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We use Landau’s concept of a Fermi liquid to study the theory of superfluidity of symmetric
nuclear matter. For the nucleon–nucleon potential we take the effective Skyrme
interaction~the Ska, SkM, SkM* , and RATP potentials!. The density-dependence of the
transition temperature is studied for different superfluid phases of nuclear matter. We show that
the phase in which there is proton–nuclear pairing in the spin-triplet state is realized at
densities close to the saturation density. We demonstrate that phase transitions in density from
the given phase to a phase with singlet–singlet or triplet–triplet nucleon pairing are
possible. The density-dependence atT50 of the energy gap in the quasiparticle spectrum is
established for the case of unitary and nonunitary spin states. Finally, we establish that the phase
transition to a nonunitary phase is accompanied by the appearance of magnetization, which
is found as a function of the nuclear matter density. ©1997 American Institute of Physics.
@S1063-7761~97!00107-8#
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It is known that an atomic nucleus can be in a superfl
state. The reality of superfluidity in nuclei is proved by su
experimental facts as the presence of a gap in the en
spectra of even–even nuclei, the moments of inertia in
formed nuclei, explained by the presence of a superfl
component in nuclear matter, and the special features of
cited states of nuclei and of the probabilities ofa- and
b-decays.1–5 A consistent theory of superfluidity in nuclei i
much more difficult because of the finite size of nucl
Hence it would be interesting to study the superfluidity
infinite nuclear matter, especially in connection with ast
physical applications.

In this paper we study the superfluidity of nuclear mat
using Landau’s semiphenomenological concept of a Fe
liquid.6 For simplicity we assume that the energy function
is invariant under rotations in the configurational, spin, a
isospin spaces~for infinite uniform nuclear matter the spin
orbit coupling is zero!. Hence superfluid phases~Cooper
pairs! are classified by specifying the values of the quant
numbers related to the total spin of the pair,S50,1, the
isospinT50,1, their projectionsSz andTz on thez axis, and
the orbital angular momentumL50, 1, 2, . . . . Thepossible
values of the orbital angular momentumL for each value of
S and T must be found according to the Pauli principle:
S50, T50 or S51, T51 the values ofL are 1, 3, 5, . . . ,
and atS51, T50 or S50, T51 we haveL50, 2, 4, . . . .
Each superfluid phase is described by its own set of o
parameters: atS50, T50 by a scalar order parameterD00,
at S51, T50 or S50, T51 by the vector order paramete
Dk0 or D0k , respectively (k51,2,3), and atS51, T51 by
the tensor order parameterD ik ( i ,k51,2,3) ~we are speaking
of scalars, vectors, and tensors in the spin and iso
spaces!. These order parameters determine the correspon
gaps in the quasiparticle energy spectrum.

We use the Landau concept of a Fermi liquid to set
the equations for finding the equilibrium normal (f ) and
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~self-consistency equations! and, in accordance with the
above classification, find a simpler system of equations
the components of the distribution functions~or the order
parameters!. An analysis of these equations makes it possi
to find the transition temperatures for different phases of
perfluid nuclear matter and the values of the energy gap
the Cooper-pair spectrum. Note that in the case of nonuni
states~either Sz or Tz is nonzero! a phase transition to the
superfluid state is also a phase transition into a spin-orde
or isospin-ordered state~the latter means that the pair con
sists of either a proton and another proton or a neutron
another neutron!. Here the transition temperatures, in co
trast to energy gaps~for symmetric nuclear matter, where th
neutron and proton densities are equal!, are independent o
Sz andTz but strongly depend onS andT.

Note that the method we develop differs from th
Green’s function method commonly used in phase transi
theory and the BCS theory.7–11 The transition temperature
for the 1S0 and3S1–3D1 pairings~in the case of noncentra
forces! for nuclear matter were obtained in Refs. 12–1
Phase transitions in the case of triplet pairing in the s
space within a BCS-theory setting that uses separable po
tials were studied in Refs. 17–19. Various potentials ha
been used to describe the nucleon–nucleon interact
among these are the Paris, Graz, Mongan, and Reid po
tials. Alm et al.20,21 studied 3D2 pairing in asymmetric
nuclear matter and the possibility of its realization in the co
of massive neutron stars.

The general theory developed here requires no spe
potential for the nucleon–nucleon interaction. However,
obtain numerical results we employ the effective Skyrm
interaction22 as the nucleon–nucleon potential. This intera
tion is self-consistent: it depends on the nuclear matter d
sity and effectively takes into account the multiparticle inte
action of nucleons.23 We use the variants of the Skyrm
interaction that describe the properties of nuclei in the b
possible way.24
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dence of the transitions temperatures and order param
for various phases on the density in the case of symme
nuclear matter. For nonunitary states we study the dep
dence of magnetization on the density of superfluid nuc
matter.

2. BASIC EQUATIONS

A superfluid Fermi liquid is described by two fermio
distribution functions: the normal distribution functio
f k1k2

5^ak2

1 ak1
&, with f k1k2

* 5 f k2k1
, whereak

1 andak are the

creation and annihilation operators for fermions with m
mentum p, spin ~isotopic spin! projection a (a), and
k[(p,a,a), and the anomalous distribution functio
gk1k2

5^ak2
ak1

&, with gk1k2
52gk2k1

~here^•••&5Tr r•••

is the mathematical expectation, or average, of the opera
with r the density matrix of the system!. It is convenient to
combine the distribution functionsf and g into a matrix
distribution functionf̂ :

f̂ k1k2
5S f k1k2

gk1k2

gk1k2

1 dk1k22 f k2k1

D . ~2.1!

We will call f̂ k1k2
the statistical operator of a nonequilibriu

superfluid Fermi liquid.25

Landau’s concept of a Fermi liquid is based on spec
ing the energy of the Fermi system as a functional of
normal (f ) and anomalous (g) fermion distribution func-
tions,E5E( f ,g). The energy functional determines the fe
mion single-particle energy«,

«k1k2
5

]E

] f k2k1

, «k1k2
* 5«k2k1

, ~2.2!

and the matrix order parameter of the system,

Dk1k2
52

]E

]gk2k1

1 , Dk2k1
52Dk1k2

. ~2.3!

Thermodynamically, the equilibrium state of a superflu
Fermi liquid is determined from the condition for maximi
ing the entropy at the given values of the system ene
E( f ,g) and the numbers of particles,Na andNb , of species
a andb, which leads to a self-consistency equation for d
termining the distribution functionsf andg ~or, what is the
same, the energy«k1k2

and the order parameterDk1k2
! as

functions of the temperatureT and the chemical potential
ma andmb of the system:

f̂ 5
1

exp~Y0«̂1Ŷ4!11
[

1

exp~Y0ĵ !11
. ~2.4!

Here the matrices«̂ and Ŷ4 have the following form:

«̂5S « D

D1 2 «̃
D , Ŷ45S Y4 0

0 2Y4
D ,

where«, D, andY4 are, in turn, matrices in the space of th
k variables, withY4k1k2

5Y4a1
dk1k2

, and the tilde stands fo
the transposition operation. The parametersY0 , Y4a , and
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potentialsma andmb by the following formulas:

Y05
1

T
, Y4a52

ma

T
, Y4b52

mb

T
. ~2.5!

General investigations into the properties of the se
consistency equation~2.4! were conducted in Refs. 25–28
These included the study of diagonalization, the construc
of the appropriate thermodynamics and hydrodynamics,
the inclusion of external electromagnetic fields~derivation of
the London equation29 and the Ginzburg–Landau
equation30–32!. In the present paper we limit our discussio
to the case where the functionalE( f ,g) is quadratic inf and
g and is invariant under rotations in the spin and isos
spaces. We also assume that the state of the system is
tially uniform.

Let us expand the normal distribution functionf in the
Pauli matricess i , tk , ands itk , i.e.,

f p1a1a1 ,p2a2a2
5 f ~p1!a1a1 ,a2a2

dp1 ,p2
,

~2.6!
f ~p1!5 f 00~p1!1 f k0~p1!sk1 f 0k~p1!tk1 f ik~p1!s itk ,

and the anomalous distribution functiong in the matrices
s2 , s is2 , t2 , andtkt2 , i.e.,

gp1a1a1 ,p2a2a2
5g~p1!a1a1 ,a2a2

dp1 ,2p2
,

~2.7!
g~p1!5g00~p1!s2t21gk0~p1!sks2t2 1g0k~p1!s2tkt2

1gkl~p1!sks2t lt2 .

We write the energy functionalE( f ,g) in the form

E~ f ,g!5E0~ f !1Eint~ f !1Eint~g!, ~2.8!

where

E0~ f !54(
p

«0~p! f 00~p!, «0~p!5
p2

2m
, ~2.9!

m is the nucleon mass. In accordance with the requirem
that the energy functional be invariant under rotations in
spin and isospin spaces, forEint( f ) andEint(g) we have

Eint~ f !5
2

V
(
p,q

@ f 00~p!U0~p,q! f 00~q!

1 f k0~p!U1~p,q! f k0~q!

1 f 0k~p!U2~p,q! f 0k~q!

1 f ik~p!U3~p,q! f ik~q!#, ~2.10!

Eint~g!5
2

V
(
p,q

@g00* ~p!V0~p,q!g00~q!

1gk0* ~p!V1~p,q!gk0~q!

1g0k* ~p!V2~p,q!g0k~q!

1gik* ~p!V3~p,q!gik~q!#, ~2.11!

whereV is the volume occupied by the system. The quan
ties U and V are known as the normal and anomalous a
plitudes of the Landau interaction in a superfluid Fer
liquid.
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The quasiparticle energy«k1k2
and the order parameter
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Dk1k2
will also be expanded in the Pauli matricessk andtk :

«k1k2
5«a1a2a1a2

~p1!dp1 ,p2
,

~2.12!
Dk1k2

5Da1a2a1a2
~p1!dp1 ,2p2

,

where«a1a2a1a2
(p) andDa1a2a1a2

(p) are the respective ma
trices in the spin and isospin spaces:

«~p!5«00~p!1«k0~p!sk1«0k~p!tk1« ik~p!s itk ,
~2.13!

D~p!5D00~p!s2t21Dk0~p!sks2t2 1D0k~p!s2tkt2

1Dkl~p!sks2t lt2 .

The conditionDk1k2
52Dk2k1

and the expansion ofD(p) in
~2.13! imply that D00(p) andD ik(p) are odd functions ofp
while D i0(p) andD0i(p) are even functions ofp. These sym-
metry properties lead to a situation in which singlet–sing
and triplet–triplet pairing of nucleons can occur in sta
with odd values of the orbital angular momentumL, while
the singlet–triplet and triple–singlet pairing of nucleons c
occur in states with even values ofL.

According to the definitions~2.2! and ~2.3!, the quanti-
ties « and D can be related to the functionsf and g. Pre-
cisely, the« are related to thef as

«00~p!5«0~p!1
2

V
(
p8

U0~p,p8! f 00~p8!,

« i0~p!5
2

V
(
p8

U1~p,p8! f i0~p8!,

~2.14!

«0k~p!5
2

V
(
p8

U2~p,p8! f 0k~p8!,

« ik~p!5
2

V
(
p8

U3~p,p8! f ik~p8!,

and theD to theg as

D00~p!5
1

V
(
p8

V0~p,p8!g00~p8!,
t
s

n

i0 V
(
p8

1 i0

~2.15!

D0k~p!5
1

V
(
p8

V2~p,p8!g0k~p8!,

D ik~p!5
1

V
(
p8

V3~p,p8!gik~p8!.

The symmetry properties of the interaction potenti
V0 , . . . ,V3 must correspond to the symmetry properties
the order parametersD:

V0~2p,p8!5V0~p,2p8!52V0~p,p8!,

V1~2p,p8!5V1~p,2p8!51V1~p,p8!,
~2.16!

V2~2p,p8!5V2~p,2p8!51V2~p,p8!,

V3~2p,p8!5V3~p,2p8!52V3~p,p8!.

To obtain the self-consistency equation we must expr
the functionsf andg in terms of« andD. This problem is
studied in Secs. 3 and 4.

3. TRANSITION TEMPERATURES FOR DIFFERENT
SUPERFLUID PHASES

Near the phase transition points the order parameterD
are small. Hence, if the self-consistency equation have b
found, the equations for determining the temperatures
transition to various superfluid phases can be obtained
linearizing the self-consistency equations inD. We will use
another approach, however. The expressions for the ano
lous distribution functionsg can be found in theD-linear
approximation by expanding the statistical operatorf̂ in a
series in powers ofD and keeping only terms that are line
in D. To this end we write the operatorĵ in the form of a
sum:

ĵ5 ĵ01D̂, ĵ05S j 0

0 2 j̃
D , D̂5S 0 D

D1 0 D . ~3.1!

Then in theD-linear approximation we have
f̂ 5 f̂ 01 f̂ 8,
~3.2!

f̂ 05S f 0 0

0 12 f̃ 0
D , f̂ 852S 0 ~12 f 0!E

0

b

e2ljDe2l j̃ ~12 f̃ 0!dl

f̃ 0E
0

b

el j̃D1elj f 0dl 0
D .

Here
g52~12 f !Eb

e2ljDe2l j̃ ~12 f̃ !dl. ~3.4!
0 0

ri-
for-

the
f 05
1

exp~bj!11
. ~3.3!

Comparing~2.1! with ~3.2!, we arrive at the following
expression for the anomalous distribution functiong:

3 JETP 85 (1), July 1997
0

Hereg is a matrix in the momentum, spin, and isospin va
ables, with the dependence on momenta determined by
mula ~2.7!. Now we assume that the phase transition to
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temperature of a transition to the superfluid phase with

su-
no spin order~f i05 f ik50; for symmetric nuclear matter th
distribution functionf 0k is zero, too!. Assuming that the am
plitudesU0(p,p8) andU2(p,p8) are quadratic in momenta

U0~p,p8!5d01e0~p21p82!1h0p•p8,

U2~p,p8!5d21e2~p21p82!1h2p•p8, p,p8<p0,

with p0 the cutoff momentum, we can write

j5~j0t01j3t3!s0 , ~3.5!

where

j05
p2

2m0
1

Y4a* 1Y4b*

2Y0
, j35

p2

2m3
1

Y4a* 2Y4b*

2Y0
,

1

m0
5

1

m
1~ra1rb!e0 ,

1

m3
5~ra2rb!e2 ,

with the quantitiesY4a* andY4b* , renormalized by the Fermi
liquid interaction, determined from the normalization con
tions

4

V
(

p
f 00~p!5ra1rb ,

4

V
(

p
f 03~p!5ra2rb .

In the above formulass0 andt0 are the identity matrices in
the spin and isospin spaces, andra andrb are the densities
of fermions of speciesa andb ~for symmetric nuclear mat
ter, 1/m350 andj350). Thus,j is a diagonal matrix. Inte-
grating in~3.4!, we arrive at the following expression for th
matrix elementguv(p) (u[(a,a)):

guv~p!52
Duv~p!

ju~p!1jv~2p!
@12 f u

0~p!2 f v
0~2p!#. ~3.6!

Now we use the expansions~2.7! and ~2.13! for g and D.
Since these expansions are done in linearly indepen
symmetric and skew-symmetric Pauli matrices, in~3.6! we
can replaceguv andDuv by the matrix elements belonging t
the corresponding terms. For instance, in the case of sing
singlet pairing of nucleons we have

g00~p!~t2!ab52
D00~p!

ja~p!1jb~2p!

3@12 f a~p!2 f b~2p!#~t2!ab , a51, 2,

~3.7!

where

f a5
1

exp~Y0ja!11
, ja5~j01j3 ,j02j3!.

In ~3.7! we do not write the dependence on spin indic
explicitly, since this dependence is the same for the left-
right-hand sides of the equations. Assuminga51 andb52,
we get

g0052
D00

4j0
F tanh

Y0~j01j3!

2
1tanh

Y0~j02j3!

2 G .
Thus, with allowance for~2.15!, where we have replace
summation by integration, the equation for determining
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singlet–singlet nucleon pairing~S50 andT50! assumes the
following form:

D00~p!

52
1

4 E d3p8

~2p\!3 V0~p,p8!
D00~p8!

j0~p8!

3F tanh
Y0~j0~p8!1j3~p8!!

2

1tanh
Y0~j0~p8!2j3~p8!!

2 G . ~3.8!

Similarly, in the case of singlet–triplet pairing Eq.~3.6!
yields

g0k~p!~tkt2!ab52
D0k~p!

ja~p!1jb~2p!
@12 f a~p!

2 f b~2p!#~tkt2!ab . ~3.9!

Settinga5b51 in ~3.9!, we get

ig011g0252
1

2

iD011D02

j01j3
tanh

Y0~j01j3!

2
.

At a5b52 we have

2 ig011g0252
1

2

2 iD011D02

j02j3
tanh

Y0~j02j3!

2
.

Finally, for a51 andb52, Eq. ~3.9! yields

g0352
D03

4j0
F tanh

Y0~j01j3!

2
1tanh

Y0~j02j3!

2 G .
Thus, to determine the temperature of a transition to the
perfluid phase with singlet–triplet nucleon pairing~S50 and
T51! we have the following equations:

iD01~p!1D02~p!

52
1

2 E d3p8

~2p\!3 V2~p,p8!

3
iD01~p8!1D02~p8!

j0~p8!1j3~p8!
tanh

Y0~j0~p8!1j3~p8!!

2
, ~3.10!

2 iD01~p!1D02~p!

52
1

2 E d3p8

~2p\!3 V2~p,p8!

3
2 iD01~p8!1D02~p8!

j0~p8!2j3~p8!
tanh

Y0~j0~p8!2j3~p8!!

2
,

~3.11!

D03~p!

52
1

4 E d3p8

~2p\!3 V2~p,p8!
D03~p8!

j0~p8!

3F tanh
Y0~j0~p8!1j3~p8!!

2

4Akhiezer et al.



1tanh
Y0~j0~p8!2j3~p8!!

, ~3.12!
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which describe the pairing of, respectively, two neutro
~isospin projectionTz521!, two protons (Tz511), and a
proton and neutron (Tz50).

The equation for determining the transition temperat
corresponding to other types of pairing can be found by r
soning along similar lines. For instance, for triplet–sing
nucleon pairing~S51 andT51! we have

Dk0~p!

52
1

4 E d3p8

~2p\!3 V1~p,p8!
Dk0~p8!

j0~p8!

3F tanh
Y0~j0~p8!1j3~p8!!

2

1tanh
Y0~j0~p8!2j3~p8!!

2 G . ~3.13!

For triplet–triplet nucleon pairing~S51 andT51! the cor-
responding equations are

iDk1~p!1Dk2~p!52
1

2 E d3p8

~2p\!3 V3~p,p8!

3
iDk1~p8!1Dk2~p8!

j0~p8!1j3~p8!

3tanh
Y0~j0~p8!1j3~p8!!

2
, ~3.14!

2 iDk1~p!1Dk2~p!

52
1

2 E d3p8

~2p\!3 V3~p,p8!

3
2 iDk1~p8!1Dk2~p8!

j0~p8!2j3~p8!
tanh

Y0~j0~p8!2j3~p8!!

2
,

~3.15!

Dk3~p!52
1

4 E d3p8

~2p\!3 V3~p,p8!
Dk3~p8!

j0~p8!

3F tanh
Y0~j0~p8!1j3~p8!!

2

1tanh
Y0~j0~p8!2j3~p8!!

2 G . ~3.16!

Here Eq.~3.14! determines the temperature of a transition
the phase with triplet pairing in the spin space of two ne
trons (Tz521), Eq. ~3.15! determines the temperature of
transition to the phase with triplet pairing of two proto
(Tz51), and Eq.~3.16! determines that with triplet pairing
of a proton and neutron (Tz50).

Note that Eqs.~3.8! and ~3.10!–~3.16! are valid for the
general case of asymmetric nuclear matter, where the pr
and neutron densities are different.
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ric nuclear matter~equal neutron and proton densities,
Y4a* 5Y4b* andj350!. Then Eqs.~3.8! and~3.10!–~3.16! be-
come simpler:

D00~p!52
1

2 E d3p8

~2p\!3 V0~p,p8!
D00~p8!

j0~p8!
tanh

Y0j0~p8!

2
,

~3.17!

D30~p!52
1

2 E d3p8

~2p\!3 V1~p,p8!
D30~p8!

j0~p8!
tanh

Y0j0~p8!

2
,

~3.18!

D03~p!52
1

2 E d3p8

~2p\!3 V2~p,p8!
D03~p8!

j0~p8!
tanh

Y0j0~p8!

2
,

~3.19!

D33~p!52
1

2 E d3p8

~2p\!3 V3~p,p8!
D33~p8!

j0~p8!
tanh

Y0j0~p8!

2
.

~3.20!

Here we have listed only the equations that refer to differ
transition temperatures. For instance, Eqs.~3.10!–~3.12!,
which in the case of asymmetric nuclear matter determ
the temperature of a transition to states with different isos
projections (Tz50,61) for singlet–triplet nucleon pairing
are replaced by a single equation~Eq. ~3.19!! in the case of
symmetric nuclear matter. Hence, actually, in the case
symmetric nuclear matter we are dealing with transitions i
superfluid phases with singlet–singlet, triplet–singl
singlet–triplet, and triplet–triplet nucleon pairing, and ea
has its own transition temperature, independent of the s
and isospin projections. In what follows we denote the
transition temperatures byTc(00) ~singlet–singlet pairing!,
Tc(30) ~triplet–singlet pairing!, Tc(03) ~singlet–triplet pair-
ing!, andTc(33) ~triplet–triplet pairing!.

Equations~3.17!–~3.20! contain the anomalous Landa
interaction amplitudesV0(p,p8),...,V3(p,p8), which in the
low2momentum range can be ordered with respect to
argumentsp and p8. Allowing for the symmetry properties
~2.16!, we get

V0~p,p8!5c0pp8, V1~p,p8!5a11b1~p21p82!,

V2~p,p8!5a21b2~p21p82!, V3~p,p8!5c3pp8.
~3.21!

Here the expansion coefficientsa, b, and c characterizing
the anomalous interaction amplitudes are independent
rameters of the theory and, generally speaking, must be
termined from comparison with the experimental data.

Equations~3.17!–~3.20! make it possible to determin
the temperatures of transitions to various superfluid pha
but generally require doing numerical calculations. Analy
expressions for the transition temperature can be obtaine
«F/2Tc@1, where«F is the Fermi energy.

We start with singlet–singlet pairing. This type of pai
ing is determined by the potentialV0(p,p8)5c0pp8
(p,p8<p0 , with p0 the cutoff momentum!. This, together
with ~3.17!, implies that the gapD00(p) has the structure

D00~p!5D0pn, p<p0 , ~3.22!

5Akhiezer et al.
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over the angles in~3.17! and allowing for~3.22!, we arrive at
the following equation for determining the transition tem
perature:

11
c0

12p2\3 E
p<p0

dpp4
1

j0
tanh

Y0j0

2
50. ~3.23!

If we calculate the integral in~3.23! in the logarithmic ap-
proximation («F/2Tc@1), we obtain the following expres
sion for the temperatureTc(00) of a transition to the super
fluid phase with singlet–singlet nucleon pairing:

Tc~00!5
8g

p
« fAy021

y011
expS 6

c0pf
2n

1c4D , ~3.24!

where

y05
p0

pf
, c45

y0
3

3
1y02

8

3
, g5eC,

n5m* pF /p2\3 is the density of states at the Fermi surfac
andC is Euler’s constant.

For triplet–singlet nucleon pairing the potential
V1(p,p8)5a11b1(p21p82) (p,p8<p0), with the results
that, with allowance for~3.18!, the formula for the gap
D30(p) becomes

D30~p!5D11D2p2, p<p0 , ~3.25!

where D1 and D2 are momentum-independent coefficien
Plugging~3.25! into ~3.18! and nullifying the determinant o
the resulting system of linear equations forD1 and D2 , we
arrive at the following equation for the transition tempe
ture:

11a1I 212b1I 41b1
2~ I 4

22I 2I 6!50, ~3.26!

where

I 2l5
1

4p2\3 E
p<p0

dpp2l
1

j0
tanh

Y0j0

2
, l 51, 2, 3.

This yields the following expression~in the logarithmic ap-
proximation! for the temperatureTc(30) for a transition to
the phase with triplet–singlet nucleon pairing:

Tc~30!5
8g

p
« fAy021

y011

3exp

11
a1n

2
c21b1npf

2c41S b1npf
2

2 D 2

~c4
22c2c6!

a1n

2
1b1npf

21S b1npf
2

2 D 2

~2c42c22c6!

,

~3.27!

where

c25y022, c65
y0

5

5
1

y0
3

3
1y02

46

15
.

Similar reasoning can be carried for the cases of sing
triplet and triplet–triplet nucleon pairings. For singlet–tripl
pairingV2(p,p8)5a21b2(p21p82), and the transition tem
peratureTc(03) is determined by formula~3.27! in which a1
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triplet pairing,V3(p,p8)5c2p • p8, and the transition tem-
perature is given by~3.24! with c0 replaced byc3 .

These formulas are valid in the limit 2Tc /«F!1. If this
inequality is invalid, Eqs.~3.17!–~3.20! must be solved nu-
merically if we wish to find the transition temperature. To d
numerical estimates, we express the Landau amplitude
terms of the nucleon–nucleon interaction amplitude by us
the leading approximation in the interaction. To this end
write the nucleon interaction Hamiltonian in the form

Vint5
1

2V
(

k1k2k3k4

v~k1 ,k2 ;k3 ,k4!ak1

1 ak2

1 ak3
ak4

,

~3.28!

where the interaction amplitudev(k1 ,k2 ;k3 ,k4) invariant
under rotations in the spin and isospin spaces has the fol
ing form:

v~k1 ,k2 ;k3 ,k4![v~p1 ,p2 ;p3 ,p4!a1a2a3a4

a1a2a3a4

5@v0~p,q!da1a3
da2a4

da1a3
da2a4

1v1~p,q!sa1a3
sa2a4

da1a3
da2a4

1v2~p,q!da1a3
da2a4

ta1a3
ta2a4

1v3~p,q!sa1a3
sa2a4

ta1a3
ta2a4

#

3dp11p2 ,p31p4
, ~3.29!

with p5(p12p2)/2 and q5(p32p4)/2. Here we have as
sumed, as is common in nuclear physics, that the amplitu
v0 , v1 , v2 , andv3 are independent of the total momentu
of the colliding particles.

To find the energy functional corresponding to the int
action Hamiltonian~3.28!, we must average the operato
~3.28! over the state of an nonideal gas of particles.33 For this
state the Wick rules for averaging operators are valid. T
interaction energy functionalEint( f ) can be obtained from
the operatorVint by linking the fermion operators into th
following scheme:

U0~p,q!54v0~k,k!2v0~2k,k!23v1~2k,k!

23v2~2k,k!29v3~2k,k!,

U1~p,q!54v1~k,k!2v0~2k,k!1v1~2k,k!

23v2~2k,k!13v3~2k,k!, ~3.30!

U2~p,q!54v2~k,k!2v0~2k,k!23v1~2k,k!

1v2~2k,k!13v3~2k,k!,

U3~p,q!54v3~k,k!2v0~2k,k!1v1~2k,k!

6Akhiezer et al.
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TABLE I. Parameters of the different versions of the Skyrme interaction
used in the present paper~according to the review article in Ref. 24!.
The interaction energy functionalEint(g) can be obtained
from the operatorV by linking the fermion operators into th
following scheme:

V0~p,q!5v0~p,q!23v1~p,q!23v2~p,q!19v3~p,q!,

V1~p,q!5v0~p,q!1v1~p,q!23v2~p,q!23v3~p,q!,

~3.31!

V2~p,q!5v0~p,q!23v1~p,q!1v2~p,q!23v3~p,q!,

V3~p,q!5v0~p,q!1v1~p,q!1v2~p,q!1v3~p,q!.

Below we use the Skyrme interaction as the nucleo
nucleon potential.24 For the Skyrme interaction the function
v0 ,...,v3 in ~3.29! are

v0~p,p8!5
3

8
t01

1

16
t3ra1

3

16\2 t1~p21p82!

1
1

8\2 t2~514x2!pp8,

v1~p,p8!52
1

8
t0~122x0!2

1

48
t3ra~122x3!

2
1

16\2 t1~122x1!~p21p82!1
1

8\2 t2

3~112x2!p•p8,
~3.32!

v2~p,p8!52
1

8
t0~112x0!2

1

48
t3ra~112x3!

2
1

16\2 t1~112x1!~p21p82!1
1

8\2 t2

3~112x2!p•p8,

v3~p,p8!52
1

8
t02

1

48
t3ra2

1

16\2 t1~p21p82!

1
1

8\2 t2p•p8.

Here r is the density of symmetric nuclear matter, a
t0 ,...,t3 , x0 ,...,x3 , anda are phenomenological paramete
In the above formulas we assume that the momentap andp8
do not exceed a cutoff momentump0 , which in turn is some-
what larger than the Fermi momentumpF , or p0*pF ~for
numerical calculations we assume thatp051.1pF ; see Ref.
14!. The local Skyrme interaction describes the effective
teraction of a pair of nucleons in the presence of a nucl
medium, which is reflected by the term dependent on d
sity. This term is the result of allowing for three-partic
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interactions. For symmetric nuclear matter with Skyrme
teraction the effective nucleon mass is given by the follo
ing expression:24

\2

2m*
5

\2

2m
1

1

16
@3t11t2~514x2!#r, ~3.33!

wherem is the ‘‘bare’’ nucleon mass~cf. Eq. ~3.5!!.
There are sets of parameterst, x, anda that are used to

describe the physical characteristics of the ground state
nuclei ~the mass and radius of a nucleus, the binding ene
the moment of inertia, etc.! and the data on giant resonanc
and fission barriers for heavy nuclei~see Ref. 23, the review
in Ref. 24, and the literature cited therein!. We use the most
recent versions of the Skyrme interaction taken from the
erature ~the Ska, SkM, SkM* , and RATP potentials; see
Table I!, in which, in contrast to the earlier work with expo
nenta51, in which the term dependent on the density co
tains a variable power of the density, 1/6<a<1/3.

Using Eqs.~3.21!, ~3.31!, and ~3.32!, we arrive at the
following expressions for the parametersa, b, and c that
characterize the anomalous Fermi-liquid interaction am
tudesV0 ,...,V3 in the case of a Skyrme interaction:

a1,25t0~16x0!1
1

6
t3ra~16x3!,

b1,25
1

2\2 t1~16x1!, c0,35
1

\2 t2~17x2!. ~3.34!

As Eqs.~3.21! and~3.34! imply, singlet–singlet and triplet–
triplet nucleon pairings in the corresponding superflu
phases occur in states with orbital angular momentumL51,
while triplet–singlet and singlet–triplet nucleon pairings o
cur in states withL50.

Note that if the parameterx2 in the effective Skyrme
interaction is zero,V0 andV3 are equal and the temperatur
of transition to phases with singlet–singlet and triplet–trip
pairing coincide,Tc(00)5Tc(33) ~this is true for the Ska,
SkM, and SkM* potentials!. Figure 1 depicts the results o
the numerical solution of Eqs.~3.17!–~3.20! represented in
the form of a density vs transition-temperature diagra
Qualitatively the behavior of the transition curves is the sa
for all four Skyrme potentials, although some numerical d
ferences do indeed exist. Note that at the saturation valu

Potential Ska SkM SkM* RATP

t0 , MeV•fm3 21602.78 22645.00 22645.00 22160.00
t1 , MeV•fm5 570.88 385.00 410.00 513.00
t2 , MeV•fm5 267.70 2120.00 2135.00 121.00
t3 , MeV•fm313a 8000.00 15 595.00 15 595.00 11 600.00
x0 20.02 0.09 0.09 0.418
x1 0.00 0.00 0.00 20.36
x2 0.00 0.00 0.00 22.29
x3 20.286 0.00 0.00 0.586
a 1/3 1/6 1/6 1/5

7Akhiezer et al.
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FIG. 1. Transition temperature as a function
density for different pairing types in SkM~a!,
SkM* ~b!, RATP ~c!, and Ska~d! potentials.
nuclear matter density,1! or r` , the temperature of transition
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to the state with triplet–singlet nucleon pairing~see Table II!
is the highest for all types of interaction.

The superfluidity of nuclear matter with the Skyrme i
teraction was also examined by Suet al.14 They, however,
studied nucleon pairing without allowing for the spin a
isospin structures of a pair, which means in deriving
energy functional they ignored the spin exchange interac
between nucleons~all the parameterxi in the Skyrme poten-
tials are set equal to zero!. Our treatment makes it possible
determine the structure of the phase diagrams for diffe
superfluid phases and to establish how the variation of

TABLE II. Values of the transition temperatureTc(30), the energy gap for
unitary (DpF

u ) and nonunitary (DpF

nu) states, and the magnetization densitym
~nonunitary states! in the case of triplet–singlet nucleon pairing at a dens
equal to the saturation densityr` of nuclear matter.

Potential Ska SkM SkM* RATP

Tc(30), MeV 0.0069 2.36 1.75 2.57
DpF

u , MeV 0.012 4.08 3.01 4.52
DpF

nu , MeV 0.0086 2.88 2.13 3.19
m, mnucl fm23 1.431027 0.0013 0.0010 0.0009
r` , fm23 0.1554 0.1603 0.1603 0.1599
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in a which there is nucleon pairing.
Note the special features of the resulting phase curv

Figure 1 shows that for the SkM and SkM* potentials there
is a certain critical density, the point at which the curv
Tc(30) andTc(00) ~or Tc(33)! intersect, such that forr,rc

the highest transition temperature is that of the transition
the phase with triplet–singlet nucleon pairing, while f
r.rc the highest transition temperature is that of the tran
tion to the singlet–singlet or triplet– triplet transition~for the
SkM and SkM* potentials the two coincide!. Thus, for the
SkM and SkM* potentials there is a phase transition in de
sity from the triplet–singlet phase to the singlet–singlet
triplet–triplet phase.

A similar conclusion holds for the RATP potential, th
only difference being that the phase transition in dens
from the triplet–singlet phase can only end in the triple
triplet phase, since for the RATP potential the equation
the temperature of transition to a phase with singlet–sin
nucleon pairing has no solutions.

For the Ska potential the curvesTc(30) andTc(00) ~or
Tc(33)! do not intersect,2! so that a phase transition from th
triplet–singlet phase to the singlet–singlet or triplet–trip
phase proceeds through the normal phase. Such a trans
however, is purely formal since this section on the pha

8Akhiezer et al.



diagram corresponds to high nuclear matter densities
23
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Solving Eq. ~4.3! for the X matrix requires knowing the
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es:

on

w-
('1.3 fm ).
To compare our results with those of by Suet al.,14 we

note that in their calculations they used the old Skyrme
tentials SkI–SkVI~see Ref. 23!, known from the beginning
of the 1970s, and of the new potentials only the SkM* po-
tential was selected. For the SkM* potential, Suet al.14 con-
cluded that the equation for the transition temperature of
second-order phase transition into the superfluid state
density equal to the saturation density has no solutions.
calculations with the SkM* potential show that at a densit
equal to the saturation density it is not the normal phase
is realized but the superfluid phase with triplet–sing
nucleon pairing and the corresponding transition tempera
Tc(30) of 1.75 MeV. The difference can be explained by t
fact that, as noted earlier, Suet al.14 did not take into accoun
the terms in the Skyrme potential that describe spin excha
interaction between nucleons. Allowing for these terms,
we have seen, is important and leads to qualitatively diff
ent results.

4. ENERGY GAP

The analysis of the phase curves done in Sec. 3 sh
that at densities close to the saturation density a super
phase appears with triplet–singlet nucleon pairing (S51 and
T50!. In this section we determine the energy gap and
order parameters for triplet–singlet pairing. To this end
turn to the self-consistency equation~2.4!. Using the diago-
nalization procedure described in Ref. 25, we can reduce
equation to a form that contains operators that act only in
momentum, spin, and isospin spaces. As a result, for
equilibrium distribution functionsf andg we obtain

f 5Kn1X~12ñ!X1K,g5KnX̃1K~12n!X, ~4.1!

where

n5$exp@Y0~j2XD1!#11%21, j5«1
Y4

Y0
,

K5~11XX1!21, ~4.2!

and the matrixX satisfies the equation

jX1Xj̃1D2XD1X50, X̃52X. ~4.3!

For triplet–singlet nucleon pairing the anomalous distrib
tion functiong has the form

gk1k2
5gk0~p1!dp1 ,2p2

~sks2!s1 ,s2
~t2!a1 ,a2

, ~4.4!

wheregk0(2p)5gk0(p). Combining this with~2.3! yields

Dk1k2
5Dk0~pi !dp1 ,2p2

~sks2!s1 ,s2
~t2!a1 ,a2

,

Dk0~2p!5Dk0~p!.

To simplify the formulas below we introduce the follow
ing notation:

gp[~g10~p!,g20~p!,g30~p!!,

Dp[~D10~p!,D20~p!,D30~p!!.
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structure ofj in the spin and isospin spaces. According
~2.2! and ~4.2!, this structure is determined by the form o
the energy functionalE( f ,g). For triplet–singlet nucleon
pairing we specify the functionalE( f ,g) by the following
formula ~compare this with the general expressions~2.8!–
~2.11!!:

E~ f ,g!54(
p

«0~p! f p
01

2

V
(
pp8

f p
0U0~p,p8! f p8

0

1
2

V
(
pp8

gp* V1~p,p8!gp8 , f p
0[ f 00~p!. ~4.5!

Here, in the view of the weakness of magnetization, we
nored the exchange interaction in the normal part of
Fermi-liquid energy~not to be confused with the micro
scopic spin exchange interaction between nucleons, ta
into account in the Skyrme potentials via the parametersxi!.
Combining ~4.5! with ~2.13!, ~2.14!, and ~4.2!, we see that
for symmetric nuclear matter (Y4a5Y4b5Y4), j is propor-
tional to the identity matrices in the spin and isospin spac

jk1k2
5jp1

dp1 ,p2
~s0!s1 ,s2

~t0!a1 ,a2
,

where

jp5«0~p!1
Y4

Y0
1

2

V
(
p8

U0~p,p8! f p8
0 . ~4.6!

Then, solving Eq.~4.3! and allowing for~4.1!, we arrive
at the following expression for the anomalous distributi
function:35

gp5
1

2zpGp
H 1

2
~12np

02n2p
0 !@~2zp

22Dp•Dp* !Dp

1~Dp
2!Dp* #1

np
i 1n2p

i

u@Dp•Dp* #u
zp

2F S 2S zp
22

1

4
~jp1j2p!2D

2Dp•Dp* DDp2~Dp!2Dp* G J . ~4.7!

Here

np
05

1

2
~np

11np
2!, np

i 5
1

2
~np

12np
2!,

np
65H expFY0S 2zp1

jp2j2p

2
6

u@Dp•Dp* #u
2zp

D G11J 21

,

andzp andGp are given are defined as follows:

zp
25

1

2 FDp•Dp* 1
1

4
~jp1j2p!21GpG ,

Gp5AFDp•Dp* 1
1

4
~jp1j2p!2G2

2u@Dp•Dp* #u2.

The structure of the normal distribution functionf in the
momentum, spin, and isospin spaces is given by the follo
ing expression:

f k1k2
5@ f p1

0 ds1 ,s2
1fp1

~s!s1 ,s2
#dp1 ,p2

da1 ,a2
,
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where, as~4.1! and the solution of Eq.~4.3! imply, the func-
tions f p

0 and fp have the form

f p
05

1

2Gp
H ~11np

02n2p
0 !Gp1

zp~jp1j2p!

2 F12np
02n2p

0

1
2@zp

22~1/4!~jp1j2p!22Dp•Dp* #~np
i 1n2p

i !

u@Dp•Dp* #u G J ,

~4.8!

fp52
i @Dp3Dp* #

2Gp
H jp1j2p

4zp

3F12np
02n2p

0 2
2zp

2~np
i 1n2p

i !

u@Dp•Dp* #u G1
np

i 2n2p
i

u@Dp•Dp* #u J . ~4.9!

Thus, according to Eqs.~2.15! and ~4.6!–~4.9!, jp and Dp

can be found by solving the following equations:

jp5«0~p!1
Y4

Y0
1

1

V

3(
p8

U0~p,p8!

Gp8
H ~11np8

0
2n2p8

0
!

3Gp81
zp8~jp81j2p8!

2 F12np8
0

2n2p8
0

1
2~zp8

2
2~1/4!~jp81j2p8!

22Dp8•Dp8
* !~np8

i
1n2p8

i
!

u@Dp8•Dp8
* #u G J ,

~4.10!

Dp5
1

2V
(
p8

V1~p,p8!

zp8Gp8

3H 12np8
0

2n2p8
0

2
@~2zp8

2
2Dp8•Dp8

* !

3Dp81Dp8
2

Dp8
* #1

~np8
i

1n2p8
i

!zp8
2

u@Dp8•Dp8
* #u

3F S 2S zp8
2

2
~jp81j2p8!

2

4 D2Dp8•Dp8
* DDp8

2Dp8
2

Dp8
* G J . ~4.11!

These equations completely solve the general problem
triplet–singlet nucleon pairing in superfluid nuclear matt
Formulas~4.11! do not require a specific form for the inte
action amplitude, the requirement being that the symme
conditions~2.16! are met. To be exact, Eqs.~4.10! and~4.11!
for the quantitiesjp andDp should be solved simultaneousl
We, however, ignore the effect of a finite gap onj in ~4.10!
and assume, therefore, thatjp5(p22pF

2)/2m* .
Let us first examine the states of superfluid nuclear m

ter for which the productDD1 is proportional to the identity
matrix in the spin space~which is equivalent to the condition

10 JETP 85 (1), July 1997
of
.

ry

t-

teristic feature of these states is that the projection of
total spin of a nucleon pair on the quantization axis in t
spin space is zero. The order parameter for unitary states
the form Dp5dDp , where d is a real-valued unit vecto
along the quantization axis, andDp , as~4.11! implies, satis-
fies the equation

Dp52
1

2V
(
p8

V1~p,p8!
Dp8
Ep8

tanh
Y0Ep8

2
,

Ep5Ajp
21uDpu2. ~4.12!

This equation is of the BCS type and has nonzero soluti
Dp Þ 0 at temperaturesT,Tc(30), whereTc(30) is the
transition temperature of the triplet–singlet phase transit
specified by ~3.18!. According to ~3.21!, the potential
V1(p,p8) in Eq. ~4.12! has the following form:

V1~p,p8!5a11b1~p21p82!, p,p8<p0 .

This leads to the following structure of the energy gapDp :

Dp5D11D2p2, p<p0 . ~4.13!

Solving Eq. ~4.12! at T50 on the assumption tha
DpF

/«F!1, we obtain the ordinary relationship linking th
energy gapDpF

at the Fermi surface with the transition tem
peratureTc(30):

DPF
~T50!5

p

g
Tc~30!,

with Tc(30) given by~3.27!. In the general case the solutio
of Eq. ~4.12! can be found only numerically. The results
numerical integration for the gap atT50 and p5pF are
depicted in Fig. 2a. Clearly, the SkM, SkM* , and RATP
potentials yield values forDpF

(T50), in contrast to the Ska
potential, which yields somewhat lower values. Table II lis
the values of the energy gap for the different variants of
Skyrme potential at a density equal to the saturation den
r` .

Now let us examine the states of superfluid nuclear m
ter for which the productDD1 is not reduced to the identity
matrix in the spin space. Such states are called nonunit
Among these are states whose projection of the total spi
a nucleon pair on the quantization axis is61. For such states
the order parameterDp has the form

Dp5d~6 !Dp , d~6 !5
1

&

~7 id11d2!, ~4.14!

where d1 and d2 are real-valued orthonormal vectors. Th
upper sign in~4.14! stands for the spin projectionSz511
and the lower sign for the spin projectionSz521.

The dependence ofDp on momentum, as~4.11! implies,
is given by the equation

Dp52
1

4V
(
p8

V1~p,p8!

Gp8Ep8
H 1

2
F tanh

Y0~2Ep8
2

1uDp8u
2!

4Ep8

1tanh
Y0~2Ep8

2
2uDp8u

2!

4Ep8
G ~2Ep8

2
2uDp8u

2!
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FIG. 2. Energy gap as a function of density fo
unitary ~a! and nonunitary~b! states.
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1F tanh 8 8

4Ep8
2tanh 8 8

4Ep8
G

3
Ep8

2
@2~Ep8

2
2jp8

2
!2uDp8u

2#

uDp8u
2 J Dp8 , ~4.15!

where

Gp5jp
2A112

uDp8u
2

jp
2 , Ep5A1

2
~Dp

21jp
21Gp!.

As Dp→0, Eq. ~4.15! becomes Eq.~3.18! for determining
the temperature of the transition to the superfluid phase w
triplet–singlet nucleon pairing. As in the case of unita
states, we should look for the solution of Eq.~4.15! in the
form ~4.13!. Figure 2b depicts the results of numerical c
culations of the energy gap for the nonunitary states
nuclear matter atT50 andp5pF . A comparison of Figs. 1a
and b shows that for equal densities the gap for nonuni
states is narrower than the gap for unitary states. Tabl
lists the gap valuesDpF

(T50) in the case of nonunitary
states for different Skyrme potentials at a density equal to
saturation density. In connection with examining the nonu
tary states in the spin space we note that the transition to
superfluid state is accompanied by the appearance of sp
neous magnetization in superfluid nuclear matter, which
caused by the ordering of the spins of the pairing nucleo
The magnetization densitym is given by the following ex-
pression:

m5Trkmf , m5
1

2
~11t3!mps1

1

2
~12t3!mns,

~4.16!

wherem is the operator of the nucleon’s magnetic mome
mp and mn are the magnetic moments of the proton a
neutron, respectively, andf is the normal nucleon distribu
tion function. Calculating the trace in~4.16!, we arrive at the
following expression for the magnetization densitym at
T50:

m52~mp1mn! (
p<p0

jpuDpu2

EpGp
. ~4.17!

11 JETP 85 (1), July 1997
th

-
f

ry
II

e
i-
he
ta-
is
s.

t,

in Fig. 3. Clearly, the magnetization density is fairly low~per
nucleon it amounts to roughly (0.006– 0.008)mnucl at a den-
sity equal to the saturation density for the SkM, SkM* , and
RATP potentials, and 9.131027mnucl for the Ska potential,
where mnucl is the nuclear magneton!. The explanation is
that, on the one hand, in this superfluid phase the pa
particles are a proton and a neutron whose magnetic
ments point in opposite directions, and, on the other,
larger fraction of nuclear matter is in the normal state.

5. CONCLUSION

We investigated a semiphenomenological theory of
perfluid nuclear matter based on Landau’s concept o
Fermi liquid. We classified the various superfluid phases
symmetric nuclear matter and derived the equations for
termining the corresponding transition temperatures. In
theory of a superfluid Fermi liquid, the normal and anom
lous Landau interaction amplitudes, interpreted phenome

FIG. 3. Magnetization density as a function of density for nonunitary sta
in the case of triplet–singlet nucleon pairing~the curve corresponding to the
RATP potential is depicted by a dashed line!.
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logically, are considered independent, and the derived equa-
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plications~for neutron stars, for instance, the inner temperatures are of the
order 1022 MeV; see Ref. 34!. If we continue the curvesTc(30) and

t
ture

e

ic

A

tions do not assume any relationship between the normal
anomalous Fermi-liquid amplitudes. However, to be able
estimate the Fermi-liquid amplitudes, we used the lead
approximation in the interaction and expressed the nor
and anomalous Fermi-liquid amplitudes in terms of the
rameters of the effective nucleon–nucleon interaction.
the nucleon–nucleon potential we used the effective Sky
interaction, with the most recent values of the phenome
logical parameters taken from the literature~the SKa, SkM,
SkM* , and RATP potentials!. Note that we clearly separate
the spin and isospin parts of the interaction potential, wh
makes it possible to easily follow the spin and isospin str
tures of paired nucleons.

An analysis of the temperatures of transition to vario
superfluid phases of symmetric nuclear matter shows
there is the possibility of phase transitions in density fro
the triplet–singlet superfluid phase into the singlet–single
triplet–triplet phase~the SkM and SkM* potentials! or from
the triplet–singlet phase into the triplet–triplet phase~the
RATP potential!. For the Ska potential the transition from
the triplet-singlet phase into the singlet–singlet or triple
triplet phase is possible only through the normal phase.

For the Fermi-liquid model of superfluid nuclear matt
with the effective Skyrme interaction as the nucleo
nucleon potential we conclude that at densities close to
nuclear-matter saturation density the superfluid phase
occurs is the triplet–singlet one~the particles that form a pai
are a neutron and a proton in the triplet spin state!. Although
this result might seem somewhat unexpected~singlet spin
pairing is realized in atomic nuclei!, there has been researc
into the superfluidity of nuclear matter that studied sp
triplet nucleon pairing~with other interaction potentials; se
the literature cited in the Introduction!.

For triplet–singlet superfluid phases there is the poss
ity of states of the pairing proton and neutron that are unit
or nonunitary in spin~the projection of the total spin,Sz , is
either Sz50 or Sz561, respectively!. We have found the
density-dependence of the energy gap atT50 in the unitary
and nonunitary cases. For nonunitary states the transition
superfluid phase is accompanied by the appearance of s
taneous magnetization, which incidentally is not very stro
~see Table II!.

Among the other problems related to superfluid nucl
matter we would like to mention the effect of the asymme
of nuclear matter on the transition temperature and the
ergy gap for various superfluid phases~asymmetric nuclear
matter!, the effect of bound nucleon states~deuterons!20,36,37

on the superfluid properties,27 and the problem of setting u
the equations of hydrodynamics and of studying kine
phenomena.38

The authors would like to express their deep gratitude
Profs. G. Ro¨pke and P. Schuck for the useful remarks a
the discussions concerning the results of the work.

1!By the nuclear-matter saturation density we mean the density at which
binding energy per nucleon is at its maximum.

2!Note that in our study we limited ourselves to temperatures*1023 MeV,
this range being of principal interest owing to possible astrophysical
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Tc(00) ~or Tc(33)! still farther in density, they will obviously intersect, bu
the point of intersection corresponds to a transition tempera
Tc!1023 MeV.

1A. Bohr, B. Mottelson, D. Pines, Phys. Rev.110, 936 ~1958!.
2S. T. Belyaev, K. Dan. Vidensk. Selsk. Mat. Fys. Medd.31, 11 ~1959!.
3N. N. Bogolyubov, Dokl. Akad. Nauk SSSR119, 52 ~1958! @Sov. Phys.
Doklady 3, 279 ~1958!#.
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12Th. Alm, G. Röpke, and M. Schmidt, Z. Phys. A337, 355 ~1990!.
13L. Amundsen and E. Ostgaard, Nucl. Phys. A437, 487 ~1985!.
14R. K. Su, S. D. Yang, and T. T. S. Kuo, Phys. Rev. C35, 1539 ~1987!;

M. F. Jiang and T. T. S. Kuo, Nucl. Phys. A481, 294 ~1988!.
15M. Baldo, J. Cugnon, A. Lejeuneet al., Nucl. Phys. A451, 509 ~1986!.
16J. M. Chen, J. W. Clark, E. Krotscheket al., Nucl. Phys. A451, 509

~1986!.
17R. Tamagaki, Prog. Theor. Phys.44, 905 ~1970!.
18L. Amundsen and E. Ostgaard, Nucl. Phys. A442, 163 ~1985!.
19A. Sedrakian, G. Ro¨pke, and Th. Alm, Nucl. Phys. A594, 355 ~1995!.
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Suppression of superconductivity close to the metal–insulator transition in strongly

of
disordered systems
É. Z. Kuchinski , M. V. Sadovski , and M. A. Érkabaev

Electrophysics Institute Ural Branch, Russian Academy of Sciences, 620049 Ekaterinburg, Russia
~Submitted 24 October 1996!
Zh. Éksp. Teor. Fiz.112, 192–199~July 1997!

By means of the self-consistent theory proposed earlier for a metal–insulator transition in
strongly disordered systems, which takes into account interelectron interaction effects, the effects
of the suppression of the superconducting-transition temperatureTc , caused by the formation
of a Coulomb pseudo-gap in the density of states, are studied in a wide interval of disorder
values—from a weakly disordered metal to an Anderson insulator. It is shown that the
proposed theory gives a satisfactory description of the experimental data for a number of systems
that have been studied. ©1997 American Institute of Physics.@S1063-7761~97!01607-7#

1. INTRODUCTION from the metal–insulator transition point. Such behavior
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The problem of the degradation of the superconducti
transition temperature under conditions of strong disorde
has attracted the attention of theoreticians for a rather l
time.1 It is closely associated with the question of the bre
down of the superconducting state close to the met
insulator transition caused by disordering.2 A number of
mechanisms for the suppression ofTc have been proposed
such as an increase of the Coulomb pseudopotential,3,4 the
effect of Coulomb corrections to the density of states,5 etc.
Most of these papers discussed only small corrections toTc

because of these mechanisms.
The theory of the metal–insulator transition proposed

Refs. 6 and 7, which generalizes the self-consistent loca
tion theory8,9 in the direction of taking into accoun
electron–electron interaction effects, made it possible
study the behavior of a generalized diffusion coefficient o
a wide range of variation of the system parameters both
the metallic and in the insulator regions. The substantial
fluence of electron–electron interaction on the generali
diffusion coefficient was treated. These results were use
study the behavior of the single-particle density of states
the system, taking into account the influence of electro
electron interaction effects.

The results of the corresponding calculations dem
strate the formation and evolution of a Coulomb pseudo-
in the density of states of a system close to the Fermi le
In the metallic region, the behavior of the density of sta
close to the Coulomb pseudo-gap corresponds to the o
nary Al’tshuler–Aronov root correction.10 When one ap-
proaches the metal–insulator transition as the disorder
rameter increases, the depth of the pseudo-gap increase
the effective width of the region of the root behavior d
creases; at the metal–insulator transition point, the densit
states at the Fermi level goes to zero, i.e., a Coulomb
forms. In the insulator region, for the case of a band of fin
width in the region of the Coulomb gap, a quadratic dep
dence of the density of states is obtained. The effective w
of the corresponding region increases with increasing di
der parameter. This recalls the well-known behavior of
Efros–Shklovskii Coulomb gap11 in the insulator region far
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the density of states gives good qualitative agreement w
experiments in a number of disordered systems close to
metal–insulator transition,1 from amorphous alloys12–16 to
disordered single-crystal metal oxides, including hig
temperature superconductors.17

In this paper, the results of calculations of the density
states of a system for the case of a band of finite width
used to numerically study how Coulomb pseudo-gap effe
in the density of states affect the suppression of superc
ductivity close to the metal–insulator transition.

Superconductivity in strongly disordered systems will
treated in terms of a simple BCS model. In the weak-bind
approximation, the linearized equation for the gap has
following form:2

D~j!52E
2`

`

dj8V~j,j8!N~j8!
1

2j8
tanhS j8

2Tc
DD~j8!.

~1!

Here N(j) is the density of states of the disordered syst
averaged over the implementations of the disorder, allow
for electron–electron interaction effects, andV(j,j8) is the
effective interaction potential. The only difference from th
standard approach is that the nontrivial dependence ofN(j)
on electron energyj measured from the Fermi levelEF is
taken into account here.

It is assumed in BCS theory that an effective electro
electron attraction exists, which is determined by a cert
balance between pairing due to electron–phonon interac
and Coulomb repulsion. The following will be regarded
the effective interaction potential:

V~j,j8!5Vc~j,j8!1Vph~j,j8!, ~2!

where Vc(j,j8)5Vcu(EF2uju)u(EF2uj8u) and Vph(j,j8)
52Vphu(vD2uju)u(vD2uj8u) are the electron–electro
and electron–phonon interaction potentials, respectively,
vD is the Debye frequency. The constantsVc.0 andVph.0
correspond to repulsion and attraction, acting in substanti
different energy intervals:EF@vD .

After substituting this expression into Eq.~1! and trans-
forming, using the parity of the slit functionD~j!, we get

104$10.00 © 1997 American Institute of Physics



D~j!5@Vphu~vD2j!2Vcu~EF2j!#
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3E
0

vD
dj8N~j8!

1

j8
tanhS j8

2Tc
DD~j8!2Vcu~Ef

2j!E
vD

EF
dj8N~j8!

1

j8
tanhS j8

2Tc
DD~j8!. ~3!

As usual, we shall seek the solution of this equation i
two-step form:18

D~j!5H Dph, uju,vD ,

Dc , vD,uju,EF ,
~4!

where Dph and Dc are certain constants that can be det
mined, after substituting Eq.~4! into Eq. ~3!, from a system
of homogeneous equations of the following form:

H 12~Vph2Vc!N0~0!KS vD

2Tc
D J Dph1VcN0~0!FKS EF

2Tc
D

2KS vD

2Tc
D GDc50,

~5!

VcN0~0!KS vD

2Tc
DDph1H 11VcN0~0!FKS EF

2Tc
D

2KS vD

2Tc
D GDc50.

HereN0(0) is the single-particle density of states of non
teracting electrons at the Fermi level, and we have in
duced the notation

K~j!5E
0

j

dj8
1

j
tanhj8FN~2Tcj8!

N0~0! G . ~6!

The condition for this homogeneous system of equati
to be solvable is the equation for determiningTc :

~l2m* !KS vD

2Tc
D51,

m* 5mH 11mFKS EF

2Tc
D2KS vD

2Tc
D G J 21

, ~7!

wherem* is the Coulomb pseudopotential,m5VcN0(0) is
the Coulomb repulsion constant, andl5VphN0(0) is the
pairing constant due to the electron–phonon interaction
the pure limit, when the density of states at the Fermi le
can be regarded as constant, the usual equation of
theory follows from this.

Equation ~7! for determiningTc has been studied nu
merically over a wide region of variation of the system p
rameters in both the metal and the insulating states. The
sity of states of the system was computed using the low
order corrections in the interelectron interaction:6,7

N~j!52
1

p
Im E d3p

~2p!3 GR~p,j!, ~8!
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where GR(A)(p,j)5@j2jp6 ig2See
R(A)(p,j)#21 is the re-

tarded ~advanced! single-particle Green’s function, an
See

R(A)(p,j) is the Fock contribution to the eigenenerg
part:6,10

See
R~A!~p,j!'4ig2mN0

21~0!G0
A~R!~p,j!

3E
j

` dv

2p E
uqu,k0

d3q

~2p!3

3
1

@2 iv1D~v!q2#2 . ~9!

HereD(v) is a generalized diffusion coefficient, which sa
isfies the following self-consistent nonlinear integr
equation:6,7

D~v!

D0
512

1

pN0~0!

D~v!

D0
E

uqu,k0

d3q

~2p!3

3
1

2 iv1D~v!q2

1
8i

3p

mD0

pN0~0!
E

v

`

dVE
uqu,k0

d3q

~2p!3

3
q2

~2 i ~V1v!1D~V1v!q2!~2 iV1D~V!q2!2 ,

~10!

where D05EF/3mg is the classical diffusion coefficient
g51/2t is the Born damping,t is the free path time,
k05min$pF ,l21% is the cutoff momentum,pF is the Fermi
momentum, andl is the free path length. The values show
below for static conductivity were also obtained by nume
cally solving Eq.~10!.6,7

Figure 1 shows the behavior of the density of states
the system close to the Fermi level, demonstrating the e

FIG. 1. Density of states of a system in the case of a band of finite w
2EF when (8/3p)m51.0, for various values of the disorder paramet
(pFl )21: 1—0.1...,5—0.5 in the metallic region,7—0.7...,10—1.0 in the
insulator region. The dashed curve6 corresponds to the metal–insulato
transition point. Energy« is in units ofD0k0

2 in the graph.
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lution of the Coulomb pseudo-gap as the disorder param
increases. It is this behavior that results in suppression of
superconducting transition temperature.

The graphs in Fig. 2 demonstrate the suppression oTc

with increasing disorder parameter (pFl )21 for various val-
ues of the Coulomb repulsion constantm with fixed pairing
constantl. For largem, as disorder (pFl )21 increases,Tc

rapidly decreases and goes to zero in the metallic region
from the metal–insulator transition. Whenm is reduced, the
falloff of Tc with increasing disorder (pFl )21 slows down,
and, for smallm and largel ~dashed curves in figure!, su-
perconductivity can occur in the insulating region.2 The latter
is clearly demonstrated by the graphs in the inset of Fig
which shows the dependence ofTc on the static conductivity
s of the system for corresponding values of the pairing c
stantl and the Coulomb repulsion constantm. For largem,
Tc rapidly decreases as conductivitys decreases, and supe
conductivity is suppressed in the metallic region rather
from the metal–insulator transition. Whenm is reduced, the
falloff of Tc slows down with decreasing conductivitys,
and, for smallm and rather largel ~dashed curves in inset!,
Tc remains finite in the limits→0.

The graphs in Fig. 3 demonstrate the degradation ofTc

as the disorder parameter (pFl )21 increases for various val
ues of the pairing constantl with fixed Coulomb repulsion
constantm. For smalll, as the disorder (pFl )21 increases,
Tc rapidly decreases and goes to zero in the metallic reg
far from the metal–insulator transition. Whenl is increased,
the decrease ofTc with increasing disorder (pFl )21 slows
down, and, for sufficiently largel, the superconductivity is
suppressed only in the insulating region. The dependenc
the Coulomb pseudopotentialm* on the disorder paramete
(pFl )21 shown in the inset of Fig. 3 for corresponding va
ues of the pairing constantl and the Coulomb repulsion
constantm demonstrates an insignificant increase of the C
lomb pseudopotentialm* with increasing disorder (pFl )21

FIG. 2. Degradation ofTc as a function of the disorder parameter (pFl )21

for a fixed pairing constantl ~l50.5—continuous curves,l51.0—dashed
curves! for various values of the Coulomb repulsion constant (8/3p)m:
1—0.2,••• ,5—1.0. The inset shows the dependence ofTc on the static con-
ductivity s of the system for the corresponding values of the pairing c
stantl and Coulomb repulsion constantm.
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close to the superconductivity-suppression point. This is
parently fairly natural, since the different processes t
renormalize the matrix element of the Coulomb interact
in Eq. ~2! because of Anderson localization effects a
electron–electron interaction and that substantially incre
the Coulomb pseudopotential close to the metal–insula
transition2 are not considered in this case.

Similar behavior ofTc as a function of static conductiv
ity s and of the disorder parameter was experimentally
served in a number of disordered systems that remain su
conducting close to the metal–insulator transition caused
disordering.1,2,12–17,19–21The results of our numerical calcu
lations agree well with experiments in the amorphous allo
InOx ,14 NbxSi12x ,15,16 and AuxSi12x .19–21

Reference 14 presented the results of measuremen
the disorder parameter (pFl )21 for the amorphous alloy
InOx , as well as data forTc and static conductivity close to
the metal–insulator transition.

According to Refs. 6 and 7, the static conductivity of t
system close to the metal–insulator transition has the follo
ing form:

s5s0@~pFl !Wc~m!21#. ~11!

Heres0 is some characteristic conductivity scale close to
metal–insulator transition, andWc(m) is the disorder param
eter corresponding to the metal–insulator transition, wh
depends on the Coulomb repulsion constant.

Approximating the experiment for the static conductivi
of the amorphous alloy InOx by Eq.~11! makes it possible to
estimate the characteristic conductivity scales0 and, from
the value ofWc , the Coulomb repulsion constantm. Satis-
factory correlations~see inset in Fig. 3! are obtained
for the following values of the parameters:s0.324.95
(V•cm)21, Wc.0.606, andm.1.0.

-

FIG. 3. Degradation ofTc as a function of the disorder parameter (pFl )21

for fixed Coulomb repulsion constant (8/3p)m50.4 for various values of
the pairing constantl: 1—0.3, 2—0.4,...,8—1.0. The inset shows the de
pendence of the Coulomb pseudopotentialm* on the disorder paramete
(pFl )21 for the corresponding values of the pairing constantl and the
Coulomb repulsionm. The arrow shows the position of the metal–insulat
transition pointm.
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Figure 4 shows a comparison of our results with t
experimental data forTc as a function of the static conduc
tivity s of the amorphous alloy InOx , using Tc053.41 K,
vD5112 K, and EF59.983104 K, @vD /EF#.1.131023

for pure In and the resulting values ofs0 and m, which
makes it possible to estimate the pairing constantl. Satisfac-
tory correlation is obtained forl.0.45. The dashed curve
correspond to the valuesl.0.4 and 0.5.

Let us consider the results of studies of the depende
of Tc and the static conductivity on the Si concentration
the amorphous alloys NbxSi12x ~Refs. 15, 16! and AuxSi12x

~Refs. 19–21! close to the metal–insulator transition. A
suming a disorder parameter proportional to the Si conc
tration for these systems, so that (pFl )21;12x, we trans-
form Eq. ~11! for the static conductivity close to the metal
insulator transition to the form

s5s0

x2xc

12x
, ~12!

wherexc is the critical concentration~corresponding to Nb or
Au! at the metal–insulator transition point.

Approximating the experiment for the static conductiv
of the amorphous alloys NbxSi12x and AuxSi12x by Eq.~12!
makes it possible to estimate the characteristic conducti
scales0 and the critical concentrationxc . Satisfactory cor-
relations~see the inset in Figs. 5 and 6! are obtained for the
following values of the parameters:

NbxSi12x : s0.1963.9~V•cm!21, xc.0.115;

AuxSi12x : s0.2782.13~V•cm!21, xc.0.14.

The graphs in Figs. 5 and 6 demonstrate the compar
of our results with the experimental data forTc as a function
of static conductivitys in the amorphous alloys NbxSi12x

and AuxSi12x , using the values ofs0 shown above and the
following parameters: Tc059.26 K, vD5276 K, and
EF56.183104 K, @vD /EF#.3.031023 for pure Nb;
Tc05Tc max.0.86 K, vD5170 K, and EF56.423104 K,

FIG. 4. Behavior ofTc as a function of static conductivitys for the amor-
phous alloy InOx . The inset shows the results of an approximation of
data for the static conductivitys as a function of the disorder paramet
(pFl )21.
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@vD /EF#.0.931023 for AuxSi12x . This comparison
makes it possible to estimate the pairing constantl. Assum-
ing a Coulomb repulsion constant ofm.1 for these systems
satisfactory correlation can be obtained withl.0.54 for
NbxSi12x and withl.0.62 for AuxSi12x .

Of course, these computations, which are based on
BCS model, are oversimplified. A consistent approach to
problem of computing the superconducting transition te
perature must be based on a solution of the E´ liashberg equa-
tions and must use realistic models of the electron–elec
interaction.18 This is especially true of the results give
above for large values of the pairing constantl, which dem-
onstrate that superconductivity can exist in the insulating
gion. At the same time, we have not questioned the gen
of the initial Tc0 in a pure system in this paper, but have be
occupied only with the question of howTc depends on the
disorder. In this sense, the results can be qualitatively app
in the strong bonding region. We should point out that it
still necessary to more consistently take into account dis

FIG. 5. Behavior ofTc as a function of static conductivitys for the amor-
phous alloy NbxSi12x . The inset shows the results of an approximation
the data for the static conductivitys as a function of the Nb concentration

FIG. 6. Behavior ofTc as a function of static conductivitys for the amor-
phous alloy AuxSi12x . The inset shows the results of an approximation
the data for the static conductivitys as a function of the Au concentration
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is associated with an additional Tc-degradation
mechanism.2–4 As was pointed out above, this paper h
taken into account only the effects of the formation of
Coulomb pseudo-gap in the density of states. It is poss
that the satisfactory agreement with experiment obtai
above indicates that the effects of the variation of the den
of states play a dominant role in theTc-degradation mecha
nism, as was noted earlier~at the level of small corrections!
in Ref. 5.
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Anomalies of the baric and temperature dependences of the elastic characteristics

ous
of ice during solid-phase amorphization and the phase transition
in the amorphous state

E. L. Gromnitskaya, O. V. Stal’gorova, and V. V. Brazhkin

L. F. Vereshchagin Institute of High-Pressure Physics, Russian Academy of Sciences, 142092 Troitsk,
Moscow Region, Russia
~Submitted 29 October 1996!
Zh. Éksp. Teor. Fiz.112, 200–208~July 1997!

The elastic characteristics of ice up to pressures of 1.7 GPa are determined for the first time at a
temperature of 77 K, along with features of their variation associated with the phase
transformation of hexagonal ice Ih into high-density amorphous icehda. The elastic instability
of the ice lattice before solid-phase amorphization is experimentally confirmed. Elastic
instability during a transition from one amorphous state to another amorphous state was also
observed for the first time; this took place whenhda ice was warmed atp50.05 GPa from
T577 K. © 1997 American Institute of Physics.@S1063-7761~97!01707-1#

1. INTRODUCTION cerned, the facts of polymorphism between amorph
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It is well known that water is not only a widely distrib
uted substance on earth and in outer space, but also is a
interesting object for scientific studies with practical applic
tions. The phase diagram of water, studied with varying te
peraturesT and pressuresp that largely correspond to th
conditions actually existing on the planets of the solar s
tem, demonstrates more than ten crystal modifications of
that possess different physical properties and is an objec
numerous but far from complete investigations.1–16

Moreover, the phase transformation detected not lo
ago of hexagonal ice Ih ~the atmospheric-pressure phas!
into high-density amorphous ice (hda) and the transition of
ice from hda into low-density amorphous ice (lda) are of
interest from the viewpoint of studying the phenomenon
solid-phase amorphization and transitions from one am
phous state to another. It has been established1,2 that, at
T577 K, under the action of high pressure, the transform
tion Ih–hda occurs atp'1.1 GPa, with thehda phase be-
ing maintained when the pressure is removed. Warminghda
ice at atmospheric pressure, as shown by x-ray diffrac
methods, successively causes the transitionshda– lda at
T'120 K, then lda– Ic ~the cubic modification! at
T'140– 145 K, and finally Ic– Ih at T'160 K.1–4,6,8

More than a hundred publications are devoted to
phenomenon of solid-phase amorphization under press
and there are fairly complete reviews~see, for example, Refs
5 and 17!. At the same time, the mechanism of this pheno
enon remains largely unclear. The most popular concep
explain the phenomenon of solid-state amorphization is c
rently the ‘‘elastic instability’’ model of the crystal lattice a
definitep andT. The softening of the elastic characteristi
before amorphization, occurring under the action of irrad
tion, during supersaturation of solid solutions, or obtained
other methods, has been observed many times.18,19However,
no experimental studies have been made until recently of
elastic properties of the lattice during solid-phase amorph
tion under the influence of pressure.

As far as transformations in the amorphous state are c
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modifications under pressure are fairly reliably establish
by now, and the structure, the optical properties, and the b
characteristics of H2O, GeO2, and SiO2 during transitions in
the amorphous state have also been experimen
studied.1–5,20–23However, the development of a microscop
theory of transformations in the amorphous state requ
additional experimental information.

The Ih–hda andhda– lda transitions in ice occur in an
experimentally accessible range of pressures and temp
tures, which makes ice an extremely attractive model ob
for verifying various concepts of solid-phase amorphizat
and transitions in the amorphous state. A study of the ela
properties of both crystalline and amorphous modificatio
of ice, as well as an investigation of their features duri
solid-phase amorphization and during transitions in
amorphous state would contribute greatly to the solution
these problems. However, there are not many correspon
experimental papers.10–16 The elastic properties of Ih ice
were studied earlier by Brillouin scattering under a press
of up to 0.28 GPa atT5237.5 K~Ref. 10! and in ultrasound
measurements up top50.7 GPa atT5248 K.11 Recent
studies by Brillouin scattering made it possible to determ
the elastic moduli of single crystals of ice VI and VII at roo
temperature and ice III atT5253 K.13–16 In Ref. 12, we
presented for the first time experimental confirmation of
elastic instability of the crystal structure of
Ih ice before the transition to the amorphous state under
action of high pressure atT577 K.

2. EXPERIMENTAL TECHNIQUE

This paper is a more complete presentation and refi
ment of the results of the studies of the elastic properties
ice by a pulsed ultrasound method begun earlier in Ref.
The p–T dependences of the velocities of longitudinal a
transverse ultrasound waves for ice are obtained for the
time in the pressure range from zero to 1.7 GPa and a t
perature ofT577 K, as well as in the natural warming re
gime from T577 K to T5180 K at a constant pressure o
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p50.05 GPa. The features of the behavior of the elastic
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properties of ice during the Ih–hda, hda– lda, andlda– Ic
transitions are established and studied.

The ultrasound piezometer described in Ref. 24 w
used for the low-temperature studies. The samples of
were prepared from distilled water by rapid cooling in ord
to obtain homogeneous polycrystalline samples. After pre
ration, the samples, in the form of cylinders 8–10 mm h
and '17 mm in diameter in thin-wall ('0.04 mm) lead
shells, were placed into a high-pressure cell and were
lated from the punches by thin copper foil~0.02 mm! over
the ends. During the experiment, the changes of the time
flight of the longitudinal ultrasound waves,Dt l(p) or
Dt l(T), and of the transverse ultrasound waves,Dt t(p) or
Dt t(T), were determined by the method of visual superpo
tion of the signals.25 We usedx-cut andy-cut quartz plates,
with carrier frequencies of 5 and 3 MHz, respectively,
piezoelectric sensors. The change in the sample he
D l (p) or D l (T), was determined by means of dial-type m
crometer indicators remote from the low-temperature zon

3. MEASURED RESULTS AND DISCUSSION

3.1. Measurements at T5const 5 77 K

Measurements were carried out atT577 K with the
high-pressure unit totally immersed in the liquid-nitrog
reservoir. The temperature in the working volume was m
sured with four copper–constantan thermocouples mou
in the immediate vicinity of the sample. The pressure in
chamber was determined from the force of the press an
multiplication factor to take into account the deformation
the piezometer channel with pressure and temperature. It
shown that this pressure-measurement method is sufficie
accurate by determining the CsI–CsII phase-transition p
sure in cesium:p5(2.2560.02) GPa.26

The baric dependencesDt l(p), Dt t(p), andD l (p) were
measured in the pressure interval from zero to 1.7 GPa w
increasing and relieving the pressure after the tempera
stabilized atT577 K at all points of the ultrasound piezom
eter. The resulting behavior was used to calculate the vel
ties of the longitudinal ultrasound wave,v l(p), and the
transverse ultrasound wave,v t(p), which made it possible to
determine the compressionx5V(p)/V0 of the ice, the adia-
batic bulk modulus KS(p), the shear modulusG(p),
Young’s modulusE(p), and the Poisson ratios(p), which
are shown in Figs. 1 and 2. The results of five experime
on the determination ofv l(p) and of four on the determina
tion of v t(p) were used in the calculations. The calculatio
took into account corrections for friction in the piezome
channel, as well as for deformation of the chamber with pr
sure and temperature, which were determined in separate
periments.

The variation of the properties of ice over the range
pressures studied here can be broken up into several sec
As the pressure is raised from zero to 1.1 GPa, the resu
dependences characterize the Ih hexagonal phase of ice
then, from 1.1 GPa to 1.4 GPa, the phase transformatio
the Ih hexagonal ice into the high-density amorphous ph
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GPa to 1.7 GPa and then as the pressure is removed, thehda
ice maintains its metastable state.

The compression of the Ih hexagonal ice increases it
density by about 10% before the transition begins, with
bulk modulusKS(p) increasing nonlinearly with pressure
As the transition into the amorphous state is approac
(p;1.0 GPa), the increase of the modulusKS(p) slows
down, so that the derivative with respect to pressu
]KS(p)/]p, decreases by a factor of 1.5 by comparison w
the original value. Such behavior ofKS(p) can be explained
by an increase of the negative contribution of the elas
modulusc13(p):27

KS
25

@c33~c111c12!22c13
2 #@2~c111c12!1c3314c13#

9~c111c1212c3324c13!
,

which, according to Ref. 10, increases more rapidly w
pressure than the other elastic modulici j .

The most interesting phenomenon that precedes
amorphization of the Ih ice is the decrease with pressure
the transverse ultrasound wave velocityv t(p) and, accord-
ingly, of the shear modulusG(p). Such a change of the
shear characteristics indicates that the crystal lattice has
stability because of softening of one of the shear mo
(TA1), which is discussed in more detail in Ref. 12. Th
strong increase of the Poisson ratio with pressure~27%! is
evidence of a decrease of the degree of covalence of
bonds or, in other words, of decreased rigidity of the bon
in certain crystallographic directions in the hexagonal str
ture of ice~Ih!.

In a number of cases, the process of compressing
Ih ice was accompanied by a sharp dry crackling, which c
be caused by ‘‘penetration and slippage’’ of the correspo
ing planes in which the microdefects accumulate that de
mine the decrease of the resistance to stress. It was po
out in Ref. 28 that the mechanical resistance to shear foh
ice decreases with pressure, and that extrapolation of its b
dependence to zero leads to a pressure of 1.0–1.5 G
which agrees well with the pressure of the Ih–hda transi-
tion. The behavior of ice under pressure at low temperatu
thus gives a clear example of the connection of the soften
of the elastic constants determined by interatomic interac
at the microscopic level and the corresponding falloff of t
macroscopic mechanical characteristics.

The Ih–hda phase transition was recorded from th
marked change of all the measured parame
(Dt l /t0519.0%, Dt t /t0538.0%, D l / l 0520.060.5%!,
which occurred especially intensely at a pressure
p'1.160.1 GPa, and this transition can be conside
mainly complete byp51.4 GPa. We took the pressur
p'1.160.1 GPa to be the pressure of the Ih–hda phase
transition, which is in good agreement with the work of oth
authors.1–4,6,8

The strong density increase ('20.060.5)% accompa-
nying the Ih–hda transition measured in this work virtuall
coincides with the jump determined in Refs. 2, 4, 6, 8.
was already pointed out in Ref. 12, the transverse ultraso
wave velocityv t(p) increases significantly~19%!, whereas
the longitudinal ultrasound wave velocity increases by o
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2% during the transition. The increase of the adiabatic b
modulus ~26.0%! and the shear modulus~70.0%! and the
decrease of the Poisson ratio~16.0%! are evidence that the
rigidity of the bonds increases during the transition of Ih ice
into thehda phase.

The baric dependences of the elastic characteristics
incide and do not show any anomalies as the pressur
increased from 1.4 GPa to 1.7 GPa and when the loa
subsequently completely removed~Figs. 1 and 2!, from
which it follows that amorphous high-density ice stays in
metastable state all the way to atmospheric pressure.
should point out that amorphous high-pressure ice and Ih ice
have extremely similar pressure dependences that chara
ize the ability of the substance to react to volume deform
tions under pressure@v l(p), KS(p)#. It follows from the be-
havior under pressure of the shearing elastic characteri
v t(p) and G(p), as well as the Poisson ratio, thathda ice
possesses greater rigidity and a larger degree of coval
than does Ih hexagonal ice.

The absolute values of the moduliKS(p) and G(p) of
hda amorphous ice appreciably exceed the correspond
values for crystalline ices Ih, II, III, and V extrapolated to
our p–T levels and are 10–30% less than the moduli of ic

FIG. 1. Solid-phase amorphization of ice, the Ih–hda transition. Baric de-
pendences atT5const5 77 K of the compressionV/V0 , the longitudinal
velocity v l and transverse velocityv t of ultrasound waves as the pressure
increased~d! and relieved (3); v l ~p50, T577 K! and v t ~p50,
T577 K! are from the data of Refs. 9–11.
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VI, VII, and VIII. 11,13–15As a rule,29–32the amorphous phas
hasKS(p) values 5–30% less andG(p) values 15–50% less
than the corresponding crystalline prototypes. On the bas
experimental data concerning the structure and spectr
vibrations, Refs. 33 and 34 concluded that the close-or
structures ofhda ice and of crystal modifications VI and VI
are similar. The values of the elastic moduli obtained in o
work also support this conclusion.

3.2. Measurements with p 5const 5 0.05 GPa

The sequence of phase transformations of
hda– lda– Ic was studied under conditions of warming
fixed pressure p50.05 GPa. The warming rate wa
'0.8 K/min in the temperature interval 77 K–110 K and 0
K/min in the interval 110–200 K. The warming character
tics and the use of the same type of high-pressure cham
show that the experimental conditions of Mishimaet al.1–4

virtually coincide with ours.
The temperature dependences of the ultrasound ve

ties v l and v t ~Figs. 3 and 4! during warming of ice, first
reported in this paper, showed features associated with p
transitions of ice in the temperature interval 77–180

FIG. 2. Solid-phase amorphization of ice, the Ih–hda transition. Baric de-
pendence atT5const5 77 K of the adiabatic bulk modulusKS , the shear
modulusG, and the Poisson ratios as the pressure is increased~d! and
relieved (3).
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Three experiments each were carried out on the determ
tion of v l(T) andv t(T). Note that the ultrasound method o
studying transitions between disordered states and du
crystallization of an amorphous phase is highly sensiti
Anomalies associated with these transitions appeared in
form of extrema of thev l(T) andv t(T) dependences. As w
assume from Refs. 1–4, it is possible to discriminate sect
corresponding to different stages of phase transformat
from the positions of these anomalies: the section of

FIG. 3. Phase transition of high-density amorphous ice into low-den
amorphous ice (hda– lda). Temperature dependences forp5const
5 0.05 GPa of the compressionV/V0 ~1!, the velocity v t of transverse
ultrasound waves~2!, and the shear modulusG ~3!.

FIG. 4. Phase transition of high-density amorphous ice into low-den
amorphous ice (hda– lda). Temperature dependences forp5const
5 0.05 GPa of the velocityv l of longitudinal ultrasound waves, the adia
batic bulk modulusKS , and the Poisson ratios.
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the region of its transition to amorphous low-density icelda
~130–140 K!, a narrow section of the metastable existence
lda ice ~140–148 K!, and the crystallization oflda ice into
Ic ice ~the cubic modification! at T'148– 157 K.

There is significant interest in the phenomenon of a tr
sition from one amorphous state (hda) to another amor-
phous state (lda), which differ from each other in density b
approximately 20%. The intense increase in volum
V(T)/V0 on the 130–140 K section and the minima of t
v l(T) and v t(T) temperature dependences atT5130 K are
logically associated with thehda– lda transition. The un-
usually strong decrease of thev l(T) and v t(T) values pre-
ceding this and the character of theV(T)/V0 variation at
T5110– 130 K indicate softening of the amorphous n
work of the ice before the transition from one amorpho
state to the other amorphous state, and this was also obse
for the first time. The strong dropoffs in theKS(T) andG(T)
variation at the threshold of thehda– lda transition, which
begins afterT5100 K, and the acceleration of the growth
the derivatives]v t(T)/]T, ]KS(T)/]T, and ]G(T)/]T as
the temperatureT5130 K is approached are also anomalou

Note that the strong softening of the moduli in thehda
phase during heating from 100 K to 130 K@25% for G(T)
and 11% forKS(T)# cannot be explained by the usual tem
perature dependence because of thermal broadening,
the characteristic variations ofG(T) and KS(T) with tem-
perature for different crystalline modifications of ice equ
about 0.1–0.2% per degree. The strong falloffs of the mod
are thus also apparently associated with anomalous softe
of the amorphous network before thehda– lda transforma-
tion.

It is natural to associate the maxima on thev l(T) and
v t(T) behavior atT5140 K and the completion of the bul
effects by that time with the completion of thehda– lda
transition, while the experimental dependences of the ela
characteristics atT5140– 148 K are assumed to be chara
teristic of the lda phase of ice~the temperature interva
agrees with Mishima’s data2–4!. Note that the moduliKS(T)
andG(T) are 5–10% lower in magnitude for the amorpho
phase of icelda than the corresponding values for icesc
and Ih ~Figs. 3 and 4!. This is additional evidence that th
close-order structure of amorphous icelda is apparently
based on the Ic or Ih structure of ice.

As established in Ref. 2, the density of amorphous
lda, ice of the cubic modification Ic, and hexagonal ice Ih
are very close to each other in thep–T region studied here
and therefore theV(T)/V0 dependence has no singularitie
for T.145 K. However, there are extrema on the expe
mentalv l(T) andv t(T) curves atT5148 K andT5157 K,
which evidently reflect anomalies observed in the substa
during thelda– Ic phase transition (T5148– 157 K). As al-
ready noted, the transition from the amorphous phase to
crystalline phase is accompanied by appreciable increase
the adiabatic bulk modulus ('11%) and shear modulu
('3%); this is associated with an increase of the order
and a strengthening of the bonds in the lattice. In this ca
the Poisson ratios(T) changes insignificantly~it increases
by 2–3%!; consequently, there is no appreciable change

y

y
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the degree of covalency of the structure, as should be ob-
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served when an amorphous phase crystallizes into the c
talline prototype with similar close order.

4. CONCLUSION

The baric dependence of the elastic characteristics o
has thus been determined for the first time up to pressure
1.7 GPa at a temperature of 77 K, as well as the beha
associated with the phase transition of hexagonal ice Ih into
amorphous high-density icehda. The elastic instability of
the lattice before such a phase transition has been experi
tally confirmed. Elastic instability has also been observed
the first time during the transition from one amorphous st
into another amorphous state that took place whenhda ice
was warmed fromT577 K at p50.05 GPa. The use of a
ultrasound technique made it possible to establish the c
plete sequence ofhda– lda– Ic phase transformations du
ing this warming, which it is hard to do when bulk measu
ments are used.

This paper has thus used ice as a model object in orde
study the behavior of the elastic characteristics before
crystal–amorphous-phase and amorphous-state–amorp
state transformations, as well as during these transfor
tions. The elastic-instability model was confirmed as
cause of solid-phase amorphization. For the transforma
between the two amorphous phases, softening of the el
characteristics in the region preceding the transforma
was also observed for the first time. This experimental f
should evidently be taken into account when developing t
oretical models of the polymorphism of the amorphous st
It was concluded in Refs. 35–37 that spinodals are pre
for the lda–hda transition, close to which the shapes of t
hda and lda ices lose thermodynamic and apparently m
chanical stability. The experimental data of this paper in
rectly confirm the presence of such spinodals.

Moreover, much information has been obtained in t
work on the elastic properties of the phases of ice in a w
p–T region. Ice with thesep andT parameters is apparentl
present in the ice satellites of Jupiter and Saturn, such
Ganymede, Callisto, Titan, etc. Information on the elas
properties of the various modifications of ice is of extrem
great interest, since the velocities of elastic waves inside
planets of the solar system and their satellites, along with
mass and size of the heavenly body, are often almost
only available information on the physicomechanical prop
ties.

It will be interesting in the future to investigate the ela
tic characteristics during thelda–hda transition asp andT
are varied and also to study the phase transformations u
single crystals of ice.

This work was carried out with the financial support
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Influence of a nonmagnetic impurity on the properties of the quasi-one-dimensional

antiferromagnet CsNiCl 3

S. S. Sosin, I. A. Zaliznyak, L. A. Prozorova, Yu. M. Tsipenyuk, and S. V. Petrov

P. L. Kapitza Institute of Physics Problems, Russian Academy of Sciences, 117334 Moscow, Russia
~Submitted 5 November 1996!
Zh. Éksp. Teor. Fiz.112, 209–220~July 1997!

Various magnetic properties of the diluted quasi-one-dimensional antiferromagnet CsNi12xMgxCl3
are investigated experimentally for several impurity concentrations. The antiferromagnetic
resonance spectrum and the phase diagrams are found to depend significantly on the amount of
added Mg. The field and temperature dependences of the static magnetization is measured
for crystals with two different contentsx. A substantial increase in the magnetization is observed
at low temperature, where the additional susceptibility is approximately proportional to the
concentration. The physical mechanisms underlying the observed strong influence of magnetic
defects formed at breaks in the spin chains in a quasi-one-dimensional antiferromagnet on
its magnetic properties in the ordered state and forT.TN are discussed. ©1997 American
Institute of Physics.@S1063-7761~97!01807-6#
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Quasi-one-dimensional systems with antiferromagn
exchange have been a topic of considerable interest in
last decade. The hypothesis advanced by Haldane rega
the existence of a gap in the spectrum of magnetic exc
tions of one-dimensional chains with integral spins1 has
stimulated a series of experimental studies to test the hyp
esis, along with subsequent theoretical investigatio
Among the latter is an exactly solvable model proposed
Affleck et al. for such a chain with additional biquadrat
exchange (J/3)( i(Si•Si 11)2 ~J is the Heisenberg exchang
constant!.2 The ‘‘valence-bond solid’’~VBS! ground state of
the system is constructed as follows. The wave function
each spinS51 is represented by the symmetrized product
the wave functions of two spinsS51/2. So-called valence
bonds are then introduced between neighboring spinsS51,
i.e., the wave function of the system is antisymmetrized
the pairs of indices associated with the spinsS51/2 at adja-
cent nodes. This model has a singlet ground state wit
short correlation length 1/ln 3 and a gap spectrum of exc
tions, i.e., it is an example of a Haldane system. Howev
despite the simplicity of the formal construction of the VB
state, its physical interpretation involving the segregation
the initial electron spinsS51/2 at each node is not a trivia
matter, because the energy binding them intoS51 within
one electron orbital is incomparably higher than the
change interaction energy between neighboring ions.

All the same, the simplicity of the approach has mad
a very attractive object for experimental testing. In particu
it has been noted that the fourfold degeneracy of the gro
state of a finite chain of spinsS51 in this model can actually
be represented by ‘‘broken valence bonds’’ at its ends.1! EPR
studies4,5 have revealed the presence of split paramagn
lines in the Haldane antiferromagnet NENP lightly dop
(;0.5%) with various impurities~preferably replacing Ni in
chains withS51), consistent with the presence ofS51/2
degrees of freedom at the ends. However, numerous inv
gations of the magnetization in diluted NENP and oth
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TMNIN ! ~Ref. 6!, having confirmed the occurrence of
paramagnetic contribution that increases with the impu
concentration, have shown that the absolute value of
contribution is usually substantially smaller than the va
calculated for the model of free spinsS51/2 at the ends of
each chain. An investigation of the magnetic contribution
the heat capacity7 of the Zn-doped inorganic Haldane ant
ferromagnet Y2BaNiO5 definitely refutes the model of free
spinsS51/2 in favor of equally populated finite chains o
triplet and singlet states.

The occurrence of exchange between chains in
quasi-one-dimensional compounds withS51 can cause
them to become ordered at a finite temperature. The brea
of chains by impurities in such an ordered system indu
magnetic defects that are not free, but are weakly bound w
other spins~which form Néel order on the average!. It is
natural to expect the magnetic moment associated with fi
chains to be a potentially significant factor governing t
process and properties of magnetic ordering. If the isola
chains of triplet and singlet states are assumed to be equ
populated with breaks, the quantum caseS51 becomes
analogous to the classical spin case treated in Ref. 8 on
basis of the theory of spin waves. In particular, ‘‘quasi-on
dimensional enhancement’’ of the influence of impurity co
centration should be observed, producing large variation
the observed quantities far from the classical percolat
limit.

Here we report an experimental study of the diamagn
cally diluted compound CsNiCl3, which at temperatures
above the three-dimensional antiferromagnetic ordering t
perature exhibits properties typical of a Haldane gap sys
with a singlet ground state. This case affords the possib
of investigating magnetic defects formed by finite cha
with S51 both in the free state and in a state associated w
antiferromagnetic ordering of the system.

114$10.00 © 1997 American Institute of Physics
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FIG. 1. Resonance absorption lines
frequencies of 41 GHz~a! and 57 GHz
~b!, T51.3 K. Reading from the top
down:x50.0, 0.01, 0.018, 0.03, 0.044
0.075.
2. SAMPLES AND MEASUREMENT PROCEDURE
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One of the most important parts of the present study w
the preparation of homogeneously diluted CsNi12xMgxCl3
single crystals and the monitoring of their impurity conte
The samples were prepared by the following procedure:
initial CsCl, NiCl2, and CsMgCl3•6H2O powders were
mixed in the prescribed stoichiometric ratio and placed i
quartz ampoule. To dehydrate the carnallite for subsequ
preparation, hydrogen chloride was passed through the
poule for one hour as the mixture was gradually heated to
melting point~800 °C!. The ampoule was then evacuated a
temperature of 150–200 °C, sealed off, and moved throug
760 °C furnace at the rate of 1 mm/h. The resulting crys
were annealed for 7–10 days at a temperature of appr
mately 400 °C. The samples were transparent, dark re
color, with dimensions of;1 cm3, and were easily drilled
along the binary planes, facilitating their visual orientatio
Spot radiographic examinations did not reveal, within t
experimental error limits (;0.5%), any changes in the uni
cell parameters of the prepared crystals from the p
CsNiCl3. It can therefore be assumed that Mg21 impurity
ions replace Ni21 ions in the lattice, and the closeness of t
lattice parameters of CsNiCl3 and CsMgCl3 (a57.17 Å,
c55.94 Å anda57.27 Å, c56.19 Å, respectively9!, to-
gether with the low concentration and uniform distribution
the impurity throughout the crystal precluded the possibi
of detecting any variation of the lattice by this technique.

The magnesium concentration of the measured sin
crystals was tested byg-activation analysis. The investigate
crystals together with magnesium foil~as the standard! were
irradiated on a microtron by 26-MeV electron bremsstra
lung for 10 min. The photonuclear (g,p) reaction at the
24Mg nuclei produces a radioactive24Na isotope, whose
emission spectrum contains a readily measurableg-line with
energyEg52753 keV ~half-life T1/2515 h!. This emission
was recorded by a high-resolution germanium semicondu
detector 15–20 h after irradiation~to ensure the decay of a
other short-lived, background-forming nuclides!. The mag-
nesium content was determined according to the intensit
the recorded emission from the standard (I st) and the sample
(I samp) with allowance for their respective massesmMg

st and
mMg . The relative scatter of the concentrations determin
from the results of several measurements is;10%. The
mass contentrMg was calculated from the equations
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whereM is the mass of the crystal, and the required atom
contentx was easily obtained from the results. The impur
concentration, reliably determined from the results of the
measurements, was approximately half the initial stoich
metric value in every case, most likely on account of t
specific characteristics of the fusibility diagram of the co
ponents.

The procedure used for the resonance measurements
simple and has been described many times. We used a s
open-ended, direct-amplification spectrometers with vari
types of absorbing cells designed for frequencies from
GHz to 80 GHz. The magnetic field was generated by
superconducting solenoid with scanning up to 65 kOe. T
measurements at temperatures above 4.2 K were perfor
on instruments with a vacuum jacket with a heater an
semiconductor thermometer mounted in its interior. The lo
est temperature obtained by helium vapor pumping was
K. The experimental errors for the various parameters we
temperature60.05 K; resonance field60.1 kOe; frequency
60.1 GHz.

The static magnetization was measured on a stand
Quantum Design SQUID magnetometer, which is capable
operating in fields up to 55 kOe in the temperature ran
1.8–300 K and has negligible relative error at the amplitud
of our measured signals. Samples with masses of several
of milligrams were drilled out of the large single crystals a
were bonded to a nonmagnetic quartz glass holder by cya
lite. In all the measurements the samples were oriented v
ally within ;1° error limits.

3. EXPERIMENTAL RESULTS

3.1. Antiferromagnetic Resonance Spectrum and Phase
Diagram

The main part of the work consisted in the investigati
of the antiferromagnetic resonance spectrum of ei
CsNiCl3 crystals with various Mg contents~from 0.5 at.% to
7.5 at.%! at the minimum temperature. All the absorptio
lines corresponding to different branches of the spectrum
found to be significantly shifted, even at the lowest impur
concentration. The situation thereafter continues to cha
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racer
considerably until the resonance fields atx57.5% differ by a
factor of two or three from their initial levels.

Figures 1a and 1b show experimental records of the
nal transmitted through the resonator containing differ
samples at two frequencies. The distinct resonance lines
easily traced, and their shifts can be estimated as the con
trationx is varied. Also obvious is an appreciable broaden
of the lines, which for the most part have a regular Loren
ian profile, owing to the nature of the homogeneous vib
tions in the spatially inhomogeneous system. Figure 2 sh
temperature curves of the width~full width at half maxi-
mum! of the absorption line corresponding to thev1 mode
for T,TN ~see Fig. 3! in crystals with various impurity con
tents. The measurement frequencies were chosen so tha
derivative]v/]H would exhibit the weakest possible tem
perature dependence in fieldsH5H res ~i.e., H res is far from
Hc). At the minimum temperatureT51.3 K DH depends
linearly on the impurity concentration, the amount of its i
crease being much smaller than the variation of the co
sponding resonance field. Consequently, an increase inDH
does not imply the excitation of spatially inhomogeneo
modes, but is more likely associated with an increase in
damping of long-wavelength vibrations due to microsco
inhomogeneity of the magnetic system.

We have used the measurement results to plot the a
ferromagnetic resonance spectra over the entire acces

FIG. 2. Temperature dependence of the width of the electron spin reson
lines ~for the T,TN branch of the antiferromagnetic resonancev1 at
H.Hc) for various impurity concentrations.

FIG. 3. Antiferromagnet resonance spectrum in CsNi12xMgxCl3. Solid
curves! x50, plotted according to equations in Ref. 10;h) x50.01; 3)
0.018;,) 0.044;d) 0.075.
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frequency range. Figure 3 shows several such spectra, w
provide an example for tracing all the characteristic var
tions attending dilution. The principal effects are, first, a m
jor reduction in the relativistic gapv1(0) ~from 55 GHz in
the pure crystal to 30 GHz atx.0.075) and, second, th
shift of the spin-flop fieldHc ~from 19.5 kOe to 10 kOe,
respectively!. Moreover, beginning with a concentratio
;3%, the antiferromagnetic resonance spectra acquir
field dependence, which cannot be described by the cust
ary equations for a triangular antiferromagnet with easy-a
anisotropy.10 In particular, the abrupt frequency jump of th
v1(H) branch, corresponding to the spin-flop field forHiC6

~see the solid curve at the top of Fig. 3!, spreads out over the
field axis by as much as;2 –3 kOe, suggesting that th
first-order phase transition has vanished. All these effects
discussed in detail in the next section.

We concluded the antiferromagnetic resonance exp
ments by studying the temperature dependence of the r
nance peak near the points of transition of the magnetic
tem to the three-dimensionally ordered state. Th
measurements were performed with a view toward disclos
possible anomalies of the diluted magnetic system in
critical region and investigating the dependence of the N´el
temperature on the impurity concentration. A typical ser
of resonance absorption plots for a crystal with 4.4% imp
rity as the temperature passes throughTN is shown in Fig. 4.

The shift of the resonance peak to the left as the te
perature drops in the disordered state implies an increas
the effectiveg factor as three-dimensional correlations gro
stronger. After passing throughTN , the resonance become
antiferromagnetic and, if the resonance field at the given
quency is greater thanHc , begins to shift to the right. The
transition point can be determined fairly accurately by va
ing the temperature in 0.1 K intervals~the corresponding
plots of the resonance field are shown in Fig. 5!. Unfortu-
nately, this is the only region of the phase diagramH(T)
(HiC6, H.Hc) that can be reliably investigated by th
technique. In all other cases theH res(T) curves do not exhibit
abrupt changes at the pointsTN , and the transitions have
been determined from prominent features of the magnet
tion curves~see the next section!.

ceFIG. 4. Variation of the resonance line at the frequencyv545 GHz in a
sample containing 4.4% impurity as the temperature is lowered from 10
2.0 K ~the sharp secondary resonances in a 16-kOe field are DPPH t
marks.!
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3.2. Measurement of the static magnetization

To clarify the nature of this phenomena, we have p
formed a series of measurements of the static magnetiza
on the SQUID magnetometer in samples with 3.3%~No. 1!
and 7% ~No. 2! impurity contents. We have plotted fiel
curves of the magnetizationM (H) in two principal orienta-
tions of the samples at the lowest possible temperature,
K, and we have investigated their temperature behavio
low fields.

It is evident from Fig. 6 that the crystals containing im
purities acquire a large additional magnetization contri
tion, which is manifested in two characteristic properti
First, it is strongly nonlinear and reaches saturation in fie
of 25–30 kOe; second, it has a certain anisotropy, so tha
magnetic moment is several percent higher for easy-
alignment of the field. It must be borne in mind that nonli
earity and anisotropy of opposite signs are observed in
undiluted system as a result of the zeroth vibrational mod11

The temperature dependence of the magnetization
H54 kOe for the same samples in two field orientatio
(HiC6 andH'C6) is shown in Fig. 7. The magnetizing fiel
must be chosen, on the one hand, so as to keep the sam
the single-domain state2! and, on the other, to avoid entr
into a range where the process of paramagnetic satura
begins to assert itself. We can assume that the linear rela
Ma5xabHb is not seriously violated anywhere down to th

FIG. 5. Graphs ofH res(T) for various impurity concentrations. Readin
from the top down:x50.0, 0.018, 0.03, 0.044, 0.075, 0.15. The tick mar
indicate phase transition points.

FIG. 6. Graphs ofM (H) in the pure crystal~from Ref. 11! and in samples
No. 1 and No.2 for HiC6 andH'C6.
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lowest temperature for our choice of fieldH54 kOe, so that
the dependenceM (T) is consistent with the more customa
x(T). It is evident from the figure that in both orientation
the magnetization increment observed in the ordered ph
now occurs at a temperature of 25–30 K, i.e., in the range
the onset of one-dimensional correlations in the chains.
the temperature is lowered further, it increases approxima
as 1/T down to the Ne´el point, gradually becoming aniso
tropic in the presence of the easy axis. Upon entering
three-dimensionally ordered state, the susceptibility in
field HiC6 makes a sharp bend and begins to decrease, w
in the fieldH'C6 it passes through a removable singular
and continues to increase. Consequently, atT,TN the sus-
ceptibility tensorxab acquires the typical profile for a non
collinear exchange antiferromagnet, but the quantitiesx' ,
x i , andx' /x i increase far above their initial values~i.e., the
value in the pure system!.3!

We have also performed a series of measurements o
temperature and field dependences of the magnetizatio
the vicinity of critical points for the purpose of plotting mor
complete phase diagrams of the investigated samples
comparing them with antiferromagnetic resonance data.
evident from Fig. 8 that the plotted phase-transition lin
determined from the kinks of the magnetization curves are
good agreement with the results of our antiferromagne
resonance measurements. They also show that the interm
ate temperature rangeTN2

,T,TN1
broadens considerabl

FIG. 7. Temperature dependence ofM /H in a field of 4 kOe for the pure
crystal~from Ref. 12! and in samples No.1 and No.2 for HiC6 andH'C6.

FIG. 8. Phase diagrams of the investigated samples forHiC6. % ) Sample
No. 1; h) No. 2; n) pure sample~from Ref. 13!; the dark symbols repre-
sent data of our antiferromagnetic resonance measurements.
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as the concentration is raised~see Ref. 13!. It has a width of
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0.4 K in the pure sample and increases to 0.6 K for a
impurity and to 0.8 K for 7%, indicating an increase in t
influence of anisotropy in the evolution of three-dimensio
ordering. The results are qualitatively consistent with pre
ously published14 measurements of the phase diagram o
CsNi0.98Mg0.02Cl3 crystal, but the effects observed in the la
ter was far less pronounced. This discrepancy can be at
uted to the error in determining the added-impurity conc
tration in the crystal. In our experiments the impurity conte
of the investigated crystals has been accurately measure
g-activation analysis.

4. DISCUSSION AND MAIN CONCLUSIONS

Several conclusions regarding the influence of dilut
on quasi-one-dimensional antiferromagnets can be dr
from the experimental data. The principal consideration h
is the magnetic susceptibility of weakly interacting sp
chains fragmented by nonmagnetic inclusions.

As discussed in the Introduction, without thre
dimensional ordering~but with one-dimensional correlations
i.e., for TN!T!J) the behavior of the ‘‘breaks’’ of the
chains can be described either as additionalS51/2 degrees
of freedom at the ends4–6 or as paramagnetism of half th
segments existing in the triplet state~like the case of classica
spins, where it corresponds to paramagnetism of cluster
odd numbers of antiferromagnetically ordered spins16!. The
temperature dependence of the susceptibility of the ch
must have the formx52xC1/2/T in the first case and
x5xC1/2T in the second case, whereC1/2 and C1 are the
Curie constants for spinsS51/2 andS51, respectively. Un-
fortunately, the required temperature interval is too narrow
CsNiCl3 for the reliable experimental confirmation of eith
approach. All we know is that the second value of the c
stant coefficient of 1/T differs less than the first value from
the experimental, consistent with the results of Ref. 7.

When three-dimensional antiferromagnetic ordering s
in, the additional degrees of freedom acquired by the m
netic system as a result of dilution are no longer independ
and all the effects observed in CsNi12xMgxCl3 must begin to
exhibit collective behavior. The magnetic properties of su
a system have been analyzed previously8 within the frame-
work of the classical approximation of spin-wave theory
T50. In Ref. 8 the calculated static susceptibility of a d
luted antiferromagnet is given by the following expression
the first and second perturbation approximations:

x~x!.x~0!S 11axA J

J8
1bx2

J

J8
D , ~1!

wherex(0) is the susceptibility of the undiluted system,a
andb are numerical coefficients that depend on the confi
ration of the spins and the number of nearest neighbors,
J8 is the interchain interaction constant. Clearly, the role
the small perturbation parameter is not taken by the sim
impurity concentrationx, but by the quantityxAJ/J8, which
is qualitatively consistent with our results (J/J8;50 for
CsNiCl3).
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There is a fairly simple technique for qualitatively e
plaining the behavior of the magnetic defects at the break
the chains, based on the mean-field model. It follows fr
our experiment that the additional magnetization at satu
tion is exactly equal toM sat5gmBNAx/2, and the additional
susceptibility in weak fields is approximately proportional
x. We can assume that in the ordered phase the parts o
chains between two impurities reside in a certain effect
field He8 , which is induced by interchain exchange intera
tion and does not depend on the concentration~see Fig. 9!. In
this case, when the field is applied along and perpendic
to the easy axis, the total susceptibility of the system atT'0
is given by an equation of the form~taking anisotropy into
account!

x tot5gmBS 1

He6lD
1

x

2

1

He86l8D D , ~2!

where He is the exchange field inside the chain,D is the
anisotropy constant~of the order of 0.3 kOe!, andl andl8
are numerical factors with values;1. The factorx/2 in the
second term implies that half the segments have positive
S50 and contribute nothing to the additional magnetizatio
This equation can also be used to explain the signific
anisotropy of the additional susceptibility. For example, a
cording to our experimental data, the susceptibilityx tot at an
impurity concentrationx50.03 increases approximately 2.5
fold, so thatHe8;0.02He;15 kOe. Consequently, the aniso
ropy constant, which can be disregarded in comparison w
He , is found to be quite substantial in the second term of
~2!. For classical spins, comparing Eqs.~1! and ~2!, we can
obtain the estimateHe8;AJJ8, which is of the same order o
magnitude as the mean field affecting one spin in the orde
state. It follows, therefore, that the additional susceptibil
of diluted CsNiCl3 can be identified with distortion of the
triangular structure in a magnetic field.

The paramagnetic character of theM (H) curves in Fig.
9 can be attributed to the high experimental temperat
(Tmin51.8 K!, which is comparable with the exchange fie
He8 . As a result, the additional magnetization can unde
slow thermal fluctuations, which lower its equilibrium valu
in static measurements and do not affect it in measurem

FIG. 9. Difference in the magnetizations of samples No.1 (h), No. 2 ~%!,
and the pure sample~for H'C6 ~see Fig. 5!. Solid curves! Brillouin function
for S51, T51.8 K; dashed lines! mean-field approximation atT50.
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at high resonance frequencies. This phenomenon could
analogous to the superparamagnetism of small particles~see,
e.g., Ref. 15!.4!

The substantial lowering of the Ne´el temperature upon
dilution of the initial system can also be attributed to
quasi-one-dimensionality. Indeed, when infinite on
dimensional chains are fragmented at lengths of 1/x in the
quasiclassical approximation, their excited levels beco
discrete and separate from the main gapD;2xJ ~Ref. 16!.
Since this gap will necessarily be suppressed by th
dimensional correlations when exchange ordering sets in
Néel temperatureTN;2AJJ8 decreases by;D, becoming
equal to

TN;TN0
2D;TN0S 122x

J

J8D . ~3!

This approach yields fair agreement with our own e
perimental results up to impurity concentrations;3%, at
which the observed shift ofTN is approximately 1.2 K, and
we have the estimateD.2•0.03•17.1 K.

The extraordinary resonance characteristics of dilu
CsNiCl3 can also be satisfactorily explained on the basis
the notion of the collective properties of the magnetic d
grees of freedom in the ordered phase. All the principal
rameters of the antiferromagnetic resonance spectrum
the phase diagram of crystals with various impurity conc
trations are summarized in Fig. 10. Also shown as a vis
aid in this figure are the values of the parallel susceptibi
in coordinates 1/Ax i and the corresponding theoretical cur
from Ref. 8.

Assuming that the entire low-temperature magnetizat
of the antiferromagnet is associated with the ordered ph
and is linear in the field, we readily obtain expressions
the critical spin-flop field and the upper relativistic gap of t
antiferromagnetic resonance spectrum:17

Hc
25

D

x i2x'

, S v1~0!

g D 2

5
D

x'

, ~4!

in which it is required to substitute the actual values of
susceptibility. Consequently, after the severalfold increas
x i andx' relative to the initial system,Hc andv1(0) should

FIG. 10. Parameters of diluted CsNiCl3 in arbitrary units versus impurity
concentration.% ) Hc ; ,) v1(0); h) TN ; 3) 1/Ax i; the experimental
error limits are contained within the size of the point symbols; the so
curve is plotted according to Eq.~1!.
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The existence of nonlinear magnetization atT Þ 0 causes
the spin-flop interval to broaden by as much as 2–3 kO
beginning with a concentration;3% ~see Fig. 3!. This ef-
fect is attributable to the fact that the potential energy of
exchange system acquires a complex field depende
which does not pass through a minimum upon flopover
the spin plane at the pointH5Hc . As a result, it is more
likely that spin-flop does not take place at a point, but with
a certain field interval, i.e., the first-order phase transition
replaced by two second-order transitions.

However, even when the variation of the total suscep
bility of the system is taken into account, the observed fi
dependence of the antiferromagnetic resonance spectrum
be described only for the lowest impurity concentration
This fact is mainly attributable to the increase in the effect
measurement temperatureTmin /TN , so the experimental con
ditions no longer satisfy the necessary conditionT!TN . A
second cause is more fundamental and lies in the fact tha
smallness of relativistic interactions relative to exchange
teraction is a necessary condition in describing the lo
wavelength spin dynamics of magnetic structures within
approach of Ref. 17. In pure CsNiCl3 the degree of distortion
of the exchange structure depends mainly on the ratioD/J8,
and only in the vicinity ofH;He;800 kOe does the influ-
ence of the field begin to be felt. Upon dilution, as mention
more than once, the magnetic structure acquires a new s
flop degree of freedom, associated with the weak excha
field, where fieldsH;He8;15 kOe are no longer small fo
this degree of freedom. Consequently, the range of appl
bility of the given approach is narrowed considerably, be
restricted to low fields. A rigorous microscopic calculatio
based on the spin Hamiltonian with easy-axis anisotropy a
appears to be nearly impossible, so that the question of
scribing the field dependences of the antiferromagnetic re
nance spectrum is still open.

In summary, the following conception of the properti
of a quasi-one-dimensional antiferromagnetic system w
impurities is formed on the basis of the reported experim
tal data. When infinite chains are fragmented by nonm
netic inclusions, new degrees of freedom are formed in th
half the segments acquiring an additional susceptibility to
magnetic field. In the temperature intervalTN!T!J this
susceptibility is paramagnetic and depends on the temp
ture according to the Curie law. When infinite thre
dimensional correlations set in (T,TN), all the chain seg-
ments are coupled together, acquiring the properties o
single integral magnetic system. As a result of quasi-o
dimensionality, however, the spin-flop degrees of freedom
the chain segments in a magnetic field continue to exe
major influence on the collective static and resonance pr
erties. As before, the primary consequence of this influe
is a significant increase in the static susceptibility, but now
is all associated with the ordered exchange system~i.e., is
antiferromagnetic!. This effect readily accounts for the pro
nounced decrease in the critical spin-flop field and the a
ferromagnetic resonance gap. In the quasiclassical appr
the quasi-one-dimensionality effect is manifested quant
tively by the emergence of the quantityxAJ/J8 rather than

119Sosin et al.
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This operation causes the symbolsx' and x i to change places~see Ref.
10!.

his

s.
parameter of the initial system@see Eqs.~1! and ~4!#. The
same is true of the variation of the Ne´el temperature~3!. We
note that the foregoing analysis does not require any m
fication of the constants of the microscopic spin Ham
tonian; such a modification does not have adequate phy
justification in the case of weak dilution.

In closing, the authors are grateful to A. F. Andreev,
S. Borovik-Romanov, and A. I. Smirnov for valuable discu
sions. This work has received partial support from the R
sian Fund for Fundamental Research~Project No. 95-02-
04555-a! and the International Association for the Promoti
of Cooperation with Scientists from the Independent Sta
of the Former Soviet Union~INTAS Grant No. 94-968!. S.
Sosin would also like to thank the Forschungszentrum Ju¨lich
GmbH for financial support as part of the Landau Scho
ship Program.

1!The fourfold degeneracy is attributable to the fact that the ground sta
a chain comprising an even number of spinsS51 is a singlet, and for an
odd number it is a triplet~see the theorem in Ref. 3!. In the thermodynamic
limit these states coincide, and the exponentially decaying~with distance!
difference in their energiesE1(N)2E0(N);(21)Lexp(2L/j) is less than
0.07 J for the chains of 14 or more spins discussed in this article.

2!In pure CsNiCl3 the process of transition to a single-domain state ass
ated with the rotation of all spins forming atH50 different magnetic
domains in the plane perpendicular toH is accompanied by nonlinea
growth of the magnetization, but terminates in a field of 6 kOe.

3!In a planar, noncollinear antiferromagnet the direction of the field is m
conveniently associated, not with the antiferromagnetism vectors situ
in the plane of the spins, but with the vector perpendicular to this pla
120 JETP 85 (1), July 1997
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4!The authors are grateful to A. N. Bazhan for calling their attention to t
analogy.
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Long-lived excited impurity states in diamond-like semiconductors

re
Ya. E. Pokrovski , O. I. Smirnova, and N. A. Khvalkovski 

Institute of Radioengineering and Electronics, Russian Academy of Sciences, 103907 Moscow, Russia
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The lifetime of charge carriers in the lowest excited states of some impurities of groups III and
V in diamond, silicon, and germanium can be several~four to six! orders of magnitude
longer that the lifetime of free carriers. Accumulation of carriers in these long-lived states may
give rise to several new effects, such as hopping photoconductivity via long-lived excited
states of impurities in dc and microwave electric fields, slow relaxation of induced absorption, and
infrared absorption at energies lower than the impurity ionization energy. ©1997
American Institute of Physics.@S1063-7761~97!01907-0#
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The fastest process which controls the rate of recom
nation of nonequilibrium charge carriers due to extrinsic
citation in doped and compensated diamond-like semic
ductors is a capture at attractive impurity centers. Extens
investigation of capture at the centers in semiconductors
been carried out for more than thirty years. The physi
nature of giant capture cross sections, which are severa
ders of magnitude larger than geometrical cross section
ground states of such impurities, was explained by Lax.1 The
theory of cascade capture at attractive impurity centers
veloped by now2 is based on Lax’s concept and is in agre
ment with experimental data. The cascade model is base
the assumption that a carrier is captured not in the gro
state of an impurity center, but in a highly excited state a
then goes down the ‘‘ladder’’ of close energy levels of t
impurity center through emission and absorption of acou
phonons.

The model of cascade capture, however, does not
into account the discrete nature of the impurity spectrum
assumes existence of close energy levels with differen
between them smaller than the energy of a character
phonon participating in these transitions. The bottleneck
this process is the capture of a free carrier in a highly exc
state, and the relaxation rate of excited states is assume
be relatively high. However, as a carrier goes down the l
der of excited levels, the energy difference between the
els increases. Therefore nonradiative transitions between
states of the impurity center can be slow, and the lifetimet*
of carriers in such excited states may be considerably lon
than the lifetimet of free carriers. Such long-lived excite
states of impurities should have considerable influence
relaxation of nonequilibrium charge carriers.

The long lifetime of excited impurity states in diamon
like semiconductors is due to their complex band structu
The lowest excited states of group V donors are 1S(G5 ,G3),
whose configurations are determined by the valley–o
splitting. In the case of acceptors in diamond and silicon,
lowest excited states are 1S(G7

1) due to the spin–orbit
coupling.3 Owing to the equal parity, radiative dipole trans
tions from these excited states to the ground state are for
den. The calculation of rates of the transitions with parti
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experimental studies of these states are of fundamental
portance.

This paper reports about a study of phenomena relate
accumulation of nonequilibrium charge carriers in long-liv
excited states of some impurities of groups III and V in d
mond, silicon, and germanium.

2. DIAMOND

Investigation of photoelectric properties of synthetic d
monds doped with boron attracts attention because the s
bility of boron in diamond is high, the boron impurity create
a relatively deep level with the ionization energ
Ei.370 meV, and, given the strong interaction betwe
holes and optical phonons, the response time of the impu
photoconductivity to an optical pulse can be shorter tha
nanosecond.4

We have studied cubic single crystals of semiconduct
diamond with volumes of about 1025 cm23 synthesized un-
der high pressure and temperature. The samples were d
with boron in the process of synthesis.5 In the crystals se-
lected for experiments the boron concentrationN0 was
1016– 1019 cm23, and the degree of compensation was 1
90%. Current contacts were applied to sides of the cryst
The electric conductivity of the samples in the temperat
range of 90–370 K was controlled by two mechanisms:
higher temperatures by free holes in the valence band an
lower temperatures by hops between ground states of
purities. Smirnova and Gontar’5 demonstrated that the hop
ping conductivity is an exponential function of the avera
distance between acceptors, and the Bohr radius of
ground state is;10 Å.

We have measured the frequency, spectral, and temp
ture characteristics of impurity photoconductivity signal
dc electric fieldU(DC), which is proportional to the chang
in the conductivity. At high temperatures,T.200 K, the bo-
ron impurities are only partially ionized, and the conductiv
is an exponential function of temperature with an activat
energyEi5370 meV. In this temperature range and at lo
modulation frequencies of exciting light,f ,104 Hz, U(DC)
was controlled by the bolometric effect, whose time const
was 1022– 1023 s. By increasing the modulation frequenc

121$10.00 © 1997 American Institute of Physics
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we could get rid of the bolometric effect and study only t
photoconductivity.6 By comparing the quasistationary phot
conductivity with the bolometric signal, we could determi
mt, where m is mobility. This allowed us to estimate th
lifetime t of free holes in diamond, which is small in th
crystals studied (t,10210 s), and its determination by othe
methods is a complicated task. The lifetimet is inversely
proportional to the concentration of compensating impurit
Nc ~Fig. 1!, and the cross section of a capture at ioniz
boron atoms is;10213 cm2 at 300 K, in accordance with
Ref. 2.

In lightly doped diamond samples (N0,1018 cm23) the
impurity photoconductivity is due to free holes7 and is a flat
function of temperature~curves1–3 in Fig. 2!. But it turned
out that in heavily doped (N.1018 cm23) and compensated
crystals the curves ofU(DC) versus temperature and photo
energy have anomalous shapes~curves4–7 in Fig. 2!, radi-

FIG. 1. Lifetimet of holes versus concentrationNc of compensating impu-
rity in diamond doped with boron at 300 K.
s
d

sistationary photoconductivity due to free holes was o
served only at temperatures near the room tempera
~section III of curves4–7 in Fig. 2!. The photoresponse
U(DC) increased exponentially as the temperature decre
~section II in Fig. 2!, and in heavily doped compensate
semiconductors the signal increased by three orders of m
nitude. The activation energyEi determined from the slope
of section II was a periodic function of the exciting photo
energy\v, oscillating between 130 and 170 meV. The sign
U(DC) also exponentially increased with decreasing te
perature when the sample was excited by light with a pho
energy corresponding to excitations within an impurity ce
ter (\v5347 meV). The photoresponse magnitude
heavily doped samples was an oscillating function of
photon energy with a period corresponding to the opti
phonon energy\v0;165 meV.8,9

The time constantst* of the photoresponse were muc
longer than the lifetimes of free holes. AtT590 K and pho-
ton energies corresponding to the activation ene
Ei.130 meV, the time constantt* was 40 ns, and a
Ei.170 meV it was 200 ns~see Fig. 12 below!, whereas the
lifetime of free holes, according to our estimates, was sho
than 1023 ns. The comparison between the curves of
photoresponse and dark conductivity versus tempera
demonstrated that the photoconductivity increased expon
tially with decreasing temperature in the range where
dark conductivity was controlled by hopping.

The increase in the time constant of photoconductiv
and drastic changes in the spectral and temperature ch
teristics of the photoresponse with the increase in the dop
level and compensation result from accumulation of carri
FIG. 2. Photoresponse signalU(DC) in boron-doped diamond versus temperature. Impurity concentrations in the samples are the following (cm23):

Sample 1 2 3 4 5 6 7

N0 2.631017 3.231017 9.631017 2.631018 2.731018 331018 2.831018

Nc 231017 931016 431016 231018 131018 1.231018 4.331017
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light in the valence band or in higher bound states of im
rities relax to lower excited states and increase their pop
tion. The change in population leads to an increase in
hopping conductivity via these deep states. This photoc
ductivity is determined by the concentration of holes in e
cited states and the hopping probability. This probabi
should be an exponential function of the Bohr radius,10 and
for excited states it should be much higher than for
ground state.

The photoconductivity via excited states can be hig
than the photoconductivity due to free carriers only if t
population of excited levels is very high, and greatly exce
the concentration of holes in the valence band. This is p
sible if the lifetimet* in excited states is much longer tha
the lifetimet of free carriers. The model of hopping phot
conductivity, based on the assumption that carriers are a
mulated in long-lived excited impurity states, accounts
anomalous curves of photoconductivity versus tempera
in heavily doped samples.8

Indeed, at low temperatures, when thermal ejection
carriers from deep excited states is small and their popula
is determined by equilibrium between the capture of ho
from the valence band or from higher excited states and
laxation to the ground state, the hopping conductivity
these deep levels is essentially independent of the temp
ture ~sections I of curves4–7 in Fig. 2!. The population of
long-lived excited states drops with temperature owing to
thermal ionization, and the photoresponse exponenti
drops with temperature and it corresponds to the ioniza
energy of long-lived levels populated by photoexcitati
~sections II of curves4–7 in Fig. 2!. A simple calculation
yields the temperatureT* of the onset of the exponentia
drop in the hopping photoconductivity as a function of t
ionization energyEi of an excited level participating in th
hopping conductivity and the ratio between the lifetimes
the valence band and in the excited state:

kT* .
Ei

ln~Nv~t* /Nc!t!
, ~1!

where Nv is the effective density of states in the valen
band, andNc is the concentration of compensating impu
ties. At relatively high temperatures, the hopping conduc
ity is no longer the dominant process, and the photorespo
is determined by the conductivity due to free holes~sections
III in Fig. 2!.

The two activation energies of photoconductivity me
sured in experiments, which vary periodically with phot
energy\v, indicate that the hopping current is due to one
the two excited boron states with ionization energies
;130 meV and;170 meV, and lifetimes of 40 and 200 n
respectively. The period of variation inEi is approximately
\v0 . This leads us to a conclusion that the capture of f
holes in long-lived states occurs with emission of opti
phonons. The spectral dependence of the photorespon
heavily doped and compensated samples can be interp
in terms of population of two excited long-lived states w
different t* . The temperatureT* calculated by Eq.~1! for
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these two levels is in good agreement with experimen
data.8

Carriers in excited states can hop to ionized major
impurities. The hopping probability can be sufficiently hig
only if the concentration of ionized centers, which is equa
the concentrationNc of compensating impurities, is high
The hopping mobilitymh should be an exponential functio
of the distance between ionized majority impurities. Th
function can be derived from experimental data by comp
ing the quasistationary responceU(DC)I in the region of
hopping photoconductivity~sections I in Fig. 2! and the re-
sponseU(DC)III ~sections III in Fig. 2!, which is due to free
holes, in samples with variousNc .

In fact, U(DC)I ; t* mh , andU(DC)III ; m/Ne ~Fig.
1!, hencemh ; U(DC)I /U(DC)IIINc . Figure 3 shows the
curves corresponding to population of long-lived states w
ionization energies of 130 and 170 meV. It is clear thatmh is
an exponential function ofNc

21/3. Characteristic radii of ex-
cited states derived from the curves in Fig. 3 are close to
Å.

The states with ionization energies of 130 and 170 m
are much lower than the states of theP3/2 series,3 which are
well known from studies of absorption and photoconduct
ity spectra of diamond doped with boron. A weak optic
absorption in the range around 200 meV was detected pr
ously only in heavily doped diamond,11 which indicates that
optical transitions between the ground state and these ex
states are forbidden. This is consistent with the long lifeti
of holes in these states. Both these facts indicate that
parities in the ground and excited states are the same, an
excited states are split from the ground state by spin–o
coupling.

3. SILICON

We have studied silicon samples doped with impurit
of groups III and V, such as B, Ga, In, As, P, Sb, and Bi
the concentrationsN051015– 1018 cm23 in the process of
floating zone melting. The ionization energies of these im
rities range from 43 meV in Sb to 157 meV in In.3 The
compensating phosphorus impurity was introduced inp-type

FIG. 3. Hopping mobilitymh ; U(DC)I /U(DC)IIINc via excited impurity
levels in a diamond with~1! Ei.130 and~2! 170 meV versus concentration
Nc of compensating impurity at 90 K.
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samples in concentrationsNc51012– 1014 cm23 using neu-
tron transmutation doping. In other samples, compensa
impurities were introduced during zone crystallization. Co
tacts to samples were fabricated by ion implantation.

As was noted above, hopping photoconductivity w
predominant in heavily doped diamond in the ranges of c
centration and temperature where the conductivity was
due to hops. It should have been expected that similar eff
manifest themselves in silicon atN0 , Nc.1017 cm23. In
fact, the relaxation ofU(DC) excited by a CO2 laser at 4.2 K
in samples with such impurity concentrations was sl
(;1022 s). But it is known that silicon with such high im
purity concentrations is used as a material for cooled bolo
eters whose relaxation times are approximately the same
will be shown below, the relaxation times of excited imp
rities in silicon are of the same order of magnitude, theref
the difference between relaxation times of photoconductiv
and bolometric signal cannot be used in silicon, as in a do
diamond. At lowerN0 the relaxation time ofU(DC) was
1027– 10210 s and was determined by the lifetimet of free
charge carriers.

The situation was completely different when the pho
response was studied in doped silicon in a microwa
~36–40 GHz! electric fieldU(MCW).12

FIG. 4. Microwave photoresponseU(MCW) under pulsed excitation as
function of time at T55 K in silicon doped with ~a! boron
(N052.831016 cm23, Nc51014 cm23! and~b! indium ~N05531016 cm23,
Nc5331013 cm23!.
TABLE I. Time constantt* ~ms! of slow relaxation ofU(MCW) in silicon d
g
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-
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Figure 4 shows curves ofU(MCW) versus time for two
silicon samples doped with In and B under pulsed excitat
by CO and CO2 lasers with a pulse durationDt;50ms. It is
clear from Fig. 4 that the signal consists of two componen
one of them is fast with a time constant shorter than
exciting pulse width 50ms, and the other is slow with a tim
constantt* varying from sample to sample. The existence
the two components is also clearly seen in Fig. 5 from
magnitude–frequency characteristics for silicon samp
doped with various impurities. We have established that
time constantt* of the slow component depends on th
chemical nature of both majority and compensating impu
ties, but is almost constant with concentration f
N0.1016 cm23 and temperatureT,15 K.13 The values of
t* derived from pulsed and/or frequency measurements
presented in Table I. One can see that the slow relaxa
occurs for all studied majority impurities, except Ga and
In silicon doped with these impurities,U(MCW) had only
the fast component due to relaxation of free charge carri

The temperature dependencies of the fastU(DC) and
slow U(MCW) components of the photoconductivity fo
silicon samples doped with Sb under a quasistationary e
tation are shown in Fig. 6. The figure demonstrates that, a
the case of diamond, the curves consist of three character
sections, namely, section III, whereU(DC) andU(MCW)
coincide, section II, whereU(MCW) grows exponentially
with the exponent determined by the activation ene
Ei;30 meV, which is approximately equal to the ionizatio
energy of excited levels 1S(G3 ,G5) of Sb, and section I, on
which U(MCW) is two or three orders of magnitude high

FIG. 5. Photoresponses~1–3! U(MCW) and~4! U(DC) versus modulation
frequencyf of exciting radiation at 5 K in silicon doped with various im-
purities in concentrationsN0 andNc (cm23): ~1! Sb ~2.731016, 1.431015!;
~2! In ~931016, 1013!; ~3, 4! B ~2.831016, 531012!.
oped with various majority (N0) and compensating (Nc) impurities
N0 /Nc B Ga In P As Sb Bi

B - - - 0.5 - - 1.6
Ga - - - ,1025 - - -
In - - - 2 - - -
P 0.7 - - - - - -
As 0.6 - - - - - -
Sb 0.8 4 8 - - - -
Bi ,1025 - - - - - -
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than U(DC). Similar curves were obtained for other imp
rities of groups III and V in silicon.13,14 The temperature
interval I, where the slow component predominates over
conductivity due to free carriers, is determined by both
impurity nature and its concentration, and also by the co
pensating impurity concentration. The difference betwe
the magnitudes of the fast and slow components was
larger, the higher the concentrations of both majority a
compensating impurity. At low temperatures, this differen
could be up to three orders of magnitude. The magnitude
the slow component is saturated with increasing excita
rate, and at high excitation intensity the fast component w
dominant.14

Figure 7 shows the dependencies ofU(MCW) on mag-
netic inductionB for a silicon sample doped with boron a
various excitation ratesG and modulation frequenciesf of
exciting light. One can see that at 5 K, when the fast pho
conductivity component predominates~high G or f !, the
curves correspond to the familiar transverse magnetore
tance effect with a free hole mobility;104 cm2/V•s. But at
lower G and f the photoresponseU(MCW) slowly increases
with B, which cannot be explained in the terms of free-ho
photoconductivity.

FIG. 6. U(DC) ~dashed lines! and U(MCW) ~solid lines! as functions of
temperature under quasistationary excitation of silicon doped with Sb
compensated with B in concentrationsN0 and Nc (cm23): ~1! 2.731016,
1.431015; ~2! 1017, 231016.

FIG. 7. U(MCW) at 5 K versus magnetic field inductionB in silicon doped
with boron~N053.5•1016, Nc51013 cm23! at the excitation modulation fre-
quenciesf ~1, 2! 1.23103 Hz; ~3, 4! 1.83106 Hz and excitation ratesG ~1,
3! G1 ; ~2, 4! G2 (G2 /G1520).
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the slow component inU(MCW) is due to accumulation o
photoinduced carriers in long-lived excited impurity state
The main tendencies in diamond and silicon are similar,
in silicon they manifest themselves in a microwave elec
field at lower concentrations and degrees of compensat
Direct participation of long-lived impurity states is con
firmed by the absence of slow relaxation ofU(MCW) in the
case of Ga and Bi impurities. Fast intracenter relaxation
nonequilibrium carriers at these impurities can be due
emission of optical phonons.3 The energies of excited state
of B, In, P, Sb, and As are beyond the band of opti
phonons, and the carriers can accumulate in long-lived
cited states during the process of relaxation.

The quantitative interpretation of experimental data
based on the model of polarization photoconductivity in m
crowave electric field15 based on the model of equilibrium
hopping conductivity in low-frequency electric field.16 The
polarization conductivity in doped compensated semicond
tors is due to the changes in the dipole moment of pairs
ionized majority and compensating impurity atoms induc
by a varying electric field. It can be several orders of ma
nitude higher than the dc conductivity. Under impurity exc
tation, the hops of carriers between excited and ionized
jority impurities contribute to the polarization conductivity
Since the Bohr radiusa* of the excited state is greater tha
the radiusa of the impurity ground state, the polarizatio
conductivity should be greater, and the problem reduce
calculation of the probability of such hops. In our expe
ments, the electric field frequency was more than six ord
higher than in Ref. 16. At this frequency, only the near
pairs can contribute to the polarization conductivity. Let
consider the situation inp-type semiconductors.

Carriers are accumulated in long-lived excited states a
result of capture at both isolated majority impurities and
poles ~pairs of ions of majority and compensating impu
ties!. Processes of photoionization and capture are rand
therefore the probability of creating a close pair of an exci
impurity state and an isolated ionized majority impurity
low. Excited atoms captured by a dipole are localized n
compensating impurity ions, thus a positively charged pai
formed. In this case, the distance between the excited
ionized majority impurities is also fairly large immediate
after the capture. However, electrostatic attraction betw
isolated negatively charged majority impurities and po
tively charged pairs cause a ‘‘drift’’ of the negative char
towards the positively charged complex. The drift is due
hops of carriers among majority impurities. If the drift tim
is not considerably longer than the lifetime of excited imp
rities, complexes containing an excited and an ionized m
jority impurity and a compensating impurity ion are forme
A calculation15 yields the concentrationN* 12 of such trip-
lets under stationary excitation at temperatures when ther
ionization of excited impurities can be neglected:

N* 125CGt* /~11tM /t* !, ~2!

and under pulsed excitation at a pulse widthDt,tM

N* 125CGDt exp~2t/t* !@12exp~2t/tM !#. ~3!

d
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~a! the fraction of the recombination current captured
dipoles:

C5
a~12 !N~12 !

a~12 !N~12 !1a~2 !N~2 !
, ~4!

whereN(2) andN(12) are concentrations of isolated an
dipole traps, respectively, anda(2) and a(12) are the
corresponding capture coefficients;

~b! hopping conductivitysh in a dc electric field via
ground states of impurities:

tM5«/4psh;exp~br s /a!, ~5!

where r s5(4pN0/3)21/3, b is the ‘‘percolation’’
parameter,10 and« is the dielectric permittivity;

~c! lifetime t* of carriers in the excited state and th
photoexcitation rateG.

The polarization hopping photoconductivity is dete
mined by the equation15

s~MCW!5
N* 12

2r s
2

«

5•10213 S a*

2 D 5 G~13/2!

213/2 . ~6!

Equation~6! indicates that the concentration of triple
N* 12 given by Eqs.~2! and ~3! determiness~MCW! as a
function of the excitation rate, concentrations of the major
and compensating impurities, and temperature.

The model has been tested by taking a large set of
con samples doped with boron and compensated with p
phorus under quasistationary photoexcitation.14 We have de-
termined that the slow component ofU(MCW) grows
linearly with the excitation rateG and saturates when th
concentration of excited atoms is higher than that of co
pensating impurities (Gt* .Nc). This means that the con
centration of triplets, which controls the hopping photoco
ductivity, is maximal at such excitation level, since
ionized and an excited majority impurity are localized ne
any compensating impurity atom, and a further increase
the excitation level should not lead to an increase
s~MCW!.

The dependence ofN* 12 on the compensating impurit
concentration is determined by the fractionC of nonequilib-
rium charge carriers captured by dipoles given by Eq.~4!.
Moreover,C(Nc) can be derived from the temperature d
pendencies ofU(DC), which is due to free holes, measur
in the samples with variousNc .15 The measured values o
U(MCW) as a function ofC andNc are plotted in Fig. 8.

The rate of creation of active triple impurity complex
is determined bysh and is an exponential function of th
majority impurity concentrationN0 . In a set of samples with
Nc51014 cm23 and variableN0 , the magnitude of the slow
component ofU(MCW) is a flat function of the majority
impurity concentration at low temperature~5 K! if
N0.2.7•1016 cm23, and at lowerN0 it exponentially drops
with the average distance between majority impurities~Fig.
9!. This dependence results from Eqs.~2! and ~5! and is
determined by the ratio betweent* andtM .

As the temperature increases,U(MCW) gradually drops
owing to thermal destruction of triplets,15 then it decreases
exponentially in the rangeT.15 K because of thermal ion
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ization of excited states~Fig. 6!. The activation energiesEi

obtained from the shapes of the exponential sections are
meV14 and 30 meV~Fig. 6! for B and Sb, which correspond
to ionization energies of the lowest excited states of
impurities.3

As was noted above, the lifetimet* of excited states
depends on the chemical nature not only of the majo
impurity, but also of the compensating impurity~Table I!.
This may be due to participation of active triplets in th
process of relaxation. Indeed, the presence of a he
compensating-impurity ion near an excited majority-impur
atom can perturb the local phonon spectrum and thus cha
the relaxation timet* .

When the long-lived excited states are populated, ad
tional absorption due to ionization of the excited state sho
appear in absorption spectra of the samples. In spectral m
surements, however, background radiation correspondin
the room temperature and emitted by warm cryostat com
nents is always present. The spectrum of background ra
tion has a maximum close to the maximum of photocond
tivity of silicon doped with most of group III and V
impurities. Thus, the long-lived excited states of some m
jority impurities should be populated by the background
diation. In fact, in studies of absorption in the presence of
background radiation, we detected absorption in the IR b
at energies lower than the ionization energy of the impu
ground state.13 At the same time, the background is a pow

FIG. 8. U(MCW) and parameterC defined by Eq.~4! versus phosphorus
concentrationNc in silicon doped with boron (N053.531016 cm23) at 5 K.

FIG. 9. U(MCW)/U(DC) versusr s5(4pN0/3)21/3 in silicon doped with
boron in various concentrationsN0 and with phosphorus (Nc51014 cm23)
at 5 K.
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d
FIG. 10. Absorption spectra of silicon dope
in concentrationsN0 (cm23) with boron: ~1!
3.531016; ~2! 7.631016; ~3! 1.531017, and
arsenic: ~4! 1231017; ~5! 1831017; ~6!
2031017 at 4.2 K.
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of the population of long-lived excited impurity states
Modulated impurity excitation of silicon samples leads
modulation of the population of the long-lived excited im
purity states, thereby modulating the absorption of ba
ground radiation by excited impurities. This induced abso
tion was detected when the silicon samples were expose
modulated laser beam.17 In order to detect a change in th
background absorption, a photoresistor screened by an
cal filter absorbing laser light was placed downstream of
sample. In order to separate a certain spectral band, we c
place optical filters both downstream and upstream of
sample. In fact, a photoresistor signal corresponding to
increase in the silicon absorption was detected when a do
silicon sample was exposed to impurity excitation.13 More-
over, typical relaxation timest* of induced absorption were
close to the decay times ofU(MCW) in the same samples
Using various optical filters and photoresistors, we ha
found that the induced absorption of the background ra
tion in samples is localized in the range of 20–40 meV.

Absorption spectra of silicon samples doped with bor
and arsenic under background radiation are given in Fig.
The spectra have step-like shapes. The long-wave absor
edge in the sample doped with arsenic is at 32 meV
corresponds to the ionization energy of the lowest exc
states 1S(G5 ,G3) due to the valley–orbit splitting.3 In the
case of the boron impurity, the long-wave absorption edg
23 meV corresponds to either ionization of the excited s
1S(G7

1) or excitation of a hole from the ground state to th
excited state.18 Taking into account that the 1S(G7

1) state is
singlet, whereas the ground state is degenerate and shou
split by deformation,3 we recorded absorption spectra
uniaxially compressed samples. Figure 11 shows such s
tra under a small strain directed along the@110# axis. One
can see that the long-wave absorption edge shifts to hig
energies but does not split, and the absorption intensit
almost constant. This indicates that the absorption by bo
impurities is due to ionization of the lowest excited sta
populated by the background radiation.

In silicon doped with phosphorus and antimony, on
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ground state to excited states of theP3/2 series were detecte
in the 10–40-meV band. The ionization energies of the lo
est excited states of antimony and phosphorus (Ei;30 meV)
are also in the range of these transitions, and absorption
to transitions from the excited states to the conduction b
cannot be selected because of strongP3/2 absorption. None-
theless, the lack of additional absorption in the range of
ergies between 10 and 20 meV confirms our conclusion
absorption due to transitions between the ground state
lowest excited states of these donors is negligible.

Thus, we have established that some impurities
groups III and V in silicon have long-lived (t* ;0.5– 8 ms)
excited states. They manifest themselves in the hopping p
toconductivity in microwave electric field, spectra and kine
ics of induced IR absorption.

4. GERMANIUM

Up to the present time, few studies of long-lived excite
impurity states in germanium have been published. Calc
tions for acceptor states19 indicate that the rates of transition
between highly excited states are one or two orders of m
nitude higher than the rate of the phonon-assisted trans
from the 1G8

2 excited state to the 1G8
1 ground state. The

FIG. 11. Absorption spectra of silicon at 4.2 K doped with boron in co
centrationsN0 : ~1, 2! 1.531017 cm23; ~3, 4! 731015 cm23 and compressed
along the@110# axis by pressureP: ~1, 3! 0; ~2, 4! 44 MPa.
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lifetime of the 1G8
2 excited state (;1027 s) is in good

agreement with measurements of magnetic impu
oscillations20 and far-infrared photoconductivity21 in p-Ge.
Lifetimes of the 2p0 excited states of donors in germaniu
are essentially shorter (;1029 s),22 and in experimenta
conditions21 were no longer than lifetimes of free electron

Nonetheless, conditions can be created when a d
long-lived excited state manifests itself in germanium.23 Un-
like the case of diamond and silicon, the spin–orbit splitti
in germanium is large~290 meV!; therefore the 1S(G7

1)
states of the acceptors excited due to the spin–orbit split
should be in the valence band3 and play no role in relaxation
of charge carriers. But in the case of donors, the situation
silicon and germanium are similar, so one can expect tha
1S(G5) donor state in germanium should be long-lived.

The arsenic impurity in germanium is most suitable
investigating the hopping photoconductivity since its ioniz
tion energy of 14.18 meV and valley–orbit splitting of 4.2
meV are the highest.3 The magnitude of the hopping photo
conductivity in microwave electric field strongly depends
the ratio between the Bohr radii of the long-lived and grou
states of the impurity. Since the ionization energies of theG5

excited states of group V donors in germanium are the s
(;10 meV),3 we prefer the donor with the minimal Boh
radius of the ground state, i.e., with the maximum ionizat
energy.

We have measured the photoresponse in german
samples doped with As in concentrations of 1.631014 cm23

and 1016 cm23 and containing compensating acceptors
concentrations of;1013 cm23. The photoresponses under d
and microwave electric fields was studied as a function of
modulation frequencyf , excitation intensity, and tempera
ture in the range between 2.2 and 15 K. At the higher dop
level, a slow (t* ;30ms) component ofU(MCW) appeared
~Fig. 12!. At 2.2 K, the magnitude of the slow compone
was almost two orders higher than that ofU(DC), which is
due to free electrons~Fig. 13!, and the decay timet* was at
least four orders longer than the lifetime of free electrons.
in silicon, U(MCW) saturated at some excitation intens
and dropped with temperature. These results are in qua
tive agreement with the model of hopping polarizati
photoconductivity.15

FIG. 12. Photoresponse of diamond-like semiconductors versus modul
frequencyf ~Hz! of exciting radiation:~1! U(MCW) in silicon with boron
at T55 K; ~2! U(MCW) in germanium with arsenic at 2.2 K;~3! U(DC) in
diamond with boron at 90 K.
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5. CONCLUSION

In conclusion, we note that deep long-lived excited im
purity states in diamond-like semiconductors manifest the
selves in diamond, silicon, and germanium in differe
ranges of impurity concentration and temperature~Figs. 12
and 13!. This is due, above all, to the various scales of e
ergies of impurity levels, features of their band structure, a
energy spectra of their impurities. The existing long-liv
excited states are due to the valley–orbit or spin–orbit sp
ting of impurity ground states. The existence of the de
long-lived excited states, which affect nonequilibrium ele
tronic processes, can be expected in other semiconduc
with similar band structures. In fact, the long-live
(t* ;7 ms) 1S(G5) excited state of the tellurium donor spl
from the ground state by valley–orbit interaction has be
observed recently in gallium phosphide.24

The work was supported by the Russian Fund for F
damental Research~Projects Nos. 93-2-2070 and 96-2
16243!.

1M. Lax, Phys. Rev.119, 1502~1960!.
2V. N. Abakumov, V. I. Perel’, and I. N. Yassievich, Fiz. Tekh. Polupr
vodn.12, 3 ~1978! @Sov. Phys. Semicond.12, 1 ~1978!#.

3A. K. Ramdas and S. Rodrigues, Rep. Prog. Phys.44, 1287~1981!.
4The Properties of Natural and Synthetic Diamond, ed. by E. Field, Aca-
demic Press, London~1992!.

5O. I. Smirnova and A. G. Gontar’, Sverkhtverdye Materialy, No. 1,
~1993!.
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Moscow State Industrial University, 109280 Moscow, Russia
~Submitted 26 November 1996!
Zh. Éksp. Teor. Fiz.112, 25–31~July 1997!

We consider axion formation processes in the synchrotron (e2→e2a) and annihilation
(e2e1→a) channels in a constant crossed fieldFmnFmn5Fmn* Fmn50, which approximates
constant fields of other configurations in the ultrarelativistic asymptotic limit. The probability and
intensity of axion emission are obtained, and we analyze the energy and field asymptotics.
A comparison with the characteristic neutrino channele2→e2n n̄ yields the constraints on the
axion mass and the energy scale for Peccei–Quinn symmetry breaking. Possible
astrophysical applications are discussed. ©1997 American Institute of Physics.
@S1063-7761~97!00207-2#
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The line of inquiry associated with the possible existen
of the axion as a pseudoscalar Goldstone boson in
mechanism of Peccei–Quinn global symmetry breaking1 is
presently fairly popular~see, for example, the review in Re
2!. This is due both to the prospect of obtaining a reasona
explanation for the presence~quantum chromodynamics! or
absence~the electroweak sector! of CP invariance, and to
astrophysical insight into, e.g., the nature of dark matte
the Universe. The nonzero massma of the axion~if it exists!
is an inherent attribute of this particle, and can be uniqu
expressed in terms of the energy scalef of global symmetry
breaking1!

ma5S 63106 GeV

f DeV, ~1!

the coupling constants of the axion with ordinary partic
being proportional to 1/f . Therefore, estimation of the pos
sible value off by independent methods is of fundamen
importance, especially since the theoretical possibilities
tend over an enormous range, from the characteristic e
troweak scale (A2G)21/2;250 GeV to the Planck mass 1019

GeV ~an invisible axion!.
One of the procedures used involves finding a low

bound onf by requiring that the axion luminosity observe
upon the collapse of stellar objects not exceed the neut
luminosity, which is believed to be one of the principal coo
ing mechanisms. In particular, there is interest in the s
chrotron

e2→e2n n̄ , ~2a!

e2→e2a ~2b!

and annihilation

e2e1→n n̄ , ~3a!

e2e1→a ~3b!
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in the strong magnetic fields that are formed, for examp
upon collapse in a neutron star~channel~3a! is also open in
the absence of a field!.

A calculation of the axion luminosity, which is one o
the purposes of the present work, requires the specific f
of the Lagrangian of the (aee) interaction. The literature
describes the use of two forms of the Lagrangian (m is the
mass of the electron!,

L52 icS m

f Da~C̄g5C!, ~4a!

L5c
1

2 f

]a

]xa
~C̄gag5C!, ~4b!

with pseudoscalar and pseudovector couplings, respectiv
which can lead to results that may or may not be the sa3

(c is the unitary charge of an electron under the glo
Peccei–Quinn transformationUPQ ~1!, which is of order
unity!. The two Lagrangians differ by a total derivative, an
in the absence of excitation of the electron–positron vacu
it suffices to consider only the pseudoscalar alternative~4a!.

We next use the invariant technique to calculate inter
tion processes in a constant crossed field

FmnFmn5Fmn* Fmn50, ~5!

whereFmn* 5(1/2)emnabFab is a dual tensor, which was de
scribed in a paper by Ritus.4 This method also yields accu
rate results in constant fields of arbitrary configuration if

uFmnFmnu

F0
2

,
uFmn* Fmnu

F0
2

!1,x2 , ~6!

whereF05m2/e54.4131013 G, and the invariant paramete

x5
Ae2~pF2p!

m3
~7!

is expressed in terms of the ultrarelativistic~according to~6!!
electron momentump.

13$10.00 © 1997 American Institute of Physics



The wave function of an electron in a constant crossed

n

th
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it

wherex5x81k. One characteristic feature of this expres-

ith
field with potentialaaw, where w5kx, has the form~we
henceforth retain the notation used in Ref. 4, as much
possible!

C5S 11
ek̂âw

2kp
D u~p!expH 2 i Feap

2kp
w22

e2a2w3

6kp
1pxG J ,

~8!

ūu52m.

Using ~4a! and ~8!, we can easily obtain an expressio
for the square of the matrix element of the processe2→e2a
after summing and averaging over the polarization of
electron:

uM u25
4g2~2p!5

Lw
E

2`

`

ds d~sk1p2p82k8!

3@~pp82m2!uAu214b~kk8!uA8u2

1a~kk8!Im~A* A8!#, ~9!

A~s,a,b!5
1

2pE2`

`

dw expF2 i S aw2

2
2

4

3
bw32sw D G ,

~9a!

a5eS ap

kp
2

ap8

kp8
D , b5

e2a2

8 S 1

kp
2

1

kp8
D , ~9b!

whereLw is a ‘‘large’’ interval of phasew, p8 andk8 are the
momenta of the final electron and the axion,g5cm/ f is the
effective interaction constant, and the derivativeA8(s,a,b)
is taken with respect to the first argument.

Further simplifications are achieved by introducing t
new variables

x5
kp

m2
x, x85

kp8

m2
x, k5

kk8

m2
x, x5

Ae2~2a2!

m
,

~10!

r5
a

8b
, t5

eFmn* pmp8n

m4k
, u5

k

x8

with an expression forA in terms of Airy functions:

A5
~4b!21/3

p
expF2 i

sa

8b
1 i

8b

3 S a

8b D 3GF~y!, ~11!

y5~4b!2/3F s

4b
2S a

8b D 2G . ~11a!

Now the differential probability of axion emission per un
time can be written in the form

dWa5
g2x~2x/u!1/3

2p3p0xLwx8

u

11u

3F S u

2x D 2/3

~11t2!F21F82Gd3k8

2k08
, ~12!

y5S u

2x D 2/3S 11t21m̃ 2
11u

u2 D , m̃5
ma

m
, ~12a!
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e

sion is its lack of dependence onr, which, after transforma-
tion of the phase volume

d3k8

2k08
→

xm2x8u

2x~11u!2
dr dt du, ~13!

makes it possible to integrate overr ~see Ref. 4!

E
2`

`

dr5Lw .

Using the additional relations

yF21F825
1

2

d2

dy2
F2,

E
2`

`

dt F2~a1bt2!5
p

2Ab
E

22/3a

`

F~z!dz,

after integrating over the ‘‘angular’’ variablet, we obtain
the distribution with respect to the ‘‘energy’’ variableu:

Wa52
g2m2

~2p!2p0
E

0

`

duF S x

uD 2/3 u2

~11u!3
F8~z!

1
m̃ 2

2~11u!2Ez

`

F~y!dyG , ~14!

z5S u

x D 2/3S 11m̃ 2
11u

u2 D . ~14a!

Integration by parts reduces the expression forWa to a single
integral,

Wa52
g2m2

~2p!2p0

xE
0

` du

11u F S u

x D 1/3
u

~11u!2
F8~z!

2
1

6 S m̃

x D 2S x

uD 1/3S 22m̃ 2
41u

u2 D F~z!G , ~15!

which, of course, no longer describes the distribution w
respect tou.

The integral can be evaluated for special values ofm̃ and
x.

a! m̃!x, x!1. In this case we can generally setm̃50.
After some simple calculations we obtain

Wa.
15g2m2

32pA3p0

x3. ~16!

b! m̃!x, x@1. Similarly, settingm̃50 and making the
replacement

F8~z!→F8~0!52
31/6

2
GS 2

3D ,

we find

Wa.
g2m2G~2/3!

2p37/3p0

x2/3. ~17!

14V. V. Skobelev



c! m̃@x. As is easily seen, the argument of the Airy
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functions in this case is large everywhere in the domain
integration, and its minimum value is

zmin5
3

22/3S m̃

x
D 2/3

@1, m̃!1. ~18!

We can use the asymptotic representation

F.
Ap

2
z21/4expS 2

2

3
z3/2D . ~19!

We were unable to calculate the corresponding integ
but there is no need to do so, since it is clear from~18! and
~19! that the probability is suppressed in any case by
exponential factor

expS 2A3
m̃

x
D !1. ~20!

We note that the analogous result from an analysis of
processe2→e2n n̄ with massive neutrinos provided som
basis to assert that the small mass of the neutrino can
measured electron storage-ring experiments.5 It would be
very tempting to carry out this program in the case of s
chrotron axion emission, since a measurement of the m
would simultaneously also determine the value of the sc
factor f ~see Eq.~1!!. However, this will hardly be possible
in the foreseeable future, since it is not clear whether
hypothetical particle exists at all, not to mention the lack
axion detectors.

The mean intensity of axion emission by an electron c
be obtained by adding the factor

p085p0

u

11u

to the integrand in Eq.~14!, and again integrating by parts

I a52
g2m2

~2p!2
xE

0

` du

~11u!
2F S u

x D 1/3
u2

~11u!2
F8~z!

2
1

12S m̃

x D 2S x

uD 1/3

~112u!S 22m̃
41u

u2 D F~z!G . ~21!

As before, we present some asymptotic representation
this expression:

a! m̃!x, x!1:

I a5
g2m2

p
x4, ~22!

b! m̃!x, x@1:

I a5
7G~2/3!g2m2

2p313/3
x2/3, ~23!

with the same remarks as form̃@x. The luminosity per unit
volume, neglecting temperature effects, can be obtained f
~21!–~23! by multiplying by the concentration of monoene
getic electronsn.

When the annihilation channele1e2→a is considered,
the replacementsk→2k andp8→2p8 must be made in~9!,
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be replaced by averaging. Then, for the annihilation pr
ability per unit time, we obtain

W5
g2

p0p08LwVx
S 2xx8

k D 1/3

3F S k

2xx8
D 2/3

~11t2!F2~y!1F82~y!G , ~24!

y5S k

2xx8
D 2/3S 11t22m̃ 2

xx8

k2 D , ~24a!

whereV is the normalization volume, and the result is re
resented in a symmetrized form with respect to the elect
variablex and the positron variablex8, with k5x1x8. The
transition to a physically reasonable result4 is accomplished
by multiplying ~24! by VnT (n is the electron concentration
and T is the total time! and then making the replaceme
T/Lw→1/k0. This yields the probability of axion annihilation
of a positron ‘‘for all time,’’

WT5
g2nm

p0p08Fe
S 2xx8

k D 1/3

3F S k

2xx8
D 2/3

~11t2!F2~y!1F82~y!G , ~25!

whereF5k0A2a2 is the field amplitude.
Let us evaluate the scale factorf by comparing the lu-

minosities ~or intensities! due to the synchrotron axion
e2→e2a and neutrinoe2→e2n n̄ emission channels. Typi
cal values of the temperature and the magnetic field ind
tion in neutron star circumstellar shells cover the rang6

T;10821010 K and F;101221014 G; such temperature
correspond to an electron energyp0/m;10222100 when
distribution effects are neglected. On the ‘‘brink’’ of fulfill
ment of ~6!, we must take the upper energy value and
lower field value together withx;1022, which should yield
a result that is correct in order of magnitude for a ‘‘pure
magnetic field. We then clearly havem̃!x, the effective
energy of the axion or neutrino pairs is of orderp0x, and in
this approximation, instead of comparing the intensities,
can restrict attention to a comparion of probabilities.

Using expression~16! and the results in Refs. 4, 5, an
7, from the requirementWa&Wn (c;1) we obtain

f *107eV. ~26!

We note that with consideration of~1! this is consistent with
the conditionx@m̃. The lower bound forf specified by this
relation is approximately three orders of magnitude low
than the value obtained from an analysis of astrophys
data.2,8 If the latter bound is considered reliable, one of t
interpretations of our result will be that the contribution

15V. V. Skobelev



the synchrotron mechanism of neutrino and axion emission
on
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d
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1!See Table 2.1 on p. 17 of Ref. 2 and the notes to it.

h.

o.
to the total luminosity for the values of the parameters c
sidered is, in fact, small against the background of the o
contributions. If this assumption does not hold, then fro
~26! and ~1! we obtain a possible range for the mass of
axion,

ma&1eV. ~27!

which leaves some hope for measuring it in analogy to
program for measuring the mass of the neutrino describe
Ref. 5. In this case the role of the axion as a candidate f
hidden mass ‘‘carrier’’ clearly increases.
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High quantum efficiency of intersubband transitions in coherent tunneling of electrons

rm
through asymmetric double-barrier structures
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A converging perturbation series that can be summed analytically has been obtained for
intersubband transitions of electrons coherently tunneling through the middle of a dimensionally
quantized level in an asymmetric double-barrier structure in a high-frequency terahertz
electric field. The possibility of a substantial increase in tunneling current accompanied by either
absorption or emission of a photon has been demonstrated. The quantum efficiency of
radiative transitions between dimensionally quantized levels can be up to 66%. ©1997 American
Institute of Physics.@S1063-7761~97!02007-6#
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flection coefficient of electrons whose energy coincides w
the middle of a dimensionally quantized level, and which
driven by a high-frequency~hf! electric field, can be reduce
to zero at a field amplitude~in energy units! much lower than
the separation between levels. In this process, elect
transfer energy to the hf field, and the current through
structure increases. We have also determined the condi
in which the largest number of electrons~up to 100%! fed to
the structure efficiently interact with an hf field at frequen
v, and pass into a neighboring resonance level by emittin
absorbing a photon of energy\v. There is, however, a ques
tion of whether these effects can be detected~much less uti-
lized! in a realistic situation, when energy levels have fin
widths and the energy of incident electrons is distribu
continuously over some range. In order to solve this pr
lem, one must calculate the change in the electron w
function when its energy and hf field frequency deviate fro
their exact resonant values.

Following the approach of Ref. 1, we consider an asy
metric double-barrier structure with widtha and thin,
d-shaped barriers in a uniform electric field that varies
time as

E cosvt5E~eivt1e2 ivt!, E52E.

We assume for definiteness that a current of electr
with fixed energy flows from left to right. Then the time
dependent Schro¨dinger equation has the form

i\
]c

]t
52

\2

2m*
]2c

]x2 1H~x!c1H~x,t !c,

H~x!52U~u~x!2u~x2a!!2U1u~x2a!1ad~x!c

1gad~x2a!, ~1!

H~x,t !52qE@x~u~x!2u~x2a!!1au~x2a!#

3~eivt1e2 ivt!.

Hereq andm* are the electron charge and mass,a5wbb,
wb andb are the height and width of the first barrier,u(x) is
the Heaviside step function,g is a numerical factor,U and
U1 are the jumps in the conductance band bottom at
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commonly used in the dipole approximation.
Let the initial electron energy coincide with that of lev

N ~the main level! and the hf field frequency correspond
transitions to levelL. Using the approach developed in Re
1, we seek a solution for a sufficiently low field amplitude
the form of a perturbation series without assuming, howev
that the resonant condition is exactly satisfied. Depending
the relative positions of the levels and conduction band b
toms on the left and right, we consider three main config
rations:

~1! transitions occur between levels above the cond
tion band bottom in both the left~input! and right ~output!
semiconductor~Fig. 1a!;

~2! electrons go to a level below the conduction ba
bottom of the left semiconductor and above the conduct
band bottom of the right semiconductor~Fig. 1b!;

~3! transitions occur between a level below the cond
tion band bottom of the right semiconductor and a le
above the conduction band bottom of the right semicond
tor ~Fig. 1c!.

In the first two cases, the unperturbed electron wa
function c0 normalized to a single electron is

c0~x!5H exp~ ik0x!1D0 exp~2 ik0x!, x,0,

A0 sin kx1B0 coskx, 0,x,a,

C0 exp@ ik1~x2a!#, x.a,

~2!

where

k05A2m* «

\2 , k5A2m* ~«1U !

\2 ,

k15A2m* ~«1U1!

\2

are wave vectors and« is the energy of the incident elec
trons.

In the small-signal approximation, the correctionc1 to
the wave function of the initial state is given by3

c15c11~x!exp@2 i ~v01v!t#

1c12~x!exp@2 i ~v02v!t#, v05«/\.

130$10.00 © 1997 American Institute of Physics
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FIG. 1. Diagrams of energy bands i
double-barrier structures under discussio
In the first case3,4
2m* ~«1U16\v!

ual
te
of
he
c16~x!55
D16 exp~2 ik06x!,

x,0,
A16 sin k6x1B16 cosk6x1x16~x!,

0,x,a,
C16 exp@ ik16~x2a!#1P16 exp@ ik1~x2a!#,

x.a,
~3!

where

k065A2m* ~«6\v!

\2 ,

k65A2m* ~«1U6\v!

\2 ,
t
e

o
si
k165A
\2 ,

x16~x!57
qExc0~x!

\v
1

qEc08~x!

m* v2 ,

P1657
qEac0~a!

\v
.

In Ref. 1 the coefficientsA16 ,B16 ,C16 ,D16 were
calculated for the case of electron energies exactly eq
to those of mid-level positions. Here we calcula
these coefficients for the case of small deviations
the wave vectors from their resonant values. T
equations for the coefficients in the wave function~3!1,3 have
the form
S 1 0 21 0

ik062y k6 0 0

0 sin~k6a! cos~k6a! 21

0 2k6 cos~k6a! k6 sin~k6a! ik162gy

D 3S D16

A16

B16

C16

D 5S f 1

f 2

f 3

f 4

D , ~4!

where tions between the initial and higher resonance levels~labeled

by ‘‘ 1’’ !, or the initial and lower levels~labeled by ‘‘2’’ !.

the
be

i-

nto
f 15x16~0!, f 252x168 ~0!, f 35P162x16~a!,

f 45~gy2 ik1!P161x168 ~a!, y52m* a/\2.

When the barriers are high enough,y@k6 , and at a
wave vector corresponding to a resonant level~this condition
is satisfied when tan(k6a)52(11g)k6 /gy)), the determinant
of the system~4! is small:

D~k6!' ik6~k161g2k06!~21!L11/g,

and in the case of nonresonant tunneling the determinan
at least, linear iny. Thus, for narrow resonance levels, th
transition probability will only be significant between tw
levels. Therefore, we consider in what follows only tran
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Let the wave vectors of electrons transmitted across
structure and those interacting with the hf electric field
close to resonance:

k5kr1dk, k65kr 61dk6 ,

wherek@dk, k6@dk6 . It can be shown that the determ
nant of the system~4! in this case is

D~kr 61dk6!'S ik6

g
~k161g2k06!2gy2dk6aD

3~21!L11. ~5!

Naturally, in this approach it makes sense to take i

131E. I. Golant and A. B. Pashkovski 



consideration only such deviations from resonance at which
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P16 exp@k1(x2a)#. Thus, having repeated the calculation of
nto
-
ith

, we

ount

of
the
o-
form

f
c-
D(kr 61dk6) is only slightly larger thanD(kr 6) and

D~kr 61dk6!

D~kr 6!
!

y

k6
. ~6!

Given that the matrix describing transmission of ele
trons through the structure without changing their energy
similar to the matrix in Eq.~4!, and the determinants used
the calculation of the coefficientsA0 , B0 , and C0 of the
time-independent wave function~2! depend weakly ondk,
we obtain

D05
g2k02k12 is

g2k01k11 is
, B05b05

2g2k0

g2k01k11 is
,

C05
b0

g
~21!N11, A05b0

y

k
1 i

2k1k0

k~g2k01k11 is!
,

~7!

where

s5
g2y2dka

k
.

Note that when the barriers are strong enough (y@k),
the ground-state wave function on the interval 0,x,a, as
in the case of exactly resonant transmission,1 can be ex-
pressed as

c0'b0Fy

k
sin~kx!1cos~kx!G . ~8!

For y@k6 , taking into account only terms with max
mal powers ofy ~only terms withf 1 and f 3 contribute to the
column-wise expansion of the determinant!, we derive from
Eq. ~4! the coefficients of the wave function~3! for transi-
tions in which the change in the level number is odd:

D16'
qE

im* v2

2g2y2

k161g2k061 is6
b05b1 ,

~9!

B16'D16'~21!L11gC16 , A16'
y

k6
D16 .

Note that, when the initial and final energies of electro
are close to the centers of the levels, an important propert
resonant transmission noted in Ref. 1 applies: between
barriers (0,x,a) the first-order correction to the ground
state wave function is similar to the wave function itself:

c16~x!'b1F y

k6
sin~k6a!1cos~k6a!G . ~10!

Here we have taken into account the fact that, sincey@k6

and x16(x) contains only terms at most linear iny/k6,
while the deviation from the resonant condition is such t
condition ~6! is satisfied for the determinant of the syste
~4!, the contribution to the first-order correction to the wa
function due tox16(x), like the contribution to the particu
lar solution of the equation for the second-order correctio4

is small, as in the case of exact resonance.1 Moreover, since
uC16u@uP16u and the functionf 4, which includesP16, does
not make a significant contribution toc16 , here and in sub-
sequent calculations we can neglect components
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corrections to the wave function described above, taking i
account the fact that onlyc12(x) contributes to the second
order correction if the initial electron energy coincides w
the upper resonant level, or onlyc11(x) if it coincides with
the lower level, whereas the other components are small
obtain

c2~x!'H D2 exp~2 ik0x!, x,0,

A2 sin~kx!1B2 cos~kx!, 0,x,a,

C2 exp@ ik1~x2a!#, x.a,

~11!

where

D2'2S qE

m* v2D 2

3
4g4y4

~k11g2k01 is!~k161g2k061 is6!
b052b0z,

B2'D2'~21!N11gC2 , A2'
y

k
D2 ,

s65
g2y2dk6a

k6
, ~12!

c2'2b0zS y

k
sin~kx!1cos~kx! D , 0,x,a,

z5S qE

m* v2D 2 4g4y4

~k11g2k01 is!~k161g2k061 is6!
.

~13!

Here, as in the previous case, we have taken into acc
only terms with the maximum power ofy/k.

Thus, if we continue the procedure of calculation
higher-order corrections, as in Ref. 1, taking into account
smallness ofk/y, and then add them, the wave function c
efficients at each resonant level can be expressed in the
of a constant factor times an alternating series~unlike the
case of an exact resonance, it is complex!:

12z1z22z31...1~21!n11zn. ~14!

In its domain of convergenceuzu,1, this is the expansion o
1/(11z) in powers ofz, and the desired electron wave fun
tion has the form

c'cN~x!exp~2 iv0t !1cL~x!exp@2 i ~v06v!t#, ~15!

where

cN~x!5H exp~ ik0x!1D exp~2 ik0x!, x,0,

A sin~kx!1B cos~kx!, 0,x,a,

C exp@ ik1~x2a!#, x.a,

~16!

D5D02
b0z

11z
, A5

1

11z
A0 , B5

1

11z
B0 ,

C5
1

11z
C0 ,
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cL~x!5
1

11zH 16 06

A16 sin~k6x!1B16 cos~k6x!, 0,x,a,

C16 exp@ ik16~x2a!#, x.a.
~17!

Interestingly enough, the larger the offset from res
nance, the greater the field amplitude at which the series~14!
converges.

In the second case, when the resonance level to w
the electrons go is below the conduction band bottom do
stream of the structure,c12 is derived from Eq.~3!, and the
equation system for its coefficients is derived from Eq.~4! by
replacing ik02 with 2k, wherek5@2m* (\v2«)/\2] 1/2.
The determinant of this system is small if

tan~k2a!52S 11g

g
2

k

y D k2

y
,

and at small offset from resonance,

D~kr 21dk2!'S ik2k12

g
2gy2dk2aD ~21!L11. ~18!

Using the procedure of calculation of corrections to the wa
function described above with due account of the fact t
Eq. ~18! applies to transitions from the higher to lower leve
and Eq.~5! to transitions from the lower to higher level, on
can easily show that the solution of the problem is descri
by the wave function~15! with cN(x) determined by Eq.
~16!, while cL(x) takes the form

cL~x!5
1

11zH D12 exp~kx!, x,0,

A12 sin~k2x!1B12 cos~k2x!, 0,x,a,

C12 exp@ ik12~x2a!#, x.a,
~19!

where

D12'
qE

im* v2

2g2y2

k121 is2
b0 ,

B12'D12'~21!L11gC12 , A12'
y

k2
D12 , ~20!

z5S qE

m* v2D 2 4g4y4

~k11g2k01 is!~k121 is2!
. ~21!

In the third case, when electrons transfer from a le
below the conductance band bottom upstream of the st
ture to a level above the conductance band bottom, given
the resonance conditions have the form

tan~ka!52S 11g

g
2

k

g2yD k

y
, k5A2m* ~U12«!

\2 ,

and the determinant of the equation system for correction
the wave function is

D~kr1dk!5~ igk0k2gy2dka!~21!N11, ~22!

one can easily show that the solution is described by
wave function~16!, where
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cN~x!5H 0 0

A sin~kx!1B cos~kx!, 0,x,a,

C exp@2k~x2a!#, x.a,

~23!

D5
k02 is

k01 is
2

b0z

11z
, A5

b0

11z

y

k
, B5

b0

11z
,

C5
b0

11z

1

g
~21!N11, b05

2k0

k01 is
, s5

y2dka

k
,

cL~x!5
1

11zH D11 exp~2 ik01x!, x,0,

A11 sin~k1x!1B11 cos~k1x!, 0,x,a,

C11 exp@ ik11~x2a!#, x.a,
~24!

D11'
qE

im* v2

4g2y2

k111g2k011 is1
,

B11'D11'~21!L11gC11 , A11'
y

k1
D11 , ~25!

z5S qE

m* v2D 2 4g2y4

~k111g2k011 is1!~k01 is!
. ~26!

These equations enable us to estimate the intensit
interaction between electrons and hf field of a finite am
tude in conditions of finite widths of resonant levels and
arbitrary energy distribution of incident electrons.

It is clear that even for the case of a fixed energy
electrons, the above expressions for the wave function c
ficients are notably different from those given in Ref. 1 f
the case of exact resonance. Since the range of possibilit
wide, especially when realistic electron energy distributio
are considered, it is hardly possible to compare the reso
and nonresonant interaction between electrons and hf fie
all possible cases. Therefore, we discuss the cases of ele
transmission through the structure which are, in our opin
the most interesting. We assume that the electrons are
formly distributed over a certain energy range, at least w
the deviation from the resonance is comparable to the m
level width.

Let the energy of incident electrons be lower than
conductance band bottom on the right, thus the third confi
ration of energy levels is realized~Fig. 1c!. At resonance
(s50) and at the field amplitude corresponding tozr51, all
electrons go to the upper level~the reflectivity uDu250!.1

When the electron energy deviates from resonance
6GN/2, where GN is the resonant-level width, the stat
transmission coefficient is half the resonance value. This
responds to twice the determinant~22! squared:

uD~kr1dk!u252uD~kr !u2.

The upper level widthGL is usually much larger than that o
the lower level~for a symmetric structureGL /GN5(L/N)3!,
so we can assume that all electrons absorbing photons
energy\v go to the region of allowed states around t
middle of the upper level (s1!k111g2k01). It follows
from Eqs.~23! and ~26! that the dynamic reflectivity at the
edges of the transmission band decreases five-
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electrons at the lower level go to the upper level.
A much more interesting process is the transfer of el

tron energy to the field due to the hf field. Consider t
second configuration of the structure~Fig. 1b! and transitions
from the upper to lower level. If the transmission coefficie
is high (k1'g2k0), the structure transparency cannot be
creased by the hf field. Therefore the largest change in
current through the structure should occur when the st
transmission coefficient is small. In the case of exact re
nance of electrons with the upper level~s50, D0 is real! and
at zr5D0 , the transmission coefficient goes to zero.

Let us estimate the offset from resonance at which
transmissivity increases to half ofD0

2. It follows from Eqs.
~16! and ~21! that this occurs ats2 /k12511D0 . For D0

close to unity, this offset is approximately double the wid
of the lower levelGL , wheres2 /k1251. Let us approxi-
mate the dynamic transmission coefficient by unity with
the ‘‘transmission band’’ and by zero outside it. Thus t
increase in current due to the hf field isDI ; 2GLD0

2, and
the direct current via the states of the main~upper! level is
proportional to the product of its width and the transmiss
coefficient: I } GN(12D0

2). With due account of Eq.~7!,
we obtain

DI

I
'S L

ND 2 k12

k1

D0
2

11D0
. ~27!

It is clear that when the ratio (L/N)2k12 /k1 is close to unity
~transitions occur between levels with large quantum nu
bers!, DI /I'0.5. Detection of this increase in the curre
concurrently with emission of photons with energy\v is
quite feasible.

In the cases discussed above, the hf field generates
greatest change in the current through the structure. From
standpoint of application of such devices as sources of ra
tion, the more interesting parameter is quantum efficien
i.e., the ratio of the number of electrons that have emitte
photon to the total number of transmitted electrons.

Consider the second configuration of energy bands
structure with a sufficiently large transmission coefficie
(k1'g2k0). In the case of resonant tunneling andzr51, the
fraction of incident electrons incident upon the lower leve
(11D0)/2. Using Eqs.~16! and~21!, one can show that this
ratio is a factor of two smaller ats2 /k1252, i.e., in this case
the transmission band is also twice as wide as the low
narrower level. By approximating the dynamic transmiss
coefficient by unity within the transmission band and by ze
outside it, as was done above, we calculate the curr
through the upper and lower levels, which are proportiona
the presence of a hf field to

I}~GN22GL!~12D0
2!1GL~12D0

2!/2,
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and, taking into account Eq.~7! we obtain their ratio:

I v

I
'

L2k12

2k1@N223L2k12/2~g2k01k1!#
. ~28!

For k1'g2k0 ~large transmission coefficient!, we have

I v

I
'

L3

2N323L3/2
~29!

if k12 /k1'L/N, and

I v

I
'

L2

2N223L2/2
~30!

if the ratiok12 /k1 is close to unity. Hence it follows that fo
sufficiently large quantum numbers of resonance lev
I v /I'2, thus the quantum efficiency of photon emission c
be up to 66%, which is much higher than the paramet
obtained heretofore.5 This discrepancy can be attributed
the fact that in experimental conditions,5 scattering plays an
important role in electron transport, whereas the estima
given above apply to the case of ballistic transport, for wh
the time of flight through the structure is appreciably shor
than the collision time in it. Such conditions can be realiz
in both symmetric~with an injector! and asymmetric double
barrier structures with thin enough~much thinner than in
Ref. 5! barriers, so that the electron time of flight should
relatively short and the resonant properties of the struc
persist.6 In principle, the quantum numbers of levels at whi
the maximum quantum efficiency is achieved can be sign
cantly reduced by fabricating a structure withk1.g2k0 . At
first sight, it might seem that the ratioI v /I can be indefi-
nitely large in this case. One must bear in mind, howev
that Eq.~28! applies only when the upper level is conside
ably wider than the lower level, and if they are comparab
a more accurate calculation is needed.
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Photoinduced light absorption by C 60 films in the 0.08–4.0-eV spectral range

at
A. V. Bazhenov, A. V. Gorbunov, M. Yu. Maksimuk, and T. N. Fursova

Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region,
Russia
~Submitted 20 August 1996!
Zh. Éksp. Teor. Fiz.112, 246–256~July 1997!

Spectra of photoinduced light absorption in C60 films at high and low excitations in the
temperature range between 15 and 300 K have been measured. In addition to the well-known
explanation of photoinduced absorption in terms of optical transitions in the system of
photogenerated singlet excitons, triplet excitons, and polarons, changes in the absorption spectrum
of the fullerite ground state must be considered. We suggest taking into account the effect
of crystal field in explaining the features of the photoinduced absorption spectrum. A feature
similar to the inverted luminescence spectrum and ascribed to optical excitation of singlet
excitons, which is partially allowed owing to intermolecular interaction, has been detected in
spectrum of photoinduced absorption. ©1997 American Institute of Physics.
@S1063-7761~97!02107-0#
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It follows from the analysis of published data1 that crys-
talline C60 behaves in some experiments as an almost id
molecular crystal. In such crystals, absorption of light lea
as a rule, to generation of nonconducting electronic exc
tions, i.e. excitons.2 Presently, there is no commonly a
cepted interpretation of fullerite luminescence in the spec
range around 1.7 eV,1,3,4 but all authors agree that this lum
nescence is due to recombination of singlet excitons. At
same time, some experimental results1 can be interpreted in
terms of a one-electron semiconductor model. Investigati
of spectra of photoconductivity,5–7 persistent
photoconductivity,7,8 photovoltaic9 and xerographic10 effects
have demonstrated that in fullerite, as in a common semic
ductor, free carriers are generated by light. Wanget al.1 sug-
gested that the best model is, probably intermediate betw
these two extreme approaches.

Fullerite doped with alkali metals is a high-temperatu
superconductor~HTSC!. Like semiconducting phases of
copper HTSC, it is a highly correlated system.11 It is con-
ceivable that it manifests some features of cuprates, in wh
optical generation of electron–hole pairs orp-doping leads
to radical restructuring of the electronic spectrum, name
the spectral weight of transitions between the valence
conducting bands decreases, and a complex absorption
trum emerges in the low-energy range~0.1–0.5 eV!.12–18

The photoinduced absorption technique, which enab
one to study changes in the electronic spectrum at a
uniform concentration of optically generated excitations, h
demonstrated its efficacy in semiconducting phases of a
per HTSC. In the fundamental absorption range of fuller
the photoinduced absorption technique atT5300 K allowed
detection of redistribution of the spectral weight in favor
optical transitions dipole-forbidden in the C60 molecule,19

also known as HOMO–LUMO transitions~highest occupied
molecular orbital–lowest unoccupied molecular orbital!. It is
worthwhile to study photoinduced absorption in C60 at low
temperatures, which can be radically different from that
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Dick et al.21 interpreted results similar to those of Re

19, but obtained at high levels of excitation by femtoseco
laser pulses, as optical transitions in a system of photo
cited singlet excitons, whereas the spectrum of photoindu
absorption was interpreted in Ref. 19 as changes in
ground-state absorption due to optical pumping. In additi
unlike the case of pulsed laser excitation, a broad absorp
band with a maximum around 1.1 eV was detected un
excitation by a cw laser with a photon energy lower than
fullerite band gap.22 Magneto-optical measurements21 dem-
onstrated that in this case the spectrum of photoinduced
sorption in the range 0.5–2.5 eV consists of lines with en
gies 1.1 and 1.8 eV, due to generation of excitations w
spin 1, and lines with energies of 0.8 and 2.0 eV due
excitations with spin 1/2. These pairs of lines were asso
ated with transitions between states of triplet excitons a
polarons, respectively.

In order to test this model, clarify the inconsistencie
and search for photoinduced optical transitions indicat
correlation interactions in the C60 fullerite, we have studied
photoinduced absorption spectra both at high and low lev
of optical pumping in the spectral range 0.08 to 4.0 eV,
temperatures between 15 and 300 K.

2. EXPERIMENTAL TECHNIQUES

We have studied fullerite films with thicknesses of abo
0.1 and 2.0mm fabricated from C60 powder by vacuum sub
limation and deposition on a sapphire substrate. Their qua
was tested using IR absorption spectra and by view
through an optical microscope. At a substrate temperatur
about 100 °C, the film surface was specular, i.e., the crys
lite size was less than 1mm. The basic measurements we
performed on films with clearly defined texture. Accordin
to x-ray diffraction measurements, the~001! axis of the ful-
lerite was normal to the substrate surface. No absorp
lines associated with either CO2 (2350 cm21) or C–H

135$10.00 © 1997 American Institute of Physics
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(2900 cm21) vibrations of the organic solvent were detect
in IR spectra. Narrow absorption lines corresponded to p
viously known intramolecular vibrational modes of C60.

Photoinduced absorption spectra in the range 1.1–4.0
were obtained using a prism spectrograph and an op
multichannel analyzer, and in the range 0.08–1.2 eV usin
Fourier transform spectrometer. The photoexcitation was
duced either by a cw Ar1 laser (hn52.54 eV) with power
density P<1 W/cm2 or by an XeCl excimer lase
(hn54.03 eV) with a pulse width of 20 ns and a repetitio
rate of 20 Hz ~the time-averaged power density w
P560 mW/cm2, the peak power density wa
P.150 kW/cm2!. In both cases, we measured the tim
averaged signal of photoinduced optical absorpt
DI /I 5(I 2I 1)/I , whereI 1(n) andI (n) are the intensities o
probe light transmitted through the sample in the prese
and in the absence of laser pumping, respectively. The
ference signalDI was integrated over multiple measur
ments of I 1(n) and I (n). In each cycle, the luminescenc
spectrum was recorded in addition to transmission spec
and subtracted from the latter~curve 3 in Fig. 1a!. As a
result, we completely eliminated the luminescence contri
tion and greatly attenuated scattered laser light. The m
surement accuracy ofDI /I was 1025 in the range 1.2–4.0
eV, and 1024 in the range 0.08–1.2 eV.

Measurements of photoinduced absorption are alw
complicated by overheating, i.e., changes in the light tra
mission owing to sample heating by laser light. In our ca
overheating was the more significant, as the sample was
cated in the evacuated volume of a helium cryostat. In or
to elucidate the spectral signature of overheating, we m
sured changes in the optical transmission of a fi
DI /I 5@ I (T)2I (T1dT)#/I (T), at a temperature variatio
dT54 °C provided by a small heater. The optical dens
spectrum in Fig. 1a ~curve 1! demonstrates that a

FIG. 1. ~a! Spectra of optical density of C60 films with thicknesses of~curve
1! 0.1 and~2! 2.0 mm on sapphire substrates atT5300 K. Curve3 is a
luminescence spectrum at 15 K plotted in arbitrary units.~b! Effect of 4-°C
overheating in a C60 film with a thickness of 0.1mm at ~1! T5270 K, ~2!
170, and~3! 90 K.
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ume. Therefore the film was heated by laser light uniform
and this technique could be utilized in measurements of
tures due to the overheat by laser light. These measurem
data for a C60 film on a sapphire substrate are given in F
1b. The spectral features of the heating effect atT5300 K
and their relation to the fundamental absorption spectr
were discussed in Ref. 19. When the temperature was l
ered to about 170 K, the intensities of theB1 andB2 lines
increased considerably, which corresponded to a drop in
intensities of the lines at 2.7 and 3.5 eV in the fundamen
absorption spectrum. Unlike overheating at 300 K, at l
temperatures there was a drop in absorption in the 1
2.3-eV spectral range. When the temperature was furthe
duced to 90 K, overheating abated.

3. EXPERIMENTAL RESULTS

The optical density spectrum of fullerite films wit
thicknesses of 0.1mm at T5300 K ~Fig. 2a! is similar to
spectra previously described in the literature23 and consists
of dipole-allowed transitions in the C60 molecule with ener-
gies of 3.5 and 4.4 eV, and forbiddenF1 andF2 transitions
with red edges at abouthn51.65 and 2.25 eV. The low-
energy edge ofF1 is difficult to detect in the 0.1-mm film,
but in the spectrum of the 2-mm film ~curve2 in Fig. 1a! it is
clearly visible against the background absorption, wh
monotonically decreases with decreasing energy down
hn50.6 eV. This absorption suggests the existence of t
in the density of states. It has been established7,24 that fuller-
ite films are disordered, and exhibit properties typical,
example, of amorphous Si:H.

The spectrum of photoinduced absorption due to
pulsed laser withhn54.03 eV at 300 K~Fig. 2b! is notably
different from the overheating spectrum. It does not cont
the B1 and B2 features of the latter~Fig. 1b!, i.e., laser
overheating can be neglected at 300 K. AnS-shaped feature
can be seen around theF1 transition in the photoinduced
absorption spectrum, i.e., photobleaching in the range 1.
2.0 eV, and absorption enhancement with a maximum
hn52.2 eV. Optical generation of electron–hole pairs lea
to higher absorption around theF2 transition. The absorp
tion line at hn53.5 eV corresponds to anS-shaped feature
in the photoinduced absorption spectrum, with the inflect
point near the absorption-line maximum, i.e., the line sh
to lower energy under optical pumping. Moreover, since
inflection point is in the region of negative photoinduc
absorption, photoinduced absorption at the maximum of
3.5-eV line is reduced by optical pumping.

As the temperature is lowered to 90 K, photoinduc
absorption turns into an increase in transmission~Fig. 2c!.
But this effect is hardly caused by the phase transition at
K. The spectrum clearly demonstrates theB1 andB2 fea-
tures typical of overheating~Fig. 1b!, i.e., the combination of
overheating and of photoinduced absorption proper is m
sured. We could not eliminate overheating by reducing
pumping power density at 90 K. The dashed line in Fig.
shows an approximate spectrum of photoinduced absorp
obtained by subtracting the overheating spectrum multip

136Bazhenov et al.
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FIG. 2. Spectra of~a! optical density and~b,
c, d! photoinduced absorption of a C60 film
when nonequilibrium carriers are generate
by a pulsed XeCl laser withhn54.03 eV at
T5300 K, 90 K, and 15 K, respectively.
by a factor at which features characteristic of overheating are
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eliminated ~this corresponds to overheating by 2 °C!. Its
shape is similar to that of the spectrum recorded at 300
but its intensity is an order of magnitude higher.

When the temperature is reduced to 15 K, the effec
again inverted~Fig. 2d!, and the spectrum shape is similar
that obtained at 300 K. This results from a decrease in o
heating due to the temperature reduction from 90 to 15
Thus, the thermal effect can be neglected at 15 K, as
300 K.

Note that the overheating contribution to the photo
duced absorption spectra of C60 is notably larger at highe
pumping powers and larger film thicknesses. This fuller
property is substantially different from that of the copp
HTSC, because its thermal conductivity~0.4 and 1.2 W/m•K
at 300 and 77 K, respectively25! is about an order of magni
tude lower than in cuprate compounds. At low temperatu
this difference is even more significant, since the fuller
specific heat drops by a factor of seven as the temperatu
reduced from 300 to 100 K.26

The photoinduced absorption spectra under cw opt
pumping (P<1 W/cm2) were studied in the spectral rang
0.08 to 2.2 eV. No changes in the transmission of a 0.1-mm
film, to within DI /I 51024, were detected in the 0.08
1.6-eV range. Since the photoinduced absorption sig
should be proportional to the film thickness in sufficien
thick films, we tested a 2-mm film ~optical density spectrum
2 in Fig. 1a!. The analysis of photoinduced reflection a
absorption of such a film based on equations given in Ref
indicates that, at least athn>0.6 eV, reflection can be ne
glected, and the effect should be determined only by chan
in the optical density.

As shown in Fig. 3a, pumping of fullerite by a cw Ar1

laser atT515 K generates a broad absorption line with
maximum atE1.1.1 eV, a feature atE0.0.8 eV at its low-
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shape of theB feature in the 1.3–1.8-eV range is essentia
identical to the inverted luminescence spectrum of the fi
~dashed line in Fig. 3a!; only the position of the lumines
cence line maximum is 0.03 eV lower than the minimum
the B line. When optical pumping is reduced, the intensit
of the E1 , E2 , andB features decrease proportionally~Fig.
4a!. The photoinduced absorption athn51.1 and 1.9 eV
depends on the pumping power asP1/2 ~Fig. 5!.

The shapes of the 1.1-eV and 1.9-eV lines are cons
with temperature~Fig. 4b!, but above 40 K the photoinduce

FIG. 3. Spectra of photoinduced absorption of~a! fresh and~b! aged C60

film with a thickness of 2.0mm under an electron–phonon pair excitation b
a cw Ar1 laser (hn52.54 eV). The pumping densityP51 W/cm2,
T515 K. The dashed line shows an inverted luminescence spectrumL plot-
ted in relative units.
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absorption athn.1.7 eV andhn>2.0 eV becomes negativ
because of the larger contribution of overheating. At 15
this contribution is small, but at 90 K the overheating sp
trum exhibits an appreciable decrease in absorption
hn>1.5 eV~dashed lineh in Fig. 4b!. Therefore, in plotting
experimental data against temperature, the amplitude of
1.9-eV line was measured with respect to the curveh. Figure
6 shows that the amplitude of the 1.1-eV photoinduced
sorption line is a flat function of temperature below 40
and drops abruptly as the temperature approaches 90 K
the same time, the amplitude of the 1.9-eV line changes
tably less in the range between 15 and 90 K. Its intensity
the amplitude of increased transmission in theB feature as
functions of temperature are similar to the curve of lumin
cence athn51.7 eV versus temperature, which is essentia
constant between 15 and 50 K and drops by a factor of o
1.3 as the temperature reaches 90 K. According to Ma
et al.,3 this temperature dependence of the luminescence
tensity of a C60 film indicates a low content of impurities.

FIG. 4. ~a! Spectra of photoinduced absorption of a 2.0-mm C60 film at
different pumping power densitiesP51000, 250, and 45 mW/cm2 ~curves
1, 2, and3, respectively! at T515 K. ~b! Spectra of photoinduced absorp
tion at T515, 60, and 90 K~curves 1, 2, and 3, respectively! for
P51 W/cm2. CurvesL1 –L3 are luminescence spectra at the same te
peratures;h is the overheating spectrum atT590 K.

FIG. 5. Photoinduced absorption squared in a 2.0-mm fullerite film at ~s!
hn51.1 eV and~3! 1.9 eV versus pumping power density atT515 K.
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change with time. In particular, the photoinduced absorpt
at 0.6–2.1-eV increases considerably~Fig. 3b!. The spectral
position of the photoinduced absorption is constant, but
spectral shape is notably different, specifically, there is
enhanced transmission at theB feature. Note that even in thi
film, in which the magnitude of the effect is an order
magnitude higher, no photoinduced absorption lines were
tected in the 0.08–0.5-eV spectral range.

4. DISCUSSION

Low pumping power

The similarities between the spectrum shapes of 1.7
luminescence and the increase in transmission in the s
spectral range~Figs. 3a and 4b! and their temperature depen
dences indicate that this feature in the photoinduced abs
tion spectrum is due to the photoinduced decrease in l
absorption by luminescent states. At low pumping pow
density (P.1 W/cm2), a decrease in the excitonic absor
tion in the fullerite ground state is possible only at suf
ciently long lifetimes of singlet excitons. AtT5300 K and
high power of femtosecond laser pumping, the characteri
luminescence decay time is in the nanosecond range, an
luminescence intensity drops with time ast20.57 ~see Ref.
21!. Given that the luminescence intensity decays as a po
of time, one can expect the lifetime of a singlet exciton
increase to microseconds at low temperatures and low pu
ing powers, then excitonic absorption should decrease ow
to partial filling of excitonic states. This mechanism is su
ported by the absence of a feature athn51.73 eV in the
spectrum of photoinduced absorption of aging films.
turned out that unlike freshly fabricated films, they conta
lines of C60Ox and C60H complexes in their IR spectra. It i
known that fullerite oxidation leads to lower luminescen
efficiency athn51.69 eV,3 i.e., a shorter exciton lifetime.

Presently, several mechanisms of fullerite luminesce
are under discussion, namely, recombination of autolocali
excitons,3 free excitons in the crystal volume and excito
localized on defects~lines at 1.69 eV and a set of neighbo
ing lines!,4 and recombination of singlet excitons.1 Since the
latter process is dipole-forbidden owing to the state symm
try, a vibronic model was invoked in interpreting it. Accord
ing to this model, the red edge of excitonic absorption is
hn51.95 eV, i.e., it is shifted with respect to the lumine
cence spectrum to the high-energy side byD50.26 eV.

In the case under discussion,D50.03 eV, and it can be
interpreted in terms of relaxation of interatomic bonds un
photoexcitation. Investigation of the luminescence excitat
spectra of C60 films28 confirm thatD is considerably smaller
than the value suggested by the vibronic mechanism.1 The
excitation spectrum, in fact, contains lines of vibronic orig
at 1.92, 2.0, and 2.2 eV, but the excitation efficiency
creases as the energy of incident photons decreases t
eV. This observation cannot be interpreted in terms of
vibronic model.1

A model in which symmetric wave functions of single
states responsible for the absorption athn52.7 eV mix with
the antisymmetric function of states participating in the tra

-
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sition hn53.5 eV was suggested in Ref. 19. This mixing
due to the crystal field and should increase with both dr
ping temperature and increasing pumping power. As follo
from calculations,29 the 2.7-eV line corresponds to th
dipole-forbidden transition1Ag→1T2g , and the 3.5-eV line
to the allowed transition1Ag→1T1u . Studies of spectra o
luminescence quenching in C60 films by electric field and of
photoconductivity spectra indicate28 that these transitions ar
related to intermolecular charge-transfer states, i.e., abs
tion of photons withhn.2.3 eV generates free carriers. Th
admixture of the antisymmetric wave function to charg
transfer singlet states absorbing light athn52.7 eV ~the
low-energy edge is at 2.25 eV! leads to a similar admixture
to the singlet exciton state. As a result, dipole-forbidden tr
sitions are partially allowed not only for charge-trans
states, but also for singlet excitons. Therefore the spec
positions of the excitonic luminescence and of the low
excitonic absorption line are close.

The lines with energies 1.1 and 1.9 eV in spectra
photoinduced absorption were interpreted21 as light absorp-
tion by photoexcited triplet excitons. In this case, their inte
sities should be described by similar functions of tempe
ture and pumping power density. The latter condition
satisfied with fair accuracy~Fig. 5!, but the intensity of the
1.9-eV line is a notably flatter function of temperature th
the intensity of the 1.1-eV line~Fig. 6!. The reason for this
discrepancy in our case can be an appreciable contributio
the 1.9-eV transition in the system of singlet excitons gen
ated by the pumping light to the photoinduced absorptio21

This is also suggested by the similarity between the curve
the intensity of the 1.7-eV singlet exciton luminescence l
and of the 1.9-eV photoinduced absorption line plott
against temperature, as well as partial saturation of abs
tion by singlet excitons with an energy of about 1.73 eV.

High pumping power

The most important difference of photoinduced abso
tion spectra under pulsed pumping is the absence of
1.1-eV line ~compare Figs. 2d and 3!. At high excitation
powers, the photoinduced absorption spectrum in the p
second range is controlled by singlet excitons, according

FIG. 6. Logarithm of photoinduced absorption athn51.1 eV and 1.9 eV
~curves1 and2, respectively! and of luminescence intensity athn51.7 eV
~curve3! in a 2.0-mm fullerite film as a function of temperature. The pum
ing power densityP51 W/cm2.
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excitation refer to a 10-ns time interval or more, but t
spectrum atT515 K was similar to that21 measured in the
spectral rangehn<2.2 eV atT5300 K. That is, singlet ex-
citons dominate in the nanosecond range in C60, at least at
low temperatures. The reason may be, as pointed out in
21, that the conversion time of singlet excitons to triplets
substantially longer thant51.3 ns, which is typical of C60

molecules in solution. The low intensity of the photoinduc
absorption line at 1.1 eV~Fig. 2!, which is due to triplet
excitons,21 suggests that the concentration of triplet excito
generated by 20-ns laser pulses is low.

The behavior of photoinduced absorption in the spec
range 1.7–4.0 eV with changing temperature indicates
the inversion of the photoinduced absorption as the temp
ture is reduced from 300 to 90 K and the repeated reversa
the sign of the effect between 90 and 15 K are not associ
with changes in electronic properties of the fullerite due
phase transitions atT.260 K and 90 K. The inversion o
photoinduced absorption is due to changes in the ther
conductivity and specific heat of the film–sapphire substr
system with decreasing temperature.

Given the equal parity of the ground and lowest excit
states of the C60 molecule, Dicket al.21 suggested that a
high pumping powers the photoinduced absorption spect
should be similar to the absorption spectrum of the fuller
in the ground state, but shifted by the energy of the fi
excited state, which corresponds to a singlet exciton. It
lows from our measurements that this energy is 1.7 eV,
the transitions with energies of 3.5, 4.4 eV~Fig. 2a!, and 5.7
eV27 allowed in the dipole approximation should correspo
to the linesb51.8 eV, g52.7 eV, andd54.0 eV ~Fig. 2a!
in the photoinduced absorption spectra. The energy of la
line is essentially identical to that of the pumping laser lin
and the line could not be detected, while the energies of
former two lines are close to the energies of lines detecte
low temperatures~Fig. 2d!. The ratio between their intensi
ties, however, is opposite that of the respective lines in
optical density spectrum in Fig. 2a. At room temperatu
~Fig. 2b!, the line atb51.8 eV is much weaker than the lin
at g52.7 eV, whereas in accordance with the absorpt
spectrum of the fullerite ground state~Fig. 2a!, they should
not be so different~the 2.2-eV line observed in this spectru
must be ascribed to a transition in the system of photoexc
polarons21!.

In our opinion, the coincidence of the 1.8-eV and 2.7-e
lines with theF1 andF2 transitions in the fullerite absorp
tion spectrum~Fig. 2a! should be taken into account. Ther
fore, photoinduced changes in the ground state absorp
can contribute to the photoinduced absorption, along w
light absorption by photoexcited singlet excitons. An i
crease in the absorption due to dipole-forbidden transiti
in the C60 molecule due to the crystal field is most probab
Its dominant effect at 300 K can account for the absence
the 1.8-eV line from the photoinduced absorption spectr
and the presence of the intense 2.7-eV line.

In thehn51.6– 2.25 eV range~transitionF1 in Fig. 2a!,
the absorption spectrum of the fullerite ground state is de
mined by a number of factors. Absorption due to tails in t
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is substantially different. The high-energy section of the
sorption feature in the range of 1.95 to 2.1 eV~Fig. 1a!
results from vibronic transitions,1,30 the low-energy section
~1.65–1.95 eV! is due to partially dipole-allowed transition
in which singlet excitons are excited.

Another feasible mechanism of photoinduced absorp
in the low-energy section is due to HOMO–LUMO optic
transitions, which are forbidden owing to both system sy
metry and spin conservation. It follows from th
calculation29 that the low-energy edge of such singlet-t
triplet transitions1Ag→3T2g is at hn51.6 eV. Since their
oscillator strength is a factor of about 108 lower than that of
the lowest dipole-allowed transition at 3.5 eV,29 such transi-
tions are not observed in conventional absorption spec
But electrons and holes generated by pumping light
partly lift the restriction due to spin conservation, and t
1Ag→3T2g transition can be seen in the spectrum of pho
induced absorption at low temperature: the line at 1.9 eV
become more intense than the 2.7-eV line~transitionsb and
g in Fig. 2d!.

5. CONCLUSIONS

No radical restructuring of the fullerite energy spectru
due to optical generation of electron–hole pairs has b
detected, unlike the case of semiconducting cuprate HT
compounds. Thus, electronic properties of the fullerite c
be interpreted in terms of the fixed-band model.

The model proposed by Dicket al.21 to explain photoin-
duced absorption in fullerite films in terms of optical tran
tions in the system of photoexcited singlet excitons in
case of short-lived excitation and transitions in the system
triplet excitons for long-lived excitations is certainly app
cable. Other mechanisms, however, must be taken into
sideration, the most significant factor being the crystal fie
which leads to emergence of optical transitions from
ground state~HOMO–LUMO! in photoinduced absorption
which are dipole-forbidden in the C60 molecule. In fullerite
crystals, these transitions are weakly allowed owing to in
action between molecules, and optical pumping~like a de-
crease in temperature19! intensifies this interaction, an
hence increases absorption due to dipole-forbidden tra
tions.

Our investigation of luminescence and photoinduced
sorption in C60 films has led us to conclude that the radiati
recombination of excitons with energy 1.70 eV, and the
verse absorption process at 1.73 eV can proceed not
through the vibronic absorption mechanism, but also with
participation of intermolecular vibrational modes. This c
also be explained in terms of the crystal field, which can a
account for the absence of an analog of the 2.7-eV fulle
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Kinetics of avalanche mixing of granular materials

is
S. N. Dorogovtsev* )

A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
~Submitted 17 September 1996!
Zh. Éksp. Teor. Fiz.112, 257–277~July 1997!

The problem of the avalanche mixing of two fractions of granular material is solved. Mixing of
the fractions takes place in a cylinder that rotates slowly about its longitudinal axis, which
is positioned horizontally. The cylinder is not filled completely and at all times mixing only occurs
in the surface layer of granules. It is shown that, depending on the relation of the volumes
of the fractions and the volume of the empty space, mixing can take place slowly, over a large
number of rotations, in a diffusive regime with convection or rapidly, by the time the
cylinder has turned through a small angle. The mixing process is described analytically in terms
of a purely geometrical approach and can, in a number of situations, be reduced to a
sequence of discrete mappings. The characteristic mixing times are determined, including the
times over which one or the other of the pure fractions no longer exists in the regions
adjacent to the surface of the cylinder. Their dependence on the degree of filling of the cylinder
and on the ratio of the volumes of the fractions is found. ©1997 American Institute of
Physics.@S1063-7761~97!02207-5#

1. INTRODUCTION purely geometric approach! The following discussion
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A new burst of interest in problems associated with
interspersion and mixing of granular materials in rotati
cylinders1–11 has arisen following the publication of pionee
ing work on self-organized criticality.12–14 These problems
are also related to the intensely studied crumbling of sa
piles. Because of the complexity of these systems, the o
whelming bulk of published papers on this topic have
volved experimental studies and cumbersome comp
simulations. In general, the physics of the mixing process
turned out to be extremely nontrivial and the experimenta
observed patterns are often very striking, as, for example
illustration in Ref. 10 appeared on the cover of the Mar
1995 issue ofNature. That figure essentially initiated th
present paper.

Exactly what sort of systems are we discussing?
granular material has been poured into a cylinder that is
tating about its axis, which is positioned horizontally. T
cylinder lies in a gravitational field and is not filled com
pletely, so that a free space remains on the top.~See Fig. 1a!.
The questions of how the material will be interspersed, h
the granules will mix, and how different fractions of th
material will mix, if there is more than one, are indeed ve
complicated and a direct computer simulation will requ
thousands of hours of calculations on large machines.~See
Ref. 2, for example.! In fact, the problem is three dimen
sional; granules can also move along the longitudinal axi
the cylinder and the surface is not necessarily flat; the
swers depend on the rate of rotation of the cylinder, on
characteristics of the granules, etc.

The experiment of Metcalfeet al.10 is remarkable in that
the system proposed there makes it possible to disting
the essential feature of the mixing process in a rotating
inder. Furthermore, as we shall show below, mixing in t
system can be explained analytically,11 without resorting to
any kind of microscopic behavior and essentially using
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based on the configuration introduced in Ref. 10.
Our cylinder~or drum! is flat, so that it is more or less

disk and mixing of granules along the longitudinal axis
the cylinder is negligible. The cylinder rotates adiabatica
slowly and the free surface of the granular material, as in
experiment,10 is plane and always lies at the friction ang
~the angle of repose! to the horizontal.~In a real experiment
the angle of inclination of the surface fluctuates slightly
time, but it turns out that these variations are small10 and we
shall neglect them.! For definiteness we shall assume that t
direction of rotation of the cylinder is counterclockwise.~See
Fig. 1a.!

We shall assume that while the granules are inside
volume of the material they cannot move relative to o
another or slip relative to the cylinder walls. They can inte
sperse only when they escape to the free surface of the
terial. Mixing of the different fractions of material, therefor
takes place in avalanches which move continuously do
ward along the free surface. Thus, this kind of mixing h
been called avalanche mixing,10 although it would be more
precise to refer to it as mixing in avalanches. Since the gr
ules intersperse only at the free surface, within an in
circle of radius equal to the normal from the center to t
free surface~the radius vectorOE in Fig. 1b!, the material
rotates along with the cylinder as a whole without mixin
Thus, we have only to study processes taking place in
material lying in the outer annulus adjacent to the cylind
walls. When the drum is less than half full of material,
course, all of it mixes.

We shall assume that the granules are small and we
introduce the concept of a concentration of one or anot
fraction at a given point in the drum. The granules of t
different fractions will be distinguished only by color. Th
state at each point of the material will be described by
quantityr, the concentration~portion! of the black material
at that point.~Where all of the material is black,r51 and

141$10.00 © 1997 American Institute of Physics



FIG. 1. ~a! A sketch of avalanche mixing. For an
infinitely small rotation of the drum the granules of
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ll.
the different fractions from sectorA, on mixing,
spill into sectionB. The free surface of the granu
lated material lies at the friction angle to the hor
zontal. The region with mixed material is shade
Here and in the pictures to follow the different de
grees of mixing are not indicated.~b! The distribu-
tion of the fractions before the cylinder starts t
rotate. The position of the tangentCD is fixed by
the anglec. ~c! One of the tangents intersects th
free surface of the material 2p22u,c,2p. This
is the case of a cylinder that is more than half fu
where it is all white,r50.! Thus, we have to study the
at

a
e
io
c
t
ns
t

sy

ia
-
ce

m
all

m

f
n

i

e
in
he
n
th

equal to unity. Finally, the friction angle does not appear in

e;
e.
to

olve
as-
ally
rely
a-
ge-
en

ial
ith

of

t

free
ll
ss
e

he

,

-

alf
to

lly

c-
n-
variable r(x,t), the concentration of the black fraction
point x at time t.

Let the white fraction be below and the black, above,
the initial time. Later it will be convenient to introduce th
notation shown in Fig. 1b. We shall characterize the fract
of unfilled space in the drum and the volume of the bla
fraction by the anglesu and x, respectively. We shall no
give the trivial formulas relating the volumes of the fractio
and these angles here. In the following we shall also use
anglea, whose significance is indicated in Fig. 1b. It is ea
to confirm that it obeys

a5arccos@cos~u1x!/cosu#. ~1!

If x tanu!1, then it is easy to show thata>A2x tanu. It is
also evident thata5p for 2u1x5p, i.e., if the white frac-
tion occupies the same volume as the free space.

How fast should the cylinder rotate to satisfy the ad
baticity condition? LetT0 be the rotation period of the cyl
inder andd be the friction angle formed by the free surfa
of the material. We require that the anglee through which
the slowly rotating cylinder turns as a granule slides fro
one edge of the free surface to the other be much sm
than the friction angled. This is the adiabaticity condition in
our case. Lettd be the time over which a granule slides fro
one edge of the free surface to the other. Then

e52ptd /T0!d. ~2!

Simple elementary estimates yield

td.2AR

g

sin u

sin d
. ~3!

Here R is the cylinder radius andg is the acceleration o
gravity. This leads to the following condition for the rotatio
period of the cylinder:

T0@4p
1

d
AR

g

sin u

sin d
. ~4!

~Usually the formulaT0@AR/g, introduced as a justification
for the dimensional arguments in Ref. 10, is employed
place of Eq.~4!.!

When condition~4! is satisfied, the rotation speed of th
drum does not enter in our answers, so that in the follow
we take the time to be simply the angle of rotation of t
drum, i.e., we measure ‘‘time’’ in terms of angles. The a
swer does not depend on the cylinder radius, and we set
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our answers, so in all the mixing schemes shown below~ex-
cept that of Fig. 1a!, we set it equal to zero for convenienc
the horizontal surface will be depicted as a horizontal lin

We now proceed to one of the key points. We have
make a strong assumption which, as such, allows us to s
the problem avoiding any microscopic analysis. This
sumption makes it possible to convert our model essenti
into a problem on a circle and reduce the problem to a pu
geometric one.11 Thus, we shall assume that in the av
lanches the material mixes completely, i.e., to a homo
neous state.~See Fig. 1a; if this assumption is satisfied, th
the material mixes completely, spilling over from sectorA to
sectorB.! It is natural to choose this assumption as an init
approximation if we do not consider details associated w
the structure of the granules~their clustering, meshing, etc.!.
Then as the cylinder is rotated, at all points on the left half
the free surface of the material the concentrationr of the
black material is the same. Thus, even after the first turn~of
course, with the cylinder more than half filled!, for all the
material in the outer annulus we can introducer(c,t), the
density of the black material at timet at points on the tangen
of the type denoted byCD in Fig. 1b~c is the angle between
the corresponding radius vector and the normal to the
surface! and the fundamental quantity with which we sha
be dealing below. If, on the other hand, the cylinder is le
than half full, r(c,t) gives an exhaustive description of th
state of the system fort.2(p2u).

We note as justification that a computer simulation10 em-
ploying this assumption gave a surprisingly good fit to t
original experiment.

We shall describe the evolution ofr~c! in Secs. 2 and 3.
Two mixing regimes will be distinguished: slow mixing
with the drum more than half full~Sec. 2!, and rapid mixing,
with the drum less than half full~Sec. 3!. In the first case, we
find a discrete linear mapping~9! which describes the trans
formationr~c! after each new turn of the drum.~We believe
that the mapping~9! is the principal result of this paper.! The
answer is especially simple when the cylinder is almost h
full. When we transform to a coordinate system attached
the rotating cylinder, the evolution ofr~c! appears as diffu-
sion with convection on a circle: the black fraction gradua
washes out into the white, while the maximum inr~c! drifts
in the direction of rotation of the drum. Here the drift velo
ity is of orderu ~recall that we are measuring the dimensio
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less time in terms of angles! and the characteristic mixing
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time is of orderu .
When the drum is less than half full, the material

already mixed over times of order 2(p2u). Here an exhaus
tive description of the mixing is provided by the linear int
gral equations~15! and ~16! for r(c50,t). These equations
can be solved analytically. We shall see that the resul
r(c50,t) contains rapidly damped oscillations similar
those observed in the experiment.10

The situation is unique for a half filled (u5p/2) cylin-
der. In this case, as we shall see, complete mixing does
occur in general, even though all the material is intersper
on reaching the free surface. The system rapidly goes in
state where the distribution of the fractions changes peri
cally. The corresponding period is half the rotation period
the cylinder. Part of the black fraction remains in its pu
form, while the pure white fraction vanishes.

We shall find two other characteristic times for this sy
tem. ~See Sec. 4.! It turns out that for an analytic calculatio
of these times it is sufficient to use a substantially wea
assumption than that employed above. We are conce
with the answers to two questions:~1! after what timeTw

does it first become true thatr.0 everywhere, except per
haps the central region in the caseu,p/2, i.e., when does
the maximum possible volume of the white material fi
‘‘get spoiled?’’ Or, when is there no more white material le
in the outer annulus?~2! After what timeTb doesr,1 ev-
erywhere, except perhaps the central region in the c
u,p/2, i.e., when does the maximum possible volume of
black material first get ‘‘spoiled?’’ Or, when is no mor
black material left in the outer annulus?

In order to findTw andTb analytically we only have to
introduce the following requirements. We require that af
the granules spill out over the free surface, the mate
should be in a mixed state at each of the points on its left
if there are granules of both types on the right half.~See Fig.
1a.! As opposed to the previous assumption, the degre
mixing at different points in the left half of the free surfac
can now be arbitrary. After the first turn of the drum~if, for
example,u,p/2!, there are now three possibilities for ea
individual tangent of the typeCD shown in Fig. 1b: the
material at all points on the tangent is either black or wh
or in a mixed state. After studying the evolution of the sta
for all these tangents, we findTw and Tb . Thus, we have
again reduced our problem to a problem on a circle.

In Section 4 we construct functionsTw(u) and Tb(u),
on each of which a sequence of nonanalytic points~discon-
tinuities! is observed.~See Eqs.~32! and ~35!.!

2. MIXING DYNAMICS IN THE CASE OF CYLINDERS THAT
ARE MORE THAN HALF FULL

We shall describe the kinetics of avalanche mixing in
case where the cylinder is more than half full, i.e.,u,p/2!.
As we have already shown, the above assumption of c
plete mixing in the avalanches makes it possible to desc
the distributionr(c,t) after the first turn. Then the tota
amount of the black fraction outside a circle of radi
1•cosu will be
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0 0

5
sin2 u

2 E
0

2p22u

dcr~c,t !

1
cos2 u

2 E
2p22u

2p

dcr~c,t !tan2S 2p2c

2 D . ~5!

~Of course,M does not vary in time.! Here the coefficient in
front of the first integral is the result of integrating

E
0

sin u

dr r

along the tangent over the range (0,2p22u) of anglesc for
the radius vector. When, on the other hand, these angle
between 2p22u and 2p, the tangent is cut by the fre
surface~see Fig. 1c!, its lengthr (c) can easily be shown to
equal cosu tan@(2p2c)/2#, and we obtain the second inte
gral of Eq.~5!.

Since mixing takes place only on the free surface and
granules inside the interior volume of material rotate
gether with the drum, for 0<w,2p and t>w, we have

r~w,t !5r~0,t2w!. ~6!

After substituting this relation in Eq.~5! and substituting the
variablee5t2c, we obtain

2M

sin2 u
5E

t22p12u

t

der~0,e!

1cot2 uE
t22p

t22p12u

der~0,e!tan2S 2p1e2t

2 D .

~7!

We differentiate both parts of Eq.~7! with respect to time
and use the constancy ofM . Then,

05r~0,t !2r~0,t22p12u!1cot2 u

3H r~0,t22p12u!tan2S 2u

2 D2E
t22p

t22p12u

der~0,e!tan

3S 2p1e2t

2 D cos22S 2p1e2t

2 D J . ~8!

After cancelling the second and third terms on the right
Eq. ~8!, we obtain an equation which shows howr~w! is
transformed during a rotation:

r~w,t12p!5cot2 uE
0

2u

dzr~w2z,t !
sin~z/2!

cos3~z/2!
~9!

a discrete linear mapping. As an initial condition for Eq.~9!
we take, for example, the distributionr(w,t52p) obtained
after the first turn of the drum.~For arbitraryx, describing
the state of a system with the distributionr(w,t) is generally
meaningful fort>2p22u2x only!! Finding the distribu-
tion r(w,t52p) from a givenr(w,t50) ~see Fig. 1b! is a
very simple problem.~We, however, have not had to do thi
since in the following we restrict ourselves to examining t

143S. N. Dorogovtsev



special case of a small amount of the black fraction,x→0,
e

in
le

b
er

i

f
te

m

d
io

e

s

ion
f
he

im

ve
fts
in

an
by

nt
en

is,
-

the
n of

,
gents

to
the
s
me

ely

see
in

m
of
ce

to
for which r~w! can already be specified at the initial tim
t50.!

The discrete linear mapping~9!, along with this sort of
initial condition, completely describes the avalanche mix
process when the drum is more than half full. In princip
Eq. ~9! is the main result of this paper.

The simplest description of the mixing process can
given for the case of an almost completely filled cylind
i.e., foru!p/2. Then the right hand side can be expanded
u and, on introducing the ‘‘discrete’’ timet̃[2p@ t/(2p)#
for convenience~we are describing the slow variation o
r~w!, observing this distribution at times separated by in
gral periods!, we obtain the following equation:

2p
]r

] t̃
52

4

3
u

]r

]w
1u2

]2r

]w2
. ~10!

~We could equally well transform to a coordinate syste
rotating with the cylinder.! Equation~10! has been obtained
by expanding the integrand in Eq.~9! as a series inz. This
equation is valid fort̃@2p. Thus, in the regime considere
here avalanche mixing reduces to diffusion with convect
on the circle 0<w<2p.

If we assume for simplicity that there is little of th
black material (x!u), then initially it will all be concen-
trated at small angles. An examination of this limiting ca
illustrates the fundamental features of mixing whenu
! p/2. As an initial condition we can take
r(w,0)54xd(w). In fact, the integral

E
0

sin u

dr r E dw4xd~w!>2xu2

yields the correct amount of the black fraction in the reg
of the outer annulus.~For x!u!p/2 it equals the product o
the length 2u of the free surface and the thickness of t
black fraction layer at the initial time,xu. See Fig. 1b.! Then
we obtain the solution of Eq.~10! in the form

r~w, t̃ !54xH 1

2p
1

1

p (
n51

`

expS 2n2
u2

2p
t̃ D cosFnS w

2
2

3p
u t̃ D G J 5

4x

2p
u0S w22u t̃/3p

2p
,

u2

2p3 t̃ D ,

~11!

where u0 is the theta function.15 At late times t̃@p3/u2

exponential relaxation takes place, with a characteristic t
te52p/u2, to a uniform distribution r`52xu2/pu2

52x/p. ~Here 2p@12(12u2/2)#>pu2 is the amount of
material in the outer annulus forx!u!p/2.! At smaller
times, however, we obtain

r~w, t̃ !5
4x

uA2t̃
expH 2

p

2u2t̃
S w2

2u t̃

3p
D 2J ~12!

the standard answer for linear diffusion with convection o
an infinite interval, where the center of the distribution dri
at a velocity of 2u/3p. ~Recall that we are measuring time
radians.!
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Here we make one further comment. The location of
individual granule in the outer annulus can be specified
the coordinates (r ,w), i.e., the linear coordinate on a tange
of the typeCD in Fig. 1a and the corresponding angle. Th
the granule changes its ‘‘angle’’ by 2u as it slides over the
free surface. The average rate of change of this angle
therefore, 2u/2p. The drift velocity of the peak in the distri
bution obtained above is close to this value.

3. MIXING WHEN THE CYLINDER IS LESS THAN HALF
FULL

We now consider the casep/2,u,p, i.e., a cylinder
that is less than half full~Fig. 2!, where mixing takes place
over the entire volume and much more rapidly than in
case examined in Sec. 2. We again use the assumptio
complete mixing in avalanches~see Sec. 1!, so thatr5const
for t.2(p2u) along all the tangents shown in Fig. 2. Now
as opposed to the case examined above, all these tan
intersect the free surface. Thus, it is convenient for us
describe the time evolution of the mixing process using
quantity r(0,t), the fraction of black material at the point
on the tangent, which coincides with the free surface at ti
t. We use the notationq[p2u. ~See Fig. 2.!

First we find howr(0,t) is transformed in the situation
where the state at any point of the material is exhaustiv
described byr(z,t), i.e., when t.2q2x. ~The anglez
characterizes the position of the corresponding tangent;
Fig. 2.! In this case the total amount of the black fraction
the drum is

M5E
0

2q

dzE
r ~z!

sin q

dr rr~z,t !5
1

2 E
0

2q

dzr~z,t !

3S sin2 q2cos2 q tan2
z

2D , ~13!

where sinq is the total length of the tangent~from the point
of tangency to the intersection with the surface of the dru!
andr (z)5cosq tan(z/2) is the distance between the point
tangency and the point of intersection with the free surfa
for the tangent characterized by the anglez. ~cosq is the
length of the normal drawn from the center of the drum
the free surface. See Fig. 2.! Using Eq.~6! and substituting
the variablee5t2z, we rewrite Eq.~13! in the form

FIG. 2. One of the timesx,t,2q2x (q[p2u) during mixing with a
cylinder that is less than half filled.
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52E t22q

der~0,e! 12cot2 q tan2
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sin2 q t
F S 2 D G

~14!

and differentiate with respect tot. Given the constancy o
M , we obtain an equation forr(0,t) when t.2q2x:

r~0,t !5cot2 qE
0

2q

dzr~0,t2z!
sin~z/2!

cos3~z/2!
. ~15!

Evidently, for 0<t<x we have r(0,t)51. For
x,t,2q2x, on the other hand, on the right hand side
the equation the integral over the region which can be
scribed usingr(z,t) must be supplemented by an addition
term which accounts for the scatter in the granules belong
to the ‘‘pure black’’ fraction ~see the sector of the blac
fraction cut off by the free surface of the material in Fig. 2!:

r~0,t !5cot2 qE
0

t2x

dzr~0,t2z!
sin~z/2!

cos3~z/2!

1
2

sin2 q

]S~ t2x!

]t
, ~16!

where]S(w)/]w is the derivative of the area of the triang
FGH ~shown by the dashed lines in Fig. 2!, which charac-
terizes the additional contribution to the avalanche fr
granules belonging to the black fraction. The significance
the anglew is clear from Fig. 2. Fort5x the anglew goes to
zero, so it is understandable why the combinationt2x ap-
pears in Eq.~16!.

In order to obtain an expression forS(w) it is necessary
to solve a ‘‘high school’’ geometry problem.~See Appendix
A.! Here we limit ourselves to examining the simplest a
most instructive case,x!q!p/2 ~i.e., a black fraction
much smaller than the white and an almost empty dru!.
The following expression for this derivative in this limit i
found using the method given in Appendix A:

]S~w!

]w
5

1

2

4

3
xS q1

w

2 D . ~17!

~The derivation of Eq.~17! is not entirely trivial and from the
content of Appendix A it is understandable why we preferr
to isolate the factors 1/2 and 4/3 in Eq.~17!.! As a result, for
x!q!p/2 we have

r~0,t !5
1

q2 E
0

t

dz
z

2
r~0,t2z!1

4

3

x

q2 S q1
t

2D ,

0,t,2q; r~0,t !5
1

q2 E
0

2q

dz
z

2
r~0,t2z!, t.2q.

~18!

Now, introducing the ‘‘dimensionless’’ quantitiest[t/2q
andn(t)[r(0,t)/(4x/3q), we obtain

n~t!52E
0

t

de~t2e!n~e!111t, 0,t,1,

n~t!52E
t21

t

de~t2e!n~e!, t.1. ~19!
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an initial condition for the second. We notice at once that
system parameters enter explicitly in Eq.~19!; they are all
implicit in the variablet and the quantityn. The first equa-
tion yieldsn(0)51 at the initial time. After termwise differ-
entiation of Eq.~19!, we find

n8~t!52E
0

t

den~e!11, 0,t,1,

n8~t!52E
t21

t

den~e!22n~t21!, t.1, ~20!

where(...)8[d/dt. From the first of Eqs.~20! it follows at
once thatn8(0)51. Differentiating Eq.~19! twice, we obtain
the differential-difference equations

n9~t!52n~t!, 0,t,1,

n9~t!52n~t!22n~t21!22n8~t21!, t.1, ~21!

where n(0)5n8(0)51 at the initial time. A number of
books deal with this type of equation.16–18

The form of Eqs.~19!–~21! and the equations for the
following higher order derivatives imply the following: a
the point t51 the solutionn~t! has a discontinuity in its
value and discontinuities in all derivatives, at the pointt52
there are discontinuities in all the derivatives~the solution
itself is continuous!, at the pointt53 there are discontinui-
ties in all the derivatives of the solution beginning with th
second~the solution and its first derivative are continuou!,
and so on. For example, Eq.~19! implies that
n(110)2n(120)522, Eq. ~20! implies that
n8(210)2n8(220)52@n(120)2n(110)#54, etc.

It now remains to solve Eq.~19! ~or, for example, Eq.
~21!!. The solution of the first of Eqs.~21! has the form

n~t!5
1

2&
@~&11!exp~&t!1~&21!exp~2&t!#,

~22!

so thatn(120)53.546, n8(120)54.915. The second o
Eqs.~19! or ~21!, however, can be solved using the Lapla
transform.19 In Appendix B it is shown how to find the so
lution

n~t!5
9

4
1(

j

2~zj11!

zj
2~zj12!

exp@zj~t21!#

3E
0

1

den~e!@11zj~12e!2~11zj !exp~2zje!#.

~23!

Here the sum is taken over all roots~except the zeros! of the
characteristic equationz22212(z11)exp(2z)50.16 The
roots of this equation are positioned as follows: there i
triply degenerate zero root that leads to the appearance o
term 9/4, which corresponds to uniform mixing with a de
sity r`53x/q at late times. In fact, the total amount of th
black fraction in this case is equal to 2q2xq and of all the
material,
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2xq2

2q3/3
5

3x

q
.

There is also a set of complex conjugate roots with
asymptotic form

z6p52 ln~pp!6~2p23/2!p i 1O~ ln p/p!,

wherep is a positive integer greater than unity. For allp>2
these values are easily refined by successively iterating
expressionz5 ln@2(z11)/(22z2)#. Taking the sum in Eq.
~23!, we obtain the curve shown in Fig. 3. Oscillations sim
lar to these have been observed experimentally.10 In Fig. 3
one can see the discontinuities inn~t! and in the derivatives
at integral values oft of which we spoke above.

Beginning with t'2.5, the functionn~t! is well fitted
when the two lowest nonzero (p52) roots of the character
istic equation,z62521.39267.553i , are taken into ac-
count. This expression appears to be extremely compact
is written down directly with the numerical coefficients

n~t!59/410.496 exp@21.392~t21!#

3cos@7.553~t21!21.336#. ~24!

We note that the period of the cosine oscillations was l
than unity here. In the region 1,t,2, on the other hand, th
answer can be converted to the following analytic express
~see Appendix C!:

n~t!5@n~120!2223~t21!/2#cosh@&~t21!#1@~n8~1

20!23/2!/&2&~t21!#sinh@&~t21!#, ~25!

where the numerical values ofn(120) andn8(120) have
already been given after Eq.~22!.

Up to now we have only considered cylinders that a
less than half full. It is easy to see, however, that Eq.~16!
can be used for the case of a cylinder that is exactly half f
This case is unique in that complete mixing does not occu

FIG. 3. The density of the black fraction on the left half of the free surfa
~see Fig. 2! as a function of time in the case when the total volume
material is small compared to that of the empty space and the volume o
black fraction is small compared to that of the white:t[t/(2q),
n(t)[r(0,t)/(4x/(3q)). The narrow peak att50 is not indicated.~See
the text.!
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cylinder is half full, the tangents mentioned above beco
radius vectors of the cylinder. Thus, if the concentrati
r5const at all points of some radius vector, then even a
spilling over the entire left half of the free surface, the sa
value of the concentrationr will appear on the entire left hal
of the free surface. Here it is clear that the distribution p
tern of the fractions will repeat itself with a period ofp, i.e.,
with a period equal to half the rotation period of the dru
Of the two pure fractions, only the black one ‘‘survives
since the pure white fraction vanishes by the timet5p2x.
~Although we have not shown the mixing schemes speci
for this case, it is easy to understand from Fig. 2 how
material begins to mix in this situation.!

It is easy to see that on the left half of the free surfac

r~0,0<t<x!5r~0,p2x<t<p!51. ~26!

At timesx<t<p2x the densityr(0,t) is given by Eq.~16!,
in which the first term on the right vanishes sinceu5p/2:

r~0,t !52
]S~ t2x!

]t
5

sin2 x

sin2 t
. ~27!

Here we have used an expression for the area

S~w!5
1

2

sin w sin x

sin~w1x!
,

which follows from Eq.~A1! of Appendix A. This set of
values of r(0,t) together with the periodicity condition
r(0,t1p)5r(0,t) provides an exhaustive description of th
mixing process when the cylinder is half full.

4. LOSS TIMES FOR THE PURE FRACTIONS

We now determine the time when one or the other p
fraction no longer remains in the outer annulus~i.e., outside
the circle of radius cosu!. We denote the loss times for th
white and black fractions byTw and Tb . We shall demon-
strate how to obtain expressions for these times on the
ures.

As noted above, in this section it is no longer necess
to introduce the assumption of complete mixing of the fra
tions in avalanches, which had to be used previously~Secs. 2
and 3!. It will be sufficient to assume that if granules of bo
types appeared on the right half of the free surface~i.e., in
sectorA of Fig. 1a!, then at each point of the left surfac
~i.e., at each point of sectorB of Fig. 1a! the fractions will
exist only in a mixed state. Here the degrees of mixing of
fractions at different places in sector B can be utterly diff
ent, but the fractions should not exist anywhere in sectorB in
their pure forms~if only there is no single pure fraction in
sectorA!.

Again, as in the previous sections, the material inside
circle indicated by a dashed curve in Figs. 1, 2, 4, and
rotates along with the drum without mixing. As for the r
gion outside the circle of radius cosu, after even the first turn
of the drum ~here we have in mind the caseu,p/2! the
above assumption implies the following regarding each
the tangents of the typeCD indicated in Fig. 1b: either all
points on this tangent are in a mixed state or there is a p

e
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FIG. 4. Sketches of the distribution of the fractions
a cylinder at different times if the fractions are dis
tributed as shown in sketcha at timet0 : ~a! t5t0 , ~b!
t5t012p22u2w, ~c! t5t012p2w, ~d!
t5t012p22u, ~e! t5t012p.
material~white or black! at all its points. In order to findTb
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or Tw it is necessary to know whether the material at a giv
point is in a pure or a mixed state. The degree of mixing
the material at a given place is of no significance to us n
so it is unimportant how the degree of mixing varies alo
these tangents. The only important thing is on which of th
tangents a given point lies. Thus, for our purposes it is ag
sufficient to compare just the angle between the correspo
ing radius vector of typeOC and the normalOE to the free
surface~see Fig. 1b!, i.e., the angleCOE, at each point of
the material in the outer annulus. The sizes of the region
the outer annulus occupied by the different fractions can
measured in terms of the corresponding aperture angles

Some preliminary discussion is needed. For example
the situation depicted in Fig. 4a exist at timet0 . ~The black
material in the inner region of the cylinder is not shown, b
the ‘‘angle’’ w occupied by the black material in the out
annulus is.! Figures 4b–e show how events develop sub
quently.

It is easy to see by comparing Figs. 4a and 4d the p
black material vanishes in the outer annulus at the time

Tb5t01~2p22u!F w

2uG12p, ~28!

i.e., 2u of the black material vanishes in each rotation by
angle 2p22u and in order for a residue smaller than 2u of
the black material to be lost in the outer annulus, yet ano
complete turn of the cylinder is necessary.~Here@...# denotes
the integer part.! Note that instead of the white fraction i
Fig. 4a, there could be mixed material or any combination
the white fraction and the mixed material; all the same,
answer~28! for Tb remains unchanged.

On comparing Figs. 4a and 4e, we see that the p
white material vanishes from the outer annulus at the tim
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Tw5t012pF 2u G1~2p2w!22uF 2u G . ~29!

In this case, 2u of the white material~which occupies an
angle 2p2w in Fig. 4a! vanishes during each complete tu
of the cylinder. The second term on the right hand side
Eq. ~29! corresponds to the maximum number of comple
turns of the drum for which the white fraction still exists
the outer annulus. The next two terms on the right hand s
of Eq. ~29! correspond to the angle~less than 2u! through
which the drum must be turned in order for the last traces
the white fraction to vanish from the outer annulus. Equat
~29! does not change if the black fraction in Fig. 4a is r
placed by mixed material or an arbitrary combination of t
black fraction and the mixture.

Now we can use Eqs.~28! and ~29! to find the final
result for the loss time for the pure fractions in the ou
annulus. We shall determine the loss timeTw for the white
fraction. It will be convenient to start with the simplest lim
iting casex→0, i.e., with a negligibly small fraction of black
material. The material is positioned as shown in Fig. 5a
the initial time t50. Evidently, forp/2,u,p, i.e., when
the drum is less than half full,Tw52(p2u). If, however,
the drum is more than half full (u,p/2), we can simply set
w→0 and t050 in Eq. ~29! ~see Fig. 4a forw→0! and
finally get

Tw

2p
511S 12

u

p D Fpu G ~30!

a function containing a sequence of discontinuities.~See
Fig. 6!.

We now turn to the general case, examined above, o
arbitraryx, i.e., an arbitrarily thick black layer. First of all
however, it is obvious that we must haveu,p2x. Next, if
u.(p2x)/2 ~i.e., if there is more of the black material i
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FIG. 5. The form of the mixed material at some time
for u,(p2x)/2: ~a! t50, ~b! t5x, ~c!
t52(p2u)2x, ~d! t52/p2a, ~e! t52(p2u)1x,
~f! t52p1a.
the upper half of the drum than in the lower!, then it is easy

s-
re

in

2p2~2u1a1x!

n

to see that Tw52p22u2x. If, on the other hand,
u.(p2x)/2, thenTw(u) becomes nontrivial. Some succe
sive times in the initial stage of mixing in this situation a
shown in Fig. 5. At the time 2p1a shown in Fig. 5f the
white material in the cylinder is in the same position as
Fig. 4a.~The anglea is introduced in Fig. 1b.! Thus, we can
use Eq.~29! if, in it, we set t052p1a and the ‘‘angle’’ of
the white material 2p2w52p2(2u1a1x). Ultimately,
we have

Tw5a12p12pF2p2~2u1a1x!

2u G12p2~2u1a
1x!22uF 2u G . ~31!

Therefore,

Tw

2p
512

x

2p
1S 12

u

p D Fp2~x1a!/2

u G , ~32!

where the anglea is expressed in terms ofu andx using Eq.
~1!. Since we also havea→0 everywhere except atu5p/2
when x→0 ~see Fig. 1b or Eq.~1!!, in this limit Eq. ~32!
transforms to Eq.~30!. The set of resulting curves is show
in Fig. 6.
n
l

he
FIG. 6. The time after which none of the pure white fractio
remains anywhere in the drum~except, perhaps, in the centra
region when the drum is more than half filled! as a function of
the degree of filling of the drum. Curves are shown for t
following values of the parameterx/p which characterizes the
volume of the black fraction: 0, 0.01, 0.1, 0.25, 0.5, 0.75.
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FIG. 7. Some times during mixing for the cas
p/22x/2<u,p/2: ~a! t50, ~b! t5x, ~c!
t52(p2u)2x, ~d! t52(p2u)1x.
We now consider the additional jump toTw53p which
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occurs whenx Þ 0. ~Compare with the curve forx50 in
Fig. 6.! This jump takes place atu5p/22x/2, i.e., when the
dashed circle in Fig. 1b is tangent to both the upper a
lower boundaries of the black fraction. Then the anglea is
equal to p/2, which, as is easily shown, means th
Tw(u5p/22x/2)53p.

We can now turn to the question of when the black fra
tion vanishes everywhere except the inner circle. It is eas
show that foru.p/2, i.e., when the drum is less than ha
full,

Tb52p22u1x. ~33!

Now let p/22x/2<u,p/2. ~See Fig. 7!. As can be seen
from Fig. 7d, at the time 2(p2u)1x the fractions are po-
sitioned such that Eq.~29! can be used on settin
t052(p2u)1x andw52x in it ~cf. Fig. 4a!. As a result,
for these values ofu we have

Tb

2p
522

u

p
2

x

2p
1S 12

u

p D Fxu G . ~34!

Finally, we turn to the caseu<p/22x/2. ~See Fig. 5.!
Comparing Figs. 5e and 4a, we see that it is again possib
use Eq.~29! on settingto52(p2u)1x andw5x1a22u
in it. Thus,

Tb

2p
522

u

p
2

x

2p
1S 12

u

p D Fx1a22u

2u G . ~35!

Equations~34! and ~35! agree with one another at the poi
u5p/22x/2. In fact, at this pointa5p and, therefore, Eq
~35! transforms to Eq.~34!.

Equations~33!–~35!, together with Eq.~1!, provide a
description of the curves shown in Fig. 8. In the limitx→0
Eq. ~35! transforms toTb52p for anglesu,p/2, since then
a→0. In the same limit Eq.~34! yields Tb53p for
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minimum for smallx. ~See Fig. 8.! It can be verified that this
minimum exists forx,p/6. It vanishes forx5p/6 at the
point u5p/3. Equation~35! does not give a unique resu
when the drum is exactly half filled. This case, in whic
complete mixing does not occur, requires special treatm
It was described at the end of the previous section.

5. CONCLUSION

We have, therefore, explained the nature of avalan
mixing. It turned out to be sufficient to apply an essentia
simple geometric approach for an analytic description of
model that was used. It turned out that in a number of ca
the mixing process can be described as a sequence of dis
linear mappings. We have shown that the problem has
extremely nontrivial solution, although it does not involv
complicated nonlinear mappings.20,21 Two regimes of ava-
lanche mixing have been described: a diffusive regime w
convection when the cylinder is more than half full and
rapid mixing regime when it is less than half full.

We have calculated the characteristic mixing times,
cluding the times over which the pure fractions vanish in
regions adjacent to the surface of the cylinder. These tim
are a discontinuous function of the degree of filling of t
center and consist of a series of jumps. Singularities of
type are generally characteristic of a wide range of syste
with phase slippage centers, which include, in particular,
sephson structures, thin films of second order supercond
ors, etc.22–24 This concept can also be introduced for t
system examined here. We have actually used only
quantity for describing the distribution of the granules—t
angle between the radius vector of the corresponding tan
and the normal to the free surface.~See Fig. 1b.! This angle,
the ‘‘phase’’ of the granules, varies discontinuously byu
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5.
FIG. 8. The time after which none of the pure black fractio
remains anywhere in the drum~except, perhaps, in the centra
region when the drum is more than half filled! as a function
of the degree of filling of the drum. Curves are shown for t
following values of the parameterx/p which characterizes
the volume of the black fraction: 0, 0.02, 0.1, 0.3, 0.5, 0.7
The value ofTb(u5p/2)5` is not shown.
every time the granules slide along the free surface. Thus, in
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This last function has a narrow~if x!q! peak of widthx at

re-
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n-
our problem the free surface of the granular material ser
as a unique ‘‘phase slippage center’’ in our problem.

I am grateful to E. N. Antonov, V. V. Bryksin, S. A
Ktitorov, E. K. Kudinov, A. M. Monakhov, A. N. Samukhin
and Yu. A. Firsov for numerous, helpful discussions. Part
the results presented here were obtained while the author
at the School on Problems in Self-Organized Criticality
Turin financed by the INTAS program.

APPENDIX A

The form of the source in Eq. (16)

We shall find the derivative]S(w)/]w, which appears in
the left hand side of Eq.~16!. HereS(w) is the area of the
triangle FGH indicated by the dashed lines in Fig. 2. Th
significance of the anglew5t2x is also clear from this
figure.

Evidently, the side of the triangle i
FG5sinq1tan(w/2)cosq. Using the standard formulas fo
the area of a triangle, we obtain

S~w!5
1

2

sin w~FG!2 sin x

sin~p2w2x!

5
1

2 Fsin q1tan
w

2
cosqG2 sin w sin x

sin~p2w2x!

>
1

2 S q1
w

2 D 2 wx

w1x
. ~A1!

The last relation was obtained after a transition to the li
x,w,q!1. In this case, we have

]S~w!

]w
5

x

2

q1w/2

w1x Fw1x
q1w/2

w1x G . ~A2!
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the point w50 ~the maximum of]S(0)/]w5q2/2! and a
minimum equal toxq/2 at the pointw5x and is varies
linearly asx(q1w/2)/2 for w@x.

Thus, if there is little of the black material~i.e., if
x!q!1! then at timest,2q the mixing pattern is as fol-
lows: a black ‘‘leader’’ with an angular width ofx moves in
front, a very dark narrow ‘‘tail,’’ also of widthx, stretches
out behind it, and this is followed by a much less dark
gion. In the limitx→0 we can join the narrow ‘‘tail’’ to the
black leader and forw.0 deal only with the linear portion o
]S/]w. Then, in order to obtain the correct answer for t
amount of the black fraction

S~w52q!5E
0

2q

dw
]S

]w
52q2x,

it is necessary to renormalizex with a factor of 4/3. As a
result, we obtain Eq.~17! for ]S(w)/]w, which is valid for
x ! w,q!1.

APPENDIX B

Solution of Eq. (19)

Since the standard formulas for this type of equat
from the classical handbook of Pinii16 lead to incorrect re-
sults, we must briefly describe in general the entirely co
ventional procedure for solving Eq.~19! using Laplace trans-
forms.

We shall solve the second of the system of Eqs.~19!
over the interval 1,t,`, assuming that the solutionn~t! is
already known in the interval~0,1!. ~See Eq.~22!, which is
obtained from the first equation of this system.! We apply the
Laplace transform

y~z!5E
0

`

dge2zgn~g11! ~B1!

to both parts of Eq.~19!:

150S. N. Dorogovtsev



n~g11!52Eg

de~g2e!n~e11!52Eg

de~g2e!n~e

a

t

nc
n

th

e

s

e

and for the odd (k50,1,2,...):

sion

. de

ev.

e

l

g21 0

11!22E
0

g21

de~g212e!n~e11!

12E
0

g21

den~e11!, ~B2!

whereg belongs in the interval~0,̀ !. Now it is necessary to
use the standard formulas

y~z!

z
5E

0

`

dge2zgE
0

g

den~e11!,

and

y~z!

z2 5E
0

`

dge2zgE
0

g

de~g2e!n~e11!

and carry out successive integrations by parts, separating
collecting the terms withy(z). We then obtain

y~z!5
2

z22212~z11!exp~2z!
E

0

1

den~e!@11z~1

2e!2~11z!e2ze#. ~B3!

It follows immediately from the limiting value theorem tha

n~t→`!5 lim
z→0

zy~z!59/4.

Taking the inverse Laplace transform19

n~t11!5
1

2p i EC1 i`

C2 i`

dzezty~z!5(
j

Resj@ezty~z!#

~B4!

~the sum of the residues is taken over all poles of the fu
tion ~3!; since there are none of these in the right half pla
$z%, C can be taken to be any positive real constant! and then
separating a factor of 9/4 from the third-order pole at
point z50 yields the final formula~23!.

APPENDIX C

Analytic representation of the solution of Eqs. (19) in
the region 1 <t<2

We have pointed out that the solutionn~t! of these equa-
tions can be written in a very simple analytic form within th
interval 1,t,2. We now show how this can be done.

We calculate all the derivativesn (m)(t) at the point
t5110. Equations ~19! immediately imply that
n(110)5n(120)22, Eq. ~20! implies that
n8(110)5n8(120)22n(0)215n8(120)23, Eq. ~21!
implies that n9(110)52@n(110)2n(0)2n8(0)#
52@n(120)24#, and so on. Evidently, all the derivative
n (m)(110) are expressed only in terms ofn(0)5n8(0)51
and the known~see Eq.~22!! n(120) andn8(120). The
following general results for the derivatives can be obtain
for the even ones (k50,1,2,...):

n~2k!~110!52k@n~120!22~k11!#, ~C1!
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n~2k11!~110!52k@n8~120!23~k11!#. ~C2!

Finally, on the interval 1,t,2 we have

n~t!5 (
k50

`
2k

~2k!!
@n~120!22~k11!#~t21!2k

1 (
k50

`
2k

~2k11!!
@n8~120!23~k11!#~t21!2k11.

~C3!

These series immediately sum to the final analytic expres
with sinh and cosh in Eq.~25!.
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The mass of a large polaron

A. É. Myasnikova and É. N. Myasnikov

Rostov Teachers’ Training University, 344092 Rostov-on-Don, Russia
~Submitted 1 October 1996!
Zh. Éksp. Teor. Fiz.112, 278–283~July 1997!

We show that, beginning with the works of L. D. Landau and S. I. Pekar, the effective mass of a
large polaron has been determined with a crucial error. Since all such research ignored the
spatial dispersion of the lattice polarizability, the maximum group velocity of phonons is found to
be zero, so that the phonon ‘‘cloud’’ of a polaron is unable to follow the polaron. We allow
for the spatial dispersion of the lattice polarizability and derive an expression for the effective
polaron mass valid over the entire velocity range in which a polaron can exist: from zero to
the maximum group velocity of phonons. According to this expression, the polaron mass depends
not only on the phonon frequency, reciprocal effective dielectric constant, and the carrier
mass but also on the maximum group velocity of phonons interacting with the carrier and on the
polaron velocity. ©1997 American Institute of Physics.@S1063-7761~97!02307-X#
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Polaron motion is the coordinated motion of two wa
packets: of the charge carrier and of lattice polarizati
Naturally, this is possible if the group velocities of the
wave packets coincide and are nonzero. However, if one
sumes that the frequency of the lattice polarization wave
independent of their wave vector, a common approximat
in polaron theory beginning with the fundamental work
Landau and Pekar,1,2 the group velocity of the polarization
wave is found to be zero, which means that it is impossi
in this approximation to study polaron motion. If we assum
that V50 and calculate the polarization induced in the m
dium by a moving localized charge, then, as shown in Ref
the polarization, rather than being localized, correspond
real polarization waves of the Cherenkov-radiation ty
emitted by the charge. This fact is in full agreement with t
results of Landau’s theory of a quantum Bose liquid4,5

where the motion of the Bose vacuum with a velocity high
than the minimum phase velocity with respect to the s
system linked to the coordinate system is accompanied
spontaneous emission. The destruction of the polaron’s
larization ‘‘cloud’’ due to fact that the polaron velocity i
higher than the minimum phase velocity of the phono
comprising the cloud has been demonstrated in Ref. 6 v
model of a medium with two phonon branches interact
with the carrier and having different minimum phonon pha
velocities. In such a medium a polaron at rest has two po
ization clouds formed by phonons of two types. If the bran
with the higher minimum phonon phase velocity is capa
of ensuring the localization of the carrier, when the tw
cloud polaron reaches the lower of the two velocities it lo
the cloud formed by the lower-velocity phonons, as shown
Ref. 6. Here, although the carrier remains in the autoloc
ized state, the polaron energy, mass, and total polariza
charge change. When the polaron reaches the higher m
mum phonon phase velocity, the carrier becomes delo
ized, since the equations of motion of carrier and polari
tion have no autolocalized stationary solutions at su
velocities. Thus, a polaron can exist only within a limite
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velocity of the phonons participating in the localization
the carrier~or the higher of the two minimum phonon pha
velocities if the medium has several phonon branches
pable of autolocalizing the carrier!.

An important aspect of the theory of a moving polaron
the effective mass of the polaron. On the basis of the ab
reasoning we conclude that calculating the effective pola
mass correctly is possible only if we allow for the depe
dence of the polarization wave frequency on the wave vec
or for the spatial dispersion of lattice polarizability. Landa
and Pekar1 obtained their formula for the effective polaro
mass without taking this dependence into account, i.e.,
suming that the group velocity of the polarization waves
zero. In this case the motion of a polaron as a whole
impossible, but there was no way Landau and Pekar1 could
have noticed this since they used an impermissible expan
of the pole functionc(v)5const/(v22V2) in a Taylor series
in powers ofv2/V2 ~V is the frequency of longitudinal op
tical phonons!.

Davydov and E´ nol’ski�7 were the first to study the prob
lem of the effective polaron mass with allowance for t
spatial dispersion of lattice polarizability. However, with th
approximation they adopted they were able to derive onl
formula for the effective polaron mass valid for low phono
dispersion~characterized by a maximum phonon group v
locity u! and phonon velocityv, i.e., u,v!aV ~a is the
lattice constant!, or u,v!253104 cm s21 ~see Ref. 7!. Nev-
ertheless, their theory contained no internal contradictio
since the polaron velocityv was less thanu.

Below we rigorously allow for the dependence of th
polarization wave frequency on the wave vector and der
formulas for calculating the effective polaron mass valid
arbitrary phonon dispersion~i.e., arbitraryu! and an arbitrary
polaron velocityv,u.

2. POLARON ENERGY WITH ALLOWANCE FOR PHONON
DISPERSION, AND THE EFFECTIVE POLARON MASS

The Hamiltonian of a system consisting of the mediu
and the carrier has the following form:6,7

152$10.00 © 1997 American Institute of Physics



H 1H 1H 5E d3r ¹ c21
2p

V2P21
]P 2
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H 1H 5
e2cV2 E d3rd3r1d3r2

c2~r !c2~r !G~r

rm
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x-
the
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f

of
0 pol int H r cV2 F S ]t D
2u2P•¹ r

2PG2P–DJ , ~1!

D52e¹ rE c2~r ,t !
d3r

ur2r 8u
,

wherec(r ,t) is the carrier wave function~assumed real!, P
is the polarization vector,V is the frequency of longitudina
optical phonons at the center of the Brillouin zone,c is the
reciprocal effective dielectric constant (c51/«`21/«0), and
u is a quantity to which the phase and group velocity of
phonons participating in the localization of the carrier a
ymptotically converge. We examine the variation of the p
larization self2energy and the energy of interaction of th
carrier and the polarization field,Hpol1H int , caused by
variation of the polaron velocity. If we allow for the equatio
of motion for P, the corresponding part of the Hamiltonia
~1! is

Hpol1H int52
1

2 E P–Dd3r1
2p

cV2

3E d3r F S ]P

]t D
2

2P•
]2P

]t2 G . ~2!

The polarization charge density can be expressed in term
the free charge density at time zero,c2(r ), via the Green’s
function G(r2r 8,t) ~see Ref. 6!,

r~r ,t !5ecV2E G~r2r 8,t !c2~r 8!d3r 8,

so that the polarization vector has the form

P~r ,t !5
ecV2

4p
¹ rE G~r12r2 ,t !c2~r2!d3r1d3r2

ur2r1u
. ~3!

We select a system of cylindrical coordinates with thez axis
parallel to the polaron velocityv. Then the Green’s function
G(r ,t) obtained in Ref. 3 has the following form:

Gi~r ,t !5

{
exp~2V i@~z2vt !2/b1i

2 1r 2#1/2/ui !

4pui
2b1i@~z2vt !2/b1i

2 1r 2#1/2 ,

v,ui , b1i
2 512

v2

ui
2 ,

cos~V i@~z2vt !2/b2i
2 2r 2#1/2/ui !

2pui
2b2i@~z2vt !2/b2i

2 2r 2#1/2 ,

v.ui , H z2vt,0,
r ,uz2vtu/b2i ,

0, v.ui , H uz2vtu,0,
r .uz2vtu/b2i ,

uz2vtu.0, b2i
2 5

v2

ui
2 21,

~4!

wherei 51,2. Plugging~3! and the expression forD(r ,t) in
terms of c2(r ,t) into ~2! and transforming the result, w
arrive at the following formula:
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pol int 2 ur2r1u H 2 1

2r2 ,t !1E d3r3c2~r2!c2~r3!F ]

]t
G~r1

2r2 ,t !
]

]t
G~r2r3 ,t !2G~r12r2 ,t !

]2

]t2
G~r

2r3 ,t !G J . ~5!

We seek the effective polaron mass in the fo
m** 52(E(v)2E(0))/v2 ~Ref. 7!, whereE is the polaron
energy. Bearing in mind that in~5! only the Green’s function
G(r ,t) depends on the polaron velocityv, we can easily
obtain the following expression form** :

m** 5
e2cV2

v2 E d3rd3r1d3r2

ur2r1u

3H c2~r2!c2~r !@G~r12r2 ,v,t !2G~r12r2,0, t !#

1E d3r3c2~r2!c2~r3!F ]

]t
G~r12r2 ,v,t !

]

]t
G

3~r2r3 ,v,t !2
]

]t
G~r12r2,0, t !

]

]t
G~r2r3,0, t !

2G~r12r2 ,v,t !
]2

]t2 G~r2r3 ,v,t !

1G~r12r2,0, t !
]2

]t2 G~r2r3,0, t !G J . ~6!

Clearly, calculating the numerical values of the effecti
polaron mass by~6! is difficult. Note, however, that the in
tegral in~6! is of the convolution type, which can be simpl
fying by introducing Fourier transforms. It is more conv
nient to introduce Fourier transforms in Eq.~2!. The
integrands in both integrals on the right2hand side of Eq.~2!
are products of two functions of the radius vectors. By e
panding each in a Fourier series and integrating over
radius vector we can transform~2! to the following form:

Hpol1H int5
1

2 E Pk•Dk

d3k

~2p!3

1
4p

cV2 E d3k

~2p!3 kz
2v2Pk

2 , ~7!

wherePk is the Fourier transform of the polarization vect
~we have also allowed for the fact thatD2k52Dk and
P2k52Pk). Clearly,~3! is a convolution in the variablesr1

and r2 . Using ~3! and the property of Fourier transforms o
convolutions, we can write the Fourier transformPk of the
polarization vector as a product of the Fourier transforms
the functions¹ r(1/ur u8)G(r ,t) andc2(r ,t):

Pk5
ecV2

4p

4p ik

k21kz
2

1

kz
2~v22u2!2k2u22V2 ck

2 , ~8!
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whereck
2 is the Fourier transform of the square of the carri-
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er’s wave function. PluggingPk specified by~8! and Dk

found in a similar manner into~7!, we arrive at a formula for
the dependence of the energy considered here on the po
velocity:

Hpol1H int5
e2cV2

pu2 E
0

` k dk dkz
k21kz

2

~ck
2!2

kz
2~12v2/u2!1k2V2/u2

3S 12
2kz

2v2/u2

kz
2~12v2/u2!1k21V2/u2D . ~9!

The expression for the effective polaron mass obtained in
usual way via~9! is

m** 5
2e2cV2

pu2v2 E
0

` k dk dkz
k21kz

2 ~ck
2!2H 1

kz
21k21V2/u2

2
kz

2~123v2/u2!1k21V2/u2

~kz
2~12v2/u2!1k21V2/u2!2J . ~10!

For polaron velocities low compared to the minimum ph
non phase velocityu (v!u) the expression for the polaro
mass is simpler:

mv!u** 5
2e2cV2

pu4 E
0

` k dk kz
2dkz

k21kz
2

~ck
2!2

kz
21k21V2/u2 . ~11!

3. DISCUSSION

Equation~10! shows that the effective mass of a lar
polaron depends not only on such medium parameters a
optical phonon frequencyV, the reciprocal effective dielec
tric constantc, and the ratiom* /me , as follows from the
formula of Landau and Pekar,1 or the coupling constant~de-
termined by the same parameters!, as, say, stated in Refs.
and 9, but also on the minimum phase velocityu of the
optical phonons participating in the localization of the carr
and on the polaron velocity. More than that, the energy o
polaron at rest proves to be dependent on the minim
phase velocity of the phonons, which is quite natural~see
~9!! since, as the expression~4! for the Green’s function
implies, the spread of the distribution of the polarizati
charge is proportional tou/V.

Figure 1 depicts the dependence of the effective pola
mass on the polaron velocityv for different values of the
minimum phonon phase velocity~the ratiov/u is laid off on
the horizontal axis! in the limited velocity intervalv,u in
which a polaron can exist. The polaron mass was calcula
by formula ~10! for the following values of the medium pa
rameters:V5360 cm21, c50.27, andm* /me51. The wave
function was taken in the form of the Pekar wave function1,2

c~r ,t !5
a3/2

A7p
~11ar !exp~2ar !,

where the values ofa ~the localization parameter! were ob-
tained by minimizing the polaron’s energy functiona
Curves1, 2, and3 correspond to the following values of th
minimum phonon phase velocity:u1523106 cm/s,
u25106 cm/s, andu3553105 cm/s. Clearly, the effective
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polaron mass grows as the polaron velocity approaches
critical value equal to the minimum phonon phase veloc
This increase, apparently, is due to the deformation of
polarization cloud of the polaron, as the form of the Gree
functionG(r ,r 8,t) implies ~see Eq.~4!!. The decrease in the
phonon part of the effective polaron mass with the incre
in the minimum phonon phase velocityu can easily be ex-
plained by the growing ability of polarization to move ind
pendently.

Such behavior of the effective polaron mass conside
as a function ofu and v agrees with the result obtaine
earlier by Davydov and E´ nol’ski�7 for the region of low pho-
non dispersion. They derived an approximate expression
m** of the form

m** 'm* 1
4e2g2

~9p!2a3V2 S 11
g2

5p F181

21

v2

a2V2 218
u2

a2V2G D ,

~12!

with g5(e2c/a)(m* a3/\2), by replacing the exact formula
~4! for the Green’s functionG(r ,,t) with an approximation
expression on the assumption thatu,v!aV. Their results in
the region v,u!aV ~for typical ionic crystals this
corresponds7 to v,u!2.53105 cm/s, and for the values o
the parameters used in constructing Fig. 1 the region
v,u!53105 cm/s! are close to those obtained in the prese
paper: formula~12! demonstrates that the effective polaro
mass decreases with increasingu and increases withv.
However, outside the region whereu!aV formula~12! may
yield negative values ofm** for v close to zero.

The point on the vertical axis (v50) denoted bymPek**
stands for the value of the effective mass obtained by Lan

FIG. 1. The polaron-velocity dependence of the effective polaron mass
culated by Eq.~10! with the following values of the medium parameter
V5360 cm21, c50.27, andm* /me51. Curves1, 2, and3 correspond to
the following values of the minimum phonon phase velocit
u1523106 cm/s,u25106 cm/s21, andu3553105 cm/s. The point on the
vertical axis (v50) denoted bymPek** stands for the value of the effective
mass obtained by Landau and Pekar’s formula1,2 for the given values of the
medium parameters.
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and Pekar’s formula1,2 for the given values of the medium

lu

3É. N. Myasnikov and A. P. Popov, Dokl. Akad. Nauk UkSSR5, 73
~1980!.

nd
parameters. Clearly, the limit of~10! with u,v→0, which is

lim
u→0,v,u

m** 5
2e2c

pV2 E k dk kz
2dkz

k21kz
2 ~ck

2!2, ~13!

coincides, as it does for any physical problem, with the va
in the limit u50, v→0 obtained by Landau and Pekar.1,2

1L. D. Landau and S. I. Pekar, Zh. E´ ksp. Teor. Fiz.18, 419 ~1948!.
2S. I. Pekar,Studies in the Electron Crystal Theory, Rept. AEC-tr-5575,
U.S. Atomic Energy Commission~1963!.
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Zh. Éksp. Teor. Fiz.94, No. 2, 177~1988! @Sov. Phys. JETP67, 313
~1988!#.
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Magnetic and structural correlations in EuMnO and BiMnO crystals in the paramagnetic
temperature range

E. I. Golovenchits,* ) V. A. Sanin, and A. V. Babinski 

A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
~Submitted 24 October 1996!
Zh. Éksp. Teor. Fiz.112, 284–295~July 1997!

The magnetic and dielectric properties of EuMn2O5 and BiMn2O5 crystals are investigated over
a wide range of temperatures 4.2–250 K, including the rangeT@TN.40 K. Significant
departures from the Curie–Weiss law are observed in both crystals for the magnetic susceptibility
in the paramagnetic range; they are attributed to the presence of correlated domains of
magnetic order over a wide range of temperatures. Anomalies in the dielectric properties of the
crystals are observed in the same temperature rangeT.TN and, as in the caseT,TN ,
are correlated with the magnetic properties. ©1997 American Institute of Physics.
@S1063-7761~97!02407-4#
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1. INTRODUCTION

Crystals of the series RMn2O5 (R31Mn31Mn41O5
22,

where R31 denotes a rare-earth ion or Bi31) belong to the
class of magnetoelectric crystals, for which magnetic a
structural phase transitions take place at the same temp
ture T.40 K ~Refs. 1–6!. At room temperature these crys
tals have orthorhombic symmetry described by the sp
group Pbam.7,8 Neutron-diffraction studies of severa
RMn2O5 crystal9–13 have shown that magnetic ordering wi
an incommensurate propagation vectork5(0.5, 0, k) sets
in at a temperatureT<40 K, where 0.16,k,0.37 for crys-
tals with various rare-earth ions. Magnetic studies
RMn2O5 at temperatures of 16–22 K have often disclos
one other magnetic phase transition. A linear magnetoe
tric effect and pyroelectric effect have been observed i
number of RMn2O5 crystals at temperatures conducive to t
existence of long-range magnetic order.3–6

Here we investigate the magnetic and dielectric prop
ties of EuMn2O5 and BiMn2O5 crystals in the paramagneti
temperature range. It has been shown1,2 that the magnetic
phase transitions in EuMn2O5 at temperatures of 18 K an
40 K are associated with structural phase transitions. It
also been shown3 that a linear magnetoelectric effect tak
place in EuMn2O5 at temperaturesT,40 K, implying that
the structural phase transition atT.35 K is a transition to a
noncentrosymmetric space group.

According to neutron-diffraction date,13 a magnetic in-
commensurate structure appears in EuMn2O5 for T,TN with
the propagation vectork5(0.5, 0, 0.33), and at a tempera
ture T,18 K a magnetic superstructure emerges with
incommensurate propagation vector close tok. A compara-
tive analysis of data in Refs. 2 and 13 suggests that the o
of a complex magnetic structure and the associated chan
crystal structure could be attributable to the presence of
merous, essentially equivalent magnetic exchange coupl
of Mn31 and Mn41 ions through oxygen ions.

In the present study we show that correlation betwe
the magnetic and dielectric properties of the investiga
crystals is also observed in the paramagnetic tempera
range (TN,T,250 K!, probably because of the presence
156 JETP 85 (1), July 1997 1063-7761/97/070156-07
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bounded, correlated magnetic domains at these temperat
We carry out a comparative analysis of the magnetic a

dielectric properties of EuMn2O5 and BiMn2O5 crystals. The
EuMn2O5 crystal has two magnetic subsystems: the s
system of manganese ions~Mn31 and Mn41) and the sub-
system of Eu31 ions. The Eu31 ions are nonmagnetic in th
ground state7F0. However, the first excited state7F1 of
these ions, which is separated from the ground state by
energy;300 cm21, is magnetic~i.e., the Eu31 ions form a
Van Vleck paramagnetic subsystem!. We assume that the
magnetic subsystems of Mn31 and Mn41 ions are similar for
both of the crystals investigated. Consequently, the magn
properties of the BiMn2O5 crystal provide a gauge for as
sessing the magnetic properties of the subsystem of ma
nese ions in the EuMn2O5 crystal as well~since Bi31 ions
are nonmagnetic!.

In the paramagnetic range correlated anomalies of
magnetic and dielectric susceptibilities are observed bot
BiMn2O5 and in EuMn2O5. However, the dielectric proper
ties of EuMn2O5 have certain distinctive features of the
own, which are clearly attributable to the influence of the
mally excited Eu31 ions.

2. MAGNETIC PROPERTIES OF BiMn 2O5 AND EuMn 2O5

The static magnetic susceptibility was investigated o
vibration magnetometer in the temperature range 4.2–25
along the three principal axes of the crystals. The BiMn2O5

and EuMn2O5 single crystals were grown by the technolog
described in Ref. 1 and had the appearance of brilliant, w
faceted pyramids with dimensions 53434 mm. X-ray
phase analysis was performed, confirming the orthorhom
symmetry of the crystals with space groupPbam. The crys-
tals were oriented radiographically to within angles
order 1°.

The low-temperature magnetic properties of EuMn2O5

have been investigated previously,2 as have those o
BiMn2O5.14 Here we are concerned primarily with the ma
netic properties of these crystals in the paramagnetic t
perature range. Certain prominent features of the tempera
curves of the reciprocal susceptibility at temperatures cl
156$10.00 © 1997 American Institute of Physics
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FIG. 1. Temperature dependence of the reciprocal m
netic susceptibility for a BiMn2O5 crystal.1! Orienta-
tion of the external static magnetic field along thea axis
in the crystal (Hia); 2! Hic. The inset shows the sam
dependence for EuMn2O5: 1! Hia; 2! Hib; 3! Hic.
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to 40 K and 20 K~the latter for EuMn2O5) are visible in Fig.
1. As mentioned in the Introduction, the anomaly near 40
in all crystals of the RMn2O5 class is usually caused by th
onset of long-range magnetic order, which has been c
firmed by neutron-diffraction examinations for several cry
tals, including EuMn2O5 ~Ref. 13! and BiMn2O5 ~Ref. 14!.

The paramagnetic susceptibility of BiMn2O5 is isotropic,
whereas the susceptibility of EuMn2O5 along thec axis (xc)
differs from the two susceptibilities along thea and b axes
(xa,b), which are close to each other~see Fig. 1!. It is also
apparent from Fig. 1 that the values of the paramagn
susceptibility forT.40 K are close for both crystals and
therefore mainly characterize the contribution of the Mn31

and Mn41 ions. Usually the Van Vleck susceptibility fo
paramagnets containing Eu31 ions is of order 1022 emu/mol
~see Ref. 15!, i.e., are generally of the same order as o
measured total paramagnetic susceptibility of the EuMn2O5

crystal. Moreover, the Van Vleck paramagnetic suscepti
ity can be anisotropic. According to Ref. 16, rare-earth io
with an integer-valued total momentumJ (J51 of the state
7F1), as a rule, have Ising anisotropy, which is precisely
type of anisotropy we should expect of the Van Vleck pa
magnetic susceptibility of Eu31 ions. As a result, we can
infer from an analysis of Fig. 1 that the contribution of th
Van Vleck susceptibility of Eu31 ions imparts anisotropy to
the paramagnetic susceptibility of the EuMn2O5 crystal and
is responsible for the deviation ofxc from the values of
xa,b .

Furthermore, it is evident from Fig. 1 that the parama
netic susceptibilities of both crystals deviate significan
from the Curie–Weiss law. The slope of the temperat
curve of the reciprocal susceptibility changes for both cr
tals at a temperatureT'130 K, a feature that is especiall
conspicuous for EuMn2O5 along thec axis of the crystal. If
we attempt to process the temperature curve of the recipr
susceptibility according to the paramagnetic lawx5C/
157 JETP 85 (1), July 1997
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(T1QN) for antiferromagnets in the two temperature inte
vals 40 K,T,130 K andT.130 K, we find that the para
magnetic Ne´el temperatureQN is much higher than the true
valueTN.40 K for EuMn2O5 along thec axis, having val-
ues of 2430 K and 2270 K, respectively. The effective
moments for the two temperature intervals aremeff

c 58.7mB

andmeff
c 57.3mB , respectively. These moments are appro

mately equal to the sum of the effective moments of the t
ions Mn31 and Mn41 ~see, e.g., Ref. 17!. We note that simi-
lar ratios betweenQN and TN and close values of the mo
mentsmeff are obtained for orientations along thea and b
axis in the EuMn2O5 crystal and for all orientations in the
BiMn2O5 crystal.

3. DIELECTRIC PROPERTIES OF BiMn 2O5 AND EuMn 2O5

Wafers of thickness 150–200mm oriented perpendicula
to the principal~a, b, c! axes were cut from BiMn2O5 and
EuMn2O5 single crystals. Capacitors were fabricated fro
these wafers by the spray deposition of gold contacts hav
an area of 232 mm. The real part of the dielectric susce
tibility ( «8) and the dielectric loss tangent (tand) were mea-
sured in the temperature range 4.2–250 K at frequencie
100 Hz to 20 kHz.

Dielectric investigations of EuMn2O5 with an electric
field applied along thea and b axes and along the@110#
direction (eia,b,@110#) have been carried out previously1

Here we report detailed investigations for BiMn2O5 along all
the principal axes of the crystal and for EuMn2O5 in the case
eic. For the paramagnetic range dielectric investigatio
along thec axes are the most informative, because dielec
anomalies are observed only for the orientationeic in the
temperature rangeTN,T,250 K. We note that the kink on
the temperature curve of the reciprocal magnetic suscept
ity ~see Fig. 1! is most conspicuous for orientation along th
c axis. In the low-temperature range (T,TN), on the other
157Golovenchits et al.
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FIG. 2. Temperature dependence of the real part
the dielectric susceptibility for a EuMn2O5 crystal
for three orientations of the alternating electric fie
relative to the principal axes of the crystal.1! eia);
2! eib; 3! eic. The frequency is 1 kHz. The inse
shows the same dependence for a different tempe
ture interval and a larger«8 scale.
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hand, the anomalies of the magnetic susceptibility are
companied by prominent features of the dielectric susce
bility and loss tangent for directions in theab plane ~see
Fig. 2 for EuMn2O5).

It is evident from the inset to Fig. 2 that a somewh
weak anomaly of the «8(T) curve is observed a
T;140–150 K for EuMn2O5 with orientationeic. The value
of «8 begins to increase rapidly at a higher temperat
(T.250 K!. This increase has been investigated previous1

for orientationseia,b,@110#, where it was shown to be
caused by structurally correlated states associated with
mal population of the first excited level by Eu31 ions.

Figures 3 and 4 show the dielectric anomalies obser
in a EuMn2O5 crystal for orientationeic, along with their
frequency dispersion. Clearly, the step anomalyD(«8)/«8
has a relative maximum'5%, but is readily distinguishable

FIG. 3. Temperature dependence of the real part of the dielectric susc
bility of a EuMn2O5 crystals at several frequencies with the alternat
electric field oriented along thec axis of the crystal.1! 230 Hz;2! 500 Hz;
3! 1 kHz; 4! 5 kHz; 5! 20 kHz.
158 JETP 85 (1), July 1997
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The observed low-frequency dispersion of the dielec
properties of EuMn2O5 is typical of structural glasses18 and
is usually attributed to the coexistence of relaxors with
broad spectrum of relaxation timestmin!t!tmax. Assum-
ing that the structural-glass state occurs for EuMn2O5, we
analyze the dielectric susceptibility in the anomalous disp
sion range with a view toward finding characteristic quan
ties of this state.

Let the temperatureT5Tmax correspond to the tempera
ture where the loss tangent is a maximum at a fixed
quencyv1 ~Fig. 4!. It can be verified that the dependence
the relaxation timet on the temperature corresponding
T5Tmax satisfies the Arrhenius law, andt51/v1

5t0 exp(EA /kBT). It is evident from Fig. 5 that lnt
as a function ofT for EuMn2O5 has two linear segments wit
a kink at Tmax5Tcr.130 K andt5tcr.1.5•1024 s. The
values of the characteristic quantitiesEA andt0 of the acti-

ti-FIG. 4. Temperature dependence of the dielectric loss tangent o
EuMn2O5 crystal at several frequencies with the alternating electric fi
oriented along thec axis of the crystal.1! 200 Hz; 2! 500 Hz; 3! 1 kHz;
4! 10 kHz; 5! 20 kHz.
158Golovenchits et al.
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vation barrier for the high-temperature~and simultaneously
high-frequency! linear segment differ significantly from th
values of these quantities for the low-temperature~and low-
frequency! segment. In the temperature rangeT,130 K we
have EA.0.04 eV andt0.431026 s. In the temperature
rangeT.130 K we haveEA.0.17 eV andt0.10211 s. It is
evident that the values of the activation barriers differ co
siderably. Here a lower temperature corresponds to a sm
value ofEA . The values of the characteristic relaxation tim
t0, on the other hand, differ by five orders of magnitude.

Thus, the structural-glass state in EuMn2O5 is character-
ized by the critical temperatureT.130 K and the critical
relaxation timet5tcr.1.531024 s ~i.e., the critical scale of
the range of correlated states!, at which the properties of the
glass state suddenly change. In the temperature inte
TN,T<130 K strong dispersion is encountered in t
EuMn2O5 crystal due to the presence of a broad set of sta
with a low activation barrier and long characteristic rela
ation times, i.e., large domains that are structurally correla
but weakly coupled with the lattice exist in this temperatu
interval. On the other hand, at temperaturesT>130 K there
are smaller-scale~with small characteristic relaxation time

FIG. 5. Graph of lnt vs Tmax
21 for EuMn2O5. See the text for further expla

nations.
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t0) structurally correlated domains having a high activati
barrier. The nature of the structurally correlated domains
the crystal change quite abruptly atT.130 K. We recall that
the magnetic properties of the EuMn2O5 crystal are also ob-
served to change at this temperature. Consequently, cor
tions of the magnetic and structural properties of EuMn2O5

crystals are observed experimentally at temperaturesT.TN ,
for which long-range magnetic order is nonexistent.

As mentioned, the contribution of thermally excite
Eu31 ions leads to cooperative structural correlations in
EuMn2O5 crystal only forT.250 K ~Ref. 1!. The observed
anomalies of the dielectric susceptibility and the correlatio
in the magnetic and structural properties forTN,T,250 K
are therefore naturally linked to the subsystem of Mn31 and
Mn41 ions. It was deemed important in this light to als
investigate the dielectric susceptibility in BiMn2O5 crystals
~Figs. 6 and 7!. It is evident from Fig. 6 that at temperature
below 120–130 K the susceptibility«c8 does not depend on
the temperature and is close to the background level of«c8 for
EuMn2O5 ~Fig. 3!. The most noticeable maximum of tand
and the growth of«c8 are observed for BiMn2O5 at T;130 K
~superposed on the high-temperature growth of«c8 and tand),
preceding the main high-temperature rise~Figs. 6 and 7!.
Unfortunately, the high-temperature growth of the dielect
susceptibility in BiMn2O5 begins at lower temperature
(T.180 K! than in EuMn2O5.

It is evident from Fig. 7 that BiMn2O5 does not exhibit
the strong frequency dispersion observed in the EuMn2O5

crystal at temperaturesTN,T,130 K ~Figs. 3 and 4!. There
is only slight dispersion near 130 K, and it can be identifi
with ordinary relaxation processes. A comparison of Fig
with Figs. 6 and 7 reveals that the dielectric losses
BiMn2O5 are much higher than in EuMn2O5. The relaxation
processes in BiMn2O5 have been studied in Ref. 19, whe
the estimateEA;0.15 eV is given for the characteristic re
of
i-

t

-

FIG. 6. Temperature dependence
the real part of the dielectric suscept
bility ~graph1! and the dielectric loss
tangent~graph2! for a BiMn2O5 crys-
tal at a frequency of 140 Hz with the
alternating electric field oriented along
the c axis of the crystal. The inse
shows the dependence of«8 on T un-
der the same conditions but in the low
temperature range.
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FIG. 7. Temperature dependence
the real part of the dielectric suscept
bility and the dielectric loss tangent o
BiMn2O5 at several frequencies with
the alternating electric field oriented
along thec axis of the crystal.d and
1 denote«8 and tand ~respectively! at
140 Hz; * andh at 230 Hz;3 andL
at 700 Hz.
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laxor activation barrier. We have obtained a similar value
our experiments. We also note that the value ofEA for
BiMn2O5 is close to the value ofEA for the high-temperature
~high-frequency! segment in the case of EuMn2O5.

Consequently, the dielectric and magnetic properties
BiMn2O5 also have correlated anomalies at a tempera
T;130 K well aboveTN.40 K. These anomalies are not a
clearly pronounced as in EuMn2O5, but they show up experi
mentally at the same temperature at which the propertie
EuMn2O5 change. We can therefore assume that the in
cated anomalies in the magnetic and structural propertie
EuMn2O5 and BiMn2O5 crystals are mainly associated wi
manganese ions.

4. MAGNETIC AND STRUCTURAL CORRELATIONS:
INTERPRETATION OF THE EXPERIMENTAL DATA

The investigated crystals contain the Jahn-Teller m
netic ion Mn31. We assume that the observed correlation
the magnetic and structural properties in these crystals a
fact attributable to the Jahn–Teller nature of these ions.

It is noteworthy that the anomalies of the structural-gla
state in EuMn2O5 are analogous to those of the orbital-gla
state observed earlier in a Eu2CuO4 crystal containing the
Jahn–Teller ion Cu21 ~Ref. 20!. Anomalous dispersion o
the dielectric susceptibility with a low activation barrier an
long relaxation times, which suddenly changes in chara
at T.250 K, is also observed in EuMn2O5 in the tempera-
ture interval 120 K<T,250 K. The anomalies of the di
electric susceptibility of EuMn2O5, as in the crystals ana
lyzed by us, are correlated with distinctive characteristics
the antiferromagnetic state.

It is postulated in Ref. 20 that the anomalous dielec
properties of EuMn2O5 are attributable to the orbital-glas
state induced by two-dimensional antiferromagnetic s
160 JETP 85 (1), July 1997
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fluctuations with large correlation lengths. Here we attem
to apply the orbital-glass model20 to the investigated crystal
and to find out why an analogous glass state occurs
EuMn2O5 but is not observed in the related BiMn2O5 crys-
tal.

The orbital-glass model20 is based on two principal as
sumptions: 1! The Cu21 ions have a degenerate orbit
ground state~tetragonal doubletl z561 with wave functions
dxz anddyz); 2! orbital–orbital interaction through spin fluc
tuations exceeds orbital–orbital interaction through phono
Reference 20 was concerned primarily with the Jahn–Te
effect, in which the role of vibronic interactions is played b
interaction through spin fluctuations. Orbital–orbital intera
tion through spin fluctuations in Eu2CuO4 is distinguished by
its long-range character and by a change of sign at e
lattice constant. The long-range character of the interactio
determined by the correlation length of the spin fluctuatio
and significantly intensifies the interaction.

The orbital ground state of the M31 ion in the investi-
gated crystals has not been established at the present
The Mn31 ion has a nonstandard nearest-neighbor envir
ment: It exists inside a distorted square pyramid~see Refs. 2
and 8!. We assume that the orbital ground state of t
Mn31 ions in EuMn2O5 and BiMn2O5 crystals is a tetrago-
nal doublet crated by splitting of the principal orbital tripl
G5

t (t2g) in a cubic lattice~see Ref. 21 for the state notation!.
It follows from an analysis of the magnetic properties

the EuMn2O5 and BiMn2O5 crystals~see Sec. 2! that in the
paramagnetic range there is a significant difference betw
the paramagnetic temperatureQN and the true temperatur
TN . Such a difference can be attributed to the existence
correlated, bounded, magnetic-order domains forT.TN .
The investigated crystals are known to have several
160Golovenchits et al.
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change integrals with different values and signs betw
neighboring pairs of magnetic ions.2,9

Exchange coupling between Mn31 and Mn31 ions, be-
tween Mn41 and Mn41 ions, and between Mn31 and Mn41

ions through O22 ions in the lattice of RMn2O5 crystals has
been investigated previously.2 The subsystem of Mn41 ions
forms quasi-one-dimensional chains running along thec
axis. For the Mn31 ions there are closely spaced pairs in t
ab planes with the coordinatec51/2. Clearly, Mn31 –Mn41

coupling also determines the Ne´el temperature of the crysta
However, the correlated magnetic-order domains due
Mn31 –Mn31 and Mn41 –Mn41 exchange coupling can b
preserved at temperaturesT.TN.40 K. Furthermore, we
note that thermal population of the low magnetic excit
level 7F1 by Eu31 ions can also be conducive to the onset
~or the consolidation of existing! correlated magnetic-orde
domains in EuMn2O5 crystals as a result of the inclusion o
Eu31 –Mn31, Mn41 exchange couplings. This possibilit
does not exist in BiMn2O5 crystals, so that the correlate
magnetic-order domains in EuMn2O5 can exceed the sam
domains in BiMn2O5 crystals.

At temperatures T.TN , therefore, EuMn2O5 and
BiMn2O5 crystals have native~not attributable to defects o
impurities and not frozen in by them! bounded domains o
magnetic order, i.e., spin fluctuations with correlation leng
comparable to the size of these domains exist atT.TN . The
change of slope of the reciprocal magnetic susceptibility a
function of the temperature atT.130 K for both the
EuMn2O5 and the BiMn2O5 crystal evinces a change o
magnetic state in the subsystem of Mn31 and Mn41 ions at
this temperature. It is natural to assume that the correla
length of the magnetic fluctuations will decrease at this te
perature.

Consequently, the postulated degenerate orbital state
Mn31 ions and the presence of spin fluctuations at temp
tures T.TN set the stage for orbital–orbital interactio
through spin fluctuations in EuMn2O5 and BiMn2O5 crys-
tals. This interaction exists together with the usual vibro
Jahn–Teller interaction for Mn31 ions ~orbital–orbital inter-
action through phonons!. If interaction through spin fluctua
tions is dominant, we encounter a magnon analog of
Jahn–Teller effect and the emergence of an orbital-g
state. But if vibronic Jahn–Teller interaction is dominant,
have the customary vibronic Jahn–Teller effect for Mn31

ions. When the Jahn–Teller effect has a magnon chara
the tetragonal doublet splits, primarily by virtue of spin flu
tuations with low lattice distortion. For the ordinary vibron
Jahn–Teller effect the splitting of the orbital doublet is a
companied mainly by local distortion of the lattice.

As mentioned above~see also Ref. 20!, orbital–orbital
interaction through spin fluctuations is a long-range pheno
enon, and its magnitude depends on the correlation len
of the spin fluctuations. Consequently, in EuMn2O5 crystals,
in which spin fluctuations can exist with greater correlati
lengths than in BiMn2O5, orbital–orbital interaction through
spin fluctuations can exceed the same interaction
BiMn2O5. In this light we can now understand the observ
difference in the dielectric properties in EuMn2O5 and
BiMn2O5 crystals if we assume that orbital–orbital intera
161 JETP 85 (1), July 1997
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tion through spin fluctuations is dominant at temperatu
TN,T,Tcr;130 K, while forT.Tcr for BiMn2O5 orbital–
orbital interaction through phonons is dominant over the
tire temperature range. This pattern is consistent with
experimentally determined activation barriers and charac
istic lifetimes, and it accounts for the rather abrupt chan
of these parameters atT5Tcr andt5tcr . For correlated do-
mains of critical size the magnitudes of orbital–orbital inte
action through magnons and through phonons are equal a
temperatures. AtT5Tcr.130 K the most probable size of
correlated domain~corresponding to the maximum density
states! is simultaneously the critical size.

Consequently, the correlations of the magnetic and str
tural properties of both investigated samples are attributa
to the Jahn–Teller nature of the Mn31 ions. The difference
in the dielectric properties of EuMn2O5 and BiMn2O5 crys-
tals is associated with the contribution of thermally excit
Eu31 ions. In EuMn2O5, owing to the presence of magneti
thermally excited Eu31 ions, magnetic fluctuations with
large correlation lengths occur at temperaturesT.TN . This
phenomenon is responsible for the anomalous dielectric
persion observed in EuMn2O5 in the temperature interva
40 K,T<130 K. The upper and lower limits of this inter
val are dictated by the following considerations. ForT.130
K, although the density of thermally excited Eu31 ions in-
creases, the exchange coupling in the manganese subsy
which accounts for the existence of magnetic fluctuatio
with sufficiently large correlation lengths, is disrupted.
temperaturesT<40 K, on the other hand, in the domain o
long-range magnetic order, first of all, magnetic fluctuatio
are suppressed by the molecular mean field and, second
symmetry of the crystal is lowered as a result of pha
transition,1,3 and the degeneracy of the orbital ground st
cannot be maintained.

Thus, correlation of the magnetic and structural prop
ties exists in the paramagnetic range (T@TN) in magneto-
electric EuMn2O5 and BiMn2O5 crystals. A particularly in-
teresting physical situation arises in the EuMn2O5 crystal, in
which we assume that the Jahn–Teller effect occurs at
ficiently low temperatures by virtue of orbital–orbital inte
action through spin fluctuations, and an orbital-glass s
sets in. The detection of such a state in a Eu2CuO4 crystal
has been reported earlier.20
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Superconductivity fluctuations in a one-dimensional two-band electron–phonon model

e

with strong repulsive interactions
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We study a one-dimensional, two-band model with short-range electron–electron repulsions
~onsiteU and nearest-neighborV terms! and electron–phonon coupling. We show that there is a
region ofU, V and band filling in which singlet superconductivity fluctuations are dominant.
This region is absent without electron–phonon interactions and includes large values ofU andV.
© 1997 American Institute of Physics.@S1063-7761~97!02507-9#
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The physics of low-dimensional strongly correlated fe
mion systems with repulsive interactions is a topic of act
interest, largely because the origin of high-Tc superconduc-
tivity in cuprate oxides and the role of phonons in the
correlated systems are not clearly understood. Using a sim
one-dimensional~1D! Cu–O chain model,1 we investigate
the effects of both short range electron–electron (e–e) re-
pulsive interactions~onsite U and nearest-neighbor Cu–
repulsion V! and electron–phonon (e–p) coupling in the
ground state of the system. We show that superconduc
~SC! correlations are absent in the model if we take in
accounte–e interactions only. The inclusion ofe–p inter-
actions leads to the appearance of a (U,V,r) region~wherer
is the band-filling! in which superconducting fluctuations a
dominant. On the other hand, the ground state of the sys
in the absence ofe–e repulsion is a state with a charge
density wave~CDW! or spin-density wave~SDW! state
without a divergent SC response. Thus, the region w
dominant SC response results from the combined effec
e–e ande–p interactions for this model.

We use a renormalization-group~RG! two-cutoff ap-
proach developed in earlier works.2,3 With some assumption
on the model parameters, our analysis is valid in the limit
large U and V. The possibility of SC fluctuations in
quasi-1D systems with strong repulsivee–e interaction and
e–p coupling was first raised in work of Zimanyiet al.,3

where results are obtained for a massive Thirring model.
two-band model withoute–p interaction was considered i
Ref. 1, where numerical results are presented, pointing
the possible existence of SC fluctuations in the stro
coupling limit. This statement is based on the numerical
sults, which point to the presence of phase separation in
strong-coupling limit, and an intuitive assumption that r
sults obtained for the Luttinger liquid in the weak-couplin
limit are valid qualitatively in the strong-coupling limit fo
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phase separation~where the correlation exponent satisfi
Kr→`! one has a divergent SC response ifKr.1 holds~see
Eq. ~24! below!. Here we investigate RG weak-coupling s
lutions. Therefore we do not consider phase separation.
show that in a region of sufficiently largee–e repulsion,
where the RG approach is still applicable, a ground st
with a dominant SC response can be achieved due to
interplay of e–e and e–p interactions. We will show that
due to two-band hybridization, the repulsion amplitudesU
and V are multiplied by small parameters in the RG equ
tions. This allows us to consider largerU and V values,
which exceed, for example, the width of the upper band.

The plan of this article is as follows. In Sec. 2 we defi
our Hamiltonian and calculate the band structure in the
sence ofe–e ande–p terms. In Sec. 3 we take into accou
e–e and e–p terms, and construct the ground-state pha
diagram on the basis of our RG analysis. In the Conclus
we discuss our results and their implications.

2. THE HAMILTONIAN

We consider a chain consisting of two types of atom
Cu on odd sites withd-orbitals and O on even lattice site
with p-orbitals. The Hamiltonian of the system is

H5H01Hee1Hep , ~1!

H052t(
^ i , j &

cp,i
1 cd, j1h.c.1(

i
D~cp,i

1 cp,i2cd,i
1 cd,i !,

~2!

Hee5 (
a5d,p

(
i

Uaca,i ,↑
1 ca,i ,↑ca,i ,↓

1 ca,i ,↓

1V(
^ i , j &

cd,i
1 cd,icp, j

1 cp, j , ~3!
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sites,D5(Ep2Ed)/2, Ep and Ed are site energies,Ud and
Up are Hubbard onsite repulsive energies, andV is the re-
pulsion amplitude between nearest-neighbor sites. Direct
tiferromagnetic coupling between Cu sites is omitted. Als

Hep5Hep,11Hep,2 , ~4!

and we consider two models of electron–phonon coupli
the molecular crystal~MC! model with the Hamiltonian
Hep,1 in which optic phonons couple to the electron site e
ergy, and the Su–Schrieffer–Heeger~SSH! model with the
HamiltonianHep,2 in which the lattice distortions modulat
the electron–hopping matrix elementt. The Hamiltonian
Hep,1 consists of two parts:Hep,15Hep,d1Hep,p , where
each part has the form

Hep5(
i

Pi
2

2M
1

1

2
kqi

21lqir i5(
k

v0S dk
1dk1

1

2D
1

g

AN
~dk1dk

1!rk ~5!

with v05Ak/M , g5l/A2Mv0, rk5Sck1q
1 cq . HereM is

the ion mass,v0 is the optic-phonon frequency,k is the
elasticity constant, andl is the e–p coupling constant. All
terms in~5! have labelsd or p, and the sum is over odd o
even sites forHep,d or Hep,p , respectively. The Hamiltonian
Hep,2 takes into account intermolecular phonon modes:

Hep,25(
i

Pi
2

2M
1

1

2
k~qi 112qi !

22(
^ i , j &

dt i , j cd,i
1 cp, j

5(
k

vkS f k
1 f k1

1

2D1
1

AN
(
k,q

g~k,q!

3~ f q1 f 2q
1 !cd,k,1q

1 cp,k , ~6!

where dt i , j5l(qi2qj ), vq52Ak/M sin(qa/2) is the
acoustic–phonon frequency,g(k,q)54il sin(qa/2)cos(ka
1qa/2)/A2Mvq, anda is the Cu–O lattice constant.

First we consider the noninteracting HamiltonianH0 .
Diagonalization gives

H05A4t2 cos2 ka1D2@c2
1~k!c2~k!2c1~k!1c1~k!#,

~7!

where

cd~k!5cosukc1~k!1sin ukc2~k!,
~8!

cp~k!52sin ukc1~k!1cosukc2~k!

with tan(2uk)522t cos(ka)/D, 2p/2,2uk,p/2. Now we
have a two-band electronic structure and consider the cas
an entirely filled lower band. The filling factor of the upp
band is 0,r,2 ~empty forr50 and filled forr52!. With
unit cell 2a, the quasimomentak andk1p/a are equivalent,
and we may assume that the states in the lower band
quasimomenta in the interval2p/2a,k,p/2a and that in
the upper band in the intervalp/2a,uku,p/a; then kFa
5p/21pr/4. The Fermi velocity is
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vF52
A4t2 cos2~kFa!1D2

. ~9!

3. RG TREATMENT

Since we will use an RG approach we take into acco
only states in the upper band in the vicinity ofEF which are
described by the operatorsc2 . ThenH0 has the form, in the
x-representation,

H05vFC2,1
1 S 2 i

]

]xDC2,11vFC2,2
1 S i

]

]xDC2,2 , ~10!

whereC2,6 include momenta near6kF , respectively. Be-
low we will omit the subscript 2 and also terms inH with
C1 . ~Taking into account the terms withC1 can produce a
shift of the chemical potential and some renormalization
the Fermi velocity.! Therefore in the Hamiltonian we ca
make the replacements

Cd→sin uFC~x!, Cp→cosuFC~x!. ~11!

Note that in the caset/D!1 or r!1 we have

sin uF'uF'
t sin~pr/4!

D
. ~12!

First we considere–e interaction effects. For the Cu–O
case it is appropriate to considerUd@Up . Let us study the
caseUp50. The effect of smallUp is easily taken into ac-
count and will be discussed below. In terms of a «g-olog
model,4 the HamiltonianHee gives the scattering amplitude

g15
Ua

2
sin4 uF12Va sin2 uF cos~2kFa!5g3 .

~13!

g25
Ua

2
sin4 uF12Va sin2 uF5g4 ,

whereg1 is the backscattering amplitude, andg2 andg4 are
forward scattering amplitudes. The «Umklapp» partg3 exists
only for the half-filled caser51: for simplicity we will not
consider this case. Since we use a RG approach below
consider gi /pvF<1, i.e., Ua, Va<pvF or sinu!1 for
largeU andV. We have a spin-rotation invariance, i.e.,g'

5gi . Therefore, when they are not essential, we will om
spin indices. The effect of theg4 term is taken into accoun
separately: it simply produces a shift in the velocity of t
spin and charge degrees of freedom:vs5vF(11g4), vr

5vF(12g4).
The familiar RG equations defining the scaling behav

of the system are4

g185
1

pvs
g1

2, ~14!

gc[g122g25const. ~15!

For g1>0 the excitation spectrum is gapless,g1→g1* 50,
while there is a gap ifg1,0. The charge excitation spectrum
is gapless forgc>0 and has a gapDr if gc,0. The ground
state has the most divergent singlet~triplet! SC response for
gc>0 andg1,0 ~or gc>0 andg1>0!. In our case
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3@cos~2kF!22#,0. ~16!

Therefore there is no region in (U,V) with divergent SC
fluctuations, in accordance with results1 for the weak-
coupling case. The possible ground states are a CDW
SDW, depending on the sign ofg1 . ~This sign can vary due
to the coskFa term.! We see that in order to obtain SC co
relations it is necessary to have large positiveg1* or negative
g2* terms. As we will see below, this condition can b
achieved by taking into account an appropriatee–p interac-
tion.

Second-order perturbation theory ine–p interaction pro-
duces a retardede–e interaction2 for v less than the Debye
frequency, v,vD;Ak/M . ~We consider the casevD

,EF .! The effectivee–e interaction can be described i
«g-ology» terminology:g1,ph522g2(kF,2kF)/v2kF

, g2,ph

522g2(kF,0)/v0 , g3,ph5g1,ph ~half-filled band only!. In
the case of the MC model~5! we have

g1,ph5g2,ph5g3,ph52
l2

4k
, ~17!

whereas the SSH model~6! gives

g1,ph5g3,ph524
l2

k
~sin2 uF cos2 uF!. ~18!

The parametersk and l in ~17! and ~18! are, of course,
different, as well as the other parameters in the Hamiltoni
Hep,1 , Hep,2 . Note that all terms are negative, andg28ph is
due solely to onsitee–p coupling and does not contai
renormalization terms sinuF and cosuF . In the caseu!1,
the onsitee2p interaction is dominant. Now we have tw
types ofe2e interaction with cutoffsEF andvD . Thus we
use the RG procedure2,3 for a two-cutoff model. The one
loop scaling equations~14! and~15! for gi are unaffected by
the presence of retarded interaction. The equations for
gi ,ph , taking into account the cross termsgigj ,ph , were de-
rived in Ref. 3:

g1,ph8 5
1

pvF
S 3

2
g11

1

2
gc1g1,phDg1,ph , ~19!

g2,ph8 50. ~20!

We shall consider the caseg3,ph8 50. The integration in~19!
and~20! is taken fromEF to v0;vD(v0), wherevD(v0) is
the renormalized value ofvD .3 As a result, the combined
action of different scattering processes is described by

gi
T5gi* 1gi ,ph* . ~21!

The properties of the system at energies small compare
v0 are derived from a model with single interactionsgi

T and
bandwidthv0 .

Now we examine the solutions of Eqs.~14!, ~15!, ~19!,
and~20!. The initial conditions for~14! and~15! are defined
by ~13!. The initial conditions for~19! and ~20! are defined
by ~17! and ~18!. We write g1,ph

(0) 52g, g2,ph
(0) 52g̃. If g1

(0)

>0 holds~we shall see that this is the situation in the inte
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or

s
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positive valuesg1* !g1 . Note that in the caseu!1 we
haveg1,ph

(0) 'g2,ph
(0) , i.e., g̃'g. From ~13! it follows that g1*

22g2* 5g1
(0)22g(2)

0 . A positive derivative in~19! implies
that g1,ph scales toward large negative values. We consi
the opposite caseg1,ph8 ,0. Then, at least initially,g1,ph will
scale toward a small negative value. Therefore we dem
that

3

2
g1

~0!1
1

2
gc

~0!1g1,ph
~0! .0, ~22!

sinceg1,ph,0. The inequality~22! can not be valid through-
out the scaling process, sinceg1 scales to small values
Therefore the valueg1,ph* may not be very small. We do no
require ug1,ph* u!g; for our purposes it is sufficient tha
g1,ph* .g22g̃ holds, as we show below. The valueg2,ph is
not scaled, as follows from~20!, i.e.,g2,ph* 52g̃. This value
does not contain the renormalization coefficient sinuF . As a
result of scaling we have the state withgi

T5gi* 1gi ,ph* . The
ground state of the system with the new scaling amplitu
has dominant divergent SC susceptibility if

gc
T5g1

T22g2
T5g1

~0!22g2
~0!1g1,ph* 12g̃.0. ~23!

Since we assume thatg1,ph
T 'g1,ph* ,0, we have a state with

spin gapDs . Therefore the dominant singularity is the si
glet SC response with SC correlation function

R~x!;x21/Kr, Kr5A11gc
T/2pvr

12gc
T/2pvr

.1. ~24!

In this case the CDW response can be divergent with a
relation function}x2Kr. The inequalities~22! and ~23! de-
fine the region in which the singlet SC correlations are do
nant. In terms ofu5(Ua/2)sin4 u, v5Va sin2 u cos2 u we
rewrite ~22! and ~23! as

g12vS 112 cos
pr

2 D,u,2g* 22vS 21cos
pr

2 D ,

~25!

where 2g* 52g̃1g1,ph* . It is easy to obtain the solution o
~25!. This is the regionABCD in Fig. 1 bounded by the lines
u50, v50, u5g22v, u52g̃1g1,ph* 22v. Recall that in
the limit u!1, Eq. ~12!, the bare repulsive energies satis
U;u/u4, V;v/u2@g. Thus our model includes the case
strong electron repulsion. For any point (u,v) in the region
ABCD the inequality~25! is valid for

r.
2

p
cos21S maxH u2g22v

4v
,

2g* 24v2u

2v J D . ~26!

In the limit t/D!1 we can obtain the phase diagram
terms of the bare valuesU and V. Then the coordinates o
the points A, B, C, and D are A5$0,(4g* )(D/t)4%, B
5$0,2g(D/t)4%, C5$(g/2)(D/t)2,0%, and D5$(g* /2)
3(D/t)2,0%. The SC region is deformed to include region
due to the sin(pr/4) term. The equation of the curveEF is

V5
D2

t2

~~2g* 2g!k14g116g* !2

72~k12!~g12g* !
, U52kV

D2

t2 .

~27!
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In the limit k→` we haveU}V2, but in this regionr
;1/U1/4→0. The inequality~25! with t/D!1 becomes

~U118V1!y226V1y2g.0,

~4V12U !y226V1y12g* .0, ~28!

where V15V(D/t)2, U15(U/2)(D/t)4, y5sin2(pr/4). In
region I the solution of ~28! is r0,r,2, where
sin2(pr0/4)5y0 is the largest root of Eq.~28!. In region II
we haver1(U,V),r,r2(U,V), wherer1 and r2 can be
easily obtained from~28!. If V50 holds, the solution is

4

p
sin21S g

U1
D 1/4

,r,
4

p
sin21S 2g*

U1
D 1/4

~29!

for U1.g; if U50 holds, then in the regiong/2,V1,g*
the solution is sin2(pr/4).y0 , wherey0 is the largest root of
Eq. ~28! for U50.

In using the RG approach, we supposed as usual
gi /pvF,1. For small t/D we have the initial valuevF

(0)

;(t2/D)sin(pr/2). Recalling thatgi;V@ t sin(pr/4)/D#2 or
U@ t sin(pr/4)/D#4, g2,ph5const, we can regard our resul
as reasonable if we are not too close to band edges, w
vF→0, i.e., e1,r,22e2 and rÞ1 (g350). It follows
from our analysis that in region III we have the large sp
and charge gaps, so that there is only a CDW divergent
sponse. In region IV we havegc

T,0, smallg1
T,0 and thus

divergent CDW and SDW~in the limit g1*→0! responses.
We considered the effect of the lower band only throu

the renormalization of the bare valuesU andV. Thus, we did
not take into account the terms (VQ21U)C1

1C1C1
1C1

1(V1UQ2)C1
1C1C2

1C2 . Therefore our results are vali
in the regionU, V<Egap;D. In order to estimate the effec
of the cross term, we can rewrite our two-band model

FIG. 1. Phase diagram obtained by two-cutoff RG scaling. The diverg
SC response regions are I and II.
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investigation. It is easily to see that electron–hole pair i
terchain hopping is irrelevant~scales to small values!, if U
.V. Thus we can consider the region of large valuesU and
V (U.V) in comparison with the upper-band widt
;t2/D!D.

In this treatment we have not taken into account
effects ofUp repulsion. This is easily achieved by substitu
ing u into ~20! in the formu5(Ua sin4 uF1Upa cos4 uF)/2.
For small values ofUp the RG approach remains valid, an
all results continue to hold in terms of the newu andv. For
t/D!1 we have cosuF;1, so that we cannot consider th
large-Up limit in our approach.

4. CONCLUSIONS

In conclusion, using a two-cutoff RG approach we ha
studied a two-band, 1D tight-binding model withe2e and
e2p interactions. We included onsiteU and nearest-
neighborV electron repulsions, as well as intra- and inte
moleculare2p coupling. We have shown~in accordance
with Ref. 1! that there is noU, V, r, t, D parameter region
with dominant divergent SC response in the absence oe
2p interaction. In the lowest-order RG approach we fou
that such a region does occur if we includee2p coupling
with optical intra-molecular modes. Only this form ofe2p
interaction produces an effective renormalizedg2,ph term.
We have found that the singlet SC region includes la
values of the U and V repulsive interactions if
t sin(pr/4)/D!1. Note that a similar behavior is possible
a one-band model, for whichD50. Then, instead of~25!, we
have

g12V@122 cos~pr!#,U

,2g̃1g1,ph* 22V@22cos~pr!#,

~30!

where g52g1,ph
(0) , g̃52g2,ph

(0) , 0,r,2. The solution of
~30! is the same regionABCD in Fig. 1 provided that 2g̃
1g1,ph* .g. However, the bare valuesU and V must be
small, of the order of phonon scattering strengths. Note a
that we have used a RG approach. Therefore we did
consider the strong-coupling limit~V, U@t, D!, where a
phase separation instability could take place.1

The main results of our treatment are the following:
1! Using a 1D two-band model, we have taken into a

count both e2p coupling ande2e repulsion and have
shown that there is a region of parameters with domin
divergent SC response. This effect is absent in the mo
without e2p coupling and is a result of the interplay ofe
2e ande2p interactions.

2! We have found that weake2p interactions and rela-
tively stronge2e repulsions can result in effective electro
pairing and a divergent SC response. This is possible in
limit t/D!1, where we can take into account largeU andV
values, since effectivee2e interactions are scaled by a fac
tor t/D. As a result we find that dominant divergent S
fluctuations are possible in the regionV(t/D)2;U(t/D)4

;gph , V,U,D, as shown in Fig. 1.

nt
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3! We have found that dominant SC fluctuation states
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orbital structure of the order parameter in this case~s-wave

l
a-
.

un.
v.
l,

ys.

with
are possible only in a some intervalr1,r,r2 of band fill-
ing.

4! We have found that onlye2p interaction with optical
intramolecule phonon modes can result in SC

5! Our conclusions are valid also beyond the limitt/D
!1 for the two-band model and for the one-band mo
(D50). But in these cases the SC fluctuation ground stat
possible in the region of relatively small repulsive consta
~U, V;gph!.

This model withoute2p coupling was studied in Ref. 1
where some indications of SC fluctuations in the stro
coupling limit were obtained. We have considered a subs
tially another region.

We have proposed one possible scenario for the origi
dominant SC fluctuations in quasi-one-dimensional syste
as a result of the combined effect of repulsivee2e and
attractivee2p interactions in a two-band situation. We su
gest that features of this picture will survive in analogo
two-dimensional models of high-Tc superconductors, in par
ticular in three-band Peierls–Hubbard models.6 However, the
167 JETP 85 (1), July 1997
l
is
s

-
n-

of
s

s

vs d-wave! is unclear without detailed calculations.
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Influence of an isolated magnetic impurity on an unconventional superconducting state

ion
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The effect of the moment of a magnetic impurity on the order parameter of an unconventional
superconductor is examined. The coupling of the magnetic moment to the order parameter
induces a locally time-reversal symmetry-breaking state which generates a magnetic field
distribution in the vicinity of the impurity. The magnetic field can cause precession of
the magnetic moment. The case of a spin polarized muon injected into the superconductor is
discussed. ©1997 American Institute of Physics.@S1063-7761~97!02607-3#
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Some heavy-fermion superconductors possess com
phase diagrams with various superconducting phases.1 These
phase diagrams provide strong evidence for unconventi
superconductivity, because the different phases should
distinguished by symmetry. The two examples of such he
Fermion superconductors are U12xThxBe13 and UPt3, which
both show two consecutive transitions with high- and lo
temperature superconducting states. The minimal requ
ment for such behavior is that the order parameter have m
than one component. Considerable effort on the theore
and experimental sides has been invested in determining
symmetry of the order parameter in both systems. So fa
unambiguous identification of their order parameter symm
try has been achieved. Nevertheless, there is convincing
dence that the low-temperature states in both systems b
the time-reversal symmetryT . This fact arises very naturally
in most of the phenomenological theories explaining
phase diagram.T -violating states have particular magne
properties which can be observed in experiment. The z
field relaxation rate of injected muons shows an incre
when the material enters the low-temperature state,2,3 though
the magnitude of this increase may depend sensitively on
sample quality.4 This rate is a measure of the internal fie
distribution and its increase indicates additional magnet
tion occurring in connection with the lower transition.

The additional magnetic fields are due to spontane
supercurrents flowing in the vicinity of inhomogeneities
the time reversal symmetry-breaking superconducting o
parameter, for example, around~nonmagnetic! impurities.5–9

The net magnetization of an isolated impurity vanish
There are two length scales involved, the London penetra
depthl and the coherence lengthj. While screening currents
usually affect the magnetic field over a lengthl, the spatial
modulation of the currents can lead to an effective cance
of the magnetization on a shorter length comparable witj
rather thanl. At the same time, the possible existence o
supercurrent decreasing over a characteristic scale gr
than j(T) with distance from the impurity, may be assoc
ated in this approach with the continuous degeneracy of

168 JETP 85 (1), July 1997 1063-7761/97/070168
ex

al
be
y

-
e-
re
al
he
o
-

vi-
ak

e

o-
e

he

-

s

er

.
n

g

ter

e

with an impurity.
In this work we consider the problem of spontaneo

currents for the time-reversal symmetric phase above
lower transition in the presence of a static magnetic ‘‘imp
rity.’’ This impurity could be an injected muon whose sp
can be regarded as static on the relevant time scales o
superconductor. The magnetic moment of the impur
couples to the superconducting order parameter. As we
show, the basic effect is the appearance of a loca
T -violating order parameter. By analogy with the case m
tioned above, spontaneous supercurrents will be genera
The aim of this paper is to investigate the spatial distribut
of these currents and the field pattern. Of particular interes
the magnetic field generated at the impurity site, as it wo
cause precession of the impurity spin. The essential coup
between impurity and order parameter originates from
combined scattering from the hyperfine and nonmagn
~and/or spin–orbit and spin–spin! impurity potentials.

2. GINZBURG–LANDAU THEORY

Our discussion is based on a generalized Ginzbu
Landau~GL! functional. To be concrete, we use the exam
of a two-component order parameter as introduced in th
ries of the phase diagram of UPt3. Thus the order paramete
h5(h1 ,h1) belongs either to the irreducible representati
E1 or E2 of either parity~singlet or triplet pairing!.10 The
general free energy functional is identical for both cases
has the following form

F5E dVH a1uh1u21a2uh2u21b1~ uh1u21uh2u2!2

1b2uh1
21h2

2u21K123~ upxh1u21upyh2u2!

1K1~ upxh2u21upyh1u2!1K2~px* h1* pyh2

1pxh1py* h2* !1K3~px* h2* pyh11pxh2py* h1* !

1K4~ upzh1u21upzh2u2!1
¹3A2

8p J , ~1!

168$10.00 © 1997 American Institute of Physics



where p52 i¹2(2e/c)A ~A is the vector potential!, aj
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5a(T2Tc j) and the coefficients are real numbers in t
standard notation. We assumeTc1.Tc2 so that in the tem-
perature rangeTc1.T.T* only the h1-component of the
order parameter is finite.T* denotes the low-temperatur
transition point below whichh2 appears,

T* 5
Tc11Tc2

2
2

b1

2b2
~Tc12Tc2!. ~2!

In order to have aT -violating low-temperature phase, it i
necessary thatb2.0.

We introduce now the coupling to an impurity located
the origin. The terms in lowest order are

F imp5E dV@k~ uh1u21uh2u2!1n~ uh1u22uh2u2!

1g~h1h2* 1h1* h2!1 im~h1h2* 2h1* h2!#d~r !.

~3!

From the invariance of this expression under the spatial s
metry group for the system of the crystal and the isola
impurity and from its time-reversal symmetry, it follows th
n, g, andm are not scalar quantities. The coefficientsn andg
differ from zero for a hexagonal crystal only for impurit
states breaking the symmetry with respect to rotati
around the hexagonal axis through the anglep/3. The last
term describes the linear~or odd order! coupling of the mag-
netic moment to the order parameter. Note thath1h2*
2h1* h2 is finite only if the order parameterh breaks time-
reversal symmetry, i.e., the relative phase between the
components is not 0 orp. Hence, the coefficientm differs
from zero only for the time-reversal-breaking state of t
impurity.

We consider now the effect of the impurity on the ord
parameter in the high-temperature phase whereh5h0

5h0(1,0), choosingh0 real with

h0
25

2a1~T!

2~b11b2!
. ~4!

For simplicity we assume that the coupling is weak so t
the distortion of the order parameter is small. We consi
h5h01c, wherec5c81 i c9 is small compared withh0 .
Since for the homogeneous phase the vector potential
ishes, we can also assumeA to be small. Therefore we ana
lyze the GL equations linearized inc and A. This leads to
seven coupled equations, obtained by varyingF1F imp with
respect to the order parameter,

2a1c181K123]xx
2 c181K1]yy

2 c181K4]zz
2 c181K23]xy

2 c28

5~k1n!h0d~r !,

Dac282K123]yy
2 c282K1]xx

2 c282K4]zz
2 c282K23]xy

2 c18

52gh0d~r !; ~5!

K123]xS ]xc192
2eh0

c
AxD1K1]yS ]yc192

2eh0

c
AyD

1K4]zS ]zc192
2eh0

c
AzD1K23]xy

2 c2950,
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3S ]xc192
2eh0

c
AxD2K3]xS ]yc192

2eh0

c
AyD

52mh0d~r !; ~6!

and with respect to the vector potential

]x div A2DAx5
16peh0

c
K123S ]xc192

2eh0

c
AxD

1
16peh0

c
K2]yc29 ,

]y div A2DAy5
16peh0

c
K1S ]yc192

2eh0

c
AyD

1
16peh0

c
K3]xc29 ,

~7!

]z div A2DAz5
16peh0

c
K4S ]zc192

2eh0

c
AzD .

Here the following abbreviations were used:Da5a22a1 ,
a* 52ba(T2T* )/(11b), b5b2 /b1 . Note that the first
two equations do not couple to the remaining five. Thek, n
and g terms in F imp act only on the real part of the orde
parameter, inducing a finite realh2-component in the vicin-
ity of the impurity. We will not discuss these two equatio
further here, since they cause distortion of the order par
eter without interesting effects involving the magnetic pro
erties.

Clearly the imaginary part of the order parameter and
vector potential couple in Eqs.~6! and ~7!. The right-hand
sides of the last three equations correspond essentially to
components of the supercurrents 4p j /c. It is only the last
term of F imp which enters into these equations. Obvious
the presence of a magnetic moment drives the imagin
order parameter components. This leads immediately to
nite supercurrents and a magnetic field distribution.

A simplification occurs if we take the gauge freedo
of the order parameter phase into account. In fi
order the quantityc19/h0 is in fact a common phase of th
order parameter ((h01c181 ic19 ,c281 ic29).(h01c18 ,c28
1 ic29)exp(ic19/h0)), whose value is directly associated with
gauge for the vector potentialA. Therefore we can choose

c1950 ~8!

as a gauge condition. Furthermore, one can see easily
the first equation in Eqs.~6! is equivalent to the condition
div j50, and the same condition obviously follows from th
Maxwell equations. Therefore, this equation may be omit
and we reduce the problem with the aid of Eq.~8! to the
following four equations for the unknown quantitiesA, c29 :

]xy
2 Ay1]xz

2 Az1~l123
222]yy

2 2]zz
2 !Ax5

16p

c
eh0K2]yc29 ,

]xy
2 Ax1]yz

2 Az1~l1
222]xx

2 2]zz
2 !Ay5

16p

c
eh0K3]xc29 ,
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c
FIG. 1. The spatial distribution of the magneti
field at z50 for K351.5K2!K15K4 , l 510, l 2

50.258, l 350.316, l 451. The parameters
l , l 2 , l 3 , l 4 are defined as follows:l15 l 2l2

5 l 3l35 l 4l45 l j1(T). All distances are mea-
sured in units ofj1(T), while the magnetic field
is given in units of (K2)/(K1) (m/p3a* j1

3(T))
(f0/2pj1

2(T)). The value ofBz(0) is about 77%
of its maximum value
]xz
2 Ax1]yz

2 Ay1~l4
222]xx

2 2]yy
2 !Az50,

in

The solution of this equation is straightforward but gives a
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a* c292K1]xx
2 c292K123]yy

2 c292K4]zz
2 c29

52mh0d~r !2
2eh0

c
~K2]yAx1K3]xAy!. ~9!

We have introduced here the notationl i
22

5(32pe2h0
2/c2)Ki . These equations can be easily solved

momentum space. We use the Fourier transformation

Ã~k!5
1

AV
E dVA~r !eikr ,

~10!

c̃29~k!5
1

AV
E dVc29~r !eikr ,

which leads to

~l123
221ky

21kz
2!Ãx2kxkyÃy2kxkzÃz2

ic

2eh0
l2

22kyc̃2950,

2kxkyÃx1~l1
221kx

21kz
2!Ãy2kykzÃz2

ic

2eh0
l3

22kxc̃2950,

2kxkzÃx2kykzÃy1~l4
221kx

21ky
2!Ãz50, ~11!

2ieh0

ca*
~K2kyÃx1k3kxÃy!

1~11j1
2kx

21j123
2 ky

21j4
2kz

2!w̃2
952

mh0

a*
.
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rather complicated result~see below Eq.~16! and figure!. A
good picture of the result can be obtained by solving the
equation forc29 in the absence of the vector potential a
then inserting the latter into the other three equations. T
approximation may be justified, for example, under the c
ditions K2;K3!K1;K4 . Then the order parameter has th
form

c̃29~k!52
mh0

a* ~T!

1

11j1
2kx

21j123
2 ky

21j4
2kz

2 , ~12!

which corresponds to a shape like an anisotropic Yuka
potential in real space. The induced imaginary componenc9
of the order parameter leads to a localT -violation. The
length scales over whichc29 decays are the anisotropi
temperature-dependent coherence lengthsj i

25Ki /a* , which
diverge asT approachesT* . Obviously,c9 is infinite at r
50 in real space, because the use of a delta function in
~3! eliminates the lower cutoff-length scale. Within th
Ginzburg–Landau theory the natural cutoff length isj0 .
Therefore for the qualitative consideration of quantities ar
50 we need a cutoff which is at least of order the ze
temperature coherence length ofh. The order paramete
modulation yields supercurrents in the form

j̃ x54eh0ikyK2c̃29 , j̃ y54eh0ikxK3c̃29 , ~13!

and j̃ z50 if we neglect the screening currents for the m
ment. We use now these currents as a source and calc
the induced vector potential
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Ãy5
4p

Dc
@ j̃ y~RxRz2kx

2kz
2!1 j̃ xkxky~Rz1kz

2!#, ~14!

Ãz5
4p

Dc
@ j̃ xkxkz~Ry1ky

2!1 j̃ ykykz~Rx1kx
2!#,

where

D5RxRyRz22kx
2ky

2kz
22Rxky

2kz
22Rykx

2kz
22Rzkx

2ky
2,

Rx5l123
221ky

21kz
2, Ry5l1

221kx
21kz

2, ~15!

Rz5l4
221kx

21ky
2.

We consider now the magnetic field distribution arou
the impurity site. UsingB5¹3A we obtain for the Fourier-
transformed magnetic field,B̃5 ik3Ã,

B̃x5
16peh0c̃29kxkz

Dc
@K2ky

2~l4
222l1

22!

1K3~l123
22kx

21l4
22Rx!#,

B̃y5
16peh0c̃29kykz

Dc
@2K2~l1

22ky
21l4

22Ry!

1K3kx
2~l123

222l4
22!#,

~16!

B̃z5
16peh0c̃29

Dc
@K2ky

2~l4
22kz

21Rzl1
22!

2K3kx
2~l4

22kz
21Rzl123

22!#.

The magnetic field distribution has a rather complica
structure, as we show for theBz component in figure. We do
not analyze this structure further, but concentrate on
magnetic field at the site of the impurity. For this purpose
have to perform the Fourier transform from momentu
space to real space. Atr 50 this corresponds simply to th
k-integral of B̃~k!. We see immediately that there are nox-
and y-components, because the angular dependence
k-space leads to an exact cancellation. Thez-component,
however, is finite, if we take the lower cutoff length in
account properly.

As a consequence the magnetic field would lead to p
cession of the magnetic moment around thez-axis. This pre-
cession does not change thez-component of the moment s
that the coupling term with the superconducting order
rameter in Eq.~3! is not changed at all. Therefore the loc
superconducting state and its field distribution is essenti
static despite the precession of the impurity moment.
garding the muon as an impurity, one could measure
precession in the standard way through the muon decay
positrons. In a very clean material all muons are usua
trapped in crystallographically equivalent~very symmetric!
points and, consequently, have the same environmen
completely spin-polarized muons are injected, all of th
should generate the same local magnetic field distribu
and hence have the same precession frequencyv. The fre-
quency v depends, however, on the angleu between the
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crystal. BecauseBz is proportional tom the frequency is

v}Bz~r 50!}m}cosu. ~17!

Of course, the precession of the muon spin can only
seen if 0,u,p/2.

On the other hand, in a dirty sample the trapping po
tions of the muons may be scattered so that the magn
field generated at the muons is spread over many val
Then we would not observe a pure precession, but rath
depolarization for thex-y-component of the spin. In both
cases the effect should become stronger as we approac
transition atT* .

3. MICROSCOPIC DERIVATION OF THE IMPURITY TERMS

In the following we discuss briefly the microscopic ca
culations of the coefficientm as well ask, n andg, assuming
for simplicity hole–particle symmetry for the energy spe
trum. In quasiclassical theory the basic equations for
propagators in the presence of the isolated impurity may
written as follows6

@ i«nt̂32ŝ~kF ,R!,ĝ~kF ,R;«n!#1 ivF¹Rĝ~kF ,R;«n!

5@ t̂~kF ,kF ;«n!,ĝint~kF ,R5Rimp ;«n!#d~R2Rimp!.

~18!

Here«n5(2n11)pT is the Matsubara frequency,kF is the
momentum direction on the Fermi surface,vF(kF) is the
Fermi velocity, andt̂3 is the third Pauli matrix in Nambu
space.

The normalization condition for the matrix propagator

ĝ2~kF ,R;«n!52p21̂. ~19!

Equations~18!, ~19! must be supplemented by the equ
tion for the quasiparticle scatteringt-matrix of the impurity

t̂~kF ,kF8 ;«n!5 n̂~kF ,kF8 !1N~0!

3E d2k9

4p
n̂~kF ,kF9 !ĝint~kF9 ,R

5Rimp ;«n! t̂~kF9 ,kF8 ;«n!. ~20!

Here n̂(kF ,kF8 ) is the matrix of the impurity potential. The
auxiliary quantity ĝint(kF ,R;«n) obeys the normalization
condition and Eq.~18! without thet-matrix impurity term on
the right-hand side.

The impurity potential matrixn̂(kF ,kF8 ) may be repre-
sented in the form

n̂~kF ,kF8 !5wkk81̂1 ivkk8t̂31ukk8M•Ŝ1 imkk8•Ŝt̂3 .
~21!

Here termswkk8 , vkk8 , ukk8 andmkk8 describe the conven
tional nonmagnetic potential, the hyperfine interaction,
magnetic spin-spin and spin-orbit coupling respectively. T
form of the spin operatorŜ is defined as in Ref. 11.

The Ginzburg–Landau equations are obtained by
panding the self-consistency equation
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F (
«n 4p F F F n

~22!

in powers of the order parameter and its spatial derivativ
For one-dimensional representations the contributions f
an isolated nonmagnetic impurity to the free energy fu
tional were considered in Refs. 12 and 13 for estimation
the vortex pinning potential. Since we are interested in
terms in Eq.~3!, we can putq50 in Eq. ~22!, omitting gra-
dient terms. This equation is written in the form valid f
singlet pairing,D(kF)5 isyc(kF), and for the particular
kind of triplet pairing (D(kF)5 i (d(kF)s)sy with diz,
wherez is the hexagonal crystalline axis!, if one makes use
of the notationsD(p)5c(p) for the former andD(p)
5dz(p) for the latter cases. Mostly, these types of pairi
are discussed for the analysis of experimental data of UP3.

10

We consider the pairing potential of the form

V~p,p8!52
g

2
@w1~p!w1~p8!1w2~p!w2~p8!#

and assume the basis functions to be real and norma
according to*dVw1,2

2 ( k̂)54p.
The solution of Eq.~20! in the second Born approxima

tion and its substitution into Eq.~18! are straightforward,
since one can use the bulk expression for the quantityĝint in
the cases/j0

2!1, wheres is the quasiparticle cross-sectio
for the impurity potential.5,6 From the solution of the Eilen
berger equations in this approximation we obtain the im
rity contribution to the anomalous propagator

f imp5S p

«n
D 2

N~0!E dV8

4p
@2~vkk8

2
2mkk8

2
1M2ukk8

2

2wkk8
2

!D~kF8 !2~vkk8
2

1mkk8
2

1M2ukk8
2

1wkk8
2

!D~kF!12i ~vkk8wkk8

2ukk8mkk8•M !D~kF8 !#. ~23!

Only the last term of this expression for thef -function, sub-
stituted into the self-consistency equation~22!, yields a finite
value ofm,

m5
p2

16
MzavFlN2~0!E dVE dV8~Fkk82bukk8!

3wkk8~ k̂xk̂y82 k̂yk̂x8!w1~kF!w2~kF8 !. ~24!

Here the coupling constantl5gN(0) is expressed in term
of the critical temperature in the conventional way (Tc

} exp(21/l)) and the matrix elements for the hyperfine a
spin-orbit interactions are represented in the form

vkk85~kF3kF8•M !Fkk8 , mkk85bwkk8kF3kF8 .

Note, that for the point-like impurity potential, whe
wkk8 , Fkk8 andukk8 do not depend upon the momentak, k8,
the coefficientm vanishes for singlet pairing. This is not th
case for triplet superconductors due to the different pa
properties of the basis functionsw1,2(kF) for singlet and trip-
let superconductors. This result may be justified beyond
Born approximation as well. Since the expression Eq.~24! is
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the time-reversal operation, which ensures the time-reve
symmetry of the whole expressionim(h1h2* 2h1* h2).

4. CONCLUSION

We have demonstrated phenomenologically that a m
netic impurity can generate a locallyT -violating supercon-
ducting phase. This leads to a distribution of supercurre
and magnetic fields which acts on the magnetic moment.
the two representationsE1 andE2 considered here, only the
z-component of the magnetic moment couples to the su
conducting order parameter, and the resulting magnetic fi
has only a finitez-component at the impurity site. We hav
shown that this fact yields the precession of the magn
moment without changing the locallyT -violating order pa-
rameter configuration. Thus, for injected muons this m
lead to precession of the spin. However, it is difficult
estimate whether the generated magnetic field would be
ficiently large to really give an observable precession. O
discussion may also apply to other systems besides the3
we had in mind here. This is important for the enhancem
of effects considered to be in the vicinity of a bulk transitio
to a superconducting state with broken time reversal sym
try.
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Indirect determination of the ratio R5sL /sT at small x from HERA data
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The value of the deep inelastic scattering cross-section ratioR5sL /sT is found in the range
1024<x<1022 from F2 anddF2 /d ln Q2 HERA data using very simple relations based
on perturbative QCD. ©1997 American Institute of Physics.@S1063-7761~97!00307-7#
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In recent years the behavior of deep inelastic lepto
hadron scattering at small values of the Bjorken variablx
has been studied in depth. One of the many interesting d
inelastic scattering variables is the ratio of cross-section
the absorption of a longitudinally and transversely polariz
photon by a hadron:R5sL /sT . The ratioR, which can be
represented as a combination of the longitudinalFL(x,Q2)
and transverseF2(x,Q2) deep inelastic scattering function

R~x,Q2!5
FL~x,Q2!

F2~x,Q2!2FL~x,Q2!
, ~1!

is a very sensitive QCD characteristic because it vanishes
free quarks. At small values ofx, R data are not yet avail
able, as they require a rather cumbersome procedure~see
Ref. 1, for example! for the extraction from the experimen

We study the behavior ofR(x,Q2) at small values ofx,
using the H1 data2,3 and the method4 of replacement of the
Mellin convolution by ordinary products. By analogy wit
the case of the gluon distribution function~see Refs. 3 and
5–7!, it is possible to obtain a relation betweenFL(x,Q2),
F2(x,Q2), and dF2(x,Q2)/d ln Q2 at small x. Thus, the
small x behavior of the ratioR(x,Q2) can be extracted di
rectly from the measured values ofF2(x,Q2) and its deriva-
tive. These extracted values ofR may be well considered
new small-x ‘‘experimental data’’.3! Moreover, when accu-
rate experimental data forR at smallx become available, the
breakdown of this exactly perturbative relation will be i
dicative of the importance of other effects, such as hig
twist contributions or nonperturbative QCD dynamics
small x.

We follow the notation of our previous work.7,8 The sin-
glet quarks(x,Q0

2) and gluong(x,Q0
2) parton distributions4!

at someQ0
2 are parameterized~see, for example, Ref. 9! by

p~x,Q0
2!5Apx2d~12x!np~11epAx1gpx! ~2!

~hereafterp5s,g!.
Further, we restrict the analysis to the case of largd

~i.e., x2d@1! following recent H1 data.2 A more complete
analysis concerning the extraction of the longitudinal str
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also took into account the cased;0 corresponding to the
standard pomeron.

Assuming Regge-like behavior for the gluon distributio
andF2(x,Q2) at x2d@1

g~x,Q2!5x2dg̃~x,Q2!, F2~x,Q2!5x2ds̃~x,Q2!,

we obtain the following equation for theQ2 derivative of the
structure functionF2:5!

dF2~x,Q2!

d ln Q2 52
1

2
x2d (

p5s,g
@r sp

11d~a! p̃~0,Q2!

1r sp
d ~a!xp̃ 8~0,Q2!1O~x2!#,

~3!

FL~x,Q2!5x2d (
p5s,g

@r Lp
11d~a! p̃~0,Q2!

1r Lp
d ~a!xp̃ 8~0,Q2!1O~x2!#,

where r sp
h (a) and r Lp

h (a) are the combinations of the
anomalous dimensions of Wilson operatorsgsp

h 5agsp
(0),h

1a2gsp
(1),h1O(a3) and Wilson coefficients6! aBL

p,h

3(11aRL
p,h)1O(a3) and aB2

p,h1O(a2) of the h ‘‘mo-
ment’’ ~i.e., the corresponding variables extended from in
ger arguments to noninteger ones!:

r Ls
h ~a!5aBL

s,h@11a~RL
s,h2B2

s,h!#1O~a3!,

r Lg
h ~a!5

e

f
aBL

g,hF11aS RL
g,h2

B2
g,hBL

s,h

BL
g,h D G1O~a3!,

r ss
h ~a!5agss

~0!,h1a2~gss
~1!,h1B2

g,hggs
~0!,h12b0B2

s,h!

1O~a3!.

r sg
h ~a!5

e

f
$agsg

~0!,h1a2@gsg
~1!,h1B2

s,hgsg
~0!,h1B2

g,h~2b0

1ggg
~0!,h2gss

~0!,h#%#1O~a3!, ~4!

and

p̃ 8~0,Q2![
d

dx
p̃~x,Q2! at x50,

wheree5( i
fei

2 is the sum of squares of the quark charge

17$10.00 © 1997 American Institute of Physics



FIG. 1. The ratioR5sL /sT at smallx. The points
2,3

he
were extracted from Eqs.~1! and ~8! using H1
data. The dashed-dotted line~NPRW! is the predic-
tion of the Saclay group19 based on the dipole pic-
ture of BFKL dynamics. The band represents t
uncertainty from the DGLAP analysis of HERA
data in Ref. 18. Also shown are BCDMS data11

points at highx and the preliminary CCFR data
point from Ref. 12. The solid lines~in Fig. 1b! are
the SLAC R~1990! parametrization20 at Q258.5, 20
and 35 GeV2 ~lower curve corresponds to lowerQ2

value!.
To accuracyO(x22d), we have for Eq.~3!

en
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0.84 dF2~0.48x,Q2!
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dF2~x,Q2!

d ln Q2 52
1

2 F r sg
11d~jsg!

2dgS x

jsg
, Q2D

1r ss
11dF2~x,Q2!1~r ss

d 2r ss
11d!

3x12ds̃ 8~x,Q2!G1O~x22d! ~5!

FL~x,Q2!5r Lg
11d~jLg!2dgS x

jLg
, Q2D1r Ls

11dF2~x,Q2!

1~r Ls
d 2r Ls

11d!x12ds̃ 8~x,Q2!1O~x22d!

~6!

with jsg5r sg
11d/r sg

d and jLg5r Lg
11d/r Lg

d . From Eqs.~5! and
~6! one can obtainFL as a function of bothF2 and the
derivative:

FL~x,Q2!52jdF2
r Lg

11d

r sg
11d

dF2~xj,Q2!

d ln Q2

1S r Ls
11d2

r Lg
11d

r sg
11d r ss

11dDF2~xj,Q2!

1O~x22d,ax12d!G , ~7!

where the result is restricted toO(x22d,ax12d). To arrive at
the above equation we have performed the substitution

jsg /jLg→j5gsg
~0!,11dBL

g,d/gsg
~0!,dBL

g,l 1d

and neglected the terms̃ 8(xjsg ,Q2).
This replacement is very useful. The anomalous dim

sions gsp
(1),n in the next-to-leading order approximatio

~NLO! are singular at both,n51 andn50, and their pres-
ence in the arguments ofp̃(x,Q2), makes the numerica
agreement between this approximate formula and an e
calculation worse~we have checked this point using som
MRS sets9 of parton distributions!.

Using the NLO approximation ofr sp
11d andr Lp

11d for the

specific valued50.3, we obtain~for f 54 andMS scheme!
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FL~x,Q !5
1159.3a F d ln Q2

13.59aF2~0.48x,Q2!G
1O~a2,x22d,ax12d!. ~8!

Notice that theas correction in the denominator of the facto
on the right-hand side of Eq.~8! makes a large contribution
For example, atQ2520 GeV2 the denominator is 110.92.

With the help of Eqs.~1! and~8!, we have extracted the
ratio R(x,Q2) from H1 1994 data,2 determining the slopes
dF2 /d ln Q2 from straight line fits as in Refs. 3 and 5. In th
present calculation, only statistical errors from those m
surements have been taken into account. To estimate the
tematic errors that have been added in quadrature, we h
used those from an early analysis performed by H1.3 In the
calculation of the running coupling constantas(Q

2) at two
loops we have taken@~4!/MS#5225 MeV.

Figure 1a shows the extracted ratioR at Q2520 GeV2

using the above formula ford50.3. This value ofd is very
close to those obtained by various groups from QCD fits
H1 data.2,10 Fig. 1a also shows BCDMS11 and preliminary
CCFR ~see, Ref. 12! data points with much larger errors.

For comparison we have also plotted various predictio
for R using QCD formulas atO(as

2)13–15 7! and parton den-
sities extracted from fits to HERA data. The large differen
between the result from MRS~G! and the latest se
MRS~R1!17 shows the sensitivity ofR to the update of these
parton densities to new HERA data. One can also notice
all these predictions remain higher than our extracted poi

On the other hand, recent theoretical calculations oR
based on the conventional NLO Dokshitzher–Gribo
Lipatov–Altarelli–Parisi ~DGLAP! evolution analysis of
HERA data ~LBY !18 and on the dipole picture of the
Balitski�–Fadin–Kuraev–Lipatov ~BFKL! dynamics
~NPRW!19 are in very good agreement with our points o
tained with Eq.~8!.

Finally, Fig. 1b shows the extractedR with d50.3 at
three differentQ2 values showing only statistical errors~to
avoid the strong overlap between the data points at diffe
Q2 values!, in comparison with the SLAC R~1990!
parametrization20 based on largerx data. Relatively good
agreement atx<1022 is achieved when systematic errors a
taken into account. Notice that points at the samex and

18A. V. Kotikov and G. Parente



different Q2 are correlated by the form in which the deriva-
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7!The quark singlet and nonsinglet kernels in theMS scheme are taken from
Ref. 13. It was noted in Ref. 16 that the gluon kernel given in Ref. 13 is

H.

,

9

,

O.

s.

with
tive termdF2 /d ln Q is determined.
In summary, we have extracted the ratioR5sL /sT at

small x from the structure functionF2 and itsQ2 derivative
with the help of Eqs.~1!, ~7!, and~8!. These equations pro
vide the possibility of an indirect determination ofR. This is
important since the direct extraction ofR from experimental
data is a cumbersome procedure~see Ref. 1!. Moreover, the
fulfillment of Eqs.~1!, ~7!, and~8! by deep inelastic scatter
ing experimental data is a cross-check of perturbative Q
at small values ofx. Our formulas can also be used as
parametrization ofR as a function of the most widely use
phenomenologicalF2 .

The results depend on the specific value of the slopd.
In the cased50.3, which is very close to the values obtain
by H1 group2 in the consideredQ2 interval, we found rela-
tively good agreement with the SLAC parametrization20 and
also very good agreement with the studies based on N
DGLAP and BFKL dynamics~see Refs. 18 and 19, respe
tively!. However, the calculation performed with the late
sets of HERA parton densities using perturbative QCD
second order~see MRS~R1! curve in Fig. 1a! predicts a
slightly higher value ofR.

This work was supported in part by CICYT and b
Xunta de Galı´cia. We are grateful to J. W. Stirling for pro
viding the parton distributions used in this work, and to
Bodek, M. Klein, and F. J. Yndurain for discussions.
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3!Although with the theoretical prejudice contained in the starting Q
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5!Hereafter we usea(Q2)5as(Q

2)/4p.
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erroneous. We use the correct result given in Refs. 14 and 15.
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Calculation of the effective permeability of a randomly inhomogeneous porous medium

er-
É. V. Teodorovich1)

Institute of Problems in Mechanics, Russian Academy of Sciences, 117526 Moscow, Russia
~Submitted 11 November 1996!
Zh. Éksp. Teor. Fiz.112, 313–324~July 1997!

The effective permeability of a porous medium is calculated nonperturbatively. An exact
expression for the permeability in terms of a double path integral is derived on the assumption
that the permeability obeys a log-normal distribution function. Path integration is carried
out in general form in the large-scale limit. The result confirms the well-known conjecture that
the effective permeability is independent of the structure of the correlation function, but it
disagrees with the hypothesis that the effective permeability depends exponentially on the variance.
© 1997 American Institute of Physics.@S1063-7761~97!02707-8#
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The description of filtration flows in porous media pos
a very timely problem in view of its applications to variou
problems in hydrogeology, petroleum recovery, chemi
technology, etc. It is natural to regard a porous medium
randomly inhomogeneous and to specify its properties sta
tically by means of distribution functions or statistical m
ments and correlation functions of various orders. When
spatial scales of the random inhomogeneities~correlation
lengths! are small in comparison with the characteristic fi
tration flow scales, for their description it is sufficient
know the effective permeability, which determines the re
tion between the average filtration flow rate and the aver
pressure gradient in accordance with Darcy’s law.

The problem of calculating the permeability, which e
sentially entails investigating and finding statistical solutio
to stochastic differential equations, has a long history. T
simplest and most natural approach to its solution is by p
turbation theory. The solution is represented by a power
ries in fluctuations of the permeability, and then each term
the series is averaged on the basis of certain assump
regarding the nature of the statistics for the permeab
fluctuations~a normal or log-normal distribution is custom
arily assumed!.1–3 This approach is similar to the method
description proposed by Wyld in the theory of turbulenc
where the solution is represented by a functional power
ries in the density of random Langevin force sources mod
ing the onset of stochasticity due to the development
instability.4 The authors of most papers have confined th
calculations of the effective permeability to the first nonv
nishing approximation of perturbation theory. The adop
boundary conditions stipulate that the pressure gradient
given constant, and the problem is reduced to calculating
average filtration flow rate. Corresponding calculations h
been carried out to estimate the role of high
approximations,5,6 showing that the results of the second p
turbation approximation do not contradict the hypothe
stated in Ref. 2: that the result of the first approximation
the first term of the Taylor series expansion of the expon
tial function describing the exact solution of the problem~at
least in the case of a log-normal distribution of the perm
ability of the medium!. It follows from the results obtained in
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meability does not depend on the form of the correlat
function and is determined entirely by the variance of t
fluctuating variable at the given point.5

The question arises, to what extent are these conclus
that the effective permeability depends exponentially on
variance and not on the form of the correlation functio
bound to the application of perturbation theory? In particul
De Wit7 has recently shown on the basis of calculations up
and including the third perturbation approximation that t
hypothesis of an exponential dependence of the effective
meability on the variance is not justified and that in the ca
of arbitrary statistics the permeability in higher approxim
tions is found to depend on the functional form of the p
correlation function of the permeability fluctuations and n
merely on the variance. The description of the structure
any term of the permeability series and the refinement
permeability theory by the partial summation of certain in
nite subsequences of the complete series can be impleme
on the basis of methods analogous to Wyld’s approac4

which are borrowed from quantum field theory and utili
Feynman diagrams, the Dyson equation, and a renorma
tion procedure. Working within the framework of the fie
approach and assuming that a log-normal distribution for
permeability is equivalent to a Gaussian distribution
small fluctuations, King8 has reproduced the results obtain
in the lowest permeability approximations, but at the sa
has succeeded in justifying the hypothesis that the effec
permeability depends exponentially on the variance.

We look at the problem from the standpoint of findin
the effective permeability outside perturbation theory, b
cause in reality even the application of methods of quant
field theory is based on perturbation theory and the refi
ment thereof by partial summation of diagrams of a cert
kind. A nonperturbative approach can be based on the re
sentation of the solution of the stochastic differential eq
tion in the form of a Feynman path integral previously co
structed by the present author in the problem of the diffus
of a passive impurity in a field of random velocities9 without
relying on the assumption of smallness of the relative p
meability fluctuations.

173$10.00 © 1997 American Institute of Physics



2. STATEMENT OF THE PROBLEM
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The relation between the filtration flow ratev and the
pressure gradientp is given by Darcy’s law, which is written
as follows for an isotropic system:

v~r !52k~r !¹p~r !, ~2.1!

where the susceptibility~permeability! coefficientk(r ) is a
certain random function of the coordinates~the generaliza-
tion to the case of an anisotropic medium requires spe
investigation!. The condition of continuity for an incom
pressible fluid is given by the equation

¹•v~r !5r~r !, ~2.2!

where r(r ) is the number density of real determinist
sources or equivalent sources governing the boundary co
tions of the problem. It follows from Eqs.~2.1! and~2.2! that
the pressure is the solution of the equation with random
efficients

¹•@k~r !¹#p~r !52r~r !. ~2.3!

We define the effective permeability operator of the medi
by the relation

^v~r !&52 k̂eff^¹p~r !& . ~2.4!

In the general casek̂eff is a certain integral operator of th
form

^v~r !&52E dr1keff~r ,r1!^¹p~r1!&. ~2.5!

For a statistically homogeneous medium the kernelkeff(r ,r1)
depends only on the difference in the coordinates, and
transformation to Fourier transform space takes Eq.~2.5!
into the form

^v~q!&5keff~q!iq^p~q!&.

The objective of the present study is to calculatekeff(q() and
its Fourier transformkeff(r2r1).

Averaging~2.2!, we then obtain from this equation

^v~r !&5¹21r~r !1curl A, ~2.6!

where the operator¹215¹(¹2)21 is well-defined, since
(¹2)21 represents the Green’s function for the Laplace eq
tion. With the exception of certain exotic conditions for a
anisotropic medium we can setA 5 0 in Eq. ~2.6!!.

As a result, we obtain the expression for the Four
transform for the inverse effective permeability operator

keff
21~q!5

q2^p~q!&
r~q!

, ~2.7!

and the problem reduces to the calculation of the Fou
transform of the average pressure for a given density
sources.

To facilitate the ensuing discussion, we introduce
notation k(r ) 5 k0eu(r ). In this expressionk0 and u(r )
5 ln@k(r )/k0# are not uniquely defined, and the arbitrarine
in their definition will be exploited in writing an expressio
for the characteristic functional of the random functionu(r ).
As a result, the pressure equation assumes the form
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The formal solution of this equation can be represented
the relation

p5k0
21~2¹22¹u•¹!21e2ur. ~2.9!

Averaging Eq.~2.9!, we obtain an explicit representation fo
^p(r )&, which can be used to find the effective permeabil
according to~2.4! or ~2.7!.

3. CONSTRUCTION OF THE INVERSE OPERATOR

To construct the inverse operator (2¹22¹u•¹)21 ~the
Green’s function!, we invoke the Feynman operator forma
ism, which essentially entails the following. In the case of
equation with constant coefficients,¹u 5 const, the inverse
operator can be written in the operator exponential form p
posed by Fock:

~2¹22¹u•¹!215E
0

`

dt exp$2~2¹22¹u•¹!t%.

~3.1!

which must be interpreted as an expansion in an infinite T
lor series in powers of the operators. In our case, howe
where the coefficients of the operator are not constant,
operators ¹u(r ) and ¹ do not commute,
(] i)•(] ju)2(] ju)•(] i) 5 (] i] ju), and in the series expan
sion of the exponential function is it necessary to specify
order of operation of the operators of differentiation] i and
multiplication by the function of the coordinates] ju. Fol-
lowing Feynman,10 we introduce the ordering parameters
~‘‘proper time’’!, assuming that the operators act in whatev
sequence corresponds to increasing value of the parames.

Once the order of the noncommuting operators has b
defined, they can be treated as numbers, whereupon th
verse operator can be written in the form

~2¹22¹u•¹!215E
0

`

dt expH 2E
0

t

ds@2¹2~s!

2¹u~r ,s!¹~s!#J . ~3.2!

To ‘‘disentangle’’ the operator exponential, it is necessary
dispose of the square of the operator¹(s) in the exponential,
whereupon the remaining expression can be interpreted a
operator of translation of the argument of the function a
cording to the relation

exp$a¹% f ~r ! f ~r1a!. ~3.3!

For this purpose we use the Stratonovich transform,11 which
is a functional analog of the well-known Weierstrass tra
form in the theory of integral transforms12 In application to
our situation~see Appendix A! this transform has the form

expH E
0

t

ds@¹2~s!1¹u~r ,s!¹~s!#J
5A21S 1

4
,t D E d@X~s!#expH 2

1

4E0

t

ds@X~s!
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1¹u~r ,s!#2 exp 2E t

dsX~s!¹~s! , ~3.4!

e

-
is
l
om

e

ar

e
th

as

It is readily verified that the ensemble average of the random

l

tions
eld
r
tic

de-
ys

s-

at
tis-
f the
ive

tion

he
m-
J H
0

J
A~a,t!5E d@X~s!#expH 2aE

0

t

dsX2~s!J .

Equation ~3.4! involves an integral over all possibl
d-components of the vector functionsX(s) defined on the
interval 0<s<t. The ambiguity in the definition of the mea
sure d@X(s)#, which specifies the weight of the paths,
unimportant, because expression~3.4! contains an integra
with respect to the measure in the numerator and the den
nator @in terms ofA(a,t)#.

Equations~2.9!, ~3.2!, ~3.4! and the rules governing th
action of the translation operators reduces the argument~3.3!
to the following representation of the solution forp(r ):

p~r !5k0
21E

0

`

dt A21S 1

4
,t D E d@X~s!#rS r2E

0

t

dsX~s! D
3expH 2

1

4E0

t

dsFX~s!1¹uS r2E
0

t

ds8X~s8! D G2

2uS r2E
0

t

ds8X~s8! D J ~3.5!

@the explicit dependence ofu(r ,s) on the proper timess is
omitted from~3.5!, because no noncommuting operators
left in the exponential#.

The evaluation of̂ p(r )& reduces to averaging~3.5! over
the ensemble of realizations of the permeability. In the av
aging operation it is convenient to avoid the square of
expression containing¹u(r2*s

tds8X(s8)) in the exponent.
To do so, once again we invoke the functional Weierstr
transform

expH 2
1

4E0

t

dsFX~s!1¹uS r2E
0

t

ds8X~s8! D G2J
5A21~1, t!E d@Y~s!#expH 2E

0

t

dsFY2~s!

1 iY~s!•X~s!1 iY~s!¹uS r2E
s

t

ds8X~s8! D G J . ~3.6!

As a result, we obtain

^p~r !&5k0
21E

0

`

dt A21S 1

4
,t DA21~1, t!

3E d@X~s!#d@Y~s!#expH 2E
0

t

ds@Y2~s!

1 iY~s!•X~s!#J rS r2E
0

t

dsX~s! D
3K expH i E

0

t

ds@2Y~s!¹12id~s!#uS r

2E
0

t

ds8X~s8! D J L . ~3.7!
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permeability field in~3.7! admits the representation

C@u~x!#5 K expH i E dxu~x!u~x!J L , ~3.8!

u~x!5E
0

t

ds@Y~s!¹12id~s!#dS x2r1E
s

t

ds8X~s8! D
and can be interpreted as a characteristic~generating! func-
tional of the random fieldu(x) and, as such, is the functiona
Fourier transform of the distribution function foru.

Further progress can be made under certain assump
about the nature of the statistics for the permeability fi
k(x). If we assume thatk has a log-normal distribution fo
u 5 ln@k(x)/k0# ~Refs. 3, 6, and 8, then the characteris
functional is easily calculated, and in the case^u& 5 0 it has
the form

C@u~x!#5expH 2
1

2E dx dx8u~x!u~x8!B~x,x8!J ,

~3.9!

whereB(x,x8) is the pair correlation function of the random
field u(x), and

B~x,x8!5^u~x!u~x8!&, ~3.10!

which in our case of a statistically homogeneous system
pends only on the difference in its arguments. It is alwa
possible to satisfy the condition̂u& 5 0 by virtue of the
latitude in the choice ofk0.

Calculating the Fourier transform for^p(r )& with allow-
ance for the fact that the functionalC@u# in ~3.7! is inde-
pendent ofr , substituting^p(q)& into ~2.7!, and using Eqs.
~3.8! and~3.9!, we obtain an expression for the Fourier tran
form of the reciprocal effective permeability:

keff
21~q!5k0

21q2E
0

`

dt A21S 1

4
,t DA21~1, t!

3E d@X~s!#d@Y~s!#expH 2E
0

t

ds@Y2~s!

1 iY~s!•X~s!1 iq–X~s!#J expH 2
1

2

3E
0

t

ds@2Y~s!¹12id~s!#

3E
0

t

ds8@Y~s8!¹12id~s8!#BS E
s8

s

ds9X~s9! D J .

~3.11!

We note that Eq.~3.11! is exact under the sole condition th
the permeability field is assumed to have log-normal sta
tics; no assumptions have been made about smallness o
permeability fluctuations. The independence of the effect
permeability from the density of sourcesr indicates that this
quantity characterizes the medium and has no connec
with the properties of the filtration flows.

4. EFFECTIVE PERMEABILITY IN THE LARGE-SCALE LIMIT

Normally the case of interest is the one in which t
characteristic scales of the filtration flow are large in co
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and the rules of integration using delta functions, we then

of

we

e

ds
~large-scale limit!. In the large-scale limit we can se
^p(r 8)&.^p(r )& in the integrand of Eq.~2.5! and take this
expression outside the integral sign. The latter approxima
corresponds to the substitution

keff~r2r 8!→d~r2r 8!E dr 8keff~r2r 8!

[d~r2r 8!keff~q!uq50 . ~4.1!

Consequently, the large-scale limit forkeff is obtained by
passing to the limitq→0 in Eq.~3.11!, a nontrivial operation
in view of the nonanalyticity of the integral on the right
hand side of~3.11! with respect toq at the pointq 5 0.
When such a transition is made in~3.11!, one can make the
substitutionst→t/q2, s→s/q2 and thenX(s/q2)→qX(s),
Y(s/q2)→qY(s). The results of these substitutions are t
disappearance of the factorq2 on the right-hand side o
~3.11! and the substitution

q→q0 5
q

uqu
, BS E

s8

s

ds9X~s9! D→BS 1

qEs8

s

ds9X~s9! D .

The correlation functionB(x) is nonvanishing in an in-
terval on the order of the correlation length. The substitut
B(x)→B(x/q) in the limit q→0 corresponds to the cas
when the correlation length tends to zero. As a result, o
minimum-length pathsx 5 *s8

s ds9uX(s9)u are given in
B(x). Inasmuch as minimum-length paths correspond to m
tion with a constant velocityX(s) 5 const, we can se
X(s)'X0 in the argument of the correlation function
~3.11! in the large-scale limit.

Functional integration can be carried out complet
with the aid of Fourier series in this approximation.13 Ac-
cordingly, we represent the vector functionsX(s) andY(s)
in the interval (0,t) by the expansions

X~s!5X01 (
n51

`

Xn cos
pns

t
,

Y~s!5Y01 (
n51

`

Yn cos
pns

t
, ~4.2!

so that path integration is replaced by integration of infin
multiplicity with respect to the coefficientsX0, Y0, Xn , and
Yn .

The integrations with respect toXn are carried out by
means of the readily verifiable relation

An
21S 1

4
,t DAn

21~1, t!E dXn exp~ iYn•Xnt!5d~Yn!,

~4.3!

which facilitates the subsequent integrations with respec
Yn . Making use of the identity

¹B@~s2s8!X0#5
X0

X0
2

]

]s
B@~s2s8!X0#

52
X0

X0
2

]

]s8
B@~s2s8!X0# ~4.4!
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perform integration with respect tos ands8 to obtain

keff
21~q!5k0

21eB~0!/2E
0

`

dt A21S 1

4
,t DA21~1, t!

3E dXdYexp$2~Y21 iY–X1 iq–X!t%

3expH 2
Y–X

X2 S Y–X

X2 1 i D @B~0!2B~Xt!#J ~4.5!

@in Eq. ~4.5! we have dropped the subscript 0 fromX0, Y0,
and A0(a,t) 5 *dX0exp(2aX0

2t)#.
Introducing the substitutionY→Y2 iX/2, we carry out

the integration with respect to thed-dimensional vectorY by
means of the relation

E dYexpH 2Y2t2
~Y–X!2

X4 @B~0!2B~Xt!#J
5S p

t
D d/2 1

A11@B~0!2B~Xt!#/X2t
. ~4.6!

The rest of the integration with respect toX and the passage
to the limit q→0 are conveniently executed by means
Fourier inversion forkeff

21(q) with subsequent integration
over the entire volume according to Eq.~4.1!!.

The inverse Fourier transform producesd(r2Xt) in the
integrand of Eq.~4.5!, making it possible to integrate with
respect toX. As a result, we have

keff
21~r !52

k0
21eB~0!/2

~4p!d/2 ¹2
1

r d22wd~r !,
~4.7!

wd~r !5e2[B~0!2B~r !]/4E
0

`

dt t~d23!/2@ t1B~0!

2B~r !#21/2e2t/4,

wheret 5 r 2/t. Integratingkeff
21(r ) over infinite volume and

transforming the volume integral into a surface integral,
obtain

keff
21[keff

21~q!uq505
k0

21eB~0!/2

~4p!d/2 SdF r d21
]

]r

w~r !

r d21G
r→`

,

~4.8!

where Sd 5 2pd/2/G(d/2) is the surface area of th
d-dimensional sphere of unit radius.

In calculating the derivative in~4.8!, it must be borne in
mind that the derivative satisfies]w(r )/]r;]B(r )/]r ,
which is assumed to decay faster thanr 21 as r→`. As a
result, taking into account the relation ^k21&
5 k0

21exp$B(0)/2% ~see Appendix B!, we find

keff
215^k21&

~d22!Sd

~4p!d/2 wd~`!. ~4.9!

It is evident from Eq.~4.9! that, sinceB(`) 5 0, in the
large-scale limit the effective permeability actually depen
only on the quantityB(0), which is related to the relative
variance of the permeabilityD by the equationB(0)
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5 ln(11D) ~see Appendix B!. We have thus confirmed the
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APPENDIX A: FUNCTIONAL WEIERSTRASS TRANSFORM

the

s

of

st
inte-
in
ted
conclusion on which perturbation theory is based, that
effective permeability of an isotropic system is independ
of the structure of the correlation function.

In the general case of arbitrary dimensionalityd the in-
tegral w(`) defined by Eq.~4.7! is expressed in terms o
Whittaker functions, which have singularities of the ty
G@6(d22)/2# for d22 5 0, so that the coefficientkeff

21 is
finite for d 5 2.

Of immediate interest here is the three-dimensional c
(d53), in which w3(`) is expressed in terms of the prob
ability integral. The resulting expression has the form

keff5
^k&

~11D !@12F~AB~0!/2!#
. ~4.10!

For small fluctuations we can setB(0)'D and expandkeff

in powers ofD. Invoking the expansion of the probabilit
integral F(x)'2x/Ap, we see at once that the expansi
contains half-integer powers ofD, and the results of pertur
bation theory are not reproduced. This fact indicates that
perturbation expansion must be regarded as an asymp
series, and the inclusion of higher approximations can
nificantly alter the picture of the kinds of laws involve
when based on an analysis of results obtained in the low
approximations. On the other hand, we should not rule
the possibility that the inferred asymptotic character of
perturbation series is associated with the use of a log-nor
distribution for the permeability and that the application
perturbation theory might be justified in the presence of
ternative statistics. All the same, we still point out the sho
comings of the traditional perturbation scheme whereby
boundary conditions correspond to the stipulation of a c
stant pressure gradient. At the same time, the renorma
tion of the pressure gradient has been disregarded. In
proposed approach the renormalization of the pressur
taken into account by the substitution ofr exp(2u) for r on
the right-hand side of Eq.~2.8!. Another reason for the non
reproducibility of the results of perturbation theory is th
usually only the statistical moments of even orders are
cluded in the term-by-term averaging of the functional ser
even though the statistical moments of odd orders have n
zero values in the case of a log-normal distribution~see Ap-
pendix B!.

Another conclusion that can be drawn from Eq.~4.9!,
which is exact in the large-scale limit and under the assu
tion of a log-normal distribution of the permeability, is th
incorrectness of the assumption that the lowest perturba
approximations correspond to an expansion of the expon
tial function representing an exact solution of the problem
the effective permeability of a randomly inhomogeneous m
dium.

We close with the observation that the final result~4.10!
can be applied without modification of any kind to the pro
lem of the effective electrical conductivity of mixtures an
alloys14,15 and to a number of other problems.
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The Weierstrass transform is defined by the equation12

exp$aF2~s!%5A21~a!E dX exp$2a@X212X–F~s!#%,

~A1!

A~a!5E dX exp$2aX2%.

This transform can be used to express an exponential of
square of a certain function~vector or scalar! in terms of an
exponential of the first power of this function.

If the function F(s) is specified in the interval (0,t),
we can partition the interval intoN subintervals of length
Dsi and approximateF(s) by piecewise-constant function
Fi . In the continuous limitN→`, Dsi→0 such an approxi-
mation is equivalent to specification of the functionF(s).

Let us consider the identity

exp$aFi
2Dsi%5Ai

21~a!E dX i exp$2a~X212X i•Fi !Dsi%,

~A2!

Ai~a!5E dX exp$2aX2Dsi%.

We form the product of the left-hand sides of Eqs.~A2! and
pass to the continuous limit:

lim
N→`

)
i 51

N

exp$aFi
2Dsi%5 lim

N→`

expH a(
i 51

N

Fi
2DsiJ

[expH aE
0

t

dsF2~s!J . ~A3!

Analogously, we write the product of the right-hand sides
Eqs.~A2! in the form

lim
N→`

)
i 51

N H dX i

Ai~a!
exp$2a~X i

212X i•Fi !Dsi%J
[E d@X~s!#expH 2aE

0

t

ds@X2~s!12X~s!•F~s!#J ,

~A4!

where the integral measure

d@X~s!#5 lim
N→`

)
i 51

N H dxi

Ai~a! J
defines the contribution of the ‘‘path’’X(s) running through
the sequence of pointsX i the intervaldX i , evaluated at the
‘‘time’’ si . In the continuous limit the measure integral mu
be regarded as a path integral. The concept of the path
gral was first introduced by Einstein and Smoluchowski
the theory of Brownian motion and was later substantia
mathematically in the work of Wiener.

The resulting equation

expH aE
0

t

dsF2~s!J
177É. V. Teodorovich
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^k~x1!k~x2!&5k0
2C@2 id~x2x1!2 id~x2x2!#, ~B3!

u-

he

r

,

3expH 2aE
0

t

ds@X2~s!12X~s!•F~s!#J ,

~A5!

A~a,t!5E d@X~s!#expH 2aE
0

t

dsX2~s!J
is a functional analog of the Weierstrass transform~A1!. It
was proposed by Stratonovich11 and can be used to expre
the integral of the square of a certain function in the ar
ment of an exponential in terms of an exponential contain
an integral of the first power of this function.

APPENDIX B: EQUATIONS FOR THE LOG-NORMAL
DISTRIBUTION

The case of a log-normal distribution fork(x) corre-
sponds to a normal distribution for the quantityu(x)
5 ln@k(x)/k0#. It is convenient to replace the distributio
function for u(x) by its functional Fourier transform or so
called characteristic functional:

C@u~x!#5 K expH i E dx u~x!u~x!J L . ~B1!

Knowing the characteristic functional, we can find the sta
tical moments ofu(x) by means of the variational differen
tiation operations

^u~x1!&5
dC@u~x!#

idu~x1!
U

u50

,

~B2!

^u~x1!u~x2!&52
d2C@u~x!#

du~x1!du~x2!
U

u50

.

The statistical moments fork(x) are calculated from the re
lations

k~x1!&5k0C@2 id~x2x1!#,
178 JETP 85 (1), July 1997
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^k21~x1!&5k0
21C@ id~x2x1!#,

etc. The characteristic functional for the log-normal distrib
tion is specified by Eq.~3.9!. In this case Eqs.~B3! give

^k~x!&5k0eB~0!/2,^k21~x!&5k0
21eB~0!/2,

^k~x1!k~x2!&5^k&2eB~x12x2!, ~B4!

^k~x1!k~x2!k~x3!&5
^k~x1!k~x2!&^k~x1!k~x3!&^k~x2!k~x3!

^k&3 .

From ~B4!, in particular, we deduce the expression for t
relative variance

D5
^k2&

^k&2 215eB~0!21, B~0!5 ln~11D !. ~B5!

1!E-mail: teodor@ipm.net.ru
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Role of decay processes in the propagation of slightly nonequilibrium thermal-pulse

tic
phonons in YAlO 3:Lu crystals
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Data on the propagation of slightly nonequilibrium phonons,DT!Tb (Tb is the cryostat bath
temperature! in Y0.9Lu0.1AlO3 crystals with effective elastic scattering by rare-earth
metal atoms are analyzed. The experimental results are interpreted on the basis of the
‘‘quasidiffusion’’ model, where three-phonon inelastic decay processes play a decisive role in the
phonon kinetics. Monte Carlo calculations with these processes taken into account yield
good quantitative agreement with the experimental data. ©1997 American Institute of Physics.
@S1063-7761~97!02807-2#
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The kinetics of nonequilibrium phonons injected into
semiconductor or insulator crystal is determined by two m
scattering processes: 1! elastic scattering by structural de
fects ~including isotopes!; 2! three-phonon decay processe
in which a high-frequency phonon decays into two low
energy phonons.

Whereas elastic scattering processes are fairly effici
nonequilibrium phonons injected into a crystal propagate
fusely, and in work with a thermal-pulse scheme1 the bolom-
eter signal has a characteristic diffusion-induced, bell-sha
profile. The analysis of this curve can yield informatio
about the efficiency and nature of the scattering centers.2 The
diffusive motion of nonequilibrium phonons in the presen
of elastic scattering can be influenced by their decay p
cesses, which cause phonons to travel more rapidly thro
the crystal. This phenomenon is known as ‘‘quasidiffusio
and was first treated analytically in Refs. 3–5. In these
later papers,6,7 including numerical modeling studies of th
decay processes, the injected phonons are assumed
highly nonequilibrium particles with respect to frequenc
which is close to the Debye frequency. This hypothesis
lows from a quantitative analysis of the efficiency of t
elastic and decay mechanisms of phonon scattering for
eral well-known materials used in experiments using ther
pulses.

It is necessary to distinguish between the strong n
equilibrium of phonons with respect to their frequencyv and
with respect to their occupation numberN(v). The forego-
ing discussion applies to the caseN(v)!1. For N@1 the
coalescence of phonons becomes significant, altering t
kinetics. A qualitatively new phenomenon emerges here,
formation of a ‘‘hot spot,’’ which was first investigated theo
retically in Ref. 8 and observed experimentally in Refs
and 10.

Table I shows data on the efficiency of elastic scatter
and decays for materials most commonly used in exp
ments on the propagation of nonequilibrium phonons.
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scattering in the low-frequency range can be written in
form

1/tB5BT4, ~1!

whereT is the phonon energy in kelvins. For the injection
phonons into the investigated material with a Planck dis
bution we interpretT as the energy of the dominant group
thermal-pulse phonons.2

The decay rate for anharmonic processes, averaged
the phonon polarizations and directions inq space, can be
written in the form

1/tA5AT5. ~2!

Maris11 has introduced the dimensionless ratio of the e
ciencies of elastic and anharmonic decays

B* 5B/~A4VD /L !1/5, ~3!

whereVD is the averaged phonon velocity in the material
the sample, which has lengthL. For the data in Table I the
ballistic transit timetbal5L/VD is taken equal to 1026 s for
all the materials, which is consistent in order of magnitu
with typical experimental conditions (L.1 cm and
VD5105–106 cm/s!. It has been shown11 that analytical cal-
culations for the description of quasidiffusion processes
possible only under the condition

B* >33103. ~4!

It is evident from the table that this condition is not satisfi
for conventional semiconductor-class materials, and num
cal simulation is required to take account of the contribut
of decay processes.

A significantly higher level of elastic scattering can b
encountered in substitutional solid solutions such as~e.g.!
yttrium rare-earth aluminum garnets and yttrium rare-ea
aluminates. The closeness of the ionic radii of yttrium ato
and the rare-earth metal ion~e.g., Lu! ensures total mutua
substitution, Y↔Lu, without any appreciable lattice distor

179$10.00 © 1997 American Institute of Physics



tions, whereas t

TABLE I.

0.1AlO3

1024

103

3104

3.5 K

a in the
Compound: CaF2 @Ref. 13# Si @Ref. 10# Ge @Ref. 10# GaAs @Ref. 15# Y3Al5O12 :Lu0.3 @Ref. 1, 2# Y0.9Lu

A, s213K25 831024 1.631024 7.431024 3931024 2.0731024 483

B, s213K24 0.5 0.46 7.0 1.4 195 73
B* '9.5 31.5 141 7.5 '104 3.16
T5Tmin K T@38 K T@38 K T@19 K T@29 K T@10 K T@

Note:The literature sources are given in brackets after each compound in the column headings; the dat
last column are from the present article.
he large difference in their masses creates a
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2. EXPERIMENTAL METHODS
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high level of elastic scattering and makesB* large. We have
calculated the coefficientsA and B for yttrium garnets and
aluminates in accordance with a procedure propo
earlier12,13on the assumption that the decay rate is devoid
anisotropy inq space.

The analytical theory3–5 rests on the assumption that th
relation between the timestB , tA , andtbal satisfies the con-
dition

tB!tA ,tbal, ~5!

which can be used to estimate the range of temperat
~phonon energies! at which quasidiffusion is possible. Th
relationtB ! tA establishes an upper limit roughly equal
T'103 K for the materials listed in the table. A more sig
nificant factor is the lower limit

Tmin5~VD /LB!1/4, ~6!

which is given in the fourth row of the table. The quanti
VD /L is again set equal to 106 s21.

For the quasidiffusion effect to be observable for t
majority of the materials investigated, it is necessary t
T@20 K. It is evident from Fig. 1~curve1! that this condi-
tion requires the injection of highly nonequilibrium phono
with a temperature close to the Debye temperature. In wo
ing with slightly nonequilibrium phonons injected while th
phonon source is subjected to moderate heating (DT,0.5
K!, strong elastic scattering makes the quasidiffusion ef
observable only for YAlO3:Lu crystals, which are the objec
of the present investigation. It is evident from Fig. 1~curve
2! that the energy of the dominant group of phonons satis
the condition from the table within certain error limits.

FIG. 1. Spectral density of the number of phonons injected into a crysta
Tb53.81 K.1! DT@T; 2! DT!T; 3! equilibrium distribution of phonons in
the hater atT53.81 K.
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Here we investigate the propagation of a thermal pu
in a Y0.9Lu0.1AlO3 crystal. The yttrium aluminate crysta
have a distorted perovskite~orthorhombic! structure with
space groupD2h

16 . As a rule, the investigated samples we
cut perpendicular to thê001& direction with an area of 1
cm2 and a length of 0.5 cm in the direction of propagation
the injected phonons. The planes of the crystal were polis
to optical standards; a gold film of thickness 800–1000
was deposited on one of the faces by thermal spraying
create a phonon injector. A bolometer in the form of a th
indium film was deposited on the opposite face in a mean
pattern with an area of 0.330.25 mm2 and an impedance o
approximately 50V.

The sample was placed in a helium cryostat, whose te
perature was maintained by evacuation and vapor-pres
monitoring. This technique enabled us to work in the inter
1.7–3.8 K with a temperature instability less than or equa
1023 K.

Nonequilibrium phonons were generated by a sh
100-ns current pulse, which heated the gold film. T
meander-resistor bolometer was in a state close to the su
conducting transition point and was used to detect phon
transmitted through the sample. The superconducting tra
tion temperature of the bolometer was varied in accorda
with the bath~cryostat! temperature by the application of
weak magnetic field.

In our experiments the power dissipated in the phon
injector ranged from 531023 W/mm2 to 1021 W/mm2. The
heater injected nonequilibrium Planck phonons with a hea
temperatureTh , which is close to the bath temperature
such a low dissipated power level, i.e.,DT5(Th2Tb)!Tb .

This ‘‘quasiequilibrium’’ phonon injection regime ha
definite advantages: From an analysis of the behavior o
slightly nonequilibrium thermal pulse, in garnets for e
ample, we know the temperature of the dominant group
injected phonons forming the bolometer response sig
(3.2–3.8)Tb . Simple estimates show that the conditio
T@3.5 K holds over the entire temperature range, and
quasidiffusion effect should be appreciable.

Figure 2 shows typical plots of the bolometer respon
vs time at several thermostat temperatures. The graphs
hibit a typical diffusion profile. We see that the maximum
the bolometer signal and the temperature both decrease
time. Figure 3 shows the temperature dependence of the
sition of the diffusion maximumTmax. The dependence o
tmax on Tb can be approximated by the relationtmax5CT1.8

~curve 1! within the error limits of measurement of thi

r
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quantity. Simple estimates in the limitDT!Tb indicate that
a dependence of the formtmax5CT4 should be expected, a
shown in Ref. 2. Since the authors of Ref. 2 proceed from
pure diffusion model, the resulting disparity can be attribu
to the involvement of the decay process in the given ma
rial. Also shown in Fig. 3 are the results of a model expe
ment ~curves2 and3!, which will be discussed below.

3. MONTE CARLO SIMULATION

In our simulation we solve the problem of the motion
phonons of a particular frequency from the center to the s
face of a sphere. To determine the partial contribution of t
group of phonons to the bolometer signal, we multiply t
number of phonons reaching the surface by the sphere
their frequency. The number of phonons injected into
crystal at a given frequency is given by the equation

N~v!5v2@~e\v/kTh21!212~e\v/kTb21!21#, ~7!

whereTb is the bath~crystal! temperature, andTh5Tb1DT
is the temperature of the heater. The value ofDT is assumed
to be close to the experimental values of 0.2 K forTb52.21
K and DT50.4 K at all other temperatures. To simulate t
total bolometer signal, we sum the resulting partial contrib

FIG. 2. Experimental time plots of the bolometer response for
Y0.9Lu0.1AlO3 sample of lengthL50.6 cm at various temperatures.1! 3.81
K; 2! 3.38 K; 3! 2.40 K; 4! 2.31 K; 5! 2.21 K.

FIG. 3. Temperature dependence of the delay time of the maximum o
diffusion signal.1! Experimental result;2! simulation with decays;3! simu-
lation without decays.
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~7!. The experimental results shown in Fig. 2 represent
intermediate case between planar and point sources.
simulation results for a point source are reduced to the
perimental geometry by multiplying the time scales by 1
according to the procedure set forth in Ref. 2.

Simulation is carried out with only elastic scatterin
taken into account and again with both scattering mec
nisms~elastic scattering and three-phonon decay proces!
taken into account.

It is important to note that simulation with the spectr
density of the number of phonons in the form~7! gives a
sharp peak at small times. This peak corresponds to the
tial contribution of low-frequency phonons, which do n
decay ballistically and reach the detector. The absence o
ballistic peak in experiment can be attributed to two caus
1! the escape of acoustic phonons into the liquid helium;14 2!
‘‘cutoff’’ of the spectrum of injected phonons in the low
frequency range, an effect observed for thin (,2000 Å!
heaters.15 To incorporate this phenomenon into the simu
tion, the spectrum of injected phonons is depleted at frequ
ciesn<0.15 THz.

Simulation is carried out for initialLA andTA phonons.
The results do not depend on the polarization of the ini
phonons, because rapid mode conversion takes place in
elastic scattering of phonons in the investigated crystal.

The Monte Carlo simulation process is a two-parame
problem, where the parameters are the elastic scattering
anharmonicity constants. The best agreement with exp
ment is obtained when these constants have the values

A580031024s21K25, B52.53103 s21K24.

Clearly, the elastic scattering constant is close to the th
retically calculated value~see Table I! in order of magnitude,
whereas the anharmonicity constant, as the factor respon
for decay, is an order of magnitude higher than the theor
cally calculated value. This disparity indicates the more s
nificant role of anharmonicity in the investigated crystals.
is evident thatB* 51.23103 holds for the parameters ob
tained above. Hence, according to the criterion~4!, it is im-
possible to solve the phonon ‘‘quasidiffusion’’ problem an
lytically, and analytical estimates could be incorrect, there
justifying recourse to the Monte Carlo approach.

The results of simulation of the bolometer signal with
the above-stated conditions taken into account are show
Fig. 4. A comparison of the simulation results shown in th
figure reveals a substantial difference in the phonon flu
obtained with~curves1 and 2! and without~curves18 and
28) regard for their decay. This difference is manifested
the values of the phonon fluxes and in the position of th
maxima (Amax) on the time scale (tmax). If only elastic scat-
tering processes are taken into account, the quantitiesAmax

and tmax are always smaller than simulation results obtain
with allowance for phonon decay processes, even though
number of injected phonons is the same in both cases.

At first glance the difference in the values oftmax ap-
pears to contradict the quasidiffusion model. According
this model, the decay of phonons should form a maximum
the phonon flux at shorter times than for the flux of nond

e
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4. CONCLUSIONS
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caying phonons. This conclusion is obvious in an analysis
the kinetics of phonons with a fixed initial frequencyv0 and
has been demonstrated in the example of GaAs.7 In our case
the apparent contradiction is attributable to simulation of
total spectrum of injected phonons as opposed to simula
of the kinetics of monochromatic phonons as in Ref. 7.

As a matter of fact, in the case of simulation with a set
fixed phonon frequencies each frequency produces a re
consistent with quasidiffusion theory. The summation of
partial contributions to the signal of phonons with the dis
bution function~7! leads to the formation of a signal max
mum that is delayed relative to the pure diffusion signal. T
presence of decay processes leads to redistribution of
long-time pure-diffusion phonon tail in the range of sm
arrival times. These considerations also account for the e
lution of such an unusual profile of the time distribution
the phonon flux when phonon decay is taken into accou

Figure 3 shows how the position of the diffusion max
mum on the time scale depends on the temperature of
crystal for the two cases under consideration; the experim
tal points are also plotted. Clearly, the experiment is
scribed quite well by the curve obtained with allowance
decays. At lower values ofTb the energy of the dominan
phonon group is lower, so that the contribution of dec
processes is smaller as well. This also accounts for the
vergence of curves1, 2, and3 at low crystal temperatures
where decay processes no longer play a significant role in
phonon kinetics.

FIG. 4. Results of simulation of the bolometer signal at two crystal te
peratures.1, 2! With decays atT52.21 K andT53.81 K, respectively;
18, 28) without decays atT52.21 K andT53.81 K, respectively.
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We have investigated the kinetics of slightly nonequili
rium phonons in YAlO3:Lu crystals. We have shown that
cannot be described within the framework of phonon dif
sion without regard for three-phonon decay processes.
have carried out a Monte Carlo simulation of the diffusion
nonequilibrium phonons with a continuous spectral distrib
tion. The simulation results well describe the experimenta
observed behavior for elastic scattering constants close to
calculated values, whereas the anharmonicity constant m
exceed the value calculated from the known parameter
the crystal by more than an order of magnitude. For t
reason the Gru¨neisen constant can be expected to exh
anomalous behavior at low temperatures.

The authors are grateful to T. Paszkiewicz and I. Ka
nova for valuable discussions and to I. Obukhov for ass
tance rendered in the Monte Carlo simulation.
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Microphase separation in multiblock copolymers
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The phase diagram of a multiblock copolymer containing domains of coexistence of phases
having different superlattice symmetries with a density of monomers of a given type that varies
periodically in space. The parameters of such superlattices are calculated in the mean-field
approximation, and it is shown that their wave vector varies continuously with the temperature.
© 1997 American Institute of Physics.@S1063-7761~97!02907-7#
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Heteropolymer systems consisting of two or more typ
of monomers are intriguing by virtue of their capability
forming periodic superlattices. Such structures were first p
dicted and subsequently studied in detail in the case o
polymer having molecules of the same species consistin
two blocks whose monomers ‘‘do not like each other’’~Ref.
1!. The possibility of the formation of superlattices by mul
block copolymers is still an open question. It has been
pothesized that such a structure is formed by a third-or
transition.2,3 It was later remarked that this continuous tra
sition must be replaced by a first-order transition when
polymer composition is highly asymmetric.4,5 Angerman
et al.5 have proposed a phase diagram of a multiblock
polymer consisting of two types of chains.

Multiblock copolymers differ from previously studie
monodisperse polymer systems mainly in the possibility
local variations of their molecular-structural distributio
which is described by so-called nonlocal terms in the fr
energy functional.2,3,6 We intend to show that this phenom
enon significantly alters the phase diagram of the system
comparison with the results of Ref. 5. In the mean-field
proximation we construct the phase diagram of a multiblo
copolymer consisting of two types of monomers with a M
kov distribution of block lengths, and we show that the s
tem goes through a series of first-order transitions i
phases with different superlattice symmetries as the temp
ture of the system is varied. A distinctive feature of mul
block heteropolymers is the existence of temperature in
vals in which different phases coexist, and their relat
volume changes with the temperature. Both the amplitu
and the wave vectors of such superlattices are strongly
pendent on the temperature.

2. FREE ENERGY

We consider a melt of heteropolymer chains with Ma
kov statistics of unitsA and B, for which the probability
~transition matrix! n i j that a unit of typej 5A,B will follow
a unit of type i along the chain does not depend on un
farther removed along the chain. The average densityr i of
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such units are expressed in terms of elements of the tra
tion matrix n ~Ref. 3!:

r̄ A5
nBA

nAB1nBA
r, r̄ B5

nAB

nAB1nBA
r, N5

1

nAB1nBA
,

~1!

We assume that the block lengthN is small in comparison
with the average length of the chain, i.e., each chain cont
a large number of blocks. By the incompressibility conditi
we haverA(x)1rB(x)5r, wherer is the total density of
monomers. The deviationsDrA(x)52DrB(x) of the den-
sity of monomers of a given type from their average a
conveniently described by the dimensionless order param

c~x!5DrA~x!/r, r5 r̄ A1 r̄ B . ~2!

We show below that a critical point corresponding to a sy
metrical polymer composition,r̄ A5 r̄ B , exists in the inves-
tigated system. Near this point the transition to a spatia
inhomogeneous phase takes place as a first-order, al
second-order transition. Consequently, the free energy of
cay of multiblock chains can be expanded in powers of
order parameter~2! in the vicinity of this point. Since the
expansion is made relative to the spatially homogene
state, it is useful to consider the free energy of a system
given volumeV at a temperatureT:

F @c#

rT
5

1

2E d3q

~2p!3 ~xc2x1a2q2!cqC2q

2
l

6E dS (
i 51

3

qi D)
i 51

3

cqi

d3qi

~2p!3

1
g

24E dS (
i 51

4

qi D)
i 51

4

cqi

d3qi

~2p!3

1
k

4VE d3q

~2p!3E d3q8

~2p!3

cqc2qcq8c2q8
a2@q21~q8!2#

~3!

as a functional of the Fourier components of the dimensi
less order parameter
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c 5E dxc~x!exp~ iq–x!. ~4!
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The temperature dependence enters into the free en
through the dimensionless monomer interaction parametex,
which has a critical valuexc corresponding to a spinod
~stability threshold! of the spatially homogeneous state. W
note that destabilization@corresponding to loss of th
quadratic-c term in the free energy~3!# takes place atx5xc

for zero wave vector. It has been noted2,3 that in the case of
polydisperse polymer systems this fact does not imply
emergence of a new spatially homogeneous phase~mac-
rophase separation of the polymer melt! as in the case o
monodisperse systems.

The first three terms in Eq.~3! have the form of the usua
Landau free-energy expansion, where the coefficientl of the
cubic term vanishes at the critical pointr̄ A5 r̄ B . The last,
‘‘nonlocal’’ term (;k), which is not included in Ref. 7
describes effects associated with the presence of polydis
sity due to the finite width of the block-length distributio
This term gives the energy cost due to local variation of
block-length distribution to create the density inhomogene
DrA(x) with a characteristic spatial scale of order the rec
rocal wave vector of the inhomogeneityq21. Since the for-
mation of such an inhomogeneity involves only blocks w
a characteristic lengthq21, in effect it ‘‘sucks in’’ chains
with such blocks from the surrounding space. In the case
polydisperse systems this phenomenon depletes the b
length distribution throughout the entire volume of the inh
mogeneity and, as a consequence, enhances interactio
two ~or more! inhomogeneities arbitrarily far apart. We sha
not discuss the processes of relaxation to thermodyna
equilibrium on the scaleq21, which can last quite a long
time for small values ofq.

The parametersl, g, and k of the Landau free-energ
expansion~3! are determined from microscopic theory:3

l5
3

4N

122 f

f 2~12 f !2 , g5
3

8N

5216f ~12 f !

f 3~12 f !3 ,

k5
1

4N2

1

f 3~12 f !3 , ~5!

whereN is the average number of monomers of per blo
and f 5 r̄ A/r is the fraction of monomers of a given typeA.
In the casef 51/2 ~i.e., r̄ A5 r̄ B) the coefficientl of the
cubic term vanishes by virtue of the symmetry of the syst
under a change of monomer type. The parame
a5b(xcN)1/2 can be expressed in terms of the monom
length b and the critical value of the interaction parame
xc51/2N f(12 f ).

3. PHASE DIAGRAM

In the presence of microphase separation the equilibr
value of the order parameterc(x) is determined from the
condition of minimization of the free energy~3!. In the mini-
mization operation we allow for the fact that the system c
exist in either the single-phase or the two-phase state.
first consider the single-phase state of the polymer. Near
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by a superposition ofn plane waves with wave vectorsqk ,
uqku5q (n50, 1, 3, 6 for the isotropic, lamellar, hexagona
and body-centered cubic phases, respectively!:1

cqun5
An

An
(
k51

n

@d~q2qk!1d~q1qk!#. ~6!

Substituting this expression into Eq.~3!, we represent the
free energy of the phase with a given numbern of plane
waves

F n

TrV
5Fn@q,An#1

k

2

An
4

a2q2 ~7!

by the sum of the local contribution

Fn@q,An#[~xc2x1a2q2!An
22

ln

6
An

31
gn

24
An

4 ~8!

and the nonlocal contribution. Herel150, g156g for the
lamellar phase,l654lA6/3,g6515g for the bcc phase, and
l354lA3/3, g3510g for the hexagonal phase. Minimizin
the resulting free energy with respect to the amplitudeAn

and the wave vectorq, we find

An5
3

gn
Fln

2
23A2k

1AS ln

2
23A2kD 2

1
4gn

3
~x2xc!G , ~9!

aq5@kAn/2#1/4.

Consequently, in the single-phase domain both the amplit
and the wave vector of the structure increase monotonic
with the interaction parameterx. It is important to note that
for sufficiently large values ofx the period of the structure
becomes of the order of the block length, and domain str
tures with very distinct boundaries appear in the investiga
system. The harmonic approximation~6! is inadequate for
the description of such structures in this case, and hig
harmonics must also be included in the expansion of
order parameterc(x).

To describe the transition between two phasesn andm,
it is necessary to write the free energy of a system in wh
there are two coexisting phases with wave vectorsqn and
qm . In each of these phases the Fourier component of
order parameter is given by Eqs.~6! with n plane waves and
with m plane waves, respectively. Substituting this order
rameter into Eq.~3!, we find the free energy of the two-phas
system:

F nm

TV
5fFn@qn ,An#1~12f!Fm@qm ,Am#

1kS f2An
4

2a2qn
2 1

2f~12f!An
2Am

2

a2~qn
21qm

2 !
1

~12f!2Am
4

2a2qm
2 D .

~10!

Here f and 12f are the volume fractions occupied b
phasesn and m, respectively, and the dimensionless fr
energyFn is defined in Eq.~8!. The first two terms of Eq.
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~10! give the local contributions of each phase to the f
energy and are proportional to the volumesVn5fV and
Vm5(12f)V of these phases. The last term describes
fects of redistribution of chains with different block length
between the two coexisting phases and includes a f
energy contribution proportional to the product of the v
umes of these phases. The free energy~10! is minimized
with respect to the parameters of such phases in Appendi
where, in particular, it is shown that the wave vectors in
coexisting phases must have the same magnitu
qn5qm5q. The minimization of the functional (10) with
respect tof andq gives the dependence of the wave vec
on the interaction~temperature! parameterx:

3a2q25x2xc1
lm

4
Am2

gm

12
Am

2 , ~11!

along with the volume fraction of phasen:

f5
2a4q4/k2Am

2

An
22Am

2 . ~12!

When two phases coexist their amplitudesAn and Am are
determined from the condition for the minimumizations
the free energy~10!. It is shown in Appendix A that they do

FIG. 1. Phase diagram of a Markovian multiblock copolymer melt in
variables (xN, f ), wherex is the interaction parameter,N is the average
number of monomers per block, andf is the constituency of the polymer
The curves are numbered according to the domain of existence of diffe
phases:0! isotropic;1! lamellar;3! hexagonal;6! body-centered cubic.

FIG. 2. Wave vectorq of a periodic superlattice vs temperature~interaction
parameterx) for f 50.3. Thenumbers have the same significance as
Fig. 1.
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not depend onx or the fractionf. According to Eq.~12!, the
volume fraction of phasen varies from 0 to 1 as the interac
tion parameterx varies.

The phase diagram of the system in variables (xN, f ) is
shown in Fig. 1. The numbers alongside the curves indic
different types of phases:0! isotropic; 1! lamellar; 3! hex-
agonal;6! bcc. This figure differs from the phase diagram
a melt of monodisperse diblock copolymers1 primarily in
having bands of coexistence of two phases. The existenc
such domains in a system of polydisperse heteropolym
was first predicted in Ref. 8. Most notable is the broad d
main of coexistence of the isotropic and bcc phases in c
junction with the relative narrowness of the domains of c
existence of all other phases. More detailed information
the properties of the coexisting phases is obtained from
investigation of the temperature dependence of their par
eters — the wave vectorq, whose magnitude is identical in
both coexisting phases, and the amplitudes of the supe
tices in each of these phases. The dependence of the w
vector of the superlattices on the parameterx in the case
f 50.3 is shown in Fig. 2 in variables (q2b2N,xN). The
vertical lines indicate the values ofx for the beginning and
end of the corresponding transitions between different pha
(f50 and f51, respectively!. We note thatq increases
continuously as the parameterx increases, becoming of th
order of the block length for largex. Figure 3 shows thex
dependence of the amplitudesAn for all phases in the cas
f 50.3. In the single-phase domains the amplitude of
superlattice increases monotonically withx. In the two-
phase domains the amplitude is independent ofx and takes
the two valuesAn andAm corresponding to the two coexis
ing phasesn andm. The volume fractions occupied by eac
phase are shown in Fig. 4 as functions of the interact
parameterx.

On the whole, we can state that allowance for the po
bility of the coexistence of phases with different superlatt
symmetries significantly alters the phase diagram of the s
tem from its form in Ref. 5, where this effect is ignored.

We close this section with a discussion of the validity
the approximations made in the study. We note first of
that the expression for the free energy~3! is written in the
‘‘infinitely long chain’’ approximation, i.e., when the wav
vector satisfiesq@ l /bL1/2, whereL is the average number o

nt

FIG. 3. AmplitudeAn of superlattices vs temperature forf 50.3. The num-
bers have the same significance as in Fig. 1.
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are
monomers in the molecule. If this condition does not ho
the curve in Fig. 2 will not begin withq50 but with the
quantity qmin'1/(bL1/2). In our situation, where the chain
contain a large number of blocks,qmin is small, and the
finite-length effect can be disregarded. The finiteness of
chain lengths is also essential in the analysis of effects
volving the separation of the system into macroscopic pha
with different average densities of monomers of given typ
A andB. Such separation is possible in a system with a sm
number of blocksnbl5L/N, because the number of mono
mers of given type can differ for different chains by a
amount of orderNnbl

1/25(NL)1/2. The corresponding varia
tion of the density of monomers of a given type for a syst
with an average density of chainsr/L is estimated as

DrA'~r/L !~NL!1/25r/nbl
1/2.

For smallnbl and a large interaction parameterx conditions
are favorable for the spatial separation of such chains
different macroscopic phases. In the opposite limit of la
nbl@1 the variation of the density of monomers of two~or
more! coexisting phases can be disregarded.

The influence of a variation of the densities of coexisti
phases on the phase diagram of a diblock (nbl52) copoly-
mer has been investigated previously9 in the mean-field ap-
proximation. The authors of Ref. 9 ignore the contribution
the nonlocal term to the free energy of the two-phase syst
but take into account the contribution of this term to the fr
energy of each phase. According to the discussion after~3!
regarding the physical significance of nonlocality, this a
proximation is tantamount to the possibility of the exchan
of molecules with different block lengths within each pha
but prohibits such exchange between different coexis
phases. Such a peculiar equilibrium can be only be es
lished at small times; in the thermodynamic limit both cha
nels of relaxation to equilibrium must be taken into accou
On the other hand, it is shown in Appendix B that the var
tion of the average densities of monomers in each phase
be neglected in the case of multiblock copolymers with
average molecular lengthL@N, and the only effect tha
leads to a qualitative change in the phase diagram from
case of a monodisperse molt of diblock copolymers1 is the
nonlocality effect.

In deriving the free-energy expression~3!, we have also
disregarded the dependence ofl andg on the wave vectors

FIG. 4. Volume fractionsf occupied by each phase forf 50.3. The num-
bers have the same significance as in Fig. 1.
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validity of the Landau expansion~3! the characteristic value
of the wave vector of the superlattice are small in compa
son with the reciprocal Gaussian block length. Consequen
the allowance for the corresponding dependences of the
efficients of the Landau expansion in Ref. 5 is a refinem
that patently exceeds the computational accuracy.

Fluctuation corrections to the mean-field theory ha
been investigated10 for the case of a symmetrical copolyme
with f 51/2. It was shown that these corrections are smal
order the parameter 1/N1/4 and result in the generation of
superlattice from the isotropic phase with a magnitude of
wave vector that is proportional to this parameter but is s
nonzero.

4. CONCLUSION

We have shown in the self-consistent field approxim
tion that as the temperature is varied, a melt of multiblo
copolymers undergoes a succession of first-order transit
into microphase-separated states with a wave vector of fi
magnitude, which varies continuously from zero to the ch
acteristic block lengthaN1/2; see Fig. 2. We note that a sim
lar conclusion in Refs. 2 and 3 has been made on the
sumption of a third-order phase transition, which actua
describes the spinodal decomposition of the spatially hom
geneous state of the system atx5xc . It is readily shown
that the free energy of our investigated two-phase states
below the energy of the single-phase spatially inhomo
neous state. Consequently, a thermodynamic transition
the formation of a microphase-separated phase takes p
through the formation of equilibrium nuclei of a new pha
in the old phase. As the interaction parameterx increases,
the volume of these nuclei increases until the new ph
occupies the entire volume of the system; see Fig. 4.
therefore have a finite temperature interval in which bo
phases coexist.

We note that from the standpoint of the general theory
phase transitions a melt of Markovian copolymers compri
a system with a frozen-in, or ‘‘quenched’’ randomness. It
well known that such systems exhibit a localization or gla
type of behavior in the case of solids having a random d
tribution of interactions that is fixed in three-dimension
space. A fundamental distinction of polymer systems is
fact that only a one-dimensional sequence of monom
along the chain is random, whereas the chain can ass
arbitrary spatial conformations and exist in any domain
the system space. The presence of such translational in
ance is conducive to the formation of a regular thre
dimensional structure in polymers with a random seque
of monomers along the chain. We shall not discuss the p
nomenon of ordinary thermodynamic fluctuations, whi
lead to the breakdown of long-range crystal order on la
scales in a process analogous to liquid-crystal systems.11

Our general expression~3! used for the free-energy func
tional is not bound to any specific choice of model of
Markovian copolymer, for which the parameters of t
Ginzburg–Landau functional are given by expressions~5!.
Consequently, the main results of the present study
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APPENDIX A: MINIMIZATION OF THE FREE ENERGY

We minimize the free energy~10! with respect to the
parameters of both phasesn andm. In the event of transition
from the isotropic phase withn50 we haveq050, and the
magnitude of the wave vector in the new phase is given
the expression

qm
4 5k~12f!Am

2 /2a4. ~A1!

We now consider the case of transition between phases
different superlattice symmetries withn Þ 0 andm Þ 0.
The conditions for the minimum of the free energy wi
respect to the wave vectorsqn andqm of these superlattice
have the respective forms

kfAn
2

2a4qn
4 1

2k~12f!Am
2

a4~qn
21qm

2 !2 51,

~A2!

k~12f!Am
2

2a4qm
4 1

2kfAn
2

a4~qn
21qm

2 !2 51.

A solution of these equations is readily found:

q4[qn
45qm

4 5k@fAn
21~12f!Am

2 #/2a4. ~A3!

We note that Eq.~A1! can be regarded as a special case
Eq. ~A3!, sinceA050 in the isotropic phase. If the equalit
of the wave vectors in the coexisting phases withn Þ 0 and
m Þ 0 is taken into account, along with Eq.~A3!, the con-
ditions for the minimum of the free energy~3! with respect
to An andAm assume the form

2~x2xc13a2q2!2lnAn/21gnAn
2/650,

~A4!

2~x2xc13a2q2!2lmAm/21gmAm
2 /650,

and the minimization of the free energy with respect tof
yields the equation

~x2xc13a2q2!An
22lnAn

3/61gnAn
4/24

5~x2xc13a2q2!Am
2 2lmAm

3 /61gmAm
4 /24. ~A5!

Substituting the combinationx2xc13a2q2 from the two
equations~A4! into the right- and left-hand sides of Eq
~A5!, respectively, we find equations for the amplitudesAn

andAm :

23lnAn1gnAn
2523lmAm1gmAm

2 ,
~A6!

22lnAn
31gnAn

4522lmAm
3 1gmAm

4 .

The most important consequence of these equations is
fact that neither of the amplitudes depends onf andx. We
arrive at the conclusion that the amplitudes of the two co
isting phases do not vary with the temperature.

In the case of transition from the Lamellar to the he
agonal phase,l150, and the solution of Eq.~A6! has the
form
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1 g3
F 2 G g3

~A7!

A35
l3

g3
S 61

3

2
A6D 1/2

.9.67
l3

g3
.

and for transition from the hexagonal to the cubic phase
amplitudesA3 and A6 are found by solving Eqs.~A6! nu-
merically:

A3.3.48
l3

g3
,

~A8!

A6.3.17
l3

g3
.

Solving the second of the equations~A4! for q, we find the
temperature dependence of the superlattice wave vector
Eq. ~11! in the main text of the article. Equation~12!, which
together with~11! describes the dependence of the volum
fraction of new phasef on the interaction parameters,
determined by solving Eq.~A3! for f.

APPENDIX B: ESTIMATION OF THE VARIATION OF THE
AVERAGE DENSITY IN COEXISTING PHASES

We show that the variation of the average density
coexisting phases can be ignored for polymer molecules c
taining a large number of blocks,nbl5L/N@1. The physical
picture of the absence of this effect is discussed in Sec.
To describe such a variation of density on macrosco
scales, it is necessary to include the zeroth harmonic in
expansion of the order parameter~6! in each phase:

cqun5Dnd~q!1
An

An
(
k51

n

@d~q2qk!1d~q1qk!#. ~B1!

The amplitudesDn andDm characterize the variation of th
average density in each of the coexisting phasesn andm and
are related by the condition of invariance of the total num
of molecules in the system

fDn1~12f!Dm50, ~B2!

which can be used to parametrize these amplitudes b
single parameterD:

Dn5~12f!D, Dm52fD. ~B3!

Here f and 12f are the volume fractions occupied b
phasesn and m, respectively. As mentioned in Sec. III, a
lowance for the finite length of the polymer chain ‘‘re
moves’’ the singularity of the nonlocal term in the free e
ergy ~3! for zero wave vectorq50 ~Ref. 3!. Consequently,
substituting the order parameter for each of the coexis
phases in the form~B1! and~B3! into the functional~3!, we
obtain the expression for the free energy of the two-ph
system
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model treated in the present article, inequality~B6! is always
mit
red
TV nm nm TV L→`

~B4!
dF~D!52lf~12f!~An

22Am
2 !D

1
k

4

f2~12f!2D4

a2qmin
2 1 . . . ,

where the free energyFnm in the limit L→` is calculated in
~10!, qmin

2 51/b2L, and the expansion ofdF is written in the
principal approximation with respect toD andL. Minimizing
dF with respect to the parameterD and using the expressio
~A3! for q derived in Appendix A, we obtain the estimate

Fnm;k1/2@fAn
21~12f!Am

2 #3/2,
~B5!

dF;~Lk!21/3l4/3@f~12f!#2/3uAn
22Am

2 u4/3.

The variation of the average density in the coexisting pha
can be ignored if the following inequality holds:

Fnm@dF. ~B6!

For transition from the isotropic to an ordered phase it
necessary to setAn50, Am'l/g, and 12f!1. Inequality
~B6! therefore assumes the form

12f@~N/L !2/5u122 f u6/5. ~B7!

In the limit of infinitely long molecules, which is in fact th
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satisfied, and the variation of the average density in this li
can therefore be ignored. In the transition from one orde
phase~n! to another ordered phase~m!, inequality ~B6! as-
sumes the form

12f!~L/N!1/2u122 f u23/2 ~B8!

and is always satisfied for sufficiently long molecules~with
L>N).
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Resonant Josephson tunneling through S-I-S junctions of arbitrary size
I. A. Devyatov and M. Yu. Kupriyanov1)

Institute for Nuclear Physics Research, M. V. Lomonosov Moscow State University, 119899 Moscow,
Russia
~Submitted 6 December 1996!
Zh. Éksp. Teor. Fiz.112, 342–352~July 1997!

The Josephson tunneling current in S-I-S structures where the main current transport channel is
resonant tunneling through an isolated localized state is calculated using the
Bogolyubov–de Gennes equations. It is shown that the efficiency of equilibrium Josephson
resonant tunneling is determined only by the ratio of the width of the resonance level to the
absolute value of the order parameter for the superconducting electrodes with arbitrary
relationships among the system parameters. ©1997 American Institute of Physics.
@S1063-7761~97!03007-2#
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1. INTRODUCTION

Experimental studies of Josephson HTSC junctions w
a semiconducting oxide spacer layer have led to the ob
vation of the ‘‘long-range proximity effect.’’1–10 It involves
the existence of a significant critical currentJc in structures
with spacer layer thicknessesd>100 nm. Experimenta
Jc(d) } exp(2d/j) curves have yielded temperature ind
pendent coherence lengthsj that are considerably longe
~10–50 nm! in these materials than in the superconduct
oxides~1–3 nm!. This effect has been explained11 in terms
of a model based on the assumption that the main me
nism for transport of the normal and superconducting c
rents in these structures is resonant tunneling through lo
ized states in a low energy tunnel barrier. It is found that
characteristic scale length for the reduction in the superc
ducting current with increasing spacer thickness was de
mined by the effective penetration depthj5a of quasiparti-
cles into the spacer. As opposed to the coherence length
superconductor,j05\nF /2D, wherenF is the velocity at the
Fermi surface andD is the absolute value of the order p
rameter for the superconducting electrons, the character
lengtha is independent of the parameters responsible for
superconducting properties of the electrodes and its r
tively large values are a consequence of the low energy
rier of the spacer material,

a5
1

A2m~V2m!
'100– 1000 Å, ~1!

as well as of a double gain in the exponent owing to
resonant character of the current transport~for the normal
current!. In Eq. ~1! m is the effective mass of the charg
carriers,m is the chemical potential, andV is the potential of
the bottom of the conduction band of the spacer materia

On the other hand, it is known12 that the nonequilibrium
properties of the weak bonds may depend on the effec
coherence lengthj i determined by both the superconducti
properties of the electrodes and by the spacer paramete

In this paper resonant Josephson tunneling in S
structures is analyzed in a physically clear approach base
the Bogolyubov–de Gennes equations and three charac
tic lengths describing the penetration of superconductiv
189 JETP 85 (1), July 1997 1063-7761/97/070189-06
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into these structures are found to exist. Besides dependin
the lengtha ~Eq. ~1!!, which actually determines the effec
tive penetration depth of normal quasiparticles into the s
barrier region, the solutions depend on the parametersj i and
jb :

j i5a
V2m

E
5

1

E
AV2m

2m
, jb52a lnS V2m

E D , ~2!

whereE is the energy of the bound Andreev state resp
sible for transport of the superconducting current. In an e
lier theoretical analysis11,13 of resonant Josephson tunnelin
through a dielectric barrier it was assumed implicitly that t
barrier is thin on the scale of the lengthsj i andjb . In this
paper we examine the case of an arbitrary relations
amongd, j i , andjb and refine the ranges of applicability o
the results obtained in the earlier work.11,13 It is shown that
in the limit G@D, where G is the effective width of the
resonance level, the direct and Andreev reflection chan
are equally effective and the expression for the resonant
sephson current is the same as the analogous formula
microscopic short circuit. In the opposite limit of a narro
resonance level,G!D, the anomalous proximity effect is
accompanied by a reduction in the critical current by a fac
of D/G owing to the mismatch of the resonance channels
direct and Andreev reflection of the quasiparticles. Then i
found that for structures with an arbitrary lengthd, as op-
posed to short (d!j i ,jb) structures, not just one, but thre
channels for Andreev penetration by quasiparticles may
erate during transport of a superconducting current. Nev
theless, their interference may lead to exact cancellation
the terms that depend onj i and jb in the formula for the
superconducting current, and this yields the same value
the superconducting current as the one calculated for s
junctions.

2. MODEL FOR THE JUNCTION

We shall assume that the density of localized states
the spacer layer is low, so that the interaction among qu
particles belonging to different states is unimportant, th
effective interaction with the electrons is negligibly sma
and they are uniformly distributed, both over the volume
189$10.00 © 1997 American Institute of Physics
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the spacer and with respect to energy~at least, in a region of
orderTc near the chemical potentialm!. To retain the physi-
cal clarity of this picture, we restrict ourselves below to co
sidering the one dimensional problem in a single mode
gime, i.e., to studying processes in an S-c-S structure w
tunnel conductivity in the constriction region and with a p
tential barrier of the form~see Fig. 1!

V~x!5VQ~ uxu2d/2!2~B/2m!d~x2x0!. ~3!

Herex0 is the coordinate of the localized state described
a d-function potential with a single allowed energy state w
an energy ofE05B2/8m.

3. TRANSMISSION COEFFICIENTS AND THE ENERGY OF
THE BOUND STATES

Under the above assumptions the magnitude of the o
parameter in superconductors can be regarded as inde
dent of the spatial coordinates and the processes taking p
in this system can be described using the 1D Bogolyubov
Gennes equations~here and in the following\51 and
kB51!:

H S 2
1

2m

]2

]x2 2m1V~x! Dsz1D̂~x!J C5EC,

D̂~x!5S 0 Deiw/2

De2 iw/2 0 DQ~ uxu2d/2!. ~4!

Heresz is the third Pauli matrix,w is the phase of the orde
parameter for the superconducting electrons,E are the en-
ergy eigenvalues, andC is a spinor composed of theu- and
n- functions of Bogolyubov and de Gennes. The solution
Eqs.~4! in the neighborhood of the spacer and supercond
ing electrodes can be written in the form of a superposit
of plane waves transmitted and reflected from the bounda
of the junction and localized state. By matching these pl
waves and their derivatives, we have found the directtN and
Andreev tA transmission coefficients for th
quasiparticles:12–15

utAu5
k1

k

D̃

Q

uzu
D

u~E2uzu!eiw/2a12~E1uzu!e2 iw/2a2u,

utNu5
k1

k

D̃

Q

uzu
D

ueiw/2b12e2 iw/2b2u, ~5!

where

Q5~cosa2cosb!22~E/D!2 cosb

22i ~E/D2!uzusin b, z5AD22E2. ~6!
190 JETP 85 (1), July 1997
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The bound statesuEu,D are determined from the con
dition Q50, which yields a dispersion equation of the form12

E25D2 cos2S ubu6a

2 D , cosa5R̃1D̃ cosw,

sin b5Im~a1a2* !D̃, ubu6a>0. ~7!

The quantitiesD̃51/ua1a2* u andR̃5Re(b1b2* )D̃ in Eq. ~7!
depend on the values of the energy that are symmetric
positioned relative to the chemical potentialm and represent
transmission and reflection coefficients for the quasipartic
through the direct and Andreev channels. The parametersa6

andb6 are given by

a65H @B6 sinh~k6d!2cosh~k6d!#1
i

2 F S k6

k1*
2

k1*

k6
D

3@sinh~k6d!2B6cosh~k6d!#2S k6

k1*

1
k1*

k6
DB6 cosh~k6x0!G J k1*

k
, ~8!

and

b65
1

2k H ~k1* 2k1!@cosh~k6d!

2B6 sinh~k6d!#B6~k1* 1k1!sinh~k6x0!

1
i

k1
@~k6

2 1uk1u2!@B6cosh~k6d!2sinh~k6d!#

1B6~k6
2 2uk1u2!cosh~k6x0!#J . ~9!

Here

k5A2mm, k65A2m~V2~m6E!!,

k15A2m~m1 i z!.kS 11
i z

2m D , B65B/2k6 .

D65ua6u22 andR65ub6 /a6u2 are, respectively, the trans
mission and reflection coefficients in the normal tunneli
channel for quasiparticles with energies of6E. It is easy to
confirm that the normalization conditionR61D651 is sat-
isfied for both normal channels. When there are no locali
states (B50), Eq. ~7! transforms to the previously12 estab-
lished dispersion equation for tunneling junctions of fin
thickness.
190I. A. Devyatov and M. Yu. Kupriyanov
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4. THE JOSEPHSON CURRENT

We write the superconducting current flowing throu
the structure as the sum of two terms14,15

I s5I bound1I cont,

I bound52e(
j

]Ej

]w

1

11exp~Ej /T!
,

I cont5
e

p E
0

`

duzu$utN~w,x0!u22utA~w,x0!u22utN~2w,

2x0!u21utA~2w,2x0!u2%tanh
E

2T
, ~10!

which determine the contributions from the bound sta
I bound (uEu,D) and from the continuumI cont (uEu.D), re-
spectively.

Equations~4!–~10! are valid for arbitrary relationship
among the characteristic lengths (d,j i ,j0 ,jb ,a) and charac-
teristic energies (V2m,D,G) of the structure. In the follow-
ing, however, we limit ourselves solely to the practica
important case of low barrier transparency, i.e., to the cas
a relatively thick barrier:

kd@1, kud/26x0u@1, k5A2m~V2m!5a21,
~11!

when the localized state has well determined ene
eigenvalues.16

In this limit the expression for the transmission coef
cients in the normal tunneling channels,D6 , reduces to the
standard Breit–Wigner formula16

D65
G0

2

~E7~ER1dE0
6!!21G0

2 cosh2~k6x0!
,

G052~V02m!AD0,

D05
16k2k2

~k21k2!2 exp~22kd!, ~12!

ER5~V2m!2
B2

8m
1G0

k22k2

2kk
cosh~kx0!,

dE0
65G0

k22k2

2kk
exp@~k2k6!d#cosh~k6x0!, ~13!

in which ER is the renormalized energy of the localized sta
G0 is the width of its resonance level located inside the b
rier, andD0 is the normal~in the absence of a localized stat!
transparency of the junction.

According to Eqs. ~5!–~10!, the Josephson curren
through the structure is determined by a combination of
a6 andb6 which describe the coherent processes of nor
and Andreev quasiparticle reflection. Thus, besides the c
ditions ~11!, which determine the thickness of the junctio
and the coordinate of the localized state, which has a w
defined eigenenergy, and are sufficient for describing sin
particle tunneling processes, additional conditions arise
the energies of the localized and bound states, and the th
ness and height of the barrier which separate the var
regimes of coherent Josephson tunneling. Note that in all
191 JETP 85 (1), July 1997
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cases examined below, the current from the bound state
the main contribution to the resonance Josephson curren

5. THE LIMIT OF A SHORT TRANSITION AND A HIGH
BARRIER

When the inequalities

uEu!~V2m!exp~2kd/2!, ~14!

and

uERu!~V2m!exp~2kd/2!Acosh~kx0! ~15!

are satisfied~condition ~14! is identical to the condition
d!jb!, it is possible to neglect the differences in both t
transmission coefficients and the phase shifts of
Bogolyubov–de Gennes functionsu andv in the 6E chan-
nels, which makes it much simpler to calculate the superc
ducting properties of the structure. If we rewrite the disp
sion equationQ50 in the form

S E

D D 2

Re~a1* a2!2
Ej

D2 Im~a1* a2!2
1

2
@Re~a1* a2!

1cosw1Re~b1* b2!#50 ~16!

and note that when the inequalities~14! and ~15! are satis-
fied, the quantities in the dispersion relation~16! are given
by

Im~a1* a2!522
E

G0
cosh~k,x0!,

Re~a1* a2!5
ER

22E2

G0
2 1cosh2~kx0!,

Re~b1b2* !5Re~a1* a2!21, ~17!

we arrive at a dispersion relation obtained previously
Beenakker and van Houten13 without rigorously determining
the conditions for its validity~they only pointed out that
d!j0 holds, while the actual conditions for validity of Eq
~17! are that the inequalities~14! and ~15! be satisfied!:

~D22E2!~E22ER
22G2/4!1D2G2G1 sin2~w/2!

1GE2AD22E250,

G5G11G2 , G15G0 exp~2kx0!, G25G0 exp~1kx0!.
~18!

The dispersion relation~18! implies that, in this case, the
amplitude and shape of the bound Andreev states dep
only on the relationship between the magnitudeD of the
order parameter and the characteristic energyG0 of the lo-
calized state, as well as on its coordinatex0 .

In the limit of a wide energy band of the localized sta
G0@D, i.e., in the range of spacer thicknesses

k21!d!
ln@8k~V2m!/kD#

k
, ~19!

the dispersion relation~18! and Eq.~10! yield an expression
for the energy of the bound Andreev state and the Joseph
current through this structure:
191I. A. Devyatov and M. Yu. Kupriyanov
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E~w!D!G0
56DA12D~ER!sin2~w/2!,

D~ER!5$~ER /G0!21cosh2~kx0!%21, ~20!

I ~w!D!G0
5

eD

2
D~ER!

sin w

A12D~ER!sin2~w/2!
tanh

uE~w!u
2T

.

Equation~20! is formally the same as the dependence fo
single mode S-c-S transition.17,18 The difference is that the
transparencyD(ER) is the Breit–Wigner resonance transpa
ency ~12! for localized states with a different energyER .

Increases in the junction thicknessd are accompanied by
a reduction in the width of the resonance band and in
limit G0!D, i.e., for strong failure of the inequality~19!,
Eqs.~10! and ~18! imply that

E~w!D@G0
56

DG0A12D~ER!sin2~w/2!

AD~ER!AER
21~D1G0 cosh~kx0!!2

,

I ~w!D@G0
5

eDG0

2

AD~ER!

AER
21~D1G0 cosh~kx0!!2

3
sin w

A12D~ER!sin2~w/2!
tanh

uE~w!u
2T

. ~21!

It follows from Eq. ~21! that in the limit G0!D the maxi-
mum Josephson current~for ER50, x050! has a phase de
pendence proportional to sin(w/2) and an amplitude that is
factor of D/G0 smaller than in the limitG0@D. Then the
bound Andreev state is compressed toward the chemica
tentialm. The rise inER ‘‘repels’’ the Andreev levels and the
gap boundaries and ensures that the phase dependence
Josephson current is proportional to sinw.

Equations~20! and~21! imply that in both limiting cases
I (w) differs from sinusoidal for energies of the localize
states such thatER<G0 . In particular, forER50 andx050
the resonance transparency is equal to unity andI (w)
} sin(w/2) in both limiting cases. As the difference betwe
the energy of the localized state and the chemical potentim
increases, the resonance transparency drops sharply, so
I (w) approaches a sinusoidal dependence quite rapidly.
means that the superconducting current averaged ove
energy and coordinates of the localized states is proporti
to sinw over almost the entire temperature range.

An averaging procedure carried out in the thre
dimensional case in calculations of the superconducting
rent using the Green’s function formalism yielded the sa
result.11

The procedure for averaging over the coordinates
energies of the localized resonance Josephson curren
scribed in Eqs.~20! and ~21! leads to a dependence of th
form

^J&ER ,x0
}~Jc!maxnER ,x0

G0S/k, ~22!

where (Jc)max is the maximum critical resonant tunnelin
current through an isolated localized state which follo
from Eqs.~20! and~21! for ER50, x050, andw5p; nER,x0

is the concentration of localized states,G0 is the size of the
optimal energy band near the chemical potentialm, andS/k
192 JETP 85 (1), July 1997
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is the volume of the optimal spacer layer region nearx0 50.
Note that the suppression parameter for the averaged Jos
son current,GLS , introduced in Ref. 11 is directly propor
tional to the ratio ofD~0! to G0 ~for a three-dimensiona
geometry!. Thus, the predicted11 suppression of the critica
junction current as the parameterGLS increases is a direc
consequence of Eqs.~20!–~22!: as GLS increases, there is a
reduction in the width of the resonant Andreev level and
corresponding reduction in the critical current which is d
scribed by the transition from the limit of Eq.~20! to the
limit of Eq. ~21!.

The averaged resonant conductivity of junctions w
normal edges and a single localized state on the trajecto
given by19

1

^r&
5

e2

p
nER ,x0

p2G0S/k, ~23!

wheree2/p is the quantum mechanical unit of conductivit
An analysis of resonance quasiparticle tunneling in S-Sm
structures has shown20 that superconductivity in the edge
does not have an asymptotic effect~for eV@D! on the con-
ductivity of the structure. At the same time, as Eqs.~20! and
~21! imply, the maximum critical current depends on th
ratio D/G0 and equalseD for G0@D andeG0 in the opposite
limit.

Combining Eqs.~22! and ~23!, we see that in the limit
G0@D the product̂ J&ER,x0

^rn&ER,x0
depends weakly on the

spacer parameters~to within a proportionality coefficient
which is not written down in Eq.~20!! and is determined
mainly by the maximum critical junction currenteD, while
in the opposite limitG0!D we have

^J&ER ,x0
^rn&ER ,x0

}G0}1/̂ rn&ER ,x0
.

This is a possible explanation for the dependence

Jcrn}1/rn

~the so-called scaling law! observed in experiments with
HTSC junctions.1–3

6. THE LIMIT OF INTERMEDIATE SPACER THICKNESSES
AND BARRIER HEIGHTS

In experiments, especially with HTSC structures, con
tions ~14! and~15! may be violated, while condition~11! for
effective resonant single-particle tunneling continues to
satisfied. Let us first examine the case where the junc
length is still small on the length scale of the quasiparti
dephasing12 for all values of the bound state energi
uEu<D, i.e.,

jb!d!j i , ~24!

while the eigenenergy of the localized state and its coo
nate equal zero, i.e.,ER50 andx050. In this case an ana
lytic solution of the dispersion equation~7! is possible. Note
that condition~14! can fail only in the ‘‘narrow resonance
line’’ limit, i.e., D@G0 , since in the opposite limitD!G0

condition ~14! is automatically satisfied.
Thus, in the limit of a narrow resonance line,D@G0 , for

relatively thick junctions condition~14! may fail at least for
192I. A. Devyatov and M. Yu. Kupriyanov
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Andreev levels with an energy on the order ofD. However,
for ER50 the solution~21! is ‘‘pressed down’’ against the
chemical potentialm and has amplitudeG0 , so that condition
~14! for the solution~21! is satisfied for arbitrary junction
thicknesses. At the same time, we note that for a locali
state eigenenergyER@G0 , the solution~21! corresponds to
Andreev levels with an energyE approachingD. Then Eqs.
~20! and~21! imply a crossover in the form of the resonan
curves of the critical current with 1/ER and 1/ER

2 when
ER'D@G0 ~first noted in Ref. 13!. Since condition~14!
fails for ER'D in the relatively thick junctions which satisf
condition ~24!, this crossover will not occur in these junc
tions.

When condition~24! is satisfied foruEu'D, two new
roots of the dispersion relation~7! will appear. These two
new solutions are direct analogs of the ‘‘split’’ Andreev le
els examined in Ref. 12 for the case of a long S-I-S juncti
The difference is that the effective reflection coefficientR̃
now has an anomalous sign:R̃.21. ~In the case of a long
S-I-S junctionR̃>1.! Thus, the anglea is close top:

a5p1a0 , a052A~d/21cos2~w/2!!D̃!1,

d>~~k12k2!d!2/2!1, D̃.$2~V2m!/D%2D0 . ~25!

The expression for the dephasing angleb has the same form
as in the case of a long S-I-S junction:12

b.2~k12k2!/k!1.

Then the dispersion relation~7! yields an expression for th
split Andreev levels nearD:

E6
2 5D2$12@b/26AD̃~d/21cos2~w/2!!#2%. ~26!

Equation~26! transforms to the expression for the split A
dreev levels of a long S-I-S junction when cos(w/2) is re-
placed by sin(w/2) and D̃ by D. Since it follows from the
first inequality of Eq.~24! that b/2.AD̃, neither of the so-
lutions ~26! reaches the boundaryE5D ~Fig. 2!.

The steepness of the bands~26! in E(w) determines the
current flowing through each bound state in accordance w
Eq. ~10!:

FIG. 2. Split Andreev levels forE'D, d/a512, D/m52.531023, and
(V2m)/m50.
193 JETP 85 (1), July 1997
d

.

th

I 65sign E sin w~eDD̃/2!@1

6b/A4D̃~d/21cos2~w/2!!#. ~27!

Both of the currents~27! are substantially higher than th
forward current, which does not involve localized tunneli
states and is given by the Ambegaokar–Baratoff formula21

and have a phase dependence proportional to sin(w/2). These
currents are lower than the current from the Andreev le
~21! only by the preexponential factor (k/k)(D/(V2m)).
However, as in the case of the long S-I-S junction, the c
rents ~27! have different signs and cancel each other un
equilibrium conditions, yielding an overall amplitude of th
same order as the forward tunneling current 4eD(k/k)2D0 ,
which is exponentially smaller than the current~21!. Thus,
the appearance of additional solutions to the dispersion e
tion ~7! when conditions~14! and~15! are no longer satisfied
does not affect the equilibrium resonance Josephson cu
through a junction.

7. THE LIMIT OF LOW BARRIER HEIGHT AND ARBITRARY
JUNCTION THICKNESS

As noted in the previous section, a further reduction
the ratio D/(V2m) and ~or! an increase in the junction
thicknesskd, which leads to failure of the second inequali
in Eq. ~24!, does not affect the expression for the Andre
level near the chemical potentialm ~21! ~for ER'G0!. Nu-
merical analysis of Eq.~7! shows that, as before, two spl
roots exist nearE'D, but they become flatter and have
phase dependence proportional to cosw. Thus, as before,
their presence has no effect on the equilibrium resona
Josephson current of the junction determined~21! by the
Andreev level.

8. CONCLUSION

The above analysis of resonance Josephson tunne
through a single isolated state in a spacer layer reveals
existence of two additional characteristic lengths in the s
tem, j i and jb ~see Eq.~2!! which separate the differen
regimes for transport of Cooper pairs through the structu
Nevertheless, the interesting feature of resonance Josep
tunneling was that, despite the substantially different dyna
ics for transport of Cooper pairs through the structure in
different regimes~the appearance of additional bound A
dreev states!, the overall equilibrium current through th
structure is determined only by the ratio of the order para
eter of the superconducting electrodes,D, to the width of the
resonance level,G0, in all regimes and for arbitrary space
thicknesses. The results of this paper can be used to esta
precisely the limits of applicability of earlier calculations o
the resonant Josephson current11,13 and to explain, in a natu-
ral way, the predicted13 suppression of the resonant Josep
son current compared to single-particle tunneling in the lim
D@G0 , as well as theJcrn } 1/rn dependence observed i
experiments with HTSC junctions.1–3

This work was supported by the Program on Mode
Problems in Solid State Physics and the INTAS-RFBR 9
1305 project.
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Effect of interparticle interactions on radiative lifetime of photoexcited electron–hole

system in GaAs quantum wells

L. V. Kulik, A. I. Tartakovski , A. V. Larionov, E. S. Borovitskaya, and V. D. Kulakovski 

Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka,
Moscow Region, Russia
~Submitted 19 December 1996!
Zh. Éksp. Teor. Fiz.112, 353–361~July 1997!

The paper reports on an investigation of changes in the photoluminescence linewidth and lifetime
of excitons and electron–hole plasma over a wide range of densities between 33107 and
331012 cm22 at a temperature of 77 K in GaAs/AlGaAs quantum wells. The roles played by
thermal ionization of excitons at low densities of nonequilibrium carriers, exciton–exciton
and exciton–electron collisions, and ionization of excitons at high pumping power densities have
been studied. ©1997 American Institute of Physics.@S1063-7761~97!03107-7#
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Radiative recombination of excitons in quasi-tw
dimensional semiconducting structures is quite differ
from the three-dimensional case. The lower dimensiona
of the system leads to radical changes in the interaction
tween excitons and electromagnetic waves. Owing to
translational symmetry of a bulk crystal, this interaction
sults in formation of stationary excitonic polaritons, whic
can decay only through phonon scattering or conversion
the crystal surface.1,2 In the case of excitons in quantum
wells, the translational symmetry in the direction perpe
dicular to the quantum well plane is broken, which results
a very fast~of order 10 ps! decay of excitons with very sma
in-plane quasimomenta (k,k05nvx /c). Here \vx is the
exciton energy,n is the refraction index, andc is the speed
of light. Excitons withk.k0 do not recombine.2

The cause of the fast recombination of excitons w
k,k0 is the phase coherence of the excitonic states. The
of coherence due to either localization of excitons, or sc
tering by phonons, electrons or other quasiparticles leads
sharp increase in the electron lifetime.1 Partial ionization of
excitons at higher temperatures also leads to an increas
the excitonic system lifetime.3

In the present work, we have studied the effect of int
particle interactions in the excitonic system in GaAs/AlGa
quantum wells on the luminescence linewidth and lifetim
over a wide range of densities of nonequilibrium carrie
including the region of the transition from excitonic gas
electron–hole plasma. Experiments have been conducted
relatively high temperature of 77 K, when excitons a
electron–hole plasma coexist in equilibrium and the effec
exciton localization on potential irregularities is negligibl
Under these conditions, it is possible to reliably determ
both the total density of photoexcited carriers and the sys
composition, which allows us to analyze on a quantitat
level the effect of exciton–electron collisions on the decay
excitonic states and on the radiative annihilation of excito
and also to study the radiative recombination time in a qu
two-dimensional system in the region of high densiti
where the transition from excitons to electron–hole plas
occurs.
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We selected for our experiments an undop
GaAs/Al0.18Ga0.82As heterostructure grown by the MBE
technique and containing a single quantum well of wid
L55 nm. Excitons were generated by a pulsed picosec
R6G dye laser operating at a wavelength of 590 nm wit
70-ps pulse with a repetition rate of 4 MHz. The sample w
placed in a cryostat. Pumping radiation was conducted to
sample and luminescence was fed from the cryostat via
optic fiber with a diameter of 0.6 mm, adjacent to the sam
surface~within 0.5 mm!. In order to prevent the spread o
nonequlibrium carriers from the optically excited area, w
used samples with 0.5-mm mesas selectively etched on
surfaces. Luminescence was detected by a photomultip
tube operating in the time-correlated photon-counting mo
The densityN of nonequilibrium carriers in the quantum
well at high pumping powers, when a densee–h plasma was
produced, was determined using two methods, namely,
analyzing the luminescence line shape4 and by deriving it
from the pumping power density~under conditions of the
experiment, the lifetime of nonequilibrium carriers was a
ways much longer than both the laser pulse width and
width of the time gate during which luminescence was d
tected!. The values ofN determined by the two method
agreed within 10%, which indicates that nonequilibrium c
riers were effectively contained in the quantum well.
lower pumping power densities, when the excitonic li
dominated in the luminescence spectrum, the concentra
was derived from the pumping power density under the
sumption that the fraction of carriers contained in the qu
tum well was constant as a function of the pumping pow
density.

3. EXPERIMENTAL RESULTS

Figure 1 shows luminescence spectra of a GaAs/AlGa
quantum well recorded over a wide range of pumping d
sities at an ambient temperature of 77 K. For comparison
excitonic spectrum recorded at 4.2 K is shown by a das
line in Fig. 1a. This curve demonstrates that the full width
half maximum~FWHM! Dx of the exciton line at liquid he-
lium temperatures is 1.4 meV. This linewidth is due to loc

195$10.00 © 1997 American Institute of Physics
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FIG. 1. Luminescence spectra of
GaAs/AlGaAs quantum well at 77 K.
For comparison, the dashed line in Fig
1a plots the exciton luminescence spe
trum at 4.2 K.
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inhomogeneities in the quantum well width and the cont
of Al in AlGaAs.5 Inhomogeneous broadening of the excit
line of about 1 meV is typical of high-quality quantum wel
with L55 nm.5 As the temperature is increased to 77 K a
low pumping power density, the excitonic spectral li
broadens toDx52.2 meV. In the range of low pumpin
powers, the linewidth is almost constant for photogenera
carrier densities of up toN'109 cm22. This leads us to a
conclusion that the increase inDx in the temperature rang
between 4 K and 77 K is mainly caused by the increase
the exciton state damping due to the exciton–phonon s
tering, i.e., it is a manifestation of the increase in the hom
geneous linewidth of the excitonic line.1,6

Figure 1 shows that the exciton line monotonica
broadens with the pumping power densityW for
W.3 nW/cm2. This broadening is an indication of add
tional exciton damping due to collisions among particl
primarily exciton–electron collisions. The exciton bindin
energy in the quantum well is comparable tokT at 77 K, and
the excitonic gas is highly ionized in the range of densit
up to fairly high values. Besides, the exciton–exciton int
action ~involving two neutral particles! is notably weaker
than the exciton–electron interaction.

At pumping power densitiesW.100 nW/cm2, the car-
rier concentration is higher than the critical value for t
Mott transition from the excitonic gas to thee–h plasma.
Figure 1b clearly shows that the shape of the recombina
line in this case is in a good agreement with calculatio
based on the plasma approximation,3 and the density and
temperature of thee–h plasma can be derived from th
shapes of experimental curves.7 Our fits of calculations to the
experimental line shapes indicate that the temperature o
e–h plasma increases from 90 K atN5531011 cm22 to 150
K at N5231012 cm22. Figure 1 also clearly demonstrate
that there are no peaks in the behavior of the linewidth in
density range corresponding to the transition from the e
tonic gas to ane–h plasma. This should have been expect
because the excitonic line broadening just below this tra
tion due to interaction between particles is approximat
equal to the excitonic Rydberg, which is, in turn, compara
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Figure 2 displays a decay of luminescence from
quantum well,I (t), at various pumping power densities. Th
luminescence decay time constantt falls monotonically with
the density of carriers in the quantum well. In a general ca
when the radiation lifetimet r of the excitonic system recom
bination is density-dependent, the time constantt is related
to t r by the equation

t5ht r /~11hdt r /dt!, ~1!

whereh5tnr /(t r1tnr) is the luminescence quantum effi
ciency andtnr is the nonradiation lifetime. Equation~1! is
derived from the relations

dI/dt52I /t, ~2!

I 5N/t r , ~3!

dN/dt52N~1/t r11/tnr!. ~4!

Measurements of the quantum efficiency as a function
electron–hole pair density in the quantum well at 77 K a
plotted in Fig. 3. In the range of high densitie
(N51010– 1011 cm22) the quantum efficiency is constan
Measurements taken at lower temperatures indicate thath is

FIG. 2. Luminescence decay curves for the quantum well at different d
sities.
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also constant in this density range as the temperature d
down to 2 K, although the lifetime in this range drops mo
than threefold. Therefore, in this range of densities we
sumeh;1. Figures 2 and 3 show thatt increases and the
quantum efficiencyh drops as the density falls below
1010 cm22, so the radiation lifetime becomes comparable
tnr in this density range. In the rangeN,108 cm22, the
quantum efficiencyh is lower than 0.1, i.e., the nonradia
tional channel of recombination dominates.

4. DISCUSSION

The exciton line FWHM as a function of the density
e-h pairs is given in Fig. 4. In the rangeN,1011 cm22 the
function G(N) is linear. It can be approximated using th
expression9

Dx~Ne!5Dx01Ge~Ne!, ~5!

where

Ge~Ne!5gepRax
2Ne ,

R and ax are the exciton binding energy and Bohr radiu
respectively,Ne is the number of decouplede–h pairs, and
ge is the constant of electron–exciton interaction. The d

FIG. 3. Quantum efficiency as a function ofe–h pair density in the quan-
tum well at 77 K.

FIG. 4. FWHM of the exciton line versus density ofe–h pairs.
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sity of free electrons can be determined from the equa
between chemical potentials of excitons and free electr
and holes in equilibrium:

mx5me1mh , ~6!

where mx,e,h are the chemical potentials of excitons, ele
trons, and holes, respectively.

It follows from the approximation thatge59.5. This
value is in agreement with earlier estimates ofge based on
the four-wave mixing measurements:9 ge510.2. The effect
of exciton–electron collisions on the width of the lumine
cence line has been quantitatively estimated using the
malism developed by Feng and Spector.8 The homogeneous
linewidth is8

Ge5
4 \2

pM E
0

`

dkk2Q fS 2me1mh

me1mh
kD ,

whereM5me(me1mh)/(2me1mh), me(mh) is the electron
~hole! effective mass, andf is the Fermi distribution func-
tion. The scattering cross section in this case is expresse

Q54pS M

me
D 2

k21E
0

p

duK22S F11S meK

4mh
D 2G23/2

2F11S K

4 D 2G23/2D 2

,

whereK52kax sin(u/2) andu is the scattering angle. As
result, we have derived the constant of the exciton–elec
interactionge512.4, which is in a fair agreement with th
experimental data.

Figure 5 shows the functiont8(N)5ht(N) obtained by
processing the data plotted in Figs. 2 and 3. It follows fro
Eq. ~2! that t8(N) equals the radiation lifetime divided b
the factor 11hdt r /dt, which is, as will be shown below
approximately equal to 2. Figure 5 clearly shows that in
range N533107– 109 cm22 the time t8(N) decreases by
more than one order of magnitude in inverse proportion

FIG. 5. Lifetimet8 as a function ofe–h pair concentration. Measuremen
are plotted by full circles, calculations by Eqs.~1!, ~9!–~12! by the solid
line. The dashed line shows the calculatede–h plasma lifetime at 77 K.
Open squares show calculations atN51012 cm22, T5150 K and
N5331012 cm23, T5280 K.
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weaker. The increase in the radiation lifetime at lowN is
caused by ionization of excitons.

The fraction of nonionized excitons in the photoexcit
system is

a5
Nx

N
512

K

2NA~114N/K !
, ~7!

where

K5
NeNh

Nx
5

memhkT

p\2mx
expS 2

R

kTD , ~8!

andmx is the exciton mass. Since the exciton Rydberg in
quantum well~11.5 meV! is comparable tokT at 77 K, the
ionization degree of excitons at low densities is high a
a } 1/N ~Fig. 5!. Luminescence due to free electrons a
holes is negligible, so the radiation lifetime of the tw
dimensional system can be expressed by

t r~N!5tx~T!/a~N!. ~9!

Here tx(T) is the exciton radiation lifetime. It is related t
the reduction lifetimet0 for excitons withk,k0 by

tx~T!53mxkTt0 /\2k0
2 . ~10!

In the range of densitiesN.1010 cm22, when the exci-
ton line FWHM increases~Fig. 4!, the effect of collisions
among particles ontx should be also taken into account. In
general case, the timetx is related to the homogeneou
broadeningGh of the luminescence line as follows:2,6

tx}
\Gh

12exp~2\Gh /kT!
t0 . ~11!

At low carrier concentrations\Gh!kT, the lifetime sat-
isfies tx } kT and is independent ofN. However, the con-
tribution of exciton–electron collisions becomes importan
higher densities, when the exciton damping increases
becomes comparable tokT. In particular, estimates based o
Eq. ~11! yield an increase intx by nearly half at
N5331011 cm22 when G increases to 8 MeV as derive
from the luminescence line FWHM.

In addition, note that at high densities the exciton wa
function is modified by interparticle interaction, which lea
to a change in the exciton oscillator strengthf x , and there-
fore in t0 ~sincet0 } 1/f x , see Ref. 10!. In fact, an electron
or hole, either free or bound in an exciton, can be scatte
only to an unoccupied cell of thek-space. Therefore the sca
tering rate of carriers decreases at high density. The mo
cation of the exciton wave function results in a smaller
cillator strength since it satisfiesf x }u C(r 50)u2, hence
longert0 andtx .

The contribution of interparticle interaction to the osc
lator strength can be taken into account in perturbat
theory with the Coulomb interaction treated as a pertur
tion. A similar technique was used by Schmitt–Rinket al.,10

who studied the many-body effects on excitonic absorpti
To first order, the oscillator strength is given by
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f x}uC0~r 50!u F12paxNx2~p 2p!axNe

1
p ln 2

2)
~k0ax!

2
m

mx
G , ~12!

where

k05
4pNee

2

e0kT
,

m is the exciton reduced mass, ande0 is the material dielec-
tric permittivity. The ratio betweenNx andNe is determined
by Eq.~7!. This result has been obtained in the limitk0ax!1
and R.kT, i.e., Eq.~12! is valid for Ne,1011 cm22. The
second condition corresponds to the caseR511.5 meV and
kT56.6 meV.

The first two terms in Eq.~12! are due to the exchang
interaction between excitons, and between an exciton
free carriers, respectively. The third term is the contribut
of recombination of a free electron~hole! with a hole~elec-
tron! bound in an exciton. This term is positive, i.e., it d
creases the exciton lifetime, and its contribution is signific
at N;1010 cm22.

The solid trace in Fig. 5 corresponds to the functi
t8(N) calculated by Eqs.~1!, ~9!–~12! with due account of
exciton ionization, exciton–electron collisions, and chang
in f x . The only adjustable parameter is the radiation timet0 .
It was selected to fit the calculations to experimental data
the range of low densities, where interparticle interaction c
be neglected. The valuet0524 ps derived from this fitting is
in a fair agreement with the calculations~t0516 ps for a
AlGaAs/GaAs quantum well withL550 Å! based on Ref. 2.

The calculation oft8(N) shown in Fig. 5 by the solid
trace is in a good agreement with measurements for ca
densities of up toN'731010 cm22. At higher densities, the
calculations oft8(N) are notably different from measure
ments, which indicates that in this region excitonic corre
tions are no longer dominant and the lifetime ofe–h pairs
should be calculated in the plasma approximation.

The lifetime of dissociatede–h pairs in the quantum
well can be calculated similarly to that of excitons.2 The
inverse lifetime of a pair can be expressed as follows:

teh
215

1

N

2p

m0c0Ae0

e2mEeh( mvcU E cccvdVU2

3
1

\2

1

2p2 E nknk8d~k2k8!d2kd2k8, ~13!

wherenk is the fermion distribution function, andcc(v) is the
envelope of the wave function in the conductance~valence!
band. It follows from Eq.~13! that the usually accepted den
sity dependence of thee–h pair lifetime t } n22 is valid
only in the case of nondegenerate fermion distributio
whereas in the limitNp\2/m@kT of degenerate fermion
statistics, the lifetime ofe–h pairs becomes independent
the density and approaches a constant which equals 0.2
for the parameters of the quantum well in question. This ti
is about an order of magnitude longer than the lifetime
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lifetime at 77 K: tx50.8 ns. The measured and calculat
radiative lifetimes in the region of high densities are co
pared in Fig. 5, where the calculated dependence is indic
by a dashed line. Even at very high densities,N.1012 cm22,
the lifetime of thee–h plasma calculated forT577 K is
notably shorter than measured. This is not surprising
cause, as was noted above, the temperature of the pho
citede–h plasma in a quantum well is higher than 200 K
such densities. At so high temperatures, holes are nonde
erate, which increases the radiative lifetime of thee–h pairs.
The two points indicated by open squares in Fig. 5 cor
spond to calculations forN51012 cm22 at T5150 K and for
N5331012 cm22 at T5280 K, i.e., at temperatures derive
from luminescence spectra of thee–h plasma. These calcu
lations are in good agreement with experimental values.

It is obvious that the lower boundary of the region whe
the plasma approximation can be used in calculatingt8 is
determined by the emergence of exciton-like correlations
the plasma. Excitonic correlations lead to a larger over
between the electron and hole wave functions, hence
shorter lifetime. Figure 5 indicates that this transition occ
near the densityN}1011 cm22, which corresponds to the
nondimensional parameterr s51/pax

2N'3, in agreement
with the expected value for the exciton-to-plasma transit
in a dense electron–hole system.

5. CONCLUSION

Under conditions of equilibrium between excitons a
electron–hole plasma, we have studied the effect of inter
199 JETP 85 (1), July 1997
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width of the luminescence line and carrier lifetime. At lo
excitation densities, the role of thermal ionization of excito
has been considered. At higher excitation levels, includ
those corresponding to the region of the transition from
exciton gas to electron-hole plasma, the effects of excito
electron and exciton–exciton collisions and ionization of e
citons have been analyzed.
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Restoration of selection rules in nonadiabatic resonant inelastic x-ray scattering

F. Gel’mukhanov and T. Privalov
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Novosibirsk, Russia

H. Ågren
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Recently a new effect in the Raman scattering of x-ray radiation has been predicted theoretically
and discovered in experiments, the effect of restoration of the selection rules for the
scattering tensor under strong electron–vibrational interaction. We propose a fairly simple model
for describing this effect, a model that allows for an exact solution and takes into account
the real vibrational structure of the molecule and electron–vibrational interaction. ©1997
American Institute of Physics.@S1063-7761~97!00407-1#
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Systematic experimental studies of resonant inela
x-ray scattering~RIXS!, or resonant Raman x-ray scatterin
began about a decade ago. This work became possible
marily because of a new generation of high-intensity sour
of polarized synchrotron radiation. The high power of the
sources radiation makes it possible for a monochromato
‘‘cut out’’ a fairly strong narrow line from the smooth broad
band spectrum. Thus it became possible to tune x-ray ra
tion in frequency and monitor the degree of polarization.

The physics of RIXS can be explained in following ma
ner. An initial x-ray photon excites the target~atom, mol-
ecule, or solid!. There are two channels, radiative and no
radiative, into which this highly excited intermediate sta
can decay emitting a spontaneous photon or an Auger e
tron, respectively. There can in turn be radiative RIXS1,2 and
nonradiative RIXS~or the Auger resonance Raman effect!,3,4

depending on what final particle~an x-ray photon or an Au-
ger electron! is registered by the spectrometer.

The cross section of the Auger resonance Raman e
in the soft x-ray range is considerably larger than the rad
tive RIXS cross section, since the Coulomb interaction,
sponsible for the Auger decay, is stronger than the elec
magnetic interaction. This is the reason why at pres
radiative RIXS has lower spectral resolution than nonrad
tive RIXS. On the other hand, radiative RIXS spectra
simpler and hence more informative. The reason is the dip
nature of the interaction between radiation and target, in
cordance with the selection rules for the scattering tensor5–12

As shown in Refs. 5–12, the selection rules for the scatte
tensor cause the spectral shape of the radiative RIXS c
section to depend strongly on the initial-photon frequencyv.
The case wherev is below the thresholdI of ionization of a
core electron was considered in Refs. 5–9, and the theor
RIXS for v.I was developed in Refs. 10 and 1
Theoretical5,6,10–13 and experimental7–9 studies of radiative
RIXS by molecules5,6,10 and solids11,13 demonstrate the ef
fectiveness of these selection rules in determining the s
metry of occupied and vacant electronic states. In the ab
papers RIXS was studied for adiabatic electron–vibratio
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well known, however, that the adiabatic approximation fa
in the presence of two or several closely lying electro
states. In this case the selection rules for the scattering te
may be violated, since according to the Jahn–Teller theo
the symmetry of the electron subsystem is lowered beca
of strong electron–vibrational interaction, which mixes t
closely lying electronic states of different symmetry. Obv
ously, in the case of RIXS by symmetric molecules or soli
this effect is more the rule than the exception. The o
exception is homonuclear diatomic molecules, in which th
is only a symmetric vibrational mode, which does not m
electronic states of opposite parity. Experimental data
RIXS by O2 (v,I ) molecules~Ref. 8! and N2 (v.I ) mol-
ecules~Ref. 9! do indeed demonstrate that the selection ru
hold rigorously for the scattering tensor. Violation of th
selection rules for the x-rayscattering tensor was first disc
ered in experiments with the C60 molecule~Ref. 7!, the ben-
zene molecule~Ref. 14! and the CO2 molecule~Ref. 15!.

A general theory of RIXS that allows for electron
vibrational interaction and an arbitrary spectral distributi
of the excitation radiation has recently been developed
Refs. 15 and 16. The case of broadband excitation was
sidered earlier.17 An important result was obtained in Ref
15 and 16 by theoretical means and was confirmed in exp
ments. The effect consists in the restoration of the selec
rules for the scattering tensor when the detuningV of the
frequencyv of the excitation narrowband radiation from th
electron–vibrational absorption band corresponds to a
tain nonadiabatic electron transition. Note that the selec
rules are again violated for extremely large detunings.5,16 Be-
fore formulating the goal of the present research we list
main theoretical results of Refs. 15 and 16. The effect
restoration of selection rules is described in these paper
three levels of rigor.

~1! A rigorous theory with a corresponding nonempiric
calculation of the CO2 molecule allowing for the nonadia
batic interrelationship of the electron and nuclear su
systems. The positive side of this approach, the rigor, is
the same time a drawback in view of extreme complexity

20$10.00 © 1997 American Institute of Physics



~2! A rigorous proof of the fact that the ratio of the
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intensities of the forbidden and allowed transitions tends
zero for large detuningsV. Since this asymptotic result i
valid only for large detunings, the corresponding descript
allows for no conclusions about the shape of the spec
RIXS band in the intermediate range of values ofV.

~3! A qualitative description of the spectral dependen
of the relative intensity of the forbidden transition via a fiv
level model. Here the vibrational structure of the molecule
taken into account by two parameters: the electro
vibrational interaction parameterl, and the effective width
of the corresponding electron–vibrational band in the
sorption spectrum. A drawback is the poor accuracy in
lowing for the vibrational structure of the molecule.

Thus, the main goal of our research is to select a fa
simple model that takes into account the real vibratio
structure of the molecule and at the same time allows fo
rigorous solution of the problem of symmetry restoration
radiative RIXS. Since here we study only radiative RIXS,
the sake of brevity we use only the abbreviation RIXS.

2. RIXS AND ELECTRON–VIBRATIONAL INTERACTION

2.1. Differential and integral RIXS cross sections

The differential cross section of RIXS into the sol
angledO,

d2s~v8,v!

dv8dO
5r 0

2vv83(
f

uF f u2d~v81v f 0
2v!, ~1!

is expressed in terms of the classical electron rad
r 05a2.2.82310213 cm (a51/137) and the scattering am
plitude given by the well-known Kramers–Heisenbe
formula18

F f5(
i

D f i8 D i0

v2v i01 iG
, D5e–d, D85e8•d. ~2!

Here it is assumed thatkR!1, whereR is the size of the
molecule. This condition is met for soft x-ray radiation a
not very long molecules. The casekR*1 was studied in
Refs. 5, 10, and 11. In the present paper we use the ato
system of units (\5m5e51); v, e, k and v8, e8, k8 are
the frequencies, polarization vectors, and wave vectors of
initial and final photons, respectively;d is the operator of the
dipole moment of the molecule; andv i j 5E i2E j is the fre-
quency of the resonant transition between the molec
statesi and j . The half-widthG at the half-maximum of the
absorption line is assumed constant for simplicity. In Eq.~1!
we ignored the broadeningG f of the final stateu f &, since it is
small compared toG. The scattering amplitude~2! describes
the absorption of the initial photon followed by the transiti
of the molecule from the ground stateu0& to the x-ray excited
intermediate stateu i & followed by spontaneous decay to th
final stateu f &. The delta function in Eq.~1! reflects the con-
servation of energy in the scattering process and descr
the Stokes shift of the emission line,

v85v2v f 0 . ~3!
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the cross section~1! is the reason for Stokes doubling of th
RIXS line.5,19,20 Recently the existence of this effect ha
been confirmed in the experiment of Akselaet al.4

The differential cross section~1! describes the scatterin
of a monochromatic beam of x-ray photons by a molecule
practice, the spectral distributionF(v12v,g) centered atv
has a finite widthg. Thus, if we wish to describe the exper
ment correctly, we must use the convolution

s~v8,v!5E dv1

d2s~v8,v1!

dv8dO
F~v12v,g! ~4!

of the RIXS cross section~1! and the spectral function
F(v12v,g) normalized to unity. Note that the finite widt
g of the spectral function violates the linear dependence ov
of the RIXS line given by Eq.~3!.20,21

Below we will also need the integral cross section~the
area of the corresponding electron–vibrational RIXS ban!

s~v!5E dv8s~v8,v!5E dv1s0~v1!F~v12v,g!,

~5!

which is expressed in terms of the integral cross section

s0~v!5E dv8
d2s~v8,v!

dv8dO
5r 0

2vv̄83(
f

uF f u2 ~6!

in the event of monochromatic excitation (g50). Here with
a high accuracy we can considerv̄8 as the center of gravity
of the corresponding emission line.

2.2. The electron–vibrational interaction model

To determine the amplitude~2! and the integral cross
sections~5! and~6! we choose a reasonable model reflecti
the main features of the problem. The simplest molecule
which there is an antisymmetric vibration connecting t
electronic states of opposite parity is a linear triatomic m
ecule XY2 ~e.g., CO2!. We assume that the initial photo
excites theK-electrons of the Y atoms to an unoccupie
molecular orbital~or a quasistationary state above the ioniz
tion threshold of theK-level! of definite parity~u or g!. We
also assume that the molecule in theK-excited state remains
linear. In accordance with the symmetry of the molecule,
intermediate delocalizedK-hole electronic state may be e
ther even-parity (Cg) or odd-parity (Cu). These states are
quasidegenerate, i.e., their electron energies are practi
the same,

E[Eg.Eu , ~7!

since the wave functions of the 1s-electrons belonging to
different Y atoms overlap only weakly. For instance, for t
CO2 molecule,uEg2Euu.0.005 eV. This high degenerac

21Gel’mukhanov et al.
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FIG. 1. The shift of the potential curvesU6(Q) of the
states~13! for the antisymmetric mode, caused by th
electron–vibrational interaction. HereQ[Qu . The
nonadiabatic potentialsU6(Q) for the antisymmetric
mode of theK-excited state is determined by the ex
pression forH6 in Eq. ~15! without the contribution of
the harmonic potential of the symmetric mode. Th
light curve depicts the potential curveU(Q) of the
adiabaticK-excited state.~a! The adiabatic potential
curves of the ground (U0(Q)) and K-excited (U(Q))
states have different equilibrium distances.~b! The
ground andK-excited states have the same vibration
frequencies and the same equilibrium distances.
of the x-ray excited states is the main reason for strong
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electron–vibrational interaction. In the two-level approxim
tion, the total Hamiltonian of the molecule,

H5S H0 V

V H0
D , ~8!

in the intermediate~K-excited! state is the sum of the adia
batic Hamiltonian

H05E1h ~9!

and the operatorV responsible for the nonadiabatic couplin
of the degenerateK-hole electronic statesCg andCu . The
Hamiltonian

h5 (
j 5g,u

S Pj
2

2M j
1

1

2
M jv j

2Qj
2D , ~10!

which describes nuclear motion in the harmonic approxim
tion, allows for two normal modes, the symmetric mode w
frequencyvg and normal coordinateQg , and the antisym-
metric mode with frequencyvu and normal coordinateQu .
For simplicity we ignore the contribution of bending vibr
tions in Eq.~10!. The coefficientsMg and Mu have the di-
mensions of mass and for the XY2 molecules can be ex
pressed in terms of the massesMX andMY of the atoms X
and Y as follows:

Mg5
MY

2
, Mu5

MY~2MY1MX!

2MX
.

The orthogonal transformation17

U5
1

&

S 1 21

1 1 D , ~11!

which diagonalizes the Hamiltonian~1! (H̃5U1HU)

H̃5S H1 0

0 H2
D , H65E1h6V, ~12!

lifts the degeneracy~7! of the ‘‘delocalized’’ statesCg and
Cu and establishes a transition to the localized electron b
functions
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C15
&

~Cg2Cu!, C25
&

~Cg1Cu!, ~13!

whereC1 is the eigenfunction of the HamiltonianH1 , and
C2 is the eigenfunction of the HamiltonianH2 .

According to the Jahn–Teller theorem, the results~12!
and~13! have a profound physical meaning: the interactionV
lifts the degeneracy of the initial adiabatic statesCg andCu

by lowering the symmetry of the system. Since the init
statesCg andCu are of opposite parity, they can be couple
only by an interactionV with an antisymmetric vibrationa
mode. Thus, we can writeV in the linear approximation in
Qu as follows:22,17

V5lQu . ~14!

Plugging this into the expression~12! for H6 , we see that
H6 is again reduced to a sum of two harmonic Hamiltonia

H65E1
Pg

2

2Mg
1

1

2
Mgvg

2Qg
21

Pu
2

2Mu
1

1

2
Muvu

2Qu
2 ,

Qu
65Qu6

l

Muvu
2 . ~15!

In the expression for H6 we ignored the term
2l2/(2Muvu

2), which is quadratic inl, since allowing for
this term takes us beyond the linear approximation~14!. The
nonadiabatic approximation~14! shifts the equilibrium dis-
tance for the antisymmetric mode by7l/Muvu

2 for the
HamiltoniansH6 , respectively~Fig. 1!.

3. PARTIAL AMPLITUDES AND THE SCATTERING CROSS
SECTIONS IN THE SYMMETRY-FORBIDDEN AND
SYMMETRY-ALLOWED SCATTERING CHANNELS

For definiteness we assume that the ground electro
state is an even-parity one (Cg

0). In this case, in the absenc
of electron–vibrational interaction, the final electronic sta
C f must also be an even-parity one (C f g

), since a transition
to an odd-parity final state (C f u

) is symmetry-forbidden.5

The nonadiabatic interaction~14! ‘‘opens’’ the forbidden
scattering channel into the final stateC f u

. Thus, in addition

22Gel’mukhanov et al.
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the allowed scattering channel, there is a finite amplitudeF f u

and a finite integral cross sections0u(v) for the forbidden
scattering channel. Then the differential and integral scat
ing cross sections~Eqs.~1! and~6!! are given by sums of two
terms:

d2s~v8,v!

dv8dO
5S v8

v̄8D
3

( @s0 f g
~v!d~v81v f g02v!

1s0 f u
~v!d~v81v f u02v!#,

s0~v!5s0g~v!1s0u~v!, ~16!

where

s0a~v!5( s0 f a
~v!, s0 f a

~v!5r 0
2vv̄3uF f a

u2,

a5g,u,

v f a05Ef a
2E01v f gS mf g

1
1

2D1v f uS mf u
1

1

2D
2

1

2
~v0g1v0u!. ~17!

Here v0a and v f a
are the vibrational frequencies of th

ground and final electronic states, respectively, and the in
a5g, u denotes the parity of the electronic state. The su
in Eqs. ~6! and ~17! mean summation over the vibration
levels (mf u

50,1,2,...) of thefinal state. Using the localized
representation~13!, which diagonalizes the total molecula
Hamiltonian, and the Frank–Condon approximation, we
rive at the following expressions for the amplitudes~2! of the
symmetry-allowed (F f g

) and symmetry-forbidden (F f u
)

scattering channels:

F f a
5

1

2
DguDb f a

8 (
m

~6^0,ou1,m&Gm^1,mu f a ,mf&

1^0,ou2,m&Gm^2,mu f a ,mf&!,

Gm5
1

V2mgvg2muvu1 iG
,

V5v2S n01
1

2
~vg2v0g1vu2v0u! D . ~18!

According to the dipole selection rules, in the matrix elem
Db f a

8 of the dipole moment of the emission transition t

parity b of the K-excited state is opposite to the paritya of
the final state~if a5g,u, then b5u,g!. In the scattering
amplitude~18! the ‘‘plus’’ corresponds to an even-parity fi
nal state (a5g) and the ‘‘minus’’ to an odd-parity final stat
(a5u); the frequencyn05E2E0 is the difference between
the equilibrium values of the electron energies of t
K-excited state,E ~Eq. ~7!!, and the ground state,E0 . The
Frank–Condon factor between the vibrational wave fu
tions of the ground stateu0,o& and theK-excited stateu i ,m&
( i 51,2) is denoted bŷ0,ou i ,m&, while ^ i ,mu f a ,mf& stands
for the Frank–Condon factor between the vibrational wa
functions of theK-excited,u i ,m&, and final,u f ,mf&, states.
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stand for the set of quantum numbers of the vibrational l
els of the symmetric and antisymmetric normal modes of
ground, K-excited, and final states, respectively. Here
assume that the medium is kept at room temperature
which only the lower vibrational levels of the ground ele
tronic state with frequenciesv0g and v0u are occupied
(m0g5m0u50) in moderate-sized molecules. The matrix e
ements of the electron dipole moment,

Dgu5^Cg
0uD uCu&,

Du fg
8 5^CuuD8uC f g

&, Dg fu
8 5^CguD8uC f u

&, ~19!

describe the processes of absorption (Dgu) and emission
~Du fg

8 andDg fu
8 !, whereCa

0 , Ca , andC f a
are the electron

wave functions of the ground,K-excited, and final states o
parity a.

In contrast to the differential cross section~16! and the
scattering amplitude~18!, in the partial integral cross sectio
s0a(v) ~Eq. ~17!! we can sum over the vibration levels o
the final state:

s0a~v!5
1

2
r 0

2vv̄3Dgu
2

Db f a
8 (

m
F ~ u^0,ou1,m&u2

1u^0,ou2,m&u2!uGmu262 Re(
m1

u^0,ou1,m&

3Gmu^1,mu2,m1&Gm1
* ^2,m1u0,o&G . ~20!

Note that the partial integral cross section~20! does not co-
incide with the absorption cross section. According to t
optical theorem, the absorption cross section is(s0a(v),
where we mean summation over all the final state of
molecule and the final photon~the corresponding analysis fo
RIXS can be found in Ref. 23!. Obviously,

^1,mu2,m1&5dmg ,m1g
^1,muu2,m1u&, ~21!

since the nonadiabaticity parameterV ~Eq. ~14!! does not
change the vibrational wave functions of the symmet
mode. The antisymmetric modesu1,mu& and u2,mu& of the
electronic states~13! differ only in their equilibrium dis-
tances, which are shifted in relation to each other
2l/(Muvu

2) ~Eq. ~15!!. The expression for the Frank
Condon factor~21! is given below~see Eq.~28!!.

In the total integral cross sections0(v) ~Eq. ~16!! it is
advisable to distinguish the cross sections0g(v) of the al-
lowed scattering channel and a parameterx~v! equal to the
relative intensity of the forbidden scattering channel:

s0~v!5s0g~v!~11x~v!!, x~v!5
s0u~v!

s0g~v!
. ~22!

The restoration of the selection rules~x(v)50 and
F f u

50! in the adiabatic limit (l50) follows directly from
Eqs. ~18! and ~20!, since in this limit the vibrational wave
functions of the electronic states, Eqs.~13!, coincide
(u1,m&5u2,m&).

23Gel’mukhanov et al.
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Let us examine the important limiting case of large d
tuningsV of the initial photon from the electron–vibrationa
absorption band under consideration,

~V21G2!1/2@Dv, ~23!

where the effective width of the band isDv. In this limit of
large detunings or large natural widthsG of the absorption
line, the quantityGm specified in Eq.~18! is independent of
m and can be taken outside the sum in the expression fo
scattering amplitudeF f a

in Eq. ~18!. Allowing for the com-
pleteness condition

(
m

u i ,m&^ i ,mu51, i 51, 2,

we arrive at the following asymptotic expressions for t
scattering amplitude and the relative intensityx~v! of the
forbidden scattering channel:

F f u
50, F f g

5DguDu fg
8

^0,ou f g ,mf&
V1 iG

, x~v!50, ~24!

which demonstrates that the scattering channel into the o
parity final state in the limit~12! is again parity-forbidden
~F f u

50 andx(v)50! in the limit ~23!. This result is rigor-
ous and model-independent.15,16 The case of largeG in
broadband excitation was also examined be Cederbau17

Equation ~24! implies that the carrier frequencyv of the
excitation radiation provides a means of actively controlli
the selection rules in nonadiabatic transitions.

3.2. Analysis of the selection rules in the time-dependent
representation

To clarify the physical meaning of the phenomenon, it
advisable to write the scattering amplitude~18! in the time-
dependent representation:

F f a
5E

0

`

dt Ff a
~ t !

5
i

2
DguDu fg

8 (
m

E
0

`

dt exp~ i ~V2mgvg

2muvu1 iG!t !@6^0,ou1,m&^1,mu f a ,mf&

1^0,ou2,m&^2,mu f a ,mf&#. ~25!

This expression can be interpreted as follows. Becaus
photoabsorption at timet50, the molecule goes into th
K-excited state. According to quantum theory, it is impo
sible to say at what timet the molecule will emit a photon
and go into the final state. What the theory does state is
the spontaneous transition probability amplitudeF f a

(t) is
different for different timest. The integral~25! over the
emission timest sums all the partial amplitudesF f a

(t) into
the total scattering amplitudeF f a

. Obviously, not all timest
of emission of the final photon are equally probable, so th
is a strong correlation between the emission and absorp
acts in Raman scattering. The primary reason for this co
lation is the finite lifetime (G21) of the K-excited state. In-
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that the delay timet between the absorption and emissi
acts cannot be much longer than the lifetimeG21 of the
intermediate state. The second mechanism of the correla
between absorption and emission differs qualitatively fro
the first and is due to the phase difference

w5Vt ~26!

between the ‘‘instantaneous’’ amplitudeF f a
(0) and the am-

plitude F f a
(t) of emission of the final photon at timet. To

be more exact, this phase is (V2mgvg2muvu)t. Because
of the interference of the partial scattering amplitud
F f a

(t), their contribution to the total scattering amplitud
F f a

is significant only for delay timest&uVu21. Thus,

tc5~V21G2!21/2 ~27!

can be interpreted as the duration of the RIXS process, or
correlation time~the effective delay time! between the ab-
sorption and emission acts.

Restoration of the selection rules~24! for short correla-
tion timestc!Dv21 ~see Eq.~23!!, corresponding to instan
taneous RIXS, means that in the course of the Raman
cess~the time intervaltc! the molecule is unable to perform
an antisymmetric vibration (tc!vu

21) capable of mixing the
electronic states with different parities.

3.3. Identical potential surfaces for the ground and
K-excited states

Calculations can be made simpler if the initial potent
surfaces of the ground andK-excited states coincide~Fig.
1b!. In this casev0[v0g5vg5vu and the Frank–Condon
factors for the symmetric mode disappear, in view of whi

^0,0u i ,mg&5dmg,0 .

The fact that the remaining Frank–Condon factors for
antisymmetric mode are off-diagonal is due solely to t
shift in the equilibrium distances in~15! ~7l/Muvu

2 for the
statesC1 andC2 , respectively!:

^0,0u i ,m&5
~6h!m

Am!
expS 2

h2

2 D , h5
l

A2Muvu
3

,

~28!

^1,mu2,m1&5e22h2

35
~2h!m2m1S m1!

m! D 1/2

Lm1

m2m1~4h2!,

m.m1 ,

~22h!m12mS m!

m1! D
1/2

Lm
m12m

~4h2!,

m,m1 .

Here Ln
a(x) is the generalized Laguerre polynomial, an

i 51, 2. In the first equation in~28! the ‘‘plus’’ corresponds
to stateC1 and the ‘‘minus’’ to stateC2 .

The integral cross sections0(v) in Eq. ~22! is expressed
in terms of the integral RIXS cross section of the allow
transition,

24Gel’mukhanov et al.
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FIG. 2. Dependence of the relative in
tensity of the forbidden transition,x~v!
~Eq. ~30!!, on the frequencyv of the ex-
citation radiation:~a! for different values
of the nonadiabaticity parameterh ~Eq.
~28!! (G/v050.257), and~b! for differ-
ent ratios of the natural absorption line
width to the vibration frequency,G/v0
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2
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@ uGmu2

1Re~GmGm1
* !#, ~29!

and the parameter

x~v!5S Dg fu
8

Du fg
8 D 2 (m,m150

` bmm1
~ uGmu22Re~GmGm1

* !!

(m,m150
` bmm1

~ uGmu21Re~GmGm1
* !!

,

~30!

which describes the frequency dependence of the intensi
the forbidden transition. By taking into account the prop
ties of generalized Laguerre polynomials,24 we can easily see
that the coefficientsbmm1

are symmetric:

bmm1
5

e22h2

m1!
~2h2!m1Lm

m12m
~4h2!, bmm1

5bm1m .

~31!

Clearly, Re(GmGm1
* ) in ~29! is the term describing the inter

ference of the channels of scattering through different in
mediate states.25 The expression~30! for the functionx~v!
clearly shows that the interference of these scattering ch
nels plays an important role in the formation of the pari
forbidden electron–vibrational band.

The restoration of the selection rules in par
(x(v)→0) for the scattering tensor at large detunings~see
the condition~23!! follows directly from Eq.~30! for x~v!,
since in this limit

uGmu22Re~GmGm1
* !→0.

The spectral dependence of the relative intensityx~v! of a
forbidden transition~Eq. ~30!! shows that the characterist
frequency scale on which functionx~v! decays is determined
by the effective widthDv of the absorption spectrums0g(v)
~see Refs. 15 and 16!. This result, which agrees with th
estimate~23!, justifies the use of the simplified five-leve
model adopted in Refs. 15 and 16. The dependence of
spectral shape ofx~v! on the nonadiabaticity parameterh
~Eq. ~30!!, depicted in Fig. 2a, shows that this function ten
to zero in the adiabatic limith→0. The narrowing ofx~v! to
a single resonance with a natural linewidthG is due to the
specific features of the adopted model. Indeed, in the mo
we are using the potential surfaces of the ground
K-excited states coincide ash→0. Therefore, in this limit
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the ground state to the lower vibrational level of th
K-excited state~a 0–0 transition!. Figure 2b depicts the spec
tral dependence of the functionx~v! for different ratios of
the natural width of the x-ray absorption line and the vib
tional frequency,G/v0 . The decrease inx~v! with increas-
ing G was explained above in discussing the correlation ti
~27!.

4. CONCLUSION

Due to electron–vibrational interaction, the RIXS spe
trum symmetric molecules and solids acquires a par
forbidden electron–vibrational band. We have studied
dependence of the ratiox~v! ~Eq. ~22!! of the total intensities
of the parity-forbidden and parity-allowed transitions in
linear triatomic molecule XY2 on the durationtc ~Eq. ~27!!
of the RIXS process. According to Eq.~27!, the duration of
the resonant scattering process depends onV andG. Being a
constant quantity for a given spectral transition in the m
ecule, the natural linewidthG is a passive parameter, no
making it possible to actively varyx~v!. The extent to which
the electron selection rules are violated, characterized
x~v!, can be actively controlled by another parameter,V, by
varying the difference between the initial-photon frequen
v and the center of the band of the electron transition be
considered. We have found that the selection rules
strongly violated (x(v);1) in the region of maximum pho
toabsorption 0&uVu&Dv and then are restored (x(v).0)
when the detuning of the initial-photon frequency reach
the wings of the absorption line:uVu@Dv.

The adopted model of the RIXS effect with electron
vibrational interaction has made it possible to establish
spectral dependence of the extent of violation of the selec
rules,x~v!, and to show thatx~v! is determined by the prod
uct (tcDv) of the duration of the RIXS process and th
effective absorption linewidth~see Eqs.~23! and ~27!!. Fig-
ure 2a shows that when electron–vibrational interaction
fairly strong (h;1), the width of the functionx~v! is given
by the effective widthDv of the absorption line. A decreas
in the electron–vibrational interaction parameterh ~Eq. ~28!!
leads to decrease in the functionx~v!, which narrows to a
single resonance with a widthG ~Fig. 2a!. For G/v0 small
andh;1, the spectral dependencex~v! is of a clearly reso-
nant nature. An increase inG/v0 smears out this resonanc

25Gel’mukhanov et al.
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G/v0*1, which justifies the use of the five-level model f
studying the effect.15,16

We briefly discuss our simplifying assumptions. By u
ing the above model in studying the RIXS process we w
only to establish the main qualitative laws governing t
effect of restoration of the selection rules in the RIXS p
cess. Note that the model can be applied directly only
linear triatomic molecules XY2 that remain linear in the in-
termediate and final electronic states. The model canno
applied directly to the case of hard x-ray radiation, in whi
dipole selection rules are violated.5 Our model allows for
symmetry breaking in the intermediate highly excited el
tronic state, and the main result of our research, Eq.~18!, is
based on this realistic assumption. Here we did not touch
the random quasidegeneracy of the final states~possible at
least in principle!, which can also lead to violation of selec
tion rules. Since we do not claim that the model is univers
we can only state that it yields good results when applied
the CO2 molecule, studied earlier by more rigorou
methods.16 In our numerical calculations of the Frank
Condon factors we employed the harmonic approximati
This approximation violates no principles and, being e
tremely accurate, is widely used in calculating x-ray tran
tions far for the dissociation thresholds of molecules.
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Adsorption of cesium atoms at structural defects on sapphire surfaces
A. M. Bonch-Bruevich, T. A. Vartanyan, Yu. N. Maksimov, S. G. Przhibel’ski ,
and V. V. Khromov

S. I. Vavilov State Optics Institute, 199034 St. Petersburg, Russia
~Submitted 16 October 1996!
Zh. Éksp. Teor. Fiz.112, 362–370~July 1997!

Results are presented from an experimental study of the adsorption of cesium atoms on sapphire
surfaces and their photostimulated desorption. The adsorbed atoms are found to form
chains on the surface which are localized near one-dimensional structural defects of the surface.
One-dimensional adsorption is analyzed theoretically with different assumptions regarding
the mobility of adsorbed atoms along a chain. A comparison of the theories with experimental data
favors localized adsorption described in terms of a one-dimensional lattice gas model. The
energy of adsorption for an isolated atom on a linear surface structural defect is 0.58 eV, while
the energy of attraction between neighboring atoms in the chain is 26 meV. ©1997
American Institute of Physics.@S1063-7761~97!03207-1#
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1. INTRODUCTION

Studies of atomic and molecular adsorption on solid s
faces are a classical and widely used method for determi
the energy and structural properties of surfaces. In
method the experimentally measured adsorption isothe
~or isobars! are compared with a theoretical analysis of eq
tions of state for the adsorbed phase that have been obta
with different initial assumptions regarding the nature of t
adsorption. This kind of comparison is effective and uniq
only in the simplest cases, i.e., for adsorption on energ
cally uniform surfaces when no lateral interactions exist, e
In more complicated cases, additional experimental data
the processes taking place during adsorption are needed
understanding of one of the basic properties of the test
faces, namely, the inhomogeneity of their adsorptive cha
terstics, requires either complicated quantum mechanical
culations or the use of delicate and expensive experime
techniques, most of which are applicable only to electrica
conducting surfaces. In this paper the nature of the ads
tion centers is evaluated on the sole basis of the thermo
namic characteristics of the processes involved in the des
tion of cesium atoms from sapphire surfaces. A combinat
of two methods is used here to study the surface propertie
sapphire: one, which we have discovered previously,1 uses
nonthermal photostimulated desorption of alkali metals fr
single crystal sapphire surfaces, and the other is laser the
desorption.

An analysis of the experimental data showed that w
saturation adsorption the Cs atoms occupy a small fractio
the surface of a single crystal, while lateral interactio
among the atoms make a significant contribution to the
ergetics of adsorption. This seeming contradiction is
solved by the fact that adsorption occurs at centers wh
form agglomerations that can, in general, have the attrib
of clusters, islands, or filaments. A qualitative analysis of
cluster and island adsorption models shows that they ca
be reconciled with the experimental data. Using the relia
established existence of steps on the surface of io
crystals,2 in particular on sapphire,3 and their role in increas
200 JETP 85 (1), July 1997 1063-7761/97/070200-05
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ing the adsorption energy,4 we interpret the experimental re
sults as a manifestation of one-dimensional adsorption in
form of filaments. This sort of adsorption can be described
terms of a one-dimensional lattice gas model, modified
take into account the contact between the adsorbed and
phases. The good agreement between the theoretical cu
and the experimental data allows us to estimate both
adsorption energy for atoms at a step and the interac
energy of neighboring adsorbed atoms.

2. EXPERIMENTAL APPARATUS AND RESULTS

All the experiments were done with sapphire slabs
from single crystala-Al2O3 parallel to the~0001! plane. The
mechanically polished and chemically cleaned surface of
crystal slab was turned inward toward a sealed-off vacu
system with a cryogenic pump. A droplet of metallic cesiu
was placed in a special extension and served as a sour
test particles. All the experiments were conducted under
namic equilibrium conditions between the bulk and surfa
phases. The design of the cell made it possible to vary in
pendently the temperatures of the test surface and the m
droplet. This made it possible to study the temperature
density characteristics of the adsorption, while avoiding
multaneous condensation of metal on the test surface.
temperature dependence of the photodesorption and the
desorption of cesium atoms from the sapphire surface
studied.

Photodesorption was triggered by pulsed light from
ruby laser, whose wavelength,l5694 nm, lies in an absorp
tion band of the adsorbed atoms. To detect the desor
particles a 2-cm-diameter probe beam resonant with
strong l5894.3 nm absorption line of the free atoms w
directed parallel to the test surface, almost touching it. In t
geometry the change in the absorption of the probe be
was measured when a pulsed flux of desorbed atoms arr
in it; this made it possible to estimate the number of ato
and their average ejection velocity based on their time
flight across the cross section of the detector beam. Note
the presence of stronger, but constant in time, absorption
200$10.00 © 1997 American Institute of Physics
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atoms in the gas phase does not interfere with these mea
ments. The average velocity of the thermally desorbed at
corresponded to 700 K, and of the photodesorbed atom
500 K. The number of desorbed atoms was determined f
the amplitude of the change in the intensity of the pro
beam. Here we took the resonant absorption cross sectio
the atoms to bes53•10212 cm22, which corresponds to a
Doppler mechanism for broadening of the atomic line at
temperatures indicated above. The distributions of the d
orbed atoms with respect to velocity and ejection angle w
not recorded in the present experiments. Similar meas
ments for an Na/a-Al2O3 system1 show, however, that the
velocity distribution of the ejected atoms is Maxwellian
high precision with a temperatureT5700– 900 K, depend-
ing on the wavelength of the exciting radiation, while t
angular distribution is close to diffuse.

The experimentally measured dependence of the num
of photodesorbed atoms on the substrate temperature
fixed concentration of gaseous phase atoms is shown in
1. The photodesorption quantum yield at room tempera
was (562)•1026.

A linear dependence of the number of desorbed ato
on the incident radiation power, which is typical of the ph
todesorption process described above, is observed for in
sities below 10 kW/cm2. At higher intensities a thermal de
sorption phenomenon is observed with a threshold rise in
number of desorbed atoms, which is soon replaced by s
ration owing to complete desorptoin of adatoms during
time the laser pulse acts. The number of atoms desorbe
this regime is determined only by the surface concentra
of the adsorbate, and we have used this to measure the
as a function of substrate temperature.

The measured surface concentration of adsorbed at
is shown in Fig. 2. At low temperatures the surface conc

FIG. 1. The signal produced by the photodesorption of cesium atoms
a sapphire surface as a function of the reciprocal surface temperature
constant concentrationN53•1010 cm23 of cesium atoms in the gaseou
phase. Driver radiation wavelengthl5694 nm, pulse length 0.2 ms, an
intensity 350 W/cm2. The points are experimental data and the smo
curve, a calculation using Eqs.~2!, ~3!, and~4!.
201 JETP 85 (1), July 1997
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tration as a function of temperature undergoes saturat
reaching a level on the order of 1013 cm22. The estimated
systematic error in our determination of this quantity
650%, and the scatter in the experimental points shown
Figs. 1 and 2 characterizes the relative error in the exp
ment, which is610%. Since our value for the surface co
centration is substantially lower than the maximum w
dense packing, 1015 cm22, it is obvious that adsorption doe
not take place over the entire surface, but only at adsorp
centers whose density determines the maximum adsor
concentration.

3. DISCUSSION OF RESULTS

Given that the detected saturation density of adsorbed
atoms is much lower~Fig. 2! than the density with dens
packing, it is natural to assume the possibility of adsorpt
at centers. In principle, adsorption at centers can be analy
in terms of two models: cluster and Langmuir. However, t
first model, different versions of which have been examin
in detail elsewhere,5 cannot explain the invariability of the
characteristics of the photoprocesses and adsorption en
with covering density, while the maximum numbers of pa
ticles in a cluster can be large. In addition, in all the expe
ments the surface temperature of the sapphire was some
higher than the temperature of the metallic cesium drop
which created the equilibrium atomic cesium vapor press
in the volume. Under these conditions clusters cannot
stable if we make the obvious assumption that the bind
energy of the atoms in them is lower than the binding ene
in the large droplet of metal.

These difficulties are eliminated by the Langmuir mod
so it is natural to attempt to interpret the experimental d

m
r a
FIG. 2. The signal produced by thermal desorption of cesium atoms fro
sapphire surface as a function of the reciprocal surface temperature
constant densityN53•1010 cm23 of cesium atoms in the gaseous phas
The driver radiation had wavelengthl5694 nm, pulse length 0.2 ms, an
intensity 105 W/cm2. The points are experimental data and the smooth cu
is from a calculation using Eq.~4! with Ei50.026 eV andEa50.58 eV.
Within this temperature range a calculation using Eq.~1! with Ea50.95 eV
is indistinguishable from the smooth curve on the scale of the figure.
201Bonch-Bruevich et al.
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using such a model. Letn0 be the surface density of center
Then the surface density of adsorbed atoms is given by

n5
n0

11exp~Ea /T* 2Ea /T!
, ~1!

where T* is determined by the density of particles in th
gaseous phase and represents the temperature at which
the adsorption centers are filled. ForT.T* , the surface den-
sity falls off exponentially with rising temperature, while fo
T,T* it rapidly reaches its maximum valuen0 . The best
agreement between Eq.~1! and the experimental data is ob
tained forT* 5336 K andEa511000 K.

Despite the qualitative agreement between the theo
cal and experimental data on thermal desorption~Fig. 2!, the
estimate forEa obtained from it cannot be made consiste
with the data on photodesorption. In fact, the photodeso
tion of atoms from the surface of wideband dielectrics can
explained in the following way:1 in the first stage, because o
the transparency of sapphire in the range of the absorp
bands of the adatoms, selective excitation of the optical e
tron of an adsorbed atom takes place without significant p
turbation of the electron and phonon subsystems of the
strate. Later, the electronic excitation of the adatom
quenched rapidly and the energy of the photon is redist
uted statistically among the vibrational degrees of freed
of the adsorbed atom and the substrate atoms closest
Here some fraction of the adatoms may obtain enough
ergy to overcome the attractive potential to the surface,Ea ,
and be desorbed from the surface.

A study of the time of flight spectra of the desorb
atoms showed that they are well described by an elemen
model1 in which a uniform distribution of the photon energ
among a fixed number of degrees of freedom of the ads
tion complexz is assumed. This model leads to a Maxwe
ian distribution of the desorbed atoms with respect to th
ejection velocity with an effective temperature that depe
linearly on the photon frequencyv and is independent of th
intensity of the exciting radiation. TakingT as the surface
temperature, we can write the effective temperature of
adsorption complex after absorption of a photon and quen
ing of the resulting excited electron state as

Te5T12\v/z. ~2!

The quantum yield of this process can then be written in
form

f 5AEa

Te
expS 2

Ea

Te
D . ~3!

As noted above, the temperature dependence of the pho
sorption signal, which is proportional to the productn f ~Fig.
2!, and the experimentally determined quantum yield at ro
temperature,f 055•1026 is inconsistent with the estimate o
Ea from the thermodesorption data if Eq.~1! is used forn.
Here we notice at once that the value ofEa50.95 eV deter-
mined in this way is considerably higher than the va
Ea50.7 eV given in Ref. 1 for adsorption of Na on sapph
and is even greater than the binding energy of an atom
metallic cesium.
202 JETP 85 (1), July 1997
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The disagreement between the point-center models
the experimental data means that it is necessary to cons
adsorption in models of reduced dimensionality. It is natu
to assume that one dimensional adsorption is realized in
form of chains lying along the bases of the steps which
ways exist on a real crystalline surface.3 This assumption,
based on the well known increase in the adsorption ene
near the base of a step,4 means that it is necessary to includ
the interaction between neighboring adsorbed atoms, si
in general, saturation of adsorption may occur with den
packing. In addition, two alternative situations must be co
sidered: localized and delocalized adatom sites on the
sorption line. As will be shown below, including lateral in
teractions and choosing a localized adsorption model
provide an adequate desciption of the experimental resu

4. ONE-DIMENSIONAL LOCALIZED ADSORPTION MODEL

Adsorption on linear chains of centers can be descri
theoretically in terms of a one-dimensional lattice gas mod
Then the lateral interaction is determined by a single para
eter, the nearest-neighbor interaction energyEi . The thermo-
dynamic parameters of this type of model can be calcula
exactly using the methods employed in the theoretical an
sis of the Ising model.6 This model differs from the tradi-
tional model of a lattice gas in that the lattice system h
contact with a bulk phase and an occupied lattice site ha
nonzero energy. These differences, expressed through
chemical potentialm and the binding energyEa of its bond
with a lattice site, show up as the energyB of a spin in an
external magnetic field in the Ising model:

2B5m1Ea1Ei

and, thereby, restrict the exact solubility of the model to
one-dimensional case alone. Without dwelling on the det
of the derivation, which reduces basically to redefining t
notation and making corrections to Eq.~16.77! of Huang’s
book, here we give only the final result for the surface de
sity of adsorbed atoms,

n5
n0

2 F1

1
sinh@~Ea1Ei !/2T2~Ea1Ei !/2T* #

Asinh2@~Ea1Ei !/2T2~Ea1Ei !/2T* #1exp~2Ei /T!
G .

~4!

Equation~4! transforms to the Langmuir formula~1! if we
neglect the lateral interactions, settingEi50. ForT.T* the
degree of filling of the adsorption centers is low and bo
formulas reduce to a simple exponential dependence,

n}expS Ea

T D , ~5!

which coincides with the temperature dependence of the
gree of coverage for unlocalized forms of adsorption. In
earlier studies of the adsorption of sodium atoms on sapp
surfaces,1 just this sort of dependence of the degree of co
erage on the surface temperature was observed, which m
202Bonch-Bruevich et al.
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it impossible to reach any definite conclusions about the
istence or nature of any adsorption centers. During ads
tion of Cs from a vapor with considerably greater elastic
at room temperature, saturation is observed with a subs
tially lower degree of coverage, and this is evidence of
presence of adsorption centers.

The theoretical curves constructed from Eq.~4! for dif-
ferent Ei are essentially the same within the range of te
peratures that was studied, provided the value ofEa for each
value of Ei is chosen so that at the temperatureT* corre-
sponding to a coverage of 0.5, their slopes corrrespon
that of the experimental curve. In order to determine
model parameters uniquely, it is necessary to turn to
results of the photodesorption experiment.

It should be noted that in this model atoms occupyin
different position in the chains have different adsorption
ergies. Single atoms have an adsorption energyEa . The at-
oms at the ends, with only one neighbor, are bound with
energy ofEa1Ei . Finally, atoms lying within the chains
have two neighbors each and, therefore, a binding energ
Ea12Ei . In terms of the theoretical model the relative fra
tions of each type of atom can be calculated exactly.
shall not give the corresponding results here, since for h
degrees of coverage most of the atoms belong to the last
and in comparisons with experiment the contributions of
oms with coordination numbers less than 2 can be neglec
Using the measured photodesorption quantum yieldf
55•1026 at the lower limitTl5293 K of the temperature
range, we find the missing relationship between the par
eters with Eq.~3!:

Ea12Ei

Tl1\v/z
513.5. ~6!

Varying the sole parameterEi when condition~6! is satisfied,
we can obtain good agreement between the theoretical c
and the experimental photodesorption data~Fig. 2!. The best
approximation is obtained forEi5300 K, from which we
find Ea56700 K, 2\v/z5250 K, andz5165.

5. NONLOCALIZED ONE-DIMENSIONAL ADSORPTION
MODEL

We examined the alternative possibility, delocalized o
dimensional adsorption, in terms of a model of classical f
motion of particles along adsorption lines with a pairwi
lateral interaction between nearest neighbors. The repul
of adatoms as they come close to one another and thei
traction as they move apart were taken into account in
interaction.

Here we present only the results of the derivation of
adsorption equation of state. The temperature dependen
the one-dimensional concentrationc of adatoms for a con-
stant volume concentrationN of the vapor is given by

c5T
]s~m,T!

]m
, ~7!

where the dependence ofs on the argumentsm and T is
expressed by the formula
203 JETP 85 (1), July 1997
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exp@~m2Ea!/T#E
0

`

exp@2sx2U~x!/T#dx5l, ~8!

in which U(x) is the lateral interaction potential,l is the de
Broglie wavelength of an atom with the thermal momentu
andm5T ln(Nl3) is the atomic chemical potential.

These results yield the well-known Hill-de Boer equ
tion of state8 in the case of low coating densities and late
attractive potentials that are small compared to the ther
energy.

We have analyzed the results of this model numerica
over a wide range of parameters for a lateral potential in
form of a solid core with a rectangular well. A comparison
calculations based on this model with the experimental d
showed that agreement between them is not satisfactory
realistic values of the model parameters. It turned out tha
the model saturation of the adsorption is not fast enough
function of surface temperature. This happens because w
the lateral adatom attraction energies are not too large, t
thermal motion inhibits adsorption saturation~because of the
lateral repulsion!. Better agreement is attained when the m
tion of the adatoms along the adsorption line is retarded
the limit of complete freezing out of this motion, we retu
to the localized one-dimensional adsorption model discus
above.

6. CONCLUSION

The different approaches to describing adsorption
nonuniform surfaces and accounting for the interaction
tween adsorbed particles are being actively discussed in
modern literature on surfaces.7 In this paper we have at
tempted to interpret the results of an experimental study
the adsorption of cesium atoms on sapphire in which effe
associated with the energy inhomogeneity of the sapp
surface with respect to the adsorption of cesium atoms
well as effects associated with the interaction of adsor
atoms among themselves, have been observed.

A theoretical description has been provided in terms o
one dimensional lattice gas model. This model is especi
attractive in that its thermodynamic characteristics can
calculated exactly using the methods employed in the the
of the Ising model. We note here that, although it cannot
solved exactly, the two dimensional model can be analy
qualitatively and yields results that differ strongly from th
experimental data. In fact, in two dimensional systems th
is always a phase transition which manifests itself as a sh
jump in the coating density over a very narrow temperat
range. In one dimensional systems, on the other hand, t
is no phase transition,9 in agreement with the smooth rise i
the coating density observed experimentally as the sur
temperature is lowered. From the standpoint of the gen
concepts of surface structure, there is no doubt of the e
tence of steps on real crystalline surfaces. Steps have
observed directly on ana-Al2O3 surface using a scannin
tunnelling microscope.3 Furthermore, according to quantum
mechanical calculations the adsorption energy at the edg
a step is higher than on the terraces.4 The decoration of steps
with metallic clusters, which is widely used in electron m
croscopy, also is related to the preferential deposition of
203Bonch-Bruevich et al.
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oms at the edges of steps. These facts suggest that step
the most likely candidates for the linear structural defe
which we have observed in our photodesorption and ther
desorption experiments. It should be emphasized that, a
have shown here, data on the temperature dependence o
degree of coating are not, in themselves, sufficient fo
unique determination of the adsorption energy when lat
interactions are taken into account. Only the additional p
todesorption data made it possible to establish that neigh
ing atoms attract one another and to find that their interac
energyEi5300 K or 0.026 eV. The adsorption energyEa for
an isolated atom is 0.58 eV and the binding energy of
atom in the middle of a chain,Ea12Ei , equals 0.63 eV. If
lateral interactions were neglected, then the Langmuir
mula~1! would give an estimateEa50.95 eV for the adsorp-
tion energy that is far too high and exceeds the binding
ergy of the atoms in metallic cesium. The lattice gas mo
assumes that adsorption centers, near which the adso
atoms spend most of their time, are positioned more or
regularly along the steps. A transition from one adsorpt
center to another involves overcoming an energy bar
whose height is, in any case, greater than the mean the
energy of the atoms.

The attraction between neighboring atoms in a chain
duces the magnitude of the barrier, but, according to
above estimates ofEi does not destroy it. The sign and ma
nitude of the lateral interaction between the atoms indica
that it is of van der Waals type. The large number of degr
of freedom of the substrate that are involved in the photo
sorption process is related to the many-particle nature of
adsorption bond of the alkali metals on sapphire surfaces
fact, the orbital radius of the weakly bound valence elect
in the alkali metals is much greater than the distance betw
ions in the compact crystalline lattice of sapphire. In a stu
of the photodesorption of sodium ions from sapph
surfaces1 we foundz5120. The increase inz to 65 in the
case of cesium can be related naturally to the fact that
204 JETP 85 (1), July 1997
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radius of the outer electron shell is larger in cesium than
sodium. Evidently, the lower adsorption energy of cesiu
atoms~compared to sodium! on a sapphire surface is als
related to this circumstance. Of course, cesium atoms
also adsorbed on terraces as well as on the steps, bu
energy of adsorption on terraces is so much lower than
the steps that the terraces do not contribute signficantly to
overall density of adsorbed atoms. At the same time, pho
desorption should be accompanied by efficient ejection o
the terraces of atoms adsorbed on the steps. The appea
of excess adsorbed atoms on the terraces, compared t
equilibrium amount, with an effective temperature high
than the surface temperature must cause a signficant ch
in the kinetics of all surface processes. We believe that th
questions merit special study.
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Topological characteristics of electronic spectra of single crystals
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The paper considers the topological characteristics of dispersion functionses(p) in energy bands
in single crystals related to classical electron trajectories in uniform magnetic fields.
Specifically, the topological properties of open trajectories inp-space on various energy levels
within one energy band and related physical effects are described. ©1997 American
Institute of Physics.@S1063-7761~97!03307-6#

This paper is a continuation of an earlier publication1 along the magnetic field vector, but in all directions perpe
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and treats physical effects related to the results recently
tained in three-dimensional topology. Initially, the proble
statement was based on the physical effects of open qu
classical electron trajectories in metal single crystals in
uniform magnetic field. Let us briefly review the situation

Under conditions such that the quasiclassical approxi
tion applies, one can introduce a one-particle electron dis
bution functionf (x,p,t) with respect to position and quas
momenta within a single energy band which satisfies
Boltzmann equation:

f t1vgr
i ~p!

] f

]xi 1Fi~x,p,t !
] f

]pi
5I @ f ~x,p,t !#, ~1!

whereI @ f # is the collision integral.
The group velocityvgr(p) is the gradient of the disper

sion functiones(p) in the given energy band. This functio
is triply periodic inp with periods equal to the vectors of th
reciprocal lattice. We are interested in the case

F~x,p,t !5
e

c
vgr~p!3B1F̃~x,t ! ~2!

for strong magnetic fieldB ~the criterion isvB@t21, where
t is the time of the electron free path!. In this case, the
motion of electrons in quasimomentum space is determi
to lowest order inB by the system of equations

dp

dt
5

e

c
@¹es~p!3B#. ~3!

The integral trajectories derived from Eq.~3! are the
intersection of planes perpendicular to the magnetic fieldB
with surfaces of equal energies,e(p)5const. An important
role is played by open trajectories, which lie in the pla
perpendicular to the magnetic field in a strip of finite wid
and pass through it. The specific role of such trajectories
analyzed in detail long ago.2–4 In studies of metal conductiv
ity in strong uniform magnetic fields determined by prop
ties of time-independent solutions of Eq.~1! when F̃ is a
weak uniform electric field, striking manifestations of su
trajectories were considered, and a contribution of such
jectories to the electrical conductivity tensor which is nonv
nishing asB→` and leads to a finite conductivity not onl
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dicular to the average direction of such trajectories~which
we denote byh! in an arbitrarily strong magnetic field. In
this case, levels near the Fermi energy are most importan
the properties of the conductivity tensor are controlled by
topology of trajectories on the Fermi surface. This prope
was utilized in experimental studies of Fermi surfaces
metals reported in Refs. 5–8 and reviewed in detail in
monograph by Lifshitset al.9

Novikov10–13 formulated the topological problem con
cerning classification of all possible open trajectories, wh
can be obtained by crossing between surfaces of cons
energy of triply periodic arbitrary function and a plane
R3. In particular, he conjectured that any open trajecto
should lie in a rectilinear strip of finite width, passin
through it. This issue has been studied extensively.14–20

Zorich14 and Dynnikov15–19 obtained results which led to
detailed description of the general case discussed below

Suppose there is an arbitrary triply periodic functione~p!
with periods equal to vectors of the reciprocal lattice, who
values range betweenemin andemax. Then,16,18 in the case of
a general magnetic field orientation~i.e., when the plane
P~B! perpendicular to the magnetic field does not cont
vectors of the reciprocal lattice!, open trajectories exist eithe
over a continuous energy intervale1<e(p)<e2 , where
e1.emin and e2,emax, or on a single energy levele0 ~in
particular, it is impossible that no energy level has open
jectories!. In the former case, all open trajectories are in re
tilinear strips of finite width in planes perpendicular toB and
pass through these strips. The orientation vectorh of these
strips is unique for all energy levels and open trajectories
is defined by the intersection between the planeP~B! and a
certain~a priori unknown! integer planeG ~i.e., one gener-
ated by two vectors of the reciprocal lattice!. Moreover, there
is a stability zone around the field directionB, which is a
region of finite measure with a piecewise smooth bound
on the unit sphereS 2 such that for all general orientations o
B in this region a similar situation obtains, and the orien
tion of the planeG is the same, although the directionh,
interval boundariese1 ande2 , and the measure of open tra
jectories on each level are, generally speaking, different.
the boundaryV of the stability zone,e1 ande2 are equal but

205$10.00 © 1997 American Institute of Physics
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the open trajectories are still in strips of finite width and th
direction is defined, as in other cases, by the intersec
between the planeP~B! and the integer planeG.

In the second case, however, when open trajectories
ist only on a single energy level, they may, generally spe
ing, be not in a strip of a finite width~the magnetic field
direction does not belong in this case to a boundary of
stability zone!; moreover, for magnetic field directions wit
irrationality 3 @i.e., P~B! does not contain any vector of th
reciprocal lattice#, open trajectories do not attain a
asymptotic direction, and the mean projection of the gro
velocity vgr(p) on P~B! on each of the associated closin
components of such trajectories is zero.

The unit sphereS 2 of magnetic field directions can b
either a single stability zone or contain an infinite number
such zones, and in the latter case any two stability zo
have no more than one common boundary point. The a
age directionh of open trajectories corresponding to th
common point should belong to the two integer planesG1

and G2 corresponding to these stability zones, i.e., it is d
fined by their intersection line. Thus, the direction of t
magnetic fieldB corresponding to the common point of tw
stability zonesV1 and V2 is such thatP~B! contains the
integer vectorG1ùG2 . The resulting pattern is far from
trivial, namely, the unit sphereS 2 contains an infinite num-
ber of zones with piecewise smooth boundaries, and an
nite number of smaller zones contact it at an infinite num
of points19 ~Fig. 1!.

The union of all the stability zones densely fills th
sphereS 2, but it has been hitherto unknown whether th
total measure equals the measure ofS 2. The complement of
the union of all zones on the sphere is an everywhere de
set, whose measure has not been determined yet. To ge
orientations ofB from this set, the second of the situatio
described above applies.

This pattern provides a comprehensive description of
behavior of open trajectories for field directions of irration
ity 3. Now let us discuss additional effects in the cases w
the magnetic field alignment is such thatP~B! contains vec-
tors of the reciprocal lattice. In this case, two different si
ations are possible, namely,

~a! P~B! is generated by two vectors of the reciproc
lattice ~irrationality 1!;

~b! P~B! contains one vector~with an arbitrary integer
factor! of the reciprocal lattice~the case of irrationality 2!.

FIG. 1. Boundary of a stability zone with adjacent smaller zones.
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of whether the direction ofB belongs to any stability zone o
not!. Thus, it is always in a strip of a finite width with a
integer directionh and passes through the strip. If this dire
tion is within any stability zone, the previously discuss
trajectories corresponding to a general field alignment c
tinue to exist, however, additional open trajectories direc
along integer vectors inP~B! may emerge. The remarkabl
property of such trajectories is that each trajectory is sta
against variations ofB perpendicular to the integer vectorha

@such thatP(B1dB) containsha# and vanishes for othe
variations inB ~whereas the contribution of trajectories
general orientation persists for arbitrary variations inB!.

It also follows from the topological analysis that the d
rectionsha corresponding to the ‘‘complementary’’ trajecto
ries also belong to the appropriate integer planeG. Hence, if
P~B! does not coincide withG, these directions coincide
with general directions, being intersection lines betweenG
and P~B!. Like trajectories of a general orientation, th
complementary trajectories occupy a finite phase volum
and their contribution to transport effects can be measu
separately in experiments owing to their properties un
variations inB, as discussed above. IfP~B! coincides withG
~correctly defined for a given stability zone!, which is an
exceptional case, the directionsha can be defined by any
integer vectors inP~B!. If there is more than one, an exce
tional situation is realized, namely, the conductivity along
three axes remains finite asB→` for this specific field
alignment~this property is lost for any variation in the fiel
alignment!. Note also that such a situation can be realized
the case of magnetic fields aligned with a rational direct
outside all stability zones.3!

Zorich14 ~see also Ref. 15! proved that for an energy
level of general orientation, for any rational direction ofB,
there is a neighborhood such that for all directions ofB of
this neighborhood all open trajectories on this level~if any!
are in a strip of a finite width and pass through it.

In case~b!, if the direction ofB belongs to one stability
zone, periodic open orbits can also occur. They are ab
lutely identical to those described above, and are direc
along an integer vector belonging toP~B! and aligned with
the direction of trajectories of the general orientation. Th
have the same properties and produce no new effects in c
parison to case~a!, except thatP~B! may be outside the
integer planeG. Generally speaking, open trajectories in ca
~b! ~if B does not belong to any stability zone! may not
belong to a rectilinear strip of a finite width.20 In this case,
they also belong to a single energy level and correspond
finite phase volume. Note, however, that in case~b! such
trajectories, nonetheless, always have an asympt
direction18 defined as

lim
T→`

1

T

p~T!2p~0!

up~T!2p~0!u
,

wherep(t) is the trajectory radius-vector in thep-space.
Now let us discuss in detail the topological situation

the case whenB belongs to a stability zone. The functio
e~p! can be defined on a three-dimensional torusB5T 3 ~in
the first Brillouin zone! obtained by factorizing the Euclid
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Integral trajectories of the flux generated in the quasimom
tum space by the uniform magnetic fieldB5(B1 ,B2 ,B3) are
defined on each energy level by level surfaces of the for

v5B1dpx1B2dpy1B3dpz,

limited on this level from the three-dimensional torusT 3.
For fieldsB with irrational directions~irrationality 3!, closed
and open trajectories inT 3 correspond to closed and ope
trajectories inR3, but if P~B! contains vectors of the recip
rocal lattice,R3 may contain periodic open trajectories co
responding to closed trajectories inT 3. Given a fixed align-
ment of the magnetic field, let us remove from each ene
level in B the parts which consist of nonsingular trajector
closed inE . The boundary of the resulting manifold consis
of singular orbits closed inE , which can be covered inB
with disks in the planeP~B!. There is a nontrivial topologi-
cal theorem16,17 which asserts that, for those directions ofB
which are in a stability zone or on its boundary, the result
manifold is a union of nonintersecting tori inB. Two-
dimensional tori on different energy levels also do not int
sect.

Two types of two-dimensional tori can emerge. The si
plest one is a ‘‘needle’’ or anN-type torus defining a region
in B and topologically homologous to zero inB. The em-
bedding of such a torus inB looks like a cylinder or tube
and can be continuously deformed to a closed curve inB. In
the extended zone inE , the covering of such a torus is a
infinite periodically deformed~‘‘rippled’’ ! cylinder corre-
sponding to a certain vectorha of the reciprocal lattice. Lon-
gitudinal cross sections of such a cylinder made by the pl
P~B! yield trajectories open inE . It is obvious that tori of
this type can occur only ifP~B! contains vectors of the re
ciprocal lattice and disappear after a variation inB violating
this condition.

Another option is a ‘‘membrane’’ or anM -type torus,
which is not homologous to zero inB, i.e., it does not bound
any region inB. In the extended Brillouin zone, its coverin
is a periodically deformed integer plane~‘‘rippled’’ plane!,
whose intersection with the planeP~B! defines open trajec
tories of a general direction discussed above. All such pla
corresponding to all tori ofM -type are parallel inE since
they do not intersect with each other, and their common
mology class is the integer planeG(B0) described above
The closure of an open trajectory lying on one of theM -type
tori in B covers this torus, except its initial holes, with win
ing numbera~B!. Thus, such a trajectory can be treated
quasiperiodic, so any open trajectory for a direction ofB in a
stability zone is either periodic or quasiperiodic. The num
of M -type tori on a given energy level is even, so their to
homology class equals zero, and~for internal points of the
stability zone! they are locally stable against variations in t
direction ofB.

The topological scheme described above permits an e
investigation of general properties of solutions to Eq.~1! in
the limit of strong uniform magnetic fieldB with a direction
within a stability zone. Specifically, in the limit of high mag
netic field, when the conditionvB@t21 is satisfied, the evo-
lution of a one-particle distribution function is determined
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scribed above~note that the flux generated by the magne
field in the quasimomentum space conserves the phase
ume elementd3p!. Moreover, in measuring parameters ave
aged over a certain time intervalT ~this averaging will be
denoted bŷ ...&T!, we will obtain values calculated with th
distribution function averaged over time on each traject
~in the case when a trajectory forms an irrational winding
a torus with holes, this implies constancy on the torus!. The
projection of the time averagêvgr& of the group velocity
vgr(p) on theP~B! plane, as directly follows from Eq.~3!, is
zero on closed trajectories and nonzero on open trajecto
lying in rectilinear strips of finite widths and passing acro
them. In the second case^vgr& is perpendicular to the trajec
tory direction ~although, generally speaking,^vgr& is not in
the plane perpendicular toB!. The P~B! projection of the
average velocity on trajectories not covered by strips of fin
widths but with an asymptotic directionh ~which is possible
for directions ofB with irrationality 2 outside all stability
zones! is also nonzero and perpendicular toh. The P~B!
projection of a velocity averaged over any connected clos
of trajectories without an asymptotic direction~when the di-
rection of B has irrationality 3 and is outside all stabilit
zones! is always zero, as follows from topological conside
ations.

Thus, it becomes obvious that any of the tori with hol
described above~whenB is in a stability zone! yields in the
case of a distribution function constant over its trajectorie
nonvanishing contribution to the component of the elect
current j (x,p,t) perpendicular to B. The condition
j (x,p,t)'h is always satisfied, which allows one to dete
mine experimentally the asymptotic trajectory direction a
vector productj3B. Note that for distribution functions con
stant on each energy level, for example, in the case of t
mal equilibrium and in the absence of external forceF̃(x,t)
@Eq. ~2!#, the total contribution toj (x,p,t) of all such tori in
any energy interval (e,e1de) is zero because all energ
levels inT 3 are homologous to zero@it is easy to prove that
the average of the group velocity componentsvgr(p)5¹e(p)
over the regione<e(p)<e1de ~de is small! reduces to
values of basic 2-forms in two-dimensional cohomologies
the torusT 3 (dpy∧dpz ,dpz∧dpx ,dpx∧dpy) on the surface
e(p)5e with unknown factors#. For example, iff 0(p) is a
Fermi distribution of electrons in the absence of the exter
force F̃(x,t) and we are seeking stationary distributions in
weak uniform electric fieldE,2,4 the system can be describe
in terms of a linear response to an external perturbat
hence the conductivity tensor. In this case, when the elec
field is switched on, electrons of energy levels on half of
tori acquire energy and move to higher levels (^vgr&E.0),
and their places are occupied by particles from filled low
levels, whereas particles of the second half of all the tori lo
energy (̂ vgr&E,0), and their states are occupied by pa
ticles from higher levels. As a result, a new distribution w
a higher concentration of particles on the first half of the t
and a lower concentration on the second half is formed
that the described process could be compensated for by
collision integral. The equilibrium current densityj charac-
terizes the response to an external field, and in the li
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B→`, in which the distribution function is constant on th
trajectories, the conditionj'h always holds, and the induce
current is zero ifEih (^vgr&E[0).

The investigation of metal conductivity based on the
pological scheme described in this paper was discusse
detail in Ref. 1. Here we only wish to emphasize that,
studies of metal conductivity, only energy levels near
Fermi surface are important, so only effects of trajectories
these levels can be observed in experiments. In particu
only those stability zones whose energy interv
@e1(B),e(B)# ~corresponding to open trajectories for a giv
direction ofB! contain the Fermi energyeF can be detected
in experiment. The observed stability zones~in combination
with the corresponding integer planesG! are topological
characteristics of the Fermi surface, but not of the electro
spectrum branch as a whole. Their boundaries, gene
speaking, do not coincide with the boundaries of the stab
zone for a given dispersion relation, becauseeF can be out-
side the interval@e1(B),e2(B)# near the boundary of the
stability zone, and the experimentally determined zones, g
erally speaking, do not form an everywhere dense set on
unit sphereS 2, otherwise the situation can be described
terms of the topological scheme discussed in the paper.
ure 2 shows a fraction of the unit sphere with the largest z
for the surface

cos 2px11cos 2px21cos 2px350

calculated using numerical techniques.
In order to study topological characteristics of a disp

sion function as a whole, one should create within a sin
band nonequilibrium quasimomentum distributions of el
trons of more general shapes. Such experiments can be
ducted, for example, in semiconductors, where a cer
number of electrons with a definite quasimomentum dis
bution can be supplied to an empty band, or electrons ca
withdrawn from a full band to generated holes in it. Me
surements of parameters described above, like^ j (x)&T in the
limit B→`, would allow one to determine the characterist
of the energy spectrum discussed above, namely,

FIG. 2. Largest stability zones for the surface described by the equa
cos 2px11cos 2px21cos 2px350 calculated numerically. Digits in paren
theses are indices of integer planesG.
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and respective integer planesGa ;
~2! integer directionsha defining directions of compli-

mentary trajectories lying in strips aligned withha and pass-
ing through them.

If it is possible to create distribution functions which a
nonzero in narrow energy intervals (e,e1de), wherede is
small, then, in the case of a large stability zone where
differencee2(B)2e1(B) is much greater thande, one can
also determine with an appropriate accuracy the functi
e1(B) and e2(B), which determine the energy interval i
which open trajectories exist for a given alignment of ma
netic field.

In conclusion, the authors express their gratitude to S
Novikov for formulation of the problem and constant intere
in this work.
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Relativistic wave equation for the bound states of a system of interacting particles

the
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A method for obtaining the relativistic wave equation for the bound states of a system of
interacting charged particles without consideration of spin is proposed. An expansion of the wave
function of the system in a complete basis of orthonormal wave functions of vacuum states
for each type of particle is used in this equation. It is shown that this equation contains two types
of solutions for a proton1 electron system. The first type corresponds to Bohr bound
states. Exact expressions are obtained for the energy and Bohr radius of the ground state with
consideration of the finite mass of the particles. An influence of the energy of translational
motion of the system as a whole on the structure of the atomic levels in the laboratory frame is
predicted. This effect is due to the finite value ofm/M , and leads to removal of the
degeneracy of the levels with respect to orbital angular momentuml , and partial removal of the
degeneracy with respect to its projection. The second type of solution represents states of
the system with binding energyEb5M1m2AuM22m2u and an exponential wave function
damping radius equal to the Compton wavelength of the electron. A complete description
of this state requires consideration of the electronic vacuum polarization. ©1997 American
Institute of Physics.@S1063-7761~97!00507-6#

1. INTRODUCTION We shall not be concerned with spin effects here. In
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A systematic description of the properties of relativis
quantum particles is possible only within quantum fie
theory. The relativistic effects are large when the energie
the particles are comparable to their rest energies. Part
~real or virtual! can be created at such energies; therefo
consideration of only a given original system of particles
incorrect in the general case.1,2

However, in some problems particle production can
disregarded, and familiar wave equations can be used for
particle ~the single-particle approximation! or several given
particles.1 The calculations are based on relativistic gener
zations of the Schro¨dinger equation for free particles: th
Dirac equation for particles with spin 1/2, and the Klein
Gordon equation for particles with spin 0.

These equations contain a particle momentum opera
The general approach to describing particles in an exte
electromagnetic field is to replace that operator by a ge
alized momentum, which includes the field potentialsA and
A0.1 For example, the relativistic corrections to atomic e
ergy levels, which determine their exact structure, are fo
in this manner.

We note that such an approach to problems of this t
~for example, atomic spectra! has some logical loose end
and cannot be regarded as a systematic theory.

This paper proposes a method for obtaining the rela
istic wave equation for a system of particles for problems
which the creation of real or virtual particles can be n
glected. The method is based on the results of the quan
theory of scattering and the ideas which were used to
scribe deep impurity levels in doped insulators.3 In this case
only the free wave functions of all the types of particles
the system, the interaction potentials between the partic
and their statistics are important.
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final analysis, for the hydrogen atom they lead to relativis
corrections of ordera4, wherea is the fine structure con
stant. The purpose of our work is to obtain a relativis
equation for the bound states of a system of interacting p
ticles, in which a complete basis of orthonormal vacuu
wave functions is taken into account for each type of parti
in the system. In the case of a pairwise interaction this eq
tion should have definite permutational symmetry with
spect to the parameters of any particle.

Below we derive and investigate an equation for t
bound states of two interacting charged particles~a proton
and an electron!. We disregard the electronic vacuum pola
ization, which, as we know, distorts the Coulomb field in
region of the order of the Compton wavelength of the el
tron. The interaction potentialV(r ) between the two particles
can be represented in the form

V~r !5H 2
e2

r
, r .rp

V1~r ! r<rp

. ~1!

Hererp is a quantity of the order of the radius of the proto
.0.820.9 fm.4 The form of V1(r ) is unknown, but it is
physically reasonable that the wave function of the elect
should be influenced by the corpuscular properties of
proton in the region of spacer<rp . If the proton is treated
as a rigid solid particle, the electron wave function for a
bound state should vanish atr<rp , since this region is oc-
cupied by the proton with its finite dimensions.

Of course, the radius of this region is very small in com
parison with the characteristic length scales of the proble
viz., the Bohr radius and the Compton wavelength of
electron. We shall not take into account the perturbation
the wave functions due to the potentialV1 in the region

27$10.00 © 1997 American Institute of Physics



r<rp . In the differential equations for the systems discussed
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Let c(r1 ,r2 , . . . ,rn) be the wave function of a bound
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below, we seek a solution outside this small region, and t
we shall go to the limitr→0 in that equation after allowing
all the operators to act on the wave function. Then, the ac
of the operator«(p̂) on the wave function is completel
determined and unique.

We show that this equation contains two types of so
tions. The first corresponds to Bohr bound states. It pred
that the energy of translational motion of the system a
whole on the structure of the atomic levels in the laborat
frame. This effect comes from the finite value of the ra
m/M between the masses of the particles, and leads to
moval of the degeneracy of the levels with respect to
orbital angular momentuml and partial removal of the de
generacy with respect to its projection. We calculate
shifts of thens and sp atomic levels at low values of th
energy of translational motion of the center of inertia of t
systemE(2)(g)!mc2m/2M .

The fact that a bound state~other than a Bohr state!
appears in the proposed approach to the problem with
exponential wave function damping radius equal to
Compton wavelength of the electron and a binding ene
Eb5M1m2AuM22m2u is an unexpected result. The equ
tion of state has a significantly non-Hamiltonian form,
that it does not make sense to separate the contributions
the potential and kinetic energies to the binding energy o
particle. For this state of the system the vacuum polariza
will significantly distort the interaction energy, and the r
sults must be regarded only as a prediction of the possib
of such a state. A complete description should include
state of the perturbed electronic vacuum.

The system of units in whichc5\51 is used below.

2. METHOD FOR DERIVING THE RELATIVISTIC EQUATION
FOR BOUND STATES OF A SYSTEM OF INTERACTING
PARTICLES

To obtain the relativistic wave equation for the bou
states of a system of particles we use the expansion of
complete wave function of the discrete spectrum in a co
plete basis of orthonormal wave functions of the free sta
for each type of particle in the system. The basis for a p
ticle of massm consists of free states with particle energ
«56«(p), where «(p)5(m21p2)1/2. The form of wave
functions of free particles is dictated by the uniformity
space and time, i.e., symmetry under any parallel displa
ment of the four-coordinate system. Then the free state
particle with definite four-momentumpn5(«,p) should be
represented by the plane wave exp(2ipx). When the conti-
nuity equation (]m j m50, wherej m is the current four-vector!
is used, the normalized wave functions for the free-part
states have the form

cp,s
6 5A m

«~p!
exp~ i ~p•r6«~p!t !!up,s , ~2!

whereup,s is an orthonormal spin function.
Henceforth we neglect the spin interaction. Then

spin part in Eq.~2! can be omitted.
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state of a system of particles with rest massesmi and radius
vectorsr i . Then, according to the quantum theory of sc
tering, this wave function should satisfy the Lippman
Schwinger equation5,6

c~r1 ,r2 , . . . ,rn ;E!

5E . . . E )
i 51

n

dr i8G
0~r12r18 , . . . ,rn2rn8 ;E!

3(
i . j

V~r i82r j8!c~r18 ,r28 , . . . ,rn8 ;E!, ~3!

whereV(r i2r j ) is the interaction between particlesi and j ,
E is the total energy of the system, andG0 is the causal
Green’s function of the noninteracting system. To determ
it we introduce the field operator of a system of nonintera
ing particles:

Cs5)
i 51

n

c~ i !, ~4!

where

c~ i !5(
p

~ap
~1 !,icp

1~r i ,t !1ap
~2 !,icp

2~r i ,t !!, ~5!

whereap
(2),i andap

(1),i are the annihilation operators of th
i th particle in the bands of free states with energ
«52«(p) and «51«(p), respectively. The lower band i
assumed to be filled. The commutation rules for these op
tors are assumed to be the same as for fermions.

The Green’s function is defined as

G0~$r i%,t;$r i8%,t8!5^T~Cs~$r i%,t !Cs
1~$r i8%,t8!!&, ~6!

where ^ . . . & denotes averaging over the vacuum grou
state. Expression~6! is ann-particle two-time Green’s func-
tion, which is used in the quantum theory of scattering.6

Substituting~2!, ~4!, and~5! into ~6! and calculating the
Fourier component with respect to time, we obtain

G0~r12r18 , . . . ,rn2rn8 ;E!5 (
p1 , . . . ,pn

)
i 51

n
mi

« i~pi !

3S (
l 51, . . . ,n
$ j l51,2%

~E1~21! j 1«1~p1!

1~21! j 2«2~p2!1 . . .

1~21! j n«n~pn!!21D
3expS i (

k51

n

pk~r k2r k8!D . ~7!

With consideration of~7!, in Eq. ~3! it is convenient to
transform to coordinates in which the radius vectorR of the
center of mass of the system can be separated out:

R5
( ir i« i~pi !

( i« i~pi !
. ~8!
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The choice of the remaining coordinatesxj
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( j 51, . . . ,n21, n>2) is dictated by convenience or th
symmetry of the problem. The wave function of the syst
can then be written in the form

c~x1 , . . . ,xn21 ;g!exp~ ig•R!,

whereg is the momentum of the system as a whole in
laboratory frame. It specifies the relationship between thepk

in Eq. ~7!: g5( k51
n pk . As a result, (n21)-fold integration

over the momentap and coordinatesx of the system remains
in the Lippman–Schwinger equation for a system withn
> 2.

Equation~3! can also be obtained directly from the int
gral equation of quantum scattering theory, which we wr
in the form

c~$r i%;E!5
1

E2H01 i e (
i . j

V~r i82r j8!c~$r i8%;E!,

where H0 is the unperturbed Hamiltonian of the syste
which, as was assumed in Ref. 6, is equal to the sum of
unperturbed Hamiltonians for each particle in the system.
in Eq. ~3!, the particular solution of the homogeneous eq
tion is omitted, sincec refers to bound states of th
system.5,6

Using the expansion ofc($r i%;E) in the complete basis
of functions of the systemFP consisting of the wave func
tions ~2! for each particle

c5(
P

FP~FP ,c!,

where P5$pi%, and going to the limite→10, we obtain
Eqs.~3! and~7!. Generally speaking, the form of the unpe
turbed HamiltonianH0 for the i th particle is not important to
us, just the fact thatH0cp,s

6 56«(p)cp,s
6 .

3. ONE PARTICLE IN A COULOMB FIELD

From ~7! for the Green’s function we obtain

G0~r2r 8;E!5(
p

G0~p;E!exp~ ip•~r2r 8!!,

where

G0~p;E!5
m

«~p!S 1

E2«~p!
1

1

E1«~p! D
5

2mE

«~p! S 1

E22«2~p!
D . ~9!

Taking Eq.~9! into account, we can easily show that th
integral equation for the bound states

c~r ;E!5E dr1G0~r2r 8;E!V~r1!c~r1 ;E!

corresponds to the differential equation

«~ p̂!~E22«2~ p̂!!c~r ;E!52mEV~r !c~r ;E!, ~10!

wherep̂52 i¹ r .
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guishing Greens’ function~9! and Eq.~10! from the more
familiar expressions. If we were to change the sign betw
the two pole functions in expression~9! ~strictly speaking, it
is determined by the commutation relations of the parti
creation and annihilation operators!, we would obtain the
exact form of the Green’s function for the Klein–Gordo
equation:

G0~p;E!5
m

«~p!S 1

E2«~p!
2

1

E1«~p! D5
2m

E22«2~p!
.

The corresponding integral equation for the bound sta
would then be the Klein–Gordon equation in an exter
scalar potential:

~2D r12mV~r !!c~r ;E!5~E22m2!c~r ;E!.

When we are dealing with shallow bound stat
AuE22m2u!m, such a choice of the sign, of course, do
not lead to fundamentally incorrect results: Bohr states w
small relativistic corrections are obtained. However, if the
are deep bound states with binding energies of the orde
m, such a choice of sign would result in a complete loss
the information about them.

In principle, the same situation obtains in the Dir
equation. In momentum space the Green’s function for
Dirac equation has the form1

G0~p;E!5
gp1m

2«~p! S 1

E2«~p!1 i0
2

1

E1«~p!2 i0D
5

gp1m

E22«2~p!1 i0
.

Hereg denotes the Dirac matrices in the standard repres
tation, and the four-vectorp5(E,p).

It is noteworthy that in contrast to~9!, here the ampli-
tudes of the simple poles for the two allowed regions of
free-particle spectraE56«(p) have different signs. In this
sense the structure of the Green’s function for the Di
equation is similar to a boson propagator and, in particu
to the Green’s function for the Klein–Gordon equation. Th
analogy can also be traced in the expression for the Gre
function of phonons in a solid, which has the form

D0~k;v!5
v0~k!

2 S 1

v2v0~k!1 i0
2

1

v1v0~k!2 i0D .

Here v0(k) is the dispersion law for phonons. Clearly, th
structure of the Green’s function for the Dirac and Klein
Gordon equations is similar to that for phonons, with t
exception of the amplitudes of the simple poles. However
the nonrelativistic limit, in whichp→0 and «(p)→m, we
have

gp1m52mS 1 0

0 0D ,

and the fermion Green’s function for the Dirac equati
transforms into the boson Green’s function for the Klein
Gordon equation, i.e., here we are dealing only with Bo
states.
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Note that the expression~9! that we have derived here
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corresponds completely to the familiar Lehmann spec
representation for the fermion Green’s function7 with real
and positive-definite pole amplitudes. Of course, Bohr sta
are also realized in Eq.~10!, which, as can easily be shown
reduces to the Schro¨dinger equation whenr Þ 0, if the
binding energy is small compared to the particle mass.
low we obtain a solution of this equation for wave functio
with s symmetry.

We seek a solution of Eq.~10! in the form
c5exp(2r/j). Introducing the notationl51/m for the
Compton wavelength of a particle, we obtain

~E22l221j22!S ~12l2j22!1/21
l2

r j
~12l2j22!21/2D

2
2

r j
~12l2j22!1/252ES 2

e2

r D . ~11!

Combining terms containing the same powersr j ( j 50,1),
from ~11! we find two algebraic equations in the unknow
E andj:

~E22l221j22!~12l2j22!1/250, ~12!

~E22l221j22!~12l2j22!21/222l22~12l2j22!1/2

12e2Ejl2250. ~13!

Solution of ~12! yields two values for the exponentia
wave function damping radius:

j15~l222E1
2!21/2, j25l.

Substitutingj1 into ~13!, we obtain the energy of the
Bohr 1s1/2 ground state for a fermion,

E15mA12a2,

wherea is the fine structure constant. Herej1 is the Bohr
radius.

Solving ~13! for E, we easily obtain

lim
j→l

E2~j!

~12l2j22!1/2
50,

and whenj25l, the binding energy of the particle is

E250.

Thus, this deep level is located in the middle of the ene
gap of width 2m in the spectrum of free states of the partic

We note here that Eq.~10! has a significantly non-
Hamiltonian form. We have shown that this equation has t
solutions with wave functions ofs symmetry. One of the
solutions,E1, corresponds to the Bohr 1s1/2 ground state for
the electron. For such solutions and low binding energy co
pared to the particle mass, Eq.~10! can be reduced to Hamil
tonian form~the Schro¨dinger equation!. Then we can sepa
rate the contributions of the potential and kinetic energies
the binding energy of the particle. In the case ofE2, such a
separation makes no sense.

In a certain sense the analogous problem of the bo
states of Fermi particles in many-body systems also exist
the nonrelativistic energy range. In this context we can m
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solution was the subject of a paper by Keldysh,as well as
the description of hydrogenic atoms in a low-temperat
plasma, which was presented, for example, in papers by K
mannet al. ~see Ref. 8 and the literature cited therein!. In
contrast to the present work, in those studies the corresp
ing medium was a ‘‘vacuum.’’ The wave equation obtain
in Ref. 3 for a deep impurity level in an insulator likewis
does not have a Hamiltonian form. Only by making a nu
ber of simplifications can it be reduced to a form similar
the relativistic Dirac equation, which contains several ad
tional terms, such as an ‘‘attracting’’ center, regardless of
sign of the carrier.

4. FINITE-MASS NUCLEUS

4.1. Equation for bound states

According to Eq.~7!, we can represent the Green’s fun
tion of a system of two particles in the form

G0~r12r18 ,r22r28 ;E!5(
p,q

mM

«~p!S~q! S 1

E2S~q!2«~p!

1
1

E2S~q!1«~p!

1
1

E1S~q!2«~p!

1
1

E1S~q!1«~p! D
3exp~ i ~p•~r12r18!1q•~r22r28!!!,

~14!

whereM is the mass of the nucleus andS(q)5(M21q2)1/2.
Here it is convenient to separate out the coordinates

the center of mass of the system:

r5r12r2 , R5
r1«~p!1r2S~q!

«~p!1S~q!
.

We seek the wave function of the system in the form

c~r ,R;g!5x~r ;g!exp~ ig•R!,

Here g is the momentum of the system as a whole in t
laboratory frame.

Then for the wave functionx(r ;g) we obtain

x~r ;g!5E dr1(
q

Mm

S~q!«~q2g!

3S ( 1

E6S~q!6«~q2g! D
3expS i S q2g

S~q!

S~q!1«~q2g! D •~r2r1! D
3V~r1!x~r1 ;g!. ~15!

To obtain the differential equation for the bound states of
system corresponding to integral equation~15!, we must find
the solutionq(f,g) of the equation
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f5q2g
S~q!

. ~16!
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S~q!1«~q2g!

If a solution of ~16! in the form q(f,g) is found, the
differential equation for the bound states of the system
easily be obtained from~15!:

S dq~ f̂,g!

df D 21

S~q!«~q2g!

3S ( 1

E6S~q!6«~q2g! D
21

x~r ;g!

5MmV~r !x~r ;g!. ~17!

Hereq5q( f̂,g) and f̂52 i¹ r .

4.2. Two types of states in the center-of-mass system

The radius vectorR describes the motion of the syste
as a whole. Using this degree of freedom, we can obtain
effective mass of a system of two particles in any bou
state. This will be done below, but we shall first ascertain
influence of the mass of the nucleus on the spectrum
bound states. For this purpose we consider a system of
bound particles at rest. Theng50 and q5f. Taking into
account Eqs.~16! and ~17!, we obtain

«~ f̂!S~ f̂!~E422E2~«2~ f̂!1S2~ f̂!!

1~«2~ f̂!2S2~ f̂!!2!x~r ;E!

54mME~E22«2~ f̂!2S2~ f̂!!V~r !x~r ;E!. ~18!

We find the solutions of~18! corresponding to a wave func
tion with s symmetry:c5exp(2r/j). Substituting this func-
tion into ~18! and combining terms containing the same po
ers r j ( j 50,1), after some simple but cumbersom
calculations, we find two algebraic equations forE andj:

Z5E422E2~lM
221lm

2222j22!1~lM
222lm

22!250, ~19!

Zj21~12lm
2 j22!1/2~12lM

2 j22!1/2

3S lm
2

12lm
2 j22

1
lM

2

12lM
2 j22D 223E2j21~12lm

2 j22!1/2

3~12lM
2 j22!1/2

524e2E~E22lM
222lm

2212j22!. ~20!

Herelm51/m andlM51/M are the Compton wavelength
of the particles.

Equations~19! and ~20! have two solutions. The firs
corresponds to thes Bohr ground state, which is characte
ized by the radius

j15aB
Ag~g1g2112A12a2! ~21!

and energy

E15MA12
ga2

~g1g2112A12a2
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1mA12
~g1g2112A12a2

, ~22!

whereaB is the Bohr radius, andg5m/M .
For the second solution of~19! and ~20! we obtain

j25max~lm ,lM ! ~23!

and

E25AuM22m2u. ~24!

The binding energy of the system in the deep bound s
can be determined from the last equation:

Eb5M1m2AuM22m2u. ~25!

WhenM@m, from ~25! we have

Eb5mS 11
g

2D , ~26!

which in the limit M→` is consistent with the result in
Sec. 3.

4.3. Influence of the momentum of the system as a whole
on the Bohr energy levels in the nonrelativistic case

Let the system as a whole move with a certain veloc
!c. Let E(2)(g)5g2/2(M1m) be the energy of transla
tional motion of the system.

When g50, the integral overq for the Bohr states is
taken for characteristic momentum values.am. Therefore,
in ~15! S(q̂) and«(q̂) can be expanded into series inq. The
same thing can be done forg Þ 0, if

E~2!~g!!m
m

2M
.140 eV.

Thus, for the electronic subsystem the nonrelativistic c
corresponds to rather low energies of translational motion
the system as a whole.

Here we confine our attention to energy contributions
to a4. Therefore, the solution of~16! can be written in the
form

q5f1
M

M1m
g1

\2g

m~M1m!c2S 2
M2m

M
f 21

m

M1m
g•fD .

~27!

Using this solution, we can reduce Eq.~17! to an equa-
tion of the Schro¨dinger type. For this purpose, the ‘‘reso
nance’’ term (Eg2(S(q)2«(q2g))21 in the sum in the
parentheses in~17! is expanded up to fourth-order terms inf
and g. It is easily seen that in the three remaining terms
the sum, we must keep only the zeroth order of the exp
sion. This leads to the contribution 1/2m2, where
m25mM(M1m)/((M1m)21Mm). In the first three fac-
tors on the left-hand side of~17!, the expansion must be
restricted to second order inf andg. As a result we obtain

S E~g!2E~3!~g!2
f̂ 2

2m
2

f̂ 4

8m1
3

2Ŵ~g,f!D x~r ;g!
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5S 12
4m3

2
1

2m2
D V~r !x~r ;g!. ~28!

HereE(3)(g) is the sum of the first three terms in the expa
sion of A(M1m)21g2 with respect tog2; the symbols
m5mM/(M1m), m1

35M3m3/(M31m3), andm3
25m2M2/

(M21Mm1m2) are used, and the perturbation operator
pearing when the ‘‘resonance’’ term in Eq.~17! is expanded,
which is important for the following, is

Ŵ~g,f!5
g2

2~M1m!

D r22~ng¹ r !
2

2Mm
, ~29!

whereng5g/g.
It is clear from~28! that the solutions correspond to Bo

states with allowance for relativistic corrections.a4. As
was noted above, for these corrections the corresponding
trix elements should be calculated as limd→0*d dr . When
M→` andg50, for the Bohr ground state we obtain fro
~28! the first three terms in the expansion ofmA12a2 in a2.

The operator~29! represents the influence of the trans
tional motion of the system as a whole on the structure of
atomic levels in the laboratory frame. This is a very unus
result, and it is a consequence of the finite value of the r
m/M .

It is easy to show that for thens states, Eq.~28! leads to
the level shifts

DEns52
a2

6n2

m

M
E~2!~g!. ~30!

For the 2p states we have

DE2p51
a2

40

m

M
E~2!~g! ~31!

for the state with momentum projectionm50, and

DE2p52
3a2

40

m

M
E~2!~g! ~32!

for states with momentum projectionm561.
Thus, removal of the degeneracy with respect to the

bital angular momentuml and partial removal of the degen
eracy with respect to its projectionm in terms of umu are
predicted when the particle moves as a whole. Let us ev
ate the shift in the nonrelativistic case. WhenE(2)(g)
550 eV, for the 1s state we obtain

DE1s.231023 cm21,

which is approximately 17 times less than the Lamb shift
the 1s state.

It is noteworthy that the influence of the translation
motion of the system as a whole on the Bohr levels lead
a correction to the mass of the system, which depends o
state. Forns states, from~30! we obtain

DMns5
a2

6n2
m.

We were unable to solve~17! for the deep bound stat
E2 when g Þ 0. Since the electron in this state should
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fective mass of the system should significantly exceed
rest mass of the electron.

To conclude this section we point out the following sit
ation. In this paper we derived the equations for bound sta
~10! and~17! on the basis of the Lippman–Schwinger equ
tion in form ~3!. A similar result can be obtained if we sta
the derivation with the Dyson equation for the two-partic
Green’s function with the corresponding self-energy pa
Such a procedure for obtaining the Bethe–Salpeter equa9

for dispersive media was used in Refs. 8 and 10. In Ref.
the wave equation for the bound states of two charged n
relativistic particles in a medium with a dielectric consta
that includes frequency and spatial dispersion was obta
by a simple replacement of the vacuum photon propagato
the corresponding propagator in a dispersive medium in
Bethe–Salpeter equation~see, for example, Ref. 7!. It is easy
to show that this equation also contains the influence of
translational motion of the system as a whole on the sp
trum of bound states in the laboratory frame. This cor
sponds qualitatively to the results of the treatment presen
here for an essentially two-band model of the vacuum.

5. CONCLUSIONS

The solution corresponding to a bound state in a pro
1 electron system with an exponential wave function dam
ing radius equal to the Compton wavelength of the elect
is an unexpected result. We have taken an approach in w
the creation of real or virtual particles was neglected a
only a given initial system of particles was taken into a
count. However, for this state of the system, the vacu
polarization will significantly distort the interaction energ
and the results should be regarded only as a prediction o
possibility of such a state. Its complete description must
clude the state of the perturbed electronic vacuum.

However, we believe that consideration of the vacuu
polarization will not qualitatively alter the result. This is su
ported, in particular, by the aforementioned theory of t
bound states of charged particles in dispersive media.
though only the shielding of the Coulomb potential due
temporal and spatial dispersion was taken into acco
initially,10 a subsequent more systematic treatment of
bound states of Fermi particles in many-body system8

shows that renormalization of the self-energy part does
have an appreciable influence on the spectrum of bo
states, not only at a qualitative level, but also at a quant
tive level in some cases.

We presume that vacuum polarization should provide
the stability of atomic systems and, in particular, the hyd
gen atom H in the presence of the unoccupied deep levelE2.
Then the matrix element of the radiative transitionE1s→E2

with emission of a photon has the form

^vac* u^E2uÔ~r !uE1s&uvac0&,

whereÔ(r ) is the transition operator acting on the electron
wave function, anduvac* & anduvac0& are the vacuum state
for the E2 and E1s states of the system, respectively. Th
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transition matrix element vanishes if the vacuum states are
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nucleus of a hydrogen atom for which^vac* uvace& Þ 0,
ke

ic
orthogonal, i.e., if̂ vac* uvac &50. We attribute the stabil-
ity of atomic systems to just this situation.

Let us now discuss theE2 state, in which we also in-
clude vacuum polarization. The only existing reality th
might correspond to this situation is the neutron, which
known to be an unstable particle. In the free state it dec
according to the reaction

n→p1e1 ñ e

with a lifetime .15 min.
In the present approach, this decay can be attribute

the ionization of theE2 state by high-energy particles in th
Earth’s inner radiation belt with an energy greater than
binding energy of the system. Then decay of the sys
should be accompanied by the appearance of a scattered
ticle, a free proton, and a knocked-out free electron, and
relaxation of the excited electronic vacuum stateuvac* &.
Since it follows from our treatment that neutron decay
regulated by the flux of the original near-terrestrial hig
energy particles, the theory could be verified by the variat
of the neutron lifetime in response to variation in the ene
distribution and flux of particles with energies greater th
the binding energy of the system.

We note that if it were possible to create a perturb
vacuum stateuvace& at the space-time location of th
33 JETP 85 (1), July 1997
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the following reaction with the release of energy should ta
place, in principle:

H1uvace&→uE2&1hn1uvacs&,

whereH is a hydrogen atom,hn is a g ray with energy of
orderm, anduvacs& is the excess excitation of the electron
vacuum.
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Correlation echoes in the stochastic excitation of inhomogeneously broadened two-

on
level systems
S. A. Baruzdin

St. Petersburg State Electrical Engineering University, 197376 St. Petersburg, Russia
~Submitted 30 October 1996!
Zh. Éksp. Teor. Fiz.112, 63–77~July 1997!

The third-order cross-correlations between a free induction signal of an inhomogeneously
broadened two-level system and white Gaussian noise exciting this system are studied. The
temporal properties of the third-order cross-correlation functions are found to correspond
to the characteristics of ordinary two- and three-pulse spin and light~photon! echoes excited by
determinate radio pulses. The nonlinear properties of correlation echoes are studied as
functions of the noise pulse parameters. It is established that the correlation echo amplitude is
determined not only by the noise pulse parameters but also by the position on the time
axis of the noise counts that form the given type of echo. Finally, the behavior of the spin and
light correlation echoes in the appropriate ranges is discussed. ©1997 American Institute
of Physics.@S1063-7761~97!00607-0#
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The use of stochastic excitation in NMR spectrosco
was first proposed by Ernst1 ~see also Ref. 2! to lower the
excitation power and to ensure that the excitation cove
wide band. The method became known as the stocha
resonance method. Its use also allows various multidim
sional spectra to be obtained, while lowering the excitat
power facilitates solving the problem of the receiver’s ‘‘de
time.’’ In addition to NMR, stochastic excitation is used
EPR studies and in optics.3,4

Realizing this method requires extensive data proce
ing, however. For instance, to measure the pulse charact
tic of a linear system,h(t), related to the frequency transfe
coefficient through a Fourier transformation, the system
excited not by a delta-function pulse but by white noisex(t)
with a spectral power densityN0 and a correlation function

^x~ t1!x~ t2!&5N0d~ t12t2!.

What is determined here is the cross-correlation function
tween the output process of the system,

y~ t !5E
2`

`

x~j!h~ t2j!dj,

and the input process delayed by times:

C1~s!5^y~ t !x~ t2s!&5N0h~s!. ~1!

Thus, short coherent pulses are replaced in the exp
ment by band white noise, which allows the excitation pow
to be several orders of magnitude lower. Here, however,
stead of formingh(t) directly in real time, according to~1!
we must, first, statistically average the productsy(t)x(t2s)
and, second, measure the functionh(t) at different points,
each time changing the delay times. Simultaneous measure
ment of several points of the pulse characteristic in para
data processing is also possible.

In addition to studies of the characteristics of linear s
tems, white Gaussian noise used as excitation provide
convenient model for consistent studies of properties of n
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function ~1! one studies higher-order cross-correlation fun
tions, which can be related to the pulse characteristics of
respective order.

Theoretical studies of the correlation properties of t
responses of two-level spin systems described by Bl
equations and excited by white Gaussian noise were car
out by Ernst1, Knight, and Keiser.6 Here the excitation was
continuous, and the spin system was in a stable station
state.

Pulsed stochastic excitation is used alongside continu
excitation. In Ref. 7 the statistical properties of the free
duction signal of an inhomogeneously broadened spin s
tem excited by finite samples of white Gaussian noise w
investigated. It was found, among other things, that in t
case the free induction signal is a nonstationary Gaus
process with zero mathematical expectation, which carries
information about the system under investigation. Note t
in the optical range, optical free induction serves as the f
induction signal.8

Nevertheless, stochastic excitation can form respon
whose mathematical expectation is nonzero. For instance
experiments on excitation of stimulated light echo, the fi
and second delta-function coherent excitation pulses w
replaced by longer noise pulses.4,9 These pulses were forme
from the incoherent radiation of a pulsed laser whose be
was split into two beams time-delayed with respect to e
other. Thus, the noise counts of the first and second pu
separated by the delay time were coherent, which ensu
their coherent addition in the stimulated light echo, and t
became known as an ‘‘echo with internal coherence,’’ wh
means coherence of two noise pulses within each excita
period. By measuring the mean value of the amplitude of t
echo as a function of the delay time between excitat
pulses it is possible to extract information about the times
longitudinal (T1) and transverse (T2) relaxations of the sys-
tem. Stimulated spin echo can be excited in a similar way.
nonlinear properties were studied in Ref. 10.

In the experiment described in Ref. 3, Paff and Blumi

34$10.00 © 1997 American Institute of Physics



studied the stochastic analog of stimulated spin echo excited
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by quasicontinuous white Gaussian noisex(t). The transmit-
ter and receiver were alternately gated after isolating the
sponse by separating it in time from the excitation process
correlator was used to calculate the third-order cro
correlation function between the responsey(t) of the nonlin-
ear spin system and the excitation:

C3~s1.s2.s3!5E
2`

`

y~ t !x~ t2s1!x~ t2s2!x~ t2s3!dt,

~2!

wheres i is the delay time in the correlator.
The spin system was in a stable state, in which bothx(t)

andy(t) were interpreted as stationary processes, which
tually allows the cross-correlation functions~2! to be calcu-
lated from the time average of the product in the integran1!

For this reasonC3(s1 ,s2 ,s3) is independent of the timet.
The functionC3(s1 ,s2 ,s3) was successively measure

by the correlator point by point. Here the delay times we
chosen by the condition that

s12s25t15const, s22s35t25const,

and the delay times35t3 was varied. The maximum o
C3(s1 ,s2 ,s3) was found to be ats35s12s2 .

This result can be compared with the time at which
stimulated echo excited by three ordinary delta-funct
pulses appears. If the distance between the first two ex
tion pulses ist15s12s2 and the distance between the se
ond and third pulses ist25s22s3 , a stimulated echo is
formed after a timet35s35s12s2 following the third
pulse has elapsed. Thus, the maximum inC3(s1 ,s2 ,s3)
corresponds to the time when stimulated echo is formed,
the third-order cross-correlation function~2! resembles a re
sponse to three delta-function pulses, i.e., is the stocha
analog of stimulated echo. At the same time, the use of
chastic excitation made it possible to lower the excitat
power in this experiment by a factor of 1000 and eas
solved the dead-time problem of the receiver.

The measured cross-correlation functions were disto
by system noise caused by the finite time of integration in
correlator in the averaging process. Here the signal-to-n
ratio increases in proportion to the square root of the integ
tion time.

The possibility and advisability of extending these e
periments to the optical and EPR ranges are also noted.

The present work studies the nonlinear properties of c
relation echoes, i.e., responses induced in inhomogeneo
broadened two-level spin and optical systems by fin
samples of a band white Gaussian noise of lengtht. These
echoes can be isolated from the free induction signal in
culating third-order cross-correlation functions.

2. THE EQUATION OF MOTION OF THE STATE VECTOR OF
THE SYSTEM

If the lengtht of a noise pulse is assumed to be mu
smaller thanT1 and T2 , the effect of relaxation processe
can be ignored. We will also assume that the period wit
which the excitation pulses act on the system is much lon
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arrived the system has returned to its state of thermodyna
equilibrium.

Let us first examine an inhomogeneously broaden
two-level spin system. Bearing in mind the above, we c
write the equation of motion of the magnetization vectorM
in a magnetic field with inductionB as follows:2

dM

dt
5gM3B, ~3!

whereg is the gyromagnetic ratio.
Suppose that the spin system placed in a nonunifo

magnetic field with inductionBzez is subjected, on the inter
val utu<t/2, to a circularly polarized magnetic field

B1~ t !5B~ t !cos@v0t1w~ t !#ex2B~ t !sin@v0t1w~ t !#ey ,

whereB(t) andw(t) are functions describing the variation
of the amplitude and phase of the magnetic induction, a
v0 is the vibration frequency coinciding with the central fr
quency of the inhomogeneously broadened absorption li

In the system of coordinates rotating with a frequen
v0 about the longitudinal axis the equation of motion of t
magnetization vector is7

dm1

dt
5S dm2

dt D *
5 iVm12 iR̃~ t !mz ,

dmz

dt
52

i

2
R* ~ t !m11

i

2
R̃~ t !m2 , ~4!

wherem15(m2)* are the complex-valued transverse co
ponents of the magnetization vector,mz is the longitudinal
component,

R̃~ t !5gB̃~ t !5gB~ t !cosw~ t !2 igB~ t !sin w~ t !,

V5gBz2v05v2v0 .

In the corresponding two-level systems of the optic
range the magnetic dipole transitions are replaced by ele
dipole transitions. The equation of motion~3! now corre-
sponds to the equation of motion of a pseudoelectric dipolP
in a pseudoelectric fieldE ~see Refs. 8, 11 and 12!:

dP

dt
5geP3E, ~5!

wherege is the gyroelectric ratio.
The analogy between Eqs.~3! and~5! are similar can be

explained by employing a common vector model used
analyzing free induction signals and spin and light echoe
inhomogeneously broadened two-level systems.8,13,14

Thus, Eq.~5! can be written in a rotating coordinat
system in the form~4! if in the latter we replace the compo
nentsm6 and mz with the corresponding componentsp6

andpz of the pseudopolarization vector and ifR̃(t) is inter-
preted as the complex-valued envelope of the exciting p
cess and is linked to the pseudoelectric fieldẼ(t) by the
relationshipR̃(t)5geẼ(t) ~see Ref. 15!.

Let us introduce a new state vector of the system,Y,
whose components are related to those of the vectors in
duced earlier in the following manner:
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y6~ t !5@p6~ t,V! or m6~ t,V!#exp@6 iV~ t2t0!#,
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yz~ t !5pz~ t,V! or mz~ t,V!, ~6!

where t052t/2. Introduction of these components
equivalent to going over to a system of coordinates rota
with a frequencyv5v01V about the longitudinal axis.

In terms of the new variables the equation of motion
the state vector of the system,~4!, can be written in matrix
form:

dY

dt
5Q~ t !Y, ~7!

Y5S y1

y2

yz

D ,

Q~ t !5S 0 0 2 s̃~ t !

0 0 2s* ~ t !

s* ~ t !/2 s̃~ t !/2 0
D , ~8!

s̃~ t !5 iR̃~ t !exp@2 iV~ t1t/2!#. ~9!

Prior to excitation the system was in an equilibrium state
which the components of the vectorY are determined by the
initial conditions

y6S 2
t

2D50, yzS 2
t

2D5Y0 .

HereY0 is the equilibrium value of the magnetization (M0)
or pseudopolarization (P0).

For further analysis it is convenient to introduce tw
matrices:

Q15S 0 0 21

0 0 0

0 1/2 0
D , Q25S 0 0 0

0 0 21

1/2 0 0
D . ~10!

As a result, the equation of motion~7! of the state vector of
the system can be written as follows:16

dY

dt
5 s̃~ t !Q1Y1s* ~ t !Q2Y. ~11!

Equation~11! can be integrated in two symmetric form

Y~ t !5expFQ1E
t0

t

s̃~ t8!dt8GY~ t0!

1E
t0

t

expFQ1E
j

t

s̃~ t8!dt8Gs* ~j!Q2Y~j!dj, ~12!

Y~ t !5expFQ2E
t0

t

s* ~ t8!dt8GY~ t0!

1E
t0

t

expFQ2E
j

t

s* ~ t8!dt8G s̃~j!Q1Y~j!dj. ~13!

The validity of Eqs.~12! and ~13! can be verified by differ-
entiation, and the result is Eq.~11!.
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3. SPIN AND LIGHT CORRELATION ECHOES

To analyze the nonlinear properties of the two-pulse c
relation echo formed by the noise countsu1 andu2 , we must
determine the third-order cross-correlation function betwe
the free induction signal and the excitation. We start by
fining the corresponding cross-correlation function for
single spectral component of the nonstationary respons
an inhomogeneously broadened system,

Ce~ t !5^F~ t !&5^s̃~u1!@s* ~u2!#2Y~ t !&,

2u22u1.
t

2
, t>

t

2
. ~14!

The time diagram of the envelopes of the excitati
pulse, of the response of the system in the form of a f
induction signal, and of the two-pulse correlation echo se
rated from the free induction signal is depicted in Fig. 1.

We assume that the system is excited by band w
noise with a Gaussian distribution and a zero average, w
the bandwidth of the noise being much larger than the wi
of the excited inhomogeneous line. In this case the corr
tion functions of the complex-valued amplitude of the no
can be approximated as follows:

^R̃~ t !R* ~u!&5N0d~ t2u!,

^R̃~ t !R̃~u!&50, ut,uu,
t

2
, ~15!

where N0 is the spectral power density of the comple
valued Gaussian processR̃(t).

To calculate the cross-correlation function~14! we mul-
tiply Eq. ~12! by s̃(u1)@s* (u2)#2 and average, assuming th
t.t05u2 . The result is

Ce~ t !5D11D2 ,

D15K expFQ1E
u2

t

s̃~ t8!dt8GF~u2!L ,

D25K E
u2

t

expFQ1E
j

t

s̃~ t8!dt8Gs* ~j!Q2F~j!djL . ~16!

In averaging we allow for the fact that the response o
physically realizable system,Y(t), is independent of the ex
citation s̃(j) and the functions of this process forj.t in
view of the causality principle, and the fact that the mome
of a Gaussian process are factorable.17 The vectorY, which
enters into the expressions forD1 andD2 , can be determined
by solving Eq. ~7! by the method of successiv
approximations:7

FIG. 1. Time diagram of excitation of two-pulse correlation echo from tw
noise counts at timesu1 andu2 .
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Y~ t !5 I1E t

dj Q~j !

s
tin

fo
de

-

in

D 5Q E t

C ~j!dj1
N0Q1Q2 E t

C ~j!dj. ~23!

ss-
F
2t/2

1 1

1E
2t/2

t

dj1E
2t/2

j1
dj2Q~j1!Q~j2!1•••GYS 2

t

2D ,

~17!

where I is the identity matrix. According to Eqs.~17! and
~8!, the components ofY are given by a series whose term
can be expressed in terms of the products of the exci
process, which makes factorization ofD1 and D2 possible.
Here we can write

D15K expFQ1E
u2

t

s̃~ t8!dt8G L Ce~u2!

1K @s* ~u2!#2 expFQ1E
u2

t

s̃~ t8!t8G L ^ s̃~u1!Y~u2!&.

~18!

The cofactors containing matrix exponentials in~18! can
be averaged by expanding them in series and allowing
the fact thats̃(t) is a complex-valued Gaussian process
fined by ~9! and ~15!:

K @s* ~u2!#2 expFQ1E
u2

t

s̃~ t8!dt8G L 5K @s* ~u2!#2H I

1Q1E
u2

t

s̃~ t8!dt81
1

2! FQ1E
u2

t

s̃~ t8!dt8G2

1•••J L
5

1

2!
Q1

2E
u2

t

dt8E
u2

t

dt9^s̃~ t8!s~ t9!@s* ~u2!#2&

5
N0

2Q1
2

2 E
u2

t

dt8E
u2

t

dt92d~ t82u2!d~ t92u2!

5
N0

2Q1
2

4
. ~19!

If in ~19! we puts* (u2)51, we find that

K expFQ1E
u2

t

s̃~ t8!dt8G L 5I . ~20!

Plugging~19! and ~20! into ~18! yields

D15Ce~u2!1
N0

2Q1
2

4
^s̃~u1!Y~u2!&. ~21!

The expression describingD2 can be transformed in the fol
lowing manner:

D25E
u2

t K expFQ1E
j

t

s̃~ t8!dt8G L Q2^s* ~j!F~j!&dj

1E
u2

t K expFQ1E
j

t

s̃~ t8!dt8Gs* ~j!L Q2Ce~j!dj.

~22!

Averaging the cofactors containing matrix exponentials
~22! yields
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Now we determine the cross-correlation function~14! taking
Eq. ~13! as the basis:

Ce~ t !5D31D4 ,

D35K expFQ2E
u2

t

s* ~ t8!dt8GF~u2!L 5Ce~u2!,

D45E
u2

t K expFQ2E
j

t

s* ~ t8!dt8G s̃~j!Q1F~j!L dj

5Q1E
u2

t

^s̃~j!F~j!&dj1
N0Q1Q2

2 E
u2

t

Ce~j!dj.

~24!

If we integrate Eq.~11! and then multiply the result by
s̃(u1)@s* (u1)#2 and average, we find that the same cro
correlation function can be written as

Ce~ t !5Ce~u2!1Q1E
u2

t

^ s̃~j!F~j!&dj

1Q2E
u2

t

^ s̃~j!F~j!&dj. ~25!

Adding ~16! to ~24! and subtracting~25! from the sum,
we get

Ce~ t !5
N0

2Q1
2

4
^s̃~u1!Y~u2!&1Ce~u2!

1N0LE
u2

t

Ce~j!dj, ~26!

L5
Q1Q21Q2Q1

2
. ~27!

Differentiation of ~26! yields the equation

dCe

dt
5N0LCe~ t !,

whose solution is

Ce~ t !5exp@N0L ~ t2u2!#Ce~u2!, t>u2 . ~28!

To determine the correlation momentCe(u2) in ~28!, we
set t05u1,t,u2 in Eq. ~13!, multiply the equation by
s̃(u1)@s* (t)#n ~n51 or 2!, and average:

^ s̃~u1!@s* ~ t !#nY~ t !&

5K s̃~u1!@s* ~ t !#nexpFQ2E
u1

t

s* ~ t8!dt8GY~u1!L
1^ s̃~u1![s* ~ t !#nE

u1

t

expFQ2E
j

t

s* ~ t8!dt8G
3 s̃~j!Q1Y~j!dj. ~29!

At n52 the first term on the right-hand side of Eq.~29!
vanishes and the second can be written as
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C ~ t !52E t

^s* ~ t !s̃~j!&

t

in

s

^s̃~u1!Y~u1!&5N0Q2^Y~u1!&. ~37!

he

a-
s
he

es

nts
ack
cy

cor-

has
l
as
e
u1

3K expFQ2E
j

t

s* ~ t8!dt8G s̃~u1!s* ~ t !Q1Y~j!L dj.

If we allow for Eqs.~9! and ~15!, we get

Ce~ t !5N0Q1^s̃~u1!s* ~ t !Y~ t !&. ~30!

To find ^s̃(u1)s* (t)Y(t)&, we setn51 in ~29!. Then the
first term on the right-hand side of Eq.~29! vanishes and

^s̃~u1!s* ~ t !Y~ t !&5
N0Q1

2
^s̃~u1!Y~ t !&, t>u1 . ~31!

On the basis of~30! and ~31! we conclude that att5u2

Ce~u2!5
N0

2Q1
2

2
^ s̃~u1!Y~u2!&. ~32!

To find ^s̃(u1)Y(u2)& in ~32!, we use the correlation
moment~28!,

Ce~ t !5^s̃~u1!@s* ~u2!#2Y~ t !&5exp@N0L ~ t2u2!#

3^ s̃~u1!@s* ~u2!#2Y~u2!&, ~33!

in which we sets* (u2)51, after which we replaceu2 by u1 .
Then att5u2 we have

^s̃~u1!Y~u2!&5exp@N0L ~u22u1!#^s̃~u1!Y~u1!&. ~34!

To find ^s̃(u1)Y(u1)& in ~34!, we use an equation tha
follows from ~12!:

^s̃~ t !Y~ t !&5K s̃~ t !expFQ1E
2t/2

t

s̃~ t8!dt8G L YS 2
t

2D
1E

2t/2

t K s̃~ t !expFQ1E
j

t

s̃~ t8!dt8G
3s* ~ t !Q2Y~j!L dj, t<u1 . ~35!

The first term on the right-hand side is zero, and averag
the second term yields

^s̃~ t !Y~ t !&5N0E
2t/2

t

d~ t2j!

3exp@2 iV~ t2j!#Q2^Y~j!&dj5
N0Q2

2
^Y~ t !&. ~36!

If in ~31!, which is valid for t>u1 , we sets̃(u1)51,
then

^s* ~ t !Y~ t !&5
N0Q1

2
^Y~ t !&.

In view of the symmetry of symmetry of~12! and ~13! we
can also write

^s̃~ t !Y~ t !&5
N0Q2

2
^Y~ t !&, t>u1 .

Then at t5u1 , with allowance for the second half of thi
result described by Eq.~36!, we obtain
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Finally, to determinêY(u1)& we use~33!, where we set
s̃(u1)@s* (u2)#251 and replaceu2 by 2t/2:

^Y~ t !&5expFN0L S t1
t

2D G K YS 2
t

2D L . ~38!

Since initially the state of the system, defined by t
initial conditions, is determinate, att5u1 Eq. ~38! has the
form

^Y~u1!&5expFN0L S u11
t

2D GYS 2
t

2D . ~39!

The cross-correlation function~14! at the end of the ex-
citation pulse can be found from Eqs.~28!, ~32!, ~34!, ~37!,
and ~39! if in ~28! we sett5t/2. This yields

CeS t

2D5expFN0L S t

2
2u2D G N0

2Q1
2

2
exp@N0L ~u2

2u1!#N0Q2 expFN0L S u11
t

2D GYS 2
t

2D .

~40!

After we have plugged the initial conditions and the m
trices ~10! and ~27! into ~40!, we find that the component
y2 and yz of the state vector are not correlated with t
excitation, and the correlation of the componenty1 is de-
scribed by the following expression:

K s̃~u1!@s* ~u2!#2y1S t

2D L 5
N0

3Y0

4
expS 2

N0ae

4 D , ~41!

ae5
3t

2
1u1 . ~42!

When the excitation pulse is terminated att.t/2, i.e.,
when we haves̃(t)50, the state vector of the system do
not change ~this follows from Eqs. ~7! and ~8!!,
Y(t)5Y(t/2), and

^s̃~u1!@s* ~u2!#2y1~ t !&5 K s̃~u1!@s* ~u2!#2y1S t

2D L ,

~43!

with t>t/2.
To sum the contributions of all the spectral compone

of an inhomogeneously broadened system, we must go b
to the initial system of coordinates rotating with a frequen
v0 via Eqs.~6!, ~9!, and~43!.

Then, in the case of magnetic resonance, the cross
relation between the spectral componentm1(t,V) of the
transverse component of the magnetization vector, which
a frequency detuningV5v2v0 with respect to the centra
frequency of the line, and the excitation can be written
follows:

^R̃~u1!@R* ~u2!#2m1~ t,V!&5 i exp@ iV~ t1u122u2!#

3K s̃~u1!@s* ~u2!#2y1S t

2D L . ~44!
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To find the third-order cross-correlation function b
tween the free induction signal and the excitation, we m
integrate ~44! with a weight function determined by th
shape of the low-frequency equivalent of the inhomo
neously broadened absorption line,g(V):

^R̃~u1!@R* ~u2!#2m1~ t !&5E
2`

`

g~V!^R̃~u1!

3@R̃~u2!#2m1~ t,V!&dV.

~45!

Plugging~41!–~44! into Eq. ~45! finally yields

^R̃~u1!@R* ~u2!#2m1~ t !&

5 ip
M0N0

3

2
expS 2

N0ae

4 DG~ t1u122u2!,

G~ t !5
1

2p E
2`

`

g~V!exp~ iVt !dV. ~46!

Reasoning along similar lines, we can find the thir
order cross-correlation function

^R̃~u1!R* ~u2!R* ~u3!m1~ t !& ~47!

for t.t/2.u3.u2.u1.2t/2 andu21u32u1.t/2. This
function corresponds to stimulated correlation echo. T
time diagram of the envelopes of the excitation pulse,
free induction signal, and the stimulated correlation ec
separated from the free induction signal and formed by
noise countsu1 , u2 , andu3 is depicted in Fig. 2.

Using the above method, we can show that the cro
correlation function~47! is given by the following expres
sion:

^R̃~u1!R* ~u2!R* ~u3!m1~ t !&

5 ipM0N0
3 expS 2

N0as

4 DG~ t1u12u22u3!, ~48!

as5
3t

2
1u12u21u3 . ~49!

Equations~44!–~49! are also valid for the correspondin
inhomogeneously broadened systems of the optical rang
m1 andM0 are replaced byp1 andP0 , respectively.

4. DISCUSSION

The mathematical expectations of the complex-valu
envelopes of the two-pulse and stimulated correlation ech
are given by the expressions~46! and ~48!. Here the time

FIG. 2. Time diagram of the excitation of stimulated correlation echo fr
three noise counts at timesu1 , u2 , andu3 .
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dependence, determined by the functionsG(t1u122u2)
and G(t1u12u22u3), fully corresponds to ordinary two
and three-pulse echoes, i.e., the responses generated b
terminate delta-function radio pulses at timesu1 and u2 or
u1 , u2 , andu3 , respectively~see Figs. 1 and 2!. The same is
true of the shape of the echo-responses and the times of
formation.

As noted in the Introduction, Paff and Blumich3 studied
the stochastic analog of stimulated spin echo. Compariso
the cross-correlation functions~46! and~48! with the results
of their experiment shows that the maximum of the functi
G(t1u12u22u3) coincides with that of the function
C3(s1 ,s2 ,s3) in ~2! at ui5t2s i ( i 51,2,3). Their shapes
coincide to within system noise caused by the finite aver
ing time.

However, due to the nonstationary nature of the fr
induction signal, all averaging in the present paper was d
over the ensemble and not over time~as opposed to the situ
ation in Ref. 3!. As a result, the cross-correlation function
have, in addition toG(t1u122u2) andG(t1u12u22u3),
exponential factors that depend on the position of the no
countsui on the time axis, in accordance with Eqs.~42! and
~49!.

In the present paper we also find the dependence of
correlation echo amplitudes on the parameters of the n
pulse. According to~46! and~48!, this dependence is nonlin
ear and is given by the function

F~N0!5N0
3 expS 2

N0a

4 D , ~50!

with a5ae for two-pulse echo anda5as for stimulated
echo. The diagrams of these functions for different values
a are depicted in Fig. 3.

In the limit N0a!4 the dependence is cubic. The rate
growth of the function diminishes asN0 increases. The maxi

FIG. 3. Dependence of the normalized amplitude of correlation echo on
spectral power density of the noise,N0 . For two-pulse echo
a5ae53t/21u1 , and for stimulated echoa5as53t/21u12u21u3 .
The values of the parametersa are 10ms ~curve 1!, 15ms ~curve 2!, and
20ms ~curve3!.
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Another distinctive feature of the optical range that sets
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mined by the functionF(N0) is @12/ae# and is reached a
N0a512.

The exponential dependence in~50! is a reflection of the
effect of noise in the intervals between noise counts form
the echo-response. We analyze this effect by using the
ample of a two-pulse echo formed on the noise countsu1 and
u2 . These moments divide the noise pulse into three in
vals. Here at timeu1 the longitudinal componentyz of the
state vector is transformed into they2 component, and a
time u2 the y2 component is transformed intoy1 . To put it
schematically,

yz→y2→y1 .

The matrix components in~40! describe the damping of th
components of the state vectorY caused by the noise in th
three intervals. Equation~40! implies that in the first interva
the longitudinal componentyz decays according to the law
exp@2N0(u11t/2)/2#, while in the second and third interva
the componentsy2 and y1 decay with a rate that is
two times smaller: exp@2N0(u22u1)/4# and
exp@2N0(t/22u2)/4#, respectively. The overall damping
determined by the expressions~41! and ~42!. Here it occurs
that according to~41! and ~42! the amplitude of the two-
pulse correlation echo depends both on the lengtht of the
noise pulse and on the timeu1 . Sinceuu1u,t/2 holds, for a
fixed pulse lengtht the values ofae may differ by a factor of
two, depending on the position ofu1 . For N0ae!4 the po-
sition of u1 has no effect on the amplitude of the echo. In t
opposite case the echo amplitude depends on the positio
u1 , and this dependence is quite strong. For instance
t510ms the value of ae can change from 1025 s as
u1→2t/2 to 231025 s asu1→t/2 ~see Fig. 3!. Here at
N05106 rad2 s21 the correlation echo amplitude chang
more than by a factor of ten.

The parameters of the noise pulse given in the ab
example and theF vs N0 curves in Fig. 3 correspond to th
noise parameters used in exciting nuclear spin echo and
determined from the condition that

t510ms!T2 .

In the optical range the timeT2 amounts to several ten
of nanoseconds.8 Then for a 10-ns noise pulse the value ofa
in Fig. 3 is a thousand times smaller andN0 becomes a
thousand times larger. The functionF(N0) grows by a factor
of 109.

Note that in most light-echo excitation experiments t
excitation of inhomogeneously broadened lines, whose w
amounts to 109–1011 s21, is partial.8,11

In these conditions coherent light pulses roughly 10
long8 have a spectral width;108 s21. At the same time, the
spectral width of a noise pulse of lengtht is practically in-
dependent of the pulse length. Thus, with an appropr
choice of the spectral width of band white noise a 10
pulse can ensure uniform excitation of the entire inhomo
neously broadened line. For this reason the functionG(t)
may not coincide with the envelope of the light echo form
in the event of partial excitation of the inhomogeneou
broadened line.
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it apart form the range used in NMR experiments is the c
dition of spatial synchronism.8 Here the free induction signa
propagates in the same direction as the exciting pulse in
form of a plane wave with a vectork. The two-pulse and
stimulated echoes in the light induction signal are formed
pairs and triples of noise pulse counts.

As is known,8 two-pulse and stimulated light echoe
propagate in the directions

ke52k112k2 , ~51!

ks52k11k21k3 , ~52!

respectively, wherek i is the wave vector of thei th excitation
light pulse. Since in the case under consideration all no
counts belong to the same excitation noise pulse propaga
in the directionk, we have

k15k25k35k. ~53!

Equations~51!–~53! imply that ke5ks5k, and all ech-
oes propagate in the direction in which the light inducti
signal propagates.

In conclusion let us briefly discuss the results related
stimulated correlated echo. In the formation of this echo
components of the state vector are transformed at timesu1 ,
u2 , andu3 according to the schemeyz→y2→yz→y1 . The
longitudinal componentyz decays twice as rapidly as th
transverse components. As a result the overall dampin
determined by the exponential factor in~48!. Here, according
to ~49!, the stimulated echo amplitude depends on the p
tion of all three noise countsu1 , u2 , andu3 on the time axis.
As in the case of two-pulse echo, for a noise pulse of fix
length t the values ofas can differ by a factor of two, de-
pending on the position ofu1 , u2 , andu3 .

The present work was made possible by a grant from
Ministry of General and Vocational Education of the Russ
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1!In Eq. ~2! of Ref. 3 the product of stationary processes is averaged o
time. Formally the procedure can be written as lim

T→`

(1/2T) E 2T
T f (t)dt, a

feature mentioned in Ref. 20 of the cited paper. Note that in ergodic p
cesses ensemble and time averages coincide.
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Production of heavy atomic clusters upon interaction of laser radiation with matter
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Zh. Éksp. Teor. Fiz.112, 78–88~July 1997!

The results of an investigation of the formation of Pb, Th, and U clusters over a broad range of
numbers of atoms~from a few atoms to macroparticles! upon interaction of high-power
pulsed laser radiation with matter are presented. Clusters of fissionable elements are studied for
the first time. A setup for determining the yield of clusters and the number of atoms in
them, which is based on the use of several different methods~laser resonance fluorescence, time-
of-flight measurements, and counting the number of tracks of fission fragments from the
cluster nuclei!, is described. The dependence of the yield of clusters with various numbers of
atoms on the conditions for their formation is discussed. ©1997 American Institute of
Physics.@S1063-7761~97!00707-5#
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The investigation of atomic clusters is presently one
the most promising and rapidly developing research area
physics.1–6 A unique possibility for investigating the evolu
tion of systems from an atom to a solid has appeared ow
specifically to atomic clusters. The information obtained
these investigations is of great importance for developing
understanding of atoms, nuclei, solids, and crystals.

Several directions can be identified in experiments w
clusters. One of the most promising is the study of la
clusters, which combine the properties of both micro- a
macrosystems. The investigation of how such clusters fo
in various processes, and of shell structure in them, is
great interest. It is expected that the transition from micro
macrosystems in these clusters can occur when the num
of atoms in them is of the order of several tens of thousan
This number naturally depends on the kind of atoms,
temperature, and several other characteristics of the clus
However, these questions have been investigated to a c
paratively small extent. There is an especially small amo
of data on the properties of clusters of the heaviest elem
~with atomic numbersZi.82). Actually, the data cover ele
ments up to lead, whose clusters were studied, for exam
in Refs. 1 and 7–11. There is essentially no information
clusters of actinides and transuranian elements. This is
parently due primarily to the difficulties of working with
radioactive elements.

This paper presents the results of research on cluste
heavy elements~Pb, Th, and U! over a broad range of th
numbers of atoms in them~up to millions!. Atomic clusters
of fissionable elements are considered for the first time.
clusters were obtained via the interaction of high-pow
pulsed laser radiation with the metals cited. The experim
tal setup and measurement of the dependence of the yie
different clusters on the number of atoms in them at vari
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peratures, are described.
The interaction of high-power laser radiation with matt

has been studied in great detail.12,13 At pulsed laser power
densities below 109 W/cm2, three processes dominate:!
heating without alteration of the phase state, 2! melting and
vaporization, and 3! ionization and plasma formation. Thes
processes are accompanied by the ejection of atoms,
ecules, singly- and multiply-charged ions, clusters, and m
roscopic particles of the material from the surface of t
irradiated sample. The relationship of the intensities of
these components is determined both by the characteri
of the laser radiation and by the surface properties of
irradiated sample. This leads to substantially different con
tions for the occurrence of cluster formation. Three princip
cluster formation paths can be identified; a! condensation
from vaporized atoms at the initial instant of fragmentati
of the material, b! disintegration of hot macroscopic pellet
and c! intense vaporization of atoms and dimers from t
latter. It can be expected that because of the variety of c
ditions in these processes, the clusters formed will be ch
acterized by a large set of masses and temperatures.

2. EXPERIMENTAL SETUP

The setup used in our experiments to investigate clus
over a broad range of masses~from a few atoms or ions to
macroscopic particles! incorporates three different method
for detecting them. The detection of single atoms or sing
charged ions is based on recording their resonance fluo
cence, which is excited by a tunable laser. In clusters of u
several hundred atoms, time-of-flight measurements w
employed. Finally, the heaviest clusters~with more than a
thousand atoms! were identified by counting the number o
nuclear fission fragments in the cluster.

A block diagram of the setup is presented in Fig. 1. T
output of a pulsed laser was focused on a sample i

42$10.00 © 1997 American Institute of Physics
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vacuum chamber, which was evacuated by a turbomolec
pump to a residual pressure of 531026 Torr. The laser ra-
diation was focused by a lens with a diameter of 20 mm a
a focal length of 45 mm. The dimensions of the laser spot
the surface of the sample were varied by moving the l
using a vacuum bellows drive.

Pulsed lasers of two types, viz., a copper vapor la
~LGI-201! and an yttrium–aluminum garnet laser~LTIPCh-
7!, were used to obtain the clusters. The parameters of t
lasers~wavelengthl, frequencyv, pulse widthDt, pulsed
power densityq, and mean powerP̄) are presented in Tabl
I. These laser parameters clearly make it possible to vary
incident power density at the sample over a broad ra
~from 106 to 109 W/cm2), and thereby to study the formatio
of clusters over a broad range of temperatures.

The flux of atoms, ions, and clusters formed upon int
action of pulsed laser radiation with the sample surface
shaped by a system of collimators into a beam with a sp
fied angular divergence. This beam crossed the laser b
employed for resonant excitation of the atoms or ions a
right angle. The source of the latter radiation was a dye la
pumped by a continuous-wave argon ion laser. The la
frequency was automatically swept over a predetermi
range with a width up to 30 GHz. When a stabilization sy
tem was employed, the half-width of the laser line was
most 20 MHz, which is significantly less than the Dopp
shift due to the energy and angular spread of the beam
atoms or ions. The spontaneous optical fluorescence em
by the excited atoms or ions was focused by a system
lenses onto the cathode of a photomultiplier operating in
single-photon counting mode.14

FIG. 1. Experimental setup:1 — sample;2 — collimator; 3 — continuous
dye laser beam;4 — optical lenses;5 — beam of atoms and clusters ;6 —
accelerating grids;7 — electrostatic lens;8 — deflecting plates;9 — pho-
tomultiplier; 10 — ion detector;11 — detector of pulsed laser radiation;12
— time analyzer;13 — computer;14 — dielectric detectors;15 — pulsed
laser beam.

TABLE I. Parameters of the lasers used to obtain clusters.

Laser l, nm v, Hz Dt, ns Ep , mJ P̄, W q, W/cm2

LGI-201 5101570 104 20 0.5 5 1062107

LGIPCh-7 1064 25 10 50 0.12 107233109

532 25 10 20 0.6 107223109
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ions measured in this manner enable one to determine
intensity and mean velocity~from the Doppler line broaden
ing!. These data are a source of information on the con
tions for cluster formation when high-power laser radiati
interacts with matter~specifically, on the plasma temperatu
and density at the surface of the sample!.

The characteristics of the clusters~mass and velocity
spectra! were determined by measuring the time of flight
charged clusters over a given distance~from the surface of
the sample to the detector!.15 The charged clusters entered
region with an accelerating electric field after passi
through the shaping collimator. This field was produced b
high voltage~up to 2.8 kV! applied to a grid~the length of
the accelerating gap was 30 mm!. The beam of clusters with
some given energy obtained in this manner was focused
an electrostatic lens and entered a drift gap 400 mm long
cluster detector~secondary electron multiplier! was located
at the end of this gap. Deflecting plates, within the gap w
used to separate the charged and neutral clusters so tha
latter would not strike the detector.

Pulses from this detector were the ‘‘stop’’ signals for t
time analyzer, and pulses from the photodiode onto whic
portion of the pulsed laser radiation was directed served
the ‘‘start’’ signals. The latter signals corresponded to t
time of escape of a cluster from the sample surface to su
cient accuracy. The measured time of flightT is related to
the cluster massM ~in mass units! by

M5T2F7.2531027L1

E01U

1
1.4431026~L2AE01U2L1AE0!

U G22

, ~1!

whereU is the accelerating potential@V#, E0 is the initial
energy of the clusters@eV#, andL1 andL2 are, respectively,
the lengths of the accelerating and drift gaps@mm#.

The velocity distribution of neutral atoms could also
measured in the same manner. In this case, a pulse from
photomultiplier recording resonantly scattered fluoresce
served as the ‘‘stop’’ signal. This velocity distribution als
served as a source of information regarding the tempera
at the sample surface.

As the mass of the singly-charged clusters increas
their kinetic energy remains unchanged~it is determined by
the accelerating voltage!, but their velocity decreases. Fo
heavy clusters containing more than 10 000 atoms, the
locity approaches the thermal value (1042105 cm/s!, and the
signal from the ion detector decreases to the noise le
Therefore, another method was used to detect such he
clusters and to determine their mass. This method is ap
cable only to clusters consisting of atoms of fissionable e
ments~for example, Th or U!, and is based on counting th
fission fragments produced by an intense flux of neutrons
g rays. The number of fission fragments from a cluster
given by

N52AE
0

E0
s~E!Y~E,t !dE, ~2!
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TABLE II. Characteristics of the elements investigated.

ies:
Y(E,t) are the fission cross section and the total flux
bombarding particles with energyE during timet.

The fission fragments were detected by a dielectric
tector, a Mylar film 20mm thick. After chemical treatmen
of the detector~etching in a 20% NaOH solution for 15 min!,
the fission fragment tracks became visible under an opt
microscope~their lengths amounted to.10 mm!.16 Counting
the number of tracks that emerge from one point and are
to the splitting of cluster atoms yields the number of ato
of the element undergoing fission in the cluster. The relat
between these quantities is given by

A5NF2«E
0

E0
s~E!Y~E,t !dEG21

, ~3!

where« is the fragment detection efficiency of the dielect
detector. In the experiments described here, in which
clusters were deposited on the detector surface,«50.5, i.e.,
the observed number of tracks corresponded to the num
of nuclei undergoing fission in a cluster.

It is clear from~3! that the coefficient relating the num
ber of tracks to the number of atoms in a cluster is de
mined by the fission cross section of the nuclei sample
the total flux of bombarding particles. For example, for
sample of235U and irradiation of the detector by hot ne
trons, the fission cross sections55310222 cm2, and the
intensity of the neutrons in a thermal column of a nucle
reactor can reach 1015 neutrons/s•cm2. Under these condi-
tions, after the detector has been irradiated for several h
(.23104 s!

E
0

E0
s~E!I ~E!dEdt.1022, ~4!

i.e., each observed track corresponds to about a hun
cluster atoms. Heavier clusters containing many thousand
millions of atoms are detected more conveniently us
smaller neutron fluences or irradiation byg rays, for which
the fission cross section is appreciably smaller (s.0.120.5
barns!. Thus, this method makes it possible to detect a
identify clusters that are inaccessible to the time-of-flig
method.

Measurement is most convenient when some dozen
tracks ~up to a hundred! are observed from each cluste
When the number of tracks is large, they overlap, and, c
sequently, there are counting errors. Since the numbe
nuclear fission events in a cluster is a statistical quantity,
error counting, and hence the number of atoms in a cluste
given by

DN

N
5

a

AKN
, ~5!

whereK is the number of clusters observed. WhenN andK
ranged from 10 to 100, the counting accuracy for clus
atoms, which characterizes the mass resolution of
method, was 3–10%. Although such resolution fails to p
vide a detailed picture of the mass distribution in some ca
this method is highly sensitive and can be used success
for small yields of clusters.
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Dielectric detectors of fission fragments are essentia
insensitive to other types of radiation, viz., plasma fluor
cence, atoms, and ions. They can therefore be placed in
rect proximity to the surface of an irradiated sample, a
high measurement sensitivity can thereby be achieved.
disintegration of hot clusters as they move away from
sample can be evaluated by positioning detectors at diffe
distances~10–400 mm! from the sample surface and com
paring the mass distribution of the clusters for the vario
detectors.

3. EXPERIMENTAL RESULTS

Experiments were performed on the setup descri
above to determine the mass spectrum of particles~from a
few atoms and ions to macroparticles! formed when laser
radiation acts on samples of lead, thorium, and urani
(235U and238U! over a broad range of power densities. Tab
II presents some characteristics of these elements, as we
of sodium, which is widely used in cluster research,17 for
comparison. These characteristics permit evaluation of
thermodynamic and electrical properties of the elements
vestigated. Comparison with sodium reveals that they req
a considerably higher atomization temperature and ene
while their comparatively low electrical conductivity ind
cates a smaller concentration of free electrons. In each of
experiments, we determined the mass of vaporized mate
from the sample by weighing the sample before and after
experiment, and by measuring the size of the crater produ
on the sample surface~the two methods led to similar re
sults!.

Figure 2 presents the measured time-of-flight spectr
of 238U atoms for laser radiation with a wavelength of 10
nm and two different power densities~the area of the optica
radiation spot on the sample surface was.1 mm2). Know-
ing the length of the flight path~from the sample to the lase
beam! and the mass of the atoms, we can easily calculate

Na Pb Th U

Density, g/cm3 0.371 11.34 11.72 19.04
Boiling point, K 1159 978 5063 4303
Heat of sublimation, kJ/mole 90.1 178 540 494
Resistivity, 1026V•cm 4.28 19.2 13 21

FIG. 2. Time-of-flight spectra of uranium atoms for various power densit
1 — q533107 W/cm2; 2 — q5108 W/cm2.
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TABLE III. Velocities and yields of atoms upon laser irradiation of Pb and
U samples.

the
-

velocity and energy spectra from these spectra. The co
sponding values are presented in Fig. 2 on parallel horizo
axes. The resulting spectra correspond to Maxwellian ve
ity and energy distributions of the atoms vaporized from
sample. They permit evaluation of the temperature of
sample surface in the laser radiation spot. The tempera
was evaluated with consideration of the increase in the
locity of the atoms due to the gas-dynamic expansion of
plasma.13,18Table III presents the mean velocities and yie
of atoms from Pb and U samples for various power densi
and diameters of the laser spot.

Figure 3 presents the yield of single238U atoms and the
mass of vaporized material that condenses into clusters
macroparticles as a function of laser power density, m
sured under the same conditions~their mass spectrum is con
sidered below!. The temperature of the sample surface
presented on a parallel horizontal axis. It is clear that o
mum power densities~or temperatures! — at which their
yields are maximum — are observed for clusters and sin
atoms~this temperature is lower for clusters!. The measure-
ments also show that the yield of ions over the entire exp
mental range of laser intensity is less than 1% of the to
amount of vaporized material. We therefore conclude tha
considerable fraction of the material is vaporized in the fo
of clusters, neutral atoms, and macroparticles.

Figure 4 presents the mass distribution measured by
time-of-flight method of particles vaporized from Pb and
samples by laser radiation at 510 and 570 nm with po
density 33107 W/cm2. We see that singly-charged cluste

l, nm q, W/cm2 d, mm v, 105 cm/s Yat , atoms/pulse

Pb U

5101570 3.03107 0.3 1.53105 3.531012 5.031010

1064 1.13108 1.4 2.03105 4.031013 1.531012

1064 2.53108 1.0 2.23105 1.531014 1.031013

1064 5.03108 0.7 2.53105 6.031014 4.031013

1064 3.03109 0.3 2.83105 2.531014 1.531014

FIG. 3. Dependence of the total amount of the material~1!, the number of
neutral atoms~2!, and the number of uranium clusters withN.1000~3! per
laser pulse on the power density of the laser radiation.
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containing up to 10 atoms are observed in the case of
while only single ions are observed in the case of U.
similar mass distribution with a single peak of single ions
obtained for the Th sample. The fraction of ionized clust
containing from 2 to 100 atoms is less than 1% for bo
elements. Similar results were obtained at other power d
sities ~the lowest power density was 107 W/cm2, and the
corresponding temperature was.2000 K! and for laser ra-
diation at a different wavelength~1064 nm!.

The mass distributions of the clusters containing m
than 1000 atoms were measured using the track method
counting fission fragments after the irradiation of dielect
detectors in a neutron flux. Such clusters~or macroparticles!
were observed in the case of the Th and U samples. For
highest neutron fluence and a U sample, one track corre
sponded to 1100 atoms at the detector surface. The si
tracks could belong either to individual U atoms or atom
grouped in a cluster withA,1000. A comparison of the
number of tracks with the number of atoms determined fr
the resonance fluorescence measurements showed th
least 95% of the single tracks belong to individual atoms a
that at most 5% of the clusters haveA,1000. At the same
time, instances with more than two tracks correspond to c
ters ~or macroparticles! containing more than 1000 atoms.

An example of one of the distributions of such syste
with respect to the number of atoms in them is presente
Fig. 5. To minimize the statistical error in the number
clusters, they are combined into groups containingA23A
atoms, whereA is the minimum number of atoms in a clust
belonging to a given group. In this manner, the error in
yield of clusters in each group is at most 5%. It is clear fro
Fig. 5 that, as when there are few atoms in the clusters, t
yield decreases with increasingA. This is typical of the en-
tire range of laser intensity.

Table IV presents the yield of various components~at-
oms, ions, small (A522100), and large (A.1000) clus-
ters! for various laser intensities. We see that for Pb,
fraction of small clusters amounts to.1022 of the number
of single atoms, while the fraction for U and Th is less th
1023. The fraction of large clusters withN.100 atoms is

FIG. 4. Mass distribution of lead and uranium clusters measured by
time-of-flight method forq533107 W/cm2. Peaks are labeled by the num
ber of atoms in a cluster.
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even smaller. An appreciable yield of these clusters was
served owing to the higher sensitivity of the measurem
method, the absence of a background, and summation o
broad range of numbers of atoms in a cluster.

4. DISCUSSION

These experiments exhibited significant differences
the yield of clusters of different elements produced by hig
power laser radiation. Under identical irradiation conditio
an appreciable yield of ionized Pb clusters containing 2–
atoms was observed, but similar clusters of Th and U w
not detected~their yield was at least two orders of magnitu
lower than the yield for Pb!.

The temperature of the plasma produced when lase
diation interacts with the sample surface can be estima
from the measured velocity spectra of the atoms of the
ments investigated. At laser power densities ranging fr
33107 to 33109 W/cm2, this temperature is
23103263103 K. These values are appreciably grea
than in typical experimental setups, for sample, in syste
employing supersonic vapor jets through a narrow nozzl19

Such a high plasma temperature is clearly not optimal
cluster formation. However, at a lower temperature~which
can be obtained by lowering the laser power!, the yield of
vaporized atoms drops sharply, especially from such ref
tory elements as Th and U, which naturally reduces the y
of clusters.

The probability of producing small clusters wit
A522100 from macroscopic pellets, which can be observ
by measuring fission fragments of Th and U nuclei in the
is also very low. Their temperature is probably too low f

FIG. 5. Mass distribution of uranium clusters determined from the num
of fission fragment tracks.q533107 W/cm2. The lines are labeled with the
number of fission fragment tracks observed. The point corresponds to
number of single atoms.
TABLE IV. Yield of various components upon irradia
nm.
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which could otherwise have led to the production of sm
clusters. This hypothesis is confirmed by measurement
the yields and mass distributions of pellets withA.105 at
various distances from the sample. It was found that the y
of such pellets decreases as the square of the distance
the sample, and that the mass distributions determined f
the number of fission fragment tracks are essentially ide
cal. This can mean that the disintegration of the pellets or
vaporization of a large number of atoms from them, whi
could lead to the formation of small clusters, is unlike
Estimates of the time needed for that many atoms (.1000)
to vaporize, which are similar to those described in Ref.
demonstrated that it is large (.1023 s! — much greater than
the time of flight of the pellets to the fragment detectors.

Large clusters withA.1000 might form with high prob-
ability from macroscopic pellets. A typical feature is the
oscillatory dependence of the surface energy — and th
fore the yield — on the number of atoms.21 However, the
method for counting fission fragments used in the pres
work does not make it possible to identify such oscillation
Therefore, the production of large Th and U clusters fro
macroscopic pellets requires further study.

Small clusters can form when vaporized atoms co
dense. This probably takes place in lead, in which we
served the production of ionized clusters containing 2–
atoms. However, only individual ionized atoms were o
served for U and Th. In all likelihood, such a difference
cluster formation probabilities is associated with sign
cantly different electronic states of the resulting system
This is probably reflected in their thermophysical propert
~Table II!. While the conditions for producing small cluste
for lead, which has low specific heat, were quite accepta
more optimal conditions are apparently needed for Th and
They could probably be achieved by using a cluster cool
system,1 which would permit more accurate control of the
formation conditions. We propose doing this in our fort
coming investigations.

Consistent previous investigations,7–10 the mass distribu-
tion of ionized Pb clusters exhibits a sharp decrease in y
at A.7. This can basically be accounted for by the icosa
dral packing of atoms in lead clusters ,8–10 which is respon-
sible for the features atA57, 10, 13, and 19.

5. CONCLUSIONS

These experiments showed that the present setup, w
incorporates three different methods, offer great promise

r

he

tion of Pb and U samples by laser radiation atl51064
46ski  et al.
q, W/cm2

Yat , atoms/pulse Yion , atoms/pulse
Ycl , clusters/pulse

(A52–100!
Ycl , clusters/pulse

(A.1000!

Pb U Pb U Pb U U

1.13108 1.531013 5.331011 1.831011 1.03109 2.531011 ,109 6.531010

2.53108 5.531013 2.531012 6.531011 2.331010 6.031011 ,109 1.531011

5.03108 2.231014 1.231013 2.231012 1.231011 – – 1.831012

3.03109 3.531014 1.831013 4.531013 2.531012 – – 2.731011
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a broad range of masses. It has been shown that the yie
clusters formed when high-power laser radiation intera
with matter depends on the temperature of the plas
formed. At the same time, the distribution of the cluste
according to the number of atoms in them is significan
less critical with respect to these conditions. The probabi
of cluster formation under such conditions varies sign
cantly for various elements~it is markedly greater for Pb
than for Th and U!. The atomic systems of the fissionab
elements U and Th have been investigated for the first ti
A new method for measuring the number of atoms in th
based on counting fission fragments is proposed.
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High-order optical-harmonic generation in films of nonmetallic crystals

ar-
V. A. Kovarski 

Institute of Applied Physics, Moldavian Academy of Sciences, MD-2028 Kishinev, Republic of Moldova
~Submitted 29 November 1996!
Zh. Éksp. Teor. Fiz.112, 89–96~July 1997!

High-order optical-harmonic generation in nonmetallic films interacting with pulses of laser light
is examined. The wave functions of the current carriers in a crystal in an external
electromagnetic field are chosen in the form of Volkov–Keldysh solutions. An explicit expression
for the intensity of thesth harmonic, which depends on the crystal parameters, is derived. A
plateau and a cutoff effect, similar to those in the case of harmonic generation on an isolated atom,
have been detected. Finally, numerical estimates are made for GaAs films excited by pulses
of radiation from a carbon dioxide laser. ©1997 American Institute of Physics.
@S1063-7761~97!00807-X#
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The high-order harmonic generation~HHG! effect, in
which in atomic gases the intensity of the harmonics slow
decreases with increasing harmonic number, has been
object of numerous studies, both experimental and theo
cal ~see, e.g., Refs. 1–4!. The main interest here lies in th
possibility of a sizable anti-Stokes transformation of the
cident laser radiation into hard UV radiation or even s
x-ray radiation.

The number density of the emitting atoms plays an i
portant role in the intensity of high-order harmonics. R
cently there have been reports on observations of high-o
harmonics in the reflection of intense monochromatic rad
tion from a solid surface.5 The main parameter in the theor
of the HHG effect is the ponderomotive energy

«F
~0!5

e0
2F2

4m0v2 ,

wheree0 andm0 is the electron charge and mass, andF and
v are the amplitude and frequency of the exciting laser
diation. The maximum harmonic is characterized by a nu
berNmax corresponding to the end of the plateau on the cu
representing the dependence of the logarithm of intensity
the harmonic’s number, which constitutes a cutoff effect:

Nmax5
1

\v
~ I 1~223!«F

~0!!, ~1!

whereI is the ionization potential of the atom.
In the present paper the HHG problem is analyzed

nonmetallic crystal films. Usually in crystals, the quant
«F, in which the free electron massm0 is replaced by the
effective current-carrier massm, acts as the ponderomotiv
potential. Sincem can be smaller thanm0 by a factor of
several tens, the shorter the pulses of laser excitation,
larger the parameter«F .

Obviously, to observe the harmonics the films must
thin. As we will shortly see, for GaAs crystals and excitin
radiation from a carbon dioxide laser, it is possible to o
serve the 95th harmonic in films with thickness 300–1000
and a peak field strengthF.43106 V cm21.
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monics, with a distribution close to the intensity distributio
of the harmonics, is also predicted. The method of calcu
ing the intensity of harmonics is based on the original ide
of calculating the multiphoton photoelectric effect in nonm
tallic crystals proposed in the landmark paper of Keldys6

and in the paper of the present author and Sedletsky on
HHG effect in atoms with a hydrogen-like ground state.7

2. GENERAL EXPRESSION FOR THE INTENSITY OF
HARMONIC GENERATION IN BAND-TO-BAND TRANSITIONS

Consider a crystal with band gapDcv in the Kane model.
Suppose that a direct optical transition atk50 is allowed,
and that a linearly polarized wave of frequencyv and am-
plitudeFiX, whereX is a chosen axis of the crystal, is inc
dent on the crystal. We assume that

e0FuXcvu,Dcv ,

whereXcv is the band-to-band transition matrix element, a
Dcv is the band gap. The wave function of the system in
coordinate representation depends on the electron and
radius vectors,re and rh (re ,rh[r ).

If we allow for the interaction of the external electro
magnetic field with the electron and hole, the appropri
Schrödinger equation has the form

i\
]C~r ,t !

]t
5@H0~r !1Hd~r ,t !1Hnd~r ,t !#C~r ,t !. ~2!

Here H0(r ) is the crystal Hamiltonian without an extern
field, andHd(r ,t) andHnd(r ,t) are the diagonal~in indicesc
andv! and off-diagonal~mixing the bandsc andv! parts of
the interaction with the external electromagnetic field.

We assume that in the ground state~a completely filled
valence band and a vacant conduction band!, the electron
and hole wave function can be chosen in the fo
c0(r )5d(re2rh). In what follows, we assume that intera
tion with the electromagnetic wave is taken into account
Hd exactly, whileHnd is allowed for only in the lowest per
turbation order. The adopted model simplifies the calculat
of the average dipole momentX̄(t) considerably:
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X̄~ t !5E C* ~r ,t !XC~r ,t !dr. ~3!

et

with Uk(t)
c,v (r ) the periodic parts of the Bloch function. As a
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The observable quantity is the intensityuXVu2 of a harmonic
at frequencyV:

XV5
1

2p E
2`

`

e2 iVtX̄~ t !dt. ~4!

We use the Furry representation (f ).8,9 We selectC(t) in
the form

C~ t !5u~ t !c f~ t !. ~5!

Here

i\
]u

]t
5@H01Hd~ t !#u, ~6!

u~ t !5T expH 2
i

\ E
2`

t

~H01Hd~ t1!!dt1J , ~7!

i\
]c f

]t
5@Hnd~ t !# fc f~ t !, ~8!

@Hnd~ t !# f5u21~ t !Hnd~ t !u~ t !, ~9!

c f~ t !5S~ t,2`!c f~2`!. ~10!

where

S~ t,2`!5T expH 2
i

\ E
2`

t

@Hnd~ t1!# f dt1J , ~11!

c f~2`!5c0~r !. ~12!

We introduce the Green’s function

G~r ,t;r 8,t8!52
i

\
u~ t2t8!d~r2r 8!u~ t !u21~ t8!. ~13!

Clearly, the expression forX̄(t) becomes

X̄~ t !52 ImH E
2`

`

dt8^c0uHnd~ t !Ĝ~r ,t;r 8t8!Hnd~ t8!uc0&J ,

Ĝ~r ,t;r 8,t8!52
i

\
u~ t2t8!(

k
wk~ t !~r ,t !wk~ t !

1 ~r 8,t8!,

1

m
5

1

me
1

1

mc
, ~14!

where

wk~ t !~r ,t !5ck~ t !
c ~re ,t !ck~ t !

v ~rh ,t !,

with ck(t)
c (r ,t) and ck(t)

v (r ,t) solutions of the Volkov type
for an electron and hole in the external electromagn
field,6 and

k~ t !5k1
eF

\v
sin vt,

ck~ t !
c,v ~r ,t !5exp@ i ~k~ t !r !#Uk~ t !

~c,v !~r !expH 2
i

\ E
0

t

«k~ t1!
c,v dt1J ,

~15!
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result we find that

X̄~ t !52 ImF2
i

\

eF

vm E dt8(
k

u~ t2t8!

3^vk~ t !uXuck~ t !&K ck~ t8!U2 i\
]

]x Uvk~ t8!L
3sin vt8 expH 2

i

\ E
t

t8
«k~ t1!dt1J G , ~16!

where«k(t) describes the dispersion law, which in the Ka
model is

«k~ t !5«k~ t !
c 2«k~ t !

v 5ADcv
2 1

\2k2~ t !

m
Dcv. ~17!

The band-to-band matrix elements of position and m
mentum in the external field are calculated, as usual, over
unit cell volume. Since the transverse momentump'5\k'

is not perturbed by the electromagnetic field, the main c
tribution to the sum overk in ~16! is provided by the term
with p'

2 50 ~this follows directly from~17!, sincep'
2 enters

into ~17! together withDcv!. As we will shortly see, the
dependence of the probability of harmonic generation on
band gapDcv leads to a sharp~exponential! decrease in the
rate of the process asDcv grows. Hence from now on we
assumep'

2 50. The position matrix element for a band-to
band transition (p'

2 50) has the following form in the Kane
model:10

^vk~ t !uXuck~ t !&[X12~ t !5
i\

2
ADcv

m

3
1

Dcv1~\2/m!~kx1~eF/\v!sin vt !2 .

~18!

Accordingly, the momentum matrix element is

p125m
Dcv

\
X12. ~19!

Thus, we must calculate

X̄~ t !52 ImS 2
i

\

eFX12~ t !

vm

3E
2`

`

dt8(
kx

u~ t2t8!p12~ t8!sin vt8

3expH 2
i

\ E
t

t8
«kx~ t1!dt1J D . ~20!

Here an exact calculation is difficult, so we adopt an appro
mate approach based on taking the value of the p
exponential factorp12(t8) at the saddle pointt

*
8 calculated at

kx50 outside the sign of integration overt8. The fact that
the factor is calculated atkx50 means that the term with
kx50 provides the main contribution to the sum overkx .
This statement is corroborated by the calculations bel
The function
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f ~ t8!56 i t 8v2
i E t8

« dt ~21!
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kx~ t1! 1

has stationary points, so that

iv2
i

\
«kx~ t !50. ~22!

At kx50 we have

t
*
8 5

i

v
sinh21 g, g5

v

v tun
,

v tun5e0FA Dcv /m

Dcv
2 2\2v2, ~23!

where the tunneling frequencyv tun is determined by the tun
neling transition from the valence band to the conduct
band in the field of the external electromagnetic wave. In
adopted adiabatic limit\v!Dcv , the expression forv tun

can be written as

v tun5v tun
~0!S 11

1

2 S \v

Dcv
D 2D , v tun

~0!5
e0F

AmDcv

. ~24!

In ~20! it is convenient to replace the summation overkx by
integration overkx :

(
kx

•••5
1

2p E •••dkx .

The integral overkx contains a simple pole. Indeed, the m
trix elementp12(t*

8 ) has the poles

kx
~1!5 ik0

k2

2&
, kx

~2!52 ik0&,

\2k0
2

2m
5Dcv , k25S \v

Dcv
D 2

. ~25!

The integral overkx is calculated in the Appendix. Thus, th
integral overkx can be calculated directly, and in calculatin
XV we can replacekx by kx

(1) in the integrals with respect to
t and t8. Sinceukx

(1)/k0u is much smaller than unity, we can
to make matters simple, set it equal to zero. This was
condition for taking the pre-exponential factor at the pointt

*
8

calculated atkx50 outside the integral. Further calculation
of the integral overt8 are done by simplifying the expressio
containing a square root in the exponential:

j 5
i

\ E
t8

t

dt1ADcv
2 1Dcv

e2F2

v2m
sin2 vt1

. i H ~q1r!v~ t2t8!2
r

2
~sin 2vt2sin 2vt8!J ,

q5
Dcv

\v
, r5

«F

\v
, «F5

e0
2F2

4mv2 . ~26!

Note that there can be no objection to expanding the roo
~26! after all singularities are taken into account. This cor
sponds to the way in which the conduction and valen
bands are treated in the model of parabolic dispersion la
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Note that the expression inside the braces in~16! is the clas-
sical action, and findingXV leads to the energy conservatio
law4

\V5«k~ t ! . ~27!

This condition can be used in the matrix elementX12(t).
Let us employ the expansion

eir sin z5 (
n52`

1`

Jn~r!einz, ~28!

whereJn(r) is the Bessel function of a real argument.
Now we can easily integrate with respect tot andt8. We

find

XV5X0ArS (
m52`

` FJmS r

2D Jm2s21S r

2D
1JmS r

2D Jm2sS r

2D G 1

m2s1aD ,

X05
p

8

Dcv
5/2A\v

\3V2v2 A \

mv
,

V5~2s11!v, a5
1

2
~q1r21!. ~29!

Next we use the well2known formula11

(
m

Jm~x!Jm1s~x!
1

m1a
5

p

sin pa
Js2a~x!Ja~x!, ~30!

wherea is an integer.
Thus we find that

XV5
X0pAr

sin ap FJa11S r

2D Js2aS r

2D2JaS r

2D Js2aS r

2D G .
~31!

This formula implies that forr!1 the intensity of the
(2s11)st harmonic is

uX2s11u2;r2s11;~F2!2s11,

which corresponds to the result obtained by apply
perturbation-theory techniques. Here the harmonics
which r/2.s2a are the most interesting ones. The cur

FIG. 1. Harmonic intensity~in relative units! as a function of the harmonic’s
number~q515 andr540!.
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the harmonic’s number has a plateau~Fig. 1!, which extends
to the highest harmonic,

Nmax52smax115
1

\v
~Dcv12«F!,

corresponding to the cutoff effect.

3. DISCUSSION

A specific feature of solids is that they can absorb
generated harmonics. The harmonics can be observed i
flected light, as was done by von der Lindeet al.5 But if we
are dealing with thin films, the spectrum of the genera
harmonics can be observed by transillumination in the ran
where \V@Dcv . For instance, for GaAs we hav
Dcv51.5 eV andm.0.06m0 . The crystal is transparent t
the radiation of a carbon dioxide laser with\v.0.1 eV.
The calculation done in Ref. 5 is valid for fieldsF!Fcr ,
with

Fcr5
Dcv

e0uX12u
.33107 V/cm. ~32!

Figure 1 depicts the dependence of the harmonic intensity
generation of harmonics in a fieldF543106 V/cm (r540
andq515! on the harmonic’s number. We see that the hig
est harmonic has the numberNmax, which means that
\V59.5 eV. The absorption coefficient at this waveleng
in GaAs is 105– 106 cm21 ~see Ref. 12!.

Thus, to observe this harmonic we need a film with
thickness 300–1000 Å. A convenient way of recording t
harmonics is to study the photoemissive effect they produ
For GaAs the photoemission threshold ish55.5 eV ~see
Ref. 13!, which corresponds to a threshold harmonic with
numberNth555. The absorption coefficient in the interv
between the 55th and 95th harmonics, which is capable
causing a photoemissive effect in the crystal, varies re
tively weakly. As a result, the energy distribution of the ph
toelectrons generally follows the harmonic intensity distrib
tion ~see Fig. 1!.

Note that a direct multiphoton photoelectric effect in t
crystal determines the energy of an emitted electron in te
of the free electron massm0 . Here, if we employ the Volkov
solutions for a free electron, the corresponding cutoff eff
for the energy of the emitted electron is clearly given by

«5h12«F
~0! , «F

~0!5
e0

2F2

4m0v2 . ~33!

Since the ponderomotive potentials«F
(0) and«F differ by

a factor ofm/m0 , so will the values of the energies of th
emitted electron for these two competing mechanisms of
photoelectron formation.

Naturally, a fraction of the harmonics that land in th
band gap will freely leave the crystal. In our example o
GaAs crystal, for a photon energy\v50.05 eV and a field
strength 1.43106 V cm21 the crystal will emit harmonics in
the plateau region with numbers ranging from the 20th to
30th.

51 JETP 85 (1), July 1997
e
re-

d
es

or

-

e
e.

of
-

-
-

s

t

e

e

marks.

APPENDIX

Consider the integral

I 5E
2`

`

dz
F~z!

~z2 ia1!~z1 ia2!
,

F~z!5u~ t2t8! f ~z!

3expH iBE
t8

t
Az21zA~ t1!1C~ t1!dt1J ,

whereF(z) has no poles and decreases as a power func
at infinity. We examine the pole in the upper half-plane
z5 ia1 . The residue at this point requires that the Jord
lemma be valid. We close the integration contour in the u
per half-plane and examine the behavior of the integra
F(z)/(z1 ia2) at z5uzueiw:

uzu→`, wP@0,v#.

Clearly,F(z) with uzu→` is

u~ t2t8!exp$ i ~ t2t8!uzueiw%→0.

~One can easily verify that on the raysw5p/4 and 3p/4 the
integrand in the integral with respect tot1 is also indepen-
dent oft asuzu→`.! The integrals for the complex conjuga
function, where the contour is closed in the lower half-pla
can be calculated in a similar manner.
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Polarization characteristics of the ‘‘forbidden’’ second optical harmonic of femtosecond

en-
laser pulses in a bacteriorhodopsin solution
A. V. Balakin, N. I. Koroteev, A. V. Pakulev, and A. P. Shkurinov

International Laser Center and Physics Department, M. V. Lomonosov Moscow State University,
119899 Moscow, Russia

D. Boucher, P. Masselin, and E. Fertein

Laboratoire de Physico Chimie de l’Atmosphe`re, Universitédu Littoral, 59379 Dunkerque, Cedex 1, France
~Submitted 9 December 1996!
Zh. Éksp. Teor. Fiz.112, 97–114~July 1997!

The generation of the second harmonic of femtosecond laser pulses in a bacteriorhodopsin
solution has been experimentally studied for various wavelengths and polarization states of
radiation at the fundamental frequency. The polarization properties of the effect are
analyzed under various experimental conditions. The nature and properties of the signal are
treated as the manifestation of a superposition of nonlinear optical effects of various orders~the
second and the fourth!. The second-order effects can have both an electric-dipole and a
magnetic-dipole or electric-quadrupole character. In analyzing fourth-order processes, besides the
direct electric-dipole contribution, the possibility of the participation of cascade processes at
second- and third-order nonlinearities is also allowed. ©1997 American Institute of Physics.
@S1063-7761~97!00907-4#

1. INTRODUCTION active liquids. It has been shown that second-harmonic g
t
ti
o
a
o

,
ce
io
ta
so

th
-

ym
s,
n
pe
ic-
ia

c
by
le
m

l-

op
ha
in
-
o
ll

me-
nce

cep-
e-

pic

e-
ith
or-

ar

r ra-
nes

ces
en-
ded
ond

sion
ter-

in
igh

lar-
nd
at

eigh
nd-
een

t to

-09
Nonlinear second-order optical processes such as
generation of the second optical harmonic and the genera
of radiation at sum and difference frequencies make it p
sible to obtain unique information concerning the intern
structure of crystals, thin films, surfaces, and interfaces
both centrosymmetric and noncentrosymmetric materials
well as concerning laser-induced processes on the surfa1,2

From the standpoint of a phenomenological descript
of second-order nonlinear optical processes, one impor
factor is the symmetry of the medium. Thus, inside an i
tropic centrosymmetric~i.e., invariant under inversion! me-
dium, even-order nonlinear processes are forbidden in
electric-dipole approximation.3 This forbiddenness can be re
moved at the interface between two media, where the s
metry breaks down,4 while inside centrosymmetric material
generation of the second optical harmonic and generatio
radiation at the sum and difference frequencies can ap
only because of ‘‘nonlocal’’—quadrupole and magnet
dipole—interactions.1,2,5,6 In homogeneous isotropic med
in which there is no macroscopic inversion center~i.e., in
noncentrosymmetric media, including isotropic media su
as optically active liquids!, nonlinear processes generated
even-order dipolar optical susceptibilities become possib7

Noncentrosymmetric properties are possessed by many
lecular systems in which intrinsic~internal! asymmetry
exists,8 including solutions of natural biological macromo
ecules with helical structure.9

Substantial interest in the study of the asymmetry pr
erties of complex molecules by nonlinear-optics methods
resulted in recent years in a number of interest
experimental10,11 and theoretical12,13 papers on second
harmonic generation from the free surfaces of solutions c
taining noncentrosymmetric molecules and native optica
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eration in this case can be sensitive to the noncentrosym
try of the medium being studied, because of the appeara
of specific components of the nonlinear second-order sus
tibility tensor x (2) that are absent in a centrosymmetric m
dium.

Even-order nonlinear optical processes in an isotro
medium that were sensitive to its noncentrosymmetry~gyrot-
ropy, chirality! were observed for the first time in nonrac
mic solutions ofd and l arabinose, and were associated w
electric-dipole nonlinear optical susceptibilities of second
der ~generation of radiation at a sum frequency!14 and fourth
order ~generation of the second harmonic in noncolline
beams!.15

Our previous papers16,17 described for the first time the
generation of the second harmonic of femtosecond lase
diation in a finely dispersed suspension of purple membra
~with fragment sizes less than 50 nm! containing bacterior-
hodopsin. It was shown from an analysis of the dependen
of the intensity of the second-harmonic signal on the int
sity of the fundamental-frequency pulses that the recor
signal is caused by bulk nonlinear processes of both sec
and fourth order and their interference.

Second-harmonic generation in an aqueous suspen
of large fragments of purple membranes having a charac
istic size of up to 1mm was reported in Refs. 18 and 19,
which the recorded process was explained by hyper-Rayle
scattering resulting from high nonlinear second-order po
izability of each fragment of the membrane as a whole, a
also in Ref. 20, in which, on the contrary, it was noted th
the recorded process is not associated with hyper-Rayl
scattering. The nature of the emergence of the seco
harmonic signal in a bacteriorhodopsin suspension has b
the subject of intense discussion in the literature.21,22 How-
ever, the experimental and theoretical studies have ye

52$10.00 © 1997 American Institute of Physics
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FIG. 1. Layout of experimental appa
ratus. GTP are Glan prisms, DFR is
double Fresnel rhomb, SFR is a sing
Fresnel rhomb, SSF is a spatial spe
tral filter, M are mirrors, L are lenses
GF is a glass color filter, S is the
sample, and LN CCD is a CCD cam
era.
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come to be called in the literature the generation of the
bidden second harmonic.

The bacteriorhodopsin molecules are grouped in
membrane into unit cells with three molecules apiece~a tri-
mer!, while the individual cells are arranged in a hexago
two-dimensional lattice.23 Since the size of a single trime
does not exceed 6 nm, each membrane fragment in the
erences indicated above contained about 50 000 bacte
hodopsin molecules. It can be assumed that the sec
harmonic radiation from molecules localized in an individu
membrane was spatially coherent in this case, while the
diation generated by different membranes added inco
ently. Each membrane fragment can be regarded as a s
scattering center whose hyperpolarizability is proportiona
the mean number of bacteriorhodopsin molecules found i
Coherent generation of the second harmonic of monoc
matic radiation within a homogeneous isotropic medium
strictly forbidden in the electric-dipole approximation ev
when the medium is macroscopically noncentrosymmetr7

With respect to the generation of the second harmonic
circularly polarized beams, a ‘‘double forbiddenness’’ is a
tive in such media—in addition to the first, there is a forb
denness associated with the impossibility of conserving
momentum of a pulse of optical radiation when the seco
and higher harmonics are generated.24,25

This paper, which is a continuation of Refs. 16 and 1
discusses the polarization dependence of the generatio
the second harmonic of femtosecond pulses in a finely
persed suspension of fragments of purple membranes.
use of femtosecond pulsed laser radiation made it possib
increase the peak radiation power while keeping the ene
of the light pulses at a level low enough not to damage
test object. The characteristics of the processes under in
tigation differ radically from the basic characteristics
hyper-Rayleigh scattering and can be interpreted only by
ing into account the fourth-order electric-dipole nonline
optical susceptibility of the medium and second-order n
local processes.

2. EXPERIMENTAL APPARATUS AND SAMPLE
PREPARATION

A diagram of the experimental apparatus is shown
Fig. 1. Laser radiation of femtosecond width was formed a
amplified by means of a Mira 900 solid-state titanium
sapphire laser and a RegA 9000 regenerative ampli
pumped with all the lines of an Innova 425 Ar1 laser. De-
pending on the experimental conditions, we used light pu
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converted by means of an OPA 9400 optical parametric a
plifier ~shown in Fig. 1 with a dashed outline!. In the latter
case, the femtosecond continuum obtained by focusing
amplified pulses of the master oscillator into a sapphire p
was used as trigger radiation. All the laser equipment is p
duced by Coherent, Inc. When the parametric amplifier w
used, the experimental system also included a two-prism
tial spectral filter SSF~shown in the figure with a dashe
outline!, which suppressed the residues of the continuum
diation. The filter uses a two-pass scheme with zero disp
sion, and the input and output radiation were decoupled
the vertical plane.

The polarization and energy characteristics of the fem
second radiation were controlled by a common scheme
both cases. A combination of two Glan–Taylor prism
~GTP1 and GTP2! was used to isolate vertical plane pola
ization and to smooth the variation of the radiation ener
The light beam remained plane polarized as it passed thro
a double Fresnel rhomb~DFR!, while the anglew between
the polarization orientation direction of the light wave a
the vertical plane containing the beam axis was varied
rotating the rhomb around an axis coinciding with the prop
gation direction of the ray. A single Fresnel rhomb~SFR!
was used to vary the degree of ellipticity of the radiatio
Rhomb SFR was oriented in such a way that the comp
vector of the electric field of the transmitted light wave va
ied according to the law

E~w!5A~ex cosw1eyi sin w!, ~1!

where A is the field amplitude, andex and ey are, respec-
tively, vertical and horizontal unit vectors forming a plan
perpendicular to the propagation axis of the beam.

Thus, according to Eq.~1!, the radiation had linear ver
tical polarization whenw50°, which changed to right-
circular polarization forw545°, next to linear horizonta
polarization forw590°, then to left circular polarization fo
w5135°, and again to linear vertical polarization fo
w5180°. The intermediate values of anglew corresponded
to different states of the degree of ellipticity and orientati
of the polarization ellipse.

At the output of SFR, the laser radiation had the follo
ing parameters: the wavelength was 820 nm, the spec
width was 8 nm, the pulsewidth at half-height was about 2
fs, the energy per pulse was adjusted over the range 0
mJ, and the pulse repetition rate was 200 kHz. When
optical parametric amplifier was included in the setup,
could obtain at the output of the SFR light pulses tuna

53Balakin et al.
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150 fs at half-height, a maximum energy of 45 nJ, and
repetition rate of 200 kHz.

Focusing lens L1, with a focal length of 17 cm, provid
a beam convergence angle of about 2° inside the medium
interest in the first case and about 1° in the second. Ass
ing a Gaussian beam and allowing for the initial divergen
the beam-waist diameters at the focus of the lens were
mm and 30mm, respectively. Fused-quartz spectroscopic c
S, in which the test solution was placed, had internal dim
sions of 1032.5 mm, and focusing took place along the lo
side of the cell. Using quartz lens L2, the radiation to
recorded at the second-harmonic frequency was collima
and directed into the analyzer—a Glan–Taylor pris
~GTP3!. Prism GTP3 was oriented in such a way that t
recorded second-harmonic signal was minimal when the
entation of the polarization vector of the exciting radiati
was horizontal. The use of the analyzer and the choice o
orientation made it possible to eliminate the influence of
polarization dependence of the reflectance of the sp
trograph gratings.

The second-harmonic radiation was next isolated w
the help of suitable glass filters~GF! and was focused by len
L3, with focal length 5 cm, onto the entrance slit of
Chromex 500IS spectrograph. An SZS 21 filter was u
when the sample was excited by radiation with a wavelen
of 820 nm, and a UFS 1 filter was used for excitation
590-nm radiation. The spectrum of the second-harmonic
nal was recorded by means of a Princeton Instruments
CCD camera~LN CCD! cooled with liquid nitrogen.

A specially prepared finely dispersed suspension of fr
ments of the purple membranes ofHalobacterium Halobium,
containing bacteriorhodopsin, was used for the experime
To reduce the effects associated with structural ordering
the placement of the bacteriorhodopsin in the membra
and to maximize the isotropic distribution of the molecu
in the sample, the membrane fragments, prepared by
standard method,23 were fragmented by means of addition
ultrasound processing with multistep precipitation a
filtering.16 The resulting extract was prepared in a phosph
buffer ~PBS!, which kept the acidity of the solution a
pH57.35.

The quality of the suspension was monitored via mic
scopic measurements of the characteristics of a monol
film obtained by precipitating the prepared sample onto
quartz substrate, with drying at constant humidity. The ch
acteristic size of the membrane fragments was estimate
means of an atomic-force microscope26: for the sample used
in the experiments, it was at most 50 nm~the accuracy with
which the size was measured was determined by the res
tion of the microscope, and equalled 50 nm!. Immediately
after preparation, the suspension contained not only pul
ized but also relatively large particles~more than 50 nm
across!, which precipitated to the bottom of the cell after
sufficiently long delay as the concentration stabilized.

The precipitation dynamics of the large fragments w
studied by recording the absorption spectra of the sam
with a spectrophotometer every 6 min, beginning at the ti
of preparation. Figure 2 shows the spectra recorded imm
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ately after the suspension was placed in the cell~solid curve!
and 1.5 h later, after natural precipitation of the large p
ticles ~dashed curve!. The presence of relatively large mem
brane fragments in the suspension increased the optical
sity of the sample uniformly over the entire spectru
because it increased the concentration of bacteriorhodo
molecules. The kinetics of optical absorption had an ex
nential character, with a characteristic time of 1–1.5 hr
reach the steady state.

A naturally precipitated sample with properties close
those of a colloidal solution was used in subsequent exp
ments. The absorption spectrum of the sample was simila
the spectrum shown in Fig. 2 as a dashed curve. The m
mum absorptance in the visible region (l5568 nm) was at
most 10% when the cell was 1 cm long, which correspond
to a concentration of bacteriorhodopsin molecules of ab
1026 M.

3. EXPERIMENTAL RESULTS

For this paper, we experimentally studied the polariz
tion dependence of the second-harmonic signal intensity
suspension of purple membranes, both off-resonance a
fundamental frequency (lv5820 nm), and with resonan
excitation (lv5590 nm). The wavelength of the fundame
tal and the second harmonic for both cases is marked in
2 by vertical arrows. The absorption of the test sample can
considered negligible atlv5820 nm, but it is nonzero at the
second-harmonic wavelength (l2v5410 nm). Absorption is
strong at lv5590 nm and the corresponding secon
harmonic wavelengthl2v5295 nm, which can easily be
seen from Fig. 2.

Figure 3 shows how the energy of the pulses of seco
harmonic radiation generated in a bacteriorhodopsin sus
sion, normalized to the maximum value, depends on the
larization state of the pump radiation upon entering the
medium for nonresonant irradiation of the samp
(lv5820 nm). The different curves correspond to differe
experimental conditions.

FIG. 2. Absorption spectra of an unprecipitated sample~solid curve! and a
completely precipitated sample~dashed curve! containing bacteriorhodop-
sin. A is the optical density, andl is the wavelength in nanometers.
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Curve 1 was obtained using input radiation pulses w
an energy of 1.2mJ/pulse. The energy has characteris
maxima for circular polarization of the initial radiation an
minima when the polarization is linear. An appreciable d
ference of the signal intensity of the second harmonic can
seen for right~w545° and 225°! and left (w5135° and
315°! circular polarization. This difference can probably
associated with macroscopic noncentrosymmetry~chirality!
of the test medium, which causes the nonlinear susceptib
to be different for right- and left-circularly polarized initia
radiation. Since the concentration of the solution was kep
a low level, no appreciable manifestations of linear opti
rotation or circular dichroism were observed in the sample
the fundamental frequency.

Another typical feature of the polarization dependen
shown here is that the signal is different for the two mutua
perpendicular linear polarizations of the fundamental rad
tion. It should be pointed out that the difference of t
second-harmonic signal from zero when the input polari
tion is orthogonal to the output cannot be explained
simple scattering depolarization, since the latter, as show
special measurements that we carried out, was negligibl

In order to check whether the second-harmonic gen
tion process is a consequence of surface effects at the i
face between the test sample and the cell material, the p
ization dependence measured under the same conditions
studied at 45° incidence of the exciting radiation at the in
face of the cell. Surface generation of the second harmon
forbidden for normal incidence of the input radiation at t
interface between two media. Since the input beam had fi
divergence, it stands to reason that an interface could c
tribute to the second-harmonic signal even at normal in
dence. In this case, a significant increase in second-harm
intensity should be observed as the angle of incidence
creases, reaching a maximum value at 45°.

In our experiments, the maximum recorded signal

FIG. 3. Energy of second-harmonic pulses in a bacteriorhodopsin solu
vs. the polarization state of radiation at the fundamental freque
(lv5820 nm) in the absence of absorption for various energiesWv and
widths tp of the exciting pulses:1—Wv51.2 mJ, tp5250 fs; 2—
Wv50.17mJ, tp5250 fs; 3—Wv50.17mJ, tp50.9 ps. Each experimen
tal curve is normalized to its maximum value. Anglew ~in degrees! defines
the polarization state of the input radiation according to Eq.~1!.
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the conversion efficiency on the input polarization state w
essentially identical~to within the experimental errors! to the
dependence ofI in Fig. 3. Moreover, we took special mea
sures in all of our experiments to position the beam wais
the fundamental radiation at the center of the cell and no
the input or output window. Effects associated with nonl
ear susceptibility of the interface between two media thus
not substantially influence the experimental results.

Curve2 in Fig. 3 reflects the dependence obtained un
the same conditions as for1 but with a lower input-pulse
energy~0.17mJ!. It can be seen from Fig. 3 that the charac
of the dependence changes as the energy decreases. It s
be pointed out that there are differences between the sec
harmonic signal values atw50°, 180°, and 360°~where the
plane-polarized radiation at the input is parallel to the dir
tion of maximum transmission of the analyzer! andw590°
and 270°~with orthogonal orientation!, as well as atw545°
and 135°~right- and left-circular polarization of the inpu
radiation, respectively!. Decreasing the peak intensity of th
pump radiation~without changing the pulsewidth and th
beam size! reduces the difference between the maxima a
consequently reduces the sensitivity of the experiment to
chirality of the medium.

As the peak intensity of the exciting radiation is furth
reduced~curve 3!, the dips in the neighborhood ofw50°,
180°, and 360° disappear almost completely. The differen
in the second-harmonic signal amplitudes for right- and le
circularly polarized input radiation also disappear. The
sults shown by the given curve are obtained by means
pulse with incompletely compensated dispersion of the gr
velocity ~linear chirp! of the exciting radiation, having a
pulsewidth of about 900 fs and the same spectral width
energy as the pulse for curve2. The polarization dependenc
represented by curve3 is close to the analogous dependen
that we obtained under the same conditions, but using na
second exciting radiation whose peak power was at leas
order of magnitude lower.16

When the sample undergoes resonant excitation a
wavelength oflv5590 nm, the dependence of the secon
harmonic intensity on the polarization state of the initial r
diation has an essentially different character~Fig. 4!. The
second-harmonic signal in this dependence is also norm
ized to the maximum value, which was a factor of 3–4 low
in absolute value than the maximum signal in the nonre
nant case~Fig. 3, curve1!. However, it must be emphasize
that the energy of the pulses at 590 nm was at most 45
i.e., the peak intensity of the radiation in the test samp
taking into account the other parameters~shorter pulsewidth
and less divergence! was two orders of magnitude less tha
in the nonresonant case. An increase in the efficiency of
second-harmonic generation process was thus observe
going to resonant excitation conditions. The increase
modulation depth~to 70%! shows that the observed amplifi
cation is selective with respect to the polarization state of
pump radiation upon entering the medium; it is greatest fo
circularly polarized wave and least for a plane-polariz
wave. Moreover, the difference in the conversion efficien
disappears for input radiation plane-polarized in the verti

n
y
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dipole susceptibility tensorx i jk
(2)D go to zero as a consequence
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~w50°, 180°! and horizontal~w590°, 270°! planes, as well
as for right-circular (w545°, 225°! and left-circular ~w
5135°, 315°! polarization.

4. GENERAL APPROACH TO ANALYZING THE PROCESS
OF GENERATING THE SUM FREQUENCY AND THE
SECOND OPTICAL HARMONIC WITHIN GYROTROPIC
(CHIRAL) MEDIA

A phenomenological analysis of nonlinear optical pr
cesses in macroscopically isotropic noncentrosymme
~chiral! media was carried out in Refs. 7 and 27. A spec
feature of the theoretical approach to describing the exp
ment reported in this paper is that the experimentally
corded second-harmonic signal cannot be ascribed to
one isolated optical nonlinearity mechanism. We show
earlier16,17 that the second-harmonic signal in a bacter
rhodopsin solution excited with femtosecond light pulses
determined by the interference of at least two coherent c
tributions, due to nonlinear susceptibilities of different o
ders,x (2) andx (4).

We first consider possible contributions to the record
signal by second-order nonlinear processes. In the elec
dipole approximation, the nonlinear polarizationPNL of the
medium at the sum frequencyv11v2 , induced by two non-
collinear plane monochromatic wavesEa(v1) and Eb(v2),
can be represented as

Pi
~2!D~v11v2!5D2x i jk

~2!D~v11v2 ;v1 ,v2!

3Ej
a~v1!Ek

b~v2!, ~2!

whereEj
a(v1) andEk

b(v2) are the vector components of th
electric fields of the corresponding light waves, andD2 is a
factor that takes possible frequency degeneracy into acco
Repeated Cartesian indices represent summation from 1

In the case of frequency degeneracy, i.e., if the frequ
ciesv1 andv2 coincide, all the components of the electri

FIG. 4. Energy of second-harmonic pulses in a bacteriorhodopsin solu
vs. the polarization state of the input radiation in the presence of absorp
at the fundamental frequency~lv5590 nm,Wv545 nJ, tp5150 fs!. The
curve is normalized to the maximum value.
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of permutation symmetry over the last two subscripts, ev
in a noncentrosymmetric isotropic medium.7,28 However,
with noncollinear interaction, in the nondegenerate ca
whenv1 Þ v2 , radiation can be generated at the sum f
quency because of the frequency dispersion of the sec
order nonlinear electric-dipole polarizability of the mo
ecules studied here.28 In analyzing second-harmoni
generation in a focused beam of femtosecond laser pulse~as
in our experiments—see above! with relatively large spectra
width ~in the given paper, about 8 nm at a wavelength of 8
nm!, the noncollinear frequency-nondegenerate characte
the electric-dipole interaction must be taken into accou
The various spectral components of the focused femtosec
pulse can interact among themselves, generating radiatio
the sum frequency. The spectrum of the recorded signal
be localized at the second-harmonic frequency, and has fi
width.

The finite spatial size of the molecular system, comp
rable with the wavelength of the light, suggests that spa
dispersion effects of the nonlinear susceptibilities can p
an appreciable role in the nonlinear optical processes un
consideration. This is especially promoted by the presenc
spiral components in the structure of the bacteriorhodop
molecule, which produce a substantial magnetic momen
addition to the electric-dipole moment. The presence o
nonzero magnetic moment induced by the electric field of
light wave, as well as an electric dipole moment oscillati
at the second-harmonic frequency, induced by the combi
action of the electric and magnetic fields of the light wav
causes a magnetic-dipole component to appear in the re
ing electromagnetic field at the second-harmonic frequen
which is determined by the nonlinear susceptibilityx (2)M.
The relatively large spatial size of the bacteriorhodop
molecule23 can also engender a substantial contribution
termined by the quadrupole susceptibilityx (2)Q of the me-
dium of interest.5

When the spatial-dispersion effects of the nonlinear s
ceptibilities are allowed for, the induced nonlinear polariz
tion of the medium, along with the purely electric-dipo
contribution of Eq.~2!, will contain ‘‘nonlocal’’ contribu-
tions corresponding to the magnetic-dipole and elect
quadrupole interactions:

Pi
~2!M~2v!5D2x i jk

~2!M~2v;v,v!Ej
a~v!Hk

b~v!, ~3!

Pi
~2!Q~2v!5D2x i jkl

~2!Q~2v;v,v!¹ jEk
a~v!El

b~v!, ~4!

whereHk
b(v) is the magnetic field component correspondi

to the light wave, and¹ j is the differentiation operator alon
the corresponding coordinate, with the indicated opera
acting on each of the fields lying to the right of it.

Equations~3! and~4! are written for the degenerate cas
in which the frequencies coincide,v15v25v, on the as-
sumption of noncollinearity of the interaction. Such a rep
sentation is assumed to be justified in zeroth order of
theory of the frequency dispersion of the optical susceptib
ties, since nonzero components of the second-or
magnetic-dipole and electric-quadrupole susceptibility t
sors exist in the degenerate version of the interaction

n
on
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isotropic media. We point out that nonlocal second-order
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processes can occur in centrosymmetric mediaand can be
associated in the same way with the ‘‘chiral-insensitiv
components of the hyperpolarizability tensor of the chi
molecules being studied. Therefore, a nongyrotropic con
bution will be present in the second-harmonic signal alo
with the ‘‘chiral-sensitive’’ contributions.

Femtosecond laser radiation having a high peak inten
provides a unique capability for studying processes ass
ated with high-order nonlinear optical susceptibilities, in p
ticular those with fourth-order nonlinear susceptibility. In t
electric-dipole approximation, the induced nonlinear pol
ization P(4)D of the medium at the second-harmonic fr
quency, due to the indicated processes, can be express
terms of the components of the fourth-order electric-dip
nonlinear susceptibility tensorx i jklm

(4)D in the form7

Pi
~4!D~2v!5D4x i jklm

~4!D ~2v;v,v,v,2v!

3Ej
a~v!Ek

a~v!El
a~v!Em

b* ~v!, ~5!

whereD4 is a 4-factor that allows for frequency degenera
and the asterisk denotes the complex conjugate.

Unlike the second-order electric-dipole susceptibil
tensor in Eq.~2!, the tensorx i jklm

(4)D in a macroscopically non
centrosymmetric medium has nonzero components eve
the degenerate case, and therefore Eq.~5! is written in the
zeroth approximation of frequency dispersion. The nonlo
fourth-order contributions can also be neglected, since
nonlinear susceptibilitiesx (4)M and x (4)Q corresponding to
these processes are of the order ofd/l with respect to the
corresponding fourth-order electric-dipole susceptibility~d is
the characteristic size of the molecule, andl is the wave-
length!. Therefore, we shall restrict ourselves in what follow
to the consideration of nonlocal second-order contributio

In the nonlinear optics of high-order nonlinearities,30 it is
well known that besides the contribution of the ‘‘direct
nonlinear optical process of higher order~in our case, the
fourth order, due to the nonlinear polarization of Eq.~5!!,
there exist ‘‘cascade’’ processes~of the same order in the
optical field!, which result from the simultaneous presence
several lower-order nonlinearities.7 In particular, a process
can occur as follows:

1. In the first stage, a second-harmonic field~frequency
2v! is generated because of a quadratic nonlinearity of
form of Eqs.~2!–~4!.

2. In the second stage of the cascade, the sec
harmonic field is mixed with the field of the fundament
frequencyv at a third-order dipole nonlinearity according
the scheme 2v52v1v2v.

According to Refs. 31, 32, and 33, chap. 4, the seco
harmonic field generated in a liquid in stage 1 can be writ

E~2v!5
4pk~k–P~2!~2v!!

uku2«~2v!
1

4p

~ck/2v!22«~v!

3H P~2!~2v!2
k

uku2 ~k–P~2!~2v!!J , ~6!

where

P~2!~2v!5P~2!D~2v!1P~2!Q~2v!1P~2!M~2v!, ~7!
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andP (2v) are defined in Eqs.~2!, ~3!, and~4!, respec-
tively; k52kv is the wave vector of a wave with nonlinea
polarization at the doubled frequency; and«~2v! and «~v!
are the permittivity of the liquid at the second-harmonic fr
quency and the fundamental frequency, respectively.

The second-harmonic field of Eq.~6! is mixed with the
fundamental-frequency fieldE~v! in the second stage of th
cascade, with the generation of fourth-order nonlinear c
cade polarization at the second-harmonic frequency, of
following form:33

P~4!cas~2v!5D3$x1122
~3! ~2v;2v,v,2v!

3E~2v!~E~v!E* ~v!!

1x1212
~3! ~2v;2v,v,2v!E~v!

3~E~2v!E* ~v!!1x1221
~3! ~2v;2v,v,2v!

3E* ~v!~E~2v!E~v!!%. ~8!

Here D3 is a frequency degeneracy factor~in this case,
D356!, andx1122

(3) (2v;2v,v,2v), etc. are the correspond
ing linearly independent components of the third-ord
~electric-dipole! nonlinear optical susceptibility tensor.

Another possible process contributing to the effect
nonlinear fourth-order susceptibility is the following:

~1! In the first stage, self-action of the fundamenta
frequency wave occurs~because of third-order dipolar non
linear susceptibility!, due to cubic nonlinear polarizability o
the form

Pi
~3!~v!5D3x i jkl

~3!D~v;v,v,2v!Ej~v!Ek~v!Ei* ~v!,
~7a!

where D3 is a frequency degeneracy factor, an
x i jkl

(3)D(v;v,v,2v) are the components of the third-ord
~electric-dipole! nonlinear optical susceptibility tensor.

~2! In the second stage of the cascade, the seco
harmonic field is generated~because of second-order nonlin
ear susceptibility! with the participation of waves of the fun
damental frequency partially modified by the self-acti
process, which is determined by nonlinear polarization of
form of Eq. ~7a!. In this stage, the nonlinear polarizatio
induced in the medium at the second-harmonic freque
can be written in the form

Pi
~4!cas~2v!5x i jk

~2!~2v;v,v!Ej8~v!Ek~v!. ~8a!

Herex i jk
(2)(2v;v,v) are the components of the second-ord

nonlinear optical susceptibility tensor, and the prime deno
the optical field of the fundamental frequency, modified
the self-action effect of Eq.~7a!.

The self-action described by the nonlinear polarizat
of Eq. ~7a! can manifest itself in phase self-modulation of t
fundamental-frequency field, thereby broadening its sp
trum, and in distortion of the phase front of the light wav
causing self-focusing/self-defocusing of the light beam34

and, if the input wave is elliptically polarized, causing se
rotation of the polarization ellipse. Of all the enumerat
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consequences of the self-action of the fundamental-
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frequency wave, the last effect might play the greatest r
under our experimental conditions.

The cascade polarization of Eq.~8! can be comparable in
magnitude to the direct fourth-order polarization of Eq.~5!.
Writing Eq. ~8! in Cartesian coordinates and using Eq.~6!,
expressions can be obtained for the fourth-order casc
nonlinearities, which are too involved to include here.

The total fourth-order nonlinearity can be written as

x i jklm
~4! ~2v;v,v,v,2v!5x i jklm

~4!D ~2v;v,v,v,2v!

1x i jklm
~4!cas~2v;v,v,v,2v!.

~9!

Initially assuming that the nonlinear susceptibilities are co
plex quantities~because of the possible electronic resona
associated with absorption at one or several of the wa
lengths involved in the interaction!, it is necessary to take
into account not only the amplitudes but also the phase
the individual components, as well as the possible inter
ence of the different contributions. This circumstance is s
cessfully used, for example, in coherent anti-Stokes Ram
spectroscopy~CARS!33 to analyze and separate the inform
tive coherent contributions in the CARS signal.35 It must be
kept in mind in this case that, besides the interference
coherent processes of the same order~electric-dipole and
magnetic-dipole!, processes that have different orders
nonlinearity can also interfere.

Let us assume that the recorded signal at the sec
harmonic frequency is generated by two coherent sour
the first of which is a sum of the contributions due to no
linear susceptibilitiesx (2)D, x (2)M, andx (2)Q, while the sec-
ond is due to nonlinear susceptibilityx (4) ~direct and cascade
processes!. Fundamental-frequency radiation with intens
I v and complex field amplitudeE(v) induces in the
medium two waves with nonlinear polarizatio
and complex amplitudes P(2)(2v)5x (2)E2(v) and
P(4)(2v)5x (4)E3(v)E* (v) that interfere with each other
The amplitude of the total nonlinear polarization of the m
dium can then be written as

PNL~2v!5P~2!~2v!1P~4!~2v!, ~10!

whereP(2)(v) is determined by Eq.~7!, P(4)(2v) is deter-
mined by the sum of the nonlinear polarization waves giv
in Eqs. ~5!, ~8!, and ~8a!, and the second-harmonic sign
intensity is I 2v }u PNL(2v)u2.

Strictly speaking, the dependence of the seco
harmonic field intensity is determined not only by the no
linear polarizabilityPNL(2v) and consequently by the non
linear susceptibilities~direct and cascade! but also by the
linear optical susceptibilities at the fundamental frequen
x (1)(v), and the doubled frequency,x (1)(2v), since the
‘‘coherence length’’ depends on these latter susceptibili
during second-harmonic generation. This quantity in our
periments wasl coh5p/Dk5lv/4(n2v2nv)'15 mm when
lv5820 nm andl coh8 '5 mm when lv5590 nm ~nv and
n2v are the refractive indices of the bacteriorhodopsin so
tion at the corresponding frequencies!. However, the corre-
sponding factor in the expression for the second-harmo
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solution and the beam-focusing parameters at the fundam
tal frequency, which remained unchanged during our exp
ments; therefore, in describing the dependence of the sec
harmonic intensity on the polarization state and intensity
the fundamental-frequency wave, we shall be interested o
in the corresponding dependence of the nonlinear optical
larization.

In general, the complex nonlinear susceptibilitiesx (2)

and x (4) can be represented asx (n)5ux (n)uexp(ian), where
an is a phase factor that reflects the complex character of
corresponding quantity. The intensity of the secon
harmonic signal in this case can be written

I 2v}uPNL~2v!u2}ux~2!u2 I v
2 12ux~2!uux~4!ucosaI v

3

1ux~4!u2 I v
4 , ~11!

wherea5a42a2 reflects the phase shift between the co
plex values ofx (2) andx (4).

The dependence of the total second-harmonic signal
termined by Eq.~11! has a complex character and contai
not only second- and fourth-order contributions but also
interference term that determines a contribution that depe
cubically on the initial radiation intensity. Note that eith
constructive or destructive interference can occur, depend
on the sign of cosa. From an analysis of the experimental
measured dependenceI 2v5 f (I v), we established in Ref. 17
that whenlv5820 nm,a515362°, so that cosa520.89,
and the interference was destructive.

A more rigorous treatment requires that the tensor ch
acter of the nonlinear susceptibilities defined by Eqs.~2!–~5!
and~9! be taken into account. In this case, the induced n
linear polarizations in Eq.~10! are vector quantities, and
their direction and amplitude will depend on the polarizati
state of the initial radiation. Then Eq.~11! remains in force,
if by x (2) andx (4) we denote the polarization-dependent e
fective nonlinear susceptibilities of the corresponding orde
The total second-harmonic intensity will also have a co
plex polarization dependence, with the character of the la
being determined not only by the relationship among
components of the nonlinear susceptibility tensors, but a
by the intensity of the initial radiation.

5. DISCUSSION OF THE EXPERIMENTAL RESULTS

It must be pointed out, above all, that the form of t
polarization dependence shown in Figs. 3 and 4 substant
differs from the corresponding dependence predicted
hyper-Rayleigh scattering theory.36 In fact, the hyper-
Rayleigh scattering signal intensity should be maximiz
when the exciting radiation has linear polarization and
oriented in a plane coincident with that of the maximu
transmittance of the analyzer, whereas in our experimen
high intensities of nonresonant exciting radiation, as well
with resonant excitation, the maximum is reached when
polarization is circular. The authors of Refs. 19 and 22 as
ciate the anomalously high level of hyper-Rayleigh scatt
ing that they observed with the coherent character of
radiation of dipoles located in the same membrane, so
the fact that a maximum of the second-harmonic signa
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present for circular polarization of the input radiation is
21,22
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noted as a distinguishing feature of such an interaction.
The intensity of the second-harmonic radiation in this cas
proportional to the square of the number of molecules in
individual membrane. The characteristic size of the me
branes in our experiments was less by a factor of 10–20
that the individual fragments contained about 200–500 b
teriorhodopsin molecules. The lower concentration of bac
riorhodopsin molecules corresponded to approximately
same number of fragments per unit volume of the suspen
as in the papers cited above. The efficiency of hyp
Rayleigh scattering should have been reduced by abo
factor of 104 in this case, and should be below the sensitiv
limits of the recording apparatus in our experiments.

Two more experimental facts must also be pointed o
For a sufficiently high intensity of the exciting radiatio
~curve1 in Fig. 3!, the second-harmonic signal intensity h
different values for left- and right-circular polarization of th
input radiation; this is probably associated with the chi
properties of the test medium~here an analogy can be draw
with linear circular dichroism!. Moreover, as our experi
ments showed, for plane-polarized input radiation,
second-harmonic radiation was elliptically polarized~or par-
tially depolarized!, so that rotation of the principal axis of th
polarization ellipse from the linear polarization direction
the input radiation was observed~an analogy can be draw
with linear optical rotation!. This rotation, however, canno
be explained by linear optical rotation at the fundamen
frequency, which, as we have mentioned, was small. Th
two facts are not explained by the extended theory of hyp
Rayleigh scattering of Refs. 21 and 22, in terms of whic
suspension of purple membranes is represented by a
trosymmetric medium.

We now point out the other principal features of t
experimental technique that we used. The process of sec
harmonic generation was observed by means of femtose
laser pulses having high peak power~all the way to
43106 W! with relatively low mean power of the radiatio
~no more than 200 mW!. The exciting radiation had a rela
tively high spectral width (dl/l'1022). The experiment
was carried out using focused beams, so that the wave
volved in the excitation process substantially differed fro
plane waves.

A theoretical analysis of second-harmonic generation
a gyrotropic medium consisting of arbitrarily oriented chir
molecules requires that one take into account local~electric-
dipole! second- and fourth-order nonlinear contributions,
well as nonlocal~quadratic and magnetic-dipole! second-
order contributions. The most general approach to formu
ing the basic principles of this analysis is outlined in t
preceding section. However, a more complete and deta
theoretical analysis of the mutual influence of all the in
cated contributions requires separate consideration. In
section, we wish to concentrate on a qualitative analysis
the basic characteristics of the recorded processes.

The generation of the second harmonic of monoch
matic radiation due to nonlinear second-order susceptib
is forbidden even in a gyrotropic isotropic medium.7 When
the initial spectrum in noncollinear geometry has a la
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citing radiation~the generation of sum frequencies! becomes
important. In the linear approximation of quadratic nonli
earity theory,28 it can be expected that the effective value
the second-order electric-dipole nonlinear susceptibility w
be proportional todl/Dl, wheredl is the spectral width of
the exciting radiation andDl is the offset of the wavelength
l of the exciting radiation from the maximum of the absor
tion band. The magnetic-dipole and quadrupole suscepti
ties are of orderd/l, whered is the characteristic size of
single molecule. Taking into account our experimental p
rameters, it can be seen that the local and nonlocal sec
order contributions can have comparable values.

An important difference between local and nonloc
nonlinearities is their differing sensitivity to the symmetry
the medium and the geometry of the experiment. Nonlin
polarization induced in a gyrotropic medium by magnet
dipole and quadrupole interactions is identical for left- a
right-circularly polarized input radiation, whereas polariz
tion induced by electric-dipole interaction should chan
sign when the sign of the ‘‘twist’’ of the light wave’s polar
ization changes. This circumstance can probably explain
intensity difference between the second-harmonic signal
the polarization dependences in Fig. 3 forw545° and
w5135°: the various contributions interfere constructive
in the first case, and destructively in the second.

The polarization dependences shown in Fig. 3 chang
the peak power of the nonresonant interaction at the sam
changes. The greatest changes in second-harmonic sign
tensity occur in the case of plane-polarized input radiat
~w50° and 180°!. This experimental fact can be described
terms of the interference interaction of the second- a
fourth-order optical nonlinearities of the medium determin
by Eq. ~11!: as the intensity of the exciting pulse increase
the contribution of the fourth-order nonlinearity to th
second-harmonic signal increases by comparison with
contribution of the second-order nonlinearity, with the inte
ference of the various contributions having a destruct
character. The destructive character of the interference of
second- and fourth-order processes is confirmed in our o
measurements.16,17 The dependence of the second-harmo
intensity on the intensity of input radiation with femtoseco
excitation substantially differed from quadratic, decreas
significantly at high enough excitation intensities. In th
case, the dips in the polarization dependence atw50° and
w5180° were absent when nanosecond pulses were use
the same sample, whereas the dependence of the sec
harmonic intensity on the excitation intensity was close
quadratic.17

The transition to resonant excitation conditions in o
experiments was accompanied by an increase in the sec
harmonic generation efficiency for circular polarization
the input radiation by comparison with the conversion e
ciency of plane-polarized radiation. This fact can be e
plained by recalling that for fourth-order processes, re
nances play a role not only at the fundamental frequency
at the second-harmonic frequency, but also at intermed
Raman frequencies~in our case, at frequency 3v!.7

This suggests that processes associated with fourth-o
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nonlinear susceptibility experience more efficient amplifica-
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tion in this case. For resonant excitation using nanosec
laser pulses at a wavelength oflv5532 nm, we were unable
to detect a second-harmonic signal; this can be interprete
a reduction of the role of second-order processes when
goes to resonant conditions. The lack of a difference betw
intensity maxima of the second-harmonic signal for wav
with right- and left-circular polarization in Fig. 4 is also con
sistent with the assumption that the contribution of nonlin
second-order processes is small.

In fact, as one goes from right-circular polarization
the exciting radiation to left-circular polarization, the sign
the second-harmonic electric field generated by elect
dipole nonlinear susceptibilities~including fourth order!
changes, by virtue of the chiral properties of the mediu
Since the second-harmonic intensity can be detected in
experiment, such a sign change can be reflected in the s
only in the presence of a ‘‘reference’’ signal of the sam
frequency that is insensitive to right–left circular polariz
tion of the initial radiation, as the second-harmonic radiat
generated by second-order nonlocal contributions might
It therefore stands to reason that the dependence show
Fig. 4 reflects the polarization properties of the seco
harmonic signal generated by the electric-dipole~local!
fourth-order nonlinear optical susceptibility of the te
sample under resonant excitation conditions.

Qualitative analysis of the experimental data shown h
thus makes it possible to conclude that the nonlinear opt
signal observed in our experiments at the second-harm
frequency can be described by a coherent superpositio
different second- and fourth-order nonlinearities,
magnetic-dipole, electric-dipole, and electric-quadrupole
ture.

6. CONCLUSION

The dependence of the second-harmonic generation
tensity in a finely dispersed suspension of purple membra
containing bacteriorhodopsin on the polarization state of
exciting radiation has been measured, using laser pulse
femtosecond width. The femtosecond pulses possessed
ficiently high peak power and low average energy to mak
possible to observe nonlinear optical processes resu
from nonlinear susceptibility not only of second order, b
also of higher~fourth! order, without damaging the objec
under study. A strengthening of the radiation-conversion
ficiency and an increase in the role of higher-order nonlin
susceptibilities in the process of second-harmonic genera
was observed as one goes to resonant excitation conditi
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Tunneling ionization of Rydberg molecules

its
B. A. Zon* )

Voronezh State University, 394693 Voronezh, Russia
~Submitted 20 January 1997!
Zh. Éksp. Teor. Fiz.112, 115–127~July 1997!

The theory of tunneling ionization of atoms is generalized to ionization of symmetric top
molecules, either polar or nonpolar. Low-lying excited states of molecules, for which the ordinary
Born–Oppenheimer approximation holds, and high-lying excited states, for which the
inverse Born–Oppenheimer approximation holds, are discussed. Ionization in a constant external
field is analyzed, as is ionization in an alternating field. It is shown that the orientation of
the molecule’s axis along the field does not lead to any appreciable increase in the ionization
probability as compared to other orientations. ©1997 American Institute of Physics.
@S1063-7761~97!01007-X#

1. INTRODUCTION of the modern state of ADK theory and a comparison of
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The qualitative explanation of tunneling constituted o
of the triumphs of quantum mechanics. However, the qu
titative theory of this phenomenon for atoms and molecu
proved to be difficult. The reason lies primarily in the pre
ence of a long-range Coulomb potential perturbing the e
tron’s motion in the continuous spectrum. Rigorous resu
were obtained only for the hydrogen atom, since in parab
coordinates the variables in the Schro¨dinger equation for an
electron moving in the Coulomb field and a constant exter
electric field separate.1,2

With the development of laser physics the problem
describing the tunneling effect came to the foregrou
thanks to the famous paper of Keldysh,3 who showed that the
tunneling ionization regime emerges in an alternating elec
field as well.

Modern quantitative theory of tunneling began with t
paper of Smirnov and Chibisov,4 who used parabolic coor
dinates to describe electron motion in the tunneling region
an arbitrary atom. The matching of this region with the
cinity of the atomic core takes place on a surface on wh
the sum of the energy of the electron–core interaction
the interaction of the electron with the external field is co
siderably lower than the total electron energy. Clearly, th
ideas are similar to the well-knownR-matrix method in
nuclear reaction theory,5 which recently has found wide ap
plication in the theory of multiphoton processes in atoms a
molecules.6

The next important step was taken by Perelomovet al.,7

who found that Keldysh’s tunneling ionization regime fo
lows, to within a multiplicative factor, from Smirnov an
Chibisov’s formulas if~a! the field is formally assumed to b
alternating and~b! one averages over the field’s period.

In Refs. 4 and 7 the tunneling probability was found
within a constant that determines the asymptotic behavio
the radial wave function of an atomic electron. This const
was calculated by Ammosov, Delone, and Kra�nov,8 who
used the semiclassical approximation and the model pote
method. The resulting theory of tunneling in atoms provid
a quantitative explanation of a number of experimen
results9,10 and became known as ADK theory. A descriptio
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results with experimental data can be found in Ref. 11.
more recent work in this field is the paper of Faisal,12 where
an attempt was made to describe tunneling detachmen
two electrons from an atom.

The present paper develops the theory of tunneling
molecules. In contrast to atoms, an electron in a molec
has no definite value either of orbital angular momentum
the projection of that momentum on the direction of an e
ternal field, quantities that play an important role in t
Smirnov–Chibisov theory. Furthermore, calculations of t
electronic wave functions of molecules done by quant
chemistry methods lead to complicated and implicit dep
dencies of these functions of the angular variables.
present, relatively simple expressions for the angular part
the electronic wave functions for molecules, which a
largely not centrally symmetric, are known only for tw
models: an electron in the field of short-range potentials,13,14

and an electron in the field of a point dipole15–17~a review of
these topics can be found in Ref. 18!. In the present paper th
description is done using the second model, since it co
sponds better to real molecules.

Note that the existing tunneling theory is essentia
single-particle, so that, strictly speaking, it can be appl
only to Rydberg states. However, vibrational and rotatio
excitations play an important role in molecules even in
one-electron approximation. This fact and the lack of sph
cal symmetry complicate the theory of tunneling in mo
ecules considerably.

In Secs. 2 and 3 we discuss the asymptotic behavio
the electronic wave function of a polar molecule inside t
barrier. In Sec. 4 we calculate the probability of tunneli
ionization in a constant uniform external field. Such a field
an interesting object in its own right, in connection partic
larly with problems of ZEKE spectroscopy.19,20 However,
the formulas cannot be applied to high-lying excited Ry
berg states of molecules~and these are studied primarily b
ZEKE-spectroscopy methods! because the adiabatic, o
Born–Oppenheimer, approximation is used in deriving the
the separation of the Rydberg states in this region mus
considerably greater than the frequencies of rotational tr

61$10.00 © 1997 American Institute of Physics
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which the inverse Born–Oppenheimer approximation
valid.18 The corresponding tunneling effect is discussed
Sec. 5.

Section 6 is devoted to a transition from a constant fi
to an alternating one by the method developed in Ref. 7
mentioned earlier. In Sec. 7 we discuss the effect of orie
tion of the molecule. Finally, in Sec. 8 we examine the eff
of the dipole moment on the tunneling probability. We al
calculate the probability of ionization of nonpolar molecule

The influence of collective effects associated with ro
tional and vibrational excitations of the molecule on the tu
neling probability is not studied in this paper. These pro
lems merit a separate investigation.

Throughout the paper we use natural units.

2. WAVE FUNCTION IN THE in -REGION

The effect of an external electric field on the motion
an electron moving inside the barrier created by the field
be ignored.2 In this region the electron moves in the field
the short-range molecular core, the Coulomb field of the
sidual ion with chargez, and the field of the point dipoled at
rest. A fixed orientation of the dipole corresponds to t
Born–Oppenheimer approximation.

In the one-particle approximation one must assume
the core possesses no electron angular momentum tha
fects the motion of the electron. Then the electronic wa
function can be written as15,16

C in~r !5Rn lm~r !Zlm~u,f!. ~1!

Here m is the conserved projection of the electron angu
momentum on the direction of the dipole moment. For sy
metric top molecules, in which the dipole moment is direc
along the symmetry axis~as we assume below!, m50 cor-
responds to theS state,m51 to theP state, etc.

The angular functionsZlm(u,f) are eigenfunctions o
the equation

@L212d cosu#Zlm~u,f!5l lm~l lm11!Zlm~u,f!,

whereL is the orbital angular momentum operator.
The numberl is not the electron’s orbital angular mo

mentum since it is not conserved in the absence of sphe
symmetry, but it labels the eigenvaluesl lm in such a way
that l lm→ l>umu asd→0.

The functionsZlm can be expanded in the usual spheri
harmonics,

Zlm~u,f!5(
l l 8

all 8
m Yl 8m~u,f!, ~2!

where the coefficientsall 8
m obey linear algebraic equation

with a tridiagonal matrix that follow from the above eige
value equation. The solution of these equations based
perturbation theory ind provides a good description of th
exact solutions up to the critical value of the dipole mome
at which a ‘‘fall-to-center’’ effect2 occurs and the point
dipole approximation becomes invalid. Some values ofl lm

obtained by this method are
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Then in ~1! can be interpreted as the electron’s effecti
principal quantum number. If we allow for the short-ran
core in the quantum defect method,21,22 we can write the
radial wave function in~1! in the form23

Rn lm~r !5~21!nCn lm
21/2 z1/2

nr
Wn,l11/2S 2zr

n D ,

Cn lm5S 11
dmn lm

dn DG~n2l!G~n1l11!, ~3!

n[nnlm5n1l112mn lm , l[l lm ,

n50, 1, 2,... is the radial quantum number,mnlm is the quan-
tum defect due to the core, andW is the Whittaker function.
The energy of the state~1! is given by the usual Rydberg
formula

E52
z2

2n2 . ~4!

The radial function~3! differs from the corresponding atomi
function in that the second index in the Whittaker function
not half an odd integer. Note that the quantum defect met
immediately gives the value of the normalization const
Cn lm .

Calculating tunneling probability requires knowing th
asymptotic behavior of the radial function~3! asr→`. If we
use the well-known asymptotic behavior of the Whittak
function,24 we obtain

Rn lm~r !.~21!n
2z3/2

n2 Cn lm
21/2 expS 2

zr

n D S 2zr

n D n21

. ~5!

The wave function is written here in the molecular system
coordinates. Let us go over to the system of coordin
linked to the external field.

3. WAVE FUNCTION IN THE LABORATORY COORDINATE
SYSTEM

We direct thex3 axis of the laboratory system of coo
dinates along the electric fieldF. The x̃3 axis of the molecu-
lar system of coordinates is directed along the dipoled. Let
b be the angle betweend andF; thex1 andx̃1 axes lie in the
same plane as thex3 and x̃3 axes. Then thex2 and x̃2 axes
prove to be coincident, while the transformations of the ot
coordinates are

x35 x̃3 cosb2 x̃1 sin b, x15 x̃3 sin b1 x̃1 cosb.

In addition to Cartesian coordinates, we introduce parab
coordinates in the laboratory reference frame:

x15Ajh cosw, x25Ajh sin w, x35
1

2
~j2h!,
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j5r 1x , h5r 2x , w5arctan
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Let us examine the region near thex3 axis, which deter-
mines the penetrability of the barrier. As noted earlier, in
theory of tunneling the external field is assumed to be w
compared to the atomic field, so that there exists a rang
distance,

n

z
!j!j0[

z2

n2F
,

where the field of the molecular core can be neglected
the external field is still not strong enough. Atj.j0 the
wave functions in thein- andout-regions are matched.

At such distances the substantial values of the coordin
h are determined by the decay of the wave function~5!:

h<h0[
n

z
.

Thus, in the matching region there is a smallness param

z[S h0

j0
D 1/2

.S n3F

z3 D 1/2

[S F

F0
D 1/2

!1, ~6!

whereF05z3/n3 is the atomic field strength in a state wi
effective principal quantum numbern.

In parabolic coordinates, the dependence of the functi
~2! on the anglef5arctan(x̃2 /x̃1) is given by

eimf.Fsin b12z~cosb cosw1 i sin w!

sin b12z~cosb cosw2 i sin w!G
m/2

[Fm~b;w!.

The function Fm is simpler in ~a! the regionG of large
values ofb, whereb,p2b@z:

Fm~b;w!.1; ~7!

~b! the regionL1 of small values ofb, whereb!z:

Fm~b;w!.eimw; ~8!

and ~c! the regionL2 wherep2b!z:

Fm~b;w!.e2 imw. ~9!

We transform the Legendre polynomials in a simi
manner:

Pl
umu~cosu!5Pl

umuS x̃3

r D.Pl
umu@~122z2!cosb

12z sin b cosw#.

If we exclude the neighborhood of the zeroes of the L
endre polynomials inG,

Pl
umu~cosu!.Pl

umu~cosb!. ~10!

In L1 ~see Ref. 24!,

Pl
umu~cosu!.~21!m

~ l 1umu!!
umu! ~ l 2umu!! S h

j D umu/2

. ~11!

Finally in L2 the Legendre polynomial~1! acquires an addi-
tional phase factor (21)l .
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and ~5! can be written in the following form~we have
dropped all inessential phase factors!:

C in~bPG;j,h,w!5
Bn lm

G

A2p
e2zj/2nS j

2D n21

e2zh/2n, ~12!

C in~bPL6 ;j,h,w!

5Bn lm
L e2zj/2nS j

2D n212umu/2

e2zh/2n~2h! umu/2e6 imw

A2p
,

~13!

Bn lm
G 5

2nzn11/2

nn11 Cn lm
21/2(

l 8
all 8

m

3F2l 811

2

~ l 82umu!!
~ l 81umu!! G

1/2

Pl 8
umu

~cosb!, ~14!

Bn lm
L 5

2nzn11/2

nn11umu!
Cn lm

21/2(
l 8

all 8
m F2l 811

2

~ l 81umu!!
~ l 82umu!! G

1/2

.

~15!

If we neglect the difference betweenBG and BL, we can
interpret~12! as a special case of~13! with m50. Comparing
~13! with Eq. ~7! of Ref. 4, we notice that the two yield th
same dependence onj, h, andw and differ only by a phase
factor.

4. PROBABILITY OF TUNNELING

Finding the probability of tunneling requires calculatin
the barrier penetration factor, which can be done in parab
coordinates. Since the strength of the external field is
sumed to be low compared to that of the atomic field,
classical turning points are positioned at largej, and at such
distances the centrifugal term in the electron energy can
ignored.2,4,7 The electron–dipole interaction decays with d
tance in the same way as the centrifugal interaction. He
the effect of the dipole moment on the electron motion un
and outside the barrier can be ignored.

Thus, to obtain the probability of tunneling ionization o
molecules we can employ the results of calculating this
fect in atoms. As noted above, the difference here is only
the value of the normalization constant.

The final expression for the ionization rate~ionization
probability per unit time! has the form

Wn lm~bPG!

5S (
l 8

all 8
m F ~2l 811!~ l 82umu!!

~ l 81umu!! G1/2

Pl 8
umu

~cosb!D 2

3
S2n~F !

Cn lm
, ~16!

Wn lm~bPL6!

5S (
l 8

all 8
m F ~2l 811!~ l 81umu!!

~ l 82umu!! G1/2D 2 S2n2umu~F !

umu!Cn lm
,

~17!
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where the constantCn lm has been defined in~3!, and
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Sp~F ![
z2

n3 S n2F

4z3 D 12p

expS 2
2z3

3n3F D . ~18!

Clearly, ~17! follows from ~16! at angles

b,p2b5bmin[S F

4F0
D 1/2

[S n3F

4z3 D 1/2

!1. ~19!

Recall that the small parameterbmin reflects the presenc
of a boundary in the cone of orientations of the molecul
axis with respect to the external field, and Eqs.~17! and~16!
are valid inside and outside the cone, respectively. Bearin
mind the substitution~19! for the regionsL6 , we examine
only Eq. ~16!.

5. HIGH-LYING EXCITED RYDBERG STATES

We now repeat all the calculations for high-lying excit
Rydberg states, for which the inverse Born–Oppenheim
approximation mentioned in the Introduction is valid.

In the Appendix we show that in this approximation t
wave function of a molecule is of the type~1!, with all the
arguments of the function referred to the laboratory coo
nate system. The asymptotic behavior of the radial funct
is determined, apart from notation, by Eqs.~3! and ~5!. The
angular function now depends explicitly on the Euler ang
V that specify the orientation of the molecular core in t
laboratory coordinate system, and is given by Eq.~A4!.

Clearly, the main contribution in the vicinity of thex3

axis is provided by the component of the function~A4! cor-
responding tos50. Hence, introducing into~A4! the substi-
tution

Yl 8sS r

r D U
q→0

→A2l 811

2
ds0 ,

we obtain

ZJM
jkl S r

r
,V D.DkM

j ~V!(
l 8
A~2 j 11!~2l 811!

16p2

3all 8
J jkCjMl 80

JM .

When we calculate the electron flux along thex3 axis
with such molecular wave functions, bilinear combinatio
of the core wave functions~D-functions! emerge. Integrating
over Euler angles, we obtain for the ionization rate

WnslM5S (
l 8

A2l 811all 8
s CjMl 80

JM D 2 S2n~F !

Csl
,

Csl5S 11
dmnsl

dn DG~n2lsl!G~n1lsl11!, ~20!

n[nsl5n1lsl112msl , s[$J jk%, n50, 1, 2,....

Equation~20! provides an explicit expression for the depe
dence of the ionization rate on the magnetic quantum num
M . The dependence of the rate on the core quantum num
j and k and the molecule’s total angular momentumJ is
contained in thelsl andall 8

s .
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In an alternating field of frequencyv, tunneling emerges
at small values of the Keldysh parameter3:

g[
zv

nF
!1, ~21!

whereF is the electric field amplitude.
Below we assume that the inequality~21! is valid for

low-lying excited Rydberg states, which satisfy the Born
Oppenheimer approximation. For the condition~21! to be
true for the high-lying Rydberg states considered in Sec. 5
is necessary, at least, that the frequencyv of the external
field be much lower than the molecule’s rotation frequen

To obtain the probability of ionization in an alternatin
and linearly polarized field, we can, following the results
Ref. 7, make the replacementF→F cosvt in ~16! and ~17!
and average over the field’s period. Calculating the integ
in ~16! and ~17! by the saddle-point method leads to an a
ditional factor,

S 3F

pF0
D 1/2

!1. ~22!

With allowance for this factor, Eq.~17! becomes the well-
known ADK result,2! provided that one neglectsdm/dn and
allows for the fact that neglecting the core’s dipole mome
leads to

all 8→d l l 8 , l lm→ l>umu. ~23!

The difference is that in the ADK theory the detached el
tron is described by the method of the Simons mo
potential,25 which corresponds to the formal introduction of
nonintegral orbital angular momentuml * , while in the
present paper to describe electron motion we use the q
tum defect method, being more consistent theoretica
However, numerically both methods leads to essentia
identical results.22

In the same manner we can examine arbitrary~elliptical!
polarization of the alternating field. Not wishing to go in
further details, thoroughly discussed in Refs. 7 and 8,
only note that in a circularly polarized field the ionizatio
probability is given by the same Eqs.~16! and~17!, since in
such a field the instantaneous electric field does not cha
Hence, for elliptical polarization, Eqs.~16! and ~17! acquire
an additional factor that varies between unity and the va
specified by~22!.

We now turn to some limits and special cases of
above formulas.

7. ROLE OF ORIENTATION OF THE MOLECULE

When the orientation of the molecule with respect to t
polarization of the external field is random, Eq.~16! must be
averaged over the angleb. Using the orthonormality of the
coefficientsall 8

m and Stirling’s formula for the gamma func
tion G in the Cn lm , we obtain, with allowance for the facto
~22!,

W̄n lm5
)e2n

pAp~n22l2!n S 11
dmn lm

dn D 21
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S n1l D 2n21/2

n[nnlm , l[l lm . ~24!

Similarly, Eq.~20! can be averaged over the magnetic qu
tum numberM :

W̄nsl5
e2nS2n~F !

2p~n22l2!n S 11
dmnsl

dn D 21S n2l

n1l D l11/2

,

n[nnsl , l[lsl . ~25!

With a high-intensity light field, in which tunneling is ob
served, the distribution of orientations of molecules is hig
anisotropic,26 with the result that Eq.~24! can be used only
for estimates. However, this equation can be employed
simplify ~16! and ~17!:

Wn lm~b!5W̄n lmS (
l 8

all 8
m F ~2l 811!~ l 82umu!!

~ l 81umu!! G1/2

3Pl 8
umu

~cosb!D 2

. ~26!

Concluding this section, we note that, for example, Seidm
et al.27 allowed for a strong dependence of the ionization r
on the molecule’s orientation with respect to the exter
field. According to the above equations, no such depende
emerges forS states.

8. ROLE OF THE DIPOLE MOMENT AND THE IONIZATION
OF NONPOLAR MOLECULES

Since the probability of tunneling ionization of atoms
moderate values ofn depends strongly on the electron’s o
bital angular momentum,8 one should expect a considerab
change in the ionization probability for molecules because
the presence of a dipole moment. The point here is that
dipole moment can force the Rydberg electron to go int
state with orbital angular momentum such that the ionizat
probability is a maximum.

However, as the above equations imply, the ionizat
probability is determined by the conserved quantum num
l, and the fact that it is not an integer is due primarily to t
effect of the dipole moment on the ionization probabilit
The difference between the coefficientsall 8 and their limit-
ing values~23! can be neglected to a high accuracy. Th
for instance, Eq.~26! takes the much simpler form

Wn lm~b!5
~2l 11!~ l 2umu!!

~ l 1umu!!
W̄n lm@Pl

umu~cosb!#2.

~27!

For nonpolar molecules~23! is strictly observed. In such
molecules the difference between the initial hydrogen-l
states of the Rydberg electron is determined solely by
short-range molecular core, which is manifested by the
ference in the corresponding quantum defects. Here the p
ability of Rydberg states becoming ionized is given by E
~27!, with l lm5 l in the expression~24! for W̄n lm .

Similarly, Eq. ~20! for nonpolar molecules becomes
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wherelsl must also be replaced byl in the expression for
Csl .

Equation ~28! also describes tunneling for extreme
high-lying excited Rydberg states of polar molecules, wh
for typical molecules begin atn;60. In such states the in
teraction of the Rydberg electron and the dipole mom
proves to be weaker than the splitting of the core’s molecu
levels, a splitting responsible for the formation of a dipo
moment, for example,L-doubling in diatomic molecules.28

In conclusion, we note that the dependence of the i
ization probability of atoms and molecules on the exter
field strength is given by the same function~18!. This agrees
with the experimental data obtained by Chinet al.29 in ob-
serving the ionization of H2 and N2 molecules by the light of
a carbon dioxide laser. The fact that these molecules do
dissociate, although the dissociation potential is seve
times lower than the ionization potential, finds its explan
tion in the model adopted in Ref. 30.

I am deeply grateful to N. B. Delone, V. P. Kra�nov, and
V. E. Chernov for discussions and useful remarks.

APPENDIX: THE GREEN’S FUNCTION OF A MOLECULE IN
THE INVERSE BORN–OPPENHEIMER APPROXIMATION

In Ref. 23 the quantum defect method was used to bu
the one-electron Green’s function of a polar molecule in
Born–Oppenheimer approximation. Here we derive a sim
quantity when the inverse Born–Oppenheimer approxim
tion is valid. The significant difference is that now th
Green’s function is not one-particle, since the rotational
grees of freedom of the molecular core must be taken
account.

We write the molecule’s Hamiltonian in the form

H5H11T1Vc2
z

r
2

d•r

r 3 . ~A1!

Herer is the radius vector of the Rydberg electron,T is the
electron’s kinetic energy,d is the dipole moment of the core
and Vc is the short-range part of the core potential, whi
determines the values of the quantum defects. The cor
assumed to be axisymmetric, and its HamiltonianH1 is

H15B j21~C2B! j z
2 , ~A2!

whereB andC are the rotational constants.
Following Ref. 17, we introduce the molecular angu

functionsZJM
jk (r /r ,V), which are eigenfunctions of the equa

tion

S L212
d•r

r DZJM
jk S r

r
,V D5l~l11!ZJM

jk S r

r
,V D . ~A3!

Here V5$a,b,g% denotes the set of Euler angles, whic
determine the orientation of the molecular core in the la
ratory system of coordinates, andL is the orbital angular
momentum operator of the electron.

The functions in Eq.~A3! correspond to molecular state
with total angular momentumJ and projectionM on an axis
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projectionk on the molecule’s axis of symmetry. They ca
be represented in the form

ZJM
jk S r

r
,V D5A2 j 11

8p2 (
lsm

al
sCjmls

JM Dkm
j ~V!YlsS r

r D .

~A4!

The coefficientsal
s in ~A4! satisfy a finite system of linea

algebraic equations,17 in contrast to the infinite system o
equations that emerge in the Born–Oppenheimer approx
tion; they are normalized by the condition

(
l

ual
su251. ~A5!

The eigenvaluesl in Eq. ~A3! and the coefficientsal
s in ~A4!

depend on the set of quantum numberss[$J jV%.
The functionsZJM

jk form a complete set, so that th
Green’s function determined by the equation

~H2E!GE~r ,V;r 8,V8!5d~r2r 8!d~V2V8!, ~A6!

can be expanded in these functions:

GE~r ,V;r 8,V8!5(
sM

gs~E;r ,r 8!ZJM
jk S r

r
,V D

3ZJM
jk* S r 8

r 8
,V8D . ~A7!

If we also expand the delta functions,

d~r2r 8!5
d~r 2r 8!

rr 8 (
ls

YlsS r

r DYls* S r 8
r 8D ,

d~V2V8!5(
jkm

2 j 11

8p2 Dkm
j ~V!Dkm

j* ~V8!, ~A8!

we can use the above equations to derive an equation fo
radial Green’s function:

F2
1

2r 2

d

dr S r 2
d

dr D1
ls~ls11!

2r 2 1Vc2« Ggs~E;r ,r 8!

5
d~r 2r 8!

rr 8
, «5E2B j~ j 11!2~C2B!k2. ~A9!

This equation is no different from those studied in Refs.
and 23. Outside the core, where the potentialVc affects only
the scattering phases~in the continuous spectrum! or the
quantum defects~in the discrete spectrum!, but not the radial
dependence of the wave functions, the solution can be
pressed in terms of the Whittaker function and, with t
change in notation

l lm→lsl , ~A10!

is given by Eqs.~7! and ~9! of Ref. 23.
The second index inlsl in ~A10! labels the eigenvalue

of Eq. ~A3! in such a way thatlsl→ l as d→0. The same
index must be attached to the coefficientsal

s ,3! after which
all the equations of the ordinary and inverse Bor
Oppenheimer approximations coincide. The only differen
here is the way in which the angular parts~2! and ~A4! are
defined.
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by calculating the residue of the Green’s function, and
given by Eqs.~3! and ~5!, in which the change of notation
~A10! and the change in indices$ lm%→$ ls% must be intro-
duced in the appropriate places.

* !E-mail: zon@niif.vucnit.voronezh.su
1!A similar relationship for vibrational transitions introduces essentially

changes into the theory, except for the rare cases of inversion degen
of rotational spectra and the like.18

2!We note in passing that Eqs.~20! and ~21! of Ref. 8 contain an error: the
factor (n* 1 l * )/(n* 2 l * ) must be replaced by (n* 2 l * )/(n* 1 l * ).

3!Since the system of equations~A3! is finite, it can be solved exactly in the
simplest cases. Explicit expressions forlsl andall 8

s in some of these case

can be found in Ref. 17.
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Features of the photon statistics of two coupled electromagnetic field modes under the

e-
conditions of strong mode coupling
M. E. Ve sman1) and S. Yu. Kalmykov

Moscow Physicotechnical Institute, 141700 Dolgoprudnyi, Moscow Region, Russia
~Submitted 23 December 1996!
Zh. Éksp. Teor. Fiz.112, 128–136~July 1997!

The probabilities of transitions between the Fock states of two electromagnetic field modes under
the influence of coupling between modes of finite duration are investigated. It is shown that
the transition probability is a strongly oscillating function of the mode numbers of the photons.
Under conditions in which the coupling frequency exceeds the geometric mean of the
mode frequencies~strong coupling!, large numbers of photons are excited in the mode with the
lower frequency. The excitation of a two-dimensional radiation field oscillator and the
‘‘red’’ asymmetry of the transition probabilities can be attributed to instability of the classical two-
dimensional oscillator with strong mode coupling. ©1997 American Institute of Physics.
@S1063-7761~97!01107-4#
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The distribution functions of photons in nonclassical o
tical states have been studied in recent years by a numb
investigators.1 Interest in the photon statistics of nonclassic
light was stimulated by the work in Ref. 2, in which th
oscillating behavior of the distribution function of photons
a single-mode squeezed coherent state was detected fo
first time, and it was suggested that such behavior of th
functions be regarded as a sign of the nonclassical natur
the state under consideration. The squeezing of quan
fluctuations of a radiation field has been achieved exp
mentally using various quantum optical systems.3 In particu-
lar, two-mode squeezing was used in Refs. 4 and 5.
distribution functions of photons in a two-dimension
squeezed vacuum6 and the photon statistics in a two
dimensional squeezed coherent state of general form
complex displacement and squeezing parameters7 were in-
vestigated in Refs. 6 and 7.

In the present work we find the transition probabiliti
between Fock states of two electromagnetic field modes w
differing constant frequencies under the influence of c
pling between modes of finite duration. Mode coupling c
appear when coherent light propagates in a nonlinear
dium with a refractive index that depends on the amplitu
of the field. It is presumed that the ‘‘coordinates’’ of a tw
dimensional field oscillator are coupled over the course o
restricted time interval and that the coupling frequency i
constant real quantity.8 This quantum-mechanical model o
two-mode light is exactly solvable by a method that utiliz
linear integrals of the motion9,10 of a particular quantum sys
tem with a quadratic nonstationary Hamiltonian.

Integrals of the motion that are quadratic with respec
the position and momentum operators were found for a o
dimensional quantum oscillator with a variable frequency
Ref. 11. Integrals of the motion that are linear in the posit
and momentum operators were obtained for a o
dimensional parametric oscillator in Refs. 12 and 13 and
a nonstationary multidimensional oscillator in Ref. 14.

Quantum integrals of the motion for the system und
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sired transition probability can be expressed in terms o
Hermite polynomial of four variables with vanishin
arguments.15 Under the conditions of strong mode couplin
in which the coupling frequency exceeds the geometric m
of the mode frequencies, the classical two-dimensional os
lator is an unstable system that executes infinite motion
phase space, because its potential energy is nonpositive
nite. It is shown that strong mode coupling of finite durati
leads to strong excitation of a two-dimensional quantum
cillator with considerable ‘‘red’’ asymmetry of the transitio
probability as a function of the mode numbers of the ph
tons. It is significant that these anomalies of the photon
tistics are not observed in weak mode coupling, even tho
the coupling frequency can be low in comparison with t
mode frequencies.

2. INTEGRALS OF THE MOTION

An explicit expression can be obtained for the transiti
probabilities using the general theory of multidimension
quantum systems with arbitrary quadratic Hamiltonia
which is based on their dynamic symmetries and linear in
grals of the motion.9,10 If a unitary evolution operatorÛ(t)
of the system exists, then 2N integrals of the motionp̂0 and
q̂0 (N is the number of degrees of freedom in the syste!
can be constructed via a canonical transformation of the
mentum and position operatorsp̂ and q̂. The integrals of the
motion are the initial momenta and the coordinates of
system. According to the Stone–von Neumann theorem,
operatorsp̂0 and q̂0 form a complete set.9 The propagator
~i.e., the evolution operator in a certain representation! of a
nonstationary quadratic system can be expressed explicit
terms of the elements of the canonical transformation mat

Two light modes with nonstationary mode coupling a
described by a Hamiltonian of the form

Ĥ~ t !5
1

2
Q̂BQ̂. ~1!

68$10.00 © 1997 American Institute of Physics
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quadrature components, andB(t) is the 434 matrix

B5S I2 0

0 B2
D , B25S v1

2 l~ t !

l~ t ! v2
2 D ,

whereI2 is a 232 unit matrix. The coupling coefficient is
piecewise constant function, l(0,t,T)5v0

2,
l(t,0, t.T)50, andT is the mode coupling duration. In
the general casev1 Þ v2. All frequencies are real, and th
masses of the oscillators are set to unity. The introduction
normal coordinates by a canonical replacement that
serves the commutation relations is impossible whenv1

Þ v2; therefore, the problem is solved in the original va
ables.

According to Refs. 9 and 10, the time-dependent qu
tum integrals of the motion are linear superpositions
quadrature operators

Î ~ t !5S p̂0~ t !

q̂0~ t !
D 5L~ t !Q̂, L~ t !5S L1~ t ! L2~ t !

L3~ t ! L4~ t !
D . ~2!

The simplectic matrixL(t) does not alter the commuta
tion relations @ Î a , Î b#5@Q̂a ,Q̂b#52 i\Sab , where
a,b51,...,4, and has the propertyL2152SLTS, where

S5S 0 I2

2I2 0 D ,

and the superscriptT denotes matrix transposition. A nece
sary and sufficient condition for invariance of the operat
Î (t) ~Eq. ~2!! is their evolution according to the matrix equ
tion

L̇5LSB ~3!

with the initial conditionL(0)5I4, whereI4 is the 434 unit
matrix. The solution of system~3! with a piecewise constan
coupling coefficient has the form

L~ t<T!5T1 ^ J12T2 ^ J2 ,

where the symbol̂ denotes the tensor product of the au
iliary matrices

T65S cos~V6t ! V6sin~V6t !

2V6
21sin~V6t ! cos~V6t ! D ,

J65
1

a12a2
S a6 1

1 2a7
D ,

which are expressed in terms of the paramet
v6

2 5v1
26v2

2, V6
2 5(v1

2 6Av2
4 14v0

4)/2, a65(V6
2

2 v2
2)/v0

2, and a1a2521. The matricesJ6 satisfy the
relationsJ6B25V6

2 J6 and have the propertiesJ6
2 56J6

and J1J250. The eigenvaluesV6 coincide with the ei-
genvalues of the Hamilton equations for a two-dimensio
coupled oscillator with Hamiltonian~1!. Under strong cou-
pling conditions (v0

2.v1v2), a classical two-dimensiona
coupled oscillator has a nonpositive definite potential ene
(det B2,0) and is an unstable system. In this case the
genvalueV2 is purely imaginary, and is responsible for th
unstable behavior of the elements of the canonical trans
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classical system executes finite motion, the eigenvalue
the problem are real, and the elements ofL are bounded.

Hamiltonian~1!, expressed in terms of the ladder oper
tors âi5(q̂iAv i1 i p̂ i /Av i)/A2\ and âi

†5(q̂iAv i

2 i p̂ i /Av i)/A2\, wherei 51,2, has the form

Ĥ~ t !5
1

2
âDâ,

whereâ5(â1 ,â2 ,â1
† ,â2

†) is a 4-vector,D5KTBK ,

K5A\

2S 2 iEv iEv

Ev
21 Ev

21D , Ev5S Av1 0

0 Av2
D .

The linear invariantsb̂5(b̂1 ,b̂2 ,b̂1
† ,b̂2

†) can be constructed
via a homogeneous canonical transformation of the pho
creation and annihilation operators

b̂5Vâ, ~4!

where V5K21LK . The equationV̇52 i\21VSD with
initial condition V(0)5I4 is a necessary and sufficient co
dition for the invariance ofb̂ (V(0)5I4). The matrix

V5S z h

h* z* D ~5!

consists of the 232 blocksz andh, which have the form

z5
1

2
~Ev

21L1Ev1EvL4Ev
21!

1
i

2
~Ev

21L2Ev
212EvL3Ev!,

h5
1

2
~2Ev

21L1Ev1EvL4Ev
21!

1
i

2
~Ev

21L2Ev
211EvL3Ev!.

3. TRANSITION PROBABILITIES

The transformation~4! preserves the Bose commutatio
relations@ b̂i ,b̂ j #5@ b̂i

† ,b̂ j
†#50 and @ b̂i ,b̂ j

†#5d i j (d i j is the
Kronecker delta!, making b̂† and b̂ the formal creation and
annihilation operators at some arbitrary time. The eigenv
tor un,t& of the formal operators of the number of particl
(b̂1

†b̂1, b̂2
†b̂2) in the coupled modes, which satisfies the re

tion b̂i
†b̂i un,t&5ni un,t&, where i 51,2, is a formal two-

dimensional Fock state of two modes with nonstation
coupling. It is important to note that a discrete complete
of Fock states for a system with a nonstationary quadr
Hamiltonian can always be defined in a similar manner, e
if the energy spectrum becomes continuous at a certain
ment.

In particular, the formation of a coupled state is impo
sible in the two-dimensional potential of classical oscilla
~1! with strong mode coupling (v0

2.v1v2), and the energy
spectrum of quantum system~1! is continuous. Nevertheless
there is still a complete set of state vectorsun,t&, which are
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n

eigenvectors for the integrals of the motion (b̂1
†b̂1, b̂2

†b̂2) and whereu0i& is the vacuum state vector of thei th mode.

FIG. 1. Transition probabilityFm(n,t) be-
tween Fock states of modes with very diffe
ent frequencies (v1 /v253) under strong
coupling conditions (v0 /v252, mode cou-
pling durationTv25p/2). Case of ‘‘red’’
asymmetry of the transition probabilitie
from Fock states with symmetric occupatio
numbers: a —u1,1,t&, b — u5,5,t&.
m
e

d

ions
ion

t
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have all the algebraic properties of Fock states. It is assu
that the stateun,t& reproduces the temporal evolution of th
original Fock state of the uncoupled modesun1&un2& at some
arbitrary time and coincides with it at the initial time (t50):

un,t50&5un1&un2&, uni&5
~ âi

†!ni

Ani !
u0i&, ~6!

70 JETP 85 (1), July 1997
ed Whent,0 andt→`, Hamiltonian~1! ceases to depen
on time. In this case the initial and final states~6! of the
stationary system of uncoupled modes exist, and transit
take place between them. The amplitude of the transit
from the initial stateu in& to the final stateu f & ~which is
assumed to be given by~6!! is given by the matrix elemen



-

FIG. 2. Same as Figs. 1a and 1b, except thatv0 /v251.5
~weak coupling!. The excitation of the field oscillators is neg
ligible in comparison with the strong coupling case.
^ f ut→`&, where ut→`& is the limit of the stateun,t& as

re
i

n
le

discrete vector variable. The transition probability has the
t→`.
The amplitude^num,t&, which relates the initial Fock

stateum,t& to the final Fock stateun&, is none other than the
Green’s function in the discrete Fock basis. It was rep
sented in Refs. 10 and 16 in the form of Hermite polynom
als of several variables in terms of elements of the matrixV
~Eq. ~5!! of canonical transformation~4!. The probability of
a transition between two-mode Fock statesFm(n,t)
5u^num,t&u2 is, by definition, the two-mode distributio
function of the photons in the Fock state of the coup
modesum,t&. Here m is the label of the state, andn is a

71 JETP 85 (1), July 1997
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form16

Fm~n,t !5udet z~ t !u21
uHnm

~Y!~0!u2

n!m!
, ~7!

wherem! 5m1!m2!, n! 5n1!n2!,

Y5S z21h 2z21

2zT21
2h* z21D

is a 434 block matrix, and the 232 matricesz andh are
blocks of the simplex matrixV.

71M. E. Ve sman and S. Yu. Kalmykov



The examples of the distributions of the numbers of pho-
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tons presented below were obtained numerically using
familiar recurrence relation for Hermite polynomials ofN
variables

Hn1 . . . ni11 . . .nN

$R% ~y!5S (
k51

N

RikykDHn1 . . . ni . . . nN

$R% ~y!

2 (
k51

N

RiknkHn1 . . . nk21 . . .nN

$R% ~y!,

which starts with H0
$R%51, H0 . . . 1i . . . 0

$R% (y)5(k51
N Rikyk .

This relation was obtained by differentiating the product
the function forN-dimensional Hermite polynomials15

expS 2
1

2
aRa1aRyD5 (

n50

`
an

n!
Hn

$R%~y!,

where an5a1
n1a2

n2 . . . aN
N , (n50( . . . )

5(n150 . . . (nN50( . . . ), and a5a1 , . . . ,aN is an
N-dimensional vector with complex components.

The Hamiltonian~1! is represented in dimensional var
ables. Since all the dimensional parameters appear in
expression for the transition probability in the form of d
mensionless combinations, some convenient frequency~say,
a frequency in the optical range, viz., 1015 s21) can be taken
as the nominal frequency unit.

Figures 1 and 2 show the transition probabilitiesFm(n,t)
~Eq. ~7!! for m15m251 ~Figs. 1a and 2a!, m15m255
~Figs. 1b and 2b! photons in the initial stateum,0&. Figure 1
corresponds to strong coupling of asymmetric mod
(v1 /v253, v0 /v252, and mode coupling duratio
Tv25p/2). The transition probability has a pronounc
asymmetric character, the maxima of the distribution be
concentrated along then2 axis, which corresponds to th
low-frequency mode. The excitation of large numbers
photons in the ‘‘red’’ mode occurs exclusively under stro
coupling conditions (v0

2.v1v2), in which the matrix ele-
ments of the canonical transformation~4! increase exponen
tially. This anomaly of photon statistics is not observed u
der weak coupling conditions, although the coupli
frequency cannot be small in comparison with the mode
quencies. This is clear in Figs. 2a and 2b, where the par
eters are the same as in Figs. 1a and 1b, except
v0 /v251.5 ~weak coupling!.

The transition probability~7! undergoes strong even-od
oscillations, since an even-dimensional Hermite polynom
~four-dimensional in the present case! with a zero argumen
vanishes for odd sums of its indices. This selection rule
plies to arbitrary quadratic Hamiltonians of type~1! without
linear ‘‘current’’ terms ~these terms should add a compl
displacement vector to the canonical transformation~4!,
making the argument of the Hermite polynomial nonzer!.
When the number of photons in the initial Fock state
creases~see Fig. 1b!, the transition probability acquires
slowly oscillating envelope in any cross sectionF(n1 ,n2 ,t)
for a given n1 ~or n2). This is reminiscent of the photo
statistics in a squeezed single-mode state2 ~see also the dis
tribution functions of photons in a squeezed two-mo
vacuum6!.
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Although the general expressions for the transition pr
abilities in multimode states of quadratic systems have b
known for a long time,9,10,16 the investigation of the photon
statistics of specific multidimensional nonstationary syste
is still of interest. The present work involved an investigati
of the probabilities of transitions between Fock states of t
modes with differing frequencies under the influence
strong mode coupling, where the formation of a coup
state in the two-dimensional potential of the oscillator is i
possible. Excitation of the low-frequency mode has been
tected under the conditions of strong mode coupling~the
probability of the excitation of large numbers of photo
increases!. The oscillating character of the transition pro
ability as a function of the photon mode numbers has b
demonstrated, confirming the highly nonclassical nature
the formal Fock states of coupled modes.
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Optical pumping in a L-system by parametric luminescence light
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We examine the optical pumping effect in an ensemble of three-level atoms with aL
configuration of the energy sublevels excited by parametric luminescence light in the squeezed
state. We derive quantum kinetic equations that describe the evolution of the density
matrix of atoms irradiated by low-intensity squeezed light with a finite-width spectrum. In
particular, we show that because of the quantum statistical properties of the squeezed light there
can be a redistribution of atoms among the lower energy sublevels, despite the equality of
the intensities of the spectral components of the light that resonantly excites optical transitions in
the L-system. The relation of the optical pumping effect to the correlation and
spatial–temporal spectral properties of squeezed light is discussed in detail. Finally, we show
that the effects are closely linked to the finiteness of the width of the squeezed-light
spectrum. ©1997 American Institute of Physics.@S1063-7761~97!01207-9#
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1. INTRODUCTION

The excitation of atoms by polarized or spectrally sel
tive radiation leads to optical pumping, i.e., to the redistrib
tion of atoms among the Zeeman, hyperfine, and other m
stable sublevels, and to the creation of nonequilibrium sta
of atomic ensembles polarized in the internal angular m
mentum. Starting with the classic work of Kastler,1 for a
long time the main source of electromagnetic radiation
optical pumping experiments were spectral sources of in
herent radiation: gas-discharge tube, etc. The necessar
lectivity of excitation was achieved by using optical polar
ers and spectral filters. Such sources, being fairly simple
reliable, are widely used. The theory of the optical pump
effect and the various physical phenomena observed in s
experiments are thoroughly described in a number of rev
articles ~see, e.g., Refs. 2–4!. Research into the interactio
between radiation and an atomic ensemble polarized in
gular momentum makes it possible to study the subtle
tures of the dynamics of collisions and other elementary p
cesses affecting the polarization of atoms. Because of
large relaxation times and small widths of Zeeman and
perfine transition lines, the optical pumping method co
bined with EPR methods has found wide application in m
suring weak magnetic fields and in manufacturing quant
clocks.

The use of coherent sources of radiation has significa
broadened the area of research into physical phenomen
sociated with the interaction of radiation and matter. In p
ticular, an important step in understanding the role of coh
ent effects in the optical pumping process was the discov
of coherent trapping of populations,5–7 which vividly dem-
onstrated that the behavior of a multilevel atomic ensem
controlled by coherent radiation differs significantly from t
behavior of such an ensemble excited by the radiation o
incoherent spectral source. Because of the interaction
coherent fields, the optical pumping in stationary conditio
is between states that are coherent superpositions of
lower atomic states. The current state of the problem an
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description of the various applications of the effect of coh
ent population trapping can be found, say, in the review
ticle in Ref. 8.

New horizons in studies of the optical pumping effe
and related phenomena opened thanks to the discovery
manufacture of sources of squeezed light. Such radiat
which is neither coherent nor incoherent~in the ordinary
sense of the word!, possesses statistical properties that rev
the quantum nature of the electromagnetic field. It comes
no surprise, then, that the search for, and study of, vari
manifestations of the quantum properties of squeezed ra
tion, both in measurements and in various interactions w
atomic and other media, is the topic of detailed studies
optics and spectroscopy. Possible spectroscopic applica
of squeezed radiation were successfully demonstrated
experiments.9–11 Some quantum statistical effects caused
the interaction of atoms with squeezed radiation have b
predicted. For instance, in Refs. 12 and 13, a variation in
decay constants for excited atomic states placed in the
of broadband squeezed radiation with zero average am
tudes~‘‘squeezed vacuum’’! has been predicted. It has bee
shown theoretically14,15 and corroborated by experiments11

that in a two-photon optical transition the presence of stro
correlations between the modes of squeezed radiation l
to a linear dependence of the population of the excited le
on the light intensity in the low-intensity limit, while in ac
cordance with classical ideas this dependence should be
dratic. A review of preliminary results~mainly theoretical!
concerning the interaction of squeezed radiation with ato
can be found in Ref. 16.

In the present paper we discuss the optical pumping
fect in a three-levelL-system excited by low-intensity two
mode squeezed radiation. For definiteness we will spea
parametric luminescence light, although all our results
equally valid for other sources of squeezed light that ha
low intensity and a low degree of squeezing. The princi
feature in our analysis is the allowance for quantum corre
tions in the light interacting with the atomic subsystem fro
the viewpoint of their effect on the evolution of the atom
73$10.00 © 1997 American Institute of Physics
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density matrix. We show that the squeezing effect in the li
irradiating the medium strongly influences the equations
motion and the distribution of atoms among the sublevels
other words, we show that in the case where light has es
tially quantum statistical properties, the equation for t
atomic density matrix can be reduced neither to the kno
optical pumping equations, valid for an incoherent spec
source, nor to the Bloch equations, describing the interac
with coherent radiation. These equations, occupying a p
tion between these two cases, so to say, possess a num
specific properties that do not agree with the common id
about the excitation of a three-level system by coheren
incoherent radiation.

The low-intensity approximation used in the present
per is justified not only from the standpoint of real expe
mental conditions but also because it allows examination
the effects caused by the finiteness of the width of
squeezed light spectrum. In most works that analyze the
fect of squeezed light on the dynamics of a multilevel qu
tum system, the spectrum of the squeezed light was assu
to be broadband, i.e., the width was considered to be m
larger than the natural widths of the excited levels.14–19 On
the other hand, the known sources of squeezed light ha
finite spectral width, comparable to the natural width of t
levels participating in the quantum transitions. More th
that, the analysis done in Refs. 20–22 for two-level syste
revealed, using this situation as an example, that the quan
statistical features in the behavior of the populations and
medium polarization, caused by the effect of the thermo
formed by the squeezed light, change significantly if t
width of the fluctuation spectrum becomes comparable to
widths of the atomic levels.

Earlier the nontrivial features of the optical pumping e
fect in the excitation of multilevel quantum systems by lig
with nonclassical statistical properties and the effect of
finiteness of the width of the fluctuation spectrum were
ported and briefly discussed in Ref. 23. In the present pa
we use the fairly simple multilevelL-system to study no
only the qualitative picture of the phenomenon but also to
quantitative estimates. We also note that the closely rela
problem, the interaction of a three-level ladder system w
broadband squeezed radiation, was considered in Ref.
and the effect of the finiteness of the spectrum width in t
case was discussed in Ref. 24. The finiteness of the fluc
tion spectrum is usually taken into account by the meth
that uses a stochastic differential equation for the den
matrix, successfully employed in studies of two-level atom
transitions.20–22 However, the use of this method for thre
level systems and more general multilevel systems is
dered by considerable technical difficulties. In this conn
tion we note that a special methodological feature of
present work is the use of the diagram technique, wh
makes possible a graphical analysis of the problems ca
by the finiteness of the fluctuation spectrum and their eff
on the equation for the density matrix.
74 JETP 85 (1), July 1997
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2. ANALYSIS OF THE DIAGRAMMATIC EQUATIONS FOR
THE DENSITY MATRIX OF THREE-LEVEL ATOMS

In this section we perform a QED analysis of equatio
that describe the evolution of the density matrix of thre
level atoms when the medium is irradiated by low-intens
spontaneous parametric luminescence light. Such radiatio
formed in the parametric scattering process: a decay of
or two coherent pump wave photons into a pair of photo
because of the three- or four-wave interaction in a nonlin
optical medium~see Ref. 25!. We assume that the light emit
ted by the source and irradiating the atoms is a superpos
of various phase-associated modes generated near m
frequencyv1 and v2 . Parametric luminescence light is a
example of squeezed light in which two squeezed quadra
components are superpositions of distinct-frequency com
nents of two phase-associated modes. Here the average
amplitudes near the two frequenciesv1 andv2 are zero. We
show that in the given case, where the light has essent
quantum statistical properties~its correlation characteristic
cannot be described by correlation functions withc-number
complex-valued amplitudes!, the equations for the densit
matrix cannot be reduced to the well-known optical pump
equations, which are valid for an incoherent spectral sou
A condition important for our analysis and which a param
ric source of radiation must meet consists in the assump
that the emitted light obeys quasi-Gaussian statistics. T
assumption, which is valid for a light source consisting o
large number of scatterers participating in parametric os
lation, means that the averages of the product of an arbit
number of field operators separate into products of all p
sible pair averages. Unlike ordinary Gaussian statist
among the pair averages there are averages of produc
operators of not only different frequencies but also of ope
tors of the same frequency.

The diagram of the active levels and the proposed e
tation of a three-levelL-system is depicted in Fig. 1. Qua
siresonant light interacts with atoms on the optical transitio
1→3 and 2→3. Two median frequenciesv1 andv2 , which
are assumed to be close to the frequenciesv31 andv32 of the
corresponding optical transitions, are isolated in the sp
trum of the driving radiation. The states 1 and 2 are assum
to be separated by a low-frequency energy intervalv32 and

FIG. 1. Diagram of the proposed excitation of a three-levelL-system by
parametric luminescence light. The emission of two phase-associated m
characterized by median frequenciesv1 and v2 is in quasiresonance with
the optical transitions 1→3 and 2→3.
74D. V. Kupriyanov and I. M. Sokolov
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are characterized by a short time for the populations of th
sublevels to relax to their equilibrium values. In practice t
means that the states 1 and 2 are either sublevels of a h
fine structure or Zeeman sublevels separated by a mag
or electric field.

We derive the equations for the density matrix of t
atomic subsystem by employing Keldysh’s diagra
technique.26,27 The atomic density matrix in the coordina
representation is determined in this technique by one-t
components of the Green’s functionGn1n2

(21)(r1 ,t1 ;r2 ,t2):

Gn1n2

~21 !~r1 ,t1 ;r2 ,t2!57 i ^Cn2

† ~r2t2!Cn1
~r1t1!&, ~2.1!

whereCn1
(r1t1) and Cn2

† (r2t2) are the atomic annihilation

and creation operators in the Heisenberg representation
the quantum numbersn1 andn2 correspond to internal state
and in the case of the three-level system under considera
assume values 1, 2, and 3. The upper sign in~2.1! corre-
sponds to Bose statistics and the lower sign to Fermi sta
tics. The equation for the atomic density matrix is set
directly by using an equation that the Green’s function~2.1!
must satisfy and that can be derived diagrammatically. H
employing the relationship that links the semiclassi
Wigner density matrixrn1n2

5rn1n2
(p,r ,t) and the function

Gn1n2

(21)(r1 ,t1 ;r2 ,r 2),

rn1n2
~p,r ,t !56 i E d3je2

i
\pj

3Gn1n2

~21 !S r1
j

2
,t;r2

j

2
,t D , ~2.2!

and assuming that the dependence of the density matri
the atomic radius vectorr and momentump is smooth, we
can obtain the desired equation via the followi
transformation:27

]

]t
rn1n2

~p,r ,t !1
p

m
¹ rrn1n2

~p,r ,t !

57E d3je2
i
\ pj@Ĝ02

21* 2Ĝ01
21#

3Gn1n2

~21 !~r1 ,t1 ;r2 ,t2!. ~2.3!

Here the action of the differential operatorsĜ0 j
21 with j 51, 2

is defined as follows:

Ĝ0 j
215 i

]

]t j
1

\

2m
D j , ~2.4!

wherem is the mass of the atom, and the Laplace opera
acts on the spatial coordinater j . On the right-hand side o
Eq. ~2.3!, after the operatorĜ01

21 and the complex-conjugat
operatorĜ02

21* have acted it is assumed that the variab
must be transformed in accordance with~2.2!. The meaning
of ~2.3! is that after the analytic expression for the Gree
functionGn1n2

(21)(r1 ,t1 ;r2 ,t2), obtained as result of analyzin

the corresponding diagrammatic equation, has been plug
into the right-hand side, we arrive at an equation describ
the variation of the density matrix with time, an equation th
75 JETP 85 (1), July 1997
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under certain conditions can prove to be closed with resp
to the atomic density matrix, i.e., have the form of a kine
equation.

We study the interaction of atoms with the electroma
netic field in the dipole approximation and in the rotatin
wave approximation. The corresponding operator defined
the interaction representation has the form

V~ t !52(
m,n

E d3rdmnE
~2 !~r t !Cm

0†~r t !Cn
0~r t !1H.c.

~2.5!

Heredmn is the dipole-moment matrix element of the tran
tion between the lower statesn51, 2 and the excited stat
m53, andE(2)(r t) is the operator of the negative-frequen
field-strength component. We use the definition of frequen
components of the field adopted in Ref. 28,E(6) } e6 ivt,
i.e., the plus and minus are associated with photon crea
and annihilation, respectively. The time evolution of the o
eratorsCm

0†(r t), Cn
0(r t), andE(6)(r t) is determined by the

Heisenberg equations with unperturbed atom and fi
Hamiltonians:H05Ha1H f . In the interaction representa
tion the Green’s functionGn1n2

(21)(r1 ,t1 ;r2 ,t2) can be written

Gn1n2

~21 !~r1 ,t1 ;r2 ,t2!

57 i ^T̃~Ŝ21Cn2

0†~r2t2!!T~Cn1

0 ~r1t1!Ŝ!&, ~2.6!

where the evolution operatorŜ is defined as

Ŝ5Ŝ~`,2`!5T expS 2
i

\ E
2`

`

V~ t !dtD . ~2.7!

In these expressions,T and T̂ are the operators of time or
dering and antiordering. The expansion of the evolution
erators in~2.6! in perturbation series generates a correspo
ing expansion for the Green’s functionGn1n2

(21)(r1 ,t1 ;r2 ,t2),

which can be depicted diagrammatically. The definition a
properties of the Green’s functions for atoms and for
field, which appear in diagrammatic expansions and co
spond to different types of time ordering, are discussed
Appendices A and B.

We examine the various diagram contributions obtain
by summing diagram sequences using the functionG11

(21)

3(r1 ,t1 ;r2 ,t2) as an example and establish, in accordan
with ~2.3!, the corresponding contributions in the equati
describing the time variation of the density matr
r11(p,r ,t). Bearing in mind Eq.~2.3!, we must analyze in
the diagram expansion of the Green’s functi
G11

(21)(r1 ,t1 ;r2 ,t2) only those diagrams leading to analyt
contributions that do not vanish as a result of the action
the operatorsĜ01

21 and Ĝ02
21* . To simplify the calculations,

we use an optically thin medium and do not take into acco
the effect of the atoms on the state of the field. What
important for our analysis is the assumption that the inten
of the irradiating light is low, which limits the possible set o
self-energy diagrams. Physically this assumption means
the light intensity must be low compared to the saturat
intensity on the 1→3 and 2→3 transitions~the stimulated
transition rate is low compared to the rateg of the spontane-
ous decay of the excited state!. At the same time, the inten
75D. V. Kupriyanov and I. M. Sokolov
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sity must be sufficiently high to induce a redistribution
populations among the sublevels 1 and 2~the optical pump-
ing effect!. There exists, however, a much more importa
criterion of when the intensity of the irradiating light is low
This criterion will be formulated later.

Some of the diagram sequences can be represente
the sums

~2.8!

or

~2.9!

Here and in what follows light lines depict unperturb
Green’s functions, heavy lines the exact atomic Gree
functions, and wavy lines the Green’s functions of the ir
diating light~see Appendices A and B!. The diagram vertices
correspond to dipole-moment matrix elements. For con
nience, an atomic line is labeled by the number of the s
and a photon line by the corresponding median frequenc
Note that some of the terms in~2.8! coincide with some of
the terms in~2.9!. But as a result of the subsequent transf
mation ~2.3! only one of the diagram sums,~2.8! or ~2.9!,
provides a finite contribution, depending on whether we c
sider the action of the operatorĜ01

21 or of the operator
Ĝ02

21* . In the equation for the density matrix the diagram
describe a stimulated process in which the atoms leave
1, with the rate of depopulation proportional to the intens
of the irradiating light:

S ]r11

]t D
d.p.

52E
0

` dv

2p

2pv

c\
ud13u2

3
g

~v2v312k1p/m!21g2/4
J1~v!r11~p,r ,t !.

~2.10!

HereJ1(v) is the photon spectral flux density near the fr
quencyv1 in the direction characterized by the wave vec
k1 ; it can be expressed in terms of the time spectrum of
field correlation functionF (12)(r1 ,t1 ;r2 ,t2) defined in Ap-
pendix B, formula~B7!. If we write the correlation function
as

F~12 !~r1 ,t1 ;r2 ,t2!5F11
~12 !~r1 ,t1 ;r2 ,t2!

1F22
~12 !~r1 ,t1 ;r2 ,t2!, ~2.11!

where the first term corresponds to the contribution of
radiation at frequencyv1 and the second term to the contr
bution at frequencyv2 , then J1(v) is represented by the
spectral decomposition of the functionF11

(12)(r ,t1 ;r ,t2)
5F11

(12)(t12t2) as follows:
76 JETP 85 (1), July 1997
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J1~v!5
c

2p\v E dteivtF11
~12 !~t !. ~2.12!

In the general equations of optical pumping for the case o
multilevel atom, the polarization of the ground state d
scribed by a depopulation term of the form~2.10! is some-
times called depopulation pumping.2,29

The diagram sum of the form

~2.13!

describes the spontaneous and stimulated transitions o
oms from level 3 to state 1 in the equation for the dens
matrix. If we assume that the excited state 3 can be popul
only through stimulated transitions from sublevel 1 or 2 a
that the intensity of optical pumping is low, then allowing fo
inverse stimulated 3→1 transitions only makes the accurac
of the calculations too high. Thus, the diagram~2.13! leads
to the following term in the equation for the density matr
r11:

S ]r11

]t D
r .p.

5g31r33~p,r ,t !. ~2.14!

Here g31 is the rate of spontaneous decay from level 3
level 1. In the general theory of the optical pumping of
multilevel atom, the polarization of the ground state d
scribed by the repopulation term of type~2.14! is sometimes
called repopulation pumping.2,29

By employing the diagram technique we have deriv
the well-known contributions entering into an ordinary k
netic balance equation. This was done primarily so as late
compare these terms with additional terms that emerge in
equation for the density matrix of atoms interacting w
spontaneous parametric luminescence light. Here we m
note, however, that the Markovian nature of the evolution
the atomic density matrix, determined by the derivativ
~2.10! and~2.14!, can be related to the fact that in interpre
ing the diagrams we used the expressions of the ato
Green’s functions in terms of the atomic Wigner density m
trix via Eqs.~A4!–~A7! of Appendix A. A necessary prereq
uisite for such a procedure is the requirement that the d
onal components of the density matrix for states 1 and 2
not change on the time scale on which the field correlat
functions decay and that the time variation of the populat
of the excited state on the same scale be determined s
by the spontaneous decay process. These assumptions, w
in the case of the contributions~2.8!, ~2.9!, and ~2.13! are
actually reduced to the requirement that the width of
exciting light spectrum be larger than the stimulated tran
tion rates and the relaxation times for states 1 and 2,
usually true, so that the expressions~2.10! and ~2.14! are
fairly accurate. What is important here is that the width
the spectrum can be much smaller than the atomic nat
linewidth. In this case the kinetic stage in the evolution
the system is determined by the stimulated transition ra
76D. V. Kupriyanov and I. M. Sokolov
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and the relaxation times for states 1 and 2. The time varia
of the density matrix of the excited state,r33, on the slow
time scale will adiabatically follow the componentsr11 and
r22 of the ground-state density matrix.

Some of the diagram sequences containing the ano
lous Green’s functions of the electromagnetic field~see the
definitions~B3!–~B6! of Appendix B! can be represented b
the sums

~2.15!

or

~2.16!

Just as with the diagrams~2.8! and ~2.9!, some of the terms
in ~2.15! coincide with some of the terms in~2.16!. But as a
result of the subsequent transformation~2.3! only one of the
diagram sums provides a finite contribution, depending
whether we consider the action of the operatorĜ01

21 or of the
operatorĜ02

21* . The equation for the density matrix acquir
the following term:

S ]r̃11

]t D
d.p.

56E d3je2
i
\pjE E E d3r 4dt4d3r 5dt5d3r 6dt6

3
1

\4 ud13u2ud23u2iG33
~22 !S r1

j

2
,t;r4 ,t4D

3 iG22
~22 !~r4 ,t4 ;r5 ,t5!iG33

~22 !~r5 ,t5 ;r6 ,t6!

3 iG11
~21 !S r6 ,t6 ;r2

j

2
,t D

3F12
~11 !S r1

j

2
,t;r5 ,t5D

3F21
~22 !~r4 ,t4 ;r6 ,t6!1c.c., ~2.17!

where c.c. stands for the complex-conjugate contributi
Here we used the notation for the atomic Green’s functi
and the field anomalous correlation functions defined in A
pendices A and B, with the anomalous correlation functio
which are defined in~B9! and~B10!, represented in the form

F~22 !~r1 ,t1 ;r2 ,t2!5F12
~22 !~r1 ,t1 ;r2 ,t2!

1F21
~22 !~r1 ,t1 ;r2 ,t2!, ~2.18!

F~11 !~r1 ,t1 ;r2 ,t2!5F12
~11 !~r1 ,t1 ;r2 ,t2!

1F21
~11 !~r1 ,t1 ;r2 ,t2!,

where the first term corresponds to the contribution of be
near the median frequenciesv1 and v2 in the time argu-
mentst1 and t2 , and the second terms to the contribution
beats near the median frequenciesv2 andv1 .
77 JETP 85 (1), July 1997
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Another diagram sum determined by anomalous corre
tion functions,

~2.19!

leads to an analytic expression of the following form in t
equation for the density matrix:

S ]r̃11

]t D
r .p.

56E d3je2
i
\ pj

3E E E d3r 4dt4d3r 5dt5d3r 6dt6

3
1

\4 ud13u2ud23u2iG33
~22 !S r1

j

2
,t;r4 ,t4D

3 iG22
~21 !~r4 ,t4 ;r5 ,t5!iG33

~11 !~r5 ,t5 ;r6 ,t6!

3 iG11
~11 !S r6 ,t6 ;r2

j

2
,t DF12

~11 !S r

1
j

2
,t;r5 ,t5DF21

~22 !~r4 ,t4 ;r6 ,t6!1c.c., ~2.20!

where the notation is the same as is in~2.17!. Note that
actually neither~2.17! nor ~2.20! depends on the quantum
statistics of the atoms, which follows from the properties
the atomic Green’s functions and the assumed weaknes
the degeneracy effects in the semiclassical setting. Here
the functions of the formG(22) andG(11) must be consid-
ered in these expressions as referring to the single-par
case, i.e., they should actually be the unperturbed advan
or retarded Green’s functions for one atom. Allowance
the corrections to the advanced and retarded Green’s f
tions that reflect the atom–field interaction leads only to
cessive accuracy in the present calculations.

We denote the contributions~2.17! and ~2.20! in the
equation describing the time variation of the density matr
by analogy with~2.10! and~2.14!, as additional contributions
to depopulation and repopulation processes. From the cla
cal viewpoint they correspond to higher-order corrections
the light intensity and can be dropped. An important fact t
forces us to keep these contributions is that in a quan
setting involving squeezed light with a low degree of sque
ing ~parametric luminescence light is just such light! the
anomalous correlation functions are much larger than
normal correlation functions. This situation is graphically
lustrated by condition~B15! in Appendix B, which is valid
for dimensionless Fourier transforms of the correlation fu
tions. Generally speaking, the contributions~2.17! and~2.20!
are of the same order of smallness in the light intensity as
contributions~2.10! and~2.14! and should also be taken int
account when the interaction of atoms and the pump ligh
described in the low-intensity limit. The criterion of weak
ness of the pump light in this case is the low degree
squeezing of the radiation emitted by the parametric sou
which ensures the validity of~B15!. This condition can be
77D. V. Kupriyanov and I. M. Sokolov
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met if we use an optically thin nonlinear parametric mediu
as the source.25 We also note that the appearance in the eq
tions describing optical pumping by squeezed light of ter
corresponding to the linear dependence of two-stage tra
tions on the intensity of the irradiating light in the event
atom excitation by low-intensity light has been reported
Parkins.23

Another important feature setting the contributio
~2.17! and ~2.20! apart from~2.10! and ~2.14! is that it is
more difficult to indicate the terms corresponding to t
atomic density matrix. For the contributions~2.17! and
~2.20! to acquire the form of terms in a kinetic equation w
must justify the use of the representation~A4!–~A7! in the
atomic Green’s functions. Generally, when the correlat
time tc determining the decay of the field anomalous cor
lation functions is comparable to or exceeds the transi
times determining the evolution of the atomic subsystem,
use of this representation is unjustified. Moreover, at la
correlation times the diagrams~2.15!, ~2.16!, and~2.19! may
become more complicated in view of the possible coupl
of single-particle atomic lines into unfactorable two-partic
Green’s functions through the interaction with the therm
stat. The terms~2.17! and~2.20! in the equation for the den
sity matrix generally lead to a non-Markovian evolution
the atomic subsystem. The evolution may become Mark
ian in the limit tc!t0 , wheret0 is the characteristic relax
ation time for the difference in populations of the lower su
levels. Note that the question of whether the evolution of
density matrix of the atomic subsystem is Markovian or no
Markovian is related to the quantum statistical properties
the pump radiation.

There is one more important property of the diagra
~2.15!, ~2.16!, and~2.19!. It is related to the fact that they ca
be interpreted as diagrams containing vertex correction
the initial point vertex of the interaction corresponding to t
dipole moments of the transitions. Vertex corrections a
exist for ordinary incoherent Gaussian radiation, but th
contribution is small due to the smallness of the degener
parameter for this radiation. For quantum radiation with
low degree of squeezing~the case examined here!, the de-
generacy parameter is small, too, but the vertex correct
are nevertheless important because they can be express
terms of the field anomalous correlation functions. Clea
setting up an equation for the atomic subsystem in the c
of radiation with an arbitrary degree of squeezing requi
allowing for all vertex corrections and analyzing highe
order terms in the interaction with the optical pumping
diation in the perturbation-theory series. The possibility
keeping only the corrections~2.15!, ~2.16!, and~2.19! to the
interaction vertices and, as a result, of deriving a relativ
simple equation for the atomic density matrix is a spec
feature of the case of radiation with a low degree of sque
ing.

The final equation for the density matrixr115r11(p,r ,t)
can be written

]

]t
r11~p,r ,t !1

p

m
¹ rr11~p,r ,t !5S ]r11

]t D
d.p.

1S ]r11

]t D
r .p.
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1S ]r̃11

]t D
d.p.

1S ]r̃11

]t D
r .p.

1S ]r11

]t D
R

, ~2.21!

where the last term is responsible for relaxation proces
Note that the diagram expansion~and its analytic interpreta
tion! in the case of the equation for the density matrixr22

can be examined in exactly the same way as in the case
r11 due to the symmetry of the problem with respect to sta
1 and 2. The corresponding analytic expression can be
tained from~2.10!, ~2.14!, ~2.17!, and~2.20!, with the labels
1 and 2 are interchanged. The variation of the density ma
r33 of the excited state also require no separate analysis s
it is, obviously, described by the sum of contributions for t
lower sublevels 1 and 2 multiplied by21, due to the con-
servation of the total population of all sublevels in the optic
interaction cycle. A simple analysis of the possible diagra
shows that the equations for the off-diagonal component
the density matrix,rn1n2

5rn1n2
(p,r ,t) (n1 Þ n2), are ho-

mogeneous and unrelated to the populations in the sys
This means that there is no excitation of the coherence
tween the sublevels of theL-system when only spontaneou
parametric luminescence light is used. Exciting the opti
coherencesr31 and r32 and the radio-frequency coherenc
r21 requires using external sources of light or rad
frequency field. The dynamics of the density matrix det
mined by Eq.~2.21! for r11 and similar equations forr22 and
r33 must differ dramatically from the dynamics described
the cases of incoherent and coherent optical pumping.
also important to note that the corresponding differences
the dynamics of the evolution of populations of three-lev
atoms are due primarily to the quantum nature of light a
cannot be explained from the classical viewpoint.

3. THE KINETIC EQUATION APPROXIMATION

Let us transform Eq.~2.21! and similar equations forr22

and r33 to a system of kinetic equations. Usually, in goin
over to the kinetic equation approximation, it is assumed t
the excitation spectrum of incoherent radiation~squeezed, in
particular! is broadband compared to the characteristic rel
ation rates in the system~see Refs. 12 and 16!. In this section
we derive a system of kinetic equations under other con
tions, specific to the three-level system considered here
which the characteristic relaxation timet0 of the ground
state ~sublevels 1 and 2! is much longer than the natura
lifetime g21 of the excited state 3. Let us assume that
width of the spectrum of both modes of the excitation rad
tion, Dv, and the reciprocal relaxation timetc

21 ~which de-
termines the width of the spectrum of the anomalous co
lation functions! are much smaller thang. At the same time,
the evolution has a kinetic stage only in the limitDv,
tc

21@t0
21 . These inequalities are sufficient for the kinet

approximation to describe the evolution of the system
times comparable tot0 . Let us limit our discussion to the
case of cold atoms evenly distributed over the interact
volume. Here we assume that the Doppler shift of opti
transition lines is much smaller than the natural widthg. We
estimate the effect of atomic motion at the end of our ana
sis. Under these conditions the kinetic equation can be in
78D. V. Kupriyanov and I. M. Sokolov
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duced directly for the diagonal components of the den
matrix of the internal state,rnn(t) (n51,2,3):

rnn~ t !5
1

n0
E d3pd3r

~2p\!3 rnn~p,r ,t !, ~3.1!

wheren0 is the atom number density.
Using the representation of the atomic Green’s functio

given in Approximation A, we represent the contributio
~2.17! and~2.20! as terms of a kinetic equation. As a resu
the variation of the populationsrnn5rnn(t) (n51,2,3) in
theL-system is described by the following system of kine
equations:

]

]t
r1152w1r111g31r331w̃1r111g̃21r222G12r111G21r22,

]

]t
r2252w2r221g32r331w̃2r221g̃12r112G21r221G12r11, ~3.2!

]

]t
r3352

]

]t
r112

]

]t
r22.

We placed the various contributions on the right-hand si
of these equations in the same sequence as in Eq.~2.21!. In
particular, the last two terms describe collisional~nonradia-
tive! transitions between the sublevels 1 and 2, character
by the constantsG12, G21;t0

21. The last equation in~3.2!
means that theL-system is closed, so that the rate of spo
taneous decay of the excited state is the sum of the rate
decay into states 1 and 2:g5g311g32.

Let us discuss in detail the various contributions in E
~3.2! that describe light-induced transitions in theL-system.
By wn (n51,2) we denote the ordinary stimulated transiti
rates, which correspond to the use of the classical tim
dependent perturbation theory:

wn5wn~vn!5sn38 ~vn!Jn . ~3.3!

These transitions are characterized by an absorption c
section sn38 (v) of the n→3 transition and a photon flux
density in thenth mode,

Jn5
c

2p\vn
Fnn

~12 !~r ,t;r ,t !. ~3.4!

The cross sectionsn38 (v) is the real part of the complex
valued interaction cross section of then→3 transition:

sn3~v!5sn38 ~v!1 isn39 ~v!

5
4pv

c\
udn3u2

1

2 i ~v2v3n!1g/2
. ~3.5!

By representing thewn in the form ~3.3! we imply that ex-
citation occurs in the vicinity of the median frequen
vn;v3n in a spectral interval small compared to the natu
atomic linewidth.
79 JETP 85 (1), July 1997
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The additional depopulation pumping terms emerging
a result of excitation of the atomic subsystem through
field anomalous correlation functions are characterized
the ratesw̃n (n51,2):

w̃n5w̃n~v1 ,v2 ,V!

5 1
4~s13~v1!s23~v2!Gn n̄~V!

1s13* ~v1!s23* ~v2!Gn n̄~V!!, ~3.6!

whereV5v12v2 , andn̄52,1 for n51 or 2, respectively.
The electromagnetic field enters into this expression thro
the spectral functionsG12(V) and G21(V) defined as fol-
lows:

G12~V!5
c2

~2p\!2v1v2
E

0

`

dte2 iv21t

3F12
~11 !~r ,t1 ;r ,t2!F21

~22 !~r ,t1 ;r ,t2!,
~3.7!

G21~V!5
c2

~2p\!2v1v2
E

0

`

dteiv21t

3F21
~11 !~r ,t1 ;r ,t2!F12

~22 !~r ,t1 ;r ,t2!,

wherev21 is the transition frequency between the sublevel
and 1. In ~3.7! we have allowed for the fact that the inte
grands, which depend only on the difference in the time
guments,t5t12t2 , oscillate at frequencyV. Actually the
functionsG12(V) andG21(V) depend onV through the dif-
ferenceV2v21. The two functions are linked by the sym
metry relationG21(V)5G12* (V).

Note the two facts that set the additional rate parame
w̃n apart from the ordinary rate of stimulated transitions
the excited state,wn , defined by~3.3!. First, w̃n has no fixed
sign, i.e., can be either positive or negative, and can, in
way, effectively decrease or increase the rate at which lig
induced atoms leave the ground state. This should com
no surprise, since these depopulation rate constants
higher-order corrections town , so that only the difference
wn2w̃n must be positive. But since both quantities are of t
same order in the light intensity, the difference can be mu
smaller or much larger than the ordinary ratewn of stimu-
lated transitions. Second, the rate parameterw̃n depends in a
resonant manner not only on the frequenciesv1 andv2 but
also on their differenceV. The resonant dependence onV is
represented by the corresponding dependence of the f
tions G12(V) andG21(V), which are the spectral decompo
sitions of the product of the anomalous correlation functio
at the atomic transition frequencyv21. Resonant buildup
occurs where the frequency of the natural beats of the i
grands in~3.7! becomes comparable to the transition fr
quencyv21. Here the resonance width is determined by t
decay time of the anomalous correlations in the excit
light.

The additional repopulation contributions, which d
scribe the direct redistribution of atoms among the sublev
1 and 2 induced by the introduction through the field anom
lous correlation functions, are characterized in Eqs.~3.2! by
the rate constantsg̃21 and g̃12. These constants have the
form
79D. V. Kupriyanov and I. M. Sokolov
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g̃n n̄5g̃n n̄~v1 ,v2 ,V!

5 1
4~sn3~vn!s n̄3

* ~v n̄!Gn̄n~V!

1sn3* ~vn!s n̄3~v n̄!Gn̄n
* ~V!!, ~3.8!

n51, 2, n̄52, 1, and the notation is the same as in~3.6!.
Clearly, g̃215g̃12. The constants~3.8! can have an arbitrary
sign ~just as~3.6! can!. However, one must allow for the fac
that the corresponding contribution in the kinetic equatio
~3.2! must be considered with the repopulation terms
scribing the spontaneous decay of the excited state, and
total contribution must correspond to the total positive pro
ability of the light-induced transitions between the sublev
1 and 2.

The system of kinetic equations~3.2! obtained in this
section describes the evolution of populations in
L-system and differs dramatically from the equations
scribing the optical pumping of an atomic ensemble by
incoherent spectral source2 and from the Bloch equation
describing optical pumping by light from a coherent sour
We note again that there is no way in which the given eq
tions, valid at low intensities of the irradiating light with
zero average amplitude, can be derived on the basis of c
sical ideas about fluctuations of the field strength. All t
additional rate parameters,w̃1 , w̃2 , g̃21, andg̃12, are quan-
tities proportional to the exciting light intensity, just as th
ordinary stimulated transition ratesw1 andw2 are. Equations
~3.2! have a fairly narrow applicability range because of t
stringent conditions imposed on the source of parametric
diation. Below we formulate these condition and then f
mally solve the system of equations for the stationary ca

4. STATIONARY SOLUTION: THE EFFECT OF OPTICAL
PUMPING WITH EQUAL INTENSITIES OF THE EXCITING
LIGHT IN THE LEGS OF THE L-SYSTEM

In the stationary case the solution of the system of eq
tions ~3.2!, which describes the distribution of atoms amo
the sublevels of theL-system, parametrically depends on t
frequenciesv1 and v2 and on the differenceV. From the
standpoint of classical perturbation theory, a characteri
feature of the excitation scheme being discussed is tha
equal differencesv12v315v22v32, V5v21, and at equal
excitation intensities in the legs of closed theL-system
(g5g311g32) the optical pumping effect must be reduced
an equalization of populations on the sublevels 1 and 2, p
vided that these sublevels are close to each o
(v21!v31,v32) and thatG12, G21!w1 ,w2!g. This funda-
mental property of the three-levelL-system becomes invalid
in the case described by the system of kinetic equati
~3.2!.

We prove the above statement by solving the system
equations ~3.2! for the resonant case withv15v31,
v25v32, andV5v21. Comparing~3.6! and ~3.8!, we no-
tice that

w̃15w̃25g̃125g̃21[w̃. ~4.1!

After plugging ~4.1! into ~3.2! it is easy to obtain an exac
analytic solution for the stationary system of equations
rived from ~3.2!. This is unnecessary, however, since kee
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ing only the leading terms in the expansion of the solution
a series in light intensity is sufficient. To this accuracy w
obtain

r11→
g31

w1

w1w22~w21w1!w̃

g31w21g32w1
1

w̃

w1
,

r22→
g32

w2

w1w22~w21w1!w̃

g31w21g32w1
1

w̃

w2
, ~4.2!

r33→
w1w22~w21w1!w̃

g31w21g32w1
,

where the→ symbol means that we need only the leadi
terms in the expansions, assuming G12,
G21!w1 , w2 , w̃!g. In view of this, the normalization con-
dition for the components of the density matrix in~4.2!
means that the sum ofr11 andr22 is unity to within quanti-
ties of orderw1 /g, w2 /g, andw̃/g.

When the sublevels 1 and 2 are close to each other
the intensities of the exciting light in the legs of th
L-system are the same,v21!v31, v32 andJ15J2, the fol-
lowing condition must be met:

w1g325w2g31, ~4.3!

since the left- and right-hand sides contain the same prod
of dipole-moment matrix elements. If condition~4.3! is met,
the solutions~4.2! assume the following simple form:

r115
1

2
1

w̃

2 S 1

w1
2

1

w2
D ,

r225
1

2
1

w̃

2 S 1

w2
2

1

w1
D , ~4.4!

r335
w11w2

2g
2

w̃

2g31
2

w̃

2g32
.

These solutions show that when the optical-transition dip
moments are distinct,ud13u Þu d23u, and hencew1 Þ w2 ,
the atoms may become redistributed among the subleve
and 2 with probabilities differing from 1/2, even thoug
J15J2 . This optical pumping effect is determined solely b
the quantum properties of parametric radiation and is ba
on the fact thatw̃ is a quantity of the same order asw1 and
w2 . Below we estimate these quantities together, based
the general properties of field correlation functions listed
Appendix B. We also formulate more carefully the requir
ments that the source of parametric radiation must mee
the range in which the system of kinetic equations~3.2! is
valid.

Let us start by estimatingw̃, which in accordance with
~4.1!, ~3.6!, and~3.8! has the form

w̃5
1

4
s13

0 s23
0 ~G12~v21!1G12* ~v21!!, ~4.5!

where

s13
0 5

8pv31

c\g
ud13u2, s23

0 5
8pv32

c\g
ud23u2 ~4.6!
80D. V. Kupriyanov and I. M. Sokolov
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FIG. 2. ~a! Schematic of the proposed experiment in optically pumping three-level atoms by radiation emitted by two optical parametric oscillators, O1 and
OPO2, characterized by different time ordering in the creation of photons in the two associated modesk1v1 andk2v2 . The precooled atoms are kept in a
atomic trap. Photons of the associated modes are created as a result of the decay of pump photonskpvp in the four-wave mixing process. The difference
orientation of the squeezing ellipses is determined by the relative phase differenceDu5u12u2 of the anomalous correlation functions.~b! Distribution of
populations in the system of sublevels 1 (r11) and 2 (r22) of theL-system driven by radiation emitted by OPO1 and OPO2, as a function of the relative phas
differenceDu. The distribution forms in the limit of low intensity of the optical pumping radiation.
xa
e
nt
n
-

: t
e

la

e

es

s
er
in

t
ic
he
s
ar
o
c
i

ar
as
a

t

:

t-
rier
gu-

ribu-
or-
ust

eso-
are the photon resonant absorption cross sections. We e
ine the spectral functionG12(V), which determines the rat
parameterw̃. The causality principle imposes an importa
restriction on the type of anomalous correlation functio
entering into the definition~3.7!. Let us assume that the pho
tons created in a parametric process are ordered in time
photon in modev1 is created either earlier or later than th
photon in modev2 . This means that the anomalous corre
tion functions F21

(22)(r1 ,t1 ;r2 ,t2), which are defined in
~2.18! and refer to a physically specified process of param
ric oscillation, will vanish only fort1,t2 or only for t1.t2 .
Correspondingly, the functionsF12

(11)(r1 ,t1 ;r2 ,t2) will van-
ish in the opposite cases. In this way the product of th
functions, which enters into the definition ofG12(V) taken
for the same parametric scatterer, will vanish. But if the
correlation functions are taken for two different scatter
with different time ordering in the creation of photons
modesv1 and v2 , the integrands in~3.7! are finite. For
definiteness and generality of method, we assume that
medium is irradiated by light from two optical parametr
oscillators characterized by different time ordering in t
generation of thev1 andv2 modes and connected in serie
as depicted in Fig. 2a. The two parametric oscillators
driven by the same pump radiation and are assumed t
transparent for the generated squeezed radiation. The
where there is no time ordering in the creation of photons
modesv1 and v2 can obviously be considered a particul
one if we assume that the radiation intensities and the ph
of the anomalous correlation functions from both sources
the same.

Using the Fourier transform~B12! for the correlation
functions, we can write their frequency componen
F21

(22)(r1 ,t1 ;r2 ,t2) and F12
(11)(r1 ,t1 ;r2 ,t2) defined in

~2.18! in the form of the following Fourier decompositions

F21
~22 !~r1 ,t1 ;r2 ,t2!5expF2 ivpS t12

z1

c D2 ivpS t22
z2

c D G
3E d3k8

~2p!3 E
2`

0 dV8

2p
exp@2 iV8
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3~ t12t2!1 i k8~r12r2!#

3F~22 !~k8,V8!,
~4.7!

F12
~11 !~r1 ,t1 ;r2 ,t2!5expF ivpS t12

z1

c D1 ivpS t22
z2

c D G
3E d3k9

~2p!3 E
2`

0 dV9

2p
exp@2 iV9

3~ t12t2!1 i k9~r12r2!#

3F~11 !~k9,V9!,

wherevp is the frequency of the pump light in the parame
ric process. According to the initial assumptions, the Fou
transforms of the correlation functions have resonant sin
larities near the frequenciesV8, V9;V/2. It has proved
convenient to write the Fourier transforms as follows:

F~22 !~k8,V8!5~2p!2\vpd~ckz82V8!~e2iu1~k'8 ,V8!

3r 1~k'8 ,V8!1e2iu2~k'8 ,V8!r 2~k'8 ,V8!!,

~4.8!

F~11 !~k9,V9!5~2p!2\vpd~ckz92V9!~e22iu1~k'9 ,V9!

3r 1~k'9 ,V9!1e22iu2~k'9 ,V9!r 2~k'9 ,V9!!,

where the terms in parentheses correspond to the cont
tions of the first and second parametric oscillators. In acc
dance with the causality principle, each of these terms m
be an analytic function ofV8 andV9 in the upper or lower
half-plane. We assume that the phasesu1 andu2 are distinct
and begin to depend on their arguments only near the r
nances.

Plugging~4.7! and ~4.8! into ~3.7!, we get

G12~V!1G12* ~V!5E E d2k'8

~2p!2

d2k'9

~2p!2

3E
2`

0 E
2`

0 dV8

2p

dV9

2p
2pd~v211V8
81D. V. Kupriyanov and I. M. Sokolov
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1V9!$e2i ~u12u2!r 1~k'8 ,V8!r 2~k'9 ,V9!

1e22i ~u12u2!r 2~k'8 ,V8!r 1~k'9 ,V9!%.

~4.9!

We assume that near the resonancesV8, V9;V/2 the
phasesu1 andu2 vary in a coordinated manner, so that the
difference remains constant. The presence of a delta func
in the integrand of~4.9! implies that this expression can b
finite only if the transition frequencyv21 coincides withV
within a scale of ordertc

21 that determines the width of th
spectrum of the integrands. Integration with respect tok'8 or
k'9 is limited to a scaleScoh

21 . The quantitykcoh
21;Scoh

21 is the
limiting spatial scale of coherence for a parametric oscilla
that allows for coordination between the phases of the ra
tion scattered by different volumes of the medium. The giv
scale can also be interpreted as the limiting spatial scale
able for low-noise measurements involving squee
radiation.30 The final estimate of the rate parameterw̃, de-
fined in ~4.5!, is

w̃;
1

2
cos 2~u12u2!

s13
0 s23

0

Scoh
2

1

tc
^r 1r 2&, ~4.10!

where we estimated the integral~4.9! by using the average
values of the integrands.

The estimates of the transition ratesw1 and w2 can be
done by reasoning along similar lines. Using the definitio
of Appendix B, we can write the photon flux densitiesJ1 and
J2 as

J15E d2k'8

~2p!2 E
2`

0 dV8

2p
$l1~k'8 ,V8!1l2~k'8 ,V8!%,

~4.11!

J25E d2k'8

~2p!2 E
0

` dV8

2p
$l1~k'8 ,V8!1l2~k'8 ,V8!%,

wherel1(k'8 ,V8) and l2(k'8 ,V8) are the degeneracy pa
rameters that refer to the first and second oscillators, res
tively. Assuming that the condition~B15! holds, we can es-
timate the transition ratesw1 andw2 as follows:

w1;
s13

0

Scoh

1

tc
~^r 1

2&1^r 2
2&!,

~4.12!

w2;
s23

0

Scoh

1

tc
~^r 1

2&1^r 2
2&!,

where we have averaged the integrands in~4.11! under the
assumption that the values of averages overV for the posi-
tive and negative parts of the spectrum are equal.

Let us now formulate more specifically the requireme
that a parametric source must obey in our scheme of o
cally pumping theL-system. Effective redistribution of at
oms among the sublevels 1 and 2 is possible
w1 , w2@G12, G21;t0

21. Let us estimate the order of mag
nitude of the resonant cross section of photon absorptio
both transitions by the square of the optical wavelength,l0

2,
and the coherence area byScoh;l0l , wherel is the length of
the layer in which parametric oscillation occurs.30 Under
these conditions we find that pumping is effective when
82 JETP 85 (1), July 1997
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l0

l
~^r 1

2&1^r 2
2&!

1

tc
@

1

t0
. ~4.13!

Although this condition agrees with the necessary requ
ment thattc!t0 , it is more stringent. In particular, the pa
rameter̂ r 1

2& and ^r 2
2& can be interpreted as the average v

ues of the degeneracy parameter for the first and sec
sources and are small compared to unity. The ratiol0 / l must
also be assumed small since we ignore diffraction effects
study radiation propagating along thez axis with small val-
ues of the transverse wave vectorsk' . Note that the condi-
tion ~4.13! must be met together with the requirement th
tc@g21. Formally, the two requirements can be met sim
taneously if we select atoms with a spin ground state as
L-system. The times of relaxation between the subleve
and 2 in this case may reach values of order 0.1 s for typ
values of the lifetimes of the excited states of ord
1028– 1029 s. The most difficult task here is to select th
source of parametric oscillations with the required corre
tion time.

The estimates~4.10! and ~4.12! show that the transition
ratesw̃, w1 , andw2 are indeed of the same order of magn
tude in the intensity of the irradiating light. The light inten
sity enters into these expressions in the form of the aver
values of the degeneracy parameters in parametric osc
tions, ^r 1

2& and ^r 2
2&, and the product̂r 1r 2&. But the transi-

tion rate w̃ contains an additional smallness parame
l0 / l !1. As noted earlier, this smallness parameter refle
the limited nature of our approach, since formally, remain
within it, we cannot consider parametric oscillations with t
limiting value of the coherence area,Scoh→l0

2, and a length
l of the parametric medium comparable tol0 . In other
words, we are forbidden to consider the irradiation of ato
by light gathered from large solid angles. Nevertheless, i
natural to expect, from general physical considerations,
the transition to exceptionally small coherence are
Scoh→l0

2, must lead to the most optimum conditions for o
serving the discussed quantum statistical effects in the o
cal pumping of a three-level atom. In this connection w
believe that, despite the additional smallness ofw̃ in relation
to w1 andw2 present in our calculations, the actual redist
bution of atoms among the sublevels 1 and 2 caused by
quantum nature of light may be essential. The above e
mates also show that ignoring atomic motion in our calcu
tions has a negative effect on observing optical pumpi
since allowing for it must lead to a decrease in the absorp
cross section for resonant light in comparison tol0

2 and
hence to a relative decrease inw̃ in comparison tow1 and
w2 . The case of a cold atomic ensemble, which is charac
ized by an average Doppler line broadening small compa
to the natural linewidthg, is optimal for observing the opti-
cal pumping effect based on the quantum statistical prop
ties of the light source.

Figure 2b depicts the populations of the sublevels 1 a
2 as functions of the relative phase differenceDu5u12u2 .
For graphical reasons in Fig. 2a we show that this ph
difference can be interpreted as the relative angle indica
the mutual orientation of the squeezing ellipses for the fi
and second sources. Geometrically, each ellipse characte
82D. V. Kupriyanov and I. M. Sokolov
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the range of indeterminancy for the quantum fluctuations
the field amplitude at frequencies close tov21/2. A special
feature of this optical pumping scheme is that the differe
in the populations of the sublevels 1 and 2 depends on
relative phase differenceu12u2 and may change sign whe
2(u12u2)5p/21pm (m50,61,...). Thus, because of the
asymmetry in the behavior of the quantum fluctuations of
field amplitudes in the sources an asymmetry develops in
excitation conditions in theL-system. This sets optica
pumping by parametric luminescence light apart from opti
pumping by light from a Gaussian spectral source~spontane-
ous emission of an atomic ensemble, thermal radiation, e!,
in which the distribution of the field fluctuations in the plan
of complex-valued amplitudes is totally symmetric.

Our calculations heavily rest on the assumption that
fluctuation spectrum of the squeezed radiation is narrow.
parametersDv andtc

21 , which determine the widths of th
spectra of the normal and anomalous correlation functi
and are actually quantities of the same order of magnitu
are assumed small compared to the natural widthg of the
excited level of theL-system. From the standpoint of the
effects the situation becomes unfavorable if the oppo
conditions hold, i.e., ifDv, tc

21@g. Let us prove this by
analyzing the relative order of magnitude of the kinetic c
efficients that appear in the equations for the atomic den
matrix in this case, bearing in mind that the conditio
Dv, tc

21@g are sufficient for the kinetic equation approx
mation to be valid. Direct calculations readily show that
the widthDv of the optical-pumping radiation spectrum in
creases with the integral intensity remaining constant,
stimulated transition ratesw1 andw2 decrease in proportion
to the ratiog/Dv. The calculation of the diagrams~2.15!,
~2.16!, and ~2.19! and their transformation into the corre
sponding terms in the kinetic equation generates terms o
depopulation and repopulation type, similar to those t
were considered earlier and have the same characteristi
of rate parameters,w̃1 , w̃2 , g̃12, and g̃21. But under the
conditions we are studying here, when the widthtc

21 of the
anomalous correlation spectrum increases, these rate pa
eters decrease in proportion to the productg2tc

2 . Since
Dv;tc

21 , it is clear that the inequalitiesDv,tc
21@g lead to

the following inequalities between the kinetic coefficien
w1 , w2@w̃1 , w̃2 , g̃12, g̃21. These relationships between
the kinetic coefficient are obvious even from an analysis
the general structure of the diagram contributions~2.15!,
~2.16!, and~2.19!, which constitute contributions in the pe
turbation series for the self-energy functions of a higher
der than the diagrams~2.8! and~2.9!. Indeed, the presence o
an additional virtual transition in the diagrams containi
anomalous correlations is characterized by additional in
gration over time with a natural limiting scaleg21. As a
result, the corresponding correction to the self-energy fu
tions decreases substantially because of the disappearan
correlations on this time scale.

The above reasoning implies, among other things,
the above optical pumping effect in aL-system is truly re-
lated to the finiteness and, more than that, to the narrow
of the fluctuation spectrum of squeezed radiation. When
radiation intensity is low, the optical pumping effect and t
83 JETP 85 (1), July 1997
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additional repopulation and depopulation terms in the kine
equation must vanish when we go over to broadba
squeezed radiation.

5. DISCUSSION

We have derived quantum kinetic equations describ
the evolution of the components of the density matrix fo
three-levelL-system excited by radiation whose statistics
nonclassical. The main feature of these equations is the p
ence of terms reflecting the presence of anomalous corr
tion characteristics in the optical pumping radiation. Sin
the phases of the field anomalous correlation functions g
erated by different sources may differ, the kinetic equatio
acquire terms that reflect the specifically quantum interf
ence effect when the atom is irradiated by parametric lu
nescence light generated by different sources. Note that
type of interference difference from the ordinary typ
caused by the phase difference in the product of comp
valued amplitudes of the fields from different sources. In
case at hand the average field amplitudes are zero. And
interference of anomalous correlation functions gives rise
particular, to an optical pumping effect, i.e., a redistributi
of atoms among the sublevels of theL-system.

An important feature of the system of kinetic equatio
~3.2! is that the additional terms in these equations reflect
the quantum statistics of the radiation become import
when v12v2'v21. This condition for resonance must b
valid to within the spectral widthtc

21 of the field correlation
functions. The reader will recall that this quantity was a
sumed to be considerably smaller than the natural ato
linewidth g. This fact relates the effects described by E
~3.2! to the effect of coherent population trapping based
the Bloch equations.5–8 For instance, the last equation i
~4.4! implies that there is a possibility of reduction of th
population of the excited sublevel 3 when the conditions
resonance are met and when the phases of the first and
ond parametric oscillators are chosen accordingly. No
however, that in the case of coherent trapping the absenc
atoms on the sublevel 3 is accompanied by their simu
neous trapping in a state that is a coherent superpositio
states 1 and 2. No such coherent superposition of st
emerges in our case. Apparently, we can say that the der
optical pumping equations, being actually balance equatio
nevertheless exhibit some features of coherent Bloch eq
tions. The possibility, which follows from the solutions~4.4!,
of the atoms being redistributed among the states 1 an
leads to the following question: can squeezed light redist
ute ~at least in principle! the atoms in a closedL-system
among states 1 and 2 and at the same time lower the p
lation ~or leave it unchanged! of state 3 even if no superpo
sitions between states 1 and 2 are formed~as happens in
coherent trapping!? The above estimates show that if such
effect is possible, the atoms must be irradiated by spati
multimode squeezed radiation collected from all directio
However, an exact answer to this question lies outside
scope of our model and requires further investigation.

In conclusion we note that the assumption about the
equality of the dipole moments of the transitions,d13
83D. V. Kupriyanov and I. M. Sokolov
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Þ d23, which we made in describing the optical pumpin
effect, is not too important for observing the quantum sta
tical features in the system of equations~3.2!. The fact that
the dipole moments are equal only means that un
L-resonance conditions the difference in the populations
sublevels 1 and 2 must be zero owing to the total symm
of the problem, which under ordinary conditions agrees w
the effects of other relaxation processes on the atoms.
when there is an additional~say, collisional! mechanism
leading to the formation of a finite difference in populatio
between these states, the quantum statistical effects man
themselves in the solution of the system of kinetic equatio
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No. 96-02-16613! and the U.S. Civilian Research and Deve
opment Foundation~Grant No. RP1-263 Prop. #2794!.

APPENDIX A: ATOMIC GREEN’S FUNCTIONS AND THEIR
RELATION TO THE WIGNER DENSITY MATRIX

The unperturbed atomic Green’s functions are defined

G
~0!

n1n2

~s1s2!
~r1 ,t1 ;r2 ,t2!

52 i ^Ts1s2
~Cn1

0 ~r1t1!Cn2

0†~r2t2!!&, ~A1!

where the ordering operatorsTs1 ,s2
for the possible values

s1 , s256 act according to the following rules:T225T is
the time-ordering operator,T115T̃ is the antiordering op-
erator,T12 is the identity operator, andT21 is the permu-
tation parameter. In the case of Fermi statistics, the exp
sion ~A1! must be multiplied by 21 if the ordering
parameterTs1s2

leads to a permutation of theC-operators.
In diagrams such functions are depicted by light lines:

~A2!

Clearly, if we consider, say, the decomposition of the evo
tion operator in~2.6! and if the atomic subsystem obey
Gaussian statistics, the average of the product of an arbit
number ofC-operators is reduced to the product of all po
sible pair averages of the form~A1!.

The total atomic Green’s functions, which are averag
of products of operators in the Heisenberg representatio

Gn1n2

~s1s2!
~r1 ,t1 ;r2 ,t2!

52 i ^Ts1s2
~Cn1

~r1t1!Cn2

† ~r2t2!!&, ~A3!

and emerge as a result of ‘‘dressing’’ the functions~A1! with
various interactions, are depicted by heavy lines in diagra
These functions considered on small space–time scale
the differencer12r2 and t12t2 are related to the atomi
Wigner density matrix as follows:
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iGn1n2

~22 !~r1 ,t1 ;r2 ,t2!5E d3p

~2p\!3 expF i

\
p~r12r2!2

i

\
e~p!

3~ t12t2!2
i

2\
~en1

1en2
!~ t12t2!

2
1

2
~gn1

1gn2
!ut12t2uG

3H dn1n2
u~ t12t2!

6rn1n2S p,
r11r2

2
,
t11t2

2 D J , ~A4!

iGn1n2

~11 !~r1 ,t1 ;r2 ,t2!5@ iGn1n2

~22 !~r2 ,t2 ;r1 ,t1!#* , ~A5!

iGn1n2

~12 !~r1 ,t1 ;r2 ,t2!5E d3p

~2p\!3 expF i

\
p~r12r2!2

i

\
e~p!

3~ t12t2!2
i

2\
~en1

1en2
!~ t12t2!

2
1

2
~gn1

1gn2
!ut12t2uG H dn1n2

6rn1n2S p,
r11r2

2
,
t11t2

2 D J , ~A6!

iGn1n2

~21 !~r1 ,t1 ;r2 ,t2!56E d3p

~2p\!3 expF i

\
p~r12r2!

2
i

\
e~p!~ t12t2!2

i

2\
~en1

1en2
!~ t1

2t2!2
1

2
~gn1

1gn2
!ut12t2uG

3rn1n2S p,
r11r2

2
,
t11t2

2 D . ~A7!

Heree(p)5p2/2m, en1
anden2

are internal energies of th
atoms in the statesn1 andn2 , gn1

andgn2
are spontaneous

decay rates for these state~which may be absent for the
lower energy sublevels!, andu~t! is the Heaviside step func
tion, equal to 1 fort.0 and to 0 fort,0. The upper sign in
these equations corresponds to Bose statistics and the l
sign to Fermi statistics. Note that Eqs.~A4!–~A7!, which
play an important role in deriving the kinetic equation, a
valid only if the evolution of the Green’s functions over th
space–time arguments can be considered free and the t
t1 andt2 are close. They cease to be valid if the time diffe
encet12t2 becomes comparable to the characteristic tran
tions time in the sublevel system.

APPENDIX B: GREEN’S FUNCTIONS AND THE
ELECTROMAGNETIC-FIELD CORRELATION FUNCTIONS

In quantum electrodynamics, photon Green’s functio
are expressed in terms of averages of products of vector
tential operators.28,31 However, in the problem under consid
eration, in which there is dipole interaction between the el
84D. V. Kupriyanov and I. M. Sokolov
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tromagnetic field and the model sublevel system and
vector properties of the field are not specified explicitly, it
advisable to introduce Green’s functions directly for t
field-strength operators. Three types of these functions
be defined when the statistics is quasi-Gaussian. First,
normal Green’s functions existing both in the electrodyna
ics of the vacuum and in the case of a Gaussian spe
source:

F
~0!

~s1s2!~r1t1 ,r2t2!52 i ^Ts1s2
~E~2 !~r1t1!E~1 !~r2t2!!&,

~B1!

which are the averages of time-ordered products of opera
of different frequencies. These functions are depicted in d
grams by wave lines with a unidirectional arrow:

~B2!

But there is also another pair of anomalous Green’s fu
tions,

F
~2 !

~s1s2!~r1t1 ,r2t2!52 i ^Ts1s2
~E~2 !~r1t1!E~2 !~r2t2!!&

~B3!

and

F
~1 !

~s1s2!~r1t1 ,r2t2!52 i ^Ts1s2
~E~1 !~r1t1!E~1 !

3~r2t2!!&, ~B4!

which are the averages of time-ordered products of opera
of the same frequency. These functions are depicted in
grams by wavy lines with arrows pointing in opposite dire
tions:

~B5!

and

~B6!

Note that the anomalous Green’s functions~B3! and~B4! for
light emitted by a parametric spectral source exist for z
average values of field strength.

A simple analysis shows that because the commuta
of free fields arec-number functions, irrespective of the typ
of time-ordering in~B1!, ~B3!, and~B4! the self-correlation
properties of a quasi-Gaussian spectral source are compl
determined by four correlation functions,

F~12 !~r1 ,t1 ;r2 ,t2!5^E~1 !~r1t1!E~2 !~r2t2!&, ~B7!

F~21 !~r1 ,t1 ;r2 ,t2!5^E~1 !~r2t2!E~2 !~r1t1!&, ~B8!

F~22 !~r1 ,t1 ;r2 ,t2!5^E~2 !~r1t1!E~2 !~r2t2!&, ~B9!

F~11 !~r1 ,t1 ;r2 ,t2!5^E~1 !~r1t1!E~1 !~r2t2!&, ~B10!
85 JETP 85 (1), July 1997
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which obey the following symmetry relations:

F~21 !~r1 ,t1 ;r2 ,t2!5F~12 !~r2 ,t2 ;r1 ,t1!,
~B11!

F~11 !~r1 ,t1 ;r2 ,t2!5@F~22 !~r2 ,t2 ;r1 ,t1!#* .

We also note that for a free field, because of the commu
tivity of the operators of the same frequency, the type of ti
ordering in the functions F (22)(r1 ,t1 ;r2 ,t2) and
F (11)(r1 ,t1 ;r2 ,t2) may be assumed arbitrary.

For light emitted by a parametric source, e.g., in a fo
wave process, as a result of the monochromatic pump w
with a frequencyvp decaying into two phase-associate
modes with frequenciesvp6V, the correlation functions
~B7!–~B10! depend, after the rapidly oscillating phase fa
tors have been isolated, only on the difference coordina
t5t12t2 and r5r12r2 . Assuming that the pump wav
propagates along thez axis, we do a Fourier decompositio
of these functions in the difference space–time coordina

F~s1s2!~k,V!

5E
2`

`

dtE d3reiVt2 i kr

3e2 is1vp~ t12z1 /c!2 is2vp~ t22z2 /c!

3F~s1s2!~r1 ,t1 ;r2 ,t2!. ~B12!

The symmetry relations~B11! are transformed as follows:

F~21 !~k,V!5F~12 !~2k,2V!,
~B13!

F~11 !~k,V!5@F~22 !~k,V!#* .

This shows that only two functions are independent, and
these we takeF (12)(k,V) andF (22)(k,V).

For quasimonochromatic radiation propagating along
z axis, the given pair of correlation functions can be rep
sented as follows:

F~12 !~k,V!5~2p!2\vpd~ckz2V!l~k' ,V!,
~B14!

F~22 !~k,V!5~2p!2\vpd~ckz2V!

3e2iu~k' ,V!r ~k' ,V!,

where we ignored diffraction effects and allowed for the fa
that the phase of the anomalous correlation functionu may,
generally speaking, also depend on the transverse wave
tor k' and the frequencyV: u5u(k' ,V). What is impor-
tant here is the assumption that the spectrum of these f
tions contains two resonance singularities near
frequenciesV;6V1 , whereV15v12vp5vp2v2 . This
guarantees that the initial assumptions concerning the e
tation of theL-system, formulated in Sec. 1 and depict
Fig. 1, are valid.

When the source of parametric radiation is weak~i.e.,
the probability of a pump photon decaying into a pair
phase-associated photons is low!, the radiation intensity is
characterized by a dimensionless parameterl(k' ,V) ~the
degeneracy parameter!, which is small:l(k' ,V)!1. The
appearance of anomalous correlations in the emitted ligh
also characterized here by a small dimensionless param
r (k' ,V)!1. In the case of parametric conversion close
85D. V. Kupriyanov and I. M. Sokolov
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ideal~pure parametric scattering with no Raman scattering
resonance luminescence!, the two parameters are linked b
the following approximate relationship:

l~k' ,V!'r 2~k' ,V!!r ~k' ,V!. ~B15!

This can never happen if the averaging operation in the l
correlation functions is examined from the classical vie
point. The inequality is a reflection of the purely quantu
nature of spontaneous parametric luminescence, relate
the rigorous time correlation in the creation of phas
associated ‘‘twin’’ photons. The condition~B15! implies,
among other things, that leaving first-order contributions
F (12)(•••) in calculations of processes by perturbati
techniques means leaving second-order contributions
F (22)(•••) andF (11)(•••). Note that from the viewpoint
of the squeezing effect the light we are considering here is
example of radiation characterizes by a low degree
squeezing.
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Interest in the process of relative diffusion, i.e., the
vergence in turbulent flow of two initially close-lying pa
ticles of a passive impurity, is chiefly associated with t
possibility of avoiding here the fundamental difficultie
blocking the path of a complete analytic description of t
bulent mixing. Actually, since even turbulent flow, as w
already pointed out in the classical papers1,2 ~see also Ref. 3!,
is a regular flow on a scale of the order of the spatial per
of the given fluctuation, the dynamics of an impurity in a
actual turbulent field with a wide spectrum~the inertial in-
terval! possess the property of memory, which makes it
tremely hard to use analytic approaches to the problem.

On the other hand, the kinetics ofT( l,t)—the probability
density that, in a given experiment, two initially close-lyin
particles are at the ends of vectorl at time t—as a conse-
quence of being used to define averaging over differ
implementations of turbulent motion~over different experi-
ments!, loses memory and, conversely, must possess
property of information loss~the mixing process occurs, an
entropy increases!.

Nevertheless, even this kinetic equation cannot be
rived from first principles and has to be introduced into t
theory by simply postulating it~which, as B. Russell once
noted, has many advantages, coinciding with those inhe
to stealing by comparison with honest labor!. Usually, ac-
cording to a tradition going back to Richardson~who himself
introduced the very concept of relative diffusion!, everyone
reduces it to the usual diffusion equation and only arg
about how its coefficient depends on the parameters of
problem.1,2,4

It was proposed in Ref. 5 that the analytic possibiliti
be broadened by going to the region of integral equation
the convolution type.~The most obvious physical reason f
nonlocality is that the main contribution to the divergen
rate of two particles lying in the inertial interval comes fro
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a turbulent harmonic of the same scale as the current dist
between them. Reference 6 was probably the first to
attention to the possibility in principle of a nonlocal varia
~see also Ref. 7!.! Specifically, the following model equation
~in dimensionless units! was written forT:

]T~ l,t !

]t
5
)

4p2 G~2/3!DE T~ l8,t !

u l2 l8u5/3 d3l8. ~1!

The exponent in the kernel of the integral, equal to t
Kolmogorov–Obukhov exponent, arises from the neces
of satisfying Richardson’s laŵl & } t3/2, which describes
the variation of the characteristic diameter of a cloud of i
purity in a turbulent medium,1–4 while the complicated nu-
merical coefficient~G is Euler’s gamma function! arises from
the unity in the Fourier representation. This paper is devo
to testing this hypothesis, since only experiment~including
numerical modeling! can confirm or disprove a theoretica
postulate. Let us discuss this feature.

Equation~1!, like the classical diffusion equation, is eas
to solve because of its locality in Fourier space, and
scribes a similarinformation loss—the evolution of any ini-
tial impurity-distribution profile to a finite-parameter sel
similar solution. Its fundamental difference, howeve
consists in the presence of an exponential tail in this solu
asl→`, i.e., a divergence of certain exponential moments
the self-similar functionT, which is a special case of th
Levi function.5,7,8 In practice, this property denotes the e
ponential smallness of the probability of detecting in a giv
experiment a cloud with a diameter that substantially
ceeds the mean Richardson value, but not at all the expo
tial character of the falloff of the impurity concentration
the periphery of the given cloud—as already mentioned,
~1! does not strictly describe the process of turbulent mixi
just as one plane projection does not give a complete re
FIG. 1. Realization of Richardson’s
law: ~a! original data,~b! analysis.
87$10.00 © 1997 American Institute of Physics
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FIG. 2. Number of pairs with an interpar
ticle distance greater than a fixedl 0 ~1—
l 0580, 2—100, 3—150! vs. time: a! origi-
nal data, b! analysis.
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sentation of a three-dimensional body~and a more appropri
ate analogy in the given case is one with an infini
dimensional body!; see also Refs. 2–4.

It is especially simple to see the presence of such a
by rewriting Eq.~1! in the desired limit, takingu l2 l8u5/3. l 5/3

out from under the integral sign on the left-hand side a
using the normalization condition*Td3l[1:

]T

]t
5
)

4p2 GS 2

3DD
1

l 5/3}
1

l 11/3, l @t3/2. ~2!

One more characteristic property of the relative diffusi
process described by Eq.~1! immediately follows from Eq.
~2!—the probability of finding a pair of particles separat
by a distance significantly greater than the Richardson
tance is a linear function of time. It is easy to see that t
property, unlike the exponent onl , depends neither on th
turbulence spectrum nor the dimensionality of the proble
but is associated only with the hypothesis of the nonloca
of the process. It is precisely this, as the most stable prope
that is convenient to choose as a verifiable parameter.

Starting from the possibilities of the authors, such a t
was made on the basis of numerical modeling. The tur
lence was modeled by a given two-dimensional incompre
ible flow with a quasi-Kolmogorov spectrum. Specificall
the flux functionC(v5$vx ,vy%5ez3¹C) was chosen in
the form of a sum of 140 harmonics combined into groups
seven each in twenty scale classes; i.e.,

C5(
i 51

20

C i , C i5Ai (
j 51

7

sin~v i j t2k i j •r1a i j !,

where the moduli of all the wave vectors in each group
identical, uk i j u5ki , and their ratio in adjacent classes
ki /ki 1151.4.& (k151). Such a choice made it possib
to cover the scale range of the turbulent fluctuations in th
orders of magnitude~i.e., 1.420!. AmplitudesAi , according
to the Kolmogorov–Obukhov law, equalledki

24/3. The
angles of rotation ofk i j relative to thex andy axes, as well
as phasesa i j , were chosen randomly in the interval~0,2p!,
and the number of harmonics in each class—seven—
considered sufficient to ensure that the turbulence is iso
pic. The frequenciesv i j were of the order ofkiv i ; i.e., they
were determined fromv i j 5b i j ki

2/3, whereb i j are random
quantities in the interval~1/2, 3/2!.
88 JETP 85 (1), July 1997
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The motion of 1004 pairs of points was studied in th
given field of velocities, with the initial distance in each pa
being equal to 3~i.e., of the order of a half-wave of the
smallest-scale harmonicC!. To average over the implemen
tations of turbulent flow, the pairs were placed at a dista
of 3000 from each other~i.e., of the order of the half-wave o
the largest-scale harmonicC!—here, by the way, the differ-
ence between the process being modeled and the blurrin
any fixed cloud is again seen.

The results of numerical modeling are shown in Figs
and 2. The former demonstrates the accuracy of the ag
ment of Richardson’s law for the given model. It can be se
that the self-similar regime is not reached too rapidly—in
time greater than 30, when the particles in pairs diverge
the average by a distance of about 40. The second, key fi
reflects the degree of correspondence of the hypothesis
cerning the nonlocality of the numerical calculation proce
~the time shift by 10 in the processing does not contradict
linearity and is evoked by the initial data!. The theory of Ref.
5 corresponds to constancy of the functions in Fig. 2b~and
their proportionality tol 0

22/3! at least untill 0@^ l & ~see Fig.
1!. The agreement obviously looks rather persuasive.
other words, Eq.~1! gives an extremely good description o
the process of relative ‘‘diffusion.’’
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also supported by the Russian Fund for Fundamental
search~Project No. 96-02-17249a! and by the ‘‘Nonlinear
Dynamics’’ program of the Ministry of Science.

1L. F. Richardson, Proc. R. Soc. London, Ser. A110, 709 ~1926!.
2G. K. Batchelor, Proc. Cambridge Philos. Soc.48, 345 ~1952!.
3A. S. Monin and A. M. Yaglom,Statistical Hydromechanics, Nauka,
Moscow ~1967!, part 2, sect. 24.

4H. G. E. Hentshel and I. Procaccia, Phys. Rev. A29, 1461~1984!.
5K. V. Chukbar, JETP Lett.58, 90 ~1993!.
6M. F. Shlesinger, B. J. West, and J. Klafter, Phys. Rev. Lett.58, 1100
~1987!.

7J. Klafter, M. F. Schlesinger, and G. Zumofen, Phys. Today49„2…, 33
~1996!.

8E. W. Montroll and M. F. Shlesinger, inStudies in Statistical Mechanics,
vol. 11, J. Leibowitz and E. W. Montroll~eds.! ~North-Holland, Amster-
dam 1984!, p. 1.

Translated by W. J. Manthey
88O. V. Tel’kovskaya and K. V. Chukbar



Excitonic light-absorption and amplification bands in the presence of laser radiation

on.
S. A. Moskalenko and V. G. Pavlov

Institute of Applied Physics, Moldavian Academy of Sciences, MD-2028 Kishinev, Republic of Moldova
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We examine the absorption and amplification bands of a weak probe signal in the presence of
Bose–Einstein condensation of excitons that emerges in nonequilibrium conditions in the
field of coherent laser radiation with a wave vectork0 . We assume that the detuningD̃ from
resonance between the energy\vex(k0)1L0 of the exciton level, which is shifted because
of exciton–exciton interaction, and the laser photon energy\vL, is generally nonzero. The
elementary excitation spectrum consisting of the quasiexcitonic and quasienergy branches
determines the optical properties of the system. When there is real induced Bose–Einstein
condensation, atD̃50 the two branches touch, as they do in spontaneous Bose–Einstein
condensation. In virtual induced Bose–Einstein condensation, whenD̃,0, instabilities emerge in
the spectrum in certain regions of thek-space. These instabilities are caused by a real
transformation of two laser photons into two extracondensate particles. Nonequilibrium
extracondensate excitons strongly affect the absorption and amplification of the probe light signal.
We show that light absorption is due to the quantum transition from the ground state of the
crystal to the quasiexcitonic branch of the spectrum. On the other hand, amplification of the signal
is caused by the transition from the quasienergy branch to the ground state of the crystal.
The same transition can be explained by a real transformation of two laser photons into a vacuum
photon of frequency\cq and a crystal exciton with a wave vector 2k02q. Finally, we
show that the excitonic absorption and light-amplification bands are essentially anisotropic at
D̃'0 and depend on the orientation of the vectorsq andk0 . © 1997 American Institute
of Physics.@S1063-7761~97!01407-8#
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The optical Stark effect in the exciton part of the spe
trum has been studied both experimentally a
theoretically.1–6 The interpretation of this phenomenon su
gested by Schmitt-Rink, Chemla, and Haug3,4 is based on the
idea of an induced Bose–Einstein condensation of excit
being produced by external coherent laser radiation. In c
trast to the work of Keldysh and Kozlov,7 devoted to the
spontaneous Bose–Einstein condensation of excitons in
electron–hole setting, here the frequency of the laser ra
tion acts as the chemical potential. Induced Bose–Eins
condensation can be either real but nonequilibrium,8 where
coherent laser photons excite resonant excitons in the b
with the same value as the wave vector, or virtual, where
laser frequency differs considerably from the exciton tran
tion frequency.3–6 The second variant was realized in th
experiments described in Refs. 1 and 2, where the pho
energy was much lower than the energy of the lowest exc
level. The experimenters observed a shift in the exciton le
after an ultrashort laser pulse was switched on. The le
returned to its initial position upon switch-off of the puls
Theoretical work devoted to this phenomenon3–6 made it
possible to determine a number of features explaining
behavior of excitons in semiconductors in the presence
laser radiation, which induces macroscopic coherent po
ization in the crystal. For instance, Schmitt-Rink, Chem
and Haug3,4 demonstrated that the filling of the phase spa
by virtual electrons and holes produced by coherent ma
scopic polarization and the exchange electron–hole inte
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These phenomena are similar to those occurring in spont
ous Bose–Einstein condensation.7 As the concentration of
electron–hole pairs~or excitons! nex increases in the low-
density limit nexaex

3 ,1, whereaex of the exciton Bohr ra-
dius, in the Hartree–Fock–Bogolyubov approximation t
exciton level shifts into the violet part of the spectrum. Ho
ever, as shown by Zimmermann,9 in bulk crystals this shift is
balanced by screening and correlation corrections. He
Bose–Einstein condensation of excitons in bulk crystals
essentially no effect on the position of the exciton lev
Nevertheless, the level moves closer to the continuous s
trum of the electron–positron pair and the exciton’s bindi
energy diminishes. The reason is the lowering of the grou
state energy per electron–hole pair in the electron–h
plasma, and an effective decrease in the semiconduc
band gap at concentrationsnexaex

3 ,1 ~see Ref. 9!.
Elesin and Kopaev10 found that the number density o

Bose-condensed electron–hole pairs in conditions wh
nexaex

3 ,1 is not a unique function of the laser intensity a
the detuning from resonance between the laser frequency
the exciton transition frequency. There are amplitude a
frequency hysteresis loops, a situation that indicates the p
ence of optical bistability.

The effect of an induced Bose condensate of excitons
the energy spectrum of extracondensate quasiparticles
studied in Refs. 5 and 6. In conditions of an optical Sta
effect, the elementary excitation spectrum differs subst
tially from the energy spectrum in the theory of a nonide

89$10.00 © 1997 American Institute of Physics



Bose gas, and can be reduced to the latter only in a certain
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special case.
One important feature of the energy spectrum of ex

condensate quasiparticles~excitons, phonons, and vacuu
photons! in the presence of laser radiation is its instabili
Mathematically, in the system where damping is ignored
energy spectrum becomes complex-valued in certain reg
of the k-space. One of the two complex conjugate solutio
has a positive imaginary part, which means that the am
tude of this solution increases without bound with the p
sage of time and that the system becomes unstable. P
cally the instability is caused by a real transformation of t
laser photons into two extracondensate quasiparticles,
into two excitons or an exciton and a vacuum photon.

These processes are real since they have correspon
conservation laws that the energy and momentum must o
simultaneously, laws that link the initial and final states. T
transformations proceed through intermediate virtual sta
For instance, two laser photons are transformed into two
citons of the induced Bose condensate, after which the
excitons become virtually transformed into two extracond
sate quasiparticles. The real process here is the transfo
tion of two laser photons into two extracondensate quasi
ticles.

New waves can build up in the system due to the ene
taken from the laser radiation, which for the sake of simp
ity is assumed to be given, and inexhaustible. Unlimi
buildup of new waves in the system must come as no
prise then. The instabilities can be either convective or ab
lute. In the first case the build occurs as the wave mo
deeper into the medium, with the result that the system
erates as an amplifier of waves. In the second the buil
does not leave the region of origin. The wave encompas
an ever growing volume of the crystal and increases w
time.

As noted in Ref. 11, the concepts of absolute and c
vective instability are relative: they depend on the refere
frame in which the phenomenon is observed. In the refere
frame moving together with the propagating wave the c
vective instability becomes absolute, and vice versa. Wha
important is that the occupation numbers of the Bose qu
particles in the regions of thek-space where the instabilitie
in the elementary excitation spectrum manifest themse
become anomalously large.

In the simplest variant of a system of excitons witho
damping, the emergence of instabilities is a nonthresh
process. This means that instability appears at arbitrarily
concentrationnex of Bose-condensed excitons. In this sim
plest variant the occupation numbers of the elementary e
tations in the regions of thek-space where instabilities ap
pear become infinitely large. Since the process of exc
absorption of light is related to the transition from the grou
state of the crystal and creation of a quasiparticle in the fi
state, its probability is proportional to 11nq , wherenq is the
mean occupation number of quasiparticles in the final st
Whenq approaches the instability region in the wave-vec
space, this factor tends to infinity, which leads to singula
ties in the exciton absorption spectrum.

This explains some of the results we arrive at below. T
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distribution function and to the anisotropy resulting from t
coherent macroscopic polarization of the medium. In fa
there is damping in the system, so that the onset of instab
is a threshold process. Instability can only occur when
number density of coherent excitons,nex , exceeds a thresh
old valuenc determined by the decay of the exciton leve
and the exciton–exciton coupling constant.

The quantum statistical properties of polariton syste
near such thresholds of the onset of instabilities was stud
by Keldysh and Tikhodeev,12,13 who used the example o
Stokes scattering of coherent polaritons by acoustic phon
and in Ref. 14 by employing polariton–polariton Ram
scattering. Keldysh and Tikhodeev showed that near
threshold of stimulated Brillouin scattering in the wav
vector region where there is Stokes scattering and where
stability emerges, the Green’s functions describing the s
tered polariton and acoustic phonons have singularities of
1/l type, wherel is the measure of the deviation of th
number density of coherent polaritons from the thresh
value:

nex5nc~12l!, 0,l!1.

The occupation numbers of the scattered quasiparticles h
the same singularity. This result provides a better und
standing of the above conclusion that in the nonthresh
case the mean occupation numbers of elementary excita
with wave vectors lying in the instability region tend to in
finity. As shown in Ref. 14, stimulated Raman scattering
coherently excited polaritons has a smeared threshold, w
probably smooths out the singularity of the 1/l type.

Below we study the probability of absorption and amp
fication of a weak probe light signal in the transition from t
ground state of the crystal to an excitonic state when
crystal is in the field of intense coherent laser radiatio
which induces coherent macroscopic polarization in the m
dium. We are speaking of the probability of a transition
which one more exciton is created in the presence of a la
number of real or virtual excitons created in stationary co
ditions by the coherent laser radiation. The presence of la
radiation and the coherent polarization of the medium
important factors that lead to the possibility of amplifying
weak signal and distinguish the given exciton absorpt
from the one studied earlier in unexcited crystals.

2. HAMILTONIAN AND TRANSITION PROBABILITIES

The Hamiltonian of excitons interacting with each othe
with laser radiation, and with vacuum photons can be writ
in the form:5,6

H5(
p

Eex~p!ap
1ap1(

p
\cpC p

1
C p1(

p
lp~ap

1
C p

1apC p
1!1lk0

~ak0

1
C k0

1ak0
C k0

1 !

1
1

2V (
p,q,k

n~k!ap
1aq

1aq1kap2k , ~1!

whereEex is the exciton energy;\cp is the photon energy
ap

1 , ap , C p
1 , andC p are the creation and annihilation op
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erators for excitons and photons, respectively;n(k) and lp
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are the exciton–exciton and exciton–photon coupling c
stants;lk0

is the exciton–laser coupling constant; andV is
the volume occupied by the system.

We assume that the laser radiation is characterized
wave vectork0 and photon frequencyvL5ck0 . Antireso-
nant interaction terms are ignored. The coherent laser ra
tion is introduced into~1! by replacing the operatorsC k0

1 and

C k0
with expressions like

Ck0
5AFk0

exp~2 ivLt2 iw!, Fk0
;V. ~2!

Quantum single-particle states of photons withp Þ k0 de-
scribe the vacuum electromagnetic field and a weak bro
band probe signal. The explicit time dependence in
Hamiltonian~1!, which emerges as a result of replacing t
operatorsC k0

1 andC k0
with ~2!, can be eliminated by trans

forming to a system of coordinates rotating with frequen
vL . This is achieved by introducing the unitary transform
tion

V̂5e2 ivLtN̂, N̂5(
p

~ap
1ap1C p

1
C p!, ~3!

and by considering a new Hamiltonian,

H5V1HV2\vLN̂, ~4!

in which free quasiparticles are characterized by an ene
spectrum measured from the frequencyvL :

H5(
p

\@vex~p!2vL#ap
1ap2(

p
\~cp2vL!C p

1
C p

1(
p

lp~C p
1ap1ap

1
C p!1AFk0

~ak0

1 1ak0
!

1
1

2V (
p,q,k

n~k!ap
1aq

1aq1kap2k . ~5!

The terms that are linear in the operatorsak0

1 andak0
can be

eliminated by a Bogolyubov shift,15

ap5ANk0
e2 ifdp,k0

1ap , ~6!

whereap is a small addition. The macroscopic filling facto
Nk0

of the exciton modek0 is related toFk0
by10

nk0
5

lk0

2 f k0

D̃21gex
2

, nk0
5

Nk0

V
, f k0

5
Fk0

V
,

D̃5\@vex~k0!2vL#1L0 , Lk5n~k!nk0
. ~7!

We assume everywhere that repulsion between exci
(Lk.0) is predominant. Here the damping factorgex has
been introduced phenomenologically and enters into the
pression that describes optical bistability in the exciton p
of the spectrum. After the Hamiltonian~5! has been ex-
panded in the small operatorsak01k

1 and ak01k , with k
Þ 0, we can separate an additive constant, a quadratic
and higher-order terms. Here we are interested only in
quadratic part,
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k

ex 0 L 0 k k01k k01k

1
1

2 (
k

Lk~e22ifak01k
1 ak02k

1

1e2ifak01kak02k!1(
k

\~cuk01ku

2vL!C k01k
1

C k01k1(
k

lk01k~C k01k
1 ak01k

1ak01k
1

C k01k!. ~8!

Below we consider vacuum photons to be responsible
quantum transitions and use the procedure adopted in R
to diagonalize the exciton part of the Hamiltonian~8!. In this
case we can assume, without loss of generality, thatf50.

In Ref. 6 diagonalization was achieved by introduci
operators jk

1 and jk via Bogolyubov’s unitary
transformation:15

jk5
ak01k1Akak02k

1

A12uAku2
, ak01k5

jk2Akj2k
1

A12uAku2
, ~9!

where the coefficientsAk depend on the elementary excit
tion energy:

Ak5
D̃1Tk1Lk2E~k!

Lk
. ~10!

Here

E~k!5A~D̃1Lk1Tk!22Lk
2 ~11!

is a component of the total elementary-excitation ene
E(k),

E~k!5E~k!1\Vsk, Vs5
\k0

mex
, ~12!

which depends on the velocityVs of the induced condensate
The velocity is determined by the momentum\k0 of a laser
photon and the translational exciton massmex . For the co-
efficientsAk to meet the condition

uAku<1 ~13!

in the entirek-space, the square root in~11! must have the
same sign as the sumD̃1Tk1Lk . We denote this solution
by E1(k) and define it according to the following rule:

sgnE1~k!5sgn~D̃1Tk1Lk!. ~14!

Then the coefficientsAk,1 meet the condition~13!. The en-
ergy E1(k) selected in this manner generally follows th
dispersion law of the initial excitonic branch of the spectru
\vex(k01k)2\vL1L01Lk , present in the effective
Hamiltonian ~8!. Hence we call the elementary excitation
with an energyE1(k) quasiexcitonic elementary excitation
In addition toE1(k) there is a second quasienergy branch
the spectrum with an energyE2(k) determined by the value
E2(k)52E1(k) and the property that
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This branch generally follows the initial quasienergy bran
of the spectrum,\vL2\vex(k02k)2L02L. The coeffi-
cientsAk,2 can be found by replacingE(k) with E2(k) in
~10!, and have the properties

Ak,2Ak,151, uAk,2u>1. ~16!

Although the two energy levels — the quasiexciton
level and the quasienergy level — are close, there is only
set of independent operatorsjk

1 ,jk , specified by~9!, with all
possible values ofk. For such a set we select the operato
corresponding to the coefficientsAk,1 and the elementary
excitation energyE1(k). To simplify matters we drop the
subscript ‘‘1’’ on the operatorsjk,1

1 ,jk,1 and the coefficients
Ak,1 but retain it on the branchE1(k).

The complete set of operatorsjk
1 ,jk ,j2k

1 ,j2k with co-
efficientsuAk<1u and energiesE1(k) proves to be sufficien
for describing elementary excitations of both types, a
quantum transitions in the system.

This requires, as we will shortly see, allowing for bo
resonant and antiresonant quantum transitions. After the
citon part of the quadratic Hamiltonian~8! is diagonalized
and the new photon operators

hk5C k01k

are introduced, the HamiltonianH(2) assumes the form

H~2!5(
k

E1~k!jk
1jk1(

k
\~cuk01ku2vL!hk

1hk

1(
k

lk01k

A12uAku2
~jk

1hk1hk
1jk

2Ak* j2khk2Akjk
1h2k

1 !. ~17!

The ground state of the system of excitons in a crystal
larized by coherent laser radiation is the vacuum state for
elementary excitation operatorsjk :

jku0&ex50. ~18!

Following the results of Ref. 14, we state that the noneq
librium distribution function of elementary excitations d
pends on the absolute value of the energy of these ex
tions, N(E1(k))5N(uE1(k)u). Hence the ground state~18!
is stable even if the values ofE1(k) in the rotating system o
coordinates are negative. Even in this case, elementary e
tations do not appear spontaneously.

However, this state of the crystal is characterized
nonzero occupation numbers of the initial excitonic state

^ak01k
1 ak01k&5nk01k

ex 5
uAku2

u12uAku2u
, ~19!

^ak01kak01k
1 &511nk01k

ex 5
1

u12uAku2u
. ~20!

Thus, in the presence of resonant or nonresonant laser r
tion, a high-density exciton gas consisting of real or virtu
excitons appears. The difference between virtual excit
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course of the laser pulse and disappear after switch-off of
pulse. Real excitons exist during their entire lifetime. In t
zeroth approximation, the states of the polarized crystal
those of the vacuum photon fields are independent, since
exciton–photon Hamiltonian in this case is only responsi
for quantum transitions. The polarization effect in the pre
ence of coherent macroscopic polarization was taken
account in Ref. 5.

Following the results of Ref. 16, we consider a ligh
induced quantum transition from the ground stateu0& of a
coherently polarized crystal into the quasiexcitonic state w
wave vectorP, which we denote byjP

1u0&. We write the
initial and final states of a two-component system consist
of the polarized crystal and the vacuum field in the rotat
coordinate system as

u i &5u0&exhQ
1u0&ph , Ei5\~cuk01Qu2vL!,

u f &5jP
1u0&exu0&ph , Ef5E1~P!5E1~P!1\VsP, ~21!

whereu0&ph is the ground state of vacuum photons.
The amplitude of the transition involving the interactio

Hamiltonian that enters into~17! is

^ i uH intu f &5dQ,P

lk01P

A12uAPu2
. ~22!

The transition probability summed over final statesP for a
fixed vectorQ of the photon in the initial state is

Pabsorb~Q!5
2p

\

ulk01Qu2

u12uAQu2u

3d~\cuk01Qu2\vL2E1~Q!!. ~23!

The transition probability is a function of the vacuum-phot
wave vectorQ, reckoned from the laser-photon wave vect
k0 . The total vacuum-photon wave vector isq5k01Q, and
the energy of this photon is\v5\cq5\cuk01Qu. The
probability of such a transition as a function of the wa
vectorq is

Pabsorb~q!5
2

\

ulqu2

u12uAq2k0
u2u

3
G~q2k0!

~\v2\vL2E1~q2k0!!21G2~q2k0!
,

~24!

with \cq5\v. Here we have introduced the damping fact
G(Q) for an elementary excitation with energyE1(Q), and
represented the delta function by a Lorentzian:

d~x!5
1

p

G

x21G2 , G→0. ~25!

The transition probability strongly depends on the orientat
of q relative tok0 . This dependence is especially apparent
the coefficientsuAq2k0

u2 and is discussed in Sec. 3.
However, the quantum transition with photon absorpti

and a Stokes mechanism of creation of a quasiexcitonic
ementary excitation is not the only possible transition. Th
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are three more possibilities. One is the anti-Stokes process of
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photon absorption and quasiexcitonic elementary excitat
This is an antiresonant quantum transition. The probability
such a transition is nil, however, the reason being tha
T50 there are no quasiexcitonic elementary excitations
the ground state.

What remains is the Stokes process of light emiss
with simultaneous creation of a quasiexcitonic element
excitation. Here the initial state is the vacuum one and
final state is the two-particle state

u i &5u0&exu0&ph , u f &5jP
1u0&exhQ

1u0&ph ,

Ef5\cuk01Qu2\vL1E1~P!, Ei50. ~26!

This transition is also quasiresonant. In the final two-parti
state there is a photon with a fixed wave vectorQ, and a
second quasiparticle, a quasiexcitonic elementary excita
with arbitrary wave vectorP. The probability of a transition
involving the third term in the interaction Hamiltonian~17!,
summed over final states ((P) and averaged over initia
states, which here amount to only one state, has the for

Pemit~Q!5
2pulk01Qu2

\

uAQu2

u12uAQu2u
d~\cuk01Qu2\vL

1E1~2Q!!. ~27!

The law of energy conservation corresponding to this tw
particle antiresonant process can be written

\cuk01Qu2\vL1E1~2Q!50,

\cuk01Qu5\vL1E2~Q!. ~28!

Bearing in mind that the branch\vL1E1(2Q) approxi-
mately follows the exciton dispersion law\vex(k02Q), we
can rewrite Eq.~28! approximately as

\cuk01Qu1\vex~k02Q!'2\vL . ~29!

This equation indicates that two laser photons in the sys
are transformed into a weak-source photon and an extra
densate exciton:

photon~k0!1photon~k0!

5photon~k01Q!1exciton~k02Q!. ~30!

This all suggests that the only reason for emission
amplification of a weak signal is the presence of exter
laser radiation. Here it is advisable to recall the results
rived at in Refs. 17 and 18 in the studies of the shapes
absorption and luminescence bands at absolute zero in
ditions of spontaneous quasiequilibrium Bose–Einstein c
densation of excitons in semiconductors. The bands c
sisted of narrow central peaks at frequencies close to
energy of the Bose-condensed excitons, with wider wings
relation to the central peak, the absorption band wing was
the higher-energy side. The intensity of the wing was de
mined by the coefficientsUq

2511nq
ex . An elementary exci-

tation was found to be produced simultaneously with
absorption of light. The luminescence band wing was on
lower-energy side of the central peak, since an elemen

93 JETP 85 (1), July 1997
n.
f

at
n

n
y
e

e

n

-

m
n-

d
l

r-
of
n-
-

n-
e

n
n

r-

e
e
ry

The intensity of the wing was proportional to the coefficien
Vq

25nq
ex , which are less thanUq

2 .
Equation~31! below describes a similar situation. No

that the probability of anti-Stokes emission of a photon
companied by absorption of a quasiexcitonic elementary
citation is nil, since atT50 there can be no elementar
excitations. Thus, we have the probability of photon abso
tion ~Eq. ~23!! and the probability of photon emission~Eq.
~27!! in the same system. The probability of light absorpti
minus the probability of light emission yields the probabili
of true absorption:

Pnet absorb~Q!5Pabsorb~Q!2Pemit~Q!5
2pulk01Qu2

\

3F 1

u12uAQu2u
d~\cuk01Qu2\vL2E1~Q!!

2
uAQu2

u12uAQu2u
d~\cuk01Qu2\vL

1E1~2Q!!G . ~31!

In ranges of frequency\v where this difference is positive
there is true light absorption, and in ranges where it is ne
tive there is true emission, or light amplification. After th
delta functions are replaced by Lorentzians, we have the
sired probability atT50:

Pnet absorb~Q!5
2ulk01Qu2

\ F 1

u12uAQu2u

3
G~Q!

~\cuk01Qu2\vL2E1~Q!!21G2~Q!

2
uAQu2

u12uAQu2u

3
G~2Q!

~\cuk01Qu2\vL1E1~2Q!!21G2~2Q!G .
~32!

3. ANISOTROPY OF THE EXCITON BANDS OF
ABSORPTION AND EMISSION IN A COHERENTLY
POLARIZED CRYSTAL

The energy spectrumE i(k) ~Eq. ~11!!, the coefficients
uAki u ~Eq. ~10!!, and the factors (12uAki u2)21 are depicted in
Fig. 1 as functions of the wave vectork for several values of
the detuningD̃ ~Eq. ~7!!: D̃5L0 , 0, and2L0 . The functions
E i(k) were derived in Ref. 6, but the coefficientsAki and
quantum transition probabilities have not been studied.

The same expressions, viewed as functions ofuq2k0u,
depend on the orientation of the wave vectorq of the probe
light relative to the wave vectork0 of the laser light that
produces coherent macroscopic polarization in the medi
Three possible observational geometries for the light abs
tion coefficient are of interest here:q↑↑k0 , q'k0 , and
q↓↑k0 , i.e., in which the probe radiation propagates in t
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FIG. 1. Energy spectrumE i(k), coeffi-
cientsuAki u, and factors (12uAki u2)21 as
functions of the wave vectork for vari-
ous values ofD̃. Curves1 correspond to
solutions of the first type, and curves2
to solutions of the second type.
same direction as the laser radiation, perpendicular to the

r

l-

th

is

u
t
s

like branch of the spectrum become much less than unity. At
n-

a
is-

a-
sta-
-

ma-
nd
tter-
laser radiation, and antiparallel to the laser radiation.
The quantityu(q2k0)u/uk0u takes on differing values fo

the same value ofuqu5xuk0u, with 0,x,`, depending on
the orientation ofq relative to k0 . The values areux21u,
Ax211, andx11 for parallel, perpendicular, and antipara
lel orientations, respectively.

For this reason the energy spectrumE(q2k0), coeffi-
cientsuAq2k0

u, and factors (12uAq2k0
u)21 as functions ofx

are given for three orientations ofq relative tok0 . A depen-
dence onx also means a dependence on the frequency of
absorbed light, since\v5\cq5x\ck05x\vL , where
x.0. All this is shown in Figs. 2a, 2b, and 2c. Each figure
drawn for a definite detuning from resonance,D̃, and con-
tains the frequency curves E1(x), uA(x)u, and
(12uA(x)u2)21 for three observation geometries.

The frequency dependence of (12uA(x)u2)21 depicted
in Fig. 2 is markedly anisotropic. The anisotropy shows
for positive resonance offsetD̃5L0, and amounts to abou
2%. At large positive values ofD̃ the anisotropy become
vanishingly small, since the coefficientsuAku for the exciton-
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p

D̃50 we have a real but nonequilibrium induced Bose co
densate of excitons with wave vectork0 . The exciton occu-
pation numbersnk01k

ex ~Eq. ~19!! tend to infinity ask→0, as

follows from the Bose–Einstein distribution function with
chemical potential equal to zero. This leads to a large d
crepancy between the occupation numbers

nk01k
ex 5nq

ex5
uAq2k0

u2

12uAq2k0
u2

, q5k01k, ~33!

whenq tends tok0 and whenq tends to2k0 . Since the light
absorption coefficients are proportional to 11nq

ex , the ab-
sorption of light becomes highly anisotropic.

At negativeD̃ the spectrum becomes unstable, a situ
tion discussed above. In wave vector ranges harboring in
bility, the coefficientsuAku251, and the corresponding occu
pation numbers tend to infinity.

In these wave-vector ranges, the canonical transfor
tions ~9! become invalid. New waves are generated a
stimulated exciton scattering occurs. In our case the sca

94S. A. Moskalenko and V. G. Pavlov
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FIG. 2. E1(x), uA(x)u, and (12uA(x)u2)21

as functions of the frequency for various va
ues of D̃ ~~a! D̃5L0 , ~b! D̃50, and ~c!

D̃52L0! and for three orientations of the
wave vectorq of the probe light relative to the
wave vectork0 of the laser radiation: curves1
correspond toq↑↑k0 , curves2 to q'k0 , and
curves3 to q↓↑k0 .
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for the damping of the energy spectrum of the initial ex
tons. Since the number of nonequilibrium excitons in the
regions ofk-space becomes anomalously high, so does
light absorption coefficient. Figure 2c clearly demonstra
this. Interestingly, the regions where anomalous light abso
tion is possible also are shifted along the energy scale,
pending on the observation geometry. In addition to the f
tor (12uA(x)u2)21, the probabilities of true light absorption
Eqs. ~31! and ~32!, contain a second factor, which in on
case is a delta function and in the other a Lorentzian
Lorentzian can also possess a varying frequency depend
for different orientations ofq andk0 , but it also depends on
the small difference of such quantities as\v and\vL , each
of which is large compared to the elementary excitat
spectrumE1(q2k0)5E1(q2k0)1\Vs(q2k0). Anisotropy
therefore shows up more clearly in terms of the fac
(12uAq2k0

u2)21. Furthermore, if the arguments of the de
functions in Eq.~31! or of the corresponding Lorentzians a
identical, all anisotropy of the sort discussed above dis
pears. In this case, the regions with pure absorption and
emission coincide, and the anisotropies cancel perfectly.

Thus, anisotropy becomes imperceptible if the Loren
ians have a halfwidth larger than 2uE1(Q)u. The most favor-
able conditions for observing the anisotropy in the abso
tion and luminescence bands correspond toG(Q),uE1(Q)u
and smallD̃, whereupon theuAQu2 are close to unity.

Note that the anisotropy of two-photon absorption in t
transition from the ground state of a crystal to a biexcito
state in the presence of laser radiation was studied in Ref
When the exciton levels are degenerate, they can split
the corresponding quantum transitions can become polari
These aspects under the conditions of the optical Stark e
were studied by Combescot.20 In contrast, in our case th
exciton level is nondegenerate and the anisotropy of
quantum transitions depends on the direction of propaga
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laser radiation.
In conclusion we note that the properties of the abso

tion and light-amplification bands depend strongly on t
values ofnk0

andD̃. These quantities are interrelated and c

be determined self-consistently by Eqs.~7!. Generally they
follow a bistable curve characterized by the presence of
plitude and frequency hysteresis loops. The stationary va
of nk0

in the hysteresis loops or near such loops are usu

not Lyapunov stable. In such cases, the amplitude of
coherent wave experiences self-pulsations, and the ste
state becomes self-oscillatory. The self-pulsations may
cyclic if the phase trajectory describes a limit cycle. In mo
complicated cases the phase trajectory can move along
surface of a torus or even be a strange attractor.21

Such self-pulsations have a higher probability of form
ing when the coherent pump radiation is turned on or off.
the case of stimulated Brillouin scattering this phenomen
was studied by Keldysh and Tikhodeev,13 who found that
self-pulsations of the amplitude of the anti-Stokes com
nent have a frequency determined by the splitting of ph
oriton curves. The amplitude of the Stokes component
creases without limit as a function of time in the numb
density of coherent polaritons exceeds a certain thresh
This is due to the emergence of absolute or convective in
bility in the polariton–phonon system. Similar phenome
can occur in the case studied here.

The authors are grateful to S. G. Tikhodeev form dra
ing their attention to these effects.

The present work was made possible by a grant from
INTAS international project~Grant No. 94-324!. The authors
are grateful to the coordinator of the project, K. Klingshea
and to M. S. Brodin for collaboration.
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The effect of a local field on Raman scattering in a uniaxial crystal

, the
M. V. Gorkunov and M. I. Ryazanov

Moscow Engineering-Physical Institute, 115409 Moscow, Russia
~Submitted 19 September 1996!
Zh. Éksp. Teor. Fiz.112, 180–191~July 1997!

This paper discusses the Raman scattering of light in an anisotropic crystal in the crystal optics
approximation, taking into account local fields acting on the molecules. It shows that the
effect of the local field reduces to the introduction of the effective Raman polarizability tensor of
the molecules, which depends both on the properties of the molecules themselves and on
the characteristics of the crystal at the frequencies of the incident and scattered waves. Raman
scattering cross sections are obtained in a uniaxial crystal for various types of incident
waves. It is shown that, in the case of an extraordinary incident wave, the local field substantially
affects how the cross section depends on the direction of incidence. ©1997 American
Institute of Physics.@S1063-7761~97!01507-2#
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Ordered placement of the atoms of a crystal is essen
for those processes in which the atoms participate co
ently. Raman scattering in which the state of the atomic e
tron varies is not related to such processes. Therefore,
existence of the crystal lattice affects Raman scattering o
because the properties of electromagnetic waves in the c
tal depend on it.1 For waves of optical frequencies, it is po
sible to use the crystal optics approximation, which treat
crystal as a homogeneous anisotropic substance. This m
that only the ordering of the orientations of anisotropic m
ecules of the crystal is taken into account, but the orderin
the spatial placement of the centers of inertia of the m
ecules is neglected in this case. The properties of the cry
in this case do not differ from the properties of a homog
neous amorphous substance with identically oriented an
tropic molecules. Taking into account the ordering of t
spatial placement of the molecules results in small corr
tions, of order the ratio of the lattice constant to the wa
length of the field, which is three orders of magnitu
smaller than the quantities obtained in the crystal optics
proximation. Therefore, Raman scattering in a crystal can
treated with good accuracy in the crystal optics approxim
tion. A rigorous treatment of the crystal in the case of Ram
scattering is much more involved but results in only insu
stantial additional corrections by comparison with cryst
optics corrections.

Raman scattering is considered below in the crystal
tics approximation as in a homogeneous amorphous
stance with ordered orientation of the anisotropic molecu
With such a treatment, one has to appeal to an amorph
medium at intermediate stages, so that it is natural to
terms that are used in considering an amorphous subst
and sometimes do not coincide with the terms used i
rigorous treatment of a crystal.2,3

Spontaneous Raman scattering in a gas differs from
in a condensed state of the same substance for two rea
First, the electrons of the valence bonds are in different st
in the gas and in the condensed state, which causes the
man scattering cross sections to be different at an atom o
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action of adjacent molecules is substantial in a dense
dium, so that the mean field acting on a molecule~the local
field! differs from the mean macroscopic field. In a gas, t
local field coincides with the mean field.

In considering Raman scattering in a crystal, one is u
ally given the macroscopic field of the incident wave and
scattering amplitude at an individual molecule of the crys
and one is required to find the macroscopic field of the sc
tered wave. The first stage of the solution of this proble
reduces to determining the local field acting on the giv
molecule. Knowing the scattering amplitude, it is possible
find the transition current that appears in a molecule un
the action of the local field. The fact that the scattered wa
is emitted from where the atom is situated makes it neces
at the second stage to solve the inverse problem—finding
macroscopic field of the scattered wave from a given dip
moment.

In the final analysis, scattering at a molecule that for
part of a crystal occurs as if this molecule possessed s
effective Raman polarizability that depends on both the R
man polarizability of the molecule and the macroscopic ch
acteristics of the crystal.

Earlier, the local field was taken into account in Re
4–7 for an isotropic substance when there is no depende
on the orientation of the fields and everything reduces
correcting factors in the overall characteristics.

It is interesting to estimate the local field effects in
uniaxial crystal when they affect the angular distribution a
depend on the orientation of the field of the incident wav

2. THE LOCAL FIELD IN A UNIAXIAL CRYSTAL

We shall regard a uniaxial crystal as a system of hom
geneously distributed molecules that are assumed to be
ally symmetric and oriented parallel to the optical axis of t
crystal.

A molecule located at pointr in a crystal lying in an
electromagnetic field acquires a dipole moment whose F
rier transformdi(r ,v) is associated with the polarizabilit
a i j (v) of the molecule and the Fourier transform of the m

97$10.00 © 1997 American Institute of Physics



croscopic fieldEj
mic(r ,v) acting on this molecule:
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di~r ,v!5a i j ~v!Ej
mic~r ,v!.

The dipole moments induced in each molecule
sources of secondary fields. The microscopic field acting
the molecule at pointRa consists of the primary fieldE0, no
longer interacting with a single molecule, and the second
fields of all the other molecules. Therefore, for the Four
transforms of the fields, one can write

Ei
mic~Ra,v!5Ei

0~Ra,v!1@2p2#21(
b
E d3qQis~q,v!

3as j~v!Ej
mic~Rb,v!exp$ iq•~Ra2Rb!%, ~1!

where

Qis~q,v!5
q2d is2qiqs

q22~v/c!2 .

If the wavelength of the field is large by compariso
with the lattice constantd, the effective field acting on a
molecule is formed by adding the fields of many molecu
lying in some volume of the crystal with linear dimensio
of L. When the inequality

c/v@L@d ~2!

is valid, the value of the field acting on a molecule is close
the field of the other molecules averaged over position, u
ally called the local field. In the crystal optics approximatio
Eq. ~1! can be averaged over the coordinates of all the o
molecules as for an amorphous substance. In this case
microscopic field is replaced by the local field, and, to av
age the sum, it is sufficient to multiply each term by t
probability of finding the molecule in volumedV at distance
R85Ra2Rb from the given molecule:

dW~R8!5g~R8!dV/V5@12 f ~R8!#dV/V ~3!

and to integrate over allR8. After this, the summation re
duces to multiplying by the number of identical term
N21'N. The distribution functiong(R8) vanishes for
R8!d because the probability of arbitrarily close approa
of two molecules vanishes. On the other hand, there is
correlation of the position of two molecules at large d
tances, so thatf (R8)50 for R8@d and f (R8)51 for R8!d.

Introducing the polarizationP of the substance, assoc
ated with the local field by

Pi~q,v!5n0a i j ~v!Ej
loc~q,v!, ~4!

wheren05N/V is the number of molecules in unit volume
we can write the result of averaging Eq.~1! in the form of an
equation for the Fourier transforms of the fields over
spatial coordinates:

Pi~q,v!5n0a i j ~v!Ej
0~q,v!14pn0a i j Qjs~q,v!

3Ps~q,v!24pn0a i j ~v!E d3lQ js~ l,v!

3 f ~q2 l!Ps~q,v!, ~5!

where
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Equation ~5! connects the polarization of a substan
with the primary field, i.e., with the field that satisfies Ma
well’s equations in a vacuum with the same current den
as in the equations for the mean macroscopic fieldE. This
circumstance makes it possible to express the primary fi
E0 in terms ofE andP:

Ei
0~q,v!5Ei~q,v!14pPi~q,v!

24pQis~q,v!Ps~q,v!. ~6!

Eliminating E0 from Eqs. ~5! and ~6!, it is possible to
obtain an equation that connects the mean macroscopic
with the polarization:

n0a i j Ej~q,v!5Pi~q,v!24pn0a i j Pj~q,v!14pn0a i j

3E d3lQ js~ l,v! f ~q2 l!Ps~ l,v!. ~7!

Introducing, as is usually done, the electric susceptibi
tensorx i j connecting the polarization with the macroscop
field:

Pi~q,v!5x i j ~q,v!Ej~q,v!,

we get for it

x i j ~q,v!5$a i j
21~v!/n014p@Ti j ~q,v!2d i j #%

21, ~8!

where

Ti j ~q,v!5E d3l f ~q2 l!
l 2d i j 2 l i l j

l 22~v/c!2 .

Taking into account the inequalities~2!, the integral inTi j is
built up whenl @q, v/c. It is therefore possible to assum
the approximationf (q2 l)' f ( l) and neglect (v/c)2 in the
denominator. Then the dependence onq disappears, and Eq
~8! gives an electric susceptibility without spatial dispersio
In this case, it is possible to transform from integration ov
wave vectors to integration over coordinates, and then

Ti j 5
2

3
d i j 2E d3R f~R!

R2d i j 23RiRj

R5 .

In a uniaxial crystal,f (R) is axially symmetric, while
the molecules are strictly oriented along the unit vectore of
the optical axis. Consequently, the optical axis of the crys
is the principal axis of the axially symmetric tensorsa i j and
Ti j ; i.e., they can be represented in the form

a i j 5a'~d i j 2eiej !1a ieiej ,
~9!

Ti j 5T'~d i j 2eiej !1Tieiej ,

with

Ti5
2

3
2

1

2 E d3R f~R!R25@R223~R–e!2#,

T'5
2

3
1

1

4 E d3R f~R!R25@R223~R–e!2#.

The electric susceptibility accordingly takes the form
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x i j ~v!5x'~v!~d i j 2eiej !1x i~v!eiej ,

en

e

f
o

e

d

e

or

n

b 5e2 ^muxu l &^ l uxun&~v ln1v lm!
,

ed

o

mo-
an

h

s
pri-

In
we

ty
where

x'~v!5
n0a'~v!

124pn0a'~v!~12T'!
,

x i~v!5
n0a i~v!

124pn0a i~v!~12Ti!
.

~10!

Finally, for the permittivity of a uniaxial crystal, we
have

« i j 5d i j 14px i j ~v!5«'~d i j 2eiej !1« ieiej ,

«'5
114pn0T'a'

124pn0a'~12T'!
,

« i5
114pn0Tia i

124pn0a i~12Ti!
.

~11!

In the particular case of an isotropic medium, wh
a'5a i and f (R)5 f (R), Eq. ~9! gives simplyT'5Ti52/3
and Eq.~11! goes over to the well-known formula for th
permittivity in the Lorentz–Lorenz model.

3. THE RAMAN SCATTERING AMPLITUDE IN A CRYSTAL

Since Raman scattering is an incoherent process,
which the intensities of the scattered waves from each m
ecule add up, we calculate the scattering at one molecul
the crystal, located at the origin of coordinates.

We shall consider the incident wave with frequencyv
and amplitudeF strong by comparison with the scattere
waves having frequencyv8 Þ v. Neglecting backscattering
from v8 into v, we can write the dipole moment of th
molecule at the required frequencies in the form

di~R50,v!5a i j ~v!Ej
mic~R50,v!,

di~R50,v8!5a i j ~v8!Ej
mic~R50,v8!

1b i j ~v,v8!Ej
mic~R50,v!. ~12!

The following formulas of perturbation theory are valid f
the polarizability tensors:

a i j ~v!5(
l

H ^nudi u l &^ l udj un&
v ln2v2 i0

1
^nudj u l &^ l udi un&

v ln1v1 i0 J ,

~13!

b i j ~v,v8!5d~v82v1vmn!(
l

H ^mudi u l &^ l udj un&
v ln2v2 i0

1
^mudj u l &^ l udi un&

v lm1v1 i0 J .

If statesn andm are axially symmetric, the tensors ca
be represented in the form of Eq.~9! and, consequently,

a'5e2(
l

u^ l uxun&u22v ln~v ln
2 2v2!21,

a i5e2(
l

u^ l uzun&u22v ln~v ln
2 2v2!21,
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l ~v ln2v!~v lm1v!

b i5e2(
l

^muzu l &^ l uzun&~v ln1v lm!

~v ln2v!~v lm1v!
. ~14!

In order to find the macroscopic field of the scatter
wave, we write the analog of Eq.~1! at frequencyv8, taking
into account that Eq.~12! is now correct and that there is n
primary field at this frequency:

Ei
mic~Ra,v8!5~2p2!21(

b
E d3qQi j ~q,v8!a js~v8!Es

mic

3~Rb,v8!exp@ iq•~Ra2Rb!#

1~2p2!21E d3qQi j ~q,v8!b js~v,v8!

3Es
mic~0,v!exp@ iq–Ra#. ~15!

The second term reflects the presence of the dipole
ment induced at the origin of coordinates during the Ram
scattering. Averaging over the position of theN21'N mol-
ecules, we get for the Fourier transform of the local field

Ei
loc~q,v8!54pn0@Qi j ~q,v8!2Ti j ~q,v8!#$a js~v8!

3Es
loc~q,v8!1b js~v,v8!Es

loc~R50,v!%. ~16!

Taking Eq.~4! into account, we can write

Ej
loc~R50,v!5

1

n0
a jk

21~v!Pk~R50,v!

5
1

n0
a jk

21~v!xkl~v!Fl . ~17!

The polarization of the substance at frequencyv8 is made up
of two components:

Pi~q,v!5n0a i j ~v8!Ej
loc~q,v8!1Pi

0~q,v8!, ~18!

whereP0 is the Raman addition to the polarization, whic
according to Eq.~17! equals

Pi
0~q,v8!5b i j ~v,v8!

1

n0
a jk

21~v!xkl~v!Fl .

Equation ~6!, which is a consequence of Maxwell’
equations for a macroscopic field, because there is no
mary field at frequencyv8, now takes the form

Ei~q,v8!54p@Qi j ~q,v8!2d i j #Pj~q,v8!. ~19!

Equations~16!, ~18!, and ~19! relate the macroscopic
field, the local field, and the polarization to each other.
order to find the macroscopic field of the scattered wave,
eliminate the last two unknowns. Combining Eqs.~16! and
~18!, we get

$d i j 24pn0a is~v8!@Qs j~q,v8!2Ts j~q,v8!#%Pj5Pi
0.
~20!

Using Eq.~8! to introduce the inverse electric susceptibili
tensor, we can rewrite Eq.~20! as
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n0a i j ~v8!$x js
21~v8!14p@d js2Qjs~q,v8!#%Ps5Pi

0.

e

ly

lo
di
s

s t

l-
b

th

q

which coincides with the results of Refs. 4–7.

m
q.

gi-
tic

up
he

or-

a
e,
~21!

Substitution of Eq.~19! gives the desired expression for th
macroscopic field:

$@Qi j ~q,v8!2d i j #
2124px i j ~v8!%Ej

54p
1

n0
a js

21~v8!x i j ~v8!Ps
0.

Inverting the tensor,

@Qi j 2d i j #
215F ~v8/c!2d i j 2qiqj

q22~v8/c!2 G21

5S c

v8D
2F S q22S v8

c D 2D d i j 2qiqj G ,
and introducing the permittivity of the crystal, we final
have

Fq2d i j « i j ~v8!S v8

c D 2

2qiqj GEj~q,v8!

54pS v8

c D 2

x i j ~v8!
1

n0
a jk

21~v8!bks~v,v8!

3
1

n0
asl

21~v!x ln~v!Fn . ~22!

It is easy to see by analyzing this result that it is ana
gous to the result of calculating the radiation of a point
pole d in a crystal, using the usual Maxwell’s equation
when the right-hand side of the analogous expression ha
form

4p~v8/c!2di .

Comparing this with Eq.~22!, it is easy to see that a mo
ecule of the crystal during the Raman scattering actually
haves as if it had an effective Raman polarizability of

b i j
eff~v,v8!5

1

n0
ask

21~v8!x is~v8!bkl~v,v8!

3
1

n0
a ln

21~v!xn j~v!. ~23!

We should point out that this is valid in a crystal wi
arbitrary symmetry. For a uniaxial crystal, Eq.~23! has a
simpler form:

b i j
eff~v,v8!5b'

eff~d i j 2eiej !1b i
effeiej ,

where

b'
eff5

x'~v8!b'~v,v8!x'~v!

n0a'~v8!n0a'~v!
,

~24!

b i
eff5

x i~v8!b i~v,v8!x i~v!

n0a i~v8!n0a i~v!
.

In an isotropic crystal, in the Lorentz–Lorenz model, E
~23! gives

b i j
eff~v,v8!5d i j

«~v!12

3

«~v8!12

3
b~v,v8!,
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4. RAMAN SCATTERING IN A UNIAXIAL CRYSTAL

In a uniaxial crystal, when the permittivity has the for
of Eq. ~11!, inverting the tensor on the left-hand side of E
~22! gives

Ei~q,v8!5
4p~v8/c!2

q22«'~v8/c!2

3Fd i j 2
Ai j ~q,v8!

«'q'
2 1« iqz

22« i«'~v8/c!2G
3b js

effFs . ~25!

TensorAi j is defined as

Ai j ~q,v8!5«'~«'2« i!S v8

c D 2

eiej1S c

v8D
2

3Fq22« iS v8

c D 2Gqiqj1~« i2«'!

3~q•e!~eiqj1ejqi !,

while q' and qz are, respectively, the transverse and lon
tudinal components of the wave vector relative to the op
axis z of the crystal.

The inverse Fourier transformation can be broken
into two stages—integration over the longitudinal and t
transverse wave vectors:

Ei~r ,v8!5~2p!23E d2q' exp@ iq'•r #E dqzEi~q' ,qz ,v8!

3exp@ iqzz#.

The integral overqz is determined by the poles ofE(q,v8).
The two types of poles in Eq.~25! correspond to the two
types of waves in a uniaxial crystal—ordinary and extra
dinary. The scattered wave consequently is the sum

E~r ,v8!5Eor~r ,v8!1Eex~r ,v8!.

The ordinary wave is determined by the poles

qz56A«'~v8/c!22q'
2 6 i0.

For positivez, the contour of integration can be closed via
half-circle of infinite radius in the upper complex half-plan
and likewise for negativez in the lower half-plane. Taking
into account the corresponding contributions gives

Ei
or~r ,v8!5~2p!21i S v8

c D 2E d2q'

3exp@ iq'•r1zA«'~v8/c!22q'
2 #

3Fd i j 2
Ai j ~z/uzuA«'~v8/c!22q'

2 ,q' ,v8!

~«'2« i!q'
2 G

3
b js

effFs

A«'~v8/c!22q'
2

. ~26!
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To determine the waves at large distances in the wave
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The radiation intensity into an element of solid angle in this
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, as
zone, we use the stationary-phase approximation. The e
mum of the expression in the exponential is found at
point

q'
0 5

r'

r
~v8/c!A«',

which corresponds to qz
05zr21(v8/c)A«' or

q05r r 21(v8/c)A«'. Use of the well-known formulas of the
stationary-phase method in the two-dimensional case giv

Ei
or~r ,v8!5

1

r
expF iA«'

v8

c
r G S v8

c D 2

3Fd i j 2
Ai j ~r r 21A«'~v8/c!,v8!

~«'2« i!«'~v8/c!2~r' /r !2Gb js
effFs .

~27!

Let the incident wave be polarized in thexz plane. Using
n to denote the unit vector of thex axis, we write

F5F ie1F'n,

and, consequently,

b js
effFs5b i

effF iej1b'
effF'nj .

Equation~27! in this case can be simplified:

Ei
or~r ,v8!5

1

r
expF ir A«'

v8

c G S v8

c D 2

b'
effF'

3S ni2
xri

r 22z2 1ei

xz

r 22z2D . ~28!

The energy flux into an element of solid angle is

dI

dV
5r 2S5r 2

c

8p
uE–H* u5

c2

8pv8
uE3~q03E* !u,

whereq0 is the stationary-phase point. Substituting Eq.~28!,
we get

dIor

dV
5

c

8p S v8

c D 4

A«'~v8!ub'
eff~v,v8!F'u2 sin2 w,

~29!

w is the azimuthal angle measured from thex axis.
Similar calculations can be made for the extraordin

waves. In this case, the integral overqz includes the contri-
bution of the pole

qz56A«'~v8/c!22q'
2 «' /« i6 i0.

The stationary-phase method makes it possible to i
grate over the transverse wave vectors, and we finally h

Ei
ex~r ,v8!5expF iA«'

v8

c
Az21r 2

« i

«'
G

3Fz21r 2
« i

«'
G23/2S v8

c D 2Fb i
effF i

2
zx

r
b'

effF'G@eir'
2 2r' iz#. ~30!
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case is

dIex

dV
5

c

8p
A«'S v8

c D 4

sin2 u

3
ub i

effF i2b'
effF' cosw cot uu2

@cos2 u1~« i /«'!sin2 u#5/2 . ~31!

For the valuesu5p and u50, it should be taken into
account that both types of waves in these directions h
identical wave vectors and orthogonal polarization. It the
fore makes sense to speak only of their total intensity, wh
is determined by

dI tot

dV
~u50,p!5

c

8p
A«'S v8

c D 4

ub'
effF'u2.

It can be seen from the resulting formulas that the an
lar radiation distribution is determined by the components
the effective Raman polarizability tensor and conseque
strongly depends on the local-field effects.

5. RAMAN SCATTERING CROSS SECTION IN A UNIAXIAL
CRYSTAL

The radiation intensity of the two types of waves can
obtained by integrating the fluxes given by Eqs.~29! and
~31! over angles:

I or5
c

4
A«'S v8

c D 4

ub'
effF'u2,

I ex5
c

12
A«'S v8

c D 4S « i

«'
D 2Fub'

effF'u 2
«'

« i
14ub i

effF iu 2G .
~32!

The total radiation intensity of all the waves is given b

I tot5
c

12
A«'S v8

c D 4H ub'
effF'u 2S 31

« i

«'
D

14ub i
effF iu 2S « i

«'
D 2J . ~33!

In writing the scattering cross sections, it is necessary
distinguish two cases, corresponding to different types
incident wave. If the incident wave is ordinary, it is alwa
polarized perpendicular to the optical axis; i.e., thenF i50.
The energy flux in the incident wave in this case,

Sor5
c2

8p

1

v8
quFu25

c

8p
A«'uFu2

q

q
,

is independent of the propagation direction of the wave. T
Raman scattering cross section of the ordinary wave is
cordingly

sor5
I tot

Sor
5

2p

3 S v8

c D 4

ub'
effu2S 31

« i~v8!

«'~v8! DA«'~v8!

«'~v!
.

~34!

We should point out that the label showing the type
wave is written below in order to emphasize that one is de
ing with a type of incident wave and not a scattered wave
it was above.
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In describing the incident extraordinary wave, it is con-

lin
n

uHu25us3Du25usiD'2s'D iu2

ion

ve

ary
venient to introduce the ray vectors, defined by

F5H3s, H5s3D.

The energy flux

S5~c/8p!uHu2s

is directed along the ray vector. Introducing the angleg be-
tween the ray vector and the optical axis and also recal
that the vectorss, q, F, andD lie in the same plane, we ca
write

s5s~e cosg1n sin g!,

F5F~2e sin g1n cosg!.

Then
terizes the energy loss of the incident wave per unit length o
g
m

th

e
ca
um
s
pi
si
en
g

5s2~« i sin2 g1«' cos2 g!2uFu2.

The magnitude of the ray vector depends on its direct
in a known way:

s25~«' cos2 g1« i sin2 g!21;

therefore, finally, the energy flux in the extraordinary wa
equals

Sex5
c

8p
uFu2~«'~v!cos2 g1« i~v!sin2 g!1/2.

The Raman scattering cross section of the extraordin
wave is accordingly
-

sex5
2p

3 S v8

c D 4A«'~v8!

«'~v!

ub'
effu2@31« i~v8!/«'~v8!#cos2 g14@« i~v8!/«'~v8!#2ub i

effu2 sin2 g

@cos2 g1~« i~v!/«'~v!!sin2 g#1/2 . ~35!

The frequently used extinction coefficienth, which charac- Expanding Eq.~35! to terms of first order in the anisot

fropy, we can obtain in this case the scattering cross section

cu-

e

n-
tion

n
tro-
s.

sic
per-
cat-

in
e of
de-
iz-
l to
crystal during scattering, is obtained by simply multiplyin
the cross sections by the number of molecules in unit volu
of the crystal:

h5sn0 .

As can be seen from Eqs.~34! and ~35!, the scattered
energy depends on the propagation direction only for
extraordinary waves.

6. DISCUSSION OF THE RESULTS

To estimate the effect of the local field, let us consid
the case in which the frequencies of the incident and s
tered waves are close, so that it is possible to ass
« i j (v8)5« i j (v). We assume that the anisotropy of the cry
tal caused by anisotropy of the molecules in an isotro
lattice is weak. For simplicity, we also assume the intrin
Raman polarizability of the molecules to be isotropic. Th
in accordance with Eq.~11!, we can write

« i2«'54pn0dF«12

3 G2

!«,

where

d5a i2a'!a.

The effective Raman polarizability tensor takes the form

b'
eff5beff5bF«12

3 G2

,
~36!

b i
eff5beff12beff

« i2«'

«12
.
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of the extraordinary wave:

sex5
8p

3 S v8

c D 4

ubeffu21
2p

3 S v8

c D 4

ubeffu2
« i2«'

«

3F11
21«110

«12
sin2 gG . ~37!

For comparison, we show the analogous formula cal
lated without including the local field:

sex5
8p

3 S v8

c D 4

ubu21
2p

3 S v8

c D 4

ubu2
« i2«'

«

3@115 sin2 g#.

Comparing it with Eq.~37!, we can see that, besides th
common additional factor@(«12)/3#4, taking into account
the local field in a uniaxial crystal results in a relative i
crease by a factor of 3 or 4 of that part of the cross sec
that depends on the direction of the incident wave.

Thus, taking into account the effect of the local field o
the Raman scattering in a uniaxial crystal reduces to in
ducing the effective Raman polarizability of the molecule
In this case, the latter is determined both by the intrin
properties of the molecules and by the macroscopic pro
ties of the crystal at the frequencies of the incident and s
tered waves.

This is reflected both in the scattering intensity and
the angular distribution of the scattered waves. In the cas
an extraordinary incident wave, when the cross section
pends on its propagation direction, it is the effective polar
ability that determines this dependence; i.e., it is essentia
allow for the local field in this case.

102M. V. Gorkunov and M. I. Ryazanov



This work was carried out with the partial support of the 4V. S. Libov and N. G. Bakshiev, Opt. Spektrosk.31, 48 ~1971! @Opt.
Spectrosc.~USSR! 31, 24 ~1971!#.
Russian Fund for Fundamental Research~Project 95-02-

06059! and the Ministry of Science~Project 96-7-3!.

1A. N. Botvich, V. G. Podoprigora, and V. F. Shabanov,Raman Scattering
in Molecular Crystals~Nauka, Novosibirsk, 1968!.

2M. I. Ryazanov, Zh. E´ ksp. Teor. Fiz.103, 1840 ~1993! @JETP 76, 910
~1993!#.

3M. I. Ryazanov, Zh. E´ ksp. Teor. Fiz.108, 1778 ~1995! @JETP 81, 974
~1995!#.
103 JETP 85 (1), July 1997
5V. M. Sidorenko, V. S. Libov and N. G. Bakshiev, Opt. Spektrosk.35,
270 ~1973! @Opt. Spectrosc.~USSR! 35, 158 ~1973!#.

6V. M. Sidorenko, V. S. Libov and N. G. Bakshiev, Opt. Spektrosk.37,
680 ~1974! @Opt. Spectrosc.~USSR! 37, 385 ~1974!#.

7V. M. Sidorenko, V. S. Libov and N. G. Bakshiev, Opt. Spektrosk.41,
699 ~1976! @Opt. Spectrosc.41, 417 ~1976!#.

Translated by W. J. Manthey
103M. V. Gorkunov and M. I. Ryazanov


	1_1.pdf
	104_1.pdf
	109_1.pdf
	114_1.pdf
	121_1.pdf
	13_1.pdf
	130_1.pdf
	135_1.pdf
	141_1.pdf
	152_1.pdf
	156_1.pdf
	163_1.pdf
	168_1.pdf
	17_1.pdf
	173_1.pdf
	179_1.pdf
	183_1.pdf
	189_1.pdf
	195_1.pdf
	20_1.pdf
	200_1.pdf
	205_1.pdf
	27_1.pdf
	34_1.pdf
	42_1.pdf
	48_1.pdf
	52_1.pdf
	61_1.pdf
	68_1.pdf
	73_1.pdf
	87_1.pdf
	89_1.pdf
	97_1.pdf

