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Abstract—This work elaborates upon previous studies on the family of smooth continuous and discontinuous
two-parameter Hamiltonian systems with a piecewise linear force. For such systems, the Melnikov—Arnold
integral is found to be a power and oscillatory function of frequency. In the presence of two primary forcing
frequencies, the secondary harmonic with a frequency that is the sum of the primary frequencies may make a
major contribution to the formation of a chaotic layer. For the corresponding smooth map, the perturbation
parameter ranges where, under strong local chaos, the upper separatrix of fractional resonances is retained
while the lower breaks (and vice versa) are determined. It is shown that the zero angle of intersection of the
separatrix branches at the central homoclinic point is not a sufficient condition for separatrix retention. Under
dynamic conditions, smooth and analytical systems behave in a very different manner. © 2003 MAIK

“ Nauka/Interperiodica” .

INTRODUCTION

The occurrence and development of dynamic chaos
depend not only on the perturbation magnitude but also
on the smoothness of a dynamic system. The smooth-
ness can be conveniently characterized by the rate of
decay of Fourier amplitudes. In the analytical case, the
amplitudes decay exponentially and there always exists
the perturbation threshold €, above which, € = g, glo-
bal chaos covering the entire phase space accessible for
the system may occur [1-3]. If the potential isasmooth
function, its Fourier amplitudes decay as the amplitude
number to the power 3 + 1, which appreciably changes
the character of motion (see, e.g., [4] and references
cited there). A time-varying smooth system with one
degree of freedom always has athreshold €4, > 0 if 3 >
Be = 3 where [, is the critical value of {3 [4, 5]. The
behavior of systems with 3 < B, has remained poorly
understood until recently.

It turns out, however, that there have long been
available mathematical works [6-8] in which the exist-
ence of global invariant curves in smooth systems at
B =2< B, isascertained. Most comprehensive among
themis[7], which concerns symmetric piecewise linear
2D mapping (B =2<B). In[7], itisrigorously proved
that, at certain perturbation parameters, global invariant
curves with rational numbers of rotation include the
unbroken separatrices of integer and fractional reso-
nances. The separatrices are completely extended in
phase and thus present an impenetrable barrier to other
trajectories. This excludes the possibility of global
action diffusion. Here, most intriguing and unexpected
isthe fact that the system remains nonintegrable in this

case and the separatrices persist under strong local
chaos [9, Fig. 4]. Such behavior contrasts sharply with
the situation in typical (i.e., honintegrable) analytical
systems, where, if at least one additional resonance
exists, the separatrices of resonances break first, giving
riseto chaotic layers[1-3]. The history of thisissueand
reasonswhy such an important work has not been prop-
erly appreciated are described elsewhere [5, 10].

Later and independently, Ovsyannikov stated the
theorem that integer resonance separatrices are retained
under symmetric piecewise linear mapping [11]. He
strictly defined a set of associated (critical) values of
the perturbation parameter and also derived a simple
expression for the separatrix in explicit form. The
Ovsyannikov theorem has stimulated extensive investi-
gation into piecewise linear and related mappings|[5, 9,
10, 12-14] (for a complete statement of the Ovsyanni-
kov theorem, see the appendices to [9, 12]). Note that
the authors of [7, 11] had to study only remaining sep-
aratrices, since random trajectories resulting when the
separatrices split are impossible to treat analytically
(these trajectories can be analyzed only in physical or
numerical experiments).

Further investigation has shown that each of the glo-
bal invariant curves discovered in [7] (including the
separatrices of fractional and integer resonances)
appears at a certain exact value of the perturbation
parameter and actually considerably distorts the struc-
ture of the phase plane and itsfinite vicinity. Because of
this, anew term, avirtual invariant curve, has been sug-
gested [5]. The presence of virtual curves causes a
totally new and very complicated transport processin a
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smooth system, so-called fractal diffusion, the study of
which has begun in the very recent past [5, 10].

It becomes clear from the above that smooth sys-
tems offer many unique properties and dynamic chaos
in them originates and develops following a specific
(sometimes exotic) scenario.

Inthiswork, asin previousones[5, 10, 14], we con-
sider afamily of smooth systems with two parameters
and apiecewiselinear forceintwo versions: with acon-
tinuous Hamiltonian and as a map (Section 1). For a
continuous system, the Melnikov—Arnold integral is
constructed and the frequency dependence of the sepa-
ratrix map amplitudes is then found using thisintegral.
It is known that harmonics of a separatrix map decay
exponentially and monotonicaly with increasing fre-
guency [1]. In Section 2, we demonstrate that this
dependence is radically different for the smooth sys-
tems we are considering: it is a power and oscillatory
function.

The formation of a chaotic layer subject to an asym-
metric two-frequency perturbation is considered. For
the analytical case, a similar study has been recently
performed in [15-17], where the subject of investiga-
tion was the Hamiltonian of a perturbed pendulum:

H(x, p,t) = %2+ cos(x) 1)

+€,C0S8(X—Q;t) + g,c08(X — Q,t).

Even early numerical experiments showed that the
separatrix map spectrum, along with the frequencies Q,
and Q,, which enter into perturbation (1) in explicit
form, also contains combination harmonics ~¢,€, at the
aggregate, AQ, = Q, + Q,, and difference, AQ_=Q, —
Q,, frequencies. Still more surprising is the fact that,
under certain conditions, these combination harmonics
play adecisive role in the formation of a chaotic layer.
An example where the contribution of the secondary
harmonic AQ. = 3 to the separatrix map amplitude sev-
eral hundred times exceeds those from primary har-
monicsis given in [16]. It appears as though wesak pri-
mary harmonics generate an intense secondary one and
the role of the former in chaos formation is exhausted
at this point (this fact has been numerically confirmed
in [16]). Taking into consideration the mechanism
behind the occurrence and effect of secondary harmon-
icshas made it possibleto remove the long known more
than twofold discrepancy between the theoreticaly
found (through the Melnikov—Arnold integral) and
experimentally measured separatrix map amplitudes
for conventional Chirikov mapping [15].

Asisshownin Section 3, in the systems under studly,
the harmonic at the aggregate frequency shows up in
full measure, while the harmonic at the difference fre-
guency is absent. This feature is associated with the
radical difference in the frequency dependence of the
Melnikov—Arnold integral in the analytical and smooth
cases. How much the amplitudes and spectral composi-
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tions of various parts of the chaotic layer may differ can
be inferred from Fig. 2.

In Section 4, mapping is considered again. With the
1 : 3fractional resonance, it isshown herethat there are
two ranges of the perturbation parameter K where the
upper and lower separatrices behave in adifferent man-
ner. In the first range, 1/4 < K < 1/3, both separatrices
persists for specific valuesof K = K; ,(m=1, 2, ...,)
[9, Table 1]. With K < 1/4, the upper separatrix persists
at some values of K, while the lower is retained at oth-
ers. Such a situation occurs alternately (Fig. 3). The
mechanism underlying this intriguing effect is dis-
cussed. It is argued that the same behavior is observed
for higher order resonances.

In[9, 12, 13], theretention of resonance separatrices
was studied by measuring the angle of intersection of
branches at the central homoclinic point. It was
assumed that the vanishing of this angle proves the
retention of the separatrix and absence of the chaotic
layer. Such an assumption is mistaken, as demonstrated
by an example in Section 5.

1. HAMILTONIAN OF THE PROBLEM

In this work, we elaborate upon the investigation
[12, 14] of a continuous system with a Hamiltonian in
the form

H(X, p,t) = Ho(x p) +U(x, 1),
2 2
Ho(x, p) = & +wiv(x)
and with a two-frequency asymmetric perturbation
U(x,t) = g,c0s(2Tix — Q,t) + £,c08(2TIX — Q,t). (3)

The perturbation is assumed to be weak (|g| < 1),
and the frequencies are taken to be high (|Q| > wy).

The potential of thissystem V(x) = 1/4 — [ f (X)dx s

generated by an asymmetric piecewise linear force
f(—x) = —f(x) with a period of 1:

2x/(1-0), for 0<x<(1-d)/2
f() = M1-2x)/d, for (A—d)/2<x<(L+d)/2
R2(x—1)/(1—d), for (1+d)<x<1. (4)

Expression (4) includes the skewness parameter d
(0 < d < 1), which alows the family of sawteeth to be
studied as awhole [14, Fig. 1]. Note that the case of a
symmetric force with d = 1/2 has been explored most
carefully to date. The teeth of the saw [f(X)] = 1 are
located at the points x_; = (1 —d)/2 and x,; = (1 + d)/2,
where a singularity, a step in the first derivative f' =
df/dx, is observed:

2
d(I—d)’ ©)

Af'(Xq) = F
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The potential can be represented by the Fourier
series[5]

_1 fr
V(X) = 4+ Z 2mBJrlcos(Znnx),
n=1 (6)
fo= _ 2 cos(nm)sin(nmd)

2 d(1-d) '

where 3 = 2 isthe index of the system’s smoothness.

When unperturbed, system (2) is integrable and
describes the only (fundamental) resonance in the
vicinity of whichinitial conditions are defined. Each of
the perturbation harmonics is also a resonance. With
Q > 0or <0, thisresonance islocated in the phase plane
above or below the fundamental resonance. Therefore,
we may call them the upper and lower resonances,
respectively.

The motion along the upper unperturbed separatrix
(e, = &, = 0) is described by afunction of dimensional
time Y = 2t

EAdeXp(lle/JZ(l—d)),
|j0r —0 < qu <_qu,1

S
() = BT IS 22 g
gor _qu,l < lleS qu,l
1 Aexp(— 4/ 2(1-0)),

or Yg 1 <Ps<o,

The momentum is found by differentiation: p,=x =
20xdxJ/dy. Here, W , = /2darcsin./d and Ay = (1 -

dyexp(Ps +/~/2(1—d))/2 (see formulas (Al.4) and
(AL1.8) in Appendix 1).

The relative departure from the unperturbed separa-
trix in terms of relative energy is designated as w =
Ho/Hg, s — 1, where Hq s = wg/4 is the Hamiltonian on
the separatrix. The motion period T, near the separatrix
is calculated by the formula

4./T=dcos(w,T
To(W) = 2T, + = In T\?vls(wl ) ()
2

where w; = wyA/2/d, W, = WA/2/(1-d), and T, =
arcsin./d /o, (see Appendix 1).

When the dimensions of the chaotic layer are deter-
mined numerically, it is convenient to use the relation-
ship between the relative energy w and motion period
Ty that isinverseto (8):

W(To) = 4/(1 —d)cos; T 1) exp(wy(To— 2T 1)) (9)
TECHNICAL PHYSICS  Vol. 48
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Along with the continuous system given by (2) and
(3), wewill also addressthe discrete map with the same
potential:

p = p+tKf(x), X = x+pmodl, (10)

whereK = % . Thismap has been much studied to date,

and its dynamic behavior appears very unusua [5, 9,
10, 12-14].

Asiswell known, map (10) can be represented as a
continuous system with the Hamiltonian explicitly
depending on time and experiencing a perturbation in
the form of kicks[5]:

2

H(x p,t) = 2

5 TRV, (1), (11)

where ,(t) = 1 + 22
tion of period 1.

The period of force (4) can be subdivided into two
intervals where the derivative ' is negative (elliptic
interval) and positive (hyperbolic interval). At a fixed
point, the matrix of the linearized mapping is deter-
mined from the formulas

cos( 2rmmt) is the delta func-

m=1

o =pglth L (1

[ |

0 01—
g, ¢ =pl-21t
10 0-A 1

[ |

+
A
where A = 2K/(1 — d). The matrices & and 9B corre-

spond to the hyperbolic and dliptic intervals, respec-
tively.

2. FREQUENCY DEPENDENCE
OF THE MELNIKOV-ARNOLD INTEGRAL

In the genera case, perturbation (3) breaks the fun-
damental resonance separatrix with the formation of a
chaotic layer, which can be subdivided into three
regions: (i) upper region where the phaserotatesat p > 0,
(if) intermediate region where the phase oscillates, and
(iii) lower region where the phase rotates at p < 0.
Under asymmetric perturbation, the dimensions of
these regions may differ substantially, since the upper
region formslargely asaresult of upper resonances; the
lower region, as a result of lower resonances; and the
intermediate region, as a result of both (Fig. 2). To be
specific, we will study the upper region of the chaotic

layer.

Consider an upper perturbation harmonic of type
€cos(2rmmx — T —Tp), where T = Qt and mis an integer
factor introduced for generality. We will seek a change
in the unperturbed energy H, due to this perturbation
over the oscillation or rotation half-period, following
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the technique described in [1]:

JEPNIT
AH, = —sI p(t)&dt

00

= 2nmef p(t) sSin(2rmx — T —Tp)dt = 2rIMesinTWya,

where Wy, is the Melnikov—Arnold integral

Wya = — J’ ps(t) cos[ 2mmx,(t) — Qt] dt. (13)

In the expression for the energy change, only the
even function in the expansion of SiIn(2mMx —1 — 1) is
included and the system is assumed to move near the
unperturbed separatrix.

In going to the dimensionlesstime Y = 2wt and cal-
culating expression (13) with the help of (7), wefind

Wya(A >0) = IcosD Y 0

DA/_d]

x cos[mm/asma/w_d%—)\w}dw

~ A |7 [ eP(-bl/2(1-0)
Ws1
x cos(2rmmmA exp(—P//2(1—d)) + Ag)dy,
where A = Q/2wy, isthe adiabaticity parameter [1].

It is easy to check that, if a perturbation is a lower
harmonic of type cos(2rmmx + T + 1), where 1 = Qt, (14)
must be replaced by

(14)

Ws1
Wya(A<0) = ——I cosH-- W

Dfd]

x cos[mnjasn%A/qJ_d% + |)\|ljJ}dL|J
+ Ay /1 J’exp( P/J2(1-d))

(15)

x cos(2mmAyexp(—P/~/2(1—d)) — [A|@)dy.

It should be noted that, for m=1 and d = 1/2, the
half-sum of (14) and (15) exactly coincides with for-
mula (13) from [12], where a symmetric one-frequency
perturbation of our system is considered.

VECHESLAVOV

The separatrix map amplitudeis completely defined
by the properties and behavior of the Melnikov—Arnold
integral, sinceit is proportional to thisintegral:

AH _ 8mme

HOs (A)(Z)

W = tmax|w-w| = +

Wya.  (16)

Thefirst question to be answered is how W, varies
with A. Appendix 2 gives asymptotic (A — o) esti-
mates of the Melnikov—Arnold integral, which lead us
to thefollowing conclusionsfor the system given by (2)
and (3). From formulas (A2.2) and (A2.3) in Appendix 2,
it follows that W), is a periodic function of A with a

period
T o-2m__ W ﬁ
A qu,l arcsm/fi d’

and an amplitude Wya max Varying inversely propor-
tionally to A3. The value of Wy s max IS the same for the
upper and lower harmonics:

)\—3
Wips, M) = 2 (220

Nevertheless, numerical calculations show that the
contributions from the upper and lower harmonic are
different. To reveal this circumstance, we had to take
into account terms of the order A=, This allowed us to
find a small difference between the upper and lower
harmonics (formulas (A2.4) and (A2.5) in Appendix 2).
Eventually, we get

-3
Wiys(0) = (-1)"2L 228

X[linl}\l_l 12

where the upper signsrefer to the upper harmonic.

Figure 1 shows three WA |A]® dependences of the
reduced Melnikov—-Arnold integral for the symmetric
saw, d = 1/2. With d # 1/2, the dependences remain
basically the same but the harmonics shift in phase. Itis
seen that formulas (19) are in quditative agreement with
these dependences while they need some numerical cor-
rection. Notethat the zeros of theintegral just indicate that
the fundamental resonance separatrix remains unsplit
[12].

The above results differ drastically from the case of
analytical potentia (1), where W), is a function of A
that is monotonic and decreasing everywhere. More-
over, with frequencies that are equal in magnitude, the
contribution of the lower harmonic to the upper region
of the chaotic layer isexp(—Tt|A) times smaller than that
of the upper harmonic [1]. In the system given by (2)
and (3), the situation is reversed: as the frequency
grows, the contributions of the upper and lower har-
monicsto the separatrix map approach each other. Such
aradical difference in the behavior of the two systems

(17)

(18)

(19
]sm(nmd FINPs),

TECHNICAL PHYSICS Vol. 48 No.9 2003
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is probably associated with the fact that the positions of
singularities in the Melnikov—Arnold integral greatly
differ: for smooth potential (2), they are onthereal time
axis, while for analytical potential (1), they are in the
complex plane.

3. SECONDARY HARMONICS
IN THE SEPARATRIX MAP

The separatrix map, introduced for the first time in
[18], approximates the dynamic behavior of asystem at
instants when it passes stable equilibrium positions.
Elements of the map that are responsible for different
parts of the chaotic layer differ in amplitudeand alsoin
spectral composition (Fig. 2). Therein lies the qualita-
tive difference between an asymmetric multiple-fre-
quency perturbation and the well-studied one-frequency
symmetric perturbation [1].

Aswas noted in the Introduction, the separatrix map
generally includes, along with harmonics at primary
frequencies (these harmonics enter Hamiltonian (2) in
explicit form), harmonics at combined frequencies
(secondary harmonics). Because of this, the separatrix
map for the system given by (2) and (3) should be writ-
tenintheform [17]

K

u

W =w+ ZWu,k(Qu, to), if p>0, (20)
K

W= w+t z W, «(Qt), if p<O, (21)
k=1

t_o = o+ To(W). (22)

Here, the subscript u marks resonances contributing
significantly to the formation of the upper region of the
chaotic layer and the subscript | marksthose resonances
making a considerable contribution to the formation of
the lower region.

Instants t, when the system passes stable equilib-
rium position x = 0.5mod(1) are counted on a continu-
ous time scale. If al the frequencies are multiples of
some reference frequency Q,, expression (22) may be
recast as

50 = Qo+ QoTo(W),

(23)
@ = Qptomod(21),

although such a conversion is not obligatory in actua
practice.

Formulas (14)—(16) from the previous section make
it possible to find the amplitude of any harmonic in the
separatrix map if its perturbation amplitude € is known.
Primary harmonics pose no problem, since they are
explicitly defined by (3). To find the perturbation
amplitudesfor secondary harmonics, weintroduce, fol-
lowing [15], new variables y(t) = x(t) — x|(t) and u(t) =
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Fig. 1. Melnikov—Arnold integra vs. adiabaticity parameter
A =Q/20x. The upper curve reflects the combined action of
the upper and lower harmonics of the symmetric perturba-
tion; the intermediate curve, the action of the upper har-
monic alone; and the lower curve, the action of only the
lower harmonic.

p(t) — p(t) and then, using a generating function of type
Fy(u, %, t) = [pg(t) + u][Xx—x4(t)], pass from (2) to a new
Hamiltonian H(y, u, t), which describes motion near the
separatrix. Since the perturbation is weak, we expand
the potentials V(x, + y) into the Taylor series up to sec-
ond order and make approximate substitutions
sin(2ny) — 2mny and cos(2ny) — [1 — (2ny)%/2] to
obtain an eguation of motion in the form

dt

= [—wo%+4nzz €,C0S(211X, — Q t)}
) (24)
+21Y g,8n(21mx,—Q,t).
2
We will restrict our analysis to a forced (vanishing

at € — 0) solutionto (24), which can be derived by the
method of successive approximations. If, asin [15],

yo =
sm(ZTrx -Q,t)
:El(ZTIps
g, .
= - > SiN(21X,— Qt)
n=1 n

is taken as a first approximation (the approximate
equality assumed that Q > pg ), terms of type
€.9N(21x, — Q,t) in (24) vanish but new ones appear.
The latter can be eliminated by applying the second
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Fig. 2. Separatrix map of system (2)—(3) with asymmetric
perturbation (27). The dots were obtained by numerical cal-
culation, and the continuous curves are the least-squares
fits. (8) The upper part of the chaotic layer (phase rotation
with p > 0). The amplitudes of the primary harmonics are
W(23) = 6.9 x 10~ and W(—19) = —4.9 x 10~ the amplitude
of the secondary harmonic at the aggregate frequency is
W(3) =3.03 x 10™ 2, (b) The middle part of the chagtic layer
(phase oscillation). Two periodic curves reflect the action of
the upper and lower resonances. (c) The lower part of the
chaotic layer (phase rotation with p < 0). The amplitudes of
the primary harmonicsare W(23) = 2.1 x 10“and W(-19) =
-4.8 x 107 the amplitude of the secondary harmonic is
W(3) = 5.6 x 10°.

approximation

21eE, .
y@ = Z Q—fnSII’](ZTIXS— Q,t)
n=t o (25)

——[—2——2}Sin(Qz—Ql)t -
Q; QF
etc. [15].

Turning back to system (2)—(3) and putting X = X, +

vy cos2ry!? = 1, and sin2my® = 2my!? , we make

sure that secondary perturbation harmonics (~¢;€,) at
the aggregate and difference frequencies arise. How-
ever, the mechanism of their penetration into the sepa-
ratrix map is essentially different. The harmonic at the
aggregate frequency forms because of theinteraction of
thefirst termin (25) with primary harmonics, and, since
this exactly coincides with the analytical case, equali-
ties (7) in [16] for it hold (these equations should only
be corrected in view of another phase normalization):

€.cos(4tx —AQ,1),

£, = —2nzslsz[i2 + %} (26)

1 2
where AQ, =Q, + Q,.

The harmonic at the difference frequency appearsin
another way: it results from the interaction of the sec-
ond term in (25) with the second derivative d?V/dx? of
the potential in (24), which has rich spectrum (6)
(unlike (1), where V(x) = cosx). Here, an infinite num-
ber of harmonics, rather than two asin [16], appear, and
it isimpossible to separate out the most significant one.

The effect of occurrence of the secondary harmonic
at the aggregate frequency will be demonstrated with
system (2)—(3) for

we = 0.09, € =g, = 0.05,
Q, = 220, Q, =-190, Q, = 10.

L et us construct separatrix mapsfor al three parts of
the layer. First, we will briefly recall this procedure (for
details, see [15]). On the line x = 0.5, the centra
homoclinic point %y, is found with a high accuracy
(this point is the boundary between phase rotation and
phase oscillation). The honzero angle of intersection of
the separatrix branches at this point indicates the pres-
ence of the chaotic layer (the reverseisuntrue, see Sec-
tion 5). A narrow interval %Py, + 8% is selected on the
line x = 0.5 near this point within the considered part of
the layer, and a random tragjectory isinjected from this
interval. Thistrajectory either executes periodic motion
with a desired number of periods (time intervals T,
between sequential passages through the phase x = 0.5)
or isinterrupted because of the transition to another part
of the layer. In both cases, a new random tragjectory is
injected from the same interval until a desired number

(27)
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N, of periods is reached. For each of the periods, the
mean energy W is calculated by formula (9). Finding

the difference dw = W — w for each pair of adjacent
periods and assigning this change to a time instant t,
common to this pair, one can construct the separatrix
map (dw)y, to , Wwherek =1, 2, ..., N, — 1, on acontin-
uous time scale.

The pointsin Fig. 2 were obtained precisely in this
way. The continuous lines are least-squares fits by
which the amplitudes W of individual harmonics were
determined (below and in the caption to Fig. 2, the
parenthesized figures are frequencies). The measured
contribution W(3) = 3.03 x 10 of the secondary har-
monic to the formation of the upper part of the chaotic
layer is more than forty times that of the primary har-
monics. Thetheoretical value W, of the amplitude W,(3)
of the separatrix map for this frequency, which follows
from (14), (16), and (26), equals W,(3) = 3.37 x 102
(€, =2.39 x 107*, Wy, = 0.505).

In practice, the widths of the parts of the layer (in
terms of the relative energy w), rather than the separa-
trix map amplitudes, are of greater importance. The
widths can be found by applying iterations to the sepa-
ratrix map and by searching for the minimal mation
period Ty min (the width is then determined from for-
mula (9)). When applied to the top part of the layer in
case (27), both approaches give close values: wy = 0.19
(former) and wy = 0.32 (latter). For the bottom part of
the layer, wy, = 0.016 and wg = 0.022, respectively.
Note that the former approach demands much less (sev-
eral hundreds of times) computation time, so that
efforts spent on the construction of the separatrix map
arejustified.

4. ASYMMETRY IN SPLITTING THE UPPER
AND LOWER SEPARATRICES

In this section, we again consider map (10) withd =
1/2 and discuss the behavior of the separatrices of frac-
tional resonances. First we will recall the structure of a
separatrix using a pendulum as an example [1].

The curve has a saddle, afixed point, which must be
considered as an independent trajectory (an undis-
turbed pendulum may stay at this point infinitely long).
Two more trajectories (separatrices) leave the saddle in
opposite directions and then asymptotically approach
it. Both of them are the boundary between phase rota-
tion (outside aresonance) and phase oscillation (inside
aresonance). Near the saddle in the phase plane, a spe-
cific cross with two incoming and two outgoing trajec-
tories forms [1, Fig. 2.1]. Two fundamental resonance
separatriceswith p, = p4 > 0 and ps = pg, < 0 can be con-
veniently called the upper and lower separatrices,
respectively. It isimportant that both unperturbed sepa-
ratrices actually consist of two trajectories, which are
spatialy coincident for time scales directed back and
forth, respectively. A perturbation splits either of the
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Fig. 3. Map (10) with the parameters K =
0.1035533905931... and d = 1/2. The dark region showsthe
only random trajectory bounded below by the lower separa-
trix of the 1 : 3 resonance (the number of iterationsis 5 x
109). The inset shows the branches (filaments) detached
from the upper separatrix and the unbroken lower separatrix
of this resonance between two neighboring saddles.

separatricesinto two branches (filaments), which are no
longer coincident but intersect at homoclinic points.
The nonzero angle of intersection of the branchesat any
of these points (usually, the central homoclinic point is
considered; in (10), it correspondsto x, = 0.5[9]) isa
reliable indication that a separatrix has broken and a
random trajectory has taken its place (the reverse is
untrue, see Section 5).

Asfollowsfrom the above, the upper and lower sep-
aratrices break under the action of the upper and lower
sets of resonances, respectively, and these sets are gen-
eraly different. As a consequence, the upper and lower
parts of the chaotic layer may be dissimilar (Fig. 2). In
system (10), aunique effect is observed [ 7]: the separa-
trices of both fractional and integer resonances persist
under the condition of strong local chaos for specific
values of the perturbation parameter K. We will show
that this phenomenon for fractional resonances exhibits
curious features.

Theobject of considerationisthe 1 : 3fractional res-
onance. Wewill rely upon dataobtainedin [7] (for extra
details, see also [10]). The value K = 1/3 isthe greatest
critical number at which the separatrices of all system
resonances (and not only of the 1 : 3 resonance) are
retained. These (and only these!) separatrices, which
are nontransparent to other trajectories, fill the unit
square of the phase plane, the entire area occupied by
this mosaic being exactly equal to the area of the square
[7; 9, Fig. 6]. AsK gradually decreasesto K = 1/4, the
system passes through a set of specific valuesK; ,, (m =
1, 2, ...,) a each of which both (upper and lower) sep-
aratrices of the 1 : 3 resonance persist (the initia ten
values K ,, are listed in [9, Table 1]). At first glance,
such a situation is puzzling. The set of resonances
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Fig. 4. Map (28) with the parameters C = 0.32395435... and
a = 0.1. The detached branches of the upper separatrix are
shown. The angle at the central homoclinic point equals
zero. The continuous and dashed lines correspond to time
running forward and backward, respectively.

above and below the resonance considered is by no
means symmetric. The nearest strongest resonances
above and below are the integer and fractional reso-
nances, respectively. Yet the retention conditions for
both separatrices coincide exactly. It would be interest-
ing to understand the reason for this phenomenon.

The set K; ,, has a condensation point at K = 1/4,
where the phase volume of the 1 : 3 resonance goes to
zero and itsupper and lower separatrices collapse, turn-
ing into a broken line. The resonance disappears, leav-
ing behind it a globa invariant curve. It was shown
[7, Fig. 1] that this curve is a periodic orbit each point
of which maps onto itself after three iterations. It is
important that all three saddle points of the 1 : 3 reso-
nance are on the hyperbolic segment, as follows from
our investigation in the perturbation parameter range
1/4 < K £ 1/3. With K < 1/4, the resonance 1 : 3 arises
again but now the upper and lower separatrices behave
in avastly different manner: they persist alternately at
various values of K and not simultaneously. This is
illustrated in Fig. 3, whichis plotted for the first critical
value of K, K = 0.1035533905931, following K = 1/4.
At this value, the lower separatrix persists. It should
also be noted that, for K < 1/4, one of the saddle points
passes from the hyperbolic to elliptic section.

Preliminary numerical experiments show that, as K
decreases further, the value at which two saddles pass
to the dliptic section will be found, etc. In addition, it
turned out that the same behavior isalso typical of high
order fractional resonances. In general, the situation
appears as follows. For each resonance of order Q = 3,
one can find aK(Q) parameter value nearest to K = 1/3
such that this resonance degenerates into a periodic
orbit (for severa Q, these values are listed in [7]).
Within this range, all saddles of the resonance fall into
the hyperbolic section. Below thisrange, at |east one of

VECHESLAVOV

the saddles passes to the elliptic section. As the pertur-
bation parameter smoothly decreases further, the num-
ber of saddle pointsin the elliptic section will grow.

The migration of saddle points throws light on the
situation. Asisknown, the upper and lower separatrices
of resonances bypass their saddles in opposing direc-
tions. It was noted above that, early in the formation of
resonant structures at K = 1/3 and in some interval
below this value, all saddles of aresonance Q fall into
the hyperbolic section and the matrix of a periodic
unstable orbit is merely A° (see (12)) irrespective of
the by-pass order. The retention conditions for the
upper and lower separatrices are exactly the same and
occur at the same critical value of the perturbation
parameter K. The situation changes radically after the
resonance has degenerated into a periodical orbit, since
one saddle jumps to the dliptic section and is now
described by the matrix 93. It is here that asymmetry in
the behavior of the separatrices arises, since one of
them passes from the hyperbolic to the elliptic section
(the matrix RB.s4), while the other does the opposite (the
matrix ARB # BoA). Because of this, the upper and
lower separatrices persist aternately at different values
of K. The question arises as to whether the separatrices
will persist simultaneoudly if al saddles pass to the
elliptic section? The curious effect described above is
another specific feature of smooth systems.

5. INSTEAD OF CONCLUSIONS

The abjects of consideration in this work were
largely nonlinear resonances and their separatrices. It
was hoted in the introduction that the angle of intersec-
tion of the separatrix branches at the central homoclinic
point is of key importance in such studies [9, 12, 13].
Thisquantity isone of afew chaos attributes that can be
measured with any desired accuracy. If this angle is
other than zero, the separatrix is split and chaos occurs.
Themajor practical issueiswhether the equality of this
angleto zero is areliable indication that the separatrix
persists. Up to now, this has been the case and such an
assertion has even appeared in several of our previous
works. However, specia research has demonstrated
that this statement is untrue. An appreciable number of
systems, both continuous and discrete (maps), where
the vanishing of this angle does not mean the retention
of the separatrix have been found. Let usillustrate this
with a complicated standard mapping of type

p = p+C[sn(2mx) —asin(6x)], X = X+ p(28)

with the coefficients C = 0.32395435... and a = 0.1.
The branches of the upper separatrix are shown in
Fig. 4 (the central homoclinic point is on the line x =
0.5). The point of contact here corresponds to an inflec-
tion point. It seemsthat only the complete pattern of the
separatrix behavior constructed for time running back
and forth in the interval between two neighboring
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homoclinic points might tackle the question of whether
chaos is present or not.

From the above, it follows that the dynamic behav-
ior of smooth and analytical systems differs greatly in
terms of almost al the aspects considered. In our opin-
ion, this is a compelling argument in favor of further
research into smooth systems.
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APPENDIX 1

MOTION ALONG
AND NEAR THE UNPERTURBED SEPARATRIX

The Hamiltonian on the unperturbed separatrix
equals Hy ¢ = wﬁ /4. From this expression, we find its
momentum as a function of the coordinate:

DXSA/Z/(l d), for 0<x,<(1-d)/2

E(l (2x.—1)%d) 1.2,
000 gor (1-d)/2<x,<(1+d)/2

H1-x)+/2/(1-d), for (1+d)<x,<1l.
Let dimensionless time Y = 2wyt be counted from
the point of stable equilibrium x = x, = 0.5. In the (first)
interval X, < x; = (1 + d)/2, the equation of motion is

written as X =—-0Hy/dx = w; (1—2x)/d and hasthe solu-

tion
2
X(t) = W = 000/\/(;,

where py |sthe momentum at the initial point X, = 0.5.
For the separatrix corresponding to the second row

in (A1.1), we have at this point py, Joy, = 1/4/2; there-
fore,

(AL1)

1. Po

+ — .
0, sinw,t, (A1.2)

X(Ws) = [ Jasnj;_sd}

_ lle
Ps(Ws) = I J_

The time g ; of motion aong the separatrix
throughout the first interval is found with (A1.3) from

(A1.3)

the equality
1+d_ 1[1+«/asinh]
2 2 J2d
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At the end of thefirst interval, we have

T, .= arcsin/d/w,, W, = 2w,T; ; = J/2darcsin/d,

_1+d _ 1-d (A1.9)
Xs,l - Ta ps,l = Wy 2

where T ; is dimension (normal) time.

In the second interval (1 + d)/2 < x < 1, motion is
described by the equation X = 2% (x — 1)/(1 — d),
which has the solution

x(t) = 1- =9 cosha,(t—T )+

2
_ 2
@2 = oG

where T, and p, are the time and momentum at the end
of thefirst interval.

For motion along the separatrix according to equal-
ities (A1.4), we have

Lsinho,(t—T,),
(AL5)

Xs(t) = 1——[COShwz(t Ts 1) —sinhw,(t— T 1)]
(AL6)

= 1- 1= Cep(-w,(t-T..).

In terms of dimensionless time Y, motion along the
separatrix in the second interval is given by

X(Ws) = 1—Agexp(-Ps/v2(1-d)),

(AL7)
(WD) = Ay [2exp(-w/ 2= ),
where
e
o= S ep, /2(1-d) (AL

and s ; is given by (A1.4).

Taken together, the above formul as describe motion
along the entire separatrix (see formulas (7) in Section 1).

To determine the period of motion near the separa-
trix, let us consider atragjectory starting from the initial
point X, = 0.5 with a momentum p, dlightly deviating
from the momentum on the separatrix: py = Ps o + OPp-
The difference in momentum changes the time T ; of
passing thefirst interval by 8T, and the momentum pg 4
at the end of the interval by dp;. The new time can be
found from (A1.2):

- = §+ '—gn[wl(Tsyl_éTl)]

oT
;0T = o ;tan(mlTS Nk
S,
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the new momentum, from the relationship

P1 = Ps1+0pP;
= (Ps o+ OPg)cos[wy (T —0T,)]
_ dpo
—= 0P, = cos(w; Tg 1)

The latter quantity can be expressed through the rel-
ative change in the energy w = 4H,/ oog -1
Since V(x, = 0.5) = 0, we have

2
W = S(pgo+8pp) -1
0

2
Wq

2 ps, 0
= (J)O W
2./2cos(w, Ty ,)

Let T, be the period of motion along the trajectory
considered (the time interval between sequentia pas-
sages of the stable phase x, = 0.5).

Assuming x = 1, we find from equation (A1.5)

1-dw, _ _0p;
-T.g] = 53
> 2 p Ps 1 ¢
When deriving this equality, we took into account the

relationship ps 1/ = /(1 —d)/2, which follows from
the second row of (A1.1) for x,; = (1 + d)/2 (see dso
(Al1.4)). The period of motion near the separatrix is
given by

‘*)o

2f2

_,6pO:

N

o

tanh [oozD >

To(w) - 2TS 1 + (Dzlnl_;
A19
1, 4J1-dcos(w,Tg 1) ( )
= 2Tg,+—In
W, [wi

With d = 1/2, this formula exactly coincides with
formula (9) in[11].

APPENDIX 2

ESTIMATES OF THE MELNIKOV-ARNOLD
INTEGRAL

Let us write Melnikov—Arnold integral (13) for the
upper perturbation harmonic (Q > 0) in expanded form:

00

Wy = — I p.[ cos(21imx,) cos(Qt) (A2.)

+ sin_(ZTrmxS) sin(Qt)]dt.

Following [12], the integral will be taken by parts.
At each step, we integrate terms with Q and differenti-

VECHESLAVOV

ate the remaining terms. At the third step, terms with Q3
and the third-order time derivative of p, will appear
under the integral sign. The third-order derivative gen-
erates §, functions at the singular points x_; = (1 —d)/2
and x,; = (1 + d)/2:

d’p, _ o

s 3
- s

dt® X

e LXCEEELACEP ]

In this expression, only the principal term with the
0, functions is left and formula (4) for the step of the
derivatives is used. At the singular points, pJuw, =

(1 —d)/2 (the second row in (A1.1); accordingly, for
thefirst termin (A2.1), we have

)\-3

T [cosnm(1+d)sm()\L|J31)

— cosrtm(l —d)sin(-Ayg 4)]

m— 17\_3 1-d

= (-1) .

=——cos(mmd) sin(Ay ,),

where A = Q/2wy, and g ; = 20Ty 1.

Applying a similar procedure to the second term of
(A2.1) and adding up the final results, we obtain an esti-
mate of the Melnikov—Arnold integral for the upper
harmonic:

Wiah>0) = (0™ L=9gnrumd —Au. )
MA - 4d 2 LIJS,l (A22)

Accordingly, for the lower perturbation harmonic
(A <0), wefind

A~
4d

x llgdsin(nmd+ AWy ).

This harmonic makes the same (up to a phase shift)
contribution to the separatrix map amplitude as the
upper harmonic, which comes into conflict with the
numerical experiment. It turns out that the difference
between the contributions from the upper and lower
harmonics appears only in the next (~A=) order of
smallness. To find this difference, one must integrate by
parts four (not three) times. It is easy to check that, in
this case, two terms containing the expressions
ps(d*xJ/dt*) and X (d®pJ/dt3), which make equal contri-
butions to Wy,», must be taken into consideration.

Wya(A <0) = (-1)
(A2.3)
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Eventually, for the upper and lower harmonics, we find

A" [1—d
Wya(A >0) =(-1) 2d

2

(A2.4)
x [1 Fxt fl:z-g}sin(nmd ALY
and
mA 1=d
Wua(A <0)=(-1) =5 [——
4y 2 (A2.5)

x [1—n| N7 1%d}Sin(T[md +[AWs 1),

respectively.
These expressions are discussed in Section 2.

REFERENCES

B. V. Chirikov, Phys. Rep. 52, 263 (1979).

2. A. J. Lichtenberg and M. A. Lieberman, Regular and
Chaotic Dynamics (Springer, New York, 1992).

3. G. M. Zadavskii and R. Z. Sagdeev, Introduction to
Nonlinear Physics (Nauka, Moscow, 1988).

4. B. V. Chirikov, Chaos, Solitons, and Fractals 1, 79
(1991).

5. V. V. Vecheslavov and B. V. Chirikov, Zh. Eksp. Teor.

Fiz. 122, 175 (2002) [JETP 95, 154 (2002)].

=

TECHNICAL PHYSICS Vol. 48 No.9 2003

© N

10.

11
12.

13.

14.

15.

16.

17.
18.

1089

. M. Henon and J. Wisdom, PhysicaD 8, 157 (1983).

S. Bullett, Commun. Math. Phys. 107, 241 (1986).

M. Wojtkowski, Commun. Math. Phys. 80, 453 (1981);
Ergod. Theory & Dyn. Syst. 2, 525 (1982).

V. V. Vecheslavov, Dynamics of Sawtooth Maps: 1. New
Numerical Results, Preprint of the Budker Institute of
Nuclear Physics (Sberian Division, Russian Academy of
Sciences), Novosibirsk, 2000, no. 2000-27,
nlin.CD/0005048.

B. V. Chirikov and V. V. Vecheslavov, Zh. Eksp. Teor.
Fiz. 122, 647 (2002) [JETP 95, 560 (2002)].

L. V. Ovsyannikov, Private Communication, May, 1999.

V. V. Vecheslavov, Zh. Eksp. Teor. Fiz. 119, 853 (2001)
[JETP 92, 744 (2001)].

V. V. Vecheslavov, Preprint of the Budker Institute of
Nuclear Physics (Siberian Division, Russian Academy
of Sciences), Novosibirsk, 1999, no. 99-69.

V. V. Vecheslavov and B. V. Chirikov, Zh. Eksp. Teor.
Fiz. 120, 740 (2001) [JETP 93, 649 (2001)].

V. V. Vecheslavov, Zh. Eksp. Teor. Fiz. 109, 2208 (1996)
[JETP 82, 1190 (1996))].

V. V. Vecheslavov, Pis ma Zh. Eksp. Teor. Fiz. 63, 989
(1996) [JETP Lett. 63, 1047 (1996)].

V. V.. Vecheslavov, Physica D 131, 55 (1999).

G. M. Zaslavskii and N. N. Filonenko, Zh. Eksp. Teor.
Fiz. 54, 1590 (1968) [Sov. Phys. JETP 27, 851 (1968)].

Trandlated by V. |saakyan



Technical Physics, Vol. 48, No. 9, 2003, pp. 1090-1102. Translated from Zhurnal Tekhnicheskor Fizki, Vol. 73, No. 9, 2003, pp. 12-23.

Original Russian Text Copyright © 2003 by Tropp, Bakaleinikov, A. Ender, |. Ender.

THEORETICAL AND MATHEMATICAL

PHYSICS

Asymptoticsof Collision Integral Matrix Elements
in the I sotropic Case

E.A. Tropp*, L. A. Bakaleinikov*, A. Ya. Ender*, and |. A. Ender**

* | offe Physicotechnical Institute, Russian Academy of Sciences,
Politekhnicheskaya ul. 26, . Petersburg, 194021
e-mail: bakal @ammp.ioffe.rssi.ru
** Q. Petersburg State University, Universitetskaya nab. 7/9, S. Petersburg, 198904 Russia
Received February 20, 2003

Abstract—The method of nonlinear moments, when used to solve the Boltzmann equation, necessitates the
calculation of collision integral matrix elements. The matrix elements are hard to calculate numerically, espe-
cidly at large indices. The asymptotics of the matrix elements are constructed. In terms of the model of
pseudopower particle interaction, a formula free of summation is derived. This makes it possible to find the
asymptotic behavior of linear and nonlinear elements when two indices are large. For an arbitrary interaction
Ccross section, asymptotic expansions of linear and nonlinear matrix elements in one index are obtained. For
Maxwellian molecules, asymptotic formulas are derived for three large indices. © 2003 MAIK “ Nauka/lInter-

periodica” .

INTRODUCTION

In solving the Boltzmann equation by the method of
nonlinear moments, the distribution function is repre-
sented asthe expansion in basis functions and then a set
of differential equations for expansion coefficients is
solved. However, with such an approach, one faces dif-
ficulties when cal culating the matrix of the moments of
the nonlinear collision integral. With large indices,
associated formulas become so awkward that the
matrix elements (MESs) are impossibleto calculate with
modern computing facilities. For example, formulas
containing sixfold summation have been derived for the
isotropic (in terms of velocities) Boltzmann equation
even under the assumption that the scattering cross sec-
tion is independent of angles of scattering [1]. In [2],
formulas with quadruple summation were derived for
an arbitrary angular dependence of the cross section. In
calculating with the expressions obtained [1, 2], the
machine time rapidly grows and the accuracy drops
with increasing ME index.

In [3], recurrence relations for the matrix elements
were obtained for the isotropic Boltzmann equation
under the assumption that the collision integral is
invariant under basis. It turned out that nonlinear MEs
can be expressed through linear ones. It was shown [4]
that the same is true for the Boltzmann equation that is
axisymmetric in terms of velocities, when the distribu-
tion function depends on two variable velocities. The
authors of [4] aso studied the structure of the collision
operator and ME propertiesfor the spherically symmet-
ric interaction potential. They determined that unique
set of indicesthat provide nonzero nonlinear MES. Fur-
thermore, it was found that the vanishing of a number

of nonlinear MEs results in additional relations
between isotropic and nonisotropic linear e ements, so
that the latter can be expressed through the former. This
means that all nonlinear axisymmetric MEs can be
found through linear isotropic ones. That is why the
study of MEs for the isotropic case is of particular
importance.

The approach to calculating MEs using recurrence
relations [3, 4] has made it possible to significantly cut
the computing time and, accordingly, to compute MEs
with indices up to 128. MEs with still greater indices
can be computed with an asymptotic approach. It also
allows one to trace the ME behavior when indices tend
to infinity and study the dependence of MEs on the
scattering cross section of colliding particles.

In thiswork, we constructed the asymptoticsfor lin-
ear and nonlinear MEsin theisotropic case and derived
aformulafor linear MEsthat isfree of summation. This
formulafollows from a model of pseudopower particle
interaction, which assumes that the interaction cross
section depends on the velocity in the same way as in
the case of power potentials but the angular distribution
isisotropic. With this formula, we managed to find the
asymptotics of linear and nonlinear MEs when two
indices are large. For Maxwellian molecules, the three-
index asymptotics of MEs s found.

BASIC RELATIONSHIPS

When the method of momentsis applied to solve the
Boltzmann equation, the distribution function is
expanded in basis functions and the equation is split
into a set of equations for the expansion coefficients.
If the distribution function is isotropic, Sonine polyno-
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mials

)

o« F(r+32)x%
52092 3 St (p+ )

are usually taken as basis functions.

These polynomials are orthogonal to each other
with the Maxwellian weighting function M(v, T):

J’M(v, To) Sya(Mv?/2KT ) Syp(mvi/2k T vidv = v, 3, |,

M(v, To) = (M/2KTom0)*2exp(-mv?/2kT,), @)

v, = (2r+ )1/ (2r).
Here, misthe mass of a particle, T, is the gas tempera-
ture, k is the Boltzmann constant, and v, is the squared

norm of a Sonine polynomial. In the isotropic case, the
expansion of the distribution function has the form

f(v,t) = ngM(v, Ty) z C,(1)S,(mVI2kT,), (3)
r=0
where n, is the numerical density of the particles.

Substituting this expansion into the Boltzmann
equation with the subsequent multiplication of both

sides of the resulting expression by S, (mv2/2kT,) and
integration over velocities yields

dc/dt = § K, .C.C,.

ryrs,

(4)

The matrix elements KL, ., are determined through
the collision integral I(f, f):

r —
Krl, r, =

Doo Ml Iz 2 0
4n5§w| (MSy),, MS},) v dvla/ v,. (5
0

The collision integral I(f, f) is a nonlinear integral
operator given by

I(F, 1) = [(f(v) f(vo) - T(V) F(v))go(g, O)dv Edk(é)

Here, v, V', v4, and v, are the velacities of colliding
particles before and after collision, g = |g| = [v — V'] is
the relative velocity of the particles, k isthe unit vector
directed along the relative velocity vector after colli-
sion, and a(g, ©) isthe differential scattering cross sec-
tion. The angle of scattering © is found from the rela-
tionship cos® =k [o/|g|.

If one of theindices (r, or r,) of the matrix element

K[l, -, goesto zero, the collisionintegral turnstothelin-

ear operator.
Expressionsfor linear and nonlinear MEsin the case
of arbitrary power interaction potentials are given in

[3]. The linear MEs K , and K, o involve one-tuple
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sums, the number of termsin which depend on the min-
imal value of the indices n and r. The expressions for
the nonlinear elements in the case of power interaction
potential sinvol ve quadruple sums, which are extremely
difficult to calculate when the indices are large.
Because of this, it was suggested [3] that the elements

K[P -, be calculated with the basic relationship between

the matrix elements, which follows from theinvariance
of the callision integral under basis. This relationship
has the form

r 1 r
K n = —[(n+p—r—1—l1)|— —-1,n
PTp o ™

+rKS L a=(N+ DKLy ned]

and allows one to sequentialy find MEs with an
increasing first subscript. A similar relationship can be
written for MEs with an increasing second subscript:

co_ 1 :
Kl o= =[(n+p-r—1—p)L, ,_
= Sln+p ) A @

+rK = (N+ 1Kps g poa].

Clearly, from relationships (7) and (8), one can find
nonlinear MEs with arbitrary indices provided that the

linear elements Ky , and Kj, o are known.

This computing scheme was applied in [3] to calcu-
late nonlinear MEs and allowed us to rai se the maximal
number N, of expansion termsup to N, = 128. It turned
out that the calculation of large-index nonlinear MEs
requires linear elements to be known with a high accu-
racy. To meet this requirement, precision arithmetic
procedures that ensure calculations accurate to a high
decimal place were applied [3]. The final error in MEs
with Ny = 128 were no larger than 1078, This makes it
possible to directly check the convergence of asymp-
totic formulas. The construction of the ME asymptotics
allows one to extend the computing procedure to the
range of very large indices.

ASYMPTOTICS FOR LINEAR MATRIX

ELEMENTS
The expressions for linear MEs have the form [3]
oo [ﬂ-kTq]u r!
Pt Hm O (s a2)2n
min(n, r) (9)
x5 29W] (g + P+ 3/2) /g,
q=1
Kr _ [ﬂ'kT(D“ rl
MmO sa2)2
min(n, r) (10)

x Y 2PW T (q+ p +3/2) Jg/q.

a=1
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Here,

w' = HEu+D. (pu+n+r-29-1)
" (n—ag)!(r—a)!
_ _I(=p+n+r—2q)
RGO IGEC (T
The above expressions were obtained for the case of
power interaction potentials when the angular and

velocity dependences of the cross section can be sepa-
rated; that is,

(11)

o(g,0) = ;- 'F,(sn@/2)).  (12)

The parameter pin (9) and (10) and y are related as
M =y/2, and the coefficients J, and Jq aretheintegrals
of the angular component F,(z) with the weights z1 and

((1-29-1), respectively:
1
J, = 4nIFV(z)zqdz,

(13)

1

Jq = 4TtIFy(z)((1—z)q—1)dz.

Works concerned with the kinetic theory of gases
often use the model of pseudopower potentials of parti-
cle interaction, to which differential cross section (10)
with F(2) = 1/41t corresponds; in other words, particle

M(-u+n+r-2q) =

TROPP et al.

scattering is assumed to be isotropic. Then,
_ 1 ~ 1

0 g3t BT gai b (139)

In this case, expression (9) for linear MES can be

transformed into a form that is much more convenient

for asymptotics construction and numerical calculation.

Before making this transformation, we note that the
sumin (9) in view of (13a) takes the form

min(n, r)
z 2°W) M (q+ 1+ 3/2) /9!
min(n, r) q:l (14)
_ o2l (Q+ P+ 32)F (p+n+r—2q)
2 2 - o)

The factorials entering into the denominator of the
sum are rearranged as

J

rl

(r_q)l = (

r—-q+1)...(r=2)r
_ r! _ (=) (13)
(=1)%(=r)(=r +1)...(=r+q-1) (Mg’
(n-a) = G (19)
Here, (a), are Pochhammer symbols
(@)o =1, (a) =a(a+l)..(a+q-1); (17)

g=123,...,

and the function I in the denominator of sum (14) can
be expressed as

Tt

Tt

sin(mw (-1)"" I (1 + p—n—r +2q)
3/2

(18)

sn(rp) (=1)" TR (g (W 1 —n—1)/2)F(q+ (L + 1—n—r)/2+ 1/2)

Substituting (15), (16), and (18) into (14) and taking
into account that (a), = I'(a + p)/I'(a), wefind

Th(p+1/2)(=1)" """
AG(—)(n+ DI(r + D'sin(muF(u—1—-r—n)
" (U2 (n-1)(r-1)
Z (M=1=r=n/2(u-1-r—-n)/2+1/2),p"

p=2

S =

Now we note that

9]

@y(0)o(Qss - Lab,
2 @ @0 - B @

If one of the superscripts is a negative integer, the
series contains a finite number of terms and the sumin
(19) can be represented as

geometric function 5F, %ﬁ b, c

min(n, r) +1 (l.l + 1/2)p(_n _ 1)p(_r _ l)p
Z (M=1-r—-n)(L—1-r—n)2+ 1/2),p!

MH+1/2-n-1-r- :%(21)
E&u 1-n-n2(n-1- n—r)/2+l/j

4+ 1/2)(=n-1)(-r—1)
(M=1-r—-n)(p-r—n)
According to the Saalschutz theorem [5], if ¢ = -m

—1-

(misaninteger) ande+d=a+ b+ c + 1, the hyper-

z= 1% isgiven by

abm

(d—a)d—b),
22
Dd1+a+b = = e, @
TECHNICAL PHYSICS \Vol. 48 No. 9 2003
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C(-W2-1-n/2—=1/2)g. 1 (W2-12-n/2—1[2+ R + 1), ,
T (W2=U2-n/2—-1/2)g 1 (—/2-1I2=T/2+ Ry)g. 4 23

-1

A+ 12)(=n-1)(-r—-1)

(H=n-r)(u-n-r-1) -

Here, R = min(n, r) and R, = max(n, r). Taking into
account (23) and (19), we find that the linear ME Kg ,,
is given by

- KT rng
YT U m O a2)2 2
><r(u+]JZ)r(r+n+2—p)
F(—)(n+1)!(r +21)! 24
) (cu—n—1)/2— D, —n—1)/2+ R, + 1257
[ (M=1-n=1)/2r1(-H—N=T)/2+ Ryg,,
_1_4(u+112)(n+1)(r+1)}
(H=n=r)(u-n-r-1)J

Expression (24) is the desired representation of the
linear ME.

Numerical calculations show that linear MEs with
dightly differing indices r and n are the greatest; con-
sequently, it is precisely in this case that the asymptot-
icsisof greatest interest. Expression (24) allowsoneto
construct such an asymptotics. Let usassumethat r — oo
and n — oo, so that the difference between theindices
remains constant; that is, R —» o0, R; — o0, and A =
R; — Risfixed. We will first find the asymptotics of the
fraction Z;, which contains Pochhammer symbols in
the brackets of (24). Taking into account that r + n =
2R + A and using the relationship

@—(R+1)g.; = @—(R+1)(a—(R+1)+1)
O-R+D+R = () a+ Da+2) (25
(=0 + (R+1)) = (1) (=0 + D).y,

we transform Z, into the form

_((p=n=-1)2-Dg 1 ((L—N=1)2+ R +1/2),,

Z, =

(M=1-n-1)/2)g. 1 ((-M—=N=T)/2+ Ry)g,,

_ ((u+D)2+ 1) (M+A+1)/2)g. s

T (R +D)2)rea (R + D+ 1)2)psy

In going from Pochhammer symbols to the ratio of
the " functionsand using the asymptotics of theratio of
large-index I functions (see, e.g., [9])

% =P+ 2iZ(O( —B)(a+B-1)+ O(z‘zg,(ﬂ)
Z—> 00,
we come to
z, = 22“*1—rm‘fg +A)1)(R+ ™
(28)

xp+§ﬁ§;5@u+nA+0«R+n*ﬂ,
R — o0,

The asymptotics of the second fraction, Z,, in the
brackets of (24) is obvious:
TECHNICAL PHYSICS Vol. 48
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(26)
7 = Au+12)(n+1)(r+1)
27 (u-n-r)(H—n—r—1)
_ (U U)(R+D(R+A+1)
T ((-M2-R((n-D)2-R-12)
= (H+JJ2)[1+HR++312+O((R+1)‘2)} R—r oo

The asymptotics of the coefficient multiplying the
bracketsin (24) iseasily found by applying the duplica-
tion formulato theI" function in the numerator and for-
mula (27) for the ratio of I' functions:

NG(r+n+2-u)

= = o1t
F(r+3/2)2" " ""?(n+1)!(r + 1)!

x —u—2_1_ B
(R+1) Jﬁ[l+2(R+1)

R—»OO

+0«R+n*ﬂ,
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B=((-u+A)=-2)(—u+A)/4
+(u-A-1)(-pu+3A+1)/4—-(A,—1/4),

30
(D r<n (30)

EA r>n.

Taken together, (28)—(30) yield a final expression
for the linear element asymptotics:

M(—p+A)

C(U+A+ 1)(R+ D

' ]
Kon = P(1) 52“

x [1 + 5(—%-1—) +O((R+ 1)‘2)} _ 2N+ 32)
+ B+2u+1

*(R+ 1)_“_2[1 2(R+1)

-0
+O((R+1) )}%(31)

R—»OO,

_ KT T (0 + U2)ng

U e
A =B+A2u+1).

P(u)

From (31), it follows that the asymptotics of KB, n
has two parts with the principal terms behaving as (R +
D*-1 and (R + 1)*-2, respectively. Which of them
specifies the asymptotic behavior depends on : with
K > =1/2, the first term dominates; otherwise, the sec-
ond prevails. With 1 = 0, the found terms of the asymp-
toticsvanishif A # 0. If A =0, we have

Kor = mo(r+ )7 (1+0((r+1)%). (3
This result corresponds to the well-known formula

for alinear element in the case of pseudo-Maxwellian
molecules:

n 5
r+1 "

Now we will find the asymptotics of linear MEs in
indicesn and r for the general case, i.e., for nonisotro-
pic differential cross section (12) of particle interaction.

Consider first the asymptotics of Kg,n ar— o and

fixed n. Using formula (27) for the ratio of the large-
index I" function, we find from (11) that

Kon = (33)

n 1 n—q-p—1
W' = —————r"H
4 T () (n-q)!

x[1+2—1r(n—q—u—1)(n—3q—u) +O(r_2)}, &

[ —> 00,

TROPP et al.

From (32), it follows that the sum in the expression

for Kg , isan asymptotic expansion and that the major

contribution is due to the term with g = 1. Substituting
(34) into (9) in view of (27), we obtain for the first

termsin the expansion of Kg ,

KL = [ﬂ-kTq]u ng I(u+5/2) 2—rrn—u—5/2
on = Tm 0 527 (quy(n - 1!

d —u- —u-
X%ﬂl"'%[\]l%n : Z)Z(n 2 3)_% (35)

+23,(m+5/2)(n— 1)} +00 ) 1 e,
0

The asymptoticsin terms of the second index can be
found in asimilar way:

W' = M—p+n+r—2q) _ 1
" T()(r=ag)f(n-g+1)  [(-u)(r-q)!
xn—u+r—q—1
L (36)
X[1+ 5= =a-D( - p-30) + O
n—»OO,
which gives
= kT rn I (u +5/2)
*" U m U 4 32)2 2T ((W)(r = 1)!
—n_r—p-20 1 r—u=2)(r-p-3
x27n uz%ﬂl"‘ﬁ[*]l( K )2( H—3) (37)

+23,(1 +5/2)(r — 1)} +O(M)E n—-o.
0

The asymptotics of linear MEs with another
sequence of subscripts can be found from (35) and (37)

with Jq substituted for Jg This follows from compari-
son (9) and (10).

ASYMPTOTICS OF NONLINEAR MATRIX
ELEMENTS

The results obtained in the previous section,
together with recurrence relations (7) and (8), allow us
to construct the asymptotics of the nonlinear elements

Krpy - In terms of the pseudopower interaction model,

one can find the behavior of KL, , wWithfixed p and large
r and n, substituting asymptotics (31) into recurrence
relation (7). It should be borne in mind here that R =
min(r, n) and that it is necessary to consider two cases

TECHNICAL PHYSICS Vol. 48
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in order to calculate theresult of substitution. Inthefirst
case r > n,whichyidldsR=nandA=|r—n|=r—-nz
1. Inthe second case, r < n and, accordingly, R=r and
A=n-r=0. Passing in therecurrencerelation from the
variablesr and nto Rand A, we find for these cases

roo_ r(—p+A-1)u p-1
K., = P(L) [~ 2= 2ok(R+ 1

+O((R+ )" )= (u+3/2) 2" {(R+1)™? (389

_y_3. U
+O((R+1)™*% g r>n,
|

(- +A+1)
D—_—_—_——

r _ p-1

+O((R+ D" )= (u+3/2)27 " {(R+1)™? (38b)

y-3.
+O(R+1)™ %O rs<n.
0

To find the asymptotics of elements K, ,, one must
consider three cases, namely,r >n+ 1, r=n+1, and
r<n+ 1 Thisis because for K7 ,, which enter into

recurrence relation (7) with p = 2, it is necessary to use
(38a) or (38b) depending on the relationship between g
and m. Thisyields

D_(—U +A—2)2l1

Ken = P DRGis Ay 2R D

+O((R+ )73 —(u+32)2* Y(R+1)™ 2 (39%)

_y_3. U
+O((R+1)"°) g r>n+1,
]

r r(-p+1)u u-1
K, = P(u) b =lo¥(R+1

+O((R+ 1" A —(u+3/2)27 " H(R+1)™ 7 (39b)

_y_a3. U
+O((R+1)™"°) g r=n+1,
O

r _ Dr(—H+A+2) -1
Kon = P(H)WZH(RJJ)“
+O((R+ 1" )= (u+3/2)27" {(R+1)™" 2 (3%)

+O((R+ 1)_“_3)E1 r<n+1.
0

TECHNICAL PHYSICS Vol. 48 No.9 2003
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Now formulas (31), (38), and (39) for the asymptot-

ics of elements K}, , a p =0, 1, and 2 can be repre-
sented in the form

r Or(-pu+fr—n—p) .u n-1
Kpn=P 2(R+1
P (H)DDI'(u+|r—n—p|+1) ( )

+O((R+ )" A = (u+3/2)2 " H(R+1) "% (40)

+O((R+1)"% g
[l

One can prove by induction that thisformulais aso
valid for p > 2. Three cases should be considered in this
caerzn+p+ln<r<n+p+1andr<n. Sucha
selection of the index ranges stems from the need to
remove the modulus sign in the arguments of the I
functions and also takes into account the r-R and n—-R
relations. Formula (40) represents the ME asymptotics
for fixedpand A = |r —n|, aswell asfor larger and n,
for the case of pseudopower particle interaction.

The asymptotics of nonlinear MEsin oneindex with
the others fixed can be found by the same expedient.

The asymptoticsof the ME K, , withnfixedandr —»
o hasthe form

- rn—p—5/2
Kby = P(U)———
0,n (U)2n+r_2(n_l)!
- - (41)
x [y + Cq(n, ) + O,
0 0
where
-~ KT T (1 +5/2)ng
P = Frd =2 g
Co(n, W) = JE”'“'Z’Z(”'“'?’)—% (42)

+2J,(L+52)(n-1).

Substituting (41) into recurrence relation (7) and
separating out the principa terms in r, we find the

asymptotics of K;, . - For any finiter, the asymptotics of

dlements K|, , is found by repeating this procedure.
One can show by induction that

~( )El( ) rn—p+p—5/2
Kon = P(W)ON=-P)———=5—
P 0 NP2y
(43)

n—-p+p-7/2 n-u+p-972
O 0
Cp(n’ l-l) + ODTD

+ +r+ 2
2" P2 1)

4
u
g
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The coefficients Cy(n, ) arerelated as
n+ 1

= 2L, an -5

—i(n=—u+ p=6)(n=p+ 1),

Prior to finding C,(n, p) in explicit form, we note
that Cy(n, W) as afunction of nisalinear combination
of power functionsn' (i =0, 1, 2) and the operator

L(F() = F(n) -LF(n+ 1)

Cpor(n+1, U)E
(44)

Co(n, )

transformsn' (at i > 0) into alinear combination like

Z Tin'.
j=-1
Taking into consideration that L(n™) = (1/2)nt and
that the free term in (44) is a combination of the same
power functions of the index n, we arrive at

%Fz(n) + SR)IA - 3pA, - 2p3]

Co(n, p) =
+ 2R M)Ay — 2pA, + 3p(p—2)A, + 23,p(p + 1 + 4]
. L (45)
(p 1)| —l(n)[AO+A2 Al(p 2)

+A(p—-1)(p-5)+2J,(p-1)(u+4)],
where

AZ = ‘Jl/2’ Al = (“.+5/2)(2\]2_\]1),

3 46
:-2_181+2)(u+3)—%—232(u+5/2)- )

Notethat formula(43) appliesonly if p<n. Withp =
n, the order of the principal term changes and the gen-
eral sequence of constructing Ky, , by using recur-
rence relation (7) breaks. The asymptotics of elements
with another sequence of subscripts is easily found
from asymptotics (43) and (45) by substituting Jq for

Jg- Indeed, this is true for linear elements Ko.n and

r

Kno and the recurrence relations for finding Kr

through K, o1, Ki ooy, and Kiup ps CO|nC|deW|th

the recurrence relations for finding Kp,n through
Kbt ns K';)__ll n,and Ki_y ., . Therefore,
rn u+p-52
Kon = P(u)[(n p)WJl

(47)

n-y+p-=7/2
r H+p

+ +r+ 2
2" P2 n 1)

. n-u+p-972

Cu(n. 1)+ OfF————

Odaod

TROPP et al.

Co(n, ) = —F <n)+ F1(n)[A1—3pA.—2pJi]
+aFo(n)[Ao—ZpAﬁ3p(p—2)/12+231p<p+u+4)]

. (48)

“(p-1)!
+A2(p—1)(p—5) +23i(p-1) (R + )],
where

, Fou(n)[Ao+ Az —Ac(p-2)

A = Ju2, Ar = (U+52)(2]2-J0),

J ~ 49
A, = ! p+2)(p+3)—§]—2J2(u+5/2). 9

2 4]
Thisasymptoticsisalsovalidfor p<n. If p=n, the

expressions for C.(n, u) and Cn (n, W) can be repre-
sented as

Cy(np) = XD, ),
2 4( +-5/2) s 0
Ca(n, ) = T2 (3, 0y).

This, in view of the relationships Ji = -J; and J, =
J,—2J;, gives Cn (n, p) = C.(n, W. In other words, the
asymptotics of K, , may be calculated from either of
formulas (43) and (47).

With large n, the asymptotics of nonlinear elements

K';), , isfound in the same way. Writing formula (37) in
the form

r_ o~ r
Koo = PUF 3R
s (51)
nr 1l ZD 1 . |:|
x ———[; + =Do(r, p) + O(n),
2 o n 0
where
_ (A r=2)(-p+r-3)
Dy(r, =J

X 2J,(u+5/2)(r - 1),

and sequentialy applying recurrence relation (7), we
arrive at

2
r Oh' "PH- 1,

-
Kp,n = P(u )r(r+3/2)|]2n+r+p 2p| Ji
(53)
nr+p—p—3 1 f_ptpd 0
* ez De(f W)+ O(N )5!
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Do(r, W) = Dy_y(r,p) + (= =3r + p)J;.  (54)

Inview of thefact that D,(r, 0) = (-1 —3r)J; +1J; +
Dy(r, W), one easily finds the coefficient Dy(r, p) in
explicit form:

p
Dy(r 1) = p(=H=3r)Jy+ 5 iJ;+ Do(r, 1)

i=1

+1
= p(-n-3n)3, + EZLR, s py(r ).

(55)

It should be noted that the one-index asymptotics
found above are valid for any angular dependence of
the scattering differential cross section.

ASYMPTOTIC VERSUS EXACT VALUES
OF MATRIX ELEMENTS

The ME asymptotics found in the previous sections
were compared with the results of numerical calcula
tion. First, we contrasted the cal cul ated results for KB, N
with analytical expression (24) for alinear ME in the
case of pseudopower particle interaction. The values of
Ko.n found numerically and those calculated by for-

mula (24) coincide with a high accuracy for p O [-1.5,
1] and for theindicesintherangesO<r <100 and 0 <
n < 100. This supports the validity of the algorithm for

Ko, computation.

The quality of the asymptotic approximations for
pseudopower potentials were estimated with the ratios
N(r; m W) = Ko.n/Kj ., where Ko, denotes the sum of
explicitly separated terms in asymptotics (35) or (37).
The value of Kg, , was calculated by formula (24). It
turned out that an increase in U dows down, albeit

insignificantly, thetrend of Kg, , toward the asymptotic
value. For example, the ratio n(5; n; —1.5) reaches 0.9
at n=18, whilen(5; n; 1) reaches 0.9 at n = 43. At the
sametime, theindex r influences appreciably the close-
ness of the asymptotic and exact values of Kj ,. With
r =3, theration(r; n; W) reaches 0.9 at n = 13; withr =
10, at n = 100. Such high sensitivity of n(r; n; w) tor
readily follows from nonuniform asymptotic expansion
(37). The same situation takes place for the asymptotics
of Kg , inindex r (see formula (35)). In this case, the
rate of approach to the asymptotic value depends
strongly on the parameter n.

Of great interest is to trace the difference between

the exact expression for the ME K, , and itsasymptotic

value as the indices r and n grow simultaneously. This
case is important because linear MEs take the greatest
values near the principal diagonal. Figure 1 showsther
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T(r; A; W)
2 -

Fig. 1.1(r; A W) = Ko a+¢ /KQ a4 VS 1 for variousp and
A=5.

dependencesof theratio t(r; A; W) = RB,M r /K[,,A+r for

various 4 and A = 5. Here, as before, K(r),A+r denotes
the sum of explicitly separated termsin asymptotic for-
mula (31). If pisfar from —1.5, its effect on 1(r; A; W)
isinsignificant. The rate of approach to the asymptotic
value increases with increasing p but slows down as
approaches—1.5. With p=-1.4999 and A =5, 1(r; A; W)
reaches 0.9 at r = 800. The A dependence of 1(r; A; W)
is demonstrated in Fig. 2. It is seen that the value of A

has a noticeable effect on the ratio IZB,AH/K[M+r .As

A increases, the asymptotic and exact values of linear
MEs approach each other at larger r.

Asymptotic formulas (35) and (37) were compared
with linear MEs and potentials that include the angular
dependence of the cross section. In this case, formula (24)
isinapplicable and MEs are found by using a computa-
tional algorithm. We calculated K, for a hybrid

model where the velocity dependence of the cross sec-
tion was taken to be the same as in the hard sphere
model (1 = 0.5) and the angular part is as that for true
Maxwellian molecules [6]:

Fu(©)
_ (cos2¢)™? (56)
4sinOsin2¢(cosz¢ K(sin¢) — cos2¢ E(sinq)))'
Here, © and ¢ are related as
m— 0

(cos2¢)”?K (sind),

and K (k) and E(K) are complete lliptic integrals of the
first and second kind, respectively.



1098 TROPP et al.
T(r; Ay W ne, p, n; W
3_:: A: 2.0k : p:
E —1 : l\ —1
' ----3 ----3
1 | =0.
1 T e 5 i p=0s5 . 5
2 —— 10 1.5¢ i r= —— 10
I \
: \ \'\
1_:55 e _ Lok el BRI SETIVTSTYNONON
V 7
: 7
: 7 \
Or 7/ 0.5F |
/
/
/
_1 I/ | | | | 1 1 1 | 1
0 20 40 60 80 100 0 10 20 30 40 50 n
’
Fig. 2. 1(r; A, ) = RB,A+T/KEJ,A+r vs. r for various A and Fig. 3. n(r,p, n; W) = krp,n/Kfp’n vs. n for nonlinear MEs
nu=0. at various p.

Dependence (56) has a singularity at © = 0. When
calculating J, and Jq by formula (13), we used the
approximation

Fu(®)=Fu(2

:F

5/4

(1.00005 + 0.927579./z + 0.2163382), (57)

z = sin“@/2.

With such an approximation, the error in determin-
ing Fy, (©) does not exceed 10, Basically, the depen-

dencen(r; p, n; W) = IZB,n/K[)'n on the parameter n(r)
atr — oo (N — o) for Maxwellian moleculesis the
same as for pseudomol ecul es.

Figures 3 and 4 compare the asymptotics of the non-

linear MEs K'p,n (see formulas (43), (47), and (53))

with the values found numerically for the pseudopoten-
tial at p = 0.5. In the former figure, the ratio n(r, p, n;

W) = Kpn/K}, , isplotted against n for fixed r and p. As
for linear MEs, the place where the curve begins to sat-
urate in terms of n depends considerably on the two
other indices. The same situation takes place for the
asymptoticsinr, asfollows from Fig. 4. Such behavior
is explained by nonuniform asymptotic expansions
(43), (47), and (53). The ratio 1(r, p, 4; W =

Ko,a+r/K}, 5, asafunction of r with fixed pand A is

shown in Fig. 5. The asymptotic value, in this case, is
reached faster than for the asymptotics in both r and n.

ASYMPTOTICS OF MATRIX ELEMENTS
FOR MAXWELLIAN MOLECULES

The asymptotic formulas derived in the previous
sectionsrefer to the caseswhere one or two ME indices
tend to infinity. Of interest also isthe asymptoticswhen
all three indices are large. We will show how such
asymptotic formulas can be found in the general case
for Maxwellian molecules. To be more specific, we will
consider molecules of the Maxwellian type, for which
the cross section varies in inverse proportion to g and
the angular dependence F(2), through which the coeffi-

cientsJ,and Jq in (13) are determined, isarbitrary. For
such molecules, the situation isthe simplest, since MES
are other than zero only if the sum of subscripts equals
asuperscript.

Here, it is more convenient to normalize the angular
part of the cross section as

F*(2) = 41F(2). (58)

Note that, for truly Maxwellian molecules, the
angular component F*(2) of the cross section hasanon-
integrable singularity and is defined by the function
Fwu(2) given above.

Previoudly [4], the formula that relates nonlinear
MEs through linear ones for Maxwellian molecules
was derived:

p
KL = p,n, 3 y ki, (59)

where K;),o is given by formulas (10), (11), and (13).
For Maxwellian molecules, the expression under the

summation sign in (10) is always zero except for the
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n Vs. r for nonlinear MEs

Fig.4.n(r, p, n; u)—Kpn K
at variousp and n.

casen +r = 2g. Since g < min(n, r), such an equality
may hold only if g =r = n. Eventually, we have
1

Ko = IF*(Z)((l z)' ~1)dz. (60)

Substituting (60) into (59) and changing the order of
integration, we find

Khp= p, jF*(z)(l 2)" z< 1) (1 -2 dz(6Y)

Thesumin (61) iseasy to calculate, and we arrive at
1

r ! e
Knp = n!rp!IF*(Z)Zp((l_z) P~ 8,08, n)dz. (62)
0

In what follows, we will be interested only in non-
linear MEs; therefore, the last parenthesized term of the
integrand may be omitted. In (62), it is more convenient
to integrate over a symmetric interval by introducing a
new variable of integrati onz=(1-x)/2:

' s L X" =X ><D

Here, x(x) = F* ((1 - x)/2) and x = cos0.

Consider a function normalized within the interval
(-1, 2):

o = SRIEY T wemee
_ SNI(N=n)!
P=2 (N+1)!
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MEs at various p and A.

p,a+r Vs 1 for nonlinear

Substituting (64) into (63) and taking into account
that r = N for Maxwellian molecules, we cometo

1
Ko = R X008 w0 x.
-1

(65)

Itiseasy to check that the function §, (X) hasasin-
gle maximum at X, = 2n/N — 1. It is essential that the
position of the maximum depends on the ratio n/N. It
should be emphasized that nonlinear MEs have so far

been expressed through the coefficients J, and Jq, that
is, through the moments of the scattering cross section
angular component that have the functions §, \(x) and
S\, n(X) with peaks at the extremes of the interval. This
is the reason why large-index nonlinear MEs are diffi-
cult to calculate. The use of moments with the function
S, n(X), for which the maximum position depends on n,
eliminates this difficulty.

Figure 6 shows the function §, \(x) for N = 10 and
n=0, 2,5, and 10. It has awide maximum, being sym-
metric at n/N = 0.5. Asthe quantity 2n/N — 1 approaches
the extremes of theinterval, the function becomes more
asymmetric.

Figure 7 shows the function S, \(x) for different N
and n/N = 0.5. The peak grows with N, becoming nar-
rower. Inthe limit N — o0, §, n(X) tendsto d(x). For
arbitrary n/N, the function S, (x) passes to (X — Xg) in
the l[imit N — co. Now it becomes obvious that for-
mula (65) asymptotically (at large N) tendsto

1 1
Khnon = 53X (%) = qgF*(L-1/N). (66)



1
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-0.4 0 04 0.8 x

Fig. 6. Function §, n(X) at N = 10 for various n.

Figure 8 compares the quantity (N + 1) Kr'f n_n With
the function F* (1 — n/N) for various N. Even with N =
30, the zeroth-order approximation is seen to give a
good estimate of MEs. A more accurate result can be
obtained from the asymptotic expansion of the integral
in (65) for larger N.

Consider the integral

1

Ip.n(N) = IX(X)&, n(X)dx = I%J’X(X)wp,n(X)le- (67)

Let theratios a = p/N and 3 = n/N remain constant
at N — oo, We represent the kernel w, (X) as

Wy n(X) = DIZ)% Eﬂ_z = expEﬂn
"
+pinES20 = exp(g(x).

The function g(x) has a maximum at the point x, =
B —a, whichisnaturally coincident with the position of
the maximum of wy, (x). The width of the maximum is
found from relationship

|—1/2 _ (4np)”2
N3/2

Separating out the parameter N in the exponent of
(68), wefind for integral (67)

_ rfap”

|g"(xo) |:| N D

1

1oa(N) = B[XCOCPNF()AX.  (69)

TROPP et al.

Sy N0
6 L

0 1 1 1 1
-0.8 -0.4 0 0.4 0.8 x

Fig. 7. Function S, \(x) for various N and /N = 0.5.

Here, the function

f(x) = Bln%l;)g+aln%12)q]

doesnot depend on N, and theintegral itself can be esti-
mated by the L aplace method. With a #0and 3 # 0, the
position of the peak lies within the segment [-1, 1] and
the asymptatics can be found by putting x = (1), where
the function Y(t) isimplicitly defined by the relation-
ship f(x,) — f(X) = 12 and by the expansion of the load

function x(Y(1))y'(1) into the series § ' ¢, T¢in the
vicinity of the point T = 0 (see, eg., [7]). Thisyields

_ 1 NG [T Ca(2K)!
nn(N) = B J; 2 N K

kk=0
_1 Nf(xo)[%

The quantity P is the integral of the kernel wy, n(X)
and can aso be considered as an integral of Laplace
type. The asymptotic estimate of the integral has the
form

(70)

+ 10—2 +O(N?H

1 1

P= Ilwn, S(X)dx = IleNf(x)dx

= M JTNT 5 a¢(2K) (71)
AN
. Nf(xO)[Eﬂ +1'd—2+O(N_2)E
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where the coefficients d, are found by expanding the
function '(1) into a series.

Substituting (71) into (70) and calculating ¢, and d,
yields

= X0) + 21~ B)X (%) + OB (4]

+£(6(B - )X () + 3(2-11aB)X (%) (72)

—10(B - a)aBx"(Xo) + 3x""(xo)(aB)2)N% +O(N).

Note that asymptotic expansion (72) makes sense
even if a = p/N or B = n/N vanishes. However, in this
case, the position of the maximum is at an extreme of
the segment and such away of finding the asymptotics
becomesto some extent invalid. To find the asymptotics
of integral (67) at small 3, we represent it in the form

LoN) = 2 ;x(xﬂ%gg%% dx
(73)
J'x(x)En_ expa\llnD z%d

Changing the variable and expanding the load func-

1101

N+ I)K,}l\fN_,,

16}
14 ----N=5
........ N=10
12+ —— N=15 y
-—N=20 /
10+ - N =30 !
—— Fy(1 -n/N)

6

4 A

2’-.—.;,—..—.:-‘-:-'-7' """" | | | | ! I

0 01 02 0.3 04 05 06 07 08 09
n/N

Fig. 8. (N + l)Kn N_n VS /M at various N. The function

Fm(1 —n/N) is plotted for comparison.

tion in the vicinity of the point x = -1, we find

La(N) = X(=1) + 2(n+ DX (1) + (~4X (1)
(74

+O(N).

+2(n+ 2" (D)

Note that expansion (74) coincides with (72) at 3 =
0. Hence, formula (72) can be used to asymptotically

evaluate the MEs K, _, for any value of the index n.

Table 1. Zeroth- (AQ), first- (Al), and second-order (A2) approximations of the quantity (N + 1)K ?1_0)N’ an Calculated by
asymptotic formula (72), as well asits accurate value (C) obtained by numerical calculation, for truly Maxwellian molecules

for several a = p/N

a=1/5 a=2/5 a=3/5 a=4/5
N=5 A0 2.647092 3.500223 5.259962 10.902165
Al 3.157573 4,209428 6.423971 13.930613
A2 3.166976 4.233389 6.503574 14.523547
C 3.169085 4,238322 6.522939 14.790084
N =10 A0 2.647092 3.500223 5.259962 10.902165
Al 2.902332 3.854825 5.841966 12.416389
A2 2.904683 3.860815 5.861867 12.564622
C 2.904944 3.861414 5.864154 12.594127
N =20 A0 2.647092 3.500223 5.259962 10.902165
Al 2774712 3.677524 5.550964 11.659277
A2 2.775300 3.679021 5.555939 11.696335
C 2.775333 3.679095 5.556218 11.699827
N =30 A0 2.647092 3.500223 5.259962 10.902165
Al 2732172 3.618423 5.453963 11.406906
A2 2.732433 3.619089 5.456175 11.423377
C 2.732443 3.619112 5.455556 11.424028
TECHNICAL PHYSICS Vol. 48 No.9 2003
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Table 2. Zeroth- (A0), first- (Al), and second-order (A2)

approximations of the quantity (N + 1) K,':', n—p Céalculated by

asymptotic formula (72), as well as its accurate value (C)
obtained numerically for Maxwellian molecules with n close
toN

n=N-3 n=N-2 n=N-1
N=5 | A 3.500222 5.259962 10.902165
Al 4.209428 6.423971 13.930612
A2 4.233389 6.503574 14.523547
C 4.238322 6.522939 14.790084
N=10| AO 7.084825 10.902165 23.384551
Al 7.934548 12.416389 28.036598
A2 7.980223 12.564622 29.206591
C 7.986631 12.594127 29.682732
N=20| A0 | 14.908958 23.384551 51.526962
Al | 16.089988 25.710575 59.961619
A2 | 16.176542 26.003073 62.438814
C 16.187143 26.056194 63.389937
N=30| A0 | 23.384551 37.017069 82.610505
Al | 24.935234 40.252079 95.319350
A2 | 25.065233 40.702318 99.258378
C 25.080483 40.781345 | 100.736674

Table1 liststhe zeroth- (AQ), first- (Al), and second-
order (A2) approximations of the quantity (N +
1)K[’?N,QN, as well as its accurate value (C) obtained

numerically for Maxwellian molecules. The first
approximation provides a good estimate of MEs even
for N = 5; the second approximation gives the value of

(N+1) KE'N, an accurate to fractions of a percent.

TROPP et al.

For Maxwellian molecules, the angular dependence
X(X) tendstoinfinity at x —= 1, the derivativesincreas-
ing with their order. Therefore, in this range, the value

of (N + 1)K2',N_n grows with n that is close to N, as

well as with N — oo, and the asymptotic estimate is
found under very “stringent” conditions. However,
approximation (72) remains good, as demonstrated by
Table 2.
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Abstract—A hydrodynamic method with slip is used to construct a theory of uniform thermodiffusiophoretic
transfer of avolatile high-viscosity two-layer particle under conditionsin which one component of amoderately
rarefied binary gas mixture undergoes phase transition on the particle’s surface. The solid spherical core and
high-viscosity sheath of the particle are concentric to each other. The theory suggeststhat, when moving, atwo-
layer volatile aerosol particle may be considered as a homogeneous particle with an effective thermal conduc-
tivity. The effect of the evaporation rate, interfacial temperature steps, and presence of the core on the rate of
thermodiffusiophoresisis considered. Thermal diffusion terms, Stefan effects, and the heat evolution due to the
convective transfer of the evaporating mass are taken into account. Under the same initial assumptions, formu-
las derived in this work are of wider practical significance than those following from the conventional

approaches. © 2003 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Two-layer aerosol particles occur upon vapor con-
densation on solid centers and are frequently encoun-
tered in clouds. They are of special interest in applica-
tions concerned with environmental protection, in
studying the capture (washing-out) of volatile (nonvol-
atile) or radioactive highly dispersed aerosols by
coarser evaporating drops, in investigating aerosol dep-
osition in condensing channelskept at different temper-
atures, in refining chemical engineering design
schemes, etc. In this work, we generalize our origina
approach [1, 2], which takes into account an external
gradient of the relative concentration of one component
in amoderately rarefied binary gas mixture, interfacial
temperature steps, and the presence of a center (core)
with differing thermal properties.

STATEMENT OF THE PROBLEM, BASIC
EQUATIONS AND BOUNDARY CONDITIONS

Let a two-layer spherical particle the outer surface
of which hasaradiusof curvature Rbe placed in aninfi-
nite immobile binary gas mixture with constant col-
linear gradients of the temperature T, A, and the rela-
tive concentration C, A, of one component. The highly
viscous sheath of the particle is a pure volatile liquid
with an evaporation coefficient a. The solid core of the
particle and its sheath are concentric to each other. The
gas mixture, the sheath, and the core of radius Rjhave

thermal conductivities K, k', and K", respectively. The
desired rate of thermodiffusiophoresis Uy, is reached
when the resulting action of all force involved disap-
pears [1]. The problem is solved in the coordinate sys-
tem with the origin placed at the center of the core. The

polar axiszis directed along the vector A; = (OT),,. The
velocity of the center of mass of the environment rela
tiveto the particleis U = —U,,. The stationary tempera-
ture distribution T"(r) inside the core satisfies the
L aplace equation. The assumptions and notation arethe
same asin [1] (see also the end of the text). The condi-
tions at infinity and at the interfaces are as follows.

r—o:v ="Ui, T=Ty+Az, C=Cy+Acz
= R sV = sK7¢OT + KpgOC),

N Chuv -

+Nn,) m
2) L2 2D(0C+Kp0InTH

= C‘V(nl +n,)(Cs—C),

nz) m,

nEH1+

T=T+nQVOT+ V. TOC),

D(OC +KpOInTH = 0,

n{—-kOT+k'0OT) = —Lmav(n; +n,)(C,—C),

r=R.:T =T" nO—«'OT+k"OT") = 0,
F, =0,
_ + C = Ny
p = mng +myny, = o+,

M, _nkrg”

- ~ im0

S oon+n,

Here, the normally directed flux of the first component
of the gas mixture at the interface is represented as the

1063-7842/03/4809-1103%24.00 © 2003 MAIK “Nauka/Interperiodica’
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normally directed flow of the volatile vapor, which is
removed from the interface through the Knudsen layer
and is proportional to the evaporation coefficient a = 0
[1-3]. The substitution of the fraction 2a/(2—a) for the
evaporation (condensation) coefficient a generalizes
the Hertz—K nudsen classical condition [4-6].

However, throughout this work, we use the close
approximation of this fraction, o < 1 (numerical esti-
mates show that the rate of the thermophorertic transfer
of an aerosol particleisamost independent of this coef-
ficient when a ~ 1; at weak or moderate volatile evapo-
ration, this dependence is significant [1]). Temperature
steps are due to local gradients O, T and O,C in the
Knudsen layer that are normal to theinterface. The gas-
kinetic coefficients Vi and V¢ allow usto estimate the
effect of thislayer on the vector velocity field v(r); sca-
lar distributions C(r), T(r), T'(r), and T"(r); and the
desired rate U of the thermophoretic transfer of a mod-
erately coarse two-layer particle. Both coefficients are
of the order of O(A). The analytical form of the coeffi-
cients of stepsin temperature and in relative concentra-
tion of avolatile component in abinary gas mixture for
arbitrary ratios of the molecular masses and component
concentrations, together with techniques for evaluating
the coefficients, isgivenin [7-21]. The parameters K+,
Kps: Vrr, and Ve do not influence the evaporation coef-
ficient a and vice versa. Therefore, in the numerical
analysis which follows, dlip coefficients and interfacial
temperature steps are assigned to anonvolatile particle.
On the core surface r = Rr; the temperature and normal

thermal flux are continuous. In the expansion of the
temperature dependence of the relative concentration
of the volatile saturated vapor into the Taylor series
near T = Tg,, the first two terms are left [1].

Introducing the dimensionless quantities

F=l o g=Y F-_
R’ U * emn,RU’
~ _ T—TO ~| _ TI—TO
T_ATR’T_ATR’ &)
~, _ T'-T, ~ C-C,
™= AR’ c= AR’

and omitting the tilde, we may state the boundary con-
ditionsin the following linearized form:

f—o:v=Ui, T=2z C=z ()]
O
r=1: [(:(,+(1—Co)—nl%Uvr = av
O L'
(©)

[l [
xCy(1) + 95| (T'=1)=Cy— ARCT;
O O

T=1

D’YAKONOV, EFREMOV

[l
(1-Co)Co+ (1~ Co) UV,
U ]

(4)
0. aC KpdTD _ .
+DEA°6r *Ar To arE =0
/ oT
Uvg = —KTslﬁAT 1-8°=
PoTo 0¢ (5)
oC
—KDS,DACA/l—EZ-a—g;
, oT aC.
eT = & T +8TkTTE +8CCOkTCE' (6)
_Ko0T , 0T' _ _Lmavn,
KyOr — or ArKo
(7
0 l
x 1C(1) + 95| (T'—1)—Cy— ARG,
g 0T |-« 0
— . LE— " _K_loﬂ E = -
PERET =T 5 r =0 ®
F,=0. ©)
Here, -1 < & = cosO < +1,
No = N(To, Co, Po), Ko = K(To Co, Po),
KE) = K'(TO, po); KE)' = K"(TO! pO)v
_Tsur_TO _ATR z —ACR <
1= AR <1, &= T <1, €= C, <1,

v
ke = —;DO(Kn), ke = —ILCDO(Kn).

RATE OF THERMODIFFUSIOPHORESIS

vi(r,&) = Pu&) = Y {Byr "+ Dur " Pya(d),
n=2

00

JZ(E) _ Z{(n_l)Bnr—n—l
n=2

J1-82

+(n=3)D,r """}

Ve(rv E) = -2
Jn(&)
J1-82

C(r, ) = r&+ 3 L "'Py(8),
n=0
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T(r,8) = rg+ Y For "IPy(8),
n=0

00

T(rnE) = S{Gr"+Hr "} Py(d),

n=0
T(1.8) = 3 Gir'Py(8).
n=0

The properties of Gegenbauer (ultraspherical) poly-
nomials [1] are defined by the equations (n = 2)

aC,

Cs(T)—Co"'—a:I: (Gp+ Ho—T1) —&cCoyL, = 0,(30)

T=1

Ul m
_FCo+ (1-Co) U (-1 + B, + D)
0 my

(3b)
= PSS (G} + HY —ecCo(l+ Lo,
DaT T=1 D
O m
_Ep0+(1_CO)H%U(Bn+1+ Dn+1)
O 1]
(30)
1 1 D
= GV% (Gn+ Hn)_sCCOLﬂj’
DaT T=1 |:|
€cColo+ &rKipFo = 0, (44)
O m
(1-Co)Co + (1~ Co) U (- 1+ B, + Dy)
O 1] (4b)
D
= ﬁ{ ecCo(1-2L,) +erKip(1-2Fy)},
O m
(1-Co) ICo + (1~ Co) U (B, 1 + Dy )
U 1] (4c)
+2(n+ D{ecCol+ &K roF} = 0,
U(2+B,-D,) = 2Kygm e Ar(1+F))
PoTo
(53)
+ 2KDs|%5cC0(1+ L),
U{an+1+(n_2)Dn+1}
(5b)

n D 0
= n(n+ 1) K ru= 2 AcF, + Kou DecCol .
0 Polo 0
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er(1+ker)Fo—€1(Gg + Hp) + €cCokrcly = 0, (6a)
€r(1+ 2ke7)(1+Fy) —&4(Gi+ Hy)

(6b)
+28cCokrc(1+Ly) = 3(erkrr +€cCokre),
er{1+(n+ 1)k} Fo—(Gr+Hp) (6¢)
+ (n+ 1)8CCOkTCLn = 0,
Ko ArKo
(73)
|:| ! [
xI:ps(T)—Co+(E5 (Gp+Ho—1) —ecCol T,
a 0T |r=« 0
! 1 L
foc1+2F,) + G} —2H; = 1TV
o Ak,
(7b)
X %9—5 (G:II_ + Hi) _SCCO(l + L1)|:|,
00T |1=¢ .
L
K_?(n"' 1)F,+nG,—(n+1)H, = — 1m10‘\"no
o ArKg
(70)
=p . 0
% 0Cs (G, +H!)—e.Col,,
00T |1+ 5
R.Gy+Hy = R.Gy, Hy =0, (83)
RiG;+H; = RiGj,
' ' (8b)
_K_-(iRiG'1+2K—f).H'1+ RiGl =0,
Ko Ko
R G, +H, = R G,
(8c)

K¢ . K¢ , "
— R ING, + =2(n+ 1)H, + R 'nG; = 0.
Ko Ko

In (8b), we may put
5. = K] +2K('D_1 3
o = d-opdt2g R
0 0

Thelinear dimensions and thermal properties of the
solid core spherical core and high-viscosity concentric

sheath (Ko # Kg ) are defined by the single parameter

‘if R =0
q = L¥%.  Hoo TR (10)
1-9, Ko, if Ry =1

Then, upon thermodiffusiophoresis, such a spheri-
cal two-layer aerosol particle may be considered as a
homogeneous object with an effective thermal conduc-
tivity K
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The z projection of the velocity of the center of iner-

tiaof the gaseous environment relative to the particleis + 2kTT£CCOE|ﬂ- 4 LMV NeIC, E (14)
given by 0 Atk 0T |, _ 1O
_ No , O D&"
U= 2KTst T, AT6 2Kpsi5 RS —ZKLCSCCOB—(l c, O(\ISR%(_.I:_
av Koac
[ — —&rKqp
m,[ K aT 0 Lmavn,oCy 0O
Cot (1- CO) =0 T ot (11) +erKpOl + Al OG_TS e
O 7K+ T :TDD
Ko (1 The parameters §, &', and 8" linearly depend on the
_ECCO% * ZZ + 2(ker = kTCKTD)E % evaporation coefficient a:
du g Ko0Csq
where i _ZVCDE(O’ 0 57 — &Koo

= %HZ ODEg+(1 CO)O‘VR]

_ECCO%L + ZKK_S + z(kTT_kTCKTD)ESEly

Lm,avn,pC 0
+ 2— S + STKT
ATK* aT T=1 q] Where
+ 2kTT5 Co—=— D 2%1]-"' AK, oT T: (12 (Ko» Kx) TSI5.D 1c(1-Co) Tk, U
Lm;ngDry
-K +2—+2k 1-Cy) + 2k
ke oK avRAC, Dsl%- TTD( 0) TD ToKy 0
—4——(1-Cp)—=—=—=
&1 CKx D oT| _. 1 <,
_—mz%l + 2K_ +2(kr — kTCKTD)E'
*
O LmoavndCy OO Cot(1-Cp)—
teKppd+ —F——==| 00 my
0 AK, OT .00
ANALY SIS OF RESULTS
5 = R] Lmyavn, I . .
% +(1- Co) at (e+Kip t+ 8CCO)T The derivative dU/da changes sign twice when
T D(Kg, Kye) = 0,
avR 0 Lmavny,dCy L K,0C
+ker[(1-Co)— + 2 + ———= 207 %s -
TTE( 0) 5 Ak, OT T:% ZK* 5T | &rKp
(13) .
kcOd Ko 0Cq - 20 _ =
ETCD Ko OT 800@(1 CO)OLR ECCO%L + ZK* +2(ker kTCKTD)E 0.
T Kx
These equalities are satisfied for spherical homoge-
bodies with athermal conductivity K, = Kj(low
O Lmoavn,d0Cy 00O neous 0~ RL]
+2e;Kp Ol + —-Al—E——Oa—.I_S 00 thermal conductivity) and Kk, < k[j(high thermal con-
O T T=00 ductivity), respectively. These conditions meet with the
corresponding equations [1] for thermophoresis (A =
& = (l c )0(\) R[QC +2e. O 0) of a volatile homogeneous sphere (R= 0) without
D oT|,_, “¢C considering temperature jumps (krt = ke = 0).
O LmovndC, O Figure 1 plots K[{K, against the reduced radius R
+(&rKp + EcCo)%ﬂ- YAk, oT B of the spherical core at different ratios ky/Kj . In gen-

eral, when aspheroidal aerosol particle with aspherica
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core evaporates, its outer radius R decreases and the
reduced radius R, accordingly grows. As follows from
Fig. 1, the effective thermal conductivity increases

(Ko/Kg <1)ordrops(Kqy/Kg >1) andreaches Kk, (that
is, K= Ko ) &t Ro=1.
The effect of volatility on the thermal diffusion sca-

lar fields and rate of particle transfer may be neglected
when

avR _ oLy 0

- <L CS(TO)[Rﬁ_]DD“(TD"
Lm,avRn

kTClKTDl Dl, ;) < chTo.

The temperature distribution and the distribution of
the component’s relative concentration are virtualy
independent of the thermal conductivity of the gaseous
environment if the thermal conductivity of the volatile
particle is high. A gaseous mixture that forms around
the particle transfers an uncompensated momentum to
it largely by thermal diffusion:

avR

L
5 —» (1+ 2kyy)(1—Co) T8 =ULEAL

+2erKqp AK
*

0
TD,

Lm,avny,0C,

+2(1+2(kTT—chKTD))%‘-+ Ak, oT
* T=

avR
o — H(TT + 8(:Co (l Co)—=

Lm,avn
+ (erK7p +cCp) Al ” 0

TN %
Lm,avn,dCq

ArKy 0T | _

0

+ 2(kTT_kTCKTD)%’L+ Bl
T

O
O
T

Lm,avny,0C,
Arky 0T |,
Lm,avn,0C,
ArKy 0T |,

0" — (&rKp + 5(:00)%l +

O

+2€cCo(krr —krcKrp) %1 + 0
=1

Numerical estimates made for a coarse (R = 100 pum)
and a moderately coarse (R = 10 um) homogeneous
drop of ethanol in a C,H;OH-N, binary gas mixture
show that the rate of thermophoresis (A: = 0) strongly
depends on a if the evaporation rate of the drop is low.
With 0.05 < a < 1, this dependence is extremely weak
[1]. At near-room temperatures, the volatility of the
alcohol increases the rate of thermophoretic transfer by
10-13% compared with the rate of thermophoresis for
asolid nonvolatile particle (C, = 0.001-0.100, kyc =0,
K:p = 0). This conclusion is consistent with results
obtained by Bakanov [22, 23], who considered the ther-
mophoresis of a solid nonvolatile aerosol particle.
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Fig. 1. K{Ky Vvs. reduced radius R Ky/Kg = (1) 100,
(22,(3)1(405,(5 0.1 and (6) 0.01.
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Fig. 2. Rate U of the thermophoresis of the ethanol drop vs.
evaporation coefficient a at Ay = 100 K/m, R=10 pm, Cy =
0.01, and K1 = 0 (thermal diffusion is absent). The temper-
ature step k1 in the C,HsOH-N,, binary gas mixture (1-3)
isand (4-6) is not taken into account. The undisturbed tem-
peratures Ty are (1, 4) 283, (2, 5) 303, and (3, 6) 323 K.

However, Bakanov's results virtually coincide with
some of the findings reported in the references of books
[7, 24].

In the case of moderately large particles(R=10 um), a
temperature step raisestherate of thermophoresisby 6
8%, asfollows from Fig. 2.

Figures 3 and 4 plot the a dependences of the ratios
of the thermophoretic (A = 0) and diffusiophoretic rate
(Ay = 0) to the corresponding vel ocity of asolid nonvol-
atile particle with and without considering the temper-
ature step kq for different temperatures.

Our work devel ops an approach that is alternative to
the well-known conventional theories [7, 25, 26]. The
results presented here coincide with the predictions of
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Fig. 3. Ratio U/U' (U' = 2K

thermophoresisfor asolid nonvolatile particle) asafunction
of evaporation coefficient a for R = 10 pm, Cq = 0.01, and

K1p = 0 (thermal diffusion is absent). The temperature step
krt (1-3) isnot and (4-6) is taken into account. The undis-
turbed temperatures Tp are (1, 4) 283, (2, 5) 303, and (3, 6)
323 K.
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Fig. 4. Ratio U/U' (U' = KpgDAc is the rate of diffusio-
phoresis for a solid nonvolatile particle) as a function of
evaporation coefficient a for R = 10 pm, Cy = 0.01, and
K1p = 0 (thermal diffusion is absent). The temperature step
krt (1, 3,5) isnot and (2, 4, 6) is taken into account. The
undisturbed temperatures Ty are (1, 2) 283, (3, 4) 303, and
(5, 6) 323 K.
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Fig. 5. Transfer velocity U for a pure ethanol drop vs. its
radius. (1) Formula from [25] and (2, 3) expressions (11)—
(14) with a = 1 and O, respectively (Ay = 100 K/m, Tg =
323K, Cy=0.1, kyc =0, and Kyp = 0).

D’YAKONOV, EFREMOV

these theories only in the limiting case

n
“‘[’)R, Cy(T,) < 1, n—° <1.

0

In the case of a moderately coarse volatile pure
high-viscosity aerosol particle, theinequality avR/D >
1failsevenif the diffusion evaporation is high (a ~ 1).
When calculated from expressions (11)—14) or by the
formula derived in [25], the rate of thermophoretic
transfer of a single moderately coarse volatile solid
sphere has different values when the evaporation is
weak and moderately high. As follows from Fig. 5,
where the rate of thermophoresis U is plotted against
theradius R of aspherical ethanol drop in the C,H;OH—
N, gas mixture, the difference between our results and
those of the conventiona theory [25] reaches 15%
when a coarse aerosol particle evaporates intensely.
This difference increases to 30% if the binary mixture
is saturated by the volatile component vapor, C, —
C4(Typ), dl other things being equal.

NOTATION

r, radius vector to the point of observation (m);
(r, ©, ¢), spherical coordinates (m, rad, rad); (i, ig, i),
corresponding dimensionless unit vectors; (n, s, iy),
right-hand triple of dimensionless local characteristic
unit vectors; (R, Rp), radii of curvature of the outer and
inner surfaces of the spherical layer of thevolatile high-
viscosity sheath (m); U, velocity of the center of inertia
of the binary gas mixture (m/s); Uy, = -U, velocity of
uniform thermophoretic motion of the volatile particle
(m/s); F, resultant force (N); Kn, dimensional Knudsen
number; v(r), vector velocity field in the gaseous envi-
ronment (m/s); C(r), scalar field of adimensional quan-
tity—relative concentration of the first component in
the gas mixture; (T(r), T'(r), T"(r)), temperature distri-
butions outside the two-layer particle, inside the sheath,
and inside the core, respectively (K); Tg,, mean temper-
ature on the surface of the aerosol particle (K); (pg, To,
Co), undisturbed values of the pressure, temperature,
and relative concentration of the volatile component (at
the geometrical center of the core of the two-layer
particle in its absence) (Pa, K, dimensionless); (Ar =
(0T, Ac = (OC),,), constant gradients of the tempera-
ture and relative concentration of the volatile compo-
nent in the gaseous environment at infinity (K/m, m);
(Ktg, Kpg), dimensionless gas-kinetic coefficients of
thermal and diffusion slips of the binary gaseous envi-
ronment; (Vi1, Vrc and ke, kyo), temperature steps at
the boundary of the condensed phase (K, dimension-
less); D, coefficient of interdiffusion of the gas mixture
component (m?/s); Krp, dimensionless thermal diffu-
sion ratio; [(ny, ny), (my, my), (A4, A,)], numerical con-
centrations, masses, and mean free paths of gas mole-
cules of the first and second sort (m~3, kg, m); (p, n),
density and dynamic viscosity of the gaseous environ-
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ment (kg/m3, (Pas)); (K, k', k"), thermal conductivities
of the gaseous environment, sheath, and core, respec-
tively (J(K m)); (n,,, C), absolute and relative concen-
trations of the saturated vapor of the condensed volatile
phase (M=, dimensionless); L, heat of vaporization
(Jkg); a, dimensionless evaporation coefficient; (i, n'),
molar mass and absol ute concentration of moleculesin
the drop (kg/mol, m3); k, Boltzmann constant (JK);
Ry, gas constant (J(K mol); O, del operator (m™); E?,
second-order Stokes operator (m2); A is the Laplacian
(m?); & = cos®, dimensionless angular variable;

[C27(8) = 3,(8), C,” (8) = Py(£)], Gegenbauer ultras-
pherical polynomials (dimensionless); (B, D, F, G, H',
G", L), unknown coefficients of natural-exponent
expansions (dimensionless); (g1, &), dimensionless
small parameters; (8 9, &', 8"), dimensionless param-
eters.

SUBSCRIPTS

Tdl, thermal dlip; Ddl, diffusion dlip; ph, phoretic
motion; s, saturated vapor; g, gas; TD, thermal diffu-
sion; d, reactive component; v, vector velocity field;
T, temperature; (TT, TC) by temperature steps: the first
T refers to temperature field, and the second indicates
that the step is due to temperature (T) or concentration
(C) discontinuity; 1, 2 by physical quantities refer to
molecules of the first and second sort, respectively; 0
refers to undisturbed parameters; z, projection onto the
Oz axis; n, r, © mean projections onto the normal (n),
radial (r), and tangential (ig) directions; sur, surface.
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Abstract—Whenfast X% ionscollidewith atomic or molecular targets, the total charge exchange cross section

decreases with increasing target density. Thisis because the excitation levels of resulting X9 jonsare sup-
pressed because of ionization by target atoms. The effect of target density on the total charge exchange cross
section may amount to one order of magnitude or more depending on the charge and energy of an incident ion,
as well as on the density and inner shell configuration of target atoms. Numerical calculations are performed
for partial (in the principal quantum number n) cross sections o(n) and total cross sections 0, = Z,0(n) of
charge exchange in the case of collisions of fast multiply charged ions having an energy E in the range
100 keV/u—10 MeV/u with gas or solid targets. © 2003 MAIK “ Nauka/Interperiodica” .

INTRODUCTION
Charge exchange in atom—ion collisions,

XV + A [XOV ]+ AT L)
is an effective mechanism of generating excited ions

[X(q_lf]*, where X% isan incident ion with acharge

g and Aisatarget atom. Thedistribution of ions x@=n
over excited states, which depends on the cross sections
of charge exchange passing an ion into certain quantum
states (partial or selective charge exchange cross sec-
tions), defines the radiation of the ion after collision.
The total (over al final states) charge exchange cross
sections specify the lifetime and mean charge of ion
beams when they interact with atoms and mol ecul es of
a residua gas in accelerators or with plasma targets
[1,2].

In recent years, the spectroscopic properties of

resulting X" ions, especially their radiation in the
X-ray and VUV spectral ranges, have attracted consid-
erable attention from researchers engaged in the phys-
ics of plasma or those that study the interaction of ion
beams with gaseous and solid targets [3-5]. Thisissue
isalso of interest to those researching the diagnostics of
a laboratory plasma heated by neutral atomic beams
[6,7]. Therefore, detailed research into charge
exchange, the distribution of resulting ions over excited
states, and the determination of total cross sections are
of undeniable interest.

In this study, we consider the effect of target density
on the charge exchange cross section when fast multi-

ply charged ions XO‘+ collide with target atoms or mol-
ecules. It will be shown that, as the target density

grows, the probability that X~ ionswill be brought
into highly excited states decreases, since they are ion-
ized by target atoms. As a result, the total charge
exchange cross sections also decrease. The effect of tar-
get density on the total cross section may be relatively
high: about one order of magnitude or higher.

Below, we use atomic units.

PARTIAL AND TOTAL CHARGE EXCHANGE
CROSS SECTIONS

The cross sections of charge exchange that brings
atoms (ions) into quantum states nlj (that is, partial
Cross sections),

XT + A = [ X9 (nlj)]* + AT @

have certain distributions over the levels nlj depending
on the collision conditions (here, n is the principal
guantum number and | and j are the orbital and total
moments of acaptured electron in thefinal state). Inthe
case of statistical distribution, the partial cross sections
and total cross section can be represented as

2j+1 _20+1

mcnn O = —n—z—cn, ©)

Onj =

o-tot = zcnlj = Z Onv (4)

nlj n=ng

1063-7842/03/4809-1110$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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where n, is the ground state of theion X" and o,
and o, arethe cross sections averaged over the quantum
numbersj and |, respectively.

In general, the distribution of ions X~ (nlj) over
levels nlj is defined by Stark mixing of these levelsin
an electric field that is produced in anion beam or in a
plasma by surrounding charged particles, and finding
the distribution over nlj is a chalenge. Experimental
data for partial charge exchange cross sections are vir-
tually absent: only total cross sections have been
reported in the literature. However, in the case of mul-
tiply charged ions, the split of nlj levels may be consid-
erably large. This allows one to measure the emission
intensities from resulting ions, which are known to be
sensitive to partial charge exchange cross sections.
Associated experiments were carried out, e.g., in [8-
10], wherethe partial cross sections of charge exchange
between multiply charged ions and solid or gaseoustar-
gets were determined from the X-ray emission of
related ions. It should be noted that such indirect mea
surements of cross sections face considerable computa-
tion difficulties associated with the need for calculating
the energy levels and wavelengths, as well as the prob-
abilities of radiative transitions in multiply charged
ions.

When the collision energy islow, the total cross sec-
tion of charge exchange between multiply charged ions
and atoms is weakly dependent on energy and is given
by [11]

qx 10‘15C 2

O, =Cconstant=
* (I/Ry)*

®)

where |, is the binding energy of a target atom in the
shell in Rydberg units (1 Ry = 13.606 eV).

The principal quantum number n,,,, of that state of

the X" jon into which charge exchange brings the
ionwith themaximal probability isfound from the clas-
sical model [12]:

N = Q1 (1/RY)*. (6)

As the relative velocity v increases, the cross sec-
tion of charge exchange from the shell with the binding
energy |, drops sharply by the law

vigs 1 0

and has a distribution over principal quantum numbers
n, which peaks at n = n,, and fallsas n=3 for n > n,,,.
As to the distribution over orbital quantum numbersl,
ionsin Rydberg states nl withn > 1 have, asarule, | =
0, 1, or 2 if the collision energy is high (see, e.g., [10—
12]). As the collision energy increases further, charge
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exchange brings the resulting ion X into the
ground state ngl,.

Asisseen, the pattern of excited ion formation upon
charge exchange with atomsis rather complicated even
if the callision energy ishigh. For simplicity, werestrict
the analysis to charge exchange between fast ions and
atoms that brings the ions into states with certain prin-
cipal guantum numbers n;

XT 4+ A —e [ XD ()] + AT, 8

that is, the distributions of the resulting ions over the
quantum numbers | and j will not be considered.

EFFECT OF TARGET DENSITY

The integral (including all states) charge exchange
cross section depends not only on the relative velocity
v and atomic configurations of colliding particles but
also on the target density. For low-density targets, the
summation over levels with quantum numbers n (see
expression (4) for thetotal cross section) goesbasically
from the ground state n = n, to infinity, n = . As the
target density increases, the sum over n is cut off at a

certain ny,, since the states of [ X (n)]* ions are
suppressed by ionization collisions with target atoms:

[X(q_ly(n)]* +A—- X +A+E. 9)

Thus, as the target density grows, the fraction of
resulting ions in excited states decreases and so does
the total charge exchange cross section.

Let usillustrate this using charge exchange between
H-like oxygen ions and helium atoms as an example:

0" +He—» O* + He". (10)

The effective cross sections of ionization, charge
exchange, and excitation when O’* oxygen atomsinter-
act with He atoms at energies E > 1 keV/u are given in
Fig. 1. The cross sections were computed with the
CAPTURE [13] and LOSS [14] codes. In the energy
range E = 1-100 keV/u, the exchange cross section,
according to (5), is quasi-constant, 0 = 1.9 x 10715 cn?,
and then drops sharply by law (7). The cross section of
O™ ion ionization by He atoms reaches a maximum,
Oion = 3.0 x 10 cm? at E = 1 MeV/u. Figure 1 dso
shows the excitation cross section for the 1s-2p transi-
tion in an O™ ion colliding with a He atom. It is seen
that charge exchange is the only process leading to the
formation of excited O%* ions for E = 1-800 keV/u.

Thedistribution of He-like oxygen ions arising after
charge exchange over principal guantum numbersnis
demonstrated in Fig. 2 for E = 100, 400, and
3200 keV/u. As the energy of incident ions grows, the
distribution maximum shifts toward lower n. For E =
3200 keV/u, charge exchange brings the O%* ion prima-
rily into the ground 1s state (ny = 1).



O™ + He

o™ 1~s—2p

10° 10" 102 10° 10* 10° 10° 107
Ion energy, keV/u

Fig. 1. Cross sections of charge exchange, ionization, and

excitation upon collision of O™ ions with He atoms. EC,
charge exchange cross section; He ion, cross section of He

ion ionization by O’* ions; and O'* ion, cross section of

collision between O”* ions and He atoms. The dashed line
is the excitation cross section for the 1s-2p transition in an

O* ion upon collision with a He atom (calculation by the
CAPTURE and LOSS codes; this study).

o, cm?

10—15
O™ + He - O%(n) + He*

10—17

107"

10—21

1
0 4 8 12 16 20 24 28 32
Principal quantum number 7

Fig. 2. Distribution of the cross sections of the charge

exchange reaction O’* + He — Of*(n) + He" over the
principal quantum numbers n for E = (1) 100, (2) 400, and

(3) 3200 keV/u. O = (1) 6.0 x 10726, (2) 6.8 x 107, and
(3) 1.2 x 10°2° cm? (CAPTURE code; this study).

Let usmake several numerical estimatesfor reaction
(20) when the principal quantum number n equals 10:

0" +He — 0% (n = 10) + He". (11)

The probability of the radiative decay of an excited
0% ion (n=10) to all lower levels and the lifetime are
estimated by the Kramers formula [15] as A(n = 10) =
2.6 x 10° st and 1(n = 10) = 3.8 x 107'° s. For thisrel-
atively long time, an excited O%* ion (n = 10) interacts

ROSMEI et al.

with He atoms, ionizing with a rate p(He)vo,,, s?,
where p(He) isthe He atom density and o;,, isthe ion-
ization cross section for O%* ionsinthe staten=10at a
relative velocity v. Note that the ionization cross sec-
tions for highly excited (n > 1) atoms and ions grow
markedly with n: g,,, ~ n?>. For example, with E =
100 keV/u (v = 4.4 x 108 cm/s), 0;,, and V0, ,, estimated
by the Thomson formula [15] are, respectively, 8 x
107 cm? and 3.4 x 107 cm®/s. The ionization rate
p(He)vao,,, should be compared with the probability of
radiative decay A(n=10) = 2.6 x 10° s%. It followsthat,
for the He atom density p(He) > 2.6 x 10° s%/3.4 x
107 cm¥/s = 7.5 x 10' cm3, dl levels with quantum
numbers n > 10 in the resulting O% ion will beionized
and make no contribution to the total charge exchange
Cross section.

Thus, with the target density taken into account, the
total cross section takes the form

Neut

Otot = Z a(n),

n=ny

(12)

where n, is the ground state of the X9 jon and Neyt
(cutoff parameter) isthe upper limit of summation.

In genera, the value of n., is estimated from the
condition that the ionization rate equals the probability
of radiative decay of the level nto all lower levels:

n-1

ptoion(n)v = A(n) = Z Ann'v

n'=ngy

(13)

where p; is the target atom density and g,,,(n) is the

cross section of ionization of the atom X from
the state with a principal quantum state n at an ion
velocity v.

Again using the Kramers formulafor the total prob-
ability of decay A(n) and the Thomson formulafor the
ionization cross section, we find from (13) an estimate
of the maximal principal quantum number ng, starting
from which the levels of resulting ions decay by ioniza-
tion due to callision with target atoms:

Ne: = No+ AN,

) 0 10% DWD V2 D1114
An=q0= = 1
Z:pfcm 70 E’qu

(14)

10" EW[E[keV/u]D””
Z2p om0 Y 2507 U

where p, is the target atom density (cm), v istheion

velocity in atomic units (1 au. = 2.2 x 108 cm/s), and E
isthe energy of incident ions (keV/u).
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From Eq. (14), it follows that, as the target becomes
heavier and denser, more and more levels decay as a
result of ionization; that is, charge exchange with exci-
tation makes alesser contribution to the total cross sec-
tion. The value of ng, depends on the relative velocity

rather weakly: ny, ~ v¥7, as demonstrated in Table 1.

The expression for the ionization of atoms and ions
by electrons that is similar to (14) was given in [15].
Unlike (14), n., in this expression depends on the elec-
tron temperature T, in the plasmarather than on theion
beam energy.

NUMERICAL CALCULATIONS VERSUS
EXPERIMENTAL DATA

In this study, the effect of target density on the
charge exchange cross section is demonstrated with
collisions of multiply charged ions with light atoms or
multielectron targets (SiO,) with a complex electronic
configuration. The partial and total charge exchange
cross sections were calculated by the CAPTURE code
[13]. In brief, charge exchange cross sections are cal cu-
lated as a function of the impact parameter with nor-
malized charge exchange probabilities WN(b, v) in the
form

00

Oy(b V) = 2nJ’W§1(b, v)bdb;
0

W (b, v) (15)

Woy(b, v) =

1+ ZWOk(b, V)
K

Here, b is the impact parameter, WN is the charge
exchange probability normalized to all possible chan-

nelsk of X ion formation, the probabilities WN < 1,
the probabilities W, are calculated in the Brinkman—
Kramers approximation with hydrogen-like wave func-
tions (for details, see [13]), and the subscripts 0 and 1
refer to theinitial and final states of the system.

Figure 3 shows the total cross section oy, of the
charge exchange reaction

O™ +He— 0% + He'

vs. He atom density with the energy E = 100 keV/u. In
this specific case, asthe He atom density p; grows from
10% to 10%* cm3, the total charge exchange cross sec-
tion decreases by roughly one order of magnitude fol-

lowing the law G, ~ p;°" . In general, o,,, May vary
with p, in a different way.

For multielectron targets with a complex electronic
configuration, the situation gets much more compli-
cated because of the need for considering the capture of
inner-shell electrons. This fact, the capture of inner-
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Table 1. Limiting quantum numbers ng, (condition (14))
that contribute to the total cross section of the charge
exchangereaction O’ + He — O% + He' vs. He atom den-
sity p; and oxygen ion density E

pr, cm= |E =100 keV/u | E = 400 keV/u | E = 3200 keV/u
1x 1010 58 64 74
1x10% 22 24 28
1x 1016 9 10 11
1 x 109 4 4 5
1x10% 2 2 3

shell electrons, is most typical of charge exchange
between fast ions and complex atoms (see, e.g., [11]).
Figure 4 shows the contribution from inner-shell elec-
trons of cesium (55 electrons) in the reaction of
cesium—carbon charge exchange:

C® +Cs(15°...55’5p%s) — C** +Cs".  (16)

It is seen that, at E > 30 keV/u, charge exchange
takes place only through the capture of inner-shell elec-
trons of Cs. The capture of outer 6s electrons does not
influence the process.

Figure 5 plots the cross section distribution over the
principal quantum number n in the reaction of charge
exchange between H-like Ge ions and Ne atoms,

Ge™ + Ne— Ge¥*(n) + Ne' (17)

for the energy E = 5.5 MeV/u. As follows from the
Monte Carlo calculations [16] and calculations per-
formed in this work, charge exchange causes excited
states with n = 2-5. The cross section of charge
exchange into the ground state n, = 1 is three orders of
magnitude smaller.

o, cm?

107k

O™ + He

10710

10717¢

10—18

1(;15 1OIlS 1OI21
He atom density p,, cm™

1612

Fig. 3. Cross section of the charge exchange reaction o'+

He — 08" + He'* vs. He atom density for E = 100 keV/u
(CAPTURE code; this study).
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0, cm
10—13

Co* + Cs

10719 3s

10717E 45

10—19

10—21

il i A NN
10 103 10*
Ion energy, keV/u

tiaul Lo
10!

Fig. 4. Cross sections of the charge exchange between car-
bon ions and cesium atoms, C% + Cs — C®" + Cs', vs.

C% ion energy (low-density target). The contributions from
different cesium atom subshells (continuous curves) to the
total charge exchange cross section (the curve connecting
thecircles) areindicated (CAPTURE code; this study).

The total charge exchange cross sections for reac-
tion (17) are presented in Fig. 6 for the energy interval
E = 3-12 MeV/u. Here, the experimental data[17] are
compared with the Monte Carlo calculations [16];
eikonal approximation [17]; and our calculations,
where n., was varied from 15 to 8 and the energy was
raised from 4.5 to 11.5 MeV/u, respectively.

The total charge exchange cross sections are often
estimated by the Schlachter semiempirical formula[18]

Ou(E) = 1.1x107° em®q*®/Z;u™® 18
x [1 - exp(—-0.037u")|[1 — exp(~2.44 x 10~°u*®)],

u = E[keV/u]/(q°'Z;®), u=10, q=3,

0,/2,0,, %

30 Ge31+ . Ge30+(n)
251 Ne

20
15
10

0 4 8 12 16 20 24
Principal quantum number n

Fig. 5. Calculated relative cross sections of charge exchange
between H-like Ge ions and Ne atoms, Ge3* + Ne —»

Ge3%(n) + Ne', for an energy of 5.5 MeV/u: (O) Monte
Carlo method and (@) CAPTURE code (this study).

ROSMEI et al.

where u isthe scaled energy of aprojectileionand Z; is
the nuclear charge of atarget atom.

At high energies, u > 10, cross section (18) hasthe
asymptotics

O (E) = 1.1x 10° ecm’q>°Z°E**[keV/u] .

Schlachter formula (18) is correct up to a factor of
2-3 (similarly to the Lotz formulas for the ionization of
atoms and ions by electron impact) and is very suitable
for the estimation of charge exchange cross sections at
medium and high energies. For low energies, u< 1, for-
mula (18) does not apply. Schlachter estimates of the
cross sections are also shown in Fig. 6.

Figures 7-10 show the total cross sections of charge
exchange between fast nickel nuclei and SiO, mole-
cules,

Ni?®* + S0, — Ni¥" +[S0,] ", (19)

calculated at energies E > 100 keV/u and various SiO,
densities (the state of SiO, was varied from gaseous to
solid). The cross section of charge exchange with the
molecules were calculated as the sum of the charge
exchange cross sections per constituent atoms. At high
energies, such an approach is afairly close approxima-
tion.

Experimental X-ray investigation of heavy ion
slowing-down in a material is currently proceeding at
the GSI (Darmstadt, Germany) with the UNILAC
accelerator [4]. In these experiments, targets are SiO,
aerosolswith adensity varying over awide range: from
0.04 glcm?® (p, = 1.2 x 10 cm™) to the density of

Ge3l* + Ne

10—17

10—18

4 6 8 10 12
Ton energy, MeV/u

Fig. 6. Total cross sections of charge exchange between H-
like Ge ions and Ne atoms, Ge3* + Ne — Ge3%*(n) +
Ne', vs. Ge31* jon energy: @, data points [17]; O, calcula
tion by the Monte Carlo method [16]; dotted line, eikonal
approximation [17]; dashed line, Schlachter semiempirical
formula [18]; and continuous curve, CAPTURE code (this
study).
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g, cm
Ni?%* + SiO,
10—16
10718 K+L+M
10—20
—22 [l Lol Lol Lo Nl
10 102 103 104 10°

Ion energy, keV/u

Fig. 7. Cross sections of charge exchange between bare Ni
nuclei and SiO, molecules, Ni%®* + SO, —»> Ni?"* +
[SIO,]*, vs. ion energy for the zero target density (p; —>

0). K, L, and M are the contributions from the corresponding
SiO, atomic shells. K + L + M is the total charge exchange

cross section (calculation in this study).

quartz, 2.23 g/cm? (p, = 6.7 x 10?2 cm3). The purpose
of the investigation is to study the effect of density on
the energy losses of incident ions.

In this study, we calculated the charge exchange
cross sections by formulas (12), (14), and (15) in view
of the effect of the target density. Figure 7 shows the
total charge exchange cross sectionsfor reaction (19) in
the case of alow-density target (p, — 0) that were cal-
culated with the cutoff parameter ny, = c and with
regard to electron capture from all SiO, shells. At ener-
gies E = 100 keV/u—1 MeV/u, electrons are seen to be
captured largely from the L and M shells of SiO, to the
levels n = 1-5 of hydrogen-like Ni?™* ions. At E >
10 MeV/u, only K electrons of the target participate in
the process.

As the target becomes denser, the pattern changes
radicaly. For p, = 7.0 x 10% cm™ (Fig. 8), charge
exchange proceeds through the capture of only K elec-

1115

o, cm?

10—16
NiZ% + SiO,

10718

K+L+M
1 0—20

Ll
10% 103 104 10° 100
Ion energy, keV/u

1 0—22

Fig. 8. Thesameasin Fig. 7 for the target atom density p; =
7 x 102 cm™3 (calculation in this study).

trons in the entire energy range and the total cross sec-
tion decreases by more than one order of magnitude.

Figure 9 compares the total cross sections of charge
exchange between Ni%®* and SiO, that were calculated
for a small (p, — O, curve 1) and high (p, = 7 x
10?2 cm3) SiO, molecule density. With the energy E
varying in the range 100-1000 keV/u, taking into
account the density effect leads to a decrease in the
charge exchange cross section by more than one order
of magnitude. At higher energies, E > 10 MeV/u, the
cross sections are nearly equal to each other, since in
both cases only K electrons of the target are captured
mostly to thelevelsn=1and 2in aNi?* ion.

In the case of complex targets, the distribution of
resulting ions over n, in general, strongly depends on
the electronic configuration of the target: at high colli-
sion energies, the capture of inner-shell electrons dom-
inates over charge exchange associated with outer
shells. The capture of inner electrons greatly compli-
cates calculations even if the target density is low. It
may so happen that the cross section distribution over n
become nonmonotonic. Thisisshownin Fig. 10, where

Table 2. Relative cross sections g,/ Zz : gon for the charge exchange reaction U%* + A — U8 (n) + A* (A = N,, Ar, Kr,

and Xe) at the collision energy E = 162 MeV/u

N, Ar Kr Xe
experi- this | experi- this | experi- this | experi- this
ment theory study | ment theory study | ment theory study | ment theory study
3 0.634 | 0602 | 0556 | 0.644 | 0525 | 0471 | 0.619 | 0.533 | 0501 | 0.620 | 0.541 | 0.519
4 0.253 | 0.263 | 0.328 | 0.240 | 0299 | 0322 | 0257 | 0.296 | 0.309 | 0.256 | 0.292 | 0.300
5 0.113 | 0.135 | 0.116 | 0.116 | 0.176 | 0.207 | 0.124 | 0.171 | 0.190 | 0.124 | 0.167 | 0.181

Note: The sum of the reduced cross sections o,, is normalized to unity: 22 - gon =03+04+05=1

TECHNICAL PHYSICS Vol. 48 No.9 2003
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Fig. 9. Cross sections of charge exchange between Ni ions
and SiO, molecules, Ni%®* + S0, —> Ni?™* + [SIO,]",
vs. ion energy for (1) zero target density and (2) target atom
density p; = 5 x 10?2 cm™S.

the cross sections of charge exchange (19) are distrib-
uted over quantum numbers n for E = 200 keV/u and
zero target density. The capture of K electrons gener-
ates lower lying states Ni%"*(n) with the principal quan-
tum numbers n = 1 and 2, while charge exchange
involving the outer L and M shells of SiO, brings nickel
ionsinto highly excited stateswith n > 5.

As was noted earlier, experimental data for partial
cross sections o, and oyy; of charge exchange between
multiply charged ions are scarce. Table 2 compares the
relative cross sections g,, of charge exchange bringing
ions to the states with n = 3, 4, and 5 for the reaction
U%* + A — UB*(n) + A* (A =N,, Ar, Kr, and Xe) at
the high collison energy E = 162 MeV/u (v =
80.5au.). The partia cross sections for charge
exchange resulting in the states 3lj, 4lj, and 5lj were
experimentally found [10] from the X-ray emission
spectra of Li-like uranium ions by the technique
described above. All the cross sections have a distinct
peak corresponding to the generation of thefinal ionin
the p state, i.e., with the orbital quantum number | = 1.
The CAPTURE code, which was used in this work,
makes it possible to compute only those cross sections
that are averaged over the quantum numbers | and j;
therefore, Table 2 lists only the cross sections g,,. The
datain Table 2 are seen to be consistent with each other.
The cross sections found in this work take into account
the capture of electrons from all target shells and the
density effect.

It should be noted that the cross sections of charge
exchange between positive ions and atoms are usually
measured for low densities of target atoms, p; = 10%—
10% cm3, when the density effect is weak. Sometimes,
however, taking this effect into account provides a bet-
ter fit to experimental data, which indirectly proves its

ROSMEI et al.

10—18

1
10 20 30 40 50
Principal quantum number 7

1072

o+

Fig. 10. Distribution of the cross sections of the charge
exchange reaction NiZ* + S0, — Ni?"*(n) + [SIO,]*
vs. the principal quantum number n of hydrogen-like ions
Ni2™(n) for the energy E = 200 keV/u and zero target den-
sity.

significance. For example, work [5] gives an explana-
tion of the experimentally measured mean (equilib-
rium) charge of fast uraniumions U% with achargeq =
28-80 and energy E = (3.6-11.5) MeV/u when they
interact with the dense plasma (p, = 5 x 10*° cm) of
polyethylene (CH),. It turned out that, with the plasma
density included, that is, with the use of the effective
(decreased) charge exchange cross sections, the calcu-
lated and experimentally found mean charges of ura
nium ions were in better agreement: Gy, = 60 + 2 ver-
SUS Qee = 63 = 1. Thus, measurements of ion—atom
charge exchange cross sections for the case of high-
density targets would alow one to substantiate the
effect of target density on the charge exchange cross
sections and spectral emission line intensities of result-
ing ions.

CONCLUSIONS
The effect of target density on the cross sections of

charge exchange between fast ions X® and atoms or
moleculeswas studied. Thetotal charge exchange cross
sections decrease with increasing target density
because target atoms ionize resulting excited ions

[X(q_l) ]*. The indirect effect of target density is con-
firmed by experimenta and calculated data for the
mean charge of ion beams passing through a plasma
target. Direct measurements of partial and total charge
exchange cross sections, as well as the emission line
intensities of resulting ions, as a function of the target
density allow one to check the validity of this effect.

No. 9
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Abstract—The steady motion of aspheroidal aerosol particle with inner nonuniformly distributed heat sources
(sinks) that is placed in an external temperature gradient is theoretically studied in the Stokes approximation.
The mean temperature of the particle surfaceis assumed to differ dightly from that of the gaseous environment.
Ananalytic expression for the force and rate of thermophoresis are found by solving the gas-dynamic equations
in view of the motion of the environment. © 2003 MAIK “ Nauka/Interperiodica” .

1. FORMULATION OF THE PROBLEM

To date, the thermophoresis of spherical aerosol par-
ticles has been studied in great detail [1-4]. Many par-
ticles occurring both in nature and in industrial plants
are nonspherical, e.g., spheroidal. The problem of ther-
mophoresis of a spheroidal aerosol particle has been
considered in [5-7]. However, the convective termsin
the heat conduction equation were neglected. Praud-
man and Pearson [8] for the hydrodynamic problem, as
well as Acrivos and Taylor [9] for the heat problem,
showed that, away from the sphere, theinertial and con-
vective terms became of the same order of magnitude as
the molecular-transport terms. Therefore, normal
expansion in a small parameter introduces an error,
since it fails to rigoroudy satisfy the boundary condi-
tions at infinity and find a unique exact solution that is
valid throughout the flow region even in a second
approximation. From the above, it followsthat theissue
of how the motion of the medium affects the force and
rate of thermophoresis of aspheroidal particleisof the-
oretical and practical interest.

Consider the steady motion of a spheroidal (oblate
spheroid) solid aerosol particle with avelocity U in the
negative direction of the 0z axis. The particle contains
nonuniformly distributed heat sources with adensity g;.
The gas is at rest at infinity, and a small temperature
gradient T is provided by externa sources. The tem-
perature drop in the neighborhood of the particle is
assumed to be small; i.e., (T,—T.)/T, < 1, where T, is
the mean temperature of the particle surface and T, is
the gastemperature away from the particle. In this case,
the thermal conductivity, as well as the dynamic and
kinematic viscosity, can be considered as constants and
the gas, as an incompressible medium. The particle size
isconsiderably larger than the free paths of gas mixture
molecules; therefore, corrections in Knudsen number
will be neglected [3]. Hereafter, the subscripts e and i
correspond to the environment and spheroid, respec-
tively.

We will describe the thermophoresis of a particlein
the spheroidal coordinate system (g, n, ¢) with the ori-
gin at the center of the spheroid; i.e., the origin of the
fixed coordinate system coincides with the instanta-
neous position of the center of the particle. The curvi-
linear coordinates g, ), and ¢ are related to the Carte-
sian coordinates by the relations [10]

X = csinhesinncosd, Yy = csinhesinnsing, (11)
z = ccoshecosn, '

X = ccoshesinncosd, Yy = ccoshesinnsing,

. 1.2
Z = csinhecosn,

where ¢ = J/b”—a” in the case of a prolate spheroid

(a< b, formula (1.1)) or ¢ = Ja’—b® for an oblate
spheroid (a > b, formula (1.2)) and a and b are the
spheroid semiaxes. The 0z axis of the Cartesian coordi-
nate system coincides with the symmetry axis of the
spheroid.

In view of the above assumptions, the distributions
of the velocity U, pressure P,, and temperatures T, and
T, are described by the set of equations (1.3) and (1.4)
with boundary conditions (1.5)—1.7):

0P = HAU,, divU, = 0, 1.3
pecpe(Ue EI:J)Te = )\eATei ATi = _qi/)\h (1-4)
_ cUcoshe
U, = ————cosn,
H,

_ cUsinhe Y (1.5)

Uﬂ = H—Esnn—KtcT—Z(DTe [én),
Te =T, A(OT &) = A(OT; [B,) for & = g,

Uu.—0, T,— T, +|0T|csinhecosn,
e e |aT n 16

P, —P, for

E—> 0,

1063-7842/03/4809-1118%24.00 © 2003 MAIK “Nauka/Interperiodica’
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T, 20 for e— 0.

(1.7

Here, g, and e, are the unit vectors of the spheroidal
coordinate system; A is the thermal conductivity; U =

U|; H, = A/coshzs—sinzr] is the Lamé coefficient;
Cpe IS the specific heat; K is the thermal creep coeffi-
cient, which is calculated from the kinetic theory of
gases; and [ isthe Laplacian. Today, the most rigorous
expression for the coefficient K. is known for a spheri-
cal particle [3]. The gas-kinetic coefficient K, = 1.152
when the accommodation coefficients of tangential
momentum, a., and energy, 0, are equal to unity [3, 4].
In numerical caculations, we assume that the coeffi-
cient K. for a spheroid differs insignificantly from that
for asphere [6].

Boundary conditions (1.5) on the particle surface
(e = gy) dlow for creep for the tangent component of
the mass velocity, temperature equality, and the conti-
nuity of heat fluxes on the particle surface. Away from
the particle (¢ — o), boundary conditions (1.6) are
valid, and the finiteness of the physical quantities char-
acterizing the particle at € — 0 is taken into account
in(1.7).

The resultant force acting on a spheroidal particle
from the environment is given by the formula[11]
F,= I E—Pecosn + 0, COSN — %ogn snnEdS,(l.S)

S

where dS= c2cosh’e § nndnd¢ isadifferential element
of area, and o, and oy, are the strain tensor compo-
nents in the spheroidal coordinate system.

2. TEMPERATURE DISTRIBUTION
IN THE VICINITY OF THE PARTICLE, FORCE
AND VELOCITY OF THERMOPHORESIS

We make Egs. (1.3) and (1.4) and boundary condi-
tions (1.5—1.7) dimensionless by introducing the
dimensionless vel ocity, temperature, and pressure: V, =
Ue/U, tk = Tk/Tm, and Pk = Pk/Poo (k =g |) Hel’e, the
spheroid major semiaxis is taken as the unit length; U,
as the unit velocity; P,, = pU/a, as the unit pressure;
and T, asthe unit temperature (U ~ 1 OT [/(PeTo))-

Expressions (1.3)—(1.7) have the single controllable
small parameter & = a|T |/T,, < 1. Therefore, we will
look for asolution to the boundary-value problemin the
form of expansion in powers of &:

Vo= VP2 +evlP+ ., t=t9+aW+ ..

pe = P +EPL+ ...

We will restrict our consideration to the first-order
termsin & when calculating the force acting on the par-
ticle and the velocity of its thermophoretic motion in
the given external temperature gradient field. In order

(21
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to find these quantities, one has to know the distribu-
tions of the velocity, pressure, and temperature both
outside and inside the spheroid. Substituting (2.1) into
(1.4), leaving terms ~¢, and solving the sets of equa-
tions found by the method of separation of variables,
we will finally find in the zero approximation (¢ = 0)

tP(\) = 1+y\arccotA (A = sinhe),  (2.2)
Oy — Ae
t7(A) = D+xy)\0arccot)\
A A (2.3)
+ J’ arccotA f dA —arccotA I fdA.
Ao No

Here, Ag = sinhg,, y = t; — 1 is the dimensionless
parameter, t;= TJT,,, and T, is the mean temperature of
the spheroid surface given by

1

Ts _
T. 1+ 4n)\ec)\oTqudV’
\

A
D=1+ %L - )\—%y)\oarccot)\o, (2.9

+1
2
C

= — . 2 2 =
f = 2)\iTmJ’ql()\ +Xx7)dx, x = cosn.
-1

In (2.4), the integral istaken over the entire particle
volume. In the first approximation (~¢),

te’(A, x) = cosn E%)\ + T c(AarccotA —1)
U

2

(2.5)

i

+ oo[A2 %\rccot)\ - )—Z\arccot

A
+ ?l( arccotA — A arccot™A )}

[ |

3(1—AarccotA)

O
tP(A, x) = cosnBcA +
) HD ATICA T,

I gizdv

S . (28

—)\I()\ arccoth —1) f,dA + (AarccotA — 1)J')\ f.dA E
Ao Ao H

Here, w = PryAy/(ac) and Pr isthe Prandtl number. The

constants of integration A; and A, appear in expressions

for the components of the mass velocity and pressure.

These expressions are found by solving Stokes equa-
tions (1.3) in the oblate coordinate system and have the
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form [10]

Ug(e,n) = cosn

ccosheH,
x { NA, +[A — (1 + A arccotA] A, + ¢ (1 + A},

(2.7)

. 0
U,(en) = —C%Esnn % +(1—Aarccoth)A, + 027% 29

P.(g, N (2.9

€

The constants I and B enter into expressions (2.5)
and (2.6) for the temperature fields inside and outside
the particle from the corresponding boundary condi-
tions on the spheroid surface. Since an expression for
the coefficient I" will be of interest to us, we writeit in
explicit form:

r= _1-9%, 5 3 2Iqizdv
Aa 4mCN TLAA(1+Ag))
O O A 0
+ Qe (- 0 S+ B— 2——£Darccot)\o
CAQ | 1423 O1+A; AQ

+ (1-0)arccot )\0

+ % arccotz)\% + = 2 5
1+ A (2.10)

2 0
+ Harccot A }D
§1+)\2 A 0

- (1_&)arccothg + 520 L gz e

0 +)\2 Ao’ )\is.

Hereafter, the superscript s denotes the values of
physical quantities at the mean temperature T, of the
spheroid surface, which is given by formula (2.4).

Substituting (2.7)—<2.9) into (1.8) and integrating,
we arrive at

HeU

(2.12)

The coefficient A, is found from boundary condi-
tions (1.5) in view of expressions (2.7), (2.8), and
(2.10):

2

_ 2cC
A, = >
B[Ag+ (1—Ap)arccotAy]
vec® B —(1+A3)arccoth, |OIT|

“tU1+A2B[Ao + (1—A2)arccothy] Te
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N Eﬂ 3 3a()\oa2ccot)\o -1)
0 ATIC AT A

J’qi zdv

l+)\o)\ 1- )\Oarccot)\ (2=Ag arccot)\o)El
0

+Pr
2 —(L+Ad)arccoth, [

where

Ao Pr & Ao—(1+A2)arccoth
B =1-2KyVy — >
ts A1+ A2\, + (L—A2)arccot),

X {1 - %\0 + %arccot)\q%arccot)\o

Ao — (2= AgarccotA)Aoarccot,
—(1+Ad)arccoth, '

In view of the explicit form of the coefficient A,, we
find ageneral expression for the force acting on asphe-
roidal particle. This force is the sum of the viscous
force F, and the force F(%)

F=F,+F, (2.12)
where
S C2
F, = —8mpU (213
" B[ Ao+ (1—=A5)arccotA]
F(l) — _SHUzCKt V_Z?\o—(l+?\§)arccot)\o 5
“ts Bl[Aq(2 —)\S) arccotA ] (1 + )\S)A
Ao—1)
U 1—3‘"‘0\"6‘2&:0t o= D [azav (2.14)
To ATC A TLAo 3,

1+)\°)\ 1-A arccot)\o(z )\oarccot)\o)
2 °° —(1+Ad)arccotA,

In the general case, the force F® is the sum of three
forces: the thermophoretic force, the force proportional
to the dipole moment of the density of heat sources
nonuniformly distributed over the particle volume, and
the third term due to the motion of the medium (i.e., the
force component taking into account the convective
terms in the heat conduction equation).

Equating the resultant force F to zero, we arrive at a
general expression for the drift (thermophoretic) veloc-
ity of a solid oblate spheroidal particle in the external
temperature gradient field:

Uy, = —k—)K Ve

tCt
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1—(Ao+ 1/\y)arccotA,

J1+ )\S[(l—é) arccot, + 61)\—02 —i}

+A5 Ao

X

(2.15)
X 1—-—-———-—— CCOtA zdV
{ 4TCA T, FProotho )\J] i

2
+
1+ o,

+Pr—=Aq

1—AqarccotAy(2 —AqarccotAy) (|OT|
—(1+A2)arccot,

In order to find the rate of thermophoresisfor a pro-
late spheroid, one has to substitute iA for A and ic for ¢
(i istheimaginary unit) in (2.15).

Thus, formulas (2.12) and (2.15) have the most gen-
eral form and make it possible to estimate the resultant
force acting on a solid spheroidal aerosol particle and
its drift velocity in the external temperature gradient
field for the case when heat sources (sinks) are nonuni-
formly distributed inside the particle. In this approach,
the motion of the environment is taken into account for
small temperature differencesin the vicinity of the par-
ticle.

3. RESULTS AND DISCUSSION

If one does not take into account the motion of the
environment and interna heat sources, (2.15) is
reduced to an expression for the purely thermophoretic

velacity of a spheroidal particle:
Upy = Koot g0

0 O
Qo _ b 1— (Mg + 1/A,) arccoth, 13-1)

th — 2

0 a 2 >\0 1
0 A/1+)\0[(1—6)arccot)\0+61+}\2—)TO

0

which coincides with formula (9) in [5].

In the case of a sphere, (2.15) turns into an expres-
sion for the thermophoretic vel ocity of asolid spherical
particle of radius R that includes the flow of the envi-
ronment and internal heat sources:

U™ (a=b=R) = KB (32
where
= 1 _rqav
Yo = ZrmaT.) 44V
\%
2 O 1 pr O
fO = £ A+ ——=—(qdV - =y
(1 + 28) 0] 4nR2)\eToo-\|: T 127
TECHNICAL PHYSICS Vol.48 No.9 2003

1121

Disregarding the flow of the environment and inter-
nal heat sources yieldsthe conventional formulafor the
thermophoretic velocity of a large spherical particle
[1,2]

S

o |OT
2KtCS o7 |

Un(@a=b=R) = TR T

(3.3)

In order to estimate how the motion of the environ-
ment affects the thermophoretic velocity of a spheroi-
dal particle, one has to specify the nature of heat
sources nonuniformly distributed over its volume. As
an example, let us consider the simplest case when the
particle absorbs radiation as a black body. In this case,
radiation is absorbed in a thin layer of depth d¢ < ¢,
that is adjacent to the heated particle surface. The den-
sity of heat sourcesinside the layer of depth d¢isequal
to[12, 13]

coshecosn T
lg, z<n<m,
% c(cosh’e — sin’n)de o2
di(e,n) = %Eo—éss e<e, (3.4)

Ep, Osr]sI[

where |, isthe intensity of an incident radiation.

The integrals L dv and i zdV appear in the

expression for the thermophoretic velocity. Substitut-
ing (3.4) into these integrals in view of the fact that
0¢€ < gy and performing integration, we find

1
AV = 1, cAAE + =8
Iq 0 o%‘- ¥
(3.5)

_ 2 34 3 10

vV 0
Inview of (3.5), expression (2.15) takes the form
«|OT|

Ul = Kevedfie, (3.6)
where
s= D 1—(Ao+ L/Aq)arccotg
th — — 2
] 1+>\§t§[(1—6)arccot)\o+5 Ao 2_1}
1+ g Ao
O }\Za 1
oL+ 2)\0Tm'0%l + }\—E[Aoarccot)\o_ 1 (37
O e 4
51— AarccotAy(2 — AparccotA
Mgy arccotAo( arccot O)}E}
) Ao— (L1 +Ag)arccotA, 0
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Table 1
b/a=0.1
o0 % 107, W/n?
a, um
0.5 2 5 10
£ @ ey @ ey 2 £ @
15 0.52 0.32 2.08 1.30 5.20 3.29 10.40 6.71
20 0.69 0.43 2.77 1.74 6.93 4.42 13.87 9.08
25 0.87 0.54 3.47 2.18 8.67 5.56 17.33 1151
Table 2
b/a=0.3
lo x 107, W/m?
a, um
0.5 2 5 10
£f@ £ £f@ el e @ £@ £
15 0.39 0.20 1.59 0.81 3.97 2.04 7.95 4.16
20 0.59 0.27 212 1.08 5.30 2.74 10.60 5.63
25 0.66 0.33 2.65 1.35 6.62 3.44 13.25 7.13
Table 3
b/a=0.5
lo % 107, W/m?
a, um
0.5 2 5 10
£ i@ f@ @ f@O i@ £ @
15 0.32 0.12 1.26 0.48 3.15 1.20 6.31 2.45
20 0.42 0.16 1.68 0.64 4.21 161 8.41 3.32
25 0.53 0.20 210 0.80 5.26 2.03 10.51 4.20

In the case of a sphere, (3.6) isrecast as
10T

Ui = Kived i i (39)
where
o= 2 —[1_ ik +30 @9
t5(1+25)L 6AT,H  8h) '

The mean temperature of the spheroid surface is
related to the incident radiation intensity |, as

Cho 10
T.=T,+-—=—1I + —. 3.10
‘ 2 oct N (310)
In order to illustrate the contributions of the form-
factor (ratio of the spheroid semiaxes), flow of the envi-

ronment, and internal heat release (nonuniform distri-
bution of heat sources over the particle volume) to the

thermophoretic velocity (3.6), Tables 14 list the
numerical estimations for particles of borated graphite

(A =55WI/(m K)) suspended in air at T,, = 280 K and
P.=10°Pa.

The numerical analysis showed that, at agiven ratio
between the semiaxes, the relative contribution of the
other factors increases with increasing incident radia-
tion intensity |,. This effect depends significantly on
the equatoria radius of the spheroid (a). For instance,
inTablel (a=15um),f®=0.52at 1,=0.5 x 10° W/m?

and f® = 10.40 a Iy = 10 x 102 W/m2 (f® = (|5, —

fE 1 £1)) x 100%). Such behavior of the function f®
isdue to the fact that, asfollows from (3.10), (3.7), and
the numerical estimations, the major contribution is
from the terms proportional to the dipole moment of the
density of heat sources nonuniformly distributed over
the particle volume. In (3.7), this is the term

TECHNICAL PHYSICS Vol. 48
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Table 4
b/a=0.8
lg x 102, W/m?
a, um
0.5 2 5 10
£ @ ey @ ey £ £ @
15 0.24 0.04 0.94 0.15 2.35 0.38 4.69 0.77
20 0.31 0.05 1.25 0.20 3.13 0.51 6.26 1.04
25 0.39 0.06 1.56 0.25 391 0.64 7.82 1.32
AoarccotA, — 1. The dimensionless term related to the REFERENCES
motion of the environment (see the heat conduction 1. S. P. Bakanov and B. V. Deryagin, Dokl. Akad. Nauk

equation) is proportional to the Prandtl number. In a
gas, this number is on the order of unity; therefore, the
contribution of this term differs from that of the first
one by one order of magnitude. This fact may be used
to separate particles by size, finely purify gases from
aerosol particles, estimate translucent zones appearing
in clouds and fogs when they are probed by laser radi-
ation, etc. Theinfluence of the factors mentioned above
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ever, the mean temperature of the spheroid surface will
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inTablel (a=15um),f@=0.32at 1,=0.5 x 10° W/m?

and f@ = 6.71 at Iy = 10 x 102 W/m? (f@ = (|f3" -

£ 1 £ x 100%). However, thisincrease s approxi-
mately 1.5 times smaller than that in the former case.
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Nonlinear Capillary Vibrations of a Charged Drop Placed
in a Dielectric Medium: Single-M ode I nitial Defor mation
of the Drop Shape

V. A.Koromyslov, S. O. Shiryaeva, and A. |. Grigor’ev
Demidov State University, Sovetskaya ul. 14, Yaroslavl, 150000 Russia
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Abstract—The nonlinear vibrations of the equilibrium spherical shape of a charged drop placed in a perfect
incompressible dielectric medium are asymptotically calculated in the second-order approximation in single-
mode initial deformation of the drop surface. The drop is assumed to be a perfect incompressible liquid. It is
shown that the nonlinear vibration amplitudes, as well as the energy distribution between nonlinearly excited
modes, depend significantly on the parameter p, where p isthe ratio of the environmental density to that of the
drop. It is aso demonstrated that an increase in p raises the amplitude of the highest of the vibration modes
excited due to second-order nonlinear interaction. In the second order of smallness, the amplitude of the zeroth
mode is independent of the density ratio. As p grows, the effect of the self-charge of the drop, the interfacial
tension, and the permittivity of the environment on the nonlinear oscillations increases. © 2003 MAIK

“ Nauka/lInterperiodica” .

(1) The study of electrostatic instability of acharged
liquid drop suspended in another liquid is of consider-
able interest for numerous applications, such as uni-
form mixing of immiscible liquids, combustion of lig-
uid fuelsto mix afud with an oxidant, and geophysical
experiments (see, for instance, [1-4] and references
cited there). Nevertheless, many related issues are as
yet little understood because of the experimental and
theoretical complexity of the problem. In the majority
of cases, it has been solved in the linear approximation
in amplitude of capillary vibrations. A number of recent
theoretical and numerical works [5-11] devoted to the
calculation of charged drop vibration in a vacuum take
into account the actual nonlinearity of the phenomenon.
In [12], the nonlinear vibrations of a charged conduct-
ing drop placed in a compressible dielectric medium
were studied only for the initial disturbance of the fun-
damental vibration mode, and the emphasis was on the
acoustic radiation of the drop. Since in most applica-
tionsthe drop vibration takes place in mediathat cannot
beidentified as vacuum [1-4], it seemsto be reasonable
to study the influence of the environment on the nonlin-
ear vibrations of the drop in a more general situation
where theinitial deformation of the equilibrium spher-
ical shapeisdefined by the virtual excitation of an arbi-
trary single mode of capillary vibrations.

(2) Consider a system consisting of two immiscible
ideal incompressibleliquidswith densitiesp, and p,. In
the absence of the gravitationa field, the inner liquid
(related parameters will be marked by subscript 1)
takes the shape of aspherical drop with aradius R under
theaction of interfacial tension forceswith acoefficient 0.

The outer liquid (subscript 2) is assumed to be
unbounded. Let the drop liquid be ideally conducting
and bear acharge Q distributed over the surface and the
environment be anideal dielectric with apermitivity €[

We also assume that, at zero timet = 0, the equilibrium
spherical shape of the drop undergoes avirtual axisym-
metric perturbation of agiven amplitude which ismuch
smaller than the drop radius and is proportional to the
amplitude of one of the capillary vibration modes. Our
aim isto find an analytica expression for the shape of the
nonlinearly vibrating drop as afunction of time (t > 0).

Below, we usedimensionless variables such that R =
p; =0 = 1 and assume that p,/p; = p.

In the spherical coordinate system (r, ©, @) with the
origin at the drop center, the equation of the interface
disturbed by axisymmetric capillary wave motion has
the form

r=1+§&0,t); [§ < 1. 1)

The motion of the liquid in the drop and environ-
ment is potential; that is, the velocity fields of the wave
motion in the drop, V(r, t) = Vy(r, t), and in the sur-
rounding medium, U(r, t) = Vé(r, t), are entirely
defined by the velocity potential functions Y(r, t) and
¢(r, 1).

In the above statement, a set of equations for inter-
face evolution consists of the Laplace equations for the
velocity potentials Y(r, t) and ¢(r, t) and electrostatic
potential ®(r, t):

Ay(r,t) = 0; )
Ag(r,t) = 0; ©)

1063-7842/03/4809-1124%$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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Ad(r,t) =0 4
(here, O isthe Laplacian).
The boundary conditions are as follows:
at the center of the drop,

r — 0: Y(r,t) — O; )
at infinity,
r—=o:®(r,t) —0; ¢(r,t)—0;  (6)
at the interface:

0 _ 0P 10&ay )

r=1080.0 5 = 5~ %3600
(kinematic condition),
0 10809 _ 0y 1080y -
or (20000 Or (20000

(equality of the velocity normal components of the lig-
uid in the drop and in the medium),

L)+ P+ PP,
ot 2
v _p 2, @ ©
= P35 —5(Vo) +Pg
(dynamic condition),
P(r,t) = dg(1) (20)

(constancy of the electric potential at the drop surface).

In the mathematical relationships above, P{ isthe
pressure in the drop (j = 1) and in the medium (j = 2),
Pz = e{V®)%/8mis the electric field pressure upon the
interface, P, = divn isthe Laplacian pressure (n isthe
unit vector of the positive normal to the drop surface,
and d4(t) is the constant electrostatic potential on the
drop surface.

Onemust also takeinto account the constancy of the
electric charge,

S

Oy

1 0

——6c, (NVP)dS=Q, S=[D
constancy of the drop volume,

mE
[ridrsnedede= gn; V,= <o
Vi Ep <O
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and immovability of the center-of-mass of the drop,

plIrdV1+p2IrdV2 F>1+E(0.1)
vV, P =0; V2:|:DS@ST[ (13)
J.pldvl + IpdeZ %) < (ps 2T[

V, V,

The initia conditions to the problem stated are the
initial axisymmetric deformation of the equilibrium
spherical shape of the drop,

t=0:8(0) = g +eP (1) (k=2); pu=cosO (14)
and the zero initia interface velocity,

- o 98O, ) _
t=0:=5==0.

In (14) and (15), € is a small parameter that has the
meaning of the initial deformation amplitude; P (1) is
the Legendre polynomial of degree k; and &, is a con-
stant determined from condition (12) accurate to the
second order of smallness,

_1
(2k+ 1)

(3) To find a solution to the problem in an approxi-
mation quadratic in €, we use the well-known method
of many scales [13]. For this purpose, we represent the
desired functions &(O, t), Y(r, t), ¢(r, t), and d(r, t) in
the form of series in powers of the small parameter €
and assume that these functions depend not merely on
timet but on various time scales T, that are defined via

the small parameter T, = €™

£O,1) = z e ™, Ty, Ty, ..0);
m=0

(15

& = € +0(e%). (16)

P(r,t) = Z e"P™(O, Ty, Ty, .. );
m=0 (17)
o(r,t) = Z g™ (0, Ty, Ty, ..0);

m=0

»(r, t) = Z e"d™(O, Ty, Ty, ...).
m=0

The derivatives with respect to time will be taken
over the whole set of time scales by therule

0 -9 .0 0@

at - o, et T O
Substituting expansions (17) into boundary-value
problem (2)—(13) and equating terms of the same order
of smallnessin each of the equations, one easily obtains
a set of boundary-value problems for the successive
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determination of the unknown functions &™), ™, ¢,
and @™ wherem=0, 1, 2,... .

Dueto thelinearity of Egs. (2)—6), each of the func-
tions Y™, M, and dM jn expansions (17) must satisfy
them; therefore, we represent these functions as solu-
tionsto set (2)—«6) in theform

P 0, To Ty, ) = 5 DIV(To, To, o ) "Py(h);
=0

o™, ©,To, To, ) = S GM(To, Ty, .. R (W);(18)
o™, e, Ty, Ty, ...) = S FOTo To, ) PP ().
n=0
The successive corrections &M to the expression for
the drop shape will be sought in the form of Legendre
polynomials:

£, 0, Ty, Ty ..) = z MOT,, Ty, . )P(W).  (19)

(4) In the zeroth order of smallnessin g, weobtain a
solution for the equilibrium state of the system:

¢(0)(I’, 0, Ty Ty, ) =0; w(o)(r, O, Ty Ty, ...)=0 (20)
9, 0,1,T,..)=0; 090, 0,T,T,..)= Q

(5) To find the coefficients G, D", F{", and

M in solutions (18) and (19) (at m = 1) in the first-
order approximation in €, we transform boundary con-
ditions (7)—(13) into the form

Co1 aE(l) _ alIJ(l)_
" 0T, or '’
aq)(l) an(l)
or  or’
_ow? e, doP¥rpel  d'e
T, amdr Oor g2 o O
)
+(2+ 008" = %,
0T,
(21)
oW 4 E(l) o).
oW b o, o],
I E Ol
ar U2 dr U
0

KOROMYSLOV et al.

T

Iz“)du = 0; Ia“)YQ(e, $)dQ = 0;
0

0
where Y] (O, ¢) isaspherical function.

Expressionsfor thefirst-order coefficientsin expan-
sions (18) and (19) are easily found from set (21):

Ag =

M (T, Ty, .) = 0; MP(T,, Ty, ...) = O
MP(To, Ty, ..) = ATy, ..)exp(iw,T,) + C.C.
(nz2);
(1)
(1) _ l_aMn (To, Tl’ ) i
D (To, Ty, o) = = 5T (n=2);
n
G (To, Thy o) = —— 5D (To, Ta, o..)
22
1 aMf‘l)(To’Tl"")(n>2)- (22)
n+1 0T, =
FO(Ty Ty, ..n) = gm(n”(To, Ty, ...) (n=20);
ATy, ) =a,(Ty, - )expliby(Ty, .25

od = 0; w=k,n(h=1)[(n+2)-W];

Q2 Kn:%‘-'-

4mte,’

The dependences of the functions a,, and b, on the
parameters T;, etc. are determined in the next orders of
smallness.

To complete the consideration of the problemin the
linear approximation in €, we assume that the quantities
a, and b, are independent of time; that is,

ay(Ty, ...)=aY + O(Ty);

np 7+
n+11 -

b,(Ty, ...)=b® +0O(T,).

Then, it is easy to check that the shape perturbation
can be estimated as

£0,)=eEM(0,1, a9, b +e0(et),  (23)

where a® and b'® are time-invariable constants.

The error in expansion (23) turns out to be on the
order of thefirsttermif t = O(e™). For t = O(e1), expan-
sion (23) becomes invaid. Thus, expression (23) is
valid over the time interval t < O(1), and, in this case,
the error is on the order of ~2. However, when study-
ing the mation of the surface, one may also use (23) at
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t < O(e™) provided that the first-order solution is com-
parable to the initial perturbation amplitude. More
detailed information on the applicability of this expan-
sion may be obtained from the second-order analysis of
the problem.

Substituting expansion (23) into initial conditions
(14)—<(16) subject to (19) and (22) and equating the
guantities of the same order of smallness to each other
yields

o _ 15 .

a, = 2 %nk bgO) =0(nz2),

where &, is the Kronecker symbol.

Eventually, the function describing the drop shape
evolution with time in the linear (in €) approximation
has the form

£(O,1) = ecos(wt)Py(p) + O(E?). (24)
According to this first-order solution, the drop sur-

face harmonically vibrates about the equilibrium
sphere at the kth (initially excited) mode.

For the velocity field potentials and electrostatic
potential, we obtain, in the same approximation, the
following solutions:

k
Wi, 1) = e Sn(@) P + O(Y);

o(r.1) = s(k+°:krk+1sn(wkt)Pk(u>+0(sz): (25)

kS PL(l) + O(£?).

*

+ ecos(wyt)

(1) =

*

(6) To find second-order corrections to the above
solutions (that is, to find the functions £@(0, t), YA(r,
t), d@A(r, t), and ©(r, t), we write a set of equations
that follows from boundary conditions (7)—«13) by
eguating terms ~¢2:

A 66(2) . aE(l) _ al.IJ(z) . azw(l)z(l)_(&(l)aw(l).
AT, T oT, | or g2 36 00
aw(z) + azw(l) 1 _aE_(l)an(l)
TR 30 06
(2) 24(1) (1) 534,(1)
_ 002, 0V _0eVap
ot 0 30 00
oy® oy oy _ ;[[aw(”az . [@UJ“)DZ}
0T, 0T, 0rdT, 2l0or O  Uoo U
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€_*|: dq)(o)aq)(z) .\ l:@q)(l)ljz . B)q)(l)ljz
dr or Oord OgoU

L,dP?0%0Y 090 o
)42 + E
Udr gr2 g2 or U

) 42 4,(0)
dr dr

Q@ g2p© )
%jdr dr® *EddZEB(E<”)}+(2+AQ)z(2’

(26)

—28W(1+00)EY = —pt—+

6
1
%™ e

[[@fb‘l’mz .\ [@¢”’Dz} 0
araT0 U

Uor

do© . oo 1d

%) (142 (2).
e A 0 ) :

o2 4 £ 4

[dGD @ @2 CD(l)

. acb( )DE(]-) |__U(12q3()
dr Ugp?

Yr0Y TOg?

d’a©

+ = + 2
dr?

+d o (1))2 3

D 3z
oy 208,

00 00

[lE%@.0+ E¥©.0) 14 = 0
0

2nm

I ﬁzz“)(e, t) +3(E(0,1))Y1(©, ¢)dudp = O.

Substituting expansions (18) and (19) (at m=2), as
well as solutions (20) and (22), into set (26) of the
boundary conditions yields differential equations for

the unknown coefficients M (T,, Ty, ...). From the

requirement that the secular terms be eliminated from
the solutions, we obtain

oa, _ ob,
a—_l_l—O, = 0;

oT,
this means that a, and b, in solutions (21) are indepen-
dent of the time scale T,;. Their dependence on the
slower time scales T,, T3, €tc., can be determined only
in higher order approximations.

The general solution to inhomogeneous differential
equations obtained from set (26) iswritten in the form

MP(T, T, .. = —n;ﬁ{An(Tz, AT )

+[AL(T, ...) exp(i2w,Ty) +C.C.};
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(2) = A
MP(T,, To, ...) —9n;(2n+1)(2n—1)

x{A,_1(To . )A(To ..
+ An-i(Ty ) AT ...

: (27)
)exp(lwn—l + wn)TO

)exp(i(wn_wn—l)TO) + C-C-} ;
MP (T Tyr ) = {Co(T, .. )exp(id (T4, ...)
xexp(iw,Ty) +c.c.} + N (Ty, Ty, ..0).

Also we have

N, (To, Tp ...) = Z Z{)\fgﬁnAm(Tz, COA(T, L)

X exp[l(oo +(*)I)T0] +}\mln m(TZ! )

x A(T,, ...)exp[i(w,—w) Ty +c.C.};

[ymln * wmwlrlmln] .

)\(’—fl) —
min 2.7
[Wf— (% )]

pn(n—m-—1)
-

1l
Ymin = KnKmIn[poi[n -m+

0
+2nI( + 1) =1 +wg[|(m+ ) —m(2m—-2n+7) + a%
H

U ori
+K amm%wm[m n+ 1)(pm+ 1)} WZE

_ Ch pn(2m-n+3)U
Nmin = KnKmIn% m+1+ 2(n+ 1) E
np(n+21+3) [
K O‘m'”H?El i 2(m+ 1)1+ H(n+ 1)’

KmIn = [Com?(;] 2;

Ui = —/m(m+ 1)1 (I + 1)CiaCrin s
0. if
%\Nhere g isan integer;
D (-1)°"/2n+ 1g
% = H{g-m¥ (G- (g—!
%x (2g—2m)!(2g—21)! (2g—2n)! 712
5 [ (2g+1)! } :
LGf m+1+n = 2g (gisaninteger);

m+l+n=2g+1,

KOROMYSLOV et al.

Ci%= /2n+1n!

(m+|—n)m(m+1) v2
[(n+m—|)'(n m+ DI (m+1+n+ )I( +1)}

e EDT T A z-DI(n+1-2+1)
Z Z(m-z+ 1) (n-2)!(l-n+z-1)!"

In the last expression, summation is performed over
all integer numbers z for which the expressions under
the factorial sign are nonnegative. The bar over A, in
(27) denotes the complex conjugate.

Note that CX° and Cir (Clebsch-Gordan coeffi-

cients[14]) are other than zero if their subscripts satisfy
the relation

Im=l|<sns(m+1); m+l+n = 2g, (28)

where g is an integer.

The coefficients in expansion (19) for the velocity
field potentials in the environment, ¢™(r, t), and drop,
PM(r, t), and for the electrostatic potentials dM(r, t)
are related to solutions (19) and (27) by the relation-
ships

(2
(2) _ lmMn (To, Tl’ )
D, (T Ty, ..) = nE T

- [(m(m_l)KmIn_amln)]
> 2
2l =

m=

L LOMP(To, Ty, )

(1)
- T M7 (To Ty, ..0)

Oodad

1 DaM(z)(To, Ty ..)

GA(Ty Ty, ...) =

+ Z Z [(m+ 1)(m+2)Km|n_amln]

m=2l=2
1 aM&r})(TO! T21 ) (1) 0
m+1 aTO Ml (TOlTZ"")E
FO(Ty Ty, ...) = 0
O
FO(T, Ty .) = gDMff)(TO, o)
]
- < ) w N
+ 5 Y MK (To, Ty )M (To, T, ...)%

m=1l=1
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In solution (27), ¢(T,, ...) and d (T, ...) are
unknown functions of time that are independent of the
timescaeT,.

Asin the case of the linear approximation, we com-
plete the quadratic consideration assuming that the
unknown values a,, b,, ¢, and d, are independent of
time; that is, they are constants defined by initial condi-
tions (14)—(16), because the estimates

a,=ay’ +O(T,); b,=by +O(Ty);

C=cp) +O(Ty); dy=dy +O(Ty)

arevalid.

In this case, expansion (19) of the function describ-
ing the distortion of the drop shape takes the form

£0,1) =80, Ty, a”, b
+e289(0, Ty, al”, b, ¢, d) + O(%),

where 3%, b, ¢

Expression (29) holds over thetimeinterval t < O(1)
with an error of ~€2. Within thetimeinterval O(1) <t <
O(e™), the error is comparable to the second term (sec-
ond-order correction); consegquently, in expansion (29),
only the first (linear) term should be left. Thus, the
approximate linear solution of problem (24)—25) is
uniformly applicable over thetimeinterval t < O(e™).

Substituting expansion (29) into initial conditions
(14)—(16) and equating quantities of the same order of
smallness to each other yields, in view of (19), the fol-
lowing relationships:

(29)

© “and d are constants.

6nO .

1
t= 0 MY = 8y MY = 1

omgY oMy amEY

= 0; + = = ).
T, - % T, tar, Com=0L2.)
Using these relationships and expressions (22) and

(27), we find the unknown constants a, b, ¢,

and d9;

al? = 38,5 by = 0;

1-—
CE.|O) = _( 6[’1, 0) Nn(t - O),
2
d? =0(n=012,..).
Eventually, solutions (22) and (27) for the coeffi-
cients M{™ (t) take the form
MR(t) = 8nycos(wpt);
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—0.0051

-0.010F

Fig. 1. Time variation of the second-order dimensionless
amplitudes Mff) (t) when the initial drop deformation is

induced by the fundamental mode. p = () 0.1, (b) 1.0, and
(c)10.W=1.

MO (t) = [1+ cos(2wyt)];

1
2(2k + 1)
MP(t) = —N,(0) cos(wpt) + N, (t) (n=22);

MP(t) = o;
(t) %

(PN +
No(t) = 5+ Adncos(2at)).

It is easy to check that the coefficients M (t) are
proportional to the parameters )\(kik)n (which, inturn, are
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Fig. 2. Time variation of the second-order dimensionless

amplitudes of modes Mﬁz) (t) when the initial drop defor-

mation is induced by the third mode at W= 1. p = 0.1
(dashed line), 1 (thin solid line), and 10 (thick solid line).
(a) The zeroth mode, n = 0; (b) the second mode, n = 2;
(c) the fourth mode, n = 4; and (d) the sixth mode, n = 6.

e

0.03 -

0.02

0.01F ‘\

0 2 4 6 ¢t

Fig. 3. Time variation of the second-order dimensionless
amplitude M(ZZ) (t) of the fundamental mode when the ini-

tial drop deformation is induced by the third mode at p =
0.1. W =1 (dashed line), 2 (thin solid line), and 3 (thick
solid line).

proportional to the Clebsch-Gordan coefficients Cpw

and C’ and, hence (see (28)), are other than zero

onlyifn=2j (j=0, ..., K.

Substituting (19) and (30) into (29) yields the sec-
ond-order approximation for the time variation of the
drop shape:

&(0, t) = ecos(wyt) Py(H)

210 1
—€ 22k 1)[l+ cos(2w,t)]

(31)

k
+ 3 Ty * Akzy) cos(ayyt)
j=1

—(ATh 2y + AR 200526 1)) TP (1) } + O(%).

From (31), it is seen that the initial disturbance of
any kth (even or odd) mode of capillary vibrationsleads
to the excitation (in the second order of smallness) only
of even modes whose numbers range between 0 and 2k.

(7) Figures 1a—1c show the time dependences of the
second-order amplitudes of modes excited by the non-
linear interaction for the case when theinitial deforma-
tion is induced by the virtual excitation of the funda-
mental mode (k = 2). The dependences are calculated
with (30) at various density ratios p. The second-order
amplitudes are observed for the zeroth (dashed line),
second (dash-and-dot line), and fourth (solid line)
modes in this case. The amplitude of the fourth mode
grows with increasing density ratio p, while that of the
second mode declines. When higher modes are respon-
siblefor theinitia drop deformation, anincreaseinpis
always accompanied by the growth of the highest of the
modes excited in the second order of smallness,
whereas the amplitudes of the remaining modes, except
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for the zeroth one, decrease. This fact is illustrated in
Figs. 2a—2d, where the calculated results are presented
for the case when the initial deformation is associated
with the third mode. Each of the panelsin Fig. 2 dis-
plays the second-order amplitudes of one of the excited
modes as afunction of time at various density ratios. As
was hoted above, the amplitude of the zeroth mode does
not vary with p. Thisisbecause the second-order ampli-
tude of the zeroth mode depends on the square of the
amplitude of the mode responsible for the initial defor-
mation (see (30)). The p dependence of the zeroth mode
amplitude appears only in calculations of the third
order of smallness.

Figure 3 shows the second-order amplitude of the
fundamental mode at p = 0.1 and various subcritical
values of the parameter W, which integrates all relevant
physical parameters. the interfacial tension, the permi-
tivity of the environment, and the charge and radius of
the drop. In dimensiona form, W = Q%4mnoR%; It is

easy to seethat the fundamental mode amplitude grows
noticeably as W approaches the critical value W, = 4
[1-4] (above this value, the drop becomes unstable
against its self-charge).

From the figures it follows that, as p grows, the
vibration frequency drops linearly in the small parame-
ter €. This effect has already been discussed for perfect
liquids [15], for viscous liquids and dielectric media
[16], and for conductive media[17].

CONCLUSIONS

When a drop of an ideal incompressible conducting
liquid immersed in an idea dielectric incompressible
medium nonlinearly vibrates, the energy maximum in
the spectrum of nonlinearly excited modes shifts
toward the highest mode with growing medium-to-drop
density ratio no matter which of the modesis responsi-
ble for the initial drop deformation. In the approxima:
tion quadratic in the small parameter, the amplitude of
the fundamental mode grows when the self-charge of
the drop increases and the interfacial tension, drop
radius, and permitivity of the medium decrease.

TECHNICAL PHYSICS Vol. 48 No.9 2003

1131

ACKNOWLEDGMENTS
This work was supported by the President of the

Russian Federation (grant no. 00-15-9925).

NP

10.

11.

12.

13.

14.

15.

16.

17.

REFERENCES

A. G. Baily, Sci. Prog. 61, 555 (1974).

V. |. Kozhenkov and N. A. Fuks, Usp. Khim. 45, 2274
(1976).

A. l. Grigor'ev, Yu. V. Syshchikov, and S. O. Shiryaeva,
Zh. Prikl. Khim. (Leningrad) 62, 2020 (1989).

A. |. Grigor'ev and S. O. Shiryaeva, lzv. Ross. Akad.
Nauk, Mekh. Zhidk. Gaza, No. 3, 3 (1994).

J. A. Tsamopoulosand R. A. Brown, J. Fluid Mech. 127,
519 (1983).

O. A. Basaran and L. E. Scriven, Phys. Fluids A 1, 795
(1989).

Z. Feng, J. Fluid Mech. 333, 1 (1997).

S. O. Shiryaeva, Zh. Tekh. Fiz. 71 (2), 27 (2001) [Tech.
Phys. 46, 158 (2001)].

S. O. Shiryaeva, 1zv. Ross. Akad. Nauk, Mekh. Zhidk.
Gaza, No. 3, 163 (2001).

S. O. Shiryaeva, Zh. Tekh. Fiz. 72 (4), 15 (2002) [Tech.
Phys. 47, 389 (2002)].

S. O. Shiryaeva, Zh. Tekh. Fiz. 73 (2), 19 (2003) [Tech.
Phys. 48, 152 (2003)].

A. R. Gaibov, S. O. Shiryaeva, A. |. Grigor'ev, and
D. F. Bdlonozhko, Pisma zZh. Tekh. Fiz. 29 (4), 22
(2003) [Tech. Phys. Lett. 29, 138 (2003)].

A.-H. Nayfeh, Perturbation Methods (Wiley, New York,
1973; Mir, Moscow, 1976).

D. A.Varshaovich, A. N. Moskalev, and V. K. Kherson-
skif, Quantum Theory of Angular Momentum (Nauka,
Leningrad, 1975; World Sci., Singapore, 1988).

I. P. Stakhanov, Zh. Tekh. Fiz. 44, 1373 (1974) [Sov.
Phys. Tech. Phys. 19, 861 (1974)].

A. 1. Grigor'ev, S. O. Shiryaeva, and V. A. Koromyslov,
Zh. Tekh. Fiz. 68 (9), 1 (1998) [Tech. Phys. 43, 1011
(1998)].

S. O. Shiryaeva, A. |. Grigor'ev, and D. F. Belonozhko,
Zh. Tekh. Fiz. 69 (10), 34 (1999) [Tech. Phys. 44, 1159
(1999)].

Trandated by N. Mende



Technical Physics, Vol. 48, No. 9, 2003, pp. 1132-1140. Translated from Zhurnal Tekhnicheskor Fiziki, Vol. 73, No. 9, 2003, pp. 52-59.

Original Russian Text Copyright © 2003 by Kuchinskir.

GASES

AND LIQUIDS

Evaluation of Plasma Parameters
from Measured Data
on the Passage of Shock Waves through a Plasma

V. V. Kuchinskii
Research Institute of Hypersonic Systems, Leninets Holding Company, . Petersburg, 196066 Russia
e-mail: ajax@comset.net
Received February 11, 2003

Abstract—Analytic formulas are derived that make it possible to estimate the plasma parameters from mea
sured data on the characteristics of a shock wave that has passed through a plasma. Examples are given of how
these formulas can be used to interpret the data from experimental studies of propagation of a shock wave
through a gas-discharge plasma. The results obtained can serve as a starting point for amore detailed analysis.
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INTRODUCTION

Among the first papers on the diagnostics of plas-
mas by shock or acoustic waves are [1, 2], in which an
argon plasma at pressures from 2 to 30 torr was inves-
tigated by Langmuir probes. Sharp variations in the
detected waveforms of the potential made it possible to
estimate the wave velocity and to calculate the depen-
dence of the discharge temperature on the experimental
conditions.

Further development of experimental techniques
increased the variety of tools for recording the vel ocity
of a shock or an acoustic wave. The objective of the
present paper is to elaborate simple methods for esti-
mating the plasma parameters from the experimentally
measured characteristics of a shock wave. Of course,
more precise modern methods of calculation provide
far more precise information about the plasmabut, as a
rule, they involve aconsiderabl e expenditure of compu-
tational resources. There are many casesin which sim-
ple estimates may be useful, because variations in the
plasma parameters make it practically impossible to
determine the temperature (or density) of the neutral
plasma component with a high degree of accuracy. Sec-
tion 1 presents the main formulas for calculating the
plasmatemperature from measured data on the passage
of a shock wave through the spatial inhomogeneities
that originate from the nonuniform temperature (and,
accordingly, density) distribution at aconstant pressure
in an unperturbed region ahead of the shock front. Sec-
tion 2 demonstrates how the theoretical results obtained
can be used to interpret previous experimental data.
Thisis most fully illustrated by processing the data of
[3, 4]. Less accurate methods for processing the exper-
imental information are described in the Appendix.

1. THEORETICAL BASIS
FOR THE METHOD

A detailed analytic treatment of the formation of a
shock wave and its passage through a spatially inhomo-
geneous region was carried out by Sukhomlinov et al.
[5] in the one-dimensional approximation. The results
obtained in that paper yield the following set of equa-
tions:

oX(t) _ f(x(t))

ot a(x(t)) + 8= M
a(tf (x(1))) _ af(x(1)
ot 2a(x(t)) '

where X is the spatial coordinate, t is the time, and the
function f(t) describes the initial shape of the shock
wave perturbation.

When the spatial inhomogeneity is produced by a
nonuniform temperature (or density) distribution at a
constant pressure, the acoustic velocity at the point X is

equal to a(x) = a(T(x)) = ~/YRT(X), where Risthe uni-
versal gasconstant, a, = a(Tp) = const, T, isthe constant
temperature outside the spatially inhomogeneous
region, T(X) isthe shape of the temperature distribution
inside the inhomogeneous region, and y is the adiabatic
index.

The solution to Egs. (1) for a shock wave propagat-
ing through ahomogeneous medium yields anumber of
simple formulas describing how the wave changes in
time. The initial coordinate X, of the shock front is
related to the initia time t, and the initial value of the
Mach number M, by

Xo = (2Mo—1)apt,. 2

1063-7842/03/4809-1132$24.00 © 2003 MAIK “Nauka/ Interperiodica’



EVALUATION OF PLASMA PARAMETERS FROM MEASURED DATA

The time dependence of the shock front coordinate,

X(t) = 2(Mo—1)ag.ftet + agt, ©)
gives the value of the Mach number at thetimet:
M@t = 2O _ Vo(t)
ot a, )
t 1, x(t) “
- _1) [04q = 24X
= (Mo-1) - +1 5" 2agt’

where V, is the shock front velocity and M, = M(t,).

From formula (3) we obtain the dependence of the
time on the coordinate, t(x):

%(Mo-1)° 1

(0) —
t(x) = :
3, 2My—1 F(X, Xo, M0)2

(%)

where the subscript 0 stands for the motion in a homo-
geneous medium and

1
F(X, Xy Mg) = . (6)
Xo(My—1)

Substituting expression (5) into formula (4), we
arrive at the dependence of the velocity of ashock wave
in a homogeneous medium on the coordinate x:

VO(x, Xo, Mg, 80) = 8g[1+F(X, %Mo)l (7)

Of great practical interest isthe case of a“rectangu-
lar” temperature profile such that T(x) = T, for x, <x <
X, and T(x) = T, for x < x; and x> x; (see Fig. 1). Inthis
case, Egs. (1) admit an exact solution, which yields the
following expression for the shock wave velocity:

_dx(t, T) _

v, 1) = 2D
O t
%H(I\/Io—l) 2 for tst,
]

T tort¥

%EJ,(MO_Q T for hetsum (g
x [
M- 2T o st (m)

t Tt O

:gf_o_;
2N T 2

We integrate this expression to get the time depen-

DI%:U:II:ID
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fh 1, A tr t, t
v v v v
X0 X P Xp 'Xf Xe X
Vo v v v
B [ O | ©
T(x) A B
T
TO
1 Xp 1 xf 1 x'

Fig. 1. Choice of the coordinate system: SW isashock wave
propagating from left to right; Xy istheinitial coordinate of
the shock front (the position of the membrane); x, and x; are
the entrance and exit boundaries of the inhomogeneous
region, respectively; and x, and x, are the coordinates of the
points A and B at which a shock wave (SW) is recorded.

dence of the coordinate of the shock front:
x(t, T)

CPo(2(Mo~ 1) o+
p+ﬁ[t_tp+z(Mo_1)@¢t‘p

for t<t

p

D} for t,<t<t(T) ©

+ ao[t—tf(T) +2(Mo—1) Jt

D—;—— iG] for o,

The inverse function t(x, T) is found by solving
Eq. (9) with respect to t. To within a relative error of
less than 2 x 10, the coordinate dependence of the
timeis given by the expression

t(x, T)

I
QDDQDDDQDDDQQD
o5
€
¥
NI
|
of

E&“”(x) for t<t,,

B D AW - 12w+ 1+ @+ (Wr U2NKe,
J 1+(W+12)Bx T "
‘~‘%for t,<t<ty(T),

ﬁ J%X-i (T * 0, T = (T
%or t>1t:(T),

(10)
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where

W = 2(M0—1)J:1’, t(T) = (M
p

—1)@ (T)D to,

N(x) = X=Xy
aoaftoty(Mo—1)° an
(0)
B(x,T) = 1+ % Xy JYRT, My)
tp
MX = 1+/\/¥F(Xp, Xo,Mo),
the = (Xo» Xer X, 80, M)
_1 2Xo] Xe X
= ao[x —Xp— o) 1+@X0—/\/1+@ch} (12)
_2M-1
(M-1)%

and t'2 is the time required for the wave with M = M,

to pass from the point x, to the point X, in a homoge-
neous medium.

The time t, a which a shock wave reaches the
entrance boundary of a thermally inhomogeneous
region is independent of temperature and is calculated
from formula (5): t, = tO(x,). The time t(T) at which
the wave | eaves the inhomogeneous region is obtained
asasolutionto Eqg. (9), i.e., to the equation x(t;(T), T) =
X With a high degree of accuracy, this time can be
approximated by the expression t;(T) = t(x;, T), whichis
obtained using the second of equalities (10). The time
dependence of the shock wave velocity is given by for-
mula (8), and the coordinate dependence of this veloc-
ity is calculated from formula (8) with the help of for-
mula (10):

V(x, T) = V(t(x, T), T). (23

Inthe general case, thetimerequired for thewaveto
pass the distance between the points at which it is
recorded (i.e., the points x, and x.) is determined by the
formula

= (X T)-tlx,, T),  (14)

_ K dx
tbe(T) - IV(X, T)

where, depending on circumstances, the velocity
V(x, T) is given by formulas (7), (8), and (13) or by
approximate formulas (24) and (25) from the A ppendix
and the time t(x, T) is given by formula (10). For a
shock wave propagating in a homogeneous medium,
the two groups of formulas for the velocity are equiva

lent, so that we have t,(Ty) = t'o (see formula (12)).

KUCHINSKII

When the initial value of the Mach number is
unknown, it can be determined by measuring the time
tye required for the wave to pass the distance between
the points at which it is recorded in a homogeneous
space (with auniform temperature) and substituting the
result obtained into formula (12):

M O(tbe)

-1

- 1 09

PO X = 0 * X = Botoe)” + P toe
(X=X~ aothe)”

Using formula (14), we can caculate the time as a
function of a parameter set: t,e = tpe(T, Mo, Xo, Xp» Xo)- I
the time of propagation of a shock wave, (tue)exp 1S
known from experiment, then, by solving the transcen-
dental equation ty(T, Mo, Xo, X5 Xo) = (twe)exp With
respect to the temperature T, we determine the temper-
ature (or the density p/py = Ty/T) in aspatially inhomo-
geneous region.

When the wave characteristics are measured at
points inside a thermally inhomogeneous region and
the first measurement point X, coincides with its
entrance boundary (i.e., X, = X, t, = tp, X, < X;), the tem-
perature can be determined with high accuracy:

T(tbe1 M p)

4
T

4|:T_nbe+ /\/(T_nbe)z_/\/tbi 2i|
b

:TO

2! (16)

where

r.]be =

Xe—Xp _ tbé]
—, T=InE+-=
ap /_txtp %" tpD
2
(= pr(xp, X, M) .
a0[1+2F(Xp1 X01 MO)]

The maximum temperature in aspatially inhomoge-
neous region can be estimated not only from the dataon
variations in the velocity of a shock wave or its propa-
gation time but also from the change in the relative
intensity of the measured signal (see Fig. 2 taken from
[4] and analogous figures in [6]). A decrease in the
intensity of the signal recorded by a photodetector is
determined, on the one hand, by a decrease in the den-
sity in the region of elevated temperature ((p/pg = Ty/T,
T > T,) and, on the other, by a reduction in the loca
Mach number. When the recorded parameter isthefirst

TECHNICAL PHYSICS Vol. 48

No. 9 2003



EVALUATION OF PLASMA PARAMETERS FROM MEASURED DATA

derivative of the density, the relative change in the sig-
nal intensity can be approximately described as

L3 _ 9p(j)/ox _TcJui(M)
11(jc) 0p(j)/ox T JIy(M)’

Ji(M)=1.24{ 1 —exp[-1.7(M = 1)} (M —1)*".

The expression for the dependence of the maximum
absolute value of the first derivative of the density on
the Mach number is an approximation of the general
(but fairly involved) analytic formula presented in the
Appendix.

When the recorded parameter is the second deriva
tive of the density, the corresponding formulas have the
form

(17)

1L,(J)) _ 9°p(j)/9x°
l2(ic)  9%p(j.)/ox

J,(M) = 1.54{ 1 —exp[-1.7(M = 1)} (M —1)*?".

Informulas (17) and (18), j. isthe current density at
which the temperature T, and Mach number M, are
known. For other values of the current density, the
Mach number is a function of temperature, M = M(T);
at the measurement point Xx,, it is calculated from for-
mulas (7), (8), and (13) or from formulas (24) and (25):
M(T) = V(Xe, X0 Mo, a5, T/a(T(xy). In this case, the
temperature in a thermally inhomogeneous region is
estimated from the solution to the transcendental equa-

tion
ALy O 0
() e 1a(ic) () e T2(ic)’
where [1,(J)/11(jo)leq O [12())/12(jc)]exp are the experi-
mentally measured ratio of the signal amplitudes (see,
e.g., Fig. 2) and theratios 1,(j)/11(jo) or I5())/14(j.) are
calculated from formulas (17) and (18) (depending on
the method by which the signal is detected) and from
the formula M(T) = V(Xe, X5, Mg, 8, T)/A(T(X)).

In many cases, it is expedient to interpret experi-
mental data using the following formula, which was
proposed by Sukhomlinov et al. [7] and describes the
dependence of the temperature T of a gas discharge on
the current density, pressure, and the ratio E/p (charac-
terizing the sort of gas):

0. 0.2
T=cTyd, ¢ = i[1+ %'11%35 j%ll%ga ,

q:| 21 383

L0

T (M)
T T I,y

(18)

(19)

(20)

Here, cT, isthe temperature of the wall surrounding the
discharge, the eectric field strength E isin V/cm, the
current density j isin mA/cm?, the pressure pisin torr,
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0.01
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1 1
0.00040  0.00045  0.00050

Fig. 2. Measurement of the effect of the plasma on the prop-
agation of a shock wave at apressure of 1.6 torr (the time of
propagation between the points at which the wave is
recorded, according to the data of [3, 4]).

and the numerical constant depends on the choice of the
units of measure.

The constant ¢ = 1 can be called the coefficient of
heating of the wall with respect to the surrounding
medium, or simply the “heating coefficient.” Formula
(20) isvalid only for j = j,. The following generalized
temperature profile can be proposed that is valid over
the entirerangej = O:

A2crin

ETO[ 25[3‘3[](43
Efor j<io

EpToq) for

Aeconio, 1}

~25./300

21)
> Jo-

If the wall temperature is determined by a mean of
the temperature T, and the plasma temperature, i.e., by
T=(T+ Tyc,d (where the coefficient ¢, is about 1/2),
then, instead of formula (21), we obtain

T
U rm- (142/25)c, /3 + 80%@' g
o[ = ohd
5 0 (2¢,—/3) 0o’

E (22)
D—Z% (146/25)c,,+/3 + 8¢ Q0 1} for j < jo,
00 (2c,-+/3)° 05
HoTod  for > jo.

These formulas alow one to estimate the plasma
temperature and also, in the case under consideration,
can provide additional tools for checking the tempera-
ture values obtained from the experimental data.

Below, exampleswill be presented of how the above
methods for determining the temperature can be
applied in practice (Figs. 3-6). When the pressures
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inside and outside the thermally inhomogeneous region
are the same, these methods make it possible to com-
pletely determine the main parameters inside this
region, provided that the pressure P, and the tempera-
ture T, outside it are known.

ther s X 10%

60 B (a)

5.5

5.0

4.5

4.0

3.5

T,K
1250

1000

750+

500}

250 | | | | |
0 2 4 6 8
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2. DETERMINATION OF THE PLASMA
TEMPERATURE FROM THE MEASURED SHOCK
WAVE CHARACTERISTICS

Papers [3, 4] contain fairly complete information
about the experimental conditions and the results
obtained. In those experiments, the propagation time of
a shock wave between two measurement points was
recorded by two lasers. The experiments were carried
out with air at pressures of 1.6 and 10 torr. A shock
wave passed through a gas-discharge plasmain adirec-
tion transverse to the applied electric field. The dis-
charges could occur in different regions of the working
chamber. The notation adopted for describing the spa-
tia temperature distribution over the thermally inho-
mogeneous discharge regionis givenin Fig. 1.

The characteristic waveforms [4] from which the
propagation time of a shock wave between the mea-
surement points can be determined are presented in
Fig. 2. Substituting the propagation time t = 0.00055 s
in a homogeneous (nonionized) medium into formula
(15), we determine the Mach number just at the mem-
brane, M, = 2.88. This value coincides with the corre-
sponding data of [3, 4]. Then, for the purpose of check-
ing the results, we can cal cul ate the propagation time of
a shock wave at nonzero currents from formulas (10)
and (14), in which the temperature is determined from
formulas (21) and (22). Since the temperature of the
discharge chamber wall was not measured in [3, 4], the
coefficient cinformula(21) can be adjusted by estimat-
ing the power fed into the discharge. In Fig. 3b, the
solid curve shows the temperature profile calculated
from formula (21) with ¢ = 1.7, and the dotted curves
are obtained from the same formula but with ¢ = 1.6
(lower curve) and ¢ = 1.8 (upper curve). The dashed
curveiscalculated from formula(22) with c, = 1/2. The
sguares show the results obtained from the experimen-
tally measured relative signal amplitudes (this method
for estimating T was described in Section 1). It may be
said that formula (21) describes the experimental situa-
tion in question more adequately. The dependence of
the temperature on the current density is calculated by
solving the equation t,(T, Mg, X, Xo: Xe) = (tpe)exp- ThE
estimates of the temperature that are obtained from the
relative signal amplitudes are apparently less accurate

Fig. 3. () Thetimet required for a shock wave with the initial Mach number Mg = M(xg) = 2.88 to pass the distance between the
points at which it is recorded and (b) the temperature T in the case of a rectangular temperature profile as functions of the current
density j. The notation in plot (a) is asfollows: The circles show the experimental data of [4] (see Fig. 2). All the curves were com-
puted from formula (14). The solid curve was obtained by using the temperature calculated from formula (21) with c = 1.7, and the
upper and lower dotted curves were obtained by using the temperatures calculated from formula (21) with ¢ = 1.6 and ¢ = 1.8,
respectively. The dashed curve was computed from formula (14) in which the temperature was calculated from formula (22). The
squares show the results calculated from formula (14) in which the temperature was determined from the relative signal amplitude
by solving Eq. (19). The diamonds show the results calculated from formula (14) in which the temperature was estimated from for-
mula (26) with the use of the experimental data on the propagation time of a shock wave [4]. The notation in plot (b) is asfollows:
The solid curve is the temperature profile calculated from formula (21) with ¢ = 1.7, and the upper and lower dotted curves were
calculated from the same formulawith ¢ = 1.8 and ¢ = 1.6, respectively. The dashed curve was calculated from formula (22). The
circles show the temperature calculated from the experimental data of [4] by solving the equation tp(T, Mg, Xo, X, Xe) = (the)exp-
The sguares show the temperature determined from the relative signal amplitude by solving Eq. (19). The diamonds show the tem-
perature calculated from formula (26) with the use of the experimental data on the propagation time of a shock wave [4].
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Fig. 4. () Profile of the shock wave velocity along the spa-
tial coordinate and (b) increment in the velocity caused by
the spatial inhomogeneity. The notationin plot (a) isasfol-
lows: The solid curve is the velocity V(x) of a shock wave
with the initial Mach number Mg = 2.88. The dashed-and-
dotted curveisthe velocity V(O)(x) calculated from formula
(7) for ashock wave that has the same initial Mach number
Mg = 2.88 but moves in a homogeneous medium. Plot (b)
displaysthe difference (at the observation point xg) between
the velocities shown in plot (a). The calculations were car-
ried out on the basis of formula (14) in which the tempera-
ture (Fig. 3b) was determined from formula (21) with ¢ =
1.7 (solid curve), from the same formula but with ¢ = 1.8
(upper dotted curve) and ¢ = 1.6 (lower dotted curve), from
formula (22) (dashed curve), from the experimental data
obtained in [4] on the propagation time at the pressure p =
1.6 torr (circles), and from the measured signal amplitude

(squares).

than those obtained from the measured propagation
times.

The solid curve in Fig. 4aillustrates the results of
calculations of the shock wave propagation velacity as
a function of the spatial coordinate from formula (13)
at T = 473 K. The dashed-and-dotted curve shows the
propagation velocity calculated from the same formula
but at T =T, =300 K, i.e, in the absence of thermal
inhomogeneity. The difference between these curvesis
the increment in the vel ocity at the observation point X,
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Fig. 5. Dependence of the temperature on the current for a
shock wave propagating through adischargein (a) argon at
the pressure p = 30 torr and (b) nitrogen at the pressure p =
10 torr. The circles show the temperature values determined
by solving the equation ty(T, Mg, Xo, X, %) = (tp)exp OF Cal-
culated from formula (Zé)) with the use of the experimental
data obtained in [6] on the propagation time of a shock
wave. The squares show the temperature val ues determined
from the relative signal amplitude [6] by solving Eq. (19).
Inplot (8), the solid curve shows the temperature cal cul ated
from formula (21) with c = 1.15, and the dotted curves were
obtained from the same formula but with ¢ = 1.2 (upper
curve) and ¢ = 1.1 (lower curve). The dashed curve was cal-
culated from formula (22). In plot (b), the solid curve shows
the temperature calculated from formula (21) with c = 2.1,
and the dotted curves were obtained from the same formula
but with ¢ = 2.2 (upper curve) and c = 2.0 (lower curve). The
dashed curve was calculated from formula (22).

caused by the effect of the thermal inhomogeneity
(Fig. 4b).

The data obtained by Ganguly and Bletzinger [6] on
the propagation of a shock wavein an argon and anitro-
gen plasma are illustrated in Figs. 5a and 5b, respec-
tively. Inthat paper, the propagation time was measured
from the waveforms that are analogous to those given
inFig. 2. Itisobviousthat, in this case, the estimates of
the temperature from the propagation time of a shock
wave have almost the same accuracy as those obtained
from the signal amplitude.
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Fig. 6. Shock wave velocity asafunction of therelative den-
sity. The diamonds show the experimental data of [8]. The
solid curve was cal culated from formula (24) in which the ini-
tial Mach number was determined from formula(33), the pres-
sure being p = 60 torr. The density increases linearly accord-
ing to the law p;(X)/p10 = 0.2 + 0.8(x — Xo)/ (% — Xp) [8].

Piskareva and Shugaev [8] carried out experiments
on the propagation of shock waveswith different initial
velocities through an inhomogeneous region in which
the dendity increases according to alinear law, p,(X)/pig =
0.2 + 0.8(x — x,)/(% — X;) (in [8], this law was deter-
mined experimentally). They measured the distribu-
tions of the shock wave velocity along the spatial coor-
dinate. The maximum temperature estimated by the
method of two velocities described in the Appendix
turns out to be T = 1404 K, which agrees well with the
estimate T = 1370 K obtained in [8]. Figure 6 compares
the calculated shock wave velocity as a function of the
distance from the heat source with the experimental
results of [8]. Good agreement between the calculated
and experimental results raises the hope that this
method will also yield fairly reliable estimates of the
temperature.

CONCLUSIONS

In this paper, formulas have been derived for esti-
mating plasma parameters by several independent
methods from experimental data on the characteristics
of shock waves passing through athermally inhomoge-
neous region. These formulas allow oneto calculate the
shock wave velocity and the time required for the wave
to pass the distance between the points at which it is
recorded. A comparison of the results obtained by the
methods proposed here with the experimental data
gives reason to hope that the methods can be success-
fully used to estimate the plasma parameters in differ-
ent experimental situations.

KUCHINSKII

APPENDIX

For a homogeneous medium, the function f(t) has
the form

f(t) = wﬁiﬁlﬁ/_{ﬁ

As a first approximation, we can substitute this
expression for f(t) into the first of Egs. (1) and switch
from the dependence on the timet to the dependence on
the coordinate x according to formula(5). Then, we can
derive the following simple approximate formula for
the velocity of a shock wave propagating in a medium
with a spatial inhomogeneity:

V(X, Xy Mg, 89, T) =a(T(X)) +agF (X, Xo, My), (24)
where T is the maximum temperature in a thermally
inhomogeneous region and M, = M(X,).

In the next approximation, the shock wave propaga-
tion velocity is described by a more involved formula:

V(X X0, Mo, 89, T) = &(T(x)) + aF(x)

(23)

51 for x<x,
0 T 13 T 13 2
X[ 1 ¢] [ _0g }F(X) (25)
0 1+ F(Xp) DTD +|1 DTD F(Xp) oy
H 1+F(x,) P
F(X) = F(X X0, M), F(Xp) = F(X, X0, M) = const.

A comparison with the numerical solution to the
exact equations shows that formula (25) isvalid for dif-
ferent temperature profiles.

For a rectangular temperature profile (Fig. 1), the
simplest way to estimate the temperature in athermally
inhomogeneous region is to replace the dependence of
the shock wave velocity on the coordinate x in the inte-
grand in formula (14) with the value of the velocity in
the middle of the interval between the measurement
points x, and X, (such that X, = X,, Xe < X;):

1 [ Xe=Xp Xet Xy D}
— Fa 2, %o M
yR|:(tbe)exp % 2 ° i

If the velocity of a shock wave is maximum just
after the wave enters the thermally inhomogeneous
region, then the temperature in this region can be esti-
mated from the measured spatial distributions of the
velocities of two shock waves with different initial
Mach numbers Mg, and M,. In this case, the maximum
velocity is given by the formula

_ LN
Vi = %Ewp—l+J;Aj,

where a;M,, is the shock wave velocity just before the
wave entersthe thermally inhomogeneousregion, M, is
the Mach number corresponding to the maximum

(26)

(27)
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velocity, and T is the maximum temperature in the
inhomogeneous region.

Using the measured distributions of the velocities of
the two shock waves, we can construct the following set
of four equations:

T
Vlmax = E\/Ilp_l-l-/\/T:an'
T
V2max = E\AZp_l"'/\/T:anv

Vi = V(O)(Xm X0, M1, &),

(28)

Vyp = V(O)(Xm’ X0, M2, @),

the left-hand sides of which are the experimentally
measured maximum velocities Vi, and Vs, and the
velocities V;o and V., measured at the point x,,, that lies
behind the spatially inhomogeneous region.

The quantity x,, which determines the choice of the
coordinate system, is an unknown parameter. The left-
hand sides of the | ast two equations are calculated from
formula (7). The set of equations contains four
unknown quantities: My, My, T, and X./X,. In solving
the set of equations, we arrive at the following cubic
equation for the quantity M;:

AM3, + AME+ AMy, + Ay = 0,
A; = 20-2, A, = 2gq-5g-4qg+5,

A, = —4gq+4g—2q2+ 6q-—4, (29)

Ay = 29q+q°-2q—g+1,

_ (2Vio—a5) (Vo — 30)2 _ Vomax = Vlmax_
(Vio— a0)2(2V20 —ay) %

The remaining unknown quantities are expressed in
terms of the largest root M, of this equation:

7 = Vine—2o(Myp~1)]°
YR

= = Xa)og(Vio—=80) (2Map— 1)
0 (M1, =V10)(2M Vo= Vip =M ;)

where (X, — Xo)exp are the experimentally measured dis-
tance from the source of the shock waveto the point X,
at which the velocities Vo and V., were measured.

The calculated value of x; (Fig. 1) and the known
value of (X —Xo)exp give all the coordinates required for
calculations, thereby making it possibleto calculate the
velocity distribution from formulas (8), (13), and (24)
or (25) for the purpose of checking the results obtained.

If it is technically impossible to measure the pres-
sure, then, by recording thetimet,, required for ashock

’ MZp = q+M1p’
(30)
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wave to pass the distance between two points that lie
outside of the spatially inhomogeneous region, one can
use formula (15) to determine the Mach number at the
exit from the shock tube, My = M(t,o), and exploit the
familiar formulas to calculate the pressure P, in the
working volume from the pressure P, and temperature
T, within the high-pressure chamber in the shock tube:

2y,
Ova-1
Y, T, U

ZE  J2yi2y+ (y+ D=0
] |

¥To

a (Ya—1)(z-1)

(31)

_ P, _ (2My-1)y+1
P, y+1

wherey, isthe adiabatic index within the high-pressure
chamber.

The maximum value of the first derivative of the
density can be estimated by using the following for-
mula, which was obtained from the experimental data
of [9]:

ap(x, M)
0Xx o
_ 1=y’ l(d-2y) (WY -y +1-1) -2y
(2y-1+ .y —y+1)’
_(y=1)M*+2
(y+1M?

X=X

M. (32)

Thisformulaisfairly well approximated by formula
(27).

Theinitial Mach number of a shock wave propagat-
ing in a homogeneous medium can be estimated from
the known velocity V,, (measured at the point x,) by
solving Eq. (7) with respect to M

MO = Bm+/\/(Bm_1)Bm

2
p, =X (o)’ g 3
Xo(2Vim—ao)ag

This formula can also be used to estimate theinitial
Mach number when the point x,, lies outside of the spa-
tially inhomogeneous region, because the shock wave
velocity in thisregion is close to that in the absence of
inhomogeneity (see the region x > x; in Fig. 4a).
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Abstract—The second-order amplitudes of the capillary vibration modes of adrop of an ideal incompressible
liquid placed in an incompressible ideal medium are calculated. The approximation is quadratic in initial mul-
timode deformation of the equilibrium spherical shape caused by nonlinear interaction. The mathematical state-
ment of the problem is such that the immobility condition for the center-of-mass of the drop is met automati-
cally. When the trandlational mode amplitude is calculated, a set of hydrodynamic boundary conditions at the
interface, rather than the condition of center-of-massimmobility (which isusually applied for ssimplicity in the
problems of drops vibration in a vacuum), should be used. © 2003 MAIK “ Nauka/Interperiodica” .

(1) The vibration and stability of charged drops and
bubblesin aliquid is of interest in various areas of sci-
ence and technology (see, e.g., [1-3] and Refs. cited
therein). This problem has been studied in many exper-
imental and theoretical works using both the linear [1—
3] and nonlinear [4-10] approximations in vibration
amplitude. The study of nonlinearly vibrating drops
and bubbles has only recently begun, and the tech-
niques of solving such problems have not yet become
commonly accepted. Many particular cases have been
covered superficialy, which sometimes causes errors.
For example, this applies to the excitation of the trans-
lational mode in a nonlinearly vibrating drop, which
appearsin second- and third-order calculations[4, 8, 9,
11, 12]. The very fact of translational mode excitation
in a drop of an incompressible liquid nonlinearly
vibrating in a vacuum follows from the requirement
that the center-of-mass of the drop be stationary. When
the spectrum of modes specifying the drop initial defor-
mation contains two or more modes with sequentially
increasing numbers, the center-of-mass immobility
leads to the appearance of the trandlational mode
among the modes excited by nonlinear interaction [9].
In other words, the excitation of the translational mode
compensates for the displacement of the center-of-
mass, which results from a mass distribution that is
asymmetric about the center of an equilibrium spheri-
cal drop when the spectrum of the initial deformation
contains modes with sequential numbers. The time
dependence of the trandational mode amplitudeis peri-
odic, causing the drop vibrating in a gaseous atmo-
sphere to emit dipole acoustic radiation [9, 13]. If the
dropischarged, it becomesthe source of dipole electro-
magnetic radiation [9, 14].

A second-order analytical expression for thetransla-
tional mode amplitude in a drop nonlinearly vibrating
in avacuum can be derived from both the condition of

center-of-mass immobility and a set of hydrodynamic
boundary conditions on the free surface of the drop. In
both cases, its form is the same [9]. The situation
changes if the drop vibrates in an environment (or a
bubble vibrates in a liquid): in this case, anaytica
expressions for the translational mode amplitude that
are obtained from the condition of center-of-mass
immobility and a set of boundary conditions at the
interface are different at first glance [11]. It should be
noted, however, that Benjamin and Ellis [11] applied
the condition of center-of-massimmobility incorrectly.
Nevertheless, they drew the general conclusion that the
drop (bubble) moves translationally with afixed veloc-
ity as a result of surface vibrations that are excited
because of energy transfer from surface modes to the
tranglational mode, whose amplitude contains a time-
independent term. In combination with the misinterpre-
tation of the experimental data for cavitation [15], this
conclusion provoked another theoretical work by Feng
[12], who, using an incorrect transition to the noniner-
tial coordinate system, obtained an expression for the
velocity of the translational motion of abubbleinalig-
uid in the absence of external forces (i.e., when the
motion is caused only by surface vibrations). There-
fore, the problem of applying the condition of center-
of-mass immobility to calculating the nonlinear vibra-
tions of incompressible liquid drops in an incompress-
ibleideal environment in the case of amultimodeinitial
deformation seemsto be topical.

Kornfeld and Suvorov [15] observed the formation,
motion, and cavitational disappearance of microbub-
blesin aliquid and near a metallic object vibrating at
7.5 kHz. The number of bubbles was rather large: they
even clouded the object. Most of the bubbles formed
and collapsed in the neighborhood of the object, thus
causing its cavitational erosion. However, some of them
suddenly started to move rapidly and randomly. Based
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on this observation, the authors of [11, 12] put forward
the idea that nonlinear vibrations cause the drift of the
bubbles. We believe that the interpretation [11, 12] of
the observations [15] is far from correct. It is obvious
that any complex random mation of individual bubbles
may be provided if theflow field of aliquid in thevicin-
ity of avibrating metallic object is superimposed on the
velocity fields of randomly oriented intense hydrody-
namic flows near cavitation bubbles [16] in the pres-
ence of gravitational and buoyancy force fields. As far
as we know, no directed mation of bubblesin a quies-
cent liquid the only reason for which is surface vibra-
tionsin the absence of directed applied forces has been
detected in experiments.

(2) Let acharged spherical drop of an ideal incom-
pressible conducting liquid with a mass density p, be
placed in anidea incompressible dielectric liquid envi-
ronment with a permittivity £ and mass density p,.

The surface tension coefficient at theinterfaceis g, and
the total charge and radius of the drop are Q and R,
respectively.

Consider the capillary vibrations of the interface
that are induced by a small initial perturbation of its
equilibrium spherical shape. We consider only axisym-
metric distortions of the interface and write a related
equation in the spherical coordinate system with the
origin at the center-of-mass of the drop:

F(r,0,t)=r—r(0,t)=r-R[1+&(O, )],
(IEl/R) < 1,

where &(0, t) isadimensionless function describing the
spherical surface deformation that is related to surface
vibrations.

Since the drop vibration amplitudes are small, we
may assume that the motion of both mediais potential.
The potentials of the liquid velocity fields are Y, (r, t)
and ,(r, t) inside and outside the drop, respectively.

The conductivity of the drop is taken to be suffi-
ciently high in order that the characteristic time of
charge redistribution over its surface be much shorter
than the characteristic hydrodynamic time scales of the
problem. Then, an electric field near the drop may be
considered to be electrostatic with a potential @ at any
time instant.

The eguations describing liquid motions in the sys-
tem are

)

AP, =0 (0<r<r(0,t1));
Ay, =0; AP =0 (r>r(0,1))

with the conditions at the interface (see (1))

)

on on’
aF
o +Vy, [VF = 0;
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oy, oy,
P1—Py—p1—5—- (le) t P23

at at

©)
+%2(Vm2)2+g—;1(v¢)2 = gdivn;

®(6,1) = Dg(1);

= R[1+£(0,1)]
T{f(n (WP)dS=Q, S= [D<G)<T[
Ep<(p< 2711

Here, P, and P, are the pressures inside and outside the
drop in the equilibrium state, n is the unit vector of the
outer normal (directed toward the environment) to
interface (1), ®4(t) is the constant value of the electro-
static potential d(r, t) over the interface, and O is the
Laplacian.

The initia conditions are an expression for the ini-
tial diffusion of the interface and the zero initial veloc-
ity of the diffusion:

£0,t=0 = sz hP(cos®) + & P,(cos®) + & ,P,(cosO);
EE (4)
08(9,t=0) _
ot -

Here, € is the perturbation amplitude, which is a small
parameter of the problem; P,(cos®) is the ith-order
Legendre polynomial; h; isthe partial contribution of an
ith vibration mode to the initial perturbation:

Z h =1,
i0o=
&, and &, are constants defined by the constancy condi-
tion for the volume of the drop (and environment) with
the vibrating interface,
e dQ = sin@deds;
J’ J’ r?drdQ = L—lnRg; - ’ (5)
3 Q={0<O<sm0o<d=2m
and the immobility condition for the center-of-mass of
the entire system,
r(e,t) L
plj' J’ r O drdQ+p2J’ I r tr2drdQ
SCr . =0. (9

ple rzdrdQ+p2I f rdrdQ

Q 0 Qr(o,1)

Conditions (5) and (6) must be met at any time
instant, including at zero time. In (6), L isthe character-
istic linear size of the environmental space, L > R (the
environment occupies arelatively large volume, which
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isinfinitely large in the physical, rather than mathemat-
ical, sense).

(3) In the nonlinear statement, problem (2)—4) may
be solved by the method of many scales, as for a drop
in avacuum [4, 7-10]. Such an approach makesit pos-
sible to determine the function §(©, t), which is repre-
sented as the expansion in Legendre polynomials and
describes the time evolution of the interface:

£0,1) = Z [eEMP(t) + 2MP(t) + O(&%) Pn(cosG)).(7)

In the problem of drop surface vibration in avacuum
(p, = 0), conditions (5) and (6) impose additional
restrictions on the amplitudes of the zero (volume) and
first (trandlational) modes in expansion (7), respec-
tively, and theserestrictions accord with the set of equa-
tions (2)—(4). For example, the expression for the trans-
lational mode amplitude that was derived from the con-
dition of center-of-massimmobility coincided with that
obtained from the set of boundary conditions. For the
case of the drop placed in the environment, the role of
condition (5) remains the same (since both media are
assumed to beincompressible), whereasthe application
of condition (6) needs more detailed analysis.

First, we note that, projecting theintegral of the vec-
tor function _Ur - r2drdQ onto the unit vectors of the

Cartesian coordinate system, we obtain the equivalent
system of three scalar integrals

J’J’rssinecoscbdrdQ; IJ'rssinOsiandrdQ;
J’ rcos@drdQ.

Combining these integral's, we can easily recast this
system in compact form:

Ur3YT(e, ®)drdQ (m=-1;0;1),

where Y;" (©, ) ~sin@exp(+id) and Y2 (O, ¢) ~ cosO
are spherical functions.

In view of the above, we write condition (6) of cen-
ter-of-mass immobility for the drop in the environment
as

r(e,t) L
o} ridr + [ ridr Y1(©, $)dQ
flos ] rae g vl

Q r(0,t) —
1(©,1) L = 0.
J'{p1 I rédr +p, I r dr}dQ
Q r(©,1t)
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Integrating it over the radial coordinate yields

L j[p2+ (p-p) O ~E]vie, oy

= 0.
3J’[pz+(pl p) (01 ~5ua

Note that the denominator of this expression is a
finite quantity, since (see (5))
J'dQ = 4m J’r?’(G), )dQ = 4mR’,
Q
and the first integral in the numerator is equal to unity
because of the well-known property
IYT(G), t)dQ = 0

of spherical functions.

Eventually, the condition of center-of-mass immo-
bility for the drop—environment system can be written
as

3(p1—P2)
R L
16n[p2 +(ps- pz)zg})

r*'(o,1)

3

YT(O,1)dQ = 0. (8)

It is obviousthat, at a sufficiently large linear size L
of the environment, equality (8) may hold for any arbi-
trary function r(©, t) with an accuracy as high as
desired.

Thus, the condition of center-of-massimmobility in
the problem of drop surface vibration in an environ-
ment that occupies a sufficiently large but finite volume
isfulfilled automatically. Hence, the transl ational mode
amplitude in expansion (7) should be determined from
boundary conditions (2)—(4). Note that, as for the drop
in a vacuum, the excitation of the translational mode
compensatesfor the displacement of the center-of-mass
of the drop, which is caused by surface vibrationa
modes [9].

In the absence of the environment (p, = 0), Eg. (8)
turnsinto

4
L Yyme,tyda = 0.

3
tor]
Q
This condition is not obvious and is usually taken

into account in the complete formulation of the prob-
lem of drop surface vibrationsin avacuum [4, 7-9].

CONCLUSIONS

Upon solving the problem of the nonlinear vibra-
tions of incompressible ideal liquid drops placed in an
immiscible incompressible ideal medium, the condi-
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tion of center-of-massimmobility is satisfied automati-
caly. Therefore, the trandational mode amplitude
should be calculated with a set of hydrodynamic
boundary conditions at the interface.
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Abstract—Results are presented from experimental studies of the anode region of a low-pressure two-stage
self-sustained discharge with a closed cold hollow cathode. It is shown that applying an external longitudinal
magnetic field promotes the generation of adense anode plasma, whereas the transverse field impedes this gen-
eration. It is established that the beam—plasma mechanism for plasma generation plays a dominant role in
the anode region of the discharge. The geometry of the electrodes of the gas-discharge chamber is optimized.

© 2003 MAIK “ Nauka/lnterperiodica” .

INTRODUCTION

It is known [1-3] that, in a low-pressure glow dis-
charge with a cold hollow cathode, an inhomogeneous
dense plasmais produced in the anode region if the fol-
lowing condition is satisfied: S/S, < 0.01, where S, is
the anode area and S is the area of the inner surface of
the hollow cathode. A bright anode plasma glow with
regular boundaries is usually observed against the
background of the uniform glow of the hollow-cathode
positive column. The mechanism for the generation of
this dense anode plasma has been investigated over sev-
eral years. Based on the conventional model of binary
collision of fast electrons with neutrals, it is difficult to
explain how the cold anode plasma is generated in a
volume smaller than 10 cm?® under typical discharge
conditions (the working gas pressure in the anode
regionislessthan 10 Pa, the discharge current is higher
than 0.1-1.0 A, and the discharge voltage is 300-
600 V). Estimates show that, in this case, the electron
mean free path exceeds (or is comparable with) the
characteristic dimensions of the anode region, whereas
the probability of an ionizing collision for a fast elec-
tron in the anode region is significantly less than unity.
Moreover, due to a substantial reduction in the relative
anode areaat low gas pressures, an electric double layer
with a potential drop of about severa tens of voltsis
usually formed between the anode and cathode; the
field of this layer accelerates the plasma electrons
toward the anode [1, 2]. The ion and electron currents
through a steady-state double layer separating the
anode and cathode plasmas satisfy thewell-known rela-
tionship: j; = (M/M)Y3j,, where j; and j,, are the ion and

electron current densities, respectively, and M and m
are the masses of an ion and electron, respectively [4].
It follows from here that, for atypical discharge current
of ~10° mA, the ion emission current from a self-sus-
tained discharge can hardly exceed 10 mA. However, it
iswell known that the low-pressure two-stage self-sus-
tained discharge with a closed cold hollow cathode has
found applications as an efficient oxygen ion emitter
capable of producing ion beams with a current of up to
10-100 mA at discharge currents of 1001000 mA, in
spite of the small anode area and the presence of an
~40-eV electric double layer in the discharge plasma
[5, 6]. Experimenta investigations show that condi-
tionsin the anode region of such a discharge are favor-
ablefor collective interactions between the beam of the
cathode-plasma electrons accelerated in the electric
double layer and the dense anode plasma[2]. However,
up to now, there has been no experimental evidence that
the beam-plasma interactions play a dominant role in
the generation of the cold anode plasma. If the latter
hypothesisistrue, then, aswas shown in [7-9], thereis
no contradiction between the observed high value of the
ion emission current from the discharge and the limits
that are imposed by the condition for the currents flow-
ing through the double layer. According to [7-9], the
density j,; of the ion emission current from a beam—
plasma discharge initiated by injecting an electron
beam toward the anode substantially exceeds the den-
sity j; of theion emission current through a steady-state
double layer and is determined by the relationship ji,; =
aj;, where a is the space-charge neutralization factor,
whichisequal to 5-100, depending on the experimental
conditions. In the present paper, conditions under
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which the anode region in a low-pressure two-stage
self-sustained discharge with aclosed cold hollow cath-
ode is formed are compared for three different cases:
(i) when an external magnetic field is absent, (ii) when
the anoderegionisin an external longitudinal magnetic
field, and (iii) when it isin atransverse magnetic field.
It is well known that the longitudinal magnetic field
parallel to the direction of electron beam injection
increases the intensity of the beam—plasma interaction
[10], whereas the transverse magnetic field increases
the probability of electron-impact ionization in binary
collisions [4]. It is aso known that applying a trans-
verse magnetic field to a double layer increases the ion
current through it [11].

An analysis of the results presented in this paper
(which is a continuation of [2]) points to the dominant
role of the beam—plasma ionization mechanism in the
formation of the anode plasma in a low-pressure two-
stage self-sustained discharge with a cold hollow cath-
ode. To date, conditions under which the beam—plasma
dischargeis excited and evolves have been investigated
only for the cases of a low-voltage (<10 V) beam—
plasma discharge at relatively high pressures (>10° Pa)
in the absence of an external magnetic field [12] and a
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Fig. 1. Experimental discharge chamber: (1) upper cathode
wall, (2) cylindrica wall of the hollow cathode, (3) lower
cathode wall, (4) plane anode, (5) contraction hole, (6, 7)
annular magnets, (8, 9) magnet rods, and (10) quartz insu-
lator.
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higher voltage (>100 V) low-pressure (<10 Pa) beam-
plasma discharge both with and without a longitudinal
magnetic field [7-10].

EXPERIMENTAL TECHNIQUE

A schematic of the experimental discharge chamber
isshown in Fig. 1. The discharge was excited between
the inner surface of the closed hollow cathode (elec-
trodes 1-3) and plane anode (4) through a contraction
hole (5). The height of the walls of the contraction hole
was 3 mm, and the hole diameter d varied from 4 to
14 mm with the help of accessory inserts. The height h
of the gap between the anode (4) and the hollow-cath-
ode wall (1) varied from 1 to 8 mm. The electrodes
were made of nonmagnetic stainless steel. A longitudi-
nal magnetic field B of up to ~15 mT in the anode-
cathode gap was created by two standard axially mag-
netized ferrite-barium rings (6, 7) mounted coaxially in
aluminum shields at the anode (4) and the inner surface
of the hollow-cathode wall (1), respectively. A trans-
verse magnetic field B, of up to 20 mT in the anode-
cathode gap was created by two longitudinally magne-
tized ferrite—barium rods (8, 9) mounted at the outer
surface of the hollow-cathode wall (1) symmetrically
about the contraction hole (5). As in the prototype
device [2], the cylindrical wall (2) of the hollow cath-
ode was 120 mm in diameter and 80 mm in height and
had windows shielded with a molybdenum grid. The
discharge chamber was pumped at arate of ~2 m?/sto
a pressure of ~10 Pa through 520 3-mm-diameter
holes in the bottom of the cathode (3). Oxygen was fed
into the discharge chamber through a periphera holein
the support of the anode (4). At an oxygen flow rate Q
of 1.1 x 102 Pam?3/s, the pressure in the anode-cathode
gap was less than 2 Pa, whereas in the hollow cathode
it was less than 0.1 Pa. The discharge in the anode—
cathode gap was photographed through a sealed quartz
insulator (10). The discharge chamber was powered
from a stabilized rectifier with an output current of 1 A
and output voltage of 1 kV. The anode circuit included
a 100-Q ballast resistor. The electrodes of the hollow
cathode were grounded.

EXPERIMENTAL RESULTS AND DISCUSSION

Figure 2 shows aset of photographs of the discharge
glow in the anode region under different experimental
conditions. The anode plasma in the absence of a mag-
netic field (Fig. 2a) and at characteristic values of the
discharge parameters (the current Iy = 0.3 A, the dis-
charge voltage U, = 360 V, the oxygen flow rate Q =
1.2 x 102 Pam¥/s, the height of the anode—cathode gap
h = 8 mm, and the diameter of the contraction holed =
4 mm) resembles a typical beam—plasma discharge in
the absence of a magnetic field, because it contains all
the main components of the latter (Fig. 2b) [13]. By
analogy with [13], the following regions can be distin-
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guished in the anode plasma: a cylindrical plasma col-
umn C produced by a nearly paralel electron beam
from the cathode plasma; a meniscus region E; and a
scattering region F, in which the beam electrons are
deflected in the radial direction. As the height of the
anode—cathode gap decreases, the discharge voltage Uy
somewhat decreases (the other discharge parameters
remaining the same); the diameter of the scattering
region F increases; and the cylindrical plasma column
C is displaced inside the hollow cathode, where the
pressure is lower. Thisis illustrated by Fig. 2c, which
correspondsto I, =0.3A, Uy=345V, h=4 mm, and
d = 4 mm. As the discharge current was increased by
supplying a higher power from the external source, the
discharge voltage increased and the scattering region F
grew in size (see Fig. 2d, inwhichUy =350V and |4 =
0.4 A). Applying the transverse magnetic field B, dete-
riorated the discharge conditions. In this case, theinten-
sity of the anode plasma glow decreased, the diameter
of the plasma column increased, and its boundaries
becameirregular (see Fig. 2e, which correspondsto |4 =
0.3A,Uy=375V,Q=12x 102 Pam?/s, h=8 mm,
and d = 6 mm). As the transverse magnetic field was
increased to B, = 20 mT, the discharge conditions even
more degraded and the intensity of the anode plasma
glow further decreased (see Fig. 2f, inwhich 1;=0.3A
and Uy = 390 V). At the same time, the discharge
became unstable and the generation of intense broad-
band noise was observed. At aninitial discharge current
(without an external magnetic field) of 1, < 0.2 A and
oxygen flow rate of Q < 1.2 x 102 Pam?3/s, amagnetic
field of B, = 20 mT was sufficient to suppress the dis-
charge. An opposite situation took place when alongi-
tudinal magnetic field was imposed. In this case, even
with alongitudina magnetic field in the anode—cathode
gap of B = 10 mT, we observed an intense uniform
anode plasma glow with well-defined side boundaries
throughout the entire anode—cathode gap (see Fig. 29,
which correspondstoly=0.3A, Uy;=350V, Q=12 x
102 Pam?3/s, h = 8 mm, and d = 4 mm). As the dis-
charge current wasincreasedtol,= 0.6 A, thedischarge
voltage insignificantly increased (to Uy = 365 V) and
the anode plasma glow became more intense and uni-
form (Fig. 2h).

Figure 3 shows the current—voltage characteristics
Uq4(ly) of the discharge (curves 1-3) and the depen-
dences of the current I, flowing through the lower
wall (3) of the hollow cathode on the discharge current
l4 (curves 4-6, characterizing the efficiency of ion
emission from the discharge) for the three types of the
discharge conditions considered above: without an
externa magnetic field in the anode region (curves 1, 4),
with a transverse magnetic field of B, = 15 mT (cur-
ves 2, 5), and with alongitudinal magnetic field of B, =
15 mT (curves 3, 6). The other parametersare Q= 1.4 x
102 Pam?d/s, d = 6 mm, and h = 4 mm. It can be seen
that, in the discharge current range under consideration
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Fig. 2. Photographs of the anode region of the discharge
(a, ¢, d) inthe absence of amagneticfield, at B, = (e) 10 and
(f) 20 mT, and (g, h) at B = 15 mT. Plot (b) shows a sche-
matic of the beam—plasma interaction region [13]: C isthe
plasma column, E is the meniscus region, and F is the scat-
tering region.

(from 0.2 to 0.6 A) and in the absence of an external
magnetic field, the discharge voltage U, increases with
the current | ; and the dependence I, (1) saturates at |4 >
0.3 A. In the case with a transverse magnetic field, the
slope of the curve Uy(l,) increases sharply at discharge
currents of |4 > 0.3 A and the current |, at these values
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Fig. 3. (1-3) Current—voltage characteristics of the dis-
charge and (4-6) the current flowing through the lower wall
of the hollow cathode as a function of the discharge current
(1, 4) inthe absence of amagneticfield, (2, 5) at B, =15mT,

of the discharge current starts to gradually decrease. In
the case with a longitudinal magnetic field, the depen-
dence U(ly) is presented by a horizontal line, whereas
the curve I, (1) monotonically increases.

The data presented in Figs. 2 and 3 tetify to the
beam—plasma mechanism for anode plasmageneration.
Indeed, in the absence of an external magneticfield, the
energy acquired by the electrons accelerated in the
electric field of the double layer and the current density
in the electron beam arriving from the cathode plasma
can be insufficient to generate a dense nonequilibrium
plasmain the anode region in spite of anincreasein the
power supplied from the external source. The reason
may be, e.g., the loss of electrons on the anode and the
loss of ions on the cathode wall near the contraction
hole. The fact that the fast-electron scattering region is
located near the anode, aswell asthe large cross size of
thisregion (see Figs. 2c, 2d), leads to adecrease in the
probability of anode plasma ions falling into the con-
traction hole, which hinders theincrease in the ion cur-
rent flowing through the electric double layer asthedis-
charge current increases. That is why the dependence
U4(lg) is monotonically increasing and the curve 1, (1)
is saturated. The transverse magnetic field magnetizes
the electrons moving toward the anode; confines fast
electrons near the contraction hole, where the working
gas pressure is maximum; and randomizes the motion
of fast electrons toward the anode. As aresult, the con-
ditionsfor beam—plasmainteractionintheanoderegion
deteriorate, whereasthe conditionsfor ionization dueto
binary collisions improve [4]. In addition, the trans-
verse magnetic field promotes the ion current to flow
through the double layer, because the space charge of
the double layer is partialy neutralized by cathode-
stage electrons oscillating along the magnetic field
lines [11]. Nevertheless, as the working pressure
decreases and/or the magnetic field increases, the dis-
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charge conditions deteriorate and the discharge
becomes located in the higher pressure region (near the
contraction hole) and even takes the form of alow-cur-
rent diode discharge in a transverse magnetic field
(Figs. 2e, 2f). As the discharge current increases, the
current—voltage characteristic Uy(ly) becomes nearly
vertical. The decreasing dependence I, (1) reflects a
decrease in the probability of the discharge ions reach-
ing the lower wall of the hollow cathode (Fig. 3, cur-
ves 3, 6). In contrast, the longitudinal magnetic field
impedes the transverse loss of the fast cathode-plasma
electronsin the anode plasmaregion. Asaresult, favor-
able conditions for collective interactions in the anode
region are created [10] and a dense homogeneous
anode plasma is generated (Figs. 2g, 2h). At the same
time, the discharge conditions are improved: the cur-
rent—voltage characteristic becomes aimost horizontal,
and the value of the ion current to the lower wall of the
hollow cathode increases with increasing discharge
current (Fig. 3, curves 2, 5).

Combining the results from theoretical models of
beam—plasma interactions and analyzing actual experi-
mental conditionsin beam—plasmadischarge devices, a
number of semiempirical relationsallowing oneto opti-
mize the geometry of the discharge chamber was
obtained in [5, 8, 10]. Thus, for the optimum geometry
of a waveguide-type discharge chamber in an external
longitudinal magnetic field, the ratio of the length L to
the radius R of the beam—plasma interaction region (it
isassumed that L > R) should satisfy the condition [8]

% = ¢, V¥2(el2m) 1,

Here, €, is the nth zero of the Bessel function of mth
order, J(X); e and m are the electron charge and mass,
respectively; V, is the potential of the electric field
accelerating the beam electrons (in our case, thefield of
the double layer); and I, is the ion beam current. It fol-
lows from this formula that, for L = const and V, =
congt, the radius R of the interaction region should be
increased as |, increases in order to maintain the opti-
mum conditions for the beam—plasma interaction.
Extending this conclusion to the case of the anode
region of atwo-stage self-sustained discharge (in spite
of the fact that the length of thisregion is only several-
fold greater than itsradius), we find that more favorable
conditionsfor ahigh-current discharge can be achieved
by increasing the diameter of the contraction hole asthe
discharge current increases. The same conclusion can
be drawn from Figs. 2e and 2g, in which the size of the
dense homogeneous anode plasma is nearly twice as
great as the diameter of the contraction hole.

These considerations stimul ated the optimization of
the geometry of the anode region of the discharge
chamber by optimizing the geometry of the contraction
hole. For this purpose, several inserts with contraction
holes of different geometry were used. Figure 4 shows
the change in the geometry of the contraction hole after
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Fig. 4. Change in the geometry of the contraction hole due
to the wall sputtering under different conditions in the
anode region of the discharge: (a, b) in the absence of a
magnetic field, (c) at B, = 15mT, and (d-f) at B);= 15mT.

long-term discharge operation. In al cases, the dis-
charge current and the oxygen flow rate were main-
tained at a constant level: Iy =04 A and Q = 1.2 x

104 Pam?®/s. Thelength of the anode—cathode gap was
h = 4 mm. These experiments have shown that, in the
absence of an external magnetic field, the hole diameter
increased dueto thewall sputtering from 6 mm (theini-
tial contraction hole is shown in Fig. 4a) to ~12 mm
over atimeinterval of 200 h. Asaresult, aconical cra-
ter with a base on the side of the hollow cathode was
formed (Fig. 4b). As the diameter of the contraction
hole increased further, the discharge conditions deteri-
orated and the discharge evolved into a high-voltage
discharge. When a transverse magnetic filed of B, =
15mT was applied, the wall was sputtered more
intensely and, after 85-h operation, the discharge
became unstable, the diameter of the contraction hole
increased from 6 to 13 mm, and its wall became eroded
from both the anode and cathode sides (the resulting
state of the contraction hole is shown in Fig. 4¢). A dif-
ferent picture was observed in the case of alongitudinal
magnetic field. For alongitudinal magnetic field of B, =
15 mT, the optimum diameter of the contraction hole
wasd = 12 mm (the initial contraction holeis shown in
Fig. 4d). The diameter of the contraction hole remained
unchanged even after 200-h discharge operation; how-
ever, the wall edges turned out to be noticeably eroded
on the anode side (Fig. 4e), whereas they were only
dlightly eroded on the cathode side (Fig. 4f). With lower
initial diameters of the contraction hole and in the pres-
ence of a longitudinal magnetic field, the discharge
conditions somewhat improved (the other discharge

TECHNICAL PHYSICS Vol. 48

No. 9 2003

1149

parameters being the same, the discharge voltage
decreased by no more than 10 V); however, the wall of
the contraction hole on the anode side was sputtered
more intensely. With hole diameters larger than d =
12 mm, the discharge conditions deteriorated. The
coincidence of the values of the hole diameter (d =
12 mm) at which a considerable deterioration of the
discharge conditions was observed in al the above
three cases (regardless of the orientation of the external
magnetic field) may be related to the necessity of satis-
fying the condition for the existence of a double layer,
S/S < 0.01, or in less explicit form, the necessity of
adjusting the surface area of the double layer to the
diameter of the contraction hole. It is obvious that this
condition failsto be satisfied as the diameter of the con-
traction hole increases. The results of optimizing the
geometry of the anode region of the discharge were
used to design oxygen-ion sources producing 300-mm
ion beamswith auniform current density over the beam
Cross section [6].

CONCLUSION

The experimental results presented in this paper
allow one to consider the anode region of a low-pres-
sure two-stage self-sustained discharge with a cold hol -
low cathode as alow-voltage non-self-sustained beam—
plasma discharge in a longitudinal magnetic field. The
discharge is initiated by the beam of the cathode-
plasma electrons, which are accelerated toward the
anode by thefield of an electric double layer located on
the cathode side of the contraction hole in the hollow
cathode. This conclusion is confirmed by the results of
optimizing the geometry of the anode region of the dis-
charge.
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Abstract—Comprehensive self-consistent simulations of the positive column plasma of a dc oxygen discharge
are performed with the help of commercial CFDRC software (http://www.cfdrc.com/~cfdplasma), which
enables one to carry out computationsin an arbitrary 3D geometry using fluid equations for heavy components
and a kinetic equation for electrons. The main scaling laws for the spatial distributions of charged particles are
determined. These scaling laws are found to be quite different in the parameter ranges that are dominated by
different physical processes. At low pressures, both the electrons and negative ionsin the inner discharge region
obey aBoltzmann distribution; asaresult, aflat profile of the electron density and a parabolic profile of theion
density are established there. In the ion balance, transport processes prevail, so that ion heating in an electric
field dramatically affectsthe spatial distribution of the charged particles. At elevated pressures, the volume pro-
cesses prevail in the balance of negative ions and the profiles of the charged particle densitiesin theinner region
turn out to be similar to each other. © 2003 MAIK “ Nauka/Interperiodica” .

Interest in discharges in electronegative gases stems
from their wide use in modern plasmatechnologies[1].
In order to predict the possible parameter distributions
and their dependence on the external conditions, con-
siderable attention is paid to elucidating the relations
between the main plasma parameters. Various aspects
of this problem as applied to el ectronegative gaseswere
considered by many research groups (see, e.g., [1-26]).
It was found that, in the presence of negative ions, the
processes of spatial transport, which determine the den-
sity profiles and other plasma parameters, possess a
number of specific features[26]. Knowledge of the spa-
tial distributions of charged particles is of crucia
importance for understanding and optimizing the oper-
ation of various devices and technologies, such asion
sources and facilities for the plasma treatment of mate-
rials. Early attempts to reduce the problem to a set of
ambipolar diffusion coefficients by using simplified
models [2—9] were contradictory and there were no cri-
teria for their applicability. In [10-12], it was shown
that a specific feature of an electronegative-gas plasma
isthat it stratifiesinto regionswith different ion compo-
sitions. Inthe outer region (shell) of such aplasma, neg-
ative ions are practically absent (Figs. 1-3), because
they are drawn by the electric field into the plasmainte-
rior. Although the thickness of this shell is usually
small, its presence is of fundamental importance
because it confines the negative ions inside the plasma
volume. Asaresult, the flux of negativeionsto the wall

is practically absent (in contrast to those of electrons
and ions). In such a situation, the only means to extract
negative ions from the discharge isto apply an acceler-
ating voltage U to the wall (or an extracting electrode).
The magnitude of this voltage should be large enough
for the space charge layer produced at the plasma
boundary to extend to the inner region containing neg-
ativeions. The thicker the shell, the higher voltage (U ~

Density, 109 ¢m=3

10 3

Fig. 1. Profiles of the charged particle densitiesfor p=1torr
and | =50 mA: (1) ng, (2) ny,, (3) Ny, and (4) N[O].
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Density, 101 cm™

0.6
r, cm

Fig. 2. Sameasin Fig. 1 for p = 0.15 torr without allowance
for ion heating: (1) ne, (2) Ny, (3) Ny, and (4) n[O*]. The
dashed curve shows parabolic distribution (18).

Density, 10'% cm™3

Fig. 3. Sameasin Fig. 2, but with allowance for ion heating.

L;B) that must be applied to enable the flux of negative
ionsto thewall.

Besides its practical importance, oxygen plasmais
also an important test object [16]. The peculiar features
of the spatial distributions of the oxygen plasma param-
eters have been the subject of aheated discussion. Thus,
in [16-18], it was pointed out that using a Boltzmann
distribution from [4] for not only electrons but also neg-
ative ions (as was done in [13-15]) is unjustified. It is
aternatively asserted in [16-18] that the densities of
charged particles in such a plasma should be propor-
tional to each other [10-12]. In[24], it was shown that,
depending on conditions, both types of distribution can
occur. For example, we observed atransition from one
type of the above profilesto ancother asthe pressure was
reduced (see below).

To verify the functiona relations between the
plasma parameters obtained with the help of simplified

BOGDANOV et al.

models, they should be compared with the results of
full-scale numerical simulations. Such simulations
should be based on self-consistent model sthat take into
account spatial transport processes and volume plasmo-
chemical reactions. Such an attempt was made by usin
[27], in which we compared the results of kinetic and
fluid ssmulations of the positive column plasma of adc
oxygen discharge by using commercial CFDRC soft-
ware [28]. A two-temperature (2T) fluid model was
proposed, which alowed us to incorporate kinetic
effects in the conventional fluid model in the simplest
way.

Here, we continue the study of [27]; specifically, we
investigate the features of the spatial distributions of the
plasma parameters in the positive column of a dc dis-
charge in a 12-mm-diameter glass tube at pressures of
0.05-3 torr and discharge currents of 5-200 mA. These
conditions correspond to thosein [21, 22], in which, in
our opinion, one of the most detailed experimental and
theoretical studies of the positive column of a dc oxy-
gen discharge were reported.

The discharge was simulated by using acommercial
software developed at the CFD Research Corporation
(Huntsville, AL, USA) [28]. A detailed self-consistent
model of the discharge plasma, numerica iteration
scheme, and technique for solving the set of equations
are described in [28]. The density and mean energy of
the electron component can be obtained by solving
either fluid balance equations or the kinetic equation for
the electron distribution function (EDF). The self-con-
sistent electric field is found from Poisson’s equation.
Heavy particles are described in the fluid model. Both
the analytic results and the published data show that, in
the parameter range under study, the neutral gas is
heated to no higher than 50-150 K. Such anincreasein
the gastemperature T results merely in adecreasein the
gas density. Since this is of minor importance for our
problem, the gas temperature was assumed to be equal
to room temperature and constant over the discharge
cross section. On the other hand, the ion temperature
can increase significantly, particularly at low pressures
[20, 21]. Asthe pressure decreases, the reduced electric
field E/p increases, so that the directed velocity
acquired by the ions in this field can become higher
than the random (thermal) vel ocity [29]. The coefficient
of ion diffusion aso increases. This can dramatically
changetheion density profiles[20]. Model calculations
with allowance for ion heating in alongitudinal electric
field show that the outer region occupied by the elec-
tron—on plasma shrinks and can even completely dis-
appear [20, 21]. lon heating also leads to a decrease in
the detachment rate constant and, consequently, to an
increase in the relative density of negative ions n,/n,
(the degree of electronegativity) [21].

Here, we do not present the list of the volume plas-
mochemical reactions involved because it is the same
asin [27]. Note only that we solved the balance equa-
tionsfor thevibrationally excited states O,(v) (v =0, 1)

TECHNICAL PHYSICS Vol. 48 No.9 2003
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of an oxygen molecule and the electronically-excited
states of an oxygen molecule (O,(X3%;), O,(a'h),
0O,(b'%), and O,(Ry)); oxygen atom (O(P), O(*S), and
O('D)); ozone molecule O;; and O, O,, O,, O, O,

and O; ions with alowance for 160 plasmochemical
reactions between them.

Typical ion density profiles computed for the gas
pressure p = 1 torr are shown in Fig. 1, and those com-
puted for p = 0.15 torr without and with allowance for
ion heating in the longitudinal electric field are shown
in Figs. 2 and 3, respectively. lon heating [20-22] was
calculated by the formulas for the effective transverse
ion temperature [29]

(M, + M)Mw*
32M+ M)’ &)

where M and M; are the masses of a molecule and an
ion, respectively, and w is the ion drift velocity in the
longitudinal electric field E,.

For example, at p = 1 torr, the transverse ion temper-
atureis T = 760K, whereasat p= 0.15 torr, itis T, =
5200 K. For oxygen, an order of magnitude of theion
temperature as a function of the parameter pA is pre-
sented, e.g., in[21, Fig. 5].

It can be seen from Figs. 1-3 that the spatial distri-
bution of the charged particle densities is highly non-
uniform over the discharge cross section. Almost all of
the negative ions reside in the inner ion-on plasma
region (which will be marked by subscript 0). The
radius of this regionisr = r,. The outer electron—on
plasmaregion (ro < r < R) (subscript 1) consists of elec-
trons and positive ions, whereas the negative ions are
practically absent there. A comparison of the profiles
presented in Figs. 2 and 3 show that taking into account
ion heating (which increases the ion diffusion coeffi-
cient) dramatically changesthe shell thickness. For this
reason, when analyzing the spatial profiles of the
charged particle densities in el ectronegative gases, one
of the central problems is the problem of the ion tem-
perature [20, 21].

The main positive ion is O, and the main negative
ionisO~. Thedensities of al other ions are small com-
pared with the densities of these ions. Hence, for the
sake of qualitative analysis, it is sufficient to consider a
plasma consisting of only electrons, positive ions, and
negative ions (subscripts e, p, and n, respectively).

To explain the dependences observed and predict
how they are affected by the externa conditions, we
consider, asin [1-26], the conventiona set of drift—dif-
fusion equations

-D,00 n,+kny0On/ne) = ving—Knyn,,  (2)
-D,00 n,—kn,0On/ng) = vne—vyn,—K.n,ng, (3)

T =T+
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N, = n,+n. 4

p

with a Boltzmann distribution for the electrons. E =
-TOndny). Here, v;, v, and v, are the ionization,
attachment, and detachment frequencies, respectively;
K, is the rate constant for ion—ion recombination; and
k=TJT, is the electron-to-ion temperature ratio. The
boundary conditions for the set of Egs. (2) and (3) are
[1, 26]

On, =0On, =0 a
n,=n,=0n, =0 a

r =0,
r=R

Sincethe flux of negativeionsto thewall is zero, we
find from Eqg. (3) that the densities averaged over the

cross section (n) satisfy the relationship [1, 26]

VaNe = vgn, + K NN, (6)

(%)

In further analysis, we will mainly follow [24-27].
We divide Egs. (2) and (3) by the corresponding diffu-
sion coefficients and sum them up. As a result, we
arrive at the equation [10, 26]

—2An,/k—An, = ngJ15—2n,/kl?, 7

which is of fundamental importance for analyzing the
solution to the set of Egs. (2) and (3). Equation (7) con-
tainstwo characteristic space scales, |and |, which are
defined by

12 = Uiy, + 112 = vi/D,4y+Vv,/Dy, @

= TV + TaVal A,
U5 = Uag+ 112 = vg/2D, + n K, /Dy,

= TV A%+ 1K, IA?,

where Dy, o, = Dy (kK + 1) and D, = 2D,D,/(D,, + Dp)
are the coefficients of electron-ion and ion-ion ambi-
polar diffusion, respectively; t; = A%/D,; are the corre-
sponding characteristic times; and A is the diffusion
length, which, in the case of cylindrical geometry, is
equal to A = R/I2.4. Figure 4 shows, as an example, the
calculated lengths (8) and (9) versus the parameter p/A
for oxygen.

Sincethe ambipolar electric field draw negativeions
into the plasma, their density in the outer region (ro <
r <R) islow, ny(r) = 0; hence, we have ng(r) = ny(r) in
this region. Neglecting the terms with n,,, we can write
Eq. (7) intheform

9)

2
-Ang = nJle.

Taking into account the spread caused by ion diffu-
sion, we find that the thickness of the outer region sat-
isfies the condition R —ry < | i.e, |, determines the
maximum thickness of the shell. Under our conditions,
thisthicknessis small compared with the tube radius R
(and, hence, with the characteristic diffusion length A =
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Fig. 4. Characteristic lengths |, (1) and | (2) vs. parameter
pA\ for an oxygen discharge. The asymptotes for g, I = A

(@) andlg=1,,/TJ/2T; (4) are aso shown.

R/2.4). Therefore, the outer region 1 can be treated in
plane geometry. Then, for the plasma density profilein
the region ry < r < R, we can use the solution [10,
24-26]

ne(r) = n(ro) SN(T(R—r)/21)/sin(T(R—r)/21,) (10)

The density profiles in the inner region O depend
substantially on theratio between Rand |, (see Eq. (9)),
i.e., between the radius and the distance a negative ion
covers due to diffusion during its lifetime with respect
to volume processes [24-26]. At 1.V, > 1, length | (8)
issmall (I < A), and, under typical discharge condi-
tions (n,/n, < k= 100), length |, turns out to be even
smaller (I, < l); hence, ion diffusion can be ignored
[10-12]. When the opposite inequality is satisfied
(TaVva < 1), the electron—ion plasmaoccupies almost the
entire cross section of the tube, whereaslength |, can be
either longer or shorter than the radius of the inner ion—
ion region. Hence, to obtain functional dependencesin
the inner region, it is reasonable to consider two limit-
ing regimes with large and small values of the parame-
ter 1V, Since this parameter is quadratic in pressure,
the boundary between these regimes (1,,v, = 1) can be
determined with sufficient accuracy. For oxygen, the
boundary value of this parameter corresponds to pA =
0.07 cm torr (the dashed vertical linein Fig. 4), so that
TaVa > 1 a pA > 0.07 cm torr and vice versa. Conse-
quently, length | (8) has two asymptotes: |, = A at low
pressures, pA < 0.07 cmtorr, and I, = |,/ T./2T, inthe
opposite case (Fig. 4).

At high attachment frequencies (1,,v, > 1), charac-
teristic lengths (8) and (9), aswas mentioned above, are
both small (I, < I, < A) (Fig. 4). Since |, < I, we can
neglect ion diffusionin Egs. (2) and (3) (aswasdonein

BOGDANOV et al.

Flux, 10" cm™

SF
6L 3
2
4+
2+
I
1 1 1 1 1

1
0 0.1 02 03 04 05 06

r,cm

Fig. 5. Contributions of spatial transport and volume pro-
cesses to the negative ion balance for p = 1 torr and | =
50 mA. Curve 1 shows the flux of negetive ions (with a
minus sign), curve 2 shows the total production of ions, and
curve 3 showstheion loss.

[10-12]) and assume that the shell thicknessisR—r,=
l (i.e., thedenominator in Eq. (10) isequal to unity). In
the case a hand, in balance equation (3) for negative
ions, their transport isinsignificant as compared to vol-
ume processes (see Fig. 5), so that the negative ion flux
is amost completely determined by the drift compo-
nent. Hence, at n, = n, > n,, the fluxes of positive and
negative ionsin theinner region are almost the samein
magnitude, but oppositein sign; i.e., we have [10, 26]

/by =kn,0ng/n, = kn,Ong/n. =T /b,. (113

For thisreason, in Eq. (7), in which these fluxes are
summed up, they ailmost completely cancel each other
intheinner ionHonregion. In other words, at r <r,, the
terms on theleft-hand side of Eq. (7) (which are respon-
sible for spatia transport) are small compared to the
terms on the right-hand side (which are responsible for
volume processes). Hence, the local balance of the vol-
ume plasmochemical processes resulting in the produc-

tion and loss of ions, n/12 = 2n,/klZ , holds with a high
accuracy. At 1V, > 1, the following important relation
can be deduced from this equality [10, 24-26]:

(VilDp+Vva/Dy)ne = vgn, /D,
+ K ny(n, +ng)/(1/D, + 1/Dy,),

which allows one to obtain the relationships between
the plasma parametersin the central regionr <r,.

The relationships between the densities of charged
particles depend on the mechanism responsible for the
loss of negative ions, i.e., on the relationship between
thetermson theright-hand side of Eq. (128). At T,,v,> 1,
the loss of negative ions in an oxygen plasmais gov-
erned by detachment processes (the detachment regime
with vy > nK)) and their recombination can be
neglected. Then, it follows from Eqg. (12a) that the pro-

(124)
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files of the electron and negative ion densities are simi-
lar to each other,

OnJng, = On,/n,, ng(x)/n,(x) = const. (12b)

This condition was first proposed in [2] and then
was justified in [10-12], assuming that ion diffusion
can be neglected as compared to ion drift. It follows
from the above analysis that Eq. (12b) isvaid only at
TaVa > 1; hence, extrapolating it to the low pressure
range [16—18] isincorrect. The validity of Eq. (12b) for
oxygen isillustrated in Fig. 6, which shows the density
profiles from Fig. 1 (p = 1 torr) normalized to the cen-
tral electron density. Substituting Eq. (12b) into Eq. (2)
or (3), we find that, with a significant degree of elec-
tronegativity (n, > ny), the densities in the inner region
satisfy the relationship

Np(r) On,(r)d ng(r) OJo(r/lp). (133)

For plane geometry, the Bessel function should be
replaced with cos(X/ly). In Eg. (13a), the characteristic
length [10, 26]

2.

AN,
ViTapﬁe

2 _ %_i_vaDap:

lg = >N’
Vg ViVq

(13b)
also determines the ambipolar electric field (E(r) =
-T.OnJn,) in the central region (r <ry):

EQ(r) = =T Jy(r/lp)/1g==Tr/13. (14a)

Sincethe conditions|, > A > |, are usually satisfied,
density profiles (13a) in the inner region are flatter than
in the outer region, and, when they are extended up to
the wall, they do not turn to zero (see Eq. (5)). Conse-
quently, field (14a) is weaker than the electric field in
the shell (r, < r < R), for which we have from Eq. (10)
the following estimate:

T

e o MR=1) (o). (140

°cot =

(1) ~
BV =—ct=5

To illustrate the limiting cases, we use Egs. (2) and
(3) to rewrite relationship (11a) in the form [10, 26]

R T'o

r, = vafne(r)rdr =-I,D = DviIne(r)rdr, (11b)
o 0

where D = (D,/D,) ~ 1. Thisrelationship meansthat the
number of ions that undergo attachment in the outer
region is equal to the number of ions produced in the
central region dueto ionization. Inthethin shell, acom-
paratively small flux of negative ions I, is produced
due to attachment; hence, a fairly weak electric field
(14a) is sufficient to transport these ions into the inner
region, in which they disappear due to detachment.
Since, at 1.V, > 1, the electronsin the inner region dis-
appear mainly due to attachment, it is necessary to
enable just a minor flux of positive ions toward the
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Fig. 6. Normalized density profiles for p =1 torr and | =
50 mA: (1) ng(r)/ngg, (2) Ny(r)/ngg. Curves 3 and 4 show the
results calculated by formula (13), and curve 5 shows pro-
file (10) in the outer region.

outer region. In other words, relationship (11b) means
that, if the local plasmochemical balance of ions domi-
nates over their spatial transport, the latter should only
compensate for a relatively small difference between
the attachment and detachment of negative ions.

Using expression (10) for nyr) and Egs. (14), we
can obtain from Eq. (11b) the ionization frequency v;,
which represents the eigenvalue of the boundary value
problem described by Egs. (2) and (3) [26]. The simple
estimate I, = Vnde = Iy = VinA gives v; = nlJA =
JValT., [10, 26]. In the case at hand, we have v;T1,, =

JValan > 1; hence, weobtain t,,v; > 1. Thismeansthat

the ionization frequency exceeds the value given by the
Schottky formula for a simple plasma (t,v; = 1)
[25, 26].

The density of the negativeionsthat are produced in
the shell due to attachment can be deduced from their
flux I, (11b):

n,=r/b,E®
_8len(ro) . om(R-r) _ T(R-T) (15)
D, 2l, 21,

This density is much lower than the densities of
electrons and positive ions,

n=ellolVa g3 croR). (15
4D .l

At the pointr =r,= R—|,, the field E®? is close to

zero, whereas the flux I, (11b), caused by attachment

inthe outer region, isfinite. Therefore, when approach-

ing the point r = ry, negative ion density (15) sharply
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increases,

_ 8l (ro)v,

= (r=zro=R-=1,),
" T[3Dan(r_r0) ’ °

(15b)

to its value in the inner region, which is determined by
Eq. (12). Thetransition zone separating regions 0 and 1
with different ion compositionsis narrow (~l,, <1,). For
thisreason, it wastreated in [10, 26] asadiffusivejump
in which ion densities undergo abreak, whereas theion
fluxes and the electron density are continuous. The
validity of relationship (12) in the regionr < ryin an
oxygen discharge isillustrated in Fig. 6, which shows
the normalized density profiles obtained from the pro-
filesin Fig. 1 at a pressure of p = 1 torr. The dashed
curvesin Fig. 6 show the profiles cal culated by formula
(13) for the inner region and by formula (10) for the
shell with the thickness R—r, = |.. When deducing for-
mula (10) for the outer region, the shell thickness d,
was taken into account; i.e., it was assumed that the
electron density vanished at r = R — &y, rather than at
the tube wall. It can be seen that the results of calcula-
tions by these formulas agree well with the results of
full-scale simulations.t

At lower pressures, the role of spatia transport
increases and, thus, the characteristic length |, (8) and
I, (9) dsoincrease. Theincreasein length |, (13b) leads
to the flattening of density profiles (13a) in the inner
region. Because of the increase in the length |, the
region with a sharp change of the ion density spreads
out dueto ion diffusion; hence, the transient region can
no longer be treated as ajump. As aresult, theion den-
sity profiles become bell-shaped.

Atl,= A, the negativeions are able to pass through-
out the entire discharge volume due to their diffusion.
However, they turn out to be trapped in the inner region
by the electric field; as a result, a Boltzmann distribu-
tion (similar to that for electrons) is established:

-T.0nJ/n, = =TOn,/n, = E. (26)

It follows from Egs. (8) and (9) that, generally, the
self-diffusion of negative ions prevails (I,, > A) only
when attachment is insignificant as compared to the
ambipolar diffusion of negativeions (ion diffusion with
the electron temperature), i.e., whent,,v, < 1 (see[24—
26] for details).

Condition (16) leads to the relationship

Ne(r)/ng(0) = [Nn,(r)/n,(0)] ", (17)

1 Note that, for the recombination regime (Vq < npKr), it follows
from Egs. (112) and (129) that [InJ/Nn, = [Iny/n, + Ong/n, =
200n,/n,,, which results, in contrast to Eq. (12b), in an ion distri-

bution that isflatter than the electron distribution (see [24-26] for
details). In such a situation (which occurs, e.g., for halogens), the
attachment and ionization frequencies are approximately the
same, V; = V,, aswas noted in [16-18].
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which strongly depends on the temperature ratio k =
TJT, and coincides with distribution (12b) only in the
particular case T, = T,. The establishment of a Boltz-
mann distribution for electrons and negative ions at low
pressuresisillustrated in Fig. 7, in which the simulation
resultsshownin Fig. 3for apressure of p=0.15torr are
replotted in accordance with Eq. (17).

Since k > 1 in the discharge, it follows from
Eqg. (17) that the electron density profile is nearly flat,
Ne(r) = ng = const, which isindeed observed at reduced
pressures (see Figs. 2, 3). Here, transport processes
play amajor rolein Eq. (3) for the negative ion balance
(seeFig. 8), in contrast to the above case with t,v, > 1
(cf. Fig. 5). The field-induced and diffusion fluxes of
negative ions are amost the same in magnitude, but
opposite in sign; hence, a small difference between
them is sufficient to balance the production and loss of
ions a any point (Fig. 8). The plasmochemica pro-
cesses govern only the global balance of ionsin the cen-
tral region. In Eq. (2) for the positive ion density n,(x),
the terms on the left-hand side are also approximately
equal to each other. However, they are summed up and,
thus, at asignificant degree of electronegativity (n,(0) >
n,(0)), balance equation (2) for positive ions can be
written in the form —2D,An, = ving,. This gives a para-
bolic distribution of the ion densities and a flat profile
of the electron density n(r) at r <r,[13-15]:

Na(r) = Noo(1—r2/r3),

Nno/Neo = Vira/4D,, (18)

Ng(r) = Ny = const.

We note that ion diffusion in the inner region pro-
ceeds with the coefficient 2Dp of the own ion—on
ambipolar sdlf-diffusion, rather than with the usual
coefficient of ambipolar diffusion D,(1 + K). It can be
seen from Figs. 2 and 3 that, at low pressures, simple
parabolic law (18) for the ion density profiles agrees
well with the results of full-scale simulations.?

Inthe outer region (shell), in which the negativeions
are aimost absent, the plasma density profile varies in
accordance with Eq. (10). In[13-15, 23, 24], the posi-
tion of the boundary point r = ry, was found from the
negative ion balance using model profiles (18). Unfor-
tunately, this procedureisrather laborious and provides
alow accuracy. It seems that the position of the bound-
ary can be found in a simpler and more reliable way
from the continuity of the positiveion flux atr =ry;

op Mo _ Dp(1+K)neo _ Dp(1+K)neg
Pro  letan((R=rg)/ly) R-r,

(19)

2 We note also that, in order for profiles (18) to be established, it is
enough to satisfy the condition t,,v, < 1. The mechanism for the
volume loss of negative ions, which is determined by the right-
hand side of Eq. (3), can be either recombination (at vy < K;np) or
detachment (at vg > K;np,).
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Fig. 7. Boltzmann distributions of electrons and negative
ions for p = 0.5 torr and | = 50 mA: (1) ng(r),

2 ne(O)/[nn(r)/nn(O)]”k (see formula (17)), and (3) elec-
tron density profile (10) in the outer region.

Model electron density profiles (10) with r defined
by Eq. (19) (see Fig. 7) agree well with the results of
full-scale simulations shown in Fig. 3.

Based on the analysis performed, we recommend
the following procedure to obtain approximate density
profiles in the plasma of electronegative gases in the
detachment regime (v4 > K;n,):

(i) First, the parameter 1V, is estimated.

(ii) Then it is necessary to indent from the wall by
the thickness &4, of the space charge sheath, which can
be estimated, e.g., according to [26].

(iii) In the outer electron-ion plasmaregion (ro<r <
R), where n, = n, > n, = 0, the electron density varies
according to Eq. (10) and the negative ion density var-
iesaccording to Eqg. (15). If 1,,v, > 1, then the thickness
of thisregion isegual to |, (see Eq. (8)) and the denom-
inator in Eq. (10) is equa to unity (r, = R—1,). In the
opposite case (T,V, < 1), we have |, = A and the thick-
ness of thisregion is estimated by formula (19).

(iv) Finally, the density profilesin the central region
(r <rp) are determined.

At 1,v, > 1, the density profiles are similar and are
described by Eq. (13), whereas the density values are
related by expression (12). Electron density profile (13)
isjoined to expression (10) at r = r, = R—1, Theion
densities undergo ajump at this point: the negative ion
density dropsto nearly zero (see Eq. (15)), whereas the
positive ion density decreases to the value equal to the
electron density given by Eqg. (10). At 1,v, > 1, the
thickness of the transition zone (~,, < 1) issmall and it
can be regarded as ajump in the ion density.

At 1V, < 1, the electron density profile is flat
(ne(X) = ny) and the ion density profile is parabalic.
These densities are related by formulas (18). The elec-
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Fig. 8. Contributions of spatial transport and volume pro-
cesses to the negative ion balance for p= 0.15torr and | =
50mA: (1) the diffusion component of the negativeion flux,
(2) its drift component, and (3) the resulting flux balancing
the production and loss of negative ionsin volume plasmo-
chemical processes.

tron density profile isjoined at the point r = r, whose
position can be estimated from Eqg. (19).

Thus, using commercial CFDRC software [28],
comprehensive simulations of the positive column
plasma of a dc discharge in oxygen are performed and
the main scaling laws characterizing the spatial distri-
butions of the plasma parameters are determined. The
simulation results show that a distinctive feature of the
electronegative-gas plasma is that it dtratifies into
regions with very different ion compositions, so that
there are practically no negative ions in the outer elec-
tron-on plasma region (shell). At low pressures
(Tava < 1), not only electrons but also negative ions
obey a Boltzmann distribution. In the inner region, the
electron density profile is flat, whereas the ion density
profile is parabolic. In the ion balance, the transport
processes prevail; hence, taking into account ion heat-
ing dramatically affects the spatial distribution of
charged particles. At elevated pressures (1,,v, > 1), the
volume processes dominate in the balance of negative
ions and the profiles of the charged particle densitiesin
the inner region become similar to each other.
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Abstract—The electrical properties of and the magnetoresistive effect in RCuzMn,O4, (R = rare-earth ion or
Th) are studied. In al compounds of this series, the magnetoresistive effect amounts to 20% at liquid nitrogen
temperature in the presence of afield of 0.9 T. An increase in the magnetoresistance with decreasing tempera-
ture and a high sensitivity to weak magnetic fields at low temperatures point to the intergranular nature of the
effect. The magnetoresistance shows a peak in the vicinity of the Curie temperature T.. Based on the depen-
dences of the magnetoresistance on an external magnetic field, it is assumed that the magnetoresi stance peak
near T isrelated to the charge carrier scattering by magnetic inhomogeneities as in substituted orthomangan-
ites. We believe that the magnetoresistance value near the magnetic ordering temperature depends on the syn-
thesis conditions and the effect of the intergranular spacer on the transport properties of these compounds. ©

2003 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The discovery of colossal magnetoresistance in
perovskite-like manganites [1, 2] has stimulated the
search for new compounds exhibiting this effect
because of itsgresat practical importance[3]. In magnet-
ically ordered systems, the maximum of magnetoresis-
tance at the magnetic order—disorder transition is
related to the scattering of charge carriers by magnetic
inhomogeneities. The value of the magnetoresistance
depends on the el ectrical conductivity jump near T and
an increase in the Curie temperature in the presence of
amagnetic field (i.e., on the sensitivity of the magnetic
order parameter to an external magnetic field).
The Magnetoresistance peak near T is observed in
La _(Ca, S),MnO; (LCSMO) substituted lanthanum
orthomanganites with aperovskite structure[1, 2, 4, 5].
Near the magnetic ordering temperature, substituted
lanthanum orthomanganites also exhibit the metal—
insulator transition [5].

Materia s exhibiting colossal magnetoresistance are
used in data processing and storage devices. However,
the above features are observed in strong magnetic
fields, which limits the application of the magnetoresis-
tive effect.

In addition to the magnetoresi stance observed at the
metamagnetic transition and the scattering of charge
carriers by magnetic inhomogeneities near the Curie
temperature, there exists another type of magnetoresis-
tive effect. Giant magnetoresistance (GMR) was dis-
covered in grained magnetic materials with a high spin
polarization of charge carriers [6, 7]. The GMR

increases monaotonically with decreasing temperature
and is highly sensitive to weak magnetic fields. This
effect shows up most vividly at temperatures signifi-
cantly lower than the magnetic ordering temperature.
The GMR phenomenon has not yet clearly understood,
and the value of the magnetoresistance for a specific
compound cannot be predicted theoretically. However,
in the simple model of electron jumps over an insulat-
ing barrier (intergranular spacer in our case), the mag-
netoresistance is represented as MR = Ap/p =
—(JP/AKT)[MZ(H, T) — M0, T)], where J, P, and M are
the exchange interaction constant, polarization of tun-
neling electrons, and magnetization of the material,
respectively. The GMR behavior in grained nickel films
[8, 9], polycrystalline FeO, films [10], and
L&,/3Sr,sMnO; perovskite [11] poorly agrees with the
theoretical predictions. Kobayashi et al. [12] discov-
ered an intergranular magnetoresistive effect in ferri-
magnetic double perovskites SroFe(Mo or Re)Og with a
composition-dependent Curie temperature between
410 and 450 K. As was demonstrated in [12], the MR
behavior in these compounds shows the best agreement
with predictions based on the model of spin-polarized
charge carrier scattering by interfaces between neigh-
boring granules with opposing magnetizations. How-
ever, the discrepancy between the temperature depen-
dences of the magnetization and magnetoresi stance stil|
remains to be explained. Therefore, the search for
model magnetic systems with a high spin polarization
of carriersis an important problem.

1063-7842/03/4809-1159$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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Earlier, Troyanchuk et al. [13, 14] studied the elec-
trical and magnetic properties of CaCu, _,MnMn,0O;,
and RECu;Mn,0O;, (RE = Th, Tm) systems, which
exhibit the GMR effect, and TmCu;Mn,0O,, and
Ca(Cu, sMn, 5)Mn,0;, systems, where the metal—insu-
lator transition is observed. However, the temperature
of the trangition differs greatly from the magnetic
ordering temperature. Aswas mentioned, thereisacor-
relation between T and the metal-insulator transition
in LCSMO systems. The peak of the magnetoresi stance
near the Curietemperature in CaCu, - ,MnMn,0,, (0<
x < 3) and RECu;Mn,0,, (RE =Tb, Tm) solid solutions
was not observed.

A comprehensive study of the electrical and mag-
netic properties of RCu;Mn,0O,, (R = rare-earth ion or
Th) compounds has not been carried out. Theoretically,
it is of interest to investigate the temperature depen-
dence of the magnetoresistance and metal—insulator
transition, which probably correlates with the magnetic
ordering temperature as in manganese-containing per-
ovskite-like oxides. From the practical point of view, it
isimportant to measure the magnetoresistance of com-
pounds with a high spontaneous magnetization, such as
RCu;Mn,0,,, since the theory predicts the quadratic
magnetization dependence of the magnetoresistance
for temperatures much below Te.

EXPERIMENTAL
RCu;Mn,0,, samples were made of related oxides.
Extra-pure-grade Ry 05, R* 05 Cl?*0>, Mny 05,

and Mn* 03~ oxides taken in stoichiometric propor-

tions were ground in an alundum mortar. The weights
of the components were taken according to the rare-

Intensity, arb. units
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Fig. 1. X-ray diffraction pattern (CrK radiation) of the
compound CeCusMn,04,. The solid line shows the theoret-
ical spectrum calculated using the refined unit cell parame-
ter. Note the positions of the Bragg angles.
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earth ion valence. Prior to synthesis, the charge was
pressed under apressure of 0.1 GPato form cylindrical
pellets of diameter 10 mm and height 8-10 mm. Then,
the pellets were covered by nickel foil and placed in the
graphite heater of a high-pressure container. The foil
isol ates the sample during the synthesisfrom the graph-
ite heater, which is an effective reducer. The samples
were prepared by solid-phase synthesis proceeding
under a high pressure and high temperature. A litho-
graphic stone served as a pressure-transmitting
medium. The synthesis took 10 min at a pressure of
5 GPa and a temperature of about 1670 K. The exact
value of the temperature was varied with rare-earth
ions.

With the X-ray diffraction technique (DRON-3 dif-
fractometer), we measured the homogeneity of the
compounds synthesized and refined the parameters of
the unit cell.

The magnetization was measured with a vibrating-
sample magnetometer at various temperatures. The
dynamic magnetic susceptibility was measured using a
mutual -inductance bridge; the electrical properties and
magnetoresistance, with a conventional four-probe
technique. The magnetoresistive effect MR = Ap/p =
(PH=0 — PH)/Pr=o * 100% was estimated in an external
magnetic field of 0.9 T.

RESULTS AND DISCUSSION

Crystal lattice. All the compounds RCu;Mn,0O,,
have cubic symmetry of the unit cell with a doubled
parameter a of the ABO; perovskite structure (Fig. 1).
The doubling of the unit cell parameter resultsfrom the
fact that rare-earth and copper ions arrange in the ratio
1: 3 and a so because oxygen octahedrons are tilted to
[1000axes. The Mn—-O-Mn bond angle along 1000
directions becomes equal to 140° instead of 180°,
which istypical of the undistorted perovskite structure.
The X-ray diffraction patterns show weak reflections
from impurity phases. The relative impurity concentra-
tion was no greater than 1.5%. The unit cell parameters
were refined in view of the fact that CaCu;Mn,O;,
belongs to the Im3 space group [15]. Thetablelists the
unit cell parameters of the solid solutions under study.
The unit cell volume is seen to decrease insignificantly
with increasing atomic number of the rare earth, which
isin agreement with the decreasein theion radius of the
rare earth at the constant valent state of the remaining
ions. Theunit cell volume of the compounds containing
tetravalent cerium and thorium ions is greater than that
of the compoundswith thetrivalent rare-earthionin the
A position. Such behavior is related to the increase in
the concentration of trivalent manganese ions from
25% (trivalent ion in the A position) to 50% (tetraval ent
ion). It is known [16] that the ion radius of Mn® is
greater than that of Mn**,

Magnetic properties. The measurements of the
magnetization in the external magnetic field at low tem-
TECHNICAL PHYSICS Vol. 48
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peratures show that all the compounds of the given
series have a spontaneous magnetic moment. A maxi-
mum moment of 9.7 Bohr magnetons per formula unit
(ug/f.u.) is reached at 10 K in the thorium-containing
compound (see table). Neutron diffraction experiments
[17] show that the magnetic moments of manganese
and copper ions in AC;B,0;, compounds are ordered
oppositely. The magnetic moment p(Cu?*) of adivalent
copper ion is 1 g, whereas the magnetic moments of
tri- and tetravalent manganese ions are p(Mn*) =
3.5 Y and p(Mn*) = 2.6 pg [17]. Therefore, we expect

the R*Cu2*;Mn®*,Mn** 0%, electron configuration
with the trivalent rare-earth ion in the A position. When
the magnetic moments W(3Cu?) = 3pg and
U(Mn®*;Mn*) = 11.1g are antiparallel, the magnetiza-
tionis 8.1 g per formulaunit. For compounds with the
paramagnetic ion in the A position, the peak in the tem-
perature dependence of the magnetization is related to
the antiparallel ordering of the rare-earth ion magnetic
moments rel ative to the total magnetic moment of the A
and C sublattices. The samarium compound has the
maximum temperature (75 K) of magnetic moment
ordering.

The difference between the theoretical and experi-
mental values of the magnetizations is presumably
associated with trivalent manganese ions partially sub-
stituting for copper ions, since the C positions of these
compounds can be occupied only by Jahn—Teller ions.
The magnetic moment of the copper ion is opposite to
that of the manganese sublattice, whereas the magnetic
moment of the Mn3* ion substituting for copper is codi-
rected with the total magnetic moment of the manga-
nese sublattice. Based on the magnetic data, it is diffi-
cult to judge the cation distribution in these com-
pounds. However, the Curie temperature of the solid
solutions obtained at a high pressure (Fig. 2) differs
only dlightly from the magnetic ordering temperature
of the compounds synthesized by the hydrothermal
method (T. = 390 K) [17]. This means that the real
chemical composition is closeto the chemical formula.

Electrical propertiesand magnetoresistance. The
electrical conductivity of substituted orthomanganites
with a perovskite structure depends on the presence of
manganese ions with different valences in one sublat-
tice [18]. The conduction band of these compounds
formswhen the partially filled d subshell of manganese
ions and the p subshell of oxygen ions overlap. The
width of the conduction band depends on the Mn—O—
Mn bond length and angle. Aswas mentioned, the Mn—
O-Mn bond angle in RCu;Mn,O,, compounds (about
140°) depends on the rare-earth ion in the A position
insignificantly. It is likely that, such behavior is due to
the presence of Jahn-Teller Cu?* and Mn®* ions in the
C position.

Figures 3aand 4a show the temperature dependence
of theresigtivity of RCu;(Mn,Cr),0,, (R = Ce, Sm, Ho,
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Unit cell parameters and spontaneous magnetic moments of
RCuzMn,0,, compounds

R a, A M, pg/f.u.
Ce* 7.349 6.4
Sm3* 7.284 7.8
Gd3* 7.265 2.9
Th3* 7.258 5.6
Ho3* 7.253 5.0
Tms3* 7.247 -
Yb3* 7.246 95
Th** 7.383 9.7

Y b, Th) compounds. Despite the equal ratio of the man-
ganese ions with different valences, RCu;Mn,04, (R =
Ce**, Th*) compounds exhibit different temperature
dependences of the resistivity. The conductivity of the
ThCu;Mn,0,, solid solution decreases with tempera-
ture, which is characteristic of semiconductors. The
cerium composition has metallic conductivity at tem-
peratures below the magnetic ordering point. Similarly
to substituted lanthanum orthomanganites, the resistiv-
ity of this compound exhibits semiconductor behavior
at temperatures above T. Substituting chromium ions
for manganese ions in the B position leads to a sharp
increase in the resistivity and decreases the Curie tem-
perature (Fig. 2). In addition, this solid solution
acquires semiconductor properties throughout the tem-
perature range. The temperature dependences of the
resistivity for the samarium-, ytterbium-, holmium-,
and thulium-based compounds peak at temperatures
other than the magnetic ordering temperature (Fig. 4a).
The resistivity of TmCu;Mn,0,, compounds behaves
in a similar way [14]. The resistivity curves of the
samarium- (inset in Fig. 4) and ytterbium-based com-
pounds exhibit a metal—insulator transition and bends

X, arb. units
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40 [ J CeCU3Mn4012
) CeCU3Mn4Cr012
A ThCU3Mn4012
20 v SmCU3Mn4012
a HOCU3MH4012
* YbC|u3Mn4O|12 ©

0 1
300 320 340 360

g

380

400

420
T,K

Fig. 2. Dynamic magnetic susceptibility of RCusMn,404,
compounds versus temperature.
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Fig. 3. (a) Resistivity of and (b) magnetoresistive effect in
the compounds CeCu3(Mn,Cr)4045 and ThCuzMnsO4o
with the tetravalent ion in the A position versustemperature.

related to the Curie temperature. The metal—insulator
trangition for the ytterbium compound is strongly dif-
fused. For this compound, the semiconductor character
of the temperature dependence of the resistivity is most
pronounced at temperatures exceeding T.

In al the RCu;Mn,O,, compounds, the magnetore-
sistive effect isobserved at temperatures bel ow the tem-
perature of the magnetic order—disorder transition
(Figs. 3b, 4b). The maximum value of the magnetore-
sistance (18%) isreached in the ytterbium compound at
the lowest temperature of our experiments (78 K). The
amount of the effect decreases monotonically with
growing temperature. The theory predictsthat the effect
vanishes at the Curie temperature. However, the mag-
netoresi stance curves for al the compounds run anom-
alously near Tc. In particular, the curves of the cerium,
holmium, and samarium compounds show peaks, the
highest of which (2.4%) is observed in SmCu;Mn,0;,
at afield strength of 0.9 T. Substituting chromium ions
for manganeseionsin CeCu,(CrMn3)O,, reducesinsig-
nificantly the low-temperature magnetoresistance and
does not affect the anomalous behavior of the magne-
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10 (a)
R3+Cu3Mn4012

p, Qcm
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0.01

0 1 1
100 200
Fig. 4. (8) Resistivity of and (b) magnetoresistive effect in
RCu3Mn,04, (R = Sm, Ho, Yb) compounds with the triva-
lent ion in the A position versus temperature. The arrows
indicate the temperatures of the metal—insulator transition.

The inset shows the behavior of the magnetoresistance near
the magnetic ordering temperature.

toresistance near the Curie temperature. This points to
the different nature of the magnetoresistance at various
temperatures. To shed light on the origin of the effect,
we measured the field dependences of the magnetore-
sistance at low temperatures and at the Curie tempera-
ture (Fig. 5). It is seen that, at low temperatures, the
magnetoresistance saturates in weak magnetic fields
and varies only dlightly asthe field grows. Near T, the
magnetoresistive effect depends quasilinearly on the
external field and does not saturate in fieldsupto 1 T.
Both thetemperature and field dependences of the mag-
netoresi stance suggest theintergranular character of the
phenomenon at low temperatures. It is assumed that the
magnetoresistance peak near the Curie point is related
to the scattering of charge carriers by magnetic inho-
mogeneities. Similar behavior is observed for substi-
tuted lanthanum orthomanganites and Ba,FeMoOq
double perovskite [19]. However, in LCSMO systems,
the magnetoresistance peak is observed at a Mn** ion
concentration of 20-45%. In this concentration range,
substituted lanthanum manganites are ferromagnets at
temperatures below the magnetic ordering point [1, 2,
5], whereas in the ferrimagnetic compounds under
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study, the concentrations of Mn** ions are 50 and 75%
for the tetra- and trivalent ion in the A position, respec-
tively.

Note that the magnetoresistance peak (2.4%)
observed for the samarium compound at 375 K is the
highest of the peaks observed for al the RCu;Mn,0O;,
compounds near the magnetic ordering temperature.
The magnetoresistive of Ba,(FeEM0)O, double perovs-
kite (T = 375 K) at afield strength of 1 T has the same
value at the Curie temperature.

In our opinion, the metal—insulator transition in the
compounds under study is related to the presence of an
intergranular layer (spacer) and the high content of
defects in samples prepared at a high pressure. Appar-
ently, the properties of the spacer govern the electrical
properties and the metal—insulator transition tempera-
ture in RCu;Mn,0;, compounds. As was demonstrated
[20] with Layg,Sri sMnO, polycrystalline solid solu-
tion (z= 3), the metal-insul ator transition, which istyp-
ical of substituted lanthanum manganites at the Curie
temperature, shifts towards lower temperatures,
because the spacer affects the magnetic and electrical
properties of this compound. Weak exchange interac-
tion between magnetic ions in the spacer reduces the
temperature of transition to the paramagnetic state and
that of change of the conduction type compared to these
temperatures inside grains with regular crystal and
magnetic order. The X-ray and electrical datain combi-
nation support the assumption that the spacer has an
effect on the electrical conductivity of the RCu;Mn,O;,
compounds. The cerium and ytterbium compounds
have the narrowest spectral bands. The bands become
successively broader in the samarium and holmium
compounds. According to the Scherrer relationship
[21], spectral lines broaden with adecreasein thegrain
Size in a polycrystal. The temperature of the metal—
insulator transition decreases in the same sequence of
compounds. Similarly to LCSMO compounds, the
effect of grains on the electrica properties of
SmCu;Mn,0;, and Y bCu;Mn,0;, is noticeable at Te..
For these compounds, we observe a sharp changein the
activation energy in the resistivity curve.

We believe that the difference between the el ectrical
properties of the cerium and thorium compounds is
related to the critical length of the Mn—O—Mn bond. An
increase in the unit cell parameter of ThCu;Mn,O;,
results in a deeper localization of carriers and, conse-
guently, in the change of the conduction type. Based on
this assumption, one can explain the electrical proper-
ties of CeCuy(CrMn;)O,,. The incorporation of Cr3*
ions into the manganese sublattice also causes a deep
localization of charge carriers, since the ion radius of
Cr3 issmaller than that of Mn3*.

The optimization of the RCu;Mn,0,, synthesis con-
ditionsis expected to substantially enhance the magne-
toresistive effect near the Curie temperature.
RCu;Mn,0,, compounds are magnetoresi stive materi-

TECHNICAL PHYSICS Vol. 48

No. 9 2003

MR, %

Fig. 5. Magnetoresistive effect
SmCuzMn,0,, versus the magnetic field at two tempera-
tures.

in the compound

alsthat are promising for the room-temperature opera-
tion of magnetic heads or other devices based on mag-
netic-to-electric signal conversion.

In perovskite-like RCusMn,0;, (R = rare-earth ion
or Th) oxides, the magnetoresistive effect consists of
two components: intergranular, which is the most pro-
nounced at low temperatures and is related to the scat-
tering of spin-polarized charge carriers at the interfaces
between neighboring granules, and intragranular,
which appears near T and is due to the scattering of
carriers by magnetic inhomogeneitiesinside the grains.
In this study, the Curie temperatures of all the com-
pounds are above room temperature. The properties of
the spacer considerably affects the conductivity of the
solid solutions. It seems that the magnetoresistance
may be enhanced, e.g., by optimizing the properties of
the intergranular and intragranular layers.
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Abstract—Amplitude equations, as well as the effective dispersion and nonlinearity parameters, which define
the dynamics of awave packet formed by two strongly coupled modes, are derived with alowance for the fre-
guency dependence of the linear mode coupling coefficient. These equations are used to study the onset of the
modulation instability of the two-mode wave packet, soliton-like pulses, and compression modes. Unlike sin-
gle-mode systems, the last two effects in optical waveguides may arise for both a negative and positive disper-
sion of the waveguide material. © 2003 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Optically coupled waveguides (OCWSs) with strong
linear coupling between modes propagating in different
channels and essentially nonlinear optical properties
have attracted much interest in recent years [1, 2]
because of their considerable promise for laser radia-
tion control devices, such as optical switches, couplers,
logical elements, etc. Such OCWSs can be built around
fiber-optic [3] or planar [4] structures. An example of
the planar configuration s, for instance, a structure con-
sisting of two strip waveguides on a single-crystaline
GaAl,_,As substrate [5]. With the pulse carrier fre-
guency chosen appropriately, thismaterial exhibits pos-
itive Kerr-type nonlinearity, making OCWs capable of
supporting soliton-like propagation of optica wave
packets. OCWs of this type feature much higher (than
in standard quartz fibers) nonlinearity parametersand a
high mode-coupling parameter [1]. As is well known,
the formation of soliton-like pulses in an optica
waveguide depends on itsnonlinearity and group veloc-
ity dispersion [6, 7]. Since the effective parameters of
the OCW nonlinearity and dispersion are to a great
extent governed by the excitation conditions, the output
radiation can be efficiently controlled by varying the
conditions at the input to the optical waveguide.

Of fundamental and applied interest is the modula-
tion instability of radiation in nonlinear OCWs, i.e.,
time-varying disturbances observed against a back-
ground of a sufficiently intense quasi-continuous
pumping radiation [6]. Modulation instability trans-
forms a quasi-stationary wave into a periodic sequence
of pulses with a period depending on the disturbance
frequency. This effect may be used to generate pul ses of
agiven duration and frequency [7].

This paper studies the dynamics of awave packet in
OCWs that provide a strong linear coupling between
codirectional waves propagating in the waveguide's

channels and possessing a Kerr-type nonlinearity.
Effective nonlinearity and dispersion parameters that
govern the dynamics of a wave packet in these OCWs
are introduced. The onset of modulation instability, as
well as the formation and compression of a soliton-like
pulse, are studied. The dispersion of the linear mode
coupling coefficient is taken into account, because the
frequency spectrum of short pulsesiswide and its com-
ponents may have a different mode coupling. This dif-
ference isthe greatest for planar GaAs or InSbh OCWs,
where the coupling coefficient may strongly depend on
frequency [8, 9].

(1) The propagation of a two-wave optical pulse
with allowance for linear coupling dispersion wave
detuning, group velocity dispersion, and Kerr-type non-
linearity in a waveguiding medium is described by the
following system of equations for the envelopes of two
( =1, 2) interacting waves [10, 11]:

2
OA L §04 90 A
0z Vv ot 2 p7?
= —10A;_;exp(-i§;02).

+ iyi|Ai|2Aj (1)

Here, T =t —Zuisrunning time, where2u = (u; + u,) is
the group velocity of the wave packet; u; = (aBj/aoo);i
isthe group velocity; B; is the propagation constant in a
jth channel; wy, is the carrier frequency of the wave
packet; d, = (9°B/0w?),, are the parameters of group

velocity dispersion; v = (u; — U,)/2u? is the mode
group velocities mismatch; & = B, — B,; y; are the non-
linearity parameters of the optical waveguide, which
define the phase self-modulation of the interacting
waves; and ; = (—1)'. The linear coupling parameter o
depends on the overlap of waveguide mode profile
functions [2]. The mode coupling dispersion may be

1063-7842/03/4809-1165%$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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taken into account if the parameter o is replaced by the
operator G; [8, 12]:

N .0 2 1do
0; = O%L—Ejlua—rg, HDE)+6%' 2
Equations (1) must be solved jointly with the initial
conditions for the mode time envelopes A;. These con-
ditions are specified by the conditions of optical
waveguide excitation. The general form of the initial
conditions is Ayy = YA, Where Ay = A(T, 0) and the
parameter  specifies the type of fiber excitation. At
U = 1, the optical waveguide is excited symmetrically
or antisymmetricaly; at = 0, one mode is excited.
When solving Egs. (1) in view of (2), we assume
that wave coupling in the wave packet is strong. For this
approximation to be valid, the mode interaction length
Ls = |of* must be much shorter than the dispersion
length Ly = r§/|d|, nonlinearity length L, = (ylp)™, and
mode spacing L, = vT,. Here, 1o and I = |Af? + Ayl
are, respectively, the duration and intensity of the pulse
applied to the optical waveguide (below, by the radia-
tion intensity we mean the power delivered to the
waveguide); 2d =d; + d,; and 2y =y, + V.. In particul ar,
for coupled strip waveguides fabricated in aGaAs crys-
tal, the coupling parameter was as high as |o| 05 x
10° m! at the wavelength A = 1.06 um, which yields a
small mode interaction length L, 02 x 104 m. For the
dispersion and nonlinearity parameter values |d| O
10 g?/mandy 5 x 10° (W m)~%, which are typical of
these materials at A = 1.06 um, the strong-coupling
approximation adequately describes the dynamics of
the wave packet for input pulses with a duration 1y
10 sand intensity I, < 1 W.

In view of the above, the envelope of the respective
mode may be represented as the superposition of two
partial pulses:

A = ay(t, 2)expli( + 0/2)4 + a,(t, 2) exp[-i(q—-3/2)4,
A, = Xau(T, 2)expli(q—-93/2)7] ©)

—x ta,(1, 2)exp[—i(q + 8/2)7] .

Here, the amplitudes a; of the partial pulses are dowly
varying functions of z, q = (02 + %4)V?, and

_(29+0)Ayy—20Ay _ (29+0)An+20A,

(20-0)A1—20A,  (20—0)Ay +20A

is a parameter depending on the initial conditions of
waveguide excitation

When the phase synchronismisexact, =0, g =|0],
and x =-1.

Thus, the pulse formed by two interacting modesis
the superposition of partial pulses whose amplitudes

(4)

ZOLOTOVSKII,

SEMENTSOV
satisfy the equations
da, 802, iDd%a,
dz 2qv ot 2 pr? (5)

+ i(Gsf|af|2 + Gcf|a3—f|2)af =0

in accordance with (1) and (3). Here, f = 1 or 2 isthe
pulse index and

_sz
Gy = [[a+&:0/2]ys +[q—E&10/2]X Y] /20,

Gy = [[20+&3lya (6a)
+a(x™ +1) - €,3(x - 1)/2ly L)/2a,
d,+d, & Sv3(d,—d
D= 5%+ A2 row T @

are the effective parameters of phase self-modulation,
cross modulation, and dispersion.

By virtue of (3), theinitial conditions for the partial
pulse amplitudes take the form

1 a o
(1,0 = a0 = 5 An*+ & An+ A] ()

It is important to note that the system of equations
(5) involves the parameters of induced cross-modula-
tion interaction, G, which are absent in theinitia sys-
tem of equations (1). The cross-modulation interaction
arises when partial pulses into which a wave packet
applied to the OCW breaks interact between each other
in either of the waveguides. Of significance is also the
strong dependence of the effective parameters on the
initial excitation conditions, phase mismatch, and mode
coupling coefficient dispersion. For instance, when the
waves are in phase synchronism (6 = 0), the contribu-
tion of the mode interaction dispersion to the effective
dispersion is, according to (2), d, = %0 4120/ oog.
For GaAs OCWs, this parameter usualy lies in the
interval |d;| = 0.1-10 x 10% s?/m (at the carrier fre-
quency of the source w, 1.8 x 10 s?). Since the
parameter |d|, which is associated with the material dis-
persion, aso varies within this interval, the dispersion
of the linear coupling should necessarily be taken into
account when the pulse dynamicsis analyzed.

(2) Consider conditionsfor modulation instability in
the OCWs under study. If the wave packet applied is
long enough, so that the pumping wave can be
described in terms of the quasi-monochromatic approx-
imation (i.e., the dispersion terms are negligible, which
seemsto be correct for pulseswith an initial duration of
T,> 1079 9), the solution to Egs. (5) for the partial pulse
amplitudes may be represented as

ai(z 1) = [ato+ 9+(z T)]

x exp[—iR(Ggafo + Gyas_ (o)l

(8)
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where ¢; is the complex disturbance amplitude and
ay > |¢r|-

Next, we substitute (8) into Egs. (5) and linearize
them in small disturbances ¢; to obtain a system of
equations for the disturbances:

aq)f 5 09 IDaq)f

57 Equv T 2 372 +1 Gsfafo(¢f+¢f) )

+iGgagay(ds_ ¢+ ¢3_¢) = 0.

For harmonic disturbances ¢4(z, 1), asolution to this
equation will be sought in the standard form

0, = by cos(kz— Q1) +ib;,sin(kz—Q1),  (10)

where k and Q are the wavenumber and frequency of
the disturbance (Q = w, — w,, where w, isthe frequency
of adisturbing signal wave or spontaneous noise distur-
bance).

Substituting (10) into (9) yields a system of two
equations for the amplitudes b;. A solution to this sys-
temisthedi spersi on relation

(-5 837 -

2qu
K; = 0.25D;Q°(D;Q +4Gsfa$0),
F = D;D,G.1GQ ajaz.

First, consider the important particular case F = 0.
This situation may occur when the effective dispersion
or the amplitude of one of the partial pulsesiszero. Let,
for example, D, = 0. Hence, K, = 0. In this case,
Eq. (11) hasthe solutions

(11)

0Q
= gt K o=
If the parameter ranges are such that K; < 0, modu-
lation instability is seen to be caused by the solution
with the wave number k;. Since G is positive, modu-
lation instability develops if the parameters meet the
condition

(12)

4G a5, < Q°D, <0, (13)

which can be realized by appropriately choosing the
disturbance frequency or the intensity of the pulse
applied. In this case, modulation instability takes place
at an anomalous effective dispersion, i.e., at D, < 0. It
should be emphasized that the material dispersion
parameter may be positive (d > 0). Thissituationisfun-
damentally different from the conventiona single-
mode case, where modulation instability exists only
when the material dispersion parameter is negative.
Similar modulation instability conditions for one of the
branches of the solution to the dispersion relation take
place when the amplitude of one partial pulse is zero.
For example, with a,, = O, solutions of Eq. (11) are
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identical to those of (12). Asinthe case of D, =0, here
modulation instability arises when condition (13) is
met. The increment of the propagating disturbance in
the above situations is given by

g = 2Imk, = |D,Q|.JQZ-Q% (14)
where Q2 = 4G aj,/|D,|. The increment reaches a

maximum,
= |D,| Q22 = 2Gya,,

at adisturbance frequency Q = Q4./2.

Figure 1 plots the increment versus disturbance fre-
guency when one partial pulse propagates in the sys-
tem. The curves g(Q) wereobtained at 0 =5 x 10° m,
Yo = Yo =5 x 10° (W m), d; = -0.975 x 107 &/m,
d, =-1.025% 106 ?/m, u=4x 10765, v1=10"? gm,
and various phase mismatches. Accordi ng to (7), to
realize the single-pul se regime with a,, = 0 at the above
values of & = 10, we must respectively take Y = (1) —
1.001, (2) -1.01, and (3) —1.1, i.e., the excitation of the
optical waveguide must be almost antisymmetric. As
can be seen from Fig. 1, the increase in the phase mis-
match extendsthe frequency range of modulation insta-
bility and raises the disturbance increment.

Let us focus on the practically important case of
exact phase synchronism (o [00). Dispersion relation
(12) is then reduced to a biquadratic equation whose
solution is

12 = K, + K2+ (Kl_K2)2+
* 2 4
Here, there are several scenarios of modul ation instabil-

ity development, of which we distinguish the main two.
Thefirst oneisrealized if

KK = K,K,—F<0. (16)
In this case, modulation instability is observed only

(15)

-1

&g, m
3
2
1

4_
2_

1 1 1
0 3 6 Q%1025

Fig. 1. Modulation instability increment versus disturbance
frequency. & = (1) 10, (2) 100, and (3) 1000 m~2.
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in one branch of the solution to Eq. (11), specificaly,
for the disturbance with the wavenumber k_. Theincre-
ment of the propagating disturbance is then given by
the expression

g_ = 2Im(k)

= 2L(Ki—Ky)P + AF —Ky — K] .

Condition (16) specifies the disturbance frequency
range in which modulation instability occurs, |Q|< Qg,
where

(17)

Qy =2

2
X («/(Qlaio/ D, - G&zagol D,) + 4aioa§chch2/ D, D,(18)
- GslaiO/ D, - Gszago/ Dz)ﬂz-

As follows from (18), modulation instability here
may develop at any sign of the effective partial pulse
dispersion parameters, unlike the previous case. It is
necessary to take into account that the relationship
Gy = Gy is aways valid for OCWSs with strong linear
coupling. When the effective dispersions of both partial
pulsesare normal (D, > 0and D, > 0), the situation dif-
fers from the single-pulse propagation most signifi-
cantly. However, the maximum values of the increment
g_ and disturbance frequency Qg up to which modula-
tion instability is observed turn out to be lower than
those when D; <0 and D, < 0.

The situation when two branches of solution (14)
are responsible for modulation instability is fundamen-
tally different from the one observed in single-pulse
systems. In this case, both roots k, and k_ are purely
imaginary. This situation is realized when the condi-
tions

K,+K,<0, K;K,—F>0 (29)
arefulfilled in the frequency range Qy < Q < Q. where

—1. 12
Q, = 2[~(D;Gya% + D,Ggyak) (D +D3) ] . (20)

Conditions (19) are satisfied when the effective dis-
persions of the partial pulses are equal but opposite in
sign. The increment is then given by the expression

9. = 2Im(k.)

= UKy + Ky T (K= K,)2+4F] .

Asfollows from the above expressions, modulation
instability in OCWSs with a strong mode coupling may
be controlled by varying the effective parameters of
partial pulse nonlinearity and dispersion.

(3) Another problem of practical interest is the fea
sibility of soliton-like pulses and compression modesin
the optical waveguides under study. Of most interest is
obtaining analytical solutions to Egs. (5) and their
experimental implementation in the degenerate situa-
tion where the whole wave packet may be described by

(21)

ZOLOTOVSKII, SEMENTSOV

only one of the partial pulses. For this degenerate situ-
ation, one can find the optimal dispersion parameters of
the pulse propagating in the optical waveguide. If the
modes are in phase synchronism (o = 0), degeneration
takes place when the excitation of the waveguide is
symmetric ({ = 1) or asymmetric ( = -1) witha,;=0
and ay, # 0 or ay, = 0 and ay # O, respectively. In the
case of a phase mismatch (& # 0), adegenerate situation
is also possible for asymmetric excitation, as follows
from (7). In particular, if Y = (2¢;q — 8)/20, the partial
pulse amplitudes are a; # 0 and a;_; = 0. The amplitude
of the corresponding partial pulseis now zero not only
a the initial moment but also throughout the pulse
propagation. In the above cases, where the amplitude of
one of the partial pulses vanishes, the system of equa-
tions (5) degenerates into one nonlinear Schrédinger
equation

da, iD;0%a; . )

—_——t |Gsf|a.f| af = O, (22)
where t; = t — Z/y; istime in the running coordinate sys-
tem related to the corresponding partia pulse, u; =

u/(1 - A;u) isits group velocity, and A; = &;0/2qv.

Equation (22) describes the pulse dynamics in a
cubically nonlinear medium with an effective disper-
sion D; and effective nonlinearity G4. The formation
dynamics of one-soliton and multisoliton pulses, self-
compression effects, etc., for similar equations have
been studied in detail [6, 13]. It is important that the
pulse dynamicsis governed by the effective parameters
of dispersion and nonlinearity, which here depend not
only on the material properties but also on the initia
conditions of OCW excitation.

If the system of equations (5) cannot be reduced to
the degenerate case, its exact analytical solution is
impossible to find. In this case, it can be solved by the
variational method, which has been successfully
applied to many problems of nonlinear optics[14, 15].
If the phase mismatch is small (|&/c| < 1), the duration
of the pulse applied is expressed as

2
E%% = fo—4D(W, + W,)G/TT, — 4D?/TCT. (23)

Here, f, = 4D(W, + W,)G/TeT, + 4DY T2,
D = (W,D;+W,D,)/(W; +W,), (24)
G = (G W + GoW5 + (Gy + Gp) Wy W)/ (W, + W)

arethe effective dispersion and nonlinearity parameters
of the wave packet, and

Wi = 11oTo = Wo[1 + & (8 +20)/2q) “/4(1 + ¢°) (25)

isthe partial pulse energy, where W, = | 4T, isthe energy
of the radiation applied to the optical waveguide.
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Fig. 2. Pulse duration versus the optical waveguide excita-
tion parameter.

In the case of exact phase synchronism (& = 0), the
expressions for the effective nonlinearity and disper-
sion parameters take the form

_YsitVe l-[ﬂ-—lIszz
G = s [1+2Dl—+ wﬂ},

_ditd, g 29 pl+(vo)’
2 Hsygd v

Equation (23) impliesthat the problem is reduced to
the well-known Kepler equation [16]. Omitting the
solution and analysis of this equation, we note that,
when D < 0, the condition f, = 0 makes it possible to
determine the boundary value of the energy applied to
the fiber, W,, above which a quasi-soliton pulse, i.e., a
nonspreading solitary wave, forms. In this case,
Eq. (23) describes a pulse whose duration varies peri-
odicaly about @,0= 2IDJ(W; + W,)G. If 1o(W; +
W,)G/2|D| > 1, the pulse compression modeisrealized.
For example, by applying a pulse of duration ty = 4 x
103 sand power |, = 102 W to an optical waveguide
with G 05 x 10° (W m)~* and D J-10"%6 s/m, asoliton-
like pulse of extremely short duration t, 110 scan be

generated over a length L [ Jré/lDlGlo [00.15 m
along the optical waveguide. Figure 2 plots the pulse
duration T, versus the waveguide excitation parameter
Y after the pulse has traveled the length L. The curve
was constructed at 1o =4 x 1035, 1,=102W, and 8 =

(26)
D
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0. The values of the dispersion and nonlinearity param-
eters were the same as above. For 00 1 (symmetric
excitation), the pulse duration is minimum, T, J10*s.
The pulse compression in this case reaches 1y/T, [140.

The above analysis showsthat the dependence of the
effective dispersion and nonlinearity parameters on the
detuning, mode coupling, and type of OCW excitation
makes it possible to effectively control modulation
instability, the formation of soliton-like pulses, the
degree of compression, and other parameters that spec-
ify the dynamics of a wave packet propagating in
OCWSs. Similar results are expected for OCWSs using
light fibers and crystals, where asmall spacing between
the guiding channels provides a strong wave coupling.
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Abstract—The chaotic dynamics of a system of two unidirectionally coupled backward-wave oscillators
(BWOs) is studied in the case when a signal from the driving BWO in (periodic or chaotic) self-modulation
modeis applied to the driven oscillator, which exhibits strong periodic self-modul ation in the autonomous case.
The oscillation evolution with the amount of coupling istraced. The use of a chain of coupled BWOsis shown
to significantly reduce the threshold of transition to the regime of wide-band chaotic oscillations with auniform
continuous spectrum (so-called fully developed chaos), which is of interest for applications. © 2003 MAIK

“ Nauka/Interperiodica” .

High-power sources of microwave chaotic oscilla-
tions are promising for a wide range of applications,
such as radar detection, plasma hesating in systems of
controlled thermonuclear fusion, advanced communi-
cations based on dynamic chaos, etc. Backward-wave
oscillators are among the most extensively studied
complex-dynamics vacuum electronic devices: their
capability to generate chaotic oscillations was pre-
dicted and experimentally confirmed as early asin the
late 1970s [1, 2]. Recent studies of BWO operation
[3—7] showed that, as the beam current increases, regu-
lar and chaotic oscillation regimes aternate in a com-
plex manner until the system comes to exhibit highly
irregular wide-band chaotic oscillations with a fairly
uniform continuous spectrum. This mode has received
the name fully developed chaos. Evidently, it is the
most favorable regime for the applications mentioned
above. However, fully developed chaos arises when the
electron beam current is considerably in excess (by
more than 30 times) of the starting value, which is hard
to provide in reality. Experiments with nonrelativistic
[2, 8] and relativistic [9-11] BWOs are usually carried
out on specially constructed setups with an extended
phase length. In this case, additional difficulties associ-
ated, for example, with beam focusing may emerge.

In this study, we will show that two coupled oscilla-
tors may reduce the developed chaos threshold. The
nonlinear dynamics of such a system is numerically
studied by using the well-known equations from the
nonstationary nonlinear theory of BWO (see, eg., [1,

3-7)):

%6, ,
2

= L ,Re[F, ,exp(iBy ,)], (D

21
aFlvz_aFlyz _ lez i
a.l. az - T Iexp( Iel,Z)deO' (2)
0

Equations (1) describe the motion of electronsin the
field of an electromagnetic wave, while Egs. (2) repre-
sent the nonstationary excitation of the sow-wave
structure by a slowly varying current. The subscripts
indicate the serial number of an oscillator in the chain.
In Egs. (1) and (2), 6, , are the electron phases with
respect to the wave; 6, aretheinitial phases; F, , arethe
slowly varying dimensionless amplitudes; and & and 1
are the dimensionless coordinate and time, respectively.
Note that the equations of mation are written under the
assumption of asmall variation of electron energy dur-
ing the interaction (see, €. g., [1, 6]) and apply to both
the relativistic and nonrelativistic cases. The dynamics
of apartial oscillator isgoverned by the sole bifurcation
parameter L = 21CN, where C isthe Pierce gain param-
eter and N is the phase length of the system. If one
oscillator istaken to drive the other, the boundary con-
ditionsfor Egs. (1) and (2) can be set as
69112 - O,
£=0 (€©)
Fi(§=1) = 0, Fy(§=1) = RFy(§=0),

where R is the coupling parameter, which may be con-
sidered real without loss of generality.

Let us recall the basic results of the investigation
into the complex dynamics of an autonomous oscillator
[3, 4]. The self-excitation of oscillations starts at L =
1.98. Stationary single-frequency oscillation modes
exist withintherange 1.98 <L <2.9.AtL = 2.9, thesta-
tionary regime becomes unstable and givesway to peri-
odic self-modulation. As the parameter L increases to

012)s-0 = B L [0; 211,
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=4.02, the periodic self-modulation persists with both
the fundamenta and self-modulation frequencies
remaining amost unchanged. Then, in the narrow
range of the bifurcation parameter 4.02 < L < 4.11,
chaos is established via a cascade of period doubling
bifurcations. After the chaos threshold has been
exceeded (at 4.150 < L < 4.3325), numerous windows
of periodicity appear, with their periods successively
increasing by unity starting from three (the range of
period add-on). Windows with periods up to 11 were
reliably detected in [3, 4]. At L > 4.333, the transition
from the chaotic regime to regular self-modulation is
observed and thistransition occurs viaintermittency. In
this case, the strange attractor turns into a metastable
chaotic set. During the transient, the phase trajectory
first liesin the vicinity of this set (the waveform resem-
bles a chaotic one) and then is attracted to a stable limit
cycle. Note that the route viaintermittency is accompa-
nied by a sharp shift of the fundamental frequenciesin
the spectrum. As was shown in [6], the reverse transi-
tion to the regular regime causes a profound transfor-
mation of the space-time structures that form in the
electron beam at the stage of intense beam overbunch-
ing. Next comes the range 4.625 < L < 4.750 with qua-
siperiodic self-modulation at two incommensurable
frequencies. Narrow windows of synchronization are
observed in this range when the self-modulation funda-
mental frequency ratio is rational. This situation corre-
sponds to the on-torus formation of resonant cycles. At
L > 4.75, regimes are periodic again. Eventualy, the
cascade of bifurcations brings the system, at L = 6.05,
to the state of fully developed chaos, which is charac-
terized by a uniform continuous spectrum and the
absence of any large-scale structure on the projection of
the phase portrait. This transition also takes place via
intermittency.

Let us next consider a chain of two unidirectionally
coupled BWOs. The construction of a complete
dynamic model for such a system is a great challenge
and goes beyond the scope of this study. Here, we will
single out various situations depending on the operating
mode of either oscillator. For example, one may con-
sider the action of a periodic-mode oscillator on an
oscillator operating in the chaotic mode and vice versa,
interaction between two chaotic-signal sources, etc.
Notethat, if the driving oscillator operatesin the steady
single-frequency mode, we face the well-known prob-
lem of synchronization by an external harmonic signal.
The problem of synchronization of aperiodic oscillator
has been studied in most detail; in general, this problem
is qualitatively similar to the classical problem of the
vibration theory when a harmonic force acts on a self-
oscillating system [13, 14]. The effect of a harmonic
signa on a chaotic BWO was studied in [8], where
chaos was found to be suppressed with growing exter-
nal signal. This phenomena calls for further investiga-
tion; however, it issafeto predict the presence of all the
effects typical of finite-dimensional chaotic systems
that are synchronized by an external harmonic action,
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such as the locking or suppression of the fundamental
frequency of chaotic oscillations, etc. [15].

Sincethe primary goal of this study isto see whether
the devel oped chaos threshold may be reduced, we will
first consider the situation where both oscillators oper-
atein the periodic self-modulation mode. The evolution
of the oscillatory regimes with the amount of coupling
seems to be the following. As R grows, oscillations
become chaotic basically through the decay of the qua
siperiodic motion. Figure 1 presents typical phase por-
traits and output signal spectrafor (a) thefirst and (b—f)
second oscillators. The two-dimensional projection of
the phase portrait is constructed for Fg,, = [F1 »(§ = 0)]
by the method of delays (Packard-Takens method)
[15]. The values of the bifurcation parameters L, = 4.0
and L, = 4.5 are chosen so as to ensure autonomous
operation in the strong periodic self-modulation mode
(Figs. 1a, 1b) but away from the developed chaos
threshold (the current exceedstheinitial value eight and
eleven times, respectively). In thefirst case, we are near
the Feigenbaum chaos threshold; the second case cor-
responds to the situation after the chaos-order transi-
tion viaintermittency. It is seen that the phase portraits
and spectra in these two cases are qualitatively differ-
ent.

With an increasein the degree of coupling, the oscil-
lations first become quasiperiodic (Fig. 1c) and then
chaotic (Fig. 1a) even if coupling is rather weak. The
discrete spectral components are distinctly seen against
the background of the low noise pedestal. Next, the
oscillations become till more irregular, the discrete
components decrease and diffuse, while the noise ped-
estal grows (Fig. 1€). However, at sufficiently high R,
new discrete peaks appear, thistime, at the frequencies
contained in the spectrum of thedriving signal (Fig. 1f).
Moreover, under certain conditions, self-modulation
may again become periodic (for parameter values other
than those shown in Fig. 1). Thus, there is an optimal
value of R corresponding to the most noisy uniform
spectrum.

Notethat, in the presence of coupling, both the aver-
age output power and the efficiency are higher than
those in the case of autonomous operation. Thisreadily
follows from the following considerations [12]. In an
autonomous oscillator, the distributions of the field and
current over theregion of interaction arein “antiphase”:
near the collector, the beam is well bunched but the
field is small; therefore, energy exchange isinefficient.
Coupling “corrects’ the field structure of the output
(driven) tube, making it more uniform and providing
more favorable conditions for energy remova from
electrons.

If the oscillators are identical (L; = L,) and operate
near the Feigenbaum chaos threshold, the coupling-
induced transition to chaos also follows the Feigen-
baum scenario. However, this variant is encountered
more rarely than the above-mentioned quasiperiodic
route, which is always observed when the oscillators
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Fig. 1. Phase portraits and spectra of the (a) applied and (b—) output signals when both oscillators operate in the periodic self-mod-
ulation mode (L1 = 4.0, L, =4.5) at R=(b) 0, (c) 0.02, (d) 0.05, (¢) 0.2, and (f) 0.5.

are nonidentical (L, # L,) or the frequencies are
detuned.> Generally, detuning favors the transition to
chaos.

With the first oscillator operating in the regime of
weakly developed chaos, the behavior of the system is

Lin Egs. (1) and (2), Fy , stands for the amplitudes of waves
whose carrier frequencies are taken to be equal to the wave—beam
synchronism frequencies. If these frequencies are unequal for
both tubes, one should replace Rin Eq. (3) by Rexp(iAt), where A
is the frequency detuning.

only dlightly different from that discussed previously.
Thereisno point in talking of a scenario of transition to
chaos in this case; indeed, a chaotic signal, small as it
may be, when applied to the second tube, givesrise to
a chaotic component in the output signal. However, the
evolution of the spectra with the degree of coupling
proceedsin the same manner: first, the discrete compo-
nents diffuse and the noise pedestal grows; then, at suf-
ficiently high R, the fundamenta frequencies of the
applied signal spectrum start showing up.
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Fig. 2. Phase portraits and spectra of the (a) applied chaotic and (b—d) output signals. The driven oscillator operatesin the periodic
self-modulation mode (L1 = 6.5, L, = 4.0) at R= (b) 0.03, (c) 0.1, and (d) 0.3. The data for the output signal obtained in the auton-

omous modeisgivenin Fig. 1la

One more interesting case is that when awide-band
chaotic low-amplitude signal is applied to a high-power
oscillator operating in the single-mode or periodic self-
modulation regime. In some sense, thissituation issim-
ilar to the classical problem of stabilization of a high-
power oscillator by a weak external signal [13, 14].
However, we are dealing here with the reverse problem,
which consistsin initiating the transition of a powerful
generator (for which the increase in the current to a
desired level is for some reason impossible) to fully
developed chaos by applying a small chaotic signal
with a broad spectrum. Note that earlier a similar idea
was put forward in [16], where the noise or regular mul-
tifrequency modulation of the electron beam velocity
was proposed.

Let us discuss the effect of the fully developed cha
otic signal from the first oscillator on the other oscilla-
tor working in the periodic self-modul ation mode. Typ-
ical resultsare presented in Fig. 2for L, =6.5 (or I/l =
35) and L, = 4.0 (or I/l = 8). The phase portraits and
spectra of the driving and output signals are plotted for
different values of R (the phase portrait and spectrum of
the output signal obtained in the autonomous mode are
givenin Fig. 1a). Evidently, it is reasonable to consider

TECHNICAL PHYSICS Vol. 48

No. 9 2003

small values of R, since the power of the first oscillator
is assumed to be low. Under the assumption that the
entire output of the first oscillator is applied to the sec-
ond tube, the power ratio equals 20 logR, which gives
approximately —30, —20, and —10 dB for Figs. 2b—-2c,
respectively. Figure 2 clearly demonstratesthat, with an
increase in R, the discrete components in the spectrum
decay rapidly and the noise pedestal grows. At R=0.3,
no distinct structure is present in the phase portrait and
the spectrum of the output signal turns out to be even
more uniform than that of the applied signal. Such
behavior is typical when the second (output) oscillator
operates in the periodic self-modulation mode. Yet it is
reasonable to consider the case of sufficiently strong
self-modulation, since a decrease in L, leads one to
increase R (i. e., the power applied).

Thus, we considered the complex dynamics of a set
of two unidirectionally coupled BWOs. The transition
to chaos with growing degree of coupling was studied
for the case when autonomous oscillators operate in the
periodic self-oscillation mode. It is shown that the qua-
siperiodic route to chaos is the basic scenario of the
process. By using a chain of coupled oscillators, one
may appreciably reduce the threshold of transition to
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fully developed chaos and obtain chaotic oscillations
with a uniform continuous spectrum, the ratio of the
current to its starting value being much lower than in
the autonomous case. However, there exist optimal
coupling values at which the output signal is the most
irregular. At a higher degree of coupling, the oscilla-
tions may again become periodic, because discrete
components in the applied signal spectrum start to pre-
vail. The application of a weak wide-band chaotic sig-
nal is shown to be another possible way of transition to
fully developed chaos in BWOs. The results obtained
are of interest for applications using sources of micro-
wave chaotic oscillations. It should be noted that an
exhaustive theoretical description of the complex
dynamics of the system discussed is a great challenge
and calls for further experimenta and theoretical
research.
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Abstract—Multilayer wave-guiding structures comprising transversely magnetized ferrites are studied.
A numerical theoretical model is constructed with the Galerkin method. An experimental investigation tech-
nigue is developed. Theoretical and experimental results are found to be in good agreement. Such structures
offer ahigh phase activity and may provide abasisfor small-size millimeter-wave phase shiftersand anew class
of antenna systems, namely, integrated phased arrays. © 2003 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

This paper is devoted to the theoretical and experi-
mental investigation of a transversely magnetized
three-layer ferrite—dielectric waveguide (FDW) whose
cross-sectional view isshownin Fig. 1.

The waveguide consists of a high-permittivity
dielectric dlab sandwiched in ferrite slabs, of which the
bottom of oneis plated. Thus, the waveguide is an open
guiding structure that can propagate waves with their
fields concentrated mostly in the dielectric slab.

To control the magnetization of the ferrite layers, a
control winding (not shown in Fig. 1) is provided
between the ferrite slabs. The variation of the current in
this winding alters the transverse magnetization of the
ferrite layers and affects waves propagating in the
FDW. Therein lies the essence of the electric control of
the waveguide properties.

This waveguide has served as the basis for a new
promising integrated millimeter-wave phased array
with simple ferrite control elements [1, 2]. Here, the
FDW functions as an integrated power and phase dis-
tributor. A control current changes the ferrite layer
magnetization, which, in turn, alters the propagation
constant of a wave in the FDW and, consequently, the
phases of theradiatorsfed fromit. Thisarray thusoffers
simple electric steering of the beam by changing the
current in the control winding.

A length of alayered FDW can be used as a small-
Size easy-to-control millimeter-wave phase shifter with
losses lower than in conventional controlled semicon-
ductor phase shifters.

The simulation of the FDW behavior is extremely
important for the understanding of the physical mecha
nisms behind the processes taking place in an inte-
grated phased array and in a controlled phase shifter.

The purpose of thiswork is (i) to create an adequate
theoretical model of the FDW that could be used to

study all types of waves existing in it, (ii) to estimate
the controllability of the waves by changing the magne-
tization of the ferrite layers, and (iii) to optimize the
characteristics of the structure, i.e., in terms of control-
lability maximization and loss minimization by appro-
priately choosing the number of layers and layer
parameters (thickness, width, and permittivity). Such a
model would eliminate the need for the experimental
selection of these parameters, which requires the fabri-
cation of many prototypes.

NUMERICAL SIMULATION

The theoretical simulation of an FDW is a complex
electrodynamic problem, because it has avariable cross
section and contains magnetized ferrites, which are
anisotropic nonreciprocal media. For a structure with
equiwide layers separated by electric or magnetic
boundaries, an analytical solution can be constructedin
principle (by applying the method of equivalent trans-
mission lines). The resulting formulas are, however,
very awkward and hard to use in practice. We study a
waveguide with layers of different widths (Fig. 1), for

Fig. 1. Cross-sectional view of a transversely magnetized
three-layer ferrite-dielectric waveguide: (1) dielectric,
(2) ferrite, (3) metal, and (4) magnetization.
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which an analytical solution cannot be constructed.
Thus, we can rely only on a numerical method.

If awave depends on timet and longitudinal coordi-
nate z as exp[j (wt — y2)], the Maxwell equations for the
complex amplitudes of the fields take the form

CurlE — jyzoxE = —jopgitH,

: . )
curlH — jyzgxH = jwegeH.

Here, | is the ferrite permeability tensor at a micro-
wave frequency [3]. In the frequency range away from
ferromagnetic resonance (such isthe casein this paper,
because the biasin an integrated phased array isweak),
it can be represented as

PH = pH = juH xm,, 2

where m, is the unit magnetization vector, which coin-
cides here with y,, and 1 and 1, are, respectively, the
diagonal and off-diagonal elements of the permeability
tensor [3].

Thus, adesired solution is found by solving the set

CUrlE —jyzo X E + jpy(UH — juH xy,) = 0,

. . _ (©)
curlH — jyzo x H — jwe,eE = 0.

The simulation of an FDW was performed with the
Galerkin method [4, 5], which isaparticular case of the
method of moments. This method represents the com-

ponents of a desired electromagnetic field as expan-
sionsin sets of Iinearly independent basis functions:

E.(xY) = z z amPm (%),
n=1m=1 (4)

Hu(xy) = Z Z bhaba(x,y); v = XY,z

n=1m=1

The basis functions ¢ (x, y) and P& (x, y) must

exactly satisfy the boundary conditions at the outer
boundary (cross section) of the waveguide and must
constitute complete sets, which is necessary to repre-
sent adesired solution.

—b2 b2 y

Fig. 2. Open FDW enclosed in an auxiliary screen.

GUZENKO, ZAITSEV

Because an FDW is actually an open structure
(Fig. 1), the boundary conditions at its boundary are
conditions at infinity. Basically, sets of basis functions
that satisfy these boundary conditions exist, but they
are awkward and inconvenient for computations.
Therefore, for ssimplicity, we construct the model for a
compl etely screened FDW: an open FDW isenclosed in
a large hollow rectangular waveguide (Fig. 2). This
may produce extra modes, cavity modes, which have
nothing to do with modes in a real open waveguide.
However, the mode fields in an open FDW concentrate
inside and near the layers and decay exponentially with
distance from the waveguide; therefore, far screens are
bound to have a negligible effect on the fields of sought
modes, while the additional spurious (or “false”) modes
are expected to be very sensitive to the positions of the
screens. This property is used to distinguish between
true and false modes: when the positions of the auxil-
iary screens are varied, the cavity modes are signifi-
cantly modified, while the modes of the open FDW
retain their parameters.

The distances to the auxiliary screens should be
optimized. On the one hand, the farther the screens, the
weaker their effect on the modes of the open FDW and
the more accurately these modes can be calculated; on
the other hand, the greater number of basis functions
arerequired in this case to represent the components of
the desired modes (the field variation within the sheath
becomes sharper). Accordingly, the calculation time
and the number of false modes will increase consider-
ably. Thus, optimum distances to the screens are those
at which the parameters of true modes are calculated
with adesired accuracy (they remain almost unchanged
with afurther increase in distance), and the detrimental
factorsdiscussed above moderate. This optimum can be
found if the problem is solved by iterations: if the
parameters of desired modes do not change (within a
given accuracy) starting with a certain distance to the
screens, this distance is fixed and then used in subse-
guent analysis of the structure.

The boundary conditions at the new closed bound-
ary are very simple, and basis functions are easy to
choose. In this paper, we expand the components of the
desired field in trigonometric functions:

DSlnDnT[xDSIanT[y
Eposn a Epos] b

An appropriate combination of the sine and cosine
functions are determined for each of the field compo-
nents from the corresponding boundary condition.
These basis functions make up acomplete set (astrigo-
nometric functions) and are very convenient for calcu-
lations.

According to the Galerkin method [4, 5], expan-
sions (4) are substituted into the left-hand side of field
equations (3) written componentwise. The resulting
expressions are multiplied by the respective basis func-
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tions, integrated over the waveguide's cross section,
and set equal to zero. Asaresult, we obtain a system of
homogeneous linear algebraic equations for the expan-
sion coefficients. The system contains the propagation
constant asafree parameter. The nontriviality condition
for asolution to this system yields the propagation con-
stants (eigenvalues) of the FDW modes, for which the
corresponding sets of expansion coefficients (eigenvec-
tors) are calculated. With the expansion coefficients
known, formulas (4) specify thefield at any point of the
waveguide and, hence, any integral characteristic of the
mode can be calcul ated.

Based on this algorithm, a computer program that
simulates an FDW and similar structures was devel-
oped. This program uses the waveguide parameters
(layer dimensions, permittivities and loss tangents of
the media, and ferrite magnetization) and the frequency
of the oscillator as input parameters, constructs a rele-
vant set of equations, solvesit, and determines al nec-
essary mode characteristics from the expansion coeffi-
cients found. The program is versatile: it applies to
structures with any number of layers and with arbitrary
widths and thicknesses of thelayers. Also, it allows one
to calculate the characteristics of many structures like
an FDW (Fig. 1), which makesit particularly valuable.

EXPERIMENTAL TECHNIQUE

To experimentally study FDWSs and similar struc-
tures, we used a special computerized measuring facil-
ity (CMF). The CMF is intended for measuring the
amplitude—phase distribution along a straight line near
the aperture (surface) of the object under study. The
CMF is equipped with a miniature dipole probe, which
introduces small perturbationsinto thefield being mea-
sured. The software allows one to measure the ampli-
tude—phase distribution and check the measurement
accuracy (calibration mode), as well as display, print
out, and file the data. The block diagram of the CMF is
shownin Fig. 3. Probe 1 moves along object 3 by means
of worm gearing 2. Motor 4, which actuates the mech-
anism, is controlled by computer-based unit 5. The
travel of the probe is specified by limit switches 6.
Marker generator 7 produces pulses that are uniquely
related to the angle of rotation of drive shaft 2, which
makes it possible to locate the probe with an accuracy
of £0.1 mm. The amplitude and phase of the field are
measured by amplitude—phase meter 8, to which asig-
nal from signal source 9 isapplied. The signal from the
movable probe is transmitted to the amplitude—phase
meter through cable 10, a Teflon-filled coaxia trans-
mission line of outer diameter 1.5 mm. This cable is
flexible and lets the probe move over noticeable dis-
tances. The electrical length of the cable remains con-
stant within several degrees. Interface device 11 con-
trols the probe motion, the operation of the amplitude—
phase meter, and the entry of the data into a computer.

The basic parameters of the CMF are asfollows: the
frequency range is 32.0-35.7 GHz (beyond this range,
TECHNICAL PHYSICS Vol. 48
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Fig. 3. Block diagram of the measurement facility.

the measurement accuracy is lower), the amplitude-
phase distribution is measured to within £3° (phase)
and £0.5 dB (amplitude), the length of measurement is
varied from 0.8 to 1200 mm, the minimum distance
between amplitude and phase countsis 0.1 mm, and the
probe positioning error iswithin £0.1 mm.

A length of the FDW was placed into the CMF. The
probe moved =0.1 mm above the FDW surface so that
it could respond to waves propagating in the FDW. The
waveguide was driven through a narrow dot, which
efficiently excites a variety of modes.

The output data of the CMF are the readings of the
field amplitudes and phases at given points of the FDW
surface. To calculate the FDW mode characteristics of
interest, aspecia data processing technique and associ-
ated software package were devel oped.

The amplitude and phase readings form readings of
the field complex amplitude. Then they are subjected to
Fourier transformation (in the space domain). The the-
ory predicts that the propagation constants of FDW
modes are discrete and that any wave in the waveguide
is the superposition of these modes. Thus, the Fourier
spectrum has isolated peaks, which correspond to
modes that exist in a particular case (Fig. 4 shows such
aspectrum for afrequency of 36 GHz). The parameters
of these modes (propagation constant and attenuation
factor) can be found from the spectrum with a fairly
good accuracy.

For each mode of the spectrum is transformed so
that only a part of the spectrum near the peak corre-
sponding to this mode is | eft, and the remaining part of
the spectrum is set equal to zero. Next, the new (trun-
cated) spectrum is subjected to inverse Fourier transfor-
mation; i.e., the amplitude—phase distribution of the
mode is aobtained. It is split into the amplitude and
phase distributions. From the amplitude distribution
(on the logarithmic scale), the attenuation factor can
easily be calculated by using the linear approximation.
The phase distribution is used to calcul ate the propaga-
tion constant (also with the linear approximation). This
technique gives the propagation constant accurate to
0.1-0.3%. Thus, taking simple measurements, one may
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Fig. 4. Fourier spectrum of the amplitude—phase distribu-
tion.

gain very important information about modes that exist
in the waveguide under study.

The technique described above may provide datafor
other important properties of the waveguide. In a real
integrated phased array, it is preferable to excite only
the fundamental mode (which has the lowest phase
velocity) at the FDW input. A theoretical model for an
FDW driver isstill lacking. However, the distribution of
mode peak heightsin the spectrum may be used to opti-
mize the driver. We al so intend to extend this technique

n
4.0}

3.5
3.0
25
2.0

1.5

1.0

Fig. 5. Slowing factor versus frequency for symmetric
(solid lines) and antisymmetric (dashed lines) FDW modes.
Symbols, data points.
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for measuring the coupling coefficient between FDW
modes and radiators. The analysis of the amplitude—
phase distribution in different regions of the FDW sur-
face allows us to estimate the degree of FDW longitu-
dinal inhomogeneity, which is caused by fabrication
errors. The modes reflected from the terminating load
also appear in the spectrum and have a propagation
constant of opposite sign. Analyzing the reflected
waves, one can select a load that reflects a particular
mode. The above technique can aso be used in other
investigations.

This technique was implemented as a software
package for processing experimental data and conduct-
ing various studies.

RESULTS AND DISCUSSION

Thetheoretical and experimental methods described
above apply to a variety of structures similar to a fer-
rite—dielectric waveguide. Below, we discusstheresults
for the three-layer waveguide whose cross-sectional
view is given in Fig. 1, because integrated phased
arrays are built on this waveguide.

Figure 5 shows the dlowing factor (the propagation
constant normalized to the wave number in free space)
for modes of the demagnetized FDW versus frequency
over asufficiently wide frequency range. Shown arethe
theoretical curves and data points. The calculated and
measured results are seen to be in excellent agreement
for the fundamental mode (the one with the highest
slowing factor). For modes with slowing factors of 2.0—
3.5, agreement isal so good. Even two modeswith close
values of the slowing factor (open circles) are resolved
both theoretically and experimentally. For the highest

b
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Fig. 6. Calculated controllability of symmetric (solid lines)
and antisymmetric (dashed lines) FDW modes. Symbols,
data points. J is the relative magnetization, and n is the
slowing factor.
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order mode (the one with the lowest slowing factor),
agreement is worse; however, the very fact that the
presence of thismode is predicted by the theory counts
in favor of the model constructed. A discrepancy
between the cal culated and experimental resultsisinev-
itable, because it isimpossible to allow for all specific
features of areal FDW, such asthe presence of the con-
trol winding and magnetic-flux-closing elements at the
ends of the structure, etc. [1, 2]. Modes with |ess-than-
unity slowing factors cannot exist in an open FDW. In
our case, they areleaky waves or radiation modes of the
open structure. These modes are very sensitive to the
screen position (Fig. 2).

Figure 6 shows the dlowing factor for various FDW
modes versus rel ative magnetization (normalized to the
saturation magnetization) of the ferrite layers at
34 GHz. Themagnetizationinterval in Fig. 6isfeasible
when the current in the control winding varies within
+1 A. As can be seen in Fig. 6, different FDW modes
show different degrees of the controllability by the fer-
rite magnetization. Some of them are uncontrollable.
Of most interest is the fundamental FDW mode, which
has the highest amplitude and is the operating mode in
integrated phased arrays|[1, 2]. Its slowing factor varies
from 3.27 to 4.18 (24%). For an integrated phased
array, this means that the beam scans a sector of about
40° [1, 2]. If asegment of the FDW is used as a phase
shifter, itslength must be about 1.1 timesaslarge asthe
wavelength to provide a phase shift of 21t

Such a high phase activity of this medium is due to
its layered structure, which consists of the two oppo-
sitely magnetized ferrite layers and the dielectric layer.
The dielectric transforms the FDW field so that the
magnetic field components H, and H, are close in
amplitude and phase-shifted by 172 (i.e., rotate about
the constant magnetization direction) throughout the
ferrite-filled space.

It should be noted that the modes found theoretically
were not all observed in the experiment (like the peaks
in the spectrum), because they are weakly excited at the
waveguide input and/or weakly coupled with the probe.

Since the waveguide has a symmetric cross section
(Fig. 1), its modes can be subdivided into symmetric
(the field tangential component is maximum at the
waveguide axis) and antisymmetric (the tangential
component at the axis is zero) modes. The FDW was
excited by a standard rectangular waveguide with a
symmetric mode and had a symmetric waveguide trans-
former at the input. Therefore, we first assumed that
only symmetric modes are excited. However, Fig. 6

TECHNICAL PHYSICS Vol. 48 No.9 2003
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showsthat at |east one antisymmetric mode (the second
controllable mode) is excited in the experiment. This
can be explained by the asymmetry of the waveguide
transformer of the FDW prototype.

CONCLUSIONS

In this paper, we theoretically and experimentally
studied a three-layer ferrite—dielectric transversely
magnetized waveguide. A numerical model of the FDW
is constructed based on the Galerkin method. A dedi-
cated measuring and data-processing technique is
developed. The calculated and experimental dataarein
good agreement, which testifies that the model is ade-
guate to areal physical system.

It is shown that different waveguide modes can be
controlled to a variable degree. When the ferrite layer
magnetization varies over the feasible range, the prop-
agation constant of the fundamental operating mode,
which is of most interest, varies by 24%. This means
that the phase activity of the medium is sufficiently
high due to itsinhomogeneity (layered structure).

The model constructed can be used to study waves
propagating in a variety of ferrite—dielectric structures
and to optimize the characteristics of the structure, for
example, to maximize the controllability by appropri-
ately choosing the number and parameters of thelayers.
This eliminates the need for fabricating a great number
of prototypes in experiments.

Our results demonstrate that transversely magne-
tized ferrite-dielectric structures are promising for
electrically controlled millimeter-waveintegrated scan-
ning antennas and small-size phase shifters.
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Abstract—An analyzer is created for time-resolved measurements of the electron pitch-anglesin high-current
microsecond relativistic electron beamsin a strong magnetic field. The electron pitch-anglesin a 500-keV rel-
ativistic electron beam with acurrent density of ~1 kA/cm? and a 1-ps flat-top current profile are measured. The
diode proposed previously by the authors allows one to produce a high-current electron beam in which pitch-
angles vary only dightly with time and over the beam cross section. © 2003 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

High-current relativistic electron beams (REBS) is
an accepted definition for el ectron beams with energies
of ~10° eV and electron current densities of ~10°-
10* A/cm?. The REB power usually exceeds 10° W, and
the current pulse lasts from several nanosecondsto sev-
eral microseconds. The high power of REBs makes
them attractive for various applications; however, a
rather short REB duration causes difficulties for diag-
nosing the beam parameters.

High-current REBs are usually formed and propa
gate in a magnetic field with an induction of ~1 T or
higher. In such afield, an electron movesalong ahelical
trajectory and its velocity is directed at an angle © to
the magnetic field. The angle © between the longitudi-
nal (i.e, directed along the magnetic field) component
of the electron velocity v, and its transverse component
v, iscalled the pitch-angle (tan© = v//v)).

High-current REBs are usually generated with the
help of explosive emission cathodes. For current pulse
durations of about a few microseconds, the plasma
boundary from which electrons are emitted shifts awvay
from the cathode surface by several centimeters[1], so
that the parameters of the electron trgjectories in a
strong magnetic field at the beginning and the end of
the pulse can be substantialy different. The problem of
measuring the electron pitch-angles in microsecond
REBs formed with an explosive emission cathode has
up to now been inadequately studied, and difficulties
encountered in such measurements increase with
decreasing pitch-angle.

There are anumber of methods for measuring pitch-
angles in high-current REBs. A diamagnetic probe [2]
provides data only on the mean value of the pitch-angle
of electrons at a given instant of time. The character of

the electron angul ar distribution function can be judged
from measurements of the trajectories of a small frac-
tion of electrons that are, in some way, separated from
the beam. These (contact) methods usualy employ
either relatively long large-diameter cylindrical chan-
nels[3], which are also known as “wells,” or relatively
short (along the axis) small-diameter apertures (pin-
holes) [4].

A common disadvantage of al the contact methods
used in the physics of high-current microsecond REBs
is the production of a parasitic plasma on the detector
components. The threshold density for the plasma gen-
eration is~1 Jcm?; hence, the plasmaarises on any col-
lector several tens of nanoseconds after the beginning
of the pulse. This plasma has a density of 10*2-10"2 cm2
and propagates along the magnetic field lines toward
the electron beam with a velocity higher than 107 cm/s
[5]. The effect of such a dense plasma on the angular
characteristics of the REB electrons can amount to sev-
eral tens of degrees[4]. Thus, an analyzer with an aper-
ture cutting a fraction of the beam for the subsequent
diagnostics can substantially affect the beam parame-
ters to be measured.

At lower REB current densities, the plasma is gen-
erated at aslower rate. Sincethe external magnetic field
B substantialy exceeds the self-magnetic field of the
electron beam, a decrease in the current density can be
achieved by decreasing the guiding magnetic field.
Unfortunately, the self-electrostatic field of a high-cur-
rent REB limits the applicability range of this method.

For an electron beam with a circular cross section

and radius R,, we have BRE = const along its pathway.
The self-electrostatic field on the beam surface is

inversely proportional to the beam radius, E ~ R;l pi.e,

1063-7842/03/4809-1180$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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E~ JE. In crossed electric field E and magnetic field
B, an electron drifts with the velocity v, = cE/B; i.e,,
Vg ~ B2, The drift velocity v, of an electron is added
to its oscillatory velocity v,; as aresult, the pitch-angle
O = arctan( v,/v,) varies periodically (with the elec-
tron gyrofrequency) within the range determined by the
relationship tan® = (v, + vy)/v, = tan(©, + A®). The
weaker the magnetic field near the analyzer, the greater
therelative error in measuring the pitch-angle, AG/Q, ~
Vgl v, ~ BY3BY2 ~ 1/B. As aresult, at sufficiently low
magnetic fields, the measurements can become mean-
ingless. For example, in [6], a pitch-angle of © = 40°
was measured in a gyrotron with the REB radius R, =
9 mm, electron energy 350 keV, current | = 6 kA, and
magneticfield 2 T. It can easily be estimated that, in this
case, the pitch-angle periodically varies within =20%.
As the magnetic field is decreased fivefold, the scatter
in the electron pitch-angles, A®/©Q, ~ 1/B, becomes so
large that the electron beam turns out to be unusable for
measurements.

This paper is aimed at solving two problems. The
first problem isto develop a method for measuring the
distribution of the beam €electrons over pitch-angles
(down to pitch-angles as small as possible). The
method should have high angular resolution in a strong
magnetic field and should beinsensitiveto theinfluence
of the parasitic plasma. The second problem isto verify
whether the angular distribution of electronsinamicro-
second REB generated with an explosive emission
cathode is the same at the beginning and the end of the
pulse.

OPERATION OF THE PITCH-ANGLE
ANALYZER

The analyzer proposed in this paper is based on the
pinhole method. Figure 1 shows the operating principle
of such an analyzer. An electron (1) with a velocity v
enters a measuring chamber through an aperture in a
diaphragm (2) and falls on a screen (3) at acertain dis-
tancer from the aperture axis. The distance between the
diaphragm and the screen is L, and the angle between
the electron vel ocity and the normal to the diaphragm s
©. The electron pitch-angle is deduced from the dis-
tancer between the axis and the position of the electron
on the screen. The recording of electrons may be either
integral over the entire pulse (the photographing of the
glow of a mylar film [4] or a ZnS plate [7]) or time-
resolved (a small-size sectioned collector consisting of
several annular electrodes[8]).

In order for the distancer from the electron position
on the screen to the axis to be uniquely determined by
its pitch-angle ©, the distance L between the diaphragm
and the screen should be substantially smaller than the
spatial period Ay, of the helical electron trgjectory in the
magnetic field: L < A,,. Inthis case, the electron trajec-
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Fig. 1. Analyzer of the angular spectrum: (1) electron,
(2) diaphragm, (3) screen, and (4) symmetry axis.

tory intheanalyzer iscloseto linear, sothat r [Ltan®.
For moderate © values, we have

Lol o Vi eyl

2n . Q, Q,

)

_17x10°(Tm] [2
em o

Here, Qy isthe nonrelativistic electron gyrofrequency,
yistherdativistic factor, cisthe speed of light, and B is
the induction of the external magnetic field. For y = 2
and B=1T, condition (1) takestheform L < 3 mm and
the electron with a pitch-angle of @ = 10° falls at the
distance r [J0.5 mm from the axis, so that its detection
involves difficulties. Hence, the presence of a strong
magnetic field in the pin-hole analyzer is afactor limit-
ing the device length and adversely affecting the accu-
racy of measurements.

This limitation can be avoided if the magnetic field
rapidly (at adistance AZ) dropsto zero near the analyzer
digphragm. If Az is sufficiently small, an electron
retains information about its pitch-angle in the mag-
netic field and continues moving inside the analyzer
aong a linear trgectory. In this case, the analyzer
length may be long enough to achieve the desired reso-
lution.

The desired distribution of the magnetic field can be
achieved by applying an additional field compensating
for the spatially nonuniform field B, in the analyzer.
Figure 2 shows aconical surface with aradius R, which
varies along the z axis as R = ztana . Let circular cur-
rents with a certain distribution flow along the conical
surface and produce inside the cone a magnetic field
that has the same magnitude as the external field B, but
isoppositein sign. Let us estimate the magnetic field to
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Fig. 2. Profile of the analyzer surface (top) and the longitu-
dinal profile of the compensating magnetic field (bottom).

0 z

Fig. 3. Magnetic field outside the analyzer: B, is the basic
quasi-steady field and B, is the pulsed field.

the left of the cone, assuming for simplicity that the
aperture in the diaphragm is absent. The magnetic field
produced by a thin-wire circular loop with a radius R,
current 1, and coordinate z on the axis at the point with
the coordinate z; isequal to

IR
(R+(z-2)%)™

(a factor depending on the specific system of units is
omitted).

At z=z, i.e, in the center of the loop, the field is
B=1/R, and at the pointz; = 0, itis

|R?

(R2 + Z2)3/2
_ IR? 11

(R + (Reota)®)*  R(1+ cot?a)™

B(z, z) =

B(z 0) =

LOZA, IVANOV

For o = 20°, we have (1 + cot’a )32 = 0.04. Since
this consideration is true for any loop with any z coor-
dinate, we can conclude that circular currents flowing
along the conical surface distort the magnetic field to
the left of the cone (at z< 0) by no larger than 4%: dB =
0.04B, (Fig. 2). Thelength Az of thetransition regionis
comparablein size with the diameter of the aperture sit-
uated at the point z= 0.

The desired profile of the magnetic field can be pro-
duced using the skin effect in a pulsed field. The mag-
netic field is a superposition of two fields. the basic
field B, and thefield in the analyzer B, (Fig. 3). A nec-
essary requirement isthat the basic field (it may be sta-
tionary) be zero (B, = 0) inside the analyzer. The field
B, is pulsed, so it does not penetrate into the analyzer,
but outside it is rather strong. The total field B, + B,
should be nearly constant along the axis: if the mag-
netic field increases substantially along the electron tra-
jectory, then the electrons are reflected from the mag-
netic mirror, whereas if the field decreases, then the
self-electric field of the beam comes into play. Such a
nearly uniform magnetic field ensures the adiabatic
motion of electrons (which is necessary to retain infor-
mation on their pitch-angle) to the analyzer.

The configuration of the magnetic field lines is
determined by the skin effect, due to which the mag-
netic field lines are expelled from the analyzer. As a
result, inside the analyzer, the field is absent, whereas
outside it, where the magnetic field induction remains
large, thefield lines diverge along the conical surface of
the analyzer. Hence, the magnetic field makes the elec-
tron trajectories diverge, so that only electrons moving
near the axis can pass through the aperture. Most of the
electrons moving along the field lines avoid collisions
with the analyzer surface, thus preventing the produc-
tion of adense plasma. Of course, some electrons bom-
bard the aperture edges; however, their number is much
less than in a uniform field. Let us emphasize once
again that our consideration isvalid if the spatial period
of the electron helical trgjectory A is much larger than
the length Az of the transition region.

Therefore, the analyzer operates as follows. The
REB electrons pass through the aperture into the ana-
lyzer at an angle equal to the pitch-angle of their trajec-
tories in the magnetic field. In the analyzer, where the
magnetic field is absent, they propagate along straight
lines until they meet a detector (e.g., scintillator). The
higher the detector sensitivity, the larger the maximum
distance between the detector and the diaphragm and
the higher the resolution in pitch-angles. Note that it is
the aperture diameter that determines the number of
electrons penetrating through the diaphragm and,
accordingly, the maximum distance to the detector.
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DESIGN AND CALIBRATION
OF THE DEVICE

The analyzer is designed as follows. The 3-mm-
thick analyzer casing is a cone that transforms into a
cylinder =50 mm in diameter. The casing is made of
aluminum and copper. The angle between the cone gen-
eratrix and the axisisa = 20°, and the distance between
the 1-mm-diameter aperture and the detector is 60 mm.
In time-integrated measurements, an astralon film,
which changes its color under the action of electrons,
was used as a detector. In order to determine how the
properties of the beam electrons change with time, we
used a radially sectioned current collector similar to
that used in [8]. Seven coaxial annular collectors dis-
tributed along the radius allowed us to resolve electron
pitch-angles with a step of =2.3°.

The analyzer was calibrated by a 500-keV electron
beam with acurrent density of upto 1 kA/cm? and pulse
duration of 1 ps. The electrons propagated in a quasi-
steady uniform magnetic field with an induction of B, =
1.1 T. Over a distance of ~20 cm, the field B, fell to
amost zero (<0.04 T) in the region where the analyzer
was instaled. Over the same distance of 20 cm, the
pulsed field increased to 0.8 T. For a pulsed field dura
tion of 30 pus, the skin-layer thickness in copper is
0.5 mm.

We found conditions under which most of the mea-
sured electron trajectories had pitch-angles less than 2°
throughout the entire REB current pulse (as was
deduced from the degree of blackening of the astralon
film). Under these conditions, the device was calibrated
by the scattering of the beam electrons by a 20-um alu-
minum foil. Thefoil was placed nearly in the middle of
the gap between the diode and the analyzer, at a dis-
tance of ~0.5 m from each of them.

It iswell known that, when €l ectrons with the same
velocitiesare elastically scattered by afoil, the distribu-
tion of the electron current density J over the scattering

angles 9 is Gaussian, J(3) ~ exp(—82/8§). Here, 9, is
the mean sguare deviation, which depends on the foil

characteristics and the electron energy [9]. For the
given foil and electron energy, we have 9, = 10°.

For the given dependence of the current density J(9)
(which determines the blackening profile of the
astralon film with amaximum at 9 = 0), the distribution
of the total electron current | over the angle 8 (i.e, the
current density profile measured by the sectioned col-
lector) hasthe form

1(9) Osind exp(-9°/97).

Figure 4 shows the electron current measured by
each of seven collectors (i.e., the current density within
seven angular ranges). These currents are compared
with the calculated data, i.e., with the signal's expected
for the scattering of monoenergetic electrons with
velocities strictly parallel to the magnetic field. The cal-
culations were performed taking into account the
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Fig. 4. Calculated (x) and measured (®) current | produced
by the electrons with different pitch-angles 5.

instantaneous el ectron energy, measured by the cathode
potential detector.

The collector signals were treated using the least
squares method. The experimental values of the elec-
tron current 1(8) were approximated by the function

(9) = Asindexp(-9°/92),

where A and 3 are the normalizing factor and the root-
mean-sguare scattering angle, respectively.

It can be shown that, for every instant of time, the
normalizing factor is equal to

ol ool O
BMERE

and 9, satisfies the equation
7 7 7 7
z ¢k|kzsk¢i_ z ¢k|k'skz ¢§ = 0.
k=1 k=1 k=1 k=1

Here, the summationisover al the collectors (k=1,...,
7), 9, is the mean angle for the scattering into the kth
collector, |, isthe signal from the kth collector, and ¢, =
0(9)) = Asind,exp(—9%93).

On processing the data shown in Fig. 4, we can com-
pare ther.m.s. deviation angles 3. The calculations by
theformulasfrom [9] gived,= 10.6°, whereasthe mea-
sured valueis 9, = 11.6° with avariance of 0.6°. Some
excess of the measured 9, value over the calculated one
may be attributed to the small angular spread of the
electrons before their interaction with the foil.

Figure 5 shows the time dependences of the calcu-
lated (by the formula from [9]) and measured r.m.s.
scattering angle 9, of electrons after their interaction
with thefoil. Since the cathode potential, as well asthe
REB total current, changed insignificantly over 1.5 s,
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Fig. 5. Scattering angle 8 asafunction of timet: (1) calcu-
lations and (2) the results of processing the analyzer data.
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Fig. 6. Time-integrated distributions of the (1) electron
current density and (2) maximum pitch-angles over the
radius R.
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Fig. 7. Pitch-angle vs. R for two values of the magnetic
field: (1) 1.1and (2) 0.55T.

the ordinates of the calculated pointsare nearly the same.
The signalsfrom the collectors as functions of timewere
treated by the procedure described above. The results
obtained agree well with the calculated data.

LOZA, IVANOV

The intensity of plasma production on the analyzer
surface was experimentally estimated as follows. The
conical surface of the analyzer was covered with athin
film of a colorant sensitive to electron bombardment
and heating. After the multiple REB action on the
device, the film became discolored only near the cone
vertex. The maximum radius of the discolored part of
the cone did not exceed 3 mm; i.e., it was on the order
of the length calculated by formula (1). Hence, we
believe that we have avoided an intense plasma produc-
tion.

Thus, when measuring relatively large (~10°) pitch-
angles, the sectioned collector has demonstrated the
high measurement accuracy. However, the use of such
a collector imposes rigid requirements on the device
adjustment; therefore, it seems more convenient to use
ascintillator combined with a high-speed image inten-
sifier.

EXPERIMENT

Experiments on studying the electron trajectories
were carried out with a high-current electron accelera-
tor generating 500-keV electron beams with a pulse
duration of ~1 ps. An annular electron beam with acur-
rent of 2 kA was formed in a diode [10] that ensured
unchanged beam geometry on a microsecond time
scale.

An annular electron beam 28 mm in diameter prop-
agated in a quasi-steady uniform magnetic field along a
90-mm-diameter tube (with the limiting vacuum cur-
rent exceeding 3 kA) over adistance of ~1 m. The ana-
lyzer was placed in the segment where the drop in the
quasi-steady magnetic field was compensated for by a
rapidly varying magnetic field. The magnetic induction
in the region where the magnetic field was uniform was
=11T.

The REB current density as a function of radiusis
shown in Fig. 6. The current distribution shows that the
electron beamishollow; itsouter radiusis~15 mm, and
its thickness is 3 mm. The figure also shows the time-
integrated radia distribution of the electron pitch-
angles 9, which was recorded with the help of an
astralon film. One can see that, throughout the cross
section of the electron beam, in which the current den-
sity varies by one order of magnitude, the electron
pitch-angles are approximately the same and do not
exceed 5°.

Some experiments were performed with adecreased
magnetic field. In this case, the pulsed magnetic field in
the analyzer was aso decreased, so that the shapes of
the magnetic field lines did not change. The radial dis-
tributions of the electron pitch-anglesd inan REB in a
magnetic field with an induction of 1.1 and 0.55 T are
shown in Fig. 7. In the lower field, the electron beam
has a somewhat larger outer radius (about 17 mm) and
a larger thickness. In both the higher and lower field,
the pitch-angles are almost the same throughout the
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REB cross section; however, in the case of the lower
field, the pitch-angles are somewhat lower and do not
exceed 3°.

The time-integrated measurements, whose results
are presented in Figs. 6 and 7, were carried out with a
pulse duration of 1 ps. The pulse duration could be var-
ied from 0.3 to 1.0 ps, and the experiments were also
carried out for several pul se durationswithin thisrange.
The results obtained differ only dightly from those
shown in Figs. 6 and 7; for this reason, we can assert
that the electron pitch-angles vary dightly throughout
the entire microsecond current pulse.

CONCLUSIONS

An analyzer of electron pitch-angles in a strong
magnetic field has been designed. The analyzer isbased
on the pinhole method. A small fraction of the beam
electrons penetrates through a small aperture into a
chamber, where their trajectories are analyzed. At the
entrance to the device, the induction of the magnetic
field sharply decreases to zero and the electrons con-
tinue moving freely in the analyzer with a constant
velocity. One may use various recording techniques:
scintillators, collectors, etc. The angular resolution
depends on the distance between the aperture and the
detector plane.

The required profile of the magnetic field is pro-
duced by superposing two fields. One of these fieldsis
abasic quasi-steady magnetic field that vanishesinside
the analyzer. The other field is pulsed and is added to
the basic field for the total field to be spatially uniform.
The pulsed field cannot, however, penetrate into the
analyzer because of the skin effect. The advantages of
the conical shape of the device casing is threefold:
(i) the magnetic field profile in front of the analyzer is
only slightly distorted, (ii) the magnetic field drops
sharply at the entrance to the device, and (iii) most of
the electrons move apart from the analyzer, thus pre-
venting an intense plasma production.

The device calibration by the scattering of relativis-
tic electrons by an auminum foil have demonstrated
that the experimental data agree well with the calcu-
lated results. The calibration has also shown that it is
possible to measure the angular distribution of elec-
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trons in an REB with a current density of ~1 kA/cm?
and to trace its time evolution at relatively small pitch
angles of ~10°.

The electron pitch-anglesin a 500-keV REB with a
current of 2 kA have been measured. It is shown that
with a diode designed previously in [10], it is possible
to form a high-current annular electron beam in which
the current-density profile remains uncharged on a
microsecond time scale and in which the electron pitch-
angles vary only dlightly with time and over the beam
cross section. Asthe magnetic field increases, the pitch-
angles increase and amount to 5° in the magnetic field
with aninduction of 1.1 T.
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Abstr act—Ion emission from the plasma of alow-pressure (=5 x 1072 Pa) glow discharge with electrons oscil-
lating in aweak (=1 mT) magnetic field is studied in relation to the cold hollow cathode geometry. A hollow
conic cathode used in the electrode system of acylindrical inverted magnetron not only improves the extraction
of plasmaions to =20% of the discharge current but also provides the near-uniform spatial distribution of the
ion emission current density. The reason is the specific oscillations of electrons accelerated in the cathode
sheath. They drift in the azimuth direction along a closed orbit and simultaneously move along the magnetic
field toward the emitting surface of the plasma. A plasma emitter with a current density of =1 mA/cm? over an
area of =100 cm? designed for an ion source with an operating voltage of several tens of kilovoltsis described.

© 2003 MAIK “ Nauka/lInterperiodica” .

INTRODUCTION

Theenergy cost of anion, w= (IUg)/l;, inion beams
generated by hollow-cathode |ow-pressure glow dis-
charge sources is much higher than in those produced
by thermionic-cathode sources and is usually severa
kilo-electron-volts per ion. The reason is the poor ion—
electron emissivity of a cold cathode and, accordingly,
the high discharge operating voltage U,. Another prob-
lem is associated with the extraction of a considerable
fraction of the discharge current ionic component (o =
li/14) from the plasma. The oscillations of emitted elec-
trons, which are accelerated in the cathode sheath, pro-
vide a fairly uniform distribution of the discharge cur-
rent over the hollow cathode surface. Therefore, the
ratio of theion current extracted from the plasmato the
discharge current is roughly equal to the ratio of the
emitting surface area of the plasma, S, to the total sur-
face area of the cathode, S.. In discharge systems with
hollow cathodes of a nearly conic shape, the ratio a =
S/S as high as 13% has been attained [1].

Given a discharge current 1, and gas pressure, the
hollow-cathode discharge operating voltage can be
minimized by the optimization of the electrode geome-
try. If the anode-to-cathode surface area ratio S/S.
meetsthe condition S/S. ~ (MYM)V2, wheremand M are
the masses of an electron and ion, respectively, fast
electronsin the plasmarelax (in terms of the energy) to
the maximum degree and the electron current closes on
the anode without forming a negative space charge

layer [2].
The application of a magnetic field alows one to
increase the discharge current or decrease the initiation

voltage under low gas pressures. In this case, the char-
acter of fast electron oscillation in the gap varies in
accordance with the electrode system configuration.
While in an inverted magnetron fast electrons largely
drift in the azimuth direction, in areflecting (PIG) sys-
tem the electrons oscillate mainly between the cathodes
along the magnetic field. Weak (=1 mT) magnetic fields
(wherethe Larmor radius of afast electron is compara-
ble to the dimensions of the electrode system (=0.1 m))
used in an inverted cylindrical magnetron provide the
uniform current density distribution for ions extracted
from the plasmaalong the magnetic field [ 3]. However,
the ion extraction efficiency in such a system is usually
no greater than 10% because of the large cylindrical
surface area of the cathode. The configuration of the
reflecting system makes it possible to increase theratio
of the emitting surface area of the plasma to the total
surface area of two planar reflecting cathodes. In this
system, the loss of fast electrons toward the larger cath-
ode can be limited by applying magnetic fields that are
stronger than in an inverted magnetron. This causes a
substantial radial nonuniformity of the plasma. Accord-
ing to [4], the near-uniform ion emission current den-
sity and ahigh ion extraction efficiency (up to 30%) can
be reached in a modified reflecting system with a non-
equipotential cathode. However, relatively high mag-
netic fields (5-10 mT) used in this system limit the
operating voltage of theion source, causing adischarge
to be initiated in crossed electric and magnetic fields
within the high-voltage gap between the coaxial elec-
trodes. Therefore, searching for ways of improving the
efficiency of ion extraction from the glow-discharge
plasma under weak magnetic fields seems to be of cur-
rent interest.
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If an electrode system provides the conditions
where the angle © between the electric field E in the
cathode sheath of a glow discharge and an external
magnetic field B is 0 < © < 102, fast electrons in the
cathode sheath acquire a velocity component along the
magnetic field toward the plasma surface. When arriv-
ing at the emitting surface, fast electrons, which also
drift in the azimuth direction due to the transverse
velocity component, may increase the emission current
density, as takes place in a reflecting system. At the
same time, the possibility of controlling the ion emis-
sion current density by varying the magnetic field,
which is characteristic of an inverted magnetron, per-
sists.

In this work, we study a glow-discharge plasma
emitter used in the el ectrode system of an inverted mag-
netron with a conic cathode. Our aim was to improve
the extraction of ionsfrom the discharge plasmaand the
energy efficiency of such emitters.

EXPERIMENTAL

In our experiments, the electrode system of an ion
source used in [5] (Fig. 1) served as the basic system.
The system comprises a hollow cylindrical cathode
made of stainless steel whose diameter D and length L
are 150 mm and a rod-shaped tungsten anode 4 mm in
diameter and 100 mm long placed on the cathode axis.
A magnetic field is generated by a solenoid placed out-
side the grounded case of the ion source. The values of
theinduction B are measured on the system’saxisin the
plane of the solenoid. A two-€electrode ion—optical
device is used to extract ions and cut off secondary
electrons. Either of the electrodes has 61 hole (aperture)
12 mm in diameter with an aggregate surface area S, =

70 cm?. Theinner surface areaof the cylindrical hollow
cathode is S, = 1080 cm?. A working gas (argon) is
delivered directly into the cathode cavity.

To obtain reproducible |-V characteristics, the cath-
ode surface was pretreated by long-term (=0.5 h) ion
sputtering in the discharge until U, reached the steady-

state value. For aminimal gasflow rate Q = 40 cm3/min
and aminimal induction B=1 mT, which are necessary
to sustain a discharge current 13 = 0.5 A, the ignition
voltage was =1 kV. The need for small flow rates Q and
weak fields B, which provide the desired electric
strength of the accelerating gap of the high-voltageion
source, isaso areason for the poor energy efficiency of
these high-voltageion sources. The emission character-
istics of the ion source that were taken for two acceler-
ating voltages are depicted in Fig. 2 (curves 1, 2). The
linear run of the curves indicates that the beam loss at
the accelerating electrode of the multiaperture ion
opticsis low. This is supported by the direct measure-
ment of the current in the circuit of this electrode. This
current includes not only the loss current of ions accel-
erated but also the secondary electron current due to
ion—electron emission and the ion current from the
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Fig. 1. Electrode system of inverted magnetron type:
(1) cylindrical hollow cathode, (2) rod-shaped anode,
(3) punched screening electrode of ion optics, (4) conic hol-
low cathode, and (5) magnetic coil.
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Fig. 2. Emission characteristics of theion sourcewith (1, 2)
cylindrical and (3, 4) conic hollow glow-discharge cathode.

The gas flow rate is (1, 2) 30 and (3, 4) 40 cm®/min. The
magnetic induction is B = (1, 2) 2 and (3, 4) 1.5 mT. The
accelerating voltageis (1, 3) 30 and (2, 4) 20 kV.

beam plasma. Estimates show that the accuracy of
determining the ion beam current I; from the current in
the high-voltage power supply circuit is =10%. For a
cylindrical magnetron, the efficiency o of extracting
ionsfrom the plasmathat was estimated from the beam-
to-discharge current ratio was found to be 7.0-7.5%,
which approximately equals theratio S/S..

Next, a thin-walled (0.3 mm) truncated cone made
of stainless steel was placed into the hollow cathode
cylinder (Fig. 1). The diameters of the lower and upper
cone bases were D = 150 mm and d = 50 mm, respec-
tively. The use of the conical cathode with lesser S,
increased substantially the discharge operating voltage
(=1.5 times) at the same values of the flow rate Q and
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Fig. 3. |-V characteristics of the conic-hollow-cathode dis-
charge. The gas flow rateis (1-4) 15 and (5, 6) 40 cm>/min.
The magnetic induction B is (1, 2) 1, (3, 4) 3, and (5, 6)
0 mT. The accelerating voltage is (1, 3, 5) 0 and (2, 4, 6)
30kV.

induction B. Then, we optimized the geometry of the
rod-shaped anode. Its length | = 50 mm and diameter
d = 1 mm were experimentally selected so as to mini-
mize the operating values of B, and Q,. After the opti-
mization, the anode-to-cathode surface arearatio S/S.
was equal to =1/300 (in view of the area of the hole on
the cathode end face, through which the anode is intro-
duced into the cathode cavity). Thisvalueiscloseto the
ratio (mYM)¥2 for argon. Figure 3 (curves 1, 3, 5) shows
the |-V characteristics of the discharge for various com-
binations of B and Q. Asaresult of the anode geometry
optimization, the discharge current in the modified
electrode system with the conical cathode was nearly
the same, 0.1-0.5 A (for Q = 2040 cm®*/min and B =
0-4 mT), asin the cylindrical magnetron.

The experiments showed that the |-V characteristics
obtained under the ion beam generation conditions dif-
fer considerably from those obtained with floating (rel-
ative to the Earth potential) electrode potentials in the
discharge system. As follows from Fig. 3 (curves 2, 4,
6), the application of a potential to the accel erating gap
of the ion optics considerably (by 100-300 V) reduces
the value of U,. Asthe discharge current increases, the
difference between the I-V curves grows. Figure 4 dis-
plays the dependences of the discharge operating volt-
age on the gas flow rate and magnetic field in the coni-
cal magnetron operating under theion collection condi-
tions. When the anode size exceeded the optimal value,
the nonmonotonic run of the curves Uy(B) was not
observed. From Figs. 3 and 4, one can infer that an
increase in the efficiency a of ion extraction from the
plasma is the basic way of maintaining a reasonable
value of energy efficiency n = a/Uy of the ion emitter
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Fig. 4. Discharge operating voltage vs. magnetic field with-
out electron losses through the apertures of the ion optics.
The discharge current is 0.2 A. The gas flow rate is (1) 20,
(2) 30, and (3) 40 cm>/min.

used in the high-voltage ion source when the discharge
voltage U, grows sharply with decreasing Q and B.

The emission characteristics of the ion source with
the conical cathode are shown in Fig. 2 (curves 3, 4).
Theion extraction efficiency in this system risesto 14—
21%, with o decreasing with increasing B and increas-
ing with accelerating voltage (Fig. 5).

To estimate the uniformity of ion emission from the
plasma in the conical-cathode discharge system, we
measured the distribution of the beam current density
over the cross section at a distance of 250 mm from the
ion source. With the beam current density varying inthe
range 0.1-0.5 mA/cm? and the accelerating voltage
ranging from 10 to 30 kV, the nonuniformity of thedis-
tribution is no more than 20% over the central part of
the beam 8 cm in diameter. Since the current distribu-
tion in a beam of large cross-sectiona area aso
depends on its angular divergence and the distance to
the plane of measurement [6], we measured the dis-
charge current distribution in the plane of the screening
electrode of theion optics (this electrodeisapart of the
cathode). The measurements used planar probeswith a
working surface area of 0.5 cm? that were under the
cathode potential. Theresultsare shown in Fig. 6. Asin
the cylindrical magnetron, the radial profiles of the cur-
rent density depend on the magnetic field [3]. For a
magnetic field of 1-2 mT, the distribution nonunifor-
mity is within £5% of the mean current density on a
diameter of 9 cm.

DISCUSSION

Sincethetotal surface areaof the conical cathodein
the experiments comprises =0.6 of the surface area of
TECHNICAL PHYSICS Vol. 48
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Fig. 5. Efficiency of ion extraction from the discharge
plasma vs. magnetic field. The discharge current is 0.2 A
and the gas flow rate is 30 cm®/min. The accelerating volt-
ageis (1) 30, (2) 20, and (3) 15 kV.

the cylindrical cathode, the corresponding ion extrac-
tion efficiency estimated from the ratio S/S. is a =
13%; that is, the increment due to the geometrical fac-
tor amounts to 5.5-6.0% of the discharge current. The
same value, o = 13%, was obtained in a system with a
hollow conical cathode without a magnetic field [1].
Hence, it may be argued that the additional contribution
(1-8% of the discharge current) to the value of o
obtained, o = 14-21%, is associated with a change in
the electron oscillation character and in the distribution
of the discharge current over the cathode. In a conical
magnetron, fast electrons moving toward the emitting
surface of the plasma enhance the gas ionization rate,
causing the ion emission current to grow.

It should be noted that the transfer of fast electrons
toward the emitting surface of the plasma also takes
place in the absence of amagnetic field. A simple geo-
metrical consideration of electron trajectories shows
that each reflection of afast electron from the cathode
sheath on the opposite surface of the cone contributes
to its velocity component parald to the system’s axis.
After the electron has reflected from the emitting sur-
face, itslongitudinal velocity in the backward direction
declines. Eventually, because of the anisotropic proper-
ties of the discharge, it will concentrate at the screening
electrode. Therefore, the ion extraction efficiency in a
system with a hollow conic cathode is expected to be
greater than the ratio S/S.. However, in [1], such an
effect was not confirmed. A high ion extraction effi-
ciency (to 15%) in a conic-hollow-cathode glow dis-
charge system was reported in [7]; however, this result
was not related to the effect of the hollow cathode shape
and behavior of secondary electrons. The influence of
the fast electron reflection conditions in the wedge-
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Fig. 6. Discharge current density distribution in the plane of
the screening electrode. The discharge current is0.2 A, and
the gas flow rate is 30 cm®/min. The magnetic induction is
(1)0,(2) 1, (3)2,and (4) 4 mT.

shaped hollow cathode of a plasma electron source on
the probability of their return to the cathode and on the
fast electron lifetime in the discharge was discussed in
[8]. It was assumed that the change in the cathode shape
may be afactor that reducesthe threshold operating gas
pressure in the plasma. The variation of the degree of
ion sputtering of the hollow cathode conic surface,
which was observed in our experiments, confirms indi-
rectly that the plasma is anisotropic in the axial direc-
tion. As the screening electrode was approached, the
intensity of cathodic sputtering grew.

In acylindrical magnetron, the radial distribution of
the ion emission current density is controlled by vary-
ing the Larmor radius of fast electrons, which drift in
the azimuth direction, i.e., by varying the effective
range of ionization. As a result of the field enhance-
ment, the current density distribution with a near-axis
peak transforms first into a plane distribution and then
into a distribution with a dip at the axis. In the system
suggested, the drift of fast electronsin aweak magnetic
field persist, the oscillating electron trajectories at the
base of the cone being almost the same asin acylindri-
cal magnetron. The decrease in the Larmor radius of
fast electrons p = (1/B)(m/e)V due to a decrease in the
transverse (relative to the direction of the field B) com-
ponent V of the electron velocity is bound to some-
what reduce the optimal value of B compared with a
cylindrical magnetron. However, possible changes are
within the accuracy of the current density profile mea-
suring technique.

The high discharge operating voltage inherent in the
electrode system of a plasmaion emitter is dueto great
plasma particle losses in apertures in the screening
electrode of the ion—optical system. This makesit diffi-
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cult to sustain the discharge. The geometry of the mul-
tiaperture ion—optical system used in the experiments
was optimized so as to diminish beam current |osses at
the accelerating electrode when the beam diverges
because of its self-space charge. By means of mathe-
matical simulation and experimental investigation, we
realized beam formation conditions such that the cross-
overs of elementary beams (i.e., beams that were gen-
erated in a separate aperture), 1-3 mm in size, were
formed in apertures of the accel erating el ectrode, which
had a much larger diameter (12 mm). Therefore, adis-
placement of the elementary beam trgjectory did not
cause any appreciable losses in a wide range of beam
parameters. However, when the aperturesin the screen-
ing electrode are too wide, an increase in the discharge
current may break the cathode sheath near the aper-
tures. Under ambipolar diffusion conditions, particles
of the plasma issuing from the apertures move to the
walls and recombine without sustaining the discharge.
When a high voltage is applied, fast electrons are
reflected by the field of the accelerating electrode, turn
back to the plasma, and spend a part of their energy on
gasionization. Asaresult, the discharge operating volt-
age decreases (Fig. 3). Asthe discharge current grows,
so do electron losses, since, to a first approximation,
they depend on the relationship between the ion optics
aperture size and cathode sheath thickness.

For a singly charged argon ion current density of
0.5 mA/cm? and a voltage drop across the sheath of
700V, the cathode sheath thickness estimated in the
Child-Langmuir approximation was found to be | =
0.55 cm. Thismeansthat the sheath may break. In addi-
tion, one should take into account that the discharge
operating voltage is influenced mainly by the loss of
fast electrons, which may escape without breaking the
cathode sheath through the near-axis part of the aper-
tures, where the potential barrier lowersdueto the elec-
tric field in the accelerating gap. In the conical magne-
tron, an increase in the voltage because of the loss in
fast electrons was several times greater than in the
cylindrical device.

The elevated discharge operating voltage under the
ion extraction conditions provides the constancy of the
discharge current. The effect of ion losses on the dis-
charge operating voltage may be estimated with the
results of [9], from which it follows that the initiation
voltagerisesin proportionto 1/(1 —a) provided that the
electrons in the plasma completely relax. Thus, the
increment of the initiation voltage due to ion losses is
=25% (150-200 V) for a = 20% obtained in our exper-
iments. For the cylindrical magnetron with a = 7.5%,
the increment is only =8%.

The efficiency a depends on the accelerating volt-
age because of the variable curvature of the plasma
meniscus in the ion optics aperture. An increase in the
surface area from which electrons enter into the accel-
erating gap causes a to grow with accelerating voltage
[10]. In our experiments, the effect of the magnetic field
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on the discharge operating voltage appears as aresult of
increasing the ratio between the path length of an oscil-
lating el ectron in the cathode sheath and the path length
of an electron in the plasma, ~I/2p, rather than as a
result of the reliable confinement of fast electrons. This
increases the ionization probability in the sheath and
the probability of producing secondary €lectrons with
an energy sufficient for gas ionization. Such a mecha-
nism of generating secondary electronsis energetically
more favorable than ion—electron emission with the
subsequent accelerating of electrons in the cathode
sheath[11, 12]. Therefore, the discharge operating volt-
age declines rapidly with decreasing Larmor radius of
fast electrons. However, as the field B grows, the aver-
age number of reflections of an electron from the coni-
cal surface increases on its way to the emitting surface
of the plasma and the Larmor radius of fast electrons
diminishes. As aresult, afraction of the discharge cur-
rent accounted for by the lateral conical surface
increases and the efficiency of ion extraction from the
plasma drops.

For the same values of the gasflow rate Q and induc-
tion B, the energy efficiency n = I,/U4l4 = a/Uy of the
ion source with the modified electrode system was
found to be 2.0-2.5 times higher than in the cylindrical
magnetron. The absolute values of n for the conic-cath-
ode source are 0.20-0.25 A/kW for 1, = 0.1-0.3 A for
the moderate values of magnetic induction and gas flow
rate used in our experiments.

CONCLUSIONS

The modification of the hollow cathode geometry in
an inverted magnetron allowed us to raise the energy
efficiency of theion emitter 2.0-2.5 times. At the same
time, the near-uniform distribution of the emission cur-
rent density and moderate values of the magnetic
induction (B = 1-2 mT) and gas flow rate (Q = 20—
30 cm?®/min), which are favorable to achieving high
(severa tensof kilovolts) ion source operating voltages,
areretained.

These results reflect a change in the oscillations of
electrons emitted by the cathode and accelerated in the
cathode sheath. The formation of a fast electron flow
toward the emitting surface of the plasmaincreases the
ion-emitting plasma density.

The high discharge operating voltage in the elec-
trode system of the effective glow-dischargeion emitter
is explained by high losses of charged plasma particles
through the apertures in the ion optics electrodes. The
contribution of the electron losses to the increment of
the discharge operating voltage depends on the ratio
between the aperture size and cathode sheath thickness.
2003
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Abstract—Breakdown delay in avacuum is considered in terms of the Joule mechanism. The effect of the cath-
ode material on the delay timeis studied. A test for optimality for the gap electrode surface condition is stated.
When prepared under optimal conditions, cathodes have a minimum field enhancement coefficient at surface
microirregularities. This allows one to estimate the emission parameters of the cathode surface and the dielec-
tric strength of vacuum insulation. © 2003 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

A high-voltage pulse applied to the electrodes of a
vacuum gap may result in electric breakdown, which
somewhat lags behind the pulse. A breakdown delay in
avacuum is determined by the inertia of processes ini-
tiating breakdown. The delay time t; depends on the
surface condition, the electrophysical parameters of the
cathode material, and the amplitude and shape of the
pulse applied.

The use of nanosecond voltage pul ses cuts consider-
ably the number of breakdown-initiating mechanisms.
The cathodic mechanism, where breakdown isinitiated
by the explosive destruction of the emitter that is Joule-
heated by passing thermionic and field-emission cur-
rents, isthe main onein this case.

For the Joule mechanism, there are analytical rela-
tions between the breakdown delay time in a vacuum,
electric field intensity, and physical constants of the
cathode material. These relations allow one not only to
explain experimental results but also to analyze the
effect of the electrode material on the breakdown delay
time and also to formulate atest for optimality for elec-
trode surface preparation conditions. The treatment of
the electrodes by high-voltage pulses of duration t,
equal to the breakdown delay time, t, = ty, corresponds
to the optimal preparation conditions. Such aregime of
cathode surface preparation minimizesthe electric field
enhancement coefficient 3 at surface microirregulari-
ties and maximizes the pulsed insulation strength. In
addition, the optimal preparation conditions allow oneto
reach a desired vacuum insulation strength and estimate
the emission parameters of the cathode surface [1].

TEST FOR INITIATION

The use of voltage pulses with a duration

t, <t, < h’pc/A, (1)

wheret, isthe time of thermal relaxation; h is the emit-
ter height; and p, ¢, and A are the density, specific heat,
and thermal conductivity of the emitter, respectively,
reduces the boundary-value problem for the emitter
temperature distribution [2] to the form

0 dT _ .o mT/2T* 7
%pcdt B JOEisin(T[T/ZT*)D KoT, 2

%Tlt=0 =To Tlizy, = Tor

Here, j, is the field emission current density; K, is the
proportionality factor in the temperature dependence of
the emitter resistivity, K(T) = K,T; T* is the inversion
temperature, T* = 5.67 x 1072, and ¢ is the work
function [3].

The solution of Eq. (2) yields analytical expressions
for the delay time ty as a function of the critical field
intensity E., at an emitting microarea (hereafter micro-
intensity) and physical constants of the cathode mate-
rial without going into the geometry of this area.

Written in integral form,

tq

. Cc
[isoat = ab=, ©
0
0
where
. .2 X =TT /T
a=|Ci() - S 28 UG ,
X 2 (x/2)? Jlx=mryTe

Ci(x) = —J’E%S-Ydy.

Equation (2) is atest for vacuum breakdown initia-
tion. According to thistest, breakdown occurs when the
energy evolution in the emitter becomes equal to the
energy of emitter destruction, causing explosion [4].

1063-7842/03/4809-1192$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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Physical properties of metals
Metal 0, kg/m@ Te,°C | A, WIM©°C) | ¢ J(kg°C) &,21%;& o eV F’(CA"EOS’)},?]ZG
Zr 6500 1860 17 276 15.02 3.70 0.12
Ti 4500 1725 15 577 17.58 3.85 0.15
Be 1850 1284 167 200 1.46 3.90 0.25
Nb 8570 2410 50 272 5.13 4.00 0.45
Ta 16700 2850 54 142 494 4.10 0.48
Al 2703 657 209 922 0.96 4.25 2.60
Mo 10200 2620 151 264 1.90 4.27 142
Ag 10500 961 408 234 0.59 4.30 4.16
Au 19300 1063 311 126 0.81 4.30 3.00
Fe 7870 1535 73 452 3.59 431 1.00
Cu 8890 1083 394 386 0.63 4.40 5.44
Ni 89001 1455 95 444 2.67 4.50 1.48
W 19300 3380 168 218 2.01 454 2.09
Cr 7100 1890 67 461 7.69 4.58 0.43
Re 20500 3180 71 138 7.69 4.80 0.37
The value of apc/k, is the specific energy of emitter experimental results [5], which substantiates the

destruction.

BREAKDOWN DELAY TIME

Experimentally, the delay time t, is determined by
using rectangular voltage pulses with different ratios of
the leading edgetime ;. and pulse duration t,,. Note that
the values of t, determined by using rectangular pulses
with aninfinitely short leading edgetime (t,, < t,) differ
both from ty;, measured using rectangular pulses with a
finite leading edge time (t, ~ t;) and from ty, deter-
mined at the pulse front (t,. = t,).

The solution of Eq. (3) yields expressions for the
delay time for pulses of different shapes:
for rectangular pulses with an infinitely short leading
edge time,

ty = 4.2 % 1o“aKi°¢2exp{ —21.6¢73
0
4
L exp{132% 10°0%°E} @)
=
for skewed pulses,
32
ty, = 1.32x 101°E—td; (5)

cr
and for rectangular pulseswith afinite leading edge time,
ty = ty+teo(1l — 7.58 x 100 °E,). (6)
Thedependencest, = f(E,,) following from Egs. (4)—
(6) for tungsten are in satisfactory agreement with the

TECHNICAL PHYSICS Vol. 48 No.9 2003

approach used and the assumptions made. With E, =
congt, the delay timety, (skewed wave) is one order of
magnitude longer than the time t, (rectangular pulse),
which isin agreement with experimental data[6].

EFFECT OF THE ELECTRODE MATERIAL

Analytical expressions (4)—(6) imply that the break-
down delay time is a function of the critical electric
field microintensity, work function, and specific energy
of emitter destruction. Equation (4) was used to con-
struct the dependencest, = f(E,,) for metals with awork
function ranging from 3.7 to 4.8 eV. The physical con-
stants [7-9] used in the calculations are listed in the
table.

The breakdown delay time as afunction of the elec-
tric field microintensity initiating breakdown is shown
in Fig. 1 for zirconium, beryllium, tantalum, molybde-
num, and copper. The curveswere cal culated according
to Eq. (4).

With E_, = const, the delay time for copper is four
orders of magnitude larger than for zirconium. The
dependences t, = f(E,,) calculated for nickel, tungsten,
chromium, and rhenium differ slightly from the curve
for copper, almost coinciding withit. It is seen that the
work function ¢ of the material and the specific energy
of emitter destruction apc/k, affect significantly the
delay timet,.

The specific energy of destruction apc/k,for differ-
ent metals as a function of the work function is shown
inFig. 2a.
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Fig. 1. Delay time vs. the electric field microintensity for

different metals: (1) Zr, (2) Be, (3) Ta, (4) Mo, and (5) Cu.
ty isgiven in seconds.
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Fig. 2. (8) Specific energy of emitter destruction and (b) the
delay time of breakdown vs. the work function. tyisin sec-
onds.

Thetransition from zirconium (¢, = 3.7 eV) to cop-
per (dc, = 4.4 eV) increases the work function by
0.7 eV and the specific energy of destruction roughly
40 times. The latter parameter is maximum for copper,
apc/K,=7.24 x 10 A?dm*. Thetransition from copper

EMEL’YANOV

to rhenium (¢g. = 4.8 €V) increases ¢ by 0.4 €V; how-
ever, apc/k, decreases =13 times to 5.4 x 10'°> A%g/m?.
The presence of the maximum in the dependence
apc/ky = f(¢) substantially affects the behavior of the
curvety = f(9).

The logarithm of the time delay vs. the work func-
tionisplotted in Fig. 2b for different metalsat E,, = 7 x

10°V/m.

The transition from zirconium to copper increases
the delay time by four orders of magnitude. Here, two
orders are due to an increase in the work function and
the other two orders are due to an increase in the spe-
cific energy of destruction. The transition from copper
to rhenium almost does not change the delay time, since
the growth of ty dueto an increasein ¢ is compensated
for by the corresponding decrease in apc/Ky.

The results presented allow us to substantiate the
choice of the electrode material for vacuum gaps. To
provide a desired dielectric strength, preference must
be given to materials with a high work function and a
high specific energy of destruction.

TEST FOR OPTIMALITY

If the high-voltage pulse duration is less than the
breakdown delay time, t, < t;, the pulse energy cannot
destroy the emitter. As the duration increases and the
critical breakdown-initiating state, which is character-
ized by the equality t, = tq, is approached, the surface
microrelief smoothes and the polishing of the cathode
surface starts[10].

For t, > tg, the high-voltage pul se energy is spent not
only on emitter destruction but also on switching pro-
cessesin the gap. Asthe duration of the explosive emis-
sion current pulse decreases and simultaneoudly the
high-voltage pulse duration approaches the critical
value, which is equal to the breakdown delay timein a
vacuum (t, = ty), microcraters shrink and the cathode
surface becomes smooth (nearly polished) [11, 12].

For t, = tg, the energy stored in the emitter before
explosion becomes equa to the energy of emitter
destruction. The pulse energy here is sufficient for
breakdown initiation but falls short of sustaining and
extending the discharge. The treatment of the cathode
surface by high-voltage pulses with a duration t, = t;
only destroys microasperities, but new emission centers
do not emerge.

Thus, the optimal regime of treatment of the vacuum
gap electrodes is that when the duration of a high-volt-
age pulse is equa to the breakdown delay time, t, = t,.
In this case, the cathode surface becomes smooth and
offers the maximum pulsed dielectrical strength at a
minimal duration of surface conditioning. A test for

TECHNICAL PHYSICS Vol. 48
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optimality isobtained by substitutingt, =ty into Eq. (3):

t

J'jg(t)dt = aﬁ—‘;. @)
0

If the pulse power grows while the pul se shortens so
that the equality t, =ty remains valid, the efficiency of
electrode conditioning isimproved and finally the cath-
ode surface is polished.

ESTIMATION OF EMISSION PARAMETERS

In experiments on breakdown delay determination,
the electrodes of a vacuum gap are pretrained by high-
voltage pulses (t, = const) with a small overvoltage to
make every value of the conditioning pulse amplitude
correspond to a stable value of the delay time and,
hence, the stabl e state of the cathode surface. The stable
state of the cathode surface is described by the coeffi-
cient of electric field enhancement 3 at surface microir-
regularities. The local field and the macrofield are
related as

E = BE,. )

The experimental dependence t, = f(E;) obtained as
aresult of high-voltage training with a minimum over-
voltage reflects the optima surface conditioning
regime (t, = ty). The enhancement coefficient 3 under
the optimal conditioning regime can be determined by
comparing the experimental curve ty = f(E;) and calcu-
lated curve ty = f(E,) with ty = const. The comparison
of the experimental curves ty = f(E,) for pulses of dif-
ferent shapes with E, = const alows one to estimate
both the field enhancement coefficient and the work
function.

(1) Field enhancement coefficient. Experimental
data for breakdown delay times in a vacuum are most
fully presented for copper electrodes. They have been
determined in an operating and ultrahigh vacuum over
awide range of electrode spacings from 3 pmto 20 cm
(i.e., spanning five orders of magnitude) [13-17]. The
experimental, ty = f(Ey) (curve 1), and calculated, ty =
f(Eg) (curve 2), dependences of the vacuum breakdown
delay time on the breakdown-initiating electric field
intensity are shown in Fig. 3 for copper electrodes. The
calculated dependence ty = f(E,) is constructed by
using Eqg. (4) and the physical constants given in the
table.

The difference between the abscissas of the experi-
mental, ty = f(E,), and calculated, t, = f(E,), curves at
ty = const gives the field enhancement coefficient

logP = logE, —logE,, ©
which is reached under the optimal conditioning regime.

Asfollowsfrom the plots, asthe electric field inten-
sity increases, curvest, = f(Eg) and ty = f(E) approach
TECHNICAL PHYSICS Vol. 48
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10IIO
E,V/m

108 10°

Fig. 3. Breakdown delay time vs. the breakdown field inten-
sity for copper electrodes. (1) Experimental dependence
tyq = f(Eg) and (2) calculated dependencety = f(E,). Experi-
mental data from (0) [13], (<) [14], (D) [15], (*) [16], and
(o) [17].

each other. They coincide at a certain critical value
(10)

when theintensities at the top and base of amicroasper-
ity become the same and the field enhancement coeffi-
cient reaches the minimum value 3 = 1, which corre-
sponds to the ideally smooth surface.

Comparing the experimental and calculated curves
at ty = const, the dependences of the field enhancement
coefficient B = f(Eg) and B = f(t;) on the surface condi-
tioning parameters can be constructed. The curves 3 =
f(Ep) and B = f(t,) (Fig. 4) describe the variation of the
coefficient 3 when the surface was prepared under opti-
mal conditions (t, = ty) for different values of macroin-
tensity E,.

The field enhancement coefficient 3 obtained at t, =
ty is approximated by the power relationship [18]

E, = E, = 1.32x 10" V/m,

B = 1.28x 10°E;"°. (11)

According to (11), the cathode surface prepared
under the optimal conditions has a desired value of the
coefficient 3, which depends only on the breakdown
field macrointensity E,.

Under the optimal preparation conditions, the field
enhancement coefficient 3 may vary by three orders of
magnitude depending on the amplitude and duration of
high-voltage pulses. This could be used to produce a
microrelief with adesired value of 3.

A kink in the curve 3 = f(t;) shownin Fig. 4b at ty =
10" sis apparently related to the effect of emitter cool-
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Fig. 4. Field enhancement coefficient vs. the conditioning
parameters for t, = ty. (a) B = f(Eg) and () B = f(t,). Exper-
imental results from (0) [13], (<) [14], (D) [15], (*) [16],
and (@) [17].

B
103 -
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Fig. 5. Field enhancement coefficient after surface condi-

tioning by pulses with t,, = t4 vs. the macrointensity of the
breakdown field: (¢) Al F13—16] (@) Cr[19], (O) Fe[6, 18],

(*) Ni [17], (>) Cu [13-17], (<) Mo [15, 16], and (*) W
[6, 17].

ing by heat conduction. It follows from this curve that,
to improve the dielectric strength of vacuum insulation,
it is appropriate to apply voltage pulses of duration t, <
10" s. Note that the conditioning efficiency increases
with decreasing pulse duration.

The field enhancement coefficient (3, which is
defined astheratio of the intensities at the top and base
of amicroasperity, depends only on itsgeometry andis
independent of the electrode material. Hence, expres-
sions (10) and (11), which were derived for copper
electrodes, must also be valid for other materials. To
verify this assumption, the calculations for aluminum,
chromium, iron, nickel, molybdenum, and tungsten
electrodes were carried out. The experimental depen-
dences were constructed with data reported elsewhere
[5, 6,13-17, 19, 20].

The field enhancement coefficient 3 determined in
the vacuum breakdown delay experiments performed
under the optimal high-voltage pulse conditioning (t, =
ty) are plotted against E, in Fig. 5 for aluminum, chro-
mium, iron, nickel, copper, molybdenum, and tungsten
electrodes.

The experimental data for the electrodes made of
different materials fall on asingleline 3 = f(E). It fol-
lows from this dependence that the coefficient 3, which
characterizes the state of the cathode surface treated by
high-voltage pulses of duration t, = t, isindependent of
the electrode material and varies only with the break-
down-initiating electric field macrointensity E,.

With test for optimality (7) fulfilled, an increase in
the macrointensity E, leads to a decrease in the
enhancement coefficient 3; that is, the cathode surface
quality isimproved. For Eq = E, and t, = t;, the pulsed
treatment polishes the cathode surface

From expressions (5) and (6) for the delay time in
the case of a skewed voltage wave and rectangular
pulse with afinite leading-edge time, respectively, and
taking into account expression (8), we obtain analytical
estimates of the field enhancement coefficient 3, using
the experimentally found breakdown delay time for a
skewed voltage wave,

4t
B = 1.32x 10"%* E1 d (12)

2
and arectangular pulse with afinite leading-edge time,

= 1.32x 109 ¥, 0 + o] 13

B = pE A+ —h W

From Egs. (12) and (13), it follows that the coeffi-
cient 3 can be found by comparing breakdown delay
times for pulses of different shape with E, = const. An
experimental check with copper electrodes showed
that, with E; = 4.2 x 10" V/m, the delay time for the
rectangular pulseisty = 28 nsand for the skewed wave
ty = 0.5 ns. The value of B determined by Eq. (12) was
found to be 162, which corresponds to the condition
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t, =ty with E; = 4.2 x 10" V/m and agrees with the
dependence 3 = f(Ey) shownin Fig. 5.

(2) Work function. The cathode surface prepared
under optimal conditions has aknown coefficient of the
electric field enhancement 3, which allows us to esti-
mate the work function. Solving Egs. (12) and (13) for
¢ gives

0 = 0.21EY(t,,/t,)>°, (14)

0 = 0.21Ey ™ (tio/ (tg—tas + 1ie))*". (15)

With E, = const, we can now estimate the work
function from experimental breakdown delay times for
voltage pulses of various shape.

The tests were carried out with skewed and rectan-
gular pulses applied to auminum and copper elec-
trodes. In the former case, the breakdown time delay
with E; = 1.9 x 10’ V/m was equal toty, = 1.3 x 10°s
for the skewed wave, while for the rectangular pulse, it
was one order of magnitude smaller: ty, = 7.4 x 107 s.
Based on Eq. (14) and the test results, we estimated the
work function for aluminum as ¢, = 4.4 €V. The mea-
surements for copper electrodes gave ¢, = 4.7 eV.
These values of the work function are in satisfactory
agreement with those listed in the table.

DIELECTRIC STRENGTH

Surface conditioning by pulses with t, = t; forms a
microrelief characterized by a certain value of the coef-
ficient B (Eg. (11)), which makesit possibleto writethe
delay time asafunction of the electric field microinten-
sity E,. For arectangular pulse with an infinitely short
leading-edge time, we have

t, = 157 10‘25%¢2exp{ 2160713
16
(103976 =
E0.4 !
0
for a skewed wave,
¢3/2
tg = 103E6—ltd’ (17)

0

and for a rectangular pulse with a finite leading-edge
time,

ty = ty+t.(1—0.0970 2 EY. (18)

Expressions (16)—18) allow one to calculate the
delay time under the optimal conditions for cathode
surface treatment (high-voltage pulseswitht, = t,) asa
function of the electric field microintensity E, if the
physical parameters of the cathode material are known.

The dependences of the delay time on the macroin-
tensity, ty = f(E,), and microintensity, t, = f(E,), of the
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Fig. 6. Calculated dependences of the delay time on the
breakdown field intensity for aluminum. (1) t4 = f(Eg) and
(2) tq = f(Egy). Experimental results from (o) [13], (<) [15],
and (*) [16].

electric field for aluminum that were calculated based
on Egs. (4) and (16) and the physical parameters listed
in the table are shown in Fig. 6. The calculations arein
satisfactory agreement with the experimental results
[13, 15, 16].

To see whether the Joule mechanism of breakdown
can be used to evaluate the pulsed electric strength of a
vacuum gap with evaporated el ectrodes, we performed
experiments with an accel erating gap between amicro-
channel plate and a cathodoluminescent screen.

The dependences of the delay time on the macroin-
tensity, ty = f(Ep), and microintensity, ty = f(E), of the
electric field for chromium were calculated based on
Egs. (4) and (16) and the physical parameters (see
table). The experimental results for the breakdown
delay timein the“microchannel plate-cathodolumines-
cent screen” evaporated electrode system are in satis-
factory agreement with the calculated curve ty = f(Ep)
[20].

The experimental results for the breakdown delay
time in the vacuum gaps with both the all-metal and
evaporated electrodes show that the coefficient B of
electric field enhancement that is observed under the
optimal conditioning regime is insensitive to the elec-
trode material and structure and depends only on the
breakdown field macrointensity (Eg. (11)).

CONCLUSIONS

Experimental investigation of the breakdown delay
in a vacuum provides information about the pulsed
dielectric strength of a vacuum gap and the emission
parameters of the cathode surface. The treatment of the
vacuum gap electrodes by high-voltage pulses with a
duration equal to the breakdown delay time ensures an
optimal surface conditioning regime. This regime pro-
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vides the maximum smoothness of the cathode surface
and, accordingly, the highest possible pulsed dielectric
strength of vacuum insulation. The cathode surface
with adesired coefficient of electric field enhancement
B (i.e., vacuum gaps with a desired pulsed dielectric
strength) can be obtained by controlling the condition-
ing pulse power in the optimal regime. On the cathode
surface formed in the optimal conditioning regime, one
can evaluate both the field enhancement coefficient at
surface microirregularities and the work function.
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Abstract—We consider the heated surface of a metallic tip to which a strong electric field is applied. At tem-
peratures activating surface self-diffusion, crystalline outgrowths and microprotrusions arise on the surface.
The latter generateion fluxes, i.e., act as sources of high-temperature field evaporation, when a positive poten-
tial is applied to the emitter. The existence conditions for the microprotrusions on the emitter surface are dis-
cussed. It is shown that their stability is provided by the balance between three atomic fluxes: diffusion from
the top of thetip, diffusion toward the top, and field evaporation from the top. Different ways of providing such
a balance are discussed. In a desorption-type field ion microscope, the microprotrusions and evaporating ions
are visualized as bright spots. These spots execute random motion and, at the same time, exhibit ordered cyclic
displacements: the microprotrusionsfirst form dotted rings al ong the developed faces of the crystalline emitter,
and then these rings quickly collapse toward the center of the face. A quantitative theory of these cyclic pro-
cessesisdevel oped for thefirst time. It explainswhy therings*“calm down” before collapse and why subsequent
collapse develops in an avalanchelike manner. The electric field distribution over the surface in the presence of
an outgrowth is calculated, and diffusion fluxes at different stages of its growth and dissolution are analyzed.
The calculation showsthat the outgrowth heights arerelatively small and their slopes are rather smooth. © 2003

MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The simultaneous action of field and temperature on
the metallic tip surface resultsin a variety of phenom-
ena, which modify the tip shape [1]. Such undesired
therma—field shaping should always be taken into
account, since this process often causes the avalanche
development of instabilities and adversely affects the
emitter parameters. The detailed consideration of vari-
ousinstabilities on the surface of electron and ion emit-
ters may form the basis for a theory and technology of
reliable field sources of ions and electrons.

Among such surface tip-shaping phenomena is
high-temperature field evaporation [2], which may be
viewed as the process of ion evaporation accompanied
by intense surface diffusion and the growth of micro-
protrusions and more complex features, such as out-
growths, steps, etc. It is remarkable that high-tempera-
ture field evaporation may be used as the principle of
operation of point ion sources with a desired geometry
and hence with emission properties that are necessary
for the fabrication of micro- and nanoel ectronic devices
[3, 4].

Depending on the electric field and temperature, a
wide variety of surface patterns may be observed: from
a single microprotrusion on the surface of a regularly
faceted crystal to many microprotrusions randomly
arranged on the irregular “pitted” surface [1, 5]. The

shape of thetip isvery difficult to stabilize. Asarule, a
number of dynamic processes related to crystal growth
and dissolution are observed on the surface, which
show up as the appearance and disappearance of spots
in field-emission images.

Thermal—field processes and the occurrence of dif-
ferent surface features were studied experimentally for
severa refractory metals and alloys in a wide range of
fields and temperatures. A desorption field-emission
microscope was used as the main tool to observe high-
temperature field evaporation [2, 5-7].

Nevertheless, severa fundamental issues still
remain unsolved. Namely, which process governs the
number of microprotrusions on the top of the tip? Are
these protrusions dynamically stable or basically equi-
librium (or near-equilibrium)? What are the rules the
motion of the microprotrusions on the surface and,
accordingly, of emission spots in the images obeys?
These issues are covered in this study.

TYPE AND NUMBER OF THERMAL-FIELD
MICROPROTRUSIONS

Microprotrusionsare rel atively stable on most of the
tip surface. They “twinkle” (fluctuate) but are observed
over along period of time. In general, this seemsto be
surprising, since so-called steady-state microprotru-

1063-7842/03/4809-1199$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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Fig. 1. Negative field pressure Pg at the emitter top vs. the

surface curvature K. The curves are drawn for three values
of thevoltage U, the straight line depicts the surface tension
force pressure P,(K) = yK, and the line Pg, reflects field

evaporation that balances field-induced growth.

sions (i.e., those provided by the balance between field
evaporation and field supply) must not apparently be
very stable.

Figure 1 shows a segment of the P—K diagram,
where P isthe pressure and K isthetip curvature, which
was comprehensively analyzed in [5]. The diagona
straight line of surface tension force pressure P,(K) =
VK (v isthe surface tension coefficient) divides the dia-
gram into two parts. In the upper |eft part, the electric
field pressure P = F?/8m exceeds P, and the field
growth (indicated by thearrowsin Fig. 1) causesthetip
to sharpen. In the lower right part, P < P, and the nat-
ural trend is blunting.

Figure 1 presents the P(K) curves for three values
of the voltage U. Theline P, (K) for voltage U, crosses
the diagonal boundary line P, (K) four times at points of
equilibrium, only two of which (points of type A, see
below) correspond to stable equilibrium. These are A,
which corresponds to the shape of the faceted recon-
structed tip, and A; , which corresponds to a micropro-
trusion on a vertex of a polyhedron. The curve Pg,(K)
for a voltage U, lower than U, has only two points of
intersection with the line P,(K) and one point of stable
equilibrium, A,, in the case of the reconstructed shape.
The curve Pe;(K) (U3 > U,) does not crossthe demarca-
tionlineat al. The only stable state in this case is asso-
ciated with the point E; on theline P,,, where the diffu-
sion and field evaporation fluxes compensate for each
other. The undulatory of the curves P(K) is the super-
position of two parabolas (for details, see [5]). All the
curves in Fig. 1 correspond to a certain constant tem-
perature T. Note that the surface tension coefficient v
and, accordingly, the values of P, and P,, aretempera-
ture dependent.

SHREDNIK et al.

As follows from Fig. 1, a high field F (and, hence,
high Pg) causes field evaporation, which compensates
for the atomic flux toward the tip along the line Py, at
stationary E points. The fluctuations of the field F
(which may be caused by the natural instability of the
voltage U) displace (interms of Fig. 1) the microprotru-
sion to the nearest curve P In this case, random
increasesin F somewhat blunt the tip; nevertheless, the
microprotrusion remains stationary. However, random
fluctuation decreases in F sharpen the microprotrusion,
displacing the point E to the right. A series of such
decreases in F may lower the point in the P-K diagram
below the line P,. Then the tip shape will rapidly and
irreversibly change: the tip will become blunted, and a
sharp microprotrusion will turn into the basic recon-
structed form. Such an upset is described by motion
along the curve P,(K) approximately from the point B,
to the point A, of stable equilibrium. For this reason,
microprotrusions corresponding to the points E cannot
be long-lived. At the same time, they are expected to
provide the highest ion current densities during high-
temperature field evaporation.

Numerous relatively stable microprotrusions
observed under a desorption field microscope are prob-
ably not stationary but near-equilibrium. Equilibrium
microprotrusions (corresponding to the points A) may
not evaporate the material. However, depending on the
temperature and material of the tip, the field F may be
large enough to trigger field evaporation at the point A'
(or even at the point A). In this situation, the balance
between atom fluxes toward and from the top of thetip
(the latter is due to surface diffusion in the field) cer-
tainly breaks. The field evaporation flux adds up to the
backward flux caused by P,. Accordingly, the tip gets
blunted. In the meantime, the difference (P — P,),
which governs the atom flux to the top, will increase
and the flux of field evaporation will decrease with
decreasing F. Such a tendency will persist until the
atom flux to the top due to the field becomes equal to
the sum of the backward fluxes blunting the protrusion:
the flux due to P, and that associated with field evapo-
ration. A new stability point will be situated in the curve
P somewhat to the left from the point A’ (or A) and will
correspond to a stable, though weak, flux of field evap-
oration with the emitter shape retained (self-sustained).
Itisthissituation that we characterize as corresponding
to a near-equilibrium microprotrusion (point A*) or a
near-equilibrium top of the tip (point A*). In this case,
the fluctuations of the voltage (field F) do not result in
an avalanchelike decay of the microprotrusion. The
vortex curvature of the microprotrusion (asfor point A)
follows the variation of F: growswith increasing F and
decreases when the field decreases. When the emitter
shape fluctuates (i.e., K varies), the surface geometry
returns to point A* or A*, which istypica of points A
and A" without evaporation.
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It appears that there is athreshold field F' of forma-
tion of therma—field protrusions that depends on the
material and temperature of the emitter [8]. Thisthresh-
old also depends on the applied voltage and the tip
shape and can be achieved at one point or in a small
number of points on the surface. In the latter case, we
will observe a small number of microprotrusions. If F'
isreached at many sites, agreat number of microprotru-
sions and outgrowths will form and the surface will be
highly irregular. Obviously, thermal—field microprotru-
sions will initially arise on the surface of the recon-
structed tip at edges and vertices formed by the inter-
section of crystal faces. If surface areas with the highest
K evaporate ions, the microprotrusions will be either
near-equilibrium (point A*) or stationary (point E).
Their character will depend on the position of the curve
P(K) relative to the line P, and on the position of point

Pr corresponding to F' on curve P(K). When moving

along curve P<(K) to the right from point (P, K'), the

representation point corresponding to the growing
emitter arrives at either point A* (e.g., on curve Pg,) or
(if point Aisabsent) directly at point E (asin curve Pg;).

MACROOUTGROWTHS AND THE DYNAMICS
OF THEIR GROWTH AND DISSOLUTION

If the temperature and field are high enough, mac-
rooutgrowths grow on large close-packed faces [1].
Their transverse sizes are comparable to the size of the
face and depend on the curvature of the tip base, reach-
ing 1000 A. These macrooutgrowths|ook like truncated
cones or pyramids. Their height has not yet been reli-
ably established. The estimation of this value is one of
the goals of this study. As was noted in [6, 9], the
growth of macrooutgrowths corresponds to the slow
stage of formation of a bright ring from spots due to
microprotrusions, which borders the top of thetip.

In [6, 7], the fast collapse of the rings upon high-
temperature field evaporation was observed. At this
stage, outgrowths narrow in an avalanchelike manner.
Under a desorption field-emission microscope, the
rings were observed for evaporating ions of Ir, Pt, and
others[6, 7, 10]. The (dotted) rings consist of individual
spots corresponding to thermal—field microprotrusions
(Fig. 2) and fringe close-packed faces of the tip base.
For Ir and P, these are { 111} and {100} faces.

When localized at the edge of a close-packed face
fluctuating (arising and disappearing) microprotrusions
set conditions for the layer growth of this face, i.e,
serve as new-layer nuclei [11]. Apparently, a limited
number of microprotrusions around a close-packed
facet cannot provideitsrapid growth. When the number
of microprotrusions becomes sufficiently large (in the
image, they entirely fringe the face, forming a dotted
ring), oriented stable layer growth takes place. Aslong
as the height of a macrooutgrowth is one or two mono-
layers, the field near the exterior angle at the base of the

TECHNICAL PHYSICS Vol.48 No.9 2003

Fig. 2. Different stages of the high-temperature field evapo-
ration of iridium single crystal with many microprotrusions
[6]. U=9.9kV, T = 1340 K. Microprotrusions correspond-
ing to individual spots are imaged in a field desorption
microscope by means of Ir ions fluxes from their surface.
During the observation, the microprotrusions (spots) twin-
kle and move. (a) Spots start to form a ring around {111}
faces (on the right and at the bottom), (b) the ring on a
{111} face on theright has been formed and isready to col-
lapse, (c) the ring disappeared (the stage after the collapse).
Rings formed on the top and bottom { 111} facesare clearly
seen.
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Fig. 3. Field distribution over the outgrowth surface.

cone (where the surface curvature is negative), while
starting to drop, remains high enough to pull atomsin
the growth region. Asthe growth continues, the field at
the exterior angle continues to drop and eventualy
reaches the level where the atom flux toward the top is
limited because of the reduction of the chemical poten-
tial gradient [12]. It appearsthat the ring “ calms down”
for atime from tens of seconds to several minutes just
in this situation [6]. At this stage, the field at the top of
the cone is enhanced and favors intense field evapora-
tion. Under these conditions, the material flux for fur-
ther growth is provided mainly by atoms from the lat-
eral surface of the cone. As aresult, the transverse size
of the cone and the diameter of its base shrink. Thefield
around the top of the tip increases, causing the intensi-
fication of the evaporation, a further decrease in the
cone diameter, and, accordingly, anincreasein thefield
at the upper edge. Eventually, the avalanche process of
macrooutgrowth evaporation develops, showing up as
ring collapse in the image.

This physical picture of collapse of rings consisting
of microprotrusions was presented in [9]. For clarity,
the cones of microprotrusionsin [9] were depicted high
with steep slopes. Note that no quantitative analysis of
the model proposed was suggested.

CALCULATION OF THE FIELD DISTRIBUTION
OVER THE TIP SURFACE

In order to refine the above qualitative picture, we
numerically calculated the electric field distribution
over the tip surface with a macrooutgrowth. In the cal-
culations, the outgrowth was approximated by a trun-

SHREDNIK et al.

cated cone. Since the radius of surface curvature of the
tip bases in experiments [6, 7] was about 1 um, we
assumed this surface to be planar. Thefield was studied
as afunction of two parameters. the base angle a of the
macrooutgrowth and the ratio R/H, where R is the
radius of the upper base of the outgrowth and H is its
height.

The Laplace equation for the potential in the inter-
electrode space was solved by theiterative finite-differ-
ence method on a nonuniform mesh using successive
overrelaxation. To calculate the electric field distribu-
tion over the macrooutgrowth surface and the remain-
ing tip surface, we approximated the potential values by
atwo-dimensional cubic spline, since the direct appli-
cation of the finite-difference method to calculating the
potential gradient does not provide the smoothness
required. It was also assumed that angles on the verti-
cal-plane section of the cone are not rounded. This
means that the actual radii of curvature of the edges are
smaller than the characteristic size of the mesh. Thisis
the case if the edges and vertices of the macroout-
growth are atomically (or nearly atomically) sharp.

Obvioudly, there are two extreme lines: the edge of
the upper surface of the macrooutgrowth, where the
field is maximal (F.), ahd the boundary of its base,
where the field is minimum (F,,). Figure 3 shows the
distribution of theratio F/F, over the surface, where F
isthe field away from the macrooutgrowth. The calcu-
lations show that the field contrast & = F,4/Fmin
depends strongly on the base angle a of the cone
(Fig. 4). The ratio 0 is practically independent of the
ratio of the height H to the transverse size of the cone,
e.g., totheradius of the upper base R. This statement is
valid for low outgrowths (R > H). However, for not too
small anglesa (a > 5°), d startsto increase rapidly asR
decreasesto values on the order of H or below (Fig. 5).
Such behavior strongly supports the avalanche mecha-
nism of ring collapse discovered in [6].

However, reasons why the growth of the macropro-
trusion is suppressed and even ceases before the ring
collapses deserve special consideration. According to
[12], the flux of atoms diffusing over the surface
is proportional to the chemical potential gradient [ =
O(yK — F%/8m) and is directed opposite to the gradient,
i.e., toward the region where the field F increases and
the surface curvature K decreases. When approaching
the bottom of the outgrowth, the field decreases (Fig. 3)
and the related component ([A ), of the gradient p
retards the flux toward the outgrowth. However, it
should be taken into account that the area around the
outgrowth base (which is assumed to beflat in our cal-
culations) is actually a part of the tip base, which has a
noticeable positive curvature. Near the base, the posi-
tive curvature changes to negative curvature (initialy
the upper edge of the tip has zero curvature). Such a
geometry and the related electric field distribution
defines a certain initial value of ([ ),. When ([ ), at
the point of minimum field equals ([ ),, the atomic
No. 9
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Fig. 4. Field intensity at the upper edge and near the base of
the outgrowth as a function of the base angle. Fg isthe field
on the surface away from the macrooutgrowth.

flux from the tip surface toward the lateral surface of
the outgrowth stops. However, since the field F,,, and
high temperature stimulate intense field evaporation
from the upper edge of the outgrowth, the process will
involve the material of the lateral surface. As a result,
the transverse size of the outgrowth decreases and the
ring collapses.

The results of the field calculations suggest that the
field contrast & exceedstwo even if a and ratio H/R are
not very high. At the same time, it appears that 6 = 2
would apparently suffice for the experimental observa-
tion of such effects as the suppression of the diffusion
flux from the tip base (showing up as the slow growth
of the protrusion and ring stabilization) or a drastic
enhancement (initiation) of field evaporation, since the
rates of diffusion and evaporation depend exponentially
on the field F. The dependences of F,,.,, and F;,, on the
outgrowth base angle a are presented in Fig. 4.

From this figure, it follows that the lateral slopes of
forming macrooutgrowths must be smooth (a is no
more than 10°-15°, Fig. 4) and their heights must be
small (several atomic layers), since F,,, increases with
height H (Fig. 5), enhancing material evaporation. This
refers to outgrowths for which ring collapse is
observed.

The experimental data [6, 7] support this conclu-
sion: in field-emission images, microprotrusions in the
ring before its collapse are similar to many others out-
side the ring. If, for example, a = 60°, the values of o
are so large that the growth of protrusions may be sup-
pressed from the very beginning. Quantitatively, this
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Fig. 5. Field intensity at the upper edge of the outgrowth as
afunction of the base-to-height ratio of the outgrowth. Fyis
the field on the surface away from the outgrowth.

conclusion disagrees with the scheme of the process
presented in [9] but supports the underlying mecha-
nism.

When observed in the field-ion regime [1], the out-
growths do have a smooth shape when initially many
microprotrusions are present on the surface. If the out-
growths were high, the microprotrusions (grouped into
rings) would be observed only aong the circumference
of the outgrowth. However, during the avalanche col-
lapse of the rings, the emission pattern obtained with Ir
and Pt ions [6, 7] was considerably brighter than
expected. This points to a noticeably enhanced evapo-
ration rate and a high ion-current density, which sug-
gests the evaporation of stationary microprotrusions
(point E in Fig. 1). The ratio of the fields in the upper
and bottom angles (up to 100) for a high protrusion
would be considerably higher than that at which the
development of macrooutgrowths switches to its
intense evaporation, i.e., to the stage of ring collapse.

CONCLUSIONS

(1) The number of thermal—field microprotrusions
depends mainly on the surface condition (irregularity).
The surface condition is specified by the history of ther-
mal—field treatment, instantaneous values of tempera-
ture and field, and the emitter material.

(2) Thermal—field microprotrusions, which are usu-
aly observed in situ in the desorption regime, are most
probably near-equilibrium, rather than stationary, fea-
tures.
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(3) The collapse kinetics of rings made up of micro-
protrusions growing around the upper face of the mac-
rooutgrowth consists in suppressing the atomic flux as
the outgrowth develops and, accordingly, reducing the
field near its base.

(4) The calculations show that the collapse of the
rings during high-temperature field evaporation corre-
lates with the dissolution of relatively low outgrowths
(severa atomic layers) with smooth slopes (10°-15°).
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Abstract—Two existing opinions about the current passing through avirtual cathode in a closed equipotential
cavity are considered: (i) the current isaways smaller than half thelimiting current (asfollows from the steady-
state consideration) and (i) the current oscillates in time about the mean value that is exactly equal to the lim-
iting current (as follows from the non-steady-state self-consistent simulation by the coarse particle method).
The history of this issue is described. The invalidity of the former opinion is shown. © 2003 MAIK

“ Nauka/Interperiodica” .

Electron beamswith avirtual cathode (VC) arefind-
ing increasing application in many fields of technology,
such as the generation of bremsstrahlung and micro-
wave radiation, the collective acceleration of electrons
and ions, high-current switches, etc. A review of the
state of the art in the development of V C devices can be
foundin[1, 2].

An important issue concerned with VVC device oper-
ation is the value of the current |, passing through the
VC. The problem is stated as follows. Let a monoener-
getic magnetized rectilinear electron beam with atime-
constant injection current I;; enter into a closed equipo-
tential cavity of arbitrary shape and let the injection
current exceed the limiting current 1, (so that aVCis
formed). The god is to find the value of the current
passing through the VC.

There are two opinions about the value of this cur-
rent. We will try to elucidate which of them is the cor-
rect one.

The former opinion follows from the analysis of the
steady states of the el ectron beam in the cavity. It shows
that, when intense electron beams are injected into
equipotential cavities of different configurations, the
nonlinearity due to the field produced by the self-space
charge of the beam causes an intriguing effect: the
beam may take two states with its parameters remain-
ing the same (state hysteresis). One of them (steady
state) corresponds to the case where the entire beam
crosses the cavity; the other, to the case where some of
the electronsreflect from a certain section. Such hyster-
etic behavior has been known since 1923 [3].

Under such conditions, many of the parameters that
characterize the beam’'s state exhibit a two-valued
dependence on the beam current [4-7] (in a certain
range of the current). This phenomenon may be used
for generating high-power nanosecond current pulses
[8, 9], aswell asfor the collective acceleration of posi-
tiveions[10, 11]. In addition, the hysteresis phenome-

non may be applied to advantage for generating high-
power electromagnetic oscillations of relaxation type
[12, 13].

The stationary analysis of the problem for a cavity
in the form of a plane gap in the nonrelativistic case
shows that, when the injection current I;; varies, the
current |, having passed through the virtual cathode
aso exhibits hysteresis (Fig. 1). Its descending branch 2
corresponding to the VC regime is described by the
dependence

Ivc — Iinj

IIim IIim
)
0] 1 1+ J1+8(liy/1im)d
x[- [1- — 1
O 2(lin/Vjim) 8(li/ lim) O

Such a notion of the behavior of I, is generaly
accepted and is common in the original scientific and
technical papers|[6, 14, 15], monographs[16-19], text-
books[4, 20, 21], etc.

I

ve

Ilim Iinj

Fig. 1. Hysteretic dependence of the passing current |, on
theinjection current I;;: (1) passage of all the beam’s elec-
trons and (2) theVC regime.

1063-7842/03/4809-1205%$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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The plot in Fig. 1 is treated as follows. As the
injected current I;,; increases slowly, so doesthe current
lyc (since I, = I;,) according to upper branch 1. When
liy reaches the limiting vaue Iy, the current drops
stepwise to a value smaller than |;,/2 following
descending branch 2. From this point on, aVC formsin
the beam and, asthe current I;; risesfurther, the passing
current tends to I;;,/8. When the current I;; decreases,
l,c increases along branch 2. Thus, it is believed that

lve O (Lim/ 8, 1im/2) < lyim- (2

Strict inequality (2) is central to the first opinion
about the current passed through a VC. Note that, in
terms of the steady-state consideration, the behavior of
a relativistic electron beam is qualitatively similar;
however, exact characteristic values cannot be found in
this case. The behavior of electron beams in equipoten-
tial cavities of another shape has also been found to be
nearly the same (for example, the behavior of a thin-
walled tubular beamin acylindrical tube under longitu-
dinal coaxia injection [22—-24]).

Yet numerical simulation by the coarse particle
method yields another result: the current through aVC
oscillates in time about |;,,, SO that we can write

DVCD = IIim (3)
with a high accuracy (within 2%).

In the simulation, we used the 2.5-dimensiona ver-
sion of the particle-in-cell Karat code [25], which
allows for the self-consistent solution of the Maxwell
equation on amesh and rel ativistic equations of motion
of particles. The code was repeatedly employed to
advantage in solving similar problems by researchers
throughout the world. Figure 2 shows the simulated

I, x 104 A
VC
or |
bbb
hmnd ~—
Lin
—1 1 1
0 2 4 t, ns

Fig. 2. Calculated waveform of the passing current I, [26].
Horizontal arrowsindicate thelevelsof I;y; and 1y, the ver-
tical arrow points to the instant of VVC occurrence.

DUBINOV, EFIMOVA

waveform of the passing current [26], which illustrates
(3). The early portion of the waveform corresponds to
those values of I;; when aV C has not formed yet, while
the remaining part of the waveform, after the VC has
formed, showsintense oscillations of 1, about the mean
value equal to |},

It turned out that the same result was also obtained
in works employing alternative codes based on the
coarse particle method. For example, it was reported
[27] that I, and |;;,, for a beam with aVC differ by no
more than 12% (the originally developed code was
used). In [28], with the well-known particle-in-cell
Magic code [29], it was demonstrated that equality (3)
holdswith an accuracy of as high as 1%. The authors of
[29] also discovered strong oscillations of 1. In [30]
(original code), the mean passing current exceeded the
critical value by only 0.75%. In [31], it was found that
.= 0.96l,,,, or 0.975l,;,, depending on the problem
parameters selected (also the original code). Other
works supporting the validity of (3) are also known.

In view of the high confidence of equality (3), we
used it to develop a simple model of induced radiation
inavircator [32] and also for further testing the Karat
code [26].

Equality (3) forms the basis for the second opinion
about the value of the current passing through aVC.

Thus, we have presented two mutually exclusive
opinions concerning the value and behavior of I,
which are based on (2) and (3). Both have many advo-
cates. The point of the value of the passing current is of
crucial importance for microwave devices, as well as
for the collective accel eration of € ectronsand ions, and
should be resolved as soon as possible. It has become
the subject of hot discussion [33, 34]. The authors of
the present work hold to the second opinion.

To provetheinvalidity of inequality (2), wewill turn
to [35], where this inequality was derived for the first
time from the nonstationary Poisson equation for elec-
trical potential. At the point where a stationary VC has
been formed, the electrical potential has a minimum,
the electron velocity equals zero, and the beam is
divided into transmitted and reflected parts. In other
words, the gap is conventionally partitioned into two
diodes: a double-flow diode before the VC and a
Chaild-Langmuir diode after the VC. The position of
the VC is thus defined by the balance of the currentsin
these diodes, whichisreflected in (1) and (2). In all the
papers listed above, the derivation drawn in [35] is
repeated.

However, the major difficulty associated with the
derivation of (2) was noted only in the origina work
[35]. In subsequent papers, it was disregarded. The
guestion arises as to why and how some of the electrons
reflect from the potential barrier, while others pass
through it. Recall that the beam injected is monochro-
matic. Lukoshkov [35] notes that “the assumption that
there isaminor, e.g., thermal, electron velocity spread
No. 9

TECHNICAL PHYSICS Vol. 48 2003



ON THE CURRENT THROUGH A VIRTUAL CATHODE

suffices to explain the mechanism of separating the
electrons into transmitting and reflecting ones.” How-
ever, this stipulation comes into conflict with the state-
ment of the problem. At the same time, it is clear that
theratio of the transmitted and reflected electrons must
depend primarily on the electron velocity distribution
form. Thus, an uncertainty in the transmitted-to-
reflected electron ratio (more strictly, the impossibility
of its correct explanation) is the fundamental disadvan-
tage of the steady-state model.

Numerical nonstationary simulation by the coarse
particle method, which cannot be performed at thetime
[35] appeared, immediately revealed that aVCisabasi-
cally nonstationary object: its potential and spatial
position oscillate in time and the oscillations are not
small [36]. It turned out that aV C actsasavalve, trans-
mitting all electrons of a monoenergetic beam in one
phases of the oscillations and reflecting them back in
others. Such a beam splitting mechanism has been
called phase separation [37]. Phase separation is
responsible for radiation instability on a vircator [32].
Advanced facilities of computational experiment allow
one to dynamically visualize the process of phase sep-
aration.

To conclude, we note that the various types of VCs
were first classified in review [1]. According to this
classification, the process considered by us has to do
with the dynamics of an oscillating VC, which has a
threshold in current and may arise in a monochromatic
beam. Lukoshkov [35] tried to replace certain signs of
an oscillating V C by those of asteady-statethermal VC,
which has no current threshold, cannot exist in a
monoenergetic beam, and demonstrates the radically
different kinetics.

Thus, relationships (2) isinvalid and the conclusions
drawnin [33] arein error. When designing devices with
aVC, one must be guided by relationship (3), which has
been proved many times in self-consistent calculations
and in experiments [38].
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Abstract—It is shown that the necessary condition for the correct statement of the inverse trgjectory problem
in measuring the linear velocity vector of amaterial point in the gravitational field is the nondegeneracy of the
matrix, i.e., the Hessian of the field potential function. © 2003 MAIK “ Nauka/lnterperiodica” .

It is known that knowledge of the velocity vector is
of key importance for finding atrajectory.

L et direct measurements (obeying the basic physical
principles[1]) of the absolute linear velocity (V) vector
of aunit-mass material point be feasible in an orthogo-
nal inertial frame of reference O = 0¢,&,&5 withthe ori-
gin at the point 0. Then, one can find the radius vector
R of the point in this frame of reference at any time
instant t = t, by directly integrating the equation (differ-
ential relation)

V =R (1)

provided that theinitial position of the point, R(ty) = Ry,
is known. It is, however, obvious that the entropy of
such a solution will increase with time because of inev-
itable perturbations (errors in determining the initial
vector R, time, and vel ocity).

L et us state the problem of finding the vector Ralter-
natively. We will consider the measurements of V as
indirect measurements carrying information on R. In
essence, this means that we consider the problem
inverseto (1), bearing in mind the same purpose: to find
R. Such a statement requires additional conditionsto be
imposed on V that do not contradict the established
physical concepts of the nature od mechanical motion.

Interms of classical mechanics[2], these conditions
are generally well known. In the form of cause—effect
relation, they are given by Newton's second law

V = a, (2

where a is the specific force acting on the point. We
assume that a is a vector function continuousin R; that
is,a=a(R).

Let uswrite (1) and (2) jointly in the small:

3V = 3R, &V = a'dR, ()

where a' = 0a/oR.

Set (3) is remarkable in that it is totally consistent
with the approach used when the problem of inverse

problem solvability is treated as a problem of observ-
ability in terms of the general notions of a system [3].
. UEod
In fact, as follows from the above, the matrix [ ad

o ad

for the vector (5R', 3R)Tin set (3) (E is the unity
matrix and T means the transposition of the vectors) is
the observability matrix. Hence, the matrix a' must be
nonsingular almost everywhere in the solution range.

The physical reality is such that the force a(R) may
be represented as

a(R) = 0U/OR+ f,

where U isthe gravitational field potential (the function
continuousin R) and f is the vector of specific nongrav-
itational forces (hereafter, we put f = 0, bearing in mind
that the vector f can be measured directly in a number
of practical cases, for example, with a spatial newton-
meter [2] and thus can be included in a solution).

In view of the above, the matrix a' isidentical to the
Hessian of the gravitation potential function (that is,
a' =U"). If thereal function U(R) iscontinuousinR, the
Hessian isarea symmetric function.

Let thefield becentral; i.e., U = W/|R|, wherep isthe
gravitational parameter of the center. Such a model is
common in describing the exterior field of terrestrial
gravitation (because the central component prevails in
the expansion of the terrestrial potential). Then, the
matrix

W _ M 3RR]
U" = =
|R|3HE RiZH
isof full rank (with the singular numbersin theratio of

2:1: 1) and the problem considered is basically solv-
able.

Consider relative measurements. Let there be a Car-
tesian system 0X = 0X;X,X3 rotating with a given angular

1063-7842/03/4809-1209%$24.00 © 2003 MAIK “Nauka/Interperiodica’
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velocity w = (w;, w,, w;)" and let us measure the pro-
jections of the relative linear velocity vector v =t of a
material point onto the Cartesian axes (r is the radius
vector of the material point in the projections onto the
axes of the trihedron ox). Then, instead of set (3) in the
small, we have the set

dv = or,

. L 4)
dv = 2qgor +(q+q +U")dr,
where
E 0 w, —002%
U'=0°U/orY, q=D0-w, 0 o O
0 0
0w, -w, 0 0O

Asfollowsfrom (4), the statement of the problemis
correct if the matrix ¢ + g? + U" is nonsingular almost
everywhere in the solution range.

Assuming again that the gravitational field is central
and f = 0, we consider the specia case of the rotation of
the trihedron ox where w = const, w, = 0, and the unit
vectors of the ox; axis and radius vector r coincide.
Then, § = 0, the singular numbers of the Hessian U"
relate as 2 : 1: 1, and the matrix g + U" is generaly

DEVYATISILNY

nonsingular unless |w|= v, |wf = v2 + 305/2, and v =

(WIrp)¥2.

Generalizing these two cases, absolute and relative
velocity measurements, we may conclude that the deci-
sive (and, more importantly, physical) condition that
ensures the correct statement of the problem and in a
certain sense stabilizes its solution is the motion of the
point under the action of potential forces with the non-
degenerate Hessian. Finally, it is worth noting by way
of examplethat it isthis natural condition that provides
the asymptotically stable correction of the dynamic
operating regime of inertial navigation systems using
Doppler-shift-based vel ocity measurements [4].
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Abstract—Ball lightning is modeled by the bulk of humid air heated to temperatures of 600-650 K and con-
taining amultitude of charged drops and microbubbles of size 107 cm or less, aswell as water vapor heated to
a near-critical temperature. The condensation of the vapor in the microbubbles, followed by the cooling of
resulting droplets, generates energy spent on the thermal radiation of ball lightning. The radiation of light and
radio wavesis explained by the motion of ionsand electronsin the electric field of charged bubblesand droplets
and by the thermal rotational motion of charged droplets. As aresult of coagulation, the droplets overheat and
tend to collapse. An external electric field, supersaturated water vapor condensation, and a number of other fac-
tors may contribute to the ball lightning explosion energy. © 2003 MAIK “ Nauka/Interperiodica” .

Ball lightning remains an unresolved phenomenon
of nature. Many hypotheses for the origin of ball light-
ning have been put forward [1-8], such as plasmoids
filled with a high-temperature plasma that is confined
by the self-magnetic field and various chemical propos-
as. For example, D. Arago argued that ball lightning
consists of nitrogen and ozone oxides impregnated by
the “lightning matter.” After J. Barry, ball lightning isa
hydrocarbon compound that forms in an electric dis-
charge and somehow concentrates in a small volume.
There exist hypotheses according to which ball light-
ning comprises charged particles (Frenkel and Hill):
dust or unlike ion clouds separated from each other.
Podmoshenskii believes that ball lightning forms from
filamentary particles. In an attempt to find the sources
of bal lightning energy, exotically minded authors
delve into intranuclear processes or even deeper. In
1956, Arabadzhi made a proposal that thunderous el ec-
tric fields entrap heavy particles, e.g., cosmic rays, into
ball lightning, causing aself-sustained nuclear reaction.
Note, however, that an elevated radiation level due to
the ball lightning effect has not been observed. Vatai [2]
believes that the phenomenon of ball lightning proves
the existence of new elementary objects. leptonucleons
and their clusters. Korshunov [3] advocates that ball
lightning appears when a Hooft—Polyakov monopole,
which is an efficient catalyst of nucleon decay reac-
tions, passes through the Earth’s atmosphere.

Today, the aerogel or cluster model of ball lightning,
which has been developed since the late 1970s by
Smirnov and his colleagues at the Institute of Thermal
Physics (Novosibirsk), is the most popular. According
to [4, 5], the active core of ball lightning is a charged
structure comprising submicron filaments, that is, a
porous fractal cluster with a high chemica capacity.
The framework of this structure is almost entirely com-

prised of empty voids. Energy evolution from a chemi-
cally charged fractal cluster may be described in terms
of multistep combustion. As an example of such a pro-
cess and as a ball lightning model, Smirnov suggests
the multistep combustion of afractal cluster of charcoal
dust in ozone, which is absorbed by the cluster itself. In
thismaodel, the color and glow of ball lightning are pro-
duced, as in pyrotechnology, with a composition con-
taining glowing components. The Smirnov model ade-
quately explains various properties of ball lightning.
K. Korum and D. Korum created ball lightning in free
air [6]. Fireballs observed in their experiments looked
like those predicted from the Smirnov fractal model.

However, the properties of ball lightnings discov-
ered in many experiments are so varied and contradic-
tory that a unigque theory of lightning origin and behav-
ior can hardly be constructed. In our opinion, severa
types of ball lightnings are present in nature, each
deserving special theoretical consideration. Therefore,
various ball lightning models may beto alimited extent
adequate. Yet none of more or less realistic models
where ball lightning is viewed as an object of volume
no more than one cubic meter and density roughly
equal to that of air may explain the source of giant
energy [4, 5, 7, 8] liberated upon ball lightning explo-
sion. Therefore, together with theoretical modelsaimed
at elucidating the nature of this intriguing phenomenon
as such, it is necessary to invoke the models of relevant
processes that could help us tackle the question of how
“light” and, hence, low-power fireballs may liberate
such high energy upon explosion [7, 8].

According to Smirnov [4, 5] and Stakhanov [7], a
ball lightning is a red, yellow, white, blue, or much
more rarely green glowing spherical object of diameter
from 1 cm to 1 m. The mean lifetime is 9 s, and the
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mean velacity is 9 m/s. About 51% of ball lightnings
come to an end by explosion (sometimes intense and
destructive); others die out or decay into parts. The
mean energy of aball lightning is 10 kJ; sometimes, it
exceeds 1000 kJ. The thermal radiation is low, 100—
500 W, and corresponds to the radiation of aball 20 to
30 cm in diameter at a temperature 600650 K [7]. In
the optical range, the radiation power is several watts
and corresponds to temperatures in the range 2000—
10000 K. Thisradiationismost likely to be nonstation-
ary [7, p. 151]. It seems that ball lightnings may emit
intense nonstationary radiation in the rf range. The
electromagnetic radiation associated with thunder-
storms and lightnings has a wide frequency spectrum,
at least from 10 to 1000 Hz. Note that the high-fre-
guency part of the radiation appears with a delay of
5ms, i.e, after lightning has been observed [8, p. 215].

As follows from observations, ball lightning is sur-
prisingly stable during itslife. Less than 1% of observ-
ers indicate a change in its dimensions or color. The
observations are different: alightning may grow, andits
color may change from red to violet or vice versa. The
only correlation between the physical properties of ball
lightning, namely, that its lifetime varies in direct pro-
portion to its dimensions [5], can be explained in sim-
ple terms: alarger and brighter object is noticed earlier
and seen longer. It waslong thought that ball lightnings,
like normal linear lightnings, appear during a thunder-
storm in the majority of cases. However, relatively new
Japanese data based on vast statistics (2060 observa-
tions) [5] testify that 89% of ball lightnings are
observed in fine weather and only 2.5% in a thunder-
storm.

Ball lightning has electrical properties and acts on
the human organism like electric current. It may cause
dumbness and paresis [5]. The death rate because of
ball lightning strokes is 0.5% [7]. The appearance of
ball lightning is frequently accompanied by a feeble
crack, hissing, or whistle. Sometimes, air smells of sul-
fur, ozone, or nitrogen oxides. The same smells are
sometimes felt under linear lightning discharges and
other electrical discharges. In most cases, however, ho
characteristic signs indicating the presence of any spe-
cific ball lightning “material” differing in composition
from surrounding air are observed. Sometimes, avapor
cloud or mist forms after ball lightning has exploded or
died out.

According to the Smirnov model, the energy accu-
mulated in ball lightning itself is comparable to that
given off by striking few matches (several kilojoules).
Such energy is too low to explain the destruction of
thick tree trunks and massive constructions, damage to
water-supply pipes, etc., observed under a stroke. The
explosion energy must be as high as several tens of
megajoules in these cases. To account for high-power
and super-high-power lightning explosions, one must
allow for the presence of specific mechanisms that
enhance energy evolution upon explosion, whereas
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lightning triggers high-power external energy sources.
One of these sources is mentioned in [7]. When ball
lightning collapses, a conducting channel connecting
regions with a large potential drop across them forms,
causing a short circuit and releasing a high explosion
energy. Stakhanov writes[7]: “The energy accumulates
in charged conductors, and ball lightning serves merely
asatrigger releasing this energy. However, the possibil-
ity of thermal explosions due to the evolution of ball
lightning internal energy should not be excluded.”

Another mechanism increasing the energy evolution
upon ball lightning explosion is suggested in [9]. The
explosion of a low-power ball lightning in the space
containing supersaturated water vapor causes the
explosive, i.e., extremely fast, condensation of moisture
on many fragments, including ions from the former
lightning. This, in turn, results in a sharp drop in the
pressure in the explosion area with the subsequent
expansion of nearby humid air stratainto thisarea. This
expansion again causes condensation, pressure drop,
and further expansion of air strata containing supersat-
urated water vapor. Thus, a specific chain reaction of
successive condensations and expansions of air super-
saturated by moistureisinitiated. Asaresult, acumula
tive gas-dynamic wave convergent to the center arises.
Significant compression work is done by outer “dry”
strata of atmospheric air.

An additional energy is liberated because of the
moisture condensation. At the final stage, the conver-
gent wave causes adrastic risein the pressure and tem-
peraturein the central area (cumulative effect) and then
makes room for a divergent wave. The mechanism sug-
gested may explain intense explosions of ball light-
nings and also explosions in upper atmospheric strata
[10], including the “mystery of the 20th century”—the
explosion above the Podkamennaya Tunguska River in
June 1908, which ravaged taiga over an area of more
than 2000 km? and left no signs of the source of its
energy [11]. A feature of a condensation explosion is
that it does not require any “explosive’ that differsfrom
atmospheric air in composition. The idea that there
exist additional mechanisms increasing the explosion
energy of ball lightning, in particular, the condensation
explosion in the atmosphere due to the decay or explo-
sion of normal low-power ball lightning, does not con-
flict with any of the realistic ball-lightning models cur-
rently available. Conversely, it was noted [12] that the
idea of condensation explosion may explain not only
the phenomenon of ball lightning but also other atmo-
spheric phenomena. Note that the smell felt after the
explosion of ball lightning or after a linear lightning
discharge and other electrical discharges may be attrib-
uted to the formation of ozone and is certainly not asso-
ciated with any explosive.

In most cases, however, bal lightning does not
“smell” and does not |eave any tangibletracesbehindiit.
It appearsthat, along with ball lightningsincluding for-
eign (relative to atmospheric air) substances, there exist
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all-atmospheric ball lightnings, which consist of heated
air and steam, vapor bubbles, and charged water drops.
The bubbles and drops may be produced when an elec-
trical dischargeisinitiated in ahumid area. In anumber
of papers, it was ascertained that nonequilibrium ther-
mal processes may result in a much higher degree of
order than was believed earlier [13]. For example, when
a high current passes through a fine wire, causing the
explosion, explosion fragments are nearly equal in size
and have flat edges. Similar effects were observed upon
passing a current through liquids [14].

The size of rain drops ranges from 1 um to several
micrometers; that of mist drops, from 0.1 to 1.0 ym
[15, p. 220]. The sedimentation rate of such drops is
less than 1 cm/h. Let us assume that the discharge of a
linear lightning (or any other electrical discharge) gen-
erates a vapor—air mixture at atemperature close to the
critical temperature T, = 374.15°C and that this mixture
contains a large number of water droplets (or bubbles)
that are heated to this temperature and are smaller than
mist drops. The moisture content of cloudsisusually no
more than 10 g/m?3. However, we admit that water drop-
letsin ball lightning have densities, which are roughly
equal to, or somewhat greater than, the density of
heated humid air in order that, on average, the ball
lightning density not exceed the density of the environ-
mental air. Recall that, at near-critical temperatures, the
density of moisture-saturated air is less than half the
density of air at T = 20°C: the density of water and
steam at the critical temperature is p, = 0.307 g/cm?3.
According to our estimates, a medium-size ball light-
ning occupying a volume of about 10 dm® contains
amost 10 g of water and steam, which may release an
energy of about 40 kJ upon cooling. Such a ball light-
ning may emit thermal radiation of power 1-2 kW for
10 swithout changing its parameters. If the dropletsare
sufficiently small, on the order of 10107 cm across,
their surface energy may contribute significantly to the
ball lightning energy. The total surface energy of water,
118 mI¥m?3, is temperature independent [15, p. 36] and
may be released as heat upon drop coagulation.

Consider a water bubble of radius r and density
0.45 g/cm?® at atemperature T = 300°C that contains sat-
urated steam under a pressure p that is much higher
than the atmospheric pressure. The overpressureis bal-
anced by the surface tension of the water film:

p=alr. Q)

In (1), the pressure and the surface tension coeffi-
cient a depend on temperature. With T = 300°C, a =
15 erg/cm, and p = 90 kg/cm? = 10® dyn/cm? [15,
p. 293]. Hence, r ~ 10" cm. With T=200°C, r < 10°cm.
Such water bubbles are temperature stable; as the tem-
perature declines, the surface tension coefficient o
grows. Accordingly, the pressure of the water film
increases and the equilibrium state recovers owing to
the compression force. And conversely, as the tempera-
ture spontaneously increases, the surface tension
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declines, the steam expands, the temperature drops, and
the equilibrium state recovers. Therefore, heat evolu-
tion from such bubbles due to the condensation of the
steam inside is a stable and quasi-equilibrium process.
Eventually, the bubbles shrink and the inner pressure
and temperature increase.

This process lasts until the entire steam inside the
bubbles condenses completely. Then, the coagulation
of the resulting water drops, which are heated to a near-
critical temperature, and their cooling comes into play.
If the coagulation is fast, the water in the drops
becomes overheated and the drops tend to collapse.
When exploding, such ball lightning liberates a rela-
tively low energy. However, the explosion disperses
many fragments of the former ball lightning in the envi-
ronment, including droplets and microbubbles. This
process may initiate a secondary explosion of much
higher power, e.g., because of the fast condensation of
supersaturated water vapor in the environment, short-
circuit effect, etc. If the density of resulting hot water
dropsisinsufficient for the fast coagulation or the drops
bear large like charges, hindering the coagulation, they
slowly cool down, evaporate, or spread in the environ-
ment. Such ball lightning dies out noiselessly, some-
times decaying into fragments of various size.

Certainly, the formation of bubblesis not an obliga-
tory stage of the ball lightning's existence. A high-
power electrical discharge may immediately produce
superheated or merely hot drops of any size that are
suspended in hot and humid air.

To adequately explain the electrical properties of a
ball lightning and shed light on the nature of emitted
electromagnetic radiation, one must admit that at least
some of the drops are charged. The radiation may be
emitted by ions bearing a charge of the same sign asthe
drops. Having separated from a parent drop, the ion
comes into interaction with it and gain akinetic energy
E = Zeéxr, which corresponds to a temperature T ~
10* K withr ~ 10" cm and Z = 1. In subsequent colli-
sions, the ions will emit visible radiation under non-
equilibrium conditions. Coarser drops with a higher
charge for which the product Ze?r is of the same order
of magnitude will also emit radiation in the visible
range. Drops for which Zer is sufficiently large or
small will emit radiationinthe UV or IR range, respec-
tively. lons and electrons opposite in sign to the drop,
when approaching it, also will gain an energy sufficient
to emit radiation in the visible or invisible range of the
spectrum.

The fact that ball lightnings are colored green very
seldom, if at al, may be explained on a qualitative
basis. The point is that the color green corresponds to
the center of the visible range. Let us take into account
(or assume) that the effective emission spectrum of ball
lightning is rather wide and does not have a distinct
maximum at its center. Then, the radiation of ball light-
ning for which the color green lies at the center of the
emission spectrum will be perceived by an observer as
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whitelight. If the center of the spectrum is shifted away
toward the violet or red edge of the visible range, the
radiation will be appropriately colored. For both the
equilibrium and nonequilibrium radiation of ball light-
ning, the probability that the emission spectrum is suf-
ficiently narrow with green at the center is small. That
iswhy green ball lightnings are rare in occurrence.

The radio radiation of ball lightning may be related
to the motion of charged dropl ets. After the vapor inside
the microbubbl es has condensed and thermal rel axation
has come to end, the energy per degree of freedom
(including rotational degree of freedom) of a droplet
will roughly equal kT. Such dropletswill rotate with an
angular velocity w such that

Mr’w” OKT. 2

Putting M ~ r3= 102! g (M is the mass of adroplet)
and T = 600 K, we find that the radiation has a fre-
quency w ~ 10*° s, which corresponds to the centime-
ter range. Drops of sizer ~10° cmwill emit with afre-
quency w~ 10°%s?, i.e, in the mid- and long-rf range.
What is the reason for a delay in the rf radiation from
ball lightning? At theinitia time instant, lightning con-
sistsmainly of water—vapor bubbles, which do not emit
intherf range. After the condensation of the vapor con-
tained in the microbubbles, the resulting droplets also
radiate mostly in the optical, rather than in the radio-
frequency, range. Only charged coarse drops formed by
coagulation begin to emit in the rf range. The formation
of sufficiently large charged drops from microbubbles
takes some time. This reasoning explains, at least qual-
itatively, why the rf radiation lags behind by about
5ms.

Consider the stability of ball lightning. For spherical
dispersed particles bearing a minor electrical charge,
the total energy vs. distance h dependence has a maxi-
mum and two minima (see figure) provided that their
radius exceeds the diffusion layer thickness; i.e, r =
10" cm [15, p. 281]. The first minimum corresponds to
particle (droplet) coagulation, whereas the other
reflects molecular attraction. For not very large particle
spacings, electrostatic repulsion prevents their
approach. The height U(h) of the maximum is a poten-
tial barrier that defines the coagulation probability. The

U(h)
=

Figure.
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mutual attraction of widely spaced drops generates sur-
face forces at the boundary of ball lightning, causing its
stability. The surface tension at the boundary of light-
ning is obviously much lower than the surface tension
at the drop—air interface (at least by two orders of mag-
nitude). However, even a low surface tension (on the
order of 10~ Jcm?) makes a ball lightning stable if its
density differs from that of environmental air by no
more than 1% [7, p. 119].

For a solitary charged drop to be stable, it is neces-
sary that its electrostatic energy be lower than the sur-
face energy of attraction; that is,

e’ < 4mro. 3

Zer

If a drop arises through the coagulation of several
droplets with equal volumes and charges, its charge
will be proportiona to its volume: Z ~ r3. Conse-
guently, the electrostatic energy of the drop during
coagulation increases as r°, while its molecul ar surface
energy varies as r2. Therefore, as the size of charged
droplets grows, their coagulation breaks condition (3)
and the resulting drop becomes unstable. On the other
hand, ahigher charge of the resulting drop preventsfur-
ther coagulation. Thus, the relatively stable state where
droplets have some intermediate sizes and charges
occurs. The situation where charged water dropletslose
their electrical charge is much more dangerous to the
existence of ball lightning. In this situation, the poten-
tial barrier disappears and slow coagulation changes to
fast coagulation [15] with the characteristic time 6 =
n/2kTvy, where n is the viscosity of the medium and
Vo IS the number of particles per unit volume. For T =
600 K, the air viscosity isn =3 x 10 g/(cm s). If par-
ticleshave asize of 10~ cm, amass of 10~ g per cubic
centimeter, and a density of 1, then we have v, [
106 cmr3. Then, the coagulation half-timeis® =102s.
After atime T, the number of particles per unit volume
will be

Vo
1+1/6°

By the time T = 10 s, the number of droplets will
decrease 10° times and their size will reach 10~ cm.

These particles are optically active: they reflect and
refract light. If the number of such dropletsin ball light-
ning is appreciable, the presence of external light
sourceswill causetypical optical effects. External light
reflected and refracted by droplets adds up to the glow
of the remaining charged droplets and is perceived as
the self-glow of ball lightning. The apparent glow of the
lightning will for some time remain bright and at the
same time nonuniform over the volume because of the
random motion of coarse drops relative to each other
and their coagulation. The glow varies with time and
appears iridescent. Mechanical processes attendant on
the existence of such a“water” lightning, the coagula-
tion of weakly charged droplets and the decay of

TECHNICAL PHYSICS Vol. 48 No.9 2003



WATER VAPOR CONDENSATION

coarser charged drops, may be responsible for the
acoustic effects observed, such as crack, hissing, or
whistle.

We have considered the case of extremely fine drop-
lets. However, ball lightning may incorporate drops of
various sizes. Charged droplets provide the long life-
time, stability, and glow of ball lightning. Coarser
drops, 1074 cm or more in size, start fast coagulating at
a certain time instant, cutting the lifetime of the light-
ning. If the droplets had a chance to cool down by the
instant they coagulated to form coarse drops, the light-
ning will noiselessly die out or decay. If at least some
of the droplets had coarsento asizer = 10~ cmviafast
coagulation before they cooled below the boiling point,
water in such large drops overheats and the drops
become dangerously explosive (i.e., tend to collapse).
Asisknown [15, p. 189], the overheat of a pure liquid
may be rather high for a short time.

Water drops heated to 200°C are certainly unstable.
The spontaneous boiling of one such drop will break it
into many fine fragments. Falling into neighboring
overheated drops, these fragments will initiate a chain
reaction of boilings and explosions of overheated
drops. Such is, in our opinion, a probable explosion
scenario for one possible type of ball lightning, namely,
ball lightning that leaves behind no signs of its appear-
ance and disappearance other than an additiona
amount of moisture. Of course, this extra moisture in
the air cannot in itself attract researchers’ attention. Air
consists of many components: nitrogen, oxygen, argon,
etc. However, these components are present in fixed
proportions and any local change in their relative con-
centration cannot go unnoticed. Asto moisture, its con-
centration in air may vary arbitrarily over wide limits;
therefore, a change in the moisture content does not
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attract the attention of observers. That is why the
hypothesis about “all-water” ball lightning seemsto be
promising and has aright to exist.
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Abstract—A shell model that describes the formation of molecular complexes around a Cg molecule upon the
solid-phase interaction of the powdersis considered. From the absorption spectra, it follows that a reacting par-
ticleisafullerene dimer. © 2003 MAIK “ Nauka/Interperiodica” .

Theinsignificant asymmetry of Cg, molecul es enter-
ing into the composition of a number of complex com-
pounds produced by the mechanical interaction of pow-
ders suggests a fullerene-like structure of functional
molecular groups on the van der Waals surface of Cgp.
In Cee—KHa complexes (Hal stands for halogen),
adsorption interaction between the components is
responsible for the vibrational spectra of Cgy. The frac-
tal coral-like pattern of crystallization from asaltwater—
Cer—KHa solution [1] suggests that molecular com-
plexes (MCs) serve as seeds and represent core—shell
structures. The effect of a halogen entering into an MC
on the Cg, symmetry and the reduction of this effect
when the MC is adsorbed in the volume of amorphized
KHal [2] or is dissolved in a polar solvent [1] means
that the formation of the second and subsequent coordi-
nation spheres decreases the potential gradient on the
surface of a carbon cell. In particular, the thermal sta-
bility of C;i—KJ MCs and the formation of octahedral
crystals from them on pressing the powders are indica-
tive of a high degree of symmetry in these MCs and a
dlight change in the lattice constant of KJincorporated
into the shell cluster [3]. On the contrary, the decompo-
sition of Cgi—K Cl(NaCl) MCsat 120-160°C testifiesto
the amorphous state of the shell.

Additional information on the structure of Cgy—
KHal MCs can be extracted from the absorption spectra
of their solutions.

Figure 1 shows the absorption spectra of a KJ-Cqg,
MC in a HCI solution. The spectra were recorded (A)
before and (B) after theirradiation of the solution in the
range 3.0-3.5 eV. For other akali halides, the absorp-
tion spectra of associated MCs dissolved in HCI differ
insignificantly. For comparison, Fig. 1 shows the
absorption spectrum (curve C) of the Cs,—KCl MC dis-
solved in a nonpolar (hydrochloric) solvent. The table
liststhe peak energies of the bandsin the spectraof MC
solutions with various halogens, the shifts of the peaks
with respect to the reference values for the Cg, spectra
in nonpolar solvents, and calculated values of the 1t

band for unsolvated Cg, [4, 5]. The UV band maxima
were measured accurate to 1.5-2.0 meV.

From thetableit is seen that, in all cases (except for
the as-prepared Cz—KCl solution), the band maxima
are shifted by the characteristic vibrational states of
Ceo- The pairs of bands at 3.475-3.95 and 5.34—
3.913 eV can be considered as the result of splitting the
Tt states of solvated Cg, (the bands with the maxima at
3.712 and 3.626 eV that are shifted from the calcul ated
value 3.81 eV [4] by 776 and 1460 cm™).

The split of surface plasmons is observed for
ultradisperse metal particles of ellipsoidal shape [6].
Similar high-energy components of the 1t band in the
spectrum of highly symmetric Cgi—H,TPP—Cg, porphy-
rin—fullerene complexes [7] (TPP is tetraphenyl por-
phyrin) were explained by Coulomb interaction
between the polarized 1t states of Cg, and central H*
ions in the porphyrin macrocycle. The dependence of
the shift of the Ttbands on the type of ahal ogen entering
into the MC composition (=0.2 and 0.24 meV) leads us
to assume that Br® and JF located between two Cg,

Fig. 1. Absorption spectra of the KJ-Cgy molecular com-
plexes in the HCI solution (A) before and (B) after optical
irrediation; (C) refers to the Cqg—KCl MC in the nonpolar
solvent.
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Table

Composition Band maxima, eV Shifts Ofg#]imax' ma,
KJ3Cgo 5.025 3.913 3.34 2.8 1460, 776, 496, 172
hv 4.592 - 34 - 1570, 272
KBr—Cgg 5.063 3.95 3.475 2.83 1460, 496
hv 4.625 - 3.415 - 1570, 172
KCI-Cqg 4.976 - 3.375 2.75 1570, 776, 1230
hv 5.04 - 3.435 - 1570, 172
KCI-Cqg 453 371 3.24 3.024 1570, 776, 172
Incomplete solubility
Ceo 4.82 371 3.435 3.045

atoms act as an h* center. In such amodel, the absence
of the high-energy component of the Tthand in the spec-
trum of a chlorine-shell MC dissolved in HCI may be
related to the relatively high electron affinity E,.CI° =
3.61 eV and/or to a different shell structure.

Thelow-energy bands are shifted with respect to the
characteristic band at 3.045 eV, which is associated
with the electron transition in aresonantly excited cen-
ter involvedin aCy, dimer [4, 5]. The optical quenching
of the 1t band high-energy components and low-energy
bands means the decay of the dimeric MC. The batho-
chromic (long-wavelength) shift of the o bands by
the vibrational states of Cg, in the spectra of the Cq—KJ
and C,,—KBr M Cs correspondsto the excitation of dou-
ble bonds in monomolecular Cg, in the presence of the
ligand. The hypsochromic (short-wave) shift by
496 cm™ in the spectrum of the irradiated Cg—KCl
solution (in particular, the coincidence of the 1t band
maximum with the cal culated value for unsolvated Cg)
indicates that the symmetry of the shell risestoward the
fullerene-like distribution of the electron density with a
simultaneous increase in the binding energy (E;) of the
MC components.

The shift of the 1t band low-energy components by
the characteritic vibrational states of Cg, with respect
to the reference values of the solvated molecule and to
the calculated value for the same moleculein the unsol -
vated state suggests a mixed type of shell. Similarly, the
correlation between the high-energy components of the
1t band and the solvated state of Cg,, as well as the
larger half-width of the low-energy bands compared to
the vibronic bands at 3.024 and 3.01 eV in the spectra
of the same MCs dissolved in the nonpolar solvent
(Fig. 1, curve C), indicates that the components of the
polar solvent enter into the composition of the shell but
disappear upon the photoinduced raising of the Cyg,
symmetry. The bathochromic shift of the band at
3.045 eV by the vibrational states of Cg, is observed in
solvents with polar (or readily polarizable) groups
(methylpyrrolidone and carbon disulfide). According to
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Fig. 1 (curve C), asimilar shift of the band at 3.045 eV
is also possible for mixed-type shells. The broadening
of the low-energy bands by 0.10-0.11 eV reflects the
incorporation of H* ionsinto the alkali-halide shell and
the Coulomb interaction of the H* ions with the polar-
ized Ttand Te0 states of Cgp.

The maxima of the T—o bands and those of the cor-
responding low-energy bands (see table) are shifted by
2.225 eV. At the same time, the low-energy bands are
equidistant from the bands of unsolvated Cgy: 3.34 (w0 =
776 cm™), 3.314 (w = 172 cm?), and 3.24 eV (w=
1570 cm™), and from the virtual band 2.26 eV (2.225 +
0.034 eV). In the absorption spectrum of the dissolved
Ce—H,TPP—C,, MC solution, the band 2.26 eV is due
to the intracomplex transition between the low-energy
level of central delocalized H* ions and collective Tt
states[ 7], which correspondsto E;H*. Thus, the shift of
the high-energy band maxima by 1.113 eV (see table)
characterizes the interrelated transitions in the field of
H* ions delocalized between the polarized 1T and 10
states of Cg,. The superposition of the MC excited
states at the energy levels E,2C,, = 3.045 eV and
E,H* =2.26 eV correspondsto E,Cg, = 2.65 eV with an
accuracy of =2.0 meV. Consequently, in the acidic
medium, the equilibrium state of H* ions between two
Cg inthe MC is possible. In the presence of H* ions,
the values E J,(Br,) = 2.55 €V [8] must increase to
E.Ce Or E.Cyo = 2.69 eV. At these values, the potential
inapair MC reaches aminimum when the symmetry of
the carbon cell is unbroken.

The energy of interaction between the Cg—H,TPP—
Cso components was evaluated as 153 meV and coin-
cided with the hypsochromic shift of the ttband [7]. It
isreasonabl e to assumethat the shift of the rtband high-
energy componentsin the spectraof the C;i—KHal MCs
dissolved in HCI (by 0.20-0.24 eV) a so correspondsto
the interaction energy of the MC components. For
iodide-containing MCs, the ratio of the anticipated
value E, = 203 meV to that in the porphyrin—fullerene
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Fig. 2. IR absorption spectra of Cgq incorporated into the
(A) KBr matrix and (B) sulfur matrix.

MC coincides with the ratio E.JJYEH* = 1.326. The
decrease in the ratio of the same energy parameters for
bromide-containing MCs by a factor of 1.04 is most
likely to be related to a decrease in the lattice constant
of KBr incorporated into the complex. In the MCs with
the chloride shell, the shift of the o band, as well as
of the virtual high-energy component of the 1t band
when its maximum is shifted by 1.13 eV with respect to
thelow-energy band (2.75 eV), coincideswith the bind-
ing energy in a porphyrin—fullerene complex. This
means that the shell combined with the solvent forms a
unified system of charge carriers, that is, is virtualy a
solvation sheath.

In view of lattice constant values of KHal, the van
der Waals surface of Cg, can be covered by 12 KJ (or
KBr) moleculesin the form of icosahedral clusters and
16 KCI molecules. In such amodel, the decrease in the
ionic radius ratio from KJ to KBr (as well as the
decrease in the lattice constants) is responsible for the
uniform compression of Cg, in the bromide-containing
shell [2]. In chloride-shell MCs, the symmetry of the
carbon cell persistswhen 32 Cl atomsare arranged over
the planes of cyclic C—C bonds. Consequently, in the
solid phase, the shell is bilayer, whereas in the HCI
solution, it may be monolayer, consisting of Cl, mole-

cules statistically dissociated in the field of H* ions.

To validate the dimeric model of the MCs, we also
considered solid-phase interaction between Cyg, fuller-
ite and stick sulfur. Compared to the IR spectrum of Cg,
in the KHal matrix, the IR spectrum of Cg, in the sulfur
matrix (Fig. 2, curve B) is characterized by the broader
bands and decreased relative intensities of the bands at
525 and 575 cmrL. Sulfur gives the intense bands of S,

(withmaximaat 462 and 471 cm ) and S,, (836 cn?) [8].

The presence of the S, bands in the spectrum testi-
fies to the interaction between S; and Cgy, which does
not break the symmetry of Cg,. Thisis possible when a
S-S network forms. A sphere of radius 5.01 A can
accomodate five deformed S; rings. To form a
fullerene-like shell, 44 atoms are needed, whereas an
icosahedral cluster requires 42 atoms (at a S-S spacing
of 2.05 A). The intermolecular spacing in Cg, fullerite
correlate with the S, molecule length; therefore, the

REZNIKOV

surface of aCg, dimer accomodatesten S; molecules. In
a40S,—2Cq, MC, theratio C/S satisfies the stoi chiomet-
ric composition of a C;S, quasi-drop, where a decrease

in the density (p = 1.27 g/lcm?3) by a factor of 1.5 with
respect to the sulfur density is dueto the larger intermo-
lecular spacing and the presence of free spacein Cg,. In
C5S, MCs, the potential reaches a minimum at the
vibronic level of unsolvated Cg:

E(E,S, EX and E,Cg) = 3.401 eV,
E(E,S, E,S) = 3.013 eV (w=272cm™),

whereE,S =6.23 eV [9], E,S=2.077 eV, and E,S, =
3.95¢eV [8].

The Coulomb interaction of the set of C* ionsin a
carbon cell with S, dimersis in accordance with the
CS, band resolution (at 657 cm™).

For a Cg, dimer as an elementary reacting particle,
the chemical restrictions imposed on a nonpolar Cg,y
molecule arelifted. A Cg, dimer is stable because of T
Ttexchangeinteraction and can be considered asabasic
repeating unity of fullerite[4]. Theformation of acore—
shell MC results from the energy organization of homo-
geneous or heterogeneous molecular clusters on the
surface of a flexible-geometry sorbent, which in full
measure holds true for solid-phase fullerene—polymer
interaction [5].
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Abstract—A family of input 1-V characteristics of a planar diffused bidirectional triode thyristor (triac) is
obtained. The formation of an N-shaped portionin theinput characteristic isexplained. It isshown that the input
N-shaped characteristic may form in various input circuits of atriac depending on the voltage polarity across
power electrodes. © 2003 MAIK “ Nauka/Interperiodica” .

Multilayer semiconductor devices such astriacsare,
in essence, elementary functional devices because of
the presence of internal positive feedback. This feature
allows designers to form negative-differentia-resis-
tance (NDR) portions in the |-V characteristics. The
search for new applications of triac structures is con-
tinuing. In [1], triacs were tested as elements of
optrons. Ways of improving the magnetic sensitivity of
the structure were suggested in [2]. Current studies of
triacs are aimed, as arule, at optimizing the design and
process parameters and at improving the standard S
shaped input 1-V characteristic. However, atriac as a
device with embedded positive feedback exhibits the
duality of input and output characteristics. That is, an S
shaped |-V curve single-valued in current is dual to an
N-shaped input characteristic single-valued in voltage;
they may be brought into coincidence by reversing the
current and voltage axes [3]. Note that the formation
mechanism of the N-shaped input characteristic that
was suggested in [4] contradicts available experimental
data.

To refine the formation mechanism of the input
characteristic, we studied a planar diffused triac built
around an integrated modul e of two coplanar p;—y—P,—
n, thyristors. The thyristors were made in the bulk of
the semiconductor ng, and connected inversely parallel
to each other through an external wiring (the p, region
of one thyristor was connected to the n, region of the
other) [2]. The circuit consisting of the gate electrode
(p, region) and nearby power electrode (n, region)
forms the input; the output is the circuit made up of the
power electrodes (p; and n, regions). Since the triac
under study consists of direct and inverse thyristors, we
will analyze the physics and operation of only one of
them. The N-shaped input characteristic with an NDR
portion (Fig. 1b) arises in the cathode—gate circuit. In
thiscircuit, the current I' isafunction of the voltage U',
while the voltage U between the anode and cathode

serves as a control parameter. In the output S-shaped
characteristic (Fig. 1a), the voltage U is a function of
the output current I, while the current I' isa control cur-
rent.

Consider the formation of various parts of the input
characteristic in relation to the output characteristic.
Let the initial output characteristic be schematically
represented by curve 1in Fig. 1a, where AB is the load
curve corresponding to the bistable operation of the

Fig. 1. Schematic representations of the (a) output and
(b) input characteristics of atriac.
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Fig. 2. Experimental dependences of the (1) supply voltage

U and (2) peak current 1. onthe control voltage U.
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device. With a positive current I' applied to the gate
electrode, curve 1 passes to curve 2 and the thyristor
structure switches from the off to on (high-conductiv-
ity) state (from point A to point B along theload straight
line). In the input curve (Fig. 1b), the working point
moves in the direction shown by arrow 1. In this state,
all holes injected from the anodic p, region to the base
Ny reach the base p,. The mismatch between the value
of the positive voltage U' on the p,—, control junction
and the majority carrier concentration in the base p,
generated a current that is negatively directed in the
given case. Simultaneously, the input characteristic
exhibits a slight decrease in the forward current and a
peak. When the current I' through the control electrode
decreases, curve 2 of the output characteristic (Fig. 1a)
passes to curve 1. However, because of the bistable
operating mode, the thyristor remains on, since the cur-
rent through point B exceeds the holding current. This
causes the working point to move in the direction of
arrow 2 intheinput characteristic (Fig. 1b) and, accord-
ingly, causes the negative current to grow, since the
negative polarity of the voltage U’ on the p,—; junction
favors the drainage of holes. However, as the control
current |' decreases further, the output characteristic
achieves the state (Fig. 1a, curve 3) where the holding
current becomes greater than the current at working
point B. In this situation, the negative current of the

input characteristic reaches the maximal value | .

With the current |I' through the control electrode
decreasing still further, the thyristor structure switches
off (its state changes from point B to point A along the
load straight line A; Fig. 1a). The transfer of holes is
sharply reduced, and the negative current in the input
characteristic decreases (in the direction shown by
arrow 3in Fig. 1b) to the saturation current of areverse-
biased p—n junction.

BAKLANOV et al.

Thereturn to positive values of the voltage U’ across
the p,—n, contral junction follows arrow 4 (by analogy
with the travel of the working point in the output char-
acteristic upon switching off, when the back and for-
ward currents of the working point in the input charac-
teristic do not coincide). Then, the structure switches
on again, and the negative current I' simultaneously
increases (Fig. 1b, arrow 5).

Experimental data for the basic parameters of the
triac’s output characteristic at 20°C are showninFig. 2.
The threshold value of the control voltage U at which
the NDR portion appears was found to be 0.75 V. The
peak reaches the breakdown range at the control volt-
age U = 3.6 V. In this case, the maximum in voltage
changes from 0.75 to —8.8 VV and in current from O to
—18 mA. The output characteristic is readily controlla-

ble: the curves U, (U) and |, (U) are dmost linear
in most of the control voltage range.

Similar measurements taken from the second thyris-
tor incorporated into the triac gave identical results. It
should be noted that the N-shaped characteristicsin the
input circuits of both thyristors cannot be observed
simultaneoudly, since the control voltage polarity
makes possible the occurrence of this characteristic
only in one input circuit. Therefore, triacs seem to be
promising as voltage-polarity-sensitive devices: differ-
ent pairs of input electrodes may exhibit the N-shaped
|-V characteristic depending on the voltage polarity on
power electrodes.

Thus, we have shown that the formation of the N-
shaped portion in the input characteristics of atriac (or
in the input characteristic of either of the thyristors) is
explained by the unique correspondence between the
input and output |-V characteristics. This portion
results from the presence of the on and off statesin the
Sshaped output characteristic, which differ in their
degree of charge carrier transfer. The N-shaped charac-
teristic appears across one or the other pair of input
electrodes according to the polarity of the voltage
applied to the power electrodes.
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