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It is shown for the first time that the massive-fermion state in the Nambu–Jona-Lasinio model
with nonzero chemical potentialm is described by two different phases, the transition
between which is second-order. It is proved that both first- and second-order phase transitions,
depending on the values of the model parameters, restore the chiral symmetry of the
model. Two tricritical points exist in the (m,M ) phase diagram~M is the dynamical fermion
mass atm50!. © 1997 American Institute of Physics.@S1063-7761~97!00106-6#
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The idea of spontaneous symmetry breaking plays
important role in the development of elementary-parti
physics. At present there exist two well-known methods
spontaneous symmetry breaking. In the first one spontan
symmetry breaking occurs in theories with auxiliary Hig
fields, where spontaneous breaking actually occurs at
classical-action level~the standard theory of electroweak i
teractions, grand unification theory, and others are base
this approach!. The cost of this approach is the mandato
existence of as yet undiscovered Higgs bosons.

In the other approach the spontaneous symmetry br
ing occurs in a dynamical manner, i.e., through radiat
corrections to the classical action, and then there is no n
to introduce Higgs fields. This mechanism of symme
breaking was first discovered in models with a four-fermi
interaction.1,2 The simplest such model is described by a L
grangian of the form

L5 (
k51

N

c̄ki ]̂ck1
C

2N
@~ c̄kck!

21~ c̄kig5ck!
2# ~1!

and is called the Nambu–Jona-Lasinio model. In order to
the 1/N expansion, we shall study anN-fermion version of
the model that is symmetric under the simplest continu
chiral transformations

ck→eiug5ck ~k51,...,N!. ~2!

Theories with a four-fermion interaction find applicatio
for the explanation of superconductivity3 and high-Tc

superconductivity.4 Lagrangians with a four-fermion interac
tion have been used before in discussions
superconductivity.5–8 It should be noted that the electron
states near the Fermi surface are very important in the in
tigation of superconductivity~just as in other transport phe
nomena!. As is well known, the Fermi energy for free ele
trons equals
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whereme andne are the electron mass and density, resp
tively, andh is Planck’s constant.

The potential interaction energy of two electrons se
rated by an average distance^r &;ne

21/3 can be estimated a

^Vpot&'
e2

4p«0^r &
5

e2ne
1/3

4p«0
. ~4!

The quantity

a5
^Vpot&

«F
5

mee
2

2p«0~3p2!2/3h2ne
1/3 ~5!

largely characterizes the properties of superconductors an
used for constructing different approximations. In metals
satisfiesa>1, i.e.,a is not small. In consequence, the inte
electron Coulomb interaction as well as the electron–pho
interaction must be taken into account. The Coulomb int
action can result in both an exchange interaction and a
relation between the mutual displacements of the electro
Such effects are important in calculations of the dispers
laws of electrons and in the construction of the Fer
surface.9 On this basis, the phenomenological expressio
obtained for regionsa>1 are ordinarily used to determin
these characteristics for specific metals.

In discussions of superconductivity~and other transpor
phenomena! the Fermi surface is ordinarily considered to
given, but the structure of the surface itself can be v
complicated.9 In the ground state all levels with energ
«,«F are filled and all states with energy«.«F are free.
Further, elementary excitations in real metals are assume
be the same as in a system of noninteracting electrons
the same Fermi surface. Strictly speaking, this is not
since the excited states in a system of strongly interac
particles can be substantially different from the excited sta
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in a system of noninteracting particles. To give a complete
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description of the excited states it is necessary to solve
Coulomb-interaction problem, i.e., a self-consistent ma
body problem.

For ordinary low-Tc superconductors the difference b
tween the excited states is small. This has led to good ag
ment between the results of numerical calculations for
superconducting parameters and experiments. In the ca
high-Tc superconductivity, wherene is lower than in ordi-
nary metals, the Coulomb interaction~Coulomb correlations!
apparently can cause the excited states of the high-Tc super-
conductor to differ substantially from the correspondi
states for the situation when the interaction is neglected. A
result of both technical and mathematical difficulties, to d
scribe high-Tc superconductivity theoreticians are compell
to use well-proven field-theoretic models, taking account
the different values of the physical parameters. In additi
these model problems, like the results obtained with th
must be treated with caution. This is because different ty
of interactions are sometimes taken into account very
mally in these models by including an interaction of the c
responding type in the Lagrangian, and this makes it diffic
to identify the model results with the physical data. W
respect to the Lagrangian~1!, it should be noted that only
one aspect of the question is studied—the breaking of ch
symmetry in the presence of a finite chemical potential~we
note that superconductivity is ordinarily attributed to t
breaking ofU(1) symmetry of this model!. The introduction
of a formal chemical potential can be substantiated, for
ample, in a generalized Nambu–Jona-Lasinio model w
vector particles~r mesons!. The drawbacks inherent in thi
model—nonrenormalizability and existence of a cutoff p
rameterL;4p f p'1.2 GeV—are largely compensated b
its predictive power in the low-energy approximation of ha
ron physics. For example, this model has been used acti
to describe the low-energy physics of mesons,10 construct
alternative models of the electroweak interaction,11 and so
on. Recently, it was discovered on the basis of these mo
that external magnetic fields can catalyze spontaneous s
metry breaking12 ~see also Ref. 13!. All this shows why in-
terest in Nambu–Jona-Lazinio type models has remained
diminshed for more than 30 years with special attent
being devoted to investigations of the structure and the c
cal properties of the vacuum in the presence of a surroun
medium, i.e., taking into account factors such as the temp
ture and chemical potential,14,15 different external fields,16

and the nontrivial topology and curvature of space-time.17

On this basis, in the present paper we investigate in
tail the phase structure of the four-dimensional Namb
Jona-Lasinio model with a nonzero chemical potentialm. In
contrast to previous works on this subject,14,15 we have dis-
covered a richer phase structure of the model as well as fi
and second-order chiral phase transitions, depending on
values of the initial parameters~a more detailed discussion o
the results is contained in the concluding section!.

2. PHASE STRUCTURE OF THE MODEL WITH m50

First, we recall the well-known properties of the mod
with a zero chemical potentialm. To investigate the proper
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convenient to employ instead of the Lagrangian~1! the aux-
iliary Lagrangian

L̄5c̄ i ]̂c2c̄~s11 ig5s2!c2
N

2G
~s1

21s2
2! ~6!

~here, to simplify the equations, the indexk labelling the
Fermi field is dropped!. This auxiliary Lagrangian for the
equations of motion for the fieldss1,2 is equivalent to the
initial Lagranian~1! of the theory.

The effective action of this model to leading order in t
parameter 1/N is

exp~ iSeff~s1,2!!5E Dc̄Dc expS i E L̄d4xD ,

where

1

N
Seff~s1,2!52E d4x

s1
21s2

2

2G

2 i ln det~ i ]̂2s12 ig5s2!. ~7!

Assuming here that the fieldss1,2 do not depend on the
space–time coordinates, we have by definition

Seff~s1,2!52Veff~s1,2!E d4x, ~8!

1

N
Veff~s1,2!5

S2

2G
12i E d4p

~2p!4 ln~S22p2!

[
1

N
V0~S!, ~9!

where(5As1
21s2

2. Switching in Eq.~9! to the Euclidean
metric (p0→ ip0) and introducing an Lorentz-invariant cu
off of the integration region (p2<L2) we obtain

1

N
V0~S!5

S2

2G
2

1

16p2 H L4 lnS 11
S2

L2D1L2S2

2S4 lnS 11
L2

S2D J . ~10!

The condition that the function~10! be stationary is

1

N

]V0~S!

]S
50,

S

4p2 H 4p2

G
2L21S2 lnS 11

L2

S2D J [
S

4p2 F~S!50.

~11!

Hence it is obvious that forG,Gc54p2/L2 Eq. ~11! has no
solutions exceptS50, i.e., the fermions are massless a
chiral symmetry~2! is not broken.

For G.Gc a nontrivial solutionS0(G,L) Þ 0 of Eq.
~11! such thatF(S0)50 appears. It follows from Eq.~11!
that the derivative of the functionV0(S) is negative for
0<S,S0 and positive forS.S0 . Therefore the potentia
V0(S) has a global minimum at the pointS0 Þ 0, signifying
spontaneous breaking of the chiral symmetry of the mo
and the appearance of a fermion mass

1048Vshivtsev et al.
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It is obvious that the fermion mass depends on the coup
constantG and the cutoff parameterL.

In what follows, forG.Gc , we shall use instead ofG
the massM ~12! of the Fermi particles as the independe
parameter of the theory. In this case, the constantG can be
expressed in terms ofH andL by means of the stationarit
equation~11! and the following equivalent expression can
derived forV0(S):

16p2

N
V0~S!5S2L222S2M2 lnS 11

L2

M2D
2L4 lnS 11

S2

L2D1S4 lnS 11
L2

S2D . ~13!

We note once again that for allG.0 the function~10! is
the effective potential of the model. However, in the phase
which chiral symmetry is broken spontaneously~i.e., for
G.Gc! the expression~13! can be used forVeff . Then the
fermion massM is a free parameter and the constantG can
be found from the equationF(M )50 ~the functionF(x) is
given in Eq.~11!!.

3. TAKING ACCOUNT OF THE FINITENESS OF THE
CHEMICAL POTENTIAL

Let us assume temporarily that, together with the che
cal potentialm, a thermostat with temperatureT acts on the
system described by the Nambu–Jona-Lasinio Lagran
~1!. In this case, to obtain the effective potentialVmT(S), the
following transformation of the integration measure must
made in Eq.~9!:

E dh0

2p
→ iT (

n52`

`

, p0→ ipT~2n11!1m.

After summing overn, i.e., over the Matsubara frequen
cies in the expression obtained, we obtain the effective
tential forT,m Þ 0

1

N
VmT~S!5

1

N
V0~S!22TE d3p

~2p!3 ln$u1

1exp~2b~AS21p21m!!uu1

1exp~2b~AS21p22m!!u%, ~14!

whereb51/T, and V0(S) is given in Eqs.~10!–~13!. We
now let T in Eq. ~14! pass to zero:

1

N
Vm~S!5

1

N
V0~S!22E d3p

~2p!3 u~m2AS21p2!

3~m2AS21p2!. ~15!

This expression, which is the effective potential in t
Nambu–Jona-Lasinio model with a nonzero chemical pot
tial, will be investigated below for a global minimum in o
der to obtain the phase structure of the model and hence
properties of the vacuum as a function of the values ofm,
M , andL. First, however, we integrate in Eq.~15! over the
momentum variables
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22m3Am22S21S4 ln
~m1Am22S2!2

S2 J .

~16!

Starting with this formula, we assume everywhere below t
S>0. There is no loss of generality in making this restr
tion, since~15! is odd as a function of the variableS.

The condition for the functionVm(S) to be stationary
has the form

1

N

]Vm~S!

]S
505

S

4p2 H 4p2

G
2L21S2 lnF11

L2

S2G
1u~m2S!F2mAm22S2

22S2 ln
m1Am22S2

S G J . ~17!

Let G,Gc54p2/L2. In this case, forS.m Eq. ~17! has
the same form as the equation of stationarity~11! with
m50 and therefore it has no solutions. IfS,m, then Eq.
~17! reduces to the equation

S

4p2 H 4p2

G
2L21S2 lnF11

L2

S2G12mAm22S2

22S2 ln
m1Am22S2

S J 50, ~18!

which, as one can easily see, has no solutions other
S50.

In summary, for values of the coupling constantG less
thanGc the Nambu–Jona-Lasinio theory lies in the massl
chirally symmetric phase irrespective of the chemical pot
tial m>0.

4. PHASE STRUCTURE OF THE MODEL FOR G>GC

AND m>0

In this section we shall examine the phase structure
the Nambu–Jona-Lasinio model form Þ 0 andG.Gc . As
already noted in Sec. 2, in this case there is a one-to-
correspondence between the values of the constantG and the
dynamically arising fermion massM . Specifically,

4p2

G
2L252M2 lnS 11

L2

M2D . ~19!

Let us consider the set of all pairs of nonnegative valu
of the parameters (m,M ). Our problem is to indicate the
phase of the Nambu–Jona-Lasinio model for each elemen
this set.

A! Let m,M .
Let us investigate the equation of stationarity~17! in this

case. It is obvious that forS.m it has the solution
S15M . For S,m Eq. ~17! assumes the form

S f m~S![SH 2mAm22S22M2 lnS 11
L2

M2D
1049Vshivtsev et al.
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1S2 ln
S21L2

~m1Am22S2!2J 50. ~20!

The domain of the functionf m(S) is S P (0, m). Figure 1
displays three curvesl 1 , l 2 , and l 3 :

l 1 : m5FM2

2
lnS 11

L2

M2D G1/2

[m1c~M !,

l 2 : m5M ,

l 3 : m5
L

2Ae
. ~21!

The quantitiesf m(0) and f m(m) vanish on the curves
l 1 and l 2 , respectively, and the functionwm(S) vanishes on
the curve l 3 ~see Eq.~A5! in the Appendix! at the point
S50. These and other properties of the functionf m(S) are
presented in the Appendix, whence it follows that if the po
(m,M ) lies below the curvesl 1 and l 2 , then f m(S) as a
function ofS is negative on the interval~0,m!. This situation
is reflected in Fig. 2 by two different plots of the functio
f m(S): Curve 1 corresponds to values of the chemical p
tential m,L/2Ae and for curve2 we have m.L/2Ae.
Therefore, in this case Eq.~20! has only the trivial solution
S250. If the point (m,M ) lies belowl 2 but abovel 1 , then
the equation f m(S)50 will have the unique solution
S3(m) ~see curve3 in Fig. 2, which qualitatively represent
the behavior of the functionf m(S) in this case!. However, in
S3(m) the effective potentialVm(S) assumes a value great
than at the pointS250 ~because the functionf m(S) is posi-
tive on the interval (0,S3(m)), i.e., on the same interva
where the derivativedVm(S)/dS is positive and the function
Vm(S) increases monotonically!.

Therefore the global minimum of the effective potent
for m,M lies at one of the two pointsS15M andS250.
The first point corresponds to the massive phase. The in
phase boundary form,M is determined by the equation

Vm~0!5Vm~M !. ~22!

FIG. 1.

FIG. 2.
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Figure 4 shows the interphase boundary in the form
the critical curvem5m2c(M ), which can readily be repre
sented, using Eqs.~13!, ~16!, and~22!, in the analytical form

m2c~M !5F3

4 S M4 lnS 11
L2

M2D
1L4 lnS 11

M2

L2 D2M2L2D G1/4

~23!

for all M>M2c (m2c(M2c)5M2c), where

M2c5L/A4.895676. ~24!

In the theory a first-order phase transition occurs from
massive phase into the massless phase and vice vers
passing through the critical pointm2c(M ), since here the
value of the order parameter~fermion mass! changes
abruptly.

B! Let m.M .
In this case, the equation of stationarity~17! obviously

has no solutions forS.m. For S,m Eq. ~17! reduces to
Eq. ~20! and possesses the explicit solutionS250. Let us
assume now that the point (m,M ) falls between the curves
l 1 and l 2 ~see Fig. 1! and, moreover, thatM,M1c , where
M1c is the point of intersection ofl 1 and l 3 ~18!. M1c is the
root of the equation

M1c
2

2
lnS 11

L2

M1c
2 D 5

L2

4e
. ~25!

On the basis of the results obtained in the Appendix, i
obvious that for such points (m,M ) the function f m(S) in-
creases monotonically on the interval~0,m! and possesses

FIG. 3.

FIG. 4.

1050Vshivtsev et al.
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tential Vm(S) will lie. The curve1 in Fig. 3 corresponds to
this case. The point is thatS250 is a local minimum of the
potential in this case, since for allS P (0,S4(m,M )) the de-
rivative of the functionVm(S) with respect to the variableS
is negative and thereforeVm(S) is a decreasing function o
this interval, i.e., Vm(0).Vm(S4(m,M )). The solution
S4(m,M ) possesses the following properties~for
0,M,M1c):

S4~m,M !→M , if ~m,M !→ l 2 ,

S4~m,M !→0, if ~m,M !→ l 1 . ~26!

In the case when the point (m,M ) lies above the curvel 1 ~for
0,M,M1c! the equations of stationarity~17! and~20! will
have a unique solutionS250 where the potentialVm(S)
possesses a global minimum.

Therefore, in this range of the parametersm andM ~i.e.
m.M and M,M1c! the curve l 1 is a critical curve of
second-order phase transitions, since onl 1 the order param-
eter is a continuous function of the variablesm and M ~see
Eq. ~26!!. The region corresponding to the massive phase
below the curvel 1 and the massless phase lies abovel 1 ; an
analytic expression relating the chemical potentialm andM
on l 1 is given in Eq.~21!.

Let us now assume that we are in the region wh
m.M andM.M1c hold. Here, also,S250 is the solution
of the equations of stationarity~17! and ~20! andS15M is
not their solution. In this case the behavior of the functi
f m(S) depends strongly on where the point (m,M ) lies. If
this point lies below the curvel 3 ~see Fig. 1!, then a plot of
the function f m(S) looks like the curve1 in Fig. 3; if
(m,M ) lies abovel 3 but below l 1 , then f m(S) corresponds
to the curve2 in Fig. 3. For (m,M ) P l 1 the curvef m(S) has
the form3. Finally, for (m,M ) lying above but ‘‘near’’l 1 the
curve 4 in Fig. 3 describes the qualitative behavior
f m(S). For even larger values of the chemical potential
function f m(S) is strictly greater than zero in its entire do
main S P (0,m), and for this reason the only solutio
S250 of Eq. ~20! in this case corresponds to the massl
symmetric phase of the model.

The following conclusions can be drawn from Fig.
~recall that m.M and M.M1c!. For points located no
higher thanl 1 ~see Fig. 1!, the corresponding equation o
stationarity~20! has a unique nontrivial solutionS4(m,M )
Þ 0 ~in Fig. 3 these are the points where the curves1–3
intersect theS axis!, at which the potential evidently pos
sesses a global minimum. The phase of the massive-ferm
model with massS4(m,M ) lies here.

In the case when (m,M ) lies above the curvel 1 the plot
of the functionf m(S) can cross theS axis ~see Fig. 3! at a
point, in addition toS4 , S3(m) where the potentialVm(S)
possesses a local minimum~we discussed a similar situatio
in paragraph A!.

Therefore, in the range of parametersm and M under
study an absolute minimum of the potential can lie eithe
S250 or S4(m,M ) ~the latter point is the solution of Eq
~20! which equalsM in the limit m→M ! and the interphase
boundary is given by the equation
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It follows from the preceding discussion that the lin
m5m3c(M ) lies no lower thanl 1 . ~The curvel 1 for m.M
and M.M1c is most likely no longer a critical curve, i.e
the boundary between the massive and massless phases
the casem.M1c . If, however, phase transitions still occu
on l 1 , then only first-order transitions occur, since onl 1 the
order parameterS4(m,M ) Þ 0 in this case will be a continu
ous function of the variablesm and M .! Furthermore, it is
obvious that

m3c~M1c!5m1c~M1c!5L/2Ae,

m3c~M2c!5m2c~M2c!5M2c5L/A4.89. .

and the critical pointm3c(M ) is a curve of first-order phas
transitions. The results of this section are presented in Fig
where critical curves of the second (2m1c[ l 1) and first
(m2c ,m3c) kinds, which separate the massless symme
phase A of the Nambu–Jona-Lasinio model from th
(m,M ) domain corresponding to the massive state of
model, are plotted. We have actually shown that the poina
in Fig. 4 is a tricritical point, since second- and first-ord
phase transitions occur in an arbitrarily small neighborho
of this point.

5. NEW PHASE OF THE NAMBU–JONA-LASINIO MODEL

In the present section we shall show that the Namb
Jona-Lasinio model can exist in the massive state in
different phases. In Fig. 4 the letterB designates the region
where fermions possess a massM , and in the regionC the
fermion mass equalsS4(m,M ); in addition, on the line sepa
rating B in C regions, i.e., form5M , the fermion mass is a
continuous function of the parametersm and M since
S4(M ,M )5M .

We wish to show that the linem5M is indeed the
boundary between the two different phases. As is w
known,18 the criterion for a phase transition is that a jump
present in some partial derivative of one of the thermo
namic potentials of the system at the interphase boundary
our case it is most convenient to employ the thermodyna
potentialV~m!, which is the value of the effective potentia
of the model at the point of the global minimum. It follow
from Eqs.~13!–~16! that in the regionB

VB~m!5Vm~M !5V0~M !5
N

16p2 H M42M4

3 lnS 11
L2

M2D2L4 lnS 11
M2

L2 D J . ~28!

It is clear thatVB does not depend onm, so that its deriva-
tives with respect tom all vanish identically in the region
B as well as on its boundarym5M .

In the region C the thermodynamic potential of th
model equals the effective potential~16! at the point
S4(m,M ), which is a solution of Eq.~20! and possesses th
propertyS4(M ,M )5M , i.e.,

VC~m!5Vm~S4~m,M !!. ~29!

1051Vshivtsev et al.



Obviously, VB(M )5VC(M ). The first derivative of the
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function VC(m) is

dVC~m!

dm
5H ]Vm~S!

]m
1

]Vm~S!

]S

]S

]mJ U
S5S4~m,M !

. ~30!

SinceS4 ~in what follows we shall often employ the abbr
viated notationS45S4(m,M )! is a solution of the stationar
ity equation~20!, the second term in braces in Eq.~30! van-
ishes. Taking account of Eq.~16!, we obtain

dVC~m!

dm
5

]Vm~S!

]m U
S5S4

5
N

3p2 ~m22S4
2!3/2. ~31!

The expression~31! vanishes asm→M 1 , i.e., on the curve
m5M , since hereS4→M , and hence the first derivative o
the thermodynamic potential of the model is a continuo
function on this curve. To calculate the higher-order deri
tives of VC(m) we shall require the following relations fo
the derivatives of the functionS4(m,M ), which can be eas
ily obtained from Eq.~20! which givesS4 as an implicit
function of m:

dS4

dm
[S485H ] f m~S!

]m F] f m~S!

]S G21J U
S5S4

5
22Am22S4

2

S4$ ln@~S4
21L2!/~m1Am22S4

2!2#2L2/~S4
21L2!%

,

~32!

d2S4

dm2 [S4952
2~m2S4S48!

S4Am22S4
2$...%

1O~m22S4
2!, ~33!

where it is understood that the expression in braces in
~33! is the same as the expression in braces in Eq.~30!. It is
obvious thatS48→0 as m→M , but the second derivative
satisfiesS49→2` asm→M . Let us now find the second an
third derivatives of the potentialVC(m). Using Eqs.~32!
and ~33!, we obtain easily from Eq.~31!

d2VC~m!

dm2 52
N

p2 Am22S4
2~m2S4S48!, ~34!

d3VC~m!

dm3 52
N

p2

~m2S4S48!2

Am22S4
2

2
N

p2 Am22S4
2

3~12~S48!22S4S49!. ~35!

The expression~34! vanishes asm→M , but the third deriva-
tive of the thermodynamic potential becomes infinite
m→M , as one can easily see from Eqs.~35! and ~33!.

Therefore at the pointsm5M ~for M,M2c! the third
derivative of the thermodynamic potentialV~m! changes
abruptly at the transition from the regionB into C and vice
versa. This fact strictly indicates that the linem5M is a
critical curve of second-order phase transitions, i.e., the
gions B and C in Fig. 4 correspond to different massiv
phases of the Nambu–Jona-Lasinio model. The main ph
cal characteristic distinguishing the phasesB and C is the
particle number density
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From Eqs.~36! and~28! we easily obtainnB50 in the phase
B. In the phaseC ~see Eq.~31!! we have

nC5
N

3p2 ~m22S4
2~m,M !!3/2Þ0. ~37!

In Fig. 4 the solid and dashed lines represent the crit
curves of the first- and second-order phase transitions,
spectively. Furthermore, it follows from what has been s
above that in this figure, in addition to the pointa, the point
b is also a tricritical point of the exact model, since bo
first- and second-order phase transitions can occur in an
bitrarily small neighborhood of this point.

6. CONCLUSIONS

In the present paper we have investigated to leading
der in the 1/N expansion the phase structure of the Namb
Jona-Lasinio model with nonzero values of the chemical
tential. The main results are presented in Fig. 4, wh
displays the phase diagram, studied in detail above, of
model.

In the past it was believed that the massive-fermion s
of the Nambu–Jona-Lasinio theory is the only phase w
spontaneously broken chiral symmetry. Our analysis h
has demonstrated the possibility that a more complica
situation arises in this model. It may be possible to comp
such situations with specific physical realizations and to
late them to observable effects~for example, high-Tc super-
conductivity! which are described on the basis of this mod
Here, however, skepticism and caution must be excerci
since this model does not include many effects which
characteristic for this phenomenon. It was previously
sumed that the transition from the massive to the mass
phase is a second-order transition;14 this immediately led to
an equation for the critical curvef m(0)50, i.e., to the ex-
pressionm5m1c(M ) ~21! for all values of the massM . We
showed that this curve$ l 1 :m5m1c(M )% is an interphase
boundary only for sufficiently smallM,M1c ~see Eq.~25!!.
For M.M1c chiral symmetry is restored via first-orde
phase transitions on the curvesm2c(M ) andm3c(M ), which
are different fromm1c(M ).

We also showed that two massive phasesB andC ~see
Fig. 4!, the transition between which is a first-order pha
transition, exist in the present model. For comparison,
note that in contrast to the four-dimensional case the ph
diagrams of four-fermion models in two- (D52) and three-
dimensional (D53) spaces do not contain the phaseC at all.
~It is possible that an effect due to the dimensionality of t
space is manifested in the present model, and in view of
attempts made by some theoreticians to associate higTc

superconductivity with the bulk properties of materials, th
possibility is not excluded.! We note that in the Gross–
Neveu model withD52 the A and B phases are separate
by a critical curvem5M /& of first-order phase transitions19

and forD53 the curve of first-order transitionsm5M is also
the boundary separating theA andB phases.20
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Finally, it is important to note that the existence of the

el
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th
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ar
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3 correspond to this case.! If the point (m,M ) lies above the
.

of

.

.

D
,

,

tricritical points a and b ~Fig. 4! in the phase diagram
(m,M ) of the Nambu–Jona-Lasinio model is an absolut
new result with no analogs in the literature.

Considering the importance of this model not only f
elementary particle physics but for wide applications of
model in solid-state phyics, our analysis could be of inter
for a wide circle of physicists.

We thank D. Ebert, R. N. Faustov, and N. O. Agasy
for helpful discussions and A. K. Klimenko and V. A
Vshivtsev for performing numerical calculations and prep
ing the manuscript for publication.

This work was supported in part by the Russian Fund
Fundamental Research under Grant No. 95-02-037004-a

7. APPENDIX

We present here some properties of the functionf m(S)
defined in Eq.~17!. It is easily seen that

f m~0!52m22M2 ln~11L2/M2!, ~A1!

f m~m!52M2 ln~11L2/M2!1m2 ln~11L2/m2!,
~A2!

d

dm
@ f m~S!uS50#.0,

d

dm
@ f m~S!uS5m#.0. ~A3!

From Eq.~A3! it is obvious thatf m(m)50 holds only
for m5M ~curve l 2 in Fig. 1!; f m(m),0 holds form,M
and f m(m).0 for m.M . It follows from Eq. ~A1! that
f m(0)50 holds on the curvel 1 ~see Fig. 1! where the pa-
rametersm andM are related by the relation~18!:

m5m1c~M !5A1

2
M2 ln~11L2/M2!. ~A4!

Since f m(0) is a monotonically increasing function of th
parameterm ~see Eq.~A3!!, we have f m(0),0 for points
(m,M ) lying below the curve l 1 and f m(0).0 for
m.m1c .

We define a functionwm(S) as follows:

d fm~S!

dS
[2Swm~S!52SF ln

S21L2

~m1Am22S2!2

2
L2

S21L2G . ~A5!

Hence it is easily seen thatwm(0) is a monotonically de-
creasing function of the parameterm and vanishes only for
m5L/2Ae ~curve l 3 in Fig. 1!. It is also obvious from Eq.
~A5! that wm(m).0 holds for all values of the chemica
potential. If m,L/2Ae holds, then we havewm(0).0 and
wm(S).0 for all S P (0,m). Therefore, in this range of th
parameterm the functionf m(S) is a monotonically increas
ing function of its argumentS. ~The curves1 in Figs. 2 and
1053 JETP 84 (6), June 1997
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curve l 3 , then wm(0),0. However, it is obvious from Eq
~A5! that in this case there exists a pointS0 P (0,m) with
wm(S0)50 and f m(S) possesses an absolute minimum~see
curves2 and3 in Fig. 3!.
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Nature of the Darwin term and ( Za)4m 3/M2 contribution to the Lamb shift for an

er
arbitrary spin of the nucleus
I. B. Khriplovich1) and A. I. Milstein2)

Budker Institute of Nuclear Physics, 630090, Novosibirsk, Russia

R. A. Sen’kov

Novosibirk University, 630090, Novosibirsk, Russia
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The contact Darwin term is demonstrated to be of the same origin as the spin-orbit interaction.
The (Za)4m3/M2 correction for the Lamb shift, generated by the Darwin term is found
for an arbitrary nonvanishing spin of the nucleus, both half-integer and integer. There is also a
contribution of the same nature to the nuclear quadrupole moment. ©1997 American
Institute of Physics.@S1063-7761~97!00206-0#

1. The literature, including that of the pedagogical na-The spinorsj and h are chosen in such a way that und
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ture, abounds with assertions on the nature of the Dar
correction which are, in our view, at least doubtful. In pa
ticular, we cannot agree with the conclusion1 that the Darwin
term is absent for a particle with spin 1~see also Ref. 2!.
This subject is of real interest now for the interpretation
high precision experiments in atomic spectroscopy.3–5

To study the problem we consider in this note the Bo
amplitude for scattering of a particle with an arbitrary spin
an external electromagnetic field. In the case of pract
interest, that of an atom, this is the interaction of the nucl
with the electromagnetic field of an electron. We thus der
the general form of the Darwin term for an arbitrary nucle
spin and obtain the corresponding order (Za)4m3/M2 cor-
rection to the Lamb shift~here and belowm is the electron
mass, andZ andM are, respectively, the charge and mass
the nucleus!.

2. The wave function of a particle with an arbitrary sp
can be written as~see, for example, §31 of Ref. 6!

C5S j
h D . ~1!

The spinors

j5$jb1b2 ...bq

a1a2 ...ap%

and

h5$ha1a2 ...ap

b1b2 ...bq%

are symmetric in the dotted and undotted indices separa
and

p1q52I ,

whereI is the particle spin. For a particle of half-integer sp
one can choose

p5I 1
1

2
, q5I 2

1

2
.

In the case of integer spin it is convenient to use

p5q5I .
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reflection they go over into each other~up to a phase!. At
pÞq they are different objects which belong to differe
representations of the Lorentz group. Ifp5q, these two
spinors coincide. Nevertheless, we will use the same exp
sion ~1! for the wave function of any spin; i.e., we will als
introduce formally the objecth for an integer spin, keeping
in mind that it is expressed in terms ofj. This will allow us
to perform calculations in the same way for the integer a
half-integer spins.

In the rest frame bothj andh coincide with a nonrela-
tivistic spinor j0 , which is symmetric in all indices; in the
rest frame there is no difference between dotted and undo
indices. The Lorentz transformation ofj0 , up to the terms
;(v/c)2 included, is

j5S 11
Sv

2
1

~Sv!2

8 D j0 ,
~2!

h5S 12
Sv

2
1

~Sv!2

8 D j0 .

Here

S5(
i 51

p

si2 (
i 5p11

p1q

si .

andsi acts on thei th index of the spinorj0 as follows:

sij05~si !a ib i
~j0! ...b i ... . ~3!

In the Lorentz transformation~2! for j, after the action of the
operatorS on j0 the first p indices are identified with the
upper undotted indices and the nextq indices we identified
with the lower dotted indices. The inverse situation tak
place forh.

We will use, however, Eq.~2! since it no longer distin-
guishes between the upper and lower or the dotted and
dotted spinor indices. It allows us to introduce in a natu
way the «standard» representation for the spinors, in c
analogy with that for spin 1/2:

f5~j1h!/2, x5~j2h!/2.

10544$10.00 © 1997 American Institute of Physics



In it the wave function is written as

or

lf
nt
th

in

sio
e-

n
n

us
,
he

5
Gm

j8* ~2Sq!214ī I @qp#)j . ~10!

s

so

ro-
s
r

e

f

spin
C5S @11~Sv!2/8# j0

~Sv/2! j0
D . ~4!

It is convenient to introduce the object

C̄5~f* ,2x* !.

Then

C̄C5f* f2x* x5j0* j0

is an invariant. We will use the common noncovariant n
malization of the particle number density

r5
E

M
c̄c51, ~5!

where the wave functionc is

c5AM

E S @11~Sv!2/8# j0

~Sv/2! j0
D . ~6!

HereE is the particle energy.
3. Let us go over now to the scattering amplitude itse

The order 1/M2 terms in it arise only in the time compone
of the electromagnetic current. Restricting the analysis to
form factors of the lowest multipolarity, electricFe and mag-
netic Gm , we can write this component for an arbitrary sp
as follows:

j 05Fe

E1E8

2M
c̄8c1

Gm

2M
c8* Gqc, ~7!

where

q5p82p.

The matrix

G5S 0 S

2S 0 D ~8!

is a natural generalization of the corresponding expres
for spin 1/2~which is valid in the spinor and standard repr
sentations!:

g5S 0 s

2s 0 D . ~9!

This generalization is fairly obvious in the spinor represe
tation. According to~9!, heres connects a dotted index i
the initial spinorc with the undotted one inc̄, and 2s
connects an undotted index fromc with the dotted one in
c̄. This is exactly whatG does. It is straightforward now to
prove expression~8! for the standard representation. Let
mention also that Eq.~8! is confirmed by the final result
which reproduces correctly the spin-orbit interaction; t
form of the latter is well known for an arbitrary spin~see,
e.g., §41 of Ref. 6!.

The term withGm in the current density is

j 0m5
Gm

2M
j08

* ~1,Sv8/2!S 0 Sq

2Sq 0 D S 1
Sv/2D j0
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4M2 0 0

The spin operator is

I5
1

2 (
i 51

2I

si .

The first term withFe in Eq. ~7! reduces to an analogou
structure:

j 0 ch5Fe

E81E

2AEE8
j08

* S 11
~Sv!2

8
1

~Sv8!2

8

2
~Sv8!~Sv!

4 D j05Fej08
* S 11

~Sq!2

8M2 2 i
I @qp#

2M2 D j0 .

~11!

Thus the total charge density is

j 05j08
* S Fe2~2Gm2Fe!

~Sq!2

8M2 1~2Gm

2Fe!i
I @qp#

2M2 D j0 .

We disregard for now the charge radius of the nucleus,
that

Fe5Fe~0!51.

The dependence of the spin-orbit interaction on the gy
magnetic ratiog is universal for any spin; this ratio enter
through the factorg21. Therefore, the magnetic form facto
is normalized as follows:

Gm~0!5
g

2
.

Let us split now (Sq)2 into the contact and quadrupol
parts:

S iS jqiqj5
q2

3
S iS i1S qiqj2

1

3
q2d i j DS iS j . ~12!

The contact term in~12! is

SS5S (
i 51

p

si D 2

22S (
i 51

p

si D S (
i 5p11

p1q

si D 1S (
i 5p11

p1q

si D 2

53~p1q!12S p~p21!

2
1

q~q21!

2
2pqD54I ~11z!,

~13!

z5H 0, integer spin,

1/4I , half-integer spin.

In deriving Eq. ~13! we used the symmetry in any pair o
spinor indices,a1 , a2 @see Eq.~3!#. This symmetry means
that the corresponding spins 1 and 2 add up to the total
S51. Therefore,

~s1s2!j05j0 .
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The interaction operator is proportional to the Fourier

d

e

le

st

c
h
ce
in

ca

m

E

12
1

^r 2& q22~g21!
q2

, ~20!

if-
n

rm

u-

rge

is
f.
t
in

the
he
cal
transform of the Born amplitude~see, e.g., §83 of Ref. 6!.
We thus obtain from~13! the following contact interaction
between a nucleus of chargeZ and the electron:

U~r !5
2p

3

Za

M2 ~g21!I ~11z!d~r !. ~14!

The corresponding energy correction is

DEn5
2

3

m3

M2 ~g21!I ~11z!
~Za!4

n3 d0l . ~15!

For the hydrogen atom (I 51/2) this correction was obtaine
long ago in Ref. 7.

Let us consider now the quadrupole part of~12!. Using
again the complete symmetry ofj0 , one can easily calculat
the corresponding quadrupole interaction:

U2~r !52
1

6
¹ i¹ j

e

r
dQi j . ~16!

Here

dQi j 52
3

4

Ze~g21!

M2 LH I i I j1I j I i2
2

3
d i j I ~ I 11!J ,

~17!

L5H 1/~2I 21!, integer spin,

1/2I , half-integer spin.

Expression~17! is a correction to the nuclear quadrupo
moment. Its existence forI 51 was pointed out in Ref. 1.

This correction to the quadrupole moment can be e
mated as

dQ'20.22~g21!
ZI

A2 e mbarn.

For the deuteron ~Z51, A52, g52md51.714. Q
52.86e mbarn! it is 20.04e mbarn.

4. Let us return now to the discussion of the conta
term. There is some ambiguity in its definition related to t
nuclear charge radius. The contribution of the latter produ
a contact interaction and enters physical observables
sum with the expression (g21)q2I (11z)/(6M2). In par-
ticular, the elastic cross section of the electron-nucleus s
tering at smallq2, up to the termsq2/M2 included, is

ds

dV
5

a2

4e2

cos2~u/2!

sin4~u/2!

1

112 sin2~u/2!e/M

3H F12
1

6
^r 2&Fq22~g21!

q2

6M2 I ~11z!G2

1
4

3
Gm

2 I ~ I 11!@2 tan2~u/2!11#J , ~18!

where^r 2&F is defined in terms of the expansion of the for
factor Fe

Fe~q2!'12
1

6
^r 2&Fq2. ~19!

We note here that the expression in square brackets in
~18! reduces for the proton (I 51/2) to
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and for the deuteron (I 51) to

12
1

6
^r 2&Fq22~g21!

q2

6M2 . ~21!

However, the proton charge radius is usually defined d
ferently from that in Eq.~20!, i.e., in terms of the expansio
of the so-called Sachs form factor

Ge5Fe2
q2

4M2 Gm .

Obviously, the charge radius defined in terms of the fo
factor Ge is

2
1

6
^r 2&G5

]Ge

]q2 52
1

6
^r 2&F2

g

8M2 .

Correspondingly, expression~20! is usually rewritten as

12
1

6
^r 2&Gq21

q2

8M2 , ~22!

and the Darwin correction for the proton is defined as

q2

8M2 ,

but not as

2
~g21!q2

8M2 .

We could redefine the electric form factor for the de
teron fromFe to Ge in such a way that here

2
1

6
^r 2&G5

]Ge

]q2 52
1

6
^r 2&F2

g

6M2 ,

so that the Darwin correction for the deuteron becomes

q2

6M2 ,

instead of

2
~g21!q2

6M2 .

However, for a deuteron the common definition of the cha
radius is neitherFe nor Ge but

2
1

6
^r 2&D52

1

6
^r 2&F2

g21

6M2 .

Of course, under this definition the whole Darwin term
swallowed up bŷ r 2&D . No wonder that the authors of Re
1, using^r 2&D instead of̂ r 2&E or ^r 2&G , have concluded tha
for the deuteron, in contrast with the proton, the Darw
correction is absent.

Clearly, this distinction between the deuteron and
proton is based only on a rather arbitrary definition of t
charge radius of the former; this distinction has no physi
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meaning and has nothing to do with the nature of the Darwin
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with
term.
5. In summary, the Darwin interaction exists for an

nonvanishing spin and is of the same nature as the spin-
interaction. In particular, like the spin-orbit interaction, th
Darwin term is not directly related to the so-called zitte
bewegung. Of course, there is a certain difference betw
the spin-orbit and contact energy corrections. The former
a classical limit together witĥ1/r 3&, while the latter, which
is proportional touc(0)u2, does not. However, this fact ha
nothing to do with relativity and negative energies, a
therefore is certainly unrelated to the zitterbewegung.
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Generation of phase-correlated light pulses in a hyper-Raman active medium

a

Yu. P. Malakyan and A. R. Mkhitaryan

Institute of Physics Research, Armenian National Academy of Sciences, 378410 Ashtarak-2, Republic of
Armenia
~Submitted 13 August 1996!
Zh. Éksp. Teor. Fiz.111, 1942–1954~June 1997!

We analysis within the quantum setting the effect of correlation of monochromatic fields of the
Stokes and parametric radiation generated in a two-photon-absorbing medium by hyper-
Raman scattering and four-wave mixing, respectively. Our results show that when there is
destructive interference between the two processes, both modes are amplified in the
medium in a correlated way, so that beyond a certain characteristic distance they propagate in a
stationary manner with the same amplitudes and photon statistics but with opposite phases,
while the medium becomes transparent to them. We calculate the intensity of the fields, the
emission linewidths, and the diffusion of the total phase, the latter determining the extent
of phase noise correlation at the output. We also show that no matter how the phases of the
separate modes diffuse, the quantum fluctuations in the total phase may be completely squeezed.
© 1997 American Institute of Physics.@S1063-7761~97!00306-5#
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Generation of phase-correlated light beams in wh
quantum noise is quenched below the coherence thres
still remains an object of intensive studies,1–11 with the aim
of building high-precision laser interferometers. To raise
sensitivity of these devices, usually limited by vacuum flu
tuations in passive interferometers and spontaneous-emis
fluctuations in active interferometers, using squeezed st
of light1,2 and correlated-spontaneous-emission lasers3–5 was
proposed. Generation of double-mode squeezed light
four-wave mixing, whose theoretical aspects were studie
Refs. 6 and 7, was achieved by several researchers8–10 with
squeezing of up to 20%, and the quenching of spontane
emission fluctuations in the relative phase of a double-m
correlated-emission laser below the Schawlow–Townes l
was observed by Winterset al.11 However, there are certai
difficulties that limit the application of these schemes.
shown by Bondurantet al.,6 mode losses impose a seve
restriction on the extent of squeezing that can be obtaine
four-wave mixing. More than that, the losses must be l
not only in absolute value but also in comparison with t
constant of the nonlinear interaction between the mod
which cannot always be achieved since strong nonlinear
in a resonant medium are accompanied by large losses~see
the first paper in Ref. 7!. The decisive factor in quenchin
spontaneous-emission fluctuations in correlated-emission
sers is the coherence of the atomic states, and before a
are to be injected into the laser cavity they must be prepa
in a coherent superposition of these states,5 which requires
employing lasing methods that do not involve populati
inversion.

In this paper we propose a new mechanism for gen
tion of phase-correlated light. The method is based on
structive interference between hyper-Raman scattering
the accompanying four-wave mixing. The reader will rec
that hyper-Raman scattering in a medium with two-pho
absorption generates Stokes radiation that is in quasir
nance with the atomic 2→3 transition~Fig. 1!. This radia-
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parametric field on the frequency of the 3→1 transition.
These processes have been thoroughly studied
theoretically12,13and experimentally,14–17and the destructive
interference effect has been predicted in our earlier work12,18

and recently corroborated in experiments.19,20 The physical
meaning of this effect is discussed below.

We present the quantum theory of these processes
show that in destructive interference the quantum fluct
tions in the total phase of two modes can be squeezed p
tically up to 100% and the fields can be amplified, ev
though, in contrast to the previous schemes of four-wa
mixing, the parametric coupling constant of the fields
smaller than the linear losses in the modes. Actually we
speaking about generating bright squeezed light in exp
ments that can easily be realized. We also find that at la
distances a stationary propagation regime sets in, wh
guarantees that the amplitudes of the fields are stabilized
the medium becomes transparent. An important feature
this scheme is that the frequencies of both modes can
over a broad interval. For instance, in the case of hyp
Raman scattering on the 5S– 5P3/2 transition through the
intermediate state 5D5/2 in rubidium vapor the two frequen
cies are approximately the same, while in heavy-metal
pors the Stokes radiation is generated in the IR range and
parametric field in the vacuum UV range.16,17

In our previous paper21 we used the semiclassical ap
proach to show that the Stokes and parametric fields are
related in amplitude and phase. Here we study the effec
quantum noise on the magnitude of this correlation. We c
culate the spectral emission widths and the diffusion of
total phase, which determines the mode correlation at
exit. To this end we solve the stochastic differential equ
tions for the complex-valued amplitudes of single-mo
Stokes and parametric radiation. The starting point of
quantum analysis is the basic equation for the density ma
of the two modes. Section 2 is devoted to deriving this eq
tion. There we also report on the discovery of a coher

10587$10.00 © 1997 American Institute of Physics
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field superposition propagating in the medium undisturb
In Sec. 3 we find the general solutions for the semiclass
amplitudes, the average number of photons, and the stan
deviation of the number of photons. These solutions desc
the evolution of the correlation between modes as a func
of the propagation length. In Sec. 4 we calculate the em
sion linewidths and the quantum fluctuations in the to
phase of the two modes; we also discuss the extent of p
correlation at the exit from the medium. Concluding rema
are presented in Sec. 5.

2. THE BASIC EQUATIONS FOR THE DENSITY MATRIX OF
TWO MODES

Let us discuss the interaction between a gaseous med
consisting of identical atoms with a level configuration d
picted in Fig. 1 and a classical pump fieldE at a frequency
v0 with a two-photon detuningD5v2122v0 , and quan-
tized single-mode fields of the Stokes and parametric ra
tion of frequenciesv15v212D and v2;v31, with the
quantized fields described by the annihilation~creation! op-
eratorsa1 (a1

1) and a2 (a2
1), respectively. The system’

interaction Hamiltonian, which can be obtained by adiab
cally excluding the population amplitude of level 2, in th
resonant approximation has the following form:

H5
i\

AV
(

i
~Ga1

12 f a2!s31
~ i !1H.c., ~1!

whereV is the quantization volume~assumed equal to th
volume occupied by the medium!, s31

( i ) is the operator of the
atomic transition 1→3 for the i th atom, and the coefficient

G5A2pv2

\
E2m23(

n

m1nmn2

\2D~vn12v0!
,

FIG. 1. Energy level diagram for a hyper-Raman active atom;v0 , v1 , and
v2 are the frequencies of the pump, Stokes, and parametric fields, re
tively.
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are the effective three-photon matrix element of the 1→3
transition with emission of a Stokes photon, and t
parametric-field coupling constant. For simplicity we assu
that G and f are real and positive. The two are linked to th
gaina of the Stokes field and the absorption coefficientb of
the parametric field by the following relationships:21

a5
2G2N

cG
, b5

2 f 2N

cG
, ~3!

whereN is the atom number density, andG is the transverse
relaxation of the polarization at the frequencyv2>v31.

Destructive interference between hyper-Raman sca
ing and four-wave mixing occurs only if18

a,b. ~4!

This condition can easily be met if one bears in mind thaa
depends on two free parameters, the intensity and t
photon detuning of the pump radiation, and thatb is a con-
stant proportional to the oscillator strength of the 1→3 tran-
sition.

The reader will recall that destructive interference occ
only in the forward direction~the direction of propagation o
the pump pulse!, since in this direction the phase detuning
the wave vectors of the three waves,Dk52k2k12k2 , is
small compared toa. In the backward direction the parame
ric processes are suppressed and there is only hyper-Ra
scattering. We also note that since destructive interferenc
highly dependent on the relative phases of the three fie
and is sensitive to collision and Doppler broadening, the
tuning D is assumed to be much larger than the widths
these processes.

The equation for the density matrixr of the two modes
can be derived in the standard way by using the Hamilton
~1! and assuming that all atoms remain in the ground stat

1

c

dr

dt
52

a

2
@a1a1

1r22a1
1ra11ra1

1a1#2
b

2
@a2

1a2r

22a2ra2
11ra2a2

1#1
Aab

2
@~a1a2r1ra1a2

22a2ra1!1H.c.#. ~5!

Two remarks concerning Eq.~5! are in order. First, direct
losses occur only in thev2-mode in the form of absorption
on the 1→3 transition, which is described by the seco
term on the right-hand side of Eq.~5!. There are no indi-
vidual losses in thev1-mode, since we ignored populatio
motion by assuming that level 3 is not occupied. Nevert
less, the Stokes field can be absorbed due to a param
interaction with a coupling constantAab/2, which accord-
ing to ~4! is smaller than the linear losses in thev2-mode.
All other losses are ignored. The first term on the right-ha
side of Eq.~5! corresponds to the emission of a Stokes ph
ton in the three-photon transition 1→3 of an atom. Second
since we are discussing the stationary interaction with
field, assuming that the pulse length is much larger than

ec-
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single-mode approximation Eq.~5! is equivalent to the
propagation equationz5ct. Then, introducing the operator

M5
1

Ab2a
@Aaa1

12Aba2# ~6!

with the commutation property@M ,M 1#51, we can write
Eq. ~5! as

dr

dz
52g@M 1Mr1rM 1M22MrM 1#, g5

b2a

2
,

~7!

which can be solved if we introduce the boundary condit
r5r1r2 , wherer1 andr2 are the initial density matrices o
the Stokes and parametric modes~they will be specified
later!. Equation~7! possesses a remarkable feature: it c
tains only the linear combinationM of the fields, while the
second linear combination

L5
1

Ab2a
@2Aba1

11Aaa2# ~8!

is a constant of motion, since@M ,L#5@M 1,L#50. This
leads to a situation in which from the very beginning t
fields are amplified and propagate in the medium in a co
lated manner so that the statistical properties of the com
ite mode L remain unchanged. The correlation becom
strongest in the regionz.g21, where both fields take on
their stationary values and the medium becomes transpa
The solution of Eq.~7! in this limit can be found from the
fact thatMr5rM 150, i.e.,r5uf&^fu, with uf& satisfying
the following equation:22

~Aaa1
12Aba2!uf&50. ~9!

This equation makes it possible to find all the asympto
relationships between the amplitudes, the average numb
photons, and the statistics of the two modes without solv
Eq. ~7!. In particular, Eq.~9! implies that

^a1~`!&5Ab

a
^a2

1~`!&, ^n1~`!&5
b

a
^n2~`!&21,

^Dn1
2~`!&5

b~b222g2!

a~ab22g2!
^Dn2

2~`!&, ~10!

where^Dn2&5^n2&2^n&2 is the variance of the number o
photons. When the field gain is high, we can replaceai with
Ei /Av i ( i 51,2) and thus go over to classical amplitud
E1 and E2 , which, as Eqs.~10! imply, are equal in magni-
tude ~to within the factorAbv1 /av2! and have opposite
phases. Also, whena<b holds, the modes have practical
the same statistics. What is more interesting, however, is
if we use Eqs.~10! and the fact thatL is spatially invariant,

^~L1!mLp&uz.g215^~L1!mLp&uz50 , ~11!

wherem andp are integers, we can establish the correlat
that exists between the asymptotic fields and the in
pulses. Let us examine the case where the signal field e
only at the frequencyv1 and the second field is generated
the medium. Then, using~10! and ~11!, we obtain
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1 2a 1

^n1~`!&5
b2

4g2 ~^n1~0!&11!21, ~12!

and

^Dn1
2~`!&5

b4

16g4 @^Dn1
2~0!&1^n1~0!&#

2
b2

4g2 ^n1~0!&. ~13!

The last result, which links the statistics of the photons in
v1-mode at entrance to the medium and in the asymptot
region, is especially interesting. We see that in the lim
a!b, the statistics remains practically unchanged, but
field gain is achieved~see Eqs.~12!!, and, according to~10!,
the v2-mode is not generated. But ifa<b holds, there is
considerable gain, while the statistics worsens to a gre
extent. There is a certain range of optimum values ofa/b in
which for an initially coherentv1-field the asymptotic modes
are coherent, too, but at the same time are considerably
plified. In Sec. 3 we discuss these aspects in greater de

In concluding this section we note that invariant fie
combinations of typeL have also been discovered in th
generation of correlated pulses in three-levelL-systems in
conditions of electromagnetically induced transparency.23–25

Their simple properties provide the means for a comp
description of the correlations between fields without cha
ing the dynamics of the processes.

3. CORRELATED AMPLIFICATION OF FIELDS: THE
MAGNITUDE OF CORRELATIONS OF THE NUMBER OF
PHOTONS

In this section we discuss the laws of correlated fie
amplification and the strengthening of the correlation b
tween the intensities of two modes as a function ofz, assum-
ing that initially the modes were in pure states and w
uncorrelated. The quantum dynamics described by Eq.~7!
leads to a strong mixing, or entanglement, of the fields, a
for z.0 the density matrixr can no more be represented b
the direct product of the state vectors of individual mod
We know of no analytical solution of Eq.~7! in general form,
so that we find the amplitudes, the average number of p
tons, and the photon dispersion by solving equations deri
from ~7!. For the average values of the complex-valued a
plitudes and the number of photons these equations are

d^a1&
dz

5
a

2
^a1&2

1

2
Aab^a2

1&,

d^a2&
dz

52
b

2
^a2&1

1

2
Aab^a1

1& ~14!

and

d^n1&
dz

5a^n1&2D1a,
d^n2&

dz
52b^n2&1D,

D5Aab Re h, h5^a1a2&, ~15!
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FIG. 2. The number of photons as a function ofz ~in units ofg21! in the Stokes (n1) and parametric (n2) modes atn105100, n2050, anda50.6b ~a! and
at n1050 andn205100 ~b!.
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dh

dz
52gh1 1

2Aab ~^n1&2^n2&11!.

Equations~14! and ~15! have the following solutions:

^a1~z!&5
a10

2g
~b2ae2gz!2

Aab

2g
a20* ~12e2gz!,

~16!

^a2~z!&5
a20

2g
~be2gz2a!1

Aab

2g
a10* ~12e2gz!

and

^n1~z!&5
n10

4g2 ~b2ae2gz!21
ab

4g2 n20~12e2gz!21n1s ,

^n2~z!&5
n20

4g2 ~be2gz2a!21
ab

4g2 n10~12e2gz!21n2s ,

~17!

h~z!5
Aab

4g2 @n10~b2ae2gz!1n20~a2be2gz!#

3~12e2gz!1hs ,

whereni05uai0u2, i 51, 2, ai0 are the initial values of the
amplitudes, andnis andhs stand for the spontaneous-photo
contributions:

n1s5
1

4g2 ~b2ae2gz!221,

n2s5
ab

4g2 ~12e2gz!2, ~18!

hs5
Aab

4g2 ~b2ae2gz!~12e2gz!.

In deriving Eqs.~17! we allowed for the fact thath(0)50.
Note thath is a real quantity.

Let us explain the effect of destructive interference b
tween hyper-Raman scattering and four-wave mixing us
the equation for̂n1& through an example~see the first line in
Eq. ~15!!. The first terma^n1& on the right-hand side of the
equation describes the increase in the number of Stokes
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second termD corresponds to the contribution of four-wav
mixing and is negative, since the two processes comp
However, the destructive interference between the two p
cesses leads to their suppression only ifD is comparable to
a^n1& or is larger thana^n1&. And this happens only if
b>a.

The solutions imply that the amplification of the field
strongly depends on the initial conditions. For instance
only a Stokes signal enters the medium and the param
field is generated in the medium, i.e.,a10 Þ 0 anda2050,
then, as Eqs.~16! imply, both field monotonically increase in
z with a constant phase. In the opposite case, where we h
a20 Þ 0 anda1050, thev2-field is first completely absorbed
in the vicinity of z05g21 ln(b/a), and then is regenerated
but with a phase shifted byp in relation to the initial value.
The physical meaning of this effect is that thev2-mode is
absorbed due to the destructive interference~4!. Here coher-
ent polarization is created on the 3→1 transition but, rather
than relaxing, due to parametric coupling it emits radiati
again into thev2-mode with a phase, however, that corr
sponds to four-wave mixing. The effect is clearly visible
Fig. 2, which illustrates the behavior of thez-dependence of
^n1,2(z)& for two initial values, with the spontaneous-photo
contribution ignored.

A parameter that is more convenient for studying pho
statistics than the variance of the number of photons is
second-order correlation functionGi

(2)5@^ni
2&2^ni&#/^ni&

2,
whose values occupies a small interval. The reader will re
that for a coherent fieldG(2)51. To calculateG(2) we must
know the solution for thêni

2&. These in turn are related t
new correlators:̂ n1n2&, ^a1

12a2
12&, etc. The equations fo

these quantities are quite lengthy and we do not give th
here, the more so that analytical solutions for these equat
have been found only for the case of initial coherent fields
when they are generated from a vacuum state. In both c
the solutions for̂ ni

2& and ^n1n2& have the form~we have
ignored the termsnis

2 andhs
2!

^ni
2&5^ni&

21~2nis11!^ni&, i 51, 2, ~19!

^n1n2&5^n1&^n2&12hhs . ~20!

Correspondingly, for the functionsGi
(2) we obtain
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FIG. 3. Behavior of second-order correlation functionsG1
(2)(z) ~curve1! andG2

(2) ~curve2! ~in units of g21! with a50.6b at ~a! n105100 andn2050 and
~b! n1050 andn205100.
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Gi 511
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. ~21!

Figure 3 illustrates the behavior ofGi
(2) for different initial

conditions. We see that in the first case, where the in
Stokes field is coherent,a10 Þ 0 andGi

(2)51, and the para-
metric field is in a vacuum state, both modes are practic
coherent from the start. In the opposite case the Stokes
is chaotic at small distances, but becomes coherent very
and much earlier than̂n1(z)& reaches its stationary value. A
the same time, the parametric mode becomes chaotic in
total-absorption region, but also rapidly restores the statis
of the initial coherent field. Thus, in both cases the quant
noise is considerably suppressed, which leads to a Poi
distribution in both modes.

Now let us discuss the size of the correlation of t
photon-number fluctuations. It is determined by the cro
correlation functionC5^n1n2&2^n1&^n2&, which is zero for
uncorrelated modes. The larger the value ofC, the stronger
the mixing of the fields and the greater the extent of cor
lation. Obviously, the only spontaneous photons in
modes that are correlated are those that are created in p
Indeed, Eq.~20! implies that

C52hhs , ~22!

i.e.,C } hs , which determines the process of pair emission
spontaneous photons at frequenciesv1 and v2 . Since
C;ni0 /g4, the correlation of photon-number fluctuation
grows in proportion to the intensity of the signal field, a
the closer the ratiob/a is to unity the faster the growth
Figure 4 shows that, all other things being equal, strong c
relation exists for an initial coherent Stokes field. In a
case, the positive value ofC for largez suggests that there i
correlated creation of spontaneous photons in the modes
the number of such photons increases withz, reaching its
maximum in the stationary regime.

4. THE EMISSION SPECTRUM: CORRELATION OF PHASE
FLUCTUATIONS

In linear theory the amplitude and phase fluctuatio
provide equal contributions to the emission-spectrum wid
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fluctuations is suppressed due to stabilization of the am
tudes, with the result that the emission spectrum is de
mined solely by phase diffusion in each mode. We start w
stochastic differential equations for thec-number complex-
valued amplitudesAi andAi

1 , i 51, 2, whose stochastic av
erages correspond to the mathematical expectations of
operatorŝ ai& and^ai

1&. The equations can be obtained fro
Eq. ~5! by expanding the density matrixr in the positive
P-representation. They have the form

1

c
Ȧ15

a

2
A12

Aab

2
A2

11 f 1 ,
~23!

1

c
Ȧ2

152
b

2
A2

11
Aab

2
A11 f 2

1 ,

where the fluctuation operatorsf i and f i
1 have zero math-

ematical expectations and delta-function correlation, wh
corresponds to the Markovian approximation in the cor
sponding decay processes. The values of the correlators
given in the Appendix.

Now we go over to the polar coordinate
Aj5r j exp(iwj), j 51, 2, where ther j are assumed constan
and equal toA^nj (`)&. The asymptotic values of the numbe

FIG. 4. Evolution of the cross-correlationC of two modes for two initial
values of mode filling: curve1—n105100 and n2050, and curve2—
n1050 andn205100; a50.6b.
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of photons can be found from Eqs.~17! for z@g21. Then
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Eqs.~23! yield the following equations for the phases:

1

c
ẇ15

1

2
Aab

r 2

r 1
sin f1F1~ t !,

~24!

1

c
ẇ252

1

2
Aab

r 1

r 2
sin f1F2~ t !,

wheref5w11w2 , and theFi(t) are the phase noise oper
tors with ^Fi(t)&50.

The diffusion coefficients of theFi(t) are also given in
the Appendix. The emission spectrum can be calculated
the formula

Sj~v!5 lim
t→`

ReE
2`

`

dt e2 ivt^Aj
1~ t1t!Aj~ t !&

5Re E
2`

`

dt e2 ivtSj~t!, j 51, 2, ~25!

where, as it can easily be shown,

Sj~t!5^nj~`!&exp@2 1
2^Dw j

2~t!&#, ~26!

and the variances of the phases are expressed in terms o
diffusion coefficients as follows:

^Dw j
2~t!&52D j j t. ~27!

Plugging in theD j j , we can use~25! to find the emission
linewidths of the Stokes and parametric modes, respectiv

g15
a

8^n1~`!&
, g25

b

8^n2~`!&
. ~28!

These results coincide, to within a factor of1/2, with the
Schawlow–Townes formula for the emission linewidth o
standard laser above the threshold with a linear-absorp
mechanism. It is suppressed by a factor of two because
lier we ignored amplitude fluctuations. Using~10! to plug
^n1(`)&5b^n2(`)&/a into ~28!, we arrive at the following
relationship:

g2

g1
5S b

a D 2

.1, ~29!

which shows that the parametric mode is broadened t
greater extent than the Stokes mode but that the Stokes m
contains more spontaneous photons than the param
mode: ^n1s&.^n2s& ~see Eqs.~18!!. This is because the
widthsg1 andg2 are determined by different stochastic pr
cesses. Phase diffusion in thev1-mode is indeed caused b
spontaneous-photon emission, and sog1'a. At the same
time, the phase of thev2-mode diffuses because of photo
emission with a probabilityb.a, and this leads, on the on
hand, to a decrease in the number of spontaneous photo
the second mode and, on the other, to an increase in emis
linewidth. The result~29! for the ratiog2 /g1 is a problem in
its own right and can easily be verified in experiments.

Now let us discuss the extent to which phase fluctuati
are correlated. Since, as shown earlier, the field amplitu
are correlated with opposite phases, the extent to which th
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the total phasef. An equation for this phase can be foun
from ~24!:

1

c
ḟ52g sin f1F1~ t !1F2~ t !, ~30!

which implies that the stationary value off is
^f(`)&5f050. By linearizing the weak fluctuations nea
f0 in the formf5f01df>df we arrive at the following
equation for the variance of the total phase:

1

c

d^df2&
dt

522g^df2&12^f@F1~ t !1F2~ t !#&. ~31!

The second term on the right-hand side of Eq.~31! is calcu-
lated by the following formula~see Ref. 26!:

^fF j~ t !&5(
i 51

2
df

dw i
Di j ~w!. ~32!

Using this, we can write the stationary solution of Eq.~31! in
the form

^df2&5
~D111D22!~12«!

g
5

b2a

4Aabr 1r 2

, ~33!

where

«52
D121D21

D111D22
.0.

We note, first, that the stationary solution for^df2& exists
only if destructive interference is present, whenb.a. Sec-
ond, even in this case the phase fluctuations are saturate
a constant value (D111D22)g

21 if the correlation between
the modes is weak (D12!D11) or is absent altogether. Bu
thanks to the correlation ofD12, whose contribution be-
comes significant when the parametric coupling const
Aab becomes comparable to the lossesb in the v2-mode,
the fluctuations in the total phase may be completely~for all
practical purposes! squeezed. And if we allow for the fac
that the field amplitudesr j are also large~see Eqs.~17!!, the
system in this case acts as a source of bright squeezed

Thus, whena,b, the variance of the total phase
much smaller than the emission linewidths of the two mod
This means that no matter how the phases of the individ
modes diffuse, these fluctuations cancel out in the to
phase. Hence we can expect the distribution functionP to
have a sharp peak at^f&50. The solution of the Fokker–
Planck equation is outside the scope of the present paper
only note here by using the results of Sec. 3 that the sys
becomes a classical mixture of correlated coherent state

ur 1eiw&1Ur 1 A~a/b! e2 iwL 2

with an arbitrary phasew, where the subscripts 1 and 2 ref
to thev1- andv2-modes respectively. Some of these sta
are macroscopically separated in the phase space. Hence
is possible to prepare a system with a linear combination
these states, correlation between the fields allows genera
a ‘‘Schrödinger’s cat’’ state in one of the modes by perform
ing a measurement in the other mode.
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We have found that in conditions of destructive interfe
ence two events take place simultaneously: correlated am
fication of the Stokes and parametric fields, and the squ
ing of spontaneous noise in the total phase of the fields
both cases the magnitude of the effect depends on the e
to which the modes are correlated, which can easily be m
tored using its dependence on the intensity and two-pho
detuning of the pump radiation. We also have found the c
ditions in which suppression of quantum fluctuations is pr
tically complete. An important feature here is the fact th
the effect is at its maximum when the medium is transpar
which occurs when the field intensities are constant
stable in the stationary propagation regime. These results
the classical solutions for the amplitudes and emission l
widths obtained in Secs. 3 and 4 can be verified in exp
ments, although there are some problems that have yet t
resolved. In particular, the results were obtained by ignor
pump depletion and cavity losses, two facts that can af
the correlation of phase fluctuations, especially if the in
vidual losses in the modes are not controlled. These p
lems and the possibility of generating in each mode a su
position state of two macroscopically separated cohe
states merit a separate investigation.

The present work was financed by the budget of
Republic of Armenia~Study No. 96-770!.

APPENDIX

Here we give the diffusion coefficients of the noise o
eratorsf i in Eqs.~23! calculated by Eq.~5!:

^ f 1
1~ t ! f 1~ t8!&5ad~ t2t8!,

^ f 1
1~ t ! f 2

1~ t8!&5^ f 2~ t ! f 1~ t8!&5Aabd~ t2t8!,

^ f 2~ t ! f 2
1~ t8!&5bd~ t2t8!. ~A1!

The other correlators are equal to zero.
Now let us calculate the diffusion coefficients of noi

sourcesFi in Eqs.~24!. Allowing for the fact that

F j5
1

2ir j
@ f j

1 exp~2 iw j !2 f j exp~ iw j !#,
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^Fl~ t !Fm~ t8!&52Dlmd~ t2t8!, ~A2!

where, with allowance for̂f&50,

D115
a

8r 1
2 , D225

b

8r 2
2 , D125D2152

Aab

8r 1r 2
. ~A3!
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Polarization of light: fourth-order effects and polarization-squeezed states

ms,
D. M. Klyshko

M. V. Lomonosov Moscow State University, 119899 Moscow, Russia
~Submitted 1 November 1996!
Zh. Éksp. Teor. Fiz.111, 1955–1983~June 1997!

The polarization properties of a monochromatic beam of light are ordinarily determined by three
numbers, for example, the Stokes parameters. However, three numbers are no longer
sufficient when intensity fluctuations in the polarized modes~or the correlation between them!
are recorded. It is shown that in this case nine parameters, which can be arranged into
333 matrices, must be prescribed. The transformation properties of these matrices under
polarization converters and the invariants of the matrices are analyzed. Specifically, the fourth-
order polarizationP4 is introduced. Several examples are examined of light with ‘‘hidden’’
polarization—light which is not polarized in the ordinary sense (P250) but is polarized in fourth
order (P4 Þ 0)—as well as ‘‘polarization-squeezed’’ light in which the quantum fluctuations
of the Stokes parameters are suppressed. ©1997 American Institute of Physics.
@S1063-7761~97!00406-X#
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The polarization of a quasimonochromatic plane wave
ordinarily described by three numbers, for example, the
gree of polarizationP2, the ratio of the axes, and the orie
tation of the polarization ellipse~see Ref. 1!. Another pos-
sible set is the three Stokes parametersS1 , S2 , and S3

normalized to the overall intensityS0 of the wave. The po-
larization can also be fixed by two spherical coordinatesQ,
F of a point on the Poincare´ sphere and the degree of pola
ization P2, or by the 232 polarization matrixK . These
equivalent sets completely determine the properties of
wave with respect to different polarization converters plac
in front of a detector~see Fig. 1! which records the averag
intensity of the light, i.e., the second moment of the fie
However, as is clear from the example in Fig. 2, three
rameters are clearly inadequate in cases when not the a
age intensity but rather other statistical parameters of
wave are recorded. Specifically, the concept of polarized
unpolarized light needs to be generalized.

In the present paper sets of nine real parameters w
are necessary to describe experiments measuring the fo
order moments in the field amplitudes are examined. T
transformations of these parameters under the action of
larization converters and the corresponding invariants are
termined. In particular, the degree of fourth-order polari
tion P4 is introduced. This parameter characterizes
degree of anisotropy of the fluctuations of the Stokes vec
P450 in the caseDS15DS25DS3 and P451 in the case
DSX50 for some directionX. An example of light with
P450 is light in a two-mode coherent stateua,b&. In this
case we haveP251 andDSk5S0(k51,2, 3)—polarization
noise is caused only by quantum~photon! fluctuations. States
with a definite number of photons in two polarization mod
possess the propertyP451.

The development of a convenient formalism for descr
ing fourth-order polarization effects is an important proble
It could be helpful for systematizing some experiments
quantum optics as well as in connection with the problem
increasing the accuracy of polarization interferometry, po
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and so on. The accuracy of optical measurements is n
limited by quantum fluctuations and the possibility of ove
coming this limit involves squeezed states of light beams2,3

Quantum cryptography methods, which employ polarizat
modulation of light, pose new problems.4

The mathematical description of two polarization mod
of one beam and their transformations is isomorphic to
description of two spatially separated polarized beams
light—in both cases the amplitudesa, b of the modes and
their linear unitary transformations realize a representation
the groupSU(2) ~in both the classical and quantum descr
tions!. As a result, the problems of increasing the sensitiv
of Mach–Zender two-beam interferometers2,3 and polariza-
tion interferometers have much in common. The close re
tionship between the groupSU(2) and the rotation group
SO(3) makes it possible to represent transparently the e
lution of a two-mode field in three-dimensional space
means of the Stokes vector. In Ref. 3 an analog of the Sto
vector was essentially used to describe a Mach–Zende
terferometer.

Recording the fourth or higher moments, even of lig
which is unpolarized in the ordinary sense, can exhibit h
den polarization. This concept was proposed in Ref. 5
describe light beams which are not polarized in the ordin
sense (P250) but exhibit a transverse structure when t
fourth (P4 Þ 0) or higher moments of the field are recorde
For example, a superposition of the fields of two independ
lasers with the same frequencies, the same average int
ties, and orthogonal linear polarizations gives light with h
den polarization: Even though we haveP250, the intensity
fluctuations and correlation observed in the scheme in Fi
depend on the parameters of the polarization converte5–8

Such an experiment was recently performed by Guzun
Penin.8 We underscore that replacing lasers~which possess
stable intensities! by ordinary light sources with Gaussia
statistics givesP25P450. Then the light is unpolarized in
all orders, it has no distinguished polarization basis, and
completely invariant under the action of any polarizati
converter.5,6 This property of a plane wave can be term
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‘‘transverse isotropy.’’ Another example of hidden polariz
tion is a two-photon light beam consisting of a flux of pa
of photons with orthogonal polarization.5,6 In this case, the
amplitudes of the fields in the modes do not possess a
nite phase difference~as in the case of independent lase!
and therefore all types of polarization are equivale
P250. Such light is obtained in practice by means of pa
metric scattering~type-II, i.e., with orthogonally polarized
modes! in crystals with a quadratic nonlinearity. The corr
sponding state of the field is called a two-mode squee
vacuum.

Radiation with type-II parametric scattering posses
another important feature: Since photons in modes are
duced only in pairs, simultaneously, the fluctuations of
intensitiesNx andNy in the modes are completely correlate
~this effect was confirmed experimentally in Ref. 9!. This
means that one of the Stokes parameters does not fluc
and even quantum noise is absent:DS150.7 Chirkin et al.10

introduced the convenient term polarization-squeezed l
for radiation in which quantum fluctuations of some comp
nents of the Stokes vectorSk(k51,2,3) are diminished. In
Refs. 10–13 methods for obtaining such light by anisotro
cubic nonlinearity of transparent materials were examine

For completeness of exposition and continuity of the n
tations, in Secs. 2 and 3 below some well-known relations
polarization optics are repeated using the modern notation
Sec. 2 the Stokes vectorS and the corresponding operat
s(S[^s& as well as the second-order polarization matrixK
and its corresponding operatork(K[^k& are introduced.

FIG. 1. Arrangement of an experiment on measuring the polarization p
erties of a beam of monochromatic light. The light passes through a p
ization converterP with known parameters and then through a polarizat
beam splitter~Nicol prism! N, which separates two orthogonal linearly p
larized components (x,y) of the field at the exit ofP. Two detectors record
the ‘‘instantaneous’’ intensitiesnx8 andny8 . Moments of the form̂ nx8

kny8
l&

can be determined by repeating the procedure and performing a stati
analysis of the data.
fi-
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of these operators in the Heisenberg representa
(s85Rs,k85Dk) with the aid of the MuellerR ~H. Mueller,
1943! and JonesD ~R. C. Jones, 1941! matrices from classi-
cal optics~see Ref. 1!. For comparison, the action of pola
ization converters is also examined in the Schro¨dinger rep-
resentation. The relations with the quantities which a
observed in a typical experiment are described in Sec. 4
Sec. 5, two parallel sets of fourth-order parameters arran
into two matricesK45^:k ^ k: & and Q[^:s^ s:& are intro-
duced. Their transformation properties are analyzed in S
6. Next, in Secs. 7–9 this formalism used to analyze sev
characteristic cases: coherent states, two lasers with inde
dent phases,N-photon states, generalized coherent states
the SU(2) group,14–16 and a squeezed two-mode vacuu
and the effect of additional coherent components~homodyne
field! on it. The analysis is limited to the case of a quasim
nochromatic stationary plane wave and its loss-free polar
tion conversions. Mainly the Heisenberg representation
used, which makes it possible to underscore the general
tures of the quantum and classical approaches to the des
tion of polarization effects.

2. FOURTH-ORDER POLARIZATION PARAMETERS

A quasimonochromatic plane wave is described by
creation operatorsax

1[a1 anday
1[b1 and annihilation op-

eratorsax[a and ay[b for photons in two orthogonally
polarized modesx, y. In accordance with the experiment
procedure under study, which employs a polarization be
splitter ~Fig. 1!, we assume that the modex possesses linea
horizontal polarization and the modey possesses linear ver
tical polarization. The quantum properties of the field a
determined by the commutation relations of the Heisenbe
Weyl groupW(2) ~see Ref. 14!:

@a,a1#5@b,b1#51,

@a,a#5@b,b#5@a,b#5@a,b1#50. ~2.1!

Analyzing the polarization transformations~just as other
linear transformations, see Refs. 5 and 6! in the Heisenberg
representation makes it possible to switch easily from qu
tum optics to classical statistical optics, based on the cla
cal representation of the probabilitiesP(a,b) for the ampli-

p-
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ture
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odes
FIG. 2. Examples of the manifestation of the transverse struc
of a plane wave in second and twelfth orders. a—Malus’ la
cos2x in polar coordinates, i.e., the probability of detecting a ph
ton in channelx in Fig. 1 as a function of the orientation of th
Nicol prism ~the incident light is polarized along thex direction!.
b—@P3(cos 2x)#2, proportional to the probability of detecting
three photons in each of the two exit modes of the Nicol prism
the case when three photons are present in the entrance m
(P3(x) is a Legendre polynomial!.5
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classical amplitudes of the field in the mod
(a1→a* ,b1→b* ).

The polarization properties of a monochromatic pla
wave are ordinarily determined in terms of the following s
of second moments:1

^a1a&[^nx&[Nx , ^b1b&[^ny&[Ny ,

^a1b&[^s1&[S1 , ^ab1&[S25S1* . ~2.2!

The nine stationary moments of the form̂a2&, ^ab&, and
^b2&, as a rule, have no effect on the observable quant
and therefore are not considered~see Sec. 9 for an excep
tion!. The statistics of the field is assumed to be station
and ergodic so that the time-averaged values of the obse
quantities can be described by means of a quantum statis
ensemble, in which casê. . . &5Tr(r . . . ), wherer is the
field density operator. To switch to the classical descript
it is sufficient to interpret the operation̂. . . & as a classica
average performed usingP(a,b) and to drop the quantum
noise, i.e., only the normal-ordered moments are retaine

An alternative set of numbers is also employed in pa
lel with the moments~2.2!—the Stokes parametersS0, S1 ,
S2 , and S3 . We shall define them as the average valu
Sm[^sm& of the following Stokes operators:

s0[a1a1b1b, s1[a1a2b1b,

s2[a1b1ab1, s3[2 i ~a1b2ab1!. ~2.3!

From Eqs.~2.2! and ~2.3! follow the relations

S05Nx1Ny , S15Nx2Ny , S252 ReS1 ,

S352 Im S1 . ~2.4!

The Cauchy–Schwartz inequality gives the restrict
uSku<S0(k51, 2, 3). The relations inverse to Eq.~2.3! have
the form

nx5
1

2
~s01s1!, s15

1

2
~s21 is3!,

ny5
1

2
~s02s1!, s25

1

2
~s22 is3!. ~2.5!

It follows from Eqs.~2.1! and ~2.3! that

@s1 ,s2#52is3 , @s2 ,s3#52is1 , @s3 ,s1#52is2 ,

@s0 ,sm#50, s1
21s2

21s3
25s0~s012!. ~2.6!

Therefore the operatorssm form a Lie algebrasu(2)
(m50,1,2,3). In other words, the commutation relations
the operators (1/2)sk are the same as for the operators p
jecting the angular momentaj k of the particles with spin
J5(1/2)S0 . This gives additional possibilities for classify
ing the possible states of a two-mode field. According to
~2.6!, the second moments of the Stokes operators are re
by

^s1
2&1^s2

2&1^s3
2&2^s0

2&52S0 . ~2.7!

It is convenient to expand the momentsNx , Ny , S1 ,
and S25S1* in the form of a hermitian polarization matri
K[^k& ~also called the coherence matrix1!:
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k51

3

Sksk* . ~2.8!

Heresk are the Pauli matrices which together with the u
matrix I serve as a convenient basis in the space of arbit
232 hermitian matrices.

The momentsNx , Ny , and S1 given by ~2.2! and the
Stokes parametersSm are uniquely related and carry identic
information, but the parametersSm possess simpler transfor
mation properties and admit a transparent geometric re
sentation. Thus, the statistical properties of a wave in sec
order in the field amplitudes are determined by four r
parameters and a point in the spaceR4 can be associated t
them. Under the action of a polarization converter this po
moves along some orbit.

In the case of a loss-free converter the total intens
s05nx1ny of the wave is conserved and therefore only thr
parameters need be taken into account, for example, the t
componentsSk (k51,2,3). It is convenient to represent the
graphically as a vectorS in a three-dimensional Euclidea
spaceR3, which we shall call the Stokes–Poincare´ space.
Let the vectorsek form an orthonormalized basis of thi
space, i.e.,ek•el5dkl . Then we have the representation

S5 (
k51

3

Skek ,

whereSk5ek•S. The norm of the Stokes vector

S5A( Sk
25A~Tr K !224 detK[P2S0 ~2.9!

together withS0 determines the ordinary~second-order! de-
gree of polarizationP2 . The normalized Stokes vector
S/S map onto a Poincare´ sphere, each point of which corre
sponds to a definite state of polarization. For example, h
zontal polarization corresponds to the pointe15(1,0,0), lin-
ear polarization at an angle of 45° to thex axis corresponds
to e25(0,1,0), and right-hand circular polarization corr
sponds toe35(0,0,1).

The vector Stokes operator is defined analogously:

s[(
k51

3

skek .

Its square is also an operator:

s25~ss!5( sk
25s0

212s05:s0
2:13s0 ~2.10!

~the double dots indicate normal ordering with respect to
operatorsa1, a andb1, b!.

3. POLARIZATION CONVERSION AS A ROTATION

If the phase factor common to both modes is neglect
then the effect of a loss-free converter can be represente
the Heisenberg representation in the form

a85t* a1r * b, b852ra1tb. ~3.1!
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coefficients of the converter. For example,

t5cosd1 i sin d cos 2x, r 5 i sind sin 2x ~3.2!

corresponds to a linear phase plate with optical thicknesd
and orientationx relative to the horizontal directionx ~a
l/4 plate givesd5p/4!. In vector form we havea85D* a,
wherea is a vector with componentsa andb and

D[S t r

2r * t* D . ~3.3!

The matricesD were introduced into classical optics b
Jones~see Ref. 11!. In the absence of losses they are unita
and unimodal

DD15D1D5I , detD5utu21ur u251, ~3.4!

and therefore they realize the unitary representation of
SU(2) group.

We shall adopt the following parameterization of t
matricesD:17,18

t~f,u,c![cos~u/2!exp@ i ~f1c!/2#,

r ~f,u,c![2sin~u/2!exp@ i ~f2c!/2#. ~3.5!

Here it can be assumed that 0<u,p, 0<c,2p, and
0<f,4p. The inverse relations have the form

f5arg t1arg r 1p,

c5arg t2arg r 2p, u52 arctanur /tu. ~3.6!

Using Eqs.~3.1!, we find the action of a converter on th
operatorsnx , ny , ands15a1b:

nx85Tnx1Rny1tr * s11t* rs1* ,

ny85Rnx1Tny2tr * s12t* rs1* ,

s18 5tr ~ny2nx!1t2s12r 2s1* . ~3.7!

Here T[utu2 and R[ur u2. Averaging these expressions w
find the transformed polarization matrix

K 85DKD1. ~3.8!

The parameters

det K5NxNy2uS1u2, Tr K5Nx1Ny[S0 ,

S[~S1
21S2

21S3
2!1/2, P25S/S0

are invariants of the converter.
It follows from Eqs.~3.7! that in the case of measure

ments which are performed according to the scheme in Fi
the two transformationsD and2D give the same observe
quantities—these transformations differ only by the identi
half-wave phase change in both channels. Therefore
maximum value off can be limited by 2p ~instead of 4p!.
The remaining set of matricesD now represents only the
rotation groupSO(3), which is a subgroup ofSU(2). ~We
note that this narrowing of the space of the representa
leads to a loss of information about the general phase of
wave, which can be observed in some experimental arra
ments; see Ref. 19.!
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dimensional real Stokes vectorsS realizes the irreducible
representation of the groupSO(3) in the spaceR3: A defi-
nite rotation of the vectorS in the Stokes–Poincare´ space
can be associated to each converter. We now substitute
expression~3.1! into the definition~2.3!. The result can be
represented in the forms85Rs, where

R~ t,r ![S utu22ur u2 2 Re~ tr * ! 22 Im~ tr * !

22 Re~ tr ! Re~ t22r 2! 2Im~ t21r 2!

22 Im~ tr ! Im~ t22r 2! Re~ t21r 2!
D .

~3.9!

In classical optics the Mueller matrices~see Ref. 1! cor-
respond to the matricesR. In the presence of dissipation th
Mueller matrices are 434 matrices and also describe th
transformation of the componentS0 . Substituting here the
expressions~3.5!, we obtain a different parameterization

R~f,u,c!

5S cu 2succ susc

cfsu 2sfsc1cfcucc 2sfcc2cfcusc

sfsu cfsc1sfcucc cfcc2sfcusc

D .

~3.10!

Herecx[cosx, sx[sinx. We have expressedR in terms of
the Euler anglesf, u, and c, describing the rotation of a
solid with a fixed point~the polar axis is the axis 1!. The
equivalent rotation of the coordinate axes in the Stoke
Poincare´ space~‘‘passive point of view’’! is performed by
the inverse matrixR21 ~here (R21)mn5Rnm , sinceR is or-
thogonal!. It is easy to verify that

R21~f,u,c!5R~2c,2u,2f!5R~p2c,u,p2f!.

Any rotation in R3 can also be specified by indicatin
the direction of the rotation axisn and the rotation angle
a(a5022p), i.e., a different parameterization of the co
verter is possible:

R5R~n,a![R~an!.

It is assumed thata.0 corresponds to a clockwise rotatio
looking along the directionn. Then any converter corre
sponds to a vectora n in the Stokes–Poincare´ space and a
point n on the Poincare´ sphere. It follows from the definition
of the rotation axis thatn is a characteristic vector ofR with
eigenvalue11. According to Ref. 18

cosa5
1

2
@Tr R21#

5Re t22ur u25cos~c1f!cos2~u/2!2sin2~u/2!

~3.11!

or, in a different form,

cos~a/2!56cos~u/2!cos@~c1f!/2#. ~3.12!

The vectorn has the following components:18

n15C~R322R23!52C Im t25C~11cosu!sin~c1u!.

n25C~R132R31!54C Re t Im r

1068D. M. Klyshko
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5C sin u~sin c2sin f!,

n35C~R212R12!524C Re t Re r

5C sin u~cosc1cosf!. ~3.13!

HereC[1/2 sina is a normalization constant. The function
a(t,r )nk(t,r ) ~or a(c,u,c)nk(c,u,c)!, defined in Eqs.
~3.11! and ~3.13!, define a map of the set of paramete
(t,r ) ~or ~c,u,c!! of the converter into the Stokes–Poinca´
space; this makes it possible to represent conveniently r
tions of the Stokes vector under the action of the conver
The direction of the rotation axis in the spherical coordina
is determined from Eq.~3.13! and the relationsn15cosQ,
n25sinQ cosF, and n35sinQ sinF. For example, for a
l/4 phase plate we obtain from Eq.~3.2! a52d, and the
rotation axisn lies in the ~1,2! plane at an angle 2x with
respect to the axis1, i.e.,Q52x, F50. Therefore the effec
of a plate with the parameters~d,x! is to rotate the vectorS
by an angle 2d about the direction~2x,0!.

An arbitrary rotationR can be represented in the form
three successive rotations around the basis axese1 and e3

~Fig. 3!:

R~f,u,c!5R~f,0,0!R~0,u,0!R~0,0,c!

5R1~f!R3~u!R1~c!, ~3.14!

whereRn(a)[R(aen). The unit vectore1 transforms under
the action ofR into e185R1(f)R3(u)e1 . According to Eq.
~3.10!,

~e18!k5Rk15~cosu,sin u cosf,sin u sin f!,

i.e., the spherical coordinates of the rotated vec
R(f,u,c)e1 are identical to the Euler angles of the co
verter: Q5u, F5f. The parameterc has no effect, since
e1 is a characteristic vector forR1(c). On the other hand, the
quantity

s185( R1ksk5s1 cosu2s2 sin u cosc

1s3 sin u sin c ~3.15!

FIG. 3. Representation of the transformation of the polarization of a p
wave as a result of three successive rotations of the Stokes vectorS in the
Stokes–Poincare´ space by an anglec about the axis1, by an angleu about
the axis3, and by an anglef about the axis1.
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f—the common phase factor oft and r .
A representation analogous to~3.14! is also possible for

the Jones matricesD:

D~f,u,c!5D~f,0,0!D~0,u,0!D~0,0,c!

5S eif/2 0

0 e2 if/2D S cos~u/2! 2sin~u/2!

sin~u/2! cos~u/2!
D

3S eic/2 0

0 e2 ic/2D . ~3.16!

We shall now give a brief description of the effect of
converter in the Schro¨dinger representation, when the co
verter does not change the field operators but rather the w
function of the two-mode field:uc&→uc&8. It is easy to show
that

uc&85Uuc&,

U~f,u,c![exp~2 if j 1!exp~2 iu j 3!exp~2 ic j 1!.
~3.17!

~This follows from the equivalence of the transformatio
s85Rs ands85U1sU.! Here the operatorsj k5(1/2)sk play
the role of group generators, i.e.,j 15 i @dU/df#0 and so on.

The wave functionuc&8 can also be expressed directly
terms of the parameterst, r of the Jones matrixD. Let the
initial state at the converter entrance have the form

uc&5 f ~a1,a,b1,b!uvac&.

Then it is easy to show that at the exit

uc&85 f 8~a1,a,b1,b!uvac&,

f 8[ f ~ t* a12rb1,ta2r * b,r * a11tb1,ra1t* b!.
~3.18!

Here the functionf 8 is formed from f by the substitution
a→(D* )21a, a1→D21a1.

We shall examine several possible bases of the spac
states of a two-dimensional oscillatorH.

1. The effect of a converter is most simply described
a continuous basisua,b&[ua&xub&y formed by the coheren
states of the groupW(2)—the characteristic vectors of th
operatorsax[a and ay[b.14 Then H maps into the space
C2 or R4. Substituting into Eq.~3.18! the displacement op
erator f (a1,a,b1,b)5exp(aa12a*a1bb12b*b), we ob-
tain

ua,b&85ut* a1r * b,2ra1tb&. ~3.19!

The set of states~3.19! comprises the ‘‘energy’’ surface inH
or the orbit of the elementua,b& on which it moves under the
action of different unitary transformations. In the case o
coherent state a unit polarization vectore~a,b! analogous to
the classical polarization vector can be defined:

e[~ex ,ey!, ex[
a

AN
, ey5

b

AN
, N[uau21ubu2.

Here, just as in classical optics,e85D* e.
2. A discrete~Fock! basisuNx ,Ny&[uNx&xuNy&y of the

spaceH is generated by the common eigenvectors of

e
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operatorsnx , ny and is parameterized by two nonnegati
integersNx , Ny—the numbers of photons in the polarizatio
modes.

3. A different parameterization of the spaceH is also
possible—parameterization by means of the numb
N5S05Nx1Ny andS15Nx2Ny . N photons can be distrib
uted between two modes inN11 ways. Therefore the sta
tionary state of a two-dimensional oscillator with energyN is
(N11)-fold degenerate, i.e., it is a multiplet~see Fig. 4!.
The general eigenvectors of the energy opera
s05n5nx1ny and the energy difference operator betwe
the two modess15nx2ny form a basis inH, parameterized
by two integers—the eigenvalues of these opera
S050, 1, 2, . . . , andS152N, 2N12, . . . ,N.

To switch to the standard notation of the theory of a
gular momenta, we setS0[2J andS1[2M . Then the basis
vectors assume the form uJ,M &, where
M52J,2J11, . . . ,J. In the old notation
uJ,M &5uNx&xuNy&y , where Nx5J1M , Ny5J2M ,
J5N/2. For example, uJ,2J&5u0&xuN&y and
uJ,J&5uN&xu0&y . The vectorsuJ,M & form a so-called ca-
nonical basis inH:

exp~2 if j 1!uJ,M &5exp~2 iM f!uJ,M &.

Let us fixN and study an arbitrary stateuc&J P H j with
N52J photons. In the basisuJ,M &[uM & it has the form

uc&J5 (
M52J

J

eMuM &,

so that the polarization properties of the field are comple
described by the unit vectore(J)[e[ˆeM% with N11 com-
ponents~the vectore(1/2) transforms in the same manner
the standard classical polarization vector!. The correspond-
ing projective space is the sphereS2N. The state spaceHJ

with a fixed total number of photonsN52J is invariant rela-
tive to arbitrary loss-free converters. Within the spaceHJ the
operators of the observablesj k5(1/2)sk ~like the operators
U5U (J), according to Eq.~3.17!! are (N11)3(N11) ma-
trices. For example, in the caseN51 we have
j k→(1/2)sk . The effect of the converter on the basis vecto
uM & of a multiplet is described by the well-known matric

FIG. 4. Classification of the states of a plane wave with a definite numbe
photonsNx andNy in the polarization modes. The differenceS15Nx2Ny is
plotted along the abscissa and the sumS05Nx1Ny is plotted along the
ordinate. Loss-free polarization converters give rise to ‘‘horizontal’’ tran
tions inside the polarization multiplet (S05const)~in this case, generalized
coherent states of the groupSU(2) are formed!. ‘‘Vertical’’ transitions with
a change in energyS0 and with conservation ofS1 are produced by para
metric converters and are associated with the groupSU(1,1).
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reducible representations of the groupSU(2) in the space
HJ5$uM &%:

uM &85UuM &5(
M1

DM1M
~J! uM1&. ~3.20!

~The explicit form of the functionsD(J)(t,r ) is given in, for
example, Refs. 5, 6, 17, and 18!. Specifically, the matrices
D(1/2)[D are identical to the Jones matrices~3.3!. The ma-
trices D(1) realize the three-dimensional unitary represen
tion of the groupSU(2) in the space of two-photon state
H1 ~while the real Mueller matricesR realize the represen
tation of the groupSO(3) in R3!.

Converters with basis vectorsuM & can also be made to
act on the polarization vectore. According to Eqs.~3.17! and
~3.20!

uc&J85Uuc&J5( eM8 uM &,

wheree85D(J)e. The matricesD(J) are determined by three
parameters, so that forN52J>2 the setS2N is not a homo-
geneous space relative to the polarization transformatio
i.e., these transformations cannot be used to form an a
trary polarization state inHJ . ~A realistic method for prepar-
ing two-photon states with arbitrary polarization, i.e., ar
trary vectors inH1 by means of parametric scattering
examined in Ref. 20.!

4. Let the stateuM52J& be prepared at the entrance
the optical system. Under the action of all possible transf
mations it is possible to obtain at the exit a set of sta
uf,u,c;2J&[U(f,u,c)u2J& ~orbit of the elementu2J&!.
This setuf,u,c;2J& forms a homogeneous subspace re
tive to the transformations parameterized by three Eu
angles~if the phase of the state is neglected, then two ang
are sufficient; see Sec. 8!. The statesuf,u,c;2J& are called
generalized coherent states for theSU(2) group.14–16 They
form a continuous basis inHJ—analogously to the Glaube
coherence statesua& for the groupW(1). Therefore any state
uc&J can be represented as a continuous superposition o
herent statesuf,u,c;2J&.

4. OBSERVABLES

Let us examine the relation between the quantities in
duced above and experiment. The operatorsnx andny can be
observed with the aid of a Nicol prism and two photodete
tors which measure the intensities of the fields in the mo
x and y ~Fig. 1!. Our linear basis (x,y) is tied to the optic
axes of the Nicol prism, but in the general case the indi
x andy can refer to waves with right- and left-hand circul
polarization or to any other pair of orthogonal waves. T
sum and difference of the detector currents in the absenc
converters is proportional to the parameterss0 ands1 of the
initial light. Under the action of the converter the total inte
sity s0 is redistributed between the two output modes. F
example, let al/4 plate be placed in front of the Nicol prism
so that the axis of the plate makes an anglex545° with the
directionx. Then, according to Eqs.~3.2!, ~3.9!, ~3.11!, and
~3.13!, we haveR5R2(p/2), i.e., the initial Stokes vecto

of

-
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indications of the detectors is proportional to the parame
s3 : s185s3 . A phase plate withx50 gives a rotation
R1(p/2). The combined action of two plates is described
the matrixR5R1(p/2)R2(p/2). In this case,s185s2 is ob-
served ~the same result is obtained by rotating the Nic
prism together with the detectors by 45° around the incid
light beam!. Therefore the operatorss0 , s1 , s2 , ands3 cor-
respond to actual observable quantities. In the general ca
arbitrary converters the observed dependence of the ph
currents is described by the operator

s18[(
k51

3

R1ksk .

Therefore, by synthesizing a definite converter, it is poss
to observe the projection

sx5~sX!5( skXk

of the operator Stokes vectors on any prescribed direction
X5SXkek in the Stokes–Poincare´ space~hereSXk

251!.
The average intensity in one output channel has

form, according to Eqs.~3.5! and ~3.7!,

Nx85tt* Nx1rr * Ny1t* rS11r * tS25Nx cos2~u/2!

1Ny sin2~u/2!2uS1usin u cosc8, ~4.1!

where c8[c2argS1 . Under a continuous variation o
some parameter of the converter, for example, a varia
produced by rotating al/4 phase plate, the observed inte
sity varies periodically:Nx8 } 16V cos 2x, 0<V<1. The pa-
rameterV can be called the visibility factor of the polariza
tion interference. There arises the question: What is
maximum possible value ofV for a given light source? We
shall interpret Eq.~4.1! as a quadratic function with matrixK
of a complex vector (t,r ) with unit norm,utu21ur u251. As is
well known, the extremal values of a hermitian quadra
function are determined by the minimumlmin and maximum
lmax eigenvalues of its matrix, i.e., by the solutions of t
characteristic equation

f ~l![det~K2lI !5l22Tr Kl1det K50. ~4.2!

Hence we find the extremal values

~Nx8!max,min5lmax,min5
1

2
$Tr K6@~Tr K !2

24 detK #1/2% ~4.3!

~the same values can also be found directly by differentia
the expression~4.1! with respect toc andu!. The maximum
possible interference visibility assumes the form

Vmax5
lmax2lmin

lmax1lmin
5A12

4 detK

~Tr K !25
S

S0
. ~4.4!

ThereforeVmax is equal to the degree of polarizationP2 , so
that the latter quantity has a direct operational meaning.
easy to show that the correlation coefficie
g[S1/(NxNy)

1/2 does not exceedP2 in magnitude. This
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as the maximum valueugumax of the correlation coefficient of
the mode amplitudes.

The invariant~‘‘isotropic’’ or ‘‘unpolarized’’ ! part can
be separated from the matrixK :

K5lminI1K0 .

Then we have detK050, i.e., the matrixK0 is degenerate—
its rank is less than 2 and it has only one eigenvaluelmax.
The condition of total polarizationP251 ~or lmin50,
K5K0! means, from the graphite classical point of vie
that the tip of the field vectorE0 describes in the transvers
plane of the wave an ellipse with constant parameters. Th
fore there exists a definite basis in which one of the po
ization components equals zero. ThenS18 50 and the Stokes
vectorS8 is parallel to the axis1 ~this follows formally from
the fact that the hermitian matrixK can be put into a diago
nal form by a canonical transformation!. In the quantum
theory, in this basis, one of the modes is in the vacuum st
uc&5uc1&1uvac&2 . From the operational standpoint, the co
dition P251 means that there exists a converter such that
average photocurrent of one of the detectors vanishes:

Nx85N, Ny850.

Let us now examine experiments described by the fou
moments of the mode amplitudes. Three types of such qu
tities can be recorded in the arrangement shown in Fig. 1:~1!
fluctuations of the indications of the detectors,~2! the corre-
lation between the indications of two detectors, and~3! fluc-
tuations of the difference of the indications of the detecto
These quantities are described by the following parame
of the field at the exit of the Nicol prism:

DNx8
2[^Dnx8

2&5Gxx8 2Nx8
21Nx8 .

DNy8
2[^Dny8

2&5Gyy8 2Ny8
21Ny8 .

Gxy8 [^nx8ny8&, DS18
2[^Ds18

2&[^s18
2&2S18

2 ~4.5!

~hereGab[^:nanb :&5^aa
1ab

1aaab&!.
Let us examine the fluctuationsDSX of the vectorS

along a definite directionX with the coordinates~Q,F! in the
Stokes–Poincare´ space. LetDs[s2S. Then

Dsx[~XDs!5 (
k51

3

DskXk .

Hence

~DSx!
25 (

k,l 51

3

^DskDsl&XkXl[ (
k,l 51

3

DQklXkXl . ~4.6!

~Here we have introduced the matrixDQ[^Ds^ Ds&!. To
measureDSX it is necessary to use a converter with Muell
matrix R, which rotatesX in the direction of the axis1:
RX5e1 , i.e., Xk5(R21)k15R1k . From Eq.~3.10! we find
the required converter parameters:u52Q, c52F ~see
Fig. 3!. Therefore the fluctuations of the Stokes vectors in
any directionX of the Stokes–Poincare´ space can be mea
sured by adjusting the parameters of the converter place
front of the Nicol prism.
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FIG. 5. IntensitiesN[Nx ~Figs. a,b! and
uncertaintiesDS of the Stokes vector
~c,d! versus the angleQ in the Stokes-
Poincare´ space~a,c! and orientation of
the Nicol prismx5Q/2 in the labora-
tory coordinate system~b,d!. The visibil-
ity V equals 0.75~solid lines! and 1
~dashed lines!.
Typical observed dependences are shown in Fig. 5c. The
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form of the curveDS(Q) } A11V cos 2Q is far from an
ellipse, but in standard parlance one talks about ‘‘ellipse
or ‘‘ellipsoids’’ of uncertainty~ellipsoids are engendered i
the Stokes–Poincare´ space by the condition
DS(Q,F)5const). According to the definition given below
a field is completely polarized in fourth order (P451) if the
fluctuationsDSX vanish in at least one directionX ~dotted
curve in Fig. 5c!.

Let the entrance modes be excited by two independ
lasers with orthogonal polarizations and the same ave
intensities (Nx5Ny5(1/2)N). ThenGxy8 } 11(1/3)cos 2Q
andDNx8

25DNy8
2 } 12V cos 2Q, whereV5N/(N18) ~see

Sec. 7!. The corresponding plots, illustrating the ‘‘an
tiphase’’ character of these dependences and the invari
of the sumDNx

21DNy
212Gxy ~see Eq.~6.1! below!, are

presented in Fig. 6.

5. FOURTH-ORDER POLARIZATION PARAMETERS

Let us examine the stationary fourth moments, i.e.,
moments with the same number of positive- and negat
frequency amplitudes. An ordered set of such moments
be obtained using the direct productk ^ k. After normal-
ordering, averaging, and crossing out the redundant rows
columns, we obtain the following matrix of fourth moment

K4[S A D E

D* C F

E* F* B
D . ~5.1!
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A[^ā2a2&, B[^b̄2b2&, C[^āb̄ab&,

D[^ā2ab&, E[^ā2b2&, F[^āb̄b2&. ~5.2!

The diagonal componentsA5Gxx , B5Gyy , and C5Gxy

characterize the classical parts of the fluctuations and
correlation of the intensities in the polarization modes. T
total number of independent real parameters determining
hermitian matrixK4 is equal to nine.

It is convenient to define also the real symmetric mat
Q[^:s^ s:& consisting of the normal-ordered second m
ments of the Stokes operators:

Qmn[^:smsn :&5Qnm ~m,n50,1,2,3!. ~5.3!

We find the following relations (k51,2,3) with the aid of
Eqs.~2.1! and ~2.3!:

^sm
2 &5Qmm1S0 ,

^s0sm&5^sms0&5Q0m1Sm ,

^sksk8&5Qkk81 i«kk8k9Sk9 ~kÞk8!,

^sksk81sksk8&52Qkk8 ,

Q005Q111Q221Q33. ~5.4!

In accordance with Eq.~2.10!, ^s2&5Q0013S0 . The linear
terms here—the components of the Stokes vec
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Sm—appear because the field operators do not commute, and
n

the classical description. The matrixQ can be expressed in

this is the only formal difference between the quantum a
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on

n-
dterms of the components of the polarization matrixK4 :
Q52F ~A1B!/21C ~A2B!/2 Re~D1F ! Im~D1F !

~A2B!/2 ~A1B!/22C Re~D2F ! Im~D2F !

Re~D1F ! Re~D2F ! C1Re E Im E

Im~D1F ! Im~D2F ! Im E C2Re E

G . ~5.5!

The inverse transformations have the form HenceDS1DS2DS3>uS1S2S3u1/2.
rth
rgy

nd

e

4A5Q001Q1112Q01,

4B5Q001Q1122Q01, 4C5Q002Q11,

4D5Q021Q121 i ~Q031Q12!,

4F5Q022Q121 i ~Q032Q12!,

4E5Q222Q3312iQ23. ~5.6!

Hence, the polarization properties of the waves in fou
order are determined in terms of nine real parameters—
components of the normal-ordered matricesK4 or Q ~the
quantum part of the fluctuations is determined according
Eq. ~5.4! by the total energyS0!. These parameters can b
associated with a corresponding point inR9. Under the ac-
tion of converters the point moves along a trajectory in t
space.

It is convenient to determine also the matrix

DQ[Q2S^ S1S0I ,

in terms of which the variances of the Stokes parameters
simply expressed (m50,1,2,3):

^DsmDsn&5DQmn5Qmn2SmSn1S0dmn ,

DSm
2 5DQmm5Qmm2Sm

2 1S0 . ~5.7!

The termQmm2Sm
2 describes the classical~‘‘excess’’! noise,

for example, thermal noise, andS0 describes the quantum
noise associated with the noncommutativity of the algebra
observables. According to Eq.~2.6!, the variances are relate
by

(
k51

3

DSk
25DS0

212S01S0
2~12P2

2!. ~5.8!

There are a number of restrictions on polarizati
squeezing. For example, it follows from Eq.~5.8! that

(
k51

3

DSk
2>2S0 . ~5.9!

Here equality obtains only for some subset ofN-photon
states givingDS050 andP251. These states are called ge
eralized coherent states for the groupSU(2) ~see Sec. 8!.
Furthermore, there are the uncertainty relations

DS1DS2>uS3u, DS2DS3>uS1u, DS3DS1>uS2u.
~5.10!
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6. TRANSFORMATION OF THE FOURTH-ORDER
PARAMETERS

Let us examine the effect of converters on the fou
moments. Recall that converters conserve total ene
s05nx1ny . Therefore all momentŝs0

p& are invariants. Spe-
cifically, the quantities

^:s0
2:&[Q005A1B12C.

DS0
25DNx

21DNy
212^DnxDny&5Q001S02S0

2 ~6.1!

are conserved. The invariance ofDS0 can be called the law
of conservation of the sum of the intensity fluctuations a
correlations.

The effect of converters on the polarization matrixK4

can be found directly with the aid of Eq.~3.1!. For example,
we obtain from Eqs.~3.1! and ~5.2!

A85T2A1R2B14TRC12 Re@ tr * ~2TD12RF

1tr * E!#,

B85R2A1T2B14TRC22 Re@ tr * ~2RD12TF

2tr * E!#,

C85TR~A1B!1~T2R!2C12 Re$tr * @~T2R!~F

2D !2tr * E#%. ~6.2!

The componentA8[Gxx8 [^:nx8
2 :& determines the varianc

of the intensity fluctuations in the exit channelx:

DNx8
25A81Nx82Nx8

2. ~6.3!

Here, according to Eq.~3.7!,

Nx85TNx1RNy12 Re~ tr * S1!.

The quantitiesDNy8
2 andB8 are related similarly.

Let D5E5F50. Then the matricesK4 andQ are diag-
onal in the initial basis:

K45diag~A,C,B!,

Q5diag~A1B12C,A1B22C,2C,2C!. ~6.4!

According to Eqs.~3.5! and ~6.2!

A85
1

8
@3A13B14C14~A2B!cosu1~A1B
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24C!cos 2u#,

B85
1

8
@3A13B14C24~A2B!cosu1~A1B

24C!cos 2u#,

C85
1

8
~A1B14C!@12Vxy cos 2u#. ~6.5!

Here we have introduced the visibility

Vxy[
A1B24C

A1B14C
. ~6.6!

Therefore when the parameters of the converters are m
lated, for example, by rotating the phase plate, the obse
correlationsC8 and variancesDNx8

2 , DNy8
2 , andDS1

2 vary
periodically~see Figs. 5 and 6!. This effect can be defined a
fourth-order polarization interference; this is an analog
intensity interference.

Switching to the classical theory, the normal-order
moment

Q11[^:s1
2:&5A1B22C

FIG. 6. Intensity fluctuationsDNx
2 ~solid line! and correlation of intensities

Gxy[^nxny& ~dashed curve! at the exit of a Nicol prism as a function of th
orientation of the prism in the case when the entrance modes are excite
two independent lasers with orthogonal polarizations and identical inte
ties, equal to 10 photons per mode~the visibility is Vx55/9!.
u-
ed

f

d

age; see Refs. 21 and 22 for details!. The latter moment
cannot assume negative values. Theref
(A1B22C)clas>0 and similarly (A1B22uEu)clas>0. As a
result, in the classical theory limits on the visibility aris
which can be violated in experiments with ‘‘nonclassica
light.

The matrixQ has simpler transformation properties th
K4 , sinces0 is an invariant and the action of the converte
on the three-dimensional operator Stokes vectors reduces to
a rotation of the vector,s85Rs. As a result,

Q008 5Q00, Qk08 5 (
p51

3

RkpQp0 , ~6.7!

Qkl8 5 (
p,q51

3

RkpRlqQpq ~k,l 51,2,3!. ~6.8!

Therefore the 333 matrixQkl changes according to the ten
sor representationR^ R of the groupSO(3).

The matrix DQ8[Q82S8^ S81S0I determines the
change in the uncertaintiesDSk of the Stokes parameters
For example, the fluctuations of the quantitys18 which are
observed in the experiment in Fig. 1 depend on the conve
as follows~compare Eq.~4.6!!:

DS18
25 (

k,l 51

3

R1kR1lDQkl . ~6.9!

This expression is a quadratic function~fixed by the initial
matrix DQ! of the vectorX with components from the firs
row of the matrixR: Xk[R1k . MeasuringDS18 with differ-
ent converter polarizations, it is possible to construct the
certainty regionDS(Q,F), clearly representing the aniso
ropy of the fluctuations of the Stokes vector in the Stoke
Poincare´ space~see Fig. 7!. The dimensions of the region
along the principal axes equalAmk, wheremk are the eigen-
values of the matrixDQ. They are invariants of the polariza
tion conversion which are determined by the properties
the light source~we note that in accordance with Eq.~5.10!
m1m2>S3

2 and so on!.
As the parameters of the converter are varied, the va

of DS18
2 remains within the interval betweenmmin and

mmax—the minimum and maximum numbers from the s

by
i-
f

e
n

x-
e
-

y
n
.

FIG. 7. Squeezing of fluctuations o
the Stokes vectorS by means of para-
metric conversion. On the left side th
phase of the homodyne field is chose
so that the region of uncertainty is
squeezed along the vertical and e
tended along the horizontal. On th
right-hand side the phase of the homo
dyne field is additionally shifted by
p/2, so that the region of uncertaint
is squeezed in the horizontal directio
and extended in the vertical direction
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P4 by analogy withP2—according to the maximum possib
visibility of the fourth-order interference, observed accordi
to the fluctuations of the Stokes parameter,

P4[
mmax2mmin

mmax1mmin
. ~6.10!

The extremal values of other observable parameters
also be determined in terms of the eigenvalues of the m
cesDQ or Q. For example,Gxy8 5C85(1/4)(Q002Q118 ), i.e.,
C8 is also a quadratic form with the matrix (1/4
3(Q00I2Q), so that the extremal values of the correlati
C8 and visibility Vxy are determined by the eigenvalueshk

of the matrixQ ~if S andQ are diagonal in the same basi
thenmk5hk2Sk

21S0!. In the basis in whichQ is diagonal,
we haveD5F and E5E* , so that the eigenvalues of th
matrix Q have the formhk5A1B22C, 2(C6E).

The squeezed states in this case are defined in term
the corresponding uncertainty relations~see Ref. 15!. Ac-
cording to Eq.~5.10!, this squeezing condition for the com
ponents1 has the form

DS1
2,uS3u. ~6.11!

However, this criterion is inconvenient in the case at ha
since it is non-invariant and becomes meaningless
uS3u50. For this reason, we shall adopt a somewhat differ
definition: We shall term a state polarization-squeezed i
least for one direction ofX in the Stokes–Poincare´ space the
following ~invariant! condition is satisfied:

~DSX
2 !min,S0 . ~6.12!

SinceuSku<S0 , this restriction is less severe than Eq.~6.11!;
it encompasses a larger set of states. It follows from
condition ~6.12! that at least for one pair of orthogonal
polarized modes~1,2!, the variance of the energy differenc
between the modeŝ@D(n12n2)#2& is less than the Poisso
value^n1&1^n2&5S0 . This signifies clearly that the fluctua
tions of the intensities in these modes—both quantum
classical—are correlated. The condition of complete sque
ing mmin50 givesP451; then det(DQ)50 ~i.e., the rank of
the matrixDQ is less than 3! and the uncertainty ellipsoid fo
DSX

2 degenerates into a section of a plane or straight l
Correspondingly, the operational meaning of the condit
P451 is that there exists a converter such that the obse
fluctations of the difference of the photocurrents in the t
detectors in Fig. 1 vanish,DS18

250. We recall that the con
dition P251 means that there exists a converter such that
observed photocurrent in one detector vanishes,^Nx8&50. Let
DS150, DS2 Þ 0, DS3 Þ 0. Then, according to the unce
tainty relations~5.10!, S25S350, i.e., the Stokes vector i
directed along the axis1 ~or the magnitude of this vecto
equals zero; see Fig. 7! and fluctuates only in the transvers
direction.

The definition~6.12! of polarization-squeezed states
actually identical to a criterion of nonclassical states fo
two-mode light, which are based on a comparison of
quantum normal-ordered moments with classical mome
see Refs. 21 and 22. It follows from the inequality~6.12! that
the matrix ^:smsn :&2SmSm , describing the classical~ex-
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values are negative—in contrast to the classical case. Th
fore polarization-squeezed states belong to the set
nonclassical states. For clarity, squeezing can be regarde
resulting from anticorrelation of classical and quantu
noise.23 We emphasize in this connection that the separa
of DSk into classical and quantum components has a c
operational meaning—when the spectrum of fluctuations
the photocurrent is observed, the quantum fluctuations g
frequency-independent ‘‘white’’ noise, while the exces
noise spectrum has an upper limit due to the dynamical pr
erties of the light source or frequency filters in the optic
channel~see Refs. 23 for details!.

7. COHERENT STATE

The coherent states of theW(2) group have the form
ua,b&[ua&xub&y , where a and b are arbitrary complex
numbers. Herêa&5a, ^b&5b and the normal-ordered mo
ments factorize:

Nx5uau2, Ny5ubu2, S15a* b, S05uau21ubu2,

A5Nx
2, B5Ny

2, C5NxNy ,

D5uau2a* b, E5~a* b!2, F5ubu2a* b. ~7.1!

Hence Q5S^ S and DQ5S0I hold, so that we have
DSk

25mk5S0—the fluctuations of the vectors are isotropic
in the Stokes–Poincare´ space, the uncertainty region is
sphere. ThenP251 andP450—the light is completely po-
larized in second order and unpolarized in fourth order.

We introduce the notation

a[AN cos~Q/2!exp~ ifx!,

b[AN sin~Q/2!exp~ ify!,

uau21ubu2[N, F[fy2fx . ~7.2!

Then the Stokes parameters assume the form

S15uau22ubu25N cosQ,

S252 Re~a* b!5N sin Q cosF,

S352 Im~a* b!5N sin Q sin F. ~7.3!

ThereforeS2 andS3 are proportional to the cosine and sin
of the difference of the phases of the mode amplitudes.
anglesQ and F determine the spherical coordinates of t
Stokes vectorS in the Stokes–Poincare´ space, if the axis1 is
taken as the polar axis.

The transition to the diagonal basis withS85(N,0,0) is
made by a transformation with the parameters determi
from the condition

b852ra1tb50.

We find from Eq.~3.6! the parameters of the converter~Euler
angles! c5p2F, u5Q, f50. This corresponds to a rota
tion of the vectorS in the direction of the axis1; see Fig. 3.

We now consider the case when the modesx andy are
discussed by two ideal lasers with the same frequencies
independently fluctuating phasesfx andfy

5–8 ~in the experi-
ment of Ref. 8, one laser and a delay in one of the mod
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were used!. Then P250 holds: the radiation is unpolarize
in the ordinary sense. However, the photocurrent fluctuati
in the scheme displayed in Fig. 1 will be periodic functio
of the orientationx of the Nicol prism:

DNx8
2}12Vx cos 4x.

For x50 each detector ‘‘sees’’ one laser and the noise is
a Poisson character with varianceNx or Ny , and for
x5p/4 additional noise is added on account of the trans
mation, by the Nicol prism, of the fluctuations of the pha
difference into excess intensity fluctuations; see Fig. 6. T
correlation^nxny& of the photocurrents exhibits anisotrop
similar to that observed in Ref. 8.

For a quantitative description of the effect, we assu
that both lasers are in coherent statesua&x and ub&y , whose
phasesfx5arga and fy5argb are classical random pa
rameters with uniform independent distributions~i.e., the
state of the field is mixed!. Now S15^^a* b&&50
(^^ . . . && denotes a classical average with respect tofx and
fy!. Then the parameters of the field have the form

S15N cosQ, S25S350, P25ucosQu,

Q105Nx
22Ny

2, A5Nx
2, B5Ny

2,

C5NxNy5
1

4
N2 sin2 Q, h05N2,

h15N2 cos2 Q, h25h35
1

2
N2 sin2 Q,

m05m15N, m25m35h21N. ~7.4!

Heremm andhm are the eigenvalues of the matricesDQ and
Q, respectively, and the parameterQ is determined by the
ratio of the laser intensities ~see Eq. ~7.2!!:
tan2(Q/2)5Ny /Nx . Using the relation~6.10! we find the de-
gree of fourth-order polarization

P45
m22m1

m21m1
5

NxNy

Nx1Ny1NxNy
5

N sin2 Q

41N sin2 Q
. ~7.5!

For equal laser intensities it is found thatP250 and
P45N/(N14), i.e., the polarization is hidden; forN@4 the
contribution of the quantum noise can be neglected, so
P451.

According to Eqs.~6.5! and ~7.4!, the intensity correla-
tion depends on the converter parameteru as

C85
1

8
N2S 11

1

2
sin2 Q D @11Vxy cos 2u#,

Vxy5
3 sin2 Q22

sin2 Q12
. ~7.6!

Here the correlation of the intensity fluctuations is negati

^Dnx8Dny8&5C82Nx8Ny852
1

8
N2 sin2 Q sin2 u. ~7.6a!

Let sin2 Q52/3 ~Ny /Nx5tan2(Q/2)50.27 and P251/A3
50.577!. Then Vxy50, i.e., C85C—the intensity
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modes are the same~Q5p/2, P250!, then the visibility
equals 1/3:

C85
3

16
N2F11

1

3
cos 2uG .

For Q!1 we obtainVxy521.
According to Eqs.~3.7!, 6.2!, and ~6.3!, the intensity

fluctuations at the converter exit have the form

DNx8
25TNx1RNy12TRNxNy . ~7.7!

The last term describes classical noise arising as a resu
the conversion of the phase fluctuations into~anticorrelated!
intensity fluctuations by a beam splitter, i.e., the scheme w
the Nicol prism in Fig. 1 serves as a phase detector.
varianceDNy8

2 is determined from Eq.~7.7! by interchanging
the indicesx↔y. The expression~7.7! can be represented i
the form

DNx8
25

1

2
N$cos2@~Q1u!/2#1cos2@~Q2u!/2#%

1
1

8
N2 sin2 Q sin2 u. ~7.8!

The quantum noise~proportional toN! is a periodic function
of u with period 2p, and the excess noise~proportional to
N2! is a periodic function ofu with period p. For equal
intensities

DNx8
25

1

2
NS 11

1

8
ND @12Vx cos 2u#, Vx5

N

N18
.

~7.9!

The expressions~7.6a! and~7.7! satisfy the conservation law
~6.1!, according to which the sum of the detector nois
DNx8

25DNy8
2 and their cross correlation̂Dnx8Dny8& equals

the total energyN. Therefore the beats of the detector noi
and their correlation are in antiphase; see Fig. 6.

8. STATIONARY STATES

Let us find the polarization parameters of anN-photon
state

uNx&xuNy&5uJM&[uM &

with a definite difference

S15Nx2Ny52M

of the number of photons in the modes. Here

Nx5J1M , Ny5J2M , N5S052J.

The operators15a1b ‘‘transfers photons’’ from they mode
into thex mode, ands25ab1 does the opposite. It follows
from Eq. ~2.1! that

s6uM &5@J~J11!2M ~M61!#1/2uM61&.

HenceS650. The Stokes vector and the degree of seco
order polarization have the form

S5~2J,2M ,0,0!, P25uM u/J.
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states u61/2&! are completely polarized in second orde
states with an even number of photons andM50 are unpo-
larized; and all states with an odd number of photons ar
least partially polarized.

The fourth-order polarization matrix~5.1! is diagonal
(D5E5F50) and its elements are

A5~J1M !~J1M21!5Nx~Nx21!,

B5~J2M !~J2M21!5Ny~Ny21!,

C5J22M25NxNy . ~8.1!

Using Eq.~5.5! we find the following nonzero componen
of the matrixQ:

Q0052J~2J21!5N~N21!,

Q105~J1M !~J1M21!2~J2M !~J2M21!

5S1~S021!,

Q1154M222J5S1
22S0 .

Q225Q3352~J22M2!52NxNy . ~8.2!

According to Eq. ~5.7!, the variancesDSm
2 5mm of the

Stokes parameters have the form

m05m150, m25m352~J22M21J!52NxNy1N.
~8.3!

Therefore for anyM light is completely polarized in
fourth order,P451. The uncertaintyDS8 as a function of
directionQ varies from 0 toDS25Am2 ~primes in Fig. 5c!.
In the case of the one-photon state we haveS5(1,0,0) and
DS251.

The statesuM & give equality in the uncertainty relation
DS1DS25S350. Such states are said to be ‘‘intelligent’
see Ref. 15. Furthermore, since both sides of the uncerta
relation take on their minimum values, the statesuM & also
refer to a class of states with minimum uncertainty. ForN
even andM50 we have an example of hidden polarizati
with P250 andP451. We note that equality obtains in Eq
~5.9! for M56J.

In the statesuM & the quantum partS0 of the fluctuations
of the parameterS1 is completely compensated by the exce
noise Q112S1

252S0 . In practice, such compensation ca
occur only in a frequency range of intensity fluctuatio
which has an upper limit; see Ref. 23.

Intnsity interference according to Eqs.~6.5! and ~8.1! is
described by the expressions

C8}11Vxy cos 2u, Vxy5
J~J11!23M2

J~3J21!2M2 . ~8.4!

For example, forN52 andM50, i.e., in the case of a two
photon symmetric stateu1&xu1&y , we obtain Vxy51. For
T5R51/2, the correlation is completely suppresse
C850, i.e., both photons are observed only in the same
channel. This is a photon anticorrelation effect,5,6,24–27which
makes it possible to measure ultrashort group-delay time

Now let M52J, i.e., thex mode is in a vacuum stat
and they mode is in aN-photon state, so that the field
completely polarized alongy. Different transformers conver
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which are called generalized coherence states for
SU(2) group~see Sec. 3!. They can be parameterized by tw
Euler anglesf, u and mapped onto the Poincare´ sphere, set-
ting u5Q, f5F. Then, according to Eqs.~3.10! and~8.2!,

S052S15N, Q0052Q105Q115N~N21!,

S1852N cosQ, S2852N sin Q cosF,

S3852N sin Q sin F. ~8.5!

We have from Eq.~5.7!

m150, m25m35N

and from Eq.~6.9!

DSk8
25N~12Rk1

2 !.

Taking account of Eq.~3.10!, we find the variances in the
SU(2)-coherent statesU(F,Q,c)u2J&:

DS18
25N sin2 Q.

DS28
25N~12sin2 Q cos2 F!,

DS38
25N~12sin2 Q sin2 F!. ~8.6!

Equivalent results were obtained in Ref. 15 in the Sch¨-
dinger representation. We note that the sum of the three v
ances in Eq.~8.6! reaches its minimum possible value
2N ~see Eq. ~5.9!!; this is characteristic for coheren
states.14,16

In all SU(2) coherent states we havem15DS1
250, i.e.,

according to our definition, total polarization squeezin
P451, obtains. At the same time, the standard condition
squeezed states of the typeDS28

2<uS18u,
15 which assumes,

according to Eq.~8.6!, the form

12sin2 Q cos2 F,ucosQu,

holds only for some bounded region on the Poincare´ sphere,
and therefore it is not a polarization invariant.

9. SQUEEZED VACUUM

In spontaneous type-II parametric scattering, photons
emitted only in pairs, one photon in each pair havingx po-
larization and the othery polarization. We are interested i
the degenerate case, when the modes have the same fre
cies, equal to half the frequency of the pump field. The c
responding state of the field is said to be a two-mo
squeezed vacuum. It is engendered from the vacuum b
Hamiltonian of the form

H}a1b11ab.

This operator, which belongs to thesu(1.1) algebra,15,16

commutes with the Stokes operators15nx2ny . As a result,
the observables1 does not fluctuate,DS150, and the inten-
sities of the field in each mode~which themselves underg
chaotic fluctuations! are completely correlated,nx5ny .
Therefore the state is completely polarization-squeezed
P451.
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Gaussian statistics, which is completely determined by
second moments:

^a1a&[Nx5Ny5sinh2 G, S15^a1b&50,

^ab&[L5@Nx~Nx11!#1/2 exp~ if0!

5
1

2
sinh 2G exp~ if0! ~9.1!

~G is the exponent of the parametric amplification,f0 is the
pump phase plusp/2!. ThereforeS15S25S350—the field
is unpolarized in second order,P250.

The matricesK4 , Q, and DQ are diagonal and thei
components can be expressed in terms of the total en
N[2 sinh2 G as follows:

A5B5
1

2
N2, C5Nx

21uLu25
1

2
N~N11!.

h05N~2N11!, h152N, h25h35N~N11!,

m150, m05m25m35N~N12!5sinh2 2G. ~9.2!

This is an another example of a field with hidden polariz
tion: P250, P451. The region of uncertainty forDS has the
diameterAm25sinh 2G in the ~2,3! plane and zero thicknes
along the1 axis ~dashes in Fig. 5c!. It follows from Eqs.
~6.9! and ~3.10! that

DS18
25

1

2
N~N12!@12cos 2u#5sinh2 2G sin2 u. ~9.3!

From Eqs.~6.3! and ~6.5! we find the form of the inter-
ference relations for the fluctuations of the intensity in o
channel and for the correlation of the intensities:

DNx8
25

3

8
N~N12!F12

1

3
cos 2u G ,

C85
1

8
N~3N12!@11Vxy cos 2u#,

Vxy5
N12

3N12
. ~9.4!

Now let a coherent component with complex paramet
^a&5a and ^b&5b, which plays the role of a homodyn
field, be added to the squeezed vacuum. In practice this
be done with beam splitters with transmission close to 1. T
field is then described by the following normal-ordered ch
acteristic function~see Refs. 21 and 22!:

x~x,x* ,y,y* !5exp@2Nx~xx* 1yy* !1L* xy1Lx* y*

1a* x2ax* 1b* y2by* #. ~9.5!

Here the quantity L is defined in Eq. ~9.1! and
Nx5sinh2 G[N/2 refers only to the intensity of the incohe
ent part of the field. From Eq.~9.5! we find by differentiating
the second and fourth moments

^a1a&5Nx1uau2, ^b1b&5Nx1ubu2,

^a1b&[S15a* b, ^ab&5ab1L,
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N~11N1Nc!1uabu212 Re~L* ab!,

D5a* 2ab1Na* b1La* 2, E5~a* b!2,

F5a* b* b21Na* b1L* b2. ~9.6!

Here Nc[uau21ubu2, N[2Nx52 sinh2 G, so that
S05N1Nc . The Stokes vector is determined only by th
coherent part of the field, so thatP25Nc /S0 .

The variances of the components of the Stokes vec
according to Eqs.~5.5!, ~5.7!, and~7.3!, have the form

DS1
25Nc~N11!24 Re~L* ab!

5Nc@cosh 2G2sinh 2G sin Q cosf#,

DSk
25N~N12!1Nc~N11!14 Re~L* ab!5sinh2 2G

1Nc@cosh 2G1sinh 2G sin Q cosf#

~k50,2,3!. ~9.7!

Heref[fx1fy2f0 is the relative phase of the homodyn
field and tanQ/2[ub/au2. We shall examine two limiting
cases.

1. Let f50 andQ5p/2. ThenDS1 undergoes maxi-
mum squeezing:

DS1
25Nce

22G ~f50, Q5p/2!. ~9.8!

Here two types of suppression of fluctuations are manifes
simultaneously.28

~a! The Gaussian fluctuations of the parametr
scattering field are completely suppressed as a result of
total correlation of the intensities in the two mod
(nx5ny), irrespective of the value ofNc .

~b! The Poisson fluctuations of the homodyne field a
suppressed on account of the presence of an ‘‘anomalo
moment L5^ab&—similarly to the case of one-mod
squeezed light. In classical terms, this is evidence of ph
anticorrelation of the modes,fx1fy5f0 . The necessary
conditions for appreciable squeezing of this type a
Nc@N@1.

According to Eq.~9.7!

DSk
25sinh2 2G1Nce

2G ~k50,2,3, f50, Q5p/2!.
~9.9!

Here the Gaussian fluctuations are fully manifested and
Poisson fluctuations are increased by a factor ofeG. There-
fore the region of uncertainty is flattened along the axis1 and
extended in the directions2 and3 ~Fig. 7a!. By adjusting the
differencefx 2fy ~leaving the phasef5fx1fy2f050
unchanged! the center of the region, placed at the pointS,
can be displaced in the plane~2,3!, obtaining, for example,
squeezed linear~at angle 45°! or squeezed circular polariza
tion.

2. Let Q5p/2 andf5p. Then the uncertainty region
according to Eq.~9.7!, is squeezed in the directions2 and3
and extended in the direction1 ~Fig. 7b!:
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DSk
25sinh2 2G1Nce

22G ~k50,2,3!. ~9.10!

Now the contribution of Gaussian fluctuations to the u
certaintiesDS0 , DS2 , and DS3 is not suppressed, and th
necessary conditions for large relative squeezing
Nc@N@1.

For unsymmetric displacement,Q Þ p/2, uau Þu bu and
the vectorS does not lie in the~2,3! plane and squeezin
diminishes.

10. CONCLUSIONS

Thus, the polarization properties of a monochroma
plane wave in fourth order are all determined by nine para
eters, for example, the components of the 434 symmetric
matricesDQmn5^DsmDsn&. The fluctuationsDSX of the
Stokes vector in different directions can be determined by
parameters—three eigenvaluesmk of the 333 submatrix
DQkl , which determine the dimensions of the uncertain
ellipsoidDSX5const, and three angles, which determine
orientation of the ellipsoid in the Stokes–Poincare´ space.
The effect of polarization converters is graphically rep
sented as a rotation of the ellipsoid~whose center can b
placed at the tip of the Stokes vector!. In the case of classica
light we have for all directionsDSX>N, where N is the
average number of photons in two polarization modes, wh
determines the quantum part of the fluctuations of the Sto
vector. In polarization-squeezed light,10 we haveDSX<N for
some directions.

This formalism can also be used to describe two mo
which differ not by polarization but rather by the propagati
direction. The analog of the Stokes vector here makes it p
sible to visualize different states of two modes and their c
version by beam splitters and phase shifters.3 The uncertainty
ellipsoid for the Stokes vector~Fig. 7! gives a clear three
dimensional representation of two-mode squeezing, sim
to the well-known two-dimensional diagrams with ellips
for one-mode squeezing.

In conclusion, we emphasize again that the polarizat
symmetry of a free light field is not specific to quantu
theory. This becomes obvious in the Heisenberg represe
tion, in which the transformations of the polarization are d
scribed by phenomenological Jones or Mueller matri
which are well-known in classical optics.

Here we examined only fourth-order polarization effe
in the case of a single monochromatic plane wave. The
rections of further generalizations are obvious: analysis
higher orders, taking account of many longitudinal mod
~i.e., spectral-polarization analysis!, and the case of two o
more transverse modes. We note especially the case of
photon states for two beams, which in recent years has b
attracting extraordinary attention in connection with metho
ological problems of quantum mechanics~see Refs. 27 and
29–30!. The polarization matrix of the density of such stat
was studied in Ref. 31. The polarization ofn beams and
nonplanar waves have also been investigated.32–34 Some
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cally, its nonharmonic character, have been examined
Refs. 5, 6, and 35.
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The polarization-angular structure and elliptical dichroism of the cross sections for

ral
three-photon bound–bound transitions in atoms
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Using the electric dipole approximation, we present, in invariant form, the cross section of an
arbitrary three-photon transition between the discrete states of an atom with total angular
momentaJi and Jf . The cross section contains scalar and mixed products of the photon
polarization vectors, and invariant atomic parameters dependent only on the photon
frequencies. We determine the number of independent atomic parameters at fixed values ofJi

andJf and obtain their explicit expressions in terms of the reduced composite dipole
matrix elements. The polarization dependence of the cross sections is expressed in terms of the
degreesl andj of linear and circular photon polarizations. We analyze the phenomenon
of dissipation-induced circular dichroism in three-photon processes, i.e., the differenceD of the
cross sections for opposite signs of the degree of circular polarization of all the photons.
We study in detail the case of two identical photons and the phenomenon of elliptical dichroism,
whenD; l j holds and dichroism occurs only when the photons are elliptically polarized,
with 0,uju,1. Finally, we discuss the dissipation-induced effects of atom polarization in three-
photon processes involving linearly polarized or unpolarized photons. ©1997 American
Institute of Physics.@S1063-7761~97!00506-4#
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In the early experiments on the interaction of laser lig
with atoms and molecules the light that was used was usu
linearly polarized, so that the polarization dependence of
cross sections was not studied. At the same time, it is w
known that the polarization of the photon beam strongly
fluences the way in which multiphoton processes proceed
particular, the dependence of cross sections of typical m
photon processes on the absolute value of the ellipticity
the light field has been thoroughly studied~see, e.g., Refs. 1
and 2!. A more interesting polarization effect, however,
the dependence of cross sections on the signs of the de
of circular polarization of the photons, i.e., on the sense
rotation of the electric field vector in the light wave, which
generally assumed elliptically polarized. Here the most in
esting case is where the cross sections corresponding to
ferent signs of the degrees of circular polarization of all ph
tons participating in the process~incident photons and
photons emitted as result of the interaction! are different.
This specific effect, known as circular dichroism, is obvio
for media with an inversion center~say, in chiral molecules!,
but under certain conditions it is present in atomic photop
cesses. In processes involving randomly oriented atomic
ticles, circular dichroism is determined by the interference
the real and imaginary parts of the partial amplitudes of
process and contains information about the nature of the
teraction of the atomic particles and light that cannot be
tracted from experiments with linearly polarized radiation

The phenomenon of circular dichroism has been th
oughly studied~both theoretically and experimentally! only
for the simplest photoprocess, the photoionization of ato
and molecules. Here it is present only in the ionization
pre-oriented~polarized! atoms or for a fixed orientation o
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symmetry considerations: since the degreej of circular pho-
ton polarization is a pseudoscalar quantity, the terms in
photoeffect cross section responsible for circular dichroi
can containj only in products of the typejJ, whereJ is the
total angular momentum of the atom or the photoelect
spin, both of which are pseudovectors. The latest result
this field of research can be found in Refs. 3 and 4. Th
show that the difference in cross sections for clockwise- a
counterclockwise-polarized photons may become quite la
and make it possible to extract vital information concernin
in particular, the magnitude of the partial dipole matrix e
ments of a transition and the phases of electron scatterin
a residual ion.

A more specific effect is circular dichroism in process
where photons interact with unpolarized atomic particl
Only recently has this effect been studied. For instance,
rakdaret al.5 and Kabachnik and Schmidt6 ~see also Ref. 7!
studied circular dichroism in the double photoeffect~the
knock-out of two electrons by a single photon! and in photo-
induced Auger decay. The conditions needed for dichro
to emerge in bremsstrahlung and inverse bremsstrahlung
cesses and in the scattering of electrons by atoms in
presence of a light wave have been discussed in Refs. 8
9. A detailed study of circular dichroism in Rayleigh an
Raman scattering of light in gases can be found in Ref.
while the features of circular dichroism in the resonant tw
photon excitation of atoms are discussed in Ref. 11.
shown in Ref. 10, circular dichroism emerges in two-phot
bound–bound transitions only if one allows for the non
pole corrections in the atom–photon interaction and is ess
tial in the range of frequencies in resonance with a dipo
forbidden transition in the atom, when the smallness of

10800$10.00 © 1997 American Institute of Physics



nondipole effects in the cross section is compensated by the
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In this paper we analyze the polarization effects in thr

photon transitions between discrete atomic levels~three-
photon excitation, hyper-Raman scattering, frequency m
ing, etc.!. In contrast to Placzek’s well-known theory of two
photon scattering,12 which is described in full by three
invariant atomic parameters, separation of kinematic~i.e.,
depending on polarizations and directions of the wave v
tors of the photons! and dynamic~atomic! factors in three-
photon scattering cross sections is more complica
Strizhevski� and Klimenko13 developed a phenomenologic
theory of nonresonant three-photon scattering in gases,
their approach did not clarify the relationship between
scattering parameters and the microscopic atomic par
eters, and using the transparent-medium approximation
cludes circular dichroism effects. The structure of the cr
sections of three-photon processes in atoms was studie
Ref. 14, but the general results proved to be extremely c
plicated, since the angular part is expressed in terms of
sor products of six vectors~a structure that is difficult to
analyze!, and the atomic factors are expressed in terms
complicated combinations of reduced matrix elements inc
porating Wigner 3n j-symbols.

Employing in Sec. 2 a special technique for calculatin
tensor products of vectors~see Appendix A! and a conve-
nient parametrization scheme for the photon polarizat
vectors in the general case of arbitrary~and, in particular,
partial! polarization, we separate the geometric and dyna
factors in the cross section of an arbitrary three-photon tr
sition between the bound statesu i & andu f & of opposite parity,
a transition allowed by the selection rules for electric dip
radiation. Generally, the cross section contains 15 differ
terms, four of which describe circular dichroism, which a
pears in three-photon processes even in the electric di
approximation. As in two-photon transitions,10 circular di-
chroism is present only if the partial transition amplitud
contain a skew-Hermitian part~‘‘dissipation-induced dichro-
ism’’ !.

Section 3 analyzes the interesting~from the experiment-
er’s viewpoint! situation when two of the three photons a
identical, i.e., belong to the same laser pump beam. Here
pump radiation that is arbitrarily~elliptically! polarized, an
‘‘exhaustive experiment’’ makes it possible to determine
six independent atomic parameters, while for linearly pol
ized radiation the cross section is described by only two
ferent parameters. For identical photons, the dichroic term
the cross section contains the product of the degrees of li
and circular polarizations of the pump radiation, whi
means that circular dichroism is present in experiments
volving two identical photons only if the pump radiation
elliptically polarized~elliptical dichroism!.

Above we assumed that the target atoms are freely
ented in space, so that the cross sections are averaged
summed over the projections of the atomic angular mome
in the initial and final states. If we allow for dissipation e
fects caused by the skew-Hermitian part of the amplitude
three-photon processes, we can observe, in addition to c
lar dichroism, the specific effects of the orientation of ato
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photons. In Sec. 4 we discuss these effects using the sim
example of a three-photon transition between states wh
total angular momentumJ is 1

2.
The paper uses the atomic system of units.

2. POLARIZATION-ANGULAR STRUCTURE OF THREE-
PHOTON TRANSITION CROSS SECTIONS

2.1. The phenomenological approach

Let ei be the unit complex-valued polarization vector
the i th photon with a frequencyv i and a wave vector
k i5kiv i /c, whereeiei* 51 andeiki50. In the electric di-
pole approximation, the cross section of an arbitrary thr
photon transition between statesu i &[ug iJiM i& and
u f &[ug fJfM f& ~J and M are the total angular momentum
and its projection on the quantization axis, andg are the
other quantum numbers! of a freely orienting system con
tains, after averaging overMi and summing overM f , com-
binations of the six vectorsei andei* with i 51, 2, 3 and is a
linear function of each of these vectors. Hence the gen
structure of the polarization–angular dependence of the c
section can be established phenomenologically by coun
the number of linearly independent combinations of the v
tors. Clearly, such combinations can be written in terms
pairs of scalar products, seven of which are real,

1, ue1e2u2, ue1e2* u2, ue1e3u2, ue1e3* u2, ue2e3u2, ue2e3* u2,
~1!

and four are complex-valued,

A15~e1e2!~e2* e3* !~e1* e3!, A25~e1* e2* !~e2e3* !~e1e3!,

A35~e1e2* !~e2e3!~e1* e3* !, A45~e1* e2!~e2* e3!~e1e3* !.
~2!

On can easily see that the combinationsA1 , A2 , A3 , and
A4 can be obtained from each other through complex con
gation and replacement of one pair of vectorsei ,ei* by
ei* ,ei . Thus, the cross section of an arbitrary three-pho
process contains 15 terms, four of which~with Im Ai!, as we
show below, describe circular dichroism.

In the general case of elliptically polarized photons t
structure of~2! is extremely complicated since the vecto
ei are complex-valued. A convenient approach in analyz
the polarization effects in multiphoton processes is to e
ploy the following invariant~with respect to the choice o
coordinate system! parametrization of the vectore for the
case of elliptically polarized photons with an ellipticity~the
ratio of the semiaxes of the polarization ellipse! g:

e5
e1 ig@ke#

A11g2
, 21<g<1, ~3!

wheree is the unit vector along the major axis of the pola
ization ellipse, the vector that in the case of linear polari
tion ~with g50! coincides withe. In the adopted notation the
electric field strength in the light field with amplitudeF is
described by the vector

F~r ,t !5F Re$e exp@2 ivt1 i ~kr !#%
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F$e cos@vt2~kr !#1g@ke#sin@vt2~kr !#%
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A11g2

.

~4!

Instead of ellipticityg it is convenient to use the degrees
linear (l ) and circular~j! polarizations,

l 5
12g2

11g2 5~ee!5~e* e* !, j5
2g

11g2 5 i ~k@e* e# !,

~5!

related to the standard Stokes parameters.12 For totally polar-
ized radiationl 21j251.

Combining~3!, and~5!, we arrive at the following usefu
relationships:

u~ea!u25 l ~ea!21
12 l

2
@ka#2,

~ea!~e* b!5Re$~ea!~e* b!%2
i

2
j~k@ab# !,

2 Re$~ea!~e* b!%52l ~ae!~eb!1~ l 21!~@ak#@kb# !, ~6!

which are valid for real vectorsa and b. These formulas
make it possible to write the combinations in~1! containing
two polarization vectors in terms of the vectorse, k, e8, and
k8:

2uee8u2512 l l 8~122~ee8!2!2jj8~kk8!1 l ~ l 821!

3~ek8!21 l 8~ l 21!~ke8!22 1
2~ l 21!~ l 821!

3@kk8#2. ~7!

The vector combinationAi in ~2! can also be written in a
similar manner, but the result is more cumbersome. Be
we give the expression for the imaginary part ofA1 :

2 Im A1[2 Im$~e1e2!~e2* e3* !~e3e1* !%

5 1
4j1j2j3~k1@k2k3# !2j1P1232j2P213

2j3P312, ~8a!

Pi jk5 l j l k~ejek!~ki@ejek# !1 1
2l k~ l j21!~kjek!~ki@kjek# !

1 1
2l j~ l k21!~ejkk!~ki@ejkk# !1 1

4~ l j21!~ l k21!

3~kjkk!~ki@kjkk# !. ~8b!

As noted earlier, the imaginary parts ofA2 , A3 , andA4 can
also be expressed in the form~8! with the signs of two of the
three parametersj i reversed in ~8a!; for instance,
Im A25Im A1(j1,2→2j1,2). Thus, by using the parametriza
tion scheme~3! and~5! we can write the kinematic factors i
the cross sections in a form convenient for analysis, i.e.
terms of the angles between the wave vectors of the pho
and the unit vectorsei that specify the directions of the majo
axes of the polarization ellipses.

Equations~8a! and~8b! show that the ImAi change sign
whenj i is replaced by2j i , i.e., the corresponding terms i
the three-photon transition cross sections describe circ
dichroism. Clearly, these terms are of an interference na
and appear because of interference between the real
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the ImAi , being true scalars~the pseudoscalar mature ofj i is
balanced by the presence of vector products of the p
vectorsei andki in each of the terms in~8a! and ~8b!!, are
T-odd, since all the terms in~8a! and ~8b! contain an odd
number of vectorski , which change sign under time reve
sal. Hence the atomic factors with which the ImAi enter into
the cross sections must contain products of the real
imaginary parts of the partial amplitudes of the three-pho
process being investigated, since only the skew-Hermi
~imaginary! part of the amplitude isT-odd. As the unitary
property of theS-matrix implies,12 the skew-Hermitian part
of the amplitude of a specific process is always related to
amplitudes of other~in relation to the given process! physical
processes that are realizable for the given initial states of
quantum system consisting of the atoms and the phot
These process, competing in a way with the given one,
term ~in a generalized sense! dissipative processes, sinc
they weaken the intensity of the beam of incident photo
and, due to the irreversible nature of dissipation phenome
introduceT-odd parameters into the problem; and the pr
ence of these parameters is the cause for circular dichro
In the case of three-photon bound–bound transitions un
consideration, there are two dissipation channels: real po
lation of the intermediate resonant level~here the dissipation
parameter is the width of the resonant level, which is
T-odd quantity!, and ionization of the atom if the energy o
one or two incident photons is sufficient for ionizing the t
atom from the initial state. Thus, circular dichroism in thre
photon transitions is dissipation-induced, just as it is in tw
photon transitions. The difference is that in two-photon tra
sitions between bound states, circular dichroism emer
only if we allow for nondipole effects in the atom–photo
interaction, since aT-odd scalar cannot be constructed fro
four vectorse, e* , e8, ande8* . Allowing for this nondipole
nature introduces two additional vectorsk andk8, so that the
combinations of vectors in the cross sections of arbitr
two-photon transitions responsible for dichroism have
form10

E15~ee8* !~e* k8!~e8k!, E25~ee8!~e* k8!~e8* k!.

The adopted parametrization ofe makes it possible to write
these expressions in terms of the angles between real vec

Im~E11E2!5j l 8~e8k!~e8@k8k# !,

Im~E12E2!5 l j8~ek8!~e@kk8# !,

Re~E11E2!52l l 8~ee8!~ek8!~e8k!1~kk8!$ l ~ l 821!

3~ek8!21 l 8~ l 21!~e8k!22 1
2~ l 21!

3~ l 821!~12~kk8!2!%,

Re~E12R2!5 1
2jj8~~kk8!221!.

2.2. Quantum mechanical formulas for the dynamic atomic
factors

In the general case of photons with different frequenci
the amplitudeAf i of an arbitrary three-photon transition
determined by the sum of three composite matrix eleme
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calculated in third-order perturbation theory, the matrix ele-
to
it

to

on
-
m

e
a

w

3
1 x y

Ty ~v 2v ,

om-

lar-
,

ce
de-

n

-
ov-
cts,
n

c

en-

in
ments corresponding to the different combinations of pho
emission and absorption acts. For instance, if, to be defin
we take the hyper-Raman scattering of two photons,e1, v1

ande2 ,v2 , accompanied by emission of a scattered pho
e3 ,v3 (Ei1v11v25Ef1v3), we find that

Af i~e1 ,v1 ;e2 ,v2 ;e3* ,2v3!

5^g fJfM f u$~e3* d!GEi1v11v2
~e2d!GEi1v1

~e1d!

1~e2d!GEi1v12v3
~e3* d!GEi1v1

~e1d!

1~e2d!GEi1v12v3
~e1d!GEi2v3

~e3* d!

1~e1d!GEi1v22v3
~e2d!GEi2v3

~e3* d!

1~e1d!GEi1v22v3
~e3* d!GEi1v2

~e2d!

1~e3* d!GEi1v11v2
~e1d!GEi1v2

~e2d!%ug iJiM i&. ~9!

Hered is the atomic dipole-moment operator,

GE5 (
gJM

ugJM&^gJMu
EgJ2E1 i0

5(
JM

GE
J uJM^JMu

is the Green’s function of the atom, andGE
J is the part of

GE corresponding to a total angular momentumJ, and
uJM& is the spin–angular part of the atomic wave functi
with a total angular momentumJ determined by the angular
momentum coupling scheme in the particular atom. The a
plitudes of the other processes involving three photons ar
the same type, with the signs of the frequencies reversed
the corresponding polarization vectorse replaced by
complex-conjugate vectors.

Writing the scalar product~ed! in ~9! in a spherical base
and using the technique of irreducible tensor operators,
can separate the dependence ofAf i on the projectionsMi and
M f from the dependence ofAf i on the polarization vectors
ei explicitly ~see, e.g., Ref. 14!:

Af i5(
x,j

~21!x2jCJf M f x2j
Ji Mi (

y50,1,2
Qxy~2v3 ;v1 ,v2!

3$e3* ^ $e1^ e2%y%x,2j , ~10!

where the atomic parameters

Qxy~2v3 ;v1 ,v2!5A~2x11!~2y11!

2Ji11

3 (
J1 ,J2

~21!y1Ji2J1F H 1 1 y

Ji J1 J2
J

3H 1 x y

Ji J1 Jf
J TJ1J2

y ~v1

1v2 ,v2 ;v11v2 ,v1!

1~21!J11J2112Ji2Jf1xH 1 1 y

Jf J2 J1
J
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H Jf J2 Ji
J J1J2 1 3

2v3 ;v22v3 ,2v3!

1H Jf 1 J1

Ji 1 J2

x y 1
J TJ1J2

y ~v2

2v3 ,v2 ;v12v3 ,v1!G ~11!

are expressed in terms of combinations of the reduced c
posite matrix elements

TJ1J2

y ~a,b;g,d!5^g fJf id$GEi1a
J1 dGEi1b

J2

1~21!yGEi1g
J1 dGEi1d

J2 %dig iJi&. ~12!

Here we have used the standard notation of the angu
momentum technique15 for Clebsch–Gordan coefficients
Wigner 3n j-symbols, and tensor products.

Equation~10! implies that the polarization dependen
of the cross sections can be expressed, to within factors
termined by the type of process~the density of the final
states, etc.!, in terms of tensor products of the polarizatio
vectors:

MJiJf
5

1

2Ji11 (
Mi ,M f

uAf i u2

5 (
x50

3
1

2x11 (
j52x

x U(
y50

2

Qxy$e3* ^ $e1^ e2%y%x,2jU2

.

~13!

Here theQxy with fixed x andy act as the partial transition
amplitudes. As Eqs.~10! and~11! imply, generally~for arbi-
trary values ofJi andJf! seven parametersQxy are nonzero,
with the result that~13! consists of 15 different terms con
taining tensor products of six vectors. Using the rules g
erning the change of the coupling scheme in tensor produ
we can write~13! in terms of tensor products of the photo
polarization tensors$e^ e* %pm , but as a result the atomi
coefficients become extremely cumbersome.14 The method
of calculating tensor products of vectors discussed in App
dix A allows writing the MJiJf

in terms of ordinary scalar
products of vectors:

MJiJf
5 f 01 f 1ue1e2u21 f 2ue1e2* u21 f 3ue1e3u21 f 4ue1e3* u2

1 f 5ue2e3u21 f 6ue2e3* u21(
i 51

4

~Re gi Re Ai

2Im gi Im Ai !, ~14!

in conformity with the phenomenological ideas expressed
Sec. 2.1. The explicit expressions for the coefficientsf i and
gi in terms of bilinear combinations ofQxy are given in
Appendix B.
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ment, polarization measurements can provide the 15 in
pendent atomic parametersf i andgi that describe the cros
section of a three-photon process. In the absence of diss
tive processes~nonresonant transitions with a total energy
the incident photons insufficient for ionizing the atom!, the
Qxy are real-valued, with the result that Imgi50 and the
number of independent parameters is reduced to 11.

Equation~14! gives the polarization–angular of the cro
sections in the most general case of fixed polarizationsei and
directions of propagationki of all three photons. If, for in-
stance, in the above case of hyper-Raman scattering the
no scattered photon, averaging in~14! over the polarizations
e3 and integrating over the directionsk3 ~which amounts, as
shown in Ref. 12, to replacing (e3) i(e3* ) j by (4p/3)d i j ! yield
the following expression forMJiJf

:

MJiJf
5 1

9a
sue1e2u21 1

18a
a~12ue1e2* u2!

1 1
30a

t~11ue1e2* u22 2
3ue1e2u2!. ~15!

In this case circular-dichroism effects vanish and the dep
dence of the cross section on the polarizationse1 ande2 of
the incident photons is, obviously, the same as in the cas
two-photon excitation in Placzek’s theory. In our case
following combinations of the parametersQxy act as the sca
lar, skew-symmetric, and tensor parts of the cross-sectio
the two-photon process:

as5uQ10u2, aa5 (
x50

2

uQx1u2, a t5 (
x51

3

uQx2u2.

If the only polarization that is not measured is that of t
scattered photon, the dependence of the cross section o
vectork3 is retained ((e3) i(e3* ) j→(1/2)@d i j 2(k3) i(k3) j #):

MJiJf
5p01p1ue1e2u21p2ue1e2* u21p3ue1k3u2

1p4ue2k3u21(
i 51

2

~Re qi Re Ai82Im qi Im Ai8!.

~16!

Here there are ten nonzero atomic parameters, two of w
(Im q1,2) describe circular dichroism. The explicit expre
sions forpi andqi in terns ofQxy are given in Appendix B.
The real and imaginary parts of the vector combinations

A185~e1e2!~e2* k3!~e1* k3!, A285~e1e2* !~e2k3!~e1* k3!

can be written in terms of the real-valued vectorsei and
ki . For instance,

2 Im A185j1$ l 2~e2k3!~e2@k1k3# !2 1
2~ l 221!~k2k3!

3~k3@k1k2# !%1j2$ l 1~e1k3!~e1@k2k3# !

2 1
2~ l 121!~k1k3!~k3@k1k2# !%.

Equation~16! in which k3 is replaced bye3 ~and other ex-
pressions for the parameterspi and qi! is also valid in the
case of a purely linear polarization of the scattered photo

If two photons are linearly polarized~say, e15e1* and
e25e2* !, then
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and the cross section contains six terms:

MJiJf
5w01w1~e1e2!21w2ue1e3u21w3ue2e3u2

1w4 Re A11w5j3~e1e2!~k3@e1e2# !, ~17!

where the coefficientsw0 to w5 are related in a simple man
ner to the parametersf i andgi in ~14!.

2.3. Selection rules for three-photon transitions

As the general expression~9! for an amplitude implies,
the selection rules for three-photon transitions coincide w
those of the matrix elements of a rank-3 tensor construc
from three polar vectorsd. As is known,15 each rank-3 tenso
is decomposable into seven irreducible tensors with rankx
ranging from 0 to 3, but such decomposition is non-uniq
due to the ambiguity in the choice of the tensors of rank
and 2. Hence the representation~10! of Af i , which corre-
sponds to this decomposition, and formula~13! contain ad-
ditional summation with respect to indexy. As a result,~10!
contains two tensor products of rankx52 ~with y51,2! and
three tensors of rank 1~with y50,1,2!, whose interference in
~13! is the source of polarization anomalies in the transit
cross sections.

The selection rules for the separate terms in~13! are the
same as those for the electric octupole (x53), magnetic
quadrupole (x52), and electric dipole (x51) radiations and
a pseudoscalar (x50), respectively. In particular, transition
are possible only between statesu i & and u f & of opposite par-
ity, and the subscriptsx and y in the partial amplitudes
Qxy obey the following selection rules:

3>x>uJi2Jf u, 2>y5x,x61, DJ[uJi2Jf u<3.
~18!

As a result, for given angular momentaJi and Jf with
DJ<3 the number of nonzero parametersQxy and indepen-
dent coefficients in~14! depends on the values ofJi and
Jf . The cross section of a transitions between states w
maximum possible angular momenta differenceDJ53 has
the simplest structure. In this case in~13! only the octupole
part of the cross section is nonzero, with the cross sec
determined by the partial amplitudeQ32, and the corre-
sponding tensor product of the vectors contains all comb
tions of vectors~1! and~2!, with the exception of ImAi . This
is the only type of transition in which there is no circul
dichroism for open dissipation channels, with the cross s
tion determined solely by the atomic parameteruQ32u2. For
transitions withDJ52 the only nonzero partial amplitude
areQ21, Q22, and~for Ji ,Jf.0! Q32. In this case the cross
sections contains only one dichroic term;Im Q22Q21* ~see
Appendix B! caused by the interference of the magne
quadrupole amplitudesQ2y . The amplitudeQ01 enters into
the cross sections only for transitions withDJ50, with the
result that all seven partial amplitudeQxy contribute to the
cross sections only for transitions withJi5Jf>3.

The general results become simpler when bothJi and
Jf are small. Earlier we noted that for transitions wi
Ji50, Jf53 andJi50, Jf52 only one and two amplitude
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Ji5Jf5 2 only three and four parametersQxy are nonzero,
respectively, with Img350, and circular dichroism is de
scribed by the interference of the real and imaginary part
the quantitiesa i introduced in Appendix B, which are com
binations of electric dipole amplitudesQ1y .

3. THREE-PHOTON TRANSITIONS WITH IDENTICAL
PHOTONS

Of special interest is the case, important for practi
reasons, when two of the three photons are identical~belong
to the same light beam!. To make matters simple, we assum
the photons are totally polarized and set, for the sake
simplicity, (e,k1)5(e2 ,k2)[(e,k) and (e3 ,k3)[(e8,k8).
The transition amplitude in this case is~cf. ~9!!

Ãf i~e,v;e8* ,2v8!

5^g fJfM f u$~e8* d!GEi12v~ed!GEi1v~ed!

1~ed!GEi1v2v8~e8* d!GEi1v~ed!

1~ed!GEi1v2v8~ed!GEi2v8~e8* d!%ug iJiM i& ~19!

and can be written in the form~10!. Here the terms with
y51 are not present in the sum overy, so that the cross
sections are determined only by the four~generally complex-
valued! partial amplitudesQ10, Q12, Q22, andQ32, which
are expressed by relations of the form~11! with
TJ1J2

y (a,b;g,d) replaced by

T̃J1J2
~a,b!5^g fJf idGEi1a

J1 dGEi1b
J2 dig iJi&.

The combinations of vectors~2! in this case also becom
simpler:

A25A1* 5 l ~ee8!~ee8* !, A35uee8u2, A45uee8* u2,

with

Im A25j l $ l 8~ee8!~k@ee8# !1 1
2~12 l 8!~ek8!~e@kk8# !%,

~20!

2 ReA25 l $2l 8~ee8!22~ l 21!~ l 821!~11~kk8!2!

1~ l 21!@ke8#22~ l 821!@ek8#2%.

Hence the polarization–angular structure of the cross sec
is given by the following expression~cf. ~14!!:

M̃ JiJf
5a11a2l 21a3uee8u21a4uee8* u2

1a5 Re A21a6 Im A2 , ~21!

where

a15
1

3 S 1

7
uQ32u21

2

5
uQ22u2D ,

a25
1

15 S 1

3
uQ122A5Q10u22

1

7
uQ32u25uQ22u2D ,

a35
2

3 S 1

7
uQ32u22

2

5
uQ22u22

1

5
uQ21u2D ,
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a55

2

15 SA5 Re$Q10Q12* %2
2

7
uQ32u21uQ22u22uQ12u2D ,

a65
2A5

15
Im$Q10Q12* %.

Equations~20! show that the last term in~21! is nonzero
only when the pump field is elliptically polarized, wit
0,uju,1, and changes sign whenj is replaced by2j, so
that it leads to a dependence in the cross sections on
sense of rotation of the pump electric field vector~elliptical
dichroism!. As is the case with circular dichroism, elliptica
dichroism is determined by the interference of the real a
imaginary parts of the partial amplitudes, and its measu
ment provides data on the dissipative parameters of the
dium, inaccessible in experiments with linear or circular p
larization of the pump photons.

The selection rules~18! for the amplitudesQxy are also
valid for transitions involving identical photons, with the a
ditional requirementQx150. Hence elliptical dichroism is
absent not only from transitions withDJ53 but also from
transitions withDJ52. In the latter case the cross section
determined by two noninterfering amplitudes,Q32 and
Q22. All four parametersQxy enter into the cross sectio
only for transitions withJi1Jf>3 andDJ50, 1. At Ji50,
Jf51 andJi5Jf5

1
2 the cross sections are determined on

by two parameters,Q10 andQ12.
In the case of three-photon excitation by the field o

single light beam, all three photons are identical. Here
cross section is determined only by two atomic factors w
arbitraryJi andJf :

MJiJf
5a1bl2, ~22!

where

a5 1
7uQ32u2, b5 1

45uA5Q1012Q12u22 3
35uQ32u2.

To find the atomic parameters of the three-photon tr
sitions, the reduced matrix elements~12! in Eq. ~11! for
Qxy must be calculated with allowance for the scheme
angular momentum coupling in the specific atom. For
stance, for the hyper-Raman transitio
ug iS1/2&12v→ug f P1/2&1v8 in an atom with one electron in
the outer shell~e.g., for alkali atoms!, the partial amplitudes
Q10,12 have the form

)Q105R1/2
s ~v,v!1R1/2

s ~v,2v8!12@R3/2
s ~v,v!

1R1/2
d ~v,2v8!#1 1

3@2R3/2
d ~2v8,v!14R1/2

d

3~2v8,v!14R3/2
s ~2v8,v!2R1/2

s ~2v8,v!#,

A3

5
Q125R1/2

d ~v,v!1R1/2
d ~v,2v8!1

1

5 FR3/2
d ~v,v!

1R3/2
d ~v,2v8!2

2

3
R3/2

d ~2v8,v!G
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12R1/2
s ~2v8,v!#.

Here

RJ
s~a,b!5^g f P1/2udg1/2,0~Ei1a1b!dgJ,1~Ei

1b!dug iS1/2&,

RJ
d~a,b!5^g f P1/2udg3/2,2~Ei1a1b!dgJ,1

3~Ei1b!dug iS1/2&

are the radial composite matrix elements corresponding
the two valuesJ51/2,3/2 of thetotal angular momentum in
the radial partgJL(E;r ,r 8) of the Green’s function.

The numerical calculation of theRJ
s,d(a,b) can be car-

ried out using standard methods for calculating multipho
cross sections by perturbation techniques;1,2 the numerical
values of cross sections for a number of three-photon tra
tions in specific atoms can be found, for instance, in Ref.
For above-threshold frequencies~Ei1a5E.0 or
Ei1a1b5E.0!, the matrix elementsRs,d(a,b) have
imaginary parts proportional to the product of amplitudes
one- and two-photon ionization from statesu i & and u f & into
the same continuum state with energyE. Generally, ReRs,d

and ImRs,d are of the same order of magnitude, so that
circular and elliptical dichroism effects are of order un
~for a similar calculation of the matrix elements for circul
dichroism in two-photon dipole-forbidden above-thresho
scattering of light see Ref. 10!.

In resonant processes the effects of circular dichro
prove to be small, since the interference terms in the cr
section proportional toG are small compared to the pure
resonant part of the cross section. For instance, ifD is the
fine-structure interval of the resonant level of widthG, the
dichroism terms are of orderG/D, the same as the
dissipation-induced orientational effects~see Sec. 4! in
dipole-allowed two-photon scattering.17 For this reason, as in
the case of two-photon scattering,10 circular and elliptic di-
chroism effects in resonant three-photon processes may
come significant only for a resonance on a dipole-forbidd
transition. Here the polarization–angular structure of
cross section is even more cumbersome than~14!, since the
resonant part of the amplitude incorporates the wave vec
k1,2 originating in the nondipole corrections to the atom
photon interaction.

Here we do not give the corresponding formulas beca
they can be written in a simpler form for each concrete
ometry of the experiment.

4. DISSIPATION-INDUCED ATOMIC-ORIENTATION EFFECTS
IN THREE-PHOTON SCATTERING

Earlier we have seen that dichroism effects are spec
interference effects and emerge because of the presen
the problem of theT-odd pseudoscalarjk5 i @e* e# inherent
in an elliptically polarized wave and aT-odd ~dissipative!
atomic parameter. Another class of interference phenom
caused by dissipation processes is related to the polariza
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gree of circular polarization. In this case the axialT-odd
vector is the average angular momentumJ of the atom in the
initial (Ji) or final (Jf) state.

The dependence of the cross sections of two-photon
cesses on the orientation of the atom in the initial state
the emergence of a preferred orientation in the final stat
the case of a unpolarized initial states have been analyze
Ref. 17 and are due to the interference term in the cr
section of the following type~j5Ji or Jf!:

G~k1k2!~@k1k2# j ! ~23a!

for unpolarized photons and

G~e1e2!~@e1e2# j ! ~23b!

for linearly polarized photons.
Obviously, dissipation-induced orientational phenome

can also occur in multiphoton processes involving three
more photons. The most interesting is the case of dou
frequency fields with polarization vectorse1 ande2 . Earlier
we noted that two effects are possible here: the depend
of cross sections on the orientation of the initial atomic st
with a varying orientation of the final state~this requires that
the gaseous medium be pre-oriented, say, by optically pu
ing the medium!, and the emergence of orientation in th
final state with the initial state of the gas unpolarized. In t
latter case the orientation in processes of the light-scatte
type is of a correlational nature, with the result that it can
fixed only in the process of registering the photons scatte
in a given directionk2 and depends on the direction ofk2 .

Below we give the results for the simplest case of
hyper-Raman transition between states withJi5Jf51/2
~e.g., for thenS1/2 2 n8P1/2 transition in alkali-metal atoms!
accompanied by the absorption of two photonse, k, v and
the emission of one photone8, k8, v8. The transition prob-
ability averaged over the orientationsMi561/2 of the initial
state is calculated for a fixed projectionM f of the angular
momentum of the final state onto the given directionN in
space~the axis of the detector measuring the orientation
the excited atom!. The vectorj5(M f)avN, where (M f)av is
the average value ofM f , characterizes the orientation of th
atom in the final state (0<u j u<1/2).

For arbitrary~elliptical! polarizations of the incident and
scattered photons, the polarization–angular structure of
cross section can be written as follows:

2M̃ ~e,k,e8,k8,j !5a2
~1/2!l 2~112j8k8j !1a4

~1/2!uee8* u2~1

22jkj !1a5
~1/2!~Re A212l Im Bj !

1a6
~1/2!~ Im A222l Re Bj !. ~24!

Here ReA2 and ImA2 are given by~20!,

Bj5~ee8* !~@ee8# j !,

and the coefficientsai
(1/2) are the same as in~21! if in the

latter we putJi5Jf51/2. Herea15a350, while the other
coefficients can be expressed in terms of the parame
Q10 and Q12. Thus, for a transition withJi5Jf51/2 the
orientational effects are described by the same atomic par
eters as in the case of an unpolarized atom. Note that
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pre-oriented atom without analyzing the orientation in t
final state~for a similar treatment of two-photon scatterin
see Ref. 17!.

In the general case of arbitrary photon polarizations,
real and imaginary parts ofBj are fairly complicated:

2 ReBj52l 8~ee8!~@ee8# j !1 1
2jj8@~k8e!~@ke# j !

1~@ke#k8!~ej !#1 l 8~ l 21!~ke8!~@ke8# j !

1 l ~ l 821!~k8e!~@ek8# j !1 1
2~ l 21!~ l 821!

3~kk8!~@kk8# j !, ~25!

2 Im Bj5j8$ l ~@ek8#@ej # !1 1
2~ l 21!@kk8#@kj #%

1j$ l 8~2~ee8!~@ke#@e8j # !1@e8k#@e8j # !

1 1
2~ l 821!~2~k8e!~@ke#@k8j # !1@k8k#

3@k8j # !%. ~26!

Equations~24!–~26! imply that there are two mechanisms b
which an initially unpolarized atom becomes oriented in
process of three2photon scattering. In the first three terms
~24!, the orientation terms (; j ) disappear atj50 and
j850 but describe normal orientational phenomena in fie
with a finite degree of circular polarization. Here we no
that when the photone is only circularly polarized, the ori-
entation terms;j8k8j and ;Im Bj vanish from the cross
section; they contribute to the cross section only if the p
ton e is either linearly or elliptically polarized. The term wit
ReBj containing the coefficienta6 ; Im$Q10Q12* % is finite
even forj5j850 and describes dissipation-induced orie
tation in two linearly polarized light fields. Equation~24!
becomes much simpler in this case:

2M̃ ~e,k,e8,k8,j !5a2
~1/2!1~a4

~1/2!1a5
~1/2!!~ee8!2

22a6
~1/2!~ee8!~@ee8# j !. ~27!

We see that the orientation term has the same vector s
ture ~23b! as in the case of two-photon scattering. For c
linear light beams the orientation vector points in the dir
tion of light propagation and is the longest when the an
between the direction of linear photon polarization amou
to p/4. Orientation appears also in the case of an unpolar
photone8 (j85 l 850), but for a photone with a nonzero
degree of linear polarizationl . The corresponding results ca
easily be obtained as a particular case of Eqs.~24!–~26!.
Here the orientation vector is perpendicular to the plane c
taining the vectorse and k8, is the longest when the angl
between these vectors isp/4, and vanishes in the case
collinear light beams. If the photone is also unpolarized,
then orientation vanishes~see Eq.~23a!!, in contrast to the
case of two-photon scattering. This fact is specific only to
case of two identical photons, so that if all three photons
different, orientation emerges for unpolarized photons an
described by vector combinations of the type

~k1k2!~k1k3!~@k2k3# j !

plus the terms obtained via permutations of the subscript
2, and 3. As for the numerical value of the dissipatio
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circular and elliptical dichroism effects are valid here:
above-threshold frequencies the magnitude of the effect i
order unity, and in the resonant-frequency range the cas
dipole-forbidden one- or two-photon resonances is the m
promising for observing dissipation-induced orientation
phenomena.
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burg State University~Grant No. 95-0-5.3-25!.

APPENDIX A: CALCULATING TENSOR PRODUCTS OF
VECTORS

In using the quantum angular-momentum technique
separate the kinematic and dynamic factors in the proc
cross sections containing several vectors~photon polariza-
tion vectors, particle momenta, etc.! one is forced to dea
with scalar products of irreducible tensors composed of th
vectors. Such constructions in the most general case are

~$...$a^ a1% i 1
^ . . ak% l$...$b^ b1% j 1

^ ...bk8% l ! ~A1!

and, being scalars, can br expressed in terms of combina
of scalar and mixed products of vectorsai and bj . The re-
spective formulas for~A1! containing three and four vector
can be found in Ref. 15. Below we describe the procedure
simplifying ~A1! for arbitraryk, k8, and l .

Let us first introduce a special notation for the equ
vectors, where the rank of this tensor coincides with
number of the constituent vectors:

$...$$a^ a%2^ a%3^ ...a% jm[$a% jm . ~A2!

We also list the properties of irreducible tensors, which c
be verified by applying the rules governing the change of
coupling scheme in tensor products.15

~1! All tensors whose ranks coincide with the number
the constituent vectors are independent on the coup
scheme of these vectors. This assertion becomes obvio
we turn to the following relation (Ri 21 andSj are arbitrary
tensors!:

$$Ri 21^ a% i ^ Sj% i 1 j ,m5$Ri 21^ $a^ Sj% j 11% i 1 j ,m . ~A3!

~2! If the rank of the tensor product is equal to the d
ference of ranks of the constituent tensor, the coupl
scheme for these tensors can be changed according to
following relationship:

$$Ri 21^ a% i ^ Sj% j 2 i ,m5$Ri 21^ $a^ Sj% j 21% j 2 i,m . ~A4!

~3! For the scalar product of the tensors$a% jm and
$b% jm we have the following relation:

~$a% j$b% j !5Pj~x!
j !

~2 j 21!!!
~ab! j , ~A5!

which follows from the well-known representation of th
spherical functionYjm(a/a) in terms of$a% jm ~Ref. 15! and
the addition theorem forYjm(a/a); herex5ab/ab andPj is
the Legendre polynomial.
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Let us now prove that for each tensor construction the
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.

following is true:

$...$$a^ a1% i 1
^ a2% i 2

^ ...ak% i kmk

5Ô~a;a1 ,...,ak!$a% i kmk
, ~A6!

whereÔ is a scalar differential operator containing the ve
tors a1 ,...,ak and the gradient operator¹a[]/]a. Indeed,
such an operator can be built for each seti 1 , i 2 ,...,i k if we
employ the following relations:

$$a% l ^ b% l 21 m5
a2l 11~b¹a!

A~2l 21!~2l 11!
a22l 11$a% l 21 m ,

$$a% l ^ b% l 11 m5
1

l 11
~b¹a!$a% l 11 m , ~A7!

$$a% l ^ b% lm52
i

Al ~ l 11!
~b@a¹a# !$a% lm ,

which can be verified if we allow for the rule of changing th
coupling scheme.

These results are sufficient for simplifying constructio
of type ~A1!. Using ~A7!, we can combine the vector
a1 ,...,ak and b1 ,...,bk8 into a scalar~i.e., containing only
scalar and mixed products! differential operator~see~A6!!
acting on the scalar product~A5! with j 5 l . Calculating the
result of the action of this operator on the Legendre poly
mial written explicitly in terms of the scalar productsab, we
arrive at the final result. When the number of the vectorsai

and bi is small, the most widely used are the formulas th
follow from ~A7! with l 51, 2:

$$a^ a%2^ b%2m52
i

A6
~b@a¹a# !$a^ a%2m ,

$a^ b%2m5
1

2
~b¹a!$a^ a%2m ,

$$a^ a%2^ b%15
a5

A15
~b¹a!

1

a3 a.

This procedure can be illustrated by the following e
ample:

~$a^ a1%2$b^ b1%2!

5 1
6~a1¹a!~b1¹b!a2b2P2~cosu!

5 1
4~a1¹a!~b1¹b!$~ab!22 1

3a
2b2%

5 1
2~a1¹a!$~ab!~b1a!2 1

3a
2~b1b!%

5 1
2~ba1!~b1a!1 1

2~ab!~a1b1!2 1
3~bb1!~aa1!,

which coincides with the result of Ref. 15.
In conclusion we note that this technique of transform

scalar products of the form~A1! can be adopted in simplify
ing tensorsRkq of low rankk that are constructed from vec
tors. For instance, to simplify the tensorR1q of rank 1 we
must first calculate the scalar product (R1r ), wherer is an
arbitrary vector, and then obtain an explicit expression
R1q by applying the operator (¹ r)q to (R1r ).
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If for the combinations of the atomic parametersQxy we
employ the notation

a15
1

2
~)Q121A5Q11!, a25

1

2
~)Q122A5Q11!,

a35
1

)

~A5Q102Q12!, b15
1

2
~Q221)Q21!,

b25
1

2
~Q222)Q21!, g15uQ01u2, g25

1

7
uQ32u2,

we can write the atomic factorsf i andgi in ~14! as follows:

f 05 1
6~g11g21 8

15ub11b2u22 8
15 Re~b1b2* !!,

f 15 1
15~ ua3u22g22ub11b2u2!,

f 25 1
6~2g11g2 1 4

15ub11b2u21 8
15 Re~b1b2* !!,

f 35 1
6~2g11g21 4

15@ ub12b2u223ub2u2# !,

f 45 1
15~ ua2u22g22ub1u2!,

f 55 1
6~2g11g21 4

15@ ub12b2u223ub1u2# !,

f 65 1
15~ ua1u22g22ub2u2!,

g15 2
15~a2* a32g21ub1u21b1* b2!,

g25 2
15~a1a3* 2g21ub2u21b1* b2!,

g35 1
3~g11g22 4

15@ ub12b2u213b1b2* # !,

g45 2
15~a1* a22g22b1b2* !.

The parameterspi andqi in ~16! have the following form:

p05 1
30~8g21ua1u21ua2u21ub1u21ub2u2!,

p15
1

15 S 23g21Re (
i 51

3

a1a3* D ,

p25 1
45@12g213 Re~a1a2* !25 Re~b1b2* !#,

p35 1
60~5g123g222ua2u21 2

3ub112b2u2!,

p45 1
60~5g123g222ua1u21 2

3u2b11b2u2!,

q15 1
15@2g22a3~a1* 1a2* !2ub11b2u2#,

q25 1
30@25g123g21 4

3ub12b2u22a1a2*

12 Re~b1b2* !1 i6 Im~b1b2* !#.
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Instability and disruption of precision cumulation of cavities and mass flows in the field

ili-
of gravitational and inertial forces and other dipole perturbations
G. A. Askar’yan and I. V. Sokolov

Institute of General Physics, Russian Academy of Sciences, 117942 Moscow, Russia
~Submitted 30 September 1996!
Zh. Éksp. Teor. Fiz.111, 2001–2015~June 1997!

The effect of gravitational and inertial forces on the precision cumulation of cavities, fast mass
flows, and detonation and shock waves is studied in stages. The possible effects of these
forces on the motion of masses and waves~the velocity, direction and structure of the waves can
change! and on the properties of the medium in front of the waves that influence the
change in the parameters and refraction of the waves are noted. It is shown that it is advantageous
to perform precision cumulation experiments in zero-gravity. ©1997 American Institute of
Physics.@S1063-7761~97!00606-9#
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In the last few years, cumulation—one of the most int
esting directions of science and technology—has ente
new fields of small-scale processes and ultrahigh densi
temperatures, and pressures. Besides the numerous stud
laser-driven fusion, it is sufficient to mention the success
attempts to obtain bursts of thermonuclear neutrons with
converging mass flows accelerated by the cumulation by
explosive initiated by a simultaneous detonation of its ou
surface,1 the production of superstrong magnetic fields
compression of liners which sweep up the magnetic fi
with and without plasma, the already long-matured possib
ties of producing microcritical masses of fissioning materi
and micronuclear explosions,2 particle acceleration, meso
and neutrino production, and so on.2,3

Actually, the idea here, by switching to small foci an
high energy densities, is to increase the energy densi
thousandfold and more above the cumulation levels pr
ously achieved in the explosion, military, and ultrason
fields. However, a number of difficulties due to the destr
tion of the symmetry of the cumulation process arise on
path to such small-scale processes. Most of these difficu
are trivial and can be eliminated technologically. We shall
interested primarily in the influence of gravitational and
ertial forces, which is difficult to eliminate, on the process
which occur.

The accelerationg due to gravitational and inertia
forces can vary over wide limits—fromg5g05103 cm/s2

~earth’s gravitational field! up to g;(102104)g0 , in the
case when a body moving with a high velocity decelerate
a gaseous or dense medium, and down tog50 in zero-
gravity.

The effect of these forces can be expressed as a d
action on the elements of the medium which are entrai
into the cumulation process through a change in the in
properties of the medium through which the shock or de
nation wave travels. Finally, the action of the force on t
exterior part of the flow can cause the disturbance to ac
mulate and instability to develop in the interior regions.4

The above-mentioned instability has been found to
characteristic for many cumulation systems and it does
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ties. It leads to growth of the dipole harmonics of the dist
bance and is very closely related to the force of gravity—
the one hand the instability can be excited by the action
the gravitational force and on the other the presence of
dipole disturbance, even if it is present for different reaso
~for example, presence of a gradient of the external pr
sure!, can itself often be taken into account by introduci
into the equations an effective, gravitational-type mass fo
In this latter case the effective accelerationg can reach
(1052106)g0 .

It is easy to estimate the effect of an accelerationg on
the very simple ‘‘impact’’ system in which noninteractin
particles, initially arranged on a sphere with an initial radi
R0 , fall toward the center with velocityV0 . They will col-
lide at a point displaced downwards from the center of sy
metry by the distance

Dx5
1

2
gt2, t5R0 /V0 ,

with velocities differing bydV;2V0Dx/R0 . When colliding
particles or waves are used to compress a target, such a
sonance can be manifested at the last stage of compre
where a high degree of symmetry of the action is essent

In hydrodynamic cumulation the situation is fundame
tally different in the sense that the analogous estim
Dx;gt2, wheret is a characteristic time, may be incorre
even in order of magnitude. In addition, gravity can shift t
cumulation point upwards and not downwards.

The initial deformation due to gravity is also a dire
action of gravity. This effect is not discussed in the pres
paper, though the problem of eliminating it appears to
nontrivial in some cases. For example, consider a bubble
liquid. The collapse of the bubble is an example of a cum
lative flow. The bubble can be assumed to be spherical o
if it is small compared with the so-called capillary consta
k5A2s/gr0, wheres is the surface tension andr0 is the
density. For waterk>0.4 cm. if the initial bubble size is
>0.1 cm, then the distortions of the bubble shape canno
regarded as small, especially since, as will be shown bel
these distortions grow as the bubble collapses. If an atte

10908$10.00 © 1997 American Institute of Physics
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the bubble with the aid of shells, then the problem arises
taking account of the effect of the residues of these shells
the final result of the cumulation process.

2. EFFECT OF THE GRAVITATIONAL FORCE ON THE
SYMMETRY OF COLLAPSE OF A BUBBLE IN A LIQUID

One of the oldest cumulation problems is the collapse
a bubble in a liquid under the action of an extern
pressure5,6 or resonance vibrational action down to sm
sizes by a pulse train.7 Such dynamic bubbles have lon
proved to be sources of strong shock waves in acous
ultrasonic technology, and maraine practice. They are u
for working or breaking down surfaces, accelerating che
cal reactions, acting on a medium and on physical and
physical processes and structures, and so on. But this wa
to kbar pressures. How will such bubbles behave in attem
to obtain thousands of times higher pressures?

First, we shall estimate the initial and final pressures a
bubble sizes at which high collapse rates should be expec

For purposes of estimation, let us consider an inco
pressible liquid. The condition of incompressibility is n
satisfied at pressures< Mbar for a liquid such as water, bu
there is, for example, mercury, whose atoms have many e
trons and for this reason are poorly compressed, and t
are also ‘‘hard’’ solids, which behave at high pressures a
liquid with a low compressibility. In the the compression
cavities in bodies which are initially solid but become liqu
at high pressures, difficulties due to initial deformation a
initial motion on account of buoyancy do not arise.

We shall present an expression, derived from ene
considerations and helpful for further derivations, for the r
of collapse. Let an empty spherical bubble with initial radi
R0 and instantaneous radiusR(t) collapse under a pressur
P0 applied to the distant outer surface of an incompress
liquid with densityr0 . The work performed by the externa
pressure equals at each moment in time the product ofP0 by
the change in the volume bounded by the outer surface o
liquid, equal, taking compressibility into account, the co
pression volume of the cavity:

A54pP0~R0
32R3!/3.

This work equals the kinetic energyK of the liquid set in
motion during the collapse of the bubble. Since the veloc
v(r ) of a spherically symmetric flow in an incompressib
liquid satisfies at any given moment in time the relati
vr 25const, wherer is the distance from the point to th
center, integration over the volume gives

K54prR3
Ṙ2

2
.

EquatingA andK, we easily obtain the well-known expres
sion for the velocity of the cavity walls:5,6

Ṙ5A2P0

3r0
S R0

3

R321D .

For smallR we obtainṘ;R3/2 and K5const. Therefore a
bubble in an incompressible liquid acts like an ideal co
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sure into the kinetic energy of the liquid localized in a sm
volume ;4pR3. The acceleration of the inner surface i
creases as

R̈5Ṙ
dṘ

dR
52

P0R0
3

r0R4 .

The pressure, which equals zero on the inner surface, gr
in the direction into the liquid with gradient]P/]r;r0R̈, so
that a pressure

P;R]P/]r;P0~R0 /R!3.

arises at distances;R from the surface. AsR→0, we have
P@P0 by a fantastic factor~but, recall, that the incompress
ible liquid model is imperfect!. The growing inertial com-
pression of the near-surface layer of matter under a h
pressureP@P0 is analogous to the first~adiabatic! stage of
compression of matter by a programmable laser pulse, un
which the compression grow and accelerates up to the p
action on the supercompressed matter.

It is easy to take account of the effect of the gas pres
inside a bubble. For collapse velocities greater than the
locity of sound in the gas the formation of a shock wave
the gas must be taken into account~numerical calculations of
such a flow were performed in Ref. 8!. If the bubble bound-
ary compressing the gas accelerates toward the center,
as is well known from the theory of the pinch effect
plasma, the gas swept up by the shell is localized in a t
layer, which is separated by the shock front from the unp
turbed gas, near the shell. The kinetic energy of this la
can be set equal to 4prg(R0

32R3)Ṙ2/3, whererg is the
initial gas density. The internal energy of the gas compres
by the strong shock wave is usually of the order of the
netic energy. ForR<Rm5R0(rg /r0)1/3 the effective mass
of the liquid set in motion becomes less than the mass of
gas. A large fraction of the kinetic energy is transferred
the gas and the increase in the energy density is limited
the finiteness of the mass of the gas. The converging sh
wave in the gas on these scales should detach from
boundary of the bubble and its further cumulation5,6,9 is not
associated with the motion of the bubble walls but inhe
all the distortions of the bubble shape.

The existence of a critical scaleRm leads to an importan
limitation on the degree of volume compression of the gas
the bubble: It cannot be much greater than the ratio of
initial densities of the liquid and the gas or, equivalently, t
maximum achievable average gas density in the bubble i
the order of the density of the liquid compressing it. Th
limitation is more stringent than the case, ordinarily analyz
in hydroacoustics, of adiabatic compression of an air bub
in water.

Taking P0;1 Mbar, rg;1022 g/cm3, r0;10 g/cm3,
andR0;10 cm for purposes of estimation, we would obta
on scales of the order of 1 cm collapse velocities of the or
of 107 cm/s and compressed gas density;10 g/cm3, which
could be of interest for controlled thermonuclear fusion.

We took these figures as typical for the example of e
plosive initiation, keeping in mind that both the compres
ibility of the liquid and, generally speaking, a number
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plasma effects occurring at the liquid–plasma interface will
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have to be taken into account. For all its limitations, t
incompressible-liquid model nonetheless makes it possibl
take into account simply the effect of gravity on the bubb
cumulation process.

Cumulation can break down because of not only the
rect effect of gravity but also the pressure differential on
outer surface of the liquid, i.e., a small asymmetry in t
distribution of P0 . As a result of such an asymmetry, th
total force which acts on the liquid and under which t
liquid as a whole acquires an inertial acceleration, may
different from zero. The action of such an acceleration c
be described, on the basis of the principle of equivalence
an effective gravitational acceleration which is determin
as is easily understood, by the expression

geq52
rP0ndS

*r0dV
,

where the surface integral is taken over the outer surfac
the liquid, the unit vector points in the direction of the no
mal to the surface into the liquid, and the volume integ
extends over the entire volume of the liquid. Another pos
bility is the case when the pressure on the outer surfa
though uniform, is switched on in different sections of t
surface at different times. In this case, the effective accel
tion acts during the switch-on time.

To study the action of the acceleration of the gravi
tional force, real or effective, on the collapse of a bubble
us examine the following problem. Let an empty spheri
cavity of radiusR0 be present initially in an incompressib
liquid which is initially at rest att50. The pressure in the
liquid sets the liquid in motion and the cavity collapses. W
shall find the flow that arises, taking account of the grav
tional force.

Since the gravitational force is a potential force and
vorticity in the liquid is initially zero, the flow will be a
potential flow. The conditions of irrotationality and incom
pressibility and Euler’s equation are6

u5gradw, Dw50,
]u

]t
1~u•¹!u52

1

r
gradP1g.

~2.1!

Here u, w, P, andr are, respectively, the velocity, the ve
locity potential, the pressure, and the density. We integ
Euler’s equation over space, assuming that at large dista
from the bubble the velocity potential vanishes and the p
sure distribution equals the hydrostatic pressure distribut

Pu uxu→`5P01rg•x,

whereP05const andx is the radius vector. Then

]w

]t
1

1

2
grad2 w1

P2P0

r
5g•x. ~2.2!

We introduce a system of spherical coordinatesr ,u ini-
tially centered at the center of the spherical cavity, and let
u50 axis be oriented upwards~in a direction opposite to the
gravitational force!. The azimuthal angle is not introduce
since the flow obviously does not depend on it. The equa
of the bubble surface can be represented in the fo
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Legendre polynomialsPn(cosu) and at the same time ex
pand the velocity potential, which is a harmonic functio
~satisfying Laplace’s equation!, in a series in spherical har
monics:

1

r m
5 (

n50

`

an~ t !Pn~cosu!,

w5 (
n50

`

bn~ t !Pn~cosu!S 1

r D n11

. ~2.3!

To obtain equations for the coefficientsan and bn we
employ the identity

]

]t S 1

r m
D52S 1

r m
D 2S ]w

]r
1

]

]u S 1

r m
D ]w

]u D U
r 5r m

. ~2.4!

To derive Eq.~2.4! it is necessary to transform tempo
rarily on the surfacer 5r m to Lagrangian coordinates (t,j)
~see Ref. 6!, which possess the property that a point w
fixed j on the boundary coincides at all times with the sa
element of the liquid and therefore moves in space with
locity u. Using the well-known differential expression fo
transforming from the coordinates (u,l ) to coordinates
(j,l ),

S ]r m

]t D
u

5S ]r m

]t D
j

2S ]r m

]u D
u
S ]u

]t D
j

,

and expressing the velocity of an element of the liquid lyi
on the boundary~the derivatives at constantj!, in terms of
the velocity potential at the boundary, we obtain Eq.~2.4!.
Substituting the expansions~2.3! into Eqs. ~2.4! and ~2.2!
and recalling thatP50 holds atr 5r m , we obtain the system
of equations

(
n50

`
dan

dt
Pn~cosu!5r m

22S (
n50

`
bn~n11!

r m
n12 Pn~cosu!

2 (
n51

`

an

dPn~cosu!

du

3 (
n51

`
bn

r m
n11

dPn~cosu!

du D , ~2.5!

(
n50

`
dbn

dt

Pn~cosu!

r m
n11 1

1

2 S (
n50

`
~n11!bnPn~cosu!

r m
n12 D 2

1
1

2 S (
n51

`
bn

r m
n12

dPn~cosu!

du D 2

5
P0

r
2grm cosu.

~2.6!

In Eqs.~2.5! and~2.6! r m must be expressed in terms o
the series~2.3!. Then all derivatives of the Legendre polyno
mials must be represented as sums of Legendre polynom
and equating to zero the total term of the expansion in fr
of each polynomial gives an infinite system of ordinary d
ferential equations foran and bn . In practice, this can be
done only for the case when all modes withn Þ 0 can be
regarded as a perturbation of the main motion withn50.
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shape and the velocity field are small; an additional condit
for the gravitational force to be weak is presented belo
Linearizing Eqs.~2.5! and~2.6! with respect to the quantitie
an ,bn (n>1) gives the system

ȧ05a0
4b0 , a0ḃ01

1

2
b0

2a0
45

P0

r
, ~2.7!

ȧ152b1a0
514b0a0

3a1 , ḃ0a11ḃ1a0
212b1b0a0

5

12b0
2a1a0

352g/a0 , ~2.8!

ȧn5~n11!bna0
n1414b0ana0

3, ḃ0an1ḃna0
n111~n

11!bnb0a0
n1412b0

2a0
3a150 ~n>2!. ~2.9!

The equations~2.7! describe the well-known process o
spherical cumulation of a bubble and have a solution of
form

b05A2P0

3r S R0
3

a0
2

1

a0
4D , t5E

R0
21

a0 da0

a0
4b0~a0!

. ~2.10!

Near the center~for a0@R0
21! we obtain from Eqs.

~2.10!

R~ t !5a0
21~ t !'S 25~t2t !2P0R0

3

6r D 1/5

,

t5A 3r

2P0
E

R0
21

` da0

AR0
3a0

72a0
4

. ~2.11!

Here we have introduced the notationt for the collapse time.
Next, Eqs.~2.8! describe in a linear approximation th

growth of a dipole disturbance on account of the action
the gravitational force on the bubble collapse process. Eli
nating from Eq.~2.8! b0 andb1 with the aid of Eqs.~2.7! and
~2.8! we find that in this approximation the action of th
gravitational force on the bubble causes the bubble to
lapse, and the upward displacementz(t)52a1R2 of the
bubble is described by the simple equation

d

dt S R3
dz

dt D52gR3. ~2.12!

The equation~2.12! has a clear physical meaning:
bubble with reduced mass 2pR3r/3 ~this expression is given
in Ref. 6! rises under the action of the buoyan
24pR3rg/3. The reduced mass vanishes over the colla
time t, and the impulse of the buoyancy is finite and equ

E
0

t 4p

3
gR3dt5

5p

6
gtR0

3. ~2.13!

Therefore the rise velocity grows as

dz

dt
5

5R0
3tg

4R3 ,

i.e., much more rapidly than the collapse velocity

dR

dt
;

R0
5/2

R3/2t
.
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R@ l;R0 (gt ) . This condition holds at the initial stag
of collapse for bubbles which are not too large~such that
grR0!P0!. However, at distancesR; l;R0

1/3(gt2)2/3 near
the center the rise and collapse velocities are equal, and
model of spherical cumulation of a bubble is no longer a
plicable. We note thatl @gt2, and for not too small initial
bubble sizes the limits imposed on cumulation by the gra
tational force can appear earlier than other limiting fact
~compressibility, counterpressure!.

Finally, the equations~2.9! describe the growth of initial
disturbances of the bubble shape. To find the growth rate
the disturbances near the center, we substitute the rela
~2.11! into Eq. ~2.9!. We obtain for the amplitude
zn52anR2 the asymptotic behavior

zn}Ra, a52
1

4
6 iA24n225

16
. ~2.14!

These modes are gravity waves, in which the accele
tion of the bubble surface during collapse (R̈) plays the role
of the acceleration of gravity. For largen the frequency of
these waves is proportional, as usual, to the square roo
the wave number. On account of the compression of
surface occupied by the waves, the amplitude increases

uznu}R21/4,

but much more slowly than the moden51 examined above
for which z } R21/2. The increase in the amplitude of th
gravity waves is a consequence of the conservation of
adiabatic invariant; in the process the energy of the wa
grows asR25/2.

It seems to us that this result is of great interest for
general problem of the stability of cumulative flows sinc
first, the growing perturbations are perturbations on
Rayleigh–Taylor stable surface~the inertial acceleration is
directed in the direction of the heavy liquid! and, second, the
dipole mode of the perturbations has the maximum grow
velocity.

In the linear approximation the gravitational force a
fects the highest modes only through the deformation of
initial shape of the bubble. One can attempt to elimin
these initial imperfections of the cavity shape by confini
the cavity in a thin light spherical shell, but the residues
the shell can degrade cumulation.

If the dipole mode is excited by an effective gravit
tional force, then it must be kept in mind that this effecti
force can change in time and then the gravitational accel
tion in the expression~2.13! for the impulse of the buoyancy
cannot be removed from the integrand. Moreover, if the
fective force varies not only in magnitude but also in dire
tion, then the impulse of the buoyancy can vanish so that
instability will be appreciably suppressed. We also note t
an instability of the dipole mode can develop in the abse
of a gravitational force if initially the bubbles have a sma
velocity relative to the liquid. In this latter case the role
the impulse of the buoyancy is simply transferred to the i
tial momentum of the bubble~product of velocity by the
reduced mass!.
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effect of a counterpressure and the gravitational force
cumulation during the rapid~nonadiabatic! collapse of gas in
a bubble. Comparing the expressions for the radiusRm , at
which the counterpressure starts to have an effect~see
above!, and for l shows that the gravitational force dom
nates when

g>
P0

r0R0
Arg

r0
. ~2.15!

At megabar pressures the effect of the gravitational fo
itself (g5g0) is hardly important. However, when the pre
sure on the outer surface of the liquid is initiated by means
an explosion, substantial inertial forces can arise since
detonation wave producing this pressure is itself subjecte
the effect of the gravitational force.

3. ACTION OF A GRAVITATIONAL FORCE ON A
CONVERGING DETONATION WAVE

In the case when the motion occurs in media produ
by a converging detonation or shock wave, an estimate of
direct action givesD;g(R0 /D)2, whereD is the detonation
velocity. But taking the effect of gravitational forces on th
detonation process in detail gives a sharper dependenc
g, especially for gaseous media. We shall prove this.

We consider first a plane detonation wave propaga
upwards or downwards in a gas with specific heat ratiog in
a gravitational field. Let us assume that the initial equil
rium state is isothermal and the heat of reaction does
depend on the pressure ahead of the front. Then the det
tion velocity determined from the Chapman–Jouguet~CJ!
condition does not depend on the height.

We use the Lagrangian equations of motion

]r

]t
1

r2

r0

]u

]j
50, ~3.1!

]u

]t
1

1

r0

]P

]j
5g, ~3.2!

]~P/rg!

]t
50. ~3.3!

Here we have introduced the Lagrangian coordinatej ~see
Ref. 6!, which we shall take to be the initial vertical coord
nate of a fluid particle measured from the location of de
nation initiation in the direction of propagation of the det
nation. Correspondingly, we takeg57ugu for upward or
downward motion. Let the subscript ‘‘0’’ label values of th
parameters ahead of the wave front and the subscript
label values behind the wave front. SinceP0 andr0 depend
on j,

P0}r0}exp~gj~]r/]P!T!,

P1 andr1 also depend onj and for this reason the entrop
conserved in the flow behind the front is different for diffe
ent values ofj:

P~ t,j!/rg~ t,j!5P1~j!/r1
g~j!Þconst. ~3.4!
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equations of motion in the characteristic form

S ]

]t
6

rc

r0

]

]j D S u6
2

g1
cD

52
rc2

r0g

]

]j
ln~r1

g/~g21!P1
21/~g21!!1g. ~3.5!

On account of the entropy gradient on the right-ha
side of Eq.~3.5! there appears, besidesg, a specific gradient
acceleration

2
rc2

r0g

]

]j
ln~r1

g/~g21!P1
21/~g21!!52

rc2

r0
gS ]r0

]P0
D

T

,

~3.6!

which is directed opposite tog and whose magnitude for
strong detonation wave is many times greater thang. The
effect of this acceleration is similar to that of the curvature
the front on the flow behind a detonation wave, described
the same equation as Eq.~3.5! but with the right-hand re-
placed byKcu, whereK is the curvature. Like the curvature
the gradient acceleration leads either to overcompres
detonation or singularities near the front, depending on
sign of the gradient acceleration.

The effect of the gravitational force on a plane wave c
be easily calculated taking into account the smallness of
degree of overcompression, which is characterized by
small deviationsd of the quantities behind the front from th
values prescribed by the Chapman–Jouguet condition.
well-known properties of a normal detonation wave satis
ing the Chapman–Jouguet condition lead to simplificatio
In this state the entropy behind the front has its maxim
value and the velocityD of the wave has its minimum valu
compared with all states which are permitted by the con
tions at the discontinuity. Therefore the deviatio
d(P1 /r1

g) and dD are second-order infinitesimals, whic
makes it possible to obtain, by means of the law of cons
vation of mass at the discontinuity (dr1(DCJ2u1CJ)
5du1r1), the relations

dc1

c1CJ
5

du1

DCJ2u1CJ

g21

2
,

dP1

PCJ
5

2g

g21

dc1

c1CJ
,

dr1

r1CJ
5

du1

DCJ2u1CJ
~3.7!

~The indexCJ designates the values of quantities which s
isfy the Chapman–Jouguet condition!.

Further, the velocity of a normal wave relative to the g
behind the wave equals the local velocity of sound:

DCJ2u1CJ5c1CJ ,

which makes it possible to eliminateu1CJ from Eq. ~3.7!.
Moreover, since for a normal detonation no perturbations
the region of the flow behind the front can overtake the fro
it follows that only processes occurring in a narrow regio
whose widthd is of the same order of smallness as the d
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the propagation of a weakly overcompressed detona
wave.

Integrating Eq.~3.5! on the C characteristic~i.e., Eq.
~3.5! with the lower signs taken on the left-hand side! over a
region of widthd, we obtain, taking account of Eq.~3.7!, the
relation

u22c/~g21!5const,

which holds, to within second-order infinitesimals, near
front. Eliminating with the aid of this relationu from Eq.
~3.5! on theC1 characteristic and expressingr in the latter
equation in terms ofc with the aid of the relation~3.4!, we
have to the same accuracy

]U

]t
1U

]U

]j
52

g11

4g
U2gS ]r0

]P0
D

T

,

U5DCJS c

cCJ
D ~g11!/~g21!

. ~3.8!

Since for strong waves we haveDCJ
2 g(]r0 /]P0)T@g, the

term g in Eq. ~3.5! is dropped on switching to the relation
~3.8!.

The behavior of the solutions of Eq.~3.8! depends
strongly on the sign of the gradient acceleration. Forg.0
~the wave moves downwards! the acceleration is negative
and theC1 characteristics are outgoing with respect to t
detonation front. The detonation is normal, and the solut
of Eq. ~3.8! near the front can be sought in the form of
wave propagating with velocityDCJ

DCJ2U5F~DCJt2j!,

whereF is the desired function. DeterminingF with the aid
of Eq. ~3.8!, we have

DCJ2U5Ag11

2g
DCJ

2 gS ]r0

]P0
D

T

~DCJt2j!. ~3.9!

The velocity of the gas and the velocity of sound beh
the wave front, which moves downwards, remain consta
The pressure behind the front equals the Chapman–Jou
pressure,

P15PCJ .

For an upward propagating wave, wheng,0 holds and
the right-hand side of Eq.~3.8! is positive, theC1 charac-
teristics are incoming with respect to the front and mod
the conditions at the discontinuity, giving rise to overco
pression of the detonation. Exact integration of Eq.~3.8!
along characteristics with the initial conditio
Uu t505U0(j) gives

1

U
5

1

U0~j0!
1

g11

4
gtS ]r0

]P0
D

T

, ~3.10!

j5j01
4

~g11!g S ]P0

]r0
D

T

lnF1

1
g11

4
gS ]r0

]P0
D

T

tU0~j0!G , ~3.11!
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the value ofj on this characteristic at timet50. Measuring
time from the moment of detonation initiation, we obta
~see Ref. 6! that U0 is different from zero only in a very
narrow region of values ofj0 . The width of this region is
negligibly small, which makes it possible to drop the ter
j0 in Eq. ~3.11!.

Retaining in Eq.~3.11! the first two terms in the serie
expansion in the small quantitygtDCJ(]r0 /]P0)T , which
takes account of the curvature of the characterisitcs unde
action of the gradient acceleration, we find the value ofU0

for the characteristic arriving at the timet at the detonation
front

1

U0
5

12@~g11!/8#gt~]r0 /]P0!T

DCJ
. ~3.12!

Substituting the expression~3.12! into Eq. ~3.10! makes
it possible to find the value ofU and then all other hydrody
namic quantities behind the detonation front. The express
for dP1 is especially simple:

P15PCJ1dP1 ,
dP1

PCJ
5

1

4
DCJtuguS ]r0

]P0
D

T

. ~3.13!

The degree of overcompression of the upward mov
wave increases with the distanceDCJt which the wave has
traveled. We find that the pressure behind upward and do
ward moving detonation waves is different, the differen
accumulating as the waves continue to propagate. This
fect, unimportant in practice for a plane wave, can play
important role for converging cylindrical or spherical det
nation waves, since the wave elements arriving at the ta
from different sides bring different pressures.

Let us now examine a spherical converging detonat
wave. The detonation on the entire front is overcompres
because of the curvature, and the gradient acceleration l
to a pressure differencedP(R), which increases with con
vergence, at the top and bottom points of the front. At
initial stage of convergence the degree of overcompressio
small and the expressions~3.13! can be used. ForR!R0 ~
R andR0 are the instantaneous and initial radii of the fron!,
the effect of the gravitational force is small butdP continues
to increase because the cumulation process is unstable
respect to multidimensional disturbances. Treating the ov
compressed detonation wave near the center as a s
wave, we estimate the rate of growth of the disturbances10

dP/P}R21.

For a distancel at whichdP/P;1 we obtain the estimate

l;R0
2uguS ]r0

]P0
D

T

. ~3.14!

The foregoing analysis can be applied to aerosol exp
sions, initiated over a spherical surface, of a large volume
the atmosphere. These explosions have a great deal o
ergy, powerful shock waves, and highly uniform conve
gence, which makes it possible to use them for experime
on controlled thermonuclear fusion and for generating stro
magnetic fields. The expressions presented here can be
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detonation waves. We call attention to the fact that the ma
mum achievable pressure increases with decreasing c
size

P}~R0 / l !0.8}R0
20.8.

The estimate~3.14! is also applicable for a convergin
spherical shock wave, if the wave is produced so tha
R5R0 the wave velocity is the same along the entire wa
front.

In a liquid explosive, besides taking into account exac
all effects determining the quantity (]P/]r)T , it may be
necessary to take into consideration as well the possible
pendence of the detonation velocity on the hydrostatic p
sure P0 . Then (]r0 /]P0)T is replaced everywhere b
(]r0 /]P0)T13r0(] ln DCJ/]P0)T .

The action of the gravitational force on a convergi
detonation wave has been observed in remarkable ex
ments on gas-dynamic thermonuclear fusion.1 A spherical
volume of a liquid explosive with radiusR0;0.5 m was ini-
tiated simultaneously over the entire surface. The neu
yield from a target placed near the center was measured.
maximum neutron yield~far from the expected value! corre-
sponded to a target position>0.1 mm below the center o
symmetry. The quantity l5(] ln DCJ/]P0)T'5•1029

cm2/dyne was measured separately.
The detonation front should move over the converge

time upwards byD r;R0
2r0gl;0.1 mm. To achieve simul

taneity of action the target should be displaced upwards
D r . On the other hand, we have shown that when the w
converges, the pressure at the bottom of the front is hig
than at the top. Hence it follows that, conversely, to achie
pressure uniformity on the target, the target should be
placed downwards from the center so that the maximum c
vergence of the detonation wave in the radial direction wo
be achieved at the points of the front with minimu
dP(R). Therefore, in searching for the maximum, an emp
cal adjustment of the target position from simultaneous m
tidimensional action to nonsimultaneous uniform action d
not make it possible to eliminate completely the influence
the gravitational force. In addition to displacing the targ
downward for pressure uniformity~obviously, even lower
than in the experiment performed with the maximum neut
yield!, simultaneity of front arrival at the target must also
ensured~by programming a delay in the initiation at the bo
tom with respect to the top or a small change in the shap
the charge!.

4. ON THE SPECIAL ROLE OF THE HYDRODYNAMIC
INSTABILITY OF THE DIPOLE DISTURBANCE MODE IN
INERTIAL CONTROLLED THERMONUCLEAR FUSION

Before Ref. 1 appeared, virtually no attention was d
voted in the literature to the role of the hydrodynamic ins
bility of cumulative flows with respect to dipolar distu
bances. But the mode withn51 has a higher growth rat
than all other modes and its instability impedes the real
tion of controllable thermonuclear fusion in large-scale c
mulative setups, specifically, gas-dynamic thermonuclear
sion.
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spherical shell with outer radiusRe and inner radiusR(t)
~see the notation in Sec. 2! under the action of the pressur

Pe5P01dP1 cosu,

which includes a small perturbation withn51 (dP1!P0).
For simplicity, letRe@R. Then, first,Re'const and, second
the problem is described by the same equations as in Se
but with g replaced by the effective inertial acceleratio
equal to

geff5
dP1

rRe
eu. ~4.1!

~The unit vectore0 is directed along the rayu50, so that the
effective acceleration is oriented along the gradient of
external pressure!.

Indeed, the velocity potential~2.3! in a doubly-
connected volume of liquid can be supplemented by term
the formG(t)r cosu. Substituting the potential modified in
this manner into Eq.~2.2! with g50 gives Eq.~2.2!, in
which the notationw is maintained for the series~2.3! and
the effective acceleration equals2G8(t)eu . The boundary
condition for Eq.~2.2! at the outer surface gives

G52dP1t/~rRe!,

which leads to Eq.~4.1!.
Using the results of Sec. 2, we obtain an estimate for

final compression

l;~gefft
2R0

2!1/3;S dP1R0
4

PeRe
D 1/3

. ~4.2!

If the collapse of a shell is used to compress ma
located in an interior cavity, then the maximum achieva
pressure of the compressed material is

Pmax;
PeR0

3

l 3 ;
Pe

2Re

dP1R0
. ~4.3!

The hydrodynamic instability of the dipole mode pla
an especially large role in large-scale cumulation setups
cause the growth of the pressure perturbation on accoun
the effect of the gravitational force in the outer layers of t
system leads to large values of the effective acceleratio
the interior regions.

Let us consider the following rough idealized model
explosive thermonuclear fusion. Imagine a thick, DT-fille
spherical shell consisting of a heavy material, which we sh
consider to be an incompressible liquid. The shell is co
pressed by a converging detonation wave in a spherical
plosive setup of radiusRb@Re . We shall find the condition
under which the action of the gravitational force on the s
tem does not impede ignition.

The conditions that the thermonuclear temperature m
reachT;3 keV and the thermonucleara particles must hea
the DT byrDTl;0.3 g/cm2 require that

lPmax>1 Gbar•cm. ~4.4!

We shall determinedP1 from the relations employed in
the derivation of Eq.~3.14!:

1096G. A. Askar’yan and I. V. Sokolov



dP ;P
Rb

2

,
1

5 3r
] ln DCJ

1
]r0

g.

d
re
he

o

th
le
o

sin
ha

i
io
s
on
ty

th

5. CONCLUSIONS

of
in-
ta-
e.
d
ful

n-

-

.

i,
1 e ReL L F 0S ]P0
D

T
S ]P0

D
T
G

~4.5!

The effective acceleration~4.1!, corresponding to Eq.~4.5!
and acting in the liquid shell, is several orders of magnitu
greater than the gravitational acceleration, so that the di
action of the gravitational force on the cumulation of t
shell is completely unimportant. From Eqs.~4.2!–~4.5! we
obtain the necessary condition

PeS L2Re
4R0

Rb
4 D 1/3

>1 Gbar•cm. ~4.6!

For Pe;1 Mbar, Rb;102 cm, Re;R0;101 cm, and
L;105 cm ~the last value corresponds to the value
(] ln DCJ/]P0)T presented in Ref. 1! the condition~4.6! is
not satisfied, i.e., the effect of the gravitational force on
flow makes ignition of a thermonuclear reaction impossib
though one-dimensional estimates neglecting instability
the n51 mode are completely favorable.

It follows from Eq. ~4.6! that for fixed Re and R0 it
makes no sense to increase the outer radius too much,
the pressure on the target then grows more slowly t
Rb

4/3, which prevents the inequality~4.6! from being satis-
fied.

We have seen that the effect of the gravitational force
many cases is to degrade the quality of precision cumulat
On account of the seriousness of the associated limitation
is relevant to remark that the condition for ideal cumulati
and maximum neutron yield is achieved in zero-gravi
Even short-time weightlessness~dropping from a low height!
after averaging or decay of sound waves arising when
force of gravity is removed could be helpful.
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1. A specific instability with respect to disturbances
the dipolar mode operates in large cumulative devices
tended for achieving ultrahigh energy densities. This ins
bility can be excited by the effect of the gravitational forc

2. This instability is capable of limiting the neutron yiel
and impeding ignition to such an extent that it may be use
to perform experiments under conditions of zero gravity~for
example, during free fall!.
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Phase equilibrium in a current-carrying liquid conductor in Z-pinch geometry

les
V. S. Vorob’ev and S. P. Malyshenko

Institute of High Temperatures, Russian Academy of Sciences, 127412 Moscow, Russia
~Submitted 10 September 1996!
Zh. Éksp. Teor. Fiz.111, 2016–2029~June 1997!

A cylindrical liquid conductor at constant temperature with an axisymmetric dc current
generating an azimuthal magnetic field is studied. The magnetic field introduces an additional
field component that is different for each phase in the total chemical potential. It is
shown that treatment of the field components can be reduced to equating the chemical potentials
of the matter in different phases without a field at different pressures. As a result of the
shift appearing in the parameters of phase equilibrium, the liquid not heated up to boiling coexists
with gas at pressures corresponding to the metastable branch of the state parameters. For
this reason, there exists a limiting value of the current above which phase equilibrium is impossible
in this geometry. In the latter case, a transition of the system into a dispersed state~drops in
vapor! followed by mechanical breakup of the fluid column on account of the energy stored in the
magnetic field occur. The expansion rate, drop size, and current at which this phenomenon
occurs are estimated. The phenomenon can occur in the final stage of the fast electrical explosion
of conductors. ©1997 American Institute of Physics.@S1063-7761~97!00706-3#
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As is well known, strong electric or magnetic fields pe
etrating into a solid strongly influence the thermodynam
properties of the solid. The general thermodynamic relati
for a material in a field are presented in Refs. 1 and 2.
elegant example of the application of these relations is gi
in Ref. 3, where the problem of the condensation of an e
trically charged drop is examined. At the same time,
question of the effect of a strong magnetic field, produced
an electric current flowing through the matter, on the th
modynamics of phase transitions has never been fully c
fied, though this problem is of practical importance for i
vestigations of the compression of matter in pinch-eff
systems and the electrical explosion of conductors and
number of other applied problems.

Recently a series of works has appeared~see, for ex-
ample, Refs. 4–6! on the possible effects associated with t
displacement of the phase equilibrium in a magnetic fie
Nonetheless, no systematic analysis of this question has
performed.

To study the effect of the magnetic field generated by
internal current on the thermodynamic properties, the s
plest magnetic field, which is realized inZ-pinches, is ordi-
narily studied. It is presupposed that a constant axisymme
current, which generates an azimuthal magnetic field, flo
along a liquid conductor at constant temperature. The den
in such a field varies only in the radial direction. This mak
the problem much simpler than in the case of an arbitr
magnetic field, when the density varies in all coordinate
rections.

The present paper also employs this magnetic-field
ometry. The state of a single-phase conductor is studied
An expression for the total thermodynamic potential of t
matter–field system is written as a functional of the dens
and field strength on the basis of the general equilibri
condition for a body in an external magnetic field. Minimi
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yields a conservation condition for the local value of the to
chemical potential and a mechanical equilibrium conditi
for a current-carrying liquid cylinder in which the electrod
namic force balances the pressure gradient. The behavio
the thermodynamic functions is analyzed on the basis
these conditions. It is shown that the role of the magne
field reduces not only to producing a nonuniform press
profile in the liquid, but in the presence of a field the to
chemical potential acquires an additional component wh
depends on the field intensity, the matter density, and
radius of the conductor. The thermodynamic relations a
the equation of state in the absence of a field hold at e
point for the local values of the chemical potential of t
matter and the pressure and temperature dependence o
density.

The question of phase transitions in a current-carry
conductor is also studied. The corresponding functiona
the total thermodynamic potential is written down for a tw
phase system. Minimizing this functional with respect to t
position of the interface yields new phase-equilibrium co
ditions. The essence of these conditions is that the t
chemical potentials of the phases must be equal at the in
face. The chemical potentials of the matter in phases un
identical pressures and temperatures may be different.
equality of the total chemical potentials of the phases in
matter–field system can be formally reduced to an equa
of the chemical potentials of the matter in the phases with
a field but under different pressures. The pressure differe
is due to the difference of the magnetic pressures in
phases. The possibility that the chemical potentials of t
states of matter which have the same temperatures and
ferent pressures are equal is analyzed qualitatively as we
with the aid of the van der Waals equation. It is shown th
the densities and pressure of the coexisting phases are h
in the presence of a field than with no field. In the case wh
the system is in thermodynamic equilibrium, the less de

10988$10.00 © 1997 American Institute of Physics
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to a metastable state~supercooled vapor!. However, when
this phase reaches a point on the spinodal, phase equilib
in this geometry becomes impossible. The system must
pand sharply and pass into a new state. It is shown that
state can be a finely dispersed mixture of liquid droplets
vapor. The drop sizes and expansion rates are estimated
conjectured that a transition of this kind could be direc
responsible for the sharp increase in the radius and resist
in the final stage of the electrical explosion of conduct
which occurs in fast regimes.7–10 An estimate of the critical
current for this phenomenon gives a relation which was p
viously known as an empirical relation and indicated that
action integral9 is proportional to parameters which depe
only on the properties of the conductor. It is shown that
coefficient of proportionality in this relation is determined b
the critical temperature of the metal.

2. EQUILIBRIUM OF A ONE-PHASE LIQUID-CONDUCTOR IN
A MAGNETIC FIELD

Let us examine an infinitely long axially uniform cylin
drical column of unmagnetized liquid material at consta
temperatureT in a cylindrical coordinate system (r ,w,z)
with thez axis oriented along the axis of the filament. The
are no striction effects in the liquid during quasistatic p
cesses.

In such a filament all quantities depend only on the
dial coordinater . Current flows along the axis and has on
one componentj z[ j . In the general case the current dens
j can depend onr . The magnetic field generated by th
current will have only an azimuthal componentHw[H. The
componentsj andH are related by the corresponding Ma
well equation

j 5
c

4pr

d

dr
~rH !, ~1!

wherec is the speed of light. The solution of Eq.~1! with the
boundary conditionH(0)50 has the form

H~r !5
4p

c

1

r E
0

r

j r 8dr8. ~2!

The derivative of the magnetic-field intensity from Eq.~2!
can be represented in the form

dH

dr
5

4p

c
j 2

H

r
. ~3!

In an external field the total chemical potentialm I of the
matter–field system, including, besides the chemical po
tial of the matter, a field component as well, must
constant.1,2 Therefore, its total differential must vanish
equilibrium

rdm I5rdm1
1

c
jH dr 50, ~4!

wherem is the chemical potential per unit mass of the ma
rial in the absence of the field andr is the density of the
material. The first term on the right-hand side of Eq.~4! is
the change in the chemical potential of a volume elemen
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of the chemical potential, equal to the work performed by
electrodynamic forces acting on this element. Using the
pression~3!, the equation~4! can be rewritten in the form

rdm1
1

4p
HdH1

H2

4pr
dr50. ~5!

A somewhat different interpretation of the equilibrium co
ditions follows from Eq.~5!. For a nonuniform liquid con-
ductor in equilibrium in a field, the change in the chemic
potential of a volume element of the liquid is compensa
by a change in the energy of the magnetic field and the w
performed by the magnetic tension forces directed tow
the center of curvature of the flux lines.11

Since in our case the material depends on only one
ordinate, the equation~4! can be easily integrated inr . The
result is

m~r !1
1

c E
0

r

v jH dr 5m05m I, ~6!

wherem0 is the chemical potential of the material on the ax
for H50 andv51/r is the specific volume. The equatio
~6! is the desired condition expressing that the chemical
tential of the liquid-conductor–field system is constant. T
integral on the left-hand side of Eq.~6! taken with the oppo-
site sign is the potential of the mass density of the elec
dynamic force performing work on a unit mass of the ma
rial:

A~r !52
1

c E
0

r

v jH dr . ~7!

The functionalC, related to the total thermodynami
potentialF of the system byC5F2lm, has the form

C52pE
0

R

r drrFm~r !1
1

c E
0

r

v jH dr 2lG , ~8!

whereR is the outer radius,m is the mass per unit length o
the conductor, andl is a undetermined Lagrange multiplie
introduced in the functional~8! so as to take account of th
fact that the total mass of the body is conserved. Setting
zero the first variation ofC gives the necessary condition
for a minimum at a fixed temperature. Letdr be an arbitrary
displacement of the material elements in Eq.~8!. Then, for
the first variation ofC to vanish it is necessary that

dr

dr Fm~r !1
1

c E
0

r

v jHdr 2lG1rFdm

dr
1

1

c
v jH G50.

~9!

Hence it follows that the expressions in both sets of brack
in Eq. ~9! must vanish. The first condition gives the abov
noted constancy of the chemical potential, wherel5m0 .
The second condition gives, taking account of the thermo
namic relationdm5vdP, the condition of mechanical equi
librium of a liquid conductor in a field:

dP

dr
52

1

c
jH , ~10!
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whereP is the pressure of the matter. The meaning of this
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relation is that the pressure gradient in the liquid is balan
by Ampere’s electrodynamic force.

So, the necessary conditions of equilibrium of a cond
tor in a magnetic field follow from the condition of a min
mum for the functional~8!.

Integrating Eq.~10! along r yields the radial pressur
distribution

P~r !5P02
1

c E
0

r

jH dr 8, ~11!

whereP0 is the pressure on axis. The quantity

Pm~r !5
1

c E
0

r

jH dr 8 ~12!

is termed the magnetic pressure. It is essentially the pote
of the volume density of the electrodynamic force. In t
particular casej 5const, the well-known expression

Pm~r !5
p

c2 j 2r 2 ~13!

follows from Eq.~12!. It follows from Eqs.~10! and~11! that
the pressure cannot become an increasing function of ra
for any current distribution. We also note that the press
distribution is determined by the current distribution a
does not explicitly depend on the state of the matter.

The change in the chemical potential can be expresse
terms of the thermodynamic variables by replacing2 jH /c
in Eq. ~10! by dP:

m~P~r !,T!5m~P0 ,T!2E
P~r !

P0
vdP. ~14!

The formula~14! does not containr explicitly and is a stan-
dard thermodynamic formula relating the chemical potent
to different pressures on an isotherm. When there is no
rent, the pressure is constant over the cross section, the
gral on the right-hand side of Eq.~14! vanishes, and
m(P(r ),T)5m(P0 ,T). Since the functionm(P(r ),T) is de-
termined by the equation of state, which holds in the abse
of a field, it increases monotonically with pressure or d
creases with increasing radius. The distributions of the o
thermodynamic parameters in a current-carrying liquid c
ductor can be obtained from Eq.~14!.

Let us now examine the question of phase transition
matter containing a current.

3. PHASE EQUILIBRIUM

Assume that phase separation has occurred. The h
density phase 1, which we conventionally term a liquid, l
inside a cylinder of radiusr 1 . It coexists with a low-density
phase 2, occupying an outer annular layer of thickn
R2r 1 . We conventionally term it a gas. We shall neglect t
curvature of the interface and capillary effects, and we
sume only that an interphase boundary is establishe
r 5r 1 . We shall use subscripts 1 and 2 to denote the par
eters of the first and second phases, respectively.

The functionalC for the two-phase system will have th
form
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1E
r 1

R

dr8r 8r2@m22A22l2#J , ~15!

whereA2 is the potential of the mass density of the forces
the second phase,

A2~r 8!5
1

c FA2~r 1!1E
r 1

r 8
v2 j 2H2drG , ~16!

and A2(r 1) is the value of this potential at the interpha
boundary. Minimizing the functional~16! with respect to
dr anddr 8 yields the equilibrium conditions~6! and~10! for
each phase. Thenl15m10. The quantityl2 equals

l25m2~r 1!2A2~r 1!. ~17!

As is clear from the relations presented above, in
Z-pinch geometry it is impossible for the pressure to incre
with r independently of the ratio of the currentsj 1 and j 2 .
Within each phase the pressure decreases monotonically
increasingr . There is no pressure jump at the interpha
boundary; this corresponds to the condition that the bou
ary is in mechanical equilibrium.

Since the total chemical potentials of each phase
constant, we write the total thermodynamic potential of t
system in the form

F5m1m1
I 1m2@m2~r 1!2A2~r 1!#, ~18!

wherem1 andm2 are the masses of the phases. Minimizi
the potential~18! with respect tom1 under the condition tha
the total mass of both phases is constant (dm1 52 dm2), we
obtain the condition of equilibrium of a two-phase system

m1~r 1!2A1~r 1!5m2~r 1!2A2~r 1!. ~19!

As expected, the total chemical potentials of the phases~tak-
ing account of the correction for the field! are equal at the
interphase boundary. The difference of the potentials of
mass density of the forces at the interphase boundary ca
written in the form

A1~r 1!2A2~r 1!5Dm52
1

c E
0

r 1
~v1 j 12v2 j 2!H dr.

~20!

Replacing the force differentials in Eq.~20! by pressure dif-
ferentials according to the relation~10!, we obtain the con-
ditions of phase equilibrium in a different form

m2~P1Pm2 ,T!5m1~P1Pm1 ,T!, ~21!

where Pm1 and Pm2 are the magnetic pressures in the fi
and second phases, respectively, at the point of contact o
phases andP is the pressure at the interface.

The relations~19!–~21! are the conditions of phase equ
librium in the presence of a magnetic field. It follows fro
Eq. ~19! that if the potentials of the mass density of th
forces at the interphase boundary are different, then
chemical potentials of the matter in the phases under ide
cal temperatures and pressures are different. This circ
stance indicates that phase equilibrium in external fields
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fundamentally different from equilibrium in uniform matte
in the absence of a field. We note that if the force per u
mass acting on the interphase boundary varies continuou
then despite the presence of a field the chemical potentia
the matter in the phases will be the same at the interph
boundary. It is easy to show that this happens for a grav
tional field. However, for the case considered here we h
A1@A2 , since j 1@ j 2 , and for this reason there is a field
associated shift of the phase-equilibrium parameters.

The relation~21! makes it possible to give a somewh
different interpretation of the results obtained. It follow
from this equation that the equality of the total chemic
potentials of the phases can be reduced to the equality o
chemical potentials of the matter in the phases under dif
ent pressures at a point where there is no field. As one
see from Eq.~21!, this pressure difference depends on t
magnetic pressure in the phases.1! In a current-carrying con-
ductor the magnetic pressure satisfiesPm1@Pm2 , so that the
latter pressure can be neglected. This approximation wil
used below, so thatPm will be the magnetic pressure of th
first phase. Then Eq.~21! states that the chemical potential
the liquid on the axis of the conductor with pressu
P05P1Pm equals the chemical potential of the gas at
interphase boundary with pressureP. In the limit Pm→0 the
relations~19!–~21! degenerate into the equality of the chem
cal potentials of phases with identical temperatures and p
sures.

The graphical interpretation of the conditions of equili
rium ~19!–~21! is shown in Fig. 1, where a curve of th
chemical potential of the material versus pressure at a fi
temperature below the critical temperature is construc
The separate sections of this curve correspond to the foll
ing branches:DS—gas;SE—supercooled gas;SA—liquid;
FS—superheated liquid;FE—absolutely unstable state. Th

FIG. 1. Chemical potential versus pressure at constant temperature
dotted lines mark the values of the pressurePs and chemical potentialms in
the absence of a field. Solid lines—values of the pressures~P andP0! and
chemical potentials~m1 andm0! corresponding to phase equilibrium in th
presence of magnetic pressure; dotted lines—limiting values of the pres
~Psp and P8! and chemical potential (m8) at the center of the liquid for
which phase equilibrium is still possible.
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point S corresponds to the conditions of phase equilibrium
the absence of a field. The corresponding pressure
chemical potential are designated asPs andms . The straight
line m5m0.ms gives the value of the total chemical pote
tial, which remains constant over the entire system. T
point A of intersection of this straight line with the branc
SA corresponding to the liquid determines the state of
liquid at the center with pressureP0 . The pointC of inter-
section with the branchSE is the state of a supercooled ga
at the interphase boundary with pressureP and the same
value of the chemical potential, andP02P5Pm . The
straight lineP5const intersects the segmentSAof the liquid
state at the pointB, which determines the parameters of t
liquid on the interphase boundary at pressureP with chemi-
cal potentialm1 , wherem02m15Dm. The pressure drop in
the gas phase from the valuesP at the interphase boundar
to PR at the outer boundary is small, since it is due to t
work performed by the electrodynamic forces in the g
phase, and is not shown in Fig. 1.

The state of the material changes as follows. The pr
sure in the liquid phase drops fromP0 at the center toP at
the interphase boundary. The segmentAB describes the
change in the chemical potential of the liquid. A jump in th
chemical potential up to the pointC on the gas phase branc
occurs at the pointB corresponding toP. Since the magnetic
pressure in the gas phase is low, the state of the gas
r .r 1 corresponds to the pointC.

It follows from analysis of Fig. 1 that for each temper
ture there exists a limiting valueP8 and corresponding val
ues Dm8 and Pm8 for which phase equilibrium is still pos
sible. In Fig. 1 the dotted lines correspond to these values
this case the state of the gas corresponds to the pointE on
the gas branch of the spinodal with pressurePsp(T). At this
point the condition (]P/]v)T,m,0 of thermodynamic stabil-
ity of the gas phase breaks down, and the liquid is not hea
to boiling at any point.

Similar conclusions can be drawn on the basis of
P2v phase diagram. A typical subcritical pressure isothe
is displayed in Fig. 2. In this figure, a pressureP abovePs

he

res

FIG. 2. Pressure versus volume. The hatched areas correspond to equa
the chemical potentials of the liquid at the center and gas on the interp
boundary. The dotted lines mark the limiting values of the liquid and
pressures at which phase equilibrium is still possible.
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well’s rule of areas does not hold here, since the chem
potentials of the phases are different. The state of the liq
is described by the branchAB and the state of the gas
described by the pointC. Equality of the areas of the curvi
linear trapezoids corresponds to equality of the chemical
tentials of the liquid at the center of the liquid and the gas
the interphase boundary. Hence, the area of the trape
between the straight linesP5P0 andP5Ps and the branch
of the isotherm of the liquid phase should equal the area
the trapezoid formed by the straight linesP andP5Ps and
the branch of the gas phase.

One can see that equilibrium exists so long asP,Psp

holds. The dotted curves represent the limiting values of
pressures for which equilibrium is still possible (P5Psp).
Phase equilibrium becomes impossible forP.Psp . Figures
1 and 2 elucidate qualitatively the effect of a magnetic fi
on phase equilibrium.

At pressures above the critical pressure phase equ
rium becomes impossible in the geometry under study
the system should pass into a new state. In some sense
a situation arises in the investigation of the equilibrium st
in the normal and superconducting phases in typ
superconductors.1 As is well known, for some value of the
external magnetic field a superconducting body cannot b
a superconducting or normal state. An intermediate state
which a structure consisting of alternating layers of norm
and superconducting phases is characteristic, is realized

In our case, a two-phase system with a cylindrical int
phase boundary should also pass into a new state wi
different geometry. This transition can be initiated by spo
taneous condensation of an unstable vapor phase at the
phase boundary. A decrease of the current density and m
netic pressure will destroy the existing balance of
pressure gradient in the liquid by Ampere forces, i.e., it w
destroy the mechanical stability of the system and lead
disintegration of the conductor. It should be noted that
kinetics of such a transition is the subject of a separate
vestigation. It is important to underscore that the final eq
librium state of the system with practically no current c
correspond only to a dispersed liquid–vapor system~liquid
drops in vapor! with the fluid pressure equal to the pressu
Psp at the boundary of the cylinder prior to disintegration.
this case, the chemical potentials of a drop and the vapo
equilibrium with it equalize and become equal to the che
cal potential of the liquid at the interphase boundary prior
the disintegration of the conductor. From this condition
find the gas pressurePG after disintegration:

E
Ps

Psp
v1dP5E

Ps

PG
v2dP. ~22!

It follows from Eq. ~22! that PG2Ps'(Psp2Ps)v1 /
v2!Ps . Far from the critical point we havev1 /v2!1, i.e.,
PG'Ps . The pressure difference between the liquid and
gas is balanced by surface effects. The characteristic d
size can be found from Laplace’s relation

r 5
2s

Psp2PG
, ~23!
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unit length of the cylinder is given by the expression

N52pr 1
2/

4p

3 r 3. ~24!

The difference of the chemical potentials of the gas a
liquid which is present before the transition and is associa
with the work performed by the electrodynamic forces go
into the work required to form the drop surfaces and impa
ing kinetic energy to the drops. Writing the correspondi
energy balance, we obtain

2pr 1
2Dm5NS 4pr 2s1

4pr1

3
r 3

V2

2 D , ~25!

where V is the expansion velocity. Using the fact th
Dm;Pm /r1 and Eqs.~23! and~24!, we obtain from Eq.~25!

V5A2
Pm23~Psp2Ps!/2

r1
. ~26!

An estimate on the basis of the van der Waals equa
shows that Psp2Ps;0.2Pc at temperatures
;(0.520.6)Tc , where Pc and Tc are the critical pressure
and temperature. Using the values;100 dynes/cm2 charac-
teristic for liquid metals and these conditions and assum
thatPm;Pc;8000 atm, as for Al and Cu, we have from E
~23! that the characteristic drop size equals;102721026

cm, and from Eq.~26! we obtain that the characteristic ex
pansion velocities equal hundreds of meters per seco
These values agree in order of magnitude with the exp
mental data obtained in an electrical explosion
conductors.7–10

In concluding this section, we underscore that in the s
tems studied here thermodynamic instability occurs not a
result of the liquid reaching limiting thermodynamic stat
~the liquid is not heated to boiling! but rather as a result o
the appearance of a mechanical instability of the system
disintegration and dispersion of the system as a result of
work performed on it by the electromagnetic field.

We shall use the van der Waals equation to investigat
greater detail the state of matter on the interphase boun
in the presence of a magnetic field.

4. INVESTIGATION OF PHASE EQUILIBRIUM IN A
CURRENT-CARRYING CONDUCTOR ON THE BASIS OF
THE VAN DER WAALS EQUATION

The van der Waals equation in units scaled to the criti
values has the form

P85
8T8

3

1

v821/3
2

3

v82 . ~27!

Here P85P/Pc , T85T/Tc , v85v/vc and Pc , Tc , andvc

are, respectively, the critical pressure, temperature, and
cific volume. In what follows the primes will be dropped
Quantities referring to the center of the cylinder will be l
belled with a subscript 0. The pressureP at the interphase
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P05P1Pm . Using Eq.~27! in the last relation, after som
transformations, we obtain

P05r0r2~32r02r2!1
Pm~32r2!r0

3~r02r2!
, ~28!

P5r0r2~32r02r2!1
Pm~32r0!r2

3~r02r2!
, ~29!

T5
1

8
~r02r2!~32r0!~32r2!1

Pm

3~r02r2!~r01r2!
,

~30!

T5
1

8
~r12r2!~32r1!~32r2!, ~31!

P5r1r2~32r12r2!. ~32!

The system~28!–~32! determines the temperature an
pressure at the center and at the interphase boundary in t
of the corresponding densities. The quantityPm is a param-
eter. Specifically, ifPm50 andr05r15r251, then the cor-
rect values of the temperature and pressure at the cri
point follow from the system ~28!–~32!: T51 and
P05P51.

Another equation supplementing the system~28!–~32!
will be the equality of the chemical potentials of the liquid
the center of the conductor and the gas at the interph
boundary. To obtain this equation we write the free energ
the van der Waals approximation

f 5
8T

3
lnF w~T!

v21/3G2
3

v
, ~33!

where w(T) is a function of temperature. Using Eqs.~27!
and ~30! and the thermodynamic relationm5 f 1Pv, the
condition of phase equilibrium~21! can be put into the form

8T

3
lnS v221

v021D2~r02r2!F62
8T

~32r0!~32r2!G50.

~34!

The system of equations~28!–~32! and ~34! makes it
possible to calculate the temperature and pressure at the
ter and on the interphase boundary as well as the corresp
ing densities for some value of the parameterPm .

First, we shall calculate the limiting values of the para
eter Pm8 which admits equilibrium. The gas phase reache
point on the spinodal where (]P/]v)T 5 0. Applying this
condition to Eq.~27!, we obtain that the temperature an
pressure on the spinodal satisfy the equations

Psp5r2
2~322r2!, Tsp5r2~32r2!2/4. ~35!

One can see that the spinodal passes through the cr
point. So, if r251, then it follows thatPsp51 andTsp51
from the relations~35!. Equating the temperatures from E
~35! and ~30! gives the following expression forPm8 :

1103 JETP 84 (6), June 1997
ms

al

se
n

en-
nd-

-
a

al

Pm8 5
3~r02r2!

32r0
~r0

21r0r213r223r022r0
2!. ~36!

Substituting the relation~36! into Eq.~30! and the expression
so obtained into Eq.~34!, we find an equation containing
only the densitiesr0 andr2 . Solving this equation numeri
cally, we find from Eqs.~30! and ~33! the temperature and
the maximum magnetic pressure. The curve ofPm8 versus
temperature obtained in this manner is displayed in Fig
As expected from an analysis of Figs. 1 and 2, as the t
perature approaches the critical value, the values ofPm8 ap-
proach zero and as the temperature decreases, they incr
The temperature dependence of the maximum valuesPm8 are
approximated well by the simple parabola

Pm8 >80~12T!2. ~37!

This approximation is shown in Fig. 3 by the dotted line.
Plots of the temperature dependence of the densities

pressures of the phases for fixed values of the param
Pm are displayed in Fig. 4. The casePm50 ~curves1! cor-
responds to no field. The curves2–4 correspond to increas
ing values ofPm . Three density curves are presented
each value ofPm . The lower curve corresponds to gas, t
upper curve corresponds to the liquid at the center, and
middle curve corresponds to the liquid at the interpha
boundary. On the scale of the figure, it is seen only
Pm50.1. At low temperatures the curvesr(T) approach the
curve 1. As temperature increases, the curves2–4 start to
deviate from the curve1, but very little for the liquid phase
The largest deviations occur when the temperature at wh
the gas phase reaches the point on the spinodal is rea
~the gas spinodal in Fig. 4b is plotted with a thin solid line!.
At higher temperatures, phase equilibrium is impossible.
one can see, for each value ofPm there exists a maximum
temperature at which the phase curves terminate. This lim
ing temperature decreases with increasingPm . In Fig. 4b,
two curves correspond to each value ofPm : The lower curve
refers to the interphase boundary and the upper curve re
to the center of the liquid. As the temperature decreases
pressure on the interphase boundary approaches the v
without a field. The pressure at the center becomes equ
Pm . When the gas-phase pressures reach a value corresp
ing to the gas spinodal of the phase, the curves terminat

FIG. 3. Limiting magnetic pressure versus temperature.
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FIG. 4. Phase densities~a! and pressures~b! versus temperature for different values of the parameterPm : 1—Pm50; 2—0.1; 3—0.5; 4—1. The dotted lines
connect points at the maximum temperature.
5. CONSEQUENCES FOR THE ELECTRICAL EXPLOSION
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Some results concerning the thermodynamics of ph
equilibria in liquid conductors carrying a current can be us
to describe the electrical explosion of conductors. Here
shall be concerned with fast regimes, when the penetra
depth of the electric field in a fused conductor is greater t
the radius of the wire, which makes the skin effect unimp
tant. At the same time, the current density is high enough
that the characteristic heating time is much shorter than
growth time of instabilities which destroy the shape symm
try of the conductor.7–10 Despite the long investigative his
tory and the existence of different hypotheses, there is
no concensus about the reason why a conductor explo
The gradual heating of a conductor by a current and the o
of surface evaporation12 are processes which in themselv
are continuous and follow one another in a defin
sequence—they cannot lead to a sudden, extremely ra
increase in the expansion rate as well as electrical resista
The latter processes occur over a time which is much sho
than the time of the preceding processes. This is the situa
observed experimentally.

The explosion of a conductor is a nonstationary proce
where as the current increases, the temperature and mag
pressure increase and the outer layers of the condu
evaporate. However, estimates show that at each mome
time the matter is in local thermodynamic equilibrium. At
definite stage of the evolution, the liquid-metal core, alo
which the main current generating the magnetic press
flows, is in a thermodynamic equilibrium with the characte
istic products of vaporization. This makes it possible to u
the results obtained above to analyze this equilibrium. T
most important result is that for each value of the tempe
ture there exists a maximum current~magnetic pressure! for
which equilibrium is still possible between the liquid and g
phases. Here we conjecture that the attainment of this v
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the state of the matter where a liquid-metal shell is s
rounded by vapor to a state of a rapidly-expanding fine
dispersed mixture of liquid droplets and vapor, i.e., a m
chanical explosion of the conductor. Naturally, the expans
rate and the electrical resistance of the sample incre
sharply at this transition. This conjecture is supported by
experimental data of Ref. 13, where the state of matter in
immediate vicinity of the point of the explosion was inve
tigated. It was found that at the moment of the explosion
conductor separates into fragments of size;1027 cm. The
measured rates of expansion of the conductor at the mom
of explosion7–10 equal hundreds of meters per second. Th
figures are in complete agreement with the estimates m
above.

Let us now estimate the critical current at which this c
happen. The simplest equation governing the heating o
conductor by an electric current has the form

T5
I 2t

p2r 1
4Cvrs

, ~38!

whereCv is the heat capacity of the liquid at constant vo
ume andt is the characteristic heating time. Substituting t
current obtained from this expression into Eq.~13! gives

Pm8 53bT/ZcTc , ~39!

whereb52sp/c2tr 1
2 is the skin-layer parameter and

Zc5Pcm/kTcrc ~40!

is the compressibility at the critical point. For the van d
Waals equationZc53/8. Substituting the expression~39!
into the approximation~37!, we obtain a quadratic equatio
for T/Tc , whose solution has the form

T/Tc512Ab8A21b81b8, ~41!

whereb85b/20.
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Using Eqs.~38! and ~41!, we find the critical current
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1!We note that in Ref. 4 a functional for the free energy is used to calculate
the work required to form a nucleus of a new phase in the presence of a

the
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tions
a

,

s

ry,
I 2t5A2srCvTcf ~b!, ~42!

whereA is the transverse cross-sectional area of the cond
tor and f (b) is the function on the right-hand side of E
~41!. For an ac current Eq.~42! can be written in the form

E
0

t

I 2~ t !dt5 f ~b!A2CvsrTc , ~43!

wheret is the running time andt is the time at the momen
of the explosion. The integral on the left-hand side of E
~43! has been termed the action integral in investigations
an electrical explosion of conductors. It does not depend
the parameters of the circuit, but rather it is determined o
by the properties of the material of the conductor and
proportional to the transverse cross-sectional area of the
ductor. This fact was well-known empirically.11 However, it
is important that the coefficient of proportionality in Eq.~43!
is f (b)Tc ; this is a direct consequence of the mechanis
discussed here, of the abrupt transition of the material in
dispersed state. In this connection, we call attention to
fact that Eq.~43! provides the grounds for considering ne
methods for determining the critical temperature experim
tally. The action integral is ordinarily easy to determine fro
the experimental data. The electrical conductivity, dens
and ‘‘visible’’ radius of the conductor immediately prece
ing the explosion can also be measured.

This work is supported by the Russian Fund for Fun
mental Research under Projects Nos. 96-02-16676 and
02-17546.
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magnetic field. However, only the change occurring in the energy of
magnetic field in connection with the formation of a nucleus of a defin
size is minimized. This approach does not give the necessary condi
for the equilibrium of a conductor in a magnetic field and leads to
number of erroneous conclusions.
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Contribution to the statistical theory of wave localization in a two-layered medium

e-
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A very simple system of stochastic boundary-value wave equations that describes the interaction
of two types of waves in a randomly inhomogeneous medium is studied. The statistics of
the reflection and transmission coefficients for the incident and excited waves are discussed. It is
shown that the excitation of waves is statistically equivalent to switching on damping for
the initial incident waves which are localized in separate specific realizations. The parameters of
the length of such localization are estimated in terms of the spectral density of the variations
of the medium. It is also shown that for excited waves there is no dynamical localization, and the
transmission coefficients for them are estimated. ©1997 American Institute of Physics.
@S1063-7761~97!00806-8#
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The localization of plane waves in layered media d
scribed on the basis of a one-dimensional Helmholtz eq
tion for a random index of refraction has now been studied
detail ~see, for example, Refs. 1–4!. There are several ap
proaches for analyzing such problems. The traditional
proach is based on the analogy between the Helmholtz e
tion and the time-independent Schro¨dinger equation with a
random potential, to analyze which the spectral propertie
this equation are studied.1 Another approach, which is als
often used, is based on analytical and numerical method
analysis of the Lyapunov exponents, which likewise char
terize the spatial localization of the eigenfunctions of a h
mogeneous boundary-value wave problem.1,5 However, an
entirely different approach was used in Refs. 2–4. In t
approach specific physical boundary-value problems of w
generation in random media and the spatial structure of
wave field in such a medium are analyzed.

However, investigators often encounter a multidime
sional situation where waves of one type can create wave
a different type on account of the dependence of the par
eters of the problem on the spatial coordinates. In m
cases such a problem can be parameterized by dividing
medium in some direction into layers which are charac
ized by a discrete set of some parameters while other pa
eters in these layers vary in a continuous manner. An
ample is the equation of large-scale and low-freque
motions in the earth’s atmosphere and oceans~for example,
Rossby waves!. These motions can be described on the ba
of a quasigeostrophic model, in which the atmosphere
ocean are regarded as thin, multilayered films character
in the vertical direction by the thicknesses of the layers a
the values of the density in them.6 The parameters of the
medium within the layers vary in a continuous manner.
possible source of localization of Rossby waves is spa
variations of the bottom topography in a horizontal plan
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dimensional Helmholtz equation, describes the barotro
motions of the medium,5,7 and a two-layer model takes ac
count of the baroclinic effects.8,9 The possibility of wave
localization has virtually not been studied in a two-lay
model of a medium described by a system of Helmho
equations. In the present paper this problem is studied for
example of the simplest system of wave equations, and
shown that complete~for all types of waves! localization
does not occur.

2. FORMULATION OF THE PROBLEM

A very simple model of the propagation of interactin
waves in a two-layer medium is described by the system
equations9

d2

dx2 c11k2c12a1F~c12c2!50,

d2

dx2 c21k2@11«~x!#c21a2F~c12c2!50, ~1!

wherea151/H1 and a251/H2 ~H1 and H2 are the thick-
nesses of the top and bottom layers!, F characterizes the
interaction of the waves, and the function«(x) describes the
inhomogeneities of the medium in the bottom layer. We
sume that the function«(x) is a random function and is
different from zero only in the region (L0 ,L). The geometry
of the problem is presented in Fig. 1. The boundary con
tions for Eq.~1! are radiation conditions at infinity and con
tinuity of the wave fields and their derivatives at the boun
ariesL andL0 of the region.

We note that the numerical quantityF, characterizing
the parameterization of the medium in the vertical directio
appears in the system of equations~1! as a horizontal scale
responsible for the generation of an additional wave. T
character of the wave interaction~and, specifically, the de

11068$10.00 © 1997 American Institute of Physics
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pendence of the parametersa i on the layer thicknesses! in
the system~1! corresponds to the problems of geophysi
hydrodynamics.6 For problems of different types these rel
tions can change, which is not important for the furth
analysis~see Conclusions!. Only the linearity of the interac-
tion between the waves is of fundamental importance.

The transition to a one-layer model is made by sett
F50 andC150. The corresponding wave equation assum
the form of the Helmholtz equation

d2

dx2 c1k2@11«~x!#c50. ~2!

For definiteness, we shall call a wave of this type ak wave.
The transition to the one-dimensional problem can also
made by passing to the limitH1→0; thenc15c2 . It should
be kept in mind, however, that the limitsL0→2` ~transition
to a half-space! and Hi→0 are not interchangeable in th
statistical problem.9 In what follows, we shall be intereste
in the case of a half-space and so the layer thicknessesHi ,
though small, can be finite.

2.1. Point sources of wave generation inside the layers

Let us consider the system of equations for the Gree
functions:

d2

dx2 c11k2c12a1F~c12c2!52v1d~x2x0!,

d2

dx2 c21k2@11«~x!#c21a2F~c12c2!52v2d~x2x0!,

~3!

for the corresponding problem of wave excitation in the t
and bottom layers. With the vector notatio
c(x;x0)5$c1(x;x0),c2(x;x0)% andv5$v1 ,v2%, the system
~3! can be rewritten in the vector form

F d2

dx2 1A21k2«~x!G Gc~x;x0!52vd~x2x0!,

A25Fk22a1F a1F

a2F k22a2FG , G5F0 0

0 1G ,
A5kF ã21lã1 ~12l!ã1

~12l!ã2 ã11lã2
G ,

A215
1

kl F ã11lã2 2~12l!ã1

2~12l!ã2 ã21lã1
G ,

where we have introduced the parameter

l25@12~a11a2!F/k2#, ~5!

FIG. 1. Geometry of the stochastic problem~1!.
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l .0) and the relative thicknesses of the layers are

ã15
a1

a11a2
5

H2

H0
, ã25

a2

a11a2
5

H1

H0
,

ã11ã251. ~58!

Let us consider the matrixC described by the equation

F d2

dx2 1A21k2«~x!G GC~x;x0!52Ed~x2x0!, ~6!

in terms of which the vector functionc(x;x0) is defined
according to the relation

c~x;x0!5C~x;x0!v5Fc11 c12

c21 c22
G S v1

v2
D

5S v1c111v2c12

v1c211v2c22
D . ~7!

In consequence, the components of the matrices$c11,c21%
and $c12,c22% describe waves generated by the sour
$v1,0% and$0, v2% in the top and bottom layers, respectivel
The boundary conditions for Eq.~6! are

S d

dx
2 iA DC~x;x0!ux5L50,

S d

dx
1 iA DC~x;x0!ux5L0

50. ~68!

Following Ref. 9, we shall simplify the problem eve
further. Specifically, we shall assume that the source of pl
waves lies at the boundaryx05L of the irregular region. In
this case, using the condition for a jump in the wave field
the source pointx0,

d

dx
C~x;x0!ux5x0102

d

dx
C~x;x0!ux5x02052E,

we obtain the boundary-value problem

F d2

dx2 1A21k2«~x!G GC~x;L !50,

S d

dx
2 iA DC~x;L !ux5L5E,

S d

dx
1 iA DC~x;L !ux5L0

50. ~8!

2.2. Generation of k and l waves

To put the problem into a physically more illuminatin
form, we shall study, instead of the matrixC(x;L), the ma-
trix function

U~x;L !522iKC~x;L !K21B, ~9!

where
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F 0 1G F ã2 ã1
G F

2ã2 1G
which makes it possible to switch to the boundary-va
problem forU(x;L) with a diagonal matrixB,

F d2

dx2 1B21k2«~x!G̃GU~x;L !50,

S d

dx
2 iB DU~x;L !ux5L522iB,

S d

dx
1 iB DU~x;L !ux5L0

50, ~10!

where

G̃5KGK215F ã2 21

2ã1ã2 ã1
G .

The boundary-value problem~10! describes the inci-
dence ofk andl waves with unit amplitudes on the medium
where an incidentl waveU11 generates ak waveU21 and an
incidentk waveU22 generates al waveU12.

It follows from the system~10! that the amplitude of the
generatedk waveU21 is proportional to the parameter

d5lã1ã25l
H1H2

H0
2 , ~11!

i.e.,

U215dŨ21. ~118!

In the general case the parameterd,l/4. However, since in
models describing real media we ordinarily haveã1ã2!1
~for example, for the atmosphere we assumeH2!H1 or
ã1!1, ã2>1 and for the ocean we assumeH1!H2 or
ã2!1, ã1>1!, a small parameterd appears in the problem
under study. For models of a medium withH2 /H1.1 we
haved!1 for l!1.

We now introduce the matricesR(L)5U(L;L)2E and
T(L)5U(L0 ;L). ThenRi j and Ti j will be complex reflec-
tion and transmission coefficients for the incident (i 5 j ) and
excited (i Þ j ) l andk waves, respectively.

The system~10! implies the existence of two integra
corresponding to conservation of the energy flux density
the l andk waves:

ã1ã2FU11* ~x!
d

dy
U11~x!2U11~x!

d

dy
U11* ~x!G

1U21* ~x!
d

dy
U21~x!2U21~x!

d

dy
U21* ~x!5const,

ã1ã2FU12* ~x!
d

dy
U12~x!2U12~x!

d

dy
U12* ~x!G

1U22* ~x!
d

dy
U22~x!2U22~x!

d

dy
U22* ~x!5const.

They are described in terms of the reflection and transm
sion coefficients in the form of the inequalities

d@12uR11u22uT11u2#5uR21u21uT21u2,
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which, on the strength of Eq.~118!, can be rewritten in the
form

12uR11u22uT11u25d@ uR̃21u21uT̃21u2#,

12uR22u22uT22u25d@ uR12u21uT12u2#. ~128!

If complete localization of the waves occurs in the r
gion (L0 ,L) of inhomogeneities of the medium, then a
transmission coefficientsTi j must approach zero as the siz
L2L0 of the region increases.

The equalities~12! and ~128! determine the relation be
tween the transmission and reflection coefficients, which,
means of the method of embedding, can be described b
closed system of equations. The method of embedd
makes it possible to switch from a problem for the mat
functionU(x) with boundary conditions to a system of equ
tions for the matrix functionsU(x;L) andU(L;L) with ini-
tial conditions with respect to the parameterL ~in this case
the variablex is treated as a parameter!:9

]

]L
U~x;L !5 iU ~x;L !B

1
i

2
k2«~L !U~x;L !B21G̃U~L;L !,

U~x;L !uL5x5U~x;x!,

d

dL
U~L;L !522iB1 i @U~L;L !B1BU~L;L !#

1
i

2
k2«~L !U~L;L !B21G̃U~L;L !,

U~L;L !uL5L0
5E. ~13!

The last equation for the matrixR(L)5U(L;L)2E can
be rewritten in the form of the matrix Riccati equation

d

dL
R~L !5 i @R~L !B1BR~L !#

1
i

2
k2«~L !@E1R~L !#B21G̃@E1R~L !#,

R~L !uL5L0
50. ~138!

Writing Eq. ~138! Ri j , it is easy to see that there exists a
additional integralR215dR12, i.e., R̃215R12. This makes it
possible to study a system of three equations forR11, R12,
andR22, which we represent in the form

d

dL
R1152ilkR111 i «̃~L !@ã2~11R11!

2

22d~11R11!R121dlã1R12
2 #,

d

dL
R2252ikR221 i «̃~L !@lã1~11R22!

2

22d~11R22!R121dã2R12
2 #,

1108N. V. Gryanik and V. I. Klyatskin
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3$@ã2~11R11!1lã1~11R22!2dR12#R12

2~11R11!~11R22!%, ~14!

where

«̃~L !5
k

2l
«~L !.

3. STATISTICAL ANALYSIS

Thus far no assumptions have been made about the c
acter of the nonuniformities of the random function«(x).
We shall assume below that«(x) is a homogeneous Gaus
ian random process with zero mean (^«(x)&50) and corre-
lation and spectral functions

B«~j!5^«~x!«~x8!&, F«~q!5E
2`

`

djB«~j!exp~ iqj!,

j5x2x8, ~15!

characterized by the correlation lengthl 0 . Here and below
^ . . . & denotes averaging with respect to an ensemble of
alizations of the random function«(x).

3.1. Some results of a statistical analysis of the one-layer
model

We note that for a one-layer model of the medium t
equation for the reflection coefficientR5c21 follows from
Eq. ~2! and the corresponding boundary conditions for it

d

dL
RL52ikRL1 i

k

2
«~L !~11RL!2, RL0

50. ~16!

For this model the conservation of the energy flux dens
gives

12uRLu25uTLu2, ~168!

and in the diffusion approximation with additional averagi
over fast oscillations the Fokker–Planck equation for
probability densityPL(W)5^d(W(L)2W)& for the random
variableW(L)5uRLu2 has the form2–4

]

]L
PL~W!5D

]

]W F2~12W!21
]

]W
W~12W!2GPL~W!

~17!

with a diffusion coefficient with the dimension of invers
length:

D5
k2

4
F«~2k!. ~178!

The diffusion approximation is valid with certain restri
tions. Specifically, the random fluctuations of the functi
«(x) should not affect the propagation of a wave on scale
the order of the correlation lengthl 0 , i.e., the condition
Dl 0!1 must be satisfied. In other words, a wave on su
scales does not ‘‘feel’’ the inhomogeneities of the mediu
and propagates as it would in free space. The condition
applicability of averaging over fast oscillations iskD@1.
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medium we have

D5
k2

4
F«~0!, ~1788!

and the solution of the statistical problem does not depend
the form of the spectral function.

It follows from Eq. ~17! that if the region of inhomoge-
neities of a medium is sufficiently large, specificall
D(L2L0)@1, the probability density isPL(W)5d(W21)
and so we haveuTu250 with probability 1, which corre-
sponds to dynamical wave localization. In this case the
tensity of the wave field inside the medium in specific re
izations has the structure of an exponentially decay
curve:3,4

I ~x;L !5uU~x;L !u2.2 exp@2~L2x!/ l loc#, ~18!

wherel loc is determined by the diffusion coefficient

l loc51/D, ~188!

and is called the localization length. The statistical mome
of the intensity of the wave then grow exponentially as t
wave propagates into the layer:

^I n~x;L !&;exp@n~n21!D~L2x!#, n51,2,..., ~1888!

which is due to the large random variations of the intens
relative to the curve~18! in separate realizations.3,4

3.2. Statistical analysis of a two-layer model

We now return to a two-layer model of the medium.
the Appendix, the Fokker–Planck equation~A5! is derived in
the diffusion approximation. This equation describes
probability density of the squared absolute values of the
flection coefficientsWi j 5uRi j u2 and contains, in contrast to
the one-layer medium, four diffusion coefficients which a
expressed in terms of the spectral function of the rand
process«(x) as follows:

D15S k

2l

H1

H0
D 2

F«~2lk!, D25S k

2

H2

H0
D 2

F«~2k!,

D35S k

2l D 2

F«~k~11l!!, D45S k

2l D 2

F«~k~12l!!.

~19!

We note that for small-scale inhomogeneities of the m
dium (kl0!1) the diffusion coefficients are all expressed
terms of one coefficient,D, described by the formula~178!

D15S 1

l

H1

H0
D 2

D, D25S H2

H0
D 2

D, D35D45
1

l2 D.

~198!

The diffusion approximation is applicable when

Dil 0!1. ~20!

The derivation of Eq.~A5! also employed additional averag
ing over fast oscillations, which is valid when
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As mentioned above, the present problem contains a
rameterd whose smallness can be used to simplify the ana
sis of the problem. In Eq.~A5! we neglect terms which are o
second order ind, i.e., secondary reemission of waves.
this approximation the quantitiesW11 and W22 are statisti-
cally independent and their probability densitiesPL(W11)
andPL(W22) are described by the equations

]

]L
PL~W11!5H ]

]W11
@2D1~12W11!

212d~D31D4!W11#

1D1

]2

]W11
2 W11~12W11!

2J PL~W11!, ~22!

]

]L
PL~W22!5H ]

]W22
@2D2~12W22!

212d~D31D4!W22#

1D2

]2

]W22
2 W22~12W22!

2J PL~W22!,

which differ from Eq.~17! for the one-layer model by the
presence of the term

2d~D31D4!
]

]W
WPL~W!.

This means that the process of generation of al ~or k! wave
by an incidentk ~or l! wave is statistically equivalent to
switching on damping in the initial statistical problem for th
incident waves U11 and U22 ~i.e., a substitution
«̃(x)→ «̃(x)1 id(D31D4) in the equations for thes
waves!. Then, for the half-space (L0→2`) there exist ‘‘sta-
tionary’’ ~independent ofL! solutions of Eqs.~22!2–4

P`~W11!5
2g1

~12W11!
2 expS 2

2g1W11

12W11
D ,

P`~W22!5
2g2

~12W22!
2 expS 2

2g2W22

12W22
D . ~23!

where the parameters

g15d
D31D4

D1
, g25d

D31D4

D2
~24!

determine the relative role of such damping~i.e., generation
of secondary waves! compared with the direct diffusion o
these waves~i.e., repeated rereflection of these waves
irregularities of the medium!. For small-scale irregularities
of the medium the damping parameters

g152l
H2

H1
, g25

2

l

H1

H2
~248!

are determined only by the relative thicknesses of the lay
~for a fixed wavelength of thel wave! and do not depend on
the statistical characteristics of the irregularities. Th
g1g254, i.e., if one of the parametersg is compared to 1,
then the other parameter is large.

The probability distributions~23! make it possible to cal-
culate the statistical characteristics of the reflection coe
cients for the incident waves. Specifically, forg i!1 we have
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In the opposite limiting casesg i@1 we obtain, correspond
ingly,

^W11&'1/2g1 , ^W22&'1/2g2 . ~258!

It is obvious from what has been said above that fo
sufficiently large region (L0 ,L) ~or in the limiting case of a
half-spaceL0→2`! the quantitiesuT11u2 and uT22u2 equal
zero with probability 1, i.e., the incidentl andk waves are
localized, and their localization lengths are determined eit
by the diffusion coefficients, if diffusion is much stronge
than the damping, or by the damping otherwise. For
ample, forg1!1 (g2@1),

l loc
~1!5

1

D1
5S lH0

H1
D 2

l loc ,

l loc
~2!5

1

2d~D31D4!
5

lH0

4H1H2
l loc , ~26!

wherel loc is the localization length in the one-layer proble
~188!. In the case when the opposite inequality holdsg1@1
(g2!1) we have

l loc
~1!5

1

2d~D31D4!
5

lH0

4H1H2
l loc ,

l loc
~2!5

1

D2
5S H0

H2
D 2

l loc . ~268!

Finding the statistics forW12 is a much more compli-
cated problem, since the statistics in this case are due to
correlation ofW12 with W11 andW22.

To estimate the average values of the transmission c
ficients for the excited waves, we shall employ the relatio
~128!, which we write in the form

12^W11&2d^W12&5d^uT̃21u2&,

12^W22&2d^W12&5d^uT12u2&. ~27!

It is evident from the Fokker–Planck equation~A5! that for
the combinations T1512W112dW12 and
T2512W222dW12, which determine the transmission co
efficients for the excited waves, there are no stationary s
tions of the formP(Tj )5d(Tj ) for a half-space. This mean
that there is no localization for the waves generated. Si
Eq. ~A5! is symmetric with respect to the indices 1 and 2, t
average valuêW12& should also be symmetric with respe
to these indices and therefore, to within symmetric parts
least the order of the quantities^uTi j u2& should be determined
by the order of the asymmetric parts of the conditions~27!.
For example, by virtue of Eqs.~25! and ~258!, for the
asymptotic caseg1!1 (g2@1) Eqs.~27! assume the form

2g1 ln~1/g1!5d^W12&1d^uT̃21u2&,

121/2g25d^W12&1d^uT12u2&, ~28!

i.e.,
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Similarly, for the opposite asymptotic caseg2!1 (g1@1)
we obtain the estimate

^uT̃21u2&;
1

d
, ^uT12u2&;

2

d
g2 ln

1

g2
. ~298!

Returning to the initial formulation of the problem o
sources located in the top and bottom layers of the med
at the boundaryx05L of the irregular region, let us now find
the intensities of the waves at the boundaryL0 for
L0→2`, i.e., the transmission coefficients for this proble

We consider two cases:
1. The source is located in the bottom layer~v150,

v251!. In this case, we obtain on the basis of the equa
~7! the expressions

^uc1~x!u2&ux5L0
5^uc12~x!u2&ux5L0

5
1

4k2

H2
2

H0
2 S H1

2

H0
2 ^uT̃21u2&1

H2
2

H0
2 ^uT12u2& D ,

^uc2~x!u2&x5L0
5^uc22~x!u2&ux5L0

5
1

4k2

H1
2H2

2

H0
4 ~^uT̃21u2&1^uT12u2&!. ~30!

2. The source is located in the top layer~v151,
v250!. Then we obtain similarly to Eqs.~30!

^uc1~x!u2&ux5L0
5^uc11~x!u2&ux5L0

5
1

4k2

H1
2H2

2

H0
4 ~^uT̃21u2&1^uT12u2&!,

^uc2~x!u2&x5L0
5^uc21~x!u2&ux5L0

5
1

4k2

H1
2

H0
2 S H2

2

H0
2 ^uT̃21u2&1

H1
2

H0
2 ^uT12u2& D .

~308!

Therefore the transmission coefficients for waves gen
ated by sources in both the top and bottom layers of
medium are different from zero in the entire medium, i.
wave localization does not occur. Their specific values, ho
ever, are determined by both the ratio of the layer thi
nesses and the parameterl ~see, for example, the asymptot
formulas~29! and ~298! as well as~248!!.

4. CONCLUSIONS

Thus, we have shown that on the basis of a very sim
two-layer model of a medium described by the system
stochastic equations~1! with random inhomogeneities in th
bottom layer,k or l waves incident on the layer are loca
ized, just as in the one-layer model of the medium. Incid
k or l waves generatel or k waves which are no longe
localized, i.e., their transmission coefficient does not
proach zero as the size of the irregular region of the med
increases. The values of these transmission coefficients
estimated for the asymptotic case of a half-space. The lac
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ization for a finite region of the inhomogeneous medium
well.

We note that making the problem more complicated~by
including inhomogeneities in the top layer as well, chang
the character of the interaction of the waves, changing
model of fluctuating parameters, for example, replac
«(x) by d«(x)/dx, and so on! complicates the correspond
ing Fokker–Planck equation and changes the dependenc
the statistical characteristics on the geometric parameters
it does not change the main result of this work—the abse
of dynamic localization for waves as a whole.

This work was supported in part by the Russian Fund
Fundamental Research under projects Nos. 95-05-14247
96-05-65347.

APPENDIX

Diffusion approximation and the Fokker–Planck equation
for the probability density of reflected-wave intensities

The equations for the intensities of the reflected wa
can be obtained from the system of equations~14!
(Wi j 5uRi j u2):

d

dL
W11~L !5 i «̃~L !@ã2R11* ~12W11!22dR11* R12

22dW11R121dlã1R11* R12
2 2c.c.#,

d

dL
W22~L !5 i «̃~L !@lã1R22* ~12W22!22dR22* R12

22dW22R121dã2R22* R12
2 2c.c.#,

d

dL
W12~L !5 i «̃~L !@~ ã2R111lã1R222dR12!W12

2~11R11!~11R22!R12* 2c.c.#. ~A1!

Their probability density is described by the formula

PL~W11,W22,W12!5^FL~W11,W22,W12!&,

where the functionF is determined by the equality

FL~W11,W22,W12!

5d~W11~L !2W11!d~W22~L !2W22!d~W12~L !2W12!

and is described by the Liouville equation

]

]L
FL~W11,W22,W12!

52 i «̃~L !H ]

]W11
@ã2R11* ~12W11!22dR11* R12

22dW11R121dlã1R11* R12
2 2c.c.#

1
]

]W22
Flã1R22* ~12W22!22dR22* R12

22dW22R121dã2R22* R12
2 2c.c.
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the expressions for the variational derivatives can be written
]W12
2 11 1 22 12 12

2~11R11!~11R22!R12* 2c.c.#J
3FL~W11,W22,W12!. ~A2!

Let us average Eq.~A2! over an ensemble of realization
of the random process«̃(L). To decouple the correlations o
«̃(x) from the functionsWi j (L), which are functionals of the
process «̃(L), we employ the Furutsu–Novikov formul
~see, for example, Ref. 10!

^«̃~L !R@ «̃~x!#&5E
L0

L

dj B «̃ ~L2j!K d

d«̃~j!
R@ «̃~x!#L , ~A3!

which holds for a Gaussian random process with zero m
and an arbitrary functional of it.

To calculate the variational derivatives

d

d«̃~j!
R@ «̃~x!#

we shall vary Eq.~14!. Taking account of the fact that th
main contribution to the integral~A3! comes from the region
of integration overj of the order of the correlation lengt
l 0 , where the effect of random inhomogeneities on the
namics of the waves is very small~the diffusion approxima-
tion!, we obtain for the variational derivatives equations w
initial conditions

d

dL

d

d«̃~j!
R11~L !52ilk

d

d«̃~j!
R11~L !,

d

id«̃~j!
R11U

L5j

5@ã2~11R11!
222d~11R11!R12

1dlã1R12
2 #L5j ,

d

dL

d

d«̃~j!
R22~L !52ik

d

d«̃~j!
R22~L !,

d

id«̃~j!
R22U

L5j

5@lã1~11R22!
222d~11R22!R12

1dã2R12
2 #L5j ,

d

dL

d

d«̃~j!
R12~L !5 ik~11l!

d

d«̃~j!
R12~L !,

d

id«̃~j!
R12U

L5j

5@~ ã2~11R11!1lã1~11R22!

2dR12!R122~11R11!~11R22!#L5j ,

which are easily integrated. Since, in addition, on these in
gration scales

R11~j!5exp@22ilk~L2j!#R11~L !,

R22~j!5exp@22ik~L2j!#R22~L !,

R12~j!5exp@2 ik~11l!~L2j!#R12~L !,
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in the final form

d

id«̃~L2j!
R115$ã2~eilkj1e2 ilkjR11!

2

22d~e2 ik~12l!j1e2 ik~11l!jR11!R12

1dlã1e22ikjR12
2 %,

d

id«̃~L2j!
R225$lã1~eikj1e2 ikjR22!

2

22d~eik~12l!j1e2 ik~11l!jR22!R12

1dã2e22ilkjR12
2 %,

d

id«̃~L2j!
R125$2~eilkj1e2 ilkjR11!~eikj1e2 ikjR22!

1ã2~11e22ilkjR11!R121lã1~1

1e22ikjR22!R122de2 ik~11l!jR12
2 %.

~A4!

As a result, we obtain the Fokker–Planck equation

]

]L
PL~W11,W22,W12!

5H ]

]W11
@2D1~12W11!

224d2D4W1212d

3~D31D4!W112d2D2W12
2 24d2D3W11W12#1

]

]W22

3@2D2~12W22!
224d2D4W1212d~D31D4!W22

2d2D1W12
2 24d2D3W22W12#1

]

]W12
@~D1~12W11!

1D2~12W22!12d~D312D4!2d2D3W12!W122D3

3~11W11W22!2D4~W111W22!#1
]2

]W11
2 W11@D1~1

2W11!
214d2D4W1214d2D3W11W121d2D2W12

2 #

1
]2

]W22
2 W22@D2~12W22!

214d2D4W12

14d2D3W22W121d2D1W12
2 #1

]2

]W12
2 W12

3@W12~D1W111D2W22

1d2D3W1222dD3!1D3~11W11W22!1D4

3~W111W22!#18d2D3

]2

]W11]W22
W22W11W12

22
]2

]W11]W12
W12W11@D1~12W11!12d~D31D4!

22d2D3W12#22
]2

]W22]W12
W12W22@D2~12W22!
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12d~D 1D !22d2D W # P ~W ,W ,W !,
The derivation of Eq.~A5! also employed additional av-

a-

ge-
3 4 3 12 J L 11 22 12

~A5!

where we have introduced the diffusion coefficients

D152ã 2
2E

0

`

dj B «̃ ~j !cos~2lkj!,

D252~lã1!2E
0

`

dj B «̃ ~j !cos~2kj!,

D352E
0

`

dj B «̃ ~j !cos@k~11l!j#,

D452E
0

`

dj B «̃ ~j !cos@k~12l!j#,

which can be expressed in terms of the spectral function
the random process«(x) according to the formulas~19! pre-
sented in the text.
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Statistical theory of the propagation of optical radiation in turbulent media
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The problem of the propagation of a plane light wave in a turbulent medium is studied on the
basis of the ideas of statistical topography. A cluster~caustic! structure of the intensity
of the wave field in a plane perpendicular to the direction of propagation of the wave is analyzed
both in the region of weak intensity fluctuations and in the region of saturated fluctuations.
The specific~per unit area! values of the total area of the regions where the intensity is greater than
a fixed level, the fraction of the power confined in these regions, and the total perimeter and
average number of such regions are estimated. It is shown that estimates of this kind can be made
on the basis of a knowledge of the joint one-point probability distribution of the intensity
and transverse gradient of the wave field. ©1997 American Institute of Physics.
@S1063-7761~97!00906-2#
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The spatial intensity distribution of light propagating tu
bulent medium can be regarded as a realization of a cha
field. Such a realization of a two-dimensional fieldI (x,R) in
a fixed planex5const, wherex is the coordinate in the di
rection of propagation of the wave andR5$y,z% are the
transverse coordinates, is reminiscent of a complica
mountain landscape with randomly distributed peaks, v
leys, ridges, and passes.

The standard methods of statistical averaging, i.e.,
calculation of average values of the form̂I (x,R)&,
^I (x,R1)I (x,R2)&, and so on, wherê...& denotes averaging
over an ensemble of realizations of the random paramete
the medium~see, for example, Refs. 1 and 2!, smooth out the
qualitative features of typical realizations, and these cha
teristics often have nothing in common with the behavior
individual realizations. For example, the statistical avera
over all realizations of the intensity of the field of a pla
wave is constant, while each individual realization of t
field tends to become increasingly irregular in space.
example, a photograph of the transverse cross section
laser beam propagating in a trubulent atmosphere is
sented on the back of the jacket of the book Ref. 1. T
appearance of a caustic structure of the wave field can
seen in this photograph. Such structures arise and are
served also in the case of the refraction and reflection of l
by an agitated water surface; this corresponds to scatte
by a so-called phase screen.

In summary, only when statistical averages of the ty
indicated above are taken together do they characterize
spatial scales of the regions where stochastic processe
cur, and they say nothing about the important details of
region.

The complete statistics contains, of course, all inform
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tistical characteristics, mainly associated with one-po
probability distributions, can be investigated in practice. F
this reason, there arises the question of how to study
main quantitative and qualitative features of the spatial
havior of individual realizations if the local statistical cha
acteristics of the system are known. The answer to this qu
tion is given by the methods of statistical topography
random fields.

The term ‘‘statistical topography’’ apparently was fir
introduced in Ref. 3, though the main ideas originate w
much earlier works4–6 ~see also the review Ref. 7, where
detailed bibliography on this question is given!. In these
works, the statistical topography of random processes
fields was used to analyze statistical problems. The appl
tion of the methods of statistical topography to the dynam
problem of the diffusion of a passive impurity in a rando
velocity field was studied in Refs. 7–9. In Ref. 9 the proble
of the diffusion of an impurity in a two-dimensional com
pressed medium was solved, a characteristic feature of w
is the existence of cluster structures~compact high-
concentration regions surrounded by extensive lo
concentration regions!.

The problem of light propagation in a random medium
mathematically similar to the problem of diffusion. In wh
follows, the structure of the wave field of optical radiation
a turbulent medium in a fixed planex5const will be studied
on the basis of the idea of statistical topography as a func
of the statistical parameters of the medium. We note that
theory of fluctuations of a random intensity field was fir
used in Refs. 10 and 11~see also Ref. 12! to analyze the
problem of wave propagation in a turbulent medium.

11148$10.00 © 1997 American Institute of Physics



2. GENERAL REMARKS
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We shall study light propagation in a randomly inhom
geneous medium on the basis of the scalar parabolic equ
~see, for example, Refs. 1 and 2!

]

]x
u~x,R!5

i

2k
DRu~x,R!1

ik

2
«~x,R!u~x,R!,

u~0,R!5u0~R!, ~1!

where«(x,R) is the deviation of the permittivity from 1.
The transfer equation for the intensi

I (x,R…5u(x,R)u* (x,R) of the wave field follows from Eq.
~1!:

]

]x
I ~x,R!5

i

2k
¹R•$u* ~x,R!¹Ru~x,R!

2u~x,R!¹Ru* ~x,R!%,

I ~0,R!5I 0~R!. ~2!

If a complex phase of the wave field is now introduc
according to the formula

u~x,R!5A~x,R!exp$ iS~x,R!%

5exp$x~x,R!1 iS~x,R!%, ~18!

wherex(x,R)5 ln A(x,R) and S(x,R) are, respectively, the
amplitude and the phase of the wave, then Eq.~2! can be
rewritten in the form

]

]x
I ~x,R!1

1

k
¹R•$¹RS~x,R!I ~x,R!%50,

I ~0,R!5I 0~R!. ~3!

It follows from Eq. ~3! that in the general case of a
arbitrary incident wave beam the total wave power in
planex5const is conserved:

E05E dRI ~x,R!5E dRI 0~R!. ~4!

In the case when a plane wave with intensityI 0 is inci-
dent on a randomly inhomogeneous medium, we have for
spatially uniform fluctuations of the parameters of the m
dium, instead of the equality~4!,

^I ~x,R!&5I 0 . ~5!

Equation~3! can be interpreted as a transfer equation
an impurity in a potential velocity field. However, this im
purity can be regarded as passive only in the geome
optics approximation, when the transverse gradient of
phase of the wave is described by the closed equation~see,
for example, Refs. 1 and 2!

S ]

]x
1

1

k
¹RS~x,R!•¹RD¹RS~x,R!5

k

2
¹R«~x,R!.

~38!

In the general case the impurity is active when diffracti
effects are taken into account. We note that in the geome
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of caustics as a function of the distance traveled by the w
was estimated in Refs. 13–16.

As indicated in the introduction, a fundamental featu
of the diffusion of an impurity in a potential velocity field i
the existence of a cluster structure of the field intens
which in the case at hand appears as a caustic structure
to random focusings and defocusings in the random medi

In the present case, the method employed in Ref.
based on an approximation of a random velocity field by
field which isd-correlated inx, to find the statistical param
eters characterizing this cluster structure is inapplicab
since the longitudinal correlation length for the phase of
wave is of the order of the path length. In addition, in o
situation the initial dynamical equation~3! becomes virtually
useless for analyzing the structure of the intensity field in
random medium. However, the statistical-topography
proach is applicable if the one-point probability density f
the wave intensity is known in the regions of both weak a
strong fluctuations of the wave field obtained by solvi
Eq. ~1!.

3. ELEMENTS OF THE STATISTICAL TOPOGRAPHY OF A
RANDOM INTENSITY FIELD

The main object of study in statistical topography, just
in ordinary topography of mountain massifs, is a system
contours—lines of intensity level in a fixed planex5const
~two-dimensional case!—determined by the relation
I (x,R)5I 5const.

To analyze the system of contours it is convenient
introduce the delta function which is concentrated on the

F~x,R;I !5d~ I ~x,R!2I !, ~6!

and is a functional of the parameters of the medium. T
average value of the functional~6! over an ensemble of re
alizations determines the one-point probability density

P~x,R;I !5^F~x,R;I !&5^d~ I ~x,R!2I !&. ~7!

For example, quantities such as the total area of the reg
bounded by the contour linesI (x,R).1

S~x,I !5E u~ I ~x,R!2I !dR5E
I

`

dĨE dRF~x,R; Ĩ !,

~8!

and the total power of the field in these regions,

E~x,I !5E I ~x,R!u~ I ~x,R!2I !dR

5E
I

`

Ĩ d ĨE dRF~x,R; Ĩ !, ~9!

are expressed in terms of the function~6!. Hereu(z) is the
Heaviside step function. The statistical averages of th
quantities can be expressed in terms of the probability d
sity ~7!.

Additional information about the detailed structure
the field can be obtained by including in the analysis
transverse intensity gradientp(x,R)5¹RI (x,R). For ex-
ample, the quantity
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L~x,I !5E dRup~x,R!ud~ I ~x,R!2I ! ~10!
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describes the total length of the contoursI (x,R)5I 5const.
We note that to calculate the average value in Eq.~10! it is
now necessary to know the joint one-point probability de
sity of the fieldI (x,R) and its gradientp(x,R)

P~x,R;I ,p!5^d~ I ~x,R!2I !d~p~x,R!2p!&.

Including in the analysis second-order spatial derivati
makes it possible to estimate, for example, the total num
of contoursI (x,R)5I 5 const by means of the approxima
~to within non-closed lines! formula6

N~x,I !5N1~x,I !2N2~x,I !

5
1

2p E dRk~x,R;I !up~x,R!ud~ I ~x,R!2I !,

~11!

whereN1(x,I ) andN2(x,I ) are the numbers of contours fo
which the vectorp is directed along the inner and outer no
mals, respectively, andk(x,R;I ) is the curvature of a leve
line:

k~x,R;I !5$2py
2~x,R!]2I ~x,R!/]z2

2pz
2~x,R!]2I ~x,R!/]y2

12py~x,R!pz~x,R!]2I ~x,R!/]y]z%

3@p3~x,R!#21. ~12!

For a plane incident wave all one-point probability de
sities are independent of the variableR on account of the
spatial uniformity and the corresponding statistical avera
~5!–~11! ~without integrating overR! will describe the spe-
cific ~per unit area! values of these quantities. A natur
length scale in the planex5const, which does not depend o
the parameters of the medium, is the size of the first Fre
zoneL f(x)5Ax/k, determining the size of the light–shado
transition region in diffraction by the edge of an opaq
screen~see, for example, Ref. 1!. Then the specific averag
values of the contour length and the estimate of their aver
number will be described by the dimensionless expressio

^ l ~x,I !&5L f~x!^up~x,R!ud~ I ~x,R!2I !&, ~108!

^n~x,I !&5
1

2p
L f

2~x!^k~x,R;I !up~x,R!ud~ I ~x,R!2I !&.

~118!

The formula ~118! describes the average difference of t
number of contours with opposite orientation of the norm
vectors in the first Fresnel zone.

4. STATISTICAL ANALYSIS OF THE CLUSTER PATTERN OF
THE INTENSITY OF A WAVE FIELD

Let us assume that the random field«(x,R) is a Gauss-
ian homogeneous and isotropic field with correlation a
spectral functions
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5E
2`

`

dqxE dqFs~qx ,q!

3exp$ iqx~x12x2!1 iq•~R12R2!%,

F«~qx•q!5
1

~2p!3 E
2`

`

dxE dRBs~x,R!

3exp$2 iqxx2 iq•R%. ~13!

In what follows, we shall study the incidence of a pla
wave with unit intensity. In this case the wave field will b
statistically homogeneous in the planex5const and its sta-
tistical characteristics will all be independent ofR.

4.1. Region of weak intensity fluctuations

In the general case the intensity of the wave field w
have the structure~18!, i.e.,

I ~x,R!5A2~x,R!5exp$2x~x,R!%. ~14!

In the region of weak fluctuations, the amplitude lev
x(x,R) is a Gaussian random field. Moreover, it follow
from the equality~5! that the average value of the amplitud
level is determined by its variance, specifically,

^x~x,R!&52sx
2~x!.

We now introduce a parameter, usually termed the sc
tillation index ~see, for example, Ref. 1!,

b0~x!54sx
2~x!. ~15!

Then the variance of the intensity of the wave field f
b0(x)!1 will be described by the formula

s I
2~x!5^I 2~x,R!&215b0~x!. ~16!

Therefore the one-point probability distribution of th
field x(x,R) has the form

P~x;x!5^d~x~x,R!2x!&5A 2

pb0~x!

3expH 2
2

b0~x! S x1
1

4
b0~x! D 2J . ~17!

Thus, the intensity of the wave field is a log-norm
random field, and its one-point probability density is det
mined by the expression

P~x;I !5^d~ I ~x,R!2I !&5
1

IA2pb0~x!

3expH 2
1

2b0~x!
ln2S I expS 1

2
b0~x! D D J .

~18!

The region of weak intensity fluctuations is bounded
the values of the parameterb0(x)<1.

As is well known ~see, for example, Ref. 17!, for an
arbitrary random processI (x) it is always possible to intro-
duce a determinate curve, called a typical realizat
I * (x), such that on any interval (X1 ,X2), where
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FIG. 1. Average specific area~a! and power~b!
versus the parameterb0(x).
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verse inequalityI (x).I * (x) holds and equals (X22X1)/2.
For the log-normal process~18! such a typical realization o
the random intensity is a curve decreasing exponentially w
distance

I * ~x!5expH 2
1

2
b0~x!J ,

and the statistics~for example, the moment function
^I n(x,R)&) is formed by large fluctuations of the proce
I (x,R) relative to this curve.

Furthermore, different majorant estimates also exist
realizations of a log-normal processI (x).17 For example, for
separate realizations of the intensity of a wave field the
equality

I ~x!,4 expH 2
1

4
b0~x!J

holds with probabilityp51/2 in the entire interval of dis-
tancesx P (0,̀ ). These circumstances all indicate the form
tion of a cluster structure of the intensity of the wave fiel

As indicated above, if the probability density~18! is
known, then some quantitative characteristics of such clu
formations can be determined. For example, the average
cific area of the regions withI (x,R).I equals

^s~x,I !&5E
I

`

dĨP~x; Ĩ !5FS 1

A2b0~x!

3 lnS expS 2
1

2
b0~x! D Y I D D , ~19!

and the specific average power concentrated in these reg
is described by the expression

^e~x,I !&5E
I

`

dĨP~x; Ĩ !

5FS 1

A2b0~x!
lnS expS 1

2
b0~x! D Y I D D ,

~20!

where

F~z!5
1

Ap
E

2`

z

exp~2y2!dy
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The character of the spatial evolution of the clus
structure accompanying a change in the parameterb0(x) de-
pends strongly on the fixed levelI . In the most interesting
caseI .1, in the initial planê s(0,I )&50 and^e(0,I )&50.
As b0(x) increases, small cluster regions whereI (x,R).I ,
which remain practically unchanged over some distance
intensively attract a large fraction of the total power in
their domain, are formed. Then, the areas of these reg
decrease asb0(x) increases, and the power contained
them increases, which corresponds to an increase in the
erage brightness inside these regions. These processe
associated with the focusing of radiation by separate sect
of the medium. Plots of the variation of the function
^s(x,I )& and ^e(x,I )& as a function of the parameterb0(x)
from the indicated range of values are displayed in Figs.
and 1b. The maximum average specific area is reached
b0(x)52 ln (I) and

^s~x,I !&max5FS 2
1

Aln~ I !
D .

The average power for this value ofb0(x) is
^e(x,I )&51/2.

In the region of weak intensity fluctuations the spat
gradient of the amplitude level¹Rx(x,R) is statistically in-
dependent ofx(x,R). This makes it possible to calculat
both the specific average length of the contoursI (x,R)5I
and to estimate the specific average number of such c
tours. Indeed, the probability density for the gradient of t
amplitude levelq(x,R)5¹Rx(x,R) in the region of weak
fluctuations is a Gaussian distribution

P~x;q!5^d~¹Rx~x,R!2q!&5
1

psq
2 expH 2

q2

sq
2~x!J ,

~21!

wheresq
2(x)5^q2(x,R)& is the variance of the gradient o

the amplitude level.
Therefore we obtain from the formula~108! for the spe-

cific average length of the contours the expression

^ l ~x,I !&5L f~x!^up~x,R!ud~ I ~x,R!2I !&

52L f~x!^uq~x,R!uId~ I ~x,R!2I !&

52L f~x!^uq~x,R!u&IP~x,I !

5L f~x!Apsq
2~x!IP~x,I !. ~22!
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Similarly, we have for the specific average number of
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contours from the formula~118!

^n~x,I !&5
1

2p
L f

2~x!^k~x,R;I !up~x,R!ud~ I ~x,R!2I !&

52
1

2p
L f

2~x!I ^Dx~x,R!d~ I ~x,R!2I !&

52
1

p
L f

2~x!^q2~x,R!&I
]

]I
IP~x,I !

5
L f

2~x!sq
2~x!

pb0~x!
lnS I expS 1

2
b0~x! D D IP~x,I !.

~23!

We note that the expression~23! vanishes for
I 5I 0(x)5exp$2(1/2)b0(x)%. This means that for a given
intensity level the average specific number of conto
bounding the regionI (x,R).I 0 is identical to the average
specific number of contours for whichI (x,R),I 0 .

General expressions containing the parameterb0(x)
characterizing the properties of the medium were obtai
above. In the region of weak fluctuations the amplitude le
and its gradient with respect to the transverse coordinates
described on the basis of the method of smooth perturbat
~see, for example, Refs. 1 and 2! by the formulas

x~x,R!5
k

2 E
0

x

djE dqeiqR«q~j!sin
q2

2k
~x2j!,

¹Rx~x,R!5 i
k

2 E
0

x

djE qdqeiqR«q~j!sin
q2

2k
~x2j!,

~24!

where

«~x,R!5E dqeiqR«q~x!,

«q~x!5
1

~2p!2 E dqe2 iqR«~x,R!. ~25!

In the approximation of a field«(x,R) which is
d-correlated with respect tox, the correlation function~13!
of the field is approximated by the expression~see, for ex-
ample, Refs. 1 and 2!

B«~x,R!5d~x!A~R!, A~R!5E
2`

`

dxB«~x,R! ~26!

and the random field«q(x) can be assumed to be Gaussi
with correlation function

^«q1
~x1!«q2

~x2!&52pd~x12x2!d~q11q2!F«~0,q1!,
~27!

where F«(0,q) is the three-dimensional spectral functio
~13! of the two-dimensional vectorq.

For a turbulent medium the functionF«(0,q) has the
form ~see, for example, Refs. 1 and 2!

F«~0,q!5AC«
2q211/3 exp$2~q2/km

2 !%. ~28!
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constant of the permittivity fluctuations which depends
the external parameters of the flows, andkm is a wave num-
ber corresponding to the turbulence microscale. Therefo

b0~x!54sx
2~x!52k2p2xE

0

`

dqqF«~q!

3F12
k

q2x
sinS q2

k
xD G , ~29!

if the turbulent medium occupies all space. If the fie
«(x,R) is different from zero only in a thin layerDx!x
~random phase screen!, then

b0~x!54sx
2~x!52k2p2DxE

0

`

dqqF«~q!

3F12cosS q2

k
xD G . ~298!

If the so-called wave parameter~see, for example, Ref. 1!
satisfies D(x)5km

2 x/k@1, we obtain for the paramete
b0(x) the expressions

b0~x!50.307C«
2k7/6x11/6 ~Dx5x!,

b0~x!50.563C«
2k7/6x5/6Dx ~Dx!x!. ~30!

Similarly, we have for the variance of the gradient of t
amplitude level withD(x)@1 in the case of a turbulent me
dium occupying all space

sq
2~x!5

k2p2x

2 E
0

`

dqq3F«~q!F12
k

q2x
sinS q2

k
xD G

5
1.476

L f
2~x!

D1/6~x!b0~x!. ~31!

Now ^ l (x,I )& and ^n(x,I )& described by Eqs.~22! and
~23! can be calculated as functions of the parametersb0(x)
andD(x). The plots of these dependences onb0(x) are dis-
played in Figs. 2a and 2b.

The dependence of the average specific length of
level lines and the average specific number of contours
the turbulence microscale indicates the existence of sm
ripples which are superposed on a larger-scale random re
These ripples have no effect on the redistribution of ar
and powers, but they cause the level lines to be stron
irregular and lead to the appearance of small contours.

As indicated above, the description obtained is valid
b0(x)<1. As the parameterb0(x) increases further, the
method of smooth perturbations becomes invalid and
nonlinear character of the equation for the complex phas
the wave field must be taken into consideration. This reg
of fluctuations, called the region of strong focusings, is ve
difficult to investigate analytically. As the parameterb0(x)
increases further (b0(x)>10), the statistical characteristic
of the intensities saturate and this range of the param
b0(x) is called the region of strong intensity fluctuations.
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FIG. 2. Average specific contour length~a! and
average specific number of contours~b! versus
the parameterb0(x).
4.2. Region of strong intensity fluctuations
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quantities ^I n(x,R)& are finite and therefore the equality
a

-

ions

r
eak

er

ns

av-
lue
It is well known that in the region of strong fluctuation
the moments of the intensity are described by the asymp
formula ~see, for example, Ref. 2!

^I n~x!&5n! @11n~n21!~b~x!21!/4#, ~32!

whereb(x) is the variance of the intensity, i.e.,

b~x!5^I 2~x!&21.

For a turbulent medium we have~see, for example
Ref. 2!

b~x!5110.861b0
22/5~x! ~Dx5x!,

b~x!5110.429b0
22/5~x! ~Dx!x!, ~33!

where the parameterb0(x) is described by Eqs.~30!.
The equation~32! leads to an intensity probability den

sity with singularities. To avoid the singularities, the formu
~32! can be approximated by the expression~see, for ex-
ample, Ref. 18!

^I n~x!&5n! exp$n~n21!~b~x!21!/4%, ~34!

which corresponds to a probability density of the form~see,
for example, Refs. 18 and 19!

P~x,I !5
1

Ap~b~x!21!
E

0

`

dz

3expH 2zI2
~ ln z2~b~x!21!/4!2

b~x!21 J . ~35!

We note that the probability distribution~35! is inappli-
cable in a small neighborhood ofI;0 ~the neighborhood is
smaller, the larger the parameterb0(x)!. This is because Eq
~35! gives infinite moments of the quantity 1/I (x,R). How-
ever, for a finite value ofb0(x) ~regardless of how large! the
tic

P(x,0)50 should hold. Of course, the existence of such
narrow neighborhood of the pointI;0 has no effect on the
behavior of the momentŝI n(x,R)& ~34! for large values of
the parameterb0(x).

It follows from the expression~35! that the average spe
cific area of the regions whereI (x,R).I holds equals

^s~x,I !&5
1

Ap~b~x!21!
E

0

` dz

z

3expH 2zI2
~ ln z2~b~x!21!/4!2

b~x!21 J , ~36!

and the specific average power concentrated in these reg
is described by the expression

^e~x,I !&5
1

Ap~b~x!21!
E

0

` dz

z S I 1
1

zD
3expH 2zI2

~ ln z2~b~x!21!/4!2

b~x!21 J . ~37!

Plots of the functions~36! and ~37! versus the paramete
b(x) are presented in Figs. 3a and 3b. Note the very w
dependence of the parameterb(x) on b0(x). Thus, the pas-
sage to the limitb0(x)→` corresponds to the paramet
b(x)51 andb(x)51.861 corresponds tob0(x)51.

The asymptotic expressions~32!–~37! describe the tran-
sition to the region of saturated intensity fluctuatio
(b(x)→1). Correspondingly, we have in this region

P~ I !5e2I , ^s~ I !&5e2I , ^e~ I !&5~ I 11!e2I ~38!

and therefore the fractions of the total average area and
erage power within the level lines depend only on the va
of I . For largeI these fractions are very small.
FIG. 3. Plots of the average specific area~a! and
power ~b! in the region of strong intensity fluc-
tuations versus the parameterb(x).
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The exponential probability distribution~38! means that
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Therefore from Eq.~10! we obtain for the specific aver-
sity
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the complex fieldu(x,R) is a Gaussian random field. The

u~x,R!5A~x,R!eiS~x,R!5u1~x,R!1 iu2~x,R!, ~39!

whereu1(x,R) and u2(x,R) are, respectively, the real an
imaginary parts. The intensity of the wave field is

I ~x,R!5A2~x,R!5u1
2~x,R!1u2

2~x,R!.

The Gaussian nature of the complex fieldu(x,R) means
that the random fieldsu1(x,R) andu2(x,R) are also Gauss
ian, statistically independent, fields with variances

^u1
2~x,R!&5^u2

2~x,R!&5
1

2
. ~40!

It is natural to assume that their gradien
q1(x,R)5¹Ru1(x,R) and q2(x,R)5¹Ru2(x,R) are also
statistically independent of the fieldsu1(x,R) andu2(x,R),
and in the planeR they are Gaussian homogeneous and i
tropic fields with variances

sq
2~x!5^q1

2~x,R!&5^q2
2~x,R!&. ~41!

Therefore the joint probability distribution of the field
u1 , u2 and their gradientsq1 , q2 has the form

P~u1 ,u2 ,q1 ,q2 ;x!5
1

p3sq
4~x!

3expH 2S u1
21u2

21
q1

21q2
2

sq
2~x!

D J . ~42!

Let us now consider the joint probability distribution o
the intensityI (x,R) of the wave field and amplitude gradie

k~x,R!5¹RA~x,R!

5
u1~x,R!q1~x,R!1u2~x,R!q2~x,R!

Au1
2~x,R!1u2

2~x,R!
.

We have

P~ I ,k;x!5^d~ I ~x,R!2I !d~k~x,R!2k!&u1q1

5
1

p3sq
4~x!

E
2`

`

du1E
2`

`

du2E dq1E dq2

3expH 2S u1
21u2

21
q1

21q2
2

sq
2~x!

D J d~u1
21u2

22I !

3dS u1q11u2q2

Au1
21u2

2
2kD

5
1

2psq
2~x!

expH 2I 2
k2

2sq
2~x!J . ~43!

Therefore the transverse amplitude gradient is stat
cally independent of the intensity of the wave field and i
Gaussian random field with variance

^k2~x,R!&52sq
2~x!. ~44!

We note that the transverse amplitude gradient is also st
tically independent of the second derivatives of the inten
of the wave field with respect to the transverse coordina
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age length of the contours in the region of saturated inten
fluctuations the expression

^ l ~x,I !&5L f~x!^up~x,R!ud~ I ~x,R!2I !&

52L f~x!AI ^uk~x,R!ud~ I ~x,R!2I !&

52L f~x!AI ^uk~x,R!u&P~x,I !

5L f~x!A2psq
2~x!Ie2I . ~45!

The maximum value in Eq.~45! is reached forI 51/&.
Similarly, we have as an estimate of the average spec

number of contours in this region

^n~x,I !&5
L f

2~x!

2p
^k~x,R;I !up~x,R!ud~ I ~x,R!2I !&

52
L f

2~x!

2p
AI ^DA~x,R!d~ I ~x,R!2I !&

52
L f

2~x!

p
^k2~x,R!&AI

]

]I
AIP~x,I !

52
2L f

2~x!sq
2~x!

p
AI

]

]I
AIe2I

5
2L f

2~x!sq
2~x!

p S I 2
1

2De2I . ~46!

The maximum value in Eq.~46! is reached forI 53/2,
and the level at which the average specific number of c
tours bounding the regionI (x,R).I 0 equals the average
specific number of contours for whichI (x,R),I 0 is equal to
I 051/2 in the present case.

We note that Eq.~46! is inapplicable in a small neigh
borhood ofI;0. For I 50 we havê n(x,0)&50 ~refer to the
discussion of Eq.~35!!.

In the region of strong intensity fluctuations the secon
order coherence function does not depend on diffraction p
nomena and is described by the expression~see, for example,
Refs. 1 and 2!

G2~x,R2R8!5^u~x,R!u* ~x,R8!&

5^u1~x,R!u1~x,R8!1u2~x,R!u2~x,R8!&

5expH 2
k2x

4
D~ uR2R8u!J , ~47!

where~see Eq.~26!!

D~R!5A~0!2A~R!. ~48!

Therefore the quantitysq
2(x) from Eq.~41! is determined by

the expression

sq
2~x!5

k2x

8
DRD~R!U

R50

52
k2x

8
DRA~R!U

R50

. ~49!

For turbulent fluctuations«(x,R) we have

sq
2~x!5

1.476

L f
2~x!

D1/6~x!b0~x!. ~50!
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As one can see from Eq.~50!, in the saturated-
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fluctuations regime the average length of the level lines
the average number of contours continue to grow with
parameterb0(x), though the average areas and powers l
ited by them and contained in them remain constant. Thi
because interference of partial waves arriving from differ
directions plays a determining role in this regime.

The dynamical picture of the behavior of the level lin
depends on the relations between the radiation-focusing
defocusing processes in separate sections of a turbu
medium.1,20 Focusing of large-scale inhomogeneities
manifested as high peaks on a random intensity relief. In
maximum-focusing regime (b0(x);1), approximately half
the total power of a wave is concentrated in high, narr
peaks. As the parameterb0(x) increases, defocusing of ra
diation predominates and results in broadening of the h
peaks and the formation of a strongly irregular~interference!
relief with a large number of peaks of the levelI;1.

The average length of a level line and the average len
of contours depends on, besides the parameterb0(x), the
parameterD(x), i.e., they increase with decreasing micr
scale of the inhomogeneities. This is because a small rip
structure, due to scattering by small irregularities, is sup
posed on the larger-scale relief.

5. CONCLUSIONS

An attempt was made in the present paper to giv
qualitative explanation of the cluster~caustic! structure of
the wave field in the transverse plane for a plane light w
propagating in a turbulent medium and to make quantita
estimates of the parameters of this structure. In the gen
case, the problem involves many parameters. However, if
problem is analyzed in a fixed plane, then for a plane w
with a constant wave parameter the solution of the prob
is described by one parameter—the variance of the inten
in the region of weak fluctuations. In the present paper t
extreme asymptotic cases corresponding to weak and s
rated intensity fluctuations were analyzed. It should be no
that the limits of applicability of the asymptotic formula
probably depend on the intensity levelI . It is natural to think
that these limits are wider for low values of the level. Ho
ever, this question requires additional investigation.

To analyze the intermediate case corresponding to a
gion where there is a developed caustic structure, which i
greatest interest for applications, it is necessary to know
probability density of the intensity and its transverse gradi
1121 JETP 84 (6), June 1997
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can be performed either by using approximating express
for the probability density for all values of the parameter19

or on the basis of numerical modeling, as done, for exam
in Refs. 21 and 22. We also note that in the geometric-op
approximation the equations~3! and ~38! lead to a closed
equation for the joint probability density of the intensity
the wave field and the second derivatives of the phase of
wave with respect to the transverse coordinates charact
ing the curvature of the phase front. This equation has
been studied at all.2
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Interaction of light with a dye-doped nematic liquid crystal

M. I. Barnik, A. S. Zolot’ko, and V. F. Kitaeva

P. N. Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Russia
~Submitted 5 December 1996!
Zh. Éksp. Teor. Fiz.111, 2059–2073~June 1997!

The interaction of linearly and circularly polarized beams with a nematic liquid crystal doped
with light-absorbing dyes has been studied by light-diffraction and microprojection
methods. It has been found that there is a threshold for the emergence of light-induced anisotropic
structures, which, depending on the type of dye, can be axisymmetric or extended in a
direction determined by the light field. Possible mechanisms leading to the formation of the
anisotropic structures are discussed. ©1997 American Institute of Physics.
@S1063-7761~97!01006-8#

1. INTRODUCTION the director field ~square lattices! in cholesteric liquid
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As is well known, even small traces of light-absorbin
molecules can alter the properties of liquid crystals and
character of their interaction with light. For example, sm
~less than 1%! additions of anthraquinone and azoic dy
increase the efficiency of light-induced reorientation of t
director of nematic liquid crystals~NLCs! by at least an or-
der of magnitude, and can change the direction of
director.1–8 Adding methyl red makes light-induced reorie
tation of even smectic liquid crystal possible.9

Light-induced changes in the structure of dye-doped
uid crystals also influence the light beam itself, altering
divergence and structure.

A specific property of liquid crystals — the collectiv
nature of the response to external perturbations — is
served in the interaction of light with oriented liquid crysta
The collective nature of the response makes it possible
observe in liquid crystals a number of interesting effects d
to the absorption of light, specifically, periodic distortions
e
l

e

-
s

b-
.
to
e

crystals and some features of the smectic–nematic ph
transition.11

Our objective in the present work is to study the pho
response of absorbing homeotropically-oriented multico
ponent nematic liquid crystals.

2. EXPERIMENTAL CONDITIONS AND RESULTS

The investigations were conducted with two samples
a homeotropically oriented NLC ZhKM-1277~produced by
the Main Science Center of the Russian Federation, Rese
Institute of Organic Semiproducts and Dyes!, consisting of a
five-component mixture of nematics based on biphenyls
esters. The samples contained small~1 wt.%! additions of
dyes I ~sample No. 1! and II ~sample No. 2!. The substance
ZhKM-1277 possesses a nematic phase in the tempera
range220 °C ,T,60 °C. It is characterized by a positiv
low-frequency dielectric anisotropy (De512.2). The dyes
and
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possess positive dichroism. Both dyes contain anthraquin
fragments. The first dye also contains the azobridge NvN.
The degree of ordering of the dye molecules in the nem
matrix is approximately 0.7. The polarization absorpti
spectra of the dyes are presented in Fig. 1. The absorp
bands of both dyes belong to anthraquinone fragments.

The inner glass walls of the wedge-shaped cell w
coated with SnO2. This made it possible to apply an alterna
ing electric field to the crystal. A homeotropic orientation
the liquid crystal was achieved by coating the inner surfa

FIG. 1. Optical densityD of the dyes I~curves3 and4! and II ~1, 2! versus
the wavelength of the light~for L522 mm and dye concentration;1%):
1, 3 — D i , 2, 4 — D' .
ne

ic

on

e

s

investigations were carried out with crystal thicknessL550
mm, temperature T520 °C, and wavelength of ligh
l56471 Å.

The crystal was illuminated with light~focused in the
crystal! from a continuous-wave argon–krypton laser. T
linearly or circularly polarized light was normally inciden
on the cell, i.e., the wave vector of the incident radiation w
parallel to the director. A thin-film polarizer was positione
in the path of the light behind the crystal, followed by
screen on which changes in the light beam transmit
through the crystal were observed. Changes in the cry
itself could be followed on the same screen with a mic
scope system~approximately 4003 magnification!.

2.1. Changes in a linearly polarized light beam interacting
with a crystal

The photographs in Figs. 2 and 3 illustrate the chan
in the illuminated liquid crystal.

1. The divergence and structure of the light beam tra
mitted through the crystal change. The magnitude of the
fect depends on the power of the light beam. The effect
a threshold.

For P.Pth (Pth'9 mW for sample No. 1 and
FIG. 2. Variations in the diffraction pat-
tern with increasing radiation powerP
for sample No. 1: a, a8 — crossed polar-
izers, b, b8 — no analyzer:1 — P511
mW, 2 — P513 mW,3 — P517 mW.
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FIG. 3. Changes in the diffraction pattern with increasing radiation powerP for sample No. 2: a, a8 — crossed polarizers, b, b8 — no analyzer;1 —
P513 mW,2 — P515 mW,3 — P525 mW.
Pth'10 W for sample No. 2!, a cross appears on the screen
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3. As P increases, the degree of prolateness of the ovals
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in crossed polarizers. Without the analyzer, we observ
complicated ring pattern whose form depends strongly on
optical power and the type of dye.

2. Three ring systems can be identified for sample No
close to threshold: Two central systems~1, 2 in Fig. 2b!
exhibit low angular divergence. They are imposed on a th
system~3 in Fig. 3b!, whose divergence is very large.

The first system consists of two highly prolate ovals. T
ovals are extended perpendicular to the electric field~polar-
ization! of the light. The cross observed in crossed polariz
is similary extended. The degree of prolateness~ratio of the
size perpendicular to the light field to the size parallel to
field! is '1.7 ~for the cross'1.2) for P511 mW.

The second system consists of two very bright half-rin
superposed on the outer low-intensity oval of the first s
tem. The diameter connecting the half-ring is oriented alo
the electric field of the light wave.

The third system consists of a large number of equid
tant rings~they are clearly seen in Fig. 3!. The higher the
optical power, the closer the spacing of the rings. The low
the power of the beam, the more clearly visible the rings

The divergence of the central part is greater for sam
No. 1 than for sample No. 2. Moreover, for sample No. 2
central rings are essentially circular, and for small values
P the first and second systems cannot be distinguished.
third system for sample No. 2 shows up much more clea
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and the angular divergence decrease. ForP517 mW the first
two systems for sample No. 1 transform into a single syst
of completely circular but not very sharp rings. For crys
No. 2 andP'25 mW the rings are clear and circular wit
sharp edges.

4. The action of an external low-frequency electric fie
F , which should stabilize the initial homeotropic orientatio
of the crystal, is in a certain sense equivalent to an incre
in optical power — in the fieldF the elongation of the
diffraction pattern vanishes and circular rings with ve
sharp edges are also observed for crystal No. 1 withP'17
mW. For sample No. 2 withP'25 mW the diffraction pat-
tern in the fieldF is identical to the diffraction pattern with
out the field.

5. The cross observed in crossed polarizers decreas
size with increasingP for crystal No. 1, and its intensity firs
increases and then decreases~see Fig. 2!. For sample No. 2
the cross also decreases in size with increasingP, but at
P>25 mW, it transforms into a spot of indeterminate sha

6. An external electric field substantially reduces the s
of the cross. For crystal No. 1 two crosses are seen —
small bright cross against the background of a cross con
ing of much larger arcs. For sample No. 2 The cross can
be seen at low power, but at high power it turns into a s
~see Fig. 3!.
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FIG. 4. Changes in the pattern observed in a microscope with increasingP for samples Nos. 1 and 2: a — crossed polarizers, b — no analyzer;1 —
P511 mW,2 — P513 mW,3 — P517 mW.
2.2. Changes in a crystal illuminated by a linearly polarized
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These changes, observed with the aid of a microsc
system, are illustrated in Fig. 4.

The following was determined for sample No. 1:
1. An anisotropic pattern, whose size increases with

tical power appears in the zone of the light beam w
P.Pth . Without the analyzer, the anisotropic pattern h
the form of a disk. The disk is surrounded by an aureole
the form of a ring, which at low powersP has fine structure
A cross is observed in crossed polarizers. The structur
the cross at high powerP becomes complicated: fine stru
ture ~arcs! appears at the center, and the intensity dro
sharply.

2. An electric field has essentially no effect on the size
the disk, and the aureole turns into a ring with sharp edg

In crossed polarizers the cross changes substantiall
increases in size, fine structure appears, and asP increases,
its intensity decreases appreciably, especially at the cen

The following was determined for sample No. 2:
1. Patterns similar to those for crystal No. 2 are obser

without the analyzer and in crossed polarizers~for F 50).
2. Whereas the patterns are similar in parallel polariz

for samples Nos. 1 and 2 in an electric field, they dif
substantially in crossed polarizers. For sample No. 2 a com-
plicated intensity distribution, not at all similar to a cross,
observed at moderate optical power. At high,P, a ‘‘thin
rim’’ from the cross remains.

The behavior of the diffraction and microscope patte
near threshold should be especially noted. In this case
vanish after several seconds, i.e., the light-induced dis
tions of the director field ‘‘dissipate’’ quite rapidly.

For P slightly abovePth, the distortions of the directo
field are oscillatory: they appear and disappear, and the
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One can talk about a stable distortion of the director fi
in the zone of the light beam only forP>Pstab>Pth .

The value ofPth depends on the thickness of the cryst
As the thickness of the crystal increases,Pth decreases. The
dependencePth(L) for sample No. 1 forl56471 Å is
shown in Fig. 5.

The relaxation time of the distortions after the light
turned off is 1–2 s.

2.3. Changes in a circularly polarized light beam interacting
with a crystal

The changes are illustrated for sample No. 1 in Fig.
1. The crystal changes the divergence and structure

a circularly polarized light beam. This is a threshold effe
as in the case of linear polarization.Pth is close to the value
of Pth for linearly polarized light.

2. For P.Pth a vortex-like pattern is observed on th
screen for light that has traversed the crystal and the anal
— a nucleus with two ‘‘tails’’ curling clockwise or counter

FIG. 5. Pth versus crystal thicknessL for sample No. 1 (l56471 Å).
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FIG. 6. Changes in the diffraction patterns for circular polarization accompanying a change in analyzer rotation anglea: a — noanalyzer, b —a50 °C ~the
analyzer passes horizontal polarization!, c — 20 °C, d — 77 °C, e — 90 °C~the analyzer passes vertical polarization!, f — 20 °C, g — 55 °C, h — 90 °C.
clockwise, depending on the direction of circular polariza-

ea
s

b
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he

th
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th

o
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a

3. Relatively close to threshold~at P1), quasiperiodic
m
e
lf-

n

he
tion.
3. As for linear polarization, the pattern observed n

threshold is oscillatory. A vortex forms over a time 1–15
and relaxes over a time. 0.5–5 s.

4. A stable pattern is easily achieved by increasingP. A
sharp nucleus and long bright tails are observed.

5. As P increases further, the pattern remains stable
the vortex turns into a system of rings around a bright sp
The first ring is quite narrow and very intense, and the ot
three to five rings are wide and have low intensity.

6. A vortex and wide rings are observed against
background of a system of narrow equidistant rings wh
angular dimensions are an order of magnitude greater
those of the vortex.

2.4. Changes in a crystal illuminated by a circularly
polarized light beam

The changes are illustrated in Figs. 7 and 8.
1. ForP.Pth , anisotropic patterns appear in the zone

the light beam. As in the case of linearly polarized radiati
without an analyzer these patterns have the form of a d
~whose size depends onP) surrounded by an aureole.

2. When an analyzer is present, the disk is ‘‘sliced’’
half. The halves and their centers are displaced relativ
one another at an angle of 45° to the direction of the a
lyzer. Very close to threshold (P>Pth), one or two half-
rings, which are not displaced relative to one another,
seen instead of half disks.
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oscillations of the disk size are observed. As follows fro
Fig. 7 ~for sample No. 1!, when an analyzer is present, th
pattern with the half-disks is replaced by a pattern with ha
rings and vice versa. ForP2.P1 , no changes in the patter
were observed over a period of 25 min.

4. An external low-frequency electric field changes t

FIG. 7. Changes with time in the microscope pattern forP1 ~a! and
P2.P1 (a590°) ~b! as well as in an external electric fieldF ~c!: 1, 3 —
for F 50 for right- and left-hand circular polarization of the light,2 —
F Þ0.

1126Barnik et al.



rns

c-
FIG. 8. Changes in microscope pcitures and diffraction patte
under the action of an external electric field (F 51600 V/cm! for
different types of dyes: a — sample No. 1,P515 mW; b —
sample No. 2,P516 mW. Microscope patterns:1 — F 50, 2–6
— with continuous illumination of the crystal and short-time a
tions of a field with different durations. Diffraction patterns:18 —
after the action of a field,28 — before the action of a field.
pattern observed with the analyzer — the half-disks merge
o
m
ne

c
v
tte

e
ce
e
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u
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anisotropy. Indeed, depolarization of the light~appearance of
-
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be
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into a single uniform disk. In this case, however, the aure
surrounding the disk turn into wide half-rings, and the dia
eter connecting them is perpendicular to the direction defi
by the quarter-wave plate.

5. Repeated application of an external high-frequen
electric field to the crystal and rotation of the quarter-wa
plate do not produce any appreciable changes in the pa
seen in a microscope for sample No. 1~Fig. 7c!.

6. A different pattern is observed for sample No. 2. R
peated application of a high-frequency electric field produ
distortions of the director field that persist for a long tim
~memory!. As follows from Fig. 8, these distortions appe
in the diffraction pattern as well.

3. DISCUSSION

1. The changes in the divergence, profile, and polari
tion of a light beam that has traversed an NLC and the res
of investigations of texture under a microscope attest to
appearance of light-induced optical nonuniformity in a cry
tal doped with dyes.

2. The light-induced nonuniformity is characterized b
transverse~with respect to the direction of light propagatio!
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crosses in crossed polarizers! can give rise to either trans
verse anisotropy~the direction of the optical axis changes
the zone of the light beam! or nonlinear refraction of the
beams, forming a conoscopic pattern.12 However, the angular
divergence of the beam for a conoscopic pattern should
many times greater than the observed divergence, and
appearance of a cross in crossed polarizers must be asc
to transverse anisotropy.

3. The axisymmetric~sample No. 2! or nearly so~sample
No. 1! character of the light-induced nonuniformity obv
ously directly reflects the axial symmetry of a Gaussian lig
beam.

The observed deviation from axial symmetry for samp
No. 1 can be explained by the special properties of co
pounds containing an azobridge NvN. The molecules of
such compounds tend to orient themselves so that their
axis is perpendicular to the electric field of the lig
wave.13–16 This will naturally affect the symmetry of the
light-induced anisotropy of the pattern.

To confirm the validity of this conjecture we invest
gated the interaction of linearly polarized light with
ZhKM-1277 crystal doped with the diazodye
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the molecules of which have two azobridges. The degree ofP needed to raise the temperature of a homeotropic cry
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elongation of the cross has increased appreciably~for sample
No. 1 it became 1.6 instead of 1.2!.

4. The diffraction pattern enables one to estimate the s
of the spatial optical nonuniformity. Examination under
microscope makes it possible to determine the sizes dire
The estimates agree quite well with one another. For sam
No. 1 the nonuniformities are 30–60mm in size for optical
power P.9213 mW, and for sample No. 2 the nonunifo
mities are 20–70mm in size forP.13218 mW.

The distinctness of the diffraction pattern 3~Fig. 3b! and
the large number of diffraction orders suggest that the lig
induced nonuniformity has a sharp boundary.

5. The action of an external electric field on the ligh
induced structure suggests that it forms as a result of
reorientation of the director in the zone of the light beam.
this case, since the NLC ZhKM-1277 possesses a pos
dielectric anisotropy, an external field will tend to reestabl
the initial homeotropic orientation of the director. Natural
the light-induced pattern will change in this case, as is
served in both the diffraction pattern~Figs. 2 and 3! and the
microscope pattern~Fig. 4!.

6. There are several possible physical mechanisms
light-induced reorientation of the director.

In the nematic phase, the director can be reoriented
electric fields17,18 ~including optical fields19–21!, hydrody-
namic flows,17,18a nonuniform temperature field~thermome-
chanical effect, predicted in Ref. 22!, and surface forces
acting on the nematic–isotropic interphase boundary.23

We now analyze the possibility that these mechanis
are at work in our experiment.

The electric field of a linearly polarized light wave no
mally incident on a homeotropically oriented crystal reo
ents the director in the polarization plane of the wave. The
fore neither reorientation of the director by the electric fie
of the light wave19–21 nor orientational effects due to th
absorption of light1–8 should lead to the formation of a non
planar structure—much less, one that is axisymmetric or
most so.

The hydrodynamic flows that can be induced by la
heating in a crystal can obviously not be symmetric un
the conditions of our experiment, in which the force of gra
ity is perpendicular to the axis of the light beam. There
main the reorientation of the director at the boundary of
isotropic hole that a light beam can burn into the crys
~thermal heating!,24 and the reorientation of the director by
nonuniform temperature field~thermomechanical effect! pro-
duced by a narrow light beam in the crystal.

We now consider the possibility that these effects
manifested in the experiment described.

7. Let us estimate the power required to burn an isot
pic hole into the crystal. According to Ref. 25, the pow
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by DT is

P5
2pk'wDT

@12exp~2a'L !# f ~w/L !
, ~1!

wherea' is the absorption coefficient of the ordinary ligh
wave,k' is the thermal conductivity,w is the radius of the
beam waist at 1/e times the maximum intensity, andf is a
geometric factor that depends on the ratiow/L. Under the
conditions of our experiment,w'25 mm, L550 mm, and
f 50.23; a' is determined from the optical densityD ~Fig.
1!: a'5D'ln(10/L). The thermal conductivityk' of the
nematic phase is typicallyk';104 ergs/cm•s•deg.

It follows from Eq. ~1! that optical powerP;4 mW is
sufficient to heat the crystal to the transition point into t
isotropic phase~i.e., by 40 °C!. This agrees in order of mag
nitude with the experimental valuePth;10 W.

8. Consider now the thermomechanical effect. Acco
ing to Ref. 22, the force that reorients the director in a no
uniform thermal field~the magnitude of the force is propo
tional to the temperature gradient! can appear only in a
nonuniform director field. For a homeotropic orientation
the crystal, the director field is uniform, but the reorienti
force can result from a noise-induced deviation of the dir
tor ~as happens in a Frederiks transition in an electric fi
oriented perpendicular to the director!. The magnitude of this
force is proportional to the temperature gradient. Deviatio
of the director are opposed by the elastic force~whose mag-
nitude depends on the Frank elastic constants!, which tends
to restore the initially uniform orientation. The ratio of the
forces determines the state of the director field, but doe
remain uniform or will it be deformed?

According to Ref. 1, the thresholdDTth of the thermo-
mechanical effect in a narrow light beam can be obtain
from

j;K/DTth , ~2!

whereK is the Frank elastic constant andj is the thermo-
mechanical constant. In this caseK;1026 dynes,18

j;1026 dynes/deg~Ref. 22! or, according to a different es
timate, j;1028 dynes/deg.1 For these values ofj we find
DTth;1 °C andDTth;100 °C, respectively. It follows from
Eq. ~1! that a light beam with powerP;10 mW is sufficient
to heat the crystal byDT5100 °C and 0.1 mW is sufficien
to heat the crystal by 1 °C. Therefore, a thermomechan
effect is entirely possible under our experimental conditio

9. The threshold power for heating the crystal to t
nematic–isotropic phase transition point and the thresh
for the thermomechanical effect should increase with
creasing crystal thickness~see Eq.~1!!. This is observed ex-
perimentally~Fig. 5!. But this result does not make it pos
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thermomechanical effect. We now look at some other fa
a! According to Ref. 25, hysteresis in power should o

cur during thermal heating, during which the nemati
isotropic phase transition arises and vanishes. This was
observed experimentally, suggesting a thermomechanica
fect.

b! The fact that the threshold for the appearance of lig
induced structure is independent of the external lo
frequency field suggests a thermal effect.

c! Increasing the optical power should substantially
crease the radius of the isotropic ‘‘hole.’’

A substantial increase in the magnitude of the lig
induced nonuniformity resulting from the thermomechani
effect should not occur, however, since for a Gaussian b
the distance from the beam axis at which the tempera
gradient is maximum cannot change much with increas
power. A substantial increase in nonuniformity was obser
experimentally, which is consistent with thermal heating.

d! The characteristic formation times of light-induce
nonuniformity (t f or is of the order of fractions of a second!
and its relaxation (t rel;122 s) obtained for samples Nos.
and 2 also do not answer the question at hand. Additio
experiments with high-temperature NLC ZhKM-1443 co
taining 1% dye I~its transition point to the isotropic phas
'90 °C, thicknessL540 mm! showed that forP slightly
greater thanPth the appearance of a cross on the scree
determined by two times —t ret and t f or (t ret is the time at
which illumination of the crystal starts prior to the appea
ance of the cross!. In this caset ret and t f or are close to one
another and equal several tens of seconds.

The long timest ret can be equally responsible for th
thermomechanical effect and a phase transition accomp
ing thermal heating.

Long timest f or (;10 s), however, can be expected on
in the case of the thermomechanical effect, where, as
Frederiks transition, for a small distance above threshold26 a
slow collective rotation of the initially identically oriente
molecules occurs.

e! Oscillatory regimes accompanying a nemati
isotropic phase transition were observed in Refs. 25, 27,
28. Diffraction losses of light27,28 and diffusion of the com-
ponents of the NLC25 were mentioned as possible reasons
the appearance of these regimes.

The appearance of oscillatory regimes accompany
thermomechanical reorientation of the director also can
be ruled out. These regimes can arise both because o
influence of reorientation of the director and excitation of t
dye molecules on absorption and diffusion of heat, the
enting effect of the light field.

All this shows that the experimental results do not ma
it possible to choose unequivocally between thermal hea
and the thermomechanical effect, but they do suggest tha
two processes simultaneously play a role in the formation
anisotropic structure.

10. In closing, we examine the interaction of circular
polarized light with a NLC.

It is obvious that light-induced reorientation of the dire
tor should not depend on whether the polarization is linea
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The computational results for the diffraction of a circ

larly polarized light beam by an axisymmetric untwisted~not
changing under reflection in a plane perpendicular to
symmetry axis! anisotropic structure11 show that the form of
the diffraction pattern is determined by the radial depe
dence of the refractive indices of the extraordinary and o
nary waves. The diffraction pattern, generally speaking, m
appear to be twisted, but the sign of the twisting depends
the sign of the circular polarization of the incident light.

However, an orienting effect of a circularly polarize
light field on the director is entirely possible. We shall e
plain this. As light propagates through a deformed crystal,
polarization changes. In the geometry of the described
periment, circular polarization turns into elliptical polariz
tion. Elliptically polarized light can reorient the director in
direction parallel or perpendicular to the major axis of t
polarization ellipse. The accompanying twisting of the dire
tor field will also be manifested in the diffraction patter
The direction of the major axis of the polarization ellipse
the light obviously depends on the sign of the circular pol
ization, so that the direction of reorientation of the direc
and, correspondingly, the twisting also depend on this si

A calculation of the microscope pattern formed by
untwisted director field, performed under the assumption t
the rays comprising the light beam are not deflected ins
the crystal, shows that this picture should be symmetric re
tive to the direction corresponding to the minimum of inte
sity and should make an angle of 45° with the direction
the analyzer. However, as follows from Fig. 7, the half-dis
can be shifted relative to one another, indicating that
initial symmetry of the light-induced structure is destroye
Therefore the form of the microscope pattern confirms
possibility that the director field can be twisted by the lig
field.

It is well known that the efficiency of the reorientation o
the director in absorbing liquid crystals depends on the t
of dye. This could explain the difference observed in t
patterns for samples Nos. 1 and 2.

4. CONCLUSIONS

1. Nonplanar reorientation of a director occurs under
action of a light beam in NLCs doped with light-absorbin
dyes. This is a threshold effect. For optical power close
threshold, the reorientation of the director can be oscillato

2. The deformation of the director field depends on t
type of dye and the polarization of the light beam. For a d
that does not contain an NvN asobridge it is axisymmetric
for linear polarization and for dyes with an azobridge it e
tends in the direction of the light field; for circular polariza
tion the director field becomes twisted.

3. The reorientation of the director in the light-bea
zone and many of its properties are explained by the ac
of a temperature gradient~thermomechanical effect! and the
nematic–isotropic phase interface accompanying a ther
phase transition.

We thank V. G. Rumyantsev for helpful discussions
this work.
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Characteristic features of the p-electron states of carbon nanotubes

ing
S. S. Savinski  and N. V. Khokhryakov

Udmurt State University, 426034 Izhevsk, Russia
~Submitted 14 February 1996!
Zh. Éksp. Teor. Fiz.111, 2074–2085~June 1997!

A simple tight-binding model of thep-electron states of carbon nanotubes is analyzed. The
symmetry group of nanotubes and its relation to electronic structure are discussed. The
applicability of the simple model is analyzed on the basis of numerical calculations of the
electronic states of energy-optimized nanotubes, performed in a parametric tight-binding model
that takes account of the carbon valence electrons. Numerical data on the gap widths of
optimized nanotubes and data obtained from the zone-folding model employed in the literature
are presented. ©1997 American Institute of Physics.@S1063-7761~97!01106-2#
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Carbon nanotubes—tubulenes—are molecular cylin
cal surfaces which are close-packed with atomic car
hexagons1 and are obtained by the thermal decomposition
graphite. They can be represented geometrically as the r
of gluing a strip cut from a single graphite plane. Depend
on the method of gluing, a set of atomic carbon structu
with a wide spectrum of conducting properties is obtain
~see, for example, Refs. 2 and 3!—from semiconductors with
gap widths of 0–2 eV to semimetals, of which graphite is
typical representative. The unique conducting and capill
properties of tubulenes make them promising materials
nanoelectronic devices. Tubulenes are also of interest t
retically as a new class of quasi-one-dimensional structu

A characteristic feature of the energy structure of
valence electrons of a single graphite plane is the existe
of p electrons, whose states can be described by a sim
analytical model, at the Fermi level;s electrons at the Ferm
level have an energy gap of the order of 10 eV.4 When an
ideal tubulene is glued from a strip cut from a graphite pla
the perturbation of thep and s electrons depends on th
dimensionless parametera/R, wherea is the distance be
tween the closest atoms in the graphite plane andR is the
radius of the tubulene. For tubulenes with a large radius
perturbation is weak, and accordingly the electronic sp
trum of a tubulene can be obtained from that of an isola
graphite plane; this approximation is widely employed in t
literature and is termed zone folding~see, for example, Refs
2, 3, and 5–7!. In the present paper, we discuss the zo
folding method in detail and we propose an illustrative ge
metric analysis of the characteristic features of thep-electron
spectrum. This analysis could be helpful in studying tra
port phenomena and the characteristic features of electr
phonon interactions in tubulenes. For tubulenes with a sm
radius, the finiteness of the perturbation, which can resu
hybridization of thep and s electrons, must be taken int
account. We assess the applicability of the zone-fold
method forp electrons based on a direct numerical optim
zation of the energy of a tubulene in a parametric tig
binding method that we employed previously for calculatio
of fullerenes8 and the phonon spectra of tubulenes.9

In our parametric tight-binding method, the energy sp
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the matrix of the Hamiltonian operator. In so doing, the m
trix elements are assumed to depend on the distances
tween the carbon atoms and the numbers of the quan
states of electrons in the chosen basis ofs andp wave func-
tions of the isolated atoms. The inner-shell electrons a
many-body effects are taken into account via a parame
interatomic interaction potential. The parameters of
method considered here were fit in Ref. 10 for carbon ato
using data on the electronic structure and elastic modul
diamond and graphite.

2. CHARACTERISTIC FEATURES OF THE p-ELECTRON
STATES OF AN ISOLATED ATOMIC GRAPHITE PLANE

Consider an isolated, infinite graphite plane clos
packed with regular atomic hexagons. In the tight-bindi
approximation, the wave functions of thep electrons have
the form

up,k,g&5
1

AN
(
T

eikTup,T,tg&, ~1!

where g50,1 labels the atoms in a unit cell; the vect
T5n1a11n2a2, wherea1 anda2 are the elementary vector
of the Bravais cell andn1 andn2 are integers, determines th
position of the unit cell;k is a quasiwave vector;up,T,tg& is
the atomicp-electron wave function in aT cell at thegth
atom and consists of ap orbital oriented perpendicular to th
graphic plane;t050 andt1 are basis vectors~see Fig. 1!;
and,N is a normalization number. In what follows, we n
glect the overlap of the wave functions of neighboring ato

^p,T,tgutg8 ,g8,p&5dTT8dtgtg8
.

whereT8 is an arbitrary lattice vector andd is the Kronecker
delta.

We form the linear combination

up,k&5Aup,k,0&1Bup,k,1& ~2!

from the functions~1!, whereA and B are coefficients that
we determine from the equations for the eigenfunctions
eigenvalues of the Hamiltonian operator of an electron

Hup,k&5Ep,kup,k&. ~3!

11317$10.00 © 1997 American Institute of Physics
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To solve Eq.~3! we set the diagonal matrix elements of t
Hamiltonian operator equal to

^p,k,guHug,k,p&5Ep
0 ,

whereEp
0 is the binding energy of ap electron with a free

carbon atom. In calculating the matrix element

H01,k5^p,k,0uHu1,k,p&5(
T

^p,T,t0uHut1,0,p&e2 ikT

~4!

in the sum~4! we take account of only the overlap integra
^p,T,t0uHut1,0,p& involving nearest neighbors~see Fig. 1!.
As a result, we obtained for the matrix element~4!

H01,k5b01e2 ika2~b11b2e2 ika1!, ~5!

where b05^p,0,t0uHut1,0,p&, b15^p,a2 ,t0uHut1,0,p&,
b25^p,a11a2 ,t0uHut1,0,p&. The nearest-neighbor pos
tions in an atomic graphite plane are equivalent, so t
b05b15b2 .

Solving Eq.~3!, taking account of Eqs.~2! and ~5!, we
obtain two solutions for each fixed vectork in the graphite
plane:

Ep,k
6 5Ep

0 6uH01,ku,

up,k&65~ up,k,0&6eiqup,k,1&)/&, ~6!

where q is the phase of the complex numb
H01,k5eiquH01,ku.

Figure 2 displays level curves of the functionEp,k
1 in the

first Brillouin zone. The functionEp,k
1 clearly peaks at the

central pointG, the minimum is reached at the pointK and
equals zero, andM is a saddle point. We note that the su

FIG. 1. Fragment of a graphite plane.

FIG. 2. Typical level curves ofp-electron energies in the Brillouin zone.

1132 JETP 84 (6), June 1997
at

faceEp,k
1 ~see Fig. 2! can be approximated over most of th

Brillouin zone by a paraboloid of revolution; nearK in the
extended band scheme, it is a conical surface.

Figure 3 displays the computational results for the ba
and densities of thep-electron states of a graphite plane. T
bands were calculated according to Eq.~6! for vectorsk in
the intervalsGK, GM , andMK. Logarithmic van Hove sin-
gularities, associated with the saddle pointsM on the sur-
facesEp,k

1 , are present in the density of states~see Fig. 3!; a
van Hove singularity associated with the discontinuity of t
density of states is also present at the pointG ~a more de-
tailed discussion of van Hove singularities in tw
dimensional systems is given, for example, in Ref. 11!. The
Fermi energy of thep electrons isEp

0 ; the electrons com-
pletely fill all states of the lower branch of the spectrum~6!,
and accordingly fill the entire Brillouin zone.

3. p-ELECTRON STATES ON A GRAPHITE STRIP AND AN
IDEAL TUBULENE

Let us excise from the graphite plane a strip defined
the vectorc, c5 i 1a11 i 2a2 ~see Fig. 1! and introduce in the
strip the unit vectornz , directed perpendicular to the vecto
c and the unit vectornx directed along the vectorc. We
identify the points on one edge of the strip with the points
the other edge. This gives for the wave functionsup,k&6 ~6!
the conditionseik–c51; writing these conditions for the
wave vector k5kznz1kxnx , we obtain kx5(2p/c)m,
m50,61,62, . . . , andkz is a continuous number. The dis
creteness of the wave vectork means that inside the Bril
louin zone the allowed values ofk lie on equidistant lines
with spacing 2p/c, and perpendicular toc ~see Fig. 4!. In
calculating the density of thep electron states of the graphit
strip, van Hove singularities arise at energies for which
corresponding level curves are tangent to the equidis
lines inside the Brillouin zone~see Figs. 2 and 4!.

Gluing a graphite strip onto a cylindrical surface wi
radius R5c/2p, we identify the Cartesian coordinate
(x,z) of the points on the strip with the coordinates (w,z) of
the points on the surface of the cylinder according to the r
2px/c5w. We associate the elementary translational v
torsa1 anda2 on the graphite strip with the elementary scre

FIG. 3. Numerical calculation of the density of states~left-hand figure! and
energy bands ofp electrons. The unit on the energy scale is the modulus
the matrix elementb0 .
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rotationsD1(w1 ,z1) and D2(w2 ,z2) on the surface of the
cylinder, and we identify the screw rotationD3(w3 ,z3) with
the basis vectort1 .

It is easy to obtain from Eq.~6! the following formula
for the energy spectrum of electrons on the cylindrical s
face of an ideal tubulene:

Ep,m,kz

6 5Ep
0 6uH01,m,kz

u,

H01,m,kz
5b01exp~2 imw22 ikzz2!1~b11b2

3exp~2 imw12 ikzz1!!, ~7!

wherem is the band number,\m is the angular momentum
of an electron on the surface of the cylinder,\kz is the mo-
mentum along the generatrix of the cylinder,\ is Planck’s
constant, and the numbersb0 , b1 , and b2 are the matrix
elements of the electron Hamiltonian, calculated with
atomic wave functions of the nearest atoms on the cylindr
surface. Note that the distance between atoms on the c
drical surface differs from their separation on the graph
strip, and that the angle betweenp states of neighboring
atoms that are locally normal to the surface varies; this
why b0 , b1 , andb2 are generally different.

In a static magnetic fieldBiz, we must make the subst
tution m→m1F/F0 in Eq. ~7!, where F5pR2B is the
magnetic flux threading the transverse cross section of
tubulene andF052pc\/e54.131027 G•cm2 is the el-
ementary quantum of magnetic flux. As the magnetic fi
changes, the equidistant lines of the allowed values of
wave vectork move in the Brillouin zone and, in conse
quence, all physical characteristics of the nanotube oscil
The step size in the oscillations with respect to the magn
field is determined from the relationdB5F0 /pR2 ~Bohm–
Aharonov effect!.12 As the magnetic field varies, the type o
conductivity of the tube changes periodically from metal
to semiconductor. Thus, oscillations of the physical char
teristics of an ideal tubulene in a magnetic field are relate
the Bohm–Aharonov effect, and to the fact that the equid
tant lines of allowed values of the wave vector periodica
coincide withK points of the Brillouin zone, where the ga
width vanishes.

We now discuss the relationship between the parame
of our model of the electron energy spectrum and an exp
mentally observed physical quantity—the resistance o

FIG. 4. Allowed states in the Brillouin zone for a~13,3! graphite strip.
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zero andV be connected to the ends of a tube of lengthL. To
estimate the currentI flowing along the tube, we employ th
relaxation time approximation, taking account of the qua
one-dimensional motion of the electrons and the weaknes
the electric field. We also assume that electron transfer p
cesses between bands with different numbersm are forbid-
den.

As a result, the current assumes the form

I 5
e2

p

V

L (
m

E
kz

vz
2tS 2

] f m,kz

0

]E
DU

E5m

dkz , ~8!

where vz5\21]Ep,m,kz
/]kz is the electron velocity along

the tube andf m,kz

0 is the equilibrium Fermi–Dirac function

The summation overm and the integration overkz in Eq. ~8!
extend along the equidistant lines inside the Brillouin zo
~see Fig. 4!; m is the chemical potential, equal toEp

0 at zero
temperature;t is the electron relaxation time. It follows from
Eq. ~8! that the numerical value of the current in a condu
ing tube at zero temperature depends on the dynamical c
acteristics of the electronic states at the corner points of
Brillouin zone. Mathematically this is related to the fact th
on switching to integration over the energy variable in E
~8!, a Diracd function with argument equal to the differenc
of the energy and the chemical potential arises in the in
grand, and therefore only electronic states at the Fermi le
that have the same value as the chemical potential contri
to the integral.

In Ref. 13 it is shown that the characteristic electr
relaxation time in tubes is of the order of 10212 s; this means
that for conducting tubes with characteristic size less th
1024 cm, a collisionless approximation can be used to c
culate the resistance. In this approximation electrons tra
along the nanotube without scattering, from one contact w
potential 0 to the other contact with potentialV, and as a
result, making the formula substitutionL5uvzut, Eq. ~8! for
the current can be written in the form12

I 5
e2

p
V(

m
E

kz

uvzuS 2
] f m,kz

0

]E
DU

E5m

dkz . ~8a!

If at zero temperature the integration in Eq.~8a! is replaced
by integration over the energy variable, the current in
conducting tube will not depend on the type of tube.

Note that in the formulas presented above, we have
glected singularities in electron scattering by the conta
through which voltage is applied to the nanotube.

4. SYMMETRY GROUP OF A TUBULENE

Let us discuss the symmetry group of a tubulene. T
group consists of the screw translation operatorsD1 and
D2 . The method for gluing the tubulene imposes on the
eratorsD1 andD2 the condition

D1
i 1D2

i 25E, ~9!

whereE is the identity transformation. It follows from~9!
that

1133S. S. Savinski  and N. V. Khokhryakov
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As a result, the geometry of an infinite nanotube is co
pletely defined by five parameters:w1 or w2 , z1 or z2 , and
w3 , z3 , andR.

This symmetry group is abelian, its irreducible repres
tations are one-dimensional, and the characters of the
ducible representations can be obtained from the follow
considerations. Let the characters of the operatorsD1 and
D2 be denoted by exp(ik1) and exp(ik2). Then the characte
of an arbitrary screw translation operatorDl 1l 25D1

l 1D2
l 2 is

exp(i(l1k11l2k2)), where l 1 and l 2 are arbitrary integers
2p<k1<p, and 2p<k2<p. According to Eq. ~9!
exp(i(i1k11i2k2))51 or i 1k11 i 2k252pJ, whereJ is an ar-
bitrary integer. Then all irreducible representations of
group of screw translations of an ideal graphite nanotube
be labeled by one continuous and one discrete number,
either k1 or k2 can be regarded as continuous. The c
i 250 is an exception. Nanotubes defined in this manner
known in the literature as zigzags.

Note that for relatively prime numbersi 1 and i 2, the
group of screw translations of a tubulene is cyclic, i.e., th
exist integersm1 andm2 such that the powers of the operat
Dm1m2 fill the entire symmetry group.

In the tight-binding approximation, the wave function
of the p electrons of a tubulene have the form

up,k1 ,k2 ,g&5
1

AN
(
l 1 ,l 2

exp~ i ~k1l 11k2l 2!!

3Dl 1l 2up,0,g&, ~10!

where up,0,g& is the atomic wave function of ap electron,
centered in the zeroth cell on thegth atom, and the number
l 1 and l 2 determine the number of the cell on the surface
the nanotube. The screw translation operators in Eq.~10!
operate on the atomic function of the zeroth cell, translat
the p orbitals of the electron along the screw lines and o
enting them along a local normal to the cylindrical surface
the nanotube. The choice of functions in the form~10! makes
it possible to use the screw symmetry of the tubulene.

By analogy with Eq.~2!, by constructing a linear com
bination of the functions~10! and finding the spectrum of th
Hamiltonian, we obtain a formula analogous to Eq.~7! for
the energy of thep electrons of an ideal tubulene, in whic
the numbersm and kz are replaced by the numbersk1 and
k2, which are related by k15mw11kzz1 and
k25mw21kzz2 .

5. ELECTRONIC SPECTRUM OF OPTIMIZED NANOTUBES
IN A PARAMETRIC TIGHT-BINDING MODEL

To estimate the applicability of the simplep-electron
model of a tubulene studied in the preceding section,
performed numerical calculations of the electronic spectra
optimized tubulenes in a parametric tight-binding mod
The numerical calculations were performed with a finite
bulene fragment for which boundary conditions of a spec
type were imposed so as to be able to simulate an infi
tubulene. Our boundary conditions for a tubulene can be
plained as follows: powers of the operatorD1 ~or D2! on the
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surface of a cylinder define an infinite atomic screw lin
which when cut lengthwise forms an infinite ribbon pack
with carbon atoms along the screw lines. This ribbon cov
the surface of the cylinder, touching along the cut.

We introduce generalized Born–Karman conditions
the surface of the cylinder, identifying atoms separated b
fixed numbern of screw translations along the screw lin
with one another. The numbern is chosen from numerica
calculations so as to obtain results that have only a w
dependence onn. Figure 5 displays a fragment of a ribbo
and elucidates the special periodic boundary conditions~the
closed curvesABC are identified withFEG with the re-
quired additional rotation!. We employed boundary condi
tions of this type previously to calculate the phonon sp
trum of tubulenes.9

Note that an ideal nanotube formed by identifying t
points of the graphite cavity with points on the surface of t
tubulene exhibits periodicity along the axis of the tube, a
the ordinary Born–Karman conditions can be used.14 An ad-
vantage of our special boundary conditions is that the dim
sions of the computational region can be reduced, and
conditions of invariance with respect to translations alo
the axis of the tube can be removed. In this manner, in
process of optimization we assume only that the symmetr
the nanotube under the operatorsD1 andD2 is preserved.

In the numerical calculations, we optimized the ener
of a tubulene, which in our parametric tight-binding meth
can be written in the form

E52(
l

occ

«l1(
i . j

U~ ur12r j u!, ~11!

where«l are the eigenvalues of the Hamiltonian, the su
mation in the first sum extends over the filled electron sta
and the factor 2 in front of the first sum takes account of
spin. The second sum in~11! takes account of many-bod
effects and repulsion of the inner electron shells, the fu
tions U(r ) depend parametrically on the interatomic d
tances, andr i andr j are the radius vectors of the atoms in t
tubulene. The energy of the nanotube was optimized w
respect to the five parameters listed above, which fixed
geometry of the nanotube.

The wave functions of the valence electrons of the tu
lene were chosen in the form

FIG. 5. Ideal-tubulene fragment employed in the numerical calculations

1134S. S. Savinski  and N. V. Khokhryakov



TABLE I.
Type of
nanotube

Ideal
radius, Å

Eg of an ideal
nanotube,

eV
Optimized
radius, Å

Eg of an optimized
nanotube,

eV

Binding
energy,
eV/atom

~5,0! 1.99 1.69 2.07 1.14 26.84
~6,0! 2.39 0.00 2.46 0.49 26.93
~8,0! 3.18 1.04 3.23 1.14 27.03

~20,0! 7.96 0.41 7.96 0.44 27.14
~5,1! 1.82 0.01 1.91 0.49 26.77
~9,1! 3.40 0.90 3.44 0.61 27.05

~14,1! 5.39 0.01 5.41 0.07 27.11
~19,1! 7.37 0.44 7.37 0.48 27.13
~6,2! 2.11 1.53 2.17 1.44 26.88

~18,2! 6.80 0.48 6.81 0.52 27.13
~7,3! 2.42 1.28 2.47 1.15 26.94

~17,3! 6.26 0.52 6.26 0.57 27.13
~20,4! 7.30 0.01 7.30 0.06 27.13
~15,5! 5.27 0.61 5.28 0.64 27.11
~12,6! 4.14 0.02 4.16 0.00 27.08
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ua,k1 ,k2 ,g&5
AN

(
l 1 ,l 2

exp~ i ~k1l 11k2l 2!!

3Dl 1l 2ua,0,g&, ~12!

wherea is the number of the carbon atom orbital~s and p
orbitals! and ua,0,g& is the orbital in the zeroth cell on th
atom with numberg50,1. The screw-translation operators
Eq. ~12! rotate and translate the local system of coordina
together with the atomic orbitals specified in this system a
determined in the zeroth cell of the tubulene.

Constructing from Eq.~12! a linear combination over the
number of atoms and atomic orbitals in a unit cell, we so
the eigenfunction and eigenvalue problem for the elect
Hamiltonian, yielding eight values of the electron energy
each fixed set of numbersk1 andk2 . We used the formulas
from Ref. 10 to calculate the matrix elements of the Ham
tonian, which were determined in terms of the coordinates
the atoms and the local orientations of the orbitals calcula
according to the action of the screw-translation operators

The equilibrium structure was determined using E
~11!, and the electronic structure of the nanotubes with d
ferent indicesi 1 and i 2 were investigated. Minimizing the
energy~11! of a nanotube changes the interatomic distan
~1.39–1.45 Å depending on the type of tube! somewhat. As
the tubulene radius increases, the interatomic distances
proach 1.44 Å, which corresponds to the equilibrium int
atomic distance obtained in the graphite plane with the c
sen parametric model.

The electron densities of states of optimized nanotu
with indices ~7.3! and ~14.1! ~see Table I below! are pre-
sented, as an example, in the right-hand sides of Figs. 6a
6b. The electronic spectra of the corresponding grap
strips are presented for comparison on the left-hand side
Figs. 6a and b. The differing electronic densities of sta
near the Fermi level of an optimized tubulene and a co
sponding graphite strip are due both to the partial hybridi
tion of the electronics andp states, and a shift in thes- and
p-electron energy as a result of the deviation of the tubul
geometry from a flat geometry. In the parametric tig
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to nonplanarity of the structure are proportional toa/R for
the p2s matrix elements, and (a/R)2 for the p2p and
s2s matrix elements of the Hamiltonian; in the nondege
erate case, the corrections to the electron energy will be
portional to the squared matrix element of the Hamilton
i.e., (a/R)2.15 It also follows from Fig. 6 that as the indice
of the nanotube increase, the number of van Hove singu
ties increases, and an average envelope coinciding with
p-electron density of states for the graphite plane is form

Our computed values of the radii and gap widths fo
number of optimized nanotubes, the radii of ideal tubes,
the gap widths obtained by the zone-folding method are p
sented in Table I. As follows from the table, for nanotub
with small radii (R;223 Å), the numerical values of the
gaps and radii of the ideal and optimized tubulenes diff
and for nanotubes with radiiR.5 Å, the differences are
small. The gap for an ideal nanotube was estimated acc
ing to Eq.~6! for the numerical value of the matrix eleme
b05b15b252.02 eV, taken from Ref. 10.

Other methods of parameterizing the matrix elements
the Hamiltonian in the tight-binding approximation are al
discussed in the literature. Additional parameters can
introduced,16 and nonorthogonality of the atomic orbitals ca
be taken into account~see, for example, Ref. 17!.

Note that the published data on the numerical values
the gap widths in nanotubes with a small radius exhibi
large variance. For example, in Ref. 18 gap widths obtain
by different methods are presented for an~8,0! tube: 1.22 eV,
1.19 eV, and 0.62 eV. There are discrepancies in the res
of semi-empirical and first-principles methods for the met
lic conductivity of a~6,0! tube.2,18 In the literature, an inter-
polation formula of the formb0a/R is used to determine the
gap width of a nonconducting carbon nanotube with a la
radius. The values of the parameterb0 vary over the range
2.0–2.8 eV, depending on the parameterization of the tig
binding model.
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FIG. 6. Electron density of states of a graphi
strip ~left-hand figures! and optimized tubulenes
~right-hand figures!. Hatching signifies
p-electron partial densities. The unit on the e
ergy scale is 5 eV.
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binding model to investigate the electronic properties
small-radius nanotubes can yield incorrect results. In a n
self-consistent model, electron–electron interactions, wh
push electrons out of the inner region of the nanotube,
not described accurately.18 Nonetheless, comparing our re
sults with the first-principles calculations in Refs. 3 and 1
we see that the model yields a qualitatively correct desc
tion of the electronic structure of the tubes.

6. CONCLUSIONS

In this paper, we analyzed a theoretical zone-fold
model for ideal nanotubes, which enables one to study tra
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band around the level of the chemical potential, and we p
vided a transparent geometric interpretation of the electro
states in the first Brillouin zone, making it possible to und
stand qualitatively the formation of an energy gap in t
electron spectrum and the transformation of the spectrum
a static magnetic field. In the parametric tight-bindin
method, we directly assessed the applicability of the zo
folding model by means of a numerical calculation of t
atomic and electronic structure of an optimized tubule
taking account of thes and p orbitals of the valence elec
trons of the carbon atoms. Comparing the gap widths
tained from our numerical calculations of optimized tub
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Relaxation and 1/ f noise in phonon systems
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Yu. E. Kuzovlev

Donetsk Physicotechnical Institute, Ukrainian National Academy of Sciences, 340144 Donetsk, Ukraine
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Zh. Éksp. Teor. Fiz.111, 2086–2098~June 1997!

This paper examines the relationships that exist between low-frequency fluctuations of the rate of
dissipation in nonequilibrium thermodynamic systems and higher-order multitime statistical
moments of equilibrium noise. In particular, it studies the relationships between internal friction
fluctuations in the phonon system being excited and low-frequency fluctuations of Raman
scattering of light in an equilibrium phonon system. We show that both processes are related to
strong fluctuations in the phase diffusion rate and the relaxation of phonon modes generated,
in turn, by the exponential instability of the dynamical paths of the system. ©1997 American
Institute of Physics.@S1063-7761~97!01206-7#
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Low-frequency fluctuations with a 1/f spectrum ob-
served in various systems~in particular, fluctuations of elec
trical conductivity in solids and frequency fluctuations
quartz frequency stabilizers1,2! constitute one of the most in
triguing problems of physics. The tendency today is to rel
1/f noise to metastable states, such as defects in the at
structure and electron traps, characterized by a broad ra
of lifetimes. Typically, however, specifying the physical n
ture of such a set of ‘‘fluctuants’’ proves impossible.

A fundamentally different explanation of 1/f noise is
given in Ref. 3. Suppose that a random dynamical param
of elementary kinetic processes influences the effectiven
of these processes in the sense of their contribution to re
ation and dissipation, but does not affect the thermodyna
state of the system. Then the corresponding random va
tions in the rate of relaxation and dissipation are not b
anced by a ‘‘restoring thermodynamic reaction’’ of the sy
tem. As a result they do not have a characteristic up
lifetime, and at low frequencies their spectrum must be of
scale-invariant power type.

The effect of a random impact parameter for parti
collisions in an equilibrium gas discussed in Ref. 3 m
serve as an example. The lack of a dynamical or thermo
namic mechanism that would ensure a specified distribu
of collisions over the impact parameter, i.e., a cert
‘‘weighted-mean’’~in the impact parameter! scattering cross
section, leads3 to 1/f fluctuations of the rate~or coefficient!
of self-diffusion of the gas particles. Thus, 1/f noise appears
in a natural way as a constituent of thermal noise, despite
fact that there are sure to be no ‘‘slow’’ processes. Ot
examples of this kind are discussed in Refs. 4 and 5.

The possibility of such a fundamental source of 1/f noise
applies as well to vibrations in quartz and, in general, diel
tric crystals. As is known,2 the observed dependence of t
level of relative 1/f frequency fluctuations in quartz oscilla
tors and frequency stabilizers on theirQ-factors indicates
that such fluctuations are a reflection of fluctuations of int
nal friction in crystals. Here it must also be said2 that friction
fluctuations are enormous: the relative variations in the in
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and can be much larger.
Additional information about thermodynamic equilib

rium 1/f noise in quartz can be found in Ref. 6. Mushaet al.6

studied spontaneous Raman scattering of laser light in qu
and discovered 1/f fluctuations in the number of scattere
photons~the photocount flux density! at frequencies below
0.01 Hz. According to the researchers, the level of relat
fluctuations in the photocount density is inversely prop
tional to the number of phonon modes participating in t
scattering onto the photon counter.

From the standpoint of 1/f noise theory, a purely phono
system serving as a model of a weakly anharmonic dielec
crystal is an extremely interesting object, since it is one
the basic models of statistical physics~a weakly nonideal gas
is another!. Both approximate analytic methods and com
puter simulations show7,8 that as the number of nonlinearl
interacting oscillators grows, the fraction of regions of reg
lar motion in phase space diminishes, and the behavior of
system is governed by the exponential instability of the pa
under a perturbation. It is also known that the characteri
instability development times and the characteristic rel
ation times~determined from the decay of two-time correl
tors! are actually the same thing. However, the statisti
characteristics of instability responsible for the fluctuatio
in the ‘‘rate’’ of relaxation and dissipation, described b
multitime correlators~cumulants! of fluctuations in the equi-
librium ensemble, and, as shown in Refs. 3 and 4, relate
the problem of 1/f noise, have yet to be thoroughly studie

The problem of discriminating fundamental 1/f noise in
a phonon system appears to be more complicated than in
case of a gas, since here we are dealing with a comple
different interaction between the quasiparticles~weak and
continuous instead of strong and sporadic!. It is therefore
advisable to consider the general properties of multitime c
relators and their relation to exponential instability in ord
to clarify the problems that a future constructive theory
sure to encounter.

The idea of 1/f noise being caused by fluctuations in th
dissipation rate was first proposed in general form
Handel.9–11 Handel’s pioneering quantum theory of 1f
noise9–13 relates these fluctuations~and, in the final analysis
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ementary kinetic processes. The cross section fluctuation
related in turn to the emission of ultrasoft photons in el
trodynamic processes and of other quanta of massless fi
or excitations, including gravitational fields. The resulti
formulas of this theory often demonstrate remarkable qu
titative agreement with the experimental data.12–14 In par-
ticular, according to Refs. 2, 12, and 13, it provides a qu
titative interpretation for 1/f noise in quartz.

As for phonon systems, Handel’s theory9–13 states that
1/f noise is closely related to the electric~more precisely,
piezoelectric! properties of quartz; not only do these prope
ties provide an easy way of observing 1/f noise, they also
generate this noise, in accordance with the dominant role
electromagnetic interactions and ultrasoft electromagn
field quanta play in Handel’s theory. According to the vie
point expressed in this paper, however, lattice dynamic
capable of generating 1/f noise by itself, irrespective of the
type of interaction forces between the lattice particles.

The present study has two goals. First, it introduces
general relationships that exist between excess noise
nonequilibrium system excited by extraneous forces
equilibrium correlators. We will see that in the event of R
man scattering of light in a phonon system, the fluctuatio
in dissipation~internal friction! and 1/f noise are actually
described by the same multitime~i.e., referring to more than
two moments in time! higher-order correlators~cumulants, to
be precise!. Generally such correlators carry informatio
about low-frequency fluctuations of the kinetic and transp
characteristics of the system. Second, we will provide ar
ments in favor of the fact that dissipation fluctuations,
well as scattering fluctuations, are related to the large
long-lived friction fluctuations of each phonon mode, t
friction being caused by mode interaction. The same fluct
tions are in turn generated by the exponential instability
small perturbation of the dynamic path of the system. Th
long-lived nature follows from the fact that in a system d
namically becoming stochastic, the random~i.e., not aver-
aged over the ensemble! response of the variables of a give
mode to their past values never decays. As a result, the r
decay of ordinary quadratic equilibrium correlations, whi
is a reflection of dissipation and irreversibility, is inevitab
accompanied by the emergence of infinitely long-liv
higher-order correlations.

2. THE MODEL

We consider a classical system whose Hamiltonian i

H8~q,p,t !5H~q,p!2( qkf k~ t !,

H~q,p!5
1

2 ( pk
21U~q!,

where$qk ,pk%[X are canonically conjugate coordinates a
momenta, and the forcef (t) specifies an extraneous dynam
perturbation. To simplify matters, we assume all mas
equal to unity, so that the velocitiesvk[dqk /dt coincide
with the momenta,vk5pk . The labelk in the phonon system
numbers either the positions of atoms or the vibratio
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case, and in the presence of weak cubic anharmonicity
spatial uniformity~translational invariance!, U(q) typically
has the form

U~q!5
1

2 ( vk
2qk

21
l

6
N21/2( ui jkv iv jvkqiqjqk1... .

Here the coefficientsui jk are nonzero only if a combination
of wave vectorsi 6 j 6k is zero or an integral multiple of the
reciprocal lattice vector,N is the total number of particles o
modes, and the anharmonicity parameterl is of order
q21/2, with q the ‘‘melting point’’ of the lattice.

3. GENERAL RELATIONSHIPS FOR RELAXATION AND
DISSIPATION FLUCTUATIONS

1. Suppose that initially the system is in a thermod
namically stable state described by the canonical ensem
Energy dissipation due to the perturbation, i.e., the workA
done by the perturbing forces,

A[E dH~q~ t !,p~ t !!5E v~ t ! f ~ t !dt,

is determined by the statistical characteristics of the velo
ties conjugate to the forces. An arbitrary nonequilibrium
velocity cumulant can be reduced to what is known as ‘‘qu
siequilibrium’’ correlators~cumulants!, which we denote by
^•••&q . By definition, the cumulant̂v(t1),...,v(tn)&q cor-
responds to the modified perturbatio
f (t)h(t2min(t1,...,tn)), where h(x) is the Heaviside step
function, which ‘‘turns on’’ at timet0[min(t1,...,tn) and co-
inciding with f (t) for t.t0 . As shown in Refs. 15 and 16,

^v~1!,...,v~n!&

5^v~1!,...,v~n!&q

1
1

T E
2`

min~1,...,n!

^v~1!,...,v~n!,v~ t !&qf ~ t !dt,

whereT is the initial temperature of the system, and whe
for the sake of brevity we denote the time variables by in
gers. The angle brackets containingm commas~Malakhov’s
cumulant bracket! denote the combined (m11)st-order cu-
mulant of them11 expressions separated by commas.

This formula yields the following expressions for th
average work̂ A& and the corresponding variance^A,A&:

^A&5E f ~1!^v~1!&d1

5
1

T E f ~1!^v~1!,v~2!&qf ~2!d1 d2,

^A,A&5E f ~1!^v~1!,v~2!& f ~2!d1 d2

52T^A&1
2

T E f ~1! f ~2!

3^v~1!,v~2!,v~3!&qf ~3!d1 d2 d3, ~1!
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where all integrals over the time variables meet the condition
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1.2.3. Thus, the fluctuations of the work of perturbin
forces consist of two contributions. The first, 2T^A&, can be
interpreted as shot noise corresponding to the average en
influx ^A&, and the second as excess noise. We see tha
excess contribution is determined by higher-order cumula
with the result that it vanishes in the Gaussian approxim
tion.

Let us suppose that the perturbation is quasiperiodic
‘‘infinitely weak.’’ Then if the equilibrium quadratic velocity
correlator decays rapidly enough, both the average valu
the absorbed energy and the shot contribution to the fluc
tions of this energy are proportional tof 2q, whereq is the
time interval within which the perturbation acts.

Next we allow for the fact that the equilibrium terna
velocity cumulant is zero because velocities are odd un
time reversal. The ‘‘quasiequilibrium’’ ternary cumulant
the expression for̂A,A& is therefore proportional tof , and
on the whole the excess component of^A,A& is of order
f 4. We isolate the fourth power of the perturbation explici
by introducing a function characterizing the dynamic line
differential response of velocities to the weak perturbatio

G jk~ t2t0![
dv j~ t !

d f k~ t0!
U

f 50

.

Then from~1! we get

^A,A&52T~A!1
2

T E
~1.4,2.3,2.4!

f ~1! f ~2!

3^v~1!,G~2,3!,v~4!&0f ~3! f ~4!d1...d4, ~2!

where the subscript ‘‘0’’ indicates that the correlator is
equilibrium one, higher-order terms are dropped, and
‘‘lower limit of integration’’ indicates the rule by which the
variables of integration are ordered.

If the integral in~2! increases in proportion to the dura
tion of the perturbation, i.e.,;q f 4, then qualitatively the
excess part of the noise differs in no way from shot noi
introducing only a small correction. But if the integral grow
rapidly, say;qs11f 4 (s.0), it can be interpreted only as
contribution due to fluctuations in the system’s dissipat
parameters, and we can easily show that it is equivalen
low-frequency fluctuations with a spectrum of typev2s.

Recall now that for the equilibrium canonical Gibbs e
semble we have the following relationship~which can easily
be obtained via integration by parts!:

^v~ t0!F$X~ t !%&5TK ]F$X~ t !%

]v~ t0! L , ~3!

whereF$ % denotes an arbitrary functional of the pathX(t)
interpreted as a function of the ‘‘initial’’ valuesX(t0) at a
fixed timet0 . Selecting the appropriate functionals and us
the equalities

]X~1!

] f ~0!
U

f 50

5
]X~1!

]v~0!
, G jk~ t,t0![

]v j~ t !

]vk~ t0!
,

which follow from the Hamiltonian equations of motion, w
find that ~3! yields
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^v~1!,v~2!,v~3!,v~0!&5T^G~1,0!,v~2!,v~3!&

1permutations. ~4!

As Eqs.~2! and~4! imply, the excess fluctuations of the wor
~dissipation fluctuations! are related to fourth-order equilib
rium cumulants and therefore cannot be described con
tently by the Gaussian approximation.1!

2. The same cumulants or, to be more precise, the cu
lants of the complex-valued phonon-mode amplitudesa(t)
~which can be reduced to the former! are responsible for
fluctuations in the intensity of light scattering.2! Indeed, the
photon scattering cross section~or the scattering probability
per unit time! for a given mode incorporate
u*a(t)exp(iVt)dtu2, whereV is the combination frequency
and the integral is taken over a time interval of the order
the reciprocal Brillouin linewidth. Accordingly, the observe
low-frequency fluctuations are related to four-point corre
tors of the type

^a1~ t1!a~ t18!,a1~ t2!a~ t28!&5^a1~ t1!a~ t28!&^a~ t18!a1~ t2!&

1^a1~ t1!,a~ t18!,

a1~ t2!,a~ t28!&, ~5!

where the pairt1 ,t18 is far from the pairt2 ,t28 . In view of
this, the last~cumulant! term on the right-hand side of Eq
~5!, which describes four-time correlations, plays a decis
part.

Note that fluctuations in the occupancy of the crysta
phonon modes,a1(t)a(t), are described only by two-time
cumulants, although these cumulants are fourth-ord
Mushaet al.6 proposed that the occupancy fluctuation is t
reason for 1/f fluctuations in the scattering intensity. Bu
variations in the number of photons in a mode will inevitab
generate a restoring thermodynamic reaction. Hence the
cupancy fluctuations have a characteristic lifetime and c
not be the reason for the 1/f spectrum~but, of course, they
can acquire an induced low-frequency component in a n
equilibrium state!.

We see that 1/f noise in light scattering must be inte
preted from the standpoint of four-time cumulants, whi
incorporate not only fluctuations of the number of phono
but also, as we will shortly see, fluctuations of the phono
mode relaxation times~and therefore make it possible to re
duce fluctuations of the scattering probability to the lat
fluctuations!.

Here one must bear mind that the ‘‘relaxation time’’~for
example, the timet2t0 it takes the correlator̂a1(t)a(t0)&
to decay! is determined by the rate of diffusion of th
photon-mode phase, since it is phase diffusion that is resp
sible for the broadening of the vibration spectral line and
continuous spectrum. Therefore, it would be correct to
that four-time cumulants~in contrast to four-point two-time
cumulants! determine the fluctuations in the phase diffusi
coefficient.

1140Yu. E. Kuzovlev



4. MULTIPOINT CUMULANTS AND FRICTION
FLUCTUATIONS
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Let us select a specific phonon mode. In relation to it
other modes act as a heat bath, a source of friction and, a
same time, a random ‘‘Langevin force.’’ A nonrandom line
law of friction would correspond to a force with Gaussi
statistics. However, the fact that the intermode interactio
nonlinear leads to a non-Gaussian force, as well as to n
linearity in friction and to friction fluctuations. The latte
means that it is impossible to unambiguously separate
Langevin force and friction. But suppose that friction flu
tuations are slower than occupancy relaxation. Then i
natural to interpret the variables of the selected mode as
dom processes ‘‘modulated’’ by the low-frequency var
tions in friction. Such processes would be Gaussian un
deterministic modulation, but in view of the random natu
of the modulation, they become non-Gaussian.3!

From the standpoint of the given phenomenological p
ture, each statistical moment is a result of double averag
first the Gaussian noise at fixed friction, and then the frict
fluctuations. After the first averaging, the fourth statistic
moment of the amplitude has the form

^a1~1!a~3!a1~2!a~4!&5K~13!K~24!1K~14!K~23!,

whereK(12)[^a1(1)a(2)& characterizes the relaxation o
the interval between 1 and 2. After the second averaging~of
the friction fluctuations!, which we denote by double angl
brackets, for the correlator~5! we have the following chain
of equalities:

^^a1~1!a~3!,a1~2!a~4!&&

[^^a1~1!a~3!,a1~2!a~4!&&

2^^a1~1!a~3!&&^^a1~2!a~4!&&

5^^a1~1!a~3!,a1~2!a~4!&&2^K~13!&^K~24!&

5^K~13!,K~24!&1^K~14!,K~23!&.

Comparing this with~5! yields

^a1~1!,a~3!,a1~2!,a~4!&5^K~13!,K~24!&

1^K~14!,K~23!&. ~6!

We see that a four-time cumulant can be interpreted as
characteristic of dissipation fluctuations. In view of~4!, the
same can be said of the combined cumulant of velocities
differential response in~2!.

Let us estimate the order of magnitude of the correlat
~6! and ~4!. First we note that the anharmonicity of the p
tential energyU(q) is sure to generate single-time multipoi
correlations between the amplitudesqk or ak . In particular,
when the anharmonicity parameterl is small, each quadru
plet of modes for which one of the combination
j 6k6 l 6m coincides with a reciprocal lattice site is couple
by the cumulant̂ qj ,qk ,ql ,qm&;l2T3N21(v jvkv lvm)21.
Hence, single-time quadruple correlations are of or
N21. The equations of motion clearly show that the fou
time cumulants ofqk and velocitiesvk must be at least of the
same order.
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not mean that they can be ignored: while being ‘‘smeare
in the momentum space, they are localized in the coordin
representation and do not depend on the size of the sys
N. But actually the equations of motion supply even mo
information. When there is mixing in the phase space, i
when small perturbations are exponentially unstable, eve
the momentum representation at least some of the four-t
cumulants ofqk and vk do not contain the small paramete
1/N.

We assign the label ‘‘0’’ to the specified phonon mod
Putting Q[q0 , in the potential energy, we ‘‘isolate’’ the
interaction of this mode with other modes:

U~q,Q!5 1
2v0

2Q21U0~q!1mQu~q!, m[lN21/2,

where we have limited ourselves to the cubic approximati
The equations of motion

d2qk

dt2
5Fk1 f k , Fk[2

]U0

]qk
, f k52Qm

]u~q!

]qk
,

d2Q

dt2
52v0

2Q2mu~q!

show that the contribution due to the interaction of the
lected mode with the other modes,f k , to the force acting on
any of them is fairly small, in view of the factorN21/2.
Indeed, with allowance for the above-mentioned property
the coefficientsui jk and the fact that̂qj

2&5Tv j
22, we arrive

at the following estimates:

^ f k
2&.~mv0vk!

2^Q2&K S (
j

u0 jkv jqj D 2L ;T2m2vk
2 ,

^Fk
2&;Tvk

2 ,
^ f k

2&

^Fk
2&

;
T

q
N21.

Assuming, on the basis of this, thatf k is a small perturbation,
we can express its effects in terms of the linear differen
response

Rk j~ tt8![
dqk~ t !

d f j~ t8!
5

]qk~ t !

]v j~ t8!
.

We have

q~ t !.q0~ t !1E R~ tt8! f ~ t8!dt8[q0~ t !1q1~ t !,

whereq0 describes the evolution of the heat bath, which
not perturbed by the selected mode. Plugging this expan
into the equation for the latter and linearizingu(q) in
q1(t) on the same grounds, we arrive at the approxim
Langevin equation

d2Q

dt2
1v0

2Q5j~ t !1E
2`

t

g~ t,t8!Q~ t8!dt8. ~7!

Herej(t)[2mu(q) acts as the Langevin force, and the i
tegral with the kernel

g~ t,t8![m2(
jk

]u

]qj
~ t !Rjk~ tt8!

]u

]qk
~ t8! ~8!

1141Yu. E. Kuzovlev



determines the frequency renormalization~which, generally
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speaking, depends on the heat bath variables! and, more im-
portantly, the nonlocal random friction, with unperturb
heat bath variables (q5q0).

The linearization procedure would make sense a
would be justified if the resulting friction fluctuations we
small ~say, of the order 1/N!. Fluctuations of the integral in
~7! would be of the same order if we were to replace
differential responseRk j(tt8) and estimate the remainin
factors in the Gaussian approximation. However, with allo
ance for the random nature ofRk j(tt8), the variance of the
integral in ~7! contains, among other things, terms like

(
jk

L j j ~ tt !E E Lkk~ t1t2!^Rjk~ tt1!Rjk~ tt2!&

3^Q~ t1!Q~ t2!&dt1dt2 ,

where L jk denotes the correlator of the variablesm]u/]q.
But exponential instability means7,8 that the variance of the
elements of the linear differential response mat
G(tt8)[]X(t)/]X(t8), and, in particular of the submatri
R, grow exponentially as the temporal arguments mo
apart. Hence the correlator^Rjk(tt1)Rjk(tt2)& is an exponen-
tially growing function of the difference argumen
t2max(t1,t2) ~also, obviously, containing a nonoscillato
component!, which means that the integral is divergent
one of the two integration variables.

Thus, in the linear approximation, the term with frictio
in the Langevin equation has infinite variance. Assuming,
the basis of the weakness of mode interaction, that this e
tion is linear, we arrive at an inconsistency: an infinite to
reaction of the lattice to the selected mode.

Two interrelated conclusions can be drawn here. Fi
frictional fluctuations are not really small,4! i.e., Eq.~6! can
become comparable in magnitude with^K(118)&^K(228)&.
Second, a consistent Langevin equation must incorpo
nonlinear friction.5! Since in view of its anharmonicity non
linear friction is small and at the same time must suppr
the infinity of the linear approximation, the resulting fric
tional fluctuations remain large.

5. RELAXATION AND LONG-LIVED MULTITIME
CORRELATIONS

1. Let us discuss the nature of the decay of higher-or
cumulants. First we show that these cumulants exhibit i
nitely long-lived behavior, at least in principle. Let us co
sider the 2N-by-2N differential response matrix
G(tt0)[]X(t)/]X(t0). TheN3N matricesG andR defined
above coincide, respectively, with the lower right and low
left quadrants ofG. The matrixG obeys the linear equatio

dG

dt
5S 0 I

]2U/]q2 0DG[B~ t !G.

Since in the absence of external forces~i.e., f 50! the col-
umn vector dX/dt[Ẋ5$v,dp/dt%[$v,F%, which is tan-
gential to the path, satisfies a similar equationdẊ/dt5BẊ, it
is a linear combination of the columns of matrixG. This
yields the relationship
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which expresses the invariance of the autonomous motio
the system under shifts in time. A similar relationship fo
lows from energy conservation in autonomous evolution. B
cause in the absence of external forces the system is co
vative, we have]H(t)/]X(t0)5]H(t0)/]X(t0), with the
result that

¹H~ t !G~ t,t0!5¹H~ t0!, ~10!

where¹H[]H/]X5$2F,v% must be interpreted as a row
vector. The two relationships are linked by the identity

G2152gG1g, g[S 0 I

2I 0D ,

in which I is theN3N identity matrix, and the ‘‘1’’ on G
denotes Hermitian conjugation. Incidentally, Eqs.~9! and
~10! show that the vectorsẊ(t) and¹H(t), being bounded
everywhere, lie in the~two-dimensional7! subspace of pertur
bations that neither expand nor contract in time.

By multiplying ~9! or ~10! into any functional ofX(t)
and averaging over an arbitrary equilibrium path ensem
~an invariant measure on the set of initial conditions!, we
arrive at formally exact relationships between the correlato
In particular, from Eq.~9! we obtain

(
k

@^vk~ t !Gk j~ tt0!v j~ t8!&2^ ṗk~ t !Rk j~ tt0!v j~ t8!&#

5^v j~ t0!v j~ t8!&5T^G j j ~ t0t8!&, ~11!

where the second equality refers to a canonical ensemb
In each equilibrium correlator on the left-hand side

Eq. ~11!, we isolate the connected cumulant part, bearing
mind that^Ẋ(t)&50, so that, for instance,

^v~ t !G~ tt0!v~ t8!&5^v~ t !v~ t8!&^G~ tt0!&

1^v~ t !,G~ tt0!,v~ t8!&.

Let us suppose that the quadratic correlators~and hence
^G(t,t0)&) tend to zero ast2t0 and t2t8 increase. Then, as
the momentt moves still farther away, the correspondin
terms vanish, and all the dynamic correlations reflected
~9! become shifted to higher-order cumulants. Hence at le
some of these do not disappear for arbitrarily large value
t2t0 and t2t8.

In the momentum representation the different degree
freedom must have equal status in~11!. If we also allow for
the fact that the two terms in the square brackets in~11! have
the same limit, thanks to the oscillatory nature of the evo
tion of phonon variables, we arrive at the followin
asymptotic behavior:

^vk~ t !,Gk j~ tt0!,v j~ t8!&.
^v j~ t0!v j~ t8!&

2N
, ~ t2t0 ,t8→`!.

~12!

In particular, att05t8 we can use~3! and ~4! and easily
transform~12! into

^nk~ t !,nj~ t0!&;
1

N
^Nk&^nj&, ~ t2t0→`!,

1142Yu. E. Kuzovlev



wherenk are the occupation numbers. The given asymptotic
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behavior expresses~in accordance with the physical meanin
of the initial equations~9! and~10!! a weak but never decay
ing correlation between the energies of two arbitrary mod

Equation~12! is a formally exact example of the long
lived behavior of higher-order correlators~and at the same
time demonstrates in an obvious manner the undamped
ture of the fluctuations of the matrixG and its correlation
with phase diffusion!. However, to describe the correlatio
of the phase diffusion ‘‘rates’’ for two time intervals that a
far apart, it is not enough to use the three-time cumulant
Eqs.~11! and ~12!—we need four-time cumulants like~6!.

2. Let us describe the structure of such cumulants.
examine a cumulant~6! for an individual mode, assumin
that the time intervalsr[123.0 ands[224.0 are fixed
and comparable to the relaxation time of this mode. Supp
that fluctuating friction on the interval ‘‘r ’’ can be described
in the approximationK(1,3).n1 exp@(iv2g1)r#, wherev is
the renormalized frequency of the mode,n1 is the random
occupancy of the mode on the interval ‘‘r , ’’ and g1 is the
random friction ‘‘smoothed’’ over this interval, with the
same being true for the interval ‘‘s. ’’ If the difference
122.0 is much larger than the correlation time, the seco
term on the right-hand side of Eq.~6! can be neglected, while
the first can be written as

^K~13!,K~24!&.exp@ iv~r 1s!#$^n1 ,n2&^exp~2rg1!&

3^exp~2sg2!&1^n1&^n2&

3^exp~2rg1!,exp~2sg2!&%. ~13!

Let r 50. Then, with allowance for Eqs.~3! and~4!, the
cumulant~6! reduces to a three-time cumulant similar to~12!
~at j 5k!. On the other hand, the only term that remains
braces in~13! is the first, so that we obtain

^K~13!,K~24!&.^n1 ,n2&^K~24!&;
1

N
^K~24!&,

which by its very meaning coincides with the right-hand s
of Eq. ~12!. However, when the intervalsr ands are finite,
the order of~13! ~and hence of~6!! is determined not by the
factor 1/N but by the second term in~13!, i.e., the correlation
~not small, as we have seen! of the fluctuations of the friction
coefficientsg1 andg2 :

^K~13!,K~24!&;^exp~2rg1!,exp~2sg2!&.

Since the infinity of the variance of linear friction fluc
tuations is due to the contribution to the integral in~7! of the
infinitely remote past, and the same is true of intervals 1
and 2–4, Eq.~7! naturally leads~if divergences are ignored!
to undamped correlations betweeng1 and g2 and the long-
term dependence of the correlators~6! and ~12! on interval
1–2. This statement can be verified, for example, by estim
ing the four-time cumulant of the friction integral. Under th
sign of quadruple integration with respect to primed va
ables, this cumulant contains, among other things, te
whose structure is

L~13!L~24!^R~118!R~338!,R~228!R~448!&L~1838!

3L~2848!^Q~18!Q~38!&^Q~28!Q~48!&.
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of matrix G and its constituents, includingR. For
18,38,2,4, in the quadruple correlator of matrixR the most
important variant of factor ‘‘pairing’’ under averaging is th
one in which the contributions toR(118) and R(338) from
time intervals between 18,38 and 2, 4 become paired with
R(228) and R(448) ~correspondingly or in a ‘‘crisscross’
manner!, while the multiplicative contributions toR(118)
andR(338) from intervals 1,3–2,4 become paired with ea
other. In view of exponential instability, the latter leads to
result that remains undamped for any distance 1–2.

The long-lived nature of four-time cumulants must
preserved, even if we allow for the nonlinearity in the Lang
vin equation. Since the coefficient functions of each of t
friction terms nonlinear inQ(t) are also sensitive to the in
finitely remote past, their sum can remain finite only due
the long-lived dynamical correlations ofQ(t) that are char-
acteristic of the coefficient functions.

We emphasize that the concomitant of instabil
emerges, as does instability proper, already in the ‘‘initia
Gaussian approximation, where the random componen
the quadrant]U2/]q2 of the matrixB(t), which governs the
evolution of the differential response, is assumed Gauss
The point~and this is well-known fact! is that a linear system
with randomly varying parameters is exponentially unsta
in the sense of the second- and higher-order statistical
ments. Hence, as shown by the above reasoning, the stat
of the fluctuations experiences a kind of ‘‘phase transitio
from small ~of order 1/N! to large ~N-independent! long-
lived multitime non-Gaussian correlations. These corre
tions, which affectB(t) and the differential response, mu
also affect low-frequency fluctuations of the degree of ins
bility ~the ‘‘rate’’ of mixing in the phase space!.

6. CONCLUSION

To conclude, we now discuss how the ideas in this pa
relate to other theories. From the standpoint of principles,
long-lived scale-invariant behavior of the phase-diffusio
rate fluctuations appears to be the only possible one: s
the characteristic time scales for mode interaction are fi
by phase diffusion, there is no characteristic time scale
maining for the diffusion rate fluctuations. The presence
corresponding low-frequency noise is therefore consis
with the fact that the phase is random, which is required
kinetic models of energy exchange between modes.8 Nor is
there an inconsistency with ergodicity. Long ago Krylo
demonstrated22 that despite mixing, the frequencies of even
are not necessarily averaged in time along a specific pat
the system. Analysis4 of measurements of, for example, fou
time equilibrium cumulants shows how this can be the c
in kinetic events. The ‘‘long-lived nature’’ is an interna
property of a measured complex event and characterize
duration, i.e., the difference between the extreme time ar
ments in the cumulant. Nothing in this property is incons
tent with the fact that for a fixed time difference, a re
measurement carried out by time averaging~the same time
shift in all the arguments! coincides with the result of en
semble averaging, as ergodicity requires.
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Let us now touch on the differences and similarities that
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exist in relation to the concept of fundamental 1/f noise
without discussing the internal problems of Handel’s the
~see, e.g. Ref. 22! and our approach~see above!. The non-
Gaussian statistics of noise and of the higher-order corr
tions play in important role in Handel’s theory.10,11 In our
case, however, long-lived correlations are exclusively
property of the statistical ensemble. They are not backed
any long-term causal link accessible to observation alon
specific phase path and there are no large characteristic
herence’’ times.

On the contrary, under the slightest coarsening of
description, the exponential instability leads to loss
memory about the past and causality. But Handel’s the
has long characteristic times, which are the reciprocal
quencies of the ultrasoft photons. Also, in that theory
scattering cross section fluctuations act as a source of n
~which, incidentally, is related to the surroundings!. In our
case the fluctuations of the diffusion coefficient,4,19,20 the
scattering cross section,3 the mobility,6 and, in general, the
kinetic quantities are in an obvious and purely linguis
sense fictitious, since they are ascribed not to dynam
variables but to quantities that have no definite value outs
the scope of ensemble averaging.6! They appear at the phe
nomenological level19,20 or ~as scattering cross section flu
tuations! at the statistical-mechanics level when the desc
tion is coarsened by employing the collision integ
technique.3 In any case, they have a formally rigorou
equivalent in the form of assertions concerning correlator
purely dynamical variables.

A final remark is in order. Generally, the fundamen
nature of 1/f noise is not inconsistent with the possible im
portant role of structural and surface defects in real pho
systems, since these defects affect the spectra, and the
action of phonon modes and introduce additional relaxa
mechanisms. What is important here is whether the def
are the primary source of 1/f noise or only one possible
contributory channel, which may also be present in an id
system.

1!A detailed discussion of the universal fluctuation–dissipation relati
linking quaternary equilibrium cumulants and pairwise nonequilibrium
mulants and of higher-order relations can be found in Refs. 15, 16, and

2!From the standpoint of fluctuation–dissipation relations, scattering fluc
tions constitute a special case of dissipation fluctuations, since in an~ini-
1144 JETP 84 (6), June 1997
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3!A similar statistical pattern emerges in the analysis of Brownian moti
whose statistics is non-Gaussian, and diffusion.

4!Note that the assumption that frictional fluctuations of a separate mode
large and highly irregular was first suggested by Handel.2

5!This statement follows from fluctuation–dispersion relationships, acco
ing to which linear frictional fluctuations must be accompanied by cu
friction,17,21 and cubic frictional fluctuations must be accompanied
higher-order nonlinearities.

6!Incidentally, this is also true of scattering cross sections and probabil
in quantum mechanics and, all the more so, in quantum statistical mec
ics.
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Quasi-isentropic compression of liquid argon up to 500 GPa

V. D. Urlin, M. A. Mochalov, and O. L. Mikha lova

Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics,
607190 Sarov, Russia
~Submitted 8 July 1996!
Zh. Éksp. Teor. Fiz.111, 2099–2105~June 1997!

The compressibility of liquid argon up to pressures;500 GPa has been investigated
experimentally. The argon was compressed by a cylindrical shell accelerated by the detonation
products of an explosive. The density was recorded by the gamma-graphic method and
the pressure was determined from the gas-dynamic calculations. Comparing the experimental and
computational results showed that the compression process studied is isentropic to a quite
high degree. The compression of liquid argon up to a density of 7.3 g/cm3 did not show any clear
anomalies associated with a structural transition or metallization. ©1997 American
Institute of Physics.@S1063-7761~97!01306-1#

1. INTRODUCTION 2. MEASUREMENT PROCEDURE
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It is of interest to study the compressibility of argon
very high pressures~above 100 GPa! from the standpoint of
observing phase transitions as well because there are a
lutely no experimental data in this region. Argon has be
studied under static conditions atT5298 K up to;80 GPa.1

The shock adiabat of liquid argon has been investigated u
;90 GPa.2,3

A quasi-isentropic compression process is slower
more even than a shock process. The transformation
shock-wave into isentropic compression in an experime
apparatus substantially decreases the thermal heating o
material, which in turn increases the compression of the
terial. Furthermore, under these conditions the experime
material can be maintained at a high pressure for a lon
time. This greatly expands the possibilities for investigat
the states in which phase transitions are thought to occu

In Ref. 4 no anomalies associated with a phase transi
were found with quasi-isentropic compression of liquid
by a pressure of 60 GPa up to a density of 3.9 g/cm3. Data
indicating a phase transition have been obtained for xen5

which was investigated by the same method up to a den
of 13 g/cm3. According to the results of Refs. 6 and 7, th
transition can be attributed to a restructuring of a fa
centered cubic~fcc! lattice into a hexagonal close-packe
~hcp! structure. This transition is estimated, on the basis
the experimental data on isothermal compression,8,9 to occur
at a density of 8.37 g/cm3.

Solid argon at atmospheric pressure possesses a
structure. According to calculations performed
McMahan,10 the initial structure of solid argon can transfor
at pressure;230 GPa into a hcp structure and metallizati
can occur at;430 GPa. The same calculations show th
metallization of the initial fcc Ar lattice is possible a
;550 GPa.

In the present work we obtained new data on the qu
isentropic compressibility of liquid argon at pressures fro
90 to 500 GPa and densities from 4 to 8 g/cm3. No clear
anomalies associated with the structural transitions predi
in Ref. 10 were observed in this region.
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The experimental arrangement is similar to that d
scribed in Ref. 4. A high pressure produced by the deto
tion products of a powerful explosive surrounding the e
perimental apparatus pushes a cylindrical copper or tung
alloy shell toward the axis, initially forming a relativel
weak converging shock wave in the experimental mate
~argon! located inside the shell. Quasi-isentropic compr
sion is produced at subsequent times by the circulation
shock waves and the continuous compression of the argo
the shell converging toward the axis. The shell is decelera
by the increasing pressure in the experimental material.
some time the shell stops and then moves in the oppo
direction. Maximum compression occurs at the moment
shell stops.

The trajectory of the shell, according to which the size
the cavity containing liquid Ar at the moment of the she
stops is estimated, was recorded in a series of subseq
experiments by means of a powerful gamma-graphic sys
with a short exposure time.11 Analysis of the gas-dynamic
calculations showed that, even at the highest pressure in
range investigated, unloading of the experimental volu
does not occur during the compression of the gas. In
case the average density of the compressed argon was
mated from the expression

r5r0S R0

Rmin
D 2

.

Herer051.4 g/cm3 is the initial Ar density atT587 K and
R0 and Rmin are, respectively, the initial radius of the she
and the radius of the shell at the moment the x-ray picture
the stopped shell is taken. The accuracy of the density e
mate is determined by the accuracy with which the sh
radius is measured from the x-ray photograph. The hig
the quality of the x-ray photograph and the higher the c
trast of the boundary between the shell and the liquid arg
the more reliable the measurement. To this end and to ob
high degrees of compression as well, in the experiments c
per and tungsten alloy shells were used for argon dens
&5 g/cm3 and.5 g/cm3, respectively.

11454$10.00 © 1997 American Institute of Physics



nt
ri
d
m
th
ge
or
m
th
ly
p
b

in
ea
rd
in

om
ul
n
o
w
u
e

g
a
h

ur
to
n

the

ved
no

er
jec-
all
The

eries
are

the
ub-

rgo

sity
.

nt;
The quality of x-ray pictures is determined by differe
factors, one of which is the blurriness of the image. Blur
ness depends on the geometric size of the focus of the ra
tion source. It is caused by the motion of the shell at the ti
when the x-ray photograph is taken and by the effect of
amplifying screens which convert x-rays into visible-ran
radiation. The total blurriness produced by distorting fact
of all types will be minimum at the moment of maximu
compression of the gas, when the shell has stopped and
is no dynamical blurriness. Distortion effects can not on
degrade image quality. As a result of their presence, the
sition of the shell boundary recorded on the film may not
the true position.

The total effect of the distorting factors was estimated
special experiments in which shell images simulating r
experimental structures in a compressed state were reco
The main experiment differs from the model experiment
that the mass distribution over the cross section of the c
pressed cavity is more complicated. Analysis of the res
obtained shows that the displacements of the visible bou
aries of the recorded shells relative to their true sizes d
not occur. Estimates of the sizes of the model images sho
that the methodological accuracy of the measurements eq
64% for diameters>8 mm. This figure was taken as th
accuracy in our experiments.

Figure 1 displays a photograph of the shadow ima
from a tungsten alloy in an experiment with compressed
gon density;6 g/cm3. Figure 2 shows a similar photograp
but for a maximum density;7.3 g/cm3. One can see from
the figures that the compression process in the struct
used is characterized by good symmetry and satisfac
contrast of the inner boundary of the shell with liquid argo

FIG. 1. Shadow x-ray image of a tungsten shell with compressed a
density;6 g/cm3: a — shell in the initial state; b — shell at the moment of
maximum compression.
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The boundary remains rectilinear and symmetric over
entire length of the compressed part of the cylinder (;10
cm! even with the highest degrees of compression achie
in the present work. This also shows, qualitatively, that
unloading occurs from the ends of the cylinder.

The experimental values for the trajectory of the inn
cavity of a tungsten shell are presented in Fig. 3. The tra
tory computed taking account of the equations of state of
materials present in the structure are also shown there.
results of the density measurements performed in three s
of experiments at pressures of 93, 247, and 480 GPa
presented in Table I.

3. EQUATIONS OF STATE OF SOLID AND LIQUID PHASES
OF ARGON

The form of the multiphase equation of state and
method for finding the parameters in this equation are s
stantiated in Refs. 12, 3, and 4.

n

FIG. 2. Same as in Fig. 1 but with the maximum achieved argon den
;7.3 g/cm3: a — shell in the initial state; b — shell in the compressed state

FIG. 3. Trajectory of a tungsten shell with argon: Points — experime
1 — calculation,2 — Hugoniot adiabat.
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TABLE I. TABLE II. Parameters in the equation of state of argon.
The expressions for the free energy in the solid and
uid phases are1!

FS5Ex~r!1RT@3 ln~12e2Q/T!2D~Q/T!#, ~1!

FL5Ex~r!13RT ln~Q/T!23RT ln a~r,T!, ~2!

whereT andr are the temperature and density,R is the gas
constant, and

D~x!53x23E
0

x x3dx

ex21

is the Debye function. The elastic interaction curve is a
proximated by the function

Ex5
3

rk
(

i
ai~d i /321!/ i ,

whered5r/rk , rk is the density atPx5r2dEx /dr50, and
ai are empirical constants. The Debye temperature is gi
by the relation

Q5Q0d1/3ACx
222nPx/3r, Cx

25dPx /dr,

whereQ0 andn are empirical parameters. The paramete

a5~11z!21/2 exp$b2 f ~d!T0 /T%

is a measure of the deviation of the thermal and elastic p
erties of the liquid from the solid phase. He
z5 lRT/(Cx

222nPx/3r), b and l are constants,T0 is the
melting temperature atP50, andf (d) is an empirical func-
tion of the density. For definiteness, the latter function w
taken in the form

f ~d!5C1

~d/d0!r 121

r 1
1C2 ,

whereC1 , C2, and r 1 are empirical constants,d05r0 /rk ,
andr0 is the density of the liquid phase atT0.

For T.1 eV in Ar the contribution of the electroni
component must be taken into account. For insulators
component has the form

Fel52
4kT

r
AnpnnS 2pm* kT

h2 D 1.5

expS 2
W

2kTD , ~3!

where m* is the geometric mean of the electron and h
effective masses, andnp andnn are the orbital degeneracy i
the bands. Just as in Ref. 3, in Eq.~3! the density dependenc
of the energy gap was taken to be of the form

W5W0d2G, m* 5m0d2/32G,

Experiment Calculation
No. R0 , cm Rmin, cm r, g/cm3 Rmin, cm r, r/cm3 P, GPa

1 1.5 0.8160.03 4.860.3 0.82 4.68 93
2 1.5 0.7260.02 6.160.3 0.716 6.15 247
3 1.35 0.5960.02 7.360.5 0.588 7.39 480
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where W0 is the gap width at normal density,m0 is the
free-electron mass, andG is an empirical constant whos
value is found so as to obtain the best description of
shock adiabat at high temperatures.

The numerical values of the parameters are presente
Table II.

4. COMPARISON OF THE COMPUTATIONAL AND
EXPERIMENTAL RESULTS

To determine the pressure corresponding to the exp
mentally measured argon density, gas-dynamic calculat
were performed using the equations of state of the mate
present in the structure and the equation of state given
Ref. 3 for Ar. The density in the cavity of the compress
material and the trajectory of the inner boundary of the sh
were also determined from the calculations. The aver
density of the compressed argon was estimated if the exp
mental and computed trajectories agreed. The computati
results for a series of experiments with the maximum achi
able pressure are displayed in Figs. 3 and 4. As one can
from Fig. 3, the computed trajectory of the inner shell agre
satisfactorily with experiment. Figure 4 shows the arg
pressure and density distributions in the cavity at the mom
of maximum compression. The dot-and-dash lines in the
ure mark the average density and the corresponding pres
It is evident from this figure that the deviation of the dens
and pressure from their average values equal;5% and
;11%, respectively.

Figure 5 shows in the coordinatesP(r) the experimental
results for the quasi-isentropic compression of argon
;500 GPa. These results are compared with the comp
isentropes with the entropyS/R corresponding to the experi
ment. The computed isentropes agree well with the exp
mental data. The 300 K isotherm and the shock adiaba

rk , g/cm3 1.77 l 3
n 2 b 0.694
a1 GPa 2105.73 d0 0.8
a2 , GPa 346.72 r 1 1
a3 GPa 2383.72 C1 1.7925
a4 GPa 142.73 C2 20.0589
Q0 , K•s/km 78.65 W0, eV 14.4
T0 K 83.8 G 1

FIG. 4. Radial pressure~1! and density~2! distributions at the moment of
maximum compression of argon.
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TABLE III. Computed values at the moment the shell stops.
liquid Ar are also presented here for comparison. One
see that the isentropes are substantially ‘‘softer’’ than
shock adiabat and approach the elastic curvePx . Figure 5
~dotted curve! shows the radial distribution of the state of th
matter inside the shell at the moment the shell stops. One
see that more than two thirds of the mass of the material
the minimum entropy, whose value is indicated in the figu
The figure also displays for comparison the temperatures
the isentrope and on the shock adiabat, showing the dif
ence in the degree of heating in these two processes.

The entropy, temperature, vapor and total pressures,
the velocity of sound for the computed densities at th
experimental points are summarized in Table III. One c
see from the table that under isentropic compression the t
mal pressure equals 23–31% of the total pressure. The
ues presented in this table for the sound velocity in argo
the moment of maximum compression in each experim
make it possible to estimate the upper limit of the length

FIG. 5. Isentropic compression of liquid argon. Experiment:d — isentro-
pic compression, this work;3 — isotherm;1 j — Hugoniot adiabat.2 Cal-
culation:1 — T5300 K isotherm;2 — isentropes;3 — Hugoniot adiabat;
1 — fcc–hcp.10
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the end region encompassed in the compressed cylinde
the unloading. Estimates performed for a specific structu
where a pressure;500 GPa was achieved, showed that w
a ;10 cm long compression tube unloading encompas
not more than 1.5 cm of the compressed volume from e
end. Therefore the region of unloaded argon is not less t
7 cm long.

In summary, in the present work the isentrope of arg
was continued up to pressures;500 GPa, where there are n
other experimental data. These investigations, just as in
4, did not show any visible anomalies in the compressibi
of liquid argon.

1!In the present work the contribution of the zero-point vibrations is tak
into account in the termEx(r) in the equation of state.
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The theoretical analysis of experiments on pulsed laser irradiation of metallic films sputtered on
insulating supports is usually based on semiphenomenological dynamical equations for the
electron and phonon temperatures, an approach that ignores the nonuniformity and the nonthermal
nature of the phonon distribution function. In this paper we discuss a microscopic model
that describes the dynamics of the electron–phonon system in terms of kinetic equations for the
electron and phonon distribution functions. Such a model provides a microscopic picture
of the nonlinear energy relaxation of the electron–phonon system of a rapidly heated film. We
find that in a relatively thick film the energy relaxation of electrons consists of three
stages: the emission of nonequilibrium phonons by ‘‘hot’’ electrons, the thermalization of
electrons and phonons due to phonon reabsorption, and finally the cooling of the thermalized
electron–phonon system as a result of phonon exchange between film and substrate. In
thin films, where there is no reabsorption of nonequilibrium phonons, the energy relaxation
consists of only one stage, the first. The relaxation dynamics of an experimentally observable
quantity, the phonon contribution to the electrical conductivity of the cooling film, is
directly related to the dynamics of the electron temperature, which makes it possible to use the
data of experiments on the relaxation of voltage across films to establish the
electron–phonon and phonon–electron collision times and the average time of phonon escape
from film to substrate. ©1997 American Institute of Physics.@S1063-7761~97!01406-6#

1. INTRODUCTION the width of the film being studied~see the concluding sec
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Lately there has been an upsurge of interest in exp
mental studies of relaxation processes that emerge in
electron–phonon system of a metallic film subjected to
ultrashort (;100 fs) laser pulse~see, e.g., Refs. 1, 2 and 3!.
Usually, in describing experiments involving the heating a
relaxation of the electron subsystem, theoreticians use
so-called two-temperature approximation suggested by
ganov et al.4 in 1956. In this approximation it is assume
that the electrons and phonons are thermalized and ca
characterized by temperaturesTe andTp , respectively. The
difference in these temperatures (Te.Tp) is fixed by the
heat flux from electrons to phonons. What is important is t
the magnitude of this flux is determined only by the para
eters of the electron–phonon interaction in the metal
does not depend on the real conditions of heat remova
which the sample is observed.

In the theoretical work that followed, Shklovski�

5,6 and
Maslov and Shklovski�7 gave a detailed analysis at the k
netic level of the various aspects of the theory of hot el
trons in thin metallic films at low temperatures not discuss
in Refs. 4 and 8. The main goal of their work was to est
lish the physical conditions that heat removal from D
heated films must satisfy and in which the experimental
servation of the nonlinear corrections to Ohm’s law p
dicted earlier8,6 becomes possible. It was found that the re
ization of the two-temperature approximation4 in a stationary
experiment imposes severe restrictions on the film thickn
the acoustic transparency of the film/substrate interface,5 and

1149 JETP 84 (6), June 1997 1063-7761/97/061149
i-
he
n

d
he
a-

be

t
-
d
in

-
d
-

-
-

-
-

s,

tion in Ref. 6!.
Note that later these conditions were met, we belie

most accurately in the experimental work of Bergma
et al.9 and Gershenzonet al.10 Most experiments, however
have been carried not in the two-temperature regime~which
in Ref. 5 was called the electron overheating regime! but in
the Joule heating regime, where in view of the insufficie
acoustic matching of a fairly thick film and the substrate t
electrons and phonons in the film may be assumed, to a
degree of accuracy, to have equal temperatures. The valu
this temperature depends on the acoustic characteristic
the metal and the substrate, according to Little’s well-kno
theory of acoustic mismatch.11 In Ref. 5 a strict theoretica
criterion was derived for observing the size effect in he
removal from metallic films at low temperatures~see below!.
These results were generalized in Ref. 6 to the case o
arbitrary electron spectrum and an arbitrary frequency
pendence of the Eliashberg functiona2F(v). A similar gen-
eralization allowed Allen12 to express, in the high-
temperature limit, the rate of electron cooling in terms of t
electron–phonon coupling constantl.

Note, however, that in our case of low temperatures a
low-intensity heating~in which the typical phonon frequenc
is low compared to the Debye frequencyvD!, the two-
temperature approximation is not quite justified, since in t
temperature range the phonon subsystem becomes ther
zed primarily because of collisions with electrons, and un
thermalized conditions the two subsystems must have
same temperature.

In another semiphenomenological model, suggested

11495$10.00 © 1997 American Institute of Physics
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of heat pulses, the phonon distribution function is assume
differ from the Bose distribution function and is found b
requiring that the emission of phonons by the heated e
trons balance the escape of phonons to the substrate. H
ever, in this model the phonon distribution function is a
sumed uniform over the film’s thickness, since phon
escape can be described phenomenologically in terms o
average time of phonon escape from film to substrate. A
result, this approach requires microscopic substantiation

A microscopic kinetic study carried out by one of th
authors of the present paper for the case of station
heating5 makes it possible~with a well-founded assumption
about the uniformity of the electron temperature over
film thickness! to examine both the nonthermal nature a
the spatial nonuniformity of the phonon distribution functio
in a metallic film. The present paper generalizes this mic
scopic approach to the case of nonstationary film hea
~Sec. 2!.

The concept of a time-dependent electron tempera
drastically simplifies the analysis of the two coupled kine
equations for the electron and phonon distribution functio
with a very general assumption concerning the power-
dependence of the Eliashberg function on frequency.
latter makes it possible to account phenomenologically
the possible renormalization of the electron–phonon inte
tion by impurities~see, e.g., Ref. 14!, and thus to compare
our results with experimental data even when such renorm
ization is substantial.

In Sec. 3 we discuss the nonlinear kinetics of the ene
relaxation of the electron subsystem after instantaneous h
ing by, say, an ultrashort laser pulse. It turns out that
dynamics of electron cooling differs drastically for effe
tively thick and effectively thin films, i.e., when nonequilib
rium phonons are reabsorbed in the film, and when s
phonons escape to the substrate without being reabso
respectively. We show that electrons in effectively thi
films cool in three stages: the emission of nonequilibriu
phonons by ‘‘hot’’ electrons, the thermalization of the inte
acting electrons and phonons, and the subsequent coolin
the thermalized electron–phonon system due to phonon
change between film and substrate. The durations of the
two stages coincide, in order of magnitude, with t
electron–phonon collision times at the initial electron te
perature and at the thermalization temperature of these e
trons, respectively. The duration of the last stage is de
mined by the characteristic time of phonon escape to
substrate. In thin films there is no reabsorption of noneq
librium phonons, so that the characteristic electron cool
time in a thin film is the electron–phonon collision time
the lowest temperature, i.e., the temperature of the heat b

Since direct measurements of the electron temperatu
high-speed processes is clearly fraught with difficulty, t
phonon contribution to the electrical resistance of the fi
can serve as a possible ‘‘indicator’’ of electron temperatu
In Sec. 4, we therefore examine the dynamics of film c
ductivity under pulsed heating. Note that comparison of
results of Sec. 4 with the appropriate experimental data
provide useful information about the characteristic times
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films ~see Sec. 5!. Section 6 provides a brief description o
the special features of our approach.

2. KINETIC APPROACH TO THE RELAXATION OF
ELECTRON ENERGY IN A METALLIC FILM. MODEL AND
GENERAL RELATIONSHIPS

We consider a simple microscopic model, in which t
electron dispersion law is isotropic and quadratic, i.e.,
energy of an electron with quasimomentump ~or wave vec-
tor k5p/\) is «p5p2/2m, wherem is the effective mass
We also assume that phonons have a single acoustic br
with longitudinal polarization. Since we are interested in
range of temperatures that are low compared to the De
temperatureQD , we assume the dispersion law for longit
dinal phonons to be linear,vq5sq, wheres is the velocity
of longitudinal sound, andq5uqu is the absolute value of the
phonon wave vector. Using the standard notation,15 we can
write the kinetic equations for the electron and phonon d
tribution functions in a thin metallic film as follows:

] f p

]t
1eE

] f p

]p
1

pz

m

] f p

]z
5I i~ f p!1I ep~ f p ,Nq!, ~2.1!

]Nq

]t
1sz

]Nq

]z
5I pe~Nq , f p!, ~2.2!

where it is assumed that thez axis is perpendicular to the
film’s surface. The electron–phonon and phonon–elect
collision integrals have the well-known form~without allow-
ing for transfer processes!

I ep~ f k ,Nq!5E d3q

~2p!3 w~q!$ f k1q~12 f k!@~Nq11!

3d~«k1q2«k2V!1N2qd~«k1q2«k1V!#

2 f k~12 f k1q!@Nqd~«k1q2«k2V!

1~N2q11!d~«k1q2«k1V!#%, ~2.3!

I pe~Nq , f k!5E 2 d3k

~2p!3 w~q!@ f k1q~12 f k!~Nq11!

2 f k~12 f k1q!Nq#d~«k1q2«k2V!. ~2.4!

In the above formulas,e is the electron charge,E(t) is the
strength of the electric field generated in the film when
weak measuring current of average densityj 0 is sent through
the film, andV5\vq . The functionw(q) determines the
intensity of the electron–phonon interaction~see below!. De-
pending on what is convenient, in Eqs.~2.3! and~2.4! and in
what follows electron states are characterized either b
wave vectork or by a quasimomentump (p5\k).

Elastic electron–impurity collisions are described by t
collision integral

I i~ f p!5niE d3p8

~2p\!3 u~p2p8!~ f p2 f p8!d~«p2«p8!,

~2.5!
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u(p2p8) is proportional to the square of the absolute va
of the Fourier transform of the impurity potential. Whe
electron–impurity collisions dominate, the distribution
weakly anisotropic and can be approximately written as

f p5 f 0~«p!1p–f1~«p!, ~2.6!

where it is assumed that the second term is small comp
to the first. In this approximation, the collision integral~25!
can be reduced to what is known as thet-approximation:

I i~ f p!52t i
21p–f1~«p!, ~2.7!

where the electron–impurity collision rate is given by

t i
215

1

4
niN~0!E

0

p

u~w!~12cosw!sin w dw. ~2.8!

The electron density of statesN(0) is mpF /p2\3, and w
denotes the angle between the vectorsp andp8.

In the deformation potential model, the functionw(q),
which is proportional to the square of the matrix element
the electron–phonon interaction, is a linear function of
phonon wave vector:

w~q!5w0~q!5
pm2vq

rs2 , ~2.9!

where the deformation potential constant is of order of
Fermi energy,m;«F5pF

2/2m, and r is the film’s density.
To be able to phenomenologically take into account
renormalization of the electron–phonon interaction in co
taminated metals and compare our results with experime
data, throughout the paper we consider the more general
of an arbitrary power-law dependence of the matrix elem
of the electron–phonon interaction on the phonon wave v
tor and write~as is done in the experimental work of Ber
mannet al.9 and Gershenzonet al.16!

w~q!5
pm1

2V11r

rs2\
5Crq

11r , ~2.98!

where r is not necessarily an integer. The representat
~2.98! for the functionw(q) allows going over to the defor
mation potential approximation in the formulas below by
simple substitution:r 50 andm15m. It is well known that
Eq. ~2.9! corresponds to a quadratic dependence of
Eliashberg function on the phonon frequency. It can
shown that the expression~2.98! leads to a power-law fre
quency dependence of the Eliashberg function of the for

a2F~vq!5
N~0!pm1

2V21r

4rs2~spF!2 }vq
21r . ~2.10!

Here the characteristic electron–phonon collision time a
function of temperature has the formtep } T2(31r ).

Note that tunneling experiments often reveal a linear
havior of the Eliashberg functiona2F(vq) at low phonon
frequencies,17 while measurements involving thin films9,16

and massive samples18 quite often reveal a quadratic tem
perature dependence oftep

21 , which corresponds tor 521.
At the same time, since other values ofr were also obtained
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of r ranging from21 to 1, we assume thatr is an arbitrary
number~not smaller than21!.

The feasibility of a quantitative description of the d
namics of the electron–phonon system of a metallic film is
a large extent related to the adopted simplifying assump
about the Fermi behavior of the isotropic part of t
electron–phonon distribution function, i.e.,

f 0~«p!5H 11expF «p2«F

kBTe~ t !G J 21

, ~2.11!

whereTe(t) is the time-dependent electron temperature.
Note that the concept of an electron temperature, wh

is equivalent to the common assumption of instantane
thermalization of the electron subsystem, cannot always
rigorously justified. For instance, at extremely low tempe
turesTe,T* ~T* ;QD

2 /«F!, where electron–electron colli
sions predominate over electron–phonon collisions, the e
tron distribution function becomes thermalized in the cou
of the characteristic electron–electron interaction timetee.
In ordinary relatively pure metals,T* ;1 K, while in spe-
cially prepared impure films, where the electron–electron
teraction is enhanced due to effects of weak localizati
T* may be of order 10 K. AtTe.T* ~but Te!QD!, electron
thermalization in relatively thick films occurs not because
direct electron–electron interaction but because of indir
interaction, via phonon exchange.

In Ref. 7 it was shown that an electron distribution fun
tion closely resembling the Fermi function can also
formed in relatively thin films ~nonequilibrium phonons
leave the film for the substrate without reabsorbing el
trons! as a result of phonon emission by ‘‘hot’’ electron
alone. In both cases, the electron–phonon interaction t
tep is the characteristic electron thermalization time. Thus
relatively low frequencies of external perturbatio
(v!tee

21 for Te,T* andv!tep
21 at Te.T* !, the isotropic

part of the electron distribution function can be assumed
be the Fermi function. In examining the case of hig
frequency perturbations acting on the electron subsyst
Eq. ~2.11! should be considered an approximation at the fi
stage, i.e., an approximation that must be refined, poss
by the approach suggested by Fannet al.,19 who examined
the dynamics of bothTe(t) and the thermal correction to th
Fermi electron distribution function.

We also note that in optically thick films, the uniformit
of the electron temperature over the film thickness is ensu
by the rapid departure of electrons from the skin layer20 and
the high electron thermal conductivity compared to the p
non thermal conductivity.5 Due to the additional diffusion
decrease in the density of ‘‘hot’’ electrons, the rate of th
malization of the electron subsystem grows considera
with the result that in optically thick films the approximatio
of instantaneous thermalization provides good agreemen
tween theory and experiment.20

We now calculate the part of the electron distributi
function that is anisotropic in the momenta. To derive
equation forf1(«p), we must plug~2.6! into the kinetic equa-
tion ~2.1!, multiply the result byp, and integrate the produc
over the angles ofp. If we allow for the fact that

1151A. I. Bezugly  and V. A. Shklovski 
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wherepi and pk are the Cartesian components ofp, dOp is
an element of solid angle in momentum space, andd ik is the
Kronecker delta, we arrive at the following equation forf1 :

]f1

]t
1

e

m
E~ t !

] f 0

]«p
52

f1

t i
1

3

p2 E dOp

4p
pI ep

~1!

3$ f 0 ,f1 ,Nq%. ~2.13!

HereI ep
(1) is the electron–phonon collision integral lineariz

in f1 :

I ep
~1!$ f 0 ,f1Nq%5E d3k8

~2p!3 @k8•f1~«k8!Bk8,k

2k–f1~«k!Bk,k8#, ~2.14!

wherek85k1q, and

Bk,k85\w~ uk2k8u!$@12 f 0~«k8!1Nk2k8#

3d~«k82«k1V!

1@ f 0~«k8!1Nk82k#

3d~«k82«k2V!%. ~2.15!

We assume that the characteristic frequenciesv of the
external parameters~the current flowing through the film, th
laser beam intensity, etc.! are low compared to the elast
electron scattering ratet i

21 , which in turn is lower than
«F /\. ~In the event of pulsed heating we consider only t
cool-off stages, i.e., when external heating has ceased! In
this case, the time derivative in~2.13! and the contribution
due to scattering by phonons can be taken into account
turbatively by writing

f15f 1
~0!1f 1

~1! . ~2.16!

Plugging this into~2.13! yields

f 1
~0!52

et i

m
E~ t !

] f 0

]«p
, ~2.17!

f 1
~1!5

3t i

p2 E dOp

4p
pI ep

~1!$ f 0 ,f 1
~0! ,Nq%2t i

]f 1
~0!

]t
. ~2.18!

Equation~2.18! leads to the following relationship betwee
f 1

(0) and f 1
(1) :

f 1
~1!;maxS vt i ,

t i

tep
D f 1

~0!! f 1
~0! . ~2.19!

Equation~2.17! can be used to estimatep–f1 :

pF f 1
~0!;

t ieEpF

mkBTe
;

l ieE

kBTe
!1, ~2.20!

where l i5vFt i . The relationships~2.19! and ~2.20! can be
interpreted as the conditions of applicability of perturbati
theory in calculatingf 1

(0) and f 1
(1) .

We now derive an equation for the electron temperat
Te(t), which enters throughf 0 into the expressions~2.17!
and~2.18! for the anisotropic part of the electron distributio
function. We multiply the kinetic equation~2.1! by «p and
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er-

e

for ~2.6! and ~2.12! and the fact thatTe is uniform over the
film thickness, we arrive at the thermal balance equation

ce~Te!
dTe

dt
5^ j ~ t !&•E~ t !2^Pep~ t !&1W~ t !. ~2.21!

Here the electron specific heatce(Te)5gTe , with the con-

stantg5 1
3p

2N(0)kB
2 . The current density averaged over th

film thickness, which enters into the expression for the Jo
heat release, is given by

^ j ~ t !&5
1

d E
0

d

dzE 2 d3p

~2p\!3 ev~ f1•p!. ~2.22!

However, below we ignore the first term on the right-ha
side of Eq.~2.21!, since it is the contribution of the power o
a weak measuring current. For the power~averaged over the
film thickness! transferred per unit volume from the electro
subsystem to the phonon subsystem, we can write

^Pep&5
1

d E
0

d

dzE 2 d3p

~2p\!3 «p I ep~ f 0 ,Nq!. ~2.23!

When the film is heated not only by a current but also,
example, by a laser beam, we must add to the right-hand
of Eq. ~2.21! the specific power of a uniform external heatin
source,W(t). Note thatW(t) does not affect the anisotropi
part of the electron distribution function.

What is important is that when the total current flowin
through the film is fixed, the electron temperatureTe and the
electric field strengthE can be found from Eqs.~2.21! and
~2.22!, since these equations constitute a complete set w
respect toTe andE. To express the quantities that enter in
~2.21! and~2.22! in terms ofTe andE, we must first find the
phonon distribution function. If we ignore phonon drag e
fects and replace the functionf k in the phonon–electron col
lision integral ~2.4! by f (0)(«k), integration over the wave
vectorsk becomes easy. As a result we obtain

I pe~Nq!5n@nq~Te~ t !!2Nq~z,t !#. ~2.24!

Here nq(T)5@exp(\vq /kBT)21#21 is the Bose occupation
number function for phonon states with wave vectorq, and

n5
m2m1

2

2p\4rs
V11r ~2.25!

is the phonon–electron collision rate. Equation~2.2! with the
phonon–electron collision integral~2.24! is a linear differen-
tial equation inNq(z,t). The boundary conditions for this
equation can be obtained in the following manner~see also
Ref. 5!.

Let a~q! be the probability that a photon incident upo
the film/substrate interfacez50 at angleq enters the sub-
strate~which occupies the regionz,0!. ~For different film
and substrate materials the probabilitya~q! can be calcu-
lated by employing the well-known acoustic mismat
model.11,21!

If we assume that photons escaping from the film in
the substrate propagate ballistically and do not return to
film ~because of the film’s small width!, the boundary con-
dition at z50 has the form

Nq
.~0,t !5anq~Ts!1bNq8

,
~0,t !. ~2.26!
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q.
or
Nq8
are the distribution functions of incident and specula

reflected phonons, with q5(qx ,qy ,qz) and q8
5(qx ,qy ,2qz) (qz.0). At the film’s free interface
(z5d), specular phonon reflection yields

Nq8
,

~d,t !5Nq
.~d,t !. ~2.27!

It is convenient to seek the solution of the kinetic equ
tion ~2.2! with the collision integral~2.24! and the boundary
conditions ~2.26! and ~2.27! by first performing a Fourier
transformation in time. For the Fourier transform

Nq~z,v!5E
2`

`

Nq~z,t !e2 ivtdt, ~2.28!

the kinetic equation becomes a linear ordinary differen
equation with constant coefficients:

sz

dNq~z,v!

dz
1~n2 iv!Nq~z,v!5nnq~v!, ~2.29!

where

nq~v!5E
2`

`

nq@Te~ t !#e2 ivtdt. ~2.30!

The solution of Eq.~2.29! is

Nq~z,v!5
n

n2 iv
nq~v!1Cq~v!expF2

z~n2 iv!

sz
G .
~2.31!

The coefficientsCq
. and Cq

, ~of the vectorsq with q2.0
andq2,0! are determined by the boundary conditions. Plu
ging ~2.31! into the boundary conditions~2.26! and ~2.27!
yields

Cq
.5~v!H 12b expF2

2d~n2 iv!

uszu
G J 21

3a~q!F2pd~v!nq~Ts!2
n

n2 iv
nq~v!G , ~2.32!

Cq
,~v!5Cq

.~v!expF2
2d~n2 iv!

uszu
G . ~2.33!

Implementing the rather cumbersome calculations
Nq(z,t) via the inverse Fourier transform, we arrive at t
following expressions for the phonon distribution function

Nq
.~z,t !5 a@12bx~0!#21 exp~2zn/sz!nq~Ts!

1E
2`

t

dt8nq~T~ t8!!n

3exp@2n~ t2t8!#b [ t112z/2d] , ~2.34!

Nq8
,

~z,t !5 a@12bx~0!#21 exp@2 ~2d2z!n/uszu#nq~Ts!

1E
2`

t

dt8nq~T~ t8!!n

3exp@2n~ t2t8!#b [ t1z/2d] , ~2.35!
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square brackets in the exponent ofb denote the integer par
of the quantity inside the brackets.

The specific power transferred from electrons
phonons, averaged over the film thickness, i.e.,^Pep&, can be
expressed in terms of the phonon–electron collision integ
~2.24!:

^Pep~ t !&5
1

d E
0

d

dzE d3q

~2p!3 VI pe~Nq!

5
1

d E
0

d

dzE
qz.0

d3q

~2p!3

3Vn@nq~Te~ t !!2Nq
.~z,t !#

1
1

d E
0

d

dzE
qz,0

d3q

~2p!3

3Vn@nq~Te~ t !!2Nq
,~z,t !#. ~2.36!

Averaging the phonon distribution function overz explicitly
and plugging the result into~2.21!, we arrive at the final form
of the heat balance equation:

ce~Te!
dTe

dt
5W~ t !1^ j ~ t !&•E~ t !

22E
qz.0

d3q

~2p!3 VnH nq~Te~ t !!2nq~Ts!

2E
2`

t

dt8@nq~Te~ t8!!2nq~Ts!#

3n exp@2n~ t2t8!#b [ t]~12a$t%!J .

~2.37!

In deriving Eq. ~2.37!, we assumed that the powerW(t)
absorbed by the electrons is an arbitrary function of tim
Likewise, @t# and $t% denote the integer and fractional par
of t, respectively.

The phonon contribution to Eq.~2.27! for the electron
temperature consists of two terms. The first~local in time!
describes the emission of nonequilibrium phonons at ti
t, and the second~integrated over time! is related to the
reabsorption of nonequilibrium phonons emitted at ear
times t8,t. Clearly, the sum of the last two terms in brac
is the phonon distribution function averaged over the fi
thickness and multiplied by21.

The phonon distribution function found by solving E
~2.2! makes it possible to write the following expression f
the time-dependent thermal flux from film to substrate:

Q~ t !5E
qz.0

d3q

~2p!3 Vsz@Nq
,~0,t !2Nq

.~0,t !#

5E
qz.0

d3q

~2p!3 VszanE
2`

t

dt8@nq~Te~ t8!!

2nq~Ts!#exp@2n~ t2t8!#b [ t] . ~2.38!
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Here the dependence ofQ(t) on the intensity of the heating
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source,W(t), is implicitly expressed in terms ofTe(t).
Under time-independent heating, for whichW(t)5W0 ,

the temperature of electrons in the film,T0 , is determined by
the equation

W05E
qz.0

d3q

~2p!3 V
asz

2d

12x

12bx
@nq~T0!2nq~Ts!#.

~2.39!

The physical picture of time-independent heat remo
that follows from Eq.~2.39! has been thoroughly analyze
by one of the present authors~see Ref. 6!. ~Heat removal
from superconducting films in the flux-flow regime nearTc

was examined in Ref. 22.! It turns out that there are two
limiting cases, depending on the relationship betwe
l pe(T0) ~the inelastic mean free path for phonons with e
ergy \vq.kBT0! and the so-called effective film thicknes
deff5d/^a&, where^a& is the angle-averaged probability of
phonon’s traversing the film/substrate interface.~The explicit
expressions forl pe(T0) and ^a& are given below.! In effec-
tively thick films (deff@lpe(T0)), nonequilibrium phonons be
come thermalized because they are reabsorbed by elect
and the temperature of both subsystems becomes equ
T0.Ts ~the Joule heating regime!. In this regimeT0 is de-
termined by the acoustic transparency of the film/subst
interface. In the opposite limiting case of effectively th
films, almost all nonequilibrium phonons escape to the s
strate without reabsorption, as a result of which electr
become overheated in relation to the lattice~electron over-
heating!, with the magnitude of this overheating determin
by the electron–phonon collision rate.

Equation~2.38! implies that in the Joule heating regim
the average thermal flux from the film is

Q05
p2^a&kB

4

120\3s2 ~T0
42Ts

4!, ~2.40!

where the angle-averaged probability that a phonon trave
the film/substrate interface is

^a&5E
0

p/2

dq a~q!sin 2q. ~2.41!

In the electron overheating regime we have

Q05
D51r

4p3 d
m2m1

2kB
51r

\7rs4 ~T0
51r2Ts

51r !, ~2.42!

where

Dk5E
0

` xk21

ex21
dx. ~2.43!

WhenW05Q0 /d is small, temperature variations in th
Joule heating regime can be expressed as follows:

T02Ts5
W0tes

cp~T0!
, ~2.44!

wherecp5(2p2/15)(kB
4T0

3/\3s3) is the phonon specific hea
in the model with one acoustic branch of vibrations, a
tes54d/^a&s is the average escape time of phonons cro
ing to the substrate.
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temperature can be conveniently written as

T02Ts5
W0te~T0!

ce~T0!
. ~2.45!

Linearizing ~2.42! in the small quantityW0 and comparing
the result with~2.45!, we arrive at the following expressio
for the cooling time of electrons in the thin film:

te~T0!5
4p5N~0!\7rs4

3~51r !D51rm
2m1

2~kBT0!31r . ~2.46!

If we now introduce the average phonon–electron collis
rate

npe~T0!5tpe
21~T0!5

1

cp~T0!
E d3q

~2p!3 Vn
dnq~T0!

dT0
,

~2.47!

we obtain for the average phonon–electron collision time

tpe~T0!5
8p5

15~51r !D51r

\4rs

m2m1
2 ~kBT0!2~11r !

5
cp~T0!

ce~T0!
te~T0!. ~2.48!

Here for the inelastic mean free path of phonons with
energy of orderkBT0 we havel pe(T0)5stpe(T0).

3. NONLINEAR RELAXATION OF ELECTRON
TEMPERATURE IN A METALLIC FILM

The nonlinear integrodifferential equation~2.37! derived
in Sec. 2 determines the dynamics of electron temperatur
the general case, i.e., for an arbitrary time dependence o
heat release powerW(t) and for all values of the probability
that a phonon crosses the film/substrate interface, 0,a,1.
In this section we are primarily interested in cooling of t
electron–phonon system of a film after the film is illum
nated at timet0 by an ultrashort laser pulse that is narro
compared to the shortest characteristic time of inela
electron–phonon and electron–electron collisions~with the
initial electron temperature beingTe(0)!. We also assume
that the laser pulse intensity is relatively high and that
initial electron temperatureTe(0) is much higher thanTs ,
although it is low compared toQD . Under these assump
tions, nonlinear relaxation of the electron temperature can
analyzed analytically in two limiting cases: electron ove
heating (tes!tpe), and Joule heating (tes@tpe).

In the electron overheating regime, nonlinear phono
leave the film without being reabsorbed by electrons, w
the result that the phonon distribution function in the film
approximatelynq(Ts). A formal consequence is that th
time-integral term in Eq.~2.37! is small. Ignoring the inte-
gral term in the parametertes/tpe!1, we arrive at a nonlin-
ear differential equation for the electron temperature:

te~Te~0!!Q
dQ

dt
52

Q51r2QB
51r

51r
, ~3.1!
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whereQ5Te(t)/Te(0) andQB5Ts /Te(0) are the normal-
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ized temperatures. Equation~3.1! shows that initially, when
Te(t)@Ts , electron cooling follows a power law:

Q~ t !5F11
31r

51r

t

te~Te~0!!G
21/~31r !

. ~3.2!

The formula generalizes the result of Kaganovet al.4 to the
case of an arbitraryr . The initial temperatureTe(0) can be
found from the equation

g

2
@Te

2~0!2Ts
2#5E0 , ~3.3!

whereE0 is the laser pulse energy absorbed by electrons,
g5p2/3N(0)kB

2 . As the excess energy diminishes, the el
tron temperature approaches the thermostat temperature
for Te(t)2Ts!Ts the relaxation ofTe(t) becomes exponen
tial:

Te~ t !2Ts}expF2
t

te~Ts!
G . ~3.4!

Note that in the case under consideration the character
times at the initial and final stages of relaxation differ co
siderably. Their ratio is of orderte(Te(0))/te(Ts)
5@Ts /Te(0)#31r!1.

In the limit of effectively thick films (tes@tpe), the pro-
cess of nonlinear relaxation of the electron temperatur
more complicated and can be separated into three stage
the first, initial, stage nonequilibrium phonons are emitted
‘‘hot’’ electrons, and the number of these phonons in the fi
increases, since they have no time to be reabsorbed by
trons or to escape to the substrate. The first stage last
aboutte(Te(0)), with the time dependence of the electro
temperature described by Eq.~3.2!. At the second, interme
diate, stage the electron–phonon system becomes ther
zed, i.e., the electron and phonon subsystems have the
temperatures. Thermalization of relatively thick films is d
scribed by Eq.~2.37!, where we must ignore the escape
phonons to the substrate and puta50 andb51:

ce~Te!
Te

dt
52E d3q

~2p!3 \vqnH nq~Te~ t !!2nq~Ts!

2E
0

t

dt8@nq~Te~ t8!2nq~Ts!!#ne2n~ t2t8!J .

~3.5!

Here integration is overt8.0, since for t8,0 we have
Te5Ts ; the initial value of the electron temperatur
Te(0), is specified by Eq.~3.3!. The sum of the last two
terms in braces is the phonon distribution function at timt
multiplied by21. With the passage of timet, the occupation
numbers of the phonon states increase, andnq(Te(t)) de-
creases, which makes the right-hand side of Eq.~3.5! vanish,
i.e., the electron temperature acquires its stationary va
We also note that Eq.~3.5! describes the relaxation of elec
tron temperature in a relatively thick film without the fam
iar simplifying assumption concerning the phon
temperature,4,13 since such an assumption is not justified
the temperature range of interest.
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sider, first and foremost, the case in whichr 521, since it
allows for a rigorous solution; the corresponding temperat
dependence of the inelastic electron–phonon collision rat
quadratic:te

21(Te) } Te
2 . What is important is that such

dependence was observed in a number of low-tempera
experiments~at T,20 K!, including studies of localized cor
rections to the resistance of thin films,9,23–25and of the fre-
quency dependence of the response of films in the resis
state to oscillations in the power of the heat source.10,16,26In
accordance with Eq.~2.25!, at r 521 the phonon–electron
collision rate is independent of the phonon wave vectorq.
This makes it possible to integrate over the vectorsq and in
this way to proceed from~3.5! to an equation forTe(t),
which in dimensionless variables has the form

4zQ
dQ

dx
52Q41E

0

x

Q4~x8!e2~x2x8!dx8. ~3.6!

Here x5npe(Te(0))t, z5ce(Te(0))/cp(Te(0)), and, in ad-
dition, it is assumed thatQ@QB , as in an effectively thin
film. By differentiating with respect tox we can reduce the
resulting integrodifferential equation to an ordinary differe
tial equation, which allows for reduction of order. The fin
equation

4zQ
dQ

dx
52Q412z~12Q2!. ~3.7!

Clearly, by setting the right-hand side of Eq.~3.7! to
zero, we arrive at an equation for the dimensionless temp
ture Q th5Tth /Te(0), which shows up in the electron–
phonon system as a result of the system’s thermalizat
Indeed, in the process of thermalization the laser pulse
ergy E0 absorbed by the film is redistributed among ele
trons and phonons, so that

g@Te
2~0!2Ts

2#5g~Tth
2 2Ts

2!

1 1
2@cp~Tth!Tth2cp~Ts!Ts#. ~3.8!

In the approximationTth
2 @Ts

2, this yields

Q th
4 22z~12Q th

2 !50 ~3.9!

which has the roots

Q1,2
2 52z6Az212z, ~3.10!

with Q th5Q1 ~sinceQ1.0!.
The solution of Eq. ~3.7! with initial condition

Q(0)51 and an arbitrary value ofz can be written

Q2~x!

5
Q1

2~12Q2
2!2Q2

2~12Q1
2!exp@2~x/2z!~Q1

22Q2
2!#

12Q2
22~12Q1

2!exp@2~x/2z!~Q1
22Q2

2!#
.

~3.11!

The behavior ofQ(x) is governed by a single parameter,z,
whose value is fixed by the initial electron temperatu
Te(0). If we introduce a temperatureT* such that
ce(T* )5cp(T* ) ~for ordinary metalsT* ;1 K!, then for
Te(0)@T* , z!1; in the opposite limitTe(0)!T* but
Te(0)@Ts ~it is difficult to realize this situation in experi
ments! we havez@1. From ~3.7! and ~3.11! it follows that
for small z, Q(x) first rapidly decreases in a characteris
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time te(Te(0))5ztpe , and then over a time
te(Tth);z1/2tpe acquires the stationary valueQ th'(2z)1/4.
Note that both time scales are much shorter than the cha
teristic phonon–electron collision timetpe . In the limit
z@1, the thermalization temperatureQ th'12z21, i.e., it
differs little from the initial temperature, and the charact
istic time it takes the system to become stationary coinci
with tpe . The functionQ(x) for several values ofz is de-
picted in Fig. 1.

Now assume thatr is arbitrary. As the analysis of th
case withr 521 shows, the duration of the thermalizatio
process atTe(0)@T* is governed by the electron–phono
collision time te(Tth), which is much shorter than th
phonon–electron collision time. This makes it possible
replace the exponential exp@2n(t2t8)# in Eq. ~3.5! by unity,
and to integrate over phonon wave vectors. As a result,
obtain an equation for the normalized temperatureQ(x)
~which is assumed high compared toQB!:

zQ
dQ

dx
52

Q51r

51r
1

Fr~31r !

~51r !2 E
0

x

dx8Q612r~x8!,

~3.12!

where

Fr5
4p4D612r

15~31r !F51r
2 .

In the first ~initial! stage of relaxation, we can neglect th
integral and obtain the solution~3.2! of the truncated equa
tion. SinceQ th!1, we can assume that the initial stage
relaxation provides the main contribution to the integral te
in ~3.12!, which means that in the integral we can replace
desired functionQ(x) by the functionQ0(x) of ~3.2!. Note
that

E
0

x

dx8Q0
612r~x8!5

51r

31r
@12Q0

31r~x!#. ~3.13!

If we now plug ~3.13! into ~3.12! and replaceQ0(x)
with Q(x), we obtain the ordinary differential equation

FIG. 1. Relaxation of the normalized electron temperature in the therm
zation of the electron–phonon system of an effectively thick film
r 521. The curves correspond toz50.02, 0.1, 0.3, 1, and 3~bottom to top!.
The horizontal asymptotes of the curves represent the respective ther
zation temperaturesQ th .
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which coincides atr 521 with the exact equation~3.6!,
since F2152. Strictly speaking, Eq.~3.14! is valid in the
region where the first term in the square brackets is con
erably larger than the second. At the same time we hope
the first term also correctly describes the behavior of
electron temperature in the region wherex is large, yielding,
in particular, the stationary value

Q th'~Frz!1/~51r !,

which for 21,r ,0 differs little from the value
Q th'(2z)1/4 that follows from the exact equation~3.9!.
~Note that forTe(0)@T* , the parameterz is much smaller
than unity.!

To find the characteristic system thermalization time
arbitrary values ofr , we examine the solution of Eq.~3.14!
for large values ofx. Expanding the right-hand side of Eq
~3.14! in powers ofQ185Q2Q th , we obtain a linear equa
tion for Q18 ,

z
dQ18

dx
52Q th

31rQ18 , ~3.15!

which implies that the electron temperature approaches
stationary valueTth exponentially, with a characteristic the
malization timet th;te(Tth).

Thus, in time t th following the absorption of a lase
pulse, the phonon distribution function over the entire fi
~except for a small region of thicknessstth! l pe near the
film/substrate interface! becomes a Bose distribution func
tion, and is characterized by a phonon temperature coin
ing with the electron temperature. Further relaxation of
excess energy does not disrupt the electron–phonon ther
ization process.

To analyze the last~third! stage in the cooling of an
effectively thick film, we examine a somewhat more gene
case, in which the powerW(t) absorbed by the film varies
considerably over time intervals much longer than the ch
acteristic electron–phonon collision timetpe , and we then
set W to zero. Here the time-integral term in Eq.~2.37! re-
duces to a local term. Indeed, fortes@tpe the kernel of the
integral decreases exponentially in timest2t8;tpe , so that
for slower variations ofW(t) we can expand the function
nq(Te(t8)) in powers oft2t8 and keep only the linear term
of the expansion. Integrating with respect tot8, we obtain, at
T5Te5Tp ,

@ce~T!1cp~T!#
dT

dt
5W~ t !2E d3q

~2p!3 V
a~q!sz

d

3@nq~T~ t !!2nq~Ts!#. ~3.16!

At moderate temperatures, withcp(T)@ce(T), i.e.,
T@T* , it is convenient to express the left- and right-ha
sides of Eq.~3.16! in terms of the phonon energy density

Ep~T!5E d3q

~2p!3 Vnq~T!. ~3.17!
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1156A. I. Bezugly  and V. A. Shklovski 



Separating integration over angles from integration over the
f
r

ra

ab

te

m
ys
r

r
in
hic
r

n–

d
re

n

c-
d

ia

T ~x!5@T ~0!2T ~`!#exp 2
x~11zs!

1T ~`!.

ov-

m-
o-

-

rgy
tic

ed,

the

ra-
-

absolute value of the wave vectorq on the right-hand side o
Eq. ~3.16!, we obtain a linear differential equation fo
Ep(T):

dE p~T~ t !!

dt
5W~ t !2

1

tes
@Ep~T~ t !!2Ep~Ts!#. ~3.18!

The solution of this equation can be written in the gene
form

Ep~T~ t !!5Ep~Ts!1@Ep~T~ t0!!2Ep~Ts!#

3expS 2
t2t0

tes
D1E

t0

t

W~ t8!expS 2
t2t8

tes
Ddt8,

~3.19!

with no restrictions imposed on the magnitude of the
sorbed powerW(t); the timet0;t th .

To describe relaxation of the excess energy of a hea
film in the last stage, we must setW(t) to zero in the solution
~3.19!. Here it becomes obvious that in the nonlinear regi
the exponentially relaxing quantity is the energy of the s
tem, rather than the temperature. The film temperature
laxes exponentially whenT(t)2Ts!Ts .

What we have just discussed refers to the nonlinear
laxation of electron temperature when the film is under
tense heating. However, experiments are possible in w
the film is heated by a low-intensity laser pulse. We now tu
to energy relaxation in a weakly nonequilibrium electro
phonon system, whereTe(0)2Ts!Ts .

After an effectively thin film has been weakly heate
the nonequilibrium addition to the electron temperatu
T1(t)5Te(t)2Ts , obeys the equation

te~Ts!
dT1

dt
52T1 , ~3.20!

which has a solution in the form of an exponential functio

T1~ t !5T1~0!expF2
t

te~Ts!
G . ~3.21!

In the case of initial low-intensity heating of an effe
tively thick film, the thermalization of the electrons an
phonons is described by the following integro-different
equation~cf. Eq. ~3.5!!:

ce~Ts!
dT1

dt
52E d3q

~2p!3 \vqn
dnq

dTs
FT1~ t !

2E
0

t

dt8T1~ t8!ne2n~ t2t8!G . ~3.22!

Let us first obtain the exact solution of Eq.~3.22! for
r 521, in which the phonon–electron collision raten is in-
dependent of the phonon wave vectorq. Differentiation with
respect to time transforms Eq.~3.22! to the differential equa-
tion

zs

d2T1

dx2 52~11zs!
dT1

dx
, ~3.23!

whose solution is
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l

1 1 1 F zs
G 1

~3.24!

Here the parameterzB is equal toce(TB)/cp(TB), and the
thermalization temperature is

T1~`!5T1~0!
zs

11zs
.

Thus, the duration of the thermalization process is g
erned by the electron–phonon collision timete(Ts) when
zs!1, and by the phonon–electron collision timetpe(Ts)
whenzs@1.

We now consider arbitrary values ofr in the limit
zs!1, where the system’s thermalization time is short co
pared totpe(Ts). This makes it possible to replace the exp
nential exp@2n(t2t8)# in Eq. ~3.22! by unity and obtain, after
differentiating with respect to time,

zs

d2T1

dx2 1
dT1

dx
2KrT150, ~3.25!

where

Kr5
4p4~612r !D612r

15~51r !2D51r
2 .

The solution of Eq.~3.25! that is bounded atx50 has the
form

T1~x!5T1~0!expF2S 1

zs
1Kr D xG . ~3.26!

Note that atr 521, K21 is equal to unity, i.e., the expres
sion in square brackets in~3.26! coincides with the power of
the exponential function in the exact solution~3.24!. This
solution correctly describes the initial stage in the ene
relaxation of the system, but leads to incorrect asympto
behavior asx→`. Correcting this deficiency, we use~3.24!
and ~3.26! to write the interpolation formula

T1~x!5@T1~0!2T1~`!#expF2S 1

zs
1Kr D xG1T1~`!,

~3.27!

which is valid for both small and large values ofx.
After the electron–phonon system becomes thermaliz

the film temperature relaxes exponentially:

T1~ t !5T1~ t0!expS 2
t2t0

tes
D , ~3.28!

whereT1(t0) coincides withT1(`)5zsT1(0), andt0 is of
the order of the system’s thermalization time. Combining
results~3.27! and~3.28!, we can write a single interpolation
formula for all stages of relaxation of the electron tempe
ture in an effectively thick film subjected to initial low
intensity heating:

T1~x!5T1~0!H ~12zs!expF2
~11zsKr !t

te~Ts!
G1zsJ
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. ~3.29!
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4. NONLINEAR RELAXATION OF THE ELECTRICAL
CONDUCTIVITY OF A COOLING FILM

The electron temperatureTe is not a quantity that can b
directly measured in experiments. At the same time, in
section we show that the time dependence of the elec
temperature,Te(t), can be studied indirectly by measurin
the relaxation dynamics of the electrical conductivity of
film. To this end, below we consider the case in which
weak ~‘‘measuring’’! direct current of average densit
^ j (z)&5 j 0 flows through a film that at timet50 is heated by
an energy pulseE0 . We assume thatj 0 is so low that we can
ignore heating of the film by the current.

Let the field strength have the formE(t)5E01E1(t),
whereE0 is the electric field att,0. The first term,E0 , is
determined by both the residual resistance of the film and
phonon contribution to the resistance of the film, whose te
perature is that of the heat bath.

Before proceeding with the rather cumbersome calcu
tions, we discuss the general plan for calculating the non
tionary component of the electric field,E1(t), by perturba-
tive techniques. Below we show~see Eq.~4.6!! that we have
the following expression for the current density averag
over the film thickness:

j 05@s01sph~ t !#E~ t !2s0t i

dE

dt
, ~4.1!

where the conductivity contains contributions from the sc
tering of electrons by impurities,s0 , and by phonons
sph(t). Since the current that passes through the film is fix
and is independent of the heating intensity, we can write

j 05@s01sph~Ts!#E05@s01sph~ t !#@E01E1~ t !#.
~4.2!

Here we have allowed for the fact that the term with t
dE/dt is small compared tos0E1 relative to the smallness o
the ratio t i /te!1 ~see below!. Since usually in films
s0@usphu and ~in our setting! the stationary component o
the electric field,E0 , is much larger than the time-depende
componentE1 , keeping only the main contribution we ca
arrive at a simple expression for the time-dependent com
nent of the field:

E1~ t !5E0

sph~Ts!2sph~ t !

s0
. ~4.3!

Thus, to calculateE1(t) we must find in explicit form the
phonon contribution to the electrical conductivity of the film
sph(t).

To find the relationship that linksE andTe in the non-
stationary case~the DC heating of a film is discussed in Re
5!, we plug the anisotropic part of the electron distributi
function defined by Eqs.~2.16!–~2.18! into the averaged cur
rent density~2.22!. If we allow for the explicit expression fo
the electron–phonon collision integral, we obtain
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m D 2 1

d E
0

d

dzE 2 d3k

~2p!3 E d3q

~2p!3 w~q!

3q~E–k!
] f 0

]«k
$@ f 0~V2«k!1N2q#

3d~«k1q2«k1V!

1@ f 0~«k1V!1Nq#d~«k1q2«k2V!%, ~4.4!

where the film’s residual conductivitys05n0e2t i /m, with
n0 the concentration of free electrons. To calculate the in
grals in Eq.~4.4!, we use a spherical coordinate system
which the polar axis is perpendicular to the film and t
azimuthal angle is measured relative to the current den
vector j0 .

Denoting the polar and azimuthal angles of the vectorq
andk by q1 ,w1 andq2 ,w2 , respectively, and allowing for
the fact thatNq is independent ofw1 , we integrate over
azimuthal angles. To this end, we note that if a functionF
depends on the difference of anglesw12w2 ,

E
0

2p

dw1E
0

2p

dw2 cosw1 cosw2F~w12w2!

5pE
0

2p

dc coscF~c!. ~4.5!

Next, employing the fact that~4.4! contains delta functions
we can integrate overc. The result of integration become
considerably simpler if we note that in the temperature ra
T.QD

2 /«F , where electron–phonon collision predomina
over electron–electron collisions,q/k;T/QD@s/vF . On
the basis of this inequality we can neglect the difference
the arguments of the delta functions and write

j 05s0E~ t !2s0t i

dE

dt
2

e2t i
2E~ t !

16p5md

3E
0

d

dzE k2dk
] f 0

]«k
E

21

1

dvE dq q2w~q!

3E
21

1

du@ f 0~V2«k!1 f 0~«k1V!

1Nq1N2q#
~uv1d!x~Y!

AY
. ~4.6!

Here Y5@(12u2)(12v2)2(uv1d2)#, d5q/2k,
u5cosq1, v5cosq2, andx(Y) is the Heaviside step func
tion ~x51 for Y.0 andx50 for Y,0!. Integration with
respect tov in ~4.6! is done according to the formula

E
v1

v2
dv

uv1d

AY
5pd~12u2!, ~4.7!
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where v1 and v2 are the roots of the equationY(v)50.
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Evaluation of the integral with respect tok yields the follow-
ing expression for the phonon contribution to the conduc
ity:

sph52
e2t i

2N~0!

32p2mkF

1

d E
0

d

dzE
0

qD
dq q3w~q!

3E
21

1

du~12u2!@R~V!1Nq1N2q#, ~4.8!

where

R~V!52E
2`

`

dj
d f0

dj
@ f 0~V2j!1 f 0~j1V!#

522nq~Te!12nq~Te!@11nq~Te!#
V

kBTe
. ~4.9!

The expression~4.8! splits into two terms in a natura
manner. Let us introduce the following quantities:

sph
~1!52

e2t i
2N~0!

24p2mkF
E

0

qD
dq q3w~q!

3nq~Te!@11nq~Te!#
V

kBTe
, ~4.10!

sph
~2!5

e2t i
2N~0!

32p2mkF

1

d E
0

d

dzE
0

qD
dq q3w~q!E

21

1

du~12u2!

3@2nq~Te!2Nq2N2q#. ~4.11!

Equation~10! gives the contribution to the film’s conductiv
ity associated with the scattering of electrons whose temp
ture is Te(t) by phonons with the same temperature. In t
time-independent uniform case,sph

(1) represents the familia
phonon contribution to the electrical conductivity, which f
w(q) } q is proportional toTe

5 ~Bloch–Grüneisen relation!. In
the general case~2.98!, wherew(q) } q11r , we have the fol-
lowing expression forsph

(1) :

sph
~1!~Te~ t !!52

~51r !D51re
2t i

2N~0!Cr

12p2mkF~\s!51r @kBTe~ t !#51r .

~4.12!

The corresponding addition to the film’s resistivity with a
lowance for the inequalityusph

(1)u!s0 and the explicit form
of Cr is given by the following formula:

rph
~1!52

sph
~1!

s0
2 5

~51r !D51rm
2m1

2

12p3\7rs4~n0es!2 @kBTe~ t !#51r .

~4.13!

The phonon contributionsph
(2) is finite when the phonon

distribution function averaged over the film thickness diffe
from nq(Te). The reason for this difference in the time
independent case is the nonuniformity of the phonon dis
bution function, related to phonon escape to the substr
Under time-dependent conditions, the dynamics of the p
non distribution function may provide another reason for
above-noted difference.

Plugging the expression for the phonon distributi
function into~4.11! and integrating with respect toz, we get
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0

3H nq~Te~ t !!nq~Ts!2E
0

t

dt8@nq~Te~ t8!!

2nq~Ts!#ne2n~ t2t8!b [ t]~12a$t%!J , ~4.14!

with Te(t) generally specified by Eq.~2.37!. The rather com-
plicated dependence of~4.14! on u5cosq1 is due primarily
to the general nature of this expression, which holds for
arbitrary relationship betweend and l pe . The matter simpli-
fies considerably when the limiting cases are examined.
instance, for an effectively thin film, where there is almo
no phonon reabsorption by electrons, we haveNq'nq(TB),
and Eq.~4.14! yields

sph
~2!@Te~ t !#5

D51re
2t i

2N~0!Cr

12p2mkF~\s!51r kB
51r@Te

51r~ t !2Ts
51r #.

~4.15!

Combining this result with~4.12!, we find that for effectively
thin films

sph52
D51re

2t i
2N~0!Cr

12p2mkF~\s!51r kB
51r$~51r !Ts

51r1~41r !

3@Te
51r~ t !2Ts

51r #%. ~4.16!

We have written~4.16! in such a way so as to isolat
explicitly the contribution to the film’s conductivity deter
mined by electrons that are heated in relation to the ‘‘col
phonons, whose temperature is that of the heat bath,Ts ~the
last term in the braces!; this contribution is characteristic o
the electron overheating regime. The fact that this contri
tion to conductivity tracks the electron temperature adiab
cally, i.e., without a time lag, is directly related to the abov
noted stationarity of the phonon distribution function in t
electron overheating regime. One must also bear in mind
the result~4.16! holds for an arbitrary functionTe(t), which
means that it can be used to describe conductivity relaxa
after pulsed heating as well. Plugging the characteri
electron–phonon collision time into~4.16!, we obtain

sph~Q~ t !!52
p2s0t i

3~51r !te~Te~0!! FTe~0!

QD
G2

3@~41r !Q51r~ t !1QB
51r #. ~4.17!

Here the factor@Te(0)/QD#2 reflects the familiar idea that a
low temperatures the contribution of electron–phonon co
sions to the film’s resistance is ineffective. The time dep
dence of the dimensionless temperature in~4.17!, Q(t), is
determined by Eq.~3.1!.

Plugging~4.17! into ~4.3! yields ~for an effectively thin
film!

E1~ t !5E0

~41r !p2t i

3~51r !te~Te~0!! FTe~0!

QD
G2

3@Q51r~ t !2QB
51r #.
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FIG. 2. Relaxation of the normalized correctio
to the electric field that emerges in an effe
tively thin film after pulse heating on linear~a!
and logarithmic~b! scales. The left curve corre
sponds to strong initial heating,Qs5Ts /
Te(0)50.2; the middle curve to moderate hea
ing, Qs50.5; and the right curve represents th
relaxation of e1 in the case of low-intensity
heating,Qs50.9.
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intense heating, where in the initial stage of electron cool
Q(t)@Qs andQ(t) is given by formula~3.2!, conductivity
relaxation obeys a power law. Here the nonstationary co
ponent of the electric field in the film has the form

E1~ t !5
~41r !p2E0t i

3~51r !te~Te~0!! FTe~0!

QD
G2

3F11
31r

51r

t

te~Te~0!!G
2~51r !/~31r !

. ~4.18!

If the initial heating of the electrons is weak an
Q(t)2Qs!Qs , the nonstationary response of a thin fil
can be written, on the basis of~3.21!, as

E1~ t !5~41r !s0rph~Ts!
T1~0!

Ts
expF2

t

te~Ts!
GE0 .

~4.19!

Hererph(Ts) is the phonon contribution to the resistivity o
the film at the temperature of the heat bath:

rph~Ts!5
p2m

3n0e2te~Ts!
S Ts

QD
D 2

.

Thus, measurements of the time dependence ofE1 in the
case of low-intensity heating provide important informati
about the temperature dependence of the electron–ph
collision time and, correspondingly, about the frequency
pendence of the Eliashberg function.

For the special caser 521, Eq.~3.1! can be integrated
which makes it possible to write the relative value of t
nonstationary component of the electric field explicitly:

e1~ t !5
E1~ t !

E1~0!
5

Qs
2

12Qs
4

3H F ~11Qs
2!1~12Qs

2!exp@2t/te~Ts!#

~11Qs
2!2~12Qs

2!exp@2t/te~Ts!#
G2

21J
5Qs

4S Qs
2 cosh

t

2te~Ts!
1sinh

t

2te~Ts!
D 22

. ~4.20!
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heating of a thin film, i.e., for any valueQs,1. The function
e1(t) for Q50.2, 0.5, and 0.9 is depicted in Fig. 2.

To analyze the nonlinear relaxation of the conductivi
of an effectively thick film, we write the conductivity as a
sum of two terms,sph5sph

(1)1sph
(2) , wheresph

(1) andsph
(2) are

given by~4.12! and~4.14!. The reader will recall thatsph
(1) is

the contribution to the film conductivity related to the sca
tering of electrons whose temperature isTe(t) by phonons
with same temperature. The contributionsph

(2) reflects the de-
viation of the phonon distribution function from the therma
ized one. The general expression forsph

(2) can be made sim-
pler if we consider the different stages in the energ
relaxation. For instance, in the first two stages, in whic
electrons primarily emit nonequilibrium phonons, and the
mal equilibrium between electrons and phonons sets in d
to reabsorption of these phonons, we can ignore the esc
of phonons to the substrate and puta50 andb51 in ~4.14!.
Then

sph
~2!5

e2t i
2N~0!

12p2mkF
E

0

qD
dq q3w~q!H nq~Te~ t !!2nq~Ts!

2E
0

t

dt8@nq~Te~ t8!!2nq~Ts!#ne2n~ t2t8!J .

~4.21!

Plugging

w~q!5
2p2\3

m2s
n~q!

into ~4.21! and comparing the result with~3.5!, we arrive at
a simple formula:

sph
~2!~ t !5

e2t i
2

6m2s2 ce~Te~ t !!
dTe

dt
. ~4.22!

On the basis of Eq.~3.14!, which holds forTe(t)@Ts, we
can express the right-hand side of this expression in pow
of the electron temperature:

sph
~2!~Te~ t !!5

D51re
2t i

2N~0!Cr

12p2mkF~\s!51r kB
51r H Te

51r~ t !

1160A. I. Bezugly  and V. A. Shklovski 



2
5FrN~0!\3s3

@T31r~0!2T31r~ t !# .

n
a
om

r

e
m

no

e
i

e

k,

If we now use Eq.~4.3! and allow for the dynamics of pho-
rt of
n
ion

in
ac-

e-
een

se
in
e-
he
m-

ion
e

n

ra-
of

x-

o-
hat
, is
ted
ate.
de-
the

re-
rom

ent

eat
rate
a

2kB
2 e e J

~4.23!

Combining the two contributions insph and going over to
the normalized temperature, we obtain

sph~Q~ t !!52
p2s0t i

3~51r !te~Te~0!! FTe~0!

QD
G2

3@~41r !Q51r1Frz~12Q31r !#, ~4.24!

where theQ(t) is given by Eq.~3.14!.
In the last stage of energy relaxation, the electro

phonon system of an effectively thick film becomes therm
ized, i.e., the electron and phonon temperatures bec
equal. In this case we can drop the contributionsph

(2) and
assume thatsph5sph

(1)(T(t)). The dynamical equation fo
the temperatureT follows from ~3.19! if we putW(t)50 and
express the energyE p in terms of temperature:

Ep5
p2kB

4T4

30\3s3 . ~4.25!

As a result we arrive at an equation forT(t),

T~ t !5FTs
41~Tth

4 2Ts
4!expS 2

t2t0

tes
D G1/4

, ~4.26!

in which the timet0 is of the order of the thermalization tim
for the electron–phonon system of an effectively thick fil
t th , and the thermalization temperature is given by

Tth5Te~0!@~z212z!1/22z#1/2. ~4.27!

Thus, in the last stage of relaxation of the electron–pho
system,

sph~ t !52
p2s0t i

3te~T~ t !! FT~ t !

QD
G2

, ~4.28!

whereT(t) is given by Eq.~4.26!.
It can be shown that for an effectively thick film the tim

dependence of the relative value of the electric response

e1~ t !5Q51r1Frz
12Q31r

41r
~4.29!

in the first two relaxation stages~the normalized temperatur
Q(t) is the solution of Eq.~3.14!!, and

E1~ t !5E0

p2t i

3te~Ts!
S Ts

QD
D 2H FT~ t !

Ts
G51r

21J ~4.30!

in the third stage. HereT(t) is given by Eq.~4.26!.
When the heating of an effectively thick film is wea

plugging~3.24! into Eqs.~4.12! and~4.22! yields an expres-
sion for the first two relaxation stages:

sph~ t !5sph~Ts!2
p2s0t i

3te~Ts!
F Ts

QD
G2 T1~0!

Ts

3H ~41r !expF2
~11zsKr !t

te~Ts!
G1~51r !zsJ .

~4.31!
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non escape to the substrate, for the time-dependent pa
the electric field,E1(t), we can easily obtain an interpolatio
formula suitable for describing all three stages of relaxat
of the electron energy:

E1~ t !5E0s0rph~Ts!
T1~0!

Ts

3H ~41r !expF2
~11zsKr !t

te~Ts!
G

1~51r !zsJ expS 2
t

tes
D . ~4.32!

Thus, for an effectively thick film,E1(t) has a characteristic
biexponential form with very different time constants.

5. DISCUSSION OF THE EXPERIMENTAL SITUATION

Experiments on the energy relaxation of electrons
metals usually study either variations in the optical char
teristics of films~for example, the reflection coefficient!1–3

or the dynamics of the film’s electrical resistance. The tim
dependent correction to the resistance of thin films has b
measured primarily for pulsed heating~see, e.g., Refs. 27–
30!. In accordance with the results of Sec. 4, in inten
pulsed heating of effectively thick films and effectively th
films there should be an initial power-like relaxation of r
sistance with a characteristic time of the order of t
electron–phonon interaction time at the initial electron te
perature, i.e.E1(t) } 12t/te(Te(0)) ~see Fig. 2a!. This im-
plies that, knowing the initial asymptotic behavior ofE1(t)
from experiments, we can find the electron–phonon collis
time te(Te(0)). Here the phonon–electron collision tim
tpe(Te(t)) can be found on the basis of Eq.~2.48! by mul-
tiplying te(Te(0)) by theratio of the phonon and electro
specific heats,cp(Te(0))/ce(Te(0)). Note that for a thin film
the electron-phonon collision time at the heat bath tempe
ture, te(Ts), can be found from the asymptotic behavior
e1(t) for t@te(Te(0)) ~see Eq.~4.20! and Fig. 2b!. Thus, a
thin-film relaxation experiment provides the means for e
tracting the ‘‘initial’’ and ‘‘final’’ relaxation times over a
broad temperature range by varyingTs and the intensity of
the initial heating.

In effectively thick films, the fast component of the ph
toresponse, which is related to the thermal equilibration t
takes place between electrons and phonons in the film
replaced by the slow bolometric component, which is rela
to the escape of nonequilibrium phonons to the substr
Because of the finite temporal resolution of experimental
vices, a researcher can usually accurately observe only
relaxation of the bolometric component of the photo
sponse, yielding the average time of phonon escape f
film to substrate,tes ~see Refs. 29 and 30!. One of the pos-
sible ways of observing the fast photoresponse compon
~4.34! is to reduceTs , since then~in low-intensity heating!
the electron–phonon relaxation time grows sharply.

In this paper we assumed that the ballistic regime of h
removal is realized, i.e., phonons emitted into the subst
do not return to the film.~The conditions under which such
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regime is possible were discussed in the concluding section
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of Ref. 5.! At the same time, in thick films, where there is n
heat outflow and the transparency of the film/substrate in
face is close to unity, the flux of nonequilibrium phono
returning to the film from the substrate proves to be cons
erable. Experiments31 have shown that the flux of ‘‘return
ing’’ phonons leads, over long timest@t r , to a transition
from the ballistic regime of heat removal to the diffusio
regime, i.e., from the exponential relaxation of the film te
perature to a power-law relaxation~proportional tot21/2!.
The time t r;tpi,s /^a&2 is the characteristic time of non
equilibrium phonon return to film from substrate~tpi,s is the
elastic phonon scattering time in the substrate!.31

6. CONCLUSION

The main object of study in this work was the low
temperature (Te!QD) dynamics of the phonon relaxation o
‘‘hot’’ electrons in a metallic film on a substrate of an ins
lator characterized by high thermal conductivity. The phys
of the problem clearly shows that energy relaxation play
key role in forming the response of the electron–phon
system under time-dependent electron heating. To ana
the relaxation dynamics of the system by theoretical me
ods, we examined~in Sec. 2! a fairly simple but otherwise
realistic microscopic model based primarily on the conc
of a time-dependent electron temperature. The main fea
of this model is the possibility of consistently describin
phonon dynamics in the film, using the language of nonu
form and nonstationary phonon distribution functions wi
out employing a commonly adopted~and often uncontro-
lable! simplifying assumption concerning the phono
temperature. This feature of our approach makes it poss
to analyze phonon kinetics in all the basic stages in the e
tron relaxation process.

Another feature of our model is the use of the fair
general relationship~2.98!, which describes the frequency d
pendence of the matrix element of the electron–phonon
teraction, which is actually equivalent to the assumption t
the frequency dependence of the spectral function of
electron–phonon interaction~the Eliashberg function! is ar-
bitrary. We believe that the latter feature makes it possible
compare the theoretical results of this work with experim
tal data in the fairly simple cases in which the Eliashbe
function of a real metallic film differs from the standa
Eliashberg function.

We also note that using an arbitrary frequency dep
dence of the Eliashberg function makes it possible not o
to analyze the experimental data but also to obtain in
typical case ofr 521 for ‘‘contaminated’’ films an exact
analytic solution of the problem of the energy relaxation
electrons in the thermalization stage. The exact solution
tained in Sec. 3 can serve as a basis for verifying appr
mate~within the same model! solutions withr Þ2 1.

Here is a brief list of the stages in our approach. T
basis for our calculations was a system of two nonlinea
coupled ~through collision integrals! nonstationary kinetic
equations for the electron and phonon distribution functio
~Eqs. ~2.1! and ~2.2!, respectively! and a thermal balanc
equation~Eq. ~2.21!! that follows from the system. The mai
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lytic solution of this complicated nonstationary and nonline
problem was the assumption~often justified; see Sec. 2! that
under conditions of predominant elastic electron scatter
the desired electron distribution function is of the Fermi ty
with a temperatureTe(t) that is time-dependent and uniform
over the film thickness.

The latter is justified in view of the high electron~in
comparison to phonon! thermal conductivity of good~i.e.,
uncontaminated! metals. All this made it possible to obtain
closed ~in terms of Te(t)! analytic solution of the linear
equation~2.29! for the time-dependent and nonuniform ph
non distribution function~see~2.34! and ~2.35!! without a
priori assumptions concerning the form of this functio
Plugging this solution into the thermal balance equat
~2.21!, we arrived at a closed integrodifferential equati
~Eq. ~2.37!!, the main result of this paper needed for furth
studies. The solution of this equation makes it possible
analytically describe the main stages in the evolution
Te(t) at the microscopic level~Sec. 3!. SinceTe(t) cannot be
observed directly, we suggested using the related temp
behavior of the total conductivity of the film,s(t), as an
‘‘indicator’’ for Te(t). In Sec. 4 we derived the necessa
formulas and analyzed their asymptotic behavior in a num
of interesting~from our viewpoint! experimental situations.
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Stimulation effect in anisotropic superconductors

-

A. V. Galaktionov

P. N. Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Russia
~Submitted 16 September 1996!
Zh. Éksp. Teor. Fiz.111, 2134–2146~June 1997!

The stimulation of superconductivity in anisotropic superconductors by electromagnetic and
acoustic pumping as well as by the injection of a tunnel current at temperatures close to the
superconducting transition temperature is studied. The features distinguishing the stimulation
effect from the isotropic case are indicated. ©1997 American Institute of Physics.
@S1063-7761~97!01506-0#
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The stimulation of superconductivity in ordinary isotr
pic superconductors was in its time the subject of a la
number of theoretical and experimental investigations~see
the reviews Refs. 1 and 2!. The stimulation effect, first stud
ied by Eliashberg,3,4 is a physically transparent example
the nonequilibrium properties of a superconductor that
be directly checked experimentally. Such a check is und
stood to mean an increase produced in the supercondu
gap by a change in the quasiparticle distribution funct
under the action of electromagnetic pumping, a powe
sound wave, injection of a tunneling current, and so on.
example, if the frequencyv of the external electromagneti
radiation is less than twice the superconducting gap 2D, then
new excitations cannot be created, while existing excitati
are redistributed into the region of higher energies. In
self-consistency equation

1

g
5E

D

vD
de

122ne

Ae22D2
~1!

the quasiparticle distribution functionne decreases in the
characteristic region of integration, i.e., the superconduc
gap increases.

The magnitude of this effect is governed by the ra
v/D. In the case of anisotropic pairing, where the gap at
Fermi surface varies, it can therefore be expected that
stimulation effect will have a different frequency depe
dence. The fact that the coherence factors averaged ove
Fermi surface~see, for example, Ref. 5!, which appear in the
expression for the electromagnetic absorption, are subs
tially different for a superconductor with an anisotropic g
whose sign varies over the Fermi surface must also be ta
into account.

Similarly, the elastic relaxation time in anisotrop
superconductors6 is different from that in the isotropic case
It will be assumed below that there exists a symmetry tra
formation of the normal state of a metal under which t
superconducting order parameter changes sign. Such s
conducting ordering probably occurs in certain compou
with heavy fermions~see the review in Ref. 7!. Likewise, the
possibility of d-type pairing in high-Tc superconductivity
has been widely discussed recently in the literature. Exp
ments on the measurement of the magnetic flux in a th
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Tc compounds, and other measurements attest to this p
sibility.

For simplicity, we assume that the Fermi surface is c
lindrical or spherical and that the pairing is a singlet pairin
The type of interelectronic interaction leading to anisotro
superconductivity is not important for the questions exa
ined in this paper~we call the carrier of this interaction
‘‘boson’’ !. In Sec. 2, superconducting stimulation under t
action of electromagnetic and acoustic pumping is cal
lated. It is shown that under electromagnetic pumping,
stimulation effect has a sharper maximum as a function
the radiation frequency~compared with the isotropic case!. A
sound wave with frequencyv.2D suppresses supercondu
tivity in an isotropic superconductor, while in the anisotrop
case the stimulation effect is positive over the entire exp
mental frequency range. Stimulation of superconductivity
tunneling injection is studied in Ref. 3. Since the probabil
of tunneling through an insulating barrier between superc
ductors depends on the direction of the momentum at
Fermi surface, the stimulation effect depends on the orie
tion of the plane of the tunnel junction. In the isotropic ca
the stimulation effect vanishes for voltage
ueVu.uDu1uD8u ~whereD8 is the gap in the superconducto
with which the stimulated sample is in contact!, whereas in
the anisotropic case there is no threshold voltage, and
high voltages the effect can be either positive or negat
depending on the orientation.

2. ELECTROMAGNETIC AND ACOUSTIC STIMULATION

Let the superconducting sample be a thin film in go
acoustic contact with a substrate with high thermal cond
tivity ~i.e., the substrate can be treated as a heat bath!. The
film thicknessd is assumed to much less than both the s
depth and the London penetration depth at fixed temperat
Thus, the electromagnetic field can be assumed to be
form in the film. Nonetheless, the thicknessd must be much
greater than the temperature-dependent coherence le
j(T) ~since near a boundary the order parameter of an
tropic superconductor varies over a characteristic sc
j(T)12,13!. By virtue of the latter condition, boundary effec
can be neglected and it can be assumed that the gap w
equals the bulk value.

It will be assumed below that the temperature is close
the superconducting transition temperatureTc , so that the

11647$10.00 © 1997 American Institute of Physics



gap is small compared withT. The frequencyv of the inci-
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dent radiation is also assumed to be much less thanT but, at
the same time, much greater than the reciprocalg of the
inelastic relaxation time. On account of the latter conditio
radiation absorption is mainly a one-photon process.2,3 Since
elastic scattering by impurities destroys anisotropic sup
conductivity, we require that the reciprocal 1/t of the relax-
ation time satisify 1/t!T, but we nonetheless assume th
1/t@g. Both the electron–electron interaction;T2/eF and
the electron–boson interaction, likewise characterized b
power of the temperature higher than the first pow
(T3/vD

2 for phonons!, make the main contribution tog.
Thus, at sufficiently low temperatures~corresponding to
small coupling constants! and pure metals, the hierarchy

g !1/t !T, ~2!

is possible and will be used below. In standard lo
temperature superconductorsg;107– 109 s21. Anticipating
that the electron–phonon interaction is important for desc
ning the properties of Y–Ba–Cu–O compounds,g can be
estimated14 to be 1013 s21 in the case of optimal doping. Thi
is determined by the proportionalityg } T for T.vD/2p and
g } T3/vD

3 in the opposite limit. Since in this compoun
vD;600 K, the estimateg;T is valid in the case of opti-
mal doping.14 If the electron–phonon interaction is impo
tant, the hierarchy~2! can be realized only in the case
nonoptimal doping. The plasma frequency in a high-Tc su-
perconductor is;1 eV,15 so that the contribution;T2/eF to
g is much smaller.

We defineI (e) to be the rate of change of the number
quasiparticles, normalized to the density of statesN(0) in the
normal metal, with energye and a prescribed direction o
spin per unit volume. The problem of finding the rateI under
the action of an electromagnetic pump is equivalent to
problem of finding the real part of the conductivity~i.e., the
absorption! for the case of anisotropic superconductors
Ref. 16. The result obtained in Ref. 16 can be underst
using a qualitative approach,5 which leads to the Mattis–
Bardeen formula in the case of ordinary superconductors

The electromagnetic interaction Hamiltonian has
structure

H8}(
p

A~p1p8!ap8
1 ape

2 ivt1c.c. ~3!

HereA is the vector potential. The electric fieldE in the case
of a cylindrical Fermi surface is assumed to be radial. Ne
the expression~3! can be rewritten in terms of Bogolyubo
quasiparticles, usingup and vp ~if D(T)@1/t, these quasi-
particles are well defined!, and the standard coherence fa
tors for the electromagnetic absorption can be used:5

l ~p,p8!5~p1p8!k~upup8
* 1vp* vp8!,

f ~p,p8!5~p1p8!k~vpup8
* 2up* vp8!. ~4!

The subscriptk denotes the direction of the electric field. Th
first coherence factor corresponds to processes witho
change in the number of quasiparticles, and the second
refers to processes with a change in the number of quas
ticles by 2. Free electrons cannot absorb photons becau
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energy and momentum at the same time. The absorptio
light is associated with scattering by impurities, and the
herence factorsu l u2 andu f u2 must therefore be averaged ov
the Fermi surface~bearing in mind the momentum depe
dence of the density of states!. Performing this procedure fo
quasiparticle states with energiese ande8 ~in so doing, states
with momenta greater and less than the Fermi momenta m
be taken into account!, we arrive in the case of an isotropi
superconductor at the possibility of the following substit
tions for the coherence factors in the expressions for
absorption and emission probabilities:

u l u25~pk
21pk8

2!S 11
D2

ee8D ,

u f u25~pk
21pk8

2!S 12
D2

ee8D . ~5!

However, in the case of anisotropic pairing, when a sy
metry transformation under which the gap changes sign
ists,

u f u25u l u25~pk
21pk8

2!. ~6!

We note that the term containingpkpk8 vanishes since
^pkD(p)&50, where the average is taken over the Fermi s
face. This condition~which holds for singlet pairing! appears
in Ref. 16 as a criterion for the possibility of neglectin
renormalization of the electromagnetic interaction vertex a
result of scattering by impurities. As usual, in the calculati
of transitions from the initial statei to a final statef , in the
linear approximation in the pump power, the populationn of
the levels must be taken into account. The decrease in
distribution function as a result of absorption is proportion
to 2ni(12nf), and the increase due to absorption is prop
tional to nf(12ni), so that the effect as a whole will b
proportional to nf2ni ~spontaneous emission can be n
glected!.

Thus, if the coherence factors~5! are used, we obtain in
the isotropic case

I ~e!5
s~v!E2

2N~0!v2 neFu~e2v!ne2v~ne2v
0 2ne

0!

3S 11
D2

e~e2v! D2ne1v~ne
02ne1v

0 !

3S 11
D2

e~e1v! D1u~v2e!nv2e~12nv2e
0 2ne

0!

3S 12
D2

e~v2e! D G , ~7!

which agrees with Ref. 1. Heres~v! is the conductivity of
the normal metal,ne5eu(e2D)(e22D2)21/2 is the super-
conducting density of states normalized toN(0), and
ne

05@11exp(e/T)#21. The coefficient of proportionality was
based on absorption in the normal state.

To derive I in the anisotropic case, it is convenient
introduce the definition

b~e,e8!5@^n~p,e!pk
2&^n~p8,e8!&1^n~p,e!&
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3^n~p8,e8!pk8
2&#/2^pk

2&. ~8!
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Here^g&5*gd2S/*d2S, where the integration extends ov
the Fermi surface,

n~p,e!5
eu~e2D~p!!

Ae22D2~p!
,

and the notation̂ n(p,e)&5ne has been introduced. Usin
the definition ~8! and the expression~6!, we have in the
anisotropic case

I 5
s~v!E2

2N~0!v2 @u~e2v!b~e2v,e!~ne2v
0 2ne

0!

2b~e1v,e!~ne
02ne1v

0 !

1u~v2e!b~v2e,e!~12nv2e
0 2ne

0!#. ~9!

Defining b(6e,6e8)5b(e,e8), the expression for the rea
part of the conductivity in an anisotropic superconductor c
be written, in agreement with Ref. 16 as,

sS~v!

s~v!
5

1

v E
2`

`

deb~e2v,e!~ne2v
0 2ne

0!. ~10!

It is easy to show thatI can be characterized by th
energy scalesv andD. Thet approximation for the collision
integral is valid in the case when the variation of the eq
librium distribution function is localized in an energy inte
val much less thanT near the Fermi surface.1,4 The change in
the distribution function enters into the collision integral e
ther as a factor or in the integrand. But since the charac
istic integration scale isT, the integrated perturbation of th
distribution function has the additional smallness;v/T,
D/T as compared with the contributions to the collision
tegral where the change in the distribution function enters
a multiplicative factor. Since the reciprocalg of the energy
relaxation time is much less than the reciprocal of the im
rity scattering time,g does not depend on the direction of th
momentum at the Fermi surface. Likewise, coherence fac
do not enter into the expression forg, since particles with
energy;T for which D2/ee8'0 participate in energy trans
fer. Thus, the changedne in the distribution function is

gdnene5I . ~11!

Substitutingdne into the self-consistency equation

D~p!52
1

2 (
p8

V~p,p8!D~p8!
122ne822dne8

ep8
, ~12!

we obtain

Tc2T

Tc
^uD~p!u2&2

7z~3!

8p2T2 ^uD~p!u4&

22E
0

`

~ene2Fe!dnede50. ~13!

In Eq. ~12!, ep5(j21uD(p)u2)1/2 ~herej5vFup2pFu! and
V(p,p8) is the pairing potential, and in~13! we have intro-
duced the notation
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The derivation of Eq. ~13! employed the equality
^uDu2/j&5ene2Fe , where the averaging occurs over a lev
with fixed energye. The expression~13! has the same form
as the ordinary Ginzburg–Landau equation with an ad
tional nonequilibrium term. The dynamical contributio
A2uDu2 can be neglected ifvt!Tc /g ~it is assumed that
vt@1!. The latter condition does not impose any addition
constraints, since it is a consequence of the preceding co
tions v!Tc andt!1/g.

The functionb(e,e8) simplifies in the case of a cylin
drical Fermi surface, if a rotation by an anglep/2 around the
axis of the cylinder does not change the magnitude of
gap. This happens, for example, when the order param
transforms according to a nontrivial irreducible represen
tion of the groupD4h . Then

b~e,e8!5nene8 . ~14!

Since the characteristic values of the energy in Eq.~9! are
much smaller thanT, the equilibrium distribution function
can be expanded and we arrive at the following equation

Tc2T

Tc
2bD0

2~T!1kFS D0~T!

v D50. ~15!

where D0(T) is the amplitude of the gap, i.e
D(p,T)5D0(T)f(p) (uf(p)u<1). The functionF is given
by

FS D0

v D5
1

^uD~p!u2& E0

`

~ene2Fe!~ne1v2ne2v!de,

~16!

wheren2e5ne by definition, and

k5
s~v!E2

4gvTN~0!
. ~17!

Thus, the frequency dependence of the nonequilibri
term is determined by an integral transformation of the d
sity of states. The conditionvg/g8!T must be satisfied in
order that the suppression of superconductivity by heating
the superconducting film not exceed stimulation~15!. Here
g8 is the reciprocal of the energy relaxation time under
conditions of heat exchange with the heat bath, and, ge
ally speaking, can be less thang.

For largex

F~x!5
1

x^uf2~p!u& E0

`

~ny21!2dy. ~18!

In this expression the density of states is represented
function of the dimensionless variabley5e/D0 . Further-
more, the equality

E
0

`

~ny21!dy50

was used.
The integral in Eq.~18! converges in the case of isotro

pic pairing, but diverges if the gap is isotropic, so that f
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ordinary superconductors the asymptotic behavior is dif
ent:F(x) } ln x/x. For small values ofx we have to logarith-
mic accuracy

F~x!5
1

2
^uf2~p!u&x2 ln

1

x
, ~19!

while in ordinary superconductorsF(x) } x.
This difference is due to the different values of the a

eraged coherence factorsu l u2 andu f u2 in the anisotropic case
It can be shown that the asymptotic behavior} 1/x for
x@1 and} x2 ln(1/x) for x!1 remains in the general aniso
tropic case, if there exists a symmetry transformation un
which the order parameter changes sign. Thus, for smax,
the nonequilibrium term in the Ginzburg–Landau equation
much smaller than in the isotropic case.

The functionF(x) for a cylindrical Fermi surface and
for D(w)5D0 cos 2w is displayed in Fig. 1. In this figure
F(x) decreases much more rapidly forx,xmax than in the
isotropic case. We also note that in the isotropic case
stimulation effect is maximum forv52D0 , whereas in the
special case at hand this occurs atv5D0 . At the same time,
the maximum of the differential conductivityd j /dV in
superconductor–superconductor tunneling junctions in b
anisotropic and isotropic cases occurs ateV52D0 for both
diffuse17 and specular13 reflection at the boundary.

The stimulation effect can probably be studied expe
mentally, as in ordinary superconductors, by measuring
critical field of a film at temperatures belowTc . Since the
film thickness in the anisotropic case must be greater t
j(T), metastability makes measurements of the stimula
effect aboveTc inopportune.

We now examine stimulation of superconductivity by
powerful sound wave. The deformation potential describ
the interaction with longitudinal sound~see, for example
Ref. 18! is of a scalar character and depends on the ma
tude of the transferred momentum. If the wavelength
sound is much greater than the electron mean free path~we
note that the mean free path in high-Tc superconductors is
short, and this ratio can be assumed to hold!, then sound
absorption is of a diffuse character18 and is accompanied b
scattering by impurities.

FIG. 1. Nonequilibrium termF ~16! in a superconductor with a cylindrica
Fermi surface andD(w)5D0 cos 2w.
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different from those for electromagnetic absorption. They
determined by the expressions5

q~p,p8!5upup8
* 2vp* vp8 ,

m~p,p8!5vpup8
* 1up* vp8 . ~20!

The first factor, once again, corresponds to processes wit
a change in the number of quasiparticles, and the sec
factor corresponds to processes with a change in this num
by 2. After averaging over the Fermi surface

uqu25umu251, ~21!

in the anisotropic case and

uqu2512
D2

ee8
, ~22!

in the isotropic case

umu2511
D2

ee8
.

In the acoustic pumpI in the isotropic case, besides th
coefficient of proportionality, the sign of the terms contai
ing D2 in Eq. ~7! must therefore be changed. For anisotrop
superconductors the stimulation effect can be describ
once again, by~15! and ~16! with k replaced byk8

k85
W

4gvTN~0!
, ~23!

whereW is the absorbed sound power per unit volume.
In the isotropic case1 with v.2D0 the stimulation effect

decreases abruptly and becomes negative, whereas in th
isotropic case it is positive over the entire frequency ran
studied. This is due to the different values ofuqu2 andumu2 in
the anisotropic case.

3. TUNNELING STIMULATION

In the Ginzburg–Landau equation, the nonequilibriu
term describing the previously studied electromagnetic
acoustic stimulation is characterized by the parame
D0 /v. In the case of stimulation by a tunneling current, t
magnitude of the effect is determined by two paramete
D0 /eV andD0 /D08 , whereeV is the voltage applied to the
junction andD08 is the superconducting gap in the superco
ductor with which the experimental sample forms a junctio
This makes for additional experimental possibilities. A d
scription of the measurement scheme is given in Ref. 1.

In the anisotropic case, a substantial simplification d
to the possibility of relaxation of the electron–hole imba
ance by the method of impurity scattering arises.19 If the
superconducting gap changes sign at the Fermi surface,
the reciprocal of the imbalance relaxation time fore;D0 can
be estimated to beg imb;1/t. When the hierarchy~2! holds,
the pumping of the electron and hole branches at fixee
must therefore be averaged in order to findI (e). The func-
tion I (e) will thereby have the same structure as in the sy
metric scheme~see Fig. 1! of stimulation of isotropic super-
conductors:
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2V N~0! vx.0 ~2p!3vF
x

3@n~p,e!n8~p,e2eV!~ne2eV8 2ne!

1n~p,e!n8~p,e1eV!~ne1eV8 2ne!#. ~24!

The plane of the tunneling junction is assumed to
perpendicular to thex axis, and the integration in Eq.~24!
extends over the half of the Fermi surface withvx.0.
Primed quantities refer to the second superconductor form
the junction,A is the area of the junction,D(p̂) is the trans-
mission coefficient of the tunneling barrier for an electr
with momentump̂, and V is the volume of the stimulated
sample. The factorvxD(p̂) follows from a comparison with
the microscopic expression for the tunneling current,20 but it
has a transparent physical meaning, since the probabilit
tunneling is proportional toD(p̂) and the electron–barrie
collision frequency (} vx). SinceI is an even function of
eV, for convenience we assume below thateV.0.

Once again, the distribution function in Eq.~24! can be
expanded ifD, D8, eV!T and the expression for the norm
resistance of the contact is taken into account:

1

RN
52e2E

vx.0

d2S

~2p!3vF
vxD~ p̂!A. ~25!

As a result, we arrive at the following expression for t
nonequilibrium term in the Ginzburg–Landau equation:

F5
k t

^uD~p!u2& E0

` ene2Fe

ne
de

3E
vx.0

d2SvxD~ p̂!n~p,e!@n8~p,e1eV!

2n8~p,e2eV!#F E
vx.0

d2SvxD~ p̂!G21

. ~26!

Here the dimensionless quantityk t is defined as

k t5
V

8eRNTV gN~0!
. ~27!

FIG. 2. L(e) ~30! in a superconductor with a cylindrical Fermi surface a
D(w)5D0 cos 2w.
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of

makes it necessary to take account of only the electr
whose velocity lies in a narrow cone near the normal to
plane of the junction. In this case the nonequilibrium te
simplifies,

F5k tE
D1

` L~e!

Ae22D1
2 @n is~D18 ,e1eV!

2n is~D18 ,e2eV!#de. ~28!

In this expressionD1 , D18 are the superconducting gaps
the superconductors for momenta normal to the junction,
n is is the density of states in the isotropic superconducto

n is~D,e!5
ueu

Ae22uDu2
u~ ueu2uDu!. ~29!

The dimensionless functionL(e) has the form

L~e!5
^uD~p!u2/j~p,e!&

^uD~p!u2&^1/j~p,e!&
5

e2ne2eFe

^uD~p!u2&ne
. ~30!

Here 1/j(p,e)5u(ueu2uD(p)u)/Ae22uD(p)u2. The function
L(e) approaches 1 for largee. For the previously examined
cylindrical Fermi surface and gapD(w)5D0 cos 2w, the
functionL(e) can be expressed in terms of the dimensionl
variablex5e/D0 as follows:

L~x!5H 2@K~x!2E~x!#/K~x!, x<1,

2x2@K~1/x!2E~1/x!#/K~1/x!, x.1.
~31!

Here E, K(x)5*0
p/2(12x2 cos2 a)61/2da are complete el-

liptic integrals. The functionL(e) is displayed in Fig. 2.
The stimulation of superconductivity as described by E

~28! exhibits many of the characteristics of the isotropic ca
A logarithmic singularity occurs at the voltage
eV5uuD1u2uD18 uu, and the stimulation effect decreas
abruptly at eV5uD1u1uD18 u. More accurately, for
uD18 u.uD1u and eV'uD18 u2uD1u we have to logarithmic
accuracy

F5
k tL~eV!

2
AuD18 u

uD1u
ln

uD1u
ueV2uD18 u1uD1uu

. ~32!

For a different ratio of the gaps, whenuD18 u,uD1u and
eV'uD1u2uD18 u,

F52
k tL~eV!

2
AuD18 u

uD1u
ln

uD18 u
ueV2uD1u1uD18 uu

, ~33!

i.e., the stimulation effect is negative. IfeV&uD1u1uD18 u,
the stimulation effect is positive in both cases, but
eV5uD18 u1uD1u it decreases abruptly by an amount

DF5
p

2
k tL~eV!AuD18 u

uD1u
. ~34!

The most important difference from the isotropic ca
shows up in the asymptotic stimulation effect at high vo
ages. While in an isotropic superconductor the stimulat
effect vanishes above the threshold voltageeV5uD18 u
1u D1u, in the anisotropic case it decreases at high volta
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}1/V2. The proportionality coefficient can be positive
negative, depending onD1 , i.e., on the orientation of the
junction plane relative to the crystal axes.

It is convenient to write the expression for the decre
in F at high voltages, introducing the complex functio
L(e) defined by the first relation in Eqs.~30! with the sub-
stitution

1

j~p,e!
→

u~ ueu2uD~p!u!

Ae22uD~p!u2
2 i

u~ uD~p!u2ueu!

AuD~p!u22e2
. ~35!

With this definition we have foreV@uD1u1uD18 u

F5
2k tuD18 u2

~eV!3 F E
0

uD1u e Im L

AuD1u22e2
de

1E
uD1u

D0 e~Re L2L !

Ae22uD1u2
deG5

k tuD18 u2D0

~eV!3 f asS uD1u
D0

D .

~36!

Recall thatk t in ~27! contains the first power ofV, andD0 is
the maximum magnitude ofD~p!. It is easy to show tha
ReL2L.0 and ImL,0. If the magnitude of the super
conducting gap for momentum normal to the junction pla
is close to its maximum value, then the stimulation effe
will be negative at high voltages, and if it is close to t
minimum value, then conversely the nonequilibrium term
high voltages will be positive. This assertion holds for t
general case of anisotropic pairing, and not just for the s
cial case studied in the present work.

For a cylindrical Fermi surface andD(w)5D0 cos 2w,
the use of the Legendre relation for the elliptic integr
gives

Im L~e!52
p

K2~e!1K2~A12e2!
,

Re L~e!2L~e!5
pK~A12e2!

K~e!@K2~e!1K2~A12e2!#
. ~37!

The functionf as(x) for this case is presented in Fig. 3.

FIG. 3. Asymptotic behavior off as(x) ~36! in a superconductor with a
cylindrical Fermi surface andD(w)5D0 cos 2w.
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For a thin insulating interlayer, the model transmittan
D(p̂)5D0px

2/pF
2 can be used. This, together with the fact

vx, have the effect that states with momenta lying in dire
tions close to the normal to the junction plane appear w
high weight in the expression for the nonequilibrium term

The main features of the previously studied depende
of F on the voltage and the gaps in the superconduc
forming the junction therefore remain the same. The lo
rithmic divergences~32! and ~33! are smoothed in a natura
manner, and lead to finite expressions. Figure 4 shows
nonequilibrium term for this model transmittance and cyl
drical Fermi surfaces of superconductors whose gaps
given by the expressions D(w)5D0 cos 2w and
D8(w)52D0 cos 2w ~the angle is measured from thex axis!.
The stimulation effect is strongest foreV5uD18 u
2u D1u5D0 and drops sharply foreV5uD18 u1uD1u53D0 .
For high voltages the nonequilibrium term is negative, sin
uD1u5D0 .

In the particular configuration studied here, there is
suppression of the anisotropic order parameter near the p
of the tunneling junction if the reflection at the boundary
specular. Such suppression does occur in the general
~see the boundary conditions in Ref. 13!. Since the change in
the order parameter is determined by the scale of
temperature-dependent coherence length, and the expre
for the current through the contact is characterized by n
locality of the order of the coherence length at lo
temperature,13 to calculate the pumpI it is necessary to sub
stitute into Eq.~24! the density of states near the junctio
plane. Specifically, the quantityD1 in Eq. ~28! must be cal-
culated taking account of this suppression. Of course,L(e)
need not be changed, since this function describes the
ume properties of the superconductor.

For a wide range of orientations nearTc , the gap at the
boundary can be set equal to zero. The stimulation effect
follows, for example, from Eq.~36!, does not vanish in so
doing if D18 Þ 0, which happens for certain orientations of th
junction or if the stimulating superconductor is isotropic.

FIG. 4. Nonequilibrium termF/k t ~26! for a contact of superconductor
with cylindrical Fermi surfaces,D(w)5D0 cos 2w, D8(w)52D0 cos 2w,
and model transmittanceD(p̂)5D0px

2/pF
2 .
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4. CONCLUSIONS
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e

In the present paper the characteristic features of elec
magnetic, acoustic, and tunneling stimulation in anisotro
superconductors were found. In the Ginzburg–Landau eq
tion, the nonequilibrium term~15! described by the expres
sions ~9! and ~16! is characterized by a sharper maximu
than in the isotropic case. Acoustic stimulation as a funct
of the frequency of the incident longitudinal sound wave
once again determined by the expression~16! and is positive
in the entire frequency range studied, while for isotropic
perconductors it is negative forv.2D0 . These differences
are due to the different values of the averaged cohere
factors in anisotropic superconductors. The nonequilibri
term accompanying tunneling stimulation depends on
orientation of the junction plane relative to the crystal ax
~see Eqs.~32!–~34!! by virtue of the dependence of the ele
tron tunneling probability on the direction of the momentu
In contrast to the isotropic case, it does not equal zero at h
voltage ~36!. Its sign at high voltage also depends on t
orientation.
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20A. V. Za�tsev, Zh. Éksp. Teor. Fiz.86, 1742~1984! @Sov. Phys. JETP59,
1015 ~1984!#.

Translated by M. E. Alferieff
1170A. V. Galaktionov



Photoinduced phase transitions in a system with a transformable electron spectrum

ally
A. L. Semenov1)

Ul’yanovsk Branch of the M. V. Lomonosov Moscow State University, 432700 Ul’yanovsk, Russia
~Submitted 17 November 1996!
Zh. Éksp. Teor. Fiz.111, 2147–2157~June 1997!

An electron theory of photoinduced phase transitions and cavityless optical bistability in a light
field with a finite optical-spectrum width is constructed. The Liouville equation for the
density matrix is used to derive the existence criteria and calculate the main characteristics of the
given phenomena. Broadening of the optical spectrum is shown to reduce the possibility of
observing critical features~the existence criterion becomes more stringent and the hysteresis-loop
area becomes smaller!. Finally, results are compared with experimental data for CdS and
amorphous GeS2. © 1997 American Institute of Physics.@S1063-7761~97!01606-5#
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A photoinduced transition in a system with a transfor
able electron spectrum manifests itself in sudden jumps
the band gap of the electron spectrum and the electron
centration in the conduction band of the semiconductor w
the incident-light intensity reaches a critical value. The op
cal properties of the substance also change suddenly in
process. Near a phase transition there is cavityless op
bistability with increasing absorption.1

The sudden variation in the properties of the electro
phonon system of a solid can be initiated, as is known,
varying such parameters as pressure,2 temperature,2,3 the
concentration of alloy impurities,4–6 and the concentration o
molecules adsorbed at the surface.7 All these phase transi
tions occur between states that are in thermodynamic e
librium, while a photoinduced phase transition is subst
tially nonequilibrium.

There are many mechanisms that could trigger a tra
formation of the electron spectrum in a light field: th
exciton–exciton interaction and screening by electron–h
plasma in CdS~Refs. 8–10!, the interaction of electrons an
a static phonon mode at the edge of the Brillouin zone
VO2 ~Refs. 2, 12, and 12!, the electron–defect interaction i
amorphous GeS2 ~Ref. 13!, and others.1

However, despite the fact that there are so many dif
ent mechanisms, all the photoinduced phase transition
such substances have common features. In particular, it
been experimentally established that the frequency of the
cident light triggering the phase transition is bounded fr
above.8,12,13 For instance, in CdS and GeS2 the frequency
must be lower than the lower-edge optical-transition f
quency at least by some fixed quantity~different for different
substances!.8,13 From below the frequency of the light i
bounded due to the saturation of optical band-to-band t
sitions. Thus, photoinduced phase transitions and cavity
optical bistability of the electron type are selective.12

The present paper develops a model of photoindu
phase transitions and cavityless optical bistability based
the fact that the electron spectrum of the system depend
the electron concentration in the conduction band. When
system is irradiated by quasimonochromatic light whose c
rier frequency is lower than the lower-edge optical-transit
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a nonresonance light field generates, due to the smearin
the lower edge of the optical transition, a small number
optical transitions of electrons to the conduction band, wh
leads to a slight decrease in the band gap. As a re
electron–phonon coupling becomes more resonant and h
stronger, which in turn leads to a further decrease in the b
gap. Thus, positive feedback lowers the stability of the s
tem. If positive feedback is strong, stability can be lost, a
there is a sudden transition to a new state of equilibrium~a
phase transition!.

The phenomena of a photoinduced phase transition
cavityless optical bistability based on the rapid increase
the effectiveness of the interaction of a subband light fi
and a two-level system as the level-to-level transition f
quency lowers have been examined by Andreevet al.14 They
assumed, however, that the electron spectrum has a s
lower edge for optical transitions and that the overlap of
spectra of the electron subsystem and the light field is du
the finite width of the latter. In the present paper the sme
ing of the lower edge of optical transitions in the electr
subsystem is the decisive factor, while the width of the o
tical spectrum of the incident light may be infinitesimal. Th
finiteness of this width leads, as we will shortly see, to mo
stringent conditions~in comparison to the case where th
width of the incident spectrum is zero,Dv50! for the exis-
tence of a photoinduced phase transition and cavityless o
cal bistability, conditions that constrain the parameters of
electron system and the carrier frequency of the light fiel

2. BASIC EQUATIONS

The interaction of the electron subsystem and the li
field is described by the Liouville equation15

i\
]r

]t
5@H1V, r#, ~1!

wherer is the electron density matrix of the medium,H is
the Hamiltonian of the electron system in the absence
light, andV is the perturbation operator, which in the dipo
approximation has the form

V52d–E~ t !52d–E Eve2 ivtdv. ~2!
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field.

Let us examine the case where the incident lightE(t) is
a linearly polarized, quasimonochromatic, stationary rand
field.16 Then all the spectral componentsEv are statistically
independent:16,17

^Ev•Ev1
&5G~v!d~v1v1!. ~3!

HereG(v) is the spectral density of the light field, which fo
a quasimonochromatic signal can be written as16

G~v!2Ig~ uvu2v0!, ~4!

wherev0 is the carrier frequency, andg(x) is an even non-
negative bell-shaped function with its maximum atx50,
with the normalization condition*g(x)dx51. The halfwidth
Dv of the spectral densityG(v) satisfies Dv!v0 .
I 5*G(v)dv/2 is the intensity of the light field~in Gaussian
units, to within a factorcA«/2p, wherec is the speed of
light andA« is the medium’s refractive index!.

Combining Eq.~1! with ~2! and ~3!, we arrive at an
equation for the diagonal elementsrkk of the density matrix
r of the electron subsystem in second-order perturba
theory:

]rkk

]t
5

2p

\2 (
s

udksu2GS «s2«k

\ D ~rss2rkk!. ~5!

Heredks is the matrix element of the dipole moment ope
tor, «s is the spectrum of the operatorH, ands5(s, j ) is a
parameter characterizing a single-electron quantum s
with quasiwavevectors and band numberj . In the special
case of a monochromatic light field

E~ t !5E0 cos~v0t1w!

with a uniformly distributed random phasew, the spectral
density is given by

G~v!5
E0

2

4
@d~v2v0!1d~v1v0!#.

Then Eq.~5! becomes the well-known Fermi Golden Ru
for the probability of stimulated transitions.17

Let us examine the case where only direct transitions
allowed between the valence band (j 51) and the conduction
band (j 52). Then the dipole-moment matrix elementdks ,
wherek5(k,1) ands5(s,2), assumes the form

udksu5dkdk,s, ~6!

wheredk,s is the Kronecker delta. By combining Eq.~5! with
~6! we arrive at a formula describing the variation of t
populationnk5r (k,2);(k,2) of the kth level in the conduction
band due to stimulated optical transitions:

]nk

]t
5

2p

\2 dk
2G~vk!, ~7!

wherevk5(«k,22«k,1)/\ is the electron excitation spectrum
for direct optical band-to-band transitions. In writing~7! we
also assumed that optical transitions at the frequencyvk are
far from being saturated:
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Plugging~4! into ~7!, we arrive at a kinetic equation for th
electron concentrationn5(knk in the conduction band:

]n

]t
5

2pI

\2 (
k

dk
2g~ uvku2v0!2

n

t
. ~9!

The second term on the right-hand side of Eq.~9!, which was
introduced phenomenologically, describes band-to-band
laxation to the equilibrium valuen50 with a relaxation time
t.

If we ignore the variation indk nearvk5v0 (dk.d),
then in the stationary mode (]n/]t50) Eq. ~9! yields

I 5
\n

2ptd2S~v0 ,n!
, ~10!

where

S5S~v0 ,n!5E g~ uvu2v0!n~v,n!dv, ~11!

with n(v,n) the combined density of states corresponding
the spectrumvk of direct electron excitations.18

Equation~10! gives the inverse dependence of the ele
tron concentrationn on the intensityI of the light field in a
stationary state of equilibrium. Analysis of~9! shows that the
state is stable if]I /]n.0 in ~10!. The equation for the criti-
cal points at which stability is lost has the form]I /]n50.
Combining this with~10! yields

S~v0 ,n!2n
]S~v0 ,n!

]n
50. ~12!

Thus, if there are points (v0 ,n) that satisfy Eq.~12!, there
can be photoinduced phase transitions in the electron sys

At the bifurcation point (vb ,nb), where the direct and
reverse phase transitions are second-order and occur a
same value of I , in addition to ~12!, the condition
]2I /]n250 must be met. This together with~10! yields

]2S~v0 ,n!

]n2 50. ~13!

Equations~10!–~13! are the principal relationships describ
ing the behavior of an electron system with a transforma
spectrum in a light field.

3. RELATIONSHIP BETWEEN LIGHT INTENSITY AND
ELECTRON CONCENTRATION IN THE CONDUCTION BAND

We now discuss a composite model for the density
electron states,

n~v,n! 5
n0

11ex , ~14!

where

x5x~v,n!5a~v12bn2v!; ~15!

x is a dimensionless variable characterizing the freque
offset v12bn of the lower edge of the optical transitio
from the frequencyv of a spectral component of the ligh
field, v1 is the frequency of the lower edge of the optic
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transition in the absence of electron excitations~at n50!,
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n0 is the density of states within the band,a.0 is the recip-
rocal bandwidth of band smearing near the lower edge of
transition, andb.0 is the coefficient of the red shift of th
lower edge of the transition due to an increase in the conc
tration n of electrons in the conduction band. Both expre
sions, ~14! and ~15!, are selected with due regard for th
following experimental facts: 1! for the majority of amor-
phous and some crystalline~e.g., CdS! substances, the fre
quency dependence of the optical absorption coefficient n
the lower edge of the transition is described by the Urb
rule and is an exponential function;19 2! in many semicon-
ductors, both amorphous20 and crystalline,11 e.g., CdS~Refs.
9 and 10!, an increase in the concentrationn of electrons in
the conduction band brings about a red shift in the freque
of the lower edge of the transition that is close to linear o
a wide range ofn (n.1017– 1019 cm23 for CdS; Ref. 9!.

To calculate the integral~11! with the composite density
of statesn given by ~14! and ~15!, we assume that the inci
dent spectrum,G(v)5Ig(uvu2v0) has a rectangula
shape:16

g~y!5H 1/2Dv, uyu<Dv,

0, uyu.Dv,D ~16!

whereDv is the halfwidth of the spectrum. Plugging~14!–
~16! into ~11!, we get

S~v0 ,n!5n02
n0

2aDv
ln

11exp@x~v0 ,n!1aDv#

11exp@x~v0 ,n!2aDv#
.

~17!

Equations~12! ~13!, and ~17! imply that at the bifurcation
point (v0 ,n)5(vb ,nb), the parameters of the system a
the light field obey the following conditions:

x5x~vb ,nb!50,

a~v12vb!5aDv coth
aDv

2
[x0b . ~18!

In the second condition we introduced the dimensionless
tation x0b5a(v12vb), which corresponds to the offset o
the initial ~at n50! frequencyv1 of the transition’s lower
edge from the light-field carrier frequencyv05vb at the
bifurcation point.

Near the bifurcation point atuxu<1, Eq.~10!, with ~17!
taken into account, can be expanded in a Taylor serie
x, with only terms that are no higher than the cubic left in t
series:

I 5
\x0z~x!

pd2tabn0
, ~19!

z~x!511a1x1a2x21a3x3,

x5a~v12bn2v0!, ~20!

wherex05a(v12v0) is the dimensionless parameter cha
acterizing the initial offset of the frequencyv1 of the transi-
tion’s lower edge from the light-field carrier frequencyv0 ;
a1, a2, a3 and

1173 JETP 84 (6), June 1997
e

n-
-

ar
h

y
r

o-

in

-

1 x0b x0
2 x0b

S x0b x0
D

a35
1

x0b
F 1

x0b
S 1

x0b
2

1

x0
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1

12 cosh2~aDv/2!G , ~21!

are the expansion coefficients. Equations~19! and ~20! rep-
resent the inverse dependence on the light-field intensityI of
the concentrationn of electrons in the conduction band.

4. EXISTENCE CRITERIA FOR A PHOTOINDUCED PHASE
TRANSITION

The pointsx1 and x2 corresponding to loss of system
stability can be obtained from the equation]z/]x50. Com-
bining this equation with~20! yields

x1,252
a26Aa2

223a1a3

3a3
. ~22!

We see that the system behaves in a critical way
a2

223a1a3.0. If the expansion coefficients~21! are plugged
into this inequality, we arrive at the necessary condition fo
phase transition, a condition that imposes a restriction on
initial offset of the light-field carrier frequency from the fre
quency of the lower edge of the transition:x0b<x0 or, in the
initial notation,

Dv coth
aDv

2
<v12v0 . ~23!

This shows that as the halfwidthDv of the incident spectrum
grows, the lower limit of allowed initial offsetsv12v0 in-
creases.

The condition~23!, which determines the existence of
phase transition, bounds the light-field frequencyv0 from
above. We now derive a relationship that bounds this f
quency from below. The physical reason for such a rest
tion is the saturation of the optical transition if the light-fie
frequency is sufficiently low.

A transition is not saturated for any frequency of t
incident light ~at absolute zero! if

\E
2`

v02Dv

n~v,n!dv.n. ~24!

Plugging~14! and ~15! into ~24!, we find that

v12v0,bn2Dv2 lnFexp
an

\n0
21G . ~25!

The inequality~25! must be true for alln up to the phase
transition point. An analysis of~25! with allowance for~23!
finally yields

aDv coth
aDv

2
<a~v12v0!

,b\n0 ln b\n02~b\n021!

3 ln~b\n021!2aDv, ~26!
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aDvS 11coth
aDv

2 D,b\n0 ln b\n02~b\n0

21!ln~b\n021!. ~27!

Clearly, saturation is absent for all values ofn if conditions
~26! and ~27! are met.

The existence criterion~27! for a phase transition, which
constrains the system parameters, is a corollary of the c
rion ~26! for the light2field frequency. The stronger the in
equality~27!, the greater the range of optical frequencies t
can be used to observe a photoinduced phase transition
cavityless optical bistability.

5. PRINCIPAL CHARACTERISTICS OF PHOTOINDUCED
PHASE TRANSITIONS AND CAVITYLESS OPTICAL
BISTABILITY

When the criterion~27! is met, analysis of Eqs.~10!,
~17!, ~19! and ~20! shows that schematically the diagram
representing theI vs.n dependence resemble those in Fig.
Curve I illustrates the saturation of band-to-band opti
transitions when the light-field carrier frequencyv05v1 is
below the lower bound on frequency values at which cav
less optical bistability can be observed, values determine
the condition~26!. At frequenciesv05v III ,vIV higher than
the upper bound on frequency values allowed by~26!, there
is no optical bistability either~curves III and IV!. Curve IV
corresponds to optical transitions into the ban
v IV2Dv2v1@1/a. At frequenciesv05v II satisfying the
inequality~26!, the I vs. n curve may have a negative slop
~curve II!. As the light intensity grows, a point on the curv
moves along the curve 0→4→1→3, but as the intensity
decreases the point moves along the curve 3→2→4→0.
The discontinuous variation ofn on the 1→3 and 2→4
sections corresponds to direct and reverse phase transit
The sectionI 2,I ,I 1 is the bistability region.

By analyzing Eq.~20! we find the pointsx3 andx4 cor-
responding to new positions of equilibrium for the direct a
reverse phase transitions, respectively,

x3,452
a272Aa2

223a1a3

3a3
, ~28!

FIG. 1. Inverse dependence of the concentrationn of the nonequilibrium
electrons in the conduction band on the intensityI of the light field with a
carrier frequencyv05v j ( j 5I–IV, vI,vII,vIII ,vIV!. The frequency
v05v II meets the criterion~26!.
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centration in the conduction band,Dn5Dx/ab:

Dx52
Aa2

223a1a3

a3
. ~29!

Here it turns out that the jumpDx is the same for direct and
reverse phase transitions.

Using ~20!, we can also derive an expression for t
width of the hysteresis loop~the size of the region of cavi
tyless optical bistability in terms of the dimensionless ligh
field intensity!:

Dz5z~x1!2z~x2!5
8~a2

223a1a3!3/2

27a3
2 . ~30!

Note that in accordance with the approximate nature
the initial formulas~19! and ~20!, Eqs. ~22! and ~28!–~30!
are valid if uxu<1. This imposes additional constraints on t
value ofx0 from above. In particular, as~22! and~21! clearly
show, forux1u<1 not to exceed unity the following inequa
ity must hold:

x0<
x0b

123x0b
2 /12~x0b

2 12x0b13!cosh2~aDv/2!
. ~31!

Clearly, ~26! and ~31! allow for a simultaneous solution
near the bifurcation point:x0>x0b . A similar situation exists
for the other points specified by~22! and ~28!, x2 , x3 , and
x4 , and for Eqs.~29! and ~30!. Thus, the adopted approx
mation makes it possible to describe a photoinduced ph
transition and cavityless optical bistability near a bifurcati
point x05x0b , x50.

6. COMPARISON WITH EXPERIMENT

As is known, photoinduced phase transitions in CdS a
amorphous GeS2 occur in a characteristic timet0 approxi-
mately equal to 10210 s ~Ref. 8! and 1 s~Ref. 13!, respec-
tively. Thus, there is no way in which this phenomenon c
be explained by the thermal model, in which the switchi
time t0;1025 s ~Refs. 8, 13, and 21!. Additional corrobo-
ration of this fact is the small temperature variatio
DT50 – 15 K, recorded in experiments in irradiating Cd
~Ref. 8!. For GeS2 the temperature variationDT was not
registered in the experiment of Lyubin and Tikhomirov.13 It
has been established, however, that the intensity of the l
required for observing cavityless optical bistability in Ge2

is lower than that for observing cavityless optical bistabil
in CdS by a factor of 104 ~Refs. 1, 8 and 13!.

We now interpret the phenomena of photoinduced ph
transitions and cavityless optical bistability in CdS a
amorphous GeS2 irradiated by monochromatic light using th
electron theory developed in the present paper. We start
CdS. For this substance we putd2'10239 esu ~Ref. 9!,
t'1029 s ~Ref. 9!, b'1025 cm3 s21 ~Ref. 9!, a'10212 s,
~Ref. 10!, and n0'0.5 eV21 per atom ;1023 eV21 cm23

~Ref. 10!. This yields \bn0'102, which implies that the
criterion ~27! is sure to be met~for a monochromatic light
field the inequality~27! is transformed into~36!!. Using~19!
and ~20!, we can estimateI at the bifurcation point~where,
according to~18!, x50 andx052!: I;104 esu, which cor-
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; 10 esu;10 W/cm . This result agrees with the exper
mental value of intensity being roughly 106 W/cm2 ~Ref. 1!.

Now we turn to amorphous GeS2. We calculate the op-
tical absorption coefficientg and the jump in the intensity o
the output signal brought on by the phase transition in
case where the incident light field is monochromatic. W
allow for the fact that the photon fluxF in the stationary
mode with light propagating along they axis obeys the fol-
lowing equation:

dF

dy
52S ]n

]t D
i

52
pE0

2d2

2\
n~v0 ,n!. ~32!

Here (]n/]t) i is the variation in electron concentration in th
conduction band due to stimulated transitions in the mo
chromatic fieldE(t)5E0 cos(v0t1w). The second equality
in ~32! is written in accordance with Eq.~9!, where the first
term on the right-hand side corresponds to stimulated tra
tions. Since the intensity\v0F5cA«E0

2/8p ~Ref. 17!, Eq.
~32! yields

dF

dy
52gF, g5

4p2d2v0

cA«
n~v0 ,n!, ~33!

whereA« is the refractive index at frequencyv0 . Using Eqs.
~33!, ~14!, ~15!, ~29!, and ~21!, we arrive at the following
expression for the output intensity ratio (I 1 /I 3)out before and
after the phase transition~see Fig. 1!:

S I 1

I 3
D

out

5expF3p2d2v0n0LA~x022!~42x0!

cA«~32x0!
G , ~34!

where L is the sample thickness in the direction of lig
propagation.

In accordance with Eqs.~30! and ~20!, the formula for
the relative width of the hysteresis loop,DI /I b , where
DI 5I 12I 2 , and I b5(I 11I 2)/2 the input intensity at the
bifurcation point~I 1'I 2'I b near the bifurcation point!, is

DI

I b
.Dz5

2@~x022!~42x0!#3/2

3x0~32x0!
. ~35!

We now make estimates for amorphous GeS2. As is
known, in amorphous substances the widthDE of the region
within which the lower edge of the optical transition
smeared amounts to 0.1–0.3 eV~Ref. 19!, and for GeS2 this
value is close to the upper boundary.20 For this reason we
can put DE52\/a.0.25 eV. Bearing in mind that fo
monochromatic lightx0b5a(v12vb)52 ~see Eq.~18!!, we
arrive at an estimate for the offset of the frequencyv1 of the
transition’s lower edge from the light-field frequencyvb at
the bifurcation point,\(v12vb)50.25 eV. Thus, in accor-
dance with criterion~23!, a photoinduced phase transitio
should be observed at offsets greater than 0.25 eV. This
observed in the experiments of Lyubin and Tikhomirov13

where cavityless optical bistability was detected at 0.29
offset but was absent at 0.16 eV.

Using the offset\(v12v0)50.29 eV of Lyubin and
Tikhomirov’s experiment13 and taking \(v12vb)
50.25 eV and a(v12vb)52, we find that
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DI /I b'0.22, which is close to the experimental valu
(DI /I b)expt'0.2 ~Ref. 13!. If we put d2'1039 esu ~Ref. 9!,
v0'1015 s21 ~Ref. 13!, n0'0.5 eV21 per atom21

;1023 eV21
•cm23 ~Ref. 19!, L'0.5 cm ~Ref. 13!, and

A«'1, from Eqs.~33! and ~34! we find thatg1'10 cm21

and ln(I1 /I3)out'2. The resulting theoretical values also co
respond to the experiment data of Lyubin and Tikhomirov13

g1'10 cm21 and ln(I1 /I3)out'2.1.
The present author knows of no value of the coefficie

b for amorphous GeS2. However, Feltz noted20 that the red
shift of the lower-edge optical-transition frequency is a ge
eral property of many amorphous substances, and by irr
ating As2S3, the lower edge of the transition was shifted b
0.2 eV. In CdS under maximum light intensit
(I'107 W/cm2 and n'1019 cm23!, the value of the same
quantity amounts to 0.05 eV~Ref. 9!. Hence for some amor
phous substances the characteristic value ofb is close to, or
even greater than, the valueb'1025 cm3/s for CdS. Note
that the same value,\b'5310221 eV/cm3, was used by
Emel’yanov and Uvarova22 as the characteristic value of th
coefficient of the red shift of the band gap for semicondu
ing substances. In this case criterion~27! is valid with a
larger margin than it is for CdS.

We estimate the characteristic value ofI 1 at the phase
transition by using Eqs.~19! and ~20!. Note that in the ex-
perimentDI /I b'0.2, so thatI 1'I b . Then, assuming tha
x052, x50, d2'10239 esu ~Ref. 9!, DE52\/a'0.25 eV
~Ref. 19 and 20!, b'1025 cm3/s ~Refs. 9 and 22!,
n0'0.5 eV21 per atom;1023 eV21 cm23 ~Ref. 19!, and
t;1023 s ~Ref. 20!, from Eqs.~19! and ~20! we find that
cI/2p;102 W/cm2, which corresponds to the experiment
value 60 W/cm2 of the intensity.13

7. CONCLUSION

We have built an electron-type theory of photoinduc
phase transitions and cavityless optical bistability that yie
a satisfactory description of experimental data on CdS
amorphous GeS2. A necessary condition for observing opt
cal bistability is the criterion~27!, which bounds the half-
width Dv of the impinging-light spectrum from above an
the material parameterbn0 from below. In particular, at
Dv50 the inequality~27! can be approximately written as

\bn0.3.2. ~36!

As criterion ~27! shows, the lower bound on the allowe
values ofbn0 rises asDv grows.

The second necessary condition for observing optical
stability is ~26!, which bounds the light-field carrier fre
quencyv0 from above and below. AsDv grows, the lower
boundary of the allowed values ofv0 rises and the uppe
boundary decreases. Thus, the broadening of the op
spectrum of the incident light reduces the possibility of o
serving photoinduced phase transitions and cavityless op
bistability in the system.

The inverse dependence of the electron concentratio
the conduction band on the intensity of the incident lig
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field is described by Eqs.~19!–~21!, the characteristic points
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Pinning by twin boundaries and peak effect in YBaCuO high- Tc superconductors
I. F. Voloshin, A. V. Kalinov and L. M. Fisher

State Research Center ‘‘All-Russian Electrical Engineering Institute,’’ 111250 Moscow, Russia

K. I. Kugel’ and A. L. Rakhmanov

Scientific Center for Applied Problems in Electrodynamics, Russian Academy of Sciences, 127412 Moscow,
Russia
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Zh. Éksp. Teor. Fiz.111, 2158–2174~June 1997!

Measurements of the imaginary part of the ac magnetic susceptibility of single crystals and melt-
textured samples of YBa2Cu3Ox ~YBCO! at T577 K in a magnetic field ranging between 1
and 20 kOe are reported. If the dc magnetic fieldHdc is rotated in theab plane of the sample, the
magnetic susceptibility and critical current densityj c have peaks corresponding to the
magnetic field aligned with twin boundaries. Peaks in the curve ofj c versus magnetic field are
observed at angles corresponding to these peaks, wherej c } AHdc in a wide range of
magnetic fields. The results have been interpreted in terms of the theory describing twin boundaries
as a system of quasi-planar pinning sites. The pinning is strong if the elastic displacements
of flux lines are of the order of the vortex lattice constantdf . These displacements decrease with
the magnetic field because of the decrease indf , and the contribution of the elastic energy
to the Gibbs potential is reduced accordingly, which is the cause of the peak effect. ©1997
American Institute of Physics.@S1063-7761~97!01706-X#

1. INTRODUCTION measurements of magnetization7 indicate that twin bound-
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Electromagnetic properties of high-temperature sup
conductors~HTSC! in a mixed state have some remarkab
features.1 Thus the critical current densityj c in many HTSC
materials is strongly anisotropic, and this anisotropy is
lated not only to the direction of the current densityj , but
also to the alignment of applied magnetic fieldH. In other
words, at a fixed orientation ofj , the critical currentj c

strongly depends on the magnetic field direction, and
anisotropy is sometimes not directly correlated with of t
crystal lattice symmetry. Another interesting feature
HTSC is the nonmonotonic character of the functi
j c(H), which has a notable peak in the range of magne
fields H!Hc2 , whereHc2 is the upper critical field.

The YBCO crystal structure is such that even hig
quality single crystals contain a lot of twin boundaries p
allel to the crystal axis@110#, in other words, at an angle o
45° with respect to thea andb axes and parallel to thec axis.
The effect of twins on properties of HTSC in a mixed sta
has been studied both theoretically and experimentally.2–16

The effect of twin boundaries on the microscopic charac
istics of HTSC, such asj c , however, is not clear yet, partl
because it is difficult to manufacture single crystals witho
twins. Usually a crystal is first grown, then twin boundari
are eliminated through special treatment.17 It is not clear
whether defects localized near twin boundaries are a
eliminated. The question of whether twin boundaries
strong pinning sites preventing motion of magnetic flux lin
in a superconductor or, on the contrary, they are weak li
through which vortices penetrate into the sample has
mained unanswered. Measurements by different techniq
contradict one another. For instance, magneto-optical~Fara-
day effect! measurements,4,5 torque measurements,6 and
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aries are efficient pinning sites if the magnetic field
aligned with the twinning plane, whereas similar measu
ments performed by other authors~measurements of the Fa
aday effect8 and magnetization9,10! lead to a different conclu-
sion. The data concerning the relation between the p
effect and twin boundaries in HTSC obtained by differe
researchers are also contradictory~compare the data obtaine
by Fisheret al.,11 who claimed to have detected this relatio
and by Zhukovet al.,12 who did not observe it!.

In our opinion, the contradictions between results by d
ferent authors arise for the following reasons. First, a tw
can be either a pinning center or a channel for penetratio
flux lines depending on the properties of the sample a
magnetic field value. Second, in many experiments on
effect of twin boundaries on properties of HTSC, the critic
current anisotropy was measured by varying the angle
tween the dc component of magnetic field,Hdc, and the
c-axis.7,9,10,12 In this configuration of the experiment, th
large contribution of the crystal anisotropy along thec-axis
and in theab-plane,11 and the large demagnetization fact
of a sample, whose dimension along thec-axis is usually
much smaller than along thea- and b-axes, can mask the
anisotropy due to twinning planes.

The present paper describes measurements demon
ing strong anisotropy of the critical current in the case wh
Hdc is rotated in theab-plane and the angle between th
c-axis and Hdc is maintained constant at 90°. In som
samples, the critical current was measured as a functio
the angle between thec-axis andHdc. We measured the
low-frequency ac magnetic susceptibility of samples, and
critical current density was derived from the experimen
data using the critical state model~the experimental tech
niques and calculations were described elsewhere18!.

11779$10.00 © 1997 American Institute of Physics



Theoretical studies dedicated to pinning on twins can be
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classified with two groups. In the first group, the magnitu
of the elementary pinning force due to twin boundaries w
studied.13 In the second group, capture of tilted vortices
twin boundaries ~so-called lock-in transition! was
investigated.14,15 These papers studied pinning of isolat
vortices, and the role of interaction among vortices was d
cussed only cursorily. The paper by Larkinet al.,16 where a
twin is treated as an assembly of point defects and the cri
current is calculated for the case of the magnetic field alig
with the twins, cannot be attached to either group.

In this paper, we use a theoretical approach somew
different from those proposed previously. We take into
count the shear and tilt deformations of the vortex lattice a
pinning on twin boundaries at the same time. The the
predicts a peak on the curve ofj c(Hdc) for pinning on twins
at small angles between the twin boundaries and the m
netic field. Over a wide range of parameters we havej c

} AHdc, which is in good agreement with our experimen
data.

Section 2 describes the parameters of the samples s
ied. The experimental techniques and calculations of crit
current density are briefly described in Sec. 3, along with
experimental results. The theory is presented in Sec. 4,
the results are discussed in Sec. 5.

2. SAMPLES

Measurements were performed using both single crys
and highly melt-textured samples. In the first series of m
surements, three YBa2Cu3Ox single crystals with dimension
of 2.431.230.06 mm3, 1.430.830.04 mm3, and
1.130.630.04 mm3 were used. In this paper, these samp
are labeled as Y1, Y2, and Y6, respectively. The tempera
Tc0 of the onset of the superconducting transition deriv
from the real component of the ac magnetic susceptibility
91.3 K for Y1 and 91.5 K for Y2 and Y6. Note that th
Tc0 values obtained by this technique are about 1 K lower
than those measured by the four-terminal method. The t
sition width DTc was defined as the difference betweenTc0

and the temperature of the peak in the imaginary compon
of the ac magnetic susceptibility, as usual in magnetic m
surements. It was about 0.3 K for all the samples. The sm
transition width indicates that the sample quality was fai
high.

The tested samples had radically different twin patter
Usually YBCO single crystals are composed of small regio
~domains! in which the twin boundaries are parallel to ea
other.4,19 The twin boundaries in neighboring domains a
orthogonal~aligned with the@110# and@11̄0# directions!. The
twin patterns of our samples could be clearly seen throug
conventional optical microscope: for light at certain ang
of incidence, parallel lines at an angle of 45° with respec
the sample faces are observed. Sample Y1 contained
proximately equal numbers of domains with different orie
tations of twin boundaries, whereas samples Y2 and Y6 w
almost single-domain, and the fraction of orthogonally o
ented domains was less than 5%. The density of twin bou
aries was determined using a transmission electron mi
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scope. The typical separation between twins was about
mm.

The melt-textured sample Sp1 was cut from a bu
YBa2Cu3Ox workpiece with a diameter of 8 mm and a leng
of 3 cm and had dimensions of 632.330.55 mm3. Theab-
plane was parallel to the larger sample face. The sample
tested with a view to detecting weak links through ac ma
netic susceptibility as a function of the amplitude of the
ternating magnetic field atHdc50. These measurements in
dicated that sample Sp1 did not contain many weak links

3. EXPERIMENT

3.1. Experimental technique and measurements of
susceptibility

The samples were tested using a contactless induc
technique by measuring the low-frequency magnetic susc
tibility x5x81 ix9. The susceptibilityx can be determined
from the general expression for the sample magnetiza
M induced by an ac magnetic fieldh5h0 cosvt:

M ~ t !5h0(
n51

`

Re~xneinvt!5h0(
n51

`

@xn8 cos~nvt !

1xn9 sin~nvt !#. ~1!

In what follows x8 and x9 denote the fundamental compo
nentsx18 andx19 of the ac magnetic susceptibility.

Technical details of the method are describ
elsewhere.18 All measurements were performed at the liqui
nitrogen temperatureT577 K. The experimental configura
tion is shown in Fig. 1. A plate-shaped sample was place
the middle of a solenoid generating the ac magnetic fi
h5h0 cosvt at a frequencyv/2p5130 Hz. The magnetic
field nonuniformity was within 0.5% in the sample volum
The field was within 1–2° of being parallel to the samp
plane. The pickup coil was wound on the middle section
the sample as close as possible to its surface in orde
minimize the magnetic flux between the sample and c
The magnetic flux in this gap, which was not related direc
to the magnetic flux in the sample, was compensated for
an auxiliary assembly of axial coils with a tunable mutu
inductance. One of the coils was connected in series with
solenoid generating the ac magnetic field, and the othe
series with the pickup coil. In addition to compensating f
the spurious magnetic flux, this assembly allowed us to m
mize the signal due tox8 without a change in the signal du

FIG. 1. Experimental configuration:~a! dc magnetic field is rotated in the
ab-plane;~b! magnetic field is rotated from theab-plane towardsc-axis ~TB
denotes the twin boundary!.
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to the shift byp/2 in thex9 phase~this signal was later use
to calculatej c!. Thus, the measurement error related to
phase-locked detection was reduced considerably.

The sample, pickup coil, and solenoid generating the
magnetic field were placed in the dc magnetic fieldHdc gen-
erated by an electromagnet. This field was uniform to wit
0.1% in the measurement zone. The electromagnet coul
rotated independently around three orthogonal axes.
angle of rotation around the vertical axis was 360°. The
tation around the horizontal axes was used to align the m
netic field with theab crystal plane to a high accuracy~about
1/6°!.

The sample was aligned with the dc magnetic field
follows. First, it was placed in the electromagnet so that
ab-plane coincided approximately with the horizontal pla
~rough alignment!. Then the fine alignment was performe
using the fact that the magnetic susceptibility and criti
current j c have narrow peaks close toHdciab11,20 ~see Fig. 4
below!. The corresponding narrow peak in the signal fro
the pickup coil was used to rotate the magnet~and its field of
about 10 kOe! accurately through small angles around t
horizontal axes to attain the signal maximum. The alignm
accuracy was determined by the fineness of the magnet
tion gear and was about 1/6°.

In order to measure the functionx9(u), whereu is the
angle betweenHdc and the twin boundary, we rotated th
electromagnet so that the angleu changed continuously be
tween 0° and 360°. The fieldHdc was parallel to theab plane
to within 1/6°. Typical curves ofx9(u) for variousHdc and
h0 in samples Y1, Y2, and Y6 are given in Fig. 2. The curv
x9(u) have pronounced peaks atu50, 90°, and 180° in
sample Y1, and atu50 and 180° in samples Y2 and Y6
which corresponds to the directions of twin boundaries
these samples. Thus, our experiments indicate that the cu
of x9(u) are determined by the macrostructure of tw
boundaries in single crystals.

Note that in the critical-state model the magnetic susc
tibility x9 is inversely proportional toj c for h0,hp and in-
creases withj c for h0.hp , wherehp is the ac field ampli-
tude at which the magnetic field penetrates to the sam
center~i.e., the Bean penetration field, which was less th

FIG. 2. Typical curves of x9(u): ~a! sample Y1, Hdc512 kOe,
h05150 Oe; ~b! sample Y2,Hdc58 kOe, h05400 Oe; ~b! sample Y6,
Hdc52 kOe, h0510 Oe.
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100–150 Oe in our samples!. The measurements shown
Figs. 2a and 2c were taken ath0,hp , and those in Fig. 2b a
h0.hp . The minima ofx9(u) in Figs. 2a and 2c and the
maxima in Fig. 2b correspond to the maxima in the critic
current density. The minima inx9 are replaced by maxima a
h0 increases, which means a transition from theh0,hp re-
gime toh0.hp .

Measurements of the magnetic susceptibility vers
angleu in the melt-textured sample Sp1 are given in Fig
(h0,hp). At first sight, one could hardly expect that th
twin boundaries in different crystallites would demonstrat
predominant orientation. Figure 3, however, shows that th
is some correlation. The halfwidth of the peaks plott
against the rotation angle is about 10°~in single crystals it is
about 1°!, which indicates, apparently, that the misalignme
among twin boundaries in different crystallites is relative
small throughout the sample.

In addition to measuringx9(u) in the single crystal Y1,
we have investigated the susceptibility as a function of
anglew between the magnetic fieldHdc and theab-plane of
the single crystal atu;45° whenw50. Figure 4 shows the
susceptibilityx9 as a function ofw. Measurements were per
formed atHdc56 kOe andHdc516 kOe, and a temperatur
of 77 K. The curves have well defined peaks correspond
to the field aligned with theab-plane (w50) and c-axis
(w590°). One should bear in mind that the measureme

FIG. 3. Magnetic susceptibilityx9 versus angleu between dc magnetic field
and twin boundary forHdc510 kOe andT577 K in the melt-textured
sample Sp1.

FIG. 4. Magnetic susceptibilityx9 as a function of anglew between the dc
magnetic field andab-plane in the single crystal Y1 forh05200 Oe and two
values of the dc magnetic field:Hdc516 kOe ~dashed line! and
Hdc56 kOe ~solid line!.
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of the effects of twin boundaries through variation ofw are
more difficult to interpret than measurements in whichu var-
ies, because the rotation of the magnetic field between
c-axis and theab-plane also changes the angle between
dc magnetic field and the twin boundaries. Note that whew
was varied between 0 and 90°, the conditionh0.hp was
replaced withh0,hp owing to the notable increase in th
critical current density nearw590°.

Our results were independent of the magnetic and th
mal history of the samples if the ac field amplitude w
larger thanhp . We have carried out sets of measureme
with different magnetic, thermal, and angular histories of
samples and have not noticed any difference among the
sults forh0.hp , which is not surprising if this fact is inter
preted within the critical-state model.

3.2. Calculation of critical current density

Measurements of the imaginary part of the ac magn
susceptibility can be used in deriving the critical current d
sity based on using the critical-state model in the case w
Hdciab.18 Calculations for a sample shaped as a parallele
ped in a parallel magnetic field in a fairly general form ta
ing into account the contributions of the current compone
j c
ab and j c

c to the susceptibility are reported elsewhere.21 This
technique can yield elaborate formulas forx9( j c

ab , j c
c). Here

we use, however, simpler formulas for the studied samp
The relative contribution ofj c

ab and j c
c to the sample

magnetizationM is determined by the equation21

c5
j c
abd

j c
cw

, ~2!

whered is the sample thickness andw is its length~Fig. 5!.
The ratio j c

ab/ j c
c for YBCO is usually less than 10 a

T577 K.22 On the other hand, our samples ha
w/d530– 40, hencec!1. It follows from the general for-
mulas and qualitative considerations that the main contr
tion to M is due toj c

ab . Specifically, if the ac magnetic field
completely penetrates into the sample (h0.hp), it follows
from the current conservation~Fig. 5! that forc!1 the total
current j c

abda in the ab-plane ~herea is the sample width!
equals the total currentj c

cdwa along thec-axis ~dwa is the
cross section through which the current flows along
c-axis!. Then we havedw/w;c!1, and the critical curren
can be calculated to within;c using the expression for
thin plate neglecting edge effects. Forh0.hp(Hdc) we
have18

FIG. 5. Superconducting plate in a magnetic field.
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ab~Hdc!5

3ch0

8pd F12A12
4px9~Hdc!

3 G , ~3!

wherehp52pd jc
ab/c.

The range of magnetic fields to which Eq.~3! applies is
determined by the inequalities

Hc1,hp,h0!Hdc, ~4!

whereHc1 is the first critical field, which is no higher tha
50–80 Oe in YBCO at liquid nitrogen temperature. Sin
hp<100– 150 Oe in the studied samples, the magnetic fie
used in our experiments are Hdc.1 kOe and
h05100– 200 Oe.

The curves ofj c
ab(u) for samples Y1, Y2, and Y6 are

shown in Fig. 6. One can see that these curves, like thos
x9(u), have clearly pronounced narrow peaks at angles c
responding to the twin boundaries~at u50, 90, and 180° for
sample Y1 andu50 and 180° for samples Y2 and Y6!. The
strong correlation between the peak positions and the or
tations of the twin boundaries leads to the conclusion that
twins are strong pinning sites when the fieldHdc is parallel to
the twin boundaries. Figures 2 and 6 show thatx9(u) and
j c
ab(u) vary only slightly between the peaks. This means,

particular, that in our experiments the magnetic fieldHdc

remained in theab-plane.
Figure 7 shows curves ofj c

ab(Hdc) at variousu for the
sample Y2. It is clear that, in accordance with experimen
data reported by other authors, the critical current den
decreases monotonically with the magnetic fieldHdciab at
almost all anglesu. The new feature is that a strong pea
effect occurs in the narrow range of anglesDu<5° near the
peak of j c

ab(u) when the magnetic field is aligned with th
twin boundaries. The range of angles in which the peak
fect is observed almost coincides with the width of peaks
the curves ofj c

ab(u). The peak amplitude in the curves o
critical current versus magnetic field is the higher, t
smaller the deviation ofHdc from the twin boundary. At
u50, we could not attain maxima in the curves
j c
ab(Hdc) for magnetic fields ranging up to 20 kOe. The

results demonstrate that there is a direct relation between
peak effect in YBCO single crystals and the pinning by t
twin boundaries.

FIG. 6. Curves ofj c
ab(u) for samples~a! Y1, ~b! Y2, and~c! Y6. The insert

shows the peak atHdc58 kOe for sample Y2 on the enhanced scale.
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Both the insert in Fig. 6 and Fig. 8 show the shapes
the peak in the curves ofj c

ab(u) for different dc magnetic
fields ~sample Y2!. One can see in Fig. 8 that the peak b
comes narrower and higher as the magnetic fieldHdc rises.
Note that the peak has a specific shape: it has a narrow
tral section with a width of about 1° and a wider and low
pedestal~about an order of magnitude as low!.

The function j c(Hdc,w) at fixedu545° was calculated
for sample Y1. It turned out that the peak effect occurr
whenHdc was oriented around thec-axis in the angular range
Dw<40°. This also indicates the correlation between
peak effect and pinning by the twin boundaries.

4. THEORY

In order to determine the critical current density, w
need the Gibbs free energyG of a vortex lattice interacting
with a system of quasi-planar defects imitating the tw
boundaries. This energy contains three main compone
namely, the energyGp directly related to the vortex pinning
by the defects, energyGe of elastic deformation of the vorte
lattice, and magnetic energyGm . We assume that the twin

FIG. 7. Curves ofj c
ab(Hdc) for sample Y2 at variousu.

FIG. 8. Curves ofj c(u) near the peak at various dc magnetic fields: circl!
Hdc56 kOe; squares! Hdc510 kOe; triangles! Hdc516 kOe~the curves are
guides for the eye!.
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not exactly periodic, but the deviation of the separation
tween the twins from its mean value is not large.19 For sim-
plicity, we ignore the anisotropy of YBCO crystals, becau
it should not radically change the results for the discus
configuration~when the magnetic field is in theab plane!,
but would only change some numerical constants.

4.1. Twin model

Following Larkin et al.,16 we assume that various de
fects can be localized near twin boundaries. Conseque
superconducting properties of the sample can vary nota
near the twin boundaries. We assume also that the thick
of the defect region satisfiesl tx!Lt . A vortex outside the
defect region near a twin interacts with defects in the sam
volume, and the pinning potential per unit length of the vo
tex can be conveniently expressed as

Up52
Hc

2j2

8p
f p , ~5!

whereHc is the thermodynamic critical field,j is the coher-
ence length, andf p!1 is the dimensionless pinning poten
tial. If a vortex is shifted to the region near the twin boun
ary, it is natural to assume that the magnitude of the pinn
potential should increase, andf p should be replaced with
f p1d f px in Eq. ~5!. In the general case, the pinning potent
also varies in the direction parallel to the twinning plane. L
us denote the typical spread off p along they-axis byd f py

and the typical spatial scale of this nonuniformity byl ty .
Then the pinning force per unit length of the vortex along t
twinning plane is

Fpy5
Hc

2j2

8p

d f py

l ty
. ~6!

In what follows, we consider the range of fairly strong ma
netic fields, when the magnetic inductionB inside the sample
is much larger than the characteristic fieldB05F0 /Lt

2 ,
whereF0 is the magnetic flux quantum. This means that t
vortex lattice constant satisfiesdf;AF0 /B0!Lt ~in our
samplesB0'100 G!. Moreover, we assume that the scale
the pinning potential nonuniformity is small and

l tx,y!df!Lt . ~7!

The first inequality in~7! allows us to consider the de
fects in question as quasi-planar, and the second allows u
apply equations of the theory of elasticity to the vortex l
tice with boundary conditions specified at the twin boun
aries.

4.2. Critical current (the case of magnetic field parallel to
twin boundaries)

In order to clarify the basic principles of our theoretic
model, let us analyze in detail the simplest case of pinn
by a system of twins, when the magnetic fieldHdc is parallel
to the twin boundaries and theab-plane, and the pinning in
the sample volume is weak and can be neglected. In

1181Voloshin et al.
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elasticity for the vortex lattice in regions between twins ha
the form1

~C112C66!
]

]xi
~¹•u!1C66Dui1C44

]2ui

]z2 50, ~8!

where i 5x, y; C11, C44, and C66 are the bulk, tilt, and
shear elastic moduli;¹ andD are two-dimensional operator
acting in thexy-plane. It will be shown below that only
long-range deformations with a typical wave vectorq such
that (qLt)

2!1 are essential. For the studied samples,
separationLt between twin boundaries is larger than t
magnetic field penetration depthl, so (ql)2!1 holds, and
we will neglect a spatial dispersion ofC11 andC44. Then in
the rangeHc1!B!Hc2 of magnetic fields studied1

C665
BF0

~8pl!2 !C115C445
B2

4p
, ~9!

and the elastic energy per unit volume can be expressed

Ge5
1

2V E d3r H ~C112C66!~¹•u!21C66~e•¹u!2

1C44S ]u

]zD
2J , ~10!

where the vectore5$1,1% is in thexy-plane.
In the unperturbed state, when vortices do not inter

with twins, Ge50. When the pinning comes into play,
fraction of vortices are pinned on twin boundaries, thus
ducing the free energy per unit volume by

Gp52
Hc

2j2

8p
d f pxnp , ~11!

wherenp is the density of pinned vortices. But the pinnin
also leads to deformations, henceGe.0. At a givennp , the
lattice is configured so as to minimize its elastic ener
Various regimes of lattice pinning by twins are possible.
the simplest one-dimensional case, only displacements in
x-direction which are functions ofx, u5$ux(x),0%, are gen-
erated in the lattice. But in this case unfavorab
(C11@C66) compressing and tensile strains that increase
free energy also occur. The more favorable configuration
the lattice pinned by twins is a two-dimensional one, su
that

¹•u50. ~12!

Consider the part of the vortex lattice between two tw
boundaries on which vortices are pinned. Let the separa
L between the two twins beL>Lt . We represent a lattice
displacement vector in the form of a Fourier series with
spect toy:

uj5(
q

uq j~x!eiqy, j 5x, y. ~13!

After substituting the expansion~13! into Eq. ~8! and taking
into account Eq.~12!, we have

uqx5C1qeqx1C2qe2qx,
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It is convenient to express the coefficientsCjq in terms of the
componentux of the lattice displacements at the neighbori
twin boundariesux(0)5ux

a andux(L)5ux
a11 :

uqx5
1

sinh~qL!
$uqx

a11 sinh~qx!1uqx
a sinh@q~L2x!#%,

~15!

uqy5
i

sinh~qL!
$uqx

a11 cosh~qx!2uqx
a cosh@q~L2x!#%.

By substituting Eq.~15! into Eq. ~10!, we obtain the elastic
energy per unit volume

Ge5
2C66

L (
q

q^uuqx
a u2&coth~qL!, ~16!

where ^...& means averaging over twin boundaries, and
average values satisfŷuqx

a uqx
a11&50. The latter condition is

satisfied if the twins are distributed randomly, and deviatio
from the mean positions are approximately equal to
greater thandf . Within our model, the parameterGe can be
calculated exactly, but, in order to simplify calculations, w
will obtain our results with arbitrary constant factors.

In order to have a notable pinning energy, we need d
placements comparable to the lattice constantdf with a char-
acteristic wave vectorq0;1/DL, whereDL is the length of
a vortex row pinned by a twin boundary. On the other ha
it follows from Eq. ~16! that

Ge'g
C66df

2

L2 H 1, q0L!1,

q0L, q0L@1,
~17!

where g5const,1. For example, if the displacements a
supposed to be uniformly distributed over the interv
6df /2, one can easily obtaing51/6. Therefore, in the cas
of approximately equal displacement amplitudes~hence, ap-
proximately equalnp!, the largest gain in the free energy
provided by long-wavelength deformations withq0L!1.
This statement, however, is fairly obvious. Thus, the op
mum structure of magnetic flux trapped by twin boundar
involves positions of pinned vortex rows with the typic
lengthDL;1/q0@L, and in an ideal case~zero temperature
absolutely parallel twin boundaries, no history effects, e!
should be comparable to the sample dimension along
y-axis. Then we have an obvious estimate of the density
pinned vortices for our model:

np'n0df /L'1/Ldf , ~18!

wheren05B/F0'1/df
2 is the average vortex density in th

sample.
The characteristic separationL between the pinned row

is determined by the condition of the minimum Gibbs e
ergy. Using Eqs.~9!, ~11!, and~17! in the limit q0L!1 and
the Ginzburg–Landau relationships, we obtain

G'2
1

4gC66
S Hc

2j2

8p
n0d f pxD 2

,

L5
16pgC66df

Hc
2j2n0d f px

.Lt ,
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2

G'2
Hc

2j2df

8pLt
n0d f px1gC66

df
2

Lt
2,0,

L5Lt , B.Bt . ~20!

Since we have 2pg;1 andd f px!1, the magnetic fieldBt in
our samples should be at least several tesla. SinceB'Hdc

holds in the magnetic field range studied,G }2 Hdc, L
} 1/AHdc for Hdc,Bt . Thus, the parameterG decreases with
Hdc because the distanceL between chains of pinned vort
ces decreases.

It was mentioned in Sec. 3 that we measured the cur
flowing in theab-plane~or, using the notation of this section
in the xz-plane!. Then the Lorentz forceFL acting on vorti-
ces has only ay-component and equalsFL5 j xB/c, where
j x is the x-component of the transport current density. O
task is to calculate the critical valuej x5 j cx at which the
vortex lattice is set in motion. Let us assume for simplic
that the critical current density componentj cb due to the
volume pinning is simply added to the critical current dens
j ct due to pinning by twin boundaries:j cx5 j ct1 j cb . This
approximation can be used in two limiting cases:j cb@ j ct

and j cb! j ct .
Vortices can be depinned by one of three proces

First, vortices pinned by twins can move along them a
entrain the deformed vortex lattice if

L

df

~ j x2 j cb!F0

c
>

Hc
2j2d f py

8p l ty
,

where the ratioL/df is approximately equal to the number
vortices in the bulk per vortex pinned by twin boundarie
Then the critical current is given by

j ct

j 0
;

j2

LAh

d f py

l ty
, h5

Hdc

Hc2
, ~21!

where j 0;cF0 /l2j is the depairing current density in th
Ginzburg–Landau theory.

Second, the vortices can be depinned from twin bou
aries if the additional elastic energyGL due to vortex lattice
deformation by the transport current is larger than the gai
free energy due to the pinning. In calculatingGL , we use
Eqs. ~8!–~12!, adding to the right-hand side of Eq.~8! the
term corresponding toFL . Assuming that the transport cu
rent is lower than the critical value, the vortex lattice
pinned, and, as stated previously,^ux

a&50, we can calculate
the total elastic energy of the pinned vortex lattice. One
easily check that it can be expressed as a sum of two c
ponents:Ge1GL . The first of these is determined by Eq
~16! and~17! and is due to the lattice pinning by twins. Th
second is due to the Lorentz force and equals

GL5
1

6C66
FHdc~ j 2 j cb!L

c G2

. ~22!

The critical current forHdc,Bt is determined by the equa
tions
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Gp1Ge1GL50. ~23!

Thus we obtain the relations omitting the constant factor

j ct

j 0
;

j

L
d f px;d f px

2 Ah, Hdc,Bt . ~24!

The critical current increases with the magnetic field b
cause the characteristic displacement (;df) of the vortex
lattice required for the effective pinning of a vortex by a tw
boundary drops withHdc. Accordingly, the density of
pinned vorticesnp increases if the contributionGe to the
Gibbs energy is constant. WhenHdc.Bt holds, the param-
eter np saturates, and the slope of the curve ofj c(Hdc)
changes its sign. Note, however, that this effect occurs in
range of high magnetic fields, which were not attained in o
experiments, and so it will not be discussed below.

Finally, the third mechanism setting vortices in motion
plastic deformation of the vortex lattice near the twin boun
aries, while the vortices pinned by the twin boundaries
immobile. A calculation similar to that in Ref. 23@with L
derived from Eq.~19!# yields

j ct

j 0
;bL

j

L
;bLd f pxAh, ~25!

wherebL;0.1– 0.2 is a constant similar to the Lindema
constant in the theory of melting. As in the previous ca
Eq. ~25! predicts a peak effect due to the pinning by the tw
boundaries.

Naturally, the actual mechanism of transition to a res
tive state corresponds to the lowest critical current. Thus,
theory predicts an increase in the componentj ct of the criti-
cal current density with the magnetic field in the range b
tweenB0 and Bt , if the quasi-planar defect is highly non
uniform in the longitudinal direction so that

d f py

l ty
.min$d f pxbL%

Ah

j
. ~26!

In particular, the peak effect in the transverse current is
sent if a defect related to a twin boundary is an ideal pla
To conclude this section, note thatd f px in the samples stud
ied is of the order of several hundredths~see Sec. 5!, hence
d f px,bL . Then it follows from Eq.~26! that in our model
the peak effect should occur only in the field ran
h,h* 5(jd f py /Ltyd f px)

2. On the other hand, there is
range of growth forj c(Hdc) only if Bt /Hc2,h* or

d f py. l ty /Lt . ~27!

The latter inequality is the condition for existence of t
peak effect in our model. Below we will assume that the tw
is sufficiently nonuniform and the condition~27! is valid.

4.3. Angular dependence of critical current

Now let the fieldHdc be rotated through an angleu in the
xz-plane. In this case, the magnetic field inductionB in the
sample makes an angleb(r ) with the twin boundary gradu-
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Then an additional term should be added to the Gibbs
energy:

Gm52
1

4pV E dVB•H, ~28!

and the derivatives]u/]z should be included in the equa
tions for elastic vortex displacements. Here we have defi
the undistorted~ground! state as a configuration of the vorte
lattice with all vortices aligned with twin boundaries. In wh
follows, we limit our discussion to the range of small ang
u!1. Then we can use the elasticity equations in the form
Eq. ~8!, assuming that thez-axis is aligned with the twin
plane. Moreover, forB@Hc1 we can takeB'H. Then we
find from Eq.~28!

Gm5const1
Hdc

2

8p
^~u2b!2&. ~29!

After substituting into Eq.~8! the Fourier series for the dis
placement,

uj5(
q

uq j~x!eiqy1 ikz, j 5x, y,

we obtain an expression for the elastic energy using E
~10! and ~12! by analogy with Eq.~16!:

Ge5
C66

L

3(
q,k

^uuqkx
a u2&

sinh2~pL!

3
~p1q!@~p21q2!sinh~2pL!22pL~p2q!2#

4pq

1
C44

2
^b2&, ~30!

where

p5Aq21C44k
2/C66,

and we have taken into account that

b'AS ]ux

]z D 2

1S ]uy

]z D 2

. ~31!

Given Eqs.~30! and ~31!, one can easily check that for th
same displacement amplitude~assuminĝ uui

au2& ; df
2, so that

effective pinning occurs at twins!, the maximum gain in the
free energy is provided by thermodynamically favored lon
wavelength deformations, such thatpL!1. This conclusion,
however, is self-evident. Thus, the typical dimensionL of
the fraction of the vortex lattice captured by a twin along t
z andy directions is much larger thanLt . Then the density
of the pinning energy is still determined by Eqs.~11! and
~18!, and the elastic energy can be estimated, by ana
with Eq. ~17!, by the equation

Ge5g
C66df

2

L2
1

C44

2
^b2&. ~32!
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slowly, we have A^b &;^b&. By minimizing the sum
G5Gp1Ge1Gm with respect toL and b, we obtain an
estimatê b&;u/2 ~omitting a numerical factor! and

G'2
HdcF0d f px

2

4gl2~8p2!2 1
Hdc

2 u2

32p
, B0,B,Bt , ~33!

where we have taken into account Eq.~9! and the approxi-
mate equalityB'Hdc. It follows from Eq. ~33! that such
structure of pinned vortices exists if

u,um;
d f px

kAh
, ~34!

wherek5l/j is the Ginzburg–Landau parameter.
Assuming that the condition~26! andd f px,bL are sat-

isfied, we determine the angular dependence of the crit
current. To this end, we use equations like~23! with the
additional Gibbs termGm . In the limit u!1, the energy of
elastic deformation due to the Lorentz force is still expres
by Eq. ~22!, with the exception of minor corrections. The
we derive from Eqs.~32! and ~34!

j ct

j 0
;d f px

2 h1/2FA12S u

um
D 2

2
1

3G1/2F11A12S u

um
D 2G3/2

,

u,um . ~35!

The width of the peak in the curve ofj ct(u) is of the order of
um , and the peak effect should be observed at these pa
eters.

5. DISCUSSION

Theoretical and experimental curves ofj c versusHdc are
shown in Fig. 7. These plots demonstrate that the the
gives an adequate qualitative description of experime
curves. Moreover, the increase inj ct } Ah around the peak a
u50 is in good agreement with experimental curves. A
suming thatl52000– 3000 Å andk560, we obtain an es-
timate j 0;109 A/cm2, Hc2;30 T and check thatd f px

should be several hundredths in order to obtain an appr
mately correct value ofj ct . In this case, the peak widthum is
several tenths of one degree, in accordance with Eq.~35!,
and the peak should be an order of magnitude narrower
the experimental value.

There may be several reasons for broadening of the p
in the angular dependence of the critical current. First of
these may be purely technical reasons. For instance, the
rection of the total magnetic field in experiment is variab
because the vectorsHdc and hac are not strictly parallel.
Moreover, twin boundaries can also be slightly nonparal
The peak broadening, however, can be caused by phy
properties of the sample. First, the defect regions near
twin boundaries have a finite thickness, which has not b
taken into account in the calculation of the elastic energy
the vortex lattice. Second, all our estimates of the current
peak width refer to the model of an isotropic sample w
some effective parameters@see, for example, Eq.~9!#. In re-
ality, YBCO crystals are essentially anisotropic. This anis

1184Voloshin et al.
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1G. Blatter, M. V. Feigel’man, V. B. Geshkenbeinet al., Rev. Mod. Phys.
66, 1125~1994!.

ee,

,

ics

er-

ts
vortex direction is not exactly orthogonal to thec-axis, and
the vortex direction always has ac-component due to the
y-component of the vortex lattice displacement. In t
present work we do not try to discover which of the mech
nisms broadens the peak in the angular dependence o
critical current, because this problem is too complicated
deserves special investigation. In this study, we have fi
um to experimental data.

As was noted in the Introduction, in some experime
twins behaved like weak links, i.e., channels for penetrat
of vortices into samples. The analysis of literature data2–16

reveals a tendency for twin boundaries to act as penetra
channels mostly in the range of high magnetic fields, pr
ably because the superconducting order parameter is
pressed by the magnetic field in regions with a high conc
tration of defects.

In conclusion, we have measured the ac magnetic
ceptibility of single crystals and melt-textured samples
YBCO. When the magnetic field is rotated in theab-plane
and from thec-axis to theab-plane, the ac magnetic susce
tibility and critical current density have peaks versus an
when the field is aligned with twin boundaries. At the
peaks, a peak effect is observed in the magnetic-field de
dence ofj c . Our results indicate that twins are strong pi
ning sites in the studied range of magnetic fields betwee
and 20 kOe at liquid-nitrogen temperature. The features
our measurements can be interpreted in terms of pinnin
the vortex lattice by a system of planar defects.

This work was partly supported by the Russian St
Program on Superconductivity~Projects Nos. 93027, 93087
and 95046! and by the Russian Fund for Fundamental R
search~Grant No. 96-02-18949!.
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Magnetic vortices and thermoelectric effect in a hollow superconducting cylinder

R. M. Arutyunyan, V. L. Ginzburg, and G. F. Zharkov

P. N. Lebedev Institute of Physics, Russian Academy of Sciences, 117924 Moscow, Russia
~Submitted 8 October 1996!
Zh. Éksp. Teor. Fiz.111, 2175–2193~June 1997!

The question of a surface barrier which determines the behavior of a vortex in a hollow
superconducting cylinder of finite thickness in an external magnetic field is discussed, taking into
account magnetic flux quantization in the cavity. The behavior of magnetic vortices in a
hollow superconductor in the presence of a thermoelectric current is also considered. Pairs of
magnetic vortices with opposite magnetic field orientations~vortex–antivortex pairs! are
generated by this current nearTc . The thermoelectric current drives the antivortex~the vortex
with oppositely directed field! out of the cylinder, whereas the vortex is ejected into the
cavity and remains on the inside cylinder surface as a current. The number of magnetic flux quanta
trapped inside the cylinder increases by one. The relation of this mechanism to the ‘‘giant’’
thermoelectric effect in hollow superconductors is discussed. ©1997 American Institute of
Physics.@S1063-7761~97!01806-4#

1. INTRODUCTION vortex filamentmf0 is at distancex from the cavity surface,
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The existence of a surface barrier impeding penetra
of magnetic vortices into type-II superconductors in an
ternal magnetic field was first analyzed by Bean a
Livingston,1 and then investigated in many experimental a
theoretical works.2–6 Behavior of a magnetic flux line nea
the plane surface of a semi-infinite superconductor in an
ternal magnetic fieldHe parallel to the interface has bee
studied, and, in particular, an expression for the free ene
of a superconductor containing a vortex has been obta
with a view to describe a plane surface barrier.~The problem
of a surface barrier for circular flux lines in a hollow supe
conductor with applied azimuthal magnetic field has a
been studied recently.7,8!

Section 2 of this paper gives a general expression
scribing the surface barrier in the case of a hollow superc
ducting cylinder of a finite thickness in an external magne
field parallel to the cylinder axis with due account of flu
quantization in the cavity. Using this expression, vario
limiting cases have been analyzed. The behavior of a vo
in a plate of a finite thickness driven by an external field
discussed in Sec. 3. The behavior of a vortex in a holl
cylinder at different temperatures is studied in Sec. 4, and
behavior of a vortex driven by thermoelectric current in S
5. In Sec. 6 we study the possibility of generating a vorte
antivortex pair by thermocurrent, and in Sec. 7 the relat
between this mechanism and the so-called ‘‘giant’’ therm
electric effect detected in hollow superconducting structu
is discussed.

2. THERMODYNAMIC POTENTIAL OF THE SYSTEM

Let us consider a hollow superconducting cylinder~Fig.
1! with inside radiusr 1 and outside radiusr 2 , the field out-
side the cylinder beingHe and the inside fieldH i . A vortex
filament is inside the superconductor carrying one flux qu
tum mf0 , wheref05hc/2e ~the vectorm is aligned with
the z-axis; its z-projection assumes valuesm561 and 0,
and the fieldsH i andHe are also parallel to thez-axis!. The
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whose radius isr 1 . The field H i corresponds tom flux
quanta~with directionmf0! trapped in the cavity. In order to
solve the problem, we need to find the free energy~more
exactly, the thermodynamic potential! of the system given in
Fig. 1.

We start with the energy conservation in the superc
ductor:

DE5DQ1
cDt

4p E
se

E3He•ds1
cDt

4p E
s i

E3H i•ds

1
cDt

4p E
sm

E3Hm•ds, ~1!

when the change in the energy during timeDt is due to the
heat DQ dissipated in the superconductor and electrom
netic energy transmitted through the inside (s i) and outside
(se) surfaces of the sample. The vortex has a normal c
which is modeled by a voidsm with radiusr m→0 containing
one flux quantummf0 . The field on the vortex axis is de
noted byHm(0). In the limit r m→0 the fieldHm(0) coin-
cides with the magnetic inductionBm(0), i.e., the real field
on the vortex axis.

Using the formulas like

a curl b2b curl a1div~a3b!50 ~2!

and the Gauss theorem

E
V
div~F~r !!dv5E

S
F~r !•dS, ~3!

one can replace the surface integrals in Eq.~1! with volume
integrals. We also use the Maxwell equations

curl E52
1

c

]B

]t
, curl H50, ~4!

where E and B are the electric and magnetic fields in th
superconductor, andH ~i.e., He , H i , and Hm! are the un-
screened~unlike the magnetic inductionB! magnetic fields

11861$10.00 © 1997 American Institute of Physics
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in vacuum. The fieldsH in Eq. ~1! are constant on the sur
facess, which applies to all cylindrical surfaces whose cro
sections are defined by curves of the second order, not ju
the circular cylinder shown in Fig. 1.

Using the inequalityDQ<TDS , whereT5const is the
sample temperature andS is its entropy, and introducing th
superconductor free energyF s5E2TS , we transform the
right-hand side of Eq.~1! to DG<0, where the Gibbs free
energyG is expressed by~compare to Refs. 9–11!

G5F s2
1

4p E
V
He•Bdv1

Hi
2

8p
Vi . ~5!

HereV5Vi1Vs is the total sample volume,Vi is the interior
cavity volume,Vs is the superconductor volume, while th
volume of the normal core of a vortex isVm50. In deriving
Eq. ~5!, we have assumed that the external fieldHe is fixed,
He5const (]He /]t50), but the field in the cavity is vari-
able~it can change, for example with the temperature or
vortex distancex to the surface; only the numberm of
trapped magnetic flux quanta in the cavity is fixed, i.e.,
magnetic fluxoid is quantized!. Thus, any changes in the sy
tem lead to a decrease in the Gibbs free energy (DG<0),
provided thatT andHe are maintained constant with time.

The superconductor free energyF s is expressed through
the standard Ginzburg–Landau functional:

F s5F n01E
Vs

B2

8p
dv1E

Vs
H 2auCu21

b

2
uCu4

1
1

2m*
U i\¹C1

e*
c

ACU2J dv, ~6!

where F n0 is the free energy of a normal metal in ze
magnetic field,a and b are the temperature-dependent p
rameters which determine the thermodynamic critical m
netic field of a massive superconductor,Hc

254pa2/b;
e* 52e andm* 52me are the charge and mass of a Coop

FIG. 1. Cylinder with radiir 1 andr 2 in the external magnetic fieldHe , with
internal fieldH i5mf0 /pr 1

2. The vortexmf0 is at a distancex from the
cavity. Thermocurrentj th can flow around the inside surface~see Sec. 5!.
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phase, andA is the vector potential of the electromagne
field.

The variational equationdG/dA50 yields, as usual, the
magnetic field in the system:

curl B5
4p

c
j s , B5curl A, ~7!

j s5
c

4pl2 S \c

e*
¹Q2AD ,

1

l2 5
4pe

*
2 uCu2

m* c2 . ~8!

The boundary conditions on the inside and outside surfa
of the superconductor are:

Bus i
5H i , Buse

5He , Busm
5Hm~0!, ~9!

where the fieldHe is fixed, and the fields in the cavity,H i ,
and on the vortex axis,Hm(0), must be calculated as a func
tion both of the numberm of magnetic flux quanta in the
cavity and the distancex to the axis of the vortexm.

The system energy is measured with respect to its va
in the normal state~when uCu50!. Let us express the free
energy asG5Gs1Gn , whereGn is the free energy of the
normal state, besides, Gs(uCu50)50 and
B(uCu50)5He . Equation ~5! can be transformed, usin
Eqs.~6!–~8! ~see similar calculations in Ref. 11! to

Gs5F s02
He

8p E
V
~B2He!dv1

\

2e*
E

Vs

j s¹Qdv, ~10!

F s05E
Vs
H 2auCu21

b

2
uCu41

\2

2m*
~¹uCu!2J dv,

~11!

where F s0 corresponds to the condensation energy of
system.

The phaseQ~r ! in Eq. ~10! ~unlike that in Ref. 11! has
not one but two topological properties due to the two dou
connected regionss i and sm shown in Fig. 1. In this con-
nection, the phase as a function of coordinate can be
pressed as

Q~r !5u1~r1!1u2~r2!, ¹ rQ5¹r1
u11¹r2

u2 , ~12!

wherer is the integration point in Eq.~10! ~we assume tha
z50 holds!; r1 is the radius vector connecting the center
the cavitys i with the point r ; r2 is the radius vector con
necting the vortex center with the pointr ; u1 is the angle at
which point r is seen from the cavity center; andu2 is the
angle at which this point is seen from the vortex center. T
phases in Eq.~12! satisfy the following conditions:

R
C1

¹u1dl52pm, R
C2

¹u2dl52pm,

R
C3

¹Qdl52p~m1m!, ~13!

wherem is an integer;m50,61; C1 is an arbitrary closed
path around the cavitys1 , but not encircling the vortex
sm ; C2 is an arbitrary closed path around the vortex, but n
encircling the cavity; andC3 is a closed path encircling bot
s i andsm .
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which applies to all functionsu~r !, the second integral in Eq
~10! can be transformed, using Eqs.~2!, ~3!, and~12!, to

\

2e E
Vs

j s¹Qdv5
f0

8p
LzH R

Ci

H i¹u1dl

1 R
Cm

Hm~0!¹u2dl2 R
Ce

He¹dlJ ,

where Lz is the cylinder height~in what follows, Lz51!;
Ci is a closed path on the inside surfaces i ; Cm is a path
encircling the vortex; andCe is a closed path on the outsid
cylinder surface.

The fieldB~r ! in the superconductor, the fieldHm(0) on
the vortex axis, and the fieldH i in the cavity are functions o
the vortex coordinatex. This dependence will be made e
plicit: B(r ;x), Hm(0;x), andH i(x). As a result, the Gibbs
free energy~10! is transformed, taking into account Eq.~13!,
to

Gs5F s02
1

8p E
V
He•~B~r ;x!2He!dv

1
f0

8p
$m•~H i~x!2He!

1m•~Hm~0;x!2He!%. ~14!

This equation is universal, since it has been derived fr
Eqs.~1!, ~5!, and~10! using identities. It is exact if applied to
superconductors defined by cylindrical surfaces whose c
sections are second-order curves. Equations~11! and~14! do
not demand thatuC(r )u5const. If m50 holds, Eq.~14!
yields the Gibbs free energy of circular11 and elliptical12 hol-
low cylinders, and atm5m50 it yields the Gibbs free en
ergy of a superconducting plate9 and of a solid circular
cylinder10 in an external magnetic fieldHe .

3. A VORTEX IN A PLANAR PLATE

The exact equation~14! expresses the free energy of
hollow superconductor containing a flux line in terms of t
fields B~r !, H i , andHm(0). Thefield B~r ! in the supercon-
ductor, the fieldH i in the cavity, and the fieldHm(0) on the
vortex axis are functions of the vortex positionx with respect
to the cavity surface. These fields are derived from Eqs.~7!
and~8! with the boundary conditions~9!. This derivation can
be carried out only in the caseuC(r )u5const, and this con-
dition is assumed hereinafter. This approximation is feas
if the magnetic field is sufficiently weak~the region near the
vortex axis is considered separately!.

First of all, let us consider an isolated vortexm in an
infinite superconductor. The fieldB~r! with respect to the
vortex axis (r50) is derived from Eq.~7! and expressed by
the equations~the field around an isolated vortex,uB~r!u, is
denoted byh(r)2,3!
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ss

le

2pl2 0S l D
dh

dr
52

f0

2pl3 K1S r

l D , r>j, ~15!

where K0(y) and K1(y)52dK0 /dy are modified Besse
functions of the second kind,l is the magnetic field penetra
tion depth, andl25m* c2/4pe

*
2 uCu2. For y@1 the function

K0(y) drops exponentially. Fory!1 the functionK0(y) has
a logarithmic singularity, so Eq.~15! does not apply to the
field h near the vortex axis (r50). A more accurate analysi
taking into account the equation for the order parame
uC~r!u indicates4,5 that Eq.~15! holds for distances down to
r;j, wherej is the coherence length,l(T)5kj(T), and
k@1 is the Ginzburg–Landau parameter for the case o
type-II superconductor. In the range of distancesr,j(T),
the amplitude of the order parameter drops,uC(r)u→0 as
r→0. As a result, the fieldh(0) on the vortex axis is finite
and approximately equals twice the first critical fieldHc1 ,
which corresponds to the onset of vortex penetration into
superconductor:

h~0!52Hc15
f0

2pl
K0S 1

k D ,

dh~r!

dr U
r50

52
f0

2pl3 K1S 1

k D ,

K1~y!52
dK0~y!

dy
, K0S 1

k D' ln k,

K1S 1

k D'k, k@1. ~16!

The expression forHc1 in Eq. ~16! holds fork.20, whereas
at smallerk this formula is quite inaccurate.4 Note that Eq.
~16! has been derived taking into account the gradient of
order parameter near the vortex axis.1–6 Below we will use
Eq. ~15! for r>j, assumingl5const and taking into ac
count Eq.~16! for r,j.

The field B(r;x) at some pointr in a semi-infinite su-
perconductor generated by a vortex at distancex from a
plane boundaryx50 is calculated using the mirror-reflectio
technique as a sum of two solutions of Eq.~15! for the vortex
m at pointx and its mirror reflection@the antivortex (2m)#
at 2 x with respect to the boundary:

Bm~r;x!5mh~ ur1u!2mh~ ur2u!. ~17!

We have added the indexm to the fieldBm to indicate that
this field is generated by the vortex. Herer1 is the radius
vector connecting the center of the vortexm with the obser-
vation point r, and r2 is the radius vector connecting th
center of the antivortex (2m) with the observation pointr
(r252x1r1 , where 2x is the vector connecting the cente
of the vortex and antivortex and perpendicular to the sup
conductor boundary!. It is obvious that at any pointr on the
interface between the superconductor and vacuum (x50)
the field satisfiesBm(r;x50)50, as follows from Eq.~17!.

If there is a certain external fieldHe on the interface
x50, an exponentially decaying functionHee

2x/l should be

1188Arutyunyan et al.



added to Eq.~17!. In this case, the conditionBm(0;x)5He is
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satisfied. By puttingr150 andr252x in Eq. ~17! ~the point
r150 is on the vortex axis!, we obtainBm(0;x) on the axis
of the vortex at distancex from the interface:

Bm~0;x!5m@h~0!2h~2x!#1Hee
2x/l.

In the case of a superconducting plate of a finite thi
ness d in an external magnetic fieldHe , the solution
Bm(0;x)is expressed as a sum of repeated mirror reflecti
from the two interfaces. Ifd@l, one can take into accoun
only the nearest reflections:

Hm~0;x!5m@h~0!2h~2x!2h~2~d2x!!#1Hee
2x/l

1Hee
2~d2x!/l. ~18!

~Note that Hm(0;x)[Bm(0;x), since both these function
determine the field on the vortex axis.! The solution~18!
satisfies Eqs.~7! and ~8! and the boundary conditions

Hm~0;x!ux505Hm~0;x!ux5d5He ; ~19!

moreover,Hm(0;x)ux5d/25mh(0) if d@l.
The total magnetic fluxF(x) in the system is the sum o

two terms:

F~x!5E
V
B~r ;x!dv5F01dF~x!, F05E

V
B~r !dv,

~20!

whereF0 is the flux without a vortex anddF(x) is the flux
associated with the vortex. The latter decreases as the vo
approaches an interface:

dF~x!5mf0@12e2x/l2e2~d2x!/l#, ~21!

so the vortex placed on any interface does not contribut
the total flux in the plate,dF(0)5dF(d)50 sinced@l.

The Gibbs free energy of a superconducting plate c
taining a vortex forH i5He ~or m50! is derived from Eq.
~14!:

Gs5F s02
1

8p E
V
He•~B~r ;x!2He!dv

1
f0

8p
m•~Hm~0;x!2He!. ~22!

As a result, we find from Eq.~22!, with due account of Eqs
~18! and ~21!,

Gs5Gum501G ~x!, Gum505F s02
1

8p

3E
V
He•~B~r !2He!dv,

G ~x!S f0

8p D 21

5m2@h~0!2h~2x!2h~2~d2x!!#

22m•He~12e2x/l2e2~d2x!/l!, ~23!

whereGum50 is the Gibbs free energy of the plate witho
vortices,9 and G (x) is the contribution due to the vortex
Equation~23! is a generalization of the results reported
Refs. 1 and 2 to the case of a plate with a finite thickn
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(d@l). The problem of a chain of vortices in a plate of
finite thickness was studied using a different technique
Brongersmaet al.29

Note that forx;d/2 and 2He5h(0) it follows from Eq.
~23! thatG 50, therefore the equilibrium critical field can b
defined asHc15h(0)/2. When He5Hc1 holds, a vortex
added to the system does not change the total ene
G (x)50 for d@l, i.e., the vortex inside the superconduct
is in thermodynamic equilibrium.

The behavior of the functionG (x) defined by Eq.~23! is
illustrated by Fig. 2. The surface barrier vanishes when
condition

dG ~x!/dxux5050

is fulfilled, whence the threshold field~i.e., the maximum
‘‘overheat’’ field! is derived using Eqs.~15! and ~16!:

H* 5
f0

2pl2 k5
Hc

&

,

hereHc is the thermodynamic critical field of the superco
ductor. WhenH.H* , vortices should move from the inter
face into the superconductor interior.

4. A VORTEX IN A HOLLOW CYLINDER

The Gibbs free energy of a hollow cylinder containing
vortex is determined by the general formula~14!, which re-
quires the total magnetic fluxF(x), the field H i(x) in the
cavity, and the magnetic fieldHm(0;x) on the vortex axis.
These parameters are usually determined using the mi
reflection method, but in the case of a hollow cylinder
arbitrary dimensions it is difficult to find an exact solutio
like ~17! because of the surface curvature. Below we co
sider the case of a circular cylinder characterized by ra
r 1 andr 2 with a large cavity radius:r 1@l. This allows us to
neglect the effect of the surface curvature and use the for
las for the field generated by a vortex in the case of a pl
interface.

When the total magnetic flux is calculated using Eq.~20!
~the integration is performed over the entire cross section
the sample, including the inner cavity!, one should take into
account that, unlike the case of Eq.~21!, the flux associated
with a vortex is now

FIG. 2. The functionG (x) @Eq. ~23!# in different magnetic fieldsHe : ~1!
He50; ~2! He.0; ~3! He5Hc1 ; ~4! He5H* .
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he
FIG. 3. Functiong(x)58pG (x)/f0 @Eq. ~29!#: ~a! at dif-
ferentm ~He50, T5const!. Curvesg(x) connect the states
with numbers of quantam11 andm ~the open circles cor-
respond tox50 and x5d!: ~1! m50; ~2! m5m* ; ~3!
m.m* ; ~b! at different temperaturesT ~He50, m,m* !:
~1! T,T* ; ~2! T5T* ; ~3! T.T* . Herem* is the maxi-
mum number of flux quanta which can be contained in t
cavity @Eq. ~31!#.
dF~x!5mf0@12e2~d2x!/l#, ~24!
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since only the fractionf0e2(d2x/l) of the flux dissipates into
the environment, whereas the other fractionf0e2x/l, which
also dissipates into the environment in the case of a pla
plate, now remains in the inner cavity and contributes to
trapped field.

The field in the cavityH i(x) is a sum of the fieldH i0 in
the absence of vortices anddH i(x) associated with the vor
tex:

H i~x!5H i01dH i~x!, dH i~x!5m
f0

pr 1
2 e2x/lZm .

~25!

The fieldH i0 corresponds tom flux quanta contained in
the cavity and is expressed as follows:11

H i05m
f0

pr 1
2

Zm1HeZe , Zm5
D0

D1
, Ze5

2

r1
2D1

,

D05K0~r1!I 0~r2!2I 0~r1!K0~r2!,

D15K2~r1!I 0~r2!2I 2~r1!K0~r2!, ~26!

where Kn(x) and I n(x) are modifed Bessel functions
r15r 1 /l, andr25r 2 /l. The factorsZm andZe in Eq. ~26!
are functions of temperature and system dimensions, and
scribe the shielding properties of a superconducting cylin
of finite thickness. In the case at hand@d@l(T),
r 1@l(T)], the shielding factor satifiesZm'1 at all realistic
temperatures, and the factorZe is exponentially small. In the
limiting case of a temperature very close toTc , in the limit
l→` and d/l→0, we haveZm→0 andZe→1. Thus, the
shielding factorZm in Eq. ~26! accounts for the fact that th
trapped flux satisfiesFi05H i0pr 1

2→0 asl→`, i.e., as the
cylinder becomes transparent for magnetic field, although
number m of flux quanta remains constant. In this ca
H i→He . We assume that the conditiond@l holds, there-
fore Zm51 andZe50.

The flux in the systemdF(x) associated with the vorte
and the additional field in the cavitydH i(x) due to the vortex
are

dF~x!5mf0~12e2~d2x!/l!, dH i~x!5m
f0

pr 1
2 e2x/l,

~27!
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When using Eq.~14!, one must know the total flux in the
system given by Eq.~20!, the fieldH i(x) in the cavity given
by Eq.~25!, and the fieldHm(0;x) on the vortex axis. Instead
of Eq. ~18!, the field on the vortex axis is determined now b
the equation@here, as in previous calculations we hav
Hm(0;x)[Bm(0;x)#

Hm~0;x!5m@h~0!2h~2x!2h~2~d2x!!#1H i~x!e2x/l

1Hee
2~d2x!/l. ~28!

Using Eqs.~24!–~28!, let us express the Gibbs free e
ergy ~14! asGs5G(m)1G (x), whereG(m) is the system
energy in the absence of vortices:11

G~m!5Fs02
1

8p E
V
He•~B~r !2He!dv

1
f0

8p
m•~H i02He!,

andG (x) is the energy due to the vortex:

G ~x!S f0

8p D 21

5m2@h~0!2h~2x!2h~2~d2x!!#

22m•He~12e2~d2x!/l!1@2m•me2x/l

1m2e22x/l#
f0

pr 1
2 . ~29!

For x5d we haveG (d)50, i.e., a vortex placed on th
outside surface does not affect the system energy. If the
tex is placed on the inside surface (x50), this means, in
fact, that the system containsm1m quanta in the cavity.
Therefore the following condition should hold:

G~m!1G ~x!ux505G~m1m!,

whereG(m) is the Gibbs free energy of the system witho
vortices. One can easily prove that this condition is satisfi
exactly:

G ~0!5
f0

8p F22m•He1~2m•m1m2!
f0

pr 1
2G

5G~m1m!2G~m!.
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Note that a vortex placed on the inside surface (x50) is just
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where F s is given by Eq.~6!, and the variationdG/dA

.,

e of
a current encircling the cavity and maintaining an additio
flux quantum. It does not lead to any singularity in the a
plitude of the order parameteruC(x50)u.

The behavior of the functionG (x) given by Eq.~29! in
the case of a hollow cylinder with a wall thicknessd is
illustrated by Fig. 3a~we consider the case ofHe50!. The
barrier preventing penetration of a vortex from the cav
into the superconductor vanishes when the condit
G 8(0)5]G (x)]xux5050 is satisfied, i.e., with due accoun
of Eq. ~16!,

G 8~0!5
f0

8p2l3 Fk22~m•m1m2!
l2

r 1
2 G50, ~30!

whence we determine either the maximum numberm* of
flux quanta which can be trapped in the cavity at a giv
temperature:

m* 5
k

2

r 1
2

l2~T!
21, ~31!

or the maximum ‘‘overheat’’ temperatureT* above which a
field corresponding tom trapped flux quanta cannot be co
fined in the cavity:

T*
Tc

5122k
j0

2

r 1
2 ~m•m1m2!. ~32!

For T.T* a flux quantum should be ejected from the cav
~Fig. 3b, curve3!.

5. VORTEX IN THE PRESENCE OF THERMOELECTRIC
CURRENT

The giant thermoelectric effect observed in hollow bim
tallic cylinders14 was investigated previously13 by solving the
model problem of a homogeneous cylinder carrying norm
current j th circulating around a cavity to simulate the re
thermoelectric current. In the following sections, we gen
alize the above formulas to include the thermoelectric c
rent j th . The energy conservation is expressed in this c
~we assume that the external fieldHe is zero! by

DE5DQ1
cDt

4p E
s i

E3H i•ds1
cDt

4p E
sm

E3Hm•ds

2DtE
Vs

E• j thdv, ~33!

where the last term on the right is the work done by
electric fieldE52c21]A/]t on the predetermined curren
j th5b¹T. We assume that this current flows in the pla
perpendicular to the cylinder axis,] j th /]t50, curl j th50,
j th5Q0 /r , whereQ05bDT/p. The total current around th
cavity in the normal state isI th5Q0 ln(r2 /r1), and the related
field in the plane isH th54pc21I th .

The Gibbs free energy of the system~provided that
T5const andj th5const! is expressed similarly to Eq.~5!:

G5F s1
Hi

2

8p
Vi2

1

c E
Vs

A• j thdv, ~34!
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yields the equation

curl B5
4p

c
~ j s1 j th!, ~35!

where j s is expressed by Eq.~8!. Equation ~34! is easily
converted to a form similar to Eq.~10! ~recall that
G5Gs1Gn!:

Gs5F s01
\

2e*
E

Vs

j s•¹Qdv2
1

2c E
Vs

~A2An!• j thdv,

where An is the vector potential in the normal state, i.e
An5A(uCu50), and, using Eqs.~12!, ~13!, and ~35!, to a
form similar to Eq.~14!:

Gs5F s01
f0

8p
$m•H i~x!1m•Hm~0;x!%1

f0

4p
m•Hth

2
f0

4p
m•Hth

L~x!

L0
1

l2

4L0
Hth•~H i~x!2Hth!,

~36!

where L(x)5 ln(r2 /(r11x)), L05L(0)5 ln(r2 /r1). Equa-
tion ~36! is exact, but after substitutingH i(x) andHm(0;x)
one has to use approximate expressions similar to thos
the mirror-reflection method.

As a result, we obtainGs5G(m)1G (x), where
G(m)[Gsum50 is identical to the expression in Ref. 13:

G~m!5F s01
f0

8p
m•H i02

f0

4p
m•Hth

1
l2

4L0
Hth•~H i02Hth!, ~37!

where the fieldH i0 in the cavity containingm flux quanta is
given by13

H i05m
f0

pr 1
2 Zm1HthZth , Zm5

D0

D1
, Zth5

2l2

r 1
2 Zm .

~38!

As l→`, Zth→1; for d@l1 andr 1@l the shielding factor
is Zth5(2l2/r 1

2)Zm!Zm . By settingZm51 andZth50, we
obtain

H i~x!5H i01dH i~x!,

dH i~x!5m
f0

pr 1
2 e2x/l,

Hm~0,x!5m@h~0!2h~2x!2h~2~d2x!!#1H i~x!e2x/l.

The contribution to the Gibbs free energyG (x) due to the
vortex is
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G ~x!S f0

8p D 21

5m2@h~0!2h~2x!2h~2~d2x!!#

1@2m•m1m2e2x/l#
f0

pr 1
2 e2x/l

22m•Hth

L~x!

L0
. ~39!

For x5d we haveG (d)50, as expected. Atx50 the con-
dition G (0)5G(m1m)2G(m) is satisfied exactly.

The expression forG 8(0)5]G /(x)]xux50 has the form

G 8~0!5
f0

2

8p2l3 Fk22~m•m1m2!
l2

r 1
2

12m•Hth

pl3

L0f0r 1
G . ~40!

Comparison with Eq.~30! demonstrates that the right-han
side of Eq.~40! contains the additional term;m•Hth , which
can be either positive or negative, depending on the direc
of currentj th and fieldHth generated by this current.

The behavior of the Gibbs free energyG (x) as a func-
tion of the thermoelectric current when the cavity conta
the largest possible magnetic fluxm* f0 @Eq. ~31!# is illus-

FIG. 4. FunctionG (x) @Eq. ~39!# at m5m* @see Eq.~31!# and different
thermocurrentsj th : ~1! j th50; ~2 and 3! j th.0; ~4! j th,0. Curve2 has a
minimum, which disappears at higherj th ~curve3!.
n

s

when m•Hth50 holds and the derivative satisfie
G 8(0)50 @Eq. ~30!#, curves2 and 3 correspond toj th.0,
for m•Hth.0 and G 8(0).0, and curve4 to j th,0, for
m•Hth,0 andG 8(0),0.

This means that, in the presence of a thermoelectric c
rent generating a magnetic fieldHth in the same direction as
the captured magnetic fluxm* f0 in the cavity@Eq. ~31!#, the
derivative satisfiesG 8(0).0 becausem•Hth.0. Since the
force acting on the vortexF(x)52]G (x)/]x is directed
towards the cavity atx50, the thermoelectric current effec
tively blocks the trapped magnetic flux in the cavity a
prevents ejection of magnetic vortices from the superc
ductor~curve 3 in Fig. 4!, which would take place at highe
temperatures in the absence of the thermoelectric cur
j th ~Fig. 3b!.

If the current is directed oppositely~m•Hth,0, curve4
in Fig. 4!, thenG 8(0),0, the trapped magnetic fluxm* f0

cannot be contained in the cavity, and flux lines should
formed and ejected from the superconductor. Whether
predicted effect really takes place can be checked experim
tally.

Note also that the functionG (x) has a minimum at
x;(2 – 3)l ~curve2 in Fig. 4!. This means that a vortex ca
occupy a metastable position at some distance from the
ity. Here we do not discuss this effect in detail.

Now compare the behavior of the vortex and antivort
~i.e., a vortex containing the magnetic flux of the oppos
sign! inside a superconductor with thermoelectric curre
j th . It follows from Eqs. ~39! and ~40! that G (0),0 and
G 8(0).0 in the case of a vortex~m51, m•Hth.0! and in a
sufficiently strong thermoelectric fieldHth ~curves3 and4 in
Fig. 5a!. This means that a force directed towards the cav
acts on a vortex near the inside surface. In the case o
antivortex ~m521, m•Hth,0!, we have G (0).0 and
G 8(0),0, i.e., the driving force is directed from the cavi
~curves 3 and 4 in Fig. 5b!. Thus, if there is a vortex–
antivortex couple, its components can be driven apart
thermocurrentj th under certain conditions. This effect ca
lead to important consequences, which will be discusse
the next section.
FIG. 5. FunctionG (x) @Eq. ~39!# at different currentsj th in
the presence of~a! vortex m51 and ~b! antivortex
m521. Herem,m* and ~1! j th50; ~2–4! j th increases.
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6. GENERATION OF A VORTEX–ANTIVORTEX PAIR BY
THERMOCURRENT
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In this section, we calculate the Gibbs free energy wh
the system shown in Fig. 1 contains two vortices,m1f0 and
m2f0 , located on a radius vector at distancesx1 andx2 from
the cavity surface (r 1).

Using the same technique as in previous sections,
easily obtain an exact formula which is a generalization
Eq. ~36!:

Gs5F s01
f0

8p
@m•H i~x1 ,x2!1m1•Hm1~0;x1 ,x2!1m2

3Hm2~0;x1 ,x2!#1
f0

4p Fm•Hth1m1•Hth

L~x1!

L0

1m2•Hth

L~x2!

L0
G1

l2

4L0
Hth•~H i~x1 ,x2!2Hth!.

~41!

Magnetic fields on the vortex axesm1 andm2 are determined
using the mirror-reflection technique:

Hm1~0;x1 ,x2!5m1Hc0f ~x1!1m2Hc0f ~x1 ,x2!

1H i~x1 ,x2!e2x1 /l,
~42!

Hm2~0;x1 ,x2!5m2Hc0f ~x2!1m1Hc0f ~x1 ,x2!

1H i~x1 ,x2!e2x2 /l,

where

f ~x!5K0~0!2K0S 2x

l D2K0S 2d22x

l D ,

f ~x1 ,x2!5K0S ux12x2u
l D2K0S x11x2

l D
2K0S 2d2x12x2

l D . ~43!

The functionsf (x1), f (x2), and f (x1 ,x2) are introduced to
take into account both the intrinsic fields of each vortex a
the fields generated by the counterpart vortex, as well as
contributions of nearest mirror reflections from both inte
faces~x50 andx5d!. The field around each vortex is de
scribed by the modified Bessel functionsK0(r) and K1(r)
for r5x/j>1, but on the vortex axisK05 ln k and
K1(0)5k in accordance with Eq.~16!.

For convenience let us write the expressions for all ty
cal fields in the problem:

Hc05
f0

2pl2 , Hc15
f0

4pl2 ln k, Hc5
f0k

2&pl2
.

The field inside the cavity is

H i~x1 ,x2!5H i01dH i~x1 ,x2!,

where H i0 is defined by Eq.~38!, and the increase in th
cavity field due to the vorticesm1 andm2 is

dH i~x1 ,x2!5m1

f0

pr 1
2 e2x1 /l1m2

f0

pr 2
2 e2x2 /l ~44!
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By expressingGs as Gs5G(m)1G (x1 ,x2), where
G(m) is defined by Eq.~37!, we obtain an equation for the
contribution of the vortices:

g~x1 ,x2!5G ~x1 ,x2!S f0Hc0

8p D 21

5m1
2f ~x1!1m2

2f ~x2!12m1•m2f ~x1 ,x2!

12
l2

r 1
2 @m1

2e22x1 /l1m2
2e22x2 /l

12m1•m2e2~x11x2!/l12m1•me2x1 /l

12m2•me2x2 /l#1a@m1•ethL~x1!

1m2•ethL~x2!#. ~45!

Hereeth5Hth /H th anda52H th /L0Hc0 .
The free energy~45! satisfies the necessary condition

namely, atm250 the expression forG (x1 ,x2) coincides
with Eq. ~39!, if m252m1 ~i.e., a vortex and antivortex ar
contained in the superconductor at the same tim!,
g(x1 ,x2)ux15x25x0

50 for all x05x15x2 . The condition
g(x0 ,x0)50 means that nothing happens at this point, t
is, the presence of a vortex and antivortex at one pointx0

does not change the system energy because the fields g
ated by them cancel out@(m11m2)f050# and, therefore, do
not affect the order parameter of the superconductor. T
means that a vortex and antivortex pair can be gener
through fluctuations, and this process does not require en
supply. But when a vortex and antivortex are being se
rated, the forces acting on them are directed oppositely.
vortex and antivortex are actually attracted to each other,2,3,6

whereas the thermocurrent tends to separate them by dri
the vortex to the cavity and the antivortex outside beca
the two last terms on the right-hand side of Eq.~45! have
opposite signs form252m1 . The functiong(x1 ,x2) in Eq.
~45! reflect the presence of countervailing factors, such as
interaction between the vortices and between the vort
and the cavity surface.

In analyzing the function~45!, we should determine the
point (x1 ,x2) at which the variationdg(x1 ,x2)50, i.e.,
when the barrier preventing vortex separation vanishes.
can check that less energy is needed when a vort
anitvortex pair is generated on the inside surfacer 1 ~i.e.,
x15x250!. It is rather obvious that the inside surface is t
best place for the beginning of vortex–antivortex separat
since the fieldHth(x) generated by the thermocurrentj th is
largest there and acts on the vortex and antivortex in op
site directions. The resulting antivortex is driven outside a
carries away magnetic flux2f0 , whereas the vortex re
mains on the cavity surface (x150). Thus, if the system
previously contained magnetic fluxF25mf0 , whereF2 is
the total magnetic flux inside the circle with radiusr 2 , the
system contains magnetic fluxF25(m11)f0 after separa-
tion of the vortex and antivortex. Note that, if the vortex ax
coincides with the cavity surfacex150, the field on its axis
equals the field inside the cavity, and its currents coinc
with the currents encircling the cavity, i.e., the vortex h
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turned into a current encircling the cavity and does not g
erate a singularity in the order parameterC(x1).

The behavior of the functiong(0,x2) at different tem-
peratures is illustrated by Fig. 6.

By substitutingm252m1 and x150 into Eq. ~45!, we
determine the derivative

g085
]g~0,x2!

]x2
U

x250

5
2

l FK1~0!1
2l2

r 1
2 m2

a

2

l

r 1
G . ~46!

The parametera in Eq. ~46! is a function of temperature an
can be expressed in a compact form as

a5a0

t

12t
, a05

16p

c

bTcl
2~0!

f0
, t5

T2T1

Tc2T1
.

~47!

Here we have used the formulas

a5
2H th

L0Hc0
, H th5

4p

c

bDT

p
L0 , Hc05

f0

2pl2 ,

DT5T2T1 , l2~T!5
l2~0!

12T/Tc
,

T2T1

Tc
5S 12

T1

Tc
D t,

12
T

Tc
5S 12

T1

Tc
D ~12t !.

The reduced temperaturet ranges between 0 and 1.
It clearly follows from Eq.~47! that, asT→Tc (t→1),

the parametera increases and the conditiong0850 is always
satisfied. This condition determinest* at which the barrier to
separation between the vortex and antivortex vanishes,
cause att5t* the attractive force between the vortex a
antivortex equals the force due to the thermocurrent driv
them apart.

Taking into account Eq.~47!, we can write the equation
for the threshold temperaturet* as

FIG. 6. The functiong(0,x2) @Eq. ~45!# versus the distancex2 between the
cavity surface and the antivortex at different temperatures:~1! T,T* ; ~2!
T5T* ; ~3! T.T* . Here T* is the threshold temperature at which th
antivortex is driven away from the cavity.
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r 1
2 12t 2 r 1 ~12t !3/2

where l15l(T5T1). This cubic equation is solved usin
the Cardano formulas. In particular, form50 we have the
temperature of transition from levelm50 to m51, i.e., the
temperature of the first jump inm:

t* 512~A1B!, A5A3 q

2
1AQ,

B5A3 q

2
2AQ,

q5aS 12
2

3
a1

2

33 a2D , Q5
a2

4 S 12
4

27
a D ,

a5S a0

2k

l1

r 1
D 2

.

For a!1 we havet* 512a1/3 or

T*
Tc

512D1S a0l1

2kr 1
D 2/3

, D1512
T1

Tc
.

The functionm(t) can be easily derived from Eq.~48!
by taking the integral part ofm:

@m#5
r 1

2

2l1
2 S a0

2

l1

r 1

t

A12t
2k~12t !D , ~49!

i.e., the total magnetic flux in the system
F[F2(t)5@m#f0 at points of transitionsm→m11 has
been found as a function of temperature. For the deriva
dF/dt we have

dF

dt
5f0

r 1
2

2l1
2 Fa0

2

l1

r 1
S 1

A12t
1

t

2~12t !3/2D 1kG .

~50!

Note that, ast→1, i.e., T→Tc , the asymptotic limit is de-
scribed by the formuladF/dt;(12t)23/2;(Tc2T)23/2.

7. COMPARISON TO EXPERIMENT AND DISCUSSION

In this section we discuss mostly the results of the p
vious section.

Van Harlingenet al.14,15discovered that in hollow bime
tallic superconducting samples with a temperature gradi
the total magnetic flux was anomalously large, several ord
of magnitude higher than theoretical predictions. In fact, E
~38! indicates that the field in the cavityH i is a sum of the
field due to the originally trapped magnetic fluxmf0 and the
field Hth generated by the thermocurrentj th . In supercon-
ductors, the field due to thermocurrent is suppressed by
factor Zth;l2/r 1

2!1 in comparison with normal metal, be
cause in a bulk superconductor the normal current and su
conducting current cancel out (j s1 j th50),16 i.e., the Meiss-
ner effect occurs~see for details Ref. 17!. The resulting
magnetic flux should be about 1022f0 , whereas the mea
sured fluxes14 were of the order of tens and hundreds of fl
quantaf0 . There is no generally accepted interpretation
this giant thermoelectric effect. The hypothesis proposed
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Ref. 13 and later developed in Refs. 18–21, and suggesting
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that the giant effect can be interpreted in terms of jumps
the trapped magnetic flux due to transitions between qu
tum states with the fluxesmf0 and (m11)f0 induced by
thermocurrent raised serious objections. Namely, the qu
tum numberm in the hollow superconductor is a topologic
invariant22 and can be changed only by introducing an ad
tional vortexmf0 through the outside sample surface. But
the external field is zero, there is a barrier to penetration
vortices on the outside interface~Fig. 4!, and a vortex canno
be generated inside the sample for topological reasons. It
suggested in Refs. 13, 18–21 on an intuitive basis that th
should be a mechanism for increasing the quantum num
m without a real transfer of a flux quantum by a vortex, b
with a direct generation of additional current around the
ner cavity. This hypothesis, however, was not based on s
ground because the mechanism had not been substant
We believe that the generation of a vortex–antivortex p
described in Section 6 justifies our hypothesis suggeste
Ref. 13.

In fact, if a vortex–antivortex pair is generated at a
point in the superconductor, the quantum numberm ~i.e., the
total flux F25mf0! of the system does not change, so t
topological laws are not violated. If the vortex axis rema
on the cavity surface~x150), the currents associated wit
the vortex encircle the cavity and contribute to the inter
field H i , i.e., the vortex is converted to a current encircli
the cavity. The field on the vortex axis equals the weak fi
in the cavity, and the order parameterC has no singularity at
point x150. As the antivortex moves away from the cavi
surface (x2.0), a region with an oppositely directed field
formed near its axis, andC50 holds on its axisx2 . Note
that a detailed description of the field configuration and or
parameter near the cavity surface forx2,j would require
detailed calculations of the vortex structure like those d
cussed in Refs. 5 and 6. As the antivortex moves from
interface, the field in the cavity gradually increases, wh
means generation of additional current encircling it. But
total magnetic flux in the system remainsF25mf0 , and
only when the antivortex approaches the outside surf
within a distance approximately equal tol and its flux
gradually passes to the external space, the total flux beco
F25(m11)f0 . The quantum numberm jumps fromm to
m11 at the moment when the axis of the antivortex cros
the outside surface~in accordance with topological conside
ations! and the system is in the state with (m11)f0 . Thus,
the proposed mechanism allows the system to transfer
higher magnetic level through generation of a vorte
antivortex pair and its separation by thermoelectric curre
As a result, we have a clear physical description of a p
nomenon, which probably describes the giant thermoef
observed in experiments.

Proceeding to a more substantial discussion of exp
mental results,14 note that Eq.~49! directly indicates the
presence of a giant effect since the additional flux in
system due to each new quantum is two orders of magni
higher than the value;1022f0 predicted by the simple
theory.17 The total flux measured as a function
temperature14 is described nearTc by the formula
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for t→1. For lower t the right-hand side of Eq.~50! is a
flatter function of temperature because of the large cons
k. This constant also determines the large height of the b
rier for a single vortex introduced to a superconductor in
Bean-Livingston theory.1 Note, however, that this theory ap
plies only to the case of a superconductor with a mirr
smooth surface~when the mirror-reflection technique can b
used!. If the surface is rough, the measured threshold fiel24

is considerably smaller than the theoretical value,1 which in-
dicates a smaller contribution of the last term on the rig
hand side of Eq.~50! and a wider range in which the law
(Tc2T)23/2 holds. Moreover, Fig. 5 indicates that the barri
for vortices on the outside surface, where the presence
residual magnetic fields can be important, decreases with
creasingj th ~i.e., with the temperature of the hotter junctio
T→Tc!. Such effects should be also taken into account
comparing between experimental and theoretical results.

Note that the simplified uniform model used in our ca
culations does not allow us to compare quantitatively
calculations of Sec. 6 and experimental results,14 therefore,
only qualitative comparison is possible. First of all, let
estimate the parametera0 in Eq. ~47!, which determines the
magnitude of the effect. By expressing the coefficientb as
a/r, wherea is the thermoelectric coefficient andr is the
resistivity, and using published data23 for the constantsa and
r, we finda0;1 – 50 for pure superconductors. Van Harli
genet al.14 used bimetallic samples from pure In and Pb, b
the parameters of the junction~alloy! were not known. This
may be an important point, since a vortex–antivortex pai
generated, most probably, in this junction~because it is a
weak link of the system! with large k and l, whereas the
thermoelectric currentj th , hence the parametera0 , are de-
termined by the characteristics of pure bulk superconduct
wherek is usually small. As a result, the choice of the sy
tem parameters is somewhat arbitrary. TakingTc55 K,
12T1 /Tc51022, a0510, k510, r 150.1 cm, and
j051025 cm, we derive from Eq.~48! t* at which jumps in
the total flux occur, namelyt* ;0.99. An anomalously large
flux was detected in experiments14 at smaller t, but this
could have various causes. For example, the samples us
experiments14 were toroids with rectangular cross section
so the geometrical factors affecting vortex generation w
notably different from the case of an infinite cylinder. Th
effects of surface roughness and junctions have been m
tioned above. As follows from the data reported by Mkrtch
et al.,25 the height of the barrier to vortex penetration on
interface between two superconductors with very differenl
significantly diminishes. Note also that a vortex–antivort
pair can be generated not in the form of two antiparallel fl
lines, but as a closed ring of finite dimension, like a vort
ring in a superfluid helium,26,27 which takes less energy~see
also Ref. 30!. All these factors can have considerable effe
on the height of the barrier to the pair formation.

Thus, the theory developed in this paper allows us,
principle, to interpret the giant thermoelectric effect,14 al-
though additional investigation is needed taking into acco
real experimental conditions.

In conclusion, note that the proposed mechanism of
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flux quanta generation can be also applied to the problem of
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Spatial correlation of an electron and hole in quasi-two-dimensional electronic system

in a strong magnetic field and its relationship to the light-scattering tensor
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The spatial correlation of light-generated electrons and holes in a quasi-two-dimensional electron
gas in a strong magnetic field is investigated in an approximation linear in the intensity of
the exciting light. The correlation is due to the interaction of the electrons and holes with
longitudinal optical (LO) phonons. The theory permits calculating, on the basis of a
special diagrammatic technique, two distribution functions of an electron–hole pair with respect
to the distance between the electron and the hole after the emission ofN phonons: first,
the function determining the total number of pairs which have emittedN phonons and, second,
the function related to the rank-4 light-scattering tensor in interband resonance Raman
scattering of light. A special feature of the system is that the electron and hole energy levels are
discrete. The calculation is performed for a square quantum well with infinitely high
barriers. The distribution function and the total number of electron–hole pairs before the emission
of phonons as well as the distribution function corresponding to two-phonon resonance
Raman scattering are calculated. The theory predicts the appearance of several close-lying peaks
in the excitation spectrum under resonance conditions. The number of peaks is related to
the number of the Landau level participating in the optical transition. The distance between peaks
is determined by the electron–phonon coupling constant. Far from resonance there is one
peak, which is much weaker than the peaks obtained under resonance conditions. ©1997
American Institute of Physics.@S1063-7761~97!01906-9#

1. INTRODUCTION electron–phonon interaction.1,2 The leveln51 is coupled to
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-1
As is well known, the energy levels of an electron in
quantum well in a strong magnetic field perpendicular to
plane of the well are discrete. For a certain well width the
is only one size-quantization level in the well. For a wid
gap semiconductor and a nondegenerate conduction ban
parabolic section of the electron spectrum can be compar
to the depth of the well. In such a situation the spectrum
an electron in a quantum well in a strong magnetic fi
perpendicular to the plane of the well consists of a system
discrete equidistant levels. For example, for a 0.3 eV squ
well and electron effective massme50.06m0 ~m0 is the free-
electron mass!, the second size-quantization level leaves
well when the well widthd.40 Å. For cyclotron energy
\Ve5\ueuH/mec5\vLO50.03 eV ~e is the electron
charge,H is the intensity of the magnetic field,c is the speed
of light in vacuum, andvLO is the LO phonon frequency!,
six Landau levels fit in the well. Similar estimates hold f
holes.

If the resonance condition

Ve5vLO , ~1!

holds, then real emission of aLO phonon and the transition
of an electron to the last Landau level are possible~we have
in mind low temperatures, at whichLO phonons are no
excited!. The Landau levels are thereby coupled by t
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n52 is coupled to the levelsn51 andn50 ~n is the Lan-
dau quantum number!. In the absence of interaction, for
general system consisting of an electron andLO phonons,
the energy levels, regarded as functions of the magnetic fi
cross at the pointVe5vLO . As n increases, the number o
crossing levels increases. Ifn51, then two levels cross: an
electron withn51 and an electron withn50 1 one phonon.
For n52 three levels cross: an electron withn51, an elec-
tron with n51 1 one phonon and an electron withn50
1 two phonons, and so on.

We emphasize that level crossing occurs at a single p
~if n>2! only if the energy levels of the electron spectru
are equally spaced. Interaction withLO phonons removes
the degeneracy, as a result of which there appearn11 levels
of the electron–phonon system which do not cross one
other ~Fig. 1!. The distance between neighboring levels
determined by the Fro¨hlich coupling constanta0 and is pro-
portional toAa0.3–7

The lifting of the degeneracy of the levels of th
electron–phonon system should be manifested in m
tiphonon resonance Raman scattering of light, which is
efficient method for investigating both bulk semiconducto
and quasi-two-dimensional semiconductor structures.8–10

The effect entails of the appearance of a series of pe
~phonon repetitions! at the frequenciesvs5v l2NvLO in the

11972$10.00 © 1997 American Institute of Physics
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scattered light, wherevs and v l are the frequencies of th
scattered and exciting light andN is the number of the pho
non repetition, which is equal to the number of phono
emitted in the scattering process.11

If the electronic spectrum is continuous, which happe
in a three-dimensional (3D) case and in a two-dimensiona
(2D) system in the absence of a magnetic field, the phon
repetition peaks are observed over a wide range of frequ
cies v l corresponding to fundamental absorption: the f
quency must satisfy the inequalityv l>vg1(N21)vLO

(\vg is the band gap!. Real creation of electron–hole pai
and real generation ofN21 phonons occur at this frequenc

The weakN dependence of the intensity of the phono
repetition peaks made it possible to observe phonon rep
tions with largeN.8,9,12–14In a system of equidistant levels
which describes a quantum well in a magnetic field, the c
ditions of observation of the phonon-repetition peaks dif
substantially from the conditions presented above. First,
frequenciesv l lie in narrow intervals corresponding to th
direct production of electron–hole pairs~input resonance! or
direct annihilation of electron–hole pairs~output resonance!.
Second, the magnetic field must satisfy the condition~1! in
order for real phonon generation to be possible. Ifme Þ mh

(mh is the hole effective mass!, then the condition~1! holds
for electrons only or holes only.

Thus, a quantum well in a strong magnetic field exhib
a high degree of selectivity with respect to multiphonon re
nance Raman scattering—strong scattering occurs in na
intervals of exciting light frequency and magnetic fields.

FIG. 1. Lifting of the degeneracy of the levels of the electron–phon
system at the crossing point of the levels for Landau levelsn50, 1, 2. The
cyclotron frequencyVe is plotted along the abscissa and the energy of
levels in arbitrary units is plotted along the ordinate. Electron transiti
from the valence band to the conduction band in the region of term split
is shown on the right-hand side. Input resonance: a! n51, b! n52; output
resonance: c! n52. The dashed line represents a transition that is not m
fested in two-phonon scattering, if the condition~1! holds. The splitting of
the terms at the pointr is not shown.
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hilation! does not hold, then the effect is sharply curtaile
As a result, the multiphonon resonance Raman scatte
profiles, i.e., curves of the scattering cross sections versus
frequenciesv l and magnetic field, contain a series of sha
peaks~see, for example, Ref. 15!.

The interaction of a light-produced electron and ho
with LO phonons leads to spatial correlation between the
The correlation arises because in the process of phonon
eration the electron and hole in a 3D system wander over a
volume determined by their mean-free paths.16 In a quasi-
two-dimensional system the wandering occurs in a pla
which sharply increases the intensity of the phono
repetition peaks compared with the 3D case.17

In a 3D system in a strong magnetic field, the spat
correlation in a plane perpendicular to the magnetic field
an electron and hole produced by light which then emit so
number ofLO phonons is qualitatively different from corre
lation in the caseH50.18 In the classical limit, the electron
and hole move in circular orbits in this plane. Light produc
an electron and hole at one point and then the electron
hole follow the same orbit in opposite directions. As th
emit phonons, the electron and hole cross over to other or
with other centers. The distance between the old and n
centers depends only on the magnitude of the magnetic
and the wave vector of the emitted phonon.18,19 Thus, the
electron~hole! mean-free path, which is proportional to th
electron–phonon coupling constant, does not appear in
description of the motion of electrons and holes in a pla
perpendicular to the magnetic field. All this is also true
motion in a quantum well, if the magnetic field is perpe
dicular to the plane of the well.

The distribution function over the relative distance b
tween the electron and hole reflects the spatial correlat
This function, as in other cases, is related to a light-scatte
tensor of rank 4, which determines the interband resona
Raman scattering of light.

The distribution function in the absence of a magne
field has been investigated in Ref. 16 for the 3D case and in
Refs. 20 and 21 for the quasi-two-dimensional system.
Ref. 18 the distribution function is calculated for the 3D case
with a strong magnetic field. The quasi-two-dimensional s
tem in a strong magnetic field studied below differs subst
tially from both the 3D system and the quasi-two
dimensional system in the absence of a magnetic fi
because of the characteristic features of the energy spec
of the electron–phonon system. Therefore it is helpful
develop a systematic theory that makes it possible to ca
late the distribution function of the electron and hole for
arbitrary number of emitted phonons, taking account of
splitting of the terms of the electron–phonon system.

In Sec. 2 a quantum-well model, which is considered
an example of a quasi-two-dimensional system, is form
lated, a definition is given for the wave function of electron
hole pairs after the emission ofN phonons, and the diagram
matic rules for calculating the wave function are stated.
Secs. 3 and 4 the distribution function of electron–hole pa
before the emission of phonons is calculated and a proce
is presented for renormalizing the electron line
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of the electron–phonon system. In Sec. 5 the distribut
function corresponding to the two-phonon resonance Ra
scattering of light is investigated, its relation to the lig
scattering tensor is established, and the frequency de
dence is analyzed. Section 6 is devoted to a discussion o
results.

2. WAVE FUNCTION OF AN ELECTRON–HOLE PAIR AFTER
THE EMISSION OF N LO PHONONS

The theory is developed for a single square quant
well with infinitely high walls in the case whend!le , lh

(d is the width of the well,le(h) is the electron~hole! mean-
free path!, which gives quantization of electron and hole m
tion perpendicular to the plane of the well. A magnetic fie
with intensityH is applied in the same direction. If the we
is bounded by the planesz50 and z5d, then the wave
function of the electron and hole, which do not interact w
phonons, has the form, in the effective mass approximat

Cn~r ,z!5A 2

dLx
eikxxwn~y!sin

pmz

d
, 0<z<d,

wn~y!5
1

A2nn!ApR0

expF2
~y2y0!2

2R0
2 GHnFy2y0

R0
G ,

Cn~r ,z!50, z,0, z.d, ~2!

whereHn(x) is a Hermite polynomial. The combined inde
n5m, n, kx ; the indices m ~size-quantization quantum
number! and n refer either to the electron (mc ,nc) or the
hole (mv ,nv); r is a two-dimensional vector of the spati
coordinates in the plane of the well~xy plane!, where
r5re for the electron andr5rh for the hole; and,Lx is a
normalization length. The calculation is performed in t
Landau gauge of the vector potentialA5A(2yH,0,0), R0

2

5c\/ueuH, y052kxc\/eH, kx is the projection of the wave
vector on thex axis, ande,0 for an electron. The electro
and hole energy levels do not depend onkx and have the
form

Ee5mc
2\ve1S nc1

1

2D\Ve ,

Eh5\vg1mv
2\vh1S nv1

1

2D\Vh ,

ve~h!5
\p2

2me~h!d
2 . ~3!

At low temperatures the interaction withLO phonons is
due to the emission of the phonons by an electron or hole
the condition~1! holds, then a real phonon is emitted by
electron and a hole emits a phonon in a virtual transition

A system consisting of an electron–hole pair, arising
a result of the absorption of one photon with frequencyv l

~we have in mind a direct allowed transition!, and LO
phonons emitted by the electron–hole pair is studied in
stationary state. The wave function of the system in a s
when the electron–hole pair has emittedN phonons can be
represented in the form
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cN~re ,ze ,rh ,zh ,Y0!5 (
$nph%,g

cnph

g ~re ,ze ,rh ,zh!cnph
~Y0!,

~4!

where cnph
(Y0) is the wave function of a system ofN

phonons, corresponding to a state in which the occupa
numbers of phonons with wave vectorsq1 , . . . ,qN equal 1
and all other occupation numbers equal zero. HereY0 is the
set of coordinates of the phonon subsystem. The indexnph

denotes the collection of vectorsq1 , . . . ,qN and

(
$nph%

...5
1

N! (
q1 ,...qN

... . ~5!

In Eq. ~4! (gcnph

g is the wave function of an electron–ho

pair after the emission ofN phonons with fixed wave vector
and the quantitiescnph

g are calculated by a diagrammat

technique. The rules of this technique are as follows.
1. A wave vector k l corresponds to a photon lin

~dashed line!. Nothing is associated with this line; it dete
mines the ratio of thex projections of the wave vectors of th
electron and hole lines touching it. It is assumed th
k l.0.

2. Electron lines~solid line! lie above the contour line
and hole lines lie below it. The indicesne5mc , nc , kxc and
nh5mv , nv , and kxv , respectively, are attached to them
These lines are directed from left to right.

3. Phonon lines are wavy. Wave vectorsq are attached
to them. The phonon lines are also directed from left to rig

4. Thex projections of the wave vectors are conserved
all vertices~light and dark points!.

5. The factor

Ml52S 2p\

V0
D 1/2 ueu

m0
~el•pcv!S ul

cnlv l
D 1/2

,

whereV0 is the normalization volume,pcv is the interband
matrix element of the momentum operator, andel , ul , and
nl are, respectively, the polarization vector of the exciti
light, the group velocity, and the refractive index at the fr
quencyv l , is associated with a light colored point. The i
dicesm and n of the electron and hole lines, respective
emanating from a light colored point are equal. The proj
tions kx have opposite signs.

6. The dark points are electron–phonon and ho
phonon interaction vertices. The arrangement of the line
the vertices is illustrated in Fig. 2. The factors

6C * e7 i UKn,n8~7qx ,2qy!;

FIG. 2. Various arrangements of the electron, hole, and phonon lines a
electron–phonon interaction vertex.
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are associated with the vertices a and b and the factors
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6C e6 i UKn,n8~7qx ,qy!;

are associated with the vertices c and d~the upper signs are
taken for a and c!. Here

C 5
i

\
CqMm,m8~qz!, U5

R0
2qy~2kx2qx!

2
, ~6!

Kn,n8~vx ,vy!5F min~n!,n8! !

max~n!,n8! !G
1/2

3e2v2/4i un2n8uS v

&

D un2n8u

3expF i S w2
p

2 D ~n2n8!GLmin~n,n8!

un2n8u S v2

2 D ,

w5arctan
vy

vx
, v25vx

21vy
25R0

2~qx
21qy

2!, ~7!

Lb
a(x) are associated Laguerre polynomials;

Mm,m8~qz!5
2

d E
0

d

dzeiqzz sin
pmz

d
sin

pm8z

d
, ~8!

Cq52 i\vLOF4pa0l e~h!
3

V0
G1/2 1

qle~h!
,

l e~h!5S \

2me~h!vLO
D 1/2

, a05ae~h!5
e2~k`

212k0
21!

2\vLOl e~h!
,

~9!

¸0(`) is the static~high-frequency! permittivity of the crys-
tal; and,q5(qx ,qy ,qz) is the wave vector of the phonon.

7. A factor (vg2Ej /\1 id)21, whereEj is the sum of
the energies of the line crossing the section, is assigne
each vertical section with numberj to the right of a light
colored point.

8. The wave function~2! is attached to an electron an
hole line with a free end and indexn.

9. Summation is performed over all indices of the ele
tron and hole lines.

In the calculation of the light-scattering tensor and t
distribution function in a quasi-two-dimensional system
the absence of a magnetic field, the reciprocalg of the life-
time, which governs the time dependence of the electro
and hole states, enters in the theory. The quantityg is deter-
mined by the interaction of the electrons and holes w
LO phonons, and is proportional toa0 . This system consists
of discrete levels and phonons with fixed frequencyvLO ,
since spatial dispersion and damping of theLO phonons are
neglected. In this case the interaction with phonons does
make the states time dependent, but merely lifts the deg
eracy of the levels of the electron–phonon system at
point Ve5vLO . The parameterd introduced in rule 7 char-
acterizes the time dependence of the states, which is as
ated with other processes.

Examples of diagrams for calculating the wave functi
after the emission of two phonons are presented in Fig
The indexg denotes the type of diagram. We emphasize t
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a diagram of typeg is characterized by a definite sequence
wave vectorsqi . For example, ifq1 andq2 are interchanged
in diagram a, then the diagram obtained will correspond t
different indexg. Therefore each diagram with a fixed a
rangement ofN phonon wave vectors generatesN! diagrams
which differ from the initial diagram only by a permutatio
of the vectors. The sequence in which phonons are emi
by an electron and a hole is also important in the diagra
and the diagrams b and c therefore correspond
different g.

3. WAVE FUNCTION AND DISTRIBUTION FUNCTION OF AN
ELECTRON–HOLE PAIR BEFORE PHONON EMISSION

Let us consider a very simple and illustrative example
which the light-produced electron–hole pair has not emit
any phonons. This process corresponds to the diagram sh
in Fig. 4a. In accordance with the rules, the wave function
the electron–hole pair is given by

cN505c0

5
Ml

\ (
kx ,m,n

1

Dm,n
m,n1 id

cne
~re ,ze!cnh

~rh ,zh!.

~10!

In the quantity

Dm,n
m,n5v l2vg2m2~ve1vh!2~n11/2!~Ve1Vh!

~11!

the lower and upper indices refer to the hole and the elect
respectively. The selection rules at a light colored point
taken into account in Eq.~10!: kxh52kxe , mc5mv5m, and
nc5nv5n. Using the explicit form~2! of the wave functions
cne

andcnh
and the formula

FIG. 3. Diagrams for calculating the wave function after the emission
two LO phonons. n5kx ,m, n; n85kx2q1x ,m8, n8; nh52kx ,m, n;
n95kx2q1x2q2x , m9, n9 ~a!; n952kx2q2x , m9, n9 ~b,c!.
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,

FIG. 4. Diagrams renormalizing an
electron line: a—Simplest diagram
b—renormalization for the Landau
level n51, c—renormalization for
the Landau leveln52.
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2nn!Ap
(
kx

exp~ ikxx!expF2
2R0

2 G
3expF2

~yh2y0!2

2R0
2 GHnS ye2y0

R0
DHnS yh2y0

R0
D

5
Lx

2pR0
expS ix02

r 2

4R0
2DLnS r 2

2R0
2D , ~12!

we obtain

c0~re ,ze ,rh ,zh!5
Ml

p\dR0
2 expS ix02

r 2

4R0
2D

3(
m,n

sinS pmze

d D sinS pmzh

d D
3

Ln~r 2/2R0
2!

Dm,n
m,n1 id

, ~13!

whereLn(x) is a Laguerre polynomial and

r5re2rh , y05R0
2kx , x05

xY

R0
22

~me2mh!xy

2R0
2M

,

R5
mere1mhrh

M
, R5~X,Y!, M5me1mh .

The distribution function of the electron and hole ov
the relative distance between them in the plane of the qu
tum well after the emission ofN phonons is given by21,18

FN~r !5E
0

d

dzeE
0

d

dzhE d2RE dY0ucNu2. ~14!

Integration over ze and zh yields a factor (d/2)2dm,m8
(dm,m8 is the Kronecker delta!, and integration overX and
Y yields the normalization areaS0 . As a result, we obtain in
the caseN50

F0~r !5
uMl u2S0

~2p\R0
2!2 expS 2

r 2

2R0
2D

3(
m

U(
n

Ln~r 2/2R0
2!

Dm,n
m,n1 id U2

. ~15!

The physical meaning of the functionF0(r ) is as fol-
lows: F0(r )d2r is the number of pairs, normalized to on
photon of the exciting light, which have not emitted a ph

1201 JETP 84 (6), June 1997
n-

-

Eqs.~13! and~15! that at the frequency satisfying the cond
tion

Dm,n
m,n50, ~16!

the functionsc0 andF0 become infinite ifd→0. If the fre-
quencyv l is sufficiently high, the condition~16! can be sat-
isfied for fixed values ofm andn. Then one term dominate
the multiple sum in Eq.~15!, andF0(r )[F0n(r ) assumes the
form

F0n~r !5
An~r !vLO

2

uDm,n
m,n1 idu2

, ~17!

where the function

An~r !5
uMl u2S0

~2p\vLOR0
2!2 expS 2

r 2

2R0
2D FLnS r 2

2R0
2D G2

~18!

determines the coordinate dependence of the distribu
function; An(r ) was introduced in Ref. 18, where the distr
bution function in a strong magnetic field in the 3D case was
investigated.

The function An(r ) does not depend on the quanti
numberm. Far from the condition~16!, many terms make a
substantial contribution to the sum—this is the case of
virtual production of an electron–hole pair, whenv l does
not correspond to the frequency of a real transition. One
see from Eq.~17! thatF0 as a function ofv l consists of one
Lorentzian peak, which diverges at the pointDm,n

m,n50 as
d22.

To obtain a splitting of the peak, the electronic line
the diagram in Fig. 4a must be renormalized. The hole lin
not renormalized, since only the electron can emit phon
in a real transition in the case in which the resonance co
tion ~1! is satisfied. As will be shown below, renormalizatio
depends on the numbern of the Landau level that the elec
tron and hole occupy after the production of the electro
hole pair. We therefore examine the renormalization pro
dure for eachn separately, starting withn51. If n50, then
renormalization results only in a shift of the peak by a sm
amount proportional toa0 .

If n51 and the frequencyv l is chosen so thatDm,1
m,1 is

small, then, retaining the resonance term in Eq.~10!, we
obtain forc0 the expression
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kx Dm,1
m,11 id

~19!

~ne5kx ,m,1 andnh52kx ,m,1!, wherem assumes a value
determined by the condition~16!. The electronic line and the
corresponding functioncne

are renormalized by summin
the series of diagrams shown in Fig. 4b.

This series consists of the diagrams that diverge m
strongly in the parameterae /d2. Taking account of the fac
that the energy levels do not depend onkx and that thex
projections of the wave vectors are conserved at all verti
we obtain the following simple equation for the renormaliz
functions:

c̃ne
5cne

1 (
m8,n8

C1,n8
m,m8~Dm,1

m8,n82vLO1 id!21

3~Dm,1
m,11 id!21c̃ne

, ~20!

where

Cn,n8
m,m85\22 (

q' ,qz

uCqu2uMm,m8~qz!u2uKn,n8~2qx ,2qy!u2.

~21!

The sum in Eq.~20! over m8 and n8 is dominated by one
term corresponding to the small value of the quan

Dm,1
m8,n82vLO . The condition~16! in the casen51 deter-

mines the frequency of the optical transition for fixedm:

v l5vg1m2~ve1vh!1
3

2
~Ve1Vh!. ~22!

In order that the quantityDm,1
m8,n82vLO vanish at this fre-

quency, the condition

~m22m82!ve1~n2n8!Ve2vLO50 ~23!

must be satisfied. SinceVe5vLO , m andn are integers, and
ve /Ve is arbitrary, the expression~22! holds if m85m,
n85n2150; in other words, the summation over the qua
tum numbersm8 andn8 vanishes in Eq.~20!.

Substitutingc̃ne
into Eq. ~19! and summing overkx us-

ing Eq. ~12!, we obtain for the renormalized wave functio
of the electron–hole pair the expression

c̃05
Ml

p\dR0
2 expS ix02

r 2

4R0
2D sinS pmze

d D
3sinS pmzh

d DL1S r 2

2R0
2D

3FDm,1
m,12

hvLO
2 F~1,0!

Dm,1
m,11Ve2vLO1 id

1 idG21

. ~24!

The coefficientsF(n,n21), wheren51,2, . . . , aregiven
by

F~n,n21!5h21vLO
22Cn,n21

m,m , h5
a0

2
A Ve

vLO
,

F~n,n21!5n21E
0

`

duAuF m~bAu!e2u@Ln21
1 ~u!#2,
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st

s,
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l H

F m~x!5
8

x214p2m2

3F3x

8
1

p2m2

x
2

4p4m4~12e2x!

x2~x214p2m2! G ,
l H5

R0

&

. ~26!

Comparing Eq.~24! with the unrenormalized functionc0 ,
we see that renormalization changes the resonance den
nator in Eq. ~13!. At resonance, whenDm,1

m,150 and
Ve5vLO , this correction is;h/d, and it is large if
h/d@1.

The distribution function corresponding toc̃0 and refer-
ring to the Landau leveln51 has the form, according to Eq
~14! ~the indexm is dropped below, if no confusion results!,

F̃01~r !5A1~r !@~G1l!21d2#F1~G!,

F1~G!5F S G1
l

2
2Al2

4
1hF~1,0!1d2D 2S G1

l

2

1Al2

4
1hF~1,0!1d2D 2

1~2G1l!2d2G21

.

~27!

In Eq. ~27! we introduced the notation

Gn5Dm,n
m,n/vLO ~28!

~the dimensionless frequencyv l , measured from the quan
tity vg1m2(ve1vh)1(n11/2)(Ve1Vh)) and

l5
Ve2vLO

vLO
~29!

~the dimensionless deviation of the electron cyclotron f
quency from the resonance value!. The functionF̃01 corre-
sponds to the indexn51. Therefore

Gn515G5
1

vLO
Fv l2vg2m2~ve1vh!

2
3

2
~Ve1Vh!G .

It follows from Eq. ~27! that F̃01 in the cased50 con-
tains two singular peaks, which become infinite at the poi
G5(1/2)(6Al214hF(1,0)2l) and are separated by th
distanceAl214hF(1,0). At resonancel50, and this dis-
tance~splitting of the peak! equals 2AhF(1,0). Forl50, in
the limit hF(1,0)@d2 there are two peaks; their values at t
maxima are ;(2d)22. In the other limiting case,
hF(1,0)!d2, there is one peak whose maximum lies at t
point G50. The frequency dependence of the functionF̃01 is
presented in Fig. 5~curves1 and3!.
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4. DISTRIBUTION FUNCTION OF AN ELECTRON–HOLE PAIR
FOR LANDAU NUMBERS n>2

If after absorbing a photon an electron and hole occu
the Landau levelsnc5nv52, the renormalization of the
electronic line performed in Sec. 3 is inadequate, sinc
neglects all of the most strongly divergent diagrams. Inde
under resonance conditions, an electron in leveln52 can
emit two phonons and pass in succession into the le
n51 andn50, while the series of diagrams in Fig. 4a tak
account of one resonant transitionn51→n50. Renormal-
ization of the linen52 therefore entails replacing each fra
ment of the diagram in Fig. 4b~one such fragment is en
closed by the dashed rectangle! by the series of diagram
displayed in Fig. 4c. The selection rule for the importa
diagrams is as follows: if an electron ends up in a Land
level n as a result of pair production, then the diagrams
which any vertical section intersects not more thann phonon
lines are important.

As one can see from Fig. 4c, starting withn52, both
electron lines and vertex parts~diagrams with intersecting
phonon lines! are renormalized. An approximate theory th
neglects renormalization of the vertex parts is presented
low. It can be shown that neglecting diagrams with interse
ing phonon lines does not change the qualitative picture
the splitting of a peak. Only the numerical factors that app
in the expressions that govern the splitting between the pe
change.22

Neglecting renormalization of the vertices simplifies t
summation of the important diagrams, since the series red
to a geometric progression. As a result, we obtain for
distribution function near resonance

FIG. 5. h@(G1l)21d2#F1(G) ~curves1,3! andh2F1(G) ~Eq. ~49!, curves
2 and 4! versus the dimensionless frequencyj5 1/vLO @v l

2m2(ve1vh)2 3vLO/2#5G1
3
2 @l1 (11l)me/mh# ,me /mh50.176;

d50.03; hF(1,0)50.01. Curves1, 2—l50, curves3, 4—l50.05. The
curves corresponding tol520.05 are obtained from the curves3 and4 by
mirror reflection through the pointG50 (j50.265).
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F̃02~r !5A2~r !UG1 id

2
hF~2,1!

G1l1 id2hF~1,0!/~G12l1 id!
U22

,

G5G2 , ~30!

which is a terminating continued fraction with two elemen
The frequency dependence ofF̃02 contains three peaks
whose intensities depend on the parameterl. At resonance
l50, andF̃02 assumes the form

F̃02~r !5
A2~r !u~G1 id!22hF~1,0!u2

uG1 idu2u~G1 id!22h@F~2,1!1F~1,0!#u2 ,

~31!

whence it follows that at resonance, peaks occur at the
quenciesG50 and G56Ah(F(2,1)1F(1,0)). Renormal-
ization of the vertices will change only the numb
AF(2,1)1F(1,0); the proportionality to the parameterAh is
preserved, and the position of the central peak does
change.

The frequency dependence of the function~30! is dis-
played in Fig. 6. Comparing Eqs.~30! and ~24! shows that
renormalization for the leveln52 leads to the appearance
an additional element in the denominator of the continu
fraction. The generalization to arbitraryn in the approximate
theory proposed is obvious:F̃0n(r ) is a terminating contin-
ued fraction withn elements

F̃0n~r !5An~r !/Dn , ~32!

FIG. 6. hF̃02(r )/A2(r ) ~curves1,2! andh2@(G12l)21d2#F2 ~curves3,4!
versus the dimensionless frequencyj5G15@l1(11l)me /mh#/2,
h50.01, d50.03, me /mh50.176; 1, 3—l50; 2, 4—l50.1. The topj
scale is for curves1 and 3 and the bottomj scale is for curves2 and 4.
F(1,0)50.886; F(2,1)50.775.
Dn5UG1 id2
hF~n,n21!

G1l1 id2hF~n21,n22!/$G12l1 id2•••2~hF~1,0!/~G1nl1 id!%
U2

, G5Gn . ~33!
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5. DISTRIBUTION FUNCTION CORRESPONDING TO TWO-
PHONON SCATTERING
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F̃0n as a function of frequency hasn11 peaks, which at
resonance are split by;Ah.

Since the electron–hole pair has not emitted phono
the wave function~24! can be regarded as a superposition
two two-dimensional clouds—electron and hole—with
common center. Asn increases, the distance from the cen
of the cloud on which an electron and hole can be found w
the greatest probability increases. As the clouds increas
size, the probability of electron–hole pairs with large relat
distances increases, since the electron and hole in a l
cloud can move apart to large distances. Equation~32! shows
that the electron–hole distance increases withn—the region
next to the central maximum gives an increasingly sma
contribution to the total number of pairs~see below!.

The coordinate dependence of the distribution funct
is shown in Fig. 7. In the limit of largen, circular orbits can
be introduced instead of clouds. We note that the funct
An(R) is proportional to the squared radial wave function
a particle in a uniform magnetic field in cylindrica
coordinates.23

To conclude this section, we calculate the total num
N 0n of pairs that have not emitted a phonon,

N 0n5E dr F̃0n~r !, ~34!

whereN 0n is the total number of pairs~per photon of the
incident photon flux density! produced in levels with quan
tum numbersm and n as a result of the absorption of th
exciting light, and not emitting any phonons under stea
illumination. Substituting the distribution function~32! into
the expression~34!, we obtain

N 0n5
uMl u2S0

2pR0
2\2vLO

2 Dn
21. ~35!

The frequency dependence ofN 0n is identical to that for
F̃0n . It is also helpful to introduce a distribution functio
f 0n, which is normalized to unity:

f 0n~r !5
1

2pR0
2 expS 2

r 2

2R0
2D FLnS r 2

2R0
2D G2

. ~36!

FIG. 7. vn(r )5(2pR0
2\vLO)2An(r )/uMl u2S0 versus the coordinatesr for

different values of the quantum numbersn. Curve 1—n51, curve 2—
n54.
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The distribution function of electron–hole pairs after t
emission of two phonons is determined by the wave funct
~4! with N52. The diagrams for the functionscnph

g are dis-

played in Fig. 3. Here the indexg51, 2, and 3, and the se
nph5q1 , q2 . In multiphonon resonant Raman scattering, o
transition involving the emission of a phonon is virtual,
diagrams in which a hole emits a virtual phonon are tak
into account. It must be borne in mind that two expressio
differing by an interchange of the phonon vectorsq1 and
q2 are associated with each diagram, i.e., the indexg actually
runs through six values.

In accordance with the rules,cnph

g can be represented i

the form

cnph

g 5eix (
m,m9

(
n,n9

s~g!Ka,b~6vx ,2vy!

3sinS pm9ze

d D sinS pmzh

d D . ~37!

The functionKa,b(6vx ,vy) is determined by the equation
~7!

vx5
y

R0
2R0Qx , vy52

x

R0
1R0Qy . ~38!

In Ka,b(6vx ,2vy) for g51 the plus sign is chosen an
a5n9, b5n; for g52 and 3 the minus sign is chosen an
a5n, b5n9. The phasex is the same for all three diagram
shown in Fig. 2:

x52QxX2QyY1
xY

R0
2 1F~r !,

F~r !5
me2mh

2M S Qxx1Qyy2
xy

R0
2D ,

Q5q1'1q2' , qi'5~qix ,qiy!. ~39!

This phase depends on the numberN of emitted phonons
only through the projection of the sum of the wave vectors
the emitted phonons on the plane of the quantum w
Q5( i

Nqi', and is present in each diagram withN external
phonon lines. The functions

s~g![sm9,m,n9,n
~g!

5sm9,m,n9,n
~g!

~q1 ,q2!

1sm9,m,n9,n
~g!

~q2 ,q1!, ~40!

where
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~1!
MlCq1

* Cq2
* iR0

2

sm9,m,n9,n~q1 ,q2!52
p\3R0

2d
expF 2

~q1xq2y2q2xq1y!G
3 (

m8,n8

Mm,m8~2q1z!Mm8,m9~2q2z!Kn,n8~2q1x ,2q1y!Kn8,n9~2q2x ,2q2y!

~Dm,n
m,n1 id!~Dm,n

m8,n82vLO1 id!~Dm,n
m9,n922vLO1 id!

, ~41!

sm9,m,n9,n
~2!

~q1 ,q2!5
MlCq1

* Cq2
*

p\3R0
2d

expF2
iR0

2

2
~q1xq2y2q2xq1y!G

3 (
m8,n8

Mm8m9~2q1z!Mm8,m~2q2z!Kn8,n~q2x ,2q2y!Kn8,n9~2q1x ,2q1y!

~Dm8,n8
m8,n81 id!~Dm8,n8

m9,n92vLO1 id!~Dm,n
m9,n922vLO1 id!

. ~42!

The functionsm9,m,n9,n
(3) (q1 ,q2) differs from Eq.~42! by the n,n,n1 ,n1

S0d2
~g! ~g8!*
m ,n

d
el
r

n

hi

F 5 s s .

n

e

eld
fact that Dm8,n8
9 92vLO is replaced byDm,n

m8,n82vLO . The
derivation of Eqs.~41! and ~42! employed the relation

(
kx

exp@ i ~x2R0
2qy!kx#wn~yh2R0

2kx!wn8@ye2R0
2~kx2qx!#

5
Lx

2pR0
2 expF i

~x2R0
2qy!~ye1yh1R0

2qx!

2R0
2 G

3Kn8,n~vx ,2vy!.

We now establish the correspondence between the
tribution function and the light-scattering tensor. As is w
known ~see, for example, Ref. 16!, the light-scattering tenso
Sagbl is related to the probabilityW̄S,N that a photon of the
scattered light is emitted per unit time, normalized to o
photon of the excited light:

W̄S,N5
~2p!3ulus

V0c2nlns
v lvsesa* elgesbell* Sagbl ,

where the indexl refers to the exciting light, the indexs
refers to the scattered light, andes( l )a is thea projection of
the polarization vector of the light.

On the other hand,

W̄S,N5
2p

\ (
f

u^ f uMsu i &u2d~\v l2\vs2N\vLO!,

~43!

whereMs is determined by the formula in Sec. 5 by a grap
cal technique, if the indexl in it is replaced bys. The initial
statei is determined by the function~4! and the final state is
determined by the function

c f5d~re2rh!d~ze2zh!cnph
~Y0!.

It is characterized by the presence ofN phonons with a fixed
set nph and photon energy\vs . The summation overf in
Eq. ~43! is equivalent to($nph%

. In the caseN52, using the
expressions~37! and ~40!, we obtain

W̄S,25
2p

\
uMsu2S0 (

m,m1
(
n,n1

F2,m,m,m1 ,m1

n,n,n1 ,n1

3d~\v l2\vs2N\vLO!, ~44!
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e
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2,m,m,m1 ,m1 23 (
q1z ,q2z

(
q'

(
g,g8

m,m,n,n m1 ,m1 ,n1 ,n1

~45!

By analogy with Ref. 16, we introduce the distributio
function

FN~r ,z!5E d2RE dZE dY0ucNu2, z5ze2zh ,

Z5
meze1mhzh

M
,

which when integrated overz becomes the function~14!.
After integration overR, Z, and Y0, the functionFN(r ,z)
assumes the form

FN~r ,z!5 (
m,m8,m1 ,m18

(
n,n8,n1 ,n18

F
N,m,m8,m1 ,m

18

n,n8,n1 ,n18 ~r !

3jm,m8,m1 ,m
18
~z!,

where

jm,m8,m1 ,m
18
~z!5

4

d2 E
2`

`

dZrmS Z1
mh

M
zD

3rm8S Z2
me

M
zD rm1S Z1

mh

M
zD

3rm
18S Z2

me

M
zD ,

ra~x!5sin
pax

d
.

In turn, F
N,m,m8,m1 ,m

18

n,n8,n1 ,n18 (r ) can be represented as the sum

F
N,m,m8,m1m

18

n,n8,n1 ,n18 ~r !5(
K

F
N,m,m8,m1 ,m

18

n,n8,n1 ,n18 ~r ,K !.

The vectorK is a sum of the electron and hole wav
vectors afterN phonons are emitted. The vectorK corre-
sponds to the wave vector operator in a magnetic fi
K̂x52 id/dX, K̂y52 id/dY2R0

2x. The eigenvalues of the
operator are2Qx , 2Qy , i.e., K52Q.20 In the caseN52
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F
n,n8,n1 ,n18 ~r ,K !

e

is-

th

th
f
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t

s

m

l.

The first term in Eq.~47! corresponds to the channel for

el

of

st

the
as a
to
two

es
-
,
ac-
ond
y

f

,
two

t

2,m,m8,m1 ,m
18

5
S0d2

23 (
q1z ,q2z

(
q'

(
g,g8

sm8,m,n8,n
~g! sm

18 ,m1 ,n
18 ,n1

~g8!*

3Kn8,n~6vx ,2vy!Kn
18 ,n1

* ~6vx ,2vy!. ~46!

The expression~46! transforms into Eq.~45!, if, first, r→0
and K→0, i.e., vx→0, vy→0. This leads to the condition
n85n, n185n1 . Second, the indices must be the sam
m85m, m185m1 . Therefore the functions
F2,m,m,m1 ,m1

n,n,n1 ,n1 (r ,K ) that appear in the expression for the d

tribution function F2(r ,z) determine the probabilityW̄S,2

~44! and thereby the scattering tensor.
The formal extension of Eqs.~45! and ~46! to arbitrary

N is simple. The number and form of the functionss (g) will
change, and the factorS0 /N! will replace S0/2. The quanti-
ties s (g) will consist of a sum ofN! terms, which corre-
sponds to the number of permutations ofnph.

We now examine the most interesting case, in which
frequency v l corresponds to either input resonance~i.e.,
when the condition~16! holds! or output resonance~i.e.,
when Dm,n

m,n2222vLO50! and the condition~1! holds. Let
uDm,n

m,nu ~or uDm,n
m,n2222vLOu! and uVe2vLOu<AhvLO ,

which corresponds to frequencies and magnetic fields in
region of splitting of the peaks. As follows from the form o
the functions~41! and ~42!, the partial function~46!, which
is diagonal in the Landau numbers, makes the greatest
tribution under these conditions.

We represent this function with pairwise equal indic
m in the limit r50 andK50 in the form of a sum of a par
(Fn

m) that is diagonal inm and a part (Fn
m,m1) that is off-

diagonal in m. Using the explicit form of the quantitie
s (g) ~41! and ~42!, we obtain forFn

m the expression

Fn
m5Bh2F Pd~n,n21!

uG1 idu2uG1l1 idu2

1
P21d~n21,n22!~12dn,1!

uG81l1 idu2uG812l1 idu2G , ~47!

B5
uMl u2

~2R0\vLO!2 , P5S Ve1Vh

vLO
D 2

,

d~n,n21!5
1

n2 E
0

`

duue22u@Ln21
1 ~u!#4F m

2 ~bAu!,

n51,2...,G5
Dm,n

m,n

vLO
, G85G12

Vh

vLO
. ~48!

It can be shown thatFn
m,m1, in contrast toFn

m, contains the
factor

F vLO

~m22m1
2!ve

G2

1F vLO

~m22m1
2!vh

G2

,

which is much less than unity if the depth of the quantu
well is large compared to\vLO , sincevLO!ve(h). Then it
is sufficient to take account of one size-quantization leve
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direct production of electron–hole pairs~input resonance!. It
is meaningful starting with the Landau leveln51. The sec-
ond term ~direct annihilation or output resonance chann!
first contributes atn52, since forn51 the direct annihila-
tion of electron–hole pairs is forbidden by conservation
the quantum numbersn. We recall that Eq.~47! holds in the
regionG, G8;Ah.

Renormalization of the electron lines is performed ju
as in Secs. 3 and 4. Ifn51, then it is sufficient to replace
G1 id by G1 id2hF(1,0)(G1l1 id)21. As a result, we
obtain for F̃m, instead of Eq.~47!,

F̃1
m5h2BPd~1,0!F1~G!. ~49!

It is clear from Eq.~49! that F̃1
m for l50 has two maxima,

located atG6AhF(1,0), just likeF̃01 in Sec. 3. As the mag-
netic field deviates from the resonance value, the ratio of
peak intensities and the position of the peaks change
result of the change in the contribution of the split terms
the scattering. The maxima of the peaks correspond to
input resonance frequencies

v l5vg1m2~ve1vh!1
3

2
~Ve1Vh!6AhF~1,0!.

~50!

Plots of the functionF̃1
m are presented in Fig. 5~curves2 and

4!.
In the casen52 both the input and output resonanc

contribute to the functionF̃2
m . In the first term of the equa

tion ~47! both G1 id and G1l1 id can be renormalized
two elements of the continued fraction being taken into
count in the first case and one in the latter case. In the sec
term onlyG81l1 id can be renormalized; it is replaced b
G81l1 id2hF(1,0)(G812l1 id)21. Substituting F̃2

m in
the form F̃2

m5F in1Fout, we obtain for the contributions o
the input and output resonances

F in5Bh2Pd~2,1!@~G12l!21d2#F2~G!, ~51!

Fout5Bh2P21d~1,0!F1~G81l!, ~52!

F2~G!5$@~G2G1!21d2#@~G2G0!21d2#

3@~G2G2!21d2#%21, ~53!

whereG6 andG0 are the roots of the cubic equation

G313lG21@2l22h~F~1,0!

1F~2,1!!#G22hlF~1,0!50.

As in the casen51, Fout has two peaks, split by
(l214hF(1,0))1/2. If l Þ 0, thenF in consists of three peaks
but at exact resonance the central peak vanishes, and
peaks split by 2Ah(F(1,0)1F(2,1)) remain. The peaks a
the frequencies
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6Ah~F~1,0!1F~2,1!! ~54!

(l50) correspond to the input resonance, and the peak

v l5vg1m2~ve1vh!1
5

2
~Ve1Vh!22Vh

6AhF~1,0! ~55!

correspond to the output resonance, i.e., the centers o
two doublets are shifted by 2Vh . In the heavy-hole approxi
mation (Vh→0), the centers of these doublets coincide a
we obtain four peaks centered on the pointG50.24 Since the
coefficientsF(n,n21).0, in this approximation the inne
peaks correspond to the output resonance and the outer p
correspond to the input resonance. The frequency de
dence of the functionF in is displayed in Fig. 6~curves3 and
4!.

6. DISCUSSION

The theory developed above makes it possible to ca
late the wave function of an electron–hole pair that has em
ted N LO phonons in a strong magnetic field, and the dis
bution function of the electron–hole pair over the relati
distance between the electron and hole. In a strong magn
field, the electron and hole energy levels are discrete. T
determines the response of the system to the interaction
light: the excitation spectrum~dependence of the total inten
sity of N-phonon scattering on the exciting light frequen
v l! consists of a set of narrow peaks, as in one-pho
scattering.25 Each peak corresponds to a transition of t
system through at least one real intermediate state, i.e
state whose energy equals\v l . This is clear, for example
from Eqs.~41! and ~42!, where the real parts of the expre
sions in each set of parentheses in the denominator can
ish for certain values ofv l . For example, ifn51, then
Dm,1

m,150 at the frequency

v l5vg1m2~ve1vh!1
3

2
~Ve1Vh!. ~56!

The other peak lies at

v l5vg1m2~ve1vh!1
Ve

2
1

3Vh

2
2vLO . ~57!

If Ve Þ vLO , then these two peaks are separated
Ve2vLO . At resonanceVe5vLO , and the peaks merge
but as a result of the summation of the important diagra
the peaks split by;Aa0, and they sharply intensify, since a
the maximum they are;a0 /d2, and off resonance the max
mum of a peak is;a0

2/d2.
The scattering intensity increases because at resona

two ~and not one! of the three intermediate states of syste
are real; only the third state is virtual. As a result, it is fou
that the scattering probability is;a0 and not;a0

2, as hap-
pens in the nonresonance case.
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are real and the last state is virtual. In the case of the ou
resonance~Eq. ~55!!, the first intermediate state is virtual an
the second and third are real.

At resonance, the lowest frequency, near which a sh
intensification of two-photon scattering occurs, is determin
by Eq. ~56!. For three-phonon scattering the analogous f
quency is

v l5vg1m2~ve1vh!1
5

2
~Ve1Vh!. ~58!

In three-phonon scattering three of the four intermedi
states are real at resonance, as a result of which the inte
of the peaks in terms of the exponent ofa0 remains the same
as in two-phonon scattering. This also holds forN-phonon
scattering—under resonance conditions the intensity of
peaks in the excitation spectrum is;a0 .

In the present paper we examined the excitation sp
trum for two-phonon scattering at frequencies ranging fr
the minimum frequency~56! up to the frequency~58!. As
v l increases further, Landau levels withn.2 participate in
two-phonon scattering. Asn increases, the number of spl
components of the initial peak increases. For example
n53 ~four levels of the electron–phonon system cross!, then
at the input resonance near the frequency

v l
~3!5vg1m2~ve1vh!1

7

2
~Ve1Vh! ~59!

there will be four peaks in the excitation spectrum. The o
put resonance atv l

(3)22Vh is related to the leveln52, i.e.,
two peaks appear here, since the central peak is abse
resonance.

The theory takes account of the finite mass of a hole
consequence, the group of peaks referring to the output r
nance is displaced by 2Vh in the direction of lower frequen-
cies with respect to the group of peaks of the input re
nance.

As one can see from Figs. 5 and 6, the intensity of
peaks depends on the magnitude of the magnetic field. T
means that the splitting pattern will be sensitive to departu
from a parabolic electron band. For sufficiently large dep
tures, any phonon-repetition peak should split into two pe
and the condition~1! will hold for each Landau level.

In the theory it was assumed that the time dependenc
a level~homogeneous broadening! is governed by a constan
which appeared by some unspecified mechanism. In add
to homogeneous broadening, inhomogeneous broadenin
also present, which is due to both the roughness of
boundaries of the quantum well and the spatial dispersion
the optical phonons. The roughness can probably be
glected, given modern methods for growing heterostructu

Taking account of the spatial dispersion of a phonon,
shown in Ref. 3, broadens only some of the split peaks,
for weak dispersion its influence is small. Among the mec
nisms of homogeneous broadening, elastic scattering mu
discarded, since in this case only the quantum num
changes~the energy is independent of the latter!. Inelastic
scattering, which leads to a change in the quantum num
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m and n, remains. Phonon anharmonicity~decay of a pho-
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non! can also contribute to broadening of the peak.
In conclusion, we briefly discuss the role of exciton

states in the effects examined above. It is known that w
the Coulomb interaction of an electron and hole in a stro
magnetic field is taken into account, series of excitonic lin
arise that converge toward each Landau band from below
the three-dimensional case,26–28 only the series below the
bandn50 corresponds to a discrete spectrum, and all ot
series are present with a continuous background spectrum
a quasi-two-dimensional system29 there is no continuous
spectrum and all levels are discrete. As the magnetic fi
H increases, the distance between the Landau levels
creases linearly withH, while the ionization energy
Ecul(H) of an exciton grows logarithmically.

Excitonic effects can therefore be neglected in su
ciently strong magnetic fields. In the case considered ab
the Coulomb energy can be neglected if

\Ve5\vLO@Ecul~H !. ~60!

The energyEcul(H) can be represented approximately
the form28

Ecul~H !5
me4

2k0
2\2 f ~H !, m5

memh

me1mh
, ~61!

where f (H) is a weak function ofH. The inequality~60!
holds for both small and largek0 . It holds fairly well for
III–V materials. Taking account of excitonic states destro
the equal spacing of the levels. This shows up in the em
genceof three points of pairwise intersection of the levels
the electron–phonon system, instead of one point of inter
tion as in the equidistant case. If the region containing
three points of intersection is small compared toAh\vLO

~the splitting of the levels!, then the unequal spacing is un
important. This condition is expressed by the inequality

Ah\vLO@u\vLO2uE22E1u u, ~62!

whereEi is the energy of the lowest level of the exciton
series belonging to thei th Landau level. In the relation~62!
it is assumed that\vLO5uE12E0u.
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Ballistic conductance of a quasi-one-dimensional microstructure in a parallel magnetic

field

V. A. Ge ler and V. A. Margulis

N. P. Ogaryov Mordovian State University, 430000 Saransk, Russia
~Submitted 12 November 1996!
Zh. Éksp. Teor. Fiz.111, 2215–2225~June 1997!

We discuss the behavior of the ballistic conductance of a quasi-one-dimensional microstructure
in a parallel magnetic field when there is electron scattering by a single point impurity
inside a channel. An exact analytic formula for the conductance is derived for a model in which
the confinement potential is a parabolic well. We show that the conductance curve consists
of quantization steps with sharp resonance peaks near the thresholds. Finally, we find the
amplitudes and halfwidths of these peaks. ©1997 American Institute of Physics.
@S1063-7761~97!02006-4#

1. INTRODUCTION A5 1
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Recent theoretical and experimental studies1–11 have re-
vealed that even a single impurity can have a strong effec
the conductance of a quantum ballistic microstructu
Among the interesting physical effects observed and stud
in such microstructures are the quantization of conducta
and the destruction of quantization by an impurity.12–19Note
that a quantizing magnetic field applied to the sample
hances lateral confinement, which changes the electron
ergy spectrum and, as a result, greatly affects the phys
characteristics of the system.20,21

Various models have been used in describing theor
cally the electron states in the microstructure: an infinit
long waveguide with a constant cross section,1,2 a saddle
point potential for quantum microconstrictions of the bott
neck type,6–8,22–24and a parabolic potential for conductin
channels, wells, and quantum dots25–29 in two-dimensional
systems.

In the present paper we use a symmetric parabolic
tential, V(x,y)5m* v0

2(x21y2)/2, with m* the effective
electron mass in the channel, andv0 the characteristic fre-
quency of the confinement potential, to describe the s
confinement potential of a quasi-one-dimensional narr
channel. Such a potential is widely used for the theoret
description of low-dimensional systems. The advantage
using such a potential is that one can derive analytic form
las for the spectral characteristics and scattering parame

We consider the situation in which an electron in a n
row conducting channel is scattered by a single impurity
point r0 inside the channel when the microstructure is plac
in a quantizing magnetic fieldB directed along thez axis,
i.e., along the channel’s symmetry axis.

In the model under discussion, one-electron states
are unperturbed by the impurity are described by the Ham
tonian

H05
1

2m* S p2
e

c
AD 2

1
m* v0

2

2
~x21y2!. ~1!

It is convenient to select the symmetric gauge repres
tation for the vector potential of the magnetic field, i.e.,
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Then in cylindrical coordinatesr, w, andz we have

H052
\2

2m* F1

r

]

]r S r
]

]r D1
1

r2

]2

]w2 1
]2

]z2G
2

i\vc

2

]

]w
1

m* V2

8
r2, ~2!

where

V5Avc
214v0

2.

The spectrum and eigenfunctions ofH0 are

Emnp5
\vc

2
m1

\V

2
~2n1umu11!1

p2

2m*
, ~3!

cmnp
0 ~r,w,z!5expS ipz

\ D exp~ imw!

A2p
Rmn~r!, ~4!

wherem P Z and n P N. Here

Rmn~r!5cmnr
umu expS 2

r2

4l 0
2DLn

umuS r2

2l 0
D ,

~5!

cmn5
1

l 0
umu11 A n!

2umu~n1umu!!
, l 05A \

m* V
,

with Ln
k(x) the generalized Laguerre polynomials.

The kernel of the propagator exp(2itH0 /\) in the present
case is30

K0~r ,r 8;t !5S m*

2p i\ D 3/2 V

2At sin~Vt/2!

3expH im*

2\ F V

sin~Vt/2! S ~x8y2xy8!

3sin
vct

2
2~xx81yy8!cos

vct

2

1
r21r82

2
cos

Vt

2 D1
~z2z8!2

t G J . ~6!

12096$10.00 © 1997 American Institute of Physics



The Green’s function of the operatorH0 , i.e., the kernel
21

e

en
n

fo
c

HereQ(E,r0) is the Kre�n function, which to within a con-

nd
ry

e

of the resolvent operator (H02E) , is

G0~r ,r 8;E!5
i

\ E
0

`

K0~r ,r 8;t !expS i tE

\ Ddt. ~7!

The integral in~7! is sure to be convergent after w
perform a Wick rotation~i.e., introduce an imaginary time
variable through the transformationt→2 i t !. We now exam-
ine the kernel of the semigroup. In view of~6! we can write

G0~r ,r 8;E!5
1

\ E
0

`

S0~r ,r 8;t !expS tE

\ Ddt, ~8!

where

S0~r ,r 8;t !5S m*

2p\ D 3/2 V

2At sinh~Vt/2!
expH 2

m*

2\

3F V

sinh~Vt/2! S 2 i ~x8y2xy8!

3sinh
vct

2
2~xx81yy8!cosh

vct

2

1
r21r82

2
cosh

Vt

2 D1
~z2z8!2

t G J . ~9!

Equations~8! and~9! clearly show that the integral in~8!
is absolutely convergent.

Employing ~8!, we find that

G0~r ,r 8;E!

5
m*

2p i\ (
n50

`

(
m52`

`

exp@ im~w2w8!#

3
Rmn~r!Rmm~r8!

pmn
exp

ipmnuz2z8u
\

, ~10!

where

pmn5F2m* S E2
\vc

2
m2

\V

2
~2n1umu11! D G1/2

.

~11!

2. GREEN’S FUNCTION AND THE STATE OF A SCATTERED
PARTICLE

Now let us suppose that the operatorH0 is perturbed by
a short-range impurity modeled by a point potential conc
trated at pointr0 . Formally such an operator can be writte
as

H5H01ld~r2r08!. ~12!

As shown, for instance, in Ref. 24, a convenient method
studying operators of this type is to employ an approa
based on the Kre�n formula for resolvent operators.

According to the Kre�n formula,31 the Green’s function
of the operatorH has the form

G~r ,r 8;E!5G0~r ,r 8;E!2@Q~E;r0!1a#21

3G0~r ,r0 ;E!G0~r0 ,r 8;E!. ~13!
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stant is given by

Q~E;r0!5 lim
r→r0

@G0~r ,r0 ;E!2G0~r ,r0 ;0!#. ~14!

The quantity a is related to the scattering lengtha by
a5m* /2p\2a. Combining~9! and ~10!, we find that

Q~E;r0!5S m*

2p\ D 3/2 V

2\ E
0

` exp~Et/\!21

At sinh~Vt/2!

3expH 2
m* Vr0

2

2\sinh~Vt/2! Fcosh
Vt

2

2cosh
vct

2 G J dt1C, ~15!

whereC5(m* 2p\2)(m* V/2\)1/2z(1/2,1/2). In particular,

Q~E![Q~E;0!5
m*

2p\2 Am* V

2\
zS 1

2
;

1

2
2

E

\V D ,

~16!

wherez(s,v) is the generalized Riemann zeta function, a
r0 is the distance from the point impurity to the symmet
axis of the system.

We now study the asymptotic behavior of Kre�n’s func-
tion Q in two limiting cases: large (r0@ l 0) and small
(r0! l 0) distances from the impurity to thez axis. We start
with the case wherer0@ l 0 and partition the integration
range in ~15! into two ranges: from zero tot0 , where
t0< l 0

2/r0
2V, and from t0 to `; the respective integrals ar

J1(r0) andJ2(r0).
Since

S cosh
Vt

2
2cosh

vct

2 D S sinh
Vt

2 D 21

;O~1!,

we haveJ2(r0);O(exp(2r0
2/l0

2)). Replacing the integrand in
J1(r0) with its asymptotic expression, we get

J1~r0!.
1

2 S m*

2p\ D 3/2 EAt0

\
BS 1

2
,1D

3FS 1

2
,

3

2
;2

m* r0
2t0

8\
~V22vc

2! D , ~17!

where B(x,y) is Euler’s beta function, andF(a,b;x) is a
confluent hypergeometric function. EstimatingF(a,b;x) for
small x, we obtain

J1~r0!.
2E

r0
A 2

pm* \~V22vc
2!

.

The final expression forQ(E,r0) for r0@ l 0 is

Q~E;r0!5
E

r0

m*

p2\3AV22vc
2 F11OS 1

r0
2D G . ~18!

Now we turn to the case wherer0! l 0 . We have
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exp 2
m* Vr0

2

cosh
Vt

2cosh
vct

e
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The pole of the Green’s functionG(r ,r 8;E) corresponds in

nc-

e

.

ng,
rgy

ro-
he
nly

by

ode

con-
H 2\ sinh~Vt/2! S 2 2 D J
.12

m* Vr0
2

2\ sinh~Vt/2! Fcosh
Vt

2
2cosh

vct

2 G .
This yields

Q~E;r0!2Q~E!

52S m*

2p\ D 3/2 m* V2~V22vc
2!

32\2

3r0
2F2E

0

` t3/2 exp~ tE/\!

cosh~Vt !21
dt23ApzS 3

2D D V25/2

52S m*

2p\ D 3/2 m* V2~V22vc
2!

32\2

3r0
2F2 E

0

` t3/2@exp~ tE/\!2exp~2Vt !#

coshVt21
dt

23ApzS 5

2DV25/2G , ~19!

wherez(x) is the Riemann zeta function.
Thus, forr0! l 0 we haveQ(E,r0)2Q(E);O(r0

2).
We now assume thatc0(r ) is a delocalized state of th

operatorH0 . According to~13!, the statef~r ! of the operator
H corresponding toc0(r ) is the one determined by

c~r !5c0~r !2@Q~E,r0!1a#21c~0!G0~r ,0;E!. ~20!

We note, in particular, that Eqs.~5! and ~20! imply that
there is scattering in channels withm Þ 0. Equations~5!,
~20!, and~18! also imply that asymptotically (r0 / l 0@1) the
function c~r ! behaves like (l 0 /r0)exp(2r2/l 0

2), so that it
rapidly decreases as the distance to the channel axis gr

Thus, scattering is significant when the impurity is ne
the channel’s symmetry axis, i.e., whenr0 / l 0!1. In this
case the estimate~19! shows that the dependence ofr0 is
weak and can be ignored. Note that the case wherer050 is
a problem in its own right because it corresponds to a pi
of the microstructure.7 It is precisely this case that we de
scribe below.

3. PARTIAL TRANSMISSION COEFFICIENTS FOR A
MICROSTRUCTURE

When the impurity is on the channel axis, there exist
simple analytic expression for Kre�n’s function Q ~16!,
which means that the exact eigenfunctions of the Ham
tonianH can be written as

c~r,w,z!5
R0n0

~r!

A2p
expS ipz

\ D2
R0n0

~0!

Q~E!1aA2p

m*

2p i\

3 (
n50

`

R0n~0!R0n~r!

3
exp~ ip0nuzu/\!

$2m* @E2\V~n11/2!#%1/2. ~21!
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this case to the condition thatQ(E)52a. Clearly, there is
only one bound state, whose energyEc is below the edge of
the continuous spectrum of the HamiltonianH0 , i.e., below
\V/2. We introduce the notationEc5\V(d21/2). Using
the Hermite formula for the generalized Riemann zeta fu
tion, we have32

zS 1

2
,12d D.

1

A12d
1

1

2

1

A22d
22A22d

1
1

24

1

~22d!3/2. ~22!

Then, to estimate the energy of the bound state, we hav

1

A12d
1

1

2

1

A22d
22A22d1

1

24

1

~22d!3/2.
& l 0

a
.

~23!

Under ordinary conditionsuau;1027 cm andl 0;1026 cm,
only the first term makes a substantial contribution~23!, with
the result that forEc we have the simple estimate

Ec.
\V

2
2

m* V2a2

2
. ~24!

TheEc vs.B curve, obtained by numerically solving Eq
~23!, is depicted in Fig. 1.

Since only delocalized states participate in scatteri
below we examine a scattered particle with an ene
E.\V/2.

As noted earlier, there is no scattering in which the p
jection of the particle’s orbital angular momentum on t
channel’s symmetry axis is finite, so that we consider o
transitions from the mode (n0,0) to the mode (n1,0). We
denote the corresponding transmission coefficient
Tn0→n1

(E).
Suppose that the wave that propagates in the m

(n0,0) with energyE5\V(n011/2)1p2/2m* is

c0n0p~r !5
1

2p2\
expS ipz

\ DR0n0
~r!, r.0.

FIG. 1. Bound-state energy vs. magnetic field strength~lower curve!. For
the sake of comparison we depict the dependence of the edge of the
tinuous spectrum on the magnetic field strength~upper curve!.
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The exact eigenfunctions~21!, which are solutions of the

n
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4. CONDUCTANCE OF THE MICROSTRUCTURE

l by

field
is
to

c-
ous
his

t

eso-
equationHc5Ec, correspond to this wave if the energyE
is the same.

In order to obtain the partial transmission coefficie
Tn0→n1

(E), we isolate the coefficient ofRn00(r) for z,0
and the coefficient ofRn10(r) for z.0.

For z,0 Eq. ~21! yields

cn0

~2 !~r,w,z!5expS ipz

\ D2
uR0n0

~0!u2

Q~E!1a

m*

2p i\p

3expS 2
ipz

\ D , ~25!

and forz.0 we have

cn1

~1 !~r,w,z!5dn0n1
expS ipz

\ D2
R0n0

~0!R0n1
~0!

Q~E!1a

m*

2p i\

3
exp@ ip0n1

z/\#

@p222m* \V~n02n111/2!#1/2. ~26!

We allow for the fact thatRn0(0)51/l 0 for all values of
n. Then, by comparing~25! and ~26! we find that

Tn0→n1
~E!

5Udn0n1
2

m*

2p i\ l 0
2 @p212m* \V~n02n111/2!#1/2@Q~E!1a#

U2

.

~27!

We now introduce into ~27! the notation

E5\V(N1d1 1
2), whereN P N and 0,d,1. It is conve-

nient at this point to transform~27! by separating the real an
imaginary parts of the generalized Riemann zeta funct
Using the shift formula we obtain32

zS 1

2
;N2d D5zS 1

2
;12d D1 i (

n51

N

~N1d2n!21/2. ~28!

As the estimate~22! implies, Rez(1
2;N2d)5z(1

2;12d),
while the corresponding finite sum in~28! is Im z. Let us
introduce the dimensionless pseudopotential coupling c
stant g5uau/& l 0 . As noted earlier, in real situations fo
narrow channelsg!1. Using this notation, we can transfor
~28! into

Tn0→n1
5dn0n1H 11

2g2~N1d2n1!21/2Im z

~11g Re z!21~g Im z!2 J
1

g2~N1d2n1!21

~11g Re z!21~g Im z!2 . ~29!

We see that the partial amplitudes are finite for all values
N and d, i.e., for all values ofE. Moreover, the last two
terms on the right-hand side of Eq.~29!, containing powers
of the small parameterg, are much smaller than the firs
term.
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Following the Landauer–Buttiker formalism,6,22,23 we
can find the conductance of a one-dimensional channe
the following formula:

G~E!

2e2/h
5 (

n0 ,n150

N

Tn0→n1
~E!. ~30!

Plugging~29! into ~30! and calculating the sum overn0 , we
get

G

2e2/h
5 (

n150

N H 11
2g2~N1d2n1!21/2 Im z

~11g Re z!21~g Im z!2 J
1

g2~N11!

~11g Re z!21~g Im z!2 (
n150

N
1

N1d2n1
.

~31!

We use the following formulas to calculate the sums in~31!:

(
n150

N

~N1d2n!21/25Im z,

(
n150

N
1

N1d2n1
5C~N1d!2C~d!1

1

N1d
.

Here C is the logarithmic derivative of theG-function. We
then find that

G

2e2/h
5N111g2

3
2~Im z!21~N11!@C~N1d!2C~d!1~N1d!21#

~11g Rez!21~g Im z!2
.

~32!

If in ~32! we go back to the variableE, we finally obtain

G~E!

2e2/h
511@x#1g2~112gz~ 1

2;12$x%!

1g2uz~ 1
2;2x!u2!21S Uz~ 1

2;2x!2z~ 1
2;12$x%!U2

1~11@x# !S c~x!2cS $x%1
1

xD D D , ~33!

wherex5E/\V2 1
2, @x# denotes the integer part ofx, and

$x% the fractional part.
The channel conductanceG(E) consists of two terms.

The first term,G15@(2E1\V)/2# is responsible for the
steps in the conductance, which depend on the magnetic
B in a nonlinear manner; the step width
\V5\Avc

214v0
2. The height of these steps is equal

unity ~in units of 2e2/h!. The second termG2 contains a
small factorg2!1 and determines the deviations of condu
tance quantization steps from the ideal shape. It is obvi
that scattering of electrons by a point impurity produces t
term.

The diagrams of theG(E) andG(B) dependences buil
according to formula~33! are depicted in Fig. 2. Clearly
visible are conductance quantization steps between the r
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FIG. 2. Conductance vs. scattered
particle energy at B55 T and
v05231013 s21 ~a! and vs. magnetic
field strength at E510212 erg and
v5231013 s21 ~b!.
nance peaks at the threshold of each step. The resonance
ge
io
d

th

Le
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to

of

responds to the existence of a bound state:Q(E)52a. This
eaks

nce

tical.
the

m

ance
of

e
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the
the

tep

nce
a

peaks are due to the behavior of the second term in the
eral formula~33! near a step threshold. The detailed behav
of the resonance curve near a resonance point is depicte
Fig. 3.

Let us analyze formula~33!. With the exception of a
small neighborhood of the energy values at whichd!1, the
second term in this formula is of orderg2E/\V. Hence for
realistic values ofE such thatE/\V!g22, this term is of
order O(g2). Thus, the second term in~33! is very small
compared to the first term for all energy values except in
neighborhood of the step threshold. But at values ofE in
such neighborhoods, the situation changes.
d05$(2E2\V)/2\V% satisfy the condition

2g Re zS 1

2
;

1

2
2

E

\V D51. ~34!

Using formula~28!, we can write this condition as follows

2gz~ 1
2;12d0!51. ~35!

At d5d0!1 the small factorg2 in G2(E) disappears,
and at such energies the value ofG2 can be estimated. Al-
lowing for the fact that both the numerator and denomina
in G2(E) are proportional tod0

21, we can easily arrive at an
estimate at the resonance points:G2(E);312E/\V.

HenceG1(E) andG2(E) at the resonance points are
the same order. Note that the resonance condition~34! cor-

FIG. 3. Structure of theG vs. E resonant curve near the resonance
B55 T andv05231013 s21.
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clarifies the physical nature of a resonance: resonance p
are generated by bound states.

Now let us study the resonance peaks inG vs. E. To the
left of the threshold of each step, whered approaches unity,
G2(E) is of orderG2;(12d)(N13). Hence the value of
G2 to the left of a resonance is small, and the resona
peaks originate at the point whered50. Sinced0 is small,
the ascending section of a resonance peak is almost ver
The descending section of the curve near a resonance to
right of the peak threshold after the point whered5d0 can
be approximately described by a formula that follows fro
~32! with d!1:

G~E!

2e2/h
.N111

N13

11dg22 . ~36!

Here we have allowed for the fact thatgz( 1
2;12d)!1 for

d!1.
Now let us find the halfwidthG(E) and amplitude of the

resonance peaks. The above implies that the reson
maxima are shifted slightly to the right from the threshold
each step. Then the peak amplitudesDG can easily be esti-
mated as follows:

DG

2e2/h
5

E

\V
1

3

2
. ~37!

We see that the peak amplitudes increase linearly withE. To
estimate the halfwidthsG(E) of the peaks we recall that th
descending section of the resonance curve is not so stee
the ascending. Let us find a valued5d1 at which
G(d1)5G(d0)/2. The condition~35! leads to the following
estimate:d1.g2(N12). Then for the halfwidth of a peak
we haveG(E).g2(E13\V/2). Since for all realistic val-
uesg2(E13/2\V)!\V, the halfwidth is small compared
to the step width. Note that the functionG(E) increases lin-
early with E. The behavior ofG vs. E discussed above
agrees with the corresponding curve in Fig. 2.

The phenomenon of conductance quantization and
resonance peaks near the step thresholds also exist in
limit of zero magnetic field. HereV must be replaced by
2v0 in all formulas. As noted earlier, the conductance s
width increases with the magnetic field~Fig. 2!. Hence by
measuring the step widths, the separation of the resona

t
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peaks, and the peak amplitudes we can determine the fre-
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12A. B. Fowler, G. L. Timp, J. J. Wainer, and R. A. Webb, Phys. Rev. Lett.
57, 138 ~1986!.

rf.

C.
n,

H.
M.

a

quencyv0 of the confinement potential and the cyclotro
effective mass of the charge carriers.

How do displacements of the impurity from the chann
axis affect the conductance? As noted in Sec. 2, small de
tions in the position of a point scattering center from t
channel axis yield a small correction to Kre�n’s functionQ,
;(r0 / l 0)2, and hence to the scattering amplitude. Con
quently, this correction can affect only the last term on
right-hand side of Eq.~33! for the conductance, the term du
to scattering, and, as noted earlier, it is small far from re
nance. In view of this we can state that the step shape
mains essentially unchanged when the impurity moves a
from the axis of a narrow channel.
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Effect of charge exchange on the energy distribution of fast multiply charged ions

propagating through matter

V. V. Balashov, A. V. Bibikov, and I. V. Bodrenko

D. V. Skobel’tsyn Institute of Nuclear Physics, M. V. Lomonosov Moscow State University, 119899
Moscow, Russia
~Submitted 30 August 1996; resubmitted 31 December 1996!
Zh. Éksp. Teor. Fiz.111, 2226–2236~June 1997!

A technique for calculating, in the diffusion approximation, energy distributions of multiply-
charged ions with an arbitrary number of charge states propagating through matter has been
suggested. Examples of numerical solutions of kinetic equations taking into account charge
exchange between ions and matter are given. A compact solution for the special case of two charge
states has been found. The calculations are compared to experimental data. ©1997
American Institute of Physics.@S1063-7761~97!02106-9#

1. INTRODUCTION 2. THE CASE OF TWO CHARGE STATES; DISTRIBUTION
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Propagation of multiply-charged ions through mat
during which they capture or lose electrons has been stu
extensively. Owing to charge exchange, the regime of
deceleration in matter is complicated, and no accurate th
retical description of the process has been proposed as
The energy distribution of charged particles propagat
through matter in the regime of intense charge exchange
be radically different from a Gaussian, but the issue of h
multiple transitions between its states affect the shape of
energy distribution in the general case~i.e., before an equi-
librium among different charge states of ions is establish!
has not been settled. On the other hand, in most case
practical interest, information about characteristics of
ementary events of charge exchange is insufficient. In v
of this, more attention is focused on the inverse problem
deriving cross sections of electron capture and loss by an
propagating through matter from measurements of the
energy distribution.

Recently Sigmund and Na¨rmann1–3 have made a signifi-
cant contribution to the theory of ion deceleration in matt
They have derived specific analytic expressions for the se
moments of energy distributions of ions which have passe
certain layer of matter in the presence of charge excha
Unfortunately, such calculations performed with the aim
deriving the energy distribution function are cumbersome
the general case, when more than two charge states of
must be taken into account.

In this paper, we describe a different approach to
problem based on fundamental principles of the fluctuat
theory of ionization deceleration formulated by Landa4

This approach enables us to calculate spectra of ion en
losses taking into account the straggling~energy spread! of
the initial distribution with an arbitrary number of charg
states without recourse to Monte Carlo techniques. In
important special case of two charge states, we have obta
a compact analytic expression for the energy loss spect
of such ions.
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Suppose that an ion with energyE0 enters a sample in
the charge statê1&, then transfers to the statê2& in the
course of its motion through the sample, then returns to
original statê 1&, etc., changing its charge state many tim
Let S1 andS2 be the effective deceleration rates in states^1&
and ^2&, respectively, and letV1

2 and V2
2 be straggling pa-

rameters in these states. Then, in a thin layer, i.e., w
changes in the parametersS1 , S2 and V1

2,V2
2 due to ion

deceleration and the energy loss in each recharging even
be neglected, the average energyE of an ion that has passe
through a layer with thicknessx, so that on a certain fraction
of its path x1 it was in state^1& and on the other fraction
x25x2x1 in state^2&, is

E5E02S1x12S2x2 . ~1!

Suppose that an ion that entered the sample in state^1&
has been detected at pointx in the same state. Denote b
P1(x,x1) the probability density that the ion, which pass
through distancex was in statê 1& for a fractionx1 of this
distance, so that it passed through the rest of this dista
x25x2x1 , in state^2&. Similarly we introduce the probabil
ity density P2(x,x1) for an ion entering the sample in sta
^1& to be detected at pointx in state^2&. We call these pa-
rameters the distribution densities for the paths traversed
an ion in a certain charge state.

Let f 1(x,E) and f 2(x,E) be energy distributions of ions
detected in the original charge state^1& or in the statê2& at
distancex from the entrance to the sample~from now on, we
denote byf distribution functions calculated without takin
account of straggling due to ionization; in the general c
we denote the distribution functions byFk(x,E)!. Equation
~1! uniquely relates the ion energy loss in deceleration
more accurately, its average~to within the straggling! energy
E at pointx, to the distribution of full ion path between th
partsx1 andx25x2x1 through which it has passed in stat
^1& and^2&. Using Eq.~1!, we determine the relation betwee
the distribution density of distances and the energy spect
of ions in each charge state:

12156$10.00 © 1997 American Institute of Physics



f k~x,E!dE5Pk~x,x1!dx1ux15~E02E2S2x!/~S12S2! . ~2!
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The distributionsPk(x,x1) and f k(x,E) are related to
probabilities of detecting an ion in states^1& and ^2& at dis-
tancex from the entrance to the sample by the integral eq
tions

pk~x!5E
0

x

Pk~x,x1!dx15E f k~x,E!dE. ~3!

We normalize the parameters introduced above in ac
dance with conservation of the number of particles:

p1~x!1p2~x!51. ~4!

We now introduce the distance distribution dens
P1(2)

(N) (x,x1) for ions that have changed charge statesN times.
An ion entering the sample in state^1& and changing charge
an even number of times is again in state^1&, whereas after
changing charge an odd number of times it is in state^2&. Let
us start with the distance distribution density for ions th
have undergone zero, one, and two transitions:

P1
~0!~x,x1!5e2l12x1d~x2!, ~5!

P2
~1!~x,x1!5e2l12x1l12e

2l21x2, ~6!

P1
~2!~x,x1!5e2l12x12l21x2l12l21x1 , ~7!

wherel12 andl21 are the transition rates from state^1& to ^2&
and vice versa. The expressions forP1

(N52n)(x,x1) and
P2

(N52n11)(x,x1) at arbitraryn are derived using the math
ematical induction method:

P1
~2n!~x,x1!5e2l12x12l21x2l12

n l21
n

x1
n

n!

x2
~n21!

~n21!!
, ~8!

P2
~2n11!~x,x1!5e2l12x12l21x2l12

~n11!l21
n

x1
n

n!

x2
n

n!
. ~9!

Summation of all these series yields

P1~x,x1!5 (
n50

`

P1
~2n!~x,x1!

5e2l12x12l21x2Fd~x2!

1 (
n51

`

l12
n l21

n
x1

n

n!

x2
~n21!

~n21!! G
5e2l12x12l21x2Fd~x2!

1Al12l21x1

x2
I 1~2Al12l21x1x2!G , ~10!

P2~x,x1!5 (
n50

`

P2
~2n11!~x,x1!

5e2l12x12l21x2l12I 0~2Al12l21x1x2!. ~11!
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tions of imaginary argument!. We have used their serie
expansions5

I 0~x!5 (
k50

`
1

k!k! S x

2D 2k

, ~12!

I 1~x!5 (
k50

`
1

k! ~k11!! S x

2D 2k11

. ~13!

Using the known relations for these functions, one can ea
prove that substitution of the solutions~10! and~11! into Eq.
~3! yields functions that satisfy the normalization conditio
~4!.

Equations~10! and ~11! enable one to visualize the en
ergy distribution of ions and its evolution in the course of i
propagation through matter. According to Eq.~10!, the dis-
tribution P1(x,x1) plotted as a function ofx1 has a sharp
peak atx15x, corresponding to the fraction of ions that ha
not changed charge state~its contribution drops exponen
tially as e2l12x with increasing penetration depth!, and a
broad peak due to recharged ions. The shape of the en
distribution f 1(x,E) of ions is similar. IfS1,S2 , which cor-
responds to the charge in state^2& being larger than that in
state^1&, the spectrum of outgoing ions contains a narro
peak near its high-energy edge due to ions that have pa
through matter without changing charge, and a broad pea
lower energies~higher energy losses!. If S1.S2 , the relative
locations of these peaks are interchanged.

3. GENERAL CASE OF AN ARBITRARY NUMBER OF
CHARGE STATES; KINETIC EQUATION FOR
DECELERATION WITH ALLOWANCE FOR CHARGE
EXCHANGE

Let us start from the principles of the theory of decele
tion for particles whose charge remains constant as t
propagate through matter.4 If the mean energy loss
^D&5S(E)x of a particle on a given section of the pathx is
much less than its total energyE, while on the other hand
^D& is much larger than the possible energy transferTmax to
the ambient medium in one collision~i.e., the ‘‘diffusion
approximation’’ applies!, the distribution of energy losses b
one particle will be Gaussian:

F~D,xuE!5
exp@2~D2S~E!x!2/2V2~E!x#

A2pV2~E!x
, ~14!

where V2 is the straggling parameter for a particle wi
given energyE:

^~D2^D&!2&5V2~E!x. ~15!

Under these conditions, the motion of a particle capa
of changing charge state due to deceleration is describe
the system of kinetic equations

Fk~x,E!5e2lkxE gk~x,E82E!Fk~x50,E8!dE8

1(
lÞk

l lkE
0

x

dx8E e2lk~x2x8!
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k51, 2, . . . ,N, ~16!

where, in accordance with Eq.~14!,

gk~x2x8,E82E!

5
exp$2@E82E2Sk~x2x8!#2/2Vk

2~x2x8!%

A2pVk
2~x2x8!

, ~17!

Sk andVk
2 are the deceleration ability and straggling para

eter, respectively, in statek; lk5( llkl is the total rate of ion
transition from charge statek to other statesl ; lkl is the
partial rate of ion transition from charge statek to statel ;
D lk is the mean energy loss due to the transition from s
l to k with charge exchange; the functionFk(x50,E8) is the
initial distribution of ions. If an ion beam enters the samp
in the definite charge statê1& and with the definite energy
E0 , we have

Fk~x50,E8!5dk1d~E82E0!. ~18!

4. ALLOWANCE FOR STRAGGLING IN THE CASE OF TWO
CHARGE STATES

The specific shape of the ion energy spectrum defined
Eqs.~10! and ~11! can be derived from the general solutio
of Eqs.~16!–~18! under the conditions summarized in Sec.
The analytic expressions~10! and ~11! are convenient for
calculations and simulations of various situations in the c
of two charge states, but, unlike the general solution, they
not take into account the ionization straggling, and
spread of the ions’ energy due to their penetration thro
matter is totally determined by charge exchange. Althou
quantitative calculations based on Eqs.~16!–~18! indicate
that in many cases of practical interest the output ion sp
trum is controlled not by straggling but by charge exchan
it is of interest to generalize the results of Sec. 2 with allo
ance for straggling.

In the diffusion approximation and given a Gaussian
ergy distribution of ion energies in each charge state,
total energy spread of an ion that has traversed a laye
matter with thicknessx, such that it was in statê1& over the
fraction x1 of this distance and in statê2& over the fraction
x25x2x1, is characterized by the variance

D~x,E!5^~DE!2&5V1
2x11V2

2x2 ; ~19!

and the mean ion energyE can be uniquely determined wit
Eq. ~1!.

In this approach, the result of Sec. 2 is generalized to
case of straggling using the simple convolution integral:

f 1~x,E!→F1~x,E!5E g~x,E2E8! f 1~x,E8!dE8, ~20!

where

g~x,E2E8!5
exp@2~E2E8!2/2D~x,E!#

A2pD~x,E!
. ~21!
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5. COMPUTER SIMULATION OF THE DECELERATION
PROCESS

Following Närmann,3 we use the following model pa
rameters:E0 andE are the initial ion energy and its energ
after penetrating a layer of matter of thicknessx; nc is the
number density of particles in the layer;skl is the effective
transition cross section from statek to l , which is related to
the partial transition ratelkl by

FIG. 1. Energy distributions of ions in states a! ^0&, b! ^1&, and c! ^2& after
passing through a layerncx5100 ~the case of three charge states!. The solid
curves were calculated with the following parameters:E051000, S051.4,
S150.35, S250.1, W15W05W250.01, s105s015s125s2150.05;
s025s2050. The dashed curves were calculated at the same parameter
at a smaller rate of reverse transitions from states^1& and ^2& to ^1&:
s015s2150.005.

1217Balashov et al.
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FIG. 2. Energy distributions of ions in state
a! ^1& and b! ^2& after traversing a layer
ncx520 ~the case of two charge states!.
Solid curves correspond toE051000,
S150.35, S250.1, W15W2 50.01,
s125s2150.05. The dashed curves corre
spond to the same parameters, b
s1250.05 ands2150.005.
lkl5sklnc , ~22!
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Sk is the effective deceleration rate of an ion in statek; Wk is
the ionization straggling parameter in statek, which is re-
lated to the straggling parameterVk

2 by

Vk
25Wknc . ~23!

All the parameters are expressed in atomic units. In all
amples under consideration we assume that an ion beam
ters the sample in charge state^1& with definite energyE0 .
When three or more states are taken into consideration
system of kinetic equations~16!–~18! is solved. In cases
with two charge states, we use the technique of the dista
distribution density with a correction for straggling~Eq.
~20!!. The results are equivalent to those derived from E
~16!–~18!, but obtained without cumbersome calculatio
demanding a lot of computer time.

It is necessary to extend our analysis beyond the cas
two charge states discussed previously by other auth
above all because of the interest in the situation in wh
charge exchange proceeds in both directions, namely, w
the ion charge can be either reduced through the captur
electrons from the environment or increased through the
of one of its electrons~stripping!.
-
en-

he

ce

s.

of
rs,
h
en
of

ss

energy distributions of multiply-charged ions with thre
charge states taken into account. We denote by^1& the initial
state, and denote the other two states by^0& and^2&. Having
assumed that the first of the final states is a result of st
ping, while the second results from electron capture, we
lected effective deceleration parameters in each state in
cordance with the condition

S0.S1.S2 . ~24!

For comparison, Figs. 2 and 3 also show calculatio
taking into account only charge exchange during the tra
tions ^1&→^2& and^2&→^1&. Above all, note that since the
effective deceleration rate in the initial state^1& is assumed to
be higher than in statê2&, the spectrum of ions in state^2& is
slightly shifted to the high-energy side, as compared to
spectrum in statê1&. The comparison between the solid an
dashed lines in Figs. 2 and 3 demonstrates how the rela
between the transition rates from the initial state^1& to the
state^2& and back affects the shapes of ion spectra in eac
these states.

The solid curves in Fig. 2 correspond to the case
which the cross sectionss12 ands21 are equal. If the transi-
r
FIG. 3. Energy distributions of ions afte
traversing a layerncx5100 ~the case of
two charge states!. Calculation parameters
as the same as in Fig. 2.
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FIG. 4. Energy distribution of Li21 ions
with initial energy E0563.4 MeV after
traversing thin carbon films of differen
thicknesses: ~a! experimental data by
Ogawaet al.6 ~the abscissa is the channe
number!; ~b! our calculations~the abscissa
is the energy loss in keV!.
tion rate from statê1& to ^2& ~dashed lines! is higher, the
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reverse transition of particles from state^2& to the initial state
will be more difficult. As a result, the amplitude of the pe
corresponding to statê1& will be lower, while at the same
time the contribution of higher energies to the spectrum
ions in the statê2& will increase~a change in the ratio be
tween the cross sections in favor of the transition from
state^2& to ^1& has the opposite effect!. Useful information
concerning the ratio between the rates of direct and inve
charge exchange due to ion deceleration can probably
derived from the asymmetry of the peakF2(E) in the energy
distribution.

The spread in the output ion energy in either state
creases with path length~Fig. 3!, mostly owing to charge
exchange, whereas the contribution of ionization stragg
becomes less and less important. Given a small rate of
^2&→^1& reverse transition and a large rate of the dir
transition (s12ncx.1, s21ncx,1!, which corresponds to
dashed curves in Fig. 3, the flux of ions in state^1& is very
weak and consists mostly of ions that have undergone ch
exchange twice,̂ 1&→^2&→^1&. The fraction of ions that
have traversed the sample without charge exchange is re
sented by only the small, narrow peak on the left slope of
main peak. As was first shown by Na¨rmann,3 such a two-
bump curve of energy distribution of multiply-charged io
which have passed through matter is a typical indicator
charge exchange.

The energy distribution of ions calculated for both i
creases and decreases in the charge state is much more
plicated than in the problem of two charge states. The ra
of energy loss is notably wider, and the spectrum shap
more complex and very sensitive to the relationships am
transitions rates between various charge states during d
eration.

Let us compare the calculations shown by the so
curves in Figs. 1 and 3. The difference between these gra
is that the calculations given in Fig. 1 take into account tr
sitions from the initial statê1& to the statê0& and back, the
deceleration rate in the state^0& being very high. It is natura
that these transitions result in broader peaks correspondin
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same time, a narrow peak similar to the main peak in Fig
can be seen on the right of the ion spectra in states^1& and
^2& in Fig. 1. An interesting point is that this peak, which
due to ions decelerated in state^1&, is equally prominent in
the spectrum of ions in statê2& as that of ions in statê1&.

The dashed curves shown in Fig. 1 are interesting fr
another point of view. If the rates of reverse transitions fro
stateŝ 0& and^2& to initial charge statê1& are low, the spec-
trum of ions in statê 1& will contain two clearly resolved
features corresponding to ions decelerated in states^1& and
^0&. Note also a wide plateau on the right of the peak due
ions in statê 0&.

6. COMPARISON WITH EXPERIMENTAL DATA

Recently Ogawaet al.6 measured energy distributions o
lithium ions with initial energies of about 10 MeV/nucleo
downstream of a carbon target. Generally, the changes in
shapes of these distributions with increasing ion path len
are in agreement with the calculations described in the p
vious section. In particular, the experimental curves clea
demonstrate evolution of the spectrum from a shape with
bump at small target thicknesses to a two-bump curve,
then to a spectrum with one much broader bump, which
typical of ion deceleration in the presence of intense cha
exchange. By measuring the gradual drop in the numbe
ions traversing the target without changing their charge st
Ogawaet al.6 determined partial characteristics~attributed to
different charge states! of the effective ion deceleration in
matter. They did not discuss the issue of a comprehen
theoretical description of all resulting distributions, howev
therefore the problem of separating the contribution of io
traversing a layer of matter without charge exchange
mained unsolved.

Using the technique described above, we have calcula
parameters of Li21 ions shown in Fig. 4 alongside measur
ments by Ogawaet al.6 The parameters of ion deceleratio
and charge exchange were taken to be close to estim
given in Ref. 6, namely,S(Li 21)5250 eV•~mg/cm2!21,

1219Balashov et al.



S(Li 31)5360 eV •(mg/cm2)21, s~Li21→Li31!54310218
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cm , s~Li →Li !52310 cm . The energy loss due to
charge exchange in one cycle Li21→Li31→Li21 has been
estimated to be 5.6 keV.7 A full comparison between the
calculations and measurements is difficult because, firs
the data of Ref. 6 are plotted on a relative energy scale,
secondly, we do not know the initial energy spread of ions
the experiment. Thus, the straggling parame
W15W25W introduced into our calculations as a fitting p
rameter includes, in fact, both the straggling proper and
initial energy spread of the ion beam. Note that the va
W52.53105 eV2

•~mg/cm2!21 obtained by fitting our calcu-
lations to the measurements is below the Bohr limit cal
lated for asymptotically high ion velocities.

In our opinion, good agreement between the main f
tures of theoretical and experimental results is beyond do

7. CONCLUSIONS

Interaction between fast multiply-charged ions and m
ter has aroused the growing interest of researchers wor
in various fields of modern physics,8–11 such as a solid stat
physics, atomic and nuclear physics, physics of cosmic r
and astrophysics, and biophysics. Recent experimental s
ies concerning the role of charge exchange in formation
energy distributions of ions in these processes and new
sibilities for accurate theoretical analysis show promise
purposeful studies in this field.
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our study has been based, is a reliable method of investi
ing penetration kinetics of fast multiply-charged ions throu
matter in the presence of charge exchange. It allows u
calculate energy distributions of ions in various charge sta
as a function of their path and ratios among rates of tra
tions between various charge states of ions without lim
tions on the number of charge states. A solution to the pr
lem of energy distribution of ions in a specific case of tw
charge states has been found in the form of compact ana
expressions.
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Effect of impurities on thermoelectric power due to phonon drag in metals

is
K. D. Belashchenkov* )

Kurchatov Institute, 123182 Moscow, Russia,

D. V. Livanov

Moscow Institute of Steel and Alloys, 117936 Moscow, Russia
~Submitted 21 November 1996!
Zh. Éksp. Teor. Fiz.111, 2237–2242~June 1997!

The effect of inelastic impurity scattering of electrons on the thermoelectric power due to
phonon drag in metals has been studied. It is shown that this is the main cause of the thermoelectric
power suppression due to doping at low temperatures. The thermoelectric power in a metal
with a quadratic electron spectrum has been calculated as a function of temperature and impurity
concentration. In addition to the impurity concentration, the correction to the thermoelectric
power due to inelastic scattering contains the large factorQD /T. © 1997 American Institute of
Physics.@S1063-7761~97!02206-3#

It is well known that the thermoelectric power in normal It will be shown below that the thermoelectric power
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metals contains two main contributions, namely, the dif
sion thermoelectric power and the contribution due to p
non drag. The diffusion thermoelectric power is linear
temperature and can be derived from the expansion in te
of the parameterT/eF , whereT is the temperature andeF is
the Fermi energy. The thermoelectric power induced by
phonon drag results from a nonequilibrium contribution
the phonon distribution function due to external electric fie
which does not contain an expansion near the Fermi le
and leads to a thermal flow of phonons. There is, usuall
broad temperature range in which the two contributions
comparable in magnitude. In pure metals at low tempe
tures, the contribution of the phonon drag is usually grea
than the diffusion thermopower, but is suppressed consi
ably by doping.1 It is clear that the thermoelectric power du
to the phonon drag should strongly depend on relative c
tributions of various phonon scattering processes. If
electron–phonon scattering is dominant, the contribution
the phonon scattering in the thermoelectric power achie
its maximum, and if the contribution of other processes~such
as phonon–phonon or phonon–impurity scattering! is larger,
the thermoelectric power is lower, because these proce
unlike the scattering on nonequilibrium electrons, tend
mix the phonon distribution over the angles. The probabi
of impurity scattering of a phonon is proportional
cimpq

4, wherecimp is the impurity concentration andq is the
phonon wave vector, whereas the probability of mutual sc
tering of two long-wave phonons is proportional to the pro
uct of the wave vectors of all phonons involved in the p
cess:w } q1q2q3 . At low temperatures, typical phonon wav
vectors are proportional toT, hence the probabilities of thes
processes drop rapidly with decreasing temperature. M
over, since the total wave vector is conserved in mutual s
tering of long-wave phonons, this process does not cha
the total quasimomentum of phonons. It can be changed
by umklapp processes, and for the metals with a clo
Fermi surface their probability drops with decreasing te
perature exponentially as exp(2D0 /T), whereD0 is of the
same order asQD .
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suppressed by impurities atcimp notably lower than that
needed for strong impurity scattering of phonons. The m
important factor in the suppression of the thermoelec
power is nonelastic impurity scattering of electrons, i.e.,
electron scattering with the emission or absorption of a p
non. Along with other processes of the electron–phono
impurity interference, this scattering determines a conduc
ity of impure metals at low temperatures.2,3 Compared to the
vertex g of electron–phonon scattering, the vertexg refer-
ring to inelastic impurity scattering of an electron contains
additional factor of the order of 1/ql, where l 5vFt is the
electron mean free path andt is the electron collision time.3

The additional term in the drag thermopowerSg due to the
inelastic impurity scattering of electrons can be estima
assuming that this correction is of the same order as the r
of the effective rate of absorption~emission! of phonons in
the events of the inelastic scattering of electrons to the ef
tive rate of the ‘‘pure’’ phonon–electron scattering, whic
equals 1/qTl , whereqT;T/ul is the typical wave vector of a
thermal longitudinal phonon andul is the velocity of longi-
tudinal sound.3 It turns out that the drag thermopower as
function of impurity concentration is estimated by the fo
lowing formula:

Sg~cimp!2Sg~0!

Sg~0!
;2

1

qTl
;2cimp

QD

T
. ~1!

In order to describe the thermoelectric power in met
at low temperatures, when interference of various scatte
mechanisms is significant, we have used the kinetic equa
based on the diagrammatic technique developed
Keldysh,4,2 in which Green’s functions and polarization op
erator are expressed in the form of matrices:

Ĝ5S 0 GA

GR GCD , D̂5S 0 DA

DR DCD , P̂5S PC PR

PA 0 D . ~2!

Here the superscriptsA andR denote the advanced and r
tarded functions, respectively, and the diagonal compon

12214$10.00 © 1997 American Institute of Physics



GC and DC contain information about the nonequilibrium
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state of the system. The phonon Green’s function is
pressed as

DR~v,ql!5@DA~v,ql!#* 5
vql

2
@~v2vql1 i0!21

2~v1vql1 i0!21#, ~3!

wherevql5ulq is the frequency of the phonon with wav
vectorq, andul is the velocity of phonons with polarizatio
l.

In calculating the conductivity, one can substitute in
the kinetic equation the equilibrium distribution function
phonons, but in analysis of phonon drag, one must calcu
this distribution using an independent kinetic equation. In
semiclassical approximation, the desired system of two
netic equations is reduced to two classical Boltzmann eq
tions for electrons and phonons.5 In order to take into ac-
count the inelastic impurity scattering of electrons, we der
a kinetic equation for phonons similar to the correspond
equation for electrons.4 Let us express the Dyson’s equatio
for phonons in two versions:

D0
21~x2!D̂~x2 ,x1!52u2D2ŝxFd~x12x2!

1E d4yP̂~x2 ,y!D̂~y,x1!G ,
~4!

D0
21~x1!D̂~x2 ,x1!52u2D1Fd~x12x2!

1E d4yD̂~x2 ,y!P̂~y,x1!G ŝx ,

where

x5~ t,r !, D0
21~x!52]2/]t21u2D. ~5!

HereD is the Laplacian. The equations for different branch
of the phonon spectrum are written separately, and the
scripts on the sound velocityu for different branches are
omitted. Since phonons do not carry an electric charge,
potentials of electromagnetic field do not enter the Dyso
equation for phonons explicitly.

Let us calculate the thermal flux of phonons as a
sponse to an external electric field. Subtract the secon
Eqs. ~4! from the first, change the variablesx1 and x2 for
X5(x11x2)/25(t,R) andx5x22x15(u,r ), and calculate
the Fourier transform with respect to the variables of relat
motion u and r . In a steady state, when the temperature
uniform, all the components of functionsP̂ andD̂ are inde-
pendent ofR and t. ~Since phonons are not electrical
charged, no Poisson brackets2 emerge in the equations!
Therefore the left-hand side of the resulting equation is id
tically equal to zero. The right-hand side is the collision
tegral for phonons and is expressed as follows:

I ph5vq
2@PC~DR2DA!2~PR2PA!DC#. ~6!

The nonequilibrium component of the phonon Green’s fu
tion DC is expressed in terms of the phonon distributi
function:
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DC5h~v,q!~DR2DA!. ~7!

In equilibrium h(v,q)5h0(v)5coth(v/2T). Let us express
the nonequilibrium component of the polarization opera
PC similarly:

PC5g~v,q!~PR2PA!. ~8!

In equilibrium g0(v)5h0(v). By substituting Eqs.~7! and
~8! into the expression for the phonon collision integral~6!
and equating it to zero, we obtain a solution of the phon
kinetic equation:

h~v,q!5g~v,q!. ~9!

In order to calculate drag the thermopower, we have
calculate the functionh(v,q) using Eqs.~8! and ~9! and
substitute it into the expression for the phonon thermal fl

Qph5
i

2 E v
dvq

dq

DC~v,q!

vq

d3qdv

~2p!4 . ~10!

We assume that the electron momentum is dissipa
mostly due to the elastic impurity scattering, when the
called ‘‘weak Mattissen rule’’ applies. This regime occurs
low temperatures, when the effective rate of the electro
phonon scatteringne-ph;T3/QD

2 ~see Ref. 5! is smaller than
the rate t21 of the electron–impurity scattering, i.e
Tt!(QD /T)2.

As was noted above, at low temperatures the p
electron–phonon scattering and inelastic electron–impu
scattering should be taken into account. Figure 1 shows
Feynman graphs which make the main contribution to
drag thermopower. We must calculate the functi
I 52 i @PC2h(v,q)(PR2PA)#, which is proportional to
the phonon collision integral~6!, and equateI to zero in
order to determine the functionh(v,q). Let us first express
this function disregarding the inelastic impurity scatteri
~diagram 1!:

I 05
1

2
gql

2 E d3pde

~2p!4 @12Se,pSe1v,p1q2h~v,q!

3~Se,p2Se1v,p1q!#Im Ge,p
A Im Ge1v,p1q

A . ~11!

FIG. 1. Feynman graphs responsible for the main contribution to the pho
polarization operator in calculations of the drag thermopower. The s
lines correspond to the electron Green’s functions, wavy lines stand for
phonon Green’s functions, and the dashed lines denote impurity scatte
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Next we introduce the standard linearization of the electron
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and phonon distribution functions in the usual form:

S~e,p!5S0~e!2
]S0~e!

]e
f~e,p!,

h~v,q!5h0~v!2
]h0~v!

]v
x~v,q!. ~12!

HereS0(e)5tanh@(m2e)/2T# is the equilibrium electron dis
tribution function. Since we assume that the electron m
mentum is dissipated due to the elastic impurity scatter
the correction to the electron distribution function is e
pressed in the conventional form:

f~e,p!5etvE, ~13!

where e is the electron charge,v5dep /dp, and E is the
applied electric field. After linearization, the expression
the square brackets in Eq.~11! is reduced to

Re,p
v,q52@S0~e!2S0~e1v!#

dh0~v!

dv

3~fe1v,p1q2fe,p2xv,q!. ~14!

It is obvious that, if no umklapp processes take plac1!

the right-hand side of Eq.~11! vanishes ifxv,q5etq • E/m.
If both umklapp processes and inelastic impurity scatter
are neglected, the thermoelectric coefficientb ~by definition,
Q52bTE) due to the phonon drag is given by

bq
05

2p2

45

etT3

mul
3 . ~15!

This is the well-known result deriving from the classic
Boltzmann equation for electrons and phonons.5

Now let us consider the graphs taking into account
impurity scattering. Our analysis indicates that the main c
tribution to the collision integral is due to diagram 2 in Fi
1. It is clear that, in the combination of distribution functio
Re,p

v,q for these diagrams,q is replaced with the momentum
p8 imparted to an impurity. In this case, integration shou
be also performed overp8. By substituting the expression
for the verticesgql and gp2p8,l

3 into the collision integral
and equating it to zero, we obtain an equation from wh
xv,q can be derived:

05E d3pde

~2p!4 @S0~e!2S0~e2v!#
dh0~v!

dv

3Im Gpe
A FeF

2~qel!2~fq2xv,q!Im Ge1v,p1q
A 1

9

pnt

3E d3p8

~2p!3 ~p8el!2~fp82xv,q!Im Ge1v,p1p8
A G .

~16!

The integrals overp for (q,p8) l @1 have the form
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pnt ~2p!3 e,p e1v,p1p8

5H p/4p8l , p8,2pF

;~2pF /p8!2/~p8l !2, p8.2pF
~17!

~compare to Eq.~44! in Ref. 2!.
In crystals with cubic lattices, electrons are decoup

from transverse phonons~the vertex gql for transverse
phonons vanishes!. Thus, it follows from Eq.~16! that trans-
verse phonons are not ‘‘dragged.’’ For longitudinal phono
el5q/q. It is clear thatxv,q depends only onq, hence fol-
lows that the phonon collision integral is zero when the f
lowing condition holds:

eF
2q~fq2xq!5

9

pnt
xqE

0

2pF d3p

~2p!3

~p•n!2

p
. ~18!

Here n5q/q. The upper limit of integration overp is se-
lected in accordance with Eq.~17!. The divergence of the
integral in the regionp.2pF is purely formal because Eq
~13! for the distribution functionfp was derived in the linear
approximation and is valid only near the Fermi surfac
Therefore, it clearly follows from Eq.~17! that the contribu-
tion of the regionp.2pF to the collision integral is negli-
gible. It is quite natural, because 2pF is the maximum mo-
mentum which can be transferred to an impurity from
electron without its leaving the Fermi surface.

Finally, we obtain the expression

xq5
ql

ql124/p
fq . ~19!

Hence follows that the smaller the phonon wave vector,
weaker the phonon drag. Let us calculate the relative con
bution of the inelastic impurity scattering to the drag the
mopower. To this end, the correction to the phonon distri
tion function due to the inelastic impurity scattering must
substituted into the expression~10! for the thermal flux. Af-
ter integrating overq andv, we obtain the relative correction
to the thermoelectric coefficient:

bg2bg
0

bg
0 521.41

1

eFt

QD

T
. ~20!

In order to express our result in the form convenient
comparison with experimental data, let us present it in
form of the differential drag thermopowerSg52bg /s. In
the considered temperature range, the relative correctio
the residual conductivity due to the inelastic impurity sc
tering and the electron–phonon–impurity interference is
the order ofT2/eFQD and is much smaller than the corre
tion ~20!.3 Finally, we have

Sg5
2p2

45

T3

n0eul
3 S 121.41

1

eFt

QD

T D . ~21!

Here n0 is the number of electrons per unit volume. Th
dependence of the thermoelectric power on the impurity c
centration is fully described by Eq.~20!.

To sum up, the relative correction to the drag therm
electric power due to inelastic impurity scattering can b
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according to the simple estimate~1!, considerably larger than
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1!In order to incorporate umklapp processes, one should add to the collision

e

,

the impurity concentration, which equals by the order
magnitude 1/eFt. The accurate calculation of the integral
Eq. ~17! shows that it deviates notably from the propos
asymptotics only in the regionql;1. In this region the inte-
gral rapidly approaches the constant value 1/2, wh
Sg→0. Therefore, Eq.~20! is valid almost everywhere in th
region qTl .1, and the drag thermoelectric power tota
vanishes whencimp;T/QD . Thus, the effect of phonon dra
is suppressed at low temperatures by relatively low conc
trations of impurities.
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Fundamental Research~Grant No. 97-02-16877!.
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Nonlinear evolutionary processes in a free-electron laser generator of diffracted

a

radiation
V. P. Shestopalov

A. Ya. Usikov Institute of Radiophysics and Electronics, Ukrainian National Academy of Sciences, 310085
Khar’kov, Ukraine
~Submitted 5 June 1996!
Zh. Éksp. Teor. Fiz.111, 2243–2262~June 1997!

Nonlinear evolutionary processes with two control parameters, one of which is related to the
electrodynamic structure~positive feedback! and the other is related to the constant electric field
applied to the electron flux, are studied in a free-electron laser, which is a diffracted-
radiation oscillator. To this end, first, the linear spectral problem for an open-cavity resonator is
investigated and the dispersion relation near the Morse critical point is established. Then
the nonlinear evolutionary equation with two control parameters is constructed. Analysis of the
latter makes it possible to determine the properties of the parametric dependence of the
bifurcation and structural stability, which are determined by small variations of the control
parameter~tuning of the cavity!. This explains the operating efficiency of a diffracted-radiation
oscillator in the millimeter and submillimeter wavelength ranges. ©1997 American
Institute of Physics.@S1063-7761~97!02306-8#
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In a diffracted-radiation oscillator—a free-electro
laser,1 just as in any other O-type microwave oscillator, t
electron noise cloud produced by the hot cathode is c
verted by specially produced static magnetic and elec
fields in the region near the cathode into a flux of chao
particles. As a result of properly designed positive feedba
implemented with the aid of an appropriate electrodynam
structure and an applied constant electric field, these part
give rise in the interaction space to uniform and rectiline
motion of the electrons, which for certain parameters of
structure and the electron flux are then capable of genera
coherent radiation. How can completely disordered free e
trons be converted into a highly organized assemblage
particles capable of producing high-frequency coherent e
tromagnetic fields? This question can just as well be as
about physical, chemical, biological, computational, a
other problems which require solving for the dynamics
complex processes, bearing in mind above all their non
earity and the possibility of self-organization, an understa
ing and description of which can be obtained by introduc
control parameters~or order parameters!. In this respect a
diffracted-radiation oscillator is an ideal model for studyi
nonlinear evolutionary processes with two control para
eters, one of which is associated with the electrodyna
structure, i.e., positive feedback, while the other — a force
parameter — is associated with the constant electric fi
applied to the electron flux. In Ref. 2, the experimental d
were analyzed for the purpose of studying time-independ
bush resonances of a diffracted-radiation oscillator with
open structure. Here a nonlinear stationary theory of dyna
cal processes in the oscillator will be constructed.

The open electrodynamic structure of the oscillator i
complicated open cavity consisting of two reflectors with
special geometric shape: the top reflector is usually sphe
or spheroidal~sometimes spherocylindrical! and has a cou-
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diffraction grating is positioned on it~the grating only partly
covers the surface of the mirror!. An electron flux, modu-
lated at the frequency of the radiation and moving uniform
and rectilinearly near the diffraction grating, produces
characteristic surface electromagnetic field that is scatte
by the grating and engenders, besides surface waves, at
one volume wave—diffracted radiation, which feeds t
open cavity. On account of the multiple reflection of th
diffracted radiation from the mirrors in the cavity, the radi
tion transferred to the load through the coupling slot bui
up in the cavity. This is the standard description of the
gime of steady-state oscillations in a diffracted-radiati
oscillator.3

In studying nonlinear evolutionary processes in an os
lator, we first investigate the linear spectral problem for
open cavity, and we determine both the regular and crit
points of the spectrum. The theory of Morse critical points
the dispersion relations for a cavity forms the basis for
approach developed here for the construction of nonlin
evolutionary equations for a diffracted-radiation oscillato
Since near the Morse points the dispersion relations can
represented in analytic form, the corresponding evolution
equations~first linear and then nonlinear! can be written out
in the usual manner.

The nonlinear evolutionary equations so constructed
scribe the characteristic oscillatory process, which depe
on one control parameter—the geometry of the open cav

The other control parameter is phenomenological; it
related to the constant electric field applied to the elect
flux. The resulting nonlinear equation differs from the exi
ing equations in that it reflects, above all, the nonlinear p
cess near the Morse points, where the dispersion laws ch
drastically ~normal dispersion turns into anomalous disp
sion and vice versa!, while taking account of the effects o
the applied electrostatic field on the electron flux introduc
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Analysis of the nonlinear evolutionary equations mak

it possible to establish the properties of the parametric
pendence of the bifurcation on the quality of the open cav
the behavior of the electron flux, and the corresponding i
of structural stability. These are affected by small change
the control parameters near the critical points, thereby
plaining the efficiency of a diffracted-radiation oscillator
millimeter and submillimeter wavelengths.

2. LINEAR SPECTRAL PROBLEM AND EXCITATION OF AN
OPEN CAVITY

The construction of an evolutionary equation for
diffracted-radiation oscillator is closely related to the dee
investigation of linear stationary processes, i.e., the solu
of the linear spectral problem, and to the development
methods combining homogeneous~spectral! and inhomoge-
neous~excitation! problems for open electrodynamic stru
tures. The latter structures differ fundamentally from clos
structures by virtue of radiation losses, multiconnectedn
in the transverse cross section, and the behavior of the e
tromagnetic field at infinity. The spectrum of the charact
istic oscillations~for open cavities! is therefore no longer
real, additional requirements arise for the energy relation
different regions of space, and the character of the lin
spectral problem itself changes. The emerging problems c
cerning the characteristic oscillations of an open cavity fo
a new class of non-self-adjoint linear problems in which
spectral parameter ordinarily enters nonlinearly. Such n
linear spectral problems of mathematical physics have le
the development of the method of operator functions of o
or more complex variables.4

1. The details of the operator function method in t
construction of linear spectral problems for an open cav
can be properly formulated by a study of the linear nons
tionary homogeneous Maxwell’s equations with certain i
tial and boundary conditions:

]u

]t
5Au, t.0, uu t505u0 . ~1!

HereA is the Maxwell operator

A5F 0 c“3

2c“3 0 G , u5F E
HG ,

E and H are the electric and magnetic field intensities a
c is the speed of light in vacuum. We note that in the abse
of external sources the free oscillations occurring in a ca
on account of the initial energy introduced must decay w
time.

The Laplace transform yields

u~ t !5
1

2p i Ea2 i`

a1 i`

ept~pI2A!21u0dp, ~2!

where the integral extends over any straight line Rep5a that
does not contain the spectrum of the Maxwell operatorA,
and I is the identity operator.
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lations is based on the integral~2!; to calculate it, is neces
sary to know the spectrum of the Maxwell operatorA, i.e.,
the operator function (pI2A)21 as a function of the param
eter p. An efficient method for solving this problem is ob
tained by transforming from Eq.~1! to reduced equations o
the type

2 ilv5Av, ~3!

i.e., to a study of solutions of Eqs.~1! of the form
u(t)5v exp(2ilt), wherev satisfies Eq.~3! and certain ra-
diation conditions.

The role of the linear spectral problem in the solution
the problem of excitation of an open cavity now becom
clear. It reduces to a system of operator equations of
second kind with a Hilbert–Schmidt type operator.

2. We now examine the linear spectral problem of t
characteristicH oscillations of a two-dimensional open ca
ity formed by two perfectly conducting open circular cylin
drical surfaces, and we construct the matrix operator func
that depends on the desired spectral parameter.

The problem is to determine the values of the comp
spectral parameterk ~characteristic frequencyv.ck of the
cavity! for which there exists a nontrivial solution of th
homogeneous Helmholtz equation, satisfying boundary c
ditions on the cavity mirrors, the Meixner type conditio
and the Sveshnikov–Reinhart condition for outgoing rad
tion. This linear problem differs fundamentally from th
analogous problem for closed cavities, due to the radia
condition at infinity. The solution of the linear problem b
the method of separation of variables in local coordinates
the form of a linear superposition of Fourier series, and
virtue of the properties of Bessel functions and the addit
theorem for them, the desired eigenfunctionu(x,y) is infi-
nitely differentiable with respect tox andy and is a solution
of the Helmholtz equation everywhere in the regionR2 with
the exception of the cavity mirrors; in addition, the functio
u(x,y) satisfies the radiation condition for anyk
PCk5$k:uargku,p%.

In constructing the matrix operator functions,u(x,y)
must satisfy boundary conditions. This leads to paired-
functional equations with a kernel in the form of trigonome
ric functions for the Fourier coefficients ofu(x,y). There-
fore the initial linear problem in terms of differential equ
tions is equivalent to paired functional equations, which c
be reduced by the method of the Riemann–Hilbert proble5

to an investigation of an infinite linear homogeneous syst
of algebraic equations of the second kind

xp
n5(

s51

2

(
m52`

`

apm
ns ~k!xm

s , n51, 2, ~4!

where xp
n are the Fourier components of the functio

u(x,y) and the matrix elementsapm
ns are functions of the

spectral parameterk, and are defined in terms of Bessel fun
tions and Legendre polynomials~they are not presented her
because of their complexity5!.

We now introduce the following notation:s~D! is the
spectrum of the initial problem;sH(A) is a set of complex
numbersk P Ck for which a nontrivial solution of the system
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iapm(k)ip,m52` specify the operator kernels in the spa
l 2 for a definite setk. The matricesiapm

ns (k)i define bounded
operatorsAns(k): l 2→ l 2 in l 2, which we shall regard as th
operator functions of the spectral parameterk with domain
Ck and range given by the set of kernels. The system
kernel operator functionsAns(k) is a faithful representation
of the initial linear spectral problem and, as follows from E
~4!, admits of a compact description.

We now write the system~4! in the operator form

xn5(
s51

2

Ans~k!xs, n51, 2. ~5!

The system of operator equations~5! is an eigenvalue prob
lem for a matrix operator function, and it—and hence t
system~4!—can also be written as an operator equation
l 2
2:

$I 2A~k!%x5u, ~6!

where I is the identity operator inl 2
2 and u is the zero ele-

ment.
Now the properties of the sets~D! can be studied by the

spectral-theory methods as applied to the operator funct
I 2A(k). This is related to the study of the analytic prope
ties of the matrix operator functionA(k)5iAns(k)in,s51

2 as a
function of the parameterk. In so doing, it is proved that the
spectrum of two-dimensional electromagnetic oscillations
an open cavity is of finite multiplicity, discrete, and lies
the region$k:Im k,0%. Thus, for anyR1.0 andR2.0, the
region {k:p,argk,2p ; R1,uku,R2} contains only a fi-
nite number of eigenfrequencies of the initial linear spec
problem.

The operator function method described above for so
ing the linear spectral problem makes it possible to const
and verify a universal algorithm for calculating the eigenf
quencies. The algorithm is based on the fact that the oper
equation~6! has a unique solution for allk, and that there
exist regular characteristic numbers and Morse critical po
of the operator functionI 2A(k).

If km are approximate eigenvalues of the operator fu
tion I 2A(k), then they converge to the eigenvalues of t
operator functionI 2A(k) as m→`. Since theAm(k) are
finite-dimensional operator functions (Am(k) is determined
from Am(k)x5u!, thekm satisfy the equation

det$Am~k!%50, ~7!

whereAm(k) is the sequence of operator functions that a
proximates the operator functionI 2A(k). The function
det$Am(k)% is analytic in the regionCk . Therefore Newton’s
method can be used to solve Eq.~7! numerically. Thus, the
approximate characteristic numbers are the roots of Eq.~7!.

3. We now consider the diffraction of a monochroma
electromagnetic fieldE0(v)exp(2ivt), H0(v)exp(2ivt) by
the open cavity whose spectral characteristics were studie
Sec. 2. The requirement is to determine the solut
Eg(v,x,y), Hg(v,x,y) of the homogeneous system of Ma
well’s equations that satisfy the boundary conditions at
perfectly conducting mirrors of the cavity, the Meixner co
dition, and the Malyuzhints extinction condition. A uniqu
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It follows from this theorem and the properties ofE and
H0 that the problem reduces to two scalar problems w
u15Hz

g and u25Ez
g, andu1 and u2 must satisfy the afore-

mentioned conditions forEg, Hg. Functions of the type

GH5Hz
01u1, GE5Ez

01u2

are ordinarily called Green’s functions of the Helmho
equations of the problem under study.

Using the method of separation of variables, we se
u1,2 in the form of a Fourier series, and after applying t
boundary conditions we find paired functional equations w
a kernel in the form of trigonometric functions, which can
reduced by the Riemann–Hilbert method5 to an inhomoge-
neous system of algebraic equations of the second kind
the form ~4!. This system can be regarded as a system
operator equations inl 2 ,

xq5(
i 51

2

Aqixi1aq, q51, 2, ~8!

where theaq are determined by the form of the exciting fiel
If an l 2 solution of the system~8! exists, then we obtain a
solution of the initial diffraction problem. Note that the sy
tem ~8! can be represented as a canonical Fredholm equa
in some Hilbert space

x5Ax1a, ~9!

with a completely continuous operatorA: l 2
2→ l 2

2 . The Fred-
holm alternative holds for Eq.~9!.

The initial problem for the Green’s functionsGHE de-
scribing forced monochromatic oscillations of an open cav
is closely related to the linear spectral problem of charac
istic oscillations. It follows from the validity of the Fredholm
alternative for Eq.~9! that there exists a bounded operat
(I 2A)21 defined on the entire spacel 2

2, and it follows from
the properties of the operator that the resolvent setr(A) is
not empty; this proves the discreteness and finite multiplic
of the set of eigenvalues of the linear cavity problem un
study. The Green’s function as a function of a spectral
rameter possesses a pole-type singularity in the spectru
the linear problem; the residues of the Green’s function
these poles equal, to within a constant, the functions desc
ing the characteristic oscillations of the cavity: they do n
satisfy the radiation condition for the excitation problem, b
they do satisfy the more general condition for outgoing
diation ~Sveshnikov–Reinhart condition!. The converse is
also true: if the Green’s function possesses a pole-type
gularity at some eigenvalue, then the eigenvalue belong
the set of eigenfrequencies of the open cavity under stud

The Fourier coefficients determined from Eq.~9! make it
possible to find, by approximate summation of the series,
Green’s functionsGH andGE, which are important in prac-
tice in the resonant frequency range determined by the c
dition ka5O(1), where a is the characteristic size of th
open cavity, and also near the Morse critical points. T
solution of Eq.~9! by the method of reduction or the metho
of successive approximations makes it possible, toge
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govern the spectral characteristics and Green’s function
the cavities under study.

3. THEORY OF MORSE CRITICAL POINTS

As shown in Sec. 2, the spectral theory of an open ca
makes it possible to find from the dispersion relation

F ~k![det$I 2A~k!%50, ~10!

wherek5ka ~k5v/c, v is an eigenfrequency of the cavity
a is any geometric dimension of the cavity!, the spectral
parameterk for given nonspectral parameters. The dispers
relation ~10! is a characteristic infinite determinant of th
kernel operatorA(k), and it can only be solved with the ai
of a computer. It is important thatA(k) also depends on
nonspectral parameters, specifically, geometric parame
~the distancel between the mirrors and the radiusa and
apertureb of a mirror!. We confine our attention to one o
them:x5b/a. Then the operator function will have the form
A(k,x), and the dispersion relation becomes

F ~k,x![det$I 2A~k,x!%50, ~11!

wherex takes on values in the domainDx P C of analyticity
of A(k,x) ~C is the complex plane!.

The roots found for Eq.~11! make it possible to con
struct the functionsk~x!, which determine the dispersio
laws of a given cavity. The regular points of the spectru
~11! yield the classic~normal or anomalous! dispersion laws,
where the dispersion curves vary continuously as a func
of x. Ordinarily, the investigation is confined to these law
However, there exist situations in which small variations o
set of nonspectral parameters lead to sharp~catastrophic!
variation of the dispersion, strong growth or decrease of
diffraction losses, and appearance of hybrid oscillations. T
was found to be possible because of the presence of sing
points in the spectrum in Eq.~11!—Morse critical points—
near which the indicated events occur. We now construc
analytical theory of such points.

1. The domain of the analytic kernel operator functi
A(k,x) of two complex variablesk and x is (k,x)
P L3Dx . From a physical standpoint, the parameterx de-
termines the tuning of the cavity. We assume that the eig
valuesk P L0 , whereL05$kPC:2p,argk,p;kÞ0% is
the zeroth sheet ofL.6

SinceA(k,x) is an analytic kernel operator function, th
set of zeros of the dispersion relationF (k,x)50 is identical
to the set of characteristic numberss~k! of the operator func-
tions I 2A(k,x) ~the sets~k! is defined on a subset of th
set D in C2 of the form D5L03Dk). It is necessary to
determine what happens tos~k! when the eigenvaluesk vary
in Dk . For this we introduce an analytic setD of the form
s05$(k,x) P D :F (k,x)50% and treatF ~k,x! as a map
F :C2→C with domainD ~we assume thatx is a complex
quantity!. If an isolated singular point (k0 ,x0) of the mapF

exists nearby, then the local structure ofs0 near (k0 ,x0) is
determined by the position and type of the point (k0 ,x0)
~this is consequence of the theory of functions of many co
plex variables and the characteristic features of continu
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hyperplane. Clearly, small variations ofx near (k0 ,x0) lead
to small variations ofs~k!.

The phenomenological features of hybrid oscillation
which are well known for different oscillatory structures, a
determined by the dispersion law—the special behavior
two eigenfrequencies as functions ofx with Im x50 ~Wien
plot!. We are therefore faced with the problem of describi
in terms of regular and singular points of the mapF the
dispersion law typical of hybrid oscillations. The local stru
ture of s0 as a hypersurface does not correspond to the
dicated dispersion law. We therefore examine the set of c
cal points

sc5H ~k,x!PD :¹F 5S ]F

]k
,

]F

]x D50J
and the set of isolated Morse critical points

sMc5H ~k,x!Psc :
]2F

]k2

]2F

]x2 2S ]2F

]k]x D 2

Þ0J .

Let (k0 ,x0) be an isolated Morse point nears0 . Then
Eq. ~11! can be expanded in a Taylor series about (k0 ,x0)
and, to within cubic infinitesimals, we obtain

d1
1

2

]2F

]k2 ~k2k0!21
]2F

]k]x
~k2k0!~x2x0!

1
1

2

]2F

]x2 ~x2x0!21O350. ~12!

According to the Morse theorem,9 by a change of variables
the series~12! can be expressed as a canonical quadr
form

k̃ 21x̃ 21d50, ~13!

whered5F (k0 ,x0) Þ 0, k̃5k2k0 , andx̃5x2x0 . From
Eq. ~13! we have k̃56 iAx̃ 21d. For d50 we obtain
k̃56 i x̃. Equation~13! contains a dispersion law~the de-
pendence of the spectral parameterk̃ on the nonspectral pa
rameterx̃! typical of hybrid coupling of the oscillations, an
the quantityd determines the degree of this coupling.

It is sufficient to investigate the functions Rek̃(x̃) and
Im k̃(x̃) with x̃ ranging along the straight lines Rex̃5j and
Im x̃5aj1b, wherej is the real parameter of the straig
line, a is the slope of the line, andb Þ 0 for Im x0 Þ 0. As a
result, we have

k̃6~j!56SAAa21b21a
2

1 i sign bAAa21b22a
2

D , ~14!

where

a5aj1b22j22d1 , b52d222j~aj1b!,

d5d11 id2 , d1d2PR1.

2. The two-parameter~a,b! families of curves Rek̃(j),
Im k̃(j) contain for certain values ofa and b dependences
that are similar to the well-known Wien plot for the resona
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FIG. 1. Dispersion law of an open
cavity near the Morse point for dif-
ferent values of the parametersa and
b: Solid curves—b50, dashed
curves—bÞ0.
frequencies of coupled oscillatory circuits. Figure 1 displays
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the dispersion curves obtained from Eqs.~13! and~14! for all
possible qualitatively different dispersion laws near t
Morse point, for various values ofa and b ~the functions
k̃(j) with b50 are plotted as solid lines; their perturbatio
(b Þ 0) are plotted as dashed lines!.

Thus, the presence of an isolated Morse point (k0 ,x0) of
the characteristic determinantF (k,x) of an open cavity
leads to the existence of two solutionsk1(x) andk2(x) of
the dispersion relationF (k,x)50 near (k0 ,x0). The be-
havior of these solutions as a function of the detuningx of
the cavity is completely determined by the quadratic fo
~13! and describes hybrid oscillations of the cavity; spec
cally, it governs the rapid variation of the quality fact
Q52Rek/2 Im k ~diffraction losses! of the cavity for small
variations of its geometric parameters.

Figure 2 displays the real parts of the eigenfrequenc
and the logarithm of theQ for H03 andH41 oscillations as a
function of Rex5b/a. One can see that theQ of the oscilla-
tions has a pronounced dependence onb/a: asb/a increases,
theQ of the ~high-Q! H03 oscillation, which has three varia
tions of the field along the cavity axis, grows monotonica
to Q;104 (b/a50.650) and then rapidly decreases~by al-
most two orders of magnitude!, and nearb/a50.775 it be-
comes comparable to theQ of the H41 oscillation, which
-

s

quencies ~Fig. 2a! for 0.73<b/a<0.83 form dispersion
curves similar to a Wien plot. Forx050.775 and
k0510.130 the absolute difference of the eigenfrequencie
minimum ~theQs of theH03 andH41 oscillations are equal!.

The structure of the fields of theH03 andH41 oscillations
near the Morse point~k0510.130 andx050.775! is of great
interest. To determine it, it is necessary to make use of
excitation of the open cavity by anH-polarized plane wave
at frequencies corresponding toH03 andH41 oscillations, as
well as the frequency of the oscillations at the Morse po
itself. Figure 3 displays the distribution of the fields~lines of
constantHz components of the field! in an open cavity~the
cases 1, 2, and 3 correspond to the frequencies 1, 2, and
Fig. 2a!.

Fundamental conclusions can be drawn from Figs. 2
3: near a Morse point, substantial changes occur in the
havior of the dispersion laws and intense hybrid oscillatio
arise. As we show below, this leads to a new situation in
study of nonlinear evolutionary processes near a Mo
point.

3. Any dispersion relation obtained in electrodynamic
plasma physics, solid-state physics, and other fields mus
investigated for the presence~or absence! of Morse points
and the resultant feasibility of hybrid oscillations. Note th
FIG. 2. Dispersion~a! and diffraction losses~b! in an
open cavity near the Morse point~asterisk in Fig. 1a! of
H03 oscillations ~solid curves! and H41 oscillations
~dashed curves!.
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FIG. 3. Distribution ofH03 andH41

oscillations of the field of an open
cavity near the Morse point~2—
hybrid oscillationsH03↔H41 at the
Morse point!.
the method of investigating Morse points in which the func-
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tion F ~k,x! determining the dispersion relationF (k,x)50
depends on two complex variablesk and x extends to the
case in which three and more quantities are independent
ables~for example, the frequency, the projection of the wa
vector on one of the axes, and one of the control paramet!.

4. EXPERIMENTAL INVESTIGATIONS OF A
DIFFRACTED-RADIATION OSCILLATOR

A complicated open electrodynamic structure and
presence of a distributed electron flux lead to additional
ficulties in the study of nonlinear evolutionary processes
diffracted-radiation oscillators. The experimental data u
for constructing the theory of such oscillators must first co
firm the fact that a Morse critical point exists in the op
cavity of the oscillator and that near the Morse point t
same dispersion dependences and hybrid oscillations are
served as in the simplest cavity studied in Secs. 2 and 3,
that new qualities of the process associated with the elec
flux likewise appear.

1. We present experimental data on the behavior of
open cavity near a Morse point.10 The measurements wer
performed on a standard experimental setup, describe
detail in Ref. 3; it is illustrated schematically in Fig. 4. Th
cavity is formed by flat~with 60 mm aperture! and spherical
~radiusa560 mm! mirrors. A diffraction grating with period
d50.4 and width 10 mm is positioned at the center o
mirror. The width and depth of the channels a
g50.14 mm and depthh50.86 mm, respectively. The cav
ity is excited by a klystron in the 4-mm range through
coupling slot in the spherical mirror. The cavity is tuned
moving the flat mirror along the cavity axis. A signal
extracted from the cavity with the aid of a second slot
coupling element mounted on the spherical mirror. The d
tances between the mirrors isl .

According to the classification adopted, the fundamen
modes of the cavity will be quasi-TEM20q, whereq is the
number of half-waves between the mirrors. Hybrid qua
TEM20q and quasi-TEM40q modes, where quasi-TEM40q is
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mentally. It was established that forx5 l /a50.324 the
quasi-TEM40q mode ~with high Q! dominates for largel ;
after this point the quasi-TEM40q mode decays rapidly~Q
drops!, while the quasi-TEM20q modes become high-Q.
Clearly, we are dealing with the scheme of transformatio
of hybrid oscillations discovered theoretically for the sim
plest open cavity. Therefore, these variations make it p
sible to assert that a Morse critical point has been found
x050.324. The curve of Q for quasi-TEM20q ~curve1! and
quasi-TEM40q ~curve2! modes in Fig. 4 confirms the exis
tence of a Morse point atx050.324.

2. The dispersion curve of an open cavity of a diffracte
radiation oscillator near the Morse point (x050.324) is dis-
played in Fig. 5. It was obtained for quasi-TEM20q and
quasi-TEM40q oscillations by determining the resonant di
tancel for a specific value ofq. The ratiol /a is chosen so
that the resonant distance for quasi-TEM20q and quasi-
TEM40q oscillations at constantq lie on both sides of the

FIG. 4. Experimental diffraction losses in an open cavity of a diffractio
radiation oscillator for quasi-TEM20q oscillations ~curve 1! and quasi-
TEM40q oscillations ~curve 2! and a block diagram of the experimenta
setup.
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chosen value ofx0 . Then the wavelengthl of the oscilla-
tions under study is determined with a wavemeter. F
x050.324 the absolute difference of the characteristic wa
lengths assumes its minimum value~Fig. 5!, and the Qs of
the modes~Fig. 4! become the same. After the Morse poi
the modes transform into one another and exchange ene
as l /a decreases further, the branches of the dispers
curves diverge. Therefore, measurements of the dispersio
an open cavity of the oscillator also confirm the existence
a Morse point withx050.324. The dispersion curve con
structed according to Eqs.~13! and ~14! is shown in Fig. 5
~dashed lines!.

3. The structure of the fields of hybrid modes was det
mined by the test-body method. It was found that far fro
the Morse point the modes are of a pure form: qua
TEM4011 for l /a50.413 and quasi-TEM2012 for
l /a50.410. As the distance between the cavity mirrors
creases, the quasi-TEM4010 mode (l /a50.377) changes
first—this is the first higher-order mode of an open cavity
has a larger ‘‘spot’’ size at the mirror than the qua
TEM2011 mode (l /a50.375). As the Morse point is ap
proached, the quasi-TEM409 mode (l /a50.342) transforms
into a quasi-TEM2010 mode (l /a50.341); for this mode the
field ‘‘spot’’ increases in size. Intense energy exchange
tween these modes starts. After passage through the M
point, the mode types interchange. Thus, the quasi-TEM409

mode becomes a quasi-TEM209 ( l /a50.307) mode and the
quasi-TEM2010 mode becomes a quasi-TEM408

( l /a50.304) mode.
4. Our experimental investigations show that in an op

cavity with a diffraction grating, an interaction exists b
tween two types of modes as a function of the distance
tween the mirrors. Significantly, theQ of the working-type
oscillations increases. This results in a higher efficiency
interaction of the electron flux with the field of the ope
cavity.

FIG. 5. Experimental dispersion curves~solid lines! of an open cavity of a
diffracted-radiation oscillator~dashed curves—theory! near the Morse point
~* ! for quasi-TEM20q (s) and quasi-TEM40q ~d! modes.
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points, which was developed for a very simple open cav
also extends to the complicated cavity of a diffracte
radiation oscillator. This makes it possible to thoroughly
vestigate the construction of nonlinear evolutionary eq
tions for such an oscillator.

5. NONLINEAR EVOLUTIONARY EQUATIONS OF A
DIFFRACTIED-RADIATION OSCILLATOR

The results obtained in Secs. 2–4 concerning the pr
erties of open electrodynamic structures near Morse crit
points are the foundation for the construction of nonline
evolutionary equations of a diffracted-radiation oscillato
However, they must be understood from the standpoint
nonlinear dynamics. Furthermore, it is also necessary to
termine the effect of the electron flux on the excitation
oscillations in the oscillator and to establish the characteri
features of the continuous generation of the oscillations.

1. As is well known,11 one nonlinear bistable element~a
flip-flop! in nonlinear systems is governed by the nonline
interaction of the elements of the system. The flip-flop p
sesses two stationary stable states in each of which it
reside forever, and only external actions can transfer it fr
one state to the other.

Let us examine from this standpoint the behavior of l
ear stationary oscillations in an open cavity near a Mo
point. For this, we make use of Figs. 2, 3, and 5. As one
see from Fig. 2a~and Fig. 5!, there exist two branches of th
dispersion curves determined by the solution of the disp
sion equation~13!. Confining attention to the upper branch,
is evident that an anomalous dispersion law holds from po
1 to the Morse point 2 and a normal dispersion law ho
from the Morse point 2 to point 3. Therefore at the Mor
point the anomalous dispersion law is replaced by a nor
dispersion law. As one can see from Fig. 3, this leads t
corresponding behavior of the linear oscillations in distr
uted systems: as the nonspectral parameter varies, t
arises a chain of oscillations, two of which are stable and
unstable. The stable oscillations are determined by reg
dispersion laws. The unstable oscillation is determined
the dispersion law near the Morse point.

As is standard in the theory of nonlinear oscillations, w
associate the linear oscillations corresponding to the reg
points of the spectrum with linear monostable oscillations
is convenient to represent them in the form of a line
monostable element~‘‘limel’’ !; they correspond to points 1
and 3 in Fig. 2a and the distributions of fields in Fig. 3 whi
correspond to these points. It is evident from Fig. 2b t
limel 1 is a high-Q H03 mode of a confocal open cavity~we
call it a large limel!, and limel 3 corresponds to a low-Q
H41 mode~small limel!. Limels are noninteracting element
they can be real or complex; their theory has been develo
in detail.

Near a Morse point the linear modes interact, forming
hybrid unstable mode, which as the nonspectral paramet
varied, turns into two stable~ordinarily high- and low-Q!
modes. We define the mode near the Morse point to b
linear bistable element~‘‘libel’’ !. Near a Morse point a libe
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large limel→hybrid libel→small limel.
In summary, in linear oscillatory distributed system

~just as in lumped systems!, together with noninteracting
~limels! there also exist interacting~libels! oscillations.
Clearly, this nature of libels~and limels! is determined by the
dispersion properties of a linear oscillatory system. In t
respect a libel is different from a flip-flop, though for libe
also the transition from one stationary state to the other
curs as a result of an external action; the bistable state
libel is a purely dispersion phenomenon.

2. In studying nonlinear evolutionary processes and, s
cifically, in constructing nonlinear evolutionary equations f
a diffracted-radiation oscillator, an important fact is that t
generation of oscillations is closely related to the state
open electrodynamic structures near Morse points. The
step in constructing a nonlinear evolutionary equation
volves the nonlinear nonstationary characteristic modes
can arise in an open cavity near a Morse point. To this e
it is necessary to make use of the dispersion equation~13!,
solved for k̃, and replace the dimensionless characteri
frequency by the time differentiation operator, i.e
k̃; id/dt, wheret is a dimensionless time related to the tr
time t5( l /c)t2t0 ~t0 is the time required to cover the dis
tancel between the cavity mirrors!. As a result, we obtain
linear evolutionary equations for an open cavity near
Morse point in the form

du

dt
1a~x̃!u50,

where a(x̃)56Ax̃ 21d, and the6 signs correspond to
modes on the upper and lower branches of the disper
curves in Fig. 2a~or Fig. 5!. The functionu(t) is a complex-
valued, twice continuously differentiable function inR2 of
the variablet. It must also be kept in mind that for distrib
uted structures, the quantityu—the intensity of the electro
magnetic field— depends on the spatial coordinates as
in the case of a two-dimensional open cavity, as one can
from Fig. 3.

If it is assumed thata depends onu, i.e., a(u) is a real
analytic function defined on the semiaxisR1, then its Taylor
series expansion for smallu about the origin has the form
a(u)5a01a1u21 . . . ~the fact that the coefficient of th
linear term equals zero follows from the analyticity
a(u)!, wherea05a0(x̃) anda15a1(x̃). Now the nonlin-
ear evolutionary equation near a Morse point for an op
cavity has the form

du

dt
5a0~ x̃ !u2a1~ x̃ !u3. ~15!

Here we have confined our attention to nonlinear os
lations consistent with the dispersion described by the up
dispersion curve in Fig. 2a~for the lower curve the sign on
the right-hand side must be flipped!. The most important
aspect of Eq.~15! is the dependence ofa0 and a1 on the
control parameterx̃, which governs the tuning of the cavity
The question of the duration of the nonlinear proces
near the Morse point is equally important. That durati
is probably determined by the scheme large lim
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studying more carefully the dispersion curves in Figs. 2 a
3 together with Fig. 5; this will make it possible to find th
time of ‘‘approach’’ to the Morse point~point 1 on the dis-
persion curve in Fig. 2a! and the time of ‘‘exit’’ from the
region of the Morse point~point 3 in Fig. 2a!. The resulting
dwell time of an oscillatory system near a Morse point w
make it possible to determine the initial~and final! data for
the desired functionu(t) from Eq. ~15!.

3. The next step in constructing a nonlinear evolutiona
equation for a diffracted-radiation oscillator is to take a
count of the electron flux accompanying excitation of
open cavity and the continuous generation process. To
end, we examine qualitatively the behavior of an electr
flux in an open electrodynamic structure of a diffracte
radiation oscillator.

The open system of an oscillator can be excited3 by the
diffracted radiation that results from the uniform rectiline
motion of an electron flux near a diffraction grating. F
subsequent analysis, it is convenient to represent the diff
tion grating as a periodic sequence of open waveguid
which in the simplest case is simply the segment of a slo
wave system covering part of the bottom mirror of the ca
ity. The dispersion relation for the system is

c

vph
5A11

g2

d2 tan2S p
h

l0
D ,

wherevph is the phase velocity of the surface waves;d and
g are the period and width of the grating;h is the depth of
the channels; andl0 is the wavelength in free space. Th
dispersion curve for this equation is similar to that presen
in Fig. 2a; dispersion types are exchanged at the Morse p
~i.e., asvph→c!: anomalous dispersion is replaced by norm
dispersion. For an electron flux with such dispersion,
mixing of electrons trapped by the wave is reminiscent of
motion of a liquid along a pipe with expanding diameter.
points 1 and 3 in Fig. 2a, when the energies are equal,
slow wave of the diffraction grating entrains a different num
ber of electrons from the flux. If the indicated points 1 and
correspond to the same increment in the potential~i.e., a
constant electric fieldm is applied to the electron flux!, then
according to momentum conservation and the foregoing c
ditions, the change in the velocity of the electrons at poin
in Fig. 2a will be greater than at point 3.

At the Morse point itself, a state of the nonlinear osc
latory process arises in which the two opposing types
dispersion occur. The parametric effect, accompanied b
frequency shift near the Morse point, comes into play~this
phenomenon has been investigated experimentally12!. There-
fore, a constant electric field applied to the electron flux
ders its motion, and also produces the prerequisities for
formation of diffraction radiation, which, on account of th
parametric effect near a Morse point of an open electro
namic system, is amplified and transformed into cw elect
magnetic emission.

The foregoing qualitative arguments concerning the r
of the electron flux in the operation of the oscillator can
represented phenomenologically by introducing a cons
parameterm into the nonlinear equation~15!. The result is
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du
5a ~x̃!u2a ~x̃!u31m. ~16!
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The presence of the constant coefficientm in Eq. ~16!, which
is the second control parameter of the oscillator, is fun
mental, since Eq.~16! differs radically from Eq.~15!, if for
no other reason than that Eq.~15! is a homogeneous nonlin
ear evolutionary equation and Eq.~16! is an inhomogeneou
equation.

6. QUALITATIVE ANALYSIS OF NONLINEAR
EVOLUTIONARY EQUATIONS

Let us examine Eq.~16! from the standpoint of its struc
tural stability. In this regard, we note once again that
electrodynamic structure of the diffracted-radiation oscilla
is open, i.e., it is a dissipative system. Energy is dissipa
by an open system not as a result of thermal losses, but
result of purely diffractive losses. In analyzing Eq.~16!, bi-
furcations can therefore be studied on the basis of a sim
dissipative system. It must also be borne in mind that
~15!—and therefore Eq.~16!—differ from the known
equations,13 in that the control parameters depend on qu
tities that already appeared in the solution of linear spec
problems, and that control the tuning of the cavity~the quan-
tity x5 l /a!.

1. We first qualitatively consider the nonlinear evol
tionary equation~15!. In this equation the rate of change
u is a linear function of the parameterg5a0(x̃)a1

21(x̃).
The stationary state of Eq.~15! can be determined from th
equation 2us

31gus50, the trivial solution of which is
u050; the two nontrivial solutions areu656Ag ~u6 for
which g.0 will also be physically meaningful!. The solu-
tions u6 merge withu0 at g50, and branch from it for
g.0.

This is the well-known phenomenon of bifurcation. Th
stability of oscillations in an open system can be stud
completely, bearing in mind that Eq.~15! admits an exact
solution; depending on the sign ofg, the solutionu0 is glo-
bally asymptotically stable~for g,0! or unstable ~for
g.0!. The solutionsu6 are simply asymptotically stable
Clearly, u6 appear as a result of bifurcation at the mome
when the stateu050 becomes unstable, although the so
tions u6 themselves are stable. Near the bifurcation po
g50, the continuous dynamics result in singularities of t
solutionu6 , i.e.,u6 are not analytic functions ofg, which is
what determines the qualitative, bifurcation-induced cha
in the behavior of the open system of a diffracted-radiat
oscillator.

These arguments follow from an analysis of classi
bifurcation.13 In the the nonlinear dynamics studied here, t
problem is complicated by the fact that the classical con
parameterg is itself controlled byx̃, i.e., g5g(x̃). The
qualitative analysis of bifurcations in the open system of
oscillator must therefore take account of the fact that in
~15! g depends onx̃, and this relation must be tied to th
behavior of the system under the conditions of a linear
tionary process.

We should then bear in mind that bifurcations the
selves are manifest in the dispersion behavior near the M
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u6(g,t) is determined not only by temporal evolutio
(k̃; id/dt, k̃56Ax̃ 21d), but also byx̃. In this regard, it
is necessary to turn once again to Figs. 2a and 3, which
aid in establishing the initial conditions through whic
a0(x̃) and a1(x̃), and henceg, can be established for th
nonlinear process under study. The nonlinear equation~15!
can then be investigated further. We merely note that on
basis of a study of the free nonlinear oscillations in the op
system of the oscillator, according to Eq.~15!, the role of
limels and libels becomes clear: they constitute a lin
physical ‘‘prehistory’’ of the bifurcations that emerge, and
some extent they predetermine them.

2. We now examine Eq.~16!. In contrast to Eq.~15!, in
Eq. ~16! we have a problem concerning a nonlinear proc
with two control parameters. The conditions of stationar
of Eq. ~16! are given by the cubic equation

2us
31gus1m̄50, m̄5ma1

21~ x̃ !.

The roots of this equation are

us15p1q, us2,352
1

2
~p1q!6

)

2
~p2q!,

where

p5S 2
1

2
m̄1A1

4
m̄21

1

9
g3D 1/3

,

q5S 1

2
m̄2A1

4
m̄21

1

9
g3D 1/3

;

any value of the root can be taken forp, and the value of the
root for which pq52g/3 is then taken forq. For us, it is
important that the cubic equation possesses three real s
tions, and we can try to merge three solutions into one r
solution by adjustingg and m̄. The relationships among th
two-parameter regimes of the nonlinear evolutionary proc
can be determined with the aid of the equati
4g3127m̄250, which implies the existence of three re
roots of the cubic equation that end up at the po
g5m̄50, where the dependence ofg on m̄ has a cusp-type
singularity.

The dependence ofus on m̄ for fixed g can be traced out
As is well known, this leads to anS-shaped curve related t
the multiplicity of solutions as a function of the paramet
m̄. Two branches are stable simultaneously. The bistab
arising near the pointsm̄1 and m̄2 causes hysteresis.

The functionus(g) with fixed m̄ yields two curves, one
of which has a limit-point singularity. Correspondingl
stable and bistable states of the oscillatory process in an o
electrodynamic system of the diffracted-radiation oscilla
are obtained.

It is important that while Eq.~15! determines a symmet
ric bifurcation, Eq.~16! yields no such bifurcation for any
m̄, however small. Thereforem̄ plays the role of a ‘‘de-
stroyer’’ of symmetric bifurcation.

The arguments presented above for Eq.~16! are well
known,13 with the exception of the fact that the two contr
parameters in Eq.~16! themselves depend on the control p
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rameterx̃. Results concerning the efficiency of a diffracted-
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radiation oscillator therefore relate to precisely this proble

7. CHARACTERISTIC FEATURES OF THE NONLINEAR
OPERATING REGIME OF A DIFFRACTED-RADIATION
OSCILLATOR

The ‘‘historical’’ development of coherent cw emissio
by an oscillator involves three successive stages: the for
tion of a electronic noise cloud as electrons are extrac
from a hot cathode; conversion of the cloud in the ne
cathode region into a chaotic flux of particles; and, fina
conversion of these particles with the aid of positive fee
back ~i.e., an open electrodynamic system! and an applied
constant electric field into a highly organized assemblage
particles, which produce diffracted radiation that feeds
open cavity of the oscillator. The analysis of Eq.~16! con-
cerns the latter stage.

1. To understand the role of Eq.~16! in the study of
nonlinear processes in an oscillator, it is necessary to c
sider the behavior of the electron flux in the interaction sp
of an open electrodynamic system. Above all, it must
borne in mind that at millimeter and especially submillime
wavelengths, the electron flux must be flat and very thin,
its density must be high. On account of Coulomb repulsi
space-charge waves, and other reasons, strong fluctuatio
electrons arise in such a flux, the electrons precipitate o
the diffraction grating, and so on. All this makes it necess
to employ, together with the ‘‘pulling’’ constant field applie
to the electron flux, a constant longitudinal magnetic fie
that focuses the flux.

Nonetheless, the electrons must pass near the diffrac
grating ~in a real oscillator working atl52 mm, the gap
between the grating and the electron flux is;0.1 mm!. Since
the current is;0.1 A and the applied voltage is 3–5 kV, th
thermal power dissipated by the grating~the total dissipation
area is;1.5 cm2! is ;500 W. For the device as a whole
this is a very difficult thermal regime. Forced~water! cooling
of the oscillator is required. Even so, thermal fluctuations
the grating and the bottom mirror of the oscillator are su
that at short millimeter and especially submillimeter wav
lengths they lead to appreciable mechanical fluctuation
the body of the operating device, which ultimately influen
the quantityx5 l /a and thereforeg and m̄ in Eq. ~16!.

Therefore, even in a stationary state of the oscillator,
amplitude and frequency of the oscillations vary contin
ously as a result of many internal and external destabiliz
factors, whose effect on the microwave signal of the osci
tor is all the weaker, the more wideband the open syste
used in the oscillator are. Ordinarily, the fluctuation para
eters of the oscillator are determined by analyzing the e
tation of bulk ‘‘noise’’ oscillations and their action on th
electron flux. Noise waves are studied as a result of
changes in all of the above-indicated parameters of the
cillator. The problem consists of establishing the relations
between the indicated processes and the structural stabili
the dynamic system, determined by Eq.~16!.

2. We have already noted that in Eq.~16! the role of the
parameterm̄, even for m̄5const, reduces to destruction o
the symmetric bifurcation diagram. In this case, the indis
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(m50) with m Þ 0 become separated, and asg increases, the
system remains on the branchu1 , provided that a fluctua-
tion which would transform it into the stateu2 does not
appear. Thus, in Eq.~16! with m̄ Þ 0 andg varying between
u1 andu2 , there appears a gapD(m̄) whose nature is de
termined bym̄. For a nonlinear dynamic system, the quant
D(m̄), originating from Eq.~16!, makes it possible to de
scribe the behavior of the system near the bifurcation poin13

To what extent is the oscillator ‘‘sensitive’’ in the pres
ence of the above-indicated fluctuations to a change inm̄,
i.e., D(m̄)? As shown in Ref. 13, for small fluctuations w
haveD(m̄)53(4m̄)1/3/2 for m̄5const. The fact that we hav
D;m̄1/3 is decisive, since the electric field applied to th
electron flux can fluctuate bym̄;1026, which yields
D;1022, and therefore in Eq.~16! this quantity is capable
of competing with the macroscopic phenomena, i.e., it can
comparable tog in the gapD, i.e., gD . In Ref. 13 it is
established thatgD53(m̄2/4)1/3 ~gD is the minimum distance
between the solutionsu1 andu2 of Eq. ~15!!, and this quan-
tity yields a difference betweenu1 andu2 for g50, which
corresponds to a bifurcation.

It is known experimentally from a 4-mm diffracted
radiation oscillator that spurious modulation of the outp
power and the emitted spectrum arise in the 1–100 k
band. These distortions are due to all the fluctuations m
tioned above. Significantly, in this case,gD;1022.

Thus, in Eq.~16! for 2us
31gus1m̄50 it can be as-

sumed that in actually operating oscillatorsg and m̄ have
reasonable orders of magnitude, making it possible to es
lish stable operation of the device. These arguments are
valid for the dispersion region far from a Morse point~Figs.
2a or 5 far from the points 1 and 3!.

However, the main feature of the theory developed h
is that the analysis of Eq.~16! in application to a diffracted-
radiation oscillator must be conducted keeping in mind thag
and m̄ are functions ofx̃. It is obvious that everything tha
we have said for the case wheng and m̄ do not depend on
x̃ can be tied to the operation of the oscillator wi
x̃5const. If, however,x̃ varies as a result of diverse fluc
tuations in an open system and the electron flux, then
analysis of Eq.~16! becomes much more complicated. Th
difficulty is somewhat eased by the fact that a prelimina
analysis of the operation of the oscillator can be perform
using the results of Secs. 1 and 2 associated with linear
tionary processes in the device. Equation~16!, however,
must substantiate the behavior of the open system and e
tron flux under conditions when the cavity exhibits high-Q
oscillations, which are displayed in Fig. 3~case 1!, or low-
Q oscillations~see Fig. 3, case 3! with the existence of hy-
brid oscillations ~Fig. 3, case 2!. This means that in the
scheme large limel→hybrid libel→small limel, which re-
flects the linear stationary process in the cavity near
Morse point, Eq.~16! should confirm that millimeter and
submillimeter diffracted-radiation oscillators operate in t
large limel regime. Equation~16! itself reflects the
‘‘struggle’’ between large and small limels~via a hybrid li-
bel!, and shows that the large limel prevails.

Thus, for correctly choseng and m̄, which depend on
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x̃, the oscillations arising in a nonlinear process near bifur-
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The method proposed for studying nonlinear evolution-
ogi-
ear

du-

f
I

iz.
cation are globally asymptotically stable. This ensures h
short-time stability~up to 10210! of oscillator operation, a
low level of phase noise, and small parasitic deviation of
frequency. Implementation of certain frequency-locking a
power-stabilization methods makes it possible to achi
long-term stability of the oscillator frequency of up
5310210, and changes in the output signal power can
reduced to<1% ~at 4 mm, this stability remains for sever
hours of operation at a level of continuous output power
the oscillator of up to 10 W!. These qualities of diffracted
radiation oscillatros make them useful in the developmen
ultrahigh-resolution spectrometers, in the diagnostics of th
monuclear plasma, dielectric measurements in absorbing
jects, spectroscopy of polarized nuclear targets, hi
coherence radar, and other applications.

8. CONCLUSIONS

The approach developed here for studying diffract
radiation oscillators transfers to other microwave devices
vacuum electronics: backward-wave tubes, klystrons, m
netrons, cyclotron-resonance masers, and free-electron
sers. The scheme for constructing the nonlinear evolu
equations~16! and ~15! for these devices is the same as f
diffracted-radiation oscillators: solution of the linear spect
problem for a given structure; search for the Morse criti
point; construction of the dispersion relation near the Mo
point; construction and analysis of a nonlinear evolution
equation; reconciliation with experiment. The difference w
lie in the search for the control parameters. The minim
number of parameters, just as in a diffracted-radiation os
lator, is two: one controls the structure and the other cont
the electron flux. Just as in a diffracted-radiation oscillat
these parameters themselves depend on the properties o
structure and the electron flux.
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ary equations can be extended to physical, chemical, biol
cal, and other areas of investigation of complex nonlin
processes.
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Erratum: Realization of a heavily doped and fully compensated semiconductor state
in a crystalline semiconductor with a deep impurity band [JETP 84, 309–316 (February
1997)]

M. I. Daunov, I. K. Kamilov, and A. B. Magomedov

Institute of Physics, Dagestan Science Center, Russian Academy of Sciencees, 367003 Makhachkala, Russia

@S1063-7761~97!02406-2#

The following corrections were reported by the authors. On page 309 in the right-hand column, in the 10th line fr
bottom, the equation should read as follows:Nd

15Ndm
11Ndr

1. On the same page and the same column, in the 9th line f
the bottom, the equation should read as follows:Na5Nar

21Nam
21NA . Also on the same page and the same column, in

2nd line from the bottom, the equation should read as follows:N5Nd
12(Nam

21Nar
2).

In the first part of Table II, in the 11th column, in the second line from the bottom, the number should read as fo
0.02.
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