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B. É. Me erovich

P. L. Kapitsa Institute of Physical Problems, Russian Academy of Sciences, 117973 Moscow, Russia
~Submitted 10 July 1996!
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The condition for equilibrium of a high-current channel taking account of both electromagnetic
and gravitational interactions of the charges with an arbitrary drift-to-light velocity ratio
is derived from the equations of Einstein’s general theory of relativity. The relative motion
appearing between the electron and ion subsystems as a result of the current flow gives
rise to an additional gravitational attraction between these subsystems. This is a relativistic effect
that cannot be obtained in the Newtonian approximation. ©1997 American Institute of
Physics.@S1063-7761~97!00108-X#
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High intergalactic currents, which influence the structu
and evolution of matter in the universe, play a fundamen
role in plasma astrophysics.1 It is of interest in this connec
tion to extend the well-known Bennett condition fo
equilibrium2 to the case when the gravitational attracti
forces acting between charges are comparable to the ele
magnetic forces.

The actual distortion of the metric by intergalactic cu
rents is small, and in most cases the Newtonian approxi
tion is valid for taking account of the gravitational forces
the equations describing the equilibrium structure of
high-current channels. The equilibrium condition for hig
current channels taking account of the gravitational for
was obtained in this approximation in Ref. 3. However, t
equilibrium condition derived in the Newtonian approxim
tion is applicable only for nonrelativistic drift velocities, be
cause in order for the Newtonian approximation itself to
applicable not only must the gravitational field be weak b
in addition the motion of the matter must be nonrelativis
~Ref. 4, Secs. 87 and 99!. Therefore, in order to extend th
high-current equilibrium condition to relativistic drift veloc
ties the Einstein equations beyond the limits of the Newt
ian approximation must be used even in the case of a w
gravitational field. The present paper is devoted to this pr
lem.

2. PHYSICAL FORMULATION OF THE PROBLEM

We shall treat the high-current channel as a cylindrica
symmetric system consisting of two subsystems~ions and
electrons! moving relative to one another with drift velocit
V and not interacting with one another collisionally~but only
via the fields produced by the charges themselves!. This is
valid if the drift velocity is much larger than the averag
velocities of the charges in the comoving reference fram
The efficiency of Coulomb collisions decreases rapidly w
increasing relative velocity of the colliding charges. For th
reason, equilibrium is established within each subsys
much more rapidly than it could be for entire plasma a
whole. The mutual friction of the subsystems can
neglected over times which are much longer than the re
ation time in the subsystems but much shorter than the
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assumed that each system is in its own state of thermal e
librium.

If electron–ion friction changes the drift velocity ver
little over the length of the current channel, the current flo
can be assumed to be stationary. The drift velocity along
current channel can be maintained constant by an exte
longitudinal electric field. As a rule, the longitudinal electr
field in high-current channels is weak compared with t
magnetic field generated by the current and can be negle
when analyzing equilibrium in the system.

The condition that the velocities of the charges in t
comoving reference frames of the subsystems are m
lower than the drift velocity means that the relative velocit
in electron–electron collisions are, as a rule, nonrelativis
Thus, the question of the nonconservation of the numbe
electrons as a result of electron–positron pair product
does not arise.

As a whole, our formulation of the problem of equilib
rium in a high-current channel is identical to the standa
formulation of the problem in the ideal magnetohydrod
namic approximation for a~generally speaking, charged!
plasma, irrespective of whether or not the gravitational int
action of the charges is taken into account. Since the m
free path is much smaller than the channel radius, both
electron and ion subsystems can be treated as ideal liq
~or gases!. The mutual friction between the electrons a
ions is a dissipative effect that arises in the higher-or
terms of an expansion in the small gradients and so we s
neglect it.

3. METRIC TENSOR

To take account of gravitational forces systematically
V/c;1, it is necessary to solve Einstein’s equations, wh
describe the distortion of the spatial metricgik by matter~in
our case, by the charges and the electromagnetic field! and
include, in part, the equations of motion of the matter itse
The spatial metric should be Galilean at distances m
larger than the size of the system. In what follows, we sh
employ the coordinatesx05ct, x15 ln r, x25w, andx35z.
In these coordinates the Galilean metric has the form

ds25~dx0!22exp~2x1!~dx1!22exp~2x1!~dx2!22~dx3!2,

20908$10.00 © 1997 American Institute of Physics
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gik5U0 2exp~2x1! 0 0

0 0 2exp~2x1! 0

0 0 0 21

U . ~3.1!

The direction of the current is a distinguished directio
and to analyze the physical nature of the equilibrium in
simplest geometry the current channel can be treated
cylindrically symmetric, stationary, and uniform~in the di-
rection of the current! system whose parameters all depe
on only one spatial coordinate, the distance from the a
Apart from the diagonal terms, the componentsg0a of the
metric tensorgik are different from zero. This is because
the presence of a constant current motion of the matter
transport of momentum by both the charges and the elec
magnetic field~the Poynting vector in the general case
different from zero! occur. It will be seen from the analysi
below that forV/c;1 the contribution ofg0a to the equilib-
rium energy balance is of the same order asg00 ~and g33!.
The constant gravitational field of the high-current channe
therefore stationary, but not static~Ref. 4, Sec. 88!.

We shall employ the standard notation.4 Latin indices
label four-vectors and four-tensors. Greek indices are u
for three-dimensional vectors and tensors;h5g00 is a three-
dimensional scalar;ga52h21g0a is a three-dimensiona
vector; and,gab is the three-dimensional metric tensor

gab52gab1g0ag0b /g00. ~3.2!

4. DISTRIBUTION FUNCTION

The momentum and coordinate distribution function
the charges in a state of thermal equilibrium is an integra
the motion and a relativistic invariant. For this reason, in
arbitrary reference frame the distribution function should
pend only on covariant combinations of the additive integr
of motion~projections of the generalized 4-momentumPi on
the directions of the cyclic coordinates! and the 4-velocityUi

of the subsystem as whole. For our cylindrically symmet
system that is uniform in the direction of the current suc
combination isPiU

i , where

U05
dx0

Agikdxidxk
5Fg0012g0a

Wa

c
1gab

WaWb

c2 G21/2

,

Ua5
dxa

Agikdxidxk
5

Wa

c Fg0012g0a

Wa

c

1gab

WaWb

c2 G21/2

,

Ui is the 4-velocity of the subsystem relative to the labo
tory coordinate system andWa5cdxa/dx0. The drift veloc-
ity V equals the difference of the velocities of the su
systems:Va5We

a2Wi
a . The generalized 4-momentumPi in

the presence of an electromagnetic field is related to the
nematic 4-momentumpi of a particle bypi5Pi2(e/c)Ai ,
whereAi is the 4-potential of the electromagnetic field.
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on PiU is determined by the particle statistics. For fermio
~which electrons and protons are! this dependence has th
form

F~X!5$11exp@B1X/T#%21, X5cPiU
i , ~4.1!

whereB andT are scalars. Since the distribution function
an integral of the motion, its argumentB1X/T does not
depend on the coordinates;B is simply a constant. But the
projections of the generalized 4-momentumPi on the direc-
tion of the current and on the time axis are integrals of
motion. Therefore the ratiosUi /T, i 50 and 3, should not
depend on the coordinates. In other words, the 4-ve
j i5Ui /T is a Killing vector,5 which in an arbitrary coordi-
nate system satisfies the Killing equation

j i ;k1jk; i50. ~4.2!

The Killing equation is a consequence of the symmetry
sociated with the existence of cyclic coordinates in the s
tem. It determines the coordinate dependence of the velo
chemical potential, and temperature.

It follows from the Killing equation that the 3-velocity
Wa5cdxa/dx0 measured in universal timex0 does not de-
pend on the coordinatex1. In our casex0 andx3 are cyclic
coordinates, and the corresponding componentsU0 and U3

are different from zero. Only two of the equations~4.2! are
independent:

g00

d~U0/T!

dx1 1g03

d~U3/T!

dx1 50,

g30

d~U0/T!

dx1 1g33

d~U3/T!

dx1 50.

The determinant of this system is different from zero:

D5Ug00 g03

g30 g33
U5g00g332g03g3052g00g33Þ0.

Therefore we have from the Killing equations

d~U0/T!

dx1 50,
d~U3/T!

dx1 50.

HenceW3/c5U3/U05const, i.e.,W3 is indeed independen
of the coordinatex1. The coordinate dependence of the te
perature is given by the formula

T

U0 5TAg0012g0a

Wa

c
1gab

WaWb

c2 5const. ~4.3!

5. ENERGY-MOMENTUM TENSOR

To calculate the energy-momentum tensorTik and other
quantities with the aid of the distribution function it is ne
essary to know how an element of the 4-volum
dVp5dp0dp1dp2dp3 in momentum space transforms
curvilinear coordinates. Sincedpi is a covariant vector, un-
der a coordinate transformation its components transform
differentials of the coordinates. But in curvilinear coord
nates the productA2gdV, whereg is the determinant of the
metric tensorgik and dV5dx0dx1x2dx3, is an invariant.
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4-volume in momentum space the productA2gdVp remains
an invariant.

Thus, we have the following invariant expression forTik

as an integral of the distribution function:

Tik5
2cg

~2p\!3 E pipkF~X!d~psp
s

2m2c2!A2gdp0dp1dp2dp3. ~5.1!

Substituting the expression~4.1! into Eq. ~5.1! gives the
standard expression for the energy-momentum tensor

Tik5~E1P !UiUk2P gik, ~5.2!

in which the energyE and the presssureP in a comoving
reference frame are expressed in terms of the potentialsAi of
the field:

E5
4pg

~2pch!3 E
mc2

`

dE E2AE22m2c4

3H 11expFE2m

T G J 21

, ~5.3!

P 5
4pg

3

1

~2pch!3 E
mc2

`

dE~E22m2c4!3/2

3H 11expFE2m

T G J 21

, ~5.4!

2m5BT1eAiU
i . ~5.5!

Hereg is theg-factor andm is the chemical potential.
The equations~4.3!, ~5.3!, ~5.4!, and~5.5! already incor-

porate the equation of state of the matter. These equat
express the components of the energy–momentum tens
terms of the potentials of the electromagnetic field and
4-velocity of the subsystem as a whole.

The current 4-vectorni is an integral of the distribution
function

ni5
2

c

g

~2ph!3 E piF~X!d~psp
s

2m2c2!A2gdp0dp1dp2dp35nUi . ~5.6!

Here

n5
4pg

~2pch!3 E
mc2

`

dE EAE22m2c4

3H 11expFE2m

T G J 21

, ~5.7!

where n is the charge density in the comoving coordina
system.

The complete energy–momentum tensor of the partic
is obtained from Eq.~5.2! by summing over the types o
charges:

TPi

k 5(
a

@~Ea1P a!UaiUa
k2P ad i

k#. ~5.8!
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j i5c(
a

eana
i 5c(

a
eanaUa

i . ~5.9!

The total currentI and chargeQ per unit length of the chan
nel are obtained from Eq.~5.9! by an invariant integration
over the transverse cross section

I

c
52pE

2`

`

dx1A2g (
a

eanaUa
3,

Q52pE
2`

`

dx1A2g (
a

eanaUa
0. ~5.10!

The energy–momentum tensor of the electromagn
field equals

TFi

k 5~2Fil F
kl1d i

kFlmFlm/4!/4p.

In the case of a stationary system which is uniform in t
direction of the current and in the azimuthal direction t
componentsA0 and A3 of the field-potential 4-vector are
different from zero. Correspondingly, in the electromagne
field tensor

Fik5Ak; i2Ai ;k5
]Ak

]xi 2
]Ai

]xk ~5.11!

only the componentsF1052F015]A0 /]x1 of the electric
field and the componentsF1352F315]A3 /]x1 of the mag-
netic field are different from zero. It is convenient to expre
the energy–momentum tensor of the electromagnetic fiel
terms of a mixed componentF0

15g00F
011g03F

31 of the
electric field and the covariant componentF31 of the mag-
netic potential

T005g11@g33h~F13!21~F0
1!2#/8p, ~5.12!

T0
35g11F0

1F31/4p, ~5.13!

T115h21@g33h~F13!22~F0
1!2#/8p, ~5.14!

T225g22g11h
21@2g33h~F13!21~F0

1!2#/8p, ~5.15!

T335g33g11h
21@g33h~F13!21~F0

1!2#/8p. ~5.16!

The complete matter energy–momentum tensor app
ing in Einstein’s equations is the sum of the correspond
expressions for the particles and the electromagnetic fi
Ti

k5TPi

k 1TFi

k .

6. RICCI TENSOR

Despite their compact tensor form, Einstein’s equatio

Rik5
8pG

c4 S Tik2
1

2
gikTD , ~6.1!

are difficult to use in practice. We shall write out the com
plete system of equations describing stationary current fl
in a cylindrically symmetric channel without assuming th
the gravitational field is weak. We employ the well-know

211B. É. Me erovich
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case of a constant gravitational field~Ref. 4, problem in Sec
95!:

R005Ah~Ah! ;a
;a1

h2

4
f lm f lm,

R0
a52

1

2
h fal

;l2
3

4
f alh;l ,

Rab5Pab1
h

2
f al f b

l2
~Ah! ;a;b

Ah
.

We employ the standard notation:4

f ab5gb;a2ga;b5
]gb

]xa2
]ga

]xb

is an antisymmetric three-dimensional tensor andPab is a
three-dimensional tensor constructed fromgab just as the
4-tensorRik is constructed fromgik . All raising and lower-
ing operations on the Greek indices and covariant differ
tiation in three-dimensional space are performed with
three-dimensional metric tensor~3.2!.

In our problem the tensorgab is diagonal, and existing
expressions~Ref. 4, problem 2 in Sec. 92! for the tensorPab

can be used. Writingg005h5exp(F0) and representing the
nonzero diagonal components of the three-dimensional m
ric tensor in the form

gab5Uexp~2F1! 0 0

0 exp~2F2! 0

0 0 exp~2F3!
U ,

we obtain the following expressions for the tensorPab :

Paa5 (
lÞa

H Fa,aFl,a2Fl,a
2 2Fl,a,a1exp~2Fa22Fl!

3S Fl,lFa,l2Fa,l,l2Fa,l
2

2 (
mÞaÞl

Fa,lFm,lD J , ~6.2!

Pa,b5 (
mÞaÞb

~Fa,bFm,a1Fb,aFm,b2Fm,bFm,a

2Fm,a,b!, aÞb. ~6.3!

In Eq. ~6.2! summation is not performed over the doub
repeated indexa. In the case when all quantities depend
only one coordinate the tensorPab is diagonal, since for
aÞb the differentiation in each term of the sum in Eq.~6.3!
is performed with respect to two different coordinates. T
index a signifies ordinary differentiation with respect to th
coordinatexa.

Making use of the arbitrariness in the choice of the c
ordinate x1, we impose on the functionFi the additional
condition6

F15F01F21F3 . ~6.4!
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tensor:

R005exp@2~F02F1!#F091~1/2!exp~4F022F1

22F3!g38
2, ~6.5!

R0
352~1/2!exp~22F1!@exp$2~F02F3!%g38#8, ~6.6!

R115exp~24F1!$@2~F28F381F38F081F08F28!2F19#

1~1/2!exp~2F022F3!g38
2%, ~6.7!

R2252exp~22F222F1!F29 , ~6.8!

R335exp~22F322F1!F391~1/2!exp~2F022F1

24F3!g38
2. ~6.9!

A prime denotes differentiation with respect tox1.

7. CONSERVATION LAWS

It follows from Einstein’s equations that the divergen
of the energy–momentum tensor

Ti
k5(

a
~W aUaiUa

k2P ad i
k!1~2Fil F

kl

1d i
kFlmFlm/4!/4p

equals zero: Ti ;k
k 50. We calculate Ti ;k

k directly with
W a5Ea1P a , Ea , andP a from Eqs.~5.3! and ~5.4!. The
nonzero componentsUa

k areUa
0 andUa

3 , and the correspond
ing coordinatesx0 andx3 are cyclic. ThereforeUa

kd/dxk50,
Ua;k

k 50. A series of standard transformations yields

Ti ;k
k 5(

a
W a~UaiUa

k! ;k2P a; i2Fil ~Fkl! ;k/4p.

Now we transformP a; i5dP a /dxi5P a,i :

dP

dxi 5(
a

4p

3

ga

~2pch!3 E
mc2

`

dE~E22ma
2c4!3/2

3
d

dxi H 11expFE2ma

Ta
G J 21

.

The identity

d

dxi H 11expS E2m

T D J 21

5FES 1

TD
,i

2S m

T D
,i
G

3
d

dE H 11expS E2m

T D J 21

,

and integration by parts yield

P a,i5
4p

3 (
a

gaTa

~2p\!3 E
mc2

` dE

11exp@~E2ma!/Ta#

3
d

dE H ~E22ma
2c4!3/2FES 1

Ta
D

,i

2S ma

Ta
D

,i
G J .

Differentiating with respect toE and using the equation
~5.3!, ~5.4!, and~5.6! we obtain
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dxi (
a

aH aS Ta
D

,i
S Ta

D
,i

aJ
Now, using Eqs.~5.5! andB,i50 we have

dP

dxi 52(
a

TaH W aS 1

Ta
D

,i

1eanaF S Ua
k

Ta
DAk,i

1AkS Ua
k

Ta
D

,i
G J .

The termAk(Ua
k/Ta) ,i vanishes on account of the Killing

equations: (Ua
k/Ta) ,i50. SinceUkd/dxk50, we can write

Ak,iU
k5(Ak,i2Ai ,k)U

k5FikUk. On the basis of Eq.~5.9!,
we have

dP

dxi 52(
a

TaW aS 1

Ta
D

,i

2Fik

j k

c
,

Ti ;k
k 5(

a
W aTaH Uai,kUa

k

Ta
1S 1

Ta
D

,i
J 1Fil H ~Flk! ;k

1
4p j l

c J 1

4p
.

The relationsUak; iUa
k50, Ua

kUak51, Ua
k(1/Ta) ;k50, and

Ua;k
k 50 make it possible to write the sum over the types

charges in the form

(
a

W aTaUa
kH S Uai

Ta
D

;k

1S Uak

Ta
D

; i
J ,

whence it follows by virtue of the Killing equations~4.2! that
this sum vanishes. As a result we obtain

Ti ;k
k 5

1

4p
FimH Fmk

;k1
4p j m

c J .

Therefore it follows from Einstein’s equations that

Fim$Fmk
;k14p j m/c%50. ~7.1!

It can be concluded that Maxwell’s equations

Fmk
;k14p j m/c50 ~7.2!

are wholly contained in Einstein’s equations only if the d
terminant of the matrix of the electromagnetic field is diffe
ent from zero: detFim Þ 0. In our case the electric and ma
netic fields are perpendicular to one another, so that on
the two field invariants equals zero. This is the special c
when Maxwell’s equations are not a consequence of E
stein’s equations.7 Since in our case detFik50, there exists a
nontrivial solution of Eq.~7.1! and hence the expression
Fkm

;m14p j k/c, generally speaking, are different from zer
Of the four equations~7.1!, in our case (F2k50, j 150,
F1m

;m50, and the rank of the matrixFik equals 1! there
actually remains only one equation

F10~F0m
;m14p j 0/c!1F13~F3m

;m14p j 3/c!50. ~7.3!

In the presence of a relative motion of the electron and
subsystemsF13 Þ 0 holds in any reference frame. Then
follows from Eq.~7.3! that Einstein’s equations hold for a
arbitrary functionF0m

;m14p j 0/c if
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On the other hand, the fact that the electromagnetic fi
whose potentialsAi appear explicitly in the distribution func
tion, is produced by the charges of our system themselve
expressed mathematically by Maxwell’s equations~7.2!,
which relate the field potentials to the charge and curr
density.

In summary, of the two Maxwell equation
Fik

;k524p j i /c, i 50,3, one is independent and the other
a consequence of the first one and Einstein’s equations.

8. COMPLETE SYSTEM OF EQUATIONS

Substituting the expressions~5.8! for the particle
energy–momentum tensor, the equations~5.12!–~5.16! for
the energy–momentum tensor of the electromagnetic fi
and the equations~6.10!–~6.14! for the Ricci tensor into Eq.
~6.1! we arrive at the following gravitational field equation

exp~2F122F0!R00

5F091
1

2
exp@2~F02F3!#g38

25
8pG

c4

3exp~2F1!H exp~2F1!@exp~2F3!~F13!2

1exp~22F0!~F0
1!2#

1

8p

1(
a

F ~12g3Wa/c!2~Ea1P a!

~12g3Wa/c!22exp~2F322F0!Wa
2/c2

2
Ea2P a

2 G J , ~8.1!

exp~2F1!R0
3

52
1

2
@exp$2~F02F3!%g38#85

8pG

c4 exp~2F1!

3H(
a

~Wa /c!~12g3Wa /c!~Ea1P a!

~12g3Wa /c!22exp~2F322F0!Wa
2/c2

1exp~2F1!
F0

1F31

4p J , ~8.2!

exp~4F1!R115@2~F28F381F38F081F08F28!2F19#1
1

2
exp~2F0

22F3!g38
25

8pG

c4 exp~2F1!H(
a

Ea2P a

2

1exp~2F1!@exp~2F3!~F13!22exp~22F0!

3~F0
1!2#

1

8pJ , ~8.3!

213B. É. Me erovich



exp~2F 12F !R2252F95
8pG

exp~2F !
Ea2P a
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F8~F81F8!1F8F81
1

exp~2F 22F !g82

gral
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me
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gth

y

g-
d by
her-

d the
1 2 2 c4 1 H(
a 2

1exp~2F1!@2exp~2F3!~F13!2

1exp~22F0!~F0
1!2#

1

8pJ , ~8.4!

exp~2F112F3!R33

52F391
1

2
exp@2~F02F3!#g38

25
8pG

c4

3exp~2F1!H exp~2F1!@exp~2F3!~F13!2

1exp~22F0!~F0
1!2#

1

8p

1(
a

F exp~2F322F0!~Wa /c!2~Ea1P a!

~12g3Wa /c!22exp~2F322F0!Wa
2/c2

1
Ea2P a

2 G J . ~8.5!

The five equations~8.1!–~8.5! contain five functions de-
scribing the gravitational field (F0 ,F1 ,F2 ,F3 ,g3) and two
functions describing the electromagnetic field~A0 and A3!,
which enter into the equations via the expressions~5.3!,
~5.4!, and ~5.11!. There are seven functions in all. The sy
tem is closed by the relation~6.4! and one Maxwell equation

exp~22F1!@exp~2F1!F01#8

524p(
a

eana

3
exp~2F0!

A~12g3Wa /c!22exp~2F322F0!Wa
2/c2

. ~8.6!

The second Maxwell equation

exp~22F1!@exp~2F1!F31#8

524p(
a

eana

3
exp~2F0!Wa /c

A~12g3Wa /c!22exp~2F322F0!Wa
2/c2

~8.7!

is, as shown above, a consequence of this system of e
tions. The charge densitiesna and the temperature of th
charges are expressed in terms of the same unknown f
tions by the equations~5.7! and ~4.3!.

The relations

F091F395F192F295
16pG

c4 exp~2F1!(
a

P a , ~8.8!
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5
8pG

c4 exp~2F1!H(
a

P a1exp~2F1!@exp~2F3!

3~F13!22exp~22F0!~F0
1!2#

1

8pJ . ~8.9!

follow from Eqs. ~8.1!–~8.5!. The relation~8.9! does not
contain second derivatives and is essentially the first inte
of the system of equations.

To relate the coordinatex1 to the distance from the axi
of the cylinder, we ‘‘switch off’’ the electromagnetic field
(F0

15F1350) and ‘‘stop’’ the charges (Wa50). Then

F395F29 ~F0
15F1350, Wa50!.

follows from Eqs.~8.4! and~8.5!. If the integration constan
is set equal to 1,F285F3811, then far from the matter the
curvilinear cyclic coordinatesx2 and x3 will correspond to
the cylindrical coordinatesw andz, provided that the coor-
dinatex1 and the radius are related byx15 ln r. This corre-
sponds to the Galilean metric~3.1!. The directionx1→` is
the radial direction away from the current channel a
x152` corresponds to the axis of the cylinder.

For an infinitely long system the metric does not beco
Galilean at distances much larger than the transverse dim
sions. Asx1→` the functionsFi satisfying the equations
~8.1!–~8.5! do not approach zero. The problem is that t
cylindrical symmetry of a system in which there is a depe
dence on only one coordinatex1 is an intermediate
asymptotic property for distances from the axis which a
much smaller than the lengthL of the current channel. At
distancesx1 which are much larger thanL the metric will be
Galilean but at such distances the equations~8.1!–~8.5! are
no longer applicable becausex3 is no longer a cyclic coor-
dinate, and the system now depends on at least two varia
~x1 andx3!.

The finiteness of the current and charge per unit len
presupposes that the integrals~5.11! converge. ThenEa ,
P a , andna as functions ofx1 rapidly approach zero awa
from the axis:

Ea50, P a50, na50, x1→`. ~8.10!

From Maxwell’s equations~8.6! and ~8.7! we find

exp~2F1!F01522Q, exp~2F1!F31522I /c,

x1→`. ~8.11!

9. ENERGY BALANCE

Equilibrium is possible in the current channel if the ma
netic and gravitational compression energies are balance
the electrostatic repulsion of the space charge and the t
mal expansion energy of the particles:

I 2

2c2 1
G

2 S (
a

NamaD 2

5
Q2

2
1(

a
NaTa . ~9.1!

This formula was previously derived3 under the assumption
that the electrons and ions are ideal Boltzmann gases, an
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gravitational interaction of the charges is described by New-
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ton’s equations. This means that Eq.~9.1! is applicable pro-
vided that the velocity of the relative motion of the electr
and ion subsystems is much smaller than the velocity
light. To extend this balance to the caseWa;c it was nec-
essary to go beyond the Newtonian approximation and
to Einstein’s equations.

The condition of balance in the general theory of re
tivity can be obtained from the first integral~8.9! by simply
taking the limit x1→` in it. Since F0

15exp(2F0)
3(F012g3F31) and taking account of Eqs.~8.10! and~8.11!,
we find

1

4
exp~2F022F3!g38

21F08F381F28~F381F08!

54
GI2

c6 Fexp~2F3!2exp~2F0!S cQ

I
2g3D 2G . ~9.2!

Integrating the relation~8.8!, we find

F081F385
8G

c4 (
a

P a , ~9.3!

P a52pE
2`

`

dx1 exp~2F1!P a , ~9.4!

P a is the pressure of charges of typea, integrated over the
transverse cross section of the current channel.

The first two terms on the left-hand side of Eq.~9.2! are
proportional toG2. If gravitation is completely neglected
i.e., Eq.~9.2! is reduced by a general factor proportional
G, after whichG is set equal to zero and the Galilean valu
are substituted forFi , then we obtain a condition for equ
librium in the current channel that is valid, as follows fro
our derivation, for Fermi gases of electrons and ions with
arbitrary degree of degeneracy~and not only in the approxi-
mation of ideal Boltzmann gases!:

(
a

P a5
I 2

2c2 2
Q2

2
.

Gravitation must be included in the general balance
the forces when the electromagnetic contribution is sm
and the total number of particles is enormous, so that
quantities

I 2

c22Q2 and GS (
a

NamaD 2

are of the same order of magnitude. Such a situation
occur in intergalactic currents either when the current a
charge are both not very large or if the compression by
magnetic field generated by the current is compensated,
high degree of accuracy, by the electrostatic repulsion of
space charge. In the latter case the drift velocity can be r
tivistic, and then the Newtonian approximation is inadequa

For simplicity, let us assume that

P a!E i . ~9.5!

Sinceme!mi , the electrons can be relativistic and even
trarelativistic. The gravitational field of the system is weak
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terizes quantitatively the distortion of the metric by th
charges and the second parameter characterizes the disto
of the metric by the electromagnetic field produced by th
charges. In a weak gravitational field, fo
(I /c)22Q2;G(maNa)2 the distortion of the metric by the
electromagnetic field is much smaller than the distortion
the charges

G

c4 S I 2

c22Q2D;
~GmaNa!2

c4 !
GNama

c2 .

In this case, in the expansion in terms of the parameter 1c2

the distortion of the metric by the charges is an effect
order 1/c2 and the distortion by the electromagnetic field
of the order of 1/c4.

At sufficiently large distances from the axis of the cu
rent channel the functionsF0 , F3 , and g3 ~but not their
derivatives!! in Eq. ~9.2! can be replaced by their Galilea
values—zero. On account of the condition~9.5! F28 can also
be replaced by its Galilean valueF2851. We have

1

4
g38

21F08F381
8G

c4 (
a

P a54
GI2

c6 F12S cQ

I D 2G . ~9.6!

In the termF08F38 it is sufficient to obtain both factors, just a
g38 , to first order in 1/c2. To this accuracy, we find from Eqs
~8.1!, ~8.2!, and~8.5!

F0852F385
2G

c4 (
a

Ea

11Wa
2/c2

12Wa
2/c2 , ~9.7!

g385
8G

c4 (
a

Ea

Wa /c

12Wa
2/c2 , ~9.8!

Ea52pE
2`

`

dx1 exp~2F1!Ea ,

whereEa is the energy of the subsystem of typea per unit
length of the channel. Substituting the expressions~9.7! and
~9.8! into Eq. ~9.6! we obtain

G

2 (
a

Ea

c2

11Wa /c

12Wa /c (
b

Eb

c2

12Wb /c

11Wb /c
1

I 2

2c2

5
Q2

2
1(

a
P a ,

whence

G

2 S (
a

Ea

c2 D 2

1
2GEeE i

c6

~We2Wi !
2

~12We
2/c2!~12Wi

2/c2!

1
I 2

2c2 5
Q2

2
1(

a
P a . ~9.9!

The first two terms in Eq.~9.9!, which are proportional
to G, are the gravitational compression energy. The fi
term is the standard Newtonian expression for the grav
tional compression energy per unit length~compare to Eq.
~9.1!!. The second term on the left-hand side of Eq.~9.9!
describes the additional gravitational attraction arising
tween the subsystems as a result of their relative mot
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This effect is not contained in the Newtonian approximation.

on
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b
en
f t
in
a

gn
m

3
~We2Wi !

2

5
Q2

1 N T . ~9.10!

n

-

It is negligibly small in the limitV/c!1, but it can dominate
in the case of ultrarelativistic drift velocities. The equati
~9.9! is valid irrespective of the degree of degeneracy of
Fermi gas of electrons and/or ions. The inequality~9.5! was
used.

The gravitational attraction arising between the su
systems as a result of their relative motion in high-curr
channels contains an additional smallness on account o
inequality me!mi . This effect should be much stronger
superfluid stars, since there the masses of the normal
superfluid components can be of the same order of ma
tude, there is no mutual friction between these subsyste
and the relative velocity of the subsystems is not small.

For nonrelativistic Boltzmann gases~P a5NaTa ,
Ea5Namac2, Na is the number of charges of typea per unit
length of the current channel! the equation~9.9! gives

I 2

2c2 1
G

2 S (
a

NamaD 2

1
2GNeNimemi

c2
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~12We
2/c2!~12Wi

2/c2! 2 (
a

a a

In the limit of nonrelativistic drift velocities the equatio
~9.10! passes into the equation~9.1!.

I thank D. A. Kirzhnits for a discussion.
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Small angle Bhabha scattering at LEP1. Wide-narrow angular acceptance

w

N. P. Merenkov
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Analytical method is applied for the description of small-angle Bhabha scattering at LEP1.
Inclusive event selection for asymmetrical wide-narrow circular detectors is considered. The QED
correction to the Born cross section is calculated with leading and next-to-leading accuracy
in second order of perturbation theory and with leading accuracy in third order. All contributions
in the second order due to the photonic radiative corrections and pair production are
calculated starting from essential Feynman diagrams. Third-order correction is computed by
means of the electron structure function method. Second- and third-order leading corrections
suitable for calorimeter event selection are investigated. Numerical results illustrate the
analytical calculations. ©1997 American Institute of Physics.@S1063-7761~97!00208-4#
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The small-angle Bhabha scattering~SABS! process is
used to measure the luminosity of electron-positron collide
At LEP1 an experimental accuracy on the luminosity
ds/s,0.1% has been reached.1 However, to obtain the tota
accuracy, a systematic theoretical error must also be ad
Accurate determination of the SABS cross section there
directly affects some physical values measured at LE
experiments.2,3 Considerable attention has therefore been
cently devoted to the Bhabha process.3–11 The accuracy tha
has been attained, however, is still inadequate. Accordin
these evaluations, the theoretical estimates are still inc
plete and their accuracy is far from that which is required

The theoretical calculation of SABS cross section
LEP1 involves two slightly different problems. The first on
is the description of experimental restrictions used for ev
selection in terms of final particles phase space. The sec
consists in the writing of matrix element squared with t
required accuracy. There are two methods for theoretica
vestigation of SABS at LEP1: a method based on Mo
Carlo calculation3–5,7 and analytical method.6,9–11

The advantage of the Monte Carlo method is that it c
model different types of detectors and event selection.3 This
method, however, cannot use the exact matrix elem
squared based on essential Feynman diagrams because
infrared divergence. Therefore, some additional procedu
~YFS factor exponentiation,12 utilization of electron structure
functions13! must be used in order to eliminate this proble
and to take into account the leading contribution in t
higher orders. Careful attention must be given at this po
because of the possibility of double counting. In any ca
the next-to-leading second-order correction remains un
tain, and this is a transparent defect of the Monte Ca
method.

The advantage of the analytical method is that it can
the exact matrix element squared. The infrared problem
the context of this approach can be solved in the usual
by taking into account the virtual, real soft, and hard pho
emission and pair production in every order of perturbat
theory. Any questions about double counting do not arise
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mobility relative to the change in the experimental con
tions for event selection. Nevertheless, the analytical ca
lations are very important because they allow one to ch
many Monte Carlo calculations for different ‘‘ideal’’ detec
tors.

Analytical formula for SABS cross sections at LEP1 u
til now were published for inclusive event selection~IES!
when circular symmetrical detectors record only final ele
tron and positron energies.10,11They define first- and second
order corrections to the Born cross section with leading@of
the order of (aL)n# and next-to-leading~of the order of
anLn21! accuracy, as well as third-order correction wi
leading accuracy only. These contributions will have to
computed in order to reach the required per mille accur
for SABS cross section at LEP1. Note that such an accur
selects only collinear~like two-jets, final-state configuration!
and semi-collinear~like three-jets configuration! kinematics.

The case of calorimeter event selection~CES! called in
Ref. 3 CALO1 and CALO2 for symmetrical and wide
narrow angular acceptance, was considered by the au
The results are being prepared for publication. They inclu
the first-order correction with leading and next-to-leading
curacy, as well as second- and third-order corrections w
leading accuracy only. Thus, the CES problem of the a
lytical method is the calculation of next-to-leading, secon
order correction.

In this paper we perform full analytical calculation fo
IES with the wide-narrow angular acceptance. The first- a
second-order corrections are derived with next-to-leading
curacy starting from the Feynman diagrams for two-lo
elastic electron-positron scattering, one-loop single-pho
emission, two-photon emission and pair production. T
third-order correction is obtained with leading accuracy w
the help of the electron structure function method. The
sults for leading second- and third-order corrections in
case of CES are also given.

The contents of this paper can be outlined as follows
Sec. 2 we introduce the ‘‘observable’’ cross sectionsexp,
with allowance for the cuts at angles and energies, and ob
the first-order correction. In Sec. 3 we investigate t

21717$10.00 © 1997 American Institute of Physics
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the processes of pair production~real and virtual! considered
in Sec. 3.1 and two-photon~real and virtual! emission. In
Sec. 3.2 we consider the correction due to the one-side,
photon emission and in Sec. 3.3 we consider the correc
due to opposite side, two-photon emission. The expres
for second-order photonic correction is given in leading
proximation only, while next-to-leading contribution to it
written in Appendix A for symmetrical and wide-narrow d
tectors. The latter does not contain an auxiliary infrared
rameter. In Sec. 4 we derive the full, leading, third-ord
correction using the expansion of electron structure fu
tions. In Sec. 5 we present the numerical results suitable
IES. In Appendix B we give some relations which were us
in the analytical calculations and which are very useful
numerical calculation.

2. FIRST-ORDER CORRECTION

We introduce the dimensionless quantity

S5
1

4pa2 Q1
2sexp, ~1!

whereQ1
25e2u1

2 ~e is the beam energy, andu1 is the mini-
mal angle of the wide detector!. The ‘‘experimentally’’ mea-
surable cross sectionsexp is defined as follows:

sexp5E dx1dx2Qd2q1
'd2q2

'Q1
cQ2

c

3
ds~e11e2→e11e21X!

dx1dx2d2q1
'd2q2

' , ~2!

where X is undetected final particles, andx1(x2) andq1
'(q2

')
are the energy fraction and the transverse component o
momentum of the electron~positron! in the final state. The
functionsU i

c take into account the angular cuts and the fu
tion U takes into account the cutoff on the invariant mass
the detected electron and positron:

Q1
c5u~u32u2!u~u22u1!,

Q2
c5u~u42u1!u~u12u2!, Q5u~x1x22xc!,

u25
uq1

'u
x1e

, u15
uq2

'u
x2e

. ~3!

In the case of symmetrical angular acceptance

u25u1 , u35u4 , r5
u3

u1
.1,

but for wide-narrow acceptance

u3.u4.u2.u1 , r i5
u i

u1
.1.

For numerical calculation one usually takes

u150.024, u350.058,

u250.0241
0.034

16
, u450.0582

0.034

16
.
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of the virtual and real soft and hard photon-emission p
cesses

S15SV1S1SH1SH . ~4!

The contribution due to the virtual and real soft photon~with
energy less thanDe, D!1! can be written as follows~in this
casex15x251, q1

'1q2
'50!:

SV1S52
a

p E
r2

2

r4
2 dz

z2 F2~L21!ln D1
3

2
L22G ,

L5 ln
e2u1

2z

m2 , ~5!

wherez5q2
'2/Q1

2, andm is the electron mass.
The second term on the right side of Eq.~4! represents

the correction due to the hard photon emission by the e
tron. In this case we have

X5g~12x1 ,k'!, x251, k'1q1
'1q2

'50,

xc,x1,12D. ~6!

This expression can be derived by integration of the diff
ential cross section of single-photon emission over the reg

r2
2,z,r4

2, x2,z15
q1

'2

Q1
2 ,x2r3

2, 21,cosw,1,

~7!

wherew is the angle between the vectorsq1
' andq2

' , in the
same way as it was done in Ref. 10 for the symmetri
angular acceptance. But at this point we would like to in
cate the main features of the method which is used largel
the Sec. 3 and which is based on the separate calculatio
the contributions due to collinear kinematics and sem
collinear kinematics.14

In collinear kinematics an emitted photon moves ins
the cone within polar anglesug,u0!1 centered along the
electron momentum direction~initial: kip1 or final: kiq1!. In
semi-collinear region a photon moves outside this cone.
cause such a distinction no longer has physical meaning
dependence on the auxiliary parameteru0 disappears in the
total contribution. This is valid for IES and for CES.

Inside collinear kinematics it is necessary to keep
electron mass in the differential cross section

ds5
2a3s

p2q2 F11x2

s1t1
2

2m2

q2 S 1

s1
2 1

x2

t1
2 D GdG,

dG5
d3q1d3q2d3k

e1v2e
d~4!~p11p22k2q12q2!, ~8!

where q5p12k2q1 , s152(kq1), t152(kp1), s
5(2p1p2), and p1(p2) is the 4-momentum of the initia
electron ~positron!. If the photon moves inside the initia
electron cone

s15x~12x!e2u2
2 , t152m2~12x!~11h!,

q252x2e2u2
2 52e2u1

2 ,
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dG5
m2

e2p2x~12x!dx dh du2 , 0,h5
ug

2e2

,
u0

2e2

,

tio

f

-

f

e
re

When integrating the first term in the brackets on the right

re-
s 2 m2 m2

~9!

and one can derive the following expression after integra
over h :

skip1
5

2a3

Q1
2 E

r2
2

r4
2 dz

z2 E
xc

12D

dxF11x2

12x
ln

u0
2e2

m2

2
2x

12xGu~x2r3
22z!. ~10!

The right side of Eq.~10! corresponds to the contribution o
the narrow strip with the width 2Azl( l 2x) centered around
the linez5z1 in (z,z1) plane, wherel5u0 /u1 . In fact, the
conditionug,u0 for the initial electron cone can be formu
lated as follows:

uAz2Az1u,l~12x!,

21,cosw,211
l2~12x!22~Az12Az!2

2Az1z
. ~11!

If photon moves inside the final electron cone

s15
12x

x
m2~11z!, t152~12x!e2u2

2 ,

q252e2u2
2 52e2u1

2 ,

dG5
m2

s
e2p2x~12x!dxdz

du2
2

x2 , 0,z,
u0

2e2x2

m2 ,

~12!

and integration overz leads to

skiq1
5

2a3

Q1
2 E

r2
2

r4
2 dz

z2 E
xc

12D

dxF11x2

12x
ln

u0
2e2x2

m2 2
2x

12xG .
~13!

The right side of Eq.~13! corresponds to the contribution o
the strip with the width 2Azx2(12x)l around the linez1

5x2z in the (z1 ,z) plane. The conditionug,u0 for the final
electron cone can be formulated asur u,u0 , wherer5k/v
2q1 /e1 , and the latter reads as

uAz12xAzu,x~12x!l,

21,cosw,211
l2x2~12x!22~Az12xAz!2

2xAzz1

. ~14!

Having contributions due to the collinear regions, w
now must find the contribution due to the semi-collinear
gions. If m50 on the right side of Eq.~8!, then the differ-
ential cross section suitable for this case can be written
follows:

ds5
a3dw dz dz1~11x2!

pQ1
2z~z12xz! F 1

z11z12Az1z cosw

2
x

z11x2z12xAz1z cosw
Gdx. ~15!
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side of Eq.~15! one must use the restrictionug.u0 or

uAz12Azu.~12x!l, 21,cosw,1,

uAz12Azu,~12x!l,

1.cosw.211
l2~12x!22~Az12Az!2

2Azz1
, ~16!

and for integration of the second term one must use the
striction ur u.u0 or

uAz12xAzu.x~12x!l, 21,cosw,1,

uAz12xAzu,x~12x!l,

1.cosw.211
l2x2~12x!22~Az12xAz!2

2xAzz1

. ~17!

The integration~15! over the region~16! gives

sa5
2a3

Q1
2 E

r2
2

r4
2 dz

z2

3E
xc

12D 11x2

12x
dxF S ln

z

l2 1L2D u3
~x!1L3ū3

~x!G .
~18!

Analogously, the integration of the right side of Eq.~15!
over the region~17! gives

sb5
2a3

Q1
2 E

r2
2

r4
2 dz

z2 E
xc

12D 11x2

12x
dxS ln

z

x2l2 1L1D .

~19!

The valuesL1 which enter into Eqs.~18! and~19! are defined
as follows:

L15 lnUx2~z21!~r3
22z!

~x2z!~xr3
22z!

U, L25 lnU ~z2x2!~x2r3
22z!

x2~x2z!~xr3
22z!

U,
L35 lnU~z2x2!~xr3

22z!

~x2z!~x2r3
22z!

U.
In addition, the following notation for theu-functions is
used:

u3
~x!5u~x2r3

22z!, ū3
~x!512u3

~x!5u~z2x2r3
2!.

Thus, theSH may be represented as the sum of~10!,
~13!, ~18!, and~19! divided by the factor 4pa2/Q1

2 or

SH5
a

2p E
r2

2

r4
2 dz

z2 E
xc

12D 11x2

12x
@~11u3

~x!!~L21!

1K~x,z;r3,1!#dx,
~20!

K~x,z;r3,1!5
~12x!2

11x2 ~11u3
~x!!1L11u3

~x!L21 ū3
~x!L3 .

Here the short notation for theu-functions is used:

u i
~x!5u~x2r i

22z!, u i5u~r i
22z!,

ū i
~x!512u i

~x! , ū i512u i .
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It is easy to see thatSH for the wide-narrow detectors
H

ul

ds
dt

be
-
s

2u2
~x!L̄31~ ū42u2!L̄4 .

esti-
ar
un-
ery
ibe

it.

t

re-

ES
an

ns

ish
ch

-

can be derived fromS for symmetrical detectors~see Ref.
10! by changing thez-integrations limits

E
1

r2

dz→E
r2

2

r4
2

dz ~21!

and by substitutingr3 for r under integral sign.
The third term on the right side of Eq.~4! describes the

photon emission by a positron. It can be derived by f
analogy withSH except for the restrictions on the variablesz
andz1 :

1,z,r3
2, x2r2

2,z1,x2r4
2. ~22!

The contribution of collinear kinematics~kip2 andkiq2! to
the single hard photon emission cross section correspon
the integration over the regions inside the strips with a wi
2Az(12x)l and 2Azx2(12x)l, respectively. It can be
written as follows:

skip2 ,kiq2
5

2a3

Q1
2 E

1

r3
2 dz

z2 E
xc

12D 11x2

12x
dxH S ln

e2u0
2

m2

2
2x

12xDD42
~x!S ln

e2u0
2x2

m2 2
2x

12xDD42J ,

~23!

where

D42
~x!5u4

~x!2u2
~x! , D425u42u2 . ~24!

The contribution of the semi-collinear kinematics can
derived by integration~15!, taking into account the restric
tions ~16!, ~17!, and ~22!. The latter corresponds to region
outside the narrow strips nearz15z and z15x2z, respec-
tively. The result is

sa1b5
2a3

Q1
2 E

1

r3
2 dz

z2 E
xc

12D 11x2

12x
dxF ln

z

l2 ~D42

1D42
~x!!1L̄2D42

~x!1~ L̄122 ln x!D421L̄3~ ū4
~x!

2u2
~x!!1L̄4~ ū42u2!G , ~25!

where

L̄15 lnU ~z2r2
2!~r4

22z!x2

~xr4
22z!~xr2

22z!
U, L̄25 lnU ~z2x2r2

2!~x2r4
22z!

x2~xr4
22z!~xr2

22z!
U,

L̄35 lnU~z2x2r2
2!~xr4

22z!

~x2r4
22z!~xr2

22z!
U, L̄45 lnU~z2r2

2!~xr4
22z!

~r4
22z!~xr2

22z!
U.
~26!

The SH is the sum of~23! and ~25! divided by 4pa2/Q1
2:

SH5
a

2p E
1

r3
2 dz

z2 E
xc

12D 11x2

12x
dx@~L21!~D421D42

~x!!

1K̃~x,z;r4 ,r2!#, ~27!

K̃5
~12x!2

11x2 ~D421D42
~x!!1D42L̄11D42

~x!L̄21~ ū4
~x!
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As one can see, the auxiliary parameteru0 disappears in
the expressions forSH and SH , and the large logarithm
acquires the correct appearance. Thus, the separate inv
gation of contributions due to collinear and semi-colline
kinematics simplifies the calculations and gives a deeper
derstanding of the underlying physics. This approach is v
important for the study of CES when it needs to descr
events that belong to the electron~or positron! cluster in a
different way compared with events that do not belong to

The different parts on the right side of Eq.~4! depend on
the auxiliary infrared parameterD but the sum does not. I
has the form

S15
a

2p H E
1

r3
2 dz

z2 F2D421E
xc

1 S ~L21!P1~x!~D42

1D42
~x!!1

11x2

12x
K̃ DdxG1E

r2
2

r4
2 dz

z2 F21

1E
xc

1 S ~L21!P1~x!~11u3
~x!!1

11x2

12x
K DdxG J ,

~28!

where

P1~x!5
11x2

12x
u~12x2D!1S 2 ln D1

3

2D d~12x!,

D→0.

In order to eliminate theD-dependence, one can use the
lations

E
xc

1

P1~x!dx52E
0

xc 11x2

12x
dx,

E
xc

1

P1~x!ū3
~x!dx5 ū3

~xc!E
xc

Az/r3 11x2

12x
dx,

~29!

E
xc

1

P1~x!D̄42
~x!dx5u4ū4

~xc!E
xc

Az/r4 11x2

12x
dx

2u2ū2
~xc!E

xc

Az/r2 11x2

12x
dx,

whereD̄42
(x)5D422D42

(x) .
The right side of Eq.~28! is the full first-order QED

correction to the Born SABS cross section at LEP1 for I
with switched-off vacuum polarization effect. The latter c
be taken into account by inserting the quantity@12P
(2zQ1

2)#22 under the sign of thez-integration.~For P see
Ref. 3 and the bibliography cited there!.

3. SECOND-ORDER CORRECTION

The second-order correction contains the contributio
due to two-photon~real and virtual! emission and pair pro-
duction. As in the symmetrical case, one needs to distingu
between the situations in which additional photons atta
only one fermion line~one-side emission! and two fermion
lines ~opposite-sides emission! in the corresponding Feyn
man diagrams.
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3.1. The contribution of pair production
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R~x!52R̄~x!1
2

~11x!,

-
e to
he
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os-
re-
ns
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n-

the
Consider at first the contribution of the electron-positr
pair productionSpair to the second-order correction:

Spair5Se1e2
1Se1e2. ~30!

To avoid writing some formulas which have the same str
ture for symmetrical and wide-narrow angular acceptance
will often refer the reader to Ref. 11, in which the details
computation are given for the symmetrical case.

From Sec. 2 we can write the expression forSe1e2
when

the created electron-positron pair moves in the electron
mentum direction, using the result of Ref. 11 forSe1e2

. It
needs only to change the z-integration limits:
(r2,1)→(r4

2,r2
2) and substituter3 for r everywhere under

the integral sign. We can write the result as follows:

Se1e2
5

a2

4p2 E
r2

2

r4
2 dz

z2 LH LS 11
4

3
ln~12xc!

2
2

3 E
xc

1 dx

12x
ū3

~x!D 2
17

3
2

8

3
z22

40

9
ln~1

2xc!1
8

3
ln2~12xc!1E

xc

1 dx

12x
ū3

~x!S 20

9

2
8

3
ln~12x! D1E

xc

1

@LR̄~x!~11u3
~x!!

1u3
~x!C1~x,z;r3!1C2~x!1d2~x,z;r3!#dxJ ,

~31!

R̄~x!5~11x!S ln x2
1

3D1
12x

6x
~417x14x2!,

C1~x,z;r3!52
113

9
1

142

9
x2

2

3
x22

4

3x
2

4

3
~1

1x!ln~12x!1
2~11x2!

3~12x! F2 lnUx2r3
22z

xr3
22z U

23Li2~12x!G1S 8x213x292
8

x

2
7

12xD ln x1
2~5x226!

12x
ln2 x

1R~x!ln
~x2r3

22z!2

r3
4 ,

C2~x!52
122

9
1

133

9
x1

4

3
x21

2

3x
2

4

3
~11x!ln~1

2x!1
2~11x2!

~12x!
Li2~12x!1

1

3 S 28x2232x

2201
8

x
1

13

12xD ln x13~11x!ln2 x,
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3

d2~x,z;r3!5
2~11x2!

3~12x!
lnU~z2x2!~r3

22z!~z21!

~z2x!2~x2r3
22z!

U
1R~x!lnU~z2x2!~r3

22z!~z21!

x2r3
22z U. ~32!

The right side of Eq.~31! does not contain infrared aux
iliary parameters because it includes the contributions du
the real and virtual pair production. The contribution of t
hard pair takes into account the collinear and semi-collin
kinematics.

If the created electron-positron pair is emitted in the p
itron momentum direction, the corresponding expression
quires more modifications. The source of such modificatio
is the semi-collinear kinematics, as we saw in Sec. 2 for
single-photon emission.

The straightforward calculation shows that for the co
tribution of the semi-collinear regionp1ip2 @we use here
notationp6 for the 3-momentum of the positron~electron!#
we must include in Eq.~28! of Ref. 11 the expression

~D421D42
~x!!ln

z

l2 1D42 lnU ~z2r2
2!~r4

22z!

~z2xr2
2!~xr4

22z!
U

1D42
~x! lnU ~z2x2r2

2!~x2r4
22z!

x2~z2xr2
2!~xr4

22z!
U1~ ū4

2u2!lnU~z2r2
2!~xr4

22z!

~z2xr2
2!~r4

22z!
U1~ ū4

~x!

2u2
~x!!lnU~z2x2r2

2!~xr4
22z!

~z2xr2
2!~z2x2r4

2!
U, ~33!

instead of the expression in curved brackets and change
upper limit of thez-integration:r→r3 .

For the contribution of the semi-collinear regionp1iq1

the corresponding expression is@see Eq.~33! in Ref. 11#

D42S ln
z

l2 1 lnU~z2r2
2!~r4

22z!

x2
2r2

2r4
2 U D 1~ ū4

2u2!lnUr4
2~z2r2

2!

r2
2~z2r4

2!
U, ~34!

and for the semi-collinear regionp2ip1 @see Eq.~38! in Ref.
11# the corresponding expression is

D42
~x!S ln

z

l2 1 lnU~z2x2r2
2!~x2r4

22z!

x1
2x4r2

2r4
2 U D

1~ ū4
~x!2u2

~x!!lnUr4
2~z2x2r2

2!

r2
2~z2x2r4

2!
U. ~35!

In the symmetrical limit we haver35r45r, r251, and

D42→u~r22z!u~z21!, D42
~x!→u~x2r22z!,

ū4
~x!→u~z2x2r2!, ū4 ,u2 ,u2

~x!→0, ~36!
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and Eqs.~33!–~35! reduce to the corresponding expressions

al,
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ic

a
ea

u
-
p-
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The contribution of the virtual and real soft photons is

le
ng
In

ved

on
as

rs
derived in Ref. 11.
The modification of the contributions due to virtual, re

soft and hard collinear pair production includes the chang
the z-integral upper limit:r→r3 and a trivial change of the
u-functions under the integral sign:u(x2r22z)→D42

(x) ,
1→D42. The sum of all the contributions has the form

Se1e25
a2

4p2 E
1

r3
2 dz

z2 LH LFD42S 11
4

3
ln~12xc! D

2
2

3 E
xc

1 dx

12x
D̄42

~x!G1D42S 2
17

3
2

8

3
z2

2
40

9
ln~12xc!1

8

3
ln2~12xc! D

1E
xc

1 dx

12x
D̄42

~x!S 20

9
2

8

3
ln~12x! D

1E
xc

1FLR̄~x!~D421D42
~x!!1D42

~x!C1~x,z;r2!

1D42~C2~x!1d̄2~x,z;r2!!1~ ū4
~x!2u4

~x!!

3S 2~11x2!

3~12x!
lnU~x2r2

22z!~xr4
22z!

~x2r4
22z!~xr2

22z!
U

1R~x!lnU~x2r2
22z!r4

2

~x2r4
22z!r2

2U D 1~ ū42u4!

3S 2~11x2!

3~12x!
lnU~xr4

22z!~z2r2
2!

~xr2
22z!~z2r4

2!
U

1R~x!lnU~r2
22z!r4

2

~r4
22z!r2

2U D G J ,

~37!

d̄2~x,z;r2!5
2~11x2!

3~12x!
ln

~z2r2
2!2

~z2xr2
2!2 12R~x!ln

z2r2
2

r2
2 .

Using Eq.~36!, we can verify that the right side of Eq.~30!
goes over to the corresponding expression for symmetr
angular acceptance.

3.2. The contribution of the one-side two-photon emission

In this section we give the analytical expressions for
contributions to the second-order correction which app
due to the one-side two-photon~real and virtual! emission.
The master formula, which does not contain the infrared a
iliary parameterD, is written only for the leading approxi
mation, and next-to-leading contribution to it is given in A
pendix A.

As before, we differentiate between the radiation alo
the electron and positron momentum directions:

S25Sgg1Sgg , Sgg5S~S1V!2
1S~S1V!H1SHH,

Sgg5S~S1V!21S~S1V!H1SHH . ~38!
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x-

g

the same for electron and positron emission:

S~S1V!25S~S1V!2
5

a2

p2 E
r2

2

r4
2 dz

z2 LFLS 2 ln2 D13 ln D

1
9

8D24 ln2 D27 ln D13z32
3

2
z22

45

16G .
~39!

The virtual and real soft photon correction to the sing
hard photon emission differs for a photon that moves alo
the electron momentum direction and positron direction.
the first case the corresponding contribution can be deri
with the help of the result for a symmetrical detector@see Eq.
~50! in Ref. 10# using the substitutions (r4

2,r2
2) instead of

(r2,1) for thez-integration limits andr3 instead ofr under
the integral sign. Therefore,

S~S1V!H5
a2

2p2 E
r2

2

r4
2 dz

z2 LE
xc

12D 11x2

12x
dxH S 2 ln D

2 ln x1
3

2D @K~x,z;r3,1!1~L21!~11u3
~x!!#

1
1

2
ln2 x2

~12x!2

2~11x2!
1~11u3

~x!!~221 ln x

22 ln D!1 ū3
~x!F1

2
L ln x12 ln D ln x

2 ln x ln~12x!2 ln2 x2Li2~12x!

2
x~12x!14x ln x

2~11x2! G J . ~40!

In order to obtain the expression forS (S1V)H we must
change on the right side of Eq.~39!:

i! the limits of z-intergration: ~r4
2,r2

2!→~r3
2,1!,

ii ! K~x,z:r3,1!→K̃~x,z:r4 ,r2!, u3
~x!→D42

~x! ,

ū3
~x!→D̄42

~x! , 1→D42. ~41!

The contribution of two hard photons emitted in the electr
momentum direction may be obtained in the same way
S (S1V)H, using the known result for symmetrical detecto
@see Eq.~54! in Ref. 10#:
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SHH5
a2 Er4

2 dz
LE122D

dxE12x2D

dx
I HH

, ~42!

4p2

r2
2 z2

xc D
1x1~12x2x1!~12x1!2

I HH5Āu3
~x!1B̄1C̄u3

~12x1! ,

Ā5gbS L

2
1 ln

~x2r3
22z!2

x2~x~12x1!r3
22z!2D 1z ln

~12x1!2~12x2x1!

xx1
1gA ,

B̄5gbS L

2
1 lnUx2~z21!~r3

22z!~z2x2!~z2~12x1!2!2~r3
2x~12x1!2z!2

~r3
2~12x1!22z!2~z2~12x1!!2~z2x~12x1!!2~r3

2x22z!
U D 1z ln

~12x1!2x1

x~12x2x1!
1dB , ~43!

C̄5gbS L12 lnU x~r3
2~12x1!22z!2

~12x1!2~r3
2x~12x1!2z!~r3

2~12x1!2z!
U D 22~12x1!b22x~12x1!g,

where I HH
e

th
o
o
a

p-

3 , ~44!

g511~12x1!2, b5x21~12x1!2, z5x21~12x1!4,

gA5xx1~12x2x1!2x1
2~12x2x1!222~12x1!b,

dB5xx1~12x2x1!2x1
2~12x2x1!222x~12x1!g.

Unfortunately, it is impossible to give such a simple pr
scription as~41! in order to obtainSHH from Eqs.~42! and
~43!. In the case of radiation of two hard photons along
positron momentum direction, additional detailed analysis
semi-collinear kinematics is required. All essential points
such an analysis are given in Sec. 2, and the reader can m
all calculations with the help of the formulas given in A
pendix B of Ref. 10. The final result is

SHH5
a2

4p2 E
1

r3
2 dz

z2 LE
xc

122D

dxE
D

12x2D

dx1
side of Eq.~38! depend on the infrared auxiliary parameterD

m
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-

e
f
f
ke

x1~12x2x1!~12x1!2

I HH5ÃD42
~x!1C̃D42

~12x1!
1B̃D421~ ū4

~x!2u2
~x!!a

1~ ū4
~12x1!

2u2
~12x1!

!c1~ ū42u2!b,

a5gb lnU~r4
2x~12x1!2z!~r2

2x22z!

~r2
2x~12x1!2z!~r4

2x22z!
U,

b5gb lnU~r4
2~12x1!2z!~r2

22z!

~r2
2~12x1!2z!~r4

22z!
U,
c5gb lnU~r4
2x~12x1!2z!~r2

2~12x1!22z!2~r4
2~12x1!2z!

~r2
2x~12x1!2z!~r4

2~12x1!22z!2~r2
2~12x1!2z!

U,
Ã5gbS L

2
1 lnU ~r4

2x22z!~r2
2x22z!

x2~r4
2x~12x1!2z!~r2

2x~12x1!2z!
U D 1z ln

~12x1!2~12x2x1!

xx1
1gA ,

B̃5gbS L

2
1 lnU x2~r4

22z!~r2
22z!

~r4
2~12x1!2z!~r2

2~12x1!2z!
U D 1z ln

~12x1!2x1

x~12x2x1!
1dB ,

C̃5gbS L1 lnU x2~r4
2~12x1!22z!2~r2

2~12x1!22z!2

~12x1!4~r4
2x~12x1!2z!~r2

2x~12x1!2z!~r4
2~12x1!2z!~r2

2~12x1!2z!
U D 22~12x1!~b1xg!.

As one can see, the separate contributions to the right
SggL5

a2
r4

2 dz
L2

1

dx
1

~11u~x!!P ~x!
2 E 2 E F 3 2
but Sgg and Sgg do not. The elimination ofD-dependence
analytically required considerable effort. The leading ter
are given below~for the next-to-leading terms see Append
A!:
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4p r2
2 z xc

2

1E
x

1 dt

t
P1~ t !P1S x

t D u3
~ t !G , ~45!
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SL 5
a2 Er3

2 dz
L2E1

dx
1

~D 1D~x!!P ~x!

-
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Ex

P ~y!dy52g~x!, x,1, ~50!
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s
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e
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gg 4p2
1 z2

xc
F2 42 42 2

1E
x

1 dt

t
P1~ t !P1S x

t DD42
~ t !G , ~46!

where

P2~x!5P1^ P15E
x

1 dt

t
P1~ t !P1S x

t D
5 lim

D→0
H F S 2 ln D1

3

2D 2

24z2Gd~12x!

12F11x2

12x S 2 ln~12x!2 ln x1
3

2D1
1

2
~1

1x!ln x211xGu~12x2D!J , ~47!

E
0

1

P2~x!dx50.

The expressions~45! and~46! are not convenient for numeri
cal calculations. The suitable expressions can be written
follows:

SggL5
a2

4p2 H 22E
r2

2

r4
2 dz

z2 L2E
0

xc
P2~x!dx

2E
m23

r4
2 dz

z2 L2E
xc

Az/r3FP1~x!gS xc

x D
1

1

2
P2~x!GdxJ , ~48!

Sgg
L 5

a2

4p2 H 22E
r2

2

r4
2 dz

z2 L2E
0

xc
P2~x!dx

2E
m14

r4
2 dz

z2 L2E
xc

Az/r4FP1~x!gS xc

x D1
1

2
P2~x!GdxJ

1E
m12

r2
2 dz

z2 L2E
xc

Az/r2FP1~x!gS xc

x D
1

1

2
P2~x!GdxJ , ~49!

where

g~y!5y1
y2

2
12 ln~12y!, m235max~r2

2,xc
2r3

2!,

m145max~1,xc
2r4

2!, m125max~1,xc
2r2

2!.

The last two formulas can be derived with the help of t
relations given in Appendix B. The integration over th
x-variables in Eqs.~45! and ~46! can be performed with the
help of the formulas

Ex

P2~y!dy5F2~x!, Ex

P1~y!gS xc

y Ddy5Fg~x!,
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as

1

F2~x!522x2
x2

4
1S x1

x2

2 D ln
x3

~12x!4 14 ln~1

2x!ln
x

12x
14Li2~x!, ~51!

Fg~x!52
xc

2

2x
1~2x1x2!ln x1S xc1

xc
2

2 D ln
x

~12x!2

1S 2xc1
xc

2

2
22x2

x2

2 D ln~x2xc!14Li2~x!

14Li2S 12x

12xc
D , xc,x,1. ~52!

Therefore, the second-order leading contribution to t
SABS cross section at LEP1 can be expressed in terms
one integral over thez-variable.

It is useful to note that for CES the leading contribution
in all orders of perturbation theory take into account th
emission of photons in the initial state only. Thus, the corr
sponding correction due to the one-side, two photon~real
and virtual! emission is

SCES
ggL52

1

8 S a

p D 2E
r2

2

r4
2 dz

z2 L2H F2~xc!1FF2SAz

r3
D

2F2~xc!G ū3
~xc!J , ~53!

Sgg CES
L 52

1

8 S a

p D 2H E
r2

2

r4
2 dz

z2 L2F2~xc!

1E
1

r4
2 dz

z2 L2FF2SAz

r4
D 2F2~xc!G ū4

~xc!

2E
1

r2
2 dz

z2 L2FF2SAz

r2
D 2F2~xc!G ū2

~xc!J . ~54!

3.3. Second-order correction due to the opposite-side
photon emission

In this section we calculate analytically the expressio
for

Sg
g5SS1V

S1V1SS1V
H 1SH

S1V1SH
H . ~55!

The quantitySg
g does not depend on the infrared auxiliar

parameterD because it contains all contributions due to th
virtual, real, soft and hard photon emission.

The first term on the right side of Eq.~55! takes into
account only the ‘‘opposite-side’’ virtual and real soft pho
ton corrections

SS1V
S1V5

a2

p2 E
r2

2

r4
2 dz

z2 LFLS 4 ln2 D16 ln D1
9

4D26

214 ln D28 ln2 DG . ~56!
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The contribution of one-loop virtual and real soft photon
tte

de
-
o

sid
.

tro

e

gL a2
r4

2 dz
2

Az

e
en

u-
ter
for

r to
the
corrections to the hard single-photon emission can be wri
as follows:

SS1V
H 5

a2

2p2 E
r2

2

r4
2 dz

z2 F2~L21!ln D1
3

2
L

22G E
xc

12D 11x2

12x
@~11u3

~x!!~L21!

1K~x,z;r3,1!#, ~57!

SH
S1V5

a2

2p2 E
1

r3
2 dz

z2 F2~L21!ln D1
3

2
L

22G E
xc

12D 11x2

12x
@~D421D42

~x!!~L21!

1K̃~x,z;r4 ,r2!#dx. ~58!

In order to find the contribution of the two opposite-si
hard photon emission toSg

g , it is convenient to use the fac
torization theorem for the differential cross sections of tw
jets processes in QED:16

SH
H5

a2

4p2 E
0

` dz

z2 E
xc

12D

dx1E
xc /x1

12D

dx2

11x1
2

12x1

11x2
2

12x2

3F~x1 ,z;r3,1!F~x2 ,z;r4 ,r2!, ~59!

F~x,z;r3,1!5~D311D31
~x!!~L21!1

~12x!2

11x2 ~D31

1D31
~x!!1D31L11D31

~x!L21~ ū3
~x!2u1

~x!!L3

1~ ū32u1!lnU~xr3
22z!~z21!

~z2x!~r3
22z!

U, ~60!

F~x,z;r4 ,r2!5~D421D42
~x!!~L21!1K̃~x,z;r4 ,r2!,

D315u32u1 , D31
~x!5u3

~x!2u1
~x! , ~61!

u15u~12z!, u1
~x!5u~x22z!.

TheD-dependence of the separate terms on the right
of Eq. ~55! can be eliminated analytically in the whole sum
The leading contribution is expressed in terms of the elec
structure functions as follows:

Sg
gL5

a2

4p2 E
0

` dz

z2 L2E
xc

1

dx1E
xc /x1

1

dx2P1~x1!P1~x2!

3~D311D31
~x1!

!~D421D42
~x2!

!. ~62!

The next-to-leading contribution toSg
g is given in Appendix

A.
The form ofSg

g suitable for numerical counting can b
written in terms of the functionsF2(x) and Fg(x) in the
same manner as it was done at the end of Sec. 3.2:
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n

-

e

n

Sg 5
4p2 H 2E

r2
2 z2 L F4~1!F2~xc!12~1!S FgS r3

D
2Fg~xc! D ū3

~xc!
2E

1

r4
2 dz

z2 L22~1!S FgSAz

r4
D

2Fg~xc! D ū4
~xc!

1E
1

r2
2 dz

z2 L22~1!S FgSAz

r2
D

2Fg~xc! D ū2
~xc!

1E
xcr3r4

r4
2 dz

z2 L2FFgSAz

r4
D

2FgS xcr3

Az
D 1gSAz

r3
D S gSAz

r4
D 2gS xcr3

Az
D D G

1E
xcr2

1 dz

z2 L2FFg~Az!2FgS xcr2

Az
D 1gSAz

r2
D

3S g~Az!2gS xcr2

Az
D D G2E

xcr4

1 dz

z2 L2FFgSAz

r4
D

2FgS xc

Az
D 1g~Az!S gSAz

r4
D 2gS xc

Az
D D G

2E
xcr3r2

r2
2 dz

z2 L2FFgSAz

r3
D 2FgS xcr2

Az
D 1gSAz

r2
D

3S gSAz

r3
D 2gS xcr2

Az
D D G J . ~63!

On the right side of Eq.~63! the quantities in brackets ar
suitable for CES, when only the initial state radiation is tak
into account.

4. THIRD-ORDER CORRECTION

Within the required accuracy only the leading contrib
tion to the third-order correction must be kept. The lat
becomes more important than the next-to-leading one
LEP2 because of the increase in the energy. In orde
evaluate it, one can use the iteration up to third order of
master equation for the electron structure function:13

D~x,aeff!5DNS~x,aeff!1DS~x,aeff!. ~64!

The iterative form of nonsinglet component of Eq.~64! is

DNS~x,aeff!5d~12x!1 (
k51

`
1

k! S aeff

2p D k

P1~x! ^ k,

P1~x! ^ P1~x!5E
x

1

P1~ t !P1S x

t D dt

t
. ~65!

Up to the third-order the singlet component of Eq.~64!
is13
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DS~x,a !5
1 aeff

2

R~x!

g

to
n

is

a

C ~x!5
1

P ~x!1
1

P ~x!

to

ial-

n

e-

-

ht
eff 2! S 2p D
1

1

3! S aeff

2p D 3F2P1^ R~x!2
2

3
R~x!G , ~66!

whereR(x) is defined by Eq.~31!. The effective coupling
aeff in Eqs. ~64!–~66! represents the integral of the runnin
QED constant

aeff

2p
5E

0

L adt

2p~12at/3p!
5

3

2
lnS 12

aL

3p D 21

. ~67!

The nonsinglet structure function describes the pho
emission and pair production without allowance for the ide
tity of final fermions, while the singlet structure function
responsible just for the identity effects.

Up to the third order the electron structure function h
the form

D~x,L !5d~12x!1
aL

2p
P1~x!1

1

2 S aL

2p D 2S P2~x!

1
2

3
P1~x!1R~x! D1

1

3 S aL

2p D 3F1

2
P3~x!

1P2~x!1
4

9
P1~x!1

2

3
R~x!1RP~x!G ,

RP~x!5P1^ R~x!. ~68!

For the functionsP3(x) andRP(x) see Ref. 13.
The factorization form of the differential cross section16

leads to

SL5E
0

` dz

z2 E
xc

1

dx1E
xc /x1

1

dx2C~x1 ,L !C~x2 ,L !,

C~x1 ,L !5E
x1

1 dt

t
D~ t !DS x1

t DD31
~ t ! ,

C~x2 ,L !5E
x2

1 dt

t
D~ t !DS x2

t DD42
~ t ! . ~69!

The expansion ofC(x1 ,L) is

C~x1 ,L !5d~12x1!D31
~x1!

1
aL

2p
P1~x1!~D31

~x1!
1D31!

1S aL

2p D 2FC2~x1!~D31
~x1!

1D31!

1E
x1

1 dt

t
D31

~ t !C̄2~x1 ,t !G1S aL

2p D 3FC3~x1!

3~D31
~x1!

1D31!1E
x1

1 dt

t
D31

~ t !C̄3~x1 ,t !G , ~70!

C2~x!5
1

2
P2~x!1

1

3
P1~x!1

1

2
R~x!,

C̄2~x,t !5P1~ t !P1S x

t D ,
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1
4

27
P1~x!1

2

9
R~x!1

1

3
RP~x!, ~71!

C̄3~x,t !5P1~ t !C2S x

t D1C2~ t !P1S x

t D ,

and the same forC(x2 ,L) with the substitutionx2 instead of
x1 andD42

(x2)(D42) instead ofD31
(x1)(D31).

Because of theu-functions under integral sign one has
distinguish between *x

1dtt21A(t)B(x/t)D31
(t) and

*x
1dtt21B(t)A(x/t)D31

(t) .
In the case of CES one must take into account the init

state radiation only. Therefore, instead of~70! we can write

CCES~x1 ,L !5D31
~x1!Fd~12x1!1

aL

2p
P1~x1!

1S aL

2p D 2

C2~x1!1S aL

2p D 3

C3~x1!G ~72!

and likewise forC(x2 ,L).
The last step is to write the third-order contribution o

the right side of Eq.~69!:

S3
L5S a

2p D 3E
0

` dz

z2 L3E
xc

1

dxS Z11E
xc /x

1

dx1Z2D , ~73!

Z15~2D421D42
~x!D311D31

~x!D42!C3~x!1E
x

1 dt

t
~D42

~ t !D31

1D31
~ t !D42!C̄3~x,t !,

Z25@~D311D31
~x!!~D421D42

~x1!
!1~D311D31

~x1!
!~D42

1D42
~x!!#P1~x!C2~x1!1P1~x!E

x1

1

@D31
~ t !D42

1D42
~ t !D311D31

~x!D42
~ t !1D42

~x!D31
~ t !#

dt

t
C̄2~x1 ,t !.

When writing the expressions forZ1 and Z2 it is assumed
thatD31D425D42. In the case of CES the expressions forZ1

andZ2 can be written as follows:

Z15~D42
~x!D311D31

~x!D42!C3~x!,

Z25~D42
~x!D31

~x1!
1D42

~x1!
D31

~x!!P1~x!C2~x1!. ~74!

Using the relations given in Appendix B we can repr
sent the right side of Eq.~73! in the form suitable for nu-
merical calculations as double integral over thez- and
x-variables. It can be written as follows:

S3
L5S3

01S0
31S2

11S1
2, ~75!

where the superscript~subscript! shows the number of addi
tional particles~real and virtual! emitted by the electron
~positron!. The one-side emission contributes to the rig
side of Eq.~75! as
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S01S35
a 3 Er4
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L3 22Exc
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3 0 S 2p D H
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1
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where
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3
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4

3
P2~x!1

8

27
P1~x!,
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4

9
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5

3
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x D G1P1~x!

3F 4

27
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1

2
f S xc
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2

3
gS xc
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1

2
r S xc
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;1D G

1R~x!F2

9
1

1

2
gS xc

x D G1
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3
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1

R~x!dx52
22

9
1z1z2

1
4

9
z32S 4

3
12z 1z2D ln z,

f ~z!52F2~z!.

In the case of CES the corresponding contribution can
derived by inserting the functionsFp

c , Fr
c , and Fpr

c on the
right side of Eq.~76! instead of the functionsFp , Fr , and
Fpr , respectively, where

Fpr
c ~x!5C3~x!,

Fp
c~x!5

1

6
P3~x!1

1

3
P2~x!1

4

27
P1~x!,

Fr
c~x!5

2

9
R~x!1

1

3
RP~x!.

The contribution of the opposite-side emission to t
right side of Eq.~75! is

S2
11S1

25S a

2p D 3H E
r2

2

r4
2 dz

z2 L3F E
0

xcS 28P3~x!

2
8

3
P2~x! Ddx14E

xc

1

RP~x!dx

2 ū3
~xc!E

xc

Az/r3S H~x,xc!

12gS xc

x Dh~x;Az/r3! DdxG
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where

g~a;b!5g~a!2g~b!, G~a;b!5G~a!2G~b!,
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3
g~z!1

1

2
r ~z!,

H~x,xc!5P1~x!F2 f S xc

x D1
4

3
gS xc

x D1r S xc
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;1D G

1gS xc

x D @P2~x!1R~x!#,

h~x;Az/r!5E
x

Az/r dt

t
P1~ t !P1S x

t D
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11x2

12x S 3
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~Az/r2x!~12x!

~12Az/r!x
D

211x2
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1
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Note that the substitutions inside the straight brack
concern either the limits ofx-integration or the expression
under thex-integral sign.
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TABLE I. The SABS cross section~in nb! with first- and second-order photonic correction.

.808

.583

.127

.225

.667
First-order correction Second-order correction

xc BHLUMI ww ww nn wn BHLUMI ww ww nn wn

0.1 166.046 166.008 130.813 134.504 166.892 166.958 131.674 134
0.3 164.740 164.702 129.797 133.416 165.374 165.447 130.524 133
0.5 162.241 162.203 128.001 131.428 162.530 162.574 128.474 131
0.7 155.431 155.390 122.922 125.809 155.668 155.597 123.206 125
0.9 134.390 134.334 106.478 107.945 137.342 137.153 108.820 109
In the case of CES the right side of Eq.~77! requires the
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following modifications: i! the coefficient atP3(x) must be
reduced eight times, the coefficients atP2(x) and Rp(x)
must be reduced four times; ii! it must be assumed thath
50 and Hc(x,xc) must be inserted instead ofH(x,xc),
where

Hc~x,xc!5P1~x!F1

2
f S xc

x D1
2

3
gS xc

x D1
1

2
r S xc

x
;1D G

1
1

2
gS xc

x D @P2~x!1R~x!#.

5. THE NUMERICAL RESULTS

The numerical calculations were carried out for the be
energye546.15 GeV, and the limited angles of the circul
detectors were taken from Eq.~3!. The Born cross section

SB5
4pa2

Q1
2 E

r2
2

r4
2 dz

z2 S 12u1
2 z

2D
~in the symmetrical wide-wide case the limits of integrati
are 1 andr3

2! is 175.922 nb for theww angular acceptanc
and 139.971 nb for thenn andwn angular acceptances.

The results of our calculations of the QED correcti
with the switched-off vacuum polarization are shown
Tables I–III. For comparison we give also the correspond
numbers derived with the help of Monte Carlo progra
BHLUMI. 3

As one can see from Table I there is an approximat
constant difference on the 0.3% level between our analyt
and Monte Carlo results within first-order correction. T
possible reason for this effect is as follows. In the analyti
calculation we systematically ignore the terms withu2

.utu/s as compared with unity. It is well known, howeve
that such terms have double logarithmic, asymptotic,17 and
parametrically equal (autu/ps)ln2(utu/s), which is just 0.1%
TABLE II. The second-order absolute correction to the SABS cross secti~in
g

y
al

l

the best of our knowledge, takes into account all first-or
contributions.18

Table II gives the absolute values of the second-or
correction to the SABS cross section, with allowance for
leading and next-to-leading contributions. The correction d
to the pair production is small, in agreement with the resu
of the Ref. 6. The second-order photonic correction is rep
sented as a sum of the leading contribution and next
leading one. As one can see, the next-to-leading part is
negligible.

Table III gives the absolute value of the leading thir
order correction and the SABS cross section with all corr
tions obtained in this work. The third-order correction tak
into account the three-photon emission and pair produc
which is accompanied by single-photon radiation. At lar
values ofxc this correction is comparable with the secon
order next-to-leading correction. This effect increases un
the conditions of LEP2.

6. CONCLUSIONS

In this paper we give the analytic calculation of the QE
correction to SABS cross section at LEP1 for the case
inclusive event selection and wide-narrow angular acc
tance. They include the leading and next-to-leading contri
tions in first and second orders of perturbation theory a
leading contribution in third order. The leading contributio
in the case of calorimeter event selection are obtained for
form of the final electron and positron cluster. The result
represented in the form of a manifold integral with defin
limits, and the functions under integral sign have no physi
singularities. No problem arises with infrared divergence a
double counting.

The selection of essential Feynman diagrams, utilizat
of Sudakov’s variables, which are relevant to this proble
impact factor representation of the differential cross sect
onnb!.
Pair production Two-photon emission

xc ww nn wn ww nn wn

0.1 0.007 20.004 0.015 0.74210.208 0.67910.182 0.24910.091
0.3 20.033 20.033 20.020 0.54610.199 0.55610.171 0.06910.098
0.5 20.058 20.050 20.041 0.14010.231 0.29110.182 20.31410.134
0.7 20.090 20.074 20.069 20.02710.234 0.11710.187 20.57110.170
0.9 20.142 20.115 20.115 2.96120.142 2.45820.116 1.82220.090
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TABLE III. Leading third-order correction and SABS cross section as ob-
tained in this work.

0
3

due to thet-channel photon exchange, and the electron str
ture function method and investigation of underlying kin
matics were very useful in this work. We emphasize se
rately the simplifications connected with the impact fac
representation, which allows us to represent the differen
cross sections of two-jet processes in QED in factoriz
form. The latter allows us to use the cutoffu-functions for
the final electron and positron independently at the leve
differential cross section. The calculation does not require
to go to c.m.s. of the underlying subprocess~as in Ref. 6!
and avoids the corresponding complications.

At this point, we wish to comment on the analytic
calculation of the leading contribution due to the phot
emission and pair production carried out in Ref. 6. Auth
of those articles used as the master formula for descriptio
the QED corrections to the SABS cross section due to
initial-state radiation the representation valid for the cro
sections of the Drell–Yan process,19 electron-positron anni-
hilation into muons~or hadrons!,20 and large-angle Bhabh
scattering.21 In this set, however, the SABS process has
very particular feature: two different scales exist only for
The first one is the momentum transfer squaredt; this scale
defines the cross section. The second scale is the total c
energy squareds54e2 andu2;utu/s!1 has the status of a
small correction.

The t-scale physics is very simple and is defined by
peripheral interaction of the electron and positron due to
one-photon exchange, provided that the momentum tran
is strictly perpendicular:t52q2. The s-scale physics is
more complicated. At the Born level it is seen as a contri
tion of the annihilation diagram and also permits the ene
and longitudinal momentum exchange for the contribution
the scattering diagram. The first-order QED correction
thes-scale cross section includes the contributions of the
diagrams, the large-angle photon emission and the up-d
interference, because the eikonal representation for the
tering amplitude and the factorization form of the different
cross section break down. In the second order large-a
pair production and two-photon emission appear.

The structure function used in Ref. 6 controls thet-scale
cross section only and is not related to thes-scale cross
section, because physics of different scales evolves by
own laws. This is well known from the analysis of suc
different problems of physics as, for example, higher tw
corrections in QCD22 and turbulence phenomenon
hydrodynamics.23

On the other hand, only the scattered diagram cont

Third-order correction SABS cross section at LEP1

xc ww nn wn ww nn wn

0.1 20.055 20.047 20.006 166.910 131.623 134.817
0.3 20.065 20.053 20.018 165.349 10.438 133.545
0.5 20.036 20.040 0.004 162.472 128.384 131.090
0.7 0.089 0.058 0.124 155.596 123.190 125.31
0.9 0.291 0.220 0.331 137.307 108.927 109.89
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the annihilation diagram, as compared with the scatteri
diagram, is neglected, one must automatically neglectu2, as
compared with unity everywhere including the Born cros
section and the experimental cuts, in order to be consiste
Taking into account these arguments, we must simplify t
master formula in Ref. 6 by eliminating the terms propo
tional to j;utu/s!1 andj2 in the numerator of Eq.~5! and
in the cutoff restrictions. It then becames adequate to the o
obtained in Ref. 10 and the one used in this work.

Numerical evaluations show a good agreement w
Monte Carlo calculations within first-order correction, but a
agreement for higher-order corrections will require add
tional efforts.

I thank E. Kuraev and L. Trentadue for fruitful discus
sions and critical remarks. I also thank A. Arbuzov and G
Gach for assistance with the numerical calculations. Th
work was supported by INTAS Grant No 93-1867.

APPENDIX A

Let us first consider the next-to-leading, second-ord
D-independent contribution due to the one-side, two-phot
emission. We first give the analytical expression for the sy
metrical case, because it was not published until now.~I do
not give special notation for the next-to-leading contributio
to S, keeping in mind that only such terms are considered
this Appendix!:

Sgg5Sgg5
1

4 S a

p D 2E
1

r2 dz

z2 LY, ~A1!

Y5y1E
xc

1

dxH A1E
0

12x

dx1F 1

x1
4

11x2

12x
~ur

~x!l 11 l 2!

1S 212
11x

12x1
2

x

~12x1!2D ~ l 41ur
~x!l 3

12ur
~12x1!l 5!1

2~11x!

12x1
ur

~12x1!G24
11x2

12x
ūr

~x!

3F E
12Az/r

12x

dx1S 1

x1
l 51

2

x2
ln

x

12x1
D

1E
0

Az/r2x dx1

x1
l 6G J ,

y512z3110z22
45

4
216 ln2~12xc!228 ln~12xc!,

A5~11ur
~x!!F2~512x!14~x13!ln~12x!14

11x2

12x
ln xG

12
11x2

12x F S 3

2
2 ln xDK~x,z;r,1!2

1

2
ln2

3x2
~12x!2

2~11x2!
12 ln~12x!S ur

~x! lnUx2r22z

xr22z U
1 lnU~z21!~z2x2!~r22z!

~z2x!2~xr22z!
U D G1 ūr

~x!
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16 14 Az2xr x~xr22z!

3F12x

ln~12x!1
12x

2~12x!ln

3x12
11x2

12x S 2
3

2
ln2 x13 ln x ln~12x!2Li2~12x!

2
x~12x!14x ln x

2~11x2!
1

~11x!2

11x2 lnU~Az2xr!

r2Az
U

l 5 lnU U

o

12 lnU
r

U lnU x2r22z U D G ,

l 15 lnU ~x2r22z!~xr22z!

~x~12x1!r22z!~x~x1x1!r22z!
U,

l 35 lnU~12x1!2~12x2x1!~x2r22z!2

x3x1~x~12x1!r22z!2 U,
l 25 lnU ~z2x!2~z2~12x1!2!~z2~x1x1!2!

~z2~12x1!!~z2x~12x1!!~~x1x1!2z!~x~x1x1!2z!
U1 lnU~~12x1!2r22z!~~x1x1!2r22z!~xr22z!

~~x1x1!r22z!~~12x1!r22z!~x2r22z!
U,

~12x1!2xx1~z21!~z2x2!~z2~12x1!2!2 x
~x!

~12x1!2x2

2 D S D S ln 1 l D
4 x2~z2~12x1!!2~z2x~12x1!!2

1 lnU ~r22z!~x~12x1!r22z!2

~x2r22z!~~12x1!2r22z!2U,
l 55 lnU x~~12x1!2r22z!2

~12x1!2~x~12x1!r22z!~~12x1!r22z!2U,
l 65 lnU ~xr22z!~~x1x1!2r22z!2

~x2r22z!~x~x1x1!r22z!~~x1x1!r22z!
U.

For the wide-narrow angular acceptance we need to c
sider only the case of the positron emissionSgg , because the
corresponding expression for the electron emissionSgg is
Eq. ~A1! with (r4

2,r2
2) as the limits ofz-integration andr3

insteadr under the integral sign.
The analytical expression forSgg has the form

Sgg5
1

4 S a

p D 2E
1

r3
2 dz

z2 L AN
W , ~A2!

AN
W5yD421E

xc

1

dxH D42F4~413x!16~x13!ln~12x!

1S x2114
11x2

12x D ln xG1D42
~x!F ~12x!~31 ln x!

12~x13!ln~12x!14
11x2

12x
ln xG1D̄42

~x!
2

12x

3~41~11x!2!ln~12x!

12
~11x!2

12x S u4ū4
~x! lnUAz2xr4

r42Az
U

2u2ū2
~x! lnUAz2xr2

r22Az
U D 1

11x2

12x
B

1E
0

12x

dx1F2
11x2

~12x!x1
~D42

~x!l 111D42l 211~ ū4
~x!

2u2
~x!!l 121~ ū42u2!l 22!1S 212

11x

12x1

230 JETP 85 (2), August 1997
n-

~12x1!2 42 x3x1
31

1D42S ln
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1 l 41D1D42
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3S 2 ln
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l̃ 61
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B5D42S 22 ln2 x12 ln~1
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2!~x2r4
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22z!2
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2!3~xr4

22z!3 U D
1D42

~x!S ln2 x12 ln~12x!lnU ~z2x2r2
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x4~z2xr2
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22z!
U D
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2x!ln
~xr4

22z!3~z2r2
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11x2
1x!~11ur !1 ur 1 N~x,z;r,1!G

e

ity

for
36 Uz2x~12x1!r2
2U

l 465~16 ĉ!lnU z2r2
2

z2~12x1!r2
2U,

l 565~16 ĉ!lnU ~z2~12x1!2r2
2!2

~z2x~12x1!r2
2!~z2~12x1!r2

2!
U,

l̃ 65 lnU x2~z2~12x1!2r2
2!4

~12x1!4~z2x~12x1!r2
2!2~z2~12x1!r2

2!2U,
l̃ 75 lnU ~z2xr2

2!2~z2~x1x1!2r2
2!4

~z2x2r2
2!2~z2x~x1x1!r2

2!2~z2~x1x1!r2
2!2U,

l̃ 652 ĉl̃ 6 , l̃ 752 ĉl̃ 7 ,

wherex2512x2x1 , and ĉ is the operator of the substitu
tion:

ĉ f ~r2!5 f ~r4!. ~A3!

It can be verified that in the symmetrical limit Eq.~A2! co-
incides with Eq.~A1!.

For the opposite-side emission the next-to-leading c
tribution to S in the symmetrical case is

Sg
g5S a

p D 2

LE
0

` dz

z2 T, ~A4!

T5Aurū12E
xc

1

dxF 11x2

2~12x!
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1
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12xG E
xc /x1

1

dx1F ~11x1!J~x1!1
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12x1
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dxH 7~11x!
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11x2

2~12x!
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12x 12x

1
8

12x
ln

x~12xc!

x2xc
. ~A6!

We introduce the following reduced notation for th
u-functions:

J~x!5urū11ur
~x!ū1

~x! , J~x!5urūr
~x!2u1ū1

~x! . ~A7!

The quantity K(x,z;r,1) in the expression forA is the
K-factor for the single-photon emission, and the quant
N(x,z;r,1) can be derived with the help of Eq.~10! in the
following way:

N~x,z;r,1!5S K̃~x,z;r4 ,r2!

2
~12x!2

11x2 ~D421D42
~x!! D U

r45r,r251

. ~A8!

Note thatN(1,z;r,1)50.
In the wide-narrow case the corresponding formula

Sg
g may be written as follows:

Sg
g5

a2

p2 LE
0

` dz
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W , ~A9!

where
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dxF 11x2
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Ã5~26214 ln~12xc!28 ln2~12xc!!D42

1E
xc

1

dxH D42F7~11x!1
8

12x
ln

x~12xc!

x2xc
G

1
11x2

2~12x! F3

2
D42K̄~x,z;r3,1!1

3

2
D31K̃~x,z;r4 ,r2!

1
7

2
~D42D̄31

~x!1D31D̄42
~x!!G1 ln

x2xc

x F ~31x!~D31J42~x!

1D42J31~x!!1
4

12x
~D̄42

~x!D311D̄31
~x!D42!

1
11x2

12x
~D42N~x,z;r3,1!1D31,N~x,z;r4 ,r2!!G J ,

~A11!

and
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~x!ū2

~x!5D421D42
~x! ,
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~x! , D̄31

~x!5D312D31
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It is obvious that in the symmetrical limit Eq.~9! coincides
with ~4!.

APPENDIX B

Here we give some relations which are used in the a
lytical calculations and which may be useful for the nume
cal computations.

For the case of the emission along the electron mom
tum direction these relations are

E
r2

2

r4
2

dzE
xc

1

dxū3
~x!5E

r2
2

r4
2

dzū3
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5E
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r4
2
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12Az/r3
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dx1 . ~B1!

For the case of the emission along the positron direc
they are
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1 4 2

5E
1

r3
2

dzE
xc

1

dxH ~ ū42u2!1E
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xc

Az/r2
dxE

12Az/r2

12x

dx1J . ~B2!

Some additional relations arise for the case of opposite-
emission. Let us consider first the integration-limits restr
tions for the product of theu-functions in the symmetrica
case

u3ū3
~x1!ū3

~x2! , u1ū3
~x1!ū1

~x2! , u1ū1
~x1!ū1

~x2! . ~B3!

At first, we use Eqs.~B1! and eliminateū i
(x2) using the fol-

lowing changes: 1! ū i
(x2)→ ū i

(xc /x1) , 2! the upper limit ofx2

integration in the case ofū3
(x2) must be replaced byAz/r3

and in the case ofū1
(x2) by Az.

Thus we have three regions defined by the quantitie
(z,x1) plane:

r25z, z5x1
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2r2

x1
2 ,

15z, z5x1
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xc
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2, z5

x1
2r2

xc
2 . ~B4!

The limits of integrations may be transformed as follows:

E u3ū3
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xcr2
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and for *u1ū1
(x1)ū1

(x2) the formulas can be derived from th
above formulas by settingr51. For the wide-narrow case
the prescription is similar:
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The other variants of the restrictions in the wide-narrow a
gular acceptance may be written as follows:
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Noise squeezing in a semiconductor laser with an inhomogeneously broadened gain
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This paper is a theoretical analysis of the noise produced by a single-mode semiconductor laser.
We allow for spectral hole-burning in the gain line and for the nonlinear dependence of
the carrier spontaneous recombination rate on the number of carriers in the active area. We show
that these processes do not inhibit the squeezing of the outgoing photon flux noise below
the shot noise level at high pump currents but that the degree of squeezing decreases considerably.
Finally, we establish that these processes also considerably narrow the squeezing bandwidth.
© 1997 American Institute of Physics.@S1063-7761~97!00308-9#

1. INTRODUCTION degree of alloying of the active area. The researchers ca
ue
a
am
e
se
m
e
o
by

m
t

s
m
lu
r,
th

ua
u
in

he
i

-

e
ha
re
s
d
an
d
s
g

ig

ing
vel
ode
tor
is-
d by
tal
an

wn
ear
rin
red
de

ich
atis-

by
r-
r
pli-

de-
da-
s to
sing
But
m-

on-
g at
nge
lso

to

o-
ture
s in
the
ar

4-
At pump currents much higher than the threshold val
the light emitted by a semiconductor laser may exhibit
essentially quantum property: it can be squeezed in the
plitude fluctuations~or noise!.1–3 The latter means that th
spectrum of fluctuations of the photon flux leaving the la
cavity becomes narrower than the standard quantum li
The spectral density of the noise appearing in the cours
photocurrent detection becomes smaller than the shot n
level. This effect was first detected experimentally
Machidaet al.3

Thorough measurements have shown4 that the single-
mode theory describes the photon flux noise well for pu
currents ranging from the threshold value to values two
three times higher than the threshold value, i.e., to value
which amplitude squeezing can be observed. If the pu
current exceeds the above value, the deviations for the va
predicted by the theory become considerable. In particula
room temperature in the free-running mode the noise of
laser radiation is considerably higher than the standard q
tum limit, and usually no squeezing is observed. The us
explanation of such behavior is the presence of nonlas
sidebands.5,6 Experiments corroborate this hypothesis: t
noise was reduced below the standard quantum level by
troducing selective feedback from the diffraction grating,6–9

and increasing theQ of the central mode by injecting radia
tion from a high-stability external laser10,11 or providing dis-
persive optical feedback.12,13

Inoueet al.14 studied amplitude squeezing in multimod
lasers both theoretically and experimentally. They found t
the emerging intermode correlation leads to mutual supp
sion of the contributions of fluctuations of separate mode
the total intensity. In this case the noise of the multimo
laser is equivalent to that of an ideal single-mode laser
light squeezing becomes possible, which is demonstrate
experiments conducted by Inoueet al.14 The measurement
were made at low temperatures, 20–60 K, and the homo
neity of the gain line of the laser was ensured by the h
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this phenomenon multimode squeezing.
It must be noted at this point that multimode squeez

differs from single-mode in many respects. The noise le
registered during photodetection of squeezed multim
light may grow if not all the modes reach the photodetec
or if the laser light has traveled through a medium with d
persion, e.g., an optical fiber, since squeezing is ensure
the negative correlation of fluctuations of the fundamen
and side modes, while the noise of individual modes c
exceed the shot noise level considerably.

Moreover, the noise can increase due to the breakdo
of intermode correlations as a result of various nonlin
optical processes in the laser proper. In particular, Ma
et al.7 showed that the increase in the noise level registe
in experiments can be explained by adding to the multimo
lasing equation a term quadratic in the field strength, wh
models the nonlinear interaction between the modes. S
factory agreement with the experimental data is achieved
empirically fitting the numerical value of the nonlinear inte
action coefficient. Marinet al.7 also showed that the greate
the side-mode suppression, the higher the degree of am
tude squeezing in the fundamental mode. At a 60-dB si
mode suppression in relation to the intensity of the fun
mental mode, the nonlinear intermode interaction cease
greatly affect the fundamental-mode noise, and such a la
mode can be considered single-mode to high accuracy.
will a high degree of amplitude squeezing guarantee co
plete suppression of side modes? It is well known that n
linear optical processes in a semiconductor laser operatin
pump currents much higher than the threshold level cha
not only the nature of intermode interaction, but can a
substantially affect the nature of single-mode lasing due
self-action effects of the fundamental mode.

The present paper studies the effect of optical inhom
geneities in a single-mode semiconductor laser on the na
of amplitude squeezing. The idea that electron–hole pair
the active area of the laser interact simultaneously with
field of all laser modes is an approximation valid only ne

23407$10.00 © 1997 American Institute of Physics
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2. SYSTEM OF EQUATIONS
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threshold, a localized drop appears in the number of oc
pied states in the conduction band and in the numbe
vacant states in the valence band, because of the finite ra
restoration of intraband equilibrium after each recombinat
event. By its influence on the nature of lasing, this effect
a direct analog in the theory of gas lasers, and has come
known as spectral hole-burning. The statistical characte
tics of the radiation emitted by a gas laser that allow
spectral hole-burning have been studied~see, e.g., Ref. 15!.
However, semiconductor lasers exhibit a number of spe
features, which manifest themselves, in particular, in the
that gain depends explicitly on the number of photons in
cavity.16

Spectral hole-burning does not exhaust the list of n
linear effects characteristic of semiconductor lasers. As
known, a carrier in the active area can take part in radia
recombination or relax nonradiatively. In the first case,
recombination rate is satisfactorily described by a quadr
dependence on the number of carriers. In the second, on
three carriers participate in the nonradiative process, con
uting linear and cubic terms in the expression for the sp
taneous decay rate~see Ref. 17!.1! Traditionally, when study-
ing the dynamics of a single-mode semiconductor laser,
assumed that the spontaneous recombination rate is a l
function of the number of carriers, which is a valid appro
mation only in the immediate vicinity of the threshold. Th
applicability of the approximation is all the more justified,
in the steady-state lasing mode, the number of carrier
independent of the pump current and is equal to its thresh
value. Gain saturation has a profound effect on the situat
spectral hole-burning leads to an increase in the numbe
carriers in the active area as the pump current grows, so
it initiates the emergence of the previously masked non
earity of the spontaneous decay rate. In other words, a
sistent calculation of a semiconductor laser requires allow
for both types of nonlinearity and their interrelationship
multaneously.

The goal of the present research is to set up a theor
lasing of amplitude-squeezed light in a semiconductor la
when the pump current is several times the threshold va
Using a generalized model of a single-mode semicondu
laser that allows for spectral hole-burning and the nonlin
dependence of the spontaneous decay rate on the numb
carriers in the active band as a starting point, we use i
describe the quantum properties of the outgoing radiat
Our main result is the conclusion that the combined con
bution of both laser nonlinearities into the spectral density
the outgoing photon flux lowers the degree of squeezing
fixed pump current exceeding the threshold value, but pla
no fundamental limit on the degree of squeezing as the pu
current grows. This result sets the semiconductor laser a
from the gas laser~see Ref. 15!, in which the excess nois
resulting from inhomogeneous line broadening significan
limits the degree of squeezing and even may extingu
squeezing entirely.

235 JETP 85 (2), August 1997
u-
of
of

n
s
be
s-
r

al
ct
e

-
is
e
e
ic
or

b-
-

is
ear

is
ld
n:
of
at
-
n-
g

of
er
e.
or
r

r of
to
n.
i-
f
a

es
p

art

y
h

The system of balance equations18 describing photon–
electron interactions inside the cavity has the form

]n̂

]t
5Ĝ~ n̂,N̂!n̂2gn̂1R̂sp1Ĝg~ t !1Ĝg~ t !, ~1!

]N̂

]t
5

I

q
2R̂~N̂!2Ĝ~ n̂,N̂!n̂1ĜN~ t !, ~2!

wheren̂ is the photon number operator in the cavity,N̂ is the
operator representing the number of carriers in the ac
area of the laser,g is the rate of photon departure from th
cavity, R̂(N̂) is the operator of spontaneous carrier rela
ation, I is the injection current,q is the elementary charge
R̂sp is the operator of spontaneous emission into the la
mode,Ĝ(n̂,N̂) is the gain operator, defined as the differen
between the stimulated emission and stimulated absorp
rates, andĜg(t), Ĝg(t), and ĜN(t) are the Langevin noise
sources, represented by a zero-mean Gaussian stochasti
cess. In the Markov approximation, the noise sources
d-correlated~white noise!:

^Ĝi~ t !Ĝj~ t1t!&5Si j d~t!, i , j 5g, N,

^Ĝg~ t !Ĝg~ t1t!&5Sgd~t!.
~3!

HereĜg(t) andĜg(t) are stochastic sources of photon nois
and ĜN(t) is a stochastic source of carrier noise.

The noise-source spectral densities can be written as18

Sg5gn, Sgg5~R1A!n1R,

SNN5~R1A!n1
N

te
, SgN52@~R1A!n1R#,

~4!

with te
21 the spontaneous relaxation rate. Here and in w

follows the ‘‘hatless’’ variables denote expectation values
the corresponding operators. The above equations show
the noise sources are correlated. To maintain generality
~4! we have left the expectation value of the stimulated
sorption operatorÂ, although in what follows we assum
that the inversion is complete.

The fact that an electron leaves the conduction band
to recombination with a hole from the valence band leads
photon emission. This process is characterized by a radia
recombination rateRrad(N). It is convenient to distinguish
between two components in the radiative decay rate:

Rrad5bRrad1~12b!Rrad,

with the first describing radiative decay into the laser mo
and the second radiative decay into all nonlasing modes.
coefficientb can be interpreted as the efficiency of spon
neous emission into the laser mode.

On the other hand, some electrons leave the conduc
band, contributing nothing to emission. The correspond
processes are characterized by a nonradiative relaxation
Rrel(N). The total rate of spontaneous relaxation of the c
riers is given by the sum of the two contribution
R(N)5Rrad(N)1Rrel(N).
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Since in a semiconductor laser two carriers, an electron
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We find thatb5GNt th /b, whereGN is the gain per carrier.
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and a hole, participate in radiative recombination, the rad
tive recombination rateRrad(N) is proportional to the produc
of electron and hole concentrations, which provides a q
dratic dependence ofRrad(N) on the number of carriers in th
active area if the active area on the whole remains ele
cally neutral and the distribution of the carriers over the v
ume is approximately uniform. Carriers that do not parti
pate in the emission process relax nonradiatively, providin
contribution toRrel that is proportional to the total number o
carriers. In addition, when the pump currents in semicond
tor lasers are high, it is important to account for losses du
Auger relaxation, in which three carriers participate simul
neously. Summing up, we can write the final expression
R̂(N̂) as

R̂~N̂!5t th
21FaN̂1

b

Nth
N̂21

c

Nth
2 N̂3G , ~5!

consistent with the results of Olshanskyet al.17 In the ex-
pression~5! for the spontaneous relaxation rate, the coe
cient b reflects the fraction of radiative recombination pr
cesses, and the coefficientsa and c the fraction of
nonradiative recombination processes. The quantityNth is
defined as the number of carriers at the lasing threshold.
denote the spontaneous relaxation time atN5Nth by t th , and
by averaging~5! we get the normalization condition for th
coefficients,a1b1c51.

To allow for the effect of spectral hole-burning in th
gain line, we assume the following form for the dependen
of the gain operator on the photon number:16

Ĝ~ n̂,N̂!5
Ĝ0~N̂!

A11n̂/ns

. ~6!

The number of photons at which the gain decreases b
factor of& is denoted byns, and can be expressed in term
of intraband relaxation times:

ns5
e0\n̄ngV

m2v0G̃t in~tc1tv!
,

wheren̄ is the mode index,ng is the group index,V is the
volume of the active area,m is the dipole moment,v0 is the
optical frequency,t in is the polarization relaxation time,G̃ is
the optical clipping coefficient, andtc and tv are the inter-
band relaxation times of the population difference betwe
the conduction and valence bands, respectively.

According to the Einstein’s relations, the rate of spon
neous emission per photon of the laser mode is equal to
rateRsp of spontaneous emission into the laser mode. In tu
Rsp is determined by the ratebRrad of radiative recombina-
tion of carriers into the laser mode. Consequently, the
pression for the gain operator must be proportional to
square of the number of carriers and not, as it is often
sumed, directly proportional to that number:

Ĝ0~N̂!5ĜNN̂
N̂

Nth
. ~7!
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In our discussion we ignored stimulated absorption, ass
ing that inversion is complete. This assumption is often ma
in the literature. For strong nonlinearity, when the number
carriers in the active area grows with the pump curre
stimulated absorption effects weaken accordingly, with
result that the approximation is sure to be valid.

Two processes are involved in photon departure from
cavity: g5gout1g in . The first is characterized by the rate
photon departure through the semitransparent mirror,gout.
The second incorporates internal photon losses and is c
acterized by the rateg in .

3. STEADY-STATE SOLUTION

Let us set]n̂/]t and]N̂/]t equal to zero in Eqs.~1! and
~2! and find the steady-state values for the average num
of photons and carriers, ignoring spontaneous decay into
laser mode. The resulting system of two algebraic equati
makes it possible to find the explicit dependence of the
erage number of carriers on the average number of pho
in the cavity:

N5NthS 11
n

ns
D 1/4

. ~8!

Equation ~8! expresses the fact that gains and losses
equal, orG(n,N)5g, a condition that holds in a steady-sta
lasing mode. If we ignore the inhomogeneous nature of
broadening of a lasing line, the theory of a single-mo
semiconductor laser predicts that the number of carrier
constant. For any pump current this number remains equa
its threshold value

Nth5
g

GN
, ~9!

which follows from ~8! whenns→`. Spectral hole-burning
increases the number of carriers as the pump current gro
Although this dependence is extremely weak~see Eq.~8! and
Fig. 1a!, it determines the carrier spontaneous relaxation r
and the extent to which intralaser nonlinearities come i
play; these nonlinearities may prove to be very large, due
the quadratic and cubic dependence on the number of c
ers.

Introducing the parameter

r 5
I /q

Nth /tth
21,

which reflects the extent to which the pump current exce
the threshold level, we can write an equation for the aver
number of photons:

bbn5r 112~11jbn!1/4@a1b~11jbn!1/4

1c~11jbn!1/2#. ~10!

For purely radiative recombination we can obtain the so
tion of Eq. ~10! explicitly:
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FIG. 1. ~a! The relative difference in
the number of photons for a laser wit
a weakly saturated gain line
n(j51024)5n0 , and for a laser with
strong saturationn(j). ~b! Carrier
number normalized to the threshol
value as a function of the pump pa
rameter: Curve1 corresponds toj50,
curve 2 to j50.1, and curve3 to
j50.01.
j j 2

.
u
ed
i

e
um
c-

a

and by deviations from these values,dn anddN, which can

-

n5b21F r 111
2

2A11~r 11!j1S 2D G .
In Eq. ~10! we introduced a new parameter,j51/bns ,
which characterizes the efficacy of spectral hole-burning
this parameter is nonzero, the linear dependence of the n
ber of photons in the cavity on the pump current is distort
Note thatr andb have been introduced in the same way as
the problem without spectral hole-burning.

Spectral hole-burning does not have any appreciable
fect on the dependence of the phonon number on the p
current. Atj50.1, which is a typical value for semicondu
tor lasers, the difference from the ideal casej50 amounts to
several percentage points~see Fig. 1b!.

4. PHOTON NUMBER NOISE IN CAVITY

A steady-state lasing mode is characterized by aver
values of the photon numbern and the carrier numberN,
is the spontaneous relaxation rate per carrier, and

th

ec
-

t

If
m-
.

n

f-
p

ge

be assumed small far from threshold (r .0.01). Linearizing
Eqs. ~1! and ~2! in dn̂ anddN̂ and transforming to the fre
quency representation, we find that

S iV2
]G

]n
nD dn̂5

]G

]N
ndN̂1Ĝg~V!1Ĝg~V!, ~11!

S iV1
]R

]N
1

]G

]N
nD dN̂52S G1

]G

]n
nD dn̂1ĜN~V!.

~12!

Knowing the explicit form of~6!, ~11!, and~8!, we can
solve the above system of equations fordn̂ anddN̂:
gain
dN̂5te

~«21!@Ĝg1Ĝg#1~ iv1«!ĜN

$2@r eff1«1 f «#2gtev
2%1 iv@2~r eff111 f !1gte«#

, ~13!

dn̂5
1

g

@2~r eff111 f !1 igtev#@Ĝg1Ĝg#12r effĜN

$2@r eff1«1 f «#2gtev
2%1 iv@2~r eff111 f !1gte«#

, ~14!

wherev5V/g is the normalized frequency,te
215R(N)/N the average carrier number changes only as a result of
saturation, so that all the parameters of the problem can be
the
rly

p
de
mis-
f 5
1

2

2a~122«!1/21c

a~122«!1/21b~122«!1/41c

is a factor determined by carrier losses in the active area;
factor vanishes in the limit of purely radiative relaxation.

To maintain generality in the problem that ignores sp
tral hole-burning, in~13! and~14! we introduced the param
eter

«5«~n!5
1

2

jbn

11jbn
5

1

2

n

n1ns
, ~15!

which varies between zero~no saturation! and 1/2~complete
gain saturation!. An important feature of this model is tha
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is

-

expressed in terms of the average photon number and
saturation parameter. The validity of this statement is clea
demonstrated by«:

te
215t th

21@a1b~122«!21/41c~122«!21/2#, ~16!

r eff5
~r 11!~122«!3/4

a~122«!1/21b~122«!1/41c
21. ~17!

The r eff introduced in~17! is a generalization of the pum
parameterr and reflects the extent to which the laser mo
uses the pump energy. The coefficient of spontaneous e
sion into the laser made is modified in a similar way:
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b 5
b~122«!3/4

. ~18!

a
on
nt

th

3~S 1S !12r ~r 1 f 11!S F ~r 1« f

ctral
eff a~122«!1/21b~122«!1/41c

In terms of the quantities specified by~17! and ~18!, the
average number of photons in a mode can be written
n5r eff /bbeff . Note that in the absence of gain saturati
(«→0), the modified parameters become consta
te→t th , r eff→r, andbeff→b.

The spectrum of photon-number fluctuations inside
cavity is given by

Sin~V!5^dn̂~V!dn̂* ~V!&. ~19!

Plugging in~14! yields

Sin5g22H r eff
2 SNN1F ~r eff1 f 11!21S gtev

2 D 2G
ng
ve

id

he

e

e

s

s:

e

gg g eff eff gNJ H eff

1«!2
gtev

2

2 G2

1v2F ~r eff1 f 11!1
gte«

2 G2J 21

.

~20!

In the adopted notation system the noise-source spe
densities~4! have the form

Sg5gn, Sgg5gn,

SgN52gn, SNN5gn1
gn

r eff
. ~21!

The final expression for the noise spectrum is
Sin~v!5
n

g

~r eff
2 13r eff12!12~gtev/2!212 f ~r eff1 f 12!

@~r eff1« f 1«!2~gte/2!v2#21v2@~r eff1 f 11!1~gte/2!«#2 . ~22!

5. NOISE IN THE OUTGOING PHOTON FLUX
S ~v!5gn 12 r 2 2r 2212«~r 11!22 f
F

lly

ed
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ests

ght
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The spectrum of fluctuations of the photon flux leavi
the laser cavity through the semitransparent mirror is gi
by an expression similar to~19!,

Sout~V!5^dn̂e~V!dn̂e* ~V!&, ~23!

with the relationship between the number of photons ins
the cavity and the outgoing photon flux given by18

n̂e5goutn̂2Ĝout. ~24!

Here Ĝout is a fluctuation operator reflecting the fact that t
photons leave the cavity at random~reflected vacuum fluc-
tuation!. It is simply related to the fluctuation operatorĜg:
Ĝg5Ĝin1Ĝout. The corresponding correlation functions ar

^Ĝout~ t !Ĝout~ t1t!&5
gout

g
Sg5goutn,

^Ĝin~ t !Ĝin~ t1t!&5
g in

g
Sg5g inn.

~25!

Linearizing ~24!, we get

d̂ne5goutdn̂2Ĝout. ~26!

Plugging ~26! into ~23!, we arrive at an expression for th
photon-flux fluctuation spectrum:

Sout~V!5gout
2 Sin~V!1

gout

g
Sg

22gout Re@^dn̂~V!Ĝout~V!&#. ~27!

In the limit of zero internal losses,gout5g, we have
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n

e

out H eff eff eff

3~21 f 22«2« f 2«r eff!22~12«!S gtev

2 D 2G
3F F ~r eff1« f 1«!2

gtev
2

2 G2

1v2

3F ~r eff1 f 11!1
gte«

2 G2G21J . ~28!

The spectrum of low-frequency fluctuations is especia
simple:

Sout~0!

5gn
r eff1222«1«21 f @~12«!2~ f 14!1 f 22«2#

~r eff1« f 1«!2 .

~29!

Figure 2 depicts the dependence ofSout(0)/gn on photon
numbern. The curves show that if the threshold is exceed
severalfold, the amplitude-noise squeezing decreases co
erably due to gain saturation. The same tendency manif
itself if one allows for nonlinear nonradiative relaxation.

One of the most attractive features of squeezed li
generated by a semiconductor laser is that the squee
bandwidth amounts to several hundred gigahertz. A disti
tive feature of this process is that spectral hole-burning in
gain line worsens the characteristics of nonclassical lig
appreciably narrowing the squeezing bandwidth~see Fig. 3!.

Note that although allowing for the various nonlinea
ties in a semiconductor laser poses additional difficulties
moving toward higher degrees of squeezing, these proce
place no important limit on reduction of amplitude noise:
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increasing the pump intensity, the squeezing can be mad
high as desired. It must be noted, however, that higher-o
nonlinearities, such as nonradiative relaxation processe
volving more than five carriers, are sure to limit squeez
and do not allow the noise to fall below a certain limit.

FIG. 2. The low-frequency spectrum of outgoing radiation fluctuations n
malized to the shot noise level, as a function of the number of photons in
cavity in the absence of saturation,j50 ~curve1!, and with finite saturation,
j50.1 ~curves2–4!. Curve1 corresponds toa5c50 andb51, curve3 to
a5c50 andb51, curve3 to a5c50.25 andb50.5, and curve4 to a50
andb5c50.5.
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From the practical viewpoint, the main factor that limi
squeezing is still the field losses inside the active area. Le
assess the effect of these losses by writing the low-freque
fluctuation spectrum for an arbitrarygout-to-g ratio:

-
e

FIG. 3. The spectrum of outgoing radiation fluctuations normalized to
shot noise level, as a function of the normalized frequencyv ~b5531026,
gte5103, and n̄5107!: curve 1, in the absence of saturation,j50,
a5c50, andb51; and curve2, with finite saturation,j50.1, a5c50,
andb51.
ro-
Sout~0!5goutnH 11
gout

g

~r eff11!~22r eff22«!12 f ~21 f 22«2« f 2«r eff!

~r eff1« f 1«!2 J . ~30!

If g andgout differ considerably~more than by 10–20%!, the ever, spectral hole-burning in the gain line retards this p

fcess, and squeezing occurs at higher pump-current values.
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the outgoing photon flux becomes negligible. The techn
ogy of manufacturing semiconductor lasers is developing
the direction of reducing internal field losses, with the res
that the problem of how laser nonlinearities of disparate
ture affect noise squeezing becomes more and more im
tant.

6. CONCLUSION

In this paper we have proposed a modified system
Langevin–Heisenberg equations for describing the pho
flux noise~fluctuations! in the single-mode lasing of a sem
conductor laser when the pump current is much higher t
the threshold value. We have analyzed theoretically the n
produced by a semiconductor laser with allowance for sp
tral hole-burning in the gain line and for a nonlinear depe
dence of the carrier spontaneous recombination rate on
number of carriers in the active area.

We have shown that spectral hole-burning leads to
increase in the number of carriers in the active area, wh
means that the dependence of carrier lifetime on the num
of the carriers must be taken into account.

The basic conclusion that can be drawn from our res
is that there is a tendency toward noise squeezing when
pump current is much higher than the threshold level. Ho
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Our study corresponds to an experimental situation
which all side modes in the laser are completely suppres
In this case, as we have demonstrated above, optical no
earities of the semiconductor laser are the important fac
in limiting the squeezing. This limiting effect becomes esp
cially evident when intracavity photon losses are low.
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Four-wave polariton scattering of light in LiNbO 3

ur-
G. Kh. Kitaeva, P. S. Losevski , A. A. Mikha lovski , and A. N. Penin

M. V. Lomonosov Moscow State University, 119899 Moscow, Russia
~Submitted 21 October 1996!
Zh. Éksp. Teor. Fiz.112, 441–452~August 1997!

Four-wave Stokesk-spectra for light scattering on polaritons in lithium niobate crystals with an
Mg impurity are studied experimentally. The mechanisms for direct, cascade, coherent,
and incoherent four-wave mixing of light are discussed in the course of interpreting the angular
dependences of the scattered light intensity. It is shown that the dispersion of the real part
of the polariton wave vector and the refractive index of the crystals at the polariton frequencies
can be measured with an order of magnitude greater accuracy than by spontaneous three-
wave polariton light scattering. A significant discrepancy is found between determinations of the
polariton absorption coefficient from the angular spectra of three-wave scattering and four-
wave scattering in terms of the model employed here. ©1997 American Institute of Physics.
@S1063-7761~97!00408-3#
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The spectroscopy of light scattered on polaritons is
extremely sensitive method for studying relatively sm
changes in the properties of a medium. This method can
used to study phenomena which do not show up in pho
Rayleigh scattering spectra. This occurs in those rather c
mon cases where the frequencies of the phonons remai
sentially unchanged, while only the oscillator strengths
damping constants of the phonons vary. Then the disper
relations of the polariton states also change significantly.
fects such as small changes in the concentration of an im
rity, spatial inhomogeneity, phase transitions, lo
dimensionality effects, and many others, show up in
spectra of light scattered on polaritons. The dielectric ch
acteristics of media in the neighborhood of the optical p
non frequencies can also be measured using IR-reflec
spectra. When scattering effects are used, however, si
intensities can be measured in the visible, which, as a rul
much simpler. In addition, when light-scattering spect
scopic techniques are used there are more ways of di
guishing volume and surface effects.

Three-wave spontaneous parametric light scattering
polaritons has been used successfully in studies of the p
erties of non-centrally symmetric crystalline structures.1 Its
applicability is limited, however, by the low scattered lig
intensity. This makes it especially difficult to study micr
scopically small objects and limits the spatial resolution
the method. Active spectroscopy based on optical four-w
scattering effects offers a way out.

The first work in this area was begun in the end of t
1960s2 and is being carried out by various research group
this day. A basic study of four-wave mixing processes w
made in media with3 and without2,4–8 a center of symmetry
The case of a non-centrally-symmetric medium is the m
general case for studying active spectroscopy. Here di
four-photon processes and cascade three-photon proce
associated with the nonlinear susceptibilitiesx (3) and x (2),
respectively, contribute to the scattered light intensity. Sa
faction of the conditions of frequency and phase synchr
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photon process they have the form

vL2vS2v11v250, ~1!

and

Dk[kS2kL1k12k250, ~2!

wherev are the frequencies andk are the wave vectors o
the interacting waves in the medium, the subscripts 1, 2,
L refer to the waves incident on the medium, and the s
script S refers to the signal wave detected as it leaves
medium. Here and in the following we consider the Stok
component of the scattered light. The cascade process ca
treated as a sequence of processes in which difference
quencies are generated. In the first process an idler wav
generated~associated in our case with the polariton state
the medium! owing to parametric subtraction of the freque
cies of two exciting pump waves, and then the probe pu
wave is scattered on this idler. The cascade process is m
efficient when the synchrony conditions~1! and ~2! are
supplemented by the following synchrony conditions:

v12v25vp , ~3!

and

t[k12k22kp50. ~4!

Here the subscripts 1 and 2 refer to the exciting radiation
p, to the polariton~idler! wave.

The interaction of these processes has been studied
perimentally in GaAs, LiNbO3, and LiIO3 crystals, expres-
sions for the third order susceptibilityx (3) have been ob-
tained, and its effective magnitude corresponding to both
direct and the cascade processes measured.4–6 Interference of
processes involving the different nonlinear susceptibilit
shows up in an asymmetry of the scattering line profile a
the appearance of additional maxima in that profile inv- and
k-space.7 The effects have been observed experimenta
during scattering of light on excitations corresponding to
upper polariton branch in the case of weak absorption at
polariton frequency.6

24107$10.00 © 1997 American Institute of Physics
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FIG. 1. A sketch of the experimental ap
paratus: PG1, 2, 3 Glan–Thomson pola
izing prisms; M1, 2, 3 mirrors; M4 fre-
quency selective mirror; SHG second
harmonic generating crystal; L1, 2, 3 fo
cussing lenses; BC beam chopper; S te
sample; LS three-lens system; SG spe
trograph; PM1 photomultiplier detecto
for pump power monitor; PM2 photomul-
tiplier detector for scattered light measure
ments; SM1, 2 stepping motor drives.
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troscopic system, estimate its sensitivity, and study the
tures of coherent Stokes four-wave scattering on polarit
when there is strong absorption at the frequency of the
lariton state. This case is most typical for polariton spectr
copy and has also been little studied experimentally.
have used LiNbO3 crystals with different amounts of Mg
impurity as test objects.

2. EXPERIMENTAL APPARATUS AND LiNbO 3 SAMPLES

In most previous work, a traditional coherent antistok
scattering arrangement has been used where one of the p
waves is doubly degenerate from the standpoint of the fo
wave mixing process and a signal is detected at the a
tokes frequency. In our case, we have used the more ge
setup for a four-wave interaction in which all the waves ha
different frequencies and the Stokes component of the s
tered light is detected. A sketch of the experimental appa
tus is shown in Fig. 1. The excitation wave sources at
quenciesv1 and v2 are a YAG:Nd31 laser and a tuneabl
LiF:F2

2 laser with respective output wavelengths
l151.064mm andl2 in the range 1.08–1.22mm operating
at a repetition rate of 1–33 Hz. The pump for the tunea
color center crystal laser is the fundamental of t
YAG:Nd31 laser passed through a YaG:Nd31 amplifier and a
Glan-Thomson polarizing prism~PG1!. The probe wave is
the second harmonic of the YAG:Nd31 laser ~wavelength
lL5532 nm! generated by a frequency doubler~SHG!. This
radiation is separated from the fundamental by a mirror w
a frequency-selective reflectivity. Because near-IR sour
are used to excite the polariton wave, parasitic light owing
luminescence of the test medium irradiated by the excit
radiation lies in the IR, far from the visible signal detectio
wavelength. The required polarization of the rays incident
the crystal is determined by the Glan–Thomson polariz
prisms PG1 and PG2. The angles of incidence of the pu
waves on the sample crystal are determined by the syste
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lenses L1-L3 in the pump beams makes it possible to v
the irradiance of the pump waves in the interaction region
well as their angular divergence. Scattered light is collec
by a three-lens system LS in the plane of the inlet slit o
spectrograph SG after first passing through a Glan–Thom
polarizer PG3 which serves as an analyzer for the scatt
light and cuts off the probe light that passes through
sample S.

A two-dimensional frequency–angle scattering patte
was formed at the spectrograph output. The horizontal de
tion of the beam corresponded to the frequency of the s
tered wave and the vertical deviation to the scattering an
in the plane of the pump wave vectors. The structure of
plate holder of the spectrograph made it possible detect
signal either photographically or electronically. In the latt
case the detector is a photomultiplier PM2 operating in c
rent ~analog! mode. The signal from the tube is fed to a wid
band amplifier with a controllable gain, then to a fast-ga
integrating ADC in a CAMAC crate, and on to an IBM
PC/AT control computer. The computer synchronizes a
controls the operation of the individual system compone
through circuits installed in the CAMAC crate. In our app
ratus, during photoelectric detection of the spectrum the p
tomultiplier was fixed and the slit, whose width could b
varied with a micrometer screw, was positioned in front of
The spectrum was scanned in frequency by rotating
prism in the spectrograph with a stepping motor drive SM
Another drive, SM2, was used to rotate the crystal in
plane containing all the pump beams and this makes it p
sible to vary the detuning of the phase synchrony in
sample. An additional photomultiplier PM2 is used to mon
tor the pump power. A beam chopper BC in the path of
probe light makes it possible to subtract automatically
background owing mainly to illumination of the photodete
tor by radiation at the sum frequency of the two infrar
lasers. The optical system is set up to detect the Stokes c
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between our spectroscopic apparatus and that used for c
ent antistokes four-wave scattering.4–6 Antistokes scattering
systems have come into wider use for four-wave spect
copy because it is possible to use frequency-degene
pumping.~In this case we havev15vL and the frequency o
the detected signal isvas52vL2v2 .! This approach can be
used without any restrictions for studying centrally symm
ric media, when cascade scattering does not occur and a
required synchrony conditions can be met relatively eas
On the other hand, a larger number of synchrony conditi
must be met in order to study polaritons by means of casc
four-wave scattering in non-centrally-symmetric crystals.
do this in many cases, degenerate pumping must be avo
and the Stokes and antistokes detection schemes mu
considered on an equal basis. Then the easy compatibilit
the Stokes scheme with three-wave light scattering detec
becomes a major advantage. In fact, simply by turning on
exciting pumps it is possible to go easily from observi
spontaneous three-photon scattering of light on polariton
observing scattering on coherently excited states of the
dium, since in both cases the scattered radiation lies wi
the same frequency-angle interval.

In our experiments we have used samples of LiNb3

with mass fractions of Mg impurity equal to 0.68% an
0.79%. Data on the visible and near IR refractive indices
the crystal with an impurity concentration of 0.79% we
taken from Aleksandrovski� et al.9 and data for the crysta
with a concentration of 0.68% were obtained by approxim
ing data from the same paper and measurements of th
fractive index of a congruent LiNbO3 crystal with no
impurity.10 In addition, the dispersion in the refractive inde
of the crystals for ordinary waves in the neighborhood of
frequencies of the polariton state being studied here was
termined from the spontaneous parametric light scatte
spectra.

LiNbO3 crystals belong to the trigonal class and hav
3m point symmetry. In the experiment the pumps at wa
lengthslL50.532 nm andl151.064 nm had extraordinar
polarization and the radiation from the tuneable LiF:F2

2-laser
had ordinary polarization. This determined the compone
of the nonlinear susceptibility tensor at which the interact
takes place:xxxz andxxxy for the quadratic nonlinear susce
tibility tensorx (2), andxxxzz for the cubic nonlinear suscep
tibility tensorx (3). The scattering geometry is shown in Fi
2.

3. ADJUSTMENT OF THE FREQUENCY AND ANGULAR
SYNCHRONY

In order to determine the dispersion relation for the p
lariton statesvp(k)p from four-wave scattering spectra it
necessary to ensure exact satisfaction of the frequency
tions ~1! and~3! and satisfaction of the equations~2! and~4!
for the wave vectors of interacting waves in the medium w
sufficiently small detuningsDk andt. In practice, adjustmen
of the frequency and spatial~angular! synchrony involves
two stages.

In the first stage, for each chosen polariton frequen
value vp one establishes the output frequencyv2 of the
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tuneable laser in accordance with Eq.~3! and the frequency
vS for selection of the signal radiation at the output from t
crystal, in accordance with Eq.~1!. It should be noted tha
double frequency selection~at the level of the selective reso
nator of the tuneable laser and at the level of the spectr
selective apparatus in the detector channel! is not obligatory,
but is dictated solely by the need to eliminate noisy ba
ground from the detector. In our case the measurements w
done at different fixed values of the frequency differen
v12v25vp in the range 520– 578 cm21, both near the
E-type phonon resonance of the medium at freque
vTO5580 cm21 and at some distance from it. The spect
widths of the pump lines were roughly 1 cm21 for the fun-
damental and harmonic lines of the YAG:Nd31 laser and
6 cm21 for the tuneable laser. The widths of the resulta
signal emission were fully consistent with the frequen
structure of the pump waves.

In the second stage the spatial synchrony is adjus
This process is evidently the most tedious phase of the m
surements. For scattering in the principal plane of a unia
crystal there are three adjustable parameters. These ar
angles determining the mutual orientation of the three pu
waves and the optical axis of the crystal. Final exact adju
ment must be done over any two of these three parame
Satisfaction of condition~4! is not critical for observing di-
rect four-photon scattering and the spatial synchronism
be adjusted through a single parameter, which makes ob
vation of the signal much easier. However, the possibility
measuring the wave vector of the polariton is then lost.

We have measured the four-wave scattering line profi
in k-space. The sequence of actions was then the follow
a constant frequency differencev12v25vp was estab-
lished, the IR pump rays were directed onto the crysta
fixed anglesu1 and u2 relative to the propagation directio
of the probe pump, and the dependence of the signal in
sity at the frequencyvS5vL2v11v2 was measured as
function of the rotation anglea of the crystal in the plane o
the pump wave vectors. The anglesa, u1 , andu2 were var-
ied about average values determined previously by solv
Eqs. ~1!–~4! using data on the dispersion in the refracti
index of the crystals. For each fixed signal~and, therefore,

FIG. 2. Schematic illustration of the beam paths and of the mutual orie
tion of the wave vectors.
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FIG. 3. Experimentally measured depen
dences~smooth curves! of the four-wave
scattering intensity on the rotation angle o
the crystal: u2519.2°, u1544.0° ~a! and
u1543.3° ~b!. The dashed curves are theo
retical calculations for ap523 cm21,
d51.25 mm, L51.0 mm ~a! and
L50.8 mm~b!.
polariton! frequency the range of the solutions of the exact

th
th
e
le
be
t t
e
ro
ac

v
w

nl
s

.
a
la

rv
es

r o
f a
ri

s
in
t

.
al

th
id
e
t

th

To answer the question of how to determine the real and

ant
an

of
tric
na-
x-
ong

uld
ity

de

ter-
-

rys-

the
ge

he
s
n in
synchronism conditions in the angle spacea, u1 , and u2

forms part of a curve. Taking the possible detuning of
synchronism into account is equivalent to determining
‘‘spread’’ in this curve. At each frequency differenc
v12v25vp a series of measurements of the line profi
I S(a) was made in which the mutual orientation of the pro
wave and one of the IR pump waves was kept constant a
input to the crystal, while the angle of incidence of the oth
IR pump was varied from one measurement of the line p
file to another. The four-photon scattering signal for ex
adjustment of the angular synchrony was much~almost four
orders of magnitude! higher than the spontaneous three-wa
scattering signal. Here the spontaneous scattering signal
collected from the entire length of the sample (;1 cm),
while the four-photon scattering signal was collected o
from the region (;0.521 mm long! where the pump beam
overlap.

A typical individual scattering profile is shown in Fig
3a. The scattering profile has one distinct peak with an
gular width on the order of 1°. Furthermore, for certain re
tions between the experimentally established anglesu1 and
u2 , supplementary peaks in the scattered light were obse
with roughly the same width and comparable amplitud
~For example, see the spectrum in Fig. 3b.!

It is more convenient to analyze the general behavio
the angular distribution of the signal intensity in terms o
series of experimentally measured line profiles. Each se
of this kind of measurements of the line profileI S(a) taken
at a fixed angleu1 ~or u2! and variableu2 ~or, in turn, u1!
represents a distributionI S(a,u i). Figure 4 shows the result
of one such series of measurements where the angle of
denceu2 and frequencyv2 of the tuneable laser were kep
constant in thea, u1 plane, wherea is the angle of rotation
of the crystal andu1 is the angle of incidence of the IR wave
The points denote the positions of the peak in experiment
observed ‘‘single humped’’ and ‘‘two humped’’I S(a)
curves. The range of anglesa and u1 where we observed
four-wave light scattering is shaded in the figure. When
directions of incidence of the IR wave was reoriented outs
this range, the intensity of the signal fell off rapidly to a lev
corresponding to spontaneous three-wave parametric sca
ing of the probe light. The shaded region is essentially
intersection of a planeu25const with the region of variation
of the three parametersa, u1 , andu2 within which the in-
tensity I S is nonzero.
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imaginary parts of the polariton wave vector~and then the
refractive index, absorption, and complex dielectric const
of the crystal! from the measured curves we now turn to
analysis of scattering theory.

4. ANALYSIS OF THE ANGULAR VARIATION IN THE
SCATTERING INTENSITY

Among the published studies devoted to the features
four-photon coherent scattering in non-centrally-symme
media,4–8 the shape of the scattering profile has been a
lyzed in greatest detail in Ref. 7. The conditions of our e
periment correspond to the case of weak pumping and str
absorption at the polariton frequency examined there.7 The
frequency–angular variation of the scattering profile sho
obey the following expression for the scattered light intens
I S :7

I S}Sinc2S DkL

2 D Fb21
4tb

ap
214t2 1

1

ap
214t2G , ~5!

wheret is the wave detuning in the first stage of the casca
process, the ‘‘heating’’ of the polariton state,Dk is the wave
detuning for the direct four-photon interaction process,L is
the length of the region where the laser pump beams in
sect in the crystal,ap is the absorption at the polariton fre
quencyvp , and Sinc(x)5sinx/x. The parameterb is deter-

FIG. 4. Calculated zero detuning curves for the spatial synchronism in c
talline LiNbO3 with an Mg concentration of 0.68%~vp5558.5 cm21,
np56.27,u2519.2°!. The smooth curve corresponds to synchronism of
direct process,Dk50, the dot-dashed curve to synchronism of the first sta
of the cascade process,t50 and the dashed curve to synchronism of t
second state of the cascade process,s50. The points represent the location
of the experimentally measured scattering intensity peaks. The regio
which four-wave scattering is observed is shaded.
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cascade processes to the scattered light intensity:

b5
npc cosqp

4pvp

x~3!

x1
~2!x2

~2! , ~6!

whereqp is an angle which determines the orientation of t
polariton wave vector in the crystal,np is the refractive index
for the polariton wave in the crystal,x (3) is the effective
value of the cubic susceptibility of the crystal, andx1

(2) and
x2

(2) are the quadratic susceptibilities which determine
efficiencies of the first and second stages of cascade sca
ing.

The first term in the square brackets of Eq.~5! describes
direct four-photon scattering owing tox (3). The direct scat-
tering intensity must be greatest everywhere the equa
Dk50 is satisfied. The smooth curve in Fig. 4 correspon
to this condition. Based on Eq.~5! we can draw the follow-
ing general picture of the change in the total scattering
tensity associated with tuning along the synchronism tun
curveDk50. Far from the region of small detunings in th
cascade process,t, the intensity is constant and its magnitu
is determined by the cubic susceptibility of the crystal at
frequencies under study here. As the region wheret'0 is
approached, a contribution from the cascade process app
superposed on a background from the direct process.

The second term in the brackets of Eq.~5! describes the
interference of the direct and cascade scattering mechani
Even for smallx (3), when direct four-photon scattering
not observed, the interaction of these two processes may
tort the scattering profile. The cascade process in itse
described by the third term in the square brackets of Eq.~5!.
In its pure form, forb50 the cascade process has a li
profile given by the product of the function Sinc2(DkL/2)
and the Lorentz factor 1/(ap

214t2). The region where the
cascade process can be observed in Fig. 4 must lie nea
intersection of the curves corresponding to the condit
Dk50 ~the smooth curve! andt50 ~dashed curve!. The size
of the region depends on the lengthL of the interaction re-
gion ~i.e., on the width of the principal maximum of th
function Sinc2(DkL/2)!, the absorption at the polariton fre
quency~i.e., the width of the Lorentz factor 1/(ap

214t2)!,
and the frequency–angular structure of the pump source
the observed scattering pattern we observed neither a d
contribution from direct four-photon scattering nor an inte
ference structure in the scattering profiles associated with
second term in the brackets of Eq.~5!. This indicates that the
effective components of the cubic susceptibility are sm
Our estimates yieldbap,1022, which corresponds to
x (3)ap /x1

(2)x2
(2),103 cm21.

Incoherent cascade scattering, which is evidently a
possible in our experimental arrangement, should be m
tioned separately. This process reduces to spontaneous
tering of the pump probe wave on polaritons under con
tions such that the population of the polariton state chan
during parametric mixing of the two exciting pump wave
In this case the scattering profile must be described by
product of Lorentz factors with the same width determin
only by the parameterap :
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wheres5kS2kL1kp is the detuning in the spatial synchro
nism for the second stage of the cascade interaction.
synchronism curves50 passes near the curvesDk50 and
t50 ~shown in Fig. 4 as a dot-dashed curve!. The funda-
mental qualitative difference in the line profiles for cohere
and incoherent cascade scattering lies in the possibility
observing a scattering profileI S(a) with two peaks. A de-
pendence of the form~7! should not give rise to double peak
in the scattering profile. The observation of double peaks
our experiment indicates that the cascade scattering is co
ent.

A comparison of the experimental data with the theor
ical picture indicates that the observed scattering is pu
cascade and coherent. Intense narrow single scattering p
are observed near the intersection of the exact synchron
curve for the four-wave interaction and the synchroni
curve for generating a polariton wave. With increasing d
tance from the intersection point the widths of the maxim
increase and the intensity falls off fairly rapidly. The inte
sity of the four-wave scattering is substantially higher th
that of the spontaneous three-wave scattering of the pr
pump light only within a narrow~on the order of a few
degrees! angular range of variation inu1 . Assuming purely
cascade scattering, we have calculated the interaction pa
eters for which each of the experimentally measured sca
ing line profiles is best fit by an expression of the form~5!
with b50. The fitting parameters that were varied were t
polariton absorptionap , the length of the interaction regio
L, and the effective diameter of the pump beams at the
cussing lensesd, since according to our optical arrangeme
the cross sections of the unfocussed beams of all three p
lasers were the same. Then the effective diameter of
pump beams and the focal lengths of the lenses ultima
determined the divergence of the radiation incident on
crystal. For each spectrum measured at the signal freque
which corresponded to a polariton frequency of 558.5 cm21,
we obtained essentially a single set of values for the opti
fit parameters: ap52362 cm21, d51.25 mm, and
L50.8– 1.0 mm.

These values of the beam parametersd and L are in
agreement with the optical layout.L could vary from spec-
trum to spectrum owing to incomplete overlap of the pum
beam cross sections in the crystal. The rather good const
of the fitting parameters over the entire series of meas
ments indicates that the model we have chosen is va
However, the values of the polariton absorption do not ag
at all with data from other methods. The results from thre
photon spectroscopy differ from our valueap523 cm21 by
more than an order of magnitude. A calculation of the a
sorption based on an oscillator model using well kno
data11 on the frequencies and oscillator strengths of phon
in lithium niobate yield a value forap on the order of 103

within this frequency range. The differences between the
culated values for pure lithium niobate and theap measured
by the three-photon scattering technique in an impure cry
are relatively small and can be explained by the presenc
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the Mg impurity and the different stoichiometry of the crys-
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tals. Nevertheless, they are all considerably higher than
values we have obtained by the method described ab
from four-wave k-spectra. We note that previously th
method for estimating the absorption has been used12 in a
study of surface polaritons in GaP. The magnitude of
imaginary part of the wave vector of the surface polarit
was measured. The results were of the same order of ma
tude as in our experiment. However, they were in much b
ter agreement with values calculated on the basis of the
cillator model, although, as opposed to the case of the
part of the wave vector, they did not agree completely w
the calculated results.

This disagreement casts doubt on the validity of
model used here, although it does describes all the o
features of the observed picture well. Perhaps in our case
parameterap in Eq. ~5! is not determined solely by th
imaginary part of the linear susceptibility of the crystal, b
depends on the power of the incident laser pump po
through the nonlinear susceptibility. Another reason for
observed narrowing of the polariton scattering line may
an effect of the weak photorefractive properties of crystall
Mg:LiNbO3. Regardless, the feasibility of determining th
absorption coefficient of the free polariton wave from fou
wave scattering spectra remains in question.

5. CONCLUSION

We have studied the processes leading to four-pho
scattering of light in the case of crystalline lithium nioba
which has the following previously known parameters:
fractive indices in the visible, near IR, and polariton rang
damping coefficients in the polariton region, and the mag
tudes of the quadratic polarizability. The following concl
sions are important from the standpoint of future spec
scopic applications of this type of scattering:

1. The signal has been found to be much more inte
~by roughly five orders of magnitude! than the signals from
spontaneous three-frequency parametric light scatterin
volumes on the order of 1 mm3. This indicates that it may be
possible to further reduce the test volume of the medium
is studied, and to investigate small samples and inhomo
neities in the distribution of the polariton parameters in m
roscopic objects with high spatial resolution.

2. The cascade scattering mechanism has been foun
predominate substantially at frequencies of 520– 580 cm21

in lithium niobate. This is the type of four-wave interactio
which is most sensitive to the parameters of the polari
state in materials. Our measurements indicate that the
part of the polariton wave vector and the refractive index
a crystal at the polariton frequency can be determined w
high accuracy. In analyzing the experimental data prese
in Fig. 4 we have used a value,np56.270, for the ordinary
refractive index which is more accurate than the that
tained from experiments employing three-photon scatter
A change in this value by just 0.005 leads to complete d
agreement between the observed and theoretical pictu
Meanwhile, the spontaneous three-wave light scatte
method in this part of the polariton spectrum is several tim
less accurate.
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vector from the four-wave scattering line profile on the ba
of the existing theory4,5,7,8 leads to results that are not con
sistent with data from other methods for lithium nioba
crystals:

The main points at which four-wave polariton spectro
copy is inferior to three-wave spontaneous polariton lig
scattering are:

~a! the need to satisfy a large number of synchroni
conditions and, as a consequence, more complicated a
ment of the spectrometer optics in order to observe the
nal;

~b! the possible simultaneous occurrence of several p
cesses and their interference which means that the initia
terpretation of the spectra is not unique;

~c! the relative complexity of the experimental appar
tus, including two or three laser sources, one of which
frequency-tuneable, etc.; and

~d! there is some doubt of the feasibility of measuri
the imaginary parts of the polariton wave vector and
dielectric constant of the medium.

In any case, it must be recognized that four-wave sp
troscopy is not currently as well developed for crystals as
the four-wave coherent spectroscopy of gases and conde
media. Three-wave spontaneous Raman scattering rem
as before, essentially the only widely used light scatter
technique for studying crystals. Nevertheless, the most
portant advantage of four-wave spectroscopy is its m
higher sensitivity. It appears that the prospects for the furt
development and use of this method for studying polari
states in crystals exist only in combination with the thre
wave technique. Preliminary three-wave spectroscopy d
on the character of the polariton dispersion greatly simplifi
the procedure for adjusting the spatial synchronism in or
to observe a four-wave interaction signal. In this regard
ing the Stokes variant of the four-wave interaction is of sp
cial interest. A Stokes scheme makes it possible to proc
in the simplest way from observing four-wave scattering t
spontaneous three-wave scattering regime. since the s
light lies in the same spectral and angular regions. Our s
ies show, however, that full realization of this method r
quires further development of scattering theory including
sorption at the polariton frequency. As before, the search
new spectroscopic schemes that will ensure easier satis
tion of the spatial synchronism conditions remains a press
problem.

We thank S. P. Kulik and M. V. Chekhova for valuab
comments and help in preparing the manuscript. This w
was supported by the Russian Fund for Fundamental
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Time reversal during magnetization of gas atoms by a resonant light pulse

ic
A. I. Alekseev

Moscow State Engineering Physics Institute, 115409 Moscow, Russia
~Submitted 24 December 1996!
Zh. Éksp. Teor. Fiz.112, 453–469~August 1997!

The optically induced magnetic moment of a stationary atom is calculated as a function of time
and the resonance detuningv2vba to within a constant factor having the dimensions of a
magnetic moment based on the symmetry of an atom in the field of a resonant light pulse and
symmetry with respect to time reversal including the initial conditions. The even
dependence of the optically induced magnetic moment onv2vba for an elliptically polarized
pulse with an isotropic initial state of the atom and its odd dependence onv2vba in the
case of a linearly polarized pulsed with an anisotropic initial state in the atom’s alignment are
shown to be consequences of symmetry with respect to time reversal and the initial
conditions. This behavior is retained even after passage of the light pulse, when the resulting
relaxation destroys the time reversal symmetry. The optically induced magnetization of
an atomic gas is found to have analogous properties. ©1997 American Institute of Physics.
@S1063-7761~97!00508-8#
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Optically induced nonlinear magnetization of gases a
solids is widely used in basic studies of the interaction
laser light with matter~for example, gases1–3 and solids;4–6

see also the references given there!. These studies have give
rise to a number of fundamental problems. One such pr
lem is an experimental observation1,2 of magnetization in
isotropic atomic gases by resonant linearly polarized li
pulses that is not consistent with symmetry. Thus, some
viously unexamined aspects of this optical phenome
merit further study.

This article is a theoretical study of the magnetization
gas atoms by a resonant light pulse with wave vectork and
elliptical lkl (l561) or linearlk polarization when there is
symmetry with respect to time reversal, i.e.,t8→2t8, where
t8 represents the time including wave retardation. The du
tion t of the light pulses is short compared to the radiat
lifetime of the excited state, so that relaxation does not oc
during the interaction of an atom with a light pulse in t
interval 0<t8<t. Here the initial state att850 plays an
important role as it determines the symmetry of the atom
the field of the light pulse, which sets a direction for t
induced magnetic moment of the atom,mat

(q)(t8), with q50
and q52, respectively, for isotropic and anisotropic initi
alignment states of the atom. Furthermore, a perturbative
lution of the quantum mechanical equation for the dens
matrix including the initial conditions when symmetry wit
respect to time reversal is present yields an even depend
on the resonance detuningv2vba for mat

(0)(t8) and an odd
dependence format

(2)(t8). Finally, mat
(q)(t8) is given in the

form of a product of three factors, of which the first dete
mines the vector properties, the second has the dimensio
a magnetic moment and depends on the characteristics o
resonant transition, and the third is a universal function ot8
andv2vba which is independent of the atomic character
tics. Finally, the following fundamental manifestation
time reversal during magnetization of a stationary atom b
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magnetic moment is proportional to the axial vect
i @ lkllkl* #, then it is an even function ofv2vba with a maxi-
mum atv5vba . If the induced atomic magnetic moment
proportional to an axial vector which is invariant with re
spect to the transformationk→2k, then it is an odd function
of v2vba with a maximum at 0,uv2vbau. Here these
axial vectors are determined by the symmetry of the atom
the resonant pulse field including the initial state. The beh
ior found here makes it possible to determine the vec
properties of the optically induced magnetic moment, as w
as the dependence on time andv2vba without solving the
equation for the density matrix in detail and without calc
lating the sum over the projections of the angular mome
in the formula for the optically induced magnetization. T
optically induced magnetic moment is then obtained
within a common factor having the dimensions of a magne
moment.

Within an intervalt,t8<` after passage of a resona
light pulse, the excited atomic state decays owing to spo
neous emission of a photon\vba and the resulting relaxation
destroys the time-reversal symmetry. However, the direc
of the induced magnetic momentmat

(q)(t8) established during
the previous time interval 0<t8<t and its characteristic de
pendence onv2vba remain the same in the following inter
val t<t8<` because the functionmat

(q)(t8) is continuous at
the timet85t. In the presence of relaxation,mat

(q)(t8) breaks
up into the sum of two terms, each of which can be cal
lated to within a common factor that has the dimensions o
magnetic moment.

These results are applicable to a gas of identical ato
and the magnetic moment per unit volume is calculated
the optically induced magnetization of this gas,mq(t8), with
q50 andq52 for isotropic and anisotropic initial states o
the gas. Calculations show that the vector properties of
optically induced magnetization of the atomic gas and
characteristic dependence onv2vba are the same as for a
isolated atom, although the functional dependence on t

24809$10.00 © 1997 American Institute of Physics
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magnetization of gas atoms by a resonant light pulse
shows up in the optically induced magnetization. Within t
interval 0<t8<t, mq(t8) is calculated to within a common
factor having the dimensions of a magnetic moment dens
Meanwhile, fort<t8<`, mq(t8) has the form of a sum o
two terms with similar common factors. The uncalculat
common factors in the formulas formq(t8) at times 0<t8<t
andt<t8<` will not affect experimental studies of the ve
tor properties of the optically induced magnetizationmq(t8)
and its dependence on time andv2vba which employ mea-
surements of the electromotive force in a detector coil
relative units.1,2,4–6

2. STATEMENT OF THE PROBLEM

Let us consider an atom in a center of mass coordin
system which, in the absence of a constant magnetic fiel
characterized by the Hamiltonian

H5(
n

1

2m Fpn2
e

c
A~rn,t !G2

1U in , ~1!

wherem, e, andrn are the mass, charge, and radius vecto
thenth electron,pn52 i\¹n is its momentum operator,c is
the speed of light in a vacuum, andUin is the interaction
energy of the electrons among themselves and with
nucleus which lies at the center of mass of the atom. T
vector potentialA(rn ,t) is related to the electricE(rn ,t) and
magneticH(rn ,t) fields by the equations

E~rn ,t !52
1

c

]

]t
A~rn ,t !, H~rn ,t !5curlnA~rn ,t !.

~2!

The wave functionC of the atom satisfies the Schro¨-
dinger equation

i\
]C

]t
5HC, ~3!

and the electric current densityjn created by thenth electron,
including its spin, has the form

jn5
e

2m
~C* pnC1Cpn* C* !2

e2

mc
A~rn ,t !C* C

1
e\

m
curlnC* snC, ~4!

wheresn is the spin operator of thenth electron. When the
electron spin of the atom is taken into account, the wa
function C also depends on the spin variables. Because
the current~4!, the atom has a magnetic moment

mat~ t !5
1

2c E (
n

@rnjn#drn , ~5!

where, besides taking the integral over the electron coo
nates, one takes the sum over the spin variables in the cu
jn .

Time-reversal symmetry exists for a given atom if t
simultaneous substitutions
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leave the electric fieldE(rn ,t) unchanged and change th
sign of the magnetic fieldH(rn ,t). This symmetry shows up
in the replacement of the wave function by its complex co
jugate with the substitution~6!; i.e.,

C→C* , ~7!

while the Schro¨dinger equation~3! is unchanged.7 Here the
electric current density~4! changes sign.7,8 Thus, the mag-
netic moment~5! also changes sign with time reversal~Eqs.
~6! and ~7!!, i.e., mat(2t)52mat(t). This last result was
obtained without using the initial conditions att50, whose
inclusion may lead to other features of the magnetic mom
~5! associated with time reversal~Eqs.~6! and ~7!!.

If the atom interacts with a resonant light pulse, then
initial state att50, prior to the interaction with this pulse
will play a major role. In addition, some time aftert50, the
relaxation owing to spontaneous emission becomes im
tant. In order to determine the behavior of the magnetic m
ment ~5! in this case, it is reasonable to consider the Sch¨-
dinger equation~3! in the dipole approximation, setting
A(rn ,t)5A(0,t) in the Hamiltonian~1! and, therefore, in the
current~4!. Then, it is necessary to make a transformatio

C5w expS (
n

iernA~0,t !

\c D , ~8!

in the Schro¨dinger equation~3! such that the new wave func
tion w including Eq.~2! satisfies another Schro¨dinger equa-
tion

i\
]w

]t
5~H02dE~0,t !!w, ~9!

containing the free atom hamiltonian

H05(
n

pn
2

2m
1U in

and the interaction energy2d–E(0,t) of the dipole moment
d5Snern of the atom with the electric fieldE(0,t) at the site
rn50 of the nucleus~the center of mass of the atom!. After
the transformation~8!, the formulas for the current~4! and
magnetic moment~5! become much simpler:

jn5
e

2m
~w* pnw1wpn* w* !1

e\

m
curlnw* snw,

mat~ t !5
e\

2mc E (
n

w* ~Ln12sn!wdrn , ~10!

whereLn is the orbital angular momentum operator of t
nth electron.

Let us assume thatLS-coupling exists in an atom with
zero nuclear spin with definite values of the quantum nu
bersJ, L, andS corresponding to the operators for angu
momentumJ5L1S, orbital angular momentumL5SnLn ,
and spinS5Snsn . Then the state of the atom is convenien
described by a representation in which the square of the
gular momentum and its projection on the quantization a
have definite values. In this representation the magnetic
ment ~10! is written as9
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m ~ t !52m E w* ~q,t !gJw~q,t !dq, ~11!
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where

mB5
ueu\
2mc

, g511
J~J11!2L~L11!1S~S11!

2J~J11!
,

mB is the Bohr magneton,g is the Lande´ g-factor,q is the set
of variables required to describe the state of the atom, anddq
includes a sum over the spin variables.

The general case, where an atom moves in the labora
coordinate systemx, y, z at constant velocityv in an electric
field E(r ,t), is of practical interest. The behavior of the ato
is described with the aid of the density matr
r5w* (q8,r ,t)w(q,r ,t), wherer is the radius vector of the
center of mass of the atom andq is the set of variables fo
describing the atomic state in the center of mass coordina
Given Eq.~9!, the density matrixr5r(q8,q,r ,t) satisfies the
equation

S ]

]t
1v¹ D r5

i

\
@~H082d8E~r ,t !!r2~H02dE~r ,t !!r#,

~12!

where the hamiltonianH0 and the dipole momentd are taken
in the center of mass coordinate system. The magnetic
ment ~11! is expressed in terms of the density matrix
follows:

mat~ t8!5
e\

2mc E ~J1S!r~q8,q,r ,t !uq85qdq. ~13!

Under time reversal and with the simultaneous subst
tions v→2v and r→r* , Eq. ~12! does not change, while
the sign, but not the magnitude, of the magnetic moment~13!
changes. By transforming to the matrix representation in
~12! we can easily account for relaxation and the initial co
ditions when calculatingr and the magnetic moment~13!.
This makes it possible to examine both short time interv
within which time-reversal symmetry exists, and long tim
intervals, accounting for relaxation, which destroys the tim
reversal condition.

3. MAGNETIZATION OF AN ATOM IN AN ISOTROPIC
INITIAL STATE

Let an atom move at constant velocityv in a laboratory
center-of-mass coordinate systemx, y, z within a volume in
which a resonant light pulse

E~r ,t !5 lkla~ t8!exp~2 ivt8!1c.c., ~14!

is propagating, where

t85t2t02k~r2r0!/v, ~15!

lkl is the elliptical polarization vector with indicesl51 and
l521, respectively, for right- and left-hand rotation of th
electric field vectorE5E(r ,t), anda(t8) is the real ampli-
tude, which is a slowly varying function compared to t
exponential exp(2ivt8). The leading edge of the light puls
~14! crosses the boundary pointr0 of the volume at timet0

and reaches the siter of the center of mass of the atom
time t. The frequencyv is close to the dipole transition
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energies of the ground and excited states of the free at
The atomic state is characterized by these energies, but
by the quantum numbersJa andJb for the angular momen-
tum J and its projectionsMa and Mb on the quantization
axis. Regardless of the choice of coordinate system, the
tor lkl has the form

lk15 lk
~1! cosc1 i lk

~2! sin c ~16!

for right polarization withl51 and

lk,2152 lk
~1! sin c1 i lk

~2! cosc ~17!

for left polarization withl521. Here the argumentc takes
values 0<c<p/2. The ratio of the axes of the polarizatio
ellipse in Eqs. ~16! and ~17! is given, respectively, by
«15sinc /cosc and«215cosc /sinc, where«1«2151. If
c5p/4, then«15«2151 and the polarization ellipse trans
forms to a circle, while Eqs.~16! and ~17! describe right-
circular and left-circular polarizations. If we setl51 and
c50 or l521 andc5p/2, then Eqs.~14!–~17! describe a
linearly polarized pulse. The unit vectors in Eqs.~16! and
~17! satisfy the equations

kl k
~1!5kl k

~2!5 lk
~1!lk

~2!50, l2k
~1!5 lk

~1! , l2k
~2!52 lk

~2! , ~18!

and

@ lk
~1!lk

~2!#5k/k, l2kl5 lkl* , lkllkl8
* 5dll8 . ~19!

On examining the behavior of the vectors~16! and~17!,
using the conditions~18! and ~19! and making the substitu
tion k→2k and the inversionx→2x, y→2y, z→2z, we
can show that

i @ lkllkl* #5~k/k!lb sin~2c!, ~20!

whereb is the unit pseudoscalar, which equals 1 and21 in
right and left hand coordinate systems, respectively. This
can be taken in the formb5( lx3 ly)–lz , wherelx , ly , andlz
are the unit vectors for a right hand cartesian coordinate
tem x, y, z. Then, along with Eq.~20!, we find

lkl
2 5l cos~2c!.

These vector and scalar products of the polarization v
tors ~16! and ~17! are useful in a number of problems co
cerning reversal, as well as the substitutionsk→2k and
l→2l, which occur in isolation or in various combina
tions. In these cases, besides the argumentc we can use the
ratio «l of the elliptic axes of polarization withl51 and
l521 because of the equalities

sin~2c!5
2«l

11«l
2 , cos~2c!5

l~12«l
2!

11«l
2 ,

where on going from right~left! to left ~right! polarization
the quantities sin(2c) and cos(2c) do not change, since
«1«2151.

The pulse durationt is short compared to the radiativ
lifetime g21 of the excited state of the atom, i.e.,

gt!1, ~21!

where
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g is the probability of spontaneous emission of a photon w
energy\vba by the isolated atom, anddba is the reduced
dipole moment.9 The inequality~21! allows us to neglect
relaxation and use Eq.~12! for studying the interaction of the
atom with the pulse~14! in the time interval 0<t8<t,
where, because of Eq.~15!, the density matrixr is a function
of t8. We also note that the leading edge of the pulse fr
~14! passes through the center of mass of the atom at
t5t01k–(r2r0)/v or t850, while prior to the interaction
with the pulse~14!, the atom is in an equilibrium isotropi
state. Thus, in theJM-representation, the initial value of th
density matrixr5r(t8) at t850 can be written in the form

rMb ,M
b8
~0!5rMbMa

~0!50,

rMaM
a8
~0!5~2Ja11!21dMaM

a8
. ~22!

If the amplitude a(t8) is an even function, i.e.
a(2t8)5a(t8), then specifying it in the region 0<t8<` in
the form a(t8) for 0<t8<t and a(t8)50 for t,t8<` is
equivalent to specifying this amplitude on the entire tim
axis 2`<t8<`. If the specified amplitudea(t8) depends
arbitrarily on t8 in the interval 0<t8<t and a(t8)50 for
t,t8<`, then we define the amplitudea(t8) on the nega-
tive time half axis2`<t8<0 formally asa(t8)5a(2t8)
for 2t<t8<0 and a(t8)50 for 2`<t8,2t. Then the
field ~14! and Eq.~12! do not change under the simultaneo
substitutions

t→2t, t0→2t0 , k→2k, v→2v, r→r* ,
~23!

which are accompanied by the substitutiont8→2t8. If the
amplitudea(t8) is an odd function, i.e.,a(2t8)52a(t8),
then specifying it in the region 0<t8<` is equivalent to
specifying this amplitude on the entire time ax
2`<t8<`. However, it must enter Eq.~14! in the form
a(t8)exp(ip/2) or a(t8)exp(2ip/2) so that the substitution
~23! will not change the electric field~14!. Thus, in all the
following formulas, for an odda(t8) it is necessary to make
the substitution a(t8)→a(t8)exp(ip/2) or
a(t8)→a(t8)exp(2ip/2).

For an atom in an electric field~14! with this amplitude
a(t8) there is a symmetry with respect to the time-rever
~23! and, in the absence of relaxation, the magnetic mom
~13! obeys the equation

mat~2t8!52mat~ t8!. ~24!

This property of the magnetic moment has been obtai
without using the initial conditions~22!. In this problem,
however, the timet5t01k–(r2r0)/v or t850 is the onset
time for the interaction of the atom with the field~14! in the
interval 0<t8<t. Thus, here when there is symmetry wi
respect to time reversal~23!, the origin t850 on the time
axis in the region2`<t8<` is a physically distinct time. If
we calculate the magnetic moment of the atom using E
~12!–~22!, then, besides the properties~24!, we can find
other characteristics ofmat(t8) that result from the time re
versal symmetry~23! and the initial conditions~22!.
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gether with conditions~22!! implies that the optically in-
duced magnetic moment~13! is proportional only to the axia
vector ~20! in this case. In order to find the other characte
istics, we shall use Eq.~12! in the interval 0<t8<t in the
JM-representation:

S ]

]t
1v¹1 ivbaD rMbMa

5
i

\
~EdMbM

a8
rM

a8Ma

2rMbM
b8
EdM

b8Ma
!, ~25!

S ]

]t
1v¹ D rMbM

b8
5

i

\
~EdMbMa

rMaM
b8
2rMbMa

EdMaM
b8
!,

~26!

S ]

]t
1v¹ D rMaM

a8
5

i

\
~EdMaMb

rMbM
a8
2rMaMb

EdMbM
a8
!,

~27!

as well as Eq.~13! in the JM-representation,

mat~ t8!52mB@gaJM
a8Ma

rMaM
a8
~ t8!

1gbJM
b8Mb

rMbM
b8
~ t8!#, ~28!

wherega andgb are the Lande´ g-factors for the ground and
excited states of the atom. Repeated matrix subscripts de
summation.

On solving Eqs.~25!–~27! by second order perturbatio
theory in the field~14! and using Eq.~22!, we find that the
density matrices for the ground and excited levels have
same dependences on the timet8 and resonance detunin
v2vba2k–v when there is a Doppler shiftk–v in the fre-
quency~14! of the pulse; specifically,

rMaM
a8
~ t8!5RMaM

a8
I ~ t8!1H.c.,

rMbM
b8
~ t8!5RMbM

b8
I ~ t8!1H.c., ~29!

where

I ~ t8!5E
0

t8
dt2E

0

t2
dt1a* ~t2!a~t1!exp@ iD~t22t1!#,

~30!

D5v2vba2kv,

RMa ,M
a
8 and RMb ,M

b
8 are matrices that can only be define

through detailed calculation. Substitution of the quantit
~29! in Eq. ~28!, breaks up the magnetic momentmat(t8) into
a sum of terms proportional toI (t8) andI * (t8). These terms
must containI (t8) and I * (t8) in a combination such tha
after the substitutions~23!, the equality~24! will be satisfied.
This implies that owing to Eq.~20! the unknown vector
mat(t8) is proportional to the sumI (t8)1I * (t8). Thus, given
Eqs.~20! and~29!, the magnetic moment~28! can be written
in the form

mat~ t8!52~k/k!lb sin~2c!M0X̃0~ t8,D!, ~31!

and

X̃0~ t8,D!5~ta0!22@ I ~ t8!1I * ~ t8!#, ~32!
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terval 0<t8<t, M0 is a constant with the dimensions of
magnetic moment which depends on the characteristic
the resonant transition, andX̃0(t8,D) is a universal function
of t8 andD which is independent of the characteristics of t
resonant transition.

The vector properties of the magnetic momentmat(t8) in
Eq. ~31! are caused by the symmetry of the atom in the fi
~14! with the initial conditions~22!; this leads to an expres
sion for the axial vector~20!. Meanwhile, the even depen
dence ofmat(t8) on the resonant detuningD is caused by
symmetry with respect to time reversal~23! in the presence
of the axial vector~20!. The constantM0 is determined by
detailed calculation of the density matrices~29! in the course
of solving Eqs.~25!–~27! with Eq. ~22! and subsequently
taking the sum in Eq.~28! over the projections of the angula
momenta of the atom in the ground and excited states. T
behavior format(t8) with a more complicated dependence
t8 andD can also be obtained outside the framework of p
turbation theory for ultrashort rectangular pulses with circ
lar polarization, as follows from a rigorous solution10 of the
problem without relaxation.

4. MAGNETIZATION OF AN ATOM IN AN ANISOTROPIC
INITIAL STATE

We now examine the magnetization of an atom by
resonant linearly polarized pulse

E~r ,t !5 lka~ t8!exp~2 ivt8!1c.c., ~33!

wherelk is the unit polarization vector which is independe
of the transformationk→2k, as Eqs.~16!–~19! imply. The
other physical quantities in Eq.~33! are the same as in Eq
~14!. Here Eqs.~25!–~27! and Eq.~28!, as well as the dis-
cussion regarding the amplitudea(t8), are still valid for the
pulse~33!. According to Eq.~31!, a linearly polarized pulse
does not magnetize an atom in an isotropic initial state~22!.
Thus, we assume that prior to the interaction with the pu
~33!, the atom was optically polarized by a strong reson
linearly polarized pulse with wave vectork0 collinear tok
and a unit polarization vectorl0 which is unaffected by the
substitutionk0→ 2 k0 . Then the initial conditions for Eqs
~25!–~27! in the JM-representation take the form

rMbMa
~0!5rMbM

b8
~0!50, rMaM

a8
~0!5rMaM

a8
al

, ~34!

where the density matrixr
Ma , M

a
8

al
describes the initial opti-

cally polarized atom for 1<Ja , which is referred to as the
atomic alignment~see Alekseev,11 for example!. Here the
alignment of the atom is characterized by two orthogo
symmetry axes, of which the first is directed alongl0 and the
second is collinear withk0 . In this case, when the atom
interacts with the pulse~33!, there is a single axial vecto
corresponding to the given symmetry which determines
direction of the magnetic moment~28! and has the form

@ l0lk#5~k/k!sin wk , ~35!

where the positive direction for the anglewk is clockwise
from the unit vectorl0 to the unit vectorlk on looking along
k. Thus, on making the substitutionk→2k we have
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scalar. In addition, of the two orthogonal symmetry ax
only one has the specified directionl0 , while the direction of
the other axis is not specified~is equally probable!. The di-
rection of the third axis, which is orthogonal to these two,
also not specified and is equally probable. Thus, for an
tially aligned atom the magnetic moment~28! should not
change if one chooseslk parallel or antiparallel to the third
axis. These two directions oflk correspond to angle of rota
tion wk5p/2 and wk52p/2. Invariance of the magnetic
moment~28! with respect to such rotations under these sy
metry conditions can be attained after multiplying the ax
vector~35! by coswk . Thus, the unknown magnetic mome
~28! in this case is proportional to the axial vector

~k/k!sin~2wk!. ~36!

For the initial conditions~34! the dependence of the den
sity matrices~29! on t8 and D is valid for other values of
RMa , M

a
8 and RMb , M

b
8 compared to the isotropic case~22!.

We note also that for an initially aligned atom in the field
a linearly polarized pulse~33! there is a symmetry unde
time-reversal~23! which yields Eq.~24!. This equality is
possible only if after substituting the density matrices~29! in
Eq. ~28! the I (t8) andI * (t8) entermat(t8) in the form of the
real combinationi @ I * (t8)2I (t8)#. Ultimately, the magnetic
moment~28! for an initially aligned atom has the form

mat~ t8!52~k/k!sin~2wk!M2X̃2~ t8,D!, ~37!

where

X̃2~ t8,D!5 i ~ta0!22@ I * ~ t8!2I ~ t8!#. ~38!

Here the constantM2 , which has the dimensions of a mag
netic moment, is calculated by taking the sum in Eq.~28!
over the projections of the angular momenta. The subscri
on M2 and in the universal functionX2(t8,D) is chosen so
that it coincides with the rank of the polarization multipo
moment characterizing the atomic alignment in Eq.~34!. The
vector properties of the magnetic moment in Eq.~37! are
found as a consequence of the symmetry which exists du
the interaction of an initially aligned atom with a linear
polarized pulse~33!. In the meantime, the odd dependen
on D in Eq. ~37! is caused by the symmetry under tim
reversal~23! in the presence of the initial conditions~34!
leading to the axial vector~36!.

5. ACCOUNTING FOR RELAXATION IN THE
MAGNETIZATION OF AN ATOM

For ultrashort pulses~14! and ~33! which satisfy the in-
equality ~21! there is no relaxation in the interval 0<t8<t
and the induced magnetic moments~31! and ~37! are given
by

mat
~q!~ t8!52LqMqX̃q~ t8,D!, q50, 2, ~39!

where

L05~k/k!lb sin~2c!, L25~k/k!sin~2wk!. ~40!

On the other hand, relaxation must be taken into acco
for t,t8<`, i.e., after pulses~14! and ~33! have passed
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density matrices for the excited and ground states includ
relaxation in the regiont,t8<` as

S ]

]t
1v¹1g D rMbM

b8
~ t8!50, ~41!

and

S ]

]t
1v¹ D rMaM

a8
~ t8!

5
g~2Jb11!

udbau2 dMaMb
rMbM

b8
~ t8!dM

b8M
a8
, ~42!

where the density matrices are regarded as functions of
time t8 including the wave retardation~15!, since the initial
conditions for Eqs.~41! and ~42! are formulated in thet8
time scale and are determined by the density matrices~29!
for t85t in the form

rMbM
b8
~t!5RMbM

b8
I ~t!1H.c.,

rMaM
a8
~t!5RMaM

a8
I ~t!1H.c. ~43!

The solution of Eqs.~41! and ~42! including Eq.~43! is
valid for t<t8<` and has the form

rMbM
b8
~ t8!5rMbM

b8
~t!exp@2g~ t82t!#. ~44!

and

rMaM
a8
~ t8!5rMaM

a8
~t!1

2Jb11

udbau2
dMaMb

rMbM
b8
~t!

3dMbM
a8
$12exp@2g~ t82t!#%, ~45!

where small terms of orderv/c have been omitted.
After passage of the pulses~14! and ~33! the excited

state of the atom is quenched because of relaxation in
~44!. Thus, with time the magnetic moment~28! in the ex-
cited level decays to zero, while, because of Eq.~45!, that at
the ground state approaches a constant value. Here relax
in t,t8<` has no effect on the symmetry of the atom in t
fields ~14! and~33! within the earlier time interval 0<t8<t
which determined the directions of the induced magne
moments with the aid of the vectors~40!. In addition, ac-
cording to Eqs.~44! and~45! the dependence of the magne
moment~28! on D for t<t8<` is determined by the initia
conditions~43! and has the same character as in the prec
ing interval 0<t8<t. This implies that after substitution o
the density matrices~44! and ~45! in Eq. ~28!, the induced
magnetic moment fort<t8<` has the form

mat
~q!~ t8!52LqX̃q~t,D!$Mq

a1Mq
ab1~Mq

b2Mq
ab!

3exp@2g~ t82t!#%, q50, 2, ~46!

whereMq
a , Mq

ab , andMq
b are constants with the dimension

of a magnetic moment which are determined only by deta
calculation. The requirement of continuity in the induc
magnetic momentmat

(q)(t8) as a function oft8 leads to the
equationMq

a1Mq
b5Mq .
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t85t, which is given by Eqs.~39! and ~46! in the intervals
0<t8<t and t<t8<`, that the vector properties of th
magnetic moment~28! over the entire region 0<t8<` are
determined by the symmetry during the interaction of t
atom with fields~14! and ~33! with the initial conditions at
t850 taken into account. The characteristic dependence
D in Eqs.~39! and~46! is, however, determined by symmetr
with respect to time reversal~23!, which existed in the inter-
val 0<t8<t without relaxation. Here for Eq.~46! in the
interval t,t8<` Eq. ~24! loses its significance.

6. THE TIME REVERSAL EFFECT FOR OPTICALLY INDUCED
MAGNETIZATION OF A GAS

We now apply Eqs.~39! and ~46! to a gas of identical
atoms within the volume under consideration. Then we fi
that the optically induced magnetizationmq(t8) of this gas
owing to elliptically polarized~14! and linearly polarized
~33! pulses is given by

mq~ t8!52LqNMqXq~ t8,v2vba!, 0<t8<t, ~47!

and

mq~ t8!52LqNXq~t,v2vba!$Mq
a1Mq

ab1~Mq
b

2Mq
ab!exp@2g~ t82t!#%, t<t8<`, ~48!

where

Xq~ t8,v2vba!5E f ~v !X̃q~ t8,D!dv, q50, 2,

f ~v !5
1

~p1/2u!3 expS 2
v2

u2D , u5S 2kBT

mat
D 1/2

,

N is the density of atoms,f (v) is the Maxwellian distribu-
tion function,u is the most probable velocity,kB is the Bolt-
zmann constant,T is the gas temperature, andmat is the
mass of an atom. The universal functionsXq(t8,v2vba)
with q50.2 after integration over the velocityv take the
form

X0~ t8,v2vba!52~ta0!22E
0

t8
dt2E

0

t2
dt1a* ~t2!a~t1!

3expF2S t22t1

2tD
D 2Gcos@~v2vba!~t2

2t1!#, ~49!

and

X2~ t8,v2vba!52~ta0!22E
0

t8
dt2E

0

t2
dt1a* ~t2!a~t1!

3expF2S t22t1

2tD
D 2Gsin@~v2vba!~t2

2t1!#, ~50!

wheretD51/ku is the Doppler relaxation time. Because
averaging over the velocityv, the universal functions~49!
and ~50! have more complicated dependence ont8 and
v2vba than Eqs.~32! and ~38!, but the even and odd de
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the quantities~49! and~50! also depend on the gas temper
ture T and atomic massmat . In the case of an ultrashor
elliptically polarized pulse~14! the results for the optically
induced magnetization of the gas~47!–~49! are in agreemen
with previous work10 if there we setNa5N, gb5g, and
Nb2ga50, and use the equation

~ta0!2X0~ t8,v2vba!5E f ~v !U E
0

t8
a~j!

3exp~2 iDj!djU2

dv.

In some experiments1,2 on optically induced magnetiza
tion of a gas the resonant light pulses were passed throu
cell with the test gas mounted inside a pickup coil. The va
able optically induced magnetization excited an electri
current in the winding of the pickup coil and created a p
tential difference between its ends of

U~ t8!52Cn
dmq~ t8!

dt8
, q50, 2, ~51!

where the constantC depends on the experimental circu
and the unit vectorn is collinear withk and determines a
fixed direction for which the magnetic induction flux is me
sured. Thus,U(t8) represents an electromotive force in t
pickup coil which makes it possible to study experimenta
the vector properties of the optically induced magnetizat
and its dependence ont8, v2vba , g, T, andmat .

For comparison with experiment in the interval 0<t8<t
it is necessary to use Eq.~47! and then the electromotiv
force ~51! can be measured in relative units as

U~ t8!

CNMq
5nLq

dXq~ t8,v2vba!

dt8
, q50, 2. ~52!

Because of Eq.~48!, in the other intervalt,t8<` we
have

U~ t8!@Ct21N~Mq
ab2Mq

b!#21

5nLqgtXq~t,v2vba!exp@2g~ t82t!#, q50, 2,

~53!

which makes possible an experimental determination of
width \g of the excited level, as well as the dependence
t8, v2vba , T, andmat .

The variable optically induced magnetization att850 is
zero, while at later timesg21!t8 it takes the asymptotic
valuemq(`). Thus, after integrating both parts of Eq.~51!,
we find

E
0

`

U~ t8!dt852Cnmq~`!, q50, 2.

This implies that by numerically integrating the expe
mental plot ofU(t8) as a function oft8 for an isolated reso-
nant light pulse~14! or ~33! one can determine the univers
functionsXq(t,v2vba) with q50, 2 as a result of the equa
tion
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~54!

In experiments with gases1,2 and solids4–6 the electromo-
tive force~51! has been measured in relative units. Equatio
~52!–~54! also containU(t8) in relative units. If the experi-
mental methods of Refs. 1, 2, and 4–6 are used, then
uncomputed constantsMq , Mq

a , Mq
b , andMq

ab in Eqs.~47!
and ~48! do not affect the experimental study of the vect
properties of the optically induced magnetizationmq(t8)
with q50, 2 or its dependence on time and the quantit
v2vba , g, T, andmat .

As an example, let us consider light pulses~14! and~33!
with a rectangular pulse shape~amplitude!

a~ t8!5 Ha0

0
for
for

0<t8<t,
t,t8<`, ~55!

as well as with a Gaussian pulse shape

a~ t8!5a0 exp@2~ t82t/2!2/~2tp!2#, 0<t8<t, ~56!

wherea(t8)50 for t,t8<` and 4tp,t. The characteristic
time tp enters the spectral widthDv5(2 ln 2)1/2/tp of a
Gaussian pulse if the inequality 4tp,t is sufficiently strong
~e.g., 8tp<t).

In the case of an inhomogeneously broadened transi
gtD!1 holds, and the universal function~49! at time t85t
for a rectangular pulse~55! with t58tD is given by

X0~t,v2vba!5~Ap/4!exp@2~v2vba!
2tD

2 #,

and for a Gaussian pulse~56! with t58tp , by

X0~t,v2vba!5
p

16 F112S tp

tD
D 2G21/2

3expF2
2tp

2~v2vba!
2

112~tp /tD!2G .
The universal function~50! is given by the formula

X2~ t8,v2vba!52E
0

t8/t
djE

0

j

dh sin@d~j2h!#

3expH 2«F S j2
1

2D 2

1S h2
1

2D 2G
2S t

2tD
D 2

~j2h!2J , ~57!

where

d5~v2vba!t,

«50 for the rectangular pulse~55! and«5(t/2tp)2 for the
Gaussian pulse~56!. Figure 1 shows the behavior of the un
versal function~57! at a fixed timet85t for arbitrary values
of v2vba . We consider the cases of a rectangular pu
~55! with «50 and a Gaussian pulse~56! with t58tp and
«516. The strong inequalitygtD!1 for an inhomoge-
neously broadened transition made it possible to study
two limiting cases of a substantial Doppler effect wi
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FIG. 1. The universal function~57! at a
fixed time t85t and arbitrary resonant de
tunings v2vba . The smooth curve corre-
sponds to including the Doppler effect with
t510tD . The dashed curve corresponds
the case 10t5tD , when the Doppler effect
can be neglected.~a! «50 for a rectangular
pulse ~55!; ~b! «516 for a Gaussian pulse
with t58tp ~56!.
t510tD and a negligible Doppler effect with 10t5tD . The
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to
maximum of the odd functionX2(t,v2vba) for the rectan-
gular pulse~55! with «50 in the absence of the Dopple
effect (10t5tD) occurs atv2vba53.2/t, while with a
strong Doppler effect (t510tD), we havev2vba59.9/t.
A similar analysis for a Gaussian pulse witht58tp and
«516 leads to a resonant detuning ofv2vba55.3/t and
v2vba510.7/t, respectively. Evidently, the Doppler effec
reduces and broadens the main dome-shaped maximu
these curves for both pulse shapes~55! and ~56!. Further-
more, the behavior of these curves shows h
X2(t,v2vba) changes with the shape of the pulse.

Figure 2 shows the dependence of the universal func
~57! on time t8 for a fixed resonant detuningv2vba corre-
sponding to the maximum ofX2(t,v2vba) as an odd func-
tion of v2vba for a rectangular pulse~55! with «50 and a
Gaussian pulse~56! with t58tp and «516. These fixed
values ofv2vba have been taken from Fig. 1. For bo
pulses~55! and ~56! the Doppler effect significantly retard
the rise inX2(t8,v2vba) with the passage of time. In add
tion, the shape of the curves depends strongly on the p
shape.

For experimental studies of the dependence of the o
cally induced magnetizationmq(t8) with q50, 2 on the
in

n

se

ti-

~22! or ~34!, it is necessary to pass a series of light puls
~14! or ~33! with fixed polarization and amplitude, but dif
ferent frequenciesv in the neighborhood of the transitio
frequencyvba , sequentially through the test gas. Here t
light pulses must satisfy the requirement of perturbat
theory that the preceding pulse not change the initial con
tions ~22! or ~34! for the next pulse in the chosen approx
mation. Thenmq(t8) with q50, 2 for each subsequentl
passing light pulse will be given by the same formula~47!
for 0<t8<t and ~48! for t<t8<`, where the initial time
t850 is associated with the arrival of this pulse at a poinr
inside the gas volume. In addition, the light pulses must
separated by a time longer thang21 so that the preceding
pulse does not distortmq(t8) with q50, 2 for the next pulse.
In this arrangement for scanning the frequencyv, the pre-
ceding pulse creates a residual constant optically indu
magnetization, as implied by Eq.~48!. However, the latter
does not contribute to the electromotive force~51! as a func-
tion of t8 for the next pulse, so it does not show up in e
periments on the optically induced magnetization owing

an individual sequentially passing pulse~see Eqs.~51!–~54!!.
d

FIG. 2. The universal function
X2(t8,v2vba) ~57! as a function of the
time t85t for fixed resonant detunings
v2vba corresponding to the maximum
of X2(t,v2vba) as the odd function of
v2vba shown in Fig. 1. The physical
significance of the smooth and dashe
curves is as in Fig. 1.~a! «50 for a
rectangular pulse~55!; ~b! «516 for a
gaussian pulse witht58tp ~56!.
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7. DISCUSSION
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The above analysis yields the following general beh
ior. If the magnetic momentmat(t8) induced in a stationary
atom by a resonant light pulse is proportional to the ax
vector~20!, then it is an even function of the resonant detu
ing v2vba with a maximum atv5vba . If the magnetic
momentmat(t8) is proportional to an axial vector which i
invariant under the transformationk→2k of the wave vec-
tor, thenmat(t8) is an odd function ofv2vba with a maxi-
mum at 0,uv2vbau. This behavior is of a fundamenta
character, since it is a consequence of the symmetry o
atom in the field of a resonant light pulse~14! or ~33!, as
well as symmetry with respect to time reversal~23! including
initial conditions of the form~22! or ~34! at t850. This be-
havior represents an effect of time reversal during the m
netization of an atom by a resonant light pulse.12 In a number
of cases this effect can be used to determine the vector p
erties of the induced magnetic momentmat(t8) and its de-
pendence ont8 andv2vba to within a common factor tha
has the dimensions of a magnetic moment, without deta
perturbation theory calculations in the absence of relaxa
at times 0<t8<t, where the light pulse durationt obeys Eq.
~21!. In the following intervalt,t8<`, where relaxation
takes place by spontaneous decay of the excited state o
atom after passage of the light pulse, the vector propertie
the induced magnetic momentmat(t8) and its characteristic
dependence onv2vba are preserved and are a conseque
of its behavior in the previous interval 0<t8<t where re-
laxation did not occur. In the intervalt<t8<`, mat(t8) con-
tains two uncomputed common factors with the dimensi
of a magnetic moment.

If these results are applied to a gas of identical ato
within a fixed volume, we find that with time reversal~23!
the optically induced magnetization of this gas by elliptica
~14! or linearly ~33! polarized pulses has the same propert
as the magnetic moments of individual atoms, but with
more complicated functional dependence onv2vba for
both even and odd functions. This means that the effec
time reversal on the magnetization of atoms by a reson
light pulse also shows up in the optically induced magn
zation of a gas. It is noteworthy that the uncomputed co
mon factors with the dimensions of a magnetic moment d
sity have no effect on experimental studies of the vec
properties of the optically induced magnetization or its d
pendence onv2vba , t, g, T, andmat if the electromotive
256 JETP 85 (2), August 1997
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In order to emphasize the fundamental nature of t
effect of time reversal during the magnetization of atoms,
us consider an atomic gas in the field of an ultrashort re
nant light pulse~14! propagating parallel to a constant ma
netic field H. An atom in the fields~14! and H without re-
laxation is symmetric reversal with respect to time~23! with
the simultaneous transformationH→2H.7 In this case,13 the
optically induced magnetizationm(t8,H) of the gas for an
isotropic initial state~22! breaks up into two terms:

m~ t8,H!5m1~ t8,H!1m2~ t8,H!.

Here the first termm1(t8,H) is proportional to the axial vec
tor ~20!, while the second termm2(t8,H) is collinear withH.
Under time reversal~23! with the simultaneous transforma
tion H→2H in the absence of relaxation we obtain13

m(2t8,2H)52m(t8,H), where the first termm1(t8,H)
with the axial vector~20! is an even function of the reso
nance detuningv2vba . As opposed to this, the second ter
m2(t8,H) is invariant with respect to the wave vector subs
tution k→2k and is an odd function ofv2vba . Thus, the
effect of time reversal during magnetization of gas atoms
a resonant light pulse found here also shows up in a cons
magnetic field.
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Ionization of a two-electron atom in a strong electromagnetic field

of
O. V. Ovodova, A. M. Popov, and O. V. Tikhonova

D. V. Skobeltsyn Research Institute for Nuclear Physics, M. V. Lomonosov Moscow State University,
119899 Moscow, Russia
~Submitted 7 February 1997!
Zh. Éksp. Teor. Fiz.112, 470–482~August 1997!

A one-dimensional model of a helium atom in an intense field of a femtosecond electromagnetic
pulse has been constructed using the Hartree technique. ‘‘Exact’’ calculations have been
compared to the approximations of ‘‘frozen’’ and ‘‘passive’’ electrons. A nonmonotonic
dependence of the single-electron ionization probability on the radiation intensity has
been detected. Minima in the ionization probability are due to multiphoton resonances between
different atomic states due to the dynamic Stark effect. We suggest that the ionization
suppression is due to the interference stabilization in this case. ©1997 American Institute of
Physics.@S1063-7761~97!00608-2#

1. INTRODUCTION to the analysis of such systems is numerical integration
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Dynamics of ionization of atomic and molecular syste
in intense electromagnetic fields of a femtosecond dura
has been discussed in numerous publications.1–4 By the
present time, processes of over-threshold ionization, me
nisms of multiphoton, tunneling, and over-barrier ionizatio
generation of multiple-charge ions in laser field, Coulom
explosion of molecules and other effects have been stud
In theoretical studies of interaction between an atomic s
tem and electromagnetic field, numerical integration te
niques have become more important in recent years in
context of the problem of a quantum system in a field of
electromagnetic wave.4 Significant technical difficulties,
however, compel the researchers to limit their studies to s
pler one-dimensional models. Although a one-dimensio
approximation does not allow investigations of some phy
cal phenomena, such as angular distribution of electrons
to photoionization, effects related to polarization of elect
magnetic field, etc., it helps, nonetheless, in understand
the dynamics of a real atomic system under an intense e
tromagnetic field. Qualitative agreement between calcu
tions of ionization of one- and three-dimensional hydrog
atoms was demonstrated by Suet al.5 and Kulanderet al.6

Similar data for a negative hydrogen ion H2 were obtained
by Popovet al.7 A three-dimensional ionization model of
multielectron atom~xenon! in an approximation in which al
electrons but one are frozen was studied by Kulander.8 Note
that calculations on the modern Cray-T3D supercompu
yielded exact solutions to the five-dimensional Schro¨dinger
equation describing a helium atom in an electromagn
field,9 but in this case processing and interpretation of cal
lations present an another enormous problem.

Therefore, numerical models using various approxim
tions should be applied to interaction between electrom
netic radiation and real atomic systems in the limit of inten
field in order to take into account all electrons in an ato
their interaction with each other and with external elect
magnetic field during a laser pulse. Considerable interest
been aroused recently by calculations of the dynamics
two-electron, one-dimensional atomic systems obtained
various approximations.10–12 The most consistent approac
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the two-particle Schrodinger equation on a two-dimension
grid.10,11

An accurate solution of such a problem would also
quire a lot of CPU time, therefore analysis of a two-electr
system based on time-dependent Hartree–Fock equation12 is
practicable. As is known, in the Hartree~Hartree–Fock!
technique the full wave functionC(x1 ,x2 ,t) of the system is
expressed in the form of a product of two one-particle wa
functions c1(x1 ,t) and c2(x2 ,t) of both electrons~in the
Hartree–Fock technique the full wave function should
also made symmetric or antisymmetric with respect to el
tron exchange!. The motion of each electron is determine
by the electrostatic potential of the nucleus and an avera
potential generated by the other electron. It is notewor
that the quantitative difference between Hartree a
Hartree–Fock calculations is probably negligible, since
values of exchange integrals due to the antisymmetriza
of the electron wave function with respect to exchange
electrons is small in comparison to the energy of the dir
electrostatic interaction.

This paper reports on a study of the dynamics of a o
dimensional helium atom based on the system of tim
dependent Hartree equations in the range of radiation in
sity P51024– 0.3 ~hereinafter we use the atomic system
units!, which corresponds to conditions of one-electron io
ization. Our data are compared to calculations in approxim
tions of ‘‘passive’’ and ‘‘frozen’’ electrons. We have ob
tained a nonmonotonic dependence of the one-elec
ionization probability, and causes of this nonmonotonic b
havior are discussed in the paper.

2. ONE-DIMENSIONAL MODEL OF HELIUM ATOM

We have selected model potentials of interaction
tween the electrons and the nucleus and between electro
the form similar to that suggested by Grobe and Eberly:10

V~xi !52
Z

Aa21xi
2

, i 51, 2, ~1!

25707$10.00 © 1997 American Institute of Physics



TABLE I. Energy levels of one-dimensional helium atom.

n
Hartree calculations Exact Hyperspherical functio
~this work! calculations11 approximation11

State «1 «2 «5«11«2 « «

~1,1! 21.1035 21.1035 22.207 22.238 22.185
~1,2! 21.217 20.500 21.717 21.704 21.725
~1,3! 21.319 20.284 21.603 21.626 21.629
~1,4! 21.369 20.184 21.553 21.567 21.570
~1,5! 21.402 20.125 21.527 21.545 21.542
~1,15! 21.466 20.017 21.483 - -
~2,2! 20.512 20.512 21.024 21.045 -
~2,3! 20.599 20.267 20.866 - -
~2,4! 20.663 20.179 20.842 - -
1

b
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differences in configurations of electrostatic potentials
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V125Aa21~x12x2!2
, ~2!

whereZ52 is the nucleus charge,x1 andx2 are the coordi-
nates of the first and second electrons,a is the cut-off pa-
rameter~in what follows, we assume thata5a051, where
a0 is the Bohr radius!.

Thus, stationary atomic states can be determined
solving the eigenvalue problem

HF~x1 ,x2!5«F~x1 ,x2!, ~3!

where

H5H11H21V12, ~4!

Hi52
1

2

]2

]xi
2 1V~xi !, i 51, 2, ~5!

and« is the energy of the stationary state.
Good approximations to an exact solution of Eq.~3! are

solutions based on the Hartree or Hartree–Fock method
the Hartree method, the solution of Eq.~3! is expressed in
the form of a product of one-particle wave functions:

F~x1 ,x2!5w1~x1!w2~x2!, ~6!

where functionsw1 and w2 satisfy the one-particle Schro¨-
dinger equation with a potential formed by the nucleus a
delocalized second electron:

~Hi1dVi !w i~xi !5« iw i~xi !, i 51, 2, ~7!

where

dV125E uw2,1~x!u2dx

Aa21~x2,12x!2
, ~8!

« i is the i th electron energy, and the total energy
«5«11«2 .

Table I lists electron energies of several stationary sta
(n,m)[(wn

(m)(x1), wm
(n)(x2)) obtained by solving equation

system~7!. Here wn
(m)(x) is the wave function of thenth

stationary state of one of the electrons, given that the sec
electron is on the levelm. It is important to note that func
tions wn

(m)(x) and wn
(k)(x) (kÞm) are different, although

they are very similar for all largem andk larger than unity.
The difference between these two functions is due to
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formed by an electron is different states. In our calculatio
it proved important only in the state~1,1!.

Note that the spectrum of one-electron excited sta
(1,n), wheren>2, is similar to the spectrum of such stat
in a real He atom; moreover, all states with both electrons
excited states are auto-ionization states. Table I also
energies which correspond to exact solutions of Eq.~3! and
calculations based on the hyperspherical approximation.11 It
is clear that our results are in good agreement with ex
calculations. As an example, Fig. 1 shows wave functions
the ground~1,1! and excited~1,3! states.

3. HELIUM ATOM IN THE FIELD OF AN ELECTROMAGNETIC
WAVE

In the dipole approximation, the dynamics of a tw
electron system in the field of an electromagnetic wave
described by the equation

i
]

]t
C~x1 ,x2 ,t !5~H11H21V12!C~x1 ,x2 ,t !

2~x11x2!E~ t !C~x1 ,x2 ,t !, ~9!

whereE(t) is the wave electric field, and operatorsH1 , H2 ,
andV12 are given by Eqs.~4! and ~2!.

In the Hartree approximation, the wave functio
C(x1 ,x2 ,t) determined by time-dependent equation~9! can
be expressed in the form of a product of time-depend
one-electron wave functions:

C~x1 ,x2 ,t !5u~x1 ,t !v~x2 ,t !. ~10!

By using the variational technique for the time-depend
Schrödinger equation,

dJ5 K dCU i ]

]t
2H12H22V121~x11x2!EUC L

1 K CU i ]

]t
2H12H22V121~x11x2!EUdC L 50,

we obtain an equation system for one-electron wave fu
tions u andv:

i
]u

]t
5~H12x1E!u1^vuV12uv&u1ub1~ t !,
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FIG. 1. Probability density distributionuF(x1 ,x2)u2 ~a!
in the ground and~b! excited ~1,3! states of He atom
calculated by the Hartree technique.
i
]v
]t

5~H22x2E!v1^uuV12uu&v1vb2~ t !, ~11!
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c2~x1 ,t !5@H21dV2~c1 ,x2 ,t !#c2~x2 ,t !
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whereb1 andb2 are functions of only time and are indepe
dent of coordinates, therefore they modify only phases of
one-electron wave functions. Using the substitution

u~x1 ,t !5c1~x1 ,t !expF2 i E b1~ t !dtG ,
v~x2 ,t !5c2~x2 ,t !expF2 i E b2~ t !dtG ,

we obtain an equation system for new one-electron functi
c1 and c2 , which describe motion of each electron in
self-consistent field generated by the nucleus and the o
electron. With due account of the electromagnetic wa
field, these equations have the form

i
]

]t
c1~x1 ,t !5@H11dV1~c2 ,x1 ,t !#c1~x1 ,t !

2x1E~ t !c1~x1 ,t !,
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2x2E~ t !c2~x2 ,t !, ~12!

whereH1,2 anddV1,2 are given by Eqs.~5! and ~8!, respec-
tively, and operator2xiE(t) describes interaction betwee
the i th electron and field of the electromagnetic wave.

It is noteworthy that the difference between the origin
(u,v) and new (c1 ,c2) one-particle wave functions is onl
in the phase factor, whose presence or absence does n
fect calculations of populations of different states and
ionization probability, which is the ultimate aim of our stud

We assumed that at the initial moment the system wa
one of its stationary states, which can be also calculated
ing the Hartree technique.

Calculations were performed for the radiation frequen
v50.18, which corresponds to radiation of the KrF excim
laser, in the intensity rangeP5E251024– 0.3, i.e.,
331012– 1016 W/cm2. The electric field was described b
the following functions of time:
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E0~ t/t!cos~vt !, t<t52T,
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E~ t !5H E0 cos~vt !, 2T<t<12T,

E0~12t/t!cos~vt !, 12T<t<14T,

whereT52p/v is the optical cycle duration.
In some cases, in addition to trapezoid pulses, the ef

of Gaussian pulses was investigated:

E~ t !5E0 cos~vt !expF2
1

2 S t2t0

t D 2G ,
wheret0 is the moment of the intensity peak.

Calculations were performed on a uniform spatial grid
dimension 150a0, with 6000 nodes for each electron, by th
technique described in Koonin’s monograph.13 The step of
integration over time was 0.01T. In calculating potentials
driving each electron, the charge distribution due to the ot
electron was taken from the previous time step. In the ‘‘f
zen’’ electron approximation, we assumed that the wa
function of one of the electrons was identical to the wa
function of the initial state except for a phase factor, so t
the electrostatic potential generated by this electron was
stant with time.

In interpreting the results, the helium atom wave fun
tion

C~x1 ,x2 ,t !5c1~x1 ,t !c2~x2 ,t !

was expanded in terms of stationary states of the in
atomic Hamiltonian (wn

(m)(x1)wm
(n)(x2)):

C~x1 ,x2 ,t !5(
n,m

Cnm~ t !wn
~m!~x1!wm

~n!~x2!

3exp@2 i ~«n1«m!t#. ~13!

From the formal viewpoint, expansion~13! is valid at an
arbitrary moment of timet. But when the laser pulse is on
coefficientsCnm have the sense of populations of atom
states as long as wave functions of stationary states are
distorted by the electromagnetic wave field. In calculat
coefficientsCnm , we found that in the intensity range o
1024 to 0.3 only states with one excited electron are po
lated, and the corresponding excitation probabilities are
termined by the expression

W1n5uC1nu2

5U E C* ~x1 ,x2 ,t !w1
~n!~x1!wn

~1!~x2!dx1dx2U2

. ~14!

The probability of detecting the system in states w
both electrons excited proved to be negligible. This prope
is due to the high excitation threshold of such states, whic
considerably higher than the threshold of the one-elec
continuum.

In our calculations, we took into accountN515 differ-
ent states~1,1!–~1,15!, since in the discussed range of inte
sities the probabilities of the higher states population
negligible. The total ionization probability was calculated
the formula
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N

uC1nu2. ~15!

4. RESULTS OF COMPUTER SIMULATIONS

4.1. Applicability of the ‘‘frozen’’ electron approximation

Figure 2 shows calculations of helium atom ionization
a function of radiation intensityP5E2 for the case when
atom was in the ground state~1,1! before the laser pulse
Curve 1 corresponds to a solution of full equation syste
~12! and curve2 to the ‘‘frozen’’ electron approximation, in
which the wave function of one electron corresponds to
initial stationary state. In this case, the dynamics of the s
ond ~active! electron is determined by the potential due
the nucleus, static potential formed by the ‘‘frozen’’ electro
and the field of the electromagnetic wave. The graph sho
that the ‘‘frozen’’ electron approximation underestimates t
ionization probability because in the ‘‘frozen’’ electro
model the action of the electromagnetic wave on one e
tron is ignored, as a result, the average separation betw
the electrons is larger and the Coulomb energy smaller t
in the full model. This assertion is confirmed by the calcu
tion in which the electric field was ‘‘switched off’’ in one o
Eq. ~12! ~model of a passive electron!. In this case, the wave
function of the passive electron varied with the electric p
tential formed by the active electron. Corresponding calcu
tions are shown by curve3 in Fig. 2. One can see that th
models of passive and ‘‘frozen’’ electron yield almost ide
tical curves ofWI(P).

To conclude this section, note that state~1,1! is the only
one in which the ‘‘frozen’’ electron approximation yield
unsatisfactory results. It turned out that in the cases of st
~1,2! and~1,3! the error in calculations of ionization rates
the ‘‘frozen’’ electron model is within;1% throughout the
entire studied range of radiation intensity.

4.2. Nonmonotonic intensity dependence of ionization
probability

An important feature of the resultingWI(P) function is
its nonmonotonic behavior in the intensity range far fro
saturation. Similar maxima and minima on theWI(P) curve
also occur in the case of other initial atom states~Fig. 3!.
Note that such nonmonotonic curves were also obtaine
experiments.14–18These features were attributed14–17 to mul-

FIG. 2. Ionization probability of a He atom initially in the ground state as
function of the radiation intensity:~1! ‘‘exact’’ calculation, and~2! ‘‘fro-
zen’’ and ~3! passive electron approximations.
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tiphoton resonance in intermediate states due to dyna
Stark effect caused by the laser field. In sufficiently lo
~nanosecond! laser pulses with relatively low radiation inten
sities, P5109– 1011 W/cm2, these resonances result in a
abrupt increase in the rate of population of excited sta
which considerably accelerates the ionization process ow
to a lower photon multiplicity of transitions between the d
crete spectrum and continuum.

In studying ionization of atoms of noble gases~Ar, Kr,
and Xe! by femtosecond pulses generated by a titaniu
sapphire laser at a radiation intensityP51013– 1015 W/cm2,
Chin et al.18 detected a decrease in the ion yield in cert
ranges of the radiation intensity in comparison with the n
resonant functionWI } PN, whereN5@ I /v#11 is the mul-
tiplicity of the multiphoton absorption andI is the ionization
potential. This decrease in the ionization rate was attribute18

to dynamic resonances in the process of laser action
suppression of ionization of excited atoms. For example
multiphoton ionization of Xe atoms, the dynamic Stark effe
can cause resonant population of the 6f state, which includes
seven degenerate levels stable against the ionization thr
the continuum. Given this mechanism of the ionization s
pression, one can expect a larger population of the 6f state.
Unfortunately, the population of excited states as a funct
of radiation intensity was not studied in experiments.18

We assume that the nonmonotonic curves of the ion
tion probability as a function of the laser field intensity o
tained in our calculation and in Ref. 18 can be interpreted
terms of one mechanism based on the interference stab
tion, which was discussed in detail by Dubrovski� et al.19

The results of Ref. 19 can be generalized to the cas
multiphoton ionization of an atom in an intense field if the
is a resonance in one of the Rydberg states. The ioniza
probability as a function of frequency is characterized in t
case by sharp minima at frequencies close to the reso
transition between the ground state and one of the Rydb
states modified by an intense laser field. The action by
intense field on higher states induces transitions of thel-type
and leads to interference stabilization of Rydberg states.20

The presence of stable Rydberg levels modified b
strong field is the cause of an abrupt drop in the ionizat
probability in the case of a resonant transition to one of s
states. A similar situation probably obtains in our compu
simulations. For example, on sectionsab, cd, ande f of the
curves in Fig. 2, the ionization probability depends on
intensity asW } P5, which corresponds to the multipliity o

FIG. 3. Ionization probability of a helium atom initially in state~1,2! versus
the radiation intensity.
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the multiphoton absorption. Deviations from this function
section bc, de, and f g means that the ionization rate
lower at some values of the field intensity. As will be show
below, each minimum in the ionization probability is dete
mined by the condition of resonance with a high-energy o
electron state, with due account of the dynamic Stark sh
Note that the mechanism proposed by Dubrovski� et al.19 is
feasible in sufficiently strong fields whose amplitude satisfi
the condition

E0 /v5/3;1. ~16!

In our case,v50.18, and fields withE0>0.01 satisfy
criterion ~16! of a strong electromagnetic field. Another a
gument in favor of the interference stabilization19 can be the
two-exponential character of the population of atomic sta
as a function of time at laser field intensities correspond
to minima on the ionization curve. The dynamics of popu
tion in various states when the laser pulse is on for differ
intensities is shown in Fig. 4. The curves in Figs. 4a and
correspond to minima labeled bye andg in Fig. 2, and Fig.
4b to maximumf in Fig. 2.

The data plotted in Fig. 4 for intensities corresponding
minima in Fig. 2 indicate that ionization takes place on
during the first four cycles of the optical field, and subs
quently it almost stops, whereas at the radiation inten

FIG. 4. Population dynamics of various states of the discrete spectrum u
laser radiation at intensities of~a! 0.0142,~b! 0.0196, and~c! 0.0264:~1!
population of state~1,1!; ~2! sum of populations of states~1,1! and~1,2!; ~3!
ionization probability.
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TABLE II. Matrix elements of the dipole moment operator in one-
dimensional helium atom.

TABLE III. Polarizability of stationary states of one-dimensional helium
atom forv50.18.

r.

g

corresponding to pointf in Fig. 2, ionization continues at a
approximately constant rate throughout the laser pulse
our opinion, this feature of the ionization dynamics is
indication in favor of the interference mechanism of the io
ization suppression at field intensities corresponding
points c, e, g, and i . Moreover, at the intensities corre
sponding to these points in Fig. 2, states~1,3!–~1,5! have the
highest population among the high-energy states. In
cases, the population of these states reaches 2–4%, a
several times the population of other excited states (1n)
(n>6). These population numbers are achieved in ab
four to five optical cycles after the laser pulse onset. T
allows us to suppose that it is the population of these st
that leads to the atom stabilization at intensities correspo
ing to pointsc, e, g, and i in Fig. 2.

A similar situation takes place for other initial states,
particular~1,2!. This state is ionized by two-photon absor
tion, which corresponds to the initial part of the curve
WI(P) in Fig. 3. At field intensities>231023 the ioniza-
tion is also slower, and nonmonotonic sections occur on
curve ofWI(P).

4.3. Perturbation theory estimates of minima positions on
the curve

In order to verify the hypothesis about the stabilizi
effect of nonmonotonic sections on the curves ofWI(P), we
checked estimates of Stark shifts of different states. I
known that the shift of thenth stationary state due to high
frequency electric field in the lowest order of perturbati
theory is given by the formula21

D«n5
1

4 (
mÞn

udnmEu2S 1

vnm2v
1

1

vnm1v D
52

1

4
anE2, ~17!

wherednm is the matrix element of the dipole moment,vnm

is the frequency of the transition between states with indi
n andm, andan is the atom polarizability.

Taking into account in Eq.~17! only excited states
wn

(1)(x1)w1
(n)(x2) and the similarity betweenwk

(n)(x1) and
wm

(n)(x2) (k,m.1), we obtain

n m51 m52 m53

2 0.866 - -
3 0 21.962 -
4 0.131 0 3.508
5 0 20.434 0
6 0.0669 0 0.539
7 0 20.220 0
8 0.0412 0 0.268
9 0 20.139 0

10 0.0265 0 0.147
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dnm5E wn
~1!~x1!w1

~n!~x2!~x11x2!

3wm
~1!~x1!w1

~m!~x2!dx1dx2

.E wn
~1!~x1!x1wm

~1!~x1!dx1 . ~18!

Values of some matrix elements are listed in Table
and polarizabilitiesan of several low-lying states in Table
III. Calculations of polarizabilities can be more accurate
continuum states are included in Eq.~17!. Using the data of
Table III, we have calculated radiation intensities at whi
multiphoton resonances between states~1,1! or ~1,2! and
higher states occur. The inclusion of the lowest excited s
~1,2! is due to its high population in intense laser field~Fig.
4!.

Table IV lists positions of ionization probability minim
on curves shown in Fig. 2, as well as pairs of resonant st
which cause ionization rate minima and the correspond
resonance multiplicities. The table also lists detunings fr
the resonances calculated by the perturbation theory ta
into account the Stark effect. For resonances correspon
to minima c, e, and g, the detuning is within 10% of the
photon energy, and for resonancei the calculation error is
larger and amounts to.20%. Note that Table IV lists only
dipole-allowed transitions. One can clearly see a good co
lation between different data, i.e., minima on the curve
WI(P) can be put into correspondence with multiphot
resonances due to the dynamic Stark effect.

The data presented in this paper indicate that the ph
cal cause of the ionization deceleration in this case is in
ference stabilization of coherently populated excited atom
states when one of them is in a multiphoton resonance w
the ground~or lowest excited! state, in accordance with th
mechanism suggested by Dubrovski� et al.19 The most inter-
esting of them is resonancei (P50.0256), which is prob-
ably related to the overlap between levels~1,2! and~1,4!. In
this case, the ionization suppression mechanism sugge
by Fedorov et al.20 as an explanation of stabilization o
Rydberg atoms is fully consistent with our description of t
phenomenon, but, unlike Fedorovet al., we have connected
the states~1,2! and ~1,4! with continuum via two-photon
transitions.

n 1 2 3 4 5

a 3.616 227.43 0.1432 27.768 231.42

TABLE IV. Radiation intensities at which multiphoton resonances occu

Number Intensity Transition Resonance multiplicity Detunin

c 3.6(23) (1,1)→(1,5) 4 8.1(24)
e 9.0(23) (1,1)→(1,2) 3 1.9(22)
g 1.44(22) (1,2)→(1,5) 1 4.2(23)
i 2.56(22) (1,2)→(1,4) 0 3.8(22)
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Note that the resonance position in the intensity ran
P>0.1 cannot be calculated using the perturbation theory
Eq. ~17! because in this case the difference between shift
atomic levels is larger than the initial separation betwe
them. This circumstance, in particular, leads to a large
tuning for resonancei .

Resonances also manifest themselves in the form of n
monotonic sections on the curve ofWI(P) in the case of a
Gaussian pulse~Fig. 5!. In this case, nonmonotonic section
are smoother in comparison to trapezoid pulses, and
curve has a wavy shape, like the experimental curve in R
18. Note than in experiments18 the curve is also smoothe
owing to integration of the signal over the intensity profile
the focal region, which is also Gaussian. Therefore, we
sume that the real shape of the curve of the ionization pr
ability as a function of intensity in experiments18 is non-
monotonic, and nonmonotonic features can be interprete
terms of the approach proposed in Ref. 19.

5. CONCLUSIONS

On the basis of time-dependent Hartree equations,
have constructed the one-dimensional model of a tw
electron atom in an intense electromagnetic field. In
states, except the ground state, the effect of the optical
on the inner electron can be neglected. For the ground s
the ‘‘frozen’’ electron model underestimates the ionizati
rate, especially at low intensities. The curve of the ionizat
probability as a function of power density is nonmonoton
because of resonances between different states of the dis

FIG. 5. Ionization probability of state~1,3! of a He atom under a laser puls
of ~1! trapezoid and~2! Gaussian shapes vs laser field intensity.
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minima on the curves ofWI(P) can be interpreted in term
of the interference mechanism of atom stabilization.
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Theory of single-mode lasing in coherent quantum cascade lasers

the
V. F. Elesin

Moscow State Engineering Physics Institute, 115409 Moscow, Russia
~Submitted 21 February 1997!
Zh. Éksp. Teor. Fiz.112, 483–498~August 1997!

A theory is developed for steady-state single-mode lasing in coherent quantum-well cascade
lasers. This laser model is an example of a strictly quantum mechanical problem in which
approximate kinetic approaches are not used to account for dissipative scattering processes.
Exact wave functions are found for the system in weak and strong electromagnetic fields, so that
the output power and frequency can be determined as functions of the coherent pump
current and system parameters. It is shown that for pumping by monoenergetic electrons the
power has a nonlinear~root! dependence and tends to saturate in strong fields. It is predicted that
the coherent pumping efficiency may be increased by adjusting the energy of the pump
electrons, which will lead to a linear power dependence, a high efficiency, and low threshold
currents. A population inversion is found not be a necessary condition for lasing in the
coherent laser. In particular, in the high field regime the population of the lower level exceeds
that of the upper, while in the optimally adjusted regime they are the same. ©1997
American Institute of Physics.@S1063-7761~97!00708-7#
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In 1971 Kazarinov and Suris1 proposed a new type o
semiconductor laser in which the radiative transitions ta
place between size-quantized levels~subbands!. After almost
a quarter century this proposal was realized in nanostruct
where the principal elements are two quantum wells w
working levels~subbands! in each2 ~‘‘oblique transitions’’!
or a single quantum well with two working levels~‘‘vertical
transitions’’!.3 Pumping to the upper working level take
place by resonant tunnelling.

These lasers, which are known as quantum cascad
sers, have some important advantages: the possibility of
ing the output from the infrared to the submillimeter range
weak temperature dependence for the threshold current,

Quantum cascade lasers have a number of important
tures, such as one type of charge~unipolarity!, the same
signs on the subband masses, elimination of the prohibi
on inter-subband nonradiative transitions, etc. Another f
damental feature of these lasers is that, in general, the r
nant tunnelling which provides the pumping is coherent.

Resonant tunnelling can be coherent or incoherent,
pending on the structure parameters and the temperatu
the timestph for dissipative relaxation of the electrons whic
destroy the coherence are less than the reciprocal widthsG j

21

of the size-quantization levels, then incoherent tunnell
takes place.4 In this case, the tunnelling is modelled by a
external source which supplies electrons with a fixed pow

This kind of approach has been applied to quantum c
cade lasers elsewhere.1,5–7 It can be used to describe sever
of the features noted above. Thus, for example, a kin
theory for the quantum cascade laser has been develo6

that describes interactions of the electrons with opti
phonons which lead, in particular, to a high threshold c
rent. It has been shown that it is possible to choose a lo
energy overpopulation regime in which the threshold curr
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reabsorption effect for the optical phonons.
At the same time, when the opposite inequal

tph.G j
21 holds, as may occur in quantum wells and wir

and, especially, in quantum dots, it is necessary to take
coherence of resonant tunnelling into account. As a first s
it is natural to consider the theory of quantum cascade la
in general without considering scattering processes, i.e.,
so-called coherent approximation. A laser of this type~for
concreteness, a coherent laser! is of considerable interest. In
fact, at first coherent resonant tunnelling can ensure m
efficient pumping, since electrons accumulate in the well o
ing to interference effects. Second, a coherent laser is
interesting physical object in which, as we shall show belo
lasing can take place without the involvement of dissipat
processes. Processes of the latter sort are necessary to r
an emission event in laser theory for large-sized object8,9

Thus, we might expect new effects and behavior to show
during operation of a coherent laser. It should also be no
that this type of laser is an open system which depe
strongly on the boundary conditions and is in a current st

The purpose of this paper is to develop a theory
steady-state lasing of a coherent laser and to calculate
power and frequency of the electromagnetic field functio
of the coherent pump current and system parameters.
have examined a simple model which allows an analytic
lution and can be used to present the results in an ana
form over a wide range of fields, from weak to strong. La
ing takes place in a single quantum well~dot! ~see Fig. 1!
with two working levels~subbands! having energiesE2R and
E1R , the difference between which determines the freque
\v of the electromagnetic field.~For brevity, in the follow-
ing we shall speak of a well and levels.! Electrons with en-
ergiesE.E2R enter the well from the left at a constant v
locity, undergo a radiative transition to the level with ener
E1R , and leave the well by tunnelling~or again undergo a
transition to level 2!.

26408$10.00 © 1997 American Institute of Physics
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It is impossible to find the wave functions of an op
system in an electromagnetic field using the expansion
eigenfunctions of the field-free Hamiltonian that is custo
ary in laser theory,9 because they are nonorthogonal. W
have employed another approach which involves seeking
tionary solutions of the Schro¨dinger equation which satisfy
the appropriate boundary conditions. This method has b
used previously for problems involving resonant tunnelli
in alternating fields and for resonant-tunnelling diodes,10–12

but, as a rule, in first-order perturbation theory with resp
to the field. When applied to lasers it can be used only to fi
the gain coefficient at the lasing threshold. In this paper
find the wave functions without using perturbation theo
and construct a theory of coherent lasers for weak and st
fields.

Our model differs substantially from the model used in
recent paper,13 which appears to be the first devoted to t
theory of the coherent laser. It dealt with a specific nons
tionary model~referred to as a microlaser model by the a
thor! in which an electron wave packet falls into a quantu
well and emits a field quantum. The resulting numerical
lutions make it possible to follow the emission process a
are of some interest. They, however, cannot~as the author
acknowledges! be used to find the power, frequency, a
threshold current, i.e., all of the quantities which are nee
to describe a real experiment.

This article is constructed as follows: in Sec. 2 the mo
is described and the basic equations are formulated.
wave functions and polarization currents are found in a g
eral form in Sec. 3 and for the important limiting case
high barriers in Sec. 4. Section 5 is devoted to an analysi
lasing in a coherent laser with monoenergetic pumping
Sec. 6, to lasing in a coherent laser with a Fermi pump
tribution.

In the following we shall examine the one-dimension
case: in the absence of scattering processes it is easy to
eralize to include lateral motion. The shifts in the ener
levels owing to buildup of charge in the well are assum
small compared toG j and the temperature is assumed to
zero.

2. DESCRIPTION OF THE MODEL: BASIC EQUATIONS

In order to determine the basic behavior, we study
following model of a coherent quantum cascade laser. Fig
1 shows a one-dimensional quantum well with barriers at
pointsx50 andx5a. The parameters of the well are chos
so that the two lower levels with energiesE1R andE2R differ
by an amount roughly equal to\ times the frequency of the

FIG. 1.
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steady-state flux of electrons with a density proportional
q2 and energyE roughly equal toE2R is incident on the
system from the left.

An electromagnetic field, which can be regarded w
good accuracy as classical,

Ex~z,t !5E~ t !sin~kz!cos~vt1w~ t !!, ~1!

is emitted as the electrons undergo a transition from the
per level 2 to the lower level 1.

In accordance with experiment,2,3 here we assume tha
the field is polarized perpendicular to the plane of the w
~i.e., along thex axis!, while the wave vector is directed in
the plane~along thez axis!. An optical cavity of lengthL
isolates these modes. We restrict ourselves to conside
single mode operation. The equations for the slowly vary
field amplitudeE(t) and the phasew(t) have the form8,9

]E

]t
52

E

2t0
2

2p

k
Jc~k!, ~2!

]w

]t
E1~v2V!E52

2p

k
Js~k!, ~3!

and

Jc,s~k!5E
0

a

dx eikxJc,s~x!, ~4!

where Jc(k) and Js(k) are the Fourier components of th
polarization currents coincident in phase with the field (Jc)
and shifted byp/2 relative to the field (Js) which describe
the interlevel transitions,t0 is the lifetime of a photon in the
cavity,V5kc are the eigenfrequencies of the cavity,k is the
dielectric constant, andc is the speed of light. The current
Jc(x) andJs(x) are expressed in terms of the wave functi
C(x,t) of the system which obeys the following Schro¨dinger
equation:

i
2m*

\

]C

]t
52

]2C

]x2 1U~x!C1V̂~x,t !C, ~5!

wherem* is the effective mass of the electron and

U~x!5a1d~x!1a2d~x2a!, a i5
2m* ã i

\2 ,

is the potential energy of the barriers. The last term in E
~5!,

V̂~x,t !C5
2ei

\
Ax~ t !

]

]x
C

describes the interaction of the electrons with the elec
magnetic field andAx(t) is the vector potential in the Cou
lomb gauge, which is nonzero in the well. This form of i
teraction is preferable for nonlocalized wave functions
Ex.13 ExpressingAx(t) in terms of the field amplitudeE(t),
we rewrite the last term in the form

V̂C5V~eivt2e2 ivt!
]

]x
C, V52

eE

v
. ~6!
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The system of Eqs.~2!, ~3!, and~5! should be supplemented
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E2v. The steady-state solution~10! is valid when the field
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by the general expression for the current,

J~x,t !52
ie

2m* FC*
]C~x,t !

]x
2c.c.G

and boundary conditions forC(x,t):

C~20,t !5C~10,t !, C~2a,t !5C~1a,t !,

C8~10,t !2C8~20,t !5a1C~0,t !, C85]C/]x,

C8~1a,t !2C8~2a,t !5a2C~a,t !. ~7!

The fluxes of electrons incident from the left and of r
flected electrons will be taken into account below~Eq. ~12!!
after a specific form ofC(x,t) has been chosen.

It should be noted that in Eq.~5! we have left out terms
that are quadratic inA(t). This approximation, which is usu
ally used in laser theory,9 is also valid here in terms of th
parameterV/p5eE/vp!1, wherep is the electron momen
tum ~see Eq.~21!!.

3. WAVE FUNCTIONS AND POLARIZATION CURRENTS IN A
COHERENT LASER

We seek a steady-state solution of Eq.~5! in the form of
the series

C~x,t !5(
n

expF2 i t S E

\
1nv D Gcn~x!, n50,61,...,

~8!

where the functionscn(x) satisfy the system of equations

~E1nv!cn~x!1cn9~x!5V@cn218 ~x!2cn118 ~x!#, ~9!

wherecn(x) describes the state with energyE1nv. ~Here
E and v are the energy and frequency multiplied by 2m*
and in the following we set\5c51.!

It is well known that during the lasing process the ma
resonant contribution is from two levels.14 In our case these
are the upper level with energiesE2R and the lower level
with E1R , which correspond to the wave functionsc0(x)
and c21(x). Thus, the wave function~8! reduces to two
terms

C~x,t !.c0~x!e2 i E t1c21~x!e2 i t ~E2v!, ~10!

wherec0(x) andc21(x) satisfy the system of equations

Ec0~x!1c09~x!5Vc218 ,

~E2v!c21~x!1c219 ~x!52Vc08 ~11!

with the boundary conditions

cn~0!S 12
a1

ipn
D1

cn8~0!

ipn
52qdn0 ,

cn~a!S 12
a2

ipn
D2

cn8~a!

ipn
50, pn5AE1nv. ~12!

These last are obtained from Eq.~7! on substituting Eq.~10!
and taking into account the constant flux of electrons, in
dent from the left with energyE , which is proportional toq,
and the loss of electrons from the well with energiesE and
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reaches its steady-state value in a system with a cons
electron flux.

With the aid of Eq.~10! the expressions for the curren
Jc(x) and Js(x) can be written in terms of the function
c0(x) andc21(x):

Jc~x!52
ie

2m* @~c0* c218 1c21* c08!2c.c.#,

Js~x!5
e

2m* @~c21* c082c0* c218 !1c.c.#. ~13!

We note that the Fourier componentsJc(x) andJs(k) can be
replaced simply by integrals, sinceka!1, i.e.,

Jc,s~k!.
1

a E
0

a

dx Jc,s~x!. ~14!

Usually ~see Refs. 10 and 11 and the references gi
there! one seeks a perturbation theory solution inV of the
form ~10! by substituting it in the initial equation~5! and
restricting oneself to the first approximation. However, b
cause of the system of Eqs.~11! derived here and the chose
form of the interaction~7!, we can find an exact solution t
Eqs.~11! without turning to perturbation theory.

A solution of Eqs.~11! can be sought in the form

cn~x!5Anegx, n50,21, ~15!

where the eigenvaluesg satisfy the equation

g412g2S E1
V22v

2 D1E22Ev50 ~16!

and are equal to

g1,256g2 , g3,456g0 ,

g25 iAE1
V22v

2
2AS V22v

2 D 2

1EV2,

g05 iAE1
V22v

2
1AS V22v

2 D 2

1EV2. ~17!

We write the general solution to Eq.~11! in the form

cn~x!5(
j 51

4

An j exp~g j x!. ~18!

The coefficientsA0 j andA21 j are related by an equatio
which follows from Eq.~12!:

A21 j5« jA0 j , « j5
g j V̄

E2v1g j
2 , V̄5

eE

v
. ~19!

Substituting Eqs.~18! and~19! into the boundary condi-
tions ~12!, we arrive at a system of algebraic equations
the An j :

(
j 51

4

A0 j~12b j !52q, (
j

A0 j exp~g ja!~12b̃ j !50,
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A ~12b !« 50, A exp~g a!~12b̃ !« 50,

g

ho
am
s

ie

ar

In addition, in the general expressions obtained above it
on

ac-
ar-
t

e

(
j

0 j 2 j j (
j

0 j j 2 j j

~20!

where

b j5
a12g j

ip
, b2 j5

a12g j

ip2
, b̃ j5

a21g j

ip
,

b̃2 j5
a21g j

ip2
, p5AE , p25AE2v. ~21!

The solution of the system of Eqs.~20! can be written in
the form

A0 j5
2q~21! j 11

D (
lÞ j

(
mÞ j ,l
sÞ j ,l

exp~g la!

3~12b̃ l !L l j Dms~p2!«m«s , ~22!

where

L l j 5H 21 for l 53, j 51,2,

21 for l 52, j 53,4,

11 otherwise.

HereD is the determinant of the system~20!:

D5«1«2D12~p2!D34~p!1«1«4D14~p2!D23~p!

1«2«3D23~p2!D14~p!2«1«3D13~p2!D24~p!

2«2«4D24~p2!D13~p!1«3«4D34~p2!D12~p!, ~23!

where

Dml~p!5~12bm!~12b̃ l !exp~g la!

2~12b̃m!~12b l !exp~gma!,

Dml~p2!5~12b2m!~12b̃2 l !exp~g la!

2~12b̃2m!~12b2 l !exp~gma!. ~24!

Thus, Eqs.~17!, ~18!, ~22!, and ~23! give a general so-
lution of the system~11! and~12! which is valid all the way
to high fields. By substituting Eq.~18! in Eqs.~13! and~14!,
we can easily find the currentsJs(k) and Jc(k) and obtain,
along with Eqs.~2! and~3!, closed equations for determinin
the field and phase~lasing frequencyv!. These equations
make it possible to analyze the dependence of the thres
current, power, and lasing frequency on the structure par
eters. It is easy to generalize these results to other type
structure.

4. WAVE FUNCTIONS AND POLARIZATION CURRENTS IN
THE LIMIT OF HIGH BARRIERS

Resonant tunnelling shows up most clearly if the barr
penetration is low, so that the level widthsG1 and G2 are
small compared to the energiesE1R andE2R . This happens
if the inequalities

a1 /p@1, a2 /p@1, ~25!

are satisfied. In the following we shall assume that they
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is necessary to take into account the limitations imposed
the field amplitude:V/p!1. ~See Sec. 2.! Given the small-
ness of the parameterV/p, for g0 , g2 , and« j we have

g0. ipA11
V2

v
, g2. ip2A12

V2

v
, ~26!

and

«1,2.6
iv

V̄p2

, «3,4g7
ipV̄

v
,

«1«2.
2

Ṽ2
, «1«3.

p

p2

, ~27!

where

Ṽ25
2V2p2

2

v2 !1. ~28!

The combination«m« l appears in the determinant~23! in
way such that a factor;1/Ṽ2 is in front of the first term,;1
is in front of the next four, and;Ṽ2 is in front of the last.
The last term can be omitted to the accuracy which we
cept. The first term in the determinant is the product of p
tial determinants,D12(p2)D34(p), which have a resonan
character. ForṼ50, a j /p@1, anda j /p2@1, we can write
the expression forD34(p) near the resonance in the form

D34~pR1dp!5S 22
a

ip D S 22
ad

ip Dexp~2 ipa!

1
a2d

p2 exp~ ipa!.exp~2 ip0a!

3F2
2~11d2!

d
1

2ia2da

p0
2 dpG , ~29!

where

dp5p2pR , pR5
ap0

a1~11d!/ad
, p05

pn

a
,

n51,2,..., a15a, a25ad. ~30!

A similar expression forD12(p2) is obtained on making the
substitutionp→p2 .

For the following discussion it is convenient to writ
D34(p) andD12(p2) in the following form:

D34~p!.
iaa2d

p3 exp~2 ip0a!D̃34, D̃345E2E2R1 iG2 ,

D12~p2!.
iaa2d

p2
3 exp~2 ip2a!D̃12,

D̃125E2v2E1R1 iG1 , ~31!

where
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j aa2d2 2 1 2 jR jR

~32!

whereG j is the width of the electronic levels. Evidently, w
must setṼ50 in the determinantsDml with Ṽ2. In the prin-
cipal approximation with respect toa/p they are equal to

Dml~p1R!.2
2a2d

p2
2 , Dml~p2R!.2

2a2d

p2 ~33!

and area2/p2 times greater than the resonant values ofD12

and D34. Thus, corrections} Ṽ2 for D12D34 make a small
contribution with respect top2/a2 to the term proportional to
Ṽ2. As a result, we arrive at the following expression for t
determinant:

D52
2a2a4d2

Ṽ2p1
2p2

3
D̃~l!, l25

16p1p2Ṽ2

a2
,

D̃~l!5$@~E2v2E1R!1 iG1#@E2R2E2 iG2#1l2%.
~34!

It is easy to see from Eq.~34! that the electromagneti
field can have a significant effect on resonant tunnelling

l2.G1G2 , Ṽ.
p1p2~11d2!

2a2d2 . ~35!

Sincea/p@1, the condition~35! is satisfied simultaneousl
with the inequalityṼ!1. ~See Eq.~28!.! We shall refer to a
field which satisfies the condition~35! as a strong field~cf.
Ref. 9!.

We now find the coefficientsA0 j andA21,j . First of all,
it should be noted that, as can be seen from Eqs.~22! and
~27!, the wave functionc0(x) ~as well asc21(x)) is a su-
perposition of eigenfunctions with momentap(exp(6ipx))
and functions exp(6ip2x) induced as a result of interleve
transitions. This is why the approach involving an expans
in the eigenfunctions of the unperturbed problem usually e
ployed in laser theory does not work.

As Eq. ~27! implies, the principal parametersA0 j in
terms of the parameterṼ2 areA03 andA04, which are related
to lowest order ina/p by

A03.2A04, A0352
2qp2

2D̃12~p1!exp~2 ipa!

ap1aD̃~l!
, ~36!

so that

c0~x!.2iA03 sin~p2x!. ~37!

If we include the correction to next order ina/p in the
expression forA03, then instead of Eq.~37! we have

c0~x!.
2qD̃12~p1!p2

2

ap1aD̃~l!
H 2sin@p2~x2a!#

1
p2

2ad
exp@ ip2~x2a!#J . ~38!

The second term in Eq.~38! describes the intra-subban
current. It is important for calculating the transmission a
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Jc andJs because it is small (; p/a) compared to the first
terms.

The main contribution toc21 is from the coefficients
A211 andA212, which are given in the principal approxima
tion with respect toa/p by

A211.2A212, ~39!

and

A211.2
8&qṼp2

3

aa2p1D̃~l!
, ~40!

so that

c21~x!52iA211 sin~p1x!52
16& iqṼp2

3

aa2p1D̃~l!
sin~p1x!.

~41!

These expressions are valid for fieldsṼ!p/a. If
p/a,Ṽ,1, then it is easy to show, using Eq.~22!, that a
term proportional toṼ2a2/p2 is added to the numerator o
the expression forc0(x).

It should be noted that similar expressions forcn andD
in the resonance casedp50 have been obtained recently12

by another method. Perturbation theory with respect to
field was applied to solving Eq.~5! and then a series expan
sion was made with the principal terms ina/p retained.12

The convergence condition for the series places a limit
the field amplitude. Since a Hamiltonian of the formEx for
the interaction with the field was used,12 a direct comparison
is difficult. The expressions given there12 are approximately
valid for fields satisfying the conditionl2,G1G2 , i.e., weak
fields in the sense of Eq.~35!. The wave functions found in
Ref. 12 were used to calculate the transmission and reflec
coefficients.

Substituting Eqs.~37! and ~41! in Eq. ~13!, for the cur-
rentsJc(k) andJs(k) we find

Jc,s~k!52
2ieM12

m* @A03* A2117A03A211* # i ~ l 71!/2, ~42!

which, with Eqs.~36! and ~40!, take the form

Jc~k!5ṼQh
G1G2

uD̃~l!u2
, ~43!

Js~k!5ṼQh
G2~E2v2E1R!

uD̃~l!u2
, ~44!

where

M125
1

a E
0

a

dx@p1 sin~p2x!cos~p1x!

2p2 sin~p1x!cos~p2x!#, ~45!

and

Q5
q2p

m*
, h5

64M12e
2p1

2d2

v2a2~11d2!
, ~46!

andQ is the coherent pump current.
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5. SINGLE-MODE LASING IN A QUANTUM CASCADE
LASER WITH MONOENERGETIC ELECTRON PUMPING
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We shall assume that the electrons incident on the up
working level have the same energyE.E2R . This situation
is realized if the Fermi energyEF of the electrons in the
emitter is small compared to the level withG j . After substi-
tution of Eqs.~43! and~44! in Eqs.~2! and~3! in the station-
ary case, the latter take the form

15Q̃
G1G2

uD̃~l!u2
, ~47!

and

v2V5Q̃
G2~E2v2E1R!

t0uD̃~l!u2
, ~48!

where

Q̃54pt0Qh/k, ~49!

and D̃(l) is given by one of Eqs.~34!.
We find the threshold pump currentsQ̃th and lasing fre-

quencyv by settingl50 in Eqs.~47! and ~48!. Taking the
electron energy to beE2R , i.e., E5E2R , we find an expres-
sion for the threshold current

Q̃th5G2@G1
21~v212v!2#/G1 ~50!

and for the frequency

v5
Sv211V

S11
, S5

1

G1t0
. ~51!

The ‘‘stabilization coefficient’’S, given by the ratio of
the width of the cavity mode (1/t0) to the width of the emis-
sion line,8 can vary over wide limits, depending on the p
rameters of the structure and the cavity length. If, for e
ample, we take2,3 G1'10212 s21 and t0'10211 s21, then
S'10 and the frequencyv is mainly determined by the fre
quencyv21. Since the separation between the cavity mo
is small and the inequalityG1@(v212V)/(11S) may be
satisfied, the threshold current is

Q̃th5G1G2 , Qth5G1G2

v2a2~11d2!k

4pt0•64M12e
2p1

2 ~52!

and is determined by the product of the level widths.
Therefore, in order to reduce the threshold current i

necessary to choose parameters which lead to a reductio
G j . Equation~52! can be used to analyze the dependence
Qth on other parameters as well, such as the frequency,
dimensions, etc.

It is easy to show that above the lasing threshold,
~51! for the frequency remains valid, i.e., the frequency do
not depend on the pump current, while the reduced la
powerPv5l2 is given by

Pv5G̃~AQ̃2G̃!, G̃5AG1G2. ~53!

We note, first of all, that the powerPv depends nonlin-
early onQ̃, so that the rate of rise of the power falls off wit
rising Q̃ andPv(Q̃) tends to saturate.
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power is proportional to the productAG1G2. Thus, the power
depends in a nontrivial way on the widthG̃: small values of
G̃ correspond to small threshold currents, and to lower po
ers, and vice versa. Therefore, there is an optimum~with
respect to efficiency! which is attained forQ̃54G̃2, at which
the power is given by

Pv5G̃2, l5G̃. ~54!

The reason for the reduced efficiency and rate of rise
the power is related to the fact that for fieldsl>G̃ the con-
ditions for coherent tunnelling are violated~see below! and
the flux of electrons incident from the source experien
strong reflection. This is confirmed by a calculation of t
reflection coefficient.

Let us assume that the electron energyE differs from
E2R by an amountj, i.e.,

E5E2R1j. ~55!

We can see that adjustingj changes the lasing regim
radically. To avoid cumbersome formulas, we begin t
analysis with the caseG15G25G, assuming that
v212v!G.

We find an expression for the lasing power from E
~47!:

Pv[l25j21G~AQ̃24j22G!. ~56!

For j50, Eq. ~56! transforms to Eq.~53!. For j Þ 0, the
threshold current increases with risingj:

Q̃th5~G21j2!2/G2. ~57!

At the same time, above the threshold a detuning leads t
increase in the fieldl. Thus, there is an optimum value ofj0

for a given pump current which can be determined from
equation

]l2

]j0
52j0S 12

2G

AQ̃24j0
2D 50. ~58!

Equation~58! has the following solutions:

j050, j0
25Q̃/42G2. ~59!

The first solution corresponds to a peak power within
pump range 1,Q̃/G2,4, where the second solution doe
not exist (j0

2,0). When the condition

Q̃.4G2 ~60!

is satisfied, the second solution appears. It corresponds
peakPv ~and for the zero solution the maximum is replac
by a minimum!. Forj5j0 the powerl2 as a function~56! of
Q̃ takes the form

l25Q̃/4. ~61!

It can be seen from Eq.~61! that the power rises linearly with
Q̃ and is independent ofG. Note that the linear regime sets i
~noting Eq. ~60!! when the field amplitudel exceeds the
dampingG, i.e.,

l.G. ~62!
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~59! asQ increases, then the lasing power is maximal. T
effect can be attributed to splitting of the levels in a stro
field and the appearance of a gap equal tol.9,14 Thus, if the
energy of the incident electrons is fixed~e.g.,j50!, then the
energy of the pump electrons will deviate from resonan
and they will be reflected. If, on the other hand,j5j0 is
increased in proportion tol ~see Eq.~59!!, then the detuning
is compensated. This interpretation is confirmed by a re
tionship betweenj0 and l obtained from Eq.~59! together
with Eq. ~61!:

j0
25l22G2. ~63!

The existence of a regime withj0 Þ 0 suggests a way
of increasing the efficiency of a coherent laser in which
pump source has a simultaneously varying current and v
age related by Eq.~59!. Here it should be kept in mind tha
the laser enters a regime where the power is independe
the dampingG for Q̃.4G2. Thus, the optimum solution is to
choose the minimum possible dampingG. It is also clear that
the drift from resonance can be compensated partially b
nonmonoenergetic electron distribution. This case will be
amined in the next section.

It is easy to generalize these results to the caseG1

Þ G2 . For the reduced power, instead of Eqs.~56! and~57!
we have

l25j21G̃SAQ̃2
j2~G11G2!2

G̃2
2G̃D ~64!

and the threshold pump level is

Q̃th5
j41j2~G11G2!21G̃4

G̃2
. ~65!

The optimum tuning

j0
25

Q̃ G̃2

~G11G2!2 2
~G11G2!2

4
~66!

ensures a linear dependence ofl2 on the pumpQ̃,

l25
Q̃ G̃2

~G11G2!2 2
~G12G2!2

4
, ~67!

if the pump and the field satisfy the inequalities

Q̃.
~G11G2!4

4G̃2
, l.G̃. ~68!

The coherent laser has yet another feature which dis
guishes it from ordinary lasers: a population inversion is
required for it to operate. In fact, we can find the ratio of t
populations in the upper and lower levels using Eqs.~38! and
~41!:

I 5
*0

auc0u2dx

*0
auc21u2dx

5
G̃2

l2 s, s.1. ~69!

This implies that for a low pump current and weak field, i.

l,G̃, ~70!
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and field become strong, the population in the lower le
exceeds that in the upper level, i.e., there is no popula
inversion. It can be shown that in the optimum tuning r
gime, j5j0 , we haveI'1 according to Eq.~59!, i.e., the
populations are equal. The reason is as follows: in a cohe
laser the electrons entering the well interact coherently w
the field over their lifetimeG21. In an incoherent laser sca
tering processes shift the phase and destroy the coheren
the interaction with the field, so the transition probabili
depends on the difference in populations. It can also
shown that the population in the upper level does not cha
as the pumping level is varied~at least for fieldsṼ,a/p!,
while that in the lower level increases in proportion tol/G̃.

Note that Eq.~69! has been obtained with a model
which the field is localized within the well. Since the field
delocalized, and exists outside the well, it is necessary
take absorption and emission of the field outside the w
into account. However, these nonresonant transitions
small in terms of the parameterp2/a2.

6. NONMONOENERGETIC PUMPING

If the Fermi energyEF in the emitter region is suffi-
ciently high compared toG̃, then it becomes necessary
average the currents~43! and ~44! over the energy. We use
the customary formulas10,11 for the one-dimensional case:

J5rE
2EF/2

EF/2

J~E !dE , ~71!

wherer is the density of the state. Including the motion
the lateral plane leads to an additional factor

J;E
2EF/2

EF/2

J~E !S EF

2
2E DdE . ~72!

In general, the applicability of Eqs.~71! and ~72! to the co-
herent approximation is not evident. However, to illustra
the basic behavior we limit ourselves to Eq.~71!. We shall
again assume thatv;v21!G. Then, on substituting Eqs
~43! and ~44! in Eq. ~71!, we obtain

Jc~k!5ṼQhG̃2rE
2EF/2

EF/2 dE

ul22~E1 iG1!~E1 iG2!u2 .

~73!

Since we studied monoenergetic pumping in Sec. 5,
shall now findJc for the opposite limiting case, assumin
that EF@G j ,l. Taking the limits of integration as infinite
from Eq. ~73! we obtain

Jc5
ṼQhG̃2pr

~G11G2!~l21G̃2!
~74!

and, therefore, for the laser power we have

Pv5G̃2F pQ̃r

G11G2
21G . ~75!

It is important to note that the power depends linearly
the pump current even without ‘‘self-tuning.’’ This happen
because, since the Fermi energyEF is large, electrons at the
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the exact integral in Eq.~73!! that for l.EF a root depen-
dence again occurs in Eq.~53!. It should also be pointed ou
that, as opposed to Eqs.~61! and~67!, in Eq. ~75! the power
depends significantly onG j andr at high pump levels.

We can also find the lasing frequency for nonmonoen
getic pump electrons from the equation

v2V5
Q̃G2r

t0

3E
2`

` dE~E1v212v!

u@~E1~v212v!1 iG1#~2E2 iG2!1l2u2 .

~76!

If we setG15G2 , the integral of the first term is equal t
zero because of the even denominator~as can be seen easi
by making the variable substitutionE5E82(v212v)/2!.
Thus, the expression for the frequency is again given by
~51! with S51/2t0G.

In the general case ofG1 Þ G2 , the currentJs after
integration over energy is given~for v212v!G1) by

Js5
pṼQh2G̃2~v212v!r

~G11G2!2~l21G̃2!
. ~77!

Substituting Eq.~77! in Eq. ~3! and using Eq.~75!, we find
that v is again given by Eq.~51! with S51/t0(G11G2).

7. DISCUSSION OF RESULTS. CONCLUSION

As expected~see the Introduction!, a coherent laser with
coherent pumping has a number of important features. F
of all, there is no close link to a population inversion. D
pending on the pumping current and power, the relationsh
between the upper and lower levels can be arbitrary. In
optimum operating regime for a coherent laser with tun
j0 , electrons enter the upper level, undergo one radia
transition~for arbitrary fieldl!, and leave the quantum wel
This sort of behavior can be compared to self-transparen9

with the important difference that in our case the elect
stays in the lower level.

If, on the other hand, there is no tuning, monoenerge
pumping leads to a nonlinear~root! dependence for the lase
power on the pump current. A sharp deviation from a line
dependence is observed when the fieldl exceeds the leve
width G̃. This prediction of the model also~as in the tuning
regime! can be verified experimentally as, incidentally, c
the linear dependence of the power in the case of nonmo
chromatic pumping. Naturally, the most efficient cohere
pump is monoenergetic with energy tuning in accorda
with Eq. ~59!.
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ing required for generating an electromagnetic field is int
duced in this model by the boundary conditions. Thus, th
is no need to invoke approximate kinetic approaches to
count for dissipative scattering processes. In this way,
have an example of a model for steady-state lasing a
strictly quantum mechanical problem which, at the sa
time, can be used to find the power and frequency.

The model studied here has been simplified as much
possible in order to reveal the basic features of the cohe
laser. We assume, however, that with a certain choice
parameters that will ensure satisfaction of the condit
tph.G j

21 ~see the Introduction!, the model is qualitatively
applicable to quantum cascade lasers based on qua
wells, wires, and, especially, dots. A quantitative theory m
include scattering processes, shifts in the levels owing
charge accumulation in the well, and the real barrier str
ture.
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Anomalously high kinetic energy of charged macroparticles in a plasma

in
A. P. Nefedov, A. G. Khrapak, S. A. Khrapak, O. F. Petrov, and A. A. Samaryan

Scientific Research Center for the Thermal Physics of Impulsive Interactions, Russian Academy of Sciences,
127412 Moscow, Russia
~Submitted 23 January 1997!
Zh. Éksp. Teor. Fiz.112, 499–506~August 1997!

A number of recent experimental investigations of nonideal plasmas containing macroparticles
have revealed an anomalous increase in that part of the kinetic energy of these
macroparticles that corresponds to their random motion. In this paper a model is proposed for
the dynamic motion of charged macroparticles that explains this phenomenon.
Calculations based on this model are compared with experimental results. ©1997 American
Institute of Physics.@S1063-7761~97!00808-1#
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Systems consisting of a plasma plus solid charged
ticles with sizes ranging from below a micron to seve
microns are commonly encountered in space~planetary
rings, interstellar clouds, comet tails, the ionosphere of
Earth, etc.!. Macroparticles are also observed in the lo
temperature laboratory plasmas used in plasma sputte
and etching, in the manufacture of microelectronic com
nents, etc. The spontaneous generation of ordered struc
made up of macroparticles observed in recent experim
on various types of laboratory plasmas1–7 implies that such
systems can be used as macroscopic models of real m
scopic crystalline structures. The obvious advantage of u
a plasma with microparticles~compared, e.g., with colloida
solutions! to model microsystems is the relative ease of o
taining and studying such systems, as well as the small
of the times they require to relax to an equilibrium state a
respond to changes in external parameters. These fact
plain the recent surge of interest in studying the propertie
plasmas with macroparticles.

One question that has been intensely studied rece
concerns the dynamic behavior of the macroparticles. I
low-temperature weakly ionized laboratory plasma, mac
particles having a large surface area efficiently exchange
ergy with atoms of the neutral component. Therefore it
customary to assume that the macroparticles are chara
ized by the temperature of the neutral gas, and that t
motion is subject to the laws of Brownian motion. A conv
nient way to clarify the nature of the behavior of these p
ticles qualitatively is to introduce the autocorrelation fun
tion of the particle velocityF(t)5^v(0)v(t)&, where the
angle brackets denote averaging over an ensemble. The
plest theory of Brownian motion that does not include h
drodynamic interactions~which are important only in ex-
tremely viscous media! predicts exponential decay ofF~t!
with a characteristic timets ,8 defined as the time for slow
ing down of a macroparticle due to the viscosity of the m
dium: ts5M /b ~hereM is the mass of the macroparticle an
b is its coefficient of friction in the medium!. Thus,

F~t!5^vT
2&exp~2t/ts!. ~1!

Here ^vT
2&53Tn /M is the mean square thermal velocity
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energy units!. The mean square displacement of the parti
within a time t, in accordance with Ref. 9, is given by th
expression

^Dr 2~t!&52E
0

t

~t2t !F~ t !dt

52^vT
2&tsH t1tsFexpS 2

t

ts
D21G J . ~2!

From Eq. ~2! it is easy to determine the value of th
mean square displacement of a macroparticle in two limit
cases. Fort@ts we have

^Dr 2~t!&52^vT
2&tst56D0t, ~3!

where D05(1/3)^vT
2&ts5Tn /b is the diffusion coefficient

for a Brownian particle. In the opposite caset!ts

^Dr 2~t!&5^vT
2&t2. ~4!

Equations~3! and ~4! reflect the diffusive character of th
macroparticle motion at large times and its essentially ba
tic character for small times.

The most recent investigations of an ideal plasma w
macroparticles show that under certain conditions the te
perature can exceed the temperature of a neutral gas by
tors of a hundred and even a thousand~here and in what
follows we understand the macroparticle temperature
mean the temperature corresponding to the kinetic energ
their random motion!.7,10–12This phenomenon is observed
low pressures and has not been explained. The tempera
itself is determined in the following way: the motion of th
macroparticles in a horizontal plane is recorded by a vid
camera, and then the appropriate processing of the v
image is carried out. Based the projection of the mean squ
motion of the particle in a prespecified direction within th
time t between frames, the mean-square velocity is cal
lated to be^vx

2&5(Dx2)/t2. The temperature is introduce
through the relation 2(Tmes/2)5(M /2)(^vx

2&1^vy
2&). Of

course it goes without saying that this procedure itself ne
an appropriate justification. Thus, even for ordinary non
teracting Brownian particles the interpretation of the expe

27204$10.00 © 1997 American Institute of Physics
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particle in the mediumts to the time interval between frame
t ~see Eqs.~3! and ~4!!.

In this paper we present a model of the dynamic beh
ior of charged macroparticles in a plasma that can explain
considerable departure of the temperature of dust parti
from that of the neutral component as the pressure in
system falls. We will compare the results obtained in
framework of this model with the experimental results ava
able at the present time. The conditions for its applicabi
are also discussed.

2. DYNAMIC BEHAVIOR OF CHARGED MACROPARTICLES
IN A PLASMA

Consider a system consisting of negatively charged m
roparticles with a chargeZ ~in units of the electron charge!,
electrons, singly charged positive ions, and neutral gas.
np ,ne ,ni ,nn be the corresponding concentrations of mac
particles, electrons, ions, and neutral gas atoms. The sy
is assumed to be quasineutral, so that

Znp1ne5ni . ~5!

Moreover, we will assume that the plasma is weakly ioniz
i.e., nn@ne ,ni . We further assume that each of the su
systems of electrons, ions, and neutral gas are in a sta
thermodynamic equilibrium with temperaturesTe , Ti , and
Tn respectively. Since the mobility of electrons and ions co
siderably exceeds that of the macroparticles, the distribu
of electrons and ions in a quasi-uniform plasma will adiab
cally follow the distribution of macroparticles. When a sm
perturbation in the macroparticle densitynp(r ) arises, an
electric field E52¹w appears that attempts to return t
system to a uniform distribution. Let us write Boltzman
distributions for the electrons and ions:

ne~r !5ne
0 expFew~r !

Te
G , ~6!

ni~r !5ni
0 expF2

ew~r !

Ti
G . ~7!

Combining Eqs. ~6! and ~7! with the condition of
quasineutrality~Eq. 5!, we obtain

E5
Z

e S ni
0

Ti
1

ne
0

Te
D 21

¹np . ~8!

The macroparticle flux is written in the form

I p52
ZeE

3
np2D0¹np . ~9!

Substituting~8! into ~9! we obtain

I p52D0F11
Ti

Tn

Z2np
0

~11Ti /Te!ne
01Znp

0G¹np . ~10!

After taking the divergence of both sides of Eq.~10! and
using the equation of continuity for the macroparticle de
sity, we finally obtain a diffusion equation
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where the diffusion coefficient for the charged macrop
ticles has the form

Dp5D0F11
Ti

Tn

Z2np
0

~11Ti /Te!ne
01Znp

0G . ~12!

Obviously, the mechanism we are discussing is ana
gous to ambipolar diffusion in an electron–ion plasma. N
that, whereas in an ordinary low-temperature plasma the
efficient of ambipolar diffusion can be significantly larg
than the diffusion coefficient of ions only in the presence
hot electrons, in the present case we may expect a signifi
increase inDp compared toD0 under certain conditions eve
for an isothermal plasma (Te5Ti5Tn) due to the large
value of the chargeZ. It is interesting to consider variou
limiting expressions for the diffusion coefficient of charge
macroparticles in a plasma. SettingZ50, we have Dp

5D0, as we should expect for uncharged macropartic
Reducingnp to zero, we also obtainDp5D0 ; this shows that
the increase in the macroparticle diffusion coefficient is
sentially a collective effect. It is also easy to obtain an e
pression forDp in an isothermal system consisting of pos
tively charged macroparticles, electrons emitted by the
and neutral gas. This expression was discussed in Refs
and 14~in this case we simply need to replaceZ by 2Z!. In
complete agreement with the results of Refs. 13 and 14
obtainDp5D0(11Z).

It is well known thatDp can exceedD0 in dilute suspen-
sions of interacting particles,9 which in most ways are analo
gous to systems of plasmas with macroparticles. The
namic interactions of macroparticles can be represen
approximately in the following way: let us write the velocit
of each macroparticle in the form of a sumvp5vT1vd ,
wherevT is the velocity connected with imbalance in coll
sions with atoms of the surrounding medium~the ‘‘Brown-
ian’’ force!, while vd is the velocity caused by the interactio
between the macroparticles~the drift velocity in the field that
arises as the macroparticle density is perturbed!. Let us also
introduce the the drift velocity correlation timet I . Under the
assumption thatvd and vT are not correlated, we can writ
by analogy with Eq.~1!9

F~t!5^vT
2&exp~2t/ts!1^vd

2&exp~2t/t I !. ~13!

For t@t I , Eq. ~2! implies the following expression for the
mean square displacement of the macroparticles:

^Dr 2&56~D01Dc!t56Dpt, ~14!

where

Dc5
1

3
^vd

2&t I ~15!

is the so-called coefficient of collective diffusion, whose a
pearance is explained by the interaction between the ma
particles. For another limiting caset!ts we have

^Dr 2&5~^vT
2&1^vd

2&!t2. ~16!
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some problems. Here we define it as the time required
travel the average distancea between macroparticles in th
plane of observation while moving at the drift velocity:

t I
2~^vdx

2 &1^vdy
2 &!5a2. ~17!

In suspensions of interacting particles the difference
tweents and t I is very large, four to five orders of magn
tude for particles of micron size.9 Therefore, althoughDc can
greatly exceedD0 , the following condition usually holds:

^vd
2&!^vT

2&. ~18!

In this case the average kinetic energy of the macroparti

K5
3

2
Tn1

M ^vd
2&

2
~19!

is determined exclusively by the temperature of the s
rounding medium. In a plasma with macroparticles no su
difference betweents andt I can arise, so that Eq.~18! may
not be satisfied and the subsystem of macroparticles will
be in thermodynamic equilibrium with the neutral comp
nent. If the temperature of the subsystem of macroparticle
defined through the relationK̄53Tp/2, after rewriting Eq.
~12! in the formDp5D01Dc , using Eq.~15!, and the defi-
nition of t I in Eq. ~17!, we obtain

Tp5Tn1
2MD0

2

a2 S Dc

D0
D 2

, ~20!

where in agreement with Eq.~12! the ratioDc /D0 is defined
by the expression

Dc

D0
5

Ti

Tn

Z2np
0

~11Ti /Te!ne
01Znp

0 . ~21!

Under certain conditions the second term on the ri
side of Eq.~20! can exceedTn . This also will correspond to
a difference between the temperatures of the macropart
and the neutral component. This difference arises from
internal fields that appear in a low-density system due to
spatial separation of charges. As the system pressure
creases,D0 increases, which qualitatively explains the ph
nomenon of increased macroparticle kinetic energy obse
in Refs. 7 and 10–12.

3. COMPARISON OF THE MODEL WITH EXPERIMENT

For a more detailed comparison of this model with e
perimental results we will use the paper by Melzeret al.,10

which contains the most complete information on the para
eters of our system. In this paper the authors observed
formation of crystal-like macroparticle structures in an rf H
plasma at low pressures. The crystal structure forms nea
boundary of the cathode sheath, where the force of gravit
balanced by an electric field. The macroparticles used
these experiments were spherical monodispersed particle
radius R54.7mm and massM56.7310210 gm. Melzer
et al. observed a phase transition from a crystalline state
gaslike state as the pressure of the gas dropped from 12
40 Pa at constant discharge power. They explained the p
transition by invoking an increase in the effective macrop
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ticle temperature, which in turn decreases the interaction
rameterG, defined as the ratio of the electrostatic interacti
energy between neighboring particles to their kinetic ener
G5Z2e2/aTp . For values of the interaction parameter larg
than a critical valueGc the system should be in the crysta
line state, while asG decreases the system of macropartic
enters a liquid state. Debye screening in the plasma ca
the value ofGc to depend on the ratio of the averaged inte
particle distance to the Debye radius:k5a/lD . The casek
50 corresponds to the simplest model of a single-compon
plasma. In this modelGc.170.

Our scheme for measuring the particle temperature
described in the Introduction. In our model, this approach
correct only in the limitt!ts , in which case the real kinetic
energy of the macroparticles is measured according to E
~16! and ~19!. The time between frames in these measu
ments wast520 ms. Figure 1 shows the temperature of t
macroparticles measured in this way for various values of
pressure. The horizontal straight line in Fig. 1, which cor
sponds to a temperature of; 0.7 eV, is the smallest value o
macroparticle temperature that can be determined by
video apparatus. This instrumental limit is connected w
the discrete structure of the video image.10

Let us now discuss our choice of system parameter
be substituted into Eq.~20!. We takeTe@Tn5Ti5300 K.
The average distance between macroparticles is practic
independent of the pressure and equalsa5450mm,10 which
corresponds to a macroparticle densitynp5a23

'104 cm23. In the range of pressures under study, the m
free path of He atoms greatly exceeds the radius of the m
roparticles. Correspondingly, the coefficient of resistance
the medium is determined~under the assumption of comple
accommodation! by the expression15

b5
4p

3 S 41
p

2 DR2PA mn

2pTn
, ~22!

whereP is the neutral gas pressure andmn is the mass of the
He atom.

Now, by substituting into Eqs.~20! and~21! the macro-
particle charge and ion concentration obtained in experim
at various pressures, we obtain the dependence of the m

FIG. 1. Macroparticle temperature as a function of system press
d—values obtained in experiment;s—calculated using the model given
here
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our model! that is applicable to the conditions of the expe
ment in Ref. 10. This dependence is also shown in Fig
The quantityt I'a2/2Dc obviously is a minimum at the low
est pressure in the system, and comes to; 0.2 s at 40 Pa,
while ts in this range of pressures varies from 20 to 60 m
Thus, the conditionts.t is fulfilled; consequently, the pro
cedure applied to measure the kinetic energy of the ma
particles is correct.

The results of calculations using our model are found
be in satisfactory agreement with the experimental result
is unreasonable to expect more precise quantitative ag
ment for a large number of reasons. First of all, we note t
the discussion given in this paper of the dynamic behavio
macroparticles is correct when the parameterG is not too
large ~i.e., for gaslike and liquidlike states of the macropa
ticle system!, which corresponds to the region of low pre
sures in the experiments under study. In this sense, the u
Eq. ~20! for all ranges of pressure may be considered to
an extrapolation of the model outside the limits of its regi
of applicability. The good qualitative agreement of the c
culated macroparticle temperature with the experimental
sults at low pressures and its merely qualitative agreeme
higher pressures~see Fig. 1! is also a reflection of this fact
Some of the discrepancy between the model and experim
can also be explained by experimental error in determin
the macroparticle charge and ion concentration. For exam
uncertainties in the charge measurements due to the me
used in these experiments can be up to 50 leads to still la
uncertainties in the macroparticle temperature calculated
ing Eq.~20!. The error corresponding to this is shown in F
1 for one of the calculated points. Finally, we cannot av
pointing out that there is a certain arbitrariness in the defi
tion of t I .

Besides the considerations mentioned above, the foll
ing circumstance suggests that certain refinements
needed. Our observations during the particle motion
made near the boundary of the cathode sheath~a layer of
positive bulk charge and electric field!. In this region it is
possible that the quasineutrality condition Eq.~5! is not
strictly satisfied. Moreover, in this regionTi can exceedTn

somewhat due to ion drift towards the cathode in the elec
field.

Figure 2 shows the dependence of the interaction par
eterG on pressure in a system with temperatureTp calculated
according to Eq.~20!. This function clearly demonstrate
that, despite some increase in the interaction between
particles as the neutral gas pressure decreases~their charge
increases while the screening decreases!, the interaction pa-
rameter rapidly decreases due to the increase in macro
ticle kinetic energy. This behavior of the parameterG is in
complete agreement with the melting of the quasicrystal
structure observed in the experiments as the pressure fa
the discharge from 120 to 40 Pa.
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4. CONCLUSION

In this paper we have described a model for the dyna
behavior of macroparticles in a plasma that explains
anomalous increase in macroparticle kinetic energy obse
in experiments at low pressures of the neutral compon
The reason for this increase in temperature is the drift mo
of dust particles in the internal fluctuating fields. The mod
described here is in satisfactory agreement with the exp
mental results. Possible reasons for certain discrepancie
tween calculated and experimental points have been
cussed.

This paper was partially supported by the Russian Fu
for Fundamental Research~project No. 97-02-17565!.
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Radiative forces acting on point sources moving in a stratified fluid
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Both components of the total radiative force acting on uniformly moving mass sources in a
stratified incompressible fluid are calculated. These forces are related to the emission of internal
gravity waves. One component of the radiative force is directed opposite to the direction
of motion. This is the well-known wave drag force. Different useful representations of this
component are derived for several typical point sources~monopole, dipole, and others!.
The other component, directed perpendicular to the direction of the motion, is calculated for the
first time. The results obtained are extended to the case of rotating media, where internal
inertial–gravity waves exist. ©1997 American Institute of Physics.@S1063-7761~97!00908-6#
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It is well known that a uniform motion of force or mas
sources in a stratified liquid is accompanied by the emiss
of internal waves. The wave fields and radiative forces wh
are generated by and act on such moving sources have
calculated in many works; see, for example, Refs. 1–12
the references cited there~it is impossible to list here al
works on this subject!. The emission of internal waves i
analogous to the Cherenkov emission of electromagn
waves by charges moving uniformly with superluminal v
locity in dielectrics. On account of radiative energy losse
retarding force due to wave drag acts on a moving source
anisotropic media, however, apart from this force the to
radiative force can have another component directed per
dicular to the velocity of the source.13

In most works having to do with the force characterist
arising with wave emission some modification of the pro
lem of the horizontal or vertical motion of sources in a stra
fied medium was studied. In this case there is a definite s
metry with respect to the direction of gravity, so that in the
problems the radiative force due to the emission of inter
waves reduced only to wave drag and was calculated on
basis of energy considerations: The powerFwd•Vs dissipated
per unit volume equals the energy fluxW carried away from
a given volume by the internal waves. However, if the sou
moves at an angle to the horizontal direction, then the sp
trum and intensity of the radiation to the left and right of t
source are, generally speaking, different as a result of
anisotropic nature of the internal waves. As an illustrati
Fig. 1 shows a shadowgraph~kindly provided by E. Ya. Sy-
soeva and Yu. D. Chashechkin! that depicts the field of in-
ternal waves which are emitted by an obliquely movi
sphere in a stratified fluid. It is clearly seen in this pho
graph that the characteristic wavelengths of the waves on
two sides of the trajectory of the sphere are appreciably
ferent. On account of the fact that the radiation emitted fr
the source and the momentum carried away by the waves
not the same on different sides of the trajectory, apart fro
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source. As a result, the total radiative force should cont
two components: a wave drag force and a lateral for
which, evidently, cannot be calculated from energy cons
erations because it performs no work. It is obvious that, j
like the wave drag force, it can be found directly by calc
lating the total momentum flux carried away by the emitt
internal waves. In addition, if the wave drag force has
ready been found~for example, by means of energy consi
erations!, the lateral force can then be easily calculated b
different method as well — using the formulas which will b
presented and justified below. This method has already b
successfully employed to calculate the lateral forces ac
on uniformly moving sources emitting Rossby waves in t
b-plane and drift waves in plasma.13

In the present paper the total radiative force acting
uniformly moving monopole and dipole mass sources in
stratified medium are derived. It is shown that the differe
computational methods give identical results.

2. BASIC EQUATIONS; GENERAL RELATIONS

For simplicity, we shall consider a mass source mov
uniformly in an incompressible stratified fluid~as is well
known,12 the calculations for a force source reduce to cal
lations for an effective mass source!. We shall assume tha
the fluid is unbounded and exponentially density-stratifi
r0(z)5e2N2z/g, so that the Brunt–Va¨isälä frequency satis-
fies N5const. The basic equations of hydrodynamics in
Boussinesq approximation for small disturbances reduc
the system

L̂
]v'

]t
5S ]2

]t2
1N2D ]

]t
¹'m, L̂w5

]3m

]z]t2
,

L̂S r

r0
D52

N2

g

]2m

]t]z
, L̂S p

r0
D52S ]2

]t2
1N2D ]m

]t
, ~1!
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FIG. 1. Shadowgraph of the field of internal waves emitt
by an obliquely moving sphere in a stratified fluid.
where m(t,r )5m(r2Vst) is the mass source determining
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the flow rate of the fluid, the source velocityVs is assumed
to be constant,L̂[ ]2/]t2 D1N2D' is a linear operator con
taining the three-dimensional LaplacianD and its two-
dimensional partD' corresponding to thex, y horizontal
plane, andv5$v' ,w% andv'5$u,v%.

From the system of equations~1! for the pressure field, a
formal solution expressed in terms of the Green’s funct
G(t,r ) is easily found for the stationary problem with the a
of the Fourier transform

P~v,k!5 iv~N22v2!G~v,k!m~v,k!,

p~ t,r !52S ]2

]t2
1N2D ]

]t

3E E m~ t8,r 8!G~ t2t8,r2r 8!dt8dr 8. ~2!

Knowing the pressure field it is easy to calculate t
energy losses per unit time~dissipated power! which are due
to the emission of internal waves:

W5E p~ t,r !m~ t,r !dr

5
1

~2p!s12E E E P~v,k!m~v8,2k!

3e2 i ~v1v8!tdv8dvdk,

wheres52 or 3 is the dimension of the space.
In the case of uniform motion the Fourier transform

the source is proportional to a delta functio
m0(k)d@v2(k–Vs)#. As a result we obtain

W52
1

~2p!s
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n

3E E v~N 2v !Im$G~v,k!%

3um0~k!u2d@v2~k–Vs!#dkdv. ~3!

As one can see, the magnitude of these energy loss
determined only by the imaginary part of the Fourier tran
form of the Green’s function~here and below we employ th
retarded Green’s function, which satisfies the causality c
dition G(t2t8,r2r 8)u t,t850). In the Boussinesq approxi
mation for a uniformly stratified fluid we have

Im G~v,k!52psign~v!d~v2k22N2k'
2 !. ~4!

Now the equation~3! can be rewritten in the form

W5
p

~2p!sE E uvu~N22v2!um0~k!u2d@v

2~k–Vs!#d~v2k22N2k'
2 !dkdv. ~5!

This representation reflects the wave character of
losses, since the integrand is concentrated~because of the
second delta function! on the dispersion surface of the inte
nal waves

v2k25N2k'
2 or v56Nk' /k.

Furthermore, the radiation wave field is stably related
the uniformly moving source, so that the radiation frequen
is proportional to the longitudinal component of the wa
vector ~the first delta function in Eq.~5!!

v5~k–Vs! or c[
v

k2
k5Vs .

For this reason, the possible wave vectors of the emi
waves are determined by the simple system of equations

H v5~k–Vs !,

v2k25N2k'
2 .

~6!
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the range of frequencies of the emitted waves is limit
v2<N2.

3. PLANAR PROBLEM FOR INTERNAL WAVES

The system of relations~6! makes it possible to expres
in the two-dimensional case the two possible wave vec
k1 andk2 of the radiation as a function of the frequencyv
~frequency parameterization!:

k65S v

V6
,6

AN22v2

V6
D , V6[Vsx6Vsz

AN22v2

v
.

~7!

An alternative angular parametrization of these wa
vectorsk6 is found as follows. Let us switch to polar coo
dinateskx5k cosu andkz5k sinu and express the compo
nents of the velocity of the source in terms of the magnitu
of the velocity and the slope angle with respect to the h
zontal axisx: Vsx5Vs cosw andVsz5Vs sinw. Then, using
the relationv5(k–Vs) , we write

k5
~v cosu,v sin u!

Vsxcosu1Vsz sin u
5

v

Vs

~cosu,sin u!

cos~u2w!
. ~8!

Using the dispersion relationv56N cosu we obtain the
desired angular parametrization

k656
N cosu

Vs

~cosu, sin u!

cos~u2w!
. ~9!

Thus, we obtain an expression for the wave number
the limit on the angles and frequencies of the emitted inte
waves:

k5
N

Vs
U cosu

cos~u2w!
U, v

cos~u2w!
.0. ~10!

The inequality follows from the equationv5kVs cos(u2w)
and the positivity of the wave number.

To determine the contributions of these waves more
curately, it is necessary to transform the products of the
delta functions appearing in the integrand for the dissipa
powerW.

In the case of frequency parameterization we have

d@v2~k–Vs!#d~v2k22N2kx
2!

5
H~N22v2!

2v2AN22v2
@d~k2k1!1d~k2k2!#, ~11!

whereH(j) is the Heaviside function.
Now the equation for the dissipated power acquires

form of the following expansion in terms of the frequen
~frequency parametrization of the wave vectorsk6 is as-
sumed!

W5
1

8pE2N

N AN22v2

uvu ~ um0~k1!u21um0~k2!u2!dv.

~12!

In the case of a point source (um0(k)u251) the integral
in Eq. ~12! diverges logarithmically at low frequencies. T
eliminate the divergence it is sufficient to introduce a fo
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recall that k6•Vs5v. For this form factor the dissipated
power

W5
1

4pE2N

N

u f ~v/Vs!u2AN2

v2
21 dv ~13!

becomes finite and does not depend on the direction of m
tion of the source. The wave drag forceFwd5W/Vs in this
case also does not depend on the direction of motion of
source. The mass source under consideration is nonloca
the direction of its motion:

m~ t,r !5
d~r'!

2p E f ~ki!e
ik i~r i2Vst !dki5d~r'!

3F~r i2Vst !.

A point dipole oriented in the direction of motion is als
a mass source of this type

m~ t,r !52~ l–¹!d~r2Vst !5
l

Vs

]

]t
d~r2Vst !, ~14!

where l5 lVs /Vs is the dipole moment and
m(v,k)522p i (v l /Vs)d@v2(k–Vs)#. The form factor for
this force isf (v/Vs)52 i l v/Vs .

For a more general form of nonlocalization the diss
pated power depends on the direction of motion.

We shall now transform the product of delta functions
order to obtain an angular parametrization

d@v2~k–Vs!#d~v2k22N2kx
2!5

d~v!d~k2!

N2cos2u

1
Vs

2N3

ucos~u2w!u

ucosuu3
dFk2

N

Vs
U cosu

cos~u2w!
UG

3H HF cosu

cos~u2w!Gd~v2N cosu!

1HF2
cosu

cos~u2w!Gd~v1N cosu!J . ~15!

Except for the term withd(v)d(k2), which does not
contribute to the losses, the final expression gives the des
angular parametrization of the frequency and wave numb
Substituting this expression into the general equation for
losses~5! we obtain

W5
N

8pE0

2p sin2 u

ucosuuU
3m0S N cos2 u

Vs cos~u2w!
,
N cosu sin u

Vscos~u2w! D U2

du. ~16!

In this form, in accordance with what has been sa
above, the dependence on the direction of motion~on the
angle w) disappears for a nonlocalization of longitudin
type

um0~k!u25u f @~k–Vs!/Vs#u25U f S N

Vs
cosu D U2

,
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and the dissipated power and the wave drag force remain

ca

Th
t

to

in
th
o

o

ie
i

he
e

,

hat
of a

-

rm

in
ted
for
ve

of
-
u-
as
is

Ref.
rce
of
ef.
-
at

the

a
s
ay

in
finite in the limit f→0 with cosu→0.
In the case of a mass dipole consisting of nonlo

source and sink separated by a distance 2uau and moving in
an arbitrary direction with a nonzero angle of attack~i.e.
a3Vs Þ 0), we have

m~ t,r !5m0~r2a2Vst !2m0~r1a2Vst !,

m~v,k!524p im0~k!sin~k–a…d@v2~k–Vs!# ~17!

and one need only make the substitution

um0~k!u2→4 sin2~k–a!um0~k!u2 ~18!

in the equations presented above for the energy losses.
the angular expansion for the dissipated power acquires
form

W5
N

2pE0

2p sin2 u

ucosuu
sin2FNa

Vs
cosu

cos~u2a!

cos~u2w!G um0~k!u2du,

~19!

k5
N

Vs
U cosu

cos~u2w!
U~cosu,sin u!,

wherea is the inclination angle of the dipole with respect
thex axis. Here the limitum0(k)u2→m0

25 const corresponds
to a dipole with spatially separated point source and s
Hence an equation can also be obtained, in particular, for
angular expansion of the dissipated power for a point dip
(a→0, m0→`, l 52m0a5 const ,`) moving at some
angle of attack (a5w Þ 0):

W5
N3l 2

8pVs
2E0

2p

sin2 uu cosu u
cos2~u2a!

cos2~u2w!
du. ~20!

Similarly, we have for the frequency representation
the dissipated power

W5
1

2pE2N

N AN2

v2
21(

6
sin2~k6•a!um0~k6!u2dv

5
1

2pE2N

N AN2

v2
21(

6
sin2S v

axv6azAN22v2

Vsxv6VszAN22v2D
3um0~k6!u2dv. ~21!

The interference factor sin2 ~ . . .! appearing here ordinarily
guarantees convergence of the integral at low frequenc
for example, for a dipole oriented in the same direction as
velocity (aiVs), in which case it reduces to sin2(va/Vs).
Then the result forW andFwd with um0(k)u251 is indepen-
dent of the direction of motion. On the other hand, in t
particular case of a dipole in horizontal motion with th
angle of attack (Vsz50, az Þ 0) the interference factor
which assumes the simplified form

sin2S ax

Vsx
v6

az

Vsx
AN22v2D ,
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no longer eliminates the nonintegrable singularity in Eq.~21!
at low frequencies. Here regularization likewise requires t
the source be nonlocal, and once again nonlocalization
longitudinal type is sufficient:

um0~k!u25u f ~v/Vs!u2→0 asv→0.

The expression~21! can be written somewhat more sim
ply with the substitutionv→2v,

W5
1

pE2N

N AN2

v2
21sin2S v

axv1azAN22v2

Vsxv1VszAN22v2D
3um0~k1!u2dv. ~22!

Then we have in the limiting case of a point dipole

W5
1

4pE2N

N

uvuAN22v2S l xv1 l zAN22v2

Vsxv1VszAN22v2D 2

dv.

Trigonometric substitutions reduce this equation to the fo
~20!.

Knowing the dissipated power, we can easily find
each specific case the wave drag force, which is direc
opposite to the velocity vector of the source. Specifically,
a point dipole moving without an angle of attack the wa
drag force isFwd52r0l 2N3Vs/6pVs

4 . However, this force
is only a part of the total radiative forceFr5Fi1F' , where
Fi[Fwd .

Let us now consider the question of the calculation
the radiative forceF' perpendicular to the direction of mo
tion. Since this force performs no work, it cannot be calc
lated on the basis of the law of conservation of energy,
done above for the wave drag force. A different approach
required here. One possible approach is developed in
14, where an expression is found for the horizontal fo
acting on a body in a stratified shear flow. In a frame
reference moving together with the source, the results of R
14 transferin toto to our case with a substantial simplifica
tion, since the fluid flow does not contain a velocity shear
infinity. The approach developed consists essentially of
following.

As is well known, the hydrodynamic force acting on
unit length of a cylindrical body in a fluid is determined a
the negative of the sum of the momentum flux carried aw
by the internal waves from a given volume~see Fig. 2! to

FIG. 2. Geometry of fluid flow around a body in a system of coordinates
which the source is stationary.
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this volume. Thex-component of the force can be express
as15

Fx52
]

]tE E
D

r0uds1E E
ABCE

Pxknkds, ~23!

where P is the momentum flux tensor,n is a unit vector
normal to the surface of the cylinder, and the regionsD and
ABCE are shown in Fig. 2.

If the body in the flow is replaced by a mass sour
m(x,z), then from Euler’s equation and the continuity equ
tion follows an equation for thex-component of the velocity

]u

]t
1

]u2

]x
1

]uw

]z
1

1

r0

]p

]x
5um. ~24!

Integrating the equation~24! over the contourABCE
~see Fig. 2! we obtain

]

]tE E
D1D0

r0uds2E E
ABCE

Pxknk ds5E E
D1D0

r0um dx dz. ~25!

Letting the outer boundary of the fluid volumeD ap-
proach`, we obtain in the limit an expression for the hor
zontal component of the radiative force~see Ref. 14!

Fx52E
2`

1`E r0um dx dz. ~26!

The Fourier transform of the vertical component of t
velocity of the disturbance is easily found from the seco
equation of the system~1!, where the operator]/]t must be
replaced byUs]/]x1Ws]/]z, as a result of which we find

w̃5
2 ikzm̃

k22~N/~Us1kzWs /kx!1 i«!2
,

whereUs andWs are the horizontal and vertical componen
of the flow velocityVs and the formal symbol« is, in accor-
dance with Lighthill’s rule,16 an infinitesimal quantity re-
flecting the causal character of the response of the med

The Fourier transform of the horizontal component
the velocity of the disturbance can be found from the co
nuity equation

ũ5
m̃

ik
2

kz

kx
w̃.

Then we obtain for the horizontal component of t
force in the case of a point dipole oriented parallel to
direction of motion

Fx5
r0

2p2ReS E
0

`

/ dkxE
2`

` kz

kx
w̃m̃ dkzD

5
r0l 2N3

4pVs
3 E

2p/2

p/2

/
~sin u cosu!2

cos~u2w!
du.

Here we employed the property of the Fourier transform o
real quantity f̃ (2k)5 f̃ * (k).
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We find the transverse radiative force~perpendicular to
the direction of motion! from the relation~see Fig. 2!

F'5
Fx2F i cosw

sin w
52

r0l 2N3

4pVs
3

3E
2p/2

p/2

sin2 u cosu tan~u2w!du. ~27!

Here the expression~20! with a5w was used forF i .
We note that the expression~27! for F' is identical to

the expression calculated by the method of Ref. 13 using
concept of wave momentum. By analogy to quantum m
chanics the wave momentum density can be written in
form p5N̄k, where N̄5 S̄/uVgu is the specific number o
quasiparticles andS̄ is the wave action. Then the force du
to the wave momentum flux passing through the surface
cylinder of unit height is determined in polar coordinates
the integral

F5E
S
puVguds5E

2p/2

p/2

k S̄~u!r du.

The product of the transverse component of the wave ve
and the wave action

S̄5
r0l 2N3sin2 u cosu

8pVs
3kir

appears in the integrand in the equation~27!.
The integral in the equation~29! cannot be expressed i

terms of elementary functions, but it can be easily calcula
numerically. The dependence ofF' on w has the form
shown in Fig. 3. It is obvious that for a source moving alo
the x and z axes the lateral force vanishes on account
symmetry while the wave drag force is independent of an
and remains finite~if the angle of attack for the dipole equa
zero!. It is interesting, however, that in each range of ang
01np/2,w,(n11)p/2, wheren50, 1, 2, and 3, there
exists another directionw01np/2 in whichF'vanishes. Nu-
merical calculations using the equation~27! give the angle
w0'0.655'37.5°. Analysis of this formula shows that eac
such direction is stable with respect to small variations of

FIG. 3. Normalized transverse forceF' /uF iu versus the inclination anglew
of the trajectory with respect to the horizontal axisx for a dipole source in
polar coordinates.F i52r0l 2N3/6pVs

3 .
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words, if the source tilts to the right or left away from th
direction characterized by the anglew0, then the lateral force
strives to restore the source to its initial orientation. Ho
ever, if the source tilts away from the horizontal or vertic
directions, then the lateral force pushes it farther away fr
these directions.

4. INERTIAL–GRAVITY WAVES

Taking account of the rotation of the medium togeth
with stratification for inertial–gravity ~or gravity–
gyroscopic! waves automatically eliminates the ‘‘infrared
divergence of the integrals, even in the case of point sour
because zero frequencies are cut off~these frequencies fal
outside the admissable frequency range!. We shall write the
basic equations of hydrodynamics in the Boussinesq appr
mation for small disturbances due to the motion of a po
source in an incompressible stratified fluid rotating arou
the vertical axis:

]V

]t
12V“z3V52“p2rg“z,

]r

]t
1

N2

g
V–¹z50, ¹–V5m. ~28!

Since the Coriolis force performs no work, the energ
ics of the wave motion remains the same as in a nonrota
fluid. One need only substitute into the expression for
dissipated powerW5*pm dr the new dependence of th
pressure on the mass source

]

]t
L̂p52S ]2

]t2
1N2D S ]2

]t2
14V2D m,

2 ivp~v,k!52~N22v2!~4V22v2!G~v,k!m~v,k!,

~29!

L̂[
]2

]t2
D1N2D'14V2

]2

]z2

and use the retarded Green’s function of the modified op
tor L̂

G~v,k!5@~v1 i«!2k22N2k'
2 24V2kz

2#21,

Im G~v,k!52psign~v!d~v2k22N2k'
2 24V2kz

2!.
~30!

Finally we obtain

W5
p

~2p!sE E um0~k!u2
~N22v2!~v224V2!

uvu
d@v

2~k–Vs!#d~v2k22N2k'
2 24V2kz

2!dk dv. ~31!

Here the integrand is concentrated at the surface given by
argument of two delta functions, i.e., the surface descri
by the system of equations

v5~k–Vs! , v2k25N2k'
2 14V2kz

2 . ~32!

The dispersion equation now limits the possible frequ
cies to the interval between 2V and N ~for N.2V this
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N,v,2V). Therefore both high and low frequencies a
cut off when rotation is taken into account.

In the two-dimensional problem we have

v5kxVsx1kzVsz, kxAN22v256kzAv224V2.

Now it is easy to find the frequency parametrization of t
possible radiation wave vectors

kx
65

v

V6
, kz

656
v

V6
A N22v2

v224V2
,

V6[Vsx6VszA N22v2

v224V2
. ~33!

We note that the wave vectorsk6 introduced here are some
what different from the wave vectorsk6 used previously in
the limit V50.

The angular parametrization is obtained similarly

v56AN2cos2u14V2sin2 u,

k56
AN2cos2u14V2sin2 u

Vscos~u2w!
. ~34!

Here we call attention to the valuek50. Since the dispersion
equation

k2~v22N2cos2u24V2sin2 u!50

has a separable form, it can also admit a nonwave solu
with k250.

The product of the two delta functions in the integra
for the dissipated power can now be transformed as follo

d@v2~k–Vs!#d~v2k22N2kx
224V2kz

2!

5
1

2uvuA~N22v2!~v224V2!
HS N22v2

v224V2D
3F dS kx2

v

V1
D dS kz2

v

V1
A N22v2

v224V2D
1dS kx2

v

V2
D dS kz1

v

V2
A N22v2

v224V2D G
5

H@~N22v2!~v224V2!#

2uvuA~N22v2!~v224V2!

3@d~k2k1!1d~k2k2!#. ~35!

Making use of this, we obtain from Eq.~31!

W5
1

8pE HS N22v2

v224V2DAS N2

v2
21D S 12

4V2

v2 D
3(

6
um0~k6!u2dv. ~36!

Since low frequencies have been cut off, here the ene
losses are finite even for a point source (um0(k)u251):
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W5
4pEAS

v2
21D S 12

v2 D HS
v224V2D dv.

~37!

This integral can be expressed in terms of complete elli
integrals,8 making it easy to find the wave drag force as we

In another special case of an extended dipole consis
of point source and sink which is moving in an arbitra
direction at the angle of attack we have

m0~k!522im0 sin~k–a!,

W5
m0

2

2pEAS N2

v2
21D S 12

4V2

v2 D HS N22v2

v224V2D
3(

6
sin2S v

A6

V6
Ddv, ~38!

A6[ax6azA N22v2

v224V2
.

For a zero angle of attack (a iVs) the last factor in the
integrand assumes the simplified form 2sin2(va/Vs), so that
the results for the dissipated power and the wave drag fo
are once again independent of the direction of motion.

We now transform the product of delta functions, ma
ing use of the angular parametrization,

d@v2~k–Vs!#d~v2k22N2kx
224V2kz

2!5d@v

2kVs cos~u2w!#d@k2~v22N2cos2u

24V2sin2 u!#5
d~v!d~k2!

N2cos2u14V2 sin2 u

1

dFk2
v

Vscos~u2w!G
2k2Vsucos~u2w!uAN2cos2u14V2 sin2 u

3@d~v2AN2cos2u14V2 sin2 u!

1d~v1AN2cos2u14V2 sin2 u!#. ~39!

At this stage we drop the term containingd(v)d(k2) ~it
will be discussed below!. Then we have for the dissipate
power

W5
~N224V2!2

8p E
0

2p sin2 u cos2u

~N2cos2u14V2sin2u!3/2

3Um0FcosuAN2cos2u14V2 sin2u

Vscos~u2w!
,

sin uAN2cos2u14V2sin2u

Vscos~u2w!
GU2

du. ~40!

We must setum0( . . . )u251 for a point source and
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3sin2Fcos~u2a!

cos~u2w!

a

Vs
AN2cos2u14V2sin2uG

for a dipole.
When the angle of attack of the dipole becomes zero,

function um0( . . . )u and the dissipated power no longer d
pend on the direction of motion. Then we obtain in the lim
of a point dipole

W5
~N224V2!2l 2

8pVs
2 E

0

2p sin2u cos2u

AN2 cos2u14V2sin2u
du.

~41!

The discarded term withd(v)d(k2) gives for the ex-
pression for the dissipated power a total correction of
form

1

4pE0

2p

duE
0

`

k dkE um0~k!u2

3
~N22v2!~v224V2!d~v!d~k2!

uvu~N2cos2u14V2sin2u!
dv,

which for a point source reduces to a product of a logar
mically diverging integral over frequency regularized b
nonlocalization and an indeterminate integral over wa
number*0

`kd(k2)dk. If d(k2) is replaced byd(k22«), the
last integral becomes 1/2 and ifd(k2) is replaced by
d(k21«), the integral vanishes. There arises the question
how to calculate this integral correctly.

The answer is that rejecting the Boussinesq approxim
tion leads to a regularization that is close to the latter re
larization. This is seen from the following expression:

d@k2v22k2~N2 cos2u14V2sin2u!#

→d@~k21k0
2!v22k2~N2cos2u14V2sin2u!#,

where k0
25N2/2g. The regularizationd(k2)→d(k21«) is

also supported by the fact that for a different transformat
of the product of the generalized functions in terms of~35! to
~37! without such an indeterminacy, a result differing fro
the expression~40! only by a trigonometric substitution fo
the integration variable is obtained.

The lateral component of the radiative force can on
again be calculated by the methods presented above. An
pression for the lateral component of the radiative force a
ing on a dipole can be obtained in a manner complet
similar to the case of purely gravity waves:

F'52
r0l 2N3

4pVs
3 S 124

V2

N2 D 2

3E
2p/2

p/2 sin2u cos2u tan~u2w!

Acos2u14V2sin2u/N2
du. ~42!

Apart from a dimensional factor in front of the integra
the expression forF' for a monopolar source is distin
guished by the fact that the denominator in the integra
contains, instead of a square root, the express
(cos2u14V2sin2u/N2)3/2.
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FIG. 4. Normalized transverse forceF' /uF iu
versus the inclination anglew of the trajectory
with respect to the horizontal axisx for mono-
pole ~a! and dipole~b! sources in a Cartesian
coordinate system for different values of th
parameter 2V/N: 1 — 2V/N50.1, 2 —
2V/N510.
Plots of the lateral forceF' normalized to the wave drag
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force F i are displayed in Fig. 4 in Cartesian coordinat
(0<w<p/2) for a monopole~a! and dipole~b! with differ-
ent values of the parameterV/N. The form of the plots is
qualitatively the same as for gravity waves, except that
value ofw0 for which F' vanishes increases with the param
eterV/N, approaching some constant valuew l.p/4.

In the limiting case when the Coriolis parameter~the
doubled rotational frequency of the fluid! equals the Brunt–
Väisälä frequency (2V5N), the total radiative force van
ishes on account of the absence of wave motions in the
ume of the fluid. This follows formally from the equation
obtained for both components of the radiative force~see, for
example, Eq.~42!!.

5. THREE-DIMENSIONAL PROBLEM

The starting general equations~5! for internal waves and
~31! for inertial–gravity waves are suitable for arbitrary sp
tial dimensions. Settings53, we confine our attention to
waves of the first type, since fors53 taking account of
rotation does not give any advantage with respect to the c
vergence of the integrals and it complicates the expositio

In spherical coordinates~it should be noted that in con
trast to the two-dimensional case the angleu is now mea-
sured not from the horizontal direction but rather from t
vertical direction!

kx5k sin w sin u, ky5k cosw sin u,

kz5k cosu, k'5k sin u,

Vsx5Vs sin g, Vsy50, Vsz5Vs cosg,

k–Vs5kVs cos~k–Vs!5kVs@cosu cosg

1sin u sin g sin w#

we have the angular parametrization

d@v2~k–Vs!#d~v2k22N2k'
2 !

5
d$k2Nusin uu/@Vsucos~k–Vs!u#%

2Nk2Vsusin u cos~k–Vs!u

3$H@cos~k–Vs!#d~v2N sin u!

1H@2cos~k–Vs!#d~v1N sin u!%.
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the compensating factork2 in the integration volume elemen
eliminates any question concerning the legitimacy of
substitutiond(k2 . . . )5(1/k2)d( . . . ).

Finally, we obtain for the dissipated power

W5
N2

16p2Vs
E

0

2p

dw

3E
0

p sin u cos2u

ucosu cosg1sin u sin g sin wu

3um0~k!u2uk5k du, ~43!

where

k5
Nusin uu

Vsucosu cosg1sin u sin g sin wu
.

Here, in contrast to the two-dimensional problem, the con
bution from large wave numbers is logarithmically larg
The integrals can now be regularized by using a form fac
of the form um0(k)u25uF(k)u2→0 as k→` or cutting off
the integral over wave numbers at largek, which in the an-
gular representation is equivalent to the constra
ucosu cosg1sinu sing sinwu.«usinwu. The dipolar charac-
ter of the source does not save us from divergence, and
spatial extent of the source~nonlocality! must be taken into
account.

Further, for a point source with a regularizing form fa
tor we easily find an expression for the lateral radiative fo

F'5
N2

16p2Vs
2E0

2p

dw

3E
0

p sin u cos2u

ucosu cosg1sin u sin g sin wu

3
k'

ki
um0~k!u2uk5k du, ~44!

ki5k~cosu cosg1sin u sin g sin w!,

k'
2 5k22ki

2 .

The last two integrals likewise cannot be expressed
terms of elementary functions, but they can be calcula
numerically.
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6. CONCLUSIONS
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The results obtained above show that the motion
sources in stratified media is accompanied by the emissio
internal waves, as a result of which radiative forces arise

Since internal waves possess anisotropic propertie
the vertical plane, generally speaking, such waves are ge
ated by sources with different efficiency to the left and rig
of the trajectory of the source. Therefore the radiative fo
which arises contains in the general case two componen
longitudinal component which is directed opposite to the
locity of the source — this is the retarding wave drag for
— and a transverse force. The calculation of the transve
component of the radiative force for internal waves in t
present work is the first such calculation~a similar force was
previously calculated for Rossby waves in theb-plane and
for drift waves in plasma13!.

The calculations showed that in the simplest cases
monopolar and dipolar sources~moving without an angle of
attack in the latter case! the wave drag force does not depe
on the direction of motion, while the lateral force depen
strongly on the angle between the velocity vector and
horizontal axis. This component of the source vanishes
motion in the horizontal plane, in the vertical direction, a
at some fixed angle with respect to the horizontal plane.
riously, the motion of a source in this direction is stable w
respect to small variations of the direction of the source
locity: the lateral force which appears is of a restoring ch
acter. In the case of motion in the horizontal or vertical
rections, small variations of the direction of the veloc
result in the appearance of a deflecting lateral force, so
such motion is unstable.

The results obtained were extended to three-dimensi
motion as well as to the case of a rotating stratified me
where the motion of a source gives rise to the emission
inertial–gravity waves.

Knowing the radiative force makes it possible to es
284 JETP 85 (2), August 1997
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sources. This makes it possible to study self-consistent p
lems and to calculate the trajectories of sources.
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Temperature hysteresis of the change in the cholesteric pitch and surface anchoring in

thin planar layers

H. Zink

Laboratorium voor Akoestick on Thermische Fysica, Katholiska Universiteit Leuwen, B-301 Leuwen,
Belgium

V. A. Belyakov

L. D. Landau Institute of Theoretical Physics, Russian Academy of Sciences, 117334 Moscow, Russia
~Submitted 30 January 1997!
Zh. Éksp. Teor. Fiz.112, 524–536~August 1997!

Hysteresis of the temperature of jumps in the cholesteric pitch in planar layers of cholesteric
liquid crystals~CLCs! has been observed in the temperature dependence of the optical transmission
spectra measured in a 4.8mm thick specimen of a 60% chiral racemic mixture of CE6. The
temperature difference for the pitch jumps during heating and cooling was equal to about 0.1 °C
near 40.3 °C. No difference in the temperature of the pitch jumps during heating and
cooling was observed for an 18mm thick specimen. A theoretical description of this hysteresis is
presented on the basis of a continuum theory of elasticity of CLCs that also takes account
of the surface anchoring of the CLC. Different possible mechanisms leading to a change in the
director configuration in the layer during a pitch jump and their correspondence to the
jump mechanism and hysteresis which occur in the experimental specimens are discussed.
© 1997 American Institute of Physics.@S1063-7761~97!01008-1#
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-
te
-

rte

th
s
a
e

ss
he
d

ur
th
tr

n
it
a
ph
ch
th
ch
ta
t

pa
it

ci
r

les-
of

ce-
e-
-
the
e pa-
m-
ar-
the

xis-
red

ption
ers.
ing
ents
ture
agg

se,

ric

5-
In previous publications1–3 we reported optical transmis
sion spectroscopy measurements of the pitch of choles
liquid crystals~CLCs! and pitch jumps in thin planar choles
teric layers as a function of temperature and we repo
measurements of the deviation of the director orientation
the specimen surface from the alignment direction at
jump temperature. A continuum theory of elasticity of CLC
taking account of surface anchoring gave a quite good qu
titative description of the measurements. Subsequent m
surements showed temperature hysteresis in the proce
the restructuring of the director configuration in a layer in t
course of a pitch jump. The hysteresis was observed to
pend strongly on the specimen thickness in the meas
ments. It is also clear from general considerations that
hysteresis phenomena are a direct consequence of the s
anchoring interaction at the surface of the layer.

In the present paper we report on detailed optical tra
mission spectroscopy measurements of the cholesteric p
in planar CLC layers of different thickness. A theoretic
discussion is presented of the corresponding hysteresis
nomena and the correspondence of different possible me
nisms leading to a rearrangement of the configuration of
director field in the layer in the course of a jump in the pit
of the helix to processes which occur in the experimen
specimens. For the mechanism whereby the director at
surface of the layer slips through a potential barrier, the
rameters of the temperature hysteresis of the cholesteric p
are calculated on the basis of a continuum theory of elasti
of CLCs, taking account of the surface anchoring forces fo
Rapini model anchoring potential.
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To determine the temperature dependence of the cho
teric pitch we measured with a temperature resolution
0.01 °C the transmission spectra of thick (18mm) and thin
(4.8 mm) planar specimens consisting of a 60% chiral ra
mic mixture of CE6~see Ref. 1, where a more detailed d
scription of the specimens is given!. The spectra were mea
sured in the entire temperature interval of existence of
cholesteric phase and the temperature dependence of th
rameters of the cholesteric in a layer, including also the te
perature variations of the pitch, was determined by comp
ing the measured spectra with calculations performed on
basis of the approach described in Refs. 4 and 5 .

Thick specimen „d 518 mm…

For this specimen the numberN of half-turns of the
cholesteric helix over the specimen thicknessd varies be-
tween 67 and 134 in the entire temperature interval of e
tence of the cholesteric. Figure 1a displays the measu
temperature dependence of the Bragg wavelengthLB and the
pitch p. The values ofLB and p were determined from the
measured transmission spectra on the basis of a descri
presented in Refs. 4 and 5 of the optics of cholesteric lay
The filled symbols refer to measurements with increas
temperature and the open symbols refer to measurem
with decreasing temperature. Assuming that the tempera
dependence of the pitch is the same as that of the Br
wavelength, the measured values ofLB and p, with the ex-
ception of points close to the region of the isotropic pha
can be described by the relations6,7

LB5l01b~T2Tsc!
n, l05l00@11a~T2Tsc!#, ~1!

where Tsc is the temperature of the smectic–choleste

28507$10.00 © 1997 American Institute of Physics
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TABLE I.
phase transition,n is the critical exponent, andl0 is the
Bragg wavelength in the absence of a smectic transition
the experiment, no difference was observed in the value
the quantities measured with increasing and decreasing
perature. To within the experimental accuracy,7 Tsc has the
same value in different series of measurements. The effe
surface anchoring on the value of the pitch and the Br
wavelength is negligibly small on account of the large nu
ber N of half-turns in the layer. For this reason, we take t

FIG. 1. Temperature dependence of the Bragg wavelength~1! and pitch~2!
for 18 mm ~a! and 4.8mm ~b — Tsc539.65 °C, c —Tsc538.98 °C! thick
specimens. Filled symbols — for increasing temperature, open symbo
for decreasing temperature. The measurement results for the blue pha
also presented in Fig. 1c~small triangles!.
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temperature dependence of the pitch and Bragg wavele
to be the same as in a bulk cholesteric. The tempera
dependence of the pitch, displayed in Fig. 1, is described
Eq. ~1! with the values of the adjustable parameters p
sented in Table I.

Thin specimen „d 54.8 mm…

For this specimen the numberN of half-turns of the
cholesteric helix over the thicknessd of the specimen range
between 22 and 40 in the entire temperature range in wh
the cholesteric exists. Surface effects become noticeabl
this case.

Figure 1b displays the temperature dependence of
Bragg wavelength with increasing and decreasing temp
ture. The main difference from the thick specimen is in t
value of the transition temperature,Tsc539.65 °C. The value
of Tsc is found to vary from one series of measurements o
specimen to another, but it is always lower than in the th
specimen. TakingTsc539.65 °C and the same values of th
remaining parameters as in the thick specimen, we obta
the dependence represented by the solid curve displaye
Fig. 1b. It is found that the deviations of the experimen
points from the computed curve are larger than in the cas
the thick specimen. The points obtained with increasing te
perature lie slightly higher than the points corresponding
decreasing temperature. However, this is not always so:
an example, results in which a large difference is observe
measurements performed with increasing and decrea
temperature andTsc538.98 °C are displayed in Fig. 1c.

As shown earlier,2,3 in the general case the measur
transmission spectra are described by a theory with a no
tegral number of half-turns of the cholesteric helix over t
thickness of the specimen, the difference in the numbe
half-loops from integers corresponding to the deviation
the director from the alignment direction at the surface
some angleF. In the general case, the measured spectra
described by a weighted superposition of two theoreti
spectra for N1DN and N112DN half-turns, where
DN52F/p. For example, the data on the temperature e
lution of F, N, the weighting factorw, and the Bragg wave-
lengthsLB for four temperatures in a series of measureme
with increasing temperature show that a pitch jump fro
N528 to N529 occurs between the temperatures 40.37
and 40.39 °C.

A jump from N530 to N529 with decreasing tempera
ture was observed at 40.32 °C and a jump fromN531 to
N530 was observed at 40.37 °C.2,3 These results demon
strate the presence of temperature hysteresis in the ex
mental specimen.

—
are

Parameters for the specimen withd518 mm

Tsc, °C 41.13
n 20.6

l00 , nm 302
a, °C21 0.042

b 30.05
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3. TEMPERATURE HYSTERESIS OF THE PITCH JUMP IN
THE CONTINUUM THEORY OF ELASTICITY
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In the present section we present an analysis of the
teresis phenomena for temperature variations of the cho
teric pitch in planar CLC layers based on the continu
theory of elasticity taking account of molecular anchori
forces at the surfaces of the layer. The condition found
Ref. 2 for a jump in the cholesteric pitch, resulting in
restructuring of the director configuration from a choleste
helix with N half-turns to a helix withN11 half-turns over
the thickness of the layer, corresponds to the temperatu
which the free energiesF for these configurations are equ
to one another. However, in order for the transition betwe
director configurations to occur, in the course of the str
tural transformation the system must overcome an ene
barrier separating the initial and final states. This is the r
son why it is possible to observe hysteresis phenomen
structural transitions with a change in the number of he
half-turns over the thickness of the cholesteric layer. Spe
cally, hysteresis is manifested as a difference in the temp
tures of the pitch jump during heating and cooling of t
cholesteric layer.

It is obvious that the corresponding hysteresis pheno
ena depend primarily on the surface anchoring interactio
the boundaries of the layers. In the absence of surface
choring there is no temperature hysteresis in pitch chan
for a planar layer, since the pitch simply equals its equil
rium value for the bulk cholesteric.

For hysteresis, the mechanism whereby the director c
figuration in the layer is actually restructured is very impo
tant. For example, a transition from a helix withN half-turns
to a helix with N11 half-turns over the thickness of th
layer can occur continuously by rotations of the director
the surfaces of the layer, resulting in deflections of the dir
tor away from the alignment direction at the surfaces. A
other possibility is due to the sharp fluctuation-induc
variations in the director structure in the volume of the ch
lesteric layer or some kind of instabilities of the choleste
helix followed by relaxation of the director structure th
arises in the layer to an equilibrium configuration.

In the first possibility the system must overcome a p
tential barrier separating configurations withN and N11
half-turns of the director in the layer. Such a transition o
curs without strong local disturbances of the director c
figuration at any point over the thickness of the layer wh
the temperature variations of the parameters of the su
heated~supercooled! specimen reduce the potential barri
between the configurations to zero~of course, the transition
can be facilitated by temperature fluctuations of the direc
orientation at the surface of the specimen!.

The second possibility presupposes strong local dis
tions of the cholesteric helix. For this reason, the initial co
figuration cannot transform by means of smooth and w
distortions into the final configuration. This is why the tran
formation process in this case cannot be described on
basis of the standard continuum theory of elasticity of c
lesterics, where the spatial derivatives of the director field
order no higher than second appear and only in a squ
form. The most likely situation is that transformations of th
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some time in the director field of the layer. However, pr
cesses of this kind fall outside the scope of the present w
For this reason, in what follows we shall limit the quantit
tive analysis of the problem to the first case only, i.e.,
potential barrier between configurations withN and N11
half-turns of the director in the layer is overcome contin
ously in the course of the transformation.

We start by finding the temperature behavior ofF, the
deflection angle of the director orientation at the surface
the cholesteric layer from the alignment direction. Followi
Ref. 2, we write the free energy of the layer in the form

F~F!52Ws~F!1
K22

2 F 2p

pN1DN
2

2p

p~T!G
2

d, ~2!

where K22 is the elastic torsional modulus,Ws(F) is the
surface anchoring potential,p(T) is the equilibrium value of
the pitch in a bulk CLC,pN1DN is the value of the pitch in
the cholesteric layer,N1DN is the number of half-turns o
the cholesteric helix over the thickness of the layer (N is
assumed to be an integer!, andd is the thickness of the layer
As a simplification, we assumed that the alignment direct
and the surface anchoring force are identical for both s
faces of the layer and thereforeDN52F/p.

It follows from Eq. ~2! that the angleF as a function of
temperature, i.e.,F(p(T)), is determined by the equation

]Ws~F!

]F
1K22F 2p

pN1DN
2

2p

p~T!G50. ~3!

Here it should be emphasized that for a fixed temperaturT
or, equivalently, for a fixed pitchp(T) there exist severa
solutions of Eq.~3! which correspond to different numbersN
of half-turns in the layer. For infinitely strong surface a
choring the number of the solutions is infinite. For fini
anchoring forces the number of possible solutions is fin
and limited by the conditionF,Fc , where the critical
angleFc is determined by the form of the anchoring pote
tial Ws(F). The physical meaning of the critical angleFc is
very simple — this is the deflection angle of the direct
from the alignment direction at the surface for which t
potential barrier between the configurations withN and
N11 half-turns vanishes. Naturally, only one of the so
tions with differentN corresponds to the minimum value o
the free energy~2! and is stable~we denote the correspond
ing value ofN by N0). All other solutions are metastable
since the corresponding free energies are greater than
minimum value corresponding toN0. The temperature of the
transition between configurations differing by one half-tu
in the layer is determined by the temperature~the pitch
p(T)) for which F5Fc . Therefore a study of hysteresis i
the present approach reduces to determining the tempera
T for different values ofN ~or, equivalently, the values of th
pitchesp(T)) that correspond toFc for a pitch jump withN
changing by61.

The computed temperature dependences of the deflec
angleF for a Rapini model surface anchoring potential~see,
for example, Ref. 8! are displayed in Fig. 2.
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FIG. 2. Computed temperature depe
dences of the deflection angle of th
director on the surface of the layer fo
strong ~a! and weak~b! surface an-
chorings (S55 and S515, respec-
tively! in the region of equilibrium
numbers of half-turns of the helix ove
the thickness of the layerN55, 6, 7,
and 8 for the Rapini surface anchorin
potential. The curve above the abscis
refers to the case of increasing tem
perature and the curve below the ab
scissa refers to the case of decreasi
temperature;1 — hysteresis present,2
— hysteresis absent.
The potential barrier between the director configurations
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-
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i
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ing

n

or

ng
in layers withN and N11 half-turns is determined by th
expression

B~N0 ,T!5F~N0 ,Fc!2F~N0 ,F~T!,T!, ~4!

where the equilibrium value of the deflection angleF(T) for
temperatureT is determined by the solution of Eq.~3! and
the free energiesF(Fc ,T) and F(F(T),T) in Eq. ~4! are
determined by the expression~2!. The temperature depen
dences of the height of the barrier potential which were c
culated for the Rapini anchoring potential are displayed
Fig. 3.

The equations and computational results presented a
make it possible to determine the parameters of the jum
the cholesteric pitch during heating and cooling, i.e., to
scribe quantitatively the temperature hysteresis in the va
tions of the cholesteric pitch in the layer. The transition te
perature for a jump fromN to N11 half-turns can be
obtained from Eq.~3! by making the substitutionF5Fc

1

p~T!N→N11
5

1

2pK22

]Ws~F!

]F U
F5Fc

1
1

2dS N1
2Fc

p D .

~5!

The temperature of the jump fromN to N21 half-turns,
which is found in a similar manner, equals
l-
n

ve
in
-
a-
-

p~T!N→N21
5

2pK22 ]F U
F5Fc

1
2dS N2

p D .

~6!

Thus, the temperature hysteresis for a jump occurr
during cooling ~from N11 to N half-turns! relative to a
jump occurring during heating~from N to N11 half-turns!
is determined by the relation

1

p~T!N→N11
2

1

p~T!N11→N

5
1

pK22

]Ws~F!

]F U
F5Fc

1
1

2dS 4Fc

p
21D . ~7!

In obtaining the relation~7!, we made the natural assumptio
that the anchoring potentialWs is an even function of the
angleF. This assumption leads to the following equation f
the critical angleFc :

Ws~Fc!5
1

2
WsS p

2 D5
1

2
Wmax, ~8!

where Wmax means the maximum value of the anchori
potential.
n-
r-
-

-

f
s

FIG. 3. Computed temperature depe
dence of the height of the potential ba
rier separating the director configura
tions in a layer for a Rapini surface
anchoring potential. The director con
figurations differ by one half-turn in the
region of the equilibrium numbers o
half-turns of the helix over the thicknes
of the layerN55, 6, 7, 8 for strong~a!
and weak~b! surface anchorings (S55
andS515, respectively!.
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The jump partially removes the stress in the cholesteric
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helix before the jump, and for this reason after the jump
deflection angleF decreases and satisfies the next condit
at the jump point:uFN61u,uFcu. If there is no hysteresis
then FN6152F j , whereF j is the deflection angle at th
jump point.6 It is helpful to note that the expressions pr
sented above do not involve any assumptions about the f
of the anchoring potential~except that it is an even functio
of the deflection angle!. Therefore, under conditions whe
the approach developed above is applicable for describ
the experimental results on hysteresis phenomena in p
jumps in a planar layer, the equations derived make it p
sible to obtain direct model-independent information ab
the surface anchoring potentialWs(F).

4. HYSTERESIS IN THE RAPINI MODEL POTENTIAL

To make quantitative theoretical predictions it is nec
sary to have an explicit form of the anchoring potential.
what follows, the general relations obtained in the preced
section are employed to describe hysteresis in the Ra
model for the anchoring potential, i.e., in the above relatio
the anchoring potential was given by the relati
Ws52W cos2(F/2).

The results of the corresponding calculations of the te
perature dependence ofF — the deflection angle of the di
rector from the alignment direction at the surface of the la
— are presented in Fig. 2 for several values of the numbeN
of half-turns of the director across the layer. Figure 3 d
plays the computed temperature dependences of the pote
barrier between the director configurations in the layer wh
differ by one half-turn of the helix in the layer. The com
puted curves make it possible to determine the hyster
parameters as well as the temperature behavior of the
lesteric pitch in the layer in the absence of hysteresis.
make the computational results more general and applic
to different specific experimental situations, the deflect
angleF is presented in the form of a function of 2d/p(T),
wherep(T) is the equilibrium value of the cholesteric pitc
at temperatureT for a bulk cholesteric. If the temperatur
dependencep(T) is known ~see, for example, Fig. 1!, then
the curves can be easily represented in the form of the
pendenceF(T). The admissable values ofF in the figures
are bounded by the condition

2
p

4
,F,

p

4
, ~9!

since it follows from the formula~8! for the Rapini potential
that Fc5p/4.

As one can see from Fig. 2, the temperature behavio
F and hysteresis depend strongly on the value of the par
eterS54pK22/Wp and the thickness of the specimen. Sp
cifically, for F5Fc , i.e., at the jump point, the differenc
between the number 2d/p(T) of half-turns across the laye
for the equilibrium value of the cholesteric pitch andN half-
turns in an unstressed director configuration~for F50), i.e.,
DNj5N22d/p(T), found from Eq.~3! is described by the
expression
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We note that if the temperature dependence of the pitchp(T)
is known from experiment~see, for example, Fig. 1!, then
the equation~10! can be used to determine the temperat
of the pitch jump in the slip mechanism for the director
overcome the surface anchoring potential barrier.

Substituting into Eq.~7! the Rapini anchoring potentia
we obtain for the jump hysteresis according to the numbe
half-turns

DNh52dF 1

p~T!N→N11
2

1

p~T!N11→N
G5

Wd

pK22
52

N

S
.

~11!

For the Rapini potential the expression~4! for the height of
the potential barrier with positive values of the deflecti
angle of the director, determined from the relation~3!, as-
sumes the form

B~T!

W
5

1

2H cos~2F~T!!1
pS

2NF12
4F~T!

p G
3FN1

1

4
1

F~T!

p
2

2d

p~T!G J . ~12!

For strong anchoring~in the calculationsS55), the
curves of the temperature dependence of the deflection a
F show that if the pitch jump occurs by the mechanis
whereby the director on the surface slips through a poten
barrier~whenF reaches the valuep/4), then after the jump
the director configuration in the layer does not correspond
the configuration with the minimum free energy for the jum
temperature. Therefore this configuration is strongly d
torted, sinceuF j

au.uF j u holds, whereF j is the deflection
angle at the jump point in the absence of hysteresis andF j

a is
the deflection angle of the director actually realized after
jump.

For an intermediate anchoring force~in the calculations
S510,15), as a result of the director slipping through t
barrier the director configuration can be transferred into
state with a minimum free energy (uF j

au,uF j u) in the case
when the number of half-turns of the cholesteric helix ov
the thickness of the layer is sufficiently small. However, f
large N the director configuration in the layer once aga
becomes metastable (uF j

au.uF j u).
Analysis of the hysteresis phenomena on the basis of

present mechanism whereby on the surface the director
through a barrier for the parameters of the problem wh
correspond to the experiment performed (S'20, N'30)
leads to the following results. The difference between
number of half-turns across the layer withF5Fc for the
equilibrium value of the pitch andN, i.e.,DNj , should be of
order 3, and after the jump, whenF5F j

a , it should equal
approximately 2. This means that in the present jump mec
nism, in which the director at the surface slips through
barrier, the director configuration in the layer is strongly d
torted and metastable not only immediately before but a
after the pitch jump.
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FIG. 4. Temperature dependence of the d
flection of the director on the surface of th
layer from the alignment direction~different
values correspond to different series of me
surements! measured with cooling~a! and
heating~b! of 4.8 mm thick specimen and cal-
culated forS525.
5. DISCUSSION
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Definite conclusions concerning the mechanism lead
to restructuring of the director configuration in the layer
the course of the experimentally observed pitch jumps can
drawn by comparing the experimentally observed hyster
with the results of the theoretical analysis presented ab
As the calculations for largeN or even for smallN with
strong surface anchoring show, the continuum theory p
dicts that in addition to a stable configuration of the direc
several metastable configurations differing by the numbeN
of half-turns of the cholesteric helix can also exist in t
layer ~see, for example, in Fig. 2a the intersection of t
calculated curves by a straight line parallel to they axis near
2d/p(T)'6).

If such metastable configurations were present in
layer for a sufficiently long time, the experimental spec
would consist of a superposition of more than two spec
with different values ofN. Moreover, structural change
should be observed in the director configuration in a la
with N changing by more than 1. However, the experimen
measurements performed do not show that these possibi
are realized.

Additional conclusions about the mechanism of the o
served jumps can be drawn by comparing the calcula
curves with the prejump temperature dependences of the
flection angleF of the director at the specimen surface fro
the alignment direction. The fit of the theoretical curv
F(T) with respect to the parameterS for temperatures pre
ceding the pitch jump to the measured values of this quan
~Fig. 4! demonstrates a reasonable agreement between th
and experiment forS525 during both cooling and heating o
the specimen. If the value ofS found in this manner from
experiment is used to calculate hysteresis, for example,
N530, then we obtain from Eq. ~11!
2d/p(Tj

h)22d/p(Tj
a)52.4, wherep(Tj

h) andp(Tj
a) are the

equilibrium values of the pitch of a bulk cholesteric for th
temperatures of a jump during heating and cooling, resp
tively. An estimate of the same quantity from the measu
values of the temperatures of the pitch jumps and the t
perature changes of the equilibrium pitch in a bulk chol
teric ~see Fig. 1b! gives for a 4.8mm thick specimen a much
smaller value, equal to only 0.5. This means that the
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of the continuum theory for the mechanism whereby on
surface the director slips through a potential barrier.

Thus, it must be concluded that in the specimen stud
the restructuring of the configuration of the director in
layer at the temperature of a pitch jump does not occur
means of continuous changes in the orientation of the di
tor at the surface in the absence of strong disturbances o
cholesteric helix in the volume of the layer. This means t
some kind of fluctuations of the director in the layer or i
stability of the director configuration prevent the deflecti
angleF of the director from reaching its critical valueFc

(p/4 for the Rapini potential!. It should be expected tha
these factors influence the appearance of hysteresis in
pitch jump especially effectively if several metastable co
figurations of the director withuF j

au,uFcu exist in the layer.
We shall now briefly discuss some possible physi

mechanisms leading to temperature hysteresis in the jum
a cholesteric pitch for the hysteresis parameters observe
the present work. The conclusion drawn above agrees w
general physical ideas about the mechanism of struct
transformations. From general considerations it follows t
if the energy of the system undergoing a structural transit
is insufficient for overcoming the potential barrier separat
the states drawn into the transition, then the transit
mechanism may either be fluctuations or some type of in
bility.

Let us begin with a discussion of the effect of fluctu
tions on the pitch jump mechanism examined above, i.e. w
a clarification of how fluctuations of the orientation of th
director at the surface of the layer can alter the theoret
results presented above. It is obvious that director fluct
tions can make it easier for the director to overcome
potential barrier but they do not change the foregoing pict
of the restructuring of the director configuration in the lay
~excluding, possibly, the case of very weak surface anch
ing!. Thus, in most cases the fluctuations of the director o
entation at the surface will lead only to a change in the ju
temperature~in the direction of decreasing hysteresis!. Such
fluctuations of the director can be taken into account qua
tatively by a method similar to that used in Refs. 8 and 9
take account of fluctuations of the director in nematic laye
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Fluctuations of the director in the volume of the layer
m
d

er

gu

a
on
a
th
di

r
-
t

ow
re
du
h
b

ta
en

c

ce
-

ab
r
d
in
io
n
th

an
sti
is
d
f
la
c
d
er
e
e

p
gu
hi
e

o
e
a

nism is indeed realized in the experimental specimens, then
ve

e-
he

m-
ical
not
is in
for

ting
ne
gh
sis
due
he
ace
era-
ndi-
ce
iga-
ut

he
pe-
ns
rpo-

ric
ere
rpo-
tial

ce
em-
ap-

hor-

a-

by

-

can lead to results which are qualitatively different fro
those examined above. Such fluctuations can initiate the
velopment of an instability of the cholesteric helix in a lay
with very strong local disturbances in the director field~most
likely with the formation of defects in the director field!. As
such instabilities grow, they can assist the director confi
ration in the layer to reach its equilibrium form.

To get an idea of the type of director fluctuations in
layer that can most effectively restructure the director c
figuration in the layer in the course of a pitch jump, we sh
consider several types of infinitesimal disturbances of
configuration of the director field in the layer. Since the
rector configuration in the final stable state reached as a
sult of a pitch jump is known, it is entirely natural to con
sider director fluctuations that can most effectively lead
the known configuration of the stable final state. We kn
from the analysis performed above that the stable final di
tor configuration reached as a result of a pitch jump is mo
lated with a period different from both the equilibrium pitc
p(T) of the bulk cholesteric and the period determined
the number of half-turns in the initial state, i.e. 2d/N. For
this reason, let us see how the free energy of the metas
initial configuration of the director in the layer changes wh
an infinitesimal disturbance of the formD cos(qz2F0),
whereD is a small quantity andq is the wave vector of the
modulation, is imposed on it. Substituting this disturban
into the expression for the free energy~2! shows that the
changes produced in the free energy by such a disturban
the approximation linear inD can be both positive and nega
tive, depending on the ratios ofq and F0 and the corre-
sponding parameters describing the disturbed metast
state. It is obvious that a negative change of the free ene
does not mean that the metastable configuration will be
stroyed as a result of the corresponding disturbance, s
this question cannot be resolved in the linear approximat
Nonetheless, a negative change in the free energy ca
regarded as an indication of the fact that fluctuations of
corresponding type can be substantially intensified.

The foregoing analysis shows that if some scalar qu
tity characterizing the cholesteric, for example, the ela
modulusK22, is modulated, then the free energy of the d
turbance does not depend critically on the value of the mo
lation wave vectorq. However, if the local orientations o
the director are modulated, for example, by spatial modu
tion of the pitch, then a critical value of the modulation ve
tor q54d/N ~which corresponds to a modulation perio
equal to approximately half the cholesteric pitch in the lay!
does appear. The changes in the free energy for this valu
the modulation period grow more rapidly than for other p
riods.

Thus, it can be conjectured that fluctuations of this ty
in the volume promote a transition of the metastable confi
ration of the director in the layer into a stable state. In t
case, the extra~or missing! number of director turns over th
thickness of the layer can be eliminated~accumulated! in the
volume of the layer as a result of strong changes in the c
figuration of the director field on a spatial scale of the ord
of the cholesteric pitch in the layer. If this pitch jump mech
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scattering of light by fluctuations with the indicated wa
vector should be intensified in them at a temperature imm
diately preceding the jump in the cholesteric pitch in t
layer.

6. CONCLUSIONS

The hysteresis observed in the present work in the te
perature of the cholesteric pitch jumps and the theoret
analysis of the problem performed in this connection do
answer all questions concerning the temperature hysteres
pitch changes for thin planar cholesteric layers. However,
the experimental specimens studied they permit elimina
from possible mechanisms of the pitch jump the o
whereby the director on the surface of the layer slips throu
the potential barrier of the anchoring forces. The analy
performed above showed that the pitch jump mechanism
to slipping of the director through a potential barrier on t
surface is most realistic for thin specimens and weak surf
anchoring forces. We emphasize that a study of the temp
ture dependence of the pitch and its hysteresis under co
tions when slipping of the director through a surface for
barrier occurs can be used for direct experimental invest
tion of the potential of the surface anchoring forces witho
invoking any ansatz about the form of this potential.

The mechanism responsible for the pitch jump in t
experimental specimens requires further investigation. S
cifically, it is necessary to study the pretransition fluctuatio
in the specimen and to determine the nature of the supe
sition ~observed in the transmission spectra! of two director
configurations differing by one half-turn of the choleste
helix over the thickness of the layer. For example, th
arises the question of whether or not the observed supe
sition is a consequence of temporal fluctuations or the spa
nonuniformity of the director configuration over the surfa
of the layer. On the whole, the results presented above d
onstrate the advantages of the new optical spectroscopic
proach used in the present work for studying surface anc
ing in cholesterics.

This work is supported by the Russian Fund for Fund
mental Research~Project No. 97-02-16505!.
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Tunneling conductivity oscillations in a magnetic field in metal–insulator–narrow-gap-

in
HgCdTe structures: the energy spectrum and spin–orbit splitting of 2 D states

G. M. Min’kov, O. É. Rut, and A. V. Germanenko

Institute of Physics and Applied Mathematics, Ural University, 620083 Ekaterinburg, Russia
~Submitted 12 July 1996; resubmitted 31 December 1996!
Zh. Éksp. Teor. Fiz.112, 537–550~August 1997!

We study tunneling conductivity oscillations in a magnetic field in narrow-gap
p-HgCdTe–oxide–metal~Yb, Al! structures. In tunnel structures with Yb we detect two types of
tunneling conductivity oscillations. The first is related to the crossing of the Landau levels
of two-dimensional (2D) states localized in the surface quantum well of the semiconductor, and
has an energyEF1eV, whereEF is the Fermi energy of the semiconductor andV is the
bias voltage; the second has an energyEF . We find that in such structures with an asymmetric
quantum well there is strong spin–orbit splitting in the spectrum of the 2D states. In
p-HgCdTe–oxide–Al tunnel structures the surface potential is much weaker and only oscillations
of the first type are observed. We find that in such structures there is only one spin state of
the 2D carriers, while the second is pushed into the continuous spectrum because of strong
spin–orbit coupling. To analyze the experimental results we calculate the spectrum of 2D
states localized in the surface quantum well in a semiconductor with a Kane dispersion law. We
find that all the experimental results are in good agreement with the results of calculations.
Finally, we discuss the features of ‘‘kinematically coupled’’ states in an asymmetric quantum well.
© 1997 American Institute of Physics.@S1063-7761~97!01108-6#
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The tunneling between the electron systems of differ
dimensionality, 2D – 3D,1–3 2D – 2D,4,5 etc. has lately at-
tracted much attention. On the one hand, the interest is du
the prospects of developing a new generation of semicon
tor nanostructures and devices based on these structure
employ such phenomena as resonant tunneling and Cou
‘‘blockade.’’ On the other hand, research into tunneling co
ductivity and its dependence on voltage, temperature, m
netic field strength, and other external agents provide
unique possibility for studying the details of the energy sp
trum of the current carriers of reduced dimensionality,1,2 the
role of electron–electron interaction,6,7 and the special fea
tures of tunneling processes.

This paper presents the results of investigations into
energy spectrum of 2D states, either occupied by 2D current
carriers or vacant, localized in a surface quantum well at
narrow-gapp-HgCdTe–oxide junction. A specific feature o
2D states of electrons in narrow-gap materials is that eve
low concentrations of 2D electrons their average energy is
least of the order of the energy gap, i.e., the interaction of
nearest bands is strong~this means that the electron wav
function is multicomponent!, and in calculating the spectrum
of 2D states we must be sure to take this into account.8

Another feature of the these structures is that the sur
quantum well is asymmetric. This lifts the spin degenera
of the 2D states for finite longitudinal quasimomenta even
the absence of an external magnetic field.9 The splitting is
the result of spin–orbit coupling with the smooth part of t
potential and with the semiconductor–insulator interfa
and only by using the multiband model of the energy sp
trum can we analyze both contributions. Generally speak
the crystal lattice of A3B5 and A2B6 semiconductors has n
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degeneracy, but in narrow-gap materials the splitting o
the spectrum of light particles~electrons or light holes! that
results from this asymmetry is small compared to energ
accessible in experiments.

The main experimental data on spin–orbit splitting
the spectrum of 2D states have been obtained primarily b
studying the Shubnikov–de Haas oscillations,12,13 from the
de Haas–Van Alphen effect,14 and by employing voltage–
capacitance spectroscopy methods.15,16 These approache
make it possible to do measurements over a broad rang
2D carrier concentrations but provide information on
about states at the Fermi level.

The method of tunneling spectroscopy in a quantiz
magnetic field, which we used, makes it possible to study
spectrum of 2D states not only at the Fermi energyEF of the
semiconductor but within a broad range extending above
below the Fermi energy. The possibilities of tunneling sp
troscopy are extended when a modified method propose
Ref. 17 is used.

The first to investigate 2D states by the method of tun
neling spectroscopy in a quantizing magnetic field w
Tsui,18,19who studied, within a broad range of bias voltage
the tunneling conductivity oscillations inn-InAs in a mag-
netic field, i.e., oscillations related to the tunneling to t
ground and excited subbands of 2D states and determined b
the corresponding effective masses of the carriers and t
energy dependence. However, in InAs the spin-to-orb
splitting ratio for the electron states is modera
(\vc /gmBB'0.18), and no effects associated with sp
were found in these experiments. Band-to-band tunneling
metal–insulator–semiconductor~InSb, InAs! structures with
an inversion layer at the surface was studied by Muller a

29208$10.00 © 1997 American Institute of Physics
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resistivity in these structures and tunneling conductivity
cillations in a magnetic field. But all this research revea
no tunneling conductivity effects associated with spin, d
spite the fact that in InSb, the spin-to-orbital splitting ra
for the electron states is close to 0.5 (\vc /gmBB'0.34).

In this paper we present the results of research into
neling conductivity oscillations in tunnel structures manufa
tured from a narrow-gap semiconductorp-HgCdTe. We have
found that in tunnel structures with a strong surface poten
that attracts electrons, the tunneling conductivity oscillatio
in a magnetic field perpendicular to the surface are relate
tunneling to size-quantized states localized in the surf
quantum well. We have also found that the asymmetry of
quantum well leads to strong spin–orbit coupling of t
spectrum of 2D states, so that over a certain small range
the potential, only one of the branches of 2D states can be
split by spin–orbit coupling.

2. EXPERIMENTAL DETAILS

We studied the differential conductivity and its voltag
derivative as functions of the magnetic field strength a
voltage in p-HgCdTe–oxide–metal~Yb, Al! tunnel struc-
tures. The tunnel junctions were prepared from single-cry
specimens ofp-Hg12xCdxTe (0.17,x,0.2) with a concen-
tration of uncompensated acceptorsNA2ND5(0.522)
31018 cm23. The tunnel-transparent oxide was formed
irradiating the specimen, pre-etched in a 10% solution
bromine in butanol, with UV radiation for 10 to 15 minute
After that Yb or Al was spray-deposited on the specim
through a mask, followed by Pb. The use of ytterbium
metal with a small work function, made it possible to man
facture tunnel junctions with a deep surface quantum we
the p-HgCdTe–oxide interface. In tunnel structures with
the surface potential well is much shallower.

For each tunnel structure that was studied, we de
mined the band gap (Eg) and the dispersion law for the bul
states of the semiconductor from the tunneling conductiv
oscillations in a magnetic fieldB'n, wheren is a unit vector
normal to the tunnel junction. In this orientation the ma
netic field does not quantize the spectrum of 2D states, and
the tunneling conductivity oscillations are related to the tu
neling to the Landau levels of the bulk states. The metho
described in detail in Refs. 22 and 23.

In this paper we list the results of experiments involvi
three tunnel structures: two Yb–oxide–HgCdTe structu
with Eg550 meV ~structures 1 and 2!, and one structure
Al–oxide–HgCdTe with Eg545 meV ~structure 3!. The
concentration of uncompensated acceptors in these struc
amounted to 831017 cm23. At such a concentration, whic
is close to the Mott transition, the Fermi level is at the top
the valence band,24 so that in a comparison with the resul
of calculations we will assume thatEF50 ~here and in what
follows the energy is measured from the top of the vale
band in the bulk of the semiconductor!. The results obtained
for other tunnel structures were found to be similar.
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3. TUNNELING CONDUCTIVITY OSCILLATIONS IN
p-HgCdTe–OXIDE–Yb STRUCTURES

The typical curves representing the dependence o
d2 j /dV2 on the magnetic field strength for structure 1 in the
orientationBin are depicted in Fig. 1 for several values of
the bias voltage. We see that oscillations exist both at pos
tive bias voltages, which corresponds to an upward shift i
the Fermi quasilevel of the metal byeV with respect to the
Fermi quasilevel of the semiconductor~Fig. 2a!, and at nega-
tive bias voltages. The observed oscillations are linear com
binations of several types of oscillation, which can be sepa
rated by performing a Fourier analysis ofd2 j /dV2 as a
function of 1/B ~Fig. 3!. We see that at large voltage biases
the Fourier spectra exhibit four resolvable maxima. As th
bias voltage decreases, these maxima move close to ea
other in such a way that atV50 they merge into two
maxima.

The dependence of the position of the fundamental mag
netic fieldsBf5(D(1/B))21, whereD(1/B) is the period of
oscillations in the reciprocal magnetic field, on the bias volt
age for structure 1 over the entire bias-voltage range is d
picted in Fig. 4. Clearly, there are two different types of
oscillation. First, in type I the fundamental magnetic fields
increase with increasing bias voltage, while in type II they

FIG. 1. Oscillations ofd2 j /dV2 in a magnetic fieldBin under different bias
voltages for structure 1 (T54.2 K).

FIG. 2. ~a! Energy diagram of a tunnel junction with a bias voltageV
applied.~b! Energy diagram of the insulator–semiconductor structure use
in the calculations.
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decrease. Second, in each structure studied, we observe
branches of each oscillation type, which we denote bykI

1

and bykI
2 for type I andkII

1 andkII
2 for type II. The charac-

teristic curve representing the dependence of the fundam
tal magnetic fields on the angleu betweenB andn are close
to 1/cosu, and indicate that all observed oscillations forBin
are related to the quantization of the spectrum of 2D states,
i.e., to tunneling from the metal to the Landau levels of t
2D states whenV.0, and from the Landau levels of the 2D
states to the metal whenV,0.

Similar oscillations were observed in our studies25 of
tunneling junctions manufactured from gaplessp-HgCdTe.
In that paper we discussed in detail the possible tunne
conductivity oscillations in a magnetic field in MIS stru
tures with 2D electrons localized in a surface quantum we
We found that when the depth of the potential well~and
hence the energy of the 2D states! depends on the applie
voltage, two types of oscillation emerge, one when the L
dau levels of the 2D states cross the Fermi level of the me
~type I!, and the other when the Landau levels of the 2D
states cross the Fermi level of the semiconductor~type II!.

We observed these types in our structures~Fig. 4!. The
oscillations of both types are periodic in the reciprocal m

FIG. 3. Fourier spectra of tunneling conductivity oscillations in structur
at different bias voltages in a magnetic fieldBin. The dashed curves indi
cate the shifts of the maxima.

FIG. 4. Fundamental fields of tunneling conductivity oscillations for str
ture 1 as functions of the bias voltage: subscript I corresponds to ty
oscillations and subscript II, to type-II oscillations;k1 andk2 correspond to
oscillations related to tunneling to different spin states. The solid cur
represent the results of calculations described in the main text. Inset s
the dependence of the surface potential on the bias voltage.
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rate so well under Fourier transformations ofd j /dV vs.
1/B dependences; in a semiconductor with an isotropic d
persion law, their period is determined by the value of t
longitudinal ~i.e., parallel to the junction plane! quasimo-
mentumk at an energyE5EF1eV for type-I oscillations
and at an energyE5EF for type-II oscillations:

Bf
21~V!5

2e

c\k2~E!
. ~1!

Knowing the values of the fundamental fields of type
oscillations, we can find the concentration of 2D electrons:

n2D5n11n25
~kII

2 !21~kII
2!2

4p
.

Thus, the decrease inBf with increasing bias voltage~Fig. 4!
corresponds to a decrease in the concentration of theD
electrons as the potential well becomes shallower. This
why the dependence of the period of type-I oscillations
the bias voltage~Fig. 4! does not directly yield the dispersio
law for 2D states, since for each bias voltage,k corresponds
to a potential well with a specific depth.

Note that type-I tunneling conductivity oscillations a
observed even at negative bias voltages, down
V5240 mV. In this bias-voltage range the oscillations a
related to tunneling from 2D states against the valence-ba
background~Fig. 2a!, and their presence is proof that th
‘‘resonant’’ smearing is not strong enough for the oscillati
pattern to become entirely blurred. The calculations
‘‘resonant’’ smearing done by Sobkowicz8 show that in this
situation the ‘‘smearing’’ is indeed weak.

More information about the spectrum of 2D states can
be obtained by using a modification of the tunneling sp
troscopy method proposed in Ref. 17. The modification
lows, by sending short pulses through the system, to cha
the charge of the centers localized at the barrier or at
semiconductor–insulator interface, which makes it poss
to change the surface potentialws and determineki

2 for fixed
energiesEF1eV andEF, but for different values ofws . The
dependence ofkI

1,2 and kII
1,2 on the pulse amplitudes at

45-mV bias voltage is depicted in Fig. 5. We see that po
tive pulses decrease the values ofki , while negative pulses
increaseki . The reason is that by reducing the depth of t
potential well, positive pulses raise the bottom of the 2D
subband and hence reduce the concentration of 2D electrons,
which determines the periods of type-II oscillations, and a
reduce the energyEF1eV by ki

2, which means that the pe
riods of type-I oscillations are reduced as well. Figure 6 d
picts the dependence ofki

2 at V545 mV on the concentra
tion of 2D carriers, which is changed by inputting pulses f
two tunnel structures that differ in the initial values of th
surface potential. We see that in structure 2, at a minim
concentration of the 2D carriers~a condition achieved at the
maximum amplitude of positive pulses!, there is only one
frequency of type-II oscillations. As we will shortly see,
such a surface potential and at an energy equal toEF, this
corresponds to the cases in which there is only one spin s
of the 2D carriers.

-
-I

s
ws
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4. ANALYSIS OF EXPERIMENTAL RESULTS

To analyze the experimental results we adopt the tw
band Kane model, which provides a good description of
spectrum of bulk states of HgCdTe~the distance from band
G8 to bandG7 in HgCdTe is 1 eV, which is much larger tha
the band gap and the energy of the 2D states, so that we
ignore the contribution of the interaction with theG7 band!.
To calculate the spectrum of 2D states in this model we mus
select an insulator model. We believe the best model is
one proposed by Sobkowicz,8 who assumed that the insulato
has the same band structure as the semiconductor~i.e., a
valence bandG8 and a conduction bandG6! but a larger band
gap~Fig. 2b!. The model contains two parameters charac
izing the semiconductor–insulator interface,Dc and Dv ,
which are the discontinuities in theG6 andG8 bands, respec
tively. A detailed description of the spectrum of 2D states
can be found in Refs. 25 and 26. Research into gap
HgCdTe has shown that the most suitable values of the

FIG. 5. Quasimomenta at a bias voltage of 45 mV as functions of
amplitude of pulses 10-ms long with a repetition rate of 20 Hz~structure 1!.

FIG. 6. Quasimomenta~at a bias voltage of 45 mV! determined from the
periods of oscillations of type I and II, as functions of the concentration
2D electrons for structure 1~j! and for structure 2~h!. The solid curves
represent the results of calculating the quasimomentum of 2D states at
E5EF ~curves1 and2! andE5EF1eV ~curves3 and4! ~see the descrip-
tion in the main text!. Inset shows the dispersion law for the 2D states at a
surface potential corresponding to a concentrationn2D51.231011 cm22 of
the 2D carriers.
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and 1 eV, respectively. We use the same values when ca
culating the spectrum of 2D states in HgCdTe withEg.0.

To calculate the spectrum of 2D states we must also
know the surface potentialw(x), which can be found by
solving the Poisson equation,

d2w

dx2 52
e

kk0
S ~NA2ND!q~L2x!1(

2D
uC~x!u2D , ~2!

wherek is the dielectric constant,L is the width of the region
occupied by the space charge,q(L2x) is the Heaviside step
function, C(x) is the 2D electron wave function, and sum
mation is over all occupied 2D states.

Figure 6 shows that, depending on the bias voltage,
2D electron concentration in the structures studied va
within the rangen2D5(125)31011 cm22, and the charged
acceptor concentration in the region with the space cha
within the range (NA2ND)L'(0.821.5)31012 cm22, so
that to a first approximation we can ignore the first term
the right-hand side of Eq. ~2!. In this case
w(x)5ws(12x/L)2, wherews is the value of the potential a
the boundary, and

L5S 2kk0ws

e~NA2ND! D
1/2

.

The results of numerical calculations in whichws(V) is
the only adjustable parameter are depicted in Fig. 4 by s
curves, where the inset shows thews vs. V dependence use
in the calculations. We see that for all bias voltages,
calculated values of the longitudinal quasimomenta at
energiesEF1eV andEF are in good agreement with value
found from the periods of type-I and type-II oscillation
respectively. Here the two branches on each oscillation t
correspond to the spin-split ground 2D subband. One would
assume that the two branches correspond to the ground
excited 2D subbands. However, our calculations have
vealed that if we assume this to be true, the ratio of
quasimomenta of the two branches at fixed bias voltag
considerably higher than the experimental value of this ra
For instance, ateV50 the calculated ratio is eight and no
two, which is the value yielded by the experiment~Fig. 4!.

The results obtained by the modified tunneling spect
scopy method~Fig. 6! allow for a comparison with the cal
culated results without usingws as an adjustable paramete
Indeed, we calculatek1 andk2 at energiesEF andEF1eV
as functions ofws . Then, having eliminatedws , we set up
k1 and k2 as functions of the 2D electron concentration
n2D5((kII

1)21(kII
2)2)/4p.

The experimental results are plotted in Fig. 6 precisely
these scales. We see that they fit the theoretical results~solid
curves! well over the entire range of 2D electron concentra-
tions from 131011 to 5.531011 cm22. Note that at low 2D
electron concentrations (n2D,1.531011 cm22), when only
one frequency of type-II oscillations is observed, calcu
tions predict the existence of only one branch of 2D states at
E5EF .

The inset in Fig. 6 shows the calculated dispersion l
for 2D states at a 2D electron concentration o

e

f
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1.231011 cm22. Clearly, thek1 branch has a minimum a
k Þ 0, so that atE5EF there can only be states belonging
this branch.

What is the effect of the parametersDc andDv , which
are used in the adopted theoretical model and characte
the semiconductor–insulator interface? To answer this q
tion we calculated the ration1/n2, determined by the mag
nitude of spin–orbit splitting, as a function ofDc andDv for
a fixed total 2D carrier concentrationn2D5131012 cm22

for semiconductors withEg5150 meV andEg5250 meV
~Fig. 7!. We see that the splitting of the 2D states in these
semiconductors is much more sensitive toDv than toDc .
Here for Dc.Dv , in the semiconductor withEv.0 the
value ofn1/n2 is close to that calculated in the often-us
model of zero boundary conditions,16 while in the semicon-
ductor with Eg,0 the two values differ considerably. Th
reason is that zero boundary conditions correspond in g
less semiconductors to an infinite discontinuity in theG8

band~Dv5`; see Ref. 25!, while zero boundary condition
in semiconductors withEg.0 correspond to an infinite dis
continuity in theG6 band (Dc5`).

Within this model it is easy to allow for the screening
the surface potential by 2D electrons. Simultaneous solutio
of the Schro¨dinger and Poisson equations by successive
proximations reveals that for the structures studied here,
corrections tok1 and k2 do not exceed the experiment
error.

Measurements of the tunneling conductivity oscillatio
in a magnetic field in both structures with Yb at the ma
mum positive and negative pulses, which~as noted earlier!
change the surface potential, were conducted over the e
range of bias voltages. The results proved to be in g
agreement with those of calculations.

The spin–orbit splitting of the spectrum of 2D electrons
in a narrow-gap semiconductors HgCdTe was measured
Radantsev15 and Wollrabet al.27 at various 2D carrier con-
centrations, but at fixed energy equal to the Fermi energ
the semiconductor. The experimental results listed in th
papers fit our model well.

These data show~Fig. 4! that in narrow-gap semicon
ductors, the spin–orbit splitting of the spectrum of 2D states

FIG. 7. Calculated value ofn1/n2 as a function of the band discontinuitie
at the semiconductor–insulator interface atn2D5131012 cm22 for semi-
conductors withEg either positive or negative. The arrows indicate t
values ofn1/n2 calculated with zero boundary conditions.
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in an asymmetric surface quantum well is large—of ord
20–40 meV fork.106 cm21. This should lead to a situation
at small values ofws in which, when the bottom of the ban
of 2D states is near the bottom of the conduction band of
bulk semiconductor, there are localized 2D states with only
one spin, while states with the other spin are pushed into
continuous spectrum. Such a situation was observed forD
states over a broad energy range in experiments involv
p-HgCdTe–oxide–Al tunnel structures, in whichws is much
smaller than in structures with Yb.

5. TUNNELING CONDUCTIVITY OSCILLATIONS IN
p-HgCdTe–OXIDE–Al STRUCTURES

The Fourier spectra of tunneling conductivity oscill
tions in structure 3 for two orientations of the magnetic fie
B'n and Bin, are depicted in Fig. 8. Clearly, forB'n,
when the spectrum of 2D states is not quantized and th
tunneling conductivity oscillations are related to tunneli
only to bulk Landau levels, the Fourier spectrum exhib
only two harmonics,Bf

v and 2Bf
v . The harmonic 2Bf

v is re-
lated to the spin splitting of Landau levels. The fact that t
harmonic has a small amplitude forB'n in a narrow-gap
semiconductor in which spin splitting is nearly half the c
clotron splitting means that with this orientation of the ma
netic field, the principal contribution to the oscillations
provided by tunneling to states with one spin. The reason
such a difference in the probabilities of tunneling into diffe
ent spin states of the Landau levels in a narrow-gap se
conductor will be discussed in a separate paper.

WhenBin, in addition to oscillations with the frequen
cies of the previously discussed case, there is a harm
with a fundamental fieldBf

2D in the rangeBf
v,Bf

2D,2Bf
v

~the large amplitude of oscillations with the frequency 2Bf
v

corresponds to the case of close probabilities of tunneling
the two spin sublevels of the bulk Landau levels for th
orientation of magnetic field!. The angular dependence of th
fundamental frequencies~Fig. 9! suggests that the fundamen
tal fieldsBf

v and 2Bf
v are independent of the angle, with on

the amplitude of the 2Bf
v harmonic rapidly decreasing asu

grows from 0° to 90°. TheBf
2D harmonic closely resemble

1/cosu, which point to its relation to tunneling to 2D
states.1!

The dependence ofk2 on V for structure 3 obtained via a
Fourier analysis of the tunneling conductivity oscillatio

FIG. 8. Fourier spectra of tunneling conductivity oscillations in structure
at a bias voltageV575 mV.

296Min’kov et al.



rm

t

th
pi

a

fir

f
2

tru

in
th
o
o

a
n is
her
ace
er

10
2

ust

e
ts.
ag-

the
ce-

h
olic
tates

am-
a

lly
ich

en-

ll
ati-
-

ults
-
al
, to
lts,

of

du

sh

th

an

g

y of
e 2
~Fig. 10! shows that the bottom of the band of 2D states is
near the bottom of the conduction band, i.e., above the Fe
energy, so that this structure has no 2D carriers, and oscil-
lations at frequencyBf

2D correspond to tunneling to vacan
2D states. Note that in this structure, forBin there is only
one branch of 2D states over the entire energy range~Fig.
10!.

Using the adopted theoretical model, we can estimate
range of surface potential over which there is only one s
state of the 2D carriers. Figure 11 depicts the calculatedk2

vs.ws dependence for 2D states at an energy of 75 meV in
tunnel structure with parametersEg and NA2ND corre-
sponding to structure 3. We see that at this energy, the
spin state of the 2D carriers separates atws'75 mV, and the
second atws'110 mV. Thus, in the 75–110 mV range o
surface potentials, there can be only one spin state ofD
carriers. We assume that this is the state observed in s
ture 3 atBin. Figure 11 shows that atV575 mV this struc-
ture hasws595 mV.

The dispersion law for the electron 2D states at
ws595 mV calculated with the adopted model is shown
Fig. 10. We see that in this tunnel structure, in contrast to
structure with Yb, the experimentally determined values
k2 in the 55–120 mV range of bias voltages are in go

FIG. 9. Angular dependence of the fundamental fields of tunneling con
tivity oscillations of structure 3 at a bias voltageV575 mV. The solid lines
correspond to oscillations caused by tunneling to bulk states, and the da
curves to 2D states.

FIG. 10. Bf andk2 as functions of the bias voltage. The dots represent
experimental values ofBf obtained with the orientationBin for structure 3.
Curve1 represents the dispersion law for bulk states calculated in the K
model with parametersEg545 meV andP5831028 eV cm; curves2 rep-
resent the dispersion laws for the 2D states split by the spin–orbit couplin
~the curves were calculated atws595 meV!.
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agreement with the dispersion law calculated with
V-independent value of the surface potential. The reaso
that the surface state density in structure 3 is probably hig
than in structures 1 and 2, so that the variation of the surf
potential resulting from variations in the bias voltage ov
the moderately broad range of values ofV in which we ob-
served tunneling conductivity oscillations is small. Figure
also shows that in this structure the second spin state ofD
electrons only makes itself felt atk2.1.531012 cm22 ~the
state also exists neark50, but depicting it on this scale is
difficult!.

Within the energy range studied here, this state m
have values ofk that are close to those of bulk states~Fig.
10!, with the result that it is impossible to distinguish th
oscillations with the respective frequencies in experimen
As noted earlier, such a state could appear in oblique m
netic fields foru.50° ~Fig. 9!. It would be useful to be able
to vary the surface potential in structure 3, but employing
modified method with additional pulses has led to no noti
able variation ofws in this structure.

The possibility of 2D states appearing only at hig
quasimomenta in semiconductors with a highly nonparab
spectrum has been discussed in Refs. 28 and 29. Such s
became known as kinematically coupled. Both papers ex
ine the spinless problem. In real semiconductors with
highly nonparabolic spectrum~InSb and HgCdTe!, allow-
ance for spin leads to additional features in kinematica
coupled states. This can clearly be seen in Fig. 12, wh
shows the dispersion laws for the bulk and 2D states calcu-
lated in the Kane model for two values of the surface pot
tial. Whenws is low, there can be 2D states with only one
spin, and they appear atk Þ 0, i.e., they are kinematically
coupled~Fig. 12a!. Whenws is high, these states exist at a
values ofk, and the states with the second spin are kinem
cally coupled~Fig. 12b!. As Fig. 10 shows, this is the situa
tion in structure 3.

It may seem inconsistent that all the experimental res
concerning the spectrum of 2D states were obtained by ana
lyzing oscillations in a magnetic field, while the theoretic
calculations were performed for zero magnetic field. Here
compare the results of calculations with experimental resu
we used Eq.~1!, i.e., we tacitly assumed that the rules

c-

ed

e

e

FIG. 11. k2 as a function of the surface potential calculated at an energ
75 meV: the solid line represents bulk states and the dashed curves thD
states.j andh stand for the corresponding experimental values ofk2 at a
bias voltageV575 mV.
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semiclassical quantization of the spectrum of 2D states in a
magnetic field are valid for such narrow-gap semiconduct
To confirm the validity of such an assumption, we calcula
the Landau levels of 2D states in the Kane model in th
same way as we did in Ref. 30. The results of calculation
a fixed surface potentialws5300 mV are depicted in Fig
13a. The solid and dashed curves indicate the position of
two series of Landau levels corresponding to the differ
spin states of the 2D carriers. At fixed energy, the levels i
each series are not strictly periodic in the reciprocal magn
field, but the values ofk determined from the average perio
of each series via Eq.~1! yield, to high accuracy, the dispe
sion law for the corresponding branch of the 2D states cal-
culated in zero magnetic field~Fig. 13b!. Thus, within an
important range of energies and magnetic fields, the rule
semiclassical quantization in a magnetic field is satisfied
high accuracy.

6. CONCLUSION

We have used tunneling spectroscopy in a magn
field to study the energy spectrum of 2D states localized

FIG. 12. Dispersion laws for bulk and 2D states calculated a
NA51018 cm23, Eg550 meV,Dc52 eV, andDv51 eV and at two values
of the surface potential:~a! ws580 mV, and~b! ws5120 mV.

FIG. 13. ~a! Landau levels of 2D states calculated in the Kane mod
~details in the main text!. ~b! Curves representing the dispersion laws f
bulk and 2D states split by spin–orbit coupling~calculations done with zero
magnetic field!. The dots correspond to the values ofk determined from the
positions of the Landau levels in Fig. 13a. The following parameters w
used in the calculations:NA51018 cm23, Eg550 meV, Dc52 eV,
Dv51 eV, andws5300 mV.
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conductor HgCdTe. The high surface potential
p-HgCdTe–oxide–Yb tunnel structures creates a subban
2D electron states whose bottom is below the Fermi ene

Two types of tunneling conductivity oscillations in
magnetic field are observed in such structures. The per
of these oscillations are determined, at energiesEF and
EF1eV, by the component of the quasimomentum of t
2D states parallel to the surface. This makes it possible
study the energy spectrum of 2D states over a broad energ
range. We have found that in such structures with an as
metric potential well there is strong spin–orbit splitting
the spectrum of 2D states.

In p-HgCdTe–oxide–Al tunnel structures the surfa
potential is much weaker, the bottom of the subband ofD
states is above the Fermi energy of the semiconductor,
the tunneling conductivity oscillations in a magnetic field a
related to tunneling to vacant 2D states. The presence o
only one branch in the spectrum of 2D states in these struc
tures results from the fact that due to the strong spin–o
coupling the second spin state is pushed into the continu
spectrum.

To analyze the experimental results we have calcula
the energy spectrum of 2D states localized in the surfac
quantum well in a semiconductor with a Kane dispers
law. We have found that all the experimental data are
good agreement with the theoretical results.

1!Whenu.50°, another angle-dependent component can be detected;
sibly, this component is related to the appearance in inclined fields
second spin state of 2D carriers. We know of no theoretical calculations
the spectrum of 2D carriers in a semiconductor with a complicated spe
trum in an arbitrary inclined field, so that our experimental results co
serve as a stimulus to such calculations.
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Superradiance by a system of highly polarized exchange-coupled nonequivalent spins

the
D. A. Kostarov, N. P. Fokina, and K. O. Khutsishvili

I. Dzhavakhishvili Tbilisi State University, 380028 Tbilisi, Republic of Georgia
~Submitted 4 August 1996; resubmitted 13 January 1997!
Zh. Éksp. Teor. Fiz.112, 551–563~August 1997!

We propose a model of radiofrequency~rf! superradiance by a system of interacting
nonequivalent spins in a point specimen. In contrast to the rf superradiance observed and
described earlier, here spin–spin coupling acts as the interaction with the cavity. To be definite,
we examine the spins of two isotopes of a metal that are coupled by the Ruderman–Kittel
interaction. The analysis of such a system when the magnetization of one spin species is inverted
shows that the system can have one resonance frequency and two different decay times,
instead of two resonance frequencies and one decay time in the usual situation. When such
‘‘repulsion’’ of decay times occurs and the absolute values of the spin polarizations are
large, transverse magnetization increases and exhibits features characteristic of superradiance.
Finally, we calculate the parameters of this superradiance: the voltage across the terminals
of an rf pickup coil, the pulse length, the delay time, and the superradiant intensity. ©1997
American Institute of Physics.@S1063-7761~97!01208-0#
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In recent years there has been an upsurge of intere
the magnetic resonance spectra of two species of excha
coupled highly polarized nonequivalent spins.1–5 Such spins
can be found in two metal isotopes coupled by t
Ruderman–Kittel interaction1–4 or in magnetic ions occupy
ing two magnetically nonequivalent positions in the latti
and coupled by the exchange interaction.5 Systems of this
kind exhibit merging–splitting and suppression
enhancement effects in the magnetic resonance lines, w
means that the position and intensity of the lines do
correspond to the Larmor frequencies and relative isot
concentrations. The reason in both cases is the presence
interaction of the exchange type (Hex)ab between the two
spin species,a andb, an interaction that in the case of high
polarized spins leads to a complicated dependence of
frequencies and line intensities on the spin polarization.
studying these spectra it is possible to establish, to high
curacy, the values of exchange constants and even determ
among other things, their sign.

It was also found that the nonlinearity of the equations
motion of the magnetizations, due to the interaction (Hex)ab ,
can affect the dynamics of the highly polarized spin syste
Specifically, numerical solution of the equations of motion
two isotopes,63Cu and65Cu, with allowance for (Hex)ab and
with one magnetization inverted, leads to an avalanche-t
buildup of the transverse magnetization pulse.4 Similar trans-
verse magnetization pulses were observed by Bosigeret al.,6

Kiselev et al.,7 and Bazhanovet al.8 in a system of nuclea
spins of one species with preestablished high negative po
ization ~these pulses were detected by measuring the vol
across the terminals of the coil containing the specimen!. In
Refs. 8–10 it was shown that these were superradiant pu
from the inverted nuclear spins interacting with the altern
ing field in the cavity~in the radio-frequency~rf! front end!.
The phenomenon mentioned in Ref. 4 differs from the eff
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spins and an external cavity.
We believe that in the case in which the isotope mag

tizations can move, the interaction of one spin species w
the other mimics the interaction between spins and the fi
in a cavity. The importance of studying such superradia
stems from the fact that in this way, coherent pulses can
generated in a frequency range where no real cavity
operate~e.g., in the x-ray range!, not only with spins, but any
two-level particles acting as emitters. Furthermore, supe
diance in a cavityless two-component system of two le
particles can serve as a source of information about coup
constants for the interactions between different particle s
cies and about the characteristics of the two-level particl

At this point it should be noted that in 1954, Dicke11

predicted the possibility of superradiance by a system of m
tually correlated~through the radiation field! inverted two-
level particles in a point sample~V!l3, where V is the
specimen’s volume, andl is the wavelength of the radia
tion!. Until now, however, this phenomenon has been o
served either in a finite specimen~V@l3; see Ref. 12! or in
a specimen placed in an external cavity; in both cases co
lation is induced by the radiation field, which obeys Ma
well’s equations. Note that in interpreting the superradian
data, Maxwell’s equations were adopted for the field in t
cavity.13–15,9,10The reason is that in a finite specimen, mo
selection15 is achieved by ‘‘selecting’’ the proper shape
the specimen, which is equivalent to the presence of a ca
and mode selection in the rf range is done by using an o
nary rf front end. Naturally, the theoretical description
superradiance in both cases is roughly the same.

In the present paper we propose a model of superr
ance by interacting nonequivalent spins~two-level particles!
that initially have high polarizations of both signs and are n
coupled to a cavity. The mechanism of inducing correlatio
differs from the one mentioned earlier; more precisely,
originates in the interaction of one particle species with
internal~molecular! field generated by the other species. E

30007$10.00 © 1997 American Institute of Physics



amples of such particles are the nuclear spins of metal iso-
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topes~ Ag and Ag in silver, Tl and Tl in thallium,
and 63Cu and 65Cu in copper!1–4,16,17 coupled by the
Ruderman–Kittel interaction, characterized by close gy
magnetic ratio values and equal~to order of magnitude! con-
centrations, and kept at extremely low spin temperaturesTs

(\v res>kBTs), which are, however, higher than the nucle
magnetic order temperature. Since below we discuss the
of nuclear spins of63Cu and65Cu, here are some relevan
data: the gyromagnetic ratios areg63511.3 MHz T21 and
g65512.1 MHz T21, the relative concentrations~natural
abundances! are x6550.31 andx6350.69, and the nuclea
magnetic ordering temperature is about 60 nK. The cha
teristic experimental conditions used by the Helsinki1,2,17and
Bayreuth3,4 groups in their studies of these metals in t
paramagnetic state were as follows: a conduction elec
temperatureTe of the order of hundreds of microkelvins,
spin temperature of the order of several microkelvins, a
constant magnetic fields of roughly 10 mT. At such latti
temperatures, the nuclear spin–lattice relaxation timeT1 is
much greater than the reciprocal linewidthT2 of stationary
NMR; in particular, atTe5400mK andT2;1025 s we have
T1;1 hr ~Ref. 17!, i.e., T1@T2 , so that spin–lattice relax
ation can be ignored. We describe the relaxation of the tra
verse components of the isotope magnetizations in the B
approximation, since we know of no data that contradi
this approximation for these metals~see Refs. 1, 2 and 17!.

We also note that these processes are transient, i.e.,
take place in time intervals much shorter than the time
cross relaxation between the isotopes~we are interested in
times of the order of fractions of a microsecond, while t
cross–relaxation time for the temperatures involved amou
to tens of milliseconds!. The problem of selecting the value
of the constant magnetic field for the expected effect to oc
is discussed below.

2. DERIVATION OF THE BASIC EQUATIONS

To be specific, we take a spin system consisting of t
species of nuclear spins~a andb! of two metal isotopes with
gyromagnetic ratiosga.gb and place it in a constant mag
netic field with inductionB0iz, with the spins coupled by the
Ruderman–Kittel interaction. The Hamiltonian of such
system has the form

H52\vaI a
z2\vbI b

z2(
i , j

Ji j I aiI b j , ~1!

whereva,b5ga,bB0 , I a,b are the isotope spin operators, a
Ji j is the Ruderman–Kittel coupling constant. We write t
equations of evolution of the magnetization components
tained in the semiclassical approximation via the Ham
tonian ~1! as follows:

ṁb
x5vb

0mb
y2gbJ0mb

zma
y2

mb
x

T2
,

ṁb
y52vb

0mb
x1gbJ0mb

zma
x2

mb
y

T2
, ~2!

ṁb
z5gbJ0~mb

xma
y2mb

yma
x!,
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vb
05vb1gbJ0ma

z , va
05va1gaJ0mb

z ; ~28!

ma,b
a 5ga,b\n^I a,b

a &, a5x,y,z; n is the spin number density
J05zn /\2gagbn ~it is assumed that only thezn nearest
neighbors of thei th spin contribute to the sum( j Ji j 5znJ!;
andT2 is the spin–spin relaxation time. The experiments
Oja et al.,1 Hakonenet al.,2 and Estromet al.17 show that the
two isotopes have close values ofT2 . As is known,16 for the
isotopes of the above metalsz512; here, for instance, eac
of the 12 neighbors of a selected spin may be65Cu with
probability x65 or 63Cu with probabilityx63.

The equations forma
a can be obtained from Eqs.~2! by

interchanging the indices:a↔b. Thus, the problem is de
scribed by a system of six first-order differential equation

It is well known that the generation process require
source of energy in the system. We assume that this requ
ment is fulfilled by population inversion of one spin specie
In this case, obviously, the stored energy can affect the
teraction between the two spin species and hence the na
of spin precession. In particular, the spectra of frequencie18

and decay times may differ from those in the ordinary si
ation. To elucidate these features we find the spectrum of
spin system under consideration by pluggi
ma,b

1 5m̃ab
1 exp(2iVt) into the equations

ṁa
152 iva

0ma
11 igaJ0ma0

z mb
12

ma
1

T2
,

~3!

ṁb
152 ivn

0mb
11 igbJ0mb0

z ma
12

mb
1

T2
,

which follow from Eqs.~2! if we replacema
z andmb

z by their
initial values ma0

z and mb0
z ~by using the operators

ma,b
1 5ma,b

x 1 ima,b
y we are able to reduce the system of equ

tion to two first-order differential equations!. This yields the
following equations for the precession amplitudes:

S V2va
01

i

T2
D m̃a

11gaJ0ma0
z m̃b

150,
~4!

gbJ0mb0
z m̃a

11S V2vb
01

i

T2
D m̃b

150.

The condition that the system~4! have a nontrivial solution
leads to the following equation for the spectrum:

V22VS va
01vb

02
2i

T2
D2

1

T2
2 2gagbJ0ma0

z mb0
z

2
i

T2
~va

01vb
0!1va

0vb
050, ~5!

whose solution has the form

Va,b5
va

01vb
0

2
2

i

T2
6

1

2
A~vab

0 !214gagbJ0
2ma0

z nb0
z .

~6!

Since atJ050 andvab
0 5va

02vb
0.0 ~from now on we as-

sume this inequality to be valid! the solution ~6! yields
V25vb

0 andV15va
0 , we conclude that the ‘‘plus’’ corre-

sponds to ana-like precession mode and the ‘‘minus’’ to
b-like precession mode.
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We now allow for the fact that one magnetization is
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equations forma
x and mb

x without decay, which has already
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the

n of
inverted, as a result of which 4gagbJ0ma0mb0 becomes
negative, and for sufficiently high degrees of spin polari
tion exceeds (vab

0 )2 in absolute value, i.e.,

24gagbJ0
2ma0

z mb0
z .~vab

0 !2. ~7!

Then forVa,b we have

Va5VG2 iG2 , Vb5VG2 iG1 , ~8!

where

VG5
va

01vb
0

2
, G65

1

T2
6

1

2
A4vT

22~vab
0 !2,

~9!
vT

252gagbJ0
2ma0

z mb0
z .

Thus, in conditions where inequality~7! is valid, the system
of coupled magnetizations is characterized by a single
quencyVG at which the system can emit radiation, as w
will show shortly. This result agrees with that for the fr
quency of oscillations, obtained in Ref. 18, of a coupl
system consisting of dipoles and a cavity with resona
frequenciesvn andvc , respectively, and decay timesT2 and
tc , respectively:

VG5S vn

2tc
1

vc

T2
D S 1

2tc
1

1

T2
D 21

,

with VG5(vn1vc)/2 at 1/2tc51/Tc ~in our system the
noninteracting isotopes have equal decay times!.

Equations~8! and ~9! show that condition~7! leads to a
situation in which instead of two coupled-oscillator mod
with below-threshold frequencies

~va,b!b.th5
va

01vb
0

2
6

1

2
A~vab

0 !214gagbJ0
2ma0

z mb0
z

~98!

and equal decay timesT2
21 ~which is the case with nonin

verted magnetization!, we must introduce two magnetizatio
vectors belonging to spinsa and b, precessing with equa
frequenciesVG , and characterized by different decay rat
G6 . Thus, if the precession of the magnetization vectorsma

andmb of a spin system close to equilibrium is a superpo
tion of two precessions with normal below-threshold fr
quencies (va)b.th and (vb)b.th and equal decay ratesT2

21,
after a transition to a state with a high value of the ene
stored by the inverted spin species~condition ~7!!, the spin
system is described by two magnetization vectors,ma and
mb , with equal frequencies but different decay rates. W
see, therefore, that whenvab

0 is positive and condition~7! is
met, the evolution of the spins with the lower partial fr
quency~b-spins! proceeds with the decay rateG1 and that of
the spins with the higher partial frequency~a-spins! with the
decay rate G2 , i.e., a-spins decay more slowly tha
b-spins.1!

To study the transient process described by the nonlin
differential equations~2!, we seek their solution by the
method of slowly varying amplitudes21 ~here we employ the
fact that the time constant of the amplitude variation is mu
larger than the precession period!. As in the description of
this method in Ref. 21, we begin with two second-ord
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been taken into account by the spectrum~6!, and two first-
order equations forma

z and mb
z . We seek the solution o

these equations in the form

ma
x5

m̃ a
x~ t !

2
exp@2 i ~VG2 iG2!t#1c.c.,

~10!

mb
x5

m̃ b
x~ t !

2
exp@2 i ~VG2 iG1!t#1c.c.,

where them̃ a,b
x (t) are slowly varying complex-valued am

plitudes. Allowing for the fact that the inequalitie

um̈̃ a,b
x u!VGuṁ̃ a,b

x u represent the conditions for slow varia
tion of the amplitudes, we arrive at the following equatio
for the slowly varying amplitudes:

ṁ̃ a
x5 i

vab
0

2
m̃ a

x2G2m̃ a
x2 igaJ0ma

zm̃b
x exp@~G22G1!t#,

~11!

ṁ̃b
x52 i

vab
0

2
m̃ b

x2G1m̃ b
x2 igbJ0mb

zm̃ a
x

3exp@~G12G2!t#.

We also write the equations forṁa
z andṁb

z in the form

ṁa
z5

gaJ0i

2
@~m̃ a

x!* m̃ b
x2m̃ a

x~m̃ b
x!* #,

~12!

ṁb
z5

gbJ0i

2
@~m̃ a

x!* m̃ b
x2m̃ a

x~m̃ b
x!* #.

If G1@G2 , we can say that the rapidly decayingb-spins
adjust to the evolution of the slowly decayinga-spins, so
that we can adiabatically exclude the evolution of t
b-spins, to which end we must nullify the derivative of th
x-component of the magnetization ofb-spins:

ṁ̃ b
x50 ~13!

~we have used what Haken called the subordinat
principle22!. The above equality leads to the conditio
ṁb

z50, i.e.,mb
z5mb0

z , and combining~11! with ~13! yields

m̃ b
x52

gbJ0mb
z

vab
0 /21 iG1

m̃ a
x exp@~G12G2!t#. ~14!

This equality determines the enhancement of
complex-valued precession amplitude of theb-spins with re-
spect to the precession amplitude of thea-spins. We assume
that mb0

z .0 and ma0
z 52uma0

z u,0. Indeed, if theb-spins
move so rapidly that thea-spins are unable to follow, the
b-spins do not evolve independently. Then only thea-spins
can release the stored energy in the course of the rotatio
the magnetization vector. This means that thea-spins must
be the inverted spins. Plugging the frequencies~28! into ~7!,
we can easily see that the inequality~7! is true for ma0

z ,0
only for negativeJ0 ~note that in most metalsJ0,0!. We
now plug ~14! into the first equation in~11! and write the
complex-valued amplitudesm̃ a,b

x in the form of the product
of a real-valued amplitude and a phase factor:

m̃ a
x5a~ t !exp@ iw~ t !#, m̃ b

x5 ib~ t !exp@ iq~ t !#.
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3. CALCULATING GENERATION PARAMETERS FOR AN
EXCHANGE-COUPLED SYSTEM OF NONEQUIVALENT

for
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l-

p

n in
tion
ȧ1 i ẇa5 i S vab
0

2
1 iG2Da1

igagbJ0
2mb0

z

~vab
0 /2!21G1

2

3S vab
0

2
1 iG1Dma

za. ~15!

Separating the real and imaginary parts in Eq.~15!, we ob-
tain

ȧ52G2a2
1

TR

ma
za

uma0
z u

, ~16!

ṁa
z5

1

TR

a2

uma0
z u

, ~17!

ẇ5
vab

0

2 S 11
1

TRG1

ma
z

uma0
z u D , ~18!

where

1

TR
5

gagbJ0
2uaa0

z umb0
z

~vab
0 /2!21G1

2 G1 ~19!

is similar to the reciprocal radiative decay time in the pro
lem of spin–cavity interaction.23 Note that the phasew(t)
changes little in the course of a time interval that is t
reciprocal ofG1 , i.e., ẇG1

21!1.
Equation ~18! implies that this is true ifvab

0 /2G1!1.
Thus, Eqs.~16!–~18! are true if the system of particles of th
two species has two small parameters,

uG2u
G1

!1 and
vab

0

2G1
!1. ~20!

Interestingly, the separation of the general precessio
the particles at the mean frequency leads to a situatio
which the rate of variation of the precession phase is prop
tional to the difference of the partial Zeeman frequencies

Let us estimate the shift in the isotope precession pha
Comparing the ratio

m̃ a
x

m̃ b
x 5

a

b
eid, d5w2q2

p

2
,

with ~14!, we find the quantities needed for subsequent c
culations:

cos2 d5
4G1

2

~vab
0 !214G1

2 , ~21!

tan d5
vab

0

2G1
. ~22!

Summarizing, we can say that in this section we proceed
under conditions~20!, from the description of the motion o
two isotope magnetizations by six first-order different
equations to a description by two first-order different
equations and the expression~18! for the lacking slow vari-
ablew.
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Solving the system of equations~16! and ~17! is easy
because it is similar to solving the system of equations
spins coupled with the cavity under the condition th
tc!Tc , wheretc is the ringing time of the rf front end.9 To
obtain the solution we first examine the initial stage in t
temporal development of the magnetizationma , when
ma

z'2uma0
z u. Then

ȧ'S 1

TR
2G2Da,

which leads to the following condition of buildup ofa:

1

TR
2G2.0. ~23!

Note thatG2 can be either positive or negative. WhenG2 is
negative, the inequality~23! holds automatically. For this
reason we consider the casesG2.0 andG2,0 separately.

First we assume thatG2 is positive. This condition is
ensured by magnetization values such that

vT
2<S vab

0

2 D 2

1S 1

T2
D 2

.

Generation occurs when

1

TR
>G2 , ~24!

where the equality corresponds to the threshold. Writing~24!
explicitly and allowing for the fact that the phase vari
slowly, (vab

0 /2)2!G1
2 , we obtain the generation threshold

the form

vT
25

1

2 F S vab
0

2 D 2

1S 1

T2
D 2G . ~25!

Note that~25! automatically leads to the following inequa
ity:

1

T2
,2AS vab

0

2 D 2

1gagbJ0
2ma/0

z mb0
z ,

which guarantees that the equilibrium lines~98! belonging to
the different isotopes are resolved~this condition is needed
so that one line can be selectively inverted!.

But if

vT
2.S vab

0

2 D 2

1S 1

T2
D 2

,

thenG2,0, and as noted earlier, the condition for buildu
of amplitudea is met automatically. For large negativeG2 ,
however, the decay-rate repulsion condition (G1@uG2u)
ceases to be met. The final conclusion is that generatio
the transient regime can occur at such initial magnetiza
values thatvT

2 lands in the interval

1

2 F S vab
0

2 D 2

1S 1

T2
D 2G<vT

2<S vab
0

2 D 2

1S 1

T2
D 2

,
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i.e., the most favorable condition for generation is when the
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excess above threshold is a little more than twofold.
Comparing this result with the superradiance pattern o

system of spins coupled with the cavity, we can say that n
one spin species acts as a cavity in relation to the o
species. Equations~16! and~17! imply that here the interna
field generated by theb-spins,uh̃molu5u2J0m̃ b

xu, acts as the
cavity field9 in relation to thea-spins. Just as in Ref. 9, thi
field, according to~14!, is proportional tom̃ a

x and leads to a
rotation of the magnetization vector of thea-spins, and in the
process there is an avalanche-type buildup ofum̃ a

xu.
But there are also considerable differences here: the

does not obey Maxwell’s equations in a cavity, but is d
entirely to spin interaction; also, while in the case of sp
coupled to a cavity the separation of the rapidly decay
oscillator occurs on the basis of an inequality,tc!T2 or
tc@T2 , which contains the decay times of uncoupl
oscillators,9,18,24 when there are two spin species the cor
sponding decay rates in the uncoupled state are equal
due to the strong coupling one rate increases while the o
decreases.

Another difference is that while for a system consisti
of spins and a cavity two types of generation are possible~a!
for tc!T2 similar to generation by an ammonia maser,9,18

and ~b! for tc@T2 similar to generation by an optica
laser,18,24 for a system of two spin species only maser-ty
generation is possible. This is to be expected since the re
for the effect being studied is the spin–spin coupling, wh
causes coherence to emerge. In the case of laser-type ge
tion, however, the slow variables develop over time interv
much longer thanT2 , when the spin–spin interaction~both
secular and nonsecular! has long since ceased.

When the inequalities~23! hold, the solution of the sys
tem of equations~16! and ~17! has the form

a56uma0
z u~12TRG2!sechF ~12TDa!S 1

TR
2G2D G ,

~26!

ma
z52uma0

z uTRG21uma0
z u~12TRG2!

3tanhF ~ t2TDa!S 1

TR
2G2D G , ~27!

ẇ5
vab

0

4TRG1
~12TRG2!tanhF ~ t2TDa!S 1

TR
2G2D G .

~28!

Thus, we have established that after the evolution of
rapidly decaying spins has been adiabatically elimina
~with uG2u!G1 and vab

0 !2G1!, the equations for the
slowly varying amplitudes of the slowly decaying spins d
scribe a motion similar to the fall of an ‘‘overdamped’’ pe
dulum from the upper unstable state of equilibrium; only
our case the magnetization of one spin species ‘‘falls’’ fro
the inverted state toward thez axis. When this slowly vary-
ing amplitude is plugged into~10!, we see that this ‘‘fall’’ is
superimposed on a precession with frequencyVG1ẇ, the
frequency of oscillation, where the shiftẇ is determined by
the difference of partial frequencies,vab

0 .
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The sign ofa in ~26! is determined by the sign of th
initial value,a(0). Theinitial values of the transverse mag
netizations are determined by the conditions for inver
magnetization~pumping!. When the spins interact with a
cavity, the initial negative value of the longitudinal magn
tization of the spins is created by the dynamic cooli
method.6–8 Only Nyquist noise in the rf front end can serv
as a source of finite initial transverse magnetization in t
case~as shown by Sleateret al.,25 such noise is much more
effective than radio-frequency spontaneous emission!.

In our problem of superradiance generation by two s
cies of exchange-coupled spins, approximately antipara
magnetizations can be achieved by, say, applying cohe
pulses. Here the angle of rotation of the magnetization ve
of the a-spins must be close top ~but must not be exactly
equal top!, while that of the second magnetization must
close to zero. Such angle values guarantee the existenc
finite initial values of the transverse magnetizations.

Equation ~26! describes anuau-buildup pulse with a
sharp peak in time shaped in a form of a hyperbolic sec
which is characteristic of superradiance. The maxim
value of uau is attained att5TDa , and the timet50 corre-
sponds to the moment when the generation threshold
reached;TDa is called the delay time, and its value can
estimated from the initial condition

ua~0!u5uma0
z u~12TRG2!sechFTDaS 1

TR
2G2D G . ~29!

By analogy with ordinary superradiance,8–10 we assume
that TDa@TR . The hyperbolic cosine can then be replac
by an exponential, so that we obtain at the following es
mate:

TDa'
TR

12TRG2
lnFU ma0

z

a~0!
U~12TRG2!G . ~30!

Note that in Ref. 4 the pulse of transverse magnetizationmx

shaped in the form of a hyperbolic secant~Fig. 1! was ob-
tained by computer simulation of the development of t
magnetization of two copper isotopes, after the65Cu isotope,
having the larger gyromagnetic ratio, was deflected by 1

FIG. 1.
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and the63Cu isotope by 1° with respect to thez axis. In this
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setting our model leads to the same conclusion.
The superradiance described above can be observe

measuring the voltage across the terminals of an rf pic
coil. When the rf front end is tuned precisely to the oscill
ing frequency, this voltage is9

U52h0m0SNQ~ṁa
x1ṁb

x!, ~31!

whereh0 is the degree to which the specimen fills the coil,N
is the number of turns in the coil,S is the coil’s cross-
sectional area,Q is the Q-factor of the rf front end, and
m054p31027 H m21. Plugging in ṁb

x50 and
ma

x5a cos@VGt1w(t)#, we obtain the following expressio
for the envelope of the superradiance signal:

uUSR
envu5h0m0SNQ~VG1ẇ !uma0

z u~12TRG2!

3sechF ~ t2TRG2!S 1

TR
2G2D G . ~32!

We see that in reality the system must oscillate at
frequencyVG1ẇ, with the frequency shift given by~28!.
We can now use~32! to calculate the FWHM of the buildup
pulse of the superradiance signal:

DtSR'
TR ln~21) !

12TRG2
. ~33!

The superradiant intensity can be obtained by negating
rate of variation of the Zeeman energy of thea-spins pre-
cessing at frequencyVG and evolving according to Eq.~17!:

I SR5
VG

ga
ṁa

zV, ~34!

whereV is the specimen’s volume. Plugging the right-ha
side of Eq.~17! with the known value~26! of the real-valued
amplitudea into ~34!, we find that

I SR5
VGVuma0

z u
gaTR

~12TRG2!2

3sech2F ~ t2TDb!S 1

TR
2G2D G . ~35!

Now let us establish how the generation parameters
pend on the number of emitters. To this end we first plugJ0

2,
cos2 d, ma0

z 5ga\nxapa0I , andmb0
z 5gb\nxbpb0I into ~19!,

wherexa andxb are the relative isotope concentrations, anI
is the spin value. Combining the result with~20!, we get

1

TR
5zn

2S J

\ D 2

aG1
21 , a5xaxbpb0upa0uI 2.

For sufficiently small values ofTRG2 ~the criterion for
smallness is given below! and att5TDa , the superradian
intensity becomes

I SR5
\Nspxaupa0uIVG

TR
5\NspVGxaupa0uI

azn
2

G1
S J

\ D 2

,

where Nsp is the total number of spins. The length of th
superradiance pulse is
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If we draw an analogy with a superradiance process
which mode selection is done in some manner, we sho
haveDtSR } n21 and I SR } Nspn ~n is the active particle
concentration!, which is characteristic of superradiance. B
since in our case feedback needed for generation eme
because of short-range two-particle interaction, the pulse
tensity is proportional toNspzn

2 rather thanNspn and the pulse
width is accordingly inversely proportional tozn

2 rather
thann.

As noted in Refs. 8 and 9,TRG2 can be considered
small if the excess above the threshold is twofold, i.
TRG251/2. When pumping~the attained value of the prod
uct of magnetizations! is such that this condition is met, w
haveG250, and at higher pumping levelsG2,0. It is at
small negative values ofG2 that generation becomes esp
cially prominent.

What we have said above refers to the case wherevab
0 is

positive. But if vab
0 ,0, we must only perform the substitu

tion G1↔G2 , i.e., thea-spins decay more rapidly than th
b-spins. Generation occurs if theb-spins were initially in-
verted and the degrees of polarization of the two spin-spe
are high~naturally, condition~7! still holds, but now it is true
for positiveJ0!. Similarly, we can decouple the equations f
the magnetizations, solve the system of differential equati
for b andmb

z , and write the corresponding values forq̇ and
a. All the superradiance parameters~30!–~35! remain valid
if we interchange the indices,a↔b.

4. CONCLUSION

We have shown that if in a magnetic fieldB0 there are
two metal isotopes with gyromagnetic ratiosga andgb , rela-
tive concentrationsxa and xb , and spinsI , with each spin
coupled to the nearest neighbors of the other species by
Ruderman–Kittel interaction with a coupling constantJ, one
isotope inverted, and the polarizationspa0 andpb0 satisfying
the inequality

4I 2xaxbupa0pb0uzn
2S J

\ D 2

.~vab
0 !2,

then
~1! their spectrum, which in equilibrium consists of tw

frequencies~98!, reduces to a single frequencyVG given by
~9!; and

~2! their decay rates, which in equilibrium equalT2
21,

become different,G6 ~see Eqs.~9!!.
If in these conditions the system is pumped above

generation threshold, which means that

1

2
@$vab

0 %214T2
22#<4I 2xaxbupa0pb0uzn

2S J

\ D 2

<~vab
0 !214T2

22 ,

and with J negative the inverted spins are those with t
higher partial frequency and

~vab
0 !2,4T2

22 ,
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z.
~3! this spin system generates a pulse atVG , which has
almost all the features of superradiance~a delay time, an
envelope shaped like a hyperbolic secant, and a narrow
nal, Dt!TD!.

There is a significant difference between our case
ordinary superradiance, i.e., the dependence of radiant in
sity on the number of active particles is stronger by a fac
zn

2 in comparison to the stationary case, while in ordina
superradiance this increase isNsp-fold. But still, on the basis
of our studies, we use the term superradiance for this t
sient generation process.

We have also calculated the parameters of this supe
diance process~the voltage across the terminals of an
pickup coil, the pulse width, and the superradiant intensi!.

A similar approach can be adopted to obtain superra
ance in any interaction-coupled systems consisting of
particle species without using external cavities or mo
selection schemes.

The authors would like to express their gratitude to V.
Atsarkin for discussing the results and for useful remar
They would also like to mention the invaluable comments
the manuscript done by the late L. L. Buishvili.

1!A similar shift in the relaxation times can be expected when the sp
interact with a cavity. Indeed, a shift in the spin–spin relaxation time in
superradiance process at large nuclear polarizations was observed b
zhanovet al.,8 Flepp,19 and Badiiet al.20

1A. S. Oja, A. J. Annila, and Y. Takano, Phys. Rev. Lett.65, 1921~1990!.
2P. J. Hakonen, K. K. Nummila, and R. T. Vuorinen, Phys. Rev. B45,
2196 ~1992!.

3G. Eska and E. Schuberth, Jpn. J. Appl. Phys.26, Suppl. No. 3, 435
~1987!.

4G. Eska, inProc. Conf. on Quantum Fluids and Solids, Gainesville, 19,
G. G. Ihas, and Y. Takano~eds.!, AIP Conf. Proc.194.

5Shin-ichi Kuroda, M. Motokawa, and M. Date, J. Phys. Soc. Jpn.61, 1036
~1992!.
306 JETP 85 (2), August 1997
ig-

d
n-
r

y

n-

a-

i-
o
-

.
.

n

s
e
Ba-
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Spin-wave resonances in nonuniformly strained films of FeBO 3
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Spin-wave resonances are investigated in thin films of the antiferromagnet FeBO3 with magnetic
anisotropy of the easy-plane type. It is observed that high-order resonances are observed
only when nonuniform stresses are created in the sample. In nonuniformly stressed samples the
antiferromagnetic resonance lines are broadened, and against the background of this
broadening spin-wave resonances are visible whose positions are well described within the free-
particle approximation. Using this method it is possible to resolve resonances with wave
numbers.1.53105 cm21. The presence of strong uniaxial elastic stresses is established
experimentally in nonuniformly strained films. A contact mechanism for exciting spin-
wave resonances is discussed. ©1997 American Institute of Physics.@S1063-7761~97!01308-5#
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In an ideal infinite crystal, linear excitation of spi
waves is possible only when the pump field frequencyvp

coincides with the frequency of some spin wavevk ~the law
of conservation of energy! and the pump field wave vectork
coincides with the wave vector of the same spin wave~the
law of conservation of quasimomentum!. The values of the
wave vector of an electromagnetic microwave field are
large (<102 cm21); therefore, linear excitation of spin
waves with large wave numbers is impossible.

The presence of boundaries in a real sample causes
spectrum of spin waves to become discrete. Consequent
nonzero coupling appears between a uniform microw
field and the large-wave-vector spin-wave modes of
sample. The efficiency of this resonant excitation should
crease with increasing values of the wave vector, and
microwave field should couple only to modes in which t
magnetic moment averaged over the sample oscillates. F
sample in the form of a film this condition implies that on
modes with odd numbers of half-waves couple to the m
netic microwave field. The efficiency of this coupling fal
off in inverse proportion to the wave numberkz . For this
reason, it is not usually considered possible to observe s
wave resonances with large wave numbers;105 cm21. The
study of spin waves with these large wave vectors is m
possible by creating a static magnetic field that is hig
nonuniform along the sample, by creating artificial nonu
formities in the magnetic properties with respect to sam
thickness~see, e.g., Refs. 1 and 2!, or by nonlinear methods.3

In this paper we investigate the phenomenon of lin
excitation of large-wave-number spin waves by a microwa
magnetic field. A similar linear excitation of spin-wav
modes was observed previously in the antiferromag
MnCO3 with easy-plane magnetic anisotropy.4 However, in
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and thus were unsuccessful in deciphering the observed r
nances or analyzing the efficiency of their excitation.

We have investigated spin-wave resonances in thin fi
of the antiferromagnet FeBO3 with the easy-plane type o
magnetic anisotropy (TN5348 K). The grown faces of the
films coincided with the plane of easy magnetization a
were optically smooth. In order to observe spin-wave re
nances the mean-free path of magnonsl must exceed the
film thickness d. We studied films with thicknesse
.10– 40mm. According to the data of Ref. 5, whose a
thors determined the magnon lifetime from the threshold
paramagnetic excitation of spin waves with wave vect
.105 cm21, the conditionl.d should be satisfied at tem
peratures below 100–150 K.

The primary goal of this work is to study the excitatio
mechanism for spin-wave resonances and to determ
whether it is possible to study their relaxation properties
terms of the linewidth.

The spectrum of the low-frequency magnon branchvk

in FeBO3 has the form

vk5g@H~H1HD!1HD
2 1~ak!2#1/2, ~1!

where g5gmB517.83109 s21
•kOe21 is the gyromagnetic

ratio, H is the static magnetic field,HD.100 kOe is the
Dzyaloshinski� field, HD

2 52HEHme, HD.1.9 kOe,
HE.2.63106 Oe is the exchange field,Hme is the magne-
toelastic anisotropy field, anda.0.831023 Oe•cm is the
nonuniform exchange constant. The values of these cons
correspond to a range of temperatures far from the Ne´el tem-
perature, i.e.,T!TN .

Our studies were made using standard EPR spectr
eters from the Bruker Company in the microwave range
mm to 3 cm. The angular dependence was measured us
industrial-type EPR spectrometer.

30706$10.00 © 1997 American Institute of Physics
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2. EXPERIMENTAL RESULTS AND DISCUSSION

2.1. Analysis of experimental data and formulation of a
model

Figure 1 shows a trace of the derivative of the absorpt
with respect to field,dP/dH, versusH for various values of
the temperature and various methods of attaching the sam
In these figures the traces denoted by the number1 corre-
spond to a practically unstressed sample glued to a hold
its ends. For this type of gluing we observed a narrow a
ferromagnetic resonance line, and no spin-wave resona

FIG. 1. Traces of the derivative of the absorption with respect to fi
(dP/dH) as a function ofH for values of the temperature 200 K~a!, 80 K
~b!, and 15 K ~c!. The traces shown in the figures and denoted by
number 1 correspond to an essentially unstrained sample glued to a h
by its ends. The number 2 denotes antiferromagnetic resonance traces
for the same sample whose surface is coated by a thin layer of dilute
The antiferromagnetic resonance traces denoted by the number3 were ob-
tained for the same sample glued along a plane to a plastic holder.
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were observed that corresponded to large wave numbers~i.e.,
in the range of small magnetic fields! over the entire tem-
perature range 4.2–300 K.

The number2 indicates antiferromagnetic resonan
traces taken on the same sample whose surface was c
by a thin layer of dilute glue. The traces denoted by t
number3 were taken on the same sample glued over
plane to a holder made of plastic.

Note that at room temperature~300 K! the position and
shape of the antiferromagnetic resonance line depends
slightly on the method of fastening the sample. As the te
perature decreases, because the coefficients of therma
pansion of the sample, the glue, and the plastic substrate
all different the surface of the sample undergoes stra
which significantly broadens the antiferromagnetic resona
line. Superposed on this broadened antiferromagnetic r
nance line we observed narrow resonance lines whose
sity and intensity increase near the resonance fieldH0 . The
fine structure we observe has a simple explanation~given
below! only for the case of the weak strain caused by the t
layer of glue. The strain caused by gluing the sample to
plastic substrate probably gives rise to bending strain, wh
is nonuniform throughout the sample thickness. This ma
an explanation of the fine structure difficult, and hence it w
not be discussed here.

In Fig. 2 we show a fragment of an antiferromagne
resonance line trace for a sample coated with a thin film
glue at a temperature of 80 K~see Fig. 1b, curve2!. On the
same figure the arrows indicate the results of calculating
positions of spin-wave resonances using Eq.~1! with values
of the wave numberkz5pn/d, whered516 mm is the film
thickness. Good agreement between the position of
lines and the calculated positions is obvious, up ton580.
This resonance corresponds to a wave num
kz.1.53105 cm21. Spin-wave resonances withn<20 near
H0 cannot be resolved, because the distances between
become comparable to the width of an individual line. T
excitation efficiency of modes with even and odd numbers
half-wavesn are roughly the same in the vicinity of th

d

e
der
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e.

FIG. 2. A fragment of the trace of an absorption curve from a sample co
with a thin layer of glue at a temperature of 80 K~Fig. 1b, curve2!. The
arrows show the positions of spin- wave resonances obtained by calcul
the values of the wave vectorkz5(p/d)n using Eq.~1!, whered516mm is
the film thickness.
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antiferromagnetic resonance field. However, far fromH0 ,
each second resonance is considerably weaker than its n
bors.

Figure 3 shows the same fragment of antiferromagn
resonance line trace, but the quantity (H02H)2 is plotted
along the abscissa. HereH0.1450 Oe is the antiferromag
netic resonance field for an unstrained sample. In these
ordinates, spin-wave resonances should be equidis
which is confirmed by the figure. Note that there is a cert
arbitrariness in choosing the value ofH0 within the width of
the antiferromagnetic resonance line; however, for a f
sample this has only a small effect on the distance betw
neighboring spin-wave resonances with large wave numb

Figure 4 shows the dependence of the spin-wave re
nance linewidths on values of the corresponding resona
fields at two temperatures,T530 K andT580 K. It is clear
that the linewidths decrease as the resonance fieldH0 is ap-
proached. We assume that the spin-wave resonance
widths are determined by relaxation processes rather
inhomogeneous broadening. As an upper estimate we
the inverse lifetime of a standing spin-wavetm

21 , which
comes to 853106 s21 for modes corresponding to a ma
netic field H5120 Oe. The inverse lifetime of spin wave
with a frequency of 18 GHz obtained by measuring t
threshold field for their parametric excitation5 in bulk
samples comes to 353106 s21 for the same values ofT and
H. In previous studies~see, e.g., Refs. 6 and 7! it was shown
that in FeBO3 it is the three-particle interactions of magno
with phonons that are most efficient at low temperatur
Using the frequency and field dependence oftm

21 given in
these papers, and the value obtained in experiments on p
metric excitation of magnons, we were able to calculate
expected dependence of the spin- wave resonance linew
on magnetic field. The results of these calculations
shown in Fig. 4 by the solid curve. It is clear that magno
phonon processes are satisfactorily described by the de
dence oftm

21 on magnetic field. The portion of the spin-wav
resonance linewidth that does not depend on magnetic
can be related to inhomogeneous broadening or to othe
laxation mechanisms.

Note that the increase in the spin-wave resonance l

FIG. 3. The same trace of the absorption curve as in Fig. 2, but n
(H02H)2 is plotted along the abscissa.H051450 Oe is the antiferromag
netic resonance field for an unstrained sample. In these coordinates, m
wave resonances based on Eq.~1! should be equidistant.
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width with decreasing temperature is also in agreement w
the results of Ref. 5, in which a minimum intm

21 was ob-
served at a temperature around 60 K. It is in this range
temperatures~60–80 K! that the fine structure is most clear
evident in the form of well resolved narrow lines.

In Fig. 5 we show traces of the signal proportional to t
power passing through the resonator as a function of
value of the static field. These traces were made on an
strained sample and on a sample coated with a thin laye
glue. It is clear that in the second case the antiferromagn
resonance lines are broadened, at least for three lines of
ferent intensities. On the same figure we show the ang
dependence of the position of the antiferromagnetic re
nance line for an unstrained sample and the most intense
of a sample covered with glue. The position of the antifer
magnetic resonance line of an unstrained sample exhib
60° anisotropy~as in Ref. 5!. In the case of an unstraine
sample, each of the three well resolved lines exhibits a 1
anisotropy. The latter fact probably indicates a division
the sample into regions~in each of which a uniaxial com
pression is present in the easy plane of the crystal.

The effect of uniaxial compression on the spin-wa
spectrum in antiferromagnets with the easy-plane type
magnetic anisotropy was studied experimentally and th
retically in Refs. 8 and 9. It was shown that the effect
uniaxial compression in the magnetization plane is equi
lent to an effective anisotropy fieldHp in the easy plane of
the crystal directed perpendicular to the applied stress.
value ofHp is proportional to the value of the uniaxial com
pressionp and depends on the elastic and magnetoela
constants.~A calculation of the spectrum of spin waves in
crystal with uniaxial compression is given in the Appendix!

Figure 6 shows calculated field dependence of the a
ferromagnetic resonance frequency for various mutual or
tations of the fieldH and the axis of elastic stress at tw
values of the stress. On the same figure, the solid cu
show the field dependence of the antiferromagnetic re
nance frequency of an unstrained crystal. A nonunifo
strain along the sample surface causes the gap in the s
wave spectrum to vary at various positions in the samp
Hence we observe regions in which the conditions for a
ferromagnetic resonance are satisfied over a wide rang

FIG. 4. Dependence of the spin-wave linewidth on the corresponding va
of the resonance field at two temperaturesT530 K andT580 K. The solid
curve shows the results of calculations.
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FIG. 5. a! Traces of the signal proportional to the microwave power passing through the resonator as a function of the value of the static field, tak
unstrained sample~1! and for a sample coated with a thin layer of glue~2, 3! at a temperature of 4.2 K; b! angular dependence of the position of th
antiferromagnetic resonance line:h—unstrained sample,s—the most intense line from a sample coated with glue. The solid and dashed curves are the
of fitting to functions of the formsH05A1B cos(3w1C) andH05A1B cos(2w1C) respectively.
fields H. This simple model explains the observed broaden-
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ing of the antiferromagnetic resonance line caused by glu
the sample.

The increase in efficiency of excitation of spin-wa
resonances under conditions of nonuniform strain of
sample can also be explained in terms of this model. Os
lations corresponding to large wave numbers are excited
contact mechanism in regions adjacent to those in which
antiferromagnetic resonance conditions are satisfied.

This mechanism causes all of the neighboring region
be excited. Moreover, each of the regions will exhibit sp
wave resonance at values of the field corresponding to
magnetoelastic gap in that region. Since the uniaxial stra
caused by gluing the film have a random character, i
natural to expect a random superposition of spin-wave re
nances from these regions. However, regions in which
drostatic compression takes place~or where there is no strain
at all! will exhibit spin-wave resonances at the same val
of the field H determined by Eq.~1!. We are probably ob-
serving resonances excited in these regions in our exp
ments in the form of fine structure in the absorption line.

An argument in favor of the contact mechanism for e
citing spin-wave resonance is the fact that resonances
observed both for even and odd mode numbers.

2.2. Testing the model

A key step in building the model described above
dividing the sample into regions with differing uniaxia
stresses. In order to test this hypothesis we investigated
antiferromagnetic resonance spectrum with the intent of
serving additional absorption lines from regions subjected
uniaxial stress.

A characteristic feature of the spin wave spectrum in
antiferromagnet subjected to uniaxial compressionp is a de-
creasing dependence of the antiferromagnetic resonance
quency on the magnitude of the static fieldH for the parallel
orientationpiH up to a critical value of the fieldHc deter-
mined by the value of the uniaxial stress~see Fig. 6 and the
Appendix!. The lowest antiferromagnetic frequency at t
field Hc will become equal to the resonant frequency of
unstrssed crystal in zero field. For FeBO3 this equals 4.5
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signals from those regions of the sample in which uniax
compression is parallel to the static field at a frequency
9.3 GHz.

Since the decreasing branch of the antiferromagn
resonance in iron borate had not been experimentally stu
previously, at the beginning we investigated samples w
artificially created uniaxial compression, which was crea
in a thin layer of FeBO3 (d516mm) in the following way.
First the sample was glued to a thin cover glass~with thick-
ness 300mm! using epoxy resin. Then the structure w
glued to a carrier that provided bending of the substrate
illustrated in the inset to Fig. 7. This bending of the substr
corresponds to uniform uniaxial compression along
thickness of a thin sample. The entire structure was place
the microwave resonator of a spectrometer in
3-centimeter range.

Figure 7 shows traces of the absorption spectr
(dP/dH) for various values of the angle between the dire

FIG. 6. Computed dependence of the antiferromagnetic resonance
quency on the value of the static fieldH for a unstressed sample~curve1!
and for a sample subjected to uniaxial compression~curves 2 and 3!. The
values of uniaxial stress correspond toHc5500 Oe and 1000 Oe respec
tively for curves2 and 3. The labelsi and' correspond to parallel and
mutually perpendicular orientations of the external fieldH and the compres-
sion axisp. The two remaining curves correspond to dependence of
antiferromagnetic resonance frequency on the value of the static field fo
small angles 1.5° and 10° betweenH andp, respectively;Hc5500 Oe. The
dashed curves show the working frequencies for the spectrometers us
this paper.
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tions of the static field and the compression axis. Notewor
is the fact that the absorption lines, as we expected~see Fig.
6! lie within a narrow interval of angles. In this case th
resonant field should be close to the fieldHc associated with
uniaxial compression. An estimate of the value of t
uniaxial compression created in our experiments gi
p;83108. Moreover, near the fundamental resonance m
narrow lines appear whose density and intensity falls off
we deviate from the fieldHc , and also as the angle betwee
the compression axis and the fieldH increases.

Figure 8 shows the trace of an absorption line for
same sample whose surface is coated with a thin film of g
but without uniaxial compression. In this case we also
serve many narrow absorption lines whose density and in
sity decreases as the magnetic field increases. These line
be observed up to a field.2 kOe. These lines are quit
reproducible during a single experiment, but after heat
and subsequent cooling the pattern of resonances is c
pletely changed. The inset shows a fragment of the trac
an expanded scale.

Note that the region of magnetostatic and surface mo
of an unstrained sample is at least bounded by the fi
H064pM0HD /HE . The antiferromagnetic resonant fie
H0 for an unstrained sample equals 60 Oe according to
~1!, and 4pM0HD /HE5240 Oe. Thus, in an ideal crystal i
the range of fieldsH.300 Oe we should not be generatin
magnetic excitations with a frequency of 9.3 GHz.

The set of narrow lines observed in this experiment~see
Figs. 7 and 8! is naturally explained by resonances fro
various regions of the crystal with uniaxial stresses crea

FIG. 7. Traces of absorption spectradP/dH from a field H for various
values of the angle between the directions of the static field and the c
pression axis:w50°, 2.5°, 5°, and 10°. The microwave oscillator frequen
was 9.3 GHz,T580 K. The inset shows a sketch of the substrate t
creates uniaxial compression in the thin-film sample.
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by the glue that differ in magnitude. This agrees with t
model described above.

It is interesting to note that in samples with a clean s
face we also observe narrow resonances, only their den
was considerably smaller and they were located in region
considerably smaller fields~200–300 Oe!. This probably in-
dicates that in natural crystals strong nonuniform elas
stresses exist that possibly arise during the growth proce

3. CONCLUSION

The analysis given in this paper allows us to formula
our main results:

1. In a nonuniformly strained film of FeBO3 spin-wave
resonances were observed with record high values of w
numbers corresponding tokz.1.53105 cm21.

2. The width of the spin-wave resonance lines is in go
agreement with the inverse lifetime of the spin waves o
tained from measuring the threshold for parametric exc
tion of magnons in bulk samples. This attests to the negl
bly small losses that occur when spin waves are reflec
from the crystal boundaries.

3. A contact mechanism has been proposed for the e
tation of spin-wave resonances in nonuniformly stres
films. Using this model, we can qualitatively explain the hi
efficiency of excitation of spin-wave resonances with lar
wave numbers.

4. We have shown experimentally the presence of str
uniaxial stresses in a nonuniformly strained film.

5. We have experimentally observed the decreas
branch of the antiferromagnetic resonance spectrum nea
spin-orientation phase-transition field in a uniaxially strain
crystal of FeBO3.

The authors are grateful for useful discussions w
N. M. Kre�nes, L. A. Prozorova, and A. I. Smirnov. The
thank V. N. Selezneva for providing the high-quality FeBO3

single crystals. This work was carried out with the support
the Russian Fund for Fundamental Research~Project No.
96-02-16575!.

FIG. 8. Traces of absorption spectradP/dH versus fieldH taken in a single
experiment for a sample coated with a thin layer of glue. The inset show
fragment of the trace shown on a larger scale. The microwave oscill
frequency was 9.3 GHz,T580 K.
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Let us write the free-energy density of an antiferroma
net, including magnetic, elastic, and magnetoelastic s
systems, in the form:9

F 5F m1F e1F me.

where

F m52M0FHEm21
HA

2
l z
22HD~mxl y2myl x!2mxHG ,

F e5
1

2
C 11~uxx

2 1uyy
2 !1

1

2
C 33uzz

2 1C 12uxxuyy

1C 13~uxx1uyy!uzz12C 44~uyz
2 1uxz

2 !12C 66uxy
2

2sxxuxx2syyuyy22sxyuxy ,

F me5B11~uxxl x
21uyyl y

2!1B12~uyyl x
21uxxl y

2!

1B33uzzl z
212B44~uyzl y1uxzl x!l z

12B66uxyl xl y .

Here M0 is the saturation magnetization of one sublatti
HA is the anisotropy field, andl, m are the unit vectors for
antiferromagnetism and magnetization~m21 l 251, m
• l50!, ui j is the strain tensor, andC i j , B i j are respectively
the elastic and magnetoelastic constants. The mecha
stress tensors i j is determined by the uniaxial compressio
p, whose axis deviates from thex axis by an anglew.
Since in this model we assume isotropy of all properties
the basal plane, the following relations hold between
constants: 2C 665C 112C 12.331012 erg/cm3, B665B11

2B12.1.73107 erg/cm3.
The ground state of the magnetic subsystem is de

mined by the anglew and the equilibrium anglec by which
the vectorm in the basal plane deviates from the fieldH
directed along thex axis. The part of the free energy th
depends on angle has the form

DF ~0!52
M0

2HE
$@HD1H cosc#22HEHp cos@2~c1w!#%,
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field created by the one-sided pressure. MinimizingDF 0 we
find c. Thus, for w50 it is known9 that
cosc5HHD /(2HEHp2H2) for H,Hc and thatc50 in the
opposite case. The critical fieldHc is determined from the
relation Hc(Hc1HD)52HEHp. For w5p/2 we obtain
c50. We were unable to findc analytically for 0,w,p/2.
In this case the minimum of the free energy can be de
mined by a numerical method.

The following expression gives the antiferromagne
resonance frequency of the low-frequency branch of
spectrum:

v05g$H@HD1H cosc#cosc12HE

3@Hme2Hp cos 2~c1w!#%1/2,

whereHme5(B112B12)
2/M0(C 112C 12). The dependence

of the antiferromagnetic resonance frequency on magn
field for several values ofw is shown in Fig. 6.

1A. G. Gurevich and G. A. Melkov,Magnetic Oscillations and Waves
~CRC Press, Boca Raton, FL, 1996!.

2N. E. Zilberman, A. G. Temiryazen, and M. P. Tikhomirova, Zh. E´ ksp.
Teor. Fiz.108, 281 ~1995! @JETP81, 151 ~1995!#.

3B. Y. Kotyuzhanskii and L. A. Prozorova, Space Sci. Rev.A13, 1–131
~1990!.

4B. Y. Kotyuzhanskii, L. E. Svistov, and H. Benner, J. Phys. C3, 9253
~1991!.

5B. Y. Kotyuzhanski� and L. A. Prozorova, Zh. E´ ksp. Teor. Fiz.81, 1913
~1981! @Sov. Phys. JETP54, 1013~1981!#.

6B. Y. Kotyuzhanski�, L. A. Prozorova, and L. E. Svistov, Zh. E´ ksp. Teor.
Fiz. 92, 238 ~1987! @Sov. Phys. JETP65, 134 ~1987!#.

7A. S. Mikha�lov and A. V. Chubukov, Zh. E´ ksp. Teor. Fiz.86, 1401
~1984! @Sov. Phys. JETP59, 819 ~1984!#.

8A. S. Borovik-Romanov and E. G. Rudashevski�, Zh. Eksp. Teor. Fiz.47,
2095 ~1964! @Sov. Phys. JETP20, 1407~1964!#.

9V. G. Bar’yakhtar and E. A. Turov, inSpin Waves and Magnetic Excita
tions, A. S. Borovik-Romanov and S. K. Sinha, eds.~Elsevier Sci. Publ.,
Amsterdam 333, 1988!.

Translated by Frank J. Crowne
312Svistov et al.



Quantitative conversion spectroscopy of the ultrasoft isomeric transition of uranium-

ent;
235 and the electronic structure of uranium oxides
A. D. Panov

Russian Scientific Center ‘‘Kurchatov Institute,’’ 123182 Moscow, Russia
~Submitted 17 October 1996!
Zh. Éksp. Teor. Fiz.112, 574–595~August 1997!

Combined measurements of conversion electron spectra and the decay constant~76.5 eV,
(1/2)1→(7/2)2! of the E3-isomeric transition of the uranium-235 nucleus have been performed
with collection of the isomer atoms on an indium surface. The conversion spectra are
interpreted as corresponding to a mixture of two different oxidesA andB of uranium, one of
which (A) is similar to UO2, and the other (B) consists of a uranium–oxygen cluster
based on the linear uranyl groupO–U–O.From a set of mixed experimental spectra conversion
spectra have been found corresponding to the chemical statesA andB of the isomer
atoms, and the variation of the absolute intensities of the conversion lines has been quantitatively
investigated for them by varying the chemical composition of the isomer atoms and the
ratio between the intensities of various conversion lines of theB spectrum. Experimental ratios
between the intensities of the conversion lines are compared with the expected ratios in
accordance with the distribution of the 6p electron density in the uranyl group. It is concluded
that the experimental data agree with the calculation and that abrupt violations of
proportionality of the partial probabilities of conversion of the electron density near the nucleus
are absent. In accordance with the hypothesis of proportionality of the partial probabilities
of conversion, an experimental estimate is given of the degree of localization of the deep-lying
uranium 6p1/2 shell during formation of the chemical bond in the uranyl group: around
70% of the 6p1/2 electron density remains in the quasi-atomic uranium shell and around 30% is
transferred to hybrid molecular orbitals. ©1997 American Institute of Physics.
@S1063-7761~97!01408-X#
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As theoretical and experimental studies have shown,
internal conversion electron spectra of nuclear reactions
be extraordinarily informative about the electronic structu
of matter if an energy resolution on the order of 1 eV
achieved in such spectra. A study of variations of the sh
of the conversion spectrum associated with a change in
chemical environment of the converting atom would be
special interest. High-resolution conversion spectrosco
used to investigate the electronic structure of matter, has
quired the name conversion electron spectroscopy.1 How-
ever, as a consequence of a number of experimental diffi
ties it appears that so far it has been possible to extend
technique of conversion electron spectroscopy only to
soft conversion transitions of five nuclei:235U, 99Tc @see ref-
erences in Ref. 1~review!#, 119Sn, 73Ge ~Ref. 2!, and201Hg
~Ref. 3!. The ultrasoft isomeric transition of the235U nucleus
occupies a special place among these objects.

The 235U nucleus has the excited state (1/2)1 ~Refs. 4
and 5!, whose energy according to the most recent dat
only 76.560.4 eV ~Ref. 6!. This is a long-lived isomeric
state (235mU), and decay of the nucleus to the ground st
(7/2)2 is realized via the almost completely convertedE3
transition ~conversion coefficient;1021, Ref. 7! with half-
life around 26 min.4,5 The conversion process is energetica
resolved for the filled subshells (6s1/2)

2, (6p1/2)
2, (6p3/2)

4,
and for the valence electrons of the uranium atom.

The isomeric transition of235mU is the softest of the
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therefore, the conversion process of this transition posse
a number of unique properties~e.g., the possibility of mani-
festing strong interference effects, see below!. Only one case
is known in which the nuclear excitation energy is less th
for 235mU, and that is229mTh with an excitation energy o
3.561.0 eV ~Ref. 8!; however, there are still no direct ex
perimental observations of the decay of this isomer, and
decay mechanism is unknown. All other known nuclear tra
sitions, which, in principle, can be observed by convers
spectroscopy, have energies not less than 1 keV~Ref. 1!. Let
us touch on the nature of the low-lying (1/2)1 state of the
235U nucleus.

The 235U nucleus is a strongly deformed~d'0.25, Ref.
9, p. 125! odd nucleus. The lower energy diagram of th
nucleus is qualitatively well interpreted as a set of rotat
bands based on single-particle states of the unpaired nuc
in the self-consistent field of the deformed even core~Ref. 9,
Ch. 5, Sec. II!. In a spherically symmetric potential the cha
acteristic separations between the single-particle levels
on the order of 1 MeV with degeneracy in the magne
quantum numbermj . For violation of spherical symmetry
the degeneracy inmj is removed, and each state splits in
several sublevels, with the magnitude of the splitting rapi
growing with growth of the deformation of the potentia
Starting with deformationsd;0.1, the sublevels belongin
to various initial (nl j )-subshells of the spherically symme
ric potential begin to intersect; hence the possibility arises
forming very closely situated single-particle states.

31312$10.00 © 1997 American Institute of Physics



The (7/2)2 ground state of the235U nucleus and the
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isomeric state (1/2) according to the experimental data
Ref. 10 are interpreted as the initial states of rotational ba

constructed, respectively, on the@743# 7
2
2 and@631# 1

2
1 orbit-

als of the neutron in the field of the even core of234U. There-
fore, it may be surmised that the proximity of the (7/2)2 and
(1/2)1 states of uranium-235 is explained by an overlap
the magnetic sublevels of the various initial (nl j )-shells of
the spherically symmetric potential. This assumption is c
firmed by calculations of single-particle states of the neut
in the Nilson11 and Saxon–Woods12 potentials, which are
qualitatively similar. According to these calculations, t

@743# 7
2
2 and @631# 1

2
1 states are associated, respective

with the 1j 15/2 and 3d5/2 states of the initial spherically sym
metric potential. In the spherically symmetric potential t
1 j 15/2 and 3d5/2 states are separated in energy by more tha
MeV. However, for deformationsd50.220.4 the sublevels

@743# 7
2
2 and@631# 1

2
1 approach each other and almost ov

lap. Herein lies the qualitative explanation of the proxim
of the (7/2)2 and (1/2)1 states. Indeed, the picture is som
what more complicated, since these states are purely sin
particle states—they may contain a noticeable admixture
collective excitations.12,13

The principles of the experimental technique of conv
sion electron spectroscopy applied to235mU conversion were
laid down in Ref. 14, and in Ref. 15 results were obtained
means of a new technique which are very important for
theory of the chemical bond of heavy elements~formation of
inner valence molecular orbitals—molecular orbitals w
the participation of deep, completely filled atomic shells! but
which are of a qualitative character. It would be of extrem
interest to make the transition to quantitative studies of
electronic structure of uranium compounds using convers
electron spectroscopy, and this is the main aim of the pre
paper.

To refine the statement of the problem, it is necessar
say a few words about the correspondence between cu
theory and experiment in the conversion spectroscopy of
uranium-235 isomer. Ground-breaking works in the the
of conversion of the uranium isomer are those of Grechuk
and Soldatov.13,16 First of all, these papers established t
abrupt difference in probability of conversion of the 6p1/2

and 6p3/2 electrons of uranium~binding energy, respectively
around 30 eV and 20 eV, Ref. 17!. Second, they investigate
the not entirely trivial question of spatial localization of th
conversion process of235mU. The degree of localization o
the transition is determined by the rate of convergence
integrals of the form̂ f ur 24u i & ~Refs. 13 and 16! as a func-
tion of the radiusR of the region of integration. Hereu i & is
the initial state of the electron in an atomic orbit andu f & is its
final state in the continuum. In Ref. 16 it was shown
numerical calculations that for the 6p and 6d electrons of
uranium, integrals of this type converge to within 1% of th
total value within a region of radius 0.1a0 , wherea0 is the
Bohr radius. A sphere of radius 0.1a0 may be taken as the
region of localization of the conversion process of235mU.
And finally, for the case of conversion in a single uraniu
atom it was shown that with very high accuracy~better than
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6p3/2 electrons of uranium are proportional to the square
the corresponding wave functions at the nucleus and dep
on neither the binding energy13 nor the configuration of va-
lence shells of the atom.16 It is specifically this property of
the conversion spectrum of the uranium-235 isomer tha
important for investigating the electronic structure of matt
Estimates have been given using the approach develope
Refs. 13, 16, and 18 of possible chemical variations of
decay constant of the uranium isomer. Variations of the
cay constant of the uranium isomer were studied experim
tally in Refs. 19–25. The scale of chemical variations of t
decay constant observed in these studies~3–5%! is some-
what smaller than the maximum possible variations of
decay constant theoretically predicted.13,16,18This might have
been expected since quite exotic configurations of the e
tronic shell of the uranium atom were considered, which
parently are not realized in experiment. In other respect
may be stated that at this stage experiment is in reason
agreement with theory.

References 13 and 16 did not take into account va
tions in the amplitudes of the continuum states of the c
version electron in the conversion zone due to elastic s
tering of the electron by atoms of its environment a
subsequent interference. This effect was considered in a
per by Dobretsov.26 Instead of the small corrections to th
conversion probability which might have been expected, i
number of cases the interference effect turns out to be q
large. Thus, according to Ref. 26, in the conversion of
uranium isomer in the atomic cluster UAg12 corrections to
the partial probabilities of conversion on individual atom
orbitals reach 89% of their unperturbed values, and the va
and sign of the correction oscillate with variation of the e
ergy of the orbital and with variation of the distance to t
atoms of the environment. In this case the direct connec
between the line intensities of the conversion spectrum
the electron densities at the nucleus established earlie
Refs. 13 and 16 is completely lost.

However, the results of Ref. 26 apparently do not co
pletely agree with the experimental facts. Indeed, althou
Ref. 26 deals only with decay of the uranium isomer in
environment of silver atoms, the predicted interference eff
should undoubtedly also manifest itself in many other cas
It should lead to characteristic variations of the decay c
stant of the uranium isomer on a scale of 20% or even gre
~up to 47%, Ref. 26!, which significantly exceeds the value
observed in experiment. The experimentally observed va
tions of the decay constant most likely have a purely che
cal magnitude, and interference effects apparently do
manifest themselves in any way.

It should be noted, however, that variations of the dec
constant in the given case are not a very good test of
theory. The possibility cannot be excluded that interferen
gives large contributions to the partial probabilities of co
version belonging to individual atomic orbitals where the
contributions have opposite sign and mutually cancel so
the decay constant varies only slightly. Observations of
chemical variations of the intensities of separate lines of
conversion spectrum would give much more detailed da
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formulation of the problem of the present work. First of a
it is necessary to develop a technique that would allow on
experimentally measure the absolute values of the pa
probabilities of conversion belonging to individual atomic
molecular orbitals or ratios of these probabilities. The qu
tities obtained with the help of the new experimental te
nique could then be compared with the expected elec
density distribution on the uranium nucleus or with chemi
variations of the electron density in order to elucidate
what extent the experimental data support proportionality
tween the partial probabilities of conversion and the elect
densities.13,16 If indications upholding such a proportionalit
are obtained, then we must explain why the interference
fects predicted in Ref. 26 not show up in experiment. Fina
if an understanding is reached here, then conversion s
troscopy of the uranium isomer may be used in practice
investigate the electron density distribution in uraniu
containing molecules and clusters.

2. EXPERIMENTAL TECHNIQUE AND SAMPLES

To prepare samples containing the235mU isomer, the
technique developed in Refs. 14 and 15 is used in the pre
work with minor modifications and additions. The235mU iso-
mer was obtained as the product ofa decay of 239Pu in
239PuO2 deposited as a thin layer (;20 mm/cm2) on the in-
ner surface of a platinum hemisphere of radius 40 mm~Ref.
27!. The 235mU recoil atoms were collected by an electr
field onto metal substrates placed near the center of the h
sphere. All experimental results presented in this paper w
obtained by collecting the isomer in an air atmosphere a
pressure of 70 GPa. It was found that the composition of
gaseous medium in the accumulation chamber only wea
affects the chemical state of the isomer atoms in the samp
as may be assessed from the form of the measured con
sion spectra. The working region of the sample was boun
by a teflon mask with a rectangular opening with dimensio
0.535 mm2. The typical collection time of an isomer atom
was 40 min, and the discharge current could be regula
within the limits 1–5 nA. The potential difference betwee
the sample and the plutonium hemisphere was around 1
~minus on the sample!. The composition of the surfaces o
the samples after isomer collection was monitored by x-
electron spectroscopy and bya-activation of239Pu. Contami-
nation of the surface by plutonium or teflon decomposit
products was not observed. The total activity of the sam
immediately after termination of isomer collection was us
ally on the order of 105 uranium isomer conversion decay
per second. The samples were transferred in air to the e
tron spectrometer after unsealing of the accumulation ch
ber.

In the collection of uranium isomer onto the surface o
metallic sample the isomer atoms do not at first reach
metal surface, but first reach the film of hydrocarbon co
taminants sorbed in the metal surface. The characteristic
the hydrocarbon film for copper substrates which have b
taken through a typical cycle of uranium isomer collecti
were examined in Ref. 28 by x-ray electron spectrosco
The film thickness amounts to around 15 Å, the total atom
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density of copper, i.e., 8.5310 cm , and the carbon and
oxygen atoms are present in different concentrations~within
the limits of statistical error!. The uranium isomer atom
succeed in braking completely in the hydrocarbon fil
where with a probability of nearly 100% they bind wit
oxygen.29

To measure the conversion spectra of235mU we used a
production-model NR5950A electron spectrometer30 with a
pre-acceleration system built by the authors of Ref. 14. T
nominal working energy range of the spectrometer
30021500 eV. Analysis of the electron energies is prope
performed with the help of a spherical electrostatic analy
~180°! having a constant potential difference between
electrodes. The measurements are performed simultaneo
over an energy interval approximately 10 eV in width l
cated near 115 eV. Before entering the spherical analy
the electrons are focused and braked to the necessary en
with the help of a preparatory electron-optical system c
sisting of four electron lenses. If it is required to measur
spectral interval wider than 10 eV, then the spectrum
scanned by varying the braking potential. In order to fit t
uranium isomer conversion spectrum~which extends from 0
to roughly 75 eV! into the working range of the spectrom
eter, an accelerating voltage of2500 eV relative to the en-
trance to the first~grounded! electron lens of the preparator
electron-optical system is applied to the sample. The sam
are placed in the spectrometer chamber, which has a wor
vacuum on the order of 1029 Torr, through a transfer drawe
with differential evacuation. The procedure of placing
sample in the spectrometer takes 1–2 min. The conver
spectra were measured in energy intervals of 20 and 50
and written to the 256-channel analyzer of the spectrome
The energy resolution of the spectrometer is better than 1
~Ref. 14! and does not depend on the electron energy. T
procedure of energy calibration of the conversion spectr
described in Sec. 4.

3. QUANTITATIVE ANALYSIS OF CONVERSION SPECTRA
OF URANIUM-235

Figure 1 displays two experimental uranium-isomer co
version spectra measured with the help of the NR595
spectrometer that are typical for uranium-isomer collect
onto metal substrate surfaces. An obstacle to correct ana
of the spectra is presented by two types of distortions of
shape of the initial conversion spectrum. The first type
distortion is associated with inelastic scattering of the c
version electrons in the sample. Each conversion peak g
erates a low-energy tail consisting of inelastically scatte
and secondary electrons. By adding together, these tails
ate an intense background of complex shape on which
conversion peaks are imposed~Fig. 1!. Another distorting
factor consists of instrument effects, the main one of wh
is the dependence of the effective geometrical factor of
spectrometer on the electron energy~variability of the spec-
trometer transmission function!. Thus, mathematical process
ing of the spectra should consist first of correction of t
experimental spectra for inconstancy of the spectrom
transmission function, then of subtracting out the inelas
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background, and finally in determining the areas~which we
also call intensities! of the widths1! and positions of the lines
The latter problem is solved here by decomposing the spe
into lines of Gaussian shape by using the maximum lik
hood method. The adequacy of the decomposition was m
tored by the quantityx2/N ~N is the number of degrees o
freedom,x2/N should be close to 1, which in fact was a
ways the case!; the covariance matrix of the fitting param
eters was calculated by the Monte Carlo method. Let us c
ment on the subtraction of the inelastic background a
correction for instrument distortions.

We introduce the following terminology and notatio
We call the spectral interval (E1 ,E2) occupied by true con-
version lines the informative interval~Fig. 1!. We denote by
I (E) the true conversion spectrum, byY(E) the sample
spectrum~i.e., the spectrumI (E) distorted by inelastic pro-
cesses!, and byQ(E) the observed spectrum~i.e., the spec-
trum Y(E) distorted by instrument factors!. HereE denotes
the kinetic energy of the electrons. By spectra we underst
the corresponding probability distributions normalized
some convenient way. Accordingly, all equalities derived
low must be understood as accurate to within arbitrary c
stant factors. We denote bya(j) the instrument function of
the spectrometer, responsible for the smearing of the s
trum by the instrument resolution. This function is assum
to be normalized to unity and not depend explicitly on t
electron energy at entrance to the spectrometer. The
above the spectrum symbol denotes the corresponding s
trum smeared by the instrument resolution, i.
Ỹ(E)5*a(E2E8)Y(E8)dE8, etc. Thus, assuming tha
T(E) varies slowly in comparison with the width of the in
strument function, it can be shown that

Q~E!5T~E!Ỹ~E!, ~1!

whereT(E) is the spectrometer transmission function, an

FIG. 1. Experimental conversion spectra of the uranium isomer for iso
collection on an indium surface. The spectra differ in the chemical stat
the isomer~see Sec. 4! and correspond approximately to the extreme pos
bilities realized in experiment. The binding energy of the electrons co
sponding to the conversion peaks is plotted along the abscissa; the k
energy increases from left to right. (E1 ,E2) is the informative spectral in-
terval. The labels on the lines in the figure are as follows:1—‘‘6 p1/2 , ’’ 2—
‘‘O2s, ’’ 3—‘‘6 p3/2 , ’’ 4—VB, 5—‘‘6 p1/2 , ’’ 6—‘‘O2s, ’’ 7—‘‘6 p3/2( l ), ’’
8—‘‘6 p3/2(r ), ’’ 9—VB.
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In Eq. ~2! k(E) is the probability of escape of a conversio
electron with initial energyE from the sample without in-
elastic scattering, andR(E8,E2E8) describes the shape o
the inelastic tail for the conversion electrons with initial e
ergy E8. We introduce the new functions

F~E!5k~E!I ~E!, P~E8,E2E8!5@k~E8!#21

3R~E8,E2E8!. ~3!

Assuming that the dependence of the functionP(E8,E2E8)
on its first argument is weak in comparison with the width
the instrument function, it is not hard to show that

Ỹ~E!5F̃~E!1E
E

E2
F̃~E8!P~E8,E2E8!dE8. ~4!

The functionF̃(E) has the following physical meaning: thi
is the spectrum of the electrons that have escaped from
sample without inelastic scattering~i.e., it is the elastic sig-
nal!, smeared by the instrument resolution. Correspondin
Eq. ~4! also has a simple physical meaning, namely that
total signal leaving the sample (Ỹ) is the elastic signal (F̃)
plus the inelastic background~the integral!, and the proce-
dure for solving Eq.~4! for the spectrumF̃ if the spectrumỸ
is known is to subtract out the inelastic background from
conversion spectrum.

Obviously, the spectrumF̃(E), generally speaking, doe
not coincide with the true conversion spectrumI (E). How-
ever, analyzing to first order we may limit the discussion
the spectrumF̃(E) in place ofI (E) for the following reason.
As Monte Carlo studies of the process of inelastic scatter
of conversion electrons in a hydrocarbon film have show31

and as follows from experimental dependences of the e
tron mean free path on energy,32 the functionk(E) is pro-
portional with good accuracy toI (E). The variability of
k(E) ~on the order of 10% of the mean value over the info
mative spectral interval! is rooted in the systematic error o
determining the line intensities.

Equations~1! and~4! make it possible from the observe
experimental spectrumQ(E) first to find the spectrumỸ(E)
and then from the spectrumỸ(E) to find the elastic spectrum
F(E) if only the spectrometer transmission functionT(E)
and the scattering functionP(E8,E2E8) are known. The
procedure for determining the transmission functionT(E) is
described in detail in Ref. 33. According to Ref. 33, t
transmission function can be approximated by an exponen

T~E!.exp~aE!, a52~1.6960.0560.17!•1022 eV21.
~5!

To determine the scattering function it is necessary
study in detail the process of electron scattering in matte
terms of some microscopic model. However, reliable qu
titative calculations of this kind are very complicated a
probably cannot be carried out at the present time. Instea
was shown in Ref. 34 that it is possible to introduce
effective phenomenological procedure for determining
scattering function. The following nontrivial circumstanc
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low-energy side of the informative spectral interval (E1 ,E2)
~Fig. 1! always adjoins a segment of inelastic backgrou
which grows nearly exponentially in the direction of low
electron kinetic energies. This allows us to choose the s
tering function to be of the form

P~E2E8!5a0 exp@2m~E2E8!#. ~6!

The constantsa0 andm are easily determined from the am
plitude of the spectrum at the pointE1 and the slope of the
inelastic tail. Therefore, the problem of solving Eq.~4! be-
comes completely determined~the equation is easily solve
by the method of simple iterations!.

The question of systematic errors which can arise in
spectral line intensities in connection with the use of an
proximate shape of the scattering function~6! was examined
in two different ways in Refs. 34 and 31. In Ref. 34 a
upper-bound estimate of the systematic errors was
formed. The parameters of the scattering function were v
ied to the maximum extent possible, and it was obser
how the conversion line intensities vary as a result. It w
found that the mean variations of the intensities over all
lines used in the study and over all types of investiga
extreme variations of the shape of the scattering func
amounted to 0.7% of the total area of the conversion sp
trum, and the maximum variations, to 2%. In Ref. 31 t
procedure for subtracting out the background, based on
solution of Eq.~4! with scattering function~6!, was applied
to model spectra obtained from the initial spectra by mod
ing the passage of electrons through a hydrocarbon film
ing the Monte Carlo method. Since the exact form of t
model elastic signalF(E) in this case is exactly known, b
comparing the result of background subtraction with
model elastic spectrum, one can estimate the systemati
rors introduced into the line intensities by the implemen
background subtraction algorithm. In this study the me
perturbation of the line intensities amounted to 0.3% of
area of the entire spectrum, and the maximum perturbat
to 0.7%. Generalizing the results of both methods, we m
conclude that the algorithm of subtracting out the inelas
background can introduce an error in the spectral line int
sities on the order of 1% of the total area of the spectru
which amounts to roughly 5% of the intensities of the m
important lines of the conversion spectrum of the uraniu
235 isomer.

In Ref. 33 an analysis was performed of the total s
tematic error in the partial conversion probabilities obtain
in the above-described procedure of mathematical spe
processing. Systematic errors associated with errors in
determination of the spectrometer transmission function~5!,
the approximate nature of the scattering function~6!, and the
approximationk(E)5const were taken into account. It wa
found that the maximum relative error of the absolute val
of the partial probabilities of conversion amounts to 12%
the most important spectral lines2! ~‘‘6 p1/2, ’’ ‘‘O2 s, ’’ and
‘‘6 p3/2, ’’ and the valence bandVB!. The error in the ratios
of the partial probabilities of conversion can reach 25%,
this is relative to the case where we are comparing line
tensities at opposite ends of the informative spectral inter
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the distance between the lines decreases, the error decr
proportionally. And finally, the error in the ratios of the in
tensities of lines belonging to different conversion spec
~i.e., corresponding to different chemical states of the u
nium isomer! but corresponding to the same kinetic energy
less than 13%.

4. EXPERIMENT

There are a number of factors that make the prepara
of samples with the uranium-235 isomer in a prescribed
controlled chemical state and in quantities sufficient for m
surement of high-resolution conversion spectra a very d
cult task. The main difficulties are connected with the ve
short mean free path of the soft conversion electrons, wh
hinders the use of samples prepared by chemical means.
other substantial complication is the fact that it is impossi
to monitor the chemical state of the uranium isomer in
thin surface layer in any way independent of convers
spectroscopy, since we are talking here about fractions
picogram of uranium in such a sample. In this connecti
the main idea of the approach used below is to use th
chemical states of the uranium isomer in which it natura
appears in the preparation of samples under the simplest
most reproducible conditions. It is only necessary to fi
those experimental conditions in which it is possible to o
tain different conversion spectra and then in as detaile
way as possible to interpret the corresponding chem
states.

We have found that such states can be realized by u
indium substrates to collect the235mU isomer. When collect-
ing uranium isomer on an indium substrate by varying
discharge current in the accumulation chamber within
limits of 1 to 4 nA it is possible to alter the chemical state
uranium isomer within wide limits, as is indicated by th
substantial change in the shape of the conversion spect
Some typical uranium isomer spectra, obtained in the col
tion of isomer on an indium surface for various dischar
currents in the sample preparation chamber, are show
Fig. 2 ~here and in the remainder of this work the spectra
shown after correcting for instrument distortions and su
tracting out the inelastic background!. For spectrum a in Fig.
2 the discharge current was the smallest~1 nA!, for spectrum
d it was the largest~4 nA!, and for the other samples it wa
intermediate. The form of the spectra in Fig. 2 suggests
the intermediate spectra~b and c! can be obtained simply a
weighted sums of only two spectraf A(E) and f B(E), whose
forms are similar, respectively, to spectra a and d in Fig
We will refer to this conjecture as the hypothesis of tw
component mixing. Our problem is to carry out a quanti
tive check of this hypothesis, to separate out the pure spe
f A and f B , and finally, to associate them with some chemi
statesA and B of the atoms of the uranium isomer. It i
convenient to start with the last question.

Figure 3 shows two conversion spectra of uranium i
mer near the ultimate possibilities realized in experime
with isomer collection onto an indium surface. It follow
from the discussion of the structure of the samples in Se
that the chemical statesA andB are uranium oxides. Indeed
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this is confirmed by the fact that the ‘‘O2s’’ line, which can
be interpreted only as corresponding to the molecular orb
formed by hybridization of the 6p electrons of uranium and
the 2s electrons of oxygen, is present in both spectra in F
3 ~Ref. 15!.

In regard to the oxide corresponding to the spectrumf B

~similar to spectrum b in Fig. 3!, we may draw some quite
confident conclusions. The doublet structure in the region
the ‘‘6p3/2’’ peak unambiguously indicates that we are de
ing here with an atomic cluster based on the linear ura
group O–U–O.17,35 Moreover, from the separation betwee
the components of the doublet~around 4.3 eV! it is possible
to determine the distance between the oxygen and uran
atoms in uranyl to be 1.7360.04 Å ~Ref. 36!. It is well
known that in the formation of complexes in which uran
participates, the uranyl group preserves a relative indep
dence, and in the equatorial plane it may contain 4, 5, o
additional oxygen or halogen atoms.37 These are all reason
for assuming that thef B spectrum corresponds to the uran

FIG. 2. Uranium-isomer conversion spectra recorded for collecting the
mer atoms on an indium surface at different discharge currents in an is
collection chamber. Spectra a, b, c, and d correspond to currents of app
mately 1, 2.5, 3.5, and 4 nA.

FIG. 3. Decomposition of uranium-isomer conversion spectra obtained
isomer atom collection on an indium surface. Annotation of the lines in
figure is as follows:1, 6—‘‘6 p1/2 , ’’ 2, 7—‘‘O2s, ’’ 3, 8—‘‘6 p3/2( l ), ’’ 4,
9—‘‘6 p3/2(r ), ’’ 5, 10—VB. Spectruma corresponds to the lowest exper
mentally observed degree of oxidation of the uranium isomer, and spec
b, to the highest.

318 JETP 85 (2), August 1997
al

.

f
-
yl

m

n-
6

plane. Such an environment is similar to the environmen
uranium in g-UO3, where the uranyl group is coordinate
with four oxygen atoms. From the distance between the co
ponents of the ‘‘6p3/2’’ doublet it is also possible to estimat
the distance from the uranium atom to the equatorial oxy
atoms as 2.4060.04 Å ~Ref. 36!.

In regard to the oxide corresponding to thef A spectrum
~similar to spectrum a in Fig. 3!, it is difficult to draw such
definite conclusions. In spectrum a in Fig. 3 a weak trace of
the right-hand component of the ‘‘6p3/2’’ uranium line is
visible, ‘‘6p3/2(r ). ’’ However, the intermediate situation
when the right-hand component of the ‘‘6p3/2’’ peak is
present but has low intensity, does not correspond to
known simple oxide of uranium. A small admixture of th
‘‘6 p3/2(r )’’ component in experimental spectrum a in Fig.
is more simply explained by an admixture of the chemi
stateB to stateA. Thus, in the chemical stateA splitting of
the ‘‘6p3/2’’ uranium line is entirely absent; consequentl
the uranium–oxygen cluster corresponding to stateA has
higher symmetry than the cluster corresponding to stateB.
Oxygen environments of uranium are known which can le
to such a result. This happens, for example, for the sim
crystalline oxides UO2 and UO with symmetryOh ~Ref. 38!.
Besides the higher symmetry of clusterA in comparison with
clusterB, we may note a considerably weaker bond betwe
uranium and oxygen in clusterA since the line of the con-
version spectrum corresponding to the hybrid orbi
U6p– O2s is significantly less pronounced. Just such beh
ior is to be expected for UO2 and UO. All this indicates some
kind of analogy between the chemical stateA and uranium
dioxide or monoxide.

By the relative intensity of the conversion line we me
the ratio of the area under the line to the area of the en
spectrum. Since the ‘‘6p3/2(r )’’ line ~Fig. 3! is present in the
f B spectrum and absent in thef A spectrum~according to the
proposed interpretation of thef A spectrum!, it is clear that
the relative intensity of the ‘‘6p3/2(r )’’ line in the mixed
experimental spectrum characterizes the corresponding
ing coefficient of theA andB states. Moreover, if the rela
tive intensity of the ‘‘6p3/2(r )’’ line in the pure f B spectrum
is known~we denote it byPB

0!, then by an appropriate choic
of the constructed procedure for extrapolating from the d
set of experimental mixed spectra it should be possible
separate out the puref A and f B spectra.

The magnitude ofPB
0 can be found from the uranium

isomer conversion spectra measured during isomer collec
onto a copper surface. Such spectra were examined in
33. The following two facts were established. First, duri
collection of isomer onto a copper surface the spectra alw
contain five characteristic peaks similar to the situation
Fig. 3b, i.e., similar to the spectrumf B , where by varying
the conditions of isomer collection it is not possible
change the shape of the spectra. Second, a specially
structed statistical analysis of the shape of the spe
showed that no other variations of the shape of the spe
from one measurement to the next are observed besides
associated with the Poisson electron counting statist
These results may be interpreted as follows. Copper surfa
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clusters; therefore the conversion spectrum observed for
lection onto a copper surface is the spectrum of the purB
state. We will call this spectrumf B(Cu) . We identify the
relative intensity of the ‘‘6p3/2(r )’’ line in the f B spectrum
with the corresponding quantity in the experimentalf B(Cu)

spectra. In Ref. 33 the resultPB
05(10.360.3)% was ob-

tained.
We next determine the relative intensityP of the

‘‘6 p3/2(r )’’ line for different mixed spectra from the indium
surface and introduce the quantity

k5P/PB
0. ~7!

Thus, in the examination of mixed spectra we proceed fr
the assumption that the valuek50 corresponds to the pur
f A spectrum and the valuek51 corresponds to the puref B

spectrum.
We normalize the experimental conversion spectra to

corresponding total probabilities of conversion per unit tim
which in the case of the uranium-235 isomer coincide w
the decay constant of the isomer level. Let (Ei ,Ef) be an
arbitrary segment of the conversion spectrum. We consid
conversion spectrumf k with the parameterk: 0<k<1. We
denote byPk , PA , and PB the integrals over the interva
(Ei ,Ef) respectively for the spectraf k , f A , and f B . It is not
hard to show that

Pk.~12k!PA1kPB , ~8!

where the deviation from exact equality in formula~8! may
be neglected thanks to the small difference in decay c
stants of the uranium isomer in statesA andB. We call the
dependence of the area of a fixed segment of the spectru
the parameterk the kinetic curve. The prediction of linearit
of the kinetic curves~8!, following from the hypothesis of
two-component mixing, can be checked experimentally.

To use the formalism introduced above, the convers
spectra of the uranium isomer should be measured sim
neously with the decay constants. The technique of simu
neous measurement of the conversion spectrum and the
cay constant was introduced by myself in Ref. 39. T
essence of this technique is to measure the conversion s
trum in two stages, in two successive time intervals while
decay constant is determined by comparing the areas o
corresponding spectra calculated from the informative sp
tral interval (E1 ,E2) ~Fig. 1!. This guarantees that the deca
constant and the conversion spectrum correspond exact
the same chemical state of the uranium isomer.

Two series of measurements with collection of uraniu
isomer onto an indium surface constitute the experime
data base of the present work. In the first series, which
will call seriesT, thirty measurements of conversion spec
with simultaneous measurement of the decay constants
carried out. For technical reasons in this series of meas
ments there were time losses on the order of one half-life
the isomer; therefore, the series-T spectra are not very wel
statistically robust. In order to compensate for this deficien
of seriesT, a second series of measurements was carried
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which we will call seriesR, in which 29 spectra without
simultaneous measurement of the decay constants with
comitant time losses were measured.

On the basis of the series-T experimental data we con
structed an empirical dependencel(k), wherel is the decay
constant andk is the parameter defined by formula~7!. An
empirical dependence was found in the form of a linear fu
tion from the experimental pointslexp(kexp) with the help of
the maximum likelihood method. Figure 4 plots the corr
sponding experimental points and a straight-line fit~for con-
venience the corresponding half-livest rather than the decay
constantsl are plotted along the ordinate!. The dependence
so obtained was then used to normalize the spectra of s
R as well as seriesT.

We extended the obtained empirical dependencel(k) to
k50 and k51, which gave the half-lives of the uranium
isomer corresponding to the pure statesA andB:

tA525.6760.21 min, tB526.6860.12 min,

~tB2tA!/tA5~3.961.2!%.

It makes sense to compare these values with the half-live
the uranium isomer measured by de Mevergnies with m
sive samples of the chemically prepared compounds235mUO2

andg-235mUO3 ~Ref. 23!:

t~UO2!524.6860.26 min, t~UO3!526.0660.08 min,

@t~UO3!2t~UO2!#/t~UO2!5~5.661.1!%.

It is evident that the same trend of the half-life obtains bo
between UO2 and g-UO3 and between the statesA and B,
and that the relative values of the half-lives in fact do n
differ within the limits of experimental error. This confirm
the reasonableness of interpreting stateA as an analog of
UO2 and stateB as an analog ofg-UO3.

To check the hypothesis of two-component mixing, e
perimental kinetic curves were constructed for four segme
of the conversion spectrum corresponding to the main c
version lines: ‘‘6p1.2, ’’ ‘‘O2 s, ’’ ‘‘6 p3/2( l ), ’’ and VB. Fig-
ure 5 plots the kinetic curves for the series-R measurements
~for seriesT the curves have a similar form, but with large
statistical errors!. Using the maximum likelihood method, w
fit the kinetic data with straight lines. In the course of the
we calculated the quantity

FIG. 4. Experimental pointst(k) for experimental seriesT and linear ap-
proximation by the maximum-likelihood method.
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FIG. 5. Kinetic curves for experimental serie
R. The quantities plotted along the ordinates a
the partial probabilities of conversion belongin
to the indicated spectral regions~%!.
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2 , ~9!

which is an analog of thex2 parameter of the more familia
linear regression analysis. In formula~9! a and b are the
fitting parameters of the linear dependence. Values ofxc

2/N,
whereN is the number of degrees of freedom, are given
Table I for both series of measurements—T andR. The stan-
dard deviation for all values is equal to 0.26. From Table
can be seen that there is not one significant deviation
xc

2/N from unity, i.e., there are no indications of deviatio
of the kinetic curves from a linear dependence. Thus,
hypothesis of two-component mixing is found to be w
confirmed.

Formula~8! makes it possible to find the spectraf A and
f B corresponding to the set of experimental mixed spectr
the maximum-likelihood sense. Toward this end, it is su
cient to construct the kinetic curves for each channel of
spectrum, to fit them with straight lines using the maximu
likelihood method~8!, and to extend each such straight lin
to k50 andk51. In order to track the reproducibility of th
results, we processed the series-R and series-T spectra in this
way separately. Figure 6 shows the pure spectraf A and f B ,

TABLE I. Check of the hypothesis of two-component mixing of the spec

Series

Spectral region

U6p1/2 O2s U6p3/2( l ) VB

T 0.89 0.78 1.23 1.23
R 0.87 1.05 1.24 1.19
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from seriesT have essentially the same form, but somew
higher statistical spreading of the amplitudes. Fragment
the decompositions of the spectra into Gaussian lines co
sponding to the region of inner valence molecular orbit
are shown in Fig. 6 by dashed lines.

Table II presents data on the structure of these spec
The standard deviations of the line parameters, calculate
the Monte Carlo method, are indicated; systematic errors
not shown, but can be determined as in Sec. 3. For con
nience, the partial probabilities of conversion are given
units in whichlB[100. To convert to absolute probabilit
values, it is necessary to multiply the corresponding data

.

FIG. 6. Puref A and f B spectra found from the series of experimental mix
spectraR. Annotation of the lines:1—‘‘6 p1/2 , ’’ 2—‘‘O2s, ’’ 3—‘‘6 p3/2 , ’’
4—VB, 5—‘‘6 p1/2’’ (1 S1u), 6—‘‘O2s’’ (2 S1u), 7—‘‘6 p3/2( l )’’ (1 S3u),
8—‘‘6 p3/2(r )’’ (3 S1u), 9—VB.
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TABLE II. Structure of puref A and f B spectra. Each cell of the table contains~from top down!: the partial probability of conversion in relative units, the line
position~binding energy! in eV, and the line width in eV. The statistical errors are indicated in parentheses. Where the error is not indicated explicitly, it is

approximately one significant digit. Rows^A& and ^B& correspond to data averaged over seriesT andR.

Spectrum

Line

6p1/2 O2s 6p3/2( l ) 6p3/2(r ) VB

44.6~0.4! 7.1~0.4! 37.7~0.4! 0 15.1~0.2!
A(T) 28.5 23.7 18.6 - -

3.3 4.4~0.4! 3.1 - -
46.4~0.4! 6.2~0.5! 37.2~0.4! 0 15.2~0.2!

A(R) 29.3 24.0 19.4 - -
3.5 3.8~0.4! 3.0 - -

31.5~0.2! 22.1~0.3! 16.4~0.3! 10.5~0.1! 19.2~0.2!
B(T) 30.6 24.8 19.9 15.3 -

3.6 4.3 3.5 2.7 -
30.7~0.3! 22.4~0.4! 16.9~0.3! 10.4~0.1! 19.0~0.1!

B(R) 30.8 25.0 19.9 15.8 -
4.0 4.5 3.6 2.7 -

45.5~0.3! 6.7~0.4! 37.5~0.3! 0 15.2~0.1!
^A& 28.9~0.4! 23.9~0.2! 19.0~0.4! - -

3.4~0.1! 4.1~0.3! 3.1~0.1! - -
31.3~0.2! 22.2~0.2! 16.7~0.2! 10.5~0.1! 19.0~0.1!

^B& 30.7~0.1! 24.9~0.1! 19.9~0.1! 15.6~0.3! -
3.8~0.2! 4.4~0.1! 3.5~0.1! 2.7~0.1! -

31.4~0.5! 23.6~0.9! 16.0~0.6! 10.3~0.3! 18.8~0.2!
Cu(B) 31.0 25.1 19.9 15.6 -

4.0 5.0~0.4! 3.4 3.0 -
Table II by 2.59831024 min. As a reference point for de-
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termining the binding energies, we used the position of
‘‘6 p3/2( l )’’ line in the f B spectrum, for which we adopte
the value 19.89 eV. This energy is the averaged bind
energy of the ‘‘U6p3/2( l )’’ line found from x-ray electron
spectroscopy data, determined from a set of 15 different
nyl compounds.40 For convenience, the last line of Table
gives the breakdown of thef B(Cu! spectrum based on the da
of Ref. 33. Notice that there is beautiful agreement betw
the parameters of thef B(Cu! and f B spectra. This confirms
that theB state on the indium surface and the state in wh
the uranium isomer always appears for collection onto a c
per surface are indeed one and the same chemical state o
isomer as was assumed in the treatment of the series-T andR
mixed spectra.

5. DISCUSSION: COMPARISON OF EXPERIMENT WITH
CALCULATIONS OF THE ELECTRONIC STRUCTURE OF
URANYL

It is well known that because the uranyl group posses
relative independence~stability! in the formation of the
chemical bond, the main features of the x-ray electron sp
tra of uranyl compounds in the region of electron bindi
energies&40 eV are determined specifically by the presen
of this group.17,35This should hold to an even larger extent
the case of the conversion spectrum of uranium isom
Therefore, to identify the lines of thef B spectrum and to
compare the results of experiment with the first-order the
we can apply the results of a calculation of the electro
structure of the isolated uranyl group. Here it is necessar
use relativistic calculations, since in the nonrelativistic c
culations the 6p1/2 and 6p3/2 electrons do not differ while in
the uranium atom they are separated in binding energy by
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their single-electron conversion probabilities differ by mo
than a factor of two.13

A number of relativistic calculations of the electron
structure of uranyl are known.41–45 All of them qualitatively
reproduce the structure of the conversion spectrumf B rea-
sonably well in the region of the inner valence molecu
orbitals ~the lines ‘‘6p1/2’’ through ‘‘6 p3/2(r ), ’’ Fig. 6! and
agree with each other both in the order of sequence of
lines and in the makeup of the molecular orbitals in the se
of the method of linear combination of atomic orbita
~LCAO!. Figure 6 identifies the lines of thef B spectrum with
the molecular orbitals of uranyl. The notation used cor
sponds to that in Refs. 44 and 45. Table III gives the str
ture of the inner valence molecular orbitals of uranyl in t
terminology of the LCAO method according to Refs. 44 a
45.

It is clear directly from the shape of thef A spectrum
~Fig. 6! that the U6p electrons are much more weakly del
calized in the chemical stateA of the uranium isomer than in
stateB. The intensity of the ‘‘O2s’’ line is so weak that it
may be assumed that the ‘‘6p1/2’’ orbital of compoundA has
essentially an atomic character and is therefore occupied
two U6p1/2 electrons. Assuming a quasi-atomic nature of t
‘‘6 p1/2’’ orbital of compoundA and using the results of th
calculation of the electronic structure of uranyl given
Refs. 44 and 45, we can estimate how much the intensit
the ‘‘6p1/2’’ conversion line in thef B spectrum should vary
in comparison with thef A spectrum.

Reference 16 proposed an interpretation of the conv
sion spectra of soft nuclear transitions in terms of a ‘‘fillin
of the standard states in the conversion zone.’’ In order
utilize the data calculated by the LCAO method44,45 for a
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TABLE III. Electronic structure of uranyl according to Refs. 44 and 45 and estimates of net occupancies of the molecular orbitals by the atomic electrons of
uranium. The eigenenergy is normalized to the energy value219.9 eV for the 1S3u orbital.
Spectral
line
f B Orbital

Energy,
eV

Makeup
of orbital

~full
Mulliken

occupancies!
Overlap

occupancy
Net

occupancy

‘‘6 p1/2’’ 1 S1u 233.3 1.58(6p1/2) 1 0.292 1.44(6p1/2) 1

0.06(6p3/2) 1 0.05(6p3/2)
0.36(O2s)

‘‘O2 s’’ 2S1u 226.0 0.33(6p1/2) 1 0.240 0.30(6p1/2) 1

1.09(6p3/2) 1 1.00(6p3/2)
0.48(O2s)

none 2S1g 223.7 0.40(6d) 1 0.460 0.17(6d)
1.58(O2s)

‘‘6 p3/2( l )’’ 1 S3u 219.9 1.91(6p3/2) 1 0.096 1.86(6p3/2)
0.09(O2p)

‘‘6 p3/2(r )’’ 3 S1u 213.5 0.06(6p1/2) 1 0.008 0.06(6p1/2) 1

0.34(6p3/2) 1 0.34(6p3/2)
0.72(O2p) 1

0.83(O2s)
comparison with the line intensities of the conversion spec-
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trum, it is necessary to relate the formalism of Ref. 16 w
concepts characteristic of the LCAO method.

Let some molecular orbitalf of uranyl in the LCAO
representation have the form

f5(
l

cl
Ux l

U1(
m

cm
Oxm

O , ~10!

wherex l
U are the atomic wave functions of uranium,xm

O are
the atomic wave functions of oxygen,cl

U and cm
O are the

coefficients of the linear combination. Since the probabi
of conversion on a neighboring atom is negligibly small,16 to
describe conversion it is sufficient to retain the terms in
pression~10! belonging to the atomic orbitals of uranium
We thus obtain an expansion of exactly the same form
was investigated in Ref. 16. For this case it has been sh
that the single-electron probability of conversion from t
molecular orbitalf is given by

Pf
1 5(

l
ucl

Uu2Pl
U , ~11!

wherePl
U are the single-electron probabilities of conversi

for the atomic orbitals of uranium. Using formula~11!, we
can write the total probability of conversion from the m
lecular orbitalf as

Pf5(
l

Nl Pl
U , ~12!

where the quantitiesNl are the net occupancies of the m
lecular orbitalf by thex l

U electrons in the classification o
occupancies given by Mulliken.46

Applying formula~12! and the assumption of the quas
atomic nature of the ‘‘6p1/2’’ line in the f A spectrum, we find
for the ratio of intensities of the ‘‘6p1/2’’ lines in the f B and
f A spectra
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PA~ ‘ ‘6 p1/2’ ’ !
5

2P~6p1/2!
,

~13!

where P(6p1/2) and P(6p3/2) are the single-electron prob
abilities of conversion on the 6p1/2 and 6p3/2 electrons in the
isolated uranium atom, andNB(6p1/2) andNB(6p3/2) are the
atomic net occupancies of the 1S1u molecular orbitals of
uranyl.

We estimated the net occupancies from the data of R
44 and 45 in terms of the total occupancies and overlap
cupancies~Table III!. Instead of the single-electron prob
abilities of conversion we used the single-electron conv
sion factors we(6p1/2) and we(6p3/2)—dimensionless
quantities proportional to the single-electron probabilities
conversion, which were calculated for the conversion tran
tion of the uranium isomer in Ref. 13:

we~6p1/2!54.81•105, we~6p3/2!52.16•105. ~14!

Calculations were performed in Ref. 13 with atomic wa
functions in the Thomas–Fermi–Dirac and Hartree–Foc
Slater models. The values in Eqs.~14! are averages ove
these two models.

Using the data in Table III for the conversion facto
~14! and the net occupancies used in formula~13!, we find

PB~ ‘ ‘6 p1/2’ ’ !

PA~ ‘ ‘6 p1/2’ ’ !
U

theor

50.73, ~15!

whereas from the experimental data listed in Table II
obtain

PB~ ‘ ‘6 p1/2’ ’ !

PA~ ‘ ‘6 p1/2’ ’ !
U

exper

50.6960.0160.09. ~16!

The experimental~16! and theoretical~15! intensity ratios
are found to be in beautiful agreement.
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TABLE IV. Expected~‘‘theoretical’’! and experimental relative intensities
of the conversion lines belonging to the inner valence molecular orbitals.
Analogously, it is possible to find the expected ratios
the line intensities of thef B spectrum and compare the
with the corresponding experimental values. The result
such a comparison is given in Table IV, where the sum of
line intensities belonging to the inner valence molecular
bitals is normalized to 100, both for the experimental and
theoretical values. In all cases, except for the ‘‘6p3/2(r )’’
line, there is reasonable agreement between the experim
and calculated intensities. For the ‘‘6p3/2(r )’’ line the calcu-
lated intensity is half the experimental value. However,
authors of Ref. 44 noted that taking the crystal field of t
equatorial ligand-atoms of uranyl into account may incre
the total occupancy of the 3S1u orbital by the 6p electrons
from 0.4 ~see Table III! to 0.8. Obviously, this would
roughly double the estimate of the intensity of t
‘‘6 p3/2(r )’’ line in the f B spectrum, as a result of which th
agreement would improve. I will not attempt to compa
theory and experiment in the valence-band region~VB, Fig.
6! since the accuracy of present-day calculations of the e
tronic structure in this region is not high.

Thus, reasonable agreement is observed between th
pected and experimental intensities of the conversion line
the conversion spectrum of uranium isomer in the reg
where calculations of the electronic structure appear to p
sess satisfactory accuracy. By virtue of the semi-quantita
character of the calculations, it is still difficult to speak
real agreement of theory with experiment; rather it may
stated that abrupt anomalies in the intensities of the con
sion lines which might be linked with interference pheno
ena accompanying elastic scattering of conversion elect
are not revealed. We may conclude that the results obta
here do not contradict the assumption that the partial pr
abilities of conversion of uranium isomer remain propo
tional to the electron density at the nucleus as follows fr
the works of Grechukhin and Soldatov13,16 and as is indi-
rectly indicated by data on variations of the uranium isom
decay constant.19–25 In the LCAO approximation this mean
that the partial probabilities of conversion are proportiona
the atomic net occupancies of the molecular orbitals by
electrons that take part in conversion@formula ~12!#.

If we accept this conclusion, then the question ari
why the strong interference effects in the conversion pr
abilities predicted in Ref. 26 are not manifested in expe
ment. It is obviously necessary to search for mechanisms
can lead to the suppression of interference of convers
electrons. I considered this question in Ref. 29. In this wo
I showed that it is possible to point to at least two mec
nisms which were not taken into account in Ref. 26 a
which can in general lead to suppression of interference

The total errors~including systematic! are indicated in parentheses.

‘‘6 p1/2’’
(1S1u)

‘‘O2 s’’
(2S1u)

‘‘6 p3/2( l )’’
(1S3u)

‘‘6 p3/2(r )’’
(3S1u)

Calculation 44.9 23.0 25.7 6.5
Experiment 38.8~4.7! 27.5~3.3! 20.7~2.5! 13.0~1.6!
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inelastic scattering of conversion electrons. Qualitative e
mates in Ref. 29 showed that one can expect a roughly fi
fold suppression of the contribution of interference effects
the partial probabilities of conversion of uranium-235 is
mer, which implies a radical suppression of the effects p
dicted in Ref. 26. Consequently, the probabilities of conv
sion can remain proportional to the electron density at
nucleus with an accuracy of 5–10%, and the original vers
of the theory of Grechukhin and Soldatov holds with t
same accuracy.13,16

In this light, a decrease in the intensity of the ‘‘6p1/2’’
line in the f B spectrum in comparison with thef A spectrum
by roughly 30% may be considered as an indication of m
gration of U6p1/2 electrons with binding energy around 3
eV to the hybrid molecular orbitals. With the help of formu
~12! we can obtain an estimate of the number of electro
that have migrated over to the hybrid molecular orbitals~in
the terminology of the LCAO method!. We obtain 0.6 elec-
tron for the electrons that have migrated over and 1.4 e
trons for those remaining in the initial ‘‘quasi-atomic’’ or
bital.

Note that except for conversion spectroscopy
uranium-235 isomer, at present there exists no experime
method that allows one to obtain such detailed informat
about the partial occupancies of the inner molecular orbi
of heavy-element compounds. Potential competitors of c
version electron spectroscopy in this region are x-ray or
traviolet electron spectroscopy and x-ray emission spect
copy. However, photoelectron spectroscopy does not pos
selectivity to the contributions of different types of electro
to the molecular orbitals; therefore, generally speaking,
line intensities of the photoelectron spectrum do not g
direct information about the structure of the correspond
molecular orbital. X-ray emission spectra, in principle, co
tain the same information, but in the case of heavy eleme
in particular uranium, they have such a complicat
structure47 that it is still difficult to pose the question o
quantitative analysis of such spectra.

It should be noted that conversion spectroscopy of u
nium isomer still faces a number of complicated unresolv
problems. The most urgent among them are the construc
of a quantitative theory of conversion which would permit
accurate estimate of the contribution to conversion both
interference effects and effects suppressing interference,
on the experimental plane, the development of a techni
for preparing samples with uranium isomer in a prescrib
atomic environment. On the other hand, it has been poss
to solve a number of fundamental questions in the way
transforming conversion spectroscopy of uranium isom
into a fully capable, quantitative method for investigating t
electronic structure of matter, and on this path the first s
stantial results have been obtained.
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Spin dynamics in solid dilute paramagnets

nd
F. S. Dzheparov, I. V. Kaganov, and E. K. Khenner
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The free-induction decay signals for the two-spin clusters, the ‘‘matrix,’’ and the entire spin
system as a whole are calculated for a real dipole–dipole interaction on the basis of a method for
the cluster expansion of correlation functions previously developed by the authors. The
intracluster interactions, which generate a discrete spectrum, are taken into account exactly, and
the interactions outside the clusters are taken into account on the basis of the Anderson-
Weiss-Kubo~AWK ! theory of phase relaxation. The corresponding shape functions of the
resonance line are calculated. Before the clusters are separated, an AWK analysis in the
limit of slow fluctuations of the local fields is in satisfactory agreement with the exact results
obtained in the Anderson model of dipolar interactions, but a similar analysis for realistic
fluctuation rates andDt.1 leads to a significant qualitative difference: exp(2Dt) transforms into
exp(2AD1t). After the clusters are separated, this difference is obliterated. The free-
induction decay is almost exponential up toDt;10, and nonexponential behavior of the long-
time asymptote appears sooner. This finding is not altered significantly when the analysis
is complicated by raising the maximum rank of the clusters to 3 or more. ©1997 American
Institute of Physics.@S1063-7761~97!01508-4#
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The theory of the magnetic spectroscopy of multisp
systems utilizes a relatively small number of fundamen
correlation functions and their spectral densities, which co
pletely describe the dynamics of such systems. In the e
stages of the formulation of the theory of magnetic re
nance, the entire discussion was basically confined to stu
ing the line shape and spin-lattice relaxation, which are
haustively described by two or three such functions.

The situation has changed drastically.1–4 In particular,
several properties of multispin correlation functions, whi
specify, for example, multispin coherencies2 and the rates of
flip-flop transitions4 in nuclear spin systems, are accessible
direct measurement. On the other hand, experimental5,6 and
theoretical7,8 investigations of spectral and spatial transfer
magnetically dilute ESR systems stimulated the developm
of a novel cluster expansion method,3 which utilizes multi-
spin correlation functions of physically separated groups
spins, or clusters, and, in principle, permits the formulat
of an adequate theory for such processes.

An exact calculation of cluster correlation functions for
real interaction is still impossible. Therefore, bearing in mi
the problems of the spin dynamics of magnetically dilu
systems, in the present work we turned our attention firs
the exact solution of the Anderson model,9 which presently
serves as the main source of reliable information for m
netically dilute systems~see, for example, Refs. 10 and 1
and the references cited therein!. The Anderson model doe
not take into account the influence of temporal fluctuatio
of the local fields on the processes in the system. Theref
we next introduced and examined a very simple mod
which takes this phenomenon into consideration in the sp
of the Anderson-Weiss-Kubo~AWK ! theory12,13and is based
on a cluster analysis.3 In this way we obtained explicit inte
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discovered a disparity between the predictions of the And
son model and the new, more realistic model. We note, h
ever, that the results of the two approaches are consiste
the limit of slow fluctuations and for the total free-inductio
decay signal.

Our analysis is based on the following arguments. Cl
ter expansion can be described in the following manne~a
very brief description is given here; for further details s
Ref. 3!. A cluster of rankl is a group ofl spins which, for
purely geometric reasons, interact more strongly with o
another than with any spin outside of the group. To make
division unequivocal, orthogonal clusters, in which each s
is found in no more than one such cluster, are introduc
Expansion in orthogonal clusters is accomplished in the
lowing manner:k, i.e., the highest rank of the clusters co
sidered in the problem, is fixed on the basis of physical
guments, and all the clusters of that rank and then of r
k21, etc., are separated. The part of the system remai
after separation of all the clusters is called the ‘‘matrix
Quasihomogeneity of the matrix, which is understood to
the possibility of describing its thermodynamics in th
continuous-medium approximation, was proposed in Re
as the physical criterion for selectingk. Before the clusters
are separated, the dipolar specific heat is infinite in this
proximation, but after cluster separation, the dipolar spec
heat of the matrix becomes finite and is determined by in
actions at moderate distances. The second moment of
absorption line exhibits completely analogous behav
Therefore, it can be presumed that the time for establish
equilibrium in the matrix is of the order of the characteris
time of the flip-flop transitions and that it corresponds to t
phase relaxation time approximately as in regular syste
The fluctuating local fields induced by the environment
the spins of the matrix and on the clusters are considera
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spins before separation of the clusters. The intracluster in
actions can be taken into account exactly.

We next focus a considerable amount of attention on
transverse correlation functionG(t), i.e., the free-induction
decay function, which is classical in the theory of magne
resonance. Its spectral density gives the absorption line s
function, and the cluster expansion of this density expres
the absorption line shape function relatively independently
the evolving parts of the system.

We restrict ourselves to the high-temperature appro
mation, since the specific details of unordered systems
manifested quite fully already in this limit. A series of ca
culations is performed in the Anderson model for an ar
trary spin. This is of interest for possible comparison w
the results of a numerical simulation, which is generally p
formed for classical spins because of the restricted scop
present-day computing possibilities.14,15

2. CONFIGURATIONAL AVERAGING OF CORRELATION
FUNCTIONS

We assume everywhere below that the spin system s
ied consists of impurity spins that are randomly distribu
throughout the lattice.

In the occupation number representation16 and in the
high-temperature approximation the transverse correla
function has the form1

G~ t !5^S1~ t !&/^S1~0!&5^^S1~ t !S2&0&c /^^S1S2&0&c .

~1!
Here ^ . . . &05Tr( . . . )/Tr1, S6[Sx6 iSy5( jnjSj

6 , nj is
the occupation number of sitej (nj50 or 1!, ^ . . . &c denotes
configurational averaging, and

S1~ t !5exp$ iH dt%S1 exp$2 iH dt%,

whereHd is the Hamiltonian of the spin-spin interaction.
the Anderson model

Hd5
3

2 (
i , j

Ai j ninjSi
zSj

z ,

whereAi j [\g2(123 cos2qij)/rij
3 is the dipolar interaction.

A more general interaction, which is realized under typi
conditions, is described by the secular part of the dipo
Hamiltonian and has the form

Hd5
1

2 (
i , j

Ai j ninj~3Si
zSj

z2SiSj !.

According to its meaning,G(t) is an additive single-
particle function and is therefore expanded into a sum
contributions from clusters of rankl :

G~ t !5(
l 51

k

Gl~ t !,

whereGl(t)[^^Sl
1(t)&0&c /^^S1(0)&0&c .

Here and belowk is the highest rank chosen for th
orthogonal clusters,3 and the indicesi and j label the lattice
sites.
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A[(
i

nia i5(
l 51

k

(
i 1, . . . , i l

Zl~r i 1
, . . . ,r i l

! (
p51

l

a~r i p
!,

~2!

whereZl is the occupation number of an orthogonal clus
located at the sitesr i 1

, . . . ,r i l
~Ref. 3!, and l 51 andZ1(r )

refer to a spin from the matrix and its occupation number.
the Anderson model

n0S0
1~ t !5n0 exp~ iH dt !S0

1exp~2 iH dt !

5n0S0
1)

j Þ0
expS 3

2
iA0 jSj

znj t D ;

therefore,

n0^S0
1~ t !S2&05

2

3
n0s~s11!)

j Þ0
$11nj@Bj~ t,s!21#%,

~3!

wheres is the spin of the particles in the system,

Bj~ t,s![
1

2s11 (
s52s

s

expS 3

2
i tA0 js D

5
sin@~3/2!tA0 j~s11/2!#

~2s11!sin~~3/4!tA0 j !
.

As usual, during the derivation of~3! that the identity
w(nx)[w(0)1nx@w(1)2w(0)# for the arbitrary function
w(nx) was taken into account. The continuous-medium
proximation corresponds to the limit where the relative co
centration of spins satisfiesf [^nj&c→0, but the density
C5 f n (n is the number density of the lattice sites! remains
finite, and the sums over the lattice are replaced by integ
over all space. Thus,

Gl~ t !5 K nl 21N

~ l 21!! E dr2 . . . dr lZl~0,r2 , . . . ,r l !

3^S0
1~ t !S0

2&0L
c

1

^^S1S2&0&c

. ~4!

HereN is the number of sites in the crystal.
With consideration of~3! it is seen that the configura

tional average reduces to the expression

K Zl~0,r2 , . . . ,r l !)
j Þ0

$11nj@Bj~ t,s!21#%L
c

.

We first calculate

K Z̃l~0,r2 , . . . ,r l !)
j Þ0

$11nj@Bj~ t,s!21#%L
c

,

whereZ̃l is the occupation number of a nonorthogonal clu
ter of rankl . Taking into account the uncorrelated charac
of the distribution of the spins among the sites, in t
continuous-medium approximation we obtain
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K l 2 l )
j Þ0

j j L
c

5^ Z̃l~0,r2 , . . . ,r l !&c )
m52

l

Brm
~ t,s!

3expH 2CE
q¹V0 . . . r l

dq@12Bq~ t,s!#J , ~5!

whereV0 . . . r l
is the excluded volume of the clusterZ̃l , the

region within which there must be no other spins besides
spins comprising the cluster, so that the condition for
existence would not be violated.

Taking into account thatZl50 andZ̃l Þ 0 holds only if
Z̃l appears in the composition of a cluster of higher rank,
have the recurrence relation

Zl~r1 , . . . ,r l !5 Z̃l~r1 , . . . ,r l !

2 (
m51

k2 l

(
kj ¹Vr1 . . . r l

k1, . . . ,km

Zl 1m~r1 , . . . ,r l ,r k1
. . . r km

!.

~6!

Hence follow the corresponding formulas for^ . . . &c and the
formal transition to the continuous-medium limit. If two a
guments in the occupation number of a cluster coincide,
equal to zero.

Equation ~6! permits the calculation of̂ Zl&c succes-
sively from the maximum valuel 5k to l 51, since

^ Z̃l~r1 , . . . ,r l !&c5 f l exp$2 f nVr%

in the limit f !1.3

Using Eqs.~4!–~6!, we can calculate the contributio
Gl(t) of a cluster of any rank to the correlation function.

3. CLUSTER EXPANSION OF SHAPE FUNCTIONS AND
FREE-INDUCTION DECAY IN THE ANDERSON MODEL

We stipulate that the superscript onG(t) and its Fourier
transformg(D) denotes the maximum rankk of the clusters
separated. As usual, the Anderson linewidth

D5
2p2

3A3
\Cg2

determines the characteristic time scale of the problem.
normalization condition

(
l 51

k

Gl
k~0!51

is presumed. ThenGl
k(0) has the meaning of the probabilit

that a spin appears in an orthogonal cluster of rankl , if the
maximum rank of the clusters separated equalsk.

If we take k51, i.e., if the system is considered as
whole without separating clusters,Z1(r )5nr holds and

G1
1~ t !5exp~2FsDt !, ~7!

where

327 JETP 85 (2), August 1997
e
s

e

is

e

Fs[ *dr @12Br~ t,1/2!#
5

2s11 (
s52s

usu.

We recall that all the correlation functions considered
invariant under time reversal. Therefore, it is assumed h
and below thatt>0. CalculatingFs , for a half-integer spin
and an integer spin we obtain, respectively,

Fs5s1
1

2
, Fs5

2s~s11!

2s11
5S s1

1

2D F12
1

~2s11!2G .

~8!

Thus, the behavior of the free-induction decay is quali
tively identical for any value of the spin. Fors51/2, Eq.~7!
coincides with the familiar expression,9 while in the limit
s→` we haveG1

1cl(t)5exp(2DLt), whereL\5\As(s11)
is the angular momentum of the particle. The correspond
relation~7! for the absorption line shape function describe
Lorentzian line with a half-widthDFs .

We note that the classical limit~8! can also be obtained
by direct integration followed by averaging of the equati
of motion of a classical spin in the Anderson model

ṁm
15

3

2 (
j

8 iAm jL j
zmm

1nj

for the componentmm
1[mm

x 1 imm
y of the magnetic momen

in the mth lattice site with consideration of the constancy
m j

z5gL j
z . Here and below the prime on the summation si

~differentiation! signifies the absence of a diagonal term w
Amm. The averaging over the configurations is perform
just as in the quantum case, and the thermodynamic ave
ing reduces to the averaging ofL j over the directions.

Let us now consider the situation in which the maximu
cluster rank isk52 ~we separate pairs and thus take in
account the inhomogeneity existing in the system!. Using
~4!–~6!, we obtain

G2
2~ t !5CE drBr~ t,s!expH 2CV0r2C

3E
q¹V0r

dq@12Bq~ t,s!#J
5exp~2FsDt !CE drBr~ t,s!

3expH 2CE
qPV0r

dqBq~ t,s!J . ~9!

It was shown in Ref. 3 that the excluded volume of a tw
spin cluster can be represented in the form

V0r5
4p

3k

x̄

x0r
r 3,

wherex0r[123 cos2 q0r ,

x̄[E
0

1

dju123j2u5
4

3A3
,

andk[G2
2(0)50.5860.01 is the fraction of spins in pairs
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The exact calculation of the asymptoteG2
2(t) is ham-
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pered by the complicated configuration of the volumeV0r ;
however, to obtain a semiquantitative result we make
replacementsr 3→r 3ux0r u andq3→q3ux0r u in the second in-
tegral in Eq.~9! and then assume that the volume obtain
from the excluded volume after these transformations has
shape of a sphere. We note that the comparatively short
tance between the spins of the pair forming the exclu
volume relative to the characteristic dimension of that v
ume renders trivial the question of the position of its cen
which we place at zero. After elementary integration over
angular variables and replacement of the radial variab
which simplify the cosine arguments, fors51/2 we obtain

G2
2~ t !5exp~2Dt !

2Dt

p E
0

` dx

x2
cosx

3expH 2
2Dt

p E
kx

` dy

y2
cosyJ . ~10!

We stress that in~10! cosy and cosx originate directly from
Br(t,1/2) andBq(t,1/2). In the limitDt@1, the asymptotic
expression~10! is specified by the saddle pointkx05p/2
and has the form

G2
2~ t !;

4k

p
ADt exp@2Dt~12d!#cos

p

2k
,

where d[2/(5p)!1. Another calculation method, whic
takes into account the angular dependences in~9! and takes
the excluded volumeV0r itself as a sphere, gives an eve
smaller value ofd. SinceG(t)5G2

2(t)1G1
2(t)5exp(2Dt),

at large times the functionsG2
2(t) andG1

2(t) in the Anderson
model decrease with identical rates and are opposite in s

We find the Fourier transform ofG2
2(t), i.e., the shape

functions of the pairs:

g2
2~D![

1

p
ReE

0

`

G2
2~ t !eiDtdt.

Substituting~9! therein and calculating the integral overt
with consideration of the fact thatBr(t,s)5b(r /t1/3,s), we
obtain

g2
2~D!5

1

p
CE drb~r ,s!H C2H V0r

1E
q¹V0r

dq@12b~q,s!#J 2

2D2J
3H C2H V0r1E

q¹V0r

dq@12b~q,s!#J 2

1D2J 22

.

~11!

Making the replacement

V0r1E
q¹V0r

dq@12b~q,s!#

→AV0r
2 1 H E dq@12b~q,s!#J 2

,
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which is exact for small and large values ofr ~and intro-
duces, as will be shown below, a small error whenD/D
<1), for x51/2 we obtain

g2
2~D!5

1

pD
expS 2

p1

A11D2/D2D S 11
D2

D2D 22

3S D2

D2
1

1

p1
A11

D2

D2D , ~12!

where p1[2/(pk)51.1. The same expression is obtain
through a similar approximation directly from~10!. In the
classical limit, instead of~12! we have

g2
2cl~D!5

1

2pp1
2DL

H 12expF2
2p1

A11D2/~DL !2G2
2p1D2

~DL !2

3expF2
2p1

A11D2/~DL !2GF11
D2

~DL !2G23/2J .

~13!

We performed a direct numerical analysis of the represe
tion ~11! for an isotropic interaction~when A0r does not
depend on the angleq0r) ands51/2. The result was quali-
tatively consistent with~12!, and the quantitative disparity
was less than 10% and was concentrated in the regioD
<D. The analogous quantitiesG1

2(t) andg1
2(D) for the ma-

trix are clearly obtained by subtracting~12! and ~13! from
the Fourier transform~7!.

The behavior of the shape functions of the pairs,
matrix, and the system as a whole for the cases ofs51/2 and
s5` are presented in Figs. 1 and 2.

The absorption line~12! is nonzero at its center and ha
a broad plateau~with a weakly expressed minimum! at
D50. In the classical limit the line shape function~13! has
only one maximum at its center. From the physical sta
point this difference is determined to a considerable deg
by the shape of the envelope of the lines corresponding
particular state of the nearby spin: fors>1 the absorption
line has only one maximum at its center. It follows from~12!
and~13! that the pairs deplete the wing of the line~compare
Ref. 3!.

FIG. 1. Cluster expansion of the absorption line shape function fors51/2:
1 — g1

1D, 2 — g1
2D, 3 — g2

2D.
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4. CONSIDERATION OF TEMPORAL FLUCTUATIONS IN THE
APPROXIMATION OF A NORMAL RANDOM PROCESS

If the free-induction decay signal~3! in the Anderson
model is approximated by a Gaussian function with an ex
second moment under the assumption that

^Sj
1~ t !Sj

2&05
2

3
s~s11!expS 2

1

2
M2 j t

2D , ~14!

M2 j[
3

4
s~s11!( 8

m
Am j

2 nm ,

then after performing configurational averaging we find t

G~ t !5)
j

8 H 11 f FexpS 2
3

8
s~s11!A0 j

2 t2D21G J
5expS 2A2

p
DtFsD , f !1. ~15!

These formulas were previously obtained fors51/2 in Refs.
7 and 8. The argument of the exponential function in th
for free-induction decay is very close to the correct one@see
Eq. ~7!#, being smaller than it by a factor of 1.25. This a
curacy is surprisingly high for such a rough approximatio

As we know, Gaussian temporal decay corresponds
normal distribution of the static local fields. If the tempor
fluctuations of the local fields are approximated by a norm
random process in the spirit of the AWK approximation, it
found that

^S0
1~ t !S0

2&05
2

3
s~s11!exp@2F0~ t !#, ~16!

where

F0~ t !5E
0

t

dt~ t2t!^v l0~t!v l0&0 ,

v l05(3/2)(m8 Am0nmSm
z is the local field at spin 0. We defin

the correlation functionK(t) of the local fieldv l0(t) by the
relation

^v l0~ t !v l0&05M20K~ t !, K~0!51. ~17!

FIG. 2. Cluster expansion of the absorption line shape function. Clas
limit: 1 — g1

1clDL, 2 — g1
2clDL, 3 — g2

2clDL.
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the AWK theory in thatM20 and K(t) depend on the real
ization of the random distribution of the impurities in th
lattice.

The local fields fluctuate because of flip-flop transition
and, thus,K(t) characterizes their statistical properties. Sin
the fluctuation rates of the spins depend on the feature
their interaction, the functionK(t) is different for different
configurations of the spins in the lattice. However, this d
pendence on the configuration is weaker than the depend
of M20 on the configuration. If the weaker dependence
neglected, the functionK(t) is assumed to be independent
the configuration, and we define

I ~ t !5E
0

t

dt~ t2t!K~t!,

relation~16! can be averaged over the configurations, and
find that3

G~ t !5exp@22DFsAI ~ t !/p#. ~18!

For

t@tc0
[E

0

`

dtK~t!

it therefore follows that

ln G~ t@tc0
!522DFsAttc0

/p,

in agreement with the conclusions in Ref. 17, which we
drawn on the basis of other arguments.

The AWK approximation is valid if a local field is the
sum of a large number of approximately identically distri
uted terms. The cluster separation method leads to the in
sion of the most singular part of the interactions in the int
cluster interactions, and it is thus taken into account exac
Therefore, after separation of the clusters, the local fie
induced at the spins of the matrix and in the clusters by
surrounding spins become far closer to a normal process,
the results obtained by combining the AWK theory and clu
ter expansion should be far more exact than~15!. Below we
shall formulate these results and test them by compa
them in the limittcD@1 with the exactly solved Anderso
model.

We separate the pairs from the system and consid
2-cluster composed of the spinsS0 andS1. The Hamiltonian
of this pair is

Hp5A01S S0
zS1

z2
1

4
S0

1S1
22

1

4
S0

2S1
1D1v l0~ t !~S0

z1S1
z!.

Here, as before, we neglect the dependence of the field
duced by the spins outside the pair on the coordinate of e
spin within the cluster.

For s51/2 the equations of motion for spins 0 and 1
the pair are easily integrated. As a result, we obtain

^S0
1~ t !S2&05

1

2
cosS 3

4
A01t Dexp@2M20I ~ t !#, ~19!

and Eq.~16! remains valid for a matrix spin.

al
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In this section we neglect the fluctuations of the correla-
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tor K(t). The more general case is considered in the n
section.

We substitute~19! into ~4! and perform configurationa
averaging just as in~5! with consideration of the fact that th
occupation number of sitej by a spin from a 2-cluster is

nj
c[(

q
Z2~r j ,q!,

and the occupation number of the same site by a matrix
is nj

m[nj2nj
c . As a result, for the functions describing fre

induction decay from the pairs and from the matrix we o
tain the expressions:

G2
2~ t !5CE dr cos

3A0r t

4
exp~2CV0r !

3expH 2CE
q¹V0r

dqS 12expF2
9

16
Aq

2I ~ t !G D J ,

G1
2~ t !5expF2

2

Ap
DAI ~ t !G2CE dr

3expF2
9

16
A0r

2 I ~ t !2CV0r G
3expH 2CE

q¹V0r

dqS 12expF2
9

16
Aq

2I ~ t !G D J .

~20!

Let us discuss the properties of the correlation functionK(t)
defined by Eq.~17!. It is composed of the longitudinal com
ponents of the spin operators. The correlator

q~ t ![^^Si
z~ t !Si

z&0&c /^^~Si
z!2&0&c

behaves like exp(2Dt/3) at smallDt, as follows from an
analysis of the first term in the concentration expansion. T
function K(t) decreases with the characteristic timetc ,
wheretc

21 is the fluctuation rate. In ordered systems it s
isfiestcD;4 ~see Ref. 18 and the references cited there!,
so that we should expect the same relation in the central
of the line for the flip-flop transitions in the matrix and in th
pairs.

The sum( i 51
Ns Si

zni ~summation over the spins! is an in-
tegral of motion; therefore, it is natural to expect that t
long-time asymptote will be diffusive, i.e.,q(t@tc)
;(Dt)23/2. At intermediate values oft ~in the range
1/2>q(t)>0.1) the behavior ofq(t) is apparently satisfac
torily expressed by the Fo¨rster exponential function
exp(2UADt), where the constant satisfiesU;1.16 The be-
havior of K(t) is qualitatively similar to the behavior o
q(t). Therefore, the influence of the diffusive tail onI (t) is
small, at least in three-dimensional systems. The influenc
the initial, purely exponential segment is also insignifica
Therefore, we shall henceforth generally assume in the
merical evaluations thatK(t)5exp(2At/tc).

As a result, nonzero values oftc
21 are displayed only for

tD;10 and thus do not strongly influence the line shape
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For tc
2150 we have I (t)5t2/2. Taking the Fourier

transform~2!, integrating overt, and leaving the principa
terms with respect tor in the numerator and the denominat
of the resulting integrands, just as in the derivation of~12!,
after some relatively simple transformations we obtain

g2
2~D!5

D

pDd
2

expS 2
p1D/Dd

A11D2/Dd
2D S 11

D2

Dd
2D 22

3S D2

Dd
2

1
1

p1
A2

p
A11

D2

Dd
2D , ~21!

g1
2~D!5

1

p

Dd

Dd
21D2

2
1

p2p1
E

0

` dy

Ay

3expS 2
p1

2

2
yD D21y~Dd

22D2!

@D21y~Dd
21D2!#2

.

HereDd[A2/pD is the decay rate ofG1
1(t)5exp(2Dd t) in

the model under consideration without cluster separation.3 In
the limit D@D it is not difficult to see thatg1

2(D);1/D3 and
g2

2(D)5D/pD2, i.e., the pairs deplete the wing of the lin
and the asymptote ofg(D) coincides with that in the Ander
son model. The function~21! also practically coincides with
the function obtained in the Anderson model in the cen
part of the line. To illustrate the influence oftc

21 Þ 0 on the
line shape function, we calculateg(D)5g2

2(D)1g1
2(D), i.e.,

the absorption line shape function of the system, in the
proximation of a normal random process fortc

215D/4 and
s51/2. The corresponding plots are presented in Fig. 3. I
seen that the presence of fluctuations has some influenc
the center of the line. As expected, the slower decay ofG(t)
leads to an increase ing(0) in comparison with the case o
no fluctuations. The behavior ofg2

2(D) near 0 represents a
intermediate case betweentc

2150 andtc
215`. In the latter

caseg2
2(0)50.3

Transforming the integration variables and the exclud
volume in ~20! as we did to obtain Eq.~10!, we obtain ex-
plicit integral representations for the free-induction dec
functions:

G2
2~ t !5

2

p
kDAI ~ t ! expF2

2

Ap
DAI ~ t !G

FIG. 3. Cluster expansion of the absorption line shape function fortc54/D
ands51/2: 1 — gD, 2 — g2

2D, 3 — g1
2D.
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ReE
0

`dx

x2
expH t

kAI ~ t !

3F ix2
2k

p

DI ~ t !

t E
x

` dy

y2
exp~2y2!G J , ~22!

G1
2~ t !5expF2

2

Ap
DAI ~ t !G H 12

2k

p
DAI ~ t !E

0

`dx

x2

3expF2
x2

k2
2

2

p
DAI ~ t !E

x

` dy

y2
exp~2y2!G J .

Plots of the functions~22! and their sumG(t) for the Förster
form of K(t) andtcD54 are presented in Fig. 4. For com
parison, the figure also presents plots of these function
the Anderson model.

Let us investigate their long-time asymptotes. The
ymptoteG1

2(t) can be found using the Laplace method
representing the integral appearing in it in the form

E
0

`

dc@c8~x!#1/k221 expF2
2

p
DAI ~ t !cG ,

where

c~x![E
0

x

dy expS 2
1

y2D ,

and it has the form

G1
2~ t@tc!;expF2

2

Ap
DAI ~ t !G H 12kG S 1

k2D
3FDAI ~ t !

p G 121/k2

@ ln~DAI ~ t !!#3~1/k221!/2J . ~23!

We recall that I (t@tc);2ttc for finite tc and
I (t→`);t2/2 for tc

2150.
If tc

2150 holds, the asymptote ofG2
2(t) can be found by

representing the integral appearing in this function in
form

ReE
0

`

dc
dz

dc
expS 2

A2

p
Dtc D ,

FIG. 4. Cluster expansion of the free-induction decay:1 — tc54/D, 2 —
Anderson model; a — total signal, b — signal from pairs, c — signal from
the matrix.
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and

z~x![E
0

x

dx expH iA2

kx J .

As a result

G2
2~Dt@1,tc

2150!;2
k2Dt

p
expS 2A2

p
Dt D

3sinSA2 ln Dt

k D @ ln~Dt !#21.

~24!

Comparing~23! and~24! with ~7! and the asymptotic expres
sion ~10!, we can see good agreement between the Ande
model and the approximation of a normal random proces
the limit of small fluctuations. In the range 0<Dt<10 the
difference between the results of these two models is
small that it is not visible on the plots; however, the relati
difference does not decrease ast increases and thus leads
an appreciable difference between the corresponding sh
functions nearD50.

The main difference between the approximation of
normal random process fortc5` and the Anderson model
which is exact in this case, is confined to the difference
tween the decay rates of the free-induction decay signa
the pairs, which amounts to

S S 12
2

5p D2A2

p D S 2

p D 21/2

59.4%.

The functionsG2
2(t) coincide to within a uniform accuracy

of 5% in the range 0<Dt<10. The Fourier transforms
g2

2(D) exhibit the greatest difference atD50 ~the relative
difference is 7%!. It decreases with increasingD and be-
comes less than 1.5% whenD>D. The total free-induction
decay coincides even more closely with the Anderson mo
Thus, the separation of 2-clusters led to a radical chang
the accuracy of the resultG(t)5exp(2A2/pDt), which fol-
lows from ~18! whentc

2150.
To find the asymptotic form ofG2

2(t) at finite values of
tc , we represent the integral appearing in it~after the re-
placements of variablesx→1/x andy→1/y) in the form

ReE
0

`

dx expFA t

2k2tc

f ~x!G ,

where

f ~x![
i

x
2

4kDtc

p E
0

x

dy expS 2
1

y2D .

Here

G2
2~ t→`!;

4•21/4

Ap
k3/2Dtc

3/4t1/4

3expS 2
2A2

Ap
DAttcD
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3ReH expS f ~x0!A
2k2tc

DA
f 9~x0!

J .

~25!

Here x0, i.e., the saddle point of the functionf (x), is the
stationary point farthest from 0 which satisfies the equat

i

x2
1

4kDtc

p
expS 2

1

x2D 50.

The asymptotic expression~25! can easily be found in the
limit Dtc→0. Then

x05
1

2
A p

kDtc

12 i

A2
,

and

G2
2~Dt@1!;~2pk3Dt !1/4 cosSA4Dt

pk
2

p

8 D
3expS 2A4Dt

pk
22A2

p
DAttcD . ~26!

Thus, damping of the free-induction decay function of t
pairs occurs even in the limit of infinitely large fluctuation
i.e., due to the configurational averaging of the motions
the pairs. Astc increases, the pointx0 monotonically ap-
proaches 0, and forDtc54 it equalsx050.84520.331i . In
this case

G2
2~ t→`!;1.42~Dt !1/4 cos~0.779ADt !

3exp~23.43ADt !. ~27!

When the fluctuation rate decreases further,x0 moves very
slowly toward the real axis:

x0;expH 2
ip/4

ln~Dtc!
J /Aln~Dtc!.

In this case

f ~x0!; iAln~Dtc!2
p/4

Aln~Dtc!
.

A comparison of~23! and ~27! gives the asymptotic expres
sion

G~ t !;expS 22A2

p
DAttcD

for t@tc ~compare Ref. 3!. The function approaches thi
asymptote att/tc;6, before which its decay is approx
mately exponential.

Thus, the two characteristic times observed in the sys
specify, respectively, the short- and long-time asymptote
the free-induction decay functions.

5. LOCAL-FIELD FLUCTUATION RATE SPECTRUM

In calculating the longitudinal correlatorK(t) of the lo-
cal fields at a particular spin we have hitherto neglected
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Let us analyze this dependence to evaluate our approx
tion and refine the form of the function.

The spin flips belonging to the wing of the resonan
line ~mainly of the spins in pairs! are caused primarily by
two processes: a two-spin process in pairs found in the s
segment of the resonance line with a width of orderD and a
four-spin process, which couples spins on the wing of
line with spins at its center. The latter process is of a hig
order, but it is resonant relative to the dipolar Hamiltonian
an isolated pair and makes it possible to transfer energy o
large distances through the spectrum.3,5 The characteristic
time tc(v) of the flip-flop transitions producing fluctuation
of the local field from the spins on the wing of the line
greater thantc(0) in the center of the line and increases
the resonant frequencyv of the spins increases relative t
the center of the line. Whenv@D holds,v is, in fact, the
eigenfrequency of the pair to which the spin under consid
ation belongs.

The matrix element of a two-spin process is, in order
magnitude,A0x , where 0 andx are the spatial positions o
two mutually resonant pairs, and the matrix element o
four-spin process isA0q

2 /v, whereq is the coordinate of a
spin in the matrix or a pair relative to the center of the lin3

We considerv@D, sincetc(D) is of the order oftc , i.e.,
the characteristic time of the flip-flop transitions in the ce
tral portion of the line. The characteristic interaction of pa
with the matrix is greater in magnitude than the interp
interaction,3 and thus the four-spin interpair process can
neglected, since it does not differ fundamentally from t
pair-matrix process.

We useWm to denote the rate of the pair-matrix proce
andWp to denote the rate of the pair-pair process. Then
spin-flip rate of a spin in a pair is

W5Wm1Wp5Um(
qÞr

8
A0q

2 A0r
2

Dv2
Z1~q!Z1~r !

1Up(
x

8
A0x

2

D
Z2v~x!. ~28!

HereUm andUp are coefficients of order unity, andZ2v(x)
is the occupation number of sitex by a pair with the fre-
quencyv. We neglect the dimensions of the pair in compa
son to the distance from it to other objects, and we assu
that the characteristic phase relaxation rate, which de
mines Wm and Wp , coincides with D and is identical
throughout the entire system@thus, Eq.~28! is the next ap-
proximation after the one considered in the preceding sec
from the standpoint of the spread in the rates of proces
occurring in the system#. The characteristic time of the flip
flop transitions is

tc~v!5K E
0

`

dt exp~2Wt!L
c

,

and we write the correlator of the local fields from spin 0

K0~ t ![exp~2Wt!5exp~2Wpt !exp~2Wmt !

[K0p~ t !K0m~ t !.
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take the configurational average at a fixed frequency. W
out taking into account the correlations in the relative po
tions of the pairs, for the first exponential function it is n
difficult to obtain

^K0p~ t !&c5^exp~2Wpt !&c'expS 2U1

D2

v2
ADt D , ~29!

whereU1.0 is a constant.
To calculate the asymptote of^exp(2Wmt)&c we first note

that because the characteristic pair–matrix interaction
greater in magnitude than the pair–pair interaction3 and the
interaction of the spins on the wing is relatively weak, t
replacementZ1(q)→nq in ~28! introduces only a small error
The conditionq Þ r is a short-range correlation and thu
can be neglected in finding the long-time asymptote; ho
ever this correlation is strong~is a restraint!; therefore, we
shall conduct a more systematic analysis.

Let us consider the quantity

tm~a!5 lim
«→0

K E
0

`

dt exp~ i«t1ta2Wmt !L
c

, ~30!

where Re«.0, Im «.0, and 0<a,1. The integral under
the limit sign converges along any contour in the upper rig
hand quadrant of the complex plane. We represent

Wm5Um(
qÞr

8
A0q

2 A0r
2

Dv2
nqnr

as

Wm5
Um

Dv2 S ( 8
q

A0q
2 nqD 2

2
Um

Dv2 ( 8
q

A0q
4 nq ,

write

expF2
Um

Dv2 S ( 8
q

A0q
2 nqD 2G

as a Gaussian integral to obtain an exponent that is lin
with respect to the occupation numbers, turn the integra
contour in~30! by 1p/2, carry out the configurational ave
aging, and perform the replacement of the integration v
ables. As a result, in the limit«→0 we obtain

tm~a!5A i

4pE0

`

dt exp@~ i t !a#t1/6E
2`

`

dy expH t1/3F i

4
y2

2
CUm

1/4

D1/4Av
E dqS 12expS iAq

4

t1/3
2 iAq

2yD D G J .

The asymptote of the inner integral is exp(2U1t
1/3) and

Re U1.0. Thus, the limiting value for the existence
tm(a) equalsa51/3. Therefore, the long-time asymptote
the correlation function of the local fields due to the fou
spin interaction is

ln^K0m~ t !&c5 ln^exp~2Wmt !&c52U2S D3t

v2 D 1/3

, ~31!
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~29! we see that the characteristic flip-flop transition tim
tc(v);v2 on the wing of the resonance line.

The correlator of the local fields is

^v l~ t !v l&5(
jq

njnq^v l
j~ t !v l

q&,

wherev l
j is the field from the spin at sitej . We assume tha

the fields from different spins do not correlate. Then

^v l~ t !v l&5(
j

nj^v l
j~ t !v l

j&

5(
j

8
9

16
A0 j

2 njK j~ t !, K j~0!51. ~32!

The distribution function of the static local fields in the sy
tem under considerationw(v)5^d(v22M2&&c has the form

w~v!5
D

pv3
expS 2

D2

pv2D , E
0

`

dv2w~v!51. ~33!

Writing ~32! in the form

^v l~ t !v l&5(
j v

8
9

16
A0 j

2 nj vK j~ t !,

wherenj v is the occupation number of sitej by a spin with
a static local fieldv on it, neglecting the short-range spati
correlations of thenj v with one another, and bringing th
integration variables into dimensionless forms, instead
~22! we obtain

G2
2~ t !5expS 2

2

Ap
D^^AI j~ t !&c&vD 2k

p
ADt

3ReE
0

` dx

x2
expH ADtS ik21x

2
2

pEx

`dy

y2 K K expS 2
DI j~ t !

t
y2D L

c

L
v

D J ,

~34!

G1
2~ t !5S 2

2

Ap
D^^AI j~ t !&c&vD S 12

2

pE0

` dx

x2

3^exp@2D2x2I ~x,t !#&c

3expH 2
2

pEkx

` dy

y2
^^exp@2y2D2I j~ t !#&c&vJ D .

Here

I j~ t ![E
0

t

dt~ t2t!K j~t!,

I (x,t) is defined asI j (t) provided j is a spin with a local
field Dx on it @x is the dimensionless frequencyx53A0r /4D
in ~20!#, ^ . . . &c indicates that the configurational averagin
is carried out with a fixed value of the static local fieldv,
and
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^X~v!&v[E
0

`

dv2w~v!X~v!.

We are interested mainly in the long-time asympto
~34!, since the purpose of this section was to take into
count the presence of slowly fluctuating objects, which be
to influence the behavior of the free-induction decay funct
specifically at large times.

In the expression forG2
2(t) in ~34! the main contribution

to the quantity

K K expH 2
DI j~ t !

t
y2J L

c
L

v

is made by the configurations and frequencies for whichI j (t)
is smallest, i.e., when the spin generating the functionI j (t) is
located at the center of the line. The specific weight of th
configurations is of order unity, so that the asymptote of
integral in~34! in the expression forG2

2(t) is the same as in
~22!. The integral in the parentheses in expression~34! for
G1

2(t) decreases ast increases, as is seen already from t
fact that consideration of slow objects leads to an effec
increase inI (t), and this accelerates the decay of the integ
under consideration@see Eq.~23!#.

To estimate^^AI j (t)&c&v we note that by introducing
configurational averaging under the radical we increase
function only slightly ~the asymptote with respect tot re-
mains the same, as follows, for example, from the c
strained character of the relative dispersion oftc(v), which
is uniform with respect tov). Thus,

2

Ap
D^^AI j~ t !&c&v;J~ t ![

2

Ap
DE

0

`

dv2w~v!

3AE
0

t

dt~ t2t!^e2Wt&c.

Using~29! and~31!, we find that the main contribution to th
asymptote with respect tot is made by the region of largev,
i.e., the term in̂ e2Wt&c that is associated with the four-sp
process. As a result, whenDt→`,

^^AI j~ t !&c&v;KADt ln~Dt !. ~35!

HereK is a constant,K.0, and the function approaches th
asymptote att/tc.101 due to the slow decay of the functio
^K0m(t)&c . Before that,^^AI j (t)&c&v;Dt. Figure 5 shows

FIG. 5. Characteristic form of2 ln G(t): 1 — case of a constant flip-flop
transition time,2 — slowing on the wing of the resonance line,3 — tc5`.
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the behavior of2 ln G(t). As characteristic cases we choo

^e2Wt&c5exp~^2At/tc0&!,

^e2Wt&c5exp$2@ t/tc~v!#1/3%,

i.e., the cases of a constant characteristic time for the fl
flop transitions and characteristic slowing of the latter on
wing of the resonance line. Heretc(v)5Tc0(11v2/D2),
andtc0D54, as previously.

It is clear from the foregoing that at very long times th
behavior ofG1

2(t) andG2
2(t) is close to~23! and~27!, and at

moderate times the total exponential factor in these functi
decreases approximately as exp(2UDt), U;1, i.e., more
rapidly than in the model with a constant fluctuation ra
Hence it follows that at short and moderate times the beh
ior of G(t) is described well by the Anderson model and th
it becomes an exponential function of a square root only
the limit of very long times. We also note here that, as
seen from~34!, the presence of a variable component with
fluctuation rate 1/tc;D/4 in the local field is sufficient for
the presence of oscillations in the signal of the pairs, and
this component determines the character of the oscillatio
This is because they appear as a consequence of the con
rational averaging of the motions in the spatially constrain
pairs, and the medium outside each pair provides for mo
tonic damping of the free-induction decay signal and s
pression of the contribution of the intrapair motions to it to
greater extent, the smaller is the fraction of the fluctuat
component in the field induced by it. The more rapidly a sp
fluctuates, the smaller is its contribution to the free-induct
decay signal. Each spin in a restricted volume is spatia
‘‘smeared,’’ and its contribution to the free-induction dec
signal is determined by the regions which make a minim
contribution; the contribution of the remaining regions d
cays rapidly. This is a specific effect of an irregular syste
The farther the spins are from the point where the field fr
them is observed, the greater is the probability of the app
ance of a spin among them that produces a slowly fluctua
field from a large part of the region where it is smeare
which determines the damping rate ofG(t). This also leads
to a difference in the influence of the spread of the fluct
tion rates in the system on the damping associated with
presence of infinite distances and on the oscillations ass
ated with finite distances.

6. EVALUATION OF THE CONTRIBUTION OF CLUSTERS OF
HIGHER RANKS TO THE CORRELATION FUNCTIONS

The performance of calculations in a higher order
cluster expansion~the separation of triads! does not alter the
results, at least when there are fluctuations of the local fie
in the system. In fact, comparing~5! and~20!, we see that the
expression for the free-induction decay function of triads h
the form

334Dzheparov et al.
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G3~ t !;expF2
Ap

DAI ~ t !GC E dr1dr2 cosS 4
Ar1

t D
3cosS 3

4
Ar2

t D expH 2CE
qPV0r1r2

dq

3expF2
9

16
Aq

2I ~ t !G J , ~36!

whereV0r1r2
is the excluded volume of a spin triad. Takin

into account that

2CE
qPV0r1r2

dq expF2
9

16
Aq

2I ~ t !G.CE
qPV0r1

dq

3expF2
9

16
Aq

2I ~ t !G1CE
qPV0r2

dq

3expF2
9

16
Aq

2I ~ t !G ,
after a replacement of variables we obtain

G3
3~ t !,expS 2

2

Ap
DAI ~ t !D FCE dr cosS 3

4
Ar2

t

2D
3expH 2CE

qPV0r

dq expS 2
9

16
Aq

2 I ~ t !

4 D J G 2

.

The expression in square brackets equals the integral in
formula forG2

2 in ~22! to within a numerical coefficient with
the replacementst→t/2 andtc→tc/2 at larget. However, it
is seen from~25!–~27! and the ensuing equations at the e
of Sec. 4 that the asymptote of this integral has the fo
exp(2bADt), whereb.0 depends weakly ontc . Thus,

G3
3~ t !;G2

2~ t !exp@2b~A221!ADt#,

and in the long-time limit the contribution of the triads ca
be neglected. The use of the expressions from this sectio
Gl

k(t) does not alter this conclusion. This reasoning is inc
rect only in the case of the complete absence of fluctuat
in the system. Then there is no damping due to averagin
the intracluster motions over the configurations and, a
seen from a comparison of~20! and ~24!, the orderk of the
cluster expansion introduces the power function (Dt)k in
front of the main exponential function exp(2A2/pDt), and
all the orders as a whole can lead to renormalization of
argument of this exponential function, which is natural, if w
recall that the Anderson model withG(t)5exp(2Dt) is ex-
act in this case.

On the other hand, at small and moderatet the contribu-
tion of the triads is suppressed by their small concentratio3

so that they can be taken into account in the shape func
of the resonance line in the form of a numerical correction
the coefficient in the asymptotes of the pairs on the dis
wing, but there only the depletion of the wing by cluste
which is achieved already whenk52, is generally signifi-
cant.
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In the present work we have quantitatively analyzed
main problem in the theory of the shape function and fr
induction decay in a magnetically dilute spin system both
the basis of the exactly solvable Anderson model and in
approximation of a normal random process for local fiel
In the limit of slow fluctuations the two approaches prac
cally coincide. The temporal fluctuations of the spins on
wing of the absorption line are created mainly by a four-s
process, which appears in second-order perturbation the
the corresponding correlation function of the local field d
caying considerably more slowly than the functions usua
employed to describe such processes in spatially reg
media.18 In the system there are very slow fluctuation
which do not make a significant contribution to the long-tim
asymptotes due to their small statistical weight, but lead
drastic slowing of the approach to the asymptote. As a res
the total free-induction decay function of the system at c
siderable times can be described by the Anderson mode

The present result is very important and nontrivial. T
fact is that a Lorentzian line usually appears in the spin
netics of spatially regular systems in the limit of short co
relation times, i.e., fast fluctuations of the local fields. Th
assertion is valid for almost any type of interaction and a
dimension of the space. In magnetically dilute systems
in the Anderson model the mechanism for the appearanc
a Lorentzian line is totally different. Here, in contrast, a
infinitely long correlation time and a Lorentzian line appe
only if the interaction weakens with the distance as 1/r d,
where d is the dimension of the space. It is known that
Lorentzian line does not undergo motional narrowing, if t
motion has the character of uncorrelated collisions. In re
ity, the temporal fluctuations of local fields are smooth, a
therefore, the faithfulness of the Anderson model for lo
times is remarkable.

A model which is simpler than the one used in t
present work is based on the assumption that the field at e
spin can be approximated by a normal random process
that only the second moment depends on the configurati3

The expression then obtained for the free-induction deca

G~ t !5expF2A2

p
DA2I ~ t !G . ~37!

In this model the Lorentzian line changes shape and con
ues to narrow strongly as the fluctuation rate 1/tc of the local
fields increases. In the limit of slow fluctuations Eq.~37!
agrees satisfactorily with the Anderson model; however,
the case of realistic values oftc the result of this approach a
moderate times diverges from the conclusions of the clu
analysis, which are far closer to the Anderson result.

The total free-induction decay function is exponential
short and moderate times and becomes an exponential f
tion of a square root at large times, the time when the
ymptote is approached being significantly dependent on
form of the correlation function of the local fields from th
slowest objects in the system. Strong slowing of the
proach of the free-induction decay to the asymptote actu
occurs.
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In-
made it possible to show that the regular procedure for
lating strongly interacting groups of spins from a syste
leads to a faithful description of many phenomena and
the second-order expansion is already sufficient, since
third-order expansion produces only a slight correction.

The existing theories of free-induction decay do n
claim to describe it at moderate and long times. The tre
ment that we have performed predicts the character of f
induction decay at practically all times, making it possible
experimentally test the correspondence of the model c
structed in the present work to real processes in dilute s
systems.
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Galvanomagnetic phenomena in layered conductors

-
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The dependence of the resistance and the Hall field in a layered conductor with a quasi-two-
dimensional electron energy spectrum of arbitrary shape on the magnitude and orientation of the
magnetic field in relation to the layers is analyzed. It is found that when current flows
perpendicular to the layers, the resistance of the specimen strongly depends on the angleq
between the normal and the vector of a strong magnetic field. The Kapitza law is shown to hold
within a fairly broad range of magnetic fields in the plane of the layers, i.e., the resistance
increases linearly with the magnetic field strength. The Hall field proves to be insensitive to the
emergence of open sections of the Fermi surface, and the Hall constant in strong magnetic
fields is the same for any orientation of the magnetic field and the current. ©1997 American
Institute of Physics.@S1063-7761~97!01608-9#

The search for new superconducting materials is to asymmetry of the kinetic coefficients,14 the resistance of con
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great extent responsible for the interest in low-dimensio
conductors. Before the discovery of metal-oxide superc
ductors attention was focused on superconductors of org
origin characterized by a layered or filament-like structu
with a significant anisotropy in electrical conductivity in th
normal~nonsuperconducting! state. Undoubtedly, the behav
ior of such superconductors in a magnetic field is of intere
In contrast to metals, here a magnetic field may have
effect on low-dimensional conductors and galvanomagn
effects inherent in common metals may be enhanced.

In 1928, Kapitza1 discovered a remarkable phenomeno
the linear increase with magnetic field strength of the re
tance of metals at liquid-air and liquid-carbon-monoxi
temperatures. To detect this effect Kapitza had to build m
nets in which the magnetic field was as high as 30–50 T
the same time, the University of Leiden had the facilities
study the behavior of substances at even lower temperat
which made it possible to enhance the effectiveness
weaker fields due to the increase in the mean free path o
charge carriers. Shubnikov and de Haas discovered, h
ever, that at liquid hydrogen temperatures the resistanc
bismuth single crystals~the most perfect substance at th
time! exhibited a much more complicated dependence~com-
pared to the linear increase with magnetic field! of the resis-
tance on the magnetic field strength,2 while at liquid helium
temperatures the resistance revealed a strong oscillatory
pendence on the reciprocal magnetic field strength~the
Shubnikov–de Haas effect!.3 The discovered low-
temperature oscillatory effect was found to be common to
metals, but most vividly the Shubnikov–de Haas effe
manifested itself in layered conductors of the type of tetra
afulvalene salts and tetraselentetracene halogens.4–13 It
would be interesting to see to what extent these layered
ductors are more convenient for studying the Kapitza effe

In the 1930s the linear increase in the resistance of m
als with the magnetic field strength discovered by Kapi
did not agree with the main principles of the electron the
of metals since, according to the Onsager principle of
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ductors must be an even function of the magnetic fi
strength. The first attempt to explain the results of Kapitz
experiments was made only in 1958~Ref. 15!. It was found
that the fact that the Onsager principle does not contra
the linear dependence of the resistance of metals onH is due
to the complicated dependence of the energy« on the quasi-
momentump of the charge carriers. The main characteris
of the electron energy spectrum, the Fermi surfa
«(p)5«F , is open for almost all metals, so that the orbits
the conduction electrons with the Fermi energy«F in a mag-
netic field for which p–H5const pass through many un
cells of the momentum space. The period of revolution of
conduction electrons along such highly elongated orb
T52p/V, can be much shorter than the mean-free-path t
t, no matter how strong the magnetic field. As a result,
eraging the resistance of a polycrystalline wire over the d
ferent orientations of the crystals and hence over the var
electron orbits leads to a linear dependence of the wi
resistance on the magnitude of a strong magnetic field
which V0t@1, where V0 is the maximum frequency o
revolution of a Fermi electron in the magnetic field.15,16 If
the thickness of a polycrystalline specimen of a metal w
an open Fermi surface is much larger than the crysta
sizes, the specimen’s resistance in a strong magnetic fie
proportional toH4/3 ~Refs. 17 and 18!, i.e., ther vs. H de-
pendence is close to linear. For a single-crystal specimen
spectrum of all possible frequencies of revolution of t
Fermi conduction electrons also extends from zero toV0 ,
provided that the Fermi surface has saddle points. In
case there may be self-intersecting orbits, traveling alo
which an electron cannot complete a revolution. Howev
the fraction of the electron orbits close to the se
intersecting one, for which the periodT is longer than the
mean-free-path time, is proportional to exp(2V0t), since the
period, regarded as function ofpH5p–H/H, becomes loga-
rithmically divergent as a self-intersecting orbit is a
proached. As a result, in a very narrow range of magn
field strengths,19 the complicated dependence ofr on H is

33706$10.00 © 1997 American Institute of Physics



rapidly replaced, as the field gets stronger, by a quadratic
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dependence or even by saturation of the resistance.
In quasi-two-dimensional conductors, the period of rev

lution of the charge carriers in a magnetic field is wea
dependent on the momentum projectionpH , which is the
reason for the large increase in the magnetoresistance o
lation amplitude. In contrast to metals, where only a sm
fraction of the charge carriers with a cross-sectional are
the Fermi surface close to the extremal value participate
the formation of the Shubnikov–de Haas effect,20–22 in
quasi-two-dimensional conductors almost all the charge
riers with the Fermi energy contribute to the quantum os
latory effects. There is every reason to believe that in s
conductors the number of conduction electrons near a s
intersecting orbit, for whichT.t, is much higher than in
ordinary metals. These electrons probably provide the le
ing contribution to conductivity in a much broader range
strong magnetic fields (V0t@1), and averaging over th
various frequencies of revolution of the charge carriers le
to a result that differs strongly from the one obtained
metals.

Most organic superconductors, which are layered str
tures, appear to have a quasi-two-dimensional electron
ergy spectrum, with the electrical conductivity along laye
being much higher than the electrical conductivity along
normaln to the layers. Many layered conductors, includi
the tetraselentetracene halogens and tetrathiafulvalene
mentioned earlier, exhibit metallic conductivity even acro
the layers. This justifies, in describing the electron proces
such conductors, the use of the concept of quasiparticles
carry the electron chargee and are similar to conduction
electrons in metals. The energy of the charge carriers in s
conductors,

«~p!5 (
n50

`

«n~py ,pz!cos
anpx

\
, ~1!

is weakly dependent on the momentum projectionpx5p–n,
and the Fermi surface is a mildly corrugated cylinder wi
possibly, small closed cavities belonging to anomalou
small groups of charge carriers. Herea is the layer separa
tion, \ is Planck’s constant, the maximum value of the fun
tion «1(py ,pz) on the Fermi surface ish«F!«F , and the
maximum values of«n(py ,pz) with n>2 are even smaller
This property is characteristic of the dispersion law of t
charge carriers in the tight-binding approximation, when
overlap of the wave functions of the electrons belonging
different layers is negligible.

We will now analyze the dependence of the magneto
sistance and the Hall field on the magnitude and orienta
of the magnetic field with very general assumptions conce
ing the shape of the quasi-two-dimensional electron ene
spectrum of the layered conductor.

We find the relationship between the current density a
the electric field,

j i5s ikEk ~2!

by solving the kinetic equation for the charge-carrier dis
bution function
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In an approximation linear in the weak electric fieldE the
equation is

e

c
v3H

]c i

]p
2Ŵcol$c i%5v i , ~3!

wherev5]«/]p and f 0(«) are the velocity and equilibrium
Fermi distribution function of the conduction electrons, a
c is the speed of light in vacuum. In thet-approximation for
the collision integralŴcol , in which Ŵcol$c i%52c i /t, the
solution of Eq.~3! has the form

c i~ t,pH ,«!5E
2`

t

dt8v i~ t8,pH ,«! exp
t82t

t
. ~4!

For the variables in the momentum space we have ta
the constants of motion« andpH andt, the time of motion of
a charge in the magnetic fieldH5(H sinq, 0,H cosq), ac-
cording to the equations

]px

]t
5

evy

c
H cosq,

]py

]t
5~vz sin q2vx cosq!

eH

c
, ~5!

]pz

]t
52

evy

c
H sin q.

By using the solution~4! of the kinetic equation we can
easily find the components of the electrical conductivity te
sor:

s ik52
2e3H

c~2p\!3 E d«d~«2«F!

3E dpHE
0

T

dt v i~ t !E
2`

t

dt8vk~ t8!exp
t82t

t
5^v ick&.

~6!

Next we assume that the Fermi surface of the laye
conductor with a quasi-two-dimensional electron ene
spectrum is a mildly corrugated cylinder that is ‘‘open
along thepx axis. Forq finite, all sections of this cylinder by
the planep–H5const are closed trajectories and are alm
indistinguishable whenh!1. Only atq50 do open trajec-
tories appear in the momentum space, and along these
jectories the charge carriers move with a period

T5
2pm* c

eH
5

c

eH E
0

2p\/a dpx

vy
. ~7!

The average value of the velocityvy over a period is
finite:

vy5
1

T E
0

T

dt vy~ t !5
2p\ec

aHT
5

\

am*
, ~8!

with the various directions of drift of the charge carrie
fanning out over the entireyz plane. Here the component
syy andszz of the electrical conductivity tensor coincide i
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layers in the absence of a magnetic field. However, the c
ponentss i j in which at least one index coincides withx are
negligible whenh!1, while in a strong magnetic field the
decrease asH grows, sincevx50.

On the boundary section of the Fermi surface,pH5ps

~here ps is the momentum projection along the magne
field at the saddle point!, which separates the open electr
trajectories and a small region of closed orbits, the per
becomes infinite and the charge carriers moving along or
close to this section contribute considerably to the com
nentssx j ands ix , which we calculate below.

The period of electron motion along orbits withpH close
to ps is extremely long, since most of the time the electro
are near the saddle pointps5(0,0,ps) of the constant-energy
surface, wherevx5vy50. In the immediate vicinity of the
sectionpH5ps the projectionvy of the electron velocity is a
complicated function oft, but far from this section we can
ignore the smallt-dependent corrections in parameterh in
the expression forvy(t). This yields the following expres
sion for the period of the charge-carrier motion:

T~pH!5
2p\c

aeHvy~0!
5

2pvF

V0vy~0!
, ~9!

which for vy!vF5«Fa/\ may become comparable to th
mean-free-path time. As a result, the contribution of
charge carriers with a small velocity projectionvy to sxx is
the leading one. If we ignore the smallt-dependent correc
tions in the expression forvy , then px becomes a linea
function of the time of the motion of the charge in the ma
netic field, and the charge’s velocity

vx52 (
n51

`
an

\
«n~py ,pz!sin~nVt ! ~10!

is, in the leading approximation in parameterh, a harmonic
function of t, i.e., is determined primarily by the first term i
~10!. We can now easily calculate the componentsxx of the
conductivity tensor in this approximation:

sxx5
2e2t

~2p\!3 E 2pm* dpz(
n51

`
$«n~py ,pz!an/\%2

11~nVt!2 .

~11!

In the immediate vicinity of the sectionpH5ps we must
refine the numerators in~11! by replacing them withuvx

nu2.
Sincepx for these charge carriers is a complicated funct
of t, the Fourier transforms of their velocityvx

n do not nec-
essarily decrease as the numbern grows, and the contribu
tion to the asymptotic behavior ofsxx of the electron from a
small neighborhood of the saddle point of the Fermi surf
is not limited only to the first harmonics in the expansion
vx(t) in a Fourier series. The maximum value of the veloc
of electron motion along they axis along the boundary sec
tion pz5ps is equal in order of magnitude toh1/2vF , and the
t-dependence can be ignored only whenvy(0)@h1/2vF .

We writesxx in the formsxx5sxx
(1)1sxx

(2)1sxx
(3) , where

sxx
(1) allows for the contribution of charge carriers for whic
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contribution tosxx of the conduction electrons with ope
orbits, withvy<h1/2vF , and the last term

sxx
~3!5

4e2t

~2p\!3 E
ps

p0
dpz2pm* ~pz! (

n51

` uvx
nu2

11~nVt!2 ~12!

allows for the contribution tosxx of charge carriers with
closed orbits. Herep0 is the maximum value ofpz at the
reference pointp05(p\/a,0,p0) of the Fermi surface.

For g051/V0t.h1/2, integration with respect topz

over the small interval whereh1/2vF,vy!vF yields

sxx
~1!5s0h2g0 , ~13!

wheres0 coincides in order of magnitude with the electric
conductivity along the layers in the absence of a magn
field.

Near the reference point of the Fermi surface the cyc
tron effective mass of the charge carriers,m* , is propor-
tional to h21/2, and increases as we get closer to the sec
pH5ps , on which it becomes infinite. Whenh1/2!g0 , the
conduction electrons belonging to the closed sections of
Fermi surface do not have enough time to complete a
revolution along their orbits, and to high accuracy their co
tribution to sxx can be written as follows:

sxx
~3!5

4e2t

~2p\!3 E 2pm* ~pz!dpzvx
25s0h5/2. ~14!

Here and in what follows we ignore unimportant numeric
factors of order unity in the formulas forsxx .

Thus, forh1/2!g0!1, the small fraction of conduction
electrons with open orbits, which slowly move along they
axis, provide the leading contribution tosxx , a contribution
much larger than that of all the other charge carriers on
Fermi surface.

As the magnetic field gets stronger, the number of c
duction electrons withT.t decreases, and the contributio
to sxx of charge carriers with orbits extremely close to t
sectionpH5ps becomes significant. We can easily find th
dependence onpH of the period of motion of charge carrier
near a self-intersecting orbit by expanding the energy
powers ofpy . Keeping only the first two terms in Eq.~1!, we
obtain

«~p!5«0~0,pz!1
py

2

2m1
1«1~0,pz!cos

apx

\
. ~15!

If we now use Eq.~7!, we arrive at an expression fo
T(pH):

T~pz!5
\c

aeH H m1

«1~0,pz!
J 1/2E

0

p

da~j21sin2 a!21/2,

~16!

where j25$«0(0,ps)2«0(0,pz)1«1(0,ps)2«1(0,pz)%
3@2«1(0,pz)#21.

For j!1, the period of the charge-carrier motion,

T~pz!.V0
21h21/2 ln

1

j
, ~17!

339V. G. Peschanski 



diverges logarithmically, and the contribution tosxx of the
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electron from a small neighborhood near the boundary s
tion of orderDpz5ps2pz.psh has the form

sxx
~2!5s0h5/2g0

2E
1

`

du
u3 exp$2u%

u2g0
21h

.s0

g0
2h5/2

g0
21h

. ~18!

While for h1/2!g0 the contribution tosxx of the charge
carriers belonging to a small region of orderp0h in the vi-
cinity of a self-intersecting section of the Fermi surface
negligible andsxx.sxx

(1) , in the opposite limiting case th
contribution of these charge carriers is of the same orde
magnitude as that of all the other conduction electrons. It
easily be demonstrated thatsxx

(1) for h.g0
2 also decrease

with increasing magnetic field strength in proportion tog0
2.

As a result, when the magnetic field is strong, i.e.,g0<h1/2,
we have

sxx.s0h3/2g0
2 . ~19!

The behavior of the Hall field in layered conductors a
differs from that in metals. To make the results of the pres
investigation more graphic, we examine the galvanomagn
effects in a conductor with a simple model dispersion law
the charge carriers:

«~p!5
py

21pz
2

2m
2h

vF\

a
cos

apx

\
, ~20!

which uses the approximation of loosely bound~almost free!
charge carriers in the planes of the layers. Since the lea
contribution to the electrical conductivity across the cond
tor layers is provided by the charge carriers with smallvy

and in calculating the galvanomagnetic characteristics
dependence of«n(py ,pz) on pz at q50 can be ignored, the
analysis of galvanomagnetic phenomena that follows is o
fairly general nature.

Using the equations of motion of a charge in a magne
field ~Eqs. ~5!! at q50 and the dispersion law~20!, we
obtain

cx5g~cy2vyt!, ~21!

whereg5mc/eHt. This leads to

sxx5gsxy , syx5g~syy2s0!, sxy52syx , ~22!

and the matrix form of the tensors i j becomes

s i j 5S sxx g21sxx 0

2g21sxx s02g22sxx 0

0 0 s0

D , ~23!

while for the resistance tensor~which is the inverse of~23!!
we have

r i j 5S sxx
212s0

21g22 2~gs0!21 0

2g21s0
21 s0

21 0

0 0 s0
21
D . ~24!

Clearly, to a high degree of accuracy we can assume
the resistivity of the conductor perpendicular to the laye
rxx , is approximately 1/sxx and increases linearly with th
magnetic field strength whenh1/2!g!1. The Hall field
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is also proportional toH, while the Hall constantR is in-
versely proportional to the entire volume inside the Fer
surface. In metals the Hall constant behaves similarly o
for open sections of the Fermi surface.

The absence of magnetoresistanceDr5r(H)2r(0)
when the current flows along layers is due to the quadr
dispersion of the charge carriers in theyz plane. When the
dependence of the carrier energy onpy andpz is more com-
plicated, the resistance increases with magnetic field stre
and reaches a saturation plateau, just as it does in ordi
metals. However, in contrast to metals,Dr in quasi-two-
dimensional conductors is extremely low and vanishes
h50. The reason is that only the projection of the magne
field on the normal to the layers has a strong effect on
dynamics of the charge carriers, and this projection is ni
q50.

For q finite but smaller thanh, the electrical conductiv-
ity along the layers in a magnetic field differs little from th
conductivity in the absence of a magnetic field, and as lo
as g0>h the formulas~13! and ~19! for sxx remain valid.
However, forq@h there are no self-intersecting orbits, an
the resistance of the specimen perpendicular to the la
becomes saturated in realistic magnetic fields.

If we use the expression~20! for the dispersion law of
the charge carriers, the components of the resistance te
are

r i j 5S 1

sxx
2

cos2 q

s0~g0
21sin2 q!

H cosq

Nec
0

2
H cosq

Nec

1

s0

H sin q

Nec

0 2
H sin q

Nec

1

s0

D ,

~26!

where N is the charge carrier number density. The abo
matrix r i j is valid for all values ofg05mc/eHt and all
finite values ofq. Here the Hall constant is equal to 1/Nec
for all orientations of the magnetic field and current dens
with respect to the conductor layers. This unique feature
the Hall effect in quasi-two-dimensional conductors with
arbitrary dispersion law for the charge carrier holds only
strong magnetic fields, where the frequency of revolution
the electrons along closed orbits is much lower than th
collision rates.

The conductor’s resistance to a current flowing in t
direction perpendicular to the layers is determined prima
by the inverse of the componentsxx of the conductivity ten-
sor. The weak dependence ofpH on the energy and velocity
of the charge carriers leads to a situation in whichsxx be-
comes highly sensitive to the orientation of the strong m
netic field. Forq@g0 the expansion ofsxx in a power series
in h begins at least with quadratic terms. However, for so
values of angleq the asymptotic behavior for smallh of the
electrical conductivity across the layers,
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hs,
5
2e2H

c~2p\!3 E
0

2p\ sin q/a

dpHS 12expH 2
T

t J 21D
3E

0

T

dtE
t2T

t

dt8(
n,m

«n~ t,pH!«m~ t8,pH!

3sinH an

\ S pH

sin q
2pz~ t,pH!cot q D J

3sinH am

\ S pH

sin q
2pz~ t8,pH!cot q D J

3exp
t82t

t
, ~27!

can vary considerably.
For q@h the projectionspi(t,pH)5pi(t)1Dpi(t,pH)

of the electron momentum are weakly dependent onpH , and
in calculating the asymptotic expression forsxx we can drop
the Dpi in ~27!. As a result, for smallh/q and g0!q we
have

sxx5
e2tam* ~q!sin q

8p3\4 (
n51

`

n2uI n~q!u2

1s0h2H h2f 1~q!1S g0

sin q D 2

f 2~q!J , ~28!

where

I n~q!5
1

T E
0

T

dt «n~ t !expH ian

\
pz~ t !cot qJ , ~29!

and f 1(q) and f 2(q) are functions of order unity that de
pend on the specific form of the dispersion law for the cha
carriers. These two functions become important only at v
uesq5qc at whichI 1(q), the leading term in the sum ove
n, vanishes.

Clearly, I n(q) has a large number of zeros. Whe
cotq@1, the leading contribution toI n(q) is provided by
the integral in~29! over the small section of the electro
orbit wherevy is small. Using the stationary-phase metho
we get

I n~q!5
«n~ t1!

T U 2p\c

anvy8~ t1!cot q U1/2

cosH anDp cot q

2\
2

p

4 J .

~30!

Here Dp is the diameter of the Fermi surface along thepz

axis, and the prime denotes differentiation with respect tot at
the stationary phase point, wherevy(t1)50.

If the terms in the sum overn in ~28! decrease rapidly
enough with increasingn that the I n(q) with n>2 are
smaller than vFhg0 /sinq, then at q5qc and
h,g0 /sinq!1 the resistance perpendicular to the lay
increases quadratically with the magnetic field strength,
reaches the saturation plateau at a value of orders0

21h24

only when the magnetic fields are stronger, whereup
g0!h sinq.
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proves to be quite sufficient for studying the galvanoma
netic characteristics of layered conductors of organic ori
that are tetrathiafulvalene~TTF! salts, in which the range o
strong magnetic fields (g0!1) is attainable.

The fact that the specific angular dependence of
magnetoresistance of such conductors was observed
experiments4,5,10 convincingly supports the existence of th
discussed orientational effect: significant variation in t
asymptotic behavior of the magnetoresistance for certain
entations of the strong magnetic field in relation to the laye

In layered high-Tc oxide-cuprate superconductors, th
mean free paths of the charge carriers in the normal~nonsu-
perconducting! state are moderate and achieving the con
tions for a strong magnetic field is difficult. In a weak ma
netic field the magnetoresistance strongly depends on
mechanisms of relaxation of the charge carriers. To interp
the anomalous behavior of resistance observed in some h
Tc bismuth superconductors~the nonmonotonic dependenc
of the resistance on the temperature and the negative ma
toresistance across the layers in a longitudinal magn
field!, in the collision we must consistently take into accou
the relaxation processes that occur in the electron system
allowing for the fluctuation mechanism of electrical condu
tivity Dorin et al.23 and Balestrinoet al.24 gave a qualitative
explanation of these anomalies.

Nevertheless, in purer high-Tc superconductors, one ex
pects that at low temperature and forh1/2&g0!1 the mag-
netoresistance perpendicular to the layers increases line
with the transverse magnetic field, irrespective of the dep
dence of the collision integral on the temperature and m
netic field strength, since the asymptotic expression for
magnetoresistance across the layers in this range of mag
fields is independent~just as the Hall field is! of the mean-
free-path time of the charge carriers.
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Frequency mixing in a bistable system in the presence of noise

A. N. Grigorenko, P. I. Nikitin, and G. V. Roshchepkin

Institute of General Physics, Russian Academy of Sciences, 117942 Moscow, Russia
~Submitted 15 November 1996!
Zh. Éksp. Teor. Fiz.112, 628–642~August 1997!

The dynamics of a bistable system resulting from the action of several periodic perturbations and
noise is studied. The response of the system at combination harmonics and the changes in
the response caused by high-frequency modulation and a constant field that removes the
degeneracy in the bistable system are calculated. The mixing of harmonics is investigated
experimentally in an iron garnet thin film. It is shown that the higher harmonics exhibit behavior
characteristic of stochastic resonance and that the form and symmetry of the dependence of
harmonics on the constant field removing the degeneracy can be used to determine the
characteristics of a bistable system with respect to its response to external periodic
modulation. © 1997 American Institute of Physics.@S1063-7761~97!01708-3#

Stochastic resonance, a noise-induced increase in the re- X~m!
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sponse of a bistable system to periodic modulation, has
tracted a great deal of attention on the part of researchers1–10

Their interest is attributed to the fact that under stocha
resonance noise increases not only the response of the
tem, but also the signal-to-noise ratio.

Let us recall the main features of stochastic resonanc
system in a bistable potential with two degenerate minim
usually considered. In the presence of a small harmonic fo
the response of the system~the total spectral density of th
generalized coordinate of the system in a certain freque
range measured at the frequency of the external force! is
determined by the local ‘‘stiffness’’ of the potential min
mum in which the system is found. When there is noise, i
a random force that causes the system to undergo transi
between the minima, the response of the system is de
mined by a certain global ‘‘effective’’ stiffness of the pote
tial, which can be much smaller than the local stiffness of
minimum. Thus, the addition of noise to a bistable syst
causes an increase in the response of the system to harm
modulation and can lead to an increase in the signal-to-n
ratio.

Such behavior is not described by the extensively st
ied linear-response theory. In fact, the total force acting o
system under the conditions of stochastic resonance con
of a small periodic force and a fairly large random force a
is, therefore, not small. At the same time, after averag
over the noise component, a linear function of the modu
tion force can be isolated in the response, and the nonlin
system can be replaced by a linear system with parame
that depend on the noise level. If the noise is created
thermal fluctuations and the system is in thermodyna
equilibrium, fluctuation-dissipation theory and linea
response theory can be used.9

Let us consider a system whose response to a static f
f is given by the formulaX5X( f ) as the simplest exampl
of such a replacement. We assume that the force acting
the system consists of a small periodic forcef ; and a fairly
large random forcef ran and that the frequencies are such th
the total response is given, as before, by the form
X5X( f ;1 f ran). Then
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Averaging and isolating the part that is linear with respec
the modulation force, we obtain

X;5(
m

X~2m11!

~2m!!
^ f ran

2m& f ;5k f; ,

where the constantk depends on the noise parameters. Wh
the noise signal is weak, the response is determined by
differential X;'X8 f ; and is local. When the noise force
large, the response is determined by the global character
functionsX( f ) and the features of the potential. The ma
difference between stochastic resonance and the eleme
case lies in the need to average the nonlinear equation
motion.3,5,7,8Nevertheless, stochastic resonance is one of
few nonlinear problems in which it is possible to obta
fairly accurate analytical results. We cite Kapitsa
pendulum11 as a fundamental example of such problems.

Stochastic resonance has been investigated experim
tally in various bistable systems: lasers,4 electrical circuits,3,6

a uniaxial ferromagnet,12 etc. A resonance theory,5,7–9which
includes such concepts as the resonance phase,13 the Q
factor,14 and the time of the first transition,15 has been devel-
oped. However, the attention of those investigators was
cused on harmonic modulation, and questions concerning
mixing of frequencies in a bistable system in the presenc
noise were addressed only comparatively recently.16–19Con-
tinuing the investigation begun in Ref. 14, in this paper
shall thoroughly examine the mixing of harmonics in
bistable potential. The interest in this question is due to
possibility of obtaining a stochastic resonance curve wit
high Q factor ~i.e., a stochastic resonance peak of high a
plitude!. Actually, in the case of stochastic resonance
minimum of the signal-to-noise ratio is determined by t
response associated with the dynamics of the system w
one potential well. At the same time, there is no mixing
harmonics in a parabolic potential; therefore, the smalle
is, the lower is the noise level in the system. Special atten
will be focused on the asymmetric case, in which the pot
tial minima are different. The layout of the paper is as fo

34308$10.00 © 1997 American Institute of Physics
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FIG. 1. Diagrams of the position of the
sample in a quadrupole magnetic fiel
~a! and the focusing of laser radiation o
the sample~b!: 1 — substrate,2 — iron
garnet film, 3 — polarized laser radia-
tion beam,4 — light polarization direc-
tions.
lows. In Sec. 2 we describe the experimental setup that was
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of the field. Such a geometry makes it possible to avoid the
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used to study the mixing of harmonics in a ferromagne
system. Section 3 presents the principal experimental res
The theory of the response of a bistable system subjecte
the action of two harmonic forces in the presence of nois
presented in Sec. 4. Then Sec. 5 compares the theory
experiment, and the main results and conclusions are g
in Conclusions.

2. DESCRIPTION OF THE OBJECT OF INVESTIGATION AND
THE SETUP

The mixing of harmonics under the conditions of st
chastic resonance was studied experimentally in a bist
magnetic system in the form of a local portion of a doma
boundary in a thin easy-axis iron garnet film. It is known20

that the motion of domain boundaries in iron garnet film
consists of jumps of local sections. These jumps appear
cause of the interaction of the boundary with pinning sit
Thus, a local portion of a domain boundary fixed by an e
ternal field between two nearby pinning sites is a very sim
bistable system. The characteristics of the motion of dom
boundaries, the parameters of the pinning sites, and an a
sis of an ensemble of magnetic defects in iron garnet fi
are presented in greater detail in Refs. 21 and 22.

Films of the iron garnets ~LuBi!3~FeGa!5O12

and ~GdTlBi!3~FeGa!5O12 with thicknesses from 7 to
30 mm, a saturation magnetization from 80 to 500 G, a
an anisotropy field from 1 to 1.8 kOe were investigate
The results presented in this paper were obtained o
~LuBi!3~FeGa!5O12 film with the following characteristics: a
saturation magnetization 4pMs580 G, an anisotropy field
Ha51800 Oe, a thicknessh530 mm, and a stripe period
P525 mm.

A local portion of an isolated domain boundary with
typical dimension;10 mm, which was immobilized be-
tween two nearby pinning sites separated by a distanc
;0.4 mm, served as a bistable system. The position of
local portion in the film served as the generalized coordin
and a bistable potential appeared because of the intera
of the domain boundary with the pinning sites.

To form an isolated boundary the iron garnet film w
placed in a magnetic field gradient equal to 2000 Oe/c
which was created by a special system of magnets.23 Figure
1a shows the magnetizing of a film in a quadrupole field w
the formation of a straight isolated boundary in a saddle
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interactions between the numerous domain boundaries
ally present in uniaxial films. In addition, by displacing th
film relative to the saddle line of the gradient field, we cou
obtain a straight isolated domain boundary at any des
place in the film.

It should be noted that because of the presence of a l
set of pinning sites, the local portion of the domain bound
moved in an effective bistable potential only when magne
fields weaker than 0.5 Oe were applied. When the fields w
stronger, motion took place in a multistable potential.

The displacement of the local portion was recorded b
standard magneto-optical method with transillumination.
block diagram of the setup is presented in Fig. 2. A beam
the linearly polarized output of He–Ne laser1 with a wave-
length l50.63mm and a polarization plane~the yz plane!
perpendicular to the plane of the figure was focused by
objective lens2 with a focal lengthF51.5 cm onto the sur-
face of iron garnet film3, which was deposited epitaxially o
a transparent gallium-gadolinium garnet substrate4.

The iron garnet film was immersed in a quadrupole m

FIG. 2. Block diagram of the setup:1 — laser,2 — objective lens,3 — iron
garnet film,4 — substrate,5 — system of magnets,6 — objective lens,7 —
Wollaston prism,8 — photodetection device,9, 10, 11 — coils for creating
magnetic fields,12— noise generator,13— selective nanovoltmeter,14, 15
— generators of periodic signals,16, 17 — oscillographs used to monito
the main signals,18 – source of a constant magnetic field,19 — recorder.
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of polarized radiation passed through the sample, the po
ization vector turned in accordance with the direction ofM s

~see Fig. 1b!. As a result, the original light beam split int
two with oppositely oriented polarization vectors. Objecti
lens6 with a focal lengthF516 cm projected the image o
the illuminated portion of the film onto the plane of the ph
todetection device8. After passage through the Wollasto
prism7, the polarized beams were separated in space acc
ing to their directions of propagation and entered differ
photodiodes. Apart from the two photodiodes, the photo
tection device included a noise-subtraction circuit and
amplifier, whose output was fed into the model 233 selec
nanovoltmeter13 and oscillograph16. Thus, the measure
signal describes the variation of the optical flux appear
upon displacement of the domain boundary, and in our c
it was directly proportional to the displacement.

Coil 9 served as a source of a magnetic noise field. T
pair of coils10 and11 served as a source of harmonic ma
netic fields. All the coils were located in the immediate v
cinity of the film, as is shown in Fig. 2. Coil10, which
created a field that varies slowly with a constant rate, w
positioned above the film, and the turns of coil9 and of coil
11, which was a generator of a harmonic field, ringed
portion of the film below the focal spot of the light beam
When the coils were oriented this way, the perturbing fie
and the noise field were directed along they axis perpendicu-
larly to the surface of the film, and the motion of the doma
boundary was parallel to thex axis. For the purpose of re
ducing the interference caused by vibrations when sm
changes in the magneto-optical signals were measured
entire structure was placed on an optical bench.

During the experiments a magnetic noise field was
cited by an electrical signal formed by noise generator12.
For monitoring and recording purposes, the same signal
fed into selective nanovoltmeter13. Model G4-153 genera
tors 14 and 15 served as sources of harmonic signals. F
monitoring and adjustment purposes, these signals wer
multaneously fed into oscillographs16 and17. Coil 10 was
powered by dc generator18, which formed a slowly varying
signal of both polarities, so that the field of coil10 increased
continuously from255 mOe to155 mOe. The optical sys
tem was aligned and the instruments were adjusted be
the experiments were begun. The adjustments serve
achieve the following principal goals.

1! The focal spot must be small enough that averaging
the response signal over many local portions of the dom
boundary would not occur. This was characterized by
shape of the signal: when the driving field varies smooth
the signal should be stepped.20

2! The domain boundary must divide the illuminate
portion of the film under the focal spot into two symmetr
parts~sectors!, as is shown in Fig. 1b. Then, all other cond
tions being equal, the motion of the domain boundary wo
induce the strongest response signal.

3! The location of the domain boundary in the gradie
magnetic field must be confined between two potential w
of the same depth.

Fulfillment of the last condition was determined in th
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presence of a harmonic field, causing an abrupt increas
the response signal, which was recorded by the selec
nanovoltmeter13. Then a weak constant current was su
plied to coil 10 using generator18. The resultant magnetic
field displaced the domain boundary along thex axis, and a
decrease in the response signal was consequently obse
Observation of a decrease in the signal to the same l
when the direction of the current is reversed and, acco
ingly, the domain boundary is displaced in the opposite
rection, would attest to fulfillment of the condition.

4! The Wollaston prism7 must be oriented so that th
signal from the photodetection device in the form of a no
track would have a minimal amplitude in the absence o
driving field.

Adjustment of the instruments involved establishing t
parameters of the noise and perturbing signals that are
quired to carry out a specific experiment.

3. EXPERIMENT

In the first part of the experiments the response of a lo
portion of a domain boundary to an applied harmonic field
the presence of a random magnetic field was measured.
response was the spectral density of a magneto-optical
nal, which was measured using a selective nanovoltm
with a selectivity of 54 dB. The frequency dependence of
response contained a narrow peak, which was associ
with the external harmonic field, and a smooth curve, wh
was associated with the noise fields. The contribution to
response caused by the external harmonic force at the
quency of that force was regarded as the measured sign
our case, while the contribution to the response caused by
random force was regarded as noise. Under the condit
investigated the noise characteristics of the response~the
noise! did not vary in the absence of a modulating fiel
Thus, the noise could be measured as the response o
system in the absence of modulation. We note once ag
that the magneto-optical signal was directly proportional
the displacement of the local portion of the domain boun
ary, i.e., the generalized coordinate of the bistable sys
investigated.

The spectral densityN of the magnetic noise field serve
as the noise characteristic. It was determined from the sp
tral current density in the noise coil at the frequency of t
external harmonic field and was expressed inmOe/Hz1/2. The
noise generator permitted variation of the noise parameteN
in the range from 15mOe/Hz1/2 to 110mOe/Hz1/2. The am-
plitude of the harmonic field was assigned in the range fr
5 mOe to 50 mOe, and its frequency was set in the ra
from 200 Hz to 7 kHz.

Figure 3 shows plots of the signal and the noise, wh
were parametrized by the resistance assigning the noise
rameter in the noise generator and measured with a s
integration time. Figure 4 presents the dependence of
signal-to-noise ratio onN. We note that, asN varies, the
signal-to-noise ratio at first decreases, then begins to
crease, and reaches a local maximum at a certain value oN,
after which it decreases. The presence of such a maxim
also characterizes the presence of magnetostochastic
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nance. Thus, a domain boundary fixed between two nea
pinning sites does, in fact, exist under stochastic resona
conditions.

We next studied the dependence of the response of
system on the symmetry of the potential. A constant m
netic field perpendicular to the plane of the film was appl
to remove the degeneracy of the minima of the bistable
tential. At a sufficiently strong constant field the system b
came monostable, and the local portion of the dom
boundary was immobilized on a microdefect. This led
destruction of the stochastic resonance conditions and,
consequence, to a decrease in the response to the ap
variable field.

Figure 5 presents the response curves measured
modulating field frequency equal to 4 kHz as a function
the amplitude of the constant magnetic field that removes
degeneracy. The parameter used here wasN, which was var-
ied from 15mOe/Hz1/2 to 63mOe/Hz1/2. As is seen from Fig.
5, the curves descend monotonically for both field directio
As the noise force increases, the response decay curve b
ens. This broadening can be characterized byDH, i.e., the
width of the range of fields in which the response is equa
or greater than 0.5 of the height of the maximum of t
signal. Figure 6 shows the dependence ofDH and of the
maximum amplitudeS of the signal @S(H50)# on the
square of the noise parameterN2, which is proportional to
the noise level in the system. As we see, theS(N2) curve has

FIG. 3. Dependence of the signal~1! and the noise~2! on the resistance
specifying the noise parameter. The amplitude of the variable field wa
mOe, and its frequency was 260 Hz.

FIG. 4. Stochastic resonance curve for the fundamental harmonic. The
plitude of the variable magnetic field was 9 mOe, and its frequency was
Hz.
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a maximum at N251400 mOe/Hz1/2, and the plot of
DH(N2) rises linearly with increasingN2 over the entire
range of variation.

The bulk of the experiments were devoted to the mixi
of different harmonics, i.e., motion of a domain bounda
under the action of the two harmonic fieldsH1 andH2 with
frequenciesf 1 and f 2. The mixing of harmonics was inves
tigated both in a bistable potential with equal minima a
with application of a constant field that removes the deg
eracy. The dependence of the response on the noise force
the typical form for stochastic resonance. Figure 7 prese
the stochastic resonance curve for an odd harmonic app
ing under the action of two harmonic fields with the freque
cies f 153 kHz andf 25500 Hz and the amplitudesH1520
mOe andH2525 mOe, which was measured at the fr
quency f 112 f 254 kHz. This dependence on the noise p
rameter was measured in the absence of a constant fi
Even harmonics of the response were not observed u
these conditions. When a constant field was applied, e
harmonics appeared. Figure 8 presents the stochastic
nance curve for the even harmonicf 11 f 2, which was mea-
sured with the following parameters:f 153 kHz, H1530
mOe, F25500 Hz, H2530 mOe, and the constant fiel
H510 mOe. There was special interest in the dependenc
the signals of higher harmonics on the constant field t
makes the potential minima unequal. For this purpose,
noise level was fixed, and the constant field was varied in
range from255 mOe to 55 mOe. Figure 9 shows the depe

9

m-
0

FIG. 5. Dependence of the signal on the constant magnetic field that m
the minima of the bistable potential unequal forN563 mOe/Hz1/2 ~1! and
N527 mOe/Hz1/2 ~2!. The amplitude of the harmonic field was 18 mOe, a
its frequency was 4 kHz.

FIG. 6. Dependence of the widthDH of the bell-shaped curve~1! and the
maximum of the signalS ~2! on the square of the noise parameter. T
amplitude of the harmonic field was 18 mOe, and its frequency was 4 k
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dence of the signal of an even harmonic obtained for
noise parameterN527 mOe/Hz1/2 and for the following pa-
rameters of the harmonic fields:f 154 kHz, H157.7 mOe,
f 251 kHz, andH2511.2 mOe. We note the minimum of th
response at zero field and two symmetric maxima. When
noise parameter was increased, the distance between
maxima of this curve increased. The response at the
quency of the second harmonic had a similar form. The o
harmonics were characterized by a different form of the
pendence of the response on the constant field that des
the symmetry of the system. This dependence, which
shown in Fig. 10, had a maximum at zero intensity of t
constant field. The dependence was plotted forf 54 kHz and
H516 mOe, the recording frequency was equal to 3f 512
kHz, and the noise parameter wasN527 mOe/Hz1/2. The
width of the curve shown in Fig. 10 also increased as
noise parameter increased.

4. THEORY

The one-dimensional motion of a system in a bista
potential U0(x) in the presence of a modulation forc
F(t)5 f 1cos(v1t)1f2cos(v2t), a constant forceh, which re-
moves the degeneracy of the potential, and a random n
force j(t) is described by the Langevin equation

dx

dt
52

dU0~x!

dx
1F~ t !1h1j~ t !. ~1!

Our problem is to find the response of the system to exte
modulation, i.e., the spectral density of the coordinate of

FIG. 7. Stochastic resonance curve for an odd harmonic. The amplitud
the harmonic fields wereH15H2520 mOe, and the frequencies weref 153
kHz and f 25500 Hz. The signal detection frequency wasf 5 f 112 f 254
kHz.

FIG. 8. Stochastic resonance curve for an even harmonic. The amplitud
the harmonic fields wereH1530 mOe andH2521 mOe, and the frequen
cies were f 152.2 kHz and f 25500 Hz. The detection frequency wa
f 5 f 11 f 252.7 kHz, and the constant magnetic field that removes the
generacy was equal to 10 mOe.
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system in a certain frequency range measured at the
quency of the external field or a combination harmonic.
find the response sought, we utilize an approach in which
continuous dynamics of the system is replaced by disc
jumps between the potential minima.5

Such a replacement is possible when the noise leve
not excessively high, so that the system spends most o
time near the potential minima. We definen1(t) as the prob-
ability of finding the system near the right-hand minimum
while n2(t) is the probability of finding the system near th
left-hand minimum:

n1~ t !512n2~ t !5E
c

`

p~x,t !dx, ~2!

wherec is the position of the potential maximum andp(x,t)
is the probability density for the system studied. Then
equation describing the dynamics of the populationsn1 and
n2 can be written in the form

dn1

dt
52

dn2

dt
5W2~ t !n22W1~ t !n1 , ~3!

of

of

-

FIG. 9. Dependence of the signal of an even harmonic on the cons
magnetic field that makes the minima of the bistable potential unequal.
amplitudes of the harmonic signals wereH157.7 mOe andH2511.2 mOe,
the frequencies weref 154 kHz andf 251 kHz, the detection frequency wa
f 5 f 11 f 255 kHz, and the noise parameter wasN527 mOe/Hz1/2.

FIG. 10. Dependence of the signal of the third harmonic on the cons
magnetic field that makes the minima of the bistable potential unequal.
amplitudes of the harmonic signal wasH1516 mOe, the frequency of the
field was f 154 kHz, the detection frequency wasf 53 f 1512 kHz, and the
noise parameter wasN527 mOe/Hz1/2.
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v1,2!v0 ~12!
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from the right-hand and left-hand minima per unit time, r
spectively. The distribution densityP(x,t) of the discrete
system is determined by the relation

P~x,t !5n1~ t !d~x2x1!1n2~ t !d~x2x2!, ~4!

wherex1 andx2 are selected so that the mean values ox
and x2 calculated using the functionsp(x,t) and P(x,t)
would coincide.

In the absence of modulation@F(t)50# the stationary
distribution is given by the equation

p~x,t !5N exp@2U0~x!/D#, ~5!

whereN is a normalization constant andD is the noise level.
We assume that1a and2a are the minima of the symmet
ric bistable potential and that the expansion of the poten
near the minima has the form

U0~x!'U0~6a!1k~x6a!2/2.

Then, if

D!ka2, ~6!

the system does, in fact, spend most of its time near
minima, and the stationary value of the population is fou
as

n105NE
c

`

expF2
U0~x!2hx

D Gdx. ~7!

This gives

n605
exp~6ha/D !

2 cosh~ha/D !
. ~8!

In this case the main contribution to the mean values of
moments

^xn&5NE
2`

`

xn expF2
U0~x!2hx

D Gdx ~9!

is also made by the potential minima. Performing the cal
lations, we obtain

^x&'a tanh~ha/D !, ~10!

^x2&2^x&2'a2@cosh2~ha/D !#21,

and, accordinglyx65^x&62n70a, so that x12x252a
even in the presence of the constant forceh.

Within the same approximation of a low noise level@Eq.
~6!#, we can write a formula for the transition frequency:24

W65n0 expF2
U~c!2U~a6!

D G , ~11!

where 2pn05AuU9(a6)U9(c)u, anda6 andc are the posi-
tions of the potential minima and maximum, respectively

Since we assume that the noise is not excessively g
@see Eq.~6!#, the transition frequencyW6 is much smaller
than the characteristic frequency of motion of the system
minimum v05k, which corresponds to the establishment
local equilibrium. Therefore, at frequencies of the exter
fields which satisfy the condition
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we can use the adiabatic approximation, under which
function W6(t) is found by substituting the instantaneo
values of the positions of the potential maximum into E
~11!. This leads to the following formula forW6 :

W65nK expS 7~h1F !a2q~h1F !2/k

D D , ~13!

where

nK5n0 expF2
U~0!2U~a!

D G
is the Kramers frequency, andq is a numerical coefficient of
order unity, which depends on the form of the potential. T
problem consisting of~3! and~13! cannot be solved exactly
Let us examine two limiting cases: 1! both forces are smal
and 2! one force is small, while the other is arbitrary, but h
a high frequency.

4.1. Weak modulation

In this case we can neglect the quadratic term in
denominator of the exponential function~13! and expand all
the quantities in series in the small parameter«5Fa/D:
n15n101n111n121..., W65W601W611W621....
This gives a hierarchy of equations, the first of which spe
fies the stationary density, and the others,

dn11

dt
5

W21W102W11W20

W101W20
2~W101W20!n11 ,

~14.1!

dn12

dt
52~W111W21!n112~W101W20!n12 ,

~14.2!

describe the resonance and the mixing of harmonics in
asymmetric potential. The signal is found either from t
correlation function^x(t1t)x(t)& or from formal calcula-
tions of xv and uxvu2.

The two approaches give the following formulas for t
spectral density and the signal-to-noise ratio in the case
h Þ 0, f 1 Þ 0, and f 250:

S~v!5S 4n10n202
2A2

B21v1
2D 4a2B

B21v2
1

4pa2A2

B21v1
2

3d~v12v!, ~15!

where

A5
2W10W20

W101W20

f a

D
, B5W101W2052nK coshS ha

D D ,

and

R5
p f 2a2

D2

n0 exp~2DU/D !

2 cosh~ha/D !D f
5

R0

cosh~ha/D !
, ~16!
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signal-to-noise ratio in the absence of the constant forceh.
At a frequencyv1!B the dependence of the signal can
found as

S5S0@cosh4~ha/D !#21, ~17!

whereS0 is the signal whenh50. The mixing of harmonics
is found by solving Eqs. ~14!. In the case of
v1 , v2!W101W20 the signal-to-noise ratio for highe
harmonics is determined by the following equations:

R2~v5v11v2!

5
p f 1

2f 2
2a6

D4D f

n0 exp~2DU/D !

cosh~ha/D !
tanh2S ha

D D , ~18.1!

R3~v5v112v2!5
2p f 1

2f 2
4a8

D6D f

n0 exp~2DU/D !

cosh~ha/D !

3tanh2F113tanh2
ha

D G . ~18.2!

~We note that an error was made in Ref. 14 in calculating
signal of mixed harmonics.! Thus, Rn11;( f a/D)2nR0,
whereR0 is the signal-to-noise ratio for the fundamental h
monic, and, therefore, the higher harmonics also exhibit
chastic resonance. In addition, all the harmonics depend
the constant fieldh, which makes the minima unequal, wit
the characteristic scaleD/a.

4.2. Fast modulation

Let us assume that the forcef 2 is not small and that the
frequencyv2 is large:v2@nK ,v1. ~Under these conditions
v2 is still smaller than the fundamental oscillation frequen
of the systemv0, so that the adiabatic approximation
valid.! The fast and slow components can be isolated in
response, and averaging can be performed over the fast
ponent. This leads to an equation for the slow compon
n11(t):

dn11

dt
5^W2~ t !&2@^W1~ t !1W2~ t !&#n11 , ~19!

where^W& denotes averaging of Eq.~13! over the fast com-
ponent. Performing the calculations, we obtain

1

G

dn11

dt
5W2~ t !2@W1~ t !1W2~ t !#n11 , ~20!

whereW1(t) andW2(t) correspond to the transition prob
abilities for the case in which only the forcef 1 acts, and

G~a!5
1

2Apb
E

2`

`

J0~a8!expF2
~a82a!2

4b Gda8, ~21!

wherea5 f 2a/D, b5q f2
2/kD, andJ0 is a Bessel function of

order zero.
Equation~21! describes the stochastic resonance for

harmonic v1. The presence of a strong variable hig
frequency field of fairly large amplitude leads to renorm
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signal-to-noise ratio similar to the usual expression for s
chastic resonance:

R~v1!>
p f 1

2a2

D2D f

Gn0 exp~2DU/D !

2 cosh~ha/D !
. ~22!

However, as follows from Eq.~21!, G depends on the nois
level D. It is easy to obtain the following asymptotes forG:
G→0 asD→` and G'exp(f2a/D) as D→0. Thus, when
the noise level is low, the high-frequency forcef 2 leads to a
decrease in the effective barrier height toDU>DU2 f 2a,
confirming the observation made in Ref. 16.

5. COMPARISON OF EXPERIMENT AND THEORY

The motion of a domain boundary considered in Sec
is described by the equation

dx

dt
5mF2

dW0

dx
1H~ t !1H1H ranG , ~23!

wherem is the mobility of the domain boundaries,W0(x) is
the bistable potential of the magnetic microdefects,H(t) is
the modulation magnetic field,H is the constant field, and
H ran is the noise field. A comparison of~1! and ~23! allows
us to conclude that the noise levelD is specified by the
expression

D5~mN!2, ~24!

whereN is the noise parameter used in Sec. 3, and the c
stant fieldh is found ash5mH. The height of the potentia
barrierU0 can be estimated asU05mHca'431023 cm2/s,
where m5103 cm~s•Oe!21 is the mobility of the domain
boundaries in the film under investigation,Hc50.2 Oe is the
field at which the domain boundaries break away from
pinning sites, which was close to the coercive field of t
film, and 2a'0.4 mm is the distance between the potent
minima. The characteristic frequency of motion of th
boundary is found asn0'mHc /a5107 Hz, and the Kramers
frequencynK varied in our experiments from 0 to 63106

Hz.
The experimental data are in good agreement with

theory. In fact, the position of the stochastic resonance m
mum for the fundamental harmonic corresponds to the c
dition 2Dmax5U0, whenceNmax5AHca/2m545 mOe/Hz1/2,
which coincides with the measured valueNmax549 mOe/
Hz1/2 ~see Fig. 4!. In Figs. 7 and 8 there are also peaks for t
signal-to-noise ratio at combination frequencies. This me
that there is an optimal noise level in the system, at wh
the signal-to-noise ratio at the higher harmonics reache
maximum. The experimental range of variation of the no
did not allow us to detect an increase in the signal-to-no
ratio at low noise levels, but a comparison of Figs. 7 and
with Fig. 4 suggests that theQ factor of the resonance i
higher for the mixed harmonics~see Ref. 14!.

The dependence of the harmonics on the constant fi
h, which makes the minima unequal, is most interesting fr
the standpoint of practical applications. The fieldh leads to
the loss of one of the most important conditions for stoch
tic resonance, viz., bistability, and diminishes the respons
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the fundamental and higher harmonics, as is demonstrated by
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Figs. 5, 9, and 10, as well as Eqs.~15!, ~16!, and~18!. This
permits the use of stochastic resonance to detect not
periodic, but also slowing varying fields. Under these c
cumstances the fieldh appears in the basic relations only
the combinationha/D, and the dependence of the harmon
on h consequently has a single identical scaleD/a. Thus, if
we know only one parametera ~which characterizes the dis
tance between the degenerate minima! and measure the
width of the decay curve of odd harmonics or the distan
between the maxima of even harmonics, we can determ
the value of the noise level in the system from the dep
dence of the response to external modulation.

The dependence of the widthDH of the bell-shaped
curve of the signal shown in Fig. 5 on the square of the no
parameterN2, which is proportional to the noise levelD @see
Eq. ~24!#, is presented in Fig. 6. As is seen from Fig. 6, t
width DH is, in fact, directly proportional toD. Knowing the
noise level in the system andDH, we can estimate the dis
tance between the minima of the bistable system. This g
2a>mN2/DH;0.5 mm, which is consistent with the valu
2a50.4 mm obtained from static measurements.

In addition, it is important to note the symmetry of th
even and odd harmonics as a function of the constant fielh.
The odd harmonics have a maximum ath50, and the even
ones have a minimum~see Figs. 9 and 10!. The distance
between the maxima of the even harmonics, as the meas
ments show, also increases with the noise and can be
proximated by the formulaDH>mN2/a. Thus, indirect mea-
surements of the response of the system to perio
modulation enable us to draw conclusions regarding the
neling characteristics of the system.

6. CONCLUSIONS

We have shown theoretically and experimentally that
combination harmonics appearing when two periodic for
act on a bistable system in the presence of noise exh
behavior that is characteristic of stochastic resonance.
dependence of the signals at the fundamental and mixed
monics on the constant field that makes the minima uneq
has been investigated, and it has been shown that the de
dence sought has a variation scale proportional to the n
level. The laws derived have been tested on a very sim
bistable magnetic system, viz., a local portion of a dom
boundary immobilized between two nearby microdefects i
thin iron garnet film. Stochastic resonance has been dete
at mixed harmonics~of second and third order!, and the de-
pendence of the harmonics on the constant field that ma
the minima of the bistable potential unequal has been m
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their variation are in qualitative agreement with the theo
developed.

The most important consequence of this research is
possibility of determining the fluctuation parameters of
bistable system~the noise level! by measuring the respons
of the system to periodic modulation~the modification of the
response when a constant field that makes the minima
equal is applied!.
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damental Research~Grants 96-02-18956 and 96-02-19608!,
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Breakdown of the linear current regime in periodic structures

A. M. Satanin* ) and S. V. Khor’kov
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V. V. Skuzovatkin
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We study the effect of a weak nonlinearity in media on the linear regime of current flow in two-
dimensional periodic structures with two equal component concentrations. We find that the
asymptotic behavior of the electric field and current as functions of the distance between the angles
in heterogeneous media is determined by the parameterh5s2 /s1 ~heres1 ands2 are the
linear conductivities of the cells! and the external magnetic fieldB. This dependence leads to
divergence of the higher-order moments of field and current at certain critical valueshc

andBc and to divergence of the response functions related to the higher-order moments. For
square cells the effective nonlinear conductivity diverges ath<hc , with hc5(&21)2. For
structures of general shape we find the dependence ofhc on the angles and the external
magnetic field. We show that for a given structure the linear regime of current flow in the system
can be reversibly transformed into a nonlinear one by varying the magnetic field strength.
The critical fieldBc is approximately determined from the conditionvct;1, wherevc andt21

are, respectively, the cyclotron frequency and the collision rate. Finally, we discuss the
feasibility of detecting these effects experimentally. ©1997 American Institute of Physics.
@S1063-7761~97!01808-8#
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Much effort, both theoretical and experimental, has go
into the study of the electrical conductivity of random med
and periodic structures.1 Two-dimensional systems, in view
of the importance of dual symmetry,2 have received specia
treatment. The deep analogy between two-dimensional
dom systems and periodic lattices has repeatedly b
noted,2–4 so that they can be combined into a single class
systems with universal behavior in the critical region, i.
near the metal–insulator transition. Two-dimensional s
tems are also of interest from the experimenter’s viewpo
because nanotechnology make it possible to manufac
films of a given composition and films with a given textur

The effective electrical conductivityseff of a two-
component film with conductivitiess1 ands2 and concen-
trations p and 12p, respectively, can be written a
seff5s1 f(p,h), whereh5s2 /s1 , and f is a function with
universal behavior in the critical region.2,5 If h50, there ex-
ists a critical concentrationpc at which the metal–insulato
transition occurs and the conductivityseff vanishes. For a
two-dimensional random mediumpc50.5. At this concen-
tration the correlation radius, which characterizes the c
nected region of the conducting component, becomes
nite.

Periodic structures with two equal component concen
tions behave like disordered films. The simplest exampl
provided by periodic networks whose cells form a check
board pattern; the conductivities of the cells ares1 ands2 .
Since the component concentrations are equal, the syste
in the critical region, i.e., at the threshold of the meta
insulator transition. Atp5pc the effective conductivity of a
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the case at hand this dependence has the forms 5s1Ah
~see Ref. 2!. This makes it possible to assign these system
a single universal class.

Another important property of such systems is related
the distribution of electric fields and currents in them
Dykhne2 found that the one-point correlators of the field a
current averaged over the surface area of the disordered
^e2& and ^ j2&, diverge at small values ofh. Periodic struc-
tures also exhibit a similar property.4

We believe that it is important to generalize these res
to nonlinear random media and periodic structures. That n
linear effects are large in the critical region has been de
onstrated in the experiments of Gefenet al.,6 who detected
anomalous behavior of the critical current and the criti
nonlinearity field in disordered gold films near the meta
insulator transition as functions of the parameterp. Nonlin-
ear effects as functions ofp were studied in Refs. 7–11. I
was found that higher-order correlators of the electric fi
and current provide ample information about the microstr
ture of heterogeneous media.7,8 The effective nonlinear con
ductivity, the 1/f noise coefficient, and the third-harmon
amplitude were expressed in terms of the correlators^e4& and
^ j4& ~see Refs. 8–10!. Anomalous behavior in the critica
region of the nonlinear conductivity in disordered films wi
two equal component concentrations was discussed in R
12 and 13, where it was found that the nonlinear conductiv
and the related correlators^e4& and ^ j4& diverge at smallh.
The critical properties of textures have yet to be studied.

In the present paper we show that the current flow
gime in checkerboard textures differs drastically from that

35109$10.00 © 1997 American Institute of Physics
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a random medium. It was found that in view of the anom
lous behavior of current and field near corners, the lin
current flow regime breaks down at a finite value of t
parameterh. This critical value depends on the geometry
the texture and the external magnetic field. We study
dependence of the critical nonlinearity field and the criti
current on the parameters of the system. Some results o
present research have been presented in a b
communication.14

The plan is as follows. Section 2 is devoted to the ba
equations and the generalization of the Aharony–Strou
Hui relationships for nonlinear conductivity to locally anis
tropic media. In Sec. 3 we discuss an exact solution of
linear-problem equations for the electric field for a check
board structure, and analyze the nature of the field singu
ties and the possible consequences for the nonlinear prob
In Sec. 4 we calculate the effective nonlinear conductiv
and show that the nonlinear conductivity diverges at a fin
ratio of the linear conductivities of the components. Th
result is generalized in Sec. 5 to oblique lattices, while
Sec. 6 we study the behavior of the system in an exte
magnetic field. We devote Sec. 7 to a discussion of the
that singularities in textures play in the formation of the
sponse functions, the fact that the critical behavior of
higher-order moments of field and current are of a nonu
versal nature, and the feasibility of observing the predic
instability. In Appendix A we discuss some details of calc
lating the nonlinear conductivity. Finally, in Appendix B w
elaborate on the problem of calculating the electric field n
a corner of an oblique lattice.

2. THE BASIC EQUATIONS

The geometry of the structure we will examine is d
picted in Fig. 1. The hatched squares are associated with
conductivitys1 ~metal! and the light squares withs2 ~insu-
lator!. In the linear approximation the current in the cells

j5se, ~1!

wheres is a periodic functions with valuess1 ands2 . The
current and field obey the equations

¹• j50, ¹3 e50 ~2!

and the conditions at cell boundaries

FIG. 1. A fragment of a two-dimensional periodic structure with cell co
ductivitiess1 ands2 .

352 JETP 85 (2), August 1997
-
r

f
e
l
he
ief

ic
–

e
-
ri-
m.

y
e

al
le
-
e
i-
d
-

r

-
he

where n and t are unit vectors normal and tangent to t
medium boundary. The external field and current can
specified either at the surface of the macroscopic speci
or at the cell boundaries. The electric field and current
nonuniform in the cells, so that it is convenient to introdu
values of the respective quantities that are averages ove
system’s surface area or over the surface area of two adja
cells,

E5^e&, J5^ j &, ~4!

so that we can define the effective conductivityseff as

J5seffE, ~5!

or

seffE25^se2&. ~6!

For macroscopic systems the above definitions are equiva
to those of Stroud and Hui.10

Since near the texture corners the field and current m
have singularities~see below!, we must allow for nonlinear
effects from the start. The physical mechanisms govern
the nonlinearities strongly depend on the material fro
which the cells are manufactured. If the cells are represen
by a ‘‘clean’’ metal and a ‘‘dirty’’ metal~cell conductivity
s1 and s2 , respectively!, we can employ the electron tem
perature approximation.15 But if, for instance, the cells with
conductivitys2 are manufactured from a wide-gap insulat
or a doped semiconductor, one must allow for the activat
mechanism of the field dependence of the current16 in such
cells. In this paper we limit our discussion to the weak no
linearity approximation. In this case each of the above m
els reduces to allowing for the cubic term in the field expa
sion of the current:

j5se1xe2e. ~7!

For instance, in the electron temperature approximation,

x5
]s~T!

]T

s

L
, ~8!

whereL is the coefficient of heat transfer from electrons
lattice.

To examine periodic lattices of a more general shape,
introduce the concept of effective nonlinear conductivities
such media. Anisotropy in the boundary conditions leads
anisotropy in the solutions of Eqs.~3!, and the effective non-
linear characteristics of the media become tensors:

Ja5sab
eff Eb1xabgd

eff Eb Eg Ed . ~9!

The number of independent components of the nonlin
conductivity tensor is determined by the symmetry of t
lattice. For instance, in the case of a square lattice there
four such components: xxxxx

eff 5xyyyy
eff , xxxyy

eff 5xyyxx
eff ,

xxyyx
eff 5xyxxy

eff , andxxyxy
eff 5xyxyx

eff , while for a hexagonal lattice
and an isotropic medium there are three such compone
since for such media there is the additional condition t
xxxxx

eff 5xxxyy
eff 1xxyxy

eff 1xxyyx
eff .

352Satanin et al.
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solve Eqs.~2! with conditions~3! and ~7! and calculate the
components of the average current by integrating the lo
expression over the pair of adjacent cells. In an isotro
medium, the effective nonlinear conductivity to first order
powers of the nonlinear component conductivity can be
termined only from the known linear field in an equivale
linear medium.9,10 For an anisotropic medium we generali
the Aharony–Stroud–Hui relation9,10 and show how to ob-
tain some of the components of the effective nonlinear c
ductivity tensor from this relation. Writing the expression f
local energy dissipation and employing Tellegen’s theor
~see Ref. 10!, we obtain

xabgd
eff Ea Eb Eg Ed5^xe4&, ~10!

where the local electric fielde can be found by solving the
linear equations. For a square lattice Eq.~10! yields

xxxxx
eff ~Ex

41Ey
4!12~xxxyy

eff 1xxyxy
eff 1xxyyx

eff !Ex
2Ey

25^xe4&,
~11!

i.e., this approach yields only the componentxxxxx
eff and the

combination of components comprising the coefficient
Ex

2Ey
2 .
Let us examine the simple case in which the solution

the maximum possible symmetry~here the external field is
directed along the diagonals of the squares, and the solu
in adjacent cells are related through a dual transformatio4!.
Let the system of coordinates be oriented along the diago
of the squares. Then only one component of the nonlin
conductivity tensor remains in~11!, and we denote it by
xeff5xxxxx

eff . For this component we have

xeff5
^xe4&

^e&4 . ~12!

Thus, to calculate the nonlinear conductivity we mu
solve Eq.~2! with ~1! and calculate the correlator~12!. Non-
linear effects in the medium are important if the terms
parentheses in

J5~seff1xeffE2!E ~13!

are of the same order. For the external field directed al
the diagonals of the squares we define, following Ref. 11,
critical nonlinearity field as

Ec5Aseff

xeff , ~14!

and the critical current as

Jc5seffEc . ~15!

The critical field and current depend on the effective char
teristics of the system,seff and xeff. Note that according to
~12! xeff is determined by two factors. We rewrite~12! as a
sum of averages over the components,

xeff5
x1^e

4&11x2^e
4&2

2E4 . ~16!

This expression implies that if, for instance, as Eq.~8!
shows, the heat transfer coefficientL is large, the coeffi-
cients x1 and x2 can be made small. However, the fie
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parameters of the system! may have singularities. The in
crease in the field correlators is the reason for the anoma
increase in the effective nonlinearities of the structure. T
anomalous increase in nonlinear conductivity means that
system has gone into a nonlinear current flow regime. T
same result can be obtained by solving the exact equat
for the current~Eqs.~2!, ~3!, and~7!!.

3. EXACT SOLUTION FOR A PLANAR PERIODIC LATTICE

As noted earlier,xeff can be expressed in terms of th
solution of the linear problem. The linear problem of fie
and current distributions in a planar periodic checkerbo
structure has been studied by Emets.4 The exact solution was
obtained via methods of the theory of boundary-value pr
lems involving analytic functions. By virtue of the two
dimensional nature of the problem, the initial system
equations~1!–~3! allows for a complex representation. If w
take into account the periodicity and the inversion symme
the problem of finding the current~or field! reduces to the
homogeneous Markushevich problem17 for two analytic
functions,e1(z) ande2(z) ~with z5x1 iy!, in adjacent cells.
Mapping the adjacent square via the Weierstrass func
into the upper and lower half-planes, we arrive at the pr
lem for two functions that are analytic in, respectively, t
upper and lower half-planes with boundary conditions on
real axis. As shown by Emets,4 for a square lattice such
problem reduces to an equivalent Riemann problem for
pairs of analytic functions, which allows for a complete s
lution. The expressions for the electric field are:

e15c1~h!X~z!1c2~h!X21~z!, ~17!

e25c3~h!X~z!1c4~h!X21~z!, ~18!

whereci(h) are functions without singularities, and

X~z!5F cn~Kz/L,k!

sn~Kz/L,k!dn~Kz/L,k!G
2g

, ~19!

with sn x, cn x, and dnx Jacobi’s elliptic functions,K the
complete elliptic integral with modulusk ~for a square,
k51/& and K51.8541!, andL the length of the side of a
square cell. The parameterg is related toh by the equation

tan pg5
12h

2Ah
, 0<g<

1

2
. ~20!

Let us analyze the general solution. The first and sec
terms on the right-hand sides of Eqs.~17! and ~18! are par-
ticular solutions corresponding external fields directed alo
the diagonalsac andbd ~see Fig. 1!. Near the verticesa and
c the functionX(z) exhibits singularities in its behavior:

X~z!}
1

z2g , ~21!

while at the adjacent cornersb andd the function behaves a

X~z!}z2g. ~22!

Clearly, for the functionX21(z), which corresponds to the
case in which the external field is directed along the diago
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ated with the cornersb andd. Thus, for an arbitrary direc
tion of the external field, the general solution has singula
ties at all corners of the lattice. Singularities like~21! in the
neighborhood of a corner with a singularity play an impo
tant role in the formation of the nonlinear current flow r
gime.

Qualitatively, the asymptotic behavior~21! and~22! can
be explained as follows. Near a corner, at distances m
smaller than the cell size, the system has no character
spatial scales. Hence the solution of the Laplace equatio
this range of scales is given by a power function, with t
exponent depending on the charge distribution at the bou
ary between regions with different conductivities and, hen
on the parameterh.

Note that the exact expressions for the field and curr
can be found easily when the lattice is located in a magn
field perpendicular to the lattice surface~see Sec. 4!. Only
the phases of the functions~17! and ~18! change, and the
exponentg is field-dependent. Reduction to the Riema
problem makes it possible to find the exact field distribut
in two-dimensional systems belonging to a certain class.17–19

4. CALCULATING THE EFFECTIVE NONLINEAR
CONDUCTIVITY AND THE NONLINEARITY FIELD

Now let us get down to calculating the above quantit
in a planar periodic checkerboard structure as an exam
To simplify matters, we limit our discussion to an extern
field E directed along one of the diagonals of the square, e
alongac ~see Fig. 1!. If this is the case, the constantsc2 and
c4 in Eqs.~17! and~18! vanish. The complex fields in adja
cent cells are related by a dual transformation:4

e2~z!5
i

Ah
e1* ~z* !. ~23!

By expressing the constantsc1 andc3 in terms of the average
field E, we can write the absolute value of the electric field
the square with conductivitys1 in the form

ue1~z!u5
1

I
A11h

2
uX~z!uuEu, ~24!

where

I ~g!5
p3/2

2K cospg FGS 3

4
1

g

2DGS 3

4
2

g

2D G21

, ~25!

with G(x) the gamma function. Combining~23!, ~24!, and
~16!, we arrive at an expression for the nonlinear conduc
ity in a form convenient for further analysis:

xeff5
~h2x11x2!~h11!2

8I 4h2 ^uX~z!u4&. ~26!

As noted in Sec. 3, the functionX(z) has a singularity,
and at certain values ofg (g>1/4) the integral with respec
to z in the expression for̂ uX(z)u4& diverges. A genera
analysis of the expression forxeff shows~see Appendix A!
that nonlinear conductivity grows with decreasingh and, as
h tends to a certain threshold valuehc , behaves as
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where

C5
p2~hc

2x11x2!~hc11!

8I c
4K2Ahc

, I c5I ~gc!. ~28!

For a square lattice, Eq.~20! yields hc5(&21)2.
Whenh<hc , the integral forxeff diverges. What is the na
ture of this divergence? A close study of the general exp
sion ~16! for xeff immediately reveals that the anomalo
increase in nonlinear conductivity is due to the increase
the correlatorŝ ueu4&1,2, since all the other factors in th
formula are finite. The regions near ‘‘singular’’ corner
where the solutions behave asymptotically asz22g, provide
the main contribution to the integral for^ueu4&1,2.

Hence, to estimate the correlators ash→hc we need
only consider small neighborhoods of these points or, m
precisely, the neighborhood of one singular corner in an
ementary cell. For all directions of the external field, t
solution in this neighborhood has the form~21!. On the basis
of this reasoning we conclude that

^ueu4&1,2;E E uzu28gdxdy;E r 28g11dr. ~29!

This integral is divergent forg>1/4. From~20! we can
easily obtain the corresponding interval forh:h<hc . To de-
termine the strength of this divergence inh2hc , we expand
g in the exponent of the integrand in~29! in powers of the
small parameterh2hc . The result is

^ueu4&1,2;E r 211const3~h2hc!dr;
1

h2hc
. ~30!

As h→hc , only the nonlinear conductivity diverges. Henc
the formulas forEc andJc show that the dependence of th
critical nonlinearity field and the critical current nearhc is
determined entirely by the behavior ofxeff, i.e.,

Ec , Jc}Ah2hc. ~31!

Note that in a disordered film the critical field and curre
vanish only whenh→0, and they have different critica
exponents.13

Thus, whenh<hc , the system is in a nonlinear curren
flow regime. We now show that the same result can be
tained by solving the nonlinear equations~2!, ~3!, and ~7!
directly. We start by calculating the first-order correctionẽ to
the electric field near a singular corner, and we u
perturbation-theory techniques to account for the nonlin
term in ~7!.

Let us send the external current along the diagonalac.
In the linear approximation, the asymptotic expression
the potential in the neighborhood of cornera can be obtained
from ~17! and ~18!. In cylindrical coordinates the potentia
can be expressed as

w~1!5r lA1 sin lS u2
p

4 D ,
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w~2!52r lA cosl u1
p

, ~32!
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2 S 4 D
wherew (1) and w (2) are, respectively, the solutions for th
regions 0,u,p/2 and2p/2,u,0, A15(EA11h/&Il)
3(K/L)l21, A25AhA1 , andE is the external field strength
To first order in the nonlinearity, the equation for the pote
tial w̃ corresponding to the fieldẽ has the form

Dw̃~r ,u!5
x

s
~e,grade2!, ~33!

wheree is the field of the linear problem for a square latti
in a small neighborhood of the corner; the potential of t
field is given by~32!. The right-hand side of Eq.~33! de-
pends on the coordinater as r 2126g, so we seek a solution
for w̃ in the form w̃ (k)(r ,u)5r 126g f k(u). The function
f k(u) satisfies the equation

d2f k

du2 1ln
2f k5Ck cosFlS u1

p

4 D1ukG , ~34!

where l5122g, ln5126g, Ck54g(xk /sk)Ak
3l3,

u15pg, u250, and k labels the regions~for k51,
0,u,p/2, and fork52, 2p/2,u,0!.

The solution of Eqs.~34! for each region can be found i
the form of the sum of a particular solution and the gene
solution of the homogeneous equation corresponding to~34!.
The unknown coefficients in the homogeneous solution
each region are uniquely determined by the boundary co
tions ~3! for the field ẽ(k) and the currentj̃ (k), where
j̃ (k)5skẽ

(k)1xk(e
(k))3. We write the full formula for the

solution w̃ (k):

w̃~1!5
C1

32g~1/42g!
r lnH B1 sin lnS u2

p

4 D
1sin lS u2

p

4 D J ,
~35!

w̃~2!5
C2

32g~1/42g!
r lnH B2 coslnS u1

p

4 D
2coslS u1

p

4 D J ,

whereB1 and B2 are constants that exhibit no singulariti
wheng→1/4. This solution will help us find the region in
which current flow is nonlinear.

Comparing the solutions~35! and ~32!, we notice that
becauseln is less thanl, as we move away from the corne
the potentialw̃ decreases in comparison tow, while as we
move closer to the corner,w̃ increases. In the region wher
w̃,w, the fields and current can be assumed approxima
linear. But in the region wherew̃.w the field is substantially
nonlinear, so that the solutionw̃ is insufficient for describing
the field. As the solution~35! shows, asg→1/4, the ampli-
tude of w̃ grows as 1/(1/42g).

We arrive at the same conclusion if we turn to Eq.~34!,
which resembles the equation for a harmonic oscillator w
natural frequencyulnu and a periodic driving force of fre
quencyl. In this equationg51/4 corresponds toulnu equal
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first-order correction to the field in the nonlinearity in th
neighborhood of a singular corner, we conclude that at c
tain values of the parameterh, more precisely, ath5hc , the
region where nonlinear current flow is possible broade
which in turn may mean that the nonlinear current flow
gime has set in in the entire system.

5. GENERALIZATION TO OBLIQUE LATTICES

We now investigate how the nonlinear conductivityxeff

and the critical fieldEc change under variations of the ge
ometry of the structure. In calculatingxeff we note that the
main contribution to the correlatorŝe4&1,2 is provided by
regions near the singular corners, where the asymptotic
havior of the electric field is given by~21!. Hence, of the
entire structure we need only small neighborhoods of
points at which several regions with different conductiviti
meet and in which for a given direction of the external cu
rent the correlatorŝe4&1,2 diverge. Inside each such neigh
borhood we calculate the fielde and then, using the resultan
solution, estimatexeff. Thus, the problem of calculatingxeff

for different lattices reduces to determining the electric fie
in a small neighborhood of singular sites with different i
homogeneity geometries.

We begin by investigating how the results forxeff and
Ec change in a lattice consisting of rhombi~with anglesa!
with conductivitiess1 ands2 . To determine the field in the
neighborhood of a singular site we must solve the followi
problem. Suppose that we have a plane partitioned into f
regions with conductivitiess1 ands2 by two straight lines
that intersect at an anglea. We wish to solve for the curren
flow through such an inhomogeneous structure. The elec
field is given by Eqs.~1! and ~2! and condition~3! at the
boundary of the regions. The solution for the scalar poten
w(r ,u), wherer andu are the cylindrical coordinates and th
origin is chosen at the point of intersection of the straig
lines, has the general form

w~k!5r lAk cos~lu1uk!, ~36!

wherek labels the regions formed by the intersecting strai
lines,Ak anduk are constants, andl5122g.

Note that the potentialw(r ,u) has the form~36! even
when an arbitrary number of sectors with different condu
tivities meet at the origin. Calculating the^e4&1,2, we see that
the fact that the dependence ofw on the coordinater is
represented by a power function leads to a situation in wh
for the neighborhood of a corner with an arbitrary inhom
geneity we obtain at values of^e4&1,2 similar to~29!, but with
anotherg. Hence, to estimate the contribution of the giv
region toxeff, we must find the corresponding exponentg.

We now return to an examination of the field near t
point where four sectors meet. Plugging~36! into the bound-
ary condition ~3!, we arrive at a homogeneous system
algebraic equations~see Appendix B!, and the condition that
this system has a solution yields an expression forl. In the
case at hand there can be two values ofl. The value ofl
specified by the equation
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l~p2a!

5h, ~37!
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corresponds to the particular solution with the external fi
directed along the bisector of sectors with high conductiv
with the current ‘‘penetrating’’ the bottleneck formed by se
tors with low conductivity. Of course, it is this solution wit
l from ~37! that leads to the divergence of the fielde at the
origin. The particular solution with the external field direct
along the bisector of sectors with low conductivity corr
sponds to the value ofl specified by the equation

tan
la

2
tan

l~p2a!

2
5

1

h
. ~38!

Using ~37!, we find the valuehc at which the correlators
^e4&1,2 begin to diverge. Pluggingl51/2 ~corresponding to
g51/4! into ~37!, we get

hc5tanS a

4 D 12tan~a/4!

11tan~a/4!
. ~39!

Clearly, asa deviates fromp/2, hc decreases and the linea
range characterized byh broadens.

We now examine a site at which 2N sectors with con-
ductivitiess1 ands2 meet at an anglea5p/N. We wish to
calculate the value ofhc at which the contribution of the
given region to^e4&1,2 leads to divergence. Doing simila
calculations, we arrive at an expression determiningl ~see
Eq. ~65! in Appendix B!, from which atl51/2 we obtain

hc5S2AS221, S58 cos2S p

2ND21. ~40!

In particular, for six sectors witha5p/3 andN53, Eq.~40!
yieldshc5522A6. By analyzing~40! we can easily see tha
as N increases, hc decreases, approaching the lim
hc5724).

The results forhc make it possible to draw certain con
clusions concerning the dependence ofhc on the geometry of
the regions formed by sectors with two types of conductiv
First, among all the patterns formed by sectors with eq
angles, the one witha5p/2 yields the maximum value ofhc

~Eq. ~40! clearly demonstrates this!. Second, for a given
number of sectors, the pattern yielding the maximum va
of hc is the one in which the sector angles are equal. T
result follows, in particular, from Eq.~39!.

6. CRITICAL PROPERTIES OF LATTICES IN A MAGNETIC
FIELD

Let us see how a magnetic field influences the nonlin
effects. For the linear case, in the expression for the cur
we must allow for the Hall term:

j a5sabeb1sH«abeb , ~41!

where sH is the Hall conductivity, and«ab is the totally
antisymmetric symbol. We introduce the Hall parame
b52sH/s, which assumes the valuesb1 andb2 in the first
and second cells, respectively. In a magnetic field the n
linear conductivity becomes a tensor with symmetric a
antisymmetric components. The structure of this tensor
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proximation~see Sec. 2!. In this model the symmetric part o
the nonlinear conductivity tensor is

xabgd
sym 5xsdabdgd , ~42!

with xs defined in~8!. We can easily show that for the dis
sipative part of the effective nonlinear conductivity we ha

xs
eff5

^xse
4&

^e&4 . ~43!

Thus, to calculatexs
eff we must solve the linear problem

for a periodic lattice in a magnetic field. Let us make use
the problem of a square planar lattice, which we examin
earlier in detail. The exact solution for the field in the line
approximation with allowance for the Hall term in such
lattice can be obtained by the same method as the one
in the absence of a magnetic field.19 As noted earlier, calcu-
lating Ec only requires examining the asymptotic behavior
the solution near one singular corner. Introduction of a m
netic field does not change this behavior, which is that o
power function~Eqs. ~21! and ~22!!. Here the exponentg
depends on the magnetic field:

tan pg5
A~12h!21~hb12b2!2

2Ah
. ~44!

Thus, the dependences of the nonlinear conductivityxeff and
the critical fieldEc on h2hc maintain their form. The criti-
cal valuehc , which corresponds togc51/4, now depends on
the magnetic field:

hc5
~31b1b2!2A814b1b22~b12b2!2

11b1
2 . ~45!

We now discuss the physical meaning of the above
pressions and compare it with what was obtained in a tw
dimensional random system. If a two-dimensional disorde
system is placed in an external magnetic field, allowance
the field in the linear approximation amounts to t
following.20,21The amplitudes of the quadratic field and cu
rent fluctuations depend on the magnetic field strengthB. In
the simplest case this dependence is characterized by
parametervct, wherevc is the cyclotron frequency, andt is
the average time between collisions. In a weak fie
(vct!1) a quadratic correction to the fluctuation amplitu
appears, while in a strong field (vct@1) the amplitude in-
creases in proportion to the field strengthB.20,21 Here the
magnetic field has no qualitative effect on the asympto
behavior of the effective linear conductivity and correlato
at small values ofh: the effective conductivity decreases
Ah, and the field correlators diverge as 1/Ah ~see Refs. 20
and 21!. For a square lattice the effective conductivity a
correlation functions coincide with the corresponding qua
tities for a random system with two equal compone
concentrations.22,19

As we found earlier, the dissipative nonlinear conduct
ity and the correlatorŝe4&1,2 diverge at finite values ofhc ,
whose dependence on the magnetic field is given by~45!. In
weak fields,hc increases quadratically with field strengt
while in strong fields it tends to unity. Note that at a give
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finite valueh5s2 /s1 , h.hc , there exists a critical value of
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the magnetic field,Bc , at which the nonlinear conductivity
and the correlatorŝe4&1,2 diverge. Fors2 /s1 Þ b2 /b1 ,
Eq. ~45! implies that the critical value of the magnetic fie
corresponds tovct being roughly equal to unity atb1;b2 .
This value of the parameter is known to correspond to
transition from a classically weak field to a classically stro
field.

The critical fieldBc for a specific material can be est
mated from the conditionvct;1. We can easily derive an
expression forBc in the case of an arbitrary anglea formed
by the intersection of two straight lines if we solve th
current-flow problem for such a geometry with allowance
the magnetic field. Following the line of reasoning describ
in Appendix B, we find that

Bc5A~11c2!h2~11h2!c

c~hr12r 2!2 , ~46!

where

c5cot
a

4
cot

p2a

4
, r 15

b1

B
, r 25

b2

B
.

In deriving ~46! we assumed that the parametersr 1 and r 2

are weakly field-dependent.
Summing up, we conclude that there are values of

parameterh and the anglea at which the magnetic field
assumes a critical value. In such a field there is a revers
transition to the nonlinear current flow regime.

7. CONCLUSION

A periodic checkerboard lattice is remarkable becaus
the general case we can establish the nature of the singu
ties and analyze their role in current flow. As the exact
lution shows, the singularities in the higher-order field m
ments are determined by the asymptotic behavior of
solutions near the corners of the squares. This prop
makes it possible to generalize the results to lattices o
more general shape.

The important role that singularities play in random m
dia and periodic lattices has been noted by Dre�zin and
Dykhne,23 Bergman,24 Dubsonet al.,8 and Dykhneet al.25

Balagurov5 remarked that in a square lattice the effecti
conductivity has a logarithmic singularity that depends
the component concentrations. As a result of our research
find that singularities of the electric field and current depe
on the lattice parameters, the conductivity ratio, and the
ternal magnetic field. The critical exponents of conductiv
and second-order correlators of the lattice and of a tw
dimensional random medium coincide. This places the s
tems in a single universal class.

We have discovered a novel property of tw
dimensional lattices. We show that the linear current fl
regime is unstable for a critical valuehc of the parameterh,
i.e., using the linear approximation to study such system
h<hc is unjustified. The effect results from singularities
the field and divergences in the higher-order fie
moments.8,24 We have calculated the critical valuehc and the
critical values of the angle parameters and the magnetic
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of exactly solvable two-dimensional lattices exists in whi
the singularities can be studied exactly. Classification of s
singularities in lattices, apparently, has yet to be done.

We did not examine the cases whereh<hc andB>Bc.
Finding the fields in the neighborhoods of singular angles
a structure where the linear current flow regime breaks do
requires solving nonlinear equations.

Note that it may be simpler to experimentally study no
linear effects in disordered and periodic structures as fu
tions of the ratio of the linear conductivities and the ma
netic field than to investigate the concentration dependen6

Indeed, the parametersh andB can easily be measured usin
a single specimen. For instance, for the poorly conduct
components we could take a semiconductor with high p
tosensitivity. The parameterh can be varied, since it is pro
portional to light intensity. It is especially simple to take th
system into the nonlinear regime by varying the magne
field. This, as we have just seen, does not require using
trahigh fields. Nonlinear effects can easily be observed
generating higher harmonics, which are proportional to
higher-order moments of electric current.8,26

Singularities similar to those studied in the present wo
also show up in other phenomena, e.g., in thermal and n
processes.25

One of the authors~A.M.S.! is especially grateful to A.
M. Dykhne, A. A. Snarski�, and P. M. Hui for their useful
remarks. The work was supported by grants from the S
Committee for Higher Education~Grant No. 95-0-7.4-173!
and the Russian Fund for Fundamental Research~Grant No.
97-02-16923a!.

APPENDIX A

To estimatê uX(z)u4&, we write it in the form

^uX~z!u4&5
1

2 E E uX~z!u4
dzdz*

L2 , ~47!

where integration is over the domain onto which the squ
abcd is mapped. The analysis of the integral becomes cle
cut if we expressX(z) ~see Eq.~19!! in terms of the Weier-
strass functioǹ :

X~z!5`~z!2g@`~z!22`L
2#g, ~48!

where`L5`(L). In the integral in~47!, we can transform to
new variables̀ and`̄. The Jacobian of the transformation

U dz

d`U
2

5
L2

4K2 u`~`22`L
2!u21. ~49!

We can then write~47! as

^uX~z!u4&5
1

8K2 E E u`u2~114g!

3u`22`L
2u2~124g!d`d`. ~50!

The integral in~50! is taken over the entire upper half-plan
of the variable `. Introducing the change of variable
`/`L5Ax exp(iu/2), we obtain
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uX~z!u4 5
`L

4g21 `

x2~114g!/2f ~x!dx, ~51!

y-
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wherexk is a column vector with elementsak andbk , T(u)
gle

-
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s
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le to

the
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-
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^ &
16K2 E

0

where

f ~x!5E
0

2p

~122x cosu1x2!~4g21!/2du. ~52!

The function f (x) has the propertyf (1/x)5x124g f (x), So
we can reduce the integration with respect tox to the interval
@0,1#, i.e.,

^uX~z!u4&5
`L

4g21

8K2 E
0

1

f ~x!x2~4g11!/2dx. ~53!

The functionf (x) can be expressed in terms of the h
pergeometric function,27 which allows writing~53! as

^uX~z!u4&5
p`L

4g21

4K2 E
0

1

x2~4g11!/2

3FS 124g

2
,
124g

2
, 1, x2Ddx. ~54!

If we expand the hypergeometric function in powers ofx,
the first term behaves asx2(4g11)/2, and at certain values o
the parameterg the integral in~54! diverges. Clearly, the
integral diverges forg>gc , wheregc51/4. Forg,gc and
gc2g!1 the correction to the divergent term is of ord
(gc2g)2. Thus, neargc instead of~54! we can write

^uX~z!u4&.
p

8K2 H 1

gc2g
14z~3!~gc2g!21•••J , ~55!

where z(x) is the Riemann zeta function. The differen
gc2g is related to the differenceh2hc by

gc2g5~h2hc!
hc11

8p
hc

23/2, ~56!

which follows from~20!. Plugging~56! in ~55! and then into
~26!, we finally arrive at~27!.

APPENDIX B

Let us find the electric field in a planar medium sep
rated intoM sectors by rays. Suppose that the angle of
kth sector isak and the conductivity of that sector issk . It
is convenient to seek the electric field in the form

er5lr l21f ~u!, eu5r l21f 8~u!, ~57!

where the functionf k in each sector obeys the equation

f k91l2f k50 ~58!

and the following conditions at the boundaryu5fk between
sectorsk andk11:

f k~fk!5 f k11~fk!, skf k8~fk!5sk11f k118 ~fk!. ~59!

If we write the solution of Eq.~58! in the kth sector in the
form f k5ak coslu1bk sinlu, the boundary conditions~59!
lead to a relationship between the coefficientsak and bk in
adjacent sectors:

xk115Vkxk , Vk5T21~lfk!H~1/hk!T~lfk!, ~60!
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is the matrix of a two-dimensional rotation through the an
u, H(h) is a diagonal matrix with diagonal elements 1 andh,
andhk5sk11 /sk . Writing the conditionxM115x1 via ~60!,
we arrive at the equation (P i 51

M V i2I )x150, which has a
nonzero solution only if

detS )
i 51

M

V i2I D 50, ~61!

with detPi51
M Vi51. Equation~61! can be used to findl.

Let us calculatel for some typical cases. Suppose thatN
straight lines intersect at a single point~the origin! and par-
tition the plane into 2N sectors witha5p/N and conduc-
tivities of two types,s1 ands2 . For this geometry the prod
uct of the matricesV i in ~61! can be written

)
i 51

2N

V i5UN, ~62!

with U5H(h)T(la)H(1/h)T(la) andh5s2 /s1 . The ei-
genvalues of the matrixU are exp(ic) and exp(2ic), with c
obeying the equation

cosc5cos2~la!2
11h2

2h
sin2~la!. ~63!

From ~61! and~62! it follows that l can be found by noting
that one of the eigenvalues ofUN is unity, i.e., from the
condition6cN52p, or

cosc5cos
2p

N
. ~64!

Plugging~64! into ~63!, we arrive at an equation for finding
l:

tan2S pl

N D5
2h@12cos~2p/N!#

112h cos~2p/N!1h2 . ~65!

The values ofl tend to unity ash→1. When there are four
sectors (N52), Eq. ~65! yields two values ofl, which can
be written 112g and 122g, with g defined in~20!. When
N.2, there is only one value ofl.

Let us now examine a different structure, which consi
of four sectors with conductivitiess1 and s2 . The sectors
are formed by the intersection of two straight lines with
anglea between them. The value ofl can be found in the
same way as before, withN52 in ~62! and
U5H(h)T(l(p2a))H(1/h)T(la). However, there is a
simpler way of calculatingl in this case. The structure ha
two symmetry axes, which lie on the bisectors of sect
with different conductivities. If an external current flow
along one axis, we notice that the electric field potentia
symmetric with respect to this axis and antisymmetric w
respect to the other axis. Such symmetry makes it possib
determine the phase values in each sector. Moreover,
problem has inversion symmetry,e(2r )5e(r ), which ulti-
mately allows for reduction of the complete system
boundary conditions~for an arbitrarily directed external cur
rent! to the boundary conditions only between two adjac
sectors. Taking the point of intersection of the straight lin
as the coordinate origin and directing thex axis and the
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and conductivitys1 , we obtain the electric potential in th
form

w~1!5r lA1 coslu, w~2!52r lA2 sin lS u2
p

2 D ,

wherek51 corresponds to the region2a/2,u,a/2, and at
k52 the angleu varies within the intervala/2,u,p2a/2.
For an external current flowing in this direction we need o
consider the boundary conditions at the boundary betw
two sectors, e.g.,u5a/2. Pluggingw (1) and w (2) into the
boundary condition~3!, we arrive at a system of algebra
equations,

A1 cos
la

2
1A2 sin

l~a2p!

2
50,

~66!

A1s1 sin
la

2
2A2s2 cos

l~a2p!

2
50.

A nonzero solution exists only when the determinant of~66!
is zero, i.e., when condition~37! holds. Equation~37! gives
the value ofl, and one equation in~66! ~with l known!
yields the value ofA1 /A2 . In the special casea5p/2, the
result agrees with~20! if we put l5122g. We now find the
second particular solution with the external current flowi
along they axis. Reasoning along similar lines, we arrive
the following expressions for the electric potential in the fi
and second regions:

w~1!52r lB1 sin lu, w~2!5r lB2 coslS u2
p

2 D ,

wherel is now determined by Eq.~38!.
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We study theoretically the dependence of absorption by small metallic particles on particle shape
and wave polarization in the IR frequency range. We examine the electric and magnetic
absorption by small particles. The particles may be either larger or smaller than the electron mean
free path. We show that for asymmetric particles smaller than the mean free path the light-
induced conductivity is a tensor. We also show that the total absorption and the electric-to-
magnetic absorption ratio are strongly dependent on particle shape and wave polarization.
Finally, we construct curves representing the dependence of the ratio of the electric and magnetic
contributions to absorption on the degree of particle asymmetry for different wave
polarizations. Similar curves are constructed for the ratio of the components of the light-induced
conductivity tensor. ©1997 American Institute of Physics.@S1063-7761~97!01908-2#

1. INTRODUCTION In this paper we study optical absorption by small m
si
pa
d
e

pt
e
ab
o
al
t

le
o

ki

ic

i

n
a

e
b

t
n
or
o-
p

s
or

the
an
uch
IR

tion.
of

ral

by
cu-
to
by
ro-

for
ams,
pe-

a
red

cles
th
to
the

tro-

e
r,

ec-

0-
Small metallic particles are interesting objects for phy
cal studies. Whenever the characteristic size of such a
ticle becomes comparable to a physical quantity with a
mension of length~the de Broglie wavelength, the mean fre
path, the electromagnetic wavelength, the skin-layer de
etc.!, the small particles and their ensembles reveal n
properties. For instance, when the particle size is compar
to the de Broglie wavelength, quantization of the electr
spectrum becomes important. When the particles are sm
than the mean free path, there is an abrupt change in
intensity of electron–lattice energy exchange.1–3 The absorp-
tion of light also changes. The optical properties of partic
also vary depending on whether the particle is larger
smaller than the light’s wavelength and the depth of the s
layer.

The sharp decrease~by several orders of magnitude2,3! in
electron–lattice energy exchange in a small metallic part
has especially far-reaching physical consequences.4 It is pre-
cisely because of such a decrease in energy exchange
particle that we are able to produce, by supplying energy
the electron subsystem, hot electrons in stationary~quasista-
tionary! conditions. Such hot electrons can be generated
islet metallic films deposited on insulator substrates by se
ing a current through a tunnel-coupled system of sm
particles5,6 or by pointing a laser beam at the film.7,8

The presence of hot electrons makes it possible to
plain the special features of electron and photon emission
islet metallic films illuminated by laser light.4,9 What these
features amount to is that photon emission is observed in
illumination of the specimen by carbon dioxide laser photo
whose energy is 30 to 40 times lower that the electron w
function for a metallic islet, while among the emitted ph
tons there are those whose energy exceeds that of the
mary photons by a factor of several tens.9 And this all occurs
at laser beam intensities at which multiphoton processes
play no role and the film is not destroyed. Nothing of the s
has been observed for the same illumination intensities
solid metallic films or bulk metals.
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tallic particles. These particles are much smaller than
light’s wavelength and can be either larger or smaller th
the electron mean free path. A characteristic feature of s
particles is the strong dependence of absorption in the
frequency range on the particle shape and wave polariza
For instance, the luminous power absorbed by particles
the same volume but differing in shape can differ by seve
orders of magnitude.10 In addition to drawing attention for
purely scientific reasons, these features of absorption
small particles are important for practical reasons. In parti
lar, when paint containing small metallic particles is used
cover solid surfaces, the absorption and reflection of light
such surfaces can change drastically. Controlling such p
cesses requires knowing the properties of the particles.

In space, metallic particles pose a serious hazard
spacecraft. Such particles can be destroyed by laser be
but for this process to be successful we must know the
culiarities of optical absorption.

Studies of optical properties of small particles have
relatively long history, and the basic results are well cove
in monographs~see, e.g., Ref. 11!. But as for the effect of the
shape of small particles on the absorption by such parti
~especially particles much smaller than the mean free pa!,
there is still a lot to be studied. We find it convenient
discuss what has been done in this field after we state
problem.

2. STATEMENT OF THE PROBLEM

Suppose that a metallic particle is exposed to an elec
magnetic wave

S E
H D5S E~0!

H~0!Dexp$ i ~k–r2vt !%, ~1!

whereE and H are the electric and magnetic fields of th
wave, v and k are the wave’s frequency and wave vecto
and r and t denote the spatial coordinates and time, resp
tively.

36010$10.00 © 1997 American Institute of Physics
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ably larger than the characteristic size of the particle. In t
case the metallic particle is actually in spatially uniform, b
time-varying, electric~E! and magnetic~H! fields. The elec-
tric field E(0)e2 ivt induces a local potential electric fieldEloc

inside the particle, which in turn gives rise to electric curre
~with current densityje!. The magnetic fieldH(0)e2 ivt in-
duces in the particle a vortex~eddy! electric fieldEed, which
gives rise to an eddy electric currentjm ~here jm is the cor-
responding current density!.

As a result, the total dissipation of the wave’s ener
~absorption by particle! is

W5We1Wm5
1

2
Re E

V
dr ~ je–Eloc* 1 jm–Eed* !, ~2!

whereV is the particle volume.
The first term on the right-hand side of Eq.~2! corre-

sponds to electric absorption and the second to magn
absorption. Thus, to determine the total absorption we m
know the potential electric fieldEloc and the eddy electric
field Eed, and the corresponding current densitiesje and jm .

For particles that are either larger or smaller than
electron mean free path, simultaneous electric and magn
absorptions are known, i.e., appropriate formulas exist, o
when the particles are spherical. The total energy abso
by a spherical particle~see, e.g., Ref. 12! is

W5
9

8p
Vv«9F 1

~21«8!21«92 1
v2R2

90c2 G uE~0!u2, ~3!

where «8 and «9 are, respectively, the real and imagina
parts of the dielectric constant,R is the particle radius, andc
is the speed of light. The first term on the right-hand side
Eq. ~3! describes electric absorption and the second t
magnetic absorption.

If the particle is larger than the mean free path, i.e., b
scattering is dominant, the expression for the dielectric c
stant of the metal has the standard form

«05«81 i«9512
vp

2

v21n2 1 i
n

v

vp
2

v21n2 , ~4!

wherevp is the plasma frequency, andn is the collision rate.
We now use Eqs.~3! and ~4! to estimate the relative

contributions of electric and magnetic scattering to the to
absorption by the particle. For example, let us take a g
particle. Thenvp'531015s21 andn'1013s21. We assume
that R5331026cm and thatv is the frequency of a carbo
dioxide laser, i.e.,v'231014s21. Then Eq. ~3! yields
«8'2600 and«9'30, and the magnetic-to-electric absor
tion ratio is

Wm

We
5

1

90 S vR

c D 2

u«0u2'2. ~5!

We see that for the given set of parameters magn
absorption is twice as large as electric. Obviously, for diff
ent parameters of the particle and a different frequency ra
electric absorption can be either larger or smaller than m
netic absorption. Hence, when studying the dependenc
optical absorption by a small metallic particle on partic
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tion. However, for asymmetric particles smaller than t
mean free path we know of but a single attempt~Ref. 10! to
obtain the total absorbed power. The only quantity that w
studied was the light-induced conductivitys~v!, defined by

je5sEloc , ~6!

for spherical13 and cylindrical14 particles, and for particles
shaped like parallelepipeds.15 All these papers use a quantu
mechanical approach, and the shape of the particles was
sen in such a way that the potential well corresponding
such a symmetry allowed for an analytic solution of t
Schrödinger equation.

For particles larger than the mean free path the lig
induced conductivity is known (s5v«9/4p), and allowing
for the effect of particle shape on absorption reduces to fi
ing Eloc andEed. The local electric fieldEloc in the case of an
ellipsoidal particle is independent of the coordinates and
easily be expressed in terms of the components of the d
larization tensor. Many researchers have used this featu
allow for the dependence of electric absorption on the p
ticle shape in the case where bulk scattering is domin
~see, e.g., Ref. 11 and the literature cited therein!.

For perfect conductivity («9@u«8u), magnetic absorp-
tion by ellipsoidal metallic particles larger than the electr
mean free path was studied by Levin and Muratov.16

In most theoretical papers devoted to optical absorpt
by islet metallic films, attention is focused mainly on th
effect of the interaction between the metallic particles~islets!
on Eloc and hence on electric absorption~see, e.g., Ref. 17
and the literature cited therein!. In some cases, taking thi
interaction into account can indeed lead to a change in
absorbed power.2 However, the effect of particle shape o
electric and magnetic absorption, and the polarization dep
dence of the electric-to-magnetic absorption ratio have ye
be studied. But it is well known that, depending on the
factors, the absorbed power can vary not just severalfold,
by several orders of magnitude.

3. LOCAL FIELDS

The metallic particles examined below are ellipsoid
Such an assumption has certain advantages. First, by co
ering ellipsoids of different oblateness and elongation,
can obtain the majority of real particle shapes~from ‘‘pan-
cake’’ to antenna-like!. Second, finding the potential (Eloc)
and eddy (Eed) local fields for such particles is easy.

As is known,12 for ellipsoidal particles the potential loca
electric fieldEloc induced by a uniform external electric fiel
E(0) is coordinate-independent. The fieldEloc can be linearly
expressed in terms ofE(0) by employing the depolarization
tensor. In terms of the principal axes of the depolarizat
tensor, which coincide with the principal axes of the elli
soid, we have11

~Eloc! j5Ej
~0!24pL j Pj5Ej

~0!2L j~«21!~Eloc! j , ~7!

whereL j are the principal values of the components of t
depolarization tensor, andP is the polarization vector.

For asymmetric particles smaller than the mean f
path, light-induced conductivity becomes a tensor, as we
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FIG. 1. Dependence of~a! the factor of de-
polarization along the ellipsoid’s axis o
revolution on the ellipsoid’s semiaxis ratio
and ~b! the ratio of the square of the loca
electric field inside the particle to the squar
of the wave’s electric field on the ellipsoid’s
semiaxis ratio for the chosen wave polariz
tion.
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done a little bit later. We also note that in the case o
particle ensemble, the polarization vector in a given part
is induced not only by the field of the external wave, but a
by the dipoles induced by this wave in other particles.4 Here
we ignore such effects, but they can easily be incorpora
into the picture.2

Finding (Eloc) j from ~7!, we get

u~Eloc! j u25
~Ej

~0!!2

@11L j~«821!#21~L j«9!2 . ~8!

When the light-induced conductivity of the small particl
becomes a tensor~about this case later!, we must substitute
4ps j j /v for «9 in ~8! ~s j j is the j th diagonal component o
the light-induced conductivity tensor!.

Now let us find the eddy local fieldEed. This field must
obey Maxwell’s equations

“3Eed52 i
v

c
H~0!,

“•Eed50, ~9!

augmented by the boundary condition

Eed–nsuS50, ~10!

wherens is a unit vector normal to the surfaceS.
Before we go any further we must make the followin

remark. On the right-hand side of the first equation in~9!, for
the magnetic field inside the particle we take the exter
~spatially uniform! magnetic fieldH(0). Such an approxima
tion is justified if the depthdH of the skin layer is much
greater than the characteristic particle sizeR:

dH[S v

c
Im A« D 21

@R.

For an ellipsoidal particle,R is the semimajor axis of the
ellipsoid. Below we assume that the inequality is true. T
constitutes the most interesting case since the contributio
eddy currents to absorption is then at its maximum.

Bearing in mind thatH(0) is constant, we can write th
solution of the system of equations~9! as

~Eed! j5 (
k51

3

a jkxk ~x15x,x25y,x35z! ~11!
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system~9! and the boundary condition~10!. As a result we
get

~Eed!x5
iv

c S zHy
~0!

Rz
21Rx

2 2
yHz

~0!

Rx
21Ry

2DRx
2 . ~12!

The other components ofEed can be obtained via cyclic per
mutations. In Eq.~12!, Ry , Ry , andRz are the semiaxes o
the ellipsoid.

Knowing Eloc andEed for particles whose characteristi
size is greater than the electron mean free path, it is eas
accordance with~2!, to derive a formula for the absorbe
power. Note that in this case the currents are related to
field through relationships of type~6!.

If to simplify matters we take an ellipsoid of revolutio
~with the z axis chosen as the axis of revolution!, then com-
bining ~2!, ~8!, ~12!, and~6! we get

W5V
v«9

8p H( ~Ej
~0!!2

@11L j~«821!#21~L j«9!2 1
v2R'

2

10c2

3~H i
~0!!21

v2

5c2

R'
2 Ri

2

R'
2 1Ri

2 ~H'
~0!!2J , ~13!

where

H i
~0!5Hz

~0! , H'
~0!5A~Hx

~0!!21~Hy
~0!!2,

Rx5Ry5R' , Rz5Ri .

Equation~13! is a generalization of~3! to the case of
ellipsoidal particles. Note that in~13! E(0)5H (0). In ~13! we
did not expressH (0) in terms ofE(0) ~as we did in~3!! so
that the dependence of the absorbed power on wave p
ization might be more graphic. The principal values of t
components of the depolarization tensor for particles wh
shape is that of ellipsoids of revolution are12

Lx5Ly5
1

2
~12Lz!,

Lz55
12ep

2

2ep
3 F ln

11ep

12ep
22epG , Ri.R' ,

11ep
2

ep
3 @ep2arctanep#, Ri,R' ,

~14!
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Figure 1a depicts the dependence ofLz on the ellipsoid
semiaxis ratioR' /Ri . The componentsL j of the depolariza-
tion tensor can vary between zero to unity. We see that
denominator in~8! containsL j

2 as a cofactor of («821)2. As
the above estimates show, in the frequency range of a ca
dioxide laser, «82'43104. Consequently, uElocu2 can
strongly depend on particle shape. Figure 1b depicts the
pendence ofuElocu2/uE(0)u2 on the semiaxis ratioR' /Ri for
the case whereE(0) is directed along the ellipsoid’s axis o
revolution. We see that the ratio of the square of the lo
field to the square of the external field can vary by seve
orders of magnitude. According to~13!, this means that elec
tric absorption by metallic particles can vary by several
ders of magnitude, depending on particle shape and w
polarization.

This fact has important consequences. As we noted
lier ~see the Introduction!, when an islet metallic film is illu-
minated by laser light, the electron gas of the metallic p
ticles heats up. This leads to electron and photon emiss
In particular, electron emission here is thermionic, which
cording to Richardson’s law is proportional to exp$2w/kTe%,
wherew is the electron work function, andTe is the electron
temperature. Electron emission is strongly dependent on
electron temperatureTe , which is determined by the energ
absorbed by a particle. The absorbed energyW in turn is also
strongly dependent on particle shape and wave polariza
In this situation, introducing average~effective! absorption
cross sections of some kind is absolutely out of the quest
The particles that absorb the most light are the electrons
emit light. In other words, these phenomena are determ
primarily by particles with maximum absorption and not
particles with some average~‘‘effective’’ ! absorption, which
constitute the majority in an islet film.

4. ELECTRON DISTRIBUTION FUNCTION

In Sec. 3 we determined the local fields and at the sa
time derived a general expression for the power absorbe
an ellipsoidal metallic particle in the case of bulk scatter
~i.e., for particles larger than the mean free path!. Here we
focus on the case of particles smaller than the mean
path. Incidentally, the method we now develop can also
applied to particles larger than the mean free path.

Thus, knowing the potential and local eddy elect
fields in the particle, to determine the absorbed power
must also derive expressions for the high-frequency curr
induced by these fields.

By definition, the current density is

j5
2e

~2p\!3 E vf d3~mv !5
2m3e

~2p\!3 E vf ~v!d3v, ~15!

where f (v) is the electron distribution function over the v
locities v, ande andm are electron charge and mass. In t
presence of local fields, the distribution function can be r
resented as a sum of two terms,

f ~v!5 f 0~«!1 f 1~v!,
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pends only on the energy«5mv /2, and f 1(v) is a correc-
tion generated by the local fields.

We can find f 1(v) by solving the appropriate kinetic
equation. In the linear approximation in the electromagne
field, the kinetic equation has the form

~n2 iv! f 11v–

] f 1

]r
1eF–v

] f 0

]«
50. ~16!

Here we have allowed for the fact thatf 1 } e2 ivt; n is the
bulk collision rate, and

F5Eloc
~0!1Eed

~0! . ~17!

Equation~16! must be augmented by boundary cond
tions for f 1 . For these we take, as is often done, the con
tions for diffuse electron scattering at the boundary, i.e.,

f 1~r ,v!uS50 for vn,0, ~18!

wherevn is the velocity component normal to the surfaceS.
Operating on these assumptions, Lesskinet al.18 studied

magnetic scattering by a spherical metallic particle. To so
Eq. ~16! with the boundary conditions~18! we employ the
method of characteristic curves, which demonstrated its
fectiveness in Ref. 18. But for ellipsoidal particles th
method used in Ref. 18 needs to be modified. The essenc
this modification will be clarified later.

Thus, we transform to a deformed system of coordina
in which the original particle ellipsoid,

(
i 51

3 xi
2

Ri
2 51 ~19!

becomes a sphere~of radiusR!. In other words, we assum
that

xi5
xi8

g i
, g i5

R

Ri
, R5~R1R2R3!1/3, g1g2g351.

~20!

Under such a deformation the shape of the particle chan
but not its volume. This means that the electron number d
sity remains unchanged, and so does the normalization o
function f .

In the deformed system of coordinates, Eq.~16! and the
boundary conditions~18! acquire the form

~n2 iv! f 11v8–
] f 1

]r 8
1eF~r 8!–v

] f 0

]«
50, ~21!

f 1~r 8,v8!ur 85R50 for r 8–v8,0. ~22!

In ~21! and~22! we also introduced the ‘‘deformed’’ velocity
components

v i85g iv i . ~23!

Equation~21! for the characteristic curves has the for

dxi8

v i8
52

d f1

ñ f 1
5dt8, ñ[n2 iv, ~24!

which implies that

r 85v8t81R, ~25!
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the sphere from which the trajectory begins. Here the par
eter t8 can formally be considered the ‘‘time’’ of motion o
the electron along the trajectory.

If in ~25! we transferv8t8 to the left-hand side and
square the resulting equation, the solution of this new~sca-
lar! equation can be written

t85
1

v82 @r 8–v81A~R22r 82!v821~r 8–v8!2#. ~26!

The characteristic curve~26! depends only on the absolu
value of R and not on the orientation ofR. Such indepen-
dence of the characteristic curve from the position of a po
on the surface was achieved by transforming to the coo
nates~20!.

From ~26! we also see thatt850 at r 85R. Bearing this
in mind, we can use~24! to find an f 1 that satisfies Eq.~21!
and the boundary condition~22!:

f 152
] f 0

]« E
0

t

dt exp$2 ñ~ t82t!%ev–F~r 82v8~ t82t!!.

~27!

Allowing for the coordinate dependence ofF ~see~17! and
~12!!, from ~27! we obtain

f 152e
] f 0

]« H v–Eloc
~0!1 (

i , j 51

3

a i j v iFxj8

g j
1v j

]

]ñG J
3

12exp$2 ñt8%

ñ
. ~28!

If initially the particle is spherical, thena i j 52a j i , and the
last term in~28! vanishes.

5. ELECTRIC ABSORPTION

Combining~28!, ~14!, and~2!, we obtain an expressio
for the electric absorption:

We5
e2m3R3

~2p\!3 ReF1

ñ E Uv–Eloc
~0!U2d~«2m!

3~12exp$2 ñt8%!d3r 8d3v G , ~29!

wherem is the Fermi energy, and where we allowed for t
fact that

] f 0

]«
'2d~«2m!.

Allowing for the form of t8 ~according to~26!!, it is
convenient to integrate with respect tor 8 in ~29! by directing
the z8 axis along the vectorv8 and introducing two new
variables,

z5
r 8

R
, h5

v8

R
t8. ~30!

As a result we obtain
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3~12exp$2 ñt8%!

5R3E
0

1

dzz2E
12z

11z

dh
h22z211

2h2z

3S 12expH 2
ñRh

v8 J D
5

R3

2 E
0

2 dh

h2

3S 12expH 2
ñRh

v8 J D E
uh21u

1

dzz

3~h22z211!.

Further calculation of the integral is easy, and as a re
from ~29! we obtain

We5
pe2m3R3

~2p\!3 ReF1

ñ E d3vUv–Eloc
~0!U2d~«2m!c~q!G ,

~31!

where we have introduced

c~q!5
4

3
2

2

q
1

4

q3 2
4

q2 S 12
1

qDexp$2q%,

q[q12 iq25
2ñ

v8
R5

2n

v8
R2 i

2v

v8
R. ~32!

Equation~31! gives the general form of the electric ab
sorption by an ellipsoidal metallic particle for an arbitra
bulk-to-surface scattering ratio.

The above case of bulk scattering~the Drude case! fol-
lows from ~31! when q@1. Then, according to~32!,
c(q)'4/3, and from Eq.~31! we obtain for the electric ab
sorption

We'V
e2n

m

n

n21v2

uEloc
~0!u2

2
[Vs~v!

uEloc
~0!u2

2
, ~33!

where n is the electron concentration, which can be e
pressed in terms of the Fermi velocityvF or the Fermi en-
ergy m,

n5
8p

3

~mvF!3

~2p\!3 , vF5A2m

m
. ~34!

Clearly, Eq.~33! corresponds to the first term in~13!.
We now analyze the situation in which the particle

smaller than the mean free path, and hence surface scatt
is dominant. This corresponds to

q15
2n

v8
R!1. ~35!

As for q2[2vR/v8, when surface scattering is dominan
this parameter can be either larger or smaller than unity.
of interest then to study the two limits
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2 v8

q2!1. ~36b!

The case~36a! corresponds to high-frequency surface sc
tering, and~36b! to low-frequency surface scattering.

If we ignore bulk scattering (q1→0) and assume thatq2

is arbitrary, then~32! yields

ReF1

ñ
c~q!G' 1

v F 2

q2
2

4

q2
2 sin q21

4

q3 ~12cosq2!G .
~37!

This expression is present in~31!. We see that terms oscil
lating as functions of particle size have emerged. Such os
lation effects in spherical particles were studied by Aus
and Wilkinson19 for electric absorption, and by Lesski
et al.18 for magnetic absorption. These effects, which a
moderate by themselves, are even less important for as
metric particles. The reason is that the ‘‘deformed’’ veloc
v8, which enters into the expression forq2 , is angle-
dependent. In view of this, the integration over ang
smooths out the oscillation effects. Furthermore, Eq.~37!
implies that these oscillations can exist only wh
q252Rv/v8'1, i.e., when the electron transit time fro
wall to wall, 2R/v8, coincides with the period of the elec
tromagnetic wave. In the limiting cases given by~36!, these
effects are negligible.

Let us start with the high-frequency case~36a!. For
q2@1 andq1!1 we have

ReF1

ñ
c~q!G' 2

vq2
,

which in accordance with~31! yields

We'
pe2m3R2

~2p\!3v2 E d3vv8uv–Eloc
~0!u2d~«2m!. ~38!

To study the dependence of absorption on particle shape
need only consider an ellipsoid of revolution. In this case

v85RAv'
2

R'
2 1

v i
2

Ri
2, ~39!

wherev' and v i are the electron velocity components pe
pendicular and parallel to the axis of revolution. With allow
ance for~39!, the integral in~38! can easily be calculated:

We5V
ne2

mv2

vF

R'

9

16
@w'uE', loc

~0! u21w iuEi , loc
~0! u2#. ~40!

Herew' andw i are functions of the ellipsoid’s eccentricit
~we note once more thatep

25u12R'
2 /Ri

2u):
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w'5
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2 5 2 S 2ep
2D p ep

S 4ep
2D

3arcsinep , R',Ri ,

1

2 S 12
1

2ep
2DA11ep

21
1

ep
S 11

1

4ep
2D

3 ln~A11ep
21ep!, R'.Ri ,

~41!

w i55
1

2 S 12
1

2ep
2DA12ep

21
1

4ep
3 arcsinep ,

R',Ri ,

1

2 S 11
1

2ep
2DA11ep

22
1

4ep
3 ln~A11ep

21ep!,

R'.Ri .

~42!

Having the general expression~40! for the electric ab-
sorption of an ellipsoidal metallic particle in the case
high-frequency scattering, we can easily find the compone
of the light-induced conductivity tensor. To this end, w
write the expression for electric absorption in terms of t
principal valuess j j of the conductivity tensor,

We5V
1

2 (
j 51

3

s j j uEj , loc
~0! u2, ~43!

and compare it with~40!. As a result we have

sxx5syy[s'5
ne2

mv2

vF

R'

9

8
w' ,

szz5s i5
ne2

mv2

vF

R'

9

8
w i . ~44!

The case of a spherical particle follows from~44! asep→0.
Allowing for ~41! and ~42!, we find that

s'5s i5
ne2

mv2

3

4

vF

R
. ~45!

Comparing~44! and~45!, we conclude that the light-induce
conductivity of metallic particles smaller than the mean fr
path is a scalar quantity only when the particles are symm
ric.

In the general case of asymmetric particles, the lig
induced conductivity becomes a tensor whose compon
depend on particle shape. Figure 2a depicts the depend
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of s' /s i on the ellipsoid’s semiaxis ratioR' /Ri . Equation
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1 A11e22
1

ln~A11e21e !, R .Ri ,
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~44! was used to build the curves. We see that the com
nents of the light-induced conductivity tensor differ cons
erably, depending on the degree of particle asymmetry.

Comparing~45! with the expression for the conductivit
that follows from~33! for v@n, we see that in the case of
spherical particle, the expression for the electric conductiv
dominated by surface scattering can be obtained from a s
lar expression for the Drude case by formally substitut
3vF/4R for n. This method is widely used in the literatur
However, in the case of asymmetric particles, this proced
leads to incorrect results. The appearance in~40! of the fac-
tor vF /R' , which has the formal meaning of ‘‘transit fre
quency,’’ is due to the fact that the particle volumeV can be
expressed as a separate factor. But when surface scatt
dominates, the absorbed power is proportional to the sur
area of the particle. This can easily be seen by using~40!–
~42! to derive simple analytic expressions for highly elo
gated and highly flattened ellipsoids:

We'
9p

128
V

ne2

mv2

vF

Ri
S 3

2 U~Eloc
~0!!'U21U~Eloc

~0!! iU2D , R'!Ri ,

~46!

We'
9

32
V

ne2

mv2

vF

Ri
S 1

2 U~Eloc
~0!!'U21U~Eloc

~0!! iU2D , R'@Ri .

~47!

The factorsv/R''RiR' in ~46! andV/Ri'R'
2 in ~47!

are simply the surface areas of the corresponding ellips
in the specified limits.1!

Let us now examine the case~36b! of low-frequency
surface scattering, i.e.,

q1!q2!1. ~48!

Here the frequency of the electromagnetic wave is m
higher than the bulk collision rate but is much lower than
frequency of transit from wall to wall. If condition~48! is
met, we havec(q)'q/2, and from~31! we obtain

We'
pe2m3R4

~2p\!3 E d3v
v8

uv–Eloc
~0!u2d~«2m!. ~49!

After evaluating the integral in~49! we can transform the
result to~43!, where instead of~44! we will have

s'5
9

8

ne2

m

R'

vF 5
2

1

2eP
2 A11ep

21
1

ep
S 11

1

2ep
2D

3 ln~A11ep
21ep!, R'.Ri ,

1

2eP
2 A12ep

21
1

ep
S 12

1

2ep
2Darcsinep ,

R',Ri ,
~50!

366 JETP 85 (2), August 1997
o-
-

y
i-

g

re

ing
ce

ds

h
e

s i5
ne2

m

R'

vF 5 ep
2 p ep

3 p p '

2
1

ep
2 A12ep

21
1

ep
2 arcsinep , R',Ri .

~51!

Formula~49! for the absorbed power acquires a simp
analytic form for the limits of highly flattened and highl
elongated ellipsoids:

We'
9

16
V

ne2

m

Ri

vF
H F lnS 2

R'

Ri
D2

1

2GUE', loc
~0! U21UEi , loc

~0! U2J ,

R'@Ri , ~52!

We'V
ne2

m

R'

vF
S 1

2 UE', loc
~0! U21UEi , loc

~0! U2D , R'!Ri , ~53!

In addition, atR'5Ri, Eq. ~49! yields the well-known result
for a spherical particle:

We'
3

8
V

ne2

m

R

vF
uEloc

~0!u2. ~54!

Figure 2b depicts the dependence ofs' /s i on the ellip-
soid’s semiaxis ratioR' /Ri constructed from Eqs.~50! and
~51!. Comparing Figs. 2a and b, we see that the effect
particle asymmetry on the ratio of the components of
conductivity tensor differs not only quantitatively but als
qualitatively in the high- and low-frequency cases~provided
that surface scattering is dominant!.

6. MAGNETIC ABSORPTION

Magnetic absorption is given by the second term in~2!.
Combining~11!, ~15!, and~28!, we obtain an expression fo
the magnetic absorption,

Wm5
e2m3

~2p\!3 Re E d3r 8d3vd~«2m!

3(
~1!

~3! a lk* a i j

g lgkg ig j
v l8xk8v i8xj8

12exp$2 ñt8%

ñ
, ~55!

where summation is over all indices from 1 to 3. To calcula
the integral with respect tor 8, we direct thez8 axis along the
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FIG. 2. Ratio of the conductivity perpen
dicular to the ellipsoid’s axis of revolution
(s') to the conductivity along the axis (s i)
as a function of the ellipsoid’s semiaxis ra
tio: ~a! v@vF /R' ,vF /Ri ; ~b! v!vF /
R' ,vF /Ri .
vector r 8. Then, according to~26!, t8 is independent of the

s

ar
d
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e

ne

in
in
n
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ive

role of magnetic absorption grows with frequency. We there-

e

e

anglew8 ~in the plane perpendicular tov8!. Hence in~55! we
can first integrate with respect tow8. It can be shown that

E
0

2p

dw8xj8xk852pr 82Fv j8vk8

v82 1
sin2 u8

2 S d jk23
v j8vk8

v82 D G ,
~56!

whereu8 is the angle betweenr 8 andv8.
After ~56! is plugged into~55!, the calculation become

similar to the one used in calculating the expression~29! for
the electric absorption. As a result, Eq.~55! becomes

Wm5
pe2m3R5

2~2p\!3 ReH 1

ñ E d3vd~«2m!

3F(
~1!

~3! ua i j u2

g i
2g j

2 v i8
2c1~q!12

3(
~1!

~3! ua i j 1a j i u2

g i
2g j

2

v i8
2v j8

2

v82 c2~q!G J , ~57!

where

c15
8

15
2

1

q
1

4

q3 2
24

q5 28S 1

q3 1
3

q4 1
3

q5Dexp$2q%,

c25
2

5
2

1

q
1

8

3q2 2
6

q3 1
32

q522S 1

q2 1
5

q3 1
16

q4 1
16

q5D
3exp$2q%2

3

4
c1~q!. ~58!

Equation~57! determines the magnetic absorption by a p
ticle in general form for an arbitrary ratio of the bulk an
surface contributions. For spherical particles, the last term
the right-hand side of Eq.~57! vanishes, since in this cas
a i j 52a j i .

Information about the scattering mechanism is contai
in the quantitiesq52Rñ/v8 and ñ[n2 iv.

From ~57! we can derive simple analytic expressions
the limits of pure bulk scattering and pure surface scatter
In the first case (uqu@1) we arrive at the known expressio
for magnetic absorption determined by the second and t
terms on the right-hand side of Eq.~13!.

When surface scattering is dominant, the high-freque
case is the most interesting, since the eddy fieldEed is pro-
portional to the frequency, with the result that the relat
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fore assume thatq1!1 andq2@1. Then from~57! it follows
that

Wm'
pe2m3R4

4~2p\!3v2 E d3vd~«2m!

3S (
~1!

~3! ua i j u2

g i
2 v i

2v81
1

2 (
~1!

~3! Ua i j 1a j iU2
v i

2v j
2

v8 D .

~59!

Again, if we limit ourselves to an ellipsoid of revolution, th
integrals in~59! can easily be evaluated and we obtain

Wm>
9

128
V

e2nvF

mc2 R'Fw'~H i
~0!!2

1
Ri

4

~R'
2 1Ri

2!2 F~H'
~0!!2G . ~60!

Here, in addition to the functionw' defined in~41!, we have
introduced a new functionF:

F55
S 22

1

4ep
2 2ep

2DA12ep
21

1

2ep
S 11

1

2ep
2Darcsinep ,

R',Ri ,

S 21
1

4ep
2 1ep

2DA11ep
21

1

2ep

3S 12
1

2ep
2D ln~A11ep

21ep!, R'.Ri .

~61!

For spherical particles~i.e., asep→0!, the result obtained by
Lesskinet al. follows from ~60!:18

Wm'
3

64
V

e2nvF

mc2 R~H ~0!!2. ~62!

Equation ~60! acquires a simple analytic form for th
limits of highly elongated and highly flattened ellipsoids:

Wm'
9

128

3p

8
V

e2nvF

mc2 R'F1

2
~H i

~0!!21~H'
~0!!2G ,

R'!Ri , ~63!
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FIG. 3. Dependence of the magnetic-to
electric absorption ratio on the ellip
soid’s semiaxis ratio for the chosen wav
polarization.
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128

V
mc2 RiF S 2Ri

D ~H i ! 1~H' ! G ,
R'@Ri . ~64!

From ~63! it follows that in the case of a highly elongate
ellipsoid, magnetic absorption is twice as high when
magnetic field is perpendicular to the axis of revolution th
when it is parallel to that axis. The situation is similar f
bulk scattering.

Earlier we estimated the relative contribution of the ele
tric and magnetic terms of spherical particles to absorp
~see Eq.~5!!. Now, having the expressions for the elect
~Eq. ~40!! and magnetic~Eq. ~60!! absorption by asymmetric
particles, we can return to that problem.

For an asymmetric particle, the ratio of the electric a
magnetic contributions to absorption~at fixed frequency! is
strongly dependent on the degree of particle asymmetry
wave polarization. Figures 3a and b depict the dependenc
Wm /We on the ellipsoid’s semiaxis ratio for two differen
polarizations. Comparing the two figures, we see that th
curves differ strongly not only quantitatively but also qua
tatively.

7. CONCLUSION

In this paper we have derived, for the first time, expr
sions for electric and magnetic absorption by nonspher
particles smaller than the electron mean free path. We h
found that for small asymmetric particles, their electric a
magnetic absorption can vary by several orders of magnit
under particle shape variations with the volume remain
constant. Such drastic variations in absorption can also o
under variations of wave polarization.

Simple analytic formulas have been derived for high
elongated and highly flattened particle shapes.

We have also established that for nonspherical meta
particles smaller than the electron mean free path, the li
induced conductivity is a tensor, in contrast to the Dru
case. We have found the components of the conducti
tensor for particles in the form of an ellipsoid of revolutio
We have studied the dependence of these components o
degree of particle asymmetry.

In conclusion, we note that most theoretical investig
tions into the optical properties of islet metallic films a
devoted to the mutual effect of the particles on local fie
and electric absorption. In recent years the reflection of
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been studied~see, e.g., Ref. 21!. Allowance for the mutual
effect of particles can indeed strongly influence the values
the local fields. Estimates have shown2 that in favorable
cases, allowance for this mutual effect can alter the lo
field inside a given particle severalfold. However, our r
search has shown that allowing for particle shape toge
with considering the electric and magnetic absorption c
change the total absorption by several orders of magnitu
These factors, therefore, must be taken into account from
outset. These features of absorption are even more impo
in such phenomena as electron and phonon emission by
metallic films illuminated by laser light.8,9 It is in such phe-
nomena that the extremal cross sections of absorption b
ensemble of metallic islets play a much more important r
than the average~effective! cross sections.
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tional Science Foundation~Grant No. K6D100!.
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Inelastic light scattering by electrons and plasmons in metals

the
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The cross section of the inelastic light scattering by electron–hole plasma in metals is studied.
The Coulomb interaction of electron excitations is taken into account self-consistently.
The system of the Boltzmann equation for electronic fluctuations and Maxwell’s equations for
the interaction field is solved. The Raman spectra consist of the electron–hole background,
diffuson and plasmon resonances. The widths of this background and resonance are determined
by the electron collision rate as well as by the decay of the incident and scattered radiation
in the metal. The line shape depends on the screening of the electron–light interaction, i.e., on the
incident radiation frequency. ©1997 American Institute of Physics.@S1063-7761~97!02008-8#
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In recent times the inelastic light scattering has attrac
considerable attention because of the puzzle of hi
temperature superconductivity.1–5 Also, synchrotron source
of radiation6,7 with high resolution have led to an advance
experimental investigations of electronic excitations in sol
and liquids. Light scattering experiments give access to
tailed information on various elementary excitation
phonons,8 plasmons9,10 and magnons.11 The influence of the
transition to the superconducting state on the Raman l
scattering was first studied theoretically in Ref. 12, and m
recently for the synchrotron radiation frequency.13

The Raman spectra present a very complex picture
attention to their subtle aspects was paid only recently
particular, it has been discovered recently that the interac
of the phonon resonances with the electron–hole continu
leads to characteristic changes in the shape of the reson
line.14–16 The resonance line acquires the Fano resona
line shape, also known as the Breit–Wigner resonance
nuclear physics. The second example, where the reson
peak has a specific shape, is the two-magnon resonanc
which two magnons are involved in the electron transit
through a gap.17

The inelastic light scattering by normal metals has
yet been studied experimentally in such a detailed manne
that by superconductors. We would like to concentrate on
effect which has already been noticed,18 but not investigated
in detail: the influence of the spatial distribution of the inc
dent and scattered light in a metal on the resonance
shape. Up to now in investigations of Raman scattering,
solid state is treated as a nonabsorbent substance, wher
incident and scattered light possess well defined wave
tors. The existence of imaginary parts of the wave vec
changes the line shape. This effect should be considere
competitive with the Fano resonance.

In this paper we study how the above-mentioned fi
decay in a metal affects resonance with the plasmon ex
tion. The interaction between plasmon resonance and

370 JETP 85 (2), August 1997 1063-7761/97/08037
d
-

s
e-
:

ht
e

d
n
n
m
nce
ce
in
ce

, in

t
as
n

e
e
the
c-
r
as

d
a-
he

effect of the electron–hole excitations is represented b
loop. The electron–hole excitations are shown in Fig.
This diagram describes a continuum with a width depend
on the collision rate. In the ‘‘dirty’’ limit the diagram in-
volves a diffusion pole. The diagram 1b, where the elect
magnetic interaction is shown by the dotted line, has a n
row plasmon pole at the electron plasma frequencyv0 . It
will be shown that the influence of the electron loop leads
asymmetry of the plasmon resonance~the Fano effect!. Two
contributions shown in Fig. 1 should be integrated with t
factor uU(r ,t)u25uA( i )A(s)u2, whose width is determined by
the spatial damping of incident (i ) and scattered (s) light.

The Raman cross section is expressed in terms of a
ear response of the electron system with the Coulomb in
action to the external fieldU(r ,t). We solve self-consistently
Boltzmann’s equation for electron fluctuations and Ma
well’s equations for the interaction field.

For the applicability of the Boltzmann equation the fo
lowing conditions should be fulfilled:

uku5uk~ i !2k~s!u!kF , uvu5uv~ i !2v~s!u!«F ,

wherekF and«F are the Fermi momentum and energy.3! The
first condition allows an analytical expression to be found
the distribution function of charge carriers. We are interes
in small values ofuvu and uvu.v0 . In the latter case the
conditione2/\v!1 should be fulfilled, wherev is the Fermi
velocity. A rigorous method is not known for an evaluatio
of the response function for an arbitrarye2/\v, but the per-
mittivity calculated from the Boltzmann equation coincid
with Lindhard’s expression obtained in the limituku!kF and
for arbitrary values ofuvu. Therefore we use the kinetic equa
tion and write it in the t-approximation. The
t-approximation can be well justified for elastic scatteri
processes.19,20 An attempt to include the inelastic scatterin
by phonons has been made in Ref. 21, where the resp
function was obtained by the Green’s functions meth
Strictly speaking, the collision ratet for large frequency
transfer (uvu . v0) depends onv and is determined by

37006$10.00 © 1997 American Institute of Physics



is the
eraction is
FIG. 1. Feynman diagrams depicting the two contributions to Raman scattering in metals.~a! The electron–hole contribution;~b! the contribution of an
electromagnetic excitation~plasmon, the dotted line! in the electron–hole plasma. Here the solid line is the electron Green’s function, and the wavy line
incident and scattered light. The black dots are vertices describing the electron interaction with the incident and scattered light. The Coulomb int
represented by an empty vertex.
electron–electron collisions. The long wave part of the Cou-
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the second order of the perturbation theory with respect to
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lomb interaction is taken into account in a self-consist
way ~the Vlasov–Landau approximation; for the scatteri
problem, see Ref. 18!; The contributions of the local field
will be disregarded.

2. INELASTIC LIGHT SCATTERING AND SUSCEPTIBILITY

We consider light scattering by a metal which occup
the half-spacez.0. The Raman cross section has the for

ds~kx ,v!5S 8pe2

mc\v~ i !D 2 S~kx ,v!

12exp~2\v/kBT!

3
kz

~s!v~s!dv~s!dV~s!

c~2p!3 , ~1!

where the density–density correlation functionS(kx ,v)
contains the bulk and surface contributions.18 Here we are
interested in the bulk part only. Then we can use the e
continuation of all the fields in the semi-spacez,0 and take
the spatial Fourier transform. The correlatorS(kx ,v) is ex-
pressed in terms of the generalized susceptibilityx~k,v!:

S~kx ,v!52E dkz

2p
uU~k,v!u2 Im x~k,v!. ~2!

The generalized susceptibilityx~k,v! in the fieldU(k,v) is
defined as follows

E 2d3p

~2p!3 g* ~p! f p~k,v![2x~k,v!U~k,v!, ~3!

where f p(r ,t) is the electron distribution function with
specular boundary condition atz50.

The fieldU(r ,t) considered below as the external for
is the product of the vector potentials of the incident lig
A( i )(r ,t) and scattered lightA(s)(r ,t):

A~ i !~r ,t !A~s!~r ,t !.U~r ,t !5U~k,v!exp@ i ~ks,s2vt !#,

where ks5ks
( i )2ks

(s) . Here the subscripts denotes vector
components parallel to the surface. For the unbounded s
e( i ), e(s) are the polarization vectors of the incident and sc
tered fields, respectively, and they are included in the ve
function g(p). For a half space the polarization vecto
e( i ), e(s) are determined by the solution of the electrod
namic problem~for details, see Refs. 18 and 20. The vert
functiong(p) contains resonance denominators appearin
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A( i ), A(s). The Fourier transform of the fieldU(r ,t) is given
by

U~k,v!5
2i z

z22kz
2 , ~4!

where the complex quantityz5z11 i z2 is the sum of the
normal components of the wave vector of the incident a
scattered light in the metal.

The electron distribution functionf p(r ,t) is sought in
the form

f p~r ,t !5 f 0~«~p,r ,t !2m!1
d f0

d«0
d f p~r ,t !,

wheref 0(«(p,r ,t)2m) is the Fermi–Dirac distribution func
tion depending on the local electron energy

«~p,r ,t !5«0~p!1g~p!U~r ,t !.

The nonequilibrium part of the electron distribution functio
is governed by the Boltzmann equation:

2 i ~v2kv!d f p~k,v!5@ ivg~p!U~k,v!2evE~k,v!#

2n~d f p~k,v!2^d f p~k,v!&!,

~5!

wheren is the collision rate and the angle brackets den
averaging over the Fermi surface,

^~••• !&5
1

n0
E 2dS

~2p!3v
~••• !, n05E 2dS

~2p!3v
.

Here n0 is the density of electron states; we assumeT
!eF .

The electric fieldE~k,v! describes the electron–electro
Coulomb interaction and is determined by the Maxw
equation

curl curl E~r ,v!2
v2

c2 D~r ,v!5
4p iv

c2 j ~r ,v! ~6!

with

Da~k,v!5eab
0 Eb~k,v!,

j ~k,v!5eE 2d3p

~2p!3 vd f p~k,v!, ~7!

whereeab
0 is the dielectric constant of the filled bands.
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Substituting the solution of Boltzman’s equation~5! into

il-

re

o

3. LARGE AND LOW SPATIAL DISPERSION

by

the

s

ear

ex-

een
Eq. ~7! we obtain

j a~k,v!5sab~k,v!Eb~k,v!1Ga
~g!~k,v!U~k,v!, ~8!

where

sab~k,v!5 ie2n0K vaṽb

ṽ2kvL ,

Ga
~g!~k,v!5evn0K vag̃~p!

ṽ2kv L ,

ṽ5v1
in^v/ṽ2kv!&

12^ in/~ṽ2kv!&
,

g̃~p!5g~p!1
in^g~p!/~ṽ2kv!&
12^ in/~ṽ2kv!&

,

ṽ5v1 in.
The solutions of the Maxwell equation~6! and ~7! has

the form

Ea~k,v!5
4p iv

c2 U~k,v!Dab~k,v!Gb
~g!~k,v! ~9!

with the matrix

Dab~k,v!5S k2dab2kakb2
v2

c2 eab~k,v! D 21

,

whereeab(k,v) is related to the conductivity tensor

eab~k,v!5eab
0 1

4p i

v
sab~k,v!. ~10!

Using the solution of the Boltzmann equation~5! and the
Maxwell equation~9! we obtain the generalized susceptib
ity ~3!:

x~k,v!5vn0K g* ~p!g̃~p!

ṽ2kv L 2
4p

c2

3G̃a
~g* !~k,v!Dab~k,v!Gb

~g!~kv!, ~11!

where

G̃a
~g* !~k,v!5evn0K ṽag* ~p!

ṽ2kv L .

For normal propagation of the incident and scatte
waves (k5kz5k) the expression on~11! reads

x~k,v!5vn0K g* ~p!g̃~p!

ṽ2kvz
L 1

4p

v2ezz~k,v!

3G̃z
~g* !~k,v!Gz

~g!~k,v!. ~12!

Substituting~12! into ~2! we obtain

S~kx50,v!5S1~0,v!1S2~0,v!,

whereS1(0,v) is the contribution of the first term in~12!,
related to the excitation of electron–hole pairs andS2(0,v)
exhibits the plasmon resonance associated withezz(k,v).
These two contributions are shown in Fig. 1; the loops c
respond toGz(k,v) and the dotted line toezz(k,v).
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Let us consider two important limiting cases.
~i! Large-k limit: kv@uṽu.

Since we havê vz /ṽ2kvz&521/k1 ip(ṽ/k2)^d(m)/v&,
with m5cos(k,v), we obtain the susceptibility~12! in the
form

x~k,v!5
pn0v

k
^ug~p!2^g~p!&u2d~m!/v&. ~13!

Equation~13! describes the screening of light scattering
the Coulomb electron–electron interaction.22 This means that
in the frequency rangev.vuzu,v0, up to the plasma fre-
quencyv0 the density fluctuations are screened due to
Coulomb electron–electron interaction.

~ii ! Low k-limit: kv!uṽu.
We expand all integrands inx given by~12! in power series
with respect tokv/uṽu. The second term in~12! is propor-
tional tok2. In the leading approximation the first term give

x~k→0,v!5
n0v

ṽ S ^ug~p!u2&

1
in

v2 in^vz
2&k2ṽ22 u^g~p!&u2D . ~14!

We retain in the denominator the term proportional tok2 ~the
diffusion pole! since it is important at lowv;k2^vz

2&/n
!n.

If we leave out of consideration the frequency range n
the diffuson pole, we obtain

x~k,v!5x~k50,v!1dx~k,v!,

where the first term results only from the electron–hole
citations

2Im x~k50,v!5n0^ug~p!2^g~p!&u2&
nv

v21n2 . ~15!

This frequency dependence of the cross section has b
obtained in Refs. 19 and 23. The first term in Eq.~12! also
gives a contribution proportional tok2:

x1~k,v!5x~0,v!1dx1~k,v!,

dx1~k,v!5
n0vk2

ṽ3 F ^vz
2ug~p!u2&2

n2

v2 ^vz
2&u^g~p!&u2

1
in

v
~^g* ~p!&^g~p!vz

2&1c.c.!G . ~16!

The second term in Eq.~12! is of resonant form:

x2~k,v!5
n0v0

2«zz
0 k2

^vz
2&ṽ4«zz~k,v! K vz

2S g~p!1
in

v
^g~p!& D L

3 K vz
2S g* ~p!1

in

v
^g* ~p!& D L , ~17!

where

ṽ3v«zz~k,v!5«zz
~0!~ ṽ3v2v0

2ṽ22v0
2u2k2

2 inv0
2^vz

2&k2/v!,
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the electron plasma frequency is given byv0
2

2 2 0 2

d

on

s

e
fre
b-

e
c-

e

-

s-

of
54pe n0^vz&/ezz, and the dispersion parameter isu
5^vz

4&/^vz
2&.

The equationezz(k,v)50 gives the frequency an
damping~including its dispersion! of a plasmon,v5vpl(k)
2 iG(k), where

vpl
2 ~k!5v0

21u2k2,

G~k!5n@11~u22^vz
2&!k2/v0

2#/2.

Below we will omit the small dispersion due to damping.
The terms proportional tok2 in ~16! and ~17! can be

written as follows

dx~k,v!5
n0u^vz

2g~p!&u2k2

^vz
2&ṽ

FC1v

ṽ2

1
vv0

22n2ṽC312invṽC2

D G , ~18!

whereD5ṽ3v2ṽ2v0
22v0

2u2k2,

C15
^vz

2&^vz
2ug~p!u2&

u^vz
2g~p!&u2 ,

C25
^vz

2&~^g* ~p!&^vz
2g~p!&1c.c.!

2u^vz
2g~p!&u2 ,

C35
^vz

2&2u^g~p!&u2

u^vz
2g~p!&u2 .

Now we are in a position to calculate the cross secti

4. LIGHT SCATTERING CROSS SECTION

In the ‘‘clean’’ limit uv1 inu!vuzu one obtains the cros
section by substituting Eq.~13! into ~2!. For a more interest-
ing case,z1@z2 , we get

S~kx50,v!5pn0v^ug~p!2^g~p!&u2d~m!/v&

3S 4

pz1
2 ln

vz1

v
1

1

z1z2
D . ~19!

In this caseS~0,v! has a maximum atv.vz1 .
In the ‘‘dirty’’ limit n@vuzu, there are two regions: th

low and large frequency transfers. For the case of low
quency transferuvu<n, we obtain the cross section by su
stituting ~14! into ~2!. If z1@z2 , we can integrate onlyuUu2,
taking the smooth function Imx(k,v) at k5z1 :
.

-

S~k→0,uvu<n!5
n0nv

z2~v21n2! S ^ug~p!u2&

2
v22z1

2^vz
2&

v21~z1
2^vz

2&/n!2 u^g~p!&u2D . ~20!

This expression has two maxima~see Fig. 2!. The one at
uvu.z1

2^vz
2&/n!n describes the diffuson excitations. Th

other atuvu5n results from relaxation processes in the ele
tron system. The relaxation maximum is absent~curve (d)!
if ^ug(p)u2&5u^g(p)&u2. We define this case as th
complete-screening limit. Foruvu@z1^vz

2&1/2 Eq. ~20! trans-
forms to Eq.~23! ~see curve~a!! obtained first by Zawa-
dowski and Cardona.23 In Fig. 2 the following sets of param
eters (w5u^g(p)&u2/^ug(p)u2&. v05^vz

2&z1
2/n2) are used:

(a) w50.5, v050; (b) w50.5, v050.04; (c) w50.5, v0

50.02; (d) w51.0, v050.02. The units ofS~0,v! are
n0^ug(p)u2&/z2 .

For large frequency transferuvu.n, we find the cross
section using~15! and~18!. One can obtain a simple form in
the limit u2z1

2!nv0 , where the spatial dispersion of a pla
mon can be disregarded. Making use of the integrals

E dkz

2p
uU~k,v!u25

1

z2
, E dkz

2p
uU~k,v!u2kz

25
z1

2

z2
,

~21!
we obtain

S~0,v!5S1~0,v!1dS~0,v!, ~22!

S1~0,v!5n0^ug~p!2^g~p!&u2&
nv

z2~v21n2!
, ~23!

FIG. 2. Diffuson resonance and relaxation maximum for different values
parameters given in the text. In the curve (d) the relaxation maximum is
absent because of the complete screening; (b), (c): The screening is partial;
the mean free path for (b) is larger than for (c). The curve (a) represents
the Raman spectrum without the diffusion resonance~see Eq.~23!!.
dS~0,v!5
n0u^g~p!vz

2&u2z1
2nv

^vz
2&z2~v21n2!3 S ~3v22n2!C11

v0
2@4v2~v22n2!2v0

2~3v22n2!#

~v22v0
2!21v2n2

2
~v21n2!@n2~3v222v0

22n2!C312~~v22n2!~v22v0
2!22v2n2!#C2

~v22v0
2!21v2n2 D . ~24!
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The frequency dependence of the cross section~22! is
shown in Fig. 3 for various values of the parameters:C1

5C351, u2z1
2/v0

250.04, n/v050.08, and (a) C251, x
50, (b) C252, x50.2, (c) C252, x50.4, where x
[u2^ug(p)2^g(p)&u2&^vz

2&/u^g(p)vz
2&u2. The units of

S~0,v! aren0u^g(p)vz
2&u2/z2^vz

2&u2.
There is a wide background in the rangen,uvu,v0,

even if thep-dependence ofg~p! is weak, when

^ug~p!2^g~p!&u2&.0.2u^g~p!&u2.

The resonance line shape is asymmetric if the coefficientC2

differs markedly from unity: the resonance curve drops m
rapidly on the sideuvu.v0 . We note that the paramete
g~p!, z1 and z2 depend on frequencies of the incident a
scattered light, andn is a function ofv. All these depen-
dences can be disregarded near the plasmon resonanc
they modify the form of the background.

To take into account the spatial dispersion of the pl
mons we calculate the integral

E dkz

2p
uU~k,v!u2

kz
2

kz
22kp

2

5
z1

2z2
S z12kp sign v

z1
22kp

212i z1z2
1~kp ,z2→2kp ,2z2! D ,

where terms of orderz2
2/z1

2 are omitted andkp
25(a

1 ib)/u2v0
2,

a5~v22n2!~v22v0
2!22n2v2,

b5nv@2~v22v0
2!1v22n2#.

Using ~2! and~18! we obtain instead of~24! the contribution

dS~0,v!5
n0u^g~p!vz

2&u2z1

2^vz
2&z2

F2vn~3v22n2!z1C1

~v21n2!3

1S S v2v0
2

v21n22n2C3D L2~kp ,z2!

1nvS v0
2

v21n222C2D L1~kp ,z2!1~kp ,z2

FIG. 3. Theoretical prediction of Raman spectra for normally incident
scattered light. The background is the electron–hole continuum with la
collision rate. The resonance corresponds to the excitation of plasmon
low spatial dispersion. The Coulomb screening of electron density fluc
tions is complete for the curve (a), and partial for (c). The curves (b) and
(c) are shifted along the abscissa. The parameters are defined in the
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→2kp ,2z2! D G , ~25!

where

L1~kp ,z2!5@~z12k1 sign v!~a2u2v0
2z1

2!

2~b22u2v0
2z1z2!k2signv#/D1 ,

L2~kp ,z2!5@~z12k1sign v!~b22u2v0
2z1z2!

1~a2u2v0
2z1

2!k2sign v#/D1 ,

D15~a2u2v0
2z1

2!21~b22u2v0
2z1z2!2, ~26!

k11 ik25kp with

k15~Aa21b21a!1/2/&uv0 ,

k25~Aa21b22a!1/2sign v/&uv0 .

For u2z1
2!nv Eq. ~25! coincides with~24!. Expression~25!

is valid if uv1 inu@vz1 .
The position of the resonance is given by the condit

a5u2v0
2z1

2. This means that a plasmon is excited with t
wave vector equal to twice the wave vector of the incide
light ~we consider the backscattering geometry!. The width
of the resonance is determined by competition between
intrinsic plasmon damping,b, and the decay of light,z2 .
Usually the condition 2u2v0

2z1z2!ubu holds, where the
width of the plasmon resonance is connected with the e
tron collision rate only~curve (a) in Fig. 4!.

The resonance line has a critical behavior~(b) in Fig. 4!
when b.2u2v0

2z1z2 ~see~26!!. In case (c) the resonance
width is determined by the decay of the lightz2 . The param-
eterx and the units ofS~0,v! are defined as for Fig. 3~see
text after~24!!, C15C351, C252, u2z1

2/v0
250.04,x50.2,

2z2 /z150.3.

5. CONCLUSIONS

In this paper we considered the effect of the electr
collision rate and incident field decay on inelastic light sc
tering in metals. Our method is based on the straightforw
solution of the Boltzmann equation for the electronic flu
tuations and the Maxwell equation for the electron–elect

d
e

ith
a-

t.

FIG. 4. Plasmon resonance in light scattering for crossover of damp
~curve (b) n/v050.0115!; ~a! plasmon damping is larger than the fiel
damping (n/v050.02); ~c! n/v050.006;n is the electron collision rate,v0

is the plasma frequency.
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with
large, the momentum dependence of the electron–light in
actiong~p! has to be taken into consideration. For the sc
tering geometryA1g ~incident and scattered light polarize
along thex-axis and propagating along thez-axis!

g~p!5ex
~ i !ex

~s!F11
1

m (
n

S upf n
x u2

e f~p!2en~p!1v~ i !

1
upf n

x u2

e f~p!2en~p!2v~s!D G , ~27!

where the subscriptf denotes the index of the band in whic
the carriers exist, the transitions take place into some bann,
pf n

x is the electron momentum matrix element,m is the elec-
tron mass, and for the semi-infinite metal18 ex

( i )5(1
1Aexx(v

( i )))21.
The electron–light interaction is screened by the C

lomb interaction as well as by electron–electron collisio
The smooth part of the Raman spectra~background! is de-
termined by the screened electron–light interaction. This p
exists due top-dependent second term in bracket~27!. The
screening is not effective for the diffusion and plasmon re
nances. For complete screening there are only the plas
resonance with symmetric line shape and the asymmetric
fusion maximum. In the intermediate case, a wide electro
hole background appears and the plasmon resonance ha
asymmetric line shape. If the collision rate is low, the wid
of the resonance depends on the decay of incident radia
If the collision rate is comparable with the decay of incide
radiation, the plasmon resonance curve has a nontrivial fo
We emphasize, that the diffusion maxima and the plasm
resonance are located in very different parts of the spectr
The collision rate isn'103 cm21, according to the estimat
given in Ref. 16 for YBaCuO in the normal state and for t
incident radiation in the optical range. Then the diffusi
maximum is observed atv'10 cm21.

In a layered system having a cylindrical Fermi surfa
with its axis perpendicular to the surface of the sample,
plasmon peak resonance does not appear for incident
normal to the surface, sincevz50. However, if the incident
light falls on the surface an angle different from zero, t
plasmon resonance peak should be observed.

In order to observe the phenomenon of plasmon re
nance one needs a source of radiation with frequency c
parable to the interband electron energy and good resolu
375 JETP 85 (2), August 1997
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Positive magnetoresistivity of Fe 0.95Co0.05Ge2 single crystals inside the region of a

lly
magnetic phase transition
R. I. Za nullina, N. G. Bebenin, and V. V. Ustinov

Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620219 Ekaterinburg, Russia
~Submitted 19 November 1996!
Zh. Éksp. Teor. Fiz.112, 690–697~August 1997!

We report on the detection of two narrow peaks of positive magnetoresistivity in the temperature
dependence of the magnetoresistivity of a Fe0.95Co0.05Ge2 single crystal in the vicinity of a
‘‘smeared’’ first-order phase transition. The position of these peaks correlates with the position of
singularities in the temperature dependence of the temperature derivative of the electrical
resistivity and magnetic susceptibility. We show that these singularities in the transport and
magnetic properties are, probably due to the presence of two percolation transitions with
temperature in the magnetic subsystem of the crystal. ©1997 American Institute of Physics.
@S1063-7761~97!02108-2#
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Usually the features of the electrical conductivity of co
ducting magnetic materials in the vicinity of a phase tran
tion are due to the rise in fluctuations in the magnetic s
system of the crystal. Introducing a magnetic field leads
suppression of spin fluctuations and to reduction in the s
tering of current carriers and, hence, to a decrease in ele
cal resistivity.1–4 Negative magnetoresistivity is also ob
served in the vicinity of a metal–insulator transition
magnetic semiconductors, since a magnetic field is a c
tributory factor in the growth of regions of a conductin
ferromagnetic phase.5 In an earlier paper~see Ref. 6! we
were the first to report the detection of a sharp peak of p
tive magnetoresistivity in a FeGe2 single crystal in the vicin-
ity of a first-order phase transition, and suggested that
effect results from the ‘‘smearing’’ of the transition. For th
reason it would be interesting to study the processes that
place near the transition temperature.

A detailed study of these processes in FeGe2 is made
more difficult by the fact that the width of the transition
this material is extremely small~about 1 K!, so that it would
be more logical to use substances of the same crystalline
magnetic structure but with a ‘‘broader’’ transition regio
The solid solutions Fe12xCoxGe2 can serve as such a su
stance. In this paper we report on an experimental stud
the temperature dependence of the magnetic susceptib
electrical resistivity, and magnetoresistivity o
Fe0.95Co0.05Ge2 single crystals. By analyzing these results w
conclude that the ‘‘smearing’’ region of the magnetic pha
transition probably contains two distinctive percolation tra
sitions ~in temperature! in the magnetic subsystem of th
crystal.

2. SPECIMENS AND EXPERIMENTAL METHOD

The Fe0.95Co0.05Ge2 single crystals were grown by th
Czochralski method at the Department of General Physic
the Ural State Technical University in Ekaterinburg, Russ
The magnetic measurements were made with a vibrat
reed magnetometer. Magnetoresistivity was measured by
constant-current four-contact method in an electromag
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opposed currents. The specimens for measuring the ma
toresistivity were parallelepipeds that measur
630.530.5 mm. In magnetoresistivity measurements
temperature stability was no worse than 0.01 K.

All measurements were made in the heating regime.

3. RESULTS OF EXPERIMENT

3.1. Magnetic ordering in Fe 12xCoxGe2 single crystals

The compound FeGe2 ~the I4/mcm space group! is a
metallic magnetic material with two magnetic phase tran
tions, atT1'260 K and atT2'287 K. A sequence of mag
netic structures is realized in this compound: the param
netic (T.T2), the incommensurate (T1,T,T2), and the
collinear antiferromagnetic (T,T1). In the magnetically or-
dered state the magnetic moments lie in the basal p
~001!. The transition atT5T1 is first-order and that atT5T2

second-order.6

Single crystals of Fe12xCoxGe2 solid solutions have
been grown only with small values ofx not exceeding 0.05
~Ref. 7!. We know of no detailed data on the magnetic stru
tures realized in such single crystals. However, when co
atoms are substituted for iron atoms in Fe0.95Co0.05Ge2, the
magnetic phase transition temperature decreases by 20–
~Ref. 8!.

The sequence of magnetic structures realized in
solid solution is probably the same as in FeGe2. This has
been corroborated by a study of magnetization curves
Vlasov et al.9 They found that at low temperature
Fe0.95Co0.05Ge2 has a collinear antiferromagnetic structur
with the antiferromagnetic axes directed along the axes
the @110# type, just as in FeGe2.

When cobalt is substituted for iron, the number of d
fects in the crystal increases. One indication of this is
decrease in the ratior293 K/r4.2 K, wherer is the electrical
resistivity at the given temperature. According to Vlas
et al.,10 as the cobalt contentx grows from 0.001 to 0.05, the
value ofr293 K/r4.2 K drops from 40–50 to 4–6. Furthermor
on the basis of a detailed study of the field dependence of
reversible and irreversible susceptibility of Fe0.95Co0.05Ge2,

37605$10.00 © 1997 American Institute of Physics
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Vlasovet al.9 showed that adding cobalt leads to a rise in
inhomogeneities of the crystal and magnetic structures.

Thus, the solid solution Fe0.95Co0.05Ge2 can be expected
to have a first-order phase transition~just as FeGe2 has!
whose ‘‘width,’’ however, is considerably larger than that
FeGe2.

Figure 1 depicts the temperature dependence of the
ceptibility of a Fe0.95Co0.05Ge2 single-crystal specimen in
field H510 kOe applied along the@110# axis. We see tha
between 240 and 250 K there is a significant drop in susc
tibility. As the temperature increases, a mild peak in susc
tibility appears atT5270 K. From the above it follows tha
two phase transitions are possible in Fe0.95Co0.05Ge2: a first-
order phase transition ‘‘smeared’’ in the temperature ra
from 240 K to 250 K, and a second-order phase transitio
T25270 K.

3.2. Electrical resistivity and magnetoresistivity of
Fe0.95Co0.05Ge2

Figure 2 depicts the temperature dependence of the
gitudinal (Hi j ) magnetoresistivity

Dr

r0
5

rH2r0

r0

~rH is the resistivity in the magnetic field! in a field
H515 kOe when the current density vectorj is parallel to

FIG. 1. Temperature dependence of susceptibility of the Fe0.95Co0.05Ge2

single crystal in a fieldH510 kOe (Hi@110#); the inset depicts the tem
perature derivative of susceptibility as a function of temperature.

FIG. 2. Temperature dependence of longitudinal magnetoresistivity of
Fe0.95Co0.05Ge2 single crystal in a fieldH515 kOe (Hi j i@110#).
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the @110# axis. We see thatDr/r0 gradually decreases as th
temperature grows but that in the 240–250 K range the m
netoresistivity behaves irregularly.

In Fig. 3 the temperature dependence ofDr/r0 in this
temperature range is depicted in detail. Three peaks of p
tive magnetoresistivity, at 242, 243.8, and 245.8 K, a
clearly visible, the first peak being lower than the other tw

At higher temperatures the magnetoresistivity is e
tremely low and is essentially independent of the tempe
ture.

The inset in Fig. 4 depicts the temperature depende
of the electrical conductivityr0 for j i@110# over the tem-
perature range in which the magnetoresistivity exhibits
normal behavior. At first glance it appears thatr0(T) is an
increasing function without singularities. However, at te
peratures where the peaks in magnetoresistivity are obser
the dr0 /dT vs. T curve depicted in Fig. 4 has its minima
with the left one being the least pronounced.

No appreciable temperature hysteresis of the electr
conductivity has been observed.

4. DISCUSSION

What is remarkable about our results is that in the ph
transition region, the presence of a magnetic field leads
to a decrease in resistance due to suppression of fluctua
in the magnetic subsystem of the crystal but, on the contr
to an increase in resistance, i.e., to greater scattering of
rent carriers. Below we develop the ideas that explain

e

FIG. 3. Temperature dependence of longitudinal magnetoresistivity in
vicinity of a phase transition.

FIG. 4. Temperature dependence ofdr0 /dT and electrical resistivityr0

~inset! of the Fe0.95Co0.05Ge2 single crystal forj i@110#.
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peaks, and the correlations between the magnetoresist
and the temperature coefficient of resistance.

Consider the phase transition region. We assume tha
specimen consists of microregions, each of which is cha
terized by its own transition temperatureTc ; in other words,
we specify a functionTc(r ), where the vectorr varies over
the specimen. The transition is assumed to be narrow.
the transition widthdc is small compared to the averag
transition temperatureT̄c . We assume that in the phase tra
sition region the electrical resistivity of the specimen,r0 ,
can represented by a sum of two terms, the first~the noncriti-
cal! depending only onT, r0

nc5r0
nc(T), and the second~the

critical! being a functional ofT2Tc(r ), r0
c5$F0$T2Tc(r )%

~for the sake of simplicity we drop the tensor indices!. In a
magnetic field the resistivity depends onH: first, explicitly
~e.g., due to a change in the scattering probability! and, sec-
ond, because of a shift in values ofTc(r ), i.e.,
Tc(r ,H)5Tc(r )1DTc(r ,H). For the critical part of the re-
sistivity we can write rH

c 5FH$T2Tc(r )2DTc(r ,H)%,
whereFH is the corresponding functional. IfDTc!dc , we
can assume thatDTc(r ,H)'DT̄c(H), since the variation
DTc caused by variation inr is a quantity of the next orde
of smallness. Clearly, in this caserH

c (T)5 r̃H(T2DT̄c(H)),
wherer̃H5FH$T2Tc(r )%. Bearing in mind the smallness o
DT̄c(H), we arrive at an expression for the magnetoresis
ity Dr/r0 ,

Dr

r0
5

Drnc

r0
1

Dr̃

r0
2

1

r0

dr̃H

dT
DT̄c~H !, ~1!

where we have introduced the notatio
Drnc/r05(rH

nc2r0
nc)/r0 and Dr̃/r05( r̃H2r0

c)/r0 . Since
r0

nc(T) has no singularities in the transition region andr0
c

and r̃H depend on the same functional argumentT2Tc(r ),
in weak magnetic fields the singularities of the derivat
dr̃H /dT ~if they exist! must be observed at the same valu
of T as the singularities ofdr0 /dT.

Note that the correlation between the magnetoresisti
and the temperature resistance coefficients exists only w
DTc!dc .

We now employ the above ideas to analyze the p
cesses that occur in the first-order phase transition
Fe0.95Co0.05Ge2, which takes place nearT̄15245K in the
240–250 K temperature range. In FeGe2 the quantity
DT̄1(H) is positive.10 This should also be the case fo
Fe0.95Co0.05Ge2, since in these materials the low-temperatu
phase has the higher susceptibility~see Fig. 1!, and a mag-
netic field broadens the region of existence of a phase wi
higher magnetization~for the same value ofH! owing to a
larger gain in the Zeeman energy. In FeGe2 in a field
H515 kOe, the shift in the transition temperature amou
to about 0.1 K. It should be expected thatDT̄1(H) in
Fe0.95Co0.05Ge2 is of the same order of magnitude. Since t
transition widthd1 in Fe0.95Co0.05Ge2 is of order 10 K~see
Fig. 1!, the conditionDT1!d1 is sure to be met. Hence, th
maxima in Dr/r0 coincide with the minima ofdr0 /dT,
which was observed in the experiments.
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rivative Dr0 /r0 , we examine the processes taking place
side the transition region under temperature variations.
introduce the notation

Tmin5min@T1~r !#, Tmax5max@T1~r !#5Tmin1d1 .

When T,Tmin , the entire specimen is in the low
temperature phase. As the temperature becomes higher
Tmin , ‘‘droplets’’ of the high-temperature phase begin
form. The relative volumev of the high-temperature phase
given by the integral of the distribution function for the tra
sition temperatures:

v5E
Tmin

T

W~T1!dT1 . ~2!

At T5T(1) the volume of the high temperature phase reac
its critical valuevc , and a simply connected region of th
high-temperature phase penetrating the entire specime
formed, i.e., a distinctive percolation transition takes pla
At temperaturesTmin,T(1),T,T(2),Tmax the simply con-
nected regions of low- and high-temperature phases coe
The decay of the simply connected region of the lo
temperature phase into individual clusters~the second perco
lation transition! occurs atT5T(2). A further increase in
temperature leads to a decrease in the volume of the re
occupied by the low-temperature phase, and atT.Tmax the
entire specimen is in the high-temperature phase.

Below we will need information about the temperatu
dependence of the areaS of the interphase boundary surfac
~per unit volume!. The relationship betweenv and S has
apparently never been specially studied, so that we are fo
to use simple qualitative ideas. AtT,Tmin we haveS50. As
the temperature begins to exceedTmin , the surface area o
the interphase boundary grows. NearT5T(1) individual
droplets begin to fuse, which probably leads to a sharp
crease in the surface area of the interphase boundary
sharp increase inS(T) due to the decay of an infinite low
temperature phase cluster must occur near the temper
T(2), after which S decreases and vanishes completely
T5Tmax. Thus, we can expect that the functionS vs. T in
Tmin,T,Tmax is represented by a double-humped curve.

The resistivity of the specimen is determined by the
sistivity of the homogeneous phases, the cluster distribu
in the specimen, and the scattering of current carriers at
cluster boundaries. For simplicity, we assume that for a fix
temperature the resistivities of the phases are the same.
we can write

r05rh1r inh , ~3!

where the first term on the right-hand side is the resistivity
the specimen in a magnetically homogeneous state, andr inh

results from scattering of current carriers at the clus
boundaries. Obviously, in our simplified model the critic
resistivityr0

c reduces tor inh . As a rough approximation, we
can assume thatr inh is proportional toS. Then the foregoing
implies that r inh(T) vanishes outside the interva
(Tmin , Tmax), while inside it has two peaks. Obviously, if fo
a large enough value ofdr inh(T)/dT the derivativedrh /dT
is an increasing function,dr0 /dT has two maxima and two
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minima. But ifdrh /dT is a decreasing function,dr0 /dT has
three maxima and three minima: one minimum nearTmin ,
another one atT somewhat higher thanT(1), then atT'T(2)

there is a maximum, and higher up on the temperature s
the third minimum. These ideas show that the percolat
transition temperatures can be estimated from the positio
the extrema of the derivativedr0 /dT or from the position of
the extrema of the temperature dependence of magnetor
tivity.

Outside the transition regionrh5r0 . Figure 4 shows
that r0(T) in Fe0.95Co0.05Ge2 is a monotonically increasing
concave downward function, which means thatdrh /dT de-
creases with increasingT, and because of this the derivativ
dr0 /dT must have three minima, as observed.

To get an idea aboutr inh(T), we approximated the tem
perature dependence ofr0 over two temperature intervals
237<T<241 K and 248<T<252 K, by a single fourth-
degree polynomialrh

fit(T). Next we assumed thatrh
fit(T) is a

good approximation torh(T) at all temperaturesT from 237
to 252 K, after which we calculated the difference ofr0(T)
andrh

fit , which approximatesr inh(T). The result is depicted
in Fig. 5. The values ofr inh are finite in the interval 241 to
247 K. Two maxima are clearly visible inr inh vs. T: at
T5243.2 K and atT5245 K.

The resulting curve representingr inh(T) has all the fea-
tures that follow from the adopted model. Hence, accord
to the data obtained in electrical measurements, the trans
region in the studied specimen of Fe0.95Co0.05Ge2 extends
from 241 to 247 K, and forT(1) and T(2) we can take the
values corresponding to the positions of the central m
netoresistivity peak and the minimum between the cen
and right peaks, i.e., 244 K and 245 K, respectively.

The formation and decay of infinite clusters must affe
not only the resistivity but also the magnetic susceptibili
since as the small droplets fuse into a large simply conne
region extending through the entire specimen, the numbe
magnetic moments belonging to the interphase boundary
face must change discontinuously. Assuming that the con
bution of the interphase boundary surface to the aver
magnetizationm of the specimen is proportional to the ar
of this surface, we can write

m5mhtv1mlt~12v !1aS, ~4!

FIG. 5. Temperature dependence of the inhomogeneous part of the elec
resistivity of the Fe0.95Co0.05Ge2 single crystal in the vicinity of a magnetic
phase transition.
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phase,mlt is the magnetization of the low-temperature pha
anda is a coefficient that can be assumed constant inside
transition region, just asmht andmlt are. Combining Eqs.~2!
and ~4!, we obtain

dm

dT
5~mht2mlt !W~T!1a

dS

dT
. ~5!

Sincemht,mlt in Fe0.95Co0.05Ge2 and theW vs. T curve
has its usual ‘‘dome’ shape, we can expect that inside
transition region the temperature dependence ofdm/dT has
a broad minimum, with the ‘‘comb’’ representing the tem
perature dependence ofdS/dT superimposed on this curve

As the inset in Fig. 1 shows,dx/dT vs. T has exactly
this shape. Two minima are clearly visible. The temperatu
of the first minimum (T5243 K) and the maximum tha
follows ~at T5244– 245 K! are almost equal to the temper
turesT(1) andT(2) determined from magnetoresistivity dat
The minimum at the left edge of the transition region
absent due to the sharp increase inW(T) in this region.

Note that the smearing of the transition calculated fro
magnetic measurements proves to be almost twice as larg
that calculated from electrical measurements. The rea
most likely, is that the specimen’s magnetic moment is m
sensitive to the presence of small clusters of the other ph
than the resistivity is, since the magnetic susceptibilities
the phases in Fe0.95Co0.05Ge2 differ considerably.

5. CONCLUSION

In the vicinity of the ‘‘smeared’’ first-order magneti
phase transition in a Fe0.95Co0.05Ge2 single crystal, we have
detected three peaks of positive magnetoresistivity in the
pendence ofDr/r0 on T, and extrema in the temperatur
dependence of the temperature derivatives of electrical re
tivity and magnetic susceptibility. We found that these fe
tures are correlated.

Analysis of the results shows that the presence of pe
of positive magnetoresistivity and the presence of singul
ties in the temperature dependences ofdr0 /dT and dx/dT
are probably a distinctive consequence of the ‘‘smearing’’
the transition. This fact leads to the emergence inside
phase transition region of clusters of low- and hig
temperature phases. Under temperature variations the sy
of clusters undergoes two percolation-like transitions. T
area of the cluster boundary in these transitions chan
abruptly, which probably explains the presence of the afo
mentioned singularities in the temperature dependence
dr0 /dT anddx/dT, and the emergence of peaks in the te
perature dependence of magnetoresistivity.

Our analysis of the reasons for the changes in resisti
and magnetization in the vicinity of ‘‘smeared’’ phase tra
sitions is of a fairly general nature, and is not related to
specific features of the single crystal we studied.
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5É. L. Nagaev,The Physics of Magnetic Semiconductors@in Russian#,
Nauka, Moscow~1979!, pp. 344–368.

6R. I. Za�nullina, K. B. Vlasov, N. G. Bebenin, and V. V. Ustinov, Fiz
Tverd. Tela~St. Petersburg! 38, 2831~1996! @Phys. Solid State38, 1550
~1996!#.

7T. I. Papushina and A. A. Frolov, Neorg. Mater.28, 608 ~1984!.
380 JETP 85 (2), August 1997
Univ. Press, Sverdlovsk~1978!, p. 67.
9K. B. Vlasov, R. I. Za�nullina, and M. A. Milyaev, Fiz. Met. Metalloved.
75, 65 ~1993!.

10K. B. Vlasov, R. I. Za�nullina, and V. N. Syromyatnikov, Fiz. Met. Met-
alloved.61, 1219~1986!.

Translated by Eugene Yankovsky
380Za nullina et al.



Ionic photoconductivity of RbAg 4I5 superionic crystals
M. V. Bogatyrenko and S. I. Bredikhin

Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region,
Russia
~Submitted 6 December 1996!
Zh. Éksp. Teor. Fiz.112, 698–706~August 1997!

A new effect of illumination on ionic conductivity and activation energy of migration of mobile
Ag1 cations in RbAg4I5 superionic crystals has been detected and studied. Reversible
changes in the ionic conductivity due to illumination of superionic crystals are caused by reversible
changes in the structure of electronic centers caused by elastic strain around these centers.
The effect of elastic deformation on the process of ionic transport and activation energy for
diffusion of mobile silver cations has been studied. Photostimulated recovery of the ionic
conductivity after its change due to preliminary illumination of a RbAg4I5 superionic crystal with
light of wavelengthl.430 nm has been detected. This recovery of the ionic conductivity
is due to excitation of centers in complexes generated by previous illumination of tested samples.
© 1997 American Institute of Physics.@S1063-7761~97!02208-7#

1. INTRODUCTION
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Superionic conductors belong to a specific class of so
one of whose ionic sublattices is structurally disordered
temperatures considerably lower than the melting temp
ture. Investigation of superionic conductors attract a lot
attention because they have several unusual and even
doxical properties, primarily an anomalously high ionic co
ductivity. The distinctive feature of superionic crystals is t
presence of two types of charge carriers, namely electr
and ions. Interaction between the electronic and ionic s
tems results in several fundamentally novel phenomena
ing observed in superionic materials.1,2 Nonetheless, no in-
formation about feasible causes and mechanisms of the e
of the electronic subsystem on ionic transport is availa
presently. The reported study is the first step in this direct
Our aim was investigation of one manifestation of intera
tion between the ionic and electronic subsystems, nam
the effect of excited electronic centers on the ionic transp
in RbAg4I5.

Features of superionic materials show up most clearl
solids called ‘‘materials with a melted cation sublattice
RbAg4I5 crystals, which are the most typical representativ
of this group, have the minimal activation energy of mob
cations (DEa.0.1 eV) and the maximal ionic conductivit
(s i.0.32 (V•cm)21 at room temperature!.3 Depending on
the temperature, RbAg4I5 can be in one of three phase state
a, b, or g. The high-temperature cubica-phase exists a
temperatures above 209 K. As the temperature is lowere
first-order phase transition to the rhombohedricb-phase oc-
curs atT15209 K. Botha- andb-phases are superionic. A
T25122 K a phase transition to the hexagonal, nonsup
onic g-phase occurs.

Ion migration in superionic materials, just as in classi
ionic crystals, can be formally described by the model
simple hops. The ionic conductivity as a function of tem
perature follows the Arrhenius law and is described by
formula
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whereni is the concentration of conducting ions,Ze is the
ion charge, andDEa is the activation energy. In the super
onic a-phase of RbAg4I5, all (ni51022 cm23) Ag1 cations
are disordered and contribute to the ionic conductivity.

Thus, the situation in superionic materials should
radically different from semiconductors, in which the pr
mary effect of illumination on the conductivity is the chang
in the carrier concentration due to generation of nonequi
rium carriers. This means that the only feasible effect
illumination on the ionic conductivity of RbAg4I5 is a change
in the mobility of Ag1 cations. With a aim of detecting suc
a property, we have undertaken this study of an illuminat
effect on the ionic conductivity and activation energy of m
tion of Ag1 cations.

2. ILLUMINATION EFFECT ON IONIC CONDUCTIVITY OF
RbAg 4I5 SUPERIONIC CRYSTALS

Experiments were conducted on RbAg4I5 single crystals
grown by the zone melting technique. By using special te
niques of purification and optimal crystallization condition
the concentration of heavy-metal impurities was reduced
low 1024 percent. Measurements were taken using the fo
terminal technique and an alternating current. Small sil
contacts were melted into a sample immediately before
experiment. The contact quality was determined by reco
ing conductivity versus frequency. The ionic conductivi
was derived from the slope of the current–voltage charac
istic at a frequency of;104 Hz. In order to measure the
ionic conductivity as a function of temperature, we plac
the sample into an optical thermostat which allowed us
vary the temperature between 77 and 450 K. Samples w
exposed to light generated by a DKSSh-120 xenon discha
tube and dispersed by a wide-aperture MDR-12 grat
monochromator. An optical system collected light pass

38105$10.00 © 1997 American Institute of Physics
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through the monochromator and focused it into a spot w
dimensions of;0.533 mm in the region between the pote
tial contacts~Fig. 1!.

Our measurements indicate that exposure of RbAg4I5

crystals to light with wavelengthl.430 nm exciting elec-
tronic centers leads to reversible changes in the ionic c
ductivity. As an illustration, Fig. 1 shows that the exposu
of a RbAg4I5 sample to light with wavelengthl.430 nm at
room temperature leads to a decrease in the ionic condu
ity. The time constant characterizing the transition to a n
conductivity ist.9 min. Figure 1 shows that the new valu
of conductivity (s1) is essentially constant with time at
fixed light intensity. When the illumination is turned off, th
ionic conductivity returns to the initial values0 . Note that
the rate of transition in the latter case is slower, and
initial ionic conductivity is restored only after tens of hour

To study the mechanism of the illumination effect on t
activation energy for the diffusion of silver cations, we r
corded the conductivity as a function of temperature in
range 280–420 K. Figure 2 shows the logarithm of the io
conductivity versus reciprocal temperature in the initial st
of a RbAg4I5 sample and after exposure to light with wav
lengthl.430 nm. It clearly demonstrates that after the e
posure the activation energy of the silver cation migration

FIG. 1. Effect of light exposure on the ionic conductivity of a RbAg4I5

crystal ~the arrow indicates the moment when light with waveleng
l.430 nm is turned on!.

FIG. 2. Logarithm of ionic conductivity as a function of reciprocal tempe
ture for RbAg4I5 ~1! in the initial state and~2! after exposure to light with
wavelengthl.430 nm.
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lower. After switching off the light, the initial activation en
ergy is restored. Measurements of the activation energyEa

and logarithm of the preexponential factor, ln(AD0), during
relaxation of the ionic conductivity to its initial values0

indicate that their variations are correlated~Fig. 3! in accor-
dance with the compensation law or the Meyer–Neldel ru4:

ln~AD0!5~4363!DEa2~3.660.01!. ~2!

Let us discuss feasible mechanisms of the light effect
the ionic conductivity of RbAg4I5 crystals. Previously2 we
detected an effect of photoinduced changes in the local c
centration of mobile Ag1 cations in a region of a RbAg4I5

superionic crystal exposed to light withl.430 nm, which
leads to excitation of electronic centers and generates n
equilibrium electrons in the conductance band. Given
high concentration of mobile Ag1 cations in the superionic
a-phase, they screen electrostatic interaction between
ized centers and photoexcited electrons so diffusion flows
electrons and cations from the exposed region into
sample volume are produced. Generation of silver cation
cancies@V#Ag1

2 and holes in the illuminated region of th
crystal results in formation ofh1@V#Ag1

2 centers similar to
color centers in additively colored RbAg4I5 crystals.2,5,6Note
that the color centerh1@V#Ag1

2 consists of a hole localized a
an iodine ion next to a silver cation vacancy. According
the literature, the iodine ion radius is 2.2 Å, whereas
iodine atomic radius is 1.33 Å. Hence, an elastic strain fi
is generated around such centers, and this field prob
changes the ionic conductivity and activation energy for m
gration of Ag1 cations in RbAg4I5 superionic crystals.

Now let us discuss the effect of internal elastic stra
fields generated in a superionic crystal by light on ion
transport. Transport properties of ionic crystals are descri
by the most simple formula in the case of dc conductivity

s i5
N~Ze!2n0a0

2

kT
expS 2

DG

kT D , ~3!

where Ze is the conducting ion charge,DG5DE1PDV
2TDS is the Gibbs energy of defect formation and diff
sion,n0 is typically comparable to the phonon frequency a

-

FIG. 3. Activation energyEa versus logarithm of a preexponential facto
ln(AD0), measured after exposing the sample to light in the process o
decolorization.
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FIG. 4. Effect of external stress
P.1•108 Pa on the ionic conductivity
at different temperatures. The momen
of stress application and lifting are
shown by the arrows.
is usually taken to be equal to the frequency of ion oscilla-
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tion at a lattice site, anda0 is the hop length. In superioni
crystals, as in ionic crystals with impurity conductivity, th
expressions for both ionic conductivity and activation v
ume DVa do not contain contributions due to defe
formation.7,8 In this case, the expression for the ionic co
ductivity takes the form

s i5
ni~Ze!2n0a0

2

kT
expS Sm

k DexpS 2
DEm

kT D
3expS 2

PDVm

kT D , ~4!

whereDEm is the defect migration energy, andDVm is the
activation volume for the defect migration.7,8 It is clear that
in superionic conductors the effect of pressure on conduc
ity shows up in terms of the activation volume for defe
migration.7,8

It follows from the expressions~1! and ~4! for the ionic
conductivity given above that the activation energyDEa

measured in experiments includes the migration energyDEm

of mobile cations and a fraction due to the activation volu
for diffusion:

DEa5DEm1PDVm . ~5!

The activation volume is related to the ionic conductivity
a function of pressure by the following expression:

DVm52kTF S dlns

dP D2S g2
2

3DK G , ~6!

whereK is the isothermal compressibility constant andg is
the Grüneisen parameter.7,8 Accurate measurements of ac
vation volumes for diffusion in RbAg4I5 superionic crystals
were conducted by Allen and Lazarus7 and Samara.8 Mea-
surements of the activation volume in the low-temperatu
nonsuperionicg-phase yield DVa.9 cm3/mol, which is
comparable to the total activation volume in AgB
(10.6 cm3/mol) and AgCl (11.6 cm3/mol).7 At the same
time, migration volumesDVm measured in RbAg4I5 superi-
onic a- and b-phases turned out to be negati
(20.4 cm3/mol and20.2 cm3/mol, respectively!. The nega-
tive values of the activation volume for the diffusion of s
ver cations in the superionica- andb-phases in RbAg4I5 has
no unambiguous interpretation at present. One feasible
planation was given by Flygare and Haggins.9 They demon-
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slightly smaller than the optimal size of a channel in t
three-dimensional lattice of iodine ions, through which silv
cations travel.10 In this case, an increase in pressure result
a smaller channel width and a ratio between the chan
width and ion dimension closer to the optimal value, hen
the lower activation energy and higher ionic conductivity.11

Our analysis given above indicates that photogenera
changes in the ionic conductivity of RbAg4I5 superionic
crystals~Fig. 1! and decrease in the activation energy~Fig. 2!
are due to elastic strain fields generated in the sample re
exposed to light. As can be seen in Fig. 2, exposure o
RbAg4I5 superionic crystal to light with wavelengt
l.430 nm results in an activation energy for migration
silver cations approximately 0.01 eV lower. Simple estima
indicate that the;0.01-eV decrease in the activation ener
corresponds to an elastic stress of aboutPel.5•108 Pa in the
illuminated sample region.

3. EFFECT OF LOCAL ELASTIC STRESS ON IONIC
CONDUCTIVITY OF SUPERIONIC CRYSTALS

In order to check the mechanism of the effect of loc
elastic strain on ionic transport, we have studied the effec
local elastic stress applied to the sample on the ionic cond
tivity and activation energy for diffusion of mobile silve
cations in RbAg4I5 superionic crystals. The ac conductivit
was measured~Fig. 4! by the four-terminal technique on
samples shaped as plates1 with dimensions of
0.53338 mm3. The sample was placed on the surface o
sapphire substrate2 in the optical thermostat. Strain was pro
duced by a top die whose end-piece3 was a sapphire prism
with a 0.133 mm2 pressing surface. External stress was a
plied to a sample region between the two potential conta
4–7 with an area of 0.133 mm2. The stress applied in ex
periments was lower than the RbAg4I5 microscopic strength
P.5•108 Pa.12 Note that the experimental configuration
local strain studies~Fig. 4! was identical to that of experi
ments on the photoinduced ionic conductivity~Fig. 1!.

The measurements demonstrated that the local strai
the crystal leads to a reversible change in the ionic cond
tivity ~Fig. 4!. When the external stress was lifted, the ion
conductivity recovered. Figure 4 shows measurements of
effect of external stressP.1•108 Pa on the ionic conduc
tivity at different temperatures. The moments when the str

383M. V. Bogatyrenko and S. I. Bredikhin
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was applied and lifted are marked by jumps in the cond
tivity. Figure 4 shows that at temperatures higher than ro
temperature, local strain leads to a reversible decreas
ionic conductivity, and the amplitudeDs/s0 drops with de-
creasing temperature. At a temperature of about 17.5 °C,
ternal stress has little effect on ionic conductivity, and
temperatures below 17 °C it results in an increase in io
conductivity. Figure 5 shows the logarithm of ionic condu
tivity versus reciprocal temperature in the initial RbAg4I5

sample (E0.0.086 eV) and under a local stres
P.1•108 Pa (Ep.0.078 eV). It is clear that the applie
stressP.1•108 Pa leads to a similar decrease in activati
energy for diffusion of mobile silver cation
(DEa.0.008 eV) as in exposure of the RbAg4I5 sample to
light with wavelengthl.430 nm.

Thus, our testing experiments on the effect of exter
local stress confirm our assumption that the ionic photoc
ductivity is due to elastic stressPel generated in the sampl
region exposed to light and changes in the ion diffusion
efficient caused by the change in the activation energy of
diffusion (DEa5DEm1PelDVm).

4. EFFECT OF PHOTOSTIMULATED RECOVERY OF IONIC
CONDUCTIVITY

Apart from ionic photoconductivity, we have detected
this study an effect of photostimulated recovery of ionic co
ductivity after its photoinduced change caused by expos
of a RbAg4I5 superionic crystal to light with wavelengt
l.430 nm. As was shown above, ionic photoconductivity
due to long-lived centers in the form of donor–acceptor pa
including silver cation vacancies@V#Ag1

2 and hole centers
generated in the illuminated region of the sample. Str
fields generated around such centers change the activ
energy for diffusion of mobile silver cations. It is natural
expect that internal excitation of donor–acceptor pairs as
ciated with charge transfer within the complex should res
in lattice relaxation and changes in elastic strain fie
around donor–acceptor pairs. As a consequence, one sh
detect an opposite change in the ionic conductivity whe
RbAg4I5 sample is exposed to light generating internal ex
tations in complexes created by the previous illumination
the sample with light of wavelengthl.430 nm. Let us re-

FIG. 5. Logarithm of ionic conductivity as a function of reciprocal tempe
ture for the RbAg4I5 sample ~1! in the initial state and~2! under local
external stressP.1•108 Pa.
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call that illumination of RbAg4I5 samples at wavelength
l.430 nm at room temperature leads to a drop in io
conductivity after about ten minutes~Fig. 1!, whereas the
recovery of ionic conductivity to its initial values0 is a
much slower process and takes tens of hours. Therefore
decay of the concentration of donor–acceptor pairs gener
by light with wavelengthl.430 nm in the tested sample
during the first hour can be neglected, and the concentra
of such complexes can be considered a constant.

Our experiments have shown that apart from change
ionic conductivity induced by light of wavelengt
l.430 nm, subsequent exposure of RbAg4I5 samples to
light with wavelengthl.430 nm leads to a partial, revers
ible recovery of conductivity. Note that the photoinduc
recovery time of ionic conductivity to its new value is co
siderably shorter than the time constant of ionic photoc
ductivity. A spectrum of ionic conductivity recovery is give
in Fig. 6. It shows that the exposure of RbAg4I5 samples to
light with wavelengthl.430 leads to a partial recovery o
conductivity.

The experimental recovery spectrum was approxima
as a sum of three Gaussian curves. One can see tha
spectrum contains three bands with peaks atE152.32 eV,
E252.52 eV, and E352.67 eV and FWHM DW1

50.13 eV, DW250.16 eV, and DW350.16 eV, respec-
tively. The peak positions and FWHM of these spect
ranges are in good agreement with absorption bands as
ated with additive coloring13 and photoinduced coloring14 of
RbAg4I5 superionic crystals.

This coincidence of absorption spectra of additively c
ored and optically colored RbAg4I5 crystals with the spec-
trum of ionic conductivity recovery indicates that latter
caused by internal excitation of complexes generated by
preliminary illumination of the samples (l.430 nm). Inter-
nal excitation of donor–acceptor pairs leading to cha
transfer within the complexes and variations in local str
fields result in changes in the activation energy for diffusi
of mobile silver cations and partial recovery of the ion
conductivity altered by previous exposure to light of wav
lengthl.430 nm.

-

FIG. 6. Spectrum of ionic conductivity recovery~wavy line!. The wave-
length scanning rate is 0.5 nm/min;s0 is the ionic conductivity in the initial
state, ands1 is the conductivity after an exposure to light withl.430 nm
for more than 0.5 h. The energiesE1 , E2 , andE3 are peak positions of the
spectral components. The thin, smooth line shows the sum of the t
spectral components and is almost identical to the recorded spectrum.
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This paper reports on the first observation and invest
tion of ionic photoconductivity in superionic crystals. W
have determined that ionic photoconductivity is due to g
eration of long-lived centers in the form of donor–accep
pairs including silver cation vacancies@V#Ag1

2 and hole cen-
ters in the region of the RbAg4I5 sample exposed to light
The elastic strain fields around such complexes change
activation energy for diffusion of mobile silver cations. W
have studied the effect of external stress on ionic conduc
ity and demonstrated that deformation of a small region i
crystal leads to a reversible change in ionic conductivity. T
coincidence between measurements of ionic photocondu
ity and results of testing experiments with local stress c
firms that ionic photoconductivity is due to local elas
stressPel in the region of a superionic crystal exposed
light. We have detected and studied the partial photoindu
recovery of ionic conductivity and investigated its spect
characteristics. We have shown that ionic conductivity
covery is due to internal excitations in complexes genera
by previous illumination of tested samples at wavelen
l.430 nm.
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Observation of the dielectric local mode related to divacancies in p -silicon

a

V. A. Vo tenko and S. E. Mal’khanov

St. Petersburg State Technical University, 195251 St. Petersburg, Russia
~Submitted 7 December 1996!
Zh. Éksp. Teor. Fiz.112, 707–713~August 1997!

A dielectric local mode related to the motion of divacancies inp-silicon has been observed for
the first time. The mode manifests itself in Fano-resonance signals in the photoconductivity
spectra. We explain the behavior of the corresponding segment in these spectra caused by
temperature variations. In light of the new results, we examine the entire set of the
experimental facts related to positively charged divacancies: the high values of the cross sections
of capture and photoionization of a hole at a single divacancy, the difference in the defect
environment of electron and hole silicon, and the quadratic dependence of the concentration of
defects containing divacancies on the intensity of the electron flux producing these defects.
© 1997 American Institute of Physics.@S1063-7761~97!02308-1#
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The unique photoelectric properties, the abundance
the earth’s crust, and the high adaptability to manufact
processes allows silicon to retain its position in micro- a
optoelectronics along with gallium arsenide and related co
pounds. Ge/Si superlattices are grown by applying synch
tron radiation,1 technologies used in heteroepitaxially grow
ing GaAs-based materials on silicon substrates
developed,2 and silicon specimens are synthesize
erbium-doped3 or in the porous modification,4 in which hot
luminescence of the visual and IR ranges has an inten
sufficient for research and application. This makes vari
flaw-detection studies of doped silicon specimens highly
portant. Fano-resonance spectroscopy of the photocondu
ity of various impurity centers, chalcogens5,6 and Zn, Sb, and
In acceptors,7 has been developed through the use of unia
deformations of both silicon and germanium. Over the ye
there have also been studies of the photoconductivity8 and
photocapacitance9 of deep energy levels ofp-silicon irradi-
ated by high-energy electrons. The photoionization cro
section spectrum contains a resonance band that at pea
tensity corresponds to the wavelengthl54 mm ~see Refs. 8
and 9!. This band was first identified by Vajda and Cheng8 as
a sudden rise in luminescence emission during annealing
specimens in the temperature interval from 150 to 180 K
the course of which single vacancies begin to migrate, wh
leads to divacancy formation.

Note that divacancy signals can also be reliably ide
fied in the spectra ofn-silicon.10 In p-Si, the radiatively in-
duced defect, a divacancy, is in a positively charged s
W1 ~see Ref. 9!. In their theoretical research, Karpo
et al.11,12 associated the corresponding spectral band
l54 mm with intracenter energy transitions within separa
divacancies, which in view of this could be interpreted
micropores ‘‘frozen’’ into silicon. However, such an inte
pretation leads to a contradiction between the experime
data on ionization energies obtained from optical11 and ther-
mal measurements.

The present paper reports on the results of an experim
tal study and calculations of the temperature dependenc
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spectral peak atl54 mm in the 30–70 K temperature rang
We have found for the first time that the divacanciesW1

must be interpreted not as static micropores but as effec
microcavities for the optical phonons in silicon, since t
peak in light absorption in which they participa
(l54 mm) coincides with the production threshold of op
cal phonons on these divacancies; these phonons are di
tric local modes.

2. SAMPLE PREPARATION AND EXPERIMENTAL METHOD

The specimens of boron-doped silicon~KDB-10 brand!
are p1pp1 sandwich plates that measure 53230.2 mm.
The outerp1 regions are heavily doped to metallic state w
a boron concentration 1017– 1018 cm23, while the central re-
gion is lightly doped and contains 1.331015 boron atoms per
cubic centimeter. To create divacancies the specimens w
irradiated by 15-MeV electrons with a total dose of 431016

electrons per square centimeter. An LUE´ -15 linear accelera-
tor was used to produce the necessary electron flux.
interested reader can find a detailed description of
method in Ref. 13. The direction of electron propagation
shown in Fig. 1a by solid arrows. Electrons with such a h
energy traveled right through the plate. As a result the
ceptor impurities, those in the surface layer and in the bu
were almost completely balanced by the vacancies unifor
distributed throughout the plate. As a result of formation
positively charged divacancies, static polarization~whose di-
rection is depicted by dashed arrows in Fig. 1a! is imbedded
in the semi-isolated inner region. The polarization causes
bands to bend in the direction of the heavily doped ou
layers, as shown in Fig. 1b. As a result of such bending
thermal band gap proves to be the smallest. The corresp
ing hole transitions from the divacancy levels are depicted
the wavy line in Fig. 1b. By measuring the temperature
pendence of the plate’s resistance between the contact
we were able to estimate the value of the bend by the dif
ence of the thermal and optical~dashed line! energies of
charge exchange on the divacancy; it turned out to be
meV.

38604$10.00 © 1997 American Institute of Physics
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FIG. 1. ~a! Structure of ap1pp1-Si sand-
wich plate with imbedded polarization
~dashed arrows! and contacts K. The solid
arrows show the direction of the high-energ
electron flux.~b! Schematic band diagram o
the sandwich structure and the hole trans
tions from the ground state to a divacancy
the band: thermal transitions are designat
by a wavy line, and optical transitions by
dashed line.
Photoconductivity measurements were made with an
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IKS-21 spectrometer with a NaCl prism in the DC
matched-load mode.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 2 depicts the behavior of segments of the pho
conductivity spectra under variations of the temperature o
p-Si sample irradiated by electrons. The curve1 obtained at
a specimen temperatureT1534 K has a peak a
v150.26 eV ~or l55 mm!, corresponding to an edge ho
transition denoted by the dashed line in Fig. 1b. With allo
ance for a small blue shift of 30 meV caused by the ren
malization of the edge due to local mode formation, the f
quency agrees with the position of the energy level of
holes on the divacancyW1. According to relaxation
measurements,11 the energy of this level isEv50.23 eV, as
shown in Fig. 1b. As the temperature grows, the shape of
section of the spectrum changes considerably~see curves2
and3 in Fig. 2!. The former peak atv150.26 eV is replaced
by a stronger band with a peak at a frequencyv2 shifted to
higher values in relation tov1 by precisely the frequency o
the center-band optical phonon:v25v11vopt. In Fig. 2 this
new peak is indicated by downward arrows on curves2 and
3, corresponding to the temperaturesT2544 K and
T3555 K. Curve2 is reconstructed on a linear scale in t
inset; so as not to clutter up the figure, the scale grid on
axes has been discarded, but still one can get an idea o
scale from the experimental points.

It is this strong line withl54 mm that is well known
and has been discussed in many papers.8,9,11,12The line cor-
responds to a transition with energyDE50.32 eV that takes
place deep in the valence band, 90 meV from the edge. If
allow for the renormalization energy of the edge of the v
lence band, 30 meV~which we found earlier!, we find that
v2 corresponds exactly to the threshold energy of emiss
of an optical phonon in silicon,vopt590230560 @meV#. In
view of this, the band atl54 mm should be interpreted no
as a resonance on a quasidiscrete level, as was done in
12, but as a one-phonon repetition of a simple charge
change, depicted in Fig. 1b by a dashed line. The o
phonon nature of the line being discussed is corroborated
the shape of the spectrum, which along the peak can be
proximated by the Fano profile~solid curve in inset; see, e.g
Ref. 5!:
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Jph~v!5Mv G «211
, ~1!

where«5(v2vopt2v1)/G is the energy of a hole transitio
measured from the bottom of the valence band with allo
ance for the renormalization discussed earlier,G5vopt Im p,
wherep is the polarization operator of the optical phono
Mv is the transition matrix element, andG1 and q are the
Fano profile parameters. The profile factorq522.43 and the
damping factorG533 meV were determined for curve2
from the difference of the right and left halfwidths withou
using fitting methods~see, e.g., Ref. 14!.

The experimental points on the temperature depende
of the photocurrent in Fig. 3 are well-approximated at lo
temperatures by an activation exponential at the optical p
non frequency, which is an indication of a ‘‘freezing’’ effec

Jph
max5I 0 expS 2

\vopt

T D . ~2!

The exponential temperature dependence~solid curve! for
the peak photocurrentJph

max ~Eq. ~2!! is accompanied by a

FIG. 2. Photoconductivity spectra at different temperatures:T1534 K,
T2544 K, andT3555 K ~curves1, 2, and3, respectively!. The solid curves
in the main part of the figure are not approximations. Inset shows the p
toconductivity spectrum in the vicinity of the peak for curve2 on the linear
scale~small circles! and its approximation by the Fano profile~solid curve!.
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decrease in the phonon damping factorG, which leads to a
narrowing of the line with increasing temperature. Su
characteristic behavior of phonon lines is called tempera
or collision narrowing~see, e.g., Ref. 15! and can be cause
by either a decrease in the difference of the occupation n
bers of the initial and final hole states contributing to t
phonon self-energyp~v!, or a decrease in this energy due
the transition of mobile charges into the collisional mode
motion. Upon a further increase in temperature, the va
tions in the photocurrent become smoother in compariso
~2!. The increase in the experimental error in signal meas
ment visible in Fig. 3 is due to the increase in dark curr
with specimen temperature.

Another feature of the investigated spectra is that o
photon repetitions2 and 3 in Fig. 2 are several orders o
magnitude more intense than the nonphonon peak~curve1!.
This experimental fact contradicts the ordinary perturbat
theory, according to which repetitions and satellites ar
reflection of higher-order processes, compared to the in
lines. For instance, in the case of fundamental absorptio
a pure CdTe crystal, discussed in Ref. 16, the intensity r
is reversed: phonon repetition is much weaker. This beha
was partially explained in Ref. 16 by the exciton effect. N
such effect is present in the ionization of a divacancy, si
the latter remains neutral in the process. A possible expla
tion of the strengthening of one-photon repetitions of
photoionization of deep divacancy levels is that the positi
of the divacancies are correlated in some way, and that
correlation leads to a mutual constructive effect of these
vacancies in photon emission.

One of the present authors~S.E.M! in collaboration with
other researchers13 measured the dependence of the conc
tration of radiation-induced defects containing divacanc
on the intensity of electron irradiation. The dependen
proved to be quadratic, both for pure divacancies and
C1O1W complexes known asK-centers. Such a depen
dence and single-divacancy annealing data8 indicate that the

FIG. 3. Temperature dependence of the peak photocurrent according t
spectra depicted in Fig. 2: the solid curve represents the calculated c
and the heavy dots are the experimental results.
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the primary close pairs of single divacancies. Since ba
holes are much more mobile than vacancies, in the time
ceding the fusion of a pair of vacancies,tv , one of the va-
cancies is able to capture a hole. This is possible iftv@tp ,
wheretp is the characteristic time of hole capture by a sing
vacancy. As a result, one of the vacancies in an initial pai
p-Si is with an overwhelming probability in a charged sta
before fusion. Here, according to Keldysh and Proshko,17 no
random spatial distribution of mobile particles~in our case
these are vacancies and holes interacting by the Coul
law! is possible. The particles screen each other.

After immobile divacancies have formed, the Debye
Hückel correlation becomes ‘‘frozen.’’ Roughly speakin
this means that the divacancies are separated by app
mately the same distances, with the distance being of o
of the Debye lengthr D . If the phonons emitted by individua
divacancies have wave vectorsk;r D

21 , constructive inter-
ference may emerge, and this explains the anomalo
strong signal at the wavelengthl54 mm and the giant
photoionization cross section at the peak, 4310216 cm2 ~see
Ref. 9!. At the same time, the large-scale impurity potent
generated by charged deep centers leads to ‘‘tails’’ in
density of hole states in the forbidden band~see, e.g., Ref.
17!, which considerably weaken the resonant amplificat
of a nonphonon transition. In particular, such suppression
optical resonances leads to a situation in which observ
Raman scattering in specimens of heavily or very heav
doped silicon18 and germanium19 is entirely out of the ques-
tion. In view of this, the anomalously high cross section
hole capture by a divacancy, 10214 cm2 ~see Ref. 11!, can be
explained by the presence of lattice vibration antinodes
calized at the divacancies.

The relative intensity of the divacancy-associated con
butions to the photocurrent in comparison to other contri
tions proved to be higher in our measurements~see Fig. 2!
than in those conducted by Vajda and Cheng,8 where the
nonphonon peak was even unresolved. The explanatio
that in their experiment, defect formation was slowed do
by the low temperature at which the specimens were irra
ated. The electrostatic polarization in ourp1pp1 plates,
which was absent in Vajda and Cheng’s experiment,8 stimu-
lates the migration of vacancies and the defect-format
process that follows.

One of the possible objections to the proposed ‘‘interf
ence’’ mechanism of the redistribution of the intensity
photoconductivity signals among a simple charge excha
in a divacancy and its photon repetition is the lack of su
signals fromn-Si specimens irradiated by electrons. Here t
divacancies are studied by the EPR20 and DLTS10 methods
rather than by measuring the photoconductivity, although
phonons are the very same ones. As an argument agains
objection we note that for the conduction electrons in silico
te can be either shorter or longer thantv , since in view of
their small effective mass the electrons behave as ultraq
tum particles when they are captured by divacancies. He
in addition to charged divacancies, irradiatedn-Si has neutral
divacancies occupying totally uncorrelated positions. S
pression of the interference mechanism of amplification

the
ve,
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5E. Janzen, G. Grossmann, R. Stedman, and H. G. Grimmeiss, Phys. Rev.
B 31, 8000~1985!.
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conductivity resonance impossible. The cross section of e
tron capture by neutral divacancies,sn;10215 cm2 ~see Ref.
20!, is not anomalously high.

To explain the exponential dependence of the photoc
rent on temperature, Vajda and Cheng8 introduced shallow
trap levels at an energyEv10.05 eV. One must bear in
mind, however, that such a temperature dependence o
photocurrent~Eq. ~2!! is observed not only in boron-dope
silicon, where at low boron concentrations there is indeed
acceptor level near that energy, but also in aluminum-do
silicon, where the acceptor level lies somewhat deeper
reality, the role of traps probably consists in initiating a mo
rapid ~in comparison to Eq.~1!! decrease in photocurrent a
we move down the frequency scale away from the resona
frequency: as the temperature decreases, phonon emiss
followed by hole capture in traps.

In conclusion, we note that the frequency of dielect
local modes, not established in our research, can be fo
from measurements of the low-frequency satellites of o
phonon Raman scattering.16,21 In the same spectra, in th
deep-inelastic region, one can hope to register the ch
exchange proper and its phonon repetitions.
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Segregation of impurities and vacancies on phase and antiphase boundaries in alloys

an
K. D. Belashchenko and V. G. Vaks

Kurchatov Institute Russian Scientific Center, 123182, Moscow, Russia
~Submitted 31 December 1996!
Zh. Éksp. Teor. Fiz.112, 714–728~August 1997!

The equilibrium distribution of low-concentration impurities or vacancies is investigated in the
region of a coherent phase boundary or antiphase boundary in a binary alloy. A general
expression for the free energy of an inhomogeneous multicomponent alloy, which generalizes the
expression previously derived for a binary alloy, is presented. Explicit formulas for the
impurity concentration profilecim(x) in terms of the distribution of the principal components of
the alloy near a boundary are obtained from this expression in the mean-field and pair-
cluster approximations. The shape of this profile is determined by a ‘‘preference potential’’P,
which characterizes the attraction of an impurity to one of the alloy components, as well
as by the temperatureT and the phase transition temperatureTc . At small values ofP/T impurities
segregate on a phase boundary, and the degree of this segregation, i.e, the height of the
maximum ofcim(x), in the region of the boundary increases exponentially as the ratioTc /T
increases. ForP Þ 0 the cim(x) profile near a phase boundary is asymmetric, and asP/T
increases, it takes on the form of a ‘‘worn step.’’ The maximum on thecim(x) curve then
decreases, and at a certainuPu*Tc it vanishes. Segregation on an antiphase boundary is
investigated in the case of CuZn ordering in a bcc alloy. The form ofcim(x) near an
antiphase boundary depends significantly both on the form of the potentialP and on the
stoichiometry of the alloy. At smallP impurities segregate on an antiphase boundary, and at fairly
largeP ‘‘antisegregation,’’ i.e., a decrease in the impurity concentration on the antiphase
boundary in comparison with the value within the antiphase domains, is also possible. ©1997
American Institute of Physics.@S1063-7761~97!02408-6#
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The segregation of impurities on various interfaces
known and is important for many problems in solid-sta
physics. One well-known example is grain-boundary seg
gation, i.e., an increase in the impurity concentration
grain boundaries in a polycrystal in comparison with t
value within the grains.1 This type of segregation is usuall
attributed to the attraction of impurities to a grain bounda
in analogy to the formation of ‘‘Cottrell impurity clouds’
around dislocations. A grain boundary is regarded as a se
of edge dislocations. This model is correct and quantita
for small-angle boundaries. Then, if it is assumed that
location of impurities in a lattice is determined mainly by t
geometric factor, the region of local contraction near a d
location core should attract ‘‘small’’ impurities, whose r
diusr im is less than the radius of the main componentr 0, and
the region of local expansion should attract ‘‘large’’ impu
ties with r im.r 0, so that impurities of both these categori
should segregate on a boundary. The occurrence of gr
boundary segregation has been confirmed by many exp
ments and is important for a long list of properties of po
crystals, including their mechanical and corrosi
properties.1

Segregation phenomena on boundaries not assoc
with the presence of dislocations or other lattice defects h
been studied to a considerably smaller extent. Such bou
aries include the phase boundaries appearing during the
herent decomposition of an alloy in a region of differe
concentration and antiphase boundaries, which cohere
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ordered alloy. The existence of some universal segrega
mechanism like the attraction of impurities to dislocations
not evident here. At the same time, the segregation occur
on such boundaries can significantly influence the proper
of real alloys undergoing decomposition or ordering.

Vacancies comprise a special case of impurities in
loys. Their possible segregation on phase boundaries or
tiphase boundaries has been discussed in a numbe
papers2–8 in connection with phase transformations involvin
the decomposition or ordering of alloys. Interest in this pro
lem arises because the redistribution of atoms among la
sites during such phase transformations actually takes p
specifically according to a vacancy mechanism, in which
atom of one of the principal components of the alloy, f
example,A or B in a binaryAB substitutional alloy, change
places with a neighboring vacancy. Therefore, the effects
the inhomogeneous distribution of vacancies, particula
their possible segregation on phase boundaries during
growth of new phases when an alloy decomposes or on
tiphase boundaries during the growth of antiphase dom
upon ordering, can significantly influence the evolution
microstructures. At the same time, these effects are not ta
into account in the simple model of the ‘‘direct exchange
of places by atoms ofA andB that has been used in most o
the theoretical studies.

However, the segregation of vacancies on phase and
tiphase boundaries was discussed in Refs. 2–8 only o
qualitative level and only for certain special models, and
conclusions drawn by different authors regarding the deg

39009$10.00 © 1997 American Institute of Physics
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Monte Carlo simulation of spinodal decomposition in a tw
dimensional model of anAB alloy with vacancies~an ABv
alloy!, Yaldram and Binder2,3 concluded that no appreciab
segregation occurs on the phase boundaries at a low vac
concentration, although the images of the simulated st
tures that they presented do not rule out such segrega
Fratzl and Penrose4 noted that for the model of anABv alloy
with nearest-neighbor interactions obeying the relatio
VAA5VBB5VAv5VBv5Vvv50 andVAB.0 used in Ref. 2,
the need for the segregation of vacancies on the ph
boundaries follows already from thermodynamic argume
since some of the ‘‘repulsive’’A2B bonds are then broken
The Monte Carlo simulation in Ref. 4 provided indirect co
firmation of the occurrence of such segregation, but with
quantitative evaluations. In Refs. 5 and 6 Monte Carlo sim
lation of the kinetics ofB2 ~CuZn in Ref. 9! ordering was
carried out for two-dimensional and three-dimensional m
els of an alloy with nearest-neighbor interactions conform
to the relationsVAA5VBB5VAv5VBv5Vvv50 andVAB,0.
The occurrence of segregation on the antiphase bound
was demonstrated, but its quantitative characteristics w
not discussed. Geng and Chen7,8 considered the segregatio
of vacancies in the two-dimensional models from Refs. 2 a
5 on the basis of an approximate equation for the evolu
of local concentrations previously proposed by Chen.10 We
note that the meaning of this equation is not entirely cle
since its stationary solutions do not translate into the equ
rium results corresponding to the mean-field and pair-clu
approximations used. Geng and Chen7,8 obtained very large
values for the segregation of vacancies on phase and
tiphase boundaries, which were an order of magnitu
greater than the values obtained in the Monte Carlo sim
tion in Ref. 2 and in the present work. This is eviden
another indication of the unreliability of the equation pr
posed in Ref. 10.

A systematic approach to the description of the distrib
tions of local concentrations in alloys for an arbitrary dev
tion from equilibrium was recently developed in Refs.
and 12. The application of that approach to investigations
the kinetics of phase transformations led to some n
results.12–15 In the present work this approach is applied
the investigation of the segregation of impurities on ph
and antiphase boundaries.

2. FREE ENERGY OF AN INHOMOGENEOUS
MULTICOMPONENT ALLOY

Let us first discuss the problem under consideration
the assumptions used in greater detail. We treat a ter
substitutional alloy, in which the concentration of one of t
components, say, the vacancies in anABv alloy, is so small
that the interaction of these impurities with one another a
their influence on the thermodynamics of the phase trans
mations can be neglected. Then the equilibrium distribut
of such impurities is determined only by their interacti
with the principal components of the alloy. Furthermore,
there are several kinds of such impurities, their distributio
do not depend on one another, and the expressions pres
below can be employed for the impurities of each kind.
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purities of any kind, not just vacancies. It is assumed tha
boundary between two equilibrium phases appears as a r
of a phase transformation that takes place at a tempera
greater than the temperatureT under consideration. We ca
this boundary a phase boundary, if it separates unorde
phases with different values of the concentrationc, and an
antiphase boundary, if the regions on opposite sides of
boundary correspond to antiphase domains with different
entations, but the same mean concentrationc in the sublat-
tices. For simplicity, the case of a phase boundary betw
unordered and ordered phases~which is possible for phase
transformations involving decomposition with ordering14!
will not be discussed, although the general formulas in
present section can be applied to that case. The boun
considered is assumed to be stationary, and the distribut
of both the principal componentsA andB and the impurity
atoms near it are assumed to be the equilibrium distributio
In the case of moving boundaries this assumption means
the relaxation times of these atomic distributions are p
sumed to be much shorter than the times for significant
placements of the boundary, as is usually the case for
boundaries of small curvature considered.13

To investigate both the problem under discussion a
other problems in the theory of inhomogeneous systems
convenient to consider the free energyF of an inhomoge-
neous state. This parameter was determined microscopic
and investigated in Ref. 11 for binary alloys with an arbitra
deviation from equilibrium. It was shown, in particular, th
this free energy has the fundamental property of not incre
ing as a result of spontaneous processes in the system
analogy to the nondecreasing Boltzmann entropy. In this s
tion we present the necessary generalizations of the resu
Ref. 11 to the case of multicomponent alloys.

Let us consider a substitutional alloy containing atoms
m different kindsp5p1 ,p2 , . . . ,pm . Different distributions
of the atoms among the lattice sites will be described,
usual, by assigning the set of parameters$npi%, where the
occupation number operatornpi is equal to unity, if sitei is
occupied by an atom of kindp, and to zero in other cases. I
the substitutional alloy under consideration thenpi for eachi
are related by the expression(pnpi51, so that onlym21 of
them are independent. It is convenient to label these indep
dent operators by special symbols, for example, Greek
ters, and to write (npi) indep5na i , and the remaining opera
tor, which we shall denote bynBi, can be expressed in term
of the independentna i :

nBi512(
a

na i . ~1!

Thus, for an ABv alloy we set v5a1, A5a2, and
nBi512nAi2nvi .

The energy of the alloy, expressed in terms of all t
operatorsnpi , has the form of a configurational Hamiltonia
H of the general form

H5(
p

F i
pnpi1

1

2! (
pq,i j

Vi j
pqnpinq j
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where theF i
p are possible external fields~which are present

if not all the lattice sites are equivalent, for example, beca
of the presence of lattice defects!, and theVi . . . j

p . . . q are the
interaction potentials. The effects of fast electron and pho
motions are assumed to be included in the adiabatically
eraged values of the configurational potentialsVi . . . j

p . . . q .
After elimination of the dependent operatorsnBi using

relation ~1!, i.e., in terms of only the independent operato
na i , the Hamiltonian~2! takes on the form

H5E01(
a i

w i
ana i1H int , ~3a!

H int5 (
ab,i . j

v i j
abna inb j

1 (
abg,i . j .k

v i jk
abgna inb jngk1 . . . , ~3b!

whereE0, w i
a , andv i . . . j

a . . . b are expressed linearly in terms o
the fieldF i

p and the potentialsVi . . . j
p . . . q in Eq. ~2!. In particu-

lar, for the configurational fieldsw i
a and the pair configura

tion interactionsv i j
ab we have

w i
a5~F i

a2F i
B!1(

j
~VaB2VBB! i j 1(

j .k
~VaBB

2VBBB! i jk1 . . . , ~4a!

v i j
ab5~Vab2VaB2VBb1VBB! i j 1(

k
~VabB2VaBB

2VBbB1VBBB! i jk1 . . . . ~4b!

We describe different macroscopic states of the alloy
terms of the distribution function of the atoms among t
sites, i.e., a given set of occupation numbers$na i% can be
found in terms of the probabilityP$na i% in this state. Since
the na i are projection operators, i.e., sincena inb i5dabna i ,
the general expression for the distribution functionP$na i%
can always be written in the form of a ‘‘generalized Gib
distribution:’’11

P$na i%5expFbS V1(
a i

l i
ana i2QD G . ~5!

Here b51/T is the reciprocal temperature, and the corre
tion termQ is an analog of the interaction HamiltonianH int

in ~3b!:

Q5 (
ab,i . j

ai j
abna inb j1 (

abg,i . j .k
ai jk

abgna inb jngk1 . . . .

~6!

In addition, the generalized thermodynamic potentialV is
determined from the normalization condition

V52T ln Tr expFbS (
a i

l i
ana i2QD G , ~7!

where Tr(. . . ) denotes summation over all the configur
tional states, i.e., over all the sets of occupation numb
$na i%.
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~the ‘‘local concentration’’! is denoted bycpi , and the aver-
age of the operator product^na inb j . . . ngk& is denoted by
gi j . . . k

ab . . . g , where the notation̂( . . . )&[Tr@( . . . )P# denotes
averaging over the distribution~5!. Then, if the free energy
F5F$ca i ,gi . . . j

a . . . b% is defined by a relation similar to Eq.~23!
in Ref. 11,

F5V1K H1(
a i

l i
ana i2QL , ~8!

the derivativesF over its arguments are expressed in ter
of w, l, v, anda from Eqs.~3!–~6! in the following manner:

]F/]ca i5w i
a1l i

a , ~9a!

]F/]gi . . . j
a . . . b5v i . . . j

a . . . b2ai . . . j
a . . . b . ~9b!

Following Ref. 11, we can show that the free energy~8!
never increases during the spontaneous evolution of the
tem ~the proof is similar to the proof in Ref. 11, being di
tinguished, for the most part, only by the differences in t
notation used for the indices!. Therefore, in a stationary, o
equilibrium, state the free energyF should have a minimum
with respect to its argumentsca i andgi . . . j

a . . . b under the con-
dition of a constant number of particles of each ki
Na5( ica i . For the derivativeFa i[]F/]ca i this gives the
equation for a conditional minimum

Fa i5ma5const, ~10!

where the Lagrange multiplierma has the meaning of the
chemical potential. The conditions for a minimum with r
spect togi . . . j

a . . . b do not have restraints, and thus the derivat
on the left-hand side of Eq.~9b! should vanish

ai . . . j
a . . . b5v i . . . j

a . . . b . ~11!

Relations~10! and ~11! are similar in form to the ordi-
nary equations of Gibbs equilibrium for homogeneous s
tems. However, in the inhomogeneous alloy under consid
ation the local concentrationsca i vary with the site labeli
and must be determined by the system of nonlinear equat
~10! and ~11! and the boundary conditions.

Real calculations of the free energy can be perform
using various approximate methods of statistical physics
are similar to those used for homogeneous systems, suc
the mean-field approximation, the cluster-field method16–18,
and the cluster-variation method.18,19 The simplest and mos
satisfactory method is the mean-field approximation. T
free energy~8! has been written analytically within thi
approximation,12 and the derivativeFa i in ~10! has the form

Fa i5T ln
ca i

cBi
1w i

a1(
b j

v i j
abcb j . ~12!

Here cBi512(aca i , the equilibrium equations~11! are
used, and to simplify the formulas the case in which on
pair interactions are present in Hamiltonians~2! and ~3! is
considered.

Cluster methods are, generally speaking, more ex
than the mean-field approximation.16–20 The cluster-field
method ~unlike the more complicated cluster-variatio
method! is also easily generalized to the case of an inhom
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3. GENERAL EXPRESSIONS FOR THE EQUILIBRIUM
DISTRIBUTION OF IMPURITIES IN AN AB v ALLOY
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cluster-field method, i.e., the pair-cluster method, which
incides with the analogous approximation of the clust
variation method, the free energy of an inhomogeneous
nary alloy F$cAi%, as in the mean-field approximation, h
been written out analytically and was presented in Refs.
and 17. As for a multicomponent alloy, an explicit analytic
expression cannot be written within the pair-cluster appro
mation for F$cAi% in the general case: the algebraic equ
tions obtained are higher than second-order.16–18 However,
for the case considered in the present work of anABv alloy
with a small impurity concentration,cvi!1, expressions for
F andFa i can also be found analytically in the pair-clust
approximation.

To simplify the notation in the treatment of anABv alloy
below, we shall omit the indices of the principal compone
A andB and make the replacements

cAi→ci , cBi.12ci→ci8 ,

v i j
AA5Vi j

AA22Vi j
AB1Vi j

BB→v i j . ~13!

Then, using the methods in Refs. 16–18 for the derivati
Fa i in an ABv alloy, for cvi!1 we obtain

FAi5
]F

]ci
5w i

A1T ln
ci

ci8
1T(

j Þ i
ln@12 f i j cj

3
2

Ri j 111 f i j ~ci1cj !
, ~14a!

Fvi5
]F

]cvi
5w i

v1T ln
cvi

ci8
2T(

j Þ i
ln@11 f i j

v cj

3
2

Ri j 111 f i j ~ci2cj !
. ~14b!

Here f i j 5 f (v i j ) or f i j
v 5 f (v i j

Av) is the Mayer function for the
potentialv i j or v i j

Av :

f i j 5exp~2bv i j !21, f i j
v 5exp~2bv i j

Av!21, ~15!

and the functionRi j has the form

Ri j 5@112 f i j ~cicj81ci8cj !1 f i j
2 ~ci2cj !

2#1/2. ~16!

We note that there are no terms withj 5 i in the sums
over j in Eqs. ~14!. This can be described by settin
v i i 5v i i

Av50. We also note that the expression~14a! for FAi

coincides with the expression previously derived for
impurity-freeAB binary alloy,17 since the contribution of the
impurities to this quantity at smallcvi is proportional tocvi

and is omitted in the zeroth approximation~14a!.
When higher approximations of the cluster-field metho

such as the tetrahedral, octahedral, and other similar app
mations are used~they must be employed, for example,
obtain a faithful description of the ordering in fcc alloys17!,
the calculation ofF and Fa i for an inhomogeneousAB or
ABv alloy requires the solution of algebraic equations
higher orders, i.e., fourth, sixth, etc., for each lattice sitei .
However, their solution does not lead to any fundamen
difficulties and can be accomplished by numerical meth
when specific problems are investigated.
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The equilibrium distributions of the components in a
inhomogeneous alloy can be found from Eq.~10! using any
approximation for the free energyF$ca i% Below we shall use
the mean-field approximation~12! and the pair-cluster ap
proximation~14!, under which the distribution of the impu
rities cvi can be expressed in terms of the distribution of t
principal components in a general form.

We first utilize the simpler mean-field approximation. T
simplify the formulas, instead of the interaction potentialv i j

Av

from ~4b!, it is convenient to use the potentialPi j , which is
equal to the difference between the configurational potent
in the binary alloysBv andAv:

Pi j 5~Vi j
BB22Vi j

Bv1Vi j
vv!2~Vi j

AA22Vi j
Av1Vi j

vv!. ~17!

WhenPi j is positive, it is energetically preferable for th
impurity to be in a region enriched with atoms ofB, and
whenPi j is negative, it is preferable for it to be in a regio
enriched with atoms ofA. Therefore, we callPi j the ‘‘pref-
erence potential’’ for the impurity. The potentialv i j

Av from
Eq ~4b! is expressed in terms ofv i j and Pi j as
v i j

Av5(v i j 1Pi j )/2, and the equilibrium equations~10! in the
mean-field approximation take the form

T ln
ci

ci8
1w i

A1(
j

v i j cj5mA , ~18a!

T ln
cvi

ci8
1w i

v1
1

2(j
~v i j 1Pi j !cj5mv . ~18b!

Eliminating the terms with a configuration interactionv i j

from Eqs.~18!, we obtain an expression for the local imp
rity concentrationcvi in a form that is symmetric relative to
the two principal components of the alloy:

cvi5A~cici8!1/2expF2bS w̃ i
v1

1

2(j
Pi j cj D G . ~19!

Here the value of the constantA5exp(bmv2bmA/2) is de-
termined from the boundary conditions, for example, fro
the equilibrium value ofcvi far from the phase or antiphas
boundary under consideration, and the effective field for
impurities w̃ i

v is related to the quantitiesF i
p andVi j

pq in ~2!
by the expression

w̃ i
v5F i

v2
1

2
~F i

A1F i
B!1(

j
FVi j

Bv2
1

2
~Vi j

AB1Vi j
BB!G .

~20!

We note that in the inhomogeneous alloy under cons
eration the potentialsVi j

pq in ~20! can depend not only on th
distance between sitesr i2r j , but also on the absolute pos
tion of a siter i , so that the last sum in~20! can also depend
on r i .

Let us now discuss the distribution of impurities in th
pair-cluster approximation~14!. In this case the local con
centrationcvi depends, generally speaking, not only onci ,
ci8 , and Pi j , but also on the interactions of the princip
componentsv i j . For convenience in making comparison
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present the expression forcvi in the pair-cluster approxima
tion in a form analogous to relation~19!:

cvi5A~cici8!1/2 exp~2bw̃ i
v1Si !. ~21!

HereA and w̃ i
v are the same as in~19!, andSi is given by

the expression

Si5(
j

F1

2
ln~12 f i j cjbi j !1 ln~11 f i j

v cjbi j
v !G , ~22!

wherebi j andbi j
v denote the last cofactor of the second te

in the square brackets in Eq.~14a! or ~14b!, the values ofci

are determined from the equilibrium equatio
FAi5mA5const, andFAi is given by~14a!.

The mean-field approximation is applicable, if each
the potentialsv i j and v i j

v is small in comparison with the
temperature:17 bv i j ,bv i j

v !1. In this case bi j .bi j
v .1,

f i j .2bv i j , f i j
v .2b(v i j 1Pi j )/2, and Eq.~21! transforms

into ~19!. If bv i j andbv i j
v are not small@for example, when

there are strong repulsive interactions withbv i j *1 ~Ref.
16!#, the cluster approximations can significantly refine t
mean-field approximation.

Relations ~18!–~21! can be applied to very differen
problems in the physics of inhomogeneous alloys, in parti
lar, to the investigation of the aforementioned gra
boundary segregation, where the fieldsF i

p in Eqs. ~2! and
~20! include elastic contributions associated with the gr
boundaries. We shall apply these relations below to the st
of the distribution of impurities near interphase and a
tiphase boundaries.

4. SEGREGATION ON A PHASE BOUNDARY

Let us first consider the case of a phase boundary
tween two unordered phases 1 and 2. Far from the bound
i.e., in a region of homogeneous phase 1 or phase 2,
concentrationsci have a constant value equal toc1 or c2,
wherec1 andc2 are determined from the equations for eq
librium between the phases:

V~c1!5V~c2!, mA~c1!5mA~c2!. ~23!

HereV(cn)5 f (cn)2cnmA(cn), and f (cn) is the free energy
per site of phasen, wheren is equal to 1 or 2. The contri
bution of the impurities to Eq.~23! is proportional to their
concentrationcvn , i.e., is negligibly small.

In the model with pair interactions under considerati
the values ofc1(T) andc2(T) on thec,T phase diagram are
arranged symmetrically relative to the mean valuec51/2.
Therefore, instead of the local concentrationci it is conve-
nient to introduce the variablej i5ci21/2. Then negative
positive, or zero values of thej i correspond to phase 1
phase 2, or the phase boundary, and far from the ph
boundary in phase 1 or 2 we havec151/22j0 and
c251/21j0, wherej0 is determined from Eq.~23!.

Let us first utilize the mean-field approximation. In th
case the solution of equalities~23! for the phase equilibrium
curve ~the binodal! can be written in the form
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Here Tc is the critical temperature, which equals2v0/4 in
the mean-field approximation used, wherev05( jv i j , and in
the homogeneous phases under consideration the pote
v i j andv0 do not depend on the coordinate of the siter i .

To simplify the formulas we assume that in the presen
of a phase boundary the potentialsv i j

ab depend only on the
distancesr i2r j and that the external fieldsw i

a are absent.
Defining the constantA in ~19!, for example, in terms of the
equilibrium value of the impurities in the first phasecv(1),
we arrive at the following expression for the distribution
the impurities:

cvi5cv~1!S 124j i
2

124j0
2D 1/2

expF2
1

2
b(

j
Pi j ~j01j j !G .

~25!

If the boundary condition in the second phase, rather than
first phase, is used, thencv(1) in Eq. ~25! is replaced by
cv(2)5cv(1)exp(2bj0(jPij) andj0 is replaced by2j0.

Let us discuss the form of distribution~25! near a phase
boundary. It can be seen, first, that in the absence of
preference potential, i.e., when Pi j 50 and
cv(2)5cv(1)5cv0 hold, this distribution has a maximum
cv

max at j i50, i.e, on the phase boundary,

cv
max5cv0~124j0

2!21/2, ~26!

where the valuej05j0(T) is specified by the equation of th
binodal ~24!. At low temperatures (T!Tc) the difference
j021/2 is exponentially small, and the segregation of imp
rities on the phase boundary given by Eq.~26! increases
exponentially. Actually, however, the equilibrium values
impurity concentrations~25! and~26! may not be achieved a
low T because of the slowing of the kinetic processes invo
ing diffusion of the atoms at suchT.

For P50 the segregation of impurities occurring on th
phase boundary is physically related mainly to entrop
rather than energetic effects. The vanishing of the prefere
potential~17! implies that the energies corresponding to t
attraction of the impurity to both pure components of t
alloy are identical and that the expression~19! for cvi con-
tains contributions from only the entropic, but not the en
getic, terms in Eqs.~18! whenP50. Although the use of Eq
~18a! in the derivation of~19! makes such a separation of th
contributions not entirely unequivocal, in any case these
marks point out the importance of the entropic contributio
to segregation on a phase boundary. Thus, the argum
advanced in Ref. 4 regarding the ‘‘energetic’’ origin of su
segregation appear to be at least incomplete.

If the preference potentialP is not equal to zero, the
distribution of the impurities is asymmetric relative to th
phase boundary with different values ofcv(1) andcv(2) in
pure phases 1 and 2, and the maximum ofcvi is shifted
toward the phasen which is enriched with impurities. AsuPu
increases, this shift increases, and the amount by whichcv

max

exceeds the bulk valuecv(n) decreases. At certain value
uPi j u;uv i j u this maximum vanishes, and the profile ofcvi

takes on the form of a worn step~see Figs. 1 and 2!.
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Let us now discuss the distribution ofcvi in the pair-
cluster approximation~21!. Here, instead of~25! we obtain

cvi5cv~1!S 124j i
2

124j0
2D 1/2

exp@Si2S~c1!#, ~27!

whereSi is the same as in~21!, andS(c1) corresponds to the
replacement of all theci andcj in ~22! by c1. The values of
c1 and c2 are specified by the equation of the binodal~23!
with the following expressions16 for V(cn) andmA(cn):

V~cn!5T ln cn82T(
j

ln@12cn
2 f i j bi j ~cn!#, ~28a!

mA~cn!5T ln
cn

cn8
1T(

j
ln@12cn f i j bi j ~cn!#, ~28b!

where the bi j (cn) are the same as in Eq.~22! when
ci5cj5cn .

Numerical calculations based on Eqs.~25!–~28! show
that for ordinary models of interactions at not excessiv
low temperatures (T*Tc/2) the distributions~25! in the

FIG. 1. Impurity concentration profilecim(xi) near a phase boundary lyin
in a @1,0,0# plane of a bcc alloy with a lattice constanta calculated in the
pair-cluster approximation forT50.75Tc . For clarity, the values ofcim(xi)
at the discrete pointsxi5na andxi5(n61/2)a are joined by straight lines
The configurational potentialv i j ,0 corresponds to the interaction of onl
the nearest neighbors, and the solid, dot-dashed, and dashed lines
spond to a preference potentialPi j equal to 0,v i j /2, andv i j .

FIG. 2. Same as in Fig. 1, but forT50.5Tc .
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proximation are similar. The degree of segregation is som
what greater in the pair-cluster approximation; however,
differences in the concentration profile are usually less t
10%.

Figures 1 and 2 present some results of the calculat
of the impurity concentration profilecim(xi)5cvi near phase
boundaries. The model of a bcc alloy with the neare
neighbor interactionv i j is considered for several values o
the preference potentialPi j . The phase boundary is assum
to be flat and to lie in a@1,0,0# plane withx5xi50. The
normalizing constantcim

0 is chosen equal to the average
the bulk concentrations of the impurity in phases 1 and
cim

0 5@cv(1)1cv(2)#/2. The distribution of theci of the prin-
cipal components of the alloy~i.e., the structure of the phas
boundary! is found by minimizing the free energyF$ci% with
respect toci under suitable boundary conditions, which
technically simpler than solving the equationFAi5const like
~18a!. After this, cim(xi)5cvi is calculated from Eq.~25! or
~27!.

The calculation results presented in Figs. 1 and 2 w
obtained using the pair-cluster approximation. These res
illustrate the general features discussed here of the segr
tion of impurities on phase boundaries. It is seen for la
uPi j u*uv i j u, in particular, that the maximum forcim near the
phase boundaries vanishes and the profile takes on the
of a worn step. We also note that the degree of segregatio
our calculations~both in the pair-cluster approximation an
in the mean-field approximation! is similar in order of mag-
nitude to the degree which was visually observed in
Monte Carlo calculations in Ref. 2. At the same time, valu
of the degree of segregation almost an order of magnit
greater were obtained in Ref. 7. This is another indication
the unreliability of the equations from Ref. 10 that were us
in Ref. 7.

5. SEGREGATION ON AN ANTIPHASE BOUNDARY

Let us consider segregation on antiphase boundarie
the case ofB2 @or CuZn~Ref. 9!# ordering in a bcc structure
In the ordered phase the original bcc lattice decomposes
two cubic sublattices, which are displaced by the translat
vector (a/2,a/2,a/2). In one of these sublattices the conce
tration of the atoms ofA is greater than and in the other le
than the mean valuec5c0 throughout the alloy. To describ
inhomogeneous states of such an alloy, particularly,
tiphase boundaries, it is convenient to introduce a local m
concentrationc̃ i and an order parameterh i for each sitei
and to determine them, for example, using averaging o
the nearest neighbors:13

c̃ i5
1

2S ci1
1

8 (
j 5nn~ i !

cj D ,

h i5
1

2S ci2
1

8 (
j 5nn~ i !

cj D exp~ iksr i !. ~29!

Here the indexnn( i ) in the sum denotes summation over a
the nearest neighbors of sitei , r i is the coordinate of that site
andks5(1,t,1)2p/a is the superstructure vector. The mult

rre-
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lying in the first or second sublattice. Thec̃ i andh i ~unlike
the occupanciesci of the sites, which are equal toc̃ i6h i)
are smooth functions of the coordinates, and the value
neighboring sites are close. In a homogeneous ordered p
the values ofc̃ i5c0 andh i5h0 are constant throughout th
alloy, and the order parameterh0 is determined from the
condition of equality between the expressions~10! for the
two sublattices. For example, in the mean-field approxim
tion, from Eqs.~18a! we have

T ln
~c02h0!~c082h0!

~c01h0!~c081h0!
52v0

sh0 , ~30!

wherec08512c0 andv0
s5( jv i j exp@iks(r i2r j )#. The criti-

cal ordering temperatureTc0 equals (2v0
s)/4.

An antiphase boundary is defined as the set of the po
rA at which the values of theh i or the values ofh(rA)
extrapolated fromh i in the sitesi closest torA vanish.13 For
simplicity, below we shall consider the case of a flat a
tiphase boundary lying in a@1,0,0# plane of the lattice with
xA5xi50.

It is convenient to write the distributions of the impur
ties for the first and second sublattices,cvi

1 and cvi
2 , sepa-

rately. Then the equations for the mean-field approximat
~19! for w̃ i

v50 take the form

cvi
15A@~ c̃ i1h i !~ c̃ i82h i !#

1/2 expF2
1

2
bS (

j
Pi j c̃ j

1(
j

Pi j
s h j D G , ~31a!

cvi
25A@~ c̃ i2h i !~ c̃ i81h i !#

1/2 expF2
1

2
bS (

j
Pi j c̃ j

2(
j

Pi j
s h j D G , ~31b!

where Pi j
s 5Pi j exp@iks•(r i2r j )#. Equations~31! show that

the functionscvi
1 andcvi

2 vary smoothly, if the values ofc̃ i

andh i vary smoothly in space. However, generally speaki
these functions and, therefore, the values ofcvi in neighbor-
ing sites differ appreciably.

Let us first discuss the simpler case of an alloy with
stoichiometric compositionc05c0851/2. Then the local con-
centrationsc̃ i do not vary near the antiphase boundary un
consideration:13 c̃ i5const51/2. Let the asymptotic value
of h i to the left and the right of the antiphase boundary~in
regions 1 and 2! be equal, respectively, toh0 and2h0. Then
distribution ~31! takes a form similar to the expression~25!
for a phase boundary with the replacement ofj i by h i and
Pi j by Pi j

s :

cvi
65 c̃ v0S 124h i

2

124h0
2D 1/2

1

cosh~bP0
sh0/2!

3expS 7
1

2
b(

j
Pi j

s h j D , ~32!
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where c̃ v0 is the mean impurity concentration far from th
antiphase boundary, which is identical in both domains, a
P0

s5( j Pi j
s .

Equation~32! shows that at large values ofuP0
su segre-

gation of the impurities on the antiphase boundary~i.e., in
the regionh j.0) is suppressed. Taking into account that f
the value of c0 equal to 1/2 considered here the fact
(124h0

2)21/2 is equal to cosh(bv0
sh0/2) according to Eq.

~30!, we can approximately estimate the degree of segre
tion on an antiphase boundary as

cv~h i50!

c̃ v0

.
cosh~bv0

sh0/2!

cosh~bP0
sh0/2!

. ~33!

Therefore, whenuP0
su&uv0

su holds, the antiphase boundary
enriched, and whenuP0

su*uv0
su holds, it is depleted of impu-

rities in comparison to the interior of the antiphase domai
All these conclusions remain valid when the pair-cluster
proximation~21! is used instead of the mean-field approx
mation.

Figure. 3 presents some results of calculations of
locally averaged impurity concentration profilesc̃ im(x)/ c̃ im

0

5 c̃ vi / c̃ v0 near an antiphase boundary for a stoichiome
alloy with c051/2 within the pair-cluster approximation
The values ofc̃ vi are determined using averaging over t
nearest neighbors similar to that used in Eq.~29!:

c̃ vi5
1

2S cvi1
1

8 (
j 5nn~ i !

cvj D . ~34!

Figure 3 illustrates the general conclusions discussed reg
ing the segregation of impurities on an antiphase bound
whenc051/2.

For an alloy of nonstoichiometric composition withc0

Þ 1/2 the situation is more complicated. As was discusse
Ref. 13, in this case the values ofc̃ i near antiphase bound
aries are no longer constant, and forc̃0,1/2 they have a
minimum: c̃ i,c0. Therefore, the coordinate dependence

FIG. 3. Locally averaged impurity concentration profilec̃ im(xi) near an
antiphase boundary lying in a@1,0,0# plane withB2 ordering calculated in
the pair-cluster approximation for a model with a nearest-neighbor inte
tion v i j .0 at T50.75Tc0 and a mean alloy concentrationc051/2. Curves
1, 2, and 3 correspond to a preference potentialPi j equal to 0,v i j , and
2v i j .
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the terms withc̃ i in the exponential functions must also b
taken into account in Eq.~31!. The influence of these term
can be characterized qualitatively byP05( j Pi j . Positive
values of P0 promote an increase incvi in a region with
small c̃ i , i.e, near antiphase boundaries. Conversely, ne
tive values ofP0 decrease this segregation. The potenti
Pi j

s , which are characterized byP0
s in Eq. ~32!, as was noted

above, suppress segregation on antiphase boundaries.
lustrate the possible situations, in Figs. 4 and 5 we pre
the results of calculations of the impurity profilesc̃ im(x) for
models with interactions in two coordination spheres. Fig
4 corresponds to models withuP0

su.uP0u, and Fig. 5 is for
models withuP0

su,uP0u. In accordance with the argumen
advanced here, an increase in the preference potential l
to the suppression of segregation in the former case
conversely, to its enhancement in the latter case.

The Monte Carlo calculations of the segregation of v
cancies on an antiphase boundary forB2 ordering models
that are known to us5,6 correspond toPi j 50. The conclu-

FIG. 4. Same as Fig. 3, but for a model with an interactionv i j in two
coordination spheres:v151, v2520.8 at T50.75Tc0 and c050.425.
Curves1, 2, 3, 4, and5 correspond toPi j 5gv i j with g equal to22, 21, 0,
1, and 2, so that the values ofP0 andP0

s for these curves are equal, respe
tively, to (26.4) and 25.6, (23.2) and 12.8, 0 and 0, 3.2 and (212.8), and
6.4 and (225.6).

FIG. 5. Same as Fig. 4, but for the preference potentialsPi j 5guv i j u. Curves
1, 2, and3 correspond tog equal to22, 0, and 2, so thatP0 and P0

s for
these curves are equal, respectively, to (225.6) and 6.4, 0 and 0, and 25.
and (26.4).
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antiphase boundary are consistent with our results. For
ample, according to Eq.~33!, whenP0

s50, the impurity con-
centration is always greater on an antiphase boundary tha
the interior of the domains in a stoichiometric alloy, an
curve3 in Fig. 4 and curve2 in Fig. 5 show that this is also
true for nonstoichiometric alloys. However, the lack of qua
titative evaluations of this segregation in Ref. 5 and 6 ma
a more detailed comparison difficult.

In conclusion, we note that, apart from the calculatio
of the distribution of impurities described above for ‘‘site
intersecting’’ phase or antiphase boundaries, whose cen
lie in @1,0,0# atomic planes in a bcc lattice, we also pe
formed similar calculations for ‘‘intersite’’ phase or an
tiphase boundaries, whose centers are halfway between t
atomic planes@so that the central plane of such a boundary
obtained from the analogous plane of a site-intersec
boundary as a result of translation by the vector (a/4,0,0)#.
These intersite boundaries are also stable, and the su
energies of site-intersecting and intersite phase or antiph
boundaries are very close to one another~see, for example,
Ref. 21!, so that both types of boundaries form with the sa
frequency in a real alloy. The calculated plots ofcim(x) and
c̃ im(x) for intersite phase and antiphase boundaries are v
similar to the analogous profiles for site-intersecting bou
aries presented in Figs. 1–5. The values ofcim(xi) and
c̃ im(xi) for an intersite phase or antiphase boundary can
estimated to good accuracy (;10%! as the values on the
broken curves in Figs. 1–5 for the corresponding poi
xi5(n61/4)a or xi5(n63/4)a. This similarity between the
results for boundaries of different types suggests that
results in Figs. 1–5 are actually fairly general and can
used to estimate the distribution of impurities near phase
antiphase boundaries in different positions and orientatio

6. CONCLUSIONS

In conclusion, let us enumerate the main results of t
work. A general expression has been proposed for the
energy of an inhomogeneous multicomponent alloy. It can
used to investigate various problems in the physics of s
alloys. In the case of anABv alloy with a small concentration
of vacancies (v), explicit expressions for the equilibrium
distribution of the impurities among the lattice sitescv i in
terms of the distribution of the principal components of t
alloy have been given in the mean-field and pair-cluster
proximations. An investigation of the impurity concentratio
profilescim(x)5cvi near a phase boundary has shown tha
small values of the preference potentialP defined by Eq.
~17! the segregation of impurities on the boundary is d
scribed by Eq.~26! and that asP increases, thecim(x) profile
takes on the form of a worn step. Segregation also occ
near an antiphase boundary between domains withB2 order-
ing when P is small. As P increases, the degree of th
segregation in an alloy of stoichiometric composition d
creases according to Eq.~33!, and antisegregation takes plac
at large values ofP. In nonstoichiometric alloys the influ
ence of the preference potential on the character of the
regation on an antiphase boundary also depends on the
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of this potential, particularly on the ratio betweenP0
s andP0,
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Spin liquid in an almost ferromagnetic Kondo lattice

-

K. A. Kikoin, M. N. Kiselev, and A. S. Mishchenko

Kurchatov Institute, 123182 Moscow, Russia
~Submitted 2 January 1997!
Zh. Éksp. Teor. Fiz.112, 729–759~August 1997!

A theory of stabilization of a spin liquid in a Kondo lattice at temperatures close to the
temperature of antiferromagnetic instability has been developed. Kondo exchange scattering of
conduction electrons leads to emergence of a state of the spin liquid of the resonating
valence bonds~RVB! type atT . TK . Owing to this stabilization, low-energy processes of
Kondo scattering with energies belowTK are frozen so that the ‘‘singlet’’ state of the Kondo lattice
is not realized; instead a strongly correlated spin liquid with developed antiferromagnetic
fluctuations occurs. A new version of the Feynman diagram technique has been developed to
describe interaction between spin fluctuations and resonant valence bonds in a self-
consistent manner. Emergence of a strongly anisotropic RVB spin liquid is discussed. ©1997
American Institute of Physics.@S1063-7761~97!02508-0#
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One of the most extraordinary properties of heav
fermion compounds is the transition of a system of wea
interacting spins, which manifests paramagnetic propertie
high temperatures, to a strongly correlated quantum liq
with thermodynamic and magnetic properties typical
Fermi systems atT , Tcoh ! T* . This ‘‘dissolution’’ of
localized spins is usually interpreted in terms of the Kon
lattice model, and the basic mechanism which determi
thermal transformation of the spin subsystem is assume
be Kondo screening of spins by conduction electrons. T
screening can be modeled in essentially the same way
one-impurity lattice, so that the Kondo lattice can be trea
as a periodic structure of Kondo impurities coherently sc
tering conduction electrons.1,2 The characteristic temperatur
T* at which the system switches to another regime is
Kondo temperatureTK , and the ground state in the mea
field approximation is the so-called Kondo singlet.

This simple model, however, ignores spin correlatio
whose close relation to heavy fermions is beyond doubt.
well known that formation of a heavy fermion is in all cas
without exception due either to long-range antiferromagn
order or short-range magnetic correlations. In its interpre
tion of this relation, the Kondo lattice theory invokes indire
exchange between localized spins via conduction elect
~RKKY exchange!, which occurs in the Kondo lattice mode
in the second order of perturbation theory. Thus, nonlo
spin correlations compete with local effects of sp
screening.3 This naive dichotomy of Doniach’s, which take
place in the mean-field approximation, predicts a tendenc
antiferromagnetic ordering at small values of the effect
coupling constant

a5Js f N ~«F!V0 ,

whereJs f is thes f-exchange integral,N («F) is the electron
density of states at the Fermi surface,V0 is the elementary
cell volume. At largea, Kondo screening suppresses t
magnetic moment, and the ground state is the Kondo sin
Then, fora slightly higher thanac determined by the equa
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lated by perturbation theory, and magnetic correlatio
modify properties of the singlet phase.4,5

An alternative approach to the problem of competiti
between the one-site screening and magnetic intersite co
lations was suggested by Coleman and Andrei.6 The two
options described by Doniach’s simple model were supp
mented with a third one, namely, formation of a nonmagne
spin liquid of the resonant valence bonds~RVB! type with
the Fermi statistics of elementary excitation in the spin s
tem ~spinons!. They demonstrated that the spin liquid state
stabilized by Kondo scattering, but calculated both spin
tersite correlations and the single-sites f-exchange between
spinons and electrons in the mean-field approximation. In
duction of anomalous one-site averages of the Kondo typ
in reality, equivalent to the assumption that full dynamic sp
screening takes place, and the assumption that Kondo
glets are formed at each site owing to multiple ‘‘switching
of RVB bonds between localized spins and conduction e
tron spins is equivalent to a translation of electron charge
spin degrees of freedom. Thus, in this scenario, as well a
the mean-field theory of the Kondo lattice,7 spin degrees of
freedom, which manifest themselves at high temperature
weak paramagnetic, noncharged correlations, have a ch
at T , TK and transform to charged heavy fermions~a
critical discussion of this scenario was given in Ref.!.
Naturally, interpretation of the existence of magnetic cor
lations in the Kondo lattice requires more theoretical effo9

This paper suggests an alternative scenario of forma
of a spin liquid in the Kondo lattice described by the Ham
tonian

Heff5(
ks

«kcks
1 cks1Js f(

i
S si–Si1

1

4D . ~1!

Here«k is the dispersion relation for conduction electrons,Si
and si 5 (1/2)cis

1 ŝcis , are operators of a spin localized i
the f -shell and of a delocalized conduction electron sp
respectively, andŝ are Pauli matrices. Our approach is bas
on an understanding that in the critical region, where

39916$10.00 © 1997 American Institute of Physics
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TK ; «F exp( 2 1/2a), Neel temperatureTN ; «Fa , and
the temperatureT* of the transition to the spin-liquid state!
are of the same order, and the Kondo scattering is favor
to the transition to the spin-liquid state so thatT* . TN

. TK , the very existence of spin-liquid correlations imped
the formation of a singlet ground state, since screening
localized spins by the Kondo scattering is, in fact, frozen
temperaturesT ; T* . TK , and at lower temperatures th
system properties are controlled by nonlocal spin-liquid c
relations, rather than one-site Kondo scattering. In ot
words, spin correlations suppress the Kondo effect in b
the ordered~magnetic! and disordered~spin-liquid! phases,
so Doniach’s simple phase diagram should be revised.

Since the spin-liquid state emerges in the critical reg
a ; ac at temperatures close toTN , the coexistence o
heavy fermions and magnetic correlations has a natura
terpretation in the proposed model. Moreover, it is obvio
that critical spin fluctuations should play an important role
the mechanism of spin-liquid formation. In this study, w
have limited our calculations to the range of high tempe
turesT . TK , where the perturbation theory in the param
etera ln(«F /TK) applies. We use the diagram technique
spin operators in the pseudofermion representation10 in the
approximation of noncrossing graphs~or noncrossing ap-
proximation, NCA! for the description of the Kondo scatte
ing. The results of high-temperature expansions, which t
one-site and intersite correlations into account concurren
will be extrapolated to the range of temperatures where p
magnetic fluctuations are important. However, when
pseudofermion technique is applied to nonlocal spin-liq
correlations, the problem of nonphysical states arises,
hence the breaking of local spin symmetry.11–15 With this
circumstance in view, we have constructed a Feynman
gram technique for spin Hamiltonians, which allows us,
principle, not only to get rid of nonphysical states, but also
take into account fluctuations of calibration fields.

In Sec. 2 this technique is applied to a spin liquid of t
homogeneous RVB phase type16,17 described in terms of the
Heisenberg model; in Sec. 3 the technique is applied to
Kondo lattice, and the mechanism of RVB phase stabili
tion by Kondo scattering in the mean-field approximation
described.1! The mean-field theory for the RVB phase, takin
into account critical fluctuations, is generalized in Sec. 4, a
Sec. 5 shows how this diagram technique can be use
describing local critical and hydrodynamic fluctuatio
around the antiferromagnetic instability point.

2. PROJECTION DIAGRAM TECHNIQUE FOR THE
HEISENBERG LATTICE

Along with standard perturbation theory techniques
veloped for Fermi and Bose operators, one can find in
literature a number of diagram techniques for noncommu
operators in terms of which one can write the Hamiltonia
of the spin or strongly correlated electrons systems~see, for
example, Refs. 19–21 and references therein!. Most of these
techniques are based on Hubbard’s projection opera
Xj

lm 5u jl&^ jmu, whereu jl& is a ket vector corresponding t
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perturbation theory is diagonalized in this approximation.
Diagram techniques for noncommuting operators

harder to handle than the standard Feynman technique. O
in some cases do they allow a self-consistent form of clo
equation systems for skeleton diagrams. Goden’s proce
factorizing the average ofn operators, unlike Wick’s proce
dure, which plays a similar role in the usual diagram tec
nique, is ambiguous, and a successful choice of the hiera
of couplings largely depends on the theorist’s intuition~see,
for example, Ref. 22!.

For this reason, it is natural to attempt to express H
bard’s operators~and spin operators, which are a special ca
of these operators! as products of Fermi and Bose operato
and thus restore conditions for using the machinery of
Feynman and Matsubara techniques. Such attempts
been undertaken many times since the 1960s,10,23–25 up
through recent times.22,26–28 It is clear, however, that thes
procedures are by no means universal or unambigu
Moreover, each factorization leads to multiplication a
complication of vertices and emergence of local constrai
whose introduction is necessary for the preservation of lo
gauge invariance, which is a trait of the Hamiltonian in que
tion.

Additional problems arise due to attempts to descr
nonlocal spin-liquid RVB excitation. In this case, problem
arise on the level of the mean-field approximation for t
self-energy part of the one-particle propagator. The us
techniques of self-consistent perturbation theory break
local gauge invariance,11 and its restoration is quite a diffi
cult physical and mathematical problem.13,14

In this section we formulate a version of the diagra
technique integrating the two approaches mentioned ab
and apply it to Hamiltonians with local SU~2! symmetry.
With a view toward using this technique in the description
spin liquid in terms of Hamiltonian~1!, we start with the
simpler case of the Heisenberg Hamiltonian for spin 1/2 w
antiferromagnetic interaction:

H5h(
i

Si
z1J(

i
(

j

^nn& S Si–Sj2
1

4D ; ~2!

we then pass to a description of the Kondo lattice at h
temperaturesT . TK , for which the noncrossing approxi
mation ~NCA! applies, and the system can be treated a
periodic lattice of independent Kondo scatterers interact
via the RKKY mechanism.3

Let us introduce a pseudofermion representation10 for
spin operators:

S15 f ↑
1 f ↓ , S25 f ↓

1 f ↑ , Sz5
1

2
~ f ↑

1 f ↑2 f ↓
1 f ↓!. ~3!

These operators satisfy the local constraint condition

n5 f ↑
1 f ↑1 f ↓

1 f ↓51 ~4!

at each site. The first term in Eq.~2! describes Zeeman split
ting in an infinitesimal magnetic fieldh 5 gmBH, and the
antiferromagnetic sign of the exchange constantJ is taken
into account explicitly.
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The SU~2! invariance means that the spin operators
1 2 z na
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nis5nis~12ni2s!1nisni2s , ~9!

do-
ron

ole

per-

the

m

g to
r the
ng-
$S ,S ,S % can be expressed as arbitrary linear combi
tions of spin-fermions$ f ↑ , f ↓ , f ↑

1 , f ↓
1%:

Si
15~cosu f i↑

11sin u f i↓ !~cosu f i↓2sin u f i↑
1 !,

Si
25~cosu f i↓

12sin u f i↑!~cosu f i↑1sin u f i↓
1!, ~5!

Sz5
1

2
~ f i↑

1 f i↑2 f i↓
1 f i↓!.

In particular, for pseudofermion filling factors, we have co
plete particle–hole symmetry,

f is
1 f is5 f i2s f i2s

1 , ~6!

which directly follows from condition~4! or from Eqs.~5!
for u 5 0,p/2. Thus, Hamiltonian~2! can be expressed i
the pseudofermion representation as

H5H01H int52
h

2 (
ij s

s f is
1 f is1

J

2 (
ij s

f is1

1 f js1
f js2

1 f is2
.

~7!

The local constraint places significant limits on the fe
sibility of using standard diagrammatic techniques, or in a
case, makes more difficult practical description of the s
dynamics in the fermion representation, since the functio
space in which the spin and fermion operators act has fi
dimensionality. One of the most convenient techniques
including the spin kinetamics in the fermion representat
was suggested by Abrikosov.10 2S 1 1 spins~projections!
correspond to a localized spinSi , whereas in its description
in terms of pseudofermion operators 2(2S11) orthogonal
states emerge, in accordance with the filling numbers~0,1!
for all 2S 1 1 spin projections. In a specific case of sp
S 5 1/2, there are four fermion states:

u0&5u0,0&; u1&5u1,0&; u2&5u0,1&; u2&5u1,1& ~8!

and only two of them, namely statesu6&, correspond to
physical states of the spin operator. Abrikosov suggested
cribing energyl @ T to each state occupied by a pseud
fermion. Then the nonphysical stateu2& from set~8! is frozen
out after averaging owing to the additional fact
exp( 2 l/T) in the partition functionZ(T). In order to get
rid of the other nonphysical stateu0&, one must introduce an
additional factor (1/2) exp(l/T) to Z(T) and take the limit
l/T→` in averaging over spin states. As a result, physi
statesu6& become states with the lowest ‘‘energy’’, and th
final result is independent ofl. Abrikosov’s prescription ap-
plies to local spin states in the case of a one-impurity Ham
tonian ofs f-exchange. In a Kondo lattice it can be used on
in the limit of large spin with degeneracyN→`, for which
NCA becomes an asymptotically exact approximation,29 but
this technique cannot be used in describing spin-liquid c
relations.

The starting point of the proposed method is the w
known similarity between the Heisenberg and Hubb
Hamiltonians in the limit of strong interactionU in the case
of half-filled states. Let us express pseudofermion opera
in the form of sums,

f is
15 f is

1~12ni2s!1 f is
1ni2s ,
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and introduce Hubbard’s projection operators for pseu
fermions, as was done by Hubbard for the real elect
operators30:

Xi
s05 f is

1~12ni2s!, Xi
2s52s f i2s

1 nis ,

Xi
ss5nis~12ni2s!5nisni2s , Xi

225ni↑ni↓ ,

Xi
005~12ni↑!~12ni↓!, ~10!

Xi
s2s5 f is

1 f i2s5Xi
s2Xi

22s5Xi
s0Xi

02s .

These operators form a normalized basis for the group SU~4!
with the obvious completeness condition

(
m

Xi
mm51. ~11!

The second line of Eq.~9! can be rewritten in the form

nis5Xi
s0Xi

0s1Xi
s2Xi

2s . ~12!

As a result, Hamiltonian~2!, ~7! takes the form

H5H01H int ,

H052
h

2 (
is

sXi
ss1

U

2 (
i

~Xi
001Xi

22!, ~13!

H int5
J

2 (
ij s

~Xi
s2sXj

2ss2Xi
ssXj

2s2s!

5
J

2 (
ij ss8

f ij
sf ji

s8 .

Here

f ij
s5~sXi

22s1Xi
s0!~sXj

2s21Xj
0s!, ~14!

and the fictitious Hubbard repulsion parameterU for pseudo-
fermions is introduced so as to preserve the particle–h
symmetry of the Heisenberg Hamiltonian.

Instead of using diagram techniques for theX-operators
~see, for example, Refs. 19, 22, 31, and 32!, we try to remain
within the standard Feynman approach, but use the pro
ties of the projection operatorsXi

lm in explicit form. We take
for a basis of the diagram expansion the eigenstates of
HamiltonianH0 under the conditionU/T [ bU→`. As a
result, we have the reduced Hamiltonian

H̃5H̃01H int , H̃052
h

2 (
is

s f is
1 f is ~15!

with the partition functionẐ 5 Tr@exp( 2 bH̃)#, which
includes only physical statesus& 5u 6& from set ~8!. The
HamiltonianH0 reduces toH̃0 since the operatorsXi

ss and
f is

1 f is have identical matrix elements in the reduced~physi-
cal! space. Now we can useH̃ in the form ~15! as a zero-
approximation Hamiltonian for the Matsubara diagra
technique.2!

Selection of one of the two forms of Hamiltonian~13!
depends on which of the spin system states we are goin
describe. Whereas the most convenient representation fo
high-temperature paramagnetic phase or a state with lo
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it is natural to describe the RVB spin-liquid state in terms
operatorsf ij

s .
Let us first consider the temperature Green’s function

K ij
'~t!5^TtSi

1~t!Sj
2~0!&H̃ , ~16!

which describes elementary excitations in the stand
theory of magnetism~i t is the imaginary ‘‘time’’!. To
zeroth-order in the interaction, the function has the form

K ij
0~t!5

d ij

4
^Tt f i↑

1~t! f i↓~t! f i↓
1~0! f i↑~0!&H̃0

. ~17!

Averaging is performed with the partition functionZ
5 2 cosh(bh), b51/kT. In accordance with Wick’s theorem
this average can be presented in the form of a two-ferm
loop and reduces to the simple expression

K ij
0~t!5

d ij

4
e2htH ^ni↑~12ni↓!&H̃0

~t.0!

^ni↓~12ni↑!&H̃0
~t,0!

. ~18!

One can see that by virtue of Eq.~4!, fermion states are
generated in pairs, and the emergence of filling factors in
form of averages of projection operators^Xss&H̃0

@see Eq.
~10!# shows that spin operators do not drive the system fr
the space of ‘‘physical’’ statesu6&.

Thus, the limitU→` for effective Hamiltonian~13! is
equivalent to the limitl→` in Abrikosov’s procedure de
scribed above, which ‘‘freezes out’’ nonphysical pseudof
mion statesu0& and u2& without breaking the particle–hol
symmetry.

The perturbation theory series for the functionK' can
be constructed in accordance with the usual rules for ca
lating two-time Green’s functions. This procedure leads
Larkin’s equation34

K 5S1JSK . ~19!

HereS is the irreducible polarization operator, which is n
separable with respect to the interaction. In Sec. 5 we
use this version of the diagram technique to calculate
spin diffusion coefficient near the Ne´el point.
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consider as an example an RVB homogeneous spin liq
described by the correlator

L ij 5(
s

^f ij
sf ji

s&, ~20!

i.e., we use the second version ofH int in Eq. ~13!. Thus, the
nonphysical statesu0& and u2& are eliminated by the Hubbar
procedure, since each fermion creation event at each
involves a projection operation in accordance with Eq.~14!.
This makes exchange vertex~13! more complicated; it can
be described in the projection techniques by diagrams w
twelve tails, as is shown by Fig. 1.

The role of projectors is to automatically eliminate
state with an opposite projection in creating a fermion with
given spin projection, and this guarantees that the crea
operator acts on a state from the physical subspaceu6&. But,
although correlator~20! is diagonal in subspaceu6&, the non-
physical statesu0& and u2& manifest themselves as intermed
ate states in any attempt to describe the spin liquid in te
of fermion operators.

In Refs. 11 and 13 it was noted that introduction of
homogeneous RVB state in the mean-field approximatio16

violates the local gauge invariance due to constraint~4!, ~6!,
and long-wave fluctuations of gauge fields significan
change the character of RVB excitations in a tw
dimensional Heisenberg lattice~see also Refs. 14, 35, an
36!. In this paper, we do not consider the problem of lon
wave fluctuations in gauge fields. We are interested prima
in nonlocal high-temperature magnetic fluctuations, wh
are also related, however, to the violation of the constrai

As was shown in the fundamental study by Baskar
Zou and Anderson,16 the description of a uniform RVB stat
requires ‘‘anomalous’’ coupling between pseudofermions
different sites. It is clear that such a procedure drives
system beyond the physical spaceu6&. The gauge theory of
a spin liquid demonstrates that free propagation of a spi
is impossible. The complex shape of vertices in the proj
tion technique~Fig. 1! indicates the same thing. Nonetheles
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we start construction of our scheme with a demonstration of
a
o

rv

where

how far this technique applies in the mean-field approxim
tion; we then consider the possible effect of fluctuations
the mean-field solution.

Let us introduce an anomalous one-particle~one-
fermion! temperature Green’s function. In order to prese
particle–hole symmetry, let us express it in matrix form:

Ĝ ij s~t!52^TtX̂is~t!X̂js
1 ~0!&H̃, ~21!
th

s

h
nc

te
e

-
n

e

X̂is5S Xi
0s Xi

s0

sXi
2s2 sXi

22sD , X̂is
15S Xi

s0 sXi
22s

Xi
0s sXi

2s2D .

~22!

This Green’s function has the structure
Ĝ ij s~t!52S ^Tt(Xi
0s(t)Xj

s0(0)

1Xi
s0(t)Xj

0s(0))&

s^Tt(Xi
0s(t)Xj

22s(0)

1Xi
s0(t)Xj

2s2(0)&

s^Tt(Xi
2s2(t)Xj

s0(0)

1Xi
22s(t)Xj

20s(0)&
^Tt(Xi

2s2(t)Xj
22s(0)

1Xi
22s(t)Xj

2s2(0)&

D . ~23!

The zero~one-site! matrix Green’s function
g~aa!~v !5

1 1
. ~26!
n

-

e
ndi-
s,
ting

d

ĝis~t!52^TtX̂is~t!X̂is
1~0!&H̃0

~24!

is diagonal, and its elements are

gis
~11!~t !52^Tt~Xi

0s~t!Xi
s0~0!1Xi

s0~t!Xi
0s~0!!&0 ,

gis
~22!~t !52^Tt~Xi

2s2~t!Xi
22s~0!

1Xi
22s~t!Xi

2s2~0!!&0 .

As in the previous case, the averaging^...&0[^...&H̃0
leaves

the one-site Green’s function in the physical sector of
Fock space. In particular,

gis
~11!~t12t2!52^Xi

s0~t1!Xi
0s~t2!&0

52^Xi
ss&0 exp@2 ish~t12t2!/2#

3~t1.t2!,

gis
~11!~t12t2!5^Xi

s0~t2!Xi
0s~t1!&0

5^Xi
ss&0 exp@2 ish~t12t2!/2#~t2.t1!.

~25!

Unlike spin Green’s functions~17!, matrix elements of the
function ĝis(t) formally represent the three-fermion loop
containing one particle~spin up! and two hole~spin down!
propagators, or one hole and two particle propagators. T
function, however, can be simplified using the idempote
property of operatorb†b, conditions~4! and~6!, and Wick’s
theorem. By substituting the Hubbard operators in the in
action picture into Eq.~25!, we obtain expressions for th
elements of the one-site propagator,

gi↑
~11!5

1

2
e2htH 2^~12ni↓!&0 ~t.0!

^ni↓&0 ~t,0!
,

and a similar expression for the spin-down state.
One can easily check that the Green’s functionG is

(aa) is
periodic,G iis(t,0)52G iis(t11/T), so that by introduc-
ing the Matsubara frequenciesvn5(2n11)pT in the usual
manner, we obtain
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The mean-field approximation16 is based on the intro-
duction of anomalous averages^ f is

1 f js&. For the anomalous
matrix Green’s function~21!, we must introduce four com
ponents:

D i j s
11 5^Xi

s0~t!Xj
0s~t8→t!&,

D i j s
22 5^Xi

2s2~t!Xj
22s~t8→t!&,

D i j s
12 5^Xi

s0~t!Xj
2s2~t8→t!&,

D i j s
21 5^Xi

22s~t!Xj
0s~t8→t!&, ~27!

where D i j s
11 5D i j s

22 . Then one can easily check that th
anomalous Green’s function also satisfies a periodic co
tion like that in Eq.~21! on the inverse temperature. Thu
we can use the projection diagram technique in calcula
the anomalous averageD5(s^f ij

s&, which characterizes a
uniform RVB state. This ‘‘order parameter’’ can be derive
from the relation

D5Tr~ 1̂1 t̂1!Ĝ ij ~t→20!, ~28!

where lˆ and t̂1 are the Pauli matrices.
Let us rewrite Hubbard operators~10! in the particle–

hole representation,f i↑[ai , f i↓[bi
1 :

Xi
↑05ai

1bi
1bi , Xi

2↓5ai
1bibi

1 , Xi
↑↓5ai

1bi
1 ...

The mean-field approximation~28! corresponds to the fol-
lowing splitting of the interaction HamiltonianH int :

HMF5JD(
i

(
j

^nn&

~Yij
~h!1Yij

~p!!, ~29!

where

Yij
~p!5ai

1bi
1bibj

1bjaj1ai
1bibi

1bjbj
1aj1ai

1bibi
1bj

1bjaj

1ai
1bi

1bibjbj
1aj ,

Yij
~h!5biaiai

1ajaj
1bj

11biai
1aiaj

1ajbj
11biaiai

1aj
1ajbj

1
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In terms of perturbation theory, this approximation c
be described by the diagrams for the self-energy compo
Ŝij of Green’s function~23! shown in Fig. 2. The four dia-
grams correspond to the four elements ofŜ. The Dyson ma-
trix equation in this approximation is expressed by the d
grams in Fig. 3, in which double lines denote the one-s
matricesgis , the dashed line denotes the Heisenberg
change constant, and thick lines with two arrows denote
anomalous Green’s functionĜ ij s . The Dyson equation

Ĝ ij s~vn!5ĝis~vn!S d ij 1(
l

ŜilĜ lj s~vn! D ~30!

is Fourier transformed to~ash→0!

2ivnG ks
~ab!~ ivn!5dab1JDw~k!(

g
G ks

~gb!~ ivn!. ~31!

A solution of this equation system is

G ks
~11!~ ivn!5

1

2

ivn2ek/2

ivn~ ivn2ek!
,

G ks
~12!~ ivn!5

1

2

sek/2

ivn~ ivn2ek!
. ~32!

Here ek is the spinon dispersion relation in the mean-fie
approximation in the form

ek5JDw~k! ~33!

in the case of antiferromagnetic exchange only between n
est neighbors;w~k! is the corresponding form factor:

w~k!5(
l

~nn!

eik–l. ~34!

FIG. 2. Components ofŜ matrix for the one-particle Green’s functionG ij .

FIG. 3. ~a! Dyson equation and~b! self-energy part of the Green’s functio
G ij in the mean-field approximation.
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tain a self-consistent equation forD:

D5~ZN!21(
k

w~k!tanh
b@JDw~k!2m#

2
, ~35!

whereZ is the coordination number. The chemical potent
m is treated as a Lagrange multiplier when constraint~4! is
substituted into the Hamiltonian. This operation correspo
to substitution ofivn1m for ivn . As usual, the local con-
straint can be replaced with a global one in the mean-fi
approximation:

N21T(
k

(
vn

Tr~ 1̂1 t̂1!Ĝ k~ ivn!50. ~36!

By substituting Green’s function~32! into Eq. ~36!, we ob-
tain another self-consistency condition, which fixesm at the
mid-position of the spinon ‘‘band,’’ in accordance wit
particle–hole symmetry.

The ‘‘phase transition’’ temperatureT* at which a non-
trivial solution for D emerges is given by

T* 5
J

2
~ZN!21(

k
w2~k!, ~37!

which is usually derived in the mean-field approximati
using the functional integration technique~see, for example,
Refs. 6, 37, and 38!.

Thus, we have found that kinematic constraints on
pseudofermion representation of spin operators taken
account through Hubbard projection operators do not af
the mean-field solution for the RVB state as long as partic
hole symmetry is preserved at each step of the calculation
this respect, the situation is different from that in which t
same problem is solved by the Hubbard operator techni
for the t2J model with a finite density of holes,39 where this
symmetry is violated from the outset, since only doub
filled statesu2& are excluded. In Ref. 22 another symmetr
based approach to elimination of nonphysical states is s
gested, in which the ‘‘fermion’’ setu0&, u2& is replaced with a
unified ‘‘boson’’ vacuumuV&.

Although the projection technique does not contribu
any new features to the mean-field solution for the unifo
RVB liquid, it offers, in principle, new opportunities for tak
ing gauge fluctuations into account, which inevitably occ
in spinon propagation. Moreover, as will be shown in t
next section, in a three-dimensional Kondo lattice, spin l
uid is formed in the neighborhood of the antiferromagne
instability, because magnetic fluctuations are a decisive
tor for both the transition temperature to the RVB state a
the mechanism of this transition.

3. STABILIZATION OF SPIN LIQUID IN THE KONDO
LATTICE AT HIGH TEMPERATURES. MEAN-FIELD
APPROXIMATION

It is well known40 that in the three-dimensional Heisen
berg lattice the ground state energy of the RVB phase,ESL ,
is higher than the antiferromagnetic state energyEAFM . It
has also been shown, however, that in the Kondo lattice
scribed by the Hamiltonian~1!, spin-flip scattering processe
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magnetically ordered phase. Since antiferromagnetic an
spin-liquid correlations in thes f-exchange model are gov
erned by the same coupling constantJRKKY , the temperature
at which the spin liquid is formed is close to the point
magnetic instability,T* 2TN,TN , so that antiferromagnetic
correlations can significantly alter the character of a tran
tion to the RVB phase, as compared to the results obtaine
the mean-field approximation.

In order to describe formation of spin liquid in th
Kondo lattice, we take Hamiltonian~1! in the original form

Heff5(
ks

«kcks
1 cks1

1

4
Js f(

i
cis

1cis8 f is8
1 f is . ~38!

As mentioned in the Introduction, we operate in t
range of parametersa'ac of Doniach’s diagram,3 in which
all characteristic temperatures (TK;«Fexp(21/2a),
TN0;«Fa2, and T* , which is to be calculated! are of the
same order of magnitude, so that in constructing the
phase diagram one must take into account the mutual eff
of all three types of correlation—in particular, the change
the Néel temperature with respect toTN0 as given by simple
perturbation theory in the parametera.

As noted above, in this study we limit discussion to t
range of high temperaturesT.TK ,TN0 , in which the mag-
netic subsystem is a lattice of paramagnetic spins imme
in the Fermi sea of conductance electrons, and NCA app
to the one-site paramagnetics f-scattering, i.e., each spin lo
calized at a lattice site scatters conduction electrons inde
dently of other spins. As the temperature is reduced, b
Kondo scattering and correlations among lattice sites du
the indirect RKKY interaction are intensified.

The problem of competition between the indirect e
change among lattice sites and one-sites f-scattering has
been discussed in literature many times, largely in terms
the Kondo problem with two impurities. In particula
Varma41 analyzed the mutual influence of Kondo scatteri
and RKKY interaction at high temperatures by perturbat
theory and concluded that the mutual influence of these
processes is small, at least in the leading logarithmic
proximation ina ln(«F /T). In this section, we will show tha
in the Kondo lattice, the effect of spin-flip scattering on ma
netic correlations is a decisive factor for stabilization of t
RVB phase in the critical region of Doniach’s diagram
a;ac .

In describing the intersite magnetic interaction und
conditions of Kondo scattering in the noncrossing appro
mation ~NCA!, the effective vertex of the RKKY exchang
J̃ij (T,e) is determined by the diagram in Fig. 4a. In th
diagram, dashed lines denote electron Green’s functions,
the ingoing and outgoing lines correspond to pseudoferm
operators. The one-sites f-exchange verticesG include loops
corresponding to the leading logarithmic approximation
a ln(«F /T) for the Kondo problem3! ~Fig. 5!. As a result, the
effective interaction is given by

J̃ij ~T,«m!5P~R,«m!G2, ~39!

where«m52mpT, R5uRi2Rju.
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In the spirit of the logarithmic perturbation theory,10 the
argument of vertexG should contain only the highest inpu
frequency, which is determined in our case by energies
electronic Green’s functions included in the polarization lo
P(R,«m) in the integralĴij (T,«m) ~Eq. ~39!!. The polariza-
tion operator in the coordinate representation has the for

P~R,«m!5T(
n

D~2R,vn1«m!D~R,vn!. ~40!

Since all heavy-fermion systems are characterized by la
lattice constants, we use for electronic Green’s functio
D(R,vn) an expression asymptotic inpFR:

D~R,vn!52
pF

2pvFR
expS 2

uvnu
2«F

pFR

1 ipFR sign vnD , ~41!

so that the polarization operator takes the form

P~R,«m!5S pF

2pvFRD 2

T (
n52`

n5`

expS 2
uvnu
vF

R2
uvn1«mu

vF
R

1 ipFR@signvn1sign~vn1«m!# D . ~42!

In the static limit,

J̃R~T,0!5T(
n

D2~R,vn!G2~vn ,T!. ~43!

The temperature dependence in Eq.~43! is largely deter-
mined by one-site vertices, and in the polarization loop o
can use the condition 2pTR/v f!1 and change summation
over discrete frequencies to integration~see Appendix I!.
Then the exchange integral takes the form

FIG. 4. ~a! Effective vertex of renormalized RKKY interaction; self-energ
part of the one-particle Green’s function in the mean-field approximation~b!
for the Néel and~c! RVB phase.

FIG. 5. Parquet diagrams for effective vertexG.
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FIG. 6. Single-site diagrams describing Kondo screening
a localized spin.
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JR~T,0!52S 2pvFRD cos~2pFR!

3E
T→0

` d«

2p
expS 2

«

«F
pFRDG2~«,T!. ~44!

This equation transforms to the standard RKKY exchan
integral when modified vertices are replaced with the ‘‘bar
integrals,G→Js fV0 , whereV0 is the elementary cell vol-
ume:

JR
05~Js fV0!2P~R,0!5~Js fV0!2

mpF
4

p3

3Fcos~2pFR!

~2pFR!3 1OS 1

~2pFR!4G
[S Js f

2

«F
D ~pFa0!6

2p3 F~2pFR!. ~45!

Let us substitute intoJ̃R(T,0) the vertexG(«,T) calcu-
lated in the leading logarithmic approximation, in acco
dance with diagrams given in Fig. 5 with the input frequen
« satisfying the condition ln(«F /«̄)@1. For the characteristic
energy«̄@1, which determines integral~44! ~see Appendix
II !, we find that the exchange parameter can be approxim
by the function

J̃R~T,0!'eF

~pFa0!6

2p3 S Js f

«F
D 2

F~2pFR!

3S 112a ln
T

«F
D 2n

. ~46!

The exponentn in this function depends ona and the argu-
ment of the oscillating functionF(pFR) ~see the insert in
Fig. 11!. Thus, one can see that Kondo scattering has l
influence on the form and spatial periodicity of the indire
exchange integral forT.TK .41 But this integral can be
larger, and the larger the separationR between magnetic
f -ions, the greater the increase.

In calculating the polarization operator and RKKY int
gral ~46!, we assumed that the electron Fermi surface w
spherical. Note, however, that the exponentn in Eq. ~46! is
sensitive to the asymptotic behavior of the functi
F(2pFR), so that the role of Kondo processes in intens
cation of the exchange turns out to be important in the c
of a highly anisotropic Fermi surface. In the limiting case
a cylindrical Fermi surface,

F~2pFR!52Fsin~2pFR!

~2pFR!2 1OS 1

~2pFR!3D G ~47!
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integral J̃R(T,0) is larger in the case of a cylindrical Ferm
surface than in the case of a spherical surface.

Thus, the spin system can be described atT.TK by the
effective RKKY Hamiltonian with the vertex shown in Fig
4a in the nearest-neighbor approximation and under the
sumption that the RKKY nearest-neighbor coupling has
antiferromagnetic sign. In the mean-field approximation,
treat the problem of stabilization of the spin liquid as a co
parison between temperatures of transitions to the RVB s
@T* (a)# and to the antiferromagnetic state@TN(a)# under
conditions of sufficiently strong Kondo scatterin
a→ac020, and the stabilization criterion is the inequali
T* (a).TN(a). The functionTN(a) deviates from the qua
dratic function prescribed by the bare RKKY vertex. Alon
with the intensification of one-site vertices described by E
~46! and discussed above, there is a dynamic Kondo scre
ing of localized spins, which is the reason for the suppress
of antiferromagnetic order asa→ac0 .

In the mean-field approximation, the transition tempe
turesTN(a) and T* (a) can be derived from the exchang
vertex in Fig. 4a by closing spin-fermion lines, as shown
Figs. 4b and 4c, respectively. The first of these diagra
determines the molecular field for commensurate magn
ordering characterized by the antiferromagnetic vectorQ
such thatQ–Ri j 5p. The suppression of magnetic correl
tion by Kondo scattering is described by the vertexF(T) in
the diagram of Fig. 4b.42,43Summation of the set of logarith
mic diagrams, the first of which are shown in Fig. 6, yield

F~T!5122a ln
«F

T Y ln
T

TK
. ~48!

Although the functionF(T) deviates from this formula as
T→TK ,44 and complete screening occurs only atT50, the
suppression of magnetic correlations compensates for the
change intensification and thus reducesTN asa→ac0 .

The self-energy part of the one-site Green’s functionG ii
~Eq. ~21!!, corresponding to the diagram of Fig. 4b, is

SN~T!5l J̃~R,T!^Sz&T ~49!

~the factor l is determined by the lattice configuration!.
Hence we derive for the mean spin

^Sz&T5
1

2
~^ai

1ai&1^bi
1bi&21!

a self-consistent equation

^Sz&T5
1

2
F~T!tanh

SN~T!

2T
, ~50!
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which is, naturally, the standard Brillouin equation f
Weiss’ molecular field taking Kondo screening into accou

The mean-field equation forD ~Eq. ~28!! is determined
by the self-energy part of the anomalous Green’s funct
Ĝij (t) ~Eq. ~23!! shown in Fig. 4c. This diagram can b
substituted into the Dyson equation~Fig. 3!, which in this
case takes the form

Ĝ~p,vn!5g0~vn!F122T(
m

(
q

J̃~p2q,vn2vm!

3Ĝ~q,vm!Ĝ~p,vn!G . ~51!

Hereg0(vn) is the zero one-site Green’s function with com
ponents~26!, and J̃(p2q,vn) is a Fourier transform of the
indirect exchange integral~39!, which in the nearest-
neighbor approximation takes the form

J̃~q,«m!5 (
l50,̂ l&nn

J̃R~«m!e2 iqr5 J̃0~«m!1 J̃R~«m!w~q!.

~52!

The one-site integralJ̃0(T,0) is estimated asa2T ln(«F /T).
Since this integral contains an additional small factora at
T;T* , as compared to the intersite integral~46!, it can be
omitted.

By neglecting, as usual, the frequency dependence o
RKKY interaction, we obtain the mean-field equation~35!
for D with the coupling constantJ5 J̃R(T,0). As follows
from the configuration of the anomalous self-energy p
~Fig. 4c!, the screening effect responsible for suppression
local magnetic moments does not affect the mean-field
rameterD, which can be naturally attributed to the singl
nature of the RVB-coupling. The Kondo ‘‘screening’’ radiu
can be estimated by high-temperature perturbation theor
be \vF/2TK , which is much larger than the correlation r
dius of the singlet RVB pair, since electron scattering
these pairs is inefficient.

Calculations of the temperaturesT* and TN by Eqs.
~35!, ~46!, ~49!, and ~50! are given in Fig. 7~see also Ref.
18!. This graph shows that asa→ac0 , these temperature
become closer, a new critical pointac emerges in Doniach’s
diagram, on the right of which the RVB phase is stable w

FIG. 7. Generalized Doniach diagram taking the RVB phase into acco
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takes place in the logarithmic neighborhood of the Kon
temperature. A calculation ofTN for a.ac makes no sense
because magnetic ordering in this region should follow
other scenario.

Thus, we conclude that stabilization of a homogeneo
RVB spin liquid in a three-dimensional Kondo lattice ca
occur only near the magnetic instability point under con
tions of sufficiently strong Kondo screening of localize
spins by conduction electrons. This result, obtained in
mean-field approximation, indicates that stabilization of t
spin-liquid phase is incompatible with formation of Kond
singlet states characterized by anomalous avera
^ci

1 f i&,
6,45 since anomalous Kondo scattering is frozen

T'T* .TK . This resolves Nozie`res’ well-known paradox46

about the impossibility of screening all spins in the Kon
lattice by electrons from a thin layer of widthTK near the
Fermi surface. In the scheme proposed above, the scree
vanishes at sufficiently high temperatures aboveTK , the
Kondo temperature itself is not a singular point of the theo
renormalization of thes f-exchange integral is frozen a
about J̃(T* ), and atT,TK , T* electrons interact not with
localized spins, but with spin-liquid excitations of the spin
type ~see also Ref. 47!.

In addition to the disadvantages related to violation
local gauge invariance, however, the mean-field approxim
tion in the case of RVB coupling has another flaw, namely
does not take into account the proximity of the spin syst
to the antifferomagnetic instability. In the following section
we discuss possible consequences of this proximity for
RVB state, first in the self-consistent field approximatio
then beyond this model.

4. EFFECT OF SPIN FLUCTUATIONS AND MAGNETIC
ANISOTROPY ON RVB PHASE STABILIZATION

In the previous section, we determined that antifer
magnetic fluctuations inevitably turn out to be strong in
RVB spin liquid in the three-dimensional Kondo lattice
high temperaturesT;T* , and can lead, in principle, to mag
netic ordering atT!T* . Leaving this issue for subseque
studies, let us consider now the effect of spin fluctuations
features of the transition to the spin-liquid state in the me
field approximation, but using its modification obtaine
through the projection technique, in which the order para
eter is defined by Eq.~28!. The diagram technique usin
Hubbard operators and developed in Sec. 2 allows us to
into consideration long-wave fluctuations of gauge fields d
to the U~1! noninvariance of the RVB order paramete
Terms that take the phase of functionD into account can be
introduced into the effective Hamiltonian in standa
fashion.13,14 It is known that long-wave fluctuations in cal
bration fields do not lead to divergences destabilizing R
averages in three-dimensional systems. Therefore, the in
duction of such fluctuations reduces to the usual Fermi-liq
renormalizations with due account of the particle–hole sy
metry condition. In two-dimensional Heisenberg lattice
however, fluctuations are important and must be taken
consideration.13,14 In what follows, we do not discuss th

t.
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FIG. 8. Self-energy part for the anoma
lous propagatorG ij , including the con-
tribution of critical fluctuations in the
mean-field approximation.
issue of long-wave fluctuations in gauge fields, and our
ed

he
la

m
th
-

n

a

n’
de
an
in
ow
rg

th
8

tio

K ij
6~t→0!5^Tt aj

1~t10!bj
1~t10!bi~0!ai~0!&

le
-

ile

se

lds

e

of
analysis is limited to the mean-field approximation in a fix
calibration.

Having expressed the mean-field Hamiltonian in t
form of Eq. ~29!, we considered in the subsequent calcu
tions additional operators inYij

(p,h) as purely static projection
operators, eliminating nonphysical states in thermodyna
averages. We now consider the fluctuation component of
‘‘kinematic’’ interaction by transforming the effective mean
field spinon Hamiltonian for the Kondo lattice as follows:

HMF
~RKKY !5 J̃D(

ij s
f ij

s[ J̃D(
ij

~ai
1K ijaj2ajK ji

1ai
1

1biK ij
1bj

12bj
1K jibi!. ~53!

HereJ̃ is the renormalized constant of the RKKY interactio
given by Eq.~46!,

K ij 5Si
2Sj

12Si
zSj

z1
1

4
,

and K ij
15K ij . In the vicinity of the magnetic instability

point, it is natural to consider operatorK ij as an operator
describing critical excitations due to spinon propagation
temperatures close toTN .

In order to obtain an expression for the spinon Gree
function corresponding to this approximation, we reconsi
the definition of its self-energy part. In the standard me
field theory ~Fig. 3!, projection operators were included
the static approximation. The diagrams in Fig. 8 show h
the diagonal and off-diagonal components of the self-ene
part of the Green’s functionG ij , including transverse and
longitudinal spin correlators, can be constructed from
vertices shown in Fig. 1. The lines with two arrows in Fig.
denote anomalous propagators

gij
↑52^Tt ai~t!aj

1~t8!&,

gij
↓52^Ttbi~t!bj

1~t8!&, ~54!

and wavy lines denote transverse and longitudinal correla
functions
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5^TtSj
1~t10!Si

2~0!&,

K ij
zz~t→0!5^Tt bj

1~t10!bj~t10!bi
1~0!bi~0!&

5
1

4
2^TtSj

z~t10!Si
z~0!&. ~55!

Unlike the fully anomalous Green’s function~23!, the
anomalous functions~54! are one-particle propagators, whi
intersite spin correlators~55! are formed from projection op
erators. Now the sum of diagonal elements

S ij ↑
~d!5S ij ↑

~11!1S ij ↑
~22!

in Eq. ~28! is determined by the diagrams in Fig. 8a, wh
the contribution of off-diagonal elements

S ij ↑
~nd!5S ij ↑

~12!1S ij ↑
~21!

corresponds to the diagrams in Fig. 8b. In deriving the
expressions, we have used definition~3! and condition~6!.
Similar diagrams can be obtained forS ij ↓ . Summation of all
these contributions in the mean-field approximation yie
the effective Hamiltonian~53!.

In the critical regionTN,T,T* , the main contribution
to spin correlators~53! is due to long-wave excitations with
k→0 and short-wave excitations withk→Q ~see, for ex-
ample, Ref. 48 and Sec. 5!. The behavior of the respons
function K(k) in the long-wave~hydrodynamic! limit k→0
is determined by fluctuations of the total magnetization
sublattices~which is zero in antiferromagnetic systems! and
is diffusive in nature:

KR~k,v!5K0~k!
iDk2

v1 iDk2
, ~56!

where

K0~k!5K ~k,v50!5
x0

t1@12J~k!/J~Q!#

'
1

2
x0~TN!,
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J~k!5J eikg, x ~T!5
S~S11!

, t5
T2TN
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a
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s
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n

i
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r

op
r
r

cu
y

D 5
1

f p,
T

,g tanh
ẽ p

u~T/TN ,g!
~63!

ctor
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y
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f
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(̂
g&

0 3T TN
~57!

~in Eq. ~56! we have passed to the retarded Green’s func
for real frequencyv!.

Near the antiferromagnetic vectorQ, the response func
tion behavior is relaxation-like:

KR~q,v!5
1

2 iv/Gx01K0
21~q!

, q5k2Q, ~58!

where

K0~q!5K ~q,v50!5
x0

t1~ql0!2 ~59!

is the Ornstein–Zernike static correlation function, andl 0 is
the elementary excitation mean free path, which is com
rable to the lattice constant.

In the mean-field approximation, we ignore the retard
tion of the RKKY interaction, and the diagrams in Fig.
yield for the self-energy

ẽk5S~k!52J̃T2 (
n,mq

(
s

w~k2q!gk~ ivn!K q
s~ i«m!

' J̃DS w~k!

2
12T(

q
w~k2q!K0~q! D . ~60!

Here s is the polarization index, while the anomalou
Green’s functiongk is expressed asgk( ivn)5( ivn2 ẽk)

21.
At high temperatures, we retain only the term with«m50 in
the sum over even Matsubara frequencies; then the
Green’s functionK s(q,0) in Fig. 8 has the same form i
both the hydrodynamic and critical regions,48 so that the
main contribution to the spinon spectrum renormalization
due to the static susceptibilityK0(q) ~Eq. ~59!!.

The order parameterD defined by Eq.~28! and corre-
sponding to the approximation of Eq.~53! and diagrams of
Fig. 8 is given by

D5
1

z (
pq

w~p2q!F1

2
dq,012TK0~q!G tanh

ẽp

2T
. ~61!

Self-consistent equations~35! and ~61! have been de-
rived for the simplest case of isotropic exchange, which
generally speaking, never realized in Kondo lattices. The
fore, before analyzing the effect of spin fluctuations onT* ,
we generalize the mean-field theory to the case of anisotr
exchange. Let us introduce an exchange integ
Jij 5$Ji ,J'%, whereJi andJ' are the coupling constants fo
nearest neighbors in the basal plane and in the perpendi
direction, respectively. The degree of exchange anisotrop
measured by the parameterg5J' /Ji . Now, instead of
Hamiltonian ~29! or ~53!, we must write the anisotropic
mean-field Hamiltonian

HMF5(
i,r'

J'D'Yi,i1r'
1(

i,r i

JiD iYi,i1r i
. ~62!

Here the anomalous averages^Yi,i1ru
&, whereu5',i , are

derived from the equation system
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with the dispersion relation

ẽ p
u~T/TN ,g!5JuDufu~p,T/TN ,g!. ~64!

The structure factorfu(p,T/TN ,g) renormalized by spin
fluctuations can be expressed in terms of a structure fa
wu(p) like that in Eq.~33!, where summation over neare
neighborsl is performed only in the basal plane (g,1) or in
the perpendicular direction (g̃5g21,1):

fuS p,
T

TN
,g D5

1

2
wu~p!12T(

q
wu~p2q!K0~q!. ~65!

Indexg on the left-hand side of Eq.~65! is due to the aniso-
tropic nature of correlatorK0(q). Thus, the character of th
transition to the spin-liquid state is determined by the deg
of anisotropy: in the case ofg,1 spin-liquid correlations
emerge first in the basal plane, and ifg.1 in thez-direction.
At lower temperatures, the spin liquid naturally takes
three-dimensional properties, given thatg Þ (0,̀ ).

The transition temperature to the spin-liquid state, wh
spin fluctuations are taken into account, is determined
solving the equation

Tu* 5
1

2
max$Ji ,J'%uuS Tu*

TN
,g D , ~66!

where

uuS Tu*

TN
,g D 5~zuN!21(

p
fu

2S p,
T

TN
,g D , ~67!

zi is the coordination number in the basal plane, andz'52.
In estimating the role of spin fluctuations for establishi

the spin-liquid regime, it is convenient to introduce the te
perature

Tu*
~0!5

1

2
max$Ji ,J'%uu

~0! ~68!

of the transition to the RVB state in the anisotropic latti
without taking spin fluctuations into account. In this case

uu
~0!5~zuN!21(

p
wu

2~p!. ~69!

Then the condition that the transition occurs by virtue of t
spin-fluctuation mechanism is

Yu~g,Tu*
~0!/TN!5uu~Tu*

~0!/TN ,g!/uu
~0!.1. ~70!

The parameterYu(g) (Yu(g̃)) for a simple cubic lattice is
calculated in Appendix III. Critical values of the anisotrop
parametersg1,2 at which the spin-liquid state stabilizes i
almost one-dimensional and almost two-dimensional m
netic lattices are given for the caseTu*

(0)/TN51 in Fig. 9 for
different values oft. It is clear that only in a strongly aniso
tropic situation, almost one- or two-dimensional~see Eqs.
~A.III.7 ! and ~A.III.8 !! spin correlations help formation o
the spin liquid, and in the anisotropic case, inclusion of a
tiferromagnetic fluctuations in the mean-field approximati
leads to suppression of the spin-liquid phase.
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The analysis in this section once again indicates that
mean-field approximation is insufficient for the descripti
of the spin liquid. In particular, even the diagrams of Fig
indicate that the static approximation, generally speak
does not apply to the critical region, since antiferromagne
fluctuations define their own time and energy scales, wh
determine the real character of transition from the param
netic state to the spin-liquid state.

5. CRITICAL ANTIFERROMAGNETIC FLUCTUATIONS AND
SPIN DIFFUSION

As mentioned in Sec. 4, in antiferromagnets critical flu
tuations have differing properties in the long-wave (k→0)
and short-wave (k→Q) regions, and the spin response fun
tion in these regions takes the form of Eqs.~56! and ~58!,
respectively. The critical dynamics of antiferromagnets
usually analyzed using renormalization-group techniques
plied to phenomenological models.49,50 Chubukov48 calcu-
lated the dynamic susceptibility of a two-dimensional an
ferromagnet in the diffusion and relaxation regions usin
diagram technique in the Schwinger boson representa
We investigate the dynamic susceptibility as a function
frequency and momentum in the thee-dimensional confi
ration using the pseudofermion technique.

In order to calculate the spin diffusion factorD and the
relaxation constantG, we need to know, in addition to th
spin correlators defined by the Larkin equation~19!, the low-
frequency behavior of the current correlator:

K
ṠṠ

ab
~k,t!5dab (

k1k2

V~k,p1!V~2k,2p2!

3^Tt~Sp11k/2
m S2p11k/2

r !t~S2p22k/2
m Sp22k/2

r !0&,

~71!

where

V~k,p!5J~k1p/2!2J~2k1p/2!.

FIG. 9. ParameterY describing the effect of critical spin fluctuations on th
transition temperature to the RVB phase for the quasi-one-dimensi
(1D) and quasi-two-dimensional (2D) Kondo lattices. Parametert charac-
terizes the proximity to the antiferromagnetic instability. The RVB st
emerges atg,g1 and g̃,g̃2 in the cases of axial and plane magne
anisotropy, respectively.
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There is an exact solution for the Fourier transform of co
elator KṠṠ continued to the upper half-plane expressed
terms of irreducible~noncuttable along the interaction line!
self-energy parts of the spin and current correlation fu
tions:

K
ṠṠ

R
~v!5S

ṠṠ

R
1v2

SSS
R

V SSS
R

12SSS
R

V
. ~72!

HereV 5(SR)212(K0)21 is the vertex part determined b
the static response in the critical region.19,51

Using the Kramers–Kronig dispersion relations for r
tarded and advanced correlation functions, and the ana
properties of irreducible self-energy parts, one can der
from Eqs.~19! and ~72! the expression

KSS
R ~v!5K0

Gk,v

2 iv1Gk,v
, ~73!

which holds as bothk→0 andk→Q.
The spin correlation functions can be expressed in te

of the pseudofermion Green’s functions. For example,
expression for the one-site susceptibility has the form

K i
'~«m!5T(

m
G ii~vn1«m!G ii~vn!, ~74!

~see Eq.~16!!. HereG ii(vn) is a Fourier component of the
pseudofermion Green’s functionG ii(t)5^Tt f i(t) f i

†(0)&.
Since nonphysical states do not appear when calcula
single-site averages forS51/2, there is no need to introduc
projection operators. AsT→TN , scattering by the relaxation
mode contributes a component described by the diagram
Fig. 10 to the self-energy part of the Green’s functi
S(vn). Unlike the diagram of Fig. 8, here solid lines corr
spond to one-site propagatorsG ii , and points to exchange
verticesJ̃(q). The wavy line in this diagram corresponds
the spin Green’s function~16! determined by the Larkin
equation~19!. In the absence of spin-liquid correlations, l
us substitute into the self-energy partS(vn) of the pseudo-
fermion Green’s function the ‘‘bare’’ functiongis from Eq.
~26! and a spin functionK («m ,q) in the form of a relaxator:

S~vn!5 J̃2T(
m

N21(
q

w~q!2
1

i ~«m2vn!

Gx0~T!

u«mu1b~q!
,

~75!
whereb(q)5G@t1(ql0)2#, andG should be calculated in
dependently using the Dyson and Larkin equations. By c
culating the sum over frequencies in Eq.~75! and continuing
it analytically to the complexz plane, we obtain the follow-
ing equation for poles of the pseudofermion Green’s fu
tion:

z2S~z!50,

al

FIG. 10. Self-energy part of the Green’s functionG ii including the contri-
bution of critical fluctuations in the Born approximation.
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The projection diagram technique suggested in the paper
il-

do-
ard

an-
y

e to
ing
tic
er-

ues
at

hy-

v,

up-
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rch

a

mi
(
q p z21bq

2 F S 2pTD S 2pTD
2

pT

bq
1

ipT

z G , ~76!

where A5Gx0(T), and c(y) is the digamma function
Hence, it is clear that the pseudofermion Green’s function
this approximation isG ii

R(v);@v1 iG(T)#21. By substitut-
ing this into Eq.~74!, we find the one-site susceptibility

K i
R5

x̄0

12 iv/G
, ~77!

which is, in turn, can be substituted into the Larkin equat
~which also includes, generally speaking, vert
corrections48!, and thus the equation system forG and l 0 is
closed.

The spin-liquid effects on the behavior of the spin co
relation functions in the critical region can be accounted
by introducing anomalous intersite contributions intoS~v!
~Fig. 10!. Nonlocal fermion correlations lead to emergen
of a new characteristic length characterizing short-range
der, and change the temperature dependence of the static
susceptibility and dynamic response functions. As a res
we have changes in the scaling behavior and in the freque
and momentum dependence of the spin susceptibility.

The spin diffusion factor is also determined by the se
energy part of the current correlator:51

D5 lim
k→0,v→0

1

k2

ImS
ṠṠ

R
~k,v!

v
K0

21~k!. ~78!

Since the behavior of the current correlator is fully det
mined by relaxation processes, effects of nonlocal spin c
relations should also change scaling characteristics of
spin susceptibility in the hydrodynamic region.

The calculations described in this section are not con
ered a complete description of critical phenomena in anti
romagnets. These are instead illustrations given with the
lowing aims: first, to demonstrate applicability of th
suggested diagram technique to traditional problems of
theory of magnetic phase transition and, second, to out
feasible methods for taking into account the effect of sp
liquid correlations on antiferromagnetic fluctuations in t
critical region.

6. CONCLUSIONS

In this paper, we have demonstrated that the spin-liq
state in the Kondo lattice can be more stable than the Ko
singlet state, owing to the same processes as those res
sible for Kondo screening in the case of sufficiently stro
antiferromagnetics f-exchange. This rather paradoxical r
sult can be explained by the fact that strong competit
between Kondo scattering and spin-liquid correlations occ
at temperatures near the Ne´el point. Since all correlation ef
fects at such temperatures have the same order of magni
the simple mean-field approximation cannot be used in
scribing the spin subsystem in a three-dimensional Ko
lattice.
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and based on the similarity between the Hubbard Ham
tonian for electrons and Heisenberg Hamiltonian for pseu
fermions allows one, in principle, to go beyond the stand
mean-field model of the homogeneous RVB phase.6,16 At-
tempts to include antiferromagnetic fluctuations in the me
field approximation~Sec. 4! do not produce any trustworth
results. Preliminary analysis, however, indicates52 that the
diagram technique suggested in the paper may allow on
manage without the mean-field approximation in describ
effects which occur in the region of critical antiferromagne
fluctuations and devise a more realistic scenario of em
gence of the spin liquid in the Kondo lattice.

The investigation of spin diffusion near the Ne´el point
reported in Section 5 indicates that the diagram techniq
used in describing critical antiferromagnetic correlations
high temperatures may yield new physical results in the
drodynamic region.

The authors are indebted to Yu. Kagan, N. V. Prokof’e
G. G. Khaliullin, D. E. Khmel’nitski�, and D. I. Khomski� for
helpful discussions and critical remarks. This work was s
ported by the Russian Fund for Fundamental Resea
~Project 95-02-04250a!, INTAS ~Project 93-2834!, and
Netherlands Organization for Support of Scientific Resea
~NWO, Project 07-30-002!.

APPENDIX I

In calculating the polarization operatorP(R) ~Eq. ~40!!,
we use the asymptotic form of the Green’s function~41!.
Substituting it into Eq.~42!, we obtain the expression for
spherical Fermi surface:

P~R,«m!5TS m

2pRD 2

expS 2
2u«mu

v
RD

3
cos~2pFR1 i«mR/v !

sinh~2pTR/v !
1TS m

2pRD 2

3expS 2
u«mu

v
RD F u«mu

2pT
1

sinh~ u«muR/v !

sinh~2pTR/v !

3expS 2
u«mu

v
R12ipFR sign «mD G . ~AI.1!

In the static limit, it reduces to

P~R,0!5TS m

2pRD 2 cos~2pFR!

sinh~2pTR/v !

5
mpF

4

8p3

cos~2pFR!

~pFR!3 F12
p2

6 S T

«F
pFRD 2

1 . . . G ,
~AI.2!

hence we have Eq.~45! at T50.
In the case of a quasi-two-dimensional cylindrical Fer

surface

g~R,z,vn!5E d3p

~2p!3

1

ivn2j~p!
exp~ ip–R1 ipzz!
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5E
2pz0

2p
eipzzE

~2p!2 ivn2j~p!
eip–R,

g~R,z,vn!5
sin~pz0z!

pz
G~R,vn!. ~AI.3!

For pz0@pF the effective RKKY interaction is independen
of pz0 ,

JRKKY~R!5S J

ñ0
D 2

P~R,0!5S J

ñ0
D 2E dv

2p
g2~R,v!

5S J

n0
D 2E dv

2p
G2~R,v!.

~AI.4!

Hereñ054ppF
2pz0 /(2p)35pz0pF

2/2p25pz0n0 /p, n05pF
2/

2p is the two-dimensional density of electronic states, a
G(R,vn) is the two-dimensional Green’s function

G~R,vn!5E pdpdw

~2p!2

1

ivn2j~p!
exp~ ipR cosw!.

~AI.5!

Let us use the integral representation of the Bessel func

J0~z!5
1

2p E
0

2p

dw exp~ iz cosw! ~AI.6!

in the asymptotic limit for largeuzu:

J0~z!'A 2

zp
cosS z2

p

4 D . ~AI.7!

Then we have

G~R,vn!52 i sign vn

m

A2ppFR
expS 2

uvnu
2«F

pFR

1 i S pFR2
p

4 D sign vnD . ~AI.8!

Substituting this expression into Eq.~AI.4!, we obtain

P~R,«m!52T
m2

2ppFR
expS 2

2u«mu
v

RD
3

sin~2pFR1 i«mR/v !

sinh~2pTR/v !
2T

m2

2ppFR

3expS 2
u«mu

v
RD H u«mu

2pT

2
sinh~ u«muR/v !

sinh~2pTR/v !
expF2

u«mu
v

R12i

3S pFR2
p

4 D sign «mG J . ~AI.9!

In the low-temperature limit this expression becomes

P~R,0!52T
m2

2ppFR

sin~2pFR!

sinh~2pTR/v !
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n

52
mpF

2

4p2

sin~2pFR!

~pFR!2 F12
p2

6 S T

«F
pFRD 2

1 . . . G ,
~AI.10!

and atT50 to Eq.~47!.

APPENDIX II

Intensification of the RKKY interaction due to Kond
renormalization of the single-sites f-exchange vertex, which
is taken into account in the logarithmic approximation,

G~«,a!5
1

~112a ln~«/«F!!2 , ~AII.1!

is described by the expression

f S pFR,a,
T

«F
D5E

T/«F

` exp~2pFRx!dx

~112a ln~x!!2 . ~AII.2!

The temperature dependence of this integral is determine
both Doniach’s parametera and the separation betwee
neighboring Kondo centers~parameterpFR!.

If we neglect logarithmic renormalization~AII.1!, the
integral in ~A.II.2! equals 1/pFR for T!«F/kB , and the in-
tegral in ~44! reduces to the usual RKKY formula~45!.
When Kondo processes are taken into account, the functif
defined by Eq.~A.II.2! can be approximated in the temper
ture range of interest,@TK,3TK#, by the expression

f S pFR,a,
T

«F
D'

1

pFR

1

~122a ln~T/«F!!n~pFR,a! ,

~AII.3!

where the exponentn5n(pFR,a) is independent of tem-
perature. As a result, the high-temperature behavior of
RKKY interaction is determined by the functio
f̃ (pFR,a,T/«F)5 f (pFR,a,T/«F)pFR, which can be ap-
proximated as

f̃ S pFR,a,
T

«F
D'

1

~112a ln~T/«F!!n~pFR,a! . ~AII.4!

Figure 11 shows the temperature dependence of the
act function f̃ (pFR55.0,a50.09) calculated numerically
~solid line! and the approximate function
f̃ (pFR50.5,a50.09) ~dotted line! in the temperature rang

FIG. 11. Numerical values of integralf̃ (pFR) ~solid line! and of the ap-
proximating functionf (pFR) ~see text!.
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function ~AII.4! is shown in the insert as a function ofpFR
in the range 2,pFR,8 for several values ofa in the inter-
val 0.04,a,0.165. The exponent was determined using
least-square fit in the temperature range 1.2TK,T,3TK .

APPENDIX III

In this Appendix, we calculate the parameterY defined
by Eq. ~70!, which characterizes the effect of spin corre
tions on the transition temperature to the RVB phase fo
simple cubic lattice with anisotropic RKKY interaction du
for example, to a nonspherical Fermi surface. Let us in
duceJi[Jx5Jy and J'[Jz . Then we must substitute int
Eq. ~57! for the spin correlatorK0(q,g) the parameter

j q[Jq /uJQu52 j i~w i1gw'!, ~AIII.1 !

where w i(q)52(cosqx1cosqy), w'(q)52 cosqz, and
j i5Ji /JQ (a51). To calculate sums in Eq.~65! like

T(
q

wu~p2q!K0~q,g!5
S~S11!T

6TNj 0
(

q

wu~p2q!

T/TNj 02 j q / j 0
,

~AIII.2 !

we use the integral representation for the spin correlator

K0~q,g!5
S~S11! j q

6TNj 0
E

0

`

dt expH 2S T

TNj 0
2

j q

j 0
D tJ .

~AIII.3 !

When the interaction in the basal plane is dominant (g,1),
the spectrum of spin-liquid excitations has the form

ẽ p
i ~T/TN,g!5

1

2
JiD iF12~21g!

T

TN
A~g,T/TN!Gw i~q!,

~AIII.4 !

where the functionA(g,T/TN) can be expressed in terms
integrals of Bessel functions:

A~g,t!5E
0

`

dt exp$2~21g!~11t!t%I 1~ t !I 0~ t !I 0~gt !.

~AIII.5 !

Given thatu i
(0)5u'

(0)51 for the simple cubic lattice, we ob
tain

Y i~g,Tu*
~0!/TN!5@12~21g!~11t!A~g,t!#2/4. ~AIII.6 !

When the interaction perpendicular to the basal plan
dominant (g̃,1), we have instead of Eqs.~A.III.4 !–
~A.III.6 !

ẽ p
'S T

TN
,g D5J'D'F12~112g̃ !

T

TN
ÃS g,

T

TN
D Gcospz ,

~AIII.4 8!

Ã~ g̃,t!5E
0

`

dt exp$2~112g̃ !~11t!t%I 1~ t !I 0
2~ g̃t !,

~AIII.5 8!

Y'~ g̃,Tu*
~0!/TN!5@12~112g̃ !~11t!Ã~ g̃,t!#2/4.

~AIII.6 8!
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A~g,t! ug,t→0
}2 ln max~g,t!,

Ã~ g̃,t! u g̃ ,t→0
}@max~ g̃,t!#21/2,

we obtain for the neighborhood ofTN in the case of strong
anisotropy

Y i~g,Tu*
~0!/TN!}2 ln max~g,t!, ~AIII.7 !

Y'~ g̃,Tu*
~0!/TN!}@max~ g̃,t!#21/2, ~AIII.8 !

and as a result, strong spin fluctuations stabilize the s
liquid.

1!Preliminary results of this study were given in the short note.
2!A procedure similar to that suggested below was described in Ref. 3

the cases of the Anderson impurity and Anderson lattice. But since
Anderson Hamiltonian, unlike spin Hamiltonians~1! and ~2!, does not
have local SU~2! symmetry, and the requirement of exact particle-ho
symmetry is not imposed, there are many differences between formula
of rules of the diagram techniques.

3!Since in the caseS51/2 for one-site processes the constraint condition
satisfied automatically,10 it is unnecessary to introduce projection oper
tors.
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Magnetic properties of the new organic superconductor l-(BETS)2GaCl4

d

A. É. Primenko and V. D. Kuznetsov

L. D. Mendeleev Chemical-Technological University, 125820 Moscow, Russia

N. D. Kushch and É. B. Yakubski 
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Zh. Éksp. Teor. Fiz.112, 760–762~August 1997!

This papr discusses the results of the first investigation of the magnetic properties of the organic
superconductorl-~BETS!2GaCl4. It is shown that the transition to the superconducting
state begins atTc'7 K, which is considerably lower than the valueTc'10 K determined from
resistive measurements. The estimated value of the critical current density turns out to be
two orders of magnitude lower than in superconductors of the familyk-(ET)2X. © 1997
American Institute of Physics.@S1063-7761~97!02608-5#
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The current interest in investigating organic superc
ductors based on cation-radical salts remains strong,
both to the unusual physical properties of these quasi-t
dimensional systems and the fact that the study of quasi-t
dimensional systems is an important route to understan
the physical properties of high-temperature superconduc

Although the recently synthesized organic superc
ductorl-~BETS!2GaCl4 has been studied intensely, its ma
netic properties have not yet been investigated. Hence, m
surements of the temperature and field dependence o
magnetic moment of single crystals of this superconduc
are of particular interest.

2. EXPERIMENTAL METHODS

Single crystals of the organic superconductor were s
thesized by the standard electrochemical techniques
scribed in Ref. 1. The single crystals consisted of thin fil
with typical dimensions 0.131.030.04 mm3 ~crystal 1! and
0.731.330.04 mm3 ~crystal 2!. Crystal 1 consisted of a
single perfect crystal, while crystal 2 consisted of seve
single crystals grown together along the plane AC~which we
will refer to as multicrystals!. This gives us the flexibility of
comparing measurements made on a multicrystal and o
single crystal, thereby allowing us to estimate the influen
of growth boundaries on the magnetic properties. In light
the extreme brittleness ofl-~BETS!2GaCl4 single crystals,
we used slow cooling from room temperature and faste
the crystals by means of Ramsay paste. The crystals w
placed in quartz ampules, which gave a negligibly small c
tribution to the measured response, and the ampules w
then evacuated and sealed off. Then an atmosphere of he
was generated within the ampules by diffusion through
walls; this atmosphere was necessary for heat exchang
order to measure the magnetic moments we used a SQ
magnetometer.2 The temperature was stabilized to an acc
racy of 0.03 K, and the errors in measuring the magn
moment were'4310211 A•m2. Measurements of the tem
perature dependence of the magnetic moment were mad
two regimes: cooling in zero field down to a minimum tem

415 JETP 85 (2), August 1997 1063-7761/97/08041
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~zero-field cooling! and cooling in a nonzero field~field cool-
ing!.

3. RESULTS AND DISCUSSION

The results of the measurements are shown in Fig
and 2. The thermal variation of the magnetic moment o
tained in the zero-field cooling and field cooling regimes w
similar for both crystals. It is interesting to note that the
superconductors have very wide transitions in a magn
field. For other cation-radical salts this transition is cons
erably narrower and in the fields used (Ba;1–2 mT) is
roughly 1–2 K. The temperature at which the supercondu
ing transition begins for this superconductor, determin
based on resistive measurements,3 is '11 K, whereas based
on the magnetic measurements the transition to the nor
state is practically complete after'7 K ~in a field of 2 mT!.

The field dependence of the magnetic moment measu
at T54.2 K is practically reversible and similar for bot

FIG. 1. Temperature dependence of the magnetic moment for crysta
in the field-cooled regime~s! and the zero-field-cooled regime~h!;
Ba52 mT.

41502$10.00 © 1997 American Institute of Physics



-
FIG. 2. Magnetization curves for crys
tals 1 ~a! and 2~b! at T54.2 K.
crystals. Analogous hysteresis curves are observed in Ref. 4
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for Y-Ba-Cu-O at temperatures close toTc ~in fact, T/Tc

'0.96!. This unusual form for the magnetization curves
related to the fact that the reversible contribution to the m
netic moment significantly exceeds the irreversible contri
tion ~normally this situation is opposite!. The value of the
critical current density estimated within the Bean mod
from the width of the hysteresis loop comes to'10 A/cm2.
This is two orders of magnitude smaller than in superc
ductors of thek-(ET)2X family. This probably is connected
with the large degree of two-dimensionality of the superc
ductors compared with thek-(ET)2X.

Because the magnetization curves have practically
linear segment~and also due to the large demagnetizing fa
tor N'0.9 in the crystals we used!, we were unable to esti
mate the first critical field. We can only confirm that the fie
at which penetration begins was at most 0.1 mT for
single crystals.

4. CONCLUSIONS

We have carried out the first studies of the magne
properties of a new organic superconductor
l-~BETS!2GaCl4. We have shown that this superconduc
has a very broad phase transition in a magnetic field, wh
can be related to the large anisotropy of this superconduc
For representatives of the familyk-(ET)2X this transition is
significantly narrower and the transition temperatureTc de-
416 JETP 85 (2), August 1997
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with values obtained from resistive measurements.
Measurements on a multicrystal and a single crystal g

practically the same results, which may indicate the sm
influence of intercrystalline boundaries on the magnetic
havior of this system.

The magnetization curves have an almost revers
character with very small hysteresis, corresponding to a c
cal current densityj c'10 A/cm2 that is two orders of mag-
nitude smaller than for superconductors in thek-(ET)2X
family.

Overall, we can associate the specific features of
magnetic properties ofl-~BETS!2GaCl4 compared to
k-(ET)2X with the more anisotropic crystal structure of th
former, which leads to lower stability of the superconducti
state compared to its less anisotropic analogs.

The authors take pleasure in acknowledging their gr
tude to I. F. Shchegolov for a number of critical remar
regarding the results of this work.
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