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Abstract—Gasdynamic parameters of a molecular beam formed by passing a pulsed beam of a neutral gas
through a Knudsen cell filled with a fullerene vapor are studied experimentally. It is shown that this method can
be used to advantage in generating supersonic molecular beams of virtually any substances, which is of special
importance for depositing epitaxial films and films of low-volatility materials. © 2003 MAIK “Nauka/Interpe-
riodica”.
Supersonic molecular beams seeded by atoms or
molecules of low-volatility materials are usually gener-
ated by the flow of gas mixtures through a sub- or
supersonic free-jet nozzle. In this case, binary mixtures
are commonly used where the ratio between the partial
pressures of heavy and light (carrier) gases does not
exceed several fractions of a percent. Under such con-
ditions, the axial portion of the beam generated is con-
siderably seeded by the heavy component of the mix-
ture, while the transient velocity of the beam, as well as
its temperature and velocity distribution, is governed by
the nozzle flow of the light component. This method
allows the generation of monokinetic beams of heavy
gases with a kinetic energy as high as several hundreds
of electron volts [1].

The conventional method for generating seeded
beams uses, as a rule, mixtures of inert or atmospheric
gases [2]. Studies in which the vapors of high-volatility
compounds are used as a heavy component [3] are
uncommon, and those where the beams are seeded by
atoms of low-volatility compounds [4] are virtually
absent. The reason is that in experiment it is difficult to
create nozzles (especially pulsed nozzles) that can be
heated to a temperature sufficient to reach a reasonable
concentration of low-volatility compounds.

In [5], a pulsed gasdynamic molecular beam of
fullerene (the temperature of vaporization exceeds
250°C) was generated by passing a supersonic molecu-
lar helium beam through a Knudsen cell filled with the
fullerene vapor. This beam was used to deposit thin
fullerene films whose structure and properties
depended considerably on the kinetic energy of adsor-
bate molecules [6–9].

The strong correlation between the properties of the
thin films and the parameters of the beam has dictated
the need for determining a set of gasdynamic parame-
ters of fullerene beams obtained with this method.
1063-7842/03/4805- $24.00 © 20523
Associated experimental data have subsequently been
used to elaborate a qualitative beam formation model.

The source of a molecular fullerene beam consists
of a subsonic pulsed nozzle with an outlet diameter of
0.13 mm that was filled with helium to a pressure of 2
to 5 atm and of a Knudsen cell filled with the fullerene
vapor at temperatures of 600 to 650 K (Fig. 1). At these
temperatures, the vapor pressure of fullerene varies
between 10–5–10–4 Torr. The length and inner diameter
of the cell are 28 and 6 mm, respectively. A pulsed
helium flow passes through the cell whose axis is
aligned with the nozzle axis. The cell edge nearest to
the nozzle is 3 to 5 mm away from its end face. Down-
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Fig. 1. Design of the experimental setup. (1) Knudsen cell:
(1.1) Knudsen cell on an enlarged scale, (1.2) fullerene-
filled interior, (1.3) hole for fullerene vapor, and (1.4) heat-
ing coil; (2) pulsed nozzle, (3) skimmer, and (4) mass spec-
trometer.
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stream of the opposite edge of the cell (at a distance of
10 mm), the first skimmer with an outlet diameter of 1
mm is placed. The other skimmer (with an outlet diam-
eter of 2 mm) is placed at a distance of 600 mm. All the
chambers separated by the skimmers are independently
evacuated with high-vacuum pumps (a residual pres-
sure of no more than 10–9 Torr) and are equipped with
quadruple mass spectrometers with their ionization
heads located at the axis of the beam. The distances
between the Knudsen cell and centers of the mass spec-
trometers are 450 and 750 mm. An electron gun placed
at a distance of 90 mm from the nozzle provides the
diagnostics of the beam by means of a time-of-flight
mass spectrometer, which is also located at the axis of
the beam. In the experiment, the operating parameters
of the pulsed subsonic nozzle were as follows: the pulse
width tp = 100–800 µs, and the frequency of nozzle
opening is 1–30 Hz. The gasdynamic parameters of the
beam were determined from the waveforms of signals
for the helium and fullerene (C60) masses that come
from the quadruple and time-of-flight mass spectrome-
ters. The operation of the spectrometers was synchro-
nized with nozzle opening. The measurements were
made in a wide range of external parameters, such as
the pressure in the nozzle chamber, the frequency and
duration of nozzle opening, the temperature of the
fullerene-filled cell, and the nozzle–cell spacing.

Figure 2 shows typical time-of-flight (TOF)
fullerene spectra recorded by the quadruple mass spec-
trometers. If the exact spacing between the spectrome-
ters is known, the transient velocity is easy to calculate.
At the same time, to find the thermal velocity, Mach
number, and velocity ratio is a challenge, since one
must have an idea of how the instrumental function of
the beam source and detectors affect the width of the
TOF spectra. The instrumental function was deter-
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Fig. 2. TOF spectra of the pulsed molecular fullerene (C60)
beam recorded by (1) TOF mass spectrometer and (2, 3) two
quadruple mass spectrometers placed at distances of 90,
450, and 750 mm from the Knudsen cell.
mined by taking the signal waveforms for the residual
gases when they undergo pulsed ionization in the ion-
ization head of the mass spectrometer. It turned out that
the instrumental function, which is defined by the trav-
eling time of ions in the quadruple trap, can be
neglected, since this time is no larger than several
microseconds (depending on the ion mass). The width
of the fullerene beam source was estimated by taking
TOF spectra in the TOF mass spectrometer, in which,
as was mentioned above, the ionization area is at a
small distance (90 mm) from the nozzle.

As follows from Fig. 2, this TOF spectrum is con-
siderably narrower than those taken at distances of 450
and 750 mm. Assuming that the beam velocity distribu-
tion in the region adjacent to the Knudsen cell is close
to that obtained in the mass spectrometers, one can eas-
ily find the beam width ∆τ at the exit from the Knudsen
cell.

Our estimates show that this width is a maximum of
50 µs, which is more than one order of magnitude less
than the width ∆t of the TOF spectrum recorded by the
mass spectrometers. With ∆t/∆τ = 5, the error in mea-
suring the width of the TOF spectrum is no higher than
2.5% [10]. In our case (Fig. 1), the widths of the TOF
spectra taken by the quadruple mass spectrometers at
distances of 450 and 750 mm from the Knudsen cell
are, respectively, 577 and 947 µm, that is, more than
one order of magnitude larger than the width of the
TOF spectrum at the cell. Hence, the condition ∆t/∆τ =
5 is fulfilled a fortiori and the TOF distribution is close
to the true distribution. This result allows us to ignore
the effect of the instrumental function on the shape of
the TOF spectra shown in Fig. 2.

Figure 2 shows that the TOF spectrum obtained with
the TOF mass spectrometer has, along the narrow dis-
tribution of fast fullerene molecules, an extended pla-
teau, which is formed by molecules with a wide veloc-
ity distribution. Such a shape of the spectrum is due to
the fact that the drift chamber of the TOF mass spec-
trometer receives fullerene molecules that leave the
Knudsen cell over a wide range of angles and not only
those traveling along the nozzle’s axis, which is aligned
with the beam axis. Therefore, the flow under study
contains not only fast particles with a narrow velocity
distribution but also an appreciable (in the integral
sense) amount of particles that have not formed into a
directed molecular beam.

On calculating the gasdynamic parameters in the
axial portion of the fullerene beam, the influence of the
scattered gas on the velocity distribution function was
not taken into account, since the residual pressure in the
measuring chamber was below 10–7 Torr during the
measurements. The low residual pressure allowed the
velocity distribution function f(v) to be approximated
by the Maxwell function with a transient velocity v tr
[11, 12].

The function f(v) (Fig. 3) can be found from the
TOF distributions f(t) (Fig. 2). Figure 3 demonstrates
TECHNICAL PHYSICS      Vol. 48      No. 5      2003



        

GASDYNAMIC PARAMETERS OF A SUPERSONIC MOLECULAR BEAM 525

                                                                    
that, in the velocity space, the TOF distributions
obtained by both mass spectrometers are nearly coinci-
dent, which is another indication that the beam particles
do not interact when traveling between the detectors.

Using the expression for the beam intensity [13], the
molecule velocity distribution can be written as

where dN is the amount of fullerene molecules in a
velocity interval dv, A0 is the cross-sectional area of the
skimmer inlet, n0 is the molecule concentration at the
skimmer inlet, z is the distance downstream of the

skimmer, v t =  is the thermal velocity of the
molecule, and T is the gas temperature at the skimmer
inlet.

The function f(t) found in the experiment can then
be represented as

where l is the path length.
Thus, the theoretical velocity distribution is given

by

(1)

where a is the normalizing factor.
Varying the parameters v t and v tr in (1), one can

determine the temperature and mass-averaged velocity
of the flow that are fitted by the experimental distribu-
tion most accurately (Fig. 3).

Calculations show that, under our experimental con-
ditions, the transient velocity of fullerene molecules is
v tr = 371 m/s; thermal velocity, v t = 112 m/s; tempera-
ture, T = 560 K; and Mach number, M = 4. The kinetic
energy of the molecules that is calculated from v tr was
found to be 0.526 eV.

The parameters of the forming fullerene beam can
be estimated based on the shock tube model where the
pulsed nozzle acts as a high-pressure chamber (Ph) and
the Knudsen cell replaces a low-pressure chamber (Pl)
[14]. If the ratio Ph/Pl tends to infinity, the Mach
number in a shock tube can be calculated by the for-
mula [15]

(2)

where kh = 1.33 and kl = 1.66 are the adiabatic expo-
nents for helium and fullerene, respectively, and ah and
al are the velocities of sound in the high- and low-pres-
sure chambers, respectively.

Formula (2) may certainly be used to calculate the
Mach number in our case, since the fullerene pressure

dN
dv
------- A0

n0

πz2
-------- v t( ) 3– v 2 v v tr–

v t
----------------–

2

2∆τexp Af v( ),= =

2kT /m

f t( )dt Af v( )v
2

l
------dv ,=

f v( ) av 2v t
3– v v tr–

v t
----------------–

2

,exp=

Mph/pl

kl 1+

kh 1–
-------------

ah

al
-----,=
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in the Knudsen cell does not exceed 10–4 Torr and the
pressure in the helium flow at the cell inlet exceeds 10
Torr, as follows from the numerical calculation of the
gasdynamic parameters of the pulse nozzle. This for-
mula requires knowing the velocities of sound in the
high- and low-pressure chambers to calculate the Mach
number. These velocities obtained elsewhere [15, 16]
are 131.345 and 96 m/s, respectively. The Mach num-
ber calculated for our conditions was found to be 4.7,
which is in good agreement with the experimental value
mentioned above.
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Abstract—A dispersion equation is derived for axisymmetric and nonaxisymmetric capillary oscillations in a
jet of viscous conducting liquid subjected to a constant potential. It is shown that conditions arising when the
surface charge density in the jet is high cause the instability of nonaxisymmetric, rather than axisymmetric,
modes with the resulting disintegration of the jet into drops of various sizes. This theoretical finding allows one
to correctly interpret of experimental data for the spontaneous disintegration of charged jets. © 2003 MAIK
“Nauka/Interperiodica”.
(1) The capillary disintegration of charged liquid
jets is of interest for applications in various areas of
technology and applied chemistry (see, for example, [1]
and references therein) and, therefore, has been the sub-
ject of much experimental [2, 3] and theoretical [4–10]
investigation. Nevertheless, some issues, in particular,
the disintegration of nonaxisymmetric jets, remain
unclear. The nonaxisymmetric disintegration of
charged jets was carefully studied in experiments [2, 3].
It was ascertained that the nonaxisymmetric disintegra-
tion is enhanced with an increase in an electric potential
applied to the jet. In addition, this phenomenon is of
interest for the geophysically oriented investigations of
the disintegration of free-falling charged drops in an
external electrostatic field. In [11], the ejection of liquid
jets from the opposite ends of a drop in the direction of
an external electrostatic field with the subsequent non-
axisymmetric disintegration of the jets into daughter
droplets was observed. When studying the electrostatic
atomization of a liquid from the end of a capillary (the
phenomenon that has vast applications [12]) through
which the liquid is fed into a discharge system, Clou-
peau and Prunet-Foch [13] also observed the ejection of
fine liquid jets from the top of the meniscus at the cap-
illary end that nonaxisymmetrically disintegrate into
tiny droplets. These features of the nonaxisymmetric
disintegration of liquid jets give rise to a great variety
of electrostatic liquid atomization conditions observed
experimentally [14, 15]. In what follows, emphasis will
be on studying the instability of nonaxisymmetric
charged jets of a conducting liquid.

(2) Let an infinite cylindrical jet of a viscous incom-
pressible liquid with a mass density ρ, kinematic vis-
cosity ν, and surface tension σ move at a constant
velocity U0 along the symmetry axis and be under a
constant electric potential Φ∗ . The radius of the jet is R.
We assume that the liquid is perfectly conducting and
1063-7842/03/4805- $24.00 © 20527
the electric charge is uniformly distributed over the
unperturbed cylindrical jet surface with a surface
charge density κ0. Since the jet is infinite, we simplify
the problem by passing to the inertial coordinate system
moving together with the jet at the same velocity U0.
Then, the flow velocity field U(r, t) in the jet is com-
pletely defined by capillary (for example, thermal)
oscillations of the jet surface and is of the same order of
smallness as the oscillation amplitude. We will study
instability conditions for the capillary oscillations of
the jet surface.

Calculations will be performed in the cylindrical
coordinate system r, φ, z with the unit vector nz aligned
with the symmetry axis of the jet. The equation of the
jet surface disturbed by capillary wave motion can be
written in the form

The mathematical formulation of the problem of
capillary oscillations in the jet includes the equations of
fluid dynamics and electrostatics (under the assumption
that the flow velocity is much lower than the relativistic
one)

with the boundedness conditions

the kinematic hydrodynamic boundary condition at the
free surface of the jet

r R ξ z φ t, ,( ), ξ  ! R.+=

dU
rt

-------
1
ρ
--- ∇ P– ν∆U,+=

∇ U 0, ∆Φ 0= =

r 0: U ∞,<

r ∞: ∇Φ 0;

r R ξ : ∂ξ
∂t
------– U ∇ r R ξ z φ t, ,( )+( )–[ ]⋅+ + 0;= =
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and the dynamic boundary conditions for the tangential
components,

and for the normal component

of the velocity field. We also assume that the jet surface
is equipotential:

Here Ur, Uφ, Uz are the components of the velocity field
in the cylindrical coordinate system; P(r, t) is the
hydrodynamic pressure; P0 is the atmospheric pressure;
Pκ is the electric field pressure; Pσ is the pressure of sur-
face tension forces; Φ is the electrostatic potential; and
|ξ|/R is Laplacian.

A solution to the problem will be sought as the
expansion in the small parameter |ξ|/R. In the zeroth
approximation, we will obtain a stationary cylindrical
liquid column and also the well-known expressions for
bubble pressure under a free cylindrical liquid surface
and for the pressure of an electric field on the surface of
a uniformly charged infinite cylinder of fixed radius.

(3) In the linear approximation in |ξ|/R (with the
same notation of physical quantities), the problem
stated in dimensionless variables such that R = 1, ρ = 1,
and σ = 1 takes the form

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

r R ξ : 
∂Uφ

∂r
---------- 1

r
---

∂Ur

∂φ
--------- 1

r
---Uφ–+ + 0,= =

∂Uz

∂r
---------

∂Ur

∂z
---------+ 0,=

r R ξ : –P r t,( ) P0– 2ν
∂Ur

∂r
--------- Pκ– P0+ ++ 0,= =

Φ Φ*.=

r 1 ξ φ z t, ,( ), ξ  ! 1,+=

∂U
∂t
------- –∇ p ν∆U,+=

∇ U 0,=

∆ϕ 0,=

r 0: U ∞,<
r ∞: ∇ϕ 0,

r 1: ∂ξ
∂t
------– Ur+ 0,= =

∂Uφ

∂r
----------

∂Ur

∂φ
--------- Uφ–+ 0,=

∂Uz

∂r
---------

∂Ur

∂z
---------+ 0,=

– p 2ν
∂Ur

∂r
--------- pκ– pσ+ + 0,=

ϕ 4πκ0ξ– 0.=
In Eqs. (1)–(11), ϕ, p, pκ, and pσ are the capillary-
oscillation-induced corrections (of first order of small-
ness in |ξ|) to the electric potential, hydrodynamic pres-
sure, electric force pressure, and surface tension force
pressure, respectively.

Expanding the standard analytical expressions for
bubble pressure, Pσ = divn (where n is the unit normal
to surface (1)), and for electric field pressure, Pκ =

2π  (see the Appendix), in the small parameter ξ, one
easily obtains the following relationships for the first-
order parameters pκ and pσ entering into (10): 

(12)

(13)

(4) We solve the set of Eqs. (2) and (3) by the
method of operator scalarization (for details, see [16]),
representing the velocity field U(r, t) as the sum of three
orthogonal vector fields with the help of differential

vector operators :

(14)

The operators  satisfy the orthogonality condi-
tions

(15)

and the conditions of commutativity with the Laplacian
operator

(16)

In expressions (14) and (15), ψi(r, t) are unknown

scalar functions and  are operators Hermitean con-

jugate to the operators .

Since the equilibrium shape of the jet has axial sym-

metry, the operators  can be taken in the form

The velocity field U(r, t) in the cylindrical coordi-
nate system has the following components expressed
through the scalar functions ψi(r, t):

(17)

κ0
2

pσ ξ ∂2ξ
∂φ2
-------- ∂2ξ

∂z2
--------+ + 

  ,–=

pκ 4πκ0
2ξ– κ0

∂ϕ
∂r
------.–=

N̂i

U r t,( ) N̂iψi r t,( ) i 1 2 3, ,=( ).
i 1=

3

∑=

N̂i

N̂ j
+
Ni 0 at i j; i j 1 2 3, ,=,≠( )=

∆N̂i N̂i∆.=

N̂ j
+

N̂ j

N̂i

N̂1 —, N̂2 — ez, N̂3× — — ez×( ).×= = =

Ur

∂ψ1

∂r
---------

1
r
---

∂ψ2

∂φ
---------

∂2ψ3

∂z∂r
-----------+ + ,=

Uφ
1
r
---

∂ψ1

∂φ
---------

∂ψ2

∂r
---------–

1
r
---

∂2ψ3

∂z∂φ
------------,+=
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Substituting expansion (14) into the set of Eqs. (2)
and (3) and using the properties of operators (15) and
(16) yields the set of scalar equations

(18)

(19)

Using (12), (13), (17), and (19), we transform
boundary conditions (7)–(10) into those for the
unknown functions ψi and ξ:

(20)

The functions ξ, ϕ, and ψi describe small deviations
from the equilibrium state; therefore, in order to follow
the evolution of these deviations with time, we assume
that they vary with time exponentially:

where s is the complex frequency.

With this in mind, we will seek solutions to
Eqs. (18) and (4) that satisfy boundedness conditions
(5) and (6) in the cylindrical coordinate system in the

Uz

∂ψ1

∂z
---------

1
r
--- ∂

∂r
----- r

∂ψ3

∂r
--------- 

  1

r2
----

∂2ψ3

∂φ2
-----------+ .–=

∆ψ1 0, ∆ψi
1
ν
---

∂ψi

∂t
--------– 0 i 2 3,=( ),= =

p
∂ψ1

∂t
---------– .=

r 1: 
∂ξ
∂t
------

∂ψ1

∂t
---------

1
r
---

∂ψ2

∂φ
---------

∂2ψ3

∂z∂r
-----------+ +– 0,= =

2
∂

∂φ
------

∂ψ1

∂r
--------- ψ1–

 
 
  ∂2ψ2

∂r2
-----------

∂ψ2

∂r
---------–

∂2ψ2

∂φ2
-----------–

 
 
 

–

+ 2
∂2

∂z∂φ
------------

∂ψ3

∂r
--------- ψ3–

 
 
 

0,=

∂
∂r
-----

∂ψ1

∂z
---------

1
r
--- ∂

∂r
----- r

∂ψ3

∂r
--------- 

  1

r2
----

∂2ψ3

∂φ2
-----------+–

 
 
 

+
∂
∂z
-----

∂ψ1

∂r
---------

1
r
---

∂ψ2

∂φ
---------

∂2ψ3

∂z∂r
-----------+ +

 
 
 

0,=

∂ψ1

∂t
--------- 2ν ∂

∂r
-----

∂ψ1

∂r
---------

1
r
---

∂ψ2

∂φ
---------

∂2ψ3

∂z∂r
-----------+ +

 
 
 

+

+ 4πκ0
2ξ κ 0

∂ϕ
∂r
------ ξ ∂2ξ

∂φ2
-------- ∂2ξ

∂z2
--------+ + 

 –+ 0.=

ξ ϕ ψ i, , st( ),exp∼
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form of expansions in waves traveling along the z axis:

(21)

(22)

The function ξ(z, φ, t) is represented in a similar
way:

(23)

In (21)–(23), k is the wave number, l2 ≡ k2 + s/ν,
m are azimuthal numbers (integers characterizing the
deviation of the solutions from axial symmetry), Im(x)
and Km(x) are the modified Bessel functions of the first
and second kind, and Ci and D are the m- and k-depen-
dent expansion coefficients (i = 1–4).

From equipotentiality condition (11) for the jet sur-
face, solutions (22) and (23), and the orthonormality
properties of the functions exp(imφ) and exp(ikz]);

(24)

where  is the Kronecker symbol and δ(k1 – k2) is
the Dirac function, one easily finds a relation between
the coefficients D and C4:

(25)

Substituting (21)–(23) into boundary conditions
(20) subject to (25) and relationships (24), we obtain a
set of equations for the unknown coefficients D and Ci

(i = 1–3):

(26)

ψ1 C1Im kr( ) imφ( ) ikz( ) st( ) k,dexpexpexp
m 0=

∞

∑
0

∞

∫=

ψi CiIm lr( ) imφ( ) ikz( ) st( )expexpexp
m 0=

∞

∑ kd

0

∞

∫=

i 2 3,=( ),

ϕ  = C4Km kr( ) imφ( ) ikz( ) st( ) k.dexpexpexp
m 0=

∞

∑
0

∞

∫

ξ z φ t, ,( ) = D imφ( ) ikz( ) st( )expexpexp
m 0=

∞

∑ k.d

0

∞

∫

i m1 m2–( )φ[ ]exp φd

0

2π

∫ δm1 m2, ,=

i k1 k2–( )z[ ]exp zd

∞–

∞

∫ δ k1 k2–( ),=

δm1 m2,

C4

4πκ0D
Km k( )
-----------------.=

Ds C1kIm' k( )– C2imIm l( )– C3iklIm' l( )– 0,=

C12im kIm' k( ) Im k( )–( ) C2 lIm' l( ) m2Im l( )– l2Im'' l( )–( )+

+ C32mk Im l( ) lIm' l( )–( ) 0,=

C12ik2Im' k( ) C2mkIm l( )– C3 l3Im''' l( ) l2Im'' l( )+(–

+ l k2 m2– 1–( )Im' l( ) 2m2Im l( ) )+ 0,=
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Primes in (26) denote the derivatives of the mth-
order Bessel functions with respect to their arguments.
These derivatives can be expressed through mth- and
(m + 1)th-order Bessel functions with the recurrence
relationships

Recall that the set of homogeneous linear equations
(26) has a nontrivial solution only if its determinant is
equal to zero; that is, det[aij] = 0, where the elements aij

are given by 

(27)

(5) Expanding the fourth-order determinant with
elements (27), we obtain a dispersion relation for the

D 4πκ0
2 1

kKm' k( )
Km k( )

------------------+ 
  k2 m2 1–+ +

 
 
 

+ C1 sIm k( ) 2νk2Im
'' k( )+( ) C22νim lIm' l( ) Im l( )–( )+

+ C32νikl2Im'' l( ) 0.=

Im' x( ) Im 1+ x( ) m
x
---- Im x( )+ Im 1– x( ) m

x
---- Im x( ),–= =

Im'' x( ) –
1
x
--- Im 1+ x( ) 1 m m 1–( )

x2
----------------------+ 

  Im x( ),+=

Im
''' x( ) 1 m2 2+

x2
---------------+ 

  Im 1+ x( )=

+
m 1–

x
------------- 1 m m 2–( )

x2
----------------------+ 

  Im x( ),

Km' x( ) m
x
----Km x( ) Km 1+ x( ).–=

a11 s, a21 a31 0,= = =

a41 k2 m2 1– 4πκ0
2 1 m k

Km 1+ k( )
Km k( )

---------------------–+
 
 
 

,+ +=

a12 kIm 1+ k( ) mIm k( )+( ),–=

a22 2im kIm 1+ k( ) m 1–( )Im k( )+( ),=

a32 2ik kIm 1+ k( ) mIm k( )+( ),=

a42 = s 2ν k2 m m 1–( )+( )+[ ] Im k( ) 2νkIm 1+ k( ),–

a13 = imIm l( ), a23–  = 2lIm 1+ l( ) l2 2m m 1–( )+( )Im l( ),–

a33 = mkIm l( ), a43–  = 2νim kIm 1+ l( ) m 1–( )Im l( )+( ),

a14 ik lIm 1+ l( ) mIm l( )+( ),–=

a24 2mk lIm 1+ l( ) m 1–( )Im l( )+( ),–=

a34 l2 k2+( ) lIm 1+ l( ) mIm l( )+( ),–=

a44 2νik l2 m m 1–( )+[ ] Im l( ) lIm 1+ l( )–( ).=
frequencies s of the nonaxisymmetric oscillations of
the jet surface as functions of the wave number k:

(28)

In general, Eq. (28) can be analyzed by only numer-
ical techniques.

A dispersion relation for the axisymmetric oscilla-
tions of a charged jet with simplifications discussed in
[4–10] is easy to obtain from (28) with m = 0:

At w = 0, this expression coincides with the disper-
sion relation for an uncharged jet of a viscous liquid
[17].

For a jet of a low-viscosity liquid, when condition
l @ k is fulfilled, Eq. (28) simplifies to

(29)

At a low viscosity, the term linear in s in (29) can
also be omitted [17]:

(30)

s2 m l2 l2 k2+( ) 2m m 1–( )l2+[ ]{

+ Fm l( )l l2 k2+( ) l2 4m–( ) 2l2m2+[ ] 2l2 l2 k2+( )Fm
2 l( )}–

+ 2sν ml2 l2 k2–( ) k2 m m 1–( )–( )–{

+ Fm l( )l l2k2 l2 k2+( ) l2m m 1–( ) l2 2m m 1+( )–( )+[

+ l2k2m 3m 1+( ) 4k2m k2 m m2 1–( )–( )– ]

– 2l2 k2 l2 k2+( ) m m2 1–( ) l2 k2–( )+[ ] Fm
2 l( )

– Fm k( )k 2l2 l2k2 m2 m2 1–( )+( ) l2m l2 k2 4m 5–( )+( )+(

+ Fm l( )l l4 5l2k2– 4m m2 1–( ) l2 k2–( )+[ ]

+ 2l2 m2 1–( ) l2 k2–( )Fm
2 l( ) ) } f m w k, ,( )=

× m l2m l2 k2–( ) Fm l( )l l2 l2 k2–( ) 2m l2 2k2–( )–[ ]+({

– 2l2 l2 k2–( )Fm
2 l( ) ) Fm k( )k m l2 l2 k2–( ) 2ml2–[ ](+

+ l l2 k2–( ) l
2

4m–( )Fm l( ) 2l2 l2 k2–( )Fm
2 l( ) ) } ,–

f m w k, ,( ) 1 m2– k2– w 1 m
kKm 1+ k( )

Km k( )
------------------------–+ 

 – ,≡

w 4πκ0
2, Fm x( )

Im 1+ x( )
Im x( )

-------------------.≡ ≡

s2 2νk2s 1 F0 k( ) 2kl

l2 k2+( )F0 l( )
-------------------------------- l2 k2–

k l2 k2+( )
----------------------+

 
 
 

–+

=  k
l2 k2–

l2 k2+
---------------F0 k( ) f 0 w k, ,( ).

s2 2sν k2 m m 1–( ) kFm k( )–+( )+

=  f m w k, ,( ) m kFm k( )+( ).

s2 f m w k, ,( ) m kFm k( )+( ).=
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At f > 0, relationship (30) defines the instability

increment for a cylindrical wave s = (m + kFm(k))1/2.
Equating the first derivative of the increment with
respect to the wave number to zero, one finds the wave
number of a capillary wave with a maximum incre-
ment; then, substituting it into (30) yields the increment
itself. Figure 1 shows the results of such calculations
(performed with the Matematika program for analytical
calculations) presented in the form of the functions s =
s(w) and k = k(w) for the first five values of the azi-
muthal number m.

From Fig. 1a, it is seen that the increments of the
axisymmetric mode (m = 0) and nonaxisymmetric
modes (m = 1–4), noticeably differing at small values of
w, approach each other when the surface charge density
κ0 is sufficiently high (at large values of w). According
to Fig. 1b, in such a situation, the wave numbers of non-
axisymmetric waves exceed markedly that of the axi-
symmetric wave. This means that, at the same value of
the electric potential of the jet, instability conditions are
established simultaneously for the axisymmetric mode
and several nonaxisymmetric modes of surface oscilla-
tions. Thus, the jet disintegrates into drops of different
sizes and becomes unstable against twisting about its
axis (whipping in terms of [2]), which was also
observed in experiments [3, 11, 13].

In the general case, when it is impossible to neglect
the term linear in s in (29), the positive root of Eq. (29)
corresponding to the instability increment takes the
form

(31)

It easy to see that the critical conditions for jet insta-
bility development in the approximation used do not
depend on the viscosity. Indeed, the critical conditions
for instability development in an inviscid liquid jet are
defined, according to (30), by the condition f > 0; oth-
erwise, s becomes imaginary, which corresponds to the
periodic variation of the wave amplitudes with time.
From (31), it follows that positive solutions to Eq. (29),
which define instability increments, also appear at f > 0.
The effect of viscosity, in this case, causes the incre-
ments to decrease and the wave numbers corresponding
to the most unstable waves to decline. However, this
effect depends on the range of wave numbers and on m.

In the ranges of dimensionless wave numbers k = 4–

6 and dimensionless increments  = 5–10 (which are
of interest for the development of unstable waves at
large values of the surface charge; see Figs. 1a, 1b), the
effect of viscosity (at ν ! 1) on the instability will be
weak, showing up as a decrease in the increments and
wave numbers of the most unstable waves by roughly
20%. This is illustrated in Fig. 2, where the calculated
results for ν = 0.1 are presented as the functions s = s(w)
and k =k(w) for the first five values of the azimuthal

f

s = νG m k,( )– ν2G2 m k,( ) f m w k, ,( ) m kFm k( )+( )+( )1/2
,+

G m k,( ) k2 m m 1–( ) kFm k( )–+( ).=

f
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Fig. 1. (a) Dimensionless increment and (b) dimensionless
wave number (b) of the most unstable wave as functions of
the dimensionless parameter w characterizing the surface
charge. The curves are plotted in the absence of viscosity.
The numbers by the curves are the values of the azimuthal
parameter m.
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Fig. 2. The same as in Fig. 1 for ν = 0.1.
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number m. The data in Fig. 2 evidence that making
allowance for viscosity, even if low, favors the instabil-
ity development of nonaxisymmetric waves.

To study the effect of viscosity on the instability of
jets at ν ≈ 1, we will analyze the asymptotics of disper-
sion relation (28) when l ≈ k or k2 @ s/ν. In this approx-
imation, expanding l and Fm(x) in s/ν and retaining
terms linear in s/ν, we obtain

s2 –6F0
2k2 2H m k,( )k3 k2 m m 4–( )+[ ]+{

+ m 3k2 2m m 1–( )+[ ] F0 4k3 8H m k,( )k4–[+

0.8

0.4

0

s
(a)

0

1

4 (b)
k

2

0 4 8 12 w

0

1

Fig. 3. The same as in Fig. 1 for ν = 3.

0

–1

f

0

1

2
w 0

0.5

1.0

k

Fig. 4. Factor f(m, w, k) as a function of the parameter w and
dimensionless wave number k with m = 0.
(32)

The results of numerical calculation (by Eq. (32)) of
the increment and wave number of the most unstable
mode vs. parameter w for m = 0 and m = 1 with ν = 3
are presented in Fig. 3. When the viscosity is high, the
increment of the nonsymmetric wave with m = 1
exceeds considerably that of the axisymmetric wave;
however, the absolute values of the increments in both
cases are lower than those for low-viscosity jets.

It is interesting that, at m = 0 and low wave numbers
(k ≤ 0.7), the increment lowers slightly with w increas-
ing from zero to w ≈ 1.6. This effect is associated with
the nonmonotonicity of the function f = f(k, w) in
Eqs. (29)–(31) for 0 < w ≤ 1.6 (Fig. 4).

(6) It is appropriate to apply the results obtained to
considering the dropwise disintegration of a jet of a
conducting liquid kept at a constant electric potential. It
should be noted that, under natural conditions, jets
forming when the charged liquid surface is unstable
[11, 13] take a conical shape. Such jets disintegrate
both by the separation of droplets from their thin end,
experiencing whipping, and by the breakup of their
continuous part away from the end [2, 13]. Such a dis-
integration causes a wide daughter droplet size distribu-
tion and a variety of conditions for electrical liquid dis-
persion [13–15].

Our investigation showed that a conical jet kept at a
constant electrostatic potential is characterized by dif-
ferent values of the surface charge density in various
cross sections: the density is inversely proportional to
the jet radius, increasing toward the thin end. This
means that, in the same jet, various waves with different
values of the azimuthal parameter m may be unstable,
depending on the z coordinate. For example, the disin-
tegration of the thin end into drops is influenced by
nonaxisymmetric waves, whereas in a cross section
with a large radius, where the surface charge density is
low, the disintegration will occur because of the insta-
bility of the axisymmetric mode. The effect of viscosity
will also be radius dependent: the dimensionless vis-
cosity ν = ν0(ρ/σR)1/2 will be higher at the thin end and
lower at the wide one.

+ km 3m 8–( )] } 2ksν 2F0
3k2 m2 1–( )–{+

+ F0 k4 4H m k,( )k5– 4k2m m 1–( ) 3m2 m 1–( )2–+[ ]

– 3F0
2k k2 2m m2 1–( )+[ ] 2k m2 m 1–( )[+

+ H m k,( )k k4 2k2m m 1–( ) m2 m 1–( ) 3 m+( )+ +( ) ]}

+ f m w k, ,( )k F0
2k2 2F0 k–( ) 2F0km k 3F0–( )–[

– m2 2H m k,( )k2 k 3F0–+( )] 8F0ν
2k3m2 m 1–( )+  = 0,

H m k,( ) 1 Fm
2 k( )–

2m 1+
k

----------------Fm k( ).–≡
TECHNICAL PHYSICS      Vol. 48      No. 5      2003



ON THE STABILITY OF A NONAXISYMMETRIC CHARGED JET 533
CONCLUSIONS

In the spontaneous capillary disintegration of
charged jets (kept at a constant electrostatic potential),
the droplet size distribution is greatly affected by the
instability of nonaxisymmetric waves. The instability
increments of nonaxisymmetric waves in low-density
jets become comparable to the instability increment of
the axisymmetric wave when the surface charge density
is high, whereas in high-viscosity jets, they conside-
rably exceed the latter.

APPENDIX

Derivation of an Expression for the Electric Field 
Pressure on the Jet Surface

Let us calculate the electric field pressure on the
charged surface of a cylindrical jet of a perfectly con-
ducting inviscid incompressible liquid. We assume that
the electric current in the jet is absent, the electric field
strength inside the conductor is equal to zero and has
only the normal component at the jet surface, and the jet
charge due to electrification is uniformly distributed
over the jet surface with a density κ0. It is also taken
into account that, in the approximation of perfectly
conducting liquid, the capillary-oscillation-induced
charge redistribution over the jet surface occurs at an
infinitely high rate, instantly following surface vibra-
tions and providing surface equipotentiality at any
instant of time. Under these conditions, the time varia-
tion of the electric field potential Φ of the jet is entirely
defined by the time variations of the jet shape, and the
dependence of the potential Φ on the spatial variables
can be found from the Laplace equation (since hydro-
dynamic velocities are much less than the velocity of
light).

The electric field pressure Pκ on the surface of a
charged jet is given by the well-known expression

where the potential Φ of the electric field outside the jet
is a solution to the boundary problem

Let us represent the potential Φ in the form of the
expansion

where Φ0 is the electric field potential near the unper-
turbed jet surface and ϕ is the correction of first order
of smallness in |ξ|, where ξ(z, φ, t) is a surface perturba-
tion.

Pκ
∇Φ( )2

8π
----------------,=

∆Φ 0,=

r 1 ξ : Φ+ Φ*,= =

r ∞: ∇Φ 0.

Φ Φ0 ϕ ,+=
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
Splitting the problem in orders of smallness, we
obtain 

in the zeroth approximation in |ξ| and

in the first-order approximation.
We also take into account that the electric field at the

jet surface has only the normal component:

where n and t are the unit vectors that are normal and
tangential to the jet surface.

In the zeroth order of smallness, the electric field
near the unperturbed cylindrical surface of the jet has
the form

In the cylindrical coordinate system, an expression
for the potential ϕ that satisfies the boundedness condi-
tion at r  ∞ and an expression for the distortion
ξ(z, φ, t) of the cylindrical jet shape will be written in
the form of expansion in waves traveling along the z
axis (along the axis of jet symmetry)

where m are integers, k is the wave number, Km(kr) is
the modified Bessel function of the second kind, and C4
and D are the expansion coefficients depending on k
and m.

At the jet surface, 

The relation between the coefficients D and C4 is
straightforward:

When deriving this relationship, we took into
account the linear independence of the functions

∆Φ0 0,=

r 1: Φ0 Φ*,= =

r ∞: ∇Φ 0 0

∆ϕ 0,=

r 1: ϕ ∂Φ0

∂r
----------ξ ,–= =

r ∞: ∇ϕ 0

r 1: E0 n⋅ 4πκ0, E0 t⋅ 0,= = =

E0 ∇Φ 0–
4πκ0r

r2
---------------.= =

ϕ C4Km kr( ) imϕ( ) ikz( ) st( )expexpexp
m 0=

∞

∑ r,d

0

∞

∫=

ξ z φ t, ,( ) D imφ( ) ikz( ) st( )expexpexp
m 0=

∞

∑ k,d

0

∞

∫=

r 1: ϕ 4πκ0ξ .= =

C4

4πκ0

Km k( )
---------------D.=
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exp(imφ) at various m and of the functions exp(ikz) at
various wave numbers k.

A perturbation ξ(z, φ, t) of the cylindrical jet surface
caused by wave motion changes the pressure Pκ. Since
the perturbation ξ is small, the pressure Pκ can be
expanded in ξ in the form

Using the expression for the electric field strength
near the unperturbed surface of a cylindrical jet, for the
pressure component linear in |ξ|, pκ(ξ), we obtain the
expression

Replacing the functions ξ and ϕ by their integral
representations, we arrive at the final expression for the
electric field pressure related to the perturbation of the
jet surface shape:
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≈ 1
8π
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Abstract—Experiments with model fluids imitating human blood serum are performed. A model explaining
the spatial distribution of biological fluid components in the course of wedge-shaped dehydration, a process that
has found application in medical diagnosis, is suggested. Calculations within this model are carried out. © 2003
MAIK “Nauka/Interperiodica”.
WEDGE-SHAPED DEHYDRATION METHOD

The process termed wedge-shaped dehydration of
biological fluids [1] has found wide applications in
diagnostic tests used in medical practice [1]. The tests
are conducted as follows [1]. Using a pipette, a 10- to
20-µl drop of a biological fluid (blood serum, saliva, tis-
sue or spinal fluid, etc.) is placed onto a chemically
cleaned (decreased) glass slide lying on a strictly hori-
zontal surface. The diameter of such a drop on the slide
is 5–7 mm, its average thickness is about 1 mm, and the
angle of contact is 25°–30° [2]. The sample is allowed
to dry at 20–25°C and a relative air humidity of 65–
70% for 18–24 h. The dried drop is referred to as a
facies and has a complex structure. Its exterior appear-
ance is used for diagnosing many diseases.

Unfortunately, today, there is no model adequately
describing the processes occurring in the course of
wedge-shaped dehydration. Moreover physical, chemi-
cal, and biological processes that accompany the for-
mation of the structures observed in the facies have not
yet been understood. For example, the authors of this
method attribute the occurrence of these structures to
“the conflict between osmotic and oncotic forces.”

EXPERIMENTS WITH MODEL FLUIDS

Because of the complex composition of blood
serum and the diversity of physicochemical processes
occurring in the body, it is difficult to separate out fac-
tors responsible for the formation of the aforemen-
tioned structures. In this situation, experiments with
simple model fluids appear to be promising. This
approach makes it possible to minimize the number of
factors affecting the formation of the structures and to
controllably modify the parameters of test fluids.

Blood serum is a complex colloidal system consist-
ing of water (90%) and dissolved substances (10%).
The latter include proteins (70%), inorganic salts
(approximately 10%), and low-molecular organic com-
1063-7842/03/4805- $24.00 © 20535
pounds (≈20%). For the purposes of clinical diagnosis
by laboratory methods, specialists have developed the
concept of the norm (normal content) with respect to
blood protein; i.e., they have determined the range of
the total protein concentration for healthy people. This
range is 65–85 g/l [3]. The total blood protein concen-
tration exceeding this range (hyperproteinemia) or fall-
ing below its lower limit (hypoproteinemia) are evi-
dence for the development of a pathological process.

In this study, model fluids were used to reveal basic
effects taking place upon wedge-shaped dehydration.
Its purpose was to find out whether specific structures
form in the model fluids that are similar to blood
plasma in composition and, if so, to estimate their sim-
ilarity to the structures observed in natural fluids and
find a correlation between the composition of the model
fluids and the forming structures.

The model fluids were as follows: (1) bovine serum
albumin dissolved in water and (2) bovine serum albu-
min dissolved in a 0.9% sodium chloride solution
(below referred to as water and saline solutions, respec-
tively). In both cases, the concentration of albumin
ranged from 80 to 120 g/l.

The wedge-shaped dehydration of either concentra-
tion was performed twice, and the results were highly
reproducible. In the case of the water solutions, the
radial cracking of the sample prevailed at a protein con-
centration of 80 g/l; at higher concentrations, no regular
cracking pattern was observed. Any specific structures
in the samples were absent (Fig. 1).

In the samples of the saline solutions, radial crack-
ing was observed at all protein concentrations. At
120 g/l, the cracks radial the center of the facies. The
facies consisted of three distinct zones: the circumfer-
ential zone of protein structures, the transition zone of
protein–salt structures, and the central zone of crystal-
line (saline) structures (Fig. 1). The crystalline struc-
tures significantly varied with the protein concentration
in the solution. At 80 g/l, they had the shape of den-
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Facies of albumin solutions with concentrations ranging from 80 g/l (top row) to 120 g/l (bottom row) in 10 g/l steps. Left
column, water solutions; middle column, saline solutions; and right column, fragments of the facies shown in the middle column.
The photographs were made in a Leica MZ12.5 stereomicroscope.
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drites with long straight branches of first and second
orders. Third-order branches were underdeveloped.
The density of the dendrites was relatively low. At
90 g/l, the dendrites were short and thick with curved
branches. At 100 g/l, dendritic structure was changed to
chains of fine crystallites against the background of
secondary cracking of the protein matrix. At 110 g/l, the
dendrites appeared again. Some of them were dense
and had central symmetry (“flowers”). The structure
formed at 120 g/l consisted of fine and dense crystal-
lites (Fig. 1).

CONCLUSIONS

(1) The model fluid consisting of the albumin solu-
tion in water does not show the properties of blood
serum upon drying (wedge-shaped dehydration), as the
structures observed in the dried drops of this fluid bear
no resemblance to the structures appearing in normal
blood serum.

(2) The model fluid consisting of albumin dissolved
in the sodium chloride solution reproduces the struc-
tures found in the dried (dehydrated) drops of normal
blood serum.

(3) The structures formed in the model fluids vary
with protein concentration, indicating that the method
of wedge-shaped dehydration may be used in the diag-
nosis of hypo- and hyperproteinemia [4].

(4) The facies of the model fluids are virtually indis-
tinguishable from the facies of normal blood serum
(Fig. 1). Fine features regarded as indicators of patho-
logical processes were not detected in them.

QUALITATIVE MODEL

The redistribution of salt and protein is one of the
main processes occurring in a drying drop: protein
accumulates at the periphery of the facies, while salt
accumulates in its central part. Eventually, the protein
component of the facies cracks and salt crystallizes
(Fig. 1). In the norm, cracks produce a regular radial
pattern. Let us consider these processes on a qualitative
basis.

The rate of water evaporation from the drop surface
is nonuniform and depends on its curvature. As the vol-
ume of water decreases, the concentrations of protein
and salt increase. The rate of change of the protein con-
centration is higher at sites where the relative thinning
of the drop is greater, i.e., at the periphery (Fig. 2). The
resulting concentration gradient gives rise to a centrip-
etal flow.

As the diffusion coefficient of salt is two orders of
magnitude higher than that of protein, the relative con-
centration of salt increases at the center of the drop.
This effect, in turn, may cause the displacement of pro-
tein toward the periphery (cross diffusion). A decrease
in the volume due to evaporation changes the shape of
the drop surface and, hence, the rate of change of the
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
dissolved component concentrations. When a major
part of water is lost by evaporation, the concentrations
of salt and protein increase to the extent that their diffu-
sion coefficients markedly change. This is especially
the case with protein, which undergoes the sol–gel tran-
sition; as a result, its diffusion coefficient approaches
zero. The diffusion coefficient of salt also decreases as
the protein concentration in the solution grows [5]. On
the other hand, this coefficient increases proportionally
to the salt concentration [6]. This dependence is well
approximated by the linear function (Fig. 3):

When the salt concentration saturates, the solution
starts crystallizing. The presence of salt extends the
gelation period compared with that in a pure protein

D11 1.094C1 1.17.+=

Fig. 2. Drop of biological fluid on the plane surface:
(a) cross section and (b) top view. Upon drying, protein
accumulates mainly at the periphery of the drop (open zone)
and salt accumulates at the center (closed zone). The transi-
tion zone is hatched.
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Fig. 3. Diffusion coefficient of sodium chloride as a func-
tion of its concentration in water solution (approximation
by the least-squares method).
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solution, and protein begins to precipitate at high salt
concentrations (salting).

Thus, wedge-shaped dehydration is accompanied
by various and, more importantly, interrelated pro-
cesses. wedge-shaped dehydration is a nonequilibrium
and essentially nonlinear process.

MATHEMATICAL MODEL

In the three-component system in question, only two
flows are independent. Let these be the salt and protein
flows. In a solution, they are described by the Gibbs–
Duhem equation

where J is the diffusion flow, Dik is the tensor diffusion
coefficient (Dik = Dki), Ck is the concentration of a kth
component in a solution, and n is the number of com-
ponents.

Since

we have

To the first approximation, effects related to the vari-
ation of the concentration along the vertical axis may be
ignored, because the thickness of the drop is smaller
than its diameter. In this case, the system is centrosym-
metric and it is appropriate to use the polar coordinates:

(1)

Equation (1) describes the variation of the concen-
tration due to diffusion. In addition, it is necessary to
take into account the variation caused by water evapo-
ration:

(2)

The form of the function f(r, t) depends on many fac-
tors, such as the curvature of the drop surface at a given
point, the surface tension coefficient, etc. For simplicity
we assume that this function depends only on the dis-
tance to the center of the drop and on time and ignore
the concentration dependence of the diffusion coeffi-
cients.
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Such assumptions mean that we consider the initial
stages of water evaporation, when the concentrations of
the components in the solution are far from saturation.
At the stage of gelation, the diffusion coefficient of pro-
tein approaches zero and the evaporation pattern
changes. Still later, salt crystallizes and the system
loses axial symmetry.

With the above approximations, we obtain

(3)

It is of interest to consider relations between the
phenomenological coefficients Dii and Dij (i, j = 1, 2).
According to [7], these relations, with regard to the
Onsager principle of reciprocity (D12 = D21), are as fol-
lows:

At D11 = 1.5 × 10–5 cm2/s for sodium chloride and
D22 = 7.7 × 10–7 cm2/s for albumin [8], |D12| < 3.4 ×
10−6 cm2/s (with a plus or minus sign).

COMPUTING EXPERIMENT

Let us consider a simple model in order to estimate
the possibility of the distribution of components in a
solution drop becoming nonuniform in the course of
wedge-shaped dehydration. It is assumed that Di, j = 0
for i ≠ j (i.e., the components have no effect on each
other) and the drop is wedge-shaped in the cross section
(Fig. 4). The maximum thickness of the drop is h0, the
angle of contact is α(  = k), and the radius of the
drop is R.

Assuming that the water evaporates at a constant
rate v  only from the upper surface of the wedge, we
obtain the following equation for this surface:

The lateral surfaces are considered to be imperme-
able:

According to the law of conservation of matter,

∂C1

∂t
--------- D11
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C r t dt+,( )y r t dt+,( ) C r t,( )y r t,( ).=
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Therefore, if diffusion is ignored, it follows from
this law that

When diffusion is taken into account, we obtain

(4)

Hereafter, the arguments of the functions are omit-
ted. To simplify further analysis, it is expedient to make
Eq. (4) dimensionless by changing the variables:

Thus,

(5)

with 

Naturally, this equation holds only if

because the concentration dependence of the diffusion
coefficient can be ignored only under this condition.
Then, (ξ – τ)–1 ≈ (ξ + τ)/ξ2 and the equation can be
recast as

The dimensionless coefficient d acquires a clear
physical meaning when written in the form

Here, τshift is the characteristic time of shift of the
wedge upper surface, and τdiff is the relaxation time (the
time it takes for the solute concentration to change by a
factor of e due to diffusion). Thus, the coefficient d
shows what process, diffusion or water evaporation, is
responsible for the variation of the solute concentra-
tion.

According to our estimates, d for protein and salt is
on the order of 0.01 and 1, respectively. Therefore, dif-
fusion has an insignificant effect on the protein concen-
tration variation.

In the absence of diffusion, the solute concentration
is governed only by evaporation. As follows from
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Eq. (5),

Figures 5 and 6 show the results of calculation for
salt and protein with and without taking into account
the effect of diffusion. The accuracy of calculation was
estimated by checking the fulfillment of the law of con-
servation of matter

These results confirm that diffusion is not a key fac-
tor in the behavior of the protein concentration in the
drying drop. At the same time, it markedly smooths out
the effect of salt concentration at its periphery.

c 1 ξ
ξ τ–
-----------ln+ 1

τ
ξ
--.+≈=

C r t,( )y r t,( )r rd

0

R

∫ const.=

R0

h0

y

α

r

Fig. 4. Shape of the drop surface adopted in the model.
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Fig. 5. Spatial distribution of the salt concentration at the
initial stages of wedge-shaped dehydration (τ = 0.1568) cal-
culated with (solid line) and without (broken line) consider-
ing the effect of diffusion.

Fig. 6. The same as in Fig. 5 for protein.
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CONCLUSIONS

The model proposed makes it possible to explain the
solute spatial redistribution during the wedge-shaped
dehydration of biological fluids (Fig. 7). In the absence
of diffusion, the local relative concentrations of salt and
protein in the drop would remain constant, with their
absolute concentrations increasing toward the periph-
ery. The effects of cross diffusion and of the concentra-
tion dependence of the diffusion coefficients remained
unaccounted for because of the lack of experimental
data. However, these effects can be estimated qualita-
tively. As the concentration of protein increases, its dif-
fusion coefficient decreases. Therefore, the equalizing
effect of diffusion on the concentration becomes
weaker and the distribution of the protein concentration
becomes still closer to that estimated by taking into
account water evaporation alone. In the case of salt, the
diffusion coefficient increases with concentration,
which leads to a faster equalization of the salt concen-
tration within the drop. Thus, the effect estimated by
the calculation is further enhanced when the concentra-

1.04

1.02

1.00

0.98
1.0 1.2 1.4 1.6 1.8

Fig. 7. Variation of the salt and protein concentrations in the
solution compared with their initial distribution (τ =
0.1568). 
tion dependence of the diffusion coefficients is taken
into consideration.

To check the results of initiation quantitatively,
experimental data on the spatial distribution of the salt
and protein concentrations in the course of wedge-
shaped dehydration are needed.
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of Rarefied Gas Slip over a Solid Cylindrical Surface
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Abstract—The slip velocity of a rarefied gas nonuniform in temperature and mass velocity is calculated for gas
slip over the surface of a right circular cylinder. The calculation uses the two-moment boundary condition in an
approximation linear in Knudsen number. Corrections to the slip velocity that are due to the interface curvature,
volume temperature stresses, and nonuniform temperature distribution in the Knudsen layer are studied as func-
tions of the accommodation coefficients in the first two moments of the distribution function. The Bhatnagar–
Gross–Krook model of the Boltzmann kinetic equation is employed as the basic equation for the gas state. ©
2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

A variety of works have recently been published that
concern the construction of exact analytical solutions to
inhomogeneous model kinetic equations in boundary-
value problems of the kinetic theory of rarefied gases.
In these problems, a gas that is nonuniform in tempera-
ture and mass velocity flows around the surface of a
sphere or a right circular cylinder [1–8]. Here, the dif-
fuse reflection model is used as the boundary condition
for the surfaces flowed around by the gas. In a number
of cases, however, such a boundary condition is inade-
quate [9]. The Maxwell mirror–diffuse [10] and Cercig-
nani boundary conditions [11] seem to be more realistic.

The use of the Maxwell mirror–diffuse boundary
condition in gas slip problems makes it possible to take
into account the effect of the accommodation coeffi-
cient of the tangential momentum on the slip velocity of
the gas flowing around the surface. At the same time,
such an approach causes stubborn mathematical diffi-
culties when applied to the construction of solutions to
boundary-value problems in the kinetic theory of rar-
efied gases by using rigorous analytical techniques.
Today, exact analytical solutions to boundary-value
problems of slip that are obtained with the Maxwell
mirror–diffuse boundary condition are lacking.

The Cercignani boundary condition is an alternative
to the mirror–diffuse condition and allows reflected
molecules to partially conserve information about the
incident molecule distribution.

In linearized problems of gas slip around a solid pla-
nar surface, the distribution function is written in the
form f = f0[1 + ϕ(r, C)] and the boundary condition at
the surface that is imposed on the function ϕ(r, C) has
the form

ϕ 0 C,( ) 2d1Cy, Cx 0.>=
1063-7842/03/4805- $24.00 © 0541
Here, the x axis is directed into the gas and the y axis is
aligned with the vector of the gas mass velocity. The
value of d1 is found from the condition that the accom-
modation coefficient q1 of the tangential momentum
(0 < q1 < 1) can be determined by the expression

(1)

The case d1 = 0 corresponds to the diffuse reflection
of the molecules by the surface. The disadvantage of
the Cercignani condition is that it sometimes fails when
describing the interaction of gas molecules with the
surface. For example, when it is applied to the problem
of thermal slip (creep), the thermal slip velocity is
totally independent of the accommodation coefficient
of the tangential momentum.

With this in mind, Latyshev and Yushkanov [12]
made an attempt to generalize the Cercignani boundary
condition. Their generalization takes into account not
only the accommodation coefficient q1 of the tangential
momentum (which is, in essence, the accommodation
coefficient of the first moment of the distribution func-
tion) but also the accommodation coefficient of the sec-
ond moment q2 of the distribution function (0 < q2 < 1).
In this case, the boundary condition at the surface
flowed around by the gas is written as

(2)

where the parameter d2 is found from the condition

(3)

In this work, two-moment boundary condition (2) is
used to calculate the slip velocity of a gas that is non-
uniform in temperature and mass velocity that slips

1 q1–( ) f r C,( )CxCy Cd

Cx 0<
∫  = f r C,( )CxCy C.d

Cx 0>
∫–

ϕ 0 C,( ) 2d1Cy 2d2CxCy, Cx 0,>+=

1 q2–( ) f r C,( )Cx
2Cy Cd

Cx 0<
∫  = f r C,( )Cx

2Cy C.d

Cx 0>
∫
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around a solid cylindrical surface of radius R. This
boundary condition takes into account the effect of the
surface curvature on the thermal slip coefficient, as well
as the presence of volume temperature stresses and
nonuniform temperature distribution in the Knudsen
layer. In the approximation linear in Knudsen number,
the desired slip velocity is written in the form [13]

(4)

Here, Cm, KTS, and βB are the coefficients of isothermal,
thermal, and Barnett slips, respectively; βR is the coef-
ficient responsible for the temperature distribution non-
uniformity in the Knudsen layer;  is the factor taking
into account the effect of the surface curvature on the

thermal slip coefficient;  = 1.14995 is the value of
the thermal slip coefficient for the totally diffuse reflec-
tion of gas molecules from the surface; ν is the kine-
matic viscosity of the gas; λ is the mean free path of gas
molecules; Uτ|S is the mass velocity component tangent
to the surface; and Tρϕ is the nonzero component of the
volume temperature stress tensor. For the gas flowing
around the surface in the longitudinal direction, the
nonzero mass velocity component is Uz|S; for the flow
in the transverse direction, Uϕ|S [2, 5, 8].

The relationship between Cm, KTS, and accommoda-
tion coefficients q1 and q2 was found in [12]:

(5)

(6)

Here,  = 1.14665 is the value of the thermal slip
coefficient for the totally diffuse reflection of gas mol-
ecules by the surface and Qn denotes Loyalka integrals
[14]:
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Thus, the problem posed is reduced to finding the q1

and q2 dependences of , βB, and βR.

THERMAL SLIP

When a rarefied gas flows around the surface of a
circular right cylinder in the transverse direction, to find
the q1 and q2 dependences of  means to solve the
equation [5, 8, 12]

(7)

where

Here, λ(z) is the Cercignani dispersion function, Px–1 is
the distribution in the sense of the principal value upon
integrating x–1, δ(x) is the Dirac function, and Θ+(µ) = 0
(or 1) if µ ≤ 0 (or >0). The boundary conditions are as
follows:

(8)

(9)

To find  and , we come to the set of integral
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equations for the moments

(10)

(11)

from which it follows [12] that

(12)

(13)

In view of results obtained in [3], the parameter

 is given by the condition

(14)

Unlike [3], in our case,

(15)

where

(16)

Substituting (15) and (16) into (14) and taking into
account the results obtained in [3] yields

(17)

Here, Q3 = –1.8207 and Q2 = –1.2663. Passing in (17)
to dimensional quantities and writing the expression for

 in the form adopted in the kinetic theory of rar-
efied gases, we find that
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Thus,

(18)

Here,  = 1.7684 is the factor that takes into account
the dependence of the thermal slip coefficient on the
surface curvature when a rarefied gas flows around the
surface in the transverse direction and gas molecules
diffusely reflect from the surface.

Bearing in mind that a correction for curvature in the
case of longitudinal flow around a cylindrical surface is
three times as small as in the case of transverse flow
[2, 5, 8], we arrive at

(19)

Here,  = /3 = 0.589495 is the factor that takes
into account the dependence of the thermal slip coeffi-
cient on the surface curvature when a rarefied gas flows
around the surface in the longitudinal direction and gas
molecules diffusely reflect from the surface.

BARNETT SLIP

The calculation of the Barnett slip velocity as a
function of the accommodation coefficients of the dis-
tribution function moments is reduced to the solution of
the equation [15]

with the boundary conditions

(20)

(21)

As in the previous case, the parameters  and 
are found from the set of equations (1) and (11) for the
moments, from which we find, in view of (2) and (21),
that
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Here, the parameter  is determined from condi-
tion (14), where, according to [15],
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Substituting (24) into (14), carrying out necessary
rearrangements, and taking into account (22) and (23),
we find

(25)

Passing in (25) to dimensional quantities and writ-

ing the expression for  in the form adopted in the
kinetic theory of rarefied gases, we obtain

Thus,

(26)

Here, βB0 = 5.80 is the Barnett slip coefficient for the
diffuse reflection of gas molecules from the surface
[15].

SECOND-ORDER THERMAL SLIP

For second-order thermal slip, the problem is
reduced to the solution of the equation [7]

with the boundary conditions

Here, Z1(x, µ) and Z2(x, ν) are the functions that were
constructed by Latyshev [16] in solving the problem of
temperature jump, γ2 = 2/3, and kR = ∂2lnT/∂ρ∂ϕ. The

parameters  and  are given by (12) and (13),

respectively, and  is found from condition (14),
where, in our case, [7]
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Here, εT = 1.3013 and εn = –0.5633 [7]. Substituting
(27) and (28) into (14) and taking into account the
results obtained in [7], we find

(29)

The value of the first bracketed factor in (29),
0.5323kR, coincides with that of the similar expression
[7] obtained upon considering the diffuse reflection of
gas molecules from the surface.

Passing in (29) to dimensional quantities and writ-

ing the expression for  in the form adopted in the
kinetic theory of rarefied gases, we find that

Thus,

(30)

Here, βR0 = 2.3524 is the coefficient of second-order
thermal slip for the diffuse reflection of gas molecules
from the surface [7].

CONCLUSIONS

Thus, the slip velocity of a rarefied gas flowing
around the surface of a circular right cylinder is calcu-
lated in the approximation linear in Knudsen number.
The calculation includes the accommodation coeffi-
cients for the first two moments of the distribution func-
tion. The expression for the slip velocity takes into con-
sideration the dependence of the thermal slip coeffi-
cient on the surface curvature, the presence of volume
temperature stresses, and the temperature nonunifor-
mity of the Knudsen layer.

Figures 1–3 show that the coefficients Cm, KTS, βB,
βR, and  depend substantially on the coefficient q2.

At the same time, KTS, βR, and  do not depend on q1.
For q1 = q2 = 1, these coefficients take values (see (5),
(6), (18), (19), (26), and (30)) obtained for the diffuse
reflection of gas molecules from the surface.

As follows from measured data [9] for the accom-
modation coefficient q1 of the tangential momentum,
for surfaces that underwent no special treatment (tech-
nical surfaces such as aerosol surfaces), q1 lies within
the interval 0.95–1.00. At the same time, experimental
data for q2 are apparently lacking. However, from the
measured values of the thermophoresis velocity of
coarse aerosol particles [17], one can assume that the
values of KTS fall into the interval 1.1–1.2. This interval
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Fig. 1. Isothermal slip coefficient Cm (q1 = (1) 0.5 and
(2) 1.0) and (3) thermal slip coefficient KTS vs. accommo-
dation coefficient q2.

Fig. 2. Barnett slip coefficient βB vs. accommodation coef-
ficient q2 for q1 = (1) 0.5 and (2) 1.0.

Fig. 3. (1) Coefficient βR of second-order thermal slip and

the coefficients  and  taking into account the KTS vs.

surface curvature dependence for (2) transverse and (3) lon-
gitudinal gas flow around the cylindrical surface as func-
tions of q2.
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results from (6) if q2 = 0.87–1.00. From (5), (18), and
(19), it follows that, with q1 = 1, the isothermal slip
coefficient and the curvature corrections to the thermal
slip coefficient for the transverse and longitudinal flows
around a cylindrical surface are 1.14665–1.329377,
1.768485–2.0176403, and 0.589495–0.6725468, vary-
ing, respectively within 15.94, 14.09, and 14.09%. For
q1 = 1, the Barnett slip coefficient (see (26)) and the
coefficient of second-order thermal slip (see (30)) lie in
the intervals 5.80000–6.617141 and 2.376842–
2.711707, respectively, both varying within 14.09%.

The results obtained can be used for calculating the
thermophoresis velocity of aerosol particles taking
account of the accommodation coefficients [18].
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Abstract—It is shown that, along with gravity waves, surface and internal waves caused by van der Waals
forces may exist in a liquid with a horizontal free surface. A dispersion relation is found by using the stepwise
approximation for the coefficients of a wave equation derived for these waves. The surface waves are similar to
surface gravity waves in dispersion and amplitude distribution but differ in frequency by several orders of mag-
nitude. Another sequence of roots in the spectrum corresponds to internal van der Waals waves that have an
upper frequency bound and the dispersion law typical of a multimode waveguide. © 2003 MAIK “Nauka/Inter-
periodica”.
(1) A liquid in mechanical and thermal equilibrium
with a gas is nonuniformly strained near the gas–liquid
interface due to van der Waals forces [1]. Its density
decreases toward the interface. The density variation is
caused by a pressure gradient arising in the surface liq-
uid layer to compensate for the volume van der Waals
force. The uniformity breaks at macroscopic distances
that are many times larger than the molecule size.
Asymptotics both for local quantities and for one- and
two-particle distribution functions at large distances
from the free surface were first calculated by Rusanov
and Kuni (see, e.g., [2, 3]). Strictly speaking, the
method used in [2, 3] is valid in the case of gases. How-
ever, the calculations [5–7] based on the macroscopic
theory of van der Waals forces [4], which is applicable
to media in any aggregative state, substantiated the
asymptotics in [2, 3]. Refined expansion coefficients
whose numerical values may be noticeably different
from those in [2, 3] are expressed in [5–7] through the
permittivities of media. In a surface layer extending to
a depth of 3–4 nm, relative deviations of the liquid den-
sity from the volumetric value ρ∞ may reach 10–15%
[6, 7]. The density profile is found with the one-particle
distribution function.

The study of waves caused by van der Waals forces
in liquids is of certain interest. For these waves, the
inclusion of the temperature effect and the specific ther-
mal motion of particles requires a kinetic approach. In
this paper, a hydrodynamic approximation is employed.
The validity of the hydrodynamic description of the liq-
uid flow in layers of thickness mentioned above has
been established in many papers devoted to the numer-
ical simulations of molecular dynamics. For instance,
the motion of 1536 argon atoms along 10 × 10-nm walls
spaced by 4 nm from each other (this corresponds to the
density of liquid argon) in the uniform field of external
forces was studied in [8].
1063-7842/03/4805- $24.00 © 20546
Interaction of each pair of particles (including the
interaction with molecules in the lattice sites of a solid)
is described by the modified 6–12 potential. The motion
of a single atom is Brownian with a drift along the force
direction and temporal localization in the vicinity of
walls. Although the density distribution has not been
studied, molecular ordering near the walls has been
reported. The averaging procedure results in a hydrody-
namic velocity that differs from the velocity due to ther-
mal fluctuations. The resulting velocity profile is in
agreement with the solution to the hydrodynamic equa-
tions for the Poiseuille flow. Simultaneously, the mac-
roscopic no-slip boundary condition is confirmed based
on microscopic physical considerations. The viscosity
calculated by fitting the Stokes parabola to the flow
velocity distribution is expressed via the parameters of
the intermolecular potential and has an observable
value. In [8], the flow of a liquid with a thickness sub-
stantially smaller than 4 nm is considered within the
problem of a moving boundary between three phases.
In addition to the papers concerned with numerical sim-
ulations, there are those devoted to generalized hydro-
dynamics [9]. The latter are aimed at extending the
equations of conventional macroscopic hydrodynamics
to the microscale. In generalized hydrodynamics, gen-
eralized transport coefficients, which differ from the
conventional one on small scales, are introduced.
According to [9], conventional hydrodynamics is appli-
cable to scales larger than three molecular diameters
and to time intervals exceeding the kinetic time scale by
one order of magnitude (~10–13 s).

The study of van der Waals surface waves using the
model of a layer of homogeneous liquid on solid sub-
strate was conducted in [10]. It turned out that, in the
case of thin (l < 400 nm) layers, the waves strongly
decay. If a layer of a low-viscous liquid is sufficiently
thick, the existence and, hence, observation of weakly
damped van der Waals waves seem to be possible
003 MAIK “Nauka/Interperiodica”
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because of a decrease in the bottom friction, which
makes a major contribution to the damping. The
approach used in [10] turns out to be inapplicable in
this case. It is appropriate to introduce the volume van
der Waals force into the hydrodynamic equations and
reject the uniform density approximation.

The aim of this paper is to determine the spectrum
of the eigenfrequencies of free waves caused by van der
Waals forces in a free-surface liquid.

(2) Let the horizontal plane z = 0 be the equilibrium
interface between a liquid and environment (occupying
the domain z > 0). The interface displacement in a wave
is denoted by z = ζ(x, y, t). The problem is considered
in the incompressible nonviscous liquid approximation.
In this case, the initial hydrodynamic equations have
the form [11]

(1)

Here, v = v(u, w); u and w are the horizontal and verti-
cal velocity components, respectively; q is the acceler-
ation due to gravity; and f is the specific van der Waals
force. In equilibrium, the force f0(z) and the force of
gravity are directed downward. The additive approxi-
mation [1] can be used to determine this force. Let the
intermolecular potential in the liquid have the form U =
–βr–6, where r is the intermolecular spacing and β is the
interaction constant. Determining the energy of interac-
tion between a probing molecule and other particles
[12, 13] yields for the specific force

(2)

where A = π2n2β is the Hamaker constant and n = n∞ is
the concentration of molecules of the liquid.

Expression (2) is singular at the interface and repre-
sents the principal term of the force asymptotics away
from the interface. It is conventionally assumed that
such expansions are applicable starting from distances
of greater than three or four monolayers from the inter-
face. According to (1), in the equilibrium state, the
pressure and density are related by

(3)

The condition f0(b) = g defines the range of macro-
scopic van der Waals forces, b = (A/2πρ∞g)1/4. For typ-
ical values A = 6.28 × 10–20 J and ρ∞ = 103 kg/m3, we
have b = 10–6 m. The mean and especially maximum
values of the force f0 are many orders of magnitude
higher than g. The equilibrium density gradient is given
by the thermodynamic relationship

(4)

where χ is the isothermal compressibility.

ρdv
dt
------ ∇ρ– ρg ρf ,

dρ
dt
------+ + 0, divv 0.= = =

f 0 z( ) A/ 2πρ∞z4( ),=

d p0

dz
--------- g f 0+( )ρ0 z( ).–=

dρ0

dz
-------- χρ0

d p0
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--------- χ g f 0+( )ρ0

2,–= =
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
The coordinate dependence of the density is basi-
cally determined by the nonuniformity of the force
f0(z). According to (2) and (4), within the range of van
der Waals forces, the principle term of the density
asymptotics has the form ρ∞ – ρ0 ~ z–3. This is in agree-
ment with [5–7] and lends further support to the valid-
ity of the hydrodynamic approach and expression (2)
for the force. The quantity h = ε/χρ∞fs is taken as the
thickness of a layer where the density gradient varies
most considerably. Here, ε = (ρ∞ – ρ0(0))/ρ∞ is the max-
imum relative density difference and fs is a certain char-
acteristic force. This thickness may be as large as sev-
eral hundreds of nanometers.

(3) Hereafter, we will consider harmonic waves. In
this case, the free surface profile is sinusoidal. The
instantaneous value of the specific force f for such a
profile is difficult to calculate in the additive approxi-
mation. An approximate expression for the force per-
turbation f ' = f – f0 due to the interface distortion can be
found from physical considerations. The force f ' has to
be a harmonic function of x, y, and t and vanish for
ζ  0 and also away from the free surface. The
dynamic force f is directed normally to the interface
only in vertical sections of symmetry A and B that pass
through crests (ζ > 0) and troughs (ζ < 0) of the waves.
For simplicity’s sake, the amplitude of the free interface
displacement ζm = max|ζ| is assumed to be smaller than
the layer thickness h. A liquid particle with a coordinate
z in the equilibrium state has a coordinate ζ – z in the
dynamic case. In view of the condition ζm ! λ (λ is the
wavelength), which is adopted in the linear theory, the
forces f(z) in sections A and B are assumed to differ
weakly from f0(ζ – z). Then, the vertical component 
at z < 0 is given by (dfA/dz)ζ and (dfB/dz)ζ in sections A
and B, respectively. Here, fA and fB are power functions
similar to (2). In section A, fA > f0(ζ – z) because of a
weak additional downward attraction of molecules
compared to the attraction at the interface; in section B,
the situation is reverse fB < f0(ζ – z). In intermediate sec-
tions,  gradually changes its behavior according to
the relationship

where fq is a slowly varying function of the coordinate
q reckoned along the wave propagation direction. This
function can be replaced by the q-averaged function
fn(z). Then,  is written as

(5)

In a similar way, one can find that the horizontal
component of the force perturbation is proportional to
the gradient of ζ:

(6)

f z'

f z'

f z'
d f q

dz
-------- 

  ζ ,=

f z'

f z'
d f n

dz
--------ζ .=

f ' f τ z( )∇ζ ,–=
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where fτ is a power function similar to (2).

Linearizing (1) in the vicinity of the stationary state
given by (3) and (4) in view of (5) and (6) yields the set
of equations for perturbations

(7)

In (7), the primes by the perturbations of pressure p
and density ρ are omitted. The procedure of sequential
elimination of unknowns [11] reduces (7) to the equa-
tion in w

(8)

Here, ∆ and ∆2 denote three-dimensional and horizontal
Laplacians, respectively, and the Väisälä frequency
N2(z) and the M(z) function are given by

where the primed functions are the derivatives with
respect to z.

If M = 0, Eq. (8) coincides in form with the well-
known equation for gravity waves [11]. In view of (4),
the Väisälä frequency is nonnegative. This is evidence
of the stability of the equilibrium density distribution
and indicates that the nonmonotonic time evolution of
the perturbations is a possibility. In (8), the gravity
force appears in explicit form in N2 and implicitly
through density gradient (4). The thickness l of the liq-
uid is assumed to be relatively thin; so one can neglect
the density variation across the thickness due to pres-
sure variation in the volume, where f = 0. In this case, g
in N2 can be omitted. The surface pressure is taken into
account on the free surface to preserve generality:

(9)

Here, pa is the constant atmospheric pressure and γ is
the surface tension coefficient. Linearizing (9) involves
the Lagrange finite-increment formula

where fs = f0(zs) and ρs = ρ0(zs). It is taken into account
that fs @ g.

The coordinate zs increases with increasing ampli-
tude ζm. The standard formula for the increment of a
function with a rapidly varying derivative (see (3)) is
inapplicable at the point z = 0, where it is undefined. It
is acceptable to substitute ρ∞ for both ρs and ρ0(0) in
subsequent formulas. The linearization of (9) yields the
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following condition on the unperturbed surface:

Having eliminated p by using (7) and ζ by using the
kinematic condition, one arrives at the dynamic bound-
ary condition for w

(10)

In the case of perturbations with λ < 2l, one can put
w(–∞) = 0 as the second boundary condition for (8).
Then, the gravity force is no longer involved in the
statement of the problem. Hence, it has no influence on
van der Waals waves. On the contrary, by eliminating
the van der Waals force (f = 0) from (7) and (8) and
restoring the eliminated gravity force in (10), one
comes to the problem of gravity capillary waves in deep
water.

(4) We use the Boussinesq approximation, implying
that the density gradient is retained only in the expres-
sion for the Väisälä frequency. The solution is looked
for in the form of a harmonic wave,

In view of (10), the velocity amplitude is determined
from the eigenvalue problem

(11)

There is another essential difficulty to be overcome
in rigorously (including numerically) determining the
characteristics of the free-wave spectrum with set (11).
All the coefficients of the function in (11) are not
defined in the entire domain z ≤ 0, where the solution
exists. The asymptotics of ρ0, f0, and other functions, as
well as their maxima and minima, are unknown at
z  0. The initial qualitative solution can be found
under the assumption that these functions are single-
valued continuous functions taking finite values for z ≤
0. In view of (4), the function N2(z) in (11) is propor-
tional to (dρ0/dz)2, and its absolute value is small out-
side the layer, i.e., at |z| < h. This function increases as
N2 ~ z–8 when approaching the free surface. The func-
tion M is similar to N2. The specific behavior of the
coefficients of Eq. (11) makes it possible to study the
basic properties of the waves in the framework of the
simplified model of a surface waveguide, in which the
coefficients are approximated by stepwise (piecewise
constant) expressions. In the vicinity of the free surface
(inside the layer) –h < z < 0 (domain 1), the functions

N2(z) and M(z) are replaced by the constants  =

p z 0= ρ∞ f sζ γ∆2ζ .–=

f s f τ+( )∆2w
γ
ρ0
-----∆2∆2w– ∂3w

∂t2∂z
-------------–

z 0=

0.=

w---Φ z( ) i kxx kyy+( ) iωt–[ ] , kexp kx
2 ky

2+( )1/2
.=

Φ'' k2 N2 z( )
ω2

-------------- 1– 
  Φ+

k2

ω2
------M z( )Φ 0( ),=

Φ ∞–( ) 0, ω2Φ' 0( ) kΩ2Φ 0( ),= =

Ω2 f s f τ+( )k γk3/ρ0+[ ] z 0= .=

Nm
2
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χρ∞  and M. Outside the layer, i.e., for z < –h (do-
main 2), one may put N2 = M = 0. This frequently used
expedient allows one to derive the dispersion relation in
explicit form and determine the type of motion. The
values of both constants and the characteristic force fs

remain undetermined. Inside the liquid, the solution to
(11) has the form

(12)

If λ < 2l, the bottom friction is of no significance.
This confirms the validity of using the nonviscous liq-
uid model. If the frequency satisfies the inequality ω <
Nm, the solution to (11) in domain 1 is

(13)

Since f0(z) is continuous, solutions (12) and (13), as
well as their first derivatives, have to be joined together
at the boundary between domains 1 and 2 [1]. This
results in a set of homogeneous equations for the coef-
ficients. This set has a solution if the following disper-
sion relation is satisfied:

(14)

(5) First, we will find the roots of (14) at M = 0; then,
the dependence of the solution on M will be studied by
the method of successive approximations. Equation (14)
at M = 0 is reduced to

(15)

If ω > Nm, α becomes a purely imaginary number
i|α| and dispersion relation (15) turns into

(16)

Since fs @ g, purely capillary perturbations corre-
spond to values of λ that are much smaller than those in
the case of gravity capillary waves. For instance, for
water, assuming that A = 1.65 × 10–19 J, fs = f0(a), a =
5σ, σ = 2.64 × 10−10 m, and γ = 0.072 J/m2, we find that
λ < 10–8 m (kh @ 1). The study of these perturbations
seems to be of little interest; therefore,

(17)

will be used below as the characteristic frequency.

f s
2

Φ2 a2 kz( ).exp=

Φ1 a1 αkzsin b1 αkzcos b1
α2ω2

M
------------ 1– 

 
1–

,+ +=

α
Nm

2

ω2 1–
---------------

1/2

.=

Ω2α α khsin α α khcos+( )

=  M α2ω2 M–( ) αkhcos α α khsin–( ).+

αkhtan
α ω2 Ω2–( )
α2ω2 Ω2+
---------------------------.=

αtan kh
α ω2 Ω2–( )
Ω2 α 2ω2–
------------------------------.=

Ω2 κ f sk (κ 1 f τ 0( )/ f s)+= =
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5.1. In terms of the variable τ = αkh, Eq. (15) in view
of (17) can be written as

(18)

At a fixed frequency ω, the coefficients of the frac-
tional linear function F are constant. Over the entire
range of variation of the argument, F is a monotonically
decreasing function varying from F(0) = α–1 to F(∞) =
–α. Hence, Eq. (18) has a countable set of roots τ0, τ1,
τ2, …, that corresponds to the sequence of points where
F(τ) crosses the branches of . The eigenvalues of
problem (11),

completely define the eigenwaves wn.
At higher frequencies, ω > Nm, dispersion relation

(16) is transformed in a similar way (τ = |α|kh):

(19)

The function F1 has an infinite discontinuity at
κτ∞ = |α|3(ω/Nm)2ε and equals zero at κτm =
|α|(ω/Nm)2ε. It is positive and monotonically decreases
from ∞ to 0 only for τ∞ < τ < τm. Consequently, disper-
sion relation (19) has a unique solution for any fre-
quency ω > Nm.

The least root τ0 of (18) is small. The estimation of
the first term in the numerator of F(τ) yields
α(ω/Nm)2ε < εω/Nm < ε. As a result, τ0 = α(ω/Nm)2(ε/κ)
is the solution to (18) in the first approximation in ε.
Substituting τ0 = αk0h yields the dispersion relation

(20)

which is similar to that in the case of surface gravity
waves [11]. As the van der Waals acceleration, instead
of g, appears in (20), these waves are naturally referred
to as surface van der Waals waves. These waves can be
considered as high-frequency ones in comparison with
gravity waves. The solution to Eq. (19) shows that its
roots, while not small, also describe surface van der
Waals waves. Curve 1 in Fig. 1 is drawn through the
eigenvalues k0(ω) calculated from the exact roots τ0(ω)
and τ(ω) of Eqs. (18) and (19) for (ε/κ) = 0 and 1,
respectively. The equation of curve 1,

expresses relationship (20) in dimensionless form.
Curves 2–4 in Fig. 1 show the solutions of complete
dispersion relation (14) as functions of M. The curves

corresponding to M = (1 – 2)  merge with curve 1 in
Fig. 1. Parallel lines 1–4 extend dependence (20) to the
case of finite M. The increase in the relative difference

τtan F τ( ), F
α2 ω/Nm( )2ε ακτ–

α3 ω/Nm( )2ε κτ+
----------------------------------------------.= =

τtan

kn ω( ) τn ω( )/hα ω( ); n 0 1 2 …,, , ,= =

τtan F1 τ( ), F1

α 2 ω/Nm( )2ε α κτ–

κτ α 3 ω/Nm( )2ε–
----------------------------------------------------.= =

ω2 κ f sk,=

k0h ε/κ( ) ω/Nm( )2=

Nm
2
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in the density ε also causes the parallel upward shift of
the dispersion curve. This shift is small at small ε.
Eigenfunctions (12) and (13), which correspond to sur-
face waves, peak on the free surface and, decreasing
monotonically with depth, turn to zero only at the bot-
tom.

Perturbations obeying dispersion law (20) were
observed in thin layers (l . 20 nm) in superfluid helium
[14], which has a very low surface tension coefficient.
These waves were called third sound. The data pre-
sented here indicate that surface van der Waals waves
can also be excited in ordinary classical fluids. In deep
low-viscous liquids, the wave attenuation must be low.

5.2. Along with surface waves, the set of eigenwaves
at ω < Nm involves covers corresponding to the subse-
quent roots τ1, τ2, … of dispersion relation (18). These
are internal van der Waals waves. The first four eigen-
values kn(ω) are shown in Fig. 2 (curves 1–4). The dis-
persion law found is typical of a multimode waveguide,
which validates the term “surface waveguide.” The
wavelength diminishes with growing harmonic num-
ber. At the same wavelengths, van der Waals frequen-
cies may exceed those of gravity waves by several
orders of magnitude. For internal waves in the ocean,
vertical displacements of particles are maximal at a
depth where the density gradient is the highest. In our
case, the regions of maximal gradient are located in a
shallow layer of thickness h at the surface. According to

0.1

k0h

0.01

0.001

0.0001

0.00001

1E–7
0.001 0.01 0.1 1

ω/Nm

1

4

1E–6

Fig. 1. Dispersion relations for surface van der Waals waves

at M/  = (1) 0, (2) 5, (3) 8, and (4) 10.Nm
2

(12), internal waves, like surface waves, propagate in a
layer of depth ~λ. The necessary conditions for the
existence of van der Waals waves are identical to those
for internal gravity waves in the dead zone, where
freshwater overlies salt (heavier) water [11]. In both
cases, hydrostatic equilibrium is stable, convection
does not appear, and the gradients of density and force
are parallel to each other. Therefore, the branch corre-
sponding to internal van der Waals waves in the excita-
tion spectrum is not unexpected.

5.3. It is of interest to consider surface van der Waals
waves in the limiting case when the amplitude ζm of the
free surface displacement surface is much higher than
h. Under the assumptions made above for the depth l of
the liquid, its density can be considered constant out-
side the surface layer. For waves with vertical particle
displacements ~l, the consideration can be restricted to
the flow in the bulk of the liquid outside the surface
layer with a nonuniform density. In terms of the hydro-
dynamic approach applied to this layer, one can take
into account the action of the van der Waals force by
appropriately modifying boundary condition (9) to fit

0.1 1
ω/Nm

0.01

1

2

3

kh

2

1

3

4

Fig. 2. Dispersion law for internal van der Waals waves
(ε/κ = 0.1 and M = 0).
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the equation in the volume. In determining the incre-
ment p0(ζ) – p0(0), one should bear in mind that the val-
ues of p0(ζ) and p0(rζ) differ from each other insignifi-
cantly when r and b/ζm are of the same order of magni-
tude. Substituting p0(rζ) with constant r for p0(ζ)
virtually means that the boundary of the layer with a
nonuniform density has the same shape as the free sur-
face. By virtue of the condition ζm ! λ, such an approx-
imation seems to be admissible. Then, after the linear-
ization of (9), the dynamic boundary condition on the
unperturbed free surface can be written in the form

(21)

where flim is the limiting value of fs when ζm * b.
The boundary condition for w on the free surface,

which results from (21) after eliminating p and ζ, dif-
fers from (10) only by the substitution of flim for fs. The
equations of motion in the bulk result from (7) if f =
dρ0/dz = 0. From these equations it follows that density
perturbations are absent and the influence of buoyancy
forces can be neglected. Set (7) is reduced to the equa-
tion for w that is well known in the theory of capillary
gravity waves [11]. If the no-percolation condition at
z = –l is met, this equation has the solution 

Substituting this expression into the dynamic
boundary condition yields the dispersion relation

(22)

At k 2 ! κρ∞ flim/γ, expression (22) takes the form

(23)

Thus, the dispersion law for surface van der Waals
waves in deep liquid, which implies proportionality
between ω2 and k, is valid for any perturbation ampli-
tudes admissible in the linear theory. The proportional-
ity coefficient depends on the value of the volume van
der Waals force.

(6) Physical analysis of the field of van der Waals
forces in a liquid gives an expression for the specific

p z 0= f limρ∞ζ γ∆2ζ ,–=

w k z l+( ) i kxx kyy ωt–+( )[ ] .expsinh=

ω2 κ f limk γk3/ρ0 0( )+( ) kl.tanh=

ω2 κ f limk.=
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mass force that is in agreement with the density profile
resulting from the rigorous theory. Therefore, it can be
included in the hydrodynamic equations, specifically,
in the equations for perturbations. The boundary condi-
tion allowing for van der Waals forces at the interface is
derived. The physical model of a surface waveguide
using a reasonable approximation of the coefficients in
the wave equation is considered. A dispersion relation
approximating the spectra of both surface and internal
waves is derived.
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Abstract—A mathematical model of a single-stage ballistic plasmatron for producing radiating gas is pro-
posed. Various operating conditions are analyzed and compared with experimental data. The general features
of radiative heat exchange in the device are outlined. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Ballistic plasmatrons are widely used in various
fields of thermal physics. High-temperature gases pro-
duced in these devices by compression liberate the
stored energy in the form of optical radiation, which
can be used to pump solid-state lasers [1, 2]. This radi-
ation can also be used in plasmochemistry and photo-
chemistry [3]. High-temperature gases are employed in
studying the effect of shock waves on various objects,
etc. To find optimal operating conditions, it is necessary
to develop a mathematical model that could describe
the dynamics of the device operation and could give
practical recommendations on the choice of the com-
pression regime.

EXPERIMENTAL SETUP

A BP-3 ballistic plasmatron (Fig. 1) consists of bar-
rel 1 and piston 2 initially fixed at the end with the help
of fixing wire 3. The pushing gas (air) is contained in
balloon 4. The irradiated object is placed in chamber 5.
This may be the rod of a solid-state laser, a specimen
for studying the effect of shock waves at high tempera-
tures, medical instruments to be sterilized, etc. The
chamber is usually separated from the barrel by break-
ing membrane 6.

After evacuation, the barrel is filled up with a work-
ing gas at a given pressure. The pushing gas is fed into
balloon 4. After pressing the start button, the pushing
gas enters the plasmatron through an electromagnetic
valve, thereby moving the piston. In a time of about
10 ms, the working gas is compressed to a pressure of
1000 atm and heated to a temperature of about 8000 K.
At such a temperature, a fraction of the energy accumu-
lated in the gas during its compression is radiated. After
the membrane is broken, the radiating gas is ejected
into the chamber.
1063-7842/03/4805- $24.00 © 20552
MATHEMATICAL MODEL 
OF A PLASMATRON

Let us derive equations that will allow us to deter-
mine the parameters of the working gas in the plasma-
tron.

First, we derive the equation of motion of the plas-
matron piston. The force exerted by the pushing gas on
the piston is F1 = p1Sσ, and the force exerted by the
working gas is F2 = p2Sσ, where p is pressure and Sσ is
the piston area. Here and below, index 1 refers to the
parameters of the pushing gas and index 2 refers to the
parameters of the working gas. The friction force Ff

acts against the piston motion.
It was shown in [4] that, under the given conditions,

the pushing and working gases can be described by the
equation of state for an ideal gas.

In the first approximation, the friction force can be
written as

where x is the running coordinate of the piston center of
mass, the factor β is determined experimentally, and t is
time.

F f β dx/dt
dx/dt
----------------– ,=

1 2

3

4 5
6

x

L0

D

A B

dc

Fig. 1. Schematic of a single-stage ballistic plasmatron:
(1) plasmatron barrel, (2) piston, (3) fixing wire, (4) balloon
with the pushing gas, (5) optical chamber, (6) membrane,
(A) evacuation, (B) working gas supply.
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Taking into account the equations of state for the
working and pushing gases, the equation of motion of
the piston,

can be rewritten in the form

(1)

where mp is the piston mass, m1 and m2 are the gas
masses, µ1 and µ2 are the molar masses, R0 is the uni-
versal gas constant, L0 is the barrel length, lp is the pis-
ton length, and the temperatures T1 and T2 are deter-
mined from the energy balance equation.

As the gas flows out of balloon 4 (Fig. 1), the mass
of the pushing gas in the barrel varies. Since the pres-
sure difference across the valve is supercritical, we can
write

(2)

where mb is the gas mass in the balloon, Vb is the bal-
loon volume, ab is the speed of sound in the balloon,
and d is the diameter of the electric valve nozzle.

The mass of the gas in the plasmatron barrel is equal
to

(3)

where m01 and m0b are the initial gas masses in the bar-
rel and balloon, respectively.

When the gas pressure in the balloon decreases
below a certain value pv, the valve is closed and a frac-
tion of the pushing gas with the mass mv remains in the
balloon. Therefore, after integrating Eq. (2), formula (3)
takes the form

(4)

where

In order to utilize the compression energy most effi-
ciently, the piston is provided with fixing wire 3
(Fig. 1). The wire attaches the piston to the barrel end
and is broken when the applied force exceeds a certain
value Fst. The fixing wire allows one to increase the
pressure of the pushing gas in the barrel before the pis-
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ton starts moving. Hence, equation of motion (1) takes
the form

where m1 is defined by formula (4).
The temperatures T1 and T2 can be determined from

the energy balance equation

(5)

in which, for simplicity, indexes 1 and 2 are omitted.
Here, U = mcvT is the internal gas energy; Wi is the
energy source power; H = cpT is the enthalpy; G is the
gas flow rate; and cp and cv are the specific heats at con-
stant pressure and constant volume, respectively. For a
single outlet, we have j = 1.

For the working gas (index 2), without allowance for
convective and diffusive losses, the total source power
is the sum of the radiative losses erad and the work done
on gas compression dA2 = –p2dV2 per unit time:

After the membrane is broken, the pressure differ-
ence across the valve is supercritical; hence, the gas
flow rate through the nozzle with the area S can be cal-
culated by the formula

(6)

where

is the speed of sound.
Equation (6) can also be used in the case of a dis-

charge without membrane 6 (Fig. 1), because the pres-
sure difference between the barrel and the chamber
quickly passes through the critical level. Then, for the
working gas, equation (5) can be written in the form
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where ρ2 is the gas density. After some algebraic
manipulations, this equation takes the form

(7)

When the working gas is compressed in a closed
volume (S = 0) in the absence of radiative losses, equa-
tion (7) describes an adiabatic process; the case in
which the gas issues into a chamber with a constant vol-
ume (V2 = const) was considered in detail in [5].

To determine T1, we can also use energy equation (5).
However, the problem can be simplified taking into
account the fact that, by the time when the fixing wire
is broken, most of the pushing gas has already flowed
into the plasmatron barrel and, then, its mass changes
only slightly. Since the radiative losses are negligibly
small, the expansion of the pushing gas can be consid-
ered adiabatic:

In this paper, as in [6, 7], the radiative loss power is
sought in the form

(8)

where σ is the Stephan–Boltzmann constant, a' is the
reduced linear dimension, D is the inner diameter of the
plasmatron, and G' and I are constants that depend on
the sort of gas used [5].

After some algebraic transformations, the set of
equations describing the gas parameters in a single-
stage ballistic plasmatron can be rewritten in a form

(9)
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where m1 is determined by formula (4), erad is described
by expression (8), and V2 = (πD2/4)(L0 – (x + lp/2)). The
initial conditions of the problem are the following: x =
x0, dx/dt = 0, T1 = T2 = T0, m1 = m01, and m2 = m02.

As the gas flows out through the nozzle, at a certain
instant, the mass of the working gas becomes zero,
m2 = 0. Then, the set of Eqs. (9) should be replaced with
other equations describing a collision of the piston with
the end of the plasmatron barrel. We do not present
these equations here, because this problem is beyond
the scope of this study.

NUMERICAL CALCULATIONS OF THE GAS 
PARAMETERS IN THE PLASMATRON

The set of Eqs. (9) was integrated by the Runge–
Kutta fourth-order method with a constant integration
step up to N = 50000. The results of calculations show
that, within the given temperature and pressure ranges,
the computed parameter values are established at N >
35000 and the integration error at N = 50000 does not
exceed 1%.

The experiments were carried out at the Institute of
Chemical Physics of the Russian Academy of Sciences
in the device with the following parameters: L0 =
1.26 m, lp = 50 mm, D = 58 mm, the diameter of the
electric valve nozzle was d = 8 mm, the piston mass was
mp = 0.357 kg, β = 4N, and the pressure at which the
valve was closed was pv = 4.125 atm. The initial condi-
tions of the problem were the following: x0 = 175 mm,
dx/dt = 0, T0 = 300 K, m01 = 5.112 × 10–4 kg, and m02
varied depending on the degree of evacuation.

Let us first consider the case in which the gas is
compressed in a finite volume (dn = 0) without using a
fixing wire. The working gas is air (γ2 = 1.4, µ2 =
0.029 kg/mol, and p2 = 1.013 × 105 Pa), and the initial
pressure of the pushing gas is 6.0 atm. The calculations
show that, in this case, the compression efficiency is
low: the fraction of the compression energy in the first
pulse is only 22% of the total energy stored in the push-
ing gas (pmax = 3.37 atm, Tmax = 423 K). This is
explained, first of all, by the finite time during which
the gas flows out of the balloon into the plasmatron
barrel.

The compression efficiency can be substantially
increased by preliminary fixing the piston position.
Thus, for a fixing force of Fst = 2500 N, the pressure in
the first pulse increases up to pmax = 11.1 atm at Tmax =
595 K.

As Fst increases further, the values of pmax and Tmax
increase monotonically (Fig. 2). Under certain condi-
tions, the maxima of the pressure and temperature are
observed in the second (rather than the first) pulse. The
minimum distance to the barrel end wall ∆ decreases
monotonically as Fst increases (Fig. 2, curve 3). If the
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
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force Fst exceeds the sum of other forces, then the fixing
wire is not broken.

The available energy of the pushing gas can be
deposited in a smaller mass of the working gas; this will
increase the maximum temperature achieved during
compression. In other words, a rarefied working gas is
more appropriate for compression. For this purpose,
provision is made for the evacuation of the device. For
evacuation down to p2 = 1.094 × 104 Pa, the calculated
time behaviors of the working gas pressure and temper-
ature are shown in Figs. 3a and 3c, respectively. The
calculated parameters in the first pulse are the follow-
ing: pmax = 354 atm and Tmax = 3021 K. The calculated
results agree well with the experimental data on the
amplitude and repetition rate of the pulses (Fig. 3b).

The parameters of the nozzle substantially affects
the compression process. The appropriate choice of the
nozzle diameter guarantees, in many respects, the high
compression efficiency. Thus, with dn = 1 mm, a large
portion of the working gas has no time to flow into the
chamber during the first pulse; hence, the compression
energy cannot be efficiently utilized. In this case, the
time dependence m2(t) is a step curve (Fig. 4), which
corroborates the assumptions [8] that the gas flows into
the chamber only when the piston approaches the posi-
tion corresponding to ∆min. For this regime, we have
pmax = 361 atm and Tmax = 3036 K. At larger nozzle
diameters, the working gas has time to flow into the
chamber during 3–4 pulses. The time dependences of
the coordinate and velocity of the piston for dn =
3.5 mm are shown in Fig. 5.

1.0

0.8

0.6

0.4

0.2

0 800 1600 2400 3200 4000
Fst, N

p/pmax, T/Tmax, ∆/∆max

2

1 3

Fig. 2. (1) Maximum pressure and (2) maximum tempera-
ture in a pulse and (3) the minimum distance of the piston
from the barrel end wall as functions of the fixing force Fst
for dn = 0 mm, pmax = 14.3 atm, Tmax = 639 K, and ∆max =
0.449 m.
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Let us choose the nozzle diameter so that the com-
pression process consists of a single pulse. We also
assume that Fst = 2500 N and the device is evacuated
down to p2 = 1.094 × 104 Pa (see table).

The ultimate aim of gas compression in the plasma-
tron is to produce radiation energy, which is liberated
when the temperature reaches fairly high values (T ≅
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Fig. 3. Waveforms of the gas pressure (a) and temperature
(c) calculated for dn = 0 and evacuation down to p2 =
1.094 × 104 Pa and (b) the experimental pressure waveform
measured under the same conditions (1 mV = 11.6 atm).

The influence of the nozzle diameter on the number of pulses
n and on the gas parameters in the first pulse

No. d, m n pmax, atm Tmax, K

1 0.001 @9 361 3036

2 0.002 >9 381 3096

3 0.003 5 424 3182

4 0.004 3 486 3320

5 0.005 2 609 3561

6 0.006 1 822 3814
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104 K). However, attaining the temperature Tmax >
4000 K in air is rather problematic, because most of the
energy is dissipated or is spent on the ionization of mol-
ecules. For this reason, noble gases (such as xenon and
argon) are usually used as working gases in plasma-
trons. Without evacuation, the maximum temperatures

3.465806

0

3.099354

2.732903

2.366451

2
0.1 0.2 0.3 0.4 0.5

104m2, kg

t, s

Fig. 4. Gas mass as a function of time for dn = 1 mm for
Fst = 2500 N and evacuation down to p2 = 1.094 × 104 Pa.
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Fig. 5. Piston coordinate (1) and piston velocity (2) as func-
tions of time for dn = 3.5 mm. The maximum velocity is
57 m/s.
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Fig. 6. Xenon temperature (1) and pressure (2) as functions
of the plasmatron nozzle diameter dn for Fst = 2500 N and
evacuation down to p2 = 9.32 × 103 Pa.
obtained in these device are still far from the tempera-
tures requires for intense radiative heat exchange (T >
6800 K for xenon).

Let us examine how the nozzle diameter affects the
maximum temperature of xenon in the first pulse in the
same device with the following initial parameters: γ2 =
1.67, µ2 =0.131 kg/mol, and the radiation constants are
G' = 1.12 × 1012 m3/kg K and I = 140 602 K [7]. The
device is evacuated down to p2 = 9.32 × 103 Pa. As dn
increases, the values of T2 and p2 in the first pulse
increase (Fig. 6) until the nozzle diameter reaches a
value corresponding to a single pulse. The temperature
increases not as rapidly as the pressure does, which is
explained by radiative losses.

As dn increases further, a larger amount of the gas
has time to flow into the chamber without being com-
pressed; as a result, the compression process becomes
inefficient. In the descending branch of the temperature
curve, we can distinguish three segments. Segment a in
Fig. 6 begins from the maximum of the curve and ends
when surface radiative losses change to volume ones
[7]. Since dn here does not affect radiative losses, this
segment of the curve has a relatively small slope. At
segment b, volume radiative losses are predominant.
These losses depend strongly on the device geometry
and the pressure; as a result, this segment is the steep-
est. Finally, segment c corresponds to gas temperatures
at which radiative heat exchange is absent. This seg-
ment has the smallest slope.

CONCLUSION

A mathematical model of a single-stage ballistic plas-
matron has been developed. The model agrees well with
the experimental data and allows one to quantitatively
describe the compression process in the plasmatron. The
model can be used to determine the optimal operating
conditions, calculate the device parameters, and find
ways of intensifying radiative heat exchange.
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Abstract—A pulsed freely localized resonant streamer microwave discharge in air and high-pressure hydrogen
in the field of a linearly polarized standing electromagnetic wave in a two-mirror open cavity is investigated.
The observed characteristic features of the discharge are treated as consequences of the sausage and wriggle
instabilities of the plasma channel with a longitudinal microwave current contracted by its magnetic self-field.
© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Pulsed freely localized spontaneous microwave gas
discharges in quasi-optical traveling microwave beams
have been studied actively [1–5]. In the focal region of
such a beam, the electric field can be strong enough to
provide breakdown at relatively high gas pressures p
(e.g., at air pressures of up to p ≈ 0.2 atm). At higher
pressures (up to 1 atm and higher), this type of dis-
charge was ignited by using a high-Q quasi-optical two-
mirror open cavity in which a linearly polarized high-
order longitudinal electromagnetic (EM) mode was
excited [6–10].

Electrodeless discharge in atmospheric-pressure air
under the above conditions was first observed in [6].
The discharge had the shape of a sole plasma channel
with a bright central core. The channel was stretched
along the electric field vector E0 of the initial micro-
wave field. The results of these studies were published
in more detail much later in [7]. It was found that the
discharge developed from a seed plasmoid and grew
along vector E0 due to the field amplification at the
poles of the plasmoid; the characteristic time of dis-
charge development was determined. It was supposed
that a significant fraction of the EM energy accumu-
lated in the cavity before breakdown was released in the
core. The existence of the core was attributed to dissi-
pation caused by the finite conductivity of the discharge
channel.

The experimental results of [7] were confirmed in
[8]. It was pointed out that the interaction between the
discharge and the microwave field exhibited resonant
features as the discharge length approached one-half of
the field wavelength, λ/2. It was supposed that, at the
final stage of the discharge development, the micro-
wave pinch effect was responsible for the formation of
a cumulative core. Further experiments on the time evo-
lution of a discharge were carried out in [9]. It is shown
that the discharge develops from a single free electron.
1063-7842/03/4805- $24.00 © 20557
Then, a small spherical plasmoid arises, which
stretches along E0 in both directions from the point of
origin due to the electrostatic interaction with the initial
field. In this stage, the microwave discharge only
slightly absorbs EM energy and, in many aspects, is
similar to a streamer in a constant electric field. How-
ever, in contrast to the latter, both the current I in the
microwave streamer and the effective cross section for
the interaction between the discharge and the initial
field increase resonantly as the streamer length
approaches λ/2. As a result, a high-temperature core
forms. In [9] (as well as in [7]), the existence of the core
was related to dissipation in plasma, taking into account
that the distribution of the current I along a resonant
microwave streamer had a maximum in its central part.
The doubts of the authors of [8, 9] on how to treat the
final stage of the discharge development were mainly
caused by the lack of experimental data because the dis-
charge was rather difficult to diagnose. These difficul-
ties are related to the large statistical scatter in the place
and time of origin of the seed electron, the small size of
the core, the significant distance not only from the near-
est construction elements but also from the recording
apparatus, and the fairly short durations of both the entire
discharge and especially its final stage. These obstacles
cause one to look for indirect verification of one or
another version of the cumulative core formation.

In [10], this type of discharge was studied not only
in air but also in hydrogen. Moreover, by that time,
freely localized streamer microwave discharges in air
and hydrogen were ignited in the field of a quasi-optical
traveling microwave beam [11]. In a traveling wave, the
initial streamer, which was stretched along E0, had a
core in the case of hydrogen and had no core in air. In
all the experiments, the core arose only when the initial
gas pressure exceeded a certain threshold value and the
corresponding amplitude of the EM field was larger
than the breakdown amplitude Ethres. Estimates show
003 MAIK “Nauka/Interperiodica”
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that, at EM field amplitudes close to Ethres, the magnetic
pressure produced on the surface of the plasma channel
by the longitudinal current I flowing through the chan-
nel begins to surpass the gas-kinetic pressure in the dis-
charge channel. These experimental results indicate
that the pinch effect plays a key role in the formation of
a cumulative core.

In [10], two cores separated along the discharge axis
were observed in the central region of a hydrogen dis-
charge. This allows one to assume that a relatively large
central region of the plasma channel, where the current
I is the highest, undergoes self-contraction, whereas the
cores arise due to sausage instability, which is charac-
teristic of conventional Z-pinches [12]. Under certain
conditions, a resonant microwave streamer may also
undergo wriggle instability. This study is aimed at the
experimental verification of these assumptions.

EXPERIMENTAL SETUP

A schematic of the experimental device is shown in
Fig. 1. Microwave cavity 4 is placed in a high-pressure
chamber. The cavity is fed by a quasi-optical micro-
wave beam entering the chamber through a window
that is transparent for microwave radiation. To control
the field in the cavity, a fraction of the microwave
energy escaping from the cavity is applied via a mea-
surement circuit to an oscilloscope.

The beam feeding the cavity is a linearly polarized
TEM wave with a central frequency (corresponding to
the maximum beam power) of f0 = 7005 MHz. The cav-
ity is fed by single pulses with the duration tpul = 350 µs.
During a pulse, the field frequency is swept linearly at
a rate of 2 kHz/µs within the range f0 ± 350 kHz.

The cavity is formed by two round coaxial spherical
mirrors with a radius of curvature of 17.5 cm and diam-
eter of 34 cm. The mirrors are made from a 0.2-cm-
thick copper sheet. The cavity mirrors are coaxial with
the microwave beam. The distance between the mirrors

1 2 3 45

6

Fig. 1. Schematic of the experimental device: (1) micro-
wave beam feeding the cavity, (2) microwave-transparent
window, (3) sealed chamber, (4) open cavity, (5) coating
absorbing microwave radiation, and (6) to an oscilloscope.
along the cavity axis is 29.6 cm. To tune to the central
frequency f0, this distance can be smoothly varied
within the range 29.6 ± 0.5 cm. The mirror facing the
microwave beam is perforated with holes and is par-
tially transparent for microwave radiation. The cavity is
excited at the simplest azimuthally symmetric mode
with a transverse Gaussian profile; along the cavity
axis, the microwave field forms a standing wave [13]. In
the central focal plane, the distance from the cavity axis
at which the field decreases e-fold is 3 cm. There are
13 variations in the field amplitude along the cavity
axis; i.e., there is the field maximum in the center of cav-
ity. For a Q factor of the cavity of 105, the maximum field
amplitude in the focal plane was Emax = 150 kV/cm.

The cavity is placed along the axis of a cylindrical
chamber with a diameter and length of about 50 cm.
The inner surface of the chamber is covered with a coat-
ing absorbing microwave radiation. On one of the
chamber ends, a 40-cm-diameter microwave-transpar-
ent quartz window is installed through which the
microwave beam exciting the cavity enters the cham-
ber. On the side surface of the chamber, against the cav-
ity focal region, there are two mutually perpendicular
8-cm-diameter quartz windows that are transparent for
optical and microwave radiation. The discharge is pho-
tographed through the window whose axis is perpen-
dicular to both the chamber axis and the field vector E0.
The chamber is designed so as to withstand a pressure
of up to pmax = 8 atm. Before filling with air or hydro-
gen, the chamber is evacuated to a pressure of 0.1 torr.

The microwave energy escaping from the cavity
over the mirror edges and leaving the chamber through
the second side window is collected by a waveguide
horn, and the rectified signal is applied to a storage
oscilloscope. This signal is used to tune the cavity and
monitor the time behavior of the field amplitude E0(t) in
the cavity focal region.

EXPERIMENT

When tuning the cavity, the chamber was filled with
air up to a pressure of pmax = 8 atm. At this pressure, the
microwave field with the amplitude Emax = 150 kV/cm
is insufficient for breakdown. For air, the breakdown
field is Ecr/p ≈ 30 kV/(cm atm) [14]; hence, for break-
down of air at a pressure of 8 atm, a field of E0 ≥ 240 kV
is required, which is substantially higher than Emax =
150 kV/cm. Indeed, no breakdown of air occurred in
the experiments at the pressure pmax. Provided that the
cavity is tuned properly, a typical resonance curve with

the full width 2∆f = 70 kHz at the level of 1/  (which
corresponds to Q = 105) is displayed on the oscillo-
scope screen.

First, a series of reference experiments in which the
chamber was filled with air at a pressure of p ≥ 1 atm
was carried out. These experiments gave important and
somewhat surprising results.

2
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Breakdown of air occurred in the focal plane of the
cavity at pressures of no higher than 3 atm, which was
less than the expected value, 5 atm. This phenomenon
(which, however, was not thoroughly studied in these
experiments) was most likely related to a small number
of free electrons in air under natural conditions [15].

In the pressure range 1 ≤ p ≤ 3 atm, breakdown may
or may not occur during a microwave pulse. In the case
of breakdown, only a part of the rising segment of the
resonance curve up to the breakdown field E0 = Ebr was
observed on the oscilloscope screen; then, the signal
sharply, in a time less than a fraction of a microsecond,
dropped to zero. At a fixed pressure, the Ebr value varied
appreciably in successive pulses, being in the range
Ecr < Ebr < Emax [15]. Hence, at a fixed pressure, the
ratio of the breakdown field to the critical field, Ψ =
Ebr/Ecr, differed substantially from pulse to pulse.

At pressures of 1 ≤ p < 1.5 atm, a known type of dis-
charge in air was observed [10]: at Ebr slightly higher
than Ecr, the discharge channel was stretched along E0
and had no central core, whereas at higher Ψ, a core
appeared in the channel.

At p ≥ 1.5 atm, the discharge can occasionally have
two cores, as is shown in Fig. 2a, which corresponds to
p = 1.5 atm. Previously, this phenomenon was observed
only in hydrogen [10]. The integral photographs shown
in Figs. 2 and 3 were taken in a dark room with an expo-
sure much longer than the discharge glow duration. In
the figures, the cavity axis is horizontal and the vector
E0 is vertical. The length of the plasma channel shown
in Fig. 2a (2l = 1.2–1.3 cm) can serve as a typical scale.
This length was estimated by using a control photo-
graph of the construction elements located near the cen-
tral region of the cavity; the control photograph was
taken at the same viewing angle and distance as the
photographs of the discharge itself.

The length 2l obtained from Fig. 2a is about one-
half of the resonance length λ/2 ≈ 2 cm. This fact
reflects the discharge physics. In the streamer stage, the
discharge only slightly absorbs microwave energy, and
only the discharge ends glow intensely. They move
along E0 with an exponentially increasing speed, which
attains 108 cm/s [9]. It is most likely that this stage is
not captured on the photographs at all. The central
region of the plasma channel begins glowing intensely
only in the resonant stage, when the current I substan-
tially increases there. The self-contraction of this
region leads to an extra release of microwave energy,
which additionally increases the glow intensity. As a
result, the integral glow of the discharge channel in an
optical range varies along the channel by several orders
of magnitude, so that the photographs capture only the
discharge central region. The same is true for any gas.
Indeed, in all the experiments described below, both in
air and hydrogen, the discharge length 2l was approxi-
mately the same (1.2–1.4 cm) regardless of the Ψ value.
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
In Fig. 2a, the plasma channel diameter is equal to
2a ≈ 6 × 10–2 cm. It should be noted that, taking into
account the integral nature of photorecording, this cor-
responds to the maximum value of the channel diame-
ter in the course of discharge evolution.

At p ≥ 2.5 atm, the discharge in air begins to exhibit
a wriggle instability. Figure 2b shows a photograph of
the discharge at p = 2.5 atm. The discharge central
region, in which the core is usually located, is overex-
posed, and its structure is hardly resolvable. This indi-
cates a significant excitation of air inside this region.
The discharge channel is a source of intense ionizing
radiation [16, 17], which excites air around the channel.
Air is a rather complicated molecular gas, which, being
excited, emits radiation in a wide spectral range. In the
upper part of the channel, one can see wriggles with the
characteristic wavelength of transverse perturbations
Λ ≈ 0.25 cm and the maximum displacement amplitude
Amax ≈ 0.09 cm.

At higher pressures, the discharge is blurred over
almost its entire length, which does not allow us to
examine its inner structure. It can only be seen in
Fig. 2c, which shows the discharge photograph at p =
3 atm, that the structure is rather complicated.

Most of the experiments were carried out in hydro-
gen, in which, as was expected, breakdown occurred
within the entire pressure range 1 ≤ p ≤ 8 atm. Indeed,
for hydrogen, Ecr/p = 10 kV/(cm atm) [14]; hence, at
pmax = 8 atm, the critical field is Ecr = 80 kV/cm < Emax.
As in the case of air, breakdown in hydrogen occurred
in the focal region and was irregular in character (i.e.,
during a pulse, breakdown may or may not occur). In
successive pulses, the measured breakdown field Ebr
ranged from Ecr (corresponding to a given pressure) to

(a) (b) (c)

Fig. 2. Microwave discharge in air at p = (a) 1.5, (b) 2.5, and
(c) 3 atm.
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Fig. 3. Microwave discharge in hydrogen at p = (a) 2.5, (b) 4, (c) 5, and (d) 8 atm.
Emax. Thus, at a fixed hydrogen pressure, breakdown in
different pulses occurred at different Ψ, as was the case
with air.

In the case of breakdown in hydrogen at pressures of
1 ≤ p ≤ 3 atm, an ordinary resonant streamer microwave
discharge with one or two cores was observed. In
almost any microwave pulse, a discharge in hydrogen at
relatively low pressures develops from a few spatially
separated centers. Figure 3a shows a photograph of the
discharge at p = 2.5 atm. One can see three isolated dis-
charge regions. One of them has developed to the full
length, whereas the other two are in an embryonic state.
The fields induced by the discharge regions affect each
other. As a result, the developed channel bypasses the
other discharge centers and inhibits their development.

At p ≥ 3 atm, a discharge in hydrogen becomes
unstable against wriggle perturbations. Figure 3b
shows a photograph of the discharge at p = 4 atm. One
can see two overlapped discharge channels developed
from two seed centers. The channels are located in the
same field antinode but are separated in depth. The
shorter channel is straight and has a pronounced core,
and the longer channel is curved. The characteristic
wavelength of wriggles is Λ ≈ 0.6 cm and their maxi-
mum amplitude is Amax ≈ 0.15 cm. It can be seen that the
channel was originally straight and then bowed down.
The region under the wriggles turned out to be exposed
as the wriggle amplitude progressively increased dur-
ing the instability. At this pressure, both the number of
the discharge channels and the wavy shape of the main
channel can vary from pulse to pulse. Such a variability
is characteristic of instabilities, because the initial per-
turbation, as well as the final shape of the perturbed
channel, is not predetermined.

Figure 3c shows a photograph of the discharge at
p = 5 atm. One can clearly see an original straight dis-
charge channel and its final curved position with an
exposed region under the wriggles. The diameters of
the original and wriggled channels estimated by the
photograph are nearly the same (2a ≤ 3.2 × 10–2 cm),
and the wriggle wavelength and amplitude are Λ ≈ 0.4 cm
and Amax ≈ 8.4 × 10–2 cm, respectively. Again, at this
pressure, the discharge shape varies significantly from
pulse to pulse, whereas the values of 2a, Λ, and Amax
remain nearly the same.

The wriggle wavelength Λ decreases as the pressure
increases to p = 6–7 atm. A further increase in p results
in an increase in Λ.

At p ≥ 5–6 atm, the probability of discharge devel-
opment from several centers significantly decreases.

As an illustration, Fig. 3d shows a typical discharge
at pmax = 8 atm. It can be seen that, at the final position,
the discharge channel is wriggled over almost its entire
length 2l ≈ 1.3 cm. This confirms the above assumption
that, under the experimental conditions, only the bright
part of the discharge, where the current I is high, is seen
in the photographs, whereas its dim ends with a length
of about 0.4 cm are not seen at all.

DISCUSSION OF THE RESULTS

The experiments revealed two important circum-
stances. First, the observed large-scale instabilities
have a threshold with respect to the gas pressure. In
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
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hydrogen, this threshold is about 3 atm. Second, the
development of the instability is limited by the streamer
lifetime, which is no longer than 10 ns [7–9]. Both of
these circumstances can be interpreted based on the
assumption that the instabilities observed are hydrody-
namic in nature.

Estimates show that the ratio of the magnetic field
pressure produced by the streamer current at the instant
of resonance to the plasma pressure in the channel
increases with increasing initial gas pressure and can
become more than unity at p > 1.5–2.0 atm. Numerical
simulations performed in the framework of a phenom-
enological model at hydrogen pressures of several
atmospheres revealed the strong compression of a reso-
nant microwave streamer discharge by the averaged
magnetic pressure [18]. Hence, it is natural to expect
that, at high pressures, magnetohydrodynamic effects,
in particular, large-scale instabilities, will manifest
themselves more explicitly.

To estimate the growth rates of magnetohydrody-
namic instabilities, it is natural to employ the theoreti-
cal concepts developed for an ordinary linear Z-pinch
(see, e.g., [12, 19–22]) and use a conception of the mag-
netic pressure averaged over the microwave field
period.

According to the above theoretical studies, when the
plasma pressure is balanced by the magnetic pressure,
a cylindrical discharge with a longitudinal current is
unstable against large-scale perturbations, such as con-
strictions and wriggles. The growth rates Γ of these
instabilities are proportional to the magnetic field H2 on
the discharge surface and are inversely proportional to
the square root of the plasma density ρ. For a micro-
wave discharge, the r.m.s. magnetic field should be
taken as the field H. In [21], expressions for the growth
rate Γ were obtained for the case of an infinite skinned
cylindrical pinch with a remote screen, homogeneous ρ
distribution, and zero longitudinal magnetic field in
vacuum. In our experiments, the microwave skin depth
is of the same order of magnitude as the discharge
radius a, and the distribution of ρ in the discharge is far
from homogeneous. Hence, the above expressions are
applicable only in the long-wavelength limit, ka ≤ 1,
where k = 2π/Λ is the perturbation wavenumber. For
both types of perturbations, we obtain the following
estimate for the instability growth rate:

(1)

where µ0 = 4π × 10–7 H/m.

At the instant of resonance, the current I in a half-
wave thin vibrator is distributed by the cosine law,
whereas its maximum value is limited by the radiation
resistance Rw = 73 Ω ,

(2)

Hence, the magnetic field on the discharge surface in its

Γ µ0/ρHk,≅

I λE0/ πRw( ).=
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middle part is equal to

(3)

Taking into account Eq. (3), we obtain the instability
growth rate

(4)

A spontaneous microwave discharge is feasible only
when the amplitude of the external field exceeds the
critical breakdown field Ecr(p), which is proportional to
the initial gas pressure p. Hence, in Eq. (4), we should
assume that E0 ≥ Ecr(p). Without allowance for possible
compression, the gas mass density does not exceed its
initial value, which is also proportional to the initial
pressure.

The measured discharge radius as a function of air
and hydrogen pressures in the range 70–760 torr [18]
can be roughly approximated as

(5)

where p is in atmospheres.
Extrapolating Eq. (5) to the range p > 1 atm, we have

from Eqs. (4) and (5) that, for λ = 4.3 cm and ka = 1,
the growth rate for the case of hydrogen is equal to

(6)

The measurements show that the resonant current
exists in a streamer for a few tens of nanoseconds
[8, 18]. Setting Γ > 108 s–1, we obtain the lower pressure
threshold for the onset of instability:

(7)

The estimated threshold pressure satisfactorily
agrees with the experimental data. This allows us to
assume with great confidence that the observed large-
scale perturbations are the nonlinear stage of a magne-
tohydrodynamic instability of the discharge channel in
which the plasma pressure is balanced by the averaged
magnetic pressure produced by the microwave current
flowing in a resonant streamer.

We note that the use of theoretical concepts devel-
oped for ordinary Z-pinches is rather limited because
pinches differ from microwave discharges in many
aspects. The main differences are the absence of a con-
ducting envelope and ends, the presence of a dense sur-
rounding gas, the fact that microwave wavelength is
comparable with the discharge length and thus the cur-
rent is nonuniform along the discharge, magnetic pres-
sure pulsations, and so on. To develop an adequate the-
ory of the process under study, it is necessary to take
into consideration all these features.

CONCLUSION

Electrodeless microwave discharges in air at pres-
sures of 1 < p ≤ 3 atm and hydrogen at pressures of p ≤
8 atm have been investigated experimentally. Break-

H λE0/ 2π2aRw( ).=

Γ p( ) µ0/ρ p( )λE0 p( )k/ 2π2aRw( ).≅

a p( ) 0.015/ p, cm,≈

Γ p( ) 1.6 107 p2.5, s 1– .×≈

p 108/1.6 107×( ) 1/2.5( )
3.3 atm.≈>
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down occurs in the electric field of a linearly polarized
standing EM wave in the focus of a quasi-optical high-
Q two-mirror open cavity. The cavity is excited by
microwave radiation with the wavelength λ = 4.3 cm.
Breakdown leads to the development of a resonant
streamer microwave discharge. The discharge is freely
localized and stays apart from the nearest construction
elements by no less than ten centimeters. In the final
stage of the discharge, its central region with a length of
1.2–1.4 cm and diameter of several hundredth of a cen-
timeter undergoes both sausage instability and clearly
defined wriggle instability. In air, the wriggle instability
develops at pressures of p ≥ 2.5 atm, and, in hydrogen,
it develops at pressures of p ≥ 3 atm. The presence of
large-scale instabilities unambiguously indicates the
decisive role of the averaged magnetic field pressure
produced by the resonant microwave current flowing in
the streamer. These instabilities can develop only under
the conditions of discharge self-contraction caused by
the magnetic pressure. Thus, the processes observed
should be classified as a microwave pinch effect.

The microwave pinch effect is of interest, first of all,
as a manifestation of a known phenomenon under com-
pletely different conditions. The specific features of a
microwave pinch allow one to consider it as a possible
pulsed source of hard X-ray or neutron radiation.
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Abstract—The cyclotron drift of charged particles along the boundary between regions of differing gyroradii
is considered. Expressions for the drift velocity and drift current along a straight boundary, as well as for the
drift velocity along a curvilinear boundary, are derived. The proportion between the parts into which the drift
current divides along a branched boundary is estimated using a T-shaped boundary as an example. © 2003
MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is well known that, in a plasma or a solid body
placed in a magnetic field, the trajectories of the classi-
cal charged particles that move near a rigid wall and are
specularly reflected from it are arcs of circles. In mov-
ing along the wall, the particles undergo multiple
reflections, thereby creating an electric current of a drift
nature [1, 2].

The drift current also arises at a metal–superconduc-
tor boundary in a magnetic field. In this case, the reflec-
tion law is different: when a charged particle is
reflected, its total momentum reverses direction (i.e.,
the particle undergoes a so-called Andreev reflection)
[3–5]. Because of the peculiar shape of the particle tra-
jectories, the classical expression for the drift current in
the case of Andreev reflections differs from that in the
case of specular reflections.

These two examples refer to a class of phenomena
that can be characterized by the common term “cyclo-
tron drift along a boundary” or “cyclotron billiard.”
This paper is aimed at studying another example of
cyclotron drift, specifically, that along the boundary
between regions of differing gyroradii.

There are several physical reasons why the gyroradii
of charged particles in adjoining regions may be differ-
ent. Thus, they may be different on both sides of the
surface at which the magnetic field parallel to it under-
goes a jump. Such a structure of the magnetic field can
arise near the current sheets in a plasma [6]; in this case,
the sections of the sheets by a plane perpendicular to
the field are just the boundaries in question. That cyclo-
tron drift along a jump in the magnetic field is possible
was pointed out in [6, 7], in which some features of the
drift, such as the rounding (“wetting”) of a boundary
with breaks by particles and the division of the drift cur-
rent into parts along a branched boundary, were ana-
lyzed at a qualitative level.
1063-7842/03/4805- $24.00 © 20563
Cyclotron drift can also occur along the boundary
between two semiconductors in which the effective
electron masses are different. As may be seen from the
list of the effective masses of the carriers in semicon-
ductors [4], such a drift is comparatively easy to initiate
by choosing materials with the longest possible mean
free paths. There may be other physical examples of
cyclotron drift along the boundary between regions of
differing gyroradii.

The objective of this study is to calculate the drift
current and estimate the proportion between the parts
into which the drift current divides along a branched
boundary.

In different physical situations, the parameters of
the particles that cross the boundary between regions of
differing gyroradii (which will be called simply “the
boundary” for brevity) may change in different ways.
For the boundary formed by a jump in the magnetic
field in a plasma, the velocity and momentum vectors of
a particle, as well as its energy, are conserved. In con-
trast, for the boundary between semiconductors, some
of these parameters may not be conserved: the velocity
may change in both magnitude and direction and the
energy may be changed by the contact potential differ-
ence at the boundary and/or due to the excitation of
transient phonons. Of course, these factors contribute to
the resulting relationships for the current, but, in many
situations, the final conclusions turn out to be qualita-
tively similar. In [8], it was also shown that, when the
effective electron masses in adjoining semiconductors
differ only slightly, the probability for the electrons to
cross the boundary without scattering is close to unity.
This circumstance allows us to exclude from consider-
ation the particle dynamics when the boundary is
crossed and to assume that the gyroradius of a particle
in the ith region is equal to ri.
003 MAIK “Nauka/Interperiodica”
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We also make two additional assumptions. First, the
velocities of all particles are the same and are equal to
v. In deriving expressions for the currents, this assump-
tion can easily be generalized to a particular particle
velocity distribution function by performing the corre-
sponding integration. Second, a charged particle moves
without scattering both when crossing the boundary
and at a distance from it. This assumption is valid under

α

L

r1

r2 1
2

Fig. 1. Drift trajectory of a charged particle along a plane
boundary between regions 1 and 2 with differing gyroradii.
The magnetic field is perpendicular to the plane of the
figure.
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vdr/v

0 0.2 0.4 0.6 0.8 1.0
α/π

Fig. 2. Reduced drift velocity of a particle moving along a
plane boundary vs. angle at which the particle trajectory
intersects the boundary.

1.8
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r2/r1

I/env
1

Fig. 3. Reduced drift current along a plane boundary vs.
ratio of the gyroradii in the adjoining regions. The arrow
indicates the maximum drift current (1) in the case of spec-
ular reflections.
the condition ωCτ @ 1 (where ωC is the gyrofrequency
and τ is the mean free time of the particle), which indi-
cates that the particle completes many Larmor revolu-
tions without being scattered and which is equivalent to
the condition  = νB @ 1, where ϑ is the Hall
angle, ν is the mobility, and B is the magnetic field
strength. The latter condition is known to hold, e.g., for
an n-type InSb semiconductor in a magnetic field of 5 T
or higher [9].

DRIFT ALONG A STRAIGHT 
AND A CURVED BOUNDARY

We consider two regions that are separated by a
straight boundary and in which the gyroradii are equal
to r1 and r2 (Fig. 1). For definiteness, we set r1 > r2. We
will find the drift velocity of a particle along the bound-
ary, assuming that the tangent to the particle trajectory
at the point where it enters region 1 makes an angle α
with the boundary. First, we determine the distance L
that the guiding center of the particle travels along the
boundary during one period of gyration:

(1)

If the particle velocities in both regions are the same
and are equal to v, then the period of gyration T is

(2)

It should be stressed that the period T is not equal to
the period of gyration of a free particle far from the
boundary. As a result, the sought expression for the drift
velocity can be written as

(3)

The dependence of the drift velocity on the angle α
is shown graphically in Fig. 2. The dependence is seen
to be peaked: as the ratio r1/r2 increases, the peak shifts
toward smaller α values.

We assume that, at each point at the boundary, the
particles are distributed uniformly in the angle α over
the closed interval [0, π] and that the number of parti-
cles per unit length of the boundary is n. Under these
assumptions, we can obtain the following expression
for the drift current:

(4)

where Si and Ci are the integral sine and cosine, respec-
tively, and ρ = (r1 + r2)/π.

It is easy to see that, for r1 = r2, the drift current van-
ishes and, for r2  0, expression (4) reduces to the

ϑtan

L 2 r1 r2–( ) α .sin=

T
2αr1 2π 2α–( )r2–

v
-----------------------------------------------.=

v dr v
r1 r2–( ) αsin

αr1 π α–( )r2–
-------------------------------------.=

I envdr α( ) αd

0

π

∫ env
r1 r2–
r1 r2+
--------------- Si

r1

ρ
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r2

ρ
----cos= =
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ρ
----

r2

ρ
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ρ
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(a)

R
β2

β1

1
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β2
β1

R

(b)

1

2

Fig. 4. Drift trajectories of a charged particle along a curvilinear boundary between regions 1 and 2 with differing gyroradii in the
(a) diamagnetic and (b) paramagnetic cases. The magnetic field is perpendicular to the plane of the figure.
expression for the drift current in the case of specular
reflections:

(5)

Figure 3 shows a plot of the drift current versus the
ratio r2/r1 on the closed interval [0, 1], whose ends cor-
respond to specular reflections (r2  0) and to the
absence of the drift current (r1 = r2).

Now, we consider the drift of charged particles
along a curved boundary of radius R > r1 > r2. To do
this, we must analyze two possible cases: the gyrorad-
ius is larger (r1) on the outer side of a circle of radius R
(Fig. 4a) and the gyroradius is larger on the inner side
of the circle (Fig. 4b). In the first case, the drift current
produces a diamagnetic effect, whereas in the second
case, it produces a paramagnetic effect.

An expression for the drift velocity can be derived in
a way analogous to that for a straight boundary. For this
reason, we omit the derivation and give only the final
expression, which is valid for both diamagnetic and
paramagnetic cases:

(6)

where α is the angle between the tangents to the bound-
ary and to the trajectory at the point of their intersection
and βi are the angles at which the arcs between the
points of successive intersections of the boundary by
the trajectory passing in the ith region are seen from the
center of curvature of the boundary,

(7)

From expression (6), we can readily see that the
direction of the drift is determined by the sign of the
difference of the angles in the numerator, β1 – β2. It is
also easily seen that, for R  ∞, expression (6) passes
over to expression (3). Figure 5 shows a representative
dependence of the drift velocity on the radius of curva-
ture R of the boundary for fixed values of the parame-

ISR envSi π( ) 1.852 env.≈=

v dr v
R β1 β2–( )

r1 α β1+( ) r2 π α– β2–( )+
-----------------------------------------------------------------,=

βitan
r1

R
---- αsin

1 ri/R( ) αcos–[ ]
-----------------------------------------.=
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ters α and ri. As R increases, the drift velocity decreases
and approaches the steady-state value given by formu-
la (3). Formally, the dependence has a maximum at R *
r1; but, as R approaches r1 from above, the phenomenon
of drift as well as the magnitude and direction of the
drift velocity all become physically meaningless. That
is why the dependence to the left of the maximum is
shown by the dashed curve.

In the general case, the currents resulting from the
drift considered above are steady and undamped, pro-
vided that there is no friction between the moving cur-
rent carriers. It is important that the boundary be either
closed or infinite.

DIVISION OF THE DRIFT CURRENT 
INTO PARTS ALONG A BRANCHED BOUNDARY

Along the boundaries that have two, three, or more
branches, the drift current divides into parts, the pro-
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0.215
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vdr/v

0 5 10 15 20
R/r1

r1

r2

Fig. 5. Reduced drift velocity (6) of a particle moving along
a curvilinear boundary vs. radius of curvature of the bound-
ary for α = π/2. The arrows indicate the values of the gyro-
radii r1 and r2.
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portion between which depends both on the relation-
ship between the gyroradii in different regions and on
the geometry of the boundary. As an example, we cal-
culate the proportion between the parts into which the
drift current divides along a T-shaped boundary
(Fig. 6).

For definiteness, we set r1 > r2 > r3. In this case, the
drift current flowing along the branch 1–3 divides
between the branches 1–2 and 2–3 in accordance with
Kirchhoff’s law.

We consider all trajectories in region 1 that originate
from the branch 1–3 and whose initial angle α and ini-
tial coordinate l span a rectangle Ξ, the base and height
of which are closed intervals x = l/r1 ∈  [0, 2] and α ∈
[0, π] (Fig. 7).

Let us calculate the ratio of the number of trajecto-
ries that escape along the branch 1–2 to the number of

1

2

3

Fig. 6. Geometry of a T-shaped boundary separating regions
1, 2, and 3. The arrows indicate the directions of the drift
current.

π

π/2

0

α

1 2
x

d

LL

1–2

2–3

a

b

Fig. 7. Rectangle Ξ of the initial parameters of the trajectory
of a charged particle. Portions a, b, and d refer to the trajec-
tories shown in Figs. 8a, 8b, and 8d, respectively. Portions
1–2 and 2–3 refer to the particle trajectories that escape
along the corresponding branches of the boundary. The line
on which function (11) is equal to µ2 is marked by LL.
all possible trajectories. In this case, the proportion
sought is equal to the ratio of the areas of those portions
in the rectangle Ξ that correspond to the trajectories
escaping along different branches of the boundary. Fur-
ther analysis will be aimed exclusively at determining
the boundaries of these portions.

First, in the rectangle Ξ, we should eliminate from
consideration the portions corresponding to the trajec-
tories that cross the boundary before reaching the
branches; otherwise we would take into account such
trajectories two or even three times, because they inev-
itably reach the branches after several crossings of the
boundary (Figs. 8a, 8b).

From Figs. 8a and 8b, we can see that, for acute and
obtuse initial angles α, the boundaries of the eliminated
portions should be determined by different formulas:

(8)

However, in order not to eliminate the trajectories
that originate at certain acute initial angles α and imme-
diately escape along branch 2–3 of the boundary
(Fig. 8c), we should take into account the part of the
lower eliminated portion corresponding to the trajecto-
ries that reach branch 2–3 immediately after they have
crossed branch 1–3. This part is bounded by two
curves, one of which is described by Eqs. (8) and the
other is given by the equation

(9)

where µi = ri/r1 for i = 2, 3.

In Fig. 7 (obtained for the particular case µ3 = 0.2),
the resulting eliminated portions, except for the part
that should be taken into account, are shaded in dark
gray.

In the rectangle Ξ without the portions that have
already been eliminated, there are points (correspond-
ing to certain values of the initial angle α and the initial
coordinate l) through which the trajectories may pass
after they have originated from other points, crossed the
boundary several times, and enclosed the branch point
one or more times (Fig. 8d). Without taking this cir-
cumstance into account, it is likely that some trajecto-
ries will be included twice or more. That is why, in the
rectangle Ξ, we should also eliminate from consider-
ation the portion into which the trajectories originating
from the same rectangle can arrive. The equation for the
boundary of this portion has the form

(10)

x
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1 α for π/2 α π.< <sin+
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Fig. 8. Typical trajectories of a charged particle near a branched boundary.
In Fig. 7, the portion eliminated in accordance with
Eq. (10) in the particular case µ2 = 0.25 and µ3 = 0.2 is
shaded in light gray.

In the portion that remains in the rectangle Ξ after
all the above portions have been eliminated (in Fig. 7,
the remaining portion is unshaded), we determine the
values of the initial angle α and the initial coordinate l
that correspond to the trajectories escaping along
branch 1–2 and to those escaping along branch 2–3. To
do this, we consider the trajectories that originate from
branch 1–3 and immediately reach branch 1–2. If, after
reaching this branch, the trajectory crosses the bound-
ary above the branch point, then the particle will move
along branch 1–2. If the crossing occurs below the
branch point, then the particle will move along
branch 2–3. These two situations are illustrated in
Fig. 8e. A simple calculation enables us to derive an
equation for the boundary separating those values of
the initial angle α and the initial coordinate l that corre-
spond to the particles escaping along branch 1–2 and to
the particles escaping along branch 2–3. This boundary
is the line on which the function f(x, α), given by the
formula

(11)

is equal to µ2. For µ2 ≥ 0.5, the line essentially coin-
cides with the horizontal straight line α = π/2. For µ2
below 0.5, the line is convex downward. In Fig. 7, the
line on which function (11) is equal to µ2 = 0.25 is
denoted by LL.

Hence, the sought proportion between the parts into
which the drift current divides along a T-shaped bound-
ary is equal to the ratio of the areas of unshaded por-
tions separated by the line on which function (11) is
equal to µ2.

Now, we should point out the following important
circumstance. The total current along the branches sat-
isfies Kirchhoff’s law. The current along branch 1–3
satisfies relationship (4), while the currents along
branches 1–2 and 2–3 do not. The reason for this is that
relationship (4) was derived for a uniform distribution
of particles over the initial angles. However, the distri-

f x α,( ) 1
2
--- 1 αcos

αcos
2

2x αsin x2–+
------------------------------------------------------–

 
 
 

=
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bution of the particles that have passed the branch point
is nonuniform.

The last remark raises the problem of determining
both the maximum drift current along a complex
branched boundary and the branch along which the cur-
rent is maximum. For a boundary in the form of a sim-
ply connected graph, the maximum current of magni-
tude (4) is that along the branch separating the regions
for which the ratio of the gyroradii is the largest. From
an electrotechnical standpoint, this indicates that there
is a current source in the corresponding branch of a
complex circuit.

CONCLUSION

An analysis has been performed of the cyclotron
drift of charged particles along the boundary between
regions of differing gyroradii. The expressions for the
drift velocity and drift current along a straight bound-
ary, as well as the expression for the drift velocity along
a curvilinear boundary, have been obtained. The pro-
portion between the parts into which the drift current
divides along a branched boundary has been estimated
using a T-shaped boundary as an example.

The processes analyzed above may serve as a basis
for creating fundamentally new complex branched cur-
rent structures in plasma and semiconductor systems.
Thus, a closed curvilinear boundary (in the simplest
case, a circle) may be used as a key element to imple-
ment a magnetic field detector, and a T-shaped
branched boundary may underlie the operation of a
device for separating particles (plasma ions) by mass or
energy.
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Abstract—The period of eutectic structures is known to depend on the interface velocity (three types of this
dependence are given in [1]). The form of this dependence is shown to depend on the growth mechanism of the
solid phase and the surface tension coefficient. The calculated and experimental dependences are in good agree-
ment. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Eutectic periodic structures that appear during the
solidification of eutectic melts have attracted wide-
spread interest for several decades from both the funda-
mental and applied viewpoints. Applied interest is pro-
voked by the fact that the microstructure of eutectic
composites consists of lamellas or rods of different
phases simultaneously growing from the melt; there-
fore, the properties of such a material combine those of
its constituents [2]. The practical application of eutectic
composites is, however, limited, because they are diffi-
cult to grow. The complex space–time dynamics of the
formation of a periodic two-phase structure from a
homogeneous melt is still unknown. In particular, of
fundamental importance in this process is the nature of
morphologically unstable simple spatially periodic
steady states, which make the dynamics complex [3].
The variety of the shapes and sizes of the structures
solidified is specified by nonequilibrium processes at
the solid–liquid interface. The current status of research
on solidification is comprehensively reviewed in [4].
Among other things, this review considers the interface
stability during the formation of three-dimensional
dendritic structures (i.e., in the course of the oriented
growth of the dendrite tip and the formation of dendrite
branches) and during cellular solidification, as well as
the morphological instability and oscillation of the
interface during the formation of eutectic structures.
The most popular theory describing the solidification of
eutectic melts with the formation of periodic structures
is the Jackson–Hunt theory [5]. This theory, however,
does not explain the origin of the periodic structures
and faces difficulties when selecting solutions to the
equations derived [6]. Characterizing the state of the art
in the theory of eutectic solidification, Hunt and Lu [7]
indicated that, in spite of some progress in understand-
ing eutectic, monotectic, and peritectic growth, most
works are only qualitative. They also noted that a fur-
1063-7842/03/4805- $24.00 © 20569
ther advance can only be achieved by constructing a
model of nonsteady-state growth and that it would be
appropriate to develop a simpler analytical model for
monotectic growth and check the stability of phase
coexistence.

Many researchers believe that the basic cause of the
periodic structure formation is the instability of the
interface during solidification. Beginning from the clas-
sical work [8], numerous simulations of directional
solidification that give qualitative agreement with
experimentally observed structures have appeared [4].
However, quantitative results that provide a good fit to
experimental data are very scarce. One of them is the
dependence of the eutectic structure period on the inter-
face velocity [9–11]. This dependence coincides
exactly with the experimental dependences for a num-
ber of materials. An expression for the eutectic struc-
ture period was found from the dispersion relation:

(1)

where Θ is the kinetic parameter defined by a model of
growth mechanism.

For growth by screw dislocations, Eq. (1) yields the
dependence of the eutectic structure period on the
steady-state interface velocity VS [11, 12] that coincides
with the experimental dependences. This coincidence
may either be accidental or reflect the fact that the
experimental dependences adequately describe the
growth mechanism. The former possibility should not
be ruled out, since the period squared may appear from
the solution of many quadratic equations in the course
of investigation. To tackle this problem, we introduce
here surface tension, which was not taken into account
in the previous models, and assume an exponential
growth model. It will be shown that such a model gives
dependences λ(VS) that, although being different from
those found in [11, 12], also coincide with the known

λ π χ' χ+( )
ε Θ

----------------------,=
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experimental dependences. This result proves that the
analytical dependence λ(VS) found previously is true
and that the solidification model will also provide true
λ(VS) dependences for eutectics of other compositions.

THE MODEL

Let T be temperature normalized to the phase transi-
tion temperature Te0 at an initial component concentra-
tion C0; C, the component concentration normalized to
its initial concentration; y = αyr, z = αzr, and τ = α2χ0τ
the dimensionless coordinates and time; D = Dr/χ0, the
dimensionless diffusion coefficient in the liquid phase;
χ = χr/χ0, the thermal diffusivity; ε, the heat of phase
transition normalized to the specific heat and the phase
transition temperature; φ, the heat transfer coefficient
normalized to the specific heat; yr, zr, τr, Dr, χr, and εr,
dimensional quantities; χ0 = 10–5 m2/s; and α = 102 m–1.

We take into account heat conduction in the liquid
and solid phases and the diffusion of the component in
the liquid phase. To shorten the mathematics, the x
coordinate will hereafter be omitted. The primed quan-
tities refer to the solid phase. Let , ,  be the labora-
tory coordinate system in which the melt is motionless.
Then, the equations for the temperatures ( , , τ)

and ( , , τ) in the liquid and solid phases, respec-

tively, and for the concentration ( , , τ) in the liquid
phase have the form

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Here, v n is the interface velocity along the normal to the
interface toward the liquid phase and ∆Tk is the kinetic
supercooling, which is equal to the difference between

x y z

T' y z

T y z

C y z

∂T'
∂τ
-------- χ' ∂2T'

∂y2
---------- ∂2T'

∂z2
----------+ 

 = φ T' Text–( ),–

∞– z 0,≤<

∂T
∂τ
------ χ ∂2T

∂y2
--------- ∂2T

∂z2
---------+ 

 = φ T Text–( ),–

0 z ∞,<≤

∂C
∂τ
------- D

∂2C

∂y2
--------- ∂2C

∂z2
---------+ 

  , 0 z ∞,<≤=

χ'∂T'
∂n
--------

solid

χ∂T
∂n
------

liquid

– εv n,=

T' solid T liquid= ,

T' z ∞–→ Text ∞–( ), T z ∞→ Text ∞( ),= =

D∂C
∂n
-------

liquid

v n ku 1–( )C liquid, C z ∞→ 1,= =

v n v n ∆Tk T zint y τ, ,( ) C zint y τ, ,( ),( )( ).=
the phase-transition temperature and the interface tem-
perature at a given point of the interface.

The above set of equations is written with allowance
for an external temperature field . Such a formula-
tion of the problem and the possible approximation of
the external temperature field was analyzed in [12]. The
expression for the kinetic supercooling has the form

(10)

where κ is the interface curvature, Γ = αΓ r , and Γr is the
surface tension coefficient. In the problem of interface
stability upon directional solidification, the curvature is
usually introduced in explicit form via the dependence
of the interface shape on space coordinates [8]. We do
not introduce perturbations of a planar interface in
explicit form. Instead, the interface velocity is consid-
ered to be a function of temperature and concentration,
and the problem is solved with the use of only these
perturbations. We will find the curvature of the per-
turbed interface in terms of temperature and concentra-
tion perturbations. The derivatives of , , and  are
taken along the vector n that is normal to the interface
and directed toward the liquid phase. The segregation
coefficient is defined as the ratio of the component con-
centration in the solid phase to that in the liquid phase.
Assuming the concentration in the solid phase to be
equal to the initial concentration in the melt, we find for
the segregation coefficient

Let V( , , τ) be the interface velocity along the 
coordinate. Then, the interface coordinate  can be
written as

(11)

The velocity V( , , τ) is related to v n by the
expression

Let us write this boundary-value problem in the
moving coordinate system related to the interface. This
coordinate system was used in [9, 10] and is curvilinear
with respect to the laboratory coordinate system. It is
related to the interface whose velocity, in general,
depends on the component temperature and concentra-
tion rather than to the interface moving in the steady-
state conditions, i.e., in the laboratory coordinate sys-
tem with a constant velocity. The new variables are

Text

∆Tk 1 m C zint y τ, ,( ) 1–( )+=

+ Γκ T zint y τ, ,( ) C zint y τ, ,( ),( ) T zint y τ, ,( ),–

T' T C

k
C z ∞→

C liquid

----------------.=

y z z
zint

zint' y' τ,( ) V y' zint' τ, ,( ) τd∫ F y' zint' τ, ,( ).= =

y z

V 1
∂F
∂y
------ 

 
2

+ v n.=

y y, z z F y zint τ, ,( ).–= =
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Now, we recast Eqs. (2)–(9) into the form

(12)

(13)

(14)

(15)

(16)

(17)

(18)

Let the flat solidification front move in the labora-
tory coordinate system with a constant velocity VS
when the melt solidifies under steady-state conditions.
Here, we investigate the stability of the steady-state
solidification conditions against temperature and con-
centration perturbations in the linear approximation. In
order to obtain the linear approximation of boundary
problem-value (12)–(18), we assume that its solutions
are

∂T'
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∂y2
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2
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2
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– 2
∂F
∂y
------ ∂2C

∂y∂z
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∂y2
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-------–

∂F
∂τ
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∂z
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1
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 
2
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χ∂T
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z 0 0+=
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–
∂F
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2
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-------–

z = 0 0+

=  V k 1–( )C z = 0 0+ ,

v v ∆Tk T 0 y τ, ,( ) C 0 y τ, ,( ) κ, ,( )( ).=

T' TS' z( ) Tm' z( ) ωτ Ky+( )exp+ TS' z( ) f T' ,+= =

T TS z( ) Tm z( ) ωτ Ky+( )exp+ TS z( ) f T ,+= =

C CS z( ) Cm z( ) ωτ Ky+( )exp+ CS z( ) f C,+= =

ω ω1 iω2, K+ K1 iK2.+= =
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
In our case of infinite interface, we take K1 = 0,

where  are the steady-state
solutions to the problem.

The approximation linear in small perturbations
then has the form

(19)

(20)

(21)

(22)

(23)

(24)

Now consider the linearization of kinetic condition
(18). This condition describes the dependence of the
interface velocity on the rate of attachment of mole-
cules to the growing surface. The form of the depen-
dence V(∆Tk) is specified by a model of growth. In the
new variables, kinetic supercooling (10) is given by the
expression

which applies to any growth model. For the kinetic
supercooling thus written, the Maclaurin expansion of
velocity (18) in small temperature and concentration
perturbations is

Tm' z( ) ! TS' z( ), Tm z( ) ! TS z( ), Cm z( ) ! CS z( ),

TS' z( ), TS z( ), and CS z( )
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Note that this expression applies to any growth
model in which the velocity depends on the kinetic
supercooling. After differentiating, we find for the lin-
ear approximation

(25)

where

For the model of normal growth [13], we have

(26)

for growth by screw dislocations [13],

(27)

and for two-dimensional nucleation [13],

(28)

In the linear approximation, Eq. (25) has the form

(29)

Here, Vm is the as yet unknown perturbation of interface
velocity and the temperature and concentration pertur-
bations are

We will seek Vm as the linear combination of the
temperature and concentration perturbations:

(30)

where Θ and γ are as yet unknown expressions. Substi-
tuting (30) into (29) yields

(31)

By definition, the curvature is given by

(32)

To explain the curvature in temperature and concen-
tration perturbations, we first find an expansion for the
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function F. To this end, we pass to the curvilinear coor-
dinates in (11):

(33)

where

(34)

Differentiating (33), we derive from (32)

Expansion into series gives the expression

In the linear approximation,

(35)

Substituting (34) in (31) yields

(36)

From Eqs. (35) and (36), we find expressions for f
and κ that are linear in temperature and concentration
perturbations:

(37)

(38)

It follows from (37) and (34) that

(39)

Grouping the coefficients by the temperature and
concentration perturbations, we derive a set of equa-
tions for the unknown coefficients. From this set, we
find

(40)

(41)

A dispersion relation is found in the same manner as
in [12]. A solution to the problem stated by (19)–(24)
and (39) is first found. At the interface, this solution is
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represented by a linear set of equations for the coeffi-
cients Tm0 = Tm(0) and Cm0 = Cm(0):

(42)

(43)

where (42) is the solution to the heat conduction equa-
tion and (43) is that to the diffusion equation. Here, ,
ST, and S are the roots of the characteristic equations for
Eqs. (19)–(21), and η and ξ depend on the system’s
parameters (ξ ≠ 0 at k = 1). Substituting expansion (39)
into (42) and (43) yields the dispersion relation

(44)

The procedure of deriving the dispersion relation is
given in more detail in [9, 10, 12]. Note that, if the inter-
face velocity is independent of temperature and con-
centration, then Θ = 0 and γ = 0 and the problems of dif-
fusion and heat conduction are mutually independent.
In this case, Eq. (44) degenerates into the product of the
dispersion relations for the problems of diffusion and
heat conduction. If the component concentrations are
close to the eutectic composition, k is close to 1. At
small values of k – 1, Eq. (44) takes the form

(45)

This equation splits into two real equations for the
imaginary and real parts of Eq. (45):

(46)

The imaginary part of S has the form

(47)

where

(48)

are the growth increment, temporal oscillation fre-
quency, and spatial distortion frequency, respectively.

For further simplifications, numerical calculation is
needed. To this end, the segregation coefficient is taken
to be k = 1.03 and the liquidus slope, m = –0.05, i.e., the
same as in [9–12], where k was used to simulate melt
layering at the interface. The external temperature gra-
dient is assumed to be φ0r = 104 K m–1. For numerical
calculation, we use, as in [11], the model of growth by
screw dislocations with the kinetic coefficient h = 2.2 ×
1011 and assume that Γ = 10–5. With these values, solu-
tions to our problem virtually coincide with those of the
problem considered in [12]. It follows from the solu-

ST' ST–( )Tm0 ηVm0– 0,=
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Re ST' ST–( ) ηΘ–( )ImS Im ST' ST–( ) ηΘ–[ ] ReS–  = 0.

Im S( )

=  –0.5 2 1 Y δ+ +( )2 Ω2+ 2 1 Y δ+ +( )– ,

δ
4Dω1

VS
2

--------------= , Ω
4Dω2

VS
2

--------------, Y
4D2K2

2

VS
2

----------------= =
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tions obtained that the interface has a spatial oscillation
mode with a frequency of  ≈ 8.5 at the given
parameters. According to the role of selection, temporal
oscillations at the interface are absent, since the trajec-
tory δ(Ω) increases monotonically at Ω  0. Hence,
at the point of maximal growth increment, Ω = 0 and
Eq. (47) takes the form

Similarly, it is easy to show that the expressions
Im  and ImST also vanish. Therefore, set (46) con-
tains the only equation at the point of maximal growth
increment, from which we obtain

(49)

Here, Θ is a real coefficient, since the condition Ω = 0
means that the imaginary part of the complex frequency
ω goes to zero.

Consider the expression

Substituting numerical values into this expression
yields

Similar relationships are also valid for Re( ).
Re(η) can be expressed as

As in [12], it follows from the calculations that β !
1. Neglecting small quantities in Re(ST), Re( ), and
Re(η) and substituting them into (49), we come to the
equation

hence,

(50)

Substituting Eq. (40) for the kinetic coefficient into
(50) and taking into account relation (48) between the
wave number and Y, we arrive at the equation

(51)

At Γ = 0, it follows from (40) that Θ = Λ and
Eq. (51) transforms into expression (50). However, it is
impossible to obtain Eq. (50) for arbitrary parameters
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Table

Curve no. Composition A1 A2 B Expression

1 Al2O3–ZrO2 3.50 × 10–3 – 0 (57)

2 Pb–Sn 5.38 × 10–3 – 0 (57)

3 ZrO2–MgO 7.13 × 10–3 – 0 (57)

4 MgO–MgAl2O4 12.10 × 10–3 – 0 (57)

5 ZrO2–Y2O3 24.30 × 10–3 – 0 (57)

6 CaO–NiO 2.61 × 10–3 – 2.085 (57)

7 Zn5B4O11–ZnB2O4 –143.8 1.837 0 (58)
of the system if Γ is small. This is due to the fact that
the growth increment δ remains in this equation at Γ ≠ 0
and its presence does not allow the desired asymptotic
solution (50). We can obtain (50) only by taking into
account the condition

(52)

which was used to derive solution (50) in [11]. Substi-
tuting δ ≈ Y into (51), we get

hence,

(53)

Thus, condition (52) is necessary to obtain the
desired solution. The validity of this condition follows
from the numerical calculations of the solutions to the
dispersion relation of the system [11, 12]. The factor
multiplying the second parenthesis in Eq. (53) is struc-
tural period (1) obtained earlier without considering
surface tension [10]. The term ΛΓ is the contribution of
surface tension. Substituting Eqs. (26) and (27) into
(53), we find for normal growth

and for growth by screw dislocations,

(54)

From (28) for two-dimensional nucleation, we
arrive at

(55)

For the value of the surface tension coefficient esti-
mated from (53), the Gibbs–Thomson effect can be
neglected:

(56)

δ ≈ Y ,
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----------------------
2π χ' χ+( )Γ

ε
-----------------------------.+=
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2π χ' χ+( )h2
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h1
------ 

 
2

ln

-------------------------------
2π χ' χ+( )Γ

ε
-----------------------------.+=

Γ  ! 
1
Λ
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For numerical calculations in this work and in [11],

we used hS = 2.2 × 1011, VS = 10–2, and Λ = 2  ~
105. For the Al2O3–ZrO2 system studied, various esti-
mates of Γ fall into the range 10–6–10–5; that is, condi-
tion (56) is fulfilled at Γ = 10–6. For this system, the
dependence λ(VS) was constructed in [11] without
allowance for surface tension. Those dependences
coincided completely with the experimental depen-
dence found in [1], which means that, according to the
theory developed here, the actual surface tension in the
Al2O3–ZrO2 system satisfies estimate (56). Let us com-
pare our calculated dependence of the eutectic period
with those found elsewhere. In [1], the eutectic period
as a function of the interface velocity for several eutec-
tic compositions was reported. These dependences can
be divided into three families. Most of them are straight
lines coming from the origin. For the CaO–NiO compo-
sition, the dependence is a straight line intersecting the
axis of ordinates above the origin. For the Zn5B4O11–
ZnB2O4 composition, the dependence is an increasing
nonlinear curve.

We rewrite Eqs. (54) and (55) as

(57)

(58)

where R = . To compare our theory with experi-
ment, we plotted the experimental dependences found
in [1] for the eutectic compositions listed in the table
(see figure).

The analytical dependences plotted in the figure
coincide with the experimental data up to the accuracy
of the construction.

This agreement can be explained as follows. The
solidification model proposed is based on the heat-con-
duction and diffusion equations. The adequacy of these
equations to actual processes is beyond question. The
boundary conditions of the model describe successfully
the separation of components during solidification and
take into account mechanisms of crystal growth. In
essence, we are dealing with a homogeneous dynamic

hSVS

λd A1R B,+=

λ2D
R2

A1 A2 R 2–ln+( )
------------------------------------- B,+=

VS
1/2–
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system for the process under investigation, and the
dependences obtained are resonance curves. Of course,
it is difficult to imagine that structures that reflect only
intermolecular interaction between materials grow in
growth equipment. However, it was unclear why the
period of a solidifying structure cannot be controlled by
an external temperature field in experiments. It turns
out [12] that the parameters describing external thermal
conditions are far less than those reflecting the physical
properties of materials and, thus, do not appear in the
final solution. It should also be noted that the available
growth models are adequate to the process studied.
Generally speaking, these theories are not rigorous.
Their experimental confirmation is, as a rule, only qual-
itative. For example, the qualitative confirmation of the
theory of growth by screw dislocations is micrographs
of growth spirals. This is because the kinetic supercool-
ing is difficult to measure. The theory considered in this
work is a direct support of the fact that the growth mod-
els also provide quantitatively correct results.

Apparently, the resonance curves obtained are akin
to the resonance curves of an oscillating contour in the
sense that an oscillating contour is the simplest circuit
that quantitatively reflects the interaction between
inductance, capacitor, and resistor. In terms of materials
science, a eutectic structure is the simplest result of
thermal, diffusion, and intermolecular interactions dur-
ing directional solidification. Basically, experimental
and theoretical λ(VS) dependences in combination
allow one to find unknown thermophysical parameters
of a material. However, the values of many parameters
are today either unknown or greatly scattered. This is
due to difficulties in determining the parameters of the
system near the phase transition. A more comprehen-
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sive discussion of this problem is beyond the scope of
this work.

CONCLUSIONS

(1) Within the model of directional solidification,
solutions including the surface tension coefficient of
the interface are found in the coordinate system related
to the curvilinear interface.

(2) An analytical expression for the dependence of
the eutectic structure period on the interface velocity is
obtained with allowance for surface tension.

(3) The parameters involved in the dependence of
the eutectic structure period on the interface velocity
are calculated for a number of experimental curves.
Good coincidence with the experiment is obtained.

(4) The dependence of the eutectic structure period
on the interface velocity is shown to depend on a
growth mechanism, namely, on the rate of attachment
of molecules to the growing surface.
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Abstract—A new type of delay line intended for soliton pulses is proposed. As a nonlinear medium, a semi-
conductor superlattice is taken. Solitons that propagate along the superlattice layers are confined in cells
bounded by transverse inhomogeneity layers. Solitons are confined and released with the help of an external
electric current passing inside the cell. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent years, a new type of fiber-optic communi-
cation, soliton communication lines (SCLs), which use
electromagnetic solitons as information carriers, has
been developed [1, 2]. SCLs feature a high transmission
rate owing to the high stability of soliton pulses. How-
ever, the speed of transmitters, receivers, and analyzers
of soliton pulses is limited. To provide their matched
operation upon information overload, a soliton delay
line may be necessary.

DESIGN OF A SOLITON DELAY LINE

The basic element of a soliton delay line (SDL) is a
semiconductor superlattice. Relatively high nonlinear
electric properties are offered by superlattices with a
period of d ~ 10–8 m and a volumetric carrier concentra-
tion of n ~ 1020 m–3. SDLs can be fabricated from vari-
ous semiconductor materials, e.g., GaAs/AlGaAs super-
lattices, whose energy spectrum is fairly accurately
described within the strong coupling approximation.

A soliton that has come from an SCL is amplified in
an external high-frequency electric field created in the
region U1 by lateral plates (electrodes) O1. The soliton
is amplified to an amplitude that is necessary to over-
come cell inhomogeneities Nm (m = 1 or 2) with a con-
centration nm ~ 1022 m–3. The width of the inhomogene-
ity layers is D ~ 10–7 m. The cell width r must exceed
the soliton width: r ~ 10–5 m. The cell is equipped with
two electrodes O2 (Fig. 1), to which an electric current
that controls the confinement (writing) and release of
electromagnetic solitons is applied. The electrodes
must be wide enough to almost entirely cover the cell.
Between each of the electrodes and the adjacent trans-
verse inhomogeneities N1 and N2, a narrow gap should
be provided in order to prevent the effect of the electric
field created by the electrodes on these inhomogene-
ities.

The transverse dimension (along the x axis) of the
SDL must equal ~10–6 m, i.e., several tens or several
1063-7842/03/4805- $24.00 © 20576
hundreds of the superlattice period d in order to exclude
the edge effects.

PROPAGATION OF AN ELECTROMAGNETIC 
SOLITON IN THE SUPERLATTICE

A soliton (kink) is a localized solitary wave [3] with
the electric field intensity given by

(1)

where

(2)

is a dimensionless function.

The above formulas involve dimensionless vari-
ables: ζ = zωpl/c is the space variable, τ = tωpl is the time
variable, u(τ) = v(τ)/c is the dimensionless soliton
velocity, ξ(τ, ζ, u(τ)) = ξ0 + ζ – u(τ)τ is the soliton
phase, and Γ(u(τ)) = (1 – u(τ)2)1/2 is the soliton half-
width.

The electric field intensity of a soliton that propa-
gates in a superlattice is proportional to the plasma fre-

quency ωpl =  of electrons in the
minizone of the superlattice.

Ex ( "ωpl( )/ed ) ∂ϕ /∂τ[ ] ,–=

ϕ τ ζ u τ( ), ,( )
=  4 Qξ τ ζ u τ( ), ,( )/Γ u τ( )( )( )exp( )arctan

4π( )/ε0[ ] e2/me[ ] n
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Fig. 1. Design of a one-cell soliton delay line based on a
semiconductor superlattice.
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The propagation of an electromagnetic soliton in a
superlattice with inhomogeneities under the action of
an applied electric current can be described in terms of
the disturbed sine-Gordon equation with singularity
[4−6]

(3)

The attenuation of a soliton because of the minizone
structure of a superlattice [7] is allowed for in (3) by the
coefficient

(4)

where η is a constant that is responsible for soliton
energy losses due to interminizone electron transitions.

The density of the applied electric current in (3) is
given by the dimensionless function of the space coor-
dinate and time

(5)

where Jx(z, t) is the density of the applied electric cur-
rent.

Transverse inhomogeneities can be specified in
terms of the delta function [8]:

(6)

The parameter µm of the inhomogeneity Nm, in the
ζqm plane depends on the width Dm of the inhomogene-
ity and on the excess ∆nm of the carrier concentration in
it over the concentration n in the superlattice.

Electron–inhomogeneity collisions enter (3)
through the integral

(7)

where χ = (1/ωpl)ν and ν is the collision rate.

CONTROL CURRENTS

A soliton is written by applying a short external cur-

rent pulse (t, z) < 0 inside the cell when the soliton
passes through it.

∂2ϕ
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A soliton is read (released) from the cell with the

help of a current pulse (t, z) > 0. The current value
depends on the energy necessary before an electromag-
netic soliton leaves the cell.

The main problem in designing an SDL is to deter-
mine the time instant a soliton passes through inhomo-
geneities and the required value of the control currents.
The soliton possesses the static and kinetic energies

(8)

If integral (7) is ignored, the soliton velocity u(τ) at
a time instant τ can be found from the energy equation

(9)

where Wqm(τ, ζqm, u(τ)) is the energy given up by the
soliton at an mth inhomogeneity by the time instant τ
and Wp(τ, ζ, u(τ)) is the soliton energy loss due to inter-
minizone transitions:

(10)

(11)

The time instant τk the soliton passes a kth inhomo-
geneity satisfies the equation

(12)

The soliton is written when it is confined between

the inhomogeneities by applying a current pulse (t,
z) < 0. When the soliton is confined in the cell, the elec-
tric current has to be locally applied to the region ζq1 <
ζ < ζq2. The instants the current is switched on and off
must meet the condition τ1 ≤ τj1 < τj2 ≤ τ2.

A soliton passes through an inhomogeneity Nm in
the absence of external actions if its energy and velocity
away from the inhomogeneity are

(13)

Otherwise, the soliton reflects from the inhomoge-
neity [9], regaining its energy.

For a soliton that has passed through the first inho-
mogeneity, the condition for reflection from the second
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one is given by the inequality

(14)

The energy Wj(τj2) gained by a soliton from the
electric current in the time interval (τjl; τj2) is given by
the integral

(15)

where

When a soliton propagates in the cell, its energy
losses due to interminizone transitions in the time inter-
val (τ1; τj2) are

(16)

By equating the left and right of (14), we obtain an
integral equation a solution to which, being solved with

(15) and (16), yields the minimum write current (t, z).

A soliton reflected from the inhomogeneity N2
remains confined in the SDL cell. The soliton written exe-
cutes oscillatory motion between the cell walls, exchang-
ing energy with them. While stored in the cell, the oscil-
lating soliton loses part of the energy given by (11).

To leave the cell, the soliton must gain the energy of

a local current pulse (t, z) > 0. The read current value

is calculated similar to that of (t, z), which amounts
to solving an integral equation.

INTERACTION BETWEEN SOLITONS

Interaction between solitons (kinks) does not
change their amplitudes u1 and u2 but causes phase
shifts [9, 10]

where

(17)

The total phase shift of a soliton scattered by a set of
other solitons is the sum of the partial phase shifts. This
fact allows for the use of an SCL in two directions
simultaneously and increases its transmission rate
[1, 2]. Due to the stability of solitons upon interaction,
trains of soliton pulses can be delayed and confined
solitons can be released in an arbitrary order. To this
end, an SDL must contain several cells. Solitons that
pass through adjacent cells do not damage those con-
fined therein.
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RESULTS OF SIMULATION

The possibility of solitons being confined and
released was tested in terms of one-cell and four-cell
SDL models. The stability of a soliton is independent of
the number of cells, because it is localized within one
cell. The simulation of soliton propagation in a super-
lattice with inhomogeneities was carried out by solving
disturbed sine-Gordon equation with singularity (3)
subject to appropriate initial and boundary conditions
with the finite-difference method.

Consider the operation of a one-cell SDL based on a
superlattice with d = 10–8 m, ∆ = 10–2 eV, n = 1020 m–3, η =
10–2 m–1, α ≈ 1.887 × 10–5, and ωpl ≈ 1.998 × 1012 Hz.
Let the cell be formed by two inhomogeneities with

D = 10–7 m, ∆nm/n = 102, µm = 0.067, and  ≈ 1.998 ×
1013 Hz located in the planes zq1 = 7.2 × 10–3 m and
zq2 = 9.6 × 10–3 m. The cell size is r = 2.4 × 10–3 m. The
initial parameters of a soliton (kink) are v 0 = 108 m/s,
u ≈ 0.333, E0 = 9.303 × 104 V/m, Γ = 0.943, W ≈ 0.485,
and ξ0 = –13.318.

The soliton is confined in the cell by applying a trap-
ezoidal current pulse with a steepness a = π/50. The
time instants the soliton passes through the inhomoge-
neities (they specify the time interval of application of

the write current (z, t)) are determined from (12):
t1 = 4.2 × 10–11 s and t2 = 6.8 × 10–11 s. The minimum
current value needed to confine the soliton with the

above amplitude is found from (14):  ≈ –0.441 × 103

A/m2 with β ≈ –2.382 × 10–3.
The soliton confined in the cell executes oscillatory

motion. The oscillation period in the cell with the above
parameters is T ≈ 0.1 ns. The permissible time of soliton
storage in the cell is defined by the parameter η of semi-
conductor materials making up the superlattice and by
the write quality required. At η = 0.01, the logarithmic
decrement is δ ≈ 1.121 × 10–3.

The soliton delay is quantized in time. The delay
quantum is approximately equal to the soliton’s oscilla-
tion period in the cell.

Due to attenuation and the action of the electric cur-
rent, the intensity of the soliton’s electric field changes.
The variation of the electric field in the principal maxi-
mum of the soliton when it is confined for a period and
then released is shown in Fig. 2.

To read out the soliton from the cell means to supply
an additional energy. For a long delay in the cell, soliton
energy loss (11) must be taken into account.

In the case illustrated in Fig. 2, the soliton is ampli-

fied by applying the current  ≈ 1.5 × 103 A/m2 after
one oscillation period. The current is fed to the cell
when the soliton moves along the z axis.

The corresponding space–time distribution of the
field extrema when the soliton is confined and released

Ωpl
m

jx
W

jx
W

jx
R

TECHNICAL PHYSICS      Vol. 48      No. 5      2003



SOLITON DELAY LINE BASED ON A SEMICONDUCTOR SUPERLATTICE 579
is shown in Fig. 3. The positions of the inhomogeneities
bounding the cell are shown by thick vertical lines. The
soliton pulse moves along the bright curve.

CONCLUSION

The model proposed in this paper makes it possible
to produce an SCL with a time-quantized SDL. The
delay quantum is specified by the longitudinal dimen-
sion of the cell.
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Fig. 2. Time variation of the electric field intensity in the
principal maximum of a soliton upon confinement and
release.

Fig. 3. Space–time distribution of the electric field extrema
for a soliton delayed by one period.
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To delay a train of soliton pulses, one should use an
SDL with several cells provided with control elec-
trodes. It is possible to release solitons from the cell in
an order other than the order of their arrival at the SDL.
It is reasonable to release the solitons according to the
priority of information received.

An SDL (Fig. 1) and control elements can be based
on the AlxGa1 – xAs superlattice [12, 13] grown by
molecular beam epitaxy [10, 11]. Inhomogeneities in
the superlattice are usually created in the process of the
epitaxy by doping (with a separate beam) or by chang-
ing the content of the constituents.
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Abstract—The diffusion–segregation boron distribution in the silicon dioxide–silicon system upon oxidation
in different environments is studied by secondary-ion mass spectrometry and numerical simulation. The coef-
ficient of boron segregation at the SiO2/Si interface and the enhancement of boron diffusion in silicon as func-
tions of the type of oxidizing environment (dry oxygen, wet oxygen, and the presence of hydrochloric acid
vapor), the orientation of the silicon surface, and the temperature of oxidizing annealing are obtained. A qual-
itative model is proposed based on the assumption that the segregation mass transfer of boron through the
SiO2/Si interface is associated with the generation of nonequilibrium intrinsic interstitials. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Thermal oxidation, which is widely used in the tech-
nology of silicon semiconductor devices and integrated
circuits, is accompanied by the segregation of doping
impurities at the moving SiO2/Si interface. Studies of
this phenomenon concentrate mainly on the determina-
tion of the impurity segregation coefficient mseg, which
characterizes the interface properties in terms of segre-
gation mass transfer (mseg = C''/C', where C'' and C' are
the impurity concentrations at the SiO2/Si interface on
the side of SiO2 and Si, respectively). In most of the
experimental studies concerned with boron segregation
at the SiO2/Si interface, dry oxygen was used as an oxi-
dizing medium [1–6]. It was found that the coefficient
of boron segregation increases with temperature and
depends on the orientation of the silicon substrate. It
also appeared that even a small amount (2 × 10–3%) of
steam in dry oxygen has an effect on mseg and its tem-
perature dependence [7].

The considerable difference in the values of mseg
obtained in different studies under similar experimental
conditions [2–7] is noteworthy. The boron segregation
coefficient at the SiO2/Si [1–5] interface was deter-
mined indirectly from the design and process parame-
ters of the devices (the sheet resistance Rs and the p–n
junction depth xj) [1–3] or from the concentration pro-
file of boron in silicon [4, 5] in terms of analytical mod-
els for diffusion–segregation impurity distribution in
silicon. In order to obtain an analytical solution in the
simulation of impurity diffusion in a system with mov-
1063-7842/03/4805- $24.00 © 20580
ing interfaces, a number of simplifications were
adopted. In particular, in [5], the motion of the interface
was ignored, and in [1, 2, 4, 5], the kinetics of thermal
silicon oxidation was assumed to be parabolic, the
impurity diffusion coefficient in silicon was taken to be
constant, and a certain profile of the initial impurity dis-
tribution was specified.

Secondary-ion mass spectrometry (SIMS) allows
for the direct determination of the segregation coeffi-
cient from a jump of the signal at the SiO2/Si interface
[6, 7]. However, attendant effects (the difference in the
yields of elements of the same mass from silicon and its
dioxide, the difference in the ion-etching rates, the
presence of charge on the sample surface, etc. [8]) may
reduce the reliability of SIMS data. The above disad-
vantages of the indirect [1–5] and direct [6, 7] methods
can be a reason for the great spread in mseg obtained by
different authors.

The reliability of experimental results can be
improved by applying a complex approach where the
concentration distribution of boron in the SiO2/Si sys-
tem obtained by SIMS is analyzed in terms of a numer-
ical diffusion–segregation model that is free of restric-
tions inherent in analytical models and takes into
account the accelerating effect of thermal oxidation on
impurity diffusion in silicon.

It was shown experimentally that the addition of
gaseous HCl to dry oxygen affects the boron distribu-
tion in silicon [9]; however, boron segregation upon
oxidation in halogen-containing environments has not
been investigated. The aim of this work is to study the
003 MAIK “Nauka/Interperiodica”
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effect of an oxidizing environment (dry oxygen, wet
oxygen, and an HCl-containing atmosphere) on diffu-
sion–segregation boron distribution in the SiO2/Si sys-
tem upon the thermal oxidation of silicon.

EXPERIMENTAL

Dislocation-free KÉF-51 (111)Si wafers precoated
with a thermal silicon dioxide layer of thickness Wox =
0.1 µm were used as test objects. The wafers were irra-
diated by boron ions with an energy of 75 keV and a
dose of 5.3 × 1014 cm–2. Then the dioxide mask was
removed by etching and the samples were thermally
oxidized in the temperature range 1000–1100°C in dry
O2, wet O2, and wet HCl. The oxidizing environment
“dry O2” was produced by cooling oxygen to its dew
point 213 K with liquid-nitrogen traps. The wet O2 was
produced by passing oxygen through a bubbler with
water held at a temperature of 95°C. The “wet HCl”
oxidizing environment was produced by the evapora-
tion of a weak (1–3%) solution of hydrochloric acid on
the hot filament of a gas generator through which dry
oxygen was passed. The duration of oxidizing anneal-
ing was chosen such that the thickness Wox of the diox-
ide grown varied between 0.1 and 0.2 µm: 1–3 h in the
dry oxygen and 3.5–12 min in the wet O2 and wet HCl
environment.

SIMS studies were performed with a Cameca IMS-
300 ion microanalyzer equipped with a 100-eV-pass-

band energy analyzer.  ions were used as primaries.
The instrument errors involved in quantitative SIMS
analysis were minimized with special approaches
described in [8].

Along with these data, we used SIMS data for boron
concentration profiles [9] in silicon layers irradiated by
B+ ions with an energy of 50 keV and dose of 1 ×
1015 cm–2 and oxidized in dry oxygen where the HCl
vapor content was varied from 0 to 4%.

MATHEMATICAL MODEL 
OF DIFFUSION–SEGREGATION IMPURITY 

DISTRIBUTION

Experimental boron concentration profiles obtained
by SIMS were analyzed in terms of a model of diffu-
sion–segregation impurity distribution in the SiO2/Si
system with the moving gas/SiO2, x1(t), and SiO2/Si,
x2(t), interfaces. With diffusion mass transfer in SiO2
ignored, the impurity distribution is described by the
boundary-value Stefan problem stated as

(1)

(2)

1 Phosphorus-doped with a resistivity of 5 Ω cm.

O2
+

∂C'/∂t ∇ 1 α–( )UoxC'( ), x1 x x2,< <=

∂C''/∂t ∇ D C''( )∇ C''( ), x2 x l,< <=
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where t is time; x is the coordinate measured from the
position of the SiO2/Si interface at zero time, x2(0), and
directed inward to the silicon; l is the extent of the solu-
tion domain in the silicon within which the impurity
concentration is assumed to be constant throughout
annealing; α is the ratio of the thickness of oxidized sil-
icon to that of silicon dioxide Wox (α = 0.44); Uox =
dWox/dt is the silicon oxidation rate; ∇  ≡ ∂/∂x is the gra-
dient operator; and D is the impurity diffusion coeffi-
cient in silicon.

The system of Eqs. (1) and (2) was supplemented by
the fitting condition at the SiO2/Si interface, which
reflects the conservation of the total amount of the
impurity transferred through the interface due to the
motion of the interface and concentration gradient. If
the segregation process is assumed to be equilibrium,
this condition has the form

(3)

where mseg = (C ''/C ')eq is the equilibrium segregation
coefficient, which is defined as the ratio of the impurity
concentrations on the Si and SiO2 sides of the interface
when the system is in thermodynamic equilibrium.

The impurity diffusion coefficient in silicon
depends on the impurity concentration and oxidation
rate (so-called oxidation-enhanced diffusion (OED)).
In simulating OED, we will assume that boron in the
silicon lattice diffuses by the dual vacancy–interstitial
mechanism. In this case, the impurity diffusion coeffi-
cient is given by [10]

(4)

where D* is the impurity diffusion coefficient for the
equilibrium distribution of intrinsic point defects; fv and
fint are the relative fractions of the vacancy and intersti-
tial mechanisms of diffusion, respectively (fv + fint = 1);
av = V/Veq and aint = I/Ieq are the coefficients of supersat-
uration (or undersaturation) by vacancies and intrinsic
interstitials, respectively; and Veq, Ieq and V, I are the
concentrations of equilibrium and nonequilibrium
vacancies and intrinsic interstitials, respectively.

Under local equilibrium conditions, av = 1/aint
according to the law of mass action. From recent results
[11], fint ≅  0.9. Because of the weak time dependence of
OED [12], in (4) we used the average, aint = 〈I〉/Ieq,
instead of instantaneous, concentration of intrinsic
interstitials and assumed that averaging is coordinate-
invariant in the region of impurity localization.

Under equilibrium conditions, the coefficient of
boron diffusion via intrinsic point defects in silicon was
calculated from the concentration dependence [13]

(5)

where he is the factor of diffusion enhancement by the

internal electric field;  and  are the partial coeffi-
cients of diffusion via neutral and positively charged

D∇ C'' Uox α 1/mseg–( )C''+ 0,=

D D* f vav f intaint+( ),=

D* he Di
0 Di

+ p/ni+( ),=

Di
0 Di

+
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intrinsic point defects, respectively; p = 1/2[(C'' – ) +

 is the hole concentration; ni is the
intrinsic carrier concentration at the temperature of dif-
fusion; and Cd is the donor concentration in the sub-
strate.

The oxidation kinetics was described by the linear–
parabolic dependence

(6)

where kp and kl are, respectively, the parabolic and lin-
ear rate constants of silicon oxidation (for the values of
kp and kl, see [14]).

The experimental or model impurity distribution
arising immediately after the ion implantation into sili-
con or the two-phase SiO2/Si system was taken as the
starting distribution. The simulation of the ion implan-
tation process was carried out by using the four-param-
eter Pearson function with its moments given in [15].

To numerically solve Eqs. (1) and (2) with equilib-
rium boundary condition (3), we reduced the problem,
by changing the variables, to the fixed-interface prob-
lem. The latter was solved by factorization with uni-
form implicit conservative difference schemes [16].

Cd''

C'' Cd''–( )2
4ni

2+ ]

t Wox
2 /kp Wox/kl,+=

1019

1018

1017

Boron concentration, cm–3

1
2
3

4

5

6

0 0.2 0.4 0.6 0.8 1.0 1.2
x, µm

Fig. 1. Boron concentration profiles in the SiO2/Si system

after (1, 4) implantation (B+, 75 keV, 5.31 × 1014 cm–2)
through the 0.1-µm-thick oxide and annealing at 1050°C in
(2, 5) dry O2 for 2 h and (3, 6) wet HCl for 5 min. Symbols,
data points (SIMS); curves, simulation. (5) mseg = 0.19,
aint = 2.4 and (6) mseg = 0.28, α = 11.
EXPERIMENTAL RESULTS

The boron segregation coefficient mseg and the OED
parameter aint = 〈I〉/Ieq for boron were determined from
the best fit of the solution to problem (1)–(3) to experi-
mental boron concentration profiles in the SiO2/Si sys-
tem. Figure 1 compares the experimental boron profiles
(data points 1–3) with the results of simulation
(curves 4–6) for oxidation at 1050°C in (2, 5) dry O2
and (3, 6) wet HCl.

The SIMS measurements demonstrate that, in the
temperature range considered, the coefficients of boron
diffusion and segregation in the SiO2/Si system depend
on experimental conditions, particularly, on the oxidiz-
ing environment, surface orientation of the silicon, and
temperature. Figure 2 illustrates the temperature depen-
dence of the boron segregation coefficients at the
SiO2/Si(111) interface upon oxidation in the media
under study. As follows from Fig. 2, the boron segrega-
tion coefficients in the temperature range T = 1000–
1100°C meets the inequality mseg (dry O2) < mseg (wet
O2) < mseg (wet HCl). After annealing in the dry O2
atmosphere, the segregation coefficient varies from
0.16 to 0.22 and its temperature dependence can be

1
mseg

0.1
6.8 7.2 7.6 8.0 8.4 8.8

104/T, K–1

1
2
3

4

5

67

8

9

10

Fig. 2. Temperature dependence of mseg for boron at the
SiO2/Si(111) interface. The symbols refer to oxidation in
(1) dry O2, (2) wet O2, and (3) wet HCl. The curves are ana-
lytical mseg(T) dependences: (4) relationship (7), (5) mseg =
0.22, (6) mseg = 0.29, (7) from [6], (8) from [5], (9) from [3],
and (10) from [1].
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approximated by

(7)

Upon oxidation in the wet O2 and in wet HCl, mseg ≅
0.22 and 0.3, respectively, and is practically indepen-
dent of the temperature in both cases. The dotted lines
in Fig. 2 show dependences obtained elsewhere for the
oxidation of Si(111) in dry O2 [3, 5, 6] and steam [1].
Note that dependence (7) for dry O2 is close to the cor-
responding dependence in [6] also obtained by SIMS.
On the other hand, both differ substantially from the
corresponding dependences for dry O2 [3, 5] and steam
[1] obtained by indirect methods.

Figure 3 compares the temperature dependence of
mseg at the SiO2/Si(100) interface under oxidation in the
dry O2–HCl vapor (0–4%) atmosphere that is obtained
from the experimental boron profiles in silicon [9] with
the corresponding curves [2, 3, 5–7] (dotted lines) for
the oxidation of Si(100) in dry O2. In the absence of
HCl vapor, the experimental data are described by the
relationship

(8)

The addition of HCl vapor to dry oxygen decreases
mseg and changes the slope of the curve mseg(T); namely,

(9)

for 2% of HCl and

(10)

for 4% of HCl.
Note that dependence (8) for dry O2 is similar to the

corresponding dependences from [6, 7] obtained by
SIMS. However, these curves differ substantially from
those found in [2, 3, 5] by indirect methods.

The temperature dependences of the OED parame-
ter aint on the oxidation of Si(111) and Si(100) are
shown in Fig. 4. In the environments under study, the
relationship aint (dry O2) < aint (wet HCl) < aint (wet O2)
is fulfilled for Si(111) (curves 1–3). The increase in the
HCl content in dry O2 decreases aint in Si(100) (cur-
ves 4, 5) despite an increase in the oxidation rate by a
factor of 1.5 and 1.6 when 2 and 4% of HCl vapor,
respectively, are added to dry O2 at T = 1000°C [9], as
follows from the kinetic dependences Wox(t) found
experimentally in [14].

Figure 5 demonstrates the aint vs. oxidation rate Uox
dependences under different oxidation conditions. It is
seen that data points 1–1'' for annealing in dry O2 fit

fairly closely the relationship aint ~  obtained in [5]
(curves 6–6''). Oxidation in wet HCl and wet O2 (data
points 2–2'' and 3–3'') is described adequately by the

relationship aint ~  (curve 5), which was found in
[12] for steam oxidation. For all the environments, an

mseg 8.2 0.43 eV/kT–( ).exp=

mseg 2.3 102 0.74 eV/kT–( ).exp×=

mseg 1.92 103 1.01 eV/kT–( )exp×=

mseg 1.7 10
3

1.01 eV/kT–( )exp×=

Uox
0.3

Uox
0.25
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increase in the temperature of oxidative annealing
causes aint to decrease, although the average oxidation
rate 〈Uox〉  grows.

DISCUSSION
From the boron profiles obtained by SIMS and their

numerical analysis, it is found that the segregation coef-
ficient of boron mseg and the OED parameter aint depend
on oxidation conditions, in particular, on the oxidizing
atmosphere, silicon surface orientation, and tempera-
ture. At the same temperature, mseg (dry O2) < mseg (wet
O2) < mseg (dry wet HCl) (Fig. 2), mseg (dry O2) > mseg
(dry O2 + 2% HCl) > mseg (dry O2 + 4% HCl) (Fig. 3),
aint (dry O2) < aint (wet HCl) < aint (wet O2) (Fig. 4), and
aint (dry O2) > aint (dry O2 + 2% HCl) > aint (dry O2 +
4% HCl). Also, for dry O2, mseg (100) > mseg (111) (cf.
Figs. 2, 3) and aint (111) < aint (100) (Fig. 4).

The increase in aint upon annealing in wet O2 in
comparison with annealing in dry O2 is explained
merely by the increase in the oxidation rate. Earlier, it
was found that the supersaturation by intrinsic intersti-
tials, aint, which is responsible for the enhancement of
B and P diffusion in Si and an increase in the number of
stacking faults upon oxidation, varies as (Uox)b, where
b = 0.25–0.5 [5, 12]. Our data confirms this result, giv-

1

0.1

mseg

6.8 7.2 8.07.6 8.4 8.8
104/T, K–1

1
2
3

4

5

6

7

8

9 11

10

Fig. 3. Temperature dependence of mseg for boron at the
SiO2/Si(100) interface. The symbols refer to oxidation in
dry O2 with the addition of HCl vapor: (1) 0, (2) 2, and
(3) 4%. The curves are analytical mseg(T) dependences:
(4) relationship (8), (5) (9), and (6) (10). Curves 7–11 are
taken from [2], [3], [5], [6], and [7], respectively.
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1
7.0 7.2 7.4 7.6 7.8

104/T, K–1

1
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4
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6

Fig. 4. Temperature dependence of aint upon the oxidation
of Si(111) in (1) dry O2, (2) wet HCl, and (3) wet O2 and
upon the oxidation of Si(100) in dry O2 with the addition of
HCl: (4) 0, (5) 2, and (6) 4%.

10

aint

1
1 10 Uox, nm/min

1–1''

2

3'
4

5

1''

6''1'

2''
1

6

6'

3

3''
2'

2–2''
3–3''

Fig. 5. aint as a function of oxidation rate for annealing in
(1–1'') dry O2, (2–2'') wet HCl, (3–3'') wet O2, and (4) H2O
vapor [12]. Annealing temperature is (1–5) 1000, (1'–6')
1050, and (1''–6'') 1100°C. The symbols are data points; the
curves, empirical dependences from [5] (6–6'') and [12] (5).
ing b ≅  0.3 in dry O2 and b ≅ 0.25 in wet O2 and wet HCl
(Fig. 5).

When explaining the variation of mseg for boron with
the addition of steam to oxygen, Fair and Tsai [7] sug-
gested that metaboric acid HBO2, instead of boron
oxide B2O3, forms in SiO2 at the interface. Chemical
transformations in solid phases assume the presence of
some free volume Vf when the molecular volume of a
parent material (Ω(Si) ≅  0.02 nm3) is smaller than the
molecular volume of a reaction product (Ω(SiO2) ≅
0.044 nm3). Therefore, the effect of the oxidation
medium on mseg can be explained if we assume the pres-
ence of a free space in silicon dioxide at the interface
that provides the chemical interaction of silicon and
boron with the oxidant. This free space is also neces-
sary for a forming structural fragment, a silicon–oxy-
gen tetrahedron SiO4, and boron oxide to be built into
the network structure of silicon dioxide. The reactions
of silicon oxidation in dry O2 and wet O2 then have the
form

(11)

(12)

According to today’s concept [12, 17], the free vol-
ume arises when silicon atoms occupy interstices with
the formation of excess silicon interstitials in silicon
dioxide and nonequilibrium intrinsic interstitials in sil-
icon. The addition of HCl vapor to dry O2 accelerates
oxidation. A possible reason for this effect is the etch-
ing of the silicon surface by HCl vapor, as a result of
which silicon atoms are removed from regular lattice
sites at the interface on the side of silicon dioxide,
forming vacancies and thereby providing an additional
free space for silicon oxidation. The concentration of
silicon interstitials decreases due to their interaction
with the vacancies, as evident by the decay of the OED
of boron in silicon as the HCl content increases (Fig. 4,
curves 4–6). Upon oxidation in wet oxygen, where
steam is the major oxidant, the presence of HCl vapor
effectively diminishes the oxidation rate presumably
because of a decrease in the steam pressure [18]. Even-
tually, the OED of boron in silicon in wet HCl becomes
less pronounced than in wet O2 (Fig. 4; curves 2, 3).

Let us assume that impurity boron atoms interact
with free particles of the oxidant to form native oxide
B2O3 regardless of the oxidizing atmosphere. Since the
molecular volume of boron oxide (Ω(B2O3) ≅
0.063 nm3) per boron atom is larger than the silicon
atomic volume upon the formation of boron oxide and
also silicon oxide, the presence of a free volume  is
necessary. If oxygen as the major oxidant, boron oxide
forms according to the reaction

(13)

Si O2 V f+ +          SiO2,

Si 2H2O V f         SiO2 2H2.++ +

V f'

4B 3O2 V f'+ +         2B2O3.
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With HCl vapor added to dry oxygen, the free vol-
ume  increases and boron oxidation at the interface
on the side of silicon dioxide is accelerated according
to reaction (13). Therefore, the segregation mass trans-
fer of boron from silicon to silicon dioxide through the
SiO2/Si interface is intensified. This shows up as the
decrease in mseg with increasing HCl content in the oxi-
dizing medium (Fig. 3).

In wet O2, where H2O molecules are major oxidiz-
ing particles, boron oxidation also needs a free volume:

(14)

The addition of HCl vapor to wet oxygen reduces
the vapor pressure of the oxidant and, according to
reaction (12), decreases the oxidation rate. This causes
a free volume to appear. As follows from reaction (14),
the same reason retards the formation of B2O3 and
makes the segregation mass transfer of boron from sil-
icon to silicon dioxide through the SiO2/Si interface
difficult. This shows up in the increase in the segrega-
tion coefficient: mseg (wet HCl) > mseg (wet O2) (Fig. 2).
Because of the reduced oxidation rate and the etching
effect observed, the density of intrinsic interstitials and
the OED parameter aint in wet HCl are lower than in
HCl-free wet oxygen: aint (wet HCl) < aint (wet O2).

Note that boron oxidation at the interface may go in
parallel with boron reduction from B2O3 by free silicon
interstitials:

(15)

The equilibrium constant of reaction (15) is given
by

(16)

where , CB, CSi,  are the concentrations of
particles involved in the reaction.

The thermodynamic calculation [19] showed that
the equilibrium constant of reaction (15) decreases with
increasing temperature; accordingly, the reduction of
boron by silicon slows down. This is expected to
increase the boron oxidation rate in concurrent reac-
tions (13) and (14) and to decrease mseg with growing
temperature of oxidation annealing. As a result, the
temperature dependence of mseg changes. The increase
in the concentration of silicon interstitials with oxida-
tion rate must increase, according to reaction (15), the
rate of boron reduction by silicon and suppress the seg-
regation mass transfer of boron from silicon to silicon
dioxide through the interface. This explains the
increase in mseg and the weakening of its temperature
dependence upon annealing in wet O2 compared with
annealing in dry O2.

The effect of the silicon surface orientation on the
boron segregation coefficient in the SiO2/Si system,
mseg (100) > mseg (111), upon oxidation in dry O2, which

V f'

4B 6H2O V f'+ +          2B2O3 6H2.+

2B2O3 3Si+         3SiO2 4B.+

K CSiO2

3 CB
4 /CSi

3 CB2O3

2 ,=

CSiO2
CB2O3
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is revealed in this paper, is in agreement with the results
obtained in [3, 6]. Note that the reverse inequality
found in [4, 5] may be related to the indirect determina-
tion of mseg and the neglect of the effect of surface ori-
entation on boron diffusion enhancement by oxidation.

The effect of orientation on mseg was explained [6]
under the assumption that mseg measured is nonequilib-
rium for at least one of the surface orientations. The
character of the segregation process may really change
in the case of kinetic impurity trapping by growing
dioxide; however, this effect occurs at relatively low
temperatures and high oxidation rates [20, 21]. In our
case, this would mean that mseg increases for the (111)
orientation with a higher oxidation rate, which is incon-
sistent with the data of [3, 6] and ours.

The segregation theory based on the equilibrium
dynamics of interfacial chemical reactions [7] does not
predict the orientation dependence of mseg. It is taken
into account formally by including the orientation
dependence of the boron activity coefficient in silicon
dioxide. Reasons for the phenomenon are not consid-
ered.

The oxidation of Si(111) proceeds at a higher rate
than that of Si(100), Uox(111) > Uox(100), due to a
higher density of available bonds on the (111) surface.
However, for the OED parameter of boron, we have aint
(111) < aint (100) (Fig. 4; curves 1, 4). This result may
be explained, on the one hand, by the loss of the orien-
tation dependence of the oxidation rate in the parabolic
oxidation regime and, on the other hand, by an
increased surface density of traps on the Si(111) sur-
face, which act as sinks for excess silicon interstitials
[17]. Therefore, the SiO2/Si(111) interface will have a
lower effective rate of generation of intrinsic intersti-
tials and, correspondingly, a higher rate of free volume
generation than the SiO2/Si(100) interface. In view of
reaction (13), this will accelerate boron oxidation at the
interface on the side of silicon dioxide and, thus, favor
the segregation mass transfer of boron from silicon to
silicon dioxide through the SiO2/Si interface; as a
result, mseg (111) < mseg (100).

CONCLUSIONS

Thus, we studied the diffusion–segregation boron
distribution upon the thermal oxidation of silicon in dif-
ferent environments, using the complex approach. It
combines taking concentration impurity profiles in the
SiO2/Si system by SIMS and their analysis in terms of
the numerical diffusion–segregation model. The depen-
dence of the boron segregation coefficient at the
SiO2/Si interface and oxidation-enhanced diffusion
parameter of boron in silicon on the type of the oxidiz-
ing medium (dry O2, wet O2, and the presence of HCl
vapor in them), the orientation of the silicon surface,
and the annealing temperature was found. HCl vapor
present in dry oxygen and in wet oxygen increases and
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decreases, respectively, the segregation mass transfer of
boron from silicon to silicon dioxide through the inter-
face, while OED is suppressed in both cases. Based on
the experimental data obtained, we suggested a qualita-
tive model that relates the segregation mass transfer of
boron through the SiO2/Si interface to the generation of
nonequilibrium intrinsic interstitials under thermal oxi-
dation.
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Abstract—The thermal expansion coefficients and the thermal conductivity of Bridgman-grown crystals of
CuGa1 – xInxTe2 solid solutions are investigated. It is found that the thermal expansion coefficient varies with x
linearly, while the thermal conductivity is minimal when x = 0.5. The Debye temperature and the rms dynamic
atomic displacements are calculated from experimental data. It is shown that the Debye temperature decreases
and the rms displacements in the crystal lattice sharply increase as the In content in the solid solutions grows.
© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

CuInTe2 and CuGaTe2 compounds, as well as
CuGa1 – xInxTe2 solid solutions, crystallize into the chal-

copyrite structure (space group –142d) and are the
electronic chemical analogues of II–VI compounds [1].
Such properties as the absence of the inversion center,
high nonlinear susceptibility, natural photopleochro-
ism, and many others make these semiconductors
promising for quantum and solid-state electronics
[2−4]. These semiconductors were studied at length in
[5–8].

The physicochemical and optical properties of
CuGa1 – xInxTe2 solid solutions were examined in
[9, 10]. In this work, we for the first time investigate
their electrical and thermal properties.

EXPERIMENTAL

CuInTe2 and CuGaTe2 ternary compounds, as well
as CuGa1 – xInxTe2 solid solutions, were grown by the
horizontal Bridgman method. The metals and tellurium
were contained at opposite ends of an evacuated quartz
ampoule. The ampoule was placed in a two-zone hori-
zontal furnace. The zone with the metal charge was
heated to 1100–1170 K (depending on the composition
of the compound or solid solution), and the zone with
tellurium was heated to 1000 K with a rate of ≈100 K/h
and kept at this temperature for 3 h. Then, oriented
crystallization was accomplished by decreasing the
melt temperature to 1000 K with a rate of ≈2 K/h. At the
same temperature, the homogenizing annealing of the
crystals grown was carried out for 500 h. After the
annealing, the CuGa1 – xInxTe2 ingots had large blocks
with maximal dimensions of 10 × 4 × 4 mm.

The compositions of the CuInTe2 and CuGaTe2 ter-
nary compounds, as well as the CuGe1 – xInxTe2 solid

D2d
12
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solutions, were determined by electron probe X-ray
spectrum microanalysis with a Camera-MBX X-ray
microanalyzer (Fig. 1). Calculated and experimental
data are seen to be in good agreement.

The equilibrium state of the compounds and the
homogeneity of the solid solutions were checked by
X-ray diffraction analysis by means of a DRON-3M
diffractometer (CuKα radiation) with a nickel filter. Dif-

Fig. 1. Temperature dependence of the thermal expansion
coefficient for (1) CuInTe2, (2) CuGa0.4In0.6Te2,
(3) CuGa0.6In0.4Te2, and (4) CuGaTe2.
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fractograms taken from different parts of ingots of both
the compounds and solid solutions contained a set of
lines characteristic of the chalcopyrite structure. From
the diffraction angles measured, we calculated the
interplanar spacings for various planes of diffraction
and from the interplanar spacings, the cell parameters
by the least-squares method. The cell parameters were
found to be a = 6.184 ± 0.002 Å, c = 12.371 ± 0.005 Å
for CuInTe2 and a = 6.024 ± 0.002 Å, c = 11.924 ±
0.005 Å for CuGaTe2, which agrees with data in [5–8].
These values vary with x linearly (in accordance with
the Vegard law).

The homogeneity of the CuGa1 – xInxTe2 solid solu-
tions was judged from the resolution of high-angle
(2Θ > 60°) lines in the diffractograms.

The Hall effect on the crystals grown and their resis-
tivity ρ were measured by the standard technique
[11, 12]. Specimens measuring 6 × 2 × 1 mm on aver-
age were cut from the crystals. Contacts to the speci-
mens were made of silver paste (Kontaktol) fired-in at
a temperature of 520 K in the hydrogen atmosphere.
The measurements were performed in a vacuum at
300 K. The electrical parameters were calculated by
formulas given in [11, 12]. To eliminate stray effects,
four measurements at two directions of the current
through the specimen and two directions of the mag-
netic field were made. As follows from the measure-
ments of the resistivity and Hall effect that were made
with different pair of probes, the crystals were electri-
cally uniform: the spread in the measurands did not
exceed 4%.

RESULTS AND DISCUSSION

As follows from the measurements, all the crystals
have the conductivity of the p type. For the CuInTe2 and
CuGaTe2 ternary compounds and also for the
CuGe1 − xInxTe2 solid solutions, ρ = (1.5–10) Ω cm; the
hole mobility, 20–50 cm2/(V s); and the hole concentra-
tion, (2–8) × 1017 cm–3. The decreased mobility (to
20 cm2/(V s)) and the increased carrier concentration
(8 × 1017 cm–3) for x in the intermediate range (x = 0.4–
0.6) are noteworthy. This can be explained by scattering
by lattice defects.

The thermal expansion of the ternary compounds
and solid solutions was measured with a quartz
dilatometer, where the thermal expansion of solids is
measured relative to the thermal expansion of quartz
[13]. Prior to the measurements, the instrument was
evacuated and filled with an inert gas to prevent the
decomposition and oxidation of the specimen. The tem-
perature was measured by a Chromel–Copel thermo-
couple with an accuracy of no worse than 5%. The
specimen was heated with a rate of 3–5 K/min, which
provided reproducible results. The temperature depen-
dence of the relative elongation ∆l/l0 was taken from the
specimens with average dimensions of 3 × 3 × 8 mm.
Both for CuInTe2 and CuGaTe2 ternary compounds
and for the solid solutions, the temperature curves
∆l/l0(T) exhibit a step near the α–β phase transition.
The phase transition temperatures for these materials
that were obtained in this work from the thermal expan-
sion measurements are in agreement with differential
thermal analysis (DTA) data [9].

The temperature dependences of the linear thermal
expansion coefficient αl for the ternary compounds and
solid solutions are shown in Fig. 1. Both for the com-
pounds and the solid solutions, αl linearly grows with
temperature in the range 80–290 K. Then, the growth of
αl slows down up to the phase transition temperature.
Near the phase transition, the thermal expansion coeffi-
cient changes λ-wise.

Thus, as follows from the DTA data [9] and our
experimental dependences αl = f(T), the phase transi-
tions in CuInTe2 and CuGaTe2 ternary compounds and
in CuGa1 – xInxTe2 solid solutions are first-order transi-
tions, since they are accompanied by thermal effects.
However, unlike typical first-order phase transitions,
which occur at a constant temperature, the phase tran-
sitions in these materials are observed in a temperature
range with a λ-wise change in αl; in this respect, they
are akin to second-order phase transitions.

At the same time, it is known that I–III–VI2 ternary
compounds exhibit phase transitions of two types [14],
which are due to cation–cation and cation–anion disor-
der. High-temperature X-ray studies [15, 16] showed
that, due to cation–cation disorder, these ternary com-
pounds experience the transition from the chalcopyrite
to sphalerite (zinc blende) structure. Therefore, we may
assume that the solid-phase transformations observed
in CuGa1 – xInxTe2 solid solutions are also the chalcopy-
rite sphalerite phase transition by analogy with I–III–
VI2 ternary compounds.

Physically, the solid-phase transformations
observed in these substances (which, as was indicated
above, are likely to be the phase transition from ordered
lower symmetry chalcopyrite to random higher sym-
metry sphalerite) can be represented as follows. In the
case of cation–cation disorder, which takes place in the
range 15–30 K, some of the atoms in the cation sublat-
tice exchange sites. As long as the probabilities of occu-
pation of different sites by cations are unequal, these
sites remain nonequivalent and the structure remains
unchanged (chalcopyrite). When these probabilities are
equalized, all the sites in the cation sublattice become
equivalent and the chalcopyrite structure turns to the
higher symmetry sphalerite structure. To substantiate
the above considerations, the ternary compounds and
solid solutions heated above the temperature of the
phase transition corresponding to cation–cation disor-
der were quenched by immersing in liquid nitrogen.
The high-temperature sphalerite modification was
retained in none of the materials. This fact also indi-
cates that the phase transformations observed in the
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
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materials studied are close to second-order phase tran-
sitions, since they are accompanied by overheating and
overcooling.

Figure 2 shows isotherms for the concentration
dependencies of the thermal expansion coefficient. It is
seen that αl grows linearly with the gallium content in
the solid solutions.

From the melting points and thermal expansion
coefficients found experimentally, we calculated the
Debye temperatures Θ and rms atomic displacements

 using the following formulas [17, 18]:

(1)

(2)

(3)

where αl is the thermal expansion coefficient,  is the
mean atomic mass, V is the mean atomic volume, Tm is
the melting point, and D(Θ/T) is the Debye function.

The results of calculation are listed in Table 2, from
which it follows that the Debye temperature decreases
and the rms atomic displacements in the lattice increase
as the gallium content in the solid solutions rises. Such
behavior of these parameters suggests that chemical
bonds in CuGa1 – xInxTe2 solid solutions loosen with
increasing gallium concentration.

The thermal conductivity χ of the compounds and
solid solutions was measured with the absolute station-
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Fig. 2. Concentration dependence of the thermal expansion
coefficient for CuGa1 – xInxTe2 solid solutions at (1) 100,
(2) 300, and (3) 600 K.
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ary method [19] at temperatures between 300 and
350 K on specimens with the dimensions mentioned
above. The accuracy of measurement was 6%. The tem-
perature dependence of χ is depicted in Fig. 3. The ther-
mal conductivity of the compounds varies as T–1 in the
range 300–400 K, which is typical of three-phonon
scattering processes. This result agrees with the Peierls
theory, according to which χ is inversely proportional
to temperature at temperatures above the Debye tem-
perature. In this case, three-phonon scattering takes
place, during which the phonons exchange energy. As a
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Fig. 3. Temperature dependence of the thermal conductivity
for CuGa1 – xInxTe2 solid solutions at x = 0.0 (1), 0.1 (2), 0.2
(3), and 1.0 (4).
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Table 1.  Electron probe microanalysis data for CuInTe2 and CuGaTe2 compounds and CuGa1 – xInxTe2 solid solutions

x
Cu, at. % Ga, at. % In, at. % Te, at. %

I II I II I II I II

1.0 25.0 25.4 25.0 24.8 – – 50.0 49.8

0.9 25.0 25.3 22.5 22.4 2.5 2.4 50.0 49.9

0.8 25.0 25.1 20.0 19.8 5.0 5.4 50.0 49.7

0.6 25.0 24.8 15.0 15.3 10.0 9.4 50.0 50.5

0.5 25.0 25.2 12.5 12.7 12.5 12.2 50.0 49.9

0.4 25.0 24.7 10.0 10.1 15.0 14.8 50.0 50.4

0.2 25.0 24.8 5.0 5.1 20.0 20.3 50.0 49.8

0.0 25.0 24.9 – – 25.0 24.7 50.0 50.4

Note: I, calculation; II, experiment.

Table 2.  Debye temperatures and rms dynamic atomic displacements for CuInTe2, CuGaTe2, and CuGa1 – xInxTe2

x , g V, cm3 Θα, K , K , Å

0.0 108.4 17.9 163 165 0.214

0.2 106.1 17.6 166 168 0.210

0.4 103.9 17.3 171 171 0.207

0.5 102.8 17.1 173 173 0.206

0.6 101.6 17.0 175 175 0.205

0.8 99.4 16.7 179 180 0.202

1.0 97.1 16.4 185 185 0.198

A Θ
Tm û
result of this process, one phonon disappears and two
new phonons appear or two phonons disappear and one
new phonon originates. At higher temperatures, χ var-
ies as Tn, where 0 < n < 1, which means that scattering
by impurities and lattice defects dominates. Accord-
ingly, the temperature dependence of χ is weak. In the
solid solutions, the power law T–n is observed through-
out the temperature range studied; hence, the basic
scattering mechanism is scattering by lattice defects.

Figure 4 shows the concentration dependence of the
thermal conductivity for the CuGa1 – xInxTe2 solid solu-
tions. This curve has a minimum near x = 0.5. Such
behavior (i.e., the considerable decrease in χ of the
solid solutions compared with that of the compounds)
is due to the disturbance of the lattice periodicity in the
solid solutions because of the random distribution of
the atoms over equivalent sites. In the solid solutions,
dissimilar atoms, though occupying regular lattice posi-
tions (sites), are ordered improperly. Because of this,
the atomic masses and force constants vary randomly
from site to site, causing phonon scattering. Therefore,
the solid solutions can be viewed as intermediates
between the crystalline state (the crystal lattice persists)
and the amorphous state (the disordered arrangement of
the atoms). For the solid solutions, the disorder is max-
imal at x near 0.5; hence, the thermal conductivity is
also minimal at this point.
CONCLUSIONS

The thermal expansion and thermal conductivity of
CuInTe2 and CuGaTe2 compounds, as well as of Bridg-
man-grown CuGexIn1 – xTe2 solid solutions, were mea-
sured. It was found that ∆l/l0(T) experiences a jump
near the α–β phase transition, while αl changes λ-wise.
It is shown that the thermal expansion coefficient varies
linearly with x, while the thermal conductivity has a
minimum at x = 0.5.
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Abstract—The surface of hydrogen-sensitive GaAs Schottky diodes is modified by nonpolishing etching and
by producing quantum wells and quantum dots in the space-charge region of the semiconductor. The sensitivity
to hydrogen is found to increase by a factor of 8–37 after the etching and by two or three orders of magnitude
after the introduction of quantum wells and dots. It is shown that the increased sensitivity is associated with the
lowering of the barrier at the Pd/GaAs interface, the retardation of hydrogen diffusion into GaAs due to the pres-
ence of strained quantum-size layers, and an increase in the recombination current. The presence of the recom-
bination component is supported by luminescence from the quantum wells and quantum dots, as well as from
the GaAs substrate. The etch composition is shown to be a decisive factor in raising the sensitivity. © 2003
MAIK “Nauka/Interperiodica”.
INTRODUCTION

Microelectronic hydrogen sensors can be made of
various MIS structures (including MIS transistors) and
Schottky diodes (SDs) with a catalytically active Pd
electrode [1]. MIS diodes and Si-based transistors offer
the highest sensitivity to hydrogen: the maximal shift of
the hydrogen response reaches 0.6 V, and the detectivity
is as low as 10–5 vol % [2, 3]. These sensors are, how-
ever, difficult to fabricate (an elaborate technology is
needed to provide a low density of surface states at the
Si/SiO2 interface), and, in addition, they require sophis-
ticated instruments for detecting the response (by the
capacitance or the shift of the flat-band voltage at the
semiconductor surface). SDs with a thin oxide spacer
are easier to fabricate and offer wider possibilities in
detecting the signal (by the capacitance, current, or
photovoltage). However, their sensitivity to hydrogen is
lower: the maximal voltage shift of the I–V forward
branch is ≈0.2 V, and the detectivity is ~10–2% in terms
of current and ~10–4% in terms of photovoltage [4–7].

This work was aimed at improving the hydrogen
sensitivity of Pd/thermal oxide/GaAs SDs. The adsorptiv-
ity of the hydrogen-sensitive surface was expected to be
enhanced owing to the developed surface relief obtained
by nonpolishing etching [8] and the retardation of hydro-
gen diffusion into the GaAs substrate by strained quan-
tum-size layers with InAs/GaAs quantum dots (QDs) and
InGaAs/GaAs quantum wells (QWs) introduced into the
space-charge region (SCR) of GaAs [9].

EXPERIMENTAL

SDs were fabricated on ≈1-µm-thick epitaxial
n-GaAs layers with an electron concentration n0 ≈
1063-7842/03/4805- $24.00 © 20592
1016 cm–3. The layers were grown by atmospheric-pres-
sure metallorganic vapor-phase epitaxy on n-GaAs sub-
strates (n0 ≈ 1016 cm–3) misoriented by +3° relative to
the (100) plane. Prior to the evaporation of the metallic
electrode, the GaAs surface of several diodes was mod-
ified by etching in a nonpolishing ferrocyanide etch of
composition (0.8MK3[Fe(CN)6] in a 0.3M solution of
KOH) : H2O : glycerol = 1 : 5 : 8 and in a Sirtl etch
(CrO3 (30%) : HF = 1 : 1). The etch rate of GaAs in the
ferrocyanide etch was 2–4 nm/min, and the etch time
was varied from 10 to 30 min. The etch rate of GaAs in
the Sirtl etch was ≈4 µm/min, and the etch time was ≈3,
11, and 30 s. In some of the structures, 5-nm-thick
InxGa1 – xAs (x = 0.2) QWs and InAs QDs (five mono-
layers) were introduced into the SCR of the semicon-
ductor at a distance of 15 nm from the surface through
a 10-nm-thick spacer. The sequence of the quantum-
size layers was either QW/spacer/QD or
QD/spacer/QW, starting from the epitaxial film surface.
The QWs and QDs were produced following the tech-
nology described in [10, 11]. Before Pd was applied,
the structures had been heated in air to 300°C for
30 min to grow 3- to 4-nm-thick thermal oxide. Semi-
transparent Pd electrodes of thickness ≈20 nm were
applied on the oxidized semiconductor surface by ther-
mal evaporation in vacuo. The evaporation conditions
were standard for GaAs SDs: preheating to 200°C and
the deposition of Pd on the substrate heated to 100°C
[12]. Such conditions are known to provide good I–V
characteristics. The size of the Pd electrode was
≈2.35 × 10–2 cm2.

We took the I–V characteristics in the dark and
under illumination by undecomposed light at room
temperature and a temperature of 100°C that is optimal
003 MAIK “Nauka/Interperiodica”
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Fig. 1. AFM images of the oxidized surfaces of the semiconductor and metal. (a) GaAs surface before etching, (b) surface of Pd
applied on the original GaAs surface, (c) semiconductor surface after etching in the ferrocyanide etch, and (d) semiconductor sur-
face after etching in the Sirtl etch.
for gas sensors [5]. The measurements were made in an
air flow and in the flow of a hydrogen-containing
(0.6 vol %) air–argon mixture by the technique
described in [5]. The photosensitivity S of the small-
signal photovoltage was measured as a function of the
photon energy hν at room temperature. The spectral
curves of electroluminescence, IEL(hν), were taken at a
pulsed forward bias of amplitude ≈1 V and current
≈30 mA, and those of photoluminescence, IPL(hν),
were recorded at 77 K.

The surface relief of the Pd and semiconductor was
examined with a Topometrix® Accurex™ TMX-2000
atomic force microscope (AFM) in the noncontact
mode. To quantitatively characterize the surface topog-
raphy, we calculated the mean roughness h of the sur-
face and its fractal dimension F. According to [13],
fractal dimension describes surface more adequately
and allows one to identify various types of surfaces by
using the only number lying in the interval from 2.00
(perfectly smooth surface) to 3.00 (highly irregular
porous surface). The fractal dimension was found by
calculating the number of cells [14].
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
RESULTS AND DISCUSSION

1. Surface Morphology

Figure 1 shows the AFM image of the (a) oxidized
and (b) Pd-coated GaAs surface. Growth steps in the
form of ridges are clearly seen. The mean roughness of
the oxidized surface of the epitaxial film is ≈0.5 nm,
and its fractal dimension is ≈2.54. The Pd surface
almost copies the microrelief of the oxidized surface
(h ≈ 0.6 nm, F ≈ 2.50). The ridges on the Pd surface are
somewhat broadened, because the Pd film rounds irreg-
ularities on the GaAs surface. The broadening corre-
lates with the metal film thickness.

Figure 1 also shows the morphology of the oxidized
GaAs surface after etching in the (c) ferrocyanide and
(d) Sirtl etchs. From Figs. 1a, 1c, and 1d, it follows that
the etching modifies greatly the surface morphology:
the ridges give way to 160 × 100-nm hills with a density
of 1010 cm–2 and ~109 cm–2 on the surfaces etched in the
ferrocyanide and Sirtl etchs, respectively. For the
former surface, h ≈ 8.0 nm and F ≈ 2.33; for the latter,
h ≈ 4.0 nm and F ≈ 2.31. As for the as-prepared GaAs
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Table 1.  Effect of substrate etching in the Sirtl etch on the parameters of hydrogen-sensitive GaAs SDs at T = 27°C

∆d, µm ϕb, V m Nss , (eV cm)–1 Voc, V jsc, A/cm2

0 0.89 1.17 2.6 × 1012 0.5 9.5 × 10–3

0.2 0.76 1.36 5.8 × 1012 0.37 9.5 × 10–3

0.7 0.67 1.44 7.1 × 1012 0.29 6.7 × 10–3

2.0 0.61 1.83 1.4 × 1013 0.22 4.5 × 10–3

 
Table 2.  Effect of substrate etching in the Sirtl etch on the parameters of hydrogen-sensitive GaAs SDs at T = 100°C

∆d, µm ϕb, V ∆ϕb, V ∆Voc, V ∆j, A/cm2 ∆je/∆jo,
experiment

∆je/∆jo,
theory

0 0.86 0.17 0.16 4.9 × 10–4

0.2 0.80 0.16 0.23 4.0 × 10–3 8 3

0.7 0.75 0.13 0.20 4.5 × 10–3 9 3

2.0 0.70 0.14 0.15 1.8 × 10–2 37 60

Table 3.  Effect of substrate etching in the ferrocyanide etch on the parameters of hydrogen-sensitive QW/spacer/QD and
QD/spacer/QW GaAs SDs at T = 27°C

Device structure ∆d, nm ϕb, V m Nss , (eV cm)–1 Voc, V jsc, A/cm2

QW/spacer/QD 0 0.64 1.17 2.8 × 1012 0.20 8.9 × 10–3

25 0.74 1.95 1.6 × 1013 0.23 4.2 × 10–5

50 0.81 1.4 6.4 × 1012 0.48 8.1 × 10–3

QD/spacer/QW 0 0.67 1.17 2.8 × 1012 0.23 7.6 × 10–3

25 0.73 1.83 1.4 × 1013 0.21 3.6 × 10–4

GaAs 0 0.86 1.15 2.3 × 1012 0.5 9.5 × 10–3

Table 4.  Effect of substrate etching in the ferrocyanide etch on the parameters of hydrogen-sensitive QW/spacer/QD and
QD/spacer/QW GaAs SDs at T = 100°C

Device structure ∆d, nm ϕb, V ∆ϕb, V ∆Voc, V jsc, A/cm2 ∆je/∆jo,
experiment

∆je/∆jo,
theory

QW/spacer/QD 0 0.69 0.09 0.18 7.4 × 10–2

25 0.86 0.10 0.12 1.0 × 10–4 740 292

50 0.89 0.26 0.26 1.7 × 10–3 43 32

QD/spacer/QW 0 0.75 0.20 0.19 9.0 × 10–2

25 0.84 0.12 0.12 4.8 × 10–4 187

GaAs 0 0.86 0.17 0.16 4.9 × 10–4 60
surface, the Pd surface almost copies the microrelief of
the etched GaAs substrate. The morphology of the
etched GaAs surface is practically independent of the
etch time.

2. Electrophysical Characteristics

Measured and calculated data obtained from the I–V
characteristics obtained with and without illumination
are summarized in Tables 1–4. In the tables, ϕb is the
barrier height at the Pd/GaAs interface (estimated by
extrapolating the exponential portion of the forward
branch to V = 0 under the assumption that Schottky
emission prevails), m is the ideality factor of the diode
that is found from the slope of the exponential portion
[11], Voc is the open-circuit voltage, and jsc is the short-
circuit current. The density of surface states (SSs),
which exchange charge carriers with the semiconduc-
tor, was calculated from the experimental value of m by
the formula [12]

(1)m 1
dox

εox
-------

εs

w
----

q2Nssdox

ε0εox
--------------------,+ +=
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where q is the charge of an electron; Nss is SS density in
(eV cm)–1; dox is the oxide thickness; εox, εs, and ε0 are
the relative permittivity of the oxide, relative permittiv-
ity of the semiconductor, and the absolute dielectric
constant of free space, respectively; and w is the thick-
ness of the SCR in the semiconductor. When calculat-
ing Nss, we put εox = 9 (the value for gallium arsenate
[6]) and dox = 3 nm.

The other parameters listed in the tables reflect the
effect of hydrogen with a concentration of 0.6% at a
temperature of ≈100°C: ∆ϕb is the change in the barrier
height, ∆Voc is the change in the open-circuit voltage
(photovoltage), and ∆j is the hydrogen-related change
in the reverse current of the diode when a voltage V =
−0.3 V is applied to the Pd electrode.

2.1. GaAs Schottky diodes. Etching in the ferrocy-
anide solution does not change ϕb, m, Voc, Nss, and the
sensitivity to hydrogen. Consequently, the variation of
the microrelief of the GaAs and Pd surfaces (cf.
Figs. 1a, 1c) does not change the catalytic activity of
the Pd surface with respect to hydrogen.

Tables 1 and 2 list the parameters of the diodes
etched in the Sirtl etch for 3, 11, and 30 s. It is seen that
all the parameters (ϕb, m, Voc, Nss, and the sensitivity to
hydrogen) change considerably after the etching. The
absolute sensitivity to hydrogen in terms of the change
∆j in the reverse current through the diode increases by
a factor of 8 to 37 depending on the thickness ∆d of the
etched-off layer (column 5 in Table 2).

The increase in the sensitivity goes in parallel to the
decrease in the potential barrier. The barrier photovolt-
age decreases by 0.28 V, which is consistent with the
decrease in ϕb (columns 2 and 5 in Table 1).

As follows from Table 2, the decrease in the barrier
height ∆ϕb ≈ ∆Voc is almost independent of its initial
value. However, a relative hydrogen-related increase in
the current that is associated with a decrease in ϕb can
be found (under the assumption that Schottky emission
prevails) from the obvious relationship

(2)

where the subscripts e and o refer to the etched and
original surfaces, respectively.

Relationship (2) is valid when ∆j is much larger than
the difference in the current densities before and after
exposure to hydrogen (which was fulfilled in practice).
The calculated data are given in column 7 (Table 2). In
column 6 of this table, this ratio is obtained by directly
dividing the hydrogen-related changes in the reverse
current for the diodes with the etched and original sur-
faces by each other. The ratios in columns 6 and 7 are
seen to agree only by one order of magnitude. When
m < 1.5, the increase in the sensitivity exceeds that pre-
dicted from the change in the barrier height; when m ≈
1.8, the situation is reverse. In both cases, the presence

∆ je

∆ jo
-------- q

ϕb,o ϕb, e–( ) ∆ϕb, e ∆ϕb, o–( )+
kT

------------------------------------------------------------------------
 
 
 

,exp=
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of the oxide and an increase in the SS density (corre-
sponding to the increase in m) must suppress to an
extent the effect of hydrogen due to a decrease in the
barrier height: because of the influence of the oxide
resistance in the former case [6] and the enhanced
screening of surface states in the latter. With m ≈ 1.8,
the screening is so effective that the increase in the sen-
sitivity is actually smaller than predicted from the
decrease in the barrier height. The substantial decline in
the short-circuit current, which is observed in this case,
is an indication of enhanced recombination in the
diode.

Since the increase in the sensitivity to hydrogen
after etching is, as a rule, higher than predicted from the
decrease in the barrier height, one might assume that
another reason is a change in the catalytic activity of the
Pd surface and oxide/Pd interface, which is associated
with the modified surface relief. However, this argu-
ment has little force, because the GaAs surface etched
in the Sirtl solution is smoother than the original sur-
face, as judged from the fractal dimension, and the sur-
face etched in the ferrocyanide solution. The postetch-
ing increase in the reverse current and sensitivity may
be partially related to the growth of the recombination
component of the current. The presence of the recombi-
nation component is directly evident from interband
electroluminescence observed in the diodes (Fig. 2,
curve 2). Thus, it can be concluded that the reason for
the postetching increase in the hydrogen sensitivity is
the modification of the GaAs surface by semiconduc-
tor–etch chemical interaction.

Figure 3 shows the small-photovoltage photosensi-
tivity spectra before and after etching the GaAs surface.
From these spectra, according to [15], one can detect
surface states localized in the lower half of the energy
gap or deep levels. The photosensitivity range is rather
wide, extending from 0.9 to 1.35 eV. In this range, the
photosensitivity grows with energy nearly exponen-
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IEL, IPL, arb. units

0.9 1.0 1.1 1.2 1.3 1.4 1.5
hv, eV

Fig. 2. (1, 2) Electroluminescence and (3) photolumines-
cence spectra: (1) QW/spacer/QD GaAs diode, (2) GaAs
diode, and (3) semiconductor with QWs and QDs.
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tially, as usually does the SS density on the real GaAs
surface (toward the valence band top) [6]. With increas-
ing etch time, the photosensitivity somewhat rises.
When the barrier passes into the substrate (the thick-
ness of the etched-off layer is ≈2 µm), the photosensi-
tivity grows four times in the range 1.28–1.38 eV pos-
sibly because of an increase in the density of donor sur-
face states. This qualitatively agrees with the increase
in m mentioned above.

2.2. Schottky diodes with quantum wells and
quantum dots. The effect of QWs and QDs incorpo-
rated into the SCR of the GaAs substrate was elucidated
after etching in the ferrocyanide etch. As was noted
above, this etch leaves the basic parameters of the GaAs
diodes and, specifically, the sensitivity to hydrogen
unchanged.

Figure 4 demonstrates the photosensitivity spectra
for the diodes with the sequence QD/spacer/QW and
QW/spacer/QD that were taken before and after etching
in the ferrocyanide etch, which allows the fine etching
of thin layers from the semiconductor surface. After
removing a layer ≈25 nm thick, the QD-related signal
(in the range 1.0–1.2 eV) disappears but the QW-related
signal (1.30–1.37 eV) persists in the QD/spacer/QW
diodes (curves 1, 2). For the QW/spacer/QD devices,
the reverse is true (curves 3, 4). With a ≈50-nm-thick
layer removed, both the QW and QD signals are absent
(curve 5).

Tables 3 and 4 illustrate the effect of ferrocyanide
etching on the parameters of the diodes with the QWs
and QDs. With the QDs or QWs removed, the values of
ϕb, Voc, m, and Nss increase (ϕb to 0.1 V), while the
short-circuit current density jsc drops. In this case, the
decrease in jsc may be associated with the growth of the
oxide thickness (and, hence, resistance) due to the oxi-
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1–3

Fig. 3. Effect of etching in the Sirtl etch on the photosensi-
tivity spectra of GaAs SDs. ∆d = (1) 0, (2) 0.2, (3) 0.7, and
(4) 2.0 µm.
dation of indium present in the residual InAs and
InGaAs surface layers. After removing the 50-nm-thick
layer, when both QDs and QWs completely disappear,
the short-circuit current increases again to the value
responsible for the oxidized GaAs surface.

The removal of the QWs and QDs resulted in the
decrease in the hydrogen sensitivity (∆j) by a factor of
740 (after the removal of the QWs) and 187 (after the
removal of the QDs). The effect of the barrier change
on the sensitivity in terms of the current was estimated
by formula (2). Note that the calculated ratios ∆jo/∆je
(∆jo and ∆je are the sensitivities to H2 before and after
etching, respectively) were on the same order of mag-
nitude as, but always less than, those measured experi-
mentally (Table 4; columns 7, 8). Earlier, it was demon-
strated [16] that the hydrogen sensitivity of a planar
resistive structure with Pd electrodes on semi-insulat-
ing GaAs can be improved by one or two orders of mag-
nitude by introducing QWs and QDs into the SCR of
the semiconductor. As follows from our findings, the
removal of QWs and QDs, conversely, deteriorates the
device’s sensitivity to hydrogen by more than two
orders of magnitude, which agrees qualitatively with
results of [16].

After QW (or QD) removal, the decrease in the
hydrogen sensitivity that is associated with a change in
the barrier height was found to be larger than expected.
It is likely that the strained InGaAs and InAs layers on
the semiconductor surface retard hydrogen diffusion
into the substrate [9] and, thereby, improve the sensitiv-
ity, since a rise in the sensitivity of the diodes with
unstrained (non-quantum-size) In1–xGaxAs and InAs
layers was much less pronounced.

The presence of QWs and QDs may also increase
the recombination component of the current through
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S, arb. units
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4

3
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5

2

Fig. 4. Spectral sensitivity of the photovoltage in (1, 2)
QD/spacer/QW and (3–5) QW/spacer/QD SDs: (1, 3)
before and (2, 4) after etching-off a layer of thickness ∆d ≈
25 nm in the ferrocyanide etch. (5) ∆d ≈ 50 nm.
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the diode. The electroluminescence spectra displayed
in Fig. 2 suggest that recombination through QWs and
QDs in the SCR is essential. Curve 3 in Fig. 2 shows
intense luminescence from QDs (the energies 0.95,
1.025, and 1.11 eV for the fundamental, first, and sec-
ond excited quantizing levels) and QWs (≈1.31 eV). It
is of interest that the electroluminescence spectra were
resolved better (especially for the QD luminescence)
than the photoluminescence spectra from the semicon-
ductor of which the diodes were made (cf. curves 1 and
3 in Fig. 2).

The etching of the substrate surface and the intro-
duction of the quantum-size layers did not change the
speed of the diodes as hydrogen sensors but improved
conside-rably their detectivity from 10–2 to 10–3 and
even 10–4%. It should also be noted that, at low hydro-
gen concentrations (no more than 10–2%), ∆j grows lin-
early with hydrogen concentration, which is of interest
for sensor applications.

CONCLUSIONS

It is found that the modification of the semiconduc-
tor surface in SDs with a catalytically active Pd elec-
trode by nonpolishing etching or by introducing
InGaAs QWs and InAs QDs into the SCR at a distance
of 15 nm from the substrate surface may improve the
sensitivity to hydrogen by a factor of 10–40 in the
former case and by more than two orders of magnitude
in the latter. This increase may be associated with a
decrease in the potential barrier height at the Pd/GaAs
interface, the retardation of hydrogen diffusion into the
semiconductor by strained QW and QD layers, and the
effect of the recombination current. The introduction of
QWs and QDs into the SCR increases the recombina-
tion current and causes electroluminescence due to
recombination via QWs and QDs. The postetching
reverse current in GaAs SDs grows, causing interband
electroluminescence in GaAs.
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Abstract—The methods of atomic force microscopy and optical absorption spectroscopy are applied to study
the effect of microwave treatment on the properties of SiO2/SiC structures obtained by rapid thermal annealing
and conventional thermal oxidation in steam. From the variation of the sample optical density with total time
of microwave treatment, it is concluded that the structures prepared by rapid thermal annealing are more stable
against microwave radiation. It is shown that long-term microwave treatment flattens the oxide film surface at
the nanolevel regardless of the method of silicon carbide oxidation. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The stability and reliability of MIS devices depend
to a great extent on the presence of localized states in
the insulating layer and at the insulator–semiconductor
interface. This is especially true for silicon carbide
structures, which are designed for higher temperature
operation than silicon and gallium arsenide devices.

Among traditional radiation treatments, microwave
irradiation is finding ever increasing use in the fabrica-
tion of electron devices. Microwave irradiation may
cause fluctuations in the distribution of dopants and
defects at the surface and in the bulk [1]. Sometimes
these physical effects may affect the electrical perfor-
mance and functionality of semiconductors. The effect
of microwave irradiation on semiconductor structures
can be studied by nondestructive techniques, such as
optical methods and atomic force microscopy.

The aim of this paper is to study the influence of
microwave irradiation on SiO2/SiC structures.

EXPERIMENTAL

We examined the optical transmission spectra and
the surface morphology of SiO2/SiC structures pre-
pared by the oxidation of n-type silicon carbide (poly-
type 6H-SiC, the free electron density (2–3) × 1017

 cm–3)
grown by the Lely method. SiO2 films were grown on
silicon carbide by two methods: conventional thermal
steam oxidation (SO) at a temperature of 1373 K for 30
to 180 min and rapid thermal annealing (RTA) in dry
oxygen at a temperature of 1273K for 60 to 180 s.
Before oxidation, silicon carbide samples were chemi-
cally cleaned by the standard technique. The (0001) and
1063-7842/03/4805- $24.00 © 20598
( ) faces were oxidized simultaneously. The thick-
ness of the silicon carbide substrate was 450 ± 5 µm.
The oxide film thickness estimated by ellipsometry was
found to be 6–10 nm.

The SiO2/SiC structures thus obtained were sub-
jected to multiple microwave (frequency f = 2.45 GHz,
power density 1.5 W/cm2) annealing in a magnetron
chamber. The time of single microwave annealing was
10 s. Then, the optical properties and surface morphol-
ogy of the samples were examined.

Surface morphology studies were performed with a
NanoScope IIIa atomic force microscope in the contact
mode.

The transmission spectra were recorded on an SDL-2
setup at room temperature in the range 400–800 nm. An
SIRSh-200 lamp was used as a source of continuous
radiation.

Atomic force microscopy in combination with opti-
cal transmission studies allows one to gain information
on the effect of microwave irradiation on the oxide film
surface and clarify processes occurring in the bulk of
the sample under microwave radiation treatment.

RESULTS AND DISCUSSION

The study of the oxide film surface showed that the
growth of the oxide film starts at nucleation centers (as
is typical of oxide growth [2, 3]) that are, as a rule,
extended linear defects on the silicon carbide surface.
Characteristic crystalline conical brushes of diameter
up to 10 µm were found on the surface of the continu-
ous film. In addition, the surface of the samples
obtained by SO for 60 to 120 min and by RTA for 180 s
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exhibited a microrelief (imposed on the original mac-
rorelief): most likely SiOx nanoislands with their size and
density depending on the oxidation method (Fig. 1a).

The optical absorption spectra (Fig. 2) for all the
samples are similar and do not depend on the SiC oxi-
dation conditions.

It should be noted that the absorption spectrum of
the SiO2/SiC structure in the range λ 400–800 nm is a
specific integral characteristic; i.e., the resulting spec-
trum reflects the absorption in the SiC bulk, in the oxide
film, and at the SiO2/SiC interface. The component
with the highest absorption in this spectral range makes
a major contribution to the overall absorption spectrum
of such a complicated system. At present, this compo-
nent is silicon carbide.

The broad band near 630 nm (Fig. 2) is a typical fea-
ture of the spectrum presented. This band is usually
associated [4–7] with the ground state of donor centers
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Fig. 1. Modification of the surface microrelief on the SO-
grown sample (temperature 1373 K, oxidation time
120 min). Surface morphology (a) after and (b) before
microwave treatment (total time of the treatment 30 s).
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caused by the presence of nitrogen impurity in silicon
carbide crystals [4–7]. Note that this band is observed
against the extended background. According to [7], the
background absorption (like that in Fig. 2) arises when
the broad band with a maximum near 630 nm partly
overlaps with two other absorption bands: a more
intense broad near-edge band and an IR absorption
band with a short-wave tail. Both bands result from the
photoionization of nitrogen with electron transitions to
different minima of the conduction band.

As is seen from Fig. 3a, the total dose of microwave
radiation variously affects the optical density of the
structures in the range 400–800 nm, depending on the
SiC oxidation method.

After the first microwave irradiation, the optical
density of the absorption band with a maximum near
630 nm decreases for all the samples regardless of the
oxidation method (Fig. 3a). After the second micro-
wave irradiation, the optical density of this absorption
band either remains almost unchanged or slightly
decreases. For such doses, the structure morphology
does not change. The third microwave treatment (the
total time of treatment is 30 s) leads to an increase in the
optical density of the absorption band (Fig. 3a) and
removes nanoislands (if any) on all the samples without
affecting the SiO2 film macrorelief (Fig. 1b). The mod-
ification of the surface microrelief on a number of the
samples may indicate that the oxide film on these sam-
ples undergoes phase or structural transformations
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Fig. 2. Typical wavelength dependence of the optical den-
sity (–ln(I/I0)) at T = 300 K for nonirradiated samples.
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when the total time of microwave treatment reaches
30 s. This shows up in the reduction of the surface
roughness at the nanolevel down to 0.3 nm. As the total
time of treatment increases further, the optical density
of the absorption band decreases again in this case, but
both the macrorelief and microrelief patterns remain
unchanged. However, in the framework of this paper, it
is impossible to infer a correlation between the optical
density of the structure and the nanorelief of oxide films
on the silicon carbide surface.

The SiO2/SiC samples for which the oxidation time
was maximum (Fig. 3a) show different behavior of the
optical density. For example, for the oxide grown by
RTA for 180 s and irradiated by microwaves for 40 s,
the absorption grows only slightly, while for the oxide
obtained by SO for 180 min, the optical density
increases when the total microwave treatment time is
50 s.

Unlike the case of optical density, any correlation
between the half-width of the absorption band with a
maximum near 630 nm and the total time of microwave
treatment is absent. The dependence of the half-width
on the total microwave dose is nonmonotonic.

The change in the background absorption level cor-
relates well with that in the optical density in the max-
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Fig. 3. (a) Relative change in the optical density and
(b) 630-nm band half-width vs. total time (t) of microwave
irradiation. Unity on the vertical axes corresponds to the
optical density and half-width of nonirradiated samples.
Curves 1–4 correspond to the samples grown by steam oxi-
dation at a temperature of 1373 K. Oxidation time is (1) 30,
(2) 60, (3) 120, and (4) 180 min. Curves A and B correspond
to the samples grown by rapid thermal annealing in dry oxy-
gen at a temperature of 1273 K for 60 and 180 s, respec-
tively.
imum of the 630-nm band. This result is in agreement
with the data of [7], where it was noted that the back-
ground against which this band is observed and the
band itself are of the same chemical nature and are
caused by the presence of nitrogen impurity in silicon
carbide.

As was mentioned earlier [4–7], the 630-nm band is
due to the photoionization of three nonequivalent nitro-
gen donors with the hexagonal and cubic coordinations
of the nearest neighbors. In essence, the band consists
of three nearby subbands, which merge into one broad
band [7]. Microwave treatment apparently leads to fluc-
tuations in the distribution of dopants and defects at the
surface and in the bulk, which, in turn, affects impurity
interaction between absorption centers [8] and, as a
consequence, changes the absorption band intensity.
The variation of the absorption band half-width may be
explained by the disturbed defect distribution as a result
of microwave irradiation (a similar effect was observed
for the half-width of diffraction reflection curves [9]).
Besides, the appearance and disappearance of structure
defects under microwave irradiation must be accompa-
nied by a change of symmetry in the neighborhood of
nitrogen atoms. This results in the intensity redistribu-
tion between the subbands constituting the 630-nm
band and eventually affects its half-width and intensity.

The presence of three nonequivalent absorption cen-
ters allows one to assume that their stability against
microwave irradiation is different. The nonmonotonic
dependences of the absorption band half-width and
intensity on the total time of microwave treatment may
be a consequence of the donor concentration redistribu-
tion due to a different degree of interaction with micro-
wave radiation. One can assume that the samples where
donor-microwave radiation interaction is the weakest
are the most stable against microwave treatment. How-
ever, additional investigation is needed to clarify the
type of such donors. The dependences of the 630-nm
absorption band intensity and half-width on the total
time of microwave treatment indicate that the structures
with the RTA oxide offer the highest stability.

CONCLUSIONS

As follows from the experimental results, the struc-
tures made by rapid thermal annealing in dry oxygen
are the most stable against microwave treatment. It is
shown that certain microwave doses (the total micro-
wave treatment time is 30 s or more) cause a decrease
in the density of nanoislands in oxide films on silicon
carbide up to their disappearance and flatten the sur-
face.

REFERENCES

1. V. V. Antipin, V. A. Godovitsin, D. V. Gromov, et al.,
Zarubezhn. Élektron., No. 1, 37 (1995).
TECHNICAL PHYSICS      Vol. 48      No. 5      2003



        

EFFECT OF MICROWAVE ANNEALING 601

                                 
2. Ya. E. Geguzin and Yu. S. Kaganovskiœ, Diffusion Pro-
cesses on Crystal Surface (Énergoatomizdat, Moscow,
1984).

3. L. S. Palatnik, M. Ya. Fuks, and V. M. Kosevich, Forma-
tion Mechanisms and Substructure of Condensed Films
(Nauka, Moscow, 1972).

4. G. B. Dubrovskiœ and E. I. Radovanova, Fiz. Tverd. Tela
(Leningrad) 11, 680 (1969) [Sov. Phys. Solid State 11,
549 (1969)].

5. I. S. Gorban’, V. P. Zavada, and A. S. Skirda, Fiz. Tverd.
Tela (Leningrad) 14, 3095 (1972) [Sov. Phys. Solid State
14, 2652 (1972)].
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
6. I. S. Gorban’ and A. S. Skirda, Ukr. Phys. J. 26, 228
(1981).

7. I. S. Gorban’ and A. P. Krokhmal’, Fiz. Tekh. Polupro-
vodn. (St. Petersburg) 35, 1299 (2001) [Semiconductors
35, 1242 (2001)].

8. I. S. Gorban’, Yu. A. Marazuev, and A. S. Skirda, Fiz.
Tverd. Tela (Leningrad) 14, 780 (1972) [Sov. Phys. Solid
State 14, 664 (1972)].

9. L. M. Sorokin, A. S. Tregubova, M. P. Shcheglov, et al.,
Fiz. Tverd. Tela (St. Petersburg) 42, 1384 (2000) [Phys.
Solid State 42, 1422 (2000)].

Translated by M. Astrov



  

Technical Physics, Vol. 48, No. 5, 2003, pp. 602–606. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 73, No. 5, 2003, pp. 79–83.
Original Russian Text Copyright © 2003 by Mikheeva, Sidorov.

                                                  

OPTICS,
QUANTUM ELECTRONICS

               
Absorption and Scattering of Infrared Radiation by Vanadium 
Dioxide Nanoparticles with a Metallic Shell 

O. P. Mikheeva and A. I. Sidorov
Research Institute of Laser Physics, St. Petersburg, 199034 Russia

Received August 15, 2002

Abstract—The numerical simulation of the absorption and scattering cross sections of vanadium dioxide nano-
particles with silver and gold shells are presented. The cross sections are evaluated for the spectral intervals 1–
1.2, 1.3–1.7, and 9–12 µm both before and after the semiconductor–metal phase transition in VO2. It is demon-
strated that the transition of VO2 to the metallic state near (or away from) plasmon resonances leads to a
decrease (or increase) in the absorption and scattering cross sections for a given wavelength. The decrease is
related to the shift of the plasmon resonance band, whereas the increase is directly related to the growth of the
VO2 absorption upon the phase transition. © 2003 MAIK “Nauka/Interperiodica”.
Nonlinear optical media with semiconductor and
metal nanoparticles are promising for fast optical
switches. A distinctive feature of the media containing
metal nanoparticles is the excitation of a plasmon reso-
nance at an optical frequency equal or close to the
plasma frequency of free electron oscillations in the
metal. The plasmon resonance is accompanied by an
increase in the absorption and scattering cross sections
of the nanoparticles and by a local enhancement of the
electromagnetic wave field inside and near nanoparti-
cles [1–4]. The nonlinear response of the medium with
nanoparticles can increase by several orders of magni-
tude owing to the local field enhancement. Plasmon res-
onances in homogeneous spherical nanoparticles of
noble metals (Ag, Au, and Pt) lie in the visible spectral
range [2]. More complex nanoparticles with the dielec-
tric core surrounded by a continuous metal shell (e.g.,
an Au2S core covered by an Au shell [5–7] or a CdS
core with an Ag shell [8]) exhibit additional plasmon
resonances in the near-IR range. Today’s technologies
enable one to coat a particle with a diameter of several
tens to several hundreds of Angströms by a thin metal-
lic or semiconductor shell of controlled thickness [5, 9].
An additional plasmon resonance can be observed in
the near-IR range if the dielectric core of a particle is
coated by a discontinuous metal film [10]. Optical lim-
itation takes place near the plasmon resonance in the
10-µm spectral range for silver halide nanoparticles
coated by a discontinuous silver film. Nanoparticles
with such a structure are of great practical interest.
First, by varying their geometrical parameters, one can
control the wavelength of plasmon resonance and the
range of high nonlinearity of a material. Second, by
properly selecting the core material, it is possible to
create nonlinear optical media with desired properties.

Vanadium dioxide exhibits the reversible semicon-
ductor–metal phase transition (PT), resulting in a sig-
nificant change in its permittivity [11, 12]. With photon
1063-7842/03/4805- $24.00 © 20602
energies hν > Eg (Eg = 0.7 eV is the energy gap of VO2
in the semiconductor phase [11, 12]), the PT in VO2 can
be induced within several hundreds of femtoseconds by
nonequilibrium electronic processes due to the photo-
generation of charge carriers [13]. If hν ! Eg, the PT is
initiated by thermal processes [11]. The unique proper-
ties of polycrystalline VO2 films allow their use in visu-
alizers of IR radiation [11]; reversible holographic
media [11]; and modulators, switches, and limiters of
IR radiation [14, 15]. It is therefore expedient to inves-
tigate the optical properties of VO2 nanoparticles with
the aim of expanding the possibilities of controlling
optical devices. In this work, we analyze the optical
properties of nanoparticles with a VO2 core and an Ag
or Au shell both near and away from the basic plasmon
resonance and also the effect of the PT on these proper-
ties. The analysis is carried out in the spectral intervals
1–1.2, 1.3–1.7, and 9–12 µm.

We performed the numerical simulation of the opti-
cal properties of nanoparticles in the Rayleigh scatter-
ing approximation (the size of nanoparticles is much
less than the radiation wavelength) and assumed that a
nanoparticle consists of a spherical core and a thin
absorbing shell. For low concentrations of such parti-
cles, the condition for the plasmon resonance is given
by [16]

(1)

Here,

εc, εs, and εenv are the permittivities of the core, shell,
and the environment, respectively; and rc and rs are the
radii of the core and the shell, respectively. The effec-

Re A( ) Re εsεa εenvεb+( ) 0.= =

εa εc 3 2P–( ) 2εsP;+=

εb εc εs 3 P–( ); P+ 1
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 
3
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tive permittivity of the medium containing such nano-
particles is given by [16]

(2)

where

and g is the volume concentration of the particles. 
For coated nanoparticles, the absorption (σa) and

scattering (σsc) cross sections are [7]

(3)

(4)

Narrow plasmon resonances are observed in the
mid-IR spectral range if the metallic shell is discontin-
uous [10]. The effective permittivity of a discontinuous
metal film may significantly differ from the permittivity
of the bulk metal. The former is defined by the dipole–
dipole interaction between the islands, which, in turn,
depends on the shape of the islands, island spacing, and
permittivity of the environment [17]. The components
of the effective permittivity of a discontinuous film can
be written as [17]

(5)

Here, εeff is the effective permittivity of the film, εc is
the permittivity of the nanoparticle core, χ is the effec-
tive polarizability, and d is the packing density of the
particles in the film. The upper asterisks correspond to
the parallel (*) and perpendicular (**) orientations of
the electric field vector relative to the interface.

With allowance for the dipole–dipole interaction,
the polarizability has the form [17]

(6)

where

Here, εm is the permittivity of the metal, εenv is the per-
mittivity of the environment, f is the depolarization fac-
tor depending on the particle shape (f* = 0.5(1 – f**)),
dw is the weight thickness of the metal film, and a is the
mean particle spacing in the film.

When simulating, we employed the spectral depen-
dences of the optical constants for continuous Ag and
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Au films from [18] and for polycrystalline VO2 films
from [19, 20]. The table shows the complex refractive
indices (n* = n – ik) of the polycrystalline VO2 film
below (T < 50°C) and above (T > 70°C) the PT temper-
ature.

It is seen from the table that the PT-related variation
of the optical constants of VO2 films is the greatest at a
wavelength of 10.6 µm. Note that dn/dT and dk/dT at
this wavelength are positive. In the near-IR range, the
variations of n and k due to the PT are relatively small,
the absorption coefficient of the semiconductor phase is
high, and the derivative dn/dT is negative.

In each of the spectral intervals, the simulation was
performed for two types of nanoparticles. For nanopar-
ticles of type 1, the parameters of the core, continuous
shell, and environment were taken such that plasmon
resonance in the semiconductor phase of VO2 occurs
approximately at the center of the spectral interval. For
nanoparticles of type 2, the parameters were such that
the plasmon resonance condition is not satisfied in all
the spectral intervals. The characteristics of the parti-
cles of both types for each of the spectral intervals were
as follows.

For the interval λ = 9–12 µm, the parameters of the
nanoparticles of type 1 were rc = 200 nm, rs = 202 nm,
nenv = 1.4, f* = 0.0073, dw = 0.105, and a = 0.1. The
shell was a discontinuous Ag film. In the calculation,
the effective thickness and the permittivity of the con-
tinuous and discontinuous films were assumed to be
equal. The best conditions for plasmon resonance
turned out to arise when the discontinuous film covers
a medium with a refractive index n = 1. This can be
realized, for example, if the nanoparticles are embed-
ded in a fine-grain nonabsorbing powder (KCl, KBr, or
BaF2). The parameters of the nanoparticles of type 2
were rc = 200 nm, rs = 208 nm, nenv = 1.4, f* = 0.06,
dw = 0.1, and a = 0.1. The shell was a discontinuous Ag
film.

For the interval λ = 1.3–1.7 µm, the parameters of
the nanoparticles of type 1 were rc = 15 nm, rs =
16.2 nm, and nenv = 1.5. The shell was a continuous Au
film. For the nanoparticles of type 2, rc = 30 nm, rs =
31 nm, and nenv = 1.8. The shell was a solid Au film.

For the interval λ = 1–1.2 µm, the parameters of the
nanoparticles of type 1 were rc = 10 nm, rs = 11.5 nm,
and nenv = 1.5. The shell was a continuous Au film. For

Optical constants of VO2 before and after the phase transition
[19, 20]

λ, µm n*(T < 50°C) n*(T > 70°C)

10.6 2.55 – i × 0.08 8 – i × 9

1.55 3.26 – i × 0.17 1.7 – i × 2.5

1.06 3.1 – i × 0.5 1.7 – i × 1.8
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Fig. 1. Excitation of the plasmon resonance (ReA = 0) in type-1 metal-coated VO2 nanoparticles (1–3) prior to the PT, (1'–3') after
the PT, and (3") at the initial stage of the PT.
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Fig. 2. (a) Absorption and (b) scattering cross sections of
VO2 nanoparticles coated by a discontinuous Ag film
(nanoparticles of type-1): (1) before PT, (2) initial stage of
PT, and (3) after PT.
the nanoparticles of type 2: rc = 10 nm, rs = 10.7 nm,
and nenv = 1.8. The shell was a continuous Au film.

For the nanoparticles of type 1 prior to the PT, the
plasmon resonance condition (ReA = 0) is satisfied
approximately at the center of each of the spectral inter-
vals (Fig. 1). At the initial stage of the PT, the plasmon
resonance shifts toward smaller wavelengths (curve 3").
After the transition to the metallic state, the plasmon
resonance is absent in the entire spectral interval.

Figure 2 demonstrates the spectral dependences of
the absorption and scattering cross sections for the
nanoparticles of type 1 in the interval 9–12 µm. It is
seen from Fig. 2a that, prior to the PT, the absorption
cross section has a distinct maximum at λ = 10.1 µm,
which is related to the plasmon resonance. At the initial
stage of the PT, the maximum shifts to λ = 9.6 µm.
Therefore, the absorption at the latter wavelength first
increases and then decreases. After the PT, the absorp-
tion cross section σa(λ) decreases monotonically with
increasing wavelength in the entire spectral interval.
For the wavelength λ = 10.1 µm, the ratio of the absorp-
tion cross sections prior to and after the PT equals four.
Figure 2b shows weak resonance-related maxima in the
spectral dependences of the scattering cross section
prior to the PT and at its initial stage. The weak effect
of the resonance on the scattering cross sections reflects
a low absorption coefficient of semiconductor VO2 in
the given spectral range. The transition of VO2 to the
metallic state increases the scattering cross section in
the entire spectral interval. Note that, for the wave-
length λ = 12 µm, the PT affects the absorption and
scattering only slightly. At the same time, the calcula-
tion shows that the effective refractive index of the
medium with nanoparticles of type 1 changes by 0.01 at
this wavelength when the volume concentration of the
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
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particles equals 1%. This effect can be used for record-
ing light-induced phase gratings and for phase conjuga-
tion.

In the absence of the plasmon resonance for nano-
particles of type 2, the PT in VO2 increases the absorp-
tion (Fig. 3) and scattering cross sections (the spectral
curves for the scattering cross section are similar to
those for the absorption cross section shown in Fig. 3).
For the wavelength λ = 10 µm, the absorption, σa, and
scattering, σsc, cross sections increase by a factor of 2.5
and 4, respectively. In this given case, the optical
parameters of the shell weakly affect the optical prop-
erties of the nanoparticles: the absorption and scatter-
ing both before and after the PT grow insignificantly.
For such nanoparticles, both σa and σsc depend only on
the increase in the VO2 absorption coefficient upon the
PT. Thus, plasmon resonance in metal-coated VO2
nanoparticles substantially affects their optical proper-
ties during the PT.

Figure 4 shows the spectral curves of the absorption
and scattering cross sections for VO2 nanoparticles with
a continuous Au shell (type-1 nanoparticles) in the
presence of plasmon resonance for the spectral interval
1.3–1.7 µm. Prior to the PT, clearly cut maxima are
observed in both the σa and σsc curves near the plasmon
resonance. This is because the absorption of semicon-
ductor VO2 in the given spectral interval is high. As a
result of the PT, the plasmon resonance first shifts to
smaller wavelengths and then disappears. For the wave-
length λ = 1.5 µm, this process is accompanied by a
decrease in the absorption and scattering cross sections
(eleven and ten times, respectively). For the wavelength
λ = 1.3 µm, the PT first increases the absorption and
scattering cross sections owing to the shift of the plas-
mon resonance and then decreases these parameters.
For λ = 1.7 µm, σa and σsc diminish slightly with the PT.

For the nanoparticles of type 2, the PT in VO2 leads
to a growth of the absorption and scattering cross sec-
tions in the entire spectral interval 1.3–1.7 µm. Figure 5
shows the spectral curves for the absorption cross sec-
tion for this case. The PT results in a tenfold increase in
σa at the wavelength λ = 1.5 µm. The spectral curves for
the scattering cross section have a similar shape, but the
increase in the scattering cross section at the wave-
length λ = 1.5 µm is 30-fold. As in the case of λ =
10 µm, the PT-induced variations of σa and σsc for par-
ticles of this type depend only on the increase in the
absorption coefficient of VO2.

The calculations for the spectral interval 1–1.2 µm
show that the PT-related variations of the optical prop-
erties of type-1 and type-2 VO2 nanoparticles with a
solid Au shell are qualitatively similar to those
observed in the spectral interval 1.3–1.7 µm. The curves
σa(λ) and σsc(λ) for λ = 1–1.2 µm are similar to those
shown in Figs. 4 and 5. In the presence of the plasmon
resonance, the maxima of the cross sections are
observed at a wavelength of 1.13 µm. As a result of the
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
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Fig. 3. Absorption cross section of VO2 nanoparticles
coated by a discontinuous Ag film (nanoparticles of type-2):
(1) prior to PT, (2) initial stage of PT, and (3) after PT.
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PT in VO2, the absorption and scattering cross sections
at a wavelength of 1.13 µm decrease five and four times,
respectively. In the absence of the plasmon resonance,
nanoparticles of type-2 exhibit a fourfold and a tenfold
PT-induced increase in σa and σsc, respectively, at λ =
1.13 µm. The variations of σa and σsc at this wavelength
are less than those at λ = 1.5 µm because of the less sig-
nificant variation of the VO2 absorption coefficient
upon the PT at smaller wavelengths (see table).

The results presented show that the plasmon reso-
nance condition can be satisfied in the near- and mid-IR
ranges for the case of VO2 nanoparticles coated with a
thin continuous and a discontinuous noble-metal film,
respectively. Plasmon resonance substantially affects
the optical properties of such nanoparticles and the
variation of these properties during the PT in VO2. In
particular, in the absence (or presence) of the plasmon
resonance, the PT leads to an increase (or decrease) in
the absorption and scattering cross sections of the nano-
particles. Thus, the light-induced PT may cause both
enhanced transmission and optical limitation in a
medium containing metal-coated VO2 nanoparticles.
By varying the volume concentration of nanoparticles,

σa,10–11 cm2
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0
1.3 1.4 1.5 1.6 1.7

λ, µm

1

2

3

Fig. 5. Absorption cross section of VO2 nanoparticles with
Au the shell (nanoparticles of type-2): (1) prior to PT,
(2) initial stage of PT, and (3) after PT
one can create nonlinear optical materials with desired
linear and nonlinear optical properties and control these
properties over wide limits. Such media containing VO2
nanoparticles can be used in nonlinear optical switches
and modulators of infrared laser radiation.
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Abstract—Studies of the phase-contrast method are reviewed. The principles of phase-contrast image forma-
tion are considered. The potentialities of the method are demonstrated using a model object as an example:
a capillary tube filled with air and paraffin. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

X-ray imaging of an object’s internal structure is an
important diagnostic tool in medicine, biology, and
materials science owing to the high penetrability of X
rays and the possibility of nondestructive testing. Con-
ventional methods of medical and industrial radiogra-
phy, tomography, microscopy, etc., are based on the fact
that the X-ray absorption factor depends on the density,
composition, and thickness of an object.

Problems arise when weakly absorbing carbonifer-
ous objects, such as soft biological tissues, are investi-
gated. However deep X-ray radiation penetrates into
such materials, the image contrast is low because of the
small absorption factor gradient. By means of X-ray
tomography and radiography techniques, hard patterns
can be obtained by introducing contrast-enhancing
agents containing barium salts or iodine for the study of
internals or blood vessels, respectively.

Circulating with the body fluids (in particular, with
blood) in a living organism, contrast-enhancing agents
fluoresce under the action of X-ray radiation, i.e., emit
highly penetratable beams, which leave the object and
fall on a photographic film or an appropriate detector.
Thus, by imaging the internals or blood vessels at defi-
nite time intervals, one can locate a pathological site
that makes fluid circulation difficult. The application of
hard X rays in contact radiography and tomography
methods enables one to display internal structures that
are impossible to visualize by any other nondestructive
methods.

To reduce the radiation load in medical diagnostics,
soft X rays should be used. However, when studying
large objects by absorption methods, hard X rays are
necessary, since the radiation will otherwise be com-
pletely absorbed. Hence, refractive techniques must be
developed to reduce the radiation load (dose).

The refraction of X rays has not long been used for
the investigation of the internal macrostructure of
objects, because refraction angles are small (from sev-
1063-7842/03/4805- $24.00 © 20607
eral tenths of a second of arc to several seconds of arc).
The possibility of detecting small refraction angles has
appeared with the advances in high-resolution X-ray
diffractometry. The technique that enables the hard
imaging of weakly absorbing materials by combining
the refraction and diffraction of X rays is known as the
X-ray phase-contrast method.

This technique visualizes the internal structure of a
weakly absorbing object with a small density gradient
with a high spatial resolution [1–3]. It is based on the
fact that refraction distorts the phase front of the X-ray
wave transmitted through the object. As a result, the
X-ray wave deflects from its initial direction by small
angles, which depend on the spatial distribution of the
object density.

The transmitted radiation is detected by a perfect
crystal analyzer placed in the neighborhood of the
Bragg angle. With such an arrangement, even a small
variation in the angle of incidence of X rays on the ana-
lyzer significantly changes the diffracted intensity,
which is recorded on a photographic film or by a posi-
tion-sensitive detector. It should be mentioned that dif-
fraction reflection is dissimilar to reflection from a mir-
ror surface. The difference is that diffraction takes place
in the bulk of a crystal, with the diffraction volume
defined by the extinction length, which is wavelength
dependent. Diffraction reflection results in the convolu-
tion of waves and produces image points.

The refraction angle of X rays depends on their
energy and the electron density of an object. For exam-
ple, the refraction angle of 8.048-keV radiation (copper
tube) at the protein–water interface is ≈0.2′′ , which is
comparable to the angular width of the diffraction
reflection curve of the analyzer. Therefore, the phase-
contrast technique allows the image contrast to be
increased by one or two orders of magnitude [4–6]
compared with the conventional absorption methods.
This is of special value for studying medical and bio-
logical objects [7, 8]. The spatial resolution of the
003 MAIK “Nauka/Interperiodica”
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method is limited only by the X-ray beam divergence
and diffraction in crystal.

In terms of wave optics, phase-contrast images
result from the interference of the incident wave with
the waves transmitted through an object. Such an
approach to imaging weakly absorbing materials has
been used for many years; however, the development of
similar devices designed for operation in the hard X-ray
range was impeded by the lack of lenses appropriate for
short-wavelength radiation. The feasibility of high-res-
olution angular analysis of monochromatic X rays by
using diffraction from perfect crystals has given impe-
tus to phase-contrast investigations. This idea was first
applied to measuring the thickness of walls of small-
radius spheres [9]. Later, the potentialities of the
method were demonstrated with various model and bio-
logical objects [1–3, 8, 10].

Of high importance is the ultimate sensitivity of the
method to a change in the refractive index. According
to the theory developed in [4], the least detectable
change in the refractive decrement is ∆δ ~ 10–9, which
is three orders of magnitude less than the value δ ~ 10–6

for most soft tissues in medical and biological objects.

The technique considered here makes it possible to
obtain hard images from weakly absorbing objects in
their natural state without using contrast-enhancing
agents, which are a potential health hazard, especially
for those suffering from allergic reactions. Another
advantage of phase-contrast methods for safe clinical
diagnostics is that the sensitivity of these methods
decreases with increasing radiation energy as E–2

against E–3 for the absorption techniques [11]. There-
fore, phase-contrast diagnostics is more sensitive at
high energies. Owing to this circumstance, the phase-
contrast method and conventional radiography provide
the same information but an absorbed dose is lower
and, hence, a health hazard is less severe in the former
case. The phase-contrast technique may also find appli-
cations in other fields of X-ray diagnostics [12].

The basic distinction in the X-ray units is that radi-
ation from an X-ray tube first falls not on the object, as
in conventional methods, but on a perfect single crystal
and reach the object only after diffraction reflection
from the crystal. Having passed through the object,
X-ray radiation strikes a photographic film or the pho-
tosensitive area of a detector after it has undergone dif-
fraction reflection from another perfect single crystal.

Note that the phase-contrast method differs from
Bonse–Hart interferometry [13], since the latter tech-
nique uses one single crystal. An X-ray beam is halved
and, after several Laue reflections, is brought to one
again to give an interference pattern. Placing an object
in the path of one of the beams results in a change in the
interference pattern. A weak point of Bonse–Hart inter-
ferometry is that the wave phase shifts by 2π at a length
of ≈100 µm; therefore, only the images of thin objects
can be uniquely identified. For comparison, the phase-
contrast method is effective for weakly absorbing
objects of size from 0.1 mm to 10 cm.

The radiation source plays an essential role in
phase-contrast imaging. If the spatial coherence of an
X-ray beam is high, a phase-contrast image can be
obtained by placing a highly sensitive film immediately
behind the object [14]. In this way, the images of small
objects with sizes ranging from 0.1 to 50 µm can be
obtained.

Sharp-focused tubes (≈20 µm) provide good con-
trast from the boundaries of a weakly absorbing object
at a distance of ≈1 m even in bremsstrahlung [11].
Combining a sharp-focused tube with a slit monochro-
mator allows one to improve the angular resolution to
0.2′′  [15].

There exist a number of other methods that do not
involve the optics of crystal diffraction. In such tech-
niques, an incident beam is formed by a highly coherent
source provided with an aperture, and the transmitted
beam is detected by a precision analyzer.

PHASE-CONTRAST IMAGE FORMATION

Let an X-ray beam propagate in air. For X rays, air
can be closely approximated by a vacuum. An object
placed in the path of the beam causes refraction at its
boundary. The refractive index can be expressed as n =
1 – δ – iτ, where δ is the unit decrement of the refractive
index:

Here, e2/πmc2 = re = 2.812 × 10–13 cm is the electron
classical radius; λ is the wavelength; N is the atomic
density; and f is the atomic scattering function, which is
almost equal to the effective atomic number. In carbon-
iferous compounds, the decrement of refractive index at
wavelengths of ≈1 Å is very small but nonzero (on the
order of 10–6).

The transmitted wave phase is given by ϕ = 2πδl/λ,
where l is the travel in the object. The difference in the
optical paths for different X rays gives rise to a phase
difference and, consequently, to a phase gradient. This
is equivalent to a change in the direction of wave prop-
agation. Any optical scheme that is sensitive to the
direction of X-ray propagation can resolve a phase gra-
dient and, hence, can be used for phase-contrast imag-
ing. Phase gradient is detected by diffraction from a
perfect crystal (analyzer) positioned behind the object.

Phase-contrast technology places stringent require-
ments upon the monochromatism and divergence of the
incident beam. An X-ray tube generates continuous and
characteristic radiations. The most intense Kα 1

 radiation
can be separated out with the help of a monochromator,
i.e., a perfect single crystal set at the Bragg angle to one
of the crystal planes. In a symmetric monochromator,
the diffraction plane is parallel to the surface. However,
after single diffraction reflection, the Kα 2

 component is

δ e2/2πmc2( )λ2Nf .=
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still present. Its intensity may be considerably reduced
relative to that of Kα 1

 by using a slit monochromator
with multiple reflections of the wave. The more the
number of reflections in the monochromator, the nar-
rower the diffraction curve at its exit.

Usually, monochromatic radiation with an angular
width of less than one angular second is generated with
the help of an asymmetric monochromator. The angular
width of asymmetric reflection is defined by the expres-
sion ∆ϑB = ∆ϑ0b–1/2, where ∆ϑ0 = C|χhr|/sin2ϑB is the
width of the diffraction reflection curve (DRC) for sym-
metric reflection, C is the polarization factor (C = 1 and
C = cos2ϑB for σ and π polarizations, respectively),
χhr is the real part of the polarizability of a crystal, ϑB is
the Bragg angle, b = γ0/γh is the asymmetry parameter,
γ0 = sin(ϑB + ψ), γh = sin(ϑB – ψ), and ψ is the angle
between the reflecting plane and crystal surface (for
symmetric reflection, ψ = 0).

Passing through an object results in a change in the
X-ray wave front. Within the approximation of geomet-
rical optics, the transmitted wave phase can be written
[11] as

where ρ is the electron concentration and k = 2π/λ.
The spatial dependence of the phase leads to the

refraction of the beam. The angular deflection in the
direction perpendicular to the wave front is given by

The setup for phase-contrast imaging is schemati-
cally shown in Fig. 1. Two silicon single crystals form
the wave front of X rays and ensure a high angular sen-
sitivity to refraction. The crystal monochromator spec-
ifies the wave front and collimates the beam incident on
the sample. The second single crystal, crystal analyzer,
directs (by means of diffraction the plane waves trans-
mitted through the sample to a detector or a photo-
graphic film.

Since the refractive index changes, the wave front
appears to be distorted. This distortion influences the
wave leaving the analyzer, because its intensity
depends on the convolution of the wave transmitted
through the object with the DRC of the analyzer. The
paths of three X rays are indicated by letters A, B, and
C. Beam A falls on the analyzer without refraction. This
case is realized if a beam passes through the center of a
cylindrical object. When meeting an interface, such a
beam is deflected by an angle β = ∆n , where ∆n

ϕ x y z k, , ,( ) k δ x y z' k, , ,( ) z'd

∞–

z

∫–=

=  – re/k( ) ρ x y z', ,( ) z',d

∞–

z

∫

β 1/k( ) ∇ xyϕ x y z, ,( )≈ ∇ δ x y z', ,( )[ ] z'd

∞–

z

∫ .=

Θcot
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is the change in the refractive index and Θ is the glanc-
ing angle.

Refracted beams B and C are deflected to the oppo-
site sides and, hence, fall on the analyzer at, respec-
tively, smaller and larger angles than the nonrefracted
beam. The refraction sensitivity of the analyzer can be
improved by rotating it from the precise Bragg position
∆ϑ = 0 towards negative (smaller) angles, since the
small-angle slope of the DRC is steeper than its positive
(large-angle) one (Fig. 1b). The peak intensity is close
to unity when |∆ϑ| ≤ ∆ϑB and drops abruptly outside
this region. The maximal intensity gradient is observed
at the point |y| = 1.0–1.5, where y = ∆ϑ /∆ϑB.

The image intensity is defined as the product of the
intensity I0 incident on the analyzer by the diffraction
reflection coefficient P(∆ϑ  – β), where the offset (∆ϑ  –
β) is determined by the angle of rotation of the analyzer
and the refraction angle. For low-absorption object
imaging, the image contrast K = ∆Ih/Ih (where Ih is the
initial intensity and ∆Ih is the intensity change) rather
than the intensity of the detected radiation is of impor-
tance. The image contrast depends on the angle of rota-
tion of the analyzer. Bright- and dark-field phase-con-
trast images with contrast reversal are possible to
obtain. A dark object against light background appears
when the analyzer is turned so that it cannot reflect the
beams deflected from the initial direction. Contrast
reversal occurs when the analyzer reflects only the
deflected beams.

Let us consider the phase-contrast image of a homo-
geneous rod of radius R. In this case, the phase and the
volume absorption of the wave are found from the fol-
lowing formulas: ϕ(x) = –kδl(x) and µv(x) = 0.5µl(x),

where l(x) = 2(R2 – x2)1/2 is the path of X rays in the
rod. The refraction angle β(x) = 2γ0δx/l(x) for |γ0x| ≤ R
and β = 0 for |γ0x| > R. Close to the rod surface, the
angle is expected to sharply increase, since |β|  ∞ at
|x|  R/γ0. Experimentally, the X-ray intensity at the
rod surface was shown to depend on its roughness. This
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Fig. 1. (a) Experimental scheme: (1) X-ray source,
(2) monochromator, (3) sample, (4) crystal analyzer; and
(5) detector or photographic film. A, B, and C indicate the
X-ray beam paths. (b) DRC of the analyzer.
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factor can be taken into account by introducing a tran-
sition layer with the smoothing function [16]

where ρ = (x2 – z2)1/2 and ∆R is the transition layer
thickness.

It is seen that F(ρ)  1 at ρ < R, F(R) = 0.5, and
F(ρ)  0 at ρ – R @ ∆R. With regard for the transition
layer, δ(x, z) = δF(ρ) and µ(x, z) = µF(ρ). The thicker
the transition layer, the smoother the curves.

EXPERIMENTAL

The test samples were polyethylene capillaries with
an outer radius and a wall thickness of 1.6 and 0.3 mm,
respectively. Phase-contrast images were obtained with
the help of a triple-crystal X-ray diffractometer with a
copper tube. X-ray radiation from the tube passed
through a 0.1-mm-wide vertical slit and entered a slit
silicon monochromator with triple symmetric reflection
from the (111) plane.

CuKα1 radiation separated out by the monochroma-
tor fell on the object mounted on a support that could
move in the direction perpendicular to the beam. After
the beam had been transmitted through the object, it
entered a silicon analyzer and experienced the single
symmetric (111) reflection. The analyzer was offset
from the exact Bragg position towards smaller angles
by the DRC half-width to enhance the contrast [12].
A scintillation detector picked up the radiation
reflected from the analyzer after each move of the sam-
ple (0.05 mm–1). The radiation intensity in the absence
of the object was taken to be unity.

Several modifications of the object were considered.
First, we studied an air-filled capillary with a smooth or
rough outer surface. The surface was made rough by
ruling the capillary surface at regular intervals
(25 mm−1). Then, the smooth-surface capillary was
twice filled with paraffin: in one case, paraffin occupied

F ρ( ) 1 ρ R–( )/∆R[ ]exp+{ } ,=
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0.5

0

R, arb. units

1 2 3 4
L, mm

2
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Fig. 2. Experimental (solid line) and calculated (dashed
line) intensity of the transmitted X-ray radiation vs. the
position of the capillary with (1) smooth and (2) rough
external surface relative to the beam.
the entire volume of the capillary; in the other, half the
inner space along the capillary with the other half occu-
pied by air. In the latter case, the air–paraffin interface
coincided with the diameter aligned with the direction
of the nonrefracted X-ray beam.

RESULTS AND DISCUSSION

The intensity of the radiation transmitted through
the capillaries with the smooth and rough surfaces is
shown in Fig. 2. The vertical axis plots the intensity
measured by the detector, and the horizontal axis is the
position of the object. Curve 1 has two peaks and two
dips. Movement along the abscissa axis from left to
right is equivalent to the travel of the beam across the
capillary. The first peak corresponds to the external
boundary of the capillary wall. The dip next to it indi-
cates the internal boundary of the wall. Going on trav-
eling across the capillary, the beam meets the internal
and external walls again, giving rise to the second peak
and the second dip, respectively, in the curve. Curve 2
is similar to curve 1 with the only difference that the
peak at the entrance to, and the dip at the exit from, the
capillary are less pronounced.

The intensity distribution in the phase-contrast
image of the paraffin-filled capillary is shown in Fig. 3.
Curve 1 has one peak at the entrance to the medium and
one dip at the exit from it. Curve 2 can be divided into
two parts. The left part coincides with the correspond-
ing portion of curve 1 in Fig. 3, and the right one is sim-
ilar to the right portion of curve 1 in Fig. 2. The left
half-space inside the capillary was filled with paraffin;
the right, with air. The step in curve 2 near 1.8 mm cor-
responds to the paraffin–air interface.

The peaks in curve 1 (Fig. 2) appear due to the
refraction of the beam first at the external and then at
the internal capillary wall as the beam scans the capil-
lary. At these interfaces, the beam from the lower den-
sity medium (air) passes into the higher density

2.0

1.5

1.0

0.5

0

R, arb. units

1 2 3 4
L, mm

2

1

Fig. 3. Experimental (solid line) and calculated (dashed
line) intensity of the transmitted X-ray radiation vs. the
position of the capillary (1) entirely or (2) partially filled
with paraffin relative to the beam.
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medium (polyethylene); therefore, the refracted beams
fall on the analyzer surface at a larger angle approach-
ing the exact Bragg angle. Because of this, the reflectiv-
ity of the analyzer increases. The right peak is weaker
than the left one because of the partial absorption of X
rays in the capillary.

The minima in curve 1 correspond to the interfaces
crossed by the beam passing from the higher-density to
the lower density medium. In this case, the refraction of
the beam reduces the angle of incidence on the analyzer
and its reflectivity drops.

The shape of the peaks and dips depends on the sur-
face condition [16]. The boundary of any object is not
perfectly abrupt: there is always the transition layer due
to, e.g., the surface roughness. The theoretical curves
constructed similarly to [12] are in good agreement
with the experiment if the transition layer thickness is
taken to be 0.005 and 0.03 mm for the initial and
grooved surfaces, respectively. The decrement of the
refractive index and the absorption factor of polyethyl-
ene walls with a density of 0.92 g/cm3 were taken to be
δ = 0.444 × 10–6 and µ = 0.333 cm–1, respectively.

Filling the capillary with paraffin leads to the disap-
pearance of the dip and peak related to the internal
boundaries (curve 1 in Fig. 3). This is explained by the
higher optical density of paraffin compared with that of
air and, accordingly, by the smaller refraction angle of
the beam at the interfaces. According to the calculation
where the density of paraffin was taken to be
0.82 g/cm3; δ, 0.396 × 10–6; and µ, 0.297 cm–1, such an
interface may also be detected with the help of highly
asymmetric monochromators and analyzers [6]. With
these devices, the contrast at the paraffin–air interface
inside the capillary will be raised, though this boundary
is discernible in curve 2 even with symmetric reflec-
tions. The theoretical curve fits closely the experimen-
tal data in the presence of the 0.01-mm-thick transition
layer on the paraffin surface.

CONCLUSIONS
The results of our investigations can be generalized

to objects with a more intricate shape and to several
objects arbitrarily arranged in space. The 3D image of
a real object may be obtained by recording several
phase-contrast images at different rotations of the
object about one or several axes. The experimental data
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
presented above clearly demonstrate the possibilities
offered by the phase-contrast imaging technique for the
diagnostics of soft tissues and blood vessels. This
method holds promise for the early recognition of
pathologies in the soft-tissue internals of living organ-
isms and vascular diseases, such as atherosclerosis,
ischemia, and strokes.
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Abstract—Nonthermal glow excited in molybdenum plates and films as a result of temperature stresses arising
under the action of laser pulses is investigated. A relation between the glow excitation threshold and the sample
thickness is established. A possible mechanism of nonthermal glow is discussed. © 2003 MAIK “Nauka/Inter-
periodica”.
Nonthermal glow induced by the failure (cleavage)
of a metal (copper) was first reported in [1]. Later, it
was found [2–4] that the nonthermal glow of copper
and other metals can also be observed under plastic
deformation. Considerable attention has been given to
the study of ductile metals, such as Cu, Pt, Au, and Ag.
In recent works [5, 6], samples were deformed by laser
pulses. In [7–9], a possible mechanism of such a glow
was proposed. It was argued [1–9] that nonthermal
glow in these metals is similar to luminescence and is
caused by the radiative recombination of electrons
localized on surface levels and holes generated in the d
band. The hole generation is due to the overlap of elec-
tronic terms (lying above the Fermi level) and d states
near the dislocation core when dislocations cross the
surface during failure. According to this mechanism,
plastic-deformation-induced luminescence in a metal is
related to the presence of mobile (weakly pinned) dis-
locations, the probability of hole generation, and the
probability of radiative electron–hole recombination.

In terms of this mechanism, in fine-grained brittle
metals, the luminescence would be expected to be very
weak because of the low concentration of dislocations
in the grains and their low mobility in intergranular
regions. Therefore, the possibility of luminescence
excitation in such materials is of particular interest.

In this study, we investigate deformation-initiated
luminescence in thin fine-grained Mo plates and films
exposed to laser pulses. Molybdenum is a relatively
brittle metal characterized by high values of elastic
constants and a low mobility of dislocations.

We managed to detect nonthermal glow (lumines-
cence) from the materials under investigation. A rela-
tion between the excitation threshold of luminescence
and the sample thickness was found. Possible mecha-
nisms of luminescence excitation are discussed.
1063-7842/03/4805- $24.00 © 20612
EXPERIMENTAL

The experimental setup is schematically shown in
Fig. 1. Test sample 3 was placed into vacuum chamber 2,
where the pressure was varied in the range from
10−2 torr to 1 atm. The samples were exposed to laser
pulses from free-running YAG : Nd laser 1. The lasing
parameters were τp = 1.4 ms and Emax = 3.5 J. The radi-
ation was focused into a spot 1.2 to 2 mm in size on the
sample surface. In our experiments, we investigated the
glow from the back surface of the samples. For this pur-
pose, photomultiplier 4 was mounted coaxially with the
laser beam on the back surface. The sample–photomul-
tiplier spacing was approximately 0.8 cm. The sample
temperature was not measured. Instead, using another
photomultiplier (5), which was mounted in front of the
sample at an angle of 45° to its surface, and a set of light
filters, we kept track of thermal glow from the irradi-
ated region on the surface in the spectral range of 0.5–
0.7 µm and the threshold of plasma formation. The sig-
nals from both photomultipliers were applied to a digi-
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Fig. 1. Experimental setup: (1) YAG : Nd laser, (2) vacuum
chamber (P = 10–2 torr), (3) sample, (4, 5) FÉU-79 photo-
multiplier, (6) set of light filters, (7) photodetector, (8) to
vacuum pump, (9) energy meter, (10) amplifier, (11) digital
oscilloscope, (12) PC, and (13) pulse voltmeter.
003 MAIK “Nauka/Interperiodica”
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tal oscilloscope and then to a PC. We investigated the
glow of 100-, 200-, 300-, 400-, and 500-µm-thick Mo
plates (thin foils). They were prepared by rolling at a
temperature of about 300°C and were textured. In addi-
tion, Mo, Cu, Al, and Ti films with a thickness of about
1–2 µm deposited on quartz substrates were examined.
Prior to measurements, the plates were polished by dia-
mond powder and cleansed in ethanol. To measure the
grain sizes and to visualize the dislocation pattern, the
plates were treated in the 5HNO3 + 3H2SO4 + 2H2O
etchant and then rinsed in the 10NaOH + 250H2O2 +
750H2O solution. The surface structure was examined
with optical and atomic-force microscopes.

RESULTS

The intensity IML of the mechanoluminescence
(ML) signal as a function of the power density of a laser
pulse, Ilas, was studied, and the dependences of the
threshold temperature stress for luminescence on the
sample thickness were constructed.

Figure 2 shows the luminescence signals from the
Mo plates of various thicknesses and from the thin Mo
film under the action of laser pulses with a threshold
power density Ilas, th(h) (Ilas, th(h) is the minimum
(threshold) power density necessary to initiate lumines-
cence for a given sample thickness). It is seen that the
signals appear as a set of spikes nearly identical in
amplitude and, generally, similar in shape. Figure 3
shows the experimental dependence Ilas, th(h) and ana-
lytical dependences Tth(Ilas, th(h)) and σth(Tth), where Tth

and σth are, respectively, the temperature and thermal
stresses on the back surfaces of the plates and film that
are reached when Ilas = Ilas, th(h). As is seen, Tth and σth

are virtually independent of the plate thickness and
equal Tth = 50–70°C and σth = (4.0–5.5) × 107 N/m2.
However, for the thin Mo film, both values are notice-
ably higher: Tth ≈ 150°C and σth ≈ 12.3 × 107 N/m2

(Fig. 4). For comparison, the values of Tth and σth for
other films are also presented in Fig. 4.

Figure 5 shows the surface relief of the samples that
is observed in a SMENA-B atomic-force microscope. It
is known that the low-temperature (at T < 0.5Tfus, where
Tfus is the fusion point) deformation (rolling) of molyb-
denum leads to the formation of a fine-grained structure
with a small concentration of dislocations in the grain
volume. The dislocations are concentrated in intergran-
ular regions, producing cellular structures [10]. The
majority of the cells are seen to be 0.1–0.5 µm in size.
The characteristic property of the Mo samples thus
obtained is the absence of dislocations inside the cells
and their localization along the cell boundaries [10].
The surface relief of the Mo film is also shown in Fig. 5.
The film also has a fine-grained structure with grain
sizes of about 0.05–0.20 µm.
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
DISCUSSION
Today, mechanisms behind luminescence mecha-

noluminescence in metals under plastic deformation
still remain unclear. Therefore, the questions as to
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Fig. 2. Waveforms of the ML signals from the Mo samples.
(1) Laser pulse, (2) h = 2 µm and Ilas = 2.3 × 103 W/cm2,

(3) h = 0.1 mm and Ilas = 1.3 × 104 W/cm2, (4) h = 0.2 mm

and Ilas = 3.4 × 104 W/cm2, (5) h = 0.3 mm and Ilas = 7.6 ×
104 W/cm2, (6) h = 0.4 mm and Ilas = 11.0 × 104 W/cm2,

and (7) h = 0.5 mm and Ilas = 21.4 × 104 W/cm2.
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Fig. 3. Experimental dependence Ilas, th(h) and calculated
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plates.
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which electron transitions are responsible for ML in a
particular metal and what mechanism is responsible for
their excitation are still to be attacked. At present, one
can only argue that the ability of metals to luminesce is
specified by the presence of mobile dislocations [1–9].
In terms of the dislocation model of ML, the threshold
value of temperature stress σth(Tth) at which the ML
signal appears when Ilas = Ilas, th(h) must depend on the
strength of dislocation pinning. One may thus expect
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Fig. 4. Tth(Ilas, th(h)) and σth(Ilas, th(h)) for the thin Cu, Ti,
Al, and Mo films.
that the amount of mobile (weakly pinned) dislocations
in micrometer- or sub-micrometer-thick samples is low.

For example, in thin samples (whiskers and thin
films [11]) and ultra-fine-grained materials (with grain
sizes of d < 100 nm) [12–15], dislocations are practi-
cally absent. Therefore, according to the dislocation
model, ML in such materials is expected to be initiated
at high σ(Tth). This agrees completely with the experi-
mental results obtained by us for the thin fine-grained
films, where the increase in σth is observed (Fig. 4). At
the same time, with the mechanism proposed in [1–9],
it is difficult to explain why the glow of Mo and W
[16, 17] is observed in the entire visible range 0.4–
0.8 µm, where there are no maxima typical of transi-
tions between particular electron levels.

As was mentioned above, the materials investigated
have a fine-grained cellular structure and dislocations
in the cells are absent. Therefore, the emergence of dis-
locations on the grain (cell) surface is unlikely and,
consequently, the plastic deformation of these materials
occurs mainly via grain boundary glide (i.e., by means
of grain-boundary dislocations). According to [11, 18],
the presence of grain-boundary dislocations and large-
angle boundaries does favor intergranular slip and leads
to the formation of intergranular microcracks during
plastic deformation.

Based on our experimental results and the structural
features of the test samples, we suggest the following
mechanism behind the nonthermal deformation-
induced glow of fine-grained metals. Temperature
stresses lead to grain boundary glide, which activates
the interaction between grain-boundary dislocations
and impurity atoms, which are usually always present
in the material and concentrated mainly along disloca-
tions and grain boundaries. The materials used in our
experiments were of 3N purity, and the concentration of
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Fig. 5. Surface topograms obtained with the atomic force microscope: (a) Mo plate with a thickness h = 0.2 mm and (b) Mo film
with a thickness h = 2 µm.
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impurities (oxygen, nitrogen, carbon, hydrogen, etc.)
was on the order of 1017–1018 cm–3. In this case, the
excitation mechanism of luminescence is likely to be
related to tunnel transitions in impurity atoms subjected
to the field of a charged dislocation. Since there is a
variety of impurity atoms, which are in different coor-
dination environments, it may be expected that lumi-
nescence will have a wide spectrum, which is the case,
as revealed experimentally. Therefore, such a glow
must be observed in any metal containing impurities
and mobile dislocations.
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Abstract—The effect of temperature on the Young’s modulus of electron-beam-remelted polycrystalline nio-
bium is studied in the temperature range 20–1000°C. The impurity content in the material is Ta < 0.5 wt% and
O2 < 0.1 wt%. The acoustic split of the resonant frequency is found in the temperature range 60–180°C, which
makes the determination of the Young’s modulus uncertain. Mechanisms behind the thermally stimulated split-
ting of an elastic wave and the behavior of the Young’s modulus over a wide temperature interval are discussed.
© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Niobium has a number of unique properties [1],
making it an extremely promising structural material in
many areas of technology, including nuclear power.
That is why the physicomechanical properties of nio-
bium have been the subject of much investigation.
There is a large body of data for the effect of tempera-
ture on the elastic properties of Nb [1–3], but the spread
in data obtained by different authors is significant. Pos-
sibly, this is related to the various structures of the sam-
ples studied. In addition, most of the data are incom-
plete; that is, the initial state of the material or the type
of preliminary heat treatment was not indicated.

In this work, we study the behavior of the Young’s
modulus in electron-beam-remelted niobium (the con-
tent of impurities is Ta < 0.5 wt% and O2 < 0.1 wt%)
over a wide temperature range. Emphasis is on the
effect of acoustic splitting of the resonance frequency,
which has been discovered in imperfect specimens.

EXPERIMENTAL

Specimens used were 20-mm-long rectangular rods
with a 3 × 3-mm cross section that were made of an as-
prepared ingot by arc cutting.

The Young’s modulus E was determined by the res-
onance method upon the electrostatic excitation of lon-
gitudinal elastic waves in the specimen [4] E =
4ρl2f 2n−2/(1 + ∆l/l), where ρ is the density of the mate-
rial, l is the length of the specimen, f is the resonance
frequency of longitudinal vibrations in the specimen, n
is the number of an excited harmonic (n = 1 in our
case), and ∆l is the specimen elongation due to thermal
expansion.
1063-7842/03/4805- $24.00 © 20616
The room-temperature density, which was deter-
mined by hydrostatic weighing, was found to be
8570 kg/m3.

The experiments were carried out at T = 20–1000°C.
To improve heat exchange, the specimen, together with
the furnace, was placed in a chamber filled with pure
helium at a pressure 0.1 MPa. For T above 300°C,
the measurements were made at a pressure of 1.33 ×
10–2 Pa. The rates of heating and cooling were about
2°C/min. Each data point in the curves E(T) was taken
after the temperature in the chamber had been stabi-
lized. The thermal expansion parameters for Nb are
available from [5].

RESULTS AND DISCUSSION

At T = 20°C, the modulus E of the rods cut from the
side and central parts of the as-prepared ingot was equal
to 103.4 and 103.8 GPa, respectively. The decrease in E
by about 0.4% is likely to be associated with defects
(nanopores, dislocations, grain boundaries, etc.) con-
centrated near the central area of the ingot surface.

Since the electrostatic method of exciting resonant
mechanical vibrations is very sensitive to lattice
defects, the curves E(T) were taken from both as-pre-
pared and annealed specimens.

When heated from 20 to 300°C, some of the as-pre-
pared specimens show, along with the fundamental res-
onance, weaker (hereafter additional) resonances. The
additional resonance appear at frequencies f2 higher
and lower than the fundamental vibration frequency f1.
Such a splitting of the resonance frequency in the
curves f(T), which makes the determination of E uncer-
tain and has been called acoustic splitting (AS), is
003 MAIK “Nauka/Interperiodica”
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observed in the interval 60–180°C. At higher tempera-
tures, the AS effect is absent. Therefore, the modulus E
of rods cut from different parts of the as-prepared ingot
was examined precisely in this temperature interval.

Rods cut from the central part did not exhibit the AS
effect. The curves E(T) for these rods are shown in
Fig. 1. For specimens 1–3, the curves are similar to
each other and run anomalously, with their minimum
corresponding to 180°C. The forward (heating) and
backward (cooling) curves coincide.

In specimens 4 and 5, which were cut from the
opposite ends of the as-prepared ingot, AS at low fixed
temperatures and the anomalous behavior of f1 in the
form of successive jumps are observed in the depen-
dences f(T). Such jumps are typical of first-order phase
transitions and occur when the resonances in the range
of resonant frequency splitting are equal in amplitude at
a certain temperature. The temperature dependences of
the resonant frequency in the coordinates f 2–T are
shown in Fig. 2. The values of f2 (filled circles) are con-
nected to the corresponding values of f1 (open circles)
by vertical dashed lines. For specimen 4, the jumps of
f1 are observed at 63 and 113°C (Fig. 2a); for specimen 5,
at 97, 128, and 154°C (Fig. 2b).

Figure 3 depicts frequency responses (FRs) taken
from specimen 4 in the AS range (Fig. 3a) before the
jump of f1 at 61.5°C, (Fig. 3b) at the instant of the jump
at 63°C, and (Fig. 3c) after the jump at 64 and 66.5°C.
At the instant of the jump, the peaks have equal ampli-
tudes, while near the jump (Figs. 3a, 3c), the additional
peaks are much lower. Before the jump of f1, the ampli-
tude of the additional peak grows with temperature;
after the jump, the additional peak decays rapidly and
disappears at a temperature 5 to 15°C higher than the
jump temperature. Similar FRs with resonant fre-
quency splitting were also observed at other tempera-
tures. It is remarkable that the peaks in the FRs are sta-
ble: they persist after room-temperature storage of the
specimens for several days, and their amplitudes do not
change. Moreover, they are reproduced on both cooling
and repeat heating and do not shift in the temperature
scale.

The split of the FRs observed experimentally is con-
sistent with the standard response of a resonator with
several degrees of freedom [6]. According to the vibra-
tion theory, an FR has two peaks in the case of induced
vibration of a system with two degrees of freedom. It
was shown [7] that two types of longitudinal waves
with various velocities may propagate in an elastic iso-
tropic medium. The mechanical and thermal parame-
ters of such waves are interrelated, which may cause the
AS effect. However, a self-consistent theory of AS in
solids is still lacking.

The split of the resonance frequency of specimens,
as well as the oscillations of the velocity and attenua-
tion of ultrasonic waves, was observed many times in
experimentally studying the temperature dependences
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
of the elastic moduli and internal friction of different
materials by the resonance method. As was noted in
[8, 9], the effect of splitting the resonance frequency
was originally discovered by Belomestnykh and Botaki
as early as in 1976 [10]. These authors simultaneously
measured the velocities of elastic waves propagating in
two modifications of CsN3 near the phase transition
temperature. However, in even earlier works [11–14],
the dispersion of mechanical resonance and the split of
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Fig. 1. Temperature dependence of the Young’s modulus for
Nb specimens cut from the central part of the as-prepared
ingot. The figures by the curves are specimen numbers.
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the resonance frequency of longitudinal and torsional
vibrations in polycrystalline metals, alloys, quartz, and
a number of single crystals were observed at different
temperatures. Later, the thermally stimulated AS of
elastic waves was found in barium titanate [15] and in
many ionic metastable molecular crystals [16]. This
phenomenon was attributed to the coexistence of vari-
ous solid phases in the specimens. In [14, 17], AS was
observed during the loading (deformation) of single-
crystal copper and silicon bronze. This phenomenon
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Fig. 3. Frequency responses taken upon the heating of spec-
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the instant of the jump (63°C), and (c) after the jump
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Fig. 4. Temperature dependence of the Young’s modulus
for  specimens 1 (1, 2) and 4 (3, 4). (1, 3) Heating and
(2, 4) cooling after annealing.
was explained by the presence of second-phase parti-
cles in the specimens [17]. Upon the annealing of ultra-
fine-grain copper produced by intense plastic deforma-
tion, the shape memory effect for the Young’s modulus
was found [18]. After each annealing at a new temper-
ature, the material changed its structural state. On sub-
sequent cooling, two or three resonant frequencies were
simultaneously detected. The authors of [18] believe
that several resonances reflect the coexistence of new
and old phases. AS in high-temperature superconduc-
tors, which was observed many times, was analyzed in
[8]. It was related to the lattice instability and restruc-
turing near the superconducting transition temperature,
formation of long-period soliton-like structures,
waveguide propagation of ultrasonic waves, etc.

From results of works [8–18], it follows that the AS
effect showing up in different materials cannot yet be
described comprehensively. Mechanisms behind the
FR splitting have not been clearly understood up to
now. Specifically, the influence of defects on resonance
frequency splitting remains to be elucidated.

It is known [18, 19] that the elastic moduli of metals
are very sensitive to lattice defects and change substan-
tially after heat treatments. As is known [20], structural
defects may cause new-phase precipitates to arise
around a defect. It seems plausible that, in imperfect Nb
rods cut from the surface part of the massive ingot, heat
treatments favor the relaxation of high internal stresses
through the movement of already existing defects and
the generation of new ones. These processes are accom-
panied by material restructuring with the formation of
various modifications.

It is natural to suppose that the AS effect observed in
the curves f 2(T) (Fig. 2) is due to the existence of mac-
roregions with various structures in the Nb specimens.
Elastic waves in these regions propagate with various
velocities. The phenomenon observed can, therefore,
be explained by the fact that induced vibrations with
additional internal degrees of freedom arise near dif-
fuse phase transitions in imperfect specimens. It is of
interest that the values of f2 fall on the extensions of the
curve f 2(T) before and after the jump, i.e., correspond-
ing to the old and new structural states. These tails of
the resonant frequencies are related to new-phase
nuclei in the old phase and old-phase residues in the
new one. The rearrangement of the structure takes place
in a rather narrow (within several degrees) temperature
range on both sides of the jump temperature. It was also
found [21] that regions with a structure close to the
new-phase structure nucleate well before the phase
transition temperature in various materials. In [22], the
coexistence of several regions with fluctuating struc-
tures was explained by the “thermodynamically uncer-
tain” temperature dependence of the free energy. At
each temperature when f1 experiences a jump, the mate-
rial changes its structure. Reversible structural relax-
ation occurs in this case, since the jumps are repro-
duced on both cooling and repeat heating of the speci-
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
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men. The appearance of each new phase causes
stresses, which increase the resonant frequency and,
hence, the elastic wave velocity and Young’s modulus,
as follows from Fig. 2.

The annealing of specimen 4 at 500°C for 2 h and
subsequent uniform cooling somewhat suppress the
jumps and shift them toward higher temperatures. Also,
the annealing partially relieves the stresses, and the
modulus E slightly grows at room temperature.

In the following experiments, specimens 1 and 4
were heated to 1000°C, then annealed for 2 h, and
cooled to room temperature. The results of such a heat
treatment are shown in Fig. 4. The curves E(T) for these
specimens are seen to differ quantitatively. For speci-
men 1 isothermally annealed at 1000°C, the cooling
and heating curves run in a similar manner and the hys-
teresis loop for the modulus is insignificant. During the
annealing of specimen 4 at 1000°C, the value of E
increases with time. The heat treatment completely
suppresses the jumps of the fundamental resonant fre-
quency on cooling. AS is absent in this case. The cool-
ing curve runs above the heating curve and almost coin-
cides with the curve E(T) for specimen 1. There is no
doubt that such behavior of E(T) upon the heating of as-
prepared specimen 4 is due to its imperfect structure.

It is known [23] that annealing improves the speci-
men structure, alters the velocity of elastic waves, and
increases the elastic modulus to a value observed in a
perfect specimen. The fact that the annealing of speci-
men 4 causes an irreversible increase in E clearly dem-
onstrates a significant modification in its structure.
However, such a heat-treatment-assisted structural
modification does not change the density of the mate-
rial at room temperature. It was also demonstrated [11]
that additional resonances observed in polycrystalline
metals are removed after high-temperature annealing.
This substantiates our supposition that the reasons for
thermally stimulated AS are the instability of the imper-
fect structure of the Nb specimens and its complex
reconstruction, causing the formation and coexistence
of various material modifications. Note, however, that
mechanisms behind AS in polycrystalline niobium are
still little understood, because the problem of oscilla-
tory states in imperfect crystals is complicated and calls
for special theoretical and experimental investigation.

As follows from Figs. 1–4, E decreases only in the
range 20–180°C. At higher temperatures, it even
slightly grows rather than drops as in most crystals. At
380°C, the dependences E(T) show a broad peak of
unknown nature. In general, the dependence E(T) is
rather weak: in the range 20–1000°C, E varies by less
than 1.5%.

The minor variation of E up to 1200°C was also
observed by other authors; only above this point, E
starts slowly decreasing. The dependences E(T) for Nb
obtained in various works are summarized in [1].
Almost all the curves differ from one another, since
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
they were taken from specimens with different struc-
tures and an uncontrollable impurity composition.

Because of the complicated variation of binding
forces, a unified mechanism describing the effect of
temperature on the elastic properties of Nb has not
worked out to date. Today, there are several viewpoints
concerning the specific variation of the Nb elastic mod-
uli. It was hypothesized [1] that the unusual behavior of
the Young’s modulus and shear modulus of Nb on heat-
ing reflects the specific configuration of electronic
shells in this metal. Impurities (primarily oxygen)
present in it may strengthen atomic bonds by producing
a solid solution at high temperatures. Foreign atoms
may have a twofold effect: (1) atomic interactions start
to depend on the free electron concentration (electronic
factor) and (2) static distortions, which change the lat-
tice parameter, arise because of a radius mismatch
between an impurity and the solvent (dimension factor).
In [2], the variation of E upon heating is accounted for by
the anisotropy of Nb grain properties. Relations between
elastic properties, anisotropy, and texture have not yet
been studied at length. We can only note that the differ-
ence in the elastic moduli of isotropic and textured
polycrystals may reach several tens of percent [19].

CONCLUSIONS

Our investigation clearly demonstrates that the AS
effect for a longitudinal ultrasonic wave in polycrystal-
line Nb is reproducibly observed in a limited tempera-
ture range, depends on the concentration of defects in
specimens and their thermal history, and disappears
after annealing at 1000°C.

It is shown that traces of new and previous (ther-
mally broken) substructures can be detected by measur-
ing the Young’s modulus of imperfect specimens. The
possibility of simultaneously finding the FR amplitudes
at two resonant frequencies corresponding to two dif-
ferent structural states (phases) makes it possible to
judge a quantitative relationship between these phases
near the phase transition. A detailed study of the AS of
elastic waves may give rise to a new method for inves-
tigating the phase transition kinetics in materials, since
there appears the possibility of keeping track of phase
relations with a high accuracy as the temperature
varies.

Our experimental data for the elastic properties of
Nb over a wide temperature range and the behavior of
ultrasonic waves in defect structures might be helpful in
analyzing component parts of machines and construc-
tions; in equations of mechanics of rigid bodies; and in
the analytical apparatus of the physical theory of defor-
mation and fracture, which involves contemporary con-
cepts of imperfections in crystalline materials.
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Abstract—The quality factor of a sapphire disk resonator with conductive end plates is studied theoretically
and experimentally. The feasibity of measuring the sheet resistance of copper, titanium, and YBa2Cu3O7 – δ
high-temperature superconductor films in the 8-mm range is shown. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Dielectric resonators are widely used for measuring
the microwave characteristics of insulators [1, 2] and,
in recent years, high-temperature superconductor films
[3]. A method for the measurement of the microwave
sheet resistance of these films that uses conductive-end-
plate resonators with lower volume modes has recently
been suggested [4]. Such resonators are designed for
microwave frequencies below 25 GHz. In the millime-
ter-wave band, they become too small to be effective.
The basic power parameter of a dielectric resonator is
its quality factor. In this band, the highest quality factor
is featured by quasi-optical dielectric resonators with
higher azimuthal wave modes (“whispering gallery”
modes) [5]. For millimeter waves, these resonators
have a reasonable size and show promise for resonant
structures that employ high-temperature superconduc-
tor films [6].

The electrodynamic analysis of quasi-optical dielec-
tric resonator properties and the theoretical and experi-
mental identification of resonator modes were carried
out in [7, 8]. It was shown that the sheet resistance RS

of normal conductors can basically be measured in the
millimeter-wave band. The value of RS superconductors
is, however, difficult to measure, since losses in super-
conductors, which define RS, are much smaller than all
other losses in the resonator.

In this paper, we measure the radiation quality fac-
tor, determine the contribution of dielectric and con-
duction losses to the total loss of a sapphire disk reso-
nator with conductive end plates, and estimate the value
of RS for normal metals and thin high-temperature
superconductor films.
1063-7842/03/4805- $24.00 © 200621
THEORETICAL RELATIONSHIPS 
FOR THE INTRINSIC AND RADIATION 

QUALITY FACTORS

The general design of the resonator is given in
Fig. 1. Its loaded quality factor QL is given by 

(1)

where Qrad = ω'/2ω'' is the radiation quality factor of the
resonator (ω = ω' – iω'' is the complex circular eigen-
frequency of the resonator, which is a solution to the
dispersion relation given in [8, 9]); QC is the coupling

quality factor;  is the dielectric loss tangent; 

and  are the sheet resistances of the normal con-
ductor and superconductor, respectively; and k, AN, and
AS are the weight factors of the dielectric, conduction,
and superconductivity losses.

The coefficients ΓN = 2  and ΓS = 2  are often
referred to as geometrical factors. In sheet resistance
measurements, the coupling to the resonator is usually

QL
1– k δ 1

2
---ANRS

n( ) 1
2
---ASRS

sc( ) Qrad
1– Q C 

1– ,+ + + +tan=

δtan RS
n( )

RS
sc( )

AN
1– AS

1–

l 2a

D

Z C1 2 34

5

Fig. 1. Dielectric disk resonator with conductive end plates:
(1) high-temperature superconductor film (or copper disk),
(2) sapphire disk, (3) dielectric Al2O3 substrate, and
(4, 5) input and output waveguides.
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very weak; i.e.,  ! , where Q0 is the resonator’s
unloaded quality factor. For a quasi-optical dielectric
resonator with conductive end plates, the following ine-
quality is valid:

In such a resonator, AS = AN = A and expression (1)
simplifies to 

(2)

When the end plates are made of the same material,

(2a)

For Y modes (by Y modes, we mean HE or EH
modes), the resonator’s unloaded quality factor, in this

QC
1– Q0

1–

Qrad
1–

 ! k δ 1
2
---ANRS

n( ) 1
2
---ASRS

sc( ).+ +tan

Q0
1– k δtan

1
2
---A RS

n( ) RS
sc( )+( ).+=

Q0
1– k δtan ARS.+=
case, is given by [7, 8]

(3)

where µ0 is the permeability and l is the longitudinal
size of the resonator.

Formulas (3) and (2a) yield 

(4)

(5)

We experimentally studied a quasi-optical dielectric
resonator with HEnsm modes, where n = 0, 1, 2, … is the
azimuthal subscript; s = 1, 2, … is the radial subscript;
and m = 0, 1, 2, … is the axial subscript. It turned out
that, in resonators with conductive end plates, it is rela-
tively easy to excite axially uniform HEns0 modes, for
which [8]

Q0
Y( )
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--------------- δtan
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A 2/ωµ0lRY .=
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Here, a is the radius of the dielectric disk, z0 = k0a, k0 =

ω/c, c is the velocity of light,  = ε|| , ε|| is the com-
ponent of the permittivity tensor along the resonator,

and Jn(z) and (z) are the nth-order cylindrical
Bessel and Hankel functions of the first kind. The
primed quantities are derivatives with respect to the
argument, and the asterisk denotes complex conjuga-
tion.
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EXPERIMENTAL 

In the experiments, we used a leucosapphire cylin-
der with a diameter 2a = 14.4 mm and a length l =
2.4 mm. The optical axis of the crystal was aligned with
its longitudinal axis (Fig. 1). The diameter D of the end
plates satisfied the condition D > 2a; therefore, the
eigenfrequency ω and the radiation quality factor Qrad
were diameter independent. The leucosapphire was
synthesized at the Institute of Single Crystals, National
Academy of Sciences of Ukraine, by directed crystalli-
zation. The surface of the dielectric cylinder was
lapped, and the optical axis was aligned with the longi-
tudinal axis within ±50'. The end plates were made of
oxygen-free copper (unannealed and annealed), tita-
nium, and YBa2Cu3O7 – δ high-temperature supercon-
ductor films applied onto a single-crystal Al2O3 sub-
strate by laser ablation technology.

The measurements were taken in the 35–37 GHz
frequency range. The resonance frequencies were mea-
sured by an electronic frequency meter accurate to 10−7.
In practice, the error was ≈0.5 MHz, which is due to the
instability of the microwave oscillator. The resonator’s
quality factor was measured by two methods [10]:
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
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(i) the transmission method, which measures the width
∆f of the resonant response function and the resonance
frequency f0, with the quality factor calculated as Q =
f0/∆f, and (ii) the decrement method, which measures
the transient time period τ in the resonator after it has
been excited by a rectangular pulse at a carrier fre-
quency f0, with the quality factor calculated as Q =
2πf0τ/ln(P1/P2), where P1 and P2 are the powers
released in the load at time instants t1 and t2 = t1 + τ after
the beginning of the relaxation process. The latter
method was used when the quality factor was high: Q =
104–108. In the measurements, resonator–feed line cou-
pling was weak; i.e., Q ≈ Q0.

The resonator was coupled to the feed lines through
rectangular dielectric waveguides one side of which
was metallized. The input and output waveguides were
set at an angle (10°–15°) to each other, which allowed
us to vary the coupling between the transmission lines
and resonator by moving the latter in the plane of the
waveguides. The waveguides were fabricated from a
special organic polymer with a permittivity ε ≈ 9.

RESULTS AND DISCUSSION

As follows from (1) and (2), to calculate the contri-
butions of dielectric and conduction losses to the total

energy loss  in the resonator, one should find the

weight factors k and A, dielectric loss tangent , and
RS. If one of the end plates is made of a normal metal,

it becomes possible to find  from the quality factor

Q0 measured and k, A, and  known.

We studied a quasi-optical dielectric resonator with
the axially uniform mode HE14 1 0. Table 1 lists the cal-
culated values of k, A, and Qrad, as well as the resonance
frequency f0 found experimentally. In the experiments
at 77 K, both end disks of the resonator were made of
copper-based materials: one, of the high-temperature
superconductor; the other, of pure copper. At 300 K, the
end plates were either copper or titanium disks.

Al2O3 single crystals feature the lowest value of
 among solid insulators currently known. Micro-

wave absorption in this material was studied, e.g., in
[2, 11, 12]. However,  depends strongly on the
quality of the crystal. It should also be taken into
account that  is determined from the measured
quality factor, which, in turn, depends on the surface
finish, deviation from the cylindrical shape, and accu-
racy of the optical axis adjustment. Therefore, it is nec-
essary to measure  immediately on the material of
which the resonator is made. In this paper, we deter-

mined  from  measured for an open resonator
with the HE14 1 δ mode at the subscript δ ≈ 0 and

obtained  = 3.2 × 104 at 300 K and  = 3.4 × 105

Q0
1–

δtan

RS
(sc)

RS
n( )

δtan

δtan

δtan

δtan

δtan Q0
HE

Q0
HE

Q0
HE
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at 77 K. Figure 2 shows that the dependence 
is well fitted by a straight line, which complies with
results reported elsewhere [11, 12]. The lower values of
the unloaded quality factor Q0 that are observed in our
study may be attributed to a number of reasons: low-
grade sapphire, poor surface condition, or misalign-
ment between the crystal’s optical axis and the geomet-
rical axis of the disk.

Table 2 lists RS for a number of conductors, includ-
ing high-temperature superconductors.

As follows from Table 2, at 300 K, the sheet resis-
tances measured on oxygen-free hydrogen-annealed
copper and pure titanium are in good agreement with

those found by the formula  = , which is
valid in the case of the normal skin effect. Here, σ is the
conductivity of the material. This agreement means that
our analysis of the field structure and the associated
method for determining the coefficients k and A are cor-
rect.

For titanium, the experimental temperature depen-

dence of  is also in good agreement with the model
of the normal skin effect in the millimeter-wave band.
Unlike copper, the agreement is observed down to liq-
uid nitrogen temperature.

The sheet resistances  of the two YBa2Cu3O7 – δ
films measured in this work are noticeably different.

Q0
1–( )log

RS
n( ) ωµ0/2σ

RS
n( )

RS
(sc)

Table 1

T, K f0, GHz k A, Ω–1 Qran

300 35.12 0.992 2.961 × 10–3 5.3 × 109

77 35.57 0.992 2.924 × 10–3 5.3 × 109

–4.6

–4.8

–5.0

–5.2

–5.4

–5.6

log(Q0
–1)

100 150 200 250 300
T, K

Fig. 2. Microwave absorption in the open sapphire disk re-
sonator versus temperature.
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Table 2

Conductors
Cu

Ti
YBa2Cu3O7 – δ

unannealed annealed film 1 film 2

T, K 300 77 300 300 77 77

5100 10 380 5730 1250 13 110 16 270

, mΩ – – – – 17.8 8.2

, mΩ
experiment 54.9 31.8 48.8 261 – –

calculatation 48.4 – 48.4 264 – –

Q0
HE

RS
sc( )

RS
n( )

Table 3

T, K ktanδ

77 2.94 × 10–6 1.97 × 10–5 5.39 × 10–5 1.89 × 10–10

300 3.07 × 10–5 – 1.44 × 10–4 1.89 × 10–10

1
2
---ARS

sc( ) 1
2
---ARS

n( )
Qrad

–1
Three circumstances may cause film 1 (Table 2) to have
a higher sheet resistance: (i) the film is not large enough
(18 × 20 mm), which basically may increase the diffrac-
tion loss; (ii) the film was synthesized long (about two
years) ago and might degrade; and (iii) the resonant fre-
quency response of the doubly degenerate mode might
have an extended width due to weak splitting. At
present, it seems impossible to discriminate between
these factors: figuring out the reasons for the increase in
(or the overestimation of) the sheet resistance is the
subject of subsequent investigation.

106

Q0

105

104

103

0.1 1 10 100
RS

(sc), mΩ

1

2

3

4

Fig. 3. Resonator’s quality factor versus sheet resistance of
the high-temperature superconductor film: (1, 2) two films
and (3, 4) film and copper end plate. (1, 3)  = 0 and

(2, 4) k  = 2.94 × 10–6.

δtan

δtan
The data gathered allow us to evaluate and compare
the loss components in the sapphire resonator. Table 3
summarizes the data obtained upon using the high-tem-
perature superconductor film and copper disk at 77 K
and two copper disks at T = 300 K.

The Q factor of the resonator increases with
decreasing temperature, because the losses in the sap-
phire and conductor decrease. A sharp change in the
quality factor is observed when the high-temperature
superconductor film (used as the end plate) passes into
the superconducting state. At T = 77 K, the decrements
are related as follows:

It is clear that the sensitivity of superconductor sheet
resistance measurements will be improved if both end
plates are made of high-temperature superconductor

films (Fig. 3). The accuracy of measuring  will
depend only on the accuracy with which the quality fac-
tor and dimensions of the resonator are measured.
Upon using modern approaches to the measurement of
Q0, this accuracy can approach ≈1% [4].

CONCLUSIONS

Thus, based on the theoretical analysis of the field
structure in a conducting-end-plate sapphire disk reso-
nator, the radiation quality factor and weight factors of
the dielectric and conductors are evaluated. When the
geometrical parameters of the resonator, the sheet resis-
tance of the conductor, and the dielectric loss tangent
are known, the above parameters specify the quality
factor Q0. On the other hand, the measurement of the
unloaded quality factor Q0 allows one to solve the

1
2
---ARS

n( ) 1
2
---ARS

sc( ) k δ @ Qrad
1– .tan> >

RS
sc( )
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inverse problem for the microwave characteristics of
materials. The feasibity of measuring the sheet resis-
tances of conductors and superconductors in the milli-
meter wave band is shown. Good agreement between
the measured sheet resistances and those calculated
under the condition of the normal skin effect is demon-
strated with oxygen-free copper and titanium. The sen-
sitivity and accuracy of sheet resistance measurements
as applied to high-temperature superconductor films is
improved when these films cover both end plates of the
resonator.
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Abstract—Charge transfer near the threshold of polymer film transition (induced by a low uniaxial pressure)
to the high-conductivity state is studied in an attempt to tackle the question of how the energy band structure of
a wide-gap organic insulator varies near this threshold. The I–V characteristics of poly(diphenylenephthalide)
films of various thickness versus uniaxial pressure are analyzed. The results obtained are treated within the
model of space-charge-limited injection currents. The parameters of the injection model, such as the equilib-
rium concentration of electrons, electron mobility, the occupation of traps, etc., are estimated. It is concluded
that deep traps due to an excess charge may appear in the energy gap of the polymer near the imref. This prob-
ably causes a narrow subband to arise, and charge transfer via this subband increases the charge carrier mobility
and, hence, conductivity. © 2003 MAIK “Nauka/Interperiodica”.
When subjected to an electric field [1], low uniaxial
pressure [2], high temperature [3], etc., thin films of a
number of electroactive polymers are known to pass
from the dielectric to high-conductivity state. A feature
of this phenomenon is that the conductivity of the latter
state varies with temperature as in metals and may be
very high (>105 (Ω cm)–1) [4]. At the same time, the
parameters characterizing the initial dielectric state are
as follows: the energy gap equals ≈4.3 eV; electron
work function, ≈4.2 eV; and the first ionization poten-
tial, ≈6.2 eV [5]. To date, it still remains unclear how
the energy band structure of a wide-gap organic insula-
tor varies near the transition to the high-conductivity
state.

A possible reason for this situation is that research-
ers have concentrated on charge transfer in the high-
conductivity state of a polymer and on constructing
models accounting for the transfer features. In [6], a
model of pressure-induced charge carrier injection
from a metal to the conduction band of an insulator was
developed. According to this model, the compression of
the material causes the decay of surface states acting as
electron acceptors [7].

Later [8], the conductivity of oxidized polypropy-
lene films as a function of electric field, temperature,
pressure, specimen geometry, and substrate material
was studied. The film thickness was varied from 5 to
40 µm. It was assumed [8] that there exist conducting
regions, narrow channels, whose spread resistance gov-
erns the conductivity of a polymer–metal system.

The occurrence of the high-conductivity state was
explained by the formation of conducting channels (in
1063-7842/03/4805- $24.00 © 0626
the polymer film) made of an electrode material [9, 10].
It was also speculated that there are lower limits of the
voltage and current in the high-conductivity state below
which a continuous metallic filament does not form and
conduction is associated with a more complicated con-
figuration of the metallic channel. For example, metal
particles separated by tunnel-transparent barriers may
form a conducting chain between the electrodes.

It was also hypothesized [11, 12] that mobile dipole
groups (with a concentration Cdip < 1020 cm–3) arise in
an elastomer upon oxidation. In this case, the ratio
between the high- and low-frequency permittivities of
the medium becomes low: K = ε∞/ε0 ! 1. As a result,
some functional groups of the elastomer readily ionize
and immobile ions and low-mobility polarons appear in
the polymer. In this situation, specific high-conductiv-
ity domain structures may appear.

In [13], a high conductivity of polymer films was
explained by the formation of channels with waveguide
energy levels, via which electrons may penetrate from
metallic electrodes into the channels and travel with a
negligible energy dissipation. A simple model of such a
channel was suggested, and estimates that clarify the
nature of a waveguide level were made.

Eagles [14] made an attempt to apply the idea put
forward in [15] to quasi-one-dimensional systems.
According to this idea, in a narrow cylindrical region of
thickness less than the magnetic field penetration depth,
pairing is possible at a very high drift velocity. Calcula-
tions [14] based on the theory worked out in [16]
showed that, if the Fermi level EF lies higher than the
energy hω of phonons, plasmons, or excitons, super-
2003 MAIK “Nauka/Interperiodica”
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conductivity may arise, with the superconductivity
energy gap higher than, or comparable to, that in the
absence of current. However, straightforward calcula-
tions demonstrate that, if EF ! hω, superconductivity
with strong pairing is possible.

Popov and Tséndin [17] proposed the model of
high-temperature superconductivity in low-coordinated
semiconductors and polymers. In this model, the state
with an anomalously high conductivity at ambient tem-
perature is described through the superconducting
properties of a set of localized electron pairs. Supercon-
ductivity here is due to bipolaron transfer over a band
formed by localized pairs occupying U– centers (i.e.,
intrinsic defects with a negative effective correlation
energy).

Ponomarev and Shikhovtseva [18] suggested the
formation mechanism for conducting channels in thin
films of oxygen-containing polymers. Here, the chan-
nels result from the soliton-like propagation of some
excited state along a polymer molecule. This state
arises when C–O bonds between quaternary carbon of
a primary molecule and oxygen of a side group break.
It is assumed that the polymer’s structure has a doubly
degenerate ground state. The transition between these
states takes place when the excited state moves along
the polymer chain.

Clearly, the phenomenon being discussed obeys
some general laws irrespective of the polymer nature. It
follows that a model to be elaborated must also ade-
quately describe and predict the basic features of
charge transfer in polymers near the transition to the
high-conductivity state. However, a variety of available
models apparently indicates the scantiness of experi-
mental data upon which the models rely. Specifically,
the variation of charge transfer parameters in the pre-
transition range is still an uncovered issue.

In view of the aforesaid, this work is devoted to the
study of charge transfer near the threshold of polymer
film transition to the high-conductivity state induced by
a low uniaxial pressure. We took the I–V characteristics
from poly(diphenylenephthalide) films [19] of different
thickness under various pressures.

The I–V characteristics of highly conductive poly-
mers were analyzed, e.g., in [20–24]. However, data for
the pretransition range were not systematized there.

Poly(diphenylenephthalide) was selected as an
object of investigation because it offers good film-
forming properties on metallic substrates. It was shown
[25] that 0.05- to 10-µm-thick continuous homoge-
neous films of this polymer are feasible if particular
process conditions are met. In addition, the conductiv-
ity of poly(diphenylenephthalide) does not have tem-
perature singularities up to the softening point (360°C
in air). Finally, conditions for the occurrence of the
high-conductivity state in this material are better under-
stood [1, 26, 27]. The film quality and homogeneity
were studied by optical microscopy methods (see [28]).
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
Our experiments were carried out on a setup that
consisted of a uniaxial mechanical pressure controller,
a pressure transducer built around a strain-sensitive
resistive bridge, and a measuring circuit to record the I–V
characteristics. The pressure was varied between 0 and
1000 kPa.

Test specimens were metal–polymer–metal sand-
wiches. A thin polymer film was applied on the lower
electrode by spinning. The upper electrode was applied
on the polymer film by thermal diffusion deposition in
vacuo. The contact area was S ≈ 2 mm2. The film thick-
nesses were specified by the solution concentration and
were checked by an MII-4 interferometer. They were
found to vary between 0.8 and 1.5 µm. A total of more
than 50 specimens were investigated.

Switching to the high-conductivity state was
observed at a certain threshold pressure. Figure 1 shows
the conductivity of the polymer film vs. voltage applied
to the measuring cell. The run of the curves is typical of
all the specimens studied in this work. The threshold
pressure at which the conductivity grows sharply is
extremely low. This may indicate that energy levels in
the valence and conduction bands are not displaced,
since such a displacement requires a considerable pres-
sure. According to [29], the proportionality coefficient
between the energy needed to displace a level and pres-
sure is 10–10–10–11 eV/Pa. It should be noted that the
conductivity varies with the applied voltage: the higher
the voltage, the higher the conductivity.

Typical I–V characteristics taken from the 1-µm-
thick polymer films in the subthreshold range under dif-
ferent pressures are given in Fig. 2. These curves are
well approximated by power functions of type I ≈ Un.
In the absence of pressure, the curves can be divided
into two regions: linear with n = 1 (low voltages) and
quadratic with n = 2 (high voltages). The transition

10–3

10–4

10–5

10–6

10–7

10–8

σ, (Ω m)–1

840 880 920 960
P, 103 Pa

1
2
5

Fig. 1. Conductivity σ of the polymer film vs. uniaxial pres-
sure P (excess pressure relative to atmospheric value). The
figures by the curves are voltages (in V) applied to the film.



 

628

        

BUNAKOV 

 

et al

 

.

                                                                      
between the two regions takes place at a certain volta-
ge U1.

From Fig. 2, it follows that U1 decreases with pres-
sure. After the voltage has reached the value U2, the
quadratic region is changed to a region where the
curves run nearly vertically. As the pressure grows, U2
tends toward higher values. At voltages higher than U2,
the vertical portion is followed by another quadratic
region. A further increase in the pressure electronically
switches the polymer to the high-conductivity state.

The I–V characteristics were treated within the
model of space-charge-limited injection currents [30],
which provides information on localized states in the
energy gap and allows one to explain the shape of the

0 1 2 3
lnU, V

800

880

P
, 1

03  P
a
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0
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6  A

Fig. 2. I–V characteristics of the polymer film at (h) 0,
(j) 780, (d) 820, and (m) 860 kPa.
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Fig. 3. Current vs. polymer film thickness.
I–V curves. Before proceeding to the discussion of the
results obtained, we note that traps in this model are
assumed to be monoenergetic. The discussion that fol-
lows demonstrates that, even with this limitation, it
becomes clear how the model parameters depend on
external conditions.

This model implies that, at low voltages (up to U1)
(Fig. 2), the I–V characteristic is well described by
Ohm’s law. At U1, the equilibrium concentration of
thermionic free electrons becomes comparable to the
concentration of injected charges:

(1)

where e is the charge of an electron, n0 is the equilib-
rium concentration of free charges, µ is the electron
mobility, and L is the film thickness.

Next, the I–V curve obeys the trap-related quadratic
law

(2)

where ε is the relative permittivity, ε0 is the dielectric
constant, and θ is a constant taking into account the
degree of trap occupation.

The first quadratic portion of the curve is followed
by the region where the current rises nearly vertically
(Fig. 2). This voltage range is treated as that where the
occupation of traps reaches a maximum (U2 = Ut, max).
Since the occupation of traps becomes maximal when
the imref crosses trap levels in the energy gap, the
injected charge density and, accordingly, the current in
the polymer increase substantially. As the voltage rises
further, the I–V curve is described, as a rule, by the trap-
unrelated quadratic law (Fig. 2):

(3)

From the above formulas, it follows that, in terms of
the injection model, the current varies with the speci-
men thickness as L–3 provided that the voltage remains
the same. It was, therefore, of interest to check the ful-
fillment of this dependence for our polymer films. The
curves I = f(L–3) constructed in this work are shown in
Fig. 3. The thickness of the films was varied by succes-
sively pouring the solution of the same concentration
over the same substrate. In view of errors arising at dif-
ferent stages of this experiment, the curves are well fit-
ted by a straight line. This indicates that the injection
model may be used for treating the I–V characteristics.

The table lists the values of U1 and Ut, max, as well as
the basic parameters of the model: µ, electron mobility;
n0, the equilibrium concentration of thermionic elec-
trons; and pt, 0, the concentration of empty traps (which
is proportional to the total concentration Nt of traps), for

J en0µ
U
L
----,≈

J θεε0µ
U2

L3
------,≈

J εε0µ
U2

L3
------.≈
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Effect of uniaxial pressure on injection model parameters

P, 103 Pa µ, 10–9 m2/(V s) n0, 1020 m–3 U1, V Ut, max, V pt, 0 , 1021 m–3 θ

780 1.39 3.68 6.14 8.13 1.37 0.36

820 1.65 2.41 5.55 9.18 1.52 0.26

860 1.77 2.18 5.22 10.68 1.79 0.25
different uniaxial pressures. We used the following esti-
mators [30]:

(4)

It should be noted that the conductivity σ calculated
from the current and voltage values within the linear
portion of the curve coincides with that found by the
formula σ = en0µ up to order of magnitude.

From the tabulated data, it follows that an increase
in the pressure decreases the equilibrium carrier con-
centration, which is probably related to a change in the
imref position. The shift of the voltage U1 toward lower
values with increasing pressure supports our supposi-
tion that deep traps, the concentration of which grows,
begin to play a primary role. The carrier mobility also
rises presumably because of the increase in the trap
concentration and the decrease in their occupation.

Thus, the preliminary conclusions are as follows.
A rise in the pressure alters conditions for carrier injec-
tion into the polymer film. This process may be associ-
ated with the decay of electron surface states [6], which
raises the injection level. The charge injected also
grows with the electric field applied to the specimen; as
a result, the conductivity of the highly conductive state
increases (Fig. 1). When interacting with a poly(diphe-
nylenephthalide) macromolecule, an excess injected
charge may produce deep levels by the mechanism
described in [31]. It was also shown that this interaction
may increase the polarizability of a macromolecule
fragment [32]. The result is an unstable high-permittiv-
ity polymer state that relaxes after a time with the elec-
trons passing to deeper traps. It seems that there exists
a certain critical injection level above which the pro-
cesses mentioned above lead to the formation of a nar-
row band of traps near the imref in the energy gap. The
possibility of charge transfer over this band improves
significantly the charge carrier mobility and favors the
transition of the polymer film into the high-conductiv-
ity state.
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Abstract—An original approach and a single-ion-beam experimental setup for in situ ion implantation com-
bined with the deposition of various materials on metals are suggested. The simulation system developed makes
it possible to characterize ion-assisted deposition, as well as to analyze the radial and depth distributions of
atoms deposited and implanted. The results of the simulation allow us to conclude that the ion beam energy, the
mass and fluence of the ions, and especially the target geometry have a noticeable effect on the processes.
Experimental data for the depth profiles of atoms implanted and for the thicknesses of films applied are also
reported. The variation of the film thickness, the uniformity of the films, and the efficiency of mixing in the
film–substrate system are discussed based on the results of simulation and experimental data. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Ion-beam-assisted deposition (IBAD) of various
materials has been widely used in recent years for the
modification of mechanical, electrical, optical, tribo-
logical, barrier, anticorrosive, and catalytic properties
of surface layers. The basic difference between IBAD
and conventional ion implantation is that, in the former
case, ion irradiation is accompanied by the deposition
of an additional atomic or molecular component from a
magnetron, ion–plasma, arc, or any other source, as
well as from the residual atmosphere in the implanta-
tion chamber.

For example, titanium nitride (TiN) or cubic boron
nitride (β-BN) deposits on the surface of steel parts
greatly improve their wear resistance and corrosion
resistance and, hence, extend their service life [1, 2].
Therefore, IBAD can be viewed as a promising means
for the production of advanced mechanical and electri-
cal engineering products and also as a promising tech-
nology for layered microelectronic devices.

Recent publications (see, e.g., [3]) have indicated
that the structural, tribological, adhesive, and mechani-
cal properties of IBAD films depend to a great extent on
ion irradiation conditions (ion current density, ion
energy, cumulative dose, and target temperature). In
particular, the mechanical properties, adhesion to the
substrate, and structural perfection of the coatings are
appreciably improved if the ion beam density is suffi-
ciently high.
1063-7842/03/4805- $24.00 © 20631
During IBAD, the depth profiles of atoms both
deposited and implanted are governed not only by the
rate of early component deposition and atomic collision
kinetics. They also depend on many other factors, such
as the accumulation of impurities in the target, the sput-
tering of the target, the diffusion of impurities, atomic
mixing (here both the ballistic and diffusion compo-
nents of this process are essential), the nucleation of
new phases during IBAD, and the swelling of the coat-
ing and substrate. In terms of physicochemical proper-
ties, nitride films are of greatest interest for applications
[4]. Therefore, in this work, we concentrate mainly on
the IBAD of nitrogen-containing coatings.

It should be noted, however, that, in a number of
cases, IBAD (e.g., when used to improve the service
properties of metal surfaces) requires expensive,
energy-consuming, and sophisticated equipment (an
ion accelerator plus a magnetron, ion–plasma, or any
other source). Therefore, the search for novel original
IBAD concepts that allow designers to simplify the
technology and make the associated equipment less
expensive, while retaining the advantages of the pro-
cess, seems to be topical.

DESIGN OF IBAD EQUIPMENT 
AND IBAD SIMULATION

We suggest an original IBAD version for the modi-
fication of the surfaces of metals (specifically, copper as
a promising material for electrical commutators) and
003 MAIK “Nauka/Interperiodica”
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other materials. The specific feature of our approach is
that the in situ implantation of ions (e.g., nitrogen ions)
and the deposition of metals (gold, nickel, etc.) are per-
formed with the same ion beam (Fig. 1). The basic unit
of the setup suggested is the target in the form of a trun-
cated cone that is made of a desired material or of any
material coated by a layer of a desired material. A dia-
phragm (with the diameter coincident with that of the
substrate (sample)) in the upper part of the conical unit
serves to provide one of the possible operating condi-
tions: ion-assisted deposition (without the diaphragm),
deposition of layers (with the diaphragm), or repetitive
deposition with subsequent IBAD and ion-beam mix-
ing of the layers. Thus, when the diaphragm is open, the
central part of the beam acts on the sample surface,
while the circumferential part of the beam strikes the
lateral surface of the cone. Some of the sputtered parti-
cles reach the sample surface. Thus, during the ion irra-
diation of the truncated cone, we are dealing with ion
implantation, sputtering, and deposition of cone atoms
proceeding simultaneously.

The general problem of IBAD simulation can be
subdivided into three independent stages: (i) the simu-
lation of the spatial distribution of the sputtered particle
flux as a function of azimuth and polar angles (because
of the oblique incidence of the beam on the target);
(ii) the calculation of the radial distribution of the sput-
tered particle flux reaching the substrate per unit time;
and (iii) the simulation of IBAD with regard for the

1

2

3

4

5
6

ϕ

Fig. 1. Axisymmetric design of the IBAD setup. (1) Casing,
(2) sample (substrate), (3) sample holder, (4) material to be
sputtered, (5) ion beam, and (6) sputtered atom flux.
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Fig. 2. Radial distribution of atoms deposited in 1 s as a
function of the ring number (the largest number corre-
sponds to the outermost ring).
sputtering of the coated substrate, impurity diffusion,
and motion of the surface because of deposition and
sputtering (the deposition rate is found from the two
preceding stages).

The first stage was solved by applying the latest
modification of the SATVAL program [5, 6]. Stage (ii)
of the simulation was performed by using our original
program. Finally, stage (iii) of this work was solved
with the program suite developed by us [7–13] for the
simulation of conventional ion-assisted deposition
[7−10] and high-dose ion implantation into layered
structures (the BEAM2HD program [11–13].

The BEAM2HD program allows one to describe
one- and two-beam high-dose implantation into multi-
layer or multicomponent systems. Each of the beams is
characterized by the initial energy and dose, as well as
by the number of Monte Carlo-simulated trajectories.
Each of the trajectories is assigned a “pseudoparticle,”
i.e., a certain interval of the bombarding ion dose, and
the ion trajectories for each of the beams are simulated
in turn.

The description of high-dose ion implantation
includes a number of additional factors compared with
low-dose implantation: the scattering and energy loss
of implanted ions by impurity atoms embedded earlier,
the scattering of the target surface, the effect of the
mobile surface boundary, and target swelling due to
high-dose implants.

The simulation based on the program suite makes it
possible to gain information on the radial and depth
profiles of deposited and/or implanted atoms as func-
tions of the ion type, energy, and fluence, and the geom-
etry of the conical target [14, 15]. The efficiency of the
simulation process is provided by splitting the cone and
sample surfaces into a set of equiareal rings in order to
obtain equal fluences per ring. Then, the double-angle
spatial distribution of ion-beam-sputtered particles
(obtained with the SATVAL program) is processed with
the aim of finding the specific number of sputtered par-
ticles per ring and general radial distribution of depos-
ited atoms. The histogram in Fig. 2 shows the distribu-
tion of deposited atoms vs. the ring number (the rings
are numbered from the center toward the periphery).

RESULTS OF SIMULATION

The efficiency of the ion-beam material deposition
and modification suggested in this article depends on
the conical target material, cone geometry, ion type and
energy, and substrate temperature. In our experiments,
the substrate was kept at room temperature. The ion
energy is a highly essential factor. Figure 3 shows the
number of deposited chromium atoms per unit sub-

strate area upon irradiation by  ions with energies of
20 and 60 keV as a function of the distance from the
sample axis (the diaphragm is closed). As for the nor-
mal incidence of ions on the target [3, 4], the coefficient
of target sputtering depends considerably on the ion

N2
+

TECHNICAL PHYSICS      Vol. 48      No. 5      2003



        

SINGLE-ION-BEAM EXPERIMENTAL SETUP 633

                                                                                                                                  
energy. In our case, however, the net effect also
includes the energy dependence of the angular (spatial)
particle distribution. In general, ion energies that are
optimal for depositing thicker layers shift toward lower
energies compared with the case of normal incidence.
The sample region near the cone wall has a maximal
thickness. For the range 9° ≤ θ ≤ 21°, where θ = 90° – ϕ
is the angle at which the beam enters into the cone, the
thickness of the central part of the film varies with θ
insignificantly (by less than 20%). However, along the
substrate diameter, the thickness d of the film depends
strongly on θ (Fig. 4). The thickness d is the most uni-
form when θ = 15°–16° (Fig. 3).

As for normal bombardment upon the ion sputtering
of materials, the efficiency of target sputtering and,
accordingly, of film deposition depends on the ion
mass. Thick films that are uniform along the diameter
of the sample are obtained with beams of heavy ions
(Ar+, Kr+, or Xe+). As follows from Fig. 5, the deposi-
tion efficiency in the case of Xe+ ions is more than one

order of magnitude higher than in the case of  ions.

Generally, the deposition yield,

(1)

(where S0 and S ' are the surface areas of the exposed
parts of the entrance and exit faces of the truncated cone
(Fig. 1), respectively), is more informative than the
value of d.

This yield is an integral test for the optimality of the
experiment geometry, ion type, and ion energy.

EXPERIMENTAL RESULTS

The distribution of deposited atoms across the sub-
strate depends on several factors. The main ones are the
energy of bombarding ions, the presence (or absence)
of the diaphragm, the substrate temperature during the
bombardment (hence, the density of the ion current to
the sample), and the equilibrium and radiation-induced
diffusions of impurities. To simplify the pattern, we
will compare analysis and experiment via the integral
thickness d (atoms/cm2) of the film deposited. The
experiment on the deposition of molybdenum on the

copper substrate when the cone is irradiated by  ions
with E = 110 keV and D = 1 × 1017 cm–2 (Fig. 6) illus-
trates the effect of dynamic substrate–film mixing when
not only ballistic mixing but also diffusion stimulated
by a high concentration of nonequilibrium defects may
be a factor. The substrate temperature during the depo-
sition was no higher than 100°C (water cooling).

N2
+

K
atom
ion

------------ 
  dS0

S 'D
----------=

N2
+
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The effective thickness of the molybdenum layer,
given by

(2)

equals 2.64 × 1016 atoms/cm2, according to Fig. 6. The
simulation gives for the molybdenum layer thickness
1.8 × 1016 atoms/cm2. The depth profile of the nitrogen
in the copper is somewhat modified by the molybde-
num coating. The projected range of nitrogen ions
remains close to the theoretical value (Rp, theor = 505 Å,
∆Rp, theor = 290 Å for N+ ions with E = 55 keV in Cu).
The yield K for irradiation by light fast nitrogen ions is

as low as 0.26 atoms/ . The concentration of the
embedded nitrogen far exceeds the molybdenum con-
centration in the modified layer on the copper surface.

d NMo x( ) x,d

0

∞

∫=

N2
+
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5
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C, 1015 atoms/cm2

Fig. 3. Concentration of deposited chromium atoms vs. dis-
tance from the sample axis for a nitrogen ion beam energy
E = (1) 20 and (2) 50 keV with D = 2 × 1017 cm–2. The half-
angle of the truncated cone is θ = 15°.
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Fig. 4. Concentration of deposited chromium atoms vs. dis-

tance from the sample axis for  ion irradiation with D =

2 × 1017 cm–2. E = 40 keV and θ = (1) 11° and (2) 21°.
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As was already noted, the behavior of a material
applied depends on its diffusion mobility. In the case of
copper deposited on the surface of bulk aluminum, the
nonequilibrium concentration of structural defects due
to ion irradiation causes a pronounced impurity redis-
tribution (Fig. 7). The long tail extending from a depth
of ≈30 nm to more than 3 µm (Fig. 7) corresponds to a

50

40
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0

d, 1016 atoms/cm2

20 30 40 50
E, keV

D, 1017 ion/cm2

Xe+

Kr+

Ar+

N+
2

25
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0

C, at. %
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d, nm

N
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Fig. 5. Thickness of the deposited gold film vs. ion type and
energy. The continuous curve shows the thickness in the
central part of the sample; the dashed line shows the maxi-
mal thickness.

Fig. 6. Depth profiles of molybdenum, gold, and nitrogen
atoms in copper that are obtained from RBS spectra. Cones

made of these materials were irradiated by  ions with

E = 110 keV, D = 1 × 1017 cm–2, and J = 10 µA/cm2.

N2
+

concentration of 2.5 at.% (or 1.56 × 1021 atoms/cm3).
The equilibrium solubility of copper in aluminum is
exactly 2.5 at.% [16], as follows from the Al–Cu phase
diagram. The substrate temperature during the deposi-
tion was lower than 100°C. The integral content of cop-
per is 5.25 × 1017 atoms/cm2 (K = 0.71 atoms/ion),
according to (2) and Fig. 7. Under the experimental
conditions mentioned above, the simulation for this
Cu/Al system gives d = 2.8 × 1017 atoms/cm2. As a
whole, agreement between the simulation and experi-
ment must be taken as satisfactory. If the radiation-
enhanced diffusion of a material deposited is apprecia-
ble, agreement may be worse, since exact data for the
diffusion coefficient under various conditions of ion
irradiation are lacking.

The fact that the experimental values of d and K are
in excess of those obtained by the simulation may be
associated with such factors as the surface roughness of
the cone and the variation of the binding energy of sur-
face atoms during irradiation (because of implant accu-
mulation in the cone wall). These factors are disre-
garded in the analysis. The simulation is performed on
the assumption that the surface of the cone is perfectly
smooth, and the binding energy U0 of surface atoms
that is used in the SATVAL program is assumed to
remain constant for a given material.

It should be noted that the experimental data for the
thickness d of the coating, deposition yield K, and
depth profiles of impurities, as well as those data not
included in this paper, are highly reproducible from
experiment to experiment.

Experiments with a fairly smooth cone obtained by
the electrolytic deposition of gold showed better agree-

100

10

1

CCu, at. %

10 1000 10 000
d, nm

100

Fig. 7. Concentration profile of copper in aluminum after

bombardment by  ions with E = 30 keV and D = 4 ×

1017 cm–2.

N2
+

TECHNICAL PHYSICS      Vol. 48      No. 5      2003



SINGLE-ION-BEAM EXPERIMENTAL SETUP 635
ment with the results of simulation (Fig. 6). For this
system, dtheor = 2.01 × 1016 atoms/cm2 and dexp = 2.48 ×
1016 atoms/cm2. As follows from Fig. 6, the surface
concentration of gold reaches 10 at. %, while the frac-
tion of nitrogen atoms is about 24 at. %. Our investiga-
tions suggest that such impurity concentrations are suf-
ficient to significantly improve important surface prop-
erties of materials, such as wear resistance and lifetime.
In particular, one can raise the temporal and tempera-
ture stability of contacting surfaces in industrial com-
mutators [17, 18] (the reliability of contacting surfaces
is a bottleneck of these devices). The application of the
technology described to industrial switches can
increase drastically the number of operating cycles to
failure [17, 18].

CONCLUSIONS
An original setup for performing in situ ion implan-

tation and deposition of metal films with the same ion
beam is suggested. A program suite is developed with
which IBAD in this setup is characterized and the radial
and depth profiles of deposited and/or implanted ions
are simulated. The suite can also be applied to material
deposition on the inner surface of tubes with the use of
a conical target. The experimental and analytical values
of the deposition yield are in good agreement.
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Abstract—Thermodepolarizing current spectra for components of mica-based insulating composites are pre-
sented. The variation of the thermograms with experimental conditions is revealed. The data reported are the
initial results of elaborate measurements in this area and can be used in devising new insulating materials and
new methods for the quality control of insulators. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Mica-based insulating composites are widely used
as insulation in high-voltage electric machines. In this
work, we performed a careful investigation of these
composites and their components by thermally acti-
vated current spectroscopy. The spectra of thermally
stimulated depolarizing (TSD) current were taken
under various charging and depolarization conditions
over a wide temperature range (both above and below
room temperature). From such experimental data, one
can judge the nature of relaxation processes.

In addition, comparing the spectra taken from com-
posites with and without a poly(ethylene terephthalate)
(PETF) film, as well as from this film alone, one can
trace the effect of PETF films on the charge distribution
and charge-state decay in the composites. Specifically,
by contrasting the TSD current spectra taken of com-
posites and their components, charged regions were
found at the PETF–glass fabric and PETF–mica paper
interfaces [1]. This indicates that these interfaces are
impermeable to charge carriers, which may be one rea-
son for the dielectric durability of the composites. Such
an effect was discovered during testing planar insula-
tors and coils of high-voltage electric motors [2].

EXPERIMENTAL

As subjects of investigation, we used the compo-
nents of composites produced by AO Élinar (Moscow
oblast), the leading Russian maker of mica-based insu-
lating materials for electric machine building. The com-
ponents tested were a PETF film (State Standard
24234-80, Vladimir Chemical Factory) of thickness h =
30 µm, muskovite mica (20 µm), mica paper 2055 TP
I02.013.0161.00007 (60 µm), alkali-free alumina boro-
silicate glass (specs. 6-19313-86; composition 55%
SiO2, 15% Al2O3, 10% B2O3, ≤0.5% Na2O + K2O, and
≤0.08% TiO2; 2.81 ± 0.03 mm), glass fabric (State
Standard 19907-83, specs. 6-48-578.6902-18-89;
1063-7842/03/4805- $24.00 ©0636
40 µm), and epoxy–novolac varnish (specs. 16-
504.046-81; 40 µm). Results obtained for the test glass
were compared with those for KV pure quartz glass
(99.98% SiO2; 1.26 ± 0.05 mm) and KLR-1.1 TiO2-
doped quartz glass (7.3% TiO2, 1.45 ± 0.04 mm). All
the test samples were made in the form of 20 × 20-mm
plates (the diameter of the upper electrode of the TSD
current measuring device was 10 mm).

The experiments included four successive stages:
the production of the spatially nonuniform charge dis-
tribution by applying an electric field, the freezing of
the polarized state by fast liquid-nitrogen cooling to
293 or 93 K, and the neutralization of the excess charge
in the glass via depolarization by linear heating.

The experimental data were processed by tech-
niques described in [3–5]. The basic formula for the
TSD current density has the form

(1)

where

(2)

Here, Ue is the electret potential difference, W is the
energy of activation, Tm is the temperature of the maxi-
mum, ε is the relative permittivity, and τm is the relax-
ation time in the maximum.
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The frequency factor ω0 is easily found from the
expression

(3)

where β is the rate of heating.

RESULTS

The PETF film was found to be the least sensitive to
the variation of the charging conditions (primarily to
the temperature, Tp, and voltage, Up, of polarization)
(Fig. 1a). This is also supported by the data listed in
Table 1, where the parameters of the curves depicted in
Fig. 1a are compared with those of the curve obtained
under standard experimental conditions (Tp = 373 K,
Up = 300 V, tp = 3 min, and β = 4 K/min). Throughout
the range of the charging parameters, the temperature
Tm of the maximum changes by no more than 4 K and
the activation energy, by no more than 0.2 eV. Such
behavior of TSD current peaks in organic materials
means that the dipole polarization or the uniform distri-
bution of the space charge over the sample breaks down
[6]. The peak of the TSD current in PETF films near
393 K is conventionally related to space charge relax-
ation [7]. It is also known [8] that the shape of dipole
peaks is independent of the charging (polarization) time
tp. Therefore, the behavior of the basic TSD current
peak in the high-temperature range may indicate that
the space-charge mechanism of polarization prevails.
One more piece of evidence in favor of this mechanism
is that the energy of activation listed in Table 1 is close
to that determined from the temperature dependence of
the conductivity: W = 1.37 eV (another estimate is
1.44 eV [9]). It should also be noted that our TSD cur-
rent spectra (Fig. 1a) are qualitatively similar to those
taken in [9] for the same PETF films. Finally, the rela-
tively high values of the frequency factor ω0 (Table 1)
are also typical of space-charge-related maxima.

An important finding also is the good stability of the
values of W and ω0 upon decreasing the rate of depolar-
ization β. This decrease is accompanied by a sharp drop
of the maximal current Im and by a shift of the maxi-
mum toward lower temperatures. This suggests that

Wβ W
kTm
--------- 

 exp

kTm
2 ω0

---------------------------------- 1,=
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both the experimental and analytical data are fairly reli-
able. Qualitatively, all the other materials tested show
the same behavior of the TSD current spectra.

As specific features of the PETF spectra in Fig. 1,
we may also note the absence of a distinct peak at tem-
peratures between 353 and 363 K, which is associated
with dipole-segmentation processes, and the high val-
ues of Tm for all the peaks. This completely correlates
with a high degree of crystallinity Xc of the film (Xc =
35% according to X-ray diffraction data), which was
prepared by biaxial-orientation extrusion with an extru-
sion ratio of 3.3. An increase in the crystallinity
decreases the fraction of the amorphous phase and
increases the amount of the so-called hard amorphous
phase, which, like the crystalline phase, cannot partici-
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Fig. 1. TSD current spectra for the 30-µm-thick PETF film
polarized under the condition Up = 300 V, tp = 3 min,
β = 4 K/min, and Tp = (1) 373, (2) 403, and (3) 433 K.
(4) Amorphous PETF (h = 200 µm, Tp = 373 K). (a) High-
and (b) low-temperature range.

113 133 173 213 253
Table 1

Standard 
conditions

Tp, K Up, V pp, min β, K/min

403 433 200 100 10 30 2 1

Tm, K 397 397 399 395 397 395 395 386 381

Im, pA 63 75.8 89.8 59 56.1 80.1 89.4 32.4 12.5

W, eV 1.29 1.29 1.32 1.39 1.32 1.44 1.48 1.34 1.31

ω0, Hz 2 × 1014 2 × 1014 3 × 1014 4 × 1015 3 × 1014 2 × 1016 5 × 1016 1015 4 × 1014
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pate in dipole-segmentation motions. These statements
are supported by the experimental data obtained for the
amorphous (nonoriented) film (curve 4 in Fig. 1). The
effect of Xc on the TSD current spectra of the PETF
films is akin to that observed earlier [10].

The variation of the polarization conditions for the
inorganic components within the same limits causes
much more considerable changes in the thermograms,
which is seen most vividly in the case of mica (Fig. 2a).
As Tp rises, Tm and Im increase and the shape of the
curve changes. The increase in Tm even advances the
growth of Tp. For the muskovite mica, the current peaks
in this temperature range are due to the relaxation of the
space charge captured by shallow (K+) and deep (OH–)
traps [11]. The former are associated with minor maxi-
mum I in the current curves, while the latter are respon-
sible for principal maximum II. The calculation based
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Fig. 2. The same as in Fig. 1 for muscovite mica (h =
20 µm).

93 153 193 233113 133 173 213 253

Table 2

Tm, K Im, pA W, eV ω0, Hz

Mica I 440 3.6 0.40 5 × 101

Mica II 476 8.6 0.58 3 × 103
on the curve for Tp = 403 K underestimates the param-
eter values compared with [12]: for I, W is lower by
0.1 eV; for II, the values of Tm, W, and ω0 are lower by
24 K, 0.022 eV, and a factor of 5, respectively (Table 2).
Such discrepancies may arise because of different
experimental conditions (various Tp in this case). Com-
paring the curves in Fig. 2b with the data in [11, 12]
suggests (according to [11, 12]) that maxima I and II in
this figure are due to the melting of a thick diffuse layer
and to the middle part of the water film volume, respec-
tively.

In the low-temperature range (from 93 to 273 K),
the rate of relaxation processes increases with tempera-
ture in all the samples, except for the varnish. Figure 3b
shows the spectra for the alumina borosilicate glass,
where current maxima lie at temperatures between 173
and 253 K. Comparing these curves with those obtained
for TiO2-doped quartz glass allows us to conclude that
the glass composition influences TSD currents. Bearing
in mind that strong covalent bonds prevail in quartz
glasses [13] and also that KV glass is made by the gas-
flame technique, we may assign these maxima (also
observed in the temperature dependence of the dielec-
tric loss [15]) to aluminum impurity [14], which is usu-
ally present in gas-flame quartz glasses in amounts of
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Fig. 3. The same as in Fig. 1 for Ca–Al–B–Mg–SiO2 glass
(h = 2.81 mm).
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Table 3

Glass Tm, K Im, pA W, eV ω0, Hz

KV 447 8.1 0.88 2 × 107

KLR-1.1 463 8.5 0.36 1 × 101

Ca–Al–B–Mg–SiO2 414–444 0.48–0.51 0.71–0.74 3 × 105–3 × 106
(10–50) × 10–4%. The curves for the quartz glass doped
by TiO2 and especially those for Ca–Al–B–Mg–SiO2
glass have maxima also at temperatures lower than
245 K. By comparing the TSD current spectra for pure
KV quartz glass with those for other glasses, one can
suggest that the peak at 245–255 K in Fig. 3b is associ-
ated with the migration of Al3+ ions and that at T < 245 K,
with the migration of other ions: Ti4+ for the KLR-1.1
quartz glass and Na, K, Ca, Al, Mg, and Ti ions for the
Ca–Al–B–Mg–SiO2 glass.

The TSD current thermograms for the Ca–Al–B–
Mg–SiO2, KLR-1.1, and KV glasses in the high-tem-
perature range are shown in Fig. 3a. From these curves
(comparison is made for Tp = 433 K; Table 3), it follows
that the KV glass has the highest W and ω0, although
the charge relaxation in it takes place at temperatures
lower than in the KLR-1.1. This fact can be explained
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Fig. 4. The same as in Fig. 1 for epoxy–novolac varnish
(resin) (h = 40 µm).
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by dissimilar charge carriers (ions) responsible for con-
duction in these glasses. The TSD current curves for the
Ca–Al–B–Mg–SiO2 glass cannot be adequately ana-
lyzed in terms of a single appropriately selected current
peak. Therefore, for this glass, the distribution of elec-
troactive defects was found from Im, Tm, and W (the
ranges of these parameters are shown in Table 3). In
spite of the great scatter in the values of Tm for electro-
active defects, their W and ω0 fall into a narrow interval.
Such a situation is possible if similar defects are present
in the material.

For the cured epoxy–novolac varnish, the TSD cur-
rent curves have weak maxima in both the low- and
high-temperature ranges (Fig. 4). The variation of Up
and tp affect to an extent the space-charge relaxation
[8]. The position of the high-temperature peak changes
only slightly (not shown in Fig. 4). The small values of
the electroactive defect parameters for this peak (taken
under the standard conditions), namely, Tm = 316 K,
W = 0.24 eV, and ω0 = 10 Hz (Im = 36.7 pA), indicate
the presence of a large number of shallow traps in the
material.

CONCLUSIONS
Among all the components of the composites, the

energy of activation of space-charge relaxation is the
highest for the PETF film and the lowest for the epoxy–
novolac varnish. Also, small TSD currents for all the
inorganic components in the high-temperature range
(roughly one order of magnitude lower than for the
organic constituents) are noteworthy. However, this
does not mean that inorganic materials will not contrib-
ute to the spectra taken of the composites. When study-
ing impregnated mica paper and especially varnished
glass fabric, we found, in particular, that the current
grows by about two orders of magnitude compared with
that in as-prepared glass fabric. The interfaces between
the components of the varnished glass fabric apparently
act as traps for free ions, which may be present in both
the resin and the glass. A high electrical conductivity of
resins and the continuity of their structures make them
an efficient medium for the transfer of charges being
released from the traps.
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Abstract—Structures similar to Schottky diodes are prepared by the thermal evaporation of chromium on high-
resistivity cadmium telluride substrates doped by vanadium (CdTe : V) to a concentration of 5 × 1018 cm–3. The
current–voltage and spectral characteristics of the Cr/CdTe : V barrier structures are studied, and their rectifying
properties are evaluated. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION
Cadmium telluride, even though in wide use, is con-

tinuing to attract researchers’ attention. Recent empha-
sis has been on applications where the semi-insulating
properties of this material play a prominent part. X-ray
and gamma radiation spectroscopy, electrooptical mod-
ulation, and photorefraction are just a few areas of sci-
entific exploration where an intense search for new
materials and their applications is being carried out.
CdTe semiconductors doped by transition metals of the
iron group are viewed as the most promising materials
for the near-infrared (IR) spectral region. Doping by
vanadium also makes it possible to use cadmium tellu-
ride as a photorefractive medium for recording optical
information and its transmission via communication
lines [1, 2]. Therefore, the number of studies on
advanced CdTe technologies and on the electric and
photoelectric properties of various structures based on
undoped and doped cadmium telluride is growing
[3−5].

In this work, Cr/CdTe : V barrier structures are pre-
pared and their electrical and spectral characteristics
are studied.

EXPERIMENTAL
Schottky-barrier metal/semiconductor junctions

were prepared on single-crystalline n-CdTe : V wafers
with a vanadium concentration NV = 5 × 1018 cm–3. The
single crystals were grown by vertical directed crystal-
lization at a cooling rate of 10 K/h with the free volume
over the melt kept constant. Note that these two factors
influence significantly the optical quality of the crystal
and its electrical uniformity.

The wafers were cut from the middle part of the
CdTe : V single-crystalline ingot normally to the
growth direction. According to our electrical and galva-
nomagnetic studies, the ingot in this part had a free
1063-7842/03/4805- $24.00 © 20641
electron concentration ne ≈ 5 × 1011 cm–3 and a resistiv-
ity ρ ≈ 109 Ω cm, i.e., was semi-insulating. The plane-
parallel wafers were processed by conventional
mechanical methods and rinsed carefully in ethanol.

Prior to chromium deposition, the substrates were
cleaned by ion bombardment in argon for 7–8 min.
Then, a chromium film was deposited onto one side of
the wafer by thermal evaporation in a vacuum (P =
6.7 × 10–3 Pa). The substrate temperature was kept at
190–200°C. The metal film deposited had a thickness d
of about 15 µm. The wafers thus produced were
mechanically scribed into 2 × 3-mm chips to which
copper wires were attached with contactol. Such
Cr/CdTe : V structures were used to take steady-state
I−V characteristics and spectral curves of photosensi-
tivity.

RESULTS AND DISCUSSION

In Fig. 1, a typical I–V characteristic of the
Cr/CdTe : V structures is shown. It is seen that the
metal/semiconductor junctions (MSJs) offer good rec-
tifying properties. For example, at a bias voltage of
about 20 V, the forward current exceeds the reverse cur-
rent by three orders of magnitude. The initial portion of
the I–V characteristic is described by the diode equa-
tion, whereas at voltages >20 V the forward branch
obeys the relationship [4, 6]

The bulk resistance R0 derived from the slope of the
linear portion is found to be about 107 Ω and the cutoff
voltage is 14–15 V in different samples.

In Fig. 2, the I–V characteristic is plotted in the
semi-logarithmic coordinates. The straight portion in
this curve indicates that the current through the struc-
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Fig. 1. I–V characteristics of the Cr/CdTe : V structures with
NV = 5 × 1018 cm–3.
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Fig. 2. Semi-logarithmic dependence of the forward current
on the applied voltage for the Cr/CdTe : V contacts with
NV = 5 × 1018 cm–3.

Fig. 3. Spectral dependence of the photosensitivity for the
Cr/CdTe : V structures with NV = 5 × 1018 cm–3 prepared
from the (1) end and (2) central parts of the single-crystal
substrate.
ture varies exponentially with voltage [7]:

(1)

where Is = AST2exp(–φb/kT) is the saturation current,
Ua is the applied voltage, n is the ideality factor, A is the
Richardson constant, S is the junction area, and φb is the
potential barrier height in the structure.

By extrapolating the linear portion of the curve to
the zero bias voltage, one can find the saturation current
by formula (1) and then, from the current value, the
potential barrier height. If the Richardson constant is
set equal to that of a free electron, 120 A/(cm2 K2), the
value of φb for different samples varies between 0.7 and
0.75 eV. That is, φb roughly equals half the energy gap
of cadmium telluride, which signifies the high quality
of the rectifying contact. Note that similar data for
Cr/CdTe in the literature are lacking (see, e.g. [7, 8]).

The photosensitivity studies of the Cr/CdTe : V
junctions revealed the photovoltaic effect, which was
observed under illumination of the structures on the
crystal side (the metal film is opaque to light). In the
best structures, the open-circuit voltage amounted to
~0.5 V. Figure 3 shows the spectral dependences of the
photosensitivity for several structures. It is seen that the
Cr/CdTe : V structures are photosensitive in the range
0.85–2.5 µm. The position of the short-wavelength
edge of photosensitivity depends on the photosensitiv-
ity edge of the substrate material and corresponds to
band-to-band electron transitions. The extension of the
spectral dependence into the long-wave range is
explained both by the presence of a deep vanadium-
related level in the energy gap (EV = 0.72–0.8 eV [9])
and by the photoemission of electrons from the metal
into the semiconductor base. The different values of
photosensitivity near 1.5 µm for samples 1 and 2 pre-
pared from different parts of the wafer can be explained
by the segregation of vanadium.

Thus, from our experimental studies, it can be con-
cluded that Schottky diodes fabricated by thermally
evaporating Cr films on semi-insulating CdTe : V crys-
tals offer good rectifying properties and a high photo-
sensitivity.

The use of a high-resistivity material (CdTe : V) in
barrier structures allows one to extend the spectral
range of sensitivity. Such structures are of interest for
effectively separating charge carriers generated by ion-
izing particles of different energies.
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Abstract—The distributions of the dark voltage and photovoltage over the surface of a conducting semicon-
ductor disk (film) with current is calculated analytically. For a photodetector with five ohmic contacts arranged
in an appropriate pattern at the circumference of the disk, a relationship between the output signal, current, and
local illumination position is found. Experimental data indicate the feasibility of using such photodetectors as
X–Y optical sensors. © 2003 MAIK “Nauka/Interperiodica”.
Among position-sensitive photodetectors, optical
sensors based on p–n junctions were the first to be
applied in practice [1]. The next one of this family of
optoelectron devices was a sensing element that uses
the position dependence of its internal resistance [2].

Position-sensitive optical sensors (photodetectors)
that are made of homogeneous low-resistivity semicon-
ductors and have unusual arrangement and connection
of electrical contacts were first suggested in [3, 4]. In
this work, we are looking for a functional relationship
between the output signal of the photodetector with five
ohmic contacts and the position of local illumination.

The coordinate dependence of the optical sensitivity
of the photodetectors under study reflects the specific
potential distribution over the semiconductor surface in
the presence of current. We analyzed the distributions
of the dark voltage ϕ0 and photovoltage ϕ1 in a photo-
detector made of a homogeneous conducting semicon-
ductor disk (film) of thickness d and radius R with five
ohmic contacts arranged along the circumference
(Fig. 1). Voltage source 6 is connected to contacts 2
and 4, and a current I is passed through the device.
Load resistors 7 and 8 and voltage amplifiers 9 and 10
are inserted between contacts 1 and 5 and between con-
tacts 1 and 3.

To find the distributions of the dark voltage and pho-
tovoltage, we introduce the Cartesian (x, y, z) and spher-
ical (r, Θ, ψ) coordinates, with their origin placed at the
center O of the front surface of the disk. The axes X and
Y are arranged so that the X axis runs through contacts 2
and 4 (Fig. 1).

The coordinate r of a point on the free surface of the
disk is equal to the magnitude of its radius vector r (r =
|r|), and Θ is the angle between the vector r and positive
direction of the Y axis. Since the disk is uniform in
thickness, the voltages are independent of z (or ψ): ϕ0 =
ϕ0(x, y) = ϕ0(r) = ϕ0(r, Θ) and ϕ1 = ϕ1(x, y) = ϕ1(r) =
ϕ1(r, Θ).
1063-7842/03/4805- $24.00 © 20644
When deriving an expression for the dark voltage
ϕ0(r, Θ), we used the Laplace equation

(1)

(∆ is Laplacian) and also equations relating the external
electric field strength E to ϕ0 and the current density j
to the dark conductivity σ0:

(2)

The boundary conditions were as follows:

(3)

where n is the normal to the disk surface.
In view of the results obtained in [1], we expressed

the dark voltage as an explicit function of the coordi-
nates:

(4)

Here, Rx = Rex and ex is the unit vector in the X direc-
tion. Now let a small area of disk surface be illuminated

∆ϕ0 0=

E ∇ϕ 0; j– σ0E.= =

jn 0, En ∂ϕ0( )/ ∂r( )[ ] r R=– 0,= = =

ϕ0
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------------
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------------------.ln=
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Fig. 1. Position-sensitive device based on a five-contact
photodetector.
003 MAIK “Nauka/Interperiodica”
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by narrow beam 11 of optically active light (Fig. 1). In
low-resistivity semiconductors, especially those sub-
jected to weak electric fields, one can neglect the diffu-
sion- and drift-related smearing of the boundary
between the distributions of excess charge carriers in
the dark and illuminated areas [5]. Therefore, we
assume that the distribution of nonequilibrium excess
carriers over the area of optical excitation and that of
the light intensity L over the beam’s cross section are
the same.

Let δσ be a change in the conductivity of the semi-
conductor at the center of the illumination spot with the
coordinate r0 = (r0, Θ0). If it is assumed that the light
intensity in the probing beam obeys the Gaussian distri-
bution, the expression for the conductivity at any point
r = (r, Θ) on the disk’s surface is given by

(5)

where a is the radius of the illumination spot.
Relationship (5) yields correct limiting values of

σ(r): σ(r0) = σ0 + δσ for r = r0 and σ(r) = σ0 for
|r − r0| > a.

In a low-resistivity semiconductor, (δσ)/σ ! 1;
therefore, the voltage ϕ(r) can be expressed as the
series in powers of (δσ)/σ. In this case, ϕ1 can be
regarded as a first-order correction to ϕ0:

(6)

Under steady-state conditions, ϕ(r) must satisfy the
equations

(7)

From (1) and (6) and also taking into account that
the scalar product ∇σ ⋅ ∇ϕ 1 = ∇δσ ⋅ ∇ϕ 1 is proportional
to (∂σ)/σ)2, which is a second-order infinitesimal, we
arrived at a relationship that relates the dark voltage and
photovoltage to each other:

(8)

Substituting (4) into (8) and putting σ ≈ σ0, we find
that

(9)

A solution to Eq. (9) is the function ϕ1, which
depends not only on the coordinates r = (r, Θ) of the
point considered but also on the coordinates r0 = (r0,
Θ0) of the illumination spot.

Of practical interest is the voltage drop across spe-
cific points on the photoconductor surface. Contacts 1–

σ r( ) σ0 δσ
r r0–( )2

a2
--------------------– ,exp+=

ϕ r( ) ϕ0 r( ) ϕ1 r( ).+=

j σ∇ϕ , div j– 0.= =

σ∆ϕ1 ∇σ∇ϕ 0.–≈

∆ϕ1 2
δσ
σ

------ 1
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πσd
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5 lie on the lateral surface of the photodetector at points
specified by the angles Θ1 = 45°, Θ2 = 90°, Θ3 = 135°,
Θ4 = 270°, and Θ5 = 315°. The angles are measured
from the Y axis counterclockwise.

As follows from formula (4) and symmetry consid-
erations, contacts 1 and 3 lie on an equipotential line;

therefore, the dark voltage  = 0. Contacts 1 and 5 do

not lie on an equipotential line; hence,  ≠ 0.

Under local illumination, the conductivity of the
photodetector changes (δσ ! σ0) and so does the poten-
tial (by a value of ϕ1) [6]. If the radius of the light spot
is small (a ! R),

(10)

where

l is the distance from the point of observation to the illu-
mination spot, and l2 and l4 are the distances from con-
tacts 2 and 4 to the point of observation.

For all the five contacts, the voltage depends on the
illumination spot coordinates. With formula (10), we
obtain the following relationships for the voltage drop:

(11)

(12)

where

x = r0sinΘ0, y = r0cosΘ0, r = , x'' = x/a, and
y'' = y/a.

Relationships (11) and (12) define the potential drop
under illumination. For small and moderate values of
r0, output characteristics (11) and (12) are seen to vary
linearly with displacement; that is, V13 ~ Ay and V15 ~
Ax. The signals V13 and V15 change sign when the sense
of displacement is reversed. Thus, the output character-
istics uniquely define the location of the light spot. The
uniqueness is also retained if the characteristics are
slightly nonlinear. This makes it possible to extend the
applicability domain of the approach. The location
characteristics involve design parameters that enter into
the expression for A.
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In experimental studies of CdS : Cu films [7], it was
established that the dependences V13(y) and V15(x) are
actually linear functions of the light source coordinates
(Fig. 2). Therefore, CdS : Cu photodetectors of such a
design can be used for uniquely locating a light source.
For the CdS : Cu films, the components of the specific
position sensitivity of the device,

η
∆Vout

hIL
-------------=

2 4 6 8 10
x, y, mm

50

100

150

200

Vout, mV

V13(y)

V15(x)

Fig. 2. Voltage differences V13 and V15 vs. light beam coor-
dinates.

0

(where L is the illuminance, ∆Uout is a change in the
output voltage when the coordinate changes by h, and
I is the current through the device), were equal to
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Abstract—Surface-barrier photodiodes prepared by the vacuum deposition of a semi-transparent gold layer on
Hg3In2Te6 single-crystal substrates are studied. I–V characteristics taken at temperatures between 278 and
323 K and the photosensitivity spectrum recorded in the range 0.6–1.8 µm, which is of great importance for
fiber-optics communication, are given. Charge transfer mechanisms are treated in terms of generation–recom-
bination processes in the space-charge region of the diode. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The effective operation of fiber-optics communica-
tion lines implies the presence of fast efficient photode-
tectors. In quartz fibers, the least losses are observed at
a wavelength of 1.55 µm (at 1.3 µm, the losses are
somewhat higher). Silicon photodiodes, therefore, are
not suitable for this purpose, and germanium diodes
have large dark currents. In terms of spectral matching,
InxGa1 – xAs solid solution is best suited to fiber-optics
communication. Epitaxial layers of this solid solution
are usually grown on InP substrates, and the lattice mis-
match is minimal for x = 0.53. In this case, the
InxGa1 − xAs energy gap is Eg = 0.74 eV and the absorp-
tion edge lies at 1.68 µm. To eliminate the undesired
effect of the potential barrier at the InxGa1 – xAs/InP
interface, an extra interlayer of quaternary solid solu-
tion GaxIn1 – xAsyP1 – y (x = 0.6–0.7, y = 0.6–0.9) may be
introduced [1].

In [2, 3], a photodetector made of Hg3In2Te6 was
suggested for the range mentioned above. This device
offers a nearly 100% internal photoelectric yield. A
specific feature of this material is a high concentration
of neutral cation vacancies, which makes it almost
insensitive to many impurities and radiation-resistant
[4]. Although the energy gap of Hg3In2Te6 exceeds that
of Ge insignificantly (only by ≈0.06 eV), the room-tem-
perature minority carrier concentration (which is to a
great extent responsible for the reverse current of a
diode) in the former is less by roughly one order of
magnitude. That is why Hg3In2Te6 photodiodes seem to
be promising for fiber-optics communication.

In this work, we experimentally study charge trans-
fer in Hg3In2Te6 photodiodes and analyze its physical
mechanisms. These issues, which are not covered in
previous publications, are intimately related to the effi-
1063-7842/03/4805- $24.00 © 20647
ciency of photoelectric conversion, as well as to the
device’s dark current and speed.

SINGLE CRYSTALS

The diodes were made of Bridgman-grown n-
Hg3In2Te6 single crystals. The electron concentration
found by the Hall effect and conductivity measure-
ments was 8 × 1014 cm–3. The electron mobility was
equal to 140–150 cm2/(V s). Figure 1 shows the optical
transmission (T) curve of Hg3In2Te6 over a wide range
of wavelengths λ (the break in the curve is due to the
use of two spectral instruments). The value T = 70–71%
for a plate 1 mm thick is noteworthy: it indicates the
high quality of the single crystals. Assuming that, for
such a high transparency, losses are due only to reflec-
tion and putting T = (1 – r)/(1 + r) in view of the multi-

80
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T, %

5 10 15 20 25
λ, µm

Fig. 1. Transmission spectrum of Hg3In2Te6 single crystals
at 300 K.
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ple reflections [5], we find for the reflection coefficient
r = 0.17. Although the reflection coefficient depends on
wavelength, the value of r found can be used to con-
struct the entire absorption curve without introducing a
large error. In general, the absorption coefficient α, T,
and the sample thickness d are related as [5]

(1)

The α vs. hν dependence (hν is the photon energy)
calculated from (1) is depicted in Fig. 2 in the coordi-
nates α2–hν. Here, it is taken into account that, for
direct-gap semiconductors (which Hg3In2Te6 is [4]),
α ~ (hν – Eg)1/2. In these coordinates, the curve α(hν)

α 1
d
--- 1 r–( )2

2T
------------------ 1 r–( )4

4T2
------------------ r2+

1/2
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Fig. 2. Absorption curve near the absorption edge vs. depen-
dence α ~ (hν – Eg)1/2.
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Fig. 3. I–V characteristics of the Au/HgInTe diode at three
temperatures.
then takes the form of a straight line intersecting the
abscissa axis at the point hν = Eg. From Fig. 2 it follows
that the energy gap Eg of Hg3In2Te6 is close to 0.72 eV,
which agrees with published data [4].

PROPERTIES OF THE DIODES

Photosensitive barrier structures were prepared by
evaporating a semitransparent gold layer (≈200 Å
thick) at a pressure of no more than 10–6 torr on
Hg3In2Te6 plates that were preliminary carefully pol-
ished and irradiated by Ar ions (ion-beam etching) with
an energy of 500–700 eV and a current of 20 mA/cm2

for 5 min.
The I–V characteristics of a 1-mm2 Au/Hg3In2Te6

diode taken at 278, 293, and 323 K are shown in Fig. 3,
and its photosensitivity spectrum recorded in the range
0.6–1.8 µm at 300 K is displayed in Fig. 4.

The photosensitivity spectrum is seen to cover the
whole interval of wavelengths used in optical fibers,
i.e., 0.65, 0.84, 1.3, and 1.55 µm. The current sensitivity
is quite acceptable for practical use but can be notice-
ably improved by thinning the semitransparent gold
electrode to 80–100 Å. The dark currents of the diode
are the same as in the best Ge photodiodes of the same
area but are roughly one order of magnitude higher than
those of InxGa1 – xAs p–n junctions intended for opera-
tion at 1.55 µm (see, e.g., [6]).

Let us consider possible charge transfer mecha-
nisms and ways of decreasing the dark current in
Au/HgInTe diodes.

The fast, though sublinear, rise in the reverse current
with voltage and its strong temperature dependence
imply that the current is of a thermionic nature. At first
glance, such a supposition seems doubtful, since the
forward branch of the characteristic does not exhibit the
dependence I ~ exp(eV/2kT), which is typical of recom-
bination current [7]. It should be noted, however, that
such a dependence was obtained for a conventional p–
n junction [8]. For Schottky diodes, this dependence
holds only if an inversion layer is present at the semi-
conductor surface (i.e., when the barrier height ϕ0
exceeds Eg/2 – ∆µ, where ∆µ is the spacing between the
Fermi level and the conduction band bottom in the neu-
tral part of the semiconductor) and the forward bias is
not too large [9]. When these conditions are not met, the
recombination current grows with voltage much
weaker than the dependence I ~ exp(eV/2kT).

In general, the dependence I(V) can be found by
integrating the recombination rate U(x) over the space-
charge region of the diode:

where A is the surface area of the diode; W is the width
of the space-charge region that is equal to (2εε0(ϕ0 –

I Ae U x( ) x,d

0

W

∫=
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eV)/e2Nd)1/2; ε and ε0 is the permittivity of the semicon-
ductor and the dielectric constant, respectively; and Nd
is the concentration of uncompensated donors.

According to Shockley–Reed recombination statis-
tics,

(2)

where n(x, V) and p(x, V) are the nonequilibrium carrier
concentrations in the conduction band and valence
band, respectively; ni is the intrinsic carrier concentra-
tion; and τn0 and τp0 are the effective lifetimes of elec-
trons and holes, respectively, in the space-charge
region.

The values of n1 and p1 are numerically equal to the
equilibrium concentrations of electrons and holes when
the Fermi level coincides with the recombination center
(trap) level Et; that is, n1 = Ncexp(–Et/kT) and p1 =
Nvexp(–(Eg – Et)/kT).

If the energy is measured from the conduction band
bottom in the neutral part of the crystal, the concentra-
tions of electrons and holes in a section x at a voltage V
are given by (see inset to Fig. 5)

(3)

(4)

where

(5)

is the variation of the potential energy in the space-
charge region.

The parameters necessary to calculate the current,
the barrier height ϕ0 and the energy position Et of the
generation–recombination center, are unknown. The
situation is, however, simplified owing to the fact that,
for eV @ kT, the reverse generation current Igen is given
by [9]

(6)

From this expression, it follows that Igen does not
depend on ϕ0 (W ~ (ϕ0 – eV)1/2). Moreover, at elevated
reverse biases, its V dependence does not change with
Et (but the current is a strong function of Et). Formula (6)
was derived for Et lying in the upper part of the energy
gap. For lower lying levels, the behavior of the current
is similar [9].

Thus, to compare (1) with the experiment, one must
preset a reasonable value of ϕ0; calculate the currents
for various Et; and, by appropriately selecting coeffi-

U x V,( )
n x V,( )p x V,( ) ni

2–
τ p0 n x V,( ) n1+[ ] τ n0 p x V,( ) p1+[ ]+
------------------------------------------------------------------------------------------,=

n x V,( ) Nc
∆µ ϕ x V,( )+

kT
--------------------------------– ,exp=

p x V,( ) Nv
Eg ∆µ– ϕ x V,( )– eV–

kT
--------------------------------------------------------– ,exp=

ϕ x V,( ) ϕ0 eV–( ) 1 x
W
-----– 

  2

=

Igen

e p1W
τ p0

--------------
Eg ∆µ– Et– eV– Et ∆µ––

ϕ0 eV–
---------------------------------------------------------------------------.=
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
cients, bring the experimental curve into coincidence
with constructed curves in the range of elevated reverse
biases. Then, by varying ϕ0, the best fit between the
experimental and constructed curves in the range of for-
ward biases must be achieved. The results of such a pro-
cedure are illustrated in Fig. 5. The effective mass of an
electron, me, is taken to be 0.47m0 (m0 is the mass of a
free electron); that of a hole, mh = 1.35m0 [4]; and ∆µ =
kTln(Nc/n) = 0.235 eV at 296 K. It is seen that the
behavior of the reverse current and the rectifying prop-
erties of the diode depend on Et. Comparing the exper-
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Fig. 4. Photosensitivity spectrum of the Au/HgInTe diode at
300 K. The dashed line shows the transmission of the
200-Å-thick gold film on the quartz plate. Four spectral
ranges used in communication lines are shown.

Fig. 5. Measured (circles) vs. calculated (continuous
curves) I–V characteristics for different energy positions Et
of the generation–recombination level at 293 K. The figures
by the curves are the values of Et (eV). The inset shows the
energy-level diagram of the junction used in the analysis.
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imental and calculated results for reverse biases shows
that the energy position of the generation–recombina-
tion center is 0.21–0.26 eV. The best fit between the cal-
culated and measured forward branches is achieved
when the barrier height ϕ0 equals 0.37 eV. The calcula-
tion of the direct current can be made for voltages V <
0.25 V, since the above-barrier thermionic current
comes into play at higher voltages. For ∆µ and ϕ0
found, the saturation thermionic current Is =
AA*T2exp[–(ϕ0 + ∆µ)/kT] = 3 × 10–9 A at 296 K (A* is
the effective Richardson constant); that is, it is small
compared with the generation current. However, the
range of elevated forward biases is of minor importance
for the operation of the device as a photodiode.

It is worth noting that formula (2) involves the car-
rier lifetimes τn0 and τp0, which, however, influence
only the current through the diode. This circumstance
allows us to find their values by joining together the cal-
culated and measured currents in that voltage range
where the current is independent of other parameters
(Et and ϕ0), i.e., at elevated reverse biases. In this volt-
age range, the best agreement between the simulation
and experiment is reached at τn0 = τp0 = 8 × 10–8 s for
Et = 0.21 eV and τn0 = τp0 = 1.5 × 10–8 s for Et = 0.26 eV.

Thus, the suggested procedure of processing exper-
imental data allows for a fairly accurate determination
of unknown parameters of the diode structure, namely,
the barrier height ϕ0, carrier lifetimes τn0 and τp0 in the
space-charge region, and energy position Et of recom-
bination–generation levels. Of practical importance is
the fact that the reverse current in an Au/HgInTe diode
is governed by carrier generation in the depleted region
of the barrier structure, i.e., by the parameters τn0 and
τp0. Hence, the reverse current of the diode can be
decreased by using purer and more perfect crystals
(since τn0 and τp0 are inversely proportional to the den-
sity of recombination–generation levels).
CONCLUSIONS

We fabricated efficient Au/HgInTe photodiodes
whose sensitivity range covers the operating spectral
range of fiber-optics communication lines. The electric
performance of the diodes can be characterized by
invoking the model of recombination and generation in
the space-charge region with regard for specific pro-
cesses occurring in surface-barrier structures. The
energy position of generation–recombination levels is
0.21–0.26 eV, and the effective lifetime of charge carri-
ers ranges from 10–8 to 10–7 s.
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Abstract—The behavior of the domain structure in thin hematite crystal platelets subjected to a magnetic field
is studied. In a certain range of the magnetic field aligned with the hard magnetic axis in the basal plane, a mag-
netic superstructure with the ferromagnetic vector azimuth oscillating along the magnetic field is found to arise
in the crystals with internal stresses. Experimental data are discussed in terms of the magnetization ripple the-
ory. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The domain structure (DS) of hematite, which is a
weak ferromagnet, has been studied for more than
30 years by various investigation techniques, such as
the method of power patterns [1], X-ray topography [2],
and the magnetooptic method [3, 4]. The theoretical
consideration of DSs in hematite was performed in [5].
One may thus be inclined to think that this issue has
been well understood to date both theoretically and
experimentally. However, an intriguing feature of the
DS evolution in Ga-doped hematite magnetized along
the hard magnetic axis has been recently found [6],
namely, a quasi-periodic magnetic microstructure with
the ferromagnetic vector azimuth oscillating along the
magnetic field. This modulated magnetic structure
(MMS) was attributed [6] to the transition of the crystal
from the uniform to the nonuniform magnetic state and
was treated in terms of the concept of random field
appearing when diamagnetic Ga ions substitute for
some of the Fe ions. Further investigations showed that
the MMS is also observed in pure hematite crystals
with internal stresses. Below, conditions for MMS exci-
tation and existence in such crystals are discussed.

EXPERIMENTAL

α-Fe2O3 hematite single crystals (space group )
were grown by oriented crystallization from solution in
melt [7] and cut into plane-parallel 5 × 5-mm square
platelets of thickness 200 to 300 µm. Their wide faces
coincided with the (111) basal plane.

The DS was examined by the magnetooptic method.
The domains were visualized by means of a crossed-
analyzer transmission polarizing microscope (the trans-
mission band of hematite is 0.9 < λ < 1.2 µm) under
normal incidence of light on the sample surface (i.e.,
light propagated along the C3 axis). A video camera

D3d
6
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linked to a computer read out the DS image from the
monitor of an electron–optical image converter. In
addition, the intensity of the light transmitted through
the polarizer–sample–analyzer system was measured
as a function of the magnetic field and orientation (an
FÉU-62 photoelectric multiplier was used as a photo-
detector).

A uniform magnetic field H ≤ 100 Oe was produced
by two pairs of Helmholtz coils and could take any
direction in the basal plane without changing its
strength; i.e., |H| remained the same. The samples were
placed in an optical cryostat and were studied in the
temperature range 80–290 K. Throughout the experi-
ment, the sample surface was oriented normally to the
terrestrial magnetic field.

It is known [8, 9] that the amount of magnetooptic
effects in hematite depends substantially on the magne-
tization orientation in the basal plane. It is, therefore, of
interest to trace the interplay between the azimuth angle
of the ferromagnetic vector m and a magnetooptic-
effect-induced change in the intensity of the light trans-
mitted through the polarizer–sample–analyzer system.
Using the Jones matrix formalism (the Jones matrix for
weak rhombohedral ferromagnets was obtained in [10])
and taking into account that the Cotton–Mouton [8] and
Faraday effects [9] are basic magnetooptic effects in the
near-IR range, one can represent the light intensity at
the exit of the polarizer–sample–analyzer system in the
form

(1)

where A is the magnetooptic coefficient characterizing
the Cotton–Mouton effect, B and C are the coefficients
responsible for the Faraday effect, ϕ is the angle
between the vector m and C2 axis, and ϕ1 and ϕ2 are

I ϕ( ) A 2 ϕ ϕ 1+( )sin
2≈

+ B 3 ϕ ϕ 1+( )sin C ϕ ϕ 2+( ),sin+
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parameters depending on the orientation of the plane of
polarization of incident light relative to the C2 axis.

In (1), we take into account that the principal axis of
symmetry may deviate somewhat from the direction of
light propagation. Because of this, the Faraday effect
from both the transverse (B harmonic) and longitudinal
(C harmonic) components of the vector m contributes
to I(ϕ). To eliminate these effects, which are, generally
speaking, a handicap to the determination of the vector
m, we measured the photocurrent of the detector as a
function of the applied magnetic field orientation in the
basal plane. The field strength was taken such that the
magnetic state of the sample was uniform (single-
domain). Our experiments showed that such a situation
occurs at H > 30 Oe.

Figure 1 demonstrates a typical orientation depen-
dence of the intensity I for α-Fe2O3 at T = 290 K. From
this curve, the amplitudes of the harmonics involved in
(1) (the angle between the direction of light propagation
and the C3 axis is 1°–2°) were extracted by the least-
squares method. The magnetooptic coefficients deter-
mined from Fig. 1 are related as A : C : B ≈ 10 : 1 : 0.1.
Consequently, the Cotton–Mouton effect is the main
reason for the modulation of the intensity I. Then,
decreasing the sample surface misorientation relative to
the direction of incident light, one can diminish the fun-
damental harmonic amplitude so as to provide a corre-
lation between the azimuth of the vector m and a
change in the intensity I. Thus, from the integral char-
acteristics of the light flux at the exit of the sample
(expression (1)), one can find the orientation of the vec-
tor m in the basal plane (i.e., the direction of the C2
axes), while the spatial variation of the magnetic order
parameter of the crystal can be judged from the local
characteristics of the light flux if the angle ϕ is consid-
ered as a function of the coordinates.

EXPERIMENTAL RESULTS

As follows from our experimental data for the DS
evolution, when the field H in the basal plane is applied
normally to the domain walls (DWs), which are

I,
 a

rb
. u

ni
ts

90 180 270 360
ψ, deg

0

Fig. 1. Intensity of the light transmitted through the polar-
izer–sample–analyzer system vs. magnetic field (H =
100 Oe) orientation in the basal plane of α-Fe2O3. ψ is the
angle between the vector H and an arbitrary direction in the
basal plane of the crystal. Circles, data points; continuous
curve, fitting with formula (1).
observed in the demagnetized state of the sample, some
of the hematite crystals exhibit MMSs similar to those
obtained earlier in α-Fe2O3 : Ga [6]. Figure 2a shows
the DS in one of the crystals that is visualized in the
absence of the external magnetic field at room temper-
ature. It turned out that the domain images become
more contrasting if the C3 axis is slightly deflected from
the direction of light propagation; in other words, the
Faraday effect is largely responsible for DS visualiza-
tion in this case. This is possible if the domains are 90°
or 180° domains. Since the insertion of a quarter-wave-
length phase plate into the optical path of the micro-
scope did not allow us to reliably observe the DS under
normal incidence of light, we can infer that the domains
are 180°. It is noteworthy that the wall to the right of
Fig. 2a is diffuse; that is, it is inclined to the basal plane.
Moreover, the orientation of the DWs coincides with
none of the preferential directions in the basal plane
(for most of the crystals studied, they were aligned with
one of the C2 axes, which are easy axes of in-plane crys-
tallographic (hexagonal) anisotropy in hematite at
room temperature [5]). One reason for the appearance
of inclined DWs and the misalignment between the
easy magnetic axis and C2 axis in α-Fe2O3 is growth-
induced internal stresses [5].

When the magnetic field in the basal plane is applied
normally to the DWs in the demagnetized state, the
sample first becomes single-domain. Then, at H = 6–
15 Oe, the MMS in the form of diffuse-boundary
fringes with different magnetooptic contrast appears in
a certain area of the surface (Figs. 2b, 2c). With the vec-
tor H being deflected from this direction by an angle of
less than 10°, the fringes shift, their width changes, but
the direction and contrast of the image remain the same.
As the angle of deflection increases, the MMS disap-
pears.

As for the case of α-Fe2O3 : Ga, the spatial period λ
of the MMS depends on the field: as H grows, the fringe
spacing decreases (Figs. 2b, 2c). The period λ varies
with the field stepwise: the number of fringes per length
under observation changes. When the direction of H
reverses, along with the pinning effect, the hysteresis of
λ takes place: as the field declines (the backward run of
magnetization), the mean period of the MMS is shorter
than when the field rises.

It should be noted that the fringes in Figs. 2b and 2c
are distinctly seen under normal incidence of light on
the sample. In this case, the contrast of the MMS image
can be inverted by appropriately selecting the azimuth
of the polarizer. The contrast inversion was observed
when the polarizer was rotated by an angle of ≈50° rel-
ative to the position in which the fringes in Figs. 2b and
2c appeared. This apparently means that the azimuths
of the vector m at the centers of adjacent fringes differ
approximately by 50°. The diffuse boundaries of the
fringes lead us to conclude that m is not merely an alter-
nating-sign vector, as in an ordinary DS, but has a
smoothly varying direction. The MMS discovered can
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
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be roughly represented by the one-dimensional oscilla-
tory dependence of the azimuth angle β of the vector m
on the spatial coordinate: β ≈ 25°coskx, where k = 2π/λ
is the wavevector of the MMS and x is the running coor-
dinate (H || X).

A decrease in the temperature does not cause any
noticeable change in the MMS period or contrast. How-
ever, at T ≈ 260 K, both the DS and MMS in the crystal
studied disappear almost stepwise. This could be
expected, since, at the Morin temperature TM = 260 K,
α-Fe2O3 experiences a transition from the weak-ferro-
magnetic easy-plane state (T > TM) to the easy-axis
antiferromagnetic one (T < TM). Comparing the field
dependencies of the magnetooptic signal I(H) that were
taken from the area where the MMS was observed with
those taken from areas where the MMS was absent
shows that these areas differ by neither the coercive
force nor the saturation field; however, the Morin tem-
perature (determined from the disappearance of the sig-
nal I) turned out to be lower by approximately 3 K in
the former case.

DISCUSSION

The MMS discovered in hematite crystals with
internal stresses resembles the well-known magnetiza-
tion ripple effect, which is common to polycrystalline
Permalloy films [11]. Magnetization ripple arises in the
films with in-plane magnetization and is associated
with the transition of Permalloy to the magnetic phase
where the local magnetization azimuth oscillates about
the direction of the field H. In this case, the spatial
period of modulation also decreases with increasing
field (as for the MMS period in α-Fe2O3). It was shown
[12] that the equilibrium magnetic structure, like mag-
netization ripple, arises owing to the combined effect of
random anisotropy (crystallographic anisotropy in
crystals arbitrarily oriented relative to each other),
uniaxial anisotropy induced by the film texture, and an
external magnetic field.

If the reason for the MMS is the same, one must
assume that crystal areas where the MMS occurs pos-
sess uniaxial magnetic centers with randomly directed
easy axes. These may be complexes formed by impurity
ions (an uncontrollable amount of which is always
present in real crystals) and surrounding ions of the Fe
matrix. The difference in the ionic radii and/or charge
states of the impurity and matrix ions inevitably causes
lattice distortions. As a consequence, the orientation of
the magnetic moments of the complexes will differ
from the directions specified by the hexagonal anisot-
ropy of the crystal. Such anisotropic magnetic centers
are usually deemed to be the reason for additional
uniaxial anisotropy in the basal plane of hematite
[13, 14]. The occurrence of induced anisotropy is
explained by impurity ion ordering, which takes place
by ion diffusion. Growth-induced internal stresses
specify the direction of this ordering and, thereby, the
TECHNICAL PHYSICS      Vol. 48      No. 5      2003
direction of the induced anisotropy axis. A lower Morin
temperature in crystal areas with the MMS may be an
indirect indication of the presence of impurities (it is
well known [13] that impurities lower the Morin tem-
perature TM of hematite considerably: e.g., even if 1%
of the Fe ions are substituted for by Sn ions, TM tends
toward subhelium temperatures [14]).

If the above assumptions are valid, then, based on
the magnetization ripple theory and assuming (accord-
ing to the theoretical model [12]) that Ka > K @ KaN–1/2

(a)

(b)

(c)

200 µm

Fig. 2. α-Fe2O3 surface visualized in polarized light (sam-
ple thickness is 210 µm, T = 290 K). H = (a) 0, (b) 6, and
(c) 14 Oe.
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(where Ka is the anisotropy constant, which defines the
direction of the easy axis of a magnetic center; K is the
constant of induced uniaxial anisotropy; and N is the
number of uniaxial centers per unit volume), we can
express the MMS period as

(2)

Here, J is the exchange constant and M is the spontane-
ous magnetization. Note that neither the impurity con-
centration nor the constant of in-plane hexagonal
anisotropy (both parameters define the maximal angle
of deflection of the local vector m from the magnetiza-
tion direction) enter into (2) according to the model
adopted.

From (2) it follows that the MMS appears if

(3)

This condition allows one to estimate the constant of
induced uniaxial anisotropy. With H0 = 6 Oe (the field
of MMS occurrence) and M (T = 290 K) ≈ 2G [13], we
find from (3) that K ≈ 6 erg/cm3 (cf. a constant of hex-
agonal anisotropy in hematite of 1–3 erg/cm3 at room
temperature [5]).

Unfortunately, the pinning and hysteresis effects,
which are observed as the applied field varies, make it
impossible to directly compare (2) with the experimen-
tal dependence λ(H). However, the form of (2) implies
that initially (H ≥ H0) the curve λ(H) decreases sharply,
but at higher H (H ≥ 2H0), one can set λ to be constant.
Then, substituting J = 2 × 10–6 erg/cm [1], K =
6 erg/cm3, and H = 12 Oe into (3), we find that λ ≈
35 µm, which agrees well with the experimental data
(Fig. 2c). This indicates that our model adequately fits
the experiment. It is essential that (2) and (3) coincide
with the relevant expressions [6] obtained by consider-
ing the thermodynamic potential of a weak rhombohe-
dral ferromagnet if one puts J = 2γ, K = –α, and M =
µl2, where γ, α, and µ are the coefficients of expansion
of the thermodynamic potential in powers of the mag-
netic order and l is the magnitude of the antiferromag-
netic vector.

As far as we know, an MMS like the one discovered
in this work has not been observed before in hematite.
A possible reason is the limitations of conventional
experimental techniques applied to visualize hematite.
For example, the method of powder patterns [1] or that

λ 2π J /K( )1/2 HM/2K 1–( ) 1/2– .=

H H0> 2K /M.=
based on the polar Kerr effect [3] require the magneti-
zation to be out of plane, which is impossible when the
basal plane of hematite is studied. X-ray topography [2]
has a poor spatial resolution. Finally, [4], in which the
DS was examined by a method similar to ours, seems to
investigate perfect samples, as can be judged from the
results reported.
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Abstract—A set of nonlinear equations for the evolution of the condensate fraction is suggested. The diffusion
approximation to the Zel’dovich equation is shown to be fundamentally inapplicable for describing nonlinear
effects. A diffusion equation with the applicability domain free of limitations due to supersaturation smallness
is derived. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

A great number of works (see, e.g., [1–3]) have been
devoted to the derivation of equations for flows with in
condensation. Although this procedure implies the
reduction of the dimensionality of the problem [4, 5],
this point has escaped researchers’ attention. The basic
reason is that slow and fast variables describing nucle-
ation and condensation are difficult to separate. This is
because condensation involves a set of characteristic
times. It has been shown [6] that the evolution of the
cluster size distribution toward its quasi-stationary
value is defined by a set of times: kinetic time of relax-
ation τk [7, 8] and an infinite series of partial delay
times τd(g), which depend on the cluster (g-mer) size.
Such a situation makes the relaxation and condensation
processes very specific. The times τd(g) were shown to
be monotonically increasing functions [6]. For subcrit-
ical clusters (g < g∗ ), the delay time is less than the
relaxation time; hence, the time it takes for the cluster
size distribution to reach its quasi-stationary form
depends only on the kinetic time. For supercritical clus-
ters, the relationship between the relaxation and delay
times is reverse and, starting with a certain size gm, the
value of τd(g) becomes comparable to the characteristic
gasdynamic time τgd. In other words, sufficiently large
clusters evolve only on a time scale on the order of τgd.
It follows from the aforesaid that the term “critical size”
separates clusters that have relaxed to their quasi-sta-
tionary size distribution by the time instant τk (subcrit-
ical clusters) from those that only begin to relax at the
time instant τk [6] (supercritical clusters). Such a divi-
sion is consistent with the definition of τk as the time
within which a cluster of critical size forms [7, 8].

By a condensate, we mean clusters of supercritical
size (g > g∗ ), considering them to be stable. Another
argument in favor of this choice is the feature of cluster
1063-7842/03/4805- $24.00 © 20655
relaxation mentioned above. This feature allows one to
assume that the flux of critical-size clusters during con-
densation is close to the quasi-stationary cluster flux
[6]. An equation describing the behavior of a conden-
sate can be obtained from kinetic equations for the clus-
ter size distribution function.

Starting from [9], the condensation process was ana-
lyzed in terms of equations of the quasi-chemical con-
densation model. In this model, it is assumed that clus-
ters grow via association reactions (a monomer is
attached to a g-mer) and decay when a g-mer dissoci-
ates into a monomer and a (g – 1)-mer:

(1)

The rate constants for association and decay reac-

tions (1) will be designated as  and , respec-
tively. Then, the evolution of the cluster size distribu-
tion function ng is defined by the set of equations

(2)

(3)

The quantity Ig is the rate of formation of g-mers per
unit volume as a result of the above reactions or a clus-
ter flux in the dimensionality space. The validity of
Eq. (2), as well as of all its modifications and conse-
quences following from it, is based on the result [6] that
the flux in the dimensionality space is absent if g >

Ag 1– A1 Ag; g+ 2 3 …., ,=

Kg 1–
+ Kg

–

∂n1

∂t
-------- ∇ un1( )⋅+ –I2 I j,

j 2=

∞

∑–=

∂ng

∂t
-------- ∇ ung( )⋅+ Ig Ig 1+– ,=

Ig –Kg
–ng Kg 1–

+ n1ng 1– ; g+ 2 … ∞., ,= =
003 MAIK “Nauka/Interperiodica”



 

656

        

GORBACHEV

                                                                
gm(t). This means that gjm = 0 for g  ∞ and also that
the sum on the right of (2) converges in the limit.

The rate constants  and  are related to each
other as

(4)

where  is the equilibrium constant;

(5)

is the equilibrium distribution function, which turns the
cluster flux in the dimensionality space to zero

(Ig( ) = 0), Φ(g) is the minimal energy needed to form
a g-mer, and T is the temperature of the monomer gas.
Relationship (4) follows from the law of mass action.

Along with the equilibrium distribution, we will

deal with the stationary distribution . It is defined by

the relationship I( ) = const = Is. Here, for g ≥ 2,  = 0

but  ≠ 0.

The set of equations (3) is the discrete description of
nucleation. In [10, 11], its continuous analogue in the
form of a diffusion equation in the dimensionality
space was suggested. In terms of the law of mass action
(see (4)), the expression for the nucleation flux Ig can be
written (in view of (5)) as

(6)

where Dg = n1 is the diffusion coefficient.

Substituting the derivative for the finite difference
on the right of (3), we arrive at a diffusion-like equation
for the function ng:

(7)

This equation with the flux j, which is given by (6),
must be supplemented by the boundary conditions at
g = 1 and g = ∞. It is natural to take Eq. (2) as the
former; the latter is usually written in the form

ng/   0 with g  ∞. To make the description
close, one should also take an equation for n1. In view
of (2), it can be represented as

(8)

(as to divergence of the integral, see the comments fol-
lowing (3)).
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Both functions  and  are defined by a set of
thermodynamic parameters that describe the macro-
scopic state of the system. These are usually referred to
as slow (gasdynamic) variables. If the rate of change of
one of them, say, the monomer concentration,
increases, the distribution function will deviate from its
stationary value. It was found [6] that the associated
quasi-stationary distribution is the time derivative of

the stationary distribution, i.e., . In this respect, we
go beyond the scope of the classical approach. The need
for such an extension and the dependence of the con-
densation process not only on gasdynamic parameters
but also on the rate of their change were discussed in
[12, 13].

The deviation of the nucleation flux from its station-
ary value results in its dependence on the cluster size.
However, as will be shown in further analysis, it is suf-
ficient to know the nucleation flux value only for the
critical size of a nucleus in order to characterize the
behavior of the condensate fraction. It was noted above
that the nucleus critical size can be set equal to its
quasi-stationary value.

In this work, the evolution of the condensate frac-
tion is described in two ways having a different accu-
racy. The accuracy of the continuous description is esti-
mated by comparing with that of the discrete approach.
It is demonstrated that the continuous approach yields
incorrect values of the condensate fraction under a high
supersaturation.

CONDENSATE FRACTION

The condensation process is usually described in
terms of the condensate mass [1, 2], which is taken to
be equal to the mass of supercritical nuclei:

(9)

where m1 is the mass of a monomer.

To derive an equation for the evolution of the con-
densate mass, we will take advantage of the same set of
Eqs. (7) and (8) for the cluster size distribution function
ng(g, t) as that used for solving the problem of nucle-
ation (without invoking new kinetic equations involv-
ing a source term proportional to the delta function
δ(g – g∗ ) [2]).

In view of definition (9) and Eq. (7) for the time
derivative of the distribution function, differentiation

ng
e ng

s

ṅg
s

α m1gng gd

g*

∞

∫ 
 
 

/ρΣ, ρΣ m1gng g,d

1
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∫= =
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and integration by parts yield

(10)

Since the condensation process is a fortiori consid-
ered on a time scale much larger than the kinetic time
τk, Eq. (10), according to [6], can be simplified if ng∗
and j∗  are replaced by their quasi-stationary values 

and . Let us use expression (6) for the current and
the expression

(11)

for the energy needed for the formation of a drop. Here,
σ is the surface tension coefficient, v l is the volume
occupied by the monomer in the liquid phase, s is the
supersaturation, and

(12)

is the diffusion coefficient. Then, integrating (10) by
parts yields

Designating the moments of the distribution func-
tions as

(13)

and bearing in mind that 2a/3 = lns, we obtain

(14)
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According to [6], the quasi-stationary cluster flux

 has the form

(15)

where

The drift velocity in the dimensionality space can be
written as

(16)

Differentiating relationship (13) with respect to time
and using Eq. (7), we arrive at

(17)

(18)

Neglecting Ω–2 in comparison with Ω1 in the equa-
tion for Ω2, we find for ν = 2 and 1

(19)
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ġ g'( ) g'ġ*/g*+( )
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(20)

We interrupt the series of equations for Ων at ν = –1
and use the closing relationship

(21)

As a result, we have the closed set of five equations,
(14) and (18)–(21), which describes the behavior of the
condensate fraction. If Ω–2 is not rejected at ν = 2 in
(17), one more equation to close the set is necessary.
This can be an equation similar to (21):

(22)

In this case, the evolution of the condensate fraction
is described by the set of six equations: (14), (17) with
ν = 1 and 2, (18), (21), and (22).

DISCRETE APPROACH

The Zel’dovich equation is widely used for studying
the nucleation process; however, its applicability
domain is difficult to estimate a priori. Frequently, such
an estimate can be made only by comparing a posteri-
ori the associated data with results obtained in terms of
the discrete approach, which is based on the quasi-
chemical model of condensation (see Eqs. (2) and (3)).
In this case, analysis is conveniently performed in the
new variables [6]

(23)

Then, from Eq. (7) it follows that

(24)

where the drift velocity  in the dimensionality space
is given by (16). From (3), we come to

(25)
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d ng
sln

dt
--------------,–+=

ġ
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where ∆  =  – .

Passing from the discrete form to the continuous, we
obtain a diffusion equation with a modified (compared
with Eq. (24), which was derived from the Zel’dovich
equation) diffusion coefficient and drift velocity in the
dimensionality space:

(26)

with Dg defined by (12). Note that the use of diffusion
equation (26) with variables (23) seems to be more ade-
quate, since ratio (23), over a wide cluster size range, is

a smoother function of g than ng/ , which was used in
deriving the Zel’dovich equation.

Estimating the expressions for the diffusion coeffi-
cient and drift velocity in (26) at g = g∗  in view of the

approximate relationship for the stationary current js =

( )–1dg)–1 . D∗ /(∆ ), we find for the

quantities calculated at g = g∗

(27)

From (27) it follows that the difference between the
expressions obtained by the continuous and discrete
approaches is governed by the half-width ∆ of the equi-

librium cluster size distribution  near its minimum at
g = g∗ . Hence, at small ∆, the diffusion approach to

describing the evolution of the distribution function 
(i.e., Eq. (7)) becomes invalid.

At the same time, Eq. (26), which describes the evo-
lution of  and was obtained directly from equations
of the quasi-chemical model in view of the refined
expressions for the flux in the dimensionality space and
diffusion coefficient, adequately covers, within the dif-
fusion approximation, situations with small ∆. In
essence, this equation is a generalization of the
Zel’dovich equation and its applicability domain is free
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of restrictions due to the smallness of supersaturation
(large ∆).

Now let us elucidate the difference in the condensate
fractions estimated in terms of the continuous and dis-
crete approaches.

Within the discrete approach, the condensate frac-
tion is defined as

(28)

From Eqs. (3), we find an equation for the conden-
sate mass evolution:

(29)

To close this equation, we use representation (6) of
the flux. Rearranging the terms of the sum in (29), we
come to

Assuming that  . (g/g∗ )2/3, /  . 1 –

2/(3g), and /  . exp(–(1 – (g∗ /g)1/3)lns), the sum
can be rearranged into

Further, the exponential in this sum can be linear-
ized at a small supersaturation. If lns ! 1,
exp(((g∗ /g)1/3 – 1)lns) ~ 1 + ((g∗ /g)1/3 – 1)lns. Then, the
sum takes the form

The discrete analogues of expressions (13) for the
moments of the distribution function are as follows:

(30)

For both the condensate fraction and the Ω
moments, we arrive at equations that are exactly the
same as those in the continuous approach. This means
that the diffusion approximation describes adequately
the variation of the condensate fraction only at small
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supersaturations and that the set of equations for the
distribution function moments basically cannot be
extended beyond the linear description. Linearity is
inherent in all the available approaches considering the
evolution of the condensate fraction except that sug-
gested in [3]. To eliminate this restriction, we approxi-
mately sum the series, assuming α . 1 – exp(–α).
Neglecting quantities on the order of Ων – 3/Ων and
using α defined by (28), we arrive at a closed set of
equations for the condensate fraction evolution:

(31)

(32)

(33)

(34)

(35)

This set of equations completes the analysis aimed
at deriving equations that describe the condensate frac-
tion evolution in terms of the continuous and discrete
approaches.

CONCLUSIONS

A set of equations for the condensate fraction evolu-
tion is derived, and several techniques to close the set
are suggested. The consideration of condensation as the
appearance of supercritical clusters is consistent with
cluster stability analysis and also with the fact that they
originate at larger-than-kinetic times. This is because
the delay time of supercritical cluster formation
exceeds the kinetic time (and not because of the pres-
ence of various relaxation times). The behavior of the
condensate fraction is described in terms of the contin-
uous and discrete approaches, which have different
accuracies. The former involves the diffusion equation
and corresponds to the linear approximation (small
supersaturation). Data obtained with the continuous
approach are compared with those of the discrete one to
estimate the accuracy of the former. With the discrete
approach, an equation of the diffusion type that is appli-
cable over a wide supersaturation range is derived and
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a closed set of equations for the condensate fraction
evolution is suggested. This set extends beyond the
scope of the linear approximation, which is typical of
the continuous approach.
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