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Abstract—This work elaborates upon previous studies on the family of smooth continuous and discontinuous
two-parameter Hamiltonian systems with a piecewise linear force. For such systems, the Melnikov–Arnold
integral is found to be a power and oscillatory function of frequency. In the presence of two primary forcing
frequencies, the secondary harmonic with a frequency that is the sum of the primary frequencies may make a
major contribution to the formation of a chaotic layer. For the corresponding smooth map, the perturbation
parameter ranges where, under strong local chaos, the upper separatrix of fractional resonances is retained
while the lower breaks (and vice versa) are determined. It is shown that the zero angle of intersection of the
separatrix branches at the central homoclinic point is not a sufficient condition for separatrix retention. Under
dynamic conditions, smooth and analytical systems behave in a very different manner. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The occurrence and development of dynamic chaos
depend not only on the perturbation magnitude but also
on the smoothness of a dynamic system. The smooth-
ness can be conveniently characterized by the rate of
decay of Fourier amplitudes. In the analytical case, the
amplitudes decay exponentially and there always exists
the perturbation threshold εth above which, ε * εth, glo-
bal chaos covering the entire phase space accessible for
the system may occur [1–3]. If the potential is a smooth
function, its Fourier amplitudes decay as the amplitude
number to the power β + 1, which appreciably changes
the character of motion (see, e.g., [4] and references
cited there). A time-varying smooth system with one
degree of freedom always has a threshold εth > 0 if β >
βcr = 3, where βcr is the critical value of β [4, 5]. The
behavior of systems with β < βcr has remained poorly
understood until recently.

It turns out, however, that there have long been
available mathematical works [6–8] in which the exist-
ence of global invariant curves in smooth systems at
β = 2 < βcr is ascertained. Most comprehensive among
them is [7], which concerns symmetric piecewise linear
2D mapping (β = 2 < βcr). In [7], it is rigorously proved
that, at certain perturbation parameters, global invariant
curves with rational numbers of rotation include the
unbroken separatrices of integer and fractional reso-
nances. The separatrices are completely extended in
phase and thus present an impenetrable barrier to other
trajectories. This excludes the possibility of global
action diffusion. Here, most intriguing and unexpected
is the fact that the system remains nonintegrable in this
1063-7842/03/4809- $24.00 © 21079
case and the separatrices persist under strong local
chaos [9, Fig. 4]. Such behavior contrasts sharply with
the situation in typical (i.e., nonintegrable) analytical
systems, where, if at least one additional resonance
exists, the separatrices of resonances break first, giving
rise to chaotic layers [1–3]. The history of this issue and
reasons why such an important work has not been prop-
erly appreciated are described elsewhere [5, 10].

Later and independently, Ovsyannikov stated the
theorem that integer resonance separatrices are retained
under symmetric piecewise linear mapping [11]. He
strictly defined a set of associated (critical) values of
the perturbation parameter and also derived a simple
expression for the separatrix in explicit form. The
Ovsyannikov theorem has stimulated extensive investi-
gation into piecewise linear and related mappings [5, 9,
10, 12–14] (for a complete statement of the Ovsyanni-
kov theorem, see the appendices to [9, 12]). Note that
the authors of [7, 11] had to study only remaining sep-
aratrices, since random trajectories resulting when the
separatrices split are impossible to treat analytically
(these trajectories can be analyzed only in physical or
numerical experiments).

Further investigation has shown that each of the glo-
bal invariant curves discovered in [7] (including the
separatrices of fractional and integer resonances)
appears at a certain exact value of the perturbation
parameter and actually considerably distorts the struc-
ture of the phase plane and its finite vicinity. Because of
this, a new term, a virtual invariant curve, has been sug-
gested [5]. The presence of virtual curves causes a
totally new and very complicated transport process in a
003 MAIK “Nauka/Interperiodica”



 

1080

        

VECHESLAVOV

                                                                                                               
smooth system, so-called fractal diffusion, the study of
which has begun in the very recent past [5, 10].

It becomes clear from the above that smooth sys-
tems offer many unique properties and dynamic chaos
in them originates and develops following a specific
(sometimes exotic) scenario.

In this work, as in previous ones [5, 10, 14], we con-
sider a family of smooth systems with two parameters
and a piecewise linear force in two versions: with a con-
tinuous Hamiltonian and as a map (Section 1). For a
continuous system, the Melnikov–Arnold integral is
constructed and the frequency dependence of the sepa-
ratrix map amplitudes is then found using this integral.
It is known that harmonics of a separatrix map decay
exponentially and monotonically with increasing fre-
quency [1]. In Section 2, we demonstrate that this
dependence is radically different for the smooth sys-
tems we are considering: it is a power and oscillatory
function.

The formation of a chaotic layer subject to an asym-
metric two-frequency perturbation is considered. For
the analytical case, a similar study has been recently
performed in [15–17], where the subject of investiga-
tion was the Hamiltonian of a perturbed pendulum:

(1)

Even early numerical experiments showed that the
separatrix map spectrum, along with the frequencies Ω1
and Ω2, which enter into perturbation (1) in explicit
form, also contains combination harmonics ~ε1ε2 at the
aggregate, ∆Ω+ = Ω1 + Ω2, and difference, ∆Ω– = Ω2 –
Ω1, frequencies. Still more surprising is the fact that,
under certain conditions, these combination harmonics
play a decisive role in the formation of a chaotic layer.
An example where the contribution of the secondary
harmonic ∆Ω+ = 3 to the separatrix map amplitude sev-
eral hundred times exceeds those from primary har-
monics is given in [16]. It appears as though weak pri-
mary harmonics generate an intense secondary one and
the role of the former in chaos formation is exhausted
at this point (this fact has been numerically confirmed
in [16]). Taking into consideration the mechanism
behind the occurrence and effect of secondary harmon-
ics has made it possible to remove the long known more
than twofold discrepancy between the theoretically
found (through the Melnikov–Arnold integral) and
experimentally measured separatrix map amplitudes
for conventional Chirikov mapping [15].

As is shown in Section 3, in the systems under study,
the harmonic at the aggregate frequency shows up in
full measure, while the harmonic at the difference fre-
quency is absent. This feature is associated with the
radical difference in the frequency dependence of the
Melnikov–Arnold integral in the analytical and smooth
cases. How much the amplitudes and spectral composi-

H x p t, ,( ) p2

2
----- x( )cos+=

+ ε1 x Ω1t–( )cos ε2 x Ω2t–( ).cos+
tions of various parts of the chaotic layer may differ can
be inferred from Fig. 2.

In Section 4, mapping is considered again. With the
1 : 3 fractional resonance, it is shown here that there are
two ranges of the perturbation parameter K where the
upper and lower separatrices behave in a different man-
ner. In the first range, 1/4 ≤ K ≤ 1/3, both separatrices
persists for specific values of K = K3, m (m = 1, 2, …,)
[9, Table 1]. With K < 1/4, the upper separatrix persists
at some values of K, while the lower is retained at oth-
ers. Such a situation occurs alternately (Fig. 3). The
mechanism underlying this intriguing effect is dis-
cussed. It is argued that the same behavior is observed
for higher order resonances.

In [9, 12, 13], the retention of resonance separatrices
was studied by measuring the angle of intersection of
branches at the central homoclinic point. It was
assumed that the vanishing of this angle proves the
retention of the separatrix and absence of the chaotic
layer. Such an assumption is mistaken, as demonstrated
by an example in Section 5.

1. HAMILTONIAN OF THE PROBLEM

In this work, we elaborate upon the investigation
[12, 14] of a continuous system with a Hamiltonian in
the form

(2)

and with a two-frequency asymmetric perturbation

(3)

The perturbation is assumed to be weak (|ε| ! 1),
and the frequencies are taken to be high (|Ω| @ ω0).

The potential of this system V(x) = 1/4 – (x)dx is

generated by an asymmetric piecewise linear force
f(−x) = –f(x) with a period of 1:

(4)

Expression (4) includes the skewness parameter d
(0 < d < 1), which allows the family of sawteeth to be
studied as a whole [14, Fig. 1]. Note that the case of a
symmetric force with d = 1/2 has been explored most
carefully to date. The teeth of the saw |f(x)| = 1 are
located at the points x–1 = (1 – d)/2 and x+1 = (1 + d)/2,
where a singularity, a step in the first derivative f ' =
df/dx, is observed:

(5)

H x p t, ,( ) H0 x p,( ) U x t,( ),+=

H0 x p,( ) p2

2
----- ω0

2V x( )+=

U x t,( ) ε1 2πx Ω1t–( )cos ε2 2πx Ω2t–( ).cos+=

f∫

f x( ) = 

2x/ 1 d–( ), for 0 x 1 d–( )/2<≤
1 2x–( )/d , for 1 d–( )/2 x 1 d+( )/2≤ ≤

2 x 1–( )/ 1 d–( ), for 1 d+( ) x 1.< <





∆ f ' x 1+−( ) 2
d 1 d–( )
--------------------.+−=
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The potential can be represented by the Fourier
series [5]

(6)

where β = 2 is the index of the system’s smoothness.

When unperturbed, system (2) is integrable and
describes the only (fundamental) resonance in the
vicinity of which initial conditions are defined. Each of
the perturbation harmonics is also a resonance. With
Ω > 0 or <0, this resonance is located in the phase plane
above or below the fundamental resonance. Therefore,
we may call them the upper and lower resonances,
respectively.

The motion along the upper unperturbed separatrix
(ε1 = ε2 = 0) is described by a function of dimensional
time ψ = 2ω0t:

(7)

The momentum is found by differentiation: ps = x =

2ω0dxs/dψs. Here, ψs, 1 =  and Ad = (1 –

d)exp(ψs, 1/ )/2 (see formulas (A1.4) and
(A1.8) in Appendix 1).

The relative departure from the unperturbed separa-
trix in terms of relative energy is designated as ω =

H0/H0, s – 1, where H0, s = /4 is the Hamiltonian on
the separatrix. The motion period T0 near the separatrix
is calculated by the formula

(8)

where ω1 = ω0 , ω2 = ω0 , and Ts, 1 =

arcsin /ω1 (see Appendix 1).

When the dimensions of the chaotic layer are deter-
mined numerically, it is convenient to use the relation-
ship between the relative energy w and motion period
T0 that is inverse to (8):

(9)

V x( ) 1
4
---

f n

2πnβ 1+
------------------ 2πnx( ),cos

n 1≥
∑+=

f n
2

π2
----- nπ( ) nπd( )sincos
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-------------------------------------------,–=
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Ad ψs/ 2 1 d–( )( ),exp

for  ∞– ψs ψs 1,–< <

1 d ψs/ 2d( )sin+( )/2,

for  ψs 1,– ψs ψs 1,≤ ≤

1 Ad ψs/ 2 1 d–( )–( ),exp–

for  ψs 1, ψs ∞.< <









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=

2d darcsin

2 1 d–( )

ω0
2

T0 w( ) 2T s 1,
1
ω2
------

4 1 d– ω1T s 1,( )cos
w

-------------------------------------------------,ln+=

2/d 2/ 1 d–( )
d

w T0( ) = 4 1 d–( ) ω1Ts 1,( ) ω2 T0 2Ts 1,–( )–( ).expcos
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Along with the continuous system given by (2) and
(3), we will also address the discrete map with the same
potential:

(10)

where K = . This map has been much studied to date,
and its dynamic behavior appears very unusual [5, 9,
10, 12–14].

As is well known, map (10) can be represented as a
continuous system with the Hamiltonian explicitly
depending on time and experiencing a perturbation in
the form of kicks [5]:

(11)

where δ1(t) = 1 + 2 2πmt) is the delta func-
tion of period 1.

The period of force (4) can be subdivided into two
intervals where the derivative f ' is negative (elliptic
interval) and positive (hyperbolic interval). At a fixed
point, the matrix of the linearized mapping is deter-
mined from the formulas

(12)

where ∆ = 2K/(1 – d). The matrices ! and @ corre-
spond to the hyperbolic and elliptic intervals, respec-
tively.

2. FREQUENCY DEPENDENCE 
OF THE MELNIKOV–ARNOLD INTEGRAL

In the general case, perturbation (3) breaks the fun-
damental resonance separatrix with the formation of a
chaotic layer, which can be subdivided into three
regions: (i) upper region where the phase rotates at p > 0,
(ii) intermediate region where the phase oscillates, and
(iii) lower region where the phase rotates at p < 0.
Under asymmetric perturbation, the dimensions of
these regions may differ substantially, since the upper
region forms largely as a result of upper resonances; the
lower region, as a result of lower resonances; and the
intermediate region, as a result of both (Fig. 2). To be
specific, we will study the upper region of the chaotic
layer.

Consider an upper perturbation harmonic of type
εcos(2πmx – τ – τ0), where τ = Ωt and m is an integer
factor introduced for generality. We will seek a change
in the unperturbed energy H0 due to this perturbation
over the oscillation or rotation half-period, following

p p Kf x( ), x+ x pmod1,+= =

ω0
2

H x p t, ,( ) p2

2
----- KV x( )δ1 t( ),+=

(cos
m 1≥∑

! 1 ∆+ 1

∆ 1 
 
 

, @ 1 ∆– 1

∆– 1 
 
 

,= =
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the technique described in [1]:

where WMA is the Melnikov–Arnold integral

(13)

In the expression for the energy change, only the
even function in the expansion of sin(2πmx – τ – τ0) is
included and the system is assumed to move near the
unperturbed separatrix.

In going to the dimensionless time ψ = 2ω0t and cal-
culating expression (13) with the help of (7), we find

(14)

where λ = Ω/2ω0 is the adiabaticity parameter [1].

It is easy to check that, if a perturbation is a lower
harmonic of type cos(2πmx + τ + τ0), where τ = Ωt, (14)
must be replaced by

(15)

It should be noted that, for m = 1 and d = 1/2, the
half-sum of (14) and (15) exactly coincides with for-
mula (13) from [12], where a symmetric one-frequency
perturbation of our system is considered.

∆H0 ε p t( )∂U
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------- td

∞–

∞

∫–=

= 2πmε p t( ) 2πmx τ– τ0–( )sin td

∞–

∞
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∞
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WMA λ 0>( ) 1

2
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0

ψs 1,
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× πm d
ψ
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– Ad
2
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ψs 1,

∞

∫

× 2πmAd ψ/ 2 1 d–( )–( )exp λψ+( )dψ,cos

WMA λ 0<( ) 1

2
-------–

ψ
2d

---------- 
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0

ψs 1,
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× πm d
ψ
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---------- 
 sin λ ψ+ dψcos

+ Ad
2
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------------ ψ/ 2 1 d–( )–( )exp

ψs 1,

∞

∫

× 2πmAd ψ/ 2 1 d–( )–( )exp  – λ ψ( )dψ.cos
The separatrix map amplitude is completely defined
by the properties and behavior of the Melnikov–Arnold
integral, since it is proportional to this integral:

(16)

The first question to be answered is how WMA varies
with λ. Appendix 2 gives asymptotic (λ  ∞) esti-
mates of the Melnikov–Arnold integral, which lead us
to the following conclusions for the system given by (2)
and (3). From formulas (A2.2) and (A2.3) in Appendix 2,
it follows that WMA is a periodic function of λ with a
period

(17)

and an amplitude WMA, max varying inversely propor-
tionally to λ3. The value of WMA, max is the same for the
upper and lower harmonics:

(18)

Nevertheless, numerical calculations show that the
contributions from the upper and lower harmonic are
different. To reveal this circumstance, we had to take
into account terms of the order λ–4. This allowed us to
find a small difference between the upper and lower
harmonics (formulas (A2.4) and (A2.5) in Appendix 2).
Eventually, we get

(19)

where the upper signs refer to the upper harmonic.
Figure 1 shows three WMA|λ|3 dependences of the

reduced Melnikov–Arnold integral for the symmetric
saw, d = 1/2. With d ≠ 1/2, the dependences remain
basically the same but the harmonics shift in phase. It is
seen that formulas (19) are in qualitative agreement with
these dependences while they need some numerical cor-
rection. Note that the zeros of the integral just indicate that
the fundamental resonance separatrix remains unsplit
[12].

The above results differ drastically from the case of
analytical potential (1), where WMA is a function of λ
that is monotonic and decreasing everywhere. More-
over, with frequencies that are equal in magnitude, the
contribution of the lower harmonic to the upper region
of the chaotic layer is exp(–π|λ|) times smaller than that
of the upper harmonic [1]. In the system given by (2)
and (3), the situation is reversed: as the frequency
grows, the contributions of the upper and lower har-
monics to the separatrix map approach each other. Such
a radical difference in the behavior of the two systems

W max w w–± ∆H
H0 s,
----------± 8πmε

ω0
2

--------------WMA.= = =

Tλ
2π
ψs 1,
---------

π
darcsin

---------------------- 2
d
---,= =

WMA max, λ( ) λ 3–

4d
---------- 1 d–

2
------------.≈

WMA λ( ) 1–( )m λ 3–

4d
---------- 1 d–

2
------------≈

× 1 π λ 1– 1 d–
2

------------± πmd λ ψs 1,+−( ),sin
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is probably associated with the fact that the positions of
singularities in the Melnikov–Arnold integral greatly
differ: for smooth potential (2), they are on the real time
axis, while for analytical potential (1), they are in the
complex plane.

3. SECONDARY HARMONICS 
IN THE SEPARATRIX MAP

The separatrix map, introduced for the first time in
[18], approximates the dynamic behavior of a system at
instants when it passes stable equilibrium positions.
Elements of the map that are responsible for different
parts of the chaotic layer differ in amplitude and also in
spectral composition (Fig. 2). Therein lies the qualita-
tive difference between an asymmetric multiple-fre-
quency perturbation and the well-studied one-frequency
symmetric perturbation [1].

As was noted in the Introduction, the separatrix map
generally includes, along with harmonics at primary
frequencies (these harmonics enter Hamiltonian (2) in
explicit form), harmonics at combined frequencies
(secondary harmonics). Because of this, the separatrix
map for the system given by (2) and (3) should be writ-
ten in the form [17]

(20)

(21)

(22)

Here, the subscript u marks resonances contributing
significantly to the formation of the upper region of the
chaotic layer and the subscript l marks those resonances
making a considerable contribution to the formation of
the lower region.

Instants t0 when the system passes stable equilib-
rium position x = 0.5mod(1) are counted on a continu-
ous time scale. If all the frequencies are multiples of
some reference frequency Ω0, expression (22) may be
recast as

(23)

although such a conversion is not obligatory in actual
practice.

Formulas (14)–(16) from the previous section make
it possible to find the amplitude of any harmonic in the
separatrix map if its perturbation amplitude ε is known.
Primary harmonics pose no problem, since they are
explicitly defined by (3). To find the perturbation
amplitudes for secondary harmonics, we introduce, fol-
lowing [15], new variables y(t) = x(t) – xs(t) and u(t) =

w w Wu k, Ωu k, t0( ), if p 0,>
k 1=

Ku

∑+=

w w Wl k, Ωl k, t0( ), if p 0,<
k 1=

Kl

∑+=

t0 t0 T0 w( ).+=

φ0 φ0 Ω0T0 w( ),+=

φ0 Ω0t0mod 2π( ),=
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
p(t) – ps(t) and then, using a generating function of type
F2(u, x, t) = [ps(t) + u][x – xs(t)], pass from (2) to a new
Hamiltonian H(y, u, t), which describes motion near the
separatrix. Since the perturbation is weak, we expand
the potentials V(xs + y) into the Taylor series up to sec-
ond order and make approximate substitutions
sin(2πy)  2πy and cos(2πy)  [1 – (2πy)2/2] to
obtain an equation of motion in the form

(24)

We will restrict our analysis to a forced (vanishing
at ε  0) solution to (24), which can be derived by the
method of successive approximations. If, as in [15],

is taken as a first approximation (the approximate
equality assumed that Ω @ ps, max), terms of type
εnsin(2πxs – Ωnt) in (24) vanish but new ones appear.
The latter can be eliminated by applying the second

d2y

dt2
-------- y ω0

2 d2V

dxs
2

---------
 
 
 

4π2 εn 2πxs Ωnt–( )cos
n 1=

2

∑+–=

+ 2π εn 2πxs Ωnt–( ).sin
n 1=

2

∑

yε
1( ) 2πεn

2πps Ωn–( )2
------------------------------- 2πxs Ωnt–( )sin

n 1=

2

∑–=

≈
2πεn

Ωn
2

----------- 2πxs Ωnt–( )sin
n 1=

2

∑–

–1.0

10 20 30 40 50 60

–0.5

0

0.5

1.0

WMA, λ3

|λ|

Fig. 1. Melnikov–Arnold integral vs. adiabaticity parameter
λ = Ω/2ω0. The upper curve reflects the combined action of
the upper and lower harmonics of the symmetric perturba-
tion; the intermediate curve, the action of the upper har-
monic alone; and the lower curve, the action of only the
lower harmonic.
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Fig. 2. Separatrix map of system (2)–(3) with asymmetric
perturbation (27). The dots were obtained by numerical cal-
culation, and the continuous curves are the least-squares
fits. (a) The upper part of the chaotic layer (phase rotation
with p > 0). The amplitudes of the primary harmonics are
W(23) ≈ 6.9 × 10–4 and W(–19) ≈ –4.9 × 10–4; the amplitude
of the secondary harmonic at the aggregate frequency is
W(3) ≈ 3.03 × 10–2. (b) The middle part of the chaotic layer
(phase oscillation). Two periodic curves reflect the action of
the upper and lower resonances. (c) The lower part of the
chaotic layer (phase rotation with p < 0). The amplitudes of
the primary harmonics are W(23) ≈ 2.1 × 10–4 and W(–19) ≈
−4.8 × 10–4; the amplitude of the secondary harmonic is
W(3) ≈ 5.6 × 10–5.
approximation

(25)

etc. [15].
Turning back to system (2)–(3) and putting x ≈ xs +

, cos2π  ≈ 1, and sin2π  ≈ 2π , we make
sure that secondary perturbation harmonics (~ε1ε2) at
the aggregate and difference frequencies arise. How-
ever, the mechanism of their penetration into the sepa-
ratrix map is essentially different. The harmonic at the
aggregate frequency forms because of the interaction of
the first term in (25) with primary harmonics, and, since
this exactly coincides with the analytical case, equali-
ties (7) in [16] for it hold (these equations should only
be corrected in view of another phase normalization):

(26)

where ∆Ω+ = Ω1 + Ω2.
The harmonic at the difference frequency appears in

another way: it results from the interaction of the sec-
ond term in (25) with the second derivative d2V/dx2 of
the potential in (24), which has rich spectrum (6)
(unlike (1), where V(x) = cosx). Here, an infinite num-
ber of harmonics, rather than two as in [16], appear, and
it is impossible to separate out the most significant one.

The effect of occurrence of the secondary harmonic
at the aggregate frequency will be demonstrated with
system (2)–(3) for

(27)

Let us construct separatrix maps for all three parts of
the layer. First, we will briefly recall this procedure (for
details, see [15]). On the line x = 0.5, the central
homoclinic point 3fb is found with a high accuracy
(this point is the boundary between phase rotation and
phase oscillation). The nonzero angle of intersection of
the separatrix branches at this point indicates the pres-
ence of the chaotic layer (the reverse is untrue, see Sec-
tion 5). A narrow interval 3fb + δ3 is selected on the
line x = 0.5 near this point within the considered part of
the layer, and a random trajectory is injected from this
interval. This trajectory either executes periodic motion
with a desired number of periods (time intervals T0
between sequential passages through the phase x = 0.5)
or is interrupted because of the transition to another part
of the layer. In both cases, a new random trajectory is
injected from the same interval until a desired number

yε
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Ωn
2
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n 1=

2

∑–≈

–
2π2ε1ε2
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Ω1 22.0, Ω2 19.0, Ω0– 1.0.= = =
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Np of periods is reached. For each of the periods, the
mean energy  is calculated by formula (9). Finding
the difference δw =  – w for each pair of adjacent
periods and assigning this change to a time instant t0
common to this pair, one can construct the separatrix
map (δw)k, t0, k, where k = 1, 2, …, Np – 1, on a contin-
uous time scale.

The points in Fig. 2 were obtained precisely in this
way. The continuous lines are least-squares fits by
which the amplitudes W of individual harmonics were
determined (below and in the caption to Fig. 2, the
parenthesized figures are frequencies). The measured
contribution W(3) ≈ 3.03 × 10–2 of the secondary har-
monic to the formation of the upper part of the chaotic
layer is more than forty times that of the primary har-
monics. The theoretical value Wt of the amplitude Wt(3)
of the separatrix map for this frequency, which follows
from (14), (16), and (26), equals Wt(3) ≈ 3.37 × 10–2

(ε+ ≈ 2.39 × 10–4, WMA ≈ 0.505).
In practice, the widths of the parts of the layer (in

terms of the relative energy w), rather than the separa-
trix map amplitudes, are of greater importance. The
widths can be found by applying iterations to the sepa-
ratrix map and by searching for the minimal motion
period T0, min (the width is then determined from for-
mula (9)). When applied to the top part of the layer in
case (27), both approaches give close values: wst ≈ 0.19
(former) and wst ≈ 0.32 (latter). For the bottom part of
the layer, wsb ≈ 0.016 and wsd ≈ 0.022, respectively.
Note that the former approach demands much less (sev-
eral hundreds of times) computation time, so that
efforts spent on the construction of the separatrix map
are justified.

4. ASYMMETRY IN SPLITTING THE UPPER 
AND LOWER SEPARATRICES

In this section, we again consider map (10) with d =
1/2 and discuss the behavior of the separatrices of frac-
tional resonances. First we will recall the structure of a
separatrix using a pendulum as an example [1].

The curve has a saddle, a fixed point, which must be
considered as an independent trajectory (an undis-
turbed pendulum may stay at this point infinitely long).
Two more trajectories (separatrices) leave the saddle in
opposite directions and then asymptotically approach
it. Both of them are the boundary between phase rota-
tion (outside a resonance) and phase oscillation (inside
a resonance). Near the saddle in the phase plane, a spe-
cific cross with two incoming and two outgoing trajec-
tories forms [1, Fig. 2.1]. Two fundamental resonance
separatrices with ps = pst > 0 and ps = psb < 0 can be con-
veniently called the upper and lower separatrices,
respectively. It is important that both unperturbed sepa-
ratrices actually consist of two trajectories, which are
spatially coincident for time scales directed back and
forth, respectively. A perturbation splits either of the

w
w
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separatrices into two branches (filaments), which are no
longer coincident but intersect at homoclinic points.
The nonzero angle of intersection of the branches at any
of these points (usually, the central homoclinic point is
considered; in (10), it corresponds to x0 = 0.5 [9]) is a
reliable indication that a separatrix has broken and a
random trajectory has taken its place (the reverse is
untrue, see Section 5).

As follows from the above, the upper and lower sep-
aratrices break under the action of the upper and lower
sets of resonances, respectively, and these sets are gen-
erally different. As a consequence, the upper and lower
parts of the chaotic layer may be dissimilar (Fig. 2). In
system (10), a unique effect is observed [7]: the separa-
trices of both fractional and integer resonances persist
under the condition of strong local chaos for specific
values of the perturbation parameter K. We will show
that this phenomenon for fractional resonances exhibits
curious features.

The object of consideration is the 1 : 3 fractional res-
onance. We will rely upon data obtained in [7] (for extra
details, see also [10]). The value K = 1/3 is the greatest
critical number at which the separatrices of all system
resonances (and not only of the 1 : 3 resonance) are
retained. These (and only these!) separatrices, which
are nontransparent to other trajectories, fill the unit
square of the phase plane, the entire area occupied by
this mosaic being exactly equal to the area of the square
[7; 9, Fig. 6]. As K gradually decreases to K ≥ 1/4, the
system passes through a set of specific values K3, m (m =
1, 2, …,) at each of which both (upper and lower) sep-
aratrices of the 1 : 3 resonance persist (the initial ten
values K3, m are listed in [9, Table 1]). At first glance,
such a situation is puzzling. The set of resonances

0.62

–0.5
0.22

0.5

0.26
–0.1 0 0.1 x

0.30
0.28

0.32
0.34
0.36
0.38

pp

x

Fig. 3. Map (10) with the parameters K =
0.1035533905931… and d = 1/2. The dark region shows the
only random trajectory bounded below by the lower separa-
trix of the 1 : 3 resonance (the number of iterations is 5 ×
109). The inset shows the branches (filaments) detached
from the upper separatrix and the unbroken lower separatrix
of this resonance between two neighboring saddles.
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above and below the resonance considered is by no
means symmetric. The nearest strongest resonances
above and below are the integer and fractional reso-
nances, respectively. Yet the retention conditions for
both separatrices coincide exactly. It would be interest-
ing to understand the reason for this phenomenon.

The set K3, m has a condensation point at K = 1/4,
where the phase volume of the 1 : 3 resonance goes to
zero and its upper and lower separatrices collapse, turn-
ing into a broken line. The resonance disappears, leav-
ing behind it a global invariant curve. It was shown
[7, Fig. 1] that this curve is a periodic orbit each point
of which maps onto itself after three iterations. It is
important that all three saddle points of the 1 : 3 reso-
nance are on the hyperbolic segment, as follows from
our investigation in the perturbation parameter range
1/4 < K ≤ 1/3. With K < 1/4, the resonance 1 : 3 arises
again but now the upper and lower separatrices behave
in a vastly different manner: they persist alternately at
various values of K and not simultaneously. This is
illustrated in Fig. 3, which is plotted for the first critical
value of K, K = 0.1035533905931, following K = 1/4.
At this value, the lower separatrix persists. It should
also be noted that, for K & 1/4, one of the saddle points
passes from the hyperbolic to elliptic section.

Preliminary numerical experiments show that, as K
decreases further, the value at which two saddles pass
to the elliptic section will be found, etc. In addition, it
turned out that the same behavior is also typical of high
order fractional resonances. In general, the situation
appears as follows. For each resonance of order Q ≥ 3,
one can find a K(Q) parameter value nearest to K = 1/3
such that this resonance degenerates into a periodic
orbit (for several Q, these values are listed in [7]).
Within this range, all saddles of the resonance fall into
the hyperbolic section. Below this range, at least one of
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Fig. 4. Map (28) with the parameters C = 0.32395435… and
a = 0.1. The detached branches of the upper separatrix are
shown. The angle at the central homoclinic point equals
zero. The continuous and dashed lines correspond to time
running forward and backward, respectively.
the saddles passes to the elliptic section. As the pertur-
bation parameter smoothly decreases further, the num-
ber of saddle points in the elliptic section will grow.

The migration of saddle points throws light on the
situation. As is known, the upper and lower separatrices
of resonances bypass their saddles in opposing direc-
tions. It was noted above that, early in the formation of
resonant structures at K = 1/3 and in some interval
below this value, all saddles of a resonance Q fall into
the hyperbolic section and the matrix of a periodic
unstable orbit is merely !Q (see (12)) irrespective of
the by-pass order. The retention conditions for the
upper and lower separatrices are exactly the same and
occur at the same critical value of the perturbation
parameter K. The situation changes radically after the
resonance has degenerated into a periodical orbit, since
one saddle jumps to the elliptic section and is now
described by the matrix @. It is here that asymmetry in
the behavior of the separatrices arises, since one of
them passes from the hyperbolic to the elliptic section
(the matrix @!), while the other does the opposite (the
matrix !@ ≠ @!). Because of this, the upper and
lower separatrices persist alternately at different values
of K. The question arises as to whether the separatrices
will persist simultaneously if all saddles pass to the
elliptic section? The curious effect described above is
another specific feature of smooth systems.

5. INSTEAD OF CONCLUSIONS

The objects of consideration in this work were
largely nonlinear resonances and their separatrices. It
was noted in the introduction that the angle of intersec-
tion of the separatrix branches at the central homoclinic
point is of key importance in such studies [9, 12, 13].
This quantity is one of a few chaos attributes that can be
measured with any desired accuracy. If this angle is
other than zero, the separatrix is split and chaos occurs.
The major practical issue is whether the equality of this
angle to zero is a reliable indication that the separatrix
persists. Up to now, this has been the case and such an
assertion has even appeared in several of our previous
works. However, special research has demonstrated
that this statement is untrue. An appreciable number of
systems, both continuous and discrete (maps), where
the vanishing of this angle does not mean the retention
of the separatrix have been found. Let us illustrate this
with a complicated standard mapping of type

(28)

with the coefficients C = 0.32395435… and a = 0.1.
The branches of the upper separatrix are shown in
Fig. 4 (the central homoclinic point is on the line x =
0.5). The point of contact here corresponds to an inflec-
tion point. It seems that only the complete pattern of the
separatrix behavior constructed for time running back
and forth in the interval between two neighboring

p p C 2πx( )sin a 6πx( )sin–[ ] , x+ x p+= =
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homoclinic points might tackle the question of whether
chaos is present or not.

From the above, it follows that the dynamic behav-
ior of smooth and analytical systems differs greatly in
terms of almost all the aspects considered. In our opin-
ion, this is a compelling argument in favor of further
research into smooth systems.
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APPENDIX 1

MOTION ALONG 
AND NEAR THE UNPERTURBED SEPARATRIX

The Hamiltonian on the unperturbed separatrix

equals H0, s = /4. From this expression, we find its
momentum as a function of the coordinate:

(A1.1)

Let dimensionless time ψ = 2ω0t be counted from
the point of stable equilibrium x = x0 = 0.5. In the (first)
interval x0 ≤ x1 = (1 + d)/2, the equation of motion is

written as  = –∂H0/∂x = (1 – 2x)/d and has the solu-
tion

(A1.2)

where p0 is the momentum at the initial point x0 = 0.5.
For the separatrix corresponding to the second row

in (A1.1), we have at this point p0, s/ω0 = 1/ ; there-
fore,

(A1.3)

The time ψs, 1 of motion along the separatrix
throughout the first interval is found with (A1.3) from
the equality

ω0
2

ps

ω0
------

xs 2/ 1 d–( ), for 0 xs 1 d–( )/2< <

1 2xs 1–( )2/d–( )1/2
/ 2,

for  1 d–( )/2 xs 1 d+( )/2< <

1 xs–( ) 2/ 1 d–( ), for 1 d+( ) xs 1.< <







=

ẋ̇ ω0
2

x t( ) 1
2
---

p0

ω1
------ ω1t, ω1sin+ ω0

2
d
---,= =

2

xs ψs( ) 1
2
--- 1 d

ψs

2d
----------sin+ ,=

ps ψs( )
ω0

2
-------

ψs

2d
----------.cos=

1 d+
2

------------
1
2
--- 1 d

ψs 1,

2d
----------sin+ .=
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At the end of the first interval, we have

(A1.4)

where Ts, 1 is dimension (normal) time.

In the second interval (1 + d)/2 < x < 1, motion is

described by the equation  = 2 (x – 1)/(1 – d),
which has the solution

(A1.5)

where T1 and p1 are the time and momentum at the end
of the first interval.

For motion along the separatrix according to equal-
ities (A1.4), we have

(A1.6)

In terms of dimensionless time ψ, motion along the
separatrix in the second interval is given by

(A1.7)

where

(A1.8)

and ψs, 1 is given by (A1.4).

Taken together, the above formulas describe motion
along the entire separatrix (see formulas (7) in Section 1).

To determine the period of motion near the separa-
trix, let us consider a trajectory starting from the initial
point x0 = 0.5 with a momentum p0 slightly deviating
from the momentum on the separatrix: p0 = ps, 0 + δp0.
The difference in momentum changes the time Ts, 1 of
passing the first interval by δT1 and the momentum ps, 1
at the end of the interval by δp1. The new time can be
found from (A1.2):

T s 1,  = d/ω1, ψs 1,arcsin  = 2ω0Ts 1,  = 2d d ,arcsin

xs 1,
1 d+

2
------------, ps 1, ω0

1 d–
2

------------,= =

ẋ̇ ω0
2

x t( ) 1
1 d–

2
------------ ω2 t T1–( )cosh–

p1

ω2
------ ω2 t T1–( ),sinh+=

ω2 ω0
2

1 d–
------------,=

xs t( ) = 1
1 d–

2
------------ ω2 t T s 1,–( )cosh ω2 t T s 1,–( )sinh–[ ]–

=  1
1 d–

2
------------ ω2 t T s 1,–( )–( ).exp–

xs ψs( ) 1 Ad ψs/ 2 1 d–( )–( ),exp–=

ps ψs( ) Ad
2

1 d–
------------ ψs/ 2 1 d–( )–( ),exp=

Ad
1 d–( )

2
---------------- ψs 1, / 2 1 d–( )( )exp=

1 d+
2

------------ 1
2
---

ps 0, δp0+
ω1

------------------------ ω1 T s 1, δT1–( )[ ]sin+=

ω1δT1

δT1

ps 0,
--------- ω1T s 1,( )tan ;=
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the new momentum, from the relationship

The latter quantity can be expressed through the rel-

ative change in the energy w = 4H0/  – 1. 

Since V(x0 = 0.5) = 0, we have

Let T0 be the period of motion along the trajectory
considered (the time interval between sequential pas-
sages of the stable phase x0 = 0.5).

Assuming x = 1, we find from equation (A1.5)

When deriving this equality, we took into account the

relationship ps, 1/ω0 = , which follows from
the second row of (A1.1) for x+1 = (1 + d)/2 (see also
(A1.4)). The period of motion near the separatrix is
given by

(A1.9)

With d = 1/2, this formula exactly coincides with
formula (9) in [11].

APPENDIX 2

ESTIMATES OF THE MELNIKOV–ARNOLD 
INTEGRAL

Let us write Melnikov–Arnold integral (13) for the
upper perturbation harmonic (Ω > 0) in expanded form:

(A2.1)

Following [12], the integral will be taken by parts.
At each step, we integrate terms with Ω and differenti-

p1 ps 1, δp1+=

=  ps 0, δp0+( ) ω1 T s 1, δT1–( )[ ]cos

δp1

δp0

ω1T s 1,( )cos
-----------------------------.=

ω0
2

w
2

ω0
2

------ ps 0, δp0+( )2 1–=

δp0 = 
ω0

2

2 ps 0,
------------w = 

ω0

2 2
----------w

δp1 = 
ω0

2 2 ω1T s 1,( )cos
----------------------------------------w.

ω2
T0

2
----- T s 1,– 

 tanh
1 d–

2
------------

ω2

p1
------ 1

δp1

ps 1,
--------–≈ ξ .= =

1 d–( )/2

T0 ω( ) 2T s 1,
1
ω2
------ 1 ξ+

1 ξ–
------------ln+=

=  2T s 1,
1
ω2
------

4 1 d– ω1T s 1,( )cos
w

-------------------------------------------------.ln+

WMA ps 2πmxs( ) Ωt( )coscos[
∞–

∞

∫–=

+ 2πmxs( ) Ωt( ) ]dt.sinsin
ate the remaining terms. At the third step, terms with Ω–3

and the third-order time derivative of ps will appear
under the integral sign. The third-order derivative gen-
erates δ1 functions at the singular points x–1 = (1 – d)/2
and x+1 = (1 + d)/2:

In this expression, only the principal term with the
δ1 functions is left and formula (4) for the step of the
derivatives is used. At the singular points, ps/ω0 =

 (the second row in (A1.1); accordingly, for
the first term in (A2.1), we have

where λ = Ω/2ω0 and ψs, 1 = 2ω0Ts, 1.

Applying a similar procedure to the second term of
(A2.1) and adding up the final results, we obtain an esti-
mate of the Melnikov–Arnold integral for the upper
harmonic:

(A2.2)

Accordingly, for the lower perturbation harmonic
(λ < 0), we find

(A2.3)

This harmonic makes the same (up to a phase shift)
contribution to the separatrix map amplitude as the
upper harmonic, which comes into conflict with the
numerical experiment. It turns out that the difference
between the contributions from the upper and lower
harmonics appears only in the next (~λ–4) order of
smallness. To find this difference, one must integrate by
parts four (not three) times. It is easy to check that, in
this case, two terms containing the expressions
ps(d4xs/dt4) and (d3ps/dt3), which make equal contri-
butions to WMA, must be taken into consideration.

d3 ps

dt3
----------

d3 ps

dx3
---------- ps

3=

=  ps
3 2
d 1 d–( )
-------------------- δ1 x x+1–( ) δ1 x x 1––( )–[ ] .

1 d–( )/2

λ 3–

8d
-------– 1 d–

2
------------ πm 1 d+( ) λψs 1,( )sincos[

– πm 1 d–( ) λψs 1,–( ) ]sincos

=  1–( )m 1– λ 3–

4d
------- 1 d–

2
------------ πmd( ) λψs 1,( ),sincos

WMA λ 0>( ) 1–( )mλ 3–

4d
------- 1 d–

2
------------ πmd λψs 1,–( ).sin≈

WMA λ 0<( ) 1–( )m λ 3–

4d
----------≈

× 1 d–
2

------------ πmd λ ψs 1,+( )sin .

ẋs
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Eventually, for the upper and lower harmonics, we find

(A2.4)

and

(A2.5)

respectively.
These expressions are discussed in Section 2.
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Abstract—The method of nonlinear moments, when used to solve the Boltzmann equation, necessitates the
calculation of collision integral matrix elements. The matrix elements are hard to calculate numerically, espe-
cially at large indices. The asymptotics of the matrix elements are constructed. In terms of the model of
pseudopower particle interaction, a formula free of summation is derived. This makes it possible to find the
asymptotic behavior of linear and nonlinear elements when two indices are large. For an arbitrary interaction
cross section, asymptotic expansions of linear and nonlinear matrix elements in one index are obtained. For
Maxwellian molecules, asymptotic formulas are derived for three large indices. © 2003 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

In solving the Boltzmann equation by the method of
nonlinear moments, the distribution function is repre-
sented as the expansion in basis functions and then a set
of differential equations for expansion coefficients is
solved. However, with such an approach, one faces dif-
ficulties when calculating the matrix of the moments of
the nonlinear collision integral. With large indices,
associated formulas become so awkward that the
matrix elements (MEs) are impossible to calculate with
modern computing facilities. For example, formulas
containing sixfold summation have been derived for the
isotropic (in terms of velocities) Boltzmann equation
even under the assumption that the scattering cross sec-
tion is independent of angles of scattering [1]. In [2],
formulas with quadruple summation were derived for
an arbitrary angular dependence of the cross section. In
calculating with the expressions obtained [1, 2], the
machine time rapidly grows and the accuracy drops
with increasing ME index.

In [3], recurrence relations for the matrix elements
were obtained for the isotropic Boltzmann equation
under the assumption that the collision integral is
invariant under basis. It turned out that nonlinear MEs
can be expressed through linear ones. It was shown [4]
that the same is true for the Boltzmann equation that is
axisymmetric in terms of velocities, when the distribu-
tion function depends on two variable velocities. The
authors of [4] also studied the structure of the collision
operator and ME properties for the spherically symmet-
ric interaction potential. They determined that unique
set of indices that provide nonzero nonlinear MEs. Fur-
thermore, it was found that the vanishing of a number
1063-7842/03/4809- $24.00 © 21090
of nonlinear MEs results in additional relations
between isotropic and nonisotropic linear elements, so
that the latter can be expressed through the former. This
means that all nonlinear axisymmetric MEs can be
found through linear isotropic ones. That is why the
study of MEs for the isotropic case is of particular
importance.

The approach to calculating MEs using recurrence
relations [3, 4] has made it possible to significantly cut
the computing time and, accordingly, to compute MEs
with indices up to 128. MEs with still greater indices
can be computed with an asymptotic approach. It also
allows one to trace the ME behavior when indices tend
to infinity and study the dependence of MEs on the
scattering cross section of colliding particles.

In this work, we constructed the asymptotics for lin-
ear and nonlinear MEs in the isotropic case and derived
a formula for linear MEs that is free of summation. This
formula follows from a model of pseudopower particle
interaction, which assumes that the interaction cross
section depends on the velocity in the same way as in
the case of power potentials but the angular distribution
is isotropic. With this formula, we managed to find the
asymptotics of linear and nonlinear MEs when two
indices are large. For Maxwellian molecules, the three-
index asymptotics of MEs is found.

BASIC RELATIONSHIPS

When the method of moments is applied to solve the
Boltzmann equation, the distribution function is
expanded in basis functions and the equation is split
into a set of equations for the expansion coefficients.
If the distribution function is isotropic, Sonine polyno-
003 MAIK “Nauka/Interperiodica”
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mials

(1)

are usually taken as basis functions.
These polynomials are orthogonal to each other

with the Maxwellian weighting function M(v, T0):

(2)

Here, m is the mass of a particle, T0 is the gas tempera-
ture, k is the Boltzmann constant, and v r is the squared
norm of a Sonine polynomial. In the isotropic case, the
expansion of the distribution function has the form

(3)

where n0 is the numerical density of the particles.
Substituting this expansion into the Boltzmann

equation with the subsequent multiplication of both

sides of the resulting expression by (mv 2/2kT0) and
integration over velocities yields

(4)

The matrix elements  are determined through
the collision integral I(f, f):

(5)

The collision integral I(f, f) is a nonlinear integral
operator given by

(6)

Here, v, v ', v 1, and v 2 are the velocities of colliding
particles before and after collision, g = |g| = |v – v'| is
the relative velocity of the particles, k is the unit vector
directed along the relative velocity vector after colli-
sion, and σ(g, Θ) is the differential scattering cross sec-
tion. The angle of scattering Θ is found from the rela-
tionship cosΘ = k ⋅ g/|g|.

If one of the indices (r1 or r2) of the matrix element

 goes to zero, the collision integral turns to the lin-
ear operator.

Expressions for linear and nonlinear MEs in the case
of arbitrary power interaction potentials are given in

[3]. The linear MEs  and  involve one-tuple

S1/2
r x( ) Γ r 3/2+( )x2 p

p! r p–( )!Γ p 3/2+( )
--------------------------------------------------

p 0=

r

∑=

M v T0,( )S1/2
r mv 2/2kT0( )S1/2

t mv 2/2kT0( )v 2 vd∫  = v rδr t, ,

M v T0,( ) m/2kT0π( )3/2 mv 2/2kT0–( ),exp=

v r 2r 1+( )!!/ 2r( )!!.=

f v t,( ) n0M v T0,( ) Cr t( )S1/2
r mv 2/2kT0( ),

r 0=

∞

∑=

S1/2
r

dCr/dt Kr1 r2,
r Cr1

Cr2
.

r1 r2,
∑=

Kr1 r2,
r

Kr1 r2,
r 4π S1/2

r I MS1/2
r1 MS1/2

r2,( )v 2 vd

0

∞

∫ 
 
 

/v r.=

I f f,( ) = f v1( ) f v2( ) f v( ) f v'( )–( )gσ g Θ,( ) v'd k.d⋅∫

Kr1 r2,
r

K0 n,
r Kn 0,

r
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sums, the number of terms in which depend on the min-
imal value of the indices n and r. The expressions for
the nonlinear elements in the case of power interaction
potentials involve quadruple sums, which are extremely
difficult to calculate when the indices are large.
Because of this, it was suggested [3] that the elements

 be calculated with the basic relationship between
the matrix elements, which follows from the invariance
of the collision integral under basis. This relationship
has the form

(7)

and allows one to sequentially find MEs with an
increasing first subscript. A similar relationship can be
written for MEs with an increasing second subscript:

(8)

Clearly, from relationships (7) and (8), one can find
nonlinear MEs with arbitrary indices provided that the

linear elements  and  are known.

This computing scheme was applied in [3] to calcu-
late nonlinear MEs and allowed us to raise the maximal
number N0 of expansion terms up to N0 = 128. It turned
out that the calculation of large-index nonlinear MEs
requires linear elements to be known with a high accu-
racy. To meet this requirement, precision arithmetic
procedures that ensure calculations accurate to a high
decimal place were applied [3]. The final error in MEs
with N0 = 128 were no larger than 10–8. This makes it
possible to directly check the convergence of asymp-
totic formulas. The construction of the ME asymptotics
allows one to extend the computing procedure to the
range of very large indices.

ASYMPTOTICS FOR LINEAR MATRIX 
ELEMENTS

The expressions for linear MEs have the form [3]

(9)

(10)

Kr1 r2,
r

K p n,
r 1

p
--- n p r– 1 µ––+( )Lp 1– n,

r[=

+ rK p 1– n,
r 1– n 1+( )K p 1– n 1+,

r ]–

Kn p,
r 1

p
--- n p r– 1 µ––+( )Ln p 1–,

r[=

+ rKn p 1–,
r 1– n 1+( )Kn 1+ p 1–,

r ] .–

K0 n,
r Kn 0,

r

K0 n,
r 4kT0

m
------------ 

 
µ r!

Γ r 3/2+( )2r n+
------------------------------------=

× 22qWr q,
n Γ q µ 3/2+ +( )Jq/q!,

q 1=

min n r,( )

∑

Kn 0,
r 4kT0

m
------------ 

 
µ r!

Γ r 3/2+( )2r n+
------------------------------------=

× 22qWr q,
n Γ q µ 3/2+ +( ) J̃q/q!.

q 1=

min n r,( )

∑
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Here,

(11)

The above expressions were obtained for the case of
power interaction potentials when the angular and
velocity dependences of the cross section can be sepa-
rated; that is,

(12)

The parameter µ in (9) and (10) and γ are related as

µ = γ/2, and the coefficients Jq and  are the integrals
of the angular component Fγ(z) with the weights zq and
((1 – z)q – 1), respectively:

(13)

Works concerned with the kinetic theory of gases
often use the model of pseudopower potentials of parti-
cle interaction, to which differential cross section (10)
with F(z) = 1/4π corresponds; in other words, particle

Wr q,
n µ –µ 1+( )… –µ n r 2q– 1–+ +( )–

n q–( )! r q–( )!
-------------------------------------------------------------------------------------=

=  
Γ –µ n r 2q–+ +( )

Γ µ–( ) n q–( )! r q–( )!
-----------------------------------------------------.

σ g Θ,( ) 1
4π
------gγ 1– Fγ Θ/2sin( )2( ).=

J̃q

Jq 4π Fγ z( )zq z,d

0

1

∫=

J̃q 4π Fγ z( ) 1 z–( )q 1–( ) z.d

0

1

∫=
scattering is assumed to be isotropic. Then,

(13a)

In this case, expression (9) for linear MEs can be
transformed into a form that is much more convenient
for asymptotics construction and numerical calculation.
Before making this transformation, we note that the
sum in (9) in view of (13a) takes the form

(14)

The factorials entering into the denominator of the
sum are rearranged as

(15)

(16)

Here, (a)q are Pochhammer symbols

(17)

and the function Γ in the denominator of sum (14) can
be expressed as

Jq
1

q 1+
------------, J̃q

1
q 1+
------------ 1.–= =

S 22qWr q,
n Γ q µ 3/2+ +( )Jq/q!

q 1=

min n r,( )

∑=

=  22qΓ q µ 3/2+ +( )Γ –µ n r 2q–+ +( )
n q–( )! r q–( )!Γ µ–( ) q 1+( )!

---------------------------------------------------------------------------------.
q 1=

min n r,( )

∑

r q–( )! r!
r q– 1+( )… r 1–( )r

--------------------------------------------------=

=  
r!

1–( )q r–( ) –r 1+( )… –r q 1–+( )
------------------------------------------------------------------------------- 1–( )qr!

r–( )q

-----------------,=

n q–( )! 1–( )qn!
n–( )q

------------------.=

a( )0 1, a( )q a a 1+( )… a q 1–+( );= =

q 1 2 3 …,, , ,=
(18)

Γ –µ n r 2q–+ +( ) π
πµ( ) 1–( )n r 1+ + Γ 1 µ n– r– 2q+ +( )sin

------------------------------------------------------------------------------------------------=

=  
π3/2

πµ( ) 1–( )n r 1+ + 2µ n– r– 2q+ Γ q µ 1 n– r–+( )/2+( )Γ q µ 1 n– r–+( )/2 1/2+ +( )sin
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------.
Substituting (15), (16), and (18) into (14) and taking
into account that (a)p = Γ(a + p)/Γ(a), we find

(19)

Now we note that

(20)

If one of the superscripts is a negative integer, the
series contains a finite number of terms and the sum in
(19) can be represented as

S
πΓ µ 1/2+( ) 1–( )r n 1+ +

4G µ–( ) n 1+( )! r 1+( )! πµ( )Γ µ 1– r– n–( )sin
----------------------------------------------------------------------------------------------------------------=

×
µ 1/2+( )p –n 1–( )p –r 1–( )p

µ 1– r– n–( )/2( )p µ 1– r– n–( )/2 1/2+( )pp!
--------------------------------------------------------------------------------------------------------.

p 2=

min n r,( ) 1+

∑

a( )p b( )p c( )p

d( )p e( )p p!
-------------------------------zp

p 0=

∞

∑ F3 2
a b c, ,

d e,
z 

  .=
(21)

According to the Saalschutz theorem [5], if c = –m
(m is an integer) and e + d = a + b + c + 1, the hyper-

geometric function 3F2  is given by

(22)

s = 
µ 1/2+( )p –n 1–( )p –r 1–( )p

µ 1– r– n–( )/2( )p µ 1– r– n–( )/2 1/2+( )pp!
---------------------------------------------------------------------------------------------------------

p 2=

min n r,( ) 1+

∑

= F3 2
µ 1/2 n– 1– r– 1–+

µ 1– n– r–( )/2 µ 1– n– r–( )/2 1/2+
z = 1 

 

– 1
4 µ 1/2+( ) –n 1–( ) –r 1–( )

µ 1– r– n–( ) µ r– n–( )
-----------------------------------------------------------------.–

a b c, ,
d e,

z 1= 
 

F3 2
a b m–, ,

d 1 a b d– m–+ +,
z = 1 

   = 
d a–( )m d b–( )m

d( )m d a– b–( )m

-----------------------------------.
TECHNICAL PHYSICS      Vol. 48      No. 9      2003



ASYMPTOTICS OF COLLISION INTEGRAL MATRIX ELEMENTS 1093
In the case considered, this relationship is met and

(23)
s

–µ/2 1– n/2 r/2––( )R 1+ µ/2 1/2 n/2 r/2 R1 1+ +–––( )R 1+

µ/2 1/2 n/2 r/2–––( )R 1+ –µ/2 n/2– r/2 R1+–( )R 1+

----------------------------------------------------------------------------------------------------------------------------------------------------=

– 1
4 µ 1/2+( ) –n 1–( ) –r 1–( )

µ n– r–( ) µ n– r– 1–( )
-----------------------------------------------------------------.–
Here, R = min(n, r) and R1 = max(n, r). Taking into

account (23) and (19), we find that the linear ME 
is given by

(24)

Expression (24) is the desired representation of the
linear ME.

K0 n,
r

K0 n,
r 4kT0

m
------------ 

 
µ r!n0

2

Γ r 3/2+( )2r n 2+ +
------------------------------------------=

× Γ µ 1/2+( )Γ r n 2 µ–+ +( )
Γ µ–( ) n 1+( )! r 1+( )!

-----------------------------------------------------------------

×
–µ n– r–( )/2 1–( )R 1+ µ n– r–( )/2 R1 1/2+ +( )R 1+

µ 1– n– r–( )/2( )R 1+ –µ n– r–( )/2 R1+( )R 1+

-------------------------------------------------------------------------------------------------------------------------

– 1 4 µ 1/2+( ) n 1+( ) r 1+( )
µ n– r–( ) µ n– r– 1–( )

------------------------------------------------------------– .
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Numerical calculations show that linear MEs with
slightly differing indices r and n are the greatest; con-
sequently, it is precisely in this case that the asymptot-
ics is of greatest interest. Expression (24) allows one to
construct such an asymptotics. Let us assume that r  ∞
and n  ∞, so that the difference between the indices
remains constant; that is, R  ∞, R1  ∞, and ∆ =
R1 – R is fixed. We will first find the asymptotics of the
fraction Z1, which contains Pochhammer symbols in
the brackets of (24). Taking into account that r + n =
2R + ∆ and using the relationship

(25)

we transform Z1 into the form

α R 1+( )–( )R 1+  = α R 1+( )–( ) α R 1+( ) 1+–( )

… α R 1+( )– R+( ) 1–( )R 1+ α– 1+( ) α– 2+( )=

… –α R 1+( )+( ) 1–( )R 1+ –α 1+( )R 1+ ,=
(26)

Z1

–µ n– r–( )/2 1–( )R 1+ µ n– r–( )/2 R1 1/2+ +( )R 1+

µ 1– n– r–( )/2( )R 1+ –µ n– r–( )/2 R1+( )R 1+

-------------------------------------------------------------------------------------------------------------------------------=

=  
µ ∆+( )/2 1+( )R 1+ µ ∆ 1+ +( )/2( )R 1+

–µ ∆+( )/2( )R 1+ –µ ∆ 1+ +( )/2( )R 1+
---------------------------------------------------------------------------------------------.
In going from Pochhammer symbols to the ratio of
the Γ functions and using the asymptotics of the ratio of
large-index Γ functions (see, e.g., [5])

(27)

we come to

(28)

The asymptotics of the second fraction, Z2, in the
brackets of (24) is obvious:

Γ z α+( )
Γ z β+( )
-------------------- = zα β– 1 1

2z
----- α β–( ) α β 1–+( ) O z 2–( )+ + 

  ,

z ∞,

Z1 22µ 1+ Γ –µ ∆+( )
Γ µ ∆ 1+ +( )
------------------------------- R 1+( )2µ 1+=

× 1
1

2 R 1+( )
--------------------- 2µ 1+( )∆ O R 1+( ) 2–( )+ + ,

R ∞.
(29)

The asymptotics of the coefficient multiplying the
brackets in (24) is easily found by applying the duplica-
tion formula to the Γ function in the numerator and for-
mula (27) for the ratio of Γ functions:

Z2
4 µ 1/2+( ) n 1+( ) r 1+( )
µ n– r–( ) µ n– r– 1–( )

------------------------------------------------------------=

=  
µ 1/2+( ) R 1+( ) R ∆ 1+ +( )

µ ∆–( )/2 R–( ) µ ∆–( )/2 R– 1/2–( )
-----------------------------------------------------------------------------------------

=  µ 1/2+( ) 1 µ 3/2+
R 1+

----------------- O R 1+( ) 2–( )+ + , R ∞.

U
r!G r n 2 µ–+ +( )

Γ r 3/2+( )2r n 2+ + n 1+( )! r 1+( )!
-------------------------------------------------------------------------------- 2–µ 1–= =

× R 1+( )–µ 2– 1

π
------- 1 B

2 R 1+( )
--------------------- O R 1+( ) 2–( )+ + ,

R ∞,



1094 TROPP et al.
(30)

Taken together, (28)–(30) yield a final expression
for the linear element asymptotics:

(31)

From (31), it follows that the asymptotics of 
has two parts with the principal terms behaving as (R +
1)µ – 1 and (R + 1)–µ – 2, respectively. Which of them
specifies the asymptotic behavior depends on µ: with
µ > –1/2, the first term dominates; otherwise, the sec-
ond prevails. With µ = 0, the found terms of the asymp-
totics vanish if ∆ ≠ 0. If ∆ = 0, we have

(32)

This result corresponds to the well-known formula
for a linear element in the case of pseudo-Maxwellian
molecules:

(33)

Now we will find the asymptotics of linear MEs in
indices n and r for the general case, i.e., for nonisotro-
pic differential cross section (12) of particle interaction.

Consider first the asymptotics of  at r  ∞ and
fixed n. Using formula (27) for the ratio of the large-
index Γ function, we find from (11) that

(34)

B –µ ∆+( ) 2–( ) –µ ∆+( )/4=

+ –µ ∆– 1–( ) –µ 3∆ 1+ +( )/4 ∆1 1/4–( ),–

∆1

0 r n≤
∆ r n.>




=

K0 n,
r P µ( ) 2µ Γ –µ ∆+( )

Γ µ ∆ 1+ +( )
------------------------------- R 1+( )µ 1–





=

× 1 A
2 R 1+( )
--------------------- O R 1+( ) 2–( )+ + 2–µ 1– µ 3/2+( )–

× R 1+( )–µ 2– 1 B 2µ 1+ +
2 R 1+( )

-------------------------- O R 1+( ) 2–( )+ +




,

R ∞,

P µ( )
4kT0

m
------------ 

 
µΓ µ 1/2+( )n0

2

Γ µ–( ) π
-------------------------------,=

A B ∆ 2µ 1+( ).+=

K0 n,
r

K0 r,
r n0

2 r 1+( ) 1– 1 O r 1+( ) 2–( )+( ).=

K0 n,
r n0

2

r 1+
-----------δr n, .=

K0 n,
r

Wr q,
n 1

Γ µ–( ) n q–( )!
----------------------------------rn q– µ– 1–=

× 1
1
2r
----- n q– µ– 1–( ) n 3q– µ–( ) O r 2–( )+ + ,

r ∞.
From (32), it follows that the sum in the expression

for  is an asymptotic expansion and that the major
contribution is due to the term with q = 1. Substituting
(34) into (9) in view of (27), we obtain for the first

terms in the expansion of 

(35)

The asymptotics in terms of the second index can be
found in a similar way:

(36)

which gives

(37)

The asymptotics of linear MEs with another
sequence of subscripts can be found from (35) and (37)

with  substituted for Jq. This follows from compari-
son (9) and (10).

ASYMPTOTICS OF NONLINEAR MATRIX 
ELEMENTS

The results obtained in the previous section,
together with recurrence relations (7) and (8), allow us
to construct the asymptotics of the nonlinear elements

. In terms of the pseudopower interaction model,

one can find the behavior of  with fixed p and large
r and n, substituting asymptotics (31) into recurrence
relation (7). It should be borne in mind here that R =
min(r, n) and that it is necessary to consider two cases

K0 n,
r

K0 n,
r

K0 n,
r 4kT0

m
------------ 

 
µ n0

2

2n 2–
---------- Γ µ 5/2+( )

Γ µ–( ) n 1–( )!
----------------------------------2 r– rn µ– 5/2–=

× J1
1
r
--- J1

n µ– 2–( ) n µ– 3–( )
2

---------------------------------------------------- 3
8
---– 

 +




---+ 2J2 m 5/2+( ) n 1–( ) O r 2–( )+




, r ∞.

Wr q,
n Γ –µ n r 2q–+ +( )

Γ µ–( ) r q–( )!Γ n q– 1+( )
---------------------------------------------------------------- 1

Γ µ–( ) r q–( )!
---------------------------------= =

× n–µ r q– 1–+

× 1 1
2n
----- r µ– q– 1–( ) r µ– 3q–( ) O n 2–( )+ +

n ∞,

K0 n,
r 4kT0

m
------------ 

 
µ r!n0

2

Γ r 3/2+( )2r 2–
----------------------------------- Γ µ 5/2+( )

Γ µ–( ) r 1–( )!
---------------------------------=

× 2 n– nr µ– 2– J1
1
n
--- J1

r µ– 2–( ) r µ– 3–( )
2

---------------------------------------------------+




---+ 2J2 µ 5/2+( ) r 1–( ) O n 2–( )+




, n ∞.

J̃q

K p n,
r

K p n,
r
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in order to calculate the result of substitution. In the first
case, r > n, which yields R = n and ∆ = |r – n| = r – n ≥
1. In the second case, r ≤ n and, accordingly, R = r and
∆ = n – r ≥ 0. Passing in the recurrence relation from the
variables r and n to R and ∆, we find for these cases

(38a)

(38b)

To find the asymptotics of elements , one must
consider three cases, namely, r > n + 1, r = n + 1, and

r < n + 1. This is because for , which enter into
recurrence relation (7) with p = 2, it is necessary to use
(38a) or (38b) depending on the relationship between q
and m. This yields

(39a)

(39b)

(39c)

K1 n,
r P µ( ) Γ –µ ∆ 1–+( )

Γ µ ∆+( )
----------------------------------2µ R 1+( )µ 1–





=

+ O R 1+( )µ 2–( ) µ 3/2+( )2–µ 1– R 1+( )–µ 2––

---+ O R 1+( )–µ 3–( )




, r n,>

K1 n,
r P µ( ) Γ –µ ∆ 1+ +( )

Γ µ ∆ 2+ +( )
----------------------------------2µ R 1+( )µ 1–





=

+ O R 1+( )µ 2–( ) µ 3/2+( )2 µ– 1– R 1+( )–µ 2––

---+ O R 1+( )–µ 3–( )




, r n.≤

K2 n,
r

K1 m,
q

K2 n,
r P µ( ) Γ –µ ∆ 2–+( )

Γ µ ∆ 1–+( )
----------------------------------2µ R 1+( )µ 1–





=

+ O R 1+( )µ 2–( ) µ 3/2+( )2–µ 1– R 1+( ) µ– 2––

---+ O R 1+( ) µ– 3–( )




, r n 1+ ,>

K2 n,
r P µ( ) Γ –µ 1+( )

Γ µ 2+( )
------------------------2µ R 1+( )µ 1–





=

+ O R 1+( )µ 2–( ) µ 3/2+( )2 µ– 1– R 1+( ) µ– 2––

---+ O R 1+( ) µ– 3–( )




, r n 1+ ,=

K2 n,
r P µ( ) Γ –µ ∆ 2+ +( )

Γ µ ∆ 3+ +( )
----------------------------------2µ R 1+( )µ 1–





=

+ O R 1+( )µ 2–( ) µ 3/2+( )2 µ– 1– R 1+( ) µ– 2––

---+ O R 1+( ) µ– 3–( )




, r n 1+ .<
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Now formulas (31), (38), and (39) for the asymptot-

ics of elements  at p = 0, 1, and 2 can be repre-
sented in the form

(40)

One can prove by induction that this formula is also
valid for p > 2. Three cases should be considered in this
case: r ≥ n + p + 1, n < r < n + p + 1, and r ≤ n. Such a
selection of the index ranges stems from the need to
remove the modulus sign in the arguments of the Γ
functions and also takes into account the r–R and n–R
relations. Formula (40) represents the ME asymptotics
for fixed p and ∆ = |r – n|, as well as for large r and n,
for the case of pseudopower particle interaction.

The asymptotics of nonlinear MEs in one index with
the others fixed can be found by the same expedient.

The asymptotics of the ME  with n fixed and r 
∞ has the form

(41)

where

(41a)

(42)

Substituting (41) into recurrence relation (7) and
separating out the principal terms in r, we find the

asymptotics of . For any finite r, the asymptotics of

elements  is found by repeating this procedure.
One can show by induction that

(43)

K p n,
r

K p n,
r P µ( ) Γ –µ r n– p–+( )

Γ µ r n– p– 1+ +( )
---------------------------------------------------2µ R 1+( )µ 1–





=

+ O R 1+( )µ 2–( ) µ 3/2+( )2 µ– 1– R 1+( ) µ– 2––

---+ O R 1+( ) µ– 3–( )




.

K0 n,
r

K0 n,
r P̃ µ( ) rn µ– 5/2–

2n r 2–+ n 1–( )!
-----------------------------------=

× J1
1
r
---C0 n µ,( ) O r 2–( )+ +

 
 
 

,

P̃ µ( )
4kT0

m
------------ 

 
µΓ µ 5/2+( )n0

2

Γ µ–( )
--------------------------------,=

C0 n µ,( ) J1
n µ– 2–( ) n µ– 3–( )

2
---------------------------------------------------- 3

8
---– 

 =

+ 2J2 µ 5/2+( ) n 1–( ).

K1 n,
r

K p n,
r

K p n,
r P̃ µ( ) n p–( ) rn µ– p 5/2–+

2n r p 2–+ + n! p!
---------------------------------J1





=

+
rn µ– p 7/2–+

2n r p 2–+ + n 1–( )!
-----------------------------------------Cp n µ,( ) O

rn µ– p – 9/2+

2r
------------------------- 

 




.+
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The coefficients Cp(n, µ) are related as

(44)

Prior to finding Cp(n, µ) in explicit form, we note
that C0(n, µ) as a function of n is a linear combination
of power functions ni (i = 0, 1, 2) and the operator

transforms ni (at i ≥ 0) into a linear combination like

Taking into consideration that L(n–1) = (1/2)n–1 and
that the free term in (44) is a combination of the same
power functions of the index n, we arrive at

(45)

where

(46)

Note that formula (43) applies only if p ≤ n. With p =
n, the order of the principal term changes and the gen-

eral sequence of constructing  by using recur-
rence relation (7) breaks. The asymptotics of elements
with another sequence of subscripts is easily found

from asymptotics (43) and (45) by substituting  for

Jq. Indeed, this is true for linear elements  and

 and the recurrence relations for finding 

through , , and  coincide with

the recurrence relations for finding  through

, , and . Therefore,

(47)

Cp n µ,( ) 2
p
--- Cp 1– n µ,( ) n 1+

2n
------------Cp 1– n 1+ µ,( )– 

 =

–
2

n p!
-------- n µ– p 6–+( ) n p– 1+( )J1.

L F n( )( ) F n( ) n 1+
2n

------------F n 1+( )–=

T j
i n j.

j 1–=

i

∑

Cp n µ,( )
A2

p!
----F2 n( ) 1

p!
----F1 n( ) A1 3 pA2– 2 pJ1–[ ]+=

+
1
p!
----F0 n( ) A0 2 pA1– 3 p p 2–( )A2 2J1p p µ 4+ +( )+ +[ ]

–
1

p 1–( )!
-------------------F 1– n( ) A0 A2 A1 p 2–( )–+[

+ A2 p 1–( ) p 5–( ) 2J1 p 1–( ) µ 4+( ) ] ,+

A2 J1/2, A1 µ 5/2+( ) 2J2 J1–( ),= =

A0

J1

2
----- µ 2 ) µ 3+( ) 3

4
---–+ 

  2J2 µ 5/2+( ).–=

Kn 1+ n,
r

J̃q

K0 n,
r

Kn 0,
r Kn p,

r

Kn p 1–,
r Kn p 1–,

r 1– Kn 1+ p 1–,
r

K p n,
r

K p 1– n,
r K p 1– n,

r 1– K p 1– n 1+,
r

K p n,
r P̃ µ( ) n p–( ) rn µ– p 5/2–+

2n r p 2–+ + n! p!
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



=

+
rn µ– p 7/2–+

2n r p 2–+ + n 1–( )!
-----------------------------------------C̃p n µ,( ) O

rn µ– p – 9/2+

2r
------------------------- 

 




,+
(48)

where

(49)

This asymptotics is also valid for p ≤ n. If p = n, the

expressions for Cn(n, µ) and (n, µ) can be repre-
sented as

(50)

This, in view of the relationships  = –J1 and  =

J2 – 2J1, gives (n, µ) = Cn(n, µ). In other words, the

asymptotics of  may be calculated from either of
formulas (43) and (47).

With large n, the asymptotics of nonlinear elements

 is found in the same way. Writing formula (37) in
the form

(51)

where

(52)

and sequentially applying recurrence relation (7), we
arrive at

(53)

C̃p n µ,( ) Ã2

p!
------F2 n( ) 1

p!
-----F1 n( ) Ã1 3 pÃ2– 2 pJ̃1–[ ]+=

+
1
p!
----F0 n( ) Ã0 2pÃ1– 3p p 2–( ) Ã2 2 J̃1p p µ 4+ +( )+ +[ ]

–
1

p 1–( )!
-------------------F 1– n( ) Ã0 Ã2 Ã1 p 2–( )–+[

+ Ã2 p 1–( ) p 5–( ) 2 J̃1 p 1–( ) µ 4+( ) ] ,+

Ã2 J̃1/2, Ã1 µ 5/2+( ) 2 J̃2 J̃1–( ),= =

A0
J̃1

2
----- µ 2+( ) µ 3+( ) 3

4
---– 

  2 J̃2 µ 5/2+( ).–=

C̃n

Cn n µ,( ) 4 µ 5/2+( )
n!

------------------------- J2 J1–( ),=

C̃n n µ,( ) 4 µ 5/2+( )
n!

------------------------- J̃2 J̃1–( ).=

J̃1 J̃2

C̃n

Kn n,
r

K p n,
r

K0 n,
r P̃ µ( ) r

Γ r 3/2+( )
-------------------------=

× nr µ– 2–

2n r 2–+
---------------- J1

1
n
---D0 r µ,( ) O n 2–( )+ +

 
 
 

,

D0 r µ,( ) J1
–µ r 2–+( ) –µ r 3–+( )

2
----------------------------------------------------------=

× 2J2 µ 5/2+( ) r 1–( ),

K p n,
r P̃ µ( ) r

Γ r 3/2+( )
------------------------- nr p µ– 2–+

2n r p 2–+ +
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p!
-----J1





=

+
nr p µ– 3–+

2n r p 2–+ +
---------------------- 1
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-----Dp r µ,( ) O nr µ– p 4–+( )+





.
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(54)

In view of the fact that D1(r, µ) = (–µ – 3r)J1 + 1J1 +
D0(r, µ), one easily finds the coefficient Dp(r, µ) in
explicit form:

(55)

It should be noted that the one-index asymptotics
found above are valid for any angular dependence of
the scattering differential cross section.

ASYMPTOTIC VERSUS EXACT VALUES 
OF MATRIX ELEMENTS

The ME asymptotics found in the previous sections
were compared with the results of numerical calcula-

tion. First, we contrasted the calculated results for 
with analytical expression (24) for a linear ME in the
case of pseudopower particle interaction. The values of

 found numerically and those calculated by for-
mula (24) coincide with a high accuracy for µ ∈  [−1.5,
1] and for the indices in the ranges 0 ≤ r ≤ 100 and 0 ≤
n ≤ 100. This supports the validity of the algorithm for

 computation.

The quality of the asymptotic approximations for
pseudopower potentials were estimated with the ratios

η(r; n; µ) = / , where  denotes the sum of
explicitly separated terms in asymptotics (35) or (37).

The value of  was calculated by formula (24). It
turned out that an increase in µ slows down, albeit

insignificantly, the trend of  toward the asymptotic
value. For example, the ratio η(5; n; –1.5) reaches 0.9
at n = 18, while η(5; n; 1) reaches 0.9 at n = 43. At the
same time, the index r influences appreciably the close-

ness of the asymptotic and exact values of . With
r = 3, the ratio η(r; n; µ) reaches 0.9 at n = 13; with r =
10, at n = 100. Such high sensitivity of η(r; n; µ) to r
readily follows from nonuniform asymptotic expansion
(37). The same situation takes place for the asymptotics

of  in index r (see formula (35)). In this case, the
rate of approach to the asymptotic value depends
strongly on the parameter n.

Of great interest is to trace the difference between

the exact expression for the ME  and its asymptotic
value as the indices r and n grow simultaneously. This
case is important because linear MEs take the greatest
values near the principal diagonal. Figure 1 shows the r

Dp r µ,( ) Dp 1– r µ,( ) –µ 3r– p+( )J1.+=

Dp r µ,( ) p –µ 3r–( )J1 iJ1 D0 r µ,( )+
i 1=

p

∑+=

=  p –µ 3r–( )J1
p 1+( )p

2
---------------------J1 D0 r µ,( ).+ +

K0 n,
r

K0 n,
r

K0 n,
r

K̃0 n,
r

K0 n,
r K̃0 n,

r

K0 n,
r

K0 n,
r

K0 n,
r

K0 n,
r

K0 n,
r
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dependences of the ratio τ(r; ∆; µ) = /  for

various µ and ∆ = 5. Here, as before,  denotes
the sum of explicitly separated terms in asymptotic for-
mula (31). If µ is far from –1.5, its effect on τ(r; ∆; µ)
is insignificant. The rate of approach to the asymptotic
value increases with increasing µ but slows down as µ
approaches –1.5. With µ = –1.4999 and ∆ = 5, τ(r; ∆; µ)
reaches 0.9 at r ≈ 800. The ∆ dependence of τ(r; ∆; µ)
is demonstrated in Fig. 2. It is seen that the value of ∆
has a noticeable effect on the ratio / . As
∆ increases, the asymptotic and exact values of linear
MEs approach each other at larger r.

Asymptotic formulas (35) and (37) were compared
with linear MEs and potentials that include the angular
dependence of the cross section. In this case, formula (24)
is inapplicable and MEs are found by using a computa-

tional algorithm. We calculated  for a hybrid
model where the velocity dependence of the cross sec-
tion was taken to be the same as in the hard sphere
model (µ = 0.5) and the angular part is as that for true
Maxwellian molecules [6]:

(56)

Here, Θ and ϕ are related as

and K(k) and E(k) are complete elliptic integrals of the
first and second kind, respectively.

K̃0 ∆ r+,
r

K0 ∆ r+,
r

K̃0 ∆ r+,
r

K̃0 ∆ r+,
r

K0 ∆ r+,
r

K0 n,
r

FM Θ( )

=  
2ϕcos( )1/2

4 Θ 2ϕ ϕ K ϕsin( )cos
2

2ϕE ϕsin( )cos–( )sinsin
-------------------------------------------------------------------------------------------------------------------.

π Θ–
2

------------- 2ϕcos( )1/2K ϕsin( ),=

2

1

0

τ(r; ∆; µ)

0 10 20 30 40 50
r

µ:
–1.49
–1
0
0.5
1

Fig. 1. τ(r; ∆; µ) = /  vs. r for various µ and

∆ = 5.

K̃0 ∆ r+,
r

K0 ∆ r+,
r
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Dependence (56) has a singularity at Θ = 0. When

calculating Jq and  by formula (13), we used the
approximation

(57)

With such an approximation, the error in determin-

ing (Θ) does not exceed 10–4. Basically, the depen-

dence η(r; p, n; µ) = /  on the parameter n(r)
at r  ∞ (n  ∞) for Maxwellian molecules is the
same as for pseudomolecules.

Figures 3 and 4 compare the asymptotics of the non-

linear MEs  (see formulas (43), (47), and (53))
with the values found numerically for the pseudopoten-
tial at µ = 0.5. In the former figure, the ratio η(r, p, n;

µ) = /  is plotted against n for fixed r and p. As
for linear MEs, the place where the curve begins to sat-
urate in terms of n depends considerably on the two
other indices. The same situation takes place for the
asymptotics in r, as follows from Fig. 4. Such behavior
is explained by nonuniform asymptotic expansions
(43), (47), and (53). The ratio τ(r, p, ∆; µ) =

/  as a function of r with fixed p and ∆ is
shown in Fig. 5. The asymptotic value, in this case, is
reached faster than for the asymptotics in both r and n.

J̃q

FM Θ( ) FM z( )≈

=  
1.5π

64z5/4
--------------- 1.00005 0.927579 z 0.216338z+ +( ),

z Θ/2.sin
2

=

FM

K̃0 n,
r

K0 n,
r

K p n,
r

K̃ p n,
r

K p n,
r

K̃0 ∆ r+,
r

K p ∆ r+,
r

τ(r; ∆; µ)
3

2

1

0

–1
0 20 40 60 80 100

r

∆:
1
3
5
10

Fig. 2. τ(r; ∆; µ) = /  vs. r for various ∆ and

µ = 0.

K̃0 ∆ r+,
r

K0 ∆ r+,
r

ASYMPTOTICS OF MATRIX ELEMENTS 
FOR MAXWELLIAN MOLECULES

The asymptotic formulas derived in the previous
sections refer to the cases where one or two ME indices
tend to infinity. Of interest also is the asymptotics when
all three indices are large. We will show how such
asymptotic formulas can be found in the general case
for Maxwellian molecules. To be more specific, we will
consider molecules of the Maxwellian type, for which
the cross section varies in inverse proportion to g and
the angular dependence F(z), through which the coeffi-

cients Jq and  in (13) are determined, is arbitrary. For
such molecules, the situation is the simplest, since MEs
are other than zero only if the sum of subscripts equals
a superscript.

Here, it is more convenient to normalize the angular
part of the cross section as

(58)

Note that, for truly Maxwellian molecules, the
angular component F*(z) of the cross section has a non-
integrable singularity and is defined by the function
FM(z) given above.

Previously [4], the formula that relates nonlinear
MEs through linear ones for Maxwellian molecules
was derived:

(59)

where  is given by formulas (10), (11), and (13).

For Maxwellian molecules, the expression under the
summation sign in (10) is always zero except for the

J̃q

F* z( ) 4πF z( ).=

Kn p,
r r!

p!n!
---------- 1–( )k p

k 
  Kk n+ 0,

k n+ ,
k 0=

p

∑=

K p 0,
r

η(r, p, n; µ)
2.0

1.5

1.0

0.5

0 10 20 30 40 50 n

p:

1
3
5
10

µ = 0.5

r = 1

Fig. 3. η(r, p, n; µ) = /  vs. n for nonlinear MEs

at various p.
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r
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r
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case n + r = 2q. Since q ≤ min(n, r), such an equality
may hold only if q = r = n. Eventually, we have

(60)

Substituting (60) into (59) and changing the order of
integration, we find

(61)

The sum in (61) is easy to calculate, and we arrive at

(62)

In what follows, we will be interested only in non-
linear MEs; therefore, the last parenthesized term of the
integrand may be omitted. In (62), it is more convenient
to integrate over a symmetric interval by introducing a
new variable of integration z = (1 – x)/2:

(63)

Here, χ(x) = F*((1 – x)/2) and x = cosΘ.
Consider a function normalized within the interval

(–1, 1):

(64)

Kr 0,
r F* z( ) 1 z–( )r 1–( ) z.d

0

1

∫=

Kn p,
r  = 

r!
n! p!
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k 0=

p

∑ z.d

0

1

∫

Kn p,
r  = 

r!
n! p!
---------- F* z( )zp 1 z–( )r p– δp 0, δr n,–( ) z.d

0

1

∫

Kn p,
r r!

2n! p!
-------------- χ x( ) 1 x+

2
------------ 

 
n 1 x–

2
----------- 

 
p

x.d
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1

∫=

Sn N, x( ) 1
P
--- 1 x+

2
------------ 

 
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2
----------- 

 
N n–

, N n p,+= =

P 2
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-------------------------.=
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Fig. 4. η(r, p, n; µ) = /  vs. r for nonlinear MEs

at various p and n.
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Substituting (64) into (63) and taking into account
that r = N for Maxwellian molecules, we come to

(65)

It is easy to check that the function Sn, N(x) has a sin-
gle maximum at x0 = 2n/N – 1. It is essential that the
position of the maximum depends on the ratio n/N. It
should be emphasized that nonlinear MEs have so far

been expressed through the coefficients Jq and , that
is, through the moments of the scattering cross section
angular component that have the functions S0, N(x) and
SN, N(x) with peaks at the extremes of the interval. This
is the reason why large-index nonlinear MEs are diffi-
cult to calculate. The use of moments with the function
Sn, N(x), for which the maximum position depends on n,
eliminates this difficulty.

Figure 6 shows the function Sn, N(x) for N = 10 and
n = 0, 2, 5, and 10. It has a wide maximum, being sym-
metric at n/N = 0.5. As the quantity 2n/N – 1 approaches
the extremes of the interval, the function becomes more
asymmetric.

Figure 7 shows the function Sn, N(x) for different N
and n/N = 0.5. The peak grows with N, becoming nar-
rower. In the limit N  ∞, SN/2, N(x) tends to δ(x). For
arbitrary n/N, the function Sn, N(x) passes to δ(x – x0) in
the limit N  ∞. Now it becomes obvious that for-
mula (65) asymptotically (at large N) tends to

(66)

Kn p,
N 1

N 1+
------------- χ x( )Sn N, x( ) x.d
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1

∫=

J̃q

Kn N n–,
N 1

N 1+
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Fig. 5. τ(r, p, ∆; µ) = /  vs. r for nonlinear

MEs at various p and ∆.
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Figure 8 compares the quantity (N + 1)  with
the function F*(1 – n/N) for various N. Even with N =
30, the zeroth-order approximation is seen to give a
good estimate of MEs. A more accurate result can be
obtained from the asymptotic expansion of the integral
in (65) for larger N.

Consider the integral

(67)

Let the ratios α = p/N and β = n/N remain constant
at N  ∞. We represent the kernel ωp, n(x) as

(68)

The function g(x) has a maximum at the point x0 =
β – α, which is naturally coincident with the position of
the maximum of ωp, n(x). The width of the maximum is
found from relationship

Separating out the parameter N in the exponent of
(68), we find for integral (67)

(69)

Kn N n–,
N

I p n, N( ) = χ x( )Sn N, x( ) xd
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1

∫  = 
1
P
--- χ x( )ωp n, x( ) x.d
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ωp n, x( ) 1 x+
2
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2
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n
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2
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 ln
exp= =

+ p
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2
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Fig. 6. Function Sn, N(x) at N = 10 for various n.
Here, the function

does not depend on N, and the integral itself can be esti-
mated by the Laplace method. With α ≠ 0 and β ≠ 0, the
position of the peak lies within the segment [–1, 1] and
the asymptotics can be found by putting x = ψ(τ), where
the function ψ(τ) is implicitly defined by the relation-
ship f(x0) – f(x) = τ2 and by the expansion of the load

function χ(ψ(τ))ψ'(τ) into the series τk in the
vicinity of the point τ = 0 (see, e.g., [7]). This yields

(70)

The quantity P is the integral of the kernel ωp, n(x)
and can also be considered as an integral of Laplace
type. The asymptotic estimate of the integral has the
form

(71)

f x( ) β 1 x+
2

------------ 
 ln α 1 x–
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Fig. 7. Function Sn, N(x) for various N and n/N = 0.5.
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where the coefficients dk are found by expanding the
function ψ'(τ) into a series.

Substituting (71) into (70) and calculating ck and dk

yields

(72)

Note that asymptotic expansion (72) makes sense
even if α = p/N or β = n/N vanishes. However, in this
case, the position of the maximum is at an extreme of
the segment and such a way of finding the asymptotics
becomes to some extent invalid. To find the asymptotics
of integral (67) at small β, we represent it in the form

(73)

Changing the variable and expanding the load func-

I p n, χ x0( ) 2 α β–( )χ' x0( ) αβχ'' x0( )+[ ] 1
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----+=
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tion in the vicinity of the point x = –1, we find

(74)

Note that expansion (74) coincides with (72) at β =
0. Hence, formula (72) can be used to asymptotically

evaluate the MEs  for any value of the index n.

I p n, N( ) χ 1–( ) 2 n 1+( )χ' 1–( ) 1
N
---- 4χ'– 1–( )(+ +=

+ 2 n 2+( )χ'' 1–( ) ) n 1+( )
N2

----------------- O N 3–( ).+

Kn N n–,
N
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Fig. 8. (N + 1)  vs. n/M at various N. The function

FM(1 – n/N) is plotted for comparison.

Kn N n–,
N

Table 1.  Zeroth- (A0), first- (A1), and second-order (A2) approximations of the quantity (N + 1)  calculated by
asymptotic formula (72), as well as its accurate value (C) obtained by numerical calculation, for truly Maxwellian molecules
for several α = p/N

α = 1/5 α = 2/5 α = 3/5 α = 4/5

N = 5 A0 2.647092 3.500223 5.259962 10.902165

A1 3.157573 4.209428 6.423971 13.930613

A2 3.166976 4.233389 6.503574 14.523547

C 3.169085 4.238322 6.522939 14.790084

N = 10 A0 2.647092 3.500223 5.259962 10.902165

A1 2.902332 3.854825 5.841966 12.416389

A2 2.904683 3.860815 5.861867 12.564622

C 2.904944 3.861414 5.864154 12.594127

N = 20 A0 2.647092 3.500223 5.259962 10.902165

A1 2.774712 3.677524 5.550964 11.659277

A2 2.775300 3.679021 5.555939 11.696335

C 2.775333 3.679095 5.556218 11.699827

N = 30 A0 2.647092 3.500223 5.259962 10.902165

A1 2.732172 3.618423 5.453963 11.406906

A2 2.732433 3.619089 5.456175 11.423377

C 2.732443 3.619112 5.455556 11.424028

K 1 α–( )N αN,
N
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Table 1 lists the zeroth- (A0), first- (A1), and second-
order (A2) approximations of the quantity (N +

1) , as well as its accurate value (C) obtained
numerically for Maxwellian molecules. The first
approximation provides a good estimate of MEs even
for N = 5; the second approximation gives the value of

(N + 1)  accurate to fractions of a percent.

KβN αN,
N

KβN αN,
N

Table 2.  Zeroth- (A0), first- (A1), and second-order (A2)

approximations of the quantity (N + 1)  calculated by
asymptotic formula (72), as well as its accurate value (C)
obtained numerically for Maxwellian molecules with n close
to N

n = N – 3 n = N – 2 n = N – 1

N = 5 A0 3.500222 5.259962 10.902165

A1 4.209428 6.423971 13.930612

A2 4.233389 6.503574 14.523547

C 4.238322 6.522939 14.790084

N = 10 A0 7.084825 10.902165 23.384551

A1 7.934548 12.416389 28.036598

A2 7.980223 12.564622 29.206591

C 7.986631 12.594127 29.682732

N = 20 A0 14.908958 23.384551 51.526962

A1 16.089988 25.710575 59.961619

A2 16.176542 26.003073 62.438814

C 16.187143 26.056194 63.389937

N = 30 A0 23.384551 37.017069 82.610505

A1 24.935234 40.252079 95.319350

A2 25.065233 40.702318 99.258378

C 25.080483 40.781345 100.736674

Kn N n–,
N

For Maxwellian molecules, the angular dependence
χ(x) tends to infinity at x  1, the derivatives increas-
ing with their order. Therefore, in this range, the value

of (N + 1)  grows with n that is close to N, as
well as with N  ∞, and the asymptotic estimate is
found under very “stringent” conditions. However,
approximation (72) remains good, as demonstrated by
Table 2.
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Abstract—A hydrodynamic method with slip is used to construct a theory of uniform thermodiffusiophoretic
transfer of a volatile high-viscosity two-layer particle under conditions in which one component of a moderately
rarefied binary gas mixture undergoes phase transition on the particle’s surface. The solid spherical core and
high-viscosity sheath of the particle are concentric to each other. The theory suggests that, when moving, a two-
layer volatile aerosol particle may be considered as a homogeneous particle with an effective thermal conduc-
tivity. The effect of the evaporation rate, interfacial temperature steps, and presence of the core on the rate of
thermodiffusiophoresis is considered. Thermal diffusion terms, Stefan effects, and the heat evolution due to the
convective transfer of the evaporating mass are taken into account. Under the same initial assumptions, formu-
las derived in this work are of wider practical significance than those following from the conventional
approaches. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Two-layer aerosol particles occur upon vapor con-
densation on solid centers and are frequently encoun-
tered in clouds. They are of special interest in applica-
tions concerned with environmental protection, in
studying the capture (washing-out) of volatile (nonvol-
atile) or radioactive highly dispersed aerosols by
coarser evaporating drops, in investigating aerosol dep-
osition in condensing channels kept at different temper-
atures, in refining chemical engineering design
schemes, etc. In this work, we generalize our original
approach [1, 2], which takes into account an external
gradient of the relative concentration of one component
in a moderately rarefied binary gas mixture, interfacial
temperature steps, and the presence of a center (core)
with differing thermal properties.

STATEMENT OF THE PROBLEM, BASIC 
EQUATIONS AND BOUNDARY CONDITIONS

Let a two-layer spherical particle the outer surface
of which has a radius of curvature R be placed in an infi-
nite immobile binary gas mixture with constant col-
linear gradients of the temperature T, AT, and the rela-
tive concentration C, AC, of one component. The highly
viscous sheath of the particle is a pure volatile liquid
with an evaporation coefficient α. The solid core of the
particle and its sheath are concentric to each other. The
gas mixture, the sheath, and the core of radius R∗  have
thermal conductivities κ, κ', and κ'', respectively. The
desired rate of thermodiffusiophoresis Uph is reached
when the resulting action of all force involved disap-
pears [1]. The problem is solved in the coordinate sys-
tem with the origin placed at the center of the core. The
1063-7842/03/4809- $24.00 © 21103
polar axis z is directed along the vector AT = (∇ T)∞. The
velocity of the center of mass of the environment rela-
tive to the particle is U = –Uph. The stationary tempera-
ture distribution T ''(r) inside the core satisfies the
Laplace equation. The assumptions and notation are the
same as in [1] (see also the end of the text). The condi-
tions at infinity and at the interfaces are as follows.

Here, the normally directed flux of the first component
of the gas mixture at the interface is represented as the

r ∞: v Uiz, T T0 ATz, C+ C0 ACz,+= = =

r R: s v⋅ s KTsl' ∇ T KDsl' ∇ C+( ),⋅= =

n n1v
n1 n2+( )2m2

ρ
------------------------------D ∇ C KTD∇ Tln+( )– 

 ⋅

=  αν n1 n2+( ) Cs C–( ),

n n2v
n1 n2+( )2m1

ρ
------------------------------D ∇ C KTD∇ Tln+( )+ 

 ⋅ 0,=

T T' n VTT∇ T VTCT'∇ C+( ),⋅+=

n –κ∇ T κ '∇ T'+( )⋅ Lm1αν n1 n2+( ) Cs C–( ),–=

r R*: T' T'', n –κ '∇ T' κ ''∇ T''+( )⋅ 0,= = =

Fz 0,=

ρ m1n1 m2n2, C+
n1

n1 n2+
----------------,= =

Cs

n1s

n1 n2+
----------------, ν kT

2πm1
------------- 

  1/2

.= =
003 MAIK “Nauka/Interperiodica”
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normally directed flow of the volatile vapor, which is
removed from the interface through the Knudsen layer
and is proportional to the evaporation coefficient α ≥ 0
[1–3]. The substitution of the fraction 2α/(2 – α) for the
evaporation (condensation) coefficient α generalizes
the Hertz–Knudsen classical condition [4–6].

However, throughout this work, we use the close
approximation of this fraction, α ! 1 (numerical esti-
mates show that the rate of the thermophorertic transfer
of an aerosol particle is almost independent of this coef-
ficient when α ~ 1; at weak or moderate volatile evapo-
ration, this dependence is significant [1]). Temperature
steps are due to local gradients ∇ nT and ∇ nC in the
Knudsen layer that are normal to the interface. The gas-
kinetic coefficients VTT and VTC allow us to estimate the
effect of this layer on the vector velocity field v(r); sca-
lar distributions C(r), T(r), T '(r), and T ''(r); and the
desired rate U of the thermophoretic transfer of a mod-
erately coarse two-layer particle. Both coefficients are
of the order of O(λ). The analytical form of the coeffi-
cients of steps in temperature and in relative concentra-
tion of a volatile component in a binary gas mixture for
arbitrary ratios of the molecular masses and component
concentrations, together with techniques for evaluating
the coefficients, is given in [7–21]. The parameters KTsl,
KDsl, VTT, and VTC do not influence the evaporation coef-
ficient α and vice versa. Therefore, in the numerical
analysis which follows, slip coefficients and interfacial
temperature steps are assigned to a nonvolatile particle.
On the core surface r = R∗ , the temperature and normal
thermal flux are continuous. In the expansion of the
temperature dependence of the relative concentration
of the volatile saturated vapor into the Taylor series
near T = Tsur, the first two terms are left [1].

Introducing the dimensionless quantities

(1)

and omitting the tilde, we may state the boundary con-
ditions in the following linearized form:

(2)

(3)

r̃
r
R
---, ṽ

v
U
----, F̃z

Fz

6πη0RU
---------------------,= = =

T̃
T T0–
ATR

---------------, T'˜ T' T0–
ATR

----------------,= =

T''˜ T'' T0–
ATR

-----------------, C̃
C C0–
ACR

----------------,= =

r ∞: v Uiz, T z, C z;= = =

r 1: C0 1 C0–( )
m2

m1
------+

 
 
 

Uv r αν= =

× Cs τ( ) ∂Cs

∂T
---------

T τ=

T' τ–( ) C0– ACRC–+
 
 
 

;

(4)

(5)

(6)

(7)

(8)

(9)

Here, –1 ≤ ξ = cosΘ ≤ +1,

RATE OF THERMODIFFUSIOPHORESIS

1 C0–( ) C0 1 C0–( )
m2

m1
------+

 
 
 

Uv r

+ D AC
∂C
∂r
------- AT

KTD

T0
---------∂T

∂r
------+

 
 
 

0;=

Uv θ KTsl

η0

ρ0T0
-----------AT 1 ξ2–

∂T
∂ξ
------–=

– KDslDAC 1 ξ2–
∂C
∂ξ
-------;

εTT εTT' εTkTT
∂T
∂r
------ εCC0kTC

∂C
∂r
-------;+ +=

κ0

κ0'
-----–

∂T
∂r
------ ∂T'

∂r
--------+

Lm1ανn0

ATκ0'
-----------------------–=

× Cs τ( ) ∂Cs

∂T
---------

T τ=

T' τ–( ) C0– ACRC–+
 
 
 

;

r R*: T' T'',
κ0'

κ0''
-----∂T'

∂r
--------– ∂T''

∂r
---------+ 0;= = =

Fz 0.=

η0 η T0 C0 p0, ,( ), κ0 κ T0 C0 p0, ,( ),= =

κ0' κ ' T0 p0,( ), κ0'' κ '' T0 p0,( ),= =

τ  = 
T sur T0–

ATR
-------------------- ! 1, εT = 

ATR
T0

---------- ! 1, εC = 
ACR
C0

---------- ! 1,

kTT

VTT

R
--------- O Kn( ), kTC∼

VTC

R
--------- O Kn( ).∼= =

v r r ξ,( ) P1 ξ( ) Bnr n– 1– Dnr n– 1++{ } Pn 1– ξ( ),
n 2=

∞

∑–=

v θ r ξ,( ) –2
J2 ξ( )

1 ξ2–
------------------ n 1–( )Bnr n– 1–{

n 2=

∞

∑–=

+ n 3–( )Dnr n– 1+ }
Jn ξ( )

1 ξ2–
------------------,

C r ξ,( ) rξ Lnr n– 1– Pn ξ( ),
n 0=

∞

∑+=
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The properties of Gegenbauer (ultraspherical) poly-
nomials [1] are defined by the equations (n ≥ 2)

(3a)

(3b)

(3c)

(4a)

(4b)

(4c)

(5a)

(5b)

T r ξ,( ) rξ Fnr n– 1– Pn ξ( ),
n 0=

∞

∑+=

T' r ξ,( ) Gn' rn Hn' r n– 1–+{ } Pn ξ( ),
n 0=

∞

∑=

T'' r ξ,( ) Gn''r
nPn ξ( ).

n 0=

∞

∑=

Cs τ( ) C0– ∂Cs

∂T
---------

T τ=

G0' H0' τ–+( ) εCC0L0–+  = 0,

C0 1 C0–( )
m2

m1
------+

 
 
 

U –1 B2 D2+ +( )–

=  αν ∂Cs

∂T
---------

T τ=

G1' H1'+( ) εCC0 1 L1+( )–
 
 
 

,

C0 1 C0–( )
m2

m1
------+

 
 
 

U Bn 1+ Dn 1++( )–

=  αν ∂Cs

∂T
---------

T τ=

Gn' Hn'+( ) εCC0Ln–
 
 
 

,

εCC0L0 εTKTDF0+ 0,=

1 C0–( ) C0 1 C0–( )
m2

m1
------+

 
 
 

U 1– B2 D2+ +( )

=  
D
R
---- εCC0 1 2L1–( ) εTKTD 1 2F1–( )+{ } ,

1 C0–( ) C0 1 C0–( )
m2

m1
------+

 
 
 

U Bn 1+ Dn 1++( )

+
D
R
---- n 1+( ) εCC0Ln εTKTDFn+{ } 0,=

U 2 B2 D2–+( ) 2KTsl

η0

ρ0T0
-----------AT 1 F1+( )=

+ 2KDsl
D
R
----εCC0 1 L1+( ),

U nBn 1+ n 2–( )Dn 1++{ }

=  n n 1+( ) KTsl

η0

ρ0T0
-----------ATFn KDsl

D
R
----εCC0Ln+

 
 
 

,
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(6a)

(6b)

(6c)

(7a)

(7b)

(7c)

(8a)

(8b)

(8c)

In (8b), we may put

The linear dimensions and thermal properties of the
solid core spherical core and high-viscosity concentric
sheath (  ≠ ) are defined by the single parameter

(10)

Then, upon thermodiffusiophoresis, such a spheri-
cal two-layer aerosol particle may be considered as a
homogeneous object with an effective thermal conduc-
tivity κ∗ .

εT 1 kTT+( )F0 εT G0' H0'+( ) εCC0kTCL0+– 0,=

εT 1 2kTT+( ) 1 F1+( ) εT G1' H1'+( )–

+ 2εCC0kTC 1 L1+( ) 3 εTkTT εCC0kTC+( ),=

εT 1 n 1+( )kTT+{ } Fn εT Gn' Hn'+( )–

+ n 1+( )εCC0kTCLn 0,=

κ0

κ0'
-----F0 H0'–

Lm1ανn0

ATκ0'
-----------------------–=

× Cs τ( ) C0– ∂Cs

∂T
---------

T τ=

G0' H0' τ–+( ) εCC0L0–+
 
 
 

,

κ0

κ0'
----- –1 2F1+( ) G1' 2H1'–+

L1m1ανn0

ATκ0'
-------------------------–=

× ∂Cs

∂T
---------

T τ=

G1' H1'+( ) εCC0 1 L1+( )–
 
 
 

,

κ0

κ0'
----- n 1+( )Fn nGn' n 1+( )Hn'–+

L1m1ανn0

ATκ0'
-------------------------–=

× ∂Cs

∂T
---------

T τ=

Gn' Hn'+( ) εCC0Ln–
 
 
 

,

R*G0' H0'+ R*G0'', H0' 0,= =

R*
3 G1' H1'+ R*

3 G1'',=

κ0'

κ0''
-----R*

3 G1'– 2
κ0'

κ0''
-----H1' R*

3 G1''+ + 0,=

R*
2n 1+ Gn' Hn'+ R*

2n 1+ Gn'',=

κ0'

κ0''
-----R*

2n 1+ nGn'–
κ0'

κ0''
----- n 1+( )Hn' R*

2n 1+ nGn''+ + 0.=

δ* 1
κ0'

κ0''
-----– 

  1 2
κ0'

κ0''
-----+ 

 
1–

R*
3 .=

κ0' κ0''

κ*
1 2δ*+
1 δ*–

------------------κ0'
κ0' , if R* 0=

κ0'', if R* 1.=



= =
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The z projection of the velocity of the center of iner-
tia of the gaseous environment relative to the particle is
given by

(11)

where

(12)

(13)

U 2KTsl

η0

ρ0T0
-----------AT

δ'
δ
---- 2KDsl

D
R
----δ''

δ
-----+=

+
αν

C0 1 C0–( )
m2

m1
------+

--------------------------------------- 2
κ0

κ*
------

∂Cs

∂T
---------

T τ=

εTKTD–




– εCC0 1 2
κ0

κ*
------ 2 kTT kTCKTD–( )+ + 

 


 1
δ
---,

δ 1 2
κ0

κ*
------+ 

  2 1 C0–( )ανR
D

-----------+ 
 =

+ 2
Lm1ανn0

ATκ*
----------------------- ∂Cs

∂T
---------

T τ=

εTKTD+ 
 

+ 2kTT 1 C0
ανR

D
-----------– 2 1

Lm1ανn0

ATκ*
-----------------------

∂Cs

∂T
---------

T τ=

+
 
 
 

+
 
 
 

– 4
kTC

εT
--------

κ0

κ*
------ 1 C0–( )ανR

D
-----------

∂Cs

∂T
---------

T τ=



+ εTKTD 1
Lm1ανn0

ATκ*
-----------------------

∂Cs

∂T
---------

T τ=

+
 
 
 





,

δ' = 
κ0

κ*
------ 2 1 C0–( )ανR

D
-----------+ 

  εTKTD εCC0+( )
Lm1ανn0

ATκ*
-----------------------+

+ kTT 1 C0–( )ανR
D

----------- 2 1
Lm1ανn0

ATκ*
-----------------------

∂Cs

∂T
---------

T τ=

+
 
 
 

+
 
 
 

–
kTC

εT
-------- 2

κ0

κ*
------

∂Cs

∂T
---------

T τ=

εCC0–
 
 
 

1 C0–( )ανR
D

-----------




+ 2εTKTD 1
Lm1ανn0

ATκ*
-----------------------

∂Cs

∂T
---------

T τ=

+
 
 
 





,

δ''
κ0

κ*
------ 1 C0–( )ανR

D
-----------

∂Cs

∂T
---------

T τ=

2εCC0+ 
 =

+ εTKTD εCC0+( ) 1
Lm1ανn0

ATκ*
-----------------------

∂Cs

∂T
---------

T τ=

+
 
 
 
(14)

The parameters δ, δ', and δ'' linearly depend on the
evaporation coefficient α:

where

ANALYSIS OF RESULTS

The derivative dU/dα changes sign twice when

These equalities are satisfied for spherical homoge-
neous bodies with a thermal conductivity κ0 ≈ κ∗  (low
thermal conductivity) and κ0 ! κ∗  (high thermal con-
ductivity), respectively. These conditions meet with the
corresponding equations [1] for thermophoresis (AC =
0) of a volatile homogeneous sphere (R∗  = 0) without
considering temperature jumps (kTT = kTC = 0).

Figure 1 plots κ∗ /  against the reduced radius R∗
of the spherical core at different ratios / . In gen-
eral, when a spheroidal aerosol particle with a spherical

+ 2kTTεCC0 1
Lm1ανn0

ATκ*
-----------------------

∂Cs

∂T
---------

T τ=

+
 
 
 

– 2
kTC

εT
--------εCC0

κ0

κ*
------ 1 C0–( )ανR

D
-----------

∂Cs

∂T
---------

T τ=



+ εTKTD 1
Lm1ανn0

ATκ*
-----------------------

∂Cs

∂T
---------

T τ=

+
 
 
 





.

dU
dα
------- 2νΦ κ0 κ* 2

κ0

κ*
------

∂Cs

∂T
---------

T τ=



,
 
 
 

  εTKTD––=

– εCC0 1 2
κ0

κ*
------ 2 kTT kTCKTD–( )++ 

 


 1

δ2
-----,

Φ κ0 κ*,( ) 2KTsl

η0

ρ0D
---------- kTC 1 C0–( )

Lm1n0D
T0κ*

--------------------+ 
 =

– KDsl 1 2
κ0

κ*
------ 2kTT++ 

  1 C0–( ) 2kTD

Lm1n0D
T0κ*

--------------------+ 
 

–
1

C0 1 C0–( )
m2

m1
------+

--------------------------------------- 1 2
κ0

κ*
------ 2 kTT kTCKTD–( )+ + 

  .

Φ κ0 κ*,( ) 0,=

2
κ0

κ*
------

∂Cs

∂T
---------

T τ=

εTKTD–

– εCC0 1 2
κ0

κ*
------ 2 kTT kTCKTD–( )++ 

  0.=

κ0'

κ0' κ0''
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core evaporates, its outer radius R decreases and the
reduced radius R+ accordingly grows. As follows from
Fig. 1, the effective thermal conductivity increases
( /  < 1) or drops ( /  > 1) and reaches  (that

is, κ∗  = ) at R∗  = 1.

The effect of volatility on the thermal diffusion sca-
lar fields and rate of particle transfer may be neglected
when

The temperature distribution and the distribution of
the component’s relative concentration are virtually
independent of the thermal conductivity of the gaseous
environment if the thermal conductivity of the volatile
particle is high. A gaseous mixture that forms around
the particle transfers an uncompensated momentum to
it largely by thermal diffusion:

Numerical estimates made for a coarse (R = 100 µm)
and a moderately coarse (R = 10 µm) homogeneous
drop of ethanol in a C2H5OH–N2 binary gas mixture
show that the rate of thermophoresis (AC = 0) strongly
depends on α if the evaporation rate of the drop is low.
With 0.05 < α < 1, this dependence is extremely weak
[1]. At near-room temperatures, the volatility of the
alcohol increases the rate of thermophoretic transfer by
10–13% compared with the rate of thermophoresis for
a solid nonvolatile particle (C0 = 0.001–0.100, kTC = 0,
KTD = 0). This conclusion is consistent with results
obtained by Bakanov [22, 23], who considered the ther-
mophoresis of a solid nonvolatile aerosol particle.

κ0' κ0'' κ0' κ0'' κ0''

κ0''

ανR
D

----------- ! 1, Cs T0( ) Lµ
RgT0
------------ 1– 

  KTD ,∼

kTC KTD 1,
Lm1ανRn0

κ*
--------------------------- ! kTCT0.∼

δ 1 2kTT+( ) 1 C0–( )ανR
D

----------- 2εTKTD

Lm1ανn0

ATκ*
-----------------------+

+ 2 1 2 kTT kTCKTD–( )+( ) 1
Lm1ανn0

ATκ*
-----------------------

∂Cs

∂T
---------

T τ=

+ 
  ,

δ' kTT εCC0

kTC

εT
--------+ 

  1 C0–( )ανR
D

-----------

+ εTKTD εCC0+( )
Lm1ανn0

ATκ*
-----------------------

+ 2 kTT kTCKTD–( ) 1
Lm1ανn0

ATκ*
-----------------------

∂Cs

∂T
---------

T τ=

+ 
  ,

δ'' εTKTD εCC0+( ) 1
Lm1ανn0

ATκ*
-----------------------

∂Cs

∂T
---------

T τ=

+ 
 

+ 2εCC0 kTT kTCKTD–( ) 1
Lm1ανn0

ATκ*
-----------------------
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  .
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
However, Bakanov’s results virtually coincide with
some of the findings reported in the references of books
[7, 24].

In the case of moderately large particles (R = 10 µm), a
temperature step raises the rate of thermophoresis by 6–
8%, as follows from Fig. 2.

Figures 3 and 4 plot the α dependences of the ratios
of the thermophoretic (AC = 0) and diffusiophoretic rate
(AT = 0) to the corresponding velocity of a solid nonvol-
atile particle with and without considering the temper-
ature step kTT for different temperatures.

Our work develops an approach that is alternative to
the well-known conventional theories [7, 25, 26]. The
results presented here coincide with the predictions of
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2

0 0.2 0.4 0.6 0.8 R*

6

5

4
3

2
1

κ*/κ '0

Fig. 1. κ∗ /  vs. reduced radius R∗ . /  = (1) 100,

(2) 2, (3) 1, (4) 0.5, (5) 0.1, and (6) 0.01.
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Fig. 2. Rate U of the thermophoresis of the ethanol drop vs.
evaporation coefficient α at AT = 100 K/m, R = 10 µm, C0 =
0.01, and KTD = 0 (thermal diffusion is absent). The temper-
ature step kTT in the C2H5OH–N2 binary gas mixture (1–3)
is and (4–6) is not taken into account. The undisturbed tem-
peratures T0 are (1, 4) 283, (2, 5) 303, and (3, 6) 323 K.
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Fig. 3. Ratio U/U' (U' = 2 AT is the rate of

thermophoresis for a solid nonvolatile particle) as a function
of evaporation coefficient α for R = 10 µm, C0 = 0.01, and
KTD = 0 (thermal diffusion is absent). The temperature step
kTT (1–3) is not and (4–6) is taken into account. The undis-
turbed temperatures T0 are (1, 4) 283, (2, 5) 303, and (3, 6)
323 K.
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Fig. 4. Ratio U/U' (U' = KDslDAC is the rate of diffusio-
phoresis for a solid nonvolatile particle) as a function of
evaporation coefficient α for R = 10 µm, C0 = 0.01, and
KTD = 0 (thermal diffusion is absent). The temperature step
kTT (1, 3, 5) is not and (2, 4, 6) is taken into account. The
undisturbed temperatures T0 are (1, 2) 283, (3, 4) 303, and
(5, 6) 323 K.
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Fig. 5. Transfer velocity U for a pure ethanol drop vs. its
radius. (1) Formula from [25] and (2, 3) expressions (11)–
(14) with α = 1 and 0, respectively (AT = 100 K/m, T0 =
323 K, C0 = 0.1, kTC = 0, and KTD = 0).
these theories only in the limiting case

In the case of a moderately coarse volatile pure
high-viscosity aerosol particle, the inequality ανR/D @
1 fails even if the diffusion evaporation is high (α ~ 1).
When calculated from expressions (11)–(14) or by the
formula derived in [25], the rate of thermophoretic
transfer of a single moderately coarse volatile solid
sphere has different values when the evaporation is
weak and moderately high. As follows from Fig. 5,
where the rate of thermophoresis U is plotted against
the radius R of a spherical ethanol drop in the C2H5OH–
N2 gas mixture, the difference between our results and
those of the conventional theory [25] reaches 15%
when a coarse aerosol particle evaporates intensely.
This difference increases to 30% if the binary mixture
is saturated by the volatile component vapor, C0 
Cs(T0), all other things being equal.

NOTATION
r, radius vector to the point of observation (m);

(r, Θ, ϕ), spherical coordinates (m, rad, rad); (ir , iθ, iϕ),
corresponding dimensionless unit vectors; (n, s, iϕ),
right-hand triple of dimensionless local characteristic
unit vectors; (R, R∗ ), radii of curvature of the outer and
inner surfaces of the spherical layer of the volatile high-
viscosity sheath (m); U, velocity of the center of inertia
of the binary gas mixture (m/s); Uph = –U, velocity of
uniform thermophoretic motion of the volatile particle
(m/s); F, resultant force (N); Kn, dimensional Knudsen
number; v(r), vector velocity field in the gaseous envi-
ronment (m/s); C(r), scalar field of a dimensional quan-
tity—relative concentration of the first component in
the gas mixture; (T(r), T '(r), T ''(r)), temperature distri-
butions outside the two-layer particle, inside the sheath,
and inside the core, respectively (K); Tsur, mean temper-
ature on the surface of the aerosol particle (K); (p0, T0,
C0), undisturbed values of the pressure, temperature,
and relative concentration of the volatile component (at
the geometrical center of the core of the two-layer
particle in its absence) (Pa, K, dimensionless); (AT =
(∇ T)∞, AC = (∇ C)∞), constant gradients of the tempera-
ture and relative concentration of the volatile compo-
nent in the gaseous environment at infinity (K/m, m–1);
(KTsl, KDsl), dimensionless gas-kinetic coefficients of
thermal and diffusion slips of the binary gaseous envi-
ronment; (VTT, VTC and kTT, kTC), temperature steps at
the boundary of the condensed phase (K, dimension-
less); D, coefficient of interdiffusion of the gas mixture
component (m2/s); KTD, dimensionless thermal diffu-
sion ratio; [(n1, n2), (m1, m2), (λ1, λ2)], numerical con-
centrations, masses, and mean free paths of gas mole-
cules of the first and second sort (m–3, kg, m); (ρ, η),
density and dynamic viscosity of the gaseous environ-

C0 ! 1 ! 
ανR

D
-----------, Cs T0( ) ! 1,

n0

n0'
-----  ! 1.
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ment (kg/m3, (Pa s)); (κ, κ', κ''), thermal conductivities
of the gaseous environment, sheath, and core, respec-
tively (J/(K m)); (n1s, Cs), absolute and relative concen-
trations of the saturated vapor of the condensed volatile
phase (m–3, dimensionless); L, heat of vaporization
(J/kg); α, dimensionless evaporation coefficient; (µ, n'),
molar mass and absolute concentration of molecules in
the drop (kg/mol, m–3); k, Boltzmann constant (J/K);
Rg, gas constant (J/(K mol); ∇ , del operator (m–1); E2,
second-order Stokes operator (m–2); ∆ is the Laplacian
(m–2); ξ = cosΘ, dimensionless angular variable;

[ (ξ) = Jn(ξ), (ξ) = Pn(ξ)], Gegenbauer ultras-
pherical polynomials (dimensionless); (B, D, F, G', H',
G", L), unknown coefficients of natural-exponent
expansions (dimensionless); (εT, εC), dimensionless
small parameters; (δ∗ , δ, δ', δ''), dimensionless param-
eters.

SUBSCRIPTS

Tsl, thermal slip; Dsl, diffusion slip; ph, phoretic
motion; s, saturated vapor; g, gas; TD, thermal diffu-
sion; α, reactive component; v, vector velocity field;
T, temperature; (TT, TC) by temperature steps: the first
T refers to temperature field, and the second indicates
that the step is due to temperature (T) or concentration
(C) discontinuity; 1, 2 by physical quantities refer to
molecules of the first and second sort, respectively; 0
refers to undisturbed parameters; z, projection onto the
Oz axis; n, r, Θ mean projections onto the normal (n),
radial (r), and tangential (iθ) directions; sur, surface.
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Abstract—When fast  ions collide with atomic or molecular targets, the total charge exchange cross section

decreases with increasing target density. This is because the excitation levels of resulting  ions are sup-
pressed because of ionization by target atoms. The effect of target density on the total charge exchange cross
section may amount to one order of magnitude or more depending on the charge and energy of an incident ion,
as well as on the density and inner shell configuration of target atoms. Numerical calculations are performed
for partial (in the principal quantum number n) cross sections σ(n) and total cross sections σtot = Σnσ(n) of
charge exchange in the case of collisions of fast multiply charged ions having an energy E in the range
100 keV/u–10 MeV/u with gas or solid targets. © 2003 MAIK “Nauka/Interperiodica”.

Xq
+

X q 1–( )+
INTRODUCTION

Charge exchange in atom–ion collisions,

(1)

is an effective mechanism of generating excited ions

[ ]*, where  is an incident ion with a charge

q and A is a target atom. The distribution of ions 
over excited states, which depends on the cross sections
of charge exchange passing an ion into certain quantum
states (partial or selective charge exchange cross sec-
tions), defines the radiation of the ion after collision.
The total (over all final states) charge exchange cross
sections specify the lifetime and mean charge of ion
beams when they interact with atoms and molecules of
a residual gas in accelerators or with plasma targets
[1, 2].

In recent years, the spectroscopic properties of

resulting  ions, especially their radiation in the
X-ray and VUV spectral ranges, have attracted consid-
erable attention from researchers engaged in the phys-
ics of plasma or those that study the interaction of ion
beams with gaseous and solid targets [3–5]. This issue
is also of interest to those researching the diagnostics of
a laboratory plasma heated by neutral atomic beams
[6, 7]. Therefore, detailed research into charge
exchange, the distribution of resulting ions over excited
states, and the determination of total cross sections are
of undeniable interest.

In this study, we consider the effect of target density
on the charge exchange cross section when fast multi-

Xq
+

A X q 1–( )+

[ ] * A+,+ +

X q 1–( )+

Xq
+

X q 1–( )+

X q 1–( )+
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ply charged ions  collide with target atoms or mol-
ecules. It will be shown that, as the target density

grows, the probability that  ions will be brought
into highly excited states decreases, since they are ion-
ized by target atoms. As a result, the total charge
exchange cross sections also decrease. The effect of tar-
get density on the total cross section may be relatively
high: about one order of magnitude or higher.

Below, we use atomic units.

PARTIAL AND TOTAL CHARGE EXCHANGE 
CROSS SECTIONS

The cross sections of charge exchange that brings
atoms (ions) into quantum states nlj (that is, partial
cross sections),

(2)

have certain distributions over the levels nlj depending
on the collision conditions (here, n is the principal
quantum number and l and j are the orbital and total
moments of a captured electron in the final state). In the
case of statistical distribution, the partial cross sections
and total cross section can be represented as

(3)

(4)

Xq
+

X q 1–( )+

Xq
+

A X q 1–( )+

nlj( )[ ] * A++ +

σnlj
2 j 1+

2 2l 1+( )
----------------------σnl, σnl

2l 1+

n2
--------------σn,= =

σtot σnlj

nlj

∑ σn,
n n0=

∞

∑= =
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where n0 is the ground state of the ion  and σnl

and σn are the cross sections averaged over the quantum
numbers j and l, respectively.

In general, the distribution of ions (nlj) over
levels nlj is defined by Stark mixing of these levels in
an electric field that is produced in an ion beam or in a
plasma by surrounding charged particles, and finding
the distribution over nlj is a challenge. Experimental
data for partial charge exchange cross sections are vir-
tually absent: only total cross sections have been
reported in the literature. However, in the case of mul-
tiply charged ions, the split of nlj levels may be consid-
erably large. This allows one to measure the emission
intensities from resulting ions, which are known to be
sensitive to partial charge exchange cross sections.
Associated experiments were carried out, e.g., in [8–
10], where the partial cross sections of charge exchange
between multiply charged ions and solid or gaseous tar-
gets were determined from the X-ray emission of
related ions. It should be noted that such indirect mea-
surements of cross sections face considerable computa-
tion difficulties associated with the need for calculating
the energy levels and wavelengths, as well as the prob-
abilities of radiative transitions in multiply charged
ions.

When the collision energy is low, the total cross sec-
tion of charge exchange between multiply charged ions
and atoms is weakly dependent on energy and is given
by [11]

(5)

where It is the binding energy of a target atom in the
shell in Rydberg units (1 Ry = 13.606 eV).

The principal quantum number nmax of that state of

the  ion into which charge exchange brings the
ion with the maximal probability is found from the clas-
sical model [12]:

(6)

As the relative velocity v  increases, the cross sec-
tion of charge exchange from the shell with the binding
energy It drops sharply by the law

(7)

and has a distribution over principal quantum numbers
n, which peaks at n = nmax and falls as n–3 for n @ nmax.
As to the distribution over orbital quantum numbers l,
ions in Rydberg states nl with n @ 1 have, as a rule, l =
0, 1, or 2 if the collision energy is high (see, e.g., [10–
12]). As the collision energy increases further, charge

X q 1–( )+
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σtot constan t
q 10 15–×
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exchange brings the resulting ion  into the
ground state n0l0.

As is seen, the pattern of excited ion formation upon
charge exchange with atoms is rather complicated even
if the collision energy is high. For simplicity, we restrict
the analysis to charge exchange between fast ions and
atoms that brings the ions into states with certain prin-
cipal quantum numbers n:

(8)

that is, the distributions of the resulting ions over the
quantum numbers l and j will not be considered.

EFFECT OF TARGET DENSITY

The integral (including all states) charge exchange
cross section depends not only on the relative velocity
v  and atomic configurations of colliding particles but
also on the target density. For low-density targets, the
summation over levels with quantum numbers n (see
expression (4) for the total cross section) goes basically
from the ground state n = n0 to infinity, n = ∞. As the
target density increases, the sum over n is cut off at a

certain ncut, since the states of [ (n)]* ions are
suppressed by ionization collisions with target atoms:

(9)

Thus, as the target density grows, the fraction of
resulting ions in excited states decreases and so does
the total charge exchange cross section.

Let us illustrate this using charge exchange between
H-like oxygen ions and helium atoms as an example:

(10)

The effective cross sections of ionization, charge
exchange, and excitation when O7+ oxygen atoms inter-
act with He atoms at energies E > 1 keV/u are given in
Fig. 1. The cross sections were computed with the
CAPTURE [13] and LOSS [14] codes. In the energy
range E = 1–100 keV/u, the exchange cross section,
according to (5), is quasi-constant, σes ≈ 1.9 × 10–15 cm2,
and then drops sharply by law (7). The cross section of
O7+ ion ionization by He atoms reaches a maximum,
σion ≈ 3.0 × 10–19 cm2 at E ≈ 1 MeV/u. Figure 1 also
shows the excitation cross section for the 1s–2p transi-
tion in an O7+ ion colliding with a He atom. It is seen
that charge exchange is the only process leading to the
formation of excited O6+ ions for E = 1–800 keV/u.

The distribution of He-like oxygen ions arising after
charge exchange over principal quantum numbers n is
demonstrated in Fig. 2 for E = 100, 400, and
3200 keV/u. As the energy of incident ions grows, the
distribution maximum shifts toward lower n. For E =
3200 keV/u, charge exchange brings the O6+ ion prima-
rily into the ground 1s state (n0 = 1).

X q 1–( )+

Xq
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n( )[ ] * A+,+ +

X q 1–( )+

X q 1–( )+

n( )[ ] * A Xq
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Let us make several numerical estimates for reaction
(10) when the principal quantum number n equals 10:

(11)

The probability of the radiative decay of an excited
O6+ ion (n = 10) to all lower levels and the lifetime are
estimated by the Kramers formula [15] as A(n = 10) =
2.6 × 109 s–1 and τ(n = 10) = 3.8 × 10–10 s. For this rel-
atively long time, an excited O6+ ion (n = 10) interacts

O7+ He O6+ n 10=( ) He+.+ +

10–21

101100

10–19
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10–15

102 103 104 105 106 107
10–23

σ, cm2

Ion energy, keV/u

O7+ + He

He ion

O7+ ion

O7+ 1s–2p

10–21

40

10–19

10–17

10–15

8 12 16 20 24 28 32

O7+ + He → O6+(n) + He+

~n–3

σ, cm2

Principal quantum number n

1

2

3

Fig. 1. Cross sections of charge exchange, ionization, and
excitation upon collision of O7+ ions with He atoms. EC,
charge exchange cross section; He ion, cross section of He
ion ionization by O7+ ions; and O7+ ion, cross section of
collision between O7+ ions and He atoms. The dashed line
is the excitation cross section for the 1s–2p transition in an
O7+ ion upon collision with a He atom (calculation by the
CAPTURE and LOSS codes; this study).

Fig. 2. Distribution of the cross sections of the charge
exchange reaction O7+ + He  O6+(n) + He+ over the
principal quantum numbers n for E = (1) 100, (2) 400, and
(3) 3200 keV/u. σtot = (1) 6.0 × 10–16, (2) 6.8 × 10–17, and

(3) 1.2 × 10–20 cm2 (CAPTURE code; this study).

EC
with He atoms, ionizing with a rate ρ(He)vσion s–1,
where ρ(He) is the He atom density and σion is the ion-
ization cross section for O6+ ions in the state n = 10 at a
relative velocity v. Note that the ionization cross sec-
tions for highly excited (n @ 1) atoms and ions grow
markedly with n: σion ~ n2. For example, with E =
100 keV/u (v  = 4.4 × 108 cm/s), σion and vσion estimated
by the Thomson formula [15] are, respectively, 8 ×
10−16 cm2 and 3.4 × 10–7 cm3/s. The ionization rate
ρ(He)vσion should be compared with the probability of
radiative decay A(n = 10) = 2.6 × 109 s–1. It follows that,
for the He atom density ρ(He) > 2.6 × 109 s–1/3.4 ×
10−7 cm3/s ≈ 7.5 × 1015 cm–3, all levels with quantum
numbers n > 10 in the resulting O6+ ion will be ionized
and make no contribution to the total charge exchange
cross section.

Thus, with the target density taken into account, the
total cross section takes the form

(12)

where n0 is the ground state of the  ion and ncut
(cutoff parameter) is the upper limit of summation.

In general, the value of ncut is estimated from the
condition that the ionization rate equals the probability
of radiative decay of the level n to all lower levels:

(13)

where ρt is the target atom density and σion(n) is the

cross section of ionization of the atom  from
the state with a principal quantum state n at an ion
velocity v.

Again using the Kramers formula for the total prob-
ability of decay A(n) and the Thomson formula for the
ionization cross section, we find from (13) an estimate
of the maximal principal quantum number ncut starting
from which the levels of resulting ions decay by ioniza-
tion due to collision with target atoms:

(14)

where ρt is the target atom density (cm–3), v  is the ion
velocity in atomic units (1 a.u. = 2.2 × 108 cm/s), and E
is the energy of incident ions (keV/u).

σtot σ n( ),
n n0=

ncut

∑=

X q 1–( )+

ρtσion n( )v A n( ) Ann' ,
n' n0≥

n 1–

∑= =

X q 1–( )+

ncut n0 ∆n,+=

∆n q
1018

Z t
2ρt cm 3–[ ]

---------------------------
 
 
  1/7

v 2

10q2
----------- 

 
1/14

≈

≈ q
1018

Z t
2ρt cm 3–[ ]

---------------------------
 
 
  1/7

E keV/u[ ]
250q2

----------------------- 
  1/14

,
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From Eq. (14), it follows that, as the target becomes
heavier and denser, more and more levels decay as a
result of ionization; that is, charge exchange with exci-
tation makes a lesser contribution to the total cross sec-
tion. The value of ncut depends on the relative velocity
rather weakly: ncut ~ v 1/7, as demonstrated in Table 1.

The expression for the ionization of atoms and ions
by electrons that is similar to (14) was given in [15].
Unlike (14), ncut in this expression depends on the elec-
tron temperature Te in the plasma rather than on the ion
beam energy.

NUMERICAL CALCULATIONS VERSUS 
EXPERIMENTAL DATA

In this study, the effect of target density on the
charge exchange cross section is demonstrated with
collisions of multiply charged ions with light atoms or
multielectron targets (SiO2) with a complex electronic
configuration. The partial and total charge exchange
cross sections were calculated by the CAPTURE code
[13]. In brief, charge exchange cross sections are calcu-
lated as a function of the impact parameter with nor-
malized charge exchange probabilities WN(b, v ) in the
form

(15)

Here, b is the impact parameter, WN is the charge
exchange probability normalized to all possible chan-

nels k of  ion formation, the probabilities WN ≤ 1,
the probabilities W01 are calculated in the Brinkman–
Kramers approximation with hydrogen-like wave func-
tions (for details, see [13]), and the subscripts 0 and 1
refer to the initial and final states of the system.

Figure 3 shows the total cross section σtot of the
charge exchange reaction

vs. He atom density with the energy E = 100 keV/u. In
this specific case, as the He atom density ρt grows from
1019 to 1021 cm–3, the total charge exchange cross sec-
tion decreases by roughly one order of magnitude fol-

lowing the law σtot ~ . In general, σtot may vary
with ρt in a different way.

For multielectron targets with a complex electronic
configuration, the situation gets much more compli-
cated because of the need for considering the capture of
inner-shell electrons. This fact, the capture of inner-

σ01 b v,( ) 2π W01
N b v,( )b b;d

0

∞

∫=

W01
N b v,( )

W01 b v,( )

1 W0k b v,( )
k

∑+

-----------------------------------------.=

X q 1–( )+

O7+ He O6+ He++ +

ρt
0.7–
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shell electrons, is most typical of charge exchange
between fast ions and complex atoms (see, e.g., [11]).
Figure 4 shows the contribution from inner-shell elec-
trons of cesium (55 electrons) in the reaction of
cesium–carbon charge exchange:

(16)

It is seen that, at E > 30 keV/u, charge exchange
takes place only through the capture of inner-shell elec-
trons of Cs. The capture of outer 6s electrons does not
influence the process.

Figure 5 plots the cross section distribution over the
principal quantum number n in the reaction of charge
exchange between H-like Ge ions and Ne atoms,

(17)

for the energy E = 5.5 MeV/u. As follows from the
Monte Carlo calculations [16] and calculations per-
formed in this work, charge exchange causes excited
states with n = 2–5. The cross section of charge
exchange into the ground state n0 = 1 is three orders of
magnitude smaller.

C6+ Cs 1s2…5s25 p66s( ) C5+ Cs+.+ +

Ge31+ Ne Ge30+ n( ) Ne++ +

Table 1.  Limiting quantum numbers ncut (condition (14))
that contribute to the total cross section of the charge
exchange reaction O7+ + He  O6+ + He+ vs. He atom den-
sity ρt and oxygen ion density E

ρt , cm–3 E = 100 keV/u E = 400 keV/u E = 3200 keV/u

1 × 1010 58 64 74

1 × 1013 22 24 28

1 × 1016 9 10 11

1 × 1019 4 4 5

1 × 1022 2 2 3

10–17

1012 1015 10211018

10–16

10–15

10–18

O7+ + He

~ρt
–0.7

σ, cm2

He atom density ρt, cm–3

Fig. 3. Cross section of the charge exchange reaction O7+ +
He  O6+ + He+ vs. He atom density for E = 100 keV/u
(CAPTURE code; this study).
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The total charge exchange cross sections for reac-
tion (17) are presented in Fig. 6 for the energy interval
E = 3–12 MeV/u. Here, the experimental data [17] are
compared with the Monte Carlo calculations [16];
eikonal approximation [17]; and our calculations,
where ncut was varied from 15 to 8 and the energy was
raised from 4.5 to 11.5 MeV/u, respectively.

The total charge exchange cross sections are often
estimated by the Schlachter semiempirical formula [18]

(18)
σtot E( ) 1.1 10 8–  cm2q0.5/Z t

1.8u 4.8–×=

× 1 0.037u2.2–( )exp–[ ] 1 2.44– 10 5– u2.6×( )exp–[ ] ,

u E keV/u[ ] / q0.7Z t
1.25( ), u 10, q 3,≥ ≥=

101

10–19

10–17

10–15

10–13

10–21

102 103 104

σ, cm2

Ion energy, keV/u

C6+ + Cs6s

5s

4s

3s 2s

5p

4p

3p

2p

4d

3d

Fig. 4. Cross sections of the charge exchange between car-
bon ions and cesium atoms, C6+ + Cs  C5+ + Cs+, vs.
C6+ ion energy (low-density target). The contributions from
different cesium atom subshells (continuous curves) to the
total charge exchange cross section (the curve connecting
the circles) are indicated (CAPTURE code; this study).

5

0

10

15

20

25

30

8 12 16 20 24

Ge31+ → Ge30+(n)

Ne

Principal quantum number n

σn/Σn σn, %

Fig. 5. Calculated relative cross sections of charge exchange
between H-like Ge ions and Ne atoms, Ge31+ + Ne 
Ge30+(n) + Ne+, for an energy of 5.5 MeV/u: (s) Monte
Carlo method and (d) CAPTURE code (this study).

4

where u is the scaled energy of a projectile ion and Zt is
the nuclear charge of a target atom.

At high energies, u @ 10, cross section (18) has the
asymptotics

Schlachter formula (18) is correct up to a factor of
2–3 (similarly to the Lotz formulas for the ionization of
atoms and ions by electron impact) and is very suitable
for the estimation of charge exchange cross sections at
medium and high energies. For low energies, u < 1, for-
mula (18) does not apply. Schlachter estimates of the
cross sections are also shown in Fig. 6.

Figures 7–10 show the total cross sections of charge
exchange between fast nickel nuclei and SiO2 mole-
cules,

(19)

calculated at energies E > 100 keV/u and various SiO2
densities (the state of SiO2 was varied from gaseous to
solid). The cross section of charge exchange with the
molecules were calculated as the sum of the charge
exchange cross sections per constituent atoms. At high
energies, such an approach is a fairly close approxima-
tion.

Experimental X-ray investigation of heavy ion
slowing-down in a material is currently proceeding at
the GSI (Darmstadt, Germany) with the UNILAC
accelerator [4]. In these experiments, targets are SiO2
aerosols with a density varying over a wide range: from
0.04 g/cm3 (ρt = 1.2 × 1021 cm–3) to the density of

σtot E( ) 1.1 10 8–  cm2q3.9Z t
4.2E 4.8– keV/u[ ] .×≈

Ni28+ SiO2 Ni27+ SiO2[ ] +,+ +

10–17

4
10–18

10–16

6 8 10 12

Ge31+ + Ne

σ, cm2

Ion energy, MeV/u

Fig. 6. Total cross sections of charge exchange between H-
like Ge ions and Ne atoms, Ge31+ + Ne  Ge30+(n) +
Ne+, vs. Ge31+ ion energy: d, data points [17]; s, calcula-
tion by the Monte Carlo method [16]; dotted line, eikonal
approximation [17]; dashed line, Schlachter semiempirical
formula [18]; and continuous curve, CAPTURE code (this
study).
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quartz, 2.23 g/cm3 (ρt = 6.7 × 1022 cm–3). The purpose
of the investigation is to study the effect of density on
the energy losses of incident ions.

In this study, we calculated the charge exchange
cross sections by formulas (12), (14), and (15) in view
of the effect of the target density. Figure 7 shows the
total charge exchange cross sections for reaction (19) in
the case of a low-density target (ρt  0) that were cal-
culated with the cutoff parameter ncut = ∞ and with
regard to electron capture from all SiO2 shells. At ener-
gies E = 100 keV/u–1 MeV/u, electrons are seen to be
captured largely from the L and M shells of SiO2 to the
levels n = 1–5 of hydrogen-like Ni27+ ions. At E >
10 MeV/u, only K electrons of the target participate in
the process.

As the target becomes denser, the pattern changes
radically. For ρt = 7.0 × 1022 cm–3 (Fig. 8), charge
exchange proceeds through the capture of only K elec-

10310–22

104 105102

10–20

10–18

10–16

K
L

M

K + L + M

Ni28+ + SiO2

σ, cm2

Ion energy, keV/u

Fig. 7. Cross sections of charge exchange between bare Ni
nuclei and SiO2 molecules, Ni28+ + SiO2  Ni27+ +

[SiO2]+, vs. ion energy for the zero target density (ρt 
0). K, L, and M are the contributions from the corresponding
SiO2 atomic shells. K + L + M is the total charge exchange
cross section (calculation in this study).
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trons in the entire energy range and the total cross sec-
tion decreases by more than one order of magnitude.

Figure 9 compares the total cross sections of charge
exchange between Ni28+ and SiO2 that were calculated
for a small (ρt  0, curve 1) and high (ρt = 7 ×
1022 cm–3) SiO2 molecule density. With the energy E
varying in the range 100–1000 keV/u, taking into
account the density effect leads to a decrease in the
charge exchange cross section by more than one order
of magnitude. At higher energies, E > 10 MeV/u, the
cross sections are nearly equal to each other, since in
both cases only K electrons of the target are captured
mostly to the levels n ≈ 1 and 2 in a Ni27+ ion.

In the case of complex targets, the distribution of
resulting ions over n, in general, strongly depends on
the electronic configuration of the target: at high colli-
sion energies, the capture of inner-shell electrons dom-
inates over charge exchange associated with outer
shells. The capture of inner electrons greatly compli-
cates calculations even if the target density is low. It
may so happen that the cross section distribution over n
become nonmonotonic. This is shown in Fig. 10, where

103

10–20

10–18

10–16

10–22
104 105 106102

K

L

M

K + L + M

Ni28+ + SiO2

Ion energy, keV/u

σ, cm2

Fig. 8. The same as in Fig. 7 for the target atom density ρt =

7 × 1022 cm–3 (calculation in this study).
Table 2.  Relative cross sections σn/  for the charge exchange reaction U90+ + A  U89+(n) + A+ (A = N2, Ar, Kr,

and Xe) at the collision energy E = 162 MeV/u

n

N2 Ar Kr Xe

experi-
ment theory this 

study
experi-
ment theory this 

study
experi-
ment theory this 

study
experi-
ment theory this 

study

3 0.634 0.602 0.556 0.644 0.525 0.471 0.619 0.533 0.501 0.620 0.541 0.519

4 0.253 0.263 0.328 0.240 0.299 0.322 0.257 0.296 0.309 0.256 0.292 0.300

5 0.113 0.135 0.116 0.116 0.176 0.207 0.124 0.171 0.190 0.124 0.167 0.181

Note: The sum of the reduced cross sections σn is normalized to unity:  = σ3 + σ4 + σ5 = 1.

σnn 3=
n 5=∑

σnn 3=
n 5=∑
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the cross sections of charge exchange (19) are distrib-
uted over quantum numbers n for E = 200 keV/u and
zero target density. The capture of K electrons gener-
ates lower lying states Ni27+(n) with the principal quan-
tum numbers n = 1 and 2, while charge exchange
involving the outer L and M shells of SiO2 brings nickel
ions into highly excited states with n > 5.

As was noted earlier, experimental data for partial
cross sections σnl and σnlj of charge exchange between
multiply charged ions are scarce. Table 2 compares the
relative cross sections σn of charge exchange bringing
ions to the states with n = 3, 4, and 5 for the reaction
U90+ + A  U89+(n) + A+ (A = N2, Ar, Kr, and Xe) at
the high collision energy E = 162 MeV/u (v  =
80.5 a.u.). The partial cross sections for charge
exchange resulting in the states 3lj, 4lj, and 5lj were
experimentally found [10] from the X-ray emission
spectra of Li-like uranium ions by the technique
described above. All the cross sections have a distinct
peak corresponding to the generation of the final ion in
the p state, i.e., with the orbital quantum number l = 1.
The CAPTURE code, which was used in this work,
makes it possible to compute only those cross sections
that are averaged over the quantum numbers l and j;
therefore, Table 2 lists only the cross sections σn. The
data in Table 2 are seen to be consistent with each other.
The cross sections found in this work take into account
the capture of electrons from all target shells and the
density effect.

It should be noted that the cross sections of charge
exchange between positive ions and atoms are usually
measured for low densities of target atoms, ρt = 1012–
1015 cm–3, when the density effect is weak. Sometimes,
however, taking this effect into account provides a bet-
ter fit to experimental data, which indirectly proves its

103

10–17

10–15

10–19

10–21

Ni28+ + SiO2
1

2

104 105102

Ion energy, keV/u

σ, cm2

Fig. 9. Cross sections of charge exchange between Ni ions
and SiO2 molecules, Ni28+ + SiO2  Ni27+ + [SiO2]+,
vs. ion energy for (1) zero target density and (2) target atom
density ρt = 5 × 1022 cm–3.
significance. For example, work [5] gives an explana-
tion of the experimentally measured mean (equilib-
rium) charge of fast uranium ions Uq+ with a charge q =
28–80 and energy E = (3.6–11.5) MeV/u when they
interact with the dense plasma (ρt ≈ 5 × 1019 cm–3) of
polyethylene (CH)n. It turned out that, with the plasma
density included, that is, with the use of the effective
(decreased) charge exchange cross sections, the calcu-
lated and experimentally found mean charges of ura-
nium ions were in better agreement: qtheor = 60 ± 2 ver-
sus qexpt = 63 ± 1. Thus, measurements of ion–atom
charge exchange cross sections for the case of high-
density targets would allow one to substantiate the
effect of target density on the charge exchange cross
sections and spectral emission line intensities of result-
ing ions.

CONCLUSIONS

The effect of target density on the cross sections of

charge exchange between fast ions  and atoms or
molecules was studied. The total charge exchange cross
sections decrease with increasing target density
because target atoms ionize resulting excited ions

[ ]*. The indirect effect of target density is con-
firmed by experimental and calculated data for the
mean charge of ion beams passing through a plasma
target. Direct measurements of partial and total charge
exchange cross sections, as well as the emission line
intensities of resulting ions, as a function of the target
density allow one to check the validity of this effect.

Xq
+

X q 1–( )+

10–18

10–16

10–20

200 10 30 40 50
Principal quantum number n

σ, cm2

Ni28+ + SiO2

K + L + M

L

M
K

Fig. 10. Distribution of the cross sections of the charge
exchange reaction Ni28+ + SiO2  Ni27+(n) + [SiO2]+

vs. the principal quantum number n of hydrogen-like ions
Ni27+(n) for the energy E = 200 keV/u and zero target den-
sity.
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Abstract—The steady motion of a spheroidal aerosol particle with inner nonuniformly distributed heat sources
(sinks) that is placed in an external temperature gradient is theoretically studied in the Stokes approximation.
The mean temperature of the particle surface is assumed to differ slightly from that of the gaseous environment.
An analytic expression for the force and rate of thermophoresis are found by solving the gas-dynamic equations
in view of the motion of the environment. © 2003 MAIK “Nauka/Interperiodica”.
1. FORMULATION OF THE PROBLEM

To date, the thermophoresis of spherical aerosol par-
ticles has been studied in great detail [1–4]. Many par-
ticles occurring both in nature and in industrial plants
are nonspherical, e.g., spheroidal. The problem of ther-
mophoresis of a spheroidal aerosol particle has been
considered in [5–7]. However, the convective terms in
the heat conduction equation were neglected. Praud-
man and Pearson [8] for the hydrodynamic problem, as
well as Acrivos and Taylor [9] for the heat problem,
showed that, away from the sphere, the inertial and con-
vective terms became of the same order of magnitude as
the molecular-transport terms. Therefore, normal
expansion in a small parameter introduces an error,
since it fails to rigorously satisfy the boundary condi-
tions at infinity and find a unique exact solution that is
valid throughout the flow region even in a second
approximation. From the above, it follows that the issue
of how the motion of the medium affects the force and
rate of thermophoresis of a spheroidal particle is of the-
oretical and practical interest.

Consider the steady motion of a spheroidal (oblate
spheroid) solid aerosol particle with a velocity U in the
negative direction of the 0z axis. The particle contains
nonuniformly distributed heat sources with a density qi.
The gas is at rest at infinity, and a small temperature
gradient ∇ T is provided by external sources. The tem-
perature drop in the neighborhood of the particle is
assumed to be small; i.e., (Ts – T∞)/T∞ ! 1, where Ts is
the mean temperature of the particle surface and T∞ is
the gas temperature away from the particle. In this case,
the thermal conductivity, as well as the dynamic and
kinematic viscosity, can be considered as constants and
the gas, as an incompressible medium. The particle size
is considerably larger than the free paths of gas mixture
molecules; therefore, corrections in Knudsen number
will be neglected [3]. Hereafter, the subscripts e and i
correspond to the environment and spheroid, respec-
tively.
1063-7842/03/4809- $24.00 © 21118
We will describe the thermophoresis of a particle in
the spheroidal coordinate system (ε, η, ϕ) with the ori-
gin at the center of the spheroid; i.e., the origin of the
fixed coordinate system coincides with the instanta-
neous position of the center of the particle. The curvi-
linear coordinates ε, η, and ϕ are related to the Carte-
sian coordinates by the relations [10]

(1.1)

(1.2)

where c =  in the case of a prolate spheroid

(a < b, formula (1.1)) or c =  for an oblate
spheroid (a > b, formula (1.2)) and a and b are the
spheroid semiaxes. The 0z axis of the Cartesian coordi-
nate system coincides with the symmetry axis of the
spheroid.

In view of the above assumptions, the distributions
of the velocity Ue, pressure Pe, and temperatures Te and
Ti are described by the set of equations (1.3) and (1.4)
with boundary conditions (1.5)–(1.7):

(1.3)

(1.4)

(1.5)

(1.6)

x c ε η ϕ , ycossinsinh c ε η ϕ ,sinsinsinh= =

z c ε η ,coscosh=

x c ε η ϕ , ycossincosh c ε η ϕ ,sinsincosh= =

z c ε η ,cossinh=

b2 a2–

a2 b2–

∇ Pe µe∆Ue, divUe 0,= =

ρecpe Ue ∇⋅( )Te λ e∆Te, ∆T i qi/λ i,–= =

Uε
cU εcosh

Hε
---------------------- η ,cos–=

Uη
cU εsinh

Hε
--------------------- ηsin K tc

νe

Te
----- ∇ Te eη⋅( ),–=

Te T i, λ e ∇ Te eε⋅( ) λ i ∇ T i eε⋅( )  for ε ε0,= = =

Ue 0, Te T∞ ∇ T c ε η ,cossinh+

Pe P∞ for ε ∞,
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(1.7)

Here, eε and eη are the unit vectors of the spheroidal
coordinate system; λ is the thermal conductivity; U =

|U|; Hε =  is the Lamé coefficient;
cpe is the specific heat; Ktc is the thermal creep coeffi-
cient, which is calculated from the kinetic theory of
gases; and ∇ is the Laplacian. Today, the most rigorous
expression for the coefficient Ktc is known for a spheri-
cal particle [3]. The gas-kinetic coefficient Ktc = 1.152
when the accommodation coefficients of tangential
momentum, ατ, and energy, αE, are equal to unity [3, 4].
In numerical calculations, we assume that the coeffi-
cient Ktc for a spheroid differs insignificantly from that
for a sphere [6].

Boundary conditions (1.5) on the particle surface
(ε = ε0) allow for creep for the tangent component of
the mass velocity, temperature equality, and the conti-
nuity of heat fluxes on the particle surface. Away from
the particle (ε  ∞), boundary conditions (1.6) are
valid, and the finiteness of the physical quantities char-
acterizing the particle at ε  0 is taken into account
in (1.7).

The resultant force acting on a spheroidal particle
from the environment is given by the formula [11]

(1.8)

where dS = c2 sinηdηdϕ is a differential element
of area, and σεε and σεη are the strain tensor compo-
nents in the spheroidal coordinate system.

2. TEMPERATURE DISTRIBUTION 
IN THE VICINITY OF THE PARTICLE, FORCE 

AND VELOCITY OF THERMOPHORESIS

We make Eqs. (1.3) and (1.4) and boundary condi-
tions (1.5)–(1.7) dimensionless by introducing the
dimensionless velocity, temperature, and pressure: Ve =
Ue/U, tk = Tk/T∞, and pk = Pk/P∞ (k = e, i). Here, the
spheroid major semiaxis is taken as the unit length; U,
as the unit velocity; P∞ = µeU/a, as the unit pressure;
and T∞, as the unit temperature (U ~ µe|∇ T |/(ρeT∞)).

Expressions (1.3)–(1.7) have the single controllable
small parameter ξ = a|∇ T |/T∞ ! 1. Therefore, we will
look for a solution to the boundary-value problem in the
form of expansion in powers of ξ:

(2.1)

We will restrict our consideration to the first-order
terms in ξ when calculating the force acting on the par-
ticle and the velocity of its thermophoretic motion in
the given external temperature gradient field. In order

T i ∞ for ε 0.≠

εcosh
2 ηsin

2
–

Fz = –Pe ηcos σεε ηcos
εsinh
εcosh

--------------σεη ηsin–+ 
  S,d

S

∫

εcosh
2

Ve Ve
0( ) ξVe

1( ) …, t+ + t 0( ) ξ t 1( ) …,+ += =

pe pe
0( ) ξ pe

1( ) ….+ +=
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to find these quantities, one has to know the distribu-
tions of the velocity, pressure, and temperature both
outside and inside the spheroid. Substituting (2.1) into
(1.4), leaving terms ~ξ, and solving the sets of equa-
tions found by the method of separation of variables,
we will finally find in the zero approximation (ξ = 0)

(2.2)

(2.3)

Here, λ0 = , γ = ts – 1 is the dimensionless
parameter, ts = Ts/T∞, and Ts is the mean temperature of
the spheroid surface given by

(2.4)

In (2.4), the integral is taken over the entire particle
volume. In the first approximation (~ξ),

(2.5)

(2.6)

Here, ω = Prγλ0/(ac) and Pr is the Prandtl number. The
constants of integration A1 and A2 appear in expressions
for the components of the mass velocity and pressure.
These expressions are found by solving Stokes equa-
tions (1.3) in the oblate coordinate system and have the

te
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λ e
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form [10]

(2.7)

(2.8)

(2.9)

The constants Γ and B enter into expressions (2.5)
and (2.6) for the temperature fields inside and outside
the particle from the corresponding boundary condi-
tions on the spheroid surface. Since an expression for
the coefficient Γ will be of interest to us, we write it in
explicit form:

(2.10)

Hereafter, the superscript s denotes the values of
physical quantities at the mean temperature Ts of the
spheroid surface, which is given by formula (2.4).

Substituting (2.7)–(2.9) into (1.8) and integrating,
we arrive at

(2.11)

The coefficient A2 is found from boundary condi-
tions (1.5) in view of expressions (2.7), (2.8), and
(2.10): 

Uε ε η,( ) U
c εHεcosh
------------------------ ηcos=

× λA2 λ 1 λ2+( )arccotλ–[ ] A1 c2 1 λ2+( )+ +{ } ,
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where

In view of the explicit form of the coefficient A2, we
find a general expression for the force acting on a sphe-
roidal particle. This force is the sum of the viscous
force Fµ and the force F(1)

(2.12)

where

(2.13)

(2.14)

In the general case, the force F(1) is the sum of three
forces: the thermophoretic force, the force proportional
to the dipole moment of the density of heat sources
nonuniformly distributed over the particle volume, and
the third term due to the motion of the medium (i.e., the
force component taking into account the convective
terms in the heat conduction equation).

Equating the resultant force F to zero, we arrive at a
general expression for the drift (thermophoretic) veloc-
ity of a solid oblate spheroidal particle in the external
temperature gradient field:

× 1
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(2.15)

In order to find the rate of thermophoresis for a pro-
late spheroid, one has to substitute iλ for λ and ic for c
(i is the imaginary unit) in (2.15).

Thus, formulas (2.12) and (2.15) have the most gen-
eral form and make it possible to estimate the resultant
force acting on a solid spheroidal aerosol particle and
its drift velocity in the external temperature gradient
field for the case when heat sources (sinks) are nonuni-
formly distributed inside the particle. In this approach,
the motion of the environment is taken into account for
small temperature differences in the vicinity of the par-
ticle.

3. RESULTS AND DISCUSSION

If one does not take into account the motion of the
environment and internal heat sources, (2.15) is
reduced to an expression for the purely thermophoretic
velocity of a spheroidal particle:

(3.1)

which coincides with formula (9) in [5].
In the case of a sphere, (2.15) turns into an expres-

sion for the thermophoretic velocity of a solid spherical
particle of radius R that includes the flow of the envi-
ronment and internal heat sources:

(3.2)

where
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Disregarding the flow of the environment and inter-
nal heat sources yields the conventional formula for the
thermophoretic velocity of a large spherical particle
[1, 2]

(3.3)

In order to estimate how the motion of the environ-
ment affects the thermophoretic velocity of a spheroi-
dal particle, one has to specify the nature of heat
sources nonuniformly distributed over its volume. As
an example, let us consider the simplest case when the
particle absorbs radiation as a black body. In this case,
radiation is absorbed in a thin layer of depth δε ! ε0
that is adjacent to the heated particle surface. The den-
sity of heat sources inside the layer of depth δε is equal
to [12, 13]

(3.4)

where I0 is the intensity of an incident radiation.

The integrals dV and zdV appear in the

expression for the thermophoretic velocity. Substitut-
ing (3.4) into these integrals in view of the fact that
δε ! ε0 and performing integration, we find

(3.5)

In view of (3.5), expression (2.15) takes the form

(3.6)
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Table 1

a, µm

b/a = 0.1

I0 × 102, W/m2

0.5 2 5 10

f (1) f(2) f (1) f(2) f (1) f(2) f (1) f(2)

15 0.52 0.32 2.08 1.30 5.20 3.29 10.40 6.71

20 0.69 0.43 2.77 1.74 6.93 4.42 13.87 9.08

25 0.87 0.54 3.47 2.18 8.67 5.56 17.33 11.51

Table 2

a, µm

b/a = 0.3

I0 × 102, W/m2

0.5 2 5 10

f (1) f(2) f (1) f(2) f (1) f(2) f (1) f(2)

15 0.39 0.20 1.59 0.81 3.97 2.04 7.95 4.16

20 0.59 0.27 2.12 1.08 5.30 2.74 10.60 5.63

25 0.66 0.33 2.65 1.35 6.62 3.44 13.25 7.13

Table 3

a, µm

b/a = 0.5

I0 × 102, W/m2

0.5 2 5 10

f (1) f(2) f (1) f(2) f (1) f(2) f (1) f(2)

15 0.32 0.12 1.26 0.48 3.15 1.20 6.31 2.45

20 0.42 0.16 1.68 0.64 4.21 1.61 8.41 3.32

25 0.53 0.20 2.10 0.80 5.26 2.03 10.51 4.20
In the case of a sphere, (3.6) is recast as

(3.8)

where

(3.9)

The mean temperature of the spheroid surface is
related to the incident radiation intensity I0 as

(3.10)

In order to illustrate the contributions of the form-
factor (ratio of the spheroid semiaxes), flow of the envi-
ronment, and internal heat release (nonuniform distri-
bution of heat sources over the particle volume) to the

Uth
sph( ) K tcνe

sδ f th
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T∞
-----------,=

f sph( ) 2

te
s 1 2δ+( )

------------------------ 1
RI0

6λ eT∞
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 – .–=

T s T∞
cλ0

4λ e
-------- I0 1 1

λ0
2

-----+ 
  .+=
thermophoretic velocity (3.6), Tables 1–4 list the
numerical estimations for particles of borated graphite

(  = 55 W/(m K)) suspended in air at T∞ = 280 K and
Pe = 105 Pa.

The numerical analysis showed that, at a given ratio
between the semiaxes, the relative contribution of the
other factors increases with increasing incident radia-
tion intensity I0. This effect depends significantly on
the equatorial radius of the spheroid (a). For instance,
in Table 1 (a = 15 µm), f (1) = 0.52 at I0 = 0.5 × 102 W/m2

and f (1) = 10.40 at I0 = 10 × 102 W/m2 (f (1) = (|  –

|/ ) × 100%). Such behavior of the function f (1)

is due to the fact that, as follows from (3.10), (3.7), and
the numerical estimations, the major contribution is
from the terms proportional to the dipole moment of the
density of heat sources nonuniformly distributed over
the particle volume. In (3.7), this is the term

λ i
s

f th*

f th
b( ) f th

b( )
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Table 4

a, µm

b/a = 0.8

I0 × 102, W/m2

0.5 2 5 10

f (1) f(2) f (1) f(2) f (1) f(2) f (1) f(2)

15 0.24 0.04 0.94 0.15 2.35 0.38 4.69 0.77

20 0.31 0.05 1.25 0.20 3.13 0.51 6.26 1.04

25 0.39 0.06 1.56 0.25 3.91 0.64 7.82 1.32
λ0  – 1. The dimensionless term related to the
motion of the environment (see the heat conduction
equation) is proportional to the Prandtl number. In a
gas, this number is on the order of unity; therefore, the
contribution of this term differs from that of the first
one by one order of magnitude. This fact may be used
to separate particles by size, finely purify gases from
aerosol particles, estimate translucent zones appearing
in clouds and fogs when they are probed by laser radi-
ation, etc. The influence of the factors mentioned above
will increase with increasing radiation intensity. How-
ever, the mean temperature of the spheroid surface will
also increase (see (3.10)). In this case, we cannot con-
sider the coefficients of molecular transport to be con-
stant. Therefore, expressions (2.15) and (3.6) must
involve the mean values of the physical quantities at a
given temperature of the particle surface, which is
determined by (2.4) and (3.10), to avoid large errors. It
is also of interest to compare the thermophoretic veloc-
ity with that for a spherical particle with a radius equal
to the equatorial radius of a spheroid, i.e., with formula
(3.8). The numerical analysis showed that in this case,
too, the relative error increases with increasing incident
radiation intensity and equatorial radius. For example,
in Table 1 (a = 15 µm), f (2) = 0.32 at I0 = 0.5 × 102 W/m2

and f(2) = 6.71 at I0 = 10 × 102 W/m2 (f (2) = (|  –

|/ ) × 100%). However, this increase is approxi-
mately 1.5 times smaller than that in the former case.

λ0arccot

f th
sph

f th
b( ) f th

b( )
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Nonlinear Capillary Vibrations of a Charged Drop Placed 
in a Dielectric Medium: Single-Mode Initial Deformation 
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Abstract—The nonlinear vibrations of the equilibrium spherical shape of a charged drop placed in a perfect
incompressible dielectric medium are asymptotically calculated in the second-order approximation in single-
mode initial deformation of the drop surface. The drop is assumed to be a perfect incompressible liquid. It is
shown that the nonlinear vibration amplitudes, as well as the energy distribution between nonlinearly excited
modes, depend significantly on the parameter ρ, where ρ is the ratio of the environmental density to that of the
drop. It is also demonstrated that an increase in ρ raises the amplitude of the highest of the vibration modes
excited due to second-order nonlinear interaction. In the second order of smallness, the amplitude of the zeroth
mode is independent of the density ratio. As ρ grows, the effect of the self-charge of the drop, the interfacial
tension, and the permittivity of the environment on the nonlinear oscillations increases. © 2003 MAIK
“Nauka/Interperiodica”.
(1) The study of electrostatic instability of a charged
liquid drop suspended in another liquid is of consider-
able interest for numerous applications, such as uni-
form mixing of immiscible liquids, combustion of liq-
uid fuels to mix a fuel with an oxidant, and geophysical
experiments (see, for instance, [1–4] and references
cited there). Nevertheless, many related issues are as
yet little understood because of the experimental and
theoretical complexity of the problem. In the majority
of cases, it has been solved in the linear approximation
in amplitude of capillary vibrations. A number of recent
theoretical and numerical works [5–11] devoted to the
calculation of charged drop vibration in a vacuum take
into account the actual nonlinearity of the phenomenon.
In [12], the nonlinear vibrations of a charged conduct-
ing drop placed in a compressible dielectric medium
were studied only for the initial disturbance of the fun-
damental vibration mode, and the emphasis was on the
acoustic radiation of the drop. Since in most applica-
tions the drop vibration takes place in media that cannot
be identified as vacuum [1–4], it seems to be reasonable
to study the influence of the environment on the nonlin-
ear vibrations of the drop in a more general situation
where the initial deformation of the equilibrium spher-
ical shape is defined by the virtual excitation of an arbi-
trary single mode of capillary vibrations.

(2) Consider a system consisting of two immiscible
ideal incompressible liquids with densities ρ1 and ρ2. In
the absence of the gravitational field, the inner liquid
(related parameters will be marked by subscript 1)
takes the shape of a spherical drop with a radius R under
the action of interfacial tension forces with a coefficient σ.
1063-7842/03/4809- $24.00 © 21124
The outer liquid (subscript 2) is assumed to be
unbounded. Let the drop liquid be ideally conducting
and bear a charge Q distributed over the surface and the
environment be an ideal dielectric with a permitivity ε∗ .
We also assume that, at zero time t = 0, the equilibrium
spherical shape of the drop undergoes a virtual axisym-
metric perturbation of a given amplitude which is much
smaller than the drop radius and is proportional to the
amplitude of one of the capillary vibration modes. Our
aim is to find an analytical expression for the shape of the
nonlinearly vibrating drop as a function of time (t > 0).

Below, we use dimensionless variables such that R =
ρ1 = σ = 1 and assume that ρ2/ρ1 ≡ ρ.

In the spherical coordinate system (r, Θ, φ) with the
origin at the drop center, the equation of the interface
disturbed by axisymmetric capillary wave motion has
the form

(1)

The motion of the liquid in the drop and environ-
ment is potential; that is, the velocity fields of the wave
motion in the drop, V(r, t) = —ψ(r, t), and in the sur-
rounding medium, U(r, t) = —ϕ(r, t), are entirely
defined by the velocity potential functions ψ(r, t) and
ϕ(r, t).

In the above statement, a set of equations for inter-
face evolution consists of the Laplace equations for the
velocity potentials ψ(r, t) and ϕ(r, t) and electrostatic
potential Φ(r, t):

(2)

(3)

r 1 ξ Θ t,( ); ξ  ! 1.+=

∆ψ r t,( ) 0;=

∆ϕ r t,( ) 0;=
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(4)

(here, ∇  is the Laplacian).

The boundary conditions are as follows:

at the center of the drop, 

(5)

at infinity,

(6)

at the interface:

(7)

(kinematic condition),

(8)

(equality of the velocity normal components of the liq-
uid in the drop and in the medium),

(9)

(dynamic condition),

(10)

(constancy of the electric potential at the drop surface).

In the mathematical relationships above,  is the
pressure in the drop (j = 1) and in the medium (j = 2),
PE = ε∗ (—Φ)2/8π is the electric field pressure upon the
interface, Pσ = divn is the Laplacian pressure (n is the
unit vector of the positive normal to the drop surface,
and ΦS(t) is the constant electrostatic potential on the
drop surface.

One must also take into account the constancy of the
electric charge,

(11)

constancy of the drop volume,

(12)
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and immovability of the center-of-mass of the drop,

(13)

The initial conditions to the problem stated are the
initial axisymmetric deformation of the equilibrium
spherical shape of the drop,

(14)

and the zero initial interface velocity,

(15)

In (14) and (15), ε is a small parameter that has the
meaning of the initial deformation amplitude; Pk(µ) is
the Legendre polynomial of degree k; and ξ0 is a con-
stant determined from condition (12) accurate to the
second order of smallness,

(16)

(3) To find a solution to the problem in an approxi-
mation quadratic in ε, we use the well-known method
of many scales [13]. For this purpose, we represent the
desired functions ξ(Θ, t), ψ(r, t), ϕ(r, t), and Φ(r, t) in
the form of series in powers of the small parameter ε
and assume that these functions depend not merely on
time t but on various time scales Tm that are defined via
the small parameter Tm ≡ εmt: 

(17)

The derivatives with respect to time will be taken
over the whole set of time scales by the rule

Substituting expansions (17) into boundary-value
problem (2)–(13) and equating terms of the same order
of smallness in each of the equations, one easily obtains
a set of boundary-value problems for the successive
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determination of the unknown functions ξ(m), ψ(m), ϕ(m),
and Φ(m), where m = 0, 1, 2,… .

Due to the linearity of Eqs. (2)–(6), each of the func-
tions ψ(m), ϕ(m), and Φ(m) in expansions (17) must satisfy
them; therefore, we represent these functions as solu-
tions to set (2)–(6) in the form

(18)

The successive corrections ξ(m) to the expression for
the drop shape will be sought in the form of Legendre
polynomials:

(19)

(4) In the zeroth order of smallness in ε, we obtain a
solution for the equilibrium state of the system:

(20)

(5) To find the coefficients , , , and

 in solutions (18) and (19) (at m = 1) in the first-
order approximation in ε, we transform boundary con-
ditions (7)–(13) into the form

(21)
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∫ 0;=
where (Θ, ϕ) is a spherical function.

Expressions for the first-order coefficients in expan-
sions (18) and (19) are easily found from set (21): 

(22)

The dependences of the functions an and bn on the
parameters T1, etc. are determined in the next orders of
smallness.

To complete the consideration of the problem in the
linear approximation in ε, we assume that the quantities
an and bn are independent of time; that is,

Then, it is easy to check that the shape perturbation
can be estimated as

(23)

where  and  are time-invariable constants.

The error in expansion (23) turns out to be on the
order of the first term if t ≈ O(ε–1). For t ≥ O(ε–1), expan-
sion (23) becomes invalid. Thus, expression (23) is
valid over the time interval t ≤ O(1), and, in this case,
the error is on the order of ~ε2. However, when study-
ing the motion of the surface, one may also use (23) at
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0

π
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t ≤ O(ε–1) provided that the first-order solution is com-
parable to the initial perturbation amplitude. More
detailed information on the applicability of this expan-
sion may be obtained from the second-order analysis of
the problem.

Substituting expansion (23) into initial conditions
(14)–(16) subject to (19) and (22) and equating the
quantities of the same order of smallness to each other
yields

where δnk is the Kronecker symbol.

Eventually, the function describing the drop shape
evolution with time in the linear (in ε) approximation
has the form

(24)

According to this first-order solution, the drop sur-
face harmonically vibrates about the equilibrium
sphere at the kth (initially excited) mode.

For the velocity field potentials and electrostatic
potential, we obtain, in the same approximation, the
following solutions:

(25)

(6) To find second-order corrections to the above
solutions (that is, to find the functions ξ(2)(Θ, t), ψ(2)(r,
t), ϕ(2)(r, t), and Φ(2)(r, t), we write a set of equations
that follows from boundary conditions (7)–(13) by
equating terms ~ε2:
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(26)

Substituting expansions (18) and (19) (at m = 2), as
well as solutions (20) and (22), into set (26) of the
boundary conditions yields differential equations for

the unknown coefficients (T0, T1, …). From the
requirement that the secular terms be eliminated from
the solutions, we obtain

this means that an and bn in solutions (21) are indepen-
dent of the time scale T1. Their dependence on the
slower time scales T2, T3, etc., can be determined only
in higher order approximations.

The general solution to inhomogeneous differential
equations obtained from set (26) is written in the form
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(27)

Also we have

M1
2( ) T0 T2 …, ,( ) 9

n
2n 1+( ) 2n 1–( )

----------------------------------------
n 2=

∞

∑–=

× An 1– T2 …,( )An T2 …,( ) iωn 1– ωn+( )T0exp{

+ An 1– T2 …,( )An T2 …,( ) i ωn ωn 1––( )T0( )exp c.c.+ } ;

Mn
2( ) T0 T1 …, ,( ) cn T2 …,( ) idn T1 …,( )( )exp{=

× iωnT0( )exp c.c.+ } Nn T0 T2 …, ,( ).+

Nn T0 T2 …, ,( ) λmln
+( ) Am T2 …,( )Al T2 …,( ){

l 2=

∞

∑
n 2=

∞

∑≡

× i ωm ωl+( )T0[ ]exp λmln
–( ) Am T2 …,( )+

Al T2 …,( ) i ωm ωl–( )T0[ ]exp c.c.+ } ;×

λmln
±( ) γmln ωmωlηmln±[ ]

ωn
2 ωm ωl±( )2

–[ ]
-------------------------------------------;=

γmln κnKmln ωm
2 n m– 1 ρn n m– 1–( )

n 1+
----------------------------------–+





≡

+ 2n l l 1+( ) 1–[ ] W
n
2
--- l m 1+( ) m 2m 2n– 7+( ) 3+–[ ]+





+ κnαmln ωm
2 1

m
---- nρ

n 1+( ) m 1+( )
-----------------------------------– W

n
2
---+

 
 
 

;

ηmln κnKmln
n
2
--- m– 1 ρn 2m n– 3+( )

2 n 1+( )
-------------------------------------+ +

 
 
 

≡

+ κnαmln
1
m
---- 1 n

2l
-----+ 

  nρ n 2l 3+ +( )
2 m 1+( ) l 1+( ) n 1+( )
-------------------------------------------------------–

 
 
 

;

Kmln Cmln
000[ ] 2

;≡

αmln m m 1+( )l l 1+( )Cmln
000 Cmln

110– ;–≡

Cmln
000

0, if m l n+ + 2g 1,+=

where g is an integer;

1–( )g n– 2n 1+ g!
g m–( )! g l–( )! g n–( )!

--------------------------------------------------------

× 2g 2m–( )! 2g 2l–( )! 2g 2n–( )!
2g 1+( )!

-----------------------------------------------------------------------------
1/2

if m l n+ + 2g   (g is an integer);=

,













≡

In the last expression, summation is performed over
all integer numbers z for which the expressions under
the factorial sign are nonnegative. The bar over An in
(27) denotes the complex conjugate.

Note that  and  (Clebsch–Gordan coeffi-
cients [14]) are other than zero if their subscripts satisfy
the relation

(28)

where g is an integer.

The coefficients in expansion (19) for the velocity
field potentials in the environment, ϕ(m)(r, t), and drop,
ψ(m)(r, t), and for the electrostatic potentials Φ(m)(r, t)
are related to solutions (19) and (27) by the relation-
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In solution (27), cn(T1, …) and dn(T1, …) are
unknown functions of time that are independent of the
time scale T0.

As in the case of the linear approximation, we com-
plete the quadratic consideration assuming that the
unknown values an, bn, cn, and dn are independent of
time; that is, they are constants defined by initial condi-
tions (14)–(16), because the estimates

are valid.

In this case, expansion (19) of the function describ-
ing the distortion of the drop shape takes the form

(29)

where , , , and  are constants.

Expression (29) holds over the time interval t ≤ O(1)
with an error of ~ε3. Within the time interval O(1) < t ≤
O(ε–1), the error is comparable to the second term (sec-
ond-order correction); consequently, in expansion (29),
only the first (linear) term should be left. Thus, the
approximate linear solution of problem (24)–(25) is
uniformly applicable over the time interval t ≤ O(ε–1).

Substituting expansion (29) into initial conditions
(14)–(16) and equating quantities of the same order of
smallness to each other yields, in view of (19), the fol-
lowing relationships:

Using these relationships and expressions (22) and

(27), we find the unknown constants , , ,

and : 

Eventually, solutions (22) and (27) for the coeffi-

cients (t) take the form
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(30)

It is easy to check that the coefficients (t) are

proportional to the parameters  (which, in turn, are

M0
2( ) t( ) = 

1
2 2k 1+( )
----------------------- 1 2ωkt( )cos+[ ] ; M1

2( ) t( )–  = 0;

Mn
2( ) t( ) –Nn 0( ) ωnt( )cos Nn t( ) n 2≥( );+=
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2
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Fig. 1. Time variation of the second-order dimensionless

amplitudes (t) when the initial drop deformation is

induced by the fundamental mode. ρ = (a) 0.1, (b) 1.0, and
(c) 10. W = 1.

Mn
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Fig. 2. Time variation of the second-order dimensionless

amplitudes of modes (t) when the initial drop defor-

mation is induced by the third mode at W = 1. ρ = 0.1
(dashed line), 1 (thin solid line), and 10 (thick solid line).
(a) The zeroth mode, n = 0; (b) the second mode, n = 2;
(c) the fourth mode, n = 4; and (d) the sixth mode, n = 6.

Mn
2( )
proportional to the Clebsch-Gordan coefficients 

and  and, hence (see (28)), are other than zero
only if n = 2j (j = 0, …, k).

Substituting (19) and (30) into (29) yields the sec-
ond-order approximation for the time variation of the
drop shape:

(31)

From (31), it is seen that the initial disturbance of
any kth (even or odd) mode of capillary vibrations leads
to the excitation (in the second order of smallness) only
of even modes whose numbers range between 0 and 2k.

(7) Figures 1a–1c show the time dependences of the
second-order amplitudes of modes excited by the non-
linear interaction for the case when the initial deforma-
tion is induced by the virtual excitation of the funda-
mental mode (k = 2). The dependences are calculated
with (30) at various density ratios ρ. The second-order
amplitudes are observed for the zeroth (dashed line),
second (dash-and-dot line), and fourth (solid line)
modes in this case. The amplitude of the fourth mode
grows with increasing density ratio ρ, while that of the
second mode declines. When higher modes are respon-
sible for the initial drop deformation, an increase in ρ is
always accompanied by the growth of the highest of the
modes excited in the second order of smallness,
whereas the amplitudes of the remaining modes, except
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k

∑

– λ k k 2 j, ,
–( ) λ k k 2 j, ,
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Fig. 3. Time variation of the second-order dimensionless

amplitude (t) of the fundamental mode when the ini-

tial drop deformation is induced by the third mode at ρ =
0.1. W = 1 (dashed line), 2 (thin solid line), and 3 (thick
solid line).
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for the zeroth one, decrease. This fact is illustrated in
Figs. 2a–2d, where the calculated results are presented
for the case when the initial deformation is associated
with the third mode. Each of the panels in Fig. 2 dis-
plays the second-order amplitudes of one of the excited
modes as a function of time at various density ratios. As
was noted above, the amplitude of the zeroth mode does
not vary with ρ. This is because the second-order ampli-
tude of the zeroth mode depends on the square of the
amplitude of the mode responsible for the initial defor-
mation (see (30)). The ρ dependence of the zeroth mode
amplitude appears only in calculations of the third
order of smallness.

Figure 3 shows the second-order amplitude of the
fundamental mode at ρ = 0.1 and various subcritical
values of the parameter W, which integrates all relevant
physical parameters: the interfacial tension, the permi-
tivity of the environment, and the charge and radius of
the drop. In dimensional form, W = Q2/4πσR3ε∗ . It is
easy to see that the fundamental mode amplitude grows
noticeably as W approaches the critical value Wcr = 4
[1–4] (above this value, the drop becomes unstable
against its self-charge).

From the figures it follows that, as ρ grows, the
vibration frequency drops linearly in the small parame-
ter ε. This effect has already been discussed for perfect
liquids [15], for viscous liquids and dielectric media
[16], and for conductive media [17].

CONCLUSIONS

When a drop of an ideal incompressible conducting
liquid immersed in an ideal dielectric incompressible
medium nonlinearly vibrates, the energy maximum in
the spectrum of nonlinearly excited modes shifts
toward the highest mode with growing medium-to-drop
density ratio no matter which of the modes is responsi-
ble for the initial drop deformation. In the approxima-
tion quadratic in the small parameter, the amplitude of
the fundamental mode grows when the self-charge of
the drop increases and the interfacial tension, drop
radius, and permitivity of the medium decrease.
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
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Abstract—Analytic formulas are derived that make it possible to estimate the plasma parameters from mea-
sured data on the characteristics of a shock wave that has passed through a plasma. Examples are given of how
these formulas can be used to interpret the data from experimental studies of propagation of a shock wave
through a gas-discharge plasma. The results obtained can serve as a starting point for a more detailed analysis.
© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Among the first papers on the diagnostics of plas-
mas by shock or acoustic waves are [1, 2], in which an
argon plasma at pressures from 2 to 30 torr was inves-
tigated by Langmuir probes. Sharp variations in the
detected waveforms of the potential made it possible to
estimate the wave velocity and to calculate the depen-
dence of the discharge temperature on the experimental
conditions.

Further development of experimental techniques
increased the variety of tools for recording the velocity
of a shock or an acoustic wave. The objective of the
present paper is to elaborate simple methods for esti-
mating the plasma parameters from the experimentally
measured characteristics of a shock wave. Of course,
more precise modern methods of calculation provide
far more precise information about the plasma but, as a
rule, they involve a considerable expenditure of compu-
tational resources. There are many cases in which sim-
ple estimates may be useful, because variations in the
plasma parameters make it practically impossible to
determine the temperature (or density) of the neutral
plasma component with a high degree of accuracy. Sec-
tion 1 presents the main formulas for calculating the
plasma temperature from measured data on the passage
of a shock wave through the spatial inhomogeneities
that originate from the nonuniform temperature (and,
accordingly, density) distribution at a constant pressure
in an unperturbed region ahead of the shock front. Sec-
tion 2 demonstrates how the theoretical results obtained
can be used to interpret previous experimental data.
This is most fully illustrated by processing the data of
[3, 4]. Less accurate methods for processing the exper-
imental information are described in the Appendix.
1063-7842/03/4809- $24.00 © 21132
1. THEORETICAL BASIS 
FOR THE METHOD

A detailed analytic treatment of the formation of a
shock wave and its passage through a spatially inhomo-
geneous region was carried out by Sukhomlinov et al.
[5] in the one-dimensional approximation. The results
obtained in that paper yield the following set of equa-
tions:

(1)

where x is the spatial coordinate, t is the time, and the
function f(t) describes the initial shape of the shock
wave perturbation.

When the spatial inhomogeneity is produced by a
nonuniform temperature (or density) distribution at a
constant pressure, the acoustic velocity at the point x is

equal to a(x) = a(T(x)) = , where R is the uni-
versal gas constant, a0 = a(T0) = const, T0 is the constant
temperature outside the spatially inhomogeneous
region, T(x) is the shape of the temperature distribution
inside the inhomogeneous region, and γ is the adiabatic
index.

The solution to Eqs. (1) for a shock wave propagat-
ing through a homogeneous medium yields a number of
simple formulas describing how the wave changes in
time. The initial coordinate x0 of the shock front is
related to the initial time t0 and the initial value of the
Mach number M0 by

(2)

∂x t( )
∂t

------------ a x t( )( ) a0
f x t( )( )

2
------------------,+=

∂ tf x t( )( )( )
∂t

---------------------------
a0 f x t( )( )
2a x t( )( )
-----------------------,=

γRT x( )

x0 2M0 1–( )a0t0.=
003 MAIK “Nauka/Interperiodica”



        

EVALUATION OF PLASMA PARAMETERS FROM MEASURED DATA 1133

                                                    
The time dependence of the shock front coordinate,

(3)

gives the value of the Mach number at the time t:

(4)

where V0 is the shock front velocity and M0 = M(t0).

From formula (3) we obtain the dependence of the
time on the coordinate, t(0)(x):

(5)

where the subscript 0 stands for the motion in a homo-
geneous medium and

(6)

Substituting expression (5) into formula (4), we
arrive at the dependence of the velocity of a shock wave
in a homogeneous medium on the coordinate x:

(7)

Of great practical interest is the case of a “rectangu-
lar” temperature profile such that T(x) = T0 for xp < x ≤
xp and T(x) = T0 for x ≤ xp and x > xf (see Fig. 1). In this
case, Eqs. (1) admit an exact solution, which yields the
following expression for the shock wave velocity:

(8)

We integrate this expression to get the time depen-
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dence of the coordinate of the shock front:

(9)

The inverse function t(x, T) is found by solving
Eq. (9) with respect to t. To within a relative error of
less than 2 × 10–5, the coordinate dependence of the
time is given by the expression

(10)

x t T,( )

=  
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Fig. 1. Choice of the coordinate system: SW is a shock wave
propagating from left to right; x0 is the initial coordinate of
the shock front (the position of the membrane); xp and xf are
the entrance and exit boundaries of the inhomogeneous
region, respectively; and xb and xe are the coordinates of the
points A and B at which a shock wave (SW) is recorded.
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where

(11)

(12)

and  is the time required for the wave with M = M0

to pass from the point xb to the point xe in a homoge-
neous medium.

The time tp at which a shock wave reaches the
entrance boundary of a thermally inhomogeneous
region is independent of temperature and is calculated
from formula (5): tp = t(0)(xp). The time tf (T) at which
the wave leaves the inhomogeneous region is obtained
as a solution to Eq. (9), i.e., to the equation x(tf (T), T) =
xf. With a high degree of accuracy, this time can be
approximated by the expression tf (T) ≈ t(xf, T), which is
obtained using the second of equalities (10). The time
dependence of the shock wave velocity is given by for-
mula (8), and the coordinate dependence of this veloc-
ity is calculated from formula (8) with the help of for-
mula (10):

(13)

In the general case, the time required for the wave to
pass the distance between the points at which it is
recorded (i.e., the points xb and xe) is determined by the
formula

(14)

where, depending on circumstances, the velocity
V(x, T) is given by formulas (7), (8), and (13) or by
approximate formulas (24) and (25) from the Appendix
and the time t(x, T) is given by formula (10). For a
shock wave propagating in a homogeneous medium,
the two groups of formulas for the velocity are equiva-

lent, so that we have tbe(T0) =  (see formula (12)).
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When the initial value of the Mach number is
unknown, it can be determined by measuring the time
tbe required for the wave to pass the distance between
the points at which it is recorded in a homogeneous
space (with a uniform temperature) and substituting the
result obtained into formula (12):

(15)

Using formula (14), we can calculate the time as a
function of a parameter set: tbe = tbe(T, M0, x0, xb, xe). If
the time of propagation of a shock wave, (tbe)exp, is
known from experiment, then, by solving the transcen-
dental equation tbe(T, M0, x0, xb, xe) = (tbe)exp with
respect to the temperature T, we determine the temper-
ature (or the density ρ/ρ0 = T0/T) in a spatially inhomo-
geneous region.

When the wave characteristics are measured at
points inside a thermally inhomogeneous region and
the first measurement point xb coincides with its
entrance boundary (i.e., xb = xp, tb = tp, xe ≤ xf), the tem-
perature can be determined with high accuracy:

(16)

where

The maximum temperature in a spatially inhomoge-
neous region can be estimated not only from the data on
variations in the velocity of a shock wave or its propa-
gation time but also from the change in the relative
intensity of the measured signal (see Fig. 2 taken from
[4] and analogous figures in [6]). A decrease in the
intensity of the signal recorded by a photodetector is
determined, on the one hand, by a decrease in the den-
sity in the region of elevated temperature ((ρ/ρ0 = T0/T,
T > T0) and, on the other, by a reduction in the local
Mach number. When the recorded parameter is the first
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derivative of the density, the relative change in the sig-
nal intensity can be approximately described as

(17)

The expression for the dependence of the maximum
absolute value of the first derivative of the density on
the Mach number is an approximation of the general
(but fairly involved) analytic formula presented in the
Appendix.

When the recorded parameter is the second deriva-
tive of the density, the corresponding formulas have the
form

(18)

In formulas (17) and (18), jc is the current density at
which the temperature Tc and Mach number Mc are
known. For other values of the current density, the
Mach number is a function of temperature, M = M(T);
at the measurement point xe, it is calculated from for-
mulas (7), (8), and (13) or from formulas (24) and (25):
M(T) = V(xe, x0, M0, a0, T)/a(T(xe)). In this case, the
temperature in a thermally inhomogeneous region is
estimated from the solution to the transcendental equa-
tion

(19)

where [I1( j)/I1( jc)]exp or [I2( j)/I2( jc)]exp are the experi-
mentally measured ratio of the signal amplitudes (see,
e.g., Fig. 2) and the ratios I1( j)/I1( jc) or I2( j)/I2( jc) are
calculated from formulas (17) and (18) (depending on
the method by which the signal is detected) and from
the formula M(T) = V(xe, x0, M0, a0, T)/a(T(xe)).

In many cases, it is expedient to interpret experi-
mental data using the following formula, which was
proposed by Sukhomlinov et al. [7] and describes the
dependence of the temperature T of a gas discharge on
the current density, pressure, and the ratio E/p (charac-
terizing the sort of gas):

(20)

Here, cT0 is the temperature of the wall surrounding the
discharge, the electric field strength E is in V/cm, the
current density j is in mA/cm2, the pressure p is in torr,
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and the numerical constant depends on the choice of the
units of measure.

The constant c ≥ 1 can be called the coefficient of
heating of the wall with respect to the surrounding
medium, or simply the “heating coefficient.” Formula
(20) is valid only for j ≥ j0. The following generalized
temperature profile can be proposed that is valid over
the entire range j ≥ 0:

(21)

If the wall temperature is determined by a mean of
the temperature T0 and the plasma temperature, i.e., by
T = (T + T0)cbϕ (where the coefficient cb is about 1/2),
then, instead of formula (21), we obtain

(22)

These formulas allow one to estimate the plasma
temperature and also, in the case under consideration,
can provide additional tools for checking the tempera-
ture values obtained from the experimental data.

Below, examples will be presented of how the above
methods for determining the temperature can be
applied in practice (Figs. 3–6). When the pressures
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Fig. 2. Measurement of the effect of the plasma on the prop-
agation of a shock wave at a pressure of 1.6 torr (the time of
propagation between the points at which the wave is
recorded, according to the data of [3, 4]).
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inside and outside the thermally inhomogeneous region
are the same, these methods make it possible to com-
pletely determine the main parameters inside this
region, provided that the pressure P1 and the tempera-
ture T0 outside it are known.
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2. DETERMINATION OF THE PLASMA 
TEMPERATURE FROM THE MEASURED SHOCK 

WAVE CHARACTERISTICS

Papers [3, 4] contain fairly complete information
about the experimental conditions and the results
obtained. In those experiments, the propagation time of
a shock wave between two measurement points was
recorded by two lasers. The experiments were carried
out with air at pressures of 1.6 and 10 torr. A shock
wave passed through a gas-discharge plasma in a direc-
tion transverse to the applied electric field. The dis-
charges could occur in different regions of the working
chamber. The notation adopted for describing the spa-
tial temperature distribution over the thermally inho-
mogeneous discharge region is given in Fig. 1.

The characteristic waveforms [4] from which the
propagation time of a shock wave between the mea-
surement points can be determined are presented in
Fig. 2. Substituting the propagation time t = 0.00055 s
in a homogeneous (nonionized) medium into formula
(15), we determine the Mach number just at the mem-
brane, M0 = 2.88. This value coincides with the corre-
sponding data of [3, 4]. Then, for the purpose of check-
ing the results, we can calculate the propagation time of
a shock wave at nonzero currents from formulas (10)
and (14), in which the temperature is determined from
formulas (21) and (22). Since the temperature of the
discharge chamber wall was not measured in [3, 4], the
coefficient c in formula (21) can be adjusted by estimat-
ing the power fed into the discharge. In Fig. 3b, the
solid curve shows the temperature profile calculated
from formula (21) with c = 1.7, and the dotted curves
are obtained from the same formula but with c = 1.6
(lower curve) and c = 1.8 (upper curve). The dashed
curve is calculated from formula (22) with cb = 1/2. The
squares show the results obtained from the experimen-
tally measured relative signal amplitudes (this method
for estimating T was described in Section 1). It may be
said that formula (21) describes the experimental situa-
tion in question more adequately. The dependence of
the temperature on the current density is calculated by
solving the equation tbe(T, M0, x0, xb, xe) = (tbe)exp. The
estimates of the temperature that are obtained from the
relative signal amplitudes are apparently less accurate
Fig. 3. (a) The time t required for a shock wave with the initial Mach number M0 = M(x0) = 2.88 to pass the distance between the
points at which it is recorded and (b) the temperature T in the case of a rectangular temperature profile as functions of the current
density j. The notation in plot (a) is as follows: The circles show the experimental data of [4] (see Fig. 2). All the curves were com-
puted from formula (14). The solid curve was obtained by using the temperature calculated from formula (21) with c = 1.7, and the
upper and lower dotted curves were obtained by using the temperatures calculated from formula (21) with c = 1.6 and c = 1.8,
respectively. The dashed curve was computed from formula (14) in which the temperature was calculated from formula (22). The
squares show the results calculated from formula (14) in which the temperature was determined from the relative signal amplitude
by solving Eq. (19). The diamonds show the results calculated from formula (14) in which the temperature was estimated from for-
mula (26) with the use of the experimental data on the propagation time of a shock wave [4]. The notation in plot (b) is as follows:
The solid curve is the temperature profile calculated from formula (21) with c = 1.7, and the upper and lower dotted curves were
calculated from the same formula with c = 1.8 and c = 1.6, respectively. The dashed curve was calculated from formula (22). The
circles show the temperature calculated from the experimental data of [4] by solving the equation tbe(T, M0, x0, xb, xe) = (tbe)exp.
The squares show the temperature determined from the relative signal amplitude by solving Eq. (19). The diamonds show the tem-
perature calculated from formula (26) with the use of the experimental data on the propagation time of a shock wave [4].
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
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than those obtained from the measured propagation
times.

The solid curve in Fig. 4a illustrates the results of
calculations of the shock wave propagation velocity as
a function of the spatial coordinate from formula (13)
at T = 473 K. The dashed-and-dotted curve shows the
propagation velocity calculated from the same formula
but at T = T0 = 300 K, i.e., in the absence of thermal
inhomogeneity. The difference between these curves is
the increment in the velocity at the observation point xe

1000

800

600

V(x), m/s
(a)

(b)

V(xe) – V(0)(xe), m/s

V(xe) – V(0)(xe)

xe xfxbxpx0

0.5 1.0 1.5 2.0 x, m

200

150

100

50

0

0–1 1 2 3 4 5 6
j, mA/cm2

Fig. 4. (a) Profile of the shock wave velocity along the spa-
tial coordinate and (b) increment in the velocity caused by
the spatial inhomogeneity. The notation in plot (a) is as fol-
lows: The solid curve is the velocity V(x) of a shock wave
with the initial Mach number M0 = 2.88. The dashed-and-
dotted curve is the velocity V(0)(x) calculated from formula
(7) for a shock wave that has the same initial Mach number
M0 = 2.88 but moves in a homogeneous medium. Plot (b)
displays the difference (at the observation point xe) between
the velocities shown in plot (a). The calculations were car-
ried out on the basis of formula (14) in which the tempera-
ture (Fig. 3b) was determined from formula (21) with c =
1.7 (solid curve), from the same formula but with c = 1.8
(upper dotted curve) and c = 1.6 (lower dotted curve), from
formula (22) (dashed curve), from the experimental data
obtained in [4] on the propagation time at the pressure p =
1.6 torr (circles), and from the measured signal amplitude
(squares).
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
caused by the effect of the thermal inhomogeneity
(Fig. 4b).

The data obtained by Ganguly and Bletzinger [6] on
the propagation of a shock wave in an argon and a nitro-
gen plasma are illustrated in Figs. 5a and 5b, respec-
tively. In that paper, the propagation time was measured
from the waveforms that are analogous to those given
in Fig. 2. It is obvious that, in this case, the estimates of
the temperature from the propagation time of a shock
wave have almost the same accuracy as those obtained
from the signal amplitude.
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(b)
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300
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i, mA

Fig. 5. Dependence of the temperature on the current for a
shock wave propagating through a discharge in (a) argon at
the pressure p = 30 torr and (b) nitrogen at the pressure p =
10 torr. The circles show the temperature values determined
by solving the equation tp(T, M0, x0, xb, xe) = (tp)exp or cal-
culated from formula (26) with the use of the experimental
data obtained in [6] on the propagation time of a shock
wave. The squares show the temperature values determined
from the relative signal amplitude [6] by solving Eq. (19).
In plot (a), the solid curve shows the temperature calculated
from formula (21) with c = 1.15, and the dotted curves were
obtained from the same formula but with c = 1.2 (upper
curve) and c = 1.1 (lower curve). The dashed curve was cal-
culated from formula (22). In plot (b), the solid curve shows
the temperature calculated from formula (21) with c = 2.1,
and the dotted curves were obtained from the same formula
but with c = 2.2 (upper curve) and c = 2.0 (lower curve). The
dashed curve was calculated from formula (22).
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Piskareva and Shugaev [8] carried out experiments
on the propagation of shock waves with different initial
velocities through an inhomogeneous region in which
the density increases according to a linear law, ρ1(x)/ρ10 ≈
0.2 + 0.8(x – xp)/(xf – xp) (in [8], this law was deter-
mined experimentally). They measured the distribu-
tions of the shock wave velocity along the spatial coor-
dinate. The maximum temperature estimated by the
method of two velocities described in the Appendix
turns out to be T = 1404 K, which agrees well with the
estimate T ≈ 1370 K obtained in [8]. Figure 6 compares
the calculated shock wave velocity as a function of the
distance from the heat source with the experimental
results of [8]. Good agreement between the calculated
and experimental results raises the hope that this
method will also yield fairly reliable estimates of the
temperature.

CONCLUSIONS

In this paper, formulas have been derived for esti-
mating plasma parameters by several independent
methods from experimental data on the characteristics
of shock waves passing through a thermally inhomoge-
neous region. These formulas allow one to calculate the
shock wave velocity and the time required for the wave
to pass the distance between the points at which it is
recorded. A comparison of the results obtained by the
methods proposed here with the experimental data
gives reason to hope that the methods can be success-
fully used to estimate the plasma parameters in differ-
ent experimental situations.

1100
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V, m/s

1.0 0.8 0.6 0.4 0.2 ρ/ρ0

Fig. 6. Shock wave velocity as a function of the relative den-
sity. The diamonds show the experimental data of [8]. The
solid curve was calculated from formula (24) in which the ini-
tial Mach number was determined from formula (33), the pres-
sure being p = 60 torr. The density increases linearly accord-
ing to the law ρi(x)/ρ10 ≈ 0.2 + 0.8(x – xp)/(xf – xp) [8].
APPENDIX

For a homogeneous medium, the function f(t) has
the form

(23)

As a first approximation, we can substitute this
expression for f(t) into the first of Eqs. (1) and switch
from the dependence on the time t to the dependence on
the coordinate x according to formula (5). Then, we can
derive the following simple approximate formula for
the velocity of a shock wave propagating in a medium
with a spatial inhomogeneity:

(24)

where T is the maximum temperature in a thermally
inhomogeneous region and M0 = M(x0).

In the next approximation, the shock wave propaga-
tion velocity is described by a more involved formula:

(25)

A comparison with the numerical solution to the
exact equations shows that formula (25) is valid for dif-
ferent temperature profiles.

For a rectangular temperature profile (Fig. 1), the
simplest way to estimate the temperature in a thermally
inhomogeneous region is to replace the dependence of
the shock wave velocity on the coordinate x in the inte-
grand in formula (14) with the value of the velocity in
the middle of the interval between the measurement
points xb and xe (such that xb ≥ xp, xe ≤ xf):

(26)

If the velocity of a shock wave is maximum just
after the wave enters the thermally inhomogeneous
region, then the temperature in this region can be esti-
mated from the measured spatial distributions of the
velocities of two shock waves with different initial
Mach numbers M01 and M02. In this case, the maximum
velocity is given by the formula

(27)

where a0Mp is the shock wave velocity just before the
wave enters the thermally inhomogeneous region, Mp is
the Mach number corresponding to the maximum
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velocity, and T is the maximum temperature in the
inhomogeneous region.

Using the measured distributions of the velocities of
the two shock waves, we can construct the following set
of four equations:

(28)

the left-hand sides of which are the experimentally
measured maximum velocities V1max and V2max and the
velocities V10 and V20 measured at the point xm that lies
behind the spatially inhomogeneous region.

The quantity x0, which determines the choice of the
coordinate system, is an unknown parameter. The left-
hand sides of the last two equations are calculated from
formula (7). The set of equations contains four
unknown quantities: M1p, M2p, T, and xm/x0. In solving
the set of equations, we arrive at the following cubic
equation for the quantity M1p:

(29)

The remaining unknown quantities are expressed in
terms of the largest root M1p of this equation:

(30)

where (xm – x0)exp are the experimentally measured dis-
tance from the source of the shock wave to the point xm,
at which the velocities V10 and V20 were measured.

The calculated value of x0 (Fig. 1) and the known
value of (xm – x0)exp give all the coordinates required for
calculations, thereby making it possible to calculate the
velocity distribution from formulas (8), (13), and (24)
or (25) for the purpose of checking the results obtained.

If it is technically impossible to measure the pres-
sure, then, by recording the time tbe required for a shock

V1max M1 p 1– T
T0
-----+ 

  a0,=

V2max M2 p 1– T
T0
-----+ 

  a0,=

V10 V 0( ) xm x0 M1 p a0, , ,( ),=

V20 V 0( ) xm x0 M2 p a0, , ,( ),=

A3M1 p
3 A2M1 p

2 A1M1 p A0+ + + 0,=

A3 2g 2– , A2 2gq 5g– 4q– 5,+= =

A2 –4gq 4g 2q2– 6q 4,–+ +=

A0 2gq q2 2q– g– 1,+ +=

g
2V10 a0–( ) V20 a0–( )2

V10 a0–( )2 2V20 a0–( )
-----------------------------------------------------, q

V2max V1max–
a0

-------------------------------.= =

T
V1max a0 M1 p 1–( )–[ ] 2

γR
-------------------------------------------------------, M2 p q M1 p,+= =

x0

xm x0–( )exp V10 a0–( )2 2M1 p 1–( )
a0M1 p V10–( ) 2M1 pV10 V10– a0M1 p–( )

-----------------------------------------------------------------------------------------------,=
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
wave to pass the distance between two points that lie
outside of the spatially inhomogeneous region, one can
use formula (15) to determine the Mach number at the
exit from the shock tube, M0 = M0(tbe), and exploit the
familiar formulas to calculate the pressure P1 in the
working volume from the pressure P4 and temperature
T4 within the high-pressure chamber in the shock tube:

(31)

where γ4 is the adiabatic index within the high-pressure
chamber.

The maximum value of the first derivative of the
density can be estimated by using the following for-
mula, which was obtained from the experimental data
of [9]:

(32)

This formula is fairly well approximated by formula
(17).

The initial Mach number of a shock wave propagat-
ing in a homogeneous medium can be estimated from
the known velocity Vm (measured at the point xm) by
solving Eq. (7) with respect to M0:

(33)

This formula can also be used to estimate the initial
Mach number when the point xm lies outside of the spa-
tially inhomogeneous region, because the shock wave
velocity in this region is close to that in the absence of
inhomogeneity (see the region x > xf in Fig. 4a).
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Abstract—The second-order amplitudes of the capillary vibration modes of a drop of an ideal incompressible
liquid placed in an incompressible ideal medium are calculated. The approximation is quadratic in initial mul-
timode deformation of the equilibrium spherical shape caused by nonlinear interaction. The mathematical state-
ment of the problem is such that the immobility condition for the center-of-mass of the drop is met automati-
cally. When the translational mode amplitude is calculated, a set of hydrodynamic boundary conditions at the
interface, rather than the condition of center-of-mass immobility (which is usually applied for simplicity in the
problems of drops vibration in a vacuum), should be used. © 2003 MAIK “Nauka/Interperiodica”.
(1) The vibration and stability of charged drops and
bubbles in a liquid is of interest in various areas of sci-
ence and technology (see, e.g., [1–3] and Refs. cited
therein). This problem has been studied in many exper-
imental and theoretical works using both the linear [1–
3] and nonlinear [4–10] approximations in vibration
amplitude. The study of nonlinearly vibrating drops
and bubbles has only recently begun, and the tech-
niques of solving such problems have not yet become
commonly accepted. Many particular cases have been
covered superficially, which sometimes causes errors.
For example, this applies to the excitation of the trans-
lational mode in a nonlinearly vibrating drop, which
appears in second- and third-order calculations [4, 8, 9,
11, 12]. The very fact of translational mode excitation
in a drop of an incompressible liquid nonlinearly
vibrating in a vacuum follows from the requirement
that the center-of-mass of the drop be stationary. When
the spectrum of modes specifying the drop initial defor-
mation contains two or more modes with sequentially
increasing numbers, the center-of-mass immobility
leads to the appearance of the translational mode
among the modes excited by nonlinear interaction [9].
In other words, the excitation of the translational mode
compensates for the displacement of the center-of-
mass, which results from a mass distribution that is
asymmetric about the center of an equilibrium spheri-
cal drop when the spectrum of the initial deformation
contains modes with sequential numbers. The time
dependence of the translational mode amplitude is peri-
odic, causing the drop vibrating in a gaseous atmo-
sphere to emit dipole acoustic radiation [9, 13]. If the
drop is charged, it becomes the source of dipole electro-
magnetic radiation [9, 14].

A second-order analytical expression for the transla-
tional mode amplitude in a drop nonlinearly vibrating
in a vacuum can be derived from both the condition of
1063-7842/03/4809- $24.00 © 21141
center-of-mass immobility and a set of hydrodynamic
boundary conditions on the free surface of the drop. In
both cases, its form is the same [9]. The situation
changes if the drop vibrates in an environment (or a
bubble vibrates in a liquid): in this case, analytical
expressions for the translational mode amplitude that
are obtained from the condition of center-of-mass
immobility and a set of boundary conditions at the
interface are different at first glance [11]. It should be
noted, however, that Benjamin and Ellis [11] applied
the condition of center-of-mass immobility incorrectly.
Nevertheless, they drew the general conclusion that the
drop (bubble) moves translationally with a fixed veloc-
ity as a result of surface vibrations that are excited
because of energy transfer from surface modes to the
translational mode, whose amplitude contains a time-
independent term. In combination with the misinterpre-
tation of the experimental data for cavitation [15], this
conclusion provoked another theoretical work by Feng
[12], who, using an incorrect transition to the noniner-
tial coordinate system, obtained an expression for the
velocity of the translational motion of a bubble in a liq-
uid in the absence of external forces (i.e., when the
motion is caused only by surface vibrations). There-
fore, the problem of applying the condition of center-
of-mass immobility to calculating the nonlinear vibra-
tions of incompressible liquid drops in an incompress-
ible ideal environment in the case of a multimode initial
deformation seems to be topical.

Kornfeld and Suvorov [15] observed the formation,
motion, and cavitational disappearance of microbub-
bles in a liquid and near a metallic object vibrating at
7.5 kHz. The number of bubbles was rather large: they
even clouded the object. Most of the bubbles formed
and collapsed in the neighborhood of the object, thus
causing its cavitational erosion. However, some of them
suddenly started to move rapidly and randomly. Based
003 MAIK “Nauka/Interperiodica”
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on this observation, the authors of [11, 12] put forward
the idea that nonlinear vibrations cause the drift of the
bubbles. We believe that the interpretation [11, 12] of
the observations [15] is far from correct. It is obvious
that any complex random motion of individual bubbles
may be provided if the flow field of a liquid in the vicin-
ity of a vibrating metallic object is superimposed on the
velocity fields of randomly oriented intense hydrody-
namic flows near cavitation bubbles [16] in the pres-
ence of gravitational and buoyancy force fields. As far
as we know, no directed motion of bubbles in a quies-
cent liquid the only reason for which is surface vibra-
tions in the absence of directed applied forces has been
detected in experiments.

(2) Let a charged spherical drop of an ideal incom-
pressible conducting liquid with a mass density ρ1 be
placed in an ideal incompressible dielectric liquid envi-
ronment with a permittivity ε∗  and mass density ρ2.
The surface tension coefficient at the interface is σ, and
the total charge and radius of the drop are Q and R,
respectively.

Consider the capillary vibrations of the interface
that are induced by a small initial perturbation of its
equilibrium spherical shape. We consider only axisym-
metric distortions of the interface and write a related
equation in the spherical coordinate system with the
origin at the center-of-mass of the drop:

(1)

where ξ(Θ, t) is a dimensionless function describing the
spherical surface deformation that is related to surface
vibrations.

Since the drop vibration amplitudes are small, we
may assume that the motion of both media is potential.
The potentials of the liquid velocity fields are ψ1(r, t)
and ψ2(r, t) inside and outside the drop, respectively.

The conductivity of the drop is taken to be suffi-
ciently high in order that the characteristic time of
charge redistribution over its surface be much shorter
than the characteristic hydrodynamic time scales of the
problem. Then, an electric field near the drop may be
considered to be electrostatic with a potential Φ at any
time instant.

The equations describing liquid motions in the sys-
tem are

(2)

with the conditions at the interface (see (1))
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∆ψ1 0 0 r r Θ t,( )<≤( );=

∆ψ2 0; ∆Φ 0 r r Θ t,( )>( )= =

∂ψ1

∂n
---------

∂ψ2

∂n
---------;=

∂F
∂t
------ —ψ1 —F⋅+ 0;=
(3)

Here, P1 and P2 are the pressures inside and outside the
drop in the equilibrium state, n is the unit vector of the
outer normal (directed toward the environment) to
interface (1), ΦS(t) is the constant value of the electro-
static potential Φ(r, t) over the interface, and ∇  is the
Laplacian.

The initial conditions are an expression for the ini-
tial diffusion of the interface and the zero initial veloc-
ity of the diffusion:

(4)

Here, ε is the perturbation amplitude, which is a small
parameter of the problem; Pi(cosΘ) is the ith-order
Legendre polynomial; hi is the partial contribution of an
ith vibration mode to the initial perturbation:

ξ0 and ξ1 are constants defined by the constancy condi-
tion for the volume of the drop (and environment) with
the vibrating interface, 

(5)

and the immobility condition for the center-of-mass of
the entire system,

(6)

Conditions (5) and (6) must be met at any time
instant, including at zero time. In (6), L is the character-
istic linear size of the environmental space, L @ R (the
environment occupies a relatively large volume, which

P1 P2– ρ1

∂ψ1

∂t
---------–

ρ1

2
----- —ψ1( )2– ρ2

∂ψ2

∂t
---------+

+
ρ2

2
----- —ψ2( )2 ε*

8π
------ —Φ( )2+ σdivn;=

Φ Θ t,( ) ΦS t( );=

ε*
4π
------ n —Φ⋅( )dS

S

∫°– Q, S

r R 1 ξ Θ t,( )+[ ]=

0 Θ π≤ ≤
0 φ 2π.≤ ≤






= =

ξ Θ t,  = 0( ) = ε hiPi Θcos( )
i Ξ∈
∑ ξ0P0 Θcos( ) ξ1P1 Θcos( );+ +

∂ξ Θ t 0=,( )
∂t

------------------------------ 0.=

hi

i Ξ∈
∑ 1,=

r2 rd Ωd

0
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∫
Ω
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4
3
---πR3; 

dΩ ΘdΘdϕ ;sin≡
Ω = 0 Θ π; 0 ϕ 2π≥≤ ≤ ≤{ }

ρ1 r r2 r Ωdd⋅
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is infinitely large in the physical, rather than mathemat-
ical, sense).

(3) In the nonlinear statement, problem (2)–(4) may
be solved by the method of many scales, as for a drop
in a vacuum [4, 7–10]. Such an approach makes it pos-
sible to determine the function ξ(Θ, t), which is repre-
sented as the expansion in Legendre polynomials and
describes the time evolution of the interface:

(7)

In the problem of drop surface vibration in a vacuum
(ρ2 = 0), conditions (5) and (6) impose additional
restrictions on the amplitudes of the zero (volume) and
first (translational) modes in expansion (7), respec-
tively, and these restrictions accord with the set of equa-
tions (2)–(4). For example, the expression for the trans-
lational mode amplitude that was derived from the con-
dition of center-of-mass immobility coincided with that
obtained from the set of boundary conditions. For the
case of the drop placed in the environment, the role of
condition (5) remains the same (since both media are
assumed to be incompressible), whereas the application
of condition (6) needs more detailed analysis.

First, we note that, projecting the integral of the vec-

tor function  · r2drdΩ onto the unit vectors of the

Cartesian coordinate system, we obtain the equivalent
system of three scalar integrals

Combining these integrals, we can easily recast this
system in compact form:

where (Θ, ϕ) ~ sinΘexp(±iϕ) and (Θ, ϕ) ~ cosΘ
are spherical functions.

In view of the above, we write condition (6) of cen-
ter-of-mass immobility for the drop in the environment
as

ξ Θ t,( ) = εMn
1( ) t( ) ε2

Mn
2( ) t( ) O ξ3( )+ +[ ] Pn Θcos( ).

n 0=

∞

∑

r∫∫
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∫+ Ωd

Ω
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---------------------------------------------------------------------------------------------------- 0.=
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Integrating it over the radial coordinate yields

Note that the denominator of this expression is a
finite quantity, since (see (5))

and the first integral in the numerator is equal to unity
because of the well-known property

of spherical functions.
Eventually, the condition of center-of-mass immo-

bility for the drop–environment system can be written
as

(8)

It is obvious that, at a sufficiently large linear size L
of the environment, equality (8) may hold for any arbi-
trary function r(Θ, t) with an accuracy as high as
desired.

Thus, the condition of center-of-mass immobility in
the problem of drop surface vibration in an environ-
ment that occupies a sufficiently large but finite volume
is fulfilled automatically. Hence, the translational mode
amplitude in expansion (7) should be determined from
boundary conditions (2)–(4). Note that, as for the drop
in a vacuum, the excitation of the translational mode
compensates for the displacement of the center-of-mass
of the drop, which is caused by surface vibrational
modes [9].

In the absence of the environment (ρ2 = 0), Eq. (8)
turns into

This condition is not obvious and is usually taken
into account in the complete formulation of the prob-
lem of drop surface vibrations in a vacuum [4, 7–9].

CONCLUSIONS
Upon solving the problem of the nonlinear vibra-

tions of incompressible ideal liquid drops placed in an
immiscible incompressible ideal medium, the condi-

L
4
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------------------+ Y1
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tion of center-of-mass immobility is satisfied automati-
cally. Therefore, the translational mode amplitude
should be calculated with a set of hydrodynamic
boundary conditions at the interface.
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Abstract—Results are presented from experimental studies of the anode region of a low-pressure two-stage
self-sustained discharge with a closed cold hollow cathode. It is shown that applying an external longitudinal
magnetic field promotes the generation of a dense anode plasma, whereas the transverse field impedes this gen-
eration. It is established that the beam–plasma mechanism for plasma generation plays a dominant role in
the anode region of the discharge. The geometry of the electrodes of the gas-discharge chamber is optimized.
© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is known [1–3] that, in a low-pressure glow dis-
charge with a cold hollow cathode, an inhomogeneous
dense plasma is produced in the anode region if the fol-
lowing condition is satisfied: Sa/Sk < 0.01, where Sa is
the anode area and Sk is the area of the inner surface of
the hollow cathode. A bright anode plasma glow with
regular boundaries is usually observed against the
background of the uniform glow of the hollow-cathode
positive column. The mechanism for the generation of
this dense anode plasma has been investigated over sev-
eral years. Based on the conventional model of binary
collision of fast electrons with neutrals, it is difficult to
explain how the cold anode plasma is generated in a
volume smaller than 10 cm3 under typical discharge
conditions (the working gas pressure in the anode
region is less than 10 Pa, the discharge current is higher
than 0.1–1.0 A, and the discharge voltage is 300–
600 V). Estimates show that, in this case, the electron
mean free path exceeds (or is comparable with) the
characteristic dimensions of the anode region, whereas
the probability of an ionizing collision for a fast elec-
tron in the anode region is significantly less than unity.
Moreover, due to a substantial reduction in the relative
anode area at low gas pressures, an electric double layer
with a potential drop of about several tens of volts is
usually formed between the anode and cathode; the
field of this layer accelerates the plasma electrons
toward the anode [1, 2]. The ion and electron currents
through a steady-state double layer separating the
anode and cathode plasmas satisfy the well-known rela-
tionship: ji = (m/M)1/2je, where ji and je are the ion and
1063-7842/03/4809- $24.00 © 21145
electron current densities, respectively, and M and m
are the masses of an ion and electron, respectively [4].
It follows from here that, for a typical discharge current
of ~103 mA, the ion emission current from a self-sus-
tained discharge can hardly exceed 10 mA. However, it
is well known that the low-pressure two-stage self-sus-
tained discharge with a closed cold hollow cathode has
found applications as an efficient oxygen ion emitter
capable of producing ion beams with a current of up to
10–100 mA at discharge currents of 100–1000 mA, in
spite of the small anode area and the presence of an
~40-eV electric double layer in the discharge plasma
[5, 6]. Experimental investigations show that condi-
tions in the anode region of such a discharge are favor-
able for collective interactions between the beam of the
cathode-plasma electrons accelerated in the electric
double layer and the dense anode plasma [2]. However,
up to now, there has been no experimental evidence that
the beam–plasma interactions play a dominant role in
the generation of the cold anode plasma. If the latter
hypothesis is true, then, as was shown in [7–9], there is
no contradiction between the observed high value of the
ion emission current from the discharge and the limits
that are imposed by the condition for the currents flow-
ing through the double layer. According to [7–9], the
density jbi of the ion emission current from a beam–
plasma discharge initiated by injecting an electron
beam toward the anode substantially exceeds the den-
sity ji of the ion emission current through a steady-state
double layer and is determined by the relationship jbi ≈
αji, where α is the space-charge neutralization factor,
which is equal to 5–100, depending on the experimental
conditions. In the present paper, conditions under
003 MAIK “Nauka/Interperiodica”
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which the anode region in a low-pressure two-stage
self-sustained discharge with a closed cold hollow cath-
ode is formed are compared for three different cases:
(i) when an external magnetic field is absent, (ii) when
the anode region is in an external longitudinal magnetic
field, and (iii) when it is in a transverse magnetic field.
It is well known that the longitudinal magnetic field
parallel to the direction of electron beam injection
increases the intensity of the beam–plasma interaction
[10], whereas the transverse magnetic field increases
the probability of electron-impact ionization in binary
collisions [4]. It is also known that applying a trans-
verse magnetic field to a double layer increases the ion
current through it [11].

An analysis of the results presented in this paper
(which is a continuation of [2]) points to the dominant
role of the beam–plasma ionization mechanism in the
formation of the anode plasma in a low-pressure two-
stage self-sustained discharge with a cold hollow cath-
ode. To date, conditions under which the beam–plasma
discharge is excited and evolves have been investigated
only for the cases of a low-voltage (<10 V) beam–
plasma discharge at relatively high pressures (>102 Pa)
in the absence of an external magnetic field [12] and a
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Fig. 1. Experimental discharge chamber: (1) upper cathode
wall, (2) cylindrical wall of the hollow cathode, (3) lower
cathode wall, (4) plane anode, (5) contraction hole, (6, 7)
annular magnets, (8, 9) magnet rods, and (10) quartz insu-
lator.

10
higher voltage (>100 V) low-pressure (<10 Pa) beam-
plasma discharge both with and without a longitudinal
magnetic field [7–10].

EXPERIMENTAL TECHNIQUE

A schematic of the experimental discharge chamber
is shown in Fig. 1. The discharge was excited between
the inner surface of the closed hollow cathode (elec-
trodes 1–3) and plane anode (4) through a contraction
hole (5). The height of the walls of the contraction hole
was 3 mm, and the hole diameter d varied from 4 to
14 mm with the help of accessory inserts. The height h
of the gap between the anode (4) and the hollow-cath-
ode wall (1) varied from 1 to 8 mm. The electrodes
were made of nonmagnetic stainless steel. A longitudi-
nal magnetic field B|| of up to ~15 mT in the anode–
cathode gap was created by two standard axially mag-
netized ferrite–barium rings (6, 7) mounted coaxially in
aluminum shields at the anode (4) and the inner surface
of the hollow-cathode wall (1), respectively. A trans-
verse magnetic field Br of up to 20 mT in the anode–
cathode gap was created by two longitudinally magne-
tized ferrite–barium rods (8, 9) mounted at the outer
surface of the hollow-cathode wall (1) symmetrically
about the contraction hole (5). As in the prototype
device [2], the cylindrical wall (2) of the hollow cath-
ode was 120 mm in diameter and 80 mm in height and
had windows shielded with a molybdenum grid. The
discharge chamber was pumped at a rate of ~2 m2/s to
a pressure of ~10–4 Pa through 520 3-mm-diameter
holes in the bottom of the cathode (3). Oxygen was fed
into the discharge chamber through a peripheral hole in
the support of the anode (4). At an oxygen flow rate Q
of 1.1 × 10–2 Pa m3/s, the pressure in the anode–cathode
gap was less than 2 Pa, whereas in the hollow cathode
it was less than 0.1 Pa. The discharge in the anode–
cathode gap was photographed through a sealed quartz
insulator (10). The discharge chamber was powered
from a stabilized rectifier with an output current of 1 A
and output voltage of 1 kV. The anode circuit included
a 100-Ω ballast resistor. The electrodes of the hollow
cathode were grounded.

EXPERIMENTAL RESULTS AND DISCUSSION

Figure 2 shows a set of photographs of the discharge
glow in the anode region under different experimental
conditions. The anode plasma in the absence of a mag-
netic field (Fig. 2a) and at characteristic values of the
discharge parameters (the current Id = 0.3 A, the dis-
charge voltage Ud = 360 V, the oxygen flow rate Q =
1.2 × 10–2 Pa m3/s, the height of the anode–cathode gap
h = 8 mm, and the diameter of the contraction hole d =
4 mm) resembles a typical beam–plasma discharge in
the absence of a magnetic field, because it contains all
the main components of the latter (Fig. 2b) [13]. By
analogy with [13], the following regions can be distin-
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
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guished in the anode plasma: a cylindrical plasma col-
umn C produced by a nearly parallel electron beam
from the cathode plasma; a meniscus region E; and a
scattering region F, in which the beam electrons are
deflected in the radial direction. As the height of the
anode–cathode gap decreases, the discharge voltage Ud

somewhat decreases (the other discharge parameters
remaining the same); the diameter of the scattering
region F increases; and the cylindrical plasma column
C is displaced inside the hollow cathode, where the
pressure is lower. This is illustrated by Fig. 2c, which
corresponds to Id = 0.3 A, Ud = 345 V, h = 4 mm, and
d = 4 mm. As the discharge current was increased by
supplying a higher power from the external source, the
discharge voltage increased and the scattering region F
grew in size (see Fig. 2d, in which Ud = 350 V and Id =
0.4 A). Applying the transverse magnetic field Br dete-
riorated the discharge conditions. In this case, the inten-
sity of the anode plasma glow decreased, the diameter
of the plasma column increased, and its boundaries
became irregular (see Fig. 2e, which corresponds to Id =
0.3 A, Ud = 375 V, Q = 1.2 × 10–2 Pa m3/s, h = 8 mm,
and d = 6 mm). As the transverse magnetic field was
increased to Br = 20 mT, the discharge conditions even
more degraded and the intensity of the anode plasma
glow further decreased (see Fig. 2f, in which Id = 0.3 A
and Ud = 390 V). At the same time, the discharge
became unstable and the generation of intense broad-
band noise was observed. At an initial discharge current
(without an external magnetic field) of Id ≤ 0.2 A and
oxygen flow rate of Q ≤ 1.2 × 10–2 Pa m3/s, a magnetic
field of Br = 20 mT was sufficient to suppress the dis-
charge. An opposite situation took place when a longi-
tudinal magnetic field was imposed. In this case, even
with a longitudinal magnetic field in the anode–cathode
gap of B|| ≥ 10 mT, we observed an intense uniform
anode plasma glow with well-defined side boundaries
throughout the entire anode–cathode gap (see Fig. 2g,
which corresponds to Id = 0.3 A, Ud = 350 V, Q = 1.2 ×
10–2 Pa m3/s, h = 8 mm, and d = 4 mm). As the dis-
charge current was increased to Id = 0.6 A, the discharge
voltage insignificantly increased (to Ud = 365 V) and
the anode plasma glow became more intense and uni-
form (Fig. 2h).

Figure 3 shows the current–voltage characteristics
Ud(Id) of the discharge (curves 1–3) and the depen-
dences of the current Ik flowing through the lower
wall (3) of the hollow cathode on the discharge current
Id (curves 4–6, characterizing the efficiency of ion
emission from the discharge) for the three types of the
discharge conditions considered above: without an
external magnetic field in the anode region (curves 1, 4),
with a transverse magnetic field of Br = 15 mT (cur-
ves 2, 5), and with a longitudinal magnetic field of B|| =
15 mT (curves 3, 6). The other parameters are Q = 1.4 ×
10–2 Pa m3/s, d = 6 mm, and h = 4 mm. It can be seen
that, in the discharge current range under consideration
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
(from 0.2 to 0.6 A) and in the absence of an external
magnetic field, the discharge voltage Ud increases with
the current Id and the dependence Ik(Id) saturates at Id >
0.3 A. In the case with a transverse magnetic field, the
slope of the curve Ud(Id) increases sharply at discharge
currents of Id > 0.3 A and the current Ik at these values

Anode

Cathode

C

E

F

(a)

(c) (d)

(e) (f)

(g) (h)

(b)

Fig. 2. Photographs of the anode region of the discharge
(a, c, d) in the absence of a magnetic field, at Br = (e) 10 and
(f) 20 mT, and (g, h) at B|| = 15 mT. Plot (b) shows a sche-
matic of the beam–plasma interaction region [13]: C is the
plasma column, E is the meniscus region, and F is the scat-
tering region.
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of the discharge current starts to gradually decrease. In
the case with a longitudinal magnetic field, the depen-
dence Ud(Id) is presented by a horizontal line, whereas
the curve Ik(Id) monotonically increases.

The data presented in Figs. 2 and 3 testify to the
beam–plasma mechanism for anode plasma generation.
Indeed, in the absence of an external magnetic field, the
energy acquired by the electrons accelerated in the
electric field of the double layer and the current density
in the electron beam arriving from the cathode plasma
can be insufficient to generate a dense nonequilibrium
plasma in the anode region in spite of an increase in the
power supplied from the external source. The reason
may be, e.g., the loss of electrons on the anode and the
loss of ions on the cathode wall near the contraction
hole. The fact that the fast-electron scattering region is
located near the anode, as well as the large cross size of
this region (see Figs. 2c, 2d), leads to a decrease in the
probability of anode plasma ions falling into the con-
traction hole, which hinders the increase in the ion cur-
rent flowing through the electric double layer as the dis-
charge current increases. That is why the dependence
Ud(Id) is monotonically increasing and the curve Ik(Id)
is saturated. The transverse magnetic field magnetizes
the electrons moving toward the anode; confines fast
electrons near the contraction hole, where the working
gas pressure is maximum; and randomizes the motion
of fast electrons toward the anode. As a result, the con-
ditions for beam–plasma interaction in the anode region
deteriorate, whereas the conditions for ionization due to
binary collisions improve [4]. In addition, the trans-
verse magnetic field promotes the ion current to flow
through the double layer, because the space charge of
the double layer is partially neutralized by cathode-
stage electrons oscillating along the magnetic field
lines [11]. Nevertheless, as the working pressure
decreases and/or the magnetic field increases, the dis-
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Fig. 3. (1–3) Current–voltage characteristics of the dis-
charge and (4–6) the current flowing through the lower wall
of the hollow cathode as a function of the discharge current
(1, 4) in the absence of a magnetic field, (2, 5) at Br = 15 mT,
and (3, 6) at B|| = 15 mT.
charge conditions deteriorate and the discharge
becomes located in the higher pressure region (near the
contraction hole) and even takes the form of a low-cur-
rent diode discharge in a transverse magnetic field
(Figs. 2e, 2f). As the discharge current increases, the
current–voltage characteristic Ud(Id) becomes nearly
vertical. The decreasing dependence Ik(Id) reflects a
decrease in the probability of the discharge ions reach-
ing the lower wall of the hollow cathode (Fig. 3, cur-
ves 3, 6). In contrast, the longitudinal magnetic field
impedes the transverse loss of the fast cathode-plasma
electrons in the anode plasma region. As a result, favor-
able conditions for collective interactions in the anode
region are created [10] and a dense homogeneous
anode plasma is generated (Figs. 2g, 2h). At the same
time, the discharge conditions are improved: the cur-
rent–voltage characteristic becomes almost horizontal,
and the value of the ion current to the lower wall of the
hollow cathode increases with increasing discharge
current (Fig. 3, curves 2, 5).

Combining the results from theoretical models of
beam–plasma interactions and analyzing actual experi-
mental conditions in beam–plasma discharge devices, a
number of semiempirical relations allowing one to opti-
mize the geometry of the discharge chamber was
obtained in [5, 8, 10]. Thus, for the optimum geometry
of a waveguide-type discharge chamber in an external
longitudinal magnetic field, the ratio of the length L to
the radius R of the beam–plasma interaction region (it
is assumed that L @ R) should satisfy the condition [8]

Here, εnm is the nth zero of the Bessel function of mth
order, Jm(x); e and m are the electron charge and mass,
respectively; Vb is the potential of the electric field
accelerating the beam electrons (in our case, the field of
the double layer); and Ib is the ion beam current. It fol-
lows from this formula that, for L ≈ const and Vb ≈
const, the radius R of the interaction region should be
increased as Ib increases in order to maintain the opti-
mum conditions for the beam–plasma interaction.
Extending this conclusion to the case of the anode
region of a two-stage self-sustained discharge (in spite
of the fact that the length of this region is only several-
fold greater than its radius), we find that more favorable
conditions for a high-current discharge can be achieved
by increasing the diameter of the contraction hole as the
discharge current increases. The same conclusion can
be drawn from Figs. 2e and 2g, in which the size of the
dense homogeneous anode plasma is nearly twice as
great as the diameter of the contraction hole.

These considerations stimulated the optimization of
the geometry of the anode region of the discharge
chamber by optimizing the geometry of the contraction
hole. For this purpose, several inserts with contraction
holes of different geometry were used. Figure 4 shows
the change in the geometry of the contraction hole after

L
R
--- εnmVb

3/2 e/2me( )1/2/Ib.=
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long-term discharge operation. In all cases, the dis-
charge current and the oxygen flow rate were main-
tained at a constant level: Id = 0.4 A and Q = 1.2 ×
10−4 Pa m3/s. The length of the anode–cathode gap was
h = 4 mm. These experiments have shown that, in the
absence of an external magnetic field, the hole diameter
increased due to the wall sputtering from 6 mm (the ini-
tial contraction hole is shown in Fig. 4a) to ~12 mm
over a time interval of 200 h. As a result, a conical cra-
ter with a base on the side of the hollow cathode was
formed (Fig. 4b). As the diameter of the contraction
hole increased further, the discharge conditions deteri-
orated and the discharge evolved into a high-voltage
discharge. When a transverse magnetic filed of Br =
15 mT was applied, the wall was sputtered more
intensely and, after 85-h operation, the discharge
became unstable, the diameter of the contraction hole
increased from 6 to 13 mm, and its wall became eroded
from both the anode and cathode sides (the resulting
state of the contraction hole is shown in Fig. 4c). A dif-
ferent picture was observed in the case of a longitudinal
magnetic field. For a longitudinal magnetic field of B|| =
15 mT, the optimum diameter of the contraction hole
was d = 12 mm (the initial contraction hole is shown in
Fig. 4d). The diameter of the contraction hole remained
unchanged even after 200-h discharge operation; how-
ever, the wall edges turned out to be noticeably eroded
on the anode side (Fig. 4e), whereas they were only
slightly eroded on the cathode side (Fig. 4f). With lower
initial diameters of the contraction hole and in the pres-
ence of a longitudinal magnetic field, the discharge
conditions somewhat improved (the other discharge

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Change in the geometry of the contraction hole due
to the wall sputtering under different conditions in the
anode region of the discharge: (a, b) in the absence of a
magnetic field, (c) at Br = 15 mT, and (d–f) at B|| = 15 mT.
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parameters being the same, the discharge voltage
decreased by no more than 10 V); however, the wall of
the contraction hole on the anode side was sputtered
more intensely. With hole diameters larger than d =
12 mm, the discharge conditions deteriorated. The
coincidence of the values of the hole diameter (d ≥
12 mm) at which a considerable deterioration of the
discharge conditions was observed in all the above
three cases (regardless of the orientation of the external
magnetic field) may be related to the necessity of satis-
fying the condition for the existence of a double layer,
Sa/Sk < 0.01, or in less explicit form, the necessity of
adjusting the surface area of the double layer to the
diameter of the contraction hole. It is obvious that this
condition fails to be satisfied as the diameter of the con-
traction hole increases. The results of optimizing the
geometry of the anode region of the discharge were
used to design oxygen-ion sources producing 300-mm
ion beams with a uniform current density over the beam
cross section [6].

CONCLUSION

The experimental results presented in this paper
allow one to consider the anode region of a low-pres-
sure two-stage self-sustained discharge with a cold hol-
low cathode as a low-voltage non-self-sustained beam–
plasma discharge in a longitudinal magnetic field. The
discharge is initiated by the beam of the cathode-
plasma electrons, which are accelerated toward the
anode by the field of an electric double layer located on
the cathode side of the contraction hole in the hollow
cathode. This conclusion is confirmed by the results of
optimizing the geometry of the anode region of the dis-
charge.
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Abstract—Comprehensive self-consistent simulations of the positive column plasma of a dc oxygen discharge
are performed with the help of commercial CFDRC software (http://www.cfdrc.com/~cfdplasma), which
enables one to carry out computations in an arbitrary 3D geometry using fluid equations for heavy components
and a kinetic equation for electrons. The main scaling laws for the spatial distributions of charged particles are
determined. These scaling laws are found to be quite different in the parameter ranges that are dominated by
different physical processes. At low pressures, both the electrons and negative ions in the inner discharge region
obey a Boltzmann distribution; as a result, a flat profile of the electron density and a parabolic profile of the ion
density are established there. In the ion balance, transport processes prevail, so that ion heating in an electric
field dramatically affects the spatial distribution of the charged particles. At elevated pressures, the volume pro-
cesses prevail in the balance of negative ions and the profiles of the charged particle densities in the inner region
turn out to be similar to each other. © 2003 MAIK “Nauka/Interperiodica”.
Interest in discharges in electronegative gases stems
from their wide use in modern plasma technologies [1].
In order to predict the possible parameter distributions
and their dependence on the external conditions, con-
siderable attention is paid to elucidating the relations
between the main plasma parameters. Various aspects
of this problem as applied to electronegative gases were
considered by many research groups (see, e.g., [1–26]).
It was found that, in the presence of negative ions, the
processes of spatial transport, which determine the den-
sity profiles and other plasma parameters, possess a
number of specific features [26]. Knowledge of the spa-
tial distributions of charged particles is of crucial
importance for understanding and optimizing the oper-
ation of various devices and technologies, such as ion
sources and facilities for the plasma treatment of mate-
rials. Early attempts to reduce the problem to a set of
ambipolar diffusion coefficients by using simplified
models [2–9] were contradictory and there were no cri-
teria for their applicability. In [10–12], it was shown
that a specific feature of an electronegative-gas plasma
is that it stratifies into regions with different ion compo-
sitions. In the outer region (shell) of such a plasma, neg-
ative ions are practically absent (Figs. 1–3), because
they are drawn by the electric field into the plasma inte-
rior. Although the thickness of this shell is usually
small, its presence is of fundamental importance
because it confines the negative ions inside the plasma
volume. As a result, the flux of negative ions to the wall
1063-7842/03/4809- $24.00 © 21151
is practically absent (in contrast to those of electrons
and ions). In such a situation, the only means to extract
negative ions from the discharge is to apply an acceler-
ating voltage U to the wall (or an extracting electrode).
The magnitude of this voltage should be large enough
for the space charge layer produced at the plasma
boundary to extend to the inner region containing neg-
ative ions. The thicker the shell, the higher voltage (U ~

4

0.2 0.4 0.6

2

6

8

10

0

1

2

3

4

Density, 1010 cm–3

r, cm

Fig. 1. Profiles of the charged particle densities for p = 1 torr
and I = 50 mA: (1) ne, (2) nn, (3) np, and (4) n[O+].
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) that must be applied to enable the flux of negative
ions to the wall.

Besides its practical importance, oxygen plasma is
also an important test object [16]. The peculiar features
of the spatial distributions of the oxygen plasma param-
eters have been the subject of a heated discussion. Thus,
in [16–18], it was pointed out that using a Boltzmann
distribution from [4] for not only electrons but also neg-
ative ions (as was done in [13–15]) is unjustified. It is
alternatively asserted in [16–18] that the densities of
charged particles in such a plasma should be propor-
tional to each other [10–12]. In [24], it was shown that,
depending on conditions, both types of distribution can
occur. For example, we observed a transition from one
type of the above profiles to another as the pressure was
reduced (see below).

To verify the functional relations between the
plasma parameters obtained with the help of simplified

Lsh
2/3

5

10

0.2 0.4 0.60
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Density, 1010 cm–3

r, cm

Fig. 2. Same as in Fig. 1 for p = 0.15 torr without allowance
for ion heating: (1) ne, (2) nn, (3) np, and (4) n[O+]. The
dashed curve shows parabolic distribution (18).
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Fig. 3. Same as in Fig. 2, but with allowance for ion heating.
models, they should be compared with the results of
full-scale numerical simulations. Such simulations
should be based on self-consistent models that take into
account spatial transport processes and volume plasmo-
chemical reactions. Such an attempt was made by us in
[27], in which we compared the results of kinetic and
fluid simulations of the positive column plasma of a dc
oxygen discharge by using commercial CFDRC soft-
ware [28]. A two-temperature (2T) fluid model was
proposed, which allowed us to incorporate kinetic
effects in the conventional fluid model in the simplest
way.

Here, we continue the study of [27]; specifically, we
investigate the features of the spatial distributions of the
plasma parameters in the positive column of a dc dis-
charge in a 12-mm-diameter glass tube at pressures of
0.05–3 torr and discharge currents of 5–200 mA. These
conditions correspond to those in [21, 22], in which, in
our opinion, one of the most detailed experimental and
theoretical studies of the positive column of a dc oxy-
gen discharge were reported.

The discharge was simulated by using a commercial
software developed at the CFD Research Corporation
(Huntsville, AL, USA) [28]. A detailed self-consistent
model of the discharge plasma, numerical iteration
scheme, and technique for solving the set of equations
are described in [28]. The density and mean energy of
the electron component can be obtained by solving
either fluid balance equations or the kinetic equation for
the electron distribution function (EDF). The self-con-
sistent electric field is found from Poisson’s equation.
Heavy particles are described in the fluid model. Both
the analytic results and the published data show that, in
the parameter range under study, the neutral gas is
heated to no higher than 50–150 K. Such an increase in
the gas temperature T results merely in a decrease in the
gas density. Since this is of minor importance for our
problem, the gas temperature was assumed to be equal
to room temperature and constant over the discharge
cross section. On the other hand, the ion temperature
can increase significantly, particularly at low pressures
[20, 21]. As the pressure decreases, the reduced electric
field E/p increases, so that the directed velocity
acquired by the ions in this field can become higher
than the random (thermal) velocity [29]. The coefficient
of ion diffusion also increases. This can dramatically
change the ion density profiles [20]. Model calculations
with allowance for ion heating in a longitudinal electric
field show that the outer region occupied by the elec-
tron–ion plasma shrinks and can even completely dis-
appear [20, 21]. Ion heating also leads to a decrease in
the detachment rate constant and, consequently, to an
increase in the relative density of negative ions nn/ne

(the degree of electronegativity) [21].

Here, we do not present the list of the volume plas-
mochemical reactions involved because it is the same
as in [27]. Note only that we solved the balance equa-
tions for the vibrationally excited states O2(v) (v  = 0, 1)
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
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of an oxygen molecule and the electronically-excited

states of an oxygen molecule (O2(X3 ), O2(a1∆),
O2(b1Σ), and O2(Ry)); oxygen atom (O(3P), O(1S), and

O(1D)); ozone molecule O3; and O+, , , O–, ,

and  ions with allowance for 160 plasmochemical
reactions between them.

Typical ion density profiles computed for the gas
pressure p = 1 torr are shown in Fig. 1, and those com-
puted for p = 0.15 torr without and with allowance for
ion heating in the longitudinal electric field are shown
in Figs. 2 and 3, respectively. Ion heating [20–22] was
calculated by the formulas for the effective transverse
ion temperature [29]

(1)

where M and Mi are the masses of a molecule and an
ion, respectively, and w is the ion drift velocity in the
longitudinal electric field Ez.

For example, at p = 1 torr, the transverse ion temper-

ature is  ≈ 760 K, whereas at p = 0.15 torr, it is  ≈
5200 K. For oxygen, an order of magnitude of the ion
temperature as a function of the parameter pΛ is pre-
sented, e.g., in [21, Fig. 5].

It can be seen from Figs. 1–3 that the spatial distri-
bution of the charged particle densities is highly non-
uniform over the discharge cross section. Almost all of
the negative ions reside in the inner ion–ion plasma
region (which will be marked by subscript 0). The
radius of this region is r = r0. The outer electron–ion
plasma region (r0 < r < R) (subscript 1) consists of elec-
trons and positive ions, whereas the negative ions are
practically absent there. A comparison of the profiles
presented in Figs. 2 and 3 show that taking into account
ion heating (which increases the ion diffusion coeffi-
cient) dramatically changes the shell thickness. For this
reason, when analyzing the spatial profiles of the
charged particle densities in electronegative gases, one
of the central problems is the problem of the ion tem-
perature [20, 21].

The main positive ion is  and the main negative
ion is O–. The densities of all other ions are small com-
pared with the densities of these ions. Hence, for the
sake of qualitative analysis, it is sufficient to consider a
plasma consisting of only electrons, positive ions, and
negative ions (subscripts e, p, and n, respectively).

To explain the dependences observed and predict
how they are affected by the external conditions, we
consider, as in [1–26], the conventional set of drift–dif-
fusion equations

(2)

(3)

Σg
–

O2
+ O4

+ O2
–

O3
–

Ti
⊥ T

Mi M+( )Mw2

3 2M Mi+( )
-----------------------------------,+=

Ti
⊥ Ti

⊥

O2
+

Dp∇ ∇ np knp∇ ne/ne+( )– ν ine Krnnnp,–=

Dn∇ ∇ nn knn∇ ne/ne–( )– νane νdnn– Krnnnp,–=
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(4)

with a Boltzmann distribution for the electrons: E =
−Te∇ ne/ne). Here, νi, νa, and νd are the ionization,
attachment, and detachment frequencies, respectively;
Kr is the rate constant for ion–ion recombination; and
k = Te/Ti is the electron-to-ion temperature ratio. The
boundary conditions for the set of Eqs. (2) and (3) are
[1, 26]

(5)

Since the flux of negative ions to the wall is zero, we
find from Eq. (3) that the densities averaged over the
cross section ( ) satisfy the relationship [1, 26]

(6)

In further analysis, we will mainly follow [24–27].
We divide Eqs. (2) and (3) by the corresponding diffu-
sion coefficients and sum them up. As a result, we
arrive at the equation [10, 26]

(7)

which is of fundamental importance for analyzing the
solution to the set of Eqs. (2) and (3). Equation (7) con-
tains two characteristic space scales, le and ln, which are
defined by

(8)

(9)

where Dan, ap = Dn, p(k + 1) and Dnp = 2DnDp/(Dn + Dp)
are the coefficients of electron–ion and ion–ion ambi-
polar diffusion, respectively; τj = Λ2/Dj are the corre-
sponding characteristic times; and Λ is the diffusion
length, which, in the case of cylindrical geometry, is
equal to Λ = R/2.4. Figure 4 shows, as an example, the
calculated lengths (8) and (9) versus the parameter pΛ
for oxygen.

Since the ambipolar electric field draw negative ions
into the plasma, their density in the outer region (r0 ≤
r ≤ R) is low, nn(r) ≈ 0; hence, we have ne(r) ≈ np(r) in
this region. Neglecting the terms with nn, we can write
Eq. (7) in the form

Taking into account the spread caused by ion diffu-
sion, we find that the thickness of the outer region sat-
isfies the condition R – r0 ≤ le; i.e., le determines the
maximum thickness of the shell. Under our conditions,
this thickness is small compared with the tube radius R
(and, hence, with the characteristic diffusion length Λ =

np nn ne.+=

∇ nn ∇ np 0 at r 0,= = =

nn np ∇ nn 0 at r R.= = = =

n

νane νdnn Krnnnp.+=

–2∆nn/k ∆ne– ne/le
2 2nn/kln

2,–=

1/le
2 1/lion

2 1/la
2+ ν i/Dap νa/Dan+= =

=  τapν i/Λ
2 τanνa/Λ2,+

1/ln
2 1/lnd

2 1/lnr
2+ νd/2Dn npKr/Dnp+= =

=  τnνd/Λ2 τnpKrnp/Λ2,+

∆ne– ne/le
2.=
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R/2.4). Therefore, the outer region 1 can be treated in
plane geometry. Then, for the plasma density profile in
the region r0 ≤ r ≤ R, we can use the solution [10,
24−26]

(10)

The density profiles in the inner region 0 depend
substantially on the ratio between R and ln (see Eq. (9)),
i.e., between the radius and the distance a negative ion
covers due to diffusion during its lifetime with respect
to volume processes [24–26]. At τanνa > 1, length le (8)
is small (le < Λ), and, under typical discharge condi-
tions ( /  < k ≈ 100), length ln turns out to be even
smaller (ln < le); hence, ion diffusion can be ignored
[10–12]. When the opposite inequality is satisfied
(τanνa < 1), the electron–ion plasma occupies almost the
entire cross section of the tube, whereas length ln can be
either longer or shorter than the radius of the inner ion–
ion region. Hence, to obtain functional dependences in
the inner region, it is reasonable to consider two limit-
ing regimes with large and small values of the parame-
ter τanνa. Since this parameter is quadratic in pressure,
the boundary between these regimes (τanνa = 1) can be
determined with sufficient accuracy. For oxygen, the
boundary value of this parameter corresponds to pΛ ≈
0.07 cm torr (the dashed vertical line in Fig. 4), so that
τanνa > 1 at pΛ > 0.07 cm torr and vice versa. Conse-
quently, length le (8) has two asymptotes: le ≈ Λ at low
pressures, pΛ < 0.07 cm torr, and le ≈ ln  in the

opposite case (Fig. 4).

At high attachment frequencies (τanνa > 1), charac-
teristic lengths (8) and (9), as was mentioned above, are
both small (ln < le < Λ) (Fig. 4). Since ln < le, we can
neglect ion diffusion in Eqs. (2) and (3) (as was done in

ne r( ) = ne r0( ) π R r–( )/2le( )sin / π R r0–( )/2le( ).sin

nn ne

Te/2Ti

0.1

0.1 10.01

1

1

2

3

4

ple, pln, cm torr

pΛ, cm torr

Fig. 4. Characteristic lengths ln (1) and le (2) vs. parameter
pΛ for an oxygen discharge. The asymptotes for le, le ≈ Λ
(3) and le ≈ ln  (4) are also shown.Te/2Ti
[10–12]) and assume that the shell thickness is R – r0 ≈
le (i.e., the denominator in Eq. (10) is equal to unity). In
the case at hand, in balance equation (3) for negative
ions, their transport is insignificant as compared to vol-
ume processes (see Fig. 5), so that the negative ion flux
is almost completely determined by the drift compo-
nent. Hence, at np ≈ nn > ne, the fluxes of positive and
negative ions in the inner region are almost the same in
magnitude, but opposite in sign; i.e., we have [10, 26]

(11a)

For this reason, in Eq. (7), in which these fluxes are
summed up, they almost completely cancel each other
in the inner ion–ion region. In other words, at r < r0, the
terms on the left-hand side of Eq. (7) (which are respon-
sible for spatial transport) are small compared to the
terms on the right-hand side (which are responsible for
volume processes). Hence, the local balance of the vol-
ume plasmochemical processes resulting in the produc-

tion and loss of ions, ne/  = 2nn/k , holds with a high
accuracy. At τanνa > 1, the following important relation
can be deduced from this equality [10, 24–26]:

(12a)

which allows one to obtain the relationships between
the plasma parameters in the central region r < r0.

The relationships between the densities of charged
particles depend on the mechanism responsible for the
loss of negative ions, i.e., on the relationship between
the terms on the right-hand side of Eq. (12a). At τanνa > 1,
the loss of negative ions in an oxygen plasma is gov-
erned by detachment processes (the detachment regime
with νd > npKr) and their recombination can be
neglected. Then, it follows from Eq. (12a) that the pro-

Γn/bn knp∇ ne/ne knn∇ ne/ne Γ p/bp.–≈ ≈ ≈

le
2 ln

2

ν i/Dp νa/Dn+( )ne νdnn/Dn=

+ Krnn nn ne+( )/ 1/Dp 1/Dn+( ),

2

0.1

4

6

8

0.2 0.3 0.4 0.5 0.60
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Fig. 5. Contributions of spatial transport and volume pro-
cesses to the negative ion balance for p = 1 torr and I =
50 mA. Curve 1 shows the flux of negative ions (with a
minus sign), curve 2 shows the total production of ions, and
curve 3 shows the ion loss.
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files of the electron and negative ion densities are simi-
lar to each other,

(12b)

This condition was first proposed in [2] and then
was justified in [10–12], assuming that ion diffusion
can be neglected as compared to ion drift. It follows
from the above analysis that Eq. (12b) is valid only at
τanνa > 1; hence, extrapolating it to the low pressure
range [16–18] is incorrect. The validity of Eq. (12b) for
oxygen is illustrated in Fig. 6, which shows the density
profiles from Fig. 1 (p = 1 torr) normalized to the cen-
tral electron density. Substituting Eq. (12b) into Eq. (2)
or (3), we find that, with a significant degree of elec-
tronegativity (nn > ne), the densities in the inner region
satisfy the relationship

(13a)

For plane geometry, the Bessel function should be
replaced with cos(x/l0). In Eq. (13a), the characteristic
length [10, 26]

(13b)

also determines the ambipolar electric field (E(r) =
−Te∇ ne/ne) in the central region (r < r0):

(14a)

Since the conditions l0 > Λ > le are usually satisfied,
density profiles (13a) in the inner region are flatter than
in the outer region, and, when they are extended up to
the wall, they do not turn to zero (see Eq. (5)). Conse-
quently, field (14a) is weaker than the electric field in
the shell (r0 < r < R), for which we have from Eq. (10)
the following estimate:

(14b)

To illustrate the limiting cases, we use Eqs. (2) and
(3) to rewrite relationship (11a) in the form [10, 26]

(11b)

where D = (Dn/Dp) ~ 1. This relationship means that the
number of ions that undergo attachment in the outer
region is equal to the number of ions produced in the
central region due to ionization. In the thin shell, a com-
paratively small flux of negative ions Γn is produced
due to attachment; hence, a fairly weak electric field
(14a) is sufficient to transport these ions into the inner
region, in which they disappear due to detachment.
Since, at τanνa > 1, the electrons in the inner region dis-
appear mainly due to attachment, it is necessary to
enable just a minor flux of positive ions toward the

∇ ne/ne ∇ nn/nn, ne x( )/nn x( ) const.= =

np r( ) nn r( ) ne r( ) J0 r/l0( ).∼∼ ∼

l0
2 Dan

νd

--------
νaDap

ν iνd

--------------
Λ2nn

ν iτapne

----------------- Λ2>≈+=

E 0( ) r( ) TeJ1 r/l0( )/l0– Ter/l0
2.–≈ ≈
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outer region. In other words, relationship (11b) means
that, if the local plasmochemical balance of ions domi-
nates over their spatial transport, the latter should only
compensate for a relatively small difference between
the attachment and detachment of negative ions.

Using expression (10) for ne(r) and Eqs. (14), we
can obtain from Eq. (11b) the ionization frequency νi,
which represents the eigenvalue of the boundary value
problem described by Eqs. (2) and (3) [26]. The simple
estimate Γn ≈ νanele ≈ Γp ≈ νineΛ gives νi ≈ nale/Λ ≈

 [10, 26]. In the case at hand, we have νiτan ≈

 > 1; hence, we obtain τanνi > 1. This means that
the ionization frequency exceeds the value given by the
Schottky formula for a simple plasma (τanνi = 1)
[25, 26].

The density of the negative ions that are produced in
the shell due to attachment can be deduced from their
flux Γn (11b):

(15)

This density is much lower than the densities of
electrons and positive ions,

(15a)

At the point r = r0 ≈ R – le, the field E(1) is close to
zero, whereas the flux Γn (11b), caused by attachment
in the outer region, is finite. Therefore, when approach-
ing the point r = r0, negative ion density (15) sharply

νa/τan

νaτan

nn Γn/bnE 1( )≈

≈
8le
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π2Dan
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Fig. 6. Normalized density profiles for p = 1 torr and I =
50 mA: (1) ne(r)/ne0, (2) nn(r)/ne0. Curves 3 and 4 show the
results calculated by formula (13), and curve 5 shows pro-
file (10) in the outer region.
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increases,

(15b)

to its value in the inner region, which is determined by
Eq. (12). The transition zone separating regions 0 and 1
with different ion compositions is narrow (~ln < le). For
this reason, it was treated in [10, 26] as a diffusive jump
in which ion densities undergo a break, whereas the ion
fluxes and the electron density are continuous. The
validity of relationship (12) in the region r < r0 in an
oxygen discharge is illustrated in Fig. 6, which shows
the normalized density profiles obtained from the pro-
files in Fig. 1 at a pressure of p = 1 torr. The dashed
curves in Fig. 6 show the profiles calculated by formula
(13) for the inner region and by formula (10) for the
shell with the thickness R – r0 ≈ le. When deducing for-
mula (10) for the outer region, the shell thickness δsh
was taken into account; i.e., it was assumed that the
electron density vanished at r = R – δsh, rather than at
the tube wall. It can be seen that the results of calcula-
tions by these formulas agree well with the results of
full-scale simulations.1

At lower pressures, the role of spatial transport
increases and, thus, the characteristic length le (8) and
ln (9) also increase. The increase in length l0 (13b) leads
to the flattening of density profiles (13a) in the inner
region. Because of the increase in the length ln, the
region with a sharp change of the ion density spreads
out due to ion diffusion; hence, the transient region can
no longer be treated as a jump. As a result, the ion den-
sity profiles become bell-shaped.

At ln ≥ Λ, the negative ions are able to pass through-
out the entire discharge volume due to their diffusion.
However, they turn out to be trapped in the inner region
by the electric field; as a result, a Boltzmann distribu-
tion (similar to that for electrons) is established:

(16)

It follows from Eqs. (8) and (9) that, generally, the
self-diffusion of negative ions prevails (ln > Λ) only
when attachment is insignificant as compared to the
ambipolar diffusion of negative ions (ion diffusion with
the electron temperature), i.e., when τanνa ! 1 (see [24–
26] for details).

Condition (16) leads to the relationship

(17)

1 Note that, for the recombination regime (νd < npKr), it follows
from Eqs. (11a) and (12a) that ∇ ne/ne = ∇ nn/nn + ∇ np/np ≈
2∇ nn/nn, which results, in contrast to Eq. (12b), in an ion distri-
bution that is flatter than the electron distribution (see [24–26] for
details). In such a situation (which occurs, e.g., for halogens), the
attachment and ionization frequencies are approximately the
same, νi ≈ νa, as was noted in [16–18].

nn

8le
3ne r0( )νa

π3Dan r r0–( )
-------------------------------- r r0 R le–=≥( ),≈

Te∇ ne/ne– T∇ nn/nn– E.= =

ne r( )/ne 0( ) nn r( )/nn 0( )[ ] 1/k,=
which strongly depends on the temperature ratio k =
Te/Ti and coincides with distribution (12b) only in the
particular case Te = Ti. The establishment of a Boltz-
mann distribution for electrons and negative ions at low
pressures is illustrated in Fig. 7, in which the simulation
results shown in Fig. 3 for a pressure of p = 0.15 torr are
replotted in accordance with Eq. (17).

Since k @ 1 in the discharge, it follows from
Eq. (17) that the electron density profile is nearly flat,
ne(r) ≈ ne0 ≈ const, which is indeed observed at reduced
pressures (see Figs. 2, 3). Here, transport processes
play a major role in Eq. (3) for the negative ion balance
(see Fig. 8), in contrast to the above case with τanνa > 1
(cf. Fig. 5). The field-induced and diffusion fluxes of
negative ions are almost the same in magnitude, but
opposite in sign; hence, a small difference between
them is sufficient to balance the production and loss of
ions at any point (Fig. 8). The plasmochemical pro-
cesses govern only the global balance of ions in the cen-
tral region. In Eq. (2) for the positive ion density np(x),
the terms on the left-hand side are also approximately
equal to each other. However, they are summed up and,
thus, at a significant degree of electronegativity (nn(0) >
ne(0)), balance equation (2) for positive ions can be
written in the form –2Dp∆nn = νine0. This gives a para-
bolic distribution of the ion densities and a flat profile
of the electron density ne(r) at r < r0 [13–15]:

(18)

We note that ion diffusion in the inner region pro-
ceeds with the coefficient 2Dp of the own ion–ion
ambipolar self-diffusion, rather than with the usual
coefficient of ambipolar diffusion Dp(1 + k). It can be
seen from Figs. 2 and 3 that, at low pressures, simple
parabolic law (18) for the ion density profiles agrees
well with the results of full-scale simulations.2

In the outer region (shell), in which the negative ions
are almost absent, the plasma density profile varies in
accordance with Eq. (10). In [13–15, 23, 24], the posi-
tion of the boundary point r = r0 was found from the
negative ion balance using model profiles (18). Unfor-
tunately, this procedure is rather laborious and provides
a low accuracy. It seems that the position of the bound-
ary can be found in a simpler and more reliable way
from the continuity of the positive ion flux at r = r0:

(19)

2 We note also that, in order for profiles (18) to be established, it is
enough to satisfy the condition τanνa < 1. The mechanism for the
volume loss of negative ions, which is determined by the right-
hand side of Eq. (3), can be either recombination (at νd < Krnp) or
detachment (at νd > Krnp).
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Model electron density profiles (10) with r0 defined
by Eq. (19) (see Fig. 7) agree well with the results of
full-scale simulations shown in Fig. 3.

Based on the analysis performed, we recommend
the following procedure to obtain approximate density
profiles in the plasma of electronegative gases in the
detachment regime (νd > Krnp):

(i) First, the parameter τanνa is estimated.
(ii) Then it is necessary to indent from the wall by

the thickness δsh of the space charge sheath, which can
be estimated, e.g., according to [26].

(iii) In the outer electron–ion plasma region (r0 < r <
R), where np ≈ ne @ nn ≈ 0, the electron density varies
according to Eq. (10) and the negative ion density var-
ies according to Eq. (15). If τanνa > 1, then the thickness
of this region is equal to le (see Eq. (8)) and the denom-
inator in Eq. (10) is equal to unity (r0 = R – le). In the
opposite case (τanνa < 1), we have le ≈ Λ and the thick-
ness of this region is estimated by formula (19).

(iv) Finally, the density profiles in the central region
(r < r0) are determined.

At τanνa > 1, the density profiles are similar and are
described by Eq. (13), whereas the density values are
related by expression (12). Electron density profile (13)
is joined to expression (10) at r = r0 = R – le. The ion
densities undergo a jump at this point: the negative ion
density drops to nearly zero (see Eq. (15)), whereas the
positive ion density decreases to the value equal to the
electron density given by Eq. (10). At τanνa > 1, the
thickness of the transition zone (~ln < le) is small and it
can be regarded as a jump in the ion density.

At τanνa < 1, the electron density profile is flat
(ne(x) ≈ ne0) and the ion density profile is parabolic.
These densities are related by formulas (18). The elec-
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Fig. 7. Boltzmann distributions of electrons and negative
ions for p = 0.15 torr and I = 50 mA: (1) ne(r),

(2) ne(0)/[nn(r)/nn(0)]1/k (see formula (17)), and (3) elec-
tron density profile (10) in the outer region.
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tron density profile is joined at the point r = r0, whose
position can be estimated from Eq. (19).

Thus, using commercial CFDRC software [28],
comprehensive simulations of the positive column
plasma of a dc discharge in oxygen are performed and
the main scaling laws characterizing the spatial distri-
butions of the plasma parameters are determined. The
simulation results show that a distinctive feature of the
electronegative-gas plasma is that it stratifies into
regions with very different ion compositions, so that
there are practically no negative ions in the outer elec-
tron–ion plasma region (shell). At low pressures
(τanνa < 1), not only electrons but also negative ions
obey a Boltzmann distribution. In the inner region, the
electron density profile is flat, whereas the ion density
profile is parabolic. In the ion balance, the transport
processes prevail; hence, taking into account ion heat-
ing dramatically affects the spatial distribution of
charged particles. At elevated pressures (τanνa > 1), the
volume processes dominate in the balance of negative
ions and the profiles of the charged particle densities in
the inner region become similar to each other.
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Abstract—The electrical properties of and the magnetoresistive effect in RCu3Mn4O12 (R = rare-earth ion or
Th) are studied. In all compounds of this series, the magnetoresistive effect amounts to 20% at liquid nitrogen
temperature in the presence of a field of 0.9 T. An increase in the magnetoresistance with decreasing tempera-
ture and a high sensitivity to weak magnetic fields at low temperatures point to the intergranular nature of the
effect. The magnetoresistance shows a peak in the vicinity of the Curie temperature TC. Based on the depen-
dences of the magnetoresistance on an external magnetic field, it is assumed that the magnetoresistance peak
near TC is related to the charge carrier scattering by magnetic inhomogeneities as in substituted orthomangan-
ites. We believe that the magnetoresistance value near the magnetic ordering temperature depends on the syn-
thesis conditions and the effect of the intergranular spacer on the transport properties of these compounds. ©
2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The discovery of colossal magnetoresistance in
perovskite-like manganites [1, 2] has stimulated the
search for new compounds exhibiting this effect
because of its great practical importance [3]. In magnet-
ically ordered systems, the maximum of magnetoresis-
tance at the magnetic order–disorder transition is
related to the scattering of charge carriers by magnetic
inhomogeneities. The value of the magnetoresistance
depends on the electrical conductivity jump near TC and
an increase in the Curie temperature in the presence of
a magnetic field (i.e., on the sensitivity of the magnetic
order parameter to an external magnetic field).
The Magnetoresistance peak near TC is observed in
La1 – x(Ca, Sr)xMnO3 (LCSMO) substituted lanthanum
orthomanganites with a perovskite structure [1, 2, 4, 5].
Near the magnetic ordering temperature, substituted
lanthanum orthomanganites also exhibit the metal–
insulator transition [5].

Materials exhibiting colossal magnetoresistance are
used in data processing and storage devices. However,
the above features are observed in strong magnetic
fields, which limits the application of the magnetoresis-
tive effect.

In addition to the magnetoresistance observed at the
metamagnetic transition and the scattering of charge
carriers by magnetic inhomogeneities near the Curie
temperature, there exists another type of magnetoresis-
tive effect. Giant magnetoresistance (GMR) was dis-
covered in grained magnetic materials with a high spin
polarization of charge carriers [6, 7]. The GMR
1063-7842/03/4809- $24.00 © 21159
increases monotonically with decreasing temperature
and is highly sensitive to weak magnetic fields. This
effect shows up most vividly at temperatures signifi-
cantly lower than the magnetic ordering temperature.
The GMR phenomenon has not yet clearly understood,
and the value of the magnetoresistance for a specific
compound cannot be predicted theoretically. However,
in the simple model of electron jumps over an insulat-
ing barrier (intergranular spacer in our case), the mag-
netoresistance is represented as MR = ∆ρ/ρ =
−(JP/4kT)[M2(H, T) – M2(0, T)], where J, P, and M are
the exchange interaction constant, polarization of tun-
neling electrons, and magnetization of the material,
respectively. The GMR behavior in grained nickel films
[8, 9], polycrystalline Fe3O4 films [10], and
La2 /3Sr1/3MnO3 perovskite [11] poorly agrees with the
theoretical predictions. Kobayashi et al. [12] discov-
ered an intergranular magnetoresistive effect in ferri-
magnetic double perovskites Sr2Fe(Mo or Re)O6 with a
composition-dependent Curie temperature between
410 and 450 K. As was demonstrated in [12], the MR
behavior in these compounds shows the best agreement
with predictions based on the model of spin-polarized
charge carrier scattering by interfaces between neigh-
boring granules with opposing magnetizations. How-
ever, the discrepancy between the temperature depen-
dences of the magnetization and magnetoresistance still
remains to be explained. Therefore, the search for
model magnetic systems with a high spin polarization
of carriers is an important problem.
003 MAIK “Nauka/Interperiodica”
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Earlier, Troyanchuk et al. [13, 14] studied the elec-
trical and magnetic properties of CaCu1 – xMnxMn4O12
and RECu3Mn4O12 (RE = Tb, Tm) systems, which
exhibit the GMR effect, and TmCu3Mn4O12 and
Ca(Cu1.5Mn1.5)Mn4O12 systems, where the metal–insu-
lator transition is observed. However, the temperature
of the transition differs greatly from the magnetic
ordering temperature. As was mentioned, there is a cor-
relation between TC and the metal–insulator transition
in LCSMO systems. The peak of the magnetoresistance
near the Curie temperature in CaCu1 − xMnxMn4O12 (0 ≤
x ≤ 3) and RECu3Mn4O12 (RE = Tb, Tm) solid solutions
was not observed.

A comprehensive study of the electrical and mag-
netic properties of RCu3Mn4O12 (R = rare-earth ion or
Th) compounds has not been carried out. Theoretically,
it is of interest to investigate the temperature depen-
dence of the magnetoresistance and metal–insulator
transition, which probably correlates with the magnetic
ordering temperature as in manganese-containing per-
ovskite-like oxides. From the practical point of view, it
is important to measure the magnetoresistance of com-
pounds with a high spontaneous magnetization, such as
RCu3Mn4O12, since the theory predicts the quadratic
magnetization dependence of the magnetoresistance
for temperatures much below TC.

EXPERIMENTAL

RCu3Mn4O12 samples were made of related oxides.

Extra-pure-grade , R4+ Cu2+O2–, ,

and Mn4+  oxides taken in stoichiometric propor-
tions were ground in an alundum mortar. The weights
of the components were taken according to the rare-
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Fig. 1. X-ray diffraction pattern (CrKα radiation) of the
compound CeCu3Mn4O12. The solid line shows the theoret-
ical spectrum calculated using the refined unit cell parame-
ter. Note the positions of the Bragg angles.
earth ion valence. Prior to synthesis, the charge was
pressed under a pressure of 0.1 GPa to form cylindrical
pellets of diameter 10 mm and height 8–10 mm. Then,
the pellets were covered by nickel foil and placed in the
graphite heater of a high-pressure container. The foil
isolates the sample during the synthesis from the graph-
ite heater, which is an effective reducer. The samples
were prepared by solid-phase synthesis proceeding
under a high pressure and high temperature. A litho-
graphic stone served as a pressure-transmitting
medium. The synthesis took 10 min at a pressure of
5 GPa and a temperature of about 1670 K. The exact
value of the temperature was varied with rare-earth
ions.

With the X-ray diffraction technique (DRON-3 dif-
fractometer), we measured the homogeneity of the
compounds synthesized and refined the parameters of
the unit cell.

The magnetization was measured with a vibrating-
sample magnetometer at various temperatures. The
dynamic magnetic susceptibility was measured using a
mutual-inductance bridge; the electrical properties and
magnetoresistance, with a conventional four-probe
technique. The magnetoresistive effect MR = ∆ρ/ρ =
(ρH=0 – ρH)/ρH=0 × 100% was estimated in an external
magnetic field of 0.9 T.

RESULTS AND DISCUSSION

Crystal lattice. All the compounds RCu3Mn4O12
have cubic symmetry of the unit cell with a doubled
parameter a of the ABO3 perovskite structure (Fig. 1).
The doubling of the unit cell parameter results from the
fact that rare-earth and copper ions arrange in the ratio
1 : 3 and also because oxygen octahedrons are tilted to
〈100〉  axes. The Mn–O–Mn bond angle along 〈100〉
directions becomes equal to 140° instead of 180°,
which is typical of the undistorted perovskite structure.
The X-ray diffraction patterns show weak reflections
from impurity phases. The relative impurity concentra-
tion was no greater than 1.5%. The unit cell parameters
were refined in view of the fact that CaCu3Mn4O12
belongs to the Im3 space group [15]. The table lists the
unit cell parameters of the solid solutions under study.
The unit cell volume is seen to decrease insignificantly
with increasing atomic number of the rare earth, which
is in agreement with the decrease in the ion radius of the
rare earth at the constant valent state of the remaining
ions. The unit cell volume of the compounds containing
tetravalent cerium and thorium ions is greater than that
of the compounds with the trivalent rare-earth ion in the
A position. Such behavior is related to the increase in
the concentration of trivalent manganese ions from
25% (trivalent ion in the A position) to 50% (tetravalent
ion). It is known [16] that the ion radius of Mn3+ is
greater than that of Mn4+.

Magnetic properties. The measurements of the
magnetization in the external magnetic field at low tem-
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
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peratures show that all the compounds of the given
series have a spontaneous magnetic moment. A maxi-
mum moment of 9.7 Bohr magnetons per formula unit
(µB/f.u.) is reached at 10 K in the thorium-containing
compound (see table). Neutron diffraction experiments
[17] show that the magnetic moments of manganese
and copper ions in AC3B4O12 compounds are ordered
oppositely. The magnetic moment µ(Cu2+) of a divalent
copper ion is 1 µB, whereas the magnetic moments of
tri- and tetravalent manganese ions are µ(Mn3+) =
3.5 µB and µ(Mn4+) = 2.6 µB [17]. Therefore, we expect

the R3+Cu2+
3Mn3+

3Mn4+  electron configuration
with the trivalent rare-earth ion in the A position. When
the magnetic moments µ(3Cu2+) = 3µB and
µ(Mn3+

3Mn4+) = 11.1µB are antiparallel, the magnetiza-
tion is 8.1 µB per formula unit. For compounds with the
paramagnetic ion in the A position, the peak in the tem-
perature dependence of the magnetization is related to
the antiparallel ordering of the rare-earth ion magnetic
moments relative to the total magnetic moment of the A
and C sublattices. The samarium compound has the
maximum temperature (75 K) of magnetic moment
ordering.

The difference between the theoretical and experi-
mental values of the magnetizations is presumably
associated with trivalent manganese ions partially sub-
stituting for copper ions, since the C positions of these
compounds can be occupied only by Jahn–Teller ions.
The magnetic moment of the copper ion is opposite to
that of the manganese sublattice, whereas the magnetic
moment of the Mn3+ ion substituting for copper is codi-
rected with the total magnetic moment of the manga-
nese sublattice. Based on the magnetic data, it is diffi-
cult to judge the cation distribution in these com-
pounds. However, the Curie temperature of the solid
solutions obtained at a high pressure (Fig. 2) differs
only slightly from the magnetic ordering temperature
of the compounds synthesized by the hydrothermal
method (TC = 390 K) [17]. This means that the real
chemical composition is close to the chemical formula.

Electrical properties and magnetoresistance. The
electrical conductivity of substituted orthomanganites
with a perovskite structure depends on the presence of
manganese ions with different valences in one sublat-
tice [18]. The conduction band of these compounds
forms when the partially filled d subshell of manganese
ions and the p subshell of oxygen ions overlap. The
width of the conduction band depends on the Mn–O–
Mn bond length and angle. As was mentioned, the Mn–
O–Mn bond angle in RCu3Mn4O12 compounds (about
140°) depends on the rare-earth ion in the A position
insignificantly. It is likely that, such behavior is due to
the presence of Jahn–Teller Cu2+ and Mn3+ ions in the
C position.

Figures 3a and 4a show the temperature dependence
of the resistivity of RCu3(Mn,Cr)4O12 (R = Ce, Sm, Ho,

O12
2–
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Yb, Th) compounds. Despite the equal ratio of the man-
ganese ions with different valences, RCu3Mn4O12 (R =
Ce4+, Th4+) compounds exhibit different temperature
dependences of the resistivity. The conductivity of the
ThCu3Mn4O12 solid solution decreases with tempera-
ture, which is characteristic of semiconductors. The
cerium composition has metallic conductivity at tem-
peratures below the magnetic ordering point. Similarly
to substituted lanthanum orthomanganites, the resistiv-
ity of this compound exhibits semiconductor behavior
at temperatures above TC. Substituting chromium ions
for manganese ions in the B position leads to a sharp
increase in the resistivity and decreases the Curie tem-
perature (Fig. 2). In addition, this solid solution
acquires semiconductor properties throughout the tem-
perature range. The temperature dependences of the
resistivity for the samarium-, ytterbium-, holmium-,
and thulium-based compounds peak at temperatures
other than the magnetic ordering temperature (Fig. 4a).
The resistivity of TmCu3Mn4O12 compounds behaves
in a similar way [14]. The resistivity curves of the
samarium- (inset in Fig. 4) and ytterbium-based com-
pounds exhibit a metal–insulator transition and bends

Unit cell parameters and spontaneous magnetic moments of
RCu3Mn4O12 compounds

R a, Å M, µ3/f.u.

Ce4+ 7.349 6.4

Sm3+ 7.284 7.8

Gd3+ 7.265 2.9

Tb3+ 7.258 5.6

Ho3+ 7.253 5.0

Tm3+ 7.247 –

Yb3+ 7.246 9.5

Th4+ 7.383 9.7

20

300 320 340 360 380 400 420

40

60

80

CeCu3Mn4CrO12
ThCu3Mn4O12

HoCu3Mn4O12
YbCu3Mn4O12

CeCu3Mn4O12

SmCu3Mn4O12

T, K

χ, arb. units

0

Fig. 2. Dynamic magnetic susceptibility of RCu3Mn4O12
compounds versus temperature.
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related to the Curie temperature. The metal–insulator
transition for the ytterbium compound is strongly dif-
fused. For this compound, the semiconductor character
of the temperature dependence of the resistivity is most
pronounced at temperatures exceeding TC.

In all the RCu3Mn4O12 compounds, the magnetore-
sistive effect is observed at temperatures below the tem-
perature of the magnetic order–disorder transition
(Figs. 3b, 4b). The maximum value of the magnetore-
sistance (18%) is reached in the ytterbium compound at
the lowest temperature of our experiments (78 K). The
amount of the effect decreases monotonically with
growing temperature. The theory predicts that the effect
vanishes at the Curie temperature. However, the mag-
netoresistance curves for all the compounds run anom-
alously near TC. In particular, the curves of the cerium,
holmium, and samarium compounds show peaks, the
highest of which (2.4%) is observed in SmCu3Mn4O12

at a field strength of 0.9 T. Substituting chromium ions
for manganese ions in CeCu3(CrMn3)O12 reduces insig-
nificantly the low-temperature magnetoresistance and
does not affect the anomalous behavior of the magne-
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Fig. 3. (a) Resistivity of and (b) magnetoresistive effect in
the compounds CeCu3(Mn,Cr)4O12 and ThCu3Mn4O12
with the tetravalent ion in the A position versus temperature.
toresistance near the Curie temperature. This points to
the different nature of the magnetoresistance at various
temperatures. To shed light on the origin of the effect,
we measured the field dependences of the magnetore-
sistance at low temperatures and at the Curie tempera-
ture (Fig. 5). It is seen that, at low temperatures, the
magnetoresistance saturates in weak magnetic fields
and varies only slightly as the field grows. Near TC, the
magnetoresistive effect depends quasilinearly on the
external field and does not saturate in fields up to 1 T.
Both the temperature and field dependences of the mag-
netoresistance suggest the intergranular character of the
phenomenon at low temperatures. It is assumed that the
magnetoresistance peak near the Curie point is related
to the scattering of charge carriers by magnetic inho-
mogeneities. Similar behavior is observed for substi-
tuted lanthanum orthomanganites and Ba2FeMoO6

double perovskite [19]. However, in LCSMO systems,
the magnetoresistance peak is observed at a Mn4+ ion
concentration of 20–45%. In this concentration range,
substituted lanthanum manganites are ferromagnets at
temperatures below the magnetic ordering point [1, 2,
5], whereas in the ferrimagnetic compounds under
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Fig. 4. (a) Resistivity of and (b) magnetoresistive effect in
RCu3Mn4O12 (R = Sm, Ho, Yb) compounds with the triva-
lent ion in the A position versus temperature. The arrows
indicate the temperatures of the metal–insulator transition.
The inset shows the behavior of the magnetoresistance near
the magnetic ordering temperature.
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study, the concentrations of Mn4+ ions are 50 and 75%
for the tetra- and trivalent ion in the A position, respec-
tively.

Note that the magnetoresistance peak (2.4%)
observed for the samarium compound at 375 K is the
highest of the peaks observed for all the RCu3Mn4O12
compounds near the magnetic ordering temperature.
The magnetoresistive of Ba2(FeMo)O6 double perovs-
kite (TC = 375 K) at a field strength of 1 T has the same
value at the Curie temperature.

In our opinion, the metal–insulator transition in the
compounds under study is related to the presence of an
intergranular layer (spacer) and the high content of
defects in samples prepared at a high pressure. Appar-
ently, the properties of the spacer govern the electrical
properties and the metal–insulator transition tempera-
ture in RCu3Mn4O12 compounds. As was demonstrated
[20] with La0.82Sr1.08MnOz polycrystalline solid solu-
tion (z ≈ 3), the metal–insulator transition, which is typ-
ical of substituted lanthanum manganites at the Curie
temperature, shifts towards lower temperatures,
because the spacer affects the magnetic and electrical
properties of this compound. Weak exchange interac-
tion between magnetic ions in the spacer reduces the
temperature of transition to the paramagnetic state and
that of change of the conduction type compared to these
temperatures inside grains with regular crystal and
magnetic order. The X-ray and electrical data in combi-
nation support the assumption that the spacer has an
effect on the electrical conductivity of the RCu3Mn4O12
compounds. The cerium and ytterbium compounds
have the narrowest spectral bands. The bands become
successively broader in the samarium and holmium
compounds. According to the Scherrer relationship
[21], spectral lines broaden with a decrease in the grain
size in a polycrystal. The temperature of the metal–
insulator transition decreases in the same sequence of
compounds. Similarly to LCSMO compounds, the
effect of grains on the electrical properties of
SmCu3Mn4O12 and YbCu3Mn4O12 is noticeable at TC.
For these compounds, we observe a sharp change in the
activation energy in the resistivity curve.

We believe that the difference between the electrical
properties of the cerium and thorium compounds is
related to the critical length of the Mn–O–Mn bond. An
increase in the unit cell parameter of ThCu3Mn4O12
results in a deeper localization of carriers and, conse-
quently, in the change of the conduction type. Based on
this assumption, one can explain the electrical proper-
ties of CeCu3(CrMn3)O12. The incorporation of Cr3+

ions into the manganese sublattice also causes a deep
localization of charge carriers, since the ion radius of
Cr3+ is smaller than that of Mn3+.

The optimization of the RCu3Mn4O12 synthesis con-
ditions is expected to substantially enhance the magne-
toresistive effect near the Curie temperature.
RCu3Mn4O12 compounds are magnetoresistive materi-
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
als that are promising for the room-temperature opera-
tion of magnetic heads or other devices based on mag-
netic-to-electric signal conversion.

In perovskite-like RCu3Mn4O12 (R = rare-earth ion
or Th) oxides, the magnetoresistive effect consists of
two components: intergranular, which is the most pro-
nounced at low temperatures and is related to the scat-
tering of spin-polarized charge carriers at the interfaces
between neighboring granules, and intragranular,
which appears near TC and is due to the scattering of
carriers by magnetic inhomogeneities inside the grains.
In this study, the Curie temperatures of all the com-
pounds are above room temperature. The properties of
the spacer considerably affects the conductivity of the
solid solutions. It seems that the magnetoresistance
may be enhanced, e.g., by optimizing the properties of
the intergranular and intragranular layers.
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Abstract—Amplitude equations, as well as the effective dispersion and nonlinearity parameters, which define
the dynamics of a wave packet formed by two strongly coupled modes, are derived with allowance for the fre-
quency dependence of the linear mode coupling coefficient. These equations are used to study the onset of the
modulation instability of the two-mode wave packet, soliton-like pulses, and compression modes. Unlike sin-
gle-mode systems, the last two effects in optical waveguides may arise for both a negative and positive disper-
sion of the waveguide material. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Optically coupled waveguides (OCWs) with strong
linear coupling between modes propagating in different
channels and essentially nonlinear optical properties
have attracted much interest in recent years [1, 2]
because of their considerable promise for laser radia-
tion control devices, such as optical switches, couplers,
logical elements, etc. Such OCWs can be built around
fiber-optic [3] or planar [4] structures. An example of
the planar configuration is, for instance, a structure con-
sisting of two strip waveguides on a single-crystalline
GaxAl1 – xAs substrate [5]. With the pulse carrier fre-
quency chosen appropriately, this material exhibits pos-
itive Kerr-type nonlinearity, making OCWs capable of
supporting soliton-like propagation of optical wave
packets. OCWs of this type feature much higher (than
in standard quartz fibers) nonlinearity parameters and a
high mode-coupling parameter [1]. As is well known,
the formation of soliton-like pulses in an optical
waveguide depends on its nonlinearity and group veloc-
ity dispersion [6, 7]. Since the effective parameters of
the OCW nonlinearity and dispersion are to a great
extent governed by the excitation conditions, the output
radiation can be efficiently controlled by varying the
conditions at the input to the optical waveguide.

Of fundamental and applied interest is the modula-
tion instability of radiation in nonlinear OCWs, i.e.,
time-varying disturbances observed against a back-
ground of a sufficiently intense quasi-continuous
pumping radiation [6]. Modulation instability trans-
forms a quasi-stationary wave into a periodic sequence
of pulses with a period depending on the disturbance
frequency. This effect may be used to generate pulses of
a given duration and frequency [7].

This paper studies the dynamics of a wave packet in
OCWs that provide a strong linear coupling between
codirectional waves propagating in the waveguide’s
1063-7842/03/4809- $24.00 © 21165
channels and possessing a Kerr-type nonlinearity.
Effective nonlinearity and dispersion parameters that
govern the dynamics of a wave packet in these OCWs
are introduced. The onset of modulation instability, as
well as the formation and compression of a soliton-like
pulse, are studied. The dispersion of the linear mode
coupling coefficient is taken into account, because the
frequency spectrum of short pulses is wide and its com-
ponents may have a different mode coupling. This dif-
ference is the greatest for planar GaAs or InSb OCWs,
where the coupling coefficient may strongly depend on
frequency [8, 9].

(1) The propagation of a two-wave optical pulse
with allowance for linear coupling dispersion wave
detuning, group velocity dispersion, and Kerr-type non-
linearity in a waveguiding medium is described by the
following system of equations for the envelopes of two
(j = 1, 2) interacting waves [10, 11]:

(1)

Here, τ = t – z/u is running time, where 2u = (u1 + u2) is

the group velocity of the wave packet; uj = (∂βj/∂ω
is the group velocity; βj is the propagation constant in a
jth channel; ω0 is the carrier frequency of the wave
packet; dj = (∂2βj/∂ω2  are the parameters of group

velocity dispersion; v –1 = (u1 – u2)/2u2 is the mode
group velocities mismatch; δ = β1 – β2; γj are the non-
linearity parameters of the optical waveguide, which
define the phase self-modulation of the interacting
waves; and ξj = (–1)j. The linear coupling parameter σ
depends on the overlap of waveguide mode profile
functions [2]. The mode coupling dispersion may be

∂A j

∂z
--------

ξ j

v
----

∂A j

∂τ
-------- i

d j

2
----

∂2A j

∂τ2
-----------– iγ j A j
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)ω0
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taken into account if the parameter σ is replaced by the
operator  [8, 12]:

(2)

Equations (1) must be solved jointly with the initial
conditions for the mode time envelopes Aj. These con-
ditions are specified by the conditions of optical
waveguide excitation. The general form of the initial
conditions is A20 = ψA10, where Ai0 = Ai(τ, 0) and the
parameter ψ specifies the type of fiber excitation. At
ψ = ±1, the optical waveguide is excited symmetrically
or antisymmetrically; at ψ–1 = 0, one mode is excited.

When solving Eqs. (1) in view of (2), we assume
that wave coupling in the wave packet is strong. For this
approximation to be valid, the mode interaction length
Lσ = |σ|–1 must be much shorter than the dispersion

length Ld = /|d|, nonlinearity length Ln = (γI0)–1, and
mode spacing Lv = vτ0. Here, τ0 and I0 = |A10|2 + |A20|2
are, respectively, the duration and intensity of the pulse
applied to the optical waveguide (below, by the radia-
tion intensity we mean the power delivered to the
waveguide); 2d = d1 + d2; and 2γ = γ1 + γ2. In particular,
for coupled strip waveguides fabricated in a GaAs crys-
tal, the coupling parameter was as high as |σ| ≅  5 ×
103 m–1 at the wavelength λ = 1.06 µm, which yields a
small mode interaction length Lσ ≅  2 × 10–4 m. For the
dispersion and nonlinearity parameter values |d| ≅
10−26 s2/m and γ ≅  5 × 103 (W m)–1, which are typical of
these materials at λ = 1.06 µm, the strong-coupling
approximation adequately describes the dynamics of
the wave packet for input pulses with a duration τ0 ≥
10−14 s and intensity I0 ≤ 1 W.

In view of the above, the envelope of the respective
mode may be represented as the superposition of two
partial pulses:

(3)

Here, the amplitudes af of the partial pulses are slowly
varying functions of z, q ≡ (σ2 + δ2/4)1/2, and 

(4)

is a parameter depending on the initial conditions of
waveguide excitation 

When the phase synchronism is exact, δ = 0, q = |σ|,
and χ = –1.

Thus, the pulse formed by two interacting modes is
the superposition of partial pulses whose amplitudes

σ̂ j

σ̂ j σ 1 ξ jiµ
∂
∂τ
-----– 

  , µ 2
ω
----

1
σ
--- ∂σ

∂ω
-------.+≅=

τ0
2

A1 = a1 τ z,( ) i q δ/2+( )z[ ]exp a2 τ z,( ) i q δ/2–( )z–[ ] ,exp+

A2 χa1 τ z,( ) i q δ/2–( )z[ ]exp=

– χ 1– a2 τ z,( ) i q δ/2+( )z–[ ] .exp

χ  = 
2q δ+( )A20 2σA10–
2q δ–( )A10 2σA20–

-------------------------------------------------- = 
2q δ+( )A10 2σA20+
2q δ–( )A20 2σA10+

--------------------------------------------------–
satisfy the equations

(5)

in accordance with (1) and (3). Here, f = 1 or 2 is the
pulse index and

(6a)

(6b)

are the effective parameters of phase self-modulation,
cross modulation, and dispersion.

By virtue of (3), the initial conditions for the partial
pulse amplitudes take the form

(7)

It is important to note that the system of equations
(5) involves the parameters of induced cross-modula-
tion interaction, Gcf, which are absent in the initial sys-
tem of equations (1). The cross-modulation interaction
arises when partial pulses into which a wave packet
applied to the OCW breaks interact between each other
in either of the waveguides. Of significance is also the
strong dependence of the effective parameters on the
initial excitation conditions, phase mismatch, and mode
coupling coefficient dispersion. For instance, when the
waves are in phase synchronism (δ = 0), the contribu-
tion of the mode interaction dispersion to the effective

dispersion is, according to (2), dσ = ±µ2σ ≅  ±4π2σ/ .
For GaAs OCWs, this parameter usually lies in the
interval |dσ| = 0.1–10 × 10–26 s2/m (at the carrier fre-
quency of the source ω0 ≅  1.8 × 1016 s–1). Since the
parameter |d|, which is associated with the material dis-
persion, also varies within this interval, the dispersion
of the linear coupling should necessarily be taken into
account when the pulse dynamics is analyzed.

(2) Consider conditions for modulation instability in
the OCWs under study. If the wave packet applied is
long enough, so that the pumping wave can be
described in terms of the quasi-monochromatic approx-
imation (i.e., the dispersion terms are negligible, which
seems to be correct for pulses with an initial duration of
τ0 > 10–9 s), the solution to Eqs. (5) for the partial pulse
amplitudes may be represented as

(8)

∂a f

∂z
--------

ξ f δ
2qv
----------

∂a f

∂τ
--------–

iD f

2
--------

∂2a f

∂τ2
----------–

+ i Gsf a f
2 Gcf a3 f–

2+( )a f 0=

Gsf q ξ f δ/2+[ ]γ s1 q ξ f δ/2–[ ]χ
2ξ f–

γs2+[ ] /2q,=

Gcf 2q ξ f δ+[ ]γ s1[=

+ q χ
2ξ f 1+( ) ξ f δ χ

2ξ f 1–( )/2–[ ]γ s2 ] /2q,

D f  = 
d1 d2+

2
----------------

ξ f

v 2q
--------- 1

δv 2 d2 d1–( )
2

-------------------------------– v σµ( )2+ 
 +

a f τ 0,( ) a f 0≡ 1
2
--- A10 ξ f

σ
2q
------A10

σ
q
---A20+ 

 + .=

ω0
2

a f z τ,( ) a f 0 ϕ f z τ,( )+[ ]=

× iR Gsfa f 0
2 Gcfa3 f 0–

2+( )–[ ] ,exp
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where ϕf is the complex disturbance amplitude and
af0 @ |ϕf |.

Next, we substitute (8) into Eqs. (5) and linearize
them in small disturbances ϕf to obtain a system of
equations for the disturbances:

(9)

For harmonic disturbances ϕf(z, τ), a solution to this
equation will be sought in the standard form

(10)

where k and Ω are the wavenumber and frequency of
the disturbance (Ω = ω0 – ωv, where ωv is the frequency
of a disturbing signal wave or spontaneous noise distur-
bance).

Substituting (10) into (9) yields a system of two
equations for the amplitudes bfi. A solution to this sys-
tem is the dispersion relation

(11)

First, consider the important particular case F = 0.
This situation may occur when the effective dispersion
or the amplitude of one of the partial pulses is zero. Let,
for example, D2 = 0. Hence, K2 = 0. In this case,
Eq. (11) has the solutions

(12)

If the parameter ranges are such that K1 < 0, modu-
lation instability is seen to be caused by the solution
with the wave number k1. Since Gs1 is positive, modu-
lation instability develops if the parameters meet the
condition

(13)

which can be realized by appropriately choosing the
disturbance frequency or the intensity of the pulse
applied. In this case, modulation instability takes place
at an anomalous effective dispersion, i.e., at D1 < 0. It
should be emphasized that the material dispersion
parameter may be positive (d > 0). This situation is fun-
damentally different from the conventional single-
mode case, where modulation instability exists only
when the material dispersion parameter is negative.
Similar modulation instability conditions for one of the
branches of the solution to the dispersion relation take
place when the amplitude of one partial pulse is zero.
For example, with a20 = 0, solutions of Eq. (11) are
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identical to those of (12). As in the case of D2 = 0, here
modulation instability arises when condition (13) is
met. The increment of the propagating disturbance in
the above situations is given by 

(14)

where  = 4Gs1 /|D1|. The increment reaches a
maximum,

at a disturbance frequency Ω = Ωs/ .
Figure 1 plots the increment versus disturbance fre-

quency when one partial pulse propagates in the sys-
tem. The curves g(Ω) were obtained at σ = 5 × 103 m–1,
γs1 = γs2 = 5 × 103 (W m)–1, d1 = –0.975 × 10–26 s2/m,
d2 = –1.025 × 10–26 s2/m, µ = 4 × 10–16 s, v –1 = 10–12 s/m,
and various phase mismatches. According to (7), to
realize the single-pulse regime with a20 = 0 at the above
values of δ = 10, we must respectively take ψ = (1) –
1.001, (2) –1.01, and (3) –1.1; i.e., the excitation of the
optical waveguide must be almost antisymmetric. As
can be seen from Fig. 1, the increase in the phase mis-
match extends the frequency range of modulation insta-
bility and raises the disturbance increment.

Let us focus on the practically important case of
exact phase synchronism (δ ≅  0). Dispersion relation
(11) is then reduced to a biquadratic equation whose
solution is

(15)

Here, there are several scenarios of modulation instabil-
ity development, of which we distinguish the main two.
The first one is realized if

(16)

In this case, modulation instability is observed only

g 2Imk1 D1Ω Ωs
2 Ω2– ,= =

Ωs
2 a10

2

gm D1 Ωs
2/2 2Gs1a10

2 ,= =

2

k±
2 K1 K2+

2
-------------------

K1 K2–( )2

4
------------------------- F+ .±=

k+
2k–

2 K1K2 F 0.<–=

30 6 Ω × 1012, s–1

2

4

g, m–1

1

2
3

Fig. 1. Modulation instability increment versus disturbance
frequency. δ = (1) 10, (2) 100, and (3) 1000 m–1.
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in one branch of the solution to Eq. (11), specifically,
for the disturbance with the wavenumber k–. The incre-
ment of the propagating disturbance is then given by
the expression

(17)

Condition (16) specifies the disturbance frequency
range in which modulation instability occurs, |Ω| < Ωs1,
where

(18)

As follows from (18), modulation instability here
may develop at any sign of the effective partial pulse
dispersion parameters, unlike the previous case. It is
necessary to take into account that the relationship
Gcf ≥ Gsf is always valid for OCWs with strong linear
coupling. When the effective dispersions of both partial
pulses are normal (D1 > 0 and D2 > 0), the situation dif-
fers from the single-pulse propagation most signifi-
cantly. However, the maximum values of the increment
g– and disturbance frequency Ωs1 up to which modula-
tion instability is observed turn out to be lower than
those when D1 < 0 and D2 < 0.

The situation when two branches of solution (14)
are responsible for modulation instability is fundamen-
tally different from the one observed in single-pulse
systems. In this case, both roots k+ and k– are purely
imaginary. This situation is realized when the condi-
tions 

(19)

are fulfilled in the frequency range Ωs1 < Ω < Ωc, where

(20)

Conditions (19) are satisfied when the effective dis-
persions of the partial pulses are equal but opposite in
sign. The increment is then given by the expression

(21)

As follows from the above expressions, modulation
instability in OCWs with a strong mode coupling may
be controlled by varying the effective parameters of
partial pulse nonlinearity and dispersion.

(3) Another problem of practical interest is the fea-
sibility of soliton-like pulses and compression modes in
the optical waveguides under study. Of most interest is
obtaining analytical solutions to Eqs. (5) and their
experimental implementation in the degenerate situa-
tion where the whole wave packet may be described by

g– 2Im k–( )=

=  2 K1 K2–( )2 4F+ K1– K2–[ ]
1/2

.

Ωs1 2=

× Gs1a10
2 /D1 Gs2a20

2 /D2–( )2
4a10

2 a20
2 Gc1Gc2/D1D2+(

– Gs1a10
2 /D1 Gs2a20

2 /D2 )1/2.–

K1 K2 0, K1K2 F– 0><+

Ωc 2 D1Gs1a10
2 D2Gs2a20

2+( ) D1
2 D2

2+( ) 1–
–[ ]

1/2
.=

g± 2Im k±( )=

=  2 K1 K2+ K1 K2–( )2 4F++−[ ]
1/2

.

only one of the partial pulses. For this degenerate situ-
ation, one can find the optimal dispersion parameters of
the pulse propagating in the optical waveguide. If the
modes are in phase synchronism (δ = 0), degeneration
takes place when the excitation of the waveguide is
symmetric (ψ = 1) or asymmetric (ψ = –1) with a10 = 0
and a20 ≠ 0 or a20 = 0 and a10 ≠ 0, respectively. In the
case of a phase mismatch (δ ≠ 0), a degenerate situation
is also possible for asymmetric excitation, as follows
from (7). In particular, if ψf = (2ξfq – δ)/2σ, the partial
pulse amplitudes are af ≠ 0 and a3 – f = 0. The amplitude
of the corresponding partial pulse is now zero not only
at the initial moment but also throughout the pulse
propagation. In the above cases, where the amplitude of
one of the partial pulses vanishes, the system of equa-
tions (5) degenerates into one nonlinear Schrödinger
equation

(22)

where τf = t – z/uf is time in the running coordinate sys-
tem related to the corresponding partial pulse, uf =
u/(1 – ∆f u) is its group velocity, and ∆f = ξfδ/2qv.

Equation (22) describes the pulse dynamics in a
cubically nonlinear medium with an effective disper-
sion Df and effective nonlinearity Gsf. The formation
dynamics of one-soliton and multisoliton pulses, self-
compression effects, etc., for similar equations have
been studied in detail [6, 13]. It is important that the
pulse dynamics is governed by the effective parameters
of dispersion and nonlinearity, which here depend not
only on the material properties but also on the initial
conditions of OCW excitation.

If the system of equations (5) cannot be reduced to
the degenerate case, its exact analytical solution is
impossible to find. In this case, it can be solved by the
variational method, which has been successfully
applied to many problems of nonlinear optics [14, 15].
If the phase mismatch is small (|δ/σ| < 1), the duration
of the pulse applied is expressed as

(23)

Here, f0 = 4D(W1 + W2)G/π2τ0 + 4D2/π2 , 

(24)

are the effective dispersion and nonlinearity parameters
of the wave packet, and 

(25)

is the partial pulse energy, where W0 = I0τ0 is the energy
of the radiation applied to the optical waveguide.

∂a f

∂z
--------

iD f

2
--------

∂2a f

∂τ f
2

---------- iGsf a f
2a f+– 0,=

dτp

dz
-------- 

 
2

 = f 0 4D W1 W2+( )G/π2τp– 4D2/π2τp
2.–

τ0
2

D W1D1 W2D2+( )/ W1 W2+( ),=

G = Gs1W1
2 Gs2W2

2 Gc1 Gc2+( )W1W2+ +( )/ W1 W2+( )

W f  = I f 0τ0 = W0 1 ξ f δ 2σ+( )/2q+[ ] 2/4 1 ψ2+( )
TECHNICAL PHYSICS      Vol. 48      No. 9      2003



DYNAMICS OF TWO-MODE RADIATION 1169
In the case of exact phase synchronism (δ = 0), the
expressions for the effective nonlinearity and disper-
sion parameters take the form

(26)

Equation (23) implies that the problem is reduced to
the well-known Kepler equation [16]. Omitting the
solution and analysis of this equation, we note that,
when D < 0, the condition f0 = 0 makes it possible to
determine the boundary value of the energy applied to
the fiber, W0, above which a quasi-soliton pulse, i.e., a
nonspreading solitary wave, forms. In this case,
Eq. (23) describes a pulse whose duration varies peri-
odically about 〈τ p〉  = 2|D|/(W1 + W2)G. If τ0(W1 +
W2)G/2|D| > 1, the pulse compression mode is realized.
For example, by applying a pulse of duration τ0 = 4 ×
10–13 s and power I0 = 10–2 W to an optical waveguide
with G ≅  5 × 103 (W m)–1 and D ≅  –10–26 s2/m, a soliton-
like pulse of extremely short duration ts ≅  10–14 s can be

generated over a length Ls ≅   ≅  0.15 m
along the optical waveguide. Figure 2 plots the pulse
duration τp versus the waveguide excitation parameter
ψ after the pulse has traveled the length Ls. The curve
was constructed at τ0 = 4 × 10–13 s, I0 = 10–2 W, and δ =

G
γs1 γs2+

2
------------------- 1

1
2
--- 1 ψ2–

1 ψ2+
--------------- 

 
2

+ ,=

D
d1 d2+

2
----------------

2ψ
1 ψ2+
--------------- 

  1 v σµ( )2+

v 2σ
---------------------------.+=

τ0
2
/ D GI0

0.5

0 4 8–4–8

1.0

τp, 10–13 s

ψ

Fig. 2. Pulse duration versus the optical waveguide excita-
tion parameter.
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0. The values of the dispersion and nonlinearity param-
eters were the same as above. For ψ ≅  1 (symmetric
excitation), the pulse duration is minimum, τp ≅  10–14 s.
The pulse compression in this case reaches τ0/τp ≅  40.

The above analysis shows that the dependence of the
effective dispersion and nonlinearity parameters on the
detuning, mode coupling, and type of OCW excitation
makes it possible to effectively control modulation
instability, the formation of soliton-like pulses, the
degree of compression, and other parameters that spec-
ify the dynamics of a wave packet propagating in
OCWs. Similar results are expected for OCWs using
light fibers and crystals, where a small spacing between
the guiding channels provides a strong wave coupling.
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Abstract—The chaotic dynamics of a system of two unidirectionally coupled backward-wave oscillators
(BWOs) is studied in the case when a signal from the driving BWO in (periodic or chaotic) self-modulation
mode is applied to the driven oscillator, which exhibits strong periodic self-modulation in the autonomous case.
The oscillation evolution with the amount of coupling is traced. The use of a chain of coupled BWOs is shown
to significantly reduce the threshold of transition to the regime of wide-band chaotic oscillations with a uniform
continuous spectrum (so-called fully developed chaos), which is of interest for applications. © 2003 MAIK
“Nauka/Interperiodica”.
High-power sources of microwave chaotic oscilla-
tions are promising for a wide range of applications,
such as radar detection, plasma heating in systems of
controlled thermonuclear fusion, advanced communi-
cations based on dynamic chaos, etc. Backward-wave
oscillators are among the most extensively studied
complex-dynamics vacuum electronic devices: their
capability to generate chaotic oscillations was pre-
dicted and experimentally confirmed as early as in the
late 1970s [1, 2]. Recent studies of BWO operation
[3−7] showed that, as the beam current increases, regu-
lar and chaotic oscillation regimes alternate in a com-
plex manner until the system comes to exhibit highly
irregular wide-band chaotic oscillations with a fairly
uniform continuous spectrum. This mode has received
the name fully developed chaos. Evidently, it is the
most favorable regime for the applications mentioned
above. However, fully developed chaos arises when the
electron beam current is considerably in excess (by
more than 30 times) of the starting value, which is hard
to provide in reality. Experiments with nonrelativistic
[2, 8] and relativistic [9–11] BWOs are usually carried
out on specially constructed setups with an extended
phase length. In this case, additional difficulties associ-
ated, for example, with beam focusing may emerge.

In this study, we will show that two coupled oscilla-
tors may reduce the developed chaos threshold. The
nonlinear dynamics of such a system is numerically
studied by using the well-known equations from the
nonstationary nonlinear theory of BWO (see, e.g., [1,
3–7]):

(1)
∂2θ1 2,

∂ξ2
-------------- L1 2,

2
Re F1 2, iθ1 2,( )exp[ ] ,–=
1063-7842/03/4809- $24.00 © 21170
(2)

Equations (1) describe the motion of electrons in the
field of an electromagnetic wave, while Eqs. (2) repre-
sent the nonstationary excitation of the slow-wave
structure by a slowly varying current. The subscripts
indicate the serial number of an oscillator in the chain.
In Eqs. (1) and (2), θ1, 2 are the electron phases with
respect to the wave; θ0 are the initial phases; F1, 2 are the
slowly varying dimensionless amplitudes; and ξ and τ
are the dimensionless coordinate and time, respectively.
Note that the equations of motion are written under the
assumption of a small variation of electron energy dur-
ing the interaction (see, e. g., [1, 6]) and apply to both
the relativistic and nonrelativistic cases. The dynamics
of a partial oscillator is governed by the sole bifurcation
parameter L = 2πCN, where C is the Pierce gain param-
eter and N is the phase length of the system. If one
oscillator is taken to drive the other, the boundary con-
ditions for Eqs. (1) and (2) can be set as

(3)

where R is the coupling parameter, which may be con-
sidered real without loss of generality.

Let us recall the basic results of the investigation
into the complex dynamics of an autonomous oscillator
[3, 4]. The self-excitation of oscillations starts at L ≈
1.98. Stationary single-frequency oscillation modes
exist within the range 1.98 < L < 2.9. At L ≈ 2.9, the sta-
tionary regime becomes unstable and gives way to peri-
odic self-modulation. As the parameter L increases to

∂F1 2,

∂τ
-------------

∂F1 2,

∂ξ
-------------–

L1 2,

π
---------– iθ1 2,–( )exp θ0.d

0

2π

∫=

θ1 2, ξ 0= θ0 0; 2π[ ] , ∂θ1 2,

∂ξ
------------

ξ 0=

∈ 0,= =

F1 ξ 1=( ) 0, F2 ξ 1=( ) RF1 ξ 0=( ),= =
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≈4.02, the periodic self-modulation persists with both
the fundamental and self-modulation frequencies
remaining almost unchanged. Then, in the narrow
range of the bifurcation parameter 4.02 < L < 4.11,
chaos is established via a cascade of period doubling
bifurcations. After the chaos threshold has been
exceeded (at 4.150 < L < 4.3325), numerous windows
of periodicity appear, with their periods successively
increasing by unity starting from three (the range of
period add-on). Windows with periods up to 11 were
reliably detected in [3, 4]. At L > 4.333, the transition
from the chaotic regime to regular self-modulation is
observed and this transition occurs via intermittency. In
this case, the strange attractor turns into a metastable
chaotic set. During the transient, the phase trajectory
first lies in the vicinity of this set (the waveform resem-
bles a chaotic one) and then is attracted to a stable limit
cycle. Note that the route via intermittency is accompa-
nied by a sharp shift of the fundamental frequencies in
the spectrum. As was shown in [6], the reverse transi-
tion to the regular regime causes a profound transfor-
mation of the space–time structures that form in the
electron beam at the stage of intense beam overbunch-
ing. Next comes the range 4.625 < L < 4.750 with qua-
siperiodic self-modulation at two incommensurable
frequencies. Narrow windows of synchronization are
observed in this range when the self-modulation funda-
mental frequency ratio is rational. This situation corre-
sponds to the on-torus formation of resonant cycles. At
L > 4.75, regimes are periodic again. Eventually, the
cascade of bifurcations brings the system, at L ≈ 6.05,
to the state of fully developed chaos, which is charac-
terized by a uniform continuous spectrum and the
absence of any large-scale structure on the projection of
the phase portrait. This transition also takes place via
intermittency.

Let us next consider a chain of two unidirectionally
coupled BWOs. The construction of a complete
dynamic model for such a system is a great challenge
and goes beyond the scope of this study. Here, we will
single out various situations depending on the operating
mode of either oscillator. For example, one may con-
sider the action of a periodic-mode oscillator on an
oscillator operating in the chaotic mode and vice versa,
interaction between two chaotic-signal sources, etc.
Note that, if the driving oscillator operates in the steady
single-frequency mode, we face the well-known prob-
lem of synchronization by an external harmonic signal.
The problem of synchronization of a periodic oscillator
has been studied in most detail; in general, this problem
is qualitatively similar to the classical problem of the
vibration theory when a harmonic force acts on a self-
oscillating system [13, 14]. The effect of a harmonic
signal on a chaotic BWO was studied in [8], where
chaos was found to be suppressed with growing exter-
nal signal. This phenomena calls for further investiga-
tion; however, it is safe to predict the presence of all the
effects typical of finite-dimensional chaotic systems
that are synchronized by an external harmonic action,
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
such as the locking or suppression of the fundamental
frequency of chaotic oscillations, etc. [15].

Since the primary goal of this study is to see whether
the developed chaos threshold may be reduced, we will
first consider the situation where both oscillators oper-
ate in the periodic self-modulation mode. The evolution
of the oscillatory regimes with the amount of coupling
seems to be the following. As R grows, oscillations
become chaotic basically through the decay of the qua-
siperiodic motion. Figure 1 presents typical phase por-
traits and output signal spectra for (a) the first and (b–f)
second oscillators. The two-dimensional projection of
the phase portrait is constructed for Fout = |F1, 2(ξ = 0)|
by the method of delays (Packard–Takens method)
[15]. The values of the bifurcation parameters L1 = 4.0
and L2 = 4.5 are chosen so as to ensure autonomous
operation in the strong periodic self-modulation mode
(Figs. 1a, 1b) but away from the developed chaos
threshold (the current exceeds the initial value eight and
eleven times, respectively). In the first case, we are near
the Feigenbaum chaos threshold; the second case cor-
responds to the situation after the chaos–order transi-
tion via intermittency. It is seen that the phase portraits
and spectra in these two cases are qualitatively differ-
ent.

With an increase in the degree of coupling, the oscil-
lations first become quasiperiodic (Fig. 1c) and then
chaotic (Fig. 1a) even if coupling is rather weak. The
discrete spectral components are distinctly seen against
the background of the low noise pedestal. Next, the
oscillations become still more irregular, the discrete
components decrease and diffuse, while the noise ped-
estal grows (Fig. 1e). However, at sufficiently high R,
new discrete peaks appear, this time, at the frequencies
contained in the spectrum of the driving signal (Fig. 1f).
Moreover, under certain conditions, self-modulation
may again become periodic (for parameter values other
than those shown in Fig. 1). Thus, there is an optimal
value of R corresponding to the most noisy uniform
spectrum.

Note that, in the presence of coupling, both the aver-
age output power and the efficiency are higher than
those in the case of autonomous operation. This readily
follows from the following considerations [12]. In an
autonomous oscillator, the distributions of the field and
current over the region of interaction are in “antiphase”:
near the collector, the beam is well bunched but the
field is small; therefore, energy exchange is inefficient.
Coupling “corrects” the field structure of the output
(driven) tube, making it more uniform and providing
more favorable conditions for energy removal from
electrons.

If the oscillators are identical (L1 = L2) and operate
near the Feigenbaum chaos threshold, the coupling-
induced transition to chaos also follows the Feigen-
baum scenario. However, this variant is encountered
more rarely than the above-mentioned quasiperiodic
route, which is always observed when the oscillators
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Fig. 1. Phase portraits and spectra of the (a) applied and (b–f) output signals when both oscillators operate in the periodic self-mod-
ulation mode (L1 = 4.0, L2 = 4.5) at R = (b) 0, (c) 0.02, (d) 0.05, (e) 0.2, and (f) 0.5.
are nonidentical (L1 ≠ L2) or the frequencies are
detuned.1 Generally, detuning favors the transition to
chaos.

With the first oscillator operating in the regime of
weakly developed chaos, the behavior of the system is

1 In Eqs. (1) and (2), F1, 2 stands for the amplitudes of waves
whose carrier frequencies are taken to be equal to the wave–beam
synchronism frequencies. If these frequencies are unequal for
both tubes, one should replace R in Eq. (3) by Rexp(i∆τ), where ∆
is the frequency detuning.
only slightly different from that discussed previously.
There is no point in talking of a scenario of transition to
chaos in this case; indeed, a chaotic signal, small as it
may be, when applied to the second tube, gives rise to
a chaotic component in the output signal. However, the
evolution of the spectra with the degree of coupling
proceeds in the same manner: first, the discrete compo-
nents diffuse and the noise pedestal grows; then, at suf-
ficiently high R, the fundamental frequencies of the
applied signal spectrum start showing up.
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Fig. 2. Phase portraits and spectra of the (a) applied chaotic and (b–d) output signals. The driven oscillator operates in the periodic
self-modulation mode (L1 = 6.5, L2 = 4.0) at R = (b) 0.03, (c) 0.1, and (d) 0.3. The data for the output signal obtained in the auton-
omous mode is given in Fig. 1a.
One more interesting case is that when a wide-band
chaotic low-amplitude signal is applied to a high-power
oscillator operating in the single-mode or periodic self-
modulation regime. In some sense, this situation is sim-
ilar to the classical problem of stabilization of a high-
power oscillator by a weak external signal [13, 14].
However, we are dealing here with the reverse problem,
which consists in initiating the transition of a powerful
generator (for which the increase in the current to a
desired level is for some reason impossible) to fully
developed chaos by applying a small chaotic signal
with a broad spectrum. Note that earlier a similar idea
was put forward in [16], where the noise or regular mul-
tifrequency modulation of the electron beam velocity
was proposed.

Let us discuss the effect of the fully developed cha-
otic signal from the first oscillator on the other oscilla-
tor working in the periodic self-modulation mode. Typ-
ical results are presented in Fig. 2 for L1 = 6.5 (or I/Ist ≈
35) and L2 = 4.0 (or I/Ist ≈ 8). The phase portraits and
spectra of the driving and output signals are plotted for
different values of R (the phase portrait and spectrum of
the output signal obtained in the autonomous mode are
given in Fig. 1a). Evidently, it is reasonable to consider
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
small values of R, since the power of the first oscillator
is assumed to be low. Under the assumption that the
entire output of the first oscillator is applied to the sec-
ond tube, the power ratio equals 20 logR, which gives
approximately –30, –20, and –10 dB for Figs. 2b–2c,
respectively. Figure 2 clearly demonstrates that, with an
increase in R, the discrete components in the spectrum
decay rapidly and the noise pedestal grows. At R = 0.3,
no distinct structure is present in the phase portrait and
the spectrum of the output signal turns out to be even
more uniform than that of the applied signal. Such
behavior is typical when the second (output) oscillator
operates in the periodic self-modulation mode. Yet it is
reasonable to consider the case of sufficiently strong
self-modulation, since a decrease in L2 leads one to
increase R (i. e., the power applied).

Thus, we considered the complex dynamics of a set
of two unidirectionally coupled BWOs. The transition
to chaos with growing degree of coupling was studied
for the case when autonomous oscillators operate in the
periodic self-oscillation mode. It is shown that the qua-
siperiodic route to chaos is the basic scenario of the
process. By using a chain of coupled oscillators, one
may appreciably reduce the threshold of transition to
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fully developed chaos and obtain chaotic oscillations
with a uniform continuous spectrum, the ratio of the
current to its starting value being much lower than in
the autonomous case. However, there exist optimal
coupling values at which the output signal is the most
irregular. At a higher degree of coupling, the oscilla-
tions may again become periodic, because discrete
components in the applied signal spectrum start to pre-
vail. The application of a weak wide-band chaotic sig-
nal is shown to be another possible way of transition to
fully developed chaos in BWOs. The results obtained
are of interest for applications using sources of micro-
wave chaotic oscillations. It should be noted that an
exhaustive theoretical description of the complex
dynamics of the system discussed is a great challenge
and calls for further experimental and theoretical
research.
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Abstract—Multilayer wave-guiding structures comprising transversely magnetized ferrites are studied.
A numerical theoretical model is constructed with the Galerkin method. An experimental investigation tech-
nique is developed. Theoretical and experimental results are found to be in good agreement. Such structures
offer a high phase activity and may provide a basis for small-size millimeter-wave phase shifters and a new class
of antenna systems, namely, integrated phased arrays. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

This paper is devoted to the theoretical and experi-
mental investigation of a transversely magnetized
three-layer ferrite–dielectric waveguide (FDW) whose
cross-sectional view is shown in Fig. 1.

The waveguide consists of a high-permittivity
dielectric slab sandwiched in ferrite slabs, of which the
bottom of one is plated. Thus, the waveguide is an open
guiding structure that can propagate waves with their
fields concentrated mostly in the dielectric slab.

To control the magnetization of the ferrite layers, a
control winding (not shown in Fig. 1) is provided
between the ferrite slabs. The variation of the current in
this winding alters the transverse magnetization of the
ferrite layers and affects waves propagating in the
FDW. Therein lies the essence of the electric control of
the waveguide properties.

This waveguide has served as the basis for a new
promising integrated millimeter-wave phased array
with simple ferrite control elements [1, 2]. Here, the
FDW functions as an integrated power and phase dis-
tributor. A control current changes the ferrite layer
magnetization, which, in turn, alters the propagation
constant of a wave in the FDW and, consequently, the
phases of the radiators fed from it. This array thus offers
simple electric steering of the beam by changing the
current in the control winding.

A length of a layered FDW can be used as a small-
size easy-to-control millimeter-wave phase shifter with
losses lower than in conventional controlled semicon-
ductor phase shifters.

The simulation of the FDW behavior is extremely
important for the understanding of the physical mecha-
nisms behind the processes taking place in an inte-
grated phased array and in a controlled phase shifter.

The purpose of this work is (i) to create an adequate
theoretical model of the FDW that could be used to
1063-7842/03/4809- $24.00 © 21175
study all types of waves existing in it, (ii) to estimate
the controllability of the waves by changing the magne-
tization of the ferrite layers, and (iii) to optimize the
characteristics of the structure, i.e., in terms of control-
lability maximization and loss minimization by appro-
priately choosing the number of layers and layer
parameters (thickness, width, and permittivity). Such a
model would eliminate the need for the experimental
selection of these parameters, which requires the fabri-
cation of many prototypes.

NUMERICAL SIMULATION

The theoretical simulation of an FDW is a complex
electrodynamic problem, because it has a variable cross
section and contains magnetized ferrites, which are
anisotropic nonreciprocal media. For a structure with
equiwide layers separated by electric or magnetic
boundaries, an analytical solution can be constructed in
principle (by applying the method of equivalent trans-
mission lines). The resulting formulas are, however,
very awkward and hard to use in practice. We study a
waveguide with layers of different widths (Fig. 1), for

1

2

2

3 4

Fig. 1. Cross-sectional view of a transversely magnetized
three-layer ferrite–dielectric waveguide: (1) dielectric,
(2) ferrite, (3) metal, and (4) magnetization.
003 MAIK “Nauka/Interperiodica”
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which an analytical solution cannot be constructed.
Thus, we can rely only on a numerical method.

If a wave depends on time t and longitudinal coordi-
nate z as exp[j(ωt – γz)], the Maxwell equations for the
complex amplitudes of the fields take the form

(1)

Here,  is the ferrite permeability tensor at a micro-
wave frequency [3]. In the frequency range away from
ferromagnetic resonance (such is the case in this paper,
because the bias in an integrated phased array is weak),
it can be represented as

(2)

where m0 is the unit magnetization vector, which coin-
cides here with y0 , and µ and µa are, respectively, the
diagonal and off-diagonal elements of the permeability
tensor [3].

Thus, a desired solution is found by solving the set

(3)

The simulation of an FDW was performed with the
Galerkin method [4, 5], which is a particular case of the
method of moments. This method represents the com-
ponents of a desired electromagnetic field as expan-
sions in sets of linearly independent basis functions:

(4)

The basis functions (x, y) and (x, y) must
exactly satisfy the boundary conditions at the outer
boundary (cross section) of the waveguide and must
constitute complete sets, which is necessary to repre-
sent a desired solution.

curlE jγz0 E×– jωµ0µH,–=

curlH jγz0 H×– jωε0εH.=

↔

µ
↔

µH µH jµaH m0,×–=
↔

curlE jγz0 E jωµ0 µH jµaH y0×–( )+×– 0,=

curlH jγz0 H jωε0εE–×– 0.=

Eν x y,( ) amn
ν( )ϕmn

ν( ) x y,( ),
m 1=

M

∑
n 1=

N

∑=

Hν x y,( ) bmn
ν( )ψmn

ν( ) x y,( ); ν
m 1=

M

∑
n 1=

N

∑ x y z., ,= =

ϕmn
ν( ) ψmn

ν( )

x
a

–b/2 0 b/2 y

Fig. 2. Open FDW enclosed in an auxiliary screen.
Because an FDW is actually an open structure
(Fig. 1), the boundary conditions at its boundary are
conditions at infinity. Basically, sets of basis functions
that satisfy these boundary conditions exist, but they
are awkward and inconvenient for computations.
Therefore, for simplicity, we construct the model for a
completely screened FDW: an open FDW is enclosed in
a large hollow rectangular waveguide (Fig. 2). This
may produce extra modes, cavity modes, which have
nothing to do with modes in a real open waveguide.
However, the mode fields in an open FDW concentrate
inside and near the layers and decay exponentially with
distance from the waveguide; therefore, far screens are
bound to have a negligible effect on the fields of sought
modes, while the additional spurious (or “false”) modes
are expected to be very sensitive to the positions of the
screens. This property is used to distinguish between
true and false modes: when the positions of the auxil-
iary screens are varied, the cavity modes are signifi-
cantly modified, while the modes of the open FDW
retain their parameters.

The distances to the auxiliary screens should be
optimized. On the one hand, the farther the screens, the
weaker their effect on the modes of the open FDW and
the more accurately these modes can be calculated; on
the other hand, the greater number of basis functions
are required in this case to represent the components of
the desired modes (the field variation within the sheath
becomes sharper). Accordingly, the calculation time
and the number of false modes will increase consider-
ably. Thus, optimum distances to the screens are those
at which the parameters of true modes are calculated
with a desired accuracy (they remain almost unchanged
with a further increase in distance), and the detrimental
factors discussed above moderate. This optimum can be
found if the problem is solved by iterations: if the
parameters of desired modes do not change (within a
given accuracy) starting with a certain distance to the
screens, this distance is fixed and then used in subse-
quent analysis of the structure.

The boundary conditions at the new closed bound-
ary are very simple, and basis functions are easy to
choose. In this paper, we expand the components of the
desired field in trigonometric functions:

An appropriate combination of the sine and cosine
functions are determined for each of the field compo-
nents from the corresponding boundary condition.
These basis functions make up a complete set (as trigo-
nometric functions) and are very convenient for calcu-
lations.

According to the Galerkin method [4, 5], expan-
sions (4) are substituted into the left-hand side of field
equations (3) written componentwise. The resulting
expressions are multiplied by the respective basis func-

sin

cos 
 
  nπx

a
---------

sin

cos 
 
  mπy

b
----------
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tions, integrated over the waveguide’s cross section,
and set equal to zero. As a result, we obtain a system of
homogeneous linear algebraic equations for the expan-
sion coefficients. The system contains the propagation
constant as a free parameter. The nontriviality condition
for a solution to this system yields the propagation con-
stants (eigenvalues) of the FDW modes, for which the
corresponding sets of expansion coefficients (eigenvec-
tors) are calculated. With the expansion coefficients
known, formulas (4) specify the field at any point of the
waveguide and, hence, any integral characteristic of the
mode can be calculated.

Based on this algorithm, a computer program that
simulates an FDW and similar structures was devel-
oped. This program uses the waveguide parameters
(layer dimensions, permittivities and loss tangents of
the media, and ferrite magnetization) and the frequency
of the oscillator as input parameters, constructs a rele-
vant set of equations, solves it, and determines all nec-
essary mode characteristics from the expansion coeffi-
cients found. The program is versatile: it applies to
structures with any number of layers and with arbitrary
widths and thicknesses of the layers. Also, it allows one
to calculate the characteristics of many structures like
an FDW (Fig. 1), which makes it particularly valuable.

EXPERIMENTAL TECHNIQUE

To experimentally study FDWs and similar struc-
tures, we used a special computerized measuring facil-
ity (CMF). The CMF is intended for measuring the
amplitude–phase distribution along a straight line near
the aperture (surface) of the object under study. The
CMF is equipped with a miniature dipole probe, which
introduces small perturbations into the field being mea-
sured. The software allows one to measure the ampli-
tude–phase distribution and check the measurement
accuracy (calibration mode), as well as display, print
out, and file the data. The block diagram of the CMF is
shown in Fig. 3. Probe 1 moves along object 3 by means
of worm gearing 2. Motor 4, which actuates the mech-
anism, is controlled by computer-based unit 5. The
travel of the probe is specified by limit switches 6.
Marker generator 7 produces pulses that are uniquely
related to the angle of rotation of drive shaft 2, which
makes it possible to locate the probe with an accuracy
of ±0.1 mm. The amplitude and phase of the field are
measured by amplitude–phase meter 8, to which a sig-
nal from signal source 9 is applied. The signal from the
movable probe is transmitted to the amplitude–phase
meter through cable 10, a Teflon-filled coaxial trans-
mission line of outer diameter 1.5 mm. This cable is
flexible and lets the probe move over noticeable dis-
tances. The electrical length of the cable remains con-
stant within several degrees. Interface device 11 con-
trols the probe motion, the operation of the amplitude–
phase meter, and the entry of the data into a computer.

The basic parameters of the CMF are as follows: the
frequency range is 32.0–35.7 GHz (beyond this range,
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
the measurement accuracy is lower), the amplitude–
phase distribution is measured to within ±3° (phase)
and ±0.5 dB (amplitude), the length of measurement is
varied from 0.8 to 1200 mm, the minimum distance
between amplitude and phase counts is 0.1 mm, and the
probe positioning error is within ±0.1 mm.

A length of the FDW was placed into the CMF. The
probe moved ≈0.1 mm above the FDW surface so that
it could respond to waves propagating in the FDW. The
waveguide was driven through a narrow slot, which
efficiently excites a variety of modes.

The output data of the CMF are the readings of the
field amplitudes and phases at given points of the FDW
surface. To calculate the FDW mode characteristics of
interest, a special data processing technique and associ-
ated software package were developed.

The amplitude and phase readings form readings of
the field complex amplitude. Then they are subjected to
Fourier transformation (in the space domain). The the-
ory predicts that the propagation constants of FDW
modes are discrete and that any wave in the waveguide
is the superposition of these modes. Thus, the Fourier
spectrum has isolated peaks, which correspond to
modes that exist in a particular case (Fig. 4 shows such
a spectrum for a frequency of 36 GHz). The parameters
of these modes (propagation constant and attenuation
factor) can be found from the spectrum with a fairly
good accuracy.

For each mode of the spectrum is transformed so
that only a part of the spectrum near the peak corre-
sponding to this mode is left, and the remaining part of
the spectrum is set equal to zero. Next, the new (trun-
cated) spectrum is subjected to inverse Fourier transfor-
mation; i.e., the amplitude–phase distribution of the
mode is obtained. It is split into the amplitude and
phase distributions. From the amplitude distribution
(on the logarithmic scale), the attenuation factor can
easily be calculated by using the linear approximation.
The phase distribution is used to calculate the propaga-
tion constant (also with the linear approximation). This
technique gives the propagation constant accurate to
0.1–0.3%. Thus, taking simple measurements, one may

7 4

5

9
811

3

1

6 6
10

2

Fig. 3. Block diagram of the measurement facility.
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gain very important information about modes that exist
in the waveguide under study.

The technique described above may provide data for
other important properties of the waveguide. In a real
integrated phased array, it is preferable to excite only
the fundamental mode (which has the lowest phase
velocity) at the FDW input. A theoretical model for an
FDW driver is still lacking. However, the distribution of
mode peak heights in the spectrum may be used to opti-
mize the driver. We also intend to extend this technique

0.2

–2–3 –1 0 1 2 3 4–4

0.4

0.6

0.8

1.0

0

I

γ, rad/mm

Fig. 4. Fourier spectrum of the amplitude–phase distribu-
tion.
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Fig. 5. Slowing factor versus frequency for symmetric
(solid lines) and antisymmetric (dashed lines) FDW modes.
Symbols, data points.
for measuring the coupling coefficient between FDW
modes and radiators. The analysis of the amplitude–
phase distribution in different regions of the FDW sur-
face allows us to estimate the degree of FDW longitu-
dinal inhomogeneity, which is caused by fabrication
errors. The modes reflected from the terminating load
also appear in the spectrum and have a propagation
constant of opposite sign. Analyzing the reflected
waves, one can select a load that reflects a particular
mode. The above technique can also be used in other
investigations.

This technique was implemented as a software
package for processing experimental data and conduct-
ing various studies.

RESULTS AND DISCUSSION

The theoretical and experimental methods described
above apply to a variety of structures similar to a fer-
rite–dielectric waveguide. Below, we discuss the results
for the three-layer waveguide whose cross-sectional
view is given in Fig. 1, because integrated phased
arrays are built on this waveguide.

Figure 5 shows the slowing factor (the propagation
constant normalized to the wave number in free space)
for modes of the demagnetized FDW versus frequency
over a sufficiently wide frequency range. Shown are the
theoretical curves and data points. The calculated and
measured results are seen to be in excellent agreement
for the fundamental mode (the one with the highest
slowing factor). For modes with slowing factors of 2.0–
3.5, agreement is also good. Even two modes with close
values of the slowing factor (open circles) are resolved
both theoretically and experimentally. For the highest

–0.8
1.0

1.5

2.0

2.5

3.0

3.5

4.0

η

J

4.5

–0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8

Fig. 6. Calculated controllability of symmetric (solid lines)
and antisymmetric (dashed lines) FDW modes. Symbols,
data points. J is the relative magnetization, and η is the
slowing factor.
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order mode (the one with the lowest slowing factor),
agreement is worse; however, the very fact that the
presence of this mode is predicted by the theory counts
in favor of the model constructed. A discrepancy
between the calculated and experimental results is inev-
itable, because it is impossible to allow for all specific
features of a real FDW, such as the presence of the con-
trol winding and magnetic-flux-closing elements at the
ends of the structure, etc. [1, 2]. Modes with less-than-
unity slowing factors cannot exist in an open FDW. In
our case, they are leaky waves or radiation modes of the
open structure. These modes are very sensitive to the
screen position (Fig. 2).

Figure 6 shows the slowing factor for various FDW
modes versus relative magnetization (normalized to the
saturation magnetization) of the ferrite layers at
34 GHz. The magnetization interval in Fig. 6 is feasible
when the current in the control winding varies within
±1 A. As can be seen in Fig. 6, different FDW modes
show different degrees of the controllability by the fer-
rite magnetization. Some of them are uncontrollable.
Of most interest is the fundamental FDW mode, which
has the highest amplitude and is the operating mode in
integrated phased arrays [1, 2]. Its slowing factor varies
from 3.27 to 4.18 (24%). For an integrated phased
array, this means that the beam scans a sector of about
40° [1, 2]. If a segment of the FDW is used as a phase
shifter, its length must be about 1.1 times as large as the
wavelength to provide a phase shift of 2π.

Such a high phase activity of this medium is due to
its layered structure, which consists of the two oppo-
sitely magnetized ferrite layers and the dielectric layer.
The dielectric transforms the FDW field so that the
magnetic field components Hx and Hz are close in
amplitude and phase-shifted by π/2 (i.e., rotate about
the constant magnetization direction) throughout the
ferrite-filled space.

It should be noted that the modes found theoretically
were not all observed in the experiment (like the peaks
in the spectrum), because they are weakly excited at the
waveguide input and/or weakly coupled with the probe.

Since the waveguide has a symmetric cross section
(Fig. 1), its modes can be subdivided into symmetric
(the field tangential component is maximum at the
waveguide axis) and antisymmetric (the tangential
component at the axis is zero) modes. The FDW was
excited by a standard rectangular waveguide with a
symmetric mode and had a symmetric waveguide trans-
former at the input. Therefore, we first assumed that
only symmetric modes are excited. However, Fig. 6
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
shows that at least one antisymmetric mode (the second
controllable mode) is excited in the experiment. This
can be explained by the asymmetry of the waveguide
transformer of the FDW prototype.

CONCLUSIONS

In this paper, we theoretically and experimentally
studied a three-layer ferrite–dielectric transversely
magnetized waveguide. A numerical model of the FDW
is constructed based on the Galerkin method. A dedi-
cated measuring and data-processing technique is
developed. The calculated and experimental data are in
good agreement, which testifies that the model is ade-
quate to a real physical system.

It is shown that different waveguide modes can be
controlled to a variable degree. When the ferrite layer
magnetization varies over the feasible range, the prop-
agation constant of the fundamental operating mode,
which is of most interest, varies by 24%. This means
that the phase activity of the medium is sufficiently
high due to its inhomogeneity (layered structure).

The model constructed can be used to study waves
propagating in a variety of ferrite–dielectric structures
and to optimize the characteristics of the structure, for
example, to maximize the controllability by appropri-
ately choosing the number and parameters of the layers.
This eliminates the need for fabricating a great number
of prototypes in experiments.

Our results demonstrate that transversely magne-
tized ferrite–dielectric structures are promising for
electrically controlled millimeter-wave integrated scan-
ning antennas and small-size phase shifters.
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Abstract—An analyzer is created for time-resolved measurements of the electron pitch-angles in high-current
microsecond relativistic electron beams in a strong magnetic field. The electron pitch-angles in a 500-keV rel-
ativistic electron beam with a current density of ~1 kA/cm2 and a 1-µs flat-top current profile are measured. The
diode proposed previously by the authors allows one to produce a high-current electron beam in which pitch-
angles vary only slightly with time and over the beam cross section. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

High-current relativistic electron beams (REBs) is
an accepted definition for electron beams with energies
of ~106 eV and electron current densities of ~103–
104 A/cm2. The REB power usually exceeds 109 W, and
the current pulse lasts from several nanoseconds to sev-
eral microseconds. The high power of REBs makes
them attractive for various applications; however, a
rather short REB duration causes difficulties for diag-
nosing the beam parameters.

High-current REBs are usually formed and propa-
gate in a magnetic field with an induction of ~1 T or
higher. In such a field, an electron moves along a helical
trajectory and its velocity is directed at an angle Θ to
the magnetic field. The angle Θ between the longitudi-
nal (i.e., directed along the magnetic field) component
of the electron velocity v l and its transverse component
v t is called the pitch-angle (  = v t/v l).

High-current REBs are usually generated with the
help of explosive emission cathodes. For current pulse
durations of about a few microseconds, the plasma
boundary from which electrons are emitted shifts away
from the cathode surface by several centimeters [1], so
that the parameters of the electron trajectories in a
strong magnetic field at the beginning and the end of
the pulse can be substantially different. The problem of
measuring the electron pitch-angles in microsecond
REBs formed with an explosive emission cathode has
up to now been inadequately studied, and difficulties
encountered in such measurements increase with
decreasing pitch-angle.

There are a number of methods for measuring pitch-
angles in high-current REBs. A diamagnetic probe [2]
provides data only on the mean value of the pitch-angle
of electrons at a given instant of time. The character of

Θtan
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the electron angular distribution function can be judged
from measurements of the trajectories of a small frac-
tion of electrons that are, in some way, separated from
the beam. These (contact) methods usually employ
either relatively long large-diameter cylindrical chan-
nels [3], which are also known as “wells,” or relatively
short (along the axis) small-diameter apertures (pin-
holes) [4].

A common disadvantage of all the contact methods
used in the physics of high-current microsecond REBs
is the production of a parasitic plasma on the detector
components. The threshold density for the plasma gen-
eration is ~1 J/cm2; hence, the plasma arises on any col-
lector several tens of nanoseconds after the beginning
of the pulse. This plasma has a density of 1012–1013 cm–3

and propagates along the magnetic field lines toward
the electron beam with a velocity higher than 107 cm/s
[5]. The effect of such a dense plasma on the angular
characteristics of the REB electrons can amount to sev-
eral tens of degrees [4]. Thus, an analyzer with an aper-
ture cutting a fraction of the beam for the subsequent
diagnostics can substantially affect the beam parame-
ters to be measured.

At lower REB current densities, the plasma is gen-
erated at a slower rate. Since the external magnetic field
B substantially exceeds the self-magnetic field of the
electron beam, a decrease in the current density can be
achieved by decreasing the guiding magnetic field.
Unfortunately, the self-electrostatic field of a high-cur-
rent REB limits the applicability range of this method.

For an electron beam with a circular cross section

and radius Rb, we have B  = const along its pathway.
The self-electrostatic field on the beam surface is

inversely proportional to the beam radius, E ~ ; i.e.,

Rb
2

Rb
1–
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E ~ . In crossed electric field E and magnetic field
B, an electron drifts with the velocity v dr = cE/B; i.e.,
v dr ~ B–1/2. The drift velocity v dr of an electron is added
to its oscillatory velocity v t; as a result, the pitch-angle
Θ0 = v t/v l) varies periodically (with the elec-
tron gyrofrequency) within the range determined by the
relationship  ≈ (v t ± v dr)/v l ≡ Θ0 + ∆Θ). The
weaker the magnetic field near the analyzer, the greater
the relative error in measuring the pitch-angle, ∆Θ/Θ0 ~
v dr/v t ~ B–1/2/B1/2 ~ 1/B. As a result, at sufficiently low
magnetic fields, the measurements can become mean-
ingless. For example, in [6], a pitch-angle of Θ ≈ 40°
was measured in a gyrotron with the REB radius Rb =
9 mm, electron energy 350 keV, current I = 6 kA, and
magnetic field 2 T. It can easily be estimated that, in this
case, the pitch-angle periodically varies within ≈20%.
As the magnetic field is decreased fivefold, the scatter
in the electron pitch-angles, ∆Θ/Θ0 ~ 1/B, becomes so
large that the electron beam turns out to be unusable for
measurements.

This paper is aimed at solving two problems. The
first problem is to develop a method for measuring the
distribution of the beam electrons over pitch-angles
(down to pitch-angles as small as possible). The
method should have high angular resolution in a strong
magnetic field and should be insensitive to the influence
of the parasitic plasma. The second problem is to verify
whether the angular distribution of electrons in a micro-
second REB generated with an explosive emission
cathode is the same at the beginning and the end of the
pulse.

OPERATION OF THE PITCH-ANGLE 
ANALYZER

The analyzer proposed in this paper is based on the
pinhole method. Figure 1 shows the operating principle
of such an analyzer. An electron (1) with a velocity v
enters a measuring chamber through an aperture in a
diaphragm (2) and falls on a screen (3) at a certain dis-
tance r from the aperture axis. The distance between the
diaphragm and the screen is L, and the angle between
the electron velocity and the normal to the diaphragm is
Θ. The electron pitch-angle is deduced from the dis-
tance r between the axis and the position of the electron
on the screen. The recording of electrons may be either
integral over the entire pulse (the photographing of the
glow of a mylar film [4] or a ZnS plate [7]) or time-
resolved (a small-size sectioned collector consisting of
several annular electrodes [8]).

In order for the distance r from the electron position
on the screen to the axis to be uniquely determined by
its pitch-angle Θ, the distance L between the diaphragm
and the screen should be substantially smaller than the
spatial period λH of the helical electron trajectory in the
magnetic field: L ! λH. In this case, the electron trajec-

B

(arctan

Θtan (tan
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tory in the analyzer is close to linear, so that r ≅  L .
For moderate Θ values, we have

(1)

Here, ΩH is the nonrelativistic electron gyrofrequency,
γ is the relativistic factor, c is the speed of light, and B is
the induction of the external magnetic field. For γ = 2
and B = 1 T, condition (1) takes the form L < 3 mm and
the electron with a pitch-angle of Θ = 10° falls at the
distance r ≅ 0.5 mm from the axis, so that its detection
involves difficulties. Hence, the presence of a strong
magnetic field in the pin-hole analyzer is a factor limit-
ing the device length and adversely affecting the accu-
racy of measurements.

This limitation can be avoided if the magnetic field
rapidly (at a distance ∆z) drops to zero near the analyzer
diaphragm. If ∆z is sufficiently small, an electron
retains information about its pitch-angle in the mag-
netic field and continues moving inside the analyzer
along a linear trajectory. In this case, the analyzer
length may be long enough to achieve the desired reso-
lution.

The desired distribution of the magnetic field can be
achieved by applying an additional field compensating
for the spatially nonuniform field B0 in the analyzer.
Figure 2 shows a conical surface with a radius R, which
varies along the z axis as R = z . Let circular cur-
rents with a certain distribution flow along the conical
surface and produce inside the cone a magnetic field
that has the same magnitude as the external field B0 but
is opposite in sign. Let us estimate the magnetic field to

Θtan

L
λH

2π
------∼

v l

ΩH

-------γ c γ2 1–
ΩH

---------------------≈=

≈ 1.7 10 3– T m[ ]×
B T[ ]

-------------------------------------- γ2 1– .

αtan

1

2

3

4

v

L

B

r
Θ

Fig. 1. Analyzer of the angular spectrum: (1) electron,
(2) diaphragm, (3) screen, and (4) symmetry axis.
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the left of the cone, assuming for simplicity that the
aperture in the diaphragm is absent. The magnetic field
produced by a thin-wire circular loop with a radius R,
current I, and coordinate z on the axis at the point with
the coordinate z1 is equal to

(a factor depending on the specific system of units is
omitted).

At z = z1, i.e., in the center of the loop, the field is
B = I/R, and at the point z1 = 0, it is

B z z1,( ) IR2

R2 z z1–( )2+( )3/2
-----------------------------------------=

B z 0,( ) IR2

R2 z2+( )3/2
--------------------------=

=  
IR2

R2 R αcot( )2+( )3/2
--------------------------------------------- I

R
--- 1

1 αcot
2

+( )
3/2

---------------------------------.=

z

z

∆z

–δB

B

–B0

R

α
0

Fig. 2. Profile of the analyzer surface (top) and the longitu-
dinal profile of the compensating magnetic field (bottom).

z

B

B0 B1
B2

0

Fig. 3. Magnetic field outside the analyzer: B1 is the basic
quasi-steady field and B2 is the pulsed field.
For α = 20°, we have (1 + )–3/2 ≈ 0.04. Since
this consideration is true for any loop with any z coor-
dinate, we can conclude that circular currents flowing
along the conical surface distort the magnetic field to
the left of the cone (at z ≤ 0) by no larger than 4%: δB ≈
0.04B0 (Fig. 2). The length ∆z of the transition region is
comparable in size with the diameter of the aperture sit-
uated at the point z ≈ 0.

The desired profile of the magnetic field can be pro-
duced using the skin effect in a pulsed field. The mag-
netic field is a superposition of two fields: the basic
field B1 and the field in the analyzer B2 (Fig. 3). A nec-
essary requirement is that the basic field (it may be sta-
tionary) be zero (B1 = 0) inside the analyzer. The field
B2 is pulsed, so it does not penetrate into the analyzer,
but outside it is rather strong. The total field B1 + B2

should be nearly constant along the axis: if the mag-
netic field increases substantially along the electron tra-
jectory, then the electrons are reflected from the mag-
netic mirror, whereas if the field decreases, then the
self-electric field of the beam comes into play. Such a
nearly uniform magnetic field ensures the adiabatic
motion of electrons (which is necessary to retain infor-
mation on their pitch-angle) to the analyzer.

The configuration of the magnetic field lines is
determined by the skin effect, due to which the mag-
netic field lines are expelled from the analyzer. As a
result, inside the analyzer, the field is absent, whereas
outside it, where the magnetic field induction remains
large, the field lines diverge along the conical surface of
the analyzer. Hence, the magnetic field makes the elec-
tron trajectories diverge, so that only electrons moving
near the axis can pass through the aperture. Most of the
electrons moving along the field lines avoid collisions
with the analyzer surface, thus preventing the produc-
tion of a dense plasma. Of course, some electrons bom-
bard the aperture edges; however, their number is much
less than in a uniform field. Let us emphasize once
again that our consideration is valid if the spatial period
of the electron helical trajectory λH is much larger than
the length ∆z of the transition region.

Therefore, the analyzer operates as follows. The
REB electrons pass through the aperture into the ana-
lyzer at an angle equal to the pitch-angle of their trajec-
tories in the magnetic field. In the analyzer, where the
magnetic field is absent, they propagate along straight
lines until they meet a detector (e.g., scintillator). The
higher the detector sensitivity, the larger the maximum
distance between the detector and the diaphragm and
the higher the resolution in pitch-angles. Note that it is
the aperture diameter that determines the number of
electrons penetrating through the diaphragm and,
accordingly, the maximum distance to the detector.

αcot
2
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DESIGN AND CALIBRATION 
OF THE DEVICE

The analyzer is designed as follows. The 3-mm-
thick analyzer casing is a cone that transforms into a
cylinder ≈50 mm in diameter. The casing is made of
aluminum and copper. The angle between the cone gen-
eratrix and the axis is α = 20°, and the distance between
the 1-mm-diameter aperture and the detector is 60 mm.
In time-integrated measurements, an astralon film,
which changes its color under the action of electrons,
was used as a detector. In order to determine how the
properties of the beam electrons change with time, we
used a radially sectioned current collector similar to
that used in [8]. Seven coaxial annular collectors dis-
tributed along the radius allowed us to resolve electron
pitch-angles with a step of ≈2.3°.

The analyzer was calibrated by a 500-keV electron
beam with a current density of up to 1 kA/cm2 and pulse
duration of 1 µs. The electrons propagated in a quasi-
steady uniform magnetic field with an induction of B1 =
1.1 T. Over a distance of ~20 cm, the field B1 fell to
almost zero (<0.04 T) in the region where the analyzer
was installed. Over the same distance of 20 cm, the
pulsed field increased to 0.8 T. For a pulsed field dura-
tion of 30 µs, the skin-layer thickness in copper is
0.5 mm.

We found conditions under which most of the mea-
sured electron trajectories had pitch-angles less than 2°
throughout the entire REB current pulse (as was
deduced from the degree of blackening of the astralon
film). Under these conditions, the device was calibrated
by the scattering of the beam electrons by a 20-µm alu-
minum foil. The foil was placed nearly in the middle of
the gap between the diode and the analyzer, at a dis-
tance of ~0.5 m from each of them.

It is well known that, when electrons with the same
velocities are elastically scattered by a foil, the distribu-
tion of the electron current density J over the scattering

angles ϑ is Gaussian, J(ϑ) ~ exp(–ϑ2/ ). Here, ϑ0 is
the mean square deviation, which depends on the foil
characteristics and the electron energy [9]. For the
given foil and electron energy, we have ϑ0 ≈ 10°.

For the given dependence of the current density J(ϑ)
(which determines the blackening profile of the
astralon film with a maximum at ϑ  = 0), the distribution
of the total electron current I over the angle ϑ  (i.e., the
current density profile measured by the sectioned col-
lector) has the form

Figure 4 shows the electron current measured by
each of seven collectors (i.e., the current density within
seven angular ranges). These currents are compared
with the calculated data, i.e., with the signals expected
for the scattering of monoenergetic electrons with
velocities strictly parallel to the magnetic field. The cal-
culations were performed taking into account the

ϑ 0
2

I ϑ( ) ϑ ϑ 2/ϑ 0
2–( ).expsin∼
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instantaneous electron energy, measured by the cathode
potential detector.

The collector signals were treated using the least
squares method. The experimental values of the elec-
tron current I(ϑ) were approximated by the function

where A and ϑ0 are the normalizing factor and the root-
mean-square scattering angle, respectively.

It can be shown that, for every instant of time, the
normalizing factor is equal to

and ϑ0 satisfies the equation

Here, the summation is over all the collectors (k = 1,…,
7), ϑk is the mean angle for the scattering into the kth
collector, Ik is the signal from the kth collector, and ϕk =

ϕ(ϑk) = Asinϑkexp(–ϑ2/ ).

On processing the data shown in Fig. 4, we can com-
pare the r.m.s. deviation angles ϑ0. The calculations by
the formulas from [9] give ϑ0 = 10.6°, whereas the mea-
sured value is ϑ0 = 11.6° with a variance of 0.6°. Some
excess of the measured ϑ0 value over the calculated one
may be attributed to the small angular spread of the
electrons before their interaction with the foil.

Figure 5 shows the time dependences of the calcu-
lated (by the formula from [9]) and measured r.m.s.
scattering angle ϑ0 of electrons after their interaction
with the foil. Since the cathode potential, as well as the
REB total current, changed insignificantly over 1.5 µs,

ϕ ϑ( ) A ϑ ϑ 2/ϑ 0
2–( ),expsin=

A ϕk Ik
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Fig. 4. Calculated (×) and measured (d) current I produced
by the electrons with different pitch-angles ϑ .
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the ordinates of the calculated points are nearly the same.
The signals from the collectors as functions of time were
treated by the procedure described above. The results
obtained agree well with the calculated data.

1

2

0 500 1000

15

10

5

t, ns

ϑ0,  deg

Fig. 5. Scattering angle ϑ0 as a function of time t: (1) calcu-
lations and (2) the results of processing the analyzer data.
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Fig. 6. Time-integrated distributions of the (1) electron
current density and (2) maximum pitch-angles over the
radius R.

1

5
0

2

3

4

5

10 15 20
R, mm

Θ°

1

2

Fig. 7. Pitch-angle vs. R for two values of the magnetic
field: (1) 1.1 and (2) 0.55 T.
The intensity of plasma production on the analyzer
surface was experimentally estimated as follows. The
conical surface of the analyzer was covered with a thin
film of a colorant sensitive to electron bombardment
and heating. After the multiple REB action on the
device, the film became discolored only near the cone
vertex. The maximum radius of the discolored part of
the cone did not exceed 3 mm; i.e., it was on the order
of the length calculated by formula (1). Hence, we
believe that we have avoided an intense plasma produc-
tion.

Thus, when measuring relatively large (~10°) pitch-
angles, the sectioned collector has demonstrated the
high measurement accuracy. However, the use of such
a collector imposes rigid requirements on the device
adjustment; therefore, it seems more convenient to use
a scintillator combined with a high-speed image inten-
sifier.

EXPERIMENT

Experiments on studying the electron trajectories
were carried out with a high-current electron accelera-
tor generating 500-keV electron beams with a pulse
duration of ~1 µs. An annular electron beam with a cur-
rent of 2 kA was formed in a diode [10] that ensured
unchanged beam geometry on a microsecond time
scale.

An annular electron beam 28 mm in diameter prop-
agated in a quasi-steady uniform magnetic field along a
90-mm-diameter tube (with the limiting vacuum cur-
rent exceeding 3 kA) over a distance of ~1 m. The ana-
lyzer was placed in the segment where the drop in the
quasi-steady magnetic field was compensated for by a
rapidly varying magnetic field. The magnetic induction
in the region where the magnetic field was uniform was
≈1.1 T.

The REB current density as a function of radius is
shown in Fig. 6. The current distribution shows that the
electron beam is hollow; its outer radius is ~15 mm, and
its thickness is 3 mm. The figure also shows the time-
integrated radial distribution of the electron pitch-
angles ϑ , which was recorded with the help of an
astralon film. One can see that, throughout the cross
section of the electron beam, in which the current den-
sity varies by one order of magnitude, the electron
pitch-angles are approximately the same and do not
exceed 5°.

Some experiments were performed with a decreased
magnetic field. In this case, the pulsed magnetic field in
the analyzer was also decreased, so that the shapes of
the magnetic field lines did not change. The radial dis-
tributions of the electron pitch-angles ϑ in an REB in a
magnetic field with an induction of 1.1 and 0.55 T are
shown in Fig. 7. In the lower field, the electron beam
has a somewhat larger outer radius (about 17 mm) and
a larger thickness. In both the higher and lower field,
the pitch-angles are almost the same throughout the
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
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REB cross section; however, in the case of the lower
field, the pitch-angles are somewhat lower and do not
exceed 3°.

The time-integrated measurements, whose results
are presented in Figs. 6 and 7, were carried out with a
pulse duration of 1 µs. The pulse duration could be var-
ied from 0.3 to 1.0 µs, and the experiments were also
carried out for several pulse durations within this range.
The results obtained differ only slightly from those
shown in Figs. 6 and 7; for this reason, we can assert
that the electron pitch-angles vary slightly throughout
the entire microsecond current pulse.

CONCLUSIONS
An analyzer of electron pitch-angles in a strong

magnetic field has been designed. The analyzer is based
on the pinhole method. A small fraction of the beam
electrons penetrates through a small aperture into a
chamber, where their trajectories are analyzed. At the
entrance to the device, the induction of the magnetic
field sharply decreases to zero and the electrons con-
tinue moving freely in the analyzer with a constant
velocity. One may use various recording techniques:
scintillators, collectors, etc. The angular resolution
depends on the distance between the aperture and the
detector plane.

The required profile of the magnetic field is pro-
duced by superposing two fields. One of these fields is
a basic quasi-steady magnetic field that vanishes inside
the analyzer. The other field is pulsed and is added to
the basic field for the total field to be spatially uniform.
The pulsed field cannot, however, penetrate into the
analyzer because of the skin effect. The advantages of
the conical shape of the device casing is threefold:
(i) the magnetic field profile in front of the analyzer is
only slightly distorted, (ii) the magnetic field drops
sharply at the entrance to the device, and (iii) most of
the electrons move apart from the analyzer, thus pre-
venting an intense plasma production.

The device calibration by the scattering of relativis-
tic electrons by an aluminum foil have demonstrated
that the experimental data agree well with the calcu-
lated results. The calibration has also shown that it is
possible to measure the angular distribution of elec-
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
trons in an REB with a current density of ~1 kA/cm2

and to trace its time evolution at relatively small pitch
angles of ~10°.

The electron pitch-angles in a 500-keV REB with a
current of 2 kA have been measured. It is shown that
with a diode designed previously in [10], it is possible
to form a high-current annular electron beam in which
the current-density profile remains uncharged on a
microsecond time scale and in which the electron pitch-
angles vary only slightly with time and over the beam
cross section. As the magnetic field increases, the pitch-
angles increase and amount to 5° in the magnetic field
with an induction of 1.1 T.
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Abstract—Ion emission from the plasma of a low-pressure (≈5 × 10–2 Pa) glow discharge with electrons oscil-
lating in a weak (≈1 mT) magnetic field is studied in relation to the cold hollow cathode geometry. A hollow
conic cathode used in the electrode system of a cylindrical inverted magnetron not only improves the extraction
of plasma ions to ≈20% of the discharge current but also provides the near-uniform spatial distribution of the
ion emission current density. The reason is the specific oscillations of electrons accelerated in the cathode
sheath. They drift in the azimuth direction along a closed orbit and simultaneously move along the magnetic
field toward the emitting surface of the plasma. A plasma emitter with a current density of ≈1 mA/cm2 over an
area of ≈100 cm2 designed for an ion source with an operating voltage of several tens of kilovolts is described.
© 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The energy cost of an ion, w = (IdUd)/Ii, in ion beams
generated by hollow-cathode low-pressure glow dis-
charge sources is much higher than in those produced
by thermionic-cathode sources and is usually several
kilo-electron-volts per ion. The reason is the poor ion–
electron emissivity of a cold cathode and, accordingly,
the high discharge operating voltage Ud. Another prob-
lem is associated with the extraction of a considerable
fraction of the discharge current ionic component (α ≈
Ii/Id) from the plasma. The oscillations of emitted elec-
trons, which are accelerated in the cathode sheath, pro-
vide a fairly uniform distribution of the discharge cur-
rent over the hollow cathode surface. Therefore, the
ratio of the ion current extracted from the plasma to the
discharge current is roughly equal to the ratio of the
emitting surface area of the plasma, Se, to the total sur-
face area of the cathode, Sc. In discharge systems with
hollow cathodes of a nearly conic shape, the ratio α =
Se/Sc as high as 13% has been attained [1].

Given a discharge current Id and gas pressure, the
hollow-cathode discharge operating voltage can be
minimized by the optimization of the electrode geome-
try. If the anode-to-cathode surface area ratio Sa/Sc

meets the condition Sa/Sc ~ (m/M)1/2, where m and M are
the masses of an electron and ion, respectively, fast
electrons in the plasma relax (in terms of the energy) to
the maximum degree and the electron current closes on
the anode without forming a negative space charge
layer [2].

The application of a magnetic field allows one to
increase the discharge current or decrease the initiation
1063-7842/03/4809- $24.00 © 21186
voltage under low gas pressures. In this case, the char-
acter of fast electron oscillation in the gap varies in
accordance with the electrode system configuration.
While in an inverted magnetron fast electrons largely
drift in the azimuth direction, in a reflecting (PIG) sys-
tem the electrons oscillate mainly between the cathodes
along the magnetic field. Weak (≈1 mT) magnetic fields
(where the Larmor radius of a fast electron is compara-
ble to the dimensions of the electrode system (≈0.1 m))
used in an inverted cylindrical magnetron provide the
uniform current density distribution for ions extracted
from the plasma along the magnetic field [3]. However,
the ion extraction efficiency in such a system is usually
no greater than 10% because of the large cylindrical
surface area of the cathode. The configuration of the
reflecting system makes it possible to increase the ratio
of the emitting surface area of the plasma to the total
surface area of two planar reflecting cathodes. In this
system, the loss of fast electrons toward the larger cath-
ode can be limited by applying magnetic fields that are
stronger than in an inverted magnetron. This causes a
substantial radial nonuniformity of the plasma. Accord-
ing to [4], the near-uniform ion emission current den-
sity and a high ion extraction efficiency (up to 30%) can
be reached in a modified reflecting system with a non-
equipotential cathode. However, relatively high mag-
netic fields (5–10 mT) used in this system limit the
operating voltage of the ion source, causing a discharge
to be initiated in crossed electric and magnetic fields
within the high-voltage gap between the coaxial elec-
trodes. Therefore, searching for ways of improving the
efficiency of ion extraction from the glow-discharge
plasma under weak magnetic fields seems to be of cur-
rent interest.
003 MAIK “Nauka/Interperiodica”
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If an electrode system provides the conditions
where the angle Θ between the electric field E in the
cathode sheath of a glow discharge and an external
magnetic field B is 0 < Θ < π/2, fast electrons in the
cathode sheath acquire a velocity component along the
magnetic field toward the plasma surface. When arriv-
ing at the emitting surface, fast electrons, which also
drift in the azimuth direction due to the transverse
velocity component, may increase the emission current
density, as takes place in a reflecting system. At the
same time, the possibility of controlling the ion emis-
sion current density by varying the magnetic field,
which is characteristic of an inverted magnetron, per-
sists.

In this work, we study a glow-discharge plasma
emitter used in the electrode system of an inverted mag-
netron with a conic cathode. Our aim was to improve
the extraction of ions from the discharge plasma and the
energy efficiency of such emitters.

EXPERIMENTAL

In our experiments, the electrode system of an ion
source used in [5] (Fig. 1) served as the basic system.
The system comprises a hollow cylindrical cathode
made of stainless steel whose diameter D and length L
are 150 mm and a rod-shaped tungsten anode 4 mm in
diameter and 100 mm long placed on the cathode axis.
A magnetic field is generated by a solenoid placed out-
side the grounded case of the ion source. The values of
the induction B are measured on the system’s axis in the
plane of the solenoid. A two-electrode ion–optical
device is used to extract ions and cut off secondary
electrons. Either of the electrodes has 61 hole (aperture)
12 mm in diameter with an aggregate surface area Se =
70 cm2. The inner surface area of the cylindrical hollow
cathode is Sc = 1080 cm2. A working gas (argon) is
delivered directly into the cathode cavity.

To obtain reproducible I–V characteristics, the cath-
ode surface was pretreated by long-term (≈0.5 h) ion
sputtering in the discharge until Ud reached the steady-
state value. For a minimal gas flow rate Q ≈ 40 cm3/min
and a minimal induction B ≈ 1 mT, which are necessary
to sustain a discharge current Id ≈ 0.5 A, the ignition
voltage was ≈1 kV. The need for small flow rates Q and
weak fields B, which provide the desired electric
strength of the accelerating gap of the high-voltage ion
source, is also a reason for the poor energy efficiency of
these high-voltage ion sources. The emission character-
istics of the ion source that were taken for two acceler-
ating voltages are depicted in Fig. 2 (curves 1, 2). The
linear run of the curves indicates that the beam loss at
the accelerating electrode of the multiaperture ion
optics is low. This is supported by the direct measure-
ment of the current in the circuit of this electrode. This
current includes not only the loss current of ions accel-
erated but also the secondary electron current due to
ion–electron emission and the ion current from the
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
beam plasma. Estimates show that the accuracy of
determining the ion beam current Ii from the current in
the high-voltage power supply circuit is ≈10%. For a
cylindrical magnetron, the efficiency α of extracting
ions from the plasma that was estimated from the beam-
to-discharge current ratio was found to be 7.0–7.5%,
which approximately equals the ratio Se/Sc.

Next, a thin-walled (0.3 mm) truncated cone made
of stainless steel was placed into the hollow cathode
cylinder (Fig. 1). The diameters of the lower and upper
cone bases were D = 150 mm and d = 50 mm, respec-
tively. The use of the conical cathode with lesser Sc

increased substantially the discharge operating voltage
(≈1.5 times) at the same values of the flow rate Q and

1

2

3

4
5

D
d

L Ar

B

Fig. 1. Electrode system of inverted magnetron type:
(1) cylindrical hollow cathode, (2) rod-shaped anode,
(3) punched screening electrode of ion optics, (4) conic hol-
low cathode, and (5) magnetic coil.
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Fig. 2. Emission characteristics of the ion source with (1, 2)
cylindrical and (3, 4) conic hollow glow-discharge cathode.
The gas flow rate is (1, 2) 30 and (3, 4) 40 cm3/min. The
magnetic induction is B = (1, 2) 2 and (3, 4) 1.5 mT. The
accelerating voltage is (1, 3) 30 and (2, 4) 20 kV.
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induction B. Then, we optimized the geometry of the
rod-shaped anode. Its length l = 50 mm and diameter
d = 1 mm were experimentally selected so as to mini-
mize the operating values of B0 and Q0. After the opti-
mization, the anode-to-cathode surface area ratio Sa/Sc

was equal to ≈1/300 (in view of the area of the hole on
the cathode end face, through which the anode is intro-
duced into the cathode cavity). This value is close to the
ratio (m/M)1/2 for argon. Figure 3 (curves 1, 3, 5) shows
the I–V characteristics of the discharge for various com-
binations of B and Q. As a result of the anode geometry
optimization, the discharge current in the modified
electrode system with the conical cathode was nearly
the same, 0.1–0.5 A (for Q = 20–40 cm3/min and B =
0–4 mT), as in the cylindrical magnetron.

The experiments showed that the I–V characteristics
obtained under the ion beam generation conditions dif-
fer considerably from those obtained with floating (rel-
ative to the Earth potential) electrode potentials in the
discharge system. As follows from Fig. 3 (curves 2, 4,
6), the application of a potential to the accelerating gap
of the ion optics considerably (by 100–300 V) reduces
the value of Ud. As the discharge current increases, the
difference between the I–V curves grows. Figure 4 dis-
plays the dependences of the discharge operating volt-
age on the gas flow rate and magnetic field in the coni-
cal magnetron operating under the ion collection condi-
tions. When the anode size exceeded the optimal value,
the nonmonotonic run of the curves Ud(B) was not
observed. From Figs. 3 and 4, one can infer that an
increase in the efficiency α of ion extraction from the
plasma is the basic way of maintaining a reasonable
value of energy efficiency η = α/Ud of the ion emitter

1.2

1.0

0.8

0.6

Ud, kV

0.1 0.2 0.3 Id, A

1

2

3

4

5

6

Fig. 3. I–V characteristics of the conic-hollow-cathode dis-
charge. The gas flow rate is (1–4) 15 and (5, 6) 40 cm3/min.
The magnetic induction B is (1, 2) 1, (3, 4) 3, and (5, 6)
0 mT. The accelerating voltage is (1, 3, 5) 0 and (2, 4, 6)
30 kV.
used in the high-voltage ion source when the discharge
voltage Ud grows sharply with decreasing Q and B.

The emission characteristics of the ion source with
the conical cathode are shown in Fig. 2 (curves 3, 4).
The ion extraction efficiency in this system rises to 14–
21%, with α decreasing with increasing B and increas-
ing with accelerating voltage (Fig. 5).

To estimate the uniformity of ion emission from the
plasma in the conical-cathode discharge system, we
measured the distribution of the beam current density
over the cross section at a distance of 250 mm from the
ion source. With the beam current density varying in the
range 0.1–0.5 mA/cm2 and the accelerating voltage
ranging from 10 to 30 kV, the nonuniformity of the dis-
tribution is no more than 20% over the central part of
the beam 8 cm in diameter. Since the current distribu-
tion in a beam of large cross-sectional area also
depends on its angular divergence and the distance to
the plane of measurement [6], we measured the dis-
charge current distribution in the plane of the screening
electrode of the ion optics (this electrode is a part of the
cathode). The measurements used planar probes with a
working surface area of 0.5 cm2 that were under the
cathode potential. The results are shown in Fig. 6. As in
the cylindrical magnetron, the radial profiles of the cur-
rent density depend on the magnetic field [3]. For a
magnetic field of 1–2 mT, the distribution nonunifor-
mity is within ±5% of the mean current density on a
diameter of 9 cm.

DISCUSSION

Since the total surface area of the conical cathode in
the experiments comprises ≈0.6 of the surface area of

Ud, kV
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0.6

0.5

1
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3

0 1 2 3 4 B, mT

Fig. 4. Discharge operating voltage vs. magnetic field with-
out electron losses through the apertures of the ion optics.
The discharge current is 0.2 A. The gas flow rate is (1) 20,
(2) 30, and (3) 40 cm3/min.
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the cylindrical cathode, the corresponding ion extrac-
tion efficiency estimated from the ratio Se/Sc is α ≈
13%; that is, the increment due to the geometrical fac-
tor amounts to 5.5–6.0% of the discharge current. The
same value, α = 13%, was obtained in a system with a
hollow conical cathode without a magnetic field [1].
Hence, it may be argued that the additional contribution
(1–8% of the discharge current) to the value of α
obtained, α = 14–21%, is associated with a change in
the electron oscillation character and in the distribution
of the discharge current over the cathode. In a conical
magnetron, fast electrons moving toward the emitting
surface of the plasma enhance the gas ionization rate,
causing the ion emission current to grow.

It should be noted that the transfer of fast electrons
toward the emitting surface of the plasma also takes
place in the absence of a magnetic field. A simple geo-
metrical consideration of electron trajectories shows
that each reflection of a fast electron from the cathode
sheath on the opposite surface of the cone contributes
to its velocity component parallel to the system’s axis.
After the electron has reflected from the emitting sur-
face, its longitudinal velocity in the backward direction
declines. Eventually, because of the anisotropic proper-
ties of the discharge, it will concentrate at the screening
electrode. Therefore, the ion extraction efficiency in a
system with a hollow conic cathode is expected to be
greater than the ratio Se/Sc. However, in [1], such an
effect was not confirmed. A high ion extraction effi-
ciency (to 15%) in a conic-hollow-cathode glow dis-
charge system was reported in [7]; however, this result
was not related to the effect of the hollow cathode shape
and behavior of secondary electrons. The influence of
the fast electron reflection conditions in the wedge-

22

18

14

10
0 1 2 3 4 B, mT

1

2

3

α, %

Fig. 5. Efficiency of ion extraction from the discharge
plasma vs. magnetic field. The discharge current is 0.2 A
and the gas flow rate is 30 cm3/min. The accelerating volt-
age is (1) 30, (2) 20, and (3) 15 kV.
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
shaped hollow cathode of a plasma electron source on
the probability of their return to the cathode and on the
fast electron lifetime in the discharge was discussed in
[8]. It was assumed that the change in the cathode shape
may be a factor that reduces the threshold operating gas
pressure in the plasma. The variation of the degree of
ion sputtering of the hollow cathode conic surface,
which was observed in our experiments, confirms indi-
rectly that the plasma is anisotropic in the axial direc-
tion. As the screening electrode was approached, the
intensity of cathodic sputtering grew.

In a cylindrical magnetron, the radial distribution of
the ion emission current density is controlled by vary-
ing the Larmor radius of fast electrons, which drift in
the azimuth direction, i.e., by varying the effective
range of ionization. As a result of the field enhance-
ment, the current density distribution with a near-axis
peak transforms first into a plane distribution and then
into a distribution with a dip at the axis. In the system
suggested, the drift of fast electrons in a weak magnetic
field persist, the oscillating electron trajectories at the
base of the cone being almost the same as in a cylindri-
cal magnetron. The decrease in the Larmor radius of
fast electrons ρ = (1/B)(m/e)V⊥  due to a decrease in the
transverse (relative to the direction of the field B) com-
ponent V⊥  of the electron velocity is bound to some-
what reduce the optimal value of B compared with a
cylindrical magnetron. However, possible changes are
within the accuracy of the current density profile mea-
suring technique.

The high discharge operating voltage inherent in the
electrode system of a plasma ion emitter is due to great
plasma particle losses in apertures in the screening
electrode of the ion–optical system. This makes it diffi-
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Fig. 6. Discharge current density distribution in the plane of
the screening electrode. The discharge current is 0.2 A, and
the gas flow rate is 30 cm3/min. The magnetic induction is
(1) 0, (2) 1, (3) 2, and (4) 4 mT.
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cult to sustain the discharge. The geometry of the mul-
tiaperture ion–optical system used in the experiments
was optimized so as to diminish beam current losses at
the accelerating electrode when the beam diverges
because of its self-space charge. By means of mathe-
matical simulation and experimental investigation, we
realized beam formation conditions such that the cross-
overs of elementary beams (i.e., beams that were gen-
erated in a separate aperture), 1–3 mm in size, were
formed in apertures of the accelerating electrode, which
had a much larger diameter (12 mm). Therefore, a dis-
placement of the elementary beam trajectory did not
cause any appreciable losses in a wide range of beam
parameters. However, when the apertures in the screen-
ing electrode are too wide, an increase in the discharge
current may break the cathode sheath near the aper-
tures. Under ambipolar diffusion conditions, particles
of the plasma issuing from the apertures move to the
walls and recombine without sustaining the discharge.
When a high voltage is applied, fast electrons are
reflected by the field of the accelerating electrode, turn
back to the plasma, and spend a part of their energy on
gas ionization. As a result, the discharge operating volt-
age decreases (Fig. 3). As the discharge current grows,
so do electron losses, since, to a first approximation,
they depend on the relationship between the ion optics
aperture size and cathode sheath thickness.

For a singly charged argon ion current density of
0.5 mA/cm2 and a voltage drop across the sheath of
700 V, the cathode sheath thickness estimated in the
Child–Langmuir approximation was found to be l ≈
0.55 cm. This means that the sheath may break. In addi-
tion, one should take into account that the discharge
operating voltage is influenced mainly by the loss of
fast electrons, which may escape without breaking the
cathode sheath through the near-axis part of the aper-
tures, where the potential barrier lowers due to the elec-
tric field in the accelerating gap. In the conical magne-
tron, an increase in the voltage because of the loss in
fast electrons was several times greater than in the
cylindrical device.

The elevated discharge operating voltage under the
ion extraction conditions provides the constancy of the
discharge current. The effect of ion losses on the dis-
charge operating voltage may be estimated with the
results of [9], from which it follows that the initiation
voltage rises in proportion to 1/(1 – α) provided that the
electrons in the plasma completely relax. Thus, the
increment of the initiation voltage due to ion losses is
≈25% (150–200 V) for α ≈ 20% obtained in our exper-
iments. For the cylindrical magnetron with α ≈ 7.5%,
the increment is only ≈8%.

The efficiency α depends on the accelerating volt-
age because of the variable curvature of the plasma
meniscus in the ion optics aperture. An increase in the
surface area from which electrons enter into the accel-
erating gap causes α to grow with accelerating voltage
[10]. In our experiments, the effect of the magnetic field
on the discharge operating voltage appears as a result of
increasing the ratio between the path length of an oscil-
lating electron in the cathode sheath and the path length
of an electron in the plasma, ~l/2ρ, rather than as a
result of the reliable confinement of fast electrons. This
increases the ionization probability in the sheath and
the probability of producing secondary electrons with
an energy sufficient for gas ionization. Such a mecha-
nism of generating secondary electrons is energetically
more favorable than ion–electron emission with the
subsequent accelerating of electrons in the cathode
sheath [11, 12]. Therefore, the discharge operating volt-
age declines rapidly with decreasing Larmor radius of
fast electrons. However, as the field B grows, the aver-
age number of reflections of an electron from the coni-
cal surface increases on its way to the emitting surface
of the plasma and the Larmor radius of fast electrons
diminishes. As a result, a fraction of the discharge cur-
rent accounted for by the lateral conical surface
increases and the efficiency of ion extraction from the
plasma drops.

For the same values of the gas flow rate Q and induc-
tion B, the energy efficiency η = Ii/UdId = α/Ud of the
ion source with the modified electrode system was
found to be 2.0–2.5 times higher than in the cylindrical
magnetron. The absolute values of η for the conic-cath-
ode source are 0.20–0.25 A/kW for Id = 0.1–0.3 A for
the moderate values of magnetic induction and gas flow
rate used in our experiments.

CONCLUSIONS

The modification of the hollow cathode geometry in
an inverted magnetron allowed us to raise the energy
efficiency of the ion emitter 2.0–2.5 times. At the same
time, the near-uniform distribution of the emission cur-
rent density and moderate values of the magnetic
induction (B = 1–2 mT) and gas flow rate (Q = 20–
30 cm3/min), which are favorable to achieving high
(several tens of kilovolts) ion source operating voltages,
are retained.

These results reflect a change in the oscillations of
electrons emitted by the cathode and accelerated in the
cathode sheath. The formation of a fast electron flow
toward the emitting surface of the plasma increases the
ion-emitting plasma density.

The high discharge operating voltage in the elec-
trode system of the effective glow-discharge ion emitter
is explained by high losses of charged plasma particles
through the apertures in the ion optics electrodes. The
contribution of the electron losses to the increment of
the discharge operating voltage depends on the ratio
between the aperture size and cathode sheath thickness.
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
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Abstract—Breakdown delay in a vacuum is considered in terms of the Joule mechanism. The effect of the cath-
ode material on the delay time is studied. A test for optimality for the gap electrode surface condition is stated.
When prepared under optimal conditions, cathodes have a minimum field enhancement coefficient at surface
microirregularities. This allows one to estimate the emission parameters of the cathode surface and the dielec-
tric strength of vacuum insulation. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

A high-voltage pulse applied to the electrodes of a
vacuum gap may result in electric breakdown, which
somewhat lags behind the pulse. A breakdown delay in
a vacuum is determined by the inertia of processes ini-
tiating breakdown. The delay time td depends on the
surface condition, the electrophysical parameters of the
cathode material, and the amplitude and shape of the
pulse applied.

The use of nanosecond voltage pulses cuts consider-
ably the number of breakdown-initiating mechanisms.
The cathodic mechanism, where breakdown is initiated
by the explosive destruction of the emitter that is Joule-
heated by passing thermionic and field-emission cur-
rents, is the main one in this case.

For the Joule mechanism, there are analytical rela-
tions between the breakdown delay time in a vacuum,
electric field intensity, and physical constants of the
cathode material. These relations allow one not only to
explain experimental results but also to analyze the
effect of the electrode material on the breakdown delay
time and also to formulate a test for optimality for elec-
trode surface preparation conditions. The treatment of
the electrodes by high-voltage pulses of duration tp
equal to the breakdown delay time, tp = td, corresponds
to the optimal preparation conditions. Such a regime of
cathode surface preparation minimizes the electric field
enhancement coefficient β at surface microirregulari-
ties and maximizes the pulsed insulation strength. In
addition, the optimal preparation conditions allow one to
reach a desired vacuum insulation strength and estimate
the emission parameters of the cathode surface [1].

TEST FOR INITIATION

The use of voltage pulses with a duration

(1)tr ! tp ! h2ρc/λ ,
1063-7842/03/4809- $24.00 © 21192
where tr is the time of thermal relaxation; h is the emit-
ter height; and ρ, c, and λ are the density, specific heat,
and thermal conductivity of the emitter, respectively,
reduces the boundary-value problem for the emitter
temperature distribution [2] to the form

(2)

Here, j0 is the field emission current density; κ0 is the
proportionality factor in the temperature dependence of
the emitter resistivity, κ(T) = κ0T; T* is the inversion
temperature, T* = 5.67 × 10–7ϕ–1/2; and ϕ is the work
function [3].

The solution of Eq. (2) yields analytical expressions
for the delay time td as a function of the critical field
intensity Ecr at an emitting microarea (hereafter micro-
intensity) and physical constants of the cathode mate-
rial without going into the geometry of this area.

Written in integral form,

(3)

where

Equation (2) is a test for vacuum breakdown initia-
tion. According to this test, breakdown occurs when the
energy evolution in the emitter becomes equal to the
energy of emitter destruction, causing explosion [4].
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Physical properties of metals

Metal ρ, kg/m3 Tle , °C λ, W/(m °C) c, J/(kg °C) k, 10–10,
(Ω m)/K φ, eV ρc/k0, 1016 

(A2 s)/m4

Zr 6500 1860 17 276 15.02 3.70 0.12

Ti 4500 1725 15 577 17.58 3.85 0.15

Be 1850 1284 167 200 1.46 3.90 0.25

Nb 8570 2410 50 272 5.13 4.00 0.45

Ta 16700 2850 54 142 4.94 4.10 0.48

Al 2703 657 209 922 0.96 4.25 2.60

Mo 10200 2620 151 264 1.90 4.27 1.42

Ag 10500 961 408 234 0.59 4.30 4.16

Au 19300 1063 311 126 0.81 4.30 3.00

Fe 7870 1535 73 452 3.59 4.31 1.00

Cu 8890 1083 394 386 0.63 4.40 5.44

Ni 89001 1455 95 444 2.67 4.50 1.48

W 19300 3380 168 218 2.01 4.54 2.09

Cr 7100 1890 67 461 7.69 4.58 0.43

Re 20500 3180 71 138 7.69 4.80 0.37
The value of aρc/κ0 is the specific energy of emitter
destruction.

BREAKDOWN DELAY TIME
Experimentally, the delay time td is determined by

using rectangular voltage pulses with different ratios of
the leading edge time tle and pulse duration tp. Note that
the values of td determined by using rectangular pulses
with an infinitely short leading edge time (tle ! tp) differ
both from td1 measured using rectangular pulses with a
finite leading edge time (tle ~ tp) and from td2 deter-
mined at the pulse front (tle = tp).

The solution of Eq. (3) yields expressions for the
delay time for pulses of different shapes:
for rectangular pulses with an infinitely short leading
edge time,

(4)

for skewed pulses,

(5)

and for rectangular pulses with a finite leading edge time,

(6)

The dependences td = f(Ecr) following from Eqs. (4)–
(6) for tungsten are in satisfactory agreement with the

td 4.2 1011aρc
κ0

---------ϕ2 21.6ϕ 1/2––{ }exp×=

×
1.32 1010ϕ3/2Ecr

1–×{ }exp

Ecr
4

------------------------------------------------------------;

td2 1.32 1010ϕ3/2

Ecr
--------td;×=

td1 td tle 1  7.58– 10 11– ϕ 3/2– Ecr×( ).+=
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experimental results [5], which substantiates the
approach used and the assumptions made. With Ecr =
const, the delay time td2 (skewed wave) is one order of
magnitude longer than the time td (rectangular pulse),
which is in agreement with experimental data [6].

EFFECT OF THE ELECTRODE MATERIAL

Analytical expressions (4)–(6) imply that the break-
down delay time is a function of the critical electric
field microintensity, work function, and specific energy
of emitter destruction. Equation (4) was used to con-
struct the dependences td = f(Ecr) for metals with a work
function ranging from 3.7 to 4.8 eV. The physical con-
stants [7–9] used in the calculations are listed in the
table.

The breakdown delay time as a function of the elec-
tric field microintensity initiating breakdown is shown
in Fig. 1 for zirconium, beryllium, tantalum, molybde-
num, and copper. The curves were calculated according
to Eq. (4).

With Ecr = const, the delay time for copper is four
orders of magnitude larger than for zirconium. The
dependences td = f(Ecr) calculated for nickel, tungsten,
chromium, and rhenium differ slightly from the curve
for copper, almost coinciding with it. It is seen that the
work function ϕ of the material and the specific energy
of emitter destruction aρc/κ0 affect significantly the
delay time td.

The specific energy of destruction aρc/κ0 for differ-
ent metals as a function of the work function is shown
in Fig. 2a.
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The transition from zirconium (ϕZr = 3.7 eV) to cop-
per (ϕCu = 4.4 eV) increases the work function by
0.7 eV and the specific energy of destruction roughly
40 times. The latter parameter is maximum for copper,
aρc/κ0 = 7.24 × 1016 A2s/m4. The transition from copper

–9

6 8 10 12
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–5

1 2 3 4 5

logtd

Ecr, 109 V/m

Fig. 1. Delay time vs. the electric field microintensity for
different metals: (1) Zr, (2) Be, (3) Ta, (4) Mo, and (5) Cu.
td is given in seconds.
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Fig. 2. (a) Specific energy of emitter destruction and (b) the
delay time of breakdown vs. the work function. td is in sec-
onds.
to rhenium (ϕRe = 4.8 eV) increases ϕ by 0.4 eV; how-
ever, aρc/κ0 decreases ≈13 times to 5.4 × 1015 A2s/m4.
The presence of the maximum in the dependence
aρc/κ0 = f(ϕ) substantially affects the behavior of the
curve td = f(ϕ).

The logarithm of the time delay vs. the work func-
tion is plotted in Fig. 2b for different metals at Ecr = 7 ×
109 V/m.

The transition from zirconium to copper increases
the delay time by four orders of magnitude. Here, two
orders are due to an increase in the work function and
the other two orders are due to an increase in the spe-
cific energy of destruction. The transition from copper
to rhenium almost does not change the delay time, since
the growth of td due to an increase in ϕ is compensated
for by the corresponding decrease in aρc/κ0.

The results presented allow us to substantiate the
choice of the electrode material for vacuum gaps. To
provide a desired dielectric strength, preference must
be given to materials with a high work function and a
high specific energy of destruction.

TEST FOR OPTIMALITY

If the high-voltage pulse duration is less than the
breakdown delay time, tp < td, the pulse energy cannot
destroy the emitter. As the duration increases and the
critical breakdown-initiating state, which is character-
ized by the equality tp = td, is approached, the surface
microrelief smoothes and the polishing of the cathode
surface starts [10].

For tp > td, the high-voltage pulse energy is spent not
only on emitter destruction but also on switching pro-
cesses in the gap. As the duration of the explosive emis-
sion current pulse decreases and simultaneously the
high-voltage pulse duration approaches the critical
value, which is equal to the breakdown delay time in a
vacuum (tp = td), microcraters shrink and the cathode
surface becomes smooth (nearly polished) [11, 12].

For tp = td, the energy stored in the emitter before
explosion becomes equal to the energy of emitter
destruction. The pulse energy here is sufficient for
breakdown initiation but falls short of sustaining and
extending the discharge. The treatment of the cathode
surface by high-voltage pulses with a duration tp = td
only destroys microasperities, but new emission centers
do not emerge.

Thus, the optimal regime of treatment of the vacuum
gap electrodes is that when the duration of a high-volt-
age pulse is equal to the breakdown delay time, tp = td.
In this case, the cathode surface becomes smooth and
offers the maximum pulsed dielectrical strength at a
minimal duration of surface conditioning. A test for
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
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optimality is obtained by substituting tp = td into Eq. (3):

(7)

If the pulse power grows while the pulse shortens so
that the equality tp = td remains valid, the efficiency of
electrode conditioning is improved and finally the cath-
ode surface is polished.

ESTIMATION OF EMISSION PARAMETERS

In experiments on breakdown delay determination,
the electrodes of a vacuum gap are pretrained by high-
voltage pulses (tp = const) with a small overvoltage to
make every value of the conditioning pulse amplitude
correspond to a stable value of the delay time and,
hence, the stable state of the cathode surface. The stable
state of the cathode surface is described by the coeffi-
cient of electric field enhancement β at surface microir-
regularities. The local field and the macrofield are
related as

(8)

The experimental dependence td = f(E0) obtained as
a result of high-voltage training with a minimum over-
voltage reflects the optimal surface conditioning
regime (tp ≈ td). The enhancement coefficient β under
the optimal conditioning regime can be determined by
comparing the experimental curve td = f(E0) and calcu-
lated curve td = f(Ecr) with td = const. The comparison
of the experimental curves td = f(Ecr) for pulses of dif-
ferent shapes with E0 = const allows one to estimate
both the field enhancement coefficient and the work
function.

(1) Field enhancement coefficient. Experimental
data for breakdown delay times in a vacuum are most
fully presented for copper electrodes. They have been
determined in an operating and ultrahigh vacuum over
a wide range of electrode spacings from 3 µm to 20 cm
(i.e., spanning five orders of magnitude) [13–17]. The
experimental, td = f(E0) (curve 1), and calculated, td =
f(Ecr) (curve 2), dependences of the vacuum breakdown
delay time on the breakdown-initiating electric field
intensity are shown in Fig. 3 for copper electrodes. The
calculated dependence td = f(Ecr) is constructed by
using Eq. (4) and the physical constants given in the
table.

The difference between the abscissas of the experi-
mental, td = f(Ecr), and calculated, td = f(E0), curves at
td = const gives the field enhancement coefficient

(9)

which is reached under the optimal conditioning regime.
As follows from the plots, as the electric field inten-

sity increases, curves td = f(E0) and td = f(Ecr) approach

j0
2 t( ) td

0

tp

∫ a
ρc
κ0
------.=

E βE0.=

βlog Ecrlog E0,log–=
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each other. They coincide at a certain critical value

(10)

when the intensities at the top and base of a microasper-
ity become the same and the field enhancement coeffi-
cient reaches the minimum value β = 1, which corre-
sponds to the ideally smooth surface.

Comparing the experimental and calculated curves
at td = const, the dependences of the field enhancement
coefficient β = f(E0) and β = f(tp) on the surface condi-
tioning parameters can be constructed. The curves β =
f(E0) and β = f(tp) (Fig. 4) describe the variation of the
coefficient β when the surface was prepared under opti-
mal conditions (tp = td) for different values of macroin-
tensity E0.

The field enhancement coefficient β obtained at tp =
td is approximated by the power relationship [18]

(11)

According to (11), the cathode surface prepared
under the optimal conditions has a desired value of the
coefficient β, which depends only on the breakdown
field macrointensity E0.

Under the optimal preparation conditions, the field
enhancement coefficient β may vary by three orders of
magnitude depending on the amplitude and duration of
high-voltage pulses. This could be used to produce a
microrelief with a desired value of β.

A kink in the curve β = f(tp) shown in Fig. 4b at td ≈
10–7 s is apparently related to the effect of emitter cool-

E0 Ecr 1.32 1010 V/m,×= =

β 1.28 109E0
0.9– .×=

108 109 1010

10–9

10–7

10–5

10–3

1 2

td, s

E, V/m

Fig. 3. Breakdown delay time vs. the breakdown field inten-
sity for copper electrodes. (1) Experimental dependence
td = f(E0) and (2) calculated dependence td = f(Ecr). Experi-
mental data from (s) [13], (v) [14], (h) [15], (*) [16], and
(d) [17].
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Fig. 4. Field enhancement coefficient vs. the conditioning
parameters for tp ≈ td. (a) β = f(E0) and (b) β = f(tp). Exper-
imental results from (s) [13], (v) [14], (h) [15], (*) [16],
and (d) [17].

1

10

102

103

108 109 Ecr

β

107

Fig. 5. Field enhancement coefficient after surface condi-
tioning by pulses with tp = td vs. the macrointensity of the
breakdown field: (e) Al [13–16], (d) Cr [19], (s) Fe [6, 18],
(*) Ni [17], (x) Cu [13–17], (v) Mo [15, 16], and (*) W
[6, 17].

E0, V/m
ing by heat conduction. It follows from this curve that,
to improve the dielectric strength of vacuum insulation,
it is appropriate to apply voltage pulses of duration tp <
10–7 s. Note that the conditioning efficiency increases
with decreasing pulse duration.

The field enhancement coefficient β, which is
defined as the ratio of the intensities at the top and base
of a microasperity, depends only on its geometry and is
independent of the electrode material. Hence, expres-
sions (10) and (11), which were derived for copper
electrodes, must also be valid for other materials. To
verify this assumption, the calculations for aluminum,
chromium, iron, nickel, molybdenum, and tungsten
electrodes were carried out. The experimental depen-
dences were constructed with data reported elsewhere
[5, 6, 13–17, 19, 20].

The field enhancement coefficient β determined in
the vacuum breakdown delay experiments performed
under the optimal high-voltage pulse conditioning (tp ≈
td) are plotted against E0 in Fig. 5 for aluminum, chro-
mium, iron, nickel, copper, molybdenum, and tungsten
electrodes.

The experimental data for the electrodes made of
different materials fall on a single line β = f(E0). It fol-
lows from this dependence that the coefficient β, which
characterizes the state of the cathode surface treated by
high-voltage pulses of duration tp = td is independent of
the electrode material and varies only with the break-
down-initiating electric field macrointensity E0.

With test for optimality (7) fulfilled, an increase in
the macrointensity E0 leads to a decrease in the
enhancement coefficient β; that is, the cathode surface
quality is improved. For E0 = Ecr and tp = td, the pulsed
treatment polishes the cathode surface.

From expressions (5) and (6) for the delay time in
the case of a skewed voltage wave and rectangular
pulse with a finite leading-edge time, respectively, and
taking into account expression (8), we obtain analytical
estimates of the field enhancement coefficient β, using
the experimentally found breakdown delay time for a
skewed voltage wave,

(12)

and a rectangular pulse with a finite leading-edge time,

(13)

From Eqs. (12) and (13), it follows that the coeffi-
cient β can be found by comparing breakdown delay
times for pulses of different shape with E0 = const. An
experimental check with copper electrodes showed
that, with E0 = 4.2 × 107 V/m, the delay time for the
rectangular pulse is td = 28 ns and for the skewed wave
td2 = 0.5 ns. The value of β determined by Eq. (12) was
found to be 162, which corresponds to the condition

β 1.32 1010ϕ3/2E0
1– td

td2
------,×=

β 1.32 1010ϕ3/2E0
1– 1

td td1–
tle

---------------+ 
  .×=
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tp = td with E0 = 4.2 × 107 V/m and agrees with the
dependence β = f(E0) shown in Fig. 5.

(2) Work function. The cathode surface prepared
under optimal conditions has a known coefficient of the
electric field enhancement β, which allows us to esti-
mate the work function. Solving Eqs. (12) and (13) for
ϕ gives

(14)

(15)

With E0 = const, we can now estimate the work
function from experimental breakdown delay times for
voltage pulses of various shape.

The tests were carried out with skewed and rectan-
gular pulses applied to aluminum and copper elec-
trodes. In the former case, the breakdown time delay
with E0 = 1.9 × 107 V/m was equal to td2 = 1.3 × 10–5 s
for the skewed wave, while for the rectangular pulse, it
was one order of magnitude smaller: td2 = 7.4 × 10–7 s.
Based on Eq. (14) and the test results, we estimated the
work function for aluminum as ϕAl = 4.4 eV. The mea-
surements for copper electrodes gave ϕCu = 4.7 eV.
These values of the work function are in satisfactory
agreement with those listed in the table.

DIELECTRIC STRENGTH

Surface conditioning by pulses with tp = td forms a
microrelief characterized by a certain value of the coef-
ficient β (Eq. (11)), which makes it possible to write the
delay time as a function of the electric field microinten-
sity E0. For a rectangular pulse with an infinitely short
leading-edge time, we have

(16)

for a skewed wave,

(17)

and for a rectangular pulse with a finite leading-edge
time,

(18)

Expressions (16)–(18) allow one to calculate the
delay time under the optimal conditions for cathode
surface treatment (high-voltage pulses with tp = td) as a
function of the electric field microintensity E0 if the
physical parameters of the cathode material are known.

The dependences of the delay time on the macroin-
tensity, td = f(E0), and microintensity, td = f(Ecr), of the

ϕ 0.21E0
1/15 td2/td( )2/3

,=

ϕ 0.21E0
1/15 tle/ td td1 tle+–( )( )2/3.=

td 1.57 10 25– aρc
κ0

---------ϕ2 21.6ϕ 1/2––{ }exp×=

×
10.3ϕ3/2E0

0.1–{ }exp

E0
0.4

----------------------------------------------;

td2 10.3
ϕ3/2

E0
0.1

--------td;=

td1 td tle 1 0.097ϕ 3/2– E0
0.1–( ).+=
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electric field for aluminum that were calculated based
on Eqs. (4) and (16) and the physical parameters listed
in the table are shown in Fig. 6. The calculations are in
satisfactory agreement with the experimental results
[13, 15, 16].

To see whether the Joule mechanism of breakdown
can be used to evaluate the pulsed electric strength of a
vacuum gap with evaporated electrodes, we performed
experiments with an accelerating gap between a micro-
channel plate and a cathodoluminescent screen.

The dependences of the delay time on the macroin-
tensity, td = f(E0), and microintensity, td = f(Ecr), of the
electric field for chromium were calculated based on
Eqs. (4) and (16) and the physical parameters (see
table). The experimental results for the breakdown
delay time in the “microchannel plate–cathodolumines-
cent screen” evaporated electrode system are in satis-
factory agreement with the calculated curve td = f(E0)
[20].

The experimental results for the breakdown delay
time in the vacuum gaps with both the all-metal and
evaporated electrodes show that the coefficient β of
electric field enhancement that is observed under the
optimal conditioning regime is insensitive to the elec-
trode material and structure and depends only on the
breakdown field macrointensity (Eq. (11)).

CONCLUSIONS

Experimental investigation of the breakdown delay
in a vacuum provides information about the pulsed
dielectric strength of a vacuum gap and the emission
parameters of the cathode surface. The treatment of the
vacuum gap electrodes by high-voltage pulses with a
duration equal to the breakdown delay time ensures an
optimal surface conditioning regime. This regime pro-

108

10–10

109 1010 1011

10–8

10–6

E, V/m

td, s

1 2

Fig. 6. Calculated dependences of the delay time on the
breakdown field intensity for aluminum. (1) td = f(E0) and
(2) td = f(Ecr). Experimental results from (s) [13], (e) [15],
and (*) [16].
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vides the maximum smoothness of the cathode surface
and, accordingly, the highest possible pulsed dielectric
strength of vacuum insulation. The cathode surface
with a desired coefficient of electric field enhancement
β (i.e., vacuum gaps with a desired pulsed dielectric
strength) can be obtained by controlling the condition-
ing pulse power in the optimal regime. On the cathode
surface formed in the optimal conditioning regime, one
can evaluate both the field enhancement coefficient at
surface microirregularities and the work function.
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Abstract—We consider the heated surface of a metallic tip to which a strong electric field is applied. At tem-
peratures activating surface self-diffusion, crystalline outgrowths and microprotrusions arise on the surface.
The latter generate ion fluxes, i.e., act as sources of high-temperature field evaporation, when a positive poten-
tial is applied to the emitter. The existence conditions for the microprotrusions on the emitter surface are dis-
cussed. It is shown that their stability is provided by the balance between three atomic fluxes: diffusion from
the top of the tip, diffusion toward the top, and field evaporation from the top. Different ways of providing such
a balance are discussed. In a desorption-type field ion microscope, the microprotrusions and evaporating ions
are visualized as bright spots. These spots execute random motion and, at the same time, exhibit ordered cyclic
displacements: the microprotrusions first form dotted rings along the developed faces of the crystalline emitter,
and then these rings quickly collapse toward the center of the face. A quantitative theory of these cyclic pro-
cesses is developed for the first time. It explains why the rings “calm down” before collapse and why subsequent
collapse develops in an avalanchelike manner. The electric field distribution over the surface in the presence of
an outgrowth is calculated, and diffusion fluxes at different stages of its growth and dissolution are analyzed.
The calculation shows that the outgrowth heights are relatively small and their slopes are rather smooth. © 2003
MAIK “Nauka/Interperiodica”.
INTRODUCTION

The simultaneous action of field and temperature on
the metallic tip surface results in a variety of phenom-
ena, which modify the tip shape [1]. Such undesired
thermal–field shaping should always be taken into
account, since this process often causes the avalanche
development of instabilities and adversely affects the
emitter parameters. The detailed consideration of vari-
ous instabilities on the surface of electron and ion emit-
ters may form the basis for a theory and technology of
reliable field sources of ions and electrons.

Among such surface tip-shaping phenomena is
high-temperature field evaporation [2], which may be
viewed as the process of ion evaporation accompanied
by intense surface diffusion and the growth of micro-
protrusions and more complex features, such as out-
growths, steps, etc. It is remarkable that high-tempera-
ture field evaporation may be used as the principle of
operation of point ion sources with a desired geometry
and hence with emission properties that are necessary
for the fabrication of micro- and nanoelectronic devices
[3, 4].

Depending on the electric field and temperature, a
wide variety of surface patterns may be observed: from
a single microprotrusion on the surface of a regularly
faceted crystal to many microprotrusions randomly
arranged on the irregular “pitted” surface [1, 5]. The
1063-7842/03/4809- $24.00 © 1199
shape of the tip is very difficult to stabilize. As a rule, a
number of dynamic processes related to crystal growth
and dissolution are observed on the surface, which
show up as the appearance and disappearance of spots
in field-emission images.

Thermal–field processes and the occurrence of dif-
ferent surface features were studied experimentally for
several refractory metals and alloys in a wide range of
fields and temperatures. A desorption field-emission
microscope was used as the main tool to observe high-
temperature field evaporation [2, 5–7].

Nevertheless, several fundamental issues still
remain unsolved. Namely, which process governs the
number of microprotrusions on the top of the tip? Are
these protrusions dynamically stable or basically equi-
librium (or near-equilibrium)? What are the rules the
motion of the microprotrusions on the surface and,
accordingly, of emission spots in the images obeys?
These issues are covered in this study.

TYPE AND NUMBER OF THERMAL–FIELD 
MICROPROTRUSIONS

Microprotrusions are relatively stable on most of the
tip surface. They “twinkle” (fluctuate) but are observed
over a long period of time. In general, this seems to be
surprising, since so-called steady-state microprotru-
2003 MAIK “Nauka/Interperiodica”
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sions (i.e., those provided by the balance between field
evaporation and field supply) must not apparently be
very stable.

Figure 1 shows a segment of the P–K diagram,
where P is the pressure and K is the tip curvature, which
was comprehensively analyzed in [5]. The diagonal
straight line of surface tension force pressure Pν(K) =
νK (ν is the surface tension coefficient) divides the dia-
gram into two parts. In the upper left part, the electric
field pressure PF = F2/8π exceeds Pν and the field
growth (indicated by the arrows in Fig. 1) causes the tip
to sharpen. In the lower right part, PF < Pν and the nat-
ural trend is blunting.

Figure 1 presents the PF(K) curves for three values
of the voltage U. The line PF1(K) for voltage U1 crosses
the diagonal boundary line Pν(K) four times at points of
equilibrium, only two of which (points of type A, see
below) correspond to stable equilibrium. These are A1,
which corresponds to the shape of the faceted recon-
structed tip, and , which corresponds to a micropro-
trusion on a vertex of a polyhedron. The curve PF2(K)
for a voltage U2 lower than U1 has only two points of
intersection with the line Pν(K) and one point of stable
equilibrium, A2, in the case of the reconstructed shape.
The curve PF3(K) (U3 > U1) does not cross the demarca-
tion line at all. The only stable state in this case is asso-
ciated with the point E3 on the line Pev, where the diffu-
sion and field evaporation fluxes compensate for each
other. The undulatory of the curves PF(K) is the super-
position of two parabolas (for details, see [5]). All the
curves in Fig. 1 correspond to a certain constant tem-
perature T. Note that the surface tension coefficient ν
and, accordingly, the values of Pν and Pev are tempera-
ture dependent.

A1'

Fig. 1. Negative field pressure PF at the emitter top vs. the
surface curvature K. The curves are drawn for three values
of the voltage U, the straight line depicts the surface tension
force pressure Pγ(K) = γK, and the line Pev reflects field
evaporation that balances field-induced growth.
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As follows from Fig. 1, a high field F (and, hence,
high PF) causes field evaporation, which compensates
for the atomic flux toward the tip along the line Pev at
stationary E points. The fluctuations of the field F
(which may be caused by the natural instability of the
voltage U) displace (in terms of Fig. 1) the microprotru-
sion to the nearest curve PF. In this case, random
increases in F somewhat blunt the tip; nevertheless, the
microprotrusion remains stationary. However, random
fluctuation decreases in F sharpen the microprotrusion,
displacing the point E to the right. A series of such
decreases in F may lower the point in the P–K diagram
below the line Pν. Then the tip shape will rapidly and
irreversibly change: the tip will become blunted, and a
sharp microprotrusion will turn into the basic recon-
structed form. Such an upset is described by motion
along the curve P2(K) approximately from the point 
to the point A2 of stable equilibrium. For this reason,
microprotrusions corresponding to the points E cannot
be long-lived. At the same time, they are expected to
provide the highest ion current densities during high-
temperature field evaporation.

Numerous relatively stable microprotrusions
observed under a desorption field microscope are prob-
ably not stationary but near-equilibrium. Equilibrium
microprotrusions (corresponding to the points A') may
not evaporate the material. However, depending on the
temperature and material of the tip, the field F may be
large enough to trigger field evaporation at the point A'
(or even at the point A). In this situation, the balance
between atom fluxes toward and from the top of the tip
(the latter is due to surface diffusion in the field) cer-
tainly breaks. The field evaporation flux adds up to the
backward flux caused by Pν. Accordingly, the tip gets
blunted. In the meantime, the difference (PF – Pν),
which governs the atom flux to the top, will increase
and the flux of field evaporation will decrease with
decreasing F. Such a tendency will persist until the
atom flux to the top due to the field becomes equal to
the sum of the backward fluxes blunting the protrusion:
the flux due to Pν and that associated with field evapo-
ration. A new stability point will be situated in the curve
PF somewhat to the left from the point A' (or A) and will
correspond to a stable, though weak, flux of field evap-
oration with the emitter shape retained (self-sustained).
It is this situation that we characterize as corresponding
to a near-equilibrium microprotrusion (point A'*) or a
near-equilibrium top of the tip (point A*). In this case,
the fluctuations of the voltage (field F) do not result in
an avalanchelike decay of the microprotrusion. The
vortex curvature of the microprotrusion (as for point A)
follows the variation of F: grows with increasing F and
decreases when the field decreases. When the emitter
shape fluctuates (i.e., K varies), the surface geometry
returns to point A'* or A*, which is typical of points A
and A' without evaporation.

B2'
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It appears that there is a threshold field F' of forma-
tion of thermal–field protrusions that depends on the
material and temperature of the emitter [8]. This thresh-
old also depends on the applied voltage and the tip
shape and can be achieved at one point or in a small
number of points on the surface. In the latter case, we
will observe a small number of microprotrusions. If F'
is reached at many sites, a great number of microprotru-
sions and outgrowths will form and the surface will be
highly irregular. Obviously, thermal–field microprotru-
sions will initially arise on the surface of the recon-
structed tip at edges and vertices formed by the inter-
section of crystal faces. If surface areas with the highest
K evaporate ions, the microprotrusions will be either
near-equilibrium (point A'*) or stationary (point E).
Their character will depend on the position of the curve
PF(K) relative to the line Pν and on the position of point

 corresponding to F ' on curve PF(K). When moving

along curve PF(K) to the right from point ( , K '), the
representation point corresponding to the growing
emitter arrives at either point A'* (e.g., on curve PF1) or
(if point A is absent) directly at point E (as in curve PF3).

MACROOUTGROWTHS AND THE DYNAMICS 
OF THEIR GROWTH AND DISSOLUTION

If the temperature and field are high enough, mac-
rooutgrowths grow on large close-packed faces [1].
Their transverse sizes are comparable to the size of the
face and depend on the curvature of the tip base, reach-
ing 1000 Å. These macrooutgrowths look like truncated
cones or pyramids. Their height has not yet been reli-
ably established. The estimation of this value is one of
the goals of this study. As was noted in [6, 9], the
growth of macrooutgrowths corresponds to the slow
stage of formation of a bright ring from spots due to
microprotrusions, which borders the top of the tip.

In [6, 7], the fast collapse of the rings upon high-
temperature field evaporation was observed. At this
stage, outgrowths narrow in an avalanchelike manner.
Under a desorption field-emission microscope, the
rings were observed for evaporating ions of Ir, Pt, and
others [6, 7, 10]. The (dotted) rings consist of individual
spots corresponding to thermal–field microprotrusions
(Fig. 2) and fringe close-packed faces of the tip base.
For Ir and Pt, these are {111} and {100} faces.

When localized at the edge of a close-packed face
fluctuating (arising and disappearing) microprotrusions
set conditions for the layer growth of this face, i.e.,
serve as new-layer nuclei [11]. Apparently, a limited
number of microprotrusions around a close-packed
facet cannot provide its rapid growth. When the number
of microprotrusions becomes sufficiently large (in the
image, they entirely fringe the face, forming a dotted
ring), oriented stable layer growth takes place. As long
as the height of a macrooutgrowth is one or two mono-
layers, the field near the exterior angle at the base of the

PF'

PF'
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(a)

(b)

(c)

Fig. 2. Different stages of the high-temperature field evapo-
ration of iridium single crystal with many microprotrusions
[6]. U = 9.9 kV, T = 1340 K. Microprotrusions correspond-
ing to individual spots are imaged in a field desorption
microscope by means of Ir ions fluxes from their surface.
During the observation, the microprotrusions (spots) twin-
kle and move. (a) Spots start to form a ring around {111}
faces (on the right and at the bottom), (b) the ring on a
{111} face on the right has been formed and is ready to col-
lapse, (c) the ring disappeared (the stage after the collapse).
Rings formed on the top and bottom {111} faces are clearly
seen.
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cone (where the surface curvature is negative), while
starting to drop, remains high enough to pull atoms in
the growth region. As the growth continues, the field at
the exterior angle continues to drop and eventually
reaches the level where the atom flux toward the top is
limited because of the reduction of the chemical poten-
tial gradient [12]. It appears that the ring “calms down”
for a time from tens of seconds to several minutes just
in this situation [6]. At this stage, the field at the top of
the cone is enhanced and favors intense field evapora-
tion. Under these conditions, the material flux for fur-
ther growth is provided mainly by atoms from the lat-
eral surface of the cone. As a result, the transverse size
of the cone and the diameter of its base shrink. The field
around the top of the tip increases, causing the intensi-
fication of the evaporation, a further decrease in the
cone diameter, and, accordingly, an increase in the field
at the upper edge. Eventually, the avalanche process of
macrooutgrowth evaporation develops, showing up as
ring collapse in the image.

This physical picture of collapse of rings consisting
of microprotrusions was presented in [9]. For clarity,
the cones of microprotrusions in [9] were depicted high
with steep slopes. Note that no quantitative analysis of
the model proposed was suggested.

CALCULATION OF THE FIELD DISTRIBUTION 
OVER THE TIP SURFACE

In order to refine the above qualitative picture, we
numerically calculated the electric field distribution
over the tip surface with a macrooutgrowth. In the cal-
culations, the outgrowth was approximated by a trun-
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Fig. 3. Field distribution over the outgrowth surface.
cated cone. Since the radius of surface curvature of the
tip bases in experiments [6, 7] was about 1 µm, we
assumed this surface to be planar. The field was studied
as a function of two parameters: the base angle α of the
macrooutgrowth and the ratio R/H, where R is the
radius of the upper base of the outgrowth and H is its
height.

The Laplace equation for the potential in the inter-
electrode space was solved by the iterative finite-differ-
ence method on a nonuniform mesh using successive
overrelaxation. To calculate the electric field distribu-
tion over the macrooutgrowth surface and the remain-
ing tip surface, we approximated the potential values by
a two-dimensional cubic spline, since the direct appli-
cation of the finite-difference method to calculating the
potential gradient does not provide the smoothness
required. It was also assumed that angles on the verti-
cal-plane section of the cone are not rounded. This
means that the actual radii of curvature of the edges are
smaller than the characteristic size of the mesh. This is
the case if the edges and vertices of the macroout-
growth are atomically (or nearly atomically) sharp.

Obviously, there are two extreme lines: the edge of
the upper surface of the macrooutgrowth, where the
field is maximal (Fmax), and the boundary of its base,
where the field is minimum (Fmin). Figure 3 shows the
distribution of the ratio F/F0 over the surface, where F0
is the field away from the macrooutgrowth. The calcu-
lations show that the field contrast δ = Fmax/Fmin
depends strongly on the base angle α of the cone
(Fig. 4). The ratio δ is practically independent of the
ratio of the height H to the transverse size of the cone,
e.g., to the radius of the upper base R. This statement is
valid for low outgrowths (R @ H). However, for not too
small angles α (α > 5°), δ starts to increase rapidly as R
decreases to values on the order of H or below (Fig. 5).
Such behavior strongly supports the avalanche mecha-
nism of ring collapse discovered in [6].

However, reasons why the growth of the macropro-
trusion is suppressed and even ceases before the ring
collapses deserve special consideration. According to
[12], the flux of atoms diffusing over the surface
is proportional to the chemical potential gradient ∇µ  =
∇ (γK – F2/8π) and is directed opposite to the gradient,
i.e., toward the region where the field F increases and
the surface curvature K decreases. When approaching
the bottom of the outgrowth, the field decreases (Fig. 3)
and the related component (∇µ )1 of the gradient µ
retards the flux toward the outgrowth. However, it
should be taken into account that the area around the
outgrowth base (which is assumed to be flat in our cal-
culations) is actually a part of the tip base, which has a
noticeable positive curvature. Near the base, the posi-
tive curvature changes to negative curvature (initially
the upper edge of the tip has zero curvature). Such a
geometry and the related electric field distribution
defines a certain initial value of (∇µ )0. When (∇µ )1 at
the point of minimum field equals (∇µ )0, the atomic
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
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flux from the tip surface toward the lateral surface of
the outgrowth stops. However, since the field Fmax and
high temperature stimulate intense field evaporation
from the upper edge of the outgrowth, the process will
involve the material of the lateral surface. As a result,
the transverse size of the outgrowth decreases and the
ring collapses.

The results of the field calculations suggest that the
field contrast δ exceeds two even if α and ratio H/R are
not very high. At the same time, it appears that δ ≈ 2
would apparently suffice for the experimental observa-
tion of such effects as the suppression of the diffusion
flux from the tip base (showing up as the slow growth
of the protrusion and ring stabilization) or a drastic
enhancement (initiation) of field evaporation, since the
rates of diffusion and evaporation depend exponentially
on the field F. The dependences of Fmax and Fmin on the
outgrowth base angle α are presented in Fig. 4.

From this figure, it follows that the lateral slopes of
forming macrooutgrowths must be smooth (α is no
more than 10°–15°, Fig. 4) and their heights must be
small (several atomic layers), since Fmax increases with
height H (Fig. 5), enhancing material evaporation. This
refers to outgrowths for which ring collapse is
observed.

The experimental data [6, 7] support this conclu-
sion: in field-emission images, microprotrusions in the
ring before its collapse are similar to many others out-
side the ring. If, for example, α ≈ 60°, the values of δ
are so large that the growth of protrusions may be sup-
pressed from the very beginning. Quantitatively, this

0.5
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1.5
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2.5

3.0
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R/H = 2 Fmax/F0

Fmin/F0

F/F0

Fig. 4. Field intensity at the upper edge and near the base of
the outgrowth as a function of the base angle. F0 is the field
on the surface away from the macrooutgrowth.
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conclusion disagrees with the scheme of the process
presented in [9] but supports the underlying mecha-
nism.

When observed in the field-ion regime [1], the out-
growths do have a smooth shape when initially many
microprotrusions are present on the surface. If the out-
growths were high, the microprotrusions (grouped into
rings) would be observed only along the circumference
of the outgrowth. However, during the avalanche col-
lapse of the rings, the emission pattern obtained with Ir
and Pt ions [6, 7] was considerably brighter than
expected. This points to a noticeably enhanced evapo-
ration rate and a high ion-current density, which sug-
gests the evaporation of stationary microprotrusions
(point E in Fig. 1). The ratio of the fields in the upper
and bottom angles (up to 100) for a high protrusion
would be considerably higher than that at which the
development of macrooutgrowths switches to its
intense evaporation, i.e., to the stage of ring collapse.

CONCLUSIONS

(1) The number of thermal–field microprotrusions
depends mainly on the surface condition (irregularity).
The surface condition is specified by the history of ther-
mal–field treatment, instantaneous values of tempera-
ture and field, and the emitter material.

(2) Thermal–field microprotrusions, which are usu-
ally observed in situ in the desorption regime, are most
probably near-equilibrium, rather than stationary, fea-
tures.
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Fig. 5. Field intensity at the upper edge of the outgrowth as
a function of the base-to-height ratio of the outgrowth. F0 is
the field on the surface away from the outgrowth.
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(3) The collapse kinetics of rings made up of micro-
protrusions growing around the upper face of the mac-
rooutgrowth consists in suppressing the atomic flux as
the outgrowth develops and, accordingly, reducing the
field near its base.

(4) The calculations show that the collapse of the
rings during high-temperature field evaporation corre-
lates with the dissolution of relatively low outgrowths
(several atomic layers) with smooth slopes (10°–15°).
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Abstract—Two existing opinions about the current passing through a virtual cathode in a closed equipotential
cavity are considered: (i) the current is always smaller than half the limiting current (as follows from the steady-
state consideration) and (ii) the current oscillates in time about the mean value that is exactly equal to the lim-
iting current (as follows from the non-steady-state self-consistent simulation by the coarse particle method).
The history of this issue is described. The invalidity of the former opinion is shown. © 2003 MAIK
“Nauka/Interperiodica”.
Electron beams with a virtual cathode (VC) are find-
ing increasing application in many fields of technology,
such as the generation of bremsstrahlung and micro-
wave radiation, the collective acceleration of electrons
and ions, high-current switches, etc. A review of the
state of the art in the development of VC devices can be
found in [1, 2].

An important issue concerned with VC device oper-
ation is the value of the current Ivc passing through the
VC. The problem is stated as follows. Let a monoener-
getic magnetized rectilinear electron beam with a time-
constant injection current Iinj enter into a closed equipo-
tential cavity of arbitrary shape and let the injection
current exceed the limiting current Ilim (so that a VC is
formed). The goal is to find the value of the current
passing through the VC.

There are two opinions about the value of this cur-
rent. We will try to elucidate which of them is the cor-
rect one.

The former opinion follows from the analysis of the
steady states of the electron beam in the cavity. It shows
that, when intense electron beams are injected into
equipotential cavities of different configurations, the
nonlinearity due to the field produced by the self-space
charge of the beam causes an intriguing effect: the
beam may take two states with its parameters remain-
ing the same (state hysteresis). One of them (steady
state) corresponds to the case where the entire beam
crosses the cavity; the other, to the case where some of
the electrons reflect from a certain section. Such hyster-
etic behavior has been known since 1923 [3].

Under such conditions, many of the parameters that
characterize the beam’s state exhibit a two-valued
dependence on the beam current [4–7] (in a certain
range of the current). This phenomenon may be used
for generating high-power nanosecond current pulses
[8, 9], as well as for the collective acceleration of posi-
tive ions [10, 11]. In addition, the hysteresis phenome-
1063-7842/03/4809- $24.00 © 21205
non may be applied to advantage for generating high-
power electromagnetic oscillations of relaxation type
[12, 13].

The stationary analysis of the problem for a cavity
in the form of a plane gap in the nonrelativistic case
shows that, when the injection current Iinj varies, the
current Ivc having passed through the virtual cathode
also exhibits hysteresis (Fig. 1). Its descending branch 2
corresponding to the VC regime is described by the
dependence

(1)

Such a notion of the behavior of Ivc is generally
accepted and is common in the original scientific and
technical papers [6, 14, 15], monographs [16–19], text-
books [4, 20, 21], etc.

Ivc

I lim
-------

I inj

I lim
-------=

× 1 1 1
2 I inj/I lim( )
------------------------–

1 1 8 I inj/I lim( )++

8 I inj/I lim( )2
-----------------------------------------------––

 
 
 

.

Ilim Iinj

Ivc

1

2

Fig. 1. Hysteretic dependence of the passing current Ivc on
the injection current Iinj: (1) passage of all the beam’s elec-
trons and (2) the VC regime.
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The plot in Fig. 1 is treated as follows. As the
injected current Iinj increases slowly, so does the current
Ivc (since Ivc = Iinj) according to upper branch 1. When
Iinj reaches the limiting value Ilim, the current drops
stepwise to a value smaller than Ilim/2 following
descending branch 2. From this point on, a VC forms in
the beam and, as the current Iinj rises further, the passing
current tends to Ilim/8. When the current Iinj decreases,
Ivc increases along branch 2. Thus, it is believed that

(2)

Strict inequality (2) is central to the first opinion
about the current passed through a VC. Note that, in
terms of the steady-state consideration, the behavior of
a relativistic electron beam is qualitatively similar;
however, exact characteristic values cannot be found in
this case. The behavior of electron beams in equipoten-
tial cavities of another shape has also been found to be
nearly the same (for example, the behavior of a thin-
walled tubular beam in a cylindrical tube under longitu-
dinal coaxial injection [22–24]).

Yet numerical simulation by the coarse particle
method yields another result: the current through a VC
oscillates in time about Ilim, so that we can write

(3)

with a high accuracy (within 2%).
In the simulation, we used the 2.5-dimensional ver-

sion of the particle-in-cell Karat code [25], which
allows for the self-consistent solution of the Maxwell
equation on a mesh and relativistic equations of motion
of particles. The code was repeatedly employed to
advantage in solving similar problems by researchers
throughout the world. Figure 2 shows the simulated

Ivc I lim/8, I lim/2( ) I lim.<∈

Ivc〈 〉 I lim=

0

20

VC

Iinj

Ilim

Ivc × 104, A

–1
4 t, ns

Fig. 2. Calculated waveform of the passing current Ivc [26].
Horizontal arrows indicate the levels of Iinj and Ilim; the ver-
tical arrow points to the instant of VC occurrence.
waveform of the passing current [26], which illustrates
(3). The early portion of the waveform corresponds to
those values of Iinj when a VC has not formed yet, while
the remaining part of the waveform, after the VC has
formed, shows intense oscillations of Ivc about the mean
value equal to Ilim.

It turned out that the same result was also obtained
in works employing alternative codes based on the
coarse particle method. For example, it was reported
[27] that Ivc and Ilim for a beam with a VC differ by no
more than 12% (the originally developed code was
used). In [28], with the well-known particle-in-cell
Magic code [29], it was demonstrated that equality (3)
holds with an accuracy of as high as 1%. The authors of
[29] also discovered strong oscillations of Ivc. In [30]
(original code), the mean passing current exceeded the
critical value by only 0.75%. In [31], it was found that
〈Ivc 〉  = 0.96Ilim or 0.975Ilim depending on the problem
parameters selected (also the original code). Other
works supporting the validity of (3) are also known.

In view of the high confidence of equality (3), we
used it to develop a simple model of induced radiation
in a vircator [32] and also for further testing the Karat
code [26].

Equality (3) forms the basis for the second opinion
about the value of the current passing through a VC.

Thus, we have presented two mutually exclusive
opinions concerning the value and behavior of Ivc,
which are based on (2) and (3). Both have many advo-
cates. The point of the value of the passing current is of
crucial importance for microwave devices, as well as
for the collective acceleration of electrons and ions, and
should be resolved as soon as possible. It has become
the subject of hot discussion [33, 34]. The authors of
the present work hold to the second opinion.

To prove the invalidity of inequality (2), we will turn
to [35], where this inequality was derived for the first
time from the nonstationary Poisson equation for elec-
trical potential. At the point where a stationary VC has
been formed, the electrical potential has a minimum,
the electron velocity equals zero, and the beam is
divided into transmitted and reflected parts. In other
words, the gap is conventionally partitioned into two
diodes: a double-flow diode before the VC and a
Chaild–Langmuir diode after the VC. The position of
the VC is thus defined by the balance of the currents in
these diodes, which is reflected in (1) and (2). In all the
papers listed above, the derivation drawn in [35] is
repeated.

However, the major difficulty associated with the
derivation of (2) was noted only in the original work
[35]. In subsequent papers, it was disregarded. The
question arises as to why and how some of the electrons
reflect from the potential barrier, while others pass
through it. Recall that the beam injected is monochro-
matic. Lukoshkov [35] notes that “the assumption that
there is a minor, e.g., thermal, electron velocity spread
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
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suffices to explain the mechanism of separating the
electrons into transmitting and reflecting ones.” How-
ever, this stipulation comes into conflict with the state-
ment of the problem. At the same time, it is clear that
the ratio of the transmitted and reflected electrons must
depend primarily on the electron velocity distribution
form. Thus, an uncertainty in the transmitted-to-
reflected electron ratio (more strictly, the impossibility
of its correct explanation) is the fundamental disadvan-
tage of the steady-state model.

Numerical nonstationary simulation by the coarse
particle method, which cannot be performed at the time
[35] appeared, immediately revealed that a VC is a basi-
cally nonstationary object: its potential and spatial
position oscillate in time and the oscillations are not
small [36]. It turned out that a VC acts as a valve, trans-
mitting all electrons of a monoenergetic beam in one
phases of the oscillations and reflecting them back in
others. Such a beam splitting mechanism has been
called phase separation [37]. Phase separation is
responsible for radiation instability on a vircator [32].
Advanced facilities of computational experiment allow
one to dynamically visualize the process of phase sep-
aration.

To conclude, we note that the various types of VCs
were first classified in review [1]. According to this
classification, the process considered by us has to do
with the dynamics of an oscillating VC, which has a
threshold in current and may arise in a monochromatic
beam. Lukoshkov [35] tried to replace certain signs of
an oscillating VC by those of a steady-state thermal VC,
which has no current threshold, cannot exist in a
monoenergetic beam, and demonstrates the radically
different kinetics.

Thus, relationships (2) is invalid and the conclusions
drawn in [33] are in error. When designing devices with
a VC, one must be guided by relationship (3), which has
been proved many times in self-consistent calculations
and in experiments [38].
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Abstract—It is shown that the necessary condition for the correct statement of the inverse trajectory problem
in measuring the linear velocity vector of a material point in the gravitational field is the nondegeneracy of the
matrix, i.e., the Hessian of the field potential function. © 2003 MAIK “Nauka/Interperiodica”.
It is known that knowledge of the velocity vector is
of key importance for finding a trajectory.

Let direct measurements (obeying the basic physical
principles [1]) of the absolute linear velocity (V) vector
of a unit-mass material point be feasible in an orthogo-
nal inertial frame of reference 0ξ = 0ξ1ξ2ξ3 with the ori-
gin at the point 0. Then, one can find the radius vector
R of the point in this frame of reference at any time
instant t ≥ t0 by directly integrating the equation (differ-
ential relation)

(1)

provided that the initial position of the point, R(t0) = R0,
is known. It is, however, obvious that the entropy of
such a solution will increase with time because of inev-
itable perturbations (errors in determining the initial
vector R0, time, and velocity).

Let us state the problem of finding the vector R alter-
natively. We will consider the measurements of V as
indirect measurements carrying information on R. In
essence, this means that we consider the problem
inverse to (1), bearing in mind the same purpose: to find
R. Such a statement requires additional conditions to be
imposed on V that do not contradict the established
physical concepts of the nature od mechanical motion.

In terms of classical mechanics [2], these conditions
are generally well known. In the form of cause–effect
relation, they are given by Newton’s second law

(2)

where a is the specific force acting on the point. We
assume that a is a vector function continuous in R; that
is, a = a(R).

Let us write (1) and (2) jointly in the small:

(3)

where a' = ∂a/∂R.
Set (3) is remarkable in that it is totally consistent

with the approach used when the problem of inverse

V Ṙ=

V̇ a,=

δV δṘ, δV̇ a'δR,= =
1063-7842/03/4809- $24.00 © 21209
problem solvability is treated as a problem of observ-
ability in terms of the general notions of a system [3].

In fact, as follows from the above, the matrix 

for the vector (δ , δRT)T in set (3) (E is the unity
matrix and T means the transposition of the vectors) is
the observability matrix. Hence, the matrix a' must be
nonsingular almost everywhere in the solution range.

The physical reality is such that the force a(R) may
be represented as

where U is the gravitational field potential (the function
continuous in R) and f is the vector of specific nongrav-
itational forces (hereafter, we put f = 0, bearing in mind
that the vector f can be measured directly in a number
of practical cases, for example, with a spatial newton-
meter [2] and thus can be included in a solution).

In view of the above, the matrix a' is identical to the
Hessian of the gravitation potential function (that is,
a' = U"). If the real function U(R) is continuous in R, the
Hessian is a real symmetric function.

Let the field be central; i.e., U = µ/|R|, where µ is the
gravitational parameter of the center. Such a model is
common in describing the exterior field of terrestrial
gravitation (because the central component prevails in
the expansion of the terrestrial potential). Then, the
matrix

is of full rank (with the singular numbers in the ratio of
2 : 1 : 1) and the problem considered is basically solv-
able.

Consider relative measurements. Let there be a Car-
tesian system ox = ox1x2x3 rotating with a given angular

E O

O a' 
 
 

Ṙ
T

a R( ) ∂U/∂R f ,+=

U''
µ
R 3

-------- E
3RRT

R 2
-------------– 

 –=
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velocity ω = (ω1, ω2, ω3)T and let us measure the pro-
jections of the relative linear velocity vector v  =  of a
material point onto the Cartesian axes (r is the radius
vector of the material point in the projections onto the
axes of the trihedron ox). Then, instead of set (3) in the
small, we have the set

(4)

where

As follows from (4), the statement of the problem is
correct if the matrix  + q2 + U'' is nonsingular almost
everywhere in the solution range.

Assuming again that the gravitational field is central
and f = 0, we consider the special case of the rotation of
the trihedron ox where ω = const, ω1 = 0, and the unit
vectors of the ox3 axis and radius vector r coincide.
Then,  = 0, the singular numbers of the Hessian U"
relate as 2 : 1 : 1, and the matrix q2 + U'' is generally

ṙ

δv δṙ,=

δv̇ 2qδṙ q̇ q2 U''+ +( )δr,+=

U'' ∂2U/∂r2; q
0 ω3 ω2–

ω3– 0 ω1

ω2 ω1– 0 
 
 
 
 

.= =

q̇

q̇

nonsingular unless |ω| = ν, |ω|2 = ν2 + 3 /2, and ν =
(µ/|r|3)1/2.

Generalizing these two cases, absolute and relative
velocity measurements, we may conclude that the deci-
sive (and, more importantly, physical) condition that
ensures the correct statement of the problem and in a
certain sense stabilizes its solution is the motion of the
point under the action of potential forces with the non-
degenerate Hessian. Finally, it is worth noting by way
of example that it is this natural condition that provides
the asymptotically stable correction of the dynamic
operating regime of inertial navigation systems using
Doppler-shift-based velocity measurements [4].
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Abstract—Ball lightning is modeled by the bulk of humid air heated to temperatures of 600–650 K and con-
taining a multitude of charged drops and microbubbles of size 10–5 cm or less, as well as water vapor heated to
a near-critical temperature. The condensation of the vapor in the microbubbles, followed by the cooling of
resulting droplets, generates energy spent on the thermal radiation of ball lightning. The radiation of light and
radio waves is explained by the motion of ions and electrons in the electric field of charged bubbles and droplets
and by the thermal rotational motion of charged droplets. As a result of coagulation, the droplets overheat and
tend to collapse. An external electric field, supersaturated water vapor condensation, and a number of other fac-
tors may contribute to the ball lightning explosion energy. © 2003 MAIK “Nauka/Interperiodica”.
Ball lightning remains an unresolved phenomenon
of nature. Many hypotheses for the origin of ball light-
ning have been put forward [1–8], such as plasmoids
filled with a high-temperature plasma that is confined
by the self-magnetic field and various chemical propos-
als. For example, D. Arago argued that ball lightning
consists of nitrogen and ozone oxides impregnated by
the “lightning matter.” After J. Barry, ball lightning is a
hydrocarbon compound that forms in an electric dis-
charge and somehow concentrates in a small volume.
There exist hypotheses according to which ball light-
ning comprises charged particles (Frenkel and Hill):
dust or unlike ion clouds separated from each other.
Podmoshenskii believes that ball lightning forms from
filamentary particles. In an attempt to find the sources
of ball lightning energy, exotically minded authors
delve into intranuclear processes or even deeper. In
1956, Arabadzhi made a proposal that thunderous elec-
tric fields entrap heavy particles, e.g., cosmic rays, into
ball lightning, causing a self-sustained nuclear reaction.
Note, however, that an elevated radiation level due to
the ball lightning effect has not been observed. Vatai [2]
believes that the phenomenon of ball lightning proves
the existence of new elementary objects: leptonucleons
and their clusters. Korshunov [3] advocates that ball
lightning appears when a Hooft–Polyakov monopole,
which is an efficient catalyst of nucleon decay reac-
tions, passes through the Earth’s atmosphere.

Today, the aerogel or cluster model of ball lightning,
which has been developed since the late 1970s by
Smirnov and his colleagues at the Institute of Thermal
Physics (Novosibirsk), is the most popular. According
to [4, 5], the active core of ball lightning is a charged
structure comprising submicron filaments, that is, a
porous fractal cluster with a high chemical capacity.
The framework of this structure is almost entirely com-
1063-7842/03/4809- $24.00 © 21211
prised of empty voids. Energy evolution from a chemi-
cally charged fractal cluster may be described in terms
of multistep combustion. As an example of such a pro-
cess and as a ball lightning model, Smirnov suggests
the multistep combustion of a fractal cluster of charcoal
dust in ozone, which is absorbed by the cluster itself. In
this model, the color and glow of ball lightning are pro-
duced, as in pyrotechnology, with a composition con-
taining glowing components. The Smirnov model ade-
quately explains various properties of ball lightning.
K. Korum and D. Korum created ball lightning in free
air [6]. Fireballs observed in their experiments looked
like those predicted from the Smirnov fractal model.

However, the properties of ball lightnings discov-
ered in many experiments are so varied and contradic-
tory that a unique theory of lightning origin and behav-
ior can hardly be constructed. In our opinion, several
types of ball lightnings are present in nature, each
deserving special theoretical consideration. Therefore,
various ball lightning models may be to a limited extent
adequate. Yet none of more or less realistic models
where ball lightning is viewed as an object of volume
no more than one cubic meter and density roughly
equal to that of air may explain the source of giant
energy [4, 5, 7, 8] liberated upon ball lightning explo-
sion. Therefore, together with theoretical models aimed
at elucidating the nature of this intriguing phenomenon
as such, it is necessary to invoke the models of relevant
processes that could help us tackle the question of how
“light” and, hence, low-power fireballs may liberate
such high energy upon explosion [7, 8].

According to Smirnov [4, 5] and Stakhanov [7], a
ball lightning is a red, yellow, white, blue, or much
more rarely green glowing spherical object of diameter
from 1 cm to 1 m. The mean lifetime is 9 s, and the
003 MAIK “Nauka/Interperiodica”



 

1212

        

TARNOVSKIŒ

   
mean velocity is 9 m/s. About 51% of ball lightnings
come to an end by explosion (sometimes intense and
destructive); others die out or decay into parts. The
mean energy of a ball lightning is 10 kJ; sometimes, it
exceeds 1000 kJ. The thermal radiation is low, 100–
500 W, and corresponds to the radiation of a ball 20 to
30 cm in diameter at a temperature 600–650 K [7]. In
the optical range, the radiation power is several watts
and corresponds to temperatures in the range 2000–
10 000 K. This radiation is most likely to be nonstation-
ary [7, p. 151]. It seems that ball lightnings may emit
intense nonstationary radiation in the rf range. The
electromagnetic radiation associated with thunder-
storms and lightnings has a wide frequency spectrum,
at least from 10 to 1000 Hz. Note that the high-fre-
quency part of the radiation appears with a delay of
5 ms, i.e., after lightning has been observed [8, p. 215].

As follows from observations, ball lightning is sur-
prisingly stable during its life. Less than 1% of observ-
ers indicate a change in its dimensions or color. The
observations are different: a lightning may grow, and its
color may change from red to violet or vice versa. The
only correlation between the physical properties of ball
lightning, namely, that its lifetime varies in direct pro-
portion to its dimensions [5], can be explained in sim-
ple terms: a larger and brighter object is noticed earlier
and seen longer. It was long thought that ball lightnings,
like normal linear lightnings, appear during a thunder-
storm in the majority of cases. However, relatively new
Japanese data based on vast statistics (2060 observa-
tions) [5] testify that 89% of ball lightnings are
observed in fine weather and only 2.5% in a thunder-
storm.

Ball lightning has electrical properties and acts on
the human organism like electric current. It may cause
dumbness and paresis [5]. The death rate because of
ball lightning strokes is 0.5% [7]. The appearance of
ball lightning is frequently accompanied by a feeble
crack, hissing, or whistle. Sometimes, air smells of sul-
fur, ozone, or nitrogen oxides. The same smells are
sometimes felt under linear lightning discharges and
other electrical discharges. In most cases, however, no
characteristic signs indicating the presence of any spe-
cific ball lightning “material” differing in composition
from surrounding air are observed. Sometimes, a vapor
cloud or mist forms after ball lightning has exploded or
died out.

According to the Smirnov model, the energy accu-
mulated in ball lightning itself is comparable to that
given off by striking few matches (several kilojoules).
Such energy is too low to explain the destruction of
thick tree trunks and massive constructions, damage to
water-supply pipes, etc., observed under a stroke. The
explosion energy must be as high as several tens of
megajoules in these cases. To account for high-power
and super-high-power lightning explosions, one must
allow for the presence of specific mechanisms that
enhance energy evolution upon explosion, whereas
lightning triggers high-power external energy sources.
One of these sources is mentioned in [7]. When ball
lightning collapses, a conducting channel connecting
regions with a large potential drop across them forms,
causing a short circuit and releasing a high explosion
energy. Stakhanov writes [7]: “The energy accumulates
in charged conductors, and ball lightning serves merely
as a trigger releasing this energy. However, the possibil-
ity of thermal explosions due to the evolution of ball
lightning internal energy should not be excluded.”

Another mechanism increasing the energy evolution
upon ball lightning explosion is suggested in [9]. The
explosion of a low-power ball lightning in the space
containing supersaturated water vapor causes the
explosive, i.e., extremely fast, condensation of moisture
on many fragments, including ions from the former
lightning. This, in turn, results in a sharp drop in the
pressure in the explosion area with the subsequent
expansion of nearby humid air strata into this area. This
expansion again causes condensation, pressure drop,
and further expansion of air strata containing supersat-
urated water vapor. Thus, a specific chain reaction of
successive condensations and expansions of air super-
saturated by moisture is initiated. As a result, a cumula-
tive gas-dynamic wave convergent to the center arises.
Significant compression work is done by outer “dry”
strata of atmospheric air.

An additional energy is liberated because of the
moisture condensation. At the final stage, the conver-
gent wave causes a drastic rise in the pressure and tem-
perature in the central area (cumulative effect) and then
makes room for a divergent wave. The mechanism sug-
gested may explain intense explosions of ball light-
nings and also explosions in upper atmospheric strata
[10], including the “mystery of the 20th century”—the
explosion above the Podkamennaya Tunguska River in
June 1908, which ravaged taiga over an area of more
than 2000 km2 and left no signs of the source of its
energy [11]. A feature of a condensation explosion is
that it does not require any “explosive” that differs from
atmospheric air in composition. The idea that there
exist additional mechanisms increasing the explosion
energy of ball lightning, in particular, the condensation
explosion in the atmosphere due to the decay or explo-
sion of normal low-power ball lightning, does not con-
flict with any of the realistic ball-lightning models cur-
rently available. Conversely, it was noted [12] that the
idea of condensation explosion may explain not only
the phenomenon of ball lightning but also other atmo-
spheric phenomena. Note that the smell felt after the
explosion of ball lightning or after a linear lightning
discharge and other electrical discharges may be attrib-
uted to the formation of ozone and is certainly not asso-
ciated with any explosive.

In most cases, however, ball lightning does not
“smell” and does not leave any tangible traces behind it.
It appears that, along with ball lightnings including for-
eign (relative to atmospheric air) substances, there exist
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
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all-atmospheric ball lightnings, which consist of heated
air and steam, vapor bubbles, and charged water drops.
The bubbles and drops may be produced when an elec-
trical discharge is initiated in a humid area. In a number
of papers, it was ascertained that nonequilibrium ther-
mal processes may result in a much higher degree of
order than was believed earlier [13]. For example, when
a high current passes through a fine wire, causing the
explosion, explosion fragments are nearly equal in size
and have flat edges. Similar effects were observed upon
passing a current through liquids [14].

The size of rain drops ranges from 1 µm to several
micrometers; that of mist drops, from 0.1 to 1.0 µm
[15, p. 220]. The sedimentation rate of such drops is
less than 1 cm/h. Let us assume that the discharge of a
linear lightning (or any other electrical discharge) gen-
erates a vapor–air mixture at a temperature close to the
critical temperature Tc = 374.15°C and that this mixture
contains a large number of water droplets (or bubbles)
that are heated to this temperature and are smaller than
mist drops. The moisture content of clouds is usually no
more than 10 g/m3. However, we admit that water drop-
lets in ball lightning have densities, which are roughly
equal to, or somewhat greater than, the density of
heated humid air in order that, on average, the ball
lightning density not exceed the density of the environ-
mental air. Recall that, at near-critical temperatures, the
density of moisture-saturated air is less than half the
density of air at T = 20°C: the density of water and
steam at the critical temperature is ρc = 0.307 g/cm3.
According to our estimates, a medium-size ball light-
ning occupying a volume of about 10 dm3 contains
almost 10 g of water and steam, which may release an
energy of about 40 kJ upon cooling. Such a ball light-
ning may emit thermal radiation of power 1–2 kW for
10 s without changing its parameters. If the droplets are
sufficiently small, on the order of 10–6–10–7 cm across,
their surface energy may contribute significantly to the
ball lightning energy. The total surface energy of water,
118 mJ/m3, is temperature independent [15, p. 36] and
may be released as heat upon drop coagulation.

Consider a water bubble of radius r and density
0.45 g/cm3 at a temperature T ≥ 300°C that contains sat-
urated steam under a pressure p that is much higher
than the atmospheric pressure. The overpressure is bal-
anced by the surface tension of the water film:

(1)

In (1), the pressure and the surface tension coeffi-
cient α depend on temperature. With T = 300°C, α =
15 erg/cm, and p = 90 kg/cm2 = 108 dyn/cm2 [15,
p. 293]. Hence, r ~ 10–7 cm. With T = 200°C, r ≤ 10–5 cm.
Such water bubbles are temperature stable: as the tem-
perature declines, the surface tension coefficient α
grows. Accordingly, the pressure of the water film
increases and the equilibrium state recovers owing to
the compression force. And conversely, as the tempera-
ture spontaneously increases, the surface tension

p α /r.=
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declines, the steam expands, the temperature drops, and
the equilibrium state recovers. Therefore, heat evolu-
tion from such bubbles due to the condensation of the
steam inside is a stable and quasi-equilibrium process.
Eventually, the bubbles shrink and the inner pressure
and temperature increase.

This process lasts until the entire steam inside the
bubbles condenses completely. Then, the coagulation
of the resulting water drops, which are heated to a near-
critical temperature, and their cooling comes into play.
If the coagulation is fast, the water in the drops
becomes overheated and the drops tend to collapse.
When exploding, such ball lightning liberates a rela-
tively low energy. However, the explosion disperses
many fragments of the former ball lightning in the envi-
ronment, including droplets and microbubbles. This
process may initiate a secondary explosion of much
higher power, e.g., because of the fast condensation of
supersaturated water vapor in the environment, short-
circuit effect, etc. If the density of resulting hot water
drops is insufficient for the fast coagulation or the drops
bear large like charges, hindering the coagulation, they
slowly cool down, evaporate, or spread in the environ-
ment. Such ball lightning dies out noiselessly, some-
times decaying into fragments of various size.

Certainly, the formation of bubbles is not an obliga-
tory stage of the ball lightning’s existence. A high-
power electrical discharge may immediately produce
superheated or merely hot drops of any size that are
suspended in hot and humid air.

To adequately explain the electrical properties of a
ball lightning and shed light on the nature of emitted
electromagnetic radiation, one must admit that at least
some of the drops are charged. The radiation may be
emitted by ions bearing a charge of the same sign as the
drops. Having separated from a parent drop, the ion
comes into interaction with it and gain a kinetic energy
E = Ze2r–1, which corresponds to a temperature T ~
104 K with r ~ 10–7 cm and Z = 1. In subsequent colli-
sions, the ions will emit visible radiation under non-
equilibrium conditions. Coarser drops with a higher
charge for which the product Ze2r–1 is of the same order
of magnitude will also emit radiation in the visible
range. Drops for which Ze2r–1 is sufficiently large or
small will emit radiation in the UV or IR range, respec-
tively. Ions and electrons opposite in sign to the drop,
when approaching it, also will gain an energy sufficient
to emit radiation in the visible or invisible range of the
spectrum.

The fact that ball lightnings are colored green very
seldom, if at all, may be explained on a qualitative
basis. The point is that the color green corresponds to
the center of the visible range. Let us take into account
(or assume) that the effective emission spectrum of ball
lightning is rather wide and does not have a distinct
maximum at its center. Then, the radiation of ball light-
ning for which the color green lies at the center of the
emission spectrum will be perceived by an observer as
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white light. If the center of the spectrum is shifted away
toward the violet or red edge of the visible range, the
radiation will be appropriately colored. For both the
equilibrium and nonequilibrium radiation of ball light-
ning, the probability that the emission spectrum is suf-
ficiently narrow with green at the center is small. That
is why green ball lightnings are rare in occurrence.

The radio radiation of ball lightning may be related
to the motion of charged droplets. After the vapor inside
the microbubbles has condensed and thermal relaxation
has come to end, the energy per degree of freedom
(including rotational degree of freedom) of a droplet
will roughly equal kT. Such droplets will rotate with an
angular velocity ω such that

(2)

Putting M ~ r3 ≈ 10–21 g (M is the mass of a droplet)
and T ≈ 600 K, we find that the radiation has a fre-
quency ω ~ 1010 s–1, which corresponds to the centime-
ter range. Drops of size r ~ 10–5 cm will emit with a fre-
quency ω ~ 10–6 s–1, i.e., in the mid- and long-rf range.
What is the reason for a delay in the rf radiation from
ball lightning? At the initial time instant, lightning con-
sists mainly of water–vapor bubbles, which do not emit
in the rf range. After the condensation of the vapor con-
tained in the microbubbles, the resulting droplets also
radiate mostly in the optical, rather than in the radio-
frequency, range. Only charged coarse drops formed by
coagulation begin to emit in the rf range. The formation
of sufficiently large charged drops from microbubbles
takes some time. This reasoning explains, at least qual-
itatively, why the rf radiation lags behind by about
5 ms.

Consider the stability of ball lightning. For spherical
dispersed particles bearing a minor electrical charge,
the total energy vs. distance h dependence has a maxi-
mum and two minima (see figure) provided that their
radius exceeds the diffusion layer thickness; i.e., r ≥
10−7 cm [15, p. 281]. The first minimum corresponds to
particle (droplet) coagulation, whereas the other
reflects molecular attraction. For not very large particle
spacings, electrostatic repulsion prevents their
approach. The height U(h) of the maximum is a poten-
tial barrier that defines the coagulation probability. The

Mr2ω2 kT .∼

U
(h

)

h

Figure.
mutual attraction of widely spaced drops generates sur-
face forces at the boundary of ball lightning, causing its
stability. The surface tension at the boundary of light-
ning is obviously much lower than the surface tension
at the drop–air interface (at least by two orders of mag-
nitude). However, even a low surface tension (on the
order of 10–7 J/cm2) makes a ball lightning stable if its
density differs from that of environmental air by no
more than 1% [7, p. 119].

For a solitary charged drop to be stable, it is neces-
sary that its electrostatic energy be lower than the sur-
face energy of attraction; that is,

(3)

If a drop arises through the coagulation of several
droplets with equal volumes and charges, its charge
will be proportional to its volume: Z ~ r3. Conse-
quently, the electrostatic energy of the drop during
coagulation increases as r5, while its molecular surface
energy varies as r2. Therefore, as the size of charged
droplets grows, their coagulation breaks condition (3)
and the resulting drop becomes unstable. On the other
hand, a higher charge of the resulting drop prevents fur-
ther coagulation. Thus, the relatively stable state where
droplets have some intermediate sizes and charges
occurs. The situation where charged water droplets lose
their electrical charge is much more dangerous to the
existence of ball lightning. In this situation, the poten-
tial barrier disappears and slow coagulation changes to
fast coagulation [15] with the characteristic time θ =
η/2kTν0, where η is the viscosity of the medium and
ν0 is the number of particles per unit volume. For T =
600 K, the air viscosity is η = 3 × 10–4 g/(cm s). If par-
ticles have a size of 10–7 cm, a mass of 10–3 g per cubic
centimeter, and a density of 1, then we have ν0 ≅
1016 cm–3. Then, the coagulation half-time is θ = 10–8 s.
After a time τ, the number of particles per unit volume
will be

By the time τ = 10 s, the number of droplets will
decrease 109 times and their size will reach 10–4 cm.

These particles are optically active: they reflect and
refract light. If the number of such droplets in ball light-
ning is appreciable, the presence of external light
sources will cause typical optical effects. External light
reflected and refracted by droplets adds up to the glow
of the remaining charged droplets and is perceived as
the self-glow of ball lightning. The apparent glow of the
lightning will for some time remain bright and at the
same time nonuniform over the volume because of the
random motion of coarse drops relative to each other
and their coagulation. The glow varies with time and
appears iridescent. Mechanical processes attendant on
the existence of such a “water” lightning, the coagula-
tion of weakly charged droplets and the decay of

Z2e2r 1– 4πr2σ.<

ν
ν0

1 τ /θ+
-----------------.=
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coarser charged drops, may be responsible for the
acoustic effects observed, such as crack, hissing, or
whistle.

We have considered the case of extremely fine drop-
lets. However, ball lightning may incorporate drops of
various sizes. Charged droplets provide the long life-
time, stability, and glow of ball lightning. Coarser
drops, 10−4 cm or more in size, start fast coagulating at
a certain time instant, cutting the lifetime of the light-
ning. If the droplets had a chance to cool down by the
instant they coagulated to form coarse drops, the light-
ning will noiselessly die out or decay. If at least some
of the droplets had coarsen to a size r ≥ 10–4 cm via fast
coagulation before they cooled below the boiling point,
water in such large drops overheats and the drops
become dangerously explosive (i.e., tend to collapse).
As is known [15, p. 189], the overheat of a pure liquid
may be rather high for a short time.

Water drops heated to 200°C are certainly unstable.
The spontaneous boiling of one such drop will break it
into many fine fragments. Falling into neighboring
overheated drops, these fragments will initiate a chain
reaction of boilings and explosions of overheated
drops. Such is, in our opinion, a probable explosion
scenario for one possible type of ball lightning, namely,
ball lightning that leaves behind no signs of its appear-
ance and disappearance other than an additional
amount of moisture. Of course, this extra moisture in
the air cannot in itself attract researchers’ attention. Air
consists of many components: nitrogen, oxygen, argon,
etc. However, these components are present in fixed
proportions and any local change in their relative con-
centration cannot go unnoticed. As to moisture, its con-
centration in air may vary arbitrarily over wide limits;
therefore, a change in the moisture content does not
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
attract the attention of observers. That is why the
hypothesis about “all-water” ball lightning seems to be
promising and has a right to exist.
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Abstract—A shell model that describes the formation of molecular complexes around a C60 molecule upon the
solid-phase interaction of the powders is considered. From the absorption spectra, it follows that a reacting par-
ticle is a fullerene dimer. © 2003 MAIK “Nauka/Interperiodica”.
The insignificant asymmetry of C60 molecules enter-
ing into the composition of a number of complex com-
pounds produced by the mechanical interaction of pow-
ders suggests a fullerene-like structure of functional
molecular groups on the van der Waals surface of C60.
In C60–KHal complexes (Hal stands for halogen),
adsorption interaction between the components is
responsible for the vibrational spectra of C60. The frac-
tal coral-like pattern of crystallization from a saltwater–
C60–KHal solution [1] suggests that molecular com-
plexes (MCs) serve as seeds and represent core–shell
structures. The effect of a halogen entering into an MC
on the C60 symmetry and the reduction of this effect
when the MC is adsorbed in the volume of amorphized
KHal [2] or is dissolved in a polar solvent [1] means
that the formation of the second and subsequent coordi-
nation spheres decreases the potential gradient on the
surface of a carbon cell. In particular, the thermal sta-
bility of C60–KJ MCs and the formation of octahedral
crystals from them on pressing the powders are indica-
tive of a high degree of symmetry in these MCs and a
slight change in the lattice constant of KJ incorporated
into the shell cluster [3]. On the contrary, the decompo-
sition of C60–KCl(NaCl) MCs at 120–160°C testifies to
the amorphous state of the shell.

Additional information on the structure of C60–
KHal MCs can be extracted from the absorption spectra
of their solutions.

Figure 1 shows the absorption spectra of a KJ–C60
MC in a HCl solution. The spectra were recorded (A)
before and (B) after the irradiation of the solution in the
range 3.0–3.5 eV. For other alkali halides, the absorp-
tion spectra of associated MCs dissolved in HCl differ
insignificantly. For comparison, Fig. 1 shows the
absorption spectrum (curve C) of the C60–KCl MC dis-
solved in a nonpolar (hydrochloric) solvent. The table
lists the peak energies of the bands in the spectra of MC
solutions with various halogens, the shifts of the peaks
with respect to the reference values for the C60 spectra
in nonpolar solvents, and calculated values of the π
1063-7842/03/4809- $24.00 © 21216
band for unsolvated C60 [4, 5]. The UV band maxima
were measured accurate to 1.5–2.0 meV.

From the table it is seen that, in all cases (except for
the as-prepared C60–KCl solution), the band maxima
are shifted by the characteristic vibrational states of
C60. The pairs of bands at 3.475–3.95 and 5.34–
3.913 eV can be considered as the result of splitting the
π states of solvated C60 (the bands with the maxima at
3.712 and 3.626 eV that are shifted from the calculated
value 3.81 eV [4] by 776 and 1460 cm–1).

The split of surface plasmons is observed for
ultradisperse metal particles of ellipsoidal shape [6].
Similar high-energy components of the π band in the
spectrum of highly symmetric C60–H2TPP–C60 porphy-
rin–fullerene complexes [7] (TPP is tetraphenyl por-
phyrin) were explained by Coulomb interaction
between the polarized π states of C60 and central H+

ions in the porphyrin macrocycle. The dependence of
the shift of the π bands on the type of a halogen entering
into the MC composition (≈0.2 and 0.24 meV) leads us
to assume that Br0 and J0 located between two C60

5 4 3 eV

A

B

C

Fig. 1. Absorption spectra of the KJ–C60 molecular com-
plexes in the HCl solution (A) before and (B) after optical
irradiation; (C) refers to the C60–KCl MC in the nonpolar
solvent. 
003 MAIK “Nauka/Interperiodica”
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Table

Composition Band maxima, eV Shifts of the maxima, 
cm–1

KJ–C60 5.025 3.913 3.34 2.8 1460, 776, 496, 172

hν 4.592 – 3.4 – 1570, 272

KBr–C60 5.063 3.95 3.475 2.83 1460, 496

hν 4.625 – 3.415 – 1570, 172

KCl–C60 4.976 – 3.375 2.75 1570, 776, 1230

hν 5.04 – 3.435 – 1570, 172

KCl–C60 4.53 3.71 3.24 3.024 1570, 776, 172

Incomplete solubility

C60 4.82 3.71 3.435 3.045
atoms act as an h+ center. In such a model, the absence
of the high-energy component of the π band in the spec-
trum of a chlorine-shell MC dissolved in HCl may be
related to the relatively high electron affinity EaCl0 =
3.61 eV and/or to a different shell structure.

The low-energy bands are shifted with respect to the
characteristic band at 3.045 eV, which is associated
with the electron transition in a resonantly excited cen-
ter involved in a C60 dimer [4, 5]. The optical quenching
of the π band high-energy components and low-energy
bands means the decay of the dimeric MC. The batho-
chromic (long-wavelength) shift of the π–σ bands by
the vibrational states of C60 in the spectra of the C60–KJ
and C60–KBr MCs corresponds to the excitation of dou-
ble bonds in monomolecular C60 in the presence of the
ligand. The hypsochromic (short-wave) shift by
496 cm–1 in the spectrum of the irradiated C60–KCl
solution (in particular, the coincidence of the π band
maximum with the calculated value for unsolvated C60)
indicates that the symmetry of the shell rises toward the
fullerene-like distribution of the electron density with a
simultaneous increase in the binding energy (Eb) of the
MC components.

The shift of the π band low-energy components by
the characteristic vibrational states of C60 with respect
to the reference values of the solvated molecule and to
the calculated value for the same molecule in the unsol-
vated state suggests a mixed type of shell. Similarly, the
correlation between the high-energy components of the
π band and the solvated state of C60, as well as the
larger half-width of the low-energy bands compared to
the vibronic bands at 3.024 and 3.01 eV in the spectra
of the same MCs dissolved in the nonpolar solvent
(Fig. 1, curve C), indicates that the components of the
polar solvent enter into the composition of the shell but
disappear upon the photoinduced raising of the C60
symmetry. The bathochromic shift of the band at
3.045 eV by the vibrational states of C60 is observed in
solvents with polar (or readily polarizable) groups
(methylpyrrolidone and carbon disulfide). According to
TECHNICAL PHYSICS      Vol. 48      No. 9      2003
Fig. 1 (curve C), a similar shift of the band at 3.045 eV
is also possible for mixed-type shells. The broadening
of the low-energy bands by 0.10–0.11 eV reflects the
incorporation of H+ ions into the alkali-halide shell and
the Coulomb interaction of the H+ ions with the polar-
ized π and π–σ states of C60.

The maxima of the π–σ bands and those of the cor-
responding low-energy bands (see table) are shifted by
2.225 eV. At the same time, the low-energy bands are
equidistant from the bands of unsolvated C60: 3.34 (ω =
776 cm–1), 3.314 (ω = 172 cm–1), and 3.24 eV (ω =
1570 cm–1), and from the virtual band 2.26 eV (2.225 +
0.034 eV). In the absorption spectrum of the dissolved
C60–H2TPP–C60 MC solution, the band 2.26 eV is due
to the intracomplex transition between the low-energy
level of central delocalized H+ ions and collective π
states [7], which corresponds to EaH+. Thus, the shift of
the high-energy band maxima by 1.113 eV (see table)
characterizes the interrelated transitions in the field of
H+ ions delocalized between the polarized π and π–σ
states of C60. The superposition of the MC excited
states at the energy levels Eb2C60 = 3.045 eV and
EaH+ = 2.26 eV corresponds to EaC60 = 2.65 eV with an
accuracy of ≈2.0 meV. Consequently, in the acidic
medium, the equilibrium state of H+ ions between two
C60 in the MC is possible. In the presence of H+ ions,
the values EaJ2(Br2) = 2.55 eV [8] must increase to
EaC60 or EaC70 = 2.69 eV. At these values, the potential
in a pair MC reaches a minimum when the symmetry of
the carbon cell is unbroken.

The energy of interaction between the C60–H2TPP–
C60 components was evaluated as 153 meV and coin-
cided with the hypsochromic shift of the π band [7]. It
is reasonable to assume that the shift of the π band high-
energy components in the spectra of the C60–KHal MCs
dissolved in HCl (by 0.20–0.24 eV) also corresponds to
the interaction energy of the MC components. For
iodide-containing MCs, the ratio of the anticipated
value Eb = 203 meV to that in the porphyrin–fullerene
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MC coincides with the ratio EaJ0/EaH+ = 1.326. The
decrease in the ratio of the same energy parameters for
bromide-containing MCs by a factor of 1.04 is most
likely to be related to a decrease in the lattice constant
of KBr incorporated into the complex. In the MCs with
the chloride shell, the shift of the π–σ band, as well as
of the virtual high-energy component of the π band
when its maximum is shifted by 1.13 eV with respect to
the low-energy band (2.75 eV), coincides with the bind-
ing energy in a porphyrin–fullerene complex. This
means that the shell combined with the solvent forms a
unified system of charge carriers, that is, is virtually a
solvation sheath.

In view of lattice constant values of KHal, the van
der Waals surface of C60 can be covered by 12 KJ (or
KBr) molecules in the form of icosahedral clusters and
16 KCl molecules. In such a model, the decrease in the
ionic radius ratio from KJ to KBr (as well as the
decrease in the lattice constants) is responsible for the
uniform compression of C60 in the bromide-containing
shell [2]. In chloride-shell MCs, the symmetry of the
carbon cell persists when 32 Cl atoms are arranged over
the planes of cyclic C–C bonds. Consequently, in the
solid phase, the shell is bilayer, whereas in the HCl
solution, it may be monolayer, consisting of Cl2 mole-
cules statistically dissociated in the field of H+ ions.

To validate the dimeric model of the MCs, we also
considered solid-phase interaction between C60 fuller-
ite and stick sulfur. Compared to the IR spectrum of C60
in the KHal matrix, the IR spectrum of C60 in the sulfur
matrix (Fig. 2, curve B) is characterized by the broader
bands and decreased relative intensities of the bands at
525 and 575 cm–1. Sulfur gives the intense bands of S2

(with maxima at 462 and 471 cm–1) and  (836 cm–1) [8].

The presence of the S2 bands in the spectrum testi-
fies to the interaction between S8 and C60, which does
not break the symmetry of C60. This is possible when a
S+–S– network forms. A sphere of radius 5.01 Å can
accomodate five deformed S8 rings. To form a
fullerene-like shell, 44 atoms are needed, whereas an
icosahedral cluster requires 42 atoms (at a S–S spacing
of 2.05 Å). The intermolecular spacing in C60 fullerite
correlate with the S2 molecule length; therefore, the

S2
+

1400

D

700 cm–1

A

B

Fig. 2. IR absorption spectra of C60 incorporated into the
(A) KBr matrix and (B) sulfur matrix.
surface of a C60 dimer accomodates ten S8 molecules. In
a 40S2–2C60 MC, the ratio C/S satisfies the stoichiomet-
ric composition of a C3S2 quasi-drop, where a decrease
in the density (ρ = 1.27 g/cm3) by a factor of 1.5 with
respect to the sulfur density is due to the larger intermo-
lecular spacing and the presence of free space in C60. In
C3S2 MCs, the potential reaches a minimum at the
vibronic level of unsolvated C60:

where EbS0 = 6.23 eV [9], EaS0 = 2.077 eV, and Eb  =
3.95 eV [8].

The Coulomb interaction of the set of C+ ions in a

carbon cell with  dimers is in accordance with the
CS2 band resolution (at 657 cm–1).

For a C60 dimer as an elementary reacting particle,
the chemical restrictions imposed on a nonpolar C60
molecule are lifted. A C60 dimer is stable because of π–
π exchange interaction and can be considered as a basic
repeating unity of fullerite [4]. The formation of a core–
shell MC results from the energy organization of homo-
geneous or heterogeneous molecular clusters on the
surface of a flexible-geometry sorbent, which in full
measure holds true for solid-phase fullerene–polymer
interaction [5].
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Abstract—A family of input I–V characteristics of a planar diffused bidirectional triode thyristor (triac) is
obtained. The formation of an N-shaped portion in the input characteristic is explained. It is shown that the input
N-shaped characteristic may form in various input circuits of a triac depending on the voltage polarity across
power electrodes. © 2003 MAIK “Nauka/Interperiodica”.
Multilayer semiconductor devices such as triacs are,
in essence, elementary functional devices because of
the presence of internal positive feedback. This feature
allows designers to form negative-differential-resis-
tance (NDR) portions in the I–V characteristics. The
search for new applications of triac structures is con-
tinuing. In [1], triacs were tested as elements of
optrons. Ways of improving the magnetic sensitivity of
the structure were suggested in [2]. Current studies of
triacs are aimed, as a rule, at optimizing the design and
process parameters and at improving the standard S-
shaped input I–V characteristic. However, a triac as a
device with embedded positive feedback exhibits the
duality of input and output characteristics. That is, an S-
shaped I–V curve single-valued in current is dual to an
N-shaped input characteristic single-valued in voltage;
they may be brought into coincidence by reversing the
current and voltage axes [3]. Note that the formation
mechanism of the N-shaped input characteristic that
was suggested in [4] contradicts available experimental
data.

To refine the formation mechanism of the input
characteristic, we studied a planar diffused triac built
around an integrated module of two coplanar p1–n0–p2–
n1 thyristors. The thyristors were made in the bulk of
the semiconductor n0 and connected inversely parallel
to each other through an external wiring (the p1 region
of one thyristor was connected to the n1 region of the
other) [2]. The circuit consisting of the gate electrode
(p2 region) and nearby power electrode (n1 region)
forms the input; the output is the circuit made up of the
power electrodes (p1 and n1 regions). Since the triac
under study consists of direct and inverse thyristors, we
will analyze the physics and operation of only one of
them. The N-shaped input characteristic with an NDR
portion (Fig. 1b) arises in the cathode–gate circuit. In
this circuit, the current I' is a function of the voltage U',
while the voltage U between the anode and cathode
1063-7842/03/4809- $24.00 © 21219
serves as a control parameter. In the output S-shaped
characteristic (Fig. 1a), the voltage U is a function of
the output current I, while the current I' is a control cur-
rent.

Consider the formation of various parts of the input
characteristic in relation to the output characteristic.
Let the initial output characteristic be schematically
represented by curve 1 in Fig. 1a, where AB is the load
curve corresponding to the bistable operation of the

I

B

A

U

1
2

3

(a)

(b)

U'max

I '

U'
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1

2
3

5
4

Fig. 1. Schematic representations of the (a) output and
(b) input characteristics of a triac.
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device. With a positive current I' applied to the gate
electrode, curve 1 passes to curve 2 and the thyristor
structure switches from the off to on (high-conductiv-
ity) state (from point A to point B along the load straight
line). In the input curve (Fig. 1b), the working point
moves in the direction shown by arrow 1. In this state,
all holes injected from the anodic p1 region to the base
n0 reach the base p2. The mismatch between the value
of the positive voltage U' on the p2–n1 control junction
and the majority carrier concentration in the base p2

generated a current that is negatively directed in the
given case. Simultaneously, the input characteristic
exhibits a slight decrease in the forward current and a
peak. When the current I' through the control electrode
decreases, curve 2 of the output characteristic (Fig. 1a)
passes to curve 1. However, because of the bistable
operating mode, the thyristor remains on, since the cur-
rent through point B exceeds the holding current. This
causes the working point to move in the direction of
arrow 2 in the input characteristic (Fig. 1b) and, accord-
ingly, causes the negative current to grow, since the
negative polarity of the voltage U' on the p2–n1 junction
favors the drainage of holes. However, as the control
current I' decreases further, the output characteristic
achieves the state (Fig. 1a, curve 3) where the holding
current becomes greater than the current at working
point B. In this situation, the negative current of the
input characteristic reaches the maximal value .
With the current I' through the control electrode
decreasing still further, the thyristor structure switches
off (its state changes from point B to point A along the
load straight line A; Fig. 1a). The transfer of holes is
sharply reduced, and the negative current in the input
characteristic decreases (in the direction shown by
arrow 3 in Fig. 1b) to the saturation current of a reverse-
biased p–n junction.

Imax'

10

0

–10

U'max, V

–10

–20

0
I'max, mA

0 2 4

1

2

U, V

Fig. 2. Experimental dependences of the (1) supply voltage
 and (2) peak current  on the control voltage U.Umax' Imax'
The return to positive values of the voltage U' across
the p2–n1 control junction follows arrow 4 (by analogy
with the travel of the working point in the output char-
acteristic upon switching off, when the back and for-
ward currents of the working point in the input charac-
teristic do not coincide). Then, the structure switches
on again, and the negative current I' simultaneously
increases (Fig. 1b, arrow 5).

Experimental data for the basic parameters of the
triac’s output characteristic at 20°C are shown in Fig. 2.
The threshold value of the control voltage U at which
the NDR portion appears was found to be 0.75 V. The
peak reaches the breakdown range at the control volt-
age U = 3.6 V. In this case, the maximum in voltage
changes from 0.75 to –8.8 V and in current from 0 to
−18 mA. The output characteristic is readily controlla-
ble: the curves (U) and (U) are almost linear
in most of the control voltage range.

Similar measurements taken from the second thyris-
tor incorporated into the triac gave identical results. It
should be noted that the N-shaped characteristics in the
input circuits of both thyristors cannot be observed
simultaneously, since the control voltage polarity
makes possible the occurrence of this characteristic
only in one input circuit. Therefore, triacs seem to be
promising as voltage-polarity-sensitive devices: differ-
ent pairs of input electrodes may exhibit the N-shaped
I–V characteristic depending on the voltage polarity on
power electrodes.

Thus, we have shown that the formation of the N-
shaped portion in the input characteristics of a triac (or
in the input characteristic of either of the thyristors) is
explained by the unique correspondence between the
input and output I–V characteristics. This portion
results from the presence of the on and off states in the
S-shaped output characteristic, which differ in their
degree of charge carrier transfer. The N-shaped charac-
teristic appears across one or the other pair of input
electrodes according to the polarity of the voltage
applied to the power electrodes.
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