of the desired localized solutio

Figure 1c shows that a strictly localized solution of t
static equation satisfying the conditionu(`)50 is also a
saddle-point solution, with the result that it is unstable. T
typical solutions are those that in their behavior are close
this saddle-point solution for smallu and degenerate at in
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finity into an essentially periodic wavemz(r ), which, inci-
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dentally, is quite natural from a physical standpoint. It can
shown ~see, e.g., the phase portrait in Fig. 1c! that a fairly
arbitrary configurationu(r ,t50) rapidly relaxes to the local
ized solution described above, which, however, is unsta
and in time collapses tor50.

The fact that a solitary vortex is unstable and generat
periodic wave at infinity does not mean, however, tha
lattice consisting of such vortices is also unstable. In t
context, further study of Eq.~2.5! is of little interest, since it
does not allow for a study of the stability against deviati
from radial distributions at fixedm251. With the aim of
analyzing the spontaneous onset of a vortex structure, w
back to the initial equations for the components of the or
parameterm5$mx ,my ,mz%. Note that when the system pro
ceeds from the paraphase to the ordered phase, as the
perature decreases, the absolute value of the moment
matically becomes fixed and cannot be achieved by form
stating thatm25const. This means that in the equations
the components$mx ,my ,mz% we must keep the nonlinea
~local! contributionsF @m# to the free energy, which in an
of itself ensures thatm2 is fixed in the final stages of order
ing of the system.

In other words, we again study an equation of the
tremely general form

]m

]t
5aDm2b ¹3m1h2

dF @m#

dm
1j~r ;t !. ~2.6!

This equation is similar to the original~scalar! equation
~1.1!, but is written for the three interacting components
the order parameter,mx , my , andmz . The gradient terms in
Eq. ~2.6! are specified explicitly, while the local form o
F @m# is restricted only by the requirement that at equil
rium m2 must be fixed.

The choice of the form ofF @m# is fairly arbitrary
within the model. For real systems,F @m# can be derived
from the microscopic Hamiltonian of Refs. 22–25. Usua
only the lower-order terms in the expansion in powers
m are kept in the local form ofF @m#, e.g.,

dF @m#

dm
5m~t2am1bm2!.

In this sense the microscopic theory actually fixes the val
of the constantst5(T2Tc)/Tc , a, andb.0 in this expan-
sion. The theory also determines the values of the parame
a andb fixed by the spatial dispersion of the exchange
teraction and the Dzyaloshinski� energy, respectively.

Above all, it is advisable to reproduce the process
nucleation of a solitary vortex from a local nucleation cen
in the absence of noise. Figure 2 depicts the correspon
results, which were obtained at the intermediate stage
growth of such a vortex in space. The results for each co
ponentmj are shown by the corresponding changes in
shades of gray. The distribution ofmz is radially symmetric,
while the other two components change sign at the cente
the vortex. This indeed corresponds to a ‘‘fountain’’ of th
vectorm(r ) at the center, described in Refs. 37 and 38, w
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of comparison, in Fig. 2d we depict the surfacemz(r ) at an
earlier stage in the growth of the vortex.

Naturally, the idea of a solitary vortex growing indefi
nitely is an extreme idealization. In reality, vortices begin
grow out of many local fluctuations ofm(r ) essentially si-
multaneously. As they expand, they come into contact w
one another, the circular distributions ofm(r ) are disrupted,
and a pattern is formed that resembles the striped structu
magnetic domains. Figures 3a–d depict the evolution o
system of magnetic vortices produced by fluctuation no
where the density of one of the components (mz) is shown
by changes in the shades of gray.

In the context of the present investigation it is importa
to note that a stage at which solitary circular configuratio
of the magnetic moments show up clearly does indeed e
This intermediate stage originates in the relatively sm
scale local fluctuations fixed by the relaxing field for a fair
long time.

Such a fluctuation state of the system can establish it
for an indefinitely long time if the phase transition to it
first-order and the ratio of the noise~temperature! to the
height of the barrier in the energyF @m# is such that the
growth of supercritical nucleation centers becomes imp
sible. In computer simulations of such a system one can
serve how the constantly ‘‘flickering’’ but long-lived vorti
ces gradually order into a close-packed hexagonal latt
These observations can be used constructively in develo
a kinetic scenario that leads to stabilization of t
Bogdanov–Hubert phase.

Indeed, if we lower the barrier after keeping the syste
for a fairly long time in the fluctuation region, the syste
proceeds to a low-temperature state, and both the symm
of the distributionm(r ) ~on the average! and individual vor-
tices inside the striped structure become frozen in. For
stance, such patches consisting of individual vortices of b
signs ofmz are clearly visible in Fig. 3d. In this context th
structure of the correlation function

G~x,y!5^m~x8,y8!m~x1x8,y1y8!& ~2.7!

for a state consisting of vortices and stripes simultaneous
especially indicative.

Such a function for themz component was calculate
numerically, and its typical shape is depicted in Fig.
Clearly visible is the sixfold symmetry for small-scale co
relations, which is somewhat distorted because of the p
ence of stripes, which fix the twofold symmetry fo
intermediate-scale correlations. One can expect that for la
arrays, the arbitrary nature of the orientation of the strip
makes the effect of these stripes on the symmetry
G(x,y) negligible. However, for accessible moderate sca
this does not happen, as Fig. 4 clearly demonstrates.

The problem of the size and shape of the computatio
grid ~which is fourfold symmetric! is important for numeri-
cal calculations. Figure 4 indicates that fourfold symme
begins to show up on scales greater by a factor of ten t
the characteristic size of the structures described above.
specific calculations we used arrays of 2563256 cells; the
characteristic size of a vortex is 838 cells, while the corre-
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arly
FIG. 2. Evolution of a solitary vortex. a—Projection in thexy plane of the componentmz , shown by changes in the shades of gray. Clearly visible are
central peak inmz and the concentrically diverging waves. b—The same as in Fig. 2a for themx component. c—The same as in Fig. 2a for themy component.
Comparison of Figs. 2a–c makes it possible to determine the rotation ofm in space corresponding to the vortex described in the text. d—The relatively e
stage in the formation of the vortex. The isometric system is used to depict themz component.
lation function depicted in Fig. 4 was calculated on an array
o

oi
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by modeling!. In the process, the ordered system fixes the
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nc-

se
ired
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of 64364 cells, which amounts to one-sixteenth the area
the computational grid form(x,y).

Most vortices nevertheless disappear with time. To av
this, an external fieldh Þ 0 can be used to strengthen tho
vortex nucleation centers that point in the same direction
the field. However, as expected,37,38a low-temperature phas
with vortices directed along the field is unstable and deg
erates, depending on the strength of the fieldh, into either a
striped structure or a homogeneously ordered state. To s
lize the desired phase, we must ensure that vortices with
same sign are fairly close-packed and are directed oppo
the field.

The latter requirement does not contradict the idea
strengthening vortices pointed in the same direction b
field parallel to them, and it yields a recipe for creating t
desired phase. In the initial stage of the ordering process
must use a moderate fieldh, whose strength can be chose
by numerical modeling with a fixed structureF @m#. Then
the field is reversed and increased in amplitude~also selected
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vortex structures formed in the previous stages.
Figure 5 depicts the typical result of a process of t

type, obtained for the sake of definiteness for the local fu
tion

dF @m#

dm
5m~t2am1bm2! ~2.8!

with the constantst50.14, a52.0, andb51.0 and for a
field strengthh050.35 in the ordered phase. Naturally, the
parameter values are within the stability range for the des
vortex phase, found earlier by Bogdanov and Huber.37 The
value ofh used in the initial stages of the process can v
over a broad range, and usually amounts to approxima
0.2h0.

Figure 5 depicts the distribution ofmz with an isometric
system of constant-level curves. This reveals the unive
form of the majority of vortices, which are attractors of th
corresponding nonlinear system~2.6!. Moreover, we see tha
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FIG. 3. Evolution of the magnetic vortices produced by fluctuation noise. The density of one of the components (mz) is shown by changes in the shades
gray.
lattice imperfections are usually accompanied by the adhe-
e
h
e

kinetic competition with one-dimensional modulated order-
si-
ibed

rio
res
by a
to

r
ld
fo
t

l

sion of two ~or more! vortices, caused by the inadequat
preparation of the intermediate virtual state. Physically, t
adhesion of vortices can be interpreted as a consequenc

FIG. 4. A typical structure of the correlation functionG(x,y) of the com-
ponentmz for a state containing vortices and stripes simultaneously. Clea
visible are the sixfold symmetry for small-scale correlations, the twofo
symmetry for intermediate-scale correlations, and the fourfold symmetry
correlations whose scales range from roughly one-tenth to the full size of
computational grid form(x,y) ~this in turn is greater by a factor of ten than
the array used in calculatingG(x,y)).
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ing, which occurs spontaneously in the system if the tran
tion process is not arranged in the special manner descr
above.

It would be quite natural to extend the kinetic scena
described in this paper to the preparation of such structu
in real samples. Here the virtual phase may be replaced
similar state in the fluctuation region. The way to do this is

ly

r
he
FIG. 5. Typical configuration ofmz(x,y) obtained as a result of the specia
kinetic process described in the text.
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keep the system near the transition point in a weak field.
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16T. M. Rogers, K. R. Elder, and R. C. Desai, Phys. Rev. B37, 9638~1988!.
17K. R. Elder and R. C. Desai, Phys. Rev. B40, 243 ~1989!.
Then, after the direction of the field is reversed and its a

plitude is increased, the system must be rapidly transferre
a low-temperature state.

I am deeply grateful to A. N. Bogdanov, who drew m
attention to the problem of magnetic vortices and kindly p
vided the results of his studies prior to publication. Ma
thanks go to A. S. Zel’tser for the top-quality computer pr
grams, which made all necessary computer simulation p
sible, and to Yu. E. Kuzovlev for writing the applicatio
programs used in processing and graphical representatio
the data. The present work was sponsored by the Inte
tional Science Foundation~Grant No. K58100!.

1L. D. Landau and E. M. Lifshitz,Statistical Physics, Part 1, 3rd ed.,
Pergamon Press, Oxford~1980!.

2V. L. Ginzburg and L. D. Landau, Zh. E´ksp. Teor. Fiz.20, 1064~1950!.
3K. Wilson and J. Kogut, The Renormalization Group and th
«-Expansion, Wiley, New York ~1974!.

4S. K. Ma,Modern Theory of Critical Phenomena, W. A. Benjamin, Read-
ing, Mass.~1976!.

5A. Z. Patashinski� and V. L. Pokrovski�, Fluctuation Theory of Phase
Transitions, Pergamon Press, Oxford~1979!.

6I. F. Lyuksyutov, V. L. Pokrovski�, and D. E. Khmel’nitski�, Zh. Éksp.
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Localization and space-time dispersion of the kinetic coefficients of a two-dimensional

the
disordered system
A. G. Groshev and S. G. Novokshonov

Physicotechnical Institute, Ural Branch of the Russian Academy of Sciences, 426001 Izhevsk, Russia
~Submitted 8 August 1996!
Zh. Éksp. Teor. Fiz.111, 1787–1802~May 1997!

A generalization of the Vollhardt–Wo¨lfle self-consistent localization theory is proposed to take
into account spatial dispersion of the kinetic coefficients of a two-dimensional disordered
system. It is shown that the main contribution to the singular part of the collision integral of the
Bethe–Salpeter equation in the limitv→0 is from the diffusion pole
iv5(p1p8)2D(up1p8u,v), which provides an anomalous increase in the probability of
backscatteringp→2p8. In this limit the dependence of the diffusion coefficient onq andv
exhibits localization behavior,D(q,v)52 iv f ( l Dq), whereu f (z)u<(0)5d2 ~d is the
localization length!. According to the Berezinski�–Gor’kov criterion,D(q,0)50 for all q. Spatial
dispersion ofD(q,v) is manifested on a scaleq } 1/l D , wherel D is the frequency-
dependent diffusion length. In the localization statel D! l , wherel is the electron mean free path;
l D } v asv→0, suggesting the suppression of spatial dispersion of the kinetic coefficients
down to atomic scales. Under the same conditionss(q,v) exhibits a strong dependence onq on
a scaleq } 1/d, i.e., the nonlocality range of the electrical conductivity is of the order of the
localization lengthd. At the microscopic level these results corroborate the main conclusions of
Suslov~Zh. Éksp. Teor. Fiz.108, 1686~1995! @JETP81, 925 ~1995!#!, which were
obtained to a certain degree phenomenologically in the limitv→0. A major advance beyond the
work of Suslov in the present study is the analysis of spatial dispersion of the kinetic
coefficients at finite~rather than infinitely low! frequencies. ©1997 American Institute of
Physics.@S1063-7761~97!01705-8#
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The last twenty years have witnessed enormous prog
in our understanding of the Anderson localizati
phenomenon.1 Today this field of research has grown into
expansive branch of physics of the condensed state~see, e.g.,
Refs. 2–5!. One of the most productive approaches to
investigation of the problem is afforded by the Vollhard
Wölfle self-consistent localization theory.6–8 Results cor-
roborating the hypothesis of total localization of charge c
riers in two-dimensional disordered systems have b
obtained on the basis of this theory.6,7 The critical behavior
predicted by the Vollhardt–Wo¨lfle theory near the Anderso
transition in systems of dimensiond.2 ~Ref. 8! is consistent
with results obtained in the field-theory9 and scaling4,10 ap-
proaches to the problem. Its ideas form the basis of mic
scopic localization theory in the presence of an external m
netic field11,12 and the modern theory of ‘‘dirty’’
superconductors.5,13,14

One of the drawbacks of self-consistent localizati
theory in its present formulation is the impossibility of sy
tematically taking into account spatial dispersion of the
netic coefficients. The problem is that the basic equation
this theory establishes an integral relation between the l
diffusion coefficientD(v)5D(q50,v) and the generalized
diffusion coefficient D(q,v). Following Vollhardt and
Wölfle,6 one can circumvent this difficulty by replacin
D(q,v) everywhere byD(v), i.e., by assuming that spatia
dispersiond(q,v) is insignificant in the localized phase. It
important to note that this problem has scarcely been stu
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diffusion coefficient onq D(q,v→0) on the basis of scaling
considerations4 lead to contradictory results and in fact d
stroy the structure of self-consistent localization theory.

A host of problems arise in this connection: 1! Can the
spatial dispersion of the kinetic coefficients be systematic
taken into account within the framework of self-consiste
localization theory? 2! How does the character of such di
persion change in transition from the metallic to the insula
state? 3! What restrictions are imposed on the Vollhard
Wölfle theory when spatial dispersion is ignored?

The first serious discussion of these problems appea
have been undertaken in a recent publication,15 in which it is
concluded that spatial dispersion of the diffusion coefficie
is insignificant on scalesq } 1/d ~whered is the localization
length!, and its presence forq } 1/kF (kF is the Fermi momen-
tum! does not influence the critical behavior near the And
son transition. Indeed it is stated in Ref. 15 that t
Vollhardt–Wölfle theory becomes asymptotically exact in
sufficiently small neighborhood of the mobility thresho
~for systems of dimensiond.2). An important result of Ref.
15 is proof of the fact that, in accordance with th
Berezinski�–Gor’kov16 criterion,D(q,v50)[0 for all q in
the localized phase.

In this paper we propose an alternative approach to
solution of the above-stated problems, which represen
direct generalization of the Vollhardt–Wo¨lfle localization
theory6 such as to facilitate investigation of the space-tim
dispersion of the electrical conductivitys(q,v) and the dif-
fusion coefficientD(q,v) of a two-dimensional disordere

978$10.00 © 1997 American Institute of Physics



system in the low-frequency limitv!EF (EF is the Fermi
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energy! and in the long-wavelength limitq!kF . Our results
agree with the main conclusions of Ref. 15 (d.2). In addi-
tion, our approach can be used to find explicit low-frequen
and long-wavelength asymptotic forms of the kinetic coe
cients in the localization state.

We close this discussion with the observation that spa
dispersion of the kinetic coefficients must be taken into
count not only for the generalization or substantiation of s
consistent localization theory, but also for the solution
certain problems of practical interest, for example, the in
ence of carrier localization on the spectrum of lon
wavelength ‘‘acoustic’’ plasmons in systems containing
quasi-two-dimensional electron gas.17

2. STATEMENT OF THE PROBLEM AND GENERAL
EQUATIONS

We consider a two-dimensional, degenerate, ideal ga
spinless electrons subject to elastic scattering by immo
impurities, which have a concentrationnI and a Poisson dis
tribution function in the sample. The one-electron Ham
tonian of the system has the form

H5
p2

2m
1(

R
U~r2R!. ~1!

HereU(r2R) is the potential of an isolated impurity loca
ized at the pointR. We assume that it is short- lived and ca
be approximated by a delta function,U(r )5U0d(r ), which
is a good approximation under the conditionr 0!lF ,l , where
r 0 is the range of the potentialU(r ), lF is the de Broglie
wavelength, andl is the electron mean free path at the Fer
level. We also assume that the scattering of an electron
the isolated impurity is weak and that the first Born appro
mation is sufficient for calculating its amplitude.

Inasmuch as the given system is spatially homogene
on the average, the averaged one-electron Green’s functi
diagonal in the momentum representation:

Gp
6~E !5^^puR6~E !up&& I5@E2Ep2Sp

6~E !#21, ~2!

where

R6~E !5~E2H6 id!21, d→10, ~3!

is the resolvent of the Hamiltonian~1!, the angle brackets
^& I signify averaging over the distribution of the impuritie
and Sp

6(E) is the electron free-energy part, which in th
language of Edwards diagrams18 is defined by the serie
shown in Fig. 1a. Information on the kinetic properties of t
system is contained in the two-particle Green’s function

wpp8
ss8~q,v!5^Rs~p1 ,p18 ;E

1!Rs8~p28 ,p2 ;E2!& I , ~4!

where s,s856, p65p6q/2, E65E6v/2, and
R6(p,p8;E) is the matrix element of the resolvent~3! of the
Hamiltonian ~1!. They satisfy the Bethe–Salpeter equatio
which is shown in graphical form in Fig. 1b. The verte

Upp8
ss8(q,v) in this equation is defined by the series of irr

ducible diagrams shown in Fig. 1c.
According to the modern theory of irreversib

processes,19 the kinetic coefficients can be expressed
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terms of Kubo correlation functions. In the low-frequenc
long-wavelength limit (v!EF , q!kF) they satisfy the
asymptotic expression (l ,m50,1)

Klm~q,v!52E dE
] f

]E
^Klm~q,v!& I . ~5!

Here f (E) is the Fermi–Dirac function,

^Klm~q,v!&5
1

4p (
p,p8

S q̂•p
m

D l S q̂•p8

m
Dm

3$2wpp8
12

~q,v!2wpp8
11

~q,v!2wpp8
22

~q,v!%,

~6!

the volume~area! of the system isV51, andq̂q5q/q.
The correlation functions~5! and ~6! satisfy the equa-

tions of continuity derived from conservation of the numb
of particles

2vK00~q,v!1qK01~q,v!52 inF1OF S v

EF
D 2G ,

~7!

2vK01~q,v!1qK11~q,v!5OF v

EF

q

kF
G

(nF is the density of states at the Fermi level! and are related
by simple equations to the generalized kinetic coefficie
L(q,v) and the conductivitys(q,v):

L~q,v!5
1

nF
K11~q,v!, s~q,v!5e2nF L~q,v! ~8!

and to the Green’s function of the diffusion equation

G~q,v!5
1

nF
K00~q,v!5

1

2 iv1q2D~q,v!
. ~9!

HereD(q,v) is the generalized diffusion coefficient19:

FIG. 1. a! Series of one-particle, irreducible Edwards diagrams18 for the
electron self-energy partSp(E); b! graphical form of the Bethe–Salpete
equation for the two-particle Green’s function~4!; c! series of two-particle,
irreducible diagrams for the vertexUpp8(q,v). The conventional rules of
correspondence between the analytic expressions for the terms of the
turbation series and their graphical representations are used here.
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It is a well-known fact6 that the diffusion pole
iv5q2D(q,v) of the Green’s function~9! is described by
the first three terms in the correlation function~6!
( l5m50), whereas the contribution of the last two term
remains finite at the pointv50, q50. Consequently, al
necessary information on the low-frequency and lon
wavelength asymptotic representations of our kinetic coe
cients is contained in the two-particle Green’s functi
wpp8

12(q,v) ~4!.
We use the relation

DGp~q,v!F~k!~p,q;v!5(
p8

wpp8
12

~q,v!S q̂•p8

m
D k,

k50,1, ~11!

to determine the relaxation functionsF (k)(p,q;v) of the
density (k50) and the current (k51) in satisfaction of the
transport equation

Fv2S q–p
m

D 1DSp~q,v!GF~k!~p,q,v!

5S q̂•p
m

D k1(
p8

Upp8
12

~q,v!DGp8~q,v!F~k!~p8,q,v!,

~12!

which is easily obtained from the Bethe–Salpeter equat6

for wpp8
12(q,v) ~see Fig. 1b!. Here we have introduced th

notation

DGp~q,v!5Gp2

2 ~E2!2Gp1

1 ~E1!,

DSp~q,v!5Sp2

2 ~E2!2Sp1

1 ~E1!. ~13!

The self-energy partSp
6(E) and the kernel of the integra

equation~12! Upp8
12(q,v) are related by the Ward identity6

DSp~q,v!5(
p8

Upp8
12

~q,v!DGp8~q,v!. ~14!

This relation plays an important role in the ensuing calcu
tions; in particular, it ensures conservation of the numbe
particles.

In contrast with the customary definition of the rela
ation functions,6,8 the delta singularity in them atupu.kF
(q!kF) is explicitly separated out in Eq.~11!. Therefore,
assuming thatF (k)(p,q,v) is a sufficiently smooth function
of p near the Fermi surface, we seek a solution of the tra
port equation~12! in the Fourier series form

F~k!~p,q,v!5 (
n50

`

Fn
~k!~kF ,q,v!cos~nu!,

u5p,q̂. ~15!

Substituting Eq.~15! into ~10!, we readily obtain a sys
tem of nonlinear algebraic equations for the Fourier coe
cients ~for brevity we drop the subscriptF from the Fermi
momentum from now on!:
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(
n850

H ~11dn01d0n82dn0d0n8!Fvdnn82~dn11,n8

1dn,n811!
qk

2mG1Mnn8~q,v!J Fn8
~k!

~k,q,v!

5S kmD kdnk~11dn0!. ~16!

Here

Mnn8~q,v!5
1

p2E
0

2p

duE
0

2p

du8cos~nu!cos~n8u8!

3H pDSp~q,v!d~u2u8!

2(
p8

Upp8
12

~q,v!DGp8~q,v!J ~17!

is the matrix of memory functions. The symbolp8 under the
summation sign in~17! indicates that the summation is ca
ried out only over the modulus of the vectorp8. To calculate
the conductivity~8! and the diffusion coefficient~10!, it is
sufficient to know only the one Fourier coefficien
F1

(1)(k,q,v). It is therefore customary, following the wor
of Vollhardt and Wo¨lfle,6,7 to retain only the first two terms
(n50,1) in the expansion~15!, whereupon a system of two
linear equations is obtained in place of~16!. It will be shown
below that this approximation can be used to calculate
kinetic coefficients only if their spatial dispersion is ignore
Otherwise it is necessary to solve the complete system
equations~16!.

It is readily shown with the aid of the Ward identity~14!
thatMn0(q,v)[0 for anyn. All other matrix elements~17!,
generally speaking, are nonvanishing and depend both on
choice of approximation for the vertex functionUpp8

12(q,v)
and on the series representing the impurity potentialU(r ). In
the next two sections we analyze the solution of the sys
of equations~16! and the calculation of the kinetic coeffi
cients of a two-dimensional disordered system in the lad
approximation and in the approximation of self-consiste
localization theory.

3. LADDER APPROXIMATION

Retaining only the first terms in the diagram series
Figs. 1a and 1c, we obtain the following expressions for
electron self-energy partSp

6(E) and the vertexUpp8
12(q,v):

Upp8
12

~q,v!5nI uUp2p8u
2,

Up5E U~r !exp~2 ip–r !dr , ~18!

Sp
6~E !5nI(

p8
uUp2p8u

2Gp8
6

~E !.

This approximation was first proposed by Edwards,18 but so
far it has been used to calculate the kinetic coefficients w
out regard for their spatial dispersion. Using Eq.~18!, we can
easily verify that all off-diagonal elements of the matrix
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wavelength limit. Indeed, to within terms of order (q/k) we
have

Mnn~q,v!5
i

tn
5nI(

p8
uUp2p8u

2DGp8~E !

3@12cos~nw!#, ~19!

wherew5u2u85pp̂ 8, and tn has the significance of th
nth-order relaxation time; in particular,t1[t is the transport
relaxation time. To estimate the relative value
Mnn8(q,v) (n Þ n8), we use a Gaussian model potential w
the Fourier transformUp5U0exp(2p2r0

2/2). Expanding the
off-diagonal elements~17! in powers of the small paramete
r 0 /lF , lF / l , andq/kF , we obtain

UMn,n61~q,v!

qvF
U} r 0

2

lF
2

lF

l
, U Mn,n6k~q,v!

Mn,n61~q,v!
U}S qkFD

k21

.

~20!

Consequently, within the error limits stated here, only
diagonal elements of the matrix of memory functions~17!
need to be included in the system of equations~16!. It is
important to note that the inequalitiesr 0!lF! l are the con-
ditions governing the validity of classical kinetic theory.

In the limit of the delta-function impurity scattering po
tential (r 0→0) all the off-diagonal elementsMnn8(q,v) (n
Þ n8) are identically zero, and all the relaxation times a
equal (tn5t), because the integral of the second term o
the anglew vanishes atUp5U05const. These simplifica
tions permit us not only to obtain an exact solution of t
system of equations~16!, but also to sum the correspondin
Fourier series~15!! ~see Appendix A!:

F~0!~p,q,v!5
1

12~ i /t!F0
0~k,q,v1 i /t!

1

v2q–p/m1 i /t
,

~21!

F~1!~p,q,v!52
1

q
1

v

q
F~0!~p,q,v!.

Here the symbolF0
0(k,q,z) denotes the zeroth Fourier coe

ficient of the density relaxation function without scatteri
by impurities:

F0
0~k,q,z!5

1

2pE0
2p du

z2qvF cosu
5~z22q2vF

2!21/2.

~22!

The factor containing this function inF (0)(p,q,v) ~21!
plays an important role. Because of it, the density and c
rent scattering functions are coupled by the equation of c
tinuity ~21! and, hence, conserve the number of particles
similar structure is found in the solution of the classical
netic equation for a spatially nonuniform nonequilibriu
distribution20 and in the expression for the density relaxati
function obtained by Go¨tze21 in the interacting-mode ap
proximation.

Using the expressions~21! for the density and curren
relaxation functions, we readily calculate the generalized
fusion coefficient
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D~q,v!5
12 ivt1A~12 ivt!212q2D0t

,

D05
1

2
vF
2t ~23!

and, related to it by Eq.~10!, the generalized kinetic coeffi
cient (Lq,v) or the electrical conductivitys~q,v!. For
q50, from Eq.~23! we obtain the usual Drude equations f
the frequency-dependent electrical conductivity and dif
sion coefficient, which are related to each other by the E
stein relation:

s~v!5e2nFD~v!5
s0

12 ivt
, s05

ne2t

m
, ~24!

wheres0 is the static conductivity, andn is the density of
electrons. The spatial dispersion of the kinetic coefficie
calculated here is of a less trivial nature. Whereas the ge
alized diffusion coefficient~23! as a function ofv andq is
continuous atv50 andq50, the conductivity suffers a dis
continuity at this point:

s05 lim
v→0

lim
q→0

s~q,v!Þ lim
q→0

lim
v→0

s~q,v!50. ~25!

The fact that the second limit in~25! is zero follows from the
low-frequency asymptotic behavior of the conductivity:

s~q,v!}2
iv

q2
e2nF , v→0, qÞ0, ~26!

which is readily deduced from relations~8! and ~10! with
allowance for the finiteness of the static diffusion coefficie
D(q) ~23!.

Consequently, the expressions obtained here for the
netic coefficients correctly reproduce their behavior in t
vicinity of the pointv50, q50. The equations(q,0)[0
has a simple physical significance. In the inhomogene
steady state without any forces of nonelectrical origin,
diffusion and drift currents exactly cancel one another, c
ating zero net current.

4. SELF-CONSISTENT LOCALIZATION THEORY
APPROXIMATION

Of utmost importance in the set of diagrams contributi
to the irreducible vertexUpp8

12(q,v) is the series shown in
the first row of Fig. 1c~maximum crossing or ‘‘fan’’ dia-
grams!. The sum of the series can be determined exactly
the case of scattering of electrons by impurities with a sh
lived potential. When this sum is taken into accou
Upp8

12(q,v) acquires a term containing a diffusion pole at t
point iv5(p1p8)2D0(up1p8u,v), whereD0(q,v) is the
classical diffusion coefficient~23!. When the Bethe–Salpete
equation is solved iteratively, this term yields logarithmica
divergent~asv→0) corrections to the kinetic coefficients.
has been shown22 that the phenomenon of weak localizatio
in low-dimensional disordered systems is intimately rela
to these corrections.

This idea has been elaborated by Vollhardt a
Wölfle,6–8 who proposed a self-consistent generalization
the ‘‘fan’’ series for the irreducible vortex, augmenting
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with all possible diagrams containing two outwardly inte
secting lines of interaction. As a result, the equation sho
graphically in Fig. 2 is obtained forUpp8

12(q,v). Here the
diagram unit between the lines of interaction in the seco
term on the right-hand side represents the convolution o
momentak andk8 of the two-particle Green’s function in th
Cooper channel or in the particle–particle channel~coop-
eron!:

C~q,v!5(
k,k8

^R1~k1 ,k18 ;E
1!R2~2k2 ,2k28 ;E

2!& I ,

~27!

where k65k6q/2 and q5p1p8. In systems with time-
reversal invariance, however, we haveRs(2k,2k8;E)
5Rs(k8,k;E), so that the cooperon~27! exactly coincides
with the Green’s function of the diffusion equationG(q,v)
~9!, and the irreducible vertex acquires the form

Upp8
12

~q,v!5W1
W

t

1

2 iv1~p1p8!2D~ up1p8u,v!
,

~28!

whereW5nIU0
2, t5(2pWnF)

21 is the bare relaxation time
andD(q,v) is the exact diffusion coefficient.

In approaching the calculation of the matrix elements
the memory functions~17!, we call attention to the fact tha
according to the Ward identity~14!, DSp(q,v) has a term
that contains the diffusion pole~28!. At first glance, this
property should lead to a singularityDSp(q,v) } 1/v in the
localized phase@D(q,v)}2 iv#, contradicting the well-
known analytic properties of the averaged one-part
Green’s function~2!. For 2,d,4 this paradox has bee
resolved recently in Ref. 15, where it is shown that a div
gence of the type 1/v on the right-hand side of the War
identity ~14! in the localized phase is precluded by the a
proximate~to orderv) orthogonality of the singular part o
the vertexUpp8

12(q,v) relative toDGp8(q,v). We therefore
replace the first term in~17! by i /t and, for simplicity, iden-
tify t with the bare relaxation time present in~28!, since this
substitution does not qualitatively affect the main results

Here again, as in the ladder approximation, a major r
is played by the diagonal elements of the memory funct
matrix ~17!, which after simple transformations assume t
form

Mnn~q,v!5
i

t
2

W

2ptE0
1`

k8dk8

FIG. 2. Graphical form of the equation for the vertexUpp8
12(q,v) in the

approximation of the Vollhardt–Wo¨lfle self-consistent localization theory.6,7
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2p 0 2 iv1~p1p8!2D~ up1p8u,v!

~29!

The substitutionz5exp(iw) reduces the integral over the po
lar angle in~29! to an integral over the circle of unit radiu
uzu51 in the complex plane. We assume that the main c
tribution to it is from the diffusion pole~this approximation
is justified in Appendix B!. Then, invoking the residue theo
rem, we obtain the following expression for a diagonal e
ment of the memory function matrix:

Mnn~q,v!5
i

t
2~21!n

i

t
D,

D5
W

2p i

3E
0

1` DGp8~q,v!k8dk8

$@2 iv1~k2k8!2D̃#@2 iv1~k1k8!2D̃#%1/2
.

~30!

Here D̃ is the value of the diffusion coefficient at the po
iv5q2D(q,v). The asymptotic expression~30! holds in the
limit v→0 under the conditionv!4k2uD̃u (k.k8.kF).
This inequality is satisfied automatically in the metallic sta
and Eq. ~30! remains valid in the localized phase (D̃
}2 ivd2) for d@lF , whered is the localization length. To
calculate the integral with respect tok8 in D ~30!, we ap-
proximately setE.k2/2m in DGp8(q,v). If, in addition to
the inequality v!4k2uD̃u, the condition k2@m/t ~or
l5kt/m@lF) also holds, the lower limit of integration with
respect tox5k822k2 can be replaced by2`. We finally
obtain

D5
lF

p2l

D0

D̃ S 114iv
l 2

D̃ D 21/2

ln
11~114iv l 2/D̃ !1/2

12~114iv l 2/D̃ !1/2
.

~31!

We therefore obtain a system of equations for the F
rier coefficientsFn

(0)(k,q,v), whose exact solution~see Ap-
pendix A! yields the following expression for the desire
correlation function:

F~0!~p,q,v!5
1

12~ i /t!~12D!F0
0~k,q,v1 i /t!

3
v1 i /t1 iD/t1p–q/m

~v1 i /t!21D2/t22~p–q/m!2
, ~32!

where

F0
0S k,q,v1

i

t D5F S v1
i

t
2 i

D

t D 2
2q2vF

2v1 i /t2 iD/t

v1 i /t1 iD/t G21/2

. ~33!

The current relaxation functionF (1)(p,q,v) is related to
F (0)(p,q,v) by the continuity equation~21!. With the help
of these relations and Eqs.~8!–~10! we readily find an ex-
pression for the diffusion coefficient;
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.

~34!

For q50 the substitutionD̃→D(v) @u iv l 2/D(v)u!1#
takes Eq.~34! into the well-known equation for the diffusio
coefficientD(v) obtained on the basis of self-consistent
calization theory.6,7 For D50 Eq. ~34! coincides with the
expression~23! for the diffusion coefficient in the ladde
approximation.

5. DISCUSSION

The value of the diffusion coefficient at the po
iv5q2D(q,v) enters into the right-hand side of Eq.~34!
through the parameterD ~31!. To calculateD(q,v), there-
fore, it is first necessary to solve the self-consistent equa
for D̃ obtained from ~34! for q25 iv/D̃. In the low-
frequency limit its solution has a localized character,D̃
}2 ivd2. In fact, substituting this asymptotic representati
into the equation forD̃, we readily verify that it exists when
vt! l 2/d2, where the localization lengthd for l@lF has the
form

d5 l expS p2

2

l

lF
D , d@ l@lF . ~35!

The next iteration of the equation forD̃ enables us to deter
mine the low-frequency asymptotic behavior of its real pa
Thus,

Im D̃~v!}2d2v, Re D̃~v!}p
m

\
d4v2,

vt
d2

l 2
!1. ~36!

Equations~35! and ~36! do in fact reproduce the results o
Vollhardt and Wo¨lfle,6 differing only by the numerical facto
1/2 in the exponent of~35! and the absence of an artificiall
introduced cutoff parameter.

Consequently, the inclusion of spatial dispersion in
self-consistent equations for the kinetic coefficient does
alter their low-frequency behavior~36! in the localization
state forq50; this fact concurs with one of the conclusio
in Ref. 15. However, carrier localization influences the n
ture of the spatial dispersion of the conductivitys(q,v) and
the diffusion coefficientD(q,v) in different ways. Thus,
substituting the asymptotic representations~36! into Eqs.
~10! and ~34!, we obtain

s~q,v!5e2nF
D̃~v!

11d2q2
,

~37!

D~q,v!5
2D̃~v!

11@112l D
2 ~v!q2#1/2

.

Whereas the nonlocality range, which characterizes
spatial dispersion of the diffusion coefficient~23!, is equal to
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n
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e

l D5 l/A25AD0t) in the ladder approximation, in the loca
ization state it is equal tol D(v)5AD0tuD̃(v)/D0u! l!d.
Consequently, in accordance with the conclusions of Ref.
the spatial dispersion ofD(q,v) is insignificant on scales
q}1/d.

The parameterl D in the localized phase has the signi
cance of a frequency-dependent diffusion length. Accord
to Eq.~36!, the low-frequency asymptotic representation~37!
has the formD(q,v)52 iv f (qv), which ensures the sup
pression of spatial dispersion of the diffusion coefficient
the localized phase (l D(v) } v→0!. This result is valid over
the range of frequencies satisfying the conditi
l D(v).lF .

1!

The conductivity presents a different situation. In t
metallic state the nonlocality range characterizing its spa
dispersion is equal to the mean free pathl in the limit
q→0, v Þ 0 ~23! and becomes infinite in the limitv→0,
q Þ 0 ~26!. In the insulator phases(q,v) ~37! as a function
of q andv is continuous at the pointq50,v50, and the
role of the nonlocality range is taken by the localizati
lengthd.2! Consequently, unlike the diffusion coefficient, th
conductivity exhibits appreciable spatial dispersion even
scalesq } 1/d in the localization state. We assume on th
basis that the electrodynamic properties of two-dimensio
disordered systems in the localization phase ford@ l must be
much stronger than in the metallic state and depend on
tial dispersion effects.

It helps to understand the difference in the dependen
of the diffusion coefficient and the conductivity onq ~37!
when we consider that they determine different fluxes. Th
D(q,v) as a kinetic coefficient determines the magnitude
fluxes strictly of a diffusion nature, so that the scale of
spatial dispersion is governed by the diffusion leng
l D(v). The conductivitys(q,v) determines the total mag
nitude of diffusion and drift fluxes, the latter type dominatin
in the long-wavelength limit. The spatial nonlocality range
the constitutive equation relating the current density to
electric field in the medium is equal to the mean distan
over which the electrons ‘‘remember’’ their previous state
The coherent scattering of electrons by randomly distribu
impurities plays a major role in the localization state, pr
ducing an anomalous increase in the backscattering prob
ity (p852p) ~Ref. 22! @see~28!#. Of course, the nonlocality
radius in this case is determined by the coherence length,
by the average size of the closed loops of self-intersec
trajectories, which is equal to the localization lengthd in
order of magnitude.3!

It follows from the asymptotic expressions~36! and~37!
that the static limit of the diffusion coefficient is equal
zero in the localization state for any finite wave vector, i.
limv→0D(q,v)5D(q,0)50. This result agrees with the
Berezinski�–Gor’kov criterion,16 which stipulates that the
Green’s function of the diffusion equation~9! manifests the
asymptotic behaviorG(q,v) } 1/v in the limit v→0 in the
localized state.

The present study is based on the Vollhardt–Wo¨lfle
theory, the justification of which poses a timely problem5

An important step toward that goal has been made in Ref.
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~28! is a direct consequence of time-reversal symmetry.
the same, there are still a number of problems associ
with checking out the approximate procedure for establish
self-consistency.15 The results obtained here can contribu
to the solution of some of them. In particular, inequality~B6!
in Appendix B defines the frequency range in which not o
the Vollhardt–Wo¨lfle procedureD(q,v)5D(v), but also
~subject to the additional conditionl D(v).lF! the above-
proposed approximate scheme for taking into account w
spatial dispersion of the electrical conductivity and the d
fusion coefficient~37! is valid. As for the dependence of th
kinetic coefficients onq, estimates of our discarded of
diagonal elements of the matrix of memory functions~17!
show that the asymptotic representation~37! remains valid in
the rangeq!1/l .

The authors are grateful to A. K. Arzhnikov and L.
Danilov for profitable discussions and support during
present study.

APPENDIX A: SOLUTION OF THE SYSTEM OF RECURSION
RELATIONS

In the case of scattering of electrons by impurities with
delta-function potential the system of equations for the co
ficientsFn

(0) in the ladder approximation has the form

vF0
~0!2

qk

2m
F1

~0!51,

qk

2m
F0

~0!2S v1
i

t DF1
~0!1

qk

2m
F2

~0!50, ~A1!

qk

2m
Fn

~0!2S v1
i

t DFn11
~0! 1

qk

2m
Fn12

~0! 50, n>1.

This is an infinite system of homogeneous difference eq
tions with constant coefficients. We seek a solution in
form23

Fn
~0!5F0

~0!Czn. ~A2!

The substitution of Eq.~A2! into the last equation of the
system~A1! yields a quadratic equation inz, which has two
solutions, the correct choice being the one that satisfies
conditionFn

(0)(q50)50 (n>1)

z52
1

qvF
H F S v1

i

t D 22q2vF
2G1/22S v1

i

t D J . ~A3!

The undetermined constantC and the zeroth Fourier coeffi
cientF0

(0) can be found by means of the first two equatio
in the system~A1!, which serve as boundary conditions f
the system of difference equations. The Fourier series
tained by substituting the resulting solution into~15! reduces
to a geometric progression and is easily summed.

The system of equations for the coefficientsFn
(1) differs

from ~A1! only in the boundary conditions:

vF0
~1!2

qk

2m
F1

~1!50,
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and is solved analogously. The final expressions for the d
sity and current relaxation functions in the ladder appro
mation have the form~21! and ~22!!.

According to Eq.~30!, the system of equations for th
Fourier coefficientsFn

(0) in the self-consistent localization
theory approximation has the form

vF0
~0!2

qk

2m
F1

~0!51,

qk

m
F0

~0!2S v1
i

t
1
i

t
D DF1

~0!1
qk

2m
F2

~0!50,
~A5!

qk

2m
F2k21

~0! 2S v1
i

t
2
i

t
D DF2k

~0!1
qk

2m
F2k11

~0! 50,

qk

2m
F2k

~0!2S v1
i

t
1
i

t
D DF2k11

~0! 1
qk

2m
F2k12

~0! 50, k>1,

whereD is defined in Eq.~31!. It is easily shown, using the
last two equations of the system~A5!, that all the Fourier
coefficients of odd or even order are interrelated by the
mogeneous second-order recursion relations

S qk2mD 2Fn
~0!2F S v1

i

t D 21 D2

t2
22S qk2mD 2GFn12

~0!

1S qk2mD 2Fn14
~0! 50, ~A6!

wheren52k21 or n52k (k>1). In this case, by analogy
with ~A2!, the solution of the system of equations~A6! must
be of the form

F2k
~0!5F0

~0!Cz2k, F2k21
~0! 5F0

~0!Bz2k21. ~A7!

The substitution of these expressions into~A6! yields a qua-
dratic equation inz2. Its solution subject to the condition
Fn

(0)(q50)50 (n>1) has the form

z5
1

qvF
H F S v1

i

t D 21 D2

t2
2q2vF

2G1/22F S v1
i

t D 21 D2

t2 G
1/2J .
~A8!

The constantsC andB are again determined from the boun
ary conditions, i.e., from the first two equations in the syst
~A5!. The system of equations for the coefficientsFn

(1) is
solved analogously. The final expressions for the density
current relaxation functions in the self-consistent localizat
theory approximation have the form~32! and ~33!.

In closing, we note that to calculate the diffusion coef
cient D(v) and the conductivitys(v) without regard for
spatial dispersion, it is sufficient to retain only the first pa
of equations in the systems~A1! and ~A5! and to set
Fn

(0)[0 (n>2). In this case Eq.~A1! gives the well-known
Drude limit ~24!!, and Eq.~A5! gives the Vollhardt–Wo¨lfle
approximation6,7 ~see relation~34! with q50!.
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APPENDIX B: ESTIMATION OF THE INTEGRALS ALONG
THE BRANCH CUTS

n
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The explicit expression~37! for the low-frequency
asymptotic behavior of the generalized diffusion coefficie
D(q,v) can be used to estimate the contribution from
previously discarded~in calculating the matrix elements o
the memory functions~29!! integrals along the branch cut
After substituting~37! into the integral over the polar angl
w ~29!, we set

q25~ ṗ1p8!2.2k21k2~z1z21!, z5exp~ iw!. ~B1!

In thez plane the integrand is symmetric under the invers
z→z21 and has two branch cutsC1 (z1<z<0) inside the
unit circle uzu51 andC2 (2`<z<z2) outside this circle.
Herez1 andz2 are the roots of the equation

112l D
2 ~v!k2~21z1z21!50, ~B2!

z1 ,z251, uz1u,1 anduz2u.1.
After straightforward manipulations the contributio

from the branch cuts toMnn(q,v) ~29! can be written in the
form

Mnn
cut.

1

2vt2
1

2p i RC1dz zn21/2
A2l D2 ~v!k2~z11!21z

d2k2~z11!21z
.

~B3!

Only terms that branch at the pointsz50 and z5z1 are
retained in the integrand of Eq.~B3!. Moreover, terms smal
with respect to the parameterl D

2 (v)/d2!1 in the localization
state are omitted in the denominator. To obtain an up
bound for the modulus ofMnn

cut, we replace the numerator o
the integrand in~B3! by its maximum value at the poin
z50 and replace the denominator by its minimum value
the pointz5z1. In conjunction with the inequalityuz1u,1
this operation yields

uMnn
cutu,

lFl D~v!

8A2p2vt2
S 11A118l D

2 ~v!k2

d
D 2 2

2n11
,

~B4!

wheren51, 2, 3, ..., andk52p/lF .
Consequently, over the range of frequencies satisfy

the conditionl D,lF we obtain the following upper boun
for the ratio of the contributions from the branch cuts and
diffusion pole to the matrix elements of the memory fun
tions ~29!:

uMnn
cutu

uMnn
polu

,
4

2n11
U D̃~v!

D0
U3 l

lF
5

4A2
2n11

U D̃~v!

D0
U2 l D~v!

lF
.

~B5!

Despite the two competing factors in~B5! @lF, l D(v)! l ,
uD̃(v)u!D0#, there is a frequency interval in which

1

A2
U D̃~v!

D0
U3 l

lF
5U D̃~v!

D0
U2 l D~v!

lF
!1, ~B6!
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the memory function is from the diffusion pole. Cons
quently, the scheme developed above for the calculation
D(q,v) works when the inequality~B6! is satisfied. The
same condition defines the limits of validity of th
Vollhardt–Wölfle approximation6–8 D(q,v)5D(v). Other-
wise the complex analytic structure of the generalized dif
sion coefficient can significantly alter the value of the in
gral ~29!.

1!This restriction is a consequence of the wave nature of the laws gover
the motion of microscopic particles. Estimates in Appendix B~see Eq.
~B6!! show that for l@lF there is a frequency interval in which
lF, l D! l and uD̃(v)u!D0 hold simultaneously.

2!The only effect of including spatial dispersion of the kinetic coefficien
~37! in the calculation ofs(q,v) is a weak renormalization ofd in ~37!.

3!In our opinion, these considerations do not apply to spatial nonlocality
the diffusion coefficient, because the concentration gradient is not a f
acting on electrons, and the relationship between it and the magnitud
the diffusion flux is statistical in nature.
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Nonlocal Josephson electrodynamics of plates of finite thickness

on.
Yu. E. Kuzovlev and A. I. Lomtev

A. A. Galkin Donetsk Physicotechnical Institute, Ukrainian National Academy of Sciences, 340114 Donetsk,
Ukraine
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A nonlocal integrodifferentical equation describing the electrodynamics of a Josephson junction
between superconductors of finite thickness in the direction of the magnetic field is
derived. It is shown that the interaction of kinks always exhibits long-range power-law asymptotic
behavior, which can strongly influence the motion of vortices in and the current–voltage
characteristic of even a thick contact. The spectrum of low-amplitude excitations is studied.
© 1997 American Institute of Physics.@S1063-7761~97!01805-2#

1. The nonlocal electrodynamics of Josephson junctionscurrent extends, of course, to the interjunction interacti
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has undergone rapid development in recent years. T
cases have been investigated thus far: 1! a tunnel junction at
a butt-joint of two ultrathin superconducting films who
thickness is much less than the London length; 2! a tunnel
junction between bulk superconductors whose thicknes
much greater than the London length; and, 3! a tunnel junc-
tion between superconducting layers of finite thickness i
direction perpendicular to the magnetic field. For example
Refs. 1–8 it is shown that nonlocality effects can be la
even in junctions with a large thicknessd (d@l, wherel is
the London penetration depth! in the direction of the mag-
netic field ~along the direction of the vortices!, i.e., in cases
previously studied in the local approximation. In the oppos
case of junctions in thin films (d!l), nonlocality becomes a
decisive factor. The corresponding equations were deri
and studied in Refs. 9–12.

A Josephson junction between two superconducting
ers of finite thickness in a direction perpendicular to t
magnetic field of the vortices was studied in Ref. 13. No
theless, the theory remains inadequately developed. It is
essary to go beyond the limiting cases mentioned abo
since in practice junctions whose size in the direction of
orientation of the Josephson vortices is comparable tol
~such a geometry is realized in, for example, single-cry
Y–Ba–Cu–O chips with twins! are often used in practice
The present paper gives a derivation and a preliminary an
sis of the equations for a Josephson junction in a plate w
an arbitrary ratiod/l.

It is shown that the relation between the jump in t
phase of the order parameter at the junction and the cur
density always contains a strongly nonlocal component
to the long-range character of the field in free space,
amplitude of the component exhibiting only a weak~ap-
proximately linear! dependence on the parameterl/d, and
its form being completely independent ofl/d. In view of the
latter circumstance, the nonlinear component of the curr
albeit small in amplitude, can play an important role in se
eral respects: first, to take account of the total transport
rent of the junction and the external field in the bounda
conditions correctly and, second, in describing structu
consisting of parallel Josephson junctions connected in
ries, since the nonlocal long-range coupling of the phase
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Furthermore, in sufficiently wide junctions with nonballist
transport of vortices, the indicated long-range action sho
be reflected~see below! in the form of the current–voltage
characteristic of the contact at low voltages and currents

We reduce the problem posed above to a problem o
Abrikosov vortex in a plane-parallel plate. Although th
problem has already been studied in Refs. 14–16, for
purposes additional calculations were required. The final
sults concern a butt-joint contact~the plane of the joint is
perpendicular to the plane of the plate!, but the formulas
presented below make it possible to extend the results to
case of a beveled junction and to pass to the limiting cas
a lap-joint junction.

2. The magnetic field of a linear Abrikosov vortex~in
the London approximation! satisfies the equation

h2l2Dh5n„r …, ~1!

n„r …[
F0

2p
curl ¹u5

F0

2p E d~r2R~p!! dR„p)

in the superconductor, whereu is the phase of the orde
parameter andR(p) is the parametrically defined radius ve
tor of the points of the vortex core. The core of the Jose
son vortex spreads out along the weak-link surfaceS divid-
ing the superconductor, i.e., it is a two-dimensional obje
The corresponding sourcen(r ), ‘‘smeared’’ over this sur-
face, in Eq.~1! can be expressed, as one can easily show
the formula

n„r )5
F0

2p E d~r2R„a,b!) F ]w

]R
dS~a,b!G , ~2!

wherea andb are the arguments of the parametric repres
tation of S, R(a,b) is the radius vector of the points onS,
dS(a,b) is a vector element of area ofS, andw is the phase
difference between the edges of the junction. Since in
case divn50, this source can either be represented as a c
tinuous sum along linear cores~andh can be represented a
a linear combination of the fields of the Abrikosov vortice!
or, conversely, it can be treated as a three-dimensional ve
field. For a butt-joint junction with the magnetic flux directe

986$10.00 © 1997 American Institute of Physics



perpendicular to the plate, orienting thez axis along the
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thickness and thex axis along the junction, we have from E
~2!

nz~r !5
F0

2p
d~y!

]w~x!

]x
, nx5ny50. ~3!

Here, in accordance with the condition divn50, the phases
at the edges and the phase jumpsw(x)5u(x,10)
2u(x,20) are independent of the coordinatez.

Ultimately, the phase jump and thereby the source w
be found by solving the complete nonlinear equation for
junction. But since Eq.~1! is linear, we can write the field a
h5Hm1H, whereHm is the ‘‘seed’’ Meissner field, which is
engendered by the prescribed transport supercurrent an
external magnetic field and is determined by solving the
mogeneous equation~1! as if there were no weak link at a
and the superconductor were continuous, andH is engen-
dered by the source~it vanishes forn50). Taking a two-
dimensional Fourier transform in the plane of a plate
thickness 2d, uzu,d, we find

H5H01a exp~kz!1b exp~2kz!, ~4!

H052E
2d

d sinhkuz2z8u
2kl2 n~k,z8!dz8,

k5~l221k2!1/2, k25kx
21ky

2 , ~5!

wherek is a two-dimensional wave vector. The vector co
ficients a and b are determined, first, by the condition th
the field be divergence-free and continuous at the edge o
plate and, second, by the potential nature of the tange
component of the magnetic field at the boundary of the
perconductor~which means that the component of the cu
rent normal to the surface vanishes!, and by the potentia
nature of all three components of the field in free space.

From the latter condition we obtain

Hi /Hzuz56d57 ik/uku, ~6!

which accounts for the effect of free space on the field a
current distributions in the superconductor. Here and be
the subscripti denotes thex andy projections of the vectors
All conditions taken together yield

az5D21@2~]H0z /]z1kH0z!uz5d~k1k!exp~kd!

1~]H0z /]z2kH0z!uz52d~k2k!exp~2kd!#,
~7!

bz5D21@2~]H0z /]z2kH0z!uz52d~k1k!exp~kd!

2~]H0z /]z1kH0z!uz5d~k2k!exp~2kd!#,

D52~k21k2!sinh~2kd!14kk cosh~2kd!,

ai5~2 sinh~2kd!!21$2 i k̂@Hzuz5d exp~kd!

1Hzuz52d exp~2kd!#2H0iuz5dexp~kd!

1H0iuz52d exp~2kd!%,
~8!

bi5~2 sinh~2kd!!21$ i k̂@Hzuz5d exp~2kd!

1Hzuz52d exp~kd!#1H0iuz5d exp~2kd!

2H0iuz52d exp~kd!%,
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formulas ~4!–~8! make is possible to find the supercurre
and the field~inside the plate! of an arbitrary source.

Substituting~3! into Eq. ~5! and transforming to the co
ordinate representation, we obtain for the average~over the
thickness of the plate! current density through the junctio
from Eqs. ~4!–~8! j (x)5Jm(x)1J(x), where Jm is the
‘‘seed’’ Meissner current, determined by the fieldHm , and

J~x!5
cF0

16p3l2

]

]xE Q~x2x8!
]

]x8
w~x8!dx8 ~9!

is the current due to the source. The nonlocal source–cur
coupling kernel here is given by

Q~x!5K0S uxu
l D1

1

dl2 E
0

` dk J0~kx!

k3~k1k cothkd!
, ~10!

whereK0 andJ0 are a modified Bessel function and a Bes
function of order zero. Here the first term corresponds to
limit of two bulk superconductors of thicknessd@l and is
the kernel, first obtained in Ref. 1 and extrapolated in Re
2–8, in the integral term of the equation. In the opposite lim
of ultrathin films of thicknessd!l, the sum of both terms
gives the kernel, first studied in Refs. 9–11, in the integ
term of the equation and equal to

Q~x!1
leff

p E
0

`

dk
1

112kleff
J0~kx!,

wherele f f5l2/2d is the Peierls penetration depth.
A closed equation for the phase difference at the ju

tion can be obtained, as usual, by equatingj (x) to the sum of
the Josephson supercurrent, the normal current, and the
pacitive displacement current, all regarded as internal ch
acteristics of the contact, and has the form, in standard n
tion,

sin w1
b

vJ
2

]w

]t
1vJ

22 ]2w

]t2

5
Jm~x!

j c
1

lJ
2

pl

]

]x E Q~x2x8!
]

]x8
w~x8!dx8. ~11!

Here j c is the Josephson current density,lJ andvJ are the
Josephson length and frequency, andb is a dissipative pa-
rameter. The integral kernelQ(x) describes excitations in a
Josephson junction in a consistent manner, both in a thin
and in a sample which is thick in the direction of the ma
netic field. In the general intermediate case, it consists of
sum of a well-localized and nonintegrable strongly nonlo
term ~second term on the right-hand side in Eq.~10!!, which
originates with the slowly decreasing tangential compon
of the magnetic field at the surface of the plate. It is easy
see that foruxu@l the kernel has the asymptotic form

Q~x!.
l2

duxu
. ~12!

Accordingly, as follows from Eqs.~9! and ~11!, the current
density of an isolated static kink and the phase of the cur
~near their limiting values! far from the center of the kink
decrease asuxu22.
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3. We shall now discuss the role of the first term on the
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right-hand side of Eq.~11!. Since the total current flowing
from an arbitrary source~just like the current of an indi-
vidual Abrikosov vortex! through an arbitrary cross sectio
of the superconductor equals zero, the integral of the sec
term in Eq.~11! over x should be zero. Therefore the fir
term introduces the transport current into the equation. I
clear that this holds as well for a plate of finite width~in the
direction of thex axis!, though the kernel in Eqs.~9! and
~11! loses translational invariance and becomes a functio
two arguments,Q(x,x8). However, our ansatz~as for other
authors! that the Josephson vortices are oriented across
thickness of the plate presumes implicitly that the thickn
is small compared with the width~otherwise the vortices
generated by the transport current in the absence of an e
nal field would in any case be aligned along thex and not the
z axis!. Then the currentJm(x) is concentrated mainly at th
edges of the plate, and in the local approximation~for
d@l), in which the second term in Eq.~10! can be dropped
the kernel as a whole is replaced byQ(x)→pld(x), and the
right-hand side of Eq.~11! can be put into the form
lJ
2]2w/]x2 everywhere except at the edges; then the to

transport current~the integral of the right-hand side of Eq
~11!! can be introduced in the form of boundary conditio
on the gradient]w/]x of the phase.

In taking account of the nonlocality, in order to formu
late the boundary conditions correctly, the real distribut
Jm(x) of the seed current, which is determined to the sa
extent by the geometry of the system as is the form of
kernel, must obviously also be taken into consideration.
then the edges of the plate, i.e., the finiteness of its wid
should also be taken into account. This problem merit
separate analysis. Nonetheless, even without solving
problem, we note that under certain conditions, even in
cased@l, nonlocality is capable of strongly influencing th
current–voltage characteristic of the resistive state of a w
junction at low voltages, when the Josephson supercur
through the junction is greater than the normal~‘‘quasiparti-
cle’’ ! current.

We shall regard a junction as wide if its width is muc
greater than the characteristic distance traversed by an
vidual kink before it stops as a result of viscosity due to
dissipation of the normal current in the junction and, mo
over, much greater thanlJ . Ford@l we treat the nonlocal-
ity as a weak perturbation of the dynamics of the resist
state, described in the zeroth approximation by Eq.~11! with
the right-hand side replaced bylJ

2]2w/]x2.
As shown in Ref. 17, the viscous~nonballistic! character

of the motion of the vortices gives rise to a strong nonu
formity of the vortex density~i.e., of the magnetic field and
gradient of the phase!; these quantities all grow toward th
edges of the junction approximately as the distance from
center of the contact. At low voltages in the central region
the junction, where the density is low, the vortices are
from one another and their shape is close to that of an
lated kink. The interaction of such vortices and their cor
sponding viscous velocity toward the center of the junct
~where they annihilate with antivortices moving from th
other side!, as well as the time-averaged slip rate of the ph
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approximation, are proportional to the small fact
exp(2Dx/lJ) (Dx is the characteristic distance between t
vortices!, i.e., they are exponentially weak. Thus, the cent
part of a junction plays the role of a ‘‘bottleneck’’ that de
termines the current–voltage characteristic of the junction
the given regime. SinceDx is approximately inversely pro
portional to the transport current, it is easy to see that
Josephson frequency will be an exponential function of
reverse current, and the dependence of the transport cu
I on the voltage U will have the qualitative form
I.I 0@ ln(U0 /U)#

21 with some constantsI 0 andU0.
However, the nonlocal interaction of the vortices c

qualitatively change this picture. Since in the zeroth appro
mation ]w/]x;x far from the center of the junction~if
x50 corresponds to the center! and, on account of Eq.~12!,
at the center of the junction the contribution of the seco
term in Eq.~11! is determined by its periphery, the nonloca
ity, as is clear from Eqs.~11! and~12!, effectively results in
the appearance in Eq.~11! of a distributed current source tha
pushes the vortices toward the center of the junction. A
result, the viscous transport of flux should accelerate a
accordingly, the actual current–voltage characteristicI (U) at
low voltages should become smoother~compared with the
local-approximation estimate!. It is important that such a cor
rection can be very substantial even for a thick plate, si
the nonlocal correction, competing with the exponentia
weak ‘‘local’’ interaction, decreases with increasing thic
ness only linearly, and the effect of the nonlocality on t
form of the IVC should intensify, together with the param
eterl2/d, with increasing temperature.

4. Let us examine the low-amplitude electromagnetic e
citations propagating along the junction. The dispersion
lation follows from Eq.~11!:

v5vJF11
lJ
2q2

~11l2q2!1/2
1

lJ
2q2

pl
F~q!G1/2,

~13!

F~q!5
1

dl2 E
q

` 1

k3

1

@k1kcoth~kd!#

1

~k22q2!1/2
dk.

The functionF(q) has the asymptotic form

F~q!.
2

3dl2q4
~q→`!, F~q!.4leff ln

1

lq
~q→0!.

From Eq. ~12! we have for the corresponding asympto
behavior of the spectrum of electromagnetic waves

v.vJlJq~11l2q2!21/4

for sufficiently large wave numbers and

v.vJH 11lJ
2q2F11

2l

pd
ln

1

lqG J 1/2
for long-wavelength excitations.

In closing, I thank Yu. A. Genenko for helpful discus
sions and Yu. V. Medvedev for his interest and support.
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Electromagnetic excitation of ultrasound in magnetically ordered dielectrics

V. D. Buchel’nikov and Yu. A. Nikishin

Chelyabinsk State University, 454136 Chelyabinsk, Russia

A. N. Vasil’ev

M. V. Lomonosov Moscow State University, 119899 Moscow, Russia
~Submitted 24 September 1996!
Zh. Éksp. Teor. Fiz.111, 1810–1816~May 1997!

The electromagnetic excitation of sound in magnetically ordered dielectrics—ferro- and
antiferromagnets—is investigated theoretically. It is shown that sound generation in dielectrics by
the Lorentz mechanism~displacement current! is much less efficient than in metals. The
magnetoelastic mechanism of sound excitation in dielectrics is just as efficient as in metals. In
antiferromagnets the amplitude of the excited sound depends on the relaxation parameter
in the magnetic subsystem. The sound excitation efficiency increases as the orientational phase
transition point or the ferromagnetic resonance frequency is approached. ©1997
American Institute of Physics.@S1063-7761~97!01905-7#
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A great deal of theoretical and experimental work h
been devoted to noncontact excitation of ultrasound in m
netically ordered media~see, for example, the review in Re
1!. In this body of work, electromagnetoacoustic convers
~EMAC! processes in magnetic metals are studied. It is
interest to investigate the efficiency in magnetic dielectr
theoretically in order to study ultrasound generation mec
nisms in this class of magnetically ordered substances.

The present paper is devoted to a study of EMAC p
cesses in ferromagnetic and antiferromagnetic dielectrics

2. FERROMAGNETIC DIELECTRIC

Let a uniform electromagnetic plane wavehx5h0
3 exp(2 ivt1 ikz) be normally incident on the surface of
semi-infinite (z.0) cubic single-domain ferromagnetic d
electric. In the ground state of the ferromagnetic dielect
the magnetization vectorM0 and the external constant ma
netic field intensity vectorH0 are parallel to the wave vecto
k and thez axis.

In studying EMAC processes in magnets, it is necess
to solve a system of coupled equations describing the pro
gation and interaction of electromagnetic, spin, and ela
waves in the magnet. This system includes the equatio
elasticity, Maxwell’s equations, and the Landau–Lifsh
equation for the magnetization vector

rüi5
]s ik

]xk
1 f i , curl H5

1

c

]D

]t
,

curl E52
1

c

]B

]t
, div B50, ~1!

div D50, Ṁ5gM3Heff.

Herer is the density of the dielectric,u is the displacemen
vector, s ik5]F/]uik is the stress tensor,uik is the strain
tensor,
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is the analog of the Lorentz force in metals on account of
displacement current,H andE are the magnetic and electri
field intensities in the magnet,c is the speed of light in
vacuum,

D5«E1
1

c
«u̇3B2

1

c
u̇3H, B5H14pM ,

where« is the permittivity ~it is assumed that at ultrasoni
frequencies the permittivity tensor is a constant scalar qu
tity!, g is the gyromagnetic ratio,

Heff52
]F

]M
1

]

]x

]F

]~]M /]xi !

is the intensity of the effective magnetic field in the magn
andF is the free energy density of the dielectric. This syste
of equations must be supplemented by the standard boun
conditions for the intensity and induction vectors of the ele
tric and magnetic fields, and for the stress tensor and
magnetization vector.1

We write the free energy density of the ferromagne
dielectric in the form

F5F~M2!1b~Mx
2My

21Mx
2Mz

21My
2Mz

2!1b1~Mx
2uxx

1My
2uyy1Mz

2uzz!1b2~MxMyuxy1MxMzuxz

1MzMyuzy!1~1/2!c11~uxx
2 1uyy

2 1uzz
2 !1c12~uxxuyy

1uxxuzz1uzzuyy!12c44~uxy
2 1uyz

2 1uzx
2 !, ~2!

whereb is the first cubic anisotropy constant,bi are magne-
tostriction constants, andcik are elastic moduli. In writing
out the energy, we neglect the nonuniform exchange ene
As a result, there is no spatial dispersion of the dynam
magnetic permeability tensor of the ferromagnetic dielec
and the boundary condition for the magnetization can
neglected. This approximation holds well far from vario
resonances.1,2

990$10.00 © 1997 American Institute of Physics
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explicitly contain a term describing the volume magne
striction ~this term is included inF(M2)!, since in the
present geometry, where the constant and variable mag
fields are perpendicular to one another, this term does
affect EMAC processes in ferromagnetic metals and die
trics.

The system of equations~1!, linearized near the position
of equilibrium and describing the propagation of interacti
electromagnetic, spin, and other waves, has the form

v2u61s4
2 ]2u6

]z2
1

H0

4pr

]h6

]z
1
b2M0

r

]m6

]z
50,

]2h6

]z2
1

«v2

c2
h62

v2

c2
@~«21!H014p«M #

]u6

]z

1
4p«v2

c2
m650,

m65x6h62b2M0x6

]u6

]z
, ~3!

wherea65ax6 iay (a5u,h,m) are small cyclic displace
ment, magnetic field, and magnetization variabl
s4
25c44/r is the speed of transverse soun

x65gM0(vs07v) is the dynamic magnetic permeability
vs05gM0(b̄1H0 /M01b2

2M0
2/c44) is the frequency of spin

waves~b̄ is the magnetostriction-renormalized cubic anis
ropy constant3!. The third term in the elasticity equation
responsible for the Lorentz mechanism of ultrasound exc
tion and the fourth term is responsible for the magnetoela
mechanism.

Solving the system of equations~3! under the linearized
boundary conditions gives the following results for the a
plitude of ultrasound excited in the ferromagnetic dielectr
In the case of ultrasound excitation by the displacement
rent ~Lorentz force! mechanism, the amplitude of the excite
ultrasound is

u65S s6

c D 2 H0«m6h0
2prvs6

S 11Am6

« D , ~4!

where s6
2 5s4

2(12z6) is the magnetoelastic-interaction
renormalized transverse sound velocity,z65b2M

2x6 /rs4
2

is the dynamic magnetoelastic interaction parameter,
m65114px6 is the dynamic magnetic permeability.

In magnetically ordered media, a magnetoelastic EM
mechanism that is specific to these media appears. On
count of this mechanism, transverse sound with amplitud

u652
b2M0x6h0

rs4v
F4px6z61S 11Am6

« DA12z6G .
~5!

is excited in a ferromagnetic dielectric. Let us compare
results for the amplitude of the excited ultrasound in diel
trics with the analogous formulas for metals.1 It should be
noted that in dielectrics the skin-layer thicknessd can be
formally assumed always to be greater than the wavelen
l of the electromagnetic and ultrasonic waves. This co
sponds to the caseb@1 in Ref. 1. Then, in the case of
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proximately (c/s6) /«b54ps/«v ~s is the conductivity of
the metal! times greater in metals than in dielectrics. A sim
lar comparison for the magnetoelastic mechanism shows
the efficiency of this mechanism of ultrasound excitation
dielectrics is of the same order of magnitude as in metal

The amplitude of ultrasound excited by the magnetoe
tic mechanism increases rapidly as the orientational ph
transition point is approached (b̄1H0 /M0→0). This hap-
pens because the magnetic susceptibilityx6 and the magne-
toelastic interaction parameterz6 increase near an orienta
tional phase transition.

3. ANTIFERROMAGNETIC DIELECTRIC

EMAC processes in antiferromagnetic dielectrics are
greatest interest, since the overwhelming majority of kno
antiferromagnets are dielectrics. Moreover, in antiferrom
nets many effects are usually intensified by unifo
exchange;4 this can also influence ultrasound transformati
processes. This paper investigates EMAC processes
semi-infinite two-sublattice antiferromagnetic dielectric.

Let a uniform electromagnetic wavehx5h0
3 exp(2 ivt1 ivz) be incident on the surface of an elast
and magnetoelastic isotropic easy-plane antiferromagn
dielectric in the ground state, in which the antiferroma
netism vectorL and the ferromagnetism vectorM lie in the
plane of the sample~along they and x axes, respectively!
and are perpendicular to the wave vectork. The external
magnetic fieldH0 is directed along thex axis.

In the initial system of equations~1!, we write the
Landau–Lifshitz equations for an antiferromagnetic diele
tric in the form

Ṁ5g$M3HM1L3HL%1rHMgL,

L̇5g$M3HL1L3HM%1rHLgL. ~6!

HereHM ,L are the effective magnetic fields for the ferro- a
antiferromagnetism vectors, respectively, andr is the relax-
ation parameter of the magnetic subsystem. For brevity,
relaxation term in Eqs.~6! is written in its simplest form. The
free energy density of an antiferromagnetic dielectric has
form

F5
1

2
AL21

1

4
BL41

1

2
DM3L21

1

2
D8M2L2

1
1

2
aM22H03M2

1

2
bLz

21
1

2
b0L

2ull

1
1

2
bLiLkuik1l1ull

21l2uik
2 . ~7!

HereA, a, B, D, andD8 are uniform exchange constan
within and between the sublattices,b is the uniaxial anisot-
ropy constant,b0 and b are the exchange and relativist
magnetostriction constants, andl i are the moduli of elastic-
ity. Just as in the case of a ferromagnetic dielectric, the n
uniform exchange energy is neglected in Eq.~7!. This makes
it possible to neglect the spatial dispersion of the dynam
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magnetic susceptibility of an antiferromagnetic dielectric and
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magnetism vectors.

We first investigate the case in which relaxation in t
magnetic subsystem is so large that there is not enough
for the ferro- and antiferromagnetism vectors to follow t
changes in the displacement and electromagnetic field
tors. This corresponds to the approximationv!tvE , where
vE5gM0(a1D8L2) is the exchange frequency andM0 is
the saturation magnetization of the sublattices.

The original system of Eqs.~1! and ~6! linearized near
the position of equilibrium can be written in the form

üy5 s̃ t
2 ]2uy

]z2
2
b0bLMrvE

2rv10
x'8

]2uz
]z2

2
bLrvE

rv10
x'8

]hx
]z

,

üz52
ib0bLMv

2rv10vB
vD9 x'8

]2uy
]z2

1 s̃ l
2 ]2uz

]z2

2
1

r S 1

4p
B01

Mb0
vB

vE8x'8 D ]hx
]z

,
~8!

]2hx
]z2

52
i«v

c2 F2ipvbL

v10
x'8

]u̇y
]z

1~B014pMb0x'8 !
]u̇z
]z

1m'8
]hx
]t G ,

where

s̃ t
25

l2~12j t!

r
, j t5

b2L2vE8

4v10l2
x'8 ,

s̃ l
25

~l112l2!~12j l !

r
, j l5

b0
2M2

vB

vD9 x'8

l112l2
,

vE95vE1
1

2
vD8 ,

x'8 5gL/vE8 is the static perpendicular magnetic susceptib
ity, m'8 5114px'8 , v105vA1vme, vA5gbL is the an-
isotropy frequency,vme5gb2L3/4l2 is the magnetoelastic
frequency,

vE85vE22M2vD8 /L
2, vD9 5vD8 1

1

2
vE ,

vD8 5gL3D8, vB5gL0
3B

are the exchange frequencies, and

B05H014pM , M5gH0 /vE , L52M0

are the equilibrium values of the magnetic induction, t
magnetization, and the modulus of the antiferromagnet
vector.

Solving ~8! together with the linearized system o
boundary conditions for the displacement and electrom
netic field vectors leads to the following results.

At low temperatures, when exchange magnetostrict
can be neglected, and forH050 (M50), only transverse
sound with amplitude
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«
D ~9!

is excited, by the magnetoelastic mechanism, in antife
magnetic dielectrics. At high temperatures, including n
the Néel point, where relativistic magnetostriction can b
neglected, and forH0Þ0, only longitudinal ultrasound with
amplitude

uz52 i S s̃lc D 2 B0«m'8 h0
2prv s̃l

S 11Am'8

«
D ~10!

is excited.
Comparing the amplitudes of transverse sound excite

ferromagnetic~5! and antiferromagnetic~9! dielectrics by the
magnetoelastic mechanism shows that they differ by the
tor rvE /v10, which need not be small if the relaxation p
rameter of the magnetic subsystem is not too small. Ho
ever, in antiferromagnetic dielectrics the static magne
susceptibilityx'8 is ordinarily small, so that the efficienc
with which transverse sound is generated in an antiferrom
netic dielectric cannot be much greater than the analog
efficiency in a ferromagnetic dielectric. In the case of ge
eration by the Lorentz force mechanism~assuming that in the
ferromagnetic dielectric longitudinal sound will be excite
with the same efficiency as transverse sound!, the ultrasound
generation efficiency is essentially the same in ferromagn
and antiferromagnetic dielectrics.

In the opposite case, when there is enough time for
magnetic subsystem to adjust to the changes occurring in
elastic and electromagnetic subsystems (v@rvE), the lin-
earized system of equations has the form

üy5 s̃ t
2 ]2uy

]z2
1
ibLMb0v

2rv10
x

]2uz
]z2

1
ivbL

2rv10
x

]hx
]z

,

üz52
ibb0LMv

rv10
x

]2uy
]z2

1 s̃ l
2 ]2uz

]z2

2
1

r S b0Mx1
1

4p
B0D ]hx

]z
,

]2hx
]z2

52
i«v

c2 F2p ibLv

v10
x

]u̇y
]z

1~B014pMb0x!
]2u̇z
]z

1m
]hx
]t G , ~11!

where

x5
gLv10

v1s
2 2v2 , v1s

2 5v10vE8 , m5114px.

At low temperatures and forH50, M50, andb050 only
transverse ultrasound with amplitude

uy5
bLxh0
2rv10s̃t

S 11Am

« D . ~12!
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is once again excited. Forb50, HÞ0, andb0Þ0 only lon-

ou
e
c
g

ie
m
o

a
s

st
fr

un
it
ina

Note that in the present geometry, a quasiantiferromag-
r-
di-
ral
ag-
e
f
ear
en-
g-

for
. IP-
gitudinal sound with amplitude determined by~10! with the
magnetic permeability and susceptibilities from Eq.~11! is
excited in antiferromagnetic dielectrics.

Comparing the results for this case with the analog
results for ferromagnetic dielectrics shows that in the cas
transverse sound generation by the magnetoelastic me
nism, the amplitude of the excited waves in antiferroma
netic dielectrics differs from~5! by the factorv10/v, pro-
vided that the magnetic susceptibility in the magnets stud
is identical. In the case of the Lorentz mechanism, the a
plitudes of the excited longitudinal sound are once again
the same order of magnitude.

Note that according to~10! and~12! the amplitude of the
excited ultrasound increases near the orientational ph
transition of easy-plane antiferromagnetic dielectrics to ea
axis antiferromagnetic dielectrics~at the transition point, the
frequencyv10 decreases to the value of the magnetoela
gap!, as well as near the antiferromagnetic resonance
quencyv1s .

In all other cases both transverse and longitudinal so
are excited simultaneously. Transverse ultrasound is exc
mainly by the magnetoelastic mechanism and longitud
ultrasound is excited by the induction mechanism.
993 JETP 84 (5), May 1997
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netic ~high-frequency! spin branch appears in the final fo
mulas for ultrasound excitation in an antiferromagnetic
electric. The frequency of this branch is ordinarily seve
orders of magnitude higher than that of the quasiferrom
netic ~low-frequency! spin branch. In other geometries of th
problem ~for example, withkiM !, where the frequency o
the quasiferromagnetic branch of the spin waves will app
in the final formulas, it may happen that the ultrasound g
eration efficiency will be much higher in an antiferroma
netic dielectric.
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Influence of disorder in crystal structure on ferroelectric phase transitions
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A new model of ferroelectric phase transitions in disordered crystals is developed. The model
takes into account the nonequivalence of the structural environment of identical ions,
which alters the balance of forces governing ferroelectric structural instability. In contrast with
its predecessors, the new model can be used for qualitative and, in many cases, quantitative
predictions of the temperature range of the diffuse ferroelectric phase transition and the value of
the disorder-induced shift of the average transition temperature as a function of the degree
of disorder and chemical composition. This conclusion is confirmed by a comparison of the
theoretical results with an abundance of known experimental facts. ©1997 American
Institute of Physics.@S1063-7761~97!02005-2#
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The influence of disorder in the structure of crystals
the ferroelectric phase transition can be manifested both
change in the transition temperature and as broadening o
transition temperature~diffuse transition!.1–3 In contrast with
normal ferroelectric phase transitions, where the struc
and properties of the crystal change sharply at a certain t
perature~or at a definite value of some other external para
eter!, such a point cannot be found in the case of diffu
phase transitions. Anomalies of the physical characteris
of a substance as a result of diffuse phase transitions
observed over a broad temperature range spanning tens
sometimes hundreds of kelvins.1,2 One of the fundamenta
problems attending the investigation of diffuse transitions
to establish which factors govern the width of such an int
val. This problem is interesting not only from a fundamen
point of view, but also from a practical standpoint, sin
many potential applications of ferroelectric materials are
rectly associated with the diffuse transition effect.

Factors that can contribute to broadening of the fer
electric transition in real samples are large-scale inhomo
neities of the chemical composition and distribution
defects,4 size effects~e.g., in thin films and intergranula
ceramics!,5,6 and nonuniform internal and external stresse4

In macroscopically homogeneous samples ferroelectric ph
transitions are smeared by point defects if their density
sufficiently high.7 These factors are directly related to th
technology of preparation and processing of real samp
and their role can be minimized~at least in principle! by
technological measures. However, there are more fundam
tal causes responsible for the broadening of phase transit
including disorder in the distribution of ions of different sp
cies among identical crystallographic sites~compositional
disorder!.1,3

Despite the enormous abundance of experimental
gathered in studies of diffuse phase transitions, to date t
is a lack of clarity in regard to the influence of composition
disorder on ferroelectric transitions. The broadening effec
usually identified with spatial fluctuations of the Curie tem
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higher than the average Curie point—of ‘‘new phase’’ m
crodomains: randomly oriented polar clusters, whose num
and size increases as the temperature is lowered. The e
gence of such polar clusters of diameter;10 nm is corrobo-
rated by a great many experimental factors~see, e.g., Refs
8–13!.

The standard models of the evolution of ferroelect
transitions differ primarily in causes postulated as resp
sible for fluctuations of the local Curie temperatureT0

loc .
Historically the first and most universally recognized is t
Isupov–Smolenski� model,1,14,15which attributes the fluctua
tions of T0

loc to fluctuations of composition. Spatial fluctua
tions of composition~e.g., fluctuations of the densities o
B8 and B9 cations in solid solutions A~B12x8 Bx9)O3 with a
perovskite-type structure! must occur as a result of compo
sitional disorder~in the given example, disorder in the pos
tions of the B8 and B9 ions!. If the Curie temperature de
pends on x, phase transitions take place at differe
temperatures in microdomains with differing values ofx.

Critical surveys of other transition broadening mode
are given in Refs. 1, 16, and 17. More or less successfu
each explains distinct phenomena in individual substan
but cannot be used to calculatea priori the width of the
broadening temperature interval~degree of broadening! in a
substance having a certain composition, or at least to m
some kind of qualitative prediction along these lines. W
have proposed17,18 a new model of ferroelectric phase tra
sitions in compositionally disordered crystals, where spa
fluctuations ofT0

loc are associated with random static di
placements of ions from lattice sites as a result of differen
in the sizes of the disordered ions. Here, on the basis of th
notions, we explain the known characteristics of the infl
ence of disorder on ferroelectric transitions in specific co
pounds and solid solutions having the most thoroughly
vestigated perovskite structure of all ferroelectrics. We sh
in particular, that the simple model equations can be use
calculatea priori the degree of broadening.
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FIG. 1. Arrangement of B8 cations~small
dark circles!, B9 cations ~large dark
circles!, and oxygen ions~light circles! in
the ~200! plane of an oxide A~B0.58 B0.59 )O3

with a perovskite structure in the compo
sitionally ordered~a! and disordered~b!
states. The line segments represent proj
tions of the basal planes, at whose inte
sections A cations are situated.
2. NATURE OF THE BROADENING OF PHASE
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TRANSITIONS IN COMPOSITIONALLY DISORDERED
FERROELECTRICS

To investigate the causes of spatial fluctuations of
Curie temperature, which result in the creation of polar cl
ters in compositionally disordered crystals, we proceed
the assumption that the nature of the spontaneous pola
tion is exactly the same in ordered ferroelectrics and in
roelectrics with diffuse phase transitions. This hypothesi
entirely reasonable in view of the well-known fact that
disorder is introduced in an ordered crystal~e.g., by anneal-
ing a complex compound19 or by varying the concentration
of a solid solution20!, the variation of the properties of th
substance in the vicinity of the ferroelectric transition as
degree of disorder varies is generally a gradual process.
can therefore assume that a cluster acquires a dipole mo
through the loss of balance between the forces tendin
displace ions from sites occupied by them in the paraelec
phase~usually long-range Coulomb dipole–dipole intera
tion forces! and forces tending to stabilize the highly sym
metrical structure~short-range repulsive forces!.

All ions in an ordered crystal have the same structu
environment, but disorder leads to distortion of the config
ration of neighboring ions. We illustrate this process for o
ides of the perovskite family, which have the general f
mula ABO3 and in the paraelectric phase are endowed wit
cubic structure21 formed by a shell of oxygen octahed
joined at the vertices. The B cations are situated at
centers of the octahedra, and the positions between octah
are occupied by A cations. The perovskite structure
shown schematically in Fig. 1 for a
A~B0.58 B0.59 )O3 crystal, in which the centers of the oxyge
octahedra are occupied by different cations B8 and B9. If an
octahedron containing a B9 cation is in the neighborhood o
an octahedron containing a B8 cation, the oxygen ion situ
ated between these cations is displaced from the basal p
formed by A cations, moving toward a smaller-radius
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the ions is identical in all unit cells. In the disordered sta
~Fig. 1b!, B cations of one species are located in cert
neighboring unit cells, and the oxygen ions situated betw
them are not~in the first approximation! displaced from the
basal A planes. The size and shape of different oxygen
tahedra with identical B cations therefore differ, and for th
reason the interionic distances also differ, as do the for
acting on the ions, which are the short-range as well as lo
range forces responsible for the ferroelectric transition.
addition, the random configuration of disordered ions
neighboring and more distant cells will necessarily cre
differences in the Coulomb forces applied to identical io
~even when the dimensions of the disordered ions are id
tical and the oxygen octahedra are not distorted!. The local
Curie temperature in any microdomain of the crystal will
determined by the forces acting on the ions located insid
and because these forces are of a random nature, the
Curie temperature will also be random.

3. DESCRIPTION OF THE EFFECTS OF BROADENING OF
FERROELECTRIC PHASE TRANSITIONS IN
PEROVSKITES OF THE TYPE A(B 12x8 Bx9)O3

To analyze the qualitative notions set forth in the p
ceding section, we use the model of coupled anharmo
oscillators for displacive ferroelectrics with one so
mode.23,24 In this model the effective Hamiltonian in th
mean field approximation is the sum of the Hamiltonians
all unit cells of the crystal:

H5(
l
Hl , ~1!

and the Hamiltonian of theith cell has the form

Hl5
1

2
P l

21
A

2
j l
21

B

4
j l
42(

l 8
v l l 8j l^j l 8&,
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whereP l andj l are the generalized momentum and coordi-
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nate of the displacement for the soft mode,A.0 andB.0
are parameters of the one-particle potential, which are de
mined by interactions~mainly short-range! between ions of
one unit cell, andv l l 8 are parameters characterizing the
teraction~long-range dipole–dipole! between different cells

The transition temperature can be expressed as foll
in this model23:

kT0'0.5
V~V2A!

B
, V5(

l 8
v l l 8. ~2!

Let us assume that the soft mode in an AB8O3 perov-
skite crystal with a sharp ferroelectric transition described
the Hamiltonian~1! is associated with displacements of B8
ions relative to the oxygen octahedra~i.e., B8 is a ferroelec-
trically active ion!. When impurity B9 ions are added, the
A~B12x8 Bx9)O3 crystal becomes disordered and, as m
tioned, the dipole–dipole interaction forces and the sh
range restoring forces responsible for the ferroelectric tr
sition become different in different unit cells. This mea
that the HamiltonianHl for each cell must be characterize
by different values of the parameters.

We refer to a cell containing a B8 cation and having
among its nearest neighborsmcells containing a B9 cation as
anm-type cell (m50,1,2, . . . ,Z); Z is the coordination num-
ber ~in our caseZ56).

It is known from experimental work~see above! that the
phase transition in a disordered perovskite is diffuse,
local phase transitions take place at different temperature
separate microdomains~in other words, polar clusters ap
pear!. In writing the HamiltonianH loc of such a micro-
domain, we assume for simplicity that the number of u
cells is the same and equal toN in all unit cells, the param-
eters of the Hamiltonian are also identical for all cells of o
type ~i.e., for all cells having the samem!, and the critical
coordinatesj l do not depend on the type of cell. We the
obtain

H loc5N(
m

cmS 12P lm
2 ~x!1

Am~x!

2
j l
2~x!1

Bm~x!

4
j l
4~x!

2 (
l 851

N~12x!

v l l 8 lm~x!j l~x!^j l 8~x!& D 1Hr1HE .

Here cm is the density ofm-type cells in the microdomain
P lm , Am , Bm , andv l l 8m are the parameters of the Ham
tonian for anm-type cell, the summation overl 8 encom-
passes only interactions with ferroelectrically active ions
longing to the same microdomain,Hr is the total
Hamiltonian of cells containing impurity ions, which ar
nonferroelectrically active by assumption~Hr does not de-
pend on the critical coordinates!, andHE is the contribution
associated with long-range interactions of ferroelectrica
active ions of the microdomain with ions situated outside
microdomain.

We know25 that Coulomb interactions with distant do
mains can be taken into account by introducing a mac
scopic electric field that does not change within the confi
of the unit cell ~and in the case of a homogeneous crys
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tonian describing interaction with the macroscopic field is
constant, which can be discarded in microscopic analysis
then taken into account in corrections to the macrosco
characteristics of the system. The dependence of the pa
eters ofH loc on x is determined by the type of impurity B9
ions.

Multiplying the numerator and denominator in the e
pression forH loc by (mcm512x and discarding constan
termsHr andHE , we obtain

H loc5N~12x!S 12 ~P l
2! loc1

Aloc

2
j l
2~x!1

Bloc

2
j l
4~x!

2 (
l 851

N~12x!

v l l 8
locj l~x!^j l 8~x!& D ,

where

Aloc5

(
m

cmAm~x!

(
m

cm

, Bloc5

(
m

cmBm~x!

(
m

cm

,

Vloc5

(
m

cmVm~x!

(
m

cm

, v l l 8
loc

5

(
m

cmv l l 8m

(
m

cm

are parameters averaged over all ferroelectrically active c
of the given microdomain. Consequently, the Hamiltoni
H loc of the microdomain represents a sum of identical Ham
tonians, i.e., is formally the same as the Hamiltonian of
ordered macroscopic crystal. We therefore obtain the lo
transition temperature~i.e., the transition temperature in th
microdomain! in the form

kT0
loc'0.5

Vloc~Vloc2Aloc!

Bloc
. ~3!

According to Ref. 18, the fluctuations of the density
m-type cells in the investigated microdomain
Dcm5cm2^cm& ~angle brackets are used everywhere to
note averaging over the macroscopic volume! obey a normal
distribution or a Poisson distribution with variance

^~Dcm!2&5~12x!~12pm!pm /N, ~4!

where

pm5
Z!

m! ~Z2m!!
@~12a!x#m@12~12a!x#Z2m, ~5!

anda is the compositional short-range order parameter.
Inasmuch asT0

loc is a function ofcm , the same distribu-
tion can be used to approximate the probabilityFN(T0

loc) of
fluctuations of the local Curie temperatureT0

loc ~subject to the
condition that the nonlinearity of the functionT0

loc(cm) is not
too pronounced!:

FN~T0
loc!5

1

A2ps2
expF2

~DT0
loc!2

2s2 G , ~6!
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where we have introduced the notationDT0
loc5T0

loc2^T0&,
2 loc 2 r
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ands [^(DT0 ) & (s is called the broadening paramete!.
We note that the quantityT0

loc defined by Eq.~3! is the
thermodynamic phase equilibrium temperature, at which
densities of volume free energies of the two phases are e
To determine the temperature at which a new-phase clu
emerges in some microvolume, as mentioned above, we
to take into account the energy of the macroscopic~depolar-
izing! field, along with the surface and elastic energies of
cluster. Allowance for these factors within the framework
the macroscopic approach has shown26 that for all clusters
their onset temperature differs fromT0

loc by the same amount
so that the distribution of the cluster-onset temperatures
the same form asFN(T0

loc) and the same value ofs.
Equation~3! can be used to obtain18 an approximate ex-

pression for the broadening parameter,

s25S ^T0&
12xD

2

(
m

Qm
2 ^~Dcm!2&1sx

2 , ~7!

where

Qm'
nm^V&2mm^A&

^V&2^A&
,

mm5Am /^A&, nm5Vm /^V&, andsx
2 is the contribution asso

ciated with composition fluctuations, which according
Ref. 18 are usually so small as to be negligible.

From Eq.~7!, making use of~4! and assuming for sim
plicity thatA5V ~in factA'V; Ref. 25!, we obtain the final
expression

s25
0.25̂ A&4

~12x!Nk2^B&2(m ~nm2mm!2pm~12pm!. ~8!

To make the model useful for quantitative estimates,
attempt to express the parametersmm and nm in terms of
structural characteristics. Since the parametersA andB of the
one-particle potential describe short-range repulsive for
we can assume that the latter act between the ferroele
cally active B8 ion and neighboring oxygen ions forming th
octahedron about B8. The parametersA and B then vary
according to a power law as functions of the distan
B8–O inside the unit cell,27 and the relations between th
parameters associated with 0-type and 6-type cells can
written in the form

A65A0S a

a22bD
f

, B65B0S a

a22bD
g

, ~9!

wherea is the average unit cell parameter,b is the displace-
ment of oxygen ions from the basal planes formed by A io
and f' f@1. In other types of unit cells the oxygen octah
dra are distorted, and the distances B8–O differ even within
the same cell. Presumably the parameters of the Hamilto
e
al.
ter
ed

e
f

as

e

s,
tri-

e

be

,
-

an

of the corresponding parameters of the 0-type and 6-t
cells. By analogy with~9! we assume that

Am5A0S a

2I m
D f , Bm5B0S a

2I m
D g, ~10!

where I m5a/22mb/Z is the average distance between B8
and O ions in anm-type unit cell~of course, the actual rela
tionship between the parameters will necessarily be m
complicated; in particular, it must depend on the configu
tion of B9 ions in neighboring cells!.

Using Eqs.~10!, we obtain18

mm5
112 fmb/aZ

112 f ~12a!xb/a
. ~11!

Expandingmm in powers of the small ratiob/a and re-
taining only the linear term, we obtain

mm5112 f FmZ 2~12a!xGba . ~12!

To estimatenm , in general, interactions between ions
different cells must be taken into account — by no mean
simple undertaking. We therefore assume, as in the cas
short-range interactions, that the relative variations
dipole–dipole forces acting on a ferroelectrically active i
are determined entirely by the average size of the oxy
octahedron surrounding that ion, and do not depend on
composition of nearest-neighbor and more distant unit c
~the assumption is far from obvious but, as will be show
below, works quite well for the qualitative description o
experimental data!. By analogy with~12! we then readily
obtain

nm5112hFmZ 2~12a!xGba , ~13!

whereh! f ~the short-range forces vary more rapidly wi
distance than the dipole–dipole forces!. Substituting Eqs.
~12! and ~13! into ~8!, we obtain

s5dD
b

a
, ~14!

where

d5
^A&2u f2hu

k^B&AN
,

D5A 1

12x(m FmZ 2~12a!xG2pm~12pm!. ~15!

The ratioa/b can be determined by a method propos
by Sakhnenko et al.,22 who expresseda andb in an ordered
A~B0.58 B0.59 )O3 perovskite in terms of the known paramete
of the ions. Using the same approach, we find
b

a
5U ~1/A2!LAlA@lB82lB9#1LB9lB9@lA1lB8#2LB8lB8~lA1lB9!

~lB81lB9!@A2lALA12~12x!lB8LB812xlB9LB9#
U, ~16!
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wherelA , lB8, a

TABLE I. Broadening parameters of ferroelectric phase transitions and structural characteristics of compounds
and solid solutions with A~B12x8 Bx9)O3 perovskite structure.

rve at
ed
LA , LB8, LB9, (b/a) D sexp, scal ,
No. Composition s Å Å Å •104 •103 K K Refs.

1 PbNb0.5Fe0.5O3 0 2.83 2.01 2.00 13 270 8 4 32, 33
2 PbTa0.5Fe0.5O3 0 2.83 2.02 2.00 26 270 11 8 33, 34
3 PbNb0.5Sc0.5O3 0 2.83 2.01 2.11 106 270 26 31 35
4 PbTa0.5Sc0.5O3 0 2.83 2.02 2.11 93 270 25 27 36
5 PbTa0.5Sc0.5O3 0.40 2.83 2.02 2.11 93 267 25 27 37, 38
6 PbTa0.5Sc0.5O3 0.52 2.83 2.02 2.11 93 259 20 26 36
7 PbTa0.5Sc0.5O3 0.74 2.83 2.02 2.11 93 221 17 23 36
8 PbTa0.5Sc0.5O3 0.85 2.83 2.02 2.11 93 176 11 18 37, 38
9 PbTa0.5Sc0.5O3 0.94 2.83 2.02 2.11 93 115 8 12 36
10 PbNb0.5In0.5O3 0 2.83 2.01 2.15 148 270 49 44 33
11 PbNb0.5Lu0.5O3 0 2.83 2.01 2.20 200 270 26 59 33
12 PbNb0.5Yb0.5O3 0 2.83 2.01 2.21 211 270 46 63 33
13 PbNb2/3Mg1/3O3 0 2.83 2.01 2.14 102 219 30 25 1, 35
14 PbNb2/3Zn1/3O3 0 2.83 2.01 2.15 112 219 22 27 39
15 PbFe2/3W1/3O3 0 2.83 2.00 1.89 156 219 37 38 40
16 BaTi0.95Sn0.05O3 0 2.91 1.97 2.06 112 78 10 10 41
17 BaTi0.90Sn0.10O3 0 2.91 1.97 2.06 112 111 12 14 41
18 BaTi0.88Sn0.12O3 0 2.91 1.97 2.06 112 123 14 15 41
19 BaTi0.85Sn0.15O3 0 2.91 1.97 2.06 112 140 18 17 41
20 BaTi0.95Zr0.05O3 0 2.91 1.97 2.11 174 77 13 14 41
21 BaTi0.90Zr0.10O3 0 2.91 1.97 2.11 174 111 19 21 41
22 BaTi0.80Zr0.20O3 0 2.91 1.97 2.11 173 166 30 32 41
23 BaTi0.70Zr0.30O3 0 2.91 1.97 2.11 172 207 42 39 41

Notes:In Ref. 36 the broadening temperature interval is characterized by the width of the permittivity cu
3/4 of the maximum; we have calculatedsexp by dividing this width by 1.633; the broadening parameter us
in Ref. 38 is, by definition, twice the value of our parameters.
ndlB9 are the valences of A, B8, and B9
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ions, respectively, andLA , LB8, andLB9 are the ‘‘lengths of
unstressed cation–anion bonds’’ which characterize the
of the ions and are defined in Refs. 21 and 22.~The relations
LA'RO1RA , LB8'RO1RB8, and LB9'RO1RB9, where
RO, RA , RB8, andRB9 are the ionic radii of the oxygen
A, B8, and B9 ions, can be used for approximate calcu
tions.!

4. VARIATIONS OF THE AVERAGE CURIE TEMPERATURE
IN THE PRESENCE OF COMPOSITIONAL DISORDER

Normally in experimental work the degree of long-ran
compositional disorders is to be determined19,28,29; we there-
fore analyze the dependence of the average ferroelectric
sition temperaturêT0& on s. For ordering of the NaCl type
~as in Fig. 1a!, which is observed in A~B0.58 B0.59 )O3 perovs-
kites and which we propose to consider below,a52s2 for
large enoughs.30 Using this relation and Eq.~12!, we find
the average of the parameterA over the volume of the crys
tal:

^A~s!&5^A~0!&S 112 f xs2
b

aD , ~17!

where^A(0)& is the average parameterA in the completely
ordered crystal. We similarly obtain

^B~s!&5^B~0!&S 112gxs2
b

aD , ~18!
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ze

-
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^V~s!&5^V~0!&S 112hxs2
aD , ~19!

where, as in the analysis of the influence of disorder on
degree of broadening of the phase transition, for simplic
we ignore effects associated with disorder-induced chan
in the configuration of cations in neighboring and more d
tant unit cells. Substituting~17!–~19! into Eq. ~2!, we obtain

^T0~s!&5^T0~0!&S 112xs2
a

b

hV02 fA0

V02A0
D , ~20!

5. COMPARISON WITH EXPERIMENTAL DATA FOR
PEROVSKITES OF THE TYPE A(B 12x8 Bx9)O3

In the vicinity of a diffuse ferroelectric phase transitio
the temperature dependence of the dielectric permittivity« is
described by the well-known expression1

1

«
5

1

«m
1K~T2Tm!2, ~21!

whereTm is the temperature at which« attains its maximum
value«m , andK is a parameter that differs in different sub
stances. It has been shown1,31 that for polar microdomains
having a normal distribution in the vicinity of a diffuse pha
transition with respect to their local Curie temperatures~and
indeed such is the distribution considered in our model!, the
parameterK can be related to the variances2 of the normal
distribution:
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2«ms2 . ~22!

Table I summarizes all the results of experimental meas
ments ofs ~using Eqs.~21! and~22!! that we have been abl
to find in the literature for perovskites of the typ
A(B12x8 Bx9)O3. Where different authors have given differe
values ofs for one compound, we have chosen the smal
value~higher values are most likely found in samples whe
defects other than compositional disorder also contribute
broadening of the transition!.

Figure 2 showss as a function of the parameterDb/a,
calculated for the corresponding compounds according
Eqs. ~15! and ~16!. In accordance with Ref. 42, we assum
that the Ti, Nb, or Ta ion is ferroelectrically active. To ca
culate the ratiob/a, we use the values given in Ref. 43 fo
the lengths of the unstressed bonds, which are more acc
than those in Refs. 22 and 23. The resulting graph is foun
be linear, so that, according to~14!, the model parameterd is
approximately the same for all compositions. Calculated
the least-squares method from the slope of the
s5F(Db/a), it is found to be 1.1•104 K.

The broadening parameters can be determined with Eq
~14! for any perovskite of the type A~B12x8 Bx9)O3 with fer-
roelectrically active cations in the B sublattice by setti
d51.1•104 K. The results of such calculations are given
Table I and exhibit good agreement with experiment in m
cases.

We now analyze the reasons why such a crude mo
can be used to calculate the broadening parameter in
compounds. The crux of the matter, in our opinion, is th
the primary factor governing broadening is not the abso
strengths of interatomic interactions~e.g., the Curie tempera
ture!, but their relative variations induced by variations
the interatomic distances in the locally deformed disorde
structure. In our model these relative variations are descr

FIG. 2. Broadening parameters versusDb/a for compounds and solid
solutions A~B12x8 Bx9)O3 having a perovskite structure and ferroelectric c
ions in the B sublattice. The points represent experimental values ofs, and
the straight line corresponds to Eq.~14! for d51.1•104 K. The points are
numbered in accordance with the numbering of the compositions in Tab
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local strains of the structure and on the rate of change of
interatomic interactions with distance. The latter rate is d
tated by fundamental parameters that are the same in di
ent compounds of identical structure~e.g., the power expo-
nent in the expression for the energy of interatomic repuls
in the Born–Lande´ form B/r n ~Ref. 44!, which is often used
for perovskites!. With regard to local strains, we have stim
lated them in such a way as to havemm andnm described by
relations~12! and ~13!. Of course, this procedure introduce
errors, which are not very likely to be small. However, t
local strains are similar in all structurally similar compound
so the relative errors are equal. As a result, the quantityd in
the expression~14! for s can be regarded simply as a fittin
parameter to be evaluated from the experimental data.

We now consider the influence of the degree of disor
on the average ferroelectric transition temperature. T
model predicts~see ~20!! a quadratic dependenceT0(s),
which is consistent with the results of a thermodynam
analysis45 and with experimental results.3,19 The influence of
s on the transition temperature should be stronger for hig
values of the ratioa/b, i.e., for a greater difference betwee
the sizes of the ordered ions, and this too is consistent w
experimental results.46

This behavior makes sense at the qualitative level w
we consider the fact that disorder changes the average d
eter of the oxygen octahedra surrounding the ferroelectric
active B cations, causing the average Hamiltonian para
eters governing the transition temperature to change as w
In the known compositionally ordered Pb~B0.58 B0.59 )O3 per-
ovskites~Refs. 3 and 19!, the B9 cations are larger than th
ferroelectrically active B8 cations; in the presence of orde
ing, the average diameter of the oxygen octahedra around
latter cations decreases, the short-range restoring force
crease, and the ferroelectric transition temperature is th
fore lowered.~For a similar reason, the ferroelectric trans
tion temperature drops in perovskites under the influence
hydrostatic pressure.24! In contrast, the antiferroelectric–
paraelectric transition temperature must increase ass in-
creases~in fact, hydrostatic pressure raises this temperat
in perovskites24!.

Experimental results3,19 concur with these conclusions
Special consideration must be given to lead scandium ti
ate Pb~Ta0.5Sc0.5)O3 ~PST!, in which the phase transition
temperature, in contrast with other known ferroelectri
rises in the presence of ordering. This is probably attrib
able to the fact, demonstrated in Ref. 47, that as the temp
ture is lowered, the crystal initially enters a modulated an
ferroelectric~incommensurate! phase and, from there, make
the transition to the ferroelectric phase. But the Curie–We
temperature~which has the significance of the threshold
stability of the paraelectric phase and whose dependenc
s, strictly speaking, is treated in the simple models of t
study! diminishes when ordering takes place in PST,36 as in
other ferroelectrics.

I.
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6. GENERAL LAWS IN THE BROADENING OF
FERROELECTRIC TRANSITIONS IN PEROVSKITES
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We now summarize qualitative trends in the broaden
of the phase transition, which are valid for disordered p
ovskites, and we determine the extent to which the theor
cal conclusions agree with the available experimental da

In the case of A~B12x8 Bx9)O3 perovskites with ferroelec
trically active cations in the B sublattice, an analysis of E
~16! shows as the difference in the length of the unstres
cation–anion bondsDLB5uLB82LB9u ~or the difference in
the radii! of the B8 and B9 cations increases, the relativ
displacement of the oxygen ions from the basal A pla
(b/a) increases, so that, according to~14!, the broadening of
the transition increases as well.

As a result of substitution in the A sublattice~com-
pounds or solid solutions of the type~A12x8 A12x9 )BO3!, oxy-
gen ions are displaced in the A planes without ever leav
them. It is clear from geometrical considerations that sin
the displacements of the oxygen ions are perpendicular to
B–O segment, the length of this segment changes o
slightly ~in comparison with the case of substitution in the
sublattice!, so that comparatively very little difference exis
among the B–O distances. Consequently, if the B sublat
is ferroelectrically active, the ferroelectric transition shou
not broaden appreciably~even though its broadening in
creases with an increase inDLA5uLA82LA9u).

If the A ions are ferroelectrically active, then for simila
reasons substitution in the B sublattice should not ind
significant broadening of the phase transition, whereas s
stitution in the A sublattice, resulting in a relatively marke
variation of the A–O distances, should induce broadenin

Consequently, in different binary solid solutions wi
identical concentrations the broadening is greater, the gre
the difference in the sizes of the disordered ions; it should
relatively large if ferroelectrically active ions are replace
and it should be small if nonferroelectrically active ions a
replaced.

Good examples of this kind of behavior are solid so
tions based on BaTiO3, in which the replacement of the fer
roelectrically active~according to Ref. 42! Ti cation by Sn,
Zr ~Ref. 41!, Hf, and Th~Ref. 48! ions diffuses the transition
substantially, whereas the replacement of the nonferroele
cally active Ba cation by Ca ions leaves the transit
sharp,49,50 and its replacement by Sr ions produces slig
broadening of the transition.41,51 In PbTiO3 ~in which the Pb
ion is ferroelectrically active42! the transition becomes dif
fuse when Pb is replaced by Ca and Sr~Ref. 51! and remains
sharp when the nonferroelectrically active Ti ion is replac
by Sn ~Refs. 52 and 53! and Zr ~Refs. 53 and 54!. Here the
transition in~Pb, Sr!TiO3 broadens only slightly in compari
son with the transition in~Pb, Ca!TiO3, because the differ-
ence in the sizes of the cations in the A sublattice is sma
in the first case. In~K0.5Bi0.5)TiO3 and ~Na0.5Bi0.5)TiO3, in
which the disordered cations differ markedly in size and
situated in a ferroelectrically active sublattice,42 the transi-
tion is substantially broadened.55–57

Different cases can be considered as the concentratio
binary solid solutions is varied.

1! If a ferroelectrically active ion does not change wh
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pected in solid solutions of a ferroelectric and a nonfer
electric or two ferroelectrics with identical ferroelectrical
active ions!, then:

a! replacement of the ferroelectrically active catio
should cause the degree of broadening to increase mono
cally with the concentration~such an increase is described b
Eq. ~14!!, and indeed this kind of behavior has been o
served experimentally, for example, when the ferroelec
cally active Ti cation in BaTiO3 was replaced by Zr and S
~see the table in Ref. 41!;

b! replacement of the nonferroelectrically active cati
should lead to slight broadening with a maximum at the c
centrationx'0.5 ~obviously, the oxygen environment of th
ferroelectrically active cations is deformed to the maximu
at this concentration!, and such a maximum of the degree
broadening has been observed in Pb~Zr, Ti!O3 and
~Ba, Sr!TiO3 ~Ref. 58!.

2! If a ferroelectrically active cation changes when t
concentration is increased~as should be expected at a mo
photropic phase boundary in solid solutions of two ferroel
trics with different ferroelectrically active cations!, then:

a! The replacement in the ferroelectrically active subl
tice can be described by equations of the type~14!, in which
different cations must be interpreted as ferroelectrically
tive at low and high concentrationsx. Thus, the broadening
parameter should tend to zero in the limitsx→0 andx→1,
and a maximum should be observed at the concentratio
which replacement of the ferroelectrically active cation tak
place. This kind of behavior has been observed in solid
lutions~Pb, Sr!TiO3 ~Ref. 51! ~as in PbTiO3, the A sublattice
is ferroelectrically active in SrTiO3; ~Ref. 42!!;

b! if not only the ferroelectrically active cation, but als
the ferroelectrically active sublattice~bearing in mind the A
and B sublattices! is replaced at a certain concentration, su
den jumps in the degree of broadening can be observe
that concentration. This behavior is inherent in solid so
tions (12x)BaTiO3–xSrTiO3. In this case the transition
broadens slightly atx,0.8 ~Refs. 51 and 59!, because the A
sublattice, in which replacement occurs, is not ferroelec
cally active~detailed studies58 have disclosed a maximum o
the degree of broadening atx;0.5, which should be ob-
served in accordance with case 1b above!. At x*0.8 the Sr
ion probably becomes ferroelectrically active~as in pure
SrTiO3), as a result of which the transition broadens cons
erably ~the possibility of a morphotropic phase boundary
x'0.8 is suggested in Ref. 59!. The broadening diminishe
with a further increase inx ~Refs. 51 and 59!, a trend that can
be attributed to an increase in the concentration of the ne
ferroelectrically active Sr ion.

If ions of three or more different species are present i
ferroelectrically active sublattice, an increase in the impur
concentration can lead to a monotonic decrease in the de
of broadening. Indeed, impurity ions whose size differs lit
from that of the ferroelectrically active ion contribute little t
broadening; consequently, if their concentration increase
the expense of the concentration of ions with distinctly d
ferent sizes, the degree of broadening must decrease. G
examples are the solid solutions
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~12x!Pb(Mg1/3Nb2/3)O3–xPbTiO3
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~12x!Pb(Mg1/3Zn2/3)O3–xPbTiO3,

which display60–62 a decrease in the broadening asx is in-
creased, where the concentration threshold separating
tions that exhibit behavior typical of diffuse phase transiti
from solutions with a sharp phase transition coincides w
the morphotropic phase boundary (x50.35 for the first solu-
tion, andx50.1 for the second!.

Within the framework of our model the decrease in t
degree of broadening with increasingx is explained by a
decrease in the concentration of Mg (L52.14 Å! or Zn
(L52.15 Å! ions, which differ sharply in size from the fer
roelectrically active Nb ions (L52.01 Å!. The contribution
of Ti ions (L51.97 Å! to broadening of the transition i
insignificant, because their size is close to that of Nb. Af
the morphotropic boundary the transition becomes sharp
result of the change in the type of ferroelectrically acti
sublattice: In pure lead titanate the A sublattice is ferroel
trically active,42 and it is reasonable to assume that the sa
sublattice will remain ferroelectrically active in the solid s
lution up to the morphotropic boundary. In solid solutio
(12x) Pb(Fe1/2Nb1/2)O3–xPbTiO3, on the other hand, the T
impurity increases the degree of broadening,63 because the
difference between the sizes of Ti and Nb may be small,
it is still greater than the difference between Nb and
(L52.00 Å!.

According to the given model, strong local structur
distortions, and hence marked broadening of the phase
sition, are produced~at high concentrations! by vacancies,
interstitial atoms, dislocations, and other extended defect
large increase in the degree of broadening due to the app
ance of vacancies has been observed experimentally, in
ticular, in Pb~Sc1/2Nb1/2)O3 and Pb~Sc1/2Ta1/2)O3

ceramics.7,64 It has been shown65,66 that dislocations are the
main cause of broadening in BaTiO3, ~Ba, Sr!TiO3, and
Pb~Zr, Ti!O3 thin films ~compositional disorder, as men
tioned above, should not contribute much to broadening
the transition in these solid solutions!. A significant contri-
bution from dislocations and other structural defects
broadening of the ferroelectric transition has been obser
in Pb~Sc1/2Nb1/2)O3 crystals.

67

7. CONCLUSION

To summarize, all the fundamental laws underlying t
influence of disorder in crystal structure on ferroelect
phase transitions have been successfully explained, wher
contrast to the work of other authors, different types of d
order ~point and extended defects and compositional dis
der! have been treated within the context of a single
proach. A distinctive feature of this approach is that it tak
into account disorder-induced differences in the structu
environment of identical ions, such differences altering
balance of forces governing ferroelectric structural insta
ity. According to the model developed here, the cause
spatial fluctuations of the local transition temperature, wh
lead to the formation of polar microclusters and broaden
of the transition, are random static distortions of the confi
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sizes of the compositionally disordered ions or to the ex
tence of vacancies, interstitial ions, dislocations, and ot
defects. The influence of the degree of compositional dis
der on the average transition temperature can be attribute
the disorder-related variation of the average diameter of
oxygen octahedra surrounding ferroelectric ions in the p
ovskite structure. The degree of broadening of the ferroe
tric phase transition can be determined for perovskites h
ing the general formula A~B12x8 Bx9)O3, using only data on
the chemical composition, degree of compositional disord
and ionic radii in the calculations.
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