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Criteria which guarantee the stability of self-gravitating gaseous and stellar disks toward any
localized small perturbations are obtained. These criteria are formulated as inequalities of the form
Q.Qc ~separately for gas and stars!. The latter should be satisfied by the ‘‘stability
parameter’’Q, which is equal, by definition, to unity on the stability boundary of radial
perturbations. The critical value of the stability parameterQc is appreciably greater than~although
of the order of! unity, attesting to the great instability of nonaxially symmetric perturbations.
It is shown that the stability criterion derived for gaseous disks is valid for disks rotating
within a spheroidal component~as in spiral galaxies! or in the field of a central mass~planetary
rings and accretion disks!. Stellar disks are stabilized with significantly greater difficulty.
This is attributable mainly to the anisotropy of the velocity distribution inherent to them, which
is favorable for instability. ©1997 American Institute of Physics.@S1063-7761~97!00109-1#

1. INTRODUCTION with the anisotropy adopted in Refs. 5 and 6 could not,
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The dynamic instabilities of gravitating systems a
studied for several reasons. First of all, the developmen
instabilities can result directly in the formation of differe
observable structural features~such as spiral arms of galax
ies, galactic bars, or a thin planetary ring structure!. The
ellipsoidal shape of elliptical galaxies also arises as a re
of instability.1 In some cases there is interest in equilibriu
states that are similar to some other, simpler states w
greater symmetry. As an example, we can cite the disk
tems in the theory of spiral structures,2,3 which examines
nonaxially symmetric equilibria~of spiral shape! that differ
slightly from the axially symmetric ‘‘background.’’ The
problem of finding such equilibrium states can be regar
as a special case of the problem of small fluctuations.
stability requirement often imposes fairly rigid constraints
the parameters of equilibrium systems. This is clearly illu
trated by the history of the interpretation of the anomalou
rapid increase in the luminosity of the stars at the cente
the spherical galaxy M87, which was discovered by Sarg
et al.4 ~similar ‘‘luminosity cusps’’ were subsequently foun
in several other galaxies!. The attempts to explain these da
within standard models that are isotropic near the ce
were unsuccessful. Sargentet al.4 suggested that there is
supermassive~with a mass of the order of 53109 M (! black
hole at the center of M87. Without assuming that the l
exotic explanations had been exhausted, Duncan
Wheeler5 considered the possibility of anisotropic equilibr
and showed that the effect observed can also be explaine
principle, by a fairly great dominance of the radial velociti
over the transverse velocities. This idea was subseque
developed in many papers by other investigators~see, for
example, Ref. 6!. However, it was found3 that the necessar
degree of anisotropy is so great that all the anisotropic m
els considered must be unstable. This assumption is attr
able to the instability of radial orbits~for further details, see
Ref. 1!, which leads to the transformation of the original
spherical system into an elliptical system. Therefore, syst
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fact, remain spherical~in contradiction of the observed
spherical shape of the isophotes!.

Disk systems are highly dynamic and are subject to v
ous instabilities. Spiral galaxies, accretion disks, and br
planetary rings~as around Saturn!, as well as such hypotheti
cal objects as protogalaxies and protoplanetary clouds,
classified as astrophysical disks. The strongly flattened, d
shaped form of all these objects is due to their ra
rotation.1! Thus, equilibrium is established in a simple ma
ner in such disks, i.e., it is governed mainly by the balan
between the centrifugal and gravitational forces. Howev
the use of the simplest model, i.e., an infinitely thin disk w
zero pressure, would be incorrect because of the strong
stability of such a disk. This follows formally from the loca
dispersion equation derived by Toomre,7 which relates the
frequencyv and the wave numberkr of a short-wavelength
axially symmetric~annular; see Fig. 1a! perturbation near a
certain arbitrary radiusr :

v25k2~r !22pGs0~r !ukr u, ~1!

where k(r )5A4V21r (V2) is the epicyclic frequency,
V(r ) is the angular velocity, (V2)8[dV2/dr ~as a rule, the
rotation is differential, i.e.,V8Þ0, andV8,0!, s0(r ) is the
surface mass density of the disk,G is the gravitational con-
stant, the perturbation is assumed to be proportional
exp(2ivt1ikrr), and the disk is oriented in thexy plane.
Such a form for the dispersion relation seems fairly straig
forward. WhenG50, i.e., when the self-gravitation of th
disk is neglected, we have, according to~1!, oscillations with
a frequencyk, i.e., epicyclic oscillations, and the equation

r̈ 1k2r 150

for a small perturbationr 1 of the radius of the initially cir-
cular orbit @r (t)5r 01r 1(t)# can easily be obtained by lin
earizing the equation of motion of a star

r̈ 52
dW

dr
,
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FIG. 1. Some examples of the evo
lution of self-gravitating disks: a—
axially symmetric~radial! perturba-
tions; b—evolution of an initially
cold ~with circular particle orbits!
disk; c—winding of a spiral pertur-
bation in a differentially rotating
disk; d—bar mode~elliptical defor-
mation! of a disk.
where the effective potential energyW5F01Lz
2/2r 2 ~F0 is
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the gravitational potential, andLz5rvw5const is the angula
momentum of the star!. It is easy to prove that in a coord
nate frame rotating at the rateV(r ) the perturbed motion o
particles takes place along small, azimuthally extended
lipses~epicycles! with the aspect ratio

b/a52V~r !/k~r !.1. ~2!

As is seen from Eq.~1!, self-gravitation leads to the instabi
ity of fairly small-scale perturbations: v2,0, if
ukr u.kT[k2/2pGs0 . Of course, this instability is physi
cally Jeans instability~for further details on Jeans instabilit
and its applications, see Refs. 2, 3, and 8!. The square of the
‘‘ordinary’’ Jeans frequencyvJ3

2 54pGr0(r ) @which should
have appeared on the right-hand side of Eq.~1! for a medium
that is infinite alongz, i.e., a cylinder with a bulk density
r0(r )# is replaced in the disk case byvJ2

2 52pGs0(r )ukr u.
The need for just such a replacement follows from dim
sionality arguments: The square of the frequency can be
structed in only one way from the three parameters at
disposalG, s0 , andkr ; i.e., vJ2

2 5const•Gs0(r)ukru, and the
value const52p corresponds to the fact thatvJ2

2 transforms
into vJ3

2 whenkr52p/h ~h is the half-thickness of the disk!.
Equation~1! can naturally be generalized to the dispe

sion relation~see, for example, Refs. 2 and 3!

v25k2~r !22pGs0~r !ukr u1kr
2cs

2 , ~3!

for radial perturbations of a thin disk with a finite two
dimensional pressureP'5*Pdz andPz50, whereP is the
ordinary gas pressure,cs is the velocity of sound, and
cs

25]P' /]s0 . As expected, whenkr is large, Eq.~3! degen-
erates to the dispersion relation for sound waves. Equa
~3! can be represented in dimensionless form as

v̄2512uk̄u1 k̄2Q2/4, ~4!

wherev̄5v/k, k̄5kr /kT , and

Q5kcs /pGs0 . ~5!

The behavior of the functionv̄25v̄2( k̄) for various values
of Toomre’s stability parameter2! Q is shown in Fig. 2. The
parameterQ is a combination of equilibrium parameters
the disk: the parametersk andcs , which promote stabiliza-
tion of the disk as they increase, appear in the numera
while s0 , which promotes destabilization as it increases,
pears in the denominator. Marginal curve2, which is tangent
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have curves of type1, on whichv2.0 ~stability! exists ev-
erywhere, and whenQ,1, we have curves of type3, for
which there is an interval (k̄1 ,k̄2) of unstable wave numbers

The principal factors regarding the stability of gravita
ing disks toward radial perturbations are as follows: in t
case stability or instability is determined by the value of t
single dimensionless parameterQ. Let us now turn to per-
turbations which destroy the original axial symmetry of
disk, i.e., which are proportional to exp(2ivt1ikrr1imw),
wherew is the azimuth, andm is an integer (mÞ0). These
perturbations, in contrast with annular perturbations, are s
ject to the influence of the differential character of the ro
tional motion. Figure 1c schematically illustrates the evo
tion of a spiral perturbation as a result of differenti
rotational motion. This evolution pattern is associated w
significant complications in the stability theory for nonax
ally symmetric perturbations~see below!. On the other hand
nonaxial perturbations are more unstable~and, therefore,
more interesting! than radial perturbations; more precisel
they are less amenable to stabilization. This, in particu
has been graphically demonstrated by numerous comp
(N-body! experiments. For example, the evolution of an in
tially ‘‘cold’’ disk ~with circular orbits for all the particles!
has been simulated repeatedly~see, for example, Ref. 9!; the
result of this evolution is schematically represented in F
1b: the disk breaks up into several fragments~which subse-
quently coalesce to form an elliptical disk with an appr
ciable percentage of radial particle motion!. As we can see,
other than annular perturbations dominate here. The do
nant role of the nonradial perturbations is manifested e
more graphically in numerical experiments with disks

FIG. 2. Dispersion curves for various disk perturbations.
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i.e., Q(r )[1, holds at each point. It has been foundthat
such disks remain unstable with respect to nonradial mo
~Fig. 1d!.

The complications arising in the construction of a stab
ity theory for nonaxisymmetric perturbations in a differe
tially rotating, gravitating disk are akin in many respects
problems known, for example, in the hydrodynamic theo
of stability. We shall focus on the local solutions near
certain radius r 0 , representing the angular velocity a
V(r )5V(r 0)1V8(r 0)(r 2r 0) and omitting the remaining
terms of the expansion in a Taylor series. Such an appr
mation is similar to the Couette approximation in the case
plane-parallel flow,v5vx5vx(y), where the linear law
vx(y)5vx(y0)1vx8(y0)(y2y0) is adopted. In the case o
incompressible Couette flow, the linearized problem
known to reduce to Rayleigh’s equation,11 and it then be-
comes impossible to satisfy the necessary conditions on
flow boundaries~or in the limit uyu→`!.12 Therefore, to
study the dynamics of the perturbations in such flows,
initial-value problem must be solved. A similar situatio
arises when local perturbations are considered in an inc
pressible rotating flow.13 It is easy to show that in thex
representation this problem also reduces to the Rayle
equation. Hence it follows that there are no characteri
solutions which vanish far from the location of a perturbati
because of the impossibility of satisfying the boundary c
ditions.

In the differentially rotating disks that we considere
local nonaxisymmetric irrotational3! perturbations likewise
cannot be characteristic in an approximation similar to
Couette approximation, i.e., under a linear law for the an
lar velocity V(r ) ~see Sec. 2.2 below!.4! To analyze the dy-
namics of a disk, an initial-value problem must be solved
the general case. However, the available information on
state and structure of the disk and on the initial level a
character of the perturbations is generally insufficient
such an analysis. In this situation approximate criteria, wh
define the possibility of an appreciable increase in the ini
perturbations and which depend only on the basic parame
of the disk, can be of great value. Below we propose a p
cedure for obtaining such criteria~which are similar to
Toomre’s criterion! for local nonaxisymmetric disk perturba
tions. More precisely, we shall limit the discussion to t
derivation of criteria which establish the impossibility of th
quasiexponential growth of perturbations. We note, howe
that a strong increase in the initial perturbation amplitu
occurs only in the presence of a sufficiently prolonged per
of quasiexponential growth~for further details, see the dis
cussion of Fig. 4 in Secs. 2 and 3 and especially in
concluding remarks!.

It turns out that just as the inequalityQ.1 ensures the
stability of a disk toward axially symmetric perturbation
arbitrary local perturbations are guaranteed not to grow
the following similar, but stronger inequality holds:

Q.Qc.1, ~6!

whereQc is a new critical value of Toomre’s parameter.
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calculateQc for gaseous~Sec. 2! and stellar~Sec. 3! disks.
For gaseous disks we use two models that have long b
considered standard: polytropic disks of finite thickness~Sec.
2.1! and an infinitely thin disk with a two-dimensional hy
drodynamic pressure~Sec. 2.2!. An expression for the criti-
cal value Qc

(g) , which is a function of the paramete
a252V(r )/r uV8(r )u that characterizes the degree of diffe
ential rotation of the disk at the pointr @see Eq.~18! below#,
is found in Sec. 2.2. This expression remains the same
disks with an arbitrary value of the adiabatic exponentg. The
results of this section were contained to a considerable
gree in a veiled form in Goldreich and Lynden-Bell’s work,14

where the stability of gaseous disks with differential rotati
was investigated for the first time. Real astrophysical g
eous disks~see the beginning of the paper! either occupy the
equatorial plane within a spheroidal component in a sp
galaxy or rotate in the field of a central mass~as do planetary
rings or accretion disks!; the equilibrium state is determine
not only by self-gravitation, but also by the gravitation
force outside of the disk. However, in Goldreich an
Lynden-Bell’s theory this external force is taken into accou
not entirely correctly~for further details see Sec. 2.1!. There-
fore, Goldreich and Lynden-Bell’s theory must be modifi
to take into account the real situation. A very simple mo
fication is considered in Sec. 2.2, where we investigate
stability of a model of an infinitely thin disk with a two
dimensional pressureP' . Here the part of the equilibrium
which is provided by the self-gravitation and the part whi
is provided by the masses outside of the disk become in
tinguishable. It is noteworthy that the stability criterion~6!
with the sameQc

(g)(a2) as for polytropic disks remains in
force in this case. Because this criterion remains unchan
when very different models are used, it can be presumed
it is universal: it is apparently valid for any gaseous disk.
Sec. 3 we analyze the local stability of stellar disks~in the
approximation which Julian and Toomre15 previously used to
investigate the evolution of initial perturbations!. It was
shown that the integral equation for the Fourier amplitude
the potential has solutions, whose behavior is qualitativ
similar to the behavior of the perturbations in a gaseous d
An approximate equation specifying the stability bounda
of a stellar disk is obtained. A numerical investigation of th
equation makes it possible to find the functionQc

(s)(a2), and
it turns out that the critical valuesQc

(s)(a2) are significantly
greater than the correspondingQc

(g)(a2). The reasons why it
is considerably more difficult to stabilize stellar disks th
gaseous disks are considered. A discussion of the results
be found in Sec. 4.

2. GASEOUS DISKS

2.1. Stability of polytropic disks of finite thickness

The first investigation of the behavior of local perturb
tions in differentially rotating, self-gravitating disks of finit
thickness was performed by Goldreich and Lynden-Bel14

The approach adopted by those investigators to the prob
is as follows.

419V. L. Polyachenko and E. V. Polyachenko



-

d

FIG. 3. Rotation with uniform dis-
placement of the angular velocity~a!
and accompanying Goldreich-Lynden
Bell coordinates~b!: 1—linear plot of
y8(t1dt)5const; 2—linear plot of
y8(t)5const; the arrows correspon
to the value of 2Axdt.
First of all, they introduce~Fig. 3! the coordinate axes
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x8, y8, and z8, which are associated with the unperturb
gas flow:

x85x, y85y22Axt, z85z, ~7!

wherex, y, andz define the local Cartesian coordinate fram
at a given point on the disk; thex axis is directed along the
radius, they axis is directed along the azimuth, and thez
axis is parallel to the ratio axis of the disk; an
A5rV8(r )/2. As a result, the problem reduces to the so
tion of a system of linearized hydrodynamic equations a
Poisson’s equation with coefficients that depend ont andz,
but do not depend onx8 and y8. At the same time, in the
original untransformed equations the coefficients depend
x and z, but not ont and y. Thus, the transformation~7!
permits the transition from inhomogeneity with respect tox
to inhomogeneity with respect tot. This makes it possible to
correctly examine the problem of the temporal evolution
perturbations that are proportional to exp(ikxx81ikyy8) with
the arbitrary constantskx andky . The inverse transformation
of this exponential function to the original (x,y,z) frame
gives

exp~ ikxx81 ikyy8!5exp@ iky~2tx1y!#, ~8!

where we have introduced the new ‘‘time’’ variable

t52At2kx /ky ;

t50 corresponds to the case in which the wave vector of
perturbation in the (x,y,z) frame is exactly parallel to they
axis ~the middle drawing in Fig. 1c!. The right side of the
figure shows that the radial component of the wave vector~in
the original coordinate system! varies with time according to
a linear law:

kr52kyt5kx22Akyt. ~9!

Next, making additional assumptions,5! Goldreich and
Lynden-Bell derived the evolution equations foru1* [s1 /s0

~s1 ands0 are, respectively, the perturbed and unperturb
surface densities! in two cases, viz., for disks with the adia
batic exponentsg52 andg51. In the case of an isometri
disk (g51) the equation for nonradial perturbations in t
notation of the original work in Ref. 14 is
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dt S 11t2D 1F ~11t2!2 1
11t2 Gu1* 50,

~10!

where

P85pGrc /A2,

1

g~m̄!
5

m̄~12m̄2!

11m̄1~1/2!m̄2C8~11m̄/2!
, ~11!

C8S 11
m̄

2 D5(
r 51

`
1

~m̄/21r !2 ,

m̄5kyA11t2/k0 , B5A1V, k0
252pGrc /c2,

andrc is the density of the disk in thez50 equatorial plane.
In this model the bulk densityr0(z)5rc /cosh2(z/z0), where
z05cs /A2pGrc. The analogous equation for the evolutio
of radial perturbations is somewhat simpler:

d2u1*

dt2 1FBV

A2 2
P8

g~mx!
Gu1* 50, ~12!

wheremx5kx /k0 . In the case of a disk withg52, the evo-
lution equations nearly coincide with~10! and ~12!, except
that, instead ofP8/g(m̄), they contain a somewhat differen
function P/F(K). HereP is a constant that is analogous
P8, F(K) is a function that replacesg(m̄), and
K5kyaA11t2, wherea is the half-thickness of the disk
The explicit form of this function, as well as the constantsP,
are not needed further. It is important that both functio
1/g(mx) and 1/F(K), have a maximum at a certain value
mx or K, respectively. For this reason, it follows from E
~12! ~and the analogous equation forg52! that under the
condition

BV

A2 >H P8 max@1/g~mx!#, g51,

P max@1/F~K !#, g52
~13!

radial perturbations are stable. Selecting the equality sig
the lower relation in~13! ~disks with g52!, Goldreich and
Lynden-Bell numerically solved an equation like~10! for
nonaxially symmetric perturbations in disks near the stabi
boundary of the radial modes. The solutions which we o
tained appear to be approximately as shown in Figs. 4a

420V. L. Polyachenko and E. V. Polyachenko
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FIG. 4. Evolution of nonaxially sym-
metric perturbations in gaseou
disks: a—Q251.5, a252 ~galaxy
with a flat rotation curve!; b—the
function b~t! corresponding to case
a; c—Q254, a252; d—the func-
tion b~t! corresponding to case c
e—Q251.5, a254/3 ~an accretion
disk with Keplerian rotation!; f—the
function b~t! corresponding to case
e; g—Q254, a254/3; h—the func-
tion b~t! corresponding to case g
The perturbations in a stellar disk be
have in a similar manner; however
these perturbations are stabilized
significantly greater values ofQ.
4e: at first we have oscillations with a small amplitude

e

io
om
on

In

As follows from the explanations and the data in the Intro-
-

e

it

r-
(u1* ) i , and then, after a certain timet1 , the perturbation
grows ~especially rapidly neart50!, and finally, after
t5t2 , oscillations with a significantly increased amplitud
(u1* ) f are established; the enhancement factor (u1* ) f /(u1* ) i

can reach values of the order of 103.
Goldreich and Lynden-Bell did not address the quest

of the existence of a certain condition which guarantees c
plete stability of a disk. Let us try to extract such informati
from Eqs. ~10! and ~12!. We first turn to Eq.~12!, which
describes the radial perturbations of an isothermal disk.
troducing the notation max@1/g(mx)#5c1 , we write the con-
dition of marginal stability in the form

k2

4pGrc
5c1 . ~14!
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n
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duction, it is natural to formulate Toomre’s stability param
eterQ as an equality to unity. In this case we clearly hav

Q5
k

A4pGrcc1

, ~15!

since, first, the parameterQ thus defined is proportional, as
should be, to kcs /pGs0 ~since s0;rch, and
cs /h;A4pGrc because the equilibrium alongz is assumed
to be the same as in an isolated disk! and, secondly, since
Q51 on the stability boundary of axially symmetric pertu
bations according to~14!. We note that in the case at handQ
depends on only two independent parameters~k andrc!. In
the general case~5! there are three such parameters~k, cs ,
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vided by the arbitrary nature of the mass ratio between
halo and the disk.

Let us now move on to nonaxial perturbations. Using
replacementu1* 5A11t2u(t) to eliminate the first deriva-
tive from Eq.~10!, we reduce it to the equation

ü1b~t!u50, ~16!

where the functionb~t! can be brought into the form

b~t!5~a42a2!2
2a2

11t2 1
3

~11t2!2 2
~a42a2!

Q2c1g~m̄!
.

~17!

Herea252V(r )/r uV8(r )u. The equalityb(t)50 separates
the quasiexponentially growing~for b,0! and oscillating
~for b.0! portions of the solutionsu~t! of Eq. ~16!. Let a2

be fixed. For example, leta252 in the case of a flat rotation
curve, whereVw5V(r )r 5const. Such rotation is characte
istic of most spiral galaxies. As can be shown, whenQ2'1
~as in Goldreich and Lynden-Bell’s calculations!, b~t! van-
ishes at two points~see Fig. 4!. However, at larger values o
Q2 ~and a2.3/2! b~t! is positive everywhere, as is see
from ~17!, so that perturbations never grow. This means t
the functionQa2

2
5Qa2

2 (t2m̄), which is defined according to
~17! on the basis of the conditionb50, has a maximum
~which depends only ona2! as a function of two variables~
t2 and m̄!. This maximum also specifies the critical valu
soughtQ5Qc , which guarantees complete stability of a di
~whenQ>Qc!:

Qc
25

3

2

a221

a223/2
. ~18!

Several remarks should be made regarding Eq.~18!.
1. The calculation ofQc

2 does not require knowledge o
the specific value (c1) of the maximum of the function
P8/g(m̄): It is sufficient to know only that this maximum
exists. In fact, the stability toward radial perturbations is d
termined, according to~12!, by the same functionP8/g(mx).

2. For the same reason,Qc also has the form~18! for
disks withg52.

3. In addition, it can be shown that the same express
~18! is valid for a disk with any adiabatic exponentg. Al-
though evolution equations can be obtained analytical14

only for g51 andg52, the functionPg /Fg(K), which re-
placesP/F(K) wheng52 or P8/g(m̄) wheng51, can be
calculated numerically for anyg. This was done in Ref. 17
where it was also shown that the functionsPg /Fg(K) ex-
hibit qualitatively identical behavior for allg ; in particular,
they all have a maximum at a certain value of the argum
Moreover, the existence of a maximum on anyPg /Fg(K)
curve is clearly seen from simple physical arguments. In f
the square of the frequency of the radial perturbations at
point r is

v25k22r 2~V8!2
Pg

Fg~kx!
. ~19!

As was noted above, radial perturbations, in contrast w
nonradial perturbations, have a purely Jeans nature. H
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curves in Fig. 2, through a minimum@and the function
Pg /Fg(kx) accordingly passes through a maximum# at
kxh;1, whereh is of the order of the disk thickness. In th
case of nonaxially symmetric perturbations the mechan
of gravitational ~Jeans! compression is no longer the onl
cause of instability: another mechanism, which is associa
with redistribution of the angular momentum of the syste
acts here. This mechanism was examined in detail, for
ample, by Lynden-Bell and Kalnajs18 ~see also Refs. 2 and
3!; the appearance of the terms that depend ont in Eq. ~17!
is associated with it. Thus, it has been shown in this sec
that a stability criterion like~6! with the critical valueQc

given by the universal formula~18! is valid for disks with
any adiabatic exponent.

4. We cannot ignore the presence of a singularity in E
~18!: Qc

2→` whena2→3/2. This circumstance means th
there is a certain region of quasiexponential growth of n
axisymmetric perturbations in disks having a decrease in
angular velocity with the radius at anyQ that is faster than
V}r 24/3. This finding can also be regarded, in a certa
sense, as evidence of the great instability of disks with
strong degree of differential rotation. In fact, however,
largeQ the width of the region of quasiexponential growth
very narrow, and its presence has virtually no influence
the evolution of the perturbation. We shall address this qu
tion again in the Conclusions.

2.2. Stability of an infinitely thin disk with a two-
dimensional hydrodynamic pressure

The starting system consists of the equations of tw
dimensional hydrodynamics and Poisson’s equation:

]s

]t
1div~sv!50,

]v

]t
1~v¹!v52¹F2

1

s
¹P' , ~20!

DF54pGsd~z!,

wheres is the surface mass density of the gas in the diskv
is the velocity of a gas element in the (x,y) plane,F is the
gravitational potential, andP' is the pressure of the two
dimensional gas. Writing the linearized hydrodynamic eq
tions ~20! in the polar coordinatesr andw, we obtain

v* m2
m

r
vw1

i

s0

]

]r
~s0v r !1

i

r
v r50,

v* v r22iVvw1 i
]S

]r
50, ~21!

v* vw1 i
k2

2V
v r2

m

r
S50.

Here it is assumed that the perturbed parameters are pro
tional to exp(2ivt1imw) ~m is a positive integer!;
m5s1 /s0 , s1 and s0 are, respectively, the perturbed an
unperturbed surface densities;v r andvw are the components
of the perturbed velocity;S5F11cs

2m; F1 is the perturbed
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gravitational potential; andv* 5v2mV5m(Vp2V)1 ig,

th

ll

-

,

e

re
h

2
a2

qm92
a2

m81
q21k2

S81
2q

S

n

t
and

in-
ali-
as
whereg denotes the small growth rate of the wave, andVp is
its angular velocity.

We introduce a local Cartesian coordinate frame near
corotation radius r 5r 0 @V(r 0)2Vp#: x5(r 2r 0)/D,
D5k/muV8u. In the first order with respect to the sma
parameterD/r 0!1 ~which is equivalent tom@16!! Eqs.~21!
take the form

zm2
kw

k
vw1

i

kD
1

i

r
v r850,

zv r2 i
2V

k
vw1

i

kD
S850, ~22!

zvw1 i
k

2V
v r2

kw

k
S50,

where z5v* /k5Rez1in, and kw5m/r 0 . Using the first
equation in~22! to eliminatevw from the remaining equa
tions of this system, we obtain

zv r1
a2

k2 v r82 i
a2

k2 zkDm1
i

kD
S850,

~23!

i
k2

a2 v r1 izv r81z2kDm2
k2

kD
S50,

where a252V0 /r 0uV08u, and, as it is easy to show
k25a42a2.

In ~23! we move over to the Fourier transforms of th
perturbed functions:

Aq5E
2`

`

dxe2 iqxA~x!. ~24!

In q space Eqs.~23! take the form

i S d

dq
1n D v rq1 i

a2

k2 qv rq

1
a2

k2 kDS d

dq
1n Dmq2

q

kD
Sq50, ~25!

2 i S d

dq
1n Dqv rq1 i

k2

a2 v rq

2kDS d

dq
1n D 2

mq2
k2

kD
Sq50.

We make the change in notationAq exp(qn)→Aq , which
is equivalent to writing Eqs.~25! without n. From ~25! we
find

v rq5
ikD

22a2~q21k2!/k2 Fmq92
a2

k2 qmq81
q21k2

k2D2 SqG .
~26!

Differentiating the latter expression and substituting the
sult into Eq.~25!, we obtain the following equation, whic
relatesmq andSq :

mq-1
a2

k2 q
42a2~q21k2!/k2

22a2~q21k2!/k2 S mq92
a2

k2 qmq81
q21k2

k2D2 DSq
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k2 q k2 q k2D2 q k2D2 q

1F22
a2

k2 ~q21k2!G S q

k2D2 Sq2
a2

k2 mq8D50. ~27!

It follows from Poisson’s equation in the approximatio
of the small parameterD/r 0 that

mq52
FqAq21k2

2pGs0D
, ~28!

so that

Sq5Fq~12aAq21k2!,

where a5ccs
2/2k2D2, and c5k2D/pGs0 . We can then

write Eq. ~27! in the form

a0Fq1a1Fq81a2Fq91a3Fq-50

or, using the notationai5a3bi and a352cAq21k2/2, in
the form

b0Fq1b1Fq81b2Fq91b3Fq-50, ~29!

where

b05qH 2

q21k222k2/a2 Fa2

k2 2
a2

q21k2 2
k2

~q21k2!2

1
2

c
Aq21k2~12aAq21k2!G2

3k2

~q21k2!3

2
a2

k2

32a2

q21k2 2
8

c

1

Aq21k2
~12aAq21k2!12

a

c J ,

~30!

b1512
2

c
Aq21k2~12aAq21k2!

1
3k2

~q21k2!2 2
2a2

q21k2 , ~31!

b25qS 3

q21k2 2
2

q21k222k2/a2D . ~32!

It can be verified by direct substitution that Eq.~29! with the
coefficients~32! can be factored in the form

S d

dq
1AD S d2

dq2 1BDFq50, ~33!

whereA5b2 and B5b1 . Such factoring, of course, is no
accidental: it corresponds to separation of the vortex
gravitational-sound branches of the disk modes. We are
terested only in the latter, since just this factor is a gener
zation of the Jeans branch for radial perturbations, which w
studied by Toomre~see the Introduction!; it corresponds to
the solutions of Eq.~33! which obey the equation

S d2

dq2 1BDFq50, ~34!

where

423V. L. Polyachenko and E. V. Polyachenko



B~q!512
2a2

1
3k2

2
2

Aq21k2

on

a
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b

th
na
th
E
l
of
e
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tio
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t
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it-

e
if

s.

e

q21k2 ~q21k2!2 c

3~12aAq21k2!. ~35!

Equation~34! can be regarded as a Schro¨dinger equation
with the potential energyU(q)52B(q) and the energy
E50. It is easy to see that the behavior of the functionU(q)
is such that there are no ‘‘good’’ solutions of this equati
which satisfy the natural conditions of decay asuqu→` ~be-
cause there is no well!; the only exception is the case of
cold disk (cs50). Therefore, we shall turn to an examin
tion of the problem~in the spirit of Goldreich and Lynden
Bell’s approach! of the evolution of a perturbation of form
~8!. This transition is accomplished by performing the su
stitution

krD5q52kwDt, ~36!

where kw5m/r , and t5rV08t2kr 0
/kw,0 @this substitution

has already been encountered above; see Eq.~9!#. Equation
~34! takes the form

d2F

dt2 1Fkw
2D22

2a2

11t2 1
3

~11t2!2 2
2A11t2~kwD!3

c

3~12aA11t2kwD!GF50. ~37!

We note that this equation could also be derived by
method used by Goldreich and Lynden-Bell, but an alter
tive derivation is proposed above. The first three terms in
square brackets coincide with the corresponding terms in
~17!, which was obtained by Goldreich and Lynden-Bel14

for Cauchy’s problem of the evolution of a perturbation
the form exp(2ikwtx1ikwy) ~in a local Cartesian coordinat
frame!. This coincidence is, of course, not accidental. T
fact that the problem can be reduced in the approxima
under consideration to the equation for oneq harmonic~34!
in itself calls for such a coincidence. The last two terms
Eq. ~37! differ from the terms corresponding to them in Go
dreich and Lynden-Bell’s equation~17!, since they are spe
cific to the model of an infinitely thin disk. Equation~37! can
be rewritten as

d2F

dt2
14A2B~q~ t !!F50, A5

r 0

2
uV08u. ~38!

We see that the behavior of the solution corresponds to
sign ofB: it oscillates~is stable! whenB.0 and has a grow-
ing mode~is unstable! whenB,0. The substitution

d2

dt2
→2v

*
2 52~v2mV0!2

in Eq. ~38! leads to a local dispersion relation, and the eq
tion B(q)50 is the condition for the absence of quasiexp
nentially growing perturbations. This condition can be wr
ten in the form

Q254S l̄2l̄21g2l̄42
3k2

4a4 g4l̄6D , ~39!
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where l̄5l/lc , l52p/Akw
21kr

2, lc54p2Gs0 /k2 is
Toomre’s critical wavelength, and g258a2/c2

58r 0u(V0
2)8ukw

2(pGs0)2/k0
6 ~we note here thatg2;m2!.

Equation~39! defines the functionQ2(l̄,g) for an assigned
a2 @i.e., for a fixed rotation curveV5V(r )#. Plots ofQ2(l̄)
for a252 and several values ofg ~which can be used to tak
into account the nonaxial character of a perturbation,
kw5m/rÞ0! are presented in Fig. 5b; wheng50, we have
the marginal curve for axially symmetric disk perturbation
All these curves have maxima atl̄5l̄m for all a2 and g2.
Moreover, the maxima for a givena2 at first increase with
increasingg2 and then decrease~Fig. 5b!. Therefore, the
functionQa2

2 (l̄,g2) has a~single! maximum as a function of
the two variables,l̄ andg ~l̄.0, g.0!. It follows from the
equality ]Q2/]g250 that g2l252a4/3k2. Substituting this
expression into Eq.~39! we obtain

Q254F l̄1S 1

3

a4

k2 21D l̄2G . ~40!

FIG. 5. Plots of the marginal stabilityQ2(l̄) for the hydrodynamic model of
a disk with a flat rotation curve (a252) and a two-dimensional pressur
according to the work of Lin and Lau19 or Bertin20 ~a! and according to our
work ~b!, as well as dependence of the critical valueQc

2(a2) for the maxi-
mum of the functionQa2

2 (l̄,g2) as a function of the two variables~c!.
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Differentiating the latter equation with respect tol̄ and set-
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a-
ting the derivative equal to zero, we find the critical value

l̄c5
1

222a4/3k2 5
3

4

a221

a223/2
,

which corresponds to the maximum

Q2~a2!5
3

2

a221

a223/2
. ~41!

In particular, whena252 ~which corresponds to a flat rota
tion curve!, Qc

253. This maximum is achieved whe
g2516/27 andl̄51.5, i.e., whenm52v0/3cs . A plot of
Qc

2(a2) is shown in Fig. 5c.
We note that repeated attempts to obtain a general

bility criterion for disks with a two-dimensional pressu
have previously been undertaken.19–21 They were made,
however, within the approximation of tightly wound spira
(s5kw /kr!1,) which has traditionally been used in all su
investigations. The inadequacy of such an approach ca
seen from the results of the theory itself. The stability cri
rion obtained in it can be written, for example, in the form

cs
2.c0

2@122s2r ~V2!8/k2#, ~42!

where c05const. It is seen from this equation that, ass2

increases, larger values ofcs are required to suppress th
stability. In this situation it is clear that the answer to t
main question in the theory, i.e., the conditions for the ex
tence of a completely stable disk, is beyond its scope.
course, it can be expecteda priori that perturbations with
s@1 (kw@kr) are stable, and that perturbations withs'1
are highly unstable.

Equation~39! can be compared with the analogous eq
tion of Lin and Lau,19 which was also derived in the approx
mation of tightly wound spirals,g2!1:

Q254@ l̄2l̄2/~11g2l̄2!#. ~43!

Although this equation was derived forg2!1, Lin and Lau
used it for g2'1. As expected, Eq.~39! and the equation
derived from~43! for small g2l̄2!1 coincide, but they do
not have anything in common wheng2l̄2'1. Plots ofQ2(l̄)
borrowed from Lin and Lau’s paper19 for several values ofg
are presented in Fig. 5a. It is seen that theQg

2(l̄) curves
described by Eq.~43! are monotonic and, for this reaso
alone, are incorrect. It should also be borne in mind that
evolution of each perturbation at any moment does, in f
take place in accordance with the instantaneous value o
radial wave numberq, which varies linearly with time. The
time when the region of unstable values ofq is intersected,
as well as the degree of enhancement, are constrained~and
are small nearQg5Qc!. When Qg.Qc , the enhancemen
region vanishes entirely; in this case ‘‘complete stability’’
a disk in the sense that perturbations do not grow~at least not
quasiexponentially! even during some constrained time inte
val can be guaranteed.

3. STELLAR DISKS

The problem of the evolution of a perturbation assign
at a certain initial timet5t0 was previously solved in a
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proximations as we shall use below~a local Cartesian coor
dinate frame, a linear law for variation of the angular velo
ity, etc.!. Several very interesting results were obtained in
paper just cited. Among them we can single out the conc
sion that any perturbations in differentially rotating stell
disks that satisfy Toomre’s criterion are asymptotica
stable. However, under the approach adopted in Julian
Toomre’s work it was not possible to obtain a useful tool f
investigating stability, such as a local dispersion relat
~this is accomplished in the present paper!.

As in Sec. 2.2, we use the model of an infinitely th
disk with a surface densitys5* f dv rdvw , where
f (r ,w,v r ,vw ;t) is the distribution function of stars in th
(r ,w) cylindrical coordinate system, andv r and vw are the
components of the velocity of a star in a reference fra
rotating with the angular velocityV(r ). The function f
obeys the equation

] f

]t
1v r

] f

]r
1S V1

vw

r D ] f

]w
1S 2

]F

]r
1V2r 12Vvw

1
vw

2

r D ] f

]v r
2S 1

r

]F

]w
1

k2

2V
v r1

v rvw

r D ] f

]vw
50.

~44!

Assuming that the equilibrium distribution functio
f 05A exp(2Q0) ~A5const,Q05v r

2/2cr
21vw

2/2cw
2), we lin-

earize ~44! by plugging in F5F01F1 (uF1u!uF0u) and
f 5 f 0(11c) (ucu!1) and going over to the dimensionles
velocities j and h, where v r5jV1 and vw5hV2

@V152VV0 /k, V25V0 , V05V(r )r #:

2 iv* c1 imVhc12
V0

2

k
r j

]c

]r
1kh

]c

]j

1
k

2V2r

]F1

]r

]Q0

]j
2kh

]c

]h
1

im

Vr 2 F1

]Q0

]h
50.

~45!

Here only the first-order terms with respect to the sm
quantitiesD/r 0 andcs /V0 have been left and the equilibrium
condition ]F0 /]r 5V r

2 has been taken into account. He
the perturbations are assumed to be proportional
exp(2ivt1imw).

Going over to the local Cartesian coordinate frame n
the corotation radiusr 5r 0 @V(r 0)5Vp , x5(r 2r 0)/D,
D5k/muV08u#, introducing the polar coordinatest and s in
the space of the velocitiesj5t coss and h5t sins, and
using the notation in Sec. 2.2, we obtain the following equ
tion for c :

]c

]s
1 izc2

t

d F ia2S 1

2
c1f

]Q0

]t2 D sin s1S 1

2

a4

k2

]c

]x

1
df

dx

]Q0

]t2 D cossG50, ~46!
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where we have introduced the notationd5D/r 0 and
2 s

si

s 5
s0 E`

dq8F h~q,q8!

ntial

he

r
-

n

e

ch
f5F1 /V0. In ~46! we go over to the Fourier transform
@cq5*2`

` dxc(x)e2 iqx#; in the new variablesp and q8
(q5q8 ands5p2q8! Eq. ~46! becomes

]cq

]q
1aqcq52b~q!, ~47!

where

a~q!5n1 i
ta2

2d
@sin~p2q!1qa2 cos~p2q!/k2#,

b~q!5 i
t

d
fq

]Q0

]t2 @a2 sin~p2q!1q cos~p2q!#.

The solution of Eq.~47!, which satisfies the conditioncq→0
asq→`, is

cq5exp@2F~q,p,t!#E
q

`

b~q8!exp@F~q8,p,t!#dq8,

~48!

where

F~q,p,t!5nq1 i
ta4

2dk2 @a2 cos~p2q!2q sin~p2q!#.

~49!

We introduce the variablesj5t cosp and h5t sin p.
Clearly,djdh5tdtdp5tdtds for a fixedq. In these vari-
ables

F~q,j,h!5nq1 i
a4

2dk2 ~j f j1h f h!,

f j5a2 cosq1q sin q, f h5a2 sin q2q cosq,

b~q,j,h!5 i
wq

2d S ]Q0

]h
f j2

]Q0

]j
f hD .

After some elementary calculations, the surface den
sq5V1V2*2`

` dj*2`
` dh f 0cq is obtained in the form

sq5
s0a4

4d2k2 E
q

`

dq8fq8h~q,q8!exp@n~q82q!

2xg~q,q8!#, ~50!

wherex5cr
2/2D2k2, and

h~q,q8!5 f j~q8! f h~q!2 f h~q8! f j~q!,

g~q,q8!5@ f j~q8!2 f j~q!#21@ f h~q8!2 f h~q!#2.

The functionsh, g, andsq can be brought into the form

h~q,q8!5~qq81a4!sin~q2q8!2a2~q2q8!

3cos~q2q8!, ~51!

g~q,q8!5q21q8212a422@~qq81a4!

3cos~q2q8!1a2~~q2q8!sin~q2q8!#,

~52!

426 JETP 85 (3), September 1997
ty

q k2D2
q

q8

3exp@n~q82q!2xg~q,q8!#. ~53!

The last equality specifies the density response to a pote
perturbation. Another relation betweensq and Fq is ob-
tained from Poisson’s equation:

sq52
FqAq21k2

2pGD
. ~54!

Introducing the notationc5k2D/pGs0 and equating the
left-hand sides of Eqs.~53! and ~54!, we obtain an integral
equation of the Volterra type for the Fourier amplitude of t
potential

c

2
FqAq21k252E

q

`

dq8Fq8K~q,q8!exp@n~q82q!#,

~55!

where the kernel is defined by the formula

K~q,q8!5h~q,q8!exp@2xg~q,q8!#. ~56!

It follows from the obvious properties of the kernel~56!,
viz., K(q8,q)52K(q,q8) and K(2q,2q8)52K(q,q8),
that Eq.~55! has either even or odd solutions.

It can be shown forx50 that the integral equation~55!
reduces to a differential equation that coincides with Eq.~34!
when a50, i.e., in the case of a cold gaseous disk. Fox
Þ0 the integral equation~55! cannot be reduced to a differ
ential equation.

Replacingq by 2kwDt, as in~9! or ~36!, we obtain the
evolution equation forFt[Fq (q52kwDt):

c

2
A11t2Ft1E

2`

t

dt8Ft8K̄~t,t8!50, ~57!

where we have introduced the notatio
K̄(t,t8)5K(q52kwDt,q852kwDt8) and, for brevity,
have omitted the term containing the small parametern in
the exponential function. To derive a stability criterion, w
consider solutions of Eq.~57! of the form exp(2ibt), and we
then obtain

c

2
A11t21E

0

`

dt e2 ibtK~t,t2t !50, ~58!

or, going back fromt to q, we obtain

c

2
Aq21k21E

0

`

dt e2 i tzK̄~ t,q!50, ~59!

whereK̄(t,q)5K(q8,q), andq2q85t. This relation is the
dispersion relation which we are seeking, in whi
z5b/kwD,

h~ t,q!5a2t cos t2~q22qt1a4!sin t,

g~ t,q!5t212~q22qt1a4!~12cos t !22a2t sin t.

The solution of Eq.~58! gives the local~instantaneous! value
of the frequencyb, and the integral~true! dependence ofFt

can be represented qualitatively in the form22

Ft'exp@2i*t0

t b(t8)dt8#. We note thatx5Q0
2g2/4a2, where
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now Q05kcr /2pGs0 . For convenience in making a com-
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parison with the results in Sec. 2.2, we introduce the nota
l̄5l/lc andu25(112/g2l̄2)/a2. Thenq5a2Au221, and
q21a45a4u2. Using these relations, we rewrite the dispe
sion relation~59! in the final form

11l̄g2Rz50, ~60!

where

Rz5E
0

`

dt e2 i tzH~u2,t !,

H~u2,t !5F1

2
t cos t1S 1

2
tAu2212

a2

2
u2D sin t G

3expH 2Q0
2g2F t2

4a2 1S a2

2
u22

1

2
tAu221D

3~12cos t !2
1

2
t sin t G J .

Whenz50, from Eq.~60! we find the sought-for crite-
rion of marginal stability@the Q0

2(l̄) curve#:

f ~ l̄,Q0
2!511l̄g2R050,

~61!

R05E
0

`

dtH~u2,t !.

It follows from the conditionu2.1 ~q is then real! that
0,l̄<A2/g2(a221)[l̄g, and that the marginal stability
curveQ0

2(l̄) lies in the range (0,l̄g).
We shall show that in the limitg→0 Eq. ~61! coincides

~as it should! with the marginal stability criterion derived b
Toomre7 for radial perturbations of a stellar disk. We intro
duce the notationz[Q0

2/l̄2. We can then write Toomre’s
marginal stability criterion7 for axisymmetric disk perturba
tions in the form

l̄z512e2zI 0~z!, ~62!

whereI 0(z) is a modified Bessel function. For smallg

H~u2,t !'2
a2

2
u2 sin t

3expF2Q0
2g2S t2

4a2 1
a2u2~12cos t !

2 D G .
Since herea2g2u2/2'l̄22, the stability criterion~61! can be
written for smallg in the form

12
e2z

l̄z
E

0

`

dt sin t exp~2«t21z cos t !50, ~63!

where we have introduced the notation«5Q0
2g2/4a2

(«→0). Integrating~63! in parts, we obtain

l̄z512exp~2z!R« ,

where

R«52«E
0

`

dt t exp~2«t21z cos t !. ~64!
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Since R05I 0(z), we do, in fact, obtain Toomre’s stability
criterion ~62! for «→0.

The solutions of Eq.~61! for a flat rotation curve
(a252) were found numerically for differentg ~Figs. 6a and
6b!. It is seen that a critical value (Q0

2)c is also obtained here
for a certaing, by analogy with the case of a gaseous di
Figure 6c presents a plot of (Q0

2)c(a
2). If the disk param-

etersa2 and Q0
2 are represented by a point in the (a2,Q0

2)
plane lying above the (Q0

2)c(a
2) curve, the corresponding

model will be stable toward all small perturbations in t
plane of the disk. We note that for a disk rotating as a so
body (a2→`) the critical value (Q0

2)→0 ~in a gaseous disk
the correspondingQc

2→3/2!. In addition, here (Q0
2)c→` as

a2→1 ~while in a gaseous diskQc
2→` asa2→3/2!.

The relationship betweenQ0 and Toomre’s instability
parameterQ5kcr /3.36Gs0 ~which is equal to unity at the
stability boundary of radial perturbations! has the form

FIG. 6. Plots of the marginal stabilityQ0
2(l̄) for a stellar disk with a flat

rotation curve (a252) andg50.1, 0.45, 0.50~a! or g50.55, 0.84, 1.414
~b!, as well as the dependence of the critical value (Q0

2)c(a
2) for a stellar

disk ~c!.
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Q52pQ0/3.36; accordingly, for a flat rotation curve
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(a 52), where (Q0)c'2.85, we haveQc'3.15. The latter
value is consistent with the results of Toomre’s23 numerical
(N-body! experiments with stellar disks: according to h
data, the disks became completely stable specifically w
Q>3.

It is striking that the values ofQc are significantly higher
for stellar disks than for gaseous disks. For example, in
case of a flat rotation curve (a252), which is most impor-
tant for galaxies, these values ofQc are equal, respectively
to) and'3. We mention one, probably the main, cause
the great instability of nonaxially symmetric perturbations
stellar systems. It is that a differentially rotating stellar dis
in contrast with a gaseous disk, which is always isotropic
colder in the azimuthal direction and is, therefore, more
stable in the ‘‘Jeans’’ sense. This follows from the know
relation ~which is attributed to Lindblad24! between velocity
dispersions in the radial (cr) and azimuthal (cw) directions:

cr5
2V~r !

k~r !
cw.1 ~V8,0!. ~65!

The simplest way to prove the correctness of relation~65! is
as follows. The distribution functionf 0 of stars in an equi-
librium disk must satisfy the kinetic equation~in cylindrical
coordinates!

v r

] f 0

]r
2

]F0

]r

] f 0

]v r
1

vw
2

r

] f 0

]v r
2

v rvw

r

] f 0

]vw
50, ~66!

whereF0 is the equilibrium gravitational potential. The dis
tribution function of a cold disk f 0 is proportional to
d(v r)d(vw2Vr ), whererV25dF0 /dr. Let us now repre-
sent the distribution function of a disk system with nea
circular stellar orbits in the form of a formal series ind
functions and their derivatives with respect to the argume
v r andvw2Vr :2,3

f 05a1d~v r !d~vw2Vr !1b1d8~v r !d~vw2Vr !

1b2d~v r !d8~vw2Vr !1c1d9~v r !d~vw2Vr !

1c2d8~v r !d8~vw2Vr !1c3d~v r !d9~vw2Vr !.

~67!

Substituting~67! into ~66! and setting the coefficients in var
ous combinations of derivatives of thed functions equal to
zero, we obtain a system of equations, one of which
c35k2c1/4V2, which is equivalent to~65!, since, clearly,
c15s0cr

2/2 andc35s0cw
2/2 ~s0 is the surface density at th

point r !. We note that the inequality~65! is analogous~and
apparently opposite! to the equation presented at the beg
ning of this paper for the aspect ratio of an epicycle@Eq.
~2!#.7! We also note that the argument that the Lindblad
lation between the velocity dispersions can be the caus
the great instability of the ‘‘oblique’’ modes in differentiall
rotating collisionless disks was previously advanced
Hunter25 ~however, no general stability criteria were prev
ously derived!.
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We have thus obtained the criteria for the local stabil
of perturbations in gaseous and stellar disks. These crit
are conveniently formulated in terms of Toomre’s stabil
parameter, which, by definition, is equal to unity on the s
bility boundary of radial perturbations. It has been found th
the stabilization of arbitrary perturbations requires a value
Q greater than a certain critical valueQc, and thatQc is
significantly greater than unity; i.e., it can be stated that p
turbations which destroy the original axial symmetry of
disk are more unstable than radial perturbations. In addit
the values ofQc for stellar disks are appreciably greater th
the values for gaseous disks. One, probably the main, ca
of the great instability of stellar systems was considered
the end of the preceding section.

The earlier attempts19–21were unsuccessful, because t
authors restricted their analysis to the approximation
tightly wound spirals (kr@kw). The attempts to extend th
results thus obtained to perturbations withkr'kw andg2'1
were futile: they led to conclusions which are qualitative
incorrect ~compare Figs. 5a and 5b!. The interpretations of
the local dispersion equation, as well as the marginal sta
ity conditions that we gave at the end of Sec. 2.2, of cou
differ from the usual interpretation. We obtained sufficie
stability criteria, which guarantee the absence of any~even a
small! time interval of quasiexponential perturbation growt
These stability criteria are clearly more than sufficient, sin
perturbations scarcely grow nearQ5Qc . At the same time,
under the usual interpretation of the marginal curve as
boundary of exponential instability, it is assumed that u
stable perturbations can grow at an unlimited rate afte
sufficiently long time even near the stability boundary.

Returning to Fig. 4, which presents the solutions of t
evolution equation~37!, we note that, in general, a perturb
tion can grow for two reasons: 1! due to the presence o
intervals (t1 ,t2) of quasiexponential growth, where th
square of the characteristic frequency is negative,
v25b,0, and 2! due to a decrease inb ~at t,0!. If we use
an estimate that is rigorous when the adiabatic invarian
conserved (I 5E/v5const), the variation of the amplitudea
due to the second factor follows the lawa}1/Av. This
mechanism remains the only one in cases in which ther
no interval with quasiexponential growth~as in Fig. 4c!. We
note, however, that a significant increase in the perturba
amplitude occurs only if there is a quasiexponential interv

At first glance, it appears that a determination of t
conditions under which perturbations are enhanced by a
tain factor would be more appropriate in the situation d
scribed. It is natural to proceed in this way in cases where
level of the initial perturbations is known~it is most often the
level of thermal fluctuations!. There is no such certainty in
the problems which interest us: in real gravitating syste
perturbations which greatly surpass the thermal fluctuati
can appear for many reasons~for example, as a result o
tides!.

Of course, global modes can be analyzed only by
merical methods of a different kind or~analytically! in the
case of a very small number of ultrasimplified models li
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solid-body disk rotation.2,3 However, having simple local
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lem ~as well as its formulation! can be found in the work of Fridman and
Khoruzhi�.16 Another deficiency of Goldreich and Lynden-Bell’s theory is
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th
stability criteria, we can also confidently predict the prop
ties of global modes. Unfortunately, the only disks that ha
heretofore been systematically studied~disks with uniform
rotation! are least suitable for comparison with our loc
analysis ~for example, the characteristic scale that w
adoptedD→` whenV8→0!.

In conclusion, we note that in our study we restricted
analysis to a treatment of perturbations which are symme
with respect to thez50 equatorial plane of the disk~which
do not cause it to bend!. These perturbations are associat
with such phenomena as, for example, the appearance o
spiral structure of galaxies. Nevertheless, a flexural insta
ity, which is similar to the hose instability in hydrodynamic
and plasmas,26 can develop in stellar disks. It also plays a
important role. For example, this instability imposes ve
significant constraints on the maximum possible degree
flattening of equilibrium systems, such as elliptical galaxi
The theory of hose instability in gravitating systems w
presented in detail in Refs. 2 and 3.

We thank the referee for several important comme
that allowed us to improve the quality of this paper.
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1!In principle, for collisionless systems, such as strongly flattened cluste
galaxies, elliptic galaxies, or the central regions of the stellar compon
of disk galaxies, this is not the only possibility: in this case the disk sh
can be partially~or even completely! attributed to the anisotropy of the
pressures in the rotation plane and in the direction perpendicular t
However, most astrophysical disks are highly flattened mainly as a re
of rapid rotation. In this paper we restrict the analysis to such disks~for
more details on the alternative possibilities see Refs. 2 and 3!.

2!Actually, Toomre7 defined Q somewhat differently:Q5kcr /3.36Gs0 .
Just this quantity is equal to unity on the stability boundary of rad
perturbations of stellar disks, which were considered by Toomre~cr is the
dispersion of the radial velocities of the stars!. For further details, see Sec
3.

3!More precisely, this refers to perturbations which maintain a general
vortex (curlz v/s)150.

4!As is widely known, the characteristic solutions of the Rayleigh solut
can exist providedv0950 anywhere within the flow region. In the case of
rotating flow of a gravitating compressible gas considered by us, a sim
condition may be required for the existence of characteristic solutions

5!We note that the approach of Goldreich and Lynden-Bell utilizes sev
assumptions, which unavoidably render the results obtained approxi
~we, however, believe that the exact results, which require a significa
more complicated derivation, do not differ strongly from the results
tained by Goldreich and Lynden-Bell14 and by us in this paper!. First of all,
we are dealing with the use of an approximation of the vertical equi
rium: it is assumed that the dependence of the perturbed density onz is the
same as for the unperturbed density. The exact mechanisms for the e
lishment of equilibrium alongz in real astrophysical disks should be take
into account by a detailed theory in the future. A discussion of this pr
429 JETP 85 (3), September 1997
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the use of the formulas for an isolated disk to describe the equilibr
alongz: this actually means that the external halo is assumed to be cy
drical ~while it would be more natural to assume that it is spheroidal!.

6!Thus, our approximation is formally not applicable whenm'1 ~which is
usually the case for global galactic spiral modes!.

7!The contradiction between Eqs.~65! and ~2! is only apparent. It is due to
the fact that in the former case the perturbed azimuthal velocity is m
sured relative torV(r ) ~which has a different value at each pointr !, and in
the latter case it is measured relative tor 0V(r 0), wherer 0 is the position
of the center of the epicycle.
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Spin state tomography

fol-
V. I. Man’ko and O. V. Man’ko
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A scheme for measuring the quantum state for an arbitrary spin is proposed that is analogous to
the symplectic tomography scheme used to measure quantum states associated with
continuous observables such as position and momentum. An invariant form for the spin state
density operator is derived in terms of an integral, over the angles which specify the
quantization axis, of a product of the measured probability of the values of the spin along a
chosen direction and spherical harmonics summed with Clebsch–Gordan functions. ©1997
American Institute of Physics.@S1063-7761~97!00209-6#
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In quantum mechanics there is a radical change in
concept of the ‘‘state of a system’’ compared to classi
mechanics.1 The state of a quantum mechanical system
described either by a wave function2 ~for pure states! or by a
density matrix3,4 ~for mixed states!. From the very beginning
of the development of quantum mechanics, attempts h
been made to explain5–7 it ‘‘classically,’’ but without suc-
cess. The Wigner function,8 as well as the Glauber–
Sudarshan P-distribution9,10 and the Husimi–Kano
Q-function,11,12 have been introduced in attempts to bri
the description of quantum states in terms of the languag
the density matrix closer to a classical description that
volves a comparison to the state of a positive normali
probability distribution function of the measured quant
~for example, position or momentum!. All of these functions
depend on the variablesq andp and are normalized, and fo
individual quantum states~e.g., of an oscillator at tempera
tureT) they are similar to the classical distribution functio
in phase space. Obviously, however, none of them is a p
ability distribution, since the uncertainty relations for po
tion and momentum do not allow simultaneous measu
ments of these conjugate variables, so that for a quan
mechanical system~e.g., an oscillator!, no phase space dis
tribution function exists. For this reason, the Wigne
Glauber–Sudarshan, and Husimi–Kano functions, wh
specify a fully mixed quantum state and are related to
another and to the density matrix in the position represe
tion by invertable integral transforms, have been referred
as quasidistributions.

Quasidistributions differ significantly from probabilit
distributions. In particular, the Wigner function, which is
real function, can take negative values, so it cannot b
distribution function, which can only take nonnegative v
ues. The Husimi–Kano function is normalized and on
takes nonnegative values, but its argumentsq andp are not a
simultaneously measurable position and momentum; th
this function is also a quasidistribution. Nevertheless, it tu
out that a quantum state of a system can be described
only by quasiprobabilities, but also by legitimate probabil
distribution functions.

The measurable quantities in quantum mechanics
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lowing physical statement of the problem is also possib
how can the quantum state itself of a system~i.e., the Wigner
function, density matrix! be measured? In solving this prob
lem, it has been possible to show that the state of a quan
mechanical system can be specified not only by a quas
tribution such as the Wigner function, but also by actu
probability distributions. These distributions are referred
as marginal distributions, since besides depending on a
dom physical quantity, they depend on additional parame
that describe different reference frames in the classical ph
space of the system.

The problem of measuring quantum states has b
widely studied of late, both theoretically and experimenta
Thus, a relationship was found13,14 between the Wigner
function8 and the measured marginal probability distributi
for a homodyne observable, which is a coordinate that
been rotated by a specified angle in the phase space o
system. The Wigner function of a one-dimensional system
expressed in terms of this measurable normalized pos
distribution function using the Radon transform~with inte-
gration over the rotation angle in phase space! employed in
conventional medical tomography. For this reason,
scheme for measuring the quantum state for a continu
observable such as position or momentum is referred to a
optical tomography scheme, and this scheme has been
in experiments to reconstruct the quantum state of an e
tromagnetic wave mode15 and in molecular spectroscopy.16

The optical tomography scheme was modified17,18 to a
symplectic tomography scheme that uses a measureme
the normalized and positive distribution function for a co
tinuous observable that is the position measured, not in
frame of reference in phase space, but in an ensembl
frames of reference related to one another by linear trans
mations involving rotations and changes of scale, in orde
reconstruct the quantum state. In this scheme, referred t
symplectic tomography, the Wigner function is recover
from the experimental data using a Fourier transform, rat
than a Radon transform, and this made it possible to ge
alize symplectic tomography to multimode systems.18

The optical tomography scheme was formulated19 in an
invariant form that is independent of the quantum mecha
cal representation employed. An expression for the den

4300-05$10.00 © 1997 American Institute of Physics



operator~and not just for the Wigner function! is obtained in
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2. DENSITY MATRIX AND MARGINAL DISTRIBUTION
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terms of the measured probability distribution. An invaria
expression for the density operator in symplec
tomography18 is used20 to obtain a ‘‘classical’’ equation
~equivalent to the Schro¨dinger equation for the wave func
tion! for the temporal evolution of a quantum state describ
by a positive marginal distribution~of a continuous observ
able!.

One more modification of the tomographic method
measuring the quantum state has been examined.21–23 The
proposed scheme involves measuring the distribution ov
discrete number of quanta~photons! in the mode being con
sidered, which depends further on the controlled phase
amplitude of an external classical field superimposed o
signal field that is in a quantum state. The reconstruction
even and odd coherent states of ions24 in a trap25 has been
discussed.26–30States of this type have been realized expe
mentally for ions in traps31 and for modes of the electromag
netic field in a microcavity.32

Spin, on the other hand, is a purely quantum mechan
entity with no classical limit. Its states are usually describ
by spinors. The following physical question is also importa
for this specifically quantum mechanical quantity: how c
we measure the quantum state of a spin degree of freed
An attempt has been made to introduce a description of
states of a discrete quantum mechanical observable suc
spin using a classical distribution.33 A scheme for coupling
the spin density matrix with an observable marginal distrib
tion for an arbitrary spin has been discussed briefly34 by
analogy with papers on optical and symplectic tomograp
in the noninvariant form,13,14,17and using a group theoretica
treatment of the tomographic schemes.23,25

The goal of the present paper is to derive in detail a
analyze a method for the tomography of spin states that
formulated briefly in an earlier paper,34 and to obtain an
invariant expression for the density of states operator of
arbitrary spinj in terms of the measured probability of th
projection of the spin in any direction. This density opera
will be expressed in terms of an integral over solid angle
the measured distribution, which depends further on the
angles that specify this direction, and a standard opera
which depends on spherical harmonics, and therefore
these angles. Although this expression is analogous to
Radon transform for optical tomography, it differs substa
tially from it. Thus, in tomographic methods for measuring
quantum state that employ invertable integral transforms
the density matrix and of the measurable probability dis
bution function~marginal distribution!, it is assumed implic-
itly that the state of the quantum system can be specified
by the density matrix, but by the probability distributio
function of the measurable quantity. This definition of
quantum state is discussed explicitly elsewhere.36,37 Never-
theless, the discussion of the tomography of quantum st
has been associated with measurements of quantities like
sition, which have a classical limit.
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In this section we introduce a family of positive norma
ized probability distributions for the projection of the spi
and show that the density matrix of an arbitrary spin st
can be expressed in terms of it.

Let us consider a state, for arbitrary spinj , which is
described by a hermitian density matrix with matrix eleme
rmm8

( j ) corresponding to the density operatorr̂( j ) in a basis of
eigenvectorsu jm& for the projection of the spin and th
square of the spin along thez axis, i.e.,

ĵ 3u jm&5mu jm&, ĵ 2u jm&5 j ~ j 11!u jm&, ~1!

where j is a half-integral or integral non-negative numb
andm52 j ,2 j 11, . . . ,j 21,j . We have

^ jmur̂ ~ j !u jm8&5rmm8
~ j ! ,

r̂ ~ j !5 (
m52 j

j

(
m852 j

j

rmm8
~ j ! u jm&^ jm8u. ~2!

The diagonal elements of the density matrix specify the d
tribution function of the spin along thez axis ~in states with
a density operatorr̂ ( j )!,

rmm
~ j !5v0~m!, ~3!

with the normalization condition

(
m52 j

j

v0~m!51. ~4!

In a reference frame rotated relative to the initial frame su
that the rotation is specified by the Euler anglesa, b, andg,
the distribution of the projectionsm1 of the spin on the new
axis z8 is given by

ṽ~m1 ,a,b,g!5 (
m1852 j

j

(
m2852 j

j

Dm1m
18

~ j !
~a,b,g!

3rm
18m

28
~ j !

Dm1m
28

~ j !*
~a,b,g!. ~5!

In this formula the matrix elements of the irreducible rep
sentation of the rotation group are specified by the Wig
D ( j ) function,3

Dm8m
~ j !

~a,b,g!5eim8gdm8m
~ j !

~b!eima, ~6!

where

dm8m
~ j !

~b!5F ~ j 1m8!! ~ j 2m!!

~ j 1m!! ~ j 2m!! G1/2

3S cos
b

2 D m81mS sin
b

2 D m82m

3Pj 2m8
~m82m,m81m!

~cosb! ~7!

andPn
(a,b)(x) is the Jacobi polynomial.

The Wigner functionDm8,m
( j ) has the property

Dm8m
~ j !* ~a,b,g!5~21!m82mD2m82m

~ j !
~a,b,g!. ~8!
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Since in Eq.~5! we have the product of a matrix element of
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The quantities on the right-hand side of Eq.~11! are the
-

e

the representation of the rotation group and the complex c
jugate matrix element belonging to the same row, it follo
from Eq. ~6! that there is no dependence ong. Thus, the
distribution function in Eq.~5! depends only on the two con
tinuous rotation parametersa andb, i.e., it is a function of a
point on the unit sphere. Hence, we introduce the notatio

v~m1 ,a,b!5ṽ~m1 ,a,b,g! ~9!

for this distribution function and can write down the norma
ization conditions

(
m152 j

j

v~m1 ,a,b!51. ~10!

As an example, forj 51/2 and a state with spin along th
z axis equal tom151/2, the spin wave function is the spino

c11/25S 1
0D

and the density matrix of this state has the form

r15S 1 0

0 0D .

The distribution function associated with this state
m151/2 is

vS 1

2
,a,b D5cos2

b

2
.

The corresponding value of this function for the state with
projected spin ofm1521/2 is

vS 2
1

2
,a,b D5sin2

b

2
.

The distribution function~5! is a diagonal matrix ele-
ment of the rotated spin density matrix~or density matrix of
the spin state viewed from a rotated reference frame!. Our
problem is to obtain an expression for the density matrix
the state with matrix elementrmm8

( j ) in terms of the distribu-
tion function~9!. To do this we multiply both sides of Eq.~5!

by D0m3

( j 3)(a,b,g) ~i.e., by a spherical harmonic3! and inte-

grate the equation over the Euler angles after first subst

ing for Dm1m
28

( j )* (a,b,g) using Eq. ~8!. The spin j 3 for the

functionD0m3

( j 3)(a,b,g) is an integer. Here we use the know

integral of the product of three WignerD-functions over the
rotation group,3

E D
m

18m1

~ j 1!
~v!D

m
28m2

~ j 2!
~v!D

m
38m3

~ j 3!
~v!

dv

8p 2

5S j 1 j 2 j 3

m18 m28 m38
D S j 1 j 2 j 3

m1 m2 m3
D . ~11!

In this formulav denotes the set of three Euler angles an

E dv5E
0

2p

daE
0

p

sin b dbE
0

2p

dg. ~12!
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Wigner 3j -symbols given explicitly in Ref. 3. We thus ob
tain

E ~21!m1v~m1 ,a,b!D0m3

~ j 3!
~a,b,g!

dv

8p 2

5~21!m28rm
18m

28
~ j ! S j j j 3

m1 2m1 0 D
3S j j j 3

m18 2m28 m3
D . ~13!

Equation ~13! is a linear system of equations for th
unknown matrix elementsrm

18m
28

( j )
. To solve this system we

use the following properties of the 3j -symbols:3

~2 j 11! (
m152 j 1

j 1

(
m252 j 2

j 2 S j 1 j 2 j

m1 m2 2mD
3S j 1 j 2 j 8

m1 m2 2m8
D 5d j j 8dmm8 , ~14!

and

(
j 5u j 12 j 2u

j 11 j 2

(
m52 j

j

~2 j 11!S j 1 j 2 j

m1 m2 2mD
3S j 1 j 2 j

m18 m28 2mD 5dm1m
18
dm2m

28
. ~15!

Multiplying Eq. ~13! by the 3j -symbol

S j j j 3

m1 2m1 0 D
and summing with the aid of Eq.~14! over the numbersm1,
we obtain

~2 j 311! (
m152 j

j E ~21!m1v~m1 ,a,b!D0m3

~ j 3!
~a,b,g!

3S j j j 3

m1 2m1 0 D dv

8p 25~21!m28rm
18m

28
~ j !

3S j j j 3

m18 2m28 m3
D . ~16!

Now multiplying Eq.~16! by the number

~2 j 311!S j j j 3

m18 2m28 m3
D

and summing over the projected spinsm3 and the total spin
j 3 using Eq.~15!, we obtain

(
j 350

2 j

(
m352 j 3

j 3

~2 j 311!2

3 (
m152 j

j E ~21!m1v~m1 ,a,b!D0m3

~ j 3!
~a,b,g!
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3S m1 2m1 0 D S m18 2m28 m3
D 8p2

5~21!m28rm
18m

28
~ j ! . ~17!

This relation is the solution of the stated problem. Sin
the functionD0m3

j 3 (a,b,g) is a spherical harmonic that de

pends on only two of the Euler angles,a andb, Eq.~17! can
be used to obtain an expression for the density matrix of
spin state in terms of an integral over the sphere of the p
uct of the probability of the spin’s having a projectionm1 in
the direction normal to the sphere at the point with angu
coordinatesa,b and a spherical harmonic, followed by sum
mation over the projections of the spin and the possible
ues of the total spin. Equation~17! has been obtained in
other notation in Ref. 34. We have therefore shown that
only the density matrix, but also a marginal distribution c
specify a mixed spin state. Consequently, we claim tha
quantum mechanical spin state is specified, given the p
ability of the projection of the spin in a selected directio
v(m1 ,a,b), measured in all arbitrarily rotated coordina
systems.

3. INVARIANT FORM OF SPIN TOMOGRAPHY

Equation~17! can be given an invariant operator form b
using Eq.~2!. We systematically introduce the following no
tation, first for the function on the unit sphere:

F
jm

18m
28

~ j 3!
~a,b!5~21!m28 (

m352 j 3

j 3

D0m3

~ j 3!
~a,b,g!

3S j j j 3

m18 2m28 m3
D , ~18!

and then for the operator on the unit sphere:

Âj
~ j 3!

~a,b!5~2 j 311!2 (
m1852 j

j

(
m2852 j

j

u jm18&

3F
jm

18m
28

~ j 3!
~a,b!^ jm28u. ~19!

In order to write a final expression for the density ope
tor, we introduce an operator on the unit sphere which c
tains a dependence on the measurable projection of the

B̂m1

~ j !~a,b!5~21!m1 (
j 350

2 j S j j j 3

m1 2m1 0 D Âj
~ j 3!

~a,b!.

~20!

Finally, we obtain an expression for the density operator

r̂ ~ j !5 (
m152 j

j E dw

8p 2v~m1 ,a,b!B̂m1

~ j !~a,b!. ~21!

This formula admits of the following interpretation. T
determine the spin state for a spinj , one measures exper
mentally the projectionm1 of the spin in a direction specifie
by anglesa andb, and for each direction the measureme
yields a distribution functionv(m1 ,a,b) for a discrete set
of projections of the spinm152 j ,2 j 11, . . . ,j 21,j . If this
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eters specifying a point on a sphere, then it is first used
find the averaged operator^B̂m1

( j )(a,b)& at each point of the

unit sphere (̂B̂m1

( j )(a,b)& is a basis operator that is indepe

dent of the measurement, although the density operator
be expressed in terms of it!. Then the integral of the averag
operator over the solid angle is taken. Thus, we have

r̂ ~ j !5E dw

8p 2 ^B̂m1

~ j !~a,b!&, ~22!

where

^B̂m1

~ j !~a,b!&5 (
m152 j

j

v~m1 ,a,b!B̂m1

~ j !~a,b!. ~23!

Equation~22! completes the reconstruction of the de
sity operator for the spin state. Using the operator^B̂m1

( j )

3(a,b)& averaged over the projection of the spin and spe
fied at each point on the unit sphere, i.e., as a function of
anglesa andb, we can write down the newly found densit
operator for the spin state in the following form:

r̂ ~ j !5
1

4pE0

2p

daE
0

p

sin b db^B̂m1

~ j !~a,b!&. ~24!

These expressions make it possible to calculate the
erage values of physical quantities using the positive norm
ized distribution functionv(m1 ,a,b) to describe the quan
tum mechanical spin state. Thus, for any observableK̂ the
average value in a given spin stater̂ ( j ) can be found in the
following way: let us apply the operatorK̂ to a function
which does not depend on the quantum mechanical stat

fK
~ j !~m1 ,a,b!5Tr@K̂B̂m1

~ j !~a,b!#. ~25!

Then the average value of the observableK̂ in the state with
distribution v(m1 ,a,b) can be calculated according to th
rule

^K̂&5 (
m152 j

j E dw

8p 2v~m1 ,a,b!fK
~ j !~m1 ,a,b!. ~26!

Thus, each operatorK̂ corresponds to its symbol~25!, which
is analogous to the Weyl symbol and is a function of t
discrete variablem1 and the two continuous variablesa and
b. Subsequently, in specifying the state, the average va
can be calculated as an average over the known distribu
function followed by integration over the rotation paramete
of the reference frame.

4. CONCLUSION

We have shown that, as for continuous variables l
position, the quantum state of a spin degree of freedom
be specified by a positive probability distribution functio
that carries the same information on the spin state as
density matrix~density operator!.

The principal results of this paper are Eqs.~21! and~24!
for the density operator for a state with arbitrary spinj .
These expressions serve as the basis of a system for spe
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16I. J. Dunn, I. A. Walmsley, and C. Mukamel, Phys. Rev. Lett.74, 884
~1995!.

.
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malized distribution function, which depends additionally
two angles that specify the direction along which the m
sured spin is projected. The result of the measurement o
state can be expressed as an angular integral of an expre
that includes the measured distribution function, in compl
analogy with an optical tomography scheme. Thus, in t
paper we have discussed tomographic methods for mea
ing a quantum state described by a density operator for c
tinuous variables and extended them to a purely quan
mechanical discrete variable, spin.

This work was supported by Grant No. 96-02-17222
the Russian Fund for Fundamental Research.

1L. D. Landau, Z. Physik45, 430 ~1927!.
2E. Schrödinger, Ann. Phys.~Leipzig! 79, 489 ~1926!.
3L. D. Landau and E. M. Lifshitz,Quantum Mechanics, Pergamon, Oxford
~1977!.

4J. von Neumann,Mathematische Grundlagen der Quantenmechan,
Springer, Berlin~1932!.

5L. de Broglie, Compt. Rend.183, 447 ~1926!; 184, 273 ~1927!; 185, 380
~1927!.

6E. Madelung, Z. Phys.40, 332 ~1926!.
7D. Bohm, Phys. Rev.85, 166,180~1952!.
8E. Wigner, Phys. Rev.40, 749 ~1932!.
9R. J. Glauber, Phys. Rev. Lett.10, 84 ~1963!.

10E. C. G. Sudarshan, Phys. Rev. Lett.10, 277 ~1963!.
11K. Husimi, Proc. Phys. Math. Soc. Jpn.23, 264 ~1940!.
12Y. Kano, J. Math. Phys.6, 1913~1965!.
13J. Bertrand and P. Bertrand, Found. Phys.17, 397 ~1987!.
14K. Vogel and H. Risken, Phys. Rev. A40, 2847~1989!.
15D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Phys. Rev. L

70, 1244~1993!.
434 JETP 85 (3), September 1997
-
he
ion
e
s
ur-
n-
m

f

.

17S. Mancini, V. I. Man’ko, and P. Tombesi, Quantum Semiclassic. Opt7,
615 ~1995!.

18G. M. D’Ariano, S. Mancini, V. I. Man’ko, and P. Tombesi, Quantum
Semiclassic. Opt.8, 1017~1996!.

19G. M. D’Ariano, U. Leonhardt, and H. Paul, Phys. Rev. A52, R1801
~1995!.

20S. Mancini, V. I. Man’ko, and P. Tombesi, Phys. Lett. A213, 1 ~1996!;
E-prints archive, quant-ph/9609026; submitted to Found. Phys.

21S. Wallentowitz and W. Vogel, Phys. Rev. A53, 4528~1996!.
22K. Banaszek and K. Wodkiewicz, Phys. Rev. Lett.76, 4344~1996!.
23S. Mancini, V. I. Man’ko, and P. Tombesi, Europhys. Lett.37, 79 ~1997!.
24V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, Physica72, 597 ~1974!.
25R. L. de Matos Filho and W. Vogel, Phys. Rev. A54, 4560~1996!.
26P. J. Bardroff, C. Leichte, G. Schrade, and W. P. Schleich, Phys. R

Lett. 77, 2198~1996!.
27R. L. de Matos Filho and W. Vogel, Phys. Rev. Lett.76, 608 ~1996!.
28O. V. Man’ko, Preprint IC/96/39, ICTP, Trieste~1996!; J. Russ. Laser

Research17, 439 ~1996!.
29M. M. Nieto, Phys. Lett. A219, 180 ~1996!.
30O. V. Man’ko, Phys. Lett. A228, 29 ~1997!.
31D. M. Meekhof, G. Monroe, B. E. King, W. M. Itano, and D. Wineland

Phys. Rev. Lett.76, 1796~1996!.
32S. Haroche, Nuovo Cimento B110, 545 ~1995!.
33U. Leonhardt, Phys. Rev. A53, 2998~1996!.
34V. V. Dodonov and V. I. Man’ko, submitted to Phys. Lett. A.
35S. Mancini, V. I. Man’ko, and P. Tombesi, submitted to J. Mod. Opt.
36V. I. Man’ko, J. Russ. Laser Research17, 579 ~1996!.
37V. I. Man’ko, in Symmetries in Science IX, B. Gruber and M. Ramek,

~eds.!, Plenum, New York~1997!, p. 215.

Translated by D. H. McNeill
434V. I. Man’ko and O. V. Man’ko



Radiative corrections for level widths in light muonic atoms
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The corrections, which are associated with electron vacuum polarization, for the radiation level
widths and line intensities in light muonic atoms are examined. The total level widths,
with allowance for the finite size of the nuclei, relativistic effects, and recoil are found. ©1997
American Institute of Physics.@S1063-7761~97!00309-0#
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The radiative corrections of relative ordera(Za)2 to the
dipole matrix elements and the radiation level widths w
examined in Refs. 1–3 in the logarithmic approximation.
is known, the leading radiative correction in muonic atoms
related to electron polarization and, being of relative ordea,
leads to corrections for the radiation level widths and l
intensities amounting to several percentage points. AZ
grows, the distribution of electric charge in the nucleus
gins to play a noticeable role.

The difference between the leading radiative correcti
in muonic atoms and those in ordinary atoms is due to
different characteristic atomic momenta. In ordinary light
oms, the atomic momentaZame are much smaller than th
electron massme , with the result that the contribution of th
electron vacuum polarization is of relative ordera(Za)2.
The contribution of the electron’s self-energy is of the sa
order but contains a large logarithm log (Za)2, so that in
calculating the logarithmic approximation we can ignore
contribution of vacuum polarization. In muonic atoms t
characteristic atomic momentumZamm proves to be of the
same order of magnitude as the electron massme , so that
electron polarization is predominant.

In this paper we discuss the corrections for the le
widths of light muonic atoms with a nuclear chargeZ<10.
The calculations are done for hydrogen-like atoms, but in
case of ions or neutral atoms, including electrons, the cor
tions related to the electron–muon interaction are small a
if necessary, can be taken into account separately.

Recall that, in contrast to ordinary atoms, in muonic s
tems the fine structure is smaller than the Lamb shifts, wh
are of a nonrelativistic nature ifZ is low, so that the results
for the radiative corrections can be found in the nonrela
istic approximation, with the relativistic corrections calc
lated separately.

The paper is organized as follows. First, we discuss
various estimates of radiative corrections, and then calcu
them explicitly. The numerical results are listed for the 2p
levels. The bulk of the paper deals with radiative correctio
but in the concluding part of the paper we discuss the t
level widths and review all known and unknown contrib
tions.
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2.1. The delta-function-potential approximation

We start by reformulating the results of our earli
papers1–3 in terms that are more convenient for investigati
what follows. In these papers we found the radiative corr
tions of relative ordera(Za)2 log (Za) to the probability of
transitions between levels in hydrogen-like systems. T
logarithmic contribution arises when we allow for the se
energy of the electron in the Coulomb field. The propert
of this energy, when it acts as perturbation, differ consid
ably from the properties of vacuum polarization, which d
termines the leading radiative correction in the muonic ato
However, reasoning from the computational angle, we n
that the results of Refs. 1–3 are based on the fact that
coefficient of the logarithm is a delta function and that the
are no contributions related to the radiative corrections
the radiation and for the wave function of thep state. An-
other fact that plays an important role in simplifying th
calculations is the absence of energy-dependence in the
turbation. If all these conditions are met, we need only all
for the corrections for the energy and the wave function
the s state, which are attributable to the single-loop opera
of the self-energy of an electron~muon! in the Coulomb field
of the nucleus.

A perturbation with a delta-function potential,

V~r !5d~r !
DE~1s!

~c1s~0!!2 , ~1!

leads to corrections for the energy,

DE~nl !5
d l0

n3 DE~1s!, ~2!

and for the wave function of thenlm state,

Dcnlm~r !5d l0

Rn0~0!

R10~0! (
qÞn

cq00~r !
Rq0~0!

R10~0!

DE~1s!

Ens2Eqs
,

~3!

whereRnl(r ) is the radial part of the Schro¨dinger wave func-
tion,

cnlm~r !5Rnl~r !Ylm~q,w!, ~4!

4355-06$10.00 © 1997 American Institute of Physics



and the sum incorporates all the intermediate states of the
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TABLE I. Estimates of single-loop radiative corrections for the width of the
2p→1s decay in the delta-function-potential approximation.

n

discrete and continuous spectra.
Allowing for these corrections, we find1–3 the correction

for the width of the 2p level

DG2p
DP52~0.98...!RG~0!~2p!, ~5!

where the nonrelativistic width in the dipole approximati
is given by the expression

G~0!~ i→ f !5
4v f i

3

3
udf i u2 ~6!

and for a 2p→1s transition it is

G~0!~2p!5
29

38 a~Za!2E0 . ~7!

The effective parameter is defined as the shift of the 1s level,

R5
DE1s

E0
, ~8!

in units of the unperturbed energy of the ground state of
muonic atom~an analog of the Rydberg constant!

E05
~Za!2mR

2
,

and mR is the reduced mass. In all expressions we use
relativistic system of units\5c51 and a5e2, and the
phases of the wave functions of thes states in the coordinat
representation are defined in such a way that their value
zero are real and positive.

In the first approximation the perturbative series in lo
Z hydrogen-like atoms corresponds, as we know, to a de
function potential. For instance, the distribution of t
nuclear charge can be taken into account by the perturba

VNC~r !5
2p~Za!

3
^R2&d~r !,

where ^R2& is the mean square of the charge radius of
nucleus. Thus, the result~5! can be used to allow for the
charge distribution in the nucleus with a coefficient

DENC~1s!5
2

3
~Za!4mR

3^R2&. ~9!

The interaction responsible for nuclear polarization
light muonic atoms can also be assumed to be a delta f
tion and allowed for by the correction~5!.

In what follows we give a general expression for t
radiative corrections for the level width and calculate the
corrections explicitly, but before doing this we give an es
mate of the contribution via~5!. Indeed, for light muonic
atoms, in the leading order in the parameterZa there is still
no energy-dependence of the perturbation and there ar
corrections for the photon creation operator, but there
additional corrections for the wave function and the ene
of the p states. However, it is quite obvious that the con
butions to the shifts of the 1s, 2s, and 2p levels in light
muonic atoms exhibit the following property~see, e.g., the
results for muonic hydrogen4,5 and muonic helium6!: the re-
sults for the 2p levels are much smaller than for the 2s level,
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and the shifts of the 1s and 2s levels differ by a factor of 8
(n3). Such energy shifts are characteristic of delta-funct
perturbations. On the other hand, the contribution to the c
rection for the dipole matrix element for a delta-functio
perturbation is largely determined by the off-diagonal mat
elements of the perturbation taken between the states 1s and
2s ~see Refs. 1–3!. In summary, we can estimate the corre
tion for the width of the 2p levels using for the coefficient in
~5! the numerical values of the Lamb shift of the grou
level. The results for the vacuum polarization contributi
can be conveniently written in the form

DG5CVPRVPG~0!. ~10!

The effective parameters for various values ofZ and the
estimates are listed in Table I. The error in the estimate
characterized by the quantities

k15
DE~1s!28DE~2s!

DE~1s!
, k25

DE~2p!

DE~2s!
,

which vanish in the case of a delta-function potential.
When estimating the errors, we must bear in mind t

the final result~5! emerges1–3 after large numerical reduc
tions. The separate contributions related to the correcti
for the frequency and the dipole matrix element in~6! are
listed in Table II.

2.2. The effective charge approximation

Clearly, the estimates improve in accuracy with decre
ing value of Z. However, as the nuclear charge grows,
becomes possible to estimate the contribution by employ
what is known as the running coupling constant. Assum
that

Z RVP /a k1 ,% k2 ,% DGDP/aG (0) DI DP/aI (0)

1 20.10 8 7 0.10 0.24
2 20.24 12 20 0.23 0.54
3 20.34 11 31 0.33 0.78
4 20.42 10 40 0.41 0.97
5 20.49 8 46 0.48 1.1
6 20.55 5 52 0.54 1.3
7 20.60 3 56 0.59 1.4
8 20.65 1 59 0.64 1.5
9 20.69 21 62 0.68 1.6
10 20.73 22 64 0.72 1.7

TABLE II. Separate contributions found in the delta-function-potential~DP!
approximation and the effective-charge approximation@the running coupling
constant~RC!#.

Corrections for Corrections for the Total
Quantity the frequency matrix elements contributio

DGDP/RVPG (0) 24.00 3.02 20.98
DI DP/RVPI (0) 25.33 3.02 22.32
DGRC/RVPG (0) 23.00 1.00 22.00
DI RC/RVPI (0) 24.00 1.00 23.00
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TABLE III. Estimates of single-loop radiative corrections for the width of
the 2p→1s decay in the running coupling constant approximation.
Zamm@me , ~11!

we find at a general rule for accounting for single-loop c
rections:

Za~q!5ZaH 11
a

p S 1

3
log

q2

me
2 2

5

9D J , ~12!

where the effective momentum is defined asq5Zamm .
Strictly speaking, allowing for a nonlogarithmic term

the expression for the running coupling constant gives be
than expected accuracy and, additionally, for different sta
the effective momenta should differ slightly. Note that
nonrelativistic1! dipole radiation level widths are propo
tional to the same factor (Za)4, so that there is no depen
dence on the states in this approximation. Note also that e
at Z510 the expressions for the corrections are not in
asymptotic region, which is evident from the expressions
the energy of the lowest levels~see below!. Hence, instead o
directly applying the rule~12!, it is advisable to employ the
fact that level widths and energies are related. To this e
we note that the level energies are proportional to (Za)2, so
that in the adopted approximation the quantities

DE~1s!24DE~2s!

DE~1s!
5

11k1

2
,

DE~2s!2DE~2p!

DE~2s!
512k2

must vanish. We can write the correction as follows:

G2p
RC522RVPG~0!~2p!, ~13!

and its accuracy is determined by the smallness of the q
tities (11k1)/2 and 12k2 . Estimates for different values o
Z are listed in Table III and the values of separate terms
Table II.

To complete the discussion on estimates, we note
usually wave functions are more sensitive to perturbati
than energies, so that the errors can be large. However
fact that the results corresponding to opposite asympt
conditions2! lead to quantities that differ only by a factor n
greater than 2 suggest a weak dependence of the resultsZ
after the scale factorR has been isolated.

3. CALCULATION OF THE RADIATIVE CORRECTIONS

The radiative corrections for the energy levels and wa
functions and, hence, for the level widths can be descri

Z (11k1)/2, % 12k2 ,% DGRC/aG (0) DI RC/aI (0)

3 55 69 0.67 1.0
4 55 60 0.84 1.2
5 54 54 1.0 1.5
6 52 48 1.1 1.7
7 51 44 1.2 1.8
8 50 41 1.3 2.0
9 50 38 1.4 2.1
10 49 36 1.4 2.2
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vided thatZ is moderately large!. Here the width, with al-
lowance for the correction, is described by Eq.~6! with the
wave functions and energies found with allowance for
perturbing potential. To calculate the corrections for the le
widths and intensities we must find the corrections for
dipole matrix elements and transition energies.

The expression for the leading radiative corrections
the order ofa for the dipole matrix element in the muoni
atom has the form

Ddz~2p→1s!5^D1suezu2p&1^1suezuD2p&,

where the corrections for the wave functions,

^Dnlmu5 (
qÞn

^nlmuVVPuqlm&
En2Eq

^qlmu,

include the sum over all the intermediate states of the
crete and continuous spectra.

In terms of the normalized dipole matrix elements2

D q
s5

dz~2p→qs!

dz~2p→1s!

R10~0!

Rq0~0!
, ~14!

Dq
p5

dz~qp→1s!

dz~2p→1s!

R218 ~0!

Rq18 ~0!
, ~15!

the relative correction assumes the form

Ddz~2p→1s!

dz~2p→1s!
5 (

qÞ1
Dq

s Rq0~0!

R10~0!

^1suVVPuqs&
E12Eq

1 (
qÞ2

D q
p

Rq18 ~0!

R218 ~0!

^qpuVVPu2p&
E22Eq

. ~16!

The explicit expressions for the dipole matrix elemen
needed for further calculations can be found in the App
dix.

The off-diagonal matrix element of electron vacuum p
larization can easily be expressed in terms of the radial w
functions:

^nlmuVVP~r !uql8m8&52~Za!
a

p
dmm8d l l 8Vnq

l , ~17!

where

Vnq
l 5E

0

`

dr r 2Rnl~r !Rql~r !E
0

1

dv
v2~12v2/3!

12v2

e2lr

r
,

~18!

l5
2me

A12v2
. ~19!

Plugging in the explicit expressions for the wave functio
~see the Appendix!, we find

E
0

`

dr r R10~r !Rq0~r !e2lr

5
R10~0!Rq0~0!

@l1g~111/q!#2 Fl1g~121/q!

l1g~111/q!G
q21

, ~20!
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TABLE IV. Results of direct calculations of the width of the 2p level and the intensity of the 2p→1s line. The
upper index~s or p! indicates the level for which the correction for the wave function (C) or the energy (E)

is calculated.

Z CE
s CE

p CC
s CC

p CVP DI VP
tot /RVPI (0) DGVP

tot /aG (0) DI VP
tot /aI (0)

1 24.0 0.03 2.9 20.09 21.2 22.5 0.12 0.26
2 24.0 0.09 2.8 20.22 21.4 22.7 0.32 0.63
3 24.0 0.14 2.7 20.31 21.5 22.8 0.51 0.94
4 24.0 0.18 2.6 20.37 21.6 22.9 0.66 1.2
5 24.0 0.21 2.6 20.42 21.6 22.9 0.80 1.4
6 24.0 0.24 2.5 20.46 21.7 22.9 0.93 1.6
7 24.0 0.27 2.5 20.49 21.7 23.0 1.0 1.8
8 24.0 0.29 2.5 20.51 21.8 23.0 1.1 1.9
9 24.0 0.31 2.4 20.53 21.8 23.0 1.2 2.1
10 24.0 0.33 2.4 20.54 21.8 23.0 1.3 2.2
`
2lr

p

which is more convenient for analytic continuation to the

on-
e
ally

t
e
the
sti-

sti-
that
si-

for
ith
.

E
0

dr r R21~r !Rq1~r !e

5
96R218 ~0!Rq18 ~0!

@2l1g~112/q!#4 F2l1g~122/q!

2l1g~112/q!G
q22

. ~21!

As a result, calculation of the matrix element~17! reduces to
evaluating one-dimensional integrals:

V1q
s 5R10~0!Rq0~0!E

0

1

dv
v2~12v2/3!

12v2

3
1

@l1g~111/q!#2 Fl1g~121/q!

l1g~111/q!G
q21

, ~22!

Vq2
p 5R218 ~0!Rq18 ~0!E

0

1

dv
v2~12v2/3!

12v2

3
96

@2l1g~112/q!#2 F2l1g~122/q!

2l1g~112/q!G
q22

. ~23!

The final expression for the contribution of single-loo
vacuum polarization to the width of the 2p level is

Ddz~2p→1s!

dz~2p→1s!

5
a

p H 8(
nÞ1

1

n3

D n
sṼ1n

s

121/n2

18E
0

` dt

t3~111/t2!

D t
sṼ1t

s

12e22pt

1
1

12 (
nÞ2

32

n5

n221

3

D n
pṼn2

p

1/421/n2

1
1

12E0

` 32dt

t5~1/411/t2!

11t2

3

D t
pṼt2

p

12e22pt J , ~24!

where the following notation is introduced:

V1q
s 5

R10~0!Rq0~0!Ṽ1q
s

g2 , Vq2
p 5

R218 ~0!Rq18 ~0!Ṽq2
p

g2 ,
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states of the continuous spectrum. The expressions forṼ1t
s

and Ṽt2
p can be obtained by replacingn with 2 i t .

Numerical integration leads to

Ddz~2p→1s!

dz~2p→1s!
5

a

p
@20.586710.080510.0525#

520.4537
a

p

for muonic hydrogen and

Ddz~2p→1s!

dz~2p→1s!
5

a

p
@21.27410.19910.135#

520.940
a

p

for muonic helium.
The terms in the square brackets originate from the c

tributions of states withn52, higher bound states, and th
continuous spectrum, respectively. We see that numeric
the contribution withn52 is predominant, which justifies
the estimates with formulas for a delta-function potential.

The results forZ<10 are given in Table IV. We see tha
the contributions from thep states are smaller then thos
from thes states, which justifies the estimates based on
use of a delta-function potential. We then see that both e
mates given in Sec. 2~see Tables I–III! agree with the re-
sults of direct calculations. The agreement between the e
mates and the results of direct calculations suggests
similar estimates can be applied to level widths and inten
ties of the transitions involving higher levels. The results
a delta-function potential for transitions between levels w
n,n8<4 needed for estimates have been obtain in Ref. 3

TABLE V. The coefficientsCRel andCRel8 @see Eq.~25!# for calculating the
relativistic correctionDGRel .

State CRel CRel8

2p1/2 ln
9
8 1

2p3/2 2
7

482
1
2ln

32
27

1
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4. CONCLUSIONS

TABLE VI. The leading contributions to the widthG(2pj ) @see Eq.~25!#. The recoil corrections (DGRec)
emerge because of the difference between the factor (mR /mm)2(11Zmm /M )2 and unity.

439 JETP 85
DGRel /G
(0)

z A DGRec/G
(0) DGVP /G (0) DGNC /G (0) j 51/2 j 53/2

1 1 0 8.729(9)31024 21.20(3)31025 1.1131025 27.431026

2 4 0.0558903 2.349(4)31023 22.12(3)31024 3.6531025 23.7731025

3 7 0.0646677 3.682(5)31023 21.00(3)31023 7.9031025 28.8131025

4 9 0.075988 4.840(3)31023 21.98(8)31023 1.42231024 21.54831024

5 11 0.083268 5.858(3)31023 22.8(2)31023 2.24031024 22.40131024

6 12 0.095858 6.753(2)31023 24.3(2)31023 3.32631024 23.35931024

7 14 0.098775 7.554(3)31023 26.3(4)31023 4.53131024 24.56931024

8 16 0.10104 8.262(2)31023 29.3(8)31023 5.92331024 25.96531024

9 19 0.09724 8.913(3)31023 20.013(1) 7.37431024 27.67431024

10 20 0.1042 9.504(3)31023 20.018(2) 9.26531024 29.31731024
io

h

te
o
xi

whereM is the mass of the nucleus. The relativistic coeffi-
ia
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Now let us discuss the expression for the total radiat
width of the 2pj levels:

G2pj
~Z!5G~0!~2pj !S mR

mm
D 2S 11Z

mm

M D 2F11CRel~2pj !

3~Za2!1CRel8 ~2pj !
Zmm

M
~Za!2

1CVP~2p!RVP1CNC~2p!RNCG . ~25!

Here the nonrelativistic dipole widthG (0) has been defined in
~7!, and its numerical value can be found by plugging in t
value of the ground-state energy

E052813.226~3!Z2
mR

mm
eV.

The effective parametersR and the constantsC for the
vacuum polarization contribution and the effects associa
with the finiteness of the size of the nucleus have been c
sidered earlier. Recoil effects in the nonrelativistic appro
mation are taken into account by a special factor,7

S mR

m D 2S 11Z
mm

M D 2

,

TABLE VII. The leading corrections for the intensitie
n

e

d
n-
-

cient CRel can easily be found by calculating the width v
the Dirac wave functions~the result for the 2p1/2 state agrees
with that of Sokolov and Yakovlev8 but disagrees with tha
of Borovski� et al.;9 in the case of the 2p3/2 state our result
agrees with that of Ref. 9!. The relativistic part of the recoi
can also be easily taken into account~see Table V!.

Table VI lists the most important contributions to th
level widths. The largest is the correction induced by t
single-loop electron vacuum polarization. The error in allo
ing for the finite size of the nucleus is related to higher-ord
corrections inZa. Note that the corrections under discussi
depend differently on the nuclear chargeZ, and smaller cor-
rections may become noticeable in heavier muonic atom

Some researchers have performed highly accurate s
ies of the intensity ratios for lines in muonic atoms~see Ref.
10 and the papers cited there!. Various corrections for the
intensities of 2p→1s lines are listed in Table VII. The cal
culation errors amount to about one percentage point, and
corrections discussed in this paper may become significa

The final results for the widths are listed in Table VII
with the errors determined by an estimate of the uncalcula
higher-order contributions and by the accuracy of numer
integration of the vacuum polarization contribution~see
Table VI!.

Part of this work was sponsored by the Russian Fund
s of the lines of 2pj→1s transitions.

439henbo m
DI Rel /I
(0)

Z A DI Rec/I
(0) DI VP /I (0) DI NC /I (0) j 51/2 j 53/2

1 1 0 1.8665(9)31023 4.3(6)31026 1.5731025 21.231026

2 4 0.0558903 4.588(4)31023 7.5(5)31025 5.4831025 21.2831025

3 7 0.0646677 6.848(5)31023 3.6(5)31024 1.20231024 23.1931025

4 9 0.075988 8.737(3)31023 7(1)31023 2.15431024 25.5031025

5 11 0.083268 0.010359(3) 1.0(3)31023 3.3831024 28.431025

6 12 0.095858 0.011763(2) 1.5(4)31023 4.9731024 21.1131024

7 14 0.098775 0.013007(3) 2.2(7)31023 6.7731024 21.5131024

8 16 0.10104 0.014104(2) 3(1)31023 8.931024 22.031024

9 19 0.09724 0.015105(3) 5(2)31023 1.1131023 22.631024

10 20 0.1042 0.016008(3) 6(4)31023 1.3831023 23.131024
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5
32 2p k3/g

11
g2

, ~A5!

ious

TABLE VIII. Total widths of the 2pj→1s transitions.
Fundamental Research~Grant No. 95-02-03977!.

APPENDIX: EXPLICIT EXPRESSIONS FOR WAVE
FUNCTIONS AND MATRIX ELEMENTS

The radial parts of the wave functions~4! have the form

R10~r !5R10~0!exp~2gr !,

Rn0~r !5Rn0~0!expS 2
gr

n DF~12n,2;2gr /n!,

Rk0~r !5Rk0~0!exp~2 ikr !F~11 ig/k,2;2ikr !,

R21~r !5R218 ~0!gr expS 2
gr

2 D ,

Rn1~r !5Rn18 ~0!
2gr

n
expS 2

gr

n DF~22n,4;2gr /n!,

Rk1~r !5Rk18 ~0!2kr exp~2 ikr !F~21 ig/k,4;2ikr !,

whereg5ZamR , F(a,b;z) is the confluent hypergeometri
function, and the wave numberk corresponds to states of th
continuous spectrum.

The radial parts of the wave functions are defined
such a way that their values at zero fors states and the value
of the derivatives forp states,

Rq18 ~0!5
1

g

]Rq1~r !

]r U
r 50

, ~A1!

are real and positive, and in the case of bounds states a

S Rn0~0!

R10~0! D
2

5
1

n3 ~A2!

and

S Rn18 ~0!

R218 ~0!
D 2

5
32

3

1

n3 S 12
1

n2D , ~A3!

respectively. For states belonging to the continuous sp
trum, the above equalities become

S Rk0~0!

R10~0! D
2

5
2p

g

k/g

12exp~22pg/k!
~A4!

and

Z A G1/2 G3/2

1 1 0.0767426~7! 0.0767412~7!
2 4 1.40457~3! 1.40446~3!
3 7 7.2599~3! 7.2587~3!
4 9 23.276~2! 23.269~2!
5 11 57.36~1! 57.32~1!
6 12 120.36~3! 120.28~3!
7 14 223.6~1! 223.4~1!
8 16 381.9~3! 381.4~3!
9 19 608.2~8! 607.2~8!
10 20 929~2! 928~2!
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c-

S R218 ~0!
D 3 g 12exp~22pg/k! S k2 D

respectively.
The normalized dipole matrix elements have the form

D n
s534

n6

~n224!3 S n22

n12D n

, ~A6!

D n
p5

35

26

n6

~n221!3 S n21

n11D n

~A7!

for discrete states and

D t
s534

t6

~ t214!3 expS 22t arctan
2

t D , ~A8!

D t
p5

35

26

t6

~ t211!3 expS 22t arctan
1

t D ~A9!

for continuous states. Heret5g/k is the continuous analog
of the principal quantum numbern.

1!In addition to the asymptotic condition~11!, the range of applicability of
the nonrelativistic estimate being discussed is restricted by the obv
conditionZa!1.

2!Clearly, a delta-function potential emerges in theZamm!me limit.
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A modified Jaynes–Cummings model for an atom interacting with a classical

ld
multifrequency field
M. Z. Smirnov

Laser Center, St. Petersburg State Institute of Precision Mechanics and Optics,
197101 St. Petersburg, Russia
~Submitted 28 February 1997!
Zh. Éksp. Teor. Fiz.112, 818–827~September 1997!

An open quantum system, which consists of a ‘‘dressed’’ two-level atom, i.e., an atom
interacting with a classical multifrequency field, and a single quantized mode of an electromagnetic
field, is examined. It is shown that when the frequency of the quantized mode coincides
with one of the transition frequencies between the quasienergy levels, two interaction mechanisms,
which differ in the dynamics of the populations of the quasienergy states, can be realized.
© 1997 American Institute of Physics.@S1063-7761~97!00409-5#
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At present, there exists a large number of theoret
papers devoted to the study of the Jaynes–Cummings mo
a closed quantum system consisting of a two-level atom
a single quantized mode of an electromagnetic field.1 An
analytic solution of the Heisenberg equations for the at
and field operators has been obtained in the dipo
interaction and rotating-wave approximations.2–4 This solu-
tion makes it possible to demonstrate some fundamenta
fects emerging in more complicated systems, e.g., pulsat
of atomic level populations and the generation of squee
quantum states of a field.3,5,6

The nonlinear dynamics of the Jaynes–Cummin
model can be qualitatively characterized in the followi
way. If initially the atom was in the ground quantum sta
and the quantized mode containedn photons, subsequentl
the atom and field will periodically exchange energy. T
populations of the atomic levels and the dipole moment
the atom undergo pulsations, whose frequency~the general-
ized Rabi frequency! depends onn. If the initial number of
photonsn is not defined exactly in the quantum mechani
sense~say, initially the quantized mode is excited to a coh
ent stateua&!, the pulsations are represented by a linear co
bination of oscillations with different frequencies an
amount to periodic collapses and revivals~provided that the
phases of the component oscillations are matched!.3,5 Oscil-
lating solutions have also been obtained for more com
cated closed systems generalizing the Jaynes–Cumm
model.7–10 Such systems incorporate a three- or four-le
atom which interacts with one or several quantized mode
an electromagnetic field. Some solutions that do not use
rotating-wave approximation have also been derived.11

Lately, there has been an upsurge of interest in the
perimental applications of the Jaynes–Cummings model.7 In
particular, experiments with a single-atom maser12,13made it
possible to observe pulsations of the population of an exc
state of an atom when the atom interacts with an electrom
netic field in a high-Q superconducting cavity. These expe
ments served as a powerful stimulus in the studies of ge
alizations of the Jaynes–Cummings model aimed
describing more complicated quantum systems.14–18 We be-
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incorporate open systems. In this connection, we would
to mention the work of Dung and Shumovski,19 who studied
the effect of relaxation on the fluctuations of the phase of
quantized field.

In this paper we introduce a modified Jaynes–Cummi
model, i.e., a ‘‘dressed’’ atom that interacts with a sing
quantized mode of an electromagnetic field. According
modern terminology, a ‘‘dressed’’ atom is interpreted as
atom that interacts with an external classical field.20 Such an
atom is an open quantum system and its energy is not c
served. At the same time, if the classical field has an eq
distant frequency spectrum, then for a ‘‘dressed’’ atom
can introduce the concept of quasienergy which, in a cer
sense, is conserved20–23~we study the corresponding forma
ism in Sec. 2!. Thus, a ‘‘dressed’’ two-level atom is charac
terized by an infinite number of quasienergy levels, who
positions depend on the parameters of the class
field. When such an atom interacts with a probe field24,25

or with an electromagnetic-field vacuum~resonance
fluorescence26,27!, resonance effects caused by quantum tr
sitions between quasienergy levels and the crossing~anti-
crossing! of such levels manifest themselves.

The plan of the paper is as follows. In Sec. 2 we use
earlier work23,28 to briefly describe the properties of th
quasienergy states of a ‘‘dressed’’ atom. The treatmen
this problem differs from that used by other researchers
that we employ the Heisenberg picture, which we find mo
convenient in solving the Jaynes–Cummings problem.
Sec. 3 we solve a new problem of the interaction of
‘‘dressed’’ atom and a quantized mode of an electromagn
field. In Sec. 4, the last section of this article, we review t
main results.

2. THE QUASIENERGY STATES OF A TWO-LEVEL ATOM

Let us take a two-level atom that interacts with a pe
odically modulated classical field

E~ t !5Ẽg~v8t !exp~ iVt !1c.c., ~1!

whereẼ is the complex-valued amplitude of the field,g(vt)
is the 2p-periodic~complex-valued! modulation function,v8

4411-06$10.00 © 1997 American Institute of Physics



is the modulation frequency, andV is the optical carrier
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the
frequency. If we use the dipole-interaction and the rotati
wave approximations,4 we can write the Hamiltonian of the
atom in the external field as follows:

Ĥa5\vb̂†b̂2\v8sg~v8t !exp@ i ~Vt1c!#b̂1H.c., ~2!

wherev is the transition frequency between the atomic le
els, s[um01Ẽ/\vu is the Rabi frequency normalized to th
modulation frequency, withm01 the matrix element of the
dipole moment of the transition,c[arg@m01Ẽ/\v8#,
b̂5u0&^1u is the transition operator between the lower~u0&!
and upper~u1&! energy levels of the atom, and H.c. stands
an expression that is the Hermitian conjugate of the first
terms on the right side of Eq.~2!. The Schro¨dinger equation
with the Hamiltonian~2! has two orthonormalized solutions
known as quasienergy states:20,25

uu1&5exp~ ilt!@w1~t!u0&1exp~2 iVt !w2~t!u1&],

uu2&5exp@ i ~d2l!t#@w2* ~t!u0&

1exp~2 iVt !w1* ~t!u1&], ~3!

where t5v8t is the dimensionless time variable, an
d5(V2v)/v8 is the detuning of the field frequency from
the transition frequency, normalized to the modulation f
quency. The value of the real quantityl is determined
~modulo 2! from the condition that the system of equatio
@obtained by plugging~3! into the Schro¨dinger equation#

d

dt
w152 ilw11 isg~t!w2 ,

d

dt
w252 i ~d2l!w11 isg* ~t!w1 ~4!

has bounded 2p-periodic solutions. The introduction of th
normalization condition

15^u1uu1&5^u2uu2&5uw1~t!u21uw2~t!u2

makes it possible to uniquely determine~to within a phase
factor! the 2p-periodic functionsw1(t) andw2(t) from the
system of equations~4!. Note that these results, obtained
the rotating wave approximation, are valid if

v8,lv8,dv8,sv8!V. ~5!

Physically, the quantityl introduced above determine
the quasienergy of the atom. When there is a classical fi
each energy level of the atom splits into two equidist
sequences of quasilevels. The energies of these quasil
are defined as23

\v8~2l12n!, \v8~l2d12m11!

near the lower energy level of the isolated atom, and as

\v1\v8@d2l2~2m11!#, \v1\v8~l22n!

near the upper level, withm,n50,61,62,... . Such level
splitting ~dynamic Stark splitting! in a periodically modu-
lated field is shown schematically in Fig. 1. Each quasile
sequence has a period in energy, 2\v8, and is represented in
Fig. 1 by a single quasilevel: 08, 18, 09, or 19. The quasi-
levels ~quasilevel sequences! 08 and 09 correspond to the

442 JETP 85 (3), September 1997
-

-

r
o

-

d,
t
els

l

quasienergy stateuu0& and the quasilevels 18 and 19, to the
stateuu1&. Figure 1 shows that there are three transition f
quencies between the quasilevels, which are determ
~modulo 2\v8! by the valuesv1 , v2 , and v3 . Spectro-
scopically, the quasilevel structure manifests itself in t
same way as the system of energy levels of an isolated a
In particular, in the resonance fluorescence spectra o
‘‘dressed’’ atom one can observe resonance peaks at
quencies of the transitions between the quasilevels.26,27How-
ever, if we consider the nonlinear atom–field interaction, d
ferences emerge between quasilevels and energy le
These differences are examined in Sec. 3.

The properties of quasilevels and quasienergy states
various cases are discussed in Refs. 23–25 and 28. A ge
alization of the formalism, which we are discussing in th
paper, to the case of a multilevel atom was proposed in R
28. A different approach proposed by other researchers20–22

has led to the same quasienergy values. However, the l
approach presupposes the introduction of an infinite se
‘‘Floquet states’’ instead of two quasienergy states, whi
we believe, complicates the analysis of the nonlinear in
action of a ‘‘dressed’’ atom and a quantized electromagn
field.

Below we use the Heisenberg picture instead of
Schrödinger picture. The dynamics of a ‘‘dressed’’ atom
described by the Heisenberg equation

d

dt
b̂52

i

\
@ b̂,Ĥa#52 ivb̂1 iv8sg* ~v8t !

3exp@ i ~vt1c!#~ Î 22b̂†b̂!, ~6!

where Î is the identity operator. The transition operator b
tween the quasienergy states can be written as

ĉ[uu0&^u1u5exp@ i ~2l2d!t#@w1w2~ Î 22b̂†b̂!

2exp~ iVt8!w1
2b̂1exp~2 iVt8!w2

2b̂†#, ~7!

whereVt[Vt1c, and we have used the quasienergy sta
~3!. Taking the time derivative of~7! and combining the

FIG. 1. The quasilevel structure of a ‘‘dressed’’ atom: 0 and 1 are
energy levels of an unperturbed atom, and 08, 18, 09, and 19 are the quasi-
levels ~one quasilevel from each equidistant series is shown!.
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result with ~4! and ~6!, we find that (d/dt) ĉ50, i.e., the
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operatorc is a constant of motion of a ‘‘dressed’’ atom
Actually, this follows from the definition of quasienerg
states as solutions of the Schro¨dinger equation with the
HamiltonianĤa .

3. INTERACTION OF A ‘‘DRESSED’’ ATOM AND A MODE OF
A QUANTIZED ELECTROMAGNETIC FIELD

An external disturbance~say, a thermostat or an electro
magnetic field! acting on a ‘‘dressed’’ atom can, in genera
induce quantum transitions between the quasienergy lev
Formally, this means that the operatorĉ[uu0&^u1u ceases to
be a constant of motion and its rate of variation in tim
becomes proportional to the intensity of the disturbance
the Jaynes–Cummings problem, a quantized electromag
field acts as the external disturbance. We consider only
mode of the quantized field and write the field strength
erator in the form

Êq5 ie@u~r !â~ t !2u* ~r !â†~ t !#, ~8!

wheree is the unit polarization vector,u(r ) is the normalized
eigenfunction, andâ and â† are the photon annihilation an
creation operators. The Hamiltonian of the interaction of
‘‘dressed’’ atom and the quantized field~8! can be written as

V̂aq5 i\v8kb̂â†1H.c., ~9!

where we have used the ordinary dipole-interaction a
rotating-wave approximations and introduced the coupl
constantk5(m01–e)u(r )/\v8. In the latter expression th
vector r specifies the position of the atom. The total Ham
tonian of the modified Jaynes–Cummings model conside
below is

Ĥ5Ĥa1\vqâ†â1V̂aq , ~10!

where vq is the frequency of the quantized field. Th
Heisenberg equations for the atom and the quantized
can be written in the following manner:

d

dt
ĉ52

i

\
@ ĉ,Ĥ#

5exp~ idqt!kq* $w1
2~t!~ Î 22ĉ†ĉ!

3exp@ i ~2l2d!t#22w1~t!w2* ~t!ĉ%âq

1exp~2 idqt!kq* $w2
2~t!~ Î 22ĉ†ĉ!

3exp@ i ~2l2d!t#22w1* ~t!w2~t!ĉ%âq
† , ~11!

d

dt
âq52

i

\
@ âq ,Ĥ#

5exp~2 idqt!kq$w1* ~t!w2~t!~ Î 22ĉ†ĉ!

1exp@ i ~2l2d!t#w2
2~t!ĉ†

2exp@2 i ~2l2d!t#w1*
2~t!ĉ%, ~12!

wheredq[(V2vq)/v8 is the difference in the frequencie
of the classical and quantized fields, normalized to the mo
lation frequency, kq5k exp(2ic), and âq5â exp(ivqt).
When analyzing the solutions of the system of equati
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ukqu5uku!1. Note that spectroscopically the classical fie
is strong, i.e., the coupling constants is of the order of unity
or higher. This makes it possible to ignore the dynamics
the classical field and interpret it as a fixed external dist
bance.

As noted earlier, the functionsw1(t) andw2(t) are 2p-
periodic. In Ref. 23 it was shown that the problem of t
interaction of an atom and a classical field can always
formulated in such a way thatw1(t) is a linear combination
of only even harmonics andw2(t), a linear combination of
only odd harmonics:

w1~t!5 (
n52`

`

an exp~22int!,

w2~t!5 (
m52`

`

bm exp@ i ~2m11!t#. ~13!

Equations~11!–~13! and the above assumption that th
parameterk is small imply that the interaction of the
‘‘dressed’’ atom and the field is of a resonant nature@the
right-hand sides of Eqs.~11! and ~12! acquire slowly oscil-
lating terms# only if one of the following approximate
equalities holds:

~1! 2l2d1dq'2m1 or vq'v122v8m1 ,

~2! 2l2d2dq'2m2 or vq'v212v8m2 ,

~3! dq'2m311 or vq'v322v8m3 , ~14!

where v15v12lv8, v25v12(d2l)v8, and
v35v1(d21)v8 are the transition frequencies betwe
the quasienergy levels shown in Fig. 1, andm1 , m2 , andm3

are arbitrary integers that number the quasienergy level
the equidistant sequences 08, 09, 18, and 19.

In cases~1! and~2!, the quantum transitions are betwee
quasienergy levels, which correspond to different quasi
ergy states. In case~1! the lower state isuu0& (uu1&) and the
upper state isuu1& (uu0&). This type of interaction can be
interpreted as ‘‘inelastic.’’

In case~3!, the upper and lower quasilevels correspo
to the same quasienergy state,uu0& or uu1&. Thus, despite the
interaction with the quantized mode, the quasienergy st
uu0& and uu1& remain the stationary states of the atom. Th
type of interaction is a feature specific to open systems
can be interpreted as ‘‘elastic.’’ In an ‘‘elastic’’ interactio
the atom emits a photon into the quantized mode or abs
a photon, but the quasienergy of the atom remains
changed~within our approach the quasienergy is defin
modulo 2\v8!.

Thus, what mechanism of atom–field interaction, ‘‘i
elastic’’ or ‘‘elastic,’’ is realized depends on the frequen
vq of the quantized mode. The difference between these
mechanisms disappears if the quasilevels belonging to dif
ent sequences move closer to each other within a distanc
the order of\v8 ~parametric resonance; see Refs. 20,
and 28!. Below we assume that the minimum distance b
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tween the quasienergy levels exceeds\v8 considerably,
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Thus, the observation of higher-order ‘‘inelastic’’ resonances
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which makes it possible to study the ‘‘inelastic’’ and ‘‘ela
tic’’ mechanisms separately.

In ‘‘inelastic’’ interaction@case~1!#, the frequency of the
quantized mode is given by the relation

dq5d22l12m11«, u«u!1, ~15!

wherem1 is the order of the resonance, and« is the normal-
ized detuning of the frequencyvq of the quantized mode
from the resonance frequencyv122v8m1 . Substituting
~15! into the right sides of Eqs.~11! and ~12! and dropping
all terms except the slowly oscillating, we obtain

d

dt
ĉ5km1

* exp~ i«t!~ Î 22ĉ†ĉ!âq ,

d

dt
âq52km1

exp~2 i«t!ĉ, ~16!

where

km1
5kq^w1*

2~t!exp~22im1t!& ~17!

is the effective atom–field coupling constant, with the an
brackets standing for averaging over the period 2p.

Transforming the photon annihilation operator accord
to the expressionâq5exp(2i«t)â1, we can write Eq.~16! in
the form of a Heisenberg equation:

d

dt
ĉ52

i

\
@ ĉ,Ĥm1

eff #,
d

dt
â152

i

\
@ â1 ,Ĥm1

eff #, ~18!

where the effective Hamiltonian is defined as

Ĥm1

eff 52\v8«â1
†â12 i\v8~km1

â†ĉ2km1
* âĉ†!. ~19!

Thus, in the ‘‘inelastic’’ interaction approximation, ou
model is formally equivalent to the initial Jaynes–Cummin
model.1 The parameters of the model are the detuning fr
resonance,«, and the coupling constantkm1

. By way of an
example, let us examine the case where the atom is pla
into a bichromatic~amplitude-modulated! field, whose me-
dian frequency coincides with the transition frequencyv:

V5v, d50, g~t!5cost. ~20!

The quasienergy states are defined in~3!. Here28

l50, w1~t!5cos~s sin t!, w2~t!5sin~s sin t!,
~21!

and the expression~17! for the coupling constant becomes

km1
55

1

2
kq@11J0~2s!#5

1

2
k exp~2 ic!@11J0~2s!#,

m150,

1

2
kqJ2m1

~2s!5
1

2
k exp~2 ic!J2m1

~2s!,

m1Þ0.

~22!
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(m1@1) is possible only in strong classical fields (s@1).
The second case of ‘‘inelastic’’ interaction,

dq52l2d22m22«, u«u!1, ~23!

can be examined in the same way. The fact that the up
and lower states in the quantum transition have traded pla
leads to an interchange in the operatorsĉ and ĉ† in the ex-
pression for the effective Hamiltonian:

Ĥm2

eff 5\v8«â2
†â21 i\v8~km2

a2
†c†2km2

* a2c!, ~24!

where

âq5exp~ i«t!â2 , km2
5kq^w2

2~t!exp~2im2t!&. ~25!

Let us examine the ‘‘elastic’’ interaction:

dq52m3111«, u«u!1. ~26!

Keeping only the slowly oscillating terms on the right sid
of Eqs.~11! and ~12!, we find

d

dt
ĉ52km3

* exp~ i«t!ĉâq22km3
exp~2 i«t!ĉâq

† , ~27!

d

dt
âq5km3

exp~2 i«t!~ Î 22ĉ†ĉ!, ~28!

where

km3
5kq^w1* ~t!w2~t!exp@2 i ~2m311!t#&. ~29!

Transforming the photon annihilation operator according
the expressionâq5exp(i«t)â3, we can write Eqs.~27! and
~28! in the form of Heisenberg equations with an effecti
Hamiltonian

Hm3

eff 52\v8@«â3
†â31 i ~km3

* â32km3
â3

†!~ Î 22ĉ†ĉ!#.

~30!

The operatorN̂(t)5 ĉ†(t) ĉ(t) commutes with the Hamil-
tonian ~30! and is a constant of motion of the system:

ĉ†~t!ĉ~t!5 ĉ†~0!ĉ~0!5 ĉ0
†ĉ0 . ~31!

We see that when the interaction is ‘‘elastic,’’ populations
the quasienergy statesuu0& and uu1& do not vary with time.
Substituting~31! into ~28! and integrating the equation fo
the photon annihilation operator, we obtain

âq~t!5âq~0!1 ikm3

exp~2 i«t!21

«
~ Î 22ĉ0

†ĉ0!, ~32!

n̂~t!5â†~t!â~t!5âq
†~t!âq~t!5n̂0

14ukm3
u2

sin2~«t/2!

«2 1
i

«
~ Î 22ĉ0

†ĉ0!

3$km3
@exp~2 i«t!21#a0

†2km3
*

3@exp~ i«t!21#a0%, ~33!

whereâ0[â(0), andn̂0[â0
†â0 . In deriving relation~33! for

the operatorn̂(t) of the photons in the quantized mode, w
employed the fact that (Î 22ĉ0

†ĉ0)25 Î . When the interaction
is ‘‘elastic,’’ the oscillations of the photons take place at t
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atom and the quantized mode («50), the number of photons
is

n̂~t!5n̂01ukm3
u2t21~ Î 22ĉ0

†ĉ0!~km3
a0

†2km3
* a0!t.

~34!

We see that, in contrast to ‘‘inelastic’’ interaction, ‘‘elastic
interaction makes it possible to effectively pump ener
from a classical field to a quantized mode. The reason
this is that for the ‘‘elastic’’ interaction there is no saturatio
of the population inversion of the quasienergy states.

Let us assume that initially the ‘‘dressed’’ atom and t
quantized mode were statistically independent, and that
quantized mode was in a coherent stateua&. Using Eq.~33!,
we can derive the following expressions for the avera
number of photons,n̂, and the variance of the number o
photons, (Dn2):

n̄~t!5uau21uh~t!u21g~t!DN, ~35!

~Dn!2

n̄
511

g~t!2@12~DN!2#

n̄
, ~36!

whereDN5^ Î 22ĉ0
†ĉ0&5^ĉ0ĉ0

†2 ĉ0
†ĉ0& is the average popu

lation difference of the quasienergy statesuu0& anduu1& ~the
angle brackets denote quantum mechanical averaging!, and

h~t!5
ikm3

@exp~2 i«t!21#

«
,

g~t!5a* h~t!1ah* ~t!.

Thus, ata50, the photon statistics in the quantized mode
represented by a Poisson distribution at any moment in t
@(Dn)25n̄ #. The same is true for an arbitrary value ofa if
the atom is in one of its quasienergy states, i.e.,DN561. In
all other cases the photon statistic is above-Pois
@(Dn)2.n̄ #.

To estimate the highest order of the resonance,m3 , that
can be realized in an experiment we must average over
period 2p in ~29!. In particular, for the amplitude-modulate
~bichromatic! classical field~20! we have

km3
52

i

2
kqJ2m311~2s!

52
i

2
k exp~2 ic!J2m311~2s!. ~37!

4. CONCLUSIONS

We have studied the nonlinear dynamics of a coup
system which incorporates a ‘‘dressed’’ atom and one qu
tized mode of an electromagnetic field. By ‘‘dressed’’ w
mean a two-level atom that interacts with an intensive c
sical field. The approximations which we used are those
dipole interaction, a rotating wave, and a fixed classical fie

If the classical field has an equidistant frequency sp
trum, two stationary quasienergy states and an infinite n
ber of quasienergy levels can be introduced for
‘‘dressed’’ atom. The interaction of the ‘‘dressed’’ atom an
the quantized mode is of a resonant nature if the frequenc
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cies between the quasienergy levels. What atom–field in
action mechanism, ‘‘inelastic’’ or ‘‘elastic’’~which differ
considerably!, is realized depends on the frequency of t
quantized mode.

In the ‘‘inelastic’’ mechanism, the quasienergy leve
between which a quantum transition takes place belong
different quasienergy states of the ‘‘dressed’’ atom. He
emission or absorption of a photon from the quantized m
is accompanied by a transition of the ‘‘dressed’’ atom fro
one quasienergy state to the other. The equations of ‘‘ine
tic’’ interaction can formally be reduced to equations d
scribing the dynamics of the initial Jaynes–Cummings mo
~a two-level atom and a single quantized mode!.

In the ‘‘elastic’’ mechanism, both quasienergy levels b
long to the same quasienergy state. Emission or absorp
of a photon is not accompanied by a change in the pop
tions of the quasienergy states. When the frequency of
quantized mode and that of the transition between quas
ergy levels coincide, there can be an infinite buildup of t
number of photon in the quantized mode with the passag
time ~as long as the approximation of a fixed classical fie
holds!. If initially the quantized mode was in a cohere
quantum stateua&, with the passage of time the statistics
the photons in the quantized mode either becomes of
Poisson type@(Dn)25n̄# or of the above-Poisson typ
@(Dn)2.n̄#. The case of Poisson statistics is realized eit
at a50 or at an arbitrary value ofa if the atom is in one of
its quasienergy states.
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Critical fields for ionization of the hydrogen molecule and the molecular hydrogen ion

he
M. B. Smirnov and V. P. Kra nov

Moscow Physics and Technology Institute, 141700 Dolgoprudny�, Moscow Region, Russia
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We calculate the critical fields for the classical ionization of an ion of the hydrogen molecule
and the neutral hydrogen molecule by an electric field. In the case of a molecular ion
we examine different internuclear distances and obtain the correct limits for the well-known
cases of small and large internuclear distances. ©1997 American Institute of Physics.
@S1063-7761~97!00509-X#
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Bethe and Salpeter1 were the first to obtain the value o
the critical electric field strength needed to ionize atoms
cording to the classical mechanics:

F5
En

2

4Z
a.u. ~1!

HereF is the electric field strength at which the unperturb
energyEn of the atomic level under consideration coincid
with the top of the effective potential barrier, andZ is the
charge of the atomic~or ionic! core. ~Throughout the pape
we use the atomic system of units:e5\5me51.! In par-
ticular, for a hydrogenlike state with the principal quantu
numbern, Eq. ~1! yields

F5
Z3

16n4 a.u. ~2!

One should bear in mind, however, that the estimates~1!
and ~2! were obtained for the one-dimensional model.
other words, it is assumed that the electron moves along
direction of the electric field. The three-dimensional ca
changes somewhat only the values of the numerical co
cients in~1! and ~2!.

If the electric field strength exceeds the values~1! or ~2!,
classical above-barrier ionization of the atomic occurs ove
very short atomic time. In the quantum case, the ionizat
probability proves to be somewhat lower because of abo
barrier reflection. When the field is weak, there can only
quantum tunneling through the effective potential barri
with the tunneling rate being exponentially small compa
to the classical ionization rate.

Actually, in Eq.~1! we must take the perturbed value
the energy of the level under consideration, i.e., with allo
ance for the Stark shift. But if, for example, we take t
ground state of the hydrogen atom, even for the critical va
of the electric field the Stark shift amounts to

2
9F2

4
52

9~1/16!2

4
'20.01 a.u.,

which is extremely small compared to the unperturbed
ergy valueE520.50 a.u. Thus, the Stark shift in~1! can be
ignored. The same is true of the ground states of the simp
molecules. In any case, the one-dimensional approxima
is much cruder. An exception is the molecular ion of hyd
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ground even-parity state and the first excited odd-parity st
which results in a large Stark shift of these levels with
spect to each other at large internuclear distances.

The goal of the present study is to obtain the values
the critical electric fields for the simplest molecules, prim
rily for the ionization of an ion of the hydrogen molecule an
the neutral hydrogen molecule. This problem is importa
because of the recent experiments in the interaction of h
power low-frequency laser light and simple diatomic mo
ecules and their molecular ions.2,3 While for atoms the criti-
cal fields can be obtained analytically, for molecules we
forced to employ numerical methods, since the values
these fields depend on the distance between the nuclei o
diatomic molecule or the molecular ion. What is more, fo
molecular hydrogen ion the Stark shifts of the electron lev
are much larger than in the case of atoms because of
large induced dipole moments. As for atoms, we use
one-dimensional approximation to simplify the problem
Thus, the results are of semiquantitative accuracy. A syst
atic coverage of the results of the numerous experime
and theoretical studies of the molecular hydrogen ion~as the
simplest molecular entity! by laser methods can be found
the review of Giusti-Suzoret al.4

The estimates~1! and~2! are true for a constant electri
field and a low-frequency laser field, but in the latter case
alternating perturbation must be adiabatic, i.e.,

g5
vA2En

F
!1.

For low-lying states of atoms and molecules and for fie
obeying estimates~1! and~2!, this condition is satisfied to a
good accuracy for the radiation of a carbon-dioxide laser

2. THEORETICAL TREATMENT OF THE MOLECULAR
HYDROGEN ION

Let us denote the distance between the protons in the
of a hydrogen molecule byR and the coordinate of an elec
tron parallel to the external electric~quasistationary! field of
strengthF by z. The effective potential with which the pro
tons and the external field act on this electron has the follo
ing simple form:

V~z!52
1

uz2R/2u
2

1

uz1R/2u
2Fz. ~3!

4477-04$10.00 © 1997 American Institute of Physics
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tential of a molecule and that of an atom is that while in t
atom an electron surmounts only one barrier, in the case
molecule or molecular ion there are two potential barrie
one to the left and the other to the right of the origin
coordinates~in agreement with Eq.~3!!. Hence, in classica
ionization the electron must surmount a higher potential b
rier, and depending on the energy of the excited level be
considered, field strength, and internuclear distance,
higher barrier may be either to the left or to the right of t
origin. All this complicates the calculations.

It is well known ~see, e.g., the review in Ref. 5 an
Slater’s monograph6! that the interaction of a molecular hy
drogen ion and an external constant or low-frequency elec
field can be treated in the approximation of the two low
electron states: the ground~even-parity! state with an energy
Eg(R) and the first excited~odd-parity! state with an energy
Eu(R). The values of these energies as functions of the
ternuclear distanceR have been thoroughly studied.7 For
convenience we change the signs of these energies, thu
suming that both are positive.

In an external electric field the even- and odd-par
states strongly shift in relation to each other because o
finite dipole moment that couples these states. Hence
requirement that the energy of the perturbed state be equ
the height of the effective potential barrier amounts to
following:

V~z!5Eg,u~F,R!,
dV

dz
50. ~4!

The perturbed energiesEg,u(F,R) can be determined from
the following equation:5

detUEg,u~F,R!1Eg~R! FR/2

FR/2 Eg,u~F,R!1Eu~R!
U50. ~5!

Here we have assumed that the dipole matrix element
tween the even- and odd-parity states under consideratio
equal toR/2. Strictly speaking, this is true only when th
distanceR between the protons is large. However, numeri
calculations have demonstrated that this approximation
also be used in the range of equilibrium distanc
R52.0 a.u.~Ref. 8!. Thus, we arrive at the following simpl
expressions for the perturbed energies:

Eg~F,R!52
Eg~R!1Eu~R!

2

2AS Eg~R!2Eu~R!

2 D 2

1S FR

2 D 2

, ~6!

Eu~F,R!52
Eg~R!1Eu~R!

2

1AS Eg~R!2Eu~R!

2 D 2

1S FR

2 D 2

. ~7!

Let us start with the ground state. Substituting~6! and
~7! in ~4! and eliminatingF from the two equations in~4!,
we arrive at an equation for the coordinatez at which this
state touches the top of the effective potential barrier:
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1A@Eg~R!2Eu~R!#2S z22
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4 D 4

14R2S z21
R2

4 D 2

.

~8!

Then the critical electric field strength is given by the fo
lowing expression:

F~R!52
z21R2/4

~z22R2/4!2 . ~9!

Note that herez.R/2, so that the value of the perturbe
energyEg(F,R) is equal to the top of the right potentia
barrier.

In the R→0 limit we find Eg→2 a.u., z52 a.u., and
F50.5 a.u., which agrees with~2! for Z52 andn51 ~the
ground state of the He1 ion!. In the opposite limitR→` we
have Eg5Eu50.5 a.u. andz5R/21418/R1••• a.u., so
that F51/6 a.u., which agrees with~2! for Z5n51 ~the
ground state of the hydrogen atom!.

Now let us calculate the critical electric field strength f
the first excited~odd-parity! state of the molecular hydroge
ion. The calculation is more complicated than in the case
the ground~even-parity! state. If the distanceR between the
nuclei is not very large, the values of the critical fieldF(R)
can be found from the condition that the energy of the p
turbed odd-parity state coincide with the top of the rig
potential barrier, since this barrier is higher than the left p
tential barrier. The corresponding coordinatez can be found
numerically from an equation obtained in the same way
Eq. ~8! ~only the sign in front of the root is reversed!:

8z35@Eg~R!1Eu~R!#S z22
R2

4 D 2

2A@Eg~R!2Eu~R!#2S z22
R2

4 D 4

14R2S z21
R2

4 D 2

.

~10!

The critical electric field strengthF is also found from Eq.
~9! ~just as it is for the even-parity state! by reasoning along
similar lines. In particular, in theR→0 limit we obtain
Eu→0.5 a.u., so thatz58 a.u. andF51/32 a.u. This agrees
with ~2! if Z52 andn52 ~the 2p state of the helium atom!.

When the internuclear distanceR is large, the critical
field strength is found from the condition that the perturb
energy of the odd-parity state coincide with the top of the l
potential barrier, which becomes higher than the right b
rier. Here we have2R/2,z,0. ~The results of numerica
calculations suggest that the left and right potential barr
are of equal height atR57.5 a.u.! In this case the effective
potential barrier has the following form:

V~z!5
1

z2R/2
2

1

z1R/2
2Fz. ~11!

Then the conditions

V~z!5Eu~F,R!,
dV

dz
50 ~12!
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TABLE I. The critical electric field strengthsFg andFu and the correspond-
ing coordinateszg andzu as functions of the proton–proton distanceR for a
yield an equation for the coordinatez,0 at which the energy
of the perturbed odd-parity state coincides with the top of
left potential barrier:

2RS 3z22
R2

4 D52@Eg~R!1Eu~R!#S z22
R2

4 D 2

1A@Eg~R!2Eu~R!#2S z22
R2

4 D 4

14R4z2. ~13!

The critical electric field strength in this case is given by t
following expression:

F52
2zR

~z22R2/4!2 . ~14!

In the limit R→` we haveEg5Eu50.5 a.u., and from~13!
and ~14! it follows that z52R/214 a.u. and that
F51/16 a.u., as it should for the ground state of the hyd
gen atom, according to~2!.

3. RESULTS AND DISCUSSION OF THE CASE OF THE H 2
1

ION

Table I lists the results of calculations of the critical fie
strengthF for the even- and odd-parity states of the molec
lar hydrogen ion as functions of the internuclear distanceR.
We also list the values of the coordinatez at which the
energy of the corresponding state coincides with the top
the effective potential barrier. Finally, we list the unpe
turbed values of the energies of the even- and odd-pa
electron states used in the calculations.

We see that the critical field strength for the odd-par
state is much lower than for the even-parity state, as
pected ~with, of course, the exception of the case of e
tremely large internuclear distances, where the two val

molecular hydrogen ion~all values are given in the atomic system of units!.

R Eg(R) Eu(R) zg zu Fg Fu

0 2.000 0.500 2.00 8.00 0.500 0.0312
0.5 1.735 0.521 2.35 7.70 0.375 0.0338
1.0 1.445 0.583 2.90 6.94 0.260 0.0422
1.5 1.249 0.625 3.44 6.59 0.195 0.0479
2.0 1.102 0.667 3.96 6.37 0.155 0.0531
2.5 0.994 0.687 4.44 6.42 0.129 0.0544
3.0 0.904 0.693 4.89 6.66 0.111 0.0526
3.5 0.847 0.693 5.24 6.94 0.102 0.0504
4.0 0.796 0.692 5.59 7.33 0.095 0.0467
4.5 0.756 0.684 5.91 7.74 0.090 0.0432
5.0 0.724 0.675 6.22 8.16 0.085 0.0400
5.5 0.699 0.667 6.51 8.58 0.082 0.0372
6.0 0.678 0.656 6.80 9.00 0.080 0.0347
6.5 0.661 0.647 7.07 9.40 0.078 0.0326
7.0 0.648 0.647 7.35 9.80 0.076 0.0308
7.5 0.636 0.630 7.63 10.2 0.074 0.0290
8.0 0.627 0.623 7.90 20.52 0.073 0.0336
8.5 0.618 0.616 8.16 20.69 0.072 0.0379
9.0 0.612 0.610 8.42 20.87 0.071 0.0412
9.5 0.605 0.605 8.68 21.06 0.070 0.0438

10.0 0.510 0.510 54.0 246.0 0.0625 0.0625

449 JETP 85 (3), September 1997
e

-

-

f

ty

x-
-
s

coincide!. Note the change of sign of the contact coordina
z for the odd-parity state at the point where the right barr
is replaced by the left one~at R57.5 a.u.!.

Table I shows that the critical field strengthFu for the
ground ~even-parity! state of the molecular hydrogen io
monotonically decreases from the value 0.5 a.u. atR50,
corresponding to the 1s state of the He1 ion, to the value
1/1650.0625 a.u. asR→`, corresponding to the 1s state of
the hydrogen atom~as expected!. The behavior of the critical
field strength for the odd-parity state as a function of t
internuclear distanceR is more complicated: at small value
of R the critical field strength grows from the valu
1/3250.0312 a.u. atR50, corresponding to the 2p state of
the He1 ion, to a local maximum atR52.5 a.u. After thatFu

decreases to a local minimum atR57.5 a.u., and then agai
increases to the final value 1/1650.0625 a.u. asR→`, cor-
responding to the 1s state of the hydrogen atom.

The minimum value ofFu at R57.5 a.u.~corresponding
to a radiation intensityI 5531013 W cm22! explains the
maximum electron ionization probability at such an intern
clear distance; indeed, an electron cannot be ‘‘ionized’’ fro
the ground electron state because of the presence of a p
tial barrier; instead it is nonadiabatically transferred from t
ground electron state to an excited state because of
Landau–Zener effect9,10 and is then ‘‘ionized’’ from the ex-
cited state. Note that the data listed in Table I agree with
results of calculations of Posthumuset al.11 of the ionization
probability ~see Fig. 1 in Ref. 11!.

4. CRITICAL FIELD STRENGTH FOR THE NEUTRAL
HYDROGEN MOLECULE

Calculations of the critical field strength for the neutr
hydrogen molecule differ considerably from those of the m
lecular hydrogen ion. In the neutral molecule, in contrast
the ion, an external electric field does not mix the grou
state with an excited electron state of the molecule, since
dipole matrix element does not increase with the internuc
distance. We can therefore ignore the Stark shift of the
ergy of the ground state of the neutral hydrogen molecu
This conclusion is confirmed by the results of Yuet al.12 In
addition, ionization by a low-frequency laser field occurs
the equilibrium internuclear distanceRe51.458 a.u., since
there is practically no dissociation in the neutral hydrog

FIG. 1.
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is no need to consider other values of the internuclear
tance.

The variational three-dimensional wave function of t
ground state of the hydrogen molecule is well known:6

C~r1 ,r2!5exp@2a~r a~1!1r b~2!!#

1exp@2a~r a~2!1r b~1!!# ~15!

~its normalization is not required in the present problem!.
Here we have introduced the following notatio
a51.166 a.u., andr a,b(1,2) are the distances between t
electrons1 and2 and the protonsa andb:

r a~1!5Ar1
21~z11R/2!2,

r b~1!5Ar1
21~z12R/2!2,

~16!
r a~2!5Ar2

21~z21R/2!2,

r b~2!5Ar2
21~z22R/2!2.

The electron coordinatesr15(r1 ,z1) and r25(r2 ,z2) are
expressed in terms of cylindrical coordinates, with the a
coinciding with the direction of the external electric field.

Next we define the single-particle potential of one of t
electrons~say, the first! in the field of the second electron b
using the Hartree–Fock approximation:

Ve~r1!5

*
1

ur12r2u
uC~r1 ,r2!u2dr2

* uC~r1 ,r2!u2dr2
. ~17!

Then the effective potential acting on the first electron in
process of its ‘‘ionization’’ has the following form~here we
again assume that the electron is emitted along the direc
of the external electric field, i.e., we employ the on
dimensional approximation!:

V~z!52
1

uz2R/2u
2

1

uz1R/2u
1Ve~r50, z!2Fz. ~18!

The effective single-particle potential corresponding to~18!
at F50 is depicted in Fig. 1~it is symmetric with respect to
the origin of the coordinate system!.

The critical field strengthF and the corresponding coo
dinatez is found ~as in the case of the molecular hydrog
ion! by numerically solving the following two equations:

dV

dz
50, V~z!5

1

2
E, ~19!

whereE521.139 a.u. is the energy of the ground state
the hydrogen molecule. Here we also assume that the
electrons are identical, i.e., each has an average energy
to one-half of the total energy.
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F50.0694 a.u., z54.43 a.u. ~20!

We see that the critical field strength is close to 1/16 a.u.
the ground state of the hydrogen atom. This can be expla
by the screening of the Coulomb field of the two protons
the field of the second electron.

Thus, we have calculated the critical electric fie
strengths for the case of classical ionization of the simp
molecules: the molecular hydrogen ion and the neutral m
ecule of hydrogen. They supplement the results for atom13

Our results can be used to analyze the process of sim
neous dissociation and ionization of a molecular hydrog
ion initialized by high-power low-frequency laser radiatio
~primarily of a carbon-dioxide laser with the maximum am
plitudes of the field strength equaling 108 V cm21 or higher;
see Refs. 14 and 15!.
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Nonlinear saturation spectroscopy of the degenerate electron gas in spherical

the
metallic particles
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We examine the linear and cubic optical polarizations of the degenerate electron gas in spherical
metallic particles. For photon energies that are high compared to the splitting of the
spectrum of electron states we use a unified approach to calculate the dimensional~size, or
quantum! and Drude parts of the polarization and the variation of energy distribution of the
electrons induced by a field. ©1997 American Institute of Physics.@S1063-7761~97!00609-4#
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Spherical metallic particles play an important role
many physical problems, with the result that over the ye
their various properties—mechanical, thermal, magne
electrical, radiophysical, optical—have undergone study
particular, the optical properties, which we investigate he
have been studied for more than 90 years, starting with
pioneering work of Maxwell–Garnett1 and Mie.2 In the
1950s there was an upsurge of interest in metal optic
connection in the hope that it could be used to solve imp
tant problems of the physics of metals.3 The interest in quan-
tum ~size! effects in microparticles much larger than the i
teratomic distances in condensed media had an impact o
physics of metallic particles. In the 1960s, Kabawata a
Kubo4 and Gor’kov and E´ liashberg5 studied the specific hea
and magnetic and electric properties of small particles cau
by quantum effects. The nonlinear optical phenomena ex
ited in a high-power laser field are also influenced by s
effects, and according to Hacheet al.,6 these effects provide
the leading contribution to the optical nonlinear suscepti
ity tensor of the electrons in spherical metallic particles. U
fortunately, we doubt that this is the case, and the reason
this is given below.

The theory of size optical effects in microparticle
proved to be closely linked to the general problem of sele
ing the HamiltonianV̂ of the interaction of an electron an
an electromagnetic field, a problem that has been consta
debated over the entire period in which nonlinear optics
spectroscopy developed.7–9 The HamiltonianV̂ can be writ-
ten in the form

V̂52
e

mc
p̂–A1

e2

2mc2 A2, ~1.1!

where p̂ and A are the electron momentum and the field
vector potential. In the dipole approximation, Eq.~1.1! is
equivalent to7–9

V̂52d̂–E, ~1.2!

whered̂ andE are the dipole moment and the electric fie
vector. The equivalence, however, breaks down if in the p
turbation series we keep only a limited number of term
which describe the mixing of only some unperturbed el
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Hamiltonians~1.1! and ~1.2! for the transitions between sta
tionary statesm andn differ by a factorvmn /v, wherevmn

andv are the Bohr frequency and the frequency of the fie
In resonancevmn equalsv, and both Hamiltonians obviously
lead to the same result. From general considerations
clear that for quantum effects in particles of nonatomic si
the situation is markedly different. Indeed, the characteri
scale in the energy spectrum is the quantity

E05
\2

2ma2 5RS a0

a D 2

, R5
me4

2\2 51.13105 cm21,

~1.3!

wherea is the particle radius, andR anda0 are the Rydberg
constant and the Bohr radius. If, for instanc
a5100a0553 Å, thenE510 cm21!\v5104 cm21. Thus,
for a sizable fraction of the quantum transitions in microp
ticles of nonatomic sizes we haveuvmnu!v, and for such
transitions the matrix elements of the Hamiltonians~1.1! and
~1.2! differ by several orders of magnitude, and the cho
between~1.1! and~1.2! becomes critical. Analysis of a num
ber on nonlinear phenomena has shown that for approxim
calculations the Hamiltonian~1.2! is preferable to~1.1! ~see
Refs. 8 and 10!. But the ‘‘preferability criteria’’ formulated
in Refs. 8 and 10 work only for the simplest model~two- and
three-level!. In our problem of the interaction of the dege
erate electron gas and a field the model is essentially m
level: the number of filled states is equal to the number
electrons in a particle and amounts to roughly one million
a particle with a radius of 100 Å. We see that the crite
developed in Refs. 8 and 10 are of little use here. Below
will show that in calculating the spectrum of nonlinear a
sorption of electrons in spherical particles we should still u
formula ~1.2!, with the results differing both in absolut
value and in the dependence on the field frequency fr
those obtained in the ‘‘alternative theory’’ of Hacheet al.,6

based on the Hamiltonian~1.1!.
In this paper we develop a theory of optical~linear and

nonlinear! properties of the degenerate electron gas in sph
cal particles. We employ a simple model, in which an ele
tron is in an infinitely deep spherical potential well of radi
a. The electron wave function in this case is11

4511-11$10.00 © 1997 American Institute of Physics
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2. THE DIPOLE MOMENT OF A SPHERE: GENERAL
EXPRESSIONS
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cnlm5
Ar

, ~1.4!

Cnl5
&

auJl 13/2~anl!u
,

whereYlm(u,w) andJl 11/2(z) are the spherical function an
the Bessel function of the first kind,anl is the (n11)st root
of Jl 11/2(z), andCnl is a normalization constant. The energ
eigenvaluesEnl of the statenl are

Enl5E0anl
2 , E05

\2

2ma2 . ~1.5!

Some of the properties of the roots of Bessel functions
we will need in the future can be found in Appendix A.

For typical valuesa5100 Å we haveE053.08 cm21,
and for a Fermi energyEF54.53104 cm21 ~silver! the
maximum valueanl5aF for filled states~at low electron
temperatures! amounts toaF5AEF /E05120. Thus, we are
dealing with large quantum numbers: in the given numer
examplen<38 andl<110. The characteristic separation
excited levels,

Ei2Ej5E0~a i
22a j

2!5AE0~AEi1AEj !~a i2a j !,
~1.6!

i 5ni l i , j 5nj l j ,

for a i2a j51, and a i'aj'aF amounts to 740 cm21,
which is much larger than the relaxation width
(;100 cm21) but much smaller than\v.

The off-diagonal matrix element of the radius,r i j , is
given by the following expression:

r i j 5
4aa ia j

~a i
22a j

2!2 ~d l i l j 211d l i l j 11!. ~1.7!

We see that we haver i j <a, with r i j assuming its maximum
value at the minimum differenceua i2a j u51. This fact is
similar to the well-known rule of atomic spectroscopy, a
cording to which the lines are the strongest for equal val
of the principal quantum numbers of the combining state12

The model ~1.4! is certainly a simplification. First, it
does not account for the roughness of the particle surf
Since the electron wavelength isl5\/A2mEF5a/aF

;1022a, irregularities in the shape of the surface with siz
on the order of interatomic distances may become import
Second, the single-particle approximation ignores
electron–electron interaction, which, however, is charac
istic of the concept of a degenerate electron gas. The con
of a quantum Fermi liquid may also improve the theo
Nevertheless, the simple free-electron model~1.4! has
proved useful in many physical problems. For our purpo
it is simply indispensable since, we believe that incorpor
ing the above factors into the theory of nonlinear spec
scopic properties of particles constitutes an exceptional a
perhaps, unjustified complication of the model.
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Since we assume that the sphere is small (a!l), we can
limit ourselves to the dipole approximation and define t
dipole moment as follows:

^d~ t !&5Tr d̂r5(
i j

dj i r i j , ~2.1!

whered̂ andr is the dipole moment operator and the dens
matrix. In the model of relaxation constants, the kine
equation forr has the form~see, e.g., Refs. 13 and 14!

ṙ i j 1~G i j 1 iv i j !r i j 52i(
l

~Gil r l j 2r i l Gl j !

3cosvt1d i j G jNj , ~2.2!

wherev is the field frequency, theG i j are relaxation con-
stants, and theNj are the populations of the statesj 5nj l jM j

in the absence of a field. Here we have introduced the
lowing notation:

G j5G j j , v i j 5
Ei2Ej

\
, ~2.3!

Gab5
dab–E

2\
5(

s

dabs~21!sE2s

2\
, ~2.4!

es–dab5dabs5
dab~21! l b2Mb

)

^ l aMal b2Mbu1s&,

~2.5!

dab5~nal aidinbl b!5
4eaaaabAl max

ab d l a l b61

~aa
22ab

2 !2 ,

l max
ab 5max l al b , ~2.6!

with dabs andEs the circular components of the vectordab

and of the field amplitudeE, wheredab is a simplified no-
tation for the reduced matrix element of the dipole mom
defined in accordance of Ref. 12, and^•••u•••& is a vector
addition coefficient. The labelsi , j , a, b indicate sets of
quantum numbersni l iM i , nj l jM j , etc. The operator repre
senting the interaction with the field is written in the for
dE, in accordance with what has been said in Sec. 1.

It is common practice in nonlinear optics to use Car
sian coordinates for the susceptibility tensor, which is qu
natural for crystalline media. In our problem the object
spherically symmetric, and so we use a more conven
tool, irreducible spherical tensors, which has found wide
plication in nuclear physics,15 atomic spectroscopy,12 the
theory of relaxation processes,16 and in nonlinear
spectroscopy.13,14

Relaxation processes are represented in Eq.~2.2! by phe-
nomenological constants, which describe the relaxation
levels (G j ) and coherence (G i j ). Such a relaxation model is
widely used, although it has certain drawbacks.

The solution of Eq.~2.2! can be written in the form of a
Fourier series:
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r i j 5 (
s52`

`

r i j
~s! exp~ ivst!, r i j

~s!5~r j i
~2s!!* . ~2.7!

The component of the dipole moment oscillating with a f
quencyv is

dv5(
i j

dj i ~r i j
~21!e2 ivt1r i j

~1!eivt!5Re~De2 ivt!, ~2.8!

D52(
i j

dj i r i j
~21! .

The expansion amplitudesr i j
(s) in ~2.7! obey the following

system of equations:

@G i j 1 i ~v i j 1sv!#r i j
~s!

5ds0d i j G iNj1 i(
l

@Gil ~r l j
~s21!1r l j

~s11!!

2~r i l
~s21!1r i l

~s11!!Gl j #. ~2.9!

The solutionr i j
(21) needed for calculatingdv can be written,

to within terms cubic in the field amplitude, as follows:

r i j
~21!5Gi j Li j

~21!Nji 1(
kl

GikGklGl j Bikl j , ~2.10!

where

Lab
~s!5

1

vab1sv2 iGab
, Nab5Na2Nb , ~2.11!

Bikl j 5Li j
~21!$@~Lk j

~0!1Lil
~0!!~Lkl

~21!1Lkl
~1!!

1~Lk j
~22!1Lkl

~22!!Lkl
~21!#Nlk1@Lk j

~0!~Ll j
~21!1Ll j

~1!!

1Lk j
~22!Ll j

~21!#Njl 1@Lil
~0!~Lik

~21!1Lik
~1!!

1Lil
~22!Lik

~21!#Nki%. ~2.12!

Thus, the formula for the circular componentDs is

Ds5es–D52(
i j

di j sGi j Li j
~21!Nji

12(
ikl j

dj i sGikGklGl j Bikl j . ~2.13!

The term in~2.13! that is linear in the field correspond
to the one-photon transitionj – i ~Fig. 1a!, while the nonlin-
ear ~cubic! term corresponds to the three-photon transit
j – l –k– i ~Fig. 1b!, in accordance with the ordinary nonlin

FIG. 1. Diagrams for~a! one-photon and~b! three-photon transitions.
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and, in general, systems with a discrete spectrum. At e
stage in Figs. 1a and b, the resonance conditions specifie
the coefficientsLab

(s) are important. The quantitiesLab
(61) de-

scribe the Lorentzian shapes of the lines for the allowed tr
sitions a2b. The factorsLab

(0) are related to the constan
termsrab

(0) , with the transitiona2b being forbidden in this
case. The coefficientsLab

(22) represent beats~with a fre-
quency 2v! of populations (a5b) and matrix elementsrab

for forbidden transitions~j 2k and l 2 i !. In earlier work
these beats were ignored.

The distribution of the populationsNj over the states
plays an important role in finding the sums in~2.13!. We
assume that theNj are independent of theM j . In addition,
all calculations are done for low electron temperatur
where the Fermi distribution can be assumed rectangular.
high-power radiation this condition is not met, but here th
fact will be ignored. In accordance with what has just be
said,1!

Nj50, Ej.EF ; Nj51, Ej,EF . ~2.14!

Summation over the magnetic sublevels in~2.13! can be
done by standard methods: only the vector addition coe
cients indji s andGab depend on the magnetic numbers, a
summation of their produces is done according to we
known rules~see, e.g., Refs. 12–14 and 17!. The result is

Ds5
1

3\ (
i j

udi j u2Li j
~21!Nji Es1

I 0

12\3 (
j lki

dji* dikdlk* dl j

3Bikl j (
s1kq

Ajlki
~k! ^1s1kqu1s&Es1

I ~kq!, ~2.15!

I ~kq!5)(
s2s3

~21!12s3^1s212s3ukq&
Es2

Es3
*

I 0
,

I 05(
s

uEsu2, ~2.16!

2Ajlki
~k!

A2k11
5~21! l j 2 l kH 1 1 k

l j l k l i
J H 1 1 k

l j l k l l
J

1~21! l l2 l iH 1 1 k

l l l i l j
J H 1 1 k

l l l i l k
J . ~2.17!

We have retained the previous notation for the summa
indices in ~2.15!, the only difference being that now the
stand for the setsnj l j , ni l i , etc. The quantities denoted i
Eq. ~2.17! by braces are 6j -symbols.12,17,18 The quantity
I (kq) is known as the polarization tensor of the field,13,14

and the chosen normalization of the tensorI (kq) is such that
I (00)51; we isolate the factorI 0 proportional to the inten-
sity of the radiation. The tensorI (kq), the Ajlki

(k) , and the
vector addition coefficient in~2.15! describe the anisotropic
properties of the cubic nonlinearity. For instance, for linea
polarized radiation~with the z axis directed alongE! we
have

I ~00!51, I ~20!52&, ~2.18!
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while for circular polarization~with the quantization axis
directed along the wave vector!

I ~00!51, I ~10!5A3

2
, I ~20!5

1

&

. ~2.19!

The other components ofI (kq) vanish.
The expression for the cubic componentDs in ~2.15!

possesses a certain ‘‘hidden’’ symmetry, which is quite e
dent in the initial expression~2.13!: the sum over
M jMiMkMi and over the indices of the circular componen
of the field retains its value under the following substitution
of the indices:j→ l→k→ i→ j and s1→s2→s3→s1 . At
the same time, each product of 6j -symbols in~2.17! is un-
symmetric under such substitutions, but the sums overs1kq
incorporating these products are the same. Hence theAjlki

(k)

could have been written in the form of any of the two prod
ucts of 6j -symbols. In Eq.~2.17! we used a symmetrized
notation, in which the above-mentioned symmetry is inco
porated explicitly into the expression for the coefficien
Ajlki

(k) .
According to the properties of 6j -symbols,12,17,18 the

Ajlki
(k) are finite if

u l j2 l l u<1, u l l2 l ku<1, u l k2 l i u<1, u l i2 l j u<1,
~2.20!

u l j2 l ku<k, u l l2 l i u<k. ~2.21!

In view of the selection rules forr i j , only equalities are
realized in~2.20!. And due to the same selection rules,
k50 and 1 we havel j5 l k and l l5 l i , and only atk52 are
the inequalities in~2.21! also realized. The selection rules i
the orbital quantum number are illustrated by the transiti
diagrams in Fig. 2.

Since the statistical weight of anl state is equal to 2l 11,
large values of orbital quantum numbers are important. C
culations have shown that forl @1 the coefficientsAjlki

(k) are
inversely proportional tol j . For instance, for the isotropic
part we have

Ajlki
~0! 5

1

6l j
, l j@1. ~2.22!

FIG. 2. Diagrams illustrating the change in the orbital quantum number
three-photon transitions fork50 and 1~a! and fork52 ~b!.
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Summation over the quantum numbers in~2.15! is some-
what different in the linear and cubic terms of the dipo
moment. For this reason we introduce the special notatio

Ds5Ds
~1!1Ds

~3! . ~3.1!

We begin with the linear componentDs
(1) . In the sum over

i j in ~2.15!, the indicesi j run through the same sets o
values. We select a pair of levelsmn and assumeEm.En .
The indicesi j appear in the sum in two combinations:

i 5m, j 5n; i 5n, j 5m. ~3.2!

Taking into account their total contribution toDs
(1) , we find

that

Ds
~1!5

2

3\ (
mn

vmnudmnu2Nnm

vmn
2 2~v1 iGmn!

2 Es , ~3.3!

where summation over them–n transitions is implied. The
sum in the cubic termDs

(3) is generally much more compli
cated than in the linear. However, many terms in the s
over j lki are nonresonant and provide a small contribution
Ds . Following Ref. 6, we adopt the two-level approxim
tion, in which

k5 j , l 5 i . ~3.4!

Passing to summation over transitions, as we did in the lin
case, we arrive at the following expression:

Ds
~3!52

I 0

3\3 (
mn

vmnudmnu4Nnm

vmn
2 2~v1 iGmn!

2 H S 1

Gm
1

1

Gn
D

3F Gmn

~vmn2v!21Gmn
2 1

Gmn

~vmn1v!21Gmn
2 G

1S 1

2v1 iGm
1

1

2v1 iGn
D v1 iGmn

vmn
2 2~v1 iGmn!

2 J
3 (

s1kq
^1s1kqu1s&Es1

I ~kq!Amnk , ~3.5!

Amnk5
1

2
A2k11F H 1 1 k

l m l m l n
J 2

1H 1 1 k

l n l n l m
J 2G .

~3.6!

Summation over the scalar quantum numbersnml m and
nnl n in Eqs.~3.3! and~3.5! has nontrivial aspects specific t
the model~1.4!. We illustrate these aspects using the simp
expression~3.3! for Ds

(1) . In what follows we assume tha
the relaxation constantsGmn and Gm are the same for al
levels and transitions:

Gm5Gn5G1 , Gmn5G2 . ~3.7!

According to ~2.6!, dmn}vmn
22, which means that there ar

two regions of Bohr frequenciesvmn contributing the most
to Ds

(1) in the sum in~3.3!: the region of smallvmn and the
region near the pointvmn5v. If

2AE0EF

\v
!1, ~3.8!

n
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which we assume to be the case, these regions do not ov
and summation in the two can be done independently.2! The
inequality~3.8! imposes a restriction on the ratioa/l, which
in a certain sense is the opposite of the criterion for
applicability of the dipole approximation; specifically, th
inequality ~3.8! can be written as

a

l
@

vF

2pc
'1023, ~3.8a!

wherevF is the electron velocity on the Fermi surface~for
silver vF51.43108 cm s21!. BecausevF /c is small, the
condition ~3.8! does not contradict the inequalitya/l!1,
although it does limit the interval within which the partic
size can vary.

We start with small values ofvmn and denote the corre
sponding component ofDs

(1) by DsD
(1) . In the denominators

of the terms of the series we drop the termvmn
2 and insert the

expression fordmn from formula ~2.6!:

DsD
~1!52

2Es

3\

1

~v1 iG2!2 S, ~3.9!

S5(
mn

vmnudmnu2Nnm

5~4ae!2
E0

\ (
mn

am
2 an

2l max
mn Nnm

~am
2 2an

2!3 d l ml n61 .

At low electron temperatures the differenceNnm5Nn2Nm is
finite for En,EF andEm.EF , i.e., the energy levelsm and
n are close to the Fermi surface but are on different side
it ~Fig. 3!. In the numerator we put

am5an5aF5AEF

E0
,

in the denominator we put

am
2 2an

252aF~am2an!,

then sum overl m , and use the interpolation formula~A4! for
the rootsam andan :

FIG. 3. Diagram representing the nonresonant transitionsnn ,l n→nn

1k,l n11 ~right-slanted arrows! and nn ,l n→nn111k,l n21 ~left-slanted
arrows!. Solid arrows correspond tok50 and dashed arrows tok51. Tran-
sitions withk>2 are not shown.
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e

of

m F (
l nnnnm

H @Q~nm2nn!1P#3

1
l n

@Q~nm2nn21!1Q2P#3J . ~3.10!

The first term in the braces describesl n→ l m5 l n11 transi-
tions ~in Fig. 3!. Clearly, nm2nn5k50, 1, 2,... for such
transitions, and for a fixedk there is a (k11)st transition of
this type~the right-slanted arrows; in Fig. 3 only the trans
tions with k50 and k51 are shown!. The l n→ l m5 l n21
transitions are described by the second term in the bra
For such transitions the minimum value isnm2nn51, i.e.,
nm2nn215k50, 1, 2,..., and for afixed k there is a
(k11)st transition of this type~the left-slanted arrows in
Fig. 3!. Thus,

S5
e2

m
\aF(

l n
(
k50

` F ~ l n11!~k11!

~Qk1P!3 1
l n~k11!

~Qk1Q2P!3G .
~3.11!

The series ink in ~3.11! can be expressed by a linear com
bination of generalized Riemann zeta functions defined
the following equality:19,20

z~s,v !5 (
k50

`

~k1v !2s. ~3.12!

The functionsz(s,v) have been tabulated~see, e.g., Ref. 21!,
but for our analysis of the dependence on physical par
eters a simple approximate expression is more conven
~see Appendix B!:

z~s,v !5
1

vs F11
vs

~s21!~v11/2!s21G , ~3.13!

which we will use in our investigation. Summation overl n in
~3.11! now amounts to averaging in the interv
0, l n, l max'aF over a layer of thicknessam2an5Da5P
or Q2P adjacent to the Fermi surface. The number of sta
N whose energy does not exceedEn is22

N5
V

3p2 S 2m

\2 EFD 3/2

5
4

9p S EF

E0
D 3/2

5
4

9p
aF

3, ~3.14!

whereV5(4p/3)a3. Hence the number of state in a layer
thicknessDa is

DN5
4

3p
aF

2Da. ~3.15!

Collecting the intermediate results, we arrive at the followi
relationship:

DsD
~1!52

e2N

m~v1 iG2!2 F1 , ~3.16!

where

F152K l n11

P2 F11
2P3~P12Q!

Q2~2P1Q!2G1
l n

~Q2P!2

3F11
2~Q2P!3~3Q2P!

Q2~3Q22P!2 G L @^2l n11&#21, ~3.17!
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facean5aF in a layer of unit thickness,Da51. The factor
F1 cannot be calculated analytically, but its value is close
unity. Indeed, forl n!nn we haveQ52P5p, and calcula-
tions via formula~3.17! yield F1537/4p250.94. In the op-
posite limit l n'aF@1 we getP21!1 andQ.p ~see Ap-
pendix A!. At Q55 and P51, for instance, we have
F151.10. Thus, we may assume thatF151.

In calculating the nonlinear component of the dipole m
ment,DsD

(3) we must allow for two important facts. First, th
factor Amnk in ~3.6! can be replaced by its value forl j@1:

Amnk5
Ak

6l j
, A051, A15

)

2
, A25

A5

10
. ~3.18!

Second, the terms in the series inmn in ~3.5! contain the
factor (am

2 2an
2)27, and with such a large exponent we ne

only keep the terms withnm5nn for l m5 l n11 and with
nm5nn11 for l m5 l n21. In the rest, the calculation can b
done according to the above scheme, which leads to the
lowing relationship:

DsD
~3!5

e2N

m~v1 iG2!2 S ea

\v D 2

I 0H G2

G1

2
1

4~11 iG1/2v!~11 iG2 /v! J CsF3 , ~3.19!

where

Cs5
1

3 (
s1kq

^1s1kqu1s&Es1
I ~kq!Ak , ~3.20!

F35^2l n@P261~Q2P!26#& @^2l n11&#21. ~3.21!

The angle brackets in~3.21! imply, as usual, summation ove
a layer of unit thickness,Da51, near the Fermi surface.

If in ~3.16! we put F151, then DsD
(1) is equal to the

dipole moment calculated in the classical Drude free-elec
model. This result is quite natural sinceDsD

(1) is determined
by the nonresonant interaction of the field and an elect
with the Fermi energy, as assumed in the classical theor
optical properties of metals.3 Hence the termDsD

(3) can be
called the Drude nonlinearity, which is indicated by the su
scriptD. The nonlinear parameter inDsD

(3) is the combination
(ea/\v)2I 0 , which stresses the nonlinearity of the intera
tion; the characteristic buildup time of the nonlinear effe
is 1/v.

The term in ~3.19! containing (11 iG1/2v)21 reflects
the presence of population beats. This effect, not consid
in Refs. 4–6, is indeed unimportant ifG2@G1 .

Now let us calculate the contribution toDs from the
region of states near the pointvmn5v. This is called the
quantum or dimensional~size! or resonant contribution
since it is caused by the resonant transitions between s
of the discrete spectrum related to the finite dimensions~or
size! of the particles. We denote it byDsa .

Summation in~3.3! and~3.5! over l m yields 2l n11. We
replace the sum overnm by an integral and use the result
calculate the contribution of the resonant regions, e.g.,
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nm vmn

2 2~v1 iG2!2
0 vmn

2 2~v1 iG2!2 dvmn

5 i
p

2

1

v1 iG2

dnm

dvmn
,

dvmn

dnm
5

2Q

\
AE0Em, ~3.22!

where the coefficientQ is weakly dependent onn. In all
other factors we setvmn5v, am

2 5an
21\v/E0 , etc. The

sum overnnl n is replaced by an integral overEn with a
density of states

dN

dEn
5

2

3p

En
1/2

E0
3/2.

As a result of the calculations we arrive at the followin
relationships:

Dsa
~1!5 i

e2N

m

1

v~v1 iG2!

2AE0EF

\v
g1~n!Es , ~3.23!

g1~n!5
1

n E
12n

1

x3/2~x1n!1/2
p

Q
dx, n5

\v

EF
, ~3.24!

Dsa
~3!52 i

e2N

mv2 S ea

\ D 2 I 0

G1G2
SAE0EF

\v D 5 2

p
g3~n!Cs ,

~3.25!

g3~n!5
1

n E
12n

1

x5/2~x1n!3/2
p

Q
dx. ~3.26!

In addition to the combinationse2N/m and (ea/\)2I 0

mentioned earlier, Eqs.~3.23! and~3.25! contain the param-
eter

2AE0EF

\v
5

vF

av
. ~3.27!

In classical terms this parameter is the ratio of the rate
electron collisions with the surface of the sphere of radiua
to the field frequency, while in quantum terms it is the ra
of the characteristic distance between the closest lev
2AE0EF, near the Fermi surface to the photon energy. Th
the parameter~3.27! characterizes the size, or quantum, e
fects.

If \v!EF holds, the values of the functionsg1(n) and
g3(n) are close to unity. This condition is barely satisfied
the spectral region where we can still ignore the absorp
of light by the lattice~EF553104 cm21 andv5104 cm21!.
The factorQ in ~3.24! and ~3.26! differs somewhat from
state to state, but even in fairly accurate estimates we
takeQ5p; in contrast to~3.17! and ~3.21!, which incorpo-
rate large powers ofQ, here small inaccuracies inQ lead to
small errors.

To make things more convenient in the discussion t
follows, we combine the results into a single expression a
keep only the first corrections in the small parameterG2 /v:
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e2N
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2G2
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2AE0EF
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r~0!5d 2
2G2

G G

ents

he
s mv2 H F 1 S v 1 \v 1D G
3Es2S ea

\v D 2

I 0

G2

G1
FF32 i S 2G2

v
F3

1
v2

~2G2!2 S 2AE0EF

\v D 5

g3D GCsJ . ~3.28!

Here the terms containingF1 , F3 andg1 , g3 are caused by
the Drude and size effects, respectively. The real parts c
tribute to refraction and the imaginary parts, to absorptio

4. INDUCED VARIATION OF POPULATION

The problem of relaxation of a nonequilibrium electro
distribution has a long history~see, e.g., Refs. 23–25!, and
lately has attracted the attention of researchers in connec
with the experimental possibilities introduced by the tec
nique of ultrashort pulses of laser light.26,27 We believe that
the problem of the hierarchy of processes of exchange of
energy taken by electrons from the field, such as thermal
tion of ‘‘hot electrons,’’ energy transport from electron
lattice, and anisotropy relaxation, has yet to be solved.
small particles the exchange of energy with the surround
medium, or heat conductance, may also play a certain r
Apparently, the answers to all these questions depend
least partially, on the type of induced distribution of ele
trons over the states. In view of what has been said in c
nection with the model~2.2!, we analyze the distribution th
electrons acquire as a result of their interaction with rad
tion.

In the first approximation inE, Eqs.~2.2! yield

r i j
~0!5d i j Ni1Li j

~0!(
l

Gil Gl j

3@~Ll j
~21!1Ll j

~1!!Njl 2~Lil
~21!1Lil

~1!!Nli #. ~4.1!

Here the indicesi , j , andl indicate sets of quantum numbe

i 5ni l iM i , j 5ni l iM i8 , l 5nl l lM l ,

i.e., r i j
(0) describes the stationary population and Zeeman

herence of a state with energyEi . As before, for the levels
Ei.EF and El,EF we assume thatNi50 andNl51 and
that Na is independent ofMa . Using the expression~2.11!
for Lab

(s) , we arrive at the following formula:

r i j
~0!5

2G2

G1
(

l
Gil Gl j F 1

~v i l 2v!21G2
2

1
1

~v i l 1v!21G2
2G . ~4.2!

A similar expression exists for levels below the Fermi s
face. In this case we haveEi5Ej,EF , Ni51, El.EF ,
Nl51, and
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(

l
i l l j

3F 1

~v l i 2v!21G2
2

1
1

~v l i 1v!21G2
2G . ~4.3!

Summation overMl in Eqs.~4.2! and~4.3! involves only
the vector addition coefficients inGil Gl j , and the result is

(
Ml

Gil Gl j 5
1

3 U dil

2\ U2

I 0(
kq

~21! l i2Mi8^ l iM i l i

2Mi8ukq&I ~kq!ail k , ~4.4!

ail k5)~21! l i1 l l1k11H 1 1 k

l i l i l l
J ,

with the polarization tensorI (kq) defined in~2.16!. Conve-
nient characteristics of states are the polarization mom
r i(kq) of statesi , linked to r i(MiMi8) by the following
relationships:13–17

r i~kq!5 (
Mi Mi8

~21! l i2Mi8^ l iM i l i2Mi8ukq&r i~MiMi8!,

r i~MiMi8!5(
kq

~21! l i2Mi8^ l iM i l i2Mi8ukq&r i~kq!.

~4.5!

Combining ~4.2! and ~4.4!, we arrive at the following for-
mula for r i(kq):

r i~kq!5I 0

2G2

3G1
(
nl l l

Udil

2\U
2F 1

~v i l 2v!21G2
2

1
1

~v i l 1v!21G2
2G I ~kq!ail k . ~4.6!

For l l@1 the coefficientsail k are

ail k5
ak

A2l i

, a051, a156
1

&

, a25
1

A10
, ~4.7!

where the different signs ofa1 correspond tol l5 l i71, re-
spectively. Thus, the factorail kI (kq) is practically indepen-
dent of l l and determines the polarization features of t
momentsr i(kq). For linear polarization we have

a0I ~00!51, a2I ~20!52
1

A5
, ~4.8!

and for circular polarization,

a0I ~00!51, a1I ~10!56
)

2
, a2I ~20!5

1

2A5
. ~4.9!

Note that the numerical values~4.8! and ~4.9! are related to
the relaxation model~2.2!, within which the relaxation rates
G1 are the same for allr i(kq). In more complicated~and
realistic! models, theG1 depend onk, and the polarization
moments of different ranks are related differently~see, e.g.,
Sec. 10 in Ref. 13 and Sec. 4.1 in Ref. 14!.
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the result that

r i~kq!5S ea

\ D 2

I 0

8G2

3G1

akI ~kq!

A2l i
(
nl l l

a i
2a l

2l max
i l

~a i
22a l

2!4 d l l l i61

3H 1

~v i l 2v!21G2
2 1

1

~v i l 1v!21G2
2 J . ~4.10!

We sum overnl l l , assuming that the regions of low freque
cies and resonance frequencies do not overlap~as in Sec. 3!.
In the low-frequency region we keep only one term in t
series, the one with the minimum value ofa i2a l :

a i2a l5P, l l5 l i21; a i2a l5Q2P, l l5 l i11.

The other terms of the series can be taken into account
formula ~B5!, but qualitatively the result is the same as wit
out these terms, so that we will not write the correspond
corrections. We arrive at the following relationship:

r i~kq!5S ea

\v D 2

I 0

G2

3G1
Al i

2
uakuI ~kq!H F Ei2EF

2AE0EF

1PG24

1F Ei2EF

2AE0EF

1Q2PG24

1@11~21!k#

3
p

2Q

v

G2
SAE0EF

\v D 3 EiAEi2\v

EF
3/2 J . ~4.11!

The saturation parameter is still (ea/\v)2I 0 . What is
most important in~4.11! is the dependence on the energyEi .
Inside the braces there are terms of different types. The
two terms rapidly decrease~as fourth-order hyperbolas!
when the state energiesEi exceed the Fermi energy. Th
hyperbolic term with P corresponds to the transitio
l l→ l i5 l l11 and the term withQ2P corresponds to the
transitionl l→ l l5 l l21. The hyperbolic terms, which can b
called Drude terms, practically disappear in the energy la
Ei2EF52AE0EF. The third term in~4.11! corresponds to
size effects. Its dependence onEi is much smoother, since

Ei2EF&\v!EF . ~4.12!

The relationship between the Drude and size parts of
induced variation ofr i(kq) ~on the Fermi surface! is speci-
fied by the parameter

K25
pP4

Q

v

G2
S E0EF

\v D 3

}
EF

3/2

G2

l2

a3 , ~4.13!

which is usually smaller than unity~if v5104 cm21,
G25102 cm21, and vF51.43108 cm s21, then K250.03!.
But at Ei2EF5\v, at the limit of the induced variation o
r i(kq), the size part is considerably larger than the Dru
part.

In states withEi,EF , the dependence onEi for the
induced variation ofr i(kq) is similar. A rough sketch of the
r i(kq) dependence onEi is given in Fig. 4.

Qualitatively, the Drude part of the field variation o
r i(kq) as a function ofEi is similar to the temperature de
formation of the Fermi distribution. Bearing in mind that th
thickness of the hyperbolic layer (2AE0EF;102– 103 cm21)
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can exceed the thermal energy by a factor of ten at the m
there are grounds to believe that this part ofr i(kq) is di-
rectly transformed as a result of relaxation into the qua
equilibrium distribution with a certain effective temperatur
On the other hand, the size part has a width of order\v@T
on the energy scale. Hence its relaxation, the relaxation
‘‘hot electrons,’’ may proceed in a more complicated, mu
tistage, way.

5. DISCUSSION

Let us discuss the consequences of choosing the inte
tion Hamiltonian in the form~1.2!. The matrix elements of
the operators~1.1! and ~1.2! differ by the factorvmn /v, so
that if we were to use the operatorp–A instead ofd–E, the
terms in the series~3.3! and ~3.5! would acquire the addi-
tional factors

S vmn

v D 2

5FE0~am
2 2an

2!

\v G2

,

S vmn

v D 4

5FE0~am
2 2an

2!

\v G4

, ~5.1!

respectively. In resonance,vmn5v, the factors~5.1! con-
tribute nothing new. However, in the low-frequency regi
(vmn!v) the situation is different: the combinatio
am

2 an
2/(am

2 2an
2) remains in the terms of the series~3.3!, and

without a resonant denominator the series does not conve
Hence, if we wish to use the interaction Hamiltonian in t
form ~1.1!, summation over the region of low and resonan
Bohr frequencies must be done simultaneously. Hacheet al.6

bypass the problem by introducinga priori a Drude term
identical to the one in the case of a massive specimen. S
an approach is inconsistent, and within it one cannot exp
to correctly calculate the nonlinear components of the po
ization of a ball. In contrast to~1.1!, the operatord–E pro-
duces a rapidly converging series~3.3!. Hence, for our prob-
lem the most suitable is the interaction Hamiltonian in t
form ~1.2!. The preferability of our approach has been est
lished in nonlinear optical phenomena as well.8,10

The apparatus of irreducible spherical operators, wh
became widespread in atomic spectroscopy after the pub
tion of Sobelman’s classical monograph,12 proved its effec-
tiveness in our problem, too. In particular, summation ov

FIG. 4. The energy distribution of electrons with allowance for stimula
transitions. The dashed curve represents the Fermi distribution at abs
zero.
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linear, cubic, and, generally, any approximation in the fi
amplitude. The final expressions are obtained in a more c
pact form than if we use the Cartesian system of coordina
as was done in previous papers~see Ref. 6 and the literatur
cited therein!. The vectorCs ~3.20! and the tensorI (kq) are
formed by the standard operation of the tensor multiplicat
of operators,~see, e.g., Sec. 14 in Ref. 12!. The most fre-
quently used are the linear and circular polarizations of
diation. For linear polarization~the quantization axis directe
alongE! calculations yield

Cs5C0ds05
2

5
Eds0 , ~5.2!

and for circular polarization~the z axisdirected along the
wave vector! we have

Cs5C1ds15
3

5
Eds1 . ~5.3!

The ratios of the isotropic (k50) to the anisotropic~k51
and 2! parts in these cases are 5:1 and 5:4, respectively

In the Drude and size terms ofDs , the prevailing parts
are the real and imaginary, respectively, which is due to
general fact according to which forced vibration in reson
conditions are characterized by ap/2 shift in phase in rela-
tion to the driving force, while in nonresonant conditions th
phase shift is 0 orp. This remark refers to both linear an
nonlinear components ofDs ~the factori in Eqs.~3.23! and
~3.25!!.

According to~3.28!, there are two small parameters th
determine the relationship between the Drude and size p

G2

v
,

2AE0EF

\v
5

vF

av
. ~5.4!

The ratio of these parameters,

K15
vF

aG2
, ~5.5!

plays an important role in the imaginary part ofDs
(1) : it is

frequency-independent, is determined only by the parame
of the metal, and ata5100 Å is usually much larger tha
unity ~e.g., for silver at vF51.43108 cm s21,
G25102 cm21, anda5100 Å we haveK158!.

The same parameters enter into the imaginary par
Ds

(3) as a different ratio:

K35
1

8 S v

G2
D 3S 2AE0EF

\v D 5

5
vF

5

8G2
3a5v2 . ~5.6!

Here the parameters, including the light frequency, are ra
to higher powers, so thatK3 can be either larger or smalle
than unity. For instance, fora5100 Å, G25102 cm21, and
l51 mm we haveK350.3, but variations ina andv by a
factor of 1.5–2 change the value ofK3 by a factor of ten.
Thus, depending on the conditions, either the Drude or
size ~quantum! effect plays an important role.

In the problem of induced variation of population~Sec.
4! we encountered the parameterK2 ~4.13!, which for the
above values of the numerical parameters is much sm
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effect is the Drude effect. However, atEi2EF'\v, the size
effect dominates~see Fig. 4!.

In our opinion, an important result is the fact that th
Drude nonlinearity depends on the frequency of the fie
According to ~3.19!, the real part ofDsD

(3) is inversely pro-
portional to the fourth power of the frequency. Physica
this is quite obvious, since the factor (v1 iG2)22 specifies
the frequency dependence of the ‘‘absorption profile’’ of t
free electron ~as it does in DsD

(1)), while the factor
(ea/\v)2I 0 is the saturation parameter, which determin
the variation in level population. In other words, there
direct similarity with the Karplus–Schwinger formula,28

which describes the saturation effect in the two-level mod
Methodologically, theDsD

(3)}v24 dependence is a direct con
sequence of choosing the interaction operator in the fo
d–E. In the theory of Hacheet al.,6 based on the Hamiltonian
~1.1!, the dependence is quite different:DsD

(3)}v27. This, in
particular, means that the conclusions drawn in Ref. 6 ab
the relative role of the Drude and size components do
correspond to the true situation. For the same reason
doubt that the comparison of the theoretical and experim
tal results done in Ref. 6 is meaningful.

The analog of the saturation parameter for the reson
contribution in Ds

(3) is the combination (ea/\)2I 0 /G1G2 ,
which instead ofv2 contains the population and polarizatio
relaxation ratesG1 andG2 . This structure of the parameter
in full agreement with the idea of saturation in resonant
sorption.

The frequency dependence of the size component,Dsa
(3)

}v27, which coincides with the one obtained in Ref. 6,
caused by the decrease in the matrix elementsdmn with in-
creasing natural frequenciesvmn , which provide the reso-
nant contribution toDsa

(3) ~see formula~2.6!!.
Let us now estimate the numerical value of the satu

tion parameter (ea/\v)2I 0 , which characterizes the exten
to which the nonlinear effects manifest themselves. Expre
ing W5(c/8p)I 0 , a, andl, respectively, in MW cm22, 10
nm, andmm,

I 05
8p

c
W5

8p

c
1013W̃ MW•cm22,

a51026ã310 nm, l51024l̃ mm,

we find that

S ea

\v D 2

I 050.4931023W̃ã 2l̃2. ~5.7!

Thus, for a radiation powerW51 MW cm22, a particle ra-
dius a510 nm, and a wavelengthl51 mm the saturation
parameter amounts to 0.05%.

There are two factors that enhance the nonlinear effe
According to ~3.28!, Ds

(3) is proportional toG2 /G1 , which
can be of order 10~Ref. 6!. The second factor is related t
the fact that the external fieldE0 specifyingW differs from
the field E inside the ball, with the latter entering into th
formulas forDs ~see Refs. 6 and 29!:
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where« and«0 are the dielectric constants of the ball and t
surrounding medium. In the spectral region near the po
where Re@11(«2«0)/3«0#50, the value ofu f u may be large.
Since f u f u2 enters into the cubic terms, the correspond
enhancement of the nonlinear effects may be considerab

The overall result of our analysis is that the approa
ideas, and methods of nonlinear spectroscopy developed
lier for atoms and molecules13,14 can be successfully applie
to the degenerate electron gas in metallic particles. Co
quently, it would be interesting to apply in this case t
powerful method of a probe field, in which nonlinear inte
ference effects lead to vivid polarization and spectrosco
phenomena.3!

The author is grateful to V. P. Safonov for discussi
various aspects of the problem and for fruitful remarks. T
research was sponsored by the Russian Fund for Funda
tal Research~Grant No. 96-02-19331! and the Internationa
Science Foundation~Grant No. 86–p!.

APPENDIX A

For the roots of Bessel functions we have the followi
formulas:21

anl5pS n1
l

2D2
l ~ l 11!

2p~n1 l /2!

3H 11
7l ~ l 11!26

3@2p~n1 l /2!#2 1•••J , n@ l , ~A1!

anl5 l 1
1

2
1Q1nS l 1

1

2D 1/3

1Q2nS l 1
1

2D 21/3

1••• ,

n! l . ~A2!

At l 50, Eq. ~A1! is exact:

an05pn, n51, 2, 3,... . ~A3!

When n and l vary within a limited interval, the following
interpolation formula is true:

anl5Qnln1Pnll 1Rnl , ~A4!

with the coefficientsQnl , Pnl , andRnl being weakly depen-
dent onnl. The following inequalities also hold:

Qnl>p, 1,Pnl<
p

2
. ~A5!

Here Pnl5p/2 andQnl5p hold only at l 50, andPnl51
holds whenl→`.

For aF5120 on the Fermi surface in the interv
70< l<110, where thanks to the statistical weight 2l 11 ap-
proximately half the states are present, we have

10.n.1, 4,Qnl,7, 1.2.Pnl.1.03.

APPENDIX B

In the definition of the generalized Riemann ze
function,19,20
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z~s,v !5 (
k50

~k1v ! , ~B1!

we isolate the first terms in the series,k50, 1,...,m, and in
the other replacek1v via the equality

G~s!~k1v !2s5E
0

`

exp@2~k1v !z#zs21dz ~B2!

and sum the series. Simple transformations lead to the
lowing formula:

z~s,v !5 (
k50

m

~k1v !2s1
1

~s21!~m1v11/2!

3H 12
1

G~s21!
E

0

`F12
u

sinh uGe2xxs22dxJ ,

~B3!

where u5x/(112m12v). The coefficient of the expres
sion in the braces coincides with the estimate of the rem
der series by the integral~upper bound!. The integral in the
braces is positive, decreases with increasingm and v, and
can be discarded:

z~s,v !5 (
k50

m

~k1v !2s1~s21!21S m1v1
1

2D 12s

.

~B4!

For v small ands large, good accuracy is achieved even
we keep only one term~with m50!:

z~s,v !5
1

vs H 11
v

s21 S v
v11/2D

s21J . ~B5!

In the region 0,v,1 ands.2, atm50 andm51 formula
~B4! yields an error less than 2% and 0.3%, respectively

1!With allowance for the electron spin, we could have normalized theNj in
~2.14! to 2. However, it has proved more convenient to introduce
statistical weight and allow for spin later, in Eq.~3.14!.

2!Note that Gor’kov and E´ liashberg5 examined the ultraquantum cas
\v,2AE0EF, in which these two regions are not separated.

3!In calculating the influence of the probe field, Bigotet al.27 ignored non-
linear interference effects.
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Anomalous drift of resonant particles in a buffer medium under pressure of light

L. V. Il’ichev and A. I. Parkhomenko

Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, 630090
Novosibirsk, Russia
~Submitted 31 December 1996!
Zh. Éksp. Teor. Fiz.112, 856–868~September 1997!

We study theoretically the drift of resonant particles in a buffer medium when a traveling light
wave impinges on the medium, with allowance for the velocity dependence of the transport
collision rate. When the pressure of light dominates over the light-induced drift~low pressure of
the buffer gas or the drift of conduction electrons in semiconductors!, we discover a new
sudden transformation of the spectral dependence of the drift velocity of the resonant particles:
Instead of the ordinary bell-shaped function representing the velocity spectrum we have a
double-humped curve with deep dip at the center of the absorption line. We show that the largest
transformation of the drift velocity spectrum occurs in the atmosphere of a heavy buffer gas
in the case of Coulomb interaction between the resonant and buffer particles. The transformation
effect is caused by the variation of the transport rate of the collisions of the resonant and
buffer particles due to the recoil effect in the absorption of radiation. ©1997 American Institute
of Physics.@S1063-7761~97!00709-9#

1. INTRODUCTION of the radiation, andv r5\k/M is the velocity of recoil in the
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The two effects that have attracted the most attention
the physics of selective action of radiation on the trans
tional motion of resonant particles in a buffer medium~at-
oms and molecules in a gaseous medium, ions in a plas
and conduction electrons in a solid, with phonons, impu
ties, and lattice defects acting as the buffer gas! are the reso-
nant light pressure1–3 and the effect of light-induced drift1!

discovered in 1979~Refs. 4–11!.
Qualitatively, light pressure and light-induced dr

manifest themselves in the same way, i.e., fluxes of abs
ing particles are generated in gases and solids. Dependin
the object being investigated and the prevailing conditio
the researcher is forced to consider the combined actio
these effects~in the case of their ‘‘competition’’! or may
ignore one effect.

Light pressure may dominate over light-induced drift
the light acts on the conduction electrons in semiconduc
~photocurrent generation! or if the pressure of the buffer ga
in the gaseous medium is low.

An important characteristic of the manifestation of lig
pressure is the spectral dependence of the drift velocityu of
the absorbing particles in a buffer medium that is under
pressure of light~e.g., the spectral dependence of the elect
drift velocity in semiconductors is directly related to th
spectral characteristic of the sensitivity of a semiconduc
light detector based on photon drag of electrons!. When the
transport rate of collisions of the resonant and buffer p
ticles is independent of the magnitude of the velocityv5uvu,
i.e.,n(v)5n5const, the drift velocityu is given by the stan-
dard relation~see, e.g., Ref. 7!:

u5
k

k
v r

P

n
, ~1!

whereP is the probability for the absorption of radiation b
a particle per unit time~absorption rate!, k is the wave vector
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absorption~emission! of a photon, hereM is the mass of the
absorbing particles. Thus, withn(v)5const, the spectrum o
the drift velocity u fully matches the spectral characterist
of the radiation absorption. When two-level particles are
volved ~which is the case studied in the present paper!, the
absorption rateP ~the velocityu! is represented by the well
known bell-shaped curve known as the Voigt profile.

We know of no detailed analysis of light pressure wh
n(v)Þconst. It might seem that the natural generalization

u5
k

k
v rE P~v!

n~v !
dv ~2!

of Eq. ~1! for the drift velocity in the case wheren(v)
Þconst is sufficient and that no new features can eme
@hereP(v) is the probability for the radiation absorption p
unit time by particles with a fixed velocityv, so that
P[*P(v)dv#. The spectrum of the velocity~2! is also rep-
resented by a bell-shaped curve, narrowed or expande
comparison to the case wheren(v)5const, depending on
whether the collision raten(v) increases or decreases wi
increasingv.

Allowance for variations in the transport collision ra
n(v) caused by the particle acquiring an additional veloc
v r in the direction of the wave vectork would seem to lack
all meaning because of the small@;v r / v̄!1, wherev̄ is the
mean thermal velocity of the particles, which determines
characteristic scale of variation ofn(v)] correction to the
collision rate. Nevertheless, it was found that this small c
rection leads to a drastic qualitative change in the spect
of the drift velocityu: instead of the usual bell-shaped curv
the spectrum profile is a double-humped curve with a d
dip at the center of the absorption line.

In this paper we study theoretically this unexpected
sudden transformation of the drift velocity spectrum.

4622-07$10.00 © 1997 American Institute of Physics



2. THE QUALITATIVE PICTURE
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What is the physics of the appearance of an anoma
spectrum in the drift velocity? Let us examine the behav
of two-level particles in an atmosphere of a buffer gas.
simplify matters, we assume that the transport ratesnm(v)
andnn(v) of collisions of the resonant particles on the co
bining levels and the buffer medium are equ
nm(v)5n(v)5n(v), and that the particles lose all memo
about their velocity in the course of a single collision. W
also assume that during its lifetime in the excited statem a
particle experiences many collisions. Let us examine the c
of Doppler absorption-line broadening, where the only p
ticles that interact with the radiation are those whose velo
projectionvz on the wave vectork is close tov05V/k, with
V5v2vmn the detuning of the radiation frequencyv from
the center of the absorption line,vmn . The other two veloc-
ity projections,vx andvy , which are orthogonal tok, can be
arbitrary. Since the distribution over the velocitiesvx andvy

is practically an equilibrium one,7 we average the problem
over vx and vy before we make any estimates. In this w
the three-dimensional problem is effectively reduced to
one-dimensional problem with a transport rate depend
only on the absolute value of the velocity projectionvz .

Let us examine the ‘‘fate’’ of a single particle. We tak
a particle that initially had an arbitrary velocity projectio
vz . As a result of collisions, the particle finds itself in th
resonant velocity region withvz5v0 . Under excitation~the
probability for the absorption of radiation by the particle p
unit time, or the absorption rate, isP! the particle acquires
due to the recoil effect, an additional velocityv r in the di-
rection coinciding with that of the wave vectork, so that in
the excited statem this particle has a velocityvz5v01v r .
The transport pathsln and lm of the particle in the ground
state and the excited state differ in view of the dependenc
the transport collision rate onvz :

ln5
k

k

v0

n~v0!
, lm5

k

k

v01v r

n~v01v r !
. ~3!

Ultimately, the particle, which prior to excitation was trave
ing at random, acquires a directional displacementl5 lm2 ln .
This displacement process is repeatedP times each second
and leads to a drift of the resonant particles with an aver
velocity

u5 lP. ~4!

Combining~3! and ~4!, we find

u5ur1ua , ~5!

where

ur5
k

k
v r

P

n~v01v r !
, ua52

v0

v r

Dn

n
ur ,

Dn

n
[

n~v01v r !2n~v0!

n~v0!
. ~6!

In ~5! the spectral dependence of the partial drift velocityur

on the radiation frequency is a bell-shaped curve~just as the
absorption rateP is! and is the well-known ‘‘ordinary’’ re-
action of a system to spontaneous light pressure. The se
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collision rate due to the recoil effect. It is responsible for t
sudden transformation of the spectrum of the drift velocityu.

Let us examine the behavior of the anomalous par
drift velocity ua . If the mass of the resonant part is small
than, or comparable to, the mass of the buffer particles,
characteristic scale of variation of the transport ra
n(vz)[n(uvzu) is of the order of the thermal velocityv̄ ~see
Ref. 7!, and for the factorDn/n we have the following esti-
mate: uDnu/n;v r / v̄. Thus, the anomalous partial drift ve
locity ua may reach the value

uuau;
uVu
kv̄

uur u, ~7!

and for uVu.kv̄ its contribution to the total drift velocityu
@Eq. ~5!# can exceed the contributionur from the ‘‘ordinary’’
response of a medium to light pressure~kv̄ is the Doppler
width of the absorption line!.

The direction ofua specified by~6! depends on the sign
of the productv0Dn}VDn. If the transport raten(vz) in-
creases withuvzu, then Dn is positive for v0}V.0 and
negative forv0}V,0. Thus, in this caseua points in the
opposite direction thanur ~in opposition tok!.

But if n(vz) decreases asuvzu grows, thenDn is negative
for V.0 and positive forV,0. In this case the directions o
ua andur coincide.

From ~6! it follows that at the center of the absorptio
line (V50) ua50. Thus, the spectral shape ofua is a
double-humped even function of the detuningV of the ra-
diation frequency with zero atV50. When the directions of
ua and ur coincide @i.e., when the collision raten(vz) de-
creases with increasinguvzu#, the spectrum of the total drif
velocity u @Eq. ~5!# is a double-humped function with a di
at the center of the absorption line. But whenua andur point
in the opposite directions, the spectrum of the drift velocityu
simply narrows without drastic changes in its shape.

3. GENERAL EXPRESSIONS

We study the interaction of a traveling monochroma
electromagnetic waveE5@E exp(ik–r2 ivt)1c.c.#/2 and
two-level absorbing particles mixed with buffer particle
We ignore the collisions between the absorbing partic
assuming that the buffer gas concentrationNb is much higher
than the concentrationN of the absorbing gas. The following
equations for the density matrix describe the particl
radiation interaction with allowance for the recoil effect:7,12

S ]

]t
1v–“1GmD rm~v!5Sm~v!1NP~v2j!,

S ]

]t
1v–“ D rn~v!5Sn~v!1Ĝmrm~v!2NP~v1j!,

F ]

]t
1v–“1

Gm

2
2 i ~V02k–v!Grmn~v!5Smn~v!

1 iG@rn~v2j!2rm~v1j!#, ~8!

where
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F 52ME n ~v!vr ~v!dv, ~15!
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mn 2M

Ĝmrm~v!5
Gm

4p E rm~v12jn!dn,

G5
Edmn

2\
, V05v2vmn . ~9!

Here rn(v) and rm(v) are the velocity distributions of the
particles at the ground level (n) and the excited level (m),
N5Nm1Nn is the concentration of the absorbing particl
(Ni5*r i(v)dv), Si(v) and Smn(v) are the collision inte-
grals,dmn is the matrix element of the dipole moment of th
m–n transition,vmn is the frequency of them–n transition,
M is the mass of the absorbing particles,Gm is the rate of
spontaneous relaxation of the excited levelm, Ĝmrm(v) is an
integral operator that takes into account the radiative tra
port of particles from the excited level to the ground lev
with allowance for variations in particle velocity due to r
coil in spontaneous emission,n is a unit vector specifying
the direction of spontaneous emission, andP(v) is the rate of
absorption~absorption probability per unit time! of radiation
by particles with a fixed velocityv.

In the absence of phase memory in collisions, the o
diagonal collision integral has the form

Smn~v!52@nmn~v !1 iDmn~v !#rmn~v!, ~10!

wherenmn(v) andDmn(v) are the collision broadening an
shift of the levels, respectively. Combining the last equat
in ~8! with ~10!, we find that under stationary and spatia
homogeneous conditions the absorption rateP(v) specified
in ~9! is

NP~v!52uGu2Y~v!@rn~v2j!2rm~v1j!#, ~11!

where

Y~v!5
G~v !

G2~v !1@V~v !2k–v#2 ,

G~v !5
Gm

2
1nmn~v !, V~v !5V02Dmn~v !. ~12!

For the diagonal collision integral we use the model
particle ‘‘arrival’’ that is isotropic in velocities:

Si~v!52n i~v !r i~v!1Si
~2!~v !, ~13!

where the ‘‘arrival’’ termSi
(2)(v) is a function of the abso

lute value of velocity,v5uvu. The collisional model allows
for a frequency dependence of the collision rate and at
same time makes it possible to solve the problem ana
cally. Note thatn i(v) in ~13! is the transport collision rate
Indeed, the force of internal friction,Fi , which originates in
the collisions of resonant particles in statei with the buffer
gas, is given, on the one hand, by the standard expressio
terms of the collision integral,

Fi5ME vSi~v!dv. ~14!

On the other hand, the same force can be expresse
follows:7
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wheren i tr is the transport collision rate. The productvr i(v)
in the integrand in~15! is the flux density~in v-space! of the
particles with velocitiesv, andMn i tr(v)vr i(v) is the density
of the friction force acting on the flux. Plugging~13! into
~14! and comparing the result with~15!, we conclude that
n i(v) in ~13! is the transport collision rate.

Let us find the velocity of drift of the resonant particle

u[
jm1 jn

N
, j i5E vr i~v!dv, ~16!

where j i is the flux of particles in statei . In stationary and
spatially homogeneous conditions, by combining the fi
two equations in~8! with ~13! we obtain the following ex-
pressions for the particle fluxesj i :

jm5NE v
P~v2j!

Gm1nm~v !
dv,

jn5
Gm

4p E v
rm~v12jn!

nn~v !
dndv2NE v

P~v1j!

nn~v !
dv.

~17!

At nn(v)5const, the recoil effect does not influence the
tegral term in the expression~17! for jn . This follows from
the fact that a spontaneous transition from levelm to leveln
does not, on the average, change the particle momentum
that

1

4p E vrm~v12jn!dndv5E vrm~v!dv. ~18!

In calculating the drift velocity we assume that, in gener
n i(v)Þconst, and the recoil effect in the first integral term
the expression forjn in ~17! can be ignored, as analys
shows, only if

j

Dvn
!1, ~19!

where Dvn is the characteristic scale of variation of th
transport ratenn(v).

If condition ~19! is met, we obtain at the following ex
pression for the drift velocityu defined in~16!:

u5E vFnn~v !2nm~v !

nn~v !

P~v2j!

Gm1nm~v !

1
P~v2j!2P~v1j!

nn~v ! Gdv. ~20!

According to~20!, the resonant particle flux generated by t
radiation consists of two parts: the flux caused by the rad
tive force due to the recoil effect~the second term in the
square brackets, which is nonzero only if we allow for t
recoil effect!, and the flux caused by the asymmetry of t
functionP(v2j) and the difference of the transport collisio
rates for levelsm andn. If we ignore recoil (j50), Eq.~20!
describes ordinary light-induced drift.
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To calculate the drift velocity~20!, we limit the discus-
sion to the case of low radiation intensities:

2uGu2

Gm
!G1kv̄,

v̄nn

jGm
~G1kv̄ !, GS 11

nm

Gm
D , ~21!

where n i and G are the characteristic~average! values of
n i(v) andG(v), andv̄5A2kBT/M is the most probable ve
locity of the absorbing particles; here isT the temperature
and kB the Boltzmann constant. If conditions~21! are met,
then in~11! we can ignore the population of the excited lev
@rm(v)50#, and the velocity distribution of populations i
the ground state can be assumed to be close to the Max
ian distribution@rn(v)5NW(v), whereW(v) is the Max-
wellian distribution#. In an approximation that is linear in th
parameterj/ v̄, form Eq. ~11! we find

P~v!5P0~v!S 11
2v–j

v̄2 D , P0~v!52uGu2Y~v!W~v!.

~22!

Substituting~22! into ~20! and assuming that a conditio
of type~19! is also met for the transport collision ratenm(v),
we obtain the following expression for the drift velocity o
the resonant particles:

u[
k

k
u, u5ul1ur1ulr 1ua , ~23!

where

ul5E uzt~v !P0~v!dv, ur52jE P0~v!

nn~v !
dv,

ulr 5jE t~v !P0~v!F11
2vz

2

v̄ 2 Gdv,

ua52
j

v̄ E vz
2

v
P0~v!

nn~v !
@2an~v !1a~v !#dv. ~24!

Here we have introduced the notation

q~v !5
nm~v !

Gm1nm~v ! F Gm1nn~v !

Gm1nm~v !
am~v !2an~v !G ,

t~v !5
nn~v !2nm~v !

nn~v !@Gm1nm~v !#
,

a i~v !5 v̄
d

dv
ln n i~v !, vz5

k–v

k
. ~25!

Thus, according to~23! and ~24!, the drift velocity~and
hence the force acting on the resonant particles! consists of
four terms, each of its own physical nature. The first termul

in ~23!, which represents the asymmetry of the absorpt
rate P0(v) and the difference in the transport collision rat
on the combining levelsm andn @t(v)Þ0#, is the ordinary
light-induced drift velocity. The second termur , which rep-
resents the recoil effect (jÞ0), is the ‘‘ordinary’’ reaction
of the system to spontaneous light pressure. The third t
ulr represents the recoil effect and the difference in trans
collision rates. In a strong field and at high buffer-gas pr
sures (unm2nnu.Gm), the termulr is responsible for the
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Finally, the fourth termua represents the recoil effect an
the velocity dependence of the transport collision ra
n i(v). If the frequencies are velocity-independen
n i(v)5const, thena i(v)50, andua vanishes.

Integrating~24! over the directions ofv, we obtain the
final expressions for the partial drift velocitiesul , ur , ulr ,
andua

ul5 v̄
2kGm

Ap
E

0

`

tt~ t ! f ~ t !exp~2t2!dt, ~26!

ur5j
4kGm

Ap
E

0

` tc~ t !

nn~ t !
exp~2t2!dt, ~27!

ulr 5j
2kGm

Ap
E

0

`

tt~ t !@c~ t !12J~ t !#exp~2t2!dt, ~28!

ua52j
2kGm

Ap
E

0

` 2an~ t !1q~ t !

nn~ t !
J~ t !exp~2t2!dt. ~29!

Here we have introduced the functions

c~ t !5arctan
t1x

y
1arctan

t2x

y
,

f ~ t !5xc~ t !1
y

2
ln

y21~ t2x!2

y21~ t1x!2 ,

J~ t !5~x22y2!c~ t !12yt1xy ln
y21~ t2x!2

y21~ t1x!2 ~30!

of the dimensionless velocityt5v/ v̄ and the notation

k5
2uGu2

Gmkv̄
, y5

G~v !

kv̄
, x5

V~v !

kv̄
, ~31!

wherek is the saturation parameter, andx is the dimension-
less detuning of the radiation frequency.

According to ~26!–~30!, ul is, as expected,4–11 an odd
function of x, andur , ulr , andua are even functions ofx.

5. TRANSPORT COLLISION RATE

To calculate the partial drift velocities~26!–~29!, we
must know how the transport collision rate depends on
parametert. For a power potential describing the interactio
between the particles,

Ui~r !}r 2n, ~32!

this dependence can be calculated explicitly:14

n i~ t !5n i~0!1F1~a21;5/2;2bt2!, a[
2

n
1

1

2
, ~33!

where b5Mb /M is the mass ratio of the particles of th
buffer and absorbing gases, and1F1(a;b;x) is Kummer’s
confluent hypergeometric function. It thus follows that t
transport collision rate decreases with increasingt for n,4
and increases witht for n.4. At n54 the collision rate is
velocity-independent:n i(t)5n i(0)5const. For light buffer
particles (b!1), then i(t)-vs-t dependence in~26!–~29! can
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the case of heavy buffer particles (b@1).

The partial drift velocityua in ~29! is caused by the
dependence of the transport transition rate on velocity
appears only whena iÓ0. For the power potential~32!,

a i~ t !52bt
n24

5n
1F1~a;7/2;2bt2!

1F1~a21;5/2;2bt2!
. ~34!

The function a i(t) depends most strongly ont when the
buffer particles are heavy, just as in the case ofn i(t).

6. ANALYSIS OF RESULTS

To specify in Eq.~23! the anomalous dependence of t
drift velocity represented by the termua , we examine the
case where

unm~v !2nn~v !u!@Gm1nm~v !#
j

v̄
. ~35!

Here uul u, uulr u!ur , and the total drift velocity is repre
sented only by the ‘‘ordinary’’ (ur) and anomalous (ua) re-
actions of the medium to spontaneous light pressure:

u5ur1ua . ~36!

In addition, for simplicity, we assume that the buffer g
pressure is low:

n i~v !!Gm . ~37!

This makes it possible to ignore the dependence of the
rametersx and y given by ~31! and simplifies Eq.~29! for
ua , since we can now setq(t)50.

Since the functiona i(t) assumes its maximum valu
when the buffer gas particles are heavy, the anomalous r
tion of the medium,ua , to light pressure is at its maximum
in the b→` limit, corresponding to the Lorentz gas mod
~see, e.g., Ref. 15!. For a Lorentz gas in the Doppler broa
ening limit (y→0) and with a power potential~32!, we can
use~27! and~29! to obtain the following expressions for th
partial drift velocities if the conditions~35! and~37! are sat-
isfied:

ur~x!

u~0!
512

uxu2a

G~a11!
exp~2x2!1F1~1;a11;x2!,

ua~x!

u~0!
52x22

2uxu2a

G~a!
exp~2x2!1F1~1;a;x2!, ~38!

where the parametera is defined in~33!. Here for the argu-
ments ofur(x) andua(x) we take the dimensionless detu
ing x of the radiation frequency, and the values ofur(x) and
ua(x) are normalized to the value of the drift veloci
u(x)5ur(x)1ua(x) at the pointx50.

For small detunings (x2!1), from ~38! we obtain

ur~x!

u~0!
512

uxu2a

G~a11!
,

ua~x!

u~0!
5H 2x2, n,4,

2
2uxu2a

G~a!
, n.4.

~39!
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ur~x!

u~0!
5

uxu2a22

G~a!
exp~2x2!,

ua~x!

ur~x!
5

42n

n
. ~40!

From ~38! it follows that the anomalous partial drift velocit
ua(x) is comparable in magnitude to the ‘‘ordinary’’ reac
tion of the medium,ur(x), to light pressure. The velocity
ua(x) is positive@ua(x)5kua(x)/k is directed along the ra
diation’s wave vectork# for power potentials withn,4 and
negative@ua(x) and k point in the opposite directions# for
potentials withn.4. From the asymptotic behavior ofua(x)
@the second equation in~40!# we conclude that the positive
anomalous additionua(x) to the drift velocity is at the maxi-
mum for the Coulomb potential (n51), while the negative
anomalous addition is at the maximum in the model of h
spheres (n5`), and one should expect that in magnitude t
positive addition is several times larger than the negative

Figures 1–3 illustrate the results of calculations of t
partial ~ur(x) and ua(x)! and total @u(x)5ur(x)1ua(x)#
drift velocities by Eqs.~27! and ~29! in conditions~35! and
~37! for power potentials. Figure 1 shows the sensitivity
the anomalous additionua(x) to the mass ratiob of the
buffer and resonant particles. In the case of a heavy bu
gas (b@1) this addition is at the maximum and strong
influences the spectral dependence of the total drift velo
u(x) ~Fig. 1a!. Comparison of Figs. 1a and 1b shows that
the current problem the Lorentz gas limit (b→`) is actually
reached atb'3. In other words,b53 is equivalent tob@1.

For the Coulomb potential (n51), ua(x) reaches the
maximum value atxmax51.4 and is greater than the max
mum value ofur(x) reached atx50 by a factor of 1.16~see
Fig. 1a!. Calculations show that for power potentials wi
n52 and n53, the drift velocityua(x) reaches the maxi-
mum ~for y!1 and b@1! at xmax50.87 andxmax50.77,
respectively, andua(xmax)/ur(0) is 0.33 and 0.1, respectively
Thus,ua(xmax)/ur(0) for potentials with different values ofn
is approximately equal to (42n)/3n @cf. the asymptotic be-
havior of ua(x)/ur(x) in ~40!#.

For n.4 the anomalous addition changes sign and
effect on the total drift velocityu(x) results only in a slight
narrowing of the spectrum ofu(x) ~Fig. 2!.

In the limit of Doppler absorption-line broadenin
(y→0), the anomalous addition vanishes at zero detun
ua(0)50 @see Eq.~39! and Figs. 1 and 2#. But if the condi-
tion y!1 for Doppler broadening is not met,ua(0)Þ0 ~Fig.
3!. Calculations show that for homogeneous broaden
(y@1) the functionua(x) is bell-shaped. For example, in th
case shown in Fig. 3, wheny51 is replaced byy55, curve
3 for all practical purposes becomes curve2, i.e.,
ua(x).ur(x). This means that in the case of homogeneo
broadening of the absorption line, when light charged p
ticles drift in an atmosphere of heavy charged buffer p
ticles ~n51 andb@1!, the anomalous response of the m
dium to light pressure,ua(x), increases the total drif
velocity u(x) by a factor of exactly 2.

The formulas derived in this paper, which describe t
drift of resonant particles in a buffer medium due to t
action of a traveling monochromatic light wave, can be ge
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FIG. 1. Dependence of the partia
@ur(x) and ua(x)] and total @u(x)#
drift velocities on the dimensionless
detuningx of the radiation frequency
for the Coulomb potential (n51) at
different values of the mass ratio
b5Mb /M of the buffer and reso-
nant particles andy51023: curves1
representu(x)/u(0), curves 2 de-
noteur(x)/u(0), andcurves3 repre-
sentua(x)/u(0).
eralized in a natural way to incorporate the case where
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charged particles drifting in an atmosphere of heavy charged

ant

tors
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ift
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broadband radiation of an arbitrary spectral intensityI (x)
acts on the medium. Accordingly, we need only replace
saturation parameterk in Eqs. ~26!–~29! by a frequency-
dependent parameterk(x),

k~x!5
BI~x!

pGmkv̄
, B5

l2Gm

4\v
~41!

~l is the radiation’s wavelength!, and then perform addi
tional integration with respect tox over an infinite interval.
For instance, when ‘‘white’’ light@ I (x)5const# acts on a
medium in which the particles interact via the Coulomb p
tential (n51), Eqs.~38! imply that ūa /ūr51 ~here the bar
on the symbol indicates that the corresponding quantity
been integrated with respect tox!. This result suggests, in
particular, that allowance for the anomalous response of
medium, ūa , to light pressure increases the drift veloci
ū5ūr1ūa by a factor of exactly 2 in the case of ligh

FIG. 2. The same as in Fig. 1 but forn58, y→0, andb→`.
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buffer particles~n51 andb@1! when the medium is illu-
minated by ‘‘white’’ light with Doppler absorption-line
broadening.

In conclusion, we note that our results may be import
in examining the role of light pressure in plasmas (n51)
and in studying photocurrent generation in semiconduc
caused by photon drag on electrons, especially when elec
scattering by charged impurities or defects~n51 andb@1!
is predominant, with the effect of transformation of the dr
velocity spectrum being at its maximum.
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and interest in this study. We also thank A. M. Shalagin
useful remarks. This work was made possible by financ
support from the Russian Fund for Fundamental Resea
~Grant No. 96-02-19556! and the Netherlands Organizatio
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FIG. 3. The same as in Fig. 1 but forn51, y51, andb→`.
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Coherent population trapping in an ensemble of three-level atoms in the presence of

cooperative relaxation

B. G. Matisov, I. A. Grigorenko

St. Petersburg State Technical University, 195251 St. Petersburg, Russia

I. E. Mazets

A. F. Ioffe Physicotechical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
~Submitted 11 April 1997!
Zh. Éksp. Teor. Fiz.112, 869–876~September 1997!

We derive equations that describe the dynamics of three-level atoms with a cascade system of
levels interacting with two resonant coherent fields in conditions where cooperative
relaxation dominates over incoherent spontaneous emission. We calculate the temporal dynamics
of the values of the atomic populations. The possibility of coherent population trapping in
the presence of the cooperative decay is established. Finally, we calculate the averaged population
of the intermediate level as a function of detuning for different values of the coupling
constant. ©1997 American Institute of Physics.@S1063-7761~97!00809-3#
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Research into the interaction of coherent electromagn
radiation and multilevel quantum systems is a branch of n
linear laser spectroscopy and quantum optics that has
rapidly developing. What is important in multilevel system
is that there can be several channels of excitation and in
tion by laser fields of coherences between long-lived qu
tum states. This leads to various quantum effects in the in
dynamics of the atoms. The interference of optical chann
that emerges because of coherent excitation, which lead
turn to coherent population trapping, forms the basis for
development of many branches of modern physics, suc
laser supercooling of atoms and the design of inversion-
lasers~for more details see the reviews in Refs. 1 and 2!.

As is known,1,3 the presence of various relaxation rela
ation, say collisional processes, greatly affects the evolu
of the populations of atomic systems in coherent popula
trapping. However, we know of no studies related to coh
ent population trapping in atomic systems in whichnl3>1,
wheren is the atomic density, andl is the wavelength of an
optical transition. In such conditions the presence of co
erative effects has a marked influence on the evolution of
system.4,5 What is important in these effects is the se
consistency in the behavior of separate atoms. This leads
situation in which the dynamics of the quantum system
determined primarily by cooperative relaxation.

In this paper we study the effect of coherent populat
trapping in an ensemble of three-level atoms with a casc
system of levels interacting with a coherent bichroma
electromagnetic field in the presence of cooperative re
ation.

2. EQUATIONS FOR THE DENSITY MATRIX

Let us state the main approximations used in our theo
We assume that a one-dimensional and homogeneous
semble of atoms interacts with two resonant coherent e
tromagnetic fields. We denote the total number of atoms
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l 51,...,N is the number assigned to an atom.
The orthonormalization condition for the wave functio

u i & l ( i 51,2,3) has the form

l^ i u i 8& l 85d l l 8d i i 8 . ~1!

We assume thatu1& l is the lower state,u3& l is the intermedi-
ate state, andu2& l is the upper state in the cascade system.
describe the behavior of the system we will need a collec
atomic operator, which we define as follows:

R̂i j 5(
l 51

N

u j & l l ^ i u. ~2!

The commutation rules forR̂i j follow directly from the defi-
nition ~2!:

@R̂mn ,R̂n8m8#5dnn8R̂mm82dmm8R̂n8n , ~3!

with m, n, n8,m851, 2, 3.
The electromagnetic field is described by the Bose

erators of photon creation and annihilation,â j
† andâ j . Then

the Hamiltonian describing the interaction of the atoms a
field in the rotating wave approximation has the followin
form:

Ĥ5\~2V1R̂111V2R̂22!1g1â1R̂311g2* â2
†R̂32

1g1* â1
†R̂131g2â2R̂23. ~4!

Here V j is the detuning of thej th field (j 51,2) from the
frequencyv j of the corresponding atomic transition, and

gj5A2p\v j

V
dj

is the atomic-system-field coupling constant,4 wherev1 and
d1 are the frequency and dipole moment of theu3&–u1& tran-
sition,v2 andd2 are the frequency and dipole moment of t
u2&–u3& transition, andV is the quantization volume.

To make matters simpler when we describe relaxat
processes, we ignore the incoherent decay of the upper

4699-05$10.00 © 1997 American Institute of Physics



els, which is a consequence of the interaction with the con-
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i

@Ĥ ,r̂ #2
t

Tr$@Ĥ,@Ĥ,r̂ ##% , ~10!
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tinuum of vacuum~zero-point! modes. This approximation i
justified because the relaxation process controlled by the
operative effect occurs much faster than the incoherent
cess. Instead of dealing with slow atomic relaxation we
troduce fast relaxation of the electromagnetic field to
steady state determined by the laser radiation. Indeed, a
of laser beams directed at the cell with the gas create a pu
coherent stateua1a2& f , i.e.,

â j ua1a2& f5a j ua1a2& f , ~5!

where thea j are complex numbers. This state persists for
time it takes a photon to pass through the medium with lin
dimensionsL. The timet5L/c can be taken as the shorte
time interval for the given system~say, atL50.3 m we have
t51 ns, which is much shorter than 1027 s, the spontaneou
relaxation time!. Thus, the field density matrix reache
its steady stateua1a2& f f^a1a2u with a characteristic relax
ation timet.

For the density matrixŝ(t) that fully describes the be
havior of the system consisting of the field and the atoms
can write the following expression:

]

]t
ŝ52

i

\
@Ĥ,ŝ#2

1

t
~ŝ2ŝ8!, ~6!

whereŝ8 is the equilibrium density matrix,

ŝ85 r̂ ^ ua1a2& f f^a1a2u, ~7!

and the reduced density matrixr̂ describes only the atomi
degrees of freedom:

r̂5Tr$ŝ% f

~the trace is taken with respect to the field variables!. Equa-
tion ~6! has a formal solution in the form of a series:4

ŝ5ŝ81tK̂1ŝ81t2K̂2ŝ81••• , ~8!

in which we leave only the first two terms. Plugging~8! into
~6!, we obtain the explicit form of the operatorK̂1 :

K̂1~X̂!52
]

]t
X̂2

i

\
@Ĥ,X̂#.

Thus, to withint2 we can write the following expression fo
ŝ:

ŝ5ŝ82t
]

]t
ŝ82

i t

\
@Ĥ,ŝ8#. ~9!

Perturbation theory works ift!ANgj /\ holds, i.e., the
photons leave the system faster than the interatomic cor
tions have time to set in. This means that field variatio
over time intervals much longer thant can be excluded adia
batically.

Taking the trace of both sides of Eq.~6! and substituting
~9!, we arrive at the following equation for the atomic de
sity matrix:

]

]t
r̂2

i t

\ F Ĥat,
]

]t
r̂ G
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where the HamiltonianĤat, which allows only for the
atomic variables, has the form

Ĥat5 f^a1a2uĤua1a2& f5\~2V1R̂111V2R̂22!

1g1a1R̂311g2* a2* R̂321g1* a1* R̂131g2a2R̂23.

~11!

Next we introduce the operator

Q̂~X̂!5X̂1
i t

\
@Ĥat,X̂#,

and apply it to both sides of Eq.~10!. If we ignore terms
proportional tot2, we get

]

]t
r̂52

i

\
@Ĥat,r̂ #2

t

\2 ~~^Ĥ2&2Ĥat
2 !r̂1 r̂~^Ĥ2&2Ĥat

2 !!

1
t

\2 ~2Ĥatr̂Ĥat22Tr$Ĥ~ r̂ ^ ua1a2& f f^a1a2u!Ĥ%!,

~12!

where^Ĥ2&5 f^a1a2uĤ2ua1a2& f . Then, substituting~4! and
~11! in ~12!, we obtain an equation for the density matrix th
describes the ensemble of atoms with a cascade syste
levels:

]

]t
r̂52

i

\
@Ĥat,r̂ #1

tug1u2

\2 ~@R̂13,r̂R̂31#1@R̂13r̂,R̂31# !

1
tug2u2

\2 ~@R̂32,r̂R̂23#1@R̂32r̂,R̂23# !. ~13!

This is a generalization of the well-known Bonifacio mode6

3. ATOMIC OPERATORS AND THEIR AVERAGED VALUES

Exhaustive information about the dynamics of an atom
system is contained in the averaged value of the collec
atomic operator,4

r i j [
1

N
^R̂i j &5

1

N
Tr$R̂i j r̂%, i , j 51, 2, 3. ~14!

We use Eq.~13! and write the corresponding equation f
r i j :

N
]

]t
r i j 52

i

\
Tr$@Ĥat,r̂ #R̂i j %1

t

\2 ~ ug1u2

3Tr$~@R̂13,r̂R̂31#1@R̂13r̂,R̂31# !R̂i j %!1
t

\2 ~ ug2u2

3Tr$~@R̂32,r̂R̂23#1@R̂32r̂,R̂23# !R̂i j %!. ~15!

Employing a cyclic permutation before the trace operation
applied, we get

N
]

]t
r i j 52

i

\
Tr$r̂@Ĥat,R̂i j #%1

t

\2 ~ ug1u2

3Tr$r̂R̂31@R̂i j 8 ,R̂13#1R̂13@R̂31,R̂i j #r̂%!
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Now we can employ the commutation relation~3!, which
lowers the order byR̂i j on the right-hand side and use th
semiclassical approximation5

^R̂i j R̂i 8 j 8&'^R̂i j &^R̂i 8 j 8&, ~16!

to arrive at the following system of equations:

ṙ 115 iV1r 312 iV1* r 1312G1Nur 31u2,

ṙ 225 iV2* r 322 iV2r 2322G2Nur 32u2,

r 111r 221r 3351,

ṙ 315 iV1r 312 iV1* ~r 332r 11!1 iV2r 211G1Nr31

3~r 332r 11!1G2Nr32r 21, ~17!

ṙ 3252 iV2r 321 iV1* r 122 iV2~r 332r 22!2G1Nr31r 12

1G2Nr32~r 222r 33!,

ṙ 215 i ~V11V2!r 211 iV2* r 312 iV1* r 23

1~G12G2!Nr23r 31,

r i j 5r j i* ,

where we have introduced the following notation:

G j5
t

\2 ugj u2, Vj5
gja j

\
. ~18!

The system of equations~17! describes the dynamics o
the atomic populationsr ii . A characteristic feature of this
system is the nonlinearity of the terms proportional toG jN,
the terms responsible for cooperative relaxation.

For the system of equations~17!, for the initial condition
we take the equality

r i j u t505d i1d j 1 , ~19!

which means that all atoms att50 are in the lowest stateu1&.

4. RESULTS OF NUMERICAL CALCULATIONS

Below we give the results of numerical integration of t
system of equations~17! with the initial conditions~19!. We
assume for simplicity thatV15V2[V and V152V2[V.
The calculations were done for various values ofV, V, and
the ratioG2 /G1 .

Figure 1 depicts the temporal evolution of the atom
populations in an ensemble of atoms with a cascade sys
of levels. We see that the populations of the lower and up
levels tend to become equal and finite, while the populat
of the intermediate level tends to zero. A situation like th
corresponds to the onset of coherent population trappin
the system. We also note that the steady-state solu
r 1150.5, r 2250.5, andr 12520.5 is an exact solution of the
system of equations~17!, provided that all the otherr i j are
zero.

Now look at Fig. 2. For large detunings (V/G1N@1)
and coupling constants (V/G1N@1) there can be no coher
ent population trapping. The steady-state mode is re
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sented by oscillations of the populations of the lower a
upper levels, while the population of the intermediate le
tends to become finite and constant.

Figures 3 and 4 show how the parameterG2 /G1 affects
the onset of coherent population trapping. ForG2 /G1.1
~Fig. 4!, coherent population trapping becomes impossib
since the stateu2& decays at a rateG2N, while the stateu1& is
populated at a rateG1N, which means that the rate of popu
lation of a trapped state is lower than the rate of decay of
state. Figure 5 depicts the suppression of oscillations fo
relative large coupling constant (V.G1N).

FIG. 1. Temporal evolution of populations in the cascade system
G2 /G151021, V50, andV50.3G1N. The dimensionless timet/G1N is
plotted on the horizontal axis. The solid curve corresponds to the lo
level, the dashed curve to the upper level, and the dotted curve to
intermediate level in the cascade system.

FIG. 2. The same as in Fig. 1 but atG2 /G151021, V52G1N, and
V53G1N.
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Figure 6 depicts the dependence of the averaged valu
the population of the intermediate stateu3& on the relative
detuning V/G1N for different values of the parameterV
characterizing the intensity of the laser field. We see that
width of the black line~the gap in the fluorescence spectru
see Ref. 1! increases with the coupling constant.

Analysis of the numerical solutions of the system
equations~17! suggests that in the case of a cascade sys
of levels, coherent population trapping is established in
presence of cooperative relaxation only if

G2

G1
!1, V@G2N.

The first condition coincides with, while second differs co
siderably from, the condition for the onset of coherent po
lation trapping for a similar level diagram in the presence

FIG. 3. The same as in Fig. 1 but atG2 /G150.8, V50, andV53G1N.

FIG. 4. The same as in Fig. 1 but atG2 /G152, V50, andV53G1N.
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coherent relaxation.1 Moreover, when cooperative dynamic
is present, population oscillations begin to play an import
role in the initial stages of evolution, provided thatV!G2N.
But if V@G2N, the oscillations are suppressed. On the ot
hand, if incoherent relaxation is predominant, the oscillatio
are suppressed at Rabi frequencies higher than the ra
relaxation from the upper level, and are well-developed
the opposite case.7

5. CONCLUSION

We have done a theoretical study of the establishmen
coherent population trapping in an atomic ensemble inter

FIG. 5. The same as in Fig. 1 but forG2 /G151021, V50.3G1N, and
V51.5G1N.

FIG. 6. Dependence of the averaged value of the population of the inte
diate stateu3& on the dimensionless detuningV/G1N for different values of
the parameterV at G2/G151021. The solid curve corresponds t
V50.5G1N, the dashed curve toV51G1N, and the dotted curve to
V52G1N.
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presence of cooperative relaxation. The behavior of

quantum system is nonlinear because there is a nonli
relaxation process. The results make it possible to use co
ent population trapping for, say, coherent bleaching,8 in op-
tical media with an average distance between the atom
order of the wavelength of an atomic transition,nl3;1. We
have found that cooperative relaxation has a strong effec
the dynamics of the atomic ensemble. We have also es
lished the properties of this dynamics, as compared to
case where incoherent spontaneous relaxation domin
and the conditions under which coherent population trapp
is established in the system examined.
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Convective model of a microwave discharge in a gas at atmospheric pressure in the

is-
form of a spatially localized plasma
A. A. Skovoroda

Russian Scientific Center ‘‘Kurchatov Institute,’’ 123182 Moscow, Russia
~Submitted 21 January 1997!
Zh. Éksp. Teor. Fiz.112, 877–893~September 1997!

Experiments and a theoretical model consistent with them are presented which show that a
stationary microwave discharge in a gas at atmospheric pressure under the action of free
convection due to the action of the buoyant force on the heated air can be spatially
localized, taking a spheroidal shape. Vortex motion inside the spheroid gives this localized
plasma formation some of the properties of a material body which are manifested in a distinct
material isolation from the surrounding space, in the formation of a narrow thermal
boundary layer and flow separation, and in the formation of secondary vortices in the wake
region. The characteristic radius of the stationary localized plasma is governed mainly by the
wavelength of the microwave radiationa;0.137l. Energy balance is established to a
significant degree by convective cooling of the microwave-heated structure. ©1997 American
Institute of Physics.@S1063-7761~97!00909-8#
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Microwave discharges in a gas at atmospheric pres
are well known.1,2 They have been studied and widely us
for a long time, for example, in the construction of pla
motrons for various technological needs.3

Plasma in microwave discharges is practically in eq
librium, and the roughly identical temperature for all charg
and neutral components does not exceedT51 eV. A large
number of models of equilibrium microwave discharges
known which quite accurately predict the temperature2–5

Ra�zer2 notes that the exponential dependence of the cond
tivity s ~the densitynp! of the plasma onT makes the tem-
perature insensitive to important details of the microwa
discharge model. All models of an equilibrium microwa
discharge explain the presence of a threshold power, be
which its stationary existence is impossible. The magnitu
of the threshold power can depend substantially on
model.

Any model of an equilibrium microwave discharge co
tains the solutions of two interrelated problems, electro
namic and thermal. The solution of the electrodynamic pr
lem determines the heating power of the electromagn
waves; the solution of the thermal power determines th
cooling power~heat conduction and convection!; the power
balance determines the equilibrium temperature of
plasma~gas! and the threshold microwave power. Micro
wave discharge models differ as to their geometry~planar,
cylindrical, spherical!, scheme for microwave power fee
~waveguide, resonator, free space!, how they take account o
motion of the gas~forced or free convection!, and the degree
of detail in the solution of the electrodynamic and therm
problems. A distinguishing feature of all models is the n
cessity of calculating the coefficient of reflection~absorp-
tion! of the electromagnetic wave by the plasma. An incre
in the reflection~decrease in absorption! of the microwave
power with growth of the temperature explains the expe
mental fact of the relative smallness ofT in microwave dis-
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charges~arc, inductive HF, optical!.
Let us briefly characterize the known models. The ov

whelming majority of the models are constructed in cylind
cal ~planar! geometry1! for dimensions of the plasma compa
rable with the dimensions of the discharge chamber. In s
models Maxwell’s equations are solved together with
equations of heat conduction with boundary conditions at
walls bounding the plasma. As a rule, the wall temperat
and incident microwave power flux~the wall is assumed to
be transparent to microwaves! are fixed. To obtain analytica
solutions, the approximation of sharp plasma boundary~the
analog of the channel model for an arc! is frequently used.2

Exact solutions of Maxwell’s equations and the equation
heat conduction with possible account of forced convect
of the gas are obtained numerically.3–5 These models ad
equately describe actual experimental conditions in comm
cially available plasmotrons.

It is known from experiment that microwave dischar
plasmas have spatial structure.1,3,6–9 The traditional models
described above have been successfully applied to exp
the characteristic features of those structures that are es
tially related, first, to the dimensions of the discharge cha
ber, second, to the distribution of electromagnetic waves
the chamber, and third, to the nature of induced convec
of the gas in the chamber.3,10 However, experiments indicat
that a microwave discharge in free space~in particular, in
large discharge chambers! also have spatial structure.6–9,11,12

The characteristic features of the structures arising in th
are not associated with the position of any walls. Attem
have been made to use this property of electrode-free mi
wave discharges in air to explain the phenomenon of b
lightning.13–15

A spatially localized plasma of spheroidal shape in fr
space is observed in experiments with microwave be
focusing.6–9 In such experiments the location of the plasm
is determined by the position of the focus, and its charac
istic dimensions are determined by the diffractio

4744-10$10.00 © 1997 American Institute of Physics
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focus. The well known model of such a microwave discha
is similar in its main features to the model of an optic
discharge at the focus of a laser beam.2 If the beam is pointed
upward the speed of propagation of the ionization frontVn

~Ref. 16! ~analog of the well-known normal velocity of slow
combustion! downward from the focus~breakdown region!
is compensated by the rise of the hot gas under the actio
the repulsive buoyancy force. The attainment of station
equilibrium is facilitated by the decrease ofVn with distance
from the focus.8

Experiments show that a localized plasma of sphero
shape in a microwave discharge in free space is formed
exists as a stationary object without focusing of electrom
netic waves.11,12,17The question arises, what determines t
size of the localized plasma in this case? Timofeev5 has at-
tempted to answer this question within the framework of
traditional model~see above! without account of the motion
of the gas. For spherically symmetric microwave heating,
wall of the discharge chamber may be placed at a dista
substantially exceeding the characteristic dimensions of
localized plasma. Such a situation can arise in experim
with microwave discharges in low-density gases in me
discharge chambers whose dimensions significantly exc
one wavelength.

Experimentally, however, a localized plasma of spher
dal shape may arise arise and stably exist in air at at
spheric pressure for asymmetric~even from one side! power
feed~see below!. The present paper is dedicated to a study
this aspect of microwave discharges, based on the inclu
of natural air convection.

The paper is organized as follows. Section 2 descri
the experimental basis of the model. An analysis of the
perimental data allows us to conclude that the localiz
plasma formation is materially isolated from the surround
air. This is due to the vortical nature of the motion of the h
air inside the formation. Subsection 2 A contains a brief
scription of two experiments carried out by the author
gether with V. A. Zhil’tsov especially to provide an exper
mental basis for the described convective model. In w
follows all quantitative estimates relate to these two exp
ments. Section 3 formulates the main points of the conv
tive model. The model is reduced to its simplest form
make it possible to obtain analytical dependences. Secti
discusses the model of a microwave discharge of sphero
shape on the basis of the relations obtained in Section 3
calculates the threshold power flux and the size and temp
ture of the localized plasma. These quantities are comp
with the experimental data. This section analyzes the n
for further improvements and numerical experiments. T
Conclusion summarizes the main conclusions of this wo

2. EXPERIMENTAL BASIS OF THE CONVECTIVE MODEL

We begin this section with a description of experime
which were performed especially to provide an experimen
basis against which to check the convective model. They
characterized by asymmetric unfocused feed of the mic
wave power to the localized plasmas.

Figure 1 shows two improvements of the setup descri
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in detail in Refs. 12 and 17~frequency of the stationary
magnetron 2.45 GHz, maximum power 5 kW, diameter o
the cylindrical copper discharge chamber 16 cm, length 3
cm!. The improvements pertain only to the instrumentatio
located on the upper port of the discharge chamber. In t
case corresponding to Fig. 1a, the opening of the port
covered by braided brass gauze~netting!, pushed upward
into a hemispherical shape~cell dimensions 333 mm2, wire
diameter 0.5 mm!. In the case corresponding to Fig. 1b, a
conical waveguide 60 cm in length and made from the sam
gauze, is fastened to the upper port. The entrance diamete
the waveguide is 10 cm and its~open! exit diameter is 7 cm.

Figures 2 and 3 show photographs of a stationary di
charge created in the setup depicted in Fig. 1a. By regulati
the air flow rateV` through the lower port~in the region of
the upper flangeV`;0.5– 2 m/s! and the microwave power
flux S through the side flange (S;10– 30 W/cm2 in the re-
gion of the localized plasma formation! it is possible to
achieve stable heating of a spheroidal discharge lasting ma
hours ~characteristic radius of exposurea;2 – 4 cm! sepa-
rated from the walls. In Fig. 1a the arrows pointing down
ward show the trajectories of the smoke jets which visualiz
the flows of cold air around the plasma. Evaporation of ce
ramic probes inside the localized plasma formation visua
ized the flows of hot air upward inside the discharg
Vb;1 – 3 m/s. Rapid burn-up of the particles and strong dis
tortion of the character of the motion inside the plasma re
sulting from the introduction of the ceramic probes hindere
visualization. However, the vortical nature of this motion
was clearly revealed~see also Ref. 17!.

In Figs. 2 and 3 it can be seen that the upper, frontal pa
of the localized plasma is always stable and is distinctly iso
lated from the cold air. Infrared photographs confirm th
presence of a sharp boundary between the hot plasma and
cold air~the characteristic dimension of the transition layer i
d;0.5 cm!. The lower, aft part of the formation is always
unstable~see, e.g., the view from above in Fig. 3b!, and the
region of hot air forms a protracted tail, trailing off into the

FIG. 1. Experimental setups for demonstrating an immobile~a! and mobile
~b! localized plasma formation:1—discharge chamber,2—port with SHF
power feed,3—evacuation port,4—discharge stabilizing inductor,5—
upper port with brass gauze shaped into a hemisphere~a! or conical wave-
guide~b!, 6—localized plasma,7—upper port of the gauze waveguide. The
arrows indicate the motion of air, the direction of the force of gravity an
power feed.
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FIG. 2. Photograph of a stationary dis
charge in the setup depicted in Fig. 1
The upper port, overhead shot.
evacuation system. The transition from stable to unstable
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flow is observed in the region of the equator of the localiz
plasma.

We performed a few simple experiments which ind
cated a certain degree of material isolation of the locali
plasma formation from the surrounding medium. When
gon was let into the chamber outside the plasma, Ar li
were not observed in the optical spectrum, whereas a
brief evaporation of NaCl inside the localized plasma
characteristic sodium line was observed for an exten
time. When the microwave discharge was blasted with
flame from a gas torch, the flame enveloped the plas
leaving it intact.

Figure 4 presents photographs of a moving localiz
plasma taken at two times in the setup shown in Fig. 1b.
appearance of the localized plasma was initiated by a s
metal wire below the gauze waveguide, and the sphero
object moved upward along the gauze waveguide, all
while keeping its shape, and finally leaving it at the oth
d

d
-
s
er
e
d
e
a,

d
e
rp
al
e
r

motion took place with variable velocity in the rang
V`;0.5– 2 m/s~it varied along the waveguide; this was a
parently due to variation of the microwave matching of t
waveguide with the generator during the movement of
plasma!. To demonstrate the degree of isolation of the loc
ized plasma, we performed the following simple experime
From above the waveguide we installed a glass plate in
path, cooled to liquid-nitrogen temperature. On it we d
tected a number of little metal spheres~of the material of the
wire initiating the discharge! 0.03– 0.07 mm in diameter
This indicates that the metal evaporated from the wire dur
initiation of the discharge was transported a substantial
tance by the localized plasma.2!

The facts indicating the material isolation of localize
hot plasmas have been known for a long time. In fact it w
just these facts that initiated the discussion: does the gas
through or around the localized plasma?2 Gus’kov et al.18

showed that the observed speed of a slowly moving opt
he
el
FIG. 3. Photographs of a stationary discharge in t
setup depicted in Fig. 1a: a—side shot at the lev
of the upper port, b—overhead shot.
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FIG. 4. Photographs of a mobile dis
charge in the setup depicted in Fig. 1b
a—at the time when the localized plasm
formation is located in the middle of the
waveguide~on the right features of the
experimenter and lamp are visible!;
b—at the time when the formation is
passing through the upper port of th
gauze waveguide~the ends of the four
mounting rods of the waveguide are vis
ible!.
discharge can be approximated by the formula

n
ee

is
n
of
th

The physical reason for the material isolation and shape
de
en

n.
ot
ve
n
dal
ls’’
al

al-
V}'VnAT0

Te
, ~1!

whereTe is the temperature of the surrounding medium a
T0 is the temperature at the center of the discharge, proc
ing from the model of flow of a dense cold gas around
sphere of hot, rarefied gas. Ra�zer2 notes~see p. 411! that
‘‘...about 10% of the advancing gas flows through the d
charge, the remaining 90% flows around the heated regio
though around a solid body.’’ The low chemical efficiency
microwave plasmotrons noted in Refs. 3 and 4 is due to
effect.
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stability of the localized plasma is the vortical motion insi
the hot region. The vortical nature of the motion has be
revealed in many calculations of plasmotrons.3,4,18The natu-
ral reason for circulation of the hot air is free convectio
Gorbunovet al.19 calculated the evolution of a sphere of h
air ~radius 13 m, initial temperature 2500 K, position abo
sea level 1800 m! in the gravitational field. Free convectio
leads to the formation of the observed upward rising toroi
vortex. The natural atmospheric phenomenon of ‘‘therma
is explained in a similar manner—a long-lived spheroid
region of low-density hot air.20 Zhil’tsov et al.17 pointed out
the analogy of a microwave discharge in the form of a loc
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mov carried out calculations analogous to those of Gorbu
et al.19 for the experimental conditions of Zhil’tsovet al.17

~initial radius a;1.5 cm, temperatureT054000 K, at sea
level! and demonstrated good agreement with the obse
rate of rise of the localized plasma inside a discharge ch
ber,V`;0.5 m/s, and the rate of spreading of the sphero
0.1 m/s. In their calculations air flows around the plasma l
around a solid body and air turbulence is manifested in
wake region.

3. MAIN POINTS OF THE CONVECTIVE MODEL

The main point of the convective model is the introdu
tion of a spherical surface with radiusa, where the normal
component of the velocity of the air particles vanishes. T
reflects the experimental fact of the material isolation of
localized plasma from the surrounding air. This is a simp
fication, since it is well known that a small fraction of the a
nevertheless passes through the plasma. Concerning ho
take this fact into account in the model, see below.

For the most part, we are interested in the outer reg
For the outer region, which can have its own complica
‘‘fine’’ structure, we assume a constant temperatureT5T0

up to the bounding surface. That the temperature is es
tially uniform inside localized plasmas is indicated by infr
red photographs. For stationary subsonic motion of a
inside a region with uniform temperature the continuity co
dition div V50 should be fulfilled. The azimuthally sym
metric, axially bounded solution of this equation with ze
velocity normal to the spherical boundary surface has
form

Vr5CS 12
r 2

a2D cosu, Vu52CS 12
2r 2

a2 D sin u. ~2!

Here we have introduced the spherical coordinate sys
with origin at the center of the spherical surface and
angleu is measured from the vertical. The constantC will be
determined below. Solution~2! describes a Hill vortex and
shows that convective heat transfer inside the locali
plasma formation can in principle quite effectively equali
the temperature. This may serve as an additional justifica
of the assumption of uniform temperature inside the regi
Plasma is found only inside the sphere. The plasma dens
np5const inside the spherical boundary surface andnp50
outside it. This is the channel model approximation, which
usually invoked~see, e.g., Ref. 2!.

A uniform flow of cold air with velocity V` flows
around the immobile spherical boundary surface. This fl
balances the buoyancy force in the analysis of the exp
ment with the stationary localized plasma~see Fig. 1a! or
appears when one uses a moving coordinate system bou
the moving plasma~see Fig. 1b!. It is possible either to
specify this velocity from the results of measurements
estimate it from the following arguments. We write out t
balance between the buoyancy force and the drag force
material sphere:

1

2
zreV`

2 Sp5g~re2r!Vp . ~3!
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re is the density of the surrounding air,g is the acceleration
due to gravity,Vp is the volume of the formation,Sp is its
cross-sectional area, andz is the drag coefficient. Expressin
the ratio of air densities in terms of the corresponding ra
of temperatures for constant pressurer/re5Te /T0 , we ob-
tain the following expression for the velocity of a spheric
localized plasma:

V`5A 8

3z S 12
Te

T0
Dga. ~4!

Treating the localized plasma formation as a material sph
for the Reynolds number corresponding to our experime
conditions Re5V`a/ne'1000, wherene is the kinematic vis-
cosity of the surrounding air, we estimate the drag coeffici
z from the known experimental dependencez5z(Re) ~see,
e.g., Ref. 21! asz50.5. If we substitute characteristic me
sured values~T054000 K, Te5300 K, a53 cm! into for-
mula~4!, we obtainV`'1.2 m/s~Ref. 17!. This value agrees
very closely with the experimentally observed velocity. T
above estimates may serve as another clear indication o
material isolation of the localized plasma.

3.1. Heating of a localized plasma by the field of a
electromagnetic plane wave

In the model it is assumed that the plasma sphere
heated by a linearly polarized electromagnetic plane w
from one side, namely from below. The classical problem
scattering of an electromagnetic plane wave by a spher
arbitrary radius with arbitrary electrical properties w
solved by Mie in 1908.22 We will make use of his results
represented in convenient form in Ref. 23. If the power fl
of the electromagnetic waveS is given, then the rate of hea
flow into the sphereW is given by

W5~Qt2Qs!S, ~5!

where the cross sections of transmission and scatteringQt,s

have the form

Qt52
l2

2p
Re (

j 51

`

~2 j 11!~aj1bj !,

Qs5
l2

2p
Re (

j 51

`

~2 j 11!~ uaj u21ubj u2!. ~6!

Here l is the wavelength of the electromagnetic wave
vacuum, and the complex coefficientsaj ,bj are given in the
Appendix.

3.2. Convective heat exchange between a localized plasma
and the surrounding space

It is well known that at large Reynolds numbers he
exchange between a body and an air flow takes place in
thermal boundary layer, the characteristic magnitude
which d;a/ARe!a ~Ref. 21!. In our experiment we also
observed such a narrow layer in the front part of the loc
ized plasma. Therefore, it is completely logical to apply t
well-developed theory of boundary layers from aerodyna
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ics ~see, e.g., Refs. 21 and 25! to our problem. In what fol-
lows we will make wide use of the results and notation
Ref. 25.

Introducing the coordinate system shown in Fig. 5,
may write the boundary layer equations in the form~see
Appendix A and Ref. 25!

]r 0ru

]x
1

]r 0rw

]y
50,

u
]u

]x
1w

]u

]y
5

re

r
ue

]ue

]x
1

1

r

]

]y
m

]u

]y
1gxS 12

re

r D ,

cpS u
]T

]x
1w

]T

]y D5
1

r

]

]y
k

]T

]y
. ~7!

Hereu andw are the velocity components along thex andy
axes,gx is thez component of the force of gravity,k is the
thermal conductivity,m5nr is the coefficient of dynamic
viscosity,cp is the specific heat,ue is the longitudinal veloc-
ity on the outer boundary layer,r 05a sin(x/a), and account
is taken of the fact that the thickness of the layerd is much
smaller than the radius of the spherea.

If we multiply the first of Eqs.~7! by cpT, the third by
r 0 , and add them, integrate overy from 0 toh@d and again
make use of the equation of continuity, we obtain the we
known formula for the densityP of the heat flux from the
surface bounding the localized plasma:25

P5cpre~T02Te!
d~r 0ueuT!

r 0dx
,

uT~x!5E
0

` ru

reue

T2Te

T02Te
dy. ~8!

FIG. 5. Basic diagram of streamline air flow around the localized plas
B—boundary surface,1—air flowlines,2—localized plasma formation,3—
swirled wake region,4—flow separation region. The thermal boundary lay
is hatched. Also shown are the coordinate system employed and direc
of the force of gravity and propagation of the electromagnetic plane wa
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f
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ized plasmaWT is obtained by integrating the heat flux de
sity ~8! over x with the weighing factor 2pr 0 from 0 to xa :

WT52pcpre~T02Te!~r 0ueuT!x5xa
. ~9!

We have limited the integration to the flow separation po
x5xa .21,25 It is well known that in the numerical solution o
the boundary layer equations this point corresponds to
time at which the solution fails and the boundary layer eq
tions become unsuitable. The accumulated experience
aerodynamics shows that the flow separation point of a b
calculated in this way accurately corresponds to reality. T
model assumes that the main heat loss from the local
plasma takes place in the frontal laminar boundary layer~see
below!.

For simplicity we neglect the effect of the force of gra
ity on the motion of the gas in the layer, i.e., we neglect
last term on the right-hand side of the second of Eqs.~7!. Let
us see why such a simplification is possible under our
perimental conditions. We first determine for which air flo
velocity V*̀ the first term on the right-hand side of the se
ond of Eqs.~7! is comparable with the last term in the front
part of the localized plasma. Toward this end, we make
of the well-known result for potential flow around
sphere21,25

ue5
3

2
V` sinS x

aD . ~10!

We obtain the following estimate forV*̀ :

V*̀ 'A4

9 S 12
Te

T0
Dga.

This value is substantially smaller than the value obtain
using formula~4!, which agrees with experiment.

To obtain an analytical expression foruT we employ
the generalized Dorodnitsyn–Faulkner–Scan–Mang
transformation25

dh5S ue

nex̄
D 1/2 r

re

r 0

a
dy, dx̄5S r 0

a D 2

dx,

rr 0u5
]c

]y
, rr 0w52

]c

]x
, c5areAuenex̄f ~ x̄,h!.

If we introduce the functionf in this way, the continuity
equation is automatically satisfied and the remaining t
equations of Eqs.~7! now read25

S mr

mere
f 9D 8

1m1f f 91mS re

r
2 f 82D

5 x̄S f 8
] f 8

] x̄
2 f 9

] f

] x̄D ,

S mr

merePr
T8D 8

1m1f T85 x̄S f 8
]T8

] x̄
2T8

] f

] x̄D . ~11!

Here the temperature has been normalized toT0 , the Prandtl
number is Pr5mcp /k, u5uef 8, m15(m11)/2,
m5( x̄/ue)(]ue /] x̄), and the primes denote differentiatio
with respect toh. For air the Prandtl number depends ve

:

ns
.
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TABLE I.
weakly on temperature, and we take it to be consta
Pr50.7. The product of the dynamic viscosity and the
density depends weakly on the temperature, and for the r
b5mr/mere we use the constant valueb50.5, obtained by
taking the ratio of the tabulated values at 4000 and 300

At the origin of the boundary layer forx/a,1 a good
approximation is the solution whenf and T are only func-
tions of h ~Ref. 25!. Expanding in the small parameterx/a,
we find thatm51/3 andm152/3. In this case the solution i
found by solving the following system of ordinary differen
tial equations:25

b f-1
2

3
f f 91

1

3 S T0

Te
T2 f 82D50.

b

Pr
T91

2

3
f T850. ~12!

These equations should be augmented by the boundary
ditions. So far, without special discussion, we have u
three obvious conditions:T51 for h50, T5Te /T0 and
f 851 for h5h@1. The vanishing of the normal compone
of the velocity (w50) on the boundary surface (h50) leads
to another boundary conditionf 50 for h50. As the missing
boundary condition we can use the continuity of the longi
dinal velocity u and its normal derivative on the bounda
surface (h50). However, we will use the simpler an
physically clearer, but approximate3! boundary condition
f 950 on the boundary of the localized plasma. Indeed,
motion, for example, in the equatorial plane from inside
plasma toward the boundary the velocityu increases@see
formula ~2!#; for motion toward the boundary from outsid
the velocity also increases and not only outside the bound
layer @see formula~10!#, but also inside it due to heating o
the gas. It is natural to assume that the maximum velocit
reached at the boundary.

Equations~12! can only be solved numerically. Figure
provides an example of such a solution which shows that
entire fall of the temperature and velocity is concentrated
the regionh,1, i.e., a boundary layer is actually forme
Table I lists the calculated velocity on the boundaryu0 in

FIG. 6. Result of calculation of the dependence of the dimensionless
peratureT5T/T0 and velocityV5 f 8/ue on the parameterh ~transverse to
the layer! for the temperatureT053200 K of the localized plasma and th
temperatureTe5300 K of the surrounding air.
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units of the velocity outside the layerue for different ratios
of the temperature outside and inside the spheroid,T0 /Te .
For the conditions characteristic of our experiments, the
locity is accurately approximated on the boundary by
formulaVi'ueA3 T0 /TeV` in Eq. ~2!. For the temperature we
may adopt the accurate approximate formula

T

T0
'11S Te

T0
21DerfS hAPr

3b S T0

Te
D 1/3D , ~13!

where erf is the error function.24

For uT we obtain the approximate expression

uT'
1

r 0
S T0

Te
D 1/6Abnex

3

puePr
. ~14!

4. CONVECTIVE MODEL OF A MICROWAVE DISCHARGE IN
THE FORM OF A LOCALIZED PLASMA FORMATION

Let us analyze the relations obtained in the previous s
tion. To start with, let us consider heating. Figure 7a sho
how the microwave power absorption cross section~5! nor-
malized to the cross-sectional area of the sphe
a5(Qt2Qs)/pa2, varies as a function of the radius of th
sphere under our experimental conditions at fixed temp
ture. A distinct maximum arounda;1.7 cm can clearly be
seen. For this radius the ratio of the perimeter of the equ
rial cross section of the sphere to the wavelength is equa
0.86:

2pa

l
;0.86. ~15!

This is the well-known condition for the fundamental ele
trical resonance of a sphere.23,26

Let us now consider aspects of convective cooling.
number of observations and calculations of laminary bou
ary layers on material spheres show that the flow separa
point is located near the equator. This does not contradict
experimental observations. Takingxa5pa/2 in our esti-
mates of the convective cooling power in expression~9!, we
obtain

WT'pa2cpreV`~T02Te!j,

j5
)p

2 S T0

Te
D 1/6A b

Pr Re
. ~16!

The balance of heating and cooling power is expressed

-

T0 /Te u0 /ue

2 1.178
4 1.457
6 1.683
8 1.877
10.67 2.106
12 2.205
16 2.487
20 2.738
40 3.734
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FIG. 7. Dependence of the microwav
absorption cross sectionq normalized to
pa2: a—on the radiusa of the localized
plasma when the plasma temperature
4000 K; b—on the temperature of th
localized plasma ~maximum value!.
Wavelength 12 cm.
q~a,T0!S5jcpreV`~T02Te!. ~17!
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With decrease of the microwave power fluxS Eq. ~17! can
hold up to the point at which the absolute maximum of t
surfaceq(a,T0) touches theaT0 plane.4! Thus, near its dis-
appearance threshold the localized plasma formation sh
have the diameter determined by the radiation wavelengt
given by relation~15!.

For our experimental conditions we obtaina;1.7 cm,
T0;4000 K, and threshold power fluxS;20 w/cm2. For
the characteristic thickness of the transition layer we ob
the estimate

d

a
;

T0

Te

1

ARe
'0.2– 0.3.

These values are found to be in good agreement with
experimental values described above~see Sec. 2!.5!

4.1. Discussion

The above estimates show that the convective model
scribes quite accurately the main features of a microw
discharge in the form of a localized plasma. The charac
istic dimension of such plasmas is governed by the radia
wavelength through relation~15!. This state of affairs was
indeed predicted by P. L. Kapitsa in 1955.13 The larger the
microwave frequency, the smaller the dimensions and hig
the temperature of the localized plasma. Its stable shap
tied up with the formation of the primary vortex of th
plasma under the action of free convection, the gas in wh
is subject to the greatest heating by the microwaves, with
result that the plasma density in it is maximum. Vortex m
tion inside the localized plasma gives rise to a bound
layer which is opaque for the surrounding gas. In the hyd
dynamic sense the localized plasma acquires the prope
of a material body which are manifested in the formation
a boundary layer, in flow separation from it, and in the pr
ence of a swirled~secondary vortices! wake region~see Fig.
5!.

The formation of secondary vortices explains the o
served instability of the wake region of the localized plas
and the magnitude of the drag coefficientz in Eq. ~3!. In the
model described here this region was in fact excluded fr
consideration. However, the aft region of the plasma tu
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standing how some quantity of the surrounding gas p
etrates into its center. Indeed, while the upper, frontal criti
point of the localized plasma~at which the velocity vanishes!
is stable~the rising flow of hot air encounters the opposin
flow of cold air caused by the external pump or by the m
tion of the plasma itself!, this cannot be said of the lower, a
critical point~the flow in the secondary vortices which is du
to the rise of air heated in the wake region can be in the sa
direction as inside the plasma!.

What process stabilizes the position of the plas
boundary around the aft critical point? In this region an io
ization front propagates downward with normal velocityVn

counter to the flow.16 This situation was in fact considered i
Ref. 18 Let us make some rough estimates, following
logic of Refs. 2 and 18. From the condition for continuity
the flow entering the localized plasma from its aft region
the region of the axis,reVn5rV, and relations~2! we obtain
the estimate

V`;VnS T0

Te
D 2/3

,

which differs only slightly from Eq.~1!. The fraction of gas
passing through the localized plasma is roughly estimated
the ratioVn /V` and is quite small.2 If we express the norma
velocity of propagation of the front in terms of the ener
flux density ST ~Ref. 2! escaping through the front
Vn;ST /cpreT0 , and assume that the wake region is in co
tact with the localized plasma over an area on the orde
pa2, then the conductive cooling power in the wake regi
Wk5pa2ST can be of the same order of magnitude as
convective cooling in the layerWT ~16! ~the parameterj
under our conditions is of the same order of magnitude
(Te /T0)2/3!. These estimates do not take account of the f
that the gas in the wake region has been heated up by
convective heat flux emanating from the boundary layer.
cluding this would lower the conductive energy losses fro
the primary vortex, which in this case are substantial, in
overall energy balance.

Necessary improvements in the model can go in diff
ent interrelated directions. On the one hand, remain
within the framework of the principles expounded above
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point with allowance for the effect of the force of gravity
the layer and the actual temperature dependence of the
ous parameters involved~viscosity, specific heat, etc.! under
the conditions of the localized plasma. Other boundary c
ditions can also be considered. On the other hand, it is m
likely that in its internal structure the localized plasma
closer to a toroidal vortex that entrains part of the air fro
the aft region in the region of the axis. The entrained ai
heated inside the plasma and leaves it by way of the up
critical point. Under these conditions a ‘‘sublayer problem
can be formulated, where the properties of this sublayer
assigned by the axial flow of entrained air.25 The model
should also include a description of the wake region.

5. CONCLUSION

A stationary microwave discharge in a gas at atm
spheric pressure under the action of free convection du
the action of the buoyancy force on the heated air can
spatially localized, taking a spheroidal shape. Vortical m
tion inside the spheroid gives this localized plasma some
the properties of a material body, which are manifested i
certain degree of material isolation that it has from the s
rounding space, in the formation of a narrow thermal bou
ary layer and flow separation, and in the formation of s
ondary vortices in the wake region.

The characteristic radius of the localized plasma is
termined by the wavelength of the microwave radiatio
a;0.137l. Convective heat exchange plays an import
role in the energy balance of localized plasmas.
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APPENDIX A

1. The coefficients in the Mie formulas have the follow
ing form:

aj52
j j~Nj!@j j j~j!#82 j j~j!@Nj j j~Nj!#8

j j~Nj!@jhj
~1!~j !#82hj

~1!~j !@Nj j j~Nj!#8
,

bj52
j j~j!@Nj j j~Nj!#82N2 j j~Nj!@j j j~j!#8

hj
~1!~j !@Nj j j~Nj!#82N2 j j~Nj!@jhj

~1!~j !#8
.

Here j j andhj
(1) are the spherical Bessel functions of the fi

and third kinds,24 the primes denote differentiation with re
spect to their argumentj52pa/l, and N5n1 ix is the
complex refractive index of the plasma. For the refract
index we use the usual expressions~see, e.g., Ref. 2!

n5A«11A«1
21«2

2

2
, x5A2«11A«1

21«2
2

2
,
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wherevp is the electron plasma frequency,nen is the elec-
tron collision frequency, andv is the microwave frequency
In our estimates, we used the following approximatio
taken from Ref. 5 for the relations linking the plasma dens
and the collision frequency in air with the temperature of t
localized plasma:

np~T0!55.91•1015 expS 2
14.42

T021.74D ,

nen~T0!55.74•1011
Te

T0
AT0.

Here the plasma density is in units of cm23, the collision
frequency, s21, and the temperature, kK.

2. The surface layer approximation consists in mak
use of the fact that the velocity, temperature, and thickn
of the layer vary only slightly in one direction~along thex
axis! and strongly in the normal direction~along they axis!.
This leads to the natural condition that the pressurep trans-
verse to the layer is constant~we exclude from the pressur
its hydrostatic part associated with the potential force due
gravity!.25 The pressure on the outer boundary of the la
~sufficiently removed from the spherical boundary surfa
introduced in the formulation of the problem! is determined
by the Bernoulli equationue

21p/re5const, whereue is the
longitudinal velocity on the outer boundary of the layer.6! In
the derivation of the surface layer equations we made us
the constancy of the specific heatcp , the absence of viscou
heating, and smallness of the Mach numb
Me5ue /A(g21)cpTe'0.003~Ref. 25!.

1!Spherical geometry was used in Refs. 3 and 5.
2!When the moving localized plasma did not form, the small metal sphe

were not detected. The material of the gauze waveguide did not evap
as the plasma formation moved through it.

3!In the approximationd!a the two conditions coincide.
4!jV` depends weakly on temperature and radius.
5!Note that in the comparison it is necessary to take two circumstances

account: as a rule, the diameter of the localized plasma on the photogr
in visible light is somewhat increased due to the exposure effect, an
measured temperature is somewhat decreased due to averaging ov
cross section.

6!At sufficient distances from the localized plasma, potential subsonic
compressible inviscid motion of the gas is assumed.
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Effect of an electron beam generated in an X-pinch plasma on the structure of the K
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The first experimental studies of an electron beam generated in anX pinch on the XP machine
~Cornell University, USA! and the BIN machine~P. N. Lebedev Physical Institute, Russian
Academy of Sciences! are reported. It is shown that it is possible in anX pinch to isolate the effect
of a plasma-generated electron beam on the multiply charged ion radiation. The intensities
of the satellite lines corresponding to Li-, Be-, B-, and C-like ions are calculated for the Al
spectrum on the basis of a collisional–radiative model with a non-Maxwellian electron
distribution in the plasma. The effect of an electron beam on the multiply charged light ion
radiation in anX-pinch plasma is demonstrated. Comparing our calculations with the experimental
spectra, we conclude that the present model can be used to estimate the electron beam
intensity. © 1997 American Institute of Physics.@S1063-7761~97!01009-3#
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The spectra of multiply charged ions, corresponding
electron transitions to theK shell ~K spectra! are as a whole
the least complicated and most susceptible to analysis
numerical calculations. The most interesting feature of th
spectra is the presence of satellite structures near the lin
the resonance series of H- and He-like ions. The rela
intensities of the satellite lines carry information about t
plasma parameters and are widely used in plasma studie
a diagnostic.1 However, this is valid for a stationary equilib
rium plasma when along with the resonance lines of H- a
He-like ions, only satellites corresponding to transitions
ions with ionization number less by unity are observed. T
spectra of He-like ions of elements withZ'10– 20 observed
in a laser plasma heated by neodymium laser radiation w
pulse durationt51 – 5 ns may serve as an example here.
this case, the satellite lines corresponding to transitions
Li-like ions have noticeable intensity~Fig. 1a!. Despite the
presence of almost ten lines in the satellite structure and
main channels for populating the upper levels~dielectronic
recombination and direct excitation by electron impact!, such
spectra are now uniquely interpreted and serve as a g
instrument for measuring the parameters of a plasma.

However, in a number of experiments on theK spectra
of elements withZ512– 15 much more complicated satelli
structures have been observed containing simultaneously
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first recorded in a plasma heated by CO2-laser radiation.
Groups of lines in the long-wavelength segment of the sp
trum have been identified with transitions of Be-...F-lik
ions, whose presence together with He- and Li-like ions
been explained by the rapid change of the plasma. The p
ence of many hundreds of near-lying lines, the absence
reliable calculations of the atomic constants for the obser
transitions prevents a detailed analysis of the spectra; h
ever, even in the well-studied segment of the spectrum c
taining satellite lines corresponding to transitions of Li-lik
ions it has not been possible to describe the intensities
these lines in terms of the time-dependent model. Such s
tra have been observed in plasma heated by femtose
laser radiation4 ~Figs. 1b and 1c!. Here also it has not bee
possible to uniquely describe the line intensities in the sa
lite structures of the resonance lines of He-like ions witho
invoking additional ion excitation processes in the plasm

At the same time, there are experimental data on
presence in plasma heated by CO2-laser radiation of nano-
second duration as well as by shorter-wavelength laser ra
tion of femtosecond duration, of high-power electron bea
capable of having a substantial effect on excitation proces
in the plasma. However, the problem of allowing for th
effect of an electron beam on a laser plasma is extraordi
ily complicated since it is necessary to simultaneously tr
the time ans space varition of the plasma for a spectr
containing several hundred lines. Besides, reliable meth

4844-08$10.00 © 1997 American Institute of Physics



nt
FIG. 1. Density plots of Al plasma, recorded on differe
machines: a—Nd laser, t52 ns, P51014 W/cm2,
Ne51021 cm23; b—CO2 laser, t,2 ns, P51012 W/cm2,
Ne51019 cm23; c—dye laser,t580 fs, P51017 W/cm2,
Ne51022 cm23; d,e—X-pinch in the presence~d! and ab-
sence~e! of the electron beam,Ne51018 cm23 ~R is the reso-
nance line,I is the inter-Raman line!.
of measuring the parameters of an electron beam in a laser
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plasma do not exist.
It has been possible to make substantial advances in

solution of this problem in experiments with a plasma o
completely different type, specifically anX-pinch plasma,
the X pinch being a variant of theZ pinch, which uses an
explosion in a vacuum high-current diode of two or mo
crossed wires. Because of the specific geometry of thX
pinch, it has been possible to distinguish the effect of diff
ent factors in it and to directly observe the change in
nature of the spectrum under the action of an electron be
Figures 1d and 1e show density plots of spectra from
plasma with the same parameters, obtained at the same
in one experiment in the presence and absence of an ele
beam. Details of the experiments and their interpretation
presented below.

The present work presents the first experimental res
of a study of an electron beam generated in anX pinch, and
also experimental and theoretical studies of the effect o
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charged ions.

2. EXPERIMENTAL STUDY OF THE ELECTRON BEAM

A hot dense plasma was created in the XP generator w
a current of 470 kA in a pulse of 100-ns duration~Cornell
University, USA! and in the BIN generator with a current o
300 kA in a 100-ns pulse~P. N. Lebedev Physical Institute!.
The plasma is formed in theX pinch during the explosion o
crossed wires in a high-voltage diode. The structure of
X-pinch plasma is schematically depicted in Fig. 2. A d
tailed description of the diagnostic apparatus used to st
the X-pinch plasma is given in Ref. 5. Here we note tha
high-precision spectroscopic study of the satellite lines
came possible with the use of a spherical mica crystal hi
current spectrograph possessing a unique combination

485Pikuz et al.



FIG. 2. Pinhole photos of anX-pinch Al plasma~a! and schematic depiction of theX-pinch with the structure of the different plasma regions shown~b!
~diameter of the wiresd525 mm!, obtained through an opening of diameterD5100 mm for filter cutoff energyE.1.2 keV.
spectral and spatial resolution. The spectral resolution
a

Studies in recent years have revealed the complexity of

(l/Dl) can reach 10 000 for a spatial resolution better th
20 mm ~Ref. 6!.
nthe structure of the crossover region of theX pinch and of
the processes taking place in it.7 In this region electron tem-
t
FIG. 3. Pinhole photos of anX-pinch plasma formed by explosion of aluminum wires (d535 mm), D580 mm, E.8 keV! and oscillograms of the outpu
current~the lower signal! and the scintillation detector signal: a—without the beam, b—with it.
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rams
FIG. 4. a—Spectrograms of the PdL spectrum (d520 mm) recorded with a spectrograph with a convex crystal of CsAP of radius 250 mm, and oscillog
of the output current~lower signal! and the scintillation detector signal without the beam. b—Same as in Fig. 4a, but with the beam.
peratures and densities equal toTe;1 – 2 keV and
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Ne;1024 cm23 respectively can be observed, and the to
emitted energy in the wavelength interval below 100 Å c
reach 1 kJ.8,9 At some distance from the hot point the ele
tron temperature and density fall toTe,100 eV and
Ne;1018 cm23.8,10

One peculiarity of theX pinch is the formation during
the plasma pinch of the so-called minidiode—a gap in
crossover of the wires—with generation in this spot of
high-energy electron beam~Fig. 2!. Estimates give a voltage
on the minidiodes of up to 100 kV depending on the con
tions of the experiment. Estimates arrived at with the help
pinhole cameras with fixed filters give a maximum energy
E;15– 20 keV for the electrons generated in the minidio
of an X pinch of light elements (Z512– 14) and
E;100 keV for anX pinch of heavy elements (Z.29).11

Because of the geometry of the diode and the prese
of electromagnetic-field noise in the vacuum diode, it is
practice impossible to carry out direct, quantitative measu
ments of the beam current at the present time. Conclus
about the presence of an electron beam and estimates
intensity are usually made on the basis of secondary effe
the emission of the anode and wires from the anode sid
the diode~Fig. 3b!, higher darkening of films due to beam
bremsstrahlung, intense emission ofK- andL-series lines of
weakly ionized ions~Fig. 4b!.

Most accessible for measurement at the present tim
bremsstrahlung of the beam electrons. In the experiment
the BIN machine bremsstrahlung of the beam electrons
recorded by means of a scintillation detector with a pho
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was positioned outside the vacuum chamber of the setup
distance of 250 mm from the anode behind filters with d
ferent energy cutoffs. We were unable to calibrate the de
tor and therefore could not carry out exact quantitative m
surements; therefore, the measurement data give informa
only about the relative intensity and hardness of the elec
beam and quite rough data about the generation time. Fig
3 displays pinhole photos of an aluminumX-pinch plasma
with the beam~Fig. 3b! and without it ~Fig. 3a!, and also
oscillograms of the output current and scintillation detec
signal corresponding to these photos. Figure 4 presents s
trograms of theL spectrum of Pd with the beam~Fig. 4b!
and without it~Fig. 3a! and the corresponding oscillogram
of the output current and scintillation detector signal. Fro
these figures it is clear that the beam intensity and elec
energy in the beam are significantly higher in the case of
X pinch arising from the explosion of heavy-element wir
and the electron beam exists for 30–50 ns.

Experimental studies have shown that the electron be
strongly influences the nature of the multiply charged i
radiation, especially in the case of light elements. For he
elements~Cu and heavier! the multiply charged ion spectr
and the weakly ionized spectra are spatially separated s
the conditions for emission of the multiply charged ion lin
are fulfilled only at the hot point, which has dimensions
10–30mm, whereas the characteristicK- andL-series lines
are usually emitted on the periphery of the diode at a d
tance of fractions of a millimeter to several millimeters fro
the hot point~see Fig. 4b! where the beam interacts with th

487Pikuz et al.
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FIG. 5. Spectrograms of radiation from a
X-pinch plasma from aluminum wires, re
corded with a spectrograph with a spheric
mica crystal of radius 100 mm on the XP
machine~a! and three-dimensional densit
plots of the spectrum made on the anode~b!
and cathode~c! sides of the spectrum.
weakly ionized material. Therefore the effect of an electron
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lines of weakly ionized material~Fig. 5a! have low intensity,
are

en
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tion
a-

in
s
dy

in
the

ls
tic
beam on the structure of the spectrum of the multi
charged heavy ions is probably small and so far has not b
studied. In the case of light elements~Mg, Al, Si! the multi-
ply charged ion lines are observed in an exploding plas
over almost the entire diode~Fig. 5a!, but because of the
action of the electron beam are significantly more inte
from the anode side. Figure 5a displays a time-integra
spectrogram of the emission of an aluminum plasma
corded with the help of a focusing spectrograph with spa
resolution6 on the XP machine. The resonance line and
inter-Raman line of He-like Al were observed from bo
sides of the hot point in the second reflection order of
mica crystal. In the anode direction intense satellite lin
were also observed corresponding to transitions from Li
C-like Al ions, whereas from the cathode side these lines
absent or of low intensity. Note that there are a numbe
elements with intermediate atomic weight~from Ti to Ni!, in
whoseK spectra explicit asymmetry was recorded in a nu
ber of cases on the anode side in the presence of an int
electron beam~Fig. 6!. This is evidence, the same as for t
light ions, of the effect of the electron beam, which in th
case has a significantly higher intensity and electron ene

In the case of anX pinch of light elements the emissio
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probably because the beam current and electron energy
significantly smaller~see Figs. 3 and 4! than for anX pinch
of heavy elements. For example, for an aluminumX pinch
theK-series emission lines of weakly ionized ions have be
recorded only very recently using a rapid, focusing sp
trograph.

Thus, the specific geometry of theX pinch allowed us to
isolate the electron beam and study its effect on the radia
of the multiply charged ions and of the weakly ionized m
terial.

3. CALCULATED RESULTS

The unique possibilities of the new spectral apparatus
conjunction with the powerful computing facilities of Lo
Alamos National Laboratory have made it possible to stu
the effect of an electron beam on the structure of theK
spectrum of multiply charged light ions.

With the help of the calculational model described
Refs. 12–15, we perform here a spectroscopic study of
satellite lines observed in anX-pinch plasma formed from Al
wires ~Fig. 5!. The population densities of the atomic leve
were determined by nonequilibrium quasistationary kine
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0 mm
cathode
FIG. 6. Spectrograms of the radiation from anX-pinch plasma from nickel wires, recorded with a spectrograph with a spherical mica crystal of radius 10
on the XP machine~a! and density plots of the spectrum made in the region of the hot point and at a distance of 0.2 mm from it on the anode and
sides of the spectrum~b!.
calculations and then used to model the emission spectra.
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The level structures corresponding to the configurati
1s2(2s2p)w, 1s2(2s2p)(w21)3l , 1s2(2s2p)(w11), and
1s1(2s2p)w3l were calculated for Li-, Be-, B-, and C-like
ions. Herew is the number of electrons of the shell in th
ground state and (2s2p)w are all the possible permutation
of the w electrons on the 2s and 2p levels. For example
carbon hasw54 and (2s2p)4 denotes 2s22p2, 2s12p3, and
2p4. The symboll denotes all possible values of the orbit
angular momentum associated with the principal quan
number. Configurations of the type 1s2, 1s2l , 1s3l , 2l2l 8,
and 2l3l 8 were used for the He-like ions. The chosen co

FIG. 7. Electron energy distribution function at various electron tempe
tures~indicated in kiloelectron volts! for f 51027.
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possible in the given spectral range. In addition, the progr
calculated all the necessary atomic constants. The calc
tions took into account around 53105 transitions. The elec-
tron beam was prescribed by adding a narrow Gaussian
tribution, as shown in Fig. 7, to the Maxwellian part of th
electron energy distribution function. The calculated sp
trum ~Fig. 8b! was compared with the experimental dens
plot corresponding to a distance of 1 mm on the anode s
from the crossover~Fig. 8a!.

The results of the theoretical calculations depend, gen
ally speaking, on the electron temperatureTe , average beam
energyE0 , beam widthG, the weighting factorf equal to the
ratio of the electron density in the beam to the total dens

-

FIG. 8. Comparison of the experimental spectrum~a is the density plot of
the spectrum shown in Fig. 6, corresponding to a distance of 1 mm from
hot point on the anode side! with the calculated spectrum~b! in the spectral
interval corresponding to the satellite structure of C-...Li-like Al ions.
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of the electrons included in the calculation, and the elect
densityNe . However, the model calculations showed alm
no variation in the calculated spectrum in the interval
beam energiesE0 from 5 to 15 keV typical of electron beam
generated in anX pinch from light-element wires. This is du
to the weak variation of the excitation cross section in t
energy interval. Therefore in all subsequent calculations
took Ee55 keV, G5100 eV, andNe51018 cm23, which
corresponds approximately to the electron density 1 m
from the hot point. Different satellite structures were inve
tigated by varying the electron temperaturekT and the
weighting factorf .

Figure 9 shows the effect of the electron beam on
radiation of a cold plasma for an electron temperature of
eV. The bottom curve is the spectrum in the absence of
beam (f 50). In the given case only C-like satellites a
present. The spectrum changes substantially even for a
significant increase inf : for f 51029 B-like satellites appear
In the interval 1029, f ,1024 the intensity of the spectra
lines does not change significantly, but the total intens
grows even though this cannot be seen in Fig. 9 since all
curves are normalized. Forf .1024 the beam becomes su
ficiently intense that the ionization balance is shifted, res
ing in the appearance of He-, Li-, B-, and Be-like ions. F
f 51022 only He- and Li-like ions are formed.

Figure 10 displays calculated satellite structures at
ferent stages of ionization~from C- to Li-like ions!. The
calculations can be used for a quantitative estimate of
effect of an electron beam on the spectral characteristic
the lines.

Figures 10a and 10b show how the satellite structure
the calculated spectrum for Li-like ions depends on the e

FIG. 9. Calculated emission spectra for an electron temperature of 30
and different values off .
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tron beam intensity and electron temperature, respectivel
can be seen from Fig. 8 that the calculated spectrum co
sponding to an electron temperature ofTe580 eV and
f 5331027 agree best of all with experiment. A small dis
crepancy between the calculated and experimental wa
lengths can be seen. It is customary to denote the li
grouped in the wavelength regions 7.85, 7.86, and 7.88 Å
qr, abcd, and jkl . It is well known that thejkl -group lines
are populated mainly by dielectronic recombination, where
the qr- and abcd-group lines are more sensitive to excita
tion by the electron beam of the inner shells of the Li-lik
ions.

Figure 10c shows how the satellite structure of the c
culated spectrum for Be-like ions depends on the elect
beam intensity for the electron temperature equal to 60
The calculated spectrum forf 51027 is found to be in beau-
tiful agreement with the experimental spectrum~see Fig. 8!.
It is clear from the figure that the group of lines in the vicin
ity of 7.92 Å is pumped by electron collisions to a great
degree than the group of lines around 7.94 Å. The casef 50
completely disagrees with experiment.

Figure 10d shows B-like satellites calculated with a
without the beam forTe540 eV andf 51027. It can be seen
from comparing with Fig. 8 that the main features of th
experimental spectrum are in good agreement with calcu
tion. Note that the central satellite line~8.02 Å! has almost

V

FIG. 10. Calculated emission spectra corresponding to Li-, Be-, B-, a
C-like Al ions.
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disappeared while the 8.01 and 8.04 Å lines are pumped
electron collisions.

Figure 10e compares the calculated satellite structu
with and without the beam for C-like Al ions. The calcula
tion was carried out forTe530 eV andf 51027. Note that
the given spectra differ strongly and that the calculation w
the beam shows significantly better agreement with exp
ment ~see Fig. 8!, especially as to the peak intensity of th
lines and the structure of the beam profile. For the case w
out the beam, the lines emitted as a result of dielectro
recombination predominate, and for the case with the be
the lines emitted due to collisional excitation predomina
The lines having the greatest intensity in the presence of
electron beam are almost invisible in its absence.

Note that the strong dependence of the structure of
spectrum on the electron beam support the idea of using
a diagnostic of beam density.

Figure 11a displays the time-integrated spectrum of
He-like Al ions recorded on the BIN machine using the spe
trograph with a spherically curved mica crystal of 100-m
radius. Indirect data, enumerated above, show that the e
tron beam intensity on the BIN machine is less than on
XP machine; however, the light-ion spectra also have a p
nounced asymmetric intensity distribution of the satell
lines in the anode–cathode direction. Figure 11b prese
density plots of the spectrum, made at a distance of 0.5
above the hot point in the direction of the anode, in t

FIG. 11. Spectrogram of the radiation from anX-pinch plasma from alumi-
num wires, recorded with the help of a detector with a spherical mica cry
of radius 100 mm on the BIN machine~a!, and density plots of the spec
trum, made in the region of the hot point at a distance of 0.5 mm from
hot point on the anode side and on the cathode side of the spectrum~b!.
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of the cathode. Comparison of the intensities of the sate
lines in the anode direction with the calculated spectra
cording to the above technique shows that the calcula
spectrum agrees well with the experimental spectrum w
the beam intensity makes up 1028 to 1027 of the total elec-
tron density in the plasma, which is in line with the assum
tion of a lower beam density on the BIN machine. Note th
we have considered time-integrated spectra; therefore
different groups of satellite lines can emit at different tim
for a different beam intensity and electron temperature.

4. CONCLUSION

In this paper we have presented the first experime
and theoretical studies of the effect of an electron beam g
erated in anX-pinch plasma on the structure of the multip
charged ion spectrum. In the instance of the aluminumK
spectrum, recorded in anX-pinch aluminum plasma on th
XP machine at Cornell University, we have succeeded
the first time in theoretically estimating the effect of the ele
tron beam on the structure of theK spectrum of multiply
charged, light ions. Calculations of the observed sate
lines of Li-, Be-, B-, and C-like Al ions based on th
collisional–radiative model based on a non-Maxwellian el
tron distribution are found to be in good agreement with
experimental data for the electron beam intensity constitu
1027 of the total electron intensity in the plasma. On t
basis of the calculations in this study we also estimated
electron beam intensity in anX pinch of light-element wires
on the BIN machine. We conclude that it is possible to co
pare the calculated and experimental spectra, with the aim
allowing for the effect of the electron beam on the structu
of the light-ion spectra over a wide interval of electron bea
intensities.
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Current–voltage characteristics of extended Josephson junctions with viscous

tics
magnetic-flux transport
Yu. E. Kuzovlev

A. A. Galkin Donetsk Physicotechnical Institute, Ukrainian National Academy of Sciences, 340114 Donetsk,
Ukraine
~Submitted 21 December 1996!
Zh. Éksp. Teor. Fiz.112, 910–925~September 1997!

A theory that describes the current–voltage characteristics of extended Josephson junctions is
built. The width of the junctions is much larger than the mean free path of a single
fluxon, with the length of the path determined by energy dissipation in the junction. Explicit
analytic expressions are derived for the maximum supercurrent in the junction and the low-
voltage asymptotic behavior of the current–voltage characteristics. ©1997 American
Institute of Physics.@S1063-7761~97!01109-8#
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Research of phenomena that occur in extended Jos
son junctions is extensive. Most of this research, howe
deals with junctions with an overlap geometry of the sup
conducting arms. Here the external transport current in
junction enters into the equation for the jump in the phase
the order parameters between the junction arms in the f
of a source evenly distributed along the length. Less stud
is the in-line geometry of the arms. Under certain conditio
~see Ref. 1! this geometry leads to a model equation of t
sine-Gordon type with friction, and no explicit source of cu
rent exists. Instead, the transport current is introduced
boundary conditions imposed on the magnetic field at
edges of the junction.

As shown in Ref. 2, in such junctions the resistan
mode is characterized by a strong spatial inhomogeneit
the distribution of fluxons~Josephson vortices! if the junc-
tion width L is much larger than, first, the Josephson p
etration depthl j ~i.e., the size of a single standing fluxon!
and, second, the mean free pathl f that a fluxon follows
before stopping because of dissipation in the junction. T
inequality L@l f means that the fluxon motion is of a vis
cous, nonballistic, nature and that low-amplitude excitatio
in the junction are strongly damped.

These circumstances lead2 to a nearly complete disap
pearance of jumps on the current–voltage characteristi
the junction ~Fusko steps!, jumps that are related to reso
nances in fluxon motion and the generation of low-amplitu
excitations ~‘‘plasma waves’’! and are well-pronounced
when L,l f . The remaining distinctive features of th
current–voltage characteristic are, first, the magnitude of
excess supercurrent in the ohmic region and, second,
shape of the current–voltage characteristic in the low-volt
region, where the currentI is lower than it critical valueI c .
HereI c is the maximum current that can be sent through
junction without resistance. The resistance mode may
exist whenI ,I c , on the so-called single-particle branch
the current–voltage characteristic, which we study here~in
practice, this resistance mode is usually observed in a
versed bypass of the current–voltage characteristic!.

In this paper we propose an approximate analytic the
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with L@l f andL@l j in the absence of an external magne
field. First, we show that the excess supercurrent on
single-particle branch has a mildly sloping maximum, a
that it tends to zero at low voltages~being almost indepen
dent of the junction’s width! and at high voltages across th
junction ~the larger the ratioL/l j , the slower the supercur
rent approaches zero!. Here the behavior of the current
voltage characteristic in the nearest ohmic region is clos
that of a linear dependence, which intercepts a line segm
on the I axis ~the effective excess current! of a length of
approximately 2I c/3. Second, at low voltages across t
junction, when the normal current is much lower than t
supercurrent, the current decreases approximately as th
ciprocal logarithm of the voltageU, so that the single-
particle branch of the current–voltage characteristic ha
logarithmic ‘‘beak’’ with an infinite derivative atU50.
However, this feature of the current–voltage characteri
caused by nonballistic transfer of magnetic flux may beco
less-pronounces in the junction between two thin~in the di-
rection of the magnetic field! arms because of the nonloc
magnetic interaction of fluxons through ‘‘normal’’ spac
We also show that the observed2 ‘‘fine structure’’ of time-
averaged distributions of field and current is the result of
nonlinear interference between chains of fluxons travel
from the edges to the center of the junction and the plas
waves generated at the edges.

2. THE CONVERGING-WAVE APPROXIMATION

2.1. Dimensionless variables

A derivation of the equation for a Josephson junction~of
the superconductor-insulator-superconductor type! between
massive arms can be found, for instance, in Ref. 7:

c

4p
Hx5sUt1gU1 j c sin w,

2eU5\w t , wx.
2pdH

F0
.

The first equation relates the sum of the capacitive, norm
and Josephson components of the current to the curl of

4922-09$10.00 © 1997 American Institute of Physics



magnetic field in the junction’s plane. HereH is the field,U
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is the voltage across the junction,w is the jump in phase,s
andg are the capacitance and conductance per unit junc
area,x is the distance from the middle of the junction, th
subscriptsx and t indicate differentiation with respect to th
coordinate along the junction and with respect to time,d is
the effective magnetic thickness of the junction~d.2l, with
l the London depth of penetration of the arms by the fie!,
and the quantitiesc, e, j c , andF0 have standard meaning
The last formula, which follows from magnetic flux quan
zation in the superconducting arms and which provide
simple local relationship between the phase gradient and
field, is approximate. It is valid if the characteristic scalel j

of magnetic field variations in the junction

l j[AF0c/8p2d jc, is much larger thanl, and this can easily
be verified. The given expression forl j immediately follows
from the above formulas.1 The integral on the right side o
the first equation over the entire junction area is equal to
total transport currentI , which makes it possible to expressI
in terms of the field strength at the junction edges:

I 5D
c

4p FHS L

2D2HS 2
L

2D G ,
whereD is the thickness of the junction arms.

To simplify the mathematics, we introduce dimensio
less notation. We choosel j as the unit of length, and write
the third equation and, with its help, the boundary condit
imposed on the field in the form

l jwx5
H

H0
, I 5I 0l jFwxS L

2D2wxS 2
L

2D G ,
where we have introduced the natural units for field and c
rent: H0[F0/2pdl j and I 0[D j cl j . For a time unit we
taket[l j /u, whereu is the velocity of Swihart electromag
netic waves in the junction@from the initial equations we can
easily find thatu[c(4pds)21/2!#. For the units of voltage
and resistance we must then takeU05\/2et and
R0[U0 /I 054pdu/Dc2, respectively.

Reducing all the variables to dimensionless form via
units introduced above~replacingx/l j by x, I /I 0 by I , etc.!,
we obtain at the equation

wxx5w tt1gw t1sin w, ~1!

with the boundary condition

I 5wxS L

2D2wxS 2
L

2D .

If we take into account the symmetry of the current distrib
tion with respect to the junction’s centerx50, we can write
the boundary condition in the form of a pair of conditions

wxS t,x56
L

2D56
I

2
. ~1a!

The dimensionless parameterg in ~1!, which determines dis-
sipation, is given by the expression

g5
F0gu

2p j cl j c
5

R0l j

RL
,
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R5(gDL) .
Let us study the mean free path that a fluxon follows

a wide junction before stopping, assuming that the init
fluxon velocity is comparable tou, i.e., the fluxon’s maxi-
mum velocity. Simple calculations yieldl f;l j /g5RL/R0 .
Thus, the condition that fluxon motion is viscous isR!R0

or, in dimensionless notation,

gL@1. ~2!

Note that for a complete set of junction characterist
we can take the following six parameters:l, L, and D
~which determine the junction geometry!; I 0 and R ~which
specify the scales of the current–voltage characteristics!; and
u. Sinceu is lower than the speed of light by a factor of 1
to 15 and assuming thatd.2l, we find that
R0@ohm#;10– 100(l/D). If the conditionL@1 ~or L@l j

in dimensional form! is satisfied, the critical junction curren
I c can be expressed very simply in terms ofI 0 . Indeed, a
stable static solution of Eq.~1! consists of two ‘‘incomplete’’
fluxons ~of different polarity! originating at the junction
edges. The shape of a singular standing fluxon is descr
by the formulawx52/cosh(x2x0). Combining it with ~1a!,
we find that the maximum value of the transport curre
attainable in the static mode isI c54 or, in dimensional form,
I c54I 054D j cl j .

2.2. Statement of the problem

In the stationary resistance mode, the time derivative
the phasew(t,x) has a nonzero time-averaged compone
Here the constant component of voltage is

^U&5U0t^w t&[U0V,

where the angle brackets stand for time averaging, andV is
the dimensionless phase drift rate, which obviously coinci
with voltage reduced to dimensionless form. If not stat
otherwise, dimensionless variables are used throughout.

On the whole, the pattern of magnetic flux transfer in
wide junction observed in the resistance state2 is too compli-
cated even for an approximate analytic description, altho
the basics are simple. Vortices that originate at one edg
the junction and antivortices originating at the opposite ed
move toward the center, where they annihilate each ot
However, in view of condition~2!, inertia alone is not suffi-
cient for the vortices and antivortices to reach the cen
What is needed is a gradient in the vortex concentrati
which creates a pressure gradient acting against the fric
force, i.e., toward the center. Hence the time-periodic~or
quasiperiodic! waves of magnetic field,wx(t,x), and local
voltage,w t(t,x), traveling together with the chain of vortice
toward the center are spatially inhomogeneous. Inhomoge
ity means that the amplitude and shape of the temporal
cillations of field and voltage depend on the point in t
junction.

What complicates matters is the fact that low-amplitu
~‘‘plasma’’! excitations are superimposed on the traveli
chain of vortices. When there are many vortices in the ju
tion, the excitations manifest themselves as ‘‘acoust
waves of vortex concentration, which are generated at
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center of the junction in vortex–antivortex annihilation and
he
o

in

u

ge
e

ur
o

ve
on
t
e

, a
di

y

n
ty

ile

r
e
l
th

ill
ti

n
in
re
h

ity
re
th
ha
le

o
d
ll
e
is

disregarded in~1! and~1a!. Moreover, the conditions~3! are
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at the edges. As a result, the vortices that are close to t
two sources of ‘‘plasma’’ waves can be in retrogressive m
tion, which cannot be described in terms of a wave travell
from the edges to the center.

Note, however, that computer modeling~see also Sec. 3!
shows that plasma wave generation occurs primarily beca
the boundary conditions~1a! rigidly fix the instantaneous
value of the total current, and this must remain unchan
when a vortex enters the junction. The picture is simplifi
considerably if we replace the conditions~1a! by less strin-
gent, smoothed over time, boundary conditions:

K wxS t,x56
L

2D L 56
I

2
, ~3!

which specify only the constant component of the total c
rent. More precisely, now everywhere, with the exception
a narrow middle region of width of order unity, retrogressi
motion disappears, and what is left is a monotonically c
verging chain of vortices. Retrogressive motion at the cen
occurs because an annihilating vortex–antivortex pair p
forms oscillations in the course of annihilation. Of course
the center the converging wave pattern is sure to be
rupted, so that this region merits a separate study.

The conditions~3! make it possible to construct a fairl
simple approximate solution of Eq.~1! for a real junction of
finite width in the form of a fragment, referring to the regio
uxu,L/2, of a wave of vortices that converges from infini
in an infinitely wide junction@in this way we implicitly in-
troduce additional restrictions that replace the more deta
conditions~1a! for the instantaneous current#. Going back to
~1a! from ~3!, we can build a solution in the form of a linea
combination of the given approximation and plasma wav
which, by their definition, do not carry a ‘‘topologica
charge,’’ i.e., do not change the number of vortices in
junction ~at least, on the average in time!.

We can expect that this modification of solution w
have a small effect on the current–voltage characteris
since the constant component of the total current is fixed
the same extent by the conditions~1a! and by the conditions
~3!, while the number of vortices is fixed neither by~1a! nor
by ~3!. Because of the high viscosity condition~2!, the dis-
tribution of the magnetic flux, the dissipation in the junctio
and hence the current–voltage characteristic are determ
by the balance between the friction force and the vortex
pulsion in the bulk of the junction and are insensitive to t
annihilation and vortex entry. In this case, going back to~1a!
from ~3! leads only to a redistribution of the current dens
inside the junction and, in particular, to the fine structu
mentioned earlier, without changing the time-average of
integral current, and the features of the current–voltage c
acteristic we are interested in can be analyzed within the
stringent boundary conditions~3!.

On the other hand, the approximation based on~3! has
independent physical meaning, since, first, in variations
current–voltage characteristics in the fixed-current mo
only the low-frequency component of the current is actua
monitored, and, second, the instantaneous current in the
ternal circuit may include a variable bias current which
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even more natural than~1a! for the fixed-voltage mode. In
this connection, we note that a numerical experiment, wh
obeys the principle of minimum entropy production, in th
fixed-current mode leads to the ‘‘superconducting’’ bran
in the current–voltage characteristic~on which I→I c as
U→0!, while in the fixed-voltage mode it leads to the singl
particle branch~which is lower, in current, than the supe
conducting branch!.

2.3. Mathematical formulation of the approximation

Deep in the resistance region, where the time averag
the normal current,

I n5gE ^w t~ t,x!&dx5gVL,

is much higher than the average supercurrent

I s5E ^sin w~ t,x!&dx,

so that the latter can be ignored, we have an approxim
solution of Eq.~1! in the form of a converging wave:

w~ t,x!.VS t1
gx2

2 D .

The corresponding time averages of the magnetic fie
h(x)[^wx&, and of the local vortex concentration,n(x), are
linear functions of position:

h~x!52pn~x!.gVx.

Here the local vortex velocityv5dX(t)/dt, with X(t) speci-
fying the position of the vortex, atX(t)5x satisfies the
phase-constancy conditionw(t,X(t))5const and is equal to
v(x)52(gx)21. The velocity satisfies the necessary con
tion of magnetic-flux conservation:

2pn~x!v~x!5h~x!v~x!52V5const, ~4!

i.e., the independence of the transferred, per unit time on
average, magnetic flux of the place in the junction. Ob
ously, in view of~2!, the vortex velocity is always low at the
edges.

In the general case, where theI n-to-I s ratio is arbitrary,
we also seek the solution of Eq.~1! with conditions~3! in the
form of a monotonically~i.e., without change of direction!
converging chain of vortices and a symmetric opposed ‘‘
tichain.’’ The central region must be considered separa
because alwaysh(0)50, because of the antisymmetric n
ture of the field distribution, and the vortex velocity, inte
preted from the viewpoint of the ‘‘hydrodynamic’’ relation
ship ~4!, assumes nonphysical values in this region. For
time being, however, we exclude only the pointx50 from
the converging wave approximation, assuming that our ju
tion is the inner part of an infinite junction. We fix the vol
age V[^w t& and find the constant component of the to
current from~3!.

Accordingly, we seekw(t,x) in the form of a time-
periodic converging wave. Allowing for the fact that in
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stationary resistance state,w(t,x) builds up, on the average,
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in proportion to time, the phase of the wave should be w
ten as

t~ t,x!5Vt1u~x!, ~5!

and so the solution of Eq.~1! is sought in the form

w~ t,x!5t~ t,x!1F~t~ t,x!,x!, ~6!

where the functionF(t,x) is periodic in the argumentt with
a period of 2p ~or an integral multiple of 2p!. The meaning
of the phaset(t,x) is that it simultaneously and complete
determines small-scale spatial oscillations and hi
frequency temporal oscillations of the instantaneous fieldwx

and the voltagew t . Hence, after we go over to the new pa
of variables$t,x%, the role of the variablex changes: now it
describes only the relatively large-scale inhomogeneity
the wave, i.e., the dependence of the parameters of fas
cillations on the point in the junction.

Of course, formally expression~6! is still exact. The
main idea of using the converging wave approximation is
introduce the additional requirement that the constant c
ponentF(t,x) is x-independent:

w0[^F~t,x!&5const, ~7!

where the angle brackets stand for averaging over the pe
of t. Indeed, if condition~7! is not met, the two terms on th
right-hand side of Eq.~6! actually have two different wave
phases~t in the second term andt1^F& in the first!. From
the purely mathematical viewpoint, the condition~7! defines
the approximation. In view of~7! we have^F r&50 and, in
addition, the following condition is satisfied:

^Fx&5
d

dx
^F&50, ~8!

from which follows the relationship between the avera
magnetic field and the phase~5! of the converging wave:

h~x!5^wx&5^~11Ft!ux~x!1Fx&5ux~x!.

The vortex velocity, determined, as before, from the con
tion that the wave phase is constant,t(t,x)5const, is

v~x!52
V

ux~x!
52

V

h~x!
.

As these expressions for the velocity and field show,
condition ~7! automatically guarantees that the converg
wave approximation and the hydrodynamic relationship~4!
agree. Moreover, if we employ the relationship@which fol-
lows from the average of Eq.~1!#

d

dx
h~x!5gV1^sin w&[ j , ~9!

where j is the average total current density, and combin
with ~7! and ~8!, from ~9! we obtain at a direct relationshi
between the phaseu(x) and the current–voltage character
tic:

I 52hS L

2D . ~10!
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lowing form:

h2Ftt2V2Ftt12hFtx1Fxx1~hx2gV!~11Ft!

5sin~t1F!. ~11!

Of course, the solution of this formally exact equation do
not necessarily meet the condition~7!. We will show, how-
ever, that far from the center all the terms except the first
be ignored on the left side of Eq.~11!, and the solution of the
simplified equation

h2Ftt5sin~t1F! ~12!

meets the key condition~7! of the converging wave approxi
mation. First, we note that the amplitude of the oscillatio
of F(t,x) is a decreasing function ofuxu. Indeed, at a certain
characteristic distancex0 from the center, where the averag
field h(x) in its buildup begins to exceed 2p, the vortex
density becomes, in accordance with~4!, much greater than
unity, i.e., the reciprocal size of a single vortex. Hence
amplitude of small-scale inhomogeneities in the field a
voltage, which stem from the alternation of vortices, mu
decrease. Sinceh(x) increases approximately by a linea
law, this decrease must proceed by a power law. Con
quently, each differentiation ofF(t,x) with respect tox
gives rise to a factor of order 1/uxu ~while differentiation with
respect tot yields a factor of order unity!, and in ~11! the
term with the greatest weight is the one with smallest nu
ber of differentiations inx and the higher power ofh. For
this reason, the second, third, and fourth terms are sm
compared to the first. We can also hope that the fifth term
relatively small, since the differencehx2gV5^sin(t1F&,
or the average supercurrent density, in it must be small
erywhere except, perhaps, in a small region at the cen
since the integral supercurrent cannot exceed several u
Therefore, we are left with the first term~which is of the
order of unity, just as the right side of Eq.~11! is!, so that we
have Eq.~12!. Below we will additionally verify the validity
of these ideas.

The 2p-periodic solution of Eq.~12!, as is known, is

F~t,x!5F0~t,k![p12amS k,
K~k!t

p D2t

5p12(
n51

`
sin nt

n coshng
,

g[
pK~~12k2!1/2!

K~k!
; ~13!

i.e., the constantw0 defined earlier is equal top. Here the
function am(k,u) is the elliptic amplitude,K(k) is the com-
plete elliptic integral of the first kind, and the elliptic modu
lus k5k(x) is related to the parameterh5h(x) ~in view of
the independence of the period 2p of the coordinate andh!
as follows:

h5
p

kK~k!
. ~14!
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Combining this expression and~10!, we obtain at the follow-
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dk
52

gVk2E~k!
. ~22!

cur-

e
e of

f
w-

nce

a-
he
der-
for

.
ig-
a-
-

c-

stic

e

ing expression for the current–voltage characteristic:

I 5
2p

qK~q!
, q[kS L

2D . ~15!

3. THE KINETIC EQUATION AND THE CURRENT–VOLTAGE
CHARACTERISTIC

By itself, Eq.~12! says nothing about the dependence
the field h and the modulusk on position. But since the
modulus determines the size and shape of the tempora
cillations of field and voltage and, thereby, the energy d
sity averaged over the period, this dependence can be fo
from the exact energy balance relationship

]

]t S 1

2
w t

21
1

2
wx

22cosw D5
]

]x
wxw t2gw t

2 ~16!

in its time-averaged form

d

dx
^w twx&5g^w t

2&, ~17!

which relates the divergence of the energy flux~the Poynting
vector! and the dissipative losses of energy. Correspo
ingly, the current–voltage characteristic~15! reflects the ki-
netics of transfer and dissipation of the oscillation energy
convenient property of the converging wave approximat
is the fact that in this approximation Eq.~17! leads to a
closed kinetic equation fork(x).

In terms of the (t,x) variables, Eq.~17! becomes

d

dx
V^wt~uxwt1wx!&5gV2^wt

2&. ~18!

Substitutingw(t,x) in the form determined by Eqs.~6! and
~13!, we can easily see that in the converging wave appro
mation the condition

^wtwx&50 ~19!

is valid for any functionk(x). The condition follows from
the fact that only the amplitudes, and not the phases, in
Fourier series~13! are functions of the modulus and, henc
of the coordinate. Consequently, Eq.~18! together with the
relationh(x)5ux(x) obtained earlier lead to the equation

d

dx
h^wt

2&5gV^wt
2&. ~20!

The standard formulas of the theory of Jacobi’s ellip
functions3 yield

^wt
2&511 K S ]F0

]t D 2L 5S 2

p D 2

E~k!K~k![ f ~k!, ~21!

where E(k) is the complete elliptic integral of the secon
kind. Plugging~14! and ~21! into ~20! and employing the
formula3

d@E~k!/k#

dk
52

K~k!

k2 ,

we obtain at a kinetic equation for the modulus:
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Note that the nontrivial part ofk(x), the functionh(x),
represents the spatial distribution of the average super
rent: if we were to ignore the supercurrent,h(x) would be a
purely linear function, as~9! clearly implies. In the resistanc
mode, the supercurrent is closely related to the amplitud
oscillations. For instance, with the boundary conditions~1a!
the exact equation~17!, after we integrate along the length o
the junction and perform simple transformations with allo
ance for the symmetry ofw(t,x) with respect to pointx50,
yields

I 2gVL5I s5g/V21 E ^~w t2^w t&!2&dx.

Thus, the supercurrent is expressed in terms of the varia
of fluctuations of the voltagew t near its average valueV or,
in other words, in terms of ‘‘excess’’ dissipation accomp
nying voltage fluctuations. But variance is insensitive to t
phases of Fourier harmonics. This remark helps us un
stand why a current–voltage characteristic can be found
the averaged energy relation~20!, in which the phases also
play no role.

To calculatek(L/2) in ~15! we must first specify the
initial conditions to Eq.~22! at the center of the junction
First, we examine the current–voltage characteristic by
noring the fact that in the annihilation region the approxim
tion specified by~12! and ~13! becomes invalid and by ap
plying Eq.~22! to the entire half of the junction, 0,x,L/2.
Sinceh(0)50, according to~14! we can setk(0)51. The
corresponding solution of Eq.~22! is a function of only one
variable, the productgVx, and the current–voltage chara
teristic~15! is a function of the combinationI n5gVL, i.e., a
function of the normal current:I 5F(I n), whereF(z) is de-
termined implicitly by a pair of relations,

F5
2p

qK~q!
, E

q

1 dk

k2E~k!
5

z

2p
.

In dimensional notation, the current–voltage characteri
assumes the form

I 5I 0FS U

RI0
D ,

where the current scaleI 0;I c/4 was defined earlier. Near th
center the elliptic modulus varies as

k~x!>
1

11gVx/p
.

Using the asymptotic behavior of the elliptic integral,

K~k!.
1

2
ln

8

12k
, 12k!1, ~23!

for voltages so low that the total normal currentI n is much
weaker than 2p, we obtain from Eq.~15! expression

I'
4p

ln~16p/I n!
, I n5gVL!2p. ~24!
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FIG. 1. Dependence of supercurrent~a! and to-
tal current~b! on the normal current for different
values of the parameterd5x0 /L50 ~curves1!,
0.05 ~curves2!, 0.1 ~curves3!, 0.2 ~curves4!,
and 0.5~curves5!. To go over to dimensional
notation one should replaceI by I /I 0 , I s by
I s /I 0 , andI n by U/RI0 , whereI 05 j cDl j .
Thus, the quasiparticle branch of the current–voltage charac-
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teristic has a logarithmic ‘‘beak’’ with an infinitely increas
ing slope near the zero voltage. For the current–voltage c
acteristic at values of the normal current greater than un
we obtain from Eqs.~15! and~22! the expressionI .I n1I ex,
where

I ex54F12E
0

1S p

2E~u!
21D du

u2 G'2.76'
2I c

3
~25!

is the asymptotic value of the excess supercurrent.

4. CORRECTION OF THE CONVERGING-WAVE
APPROXIMATION

4.1. Contribution of the annihilation region

Before we discuss the current–voltage characteris
with allowance for the special role of the central region,
us estimate the width of this region. At its boundary t
discarded terms in Eq.~11! must be of the order of unity
Pluggingk(x) in the form of a solution of Eq.~22! with the
condition k(0)51, we obtain at the following estimate fo
say, the third term on the left side of Eq.~11!:

2h
]2F0

]t]x
52h

]2F0

]t]k

dk

dx
;

h

12k2

dk

dx
,

1

uxu
.

For the average supercurrent densityj s5^sinw& at the cen-
ter, Eqs.~9!, ~14!, and~23! yield

j 5
dh

dx
5

gVE2~k!

~12k2!K2~k!
,

~26!

j s5 j 2gV;
2p

uxu F ln
8p

gVxG22

.

We see that in the adopted approximation the third te
becomes roughly equal to unity, andj s acquires nonphysica
values greater than unity at approximatelyuxu,1; i.e., the
width x0 of the region where the approximations~12! and
~13! do not work is fairly small,x0;1, and is weakly depen
dent ong V ~due to the slow growth oscillations at the ce
ter!.

On the whole, differentiation of elliptic functions with
respect tox yields, with allowance for Eq.~22! and the
asymptotic behavior~23!, a factor of the order of

1

k

dk

dx
;

gVk

2
,

1

uxu
for k!1,
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and a factor of the order of

1

12k

dk

dx
;

1

uxu
as k→1,

whengVuxu/p,1, i.e., in the region where fluctuations a
not small. Hence the transition from~11! to ~12! is justified
everywhere whenuxu.x0 , wherex0;1, and even when os
cillations are strong over the entire width of the junction.

What we have said so far also implies that in the an
hilation region the average supercurrent density has a m
mum~and may reach values of order unity!. Since this region
is narrow, we approximate the average total-current den
in it by a constant,j (x). j 0 , so thath(x)5 j 0x, and apply
the converging wave approximation foruxu.x0 . Here we
find the initial condition to Eq.~22!, k(x0)[k0 , and the
quantity j 0 from the condition that the field and current de
sity are continuous at the points6x0 . Excluding j 0 from the
pair of the corresponding relations via~14! and~26!, we can
easily derive the following single matching equation for d
terminingk0 :

I nk0E2~k0!d5p~12k0
2!K~k0!. ~27!

Here we have introduced the dimensionless param
d[x0 /L.

Obviously, instead of a single universal current–volta
characteristicI 5F(I n) we have, in terms of the variable
(I ,I n), different characteristics for junctions of differen
lengths. Here the above current–voltage characteristic w
the asymptotic behavior~24! and ~25! corresponds to the
limit whered→0, i.e., an infinitely long junction. The role o
the parameterd becomes clear from Fig. 1, where we plot th
current–voltage characteristics,I (I n ,d) ~Fig. 1b!, and the
dependence of the supercurrent,I s(I n ,d)5I 2I n, as func-
tions of the normal current for different values ofd ~Fig. 1a!,
where at larger values ofd the supercurrent’s contribution i
smaller and the curves lie lower. The lowest curve for t
formal limit of d emphasizes the tendency of a curren
voltage characteristic to change its shape: as the junc
becomes shorter andd grows, the excess supercurrent in t
‘‘ohmic’’ region decreases progressively faster with increa
ing voltage, and the bending of the current–voltage char
teristic increases progressively. Clearly, the excess cur
~25! is the maximum possible supercurrent on the ‘‘res
tance’’ branch.
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For the correction of the converging wave approxim
tion to acquire a quantitative form, we must find the para
eterx0 it introduces, or the half-width of the middle annih
lation region. At this point, in our discussion we known on
its order of magnitude. Here we will not attempt to solve t
problem analytically. Instead, we will try to establish th
value of x0 from computer modeling data.2 In view of the
above estimates, it is logical to use the approximation
which x0 is constant~i.e., independent ofg, I n , andL!. In
this case we can find it from the requirement that in the n
‘‘ohmic’’ region ~i.e., for normal currentsI n amounting to
several units! two branches of the current–voltage charact
istic, the one we consider here and the one studied in Re
~which tends toI c for small I n!, merge. If the assumption
thatx0 is constant is true, the value ofx0 found in this man-
ner must be the same for different junction lengths. W
found that this is exactly the case: the comparison of the d
of Ref. 2 and the results of calculations that used Eqs.~15!,
~22!, and~27! for the junction lengthsL520, 30, 40, and 60
yield close values ofx0 : precisely,x0.2.3. For example,
Fig. 2 shows the lower branch of the current–voltage ch
acteristic calculated atx052.3, and the upper branch from
Ref. 2 forL520 ~1 and the lower curve! andL560 ~h and
the upper curve!. Figure 2 shows that the excess curre
which is defined as the line segment intercepted on the
I n50 by the linear continuation of the closest ohmic se
ment of the current–voltage characteristic, is only sligh
smaller thanI ex, irrespective of the value ofd.

We also note that the parameterd corresponding to the
width L560 is already so small that the correspondi
current–voltage characteristic is virtually indistinguishab
from the current–voltage characteristic for a very wide jun
tion (d50), for which the value ofx0 is unimportant. Hence
the fact that in the ohmic region the single-particle bran
calculated here and the experimental superconducting br
coincide supports the validity of Eq.~25!.

4.2. Role of the finiteness of the thickness of junction arms

We wish to study the behavior of current–voltage ch
acteristics when voltages tend to zero, with the leading c
tribution provided by the supercurrent. As Eq.~27! and Figs.
1 and 2 show, even with allowance for the correction

FIG. 2. Two branches of the current–voltage characteristic: the comp
modeled~Ref. 1! upper superconducting branch~1 andh! and the lower,
resistance, branch calculated atx052.3 by the formulas of the present pap
~solid curves!. Both branches were constructed for two junction lengt
L520 ~1 and lower curve! andL560 ~h and upper curve!.
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the values ofx0 and d. However, as noted in Ref. 4, th
derivative of the current–voltage characteristic, asI n→0,
may become finite because of a spatially nonlocal relati
ship between the magnetic field and the current density in
junction, a feature not allowed by the model~1! but never-
theless always present. Let us discuss this correction of
current–voltage characteristic in detail.

In a junction, whose superconducting arms have a fin
thicknessD in the direction of vortex orientation, vortex dy
namics, with allowance for the long-range magnetic inter
tion between the vortices through normal space,
described,4 instead of Eq.~1!, by the spatially nonlocal equa
tion

w tt1gw t1sin w5
]

]x E Q~x,z!
]

]z
w~ t,z!dz1 j 0~x!.

~28!

Here the source of currentj 0(x), localized primarily near the
edges, is an external transport current@the integral of the first
term on the right-hand side of Eq.~28! over the entire length
of the junction is zero#. For a~formally! infinitely wide junc-
tion the kernelQ(x,z) depends only on the difference of th
arguments, and for in-line geometry has, in dimensionl
variables, the form4

Q~x!5
1

pa
K0S uxu

a D1
l

pD E
0

` J0~qx!dq

s3@s1aq coth~sD/l!#
,

~28a!

where s5s(q)[A11a2q2. Here the parametera is the
ratio of the London penetration depth in the arms to
Josephson lengthl j .

Next, we restrict the discussion to the case in wh
a!1 @as in the model~1!#, and the ratio of the thickness t
the penetration depth is large,D@l, but finite. We can then
replace the first term in~28a! by a delta function. The inte-
gral in ~28a!, which we denote byR(x), for uxu@a always
has a power ‘‘tail’’:

R~x!.
1

uxu
.

For w(t,x) far from the edges of a wide junction, Eq.~28!
yields

w tt1gw t1sin w5wxx1
l

pD
j nl~ t,x!, ~29!

where

j nl~ t,x![
]

]x E R~x2z!
]

]z
w~ t,z!dz

is the nonlocal contribution. The inequalityD@l makes it
possible to interpret this contribution as a weak perturbat
to the local dynamics described by Eq.~1!. The approxima-
tion specified by Eqs.~12! and ~13! is still meaningful, but
the balance equation~16! acquires on the right-hand side a
additional term (l/pD) j nlw t ~the equation remains exac
but the expression in parentheses on the left-hand sid

r-

:
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only the energy localized in the junction!. Ignoring the fluc-
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tuations in the nonlocal contribution to the current dens
i.e., performing the substitution

^ j nlw t&.^ j nl&V5V
]

]x E R~x2z!h~z!dz,

we obtain at the following equation@instead of Eq.~22!#:

dk

dx
52

k2

p
E~k!FgV2

l

pD

^ j nl&
f ~k!G , ~30!

where the functionf (k) was introduced in~21!.
Now we allow for the factf (k).1 for all k.0. A weak

nonlocality may affect appreciably the current–voltage ch
acteristic, when the second term in the square bracket
~30! is equal to the first. Equation~30! shows that this is
possible only in the vicinity of the ‘‘beak’’ of the current–
voltage characteristic, since only there is the factor^ j nl& ap-
proximately proportional to the currentI , while the voltage,
according to~24!, exponentially decreases with increasi
current. In this region,h(x) exhibits a logarithmic depen
dence on the coordinate. To estimate the corresponding c
acteristic voltage, we replace the factor^ j nl& in ~30! by its
value averaged over the junction’s width,

j nl[
1

L E ^ j nl&dx>
I

L
ln

L

2x0
, ~30a!

and nullify the right-hand side of Eq.~30!. We thus obtain an
estimate for the characteristic value of the normal curre
I n

cr , at which there is a crossover to the current–voltage ch
acteristics behavior determined by nonlocal effects:

I n
cr.

4l

D

ln~L/2x0!

ln~4pD/l!
;

l

D

~the corresponding characteristic value of voltage in dim
sional form is of the order ofUn

cr;lRI0 /D5ll jRL jc!.
For lower normal current values the logarithmic ‘‘beak

is replaced by a smootherI -vs-I n dependence. We can a
sume on the basis of~30! and ~30a! that the dependence i
approximately linear with a slope of the order ofD/l,
greater than the slope in the ohmic region~equal to unity!.
Since the penetration depth increases with temperature,
initial slope of the current–voltage characteristic must
crease with increasing temperature.

Let us examine the physical meaning of the asympto
behavior ~24! and the transition from it to the quasilinea
behavior of current–voltage characteristics. As the voltag
lowered, the distance between the vortices increases an
comes comparable to the size of a free fluxon. Here
vortex–vortex interaction exponentially decreases with
creasing distance but must balance the friction force. Sin
as we have seen earlier, the distance is of the orde
1/n52p/h;4p/I , and since the frictional force is propo
tional toV, it becomes an exponential function of the reve
current, which is reflected in~24!. Here the inner part of the
junction acts as a ‘‘bottleneck,’’ since the vortex concent
tion inside is lower. In the presence of a nonlocality, ho
ever, the vortices at junction edges induce in the junctio
center an almost evenly distributed current (l/pD) j nl(t,x).
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opposing friction, pushes the ‘‘inner’’ vortices to the cent
~local vortex–vortex interaction also does this!, which is re-
flected in~30!. For I n,I n

cr the nonlocality begins to play the
crucial role, and so the nonlocality in this region cannot
considered a weak perturbation.

4.3. Boundary conditions and the supercurrent distribution

Let us see how the spatial distributions of current a
field change as the boundary conditions~1a! are replaced by
~3!. We write the approximate solution to Eq.~1! in the form

w~ t,x!5w0~ t,x!1a~ t,x!,

wherew0(t,x) stands for the solution of Eq.~1! under con-
ditions ~3!, and the second term is a ‘‘plasma excitation
which is unrelated to a change in topological charge, i.e.,
number of vortices in the junction. We consider the fair
distant resistance region, where quantitatively the differe
between~1a! and ~3! is small. From~1a!, ~3!, and ~13! we
then obtain the following boundary conditions for the plasm
oscillations:

axS t,6
L

2D56
I

2
2w0xS t,6

L

2D
'2

2

I
cosFVt1uS 6

L

2D G . ~31!

Since the factor 2/I is small, we assume thata(t,x) is a weak
perturbation. From Eq.~1! it follows that the corresponding
addition to the current density can be written as

d j ~x!5
d2^a&
dx2 5^sin w&2^sin w0&.^a cosw0&, ~32!

where we have allowed for the fact that because of its ze
charge nature the plasma addition must satisfy the follow
relation^]a(t,x)/]t&50. On the other hand, the weakness
the perturbation makes it possible to linearize Eq.~1! in this
perturbation:

att1gat5axx2a cosw0 . ~33!

From the standpoint of this equation, the resistan
modes with a double period 2(2p/V) observed in Ref. 2 can
be explained by parametric generation of subharmonics
Josephson frequency caused by the parametric t
a cosw0.a cos@Vt1u(x)#. However, under the condition
~2!, such modes and the stochastic mode~if they exist at all!
differ very little from the simplest mode with a period 2p/V
and are practically unidentifiable. This is understandab
since the parametric effect is caused by the ‘‘bulk’’ intera
tion of fluxons and the plasma wave. This interaction is we
because of the large difference between the velocity of
plasma wave~close to unity! and the fluxon velocity@which,
if the condition~2! is satisfied, is less than unity almost e
erywhere!.

This fact makes it possible to discard the parame
term in ~33! and to replacea(t,x) on the right side of Eq.
~32! by the solution of the elementary wave equati
att1gat5axx with the boundary conditions~31!. Moreover,
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according to the above analysis, in the ohmic region consid-
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ered here we can employ the following approximation:

w0>Vt1u~x!, u~x!'
I suxu1gVx2

2
1const. ~34!

As a result, after doing standard calculations and averag
over time, we obtain from~32! the following redistribution
of the supercurrent:

d j ~x!'ReH F IS sinh
SL

2 G21

coshSx

3expF i S uS L

2D2u~x! D G J , ~35!

where we have introduced the complex–valued wave n
ber S5( igV2V2)1/2.

For ~34! and~35! we see that the ‘‘plasma waves’’ lea
to spatial oscillations of the time–averaged current dens
Here both the amplitude and the spatial frequency of th
oscillations building up from the middle to the edges of t
junction. This pattern was observed in the numerical exp
ments mentioned above.

5. CONCLUSIONS

We have analyzed an approximate analytic theory of
stationary resistance state of Josephson junctions with a
normal resistance. Although our results pertain primarily
the specific mathematical model of Eq.~1!, they can easily
be generalized to the case of nonlinear friction. In additi
our approach may prove useful in analyzing the interact
of a resistance state with high–frequency electromagn
radiation and constant external fields. In particular, intere
ing phenomena occur and find their reflection in the inc
500 JETP 85 (3), September 1997
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current–voltage characteristic! in the presence of a spatiall
modulated, static magnetic field.5–7

One possible area of application of our results, in ad
tion to artificial junctions, is presented by naturally emer
ing, extended weak bonds in granular and polycrystall
high-Tc superconductors. For instance, the films studied
Refs. 5–7 had a resistanceR.1 V per weak bond. At the
same time, estimates ofl and D for these films yield
D/l'3 – 10, so that the critical resistanceR0 defined earlier
amounts to 3–30V. ThusR,R0 , and the condition~2! of
viscous magnetic2flux transport is met@actually, the strong
inequality in~2! is unnecessary since, as we have seen, in
nonballistic mode the real vortex velocity was found to
lower than the maximum velocity, so that the mean free p
of fluxons is shorter than the one adopted in deriving~2!#.

I wish to thank A. K. Asadov, Yu. V. Medvedev, an
P. N. Mikheenko for the useful discussions.
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Suppression of the fractal conductivity channel and superlocalization effects in porous

b

a-Si:H

A. I. Yakimov, N. P. Stepina, A. V. Dvurechenski , and L. A. Shcherbakova

Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk,
Russia
~Submitted 15 December 1996!
Zh. Éksp. Teor. Fiz.112, 926–935~September 1997!

The temperature dependence of the hopping conductivity and the relaxation kinetics of the
transient current in porous amorphous silicon are investigated after treatment in a hydrogen plasma
at 200 °C. It is discovered that posthydrogenation of the material increases the dimension of
the conducting channel from 2.5 to 3, while suppressing and slowing the relaxation of the transient
current. The results obtained are attributed to passivation of the electrically active dangling
bonds on the pore surface by hydrogen. It is concluded that electron transport in porous amorphous
silicon in the temperature rangeT.T* , whereT* lies in the range 130–270 K and depends
on the density of states, takes place between superlocalized states of the internal surface, which is
enriched with dangling bonds and acts as a fractal percolation system. When the temperature
is lowered belowT* , a transition to one-dimensional hopping conduction in the bulk
silicon regions occurs. ©1997 American Institute of Physics.@S1063-7761~97!01209-2#

1. INTRODUCTION for the familiar Mott law in the absence of Coulom
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Porous silicon is formed as a result of the electrolysis
monolithic ~compact! silicon in a solution of hydrofluoric
acid. The electrolyte flows among the sites of lowest elec
cal resistance and etches out a system of pores in the ma
in the form of an infinite cluster. The infinite cluster is fract
at the percolation threshold and has the dimensionD'2.5 in
three-dimensional Euclidean space. This result is a co
quence of percolation theory.1 The fractal nature of the re
maining silicon skeleton is not a trivial point. Its fractal d
mension should, at least, not coincide with the dimension
the pore system or, therefore, with the dimension of the
finite cluster in percolation theory due to the presence
bulk silicon regions. Nevertheless, investigations of cond
tion in undoped porous amorphous silicon prepared eithe
ion implantation2 or by sputtering in an ultrahigh vacuum3

showed that in some cases charge transport is effecte
electron hopping in a fractal medium of dimension close
2.5. Figure 1 presents the dependence of the effective dim
sion of the conducting channel on the porosity in poro
amorphous silicon obtained on the basis of different layer
amorphous silicon~a-Si!. Data from Refs. 2 and 3 were use
here. The arrow points to the dimension of the percolat
cluster in percolation theory.

The temperature dependence of the hopping conduct
s(T) in amorphous materials is described in the general c
by the expression

s~T!5s0 exp @2~T0 /T!x#, ~1!

where s0 and T0 are constants having the dimensions
electrical conductivity and temperature, respectively, and
exponentx is determined only by the dimensionD of the
system@if the density of statesg(E) does not depend on th
energy#. The literature describes several mechanisms of h
ping conduction, which lead to different values ofx:

x51/~11D ! ~2!
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correlations ~in particular, x50.25 for three-dimensiona
systems!; and

x51 ~3!

for one-dimensional hopping conduction;5–7

x5z/~z1D ! ~4!

for charge transfer in a medium of fractal dimensionD.8

Here z characterizes the features of the decay of the w
function of an electron localized on a fractal. In fact, t
anomalous nature of diffusion in a fractal medium leads
the superlocalization of such an electron.9,10 At large dis-
tances its wave function begins to decay more rapidly th
Anderson decay:

C~r !}exp @2~r /as!
z#. ~5!

For an infinite cluster at the percolation threshold the the
givesz51.9 ~Ref. 9! andx50.43 ~the three-sevenths law8!.
Similar values ofx were observed in the experiments
Refs. 2 and 3. The question of the origin of the fractal co
duction channel in porousa-Si was still open when the
present work was undertaken.

2. FORMULATION OF THE PROBLEM

Porous silicon is known to be characterized by numer
phase boundaries and an enormous internal surface. Its
cific area can amount to 200– 600 m2/cm3.11 The internal
surface of the silicon skeleton is a ‘‘cast’’ of the percolatio
cluster forming the system of pores and should, therefo
have a fractal dimension close to 2.5.

In undoped amorphous silicon, dangling bonds, wh
produce a peak of deep localized states with a density as
as 1020 eV21 cm23 in the mobility gap, are responsible fo
hopping charge transfer. It is natural to expect that the in
nal surface of porous amorphous silicon will be richer

5011-06$10.00 © 1997 American Institute of Physics



it
n
al
t
a
f
n
s

i-
to
lk
el

r
ne
pa
o
w

ro

e
i

u

n
u
n

a
e
as
tim
th

er
b

al
nn

ter
on

the
uc-

eat-
n hf

ions
H
one
the
sur-
was
e

a

ili-
ng
ddi-
as

the
of

han-
om-
e
is

e
nge

l
ta

eal-
dangling bonds than the bulk silicon regions; therefore,
contribution to the conductivity can be far more significa
than the contribution of the bulk. In addition, the superloc
ized electron states should also be located specifically on
fractal surface. Thus, there are two parallel conduction ch
nels: a surface channel between superlocalized states o
fractal structure and a bulk channel of normal hopping tra
port in the a-Si remaining after the etching. In structure
with a small porosityP the bulk conduction channel dom
nates, and the effective dimension of the system is close
~Fig. 1!. As P increases the relative contribution of the bu
decreases, and the dimension of the conducting chann
determined by the fractal structure of the surface~the poros-
ity is then about 45%!. In structures with a porosity of orde
70–80% the silicon regions degenerate into thin o
dimensional channels. Smoothing of the pore surface ap
ently then occurs, and its contribution to the conductivity
the system decreases. This result is in good agreement
the decrease in specific surface as the porosity of po
crystalline silicon increases, discovered in Ref. 12.

The existence of different channels can be revealed
perimentally by suppressing one of them. This goal
achieved, for example, by posthydrogenation of the str
tures in a hydrogen plasma. Atomic hydrogen is known13 to
saturate dangling bonds by directly reacting with them a
forming a Si–H chemical bond, whose energy level lies o
side the mobility gap. By selecting the treatment conditio
so thatH1 will not penetrate far into the bulk ofa-Si and
will interact only with states near the pore surface, we c
suppress the surface conductivity. In addition, the increas
the thickness of the near-surface carrier-depleted layer
consequence of the decrease in the density of states s
lated by the interaction with hydrogen should lead to
blocking of transport near the surface.

3. EXPERIMENTAL METHOD

The experiment was carried out on structures with lay
of porous amorphous silicon, whose porosity determined
the method described in Ref. 3 was about 45%. Specific
in these samples the dimension of the conducting cha

FIG. 1. Dependence of the effective dimension of the conducting channe
the porosity in layers of porous amorphous silicon, according to the da
Ref. 2 ~d!, Ref. 1 ~h!, and the present work~m!. The dimension was
determined using Eq.~2! for P,40% and Eq.~4! for P.40%; P is the
porosity.
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was close to the dimension of the fractal percolation clus
~Fig. 1!. The layers of amorphous silicon were formed
degenerate substrates of crystallinen-type silicon with a re-
sistivity of 0.002V cm by implanting Ge1 ions in a dose
F5231015 cm22. The energy of the ions wasE5400 keV.
The electrolysis was carried out in a 42% HF:H2O:C3H7OH
~1:1:2! solution. The anode current wasj 515 mA/cm2, and
the etching time wast520 s. Detailed information on the
microscopic structure of the porous amorphous silicon,
features of the preparation of the contacts, and the cond
tivity measurements can be found in Refs. 2, 3, and 14.

Passivation of the dangling bonds was achieved by tr
ing the structures in a hydrogen plasma generated in a
glow discharge~the frequency was 13.5 MHz!. The samples
were placed outside the discharge zone, and hydrogen
were supplied to the sample as a result of the motion of1

under the action of the pressure drop from the discharge z
to the sample surface. This made it possible to avoid
problems associated with contamination of the sample
face by the chamber. The hydrogenation temperature
T5200 °C. The diffusion coefficient of hydrogen from th
plasma into the ion-implanted layers ofa-Si at such a tem-
perature is'10216 cm2/s,15 and the penetration depth after
time on the order of 10 min isl D'20 Å. Such treatment
should not have a significant influence on defects in the s
con bulk, and the reaction of hydrogen with the dangli
bonds should take place mainly on the pore surface. In a
tion, the high concentration of surface defects that act
traps for hydrogen should prevent its penetration into
silicon bulk. These circumstances permit precise variation
the ratio between the surface and bulk charge-transfer c
nels. Figure 2 presents plots of the dependence of the ro
temperature conductivitys300 on the plasma-treatment tim
tpl in monolithic a-Si and porous amorphous silicon. It
seen that the plasma-annealing procedure scarcely alterss300

for the monolithic material, while in porous silicon its valu
decreases by more than two orders of magnitude in the ra
tpl50–30 min.

on
in

FIG. 2. Dependence of the conductivity at room temperature on the ann
ing time in a hydrogen plasma for samples of monolithica-Si ~1! and
porousa-Si ~2!. The annealing temperature was 200 °C.

502Yakimov et al.
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4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1. Temperature dependence of the conductivity

The temperature dependence ofa-Si layers not subjected
to electrolysis follows Mott’s law~2! with x50.25 in the
temperature range 77–300 K and varies weakly as the
drogenation time is increased. The density of localized st
extracted from the Mott dependence ofs(T) decreases from
2.231020 eV21

•cm23 for the undoped material to
1.931020 eV21

•cm23 for tpl530 min.
Figure 3 presents the temperature dependence of

conductivity of layers of porous amorphous silicon for va
ous values oftpl in log s versusT21 coordinates. At low
temperatures a linear dependence, which corresponds to
~3! and is associated with one-dimensional hopp
transport,2,16 is observed in all cases. Since the pores hav
predominant orientation perpendicular to the sample surf

FIG. 3. Temperature dependence of the conductivity in samples of po
amorphous silicon after various hydrogenation timestpl : 1—original
sample (tpl50 min), 2—5 min, 3—10 min,4—15 min,5—20 min,6—30
min. Curve7 corresponds to porous amorphous silicon that was treate
the plasma for 20 min and then annealed in a vacuum atT5400 °C for 25
min.
TABLE I. Parameters of the temperature dependen
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the increase in the hopping distance as the temperatu
lowered should lead to one-dimensionalization of the el
tron trajectories along the direction demarcated by the p
walls.2 Approximation of the low-temperature part of th
s(T) curve by the relation

s~T! } expS 2
1

2g1akTD , ~6!

which was obtained theoretically for the one-dimensio
case,6,7 makes it possible to determine the one-dimensio
density of statesg1 . Herea'3 Å is the localization radius,
andk is the Boltzmann constant. The results are presente
Table I.

The course of thes(T) curve is conveniently investi-
gated by analyzing the local activation energy of the cond
tion process,17,18 W(T)52](ln s)/](1/kT). It is easily seen
from Eq. ~1! that

W~T!5x~kT0!x~kT!12x. ~7!

Figure 4 shows plots of the temperature dependence of
activation energy, which were obtained by direct different
tion of the experimental set ofs(T) points. Two conduction
regimes are clearly observed for all the samples: In the lo
temperature rangeT,T* the value ofW does not depend on
T; at T.T* the activation energy increases monotonica

us

in

FIG. 4. Temperature dependence of the activation energy for conductio
porous amorphous silicon obtained by direct differentiation of experime
s(t) curves. Plasma treatment time:1—0 min,2—5 min,3—10 min,4—15
min, 5—20 min, 6—30 min. Curve7 corresponds to porous amorphou
silicon treated in the plasma for 20 min and then annealed in a vacuu
T5400 °C for 25 min.
ce of the conductivity.

0

503ov et al.
tpl, min s0, V21cm21 T0, K x Da g1, eV21cm21

0 ~6.860.7!31025 ~6.560.9!3104 0.4360.01 2.5160.11 ~2.860.3!6108

5 ~4.760.7!31026 ~1.0'0.2!3105 0.4060.01 2.8360.12 ~2.560.2!3108

10 ~7.961.7!31026 ~1.360.4!3105 0.39'0.02 2.9360.12 ~2.360.1!3108

15 ~1.360.7!31022 ~3.7'1.2!3107 0.2560.03 3.0060.3 ~2.060.1!3108

20 ~6.260.7!31022 ~4.560.7!3107 0.2560.03 3.0060.3 ~1.860.1!3108

30 0.1260.07 ~4.860.9!3107 0.2660.10 3.0061.1 ~1.460.1!3108

20b ~4.560.5!31023 ~1.960.3!3105 0.3960.02 2.9360.12 ~3.060.2!3108

aThe effective dimensionD of the conducting channel was determined using Eq.~4! for a plasma treatment time
of 0–10 min and Eq.~2! for a time of 15–30 min.

bAfter plasma treatment the sample was subjected to heating in a vacuum with a residual pressure of 124 Pa
at 400 °C for 25 min.

(3), September 1997 Yakim
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with increasing temperature. The temperature below wh
an Arrhenius law is observed, which we interpret as the te
perature of the transition to a quasi-one-dimensional hopp
conduction regime,2,3 depends on the plasma treatment tim
One-dimensionalization of the electron trajectories in por
silicon takes place at the temperature corresponding to
condition of equality between the hopping distanceR and the
diameterd of the silicon filaments. In a regime of hoppin
conduction among states near the Fermi level, the hopp
distance is determined by the temperature and the densi
localized states:R(T)}1/(Tg)x. This means that the param
eters g1 and T* should be related by the expressio
d'A/(T* g1)x, whereA is a parameter which reconciles th
units of measure. Hence,g1'(A/d)1/x/T* . Thus, if it is cor-
rect to attribute the change in the character ofs(T) with
decreasing temperature to a transition to one-dimensi
hopping transport, the density of states should be a lin
function of the reciprocal temperature of the transition. F
ure 5 shows the dependence of the one-dimensional de
of states onT* . The plot was constructed by analyzing th
data for samples treated in the plasma for different tim
Fitting the experimental dependence ofg1(T* ) to the power
function g1(T* )5B/T* b permitted determination of the pa
rameters which provide the best fi
B5(261)•1010 K0.9

•eV21
•cm21 and b50.960.1 ~the

solid line in Fig. 5!. The specific dependence of the max
mum hopping distance on the temperature and the densi
states in one-dimensional systems was obtained by R�kh
and Ruzin by optimizing the form of the ‘‘cuts’’ in a one
dimensional chain6 and by Zvyagin on the basis of percol
tion theory.7 The former model gives,x51 andA51/(2k),
and Zvyagin’s model givesx51/2 andA5(2a/k)1/2. Using
the relation betweenA and B in the form B5(A/d)1/x, we
can estimate the characteristic diameter of the silicon fi
ments. It was found that both theoretical approaches g
approximately the same valued'45620 Å, which is con-
sistent with the data from high-resolution electr
microscopy.14

Table I presents the results of approximating the exp
mental data forT.T* by Eq. ~1! using the least-square

FIG. 5. One-dimensional density of states determined atT,T* on the basis
of an analysis of the Arrhenius law~6! vs the transition temperatureT* .
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original sample of porous silicon hadx50.43, which accu-
rately corresponds to a fractal dimensionD52.51 of the con-
ducting channel. As a result of hydrogenation, the value ox
decreases, and the value of the effective dimension obta
from Eq. ~4! increases. The deviation ofD from 2.51 in the
structures treated in the plasma is a result of the contribu
of bulk three-dimensional conduction in the silicon rema
ing after electrolysis. The samples treated for 15 and 20
had x'0.25. This means that the conductivity follow
Mott’s law ~2! in a Euclidean space with a dimension equ
to 3. Apparently, in these cases passivation of the surf
states by hydrogen completely suppresses the fractal con
tion channel. A similar picture is observed fortpl530 min,
although the accuracy of the determination ofx in this case is
low because of the narrow width of the temperature ran
300 K.T.T* .

4.2. Anomalous relaxation

A direct consequence of the existence of superlocali
electron states like~5! on the fractal surface in porous amo
phous silicon is the presence of long-lived excitations of
electronic system. It was discovered in Refs. 3 and 14
application of a voltage step or pulse to a porous layer yie
a time-dependent electric currentI (t), which slowly decays
to its stationary valueI s . A detailed analysis of the curren
relaxation kinetics showed that they are anomalous~non-
Debye!, i.e., they are not described by an exponential dep
dence with a single decay time, and that the character
relaxation times~of the order of 103 s! significantly exceed
the Maxwell time in this material. The appearance of t
transient current is caused by the injection of carriers i
localized states above the Fermi level followed by therm
zation to a quasiequilibrium state.14 The downward move-
ment of the electrons along the energy scale is accomplis
by tunneling between localization centers with phonon em
sion. The occurrence of superlocalization strongly slows
relaxation kinetics and leads to the existence of transient
rents for hundreds of seconds. Elimination of the superloc
ized states on the surface and the associated fractal con
tion by passivation in a hydrogen plasma should lead to
disappearance of the long-term anomalous relaxation in
rous amorphous silicon.

Figure 6 shows plots of the time dependence of the tr
sient componentDI (t)5I (t)2I s of the current in layers of
porous silicon after different treatment timestpl50 – 15 s in
the plasma. In the sample held in the plasma for 30 min
time dependence of the current could not be detected
within the sensitivity of the measuring instrument (;1 pA).
The system was excited by applying a voltage step wit
height of 60 mV. The high resistance of the structures a
therefore, the long times needed for establishment of
transient processes in the circuit call for the performance
correct measurements only at timest.1 – 5 s. Therefore, the
measurements of the relaxation kinetics were begun only
after the bias voltage was switched on.

Figure 6 shows that the plasma treatment results, firs
slowing of the relaxation process and, second, in a decre
in the magnitude of the transient current. Both these findi

504Yakimov et al.
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are easily attributed to suppression of the fractal conduc
channel as a consequence of a decrease in the concent
of superlocalized states on the surface. Since the rates o
tunneling transitions exhibit a strong exponential depende
on the distance between the states and, consequently, on
concentration, elimination of the dangling bonds should i
pede the establishment of a stationary state in the sys
The magnitude of the excess current in the system is de
mined by the number of carriers injected into states ly
above the Fermi level that are free at equilibrium. The
crease in the concentration of these states in the hydr
nated material naturally leads to suppression of the trans
injection currents.

Of course, the relaxation channel involving ordinary~not
superlocalized! bulk silicon states then persists. Howeve
the characteristic times of such a process in amorphous
terials are fairly short19 (1026– 1024 s). Therefore, it is not
observed under the conditions of the present experimen

4.3. Restoration of the fractal properties of porous
amorphous silicon

It should be noted that plasma treatments of semicond
tor materials are often employed to etch the surfaces
samples.20 In this case the action of the hydrogen plasm
reduces not to chemical passivation of the dangling bond
the pore surface, but to its ‘‘smoothing’’ either directly b
mechanically removing bumps or by activating chemical
actions of silicon with fluorine, which is present in poro
amorphous silicon in large amounts.3 Etching a surface can
lead to the irreversible loss of its fractal properties and c
sequently to suppression of the fractal conduction chan
and the long-lived transient currents.

To elucidate the mechanism of the plasma-stimula
disappearance of the fractal properties in porous amorph

FIG. 6. Kinetics of the relaxation of the transient current at room temp
ture excited by applying a voltage step with a height of 60 mV to
sample. The rise time of the leading edge of the step was 10 ms.
numbers of the curves correspond to different hydrogenation times:1–0
min, 2—5 min, 3—10 min, 4—15 min. Curve5 corresponds to porous
amorphous silicon treated in the plasma for 20 min and then annealed
vacuum atT5400 °C for 25 min.
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rent in a sample subjected to plasma treatment for 20
followed by heating in a vacuum with a residual pressure
1024 Pa at 400 °C for 25 min. Whena-Si:H films are heated
to such temperatures, hydrogen leaves the material, and
density of the dangling bonds increases.21,22 It is seen from
Figs. 2 and 3 and Table I that annealing results in practic
complete restoration of the conductivity, its temperature
pendence, and the current relaxation kinetics. This findin
evidence that the dominant contribution to suppression of
fractal properties of porous silicon during plasma treatm
is the reversible passivation of surface states by hydroge

5. CONCLUSIONS

The measurements performed here of the tempera
dependence of the conductivity and the kinetics of the de
of the transient current excited by applying a voltage step
porous amorphous silicon that was subjected to hydroge
tion in a hydrogen plasma have made it possible to estab
that the special features of electron transport in this mate
~the deviation of the conductivity from the Mott behavio
and the existence of long-lived transient currents! are caused
by the presence of an internal fractal surface with a dim
sion '2.5, which is enriched with dangling silicon bond
Passivation of these bonds by hydrogen increases the e
tive dimension of the system from 2.5 to 3 as a conseque
of the mixing of the fractal and Euclidean conduction cha
nels, while suppressing and slowing the anomalous re
ation kinetics of the surface currents. The experiments p
formed show that plasma treatment, like electrolytic etchi
permits adjustment of the dimension of the conducting ch
nel in porous silicon.

The conclusion that the competition between the surf
and bulk processes plays a decisive role in shaping
charge transport process in silicon is confirmed by the res
of the investigations on porous layers ofa-Si doped with
manganese.23 The study of the conductivity ina-Si12cMnc

structures~c50.04 and 0.07! subjected to electrolysis unde
conditions similar to the conditions of the present work
vealed the absence of fractal properties in the tempera
range 20–300 K. The variation of the conductivity with th
temperature was described by Mott’s law withx51/4, which
was replaced by the Arrhenius law corresponding to o
dimensional transport asT is lowered. In addition, long-lived
transient currents were not observed in this material. S
behavior is caused by the high density of Mn impurity sta
in the bulk silicon regions (;1021 eV21

•cm23), which leads
to dominance of the Euclidean conduction channel.
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Vortex lattice kinetics and the electrodynamics of rigid superconductors

with
S. E. Savel’ev and L. M. Fisher
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Institute of Radio Physics and Electronics, Ukrainian National Academy of Sciences, 310085 Khar’kov,
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A kinetic description is proposed for the dynamics of vortex lattices in rigid superconductors
located in a magnetic field whose direction varies. The collision integral in the kinetic
equation for the vortex density includes the crossing and successive regeneration of vortex
filaments. The second equation of the theory expresses force balance: the equality of the magnetic
force to the pinning force. It is shown that the magnetic force contains a collective term
which depends on the vortex distribution function. The model is used as a basis for the
electrodynamic equations of the critical state for the case of crossed magnetic fields.
The transition from the proposed theory to the previously developed two-velocity
quasihydrodynamic model is discussed. ©1997 American Institute of Physics.
@S1063-7761~97!01309-7#
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The static and quasistatic electromagnetic propertie
rigid superconductors are usually discussed in terms o
critical state model.1 This model makes it possible to calcu
late the static magnetization of a superconductor, hyster
loops, and magnetic reversal losses for cases where the
ternal magnetic field varies in magnitude, but its directi
remains fixed. The model equation for the distribution of t
magnetic induction has been justified in terms of a balanc
forces acting on Abrikosov vortices. It is assumed that
magnetic force acting on a vortex is compensated by pinn
forces related to the interactions of the vortices with vario
inhomogeneities of the crystal lattice. Because of pinni
the critical current densityJc turns out to be nonzero, and th
penetration of the magnetic field is shielded by the superc
ducting currents.

The distribution of the magnetic induction is much mo
complicated if the external magnetic field contains seve
components and its orientation varies with time. A numb
of interesting electromagnetic phenomena have been
served under just these conditions.2–5 The basic conclusion
that follows from these experiments is that in all those spa
regions into which a variable electromagnetic field~even a
weak one! penetrates, a constant current is displaced. In p
ticular, it has been shown4 that the static magnetic momen
of a sample vanishes completely if a transverse varia
magnetic field penetrates the superconductor in its entire

Calculating the electromagnetic properties of superc
ductors in an external magnetic field with a variable direct
requires additional information about the direction of t
critical current density vectorJc . Until recently, problems of
this sort were examined in terms of two different approach
The first was developed in the papers of Clem a
Gonzalez.6–8 The most important feature of this approa
was that it included the crossing of vortex filaments~flux-
line cutting!, which plays a fundamental role under the
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it have been studied in detail. Unfortunately, the influ-
ence of the crossing of vortices on the condition for for
balance in a vortex system are not taken into account in
Clem–Gonzalez equations. In addition, these equations
in striking disagreement with these experiments.2–5 The
other approach, proposed in Refs. 2–4 for interpreting
experiments, uses a generalized equation for the critical s

¹•B5
4p

c
Jc

E

E
, ~1!

whereE is the electric field,B is the magnetic induction, and
c is the speed of light. In other words, it is assumed that,
in the case of Ohm’s law, the current density is direct
along the electric field. This equation has been used to
plain a number of nonlinear interactions of electromagne
waves.13,14 Unfortunately, like the Clem–Gonzalez mode
Eq. ~1! does not have an adequate physical justification.

The phenomena of pinning and the crossing of vor
filaments have been rigorously taken into account by V
loshin et al.,15 who describe the dynamics of the vortic
system in the framework of a two-velocity hydrodynam
model. One of the velocities describes the motion of
vortical lattice as a whole, while the other is associated w
the relative motion of two intersecting sublattices. The el
trodynamic equations can be derived by minimizing t
Gibbs free energy. The derived equations include the mo
electrodynamic equations proposed in Refs. 6–8 and 2–
special cases.

The entire set of experimental data from these pap
finds a natural explanation in the two-velocity hydrodynam
model. This model, however, can only pretend to a qual
tive description, since the actual distribution of the vortic
with respect to their angle of inclinationq relative to a given
axis is replaced by just two vortical sublattices. In fact, t
vortices within each physically small volume of a superco

5077-09$10.00 © 1997 American Institute of Physics



ductor have different angles of inclination, so that a rigorous
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description of the vortical system must be in terms of
angular distribution function and employ a kinetic equatio
The collision integral in the kinetic equation must provide
faithful description of the phenomenon of vortex crossin
Furthermore, the Gibbs free energy minimization propo
in Ref. 15, which serves as a basis for deriving the elec
dynamic equations, requires more rigorous justification,
cluding an analysis of the force balance condition. The in
ence of vortex crossing on force balance must be corre
accounted for in this analysis.

The purpose of the present paper is to construct a kin
theory for the vortical system in a superconductor located
an external magnetic fieldH0(t) whose direction is variable
Naturally, such a theory can be constructed only by usin
number of reasonable assumptions and restrictions. Ab
all, here we assume thatH0@Hc1. This makes it possible to
neglect the distinction between the magnetic induction
the thermodynamic magnetic field~here Hc1 is the lower
critical magnetic field!. The relationship between the vorte
density and the magnetic induction is assumed to be lo
which is permissible in bulk samples with dimensions mu
greater than the London penetration depthlL , if the mag-
netic induction changes little on scale lengths of ord
lL .16–18 We also neglect viscous friction forces, which a
proportional to the velocity of the vortices. This is perm
sible if the external magnetic field varies sufficiently slow
Finally, we assume that the pinning force on each individ
vortex is independent of the spatial coordinates and the m
netic induction. According to the conventional critical-sta
model, this approximation corresponds to neglecting the
pendence of the critical current density on the magnetic
duction. The theory is constructed for the case in which
physical quantities depend only on the spatial coordinatex,
which corresponds to considering a half space or a su
ciently thick slab.

In Sec. 2 of this paper we formulate the basic equati
of the kinetic theory. The first step is to justify the need
introduce two functions of the coordinates and angles. O
of them is the distribution function of the vortices,n(x,q),
and the other, the velocityV(x,q) at which they move. The
first of the equations for these functions is a kinetic equat
with a collision integral that takes the crossing of vortice
which changes their orientation, into account. The sec
equation describes force balance for the vortices. Collec
effects associated with the crossing of the vortices are
cluded in the magnetic force acting on the vortices.

Section 3 is devoted to an analysis of the electrodyna
consequences of the kinetic equations. It is shown that vo
crossing can lead to a substantial reduction~collapse! in the
gradient of the absolute value of the magnetic induction. T
transition from the kinetic equations to the equations of
two-velocity hydrodynamic model is made in this same s
tion.

2. BASIC EQUATIONS OF THE MODEL

We consider a superconductor occupying a half sp
(x.0) or slab (2d/2,x,d/2) in an external magnetic field
which varies both in magnitude and direction, but is alwa
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which enter the superconductor differ in direction from vo
tices which are already present in the sample. As a resu
situation arises in which a given physically small superco
ducting volume may contain vortices with different anglesq
of inclination to some givenz axis. The variation of the
external magnetic fieldH0(t) causes the vortices to move
a velocity which may depend not only on the coordinatex,
but also on the angleq. In the following, we describe the
state and motion of the vortical system with the aid of av
aged quantities that apply to large groups of vortices w
similar angles. To do this we introduce the vortex numb
densityn(x,q) and velocity densityV(x,q), which depend
on positionx and angleq. We define the vortex density in
such a way thatn(xq)dx dq is the number of vortices with
angles within the interval (q,q1dq) in the spatial neigh-
borhood (x,x1dx). V(x,q) is the average velocity o
the vortices in the neighborhood of a pointx with angles
close toq.

In the following we assume that the external magne
field varies so slowly that the magnetic force on a vortex
balanced only by the pinning forcef p , while the viscous
drag forceshV, whereh is the coefficient of viscosity, can
be neglected. This means that the theory we are develo
is valid at relatively low vortex velocitiesV, f p /h. We as-
sume also that the magnetic field nevertheless varies
enough that it is possible to neglect flow creep, which lea
to a slight logarithmic relaxation of the magnetic mome
and a uniform distribution of the magnetic field within th
superconductor forH05const. We assume that the chara
teristic time for changes in the magnetic field is much sho
than the characteristic relaxation time. Under these assu
tions, the velocityV(x,q) instantaneously vanishes at a
points in the sample when the external magnetic fieldH0

ceases to vary. These approximations correspond to the
ditions for applicability of the critical-state model.

Here we note the fundamental differences between
statement of this kinetic problem and the ordinary kine
description of the behavior of a system of particles. Usua
the kinetic equation is formulated for the distribution fun
tion of the particles with respect to their positions and m
menta,whereas solving the kinetic equation makes it poss
to find any kinetic characteristic of the system. In the situ
tion we are considering, the interacting objects~vortices!
have no kinetic energy. Thus, their velocity is entirely det
mined by the force balance condition, which has the sa
form for all vortices with givenx andq. Therefore, all vor-
tices with givenx andq move at the same velocityV(x,q),
i.e., the velocity distribution of the vortices is ad-function.
Hence, the kinetic equation is formulated for a distributi
function n(x,q) in which only the positionx and angleq
appear as an argument. In the theory, however, there is
other functionV(x,q) to be determined. In order to find bot
unknown functionsn(x,q) andV(x,q), besides the kinetic
equation we have to formulate a second, independent, e
tion, which is the aforementioned condition for the balan
of forces acting on a vortex. The present section of the pa
is devoted to deriving this system of equations.
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A. Kinetic equation

This section is devoted to deriving the kinetic equati
for the vortex number densityn(x,q) as vortices move and
intersect. Above all, it must be pointed out that vortices in
rigid superconductor cannot be made to rotate by an exte
magnetic field. In fact, the gain in magnetic energy up
rotating a vortex as a whole is proportional to its leng
while the energy loss involved in overcoming the pinni
force is proportional to the square of the length. Thus, t
process is energetically forbidden for infinitely long vortice
This means that the orientation of the vortices can
changed only through their mutual crossing, followed by c
ting and rotation of small segments of the new vortices re
tive to one another.10 When this circumstance is taken in
account, the kinetic equation can be written in the form

]n~x,q!

]t
1

]@n~x,q!V~x,q!#

]x
5I ~n!, ~2!

where I (n)5I 1(n)2I 2(n) is the collision integral and
I 1(n) and I 2(n) are terms describing the ‘‘arrival’’ and
‘‘departure’’ of vortices in a state with angle nearq.

To derive the collision integral, we consider two inte
secting series of vortices with anglesq1 andq2 ~see Fig. 1!.
If the crossing of these series is accompanied by recon
tion, all the newly formed vortices will turn out to be or
ented along a common directionq* . Given that the distance
between the vortices in the series are proportional
1/An(q1) and 1/An(q2), some simple geometrical calcula
tions yield an equation for the direction of the newly form
vortices:

q* ~x,q1 ,q2!5
q1An~q1!1q2An~q2!

An~q1!1An~q2!
. ~3!

Here it is assumed thatuq12q2u!1. The number of vortex
trains per unit length along thex axis with angleq1, and
crossing per unit time with trains that have angleq2, obeys
the equation

n~x,q1 ,q2!5An~x,q1!An~x,q2!uV~x,q1!2V~x,q2!u,
~4!

where V(x,q1) and V(x,q2) are the average velocities o
the vortices oriented along anglesq1 andq2, respectively.

FIG. 1. Intersection of two series of vortices.
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connection, then they go into a state with angleq* . We
assume that the number of vortices per unit interval ofx with
anglesq* increases by

N~x,q1 ,q2!5An~x,q1!1An~x,q2!. ~5!

Using these expressions, we write the incoming term
the collision integral in the form

I 15
1

2E dq1 dq2 P~x,q1 ,q2!n~x,q1 ,q2!

3N~x,q1 ,q2!d@q2q* ~x,q1 ,q2!#. ~6!

Here P(x,q1 ,q2)5P(x,q2 ,q1) is the probability function
for cutting of two intersecting vortex series, which is sym
metric with respect to interchange of the angles. It is eas
show that the ‘‘departure’’ of vortices from the state wi
angleq is given by

I 25E dq2 P~x,q,q2!n~q,q2!An~x,q!. ~7!

Given the angular symmetry ofP(x,q1 ,q2), we obtain the
following expression for the vortex collision integral:

I 5E dq1 dq2 P~x,q1 ,q2!

3n~x,q1!An~x,q2!uV~x,q1!2V~x,q2!u

3FdS q2
q1An~q1!1q2An~q2!

An~q1!1An~q2!
D 2d~q2q1!G .

~8!

Here we note two important properties of this collision int
gral: it preserves both the total number of vortices and th
average angle of inclination to thez axis. In other words, the
two integrals*dq I (q) and*dq qI (q) are equal to zero.

An even more general property of the collision integ
~8! can be derived. For sufficiently smooth functionsw of the
angleq, the following equality holds~see Appendix A!:

E dq I ~q!w~q!52
1

4

]2w

]q2U
q5q̄

3E dq1 dq2 P~x,q1 ,q2!uV~x,q1!

2V~x,q2!u
n~x,q1!n~x,q2!

An~x,q1!1An~x,q2!

3~q12q2!2, ~9!

where the derivative]2w/]q2 is calculated at the poin
q5q̄(x), which defines the direction of the average ang

n̄~x!q̄~x!5E dq qn~x,q!. ~10!

In the latter expression, the total vortex densityn̄ (x) is de-
fined as
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n̄~x!5E dq n~x,q!. ~11!
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dG 5E dx dq n ~x,q! f ~x,q!du~x,q!. ~18!
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Using these properties of the collision integral, we o
tain quasihydrodynamic transport equations for the total v
tex densityn̄ (x) and the average angle of inclinationq̄(x)
~see Appendix A!:

]n̄

]t
1

]~ n̄V̄!

]x
50, ~12!

and

]~ n̄q̄ !

]t
1

]~ n̄Vq!

]x
50, ~13!

whereV̄(x) andVq are defined by

V̄5
1

n̄
E dq V~x,q!n~x,q!, ~14!

and

Vq5
1

n̄
E dqV~x,q!qn~x,q!. ~15!

B. Force balance equation

In order to finish formulating the kinetic problem, th
equation obtained in the previous part must be suppleme
by an equation for the balance of forces on the vortices
well as by a formula relating the magnetic induction to t
vortex density. In the local limit, the relationship between t
magnetic induction vectorB and the vortex density average
over the angleq can be written as

B5F0E dq n~x,q!e~q!'n̄~x!e~q̄ !, ~16!

wheree(q) is the unit vector that defines the direction of
vortex with angle of inclinationq to thez axis.

The balance equation represents the equality of the m
netic force resulting from the interaction of vortices with o
another and the pinning force acting on the vortex system
order to calculate the magnetic force, it is first necessar
find the magnetic part of the Gibbs energyGem. Using the
well known expression for Gem ~see Shmidt and
Mkrtchyan,19 for example!, in the local limit we obtain

Gem5
1

8pE dx~B222H0•B!

5
F0

2

8pE dx dx8dq dq8@e~q!•e~q8!#

3n~x8,q8!n~x,q!2
H0F0

4p

3E dx dq e~q!n~x,q!. ~17!

The magnetic forcef m(x,q) on a vortex subsystem with
anglesq at the pointx is given by the variation of the Gibb
energyGem when the vortices are displaced bydu(x,q):
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Unfortunately, it is impossible to calculate the magne
force directly from Eqs.~17! and ~18!, since the functional
Gem depends on the vortex densityn(x,q). This means that
it is necessary to find the relationship between the chang
the vortex densitydn(x,q) and a small displacemen
du(x,q) of the vortices. This sort of relationship is easi
found with the aid of the kinetic equation. Integrating Eq.~2!
over the short time intervalt during which the displacemen
du(x,q)5tV(x,q) takes place, and retaining only the lea
ing terms in the displacement, we obtain

dn~x,q!52
]@n~x,q!du~x,q!#

]x
1I t. ~19!

Now, calculating the change in the magnetic part of t
Gibbs energy~17! for a small change in the vortex densi
and using Eqs.~18! and ~19!, we find an expression for the
magnetic force~see Appendix B!:

4p

F0
f m~x,q!5e~q! •

]B

]x
1

1

2
e~q̄ !•~B2H0!

3E P~q,q8!n~q8!dq8

An~q!1An~q8!

3~q2q8!2sign@V~q!2V~q8!#. ~20!

The first term in Eq.~20! is associated with the Lorent
force on a vortex. This is the term which transforms to t
ordinary expression for the magnetic force~see Ref. 18, for
example! when all the vortices are parallel to one anoth
and to the external field. The second term results solely fr
the intersection of vortices, and vanishes if they are all p
allel to one another, or their cutting probabilit
P(q1 ,q2)50. This term results from some rather intriquin
collective effects. It is clear that any translational displac
ment of a given vortex causes intersections and rotation
neighboring vortices, as well as of itself. In other word
during a displacement, not only does the state of the gi
vortex change, so does that of its neighbors. As a result
additional collective contribution, and therefore an addition
collective force, shows up in the Gibbs energy. From t
standpoint, the vortex system is not a gas of independe
moving vortices, but a liquid with a very strong intervorte
interaction.

The total magnetic force on a vortex in the critical sta
must be balanced by an effective pinning force. This lat
force includes both drag on the vortices owing to their d
placement and drag owing to the way in which pinni
forces affect the straightening of the vortices after they h
intersected. In order to calculate this effective drag force,
compute the workdGp and dGcut expended by the pinning
forces in displacing and straightening the vortices, resp
tively, as they undergo a small displacementdu(x,q). Since
work f pudui u5 f pdui signVi is performed during displace
ment of the i th vortex, the workdGp to displace all the
vortices is
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dG 5E dx dq n~x,q!du~x,q! f sign@V~x,q!#. ~21!
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The factor sign(V) appears here because the work of ov
coming the pinning forces is always positive, i.e, the pinn
force is directed opposite the vortex velocity.

The second term in the drag on vortex motion is due
energy losses in straightening the vortices formed by cutt
In order to estimate this force, we assume that the vort
are perfectly elastic. This means that a new vortex form
after intersection, and consisting of segments along the
rections of the vortices before they intersected, must
straightened. Then the segments of a given vortex turn
ward one another, performing work against the pinning fo
~see Fig. 1!. The work for a single vortex formed by th
intersection of vortex trains with anglesq1 andq2 is

A5
1

2
f p

a~q1!a~q2!

a~q1!1a~q2!
}

1

2
f p

1

An~x,q1!1An~x,q2!
,

~22!

wherea(q)}1/An(q) is the characteristic distance betwe
vortices in a train with an angle of inclinationq. Using the
latter equation and Eq.~4!, which gives the number of inter
secting vortices, we obtain

dGcut5
1

2E dx dq dq8 f pP~x,q,q8!

3An~x,q!An~x,q8!du~x,q!

3sign@V~x,q!2V~x,q8!#. ~23!

The total drag forcef p
eff acting on a vortex is given by

dGp1dGcut5E dx dq f p
effn~x,q!du~x,q!. ~24!

With the aid of Eqs.~21! and ~23!, this equation yields an
effective drag force

f p
eff5 f p sign V~x,q!1

1

2
f pE dq8P~x,q,q8!

An~x,q8!

An~x,q!

3sign@V~x,q!2V~x,q8!#. ~25!

Using the condition that the sum of all forces on a vort
equals zero, we obtain:

]B

]x
1~q2q̄ !B

]q̄

]x
1

1

2
@B2H0 cos~q̄2q0!#

3E P~q,q8!n~q8!dq8

An~q!1An~q8!
~q2q8!2

3sign@V~q!2V~q8!#

52
4p

c
Jc sign* @V~q!#

2
2p

c
JcE dq8P~q,q8!

An~q8!

An~q!

3sign@V~q!2V~q8!#, ~26!
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angle of inclination of the external magnetic fieldH to thez
axis, and sign~0!50. The function sign* (x) introduced here
coincides with sign(x) everywhere exceptx50, where
sign* ~0! lies within the interval (21,1). It is necessary to
introduce sign* @V(q)# because at a given point in spac
there can be both moving and motionless vortices, while
the latter the drag on their motion~the resting frictional
force! is not generally equal to zero. This was also the rea
for replacing sign@V(x,q)# by sign* @V(x,q)#. At the same
time, in all cases in which the arguments of the sign funct
are relative velocities @the velocity difference
V(x,q)2V(x,q8)], the function sign@V(x,q)2V(x,q8)# is
retained. Indeed, in this case the vortices with anglesq and
q8 do not intersect and the drag force corresponding
straightening is strictly equal to zero. If some of the vortic
at any point move, while some are at rest, then this cre
the impression that for the stationary vortices sign* (0) and,
therefore, the right-hand side of Eq.~26!, are undetermined
Since the velocity of these vortices is zero, however,
temporal and spatial variation in their density can be entir
determined from the kinetic equation, while in this case E
~26! serves for finding the value of sign* @V(x,q)50#. The
boundary angle between the region corresponding
V(x,q)50 and the interval whereV(x,q) is nonzero for the
distribution n(x,q) can be determined from the continuit
condition forV with respect to the variableq.

The boundary conditions for Eqs.~2!, ~16!, and~26! are
that the magnetic induction at the sample boundary,B(0,t),
equals the external fieldH0(t), as well as the requiremen
thatV(x,t) be continuous everywhere that the vortex dens
is nonzero.

In the general case, the solution of the problem in
framework of the kinetic theory given here involves dete
mining the vortex and velocity distributionsn(x,q) and
V(x,q) for a given quasistationary variation in the extern
magnetic field with time,H0(t). To do this, Eqs.~2!, ~16!,
and ~26! must be solved for the unknown functions. In th
following sections we use Eqs.~2!, ~16!, and~26! to establish
the electrodynamics of a superconductor in an external m
netic field whose direction varies, and to analyze the m
important magnetic properties of objects of this type.

3. ELECTRODYNAMIC EQUATIONS

The solution for the dynamics of a vortex lattice in term
of the proposed kinetic model is very complicated. To int
pret electrodynamic experiments, however, there is usu
no need to calculate the details of the vortex density dis
bution with respect to their angle of inclination to thez axis.
Thus, it is appropriate to reduce the basic equations of
theory to a simpler system of electrodynamic equatio
which determine only the spatial distribution of the inducti
~its magnitude and angle of inclination to thez axis!. This is
the main purpose of the present section.

A. Suppression of the gradient of the magnitude of the
magnetic induction

We first analyze in broad strokes the features of the d
tribution of the magnetic induction that follow from the forc
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balance Eq.~26!. Multiplying Eq. ~26! by the vortex density
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n(x,q) and integrating the resulting equation with respec
q, we obtain

]B

]x
52

4pJc

cB E dq F0n~q!sign* @V~q!#. ~27!

When the external magnetic field does not vary in direct
and all the vortices are parallel to one another, the velocitV
of the vortices has the same sign everywhere. Under th
conditions Eq.~27! yields the usual Bean equation1: the vor-
tex densityn5B/F0 varies linearly in the depth of the su
perconductor, with slope 4pJc /F0.

In the other situation, when the vortices change direct
in time, two fundamentally different cases may be realiz
If essentially all vortices at a given point in space move
the same direction, then Eq.~27! transforms to an equatio
that is the same as the Bean equation,1

]B

]x
52

4p

c
Jc sign~V̄!. ~28!

If, on the other hand, some of the vortices move in o
direction and some in the other within a single spatial regi
then the gradient of the induction is smaller. In fact, in th
case, the values of sign* (V) for two vortices moving in dif-
ferent directions are opposite. For those regions of the su
conductor where the number of vortices moving in differe
directions are close to one another, there is essentially c
plete suppression of the gradient of the magnitude of
magnetic induction:

]B/]x'0. ~29!

The collapse of the gradient of the vortex density cor
sponding to the transition from the hydrodynamic Eq.~28! to
Eq. ~29! must be taken into account when interpreting t
large group of experiments that have been done in cros
magnetic fields.3–5

Equations~28! and ~29! have a fairly simple form and
clear physical significance. Unfortunately, they are not su
cient for solving actual electromagnetic problems. In fact,
order to determine which of the two equations must be us
it is first necessary to establish the velocity fieldV(x,t), i.e.,
return to an analysis of the complicated original system
Eqs.~2!, ~16!, and~26!. For this reason there is some intere
in constructing simpler models based on Eqs.~2!, ~16!, and
~26! that permit of a sufficiently simple and lucid physic
interpretation.

B. Electrodynamics in the framework of a two-component
model

Let us formulate a closed system of equations in term
the simplest model assumption, in which the actual ang
distribution of the vortices is replaced by

n~x,q!5
1

2
n~x!$d@q2qA~x!#1d@q2qB~x!#%. ~30!

In other words, we assume that at each pointx, half of the
vortices ~type A vortices! have an angleqA and move at
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and velocityVB . For concreteness, we assume thatqA.qB .
The basic problem upon going to the two-compone

system is that in terms of this approximation it is impossib
to satisfy the kinetic Eq.~2!, since when vortices from
groups A and B intersect, vortices develop which do no
belong to either type.

Thus, instead of the kinetic equation, we make use of
hydrodynamic consequences: the transport equations fo
total density~12! and the average angle~13!. In the model of
Eq. ~30!, these equations take the form

]n

]t
1

]@n~VA1VB!/2#

]x
50, ~31!

and

]@n~qA1qB!#

]t
1

]@n~qAVA1qBVB!#

]x
50. ~32!

We now analyze the force balance equation for two vor
sublatticesA andB. The equation for componentA has the
form

]B

]x
1

~qA2qB!

2
B

]q̄

]x
1

1

2
@B2H0 cos~q̄2q0!#

3
PAn~x!

2A2
~qA2qB!2 sign@VA~x!2VB~x!#

52
4p

c
Jc sign* @VA~x!#2

2p

c
JcP

3sign@VA~x!2VB~x!#, ~33!

where the average angleq̄ is given byq̄5(qA1qB)/2. The
force balance equation for groupB can be obtained from Eq
~33! by replacingA with B.

In terms of the two component model, Eq.~27!, which
describes the suppression of the gradient of the magn
induction, can be rewritten in the form

]B

]x
52

2p

c
Jc@sign* ~VA!1sign* ~VB!#. ~34!

Eliminating the gradient]B/]x from the force balance Eq
~33! using Eq.~34!, we obtain an equation for the spati
distribution of q̄:

n~x!~qA2qB!B
]q̄

]x
1@B2H0 cos~q̄2q0!#PAn~x!/8

3~qA2qB!2 sign~VA2VB!

5 2
4p

c
Jc@sign* ~VA!2sign* ~VB!#

2
4p

c
JcP sign~VA2VB!. ~35!

Unfortunately, in the two-component model, it is not po
sible to close the system of transport Eqs.~31! and~32! and
the force balance equation for componentsA ~33! and B
without additional assumptions. In fact, there are five u
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known functions to be found, which we choose to beVA ,
-
t i
s
th

ge

th
se

ne

ve
n-

of
a

q

is

hi
hi

n

s

s

]nq̄
1

1 ]nq̄~VA1VB!
2

1 ]
nuV 2V u l

]q̄
50.

the
s

o-
In

st

unt
sed
sed
re-

o
nd,
that
ple

of

tex
that
d in
ri-
the

-

has
otal
.
n-
the
as-
on
es
an
ro-

up-
uc-

m-
es

a
of

nal
ular
gle
hy-
VB , B, q̄, andqA2qB . However, we have only four equa
tions for these functions. In order to close this system, i
necessary to add one more phenomenological equation. A
Ref. 15, we assume that the characteristic scatter in
anglesqA2qB is proportional to the gradient of the avera
angle (1/2)](qA1qB)/]x:

qA2qB'2 l sign~VA2VB!
]q̄

]x
, ~36!

wherel is a phenomenological parameter that determines
mean free path of the vortices between successive inter
tion processes in which old vortices are destroyed and
ones created. Qualitatively, Eq.~36! can be justified if we
assume that vortices from some neighborhood of a gi
point x arrive at that point and carry different angles of i
clination to thez axis with them~see Appendix C!.

Using Eq.~36! it is possible to obtain a closed system
electrodynamic equations. Thus, for the case in which
vortices move in a single direction~signVA5signVB), the
magnitude of the magnetic induction is calculated from E
~28!, and the angular distribution is given by

H B2
l

l *
@B2H0 cos~q̄2q0!#J l S ]q̄

]x D 2

5
4p

c
JcP, ~37!

wherel * is defined by

l * '
2A2

PAn̄
. ~38!

If, on the other hand, the vortices in groupsA andB move in
opposite directions~signVA52signVB), then the distribu-
tion of B is found from Eq.~29! and the average angle
calculated with the aid of the equation

H B2
l

l *
@B2H0 cos~q̄2q0!#J l S ]q̄

]x D 2

5
4p

c
Jc~P12!.

~39!

Besides these two cases, a situation can arise in w
one of the vortex lattices is at rest within some region. In t
region the magnitude of the induction gradient]B/]x ranges
from 4pJc /c to zero, since the value of sign* (0) ranges
from 21 to 1. Eliminating the unknown parameter sig
* (0), wearrive at the equation

]B

]x
2

1

2H B2
l

l *
@B2H0 cos~q̄2q0!#J

3 l S ]q̄

]x D 2

sign~VA!

52
4p

c
Jc sign~VA!S 11

P

2 D . ~40!

The boundaries between the regions in which the ca
sign VA5signVB , signVA52signVB , and VB50 are re-
alized can be determined from the transport Eqs.~31! and
~32!. The last of these equations can be rewritten in term
VA , VB , n, andq̄ as
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~41!

Equations~28!, ~29!, ~31!, ~37!, ~39!, ~40!, and ~41! form a
closed system of electrodynamic equations. If we set
length l equal to l * , we arrive at the system of equation
derived in Ref. 15.

In concluding this section we note that this tw
component model is an extremely crude approximation.
fact, replacing the vortex density distribution function by ju
two vortex groups with anglesqA andqB cannot be justified
rigorously. Nevertheless, this model does take into acco
the fundamental kinetic features of a vortex lattice in cros
magnetic fields, so that the electrodynamic equations ba
on it can be used to interpret a variety of experimental
sults.

We now consider the limits of applicability of the tw
component model. All the basic equations of the theory a
therefore, of this model have been obtained assuming
the angular scatter of the vortices at each point of the sam
is small, i.e., forl (]q/]x)!1. Equation~37! implies that
this condition is clearly violated in the neighborhood
points where cos(q̄2q0)5B(12l/l* )/H0. This limits the va-
lidity of the two-component model.

CONCLUSION

In this paper we have examined the behavior of a vor
system in a superconductor located in a magnetic field
varies in a quasistationary fashion, both in magnitude an
direction. In this case the vortices have different spatial o
entations. In the proposed kinetic theory, the behavior of
vortex system is described by the kinetic Eq.~2! and the
force balance Eq.~26!, which determine the spatial distribu
tion of the vortex densityn(x,q) and velocityV(x,q). The
collision integral ~8! in the kinetic Eq. ~2! describes the
change in the vortex densityn(x,q) owing to their mutual
intersections accompanied by a change in orientation. It
been shown that the collision integral conserves the t
number of vortices and their average angle of inclination

Besides the direct interactions of vortices with one a
other, an external magnetic field, and pinning centers,
force balance equation includes the collective interaction
sociated with the intersection and scattering of vortices
one another. This kind of collective vortex interaction mak
an additional contribution to the magnetic force, which c
cause the vortices to attract one another. This, in turn, p
duces counterpropagating motion of the vortices which s
presses the gradient of the magnitude of the magnetic ind
tion in a superconductor.

We have examined the transition to a simpler two co
ponent model in which the actual distribution of the vortic
with respect to their angles of inclination is replaced by
distribution in which the vortices have only two angles
inclination at every point,qA(x) andqB(x). In order to ob-
tain a closed system of equations in the model, an additio
phenomenological condition is added to couple the ang
scatter of the vortices to the gradient of the average an
and to the mean free path. The resulting two-component
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1An~q2!q21An~q2!q1#. ~A6!
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number of experiments on the electrodynamics of superc
ductors in crossed magnetic fields~see Ref. 15 and the lit
erature cited therein!.

This work was performed under the auspices of the S
Program on Superconductivity~Projects 96046 and 95046!,
and partially supported by the Russian Fund for Fundame
Research~Project 97-02-16399!.

APPENDIX A

The purpose of this appendix is to derive Eq.~9!, along
with the transport Eqs.~12! and~13!. Multiplying Eq. ~8! by
w(q) and integrating, we find

J5E dq1 dq2 P~q1 ,q2!

3n~x,q1!An~x,q2!uV~x,q1!2V~x,q2!u

3FwS q1An~q1!1q2An~q2!

An~q1!1An~q2!
D 2w~q1!G . ~A1!

In the following we assume that the scatter in the vor
angles about the average valueq̄ at a given point in space i
small. In this case,

wS q1An~q1!1q2An~q2!

An~q1!1An~q2!
D

'w~q̄!1
]w

]qU
q̄
S q1An~q1!1q2An~q2!

An~q1!1An~q2!
2q̄ D

1
1

2

]2w

]q2U
q̄
S q1An~q1!1q2An~q2!

An~q1!1An~q2!
2 q̄ D 2

, ~A2!

and

w~q1!5w~q̄!1
]w

]qU
q̄

~q12q̄ !1
1

2

]2w

]q2U
q̄

~q12q̄ !2.

~A3!

Substituting these expansions of the functionw into Eq.
~A1!, we obtain

J5J~1!1J~2!, ~A4!

where

J~1!5S ]w

]qU
q̄

2q̄
]2w

]q2U
q̄
D E dq1 dq2 P~q1 ,q2!

3
n~q1!n~q2!

An~q1!1An~q2!
uV~q1!2V~q2!u~q22q1!,

~A5!

and

J~2!5
1

2

]2w

]q2U
q̄

E dq1 dq2

P~q1 ,q2!n~q1!n~q2!

@An~q1!1An~q2!#2

3uV~q1!2V~q2!u~q22q1!@2An~q1!q1
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The integralJ(1) is equal to zero. Indeed, making the subs
tution q1→q2, q2→q1 in Eq. ~A5!, we arrive at the equa
tion J(1)52J(1), which implies thatJ(1)50. Making the
same change of variables in Eq.~A6!, we obtain

J~2!5
1

2

]2w

]q2U
q̄

E dq1 dq2

P~q1 ,q2!n~q1!n~q2!

@An~q1!1An~q2!#2

3uV~q1!2V~q2!u~q12q2!

3@2An~q2!q21An~q1!q11An~q1!q2#. ~A7!

Therefore, the desired integralJ can be written in the form of
an average of Eqs.~A6! and ~A7!. After some simple alge-
braic transformations, we arrive at Eq.~9!.

Settingw51 andw5q in Eq. ~9!, we find that the col-
lision integral~8! conserves the total number of vortices a
the average angle, i.e., the following equations hold:

E dq I ~q!50, E dq qI ~q!50. ~A8!

Integrating Eq.~2! with respect toq and using Eq.~A8!, we
find the first transport equation~12!. In order to obtain the
second transport equation~13!, it is sufficient to multiply the
kinetic equation~2! by q and integrate, using Eq.~A8!.
Thus, property~9! of the collision integral and the transpo
equations~12! and ~13! have been proven.

APPENDIX B

The purpose of this appendix is to derive an express
for the magnetic force on the vortices, taking their inters
tions into account. A displacementdu(x,q) of the vortices
causes their distribution to change by a small amo
dn(x,q). This leads to a changedGem in the magnetic en-
ergy of the system, which, given Eq.~17!, can be written in
the form

dGem5
F0

4pE dx dq e~q!•@B~x!2H0#dn~x,q!. ~B1!

Substituting Eq.~19! into this expression and integrating b
parts, we obtain

dGem5
F0

4pE dx dq n~x,q!du~x,q!e~q! •

]B

]x

1
F0

4pE dx dq dI ~n!e~q!•@B~x!2H0#, ~B2!

wheredI 5I t. On the other hand, using Eq.~9!, the equation
]2e/]q252e, and the symmetry of the probability functio
P(q,q8), we find

E dq I ~n!te~q!

5
1

2E dq e~q̄ !n~x,q!du~x,q!
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P~q,q8!n~q8!dq8
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involves the creation of new vortices, as an estimate of the

e

Sci.
3E An~q!1An~q8!

3sign@V~q!2V~q8!#~q2q8!2. ~B3!

Substituting the latter expression into Eq.~B2!, we obtain

dGem5
F0

4pE dx dq n~x,q!du~x,q!

3H e~q! •

]B

]x
1

1

2
e~q̄ !•@B~x!2H0#

3E P~q,q8!n~q8!dq8

An~q!1An~q8!

3~q2q8!2 sign@V~q!2V~q1!#J . ~B4!

Equation~20! for the magnetic force follows directly from
this equation and Eq.~18!.

APPENDIX C

This part of the paper is devoted to a qualitative just
cation of Eq.~36!, as well as to estimating the mean free pa
l which appears in that equation.

Let us consider two vortices, denoted by 1 and 2, wh
formed at timet2t at pointsx1 andx2 and then intersected
at pointx at timet. We calculate the angles of inclinationq1

andq2 of these vortices to thez axis. Since vortices 1 and
appear as a result of the intersection of vortices of typeA
andB at pointsx1 andx2, Eq. ~3! yields the following equa-
tions for the angles of inclination:

q15@qA~x1 ,t2t!1qB~x1 ,t2t!#/25q̄~x1 ,t2t!,
~C1!

and

q25@qA~x2 ,t2t!1qB~x2 ,t2t!#/25q̄~x2 ,t2t!.
~C2!

On reaching the pointx, the vortices 1 and 2 become vortice
of type A and B for this point and timet. As a result, we
obtain an estimate for the difference in the angles of incli
tion of the typeA andB vortices:

qA2qB5q̄~x1 ,t2t!2q̄~x2 ,t2t!. ~C3!

Retaining only the linear terms in the expansion of the d
ferenceqA2qB with respect tot, i.e.,x2x1 andx2x2, we
obtain

qA2qB5
]q̄

]x
~x12x2!. ~C4!

In order to determine the distancex22x1 covered by a
vortex without intersections, we pass from the laboratory r
erence frameK to a systemK8 attached to a typeA vortex.
In this system, the velocity of aB vortex isVB2VA . Over a
time t, An/2uVA2VBut type B vortices intersect a typeA
vortex that is at rest. Since only every 1/P-th intersection
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average time between intersections we obtain

t5
A2

PAnuVA2VBu
. ~C5!

In time t in systemK, an A vortex with velocity VA

moves a distanceVAt5x2x1, and aB vortex with velocity
VB moves a distanceVBt5x2x2. Thus, we obtain
x22x15(VB2VA)t. Using this expression and Eqs.~C4!
and~C5!, we obtain the following estimate for the differenc
in the angles of inclination of the typeA andB vortices:

qA2qB52sign~VA2VB!
A2

PAn

]q̄

]x
. ~C6!

Therefore, the lengthl can be estimated as

l 5
A2

PAn
. ~C7!
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On the limiting velocity and forced motion of ferromagnetic domain walls in an external
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field perpendicular to the easy-magnetization axis
B. A. Ivanov

Insititute of Magnetism, Ukraine National Academy of Sciences, 252142 Kiev, Ukraine

N. E. Kulagin

State Institute of Problems in Radio Electronics, 103416 Moscow, Zelenograd, Russia
~Submitted 28 December 1996!
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A theory is constructed for the dynamics and braking of domain walls in ferromagnets when a
magnetic field is applied perpendicular to the axis of easy magnetization~i.e., a transverse
field H'!. The theory is valid for velocitiesv up to the limiting domain wall velocityvc . The
Landau–Lifshitz equations in the dissipationless approximation are used to investigate
the motion of domain walls and the change in the character of the wall motion as its velocityv
approachesvc . The force acting on a domain wall due to viscous friction is calculated
within the framework of generalized relaxation theory, and the dependence of the domain wall
velocity v on the forcing fieldHz is investigated. Calculations of the braking force show
that the contributions of various dissipation mechanisms to the friction force have different
dependences on the domain wall velocity, which affects the form of the function
v5v(Hz). The shapes of the curvesv(Hz) differ very markedly from one another for different
values of the fieldH' . The theory developed here can be used to describe the experimental
results, in particular the almost linear behavior ofv5v(Hz) for small H' and its strongly
nonlinear behavior whenH';Ha , whereas these data cannot be reconciled within the
standard theory based on relaxation terms of Hilbert type. ©1997 American Institute of Physics.
@S1063-7761~97!01409-1#
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The motion of domain walls in ferromagnets is of co
siderable interest both to experimentalists and theorists a
example of strongly nonlinear wave dynamics realized in
magnetization of the material~magnetic solitons!. It is also
important for practical applications~see Refs. 1–4!. From an
experimental point of view, two questions are of intere
what is the limiting velocity of a domain wall, and how ca
we study the dependence of the domain-wall velocityv on
the projection of the field onto the axis of easy magnetizat
~the forcing fieldHz!?

The structure of a planar domain wall moving with
velocity v that is not small is given by the soliton solution
the Landau–Lifshitz equations without dissipation, in t
form M5M (j), j5y2vt, andM is the magnetization vec
tor of the ferromagnet. The domain-wall velocityv, which
enters into the equation forM ~j! as a parameter, has a bifu
cation valuevc such that solutions of domain wall type d
not exist forv.vc. This quantity therefore has the sense o
limiting velocity for domain walls. Soliton solutions ar
known only for the simplest Walker model~see Refs. 1–4
and below!.

The braking of a domain wall, which determines t
nature of forced motions of the domain wall under the act
of a forcing field Hz , arises from relaxation terms in th
Landau–Lifshitz equation, the analysis of whose struct
has only begun~the use of ordinary relaxation terms of th
Hilbert form leads to a number of inconsistencies with e
periment; see the discussion of this question in Refs. 1
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to know the form of the functionM ~j!.
It is especially important to investigate the effect of

external magnetic field perpendicular to the axis of ea
magnetization of the ferromagnet~the transverse fieldH'!.
Above all, this stems from the observation that the value
vc is increased considerably even at rather small value
this field in the range 4pM0!H'!Ha , whereH'5uH'u,
M05uM u is the saturation magnetization, andHa is the an-
isotropy field, as pointed out in Ref. 2.~In what follows, we
only discuss the caseq5Ha/4pM0@1, which applies, in
particular, to magnetic bubble materials;q is the figure of
merit of these materials.! In particular, the authors of Ref. 5
who investigated the dynamics of domain walls with rega
to the problem of increasing the speed of response of m
netooptic light modulators, noted a sharp increase in dom
wall velocity in the presence of a transverse fieldH' . An
increase in the limiting velocity of domain walls to a value
order several km/s forH' of order 0.7Ha was observed by
the authors of Ref. 6. Existing theories of domain wall m
tion in the presence of a transverse field are valid only wh
H'!Ha ~see Ref. 2! or for H'→Ha ~see Refs. 7–9!. In
Ref. 9 we pointed out that the limiting velocity is governe
by a variety of mechanisms at large and small values of
field. In particular, as the forcing field increases, the veloc
vc increases whenH'!Ha and decreases whenH''Ha .
The braking of domain walls was investigated in the lo
velocity limit in Refs. 8–12. The authors of Ref. 12 report
qualitative agreement between their experimental meas

5166-12$10.00 © 1997 American Institute of Physics
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calculations of Refs. 8–10.
The theory we construct in this paper describes the

namics and braking of a domain wall for arbitrary values
the transverse field and for velocitiesv up to vc . In Sec. 2
we describe our model, and then investigate the motion
domain wall in the dissipationless approximation. We sh
that as the field increases, the character of the wall beha
changes as its velocityv approachesvc . In Sec. 3 we con-
struct approximate solutions that enable us to describe
dynamics of a domain wall for fields that are not too larg
actually up to 0.6Ha . In Sec. 4 we investigate numerical
and analytically the case of strong fields. In Sec. 5, based
the distribution of magnetization in a moving domain w
obtained above within the framework of generalized rel
ation theory, we calculate the force of viscous friction acti
on the wall. Calculation of the braking force shows that t
contribution of various dissipation mechanisms to the fr
tional force have different dependences on the domain w
velocity, which affects the form of the functionv5v(Hz).
The shapes of the curvesv(Hz) differ very markedly from
one another for different values of fieldH' . In the conclud-
ing section we show that our theory enables us to desc
the results of experiment,6 in particular the almost linear be
havior ofv5v(Hz) for smallH', and its strong linearity for
H';Ha .

2. MODEL

Let us write the Landau–Lifshitz equation for the ma
netization vector of a ferromagnetM in the form

]M

]t
52g~M3F!1R, ~1!

whereg is the gyromagnetic ratio,F52dW/dM is the ef-
fective field of the ferromagnet, andW5W$M% is its energy
written in the form of a functional of the magnetization ve
tor; see Refs. 1–4.R is a relaxation term, whose structure w
will discuss below in Sec. 5.

We begin with an expression of the form

W$M%5E dr H a

2
~¹•M !21w~M !J , ~2!

wherea is the inhomogeneous exchange constant,w(M ) is
the energy of the relativistic interaction, including the anis
ropy energy, the external field, and the demagnetizing fi
If the dissipation is weak, i.e., the corresponding dimensi
less relaxation constant is small, we can postulate a struc
for the domain wall based on the dissipationless approxi
tion ~for R50!. In this case it is convenient to start with th
equations for the unit vectorm5M /M0 , which in angular
coordinates are

mz5cosu, mx5sin u cosw, my5sin u sin w. ~3!

The equation for the variablesu andw can be written in the
usual form:

gM0 sin u
]u

]t
5a¹2u2a~¹u!2 sin u cosu2

]w

]u
,
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Let us write the relativistic interaction energy, includin
the energy in the external transverse magnetic field, in
form

w5
M0

2

2
b sin2u ~11r sin2 w!2hbM0

2 sin u cosw,

~4!

which is typical of a rhombic ferromagnet with axesx,y,z
along the principal axes;b andrb are anisotropy constants
Let b.0, r.0; thenz is the axis of easy magnetization o
the ferromagnet andy is the hardest axis. We assume that t
transverse fieldH' is directed along the intermediate axisx,
h5H' /Ha , Ha5bM0 . Note that this expression is als
used for uniaxial ferromagnets, taking into account the
ergy of the demagnetizing field in the local~Vinterovskii!
approximation. Thenq51/r ~see Refs. 2 and 4!. Since our
problem is one-dimensional, the Vinterovskii approximati
is a good one. In what follows we sometimes neglect
anisotropy in the basal plane, assuming thatr is not only
considerably less than unity, but is much less thanh.

The equations forw5w(j), u5u(j), taking into ac-
count the explicit form of the energyw Eq. ~4!, are easily
written

D2@u92~u8!2 sin u cosu#2sin u cosu ~11r sin2 w!

1h cosu cosw5
v
c

w8 sin u, ~5!

D2~w8 sin2 u!82sin u sin w ~h1r sin u cosw!

52
v
c

u8 sin u. ~6!

Here we introduce characteristic values of the domain w
thicknessD5Aa/b and velocityc5gM0Aab. The quantity
c is of the same order of magnitude as the magnon ph
velocity v (1) ~see below!, and coincides withv (1) and the
limiting velocity of the domain wallvc as h→1; primes
denote derivatives with respect toj, j5y2vt.

One important characteristic of a moving domain wall
the dependence of its energy on velocity. Using Eq.~8! ~see
below!, we can write the expression for the domain w
energy per unit areas in the form

s52M0
2Aab I ~v !, I ~v !5DE

0

1`

dj @~u8!2

1~w8!2 sin2 u#. ~7!

The form of the integralI (v) ~like the integralsha(v) that
describe the coefficients of nonlinear friction; see below! is
determined by the characteristic distribution of magneti
tion in the domain wall.

The system of Eqs.~5! and~6! corresponds to a dynami
cal system with two degrees of freedom. In order for th
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integrals. In the general case of an arbitrary ferromag
there is a first integral of the form

D2@~u8!21~w8!2 sin2 u#2w~u,w!5const. ~8!

However, it is not possible to construct another first
tegral, i.e., the problem is not integrable in general. Note t
a number of examples of integrable equations similar to~5!
and ~6! were constructed by Eleonski� and Kulagin in Ref.
13a for a motionless wall and various forms of anisotro
energy. However, even without the ‘‘gyroscopic’’ term
these equations~proportional to the velocityv!, the system is
not integrable when a transverse field is present. ForvÞ0,
however, a single example is known for which a system l
~5! and ~6! is integrable—the caseh50 ~the additional first
integral other than Eq.~8! was derived in Ref. 13b for
h50!. As Walker showed~see the review Refs. 1, 3, 4!,
whenh50 the Landau–Lifshitz equations~5! and ~6! have
an exact solution of the formw5w05const,u5u(j), where

cosu0[6tanh@j/D~w0!#,

D~w0![D~11r sin2 w0!21/2. ~9!

The value ofw0 is a function of the velocity of the
domain wall. This function, which is given by Eq.~10! ~see
below!, has a solution only forv,vW , wherevW , referred
to as the Walker limiting velocity~the Walker limit!, is given
by vW[c(A11r21). When r!1 we have
vW→gM0(r/2)Aab, andvW is small compared to the cha
acteristic velocityc[gM0Aab we introduced above. The
quantityvW reduces to zero in the limitr→0. Whenr→0
we can neglect the change in the domain wall thickness
assume that the quantityD5Aa/b.

As was noted previously,8,9 whenr50, solutions can be
constructed in two limits: large values of the fie
(Ha2H'!Ha) and small values (H'!Ha). We also can
construct an analytic solution to~5! and~6! that includes the
anisotropy in the basal plane whenH'!rHa , based on per-
turbation theory in the form of an expansion in the parame
h/r. However, we will not discuss this approach here, sin
we can give a rather complete analysis of the more gen
caseh, r!1, including h;r. We will also show that the
asymptotic solution obtained ash→1 is applicable only for a
narrow range of field values. Numerical analysis of the pr
lem over a wide range of values ofh enables us to present
general picture of the behavior of domain walls in arbitra
fields. In the next two sections we begin with a discussion
asymptotic behavior for large and small transverse fie
H' , analyzing numerical data and using it to verify our a
proximations.

3. NONDISSIPATIVE DYNAMICS OF DOMAIN WALLS.
SMALL FIELDS

For small fields we can exploit the similarity of ou
problem to that of Walker, and assume that whenr!1,
H'!Ha the value ofw is not small, but varies slowly in
space. This follows from a linearization of the problem w
respect tow andv, but can also be verified directly with th
help of Eq. ~6!. Analysis of Eqs.~5! and ~6! leads us to
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Dj;D, then the anglew~j! varies over a much larger dis
tanceDj;DAb/h. Therefore, within the domain wall~for
j<D!, we may assume thatw(j)'w05const and is inde-
pendent ofj. The value ofw0 can be found by integrating
Eq. ~6! with respect toj from 2` to `. Taking Eq.~7! into
account, and the fact that forh, r!1 the quantityw8!u8
andvc!c, it is easy to obtain the relation

v
c

5Fr cosw01
ph

2 Gsin w0 . ~10!

From Eq.~10! it is easy to see that forv50 two bound-
aries exist withw050 andw05p ~we will not discuss solu-
tions with w0Þ0,p, which exist for the less interesting cas
h<2r/p and correspond to unstable domain walls of Ne´el
type!. Whenv50, domain walls withw050 or w05p cor-
respond to rotations of the magnetizationM in thezy plane,
which includes the anisotropy axis and the direction ofH' .
However, at the center of the domain wall it is more en
getically favorable to haveM parallel to H' ~i.e., w050!
than to haveM antiparallel toH' (w05p). With increasing
velocity the value of the anglew05w0(v) increases in the
energetically favored wall, but decreases in the unfavo
one. At a valuev5vc determined by the equations

vc5gM0AabFr coswc1
ph

2 Gsin wc ,

4r coswc52
ph

2
6AS ph

2 D 2

18r2, ~11!

we havew5wc for both walls. The quantityvc plays the role
of a limiting wall velocity for r, h!1. Analysis of the gen-
eral expression Eq.~11! is quite tedious, so that we onl
discuss limiting behavior with respect to the parameterh/r
here. Forh/r!1 the value ofvc corresponds to the Walke
limit, while for h/r@1 the quantityvc increases linearly
with increasing fieldH' ~see Fig. 1!, and

vc5gM0Aab
pH'

2Ha
, h@r, H'!Ha . ~12!

In this case the limiting velocity of a domain wallvc

exceeds the Walker limit by a factor ofpH' /rHa . The
linear dependence~12! gives a good description of exper
mental values of the limiting domain-wall velocity.6 As we
will see below, Eq.~12! is valid over a wide range of fields
up toH'<0.6Ha , where the approximationH'!Ha used to
derive it necessarily becomes incorrect. Note that even
H'!Ha, the value ofvc in Eq. ~11! exceeds the bifurcation
value v (2), which signals changes in the type of singul
points of the dynamical system~5! and ~6! in the four-
dimensional phase space (u,w,u8,w8) corresponding to the
ground state of the ferromagnet: sinu5h, w50, u850,
w850 ~see Ref. 14!. In the Walker problem these quantitie
coincide. Thus, our case~of a weak transverse field! consti-
tutes yet another example where the use of criteria base
bifurcations of singular points to find the limiting velocity o
a domain wall can lead to incorrect answers for nonin
grable systems.
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The approximationw(j)5w05const is inadequate if we
want to calculate the dependence of the domain wall ene
on its velocity, because the integralI (v) can be computed
only if we take into account the fact thatw~j! actually de-
creases at large distances from the domain wall center. H
ever, the linearized problem with respect tor, h can be
solved. Up to quadratic terms in the small parametersr and
h, we can omit the (w8)2 term and use Eq.~8! to write the
integral in the form

I ~v !52DE
u0

p/2

u8du,

whereu0 is the equilibrium value of the angleu andu0;h.
We will calculate this integral over two regions:u@u0 and
u2u0<u0 .

The contribution of the second region, as is easy to s
is proportional tou0

2, i.e., h2, and can be omitted. Howeve
in the first region it follows from Eq.~8! that to accuracyh2,

FIG. 1. Limiting velocity of a domain wall as a function of the transver
field h5H' /Ha . Points—numerical analysis data, see below. In this fig
the dotted curves denote a linear function corresponding to the low-
asymptotic behavior of Eq.~12!, the dashed curves are square-root dep
dences corresponding to the high-field asymptotic behavior, see Eq.~24!
below. The upper solid curve is the minimum phase velocity of a spin w
v (1).
y

w-

e,

D~u8!5~sin u2h cosw0!S 11
r

2
sin2 w0D .

Using this expression, the integralI (v) can be calculated
and is elementary. In the linear approximation inr andh, we
obtain

I ~v !511
1

2
~r sin2 w02ph cosw0!, ~13!

where the value ofw0 is determined by the velocity of the
domain wall via Eq.~10!. The functionsI (v) have similar
forms for various ratios of the parametersr andh; see Fig. 2.
They contain lower and upper branches corresponding to
main walls with different values of the anglew, namely
0,w,w0 andw0,w,p respectively.

The approximation given above is equivalent to usi
the Slonczewski equations2 for steady-state motion of a do
main wall with a velocity that is not small. Since these equ
tions are valid only in the limith, r→0, it is unclear why
our results agree so well with the experimental values of
limiting velocity up to values of the fieldh;0.6, where the
approximationh!1 necessarily is not satisfied. Note als
that simple expressions for the domain wall energy like E
~13! disagree strongly with the exact results even wh
h;0.3. In order to unravel this problem we numerically i
tegrated the corresponding Eqs.~5! and~6! for various values
of the fieldh and domain wall velocity. Numerical integra
tion showed that the conditionw5const is rather well satis

ld
-

e

FIG. 2. The functionI (v) for various values of the parameters: curve1—
h50.2, r50.2; 2—h50.2, r50; 3—h50, r50.2.
-

to
-

FIG. 3. Shape of the functionsu~j! and
w~j! within a domain wall obtained by
numerical integration forh50.6 and
various values of the domain wall veloc
ity: a—v50.05c, b—v50.5c. The
solid and dashed curves correspond
domain walls with small and large ener
gies.
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field and velocity that are not very small; see Fig. 3. The
fore, in order to obtain approximate expressions that
valid for moderate values of the field~h of order 0.5–0.6!,
we investigated the form of solutions that can be obtain
using the approximationw5const in more detail, withou
assuming that the fieldh is small.

In experiments the fieldH' is usually large compared t
the anisotropy field in the basal plane. From Fig. 2 it is cl
that if the fieldH' is of the same order as the anisotro
field in the basal planerHa , then the contribution ofh is
more important than the contribution ofr. This is a general
property forh>r; hence, in what follows we will investigate
only the caser50. The distributionu~j!, which can be ob-
tained from Eq.~8!, takes the following form forr50:

D2@~u8!21~w8!2 sin2 u#2sin u2h cosw)250.

Integrating this expression forw5const yields two pos-
sible solutions. One is described by the expression

tan
u

2
56A12h cosw0

11h cosw0
tanhS jA12h2 cos2 w0

2 D ,

u5
p

2
2u, ~14!

while the second is obtained from Eq.~14! by replacing tanh
with coth.

Whenw050, p these functions describe the exact dist
bution u~j! for a motionless wall. Ifw050 we need to
choose the solution~14!; then as j→6`, u→u0 and
u→p2u0 . In order to describe the less favorable wall wi
w05p we need to choose the second solution; then
j→6`, u→2u0 and u→p1u0 , using the notation
sinu05h. Although the functionu~j! approaches differen
limits asj→6` for w050 andw05p, far from either type
of domain wall the values of the projection of the magne
zation are the same and correspond to the two possible e
librium values of the magnetization in the ferromagn
mz5cosu56A12h2, mx5sinu cosw05h. Note that the
solution forw05p can be written in a different but equiva
lent form by using the functionu~j!, defined for 0,u<p/2
and associated withw05p, to treat the caseu,0 by replac-
ing w0 by 0 andu~j! by 2u(j) ~in the numerical integration
we usually find exactly this type of solution; see Fig. 3!.
Therefore, whenvÞ0, i.e., for arbitrary values ofw0 , Eq.
~14! gives a good approximation to the distributionu~j! near
the center of the domain wall.

The functionI (v) can be obtained in explicit form from
the single assumptionw5w05const. This function has the
form

I ~v !5A12h2 cos2 w01h

3Fp22sin21~h cosw0!Gcosw0 , ~15!

where w0 is determined by Eq.~11!. For r50, h→0 this
expression becomes the asymptotic formula~13! we obtained
above, while forw50, p it gives exact values for the energ
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of a motionless domain wall. For smallh Eq. ~15! gives a
fairly good description of the exact functionI (v) obtained
numerically. Whenh50.6 the discrepancy at high enoug
velocities does not exceed 10%, and the value of the limit
velocity obtained is accurate to about a percent; see Fig

Thus, we may conclude that although Eqs.~15! and~14!
are not rigorously justified for a moving domain wall, the
give a good description both of the structure and the ene
of the wall ~or its coefficient of friction; see below!, prima-
rily because the value of the anglew in the solution changes
slowly near the wall center. This explains why the low-fie
expressions for the dependence of the limiting velocity
field describe the experiments and numerical data so wel
to fieldsH';0.6Ha .

4. BIFURCATION OF SOLUTIONS AT LARGE FIELDS

We begin our analysis of the strong-field case with t
limit Ha2H'!Ha . In this limit, which is reasonable whe
r50, the angleu5p/22u between the ground-state magn
tization of the ferromagnet and the transverse field is sm
u5p/22u<u0 , u05A12h2!1. As in the analysis of Ref
7, we can assume that the quantitiesu andw are small within
the domain wall; as we will verify below,w<uu0!u. The
smallness of these parameters implies that we can use
linearized versions of Eq.~6!, while in Eq.~5! we keep only
the simplest nonlinear term~cubic inu!. Then this system of
equations takes the form

D2w92hw5vu8/c, ~16!

D2u91u~u0
22u2!52vw8/c. ~17!

It is easy to write the formal solution of Eq.~16! in the
form

w52
v
c

~L !21u8, L5h2D2
d2

dj2 . ~18!

Applying the operatorL to both sides of Eq.~17! and
taking Eq.~18! into account, we obtain a fourth-order diffe
ential equation foru:

FIG. 4. The functionI (v) for h50.6. The solid curve was plotted based o
Eq. ~15!, the dots are the result of numerical calculations. The quantityvc /c
equals 0.9302; using Eq.~12! gives a value 0.9425.
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dj4 S c2D dj2 2 0

5
3

2 Fu2
d2u

dj2 12uS du

dj D 2G , ~19!

where only the leading terms inu andu0 are retained in each
term.

We now analyze this equation. Above all, note that
width of a domain wall is large compared to the quantityD,
which characterizes small fields. Indeed, by virtue of E
~19!, the domain wall width is in order of magnitude equal
(12v2/c2)21/2u0D or u0

21/2D for 12v2/c2@u0 or
u12v2/c2u,u0 respectively, and the ratio of the width of th
domain wall ash→1 to its h'0 width always contains a
negative power of the small parameteru05A2(12h). The
estimates we will obtain for the scale of the gradients in
domain wall show that terms on the right side of Eq.~16! are
small for all values of the velocity. Neglecting these term
and introducing the variablec5u/u0 , which depends on the
argumentz5u0

1/4j/D, we can write this equation in a un
versal form that depends only on the single parameterA:

2
d4c

dz4 1A
d2c

dz2 1c~c221!50, A5
v22c2

2c2u0
. ~20!

In this approximation, it is easy to obtain forI (v)

I ~v !52u0
5/2J~A!, J~A!5E

0

`

~dc/dz!2dz. ~21!

Over a wide range of velocities fromv50 to v;c, but
with 12v2/c2@u0 , it is not important to include the fourth
derivative in Eq.~20!. This leads us to the Lorentz-invarian
equation of thew4 model,7 which has the following form in
the case of interest to us, i.e., a simple wave:

D2S 12
v2

c2D d2u

dj22
1

2
u~u22u0

2!50. ~22!

Using the well-known kink solution to this equation, it
easy to write the distribution of magnetization in a movi
domain wall as

u5
p

2
2A12h2 tanhFy2vt

D~v ! G ,
w5

v~12h2!~c22v2!21

cosh2@~y2vt !/D~v !#
, ~23!

where D(v)5DA12h2/A12v2/c2 is the thickness of the
domain wall in this approximation, i.e., fo
(12v2/c2)@A12h2. It is easy to see that the conditio
w!p/22u!1 is satisfied for (12v2/c2)@A12h2. From
Eq. ~23! it follows that as the domain wall velocity increas
its thickness undergoes a Lorentz contraction and decre
to a value of order@a2/b2(12h)#1/4 when (12v2/c2)
;A12h2. The Lorentz invariance of the equation of thew4

model Eq.~22! implies that the dependence of the doma
wall energy on its velocity is given by the expression

I ~v !5~A12h2/3!/A12v2/c2 for h'1,

~12v2/c2!@A12h2.
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we are forced to analyze the fourth-order Eq.~20! in full.
Unfortunately, this can only be done numerically. Howev
the problem is simplified by the fact that the limiting veloci
ash→1 is close toc, differing from it by a quantity of order
cA12h2. We can expect that the value ofvc lies in the
interval between the bifurcation valuesv (1) andv (2) , where
v (6)5c(16A12h2). In any case, it cannot exceed th
phase velocity of spin wavesv (1) . Therefore, it is sufficient
to investigate the fourth-order Eq.~20! numerically for val-
ues of the parameterA in the interval fromA51 to A5
21, corresponding tov5v (1) and v5v (2) respectively.
Since Eq.~20! depends onv andh only through the univer-
sal parameterA, data obtained for one value ofA determine
the structure of the domain wall for various values ofv and
field H' .

Numerical integration of Eq.~20! shows that forA,0
~i.e., v<c!, only solutions of the ‘‘ordinary’’ domain wall
type exist; see, e.g., Eq.~23!, for which the angleu varies
monotonically. WhenA.0 (v.c), the asymptotic form of
this type of solution becomes nonmonotonic. This nonmo
tonicity arises from a change in the nature of the singu
points that describe the ground state of the ferromagne
principle, theA.21, i.e.,v.v (2) , solutions should also be
nonmonotonic, but here the effect is not so obvious, and
not apparent when the range of numerical integration is
nite. For A.0 another type of solution also appears w
higher energy. For values ofA that are not too large, this
type can be treated as a cluster of five domain walls, see
5a. Note that here, in contrast to the small-field case o
higher-energy domain wall, there is a nonmonotonicity in t
coordinate dependence of the magnetization components
A increases, the shapes of the various walls approach
another~Fig. 5b!, until a critical valueA5Ac is reached at
which the solutions coincide~Fig. 5c;Ac lies between 0.8229
and 0.8230!. This scenario for reaching the limiting velocit
is characteristic only of nonintegrable dynamic systems,
are solutions consisting of domain wall clusters type or d
main walls with oscillatory behavior, and are discussed
Refs. 9, 15, and 16.

Thus, the limiting velocity of a domain wall can b
found from the conditionA5Ac . It is determined by the
expression

vc5c~11Acu0!.c~110.823A12h2!, h→1, ~24!

and decreases with increasing field; see Fig. 1 above.
In order to find the regions of applicability of thes

asymptotic dependences, we compare them to the results
numerical analysis of the Landau–Lifshitz equations
large values of the fieldh. Here convergence to th
asymptotic limit is slower than in the small-field case.
fact, the function vc(h) does not even decrease un
h.0.89, and the asymptotic form~24! is approached only a
h.0.95; see Fig. 1 above.

The asymptotic dependences of the limiting domain w
velocity on the transverse fieldH' obtained here reveal sev
eral types of behavior with increasing field: linear increa
for small fields, as in Eq.~12!, and square-root behavior fo
large fields, as in Eq.~24!. As we have noted, the domai
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wall velocity is limited by the merging of the upper an
lower branches at the bifurcation valuev5vc . However, the
domain walls for the upper and lower branches are qua
tively different for small and large fields. As we discover
in the previous sections, the low-field and high-fie
asymptotic expressions are correct forh,0.6 andh.0.95
respectively. There remains the question of how the dom
wall behaves in intermediate fields 0.6,h,0.9, and how the
transition from one type of behavior to another takes place
the field increases. Although the problem exhibits no univ
sality in the general case, forcing us to investigate soluti
that depend on two parameters, i.e.,v andh, we will show
that a fairly complete picture can be given without a partic
larly high computational cost.

As we noted above, two types of wall exist for sma
fields, for which the functionI (v) is given by a closed curve
containing two branches—an upper and a lower; see Fig
and 4 above. In fact, nonintegrable systems exhibit a
quence of such curves that lie on top of one another.16 The
top curves correspond to solutions in the form of doma

FIG. 5. Form of solution for various values of the parameterA: a—A50
(v5c); b—A50.5; c—A50.8.

522 JETP 85 (3), September 1997
a-

in

as
r-
s

-

2
e-

-

of a domain wall from the lower curves; therefore, they us
ally are not discussed.

However, in our case the situation is otherwise. Larg
magnetic fields make walls with antiparallel orientation
H' andM ~0!, which are characteristic of weak fields, eve
less favorable energetically. However, such fields also
crease the amplitude of the oscillations in the magnetiza
of the domain wall until such domain walls become adva
tageous. Hence, increasing the field causes the upper br
of the ‘‘old’’ curve to rise, while the upper ‘‘new’’ curve
drops. At sufficiently large fields it is necessary to study
of these solutions. In particular, as Fig. 6a shows, for val
h>0.8, plots of the functionI (v) for the new and old solu-
tions intersect nearvc . At points of intersection, the walls
that correspond to the two different curves differ strong
from one another, i.e., walls of different types cannot li
with one another. It is typical of the old solutions that th
nonmonotonicity of the functionu~j! is weak, and the value
of w at the center of a domain wall corresponding to t
upper branch is fairly large. The new solutions are char
terized by larger nonmonotonicity of the functionu~j!.

As the field increases, the two upper branches of
function I (v) approach one another. When the characteri
valueh5h* '0.88 is reached, they merge~see Fig. 6b!, and
then the curves break up and the branches reconnect
that the upper and lower branches for both functions ‘‘st
together.’’ At still larger fields, the curves diverge, and
newly formed upper curve, in which the value ofw at the
center of the wall for both domain walls is not small, rapid
moves upward; see Fig. 6c.

We illustrate the system behavior nearh50.88; see Fig.
7. The two low-energy domain walls belonging to differe
branches forh,h* are qualitatively similar to the domain
walls obtained in the high-field limit~as shown in Figs. 7a
and 5 above!. In these walls, the anglew is relatively small.
The angleu in the domain wall with smaller energy varie
essentially monotonically with the coordinatej, while u~j!
for the higher-energy wall~of this pair! exhibits strong os-
cillations, but basically between the valuesp/2 andu0 , i.e.,
there is not much movement ‘‘downward.’’ For the pair
domain walls with larger energy the situation is opposi
they are more similar to domain walls at low fields~see Fig.
7b and Fig. 3 above!. In these two domain walls the anglew
is large, and in the center of both domain walls it is close
p/2 and the amplitude of the change inw considerably ex-
ceeds the amplitude of the change inu. In these walls we
also observe an abrupt dip inu~j! whenj<D; in the neigh-
borhod of this dip,w goes to zero.

Thus, the four domain walls observed in the transiti
region ath;h* are qualitatively similar to the ‘‘low-field’’
and ‘‘high-field’’ domain walls described above. The wa
with almost monotonic variation ofu andw always has the
lesser energy. The casesh.h* andh,h* differ in that for
relatively small fields a domain wall with monotonic varia
tion of u and w belongs to the same curve as the low-fie
wall and continuously transforms into it, while for large
fields it continuously transforms into a high-field doma
wall.
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Thus, our analysis of the Landau–Lifshitz equation n
only demonstrates the validity of the approximate solutio
we have obtained for large and small fields, but also allo
us to establish their range of applicability. In the general c

FIG. 6. The function I (v) for various values of h: a—h50.85;
b—h50.88; c—h50.9.
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approximate solutions describe only two of them—those t
possess the smaller energies. The two walls with larger
ergies do not appear within our approximate treatment
the reasons discussed above. At small fields these walls
characterized by nonmonotonic changes inu~j! andw~j!, and
necessarily cannot be described by trial functions of ty
w(j)'w05const. At large fields the higher-energy walls a
not low-amplitude walls.

The presence of several types of domain walls makes
question of their stability a crucial one. It is likely that on
those walls with minimum energy are stable, as in t
Walker model; see Refs. 1 and 4. More detailed analysis
this problem is beyond the scope of this paper.

5. BRAKING AND THE CHARACTER OF FORCED MOTION
OF DOMAIN WALLS

Calculation of the braking force on a domain wall a
dresses an important problem in the physics of magneti
namely that of relaxation of elementary excitations in ma
nets, both linear~e.g., magnons! and nonlinear~e.g., topo-
logical solitons that describe the domain walls!. Usually, the
braking of domain walls is studied using the Landau
Lifshitz equations with a relaxation term of Hilbert form
However, this approach is not always correct. In particula
is known that its use in calculating the decay rate for atte
ation of magnonsg(k) leads to qualitative contradiction
with experiment and the results of microscopic theory.

In describing the dynamics of domain walls, an impo
tant parameter is the force of viscous frictionf that acts on a
domain wall moving with velocityv per unit wall area, i.e.,
f 52h(v)v, whereh(v) has the sense of a nonlinear coe
ficient of viscosity. Calculation ofh(v) for domain walls
based on the Landau–Lifshitz equation with the standard
laxation term leads to a number of inconsistencies with
periment~see the discussion of this question in Refs. 2,
17–19, and 21!.

In Refs. 17 and 18, Bar’yakhtaret al. proposed a gener
alized phenomenological theory of relaxation in ferroma
nets based on taking the dynamical symmetry of the mag
into account. In this theory, relaxation terms of various kin
are introduced~exchange and relativistic! that lead to correct
expressions for the dependence of the magnon decay
g(k) on wave vectork, and make it possible to describe
number of experiments on the dynamics of magnetic s
tons. The authors of Ref. 12 noted that their measuremen
the dependence of domain wall motion on the magnetic fi
H' perpendicular to the axis of easy magnetization could
quantitatively described using this theory~a separate calcu
lation of the viscosity coefficient for small velocities wa
given in Ref. 10!.

The generalized theory is based on the Landau–Lifs
equation~1! for the magnetization with a relaxation term o
the form

R5gM0LF2lea
2gM0¹2F.

Herele is the exchange relaxation constant andL is a tensor
of relativistic relaxation constants; see Refs. 17 and 18
below. For a rhombic ferromagnet the tensorL can be cho-
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FIG. 7. The functionsu~j! andw~j! within a
domain wall obtained by numerical integra-
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e
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tion for h50.88 andv51.2c. Only half of
each curve is shown; the second half is ea
ily reproduced by following the rules
u(2j)5p2u(j), w(2j)5w(j) ~see Figs.
3 and 5 above!. Plot a corresponds to a pai
of domain walls with lower energy, plot b to
a pair with higher energy. In each figure th
solid and dotted curves correspond to d
main walls from a given pair with low and
high energies respectively.
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magnetlx5ly5l. When only intrinsic relaxation processe
are included, thez-projection of the total magnetization i
conserved, and hencelz50.18 If, however, impurity-induced
relaxation is included, the tensorL for ferrite garnets has
cubic symmetry, i.e.,lx5ly5lz .20 Although the magnetic
symmetry is reduced in large magnetic fields, in the inter
of simplicity we choose to limit ourselves to tensorsL that
are diagonal,

L5l diag~1,1,«!, ~25!

while not yet specifying the value of the constant«.
The rate of energy dissipation of a domain wall, or t

coefficient of nonlinear viscosity, is directly determined by
dissipation function

dE/dt522Q, h~v !52Q/v2.

Taking Eq.~1! into account, we can write the dissipativ
function of the ferromagnet as a functional of the effect
field F17,18:

Q5
1

2
gME dr$l ikFiFk1lea

2~¹•F!2%. ~26!

In order to analyze the braking of domain walls we mu
derive the dissipative functionQ in terms of the time deriva-
tive of the magnetization. Therefore, in order to comp
h(v) we must expressF in terms ofm and its derivative. By
virtue of Eq. ~1!, the effective fieldF can be written in the
form of two terms that are respectively perpendicular a
parallel to the magnetization. The value of the parallel co
ponent ofF is associated with changes in the length of t
magnetization vectorM , and in principle it cannot be found
from the dissipationless Landau–Lifshitz equation. Howev
if we assume that~i! the exchange interaction is sufficient
small (le!lD2/a2), and ~ii ! the domain wall velocity is
less than the characteristic velocityv* (v!v* 5glMD/x),
whereD is the width of the domain wall, andx is the longi-
tudinal susceptibility of the ferromagnet~the susceptibility
for paramagnetism!, then we can write the dissipation func
tion explicitly as a quadratic form involving]mi /]t ~see
Ref. 21 for details!.

Let us discuss how realistic these inequalities are. A
proximation~i! is realistic for a broad class of ferromagne
including weakly anisotropic yttrium iron garnet and epita
ial films of ferrite–garnets used in magnetic-bubble str
tures. For these materials, the physical reasons for the sm
ness of the exchange interaction are different: for yttri
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magnetization in the domain walls, while for magne
bubble materials it is that the constantl is large; see Refs. 11
and 19.

As for inequality~ii !, the quantityvc can be rewritten in
the formvc5c(l/bx)@D(h)/D(0)#. For smallh this quan-
tity contains the ratio of the small parametersl andxb; thus,
we may assume that it is of orderc, while vc!c. For large
h;1, vc5c, but the right-hand terms of both inequalitie
contain powers of the large parameterD(h)/D. Therefore,
we may assume that neither inequality imposes strong
strictions on the applicability of the theory we have dev
oped to real ferromagnets.

When these two inequalities hold, the dissipation fun
tion can be written as a sum of three terms:

Q5Qr1Qe1Qx , ~27!

each of which admits a simple physical interpretation.
what follows, we will use the fact thatha5Qa /v2 ~where
a5r , e, or x!, while in the domain wall
](u,w)/]t52v(u,w)8 ~the dashes denote derivatives wi
respect toj!, to derive expressions for the contributions
these three terms to the viscosity coefficientsh r ,he ,hx .

The quantityh r can be interpreted as the direct cont
bution from relativistic relaxation. In angular variables f
the magnetization vector, and when we choose the tensoL
in the forml diag(1,1,«), the quantityh r can be reduced to
the form

h r5
lM0

g E djH ~u8!2

1sin2 u
«

sin2 u1« cos2 u
~w8!2J . ~28!

For «51 and l ik5ld ik , the expression
(u8)21sin2 u (w8)2 is under the integral sign, and this ex
pression reduces to a dissipative function of Hilbert form

The exchange contribution is defined by the express
he5(M0lea

2/g)*dj(m9•m). Its form in angular variables
which is rather cumbersome, has appeared in many pap
and we will not discuss it here; see Refs. 18 and 21. Fina
the third termhx determines the contribution of changes
the length of the magnetization vector to the dissipation o
soliton.19,21 The explicit expression forhx in our model can
be written in the form
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3$@2 sin2 u~11« sin2 w!23h sin u cosw#8%2.

~29!

This contribution is nonzero only for finite values of th
longitudinal susceptibilityx of the ferromagnet. The role o
‘‘effective relaxation constant’’ in this term is played by th
quantityb2x2/l.

Using these general expressions, we can compute
dependence of the partial viscosity coefficients on the
main wall velocity. The specific calculations can be carr
out analytically in the limiting cases of small and large field
i.e., h, r!1 andh;1. For an exact analysis we compu
ha(v) using the data from numerical integration of the co
plete system of Landau–Lifshitz equations. Once the fu
tion h(v) is found, the dependence of the velocity of forc
motion of the domain wall on the forcing fieldHz is easily
obtained by setting the frictional force equal to the magne
pressure force:vh(v)5HzM0 cosu0. Solving this equation,
it is easy to construct the functionv5v(Hz) for various
values of the problem parameters.

For small fieldsH,0.5Ha , the integrals can be calcu
lated by the same approach as we used above to calculat
integralI (v); see Eqs.~13!–~15!. Since the contribution ofh
is more important than the contribution ofr for h;r, we
give the expressions forr50 here. After some simple trans
formations the contributions of all three mechanisms can
written in the form

h r~v !5
2lM0

gD
I r~v !, he~v !5

2lea
2M0

gD3 I e~v !,

hx5
2M0b2x2

glD
I x~v !, ~30!

whereI a(v) are dimensionless functions similar to Eq.~7!.
In our chosen approximationw5const, the coefficientsh r

and he do not depend on the parameter« in the tensorL.
The quantityI (v) coincides with what we calculated abov
see Eqs.~13! and ~15!. For w5const the general expressio
for the contribution of exchange relaxation leads to the fo

I e~v !5D3E
0

`

~u9!2dj,

which yields

I e~v !5
1

3
~12h2!3/22h cosw0Fp22u02h~12h2!1/2G ,

wherew0 is determined by the velocity of the domain wa
~see Eq.~10! and Eq.~108! below!, and sinu05h.

The form ofI h(v) depends heavily on the ratio ofl and
lz . In the limitslz!l andl5lz , which we expect to hold
for small fields when intrinsic or impurity relaxation pro
cesses dominate, respectively, we have

I x~v,«50!5
16

3
c0

3220 cosw0~hu02c0!
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29h2 cos3 w0~c02hu0!,

I x~v,«51!5
16

15
c0

3~523c0
2!220h cosw0

3@u01hc0~2c0
221!#111c0

3h2 cos2 w0

2
9

2
h3 cos2 w0~u02hc0!, ~31!

whereu05p/22u0 , c05cosu05(12h2)1/2. As h→0, it is
easy to obtain

I x~v,«50!5
16

3 S 12
15

8
ph cosw0D ,

I x~v,«51!5
32

15 S 12
75

64
ph cosw0D ,

and the expressions forhx become those obtained previous
in Ref. 8, while forv!vc and w050 they become the ex
pressions for the linear mobility of a domain wall.10

In all of the expressions in~30! and~31!, the velocity of
the domain wall appears only in the quantity cosw0, from
which by virtue of Eq.~10! it is easy to obtain

cosw056A12v2/vc
2, ~108!

where the lower sign corresponds to a stable domain w
with 0,w0,p/2, and the upper sign to an unstable doma
wall with p/2,w0,p. These dependences ofha(v) on the
velocity v for h,0.5 are in good agreement with the da
from numerical calculations.

It is not difficult to verify that for h!1 the function
v5v(Hz) is essentially linear up to values nearvc , and the
contributions from exchange and relativistic relaxation a
indistinguishable. This function has a characteristic ‘‘lobe
shape, whose width increases with increasing transv
field. The lobe is narrowest for the quantityh r(v), while for
hx(v) it is broadest. As in the Walker model, motion of th
domain wall is possible only when the forcing fieldHz does
not exceed a certain critical valueHc . To leading approxi-
mation in h, Hc5vch(0)/2M0 , i.e., Hc , like the limiting
velocity vc , increases linearly with increasing transver
field h.

In the limit h→1, or u05A2(12h)!1, we will restrict
our analysis to the Lorentz-invariant region (12v2/c2)@u0 .
For the three contributionsh r ,he , and hx , to leading ap-
proximation in the small parameteru0 we obtain expressions
that can be written in a universal form~the universality is
due to the fact that all the velocity dependence results fr
the Lorentz contraction of the domain wall!:

ha5Ca~12h2!n/2/~12v2/c2!k/2, ~32!

wheren51 for h r , n53 for he and hx ; k51 for h r and
hx ; and k53 for he . When «51, which is natural when
h'1, the constantsC are given by

Cr5
4&M0l

3g S b

a D 1/2

, Ce5
8&M0lea

2

8g S b

a D 3/2

,
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Note that all three contributions have different depe
dences on the characteristic parameters (12h2) and
(12v2/c2). As H→Ha and for moderate velocities, the d
rect term from relativistic relaxationh r should become the
dominant one~the contributions ofhx and he contain one
more power of the small parameter (12h2) thanh r does!. In
the limit v→c, the contribution due to exchange relaxati
should dominate since this term increases more abruptly;
Eq. ~32!. When the contributionsh r or hx are dominant, the
dependence ofv on the forcing fieldHz has a form that is
standard for Lorentz-invariant models,

v~Hz!5
mHz

A11~mHz /c!2
, ~33!

wherem is the linear mobility of the domain walls. If, how
ever, the contribution from exchange relaxation domina
the functionv5v(Hz) saturates more rapidly.

Estimates of the discarded terms in deriving Eqs.~32! or
~33! show that these equations are adequate for the prob
within a fairly narrow range ofH'2Ha , specifically when
(H'2Ha)/Ha<1022, for which u0<0.15 and can actually
be considered small. Experiments in this range of fields
quite complicated, primarily due to the low Faraday contr
of the domains. When the inequality (12v2/c2)@u0 is vio-
lated, the results~32! and~33! change. The primary change
that the functionsha(v) have finite values asv→vc . This
gives rise to a limiting value for the field
Hc5vch(vc)/2M0 , such that forHz>Hc, stationary motion
of the domain walls is impossible.

Let us discuss the corresponding behavior predicted
the complete set of Landau–Lifshitz equations. The co
sponding functionsf 5 f (v) or v5v(Hz) differ strongly, de-
pending on which of the contributions dominate. The sha
of these curves are also different for different values of
transverse fieldH' ; see Fig. 8. For clarity these function
are plotted for that choice of effective constantsl, lea

2b/a,
andb2x2/l that produces the same values of the mobility
the linear portions. The exception is the caseh50.27, for
which we plotted the dependence only for the necessa
stable domain wall with the lowest energy.

FIG. 8. Dependence of the velocity of forced motion of domain walls on
forcing fieldHz ~in arbitrary units! for several values of the transverse fie
h ~shown to the right of the corresponding groups of curves!. The circles are
experimental data from the authors of Ref. 6.
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observed in analyzing the limiting cases. For small fields
functions are close to linear, and saturate strongly for la
fields. However, in contrast to the ‘‘relativistic’’ limit of type
Eq. ~33!, a limiting value for the fieldHc always appears for
large values of the field, which is determined by the ma
mum value of the corresponding braking force.

The curves for the contributionh r lie farthest to the left,
followed by the curve for the contributionhe . The contribu-
tion from h r is essentially independent of«. The curve aris-
ing predominantly from the contribution ofhx is farthest to
the right. Whereas for small velocitieshx is essentially in-
dependent of«, values of the critical field for«51 and«50
differ by almost a factor of one and a half. This figure al
shows the experimental points obtained in Ref. 6, which
discuss below.

6. CONCLUDING REMARKS AND DISCUSSIONS OF
EXPERIMENTS

Let us consider the available experimental data. The
pendence of the domain wall velocity on the forcing field f
moderate domain wall velocities~up to the limiting velocity!
and values of the in-plane field up to 0.7Ha were investi-
gated in Ref. 6. The theory we have constructed here i
fairly good agreement with these experimental data. In p
ticular, over this range of fields, the limiting velocityvc in-
creases linearly with increasingH' , and its value is well
described by Eq.~12!.

The authors of Ref. 12 noted that their experimental d
on the dependence of the linear mobility of domain walls
the transverse field are well described by generalized re
ation theory up toH',0.5Ha . However, in order to confirm
the nonlinear theory for motion of domain walls it is impo
tant to ask a subtler question about the braking of dom
walls at moderate velocities. In this case experiment yie
more information, because we can analyze the shape o
curvesv5v(Hz), not just the value of linear mobility. In
agreement with the theory developed above, the shape
these curves differ strongly for various values of the tra
verse fieldH' , and also for various dominant relaxatio
processes; see Fig. 8 above.

In order to compare theory with experiment, the theor
ical curvesv5v(Hz) for the various viscosity contribution
are plotted in Fig. 8 for the same values of the transve
field H' as in the experiments of Ref. 6~H' /Ha50.68,
0.41, and 0.27!. Comparing these data, it is easy to see t
including only relativistic relaxation, which is equivalent t
using the standard relaxation term in Hilbert form, cann
describe the shape of the curve even qualitatively. In fa
whereas for small velocities the experimental points lie
most on a straight line corresponding to the contributionh r ,
as the forcing fieldHz increases we observe clearcut satu
tion. Since forH' /Ha50.27 the authors of Ref. 6 did no
observe saturation, we will discuss only the stronger fields
what follows.

Steady-state motion is observed up to values of the fi
Hz that are considerably larger than we would expect from
theory that takes only relativistic relaxation into account. O
the other hand, when only the termshe andhx are included,

e
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ment. The observed saturation of the functionv(Hz) can be
explained by taking into account the contribution from t
change in modulus of the magnetizationhx, and assuming
that the corresponding effective relaxation const
lx5b2x2/l is several times smaller than the relativis
constantl. Then the theoretical curve in the weak-field r
gion will be essentially the same as the curve for the con
bution h r , which gives a good description of experiment
this region, while the saturation of the functionv(Hz) finds
explanation in the behavior of the contributionhx , which
increases rapidly with increasing velocity. Based on
shape of the curve for the exchange relaxation contribut
it is clear that including it may not improve agreement b
tween theory and experiment, because for saturation we m
assume thatl;lea

2b/a, while in this case the disagree
ment will be appreciable at low velocities. We were una
to make a more detailed fit due to insufficient experimen
data.

Thus, our generalized relaxation theory, taking into
count the contributions from relativistic relaxationh r and
varying modulus of the magnetizationhx , enables us to de
scribe the experimental dependence of the domain wall
locity on the forcing field for various values of the transver
field over the entire range of velocities up to the limitin
velocity. Analysis of these data for the sample used by
authors of Ref. 6 indicates a transition from one relaxat
mechanism to another as the velocity increases. At hig
velocities the contribution to the relaxation from the chan
in the length of the magnetization vector under the action
the effective field created by the moving domain wall tur
out to be important, acting to relaxuM u further towards its
equilibrium valueM0 . The importance of these two contr
butions~h r andhx! was noted by the authors of Refs. 11, 1
and 19 ~in these papers the authors obtained values o
than those given here for the constantsl and b2x2/l, but
this is not surprising since the quantitybx/l can change
markedly from sample to sample!.

Our conclusion that the change in modulus of the m
netization makes an important contribution to the braking
a domain wall may appear strange, since domain wall
namics have been investigated for many years without
previous perception that this mechanism is necessary. H
ever, domain wall motion has usually been investigated
the linear regime.~Nonlinearity in ferrite–garnets without
transverse field is usually associated with ‘‘twisting’’ of th
domain walls,2 and is not discussed here!. In this case the
experiments were designed so that the viscous friction c
ficient of domain walls~or the effective relaxation constan
leff! enters into the theory as an empirical parameter. Un
these conditions, any lack of agreement between theory
experiment is apparent only in the fact that the effective c
stantleff turns out to be different when measured in differe
ways ~based on mobility of domain walls versus, e.g., me
surements of the width of ferromagnetic resonance lin!.
Such differences are well known from studies of vario
ferromagnets.2 It is a more complicated task to describe t
shape of the curvev(Hz), especially when the structure o
the domain walls in the film changes appreciably during
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verse field changes, or in magnets in the region of spin
orientation!, which can change the ratio of the various co
tributions. In this case the first-principles inclusion of re
relaxation mechanisms becomes crucial.
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Donors in a strong magnetic field and elastic magnetic-impurity resonance in

sec-
diamondlike semiconductors
S. M. Dikman* and V. M. Zhilin

Institute of Solid-State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region
Russia
~Submitted 6 February 1997!
Zh. Éksp. Teor. Fiz.112, 975–1010~September 1997!

The possibility of resonance during elastic intravalley scattering inn-type semiconductors is
investigated in connection with the crossing~due to anisotropy of the effective mass! of the energy
levels of excited states of a shallow donor as functions of the magnetic field. The
hybridization of states of different frequencies in the vicinity of a crossing is attributed to the
emergence of a nonzero dipole moment of the excited impurity atom and, accordingly, a
long-range potential, which creates carrier-transport anomalies. The lower part of the donor
spectrum is calculated as a function of the magnetic field in Si withBi^001& and in Ge
with Bi^111& or Bi^110&. A crossing occurs in Ge in the field range 9.9 T,B,16.7 T and in
Si in the field range 10.5 T,B,37.7 T. The characteristic longitudinal relaxation time
and the transverse conductivity, which are determined by scattering at excited donors in the
presence of the hybridization of states, are calculated. ©1997 American Institute of Physics.
@S1063-7761~97!01509-6#
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We propose to investigate the eigenstates of a sha
impurity ~donor! and the transport of charge carriers, whi
depends on scattering by the impurity, in a quantizing m
netic field. Scattering of this kind exhibits several promine
features of the magnetoresistance, which are classified u
the general heading of magnetic-impurity resonances.1,2 For
the most part they are inelastic resonances, which ap
when the energy difference between the excited and gro
states of the impurity is a multiple of the cyclotron energy
the conduction band.3–5 One such inelastic resonance is t
exceptional scattering anomaly observed in tellurium in
magnetic field, where the first~due to intervalley splitting of
the 1s state! and second~type 2p2 state! acceptor excitation
levels are equidistant.6 Finally, there is a phenomenon th
has been predicted theoretically7 but has yet to be observed
elastic intervalley scattering by the impurity potential
magnetic fields corresponding to the condition that the en
gies in two nonequivalent valleys coincide. We emphas
that the principal objective of the present study is to anal
theoretically an altogether new resonance, the possible e
tence of which has been suggested earlier.8,9 Such a reso-
nance is already present in intravalley scattering in b
n-type semiconductors and is associated with the cros
~by virtue of anisotropy of the effective mass! of 2s-like and
2p2-like energy levelsE2s andE2p2

of donor excited states

regarded as functions of the magnetic field. The fields co
sponding to the crossings are special points of magnetic
generacy. This situation, in turn, produces a nonzero dip
moment of the excited impurity atom and, as a result, a lo
range potential that decays as 1/r 2 and leads to anomalies i
the scattering of electrons. The investigation of the pheno
enon primarily subsumes two problems: first, to determ
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ond, to study the behavior of the low-temperature mobility
the vicinity of such an anomaly.

We know that the first problem reduces to the calcu
tion of the states of the shallow impurity in the nondegen
ate zone in a strong magnetic field and is obviously of in
pendent interest. It has been investigated in a numbe
papers both experimentally~in Refs. 10–12 for Si and in
Ref. 13 for Ge and GaAs! and theoretically~by perturbation
theory for Si in Ref. 14 and by the application of a vari
tional method to Ge in Refs. 15 and 16!. It is interesting that
the theory in this case reduces to a combination of two w
known problems of single-particle quantum mechanics:
problem of the hydrogen atom in a strong magnetic field~the
so-called quadratic Zeeman effect17–29! and the problem of a
donor with uniaxial anisotropy of the effective mass.30–34 In
both cases the Schro¨dinger equation is two-dimensional b
virtue of axial symmetry, but it cannot be solved analytical
Of little use are asymptotic expressions obtained in the l
iting cases of large and small dimensionless parameters c
acterizing the strength of the magnetic field or the anis
ropy. For example, the parameter in the quadratic Zeem
effect is the magnetic field reduced to dimensionless form
the Elliott–Loudon criterion:23 B5(\3k2/e3m2c)uBu ~B is
the field in standard units,k is the static permittivity, andm
is the effective mass!. The perturbation series inB2 yields a
satisfactory result in the determination of the state wa
functions only forB,0.1– 0.15~Refs. 14 and 22!, and the
asymptotic solution in strong fields23 is valid for a large
value of lnB, which is experimentally unrealistic, at lea
for Si, Ge, and GaAs. A similar situation is encountered
the ratiog5m' /mi characterizing the anisotropy. For sma
values ofg the true parameter is actuallyg1/3 ~see Ref. 30!,
and even for germanium~in which g50.05134! the
asymptotic result obtained in the limitg→0 gives a large
error.

5288-20$10.00 © 1997 American Institute of Physics
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these problems was a variational method~see, e.g., Refs
15–21, 30–32!, which yields a good result for the energ
levelsEi(B). As a rule, however, despite the ease of visu
ization of the final result, the method is not suitable for fin
ing the state wave functions. This fact has been demonstr
conclusively by Turbiner21 in a comparison of the quadru
pole momentQzz of the hydrogen atom in the ground state
a field B50.1, determined from perturbation theory, wi
the corresponding values calculated on various types of
wave functions determined in the course of solving the va
tional problem. The result forQzz is found to be extremely
~to the extent of a difference in order of magnitude! depen-
dent on the type of trial wave functions chosen, even tho
the calculated ground-state energy is scarcely sensitive to
form of the trial functions. In strong fields, beginning a
proximately with B*10, a more accurate approach is t
so-called adiabatic method of approximate separation
variables used some time ago in Ref. 23,1! ~see also Ref. 24!,
but the value ofB obtained experimentally in a semicondu
tor, as a rule, is considerably lower.

It is important to mention so-called exact method
which are used extensively, especially in recent times.
concept involves two types of solutions. The first type is
numerical solution of the problem, which provides, in pri
ciple ~on an ‘‘ideal’’ computer!, a means for finding the en
ergy levels and wave functions with arbitrarily high acc
racy. Solutions of this kind have been obtained for t
hydrogen atom in a magnetic field25–28 and for a donor in
zero field.33 The second type of solution is a realistic analy
cal solution of the problem. The result obtained for a rad
wave function in this case is represented by a series inr , in
which the coefficients of the expansion are calculated a
lytically by a recursive procedure. A fairly general descr
tion of this method is given in Ref. 34, along with an illu
tration of its application to the donor problem. In applicati
to the hydrogen atom, an exact solution of the second t
has been obtained very recently29 with the attainment of an
unprecedented number of significant figures in the ene
spectrum computations. The second type of solution actu
implies a dramatic reduction in the computing time fro
Refs. 25–28, and 33. The accuracy of all these calculat
far surpasses the accuracy of the effective-mass metho
self, which is the method used in constructing the band st
ture model for semiconductors, and is excessive for our p
poses. Moreover, the state wave functions are determine
a very cumbersome form and are unsuitable for subseq
calculations. Finally, it must be borne in mind that the pr
cipal axis of the effective-mass ellipsoid in our case, gen
ally speaking, is not in the same direction as the magn
field. The Schro¨dinger equation, in principle, becomes thre
dimensional, so that an exact solution of either the first or
second type will scarcely be feasible for the combined pr
lem in the near future.

The sum total of these considerations has convinced
of the need to return to a variational method in solving
spectral problem. A key issue is the choice of the type of t
wave functions~Sec. 2!. We draw on the ideas of Refs. 2
and 21, so that the form of the functions is largely det
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asymptotic properties of the sought-after solutions. In
final analysis, this approach in any case affords the poss
ity of calculating the matrix elements of the dipole and qua
rupole moments~as verified by several direct and indire
tests! within error limits fully compatible with the limits of
the effective-mass approximation. The results of the calcu
tions are given for Si and Ge in Sec. 3, based on the t
dimensional Schro¨dinger equation~effective-mass ellipsoid
oriented along the fieldB!, and in Sec. 4 for the three
dimensional problem~B perpendicular to the principal axi
of the valley!.

Finally, Sec. 5 is devoted to the second of the abo
mentioned problems, i.e., the magnetic-impurity resona
problemper se. Here we calculate the principal contributio
to the longitudinal and transverse impurity conductiviti
near the point of intersection of the levels for silicon wi
Bi^001& and for germanium withBi^111& Bi^110&. We rely
on the well-known theory2,35 first formulated decades
ago.36–38 However, it is impossible to make direct use
published results for the point and Coulomb potentials,
cause in our case the conductivity is governed by scatte
at an uncharged impurity, which nonetheless exerts a lo
range influence. We consider the case in which the m
contribution is from small-angle carrier scattering at d
tances much greater than the effective Bohr radius of
donor. The interaction potential can be assumed to dep
only on the free-carrier coordinates, and phenomena ass
ated with the three-body problem39 can be disregarded. Re
sults are obtained in final form for Si in a fieldB directed
along ^001&.

In Sec. 6 we discuss possible experimental verificat
techniques. We call attention to the fact that resonanc
mentioned strictly in the terminological sense. IfBiz holds
and the electric field satisfiesFiy, the experimental magne
toresistance must be expected to exhibit nonmonotonic
havior in the graphs ofrzz(B) and dryy(B)/dB near the
corresponding valueB5B0 . A certain complexity is also
created by the need to ensure the existence of free car
simultaneously with neutral~but excited!! donors in the
sample. All the same, we believe that the predicted phen
enon is fully observable at least for such a material as g
manium. Also in Sec. VI, on the basis of the now know
donor spectrum, we predict the possibility of other types
resonances and indicate the expected resonance values
magnetic field.

Some of the results pertaining to the solution of the sp
tral problem for a donor in Si have been publish
previously.8,9 We give them in Secs. 3 and 4 without an
further citation, along with calculations of the wave fun
tions and energy levels of other excited states.

2. CHOOSING THE TRIAL FUNCTIONS; DESCRIPTION AND
JUSTIFICATION OF THE METHOD

We intend to solve the Schro¨dinger equation in a uni-
form field B with the effective-mass Hamiltonian for a non
degenerate energy band. We consider only the cases of h
est symmetry, where the magnetic field is strictly parallel
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effective-mass ellipsoid, with more detailed attention giv
to the first configuration.

2.1. Magnetic field aligned with the axis of revolution of the
effective-mass ellipsoid (two-dimensional problem)

The substitutionz5z8Ag and the normalization of quan
tities to dimensionless form reduces the Schro¨dinger equa-
tion to

S 2
1

r

]

]r
r

]

]r
2

1

r2

]2

]w2 2
]2

]z82 2 i B
]

]w
1

1

4
B2r2

2
2

Agz821r2D C5EC. ~2.1!

This process transfers the anisotropy into the Coulomb te
The dimensionless quantities are referred to the follow
units of length, energy, and magnetic field:2!

aB5
\2k

m'e2 .~99.9, 31.7! Å,

m'e4

2\2k2 .~4.68, 19.94! meV,
~2.2!

e3m'
2 c

\3k2 .~6.59, 65.6! T.

The first number in each pair applies to germanium, and
second number to silicon. Equation~2.1! is written in cylin-
drical coordinates and is in fact two-dimensional, since
dependence on the anglew is characterized by the quantu
number m (C}eimw!. To justify the choice of trial wave
function, all the same, it is advisable to use spherical co
dinates as well:r 5Ar21z82, sinu5r/r, cosw5x/r.

Of first priority is the trial wave function of the groun
state. We substituteC5e2F(r ) into Eq.~2.1! and investigate
the solution of the equation forF in the asymptotic region o
large r ~for fixed anglesu and w! or largeB. To find the
principal terms of the expansion ofF in powers ofr , we can
disregard the Coulomb potential in Eq.~2.1!. As a result, it is
readily established that the principal term of the expansio
the squared term and is uniquely determined irrespectiv
the form of the attraction potential, while the term next
order, i.e., the linear term, is determined to within a const
~independent of the anglesu and w! factor evaluated afte
matching with the solution for finiter :

Fur→`5
1

4
r2uBu1Cuz8u. ~2.3!

It is fairly obvious that it would be incorrect to use th
terms of the expansion~2.3! directly for the ‘‘construction’’
of a trial wave function describing the solution for anyr and
any B, because the first term has an artificial singularity
zero for B, and the second term has the same forz8. This
difficulty is circumvented if the role of the trial wave func
tion is assigned, not to the expansion ofF in r , but to the
expansion of the square ofF with two principal terms in the
form
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In this expressionu, w, andv automatically emerge as th
parameters to be varied and must obey the following rela
asymptotically:

vuB→`5w/uuB→`50. ~2.5!

The term next in order after those included in~2.4! is the
squared term inr . On the other hand, it is the principal term
in the expansion ofF2 in the vicinity of r 50 and determines
the linear term inr in the expansion ofF for the solution of
the Schro¨dinger equation in zero fieldB. For gÞ0 the co-
efficient of the latter term depends on the angleu, and this
dependence, being described by an ordinary differen
equation in the variableu, can be found in principle. Such a
approach, however, would be impractical and in applicat
to the variational method would represent overkill in term
of accuracy. On the other hand, it has been known since
fifties30 that the anisotropy of the effective mass can be ta
into account with complete success by choosing the t
wave functionF in the formAa2(r21b2z82) with thea and
b as the variational parameters. As a result, we concl
with the recommendation that the trial wave function of t
ground state can be modeled over the entire ranges ofr and
B by F~r ! in the form

F25a2~r21b2z82!1A11B2(ur21wz82)

3Az821v2r21
B2r4

16
. ~2.6!

We now turn our attention to the symmetry properties
the desired solutions of the Schro¨dinger equation. The sym
metry group of the effective-mass Hamiltonian isD`d .3! A
unitary representation of this group is used to transform
function ~2.6! and, eventually, the ground-state wave fun
tion.

We seek other solutions of the Schro¨dinger equation in
the form

C i5Rie
2F i, ~2.7!

assuming that the exponent has a form analogous to~2.6!.
Eachi th solution of Eq.~2.7!, of course, is determined by it
own setai , bi , ui ,... of variational parameters of the func
tion F i . The symmetry of the solution is determined entire
by the functionRi(r ). We also require that the functionRi

increase at most by a power law for larger . Specifically, the
following relation must hold for any fixed asymmetric dire
tion specified by the anglesu andw:

Ri ur→`}r N21, N>1, ~2.8!

whereN is a positive integer, which can be interpreted as
principal quantum number of the state. The complete se
all quantum numbers identifying the solution of the Sch¨-
dinger equation is described by the indexi . We recall that
the azimuthal numberm is already known. It is readily
shown that the restrictionumu<N21 follows from condition
~2.8!.
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which the functionRi is transformed. The form of this rep
resentation is obviously not in any way connected toN, but
in general depends onm. In particular, if mÞ0, the repre-
sentation corresponding toRi cannot be unitary. We conside
only the lower part of the spectrum, i.e., states whose e
gies are below the zeroth Landau level~in any case for fields
B lower than a certain finite value! and which go over to
states of the discrete part of the Coulomb spectrum in
limits B→0 andg→1. We can therefore classify the inve
tigated solutions of Eq.~2.1!, retaining the notation of the
corresponding Coulomb state. Letter indices govern the
resentation for whichRi is the basis function. The ground
state indexi is obviously 1s. We also look at other solution
of the Schro¨dinger equation~2.1! with i 52s, 2pm , 3pm

(m50,61), 3d61,62 . With these considerations in mind w
choose the functionRi in the form

R1s51, R2s5Q2s , R2p0
5z8, R2p61

5re6 iw,
~2.9!

R3p0
5z8Q3p0

, R3p61
5re6 iwQ3p21

, R3d61
5z8re6w,

R3d62
5r2e62iw,

where

Qi512ciAmi
21Az821di

2r21si
2~r21t i

2z82!. ~2.10!

All that requires explanation, obviously, is the form of th
functions~2.10! governing the preexponential factor for th
2s, 3p0 , and 3p61 states. Thus, for the 2s state the condi-
tion ~2.8! can also be satisfied by the functio
12cAz821d2p2 in the role ofR2s , but then in the range
r &1 ~it is primarily in this neighborhood that the preexp
nential function is significant! we confine the discussion t
the two principal, first- and second-order, terms inr for the
preexponential factor of the trial wave function. We find th
the inclusion of the next, squared term greatly improves
accuracy of the variational calculation. On the other ha
the simple addition of this term to the preexponential fac
would violate the rule~2.8!. In the final analysis Eq.~2.10!
represents the most natural alternative for taking both
quirements into account. The caseB50, g51 corresponds,
for example, to the following exact values of the coefficien
in Eq. ~2.10!: di5t i5mi51, si51/2, c2s51/2,
c3p0

5c3p21
51/4. We call attention to the fact that the d

mensionless energies in states differing only in the sign
the quantum numberm differ by 2umu; accordingly, the
wave functions of these states have the same dependen
r andz8.

It is evident from Eqs.~2.7!, ~2.9!, and ~2.10! that the
functions (C1s ,C2s), (C2p0

,C3p0
), and (C2p21

,C3p21
)

are pairwise nonorthogonal. The corresponding states ar
thogonalized automatically in the course of solving the pr
lem. Here the general analytical scheme corresponds to
used in Refs. 15, 16, and 43 and entails the following.
assign the index 1 to the first state of the pair in equati
and assign the index 2 to the second state in the pair. Var
the parametersa1 , b1 ,..., primarily, we find the optimum
wave functionC1 minimizing the functional
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HereH is the dimensionless Hamiltonian@the operator act-
ing onC on the left-hand side of Eq.~2.1!#. From the known
function C1 we then transform at once to the different ba

C185C11C11C12C2 ,
~2.12!

C285C21C11C22C2 ,

where the coefficientsCi j must be determined by two re
quirements: 1! ^C18uC28&50; 2! the quantities
E i^C i8uHuC i8&/^C i8uC i8&, treated as functions ofCi j for
given C1 andC2 , must each be a minimum.

As a result, the search forCi j is the simplest application
of the Ritz method~see Ref. 44 and the Appendix in Ref. 4!
and reduces to the determination of the rootsE1,2 of the
equation detuH2EYu, whereH andY are matrices with ele-
ments Hi j 5^C i uHuC j& and Yi j 5^C i uC j&. The required
coefficients are found as eigenvectorsCi5(Ci1 ,Ci2) corre-
sponding to the nontrivial solution of the homogeneous l
ear system (H2E iY)Ci50. Finally, the larger of these two
roots, specificallyE2 , is regarded as a functional on th
space of functions C2 . Varying the parameters
a2 ,b2 ,...,c2 ,m2 ,..., we findmin(E2), which gives us the
energy in state 2, and the corresponding value of the rooE1

gives the energy in state 1. The latter quantity is therefor
‘‘corrected’’ version of the value~2.11! already found in the
first stage of the solution. The normalized functionsC1,28 are
treated below as eigenstate wave functions. For the ortho
nal 3d21,22 states, naturally, the calculations are restricted
the first stage, i.e., minimization of the functional~2.11!.

We call attention to a very important consideratio
which can be exploited to indirectly estimate the compu
tional error. The transformation~2.12! from the functions
C1,2 to the functionsC1,28 formally violates condition~2.8!
for state 1 only if the coefficientC12 has a nonzero value
This is because the functionC2 found by the above-
described method always contains the exponential func
exp(2F2), which decays far more slowly than exp(2F1).

4!

In all the calculations, however, the coefficientC12 for the
given pairs of states is very small in all the calculations,
that the correction introduced by it within our error limits h
no effect whatsoever on the energyE1 . The form of the
function C1 is therefore an auspicious choice. In oth
words, condition~2.8! can be regarded as fulfilled for ou
functions within error limits consistent with the accuracy
the calculations involved. In the calculation of the matr
elements, on the other hand, the correction associated
the coefficientC12 becomes appreciable. Specifically, in ca
culating the quadrupole momentQzz5^ i u2z22r2u i & in the
i 51s, 2p0 , 2p21 states, we have found that the transform
tion C1→C18 changes the value ofQzz somewhat. The
change, which is less than 1% over the entire range ofB,
characterizes the error with which we can find the mat
elements in the given situation. Indeed, strictly speaking
transforming to the optimal basis~2.12!, it would be more
proper, instead of the pair~1,2!, to consider, say, the triple o
states~1,2,3!, in which state 3 has the same symmetry a
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are 3s, 4p0 , and 4p21 , respectively!. Generally speaking, a
correction toC1 of the form C13C3 will be of the same
order asC12C2 , but we drop it. Consequently, the differenc
in the results obtained by means ofC1 andC18 can be used
to estimate the error of the method. To include the te
C12C2 , which characterizes the mixing of derivatives in t
calculations by means of the wave function of state 1, is
necessary, because it is of higher order. Similarly, if the fo
of the functionC2 is correctly ‘‘divined,’’ a correction to
C28 of the formC23C3 should be expected not to affect th
results, at least not within the same error limits of t
method.

The situation is altogether different in regard to the m
ing C21C1 in the second line of~2.12!. Its inclusion does not
violate condition~2.8!, and so there is no reason to expe
C21 to be small. Calculations show that for arbitraryg andB

the coefficientC21 is of the same order asC22, and in all
calculations involving the wave function of state 2,
course,C28 must be used in the form~2.12!.

In addition, there is an abundance of direct and indir
clues to the effect that the wave functions found in o
method are suitable, within fully acceptable error limits, f
calculating both diagonal and off-diagonal matrix eleme
of the dipole and quadrupole moments. Following are so
of these clues. First of all, in all the calculations we find th
condition ~2.8! applied to the asymptotic form always pro
duces a wave function such that the equationC1,28 (r )50 has
N21 real roots inr for fixed anglesu andw. Although we
lack rigorous proof of the necessity of this condition, it do
seem natural and obviously correlates with the oscillat
theorem for the one-dimensional Schro¨dinger equation.

An important indirect clue to the validity of the choice o
trial wave function is the fact that the variational paramet
governing the optimal trial function are almost always fou
to be weak, smooth functions ofB for the investigated range
of B. Some of them,a1s and b1s for example, vary so
slightly that their values corresponding toB50 can be fixed
and regarded as constants up toB;10 without any signifi-
cant loss of computational accuracy. For the tw
dimensional problem the only exception from the gene
pattern is the parameterb for the d-states in germanium
which in the optimal trial wave function begins to dro
abruptly atB.0.5 and actually decreases to zero. This
havior, however, does not imply a drastic variation of t
trial function itself, because its dependence onz, beginning
with the same field values, is dictated by the parameterw,
which increases by roughly an order of magnitude in co
parison with its zero-field value. In principle, an apprecia
reduction in the number of variational parameters is adm
sible in our method, but we forgo this operation, first of a
because it is impossible to statea priori which subset of the
set of variable parameters involved in~2.9! and~2.10! is the
best choice and, second, because observing the variatio
the parameters governing the optimal trial wave function
the quantityB is varied provides an extra check on the v
lidity of the calculations. In particular, the attainment of t
asymptotic limit~2.5! has been verified directly forg51.

Direct comparison of our calculations with results o
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problem are made in the next section. Here we
lustrate only one result of direct verification of the groun
state wave function for the caseg51, B50.1. The quadru-
pole momentQzz can be found by perturbation theory and,
three-place accuracy~the second order of perturbation theo
is used, i.e., terms;B4 are taken into account!, is equal to
0.0231. The results obtained after variational calculations
ing various types of trial wave functions are given in Ref. 2
their scatter is more than an order of magnitude, withQzz

ranging from 0.2327 to 0.0127 and, in this sense, the ‘‘be
of the trial functions in Ref. 21 corresponding t
Qzz50.0236. On the other hand, the calculation
Qzz5^1su2z22r2u1s&/^1su1s& using our function obtained
from the minimization of the functional~2.11! ~with
a1s50.9990, b1s51.0002, u1s51.06531023, v1s53.129,
and w1s51.29131023! yields a value that agrees with th
perturbation-theoretic result out to three significant figure

2.2. Magnetic field B perpendicular to the axis of revolution
of the effective-mass ellipsoid (three-dimensional
problem)

Let the magnetic field be directed along thez axis as
before, and let the principal axis of the effective-mass ell
soid be directed along they axis. The symmetry group of the
Hamiltonian with allowance for the variation of the vectorB
under spatial transformations isD2h . After reduction to di-
mensionless form according to~2.2! and the substitution
B5B8/Ag, y5y8Ag we obtain the Schro¨dinger equation
in the form

F2
]2

]x2 2
]2

]y82 2
]2

]z2 1 i B8S y8
]

]x
2x

]

]y8D
1

1

4
B82~x21y82!2

2

Agy821x21z2GC5EC.

~2.13!

The guidelines for choosing the trial wave function are
sentially the same as those used in the two-dimensional p
lem. We write these functions in the form~2.7!, requiring
that F i and Ri satisfy conditions~2.3! and ~2.8!, but now
r5Ax21y82 andr 5Ar21z2. The result is a natural gener
alization of Eqs.~2.9! and~2.10!. We consider the six state
for which

F i
25ai

2~z21x21bi
2y82!1A11B82~uix

21kiy82

1wiz
2!Az21v i

2~x21t i
2y82!1B82~x21y82!2/16,

~2.14!

R1s51, R2s5Q2s , R2p0
5hx2 iy8, R2p2

5x1 igy8,

R2p2
5z, R3p2

5zQ3p2
, ~2.15!

Qi512ci

3Ami
21Az21~ l ix!21~diy8!21si

2@z21ni
2~x21qi

2y82!#.

~2.16!
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10–13, i.e., the indices correspond to the indices of axis
metric states in zero field. If we make the transition to t
axisymmetric problem, removing anisotropy (g→1), the
nonorthogonal states~2.14!–~2.16!, 2p0 and 2p1 , go over
to the states 2p21 and 2p11 of the hydrogen atom in a
magnetic field~with g5h51!, while the 2p2 and 3p2 go
over to 2p0 and 3p0 , respectively. AsB8→0, the states
described by the functionsC2p6

must, each independently
go over to the twofold-degenerate 2p61 state of the two-
dimensional problem in zero field~where, as a result, th
solutions of the variational problem must beg→0!.

The pairs (C1s ,C2s), (C2p0
,C2p1

), and (C2p2
,C3p2

)
in the three-dimensional problem are orthogonalized by
same scheme as described above. For the (1s,2s) and
(2p2 ,3p2) states the mixing coefficientC12 in Eq. ~2.12! is
again small~of the order of 1024– 1023 timesC11! and does
not affect the energy of the state. A comparison of the val
of the quadrupole moment calculated by means of the fu
tions C1s andC1s8 or C2p2

andC2p2
8 makes it possible, as

in the two-dimensional problem, to estimate the error ma
in calculating the matrix elements. These estimates show
the resulting wave functions can be used in the thr
dimensional case to obtain results for the dipole and qua
pole moments within 10%. For the 2p0 and 2p1 states, on
the other hand, the orthogonalization~2.12! does not violate
condition ~2.8!, so that no basis exists for expecting the c
efficientC12 to be small in this case. However, a calculati
shows thatuC12u is not more than a few percent ofuC11u, and
the corresponding correction to the energyE1 is on the order
of one tenth of one percent.

3. DONOR LEVELS FOR VALLEYS ORIENTED ALONG THE
FIELD B

The case discussed in this section is encountered in
manium ifBi^111& and in silicon ifBi^001&. The issue here
is ellipsoids of the constant-energy surface which, in the
minology of Refs. 13, 15, and 16, refer to caseA. In light of
the many-valley property the corresponding states in ger
nium are not degenerate, and in silicon they are twofold
generate. In a magnetic field the energy levels of these s
are higher than the levels of the triplet in Ge@three ellipsoids
of so-called typeB ~Refs. 13, 15, and 16! oriented at a
70°328 angle relative to the direction ofB# and the quadru-
plet in Si ~four valleys of typeE; see the next section!.

In this article we stay within the bounds of the effectiv
mass approximation and, hence, completely ignore
chemical shift of the levels and their valley-orbital splittin
that occurs when the potential of the central cell is taken i
account~see, e.g., Refs. 45 and 33!, i.e., the short-range com
ponent of the~as a rule, completely unknown! impurity-ion
field. In reality, intervalley effects are significant only for th
1s state, whose energy levelE1s does not cross energy leve
of other states of the same valley. This implies, in any ca
that the 1s state never participates in the investigated re
nance, so that the value ofE1s(B) and the corresponding
wave function are of not importance to us. On the oth
hand, the type of intervalley splitting for a substitutional im
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scribed qualitatively by means of a group-theoretic analy
analogous to that employed forB50 ~Ref. 45!. An example
of such an analysis is given in Appendix 1 in application
S-states for the magnetic field directions considered in t
article. The only anomaly lies in the fact that the point gro
of directions of a crystal with an imbedded magnetic field
now described by the corresponding magnetic class.

It should be noted that the most systematic quantita
calculation of the wave functions with the central-cell co
rection is given in Ref. 33 for the caseB50. A more primi-
tive calculation of valley–orbital splitting, but now with al
lowance for a finite fieldB, has been carried out for a G
crystal in the same paper, where even in zero field the s
ting of the 2s level is found to far exceed the experiment
value ~cf. Ref. 13 in this regard!. Also, an explicit error is
incurred in Ref. 15 for the caseBi^001&, resulting in quan-
titatively incorrect quadruplet splitting~see Appendix 1!.

First of all, we illustrate zero-field results and compa
them with exact calculations based on the effective-m
approximation33 and with other calculations.31,32 All the re-
sults are summarized in Table I. We note in this connect
that the method used in Ref. 32, although called variation
is really the Ritz method in essence, where the varied par
eters are the coefficients of the expansion of the unkno
radial wave function into a fixed system of simple ba
functions. If the dimensionality of such a basis is not r
stricted in some way, a result is obtainable with arbitrar
high accuracy. In the calculation of the energies of ev
states in Ref. 32 the number of basis functions reaches
In other words, this variational method involves 105 fittin
parameters. Clearly, to use a wave function in this form
subsequent calculations would be impractical in the extre

Table I does not include any experimental data for co
parison. Such measurements for common semiconductor
terials in zero magnetic field have been published some t
ago~see, e.g., the survey in Ref. 46, as well as Ref. 47!, and
they have been analyzed in detail.32,33,41As a result, it is safe
to say that within error limits lower than those of spectr
scopic measurements the energy level calculations in
effective-mass approximation agree with the experimen
values for all excited states except 2s, 3s, and 3d0 , but the
chemical shift for these three levels does not amount to m
than a few percent of the energy itself. A more importa
consideration from our standpoint is to compare the ma
elements found by means of our wave functions with
‘‘exact’’ wave functions. The oscillator strengths of the o
tical transitions toP-states from the 1s ground state have
been calculated.33 The values of the corresponding dime
sionless quantities

guENp0
2E1su

21g
^1suz8uNp0&

2 and
uENp61

2E1su

21g

3^1sure7 iwuNp61&
2, ~3.1!

obtained in Ref. 33~in the effective-mass approximation!
and calculated by us are also given in Table I. The an
brackets in Eq.~3.1! signify averaging in the dimensionles
basisx,y,z ~but not x,y,z8!!. The states are assumed to
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normalized in th !. On the other

TABLE I. Zero magnetic field.

in
in

ing
ct’’
e same basis. Clearly, the agreement withcomponents 2p0→3d21 and 3p0→3d21

State Binding energy, meV
Oscillator

strength~3.1!, 1023

i
Our

calculations Ref. 33 Ref. 32 Ref. 31
Our

calculations Ref. 33

Ge uEi u54.676uE i u @meV#
1s 9.78 ~9.73! 9.78 – 9.78 – –
2p0 4.75 ~4.71! 4.75 4.78 4.74 17.9 18.8
2s 3.58 ~3.49! – 3.60 3.52 – –
3p0 2.57 ~2.54! 2.57 2.59 2.56 2.29 1.91

2p61 1.72 ~1.72! 1.72 1.73 1.73 233 233
3d61 1.26 – 1.27 – – –
3p61 1.04 1.04 1.04 1.03 42.5 40.6
3d62 0.674 – 0.68 – – –

Si uEi u519.94uE i u @meV#
1s 31.25 31.27 – 31.27 – –

2p0 11.48 11.49 11.49 11.51 56.1 57.9
2s 8.85 – 8.86 8.83 – –

2p61 6.40 6.40 6.40 6.40 289 287
3p0 5.48 5.485 5.49 5.48 8.43 7.81

3d61 3.87 – 3.87 – – –
3p61 3.12 3.12 3.12 3.12 55.0 53.9
3d62 2.63 – 2.63 – – –

Notes:Our calculations of the energiesEi of the states of the lower part of the spectrum of shallow donors
Ge and Si are compared with previous calculations31–33 in the effective-mass approximation. The figures
parentheses give the values found in Refs. 15 and 16 for the caseB50. The oscillator strengths~3.1! of the
optical transitionsNpm→1s are calculated forP-states. The next to the last column gives the correspond
dimensionless quantity~3.1!, and the last column gives the same quantity determined from an ‘‘exa
calculation.33
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the exact calculation allowing for the above-mentioned
culiarities of the variational method is fully satisfactory. W
note that the calculations of the matrix elements always g
approximately the same absolute error, which is dictated
the error of the previously determined wave functions. T
relative error increases if the unknown quantity in our
mensionless units is small.

Figures 1 and 2 shows the results of calculations of
spectra of the energy, referred to the zeroth Landau leve
donor excited states in germanium and silicon, respectiv
The crossing of the 2s and 2p21 levels atB59.9 T in Ge
and 10.5 T in Si is enclosed in the box. We call attention
the inversion of the levels of the 2p21 and 3p0 states in
weak fields ~e.g., up to 2 T! in a Ge crystal. Data from
measurements of the absorption lengths from the photo
ductivity in Ge~Sb! ~Ref. 13! are indicated in Fig. 1. A strik-
ing feature here is the fact that the transition energy betw
two states has always been measured in experiments, so
the dependence of the energy onB for one of the spectra
levels must be normalized to the theoretical value. We h
normalized both to the 2p0 level ~dark circles! and to the
2p21 level ~light circles!. As a result, it is evident that nor
malization to the 2p21 level is preferable for determining th
energy of the 2s state. The relative position of the 2p0 and
2p21 levels is determined by adding the Zeeman com
nents of the 2p0→2s and 2s→2p21 transitions. Also, only
if the 2s state is involved can the 3p0 level be determined
from the measurement data in Ref. 13 in fields higher th
2.5 T ~2s→2p21 and 2s→3p0 transitions!, and only below
1 T is this level calculated by means of the difference in
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hand, the 2s state is stronger than the other excited states
is subject to the influence of effects beyond the scope of
effective-mass approximation, primarily effects such as
chemical shift and valley–orbital splitting, as well as broa
ening arising because the position of the impurity center d
not coincide with a lattice site. As a result, the sum or d
ference of the measured components must differ significa
from the true difference in the energiesuE2p21

2E2p0
u and

uE3p0
2E2p21

u. The effect should intensify asB is increased

~as is indeed observed; see Fig. 1!, because as the wav
function becomes ‘‘compressed,’’ the role of the central c
in the formation of the effective potential increases, and
latter differs more and more from the Coulomb potential.
our opinion, this fact~not the computational error! is the
source of the discrepancy with theory, specifically for t
part of the experimental spectrum determined using thes
level.

Experiments in silicon are always performed, of cour
in much weaker dimensionless fieldsB. For example, ac-
cording to measurements of the spectrum of the photoe
tation 1s(A1)→Np61 ~A1 is a unitary representation of th
lower split doublet; see Fig. 7 in Appendix 1! in Si~P!, the
maximum value ofB must be.0.1 ~Ref. 10! and .0.15
~Refs. 11 and 12!. Nonetheless, owing to the anisotropy
the effective mass, perturbation calculations are unsuita
even for determining the state energy~see Ref. 14!, let alone
the wave functions. The application of the Ritz variation
method in the basis of eigenfunctions of Coulomb sta
helps to improve the agreement between calculations
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experiment~see Ref. 11!, but it is difficult to understand the
graphically displayed experimental results in Refs. 11 a
12. The problem is that in these measurements the level
ferences D2p5E2p11

2E2p21
, D3p5E3p11

2E3p21
, and

D4p5E4p11
2E4p21

for the type-A effective-mass ellipsoid
are far from equal~within error limits far exceeding the usua
ones for spectroscopic measurements! to each other or to the
quantity

\V5\eB/m'c.

We do not see any reasonable explanation for this, so
only the experimental data of Ref. 10 forB52 T, 4 T, and 6
T are indicated in Fig. 2, and unfortunately even these
shown only graphically, but for them the equatio
D2p(B)5D3p(B)5\V(B) is satisfied within error limits
fully compatible with the measurement error. Based on
data of Ref. 10 for the type-A ellipsoid, only the energy
E3p21

can be found by normalizing to theE3p21
.

It is useful to compare our results with the correspond
values calculated in Refs. 15 and 16 by a method that dif
from our own only in the choice of the trial wave functio
The comparison is shown partially~for zero field! in Table I.
For other values ofB our calculations give approximatel
1% higher or even lower values ofB2E i than in Refs. 15

FIG. 1. Energy levels of shallow donors in germanium in a fieldBi^111&
for anA-type valley with axis of revolution parallel toB. The energy is read
from the zeroth Landau level of the same valley. Inset: Energies in st
with a positive quantum numberm ~they are calculated by summing th
energy of a level withm,0 with the quantityumu\V!. The edge of the
conduction band~zeroth Landau level of three otherB-valleys!, referred to
the zero level of theA-valley, is represented by a dot–dash line in the m
figure, and in the inset it corresponds to the energy\(VB2V)/2, where
VB5VA118g/3'0.396V. The dashed curve represents the energy of
1s state shifted upward by the amount of the cyclotron energy of conduc
electrons. Its points of intersection with the solid curves determine~in the
effective-mass approximation! the positions of the principal inelastic
magnetic-impurity resonance peaks. The point symbols represent ex
mental data;13 the graphs are normalized to the 2p21 ~s! and 2p0 ~d!
levels.
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and 16. Such a disparity would be imperceptible in t
graphs of Fig. 1. We recall that the important considerat
here is not this somewhat minor refinement of the bind
energy, but the capability of using our wave functions
calculate the matrix elements, which is not offered by t
wave functions used in Refs. 15 and 16.

We shall not give the specific values of the paramet
ai ,bi ,..., obtained from the calculations, assuming that t
calculations can be repeated with comparative ease by m
of modern library programs. We interject one remark. B
cause of anisotropy the parameterui in the optimal trial wave
function is found to be negative in weak fields; the effect
more pronounced for Ge, and it is altogether nonexisten
g51. On the other hand, in calculatinĝC i uHuC j& and
^C i uC j&, the ‘‘cutoff’’ of infinity in the numerical integra-
tion over r and z ~the limit of integration is determined by
the required accuracy! always takes place in the spatial d
main where the exponentF i is a monotonically increasing
function of bothr andz. This operation is possible becaus
the parameterui is always fairly small in absolute value. Fo
example, we haveu524.3831022 in a field B50 for the
1s state in germanium, wherea51.61,b50.549,w50.126,
and v52.74. Out of all the negative values ofui , here we
give the largest in absolute value. AsB increases, the opti-
mal value ofui increases, passes through zero approxima
in the intervalB50.1– 0.7, and continues to increase mon
tonically, remaining positive. This behavior is characteris
of all the calculated states for both semiconductors; the o
exception is the 3p21 state in the sense that the value ofu
for Ge and for Si is positive from the very outset.

We conclude this section with a comparison of the
sults of our calculations forg51 in fieldsB52 and 20 with

es

e
n

ri-

FIG. 2. Energy levels of shallow donors in silicon in a fieldBi^001& for an
A-type valley. The notation is the same as in Fig. 1. The edge of the c
duction band~dot–dash line! is determined byE-valleys oriented along
^6100& and ^0610&. In the figure it corresponds to the energ
\(VE2V)/2, whereVE5VAg'0.456V. The point symbols represent ex
perimental data;10 the graphs are normalized to the 2p21 level.
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the correspondin

TABLE II. Caseg51.

o
ach
-

B

1s 2p21

B2E1s ^1sur 2u1s& puC1s(0)u2
B2E2p21

^2p21ur 2u2p21& u^1sur u2p21&u2

2.044 1.27 2.07 1.198 3.07 0.326
2 2.044@25, 26# 1.27 @25# 2.07 @25# 1.199@25, 26# 3.07 @25# 0.325@27#

1.965@19# 1.46 @19# 2.01 @19# 1.114@19# 4.16 @19#

4.413 0.324 15.2 2.894 0.577 0.0452
20 4.431@25, 26# 0.322@25# 15.1 @25# 2.931@25, 26# 0.598@25# 0.0452@27#

4.097@19# 0.507@19# 15.6 @19# 2.638@19# 1.05 @19#

Notes:Our calculations~the top number in each column! are compared with the exact solution of the Schr¨-
dinger equation25–27 and with variational calculations19 ~the literature sources are given in brackets after e
entry!. To avoid confusion, we make note of the fact that our value ofB is twice the corresponding dimen
sionless field in the tables of Refs. 25–27.
g exact results obtained in Refs. 25–27 and
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with the results of the variational method.19 We illustrate this
comparison for the 1s and 2p21 states. Table II shows th
values of the energyE i along with the quantitieŝi ur 2u i & and
puC1s(0)u2 and the dipole strengthu^2p21ure2 iwu1s&u2/2
for the 1s→2p21 transition. Clearly, our results are ver
close to the exact values, confirming the reliability of t
wave functions determined by our method.

The exact results for the energy states in Refs. 28 and
almost always agree with the results in Refs. 25–27 in
approximation of interest to us, making it redundant to co
pare with Refs. 28 and 29.

It is interesting to observe that in the caseg51 the
binding energy of the 2s state and other ‘‘upper’’ states o
the same symmetry is a nonmonotonic function of the fi
B ~Refs. 25–29!. For example,B2E2s has a weak maxi-
mum and a weak minimum forB.0.15 andB.0.3, re-
spectively. Our calculations confirm this result and a
agree with the data of Refs. 25–29 to at least four signific
figures. On the other hand, forg50.208 andg50.05134 no
such nonmonotonic behavior of the levels of the 2s states is

FIG. 3. Energy levels of shallow donors in germanium in a fieldBi^110&
for E-type valleys oriented alonĝ2111& and^1211&. The energy is read
from the edge of the conduction band~zeroth Landau level
\VE/25\VAg/2!, which is indicated by a horizontal dot–dash line. T
dashed lines represent the energies of the 1s state shifted by\VE and
2\VE . Their points of intersection with the solid curves give~in the
effective-mass approximation! the points of the principal and second inela
tic magnetic–impurity resonance peaks. The point symbols represent ex
mental data;13 the graphs are normalized to the 2p21 ~h! and 2p0 ~j!
levels. The dashed curve represents the conditionally~see text! calculated
energy of the 3p0 state.
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the two-dimensional problem. A direct calculation show
that wheng deviates from unity, the nonmonotonic behavi
of the binding energy for the 2s state smooths out and rap
idly disappears.

4. LEVELS FOR A VALLEY ORIENTED PERPENDICULAR
TO THE MAGNETIC FIELD (THREE-DIMENSIONAL
PROBLEM)

The results of calculations of donor states forE-type
orientation are shown in Figs. 3 and 4. We note that
corresponding energy levels are situated below those
type-A orientation, so that, in particular, the 1s(E) state~see
Fig. 5 below! is the principal donor ground state in silico
for Bi^001& and in germanium forBi^110&. A distinctive
aspect of the three-dimensional problem is the emergenc
a characteristic nonmonotonic behavior of the binding
ergy of the second states in the pairs (1s,2s), (2p2 ,3p2),
and (2p0 ,3p0), which in a certain sense has an origin simil
to that of the nonmonotonicity mentioned at the end of
preceding section.

For example, let us consider the 2s state. For small fields
B the binding energy obviously exhibits a positive shi
linear in the field, due to a displacement of the zeroth Land
level, along with a ‘‘diamagnetic’’ quadratic shift. The fac
that the quadratic shift is toward lower binding energy

ri-FIG. 4. Energy levels of shallow donors in silicon, read from the edge of
conduction band, in a fieldBi^001& for four E-type valleys oriented along
^6100& and^0610. The point symbols represent experimental data;11,12the
graphs are normalized to the 2p2 level.
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dictated by a general consideration: The introduction of
field B in the system lowers the symmetry of the Ham
tonian and the Schro¨dinger equation~2.13!. In the preceding
section we have seen that if the value ofg differs markedly
from unity, the nonmonotonic behavior disappears. In
two-dimensional problem, in fact, the fieldB does not alter
the symmetry of the Schro¨dinger equation, and the quadrat
shift for smallB is not too great. The problem comes clos
to the two-dimensional version for higher values ofB, be-
cause the role of the ‘‘deformed’’ Coulomb potential in th
Schrödinger equation~2.13! becomes smaller than the ter
B82(x21y82)/4. As B increases, the solution should a
proach the solution for the hydrogen atom in the renorm
ized magnetic fieldB8. Now, of course, the binding energ
slowly ~logarithmically! increases. All the same, the min
mum of the binding energy for the 2s state is attained in
germanium and in silicon for physically unattainable fiel
and falls outside the limits of Figs. 3 and 4. For the 3p2

state, on the other hand, both extrema fall within a physic
significant range.

A special approach to the three-dimensional problem
required in calculating the wave function and the energy
the 2p1 state@see Eqs.~2.14! and ~2.15!. This state is the
‘‘upper’’ state in its pairing with 2p0 . Moreover, the same
symmetry is possessed by a state that is naturally lab
with the index 3p0 and must be constructed by means o
trial wave function having a preexponential factor of t
form (h8x2 iy8)Q3p0

with the factorQ ~2.16!. It goes over
to the two-dimensional 3p0 state forB50 (h850) or to the
two-dimensional 3p21 state forg51 ~in which caseh851!.
In the latter case the 2p11 and 3p21 levels cross atB.0.13
~Refs. 27 and 29!. As g deviates from unity, the crossin
changes to an anticrossing, and the states go over to u
hybrid and lower hybrid states, respectively. The anticro
ing zone, on the one hand, tends to shift to the right w
respect toB, since the cyclotron energy decreases~in di-
mensionless units it is 2B852BAg), and the 2p1 level
therefore becomes lower. But then a decrease ing causes the
energyE3p0

for smallB ~to the left of the anticrossing zone!

to merge withE2p1
and then to drop below the 2p1 level

and to do so over the entire range of fieldsB. This inversion
effect occurs in germanium~see Fig. 1!. For silicon, on the

FIG. 5. Energy levels of the ground state calculated in the effective-m
approximation forA- andE-valleys in germanium and silicon. In every cas
the energies are read from the edge of the conduction band of the c
sponding semiconductor in zero magnetic field.
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shifts toward higher fields~approximately in the vicinity of
B.1.2!, so that in the most relevant range for us the low
hybrid state is in fact the 2p1 ground state. A decrease ing
then causes the anticrossing zone to shift rapidly to the
until it reaches zero, now the crossing is no longer presen
Ge, and the hybridization of the 2p1 and 3p0 states must be
small.

If at the outset we consider the triple of stat
(2p0 ,2p1 ,3p0) rather than a pair, the Ritz method can
used, in principle, to find both hybrid states. Invoking t
method described Sec. 2 in its literal form, we determ
only the lower hybrid state, so that this method needs to
corrected for calculating the 2p1 state in Ge. To ‘‘jump’’
through the 3p0 state without calculating it and to go directl
to the calculation of the 2p1 state in the two-dimensiona
basis of the functions~2.14!–~2.16!, we refrain from varying
the parameterg and merely assume thatg5h. The param-
eterh is evaluated in the first stage of solving the variation
problem, the calculations confirming thath→0 as B→0
and thath→1 as B→`. As a result, the 2p1 state also
automatically has the correct asymptotic forms of the wa
functions. This is the technique used to obtain our res
describing the given state in germanium.

For silicon, in keeping with the foregoing discussion, w
can proceed by analogy with Sec. 2. The resulting 2p1 state
in Si is essentially the lower hybrid state far from the an
crossing zone. Applying the same computational proced
verbatim to the caseg50.05134, we obtain an energy clos
to the correct value ofE3p0

in Ge for small values ofB.

However, the error of determination of the wave functi
without regard for the mandatory classification of the so
tion with respect to principal quantum number~2.8! is not
very acceptable in this case. The patently incorr
asymptotic behavior of the preexponential factor wh
squared terms are ignored produces large errors in the ca
lation of the matrix element and also in the calculation of t
energy for largeB. Nonetheless, the dotted line in Fig. 3
shown to represent the 3p0 level found by this approach; a
B→0, our result goes over to the corresponding result
the two-dimensional problem in the preceding section w
three-place accuracy.

Also indicated in Fig. 3 are the experimental values
the energy in the 2s and 2p1 states, obtained from measur
ments of the Zeeman components of the 2s→2p2 and
2s→2p1 transitions~Ref. 13! with normalization to the en-
ergy of the 2p2 state. The appreciable discrepancy with e
periment for the 2s state in Ge can be attributed essentia
to the same causes as those discussed in the preceding
tion. The dark squares in this figure represent experime
data on the position of the 3p0 level, determined by subtract
ing the energies of the 2p0→3d11 and 3p0→3d11 transi-
tions ~see Ref. 13! with normalization, naturally, to the 2p0

level. It is interesting to notice that in Ref. 10 splitting of th
2p6 line in Si for theE-orientation was not observed at a
up to fields of 6 T. Our calculations show that such splitti
should be appreciable under present-day experimental co
tions, beginning with fields as low as 4 T, consistent with t
measurements reported in Refs. 11 and 12. The energy

ss

re-
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from graphs in Refs. 11 and 12 with normalization to t
2p2 level, are indicated in Fig. 4.

We shall not give detailed results of calculations of t
energy in the 1s ground state, because the correspond
values determined in the effective-mass approximation
mentioned, are too remote from reality. However, within th
approximation it is interesting to trace the extent to wh
the energyE1s depends on the orientation of the field.
comparison of the energies in the 1s(A) and 1s(E) states is
illustrated in Fig. 5. As in the preceding section, small box
enclose the points of elastic magnetic-impurity resonanc
Figs. 3 and 4.

5. SCATTERING OF A CONDUCTION ELECTRON BY AN
EXCITED NEUTRAL DONOR, AND ELASTIC
MAGNETIC-IMPURITY RESONANCE

In principle, the scattering problem can be analyzed
both types of carriers, but the lifetime of free holes inn-type
semiconductors is too short. The main effect of injecti
holes into our system would be lowering of the Fermi lev
and donor ionization, which naturally preclude the possib
ity of observing the resonance.

We also note that, being concerned with temperatu
T&10 K and fieldsB*10 T, we interpret electrons of th
zeroth Landau band, specifically those associated with
leys having the lowest of all cyclotron frequencies, as f
carriers. For silicon withBi^001& these particles arê6100&
and ^0610& quadruplet electrons, for germanium wi
Bi^111& they are triplet-forming valleys, and for germaniu
with Bi^110& they are associated with the lowest doub
~see Appendix 1!. As we shall see below, the characteris
length governing the main scattering contribution is the m
netic lengthl5A\c/eB, so that the problem of scatterin
by an impurity is solvable in the long-range approximation
l is much greater than the characteristic Bohr radius in
material:

l@aB . ~5.1!

For silicon near resonance values of the field this conditio
satisfied with a fair margin@see~2.2!#, whereas for germa
nium l and aB are obviously of the same order. This fa
does not imply that the effectper sedoes not occur in ger
manium, but one must bear in mind that the result obtai
below in application to Ge is valid only in order of magn
tude.

The degeneracy at the crossing point of the 2s and 2p2

levels is lifted if the perturbing potential is taken into a
count. If the impurity is excited and resides in one of the t
states resulting from 2s22p2 hybridization, the energy of a
bound electron depends~linearly in the vicinity of the cross-
ing point! on the electric field generated by a moving fr
carrier. On the other hand, the combined energy of the n
tral donor and the carrier is determined entirely by their re
tive spatial position, and the conduction electron can the
fore be regarded as acted upon by the scattering potenti
the donor field. By this reasoning, adiabaticity of the act
of the conduction electron on the bound electron admits
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each of them can be solved in succession utilizing
‘‘slowness’’ of the variables~both spatial and temporal! de-
scribing the state of the conduction electron. An element
estimate shows that adiabaticity holds in the vicinity of t
point of degeneracy if the free-carrier energy« relative to the
zeroth Landau level satisfies the inequality

e!
mze

4

\2k2 S aB

r D 2

;
mze

4

\2k2 S aB

l D 2

5\Vz , ~5.2!

wheremz is the effective mass of longitudinal motion alon
B, Vz is the corresponding cyclotron frequency, andr is the
position of the band electron relative to the impurity cent
For e,10 K the adiabaticity condition can be regarded
fulfilled.

In the remainder of this section, unless otherwise sta
we consider quantities to have their customary units. As
fore, we place the origin at the site of the central unit c
containing the impurity ion. Letr̃ and r denote the coordi-
nates of the bound electron and the conduction electron
spectively; the Coulomb energy of interaction of the don
with the conduction electron is then given by the followin
relation in the dipole approximation:

e2

k S 1

ur2 r̃ u
2

1

r D'
e2r̃•r

kr 3 , r @ r̃ . ~5.3!

From this result, using a standard perturbation procedure
find the energy in the vicinity of the degeneracy point as
function of the adiabatic variabler :

E656A~DE!2

4
1

e4ud•r u2

k2r 6 1
E2s1E2p2

2
, ~5.4!

where DE(B)5E2s(B)2E2p2
(B) is the energy difference

between unperturbed levels, andd5^2su r̄ u2p2& is a matrix
element, in which the angle brackets signify convoluti
with respect to the coordinates of the bound electron. Fr
the energy~5.4! it is now required to subtract the dono
energy atur u5`, i.e., the quantityE1s or E2p2

, depending
on the sign in front of the square root. We then obtain
effective conduction electron–donor interaction potential

U6~r !56SA~DE!2

4
1

e4ud•r u2

k2r 6 2
uDEu

2 D . ~5.5!

We recall that the quantities involved in this expression
pend parametrically on the magnetic field and, in additi
that DE vanishes at the degeneracy point. We denote
corresponding field byB0 ~or by B0 in dimensionless form!.
We have already seen that the fieldB0 , in turn, depends on
the orientation of the conduction-electron valley relative
the vectorB. Equations~5.4! and ~5.5! are valid if the dis-
tance from other levels is sufficiently large:

uDEu!uE2s2Ei u, iÞ2p2 ,2s ~5.6!

~the strength of the dipole transition from the 2s or 2p2 state
to other states is assumed to be lower than or of the s
order asudu2!. The sign of the interaction potential~5.5! de-
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cupied by the donor; the sign ofU does not affect our sub
sequent results.

We now proceed to calculate the characteristics of
scattering of an electron by the impurity potential~5.5!. Ir-
respective of the orientation of the effective-mass ellipso
we choose thez axis parallel toB, and align they axis with
the fieldF. In the first nonvanishing scattering approximati
the quantum-mechanical result for the transverse diag
conductivity is known38 to coincide with the quasiclassica
expression~see Refs. 36 and 37!

syy52
e2

2V (
nn8

d f

de
~y02y08!2Wnn8 , ~5.7!

which is easily obtained by analyzing the transverse dif
sion of the Larmor ‘‘disks’’ ~Ref. 35!. In this equation the
indicesn andn8 denote the complete sets of quantum nu
bers characterizing the initial and final~after scattering!
states of the electron,Wnn8 is the scattering probability,f (e)
is the energy distribution of electrons in the conduction ba
~in equilibrium f is the Fermi function!, andV5LxLyLz is
the volume of the sample. Equation~5.5! assumes that the
representation of the electron states is chosen in a form
as to preservey0 and y08 , i.e., so they can be expressed
terms of the corresponding setn or n8. In the classical case
y0 is they coordinate of the Larmor disk, and in the quantu
case it is the equilibrium position of a magnetic Landau
cillator. Consequently, the representation of the conduct
electron wave function is found by means of the Land
gauge (Ax52By , Ay5Az50!, where it is of utmost impor-
tance that the choice of they axis is strictly regulated by the
direction of the fieldF. In the isotropic case, of course, th
consideration is irrelevant, but in the problem with an ani
tropic effective mass we must allow for the fact that t
wave free-electron wave function in a magnetic field n
depends on the direction ofF, even if the magnitude of the
electric field itself is negligible in this case.

The solution of the Schro¨dinger equation also reduces
oscillator functions for arbitrary orientation of the axes of t
effective-mass ellipsoid relative toB and F. Only the mag-
netic length is renormalized as a function of this orientati
However, we still simplify the problem. First of all, we as
sume that the electric field is weak:

eFl!\Vz ; ~5.8!

this condition is usually satisfied when conduction electro
are present in the material~i.e., for characteristic fields
F&10 V/cm! and implies thatF can be neglected in th
Schrödinger equation.5! Second, we confine our discussion
the case in which the fieldB is directed along one of the
principal axes of the effective-mass tensor, i.e., wh
mz5m' and mxz

215myz
2150. Finally, recognizing that the

relatione!\Vz holds by virtue of~5.2!, we retain only the
one zeroth Landau level. As a result, the setn is determined
entirely by the wave vectorskx and kz , and the energy
\VE/21e of the free electron is determined entirely by t
quantum numberkz ~heree5\2kz

2/2m' , andVE5VAg is
the cyclotron frequency, which in the given situation cor
sponds to TM orientation!. The band-electron wave functio
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1 ikzzG , y05\kxc/eB, ~5.9!

depends on the anglea formed by they axis with the sym-
metry axis of the effective-mass ellipsoid. In Eq.~5.9! this
dependence is specified by the complex function

h~a!5
Ag2 i ~12g!sin 2a/2

sin2 a1g cos2 a
. ~5.10!

The scattering probability is given by the well-know
expression

Wnn85
2p

\
uUnn8u

2d~e2e8!, ~5.11!

where

Unn85K nU(
i

U~r2Ri !Un8L ~5.12!

is the matrix element of the total perturbation of impuriti
situated at the pointsRi , andU(r ) is given by Eq.~5.5!. If
the impurities are distributed randomly in space, the sub
tution of Eq. ~5.12! into ~5.11! and summation oni verify
that the ‘‘interference’’ terms are vanishingly small, so th
the operations of summation and squaring can be in
changed. Moreover, the sum over the impurities must ob
ously be replaced by integration according to the r
( i→*nd* dR5nd* LxLz*dY, wherend* is the density of ex-
cited donors, which is assumed to be homogeneous. A
result, substituting Eq.~5.9! into ~5.12!!, we obtain

Wnn85
2\3nd* l

m'
2 LxLz

d~e2e8!S S y02y08

l
,lkz2lkz8D ,

~5.13!

where the dimensionless function

S ~v,q!5% expS 2
uhu2v2

2% D E
2`

`

duU E d3r̄U~ r̄ !

3expF2 iv x̄2 iqz̄2%S ȳ2u1
ivq

2 D 2GU2

~5.14!

has been constructed by transforming to the dimension
variables r2R5l r̄ , y02Y5l(u1v/2), y082Y
5l(u2v/2), kz2kz85ql21 and to the dimensionless po
tential U5U/\V and then replacing the integration overY
by integration overu. In Eq. ~5.14! we have also introduced
the notation%(a)5Reh(a) andq(a)5Im h(a)/Reh(a).

It is important to note that here we have already inc
porated the Born approximation in the calculations; in oth
words, in Eq.~5.12! both the ‘‘initial’’ state un& and the ‘‘fi-
nal’’ state^n8u are assumed to be unperturbed, i.e., speci
by the functions~5.9!. The admissibility of this approxima
tion must be justified; in this regard, see Appendix 3.
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5.1. Lifetime of the band state (longitudinal scattering
characteristic)
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21/3/l. ~5.198!
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Elasticity in reference to scattering implies that the qu
tity q is equal to zero or to 2lkz . It is also obvious that a
nonzero value ofq always introduces a smaller contributio
to the reciprocal lifetime of the staten of the band electron

1

t
5 (

n8

n8Þn

Wn,n8 , ~5.15!

than the contribution of scattering withkz conserved. On the
other hand, it follows from condition~5.2! that the possible
values ofq are small (q!1) in any case, so that scatterin
with the sign ofkz unchanged and with a change of sign
leading order are equiprobable. We shall assume everyw
below thatq50.

Before calculating the transverse conductivity, we det
mine the quantity~5.15!. We do so initially in the immediate
vicinity of the degeneracy pointB0 , assuming that

U'
e2ud• r̄ um'

k\2r̄ 3 . ~5.16!

As a result,

E U~ r̄ !dz̄5
D

Ax̄21 ȳ2
, ~5.17!

whereD~B! is the dimensionless matrix element

D5H ^2sureiwu2p21& for A-ellipsoid ~see Sec. 3!,

2^2suzu2p21& for E-ellipsoid ~see Sec. 4!.
~5.18!

The angle brackets are employed in~5.17! with the same
sense as, for example, in Eq.~3.1!, i.e., they signify averag-
ing in the dimensionless basisx,y,z used in the preceding
sections. Consequently, the calculation ofD simply repre-
sents the case in which it is necessary to know the w
functions of the bound electron states of the donor. Our
culations show that the dimensionless quantity~5.18! has the
following values exactly at the pointB5B0 :

for Ge: uDAu250.25 for B0
~A!51.50,

uDEu258.2 for B0
~E!52.54;

for Si: uDAu253.73 for B0
~A!50.16,

uDEu2516.8 for B0
~E!50.575.

We note that in making the transition to~5.17! we have
disregarded the quantityDE in Eq. ~5.5! in the derivation.
This means that the integration overr̄ in ~5.14! makes sense
if the main contribution is from values

r̄ !AuD u\V/udEu. ~5.19!

Here dE5max(DE,eFl). A different estimate of the uppe
bound ofr̄ follows from the adiabaticity condition~5.2! and
in fact, sinceD;1, simply entails the substitution ofe for
dE in ~5.19!. Naturally, r̄ is also bounded above by the in
terimpurity distance:
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To calculate the reciprocal scattering time~5.15!, we change
from summation over n8 to integration:
(n85*de8g(e8)*dy08 , where

g~e!5
4LxLzAm'/2e

~2pl!2\
~5.20!

is the density of quantum states in the zeroth Landau b
per unit energy and unit length alongy. The factor 4 in Eq.
~5.20! corresponds to the two possible signs ofkz for a given
value of« and two spin states. As a result,

1

t~e!
5
&\2nd*

p2m'
3/2Ae

E
2`

`

dvS ~v,0!, ~5.21!

and in the expression forS (v,0) it is required to use the
result of integration overz̄ ~5.17!, ~5.18!. We then find that
formally the integral ~5.21! diverges logarithmically for
small values ofuvu, since the equation~A2.8! obtained in
Appendix 2 is valid for it in this case. Of course, the dive
gence is easily removed: The integration overx̄ to obtain
Eqs.~A2.3! and~A2.4! rests on the assumption that the co
dition uv x̄u@1 holds at the boundaries of the domain of i
tegration, so that the cutoff at smalluvu occurs at values ofv̄
reciprocal to the quantity on the right-hand side of inequa
ties ~5.19! and ~5.198!. As a result, the time between coll
sions can be determined with logarithmic accuracy:

1

t~e!
5

25/2puD~B0!u2\2nd*

Am'
3 e

L, ~5.22!

where L52 ln(lnd*
1/31dE/uD u\V), and dE5max$uE(B)

2E(B0)u,ueFlue%.
Curiously, the collision frequency~5.22! does not con-

tain the interaction constant. This quantity (e2/k) ‘‘cancels
out,’’ because it occurs twice in expressions~5.4!, ~5.5!, and
~5.16!: once as a factor governing the perturbation field
the band electron and again as a divisor attributable to
fact that udu;aB}k/e2 holds for the bound electron. Th
interaction constant itself does not enter into the answer o
so long as the long-range condition~5.1! is satisfied.

A pivotal consideration is the fact that for the final r
sults to be valid, the timet must have both upper and lowe
bounds. The upper bound is associated with the assump
that the given scattering channel is actually the domin
one. Other channels inevitably present in our system are s
tering by acoustic phonons and scattering by neutral but
excited donors, whose numbernd can be higher thannd* , but
the potential of the perturbation created by them has
Gaussian shape. Note that the lifetime of the band state
the same order as the relaxation time of the longitudi
momentum~see Ref. 2, Sec. 14.1!. We know2,37,38 that the
latter time is weakly dependent on the magnetic field and
be estimated from the experimental values of the mobility
a nondegenerate semiconductor forB50. At a temperature
T,10 K the mobility attains values of 105 cm2B21s21 in
silicon if nd&1014 cm23, and it attains 106 cm2B21s21 in
germanium fornd,1013 cm23 ~see Refs. 48 and 49 and th
literature cited therein!. Consequently, the characteristic r
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laxation time of the longitudinal momentumt0 as deter-
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mined by other scattering channels is on the order of 10
which is fully consistent with the theoretical calculations
t0 in the ultraquantum case ofDA scattering by phonons
~Ref. 2, Sec. 14.3!, i.e., for e*\s/l (s is the speed of
sound!. The inequalityt,t0 imposes a condition on th
density of excited impurities; we infer from~5.22! that the
relation nd* *1013 cm23 must hold for Si, and the relation
nd* *1011 cm23 for Ge. In this sense germanium is the pr
ferred material under conditions such thatnd* ,nd .

In addition to the foregoing estimate, which is based
experiment, it is useful to compare Eq.~5.22! with the theo-
retical relaxation time determined by scattering at a neut
unexcited donor. Unfortunately, since the long-range
proximation is inapplicable, this problem is very complicat
and has therefore received little attention to date. All
same, for estimates we can use results obtained on the
of Erginsoy’s model.39 The present topic of concern, o
course, is the non-Born case and treats the problem of
scattering of a hydrogenlike atom~with the dielectric permit-
tivity and the effective mass introduced into the model! with
allowance for exchange interaction between the scattered
bound electrons. The particle interaction zone is of orderaB .
For our estimations, however, it is still more convenient
define a certain effective scattering potential, which in
Born case for zero magnetic field gives the same result
the cross section as in Ref. 39, whereupon the scatte
problem in a quantizing@see ~5.2!# magnetic field can be
solved for this potential. This is the scheme used in Ref.
to calculate the relaxation time for a neutral impurity. A
cordingly, as in the case of~5.22!, this time ~which we de-
note bytEr! is proportional toAe,6! and the ratio of the two
times is

t~e!

tEr~e!
5

15ndaB

64A2puD u2Lnd* l
~5.23!

~here we disregard the anisotropy of the effective mass!. In
the cases of interest to us, therefore, Erginsoy relaxation
least two orders of magnitude slower, and the long-ra
effect is already appreciable beginning withnd* /nd;0.01.

Finally, we determine the lower bound ont. It is asso-
ciated with the applicability of the time-dependent perturb
tion equation~5.11! and stems from the requirementt.dt,
where dt is the quantum-mechanical time uncertainty, i.
dt;\/ ē.\/e. The quantityē represents the lowest energ
at which our theory is valid. Combining the given inequa
ties and taking~5.22! into account, we find that

e. ē;
\2~nd* L!2/3uD u4/3

m'

. ~5.24!

This result actually implies that the free-electron de Brog
wavelength in the direction of the magnetic field must
bounded above by the mean free pathtAe/m'.

We can now calculate the reciprocal time~5.21! over a
broader neighborhood of resonance without ignoringDE in
~5.5!. Equations~5.16! and ~5.17! are then invalid, and the
integration in~5.21! cannot be carried out analytically. As
result, we have
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3 e

F i~B!. ~5.25!

The functionF i is calculated differently, depending on th
type,A or E, of the localized-electron valley:

F i
~A,E!~B!5

uD u2

2p
Gi

~A,E!S DE

4BuD u D . ~5.26!

Here

Gi
~A,E!~z !5

r

p3 E
0

`

dve2%v2/2E
2`

`

duLA,E
2 ~%,z,u,v !,

~5.27!

LA,E5E
0

`

dx̄ cos~v x̄!E
2`

`

dȳe2%~ ȳ 2u!2

3E
0

`

dz̄FAz21
sA,E~ r̄ !

~ x̄21 ȳ21 z̄2!32uzuG , ~5.278!

sA5 x̄ 21 ȳ 2, and sE5 z̄ 2. In Eq. ~5.26! DE is the energy
differenceDE reduced to dimensionless form by the ru
~2.2!. In the expression~5.14! for S (v,0) we have set
a5p/2, since it is clear from physical considerations th
our result will not depend on the anglea. This can be seen
by examination of the integral~5.21!. We therefore have
%5Ag in Eqs.~5.27! and~5.278!. The function~5.27! is also
naturally invariant under the substitution%→1/%.

We note that the time between collisions~5.21!, ~5.22!,
~5.25! can be used to find the longitudinal conductivity

s̄zz5ne2^^t&&/m' , ~5.28!

where the density of band electrons is

n54E de
g~e!

LxLz
f ~e!. ~5.29!

and the double angle brackets signify energy averag
which can be carried out here by the same scheme as in
magnetic field~Ref. 2, Sec. 7.2!. The one-dimensionality of
the problem in the presence of a quantizing magnetic fi
yields

^^t&&52
8

n E de
d f

de
2et~e!

g~e!

LxLz
. ~5.30!

The factor 4 in~5.29! corresponds to the four states of th
band quadruplet in Si. Allowance must also be made for
fact that in the given approximation~5.2! the frequency of
collisions in which the sign ofkz changes is exactly half the
total frequency 1/t, thus accounting for the factor 8 in Eq
~5.30!.

In our casef (e) is the distribution of nonequilibrium
electrons at the zeroth Landau level. If we assume that
characterized by an effective temperature,f 5 f 8(e/T* , then
s̄zz}T* . The magnetic field dependence is characterized
the function~5.26! and for the case of anA-valley is illus-
trated in Fig. 6.
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FIG. 6. Results of calculations of dimensionles
quantities~see text! governing the behavior of
the transport scattering characteristics und
elastic magnetic–impurity resonance conditio
for the case in which the bound state belongs
an A-valley in silicon ~the indexA is dropped
everywhere!. The magnetic field, reduced to di
mensionless form according to~2.2!, is plotted
along the horizontal axis in the main part~left
side! of the figure. The point of intersection o
the 2s and 2p21 levels corresponds toB
50.16.
5.2. Calculation of syy (transverse scattering)
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We substitute Eq.~5.14! into ~5.7! and replace the sum
mation by integration:

(
nn8

5
1

2 E E dede8g~e!g~e8!E E dy0dy08 .

The insertion of the factor 1/2 is explained by the fact th
the spin state of the conduction electron does not chang
scattering, so that the spin doubling of the density of sta
needs to be taken into account only once in one of the fu
tionsg(e). In Eq.~5.14!, as in the calculation of the collision
frequency~5.22!, it is necessary to setq50. We ultimately
arrive at the result

syy~a!52
e2\nd*

pm'AB
F '~a,B!E

e. ē

d f

de

de

e
. ~5.31!

The function of the dimensionless magnetic fieldB and the
anglea is defined by the expression

F '
~A,E!~a,B!5ABuD u2G'

~A,E!S n~a!,
DE

4BuD u D , ~5.32!

where

G'
~A,E!~h,z!5

4%

p3 E
0

`

v2dv expS 2
uhu2v2

2% D
3E

2`

`

duuKA,E~h,z,u,v !u2, ~5.33!
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KA,E~h,z,u,v !5E
0

dx̄ cos~v x̄!

3E
2`

`

dȳ expF2%S ȳ2u1
ivq

2 D 2G
3E

0

`

dz̄FAz21
sA,E~ r̄ !

~ x̄21 ȳ21 z̄2!32uzuG .
~5.338!

Of course, the transverse conductivity depends on the or
tation of the band ellipsoid, i.e., on the anglea.

If DE50, the expression for the functionG(h,0) is sim-
plified considerably and does not depend on the type of
ley, A or E @see Eqs.~A2.9! and ~A2.10! in Appendix 2#.
Also, in principle, the situation arises where one can assu
that h51 @in which caseG(1,0)[1; see~A2.11!#. This is
the case if the conduction electron belongs to the zeroth L
dau level of anA-valley but not to theE-valley discussed so
far. Such band states are higher in energy by the amo
\V(12Ag)/2, but are metastable~the ‘‘dumping’’ of an
electron to the bottom of the conduction band is determin
by intervalley transition!.

The integrals~5.33!–~5.338! converge, so that the mag
netic length at which cutoff takes place determines the ch
acteristic spatial domain around the impurity center resp
sible for the main contribution to the transverse conductiv
As mentioned already, at distances&aB Eq. ~5.5! is invalid,
and long-range influence is nonexistent. Naturally we can
properly take into account the scattering in this central p
If we assume that the energy of interaction of carrier a
donor in the given domain remains equal in order of mag
tude to the ‘‘atomic energy’’e2/kaB ~and there is no physi-
cal justification for the reverse proposition!, we readily con-
clude from an analysis of~5.33! and ~5.338! that the
contribution tosyy from the central~and clearly non-Born!
part of the scattering is small in comparison with~5.31!, of
order of the dimensionless parameteraB /l. We note that in
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calculating the time~5.22! the corresponding ratio of the
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contributions is even smaller, being equal toaB /lL. Hence,
longitudinal scattering is, so to speak, an even longer-ra
phenomenon.

It is interesting that the contribution of distances&aB

can also be estimated independently on by way of the
lowing considerations. Let us assume that the long-range
pole component of the potential is absent. Such will be
case, for example, if the state of the donor is the pure 2p2 or
2s state. The calculation of the scattering characteristics
this case determines the contribution of the central part.
estimates we can once again proceed from the Ergin
model, but with the one difference that the initial~prescat-
tering! state of the impurity is the corresponding excited st
rather than the ground state of the ‘‘hydrogen atom.’’ As
result, for the ratio of the lifetimes we obtain an equation
the same order of magnitude as~5.23!, in which it is required
only to setnd* /nd51. For the transverse conductivity an e
timate based on Eqs.~5.14! and ~5.7!, in which the role of
the potentialU must be filled by an appropriate effectiv
potential,50 shows that the above estimate of the contribut
aB /l is also confirmed.

We have evaluated the functionG'
(A)(a,z) for the two

directions corresponding toa50 anda5p/2. In both cases
we have q50, but h(0)5%(0)51/Ag and
h(p/2)5%(p/2)5Ag. The results of the calculations ar
shown in the upper right part of Fig. 6. We have assum
g50.208, i.e., we have treated the case of silicon in a fi
Bi^001& ~see Fig. 2!. Also shown for comparison are th
results of calculations forh51. The lower right part of Fig.
6 shows a plot ofGi

(A) ~z! for %5A0.208,1. It is evident here
that the dependence on the parameterg is even less signifi-
cant and, of course, this quantity is completely independ
of the anglea.

Note that Eq.~5.31! describes the conductivity contribu
tion of only one of the valleys. If all valleys of the ban
quadruplet are taken into account, we obtain the total c
ductivity

s̄yy52syy~a!12syy~p/22a!. ~5.34!

The energy integral~5.31! is readily computed in the loga
rithmic approximation by introducing an effective temper
ture T* characterizing the distribution of nonequilibrium
band electrons: (d f /de)ue5052 f (0)/T* . Finally, for Si
with Bi^001& we find

s̄yy~a!5
2e2\nd* f ~0!

pm'T* AB
lnS T*

ē D FF '~a,B!1F '

3S p

2
2a,B D G for T* @ ē. ~5.35!

The anglea50 corresponds here to the directionFi^010& or
Fi^100&. As a result, the dependence ofs̄yy on the anglea
is weak @in a special case this fact is confirmed by E
~A2.10! for G'(h,0)#. In the main part of Fig. 6 for the cas
of an A-valley we see graphs of F i(B) and
F '(0,B)1F '(p/2,B) along with a graph ofuD(B)u2 cal-
culated according to the rule~5.18!.
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sistance can be determined from Eqs.~5.22!, ~5.25!, ~5.28!,
and ~5.35!: ryy /rzz5syyszz/sxy

2 ;(e2/lLkT* )ln(T* /ē).
If in a semiconductor with unexcited donors the tran

verse conductivity is equal tos̄yy
(0) and the relaxation time o

the longitudinal momentum ist0 , as a result of excitation we
obtain s̄yy /s̄yy

(0);t0 /t, i.e., the gain is determined by th
first power of the ratio of the times between collisions a
may not be too large in reality. Far more important is t
occurrence of magnetic-impurity resonance in the unus
functional dependence ofs̄yy on B. Let the Hall conductiv-
ity in our material bes̄xy ; the transverse magnetoresistan
is then

ryy~B!5s̄yy /s̄xy
2 }B 3/2@F '~a,B!1F '~p/22B!#.

Ignoring the nonmonotonic behavior described by the fu
tion F '(a,B), we see that, roughly speaking, the magn
toresistance increases with the field asB3/2. Our case is in
some measure intermediate between scattering by cha
impurities ~whereryy is independent ofB; see Ref. 2, Sec
14.3! and scattering by point defects~ryy}B2; see the same
location!.

The main distinctive feature, of course, is the nonmon
tonic field dependence of the quantitiesrzz and ryy /B3/2,
with a maximum in the vicinity ofB0510.5 T.

Note that the quantityuD u increases considerably upo
transition from theA-orientation to theE-orientation. This
jump is particularly abrupt and conspicuous for germaniu
In addition, it is evident from Fig. 3 that the dependence
DE on B2B0 is also ‘‘steeper’’ than for theA-orientation.
The sum total of these considerations leaves us no choice
to assume that in experimental work the investigated re
nant effect will~if the magnetic field is directed along^110&!
be very strong in this semiconductor, despite the reality t
condition~5.1! does not hold. The states of both the free a
the localized electron in this case are associated with val
of the E type and are described by Wannier functions of t
lower valley-orbital doublet~see Appendix 1!.

6. DISCUSSION

In the preceding section we have discussed in detail
of the possible resonant effects in magnetic-impurity scat
ing, guided primarily by what is new about the predict
phenomenon. Here we shall not begin to approach the
cific implementation of an experiment, but must nonethel
mention the fundamentally nonequilibrium character of t
phenomenon, which, in turn, should very likely necessit
the external excitation of donors. The natural means for
purpose is a radiation source operating in the submillime
range. In germanium withBi^110& the 1s(A1)→2p2 tran-
sition ~A1 is a unitary representation of the lower split do
blet; see Fig. 7! is an intravalley, i.e., ‘‘vertical,’’ transition,
so that direct resonant excitation is possible with a freque
determined by the energyE2p2

2E1s(A1) in a field
B0'16.7 T.

Vertical excitation from the ground state in Si wit
Bi^001& is allowed if the localized electron stays inside
E-valley; it is evident from Fig. 4 that elastic magneti
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impurity resonance must occur in fields not actually atta
able under steady-state experimental conditions. The ex
tion 1s(E)(A1)→2p21

(A) in Si at B0'10.5 T is indirect. On
the other hand, it is clear that under the given conditions
silicon atT*1 K the ‘‘second ground state’’ 1s(A)(A1) will
be filled to a large extent even in equilibrium, because
energy difference between the 1s(A)(A1) and 1s(E)(A1)
states is slight~see Figs. 5 and 7!. Obviously, the chemica
shift does not significantly alter this difference, and as a
sult external excitation to the 2p21

(A) state can be vertical with
energyE2p

21
(A)2E1s(A)(A1) .

We note that the strictly selective populating of reson
states is not necessarily guaranteed as a result of excita
Nonresonant states~e.g., 2p0! are also going to be excited i
some measure, but the efficiency with which they scatte
far lower in the absence of long-range influence~the dipole
moment is equal to zero!. Their scattering contribution ca
be estimated, once again with the aid of Eq.~5.23!, on the
assumption thatnd andnd* are the densities of nonresonanc
excited and resonance-excited impurities. Here the contr
tion to the transverse conductivity is characterized by a r
analogous to the right-hand side of~5.23!; only the numeri-
cal factor changes, andL vanishes in the denominator. O
course, even though the estimate formally remains the s
as before, the probability of scattering by an excited nonre
nant donor is somewhat higher than in the ground state
account of the effective increase inaB . At the same time, it
is clear that this nonresonance scattering channel is

FIG. 7. Diagrams showing the lifting of magnetic degeneracy of the lev
with a substitutional impurity in silicon and germanium. The letters to
left of the diagrams indicate the representations of the local symmetry g
of the impurity in zero field, and the letters to the right indicate the rep
sentations of the local group in a finite field~see Table III!.
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nors discussed in the derivation of~5.23!, because the den
sity of such donors is much greater thannd* .

We note, in addition, that scattering calculated by t
Erginsoy model is too strong in comparison with the resu
of real experiments~see Ref. 2, Sec. 9.1, and Refs. 39 a
50!. As a result, the nonresonant channels~scattering by do-
nors in the ground or excited states! might well be even less
significant than suggested by the estimates.

Another characteristic of experimental work is the ne
for free electrons in the material. In the given situation th
condition is logically achieved by direct injection usin
ohmic contacts. The nonequilibrium of the carriers fost
the assumption that the excitation of donors is proba
spontaneous for the most part~and, of course, nonselective!,
i.e., some of the donors will be excited as a result of
inelastic scattering of band electrons by them. The impuri
can be distributed among their states in a substantially n
Gibbs fashion, and the rationd* /nd can therefore be much
greater than its equilibrium value. It is important to exclu
ionization, i.e., the free-electron kinetic energye must still be
lower than the donor binding energy in the ground state.

In closing, we call attention to the fact that the meth
developed in Secs. 2–4 enables us to predict and, in p
ciple, to calculate the behavior of the transport characteris
for other cases of magnetic-impurity resonances. For
ample, let us consider Figs. 1 and 3. The main inelas
scattering peak corresponds to coincidence of the intrava
excitation energyEi2E1s with the cyclotron energy, which
is equal to\VB ~Fig. 1! or to \VE5\VAg ~Fig. 3!. In the
effective-mass approximation the resonant values of
magnetic field fori 52p0 , 2p2 ,... areeasily determined by
graphical means from the intersection of the dashed curve
Figs. 1 and 3 with the corresponding solid curves of t
excitation spectrum. Such a resonance is impossible for
because the energyE1s1\VAg is always much lower than
Ei ( iÞ1s) for real values ofuBu, even though in principle
high-multiple resonances are possible wh
Ei2E1s5M\VAg, whereM>4.

Finally, we consider values of the field for which th
edge of the conduction band~dot–dash lines in Figs. 1–3!
crosses the energy level of the localized state. These cr
ings are probable points of resonance at the quasidisc
level.51 In principle, resonance of this type for semicondu
tors in a strong magnetic field has been investigated theo
cally by Andreev,53,54 who discusses a formulation of th
problem requiring the satisfaction of certain conditions
the impurity scattering potential and the magnitude of
anisotropy. No light is shed on whether these conditions
achievable in reality. In our case resonant scattering at
quasidiscrete level is a natural outcome; the donor mus
assumed to be ionized, rendering the experimental situa
very simple. It follows from Fig. 2 that such a resonance c
occur in Si only for states withm.0 ~see the inset to Fig. 2!,
whereas in Ge it should occur and, in principle, be obse
able for all the investigated localized states, possibly with
exception of 2p0

(A) ~see Fig. 1!. The resonant values of th
magnetic field are determined fairly accurately from the fi
ures by graphical means, where it is clear that the use of

ls

up
-
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effective-mass a

TABLE III.
Field

Crystal
group

~magnetic
class!

Local
substitutional

~impurity
group!

State
splitting

~diagram!

Genesis of
states for

BÞ0
~Fig. 7!

Si B50 Oh Td A11E1F2

Bi^001& D4h(C4h) D2d

Doublet→A181B2

Quadruplet
↓

A11B11E
E→A181B1

F2→B21E

Ge B50 Oh Td A11F2

Bi^001& D4h(C4h) D2d

Quadruplet
↓

A11B21E
F2→B21E

Bi^111& D3d(S6) C3v
Triplet→A11E

Singlet→A18
F2→A181E

Bi^110& D2h(C2h) C2v

Lower doublet
↓

A11B2

Upper doublet
↓

A181B1

F2→A181B11B2
pproximation is fully justified~the 1s state is
t

n-

n
t a
th

te

th
et
tr
ve
n

ev
-
th
n
d

is

ce
fo

ve

a

doublet forBi^001& is ignored in Ref. 15. The splitting, of
he

n

not in any way involved in this effect!. Calculations aimed a
characterizing the resonances~see Figs. 1 and 2! must in-
volve the small and in fact unknown matrix element of i
tervalley transition from the band formed by a type-B triplet
in Ge or anE-quadruplet in Si to the bound state of a
A-valley. On the other hand, it is clear that this fact is no
hindrance to obtaining the correct field dependence in
vicinity of resonance points in the final results; the indica
matrix element cannot harbor a dependence onB, because it
is governed by a characteristic distance of the order of
lattice constant, which is much shorter than the magn
length. Finally, the given type of resonance can be an in
valley resonance. Indeed, it follows from Fig. 3 that the le
of the 2p1

(E) states intersects the edge of the conduction ba
whose position is determined by the very sameE-valley.

The authors are grateful to S. I. Gubarev, V. N. Zver
and S. V. Iordanski� for a discussion, and also to I. A. Leb
edev for assisting with some of the calculations. One of
authors~Dikman! is grateful for support from the Russia
Fund for Fundamental Research~Grants 95-02-05883 an
96-02-17535!.

APPENDIX 1

Table III gives the results of a group–theoretic analys
which demonstrates how the valley–orbital degeneracy
lifted for S-states of a substitutional impurity in the presen
of a finite magnetic field. We use standard notation
groups and their representations.45 The last column of Table
III and Fig. 7 show how the states in a finite field evol
from the states of the substitutional impurity atB50. The
fact that the triplet in germanium splits into a singlet and
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course, is slight by virtue of the smallness of the ratio of t
lattice constant to the magnetic length.

APPENDIX 2

Here we discuss Eqs.~5.5!, ~5.14!, ~5.21!, ~5.26!,
~5.278!, ~5.32!, and~5.338! in the caseDE5DE5z50. The
integral in ~5.21! and the representations~5.27! and ~5.33!
for the functionsGi ,'

A,E reduce to the following expressio
after the integration of~5.17! over z̄:

I 5
4%

p3 E
0

`

b~v !dv expS 2
uhu2v2

2% D E
2`

`

duuQ~u,v !u2.

~A2.1!

Here b(v) is equal to the constant 2uD u2p3 or 1/4 if the
integral ~5.21! or ~5.27! is calculated, orb5v2 if the func-
tion in question isG'(h,0). The equation forQ(u,v) has
the form

Q5E
2`

`

dyE
0

`

dx
exp@2%~y2u1 ivq/2!2#

Ax21y2
cos~vx!,

~A2.2!

where the integral overx is tabulated and leads to the~modi-
fied Bessel function of the second kind! K0(uvyu). As a re-
sult, the integral ofuQu2 is written in the form

E
2`

`

duQQ* 5E
2`

`

duR~v !

3expF%q2v2

2
22%S u2

y11y2

2 D 2G
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5A p
R~v !exp

%q2v2

, ~A2.3!
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2% S 2 D
where

R~v !5E
2`

`

dy1E
2`

`

dy2K0~ uvy1u!K0~ uvy2u!

3expF ivq%~y12y2!2
%~y12y2!2

2 G . ~A2.4!

We now substitute Eq.~A2.3! into ~A2.1!:

I 5
2

p3 A2p%E
0

`

b~v !dve2%v2/2R~v !. ~A2.5!

We transform from the variablesy1 and y2 in ~A2.4! to
s5v(y11y2)/2 andr 5y12y2 :

R~v !5
1

v E
2`

`

dsE
2`

`

drK0S Us1
vr

2 U DK0S Us2
vr

2 U D
3expS 2

%r 2

2
1 i%qvr D . ~A2.6!

Consequently, ifb(v)5const, the integral overv ~A2.5! di-
verges logarithmically to zero. In the presence of a cut
mechanism at smallv; v̄ it can be evaluated, in which cas
the integrand of Eq.~A2.6! is large fors;r;1@vr , so that

R~v !'
1

v
A2p

%
E

2`

`

K0
2~ usu!ds. ~A2.7!

The integral in this equation is computed analytically~see
Ref. 54, Sec. 2.16.33.2! and is equal top2/2. Thus, for
b(v)52uD u2p3 we have in~5.21!

I 5E dvS ~v,0!U
DE50

54p3uD u2E
v.uv̄u

dv
v

. ~A2.8!

We now simplify Eq.~2.5! in the caseb5v2. Trans-
forming to the variablest15vy1 and t25vy2 in ~A2.6!, we
substitute~A2.6! into ~A2.5! and carry out the tabulated in
tegration overv. Hence,

G'~h,0!5
2

p2 E
2`

`

dt1E
2`

`

dt2K0~ ut1u!K0~ ut2u!

3exp@2%ut12t2u1 i%q~ t12t2!#. ~A2.9!

If %!1 or if %@1, then for any values of%q the integral
~A2.9! can be factored in leading order. In the first case
reduces to (*K0(t)cos(%qt)dt)2, and in the second case
reduces to the integral already analyzed above,*K0(utu)2dt.
Therefore, taking the expression~5.10! for h~a! into account,
we find

G'~h,0!5H 2 sin2 a if g!1, but a@Ag,

2Ag, if a2&g!1.
~A2.10!

Finally, the integral~A2.9! is evaluated exactly in the cas
h[1 ~i.e.,%51, q50!. It is readily inferred with the use o
tables~see Ref. 54, Secs. 1.12.2.2 and 1.12.2.3! that

G'~1,0![1. ~A2.11!
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The justifiability of the Born approximation depends si
nificantly on precisely which matrix elements^auUun& de-
termine the principal contribution to the investigated tran
port scattering characteristics. Here again theun& state is the
‘‘unperturbed’’ wave function~5.9!, and thê au state is gen-
erally interpreted as an exact function of the continuo
spectrumFa in the potentialU, corresponding to the energ
\Vz/21e. The Born approximation is strictly valid if in the
range ofr significant for the calculation of the characterist
matrix elements it can be assumed thatFa'Ca . On the
other hand, this condition is often violated~e.g., in the prob-
lem of scattering by charged particles subject to the con
tion aB&l; see Ref. 2!, even though the relationFa;Ca

holds in the characteristic range. The Born approximat
then gives a semiquantitative result2 and is still suitable for
estimates. This is in fact the situation in the calculation of
transverse conductivity in our case. Indeed, we have s
that when the function~5.33! is reduced to dimensionles
form, it is of order unity ifD;1. This means that the inter
action zone of an electron with an impurity center, being
principal contributing factor to the final result, is of orderl,
and the characteristic scattering potential~5.5! is of order
\V. Accordingly, the electron wave function in the intera
tion zone is distorted, but is still of the same order of ma
nitude as the unperturbed wave function. On the other ha
if D is substantially smaller than unity, our result is com
pletely rigorous in the sense of the validity of the Born a
proximation. In any case it reflects the functional depende
of the transverse conductivity on the magnetic field.

We now consider the calculation of the collision fr
quency ~5.15! and the longitudinal conductivity. Here th
conditions for validity of the Born approximation are strict
satisfied in the vicinity of resonance. For the estimation
Fa it is convenient to use the exact equation

Fa~r !5Ca~r !1E G ~e,r ,r 8!U~r 8!Fa~r 8!dr 8 ~A3.1!

~see, e.g., Ref. 55!. In our case of a quantizing magnetic fie
the Green’s functionG (e,r ,r 8) is almost independent ofz
andz8, is a maximum foru@(r2r 8)•B#u/B&l, and decays
rapidly like the exponential of a quadratic outside this ran
At the maximum the functionG is of order magnitude
1/l3Ae\V, so that the correction toCa is of order
U(r )/Ae\V. We have seen that in the calculation oft21 the
characteristic value ofU is determined by the distanc
r;x;lA\V/dE, so that the integral~5.21!, which diverges
for small values ofv, can be cut off. We therefore have th
characteristic value U(r );\Vl2/r 2;dE. Assuming
dE;e, we obtain a correction, small in proportion to th
parameterAe/\V, to the wave function in the interactio
zone.
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1!This method has been applied to the donor problem in Ref. 30.
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2!For effective masses we use the valuesme /mz50.0816 and 0.1905,
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Possibility of observing magnetic macroscopic quantum tunneling using a scanning

nel-
tunneling microscope
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A theory describing the detection of magnetic macroscopic quantum tunneling on the basis of
current fluctuations in a scanning tunneling microscope is proposed. ©1997 American
Institute of Physics.@S1063-7761~97!01609-0#
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4

The idea that magnetic macroscopic quantum tunne
is possible in tiny magnetic particles was probably first a
vanced in Ref. 1, although the question was raised in a v
general form back at the dawn of the creation of quant
mechanics and was formulated by Schro¨dinger in the form of
a familiar paradox known as the paradox of Schro¨dinger’s
cat,2 which reduces, in effect, to the following statement.
quantum mechanics is correct, it should be applicable to
description of macroscopic objects, and if this is, in fact,
the superposition of different states of a macroscopic sys
should take place. The question of observing such a su
position remained open for a long time. Magnetic nanop
ticles are objects, which are simultaneously macroscopic
still small enough that quantum-mechanical phenome
such as quantum tunneling, could be exhibited in them.

Small magnetic particles have served as objects for
serving macroscopic quantum tunneling.3

Quantum tunneling is a transition of a microscopic s
tem from one state to another along a classically forbid
trajectory. If the system was created in one of these st
~and weak tunneling transitions are disregarded!, the system
is found to be in a superposition of different macrosco
states when the transitions to other states are taken into
count. Such transitions are essentially ordinary quan
beats, which should be manifested experimentally in
form of a low-frequency collective mode.

Following the publication of Ref. 3 there were numero
papers devoted to magnetic macroscopic quan
tunneling.4–11 Macroscopic quantum tunneling was inves
gated experimentally by performing low-temperature m
netic relaxation measurements in Ref. 10 and 11, as we
by measuring the response to a small magnetic field usin
SQUID microsusceptometer in Ref. 9.

In this paper we wish to focus attention on one possi
ity of detecting macroscopic quantum tunneling using
scanning tunneling microscope. This instrument has b
used successfully to detect the local magnetization on a
face with atomic resolution.12 The frequency spectrum of th
noise~fluctuations! in the tunneling current from the surfac
of a Si(111)(737) sample immersed in a constant magne
field (H'100 G) was investigated in Ref. 13. The surfa
was light bombardment preliminarily subjected to by ox
gen, which resulted in the formation of paramagnetic cen
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ing current noise spectrum at the Larmor frequen
(V'480 MHz) exceeded the background noise in intens
by 16 dB. Moving the scanning tunneling microscope
over the surface to a distance of several angstro
(;3 – 5 Å) from the paramagnetic center led to disappe
ance of the signal.13 Manassenet al. interpreted this peak a
a result of the Larmor precession of the spin of an individ
electron localized on a paramagnetic center. A theory of
possible mechanisms responsible for this feature was
sented in Ref. 14. The temporal dependence~rather than the
noise spectrum! of the tunneling current for tunneling from
metal substrate into a scanning microscope tip throug
large organic molecule was investigated directly in a som
what later experiment.15 The configuration of the magneti
fields in that experiment corresponded to the standard c
figuration for electron paramagnetic resonance~EPR! inves-
tigations, i.e., a constant magnetic field and a weak rota
magnetic field perpendicular to it. Temporal oscillations
the tunneling current were discovered at a frequency co
sponding to the EPR frequency for an electron on a f
radical in the molecule. Moving the microscope tip over t
surface to a distance of several angstroms from the site o
radical caused the signal to disappear. A theory of EPR
scanning tunneling microscope was devised in Ref. 16.
appearance of a spin-dependent component in the cu
was also predicted for tunneling from a GaAs surface irra
ated by circularly polarized light.17 The appearance of such
component in the current was detected experimentally
Ref. 18.

Thus, since a scanning tunneling microscope is a lo
probe, it is capable, in principle, of detecting fluctuations
individual spins in a tiny magnetic particle.

In this paper we wish to demonstrate that a peak sho
be observed in the frequency spectrum of the tunneling c
rent fluctuations at a frequency corresponding to the lo
frequency mode associated with macroscopic quantum
neling in the case of tunneling through a tiny magne
particle on a surface into the microscope tip.

The experimental observation of magnetic macrosco
quantum tunneling using a scanning tunneling microsc
can be simpler than the observation of the effects mentio
above, since the characteristic frequencies of macrosc
quantum tunneling can be significantly lower than the f
quencies at which EPR is observed. In addition, since e
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signal should be considerably greater than the signal from
individual electron spin. It is also significant that, in contra
to the experiments in Refs. 13 and 15, the observation
macroscopic quantum tunneling by a scanning tunneling
croscope does not require an external magnetic field.

2. BASIC EQUATIONS

Let us consider a system consisting of a metal subst
(M ) with a magnetic particle (M P) on it under a scanning
tunneling microscope tip (T) ~Fig. 1!. We shall consider a
system consisting of a quantum spinS, which can undergo
quantum tunneling, as a model for describing a tiny magn
particle. The Hamiltonian describing the magnetic parti
will not be specified. It will be sufficient for us to know onl
the frequency-dependent behavior of the spin–spin correl
for the magnetic particle, which contains information
quantum tunneling in an isolated particle. It is assumed
the electron–electron interaction ‘‘freezes’’ the total spin
the particle, and the magnetization vector has at least
states of equivalent energy~if the possible tunneling betwee
them is disregarded!, whose positions are found as classic
energy minima. Quantum tunneling is described as a sub
rier ~tunneling! transition of the magnetization vectorS be-
tween two orientations corresponding to different ene
minima.

When tunneling occurs through a magnetic particle,
assume that there is a level for an extra electron in it. Suc
assumption is quite natural. Next, in order to simplify t
mathematical manipulations, we assume that the particle
point ~one site with a spin!. In a real situation the spins ar
localized in a particle on separate sites, each of which
coupled with atoms in the tip and the substrate by a tunne
matrix element. Such a generalization creates technical c
plications, but does not influence the qualitative result.
shall discuss this generalization later on. The electron st
in the tip and the substrate will be described as sing
particle states.

We write the Hamiltonian of the system in the form

Ĥ5Ĥa1Ĥb1Ĥspin-STM1T̂a1T̂b1Ĥspin~Ŝ!

5(
k,s

~«ka2m t!aks
1 aks1(

k,s
~«kb2mc!bks

1 bks

1 (
s,s8

Jcs
1cs8Sss81(

s
«0cs

1cs

1(
k

~Tkacs
1aks1Tkbcs

1bks1H.c.!1Ĥspin~Ŝ!. ~1!

The first two terms in~1! describe the spectrum of the ele
trons in the substrate and the tip. The next term correspo
to the interaction of the spin of a tunneling electron and
spin in the particle, the fourth term specifies the state of
tunneling electron at the level for the extra electron in
particle, and the fifth term defines the tunneling coupli
between the substrate and the particle and between the
ticle and the tip. The last term corresponds to the Ham
tonian of the isolated magnetic particle. The operator of
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tunneling current from the substrate to the tip through
particle is described in the usual manner,19 and in the
Heisenberg representation it has the form

Î ~ t !5 Î a~ t !1 Î b~ t !,

Î ~ t !5
ie

2 H(
ks

@Tkacs
1~ t !aks~ t !2Tka* aks

1 cs~ t !#

1@Tkbbks
1 ~ t !cs~ t !2Tkb* cs

1bks~ t !#J . ~2!

Our ultimate purpose is to calculate the current–current c
relator, since this is the quantity which is measured exp
mentally when precession of the spin of an individual ele
tron is detected13 ~in Ref. 13 this quantity was called th
radio-frequency power spectrum!. The current–current corr
elator is written in the usual manner:

K~ t2t8!5^@ Î ~ t ! Î ~ t8!1 Î ~ t8! Î ~ t !#&K5^@ Î ~ t ! Î ~ t8!

1 Î ~ t8! Î ~ t !#Ŝ&, ~3!

where the subscriptK indicates that the averaging is carrie
out over a Keldysh contour, and theŜ matrix has the form

Ŝ~2`,`!5T̂K exp H i E
2`

`

@ T̂a~t!1T̂b~t!

1Ĥspin-STM~t!#dtJ , ~4!

whereT̂K is the operator for chronological ordering over th
Keldysh contour. To isolate the terms that interest us in
current–current correlator~3!, we write it out in greater de-
tail, and with consideration~2! we find

K~ t2t8!5S e

2D 2K $T̂aT̂bĉ1~ t !â~ t !b̂1~ t8!ĉ~ t8!

2T̂aT̂b
1ĉ1~ t !â~ t !ĉ1~ t8!b̂~ t8!%Ŝ~2`,`!

2S e

2D 2

^$T̂a
1T̂bâ1~ t !ĉ~ t !b̂1~ t8!ĉ~ t8!

2T̂a
1T̂b

1â1~ t !ĉ~ t !ĉ1~ t8!b̂~ t8!%Ŝ~2`,`!&,

~5!

where, for brevity, we have introduced the notati
T̂a,b5$Tka,b%, ĉ5$cs%, â5$aks%, b̂5$bks%, andŜ5$Sss8%
and where the corresponding summation must be carried
over the spin and the indexk.

FIG. 1. Schematic representation of the experiment.

549S. N. Molotkov



o

m
ga
el
g
in

th

a
a
ob
th
al
he
pr

d
ng
e

cr
w

is
d

ns
th

substrate into the magnetic particle followed by an interac-
nd
f an
. A
in-

nel-
cribe
the

he
lied
uper-

ence
and

tor

-
de-

to
on.
of
ac-

ng
Expanding the Ŝ matrix into a series inT̂a,b and
Ĥspin-STM and grouping the terms appropriately, we can is
late the special terms. For example, the last term in Eq.~5!
gives

T̂aT̂b
1T̂a

1T̂bJ2E E E E dt1dt2dt3dt4

3^@ â1~ t !ĉ~ t !ĉ1~ t8!b̂~ t8!ĉ1~t1!â~t1!b̂1~t2!ĉ~t2!

3 ĉ1~t3!ĉ~t3!ĉ1~t4!ĉ~t4!Ŝ~t3!Ŝ~t4!#&. ~6!

The diagram in Fig. 2 corresponds to this term and ter
similar to it. The solid lines correspond to electron propa
tors, the filled circles correspond to the tunneling matrix
ementsTa and Tb , the cross corresponds to the exchan
interaction J, and the wavy line corresponds to the sp
propagator in the magnetic particle.

The current–current correlator is obtained by closing
ends to the two-particle Green’s function~Fig. 2! for the
timest andt8. A total of eight similar diagrams containing
feature at the macroscopic quantum tunneling frequency
pear. The diagrams for the current–current correlator
tained after taking the Fourier transform with respect to
time differencet2t8 are presented in Fig. 3. The extern
frequencyV is indicated by a dashed line by convention. T
structure of the diagrams and the correlator can be re
sented in the form

K~V!}Pa~V!^ŜŜ&VPb~V!, ~7!

wherePa andPb are the polarization operators correspon
ing to the electron loops in Fig. 3. The contribution creati
a feature arises from the spin–spin correlator in the magn
particle at the frequency corresponding to magnetic ma
scopic quantum tunneling. Due to the presence of a lo
frequency macroscopic quantum tunneling~MQT! mode, the
correlator^ŜŜ&V behaves asd(V2VMQT).4,8,9 Before pro-
ceeding to the detailed calculation, let us qualitatively d
cuss the reason for the appearance of the feature. The
gram in Fig. 2 describes the tunneling current fluctuatio
The upper half of the diagram describes tunneling from

FIG. 2.
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tion of the tunneling electron with the spin of the particle a
its subsequent return to the substrate. Such passage o
electron excites a macroscopic quantum tunneling mode
second electron from the tip passes into the particle and
teracts with the already excited macroscopic quantum tun
ing mode and then returns to the tip. Such processes des
the coherent tunneling of electrons from the substrate and
tip into the magnetic particle and their interaction with t
macroscopic quantum tunneling mode. If a voltage is app
between the tip and the substrate, these processes are s
posed on a constant mean tunneling current. In the abs
of a voltage the mean tunneling current is equal to zero,
the processes appear as equilibrium current fluctuations.

The Fourier transform of the current–current correla
can be represented in the following form

^II &V5K12~V!1K21~V!,

K67~V!5S e

2D 2

$~P1a~V!2P2a~V!!G~V!~Pb~V!

2P2b~V!!%671S e

2D 2

$~P1b~V!

2P2b~V!!G~V!~Pa~V!2P2a~V!!%67,

~8!

where the superscripts21 and12 denote the correspond
ing Keldysh components. The polarization operators are
fined in the following manner:

P1a~V!5E Ĝcc~V1v!T̂aĜac~v!
dv

2p
,

P1b~V!5E Ĝcc~V1v!T̂bĜbc~v!
dv

2p
, ~9!

P2a~V!5E Ĝcc~v!T̂aĜac~V1v!
dv

2p
,

P2b~V!5E Ĝcc~v!T̂aĜbc~V1v!
dv

2p
,

G~V!5J2^ŜŜ&V .

For brevity, in ~8! and ~9! we used notation similar to~5!,
which signifies summation over the spins. We shall turn
the definition of the Green’s functions themselves later
Each triple product in~8! should be expressed in terms
advanced, retarded, and Keldysh Green’s functions. To
complish this, it is useful to take advantage of the followi
property~see, for example, Ref. 19!:
FIG. 3.
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5~A121A21!~BRCR1CABA!1~CAAR1AACR!

3~B121B21!1~AABA1BRCR!

3~C121C21!, ~10!

where A, B, and C denote one of the functions~P1a,2a ,
P1b,2b , and G!. We have also introduced the notatio
A5P1a2P2a , B5G, and C5P1b2P2b . Information on
the spectrum of macroscopic quantum tunneling fluctuati
is contained in the third term in Eq.~10!. It has a spike at
VMQT , since the Keldysh componentsG12(V) and
G21(V) contribute to the generalized susceptibility appe
ing in the fluctuation–dissipation theorem:

^SzSz&V5G12~V!1G21~V!5J2 const cothS V

2TD
3d~V2VMQT!. ~11!

The calculation of the correlator^SzSz&V is a separate prob
lem ~see, for example, Refs. 4, 8, and 9!. The peak in the
fluctuation spectrum is a manifestation of the existence o
low-frequency feature associated with a collective mac
scopic quantum tunneling mode.

The only remaining task is to calculate the advanced
retarded components of the electronic polarization operat
which, for example, forP1a can be brought into the form

P1a
A ~V!5P1a

22~V!2P1a
21~V!5T̂a

3E Ĝcc
R ~V1v!T̂aĜac

A dv

2p
1T̂a

3E Ĝcc
R ~V1v!T̂aĜac

12
dv

2p
1T̂a

3E Ĝcc
21~V1v!T̂aĜac

A dv

2p
. ~12!

The polarization operatorP1a(V)2P2a(V) can be brought
into the form

P1a~V!2P2a~V!

5E @Ĝcc
R ~V1v!T̂aĜac

A 2Ĝcc
A ~V1v!T̂aĜac

R #

5(
k
E uTaku2Gak

R ~v!Gcc
R ~v!@Gcc

A ~V1v!

2Gcc
A ~v2V!#

dv

2p
5Na^uTakF

u2&
2V

V21~2g!2 , ~13!

where the following expressions are used for the Gree
functions:

Gak
R,A5

1

v2«ak6 i0
, Gcc

R,A5
1

v2«c6 ig
. ~14!

In addition, it is assumed that the density of states in
substrateNa is constant in the vicinity of the Fermi leve
~constancy is required only on the scaleVMQT!«F!, and
^uTakF

u2& is the tunneling matrix element at the Fermi ener
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tron at the level in the particle can be obtained in a stand
way, as is done in the problem of tunneling between t
massive reservoirs weakly coupled to one another throug
level in a quantum well~see, for example, Ref. 20!. In anal-
ogy to Ref. 20, for the widthg of the level in~14! we find

g5ga1gb5(
k

@ uTaku2d~«c2«ak!

1uTbku2d~«c2«bk!#. ~15!

If the density of states in the reservoirs varies weakly in
energy range that interests us,g does not depend on th
frequency.

Next, the last term in~12! can be brought into the form

T̂aE @Ĝcc
R ~V1v!T̂a

1Ĝac
12~v!2Ĝcc

R ~v!T̂aĜac
12~V

1v!#
dv

2p
5T̂aE Ĝa

R~v!T̂a
1Ĝcc

R ~v!@Ĝcc
21~V1v!

2Ĝcc
21~v2V!#

dv

2p
5Na^uTakF

u2&@F~«c

1V!rc~«c1V!#2@F~«c2V!rc~«c2V!#, ~16!

where the Keldysh function for the resonant level is found
analogy to Ref. 16:

Gcc
21~v!52p@12F~v!#rc~v!,

F~v!5@gaf ~v!1gbf b~v!#/g, ~17!

rc~v!52
1

p
Im$Gcc

R ~v!%.

Here f a(v) and f b(v) are the Fermi distribution functions in
the reservoirs~the substrate and the tip! with the chemical
potentialsma and mb , respectively. If there is an applie
voltage, we assume that it is included in the chemical pot
tials: ma2mb5eV.

The second term in Eq.~12! can be brought into the form

T̂aE @Ĝcc
R ~V1v!T̂a

1Ĝac
12~v!2Ĝcc

R ~v!T̂a
1Ĝac

12~V

2v!#
dv

2p
5T̂aE @Ĝa

12~v!Ĝcc
R ~v!

1Ĝa
A~v!Ĝcc

12~v!#T̂a
1@Ĝcc

A ~v1V!2Ĝcc
12~v

2V!#
dv

2p
5Na^uTaku2&2 f a~«c!

V

V21~2g!2 . ~18!

The functionsGR and GA, which contain the polarization
operatorsP1b andP2b , are calculated similarly. If the leve
of the extra electron«c in the particle is above the chemica
potentials in the reservoirs whenV50 ~which should be the
case, as a rule, because of Coulomb repulsion!, the terms
with f a,b(«c) can be omitted. The final expression is simp
fied and is written as follows:
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V a b a b S V21~2g!2D
3coth S V

2TD d~V2VMQT!. ~19!

The insignificant constants are included in the cofactor co
Recalling that g}uTau2Na1uTbu2Nb and that VMQT!g
@sinceg'1 meV andVMQT'1 kHz ~Ref. 4!#, we can bring
Eq. ~19! into the form

^II &V}J2S gV

V21~2g!2D 2

coth S V

2TD d~V2VMQT!. ~20!

The appearance of a spike atVMQT is not surprising, since
the presence of an eigenmode in the system should be m
fested in the fluctuation spectrum of quantities assigned
the combined substrate1particle1tip system. In a certain
sense it is analogous to the appearance of a sharp fe
~with weak damping! at the natural resonant frequency of
ordinary electrical oscillator circuit.

3. CONCLUSIONS

A simplified model of a magnetic particle with one sp
on a site has been considered previously~see, for example
Ref. 8!. We shall now show that this restriction is not
fundamental importance. To illustrate this, it is convenien
use the Heisenberg model with an anisotropic interaction.
was shown in Ref. 21, if there is strong anisotropy@J'!Ji ,
whereJ' and Ji are the exchange constants describing
exchange processesJ'(SixSjx1SiySjy) andJiSizSjz#, in this
case the wave function of the ground state is

uC1&5
1

&

~ u↑↓↑↓...&1u↓↑↓↑...&).

The function corresponding to the first excited state is

uC2&5
1

&

~ u↑↓↑↓...&2u↓↑↓↑...&).

The magnitude of the splitting between the ground and
first excited state is exponentially small in the number
particles (N) and the ratio of the constantsJ' /Ji and equals

D'v12v2}J' exp ~2N ln~Ji /J'!!.

When an electron tunnels from the substrate into the
through the particle, an interaction with one of the spins
the particleŜi takes place. Special terms arise from the se
expansion of theŜ matrix in ~6! from terms of the form

(
i

K TiaTia
* TibTib

* ...ĉiz
1~t3!ĉiz~t3!Ŝiz~t3!Ŝiz~t4!ĉiz

1~t4!

3 ĉiz~t4!}(
k

^CnuŜiz~t3!Ŝiz~t4!uCn&, ~21!

where Tia and Tib are the tunneling matrix elements th
describe the passage of an electron from the substrate an
needle to thei th site in the magnetic particle, anduCn& de-
notes the eigenfunctions of thenth particular state of the
particle. In view of the fact that21
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the sign~plus or minus! in ~22! is determined simply by the
order of the labels of the spins in the stateu↑↓↑↓...&. Substi-
tuting the expressions for the spin operators in the Heis
berg representation

Ŝiz~t3,4!5exp ~2 iĤ spint3,4!Ŝiz exp ~ iĤ spint3,4! ~23!

into ~21! and recalling thatuC1& and uC2& are the eigen-
states of the HamiltonianĤspin of the particle, we have

^C1uŜiz~t3!Ŝiz~t4!uC1&

5exp ~ iD~t32t4!!u^C2uŜizuC1&u2. ~24!

The subsequent transition to the Fourier representation
~21! with consideration of Eq.~24! gives a peak in~21! at the
magnetic macroscopic quantum tunneling frequency in
particle (VMQT5D). The contribution from eachi th site
with the spinSi has its own weight, which depends on th
squares of the tunneling matrix elements coupling the
spective site in the particle with states in the substrate
the scanning tunneling microscope tip.

The contribution of macroscopic quantum tunneling
the spectrum of tunneling current fluctuations appears e
in the absence of a spin–orbit interaction in the tip. T
aforementioned tunneling current fluctuations, as well as
amplitude of the EPR signal in a scanning tunneling mic
scope, are proportional to the square of the spin–orbit in
action in the scanning tunneling microscope tip.14,16 This is
because the spin statesu↑& and u↓& on a paramagnetic cente
in a constant magnetic field are eigenstates. The energy
ference between these states is equal to the Zeeman en
~the Larmor frequency!. When electrons tunnel through
paramagnetic center, spin-flip transitions of the electrons
required for the Larmor frequency to be manifested in
spectrum of tunneling current fluctuations. Because the t
neling current operator is diagonal with respect to the sp
‘‘coupling’’ of the electron spin degrees of freedom can o
cur only to the extent of the spin–orbit interaction. In th
case of macroscopic quantum tunneling in a magnetic p
ticle, the states

uC1&5
1

&

~ u↑↓↑↓...&1u↓↑↓↑...&) and uC2&

5
1

&

~ u↑↓↑↓ . . . &2u↓↑↓↑ . . . &),

which differ by the magnitude of the macroscopic quantu
tunneling energy, already contain components with differ
spin projections on a given site~the spin in the site does no
have a definite projection!. Therefore, a tunneling electro
with a given spin projection ‘‘finds’’ the appropriate spi
projection on the site. This means that a spin-flip transit
of the electron and the presence of a spin–orbit interac
are not required to ‘‘couple’’ the spin degrees of freedo
with the tunneling current.

Thus, the scanning tunneling microscope can be an
fective tool for observing macroscopic quantum tunnelin
especially because, as was previously shown, the sensit
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Anomalous light absorption in molecular crystals

V. I. Tovstenko

Institute of Physics, Ukrainian National Academy of Sciences, 252650 Kiev, Ukraine Russia
~Submitted 13 November 1995; resubmitted 17 March 1997!
Zh. Éksp. Teor. Fiz.112, 1021–1040~September 1997!

The method of successive approximations is used to obtain a solution for an infinite chain of
nonlinear coupled equations for the Fourier transform of the retarded two-time Green’s
function in a system in which the electron vibrational interactions of the lattice photons and of
the intramolecular photons are included in the terms of the Hamiltonian that are diagonal
in the electron operators. A unique subsequence, which provides a finite contribution to the integral
intensity of the absorption spectrum, is extracted from the infinite series and summed. The
resulting formulas are used to classify the excited states of a crystal and interpret the cases of
anomalous light absorption, when the absorption intensity becomes inversely proportional
to the Franck–Condon overlap integral.
© 1997 American Institute of Physics.@S1063-7761~97!01709-5#
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Although at present there exists an enormous body
theoretical and experimental data on the problem of excito
phonon interaction in molecular crystals1–4 ~a detailed bibli-
ography of the work in this area of research can be found
the cited monographs! and several laws explaining the pec
liarities of the absorption and luminescence spectra h
been established, some experimental data have found no
isfactory explanation within the framework of modern the
retical ideas. Let us discuss the topic more thoroughly.

As is known,5,6 in the Franck–Condon approximatio
the intensity of an optical transition in a crystal from th
ground electron state to an excited state is determined
what is known as the overlap integral^C f uC0&, whereC0

andC f are the vibrational wave functions of the ground a
excited electron states, respectively. In particular, in
phononless transition the overlap integral has a structur
the form exp(2u), whereu is proportional to the product o
the exciton–phonon coupling constant and the average n
ber of phononŝ n& ~some researchers7 call exp(2u) the
Debye–Waller factor, by analogy with the probability of c
herent~Bragg! scattering of x-rays and neutrons by a cry
tal!.

Since the linear exciton–phonon coupling constant
proportional to the square root of the effective mass of
molecule~nucleus!,2,6 in isotope-substituted crystals at lo
temperatures the intensity of light absorption at the phon
less resonance maximum must decrease with increasing
tope mass. If the temperature shift of the level is insign
cant, the absorption intensity must behave in the same
with increasing temperature. At high temperatures the ef
of the mass factor grows, so that the root dependenc
transformed into linear dependence.

Some experimental data, however, point to an oppo
dependence. For instance, for the deuteronaphthalene8)
crystal at liquid-helium temperatures the absorption coe
cient at the maximum of thea-polarized phononless band
approximately 20% higher than the absorption coefficient
the naphthalene (H8) crystal.8 Robinetteet al.9 firmly estab-
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K! and at the maximum of thea-band the absorption coeffi
cient grows with temperature without a noticeable shift in t
resonance on the frequency scale.

Since the exciton–phonon interaction renormalizes
exciton band by the factor exp(2u) ~Ref. 4!, in isotope-
substituted crystals one should also observe a dependen
the Davydov splitting on the type of isotope: the splittin
becomes smaller as isotope mass grows. In experiment
least in aromatic crystals, no such dependence has b
observed.8,10,11

There is also a group of experimental facts in which t
observed anomalies are not directly related to the fac
exp(2u). For instance, because of the weakness of the in
molecular interaction, the difference in the values of the p
larization ratio for the components of a Davydov doublet in
crystal and in the oriented-gas model~without allowance for
the interaction! must act as a small correction. For the nap
thalene crystal, the polarization ratio exceeds that for a
by a factor greater than 100.

Moreover, since in molecular crystals the parameters
the exciton bands are usually determined by the intramole
lar multipole moments of transitions from the ground state
an excited state,1 the value of the Davydov splitting in naph
thalene does not agree with the oscillator strength of an
tramolecular transition, i.e., it is anomalously larg
(.160 cm21) and comparable to a similar value for the a
thracene crystal (.220 cm21) ~Ref. 2; the oscillator
strengths of intramolecular transitions in these crystals di
by several orders of magnitude2!.

These examples and other data12–19 suggest that the
problem of the absorption bands in molecular crystals is
no way trivial and merits a more thorough study.

We believe that the discrepancy between theory and
periment arises because the calculations were not very a
rate. For instance, some properties of the system, say
nonlinearity in the problem with exciton–phonon interactio
are lost when the chain of the coupled equations for
retarded Green’s functions is truncated at an early stage2 or
when terms in which the number of particles are not co

5544-11$10.00 © 1997 American Institute of Physics
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Note that during recent years a number of new meth

have appeared in the theory of the exciton–phonon inte
tion, methods that not only made it possible to take in
account the polaron shift of the electron state but also p
vide a correct way of calculating the effect of lattice vibr
tions on the polaron band structure.22–24However, the papers
we have just cited and other work devoted to this topic25–27

yielded no material that would be useful in establishing
correspondence between the existing theory and the ex
mental facts listed at the beginning of this Introduction.

The present paper suggests a method to solve this p
lem. It is based on using the complete chain of coupled eq
tions for the two-time retarded Green’s function. With it w
derive an expression for Green’s functions in the form o
series in increasing powers of time-independent correla
functions. Partial splitting of the correlation functions for a
terms in the series and summation of the resulting sub
quences makes it possible to derive formulas that are in g
agreement with the experimental data. New features,
mentioned previously by other researchers, have also b
discovered.

2. THE CRYSTAL HAMILTONIAN. THE GREEN’S FUNCTION

In our studies we will find it convenient to use the mixe
~k–n!-representation,28 wherek is the wave vector of a lat
tice phonon, andn is the radius vector of a molecule in th
crystal. Generalizing the results of Refs. 1–4, 20 and 21,
can write the following expression for the Hamiltonian of
molecular crystal in which electron excitons interact bo
with intramolecular phonons and with crystal phonons, wi
out allowance for electron configuration and the Duschin
effect29 in the harmonic approximation~\51!:

H5HR1(
ns

vns
0 ans

† ans1(
n

Bn
†BnS «n

0

1(
s

Dvnsans
† ansD 1(

nm
8Mnm

0 Vm
† Vn . ~1!

Here

HR5(
kr

vkrbkr
† bkr ~2!

is the part of the phonon Hamiltonian describing the mot
of molecules as a whole;vkr is the dispersion of ther th
branch;bkr

† andbkr are the lattice phonon creation and an
hilation operators;Dvns5vns

f 2vns
0 is the difference in fre-

quencies~the frequency defect! of the sth normal intramo-
lecular vibration in the excited (vns

f ) and ground (vns
0 )

electron states with allowance for crystalline corrections;ans
†

andans are the intramolecular phonon creation and annih
tion operators~the operatorsbkr

† ,bkr and ans
† ,ans commute

since they act on different variables!; «n
0 is the renormalized

electron state of a molecule in the crystal; theMnm
0 are the

integrals of excitation exchange between the moleculen
and m in the Franck–Condon approximation; the prime
the summation sign indicates that summation is only o
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creation and annihilation operators for an electron excitat
at siten accompanied by deformation of the intramolecu
configuration of the nuclei and the lattice. The electron o
eratorsBn

† andBn at low concentrations of excited molecule
can be considered Bose operators:1,2

Pn5)
s

Pns ,

Pns5exp@2ans~ans
† 2ans!#exp@2kns~ans

† ans
† 2ansans!#

5exp@ans
2 ~112bns!/2#exp@2ans~112bns!ans

† #

3exp~2bnsans
† ans

† !exp~2gnsans
† ans!

3exp@ans exp~2gns!ans#exp~bnsansans!, ~3!

whereans is the dimensionless coupling constant represe
ing the linear vibronic interaction in the crystal andkns is the
constant of quadratic vibronic coupling,

kns5
1

4
ln

vns
f

vns
0 , bns5

1

2
tanh 2kns5

1

2

vns
f 2vns

0

vns
f 1vns

0 ,

exp~2gns!5A124bns
2 . ~4!

In an ideal~translation-invariant! crystal the quantitiesans ,
kns , and«n

0 are independent of the molecule’s number.
The operatorFn describes the deformation of the cryst

lattice and has the form3,28

Fn5expF(
kr

~Dn
krbkr2~Dn

kr !* bkr
† !G

5)
kr

expS 2
uDkr u2

2 Dexp@2~Dn
kr !* bkr

† #exp~Dn
krbkr !.

~5!

Here

Dn
kr5Dkr exp~ ik–n!,

whereDkr is the Fourier component of the linear exciton
photon coupling constant determined by using the ma
elements of the potential energy of the interaction of a m
ecule and its surroundings.2,3 We ignore the spatial depen
dence in the resonant terms since they are higher-order q
tities in relation toDkr ~Ref. 30!.

In the problem under consideration, the spectral prop
ties of the crystal can be shown4,21 to be described by the
Fourier transforms of the following Green’s functions:

Gnm~ t !52 iu~ t !^@eiHtBnVne
2 iHt , Bm

† Vm
† #& ~6!

allows for Franck–Condon transitions, and

Gns,n;m,ms8
HT

~ t !52 iu~ t !^@eiHt~ans1ans
† !BnVne

2 iHt ,

3Bm
† Vm

† ~ams81ams8
†

!#& ~7!

allows for the Herzberg–Teller interaction.
The function ~7! is the consequence of allowing fo

terms that are linear in the displacements from the equi
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elements of the intramolecular transition current from
ground electron state to an excited state.

The Herzberg–Teller Green’s function makes it possi
to examine transitions to odd-parity sublevels in the ene
spectrum involving inncompletely symmetric vibrations fo
bidden in the Franck–Condon approximation. In this ca
according to the Jahn–Teller effect,31 for nondegenerate
electron states the symmetry of the molecule is conser
~the points of electron minima of the ground and excit
states coincide!, and the principal mechanism of interactio
between the electron and vibrational motions~in contrast to
completely symmetric vibrations, where the change of po
tion of equilibrium plays the key role! is the phonon fre-
quency shift. This effect is not small and amounts to seve
tens of cm21 ~see Ref. 4!. Moreover, in some molecules o
the aromatic series the intensity of a transition involving
incompletely symmetric vibration exceeds the intensity o
phononless transition by several orders of magnitude,4,8 with
the result that such transitions play an important role in
general picture of the absorption spectrum of a crystal.

Since the energy of intramolecular excitations is mu
higher than the temperatures at which experiments are
ally conducted, the averaging in~6! and ~7! for the electron
subsystem and the subsystem of intramolecular phonons
be done over the ground state. For the subsystem of la
phonons the averaging is done over the Gibbs canonica
semble. Thus, the problem is reduced to calculating sim
fied Green’s functions of the form

Gmn~ t !52 iu~ t !^exp~ iH Rt !BnVn exp~2 iHt !Bm
† Vm

† &,
~8!

Gns,n;m,ms8
HT

~ t !52 iu~ t !^exp~ iH Rt !ansBnVn

3exp~2 iHt !Bm
† Vm

† ams8
† &. ~9!

The equations for the Green’s functions~8! and ~9! are
solved by the method of successive approximations in
pendix A. Collecting the resulting expressions of the fo
~A8! and ~A9! with subsequent iteration cycles, we have

Gnm~E1 ig!
g→10

5
1

E2«01 ig

3(
n50

`
^K̃n

n&

~E2«01 ig!n dnm1
Mnm

0

~E2«01 ig!2

3 (
n150

`

(
n250

` ^K̃nm
n1n2&

~E2«01 ig!n11n2

1(
n2

Mnn2

0 Mn2m
0

~E2«01 ig!3

3 (
n150

`

(
n250

`

(
n350

` ^K̃nn2m
n1n2n3&

~E2«01 ig!n11n21n3

1•••1(
n2

•••(
nj 21

Mnn2

0 •••Mnj 21m
0

~E2«01 ig! j

3 (
n150

`

••• (
n j 50

` ^K̃nn2•••nj 21m
n1n2•••n j 21n j&

~E2«01 ig!n11•••1n j
1••• . ~10!
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by formulas~A13!–~A15!, ~A19!, and~A22! in Appendix A.
If in the correlator~A14! at q51 (n15n) the operator

Pn1
is replaced byansPn and atq5 j (nj5m) Pnj

† is replaced

by Pm
† ams8

† , the series~10! is the solution for the Herzberg–
Teller Green’s function~9!, too.

As ~10! shows, the Fourier transform of the Green
function is an extremely complicated function of frequenc
temperature, and spatial coordinates, so that at present
is no way in which the series can be fully summed. To a
lyze the series we introduce the following simplification
According to~A27!, each correlation function̂K̃& contains a
term that is independent of the spatial coordinates and
accordance with the order of this function, can be rep
sented as a power factor of the first term in~10!. The terms
specified in this way form a subsequence of the geome
progression type and can easily be summed.

If we note also that for a crystal with two molecules
the unit cell,

Mnm
0 →Mns,ml

0 5
1

Nk (
Q

exp$ iQ–~n2m!%

3(
m

us
m~Q!@ul

m~Q!#* «Qm , ~11!

whereus
m is the eigenfunction of the operator

Msl
0 5(

n
8 exp$ iQ–~n2m!%Mns,ml

0 , ~12!

k is the number of molecules per unit cell, andm is the label
that numbers the exciton bands, summation over the sp
coordinates leads to the following expression for t
Franck–Condon Green’s function:

Gns,ml~E!5
1

Nk (
Qm

us
m~Q!@ul

m~Q!#*

3exp$ iQ–~n2m!%GQm~E!. ~13!

Here

GQm~E!5
SE

12«QmSE
, ~14!

where

SE5 (
n50

`
^K̃n

n&

~E2«01 ig!n11

5)
s

(
l s

f l s
Fl s

2)
kr

exp@2uDkr u2~2^nkr&11!#

3 (
mkr50

6` Lmkr

E2«02•••2vs
f l s2•••2vkrmkr2•••1 ig

,

~15!
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mkr S ^nkr&
D mkr kr kr kr

~16!

I mkr
is the modified Bessel function of ordermkr ,

f l s
5exp@2as

2~112bs!2gs#
~as

2 exp~2gs!! l s

l s!
, ~17!

Fl s
5 (

m50

E~ l s! S bs exp~2gs!

as
2 D m l s!

m! ~ l s22m!!
, ~18!

andE( l s) is the integral part of the numberl s .
If the sth intramolecular vibration is not completel

symmetric and the crystalline correction toas is zero, i.e.,
as50 as a whole, we have

f l s
Fl s

2 5exp~2gs!
bs

2l s

l s! l s!
~2l s!!, ~19!

and in the denominator of~15! vs
f l s must be replaced by

vs
f2l s .

Now let us examine the Green’s function~9!, which de-
scribes Herzberg–Teller states. In this case, in~15! and~18!
the expression forFl s

becomes

F̃ l s
5 (

p50

E~ l s! S bs exp~2gs!

as
2 D p l s!

p! ~ l s22p!!

3F l s22p

as
2as~112bs!G ~20!

and the sumSE becomes

SE
ss85dss8(

l s
f l s

F̃ l s
2 Sl s

, ~21!

where

Sl s
5)

xÞs
(
l x

f l x
Fl x

2 )
kr

3exp@2uDkr u2~2^nkr&11!#

3(
mkr

6` Lmkr

E2«02vs
f l s2•••2vx

f l x2•••2vkrmkr2•••1 ig
.

~22!

To identify the terms that provide a finite contribution
the integral intensity, in~21! we introduced the function
dss8 , since forsÞs8 we have

E Im SE
ss8dE50.

What is summed with the first term in~10! is also a
subsequence of a geometric progression, but constru
from terms that are diagonal in the indexl s . Thus,

Gnl,nls;ms,ms s8
HT

~E!5
dss8
Nk (

Qm
ul

m~us
m!*

3exp$ iQ–~n2m!%gQm
s , ~23!
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gQm5(
l s 12«Qm f l s

Fl s
2 Sl s

. ~24!

If the sth intramolecular vibration satisfiesas50, the coef-
ficients f l s

F̃ l s
2 vanish for all valuesl sÞ2ps11, and thef l s

Fl s
2

are finite only atl s52ps ~f l s
Fl s

F̃ l s
50 for all integral values

of l s!. Then

f l s
F̃ l s

2 5 f̃ l s
5exp~23gs!

bs
2l s

l s! l s!
~2l s11!!, ~25!

Gnl,nls;ms,ms s8
HT

~E!5dss8dnmdlsgs , ~26!

gs5(
l s

f̃ l s
S2l s11 , ~27!

and only the first term in~10! contributes to the integra
absorption intensity.

Thus, if an incompletely symmetric phonon participat
in an electron vibrational transition, the Herzberg–Teller e
cited states of the crystal are localized. AsS2l s11 implies, the
shape of the band in this case has the following structure:
resonant part of absorption is determined by the intramole
lar transition frequency, while the broadband part is det
mined by the spectral density of crystal vibrations. The
called one-particle and dissociated~two-particle! states4,20

are not considered here.
As Eqs.~14!, ~24!, and~26! show, the Green’s functions

obtained from the subsequences summed with the first t
of the series~10! have resonant denominators only of th
first order. Hence each integral of their imaginary parts~the
dissipative part of the dielectric constant! over the entire fre-
quency range has a finite~nonzero! value. The other terms in
~10! have higher-order resonance denominators, so that
subsequences obtained from these terms have the same
erty. These additional terms contribute nothing to the integ
intensity, but both their absorption (2Im G8.0) and emis-
sion (2Im G8,0) parts slightly distort some fragments o
the spectrum. To estimate these distortions, in Appendi
we extract and sum one such subsequence, based on the
term in ~10! ~we allowed only for one branch of the vibroni
correlator~A13!!. Comparison of~15! with ~A32! and~A35!
shows that the relative value of the correction is of ord
a2 exp(22a2). As a2 varies continuously from zero to in
finity, the producta2 exp(22a2) reaches its maximum a
a250.5 and is approximately 0.2.

3. THE ENERGY SPECTRUM OF A CRYSTAL AND
COMPARISON WITH EXPERIMENTAL DATA

We can easily show that the shape of the absorp
band to first order in the external electromagnetic field~q0 is
the wave vector of the light! is determined, with allowance
for Eqs.~14!, ~24!, and~27!, is determined by the following
expressions;

2Im Gq0m~E!52
Im SE

~12«q0m Re SE!21~«q0m Im SE!2 ,

~28!
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2Im gq0m
s

52(
l s

f l s
F̃ l s

2 Im Sl s

~12«q0m f l s
Fl s

2 Re Sl s
!21~«q0m f l s

Fl s
2 Im Sl s

!2

~29!

for Herzberg–Teller states involving thesth completely
symmetric vibration, and

2Im gs52(
l s

f̃ l s
Im S2l s11 ~30!

for Herzberg–Teller states involving thesth incompletely
symmetric vibration.

According to~28! and~29!, the energy levels of the nor
malized absorption spectrum can be found by solving
following equations:

12«q0m Re SE50, ~31!

12«q0m f l s
Fl s

2 Re Sl s
50. ~32!

The spectrum of Herzberg–Teller states involving an inco
pletely symmetric phonon is determined by the real part
the denominator of the functionS2l s11 in ~30!.

In their mathematical structure, Eqs.~31! and ~32! are
similar to the Lifshitz equation,32 which was first derived in
the problem of degenerate regular perturbations of the
crete and quasicontinuous spectra. The main features of
equation have been thoroughly studied for different syste
by many researchers~see, e.g., the monographs cited in Re
4, 33, and 34!. If in ~28! and ~29! we formally identify the
band component of the electron excitation,«q0m , with the
potential that perturbs the spectrum of functionS, we can
use the method developed in Refs. 4 and 32–34 to study
~31! and ~32!.

To this end we must first simplify~15!: in the part in-
volving lattice photons we ignore the dependence on
wave vector of the optical branches, since the dispersio
these branches is low; for the acoustic branches we keep
terms linear in the exciton–phonon coupling constant; a
for the intramolecular vibrations we putDv50. Then Eq.
~15! becomes

SE'e2u)
s

(
ns

as
2ns

ns!
)

p
(

mp50

6`

LmpF 1

V1 ig

1(
kr

UDkrU2S 11^nkr&
V2vkr1 ig

1
^nkr&

V1vkr1 ig D G , ~33!

where

V5E2«02•••2vs
0ns2•••2vpmp2••• , ~34!

u5(
s

as
21(

p
uDpu2~112^np&!

1(
kr

uDkr u2~112^nkr&!. ~35!
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Let us inspect the second and third terms in the squ

brackets in~33!. According to Davydov,2

Dkr5
1

\vkr
(

j
ekr

j S \

2M jvkr
D 1/2

3(
m

S ]

]u0
j 1exp~ ik–m!

]

]um
j D0mD , ~36!

where theekr
j are the components of the unit polarizatio

vectors of ther th branch with the wave vectork, theM j are
the mass factors corresponding to the translational degree
freedom of the molecule,um

j is the displacement of the mol
ecule’s center of gravity from the equilibrium position, an
the matrix elementsD0m describe the change in the potenti
energy of the interaction of the molecule and its surrou
ings when the crystal goes into an excited state.

For a simple cubic lattice with the nearest-neighbors
teraction at the low-frequency edge of the continuous sp
trum ~in an electron vibrational transition, according to E
~34!, this edge is«5«01•••1vs

0ns1•••1vpmp1•••), the
contribution of the second term to the density of states n
the lower edge of the acoustic branch has the form (V.0)

g~E!'const3V3
exp~V/kT!

exp~V/kT!21
. ~37!

At the high-frequency edge of the spectrum, whe
vm2V!vm , , with vm the cutoff frequency of the acousti
branch, we have

g~E!'const3V2Avm
2 2V2

exp~V/kT!

exp~V/kT!21
. ~38!

Thus, in an electron vibrational transition, the density
phonon states at the edges of the continuous-spectrum
disappears according to different laws and differs from
density of ‘‘purely’’ acoustic vibrations of the crystal, with
the latter density having a root singularity.33

This discrepancy is caused by effect that the modulat
factors in the integrand depending on the wave vector,
the constantuDkr u2 and the average number of phono
^nkr&, have on the spectral density and by the presence in
denominator of the Green’s function of a term that is line
rather than quadratic in phonon dispersion.

In the frequency rangeV,0, the third term on the right-
hand side of Eq.~33! contributes to the density of vibrations
with the corresponding formulas differing from~37! and~38!
only by the absence of a temperature exponential in the
merator.

Since the density of the phonon states at the edges o
acoustic band vanishes, the real part of the terms under
sideration decreases as 1/uVu when uVu@vm . As we get
closer to the band edges, the real part increases in abs
value, reaches a maximum, then decreases, and in the c
of gravity of the distribution passes through zero a
changes sign.34 The size of the maximum near the ban
edges for the second term is of order
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FIG. 1. Graphical solution of Eq.~31!, 2SE«q0
/v51, in di-

mensionless units, where SE5exp(2a2)(n(a
2n/n!)

3@(E2«0)/v2n#21; curves1 correspond toa250.1, curves2
to a251.0, straight line3 to v/«q0

52.5, straight line4 to
v/«q0

51.0, and straight line5 to v/«p0
522.5.
1 uDkr u2~11^nkr&!
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Re S5C2'U
~2p!3 E \vkr

dkU,
and for the third, of order

Re S5C3'U 1

~2p!3 E uDkr u2^nkr&
\vkr

dkU.
Since as we approach any of the discrete frequen

whereV vanishes the real part of the first term changes s
and diverges and the second and third terms are finite,
u1/«q0

u.C2 , C3 the number of roots of Eq.~31! coincides
with the complete set of discrete vibrations of the syste
The second and third terms in this case act as correction
the position of the level.

Now let us discuss in detail the distribution of the d
crete roots in the zeroth approximation. To this end in~33!
we isolate the part corresponding, say, to one of the intra
lecular vibration branches. The qualitative picture describ
the situation is depicted in Fig. 1. The first 20 terms in t
sum

Re S'exp~2a2!(
n

a2n

n!

1

E2«02vn
~39!

were used in the calculations, and pointE5«0 was selected
as the origin on the horizontal axis.

Figure 1 shows that, in contrast to an isolated molec
in a crystal the vibrational series are not equidistant, with
greatest shift at the beginning of the spectrum. If«q0m,0,
the energies of the vibrational sublevels are higher than
frequency of the initial phonon, and if«q0m.0, they are
lower. For instance, ata250.1 ~curves1! and v/«q0m51
~straight line 4!, the contribution of the first electron
vibrational transition to the phonon frequency amounts
0.6v. As we move toward the violet part of spectrum,
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the distortions of phonon frequencies, which is accompan
by a decrease in the Davydov splitting for polarization tra
sitions. This effect of ‘‘stretching’’ or ‘‘compressing’’ the
vibration frequency and the related nonequidistance of
series in the harmonic approximation are consequence
the nonlinearity of the equations for the Green’s function

In the frequency range where the real part of the fi
term on the right-hand side of Eq.~33! is small~see Fig. 1!,
a situation may arise in which the acoustic branches prov
the main contribution to ReS ~usually vm does not exceed
the lowest frequency of intramolecular or optical vibration!.
If in this case 1/«q0m is smaller in absolute value than th

constantsC2 and C3 but has the same sign, Eqs.~31! and
~32! may have roots in addition to the discrete frequenc
~generally speaking, the solutions of Eqs.~31! and ~32! do
not coincide!. The smaller the value of2Im S in this range
~say, at the edges of the acoustic branch!, the more pro-
nounced are the corresponding resonances in the absor
spectrum.

Thus, our qualitative analysis suggests that each disc
sublevel that represents a transition involving intramolecu
or optical phonons~with their dispersion ignored!, including
a purely excitonic transition, has accompanying broadb
absorption whose extent is determined by the edges of
acoustic band. Moreover, within this band there may be
ditional resonances related to what is known as quasistat
ary states33 ~formally all states related to the solutions
Eqs. ~31! and ~32! are quasistationary because if we allo
for multiphoton transitions in the acoustic branches of
spectrum atTÞ0, the spectral density is finite in the entir
energy range!.

Using the above reasoning, we can now unambiguou
interpret the situation at the beginning of the absorpt
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spectrum of naphthalene~see the Introduction!. Indeed, a
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narrow a-polarized resonance is an isolated solution of E
~31! in the region whereE,«0 («q0m,0). In b-polarization,
«q0m is positive, and the lowest solution of the equation lan
in the acoustic band, so that it is not of resonance origin.
the other hand, the extent of broadband absorption and
positions of the maxima in both polarizations~they coincide,
as shown in Refs. 15 and 17! are in good agreement with th
data of Ref. 35 on the density of phonon states in the na
thalene crystal, so that the band, we believe, is prima
vibrational in origin.

Since the experimental data on oscillator strengths
based on measurements of the area under the vibrat
curve, which is obviously an unsubstantiated method for
tracting such data, the contradiction between the low os
lator strength in an isolated molecule and the anomalou
high value in a crystal is resolved. Moreover, since in o
interpretation the maximum inb-polarization is not a com-
ponent of a Davydov doublet of a phononless transition,
contradiction related to the anomalously high value of
Davydov splitting is also resolved. Extremely accurate m
surements are probably needed, to find a trueb-component
or its traces.

For a high oscillator strength, when the radiative wid
of an intramolecular transition becomes comparable to
width of the acoustic-phonon band and the frequencies
optical vibrations, identifying the components of a Davyd
doublet is not so trivial. For instance, in the anthracene c
tal, frequencies of six branches of optical lattice vibratio
from 30 to 100 cm21 fall into the electron transition band,36

so that the resulting maximum in each component is form
by a superimposition of phonon wings overlapping in a co
plicated manner and the electron transition band proper.

The formulas derived in this paper also make it possi
to explain the experimental facts, described in the Introd
tion, that concern the anomalous temperature depend
and the anomalies in isotope-substituted crystals. For
stance, if«q0m,0, the solution to Eq.~31! related to an elec-
tron state lies in the frequency rangeE,«0, where the spec-
tral phonon density at liquid-helium temperatures is form
primarily in quantum transitions from the vibrational suble
els of acoustic lattice vibrations to an electron excitat
level and is therefore low. Since at low temperatures
principal contribution to the temperature dependence of RS
is provided by the terms linear in̂n&, which according to
~33! have opposite signs, the position of the electron le
does not change within a narrow temperature range. In
case the absorption intensity at the maximum of the re
nance band is

2Im Gq0m}2
1

~«q0m!2Im SE
}eu, ~40!

so that the intensity increases withT.
Clearly, formula~40! also describes the increase in a

sorption intensity with isotope mass.
Let us take Herzberg–Teller states involving a not co

pletely symmetric intramolecular phonon. In view of the l
calized nature of the excitation, the absorption intensity
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always decreases with increasing temperature and with
creasing isotope mass. This pattern is corroborated by
results of Sheka and Terenetskaya,8 who studied theM -band
of the naphthalene crystal. Since here the broadband pa
the spectral manifestation of the density of phonon sta
studying its structure may serve as a good addition to
method that uses neutrons,35

As for the experimentally observed fact that the Dav
dov splitting is independent of isotope mass,8,10,12we believe
that comparison of theory and experiment at this stage
premature, since in this paper we disagree with the comm
interpretation of the bands.

An interesting experimental possibility of determinin
the state of a molecule in the crystal~the value of«0! follows
from ~15! and ~28!. These formulas show that at low tem
peratures the spectral density of phonons at pointE5«0 is
extremely low and that its temperature dependence is m
weaker than in the other parts of the spectrum. Such a p
can easily be seen in the figure for different temperat
curves of the intensity of absorption in the naphthalene cr
tal in Ref. 17.

4. CONCLUSION

By using the method of two-time retarded Green’s fun
tions we have examined the effect of phonon excitatio
~both lattice and intramolecular! on the optical spectra o
molecular crystal in the exciton absorption region. Spec
cally, we have studied the case where the electron vibratio
interaction is accounted for by the terms in the Hamilton
that are diagonal in the electron operators.

We have used the method of successive approximat
to solve the chain of coupled nonlinear equations for
Fourier transform of the Green’s function. The result is
infinite series in increasing order of phonon correlation fun
tions. By partially splitting each correlation function we is
lated and summed a unique subsequence that provides
nite contribution to the integral intensity of the absorpti
spectrum. We show that the effect of other subsequen
which contribute nothing to the integral intensity, reduces
a distortion of the spectrum by a value of about 20%.

Analysis of the results makes it possible to classify t
excited states of the crystal as follows: all states except th
formed by a Herzberg–Teller intramolecular transition
volving an incompletely symmetric phonon are one-partic
and the latter are localized~one-particle in the sense that a
electron excitation and an equilibrium deformation mo
through the crystal in a self-consistent manner as a wh
with a single wave vector!.

The formulas derived here have made it possible to
plain some anomalies in the absorption spectra of molec
crystals. In particular, for an excitonic resonance we ha
found that if it is shifted toward long waves from the m
lecular state, at low temperatures in a certain interval
intensity at the maximum of the band can be proportiona
the reciprocal values of the overlap integral, i.e., must gr
with temperature. In the same case the intensity strongly
pends on the mass of the molecule in isotope-substitu
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crystals: the intensity at the maximum of a resonance grows
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with isotope mass.
A new interpretation has been given for the lower part

the spectrum of the naphthalene crystal:b-polarized broad-
band absorption belongs not to a purely electron transi
but is related to the density of long-wave phonon states
the crystal. Such an approach resolves the contradiction
tween the low oscillator strength of the transition in an is
lated molecule and the incomparably higher intensity of
sorption in the crystal, since in this case the common met
of measuring the oscillator strength of a phononless tra
tion by the area under the vibrational curve is unreliable.
the same reason the contradiction caused by the anomalo
high value of the Davydov splitting is also resolved.

An experimental method is proposed for determining
important reference microparameter of a system, the mole
lar state in a crystal.

APPENDIX A: DERIVATION AND SOLUTION OF THE
EQUATIONS FOR THE GREEN’S FUNCTIONS

We start by constructing an equation for the function~8!.
Differentiating with respect to time, we find that

i
]

]t
Gnm~ t !5d~ t !^VnVm

† &dnm1«0Gnm~ t !2 iu~ t !

3^exp~ iH Rt !@VnHn#Bn

3exp~2 iHt !Bm
† Vm

† &2 iu~ t !(
l

8Mnl
0

3^exp~ iH Rt !VnVn
†BlVl

3exp~2 iHt !Bm
† Vm

† &. ~A1!

Here

Hn5HR1Hn
v , ~A2!

Hn
v5(

l s
vs

0al s
† al s

1(
s

Dvs
0ans

† ans . ~A3!

Allowing for different averaging rules for the two phono
subsystems, in the third term on the right-hand side of
~A1! we introduced, for symmetry considerations, an ad
tional term2Hn

vVn , which has no effect on the final resu
Differentiating this term with respect to time and the

continuing the process indefinitely, we obtain a chain of n
linear equations in which thenth equation has the following
form:

i
]

]t
Gnm

n ~ t !5d~ t !^K̃n
n&dnm1«0Gnm

n ~ t !1Gnm
n11~ t !

1(
l

8Mnl
0 Gn,lm

n ~ t !. ~A4!

Here

K̃n
n5Kn

nVn
† , ~A5!

whereKn
n is thenth-order commutator of the operatorVn and

Hn , and
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~A6!

Gn,lm
n ~ t !52 iu~ t !^exp~ iH Rt !K̃n

nBlVl

3exp~2 iHt !Bm
† Vm

† . ~A7!

Equation~A4! is nonlinear because of the last term on t
right-hand side, where in comparison to the function be
differentiated the power of the operatorV has increased by
unity ~cf. ~A6! and ~A7!!.

Now, if in the terms of the chain we go over to th
Fourier integral and substitute eachGnm

n (E) into the previ-
ous equation, we arrive at an expression for the Gree
function in the approximation of the first iteration cycle:

Gnm
n ~E1 ig!

g→10
5 (

n50

`
1

~E2«01 ig!n11 F ^K̃n
n&dnm

1(
l

8Mnl
0 Gn,lm

n ~E1 ig!G . ~A8!

The next step consists in obtaining a similar chain for
function Gn,lm

n . The result of the second iteration cycle is

Gn,lm
n ~E1 ig!

g→10
5 (

n150

`
1

~E2«01 ig!n111 F ^K̃nm
nn1&d lm

1(
p

8M lp
0 Gnl,pm

nn1 ~E1 ig!G . ~A9!

Here

K̃nm
nn15Knm

nn1Vm
† , ~A10!

whereKnm
nn1 is thenth-order commutator of the productK̃n

nVm

and the operatorHm specified in~A2!, andGnl,pm
nn1 (E1 ig) is

the Fourier transform of the function

Gnl,pm
nn1 ~ t !52 iu~ t !^exp~ iH Rt !K̃nl

nn1BpVp

3exp~2 iHt !Bm
† Vm

† &. ~A11!

The equation for~A11! and all the subsequent cycles a
constructed by analogy with~A8! and ~A9!.

Below, in examining commutators of the type~A5! and
~A10!, it will be convenient to employ the following repre
sentation:

Kn
n5 (

p50

n

Cn
p~21!p~Hn!pVn~Hn!n2p

5
n!

2p i Ruzu50

exp~2zHn!Vnexp~zHn!

zn11 dz, ~A12!

whereCn
p are binomial coefficients.

Using the representation~A12! and the commutativity of
ans

† ,ans andbkr
† ,bkr , we can write a commutator of arbitrar

order as follows:

K̃n1,...,nj

n1,...,n j5)
l 51

j
n l !

2p i Ruzl u50

dzl

zl
n11Kv~z1,...,zj !

3KR~zl ,...,zj !, ~A13!
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tial

,

on
Kv~z1,...,zj !5 )
p51

exp~2zpHnp
!

3Tq )
q51

j

Pnq
exp~zqHnq

n !Pnq

† , ~A14!

KR~z1,...,zj !5 )
p51

j

exp~2zpHR!

3Tq)
q51

j

Fnq
exp~zqHR!Fnq

† . ~A15!

Here Tq stands for the product ordered in indexq of the
group of operators under the product sign. Averaging~A15!
via the density matrix

r5
exp~2HR /kT!

Tr@exp~2HR /kT!#
~A16!

and noting that

exp~2zHR!exp~Dn
krbkr !exp z~HR!

5exp@Dn
kr exp~vkrz!bkr #, ~A17!

3exp~2zHR!exp@2~Dn
kr !* bkr

† #exp~zHR!

5exp@2~Dn
kr !* exp~2vkrz!bkr

† #, ~A18!

we obtain

^KR~z1 ,...,zj !&5)
kr

)
q51

j

expH UDkrU2F ~exp~vkrzq!21!

1S exp
vkrzq

2
2expS 2

vkrzq

2 D D 2

^nkr&G J
3expH UDkrU2(

l 51

j 21

(
i . l

j

@ f nlni

kr ~11^nkr&!

1 f̃ nlni

kr ^nkr&#J , ~A19!

where

f nlni

kr 5exp@ ik–~nl2ni !#@exp~vkrzl !21#

3@exp~vkrzi !21# )
l ,q, i

exp~vkrzq!, ~A20!

f̃ nlni

kr 5exp@2 ik–~nl2ni !#@12exp~2vkrzl !#

3@12exp~2vkrzi !# )
l ,q, i

exp~2vkrzq!,

~A21!

and ^nkr&5@exp(vkr /kT)21#21 is the average number o
lattice phonons with quantum numbersnkr at the
temperatureT.

If in the vibronic subsystem we ignore the quadratic
teraction, then for~A19! we can easily obtain an expressio
for the expectation value of the commutator~A14!. Replac-
ing uDkr u2 by as

2 and averaging over the ground state of t
subsystem, we obtain
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5)
s

)
q51

j

exp$as
2@exp~vs

0zq!21#%

3)
lÞp

~11dnlnp
f lp

s !, ~A22!

f lp
s 5expH as

2@exp~vs
0zl !21#

3@exp~vs
0zp!21# )

iÞ l ,p
exp~vs

0zi !J 21. ~A23!

Here the indexi assumes only those values that lie in t
interval between the largest and the smallest among the
of numbersl andp. Bearing in mind that

exp~2zHn
v!~ans!

p exp~zHn
v!5@ans exp~vs

fz!#p, ~A24!

exp~2zHn
v!~ans

† !p exp~zHn
v!5@ans

† exp~2vs
fz!#p,

~A25!

and

exp~asans!exp~bsams
† !5exp~bsams

† !exp~asans!

3$11dnm@exp~asbs!21#%,

~A26!

we can obtain formula~A22! directly from ~A14!, provided
that first we order the exponential operators via~A26!.

The structure of~A22! does not change if we allow fo
the frequency defectDv, but formula ~A23! becomes ex-
tremely cumbersome.

APPENDIX B: SPLITTING THE CORRELATION FUNCTIONS

To split the correlation functions, it is convenient to a
sume that the order of a correlator is the number of group
cofactors numbered by the same index of an ordered prod
Thus, the first term of the series~10! contains a first-order
correlator, the second term a second-order correlator, et
we now replace the expectation values of~A14! and ~A15!
by the products of the expectation values of the exponen
operators

exp~2zqHnq

v !Pnq
exp~zqHnq

v !Pnq

†

and

exp~2zqHR!Fnq
exp~zqHR!Fnq

† ,

respectively, the correlator of thej th order can be factorized
with the result that

^K̃n1•••nj

n1•••n j&' )
q51

j

^K̃nq

nq&. ~A27!

This approximation is equivalent to allowing in~A19! and
~A22! for coordinate-independent terms.

To estimate the contribution of the terms that depend
the coordinates, we examine the terms in the correlator~A22!
that are proportional todnlnp

. To simplify matters, we con-
sider only one branch of vibrations.
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bidden for operators belonging to the same lattice
nl5np , for each correlator we can easily calculate the nu
ber of possible convolutions with the same structure. Con
lutions obtained by coupling operators with equal~in abso-
lute value! differencesup2 l u will be identical in structure.
The third-order correlator has one convolution w
up2 l umin52, the fourth-order correlator has two such conv
lutions, the fifth-order correlator has three such convolutio
and so on. The fourth-order correlator has one convolu
with up2 l u53, the fifth-order correlator has two such co
volutions, so that in each subsequent correlator the num
of convolutions of this type is also increased by one. Clea
the number of admissible pairings with any one of the d
ferencesDpl5up2 l u in the j th-order correlator isj 2Dpl .

Now we can write in explicit form the contribution o
the convolutions of the specified type to the sum~10!. For a
crystal with simple cubic symmetry with one molecule p
unit cell we obtain~with allowance for the Franck–Condo
transition!

Gnm8 ~E!5(
j 53

`

gj , ~A28!

where

g35dnmK35
1

N (
Q

exp$ iQ–~n2m!%K3 ,

g45
1

N (
Q

exp$ iQ–~n2m!%~K412«QSEK3!,...,

gn5
1

N (
Q

exp$ iQ–~n2m!%

3 (
p51

n22

p~«QSE!p21Kn2p11 ,..., ~A29!

Kr
r>3

5
1

N (
Q8

~«Q8!
r 21(

l 51

`
a2l

l !
~Bl !

2~Sl !
r 21. ~A30!

Here

Bl5 (
p50

l

Cl
p~21! l 2pSp , ~A31!

Sp5exp~2a2! (
q50

`
a2q

q!

1

E2«02~p1q!v01 ig
,

~A32!

SE5Sp50 . ~A33!

In ~A29! we first collect terms containingKr with equal val-
ues ofr and then sum the resulting subsequences over in
r . As a result we get

Gnm8 ~E!5
1

N (
Q

exp$ iQ–~n2m!%GQ8 ~E!, ~A34!

563 JETP 85 (3), September 1997
e
-
-

-
s,
n

er
,

-

r

ex

GQ8 ~E!5
~12«QSE!2 (

l 51 l !
~Bl ! N (

Q8 12«Q8Sl
.

~A35!

The expression~35! can be shown to formally split into
groups of terms of the type

GQ8 ~E!5( •••F 1

«s2«s
l

1

~E2«02«s1 ig!2

2
1

~«s2«s
l !2 S 1

E2«02«s1 ig

2
1

E2«02«s
l 1 ig D G1•••

1F 1

«s2~p1q!v0

1

@E2«02~p1q!v01 ig#2

2
1

@«s2~p1q!v0#2 S 1

E2«02«s1 ig

2
1

E2«02~p1q!v01 ig D G , ~A36!

with «s and «s
l the roots of the equations 12«Q ReSE50

and 12«Q8 ReSl50, respectively.
Obviously,

E
2`

`

Im GQ8 ~E!dE50. ~A37!

SinceGQ8 (E) is an analytic function of a complex vari
able, formula ~A36! allows for a simple hydrodynamic
analogy:37 it describes potential flow of an incompressib
liquid whose complex-valued velocity is initiated by a sy
tem of dipoles~the first terms in the square brackets! and by
doublets of point sources~the second terms! with strengths
equal in absolute value but opposite in sign. In this interp
tation the functionGQm(E) specified by~14! describes liquid
flow initiated by a system of isolated point sources.
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32I. M. Lifshitz, Zh. Éksp. Teor. Fiz.17, 1017~1947!; 17, 1076~1947!.
33A. M. Kosevich, The Basics of Crystal Lattice Mechanics@in Russian#,

Nauka, Moscow~1972!.
34Yu. A. Izyumov and M. V. Medvedev,Magnetically Ordered Crystals

Containing Impurities, Consultants Bureau, New York~1973!.
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Inelastic light scattering by electron excitations with large wave vectors in a 2D

hich
magnetoplasma
A. O. Govorov
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Microscopic mechanisms of inelastic light scattering in an interacting electron plasma in
semiconductor heterostructures are considered. In the dipole limit, the cross section consists of
two main contributions: the first is related to a disorder-induced mechanism and the
second arises from the Coulomb interaction. The spectra of disorder-induced light scattering are
described in terms of correlation functions of a random potential. The spectrum induced
by the Coulomb interaction arises from two-quasiparticle excitations. The mechanisms which are
studied in this paper result in the appearance of large wave vector excitations in the spectra
of resonant light scattering. These results can be used to model the experimentally observed
appearance of the roton density of states in light scattering spectra in the integer quantum
Hall regime of a two-dimensional system. Furthermore, we show that the lineshape of spectra
strongly depends on the character of disorder and, in particular, on the spatial positions
of impurities with respect to a quantum well. ©1997 American Institute of Physics.
@S1063-7761~97!01809-X#
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Raman studies of two-dimensional~2D! systems in a
high magnetic field are currently an active area of resear1

In particular, inelastic light scattering~LS! permits the ob-
servation of the roton excitations in the regimes of the in
ger and fractional quantum Hall effects~QHE’s!.2–4 The
magnetoroton excitations in the integer QHE regime h
characteristic wave vectors of the order of 1/l c , wherel c is
the magnetic length. At the same time, in-plane momen
transfers of the order of 1/l c are not easily accessible in ex
periments. Magnetorotons in LS spectra were interprete
arising from breakdown of momentum conservation in
presence of residual disorder.1,2

The feature of the experiments mentioned above is
LS spectra contain excitations with relatively large wa
vectors. In this paper, we consider specific mechanism
LS, which allow the observation of such excitations.

The effect of disorder on LS spectra in the integer QH
regime was investigated theoretically in Ref. 5 in the fram
work of a phenomenological approach. The cross sect
calculated in Ref. 5, reflects the density of states of elec
excitations and is written as

d2s

dVdv
}E S0~v,q! f ~q!d2q, ~1!

wherev is the photon energy transfer in the LS process,q is
the in-plane wave vector of an excitation, andS0(v,q) is the
structure factor of the system. The functionf (q) describes
breakdown of momentum conservation and is written in R
5 in the Lorentzian form:f (q)5(a/p)/(q21a2), wherea
is the phenomenological broadening parameter.

In the fractional QHE regime, LS was studied theore
cally in a work of Platzman and Song He,6 where the authors
have obtained numerical data for the intra-Landau-le
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results in two-excitation lines. This process is directly co
nected with the Coulomb interaction and was described
Ref. 6 by phenomenological matrix elements. Shake-up p
cesses for the case of two-phonon LS from the Wigner cr
tal were considered in Ref. 7.

In the present paper, we study resonant LS in the dip
limit ~k→0, wherek is the light momentum transfer!. To
calculate the LS spectra, we find the Hamiltonian respons
for dipole-allowed LS by using a general formalism dev
oped in Ref. 8. The cross section is expanded into a serie
the parameter 1/(Eg2v1), whereEg is the optical-gap en-
ergy, andv1 is the laser frequency. We obtained analytic
expressions for the amplitudes of LS induced by disorder
by the Coulomb interaction. The cross section of disord
induced LS is expressed in terms of correlation functions
a random potential, which determines the characteristic w
vectors of excitations in Raman spectra. The Coulomb in
action in an electron system results in two-quasiparticle
citations in LS spectra. The mechanisms of LS, which
consider here, were studied earlier in Refs. 5 and 6 by us
various phenomenological approaches. In this paper, we
velop from first principles a theory describing such L
mechanisms. The results obtained by us can be applied
to bulk and 2D systems. We focus on 2D semiconduc
heterostructures because LS mechanisms, which inv
magnetoexcitations with large wave vectors, play the m
important role in these systems. In particular, we calcul
the LS spectra of a 2D magnetoplasma with the filling fac
n52.

2. SYSTEM RESONANT LIGHT SCATTERING IN AN
ELECTRON

Resonant LS is connected with two virtual interba
processes of absorption and emission which are induced

5655-08$10.00 © 1997 American Institute of Physics



the incident and scattered photons, respectively. In the fol-
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lowing, we will consider resonance between the lowest
subbands in the conduction and heavy-hole valence ba
Resonances with the light-hole and split-off valence ba
can be described similarly. In addition, we assume that e
trons occupy only the lowest 2D subband in the conduct
band.

The cross section of LS and the structure factorS(v) are
given by ~see Ref. 8!

d2s

dVdv
5

v2

v1

e4

c4m0
4 S~v!,

S~v!5(
F

u^FuV̂effu0&u2d~E02EF1v!

5
1

2p E
2`

`

^0uV̂eff
1 V̂eff~ t !u0&eivtdt, ~2!

whereu0& anduF& are the initial and final states of the man
electron system,E0 andEF are their energies, andm0 is the
free-electron mass; the operatorV̂eff is the interaction Hamil-
tonian describing LS and

V̂eff~ t !5exp~2 iĤ tott !V̂eff exp~ iĤ tott !,

whereĤ tot is the Hamiltonian of the crystal;v1(2) are ener-
gies of incident~scattered! photons,v5v12v2 is the en-
ergy transfer, and\51. The temperature is assumed to
zero. Assuming resonance, the matrix elements^FuV̂effu0& are
~see Ref. 8!

^FuV̂effu0&5(
N

^Fu ĵ 2uN&^Nu ĵ 1u0&
v11E02EN

52 i K FU E
0

`

ĵ 2 ĵ 1~ t !eiv1tdtU0L , ~3!

whereuN& are intermediate many-electron states. The ope
tors ĵ 1 and ĵ 2 describe the interband optical processes
sisted by the incident and scattered photons, respectiv
The statesuN& are characterized by a single hole in the v
lence band and one additional electron in the conduc
band.

Single-electron states of the conduction band are gi
by ua&5eiprfc(z)us&, where r and z are the in-plane and
normal coordinates, respectively;p is the electron momen
tum, fc(z) is the wave function describing size-quantizati
ands561/2 are the spin indexes. Single-electron states
the valence band can be written similarly:ug&
5eiprfv(z)uJ&, wherefv(z) is the wave function connecte
with size-quantization, andJ is the angular momentum o
heavy holes. For simplicity, we disregard mixing betwe
the valence bands.

The Hamiltonian of the electron system isĤ tot5Ĥb

1Ecn̂c1Evn̂v , where the subscriptsc andv refer to the first
subbands in the conduction and valence bands, respecti
Ĥb is the Hamiltonian describing intraband energies and
rect Coulomb interaction between electrons of differe
bands,n̂c(n̂v) are the operators of electron numbers in t
conduction~valence! bands, andEc(Ev) are the energies o
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subbands. The operatorHb5Hc1Hv1Hcv , whereHcv is
the operator of direct Coulomb interaction between electr
of the conduction and valence bands. Exchange interac
between electrons of different bands is ignored. The ope
tors Ĥc andĤv describe the intraband energies of electro
Ĥc5T̂c1ûc

def1Ĥcc
int and Ĥv5T̂v1ûv

def. Here T̂c and T̂v are
the operators of kinetic energy;uc

def(r ) and uv
def(r ) are ran-

dom potentials in the conduction and valence bands, res
tively; andĤcc

int is the operator of the Coulomb interaction
the conduction band. Here we include in the Hamiltoni
Ĥ tot only the terms related to the conduction and valen
subbands, which are coupled by interband resonant tra
tions. The Coulomb potentials are given by the matrix e
ments:

Ucc~r2r 8!5^fc~z!fc~z8!uU

3~A~z2z8!21~r2r 8!2!ufc~z!fc~z8!&,

Ucv~r2r 8!5^fc~z!fv~z8!uU

3~A~z2z8!21~r2r 8!2!ufc~z!fv~z8!&, ~4!

whereU(R)5e2/eR, ande is the dielectric constant.
A method to simplify the operatorV̂eff was proposed in

Refs. 7 and 9. According to this method, we find the co
mutator@Ecn̂c1Evn̂v , ĵ 1#5(Ec2Ev) ĵ 15Egĵ 1 . At the same
time, the operatorĤb does not change the number of pa
ticles in any band; i.e., the commutator@Ecn̂c1Evn̂v ,Ĥb#
50. Thus, the effective Hamiltonian of resonant LS can
written as

V̂eff52 i E
0

`

ĵ 2 ĵ 1~ t !exp~ iv1t !dt52 i E
0

`

ĵ 2

3exp~2 iĤ bt ! ĵ 1 exp~ iĤ bt !exp@ i ~v12Eg!t#dt.

~5!

We now expand Eq.~5! in a series of the operatorĤb using
the equation

eâb̂e2â5b̂1
@ â,b̂#

1!
1

@ â,@ â,b̂##

2!
1... .

After integration in Eq.~5!, we have

V̂eff5V̂11V̂21V̂31...,

V̂15
ĵ 2 ĵ 1

D
, V̂25

ĵ 2@Ĥb , ĵ 1#

D2 , ~6!

V̂35
ĵ 2@Ĥb ,@Ĥb , ĵ 1##

D3 ,...,

whereD5v12Eg . The expansion~6! is valid if the valueD
is much larger than the energies of electron excitations i
plasma; i.e.,uDu@ek , eC , G, whereek andeC are the char-
acteristic kinetic and Coulomb energies, andG is the broad-
ening of electron levels due to a random potential. In a h
magnetic field,ek;vc and eC;e2/(e l c), wherevc is the
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Below we will focus only on two first terms in the expansio
~6!.

2.1. The operator V̂1

The first term in Eq.~6! was calculated by Hamilton an
McWhorter.8 In the Kane model, the operatorV̂1 is written
as ~see Ref. 8!

V̂152
1

D
@ f er̂e~ki!1 f srs~ki!#, ~7!

r̂e~ki!5(
i

exp~ ikir i !, r̂s~ki!5(
i

exp~ ikir i !ŝ iz ,

~8!

whereki5k1i2k2i , k1 andk2 are the wave vectors of inci
dent and scattered photons, respectively;r i is the in-plane
coordinate of thei -electron,ŝ iz is the Pauli matrix, andr̂e

and r̂s are the operators of electron and spin densities,
spectively. The parametersf e(s) in Eq. ~7! show selection
rules of LS in resonance with the heavy-hole valen
band.8,10 f e5D(e1ie2i* ) and f s5 iD @e1e2* #z , where e1(e2)
are the polarization vectors of incident~scattered! photons,

D5
uPcvu2

2
^fv~z!uexp~2 ik2'z!ufc~z!&

3^fc~z!uexp~ ik1'z!ufv~z!&,

andPcv is the interband matrix element.

2.2. The operator V̂2

The second term in Eq.~6! can be written as

V̂252
1

D2 @ f eQ̂e~k!1 f sQ̂s~k!1Ĉ~q!#,

Q̂e~k!5(
i

H p̂i
2

2mc
1

~ p̂i2k1i!
2

2mv
1uc

def~r i !

2uv
def~r i !J exp~ ikir i !, ~9!

Q̂s~k!5(
i

ŝ izH p̂i
2

2mc
1

~ p̂i2k1i!
2

2mv
1uc

def~r i !

2uv
def~r i !J exp~ ikir i !,

wheremc(v) are the effective masses in the conduction~va-
lence! bands (mv.0). Here, the single-electron momentu
p̂i should be written with allowance for the perpendicu
magnetic field. The operatorĈ(q) arises from the Coulomb
interaction in the intermediate states. In the dipole limit,
have

Ĉ5(
q

@Ucc~q!2Ucv~q!#$ f er̂e~q!r̂e~2q!

1 f sr̂s~q!r̂e~2q!%. ~10!
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opposite signs because the interband exciton in intermed
states is neutral. The valueUcc(q)2Ucv(q) is nonzero if the
wave functionsfc(z) andfv(z) differ. Hence, the contribu-
tion Ucc2Ucv can be essential in tilted quantum wells.

The operatorV̂1 induces LS by charge- and spin-dens
excitations in corresponding geometries. The cross sec
connected with the operatorV̂1 was calculated in a numbe
of works for the case of bulk semiconductors8,11,12 and for
the case of quantum wells~for instance, see Ref. 13!. It is
essential that in Refs. 8 and 11–13 the cross sec
d2s/dVdv→d(v) as k→0; i.e., the operatorV̂1 leads to
dipole-forbidden inelastic LS.

The operatorV̂2 includes the contributions proportiona
to the operator of kinetic-energy density

T̂c~ki!5(
i

exp~ ikir i !
p̂i

2

2mc
.

The operatorT̂c(k) results in so-called LS by fluctuations o
kinetic-energy density, which was considered in Refs.
12, and 14. In the approaches of Refs. 11, 12, and 14,
cross section induced byT̂c(k) vanishes ifvÞ0 andk50.
Therefore, the dipole-forbidden contributions, which can,
principle, play an important role in semiconductors, we
taken into account in Refs. 11, 12, and 14.

2.3. Dipole-allowed inelastic light scattering

We now consider the operatorsr̂e(k), r̂s(k), Q̂e(k),
andQ̂s(k) in the dipole limitk→0. At zero wave vector we
have r̂e(0)5n̂c , r̂s(0)52ŝz and, consequently,@Ĥc ,n̂c#
50 and@Ĥc ,ŝz#50, whereŝz is the total spin. These equal
ties mean that the operatorsr̂e(0) and r̂s(0) induce elastic
LS.

Inelastic LS in the dipole limit can be connected with t
operators Q̂e(0) and Q̂s(0), because the commutator
@Q̂e(0),Ĥc# and@Q̂s(0),Ĥc# are nonzero. Usually, the Cou
lomb interaction and a random potential play the role
perturbations, i.e.,ek@eC , G. Hence, it is convenient to ex
clude the kinetic energy from the operatorV̂2 . For instance,
the operatorQ̂e(0) can be written as

Q̂e~0!5(
i

H p̂i
2

2m
1uc

def~r i !2uv
def~r i !J

5
mc

m
Ĥc2(

i
H mc

mv
uc

def~r i !1uv
def~r i !J

2
mc

m
Ĥcc

int , ~11!

where 1/m51/mc11/mv . The operator (mc /m)Ĥc in Eq.
~11! contributes to the elastic LS process. Using simi
transformations for all terms ofV̂2 , we have in the dipole
limit V̂11V̂25V̂elas1Ŵ, where the operatorV̂elas induces
elastic LS. The contributions of kinetic energy remain no
in the operatorV̂elas. Inelastic processes arise from the o
eratorŴ5Ŵdef1ŴCoul, where
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eff i e s iz

5
1

D2 (
q

ueff~q!@ f er̂e~q!1 f sr̂s~q!#, ~12!

and

ŴCoul5
1

D2 (
i ,i 8; iÞ i 8

F S mc

2m
21DUcc~r i2r i 8!

1Ucv~r i2r i 8!G S f e1 f s S ŝ iz1ŝ i 8z

2 D D
5

1

D2 (
q

F S mc

2m
21DUcc~q!1Ucv~q!G

3$ f er̂e~q!r̂e~2q!1 f sr̂s~q!r̂e~2q!%. ~13!

Here

ueff~r i !5uv
def~r i !1

mc

mv
uc

def~r i !. ~14!

The functionsueff(q) andUcc(q) are the Fourier transform
of the corresponding potentials. The operatorsŴdef and
ŴCoul describe LS induced by disorder and by the Coulo
interaction, respectively. We note that the operatorŴ in-
cludes terms proportional to the small parametersG andeC .
The latter is essential because we may use first-order pe
bation theory in this case~assumingek@G, eC! to calculate
the cross section.

3. LIGHT SCATTERING FROM THE 2D MAGNETOPLASMA

In this section, we intend to consider a 2D electron s
tem in the perpendicular magnetic fieldB at the filling factor
n52(n↑5n↓51) and inter-Landau-level excitations wit
D l 51 ~D l is the change of Landau-level number!. We as-
sume that the Coulomb energy is much less than the cy
tron frequency,eC5e2/(e l c)!vc , that allows us to use per
turbation theory.15,16 The creation operators for charg
density and spin-density excitations with the wave vectoq
are ~see Ref. 15!

Âe
1~q!5

1

ANs

r̂e~q!, Âs
1~q!5

1

ANs

r̂s~q!,

whereNe is the density of 2D electrons. The commutato
with the Hamiltonian Ĥc are @Ĥc ,Âm

1(q)#5vmÂm
1(q),

where the indexm5e(s) for charge-density~spin-density!
excitations. The dispersions of magnetoexcitations~magne-
toexcitons! vm, calculated in Refs. 15 and 16, are shown
the inset of Fig. 1. The wave functions of magnetoexcito
can now be written asuq;m&5Âm

1(q)u0&.
The cross section can be written in terms of correlat

functions

1

2p E
2`

`

^0uÂm8~q8!exp~2 iĤ ct !Âm
1~q!exp~ iĤ ct !u0&eivtdt
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52
uL01u2

p
Im@Gm~v,p!#dm,m8dq,q8 , ~15!

wherev.0, and

uL01u25
l c
2q2

2
expS 2

l c
2q2

2 D .

The Green’s function is

Gm~v,q!5
1

v2vm~q!1 iGm~q!
, ~16!

where 1/Gm(q) is the lifetime of a magnetoexciton.

3.1. Wave-vector-dependent light scattering

First, we discuss dipole-forbidden LS induced by t
operatorV̂1 , which can be written as

V̂152
ANe

D
@ f eÂe

1~ki!1 f sÂs
1~ki!#1c.c. ~17!

The structure factor of LS~2! is

S~v!5
1

2p E
2`

`

^0uV̂1
1V̂1~ t !u0&exp~ iv1t !dt

52
Ne

pD2 uL01~ki!u2$u f eu2 Im@Ge~v,ki!#

1u f su2 Im@Gs~v,ki!#%. ~18!

We see that the structure factor has the Lorentzian form
}ki

2/Gm , when kil c!1 and uv2vm(ki)u.Gm . The inte-
grated intensity of dipole-forbidden LS

I 5E S~v!dv}ki
2/B,

whenkil c!1.

FIG. 1. Light scattering spectrum induced by disorder for the case
charge-density excitations,Ge /eC50.01; curves1, 2, and3 correspond to
the impurity-induced mechanism with the parametersz05200, 300, and 500
Å, respectively; the magnetic length isl c5100 Å. Curve4 shows the spec-
trum of light scattering induced by a short-range random potential~interface
defects!. The arrows correspond to the critical points of the excitation d
persions. Inset: the dispersions of charge-density~CDE! and spin-density
~SDE! excitations in the 2D electron plasma with the filling factorn52 ~see
Ref. 16!.

568A. O. Govorov



3.2. Light scattering in the dipole limit
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We now calculate the cross section of LS in the dip
limit k→0. At zero temperature we can retain in the opera
Ŵ @Eqs. ~12! and ~13!# only the terms withÂm

1(q), Âm
1

(2q)Âm8
1 (q). Thus, we have

Ŵdef5
ANe

D2 (
q

ueff~q!$ f eÂe
1~q!1 f sÂs

1~q!%,

ŴCoul5
mcNe

2mD2 (
q

U~q!$ f eÂe
1~2q!Âe

1~q!

1 f sÂe
1~2q!Âs

1~q!%. ~19!

Here we consider the strictly 2D system, whereUcc5Ucv
5U(q)52pe2/(eq).

3.3. Light scattering induced by disorder (defects)

The operatorŴdef @Eq. ~19!# results in LS by magne
toexcitons with arbitrary wave vectorsq. This effect can be
understood in a single-electron picture. Consider the inela
LS process, in whichcc1(r )(cc2(r ) are the initial ~final!
single-electron states in the conduction band andcv(r ) is the
intermediate single-electron state in the valence band.
amplitude of LS is proportional to

^cc2~r !ucv~r !&^cv~r !ucc1~r !&.

The wave functionscc1(2)(cv) are solutions of the stan
dard equations

F p̂2

2mc
1uc

def~r !Gcc5eccc ,

F2
p̂2

2mv
1uv

def~r !Gcv5evcv .

We see that the wave functionscc and cv coincide if
uc

defmc52uv
defmv . The latter means ueff50 and

^cc2(r )ucv(r )&^cv(r )ucc1(r )&50 if cc1(r )Þcc2(r ). Thus,
defect-induced LS arises from the difference between
wave functions of electrons and holes. Light scattering
duced by a quasi-classical smooth electric field was con
ered earlier in Ref. 17. In contrast to Bechstedtet al.,17 we
treat electron scattering by defects with a quantu
mechanical approach.

Using the operatorŴdef @Eq. ~19!#, we find the structure
factor of defect-induced LS

Sdef~v!52
Ne

pD4 E d2q

~2p!2 uL01~q!u2^ueff
2 &q$u f eu2

3Im Ge~v,q!1u f su2 Im Gs~v,q!%, ~20!

where the correlation function̂ueff
2 &q is given by

^ueff
2 &q5uueff~q!u25E E drdr 8ueff~r !ueff~r1r 8!eiqr8.

~21!

In the backscattering geometry (k1(2)iz), the polarized spec
tra of LS (e1ie2 , f eÞ0) arise from charge-density excita
tions. The depolarized spectra (e1'e2 , f sÞ0) relate to spin-
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for k-dependent LS.We see from Eq.~20! that characteris-
tic wave vectors of magnetoexcitons are determined by r
dom potentials~the function ^ueff

2 &q! and by the magnetic
length ~the functionL01!. In the limit Gm→0, the structure
factor is proportional to the density of states of magneto
citons. Near the critical points of dispersionsvcr, where
dvm(q)/dq50, the density of states is proportional touv
2vcru21/2. The polarized spectrumSpol

def in the limit Ge→0
has two peaks, which correspond to the excitations withqrot

and qmax, whereqrot and qmax are the wave vectors of th
roton minimum and maximum, respectively~see the inset in
Fig. 1!. In the limit Gs→0, the depolarized spectrumSdep

def has
one singularity which is related to the roton minimum.

Light scattering processes withD l 52,3,... can be de-
scribed in the same way. The structure factor for the proc
with D l 5N is given by Eq. ~20! with a correction
L01→L0N .

We now discuss the mechanisms of electron scatte
by disorder in quantum wells.

3.3.1. Interface defects. In the case of imperfect inter
faces, the quantum-well energies of particles depend on
in-plane coordinate: Wc5p2/(2mc

0L2(r )) and Wv
52p2/(2mv

0L2(r )), whereL(r ) is the width of a quantum
well, andmc(v)

0 are the effective masses in a bulk semico
ductor. The quantum-well energies of electrons and holesWc

andWv play the role of the potentialsuc
def(r ) anduv

def(r ). In
this simplest model, we have

ueff5
p2

2L2~r ! S 2
1

mv
0 1

mc

mc
0mv

D .

Typically, for GaAs–AlAs quantum wells we can write
mv

0Þmv and mc
0.mc . Consequently, a reasonable appro

mation for the effective potential is

ueff5
p2

2L2~r ! S 1

mv
2

1

mv
0D .

In the case of GaAs–AlAs quantum wells, we havemv
0

.0.4m0 andmv.0.17m0 for the first heavy-hole subband.18

For weak fluctuations of the width of a quantum well, we c
write

ueff5ueff~L0!1S 1

mv
02

1

mv
D p2dL~r !

4L0
3 ,

where L0 is the average width of a quantum well,dL(r )
5L(r )2L0 , andudLu!L0 .

In the limit udL(r )u!L0 , the correlation function~21! is
written as

^ueff
2 &q5F ~1/mv

021/mv!p2

4L0
3 G2

^dL2~r !&q . ~22!

In the case of short-range fluctuations ofdL(r ), we may
assume that the characteristic wave vectorq0 of the correla-
tion function ^dL2(r )&q is much larger thenl c

21 and
^dL2(r )&q.const forq. l c

21.
3.3.2. Impurities.Another mechanism of electron sca

tering is connected with impurities. In this case, the pot
tials are

569A. O. Govorov



udef~r !5udef~r !5 u ~r2R !

u-

um

u
er

t

c-

th
th

ita
n-

fo
he

o
u-
l
ie

e

ic
u

to
e
o
l

h is
tical
se-
ex-
ess,
tors
the

is

rator

ec-

s-

e-
ave
r of

sid-
ran-
tem

e-
4.

s of

s
r

c v (
n

t n

and

ueff5uc
def~11mc /mv!,

whereRn are the positions of impurities, andut(r ) is their
potential. The correlation function in the cross section~20! is
written as

^ueff
2 &q5NtS 11

mc

mv
D 2

uut~q!u2, ~23!

whereNt is the 2D density of the impurities, andut(q) is the
Fourier transform of a single-impurity potential. The imp
rity potential is taken in the form

ut~r !5
e2

eAr 21z0
2

,

where z0 is the distance between the center of a quant
well and thed-layer of the impurities.

Figure 1 shows the charge-density-excitation spectr
Spol

def(v) calculated for various mechanisms of disord
induced scattering. The lineshape strongly depends on
correlation function̂ ueff

2 &q . Curves1–3 in Fig. 1 represent
impurity-induced LS in the systems withz05200, 300, and
500 Å, respectively. The magnetic lengthl c5100 Å corre-
sponds toB57 T. The parameterGe can be estimated from
the width of the cyclotron peak in high-mobility heterostru
tures; it is of the order of 0.1 meV. Hence, forB57 T we
have eC.10 meV and Ge /eC.0.01. In the casez0

5200 Å, the main contributions to the spectra arise from
critical points of the dispersion, i.e., from excitations wi
q5qmax and qrot . The spectrum in the casez05500 Å is
strongly shifted to low energies and includes mostly exc
tions withq,qmax. This fact is connected with the expone
tial function

ut
2~q!5U2~q!exp~22qz0!

in Eq. ~20!. In the casez05500 Å, the impurity potential is
too smooth to induce roton excitations. In the spectrum
z05300 Å, the structure is shifted to low energies, but t
contribution of rotons is still essential. Curve4 in Fig. 1
shows the spectrum of LS induced by a short-range rand
potential (̂ dL2(r )&q5const). We see that the main contrib
tions to the spectrum4 in Fig. 1 are related to the critica
points of the dispersion. In Fig. 1 the peak intensit
strongly depend on the parameterGe /eC , while the line-
shape of the spectra away from the peaks is relatively ins
sitive to this parameter.

In their experiment Pinczuket al.2 observed a broad
structure at energies above the cyclotron frequency, wh
was interpreted as the roton density of states. For the m
tiple quantum wells studied by them the distancez0 was
about 300 Å. Our calculations show that for the distancez0

5300 Å the spectrum is shifted to energies below the ro
energy. It can be assumed, therefore, that in the experim2

the LS spectrum arises, in part, from a short-range rand
potential ~interface defects!. In addition, the experimenta
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spectra depend essentially on the laser frequency, whic
the signature of strong interband resonance. Our theore
results are valid away from strong resonance and, con
quently, a detailed comparison between theoretical and
perimental spectra is not possible. Our theory, neverthel
makes it possible to estimate the characteristic wave vec
of excitations in Raman spectra and to understand
mechanism of LS.

3.4. Light scattering by two elementary excitations

Light scattering induced by the Coulomb interaction
connected with the operatorŴCoul @see Eq.~19!#. This op-
erator results in LS by two charge-density excitations~the
polarized spectrum! and by combined excitationsv5vs

1ve ~the depolarized spectrum!. Light scattering by two
spin-density excitations is absent here, because the ope
V2 contains the first power of the spin operatorŝz . We
assume that the next terms in the expansion~6! can lead to
LS by two spin-density excitations.

The structure factors for polarized and depolarized sp
tra are

Spol~dep!
Coul ~v!52u f e~s!u2

Ne
2

pD4 S mc

2m D 2E d2q

~2p!2 uL01~q!u4

3U2~q!Im@Gee~es!~v,q!#, ~24!

where Gee(es)(v,q)51/(v2ve2ve(s)12iG) are the two-
magnetoexciton Green’s functions. For simplicity, we a
sumeGe5Gs5G. In the limit G→0, the structure factors
~24! are proportional to the density of states of two magn
toexcitons. We see from Eq. 24 that the characteristic w
vectors of magnetoexcitons in LS spectra are of the orde
l c

21. In the limit G→0, the functionsSpol~dep!
Coul have peaks at

critical-point energies~Fig. 2!.
The matrix elementsŴCoul @Eqs.~13! and~19!# originate

from Coulomb correlations. Such a process can be con
ered as a «shakeup». In other words, interband optical t
sitions are accompanied by shakeup of an electron sys
with emission of elementary excitations.

Light scattering by low frequency excitations in the r
gime of the fractional QHE was reported in Refs. 3 and
The spectra observed in Ref. 4 were interpreted in term

FIG. 2. The spectrum of light scattering by two magnetoexcitons: curve1
and 2 show the excitations 2ve and ve1vs , respectively; the paramete
G/eC50.01.
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FIG. 3. Diagrams for light scattering induced b
defects, in which the interband transitions are o
tical and the intraband transitions are assisted
defects. Scattering by defects occurs in the init
electron states~diagrams a and b! and in the in-
termediate states of the light scattering proce
~diagrams c and d!. For the casen52, the contri-
butions connected with defect-induced scatteri
in the final states in third-order perturbatio
theory are absent.
two-roton excitations, which have low energies~about
n-
do
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quency of heavy holes. The energiesEgll 85Eg1vc(1/2
o-
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ia-

the
Us-

are
0.2eC .! The roton excitations in the fractional QHE are co
nected with intra-Landau-level transitions. Until now, we
not know of any publications devoted to studies of the str
ture near the frequency 2vc . In an experimental situation
the Raman spectrum near the frequencyv52vc can consist
of two contributions: the first can be the defect-induc
structure related to the magnetoexcitonD l 52 and the sec-
ond can be the contribution of the two-magnetoexciton p
cess. These contributions can be separated because
critical-point energies of the two types of excitations are d
ferent.

Here we do not consider the spin-flip inter-Landau-le
spectra, which occur in our approach if the geometry de
ates from backscattering and the incident light is in re
nance with the light-hole valence band.10 A theoretical de-
scription of these processes is similar to that for the cas
charge-density~spin-density! excitations.

4. RESONANT STRUCTURE OF THE CROSS SECTION

In Sec. 2, we consider the operatorV̂eff in the limit uDu
5uEg2v1u@vc . We now discuss the case of strong res
nance between Landau levels in the conduction and vale
bands when uD l l 8u;vc(vhh), where D l l 85v12Eg

2vc(1/21 l )2vhh(1/21 l 8), and vhh is the cyclotron fre-
-

-
the
-

l
i-
-

of

-
ce

1 l )1vhh(1/21 l 8) correspond to the interband optical res
nances. The effectiveg-factors are neglected. At the sam
time, we assume thatuD l l 8u@eC@G and vc(vhh)@eC .
Thus, the expansion parameters areeC /D l l 8 , eC /vc, and
G/vc .

The resonant contributions to the amplitude in thir
order perturbation theory are shown in Fig. 3. In these d
grams, the interband virtual transitions are optical, while
intraband transitions are assisted by a random potential.
ing these diagrams, we rewrite the operatorŴdef @Eq. ~12!#
with the substitution

ueff~q!

D2 →S 11mc /mv

D10D21
2

1

D11D21
Duc

def~q!1
uv

def~q!

D11D10
.

The diagrams for two-magnetoexciton processes
shown in Fig. 4. The correction for the operatorŴCoul @Eq.
~13!# is

1

D2 F S mc

2m
21DUcc1UcvG→S mc

2m

1

D20D31
2

1

D11D31
DUcc

1
1

D11D20
Ucv ,

which shows a fine structure of interband resonances.
y
d
si-
In
on
.
s

FIG. 4. Diagrams for light scattering induced b
the Coulomb interaction, in which the interban
transitions are optical and the intraband tran
tions are assisted by the Coulomb coupling.
the diagrams a and b, the Coulomb interacti
induces virtual transitions in the initial states
The diagrams c and d include similar transition
in the intermediate states.
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5. DISCUSSION
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In this paper, we have shown that resonant LS from
electron plasma in the dipole limit can be described by
fective operators of two types@see Eqs.~12! and ~13!#:

Ŵdef5
1

D2 (
q

ueff~q!@ f er̂e~q!1 f sr̂s~q!#,

ŴCoul5
1

2D2 (
q

U~q!@ f er̂e~2q!r̂e~q!

1 f sr̂e~2q!r̂s~q!#, ~25!

where r̂e(q) and r̂s(q) are the Fourier transforms of th
charge and spin densities, respectively; the functionsf e(s)

determine the selection rules of LS. The operators~25! are
the leading terms in the expansion of the LS amplitude
terms of the parameter 1/D.

The operatorŴdef describes LS processes in the pre
ence of disorder~defects!. The matrix elementueff is a com-
bination of Fourier transforms of random potentials in t
conduction and valence bands@Eq. ~14!#:

ueff~q!5uv
def~q!1

mc

mv
uc

def~q!.

The cross section of disorder-induced LS is given by Eq.~1!
with f (q)}uueff(q)u2. The characteristic wave vectors of e
citations in these spectra are connected with the correla
functions of disorder.

The operatorŴCoul relates to LS induced by the Cou
lomb interaction. This operator leads to two-quasiparti
spectra in an ideal system. The characteristic wave vecto
excitations in LS spectra in this case are determined by
electron-electron interaction potential and in a high magn
field are of the order of 1/l c .

The results of this paper can be used for a descriptio
light scattering in semiconductor plasmas and in latera
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approach is valid whenEg@uDu5uEg2v l u@eexc, where
eexc is the characteristic energy of electron excitations in
LS process.
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Anisotropic pinning in macroscopic electrodynamics of superconductors

ing
E. Yu. Klimenko, S. V. Shavkin, and P. V. Volkov

Kurchatov Institute, 123182 Moscow, Russia
~Submitted 14 January 1997!
Zh. Éksp. Teor. Fiz.112, 1055–1081~September 1997!

Anisotropy of critical currents and electric fields in superconductors with strong pinning has been
ascribed in the macroscopic model to features of the material equation system relating the
electric field to the current density in a superconductor. The anisotropy of the pinning proper is
described by an operator relating the pinning force density to the vectors of magnetic
induction and Lorentz force. In the approximation of an extended critical state model, a feasible
expression of this operator is given in the form of an algorithm based on the concept of a
collective anisotropic potential well containing fluxoids. The current-carrying capacity of a
strongly anisotropic niobium–titanium foil as a function of the orientation of the current
density and applied field with respect to the principal axes of the material has been investigated
in detail. Given measurements of the transverse electric fields in the foil under magnetic
fields normal to the foil plane, we can plot cross sections of surfaces describing the pinning force
density in the space of magnetic induction and Lorentz force. ©1997 American Institute
of Physics.@S1063-7761~97!01909-4#

1. INTRODUCTION 11 and 12. We assume that in these materials the pinn
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The relation between electric field and current density
high-pinning superconductors is not trivial and has not b
fully investigated to this time. Therefore, even element
electrodynamic problems of dimensionality higher than o
cause considerable difficulties, starting with definition o
problem, and usually lead to introduction of additional h
potheses, such as the hypothesis of a zero-force configur
of magnetic induction and current density in superconduc
under magnetic field parallel to the current1 or the hypothesis
of the fluxoid cutting.2 However, such features of real supe
conductors as self-consistency of the current density
magnetic induction distributions in the superconductor cr
section, smoothness of the superconducting transition,
anisotropy of real high-pinning superconductors are rar
taken into account, so agreement between calculations b
on such hypotheses and experimental data is, at best, q
tative.

Recent interest in the anisotropy of a superconduct
critical current density is related to studies of high-Tc super-
conductors, whose structures are very anisotropic. A lo
interesting effects,3,4 including the anisotropy of the critica
field and pinning on basal planes, result from peculiar f
tures of HTSC structures. In combination with the pinni
on inserted inhomogeneities, which is a traditional cause
the anisotropy of the critical current, these features of HT
notably complicate the analysis of their properties. It is na
ral that the researchers prefer to perform quantitative ana
of pinning on inhomogeneities, which is a difficult proble
in itself, in the absence of additional complications. Stro
anisotropy of critical currents is manifested in wires and fo
made from traditional superconductors with an almost iso
pic critical field, in particular, niobium–zirconium
niobium–titanium, and other alloys.5–10 Information about
the small anisotropy of the upper critical field in niobium
titanium and niobium–zirconium wires can be found in Re
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anisotropy is observed in its purest form, and experiment
yield data which can be conveniently compared to mo
calculations.

It is known that the current-carrying capacity of supe
conductors is controlled by the critical Lorentz force,13 but
not by the critical current itself. In traditional problems co
cerning electrodynamics of high-current superconducto
when mutually orthogonal fields and currents were cons
ered, the difference between approaches based on the cr
current and critical Lorentz force is not important, and th
difference is important only when the angle between the fi
and current density has an arbitrary value. The availa
models of anisotropic critical current,14–16 which yield a
fairly accurate description of the HTSC magnetization,
not provide accurate results concerning the current-carry
capacity of a superconductor when the current density is
bitrarily tilted with respect to the magnetic field. The d
scription of anisotropic HTSC properties17 in terms of the
phenomenological scaling approach based in the Ginzbu
Landau equations applies only to the case of axial symm
in layered oxide superconductors, describes the internal
ning in HTSC, and does not hold in the case of hard sup
conductors, where the pinning anisotropy has a different
ture.

Given the variety of anisotropic patterns of electric fiel
and current densities in superconducting samples depen
on their orientation in external magnetic field, one must d
tinguish between external and intrinsic causes. The intrin
causes of anisotropy are the configuration and distribution
defects acting as pinning centers. Among the external cau
which appear even in materials with isotropic pinning, w
can mention small changes~about several percent! in the
critical current of plane samples due to changes in the m
netic field orientation with respect to the sample plan18

caused by a variation in the current distribution in the pla

5733-15$10.00 © 1997 American Institute of Physics



due to the field generated by the current when the function
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In studies of anisotropic pinning, the importance of t

real current distribution in the sample plane is significan
greater. The set of causes of anisotropy that are external
respect to the array of pinning centers of the material a
includes the possibility of forming so-called zero-force co
figurations of current and field in a superconducting wi
which has been studied for more than thirty years, star
with the work of Bergeron.1

The real anisotropy of the material can be distorted
the effect of the field orientation on the development of
stability in a superconductor, especially in tests of nonsta
lized superconducting materials with high current-carry
capacity; therefore, only experiments in which the stea
state current–voltage characteristic is measured yield a
rate results.

Experimental manifestations of intrinsic anisotropy a
varied. For example, a giant anisotropy of the critical curr
was detected in a niobium–zirconium foil6 when the Lorentz
force and induction vector tilts with respect to the foil pla
were varied, while the magnetic field remained perpendicu
to the current density. A notable anisotropy of the critic
current density was observed in studies of magnetizatio
niobium–titanium wires in both longitudinal and transver
magnetic fields.8 In these experiments, the Lorentz force r
mained perpendicular to the wire axis, the current den
and induction were mutually orthogonal, but the inducti
vector tilt in the material varied. To complete our list, w
must mention the manifestations of various mechanisms
current transition when the sample is reoriented in an ex
nal field,19 although the results of the experiments could
described without such a far-fetched hypothesis.

In this paper, we present a part of a detailed investi
tion of the current-carrying capacity of a thin niobium
titanium foil as a function of magnetic field orientation
conditions when all external causes of anisotropy were ei
eliminated or properly taken into account, and the effects
the orientation of both the Lorentz force and induction vec
on the critical current are clearly distinguished.

We have attempted here to systematically apply the
ditional approach to the electrodynamics of high-pinning
perconductors in arbitrarily oriented fields, which has lo
been used successfully in the special case of mutually
thogonal induction and current density, both in the form o
model of a critical state20 and a model of the actual transie
characteristics.21 Here we describe a slightly simplifie
model in the limits of a modified critical state model, an
using the concept of the critical current. We suggest a p
nomenological model with several independent empirical
rameters for a quantitative description of an anisotropic ar
of pinning centers. When the concept of competition b
tween the Lorentz force and anisotropic pinning is appli
one can calculate the current-carrying capacity of a su
conducting material, and self-consistent distributions of c
rent density and magnetic induction in the sample cross
tion for arbitrary orientations of applied magnetic field a
current density.

Naturally, the macroscopic approach describes inte
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individual fluxoid, but in terms of a unit volume of the ma
terial, and the interaction energy and pinning force per u
volume.

On the assumption that the only cause of the type
superconductor transition to the resistive state with an
crease in the transport current is the competition between
Lorentz force and the pinning force, the relation between
electric field and current density in the steady state can
expressed by the following equation system:

FL5 j3B, ~1!

hv5u~FL2FP!S 12
FP

FL
DFL , ~2!

FP5J~FL ,B!, ~3!

E5B3v, ~4!

whereE is the electric field,j is the current density,B is the
magnetic induction,v is the drift velocity of the magnetic
flux, h5B2/reff is the viscosity,FL is the Lorentz force on
the flux,u(FL2FP) is the Heaviside step function, which i
zero forFL,FP and unity forFL.FP , andJ is an operator
describing the effect of the Lorentz force direction and t
magnetic induction direction and magnitude on the pinn
force.

In Eq. ~3! of this system, the nonlinear operatorJ de-
scribes the real anisotropy of pinning in a superconducto
the superconductor is isotropic in all other respects. Eq
tions ~1!, ~2!, and~4! can be applied to angular dependenc
of critical currents and electric fields observed in superc
ductors with both isotropic and anisotropic pinning.

As concerns the constitutive equation relating the
plied magnetic field to the induction, we assume th
B5m0H, bearing in mind that forB<m0Hc1 this assump-
tion may lead to significant errors.

Below we consider some manifestations of orientat
effects in isotropic superconductors as an illustration of
macroscopic approach, and also consider one form of
operatorJ derived from a detailed experimental study a
computations of critical currents in a niobium–titanium fo
with high anisotropic pinning.

2. ORIENTATION EFFECTS IN SUPERCONDUCTORS WITH
HIGH ISOTROPIC PINNING

Although we know of no isotropic superconductors wi
high pinning, we assume that it is worthwhile to separ
effects due to the dynamics of magnetic flux in a superc
ductor and due to the inherent anisotropy of the material

2.1. Transverse electric field

In a superconductor with isotropic pinning, the pinnin
force FP in Eq. ~2! is independent of both the directions o
the Lorentz force and magnetic induction and can be in
preted geometrically as a sphere in the force space such
a Lorentz force vector piercing the sphere transfers a su
conductor to the resistive state. It is clear that the elec
field in Eq. ~4! is aligned with the current density only if th
induction is perpendicular to the current density:
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E5B3v5
1

u~F 2F ! 12
FP

~ jB22B~ j•B!!. ~5!
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Since the electric field is always perpendicular to t
magnetic induction, the angle between the electric field
current density isp/22a, wherea is the angle between th
current density and induction, i.e., a transverse electric fi
is generated in the resistive state. The physical basis for
angle is the hard coupling between components of a mov
magnetic flux carried through the superconductor by fl
oids. In a normal metal, such an effect cannot be obser
because in this case different components of magnetic
can propagate independently. This effect should not be c
fused with the well known effect of guided vortex motion22

due to the pinning anisotropy, which is detected even in
case of mutually perpendicular magnetic field and curr
density. Note that the angle between the electric field
current can be tens of degrees, which is considerably la
than the typical angle for the Hall effect in type II superco
ductors.

2.2. Critical current in a superconductor for arbitrary
orientation of external field

Consider a plate of thickness 2d (2d,y,d) in the xz
plane containing a current in thex-direction in an externa
field of an arbitrary orientation with componentsHxe , Hye ,
and Hze. Let currentJx be critical, i.e., occupy the entir
volume of the plate. Equation~3! in this case has the form o
a critical state equationFL5FP(B), which can be expresse
as follows:

]Bz

]y
ABy

21Bz
25m0FP~ABy

21Bz
21Bz

2~y!!, ~6!

whose boundary conditions areBz(d)5m0(Hze1Jc/2) and
Bz(2d)5m0(Hze2Jc/2), while Bx5m0Hxe and
By5m0Hye . This equation can be solved, and the resul
determined by the specific form of the functionFP(B).

Figure 1 shows the calculations of the critical curre
density as a function of magnetic field for various orien
tions of the external magnetic field~the pinning force as a
function of magnetic induction is given by the expressio23

FP(B)5AHc2
2 Ab(12b), where b5B/Bc2!. The dome-

shaped curve of the critical current versus parallel magn
field, which in due time brought about the hypothesis
zero-force charge flow in superconductors, reflects the do
shaped pinning force dependence on magnetic field.
large critical current in a longitudinal magnetic field corr
sponding tob;0.33 is due to the maximum of the pinnin
force in this region, whereas the transverse field compon
generated by the current and determining the Lorentz forc
very small. Note that the described solutions are purely
mal whenBz has opposite signs on different plate surfac
since Eq.~6! does not take account of formation of almo
force-free current and magnetic induction configurations c
responding to negligible forces, nor of a paramagnetic m
ment generated when Lorentz forces on either side of
plate are directed into the plate.
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In all calculations given in this paper, we have assum
that local current densities in a superconductor carrying c
cal current are always aligned with the transport current.

Owing to the high sensitivity of parameters of the co
stitutive equation to the magnetic induction, the field gen
ated by the transport current has considerable effect on
current distribution in the superconductor cross section,
pecially in longitudinal or small external fields. Below w
discuss an example with a nonuniform current density dis
bution in an anisotropic material generating a maximum
the total current through a sample as a function of magn
field in low external fields.

3. PINNING ANISOTROPY

A self-consistent phenomenological model of a sup
conductor with anisotropic pinning should contain a min
mum number of empirical parameters needed for a satis
tory description of the effect, and an algorithm fo
calculating the current-carrying capacity of a material in
magnetic field of an arbitrary orientation. In the most gene
case, the current-carrying capacity is defined in terms of
parameters of current–voltage characteristics~CVC!. Most
authors, however, have described the current-carrying ca
ity of a superconductor in terms of one parameter, nam

FIG. 1. Critical current density in an isotropic superconducting plate w
high pinning at different angles between current density and external m
netic field parallel to the plate surface. The plate thickness is 1 m
AHc2

2 51.443109 A/m2.
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the critical current, which is defined as a current correspond-
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ing to a certain point on CVC determined by an arbitrar
selected value of electric field. In this paper, the mode
developed in this approximation.

3.1. Model of anisotropic pinning

Since pinning corresponding to the critical current c
be described in an isotropic material for a fixed magne
induction in terms of a sphere in the force space whose
dius is the critical Lorentz force, it is natural to visualiz
pinning in an anisotropic material using a surface of low
symmetry in the force space. The shape and dimension
the surface are determined by the distribution of pinning c
ters and their properties. In the general case, the sur
shape is arbitrary, but it should be closed since critical c
rents are finite, and probably symmetric about the orig
because the critical current does not change when its d
tion is reversed. A set of such surfaces for different value
magnetic induction ranging between zero andBc2 can be
defined as a pinning body. For each magnetic induction c
responding to a certain pinning surface, one can introdu
collective potential well for a sufficiently large array of flux
oids. In the absence of transport current, this array occu
the position with the lowest energy at the bottom of this we
and a minimum of the magnetic flux energy density does
mean that each fluxoid trapped by individual pinning cent
is at the bottom of its potential well. When a transport c
rent is on, the array is driven up along the well slope in
direction of the Lorentz force. A quasi-harmonic elastic
sponse of a pinned fluxoid lattice corresponding to this st
was detected in experiments with both alternating curre24

and pulsed field.25 If the Lorentz force is larger than th
maximum slope of the potential well, the entire array is se
motion, which leads to initiation of an electric field and e
ergy dissipation~see Eqs.~1! and ~2!!.

The force of anisotropic pinning measured in expe
ments, however, depends not only on the Lorentz force
rection in a superconductor, but also on the magnetic ind
tion direction, which leads to a considerable complication
the suggested simple model. Each direction of the Lore
force can be characterized by a cross section of the pin
surface, which is a plane closed curve and determines
critical value of this force as a function of the magnetic
duction orientation in the plane perpendicular to the Lore
force.

In this connection, the geometrical model of the pinni
body should be also considered in the space of twice
dimensionality. Let us illustrate this statement by a sim
model. We define the maximum pinning force opposing
Lorentz force in directionl in the form

FP52maxS ]U

] l D52e~ l!
U0~B!

L~ l,B!
, ~7!

whereL( l,B)5U0(B)/umax(]U/]l)u is the effective width of
the collective potential well in the Lorentz force directio
e~l! is the unit vector in the Lorentz force direction, an
U0(B) is the potential well depth. An important assumpti
of the model is that the collective potential well depth co
responding to pinning at a given point of the superconduc
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the magnetic induction~and does not explicitly depend o
the current density and Lorentz force!, whereas the effective
width of the collective potential well is assumed to be d
pendent on the induction magnitude~density of vortices! and
the Lorentz force direction, and independent of the direct
of the magnetic induction. These assumptions are base
the following reasoning.

It is known26,27 that even weak pinning centers destr
long-range order in a regular fluxoid lattice~this is the reason
why we prefer the term ‘‘array of fluxoids’’ to ‘‘fluxoid lat-
tice’’ !. In the case of high pinning, its contribution to the fre
energy is relatively large. Estimates for a niobium–titaniu
wire demonstrate28 that short-range order takes place on
over a range of several lattice periods, i.e., different fra
ments of fluxoids are pinned almost independently, and
fluxoid array is shaped to conform to the ensemble of p
ning centers. The specific coupling energyU of these two
ensembles depends on individual characteristics of the
ning centers, their density, and distribution throughout
superconductor, and anisotropy of any of these characte
tics should lead to a dependence of the fluxoid array c
pling energy on the magnetic induction direction in the m
terial.

The effective dimension of the collective potential we
is no larger than half the minimum separation between t
energetically equivalent positions of the fluxoid ensemble
rough estimate of this distance is the lesser of two valu
namely the mean distance between neighboring fluxoids
the mean distance between neighboring~in the direction of
possible drift of fluxoids! pinning centers. Since the mea
separation between fluxoids is a function of magnetic ind
tion, and the distance between pinning centers is constan
a material with sufficiently sparse pinning centers, the w
width can be constant in small fields and decrease with
fluxoid density at higher fields.

Some authors24,25,29 determined elastic displacement
the fluxoid lattice in various materials~assuming that pinning
is isotropic!, and the maximum elastic displacement prov
to be several tenths of the lattice constant. Naturally, in
case of anisotropic pinning, the critical displacement sho
also be an anisotropic parameter. Since elastic displacem
is due to the Lorentz force, the pinning force should be
termined by the width of the generalized potential well
none other than the direction of the Lorentz force.

In terms of the proposed phenomenological model,
features of pinning in a specific material are determined
specific angular dependences of the well depthU0 and its
width L. Thus, in order to obtain exhaustive informatio
about the current-carrying capacity of a material in an ar
trary magnetic field, one must construct with the highest p
sible accuracy the angular and field dependences of th
well parameters. It is clear that this problem might deman
huge experimental effort. However, if the analysis is limit
to a few reasonable assumptions about feasible shapes o
‘‘energy’’ surface (U0) and ‘‘width’’ surface (L), the
current-carrying capacity can be described with a reason
accuracy using a few parameters. One feasible assumpti
that extreme values ofU0 andL are achieved when the mag
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FIG. 2. Illustration of the definition of
the current-carrying capacity of an an
isotropic superconductor with a multidi
mensional pinning surface:~a! surface
describing the characteristic width of th
collective pinning potential well as a
function of the Lorentz force direction;
~b! surface describing the energy of cou
pling between a fluxoid array and pin
ning centers as a function of the mag
netic induction direction; ~c! cross
sections of the pinning body by plane
perpendicular to the induction vector
aligned with the principal axes of the
material ~definition of the six principal
values of the pinning force!.
netic induction or Lorentz force are aligned with specific
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we consider the simplest model surface, namely an ellipsoid
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orthogonal directions in the material~we call these the prin-
cipal axes!, while for intermediate directions the depth an
width of the potential well gradually vary between the
maxima and minima. It is natural to assume that in a co
rolled foil the principal axes are the roll direction~i.e., the
x-axis!, the normal to the foil surface~i.e., y-axis!, and the
perpendicular to the roll direction in the foil plane~i.e.,
z-axis!. The potential well depth isUx, Uy, or Uz when the
induction is directed along thex, y, or z axis, respectively.
When the direction of the induction vector changes gra
ally, one can hardly expect abrupt changes in the coup
energy, and it should be described by a smooth function
the angles. It is possible that the determination of the sh
of such a surface will at some point become a goal in s
studies of superconducting materials, but in this paper
order to make the results of our analysis easily interpreta
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S cosa

Ux D 2

1S cosb

Uy D 2

1S cosg

Uz D 2

5
1

U0
2 , ~8!

where cosa, cosb, and cosg are the direction cosines of th
magnetic induction. Thus, in the absence of external curr
the fluxoid array binding energyU0 per unit volume of a
superconductor is proportional to the length of the rad
vector of the surface~8! aligned with the magnetic induction
~Fig. 2b!. Similarly we define in the 3D space a surface
well widths with principal axesLx, Ly, andLz. We assume
that for an arbitrary direction of the Lorentz force, the co
responding widthL of the potential well can also be de
scribed by an ellipsoidal surface~Fig. 2a!:
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FIG. 3. ~a! Diagram illustrating genera-
tion of transverse electric field for some

r

z
i-
t

n
n
e
i-
current orientations in a superconducto
with anisotropic pinning. A cross section
of the pinning surface by thexz-plane is
shown~b is the angle between the Lorent
force and axis perpendicular to the roll d
rection,G is the angle between the curren
of magnetic flux and Lorentz force,a is
the origin,c is the pinning force value in
the direction of the Lorentz force,b is the
maximum allowed Lorentz force,d is the
pinning force value in the direction of the
minimal Lorentz force projection!. ~b!
Calculated angle between the flux motio
direction and Lorentz force as a functio
of the angle between the Lorentz forc
and the axis perpendicular to the roll d
rection.
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S Lx D 1S Ly D 1S Lz D 5
L2 , ~9!

where cosa8, cosb8, and cosg 8 are the direction cosines o
the Lorentz force.

Thus, in order to determine the critical value of the p
ning force per unit volume at a given point in a superco
ductor at a given magnetic induction, one must divide
length of the vector connecting the origin with the ener
surface~Eq. ~8!! and aligned with the magnetic induction b
the length of the vector to the width surface~Eq. ~9!! and
aligned with the Lorentz force, i.e.,FP5U0 /L. This proce-
dure defines the operatorJ introduced above. If the vector o
the current density and magnetic induction vector are alig
with the principal directions in a material, the Lorentz for
is also aligned with the principal direction orthogonal to t
other two:

FP
1 5

Uz

Ly , FP
2 5

Ux

Lz , FP
3 5

Uy

Lx , FP
4 5

Uy

Lz ,

FP
5 5

Uz

Lx , FP
6 5

Ux

Ly . ~10!

The pinning surface is thus defined by six principal ve
tors and should be constructed in a space of double the o
nal dimensionality. Each direction of the magnetic inducti
corresponds to a perpendicular cross section of the pin
surface. The axes of this cross section define pinning fo
for all directions of the Lorentz force possible for this dire
tion of the magnetic induction. A result of the calculations
several pinning surface cross sections are given in Fig.
One can see that even in the simplest case being discu
the shapes of the cross sections are nontrivial.

Figure 3a shows an example of the pinning surface cr
section corresponding to an induction vector aligned with
y axis~this is the case, in particular, when an external field
perpendicular to the foil surface!. The xz cross section is
defined by

~FP~b!!25~FP
4 !2 cos2 b1~FP

3 !2 sin2 b. ~11!
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pinning force, but in a real experiment not all these forc
can be realized because of the effects of so-called guided
motion.

3.2. Guided flux motion in a superconductor with
anisotropic pinning

Guided flux motion in a mixed state of type II superco
ductors was extensively studied as early as the
1960s.22,30 The transverse voltage in thin cold-rolled foi
was measured in a perpendicular external magnetic field.
results were interpreted in terms of an excess pinning fo
in a certain fixed direction~perpendicular to the roll direc
tion! and corresponding motion of fluxoids along the ‘‘easy
axis. But this model did not describe the mechanism of
cessive pinning. Recently31 guided flux motion has been de
tected in YBa2Cu3O72d , where a system of aligned twin
boundaries played the role of barriers with excess pinnin

Figure 3 provides an interpretation of the guided motio
which naturally derives from the general concept of ani
tropic pinning. Suppose that the transport current directio
such that the effective Lorentz force~1! aligned with theab
radius makes an angleb with the z axis. In the case of
isotropic pinning, the onset of the flux motion occurs wh
the Lorentz force is larger than the pinning force. In the ca
of anisotropic pinning, when pinning forces are different f
different directions, there are axes along which this force
so small that the Lorentz force projection (ad) exceeds the
pinning force at a lower current than that at which the Lo
entz force vector extends to the pinning surface (ab,ac).

As a result, the flow of fluxoids is directed along th
critical projection of the Lorentz force, which leads to a d
viation of the electric field vector from the current directio
by angleG. The dashed line in Fig. 3a shows a calculat
locus corresponding to the initiation of such a critical Lo
entz force projection in the model of an ellipsoidal potent
well ~9!. One can easily check that this curve is an ellip
with principal axesFP

3 and FP
4 . A fluxoid array should be

driven along the critical projection.
Figure 3b shows calculations of the angle between

directions of the fluxoid array motion and Lorentz force ve
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TABLE I. Orientation of samples studied in experiments:j, u, andw ~de-
grees!.
cipal axis ~in this case,x or z axis!, the direction of the

Lorentz force critical projection coincides with the Loren
force, andG50. Therefore, only in the principal directions
the pinning force exactly equal to the measured Lore
force. Thus, the real critical current corresponding to
critical projection is less than or equal to the critical curre
calculated without taking the flux motion direction into a
count; nevertheless, it is possible to reconstruct the shap
the potential well using experimental data if the ‘‘critic
current’’ corresponding to the critical Lorentz force and
angle with the electric field,G5arctan(E' /Ei), are measured
simultaneously in a set of superconducting samples w
various b. It clearly follows from Fig. 3a that the pinning
surface is described by

FP~b1G!5FL~b!cosG, ~12!

whereFL(b) is the critical Lorentz force whose direction
determined by angleb.

The effects related to guided flux motion complicate t
equation system~1!–~4! since, instead of the Lorentz force
its projection in the direction of flux motion must be in
cluded, and the pinning force should also correspond to
direction. In order to determine this direction, one sho
plot, using Eq.~3!, the entire pinning surface cross section
the plane perpendicular to the magnetic induction vector

3.3. Absolute values of the depth and width of the potential
well

In principle, each of the six pinning forces can be d
rived from experimental data. One can easily check, ho
ever, that the following relation should hold:

FP
1FP

2FP
3 5FP

4FP
5FP

6 . ~13!

This condition does not allow one to determine the a
solute values of the axes of the energy and dimension e
soids. But, since the forces are expressed in terms of en
and length, the principal axes of the energy and dimens
surfaces can be normalized to one of these axes, for exam
Lx5a. We have

Umax
y 5FP

3a, Umax
z 5FP

5a, Umax
x 5

FP
2FP

3

FP
4 a5

FP
5FP

6

FP
1 a,

~14!

Ly5
FP

5

FP
1 a, Lz5

FP
3

FP
4 a.

The parametera, which specifies the absolute scale of t
system, cannot be derived from critical current measu
ments alone. In order to obtain absolute characteristics of
collective potential well, additional independent measu
ments are needed.

Equation~13! could be checked experimentally if the
were a bulk anisotropic superconductor with the simple
isotropy described above. By cutting from this material th
samples oriented in the principal directions and measu
critical currents in magnetic fields also aligned with the pr
cipal directions, one would obtain the six desired values
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the pinning force not affected by the guided flux motio
Unfortunately, this sort of field experiment is not feasible
studying niobium-titanium foils.

4. EXPERIMENTAL RESULTS

4.1. Measurements of critical currents in external field

Samples were cut from cold-rolled foil of the NT-5
alloy ~Nb plus 50 mass % of Ti! 10 mm thick produced in
1978 at the Ulba metallurgic factory. The foil was coated
both sides with a 1-mm layer of copper welded to the alloy i
the process of pressing and rolling, which allowed us to f
ricate good electrical contacts. We cut a set of ribbo
(6334 mm) oriented at anglesj50°, 15°, 30°, 60°, and
90° with respect to the roll direction from a 1-m long secti
of a piece of foil 200 m long and 80 mm wide. Thus w
defined the transport current direction with respect to
preferred direction in the material. All ribbons were pack
in one stack and machined in a conductor, namely, sam
with necks 1.360.05-mm wide were milled, and this helpe
in comparing experimental results and made accurate m
surements of all sample cross sections unnecessary. By
amining transverse and longitudinal polished cross sect
of samples under a microscope, we checked that these c
sections were uniform along their lengths, and measurem
of several samples of the same orientation taken from b
the middle and ends of the foil section yielded the total e
perimental uncertainty~due to both inhomogeneity of th
superconductor and differences in the sample widths!, which
was at most 8% throughout the magnetic field range stud

The samples were soldered to stainless steel subst
and rigidly fixed to a probe by oriented holders. They we
placed in the 41 mm diameter bore of a superconduc
solenoid capable of generating a magnetic field of up to 1
T. The sample orientation in the external field was describ
by the angleu between the field vector and foil plane, an
the anglew between the current and field projection in th
sample plane. The sample orientations studied in the exp
ments are listed in Table I.

The rather large number of tested configurations w
dictated by the need for sufficient statistics to check
model with five fitting parameters.

The experiment was conducted by measuring at
liquid-helium temperature~4.2 K! the current–voltage char
acteristics of samples with various orientations~variousj! in
a fixed set of magnetic fields ranging between 10 mT a

j50° j515° j530° j560° j590°

u w u w u w u w u w

0 90 0 90 0 90 0 90 0 90
90 2 90 2 90 2 90 2 90 2

45 0 45 0 45 0 45 0 45 0
0 45 0 45 2 2 0 45 2 2

45 90 45 90 2 2 45 90 45 90
2 2 2 2 30 35 30 35 2 2
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FIG. 4. Comparison between experiment
measurements~points! of the pinning force
in anisotropic niobium–titanium foil and
calculations~solid lines! based on the pa-
rameters of the collective potential we
given in Fig. 6 for samples cut at an angle o
~a! 15° and~b! 60° with respect to the roll
direction.
Hc2 , which was determined to be 10.8 T for the foil~at a
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current of 1 mA and electric field of 1mV/cm!. In this paper,
we discuss only a fraction of the information obtaine
namely the critical current in a longitudinal electric field of
mV/cm as a function of the external magnetic field orien
tion and current direction in the foil.

The goals of our experiments were the following:
~a! To obtain reliable experimental information on th

critical current as a function of external field direction a
current orientation with a view to determining parameters
the anisotropic pinning model and verifying that the curre
carrying capacity of a material really depends on both
Lorentz force and magnetic induction directions in the ma
rial.

~b! To record the shapes of the maxima in the curre
carrying capacity at low fields and certain external field o
entations for comparison with calculations. These maxi
were detected many times by other researchers in var
materials, including the niobium–titanium foil,9 when the
external field was aligned with the foil plane, but have n
been explained.

Experimental data are given in Fig. 4 with fits to th
model described above. In order to limit the number of pl
in the paper, we have included only a small fraction of t
experimental data, namely the results which demonstrate
best and worst agreement with the model calculations.

Let us list the main experimental results that are by a
large in agreement with the anisotropic pinning model.

~1! The tested material~thin cold-rolled NT-50 foil! is a
material with strongly anisotropic pinning. The differen
between the pinning force densities at certain orienta
reaches two orders of magnitude for a given external fi
strength. The highest current-carrying capacity was dete
when the magnetic field was aligned with the foil plane, a
the lowest, when the field was normal to the foil.

~2! The pinning force per unit volume strongly depen
on the magnetic induction inclination to the foil materi
~Fig. 4!, even when the Lorentz force direction is the sam
which is clearly seen in Figs. 4a and 4b.

~3! The pinning force density depends heavily on t
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strength and direction of the external field are the same
order to check this, one should compare measurements
j515° and 60° given in Fig. 4.

~4! At certain orientations of the external field~along the
foil plane!, with a field strength comparable to the local i
duction in the material due to characteristic transport c
rents, i.e., below 0.2 T, maxima in the critical current vers
magnetic field were detected~Fig. 5!.

4.2. Measurements of transverse electric field

As was noted above, in type II superconductors w
anisotropic pinning, a flow of fluxoids can deviate from th
direction perpendicular to the current, thereby inducing
transverse component of electric field. By measuring
angle between the current and electric field in an exter
magnetic field notably higher than the field generated by
current, one can plot a 2D cross section of the pinning s
face perpendicular to the field direction~under the assump
tion that the critical projections are in the plane of this cro
section!. Like other experiments in this series, the expe
ment was carried out on NT-50 alloy cold-rolled foil. We c
ribbons from the foil area about its middle line with dime
sions of 5330 mm oriented at anglesj50°, 10°, 15°, 20°,
30°, 40°, 60°, and 90° to the roll direction.

The samples were soldered to stainless steel plates
affixed to a probe such that the magnetic field generated
the superconducting solenoid was perpendicular to th
plane. With this alignment, detection of the transverse e
tric field is easier. In order to measure the longitudinal a
transverse voltages simultaneously, we fabricated a de
with four spring-loeaded potential contacts located at
corners of a square with a 3.5-mm diagonal, one of the
agonals being aligned with the sample axis so that is co
cided with the current direction. The lack of a spurious sig
due to positioning errors in the contact positions was tes
at zero magnetic field in samples in the normal state. In
case, the transverse signal was within 2% of the longitud
signal, and this result was satisfactory since the detec
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mental data and calculations of critica
current versus magnetic field in th
range of low magnetic fields. The dashe
lines and symbols show experimenta
data, and solid lines show calculation
using the parameters of the collectiv
potential well given in Fig. 6: circles!
u590°, w50°; rhombs! u545°,
w590°; squares! u50°, w590°; tri-
angles! u545°, w50°.
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higher. Given the large magnitude of the studied effect,
could ignore the Hall voltage, which was within the expe
mental uncertainty. This device allowed us to save time
avoiding the complicated procedure of potential cont
alignment before measuring a new sample.

In magnetic fields ranging between 0.5 and 10 T,
which the field generated by the current could be neglec
and the induction in the superconductor was aligned with
external magnetic field, we recorded direct and reve
current–voltage characteristics in the voltage range 0.0
10 mV using our computerized apparatus. Concurrently
plotted the electric field transverse component versus
longitudinal component on an X-Y recorder. When the c
rent was increased and decreased, the recorder plotted
tical straight lines. This was an indication of the direct pr
portionality between the transverse and longitudi
components, hence the constant trajectory of the magn
flux motion. The slope of these lines corresponded to
angle between the electric field and current. It strongly
pended on the angle between the roll direction and curr
In samples whose axis was aligned with the roll direction
was perpendicular to it, no transverse component of the e
tric field was detected, which supported our assumption
there were at least two principal directions of the pinni
surface in the material, and that they coincided with the p
cipal directions in the foil.
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In the case of arbitrary sample tilt with respect to
external magnetic field, the pinning force is controlled
several parameters that define the pinning body~Table II!, so
statistical methods are needed in the data processing.
situation is more complicated in weak external fields, wh
the field generated by the current affects the magnitude
direction of the magnetic induction in the sample, and a s
consistent problem of calculating the current density mus
solved.

The aim of the data processing was to determine fi
pinning parameters, namelyUx(B), Uy(B), Uz(B), Lx(B),
andLz(B), which were treated as independent values in

TABLE II. Orientation of samples and relevant model parameters affec
the pinning force.

Orientation of current and external field,
Relevant model parametersdegrees
affecting the pinning force

u w density in high magnetic fields

0 90 Ux,Uz Ly

90 2 Uy Lx,Lz

45 0 Ux,Uy,Uz Lx,Lz

0 45 Ux,Uz Ly

45 90 Ux,Uy,Uz Lx,Ly,Lz

30 35 Ux,Uy,Uz Lx,Ly,Lz
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the current density and magnetic induction for all orien
tions and fields used in the experiments, and to comp
calculations to measurements of the currents. We hoped
the description of the angular dependencies of the pote
well depth and width with ellipsiods would be in reasonab
agreement with reality.
4.3.1. Effect of current density nonuniformity in weak ext
nal field. In order to determine the critical current dens
j c(m0He) from the measured critical currentI c(He), the
critical current is usually divided by the sample cross s
tion. This procedure is not always justified, since accord
to the critical state model, the current density in the sampl
correlated with the local induction, and the latter is usua
nonuniform because of the field generated by the trans
current. For samples of isotropic materials calculating
current density by dividing the total current by the cro
section area is correct only in the case of a sufficiently h
external field. Then an increase in the current density in
gions where the induction is lower is exactly compensated
its decrease in the region where the induction is higher. T
was analytically demonstrated for the case of an isotro
superconductor in the shape of a cylinder, with the curr
density being a power function of the induction.18

We assumed and then checked in a numerical calcula
using the algorithm described below that, in the studied c
of an anisotropic superconductor with a rectangular cr
section and a realistic functionj c(B), one can apply this
technique to fields higher than 0.1–1.0 T~depending on the
field tilt with respect to the foil!, when the angle between th
external field and current is sufficiently large~more than
10°!. If the sum of the external field and the field due to t
current is sufficiently small, a peak in the current density
formed at this point, and in the major part of the cross s
tion the total induction is greater than the external magn
field induction. Therefore, the critical current in the sample
considerably lower than the current density correspondin
the external field times the cross sectional area.

The parameters of the anisotropic pinning mod
throughout the field range between zero andHc2 ~i.e., the
parametersUx, Uy, Uz, Lx, andLz of the anisotropic poten
tial well versus external field! should be obtained by statis
tically processing all experimental data measured at all
entations of the magnetic field for all samples. In order
estimate the pinning parameters and solve the self-consi
problem in small fields, we had to use values of the critica
current density in weak fields extrapolated to this range
the procedure described below. If we assume that the pin
force density as a function of magnetic field in the weak-fi
regime can be expressed as

FP}bq~12b!s, ~15!

whereq ands are parameters that depend on the proper
of pinning centers, andb5B/Bc2 is the reduced magneti
field, it is natural to expect that in the anisotropic case
parameters in Eq.~15! depend on the field direction and Lo
entz force orientation.

Analysis of the measured critical current versus field h
confirmed our assumptions. Irrespective of the external fi
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duced fields (b;0.01– 0.2), one can select linear sections
curves of the critical current versus field plotted on a log–
scale on which Eq.~15! holds to fair accuracy~i.e., I c

}bq21!. In weaker external fields, the field due to the tran
port current begin to make itself felt, and at higher magne
fields, it is the peak effect, which leads in both cases
deviations of experimental curves from a power law. W
assumed that the resulting curves could be extrapolate
very weak external fields, and that the required curve
j c(B) in this range for calculations could be obtained. T
curve was extrapolated using the least squares metho
minimizing the discrepancy factor across all experimen
curves, and the optimal values of extrapolation parame
were derived with the key parameterq being varied between
0.378 and 0.709. In the calculations of the pinning para
eters given below, we described the functionj c(m0He) in an
external fieldm0He>1 T by I c(He)/S, and for m0He,1 T
by the extrapolated critical current through the cross s
tional area.

It is significant that all approximations used in our ca
culations yield a critical current density that decreases mo
tonically with magnetic induction. The strong dependence
the critical current on the orientation allows us to ascr
maxima in the critical current at low magnetic fields f
some orientations to features of the magnetic induction
tribution over the sample cross section due to the field g
erated by the transport current, which is also highly nonu
form across the sample cross section.
4.3.2. Calculation of model parameters.We constructed
twenty curves of critical current versus field
I c5I c(He ,j,u,w), corresponding to the anglesj, u, andw
listed in Table II. An independent calaculation was pe
formed for each value of external field and all mutual orie
tations of current and field. The model parameters were
rived by minimizing the discrepancy factorR:

R5
1

N2n (
k

N S I c,k
cal2I c,k

exp

I c,k
exp D 2

, ~16!

where N is the number of experiments,I c,k
exp is the critical

current measured for thekth orientation,I c,k
cal is the critical

current calculated by one of the models for thekth orienta-
tion, andn is the number of adjustable model paramete
The regression procedure was performed assuming an e
contribution from each experimental point~measured critical
current! to the discrepancy factor.

The calculated parameters are plotted in Fig. 6. As m
tioned above~see Eqs.~13! and~14!!, given six main values
of the pinning force, one can determine only five relati
values of the potential well parameters, and one of its dim
sions is selected as a normalization factor. The shape
curves of these parameters versus magnetic induction
changed by the normalization to different principal radii
the dimensional ellipsoid, because these principal radii
variously depend on the magnetic induction.

Nevertheless, the data plotted in Fig. 6 are sufficient
derive complete information about pinning in the material.
order to determine the principal values of the pinning for
expressed in N/m3, one must multiply the ratio between re
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spective energies and dimensions given in Fig. 6 by 108. The
normalization for the data in Fig. 6 (Ly51) corresponds to
the case of the flattest curves of collective potential w
parameters plotted as functions of the field, with minim
nonmonotonic sections. Note that the density of grain bou
aries should be the highest in the direction ofLy, so that, in
our opinion, the potential well width should remain consta
up to a very high magnetic induction at which the avera
separation between fluxoids can become smaller than the
tance between pinning centers.

Figure 6 indicates that the collective well depth is ess
tially constant for all induction directions in the foil plane
For the induction direction normal to the foil plane, the w
is an order of magnitude shallower. Typical well widths fo
Lorentz force in the roll direction are several times larg
than in perpendicular directions almost throughout the ind
tion range studied, but starting with 5 T, this difference b
comes smaller and vanishes around the critical field. In
opinion, this behavior is in fairly good agreement with t
assumption that the pinning centers in the cold-rolled foil
boundaries of grains strongly flattened and elongated in
roll direction. If the difference between thex andz axes of
the energy and dimensional ellipsoids is presumed to
physically insignificant, the number of fitting parameters c
be reduced to three.
4.3.3. Comparison of models.In order to check how good th
description of the current-carrying capacity is as a funct
of orientation in terms of the collective potential well param
eters, we compared the statistical parameters of our mod
those derived from alternative simplified models. In ea
case, we used the same set of experimental data and
formed the procedure of nonlinear regression. Equation~16!
allowed us to perform a correct comparison among mod
with different numbers of fitting parameters using t
R-criterion, whose sense is similar to that of thex2-criterion.
The following models were compared.

1! The model of anisotropic pinning described abo
with the field-dependent depth and width parameters of
collective potential pinning well. The variable paramete
were the depth and width of the well,Ux, Uy, Uz, Lx, andLz

(n55).
2! A similar model, but by taking into account the sym

metry of the pinning center distribution in the foil, the num

FIG. 6. Parameters of the collective potential well calculated using meas
ments of the anisotropy of the current-carrying capacity of niobium
titanium foil.
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ber of fitting parameters is reduced to four, sinceUx5Uz

(n54).
3! A model similar to the previous one, but with a

additional symmetry element and the number of fitting p
rameters reduced owing to the additional relationLz5Ly51
(n53).

4! A model similar to the first, but taking into accoun
the guided flux motion in an anisotropic superconduct
When the guided flux motion is taken into account, the m
sured critical current is lower in almost all cases than
value obtained in the expected Lorentz force direction. In
case of the simplest shape of the potential well, namely
liptical, the guided flux motion can be taken into account
analytic form, which leads only to minor modifications
theoretical formulas, and the number of variable parame
remains the same (n55).

5! An alternative model in which the pinning force de
pends only on the direction of the Lorentz force in the m
terial. This model is equivalent to the well-known extensi
of the Bean model.14,15 We took as model parameters th
three induction-dependent principal pinning forces along
three principal directions in the material, and assumed
for all other orientations of the Lorentz force the pinnin
force is determined by the vector of the ellipsoid defined
the three principal axes (n53).

The results of the five models are compared in Fig. 7
the form of the discrepancy factorR versus field for various
models. The experimental uncertainty~due to the spread o
the position-dependent foil parameters, errors in sam
mounting, the small spread of the sample widths! derived
from measurements of the critical current of a set of var
samples for the same orientation of the external field
shown in this graph by the dot-and-dash line. The smalleR
for the selected model and the closer its value to the exp
mental uncertainty, the better the description of experime
data by this model. It is clearly seen that the ‘‘generaliz
Bean model’’ has a discrepancy factor considerably~almost
three-fold! higher than this factor for other versions of th
anisotropic pinning model, which takes account of the m
netic induction direction in the material. Even the model d
scribing the case of very symmetrical anisotropic pinni
~the third one! with the same number of variable paramete

e-
FIG. 7. Qualitative estimate of reliability of different models based on
R-criterion. The dot-and-dash line shows the average experimental un
tainty.
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Nevertheless, the statistical error associated with

models is considerably larger than the experimental un
tainty, and in the range of 2 to 7 T the discrepancy factor i
enhanced for all models.~The rise in the discrepancy facto
when the field drops below 0.1 T can be ascribed to the l
of accurate measurements of the critical current densi
and instead of these data we took extrapolations from
range of higher fields, which, naturally, led to larger error!
It would be natural to express, in response to such disc
ancies, doubt that the suggested ellipsoidal shapes of the
ergy and dimension surfaces are justified, but we think t
the real cause is, most probably, the inadequacy of the c
cal current evaluation criterion related to an arbitrary leve
electric field. Indeed, this choice of critical current definitio
is based on tradition alone. An alternative criterion based
a constant effective resistance would change the curves
nificantly, especially at intermediate fields, where the diff
ence between critical currents in differing orientations
greatest, but this criterion also cannot be rigorously justifi
We hope to eliminate this uncertainty after the planned p
cessing of current–voltage characteristics.

5. COMPARISON BETWEEN CALCULATIONS AND
MEASUREMENTS; DISCUSSION

In order to compare experimental data to calculatio
and take into account the field generated by the trans
current, the problem of self-consistent current and induct
distributions in the sample cross section was solved num
cally throughout the field range studied. We applied
method of successive approximations to the rectangular c
section divided into 500–1000 elements. The pinning for
with due account of the local induction vector and Loren
force direction, was applied determined for each elem
Usually a solution was found after twenty to thirty iteration
The stability of the result against changes in grid resolut
was checked.

The calculations are compared to experimental data
Figs. 4 and 5. Figure 4 compares calculations and meas
ments of the pinning force for various orientations of t
magnetic field in samples cut at angles of 15° and 60° w
respect to the roll direction. For most orientations, the agr
ment between model calculations and experimental meas
ments is satisfactory. Figure 5 compares calculations
measurements of critical currents in weak external fie
since correct measurements of the pinning force in th
fields are difficult, and features due to the nonuniformity
the current density distribution show up precisely in the
haviore of I c(He). The calculations faithfully reproduce a
features of these curves in weak fields, such as maxima in
current for some field orientations and the absence
maxima for others.

An unexpected effect for us was a maximum in the cu
corresponding to the field orientation at 45° with respect
the current in the plane perpendicular to the foil~w50° and
u545°!. We attribute this maximum to features in the cu
rent distribution at small angles between the magnetic ind
tion and current, rather than material anisotropy. Most pr
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expected in the case when the external field is aligned w
the current even in an isotropic configuration, but in o
calculations the remnant of this maximum persists at
angle u ranging only to 40°. We tentatively ascribe som
quantitative differences between calculations and meas
ments at fields of less than 0.1 T~Fig. 7! to either poor
accuracy ofj c(B) extrapolation to low fields, which leads t
a large uncertainty in the current for a small error in t
approximation parameters, or a fundamental flaw in this p
cedure, because Eq.~15! fails at very low fields.

Figure 8 shows calculations of the self-consistent criti
current density distribution in the sample cross secti
which elucidates the nature of maxima in the field paralle
the foil plane. The relatively uniform current distribution in
moderately high external field~0.5 T! becomes more and
more nonuniform with decreasing field, since the field ge
erated by the current reduces the induction on one edg
the cross section and gives rise to a peak in the current
sity. This peak generates a fairly large field component p
pendicular to the sample plane in the foil cross section w
a large ratio between its sides, and this process domina
since in a transverse field the pinning force is an order
magnitude lower that in a parallel field with the same indu
tion. This then produces the maximum inI c(He).

Figure 6 shows how the potential well depth depends
field orientation. Available data on the characteristic dime
sion Ly as a function of magnetic field are insufficient fo
determination of the specific binding energy between m
netic flux and pinning centers. If we assume thatLy is con-
stant with the magnetic induction, i.e., the density of pinni
centers is higher than the fluxoid density throughout the fi
range studied, and, on the other hand, take into considera
that the separation between pinning centers should be la
than the coherence length, we can obtain a very rough e
mate Ly'Af0 /B at B'10 T. Thus, Ly'7 nm, and the
binding energy at an induction of 5 T is Ux'Uz'50 J/m3,
Uy'2.5 J/m3.

The comparison in Fig. 9c between the ratio of the p
ning force perpendicular to the roll direction and that para
to this direction, and the ratio between widths of the colle
tive potential well ~Fig. 6! derived from the entire set o
critical current measurements, leads us to conclude that
anisotropy taking place in the case of this orientation
uniquely related to the difference between the slopes of
tential well walls. The peak effect detected aroundBc2 is due
to the increase in the wall slope, rather than the increas
the binding energy between magnetic flux and pinning c
ters.

Measurements of transverse electric field in magne
fields perpendicular to the foil plane allow us to reconstr
the real shape of the cross section of the pinning body. F
ure 9 shows reconstructed shapes of pinning surface c
sections. Throughout the field range studied, they are v
similar to the cross section calculated in Sec. 3.2. The s
gestion of an ellipsoidal approximation for the depth a
width of the collective potential well in a niobium–titanium
foil for this magnetic field orientation is probably quite rea
istic. Naturally, the shape of this potential well cannot
universal. For example, in HTSC the presence of sev
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FIG. 8. Diagram explaining initiation of
critical current maxima in small mag-
netic fields parallel to the roll direction
in niobium–titanium foils withj515°;
s—u590°, w50°; n— u545°,
w50°, h—u50°, w590°. The inserts
show distributions of the current densit
in the sample cross section correspon
ing to different points on the curves o
critical current versus field~for a better
view, the dimension of distribution dia-
grams along the larger axis is com
pressed considerably because the ra
between the cross section sides is 130:!.
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which leads to several sharp peaks in the current-carry
capacity, should correspond to a very peculiar pinning s
face shape resembling a star. We hope that a study of
cross sections in various materials can be helpful in eluci
ing details of their structures and distributions of real pinn
centers, and in particular, that the observed features of m
sured cross sections enable us to improve upon the mod
magnetic flux pinning in niobium–titanium alloys.

6. CONCLUSIONS

The proposed geometrical interpretation of the mac
scopic pinning force as a surface pierced by the Lore
force, which means a transition from the superconducting
resistive state, has allowed us to construct a model of an
tropic pinning whose difference from the generalized Be
model is that it takes into account the dependence of
pinning force not only on its direction, but also on the ma
netic induction direction. A simple algorithm describes
operator that transforms the induction vector and Lore
force in the counteracting pinning force for the case in wh
the width and depth of the collective pinning potential w
can be described by triaxial ellipsoids. The suggested mo
yields a natural interpretation of guided fluxoid motion a
predicts the angle between the current and electric field in
resistive state of an anisotropic superconductor.

An algorithm has been developed for calculating the d
tribution of the self-consistent current and magnetic ind
tion in the superconductor cross section for arbitrary m
netic field and current orientations, with due account of
real anisotropy of each cross section element.
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titanium foil has been studied for various magnetic field o
entations as a function of the current direction in the coor
nate system attached to the material, and transverse ele
fields in the foil resistive state in magnetic fields perpendi
lar to the foil plane have been measured. A technique
reconstructing the real shapes of pinning body cross sect
from measurements of the angle between current and ele
field in the resistive state has been suggested, and the sh
of the pinning body cross sections for one induction orien
tion have been constructed.

The comparison between experimental measurem
and model calculations demonstrates that the approxima
of the pinning potential well by two ellipsoids is satisfacto
for the niobium–titanium foil. In HTSC materials with sev
eral systems of sharply oriented ensembles of pinning c
ters, one should expect a pinning surface of very comp
shape, because both the depth and width of the potential
should have star-like shapes formed by several highly e
gated intersecting ellipsoids.

Relative depths and widths of the collective potent
well when both the magnetic induction and Lorentz for
directions coincide with the principal directions of th
niobium–titanium foil have been derived from experimen
data. The peak-effect in fields close to the critical value
tected for some orientations must be ascribed to change
the steepness of the potential well walls, rather than the
tential well depth.

By solving the problem of self-consistent distribution
for the magnetic induction and current density in samp
with due account of the field generated by the transport c
rent, we could reproduce in our calculations of the critic

585Klimenko et al.
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FIG. 9. Reconstruction of the pinning body shap
a! Typical reconstruction for three values of exte
nal field demonstrating satisfactory agreement b
tween experimental data and calculations. T
dashed lines and circles show the calculations a
measurements of maximum current for samples
at various angles with respect to the roll directio
The solid lines show the expected pinning bod
cross section, and squares show reconstructions
these sections from experimental data. b! Pinning
force versus field for samples cut at various ang
with respect to roll direction in a magnetic field pe
pendicular to the foil plane. c! Comparison between
the ratio of pinning forces along the two principa
axes in the foil plane and the ratio of potential we
dimensions for the same directions.
current versus external field some subtle features, including
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5V. M. Boroditch, A. C. Combarov, V. Ya. Filkinet al., in Low Tempera-

of

R.

nd
maxima in weak external fields parallel to the sample pla
The model can be used in qualitative description of p

ning in practical superconducting materials, as well as
quantitative description of processes in superconduc
wires used in magnetic fields at varying orientation.
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Competition between face-centered cubic and icosahedral cluster structures

this
R. S. Berry
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B. M. Smyrnov, and A. Yu. Strizhev
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The binding energy of atoms in icosahedral and face-centered-cubic clusters is calculated
numerically for pairwise Morse-potential interactions between atoms and for clusters containing
from 561 to 923 atoms, which corresponds to gradual filling of the sixth layer of the
icosahedral cluster. Perturbation theory is used to calculate the cluster binding energy, in which
the small parameter is the ratio of the interaction energy between non-nearest neighbor
atoms to the interaction energy between nearest neighbors. Values of the Morse interaction
potential parameter are found for which the energies of clusters with different structures coincide.
Under the conditions used in these computations, the strain energy of a cluster can be
neglected. Although the contribution of the interaction energy between non-nearest neighbors to
the total cluster energy is small, it turns out to be important in finding the level crossing
parameter. ©1997 American Institute of Physics.@S1063-7761~97!02009-X#
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Two-hundred thirty crystal structures are known to occ
naturally at low temperatures.1–3 The variety of cluster struc
tures is still more extensive. For example, condensed-ma
systems consisting of atoms with pairwise interactions fo
close-packed crystal structures, which include hexagonal
face-centered cubic~fcc! structures.3,4 Clusters of atoms with
pairwise interactions can condense into these structure
well, but they also can form icosahedra.5 Geometrically, the
icosahedron has a surface consisting of 20 equilateral
angles. The internal atoms of an icosahedral cluster hav
nearest neighbors, like a close-packed structure in which
the distances between nearest neighbors are the same.
ever, in an icosahedral cluster the distance between ne
neighbors belonging to the same layer exceeds the dist
between nearest neighbors belonging to adjacent layer
roughly 5%. Therefore, the structure of an icosahedron
unsuitable for macroscopic systems. However, for syste
made up of a finite number of bound cluster atoms it can t
out to be preferable at low temperatures.

The advantage of the icosahedral structure compare
the close-packed structure lies in the larger number of bo
between nearest neighbors. Therefore, this structure wil
energetically more favorable for small clusters. In particu
for clusters of inert gases a transition from an icosahe
structure to anfcc structure occurs when the numbers
atoms in the cluster reachesn5100023000.6–8 For clusters
of atoms interacting via a Lennard–Jones potential, the t
sition from the icosahedral structure to a cuboctahedro
one of thefcc structures—occurs when the number of ato
in the cluster satisfiesn;104 ~Refs. 9,10!, while for clusters
with short-range interactions between atoms the transi
between the icosahedral andfcc structures takes place forn
52002500.11,12This extreme sensitivity of the transition re
gion to the type of atomic interaction requires a more care
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paper we carry out this analysis using the method develo
in Ref. 13 for a Morse-potential interaction between atom
We then illustrate the competition between structures by
ing a ‘‘phase diagram’’~see Ref. 13! on which we plot the
Morse-potential parameter at which thefcc and icosahedra
structure energies cross versus the number of atoms
cluster. Constructing this phase diagram is in fact the m
task of this article.

Note that we have excluded clusters with hexago
structure from the discussion. This structure competes w
the fcc structure for small-sized clusters, when the icosa
dral structure is preferred, but in the range of atom numb
where the icosahedral andfcc structures compete, both thes
structures characteristically bind atoms to the cluster w
higher binding energies than the hexagonal structures do14,15

In what follows we identify as ‘‘icosahedral’’ those cluste
whose core has the structure of an icosahedron, altho
their surface occupied layers can have eitherfcc or icosahe-
dral structures,6,7,16depending on the degree of occupation
the layer. We specify the structure of the surface layer
atoms by choosing the structure with the larger atomic bi
ing energy for the given number of atoms.

A cluster with fcc structure grows by filling its plana
facets.14,17 Such structures come in pairs, depending
whether the core of the cluster does or does not conta
central atom. Of these two possible structures for a clu
we choose the one with the larger atomic binding energy
the given number of atoms in the cluster. Thus, when
comparefcc structures with icosahedra, we first choose t
optimal configuration of atoms among thefcc structures, i.e.,
the one that ensures the maximum binding energy. In rea
each of the optimal atomic configurations will correspond
the maximum number of bonds between nearest neighbo

We then compare the energies of optimal configuratio
of atoms withfcc and icosahedral structures for clusters w

5888-05$10.00 © 1997 American Institute of Physics
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gradual filling of the sixth layer of the icosahedral structu
This comparison allows us to understand the distinctive f
tures of the competition between these structures.

Note that the variety of crystal structures observed
nature is determined by the way the type of interactions
tween atoms differs from system to system. The assump
that this interaction is pairwise for a system of bound ato
in which the atoms retain their individuality is correct if th
interaction potential between two atoms does not depend
the positions of the surrounding atoms of the system. T
will be the case when the interaction potential between
atoms is small compared to characteristic single-atom qu
tities, in particular the ionization potential of an atom
Hence, our analysis will apply primarily to clusters consi
ing of inert-gas atoms or gas molecules. In other types
interactions the atoms lose their individuality when they e
ter the cluster, which complicates the analysis of the clu
structures. However, even the simple case under discus
here, i.e., pairwise atomic interactions, admits multiple cl
ter structures and their hybrids, such that the optimal clu
structures havefcc or icosahedral cores.

2. ENERGETICS OF LARGE CLUSTERS

The Morse-potential interaction between two atoms
the following form as a function of the interatomic distan
R:

U~R!5D$exp @2a~Re2R!#22 exp @a~Re2R!#%, ~1!

where the potential minimum corresponds to the equilibri
distanceRe between atoms for a diatomic molecule. In wh
follows we set the dissociation energy of the diatomic m
ecule equal toD51. We used a standard computer progra
to determine the energy of a cluster for a given configurat
of its atoms, so that the total binding energy of the clus
atoms is defined as

E52(
i ,k

U~r ik!, ~2!

where i ,k label the atoms andr ik the distances betwee
them.

We must take into account that the interaction with no
nearest neighbors changes the distance between ne
neighbors to a value different from the equilibrium distan
Re for a diatomic molecule. In doing do we make use of t
standard method4 for the Morse interaction potential, writing
the total energy of the cluster atoms Eq.~2! in the form

E52 exp~aRe!F~aa!2exp ~2aRe!F~2aa!, ~3!

where

F~aa!5(
i ,k

exp ~2ar ik!, ~4!

a is the distance between nearest neighbors~the basis for the
given cluster!, and the sum runs over all bonds. We then ta
the derivative of this function, which is

589 JETP 85 (3), September 1997
.
-

n
-
n
s

on
is
o
n-

-
f
-
er
ion
-

er

s

t
-

n
r

-
rest

e

d~aa! (
i ,k

ik ik

Once we have optimized the energy of the clusterE, we find
the optimum distancea between nearest neighbors from th
ratio

exp ~aRe!5g~aa!5F8~aa!/F8~2aa!, ~6!

so that the optimum binding energy of the cluster und
study is

E5g~aa!F~aa!2
1

2
g2~aa!F~2aa!. ~7!

We then separate in the sum Eq.~4! the terms that in-
volve nearest-neighborFnn and non-nearest neighbor inte
actionsFnnn , so thatF5Fnn1Fnnn . This allows us to con-
veniently divide up the cluster energy in the standard wa13

into a nearest-neighbor interaction energyEnn , a non-nearest
neighbor interaction energyEnnn , and a strain energyEstr:

E5Enn1Ennn1Estr. ~8!

Here

Enn52 exp~aRe!Fnn~aa!2exp ~2aRe!Fnn~2aa!.
~9!

We define the interaction energy of non-nearest neighbor
the same way:

Ennn52 exp~aRe!Fnnn~aa!2exp ~2aRe!Fnnn~2aa!.
~10!

In these expressions, the quantitya acts as the basis for th
short-range interaction, which includes only the interact
between nearest neighbors. The strain energy arises from
change in the nearest-neighbor distance in the cluster froa
to its optimal value.

Let us first discuss the case of short-range interacti
between atoms in the cluster, when only the interaction
tween nearest neighbors is taken into account. Then fo
fcc cluster we obtain

Fnn~a!5K exp ~2aa!, Fnnn50, ~11!

whereK is the total number of bonds between nearest nei
bors for the given cluster. If we take the value of this qua
tity from Ref. 17, we haveFnn8 52Fnn , so that optimization
of the energy givesg(aa)5exp(2aa) anda5Re for nearest
neighbors. Then we obtain

E5K. ~12!

The interaction energy of non-nearest neighborsEnnn and the
strain energyEstr both equal zero.

For an icosahedral cluster, there are two distances
tween nearest neighbors. Let us denote the distance betw
nearest neighbors belonging to adjacent layers byR, and the
distance between nearest neighbors in the same layer byR0 ;
then R50.951R0 . IntroducingA, the number of bonds be
tween nearest neighbors in adjacent layers~bond lengthR!
andB, the number of bonds between nearest neighbors in
same layer~bond lengthR0!, we obtain
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TABLE I. Cluster parameters~m is the number of filled layers of the icosa-
hedral cluster,n the number of cluster atoms.

TABLE III. Non-nearest neighbor interaction parameters for clusters with
the Morse-potential interaction between atoms.
Fnn5A exp ~2aR!1B exp ~2aR0!. ~13!

Optimizing the binding energy of the cluster atoms, we fi
for the optimum distance between nearest neighbors
neighboring layers11,12

R5Re@120.047B/~0.904A1B!#. ~14!

If we limit ourselves only to interaction between neare
neighbors, this leads to the following expression for the to
energy of an icosahedral cluster with Morse-potential int
actions between atoms:11,12

E5A1B20.0024a2AB/~0.904A1B!. ~15!

Equality of the icosahedral andfcc cluster energies for
short-range interactions between atoms in the cluster co
sponds to the following value of the parameter in the Mo
interaction potential:

a* 520.4@~A1B2K !~0.904A1B!/~AB!#1/2. ~16!

In Table I we compare the parameters of clusters wh
number of atoms corresponds to filled layers of the icosa
dral structure. Table II lists these parameters versus the n
ber of atoms for icosahedral clusters in which 10 surfa
triangles are occupied above each filled layer. In these ta
we list values of the parametera* corresponding to energ
level crossing, which is determined by Eq.~16!. This com-
parison identifies the range of values of parametera in
which a competition between the structures takes place.

Next, we include the interaction of non-nearest neig
bors as a perturbation, i.e., we construct a perturbation th
for Morse-potential interactions between cluster atoms
which the small parameter isD5Fnnn(aRe)/Fnn(aRe).
This perturbation theory is valid fora.4. In Table III we
list values of this small parameter forfcc (D f cc) and icosa-
hedral clusters (D ico!. Table III also lists values of the pa
rameter g52d ln Fnnn(aRe)/d ln(aRe). Since Re /g is the
characteristic distance between cluster atoms, which de

m n A B K a* Re

3 147 276 420 668 8.21
4 309 648 900 1507 6.60
5 561 1260 1650 2844 6.07
6 923 2172 2730 4809 5.54
7 1415 3444 4200 7527 4.96
8 2057 5136 6120 11118 4.44

TABLE II. Parameters of icosahedral clusters havingm filled layers and 10
occupied surface triangles above each filled layer~n is the number of cluster
atoms!.

m n A B K a* Re

4 216 442 603 1024 5.74
5 420 928 1203 2094 5.31
6 724 1684 2103 3730 4.93
7 1148 2770 3363 6042 4.89
8 1712 4246 5043 9181 4.32
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mines the value ofFnnn , it follows that g.1. For this rea-
son, we may neglect the second term in Eq.~10! compared to
the first. Actually, in the range of cluster sizes of interesn
55612923, the quantity exp (aRe)Fnnn(2aRe)/Fnnn(aRe)
equals 0.11 whenaRe54, 0.074 whenaRe55, and 0.054
whenaRe56.

Thus, within the framework of this perturbation theor
we obtain for binding energies of atoms of anfcc cluster

E52K exp @a~Re2a!#2K exp @2a~Re2a!#

12Fnnn~aa!exp ~aRe!. ~17!

Optimizing the cluster energy with respect to distance
tween nearest neighborsa, we obtain for this distance

a~Re2a!5gFnnn~aRe!/Fnn~aRe!5gD. ~18!

From this, we find for the terms in Eq.~8!

Enn5K, Ennn52KD, Estr5g2D2K. ~19!

In a similar way we obtain for the total binding energ
of atoms in an icosahedral cluster

E5A1B20.0024a2AB/~0.904A1B!2~A11.106B!

3~R82R!212Fnnn~aR!exp ~aRe!, ~20!

where the distance R8 is given by Eq. ~14!:
R85Re@120.047B/(0.904A1B)#. After optimizing the
binding energy of the cluster atoms for a given value of
parameteraRe according to the parameterR, we obtain for
the individual terms of Eq.~8!

Enn5A1B20.0024a2AB/~0.904A1B!,

Ennn52Fnnn~aR8!exp~aRe!,

Estr5~ga!2Fnnn
2 ~aR8!exp ~2aRe!/~A11.106B!. ~21!

As in the case offcc clusters, it follows from these expres
sions thatEnnn /Enn;D, Estr/Enn;D2.

Note that for a given value of the parameteraRe the
specific quantitiesFnn /n and Fnnn /n are smooth functions
of the number of atomsn in the cluster. For example, in th
interval of cluster sizes we are interested in the quantityK
changes from 2844 forn5561 to 4809 forn5923. Accord-
ingly, the quantityK/n changes from 5.07 to 5.21, i.e., by
few percent. In contrast to the smooth function that descri
this quantity, the number of bonds between nearest neigh
as a function ofn is discontinuous at magic numbers
atoms in the cluster; however, the difference of these fu
tions even for the magic numbers of atoms does not exc

aRe g f cc D f cc g ico D ico

4 1.68 0.21 1.72 0.23
5 1.61 0.11 1.64 0.12
6 1.56 0.061 1.60 0.071
7 1.52 0.036 1.56 0.042
8 1.50 0.021 1.53 0.026

10 1.46 0.0082 1.50 0.010
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TABLE IV. Parameters for competition betweenfcc and icosahedral struc-
tures.
20, i.e., is relatively small compared to the total number
bonds. The functionFnnn /n is a smoother function of the
number of atoms in the cluster, since it describes the in
action of non-nearest neighbors. Thus, in calculating
binding energy of atoms in a cluster we may assume that
specific energetic parameters do not depend onn within a
certain range ofn. However, this assumption can lead
errors in analyzing the competition betweenfcc and icosahe-
dral structures.

Actually, it follows from the data of Tables I, II that th
numbers of bonds between nearest neighbors are clos
optimal configurations of atoms infcc and icosahedral struc
tures, so that their relative difference is a few percent ove
wide range of cluster parameters. From Table III it is cle
that the non-nearest neighbor interaction energies are
close. Table IV summarizes the results of a comparison
clusters with different structures, for each of which the op
mum configuration of atoms has been chosen. While the c
of the cluster can have only an icosahedral structure, its~out-
ermost! filling layer can have eitherfcc or icosahedral struc
ture. The structure of this surface layer is indicated nex
the number of bonds between nearest neighbors by the le
ic or fcc respectively. Anfcc structure is preferred for the
surface layer of an icosahedral cluster as long as no m
than eight surface triangles of the cluster are occupied.
larger numbers of occupied triangles a surface layer w
icosahedral structure becomes energetically more favora

As for fcc clusters, there is also a competition betwe
structures with and without a central core atom. As the nu
ber atoms in the cluster increases, these structures are f
to alternate. Within the range of cluster sizes under disc
sion here, the structure with a central core atom turns ou
be energetically favorable for the most part. The prefer
core structure of thefcc clusters is indicated in Table IV by
the lettersc or nc in brackets next to the number of bondsK
between nearest neighbors of the cluster, denoting the p
ence or absence of a central atom in the cluster core.

Table IV lists values of the parametera* Re at which the
binding energy of a cluster consisting of this number of
oms becomes the same forfcc and icosahedral cluster struc
tures for optimum configurations of atoms. Equations~19!,
~20! were used for thefcc and icosahedral cluster energie
The parameters for the optimum configuration of an icosa
dral cluster with short-range interactions between the ato

n A B K a* Re

561 1260(ic) 1650 2844(nc) 7.1
606 1395(f cc) 1740 3093(nc) 6.8
636 1485(f cc) 1800 3255(nc) 6.4
681 1620(f cc) 1890 3490(c) 6.2
688 1592(ic) 1996 3529(c) 6.7
724 1677(ic) 2103 3730(c) 6.7
760 1774(ic) 2210 3934(c) 6.6
817 1916(ic) 2385 4234(c) 6.8
874 2058(ic) 2564 4575(c) 6.5
923 2172(ic) 2730 4809(c) 7.1
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optimum configuration of anfcc cluster are from Refs. 14
17. The parameters for long-range interactions between c
ter atoms, including the interaction between non-nea
neighbors, were calculated for a Morse-potential interact
by numerical methods using Eq.~4!. Note that for the inter-
val of cluster sizesn55612923 being analyzed, the value
of the parametera* Re of interest in the range in which thes
cluster structures compete are concentrated in the ra
a* Re5627, so that the interaction between nearest nei
bors gives the primary contribution to the total binding e
ergy of the cluster atoms. This justifies our method, in wh
we choose the optimum configurations of atoms for sho
range atomic interactions. Nevertheless, the interaction
non-nearest neighbors are important in analyzing the com
tition between structures.

Actually, the data of Tables I, II, IV imply that the num
bers of bonds between nearest neighbors are similar for
fcc and icosahedral clusters. Hence, although the non-nea
neighbor interaction potential in the cluster is small co
pared to the interaction between nearest neighbors, it
turn out to be comparable to the difference between the n
est neighbor interaction potentials for these structures
fact, it follows from Tables I, II, IV that the difference
A1B2K entering into Eq.~16! is a few percent ofA1B.
This is the same order of magnitude as the interaction po
tial between non-nearest neighbors in the range of param
values aRe5627, where these structures compete~see
Table III!. For the icosahedral structure the interaction p
tential between non-nearest neighbors is larger than it is
the fcc structure, so that this interaction increases the ene
level crossing parametera* Re above its value when the in
teraction includes nearest neighbors only. Note that in
energy level crossing range the strain energy, accordin
Eqs.~19!, ~21!, is proportional toD2, and hence is unimpor
tant.

The quantityA1B2K is sensitive to the structure of th
clusters, exhibiting local maxima at magic numbers of t
icosahedral cluster and minima at magic numbers of thefcc
cluster. Consequently, in a range of cluster sizes that
cludes magic numbers the quantitya* Re will be an irregular
function of n. The non-nearest neighbor interaction mak
this function smoother, since this interaction is insensitive
the magic numbers.

Note that the popular Lennard–Jones potential co
sponds to a Morse potential with the parameteraRe56.
Then our analysis implies that for atoms interacting via
Lennard–Jones potential these cluster structures will c
pete forn.1000, which corresponds to Ref. 11.

3. CONCLUSION

Thus, we have shown that the competition betwe
icosahedral andfcc cluster structures for optimal configura
tions of atoms, equal numbers of atoms, and pairwise in
action potentials between these atoms, is conveniently a
lyzed in terms of the parameteraRe of the Morse-potential
for which the energies of these clusters coincide.13 We have
calculated these cluster energies numerically for clus
containingn55612923 atoms, which corresponds to fillin
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1M. J. Buerger,Elementary Crystallography~John Wiley, New York,
1963!.

.

.

these calculations and our analysis that our energy le
crossing parametera* Re is determined by interactions be
tween both nearest neighbors and non-nearest neighbo
the cluster. In the range of cluster sizes of interest, this
rameter varies in the rangea* Re5627 and is a nonmono
tonic function of the number of atoms in the cluster. With
this range of values of the parameteraRe the primary con-
tribution to the cluster energies of both structures com
from the interaction between nearest neighbors, so that
interaction of non-nearest neighbors is a few percent of
total cluster energy. Nevertheless, since the number of bo
between nearest neighbors turns out to be close for the
mal configurations of atoms of both structures, it is import
to include the interaction between non-nearest neighb
when determining the parametera* Re at which the energies
of these structures coincide. Interactions between n
nearest neighbors increase the value ofa* Re and make the
dependence of this parameter on the number of atoms in
cluster smoother.
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Stabilization of electron–hole liquid in uniaxially strained germanium in a strong

magnetic field

A. V. Chernenko and V. B. Timofeev

Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region,
Russia
~Submitted 14 February 1997!
Zh. Éksp. Teor. Fiz.112, 1091–1105~September 1997!

Luminescence spectra of uniaxially and uniformly strained high-purity germanium crystals at
liquid-helium temperatures in a magnetic field of up to 14 T have been investigated. In
strongly strained Ge crystals, a new line has been detected on the low-energy side of the exciton
line in magnetic fields higher than 4 T. Studies of this line’s characteristics as functions of
pressure, temperature, and magnetic field have led us to conclude that its presence is due to
recombination of electron–hole pairs in an electron–hole liquid. The experimental data
suggest that the metallic electron–hole liquid is stabilized in a strong magnetic field. By
approximating the shape of the newly detected line using the model of metallic electron–hole
liquid, we have obtained the electron–hole liquid densitynEHL(B) and Fermi energies
EFe,h of electrons and holes. The liquid binding energyf as a function of magnetic field has
been estimated. ©1997 American Institute of Physics.@S1063-7761~97!02109-4#
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ls
th
a

n
th
o
x

y

ge
e
s,

-
s
ca
he

is
de
er
e

e
ly

-
ito

it

le–
ag-
er-
A
id
les

n

an
ag-

ed

he
g-
ed
he

in
aves

ith
es

ith

ed
e
sh-

9

Uniaxially and uniformly strained germanium crysta
present a unique opportunity for studying properties of
electron–hole~EH! system in a magnetic field. Under
strong uniform strain, the valence band spectrum in Ge
simplified considerably due to the splitting between light a
heavy hole levels, which were initially degenerate at
Brillouin zone center. This valence band splitting leads t
lower cyclotron mass of holes. In Ge strained along an a
close to@100# ~we will denote this material as Ge@;100#!,
the ratiog5\vc/2Ry (\vc is the cyclotron energy and R
is the exciton binding energy at zero magnetic field!, equals
4.8 at a field of 14 T. Moreover, in Ge@;100# the valley–
orbit degeneracy in the conductance band is lifted, and
manium becomes a one-valley semiconductor. In magn
fields higher than 4 T and at liquid-helium temperature
when the condition mBuge,huB.kBT is satisfied in
Ge@;100# ~here mB is the Bohr magneton andge,h are
g-factors of electrons and holes!, high-density gas of spin
aligned excitons,nexc;1015 cm23, can be created. In thi
system produced by a uniform and uniaxial strain, one
expect properties predicted for dense EH ‘‘matter’’ in t
limit of strong magnetic field,g@1. Note that in unstrained
Ge the parameterg,1 for realistic magnetic fields.

A magnetic field which is so strong that its influence
comparable to or greater than the Coulomb energy consi
ably changes properties of the EH system. The transv
exciton dimension in a strong magnetic field is determin
not by the Bohr radiusax , but by the magnetic length
lm5A\c/eB!ax . Since the exciton dimension along th
magnetic field decreases significantly more slow
(; ln21 B),1 it looks like a ‘‘needle’’ aligned with the mag
netic field. It has a nonzero quadrupole moment. The exc
binding energyE0 increases with magnetic field as ln2 B
~provided that lnB@1!.

In theoretical studies of the EH system in the lim
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serted that a triplet excitonic molecule~biexciton! composed
of excitons bound by van der Waals forces and quadrupo
quadrupole coupling should be stabilized in a strong m
netic field. In addition to the biexciton, they predicted em
gence of a multiexciton cluster similar to a molecule.
strong magnetic field can also lead to formation of a liqu
dielectric phase with coupling between electrons and ho
similar to the Cooper pairing of electrons i
superconductors.3 Keldysh and Onishchenko4 and Chui5 pre-
dicted stabilization of a metallic electron–hole liquid and
increase in its binding energy and density in a strong m
netic field.

Earlier6 we reported that in an ultrapure Ge strain
along an axis close to@100# in a magnetic field higher than 4
T, a new X line appeared on the low-energy side of t
exciton line, and its width and intensity grew with the ma
netic field. In connection with the predictions discuss
above, the nature of this line is quite interesting. In t
present work, we have investigated properties of theX line
and tried to explain how a high-density excitonic system
an indirect semiconductor with nondegenerate bands beh
in a strong magnetic field.

2. EXPERIMENTAL TECHNIQUES

For our measurements, we used Ge single crystals w
residual concentrations of electrically active impuriti
uNd2Nau<1011 cm23 and uNd2Nau<1012 cm23. The
samples were cut down to rectangular parallelepipeds w
dimensions of 2.532.5310 mm. In the Ge@;100# samples,
the longer edge made an angle of 5° with the@100# axis to
within 1°. In Ge@111# samples the longer edge was align
with the @111# axis to within 2°. In order to reduce surfac
recombination, the samples were treated with SR-4A poli

5933-08$10.00 © 1997 American Institute of Physics
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ing solution. Luminescence in a magnetic field of up to 14
and strong uniaxial and uniform strain was measured usin
specially designed apparatus.

The head of this apparatus, immersed in liquid helium
schematically shown in Fig. 1. The main components
piston1 tightly fitted to casing2. The piston could be driven
in the casing by a force larger than 10 N. In order to produ
uniform strain in the sample, one or two spacers4 made
from a Pb–Sn soldering alloy with a thickness of abou
mm were inserted between the sample and compres
planes. Laser light was fed to the sample through opt
fiber 8, and luminescence radiation was collected by
same optical fiber. The fiber was conducted close to
sample5 via bent stainless steel tube7. The design of our
apparatus is described in detail elsewhere.7

Luminescence radiation was dispersed by a gra
monochromator with a dispersion of 26 Å/mm in the spec
band studied. Nonequilibrium carriers in the sample w
excited by a cw Nd:YAG laser emitting up to 3 W atwave-
lengthl51.064mm.

The optical signal was detected by a cooled Ge~Au! light
detector with a noise-equivalent power of;10214 W/Hz1/2

in the investigated spectral band. Its output was fed t
lock-in amplifier. The magnetic field and strain axis we
parallel, and luminescence emitted perpendicular to the m
netic field was detected~Voigt configuration!.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Strain applied in the@;100# direction is the most effi-
cient means of splitting the levels of light holes and hea

FIG. 1. Lower section of the experimental apparatus used in measurem
of luminescence spectra of uniaxially strained Ge crystals immersed in
uid helium:1! piston;2! cylindrical casing;3! mirror; 4! spacers~soldering
alloy!; 5! sample;6! slot for an optical fiber in the casing;7! thin tube;8!
optical fiber.
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density of states in the valence band. This strain splits
four-fold degenerate level at the Brillouin zone center in
two doubly degenerate levels. The coupling between the s
levels leads to a nonparabolicity in the hole spectrum. T
coupling decreases with the strain, and the effect of non
rabolicity on the density of states tends to zero.8

The uniaxial strain in the sample was estimated using
energy shift of the exciton line. The gap widthEg as a func-
tion of strain is described as follows:

DEg5MTr «1Ju«0min2E« .

Here Ju516.260.4 eV, M5Jd1(1/3)Ju2a522
60.5 eV are deformation potentials,9 E« is half of the va-
lence band splitting, E« /P5(1/2)DEv/P5b(S112S12)
52.560.1 meV/kbar (S1150.96 kbar21 and S12520.26
kbar21 are ductility coefficients,b52.260.1 eV,10 « i j is the
strain tensor,«0min5ai «ij aj2(1/3)Tr « is the shift of the
lowest conductance band valley with respect to the m
position of the other valleys, andai is the unit vector in the
direction of this valley.11 For Ge@;100#, DEg /P'22.7
60.2 meV/kbar. The change in the exciton binding ene
Ry due to deformation was also taken into account. In
strained Ge we have Ry54.15 meV, whereas in Ge strongl
strained along the@;100# axis Ry52.8 meV.12

In Ge strained along the@111# and@;100# axes, each of
the split levels corresponds to a definite hole spin project
sz561/2,63/2. The lowest hole level has the spin proje
tion 61/2. The reduction in spin degeneracy in both t
valence and conductance bands results in a higher kin
energy per electron–hole pair, and lower binding energy
density of states of the electron–hole liquid~EHL!.10 This
takes place at pressuresP such that DEc,v.EFe,h . In
Ge@;100# the critical pressure is less than 1 kbar. Und
higher pressure, the hole kinetic energy increases, owin
the larger splitting between the valence band levels and
smaller effect of nonparabolicity on the hole density
states. In uniaxially strained Ge@;100# at liquid-helium
temperatures andP.1.5 kbar, the EHL phase become
unstable.13

At T'2 K, the luminescence spectrum of unstrain
germanium contains only the line corresponding to EHL.
this case, the exciton gas density near the condensa
threshold is about 1012 cm23. The exciton luminescence lin
is not observable, owing to the low excitation density. Wh
uniaxial pressure is gradually applied, exciton and biexci
lines emerge in the luminescence spectrum, and their in
sities rapidly increase. The line of EHL emission approac
to the exciton line as the pressure increases. It becomes
rower, and its intensity drops. AtP;1.5 kbar, the EHL line
disappears from the spectrum. At free exciton densities u
the maximum valuenFE>2•1015 cm23 realized in our experi-
ments, the EHL spectral line did not show up again in t
absence of a magnetic field. The component of
Ge@;100# luminescence spectrum with emission of an L
phonon atP51.5 kbar and zero magnetic field is shown
Fig. 2. Below, we discuss only the LA-components of t
luminescence spectra.

nts
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The spectra in Fig. 2 contain the free exciton line FE a
the excitonic molecule~biexciton! line EM. When magnetic
field is applied, the excitonic molecule is destroyed.
B.4 T, the EM line disappears from the spectrum~Fig. 2!.14

Given the equality between the chemical potentials of ex
tons and biexcitons, 2mFE5mEM , the ratio between the tota
intensitiesI FE/I EM of the FE and EM lines yields the mos
accurate estimate of the exciton gas densitynFE. The maxi-
mum density observed in our experiments w
2.2•1015 cm23 ~the parameterr s53/4paxn

1/3'3!. The laser
power density in this case wasW'120 W/cm2. The strain
nonuniformity was derived from the broadening of the F
line under pressureP. At P52.8 kbar the nonuniformityDP
was of order 2%.

The exciton gas temperature was derived from the e
ton line FWHM. The profile of the exciton luminescence lin
in strained Ge is described by the express
AE exp(2E/kBT). Its FWHM is 1.8kBT. The exciton gas
temperature under excitation by a Nd:YAG laser and pum
ing of helium vapor was;1.9 K, which was 0.3 to 0.5 K
higher than the helium bath temperature.

When the magnetic field was higher than 4 T, a ‘‘ped
tal’’ was observed on the low-energy side of the exciton lin
i.e., a flat and wide line without a clearly defined peak.6 The
width of this line was notably larger than that of the FE lin
Its width and amplitude increased with magnetic field, a
the pedestal transformed to a clearly defined X line. The
line maximum shifted to the low-energy side with respect
the exciton line. As the pumping density generated by
Ar1 laser increased, the X line intensity remained const
whereas the FE line intensity rapidly grew. In order to e
cidate the nature of this line, we investigated its parame

FIG. 2. Spectra of Ge@;100# luminescence with emission of LA-phonon
in magnetic field of up to 5 T at T51.9 K, P51.5 kbar,W550 W/cm2.
Luminescence lines of free excitons~FE! and excitonic molecule~biexciton!
~EM! are shown. AtB50 T ~this spectrum is shown by empty circles! the
FE and EM lines are not resolved.
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in the present work as functions of magnetic field, pressu
pumping density, and temperature.

Figure 3 shows luminescence spectra of Ge@;100# at
P51.5 kbar and various pumping densities. In the pres
work, we excited our samples using a Nd:YAG laser, wh
enabled us to reduce overheating of the EH system con
erably. The exciton temperature in pumped helium under
citation by the Ar1 laser wasT'3 K,6 whereas with the
Nd:YAG laser it was;1.9 K. The maximum exciton den
sity generated by the Nd:YAG laser was five times grea
than in the case of the Ar1 laser.

Figure 3 indicates that in the pump power ran
W520– 50 W/cm2, the X line intensity increases more rap
idly than that of the FE line. AtW,15 W/cm2, the X line is
not observed in the spectrum. At low pump powers, the
line intensity strongly fluctuates throughout its spectral wid
~Figs. 4, 5a, and 6!. This behavior indicates that the system
near a phase transition, and the X line corresponds to lu
nescence of a collective electron–hole state whose bind
energy is higher than the exciton binding energy.

For pump powers higher than 50 W/cm2, I FE, on the
contrary, increases faster thanI X . This is an indication that
at high pump powers, overheating of the dense EH system
laser light becomes significant. The effect of the phon
wind also must be taken into account. The observed indep
dence of the X line intensity from the pump power report
previously6 was, most probably, caused by laser overheat
of the EH system.

Luminescence spectra of Ge@;100# at T51.9 K re-
corded at various pressures~Figs. 4, 5, and 6! demonstrate a
strong dependence of the X-line width and intensity on
strain.

Under high strain, the peak of the X line shifts wit

FIG. 3. LA-phonon components in Ge@;100# luminescence spectra at con
stant temperatureT51.9 K, P51.5 kbar, H59 T, and different pump
power densitiesW.
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magnetic field to the high-energy side, and its intensity a
width increase withB. An increase in the uniaxial pressu
P leads to a notable decrease in the X line intensity rela
to FE. The spacing between the peaks of X and FE lines
decreases. As the strain is lifted, both the intensity and w
of the X line grow rapidly, and the line is transformed to
EHL line.

Under conditions of the low strain,P51.2 kbar~Fig. 4c!
andP50.5 kbar~Fig. 5a!, when the EHL line is easily iden

FIG. 4. LA-phonon components of Ge@;100# luminescence spectra in
magnetic fields of up to 14 T atT51.9 K, various pressures and pum
power densities: a! 2.8 kbar,W5120 W/cm2; b! 1.6 kbar,W580 W/cm2; c!
1.2 kbar,W580 W.cm2. In graph c, the lower spectrum (B50 T) shown by
a dot-and-dash line was recorded atT54.2 K. The peaks of the FE and
EHL~X! lines are connected by the dashed lines.
d

e
so
th

tified in the spectra, its behavior is similar to that of the
line in magnetic field. When the pump power and magne
field are varied, the EHL line in Ge@;100# varies identically
for P ranging between 0.5 and;1.5 kbar. The liquid line in
Ge@111# behaves similarly under a pressure of up to t
maximum 2.8 kbar attained in experiments. A luminesce
spectrum of Ge@111# for P51.1 kbar is given in Fig. 5b.

Note that the total intensity of the liquid line rapidl
increases withB in the range between 4 and 8 T, whereas
B.8 T it is essentially constant. The intensity of the FE li

FIG. 6. LA-phonon components of Ge@;100# luminescence spectra re
corded at a constant magnetic fieldB512 T, constant temperature
T51.9 K, various pressures, and similar pump powers. The dot-and-d
line shows an approximation of the FE line that allows for the monoch
mator instrumental function. The arrows mark the low-energy edge of
EHL line. We define the position of this edge as a point where the lumin
cence intensity is a factor of 25 lower than at the line peak. The high-en
edge of the EHL line is assumed to coincide with the low-energy edge of
FE line. The abscissa corresponds to the differenceE2E0 . All spectra are
normalized to the FE line peak. The insert shows the width of the EHL li
DEEHL , in strained germanium as a function of magnetic field at a cons
pump power determined as described above. Curves1–4 correspond to
Ge@;100#: 1! 2.8 kbar;2! 1.6 kbar;3! 1.2 kbar;4! Ge@111# at 1.1 kbar;5!
0.5 kbar.
-
FIG. 5. LA-phonon components of lumines
cence spectra: a! Ge@;100# at pressure
P50.5 kbar, T53 K. The pump power is
generated by an Ar1 laser; b! Ge@111#,
P51.1 kbar,T51.9 K. The pumping is due
to a Nd:YAG laser.
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also increases in fields ranging up to 8 T, while in the ran
of 8–14 T it drops by 15–20%.

The width of the X~EHL! line versus magnetic field a
various pressures is shown in Fig. 5. The apparent width
the X line (DEEHL) increases withB at all applied pressure
in the range 0.5–2.8 kbar~Fig. 4!.

Thus, investigations of the X line in magnetic field ve
sus temperature and pressure clearly indicate that it is du
EHL luminescence.

In order to determine the EHL binding energyf as a
function ofB, we measured the temperatureT0 at which the
EHL line vanishes under conditions of constant pump pow
in the magnetic field range 4–14 T. It turned out that
B54 – 14 T, the critical temperatureT0 lies in the interval
2.6–2.9 K. Luminescence spectral of Ge@;100# at
P51.5 kbar in the temperature range 1.9–4.2 K are given
Fig. 7.

We derivedf using the expression for the density of a
excitonic gas in equilibrium with the liquid:

nFE5S MFEkBT

2p\2 D 3/2

expS 2
f8

kBTD , ~1!

wheref85f22s/nEHLR, s is the surface tension,R is the
liquid drop radius,nFE is the excitonic gas density,MFE is
the exciton density-of-states mass, which is approxima
0.35m0 , andm0 is the free electron mass. The term respo
sible for the surface tension is negligible at temperatu
higher than 1 K, so we neglected this effect. Using Eq.~1!,
we have obtainedf'0.3560.05 meV.

It is well known thatf derived using Eq.~1! is smaller
than that obtained by processing spectroscopic data.15 The
reason for this is that Eq.~1! does not take into account a
excitonic flow associated with the need to compensate
carriers lost to recombination in liquid drops. As a result
this exciton flow to the drops, the excitonic gas density n
the drop surface is higher than the equilibrium value. In

FIG. 7. Ge@;100# spectra with emission of an LA-phonon at consta
pressureP51.5 kbar in a magnetic fieldB57 T, a pump power density
W535 W/cm2, and various temperatures.
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20 to 30% higher than the equilibrium value. As the syst
moves along the phase equilibrium curve toward lowernFE,
this deviation from the equilibrium density rises, andnFE can
be several times the equilibrium value.15

Although measurements ofT0 indicate thatf is in fact
constant withB, the drop in the total intensity of the exc
tonic line is an indication of an increase inf, which can be
naturally attributed to a drop in exciton density.

4. ANALYSIS OF ELECTRON–HOLE LIQUID
LUMINESCENCE LINE PROFILE

To obtain more accurate estimates of the liquid bind
energy and determine its density, we analyzed the shap
its luminescence line. In our analysis, we assumed that
electron–hole liquid was metallic. We analyzed the spec
recorded at the maximum pressureP52.8 kbar, when the
metallic liquid had the highest binding energy and dens
Another convenient feature of the high-strain limit is that t
hole effective mass can be considered independent of
quasimomentum.

In calculating the EHL line profile, we largely used th
technique suggested by Sto¨rmer and Martin,16 who success-
fully described the EHL line profile in unstrained germaniu
in magnetic fields of up to 19 T.

The spectral density of the LA line is

I ~hn,m~nEHL ,G0!!5AE
0

`

De~Ee! f ~Ee ,EFe ,T!

3Dh~Eh! f ~Eh ,EFh ,T! dEe , ~2!

whereDe(Ee), Dh(Eh), f (Ee ,EFe), and f (Eh ,EFh) are the
density of states and Fermi functions of electrons and ho
respectively, andEFe and EFh are the respective Fermi en
ergies. The energies of recombining electrons and holes
related byEh5Ee1hn2Eg

LA , whereEg
LA is the band gap

minus the LA-phonon energy~27.7 meV!. We assume tha
the matrix element of the recombination transition is
cluded in the constantA and is independent of the quasim
menta of both electrons and holes. The density of state
electrons and holes is

D5
1

4p2lm
2 S 2m*

\2 D 1/2

3(
n

FE2S n1
1

2D\vc6
g

2
mBBG21/2

.

The electron and hole cyclotron masses in the expres
for vc are mce50.135m0 , mch5mth50.109m0 . The trans-
lational masses m* along the magnetic field are
mh* 5mlh50.04m0 , me* 5mel cos2 u1met sin2 u50.584m0 .
Here mhl5(A 1B)21m0 is the hole mass along the stra
axis, andmht5(A2B/2)21m0 is the hole mass in the trans
verse direction,A513.38 andB58.48 are the Ge valenc
band parameters,8 mel andmet are the longitudinal and trans
verse electron masses, andu is the angle between the stra
axis (@;100#) and the electron ellipsoid rotation axis.

To allow for the finite lifetime of electrons and holes
EHL, we introduced broadening of energy levels16:
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FIG. 8. Approximations of the EHL LA-
phonon-assisted luminescence lines f
P52.8 kbar at a! B55.5 T and b!
B513.5 T.
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L0~E,E8!5
1

2p

G~E8!

~E2E8!21@G~E8!/2#2 .

The broadening parameterG as a function of energy was
expressed as G(E)5G0(12E/EF)2, Ge0 /Gh0

5EFe /EFh .17,18 The level broadening is mainly due to Au
ger processes under the EHL Fermi surface. The param
G0 is a function of magnetic field, and can be varied wh
the formula is fitted to experimental data.

In calculating the EHL density of states,De,h(E,B) in
Eq. ~2! was replaced withDe,h* (E,B).

Values ofg-factors of electrons and holes in the liqu
phase in strained Ge were not measured. In a two-compo
Fermi-liquid, which applies to the EHL in strained germ
nium, they should be close tog-factors of free carriers. For a
free electron, theg-factor is well known, and for the@;100#
direction it is 1.57. The holeg-factor for Ge@;100#,
gh526.8560.06, was taken from an investigation of R
man resonance in strained germanium.19 The spin splittings
for electrons and holes areDEe5mBgeB@T#50.096 meV
andDEh5mBghB@T# 50.348 meV.

The lowest Landau levels, which determine the positio
of the edges of conductance and valence bands, move
the magnetic field at the rates (1/2B)(\ve

2gemBB)'0.38 meV/T ~conductance band! and (1/2B)
3(\vh1ghmBB)'0.14 meV/T~valence band!.

Measured with respect to the band edges, the next L
dau levels have energies\vh@meV#'1.06B@T# and
\ve@meV#'0.86B@T#. This means that for all fields
B.4 T, only pairs of spin-split components of the lowe
electron and hole Landau levels can lie below the respec
Fermi levels.

The fit parameters were the EHL densitynEHL andG0 .
The liquid temperature was equated to the excitonic gas t
perature.

The density of statesDe,h* can be expressed as a sum
densities of states of spin-split levels,Dsz , j z

* (Ee,h ,B):
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wheresz is the electron spin projection, andj z is the respec-
tive hole spin component.

In approximating the line profile, one should take in
account that the probabilities of recombination between el
trons and holes from levels with different spin projectio
are different. Integral~2! can be written as the sum

I ~hn!5(
j ,k

a~sz , j z!I sz , j z
~hn!,

I sz , j z
~hn!5AE

0

`

De* ~Ee ,sz! f ~Ee ,EFe ,T!

3Dh* ~Eh , j z! f ~Eh ,EFh ,T! dEe

with sz561/2 andj z561/2. The coefficientsa(sz , j z) are
dictated by the selection rules for the phonon-assisted dip
allowed transition from pointL1 of the Brillouin zone to its
center via intermediate stateG2 . They are given by Asnin
et al.20 Using these parameters, we obta
a(1/2,1/2)5a(21/2,21/2)51/5 and a(1/2,21/2)
5a(21/2,1/2)54/5.

Fits to the line profiles using this procedure for two ma
netic fields ofB55.5 and 13.5 T are shown in Fig. 8a,b. Th
arrows mark the chemical potential, renormalized gap wid
Eg8

LA , and the edge of the exciton line obtained by appro
mating its profile with the expressionAE exp(2E/kBT), with
due account of the monochromator instrumental function

It is possible to obtain a satisfactory fit to the experime
tal EHL line profile by assuming that there is one Land
level for electrons and one for holes below the Fermi leve
The parametersEFe and EFh increase by 50% as the mag
netic field grows from 5.5 to 13.5 T~from 1.1 to 1.6 meV
and from 0.11 to 0.17 meV, respectively! ~Fig. 9a!. The ob-
served increase in the EHL line width is due to both a chan
in EFe,h and an increase inG0(B) ~Fig. 9a,b!. It is notable
that the resultingG0 is large for a one-particle model
Whereas forB54 T we haveG0h,EFh , for B513.5 T the
ratio G0h /EFh;2. Such high values ofG0 were needed for
an accurate description of the low-energy tail of the EH
line. Nonetheless, our analysis of the line profile yields,
our opinion, correct values ofnEHL andf to within the speci-
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FIG. 9. a! EHL parameters as functions
of magnetic field. The energy is mea-

,

y

sured with respect toEg
LA , i.e., the gap

width minus the LA-phonon energy,EFE

is the low-energy edge of the FE line
Eg8

LA is the renormalized gap width in
the liquid, ERX is the energy of the red
edge of the EHL line~see caption of Fig.
6!, E0 is the exciton binding energy,EG

is the EHL ground state energy,mEHL is
the liquid chemical potential. The energ
is measured in units of Ry52.8 meV in
Ge@;100#; b! function G0h(B) derived
from approximations to the EHL line
profile.
fied uncertainties, because they depend weakly onG0 ~asG0h
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varies from 0.1 to 3 meV,nEHL decreases by less than 10%
and the binding energy is dictated by the high-energy sh
der of the line, which is essentially independent ofG0!.

The densitynEHL versusB derived from this approxima
tion is given in Fig. 10a. The EHL density approximate
triples in the field rangeB55.5– 14 T~from 1.25•1016 cm23

to 3.6•1016 cm23!. This almost linear increase in the dens
in Ge@;100# ~Fig. 10a! with a small increase inEFe,h is
largely due to the increase in the capacity of the Land
level, which is proportional toB.

The energyEG of the liquid ground state per electron
hole pair as a function ofB is plotted in Fig. 9a.

An increase in the ground state binding energy and E
density with magnetic field was predicted by Keldysh a
Onishchenko.4 Their theoretical analysis was based on t
assumption that the field strength is so high that all electr
and holes are in the lowest Landau levels. The case
strained Ge@;100# approximately satisfies the conditions
Keldysh’s theory. Our results are in good agreement w
calculations based on this model.

From the approximation of the line profile, we have d
rived the binding energyf as a function ofB. The value of
f was given by the separation between the liquid chem
potential and the low-energy edge of the FE line~Fig. 8!.
The functionf(B) is plotted in Fig. 10b. The binding energ
f increases from 0.460.1 to 0.860.1 meV in the field range
5.5–14 T.

Since the ground state energy of the metallic liqu
grows as a power of the magnetic field in the limitg→`,
while the exciton binding energy grows logarithmically, th
condensed phase is more stable than the excitonic gas
l-

u

L

s
of

h

-

al

a

obvious~see, for example, Silin’s paper in Ref. 11!. In un-
strained Ge in fieldsB,19 T ~the ratiog,1, and there are
several Landau levels below the Fermi level!, Störmer and
Martin16 did not detect an increase inf. Given this fact, the
emergence of the EHL line in the luminescence spectrum
strained germanium and its rapid growth with magnetic fi
is, in our opinion, all the more interesting. It seems th
given the small absolute value of the binding energy and
proximity to the phase boundary, even a small change if
leads to fast growth in the fraction of the liquid phase~Figs.
4 and 5a!. Our results indicate that the growth inf becomes
appreciable atg;1.

The presence of a fairly wide biexciton line in strong
strained Ge@;100# at B,4 T did not allow us to trace the
evolution of the EHL line in low magnetic fields and addre
the question of whether the EHL exists at low temperatu
in zero magnetic field, as opposed to whether it emerges
critical valueBc . According to theoretical estimates,11 EHL
should exist in single-valley Ge~1:1!, i.e., when both elec-
trons and holes occupy only one spin-degenerate level, e
in the limit of infinite pressure. Its density atT50 K is
nEHL'6•1015 cm23, and the critical temperature
Tc52.2– 2.5 K. In the case of a finite strain,Tc will be
higher. In our analysis of the line profile, we assumed ph
equilibrium between the gaseous and condensed phases
EHL temperature was assumed equal to the exciton gas
perature. In reality, temperature of an electron–hole drop
higher than that of the ambient excitonic gas,15 and can be
higher than the temperature at which the existence of st
electron–hole drops is possible.

At the same time, the critical temperature of the ga
FIG. 10. a! Density nEHL(B) and b! EHL
binding energy f(B) in Ge@;100# at
P52.8 kbar andT51.9 K derived from ap-
proximations to the luminescence line.
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liquid transition increases with bothf and nEHL ~in the
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strong-field limit Tc}B ; see Ref. 21!. Therefore an in-
crease inTc will shift the phase equilibrium boundary an
lead to stabilization of droplets. Then the EHL line shou
emerge abruptly in the luminescence spectrum. Emerge
of EHL in magnetic fields higher than 2 T was detected in
InSb,22 where in the absence of a magnetic field, no EH
exists at liquid-helium temperatures. In this case, electr
and holes also occupy only the lowest Landau levels. T
condensed phase densitynEHL was measured22 to be about
1016 cm23, and both the binding energy and density of t
liquid increased withB. Note also that the line-fit paramete
G responsible for broadening of electron and hole levels i
magnetic field was comparable to the Fermi energy of
latter.

It seems more feasible that, in strained Ge near the ph
boundary, there is initially a small quantity of stable EH
droplets, which grow rapidly when the magnetic field
turned on. In low magnetic fields below 4 T, the EHL bin
ing energyf'0.3 meV, i.e., it is in fact equal to the exc
tonic molecule binding energyfEM50.2760.06 meV.14 In
the absence of a magnetic field, the binding of excitons i
biexcitons competes with exciton condensation into
electron–hole liquid. A magnetic field destroys biexciton
thus leading to an increase in the liquid fraction.

Assuming that in the case of Ge@;100# (P52.8 kbar)
under discussion, the width of the liquid line atB50 equals
its value atB54 T, let us estimatenEHL at zero magnetic
field. Given that the EHL line width is the sum of the Ferm
energiesEFe1EFh , we havenEHL.1016 cm23. This result is
in agreement withnEHL derived from approximations of th
luminescence line profile~Fig. 9a!. An electron–hole liquid
of such low density is quite feasible. Kukushkin an
Kulakovskii23 investigated EHL withnEHL.0.8•1016 cm23

(r s'1.65) in uniaxially strained Ge@;100# at zero magnetic
field, whereas in unstrained Ge atT52 K the EHL density
nEHL'2.4•1017 cm23 and r s'0.5.

Strain nonuniformity, which is always present in expe
ments, should also stabilize EHL drops in strained germ
nium in zero magnetic field.
600 JETP 85 (3), September 1997
ce

s
e

a
e

se

o
n
,

-

ful discussions and interesting remarks. This work was s
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Direct and spatially indirect excitons in GaAs/AlGaAs superlattices in strong magnetic
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Luminescence and luminescence excitation spectra are used to study the energy spectrum and
binding energies of direct and spatially indirect excitons in GaAs/AlGaAs superlattices,
with different widths of the electron and hole minibands, located in a high magnetic field
perpendicular to the heterolayers. It is found that the ground state of the indirect excitons formed
by electrons and holes and spatially separated between neighboring quantum wells lies
between the 1s ground state of the direct excitons and the continuum threshold for dissociated
exciton states in the minibands. Indirect excitons in superlattices have a significant
oscillator strength when the binding energy of the exciton exceeds the order of the width of the
resulting miniband. The behavior of the binding energy of direct and indirect heavy hole
excitons during changes in the tunneling coupling between the quantum wells is established. It is
shown that a strong magnetic field, which intensifies the Coulomb interaction between the
electron and hole in an exciton, weakens the bond in a system of symmetrically bound quantum
wells. The spatially indirect excitons studied here are analogous to first order Wannier–Stark
localized excitons in superlattices with inclined bands~when an electrical bias is applied!, but in
the present case the localization is of purely Coulomb origin. ©1997 American Institute
of Physics.@S1063-7761~97!02209-9#
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The properties of excitons have continued to be at
center of scientific interest in studies of optical and electro
phenomena in artificially prepared superlattices based
semiconducting heterostructures.1–13 From the very begin-
ning, interest in these quantum mechanical structures
been associated with research on the gradual transform
of their properties from the quasi-two-dimensional lim
~single quantum well! to three-dimensional solids~superlat-
tice with strong tunnelling coupling between quantum we
or, in other words, fairly wide electron and hole miniband!.
One of the central questions in this area has concerned
structure of the exciton states corresponding to the lo
~absolute minimumM0) and upper~saddleM1) points with
zero slope in the miniband spectrum. It is appropriate
mention here, however, that there is still some controve
over whether ‘‘saddle’’ excitons have actually been obser
at the upper boundary of the miniband spectrum
superlattices.8,9

When a sufficiently high electric field is applied perpe
dicular to the superlattice layers, single-particle electron
hole states become localized in individual quantum we
This sort of Wannier–Stark electron localization was iden
fied and studied some time ago,10,11 and this has, in turn
stimulated experiments to observe Bloch oscillations12 and
the electromagnetic radiation produced by the
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ized states, including exciton states.
Spatially indirect excitons can, however, exist outsi

bound quantum mechanical systems with broken invers
symmetry. Theoretical analyses4,5,14 of the complete exciton
Hamiltonian for symmetrically bound superlattices ha
yielded stable solutions for the intrinsic energy spectrum
spatially indirect excitons, i.e., when the electron and hole
an exciton are separated by a barrier. Recall that the c
plete version of the exciton Hamiltonian in this case does
have an exact solution, since the spatial coordinates in
planes of the layers and in the axial direction are not se
rable. Hence, in principle, the problem must be solved
proximately. Thus, superlattice exciton states have b
sought4 using a reduced basis of wave functions correspo
ing to a single electron–hole miniband. This is a reasona
good approximation when the width of the miniband is of t
order of the exciton binding energy. The principal result
Refs. 4 and 14 is then that the Coulomb interaction can
calize an electron and hole in neighboring symmetrica
bound quantum wells, and this leads ultimately to the form
tion of a spatially indirect exciton.

The formation of indirect excitons in superlattices
very close in nature to the analogous events which take p
in symmetric double quantum wells.15–20As in double quan-
tum wells, the bound exciton states in superlattices~directD

6011-08$10.00 © 1997 American Institute of Physics
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binding energy changes and the oscillator strengths am
these states are redistributed dramatically when the rela
ship among the exciton binding energiesEex(D) andEex(I )
and the width of the electron and hole minibandsDe1Dh

changes. Following the close analogy with symmetric dou
quantum wells,20 the exciton states in superlattices can
analyzed by introducing the phenomenological param
a5(De1Dh)/@Eex(D)2Eex(I )#.

Thus, the newly introduced parametera characterizes
the tunnelling bond between the quantum wells relative
the Coulomb interaction in the exciton. In superlattices w
wide barriers~narrow minibands!, a!1. In this limit the
exciton states are, by their nature, predominantly direcD
and indirectI . In this case indirect excitons are extreme
weakly bound and their oscillator strength is much low
than that of a direct exciton. For reasons of symmetry~the
presence of a center of inversion in the system!, all exciton
states~direct and spatially indirect! are classified as symme
ric or antisymmetric. In order of increasing energy, the
states are ordered as follows: D-symmetric,
D-antisymmetric,I -antisymmetric, andI -symmetric. Only
symmetric exciton states are optically active~observed in
spectra!. It is perfectly evident that the splitting in a spectru
betweenD- and I -exciton states is determined by the diffe
ence in the binding energies of these excitons. In supe
tices with narrow barriers,a@1, the exciton states have
mixed direct–indirect character. In this limit, where the Co
lomb interaction is negligibly small, the exciton states a
classified as the product of single-particle electron–h
states of the corresponding symmetry.

The case of an intermediate bond, where the width of
miniband is of the order of the Coulomb binding energy
the exciton, is also of interest. In this case the oscilla
strength of an indirect exciton can be as much as a
percent of the corresponding value for a direct exciton.4–14

Finally, in the spectra of superlattices, indirect excito
must lie between the ground state of a direct exciton and
continuum of dissociated states~the minimum pointM0).

A magnetic fieldB perpendicular to the superlattice la
ers has a significant effect on exciton states. In the limit
sufficiently high magnetic fields, the binding energies
direct Eex(D) and indirectEex(I ) excitons can be approxi
mated by the respective expressions

Eex~D !}e2/e l 0 ,

Eex~ I !}e2/e~ l 0
21d2!1/2,

where l 05(\c/eB)1/2 is the magnetic length andd is the
effective spatial distance between an electron and hole in
axial direction~or the superlattice constant!. Evidently, the
binding energy for a direct excitonEex(D)}B1/2, while
Eex(I ) increases more slowly under these conditions and
proaches a constant value in the limit of strong fields. Th
a magnetic field increases the splitting between the gro
state of the direct and spatially indirect excitons and, there
for fixed tunnel coupling in superlattices, shifts the symme
of the bound system of quantum wells toward a weak bo
Here it is assumed that in the absence of special reson
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width of the minibands, to a first approximation.
In this paper we have set ourselves the task of dem

strating that indirect excitons are formed in symmetrica
bound quantum systems~superlattices! and that it is not nec-
essary to break the inversion symmetry in order to obse
them. For this purpose we have studied the energy spec
of direct and spatially indirect excitons in superlattices as
tunnel coupling~barrier width! between quantum wells is
varied. The use of a sufficiently strong magnetic field, wh
enhances the Coulomb bond in excitons, has made it pos
to affect the character of the bond in superlattices.

The article is organized as follows. In Sec. 2, the stru
tures and techniques used in the experiment are descr
Section 3 deals with the behavior of the bond energy a
oscillator strengths of direct and spatially indirect excitons
the barrier widths between quantum wells in superlattices
varied. The magnetooptics of direct and spatially indire
excitons is introduced in Sec. 4. The unexpected, to us,
tures of the behavior of excited exciton states in a magn
field are described and a qualitative interpretation of th
features is given in Sec. 5. Section 6 concludes the artic

2. STRUCTURES AND EXPERIMENTAL TECHNIQUES

In this work we used superlattices based
GaAs/AlxGa12xAs (x50.3) heterostructures grown by mo
lecular beam epitaxy on an insulating GaAs substrate
ented along the@001# crystallographic direction. The struc
tures were not specially doped, so a ‘‘flat band’’ regime w
realized in all the superlattices. Five superlattices were s
ied; these had the same GaAs quantum well widthLw580 Å
and different AlGaAs barrier widthsLb between the wells—
specifically,Lb520, 30, 50, 100, and 200 Å. When the ba
rier width was varied within these limits, the width of th
resulting electron and hole minibands,De1Dh , ranged from
25 to 0.1 meV.

Each structure had 20 periodsd5Lw1Lb . Accurate pa-
rameters of the superlattices were determined using x
diffraction. Optimized epitaxial growth conditions provide
superlattices of high quality, with good reproducibility of th
layer thicknesses and perfection of the interfaces betw
layers. The high quality of the test structures is attested to
the exciton line widths in the luminescence and lumin
cence excitation spectra~about 1 meV!, as well as by the
magnitude of the Stokes shift of the lines in the lumine
cence and absorption or reflection spectra~less than 0.5
meV!.

The samples were mounted freely in a helium cryos
inside a superconducting solenoid. The maximum attaina
field was 14 T. In all the experiments, the magnetic field w
perpendicular to the superlattice layers. The luminesce
and luminescence excitation spectra were measured usi
wavelength tunable titanium sapphire laser pumped by
the emission lines of a cw argon laser. Fiber optics were u
to excite and collect the luminescence signal from
sample. All the spectra were analyzed using a double mo
chromator which provided adequate spectral resolution~bet-
ter than 0.1 meV!. In the luminescence excitation spectr
measurements the output slit of the monochromator w
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FIG. 1. Luminescence excitation spectra
the 80/100/80~a! and 80/50/80~b! superlat-
tices taken in magnetic fields of up to 2 T.
tuned to a narrow segment of the spectrum on the long wave-
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ates
length wing of the luminescence line of the lowest hea
hole exciton state~1sHH) ~at the maximum of the lumines
cence line or about 1 meV from it!. The locations of the
peaks in the discrete luminescence excitation spectra w
independent of the spectral detection region to within
width of the luminescence line of the exciton ground sta
At the monochromator output, the luminescence signal w
detected by a photomultiplier with a cooled GaAs photoca
ode, and then recorded in photon counting mode.

3. DIRECT AND INDIRECT EXCITONS IN SUPERLATTICES
IN THE ABSENCE OF A MAGNETIC FIELD

a. Above all, we consider the behavior of the bond e
ergy of direct and indirect heavy hole excitons as the wi
of the quantum barrier in superlattices is varied in the
sence of a magnetic field. This question can be addresse
analyzing the luminescence excitation spectra. To illustr
the procedure for determining the binding energy of
heavy hole exciton ground state, we turn to Fig. 1, wh
shows luminescence excitation spectra for two superlatti
with barrier widthsLw5100 Å and 50 Å~hereafter these ar
referred to as superlattices 80/100/80 and 80/50/80, res
tively!. The strongest lines in the spectra are those of
ground state of excitons with heavy~1sHH) and light
~1sLH) holes~denoted by arrows in the figure!. The disso-
ciation region of theHH-excitons shows up as a distin
continuum with a sharp ‘‘red’’ threshold above which th
1sLH-exciton stands out. The first excited state of the he
hole exciton~2sHH) has the form of a feature~weak peak!
on the ‘‘red’’ boundary of this continuum. This featur
grows into a distinct and fairly intense line even in low ma
netic fields of 1–2 T. In all the structures that were studi
it is possible to measure an energy difference correspon
to the spectral positions of the 2sHH- and 1sHH-excitons,
D(2s21s). Note that the 2sHH-exciton state is very weakly
bound in the cases of interest to us, and lies within 1 m
below the continuum threshold, which is close to the exp
mental accuracy with which the spectral position of the lin
~which are 1–1.5 meV wide!, is determined. Thus, the ex
perimentally measured value ofD(2s21s) is within 15% of
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ing measurements ofD(2s21s) as a function of the barrie
sizeLw are shown in Fig. 2. In this figure the dashed cur
shows the variation in the combined width of the electronDe

and holeDh minibands with changing barrier widthLw, cal-
culated in the one-electron approximation using the Kroni
Penney model.21 When the barrier width is varied over thes
limits, the exciton structure changes from quasi-tw
dimensional (Lw5200 Å! to a situation that is close to thre
dimensional (Lw520 Å!. Accordingly, the binding energy o
the heavy hole exciton decreases, in agreement with an
lier paper.2 Qualitatively the same result is obtained for lig
hole excitons, although the measurement accuracy in
case is much lower.

b. In superlattices, starting at barriers havingLb550 Å
and less, a new line,I (1sHH), that is not associated with th
spectrum of the direct excitons is seen clearly in the lum
nescence excitation spectra between the 1sHH- and
2sHH-lines ~see Fig. 1~b!!. We previously briefly reported
the first observation of this line in an 80/50/80 superlattice22

FIG. 2. The difference in the energies of the first excited and ground st
of an exciton,E2s2E1s ~right scale, black circles! and the magnitude of the
total miniband~left scale, dashed curve! as functions of the width of the
barrier between wells.
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In the 80/50/80 superlattice this line corresponds to
ground state of a heavy hole exciton with a spatially se
rated electron and hole at a distance corresponding
single period. Thus, in this case we are dealing with a s
tially indirect exciton that is localized in the axial directio
within the confines of a single superlattice period. Unli
Wannier–Stark localization, in this case the localization
exclusively of Coulomb origin. The indirect exciton state
bound more weakly than the corresponding state of the di
exciton. The oscillator strength of theI -exciton is highest in
superlattices with intermediate bonds. Thus, in the 80/30
superlattice, wherea is roughly equal to unity, the oscillato
strength of an indirect exciton is about 10% of that of
direct heavy hole exciton. As the barrier width is reduc
(Lb520 Å and below!, the wave function of the indirec
exciton becomes more extended in thez direction and may
even encompass several superlattice periods. In this limit
indirect exciton states become more and more delocali
and ultimately merge with the dissociation continuum of t
direct excitons.4 Figure 3 illustrates the behavior of the bin
ing energy of the indirect exciton, as well as its oscilla
strength measured relative to the direct exciton, as the ba
width is changed. It is clear from this figure that for supe
lattices with quantum well widthsLw580 Å, the optimum
conditions for observing spatially indirect excitons occur
quantum mechanical barrier widths of about 30 Å.

In concluding this section, we note that qualitative
similar behavior of the binding energies and oscilla
strengths is manifested by spatially indirect light hole ex
tons~the I (1sLH) line in the figures!, but the optimum con-
ditions for observing them occur at relatively large barr
widths (Lb550 Å! because of the larger width of the ho
miniband in the case of light holes.

c. Bound states corresponding to spatially indirect ex
tons are also observed in the luminescence spectra. Fo
80/50/80 superlattice this is illustrated by Fig. 4, where it c
be seen that theI (1sHH) lines in the luminescence an
luminescence excitation spectra coincide. By comparing d
on the luminescence spectra for the 1sHH and I (1sHH)
excitons, one can easily conclude that the indirect excit

FIG. 3. The energy differenceE2s2EI ~right scale, white circles! and rela-
tive oscillator strength of an indirect exciton~left scale, black circles! as
functions of the width of the barrier between wells.
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are not in thermal equilibrium with the direct excitons. No
that under these same conditions, we do not see any ap
ciable sign of the excited 2sHH state of the direct exciton in
the luminescence spectra. This indicates that direct exci
undergo thermal relaxation much more rapidly. In fact, t
population of the states corresponding to the indirect ex
tons is many orders of magnitude higher than the ther
equilibrium concentration. This means that relaxation of
indirect I -exciton to the lowest 1sHH-exciton state in this
system is a relatively slow process. This conclusion is
surprising, given that indirect excitons can relax into t
lowest state, which corresponds to direct excitons, by n
resonant tunnelling with phonon emission, which really is
slow process for these widths of the barrier between
quantum wells.23

4. EXCITATION SPECTRA OF DIRECT AND SPATIALLY
INDIRECT MAGNETOEXCITONS

The nature of the indirect excitons observed in the lum
nescence and luminescence excitation spectra is confir
by the behavior of their spectra in a magnetic field. In t
limit of a weak magnetic field, when the cyclotron energy
much lower than the Rydberg constant for the excitons,
diamagnetic shift of an exciton is proportional to the cro
sectional area of the exciton perpendicular to the magn
field B. For two-dimensional excitons the Bohr rad
an5a0(2n11) for n.1, wheren is the principal quantum
number. The magnitude of the diamagnetic shift itself is p
portional to dEdia}a0

2(2n11)2}1/Eex . Thus, for two-
dimensional 1s and 2s excitons, the ratio of the diamagnet
shifts is 9. The indirect excitons observed in the superlatti
with barrier widthsLb520, 30, and 50 Å are more weakl
bound than the direct 1s-exciton, but more strongly than th
2s-exciton state in the same structures. Thus, the diam
netic shift for an indirect exciton should be substantia
smaller than for direct 2s-excitons. On the other hand,
sufficiently strong magnetic field should transform a sy
metric tunnelling-coupled system of quantum wells towa
weaker bonds. This should be accompanied by a reductio

FIG. 4. Luminescence~smooth curve! and luminescence excitation~dashed
curve! spectra of the 80/50/80 superlattice without a magnetic field.
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FIG. 5. Luminescence excitation spectra
the 80/50/80 superlattice for various mag
netic fields~a!, and the energies of the peak
in these spectra as a function of magne
field ~b!.
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weakening mixing of the direct exciton states.
Figures 5~a!, 6, and 7 show luminescence excitatio

spectra for the superlattices with barrier widthsLb550, 30,
and 20 Å, measured in magnetic fields of up to 14 T with
step size of 1 T. The strongest lines in the spectra are th
of the direct 1sHH and 1sLH excitons. As the magnetic
field is increased, these exciton states exhibit a diamagn
shift which is greater in magnitude for excitons with a hea
hole, since this state is more weakly bound than the 1sLH
exciton. As the barrier width is reduced (Lb530, 20 Å!, the
diamagnetic shift of the 1sLH exciton is essentially zero
because the effect of the superlattice is greatest for exc
states with a light hole.

Besides the direct exciton ground states, which tra
form into the magnetoexciton states with the lowest Land
level (N50) as the magnetic field is increased, in the lum
nescence excitation spectra we have observed magneto

FIG. 6. Luminescence excitation spectra of the 80/30/80 superlattice
various magnetic fields.
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those magnetoexcitons which consist of bound states o
electron and hole belonging to one and the same diamagn
quantization level are optically active in the spectra. T
corresponding exciton energies for the direct and spati
indirect excitons are

ED~ I !
N 5Eg1\~vc

e1vc
h!S N1

1

2D2Eex~D,I !,

where\vc
e and\vc

h are the cyclotron energies,Eex(D,I ) are
the binding energies of the direct~bent! excitons correspond
ing to Landau levelN, and Eg is the distance between th
electron and hole size-quantization levels. Magnetoexc
states up to quantum numbersN56 were reliably identified
in the luminescence excitation spectra of the superlatt
studied here.

The 2sHH exciton is observed as a well-defined lin
even in weak magnetic fields~about 2 T!. With increasing

orFIG. 7. Luminescence excitation spectra of the 80/20/80 superlattice
various magnetic fields.
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shift, overlaps the spectral position of the 1sLH light hole
exciton. In the overlap region of these exciton states in
the superlattices we have studied, one can see a dram
redistribution of the oscillator strengths of the 2sHH- and
1sLH-lines. The observed anticrossing effect is the resul
fairly strong mixing of light and heavy hole magnetoexcit
states.

We now consider the diamagnetic properties of the
rect and indirect excitons. Approximating the spectral sh
of the exciton line as a function of the magnetic field at lo
fields by a quadratic dependence, we find that in the 80/50
superlattice the magnitude of the diamagnetic shift is
meV/T2 for the 1sHH exciton state. This value is in goo
agreement with data for a 75-Å-wide quantum well in Ref.
As the barrier width in the superlattices~and therefore the
direct exciton binding energy! are reduced, the magnitude o
the diamagnetic shift of the 1sHH state increases. Thus, i
the 80/20/80 superlattice the diamagnetic shift of the 1sHH
exciton is roughly 64meV/T2. Furthermore, the diamagnet
shift of the 2sHH exciton is almost an order of magnitud
greater than for the ground state in all the superlattices
were studied, in close accord with the estimates given ab

At the same time, the diamagnetic corrections to
ground state energy of a spatially indirect exciton are s
stantially greater than for a 1sHH exciton, and much smalle
than for a 2sHH exciton. This correction is approximatel
100meV/T2 in the 80/50/80 superlattice. Thus, it is perfec
obvious that theI (1sHH) exciton has no connection wit
excited states of the direct excitons. We conclude that
I (1sHH) line corresponds to the 1s ground state of an indi-
rect exciton with a spatially separated electron and h
within the confines of the superlattice period.

Because of the high barrier, an indirect exciton in t
80/100/80 superlattice is very weakly bound and its osci
tor strength is very low. Thus, this exciton state lies
against the dissociation region of the heavy hole excito
and is not allowed in the luminescence excitation spectr
low magnetic fields. However, ‘‘traces’’ of the indirect ma
netoexciton are observed at high magnetic fields,B.11 T, in
a region that essentially coincides with the location of
Landau levelN50 with light holes.

In superlattices with narrow barriers,Lb530, 20 Å, a
satellite fine structure is observed in the region of the p
cipal indirect exciton line~see Figs. 6 and 7!. As the mag-
netic field is increased, this structure merges with the dis
ciation region of the heavy hole direct excitons, so that o
one line of the indirect exciton remains in the spectrum. W
attribute the emergence of this structure and its behavior
magnetic field in superlattices with narrow barriers to s
tially indirect excitons in which the electron and hole a
separated by two or three superlattice periods, in accord
earlier theoretical predictions.4

Spatially indirect excitons in which light holes are al
bound are observed in the luminescence excitation spect
the 80/50/80 superlattice. The corresponding line is labe
I (1sLH) in Fig. 1~b!. The state corresponding to this lin
exhibits a substantially larger diamagnetic shift than for
ground state of the direct exciton with a light hole, 1sLH,
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the magnetic field is reduced (B→0), the spectral position o
the I (1sLH) line can be extrapolated to the threshold of t
dissociation continuum for the light hole exciton states. A
these arguments convince us thatI (1sLH) is associated with
spatially indirect light hole excitons.

5. SPECTRAL FEATURES OF EXCITED MAGNETOEXCITON
STATES

We have observed several surprising features in
magnetic field variation of the excited state spectra of m
netoexcitons. Here we discuss two of the most striking
them.

a. In the luminescence excitation spectra of all the s
perlattices we have studied, we found that at sufficiently h
magnetic fields, the heavy hole magnetoexciton states co
sponding to Landau levelsN>1 have a distinct Zeeman
splitting doublet structure~see, e.g., Fig. 6!. Special experi-
ments in a Faraday geometry with analysis of the circu
polarization of the doublet components showed that
lower-energy component corresponds tos2 polarization and
that on the higher, tos1. The observed splitting is associate
with quantization of the projections of the electron and h
spins in the exciton, since in this case we are dealing w
magnetoexcitons states.

The magnitude of the doublet splitting itself was surpr
ingly large, if we adopt published values for the electron a
hole g-factors.24 The reason for the anomalously large Ze
man splitting may lie in the fact that in systems with co
finement, other states with suitable symmetry, but with mu
larger orbital angular momentum~e.g., d, f , and other
states!, may mix with thes states of an exciton.25 Because of
strong mixing with a state that has large angular momen
and because of spin–orbit interaction, the effectiveg-factor
of the hole in thes exciton state increases.26 This assumption
is true if when confinement is weakened~i.e., when the bar-
rier width is reduced in superlattices!, the magnitude of the
doublet splitting decreases.

Conservation of angular momentum implies that t
components of the effective spin of the holemJ and electron
s in the exciton are related to the angular momentum of
photon mph by mph5s1mJ . For thes6 optical polariza-
tions,mph561. For optical transitions it is, of course, ne
essary to consider conservation of the parity of the state
the direction of size quantization. With these remarks,
observed doublet structure in the Zeeman splitting of
excited heavy holes magnetoexciton states can be explain
by the optical transition scheme represented in Fig. 8.
further assume that the Zeeman Hamiltonian of an excito
a magnetic field oriented along thez axis of the superlattice
is

H5m0Bz~geSz1ghSz!,

wherem0 is the Bohr magneton,Sz51/2 is the spin quantum
number of the electron, andSz53/2 is the effective quantum
number of the heavy hole.

From this it is easy to find the effectiveg-factor of the
hole in the exciton.~The electrong-factor is taken to be
constant and independent of the magnetic field atge520.4.!
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Thus, the magnitude of the splitting implies that the effect
g-factor of the hole in the 2sHH exciton isgh522.3 in a 10
T field. In a 3sHH exciton, the magnitude of theg-factor is
somewhat greater, withgh523.2. With a reduction in the
superlattice barrier width~superlattices 80/30/80 and 80/2
80!, which is accompanied by weakened confinement,
magnitude of the doublet splitting and the correspond
holeg-factor of the magnetoexcitons decrease, in qualita
agreement with the concept of mixing of magnetoexci
states.25

b. The behavior of the intensity of the excited magn
toexciton states~in particular, the 3sHH state! as a function
of magnetic field was also surprising. This effect shows
most clearly in luminescence excitation spectra of the
30/80 superlattice~see Fig. 6!. This effect is absent in the
80/50/80 and 80/100/80 superlattices with narrow miniban
Evidently, at low fields the oscillator strength of the 3sHH
state, like that of the other more excited states, is low.
magnetic fields of 8 T or above, the intensity of this state i
the spectrum begins to rise dramatically, so that at 9 T it has
risen by more than an order of magnitude. With a subsequ
increase in the magnetic field, the intensity of the 3sHH
magnetoexciton decreases and returns to its original valu
13 T. The sharp nonmonotonic variation in the intensity
the 3sHH exciton with magnetic field shows that this sta
interacts resonantly in the overlap region with anoth
dipole-allowed state.

In this same spectral region, resonant intensity beha
emerges for the 2sHH exciton as well, but naturally in an
other range of magnetic fields. Calculations of the electro
hole size-quantization spectrum of the 80/30/80 superlat
show that in the spectral region where resonant behavio
the intensity of the 3sHH and 2sHH excitons is observed
there exist anM1 saddle point of the electron–hole light ho
miniband@e(1)2LH(1)# and a minimum of the next size
quantization band for heavy holes@e(1)2HH(2)#. Even in
the absence of a magnetic field, appreciable resonant ab
tion can be seen in this region, which is probably associa
with these extrema of the minibands~see Fig. 6!. The experi-

FIG. 8. Optical transition scheme for heavy hole excitons in a magn
field.

607 JETP 85 (3), September 1997
e

e
g
e
n

-

p
/

s.

n

nt

at
f

r

or

–
e

of

rp-
d

resonant character of the interaction of the excited mag
toexciton states with magnetoexciton states correspondin
these extrema of the minibands. However, the nature of
interaction is unclear, and a quantitative description of t
phenomenon remains a task for the future.

6. CONCLUSION

We have studied spatially indirect exciton states w
heavy and light holes in terms of luminescence and lumin
cence excitation spectra in GaAs/AlxGa12xAs superlattices
in the flat band regime. It has been shown that the optim
conditions for observing indirect excitons are realized wh
the Coulomb energy in an exciton is of the order of the wid
of the electron–hole miniband in the superlattice. Sign
cantly, observing these states does not require breakin
inversion symmetry. A strong magnetic field perpendicu
to the heterolayers of the superlattice, which enhances e
ton Coulomb bonding, will transform a system of interacti
quantum wells to weaker bonding. Spatially indirect excito
in superlattices are analogous to the first order Wanni
Stark localization of excitons in superlattices with obliq
bands; however, in the present case the localization of in
rect excitons originates in the Coulomb interaction.
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Supercooling in a system of two superconductors
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Supercooling in the transition of a type I superconductor to the superconducting state in contact
with another superconductor whose critical temperature is higher has been measured.
Using aluminum as a test material, it has been demonstrated that at temperatures below the
critical temperatureTc and magnetic fields below the critical fieldHc(T), aluminum remains in a
metastable normal state, in spite of its contact with another superconductor. This means that
it is not possible to generate a thermodynamic instability in a superconductor’s electronic system
through the ‘‘proximity effect’’ with another superconductor whose critical temperature is
higher. This experimental observation demonstrates a radical difference between surface
superconductivity, which certainly generates instability in normal electronic states, and
superconductivity induced by the proximity effect near a junction with another superconductor.
© 1997 American Institute of Physics.@S1063-7761~97!02309-3#
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It is generally accepted that the superconducting ph
propagates from one superconductor to another in the s
manner as superconductivity emerging at the surface
pogates throughout the volume. This opinion is based on
fact that in either case, the order parameter is described
monotonic function of position that relatively slowly deca
in the normal-phase volume over a distance approxima
equal to the correlation length.

As for surface superconductivity, it is common know
edge that if the superconducting state has a lower therm
namic potential, propagation of the superconducting ph
throughout the superconductor volume is not impeded
any potential barriers. In the case of type I superconduct
this means that supercooling below the critical field line
surface superconductivity defined by the functionHc3(T) is
impossible. A discussion relevant to this statement can
found, e.g., in Ref. 1, and highly convincing experimen
evidence is given by Feder and McLachlan.2

Now let us discuss two different superconductors in c
tact with one another. In this case, the so-called proxim
effect occurs in the contact zone, i.e., electrons and Coo
pairs penetrate from one metal to another. A vast numbe
experimental and theoretical studies have been dedicate
the proximity effect. Structures composed of a superc
ductor and a normal metal have been studied especially t
oughly. Among the topics discussed is whether the region
supercooled metastable states could be suppressed b
proximity effect. This issue was raised in searching for
perconductivity of noble metals and materials with the ve
lowest superconducting transition temperatures. Indeed,
material is a type I superconductor, even the presence
low residual magnetic field in the cryostat can be higher th
Hc3(T), and the superconducting state in question will n
be detected. Buhrman and Halperin3 claim that supercooled
states of a superconductor cannot be realized if it is in c
tact with another superconductor with a higherTc .
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cooled superconductor states were expressed after studi
a twinning plane.4,5 These works demonstrated that a twi
ning plane is a special metal with a superconducting tra
tion temperature different from the critical temperature of t
crystal volume surrounding the twinning plane. The sup
conductivity of twinning planes also has a different set
critical magnetic fields.

A typical feature of the effect of an isolated twinnin
plane on surrounding crystallites is that the region of me
stable supercooled states is not eliminated completely,
though it is much smaller than in the case of a single crys
In the notation of Ref. 5, supercooled states occupy on
H2T diagram the region between the curvesHc(T) and
H* (T), whereas in single crystals they reside between
curvesHc(T) and Hc3(T) (Hc(T).H* (T).Hc3(T)). All
of these curves intersect the temperature axis atTc0 , i.e., the
critical temperature of bulk superconductivity.

It is common knowledge that twinning is one of th
mechanisms of plastic deformation in all crystal structur
except those with the close-packed face-centered c
~FCC! lattice.6 In fabrication of bimetallic specimens, it i
virtually impossible to avoid plastic deformation~if only,
because of the difference between thermal expansion co
cients!. Therefore, in order to check whether superconduc
ity of another metal can serve as a seed in some super
ductor, a metal with FCC structure must be used as a
superconductor with a lower transition temperature.

This paper reports on measurements of parameters o
region of supercooled states in aluminum samples under
ditions when the aluminum is in contact with another sup
conductor and without such a contact. As a control, sim
measurements were performed on indium in contact with

2. TESTED SYSTEMS

Presently four superconductors with an FCC lattice
known. There are indications that rhodium is also a sup

6099-07$10.00 © 1997 American Institute of Physics
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TABLE I.
conductor. Table I lists critical temperatures and critic
magnetic fields at zero temperature for these metals. N
that the critical temperatures of lead, aluminum, and iridi
are recommended as reference temperatures.

In the context of the problem to be solved, lead can
be used because its Ginzburg–Landau parameterk is too
large. In lead, the critical fieldHc3(T) of surface supercon
ductivity is higher thanHc(T), so it has no supercoole
states. Moreover, lead is not coated with an oxide film i
previous to atmospheric oxygen, so measurements of the
face superconductivity critical fields depend on the sam
history. Thorium is inconvenient because of its radioactiv
Iridium and rhodium have critical temperatures unattaina
in a 4He cryostat. For these reasons, the only suitable su
conductor for the planned experiment was aluminum, so
supercooled states have been investigated.

Now let us discuss requirements on the second super
ductor of the system. Firstly, its critical temperature sho
be higher than that for aluminum. Secondly, it is desira
that the mutual solubility of aluminum and the second me
be minimal, otherwise a diffusion layer with variable com
position could affect experimental results. Compounds
two metals with intermediate compositions like AlxMey can
have a similar effect. Finally, one must have some tes
whether an oxide film separating two superconductors
present. It is obvious that a sufficiently thick insulating fil
can prevent penetration of the superconducting phase f
one superconductor to another.

In the reported work, an attempt was made to satisfy
these requirements by two methods. The first of them is f
rication of a mechanical~or electrical! contact between two
metals immersed in liquid helium. In this case, diffusion b
tween metals or emergence of any intermetallic compou
is out of question. In order to destroy oxide films, a for
generating a plastic deformation to a level of up to'5%
could be applied. Furthermore, when an electric poten
difference is applied to the interface, electric breakdown a
destruction of an oxide film occur. The potential differen
was applied by connecting a charged capacitor to the st
ture and discharging it through the interface between the
metals. This technique was used in studies of the aluminu
tin and aluminum–aluminum structures, and also in con
experiments with indium–tin interfaces.

Elimination of the oxide film is necessary in such a pr
cess as soldering. When two metals are soldered, oxide fi
are eliminated through a reaction with a flux, and the i
posed metal~soldering metal or alloy! is in the liquid state.
The second technique for fabrication of bimetallic syste

Element Tc , K Hc(0), Oe Reference

Lead Pb 7.1999 803.4 @7#
Thorium Th 1.374 162 @8#
Aluminum Al 1.1796 104.9 @7#
Iridium Ir 0.100 20.1 @7#
Rhodium Rh 0.002~?! — @8#
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of another metal.
Among metals with a melting temperature lower th

that of aluminum, tin satisfies all the requirements on
second superconductor. Its superconducting transition t
peratureTc'3.72 K. The solubility in the Al–Sn system a
the tin melting temperature is negligible, and no intermeta
compounds are formed.9,10 The lack of an oxide film was
tested by wetting aluminum with liquid tin. It is known tha
liquid tin does not wet an aluminum surface coated with
oxide film, but easily spreads over an aluminum surface f
from the oxide film. As for other low-melting superconduc
ors, mercury amalgamates aluminum, i.e., it forms chem
compounds with it, whereas thallium, indium, and lead
not wet aluminum even when it is free from the oxide film

When tin was deposited on aluminum, oleic acid w
used as a flux. Since the natural oxide film on the alumin
surface is very resistant to oleic acid, a chemically polishe11

single-crystal aluminum plate was preliminarily etched
potassium hydroxide~KOH!. Immediately after etching
without washing, the aluminum plate was placed in the a
and heated to the tin melting temperature. A piece of
placed on the aluminum surface melted and spread over
surface. Without etching in the alkali, the aluminum surfa
was coated with too strong an oxide film, and tin could n
wet the surface~a piece of tin sat on the surface in the for
of a ball-shaped drop of liquid metal!. After fabrication of
the bimetallic plate, samples with required dimensions
13131 mm were cut from it by an electric-arc machin
The thickness of the tin layer on one face of the result
cube was about 0.15 mm. The layers damaged by
electric-arc cutter remained on the cube surface.

Of high-melting superconductors, we used tantalu
with Tc'4.46 K. The fabrication technique was the same
in manufacture of evaporators used in coating surfaces w
aluminum in vacuum. A tantalum wire 0.3 mm in diamet
with an aluminum strip wound around it was placed horizo
tally in a volume evacuated by an oil diffusion pump a
heated by an electric current. In the process of heating,
aluminum was melted, then its oxide film was destroyed, a
the drop of liquid aluminum took on a ball-like shape. Aft
a further increase in temperature, the aluminum drop we
the wire, probably when the tantalum oxide film was al
destroyed so that it passed through the center of the dro
liquid aluminum. It seems improbable that significant qua
tities of Al3Ta compound could be produced, since the d
solution of tantalum in liquid aluminum is very slow.10

Moreover, when aluminum was in the liquid state, its ent
volume was intensely stirred by thermal flows from t
current-heated tantalum wire, i.e., the small impurity
Al3Ta should be uniformly distributed over the entire alum
num volume. All the stages of this process could be visua
observed if the vacuum hood was transparent. The resu
sample was a piece of tantalum wire about 10 mm long pa
ing through the center of an aluminum ball with a diame
of '1 mm. Naturally, in this case formation of an aluminu
single-crystal was out of question.

610I. N. Khlyustikov
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FIG. 1. Magnetic moment of an aluminum sample vers
magnetic field around the transition to the superconduct
state. The insert in the upper right quarter shows on
expanded scale the sections of the curves around the or
The arrows indicate curve sections that were recorded w
the field was scanned in a specific direction and jumps
the magnetic moment due to superheati
and supercooling.Hc51.61 Oe, Hsc5Hc350.055 Oe,
T'Tc020.01 K'1.17 K.
3. EXPERIMENTAL TECHNIQUES

ag

e
an
r
id
ou
n

uc

o
in
et
–0

r
al
th
e

ew
b
c
u
is

ne
er
PZ
h
es
Th

a
a

level of 5–10%. The dimension of tested superconducting

nts
ex-
l
ini-
e-
be-
uld

in
uhr-

this
uct-
as-
alu-
of

tal
be-

res

as
it

mo-
ld

in
ree

e

Experimental records were curves of the sample m
netic moment measured using a SQUID magnetometer12 ver-
sus magnetic field at constant temperature.

The magnetometer was equipped with a system of th
mal shields made of copper foil and foam-plastic plates,
it was located inside a glass cryostat. The inside diamete
the helium Dewar was 80 mm. The consumption of liqu
helium after its transition to the superfluid state was ab
50 cm3/h. Given this consumption of liquid helium, one ca
lower the temperature to that of the aluminum supercond
ing transition~and even lower! by pumping4He vapor if the
pumping rate of the pumping station at a pressure of ab
0.1 Torr is 100–150 liters/s. The vacuum pipeline connect
the cryostat to the pumping station had a bottleneck diam
of 50 mm. The pressure drop across the pipeline was 0.1
Torr.

The minimal temperature in these experiments measu
using the superconducting transition temperature in an
minum single crystal was about 1.1 K. For convenience,
pressure in the cryostat cap was measured using a McL
manometer.

In order to perform the described experiments, n
equipment for the magnetometer was designed and fa
cated. First, an opportunity was created for multiple conta
between two pieces of metal to form the studied system d
ing one low-temperature experiment. Relatively rough d
placements in the range between 1mm and 1 mm were pro-
duced mechanically from outside the cryostat using a fi
thread screw in the helium volume and a system of lev
Fine displacements were performed by a package of ten
disks with a diameter of 5 mm and thickness of 0.5 mm. T
contact between pieces of metals was detected and its r
tance was measured using a four-terminal configuration.
mechanical strength of the facility allowed one to apply
force sufficient for plastic deformation of aluminum to
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pieces could range down to'0.5 mm.
A second device allowed one to conduct measureme

in different alignments of the sample with respect to an
ternal magnetic field in the range of6180°. The mechanica
drive made it possible to change the alignment with a m
mal step of'1022 rad. This device was used in measur
ments of samples with plane, well-defined interfaces
tween two metals. Typical dimensions of samples that co
be tested using this device were about 1 mm.

4. EXPERIMENTAL RESULTS

Before the beginning of the experiments described
this paper, it seemed that results and conclusions by B
man and McLachlan,3 who studied the tungsten–titanium
system, should also apply to the aluminum systems. For
reason, a sophisticated device for driving the supercond
ors to contact inside the cryostat was fabricated. It was
sumed that, depending on the contact resistance between
minum and another superconductor, the critical field
aluminum supercooling should vary.

Figure 1 shows a record of the aluminum single crys
magnetic moment versus magnetic field at a temperature
low its transition temperature. It demonstrates all featu
typical of type I superconductors in magnetic field.

In fact, the graph shows two records. One of them w
made by scanning the field from the left to the right, and
shows the field dependence of the aluminum magnetic
ment in the range between a relatively large ‘‘negative’’ fie
~larger thanHc(T) in absolute value! and a similar ‘‘posi-
tive’’ field. Another record was made by scanning the field
the opposite direction. These two curves coincide over th
ranges. First~we have two such intervals!, when aluminum is
in the normal state, i.e., whenuHu.Hc(T). In this case
Hc51.61 Oe, which was derived from the position of th

611I. N. Khlyustikov



cusp inM (H). The sample temperature derived from mea-

is

e

lit

he
on
d
e

rm
w
n

t
ab
om
pl
ifi

u

ia
al
ge

th
n
e

et
d

m
a
p

ns
th
c
n
t

pe
m

t
nd
o

et
tio
er
e

15 Oe, nonlinear features in the curve ofM (H) due to the
its

m-
an
rds

ays
gne-
or-

due
, it
-

lu-
ut

alu-
ent
tion
ied

s
een
the

to
as
de
ple

in
is-

e-
ea-
nts

tive

um
of

n

as-
e

d in

.28

ue
eat-
on

e-
the

he
a
ga-
the
surements ofHc was 1.17 K, which is about 0.01 K below
Tc0 .

Another region where the two curves coincide
uHu,Hsc(T). The measured supercooling fieldHsc is 0.055
Oe, which is aboutHc/30. Given so large a value of th
supercooling, one can assume thatHsc5Hc3 . Hence, using
the relation Hc351.69kHc , we obtain an estimate
kAl50.0143, which is close to the value reported in the
erature.

The difference between sample magnetic moments w
the magnetic field is scanned up and down in the regi
Hc3(T),uHu,Hc(T) results from the fact that the studie
phase transition is of the first kind. When the field is reduc
from large values, the sample remains in a metastable no
state and has a magnetic moment close to zero. At lo
fields, uHu,Hc3(T), the only stable state is the superco
ducting state with magnetic susceptibilityx521/4p. As the
field drops and reachesH5Hc3 , the magnetic momen
abruptly increases from zero to a finite value. When the
solute value of the external field gradually increases fr
zero, the superconducting state characterized by the com
Meissner effect remains stable up to 1.37 Oe in this spec
case.

The superheating in increasing magnetic field shows
in the range 1.35 Oe.uHu .1.07 Oe'(2/3)Hc . Over this
range, the sample can be either in the superheated state~as in
Fig. 1! or in an intermediate state with a positive different
magnetic susceptibility. In the example being discussed,
minum is in the intermediate state in the field ran
1.35 Oe,uHu,Hc .

Then the suitability of aluminum for experiments wi
bimetallic systems was tested. To this end, an additio
sample chemically identical to the first one but strongly d
formed at room temperature was mounted in the magn
meter. The samples were insulated from one another, an
order to create identical conditions for them~i.e., equal mag-
netic fields applied to them!, the separation between the
was minimized. Measurements demonstrated that both
minum pieces, the single crystal and the deformed sam
had equal supercooling fields. On the curves ofM (H), only
one jump of magnetic moment corresponding to the tra
tion from the normal to superconducting state in bo
samples was detected, although their manufacturing te
niques were different. In other words, a situation when o
piece was in the superconducting state and the other in
metastable normal state has not been observed.

After these tests, structures composed of different su
conductors, namely aluminum–tin and aluminum–tantalu
could be investigated.

In the device that allowed one to bring to contact and
separate two metal pieces, an aluminum single crystal a
piece of tin were mounted. Initially they were at a distance
about 0.2 mm from one another. The curves of magn
moment versus magnetic field due to the aluminum transi
to the superconducting state are shown in Fig. 1. As conc
tin, note the following feature of this material. When th
magnetic field is scanned over the range between25 Oe and
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superconducting transition can be observed only around
critical temperature, which isTc'3.72 K, as was noted
above. At temperatures close to the aluminum critical te
perature, all critical fields of tin are considerably higher th
the fields used in the experiments. Therefore, in the reco
shown on all graphs of this paper the piece of tin was alw
in the homogeneous superconducting state. Thus, the ma
tometer signal due to the tin sample was linear and prop
tional to the external magnetic field, i.e.,M5(21/4p)H. In
the graphs given in this paper, a linear part of theM (H)
curve was extracted. The pictures present only the signal
to the aluminum superconducting transition. Furthermore
was assumed that forH.Hc the magnetic moment was con
stant.

A completely unexpected result was obtained when a
minum and tin were brought into close contact. It turned o
that irrespective of whether there was contact between
minum and tin or not, the curves of the magnetic mom
versus magnetic field due to the superconducting transi
were identical. The electric resistance of the contact var
from infinity to less than 1023 V, and in all cases the field
Hc andHc3 remained unchanged. Thus, the contact betw
the pieces of aluminum and tin did not alter the range of
aluminum supercooled normal state.

The situation did not change after a force sufficient
generate a 5% plastic deformation of tin and aluminum w
applied in order to produce a tighter contact. The magnitu
of plastic deformation was estimated by measuring sam
dimensions after removing them from the cryostat.

A similar result was produced by an experiment
which oxide films in the contact area were destroyed by d
charging a capacitor.

Since doubt about the presence of oxide films in m
chanical contacts between metals and their effect on m
surements could not be dispelled completely, experime
were continued with samples fabricated using alterna
techniques described in the previous section.

Figure 2 shows as an example curves of the alumin
superconducting transition obtained at a temperature
1.165 K in samples fabricated by liquid tin deposition o
aluminum.

Although the shapes of these curves are not quite ‘‘cl
sical,’’ unlike those in Fig. 1, the result is essentially th
same, namely, the effect of supercooling is also observe
this case. Both the critical fieldHc and the supercooling field
Hsc can be derived from these curves. In Fig. 2 they are 2
Oe and 0.68 Oe, respectively. Naturally,Hc.Hsc . The dif-
ference between the supercooling critical fieldHsc andHc3 ,
which is a characteristic of aluminum, is most probably d
to structural damage in the process of electric-erosion tr
ment, although it might also be due to the effect of tin
aluminum.

The instrumental effect resulting in the difference b
tween the baseline magnetic moments on the right and on
left of Fig. 2 and also in the difference between jumps in t
moment at6Hsc should be elucidated. Using a SQUID as
null detector, the input signal could be canceled by a ne
tive feedback signal so that the SQUID could remain in

612I. N. Khlyustikov
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FIG. 2. Magnetic moment of an aluminum sample with a
almost cubic shape with tin deposited on one face, a
function of magnetic field;Hc52.28 Oe, Hsc50.68 Oe,
T'1.165 K.
same quantum state. Since the response rate of feedback cir-
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Figure 3 shows similar curves for aluminum deposited
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cuits is always finite and sometimes insufficient, the fe
back circuit cannot compensate for the input signal when
amplitude is large and it changes at a high rate. In suc
situation, the SQUID may switch to another quantum sta
and this shows up as a change in the baseline level. T
issues and techniques for recovering the signal without
tortions caused by limitations of the feedback circuits w
discussed in detail elsewhere.12

Measurements performed at various sample alignm
in a magnetic field did not show any appreciable change
Hc and Hsc . Only the shapes of the magnetization curv
changed slightly, which was quite natural since the samp
were not ball-shaped.
-
ts
a
,
se
s-
e
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on tantalum. One can see that in this case the region
supercooled states are also clearly defined, sinceHc andHsc

are 6.5 Oe and 5.0 Oe, respectively. The experiment
conducted at a temperature of 1.14 K.

Now let us consider the control experiment, which can
least partly clarify results reported by Buhrman a
Halperin.3 In the control experiment, the device for bringin
the samples into mechanical contact many times at liqu
helium temperature was used again, and an indium sin
crystal was mounted instead of aluminum. The superc
ducting transition temperature in indium is about 3.4 K. T
second superconductor was tin.

Indium has a tetragonal crystal lattice, and twins are e
tic
as
e;
FIG. 3. Magnetic moment of aluminum versus magne
field around the superconducting transition. Aluminum w
deposited in the form of a liquid drop on a tantalum wir
Hc56.5 Oe,Hsc55.0 Oe,T'1.14 K.
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FIG. 4. Magnetic moment of indium as a function of ma
netic field around the superconducting transition: a! before
plastic deformation at liquid-helium temperatures; the a
rows indicate jumps in the magnetic moment at the sup
cooling field, Hc512.9 Oe, Hsc511.3 Oe, T53.3 K; b!
after plastic deformation. No supercooling could be d
tected.
ily generated in the@101# plane.6 Therefore it is very difficult
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contact resistances below 1023 V. Multiple contacts and
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e-
to fabricate an indium sample that demonstrates supercoo
corresponding to its characteristic value of the Ginzbur
Landau parameterk. Indium supercooling to the fieldsHc2

and Hc3 was reported, for example, in Ref. 2. In order
detect a small change in the indium supercooling field c
responding to the superconducting transition, it is suffici
to anneal the sample at room temperature.

Figure 4a shows experimental curves of the indiu
sample magnetic moment versus magnetic field recorded
temperature of about 3.3 K. The critical magnetic fie
Hc512.9 Oe, and the supercooling fieldHsc511.3 Oe.

Contact between indium and tin under a force below
plastic deformation threshold did not change the cur
M (H) describing the superconducting transitions down
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separations between the two pieces did not affect the ind
magnetization curves.

The situation changed radically when a force sufficie
for plastic deformation was applied. The supercooling reg
disappeared, as shown in Fig. 4b. Subsequent separatio
the samples did not lead to restoration of the supercoo
effect.

A similar result was obtained in experiments with plas
deformation generated in indium by a quartz tip.

5. CONCLUSIONS

The reported experiments indicate that aluminum is
good test material for studies of superconductivity in bim
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tion of aluminum samples in experiments similar to tho
described above are very low. The parameters of the su
cooling region in plastically deformed samples are the sa
as in single crystals, at least in the neighborhood of the t
perature corresponding to the superconducting transition

The most important result of the discussed experime
is that there are radical differences between the surface
perconductivity and superconductivity induced by anot
superconductor. The main difference is that the supercon
tivity due to the proximity effect of another superconduc
does not cause a thermodynamic instability in metasta
normal states. In other words, the superconductivity indu
by another superconductor does not act as a seed with s
critical parameters from which the superconducting ph
propagates throughout the superconductor volume, and
results in a type I phase transition.

Certainly, there are no grounds to assert that one su
conductor does not affect another. Moreover, experime
with twins4 clearly indicate that such an effect actually o
curs. This effect, however, is such that there is a finite ene
barrier preventing growth of the superconducting phase
the superconductor bulk.

In terms of the Ginzburg–Landau theory, a superc
ductor in close contact with a normal metal generated a
tain value of the order parameterC0 on the metal surface
The coordinate dependence of the absolute value of the o
parameter,uC(x)u, is well known: it decays with distanc
from the interface. Such behavior is also typical of surfa
superconductivity. If the effect of the boundary values
dC/dx on the phenomenon under consideration is neglec
the following differences can result. In the case of the s
face superconductivity, the order parameter on the sur
uC0u is known to be close to unity, i.e., the value it has wh
the superconducting phase occupies the entire volume.13 It is
possible that in the case of the proximity effect~induced
superconductivity!, uC0u!1. Even a small value of the orde
parameter is sufficient to screen external magnetic fields,
to generate nondissipative currents in a certain layer nea
metal surface. But sinceuC0u is small, the contribution to the
system energy from the induced superconductivity rema
positive. Such a ‘‘seed’’ is characterized by parameters
low the critical values and cannot cause absolute instab
in metastable states.

Thus, there should be a certain critical valueC0* above
which the induced superconductivity, like the surface sup
conductivity, acts as a seed with supercritical paramet
The question is, what is this critical valueC0* ? In addition,
there is a question of whetherC0 due to the proximity effect
can be increased. Otherwise, ifC0 is always small, the re-
gion of induced superconductivity cannot act as a superc
ducting phase seed, and supercooled metastable states s
persist.

The statement above applies only to the case when
different superconductors are in contact on a certain surf
Strictly speaking, only in this case does the comparison
tween surface and induced superconductivity make sens
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the superconductor volume contains a lot of inclusions of
other superconductor with higher critical characteristics—
example, twinning planes. No supercooling was observe
experiments.14 Thus, the volume fraction with twins serve
as a seed leading to instability of metastable states. But
effect is limited to superconductors in which a considera
concentration of twins can be generated by plastic defor
tion, i.e., materials with crystal lattices different from clos
packed FCC. It is possible that grains of a supercondu
with higher Tc in sufficient concentration can also destro
supercooled states.

In view of the experiments described above, the res
reported by Buhrman and Halperin3 can have a feasible in
terpretation completely different from that given by the a
thors. The reported results can be ascribed not to the p
imity effect, but to the technique of sample fabricatio
Tungsten and titanium were joined by spot welding, i.e.
very harsh procedure was used, which could not be d
without plastic deformation. Hence, since the tungsten cr
tal lattice is not close-packed FCC but body-centered, m
chanical twins could be generated near the welding sp
and they could lead to elimination of the supercooling effe
A test of this interpretation could be an experiment with
nonsuperconducting metal welded to tungsten.

The author would like to express gratitude to A. F. A
dreev, V. A. Tulin, V. V. Lebedev, V. S. Edelman, N. V
Zavaritski�, and E. V. Mininberg for helpful discussion o
topic related to the reported work.
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Arnold diffusion in large systems

m.
B. V. Chirikov* and V. V. Vecheslavov
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A new regime of Arnold diffusion in which the diffusion rate has a power-law dependence on
the perturbation strength is studied theoretically and in numerical experiments. The theory
developed predicts this new regime to be universal in the perturbation intermediate asymptotics,
the width of the latter increasing with the dimensionality of the perturbation frequency
space, particularly in large systems with many degrees of freedom. The results of numerical
experiments agree satisfactorily with the theoretical estimates. ©1997 American Institute of
Physics.@S1063-7761~97!02409-8#
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One of the most interesting phenomena in Hamilton
dynamics is the so-called Arnold diffusion~AD!, a distinc-
tive universal instability of multidimensional nonlinea
oscillations.1,2 This global instability was predicted b
Arnold;3 its chaotic nature was discovered in Refs. 1, 4, a
5 and further studied in detail in Refs. 6–11, 14, 15, and

First, following Ref. 17, we briefly recall the diffusion
mechanism, which is related to the interaction of nonlin
resonances. Consider a general Hamiltonian describing m
tidimensional oscillations:

H~ I ,u,t !5H0~ I !1«(
n,m

Vnm~ I !exp~ in•u1 i tm•V!,

~1.1!

where I , u are N-dimensional vectors of the action–ang
variables;V is theM -dimensional vector of the driving fre
quencies;n, m are integer vectors of dimensionsN andM ,
respectively, and« stands for a small perturbation paramet
The dot in expressions liken•u denotes the scalar produc
Below we shall consider the simpler case of a complet
integrable and nondegenerate unperturbed system w
HamiltonianH0(I ) depends on the full set ofN actions only.

Hamiltonian~nondissipative! dynamics is always deter
mined by resonances~see, e.g., Refs. 1 and 2! corresponding
to particular terms in the perturbation~1.1!. The condition
for a primary resonance with unperturbed frequencies~1.3! is

vnm[n•v~ I !1m•V'0. ~1.2!

In the case of linear oscillations all the frequencies are fi
as parameters of the system which is either in or off re
nance independent of initial conditions. However, for nonl
ear oscillations with the action-dependent frequencies

v~ I !5]H0~ I !/]I , ~1.3!

condition ~1.2! determines resonance surfaces~zones! in the
phase space, that is, the system is always in resonanc
some initial conditions. On the other hand, nonlinearity s
bilizes the impact of a~sufficiently weak! perturbation, en-
suring bounded oscillations even for resonant initial con
tions. This is precisely due to non-isochronous oscillatio
~1.3!. In one degree of freedom such a nonlinearity is nec
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The generalization of that for several degrees of freedom
the necessary condition for determinant to be nonzero ev
where,

U]2H0

]I 2 UÞ0. ~1.4!

In this case the system is called nondegenerate. This allo
in particular, the transformation from action to frequen
space. In the latter, the resonance structure is espec
simple and transparent, as the resonant surfaces~1.2! become
planes.

Another condition for the nonlinear stabilization is th
requirement for the quadratic form associated with the m
trix ]2H0 /]I 2 to be sign-definite or, geometrically, for th
surfacesH0(I )5const to be convex.10 The latter condition is
a weaker one as it may include higher polynomial form
Both conditions are only sufficient.10,11

The above conditions also ensure the absence of st
instability (;«), due to a quasilinear~isochronous!
resonance,1 especially when several (r ) independent reso
nance conditions~1.2! are simultaneously satisfied. The latt
is called multiple~r -fold! nonlinear resonance. However,
weak instability caused by nonresonant~vnmÞ0 for given
initial conditions! terms in the perturbation series~1.1! is
possible, and it is just the AD we are going to discuss
detail. Moreover, this weak instability is a typical phenom
enon of nonlinear oscillations, since it occurs for almost a
perturbation of a completely integrable system particula
one that is arbitrarily weak. The only restriction is the acti
space dimensionda , which must be larger than that of th
invariant torus (da.dt51).3 The torus is an absolute barrie
for the motion trajectory, which can only bypass it but nev
go through. For a driving perturbation~M.0 in Eq. ~1.1!!
the minimum number of degrees of freedom is, thus,Nmin

52, but in the conservative case (M50) it is Nmin53, since
the trajectory is constrained to follow an energy surface.

Even these minimal restrictions are not absolute, si
they apply to the strong nonlinearity~1.4! only when the
effect of resonant perturbation is small (DI /I;A«!1). In
case of linearH0(I ) ~the harmonic oscillator! Nmin is smaller
by 1.12

6166-09$10.00 © 1997 American Institute of Physics



At least three perturbation terms in the series~1.1! are
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necessary for AD. We shall call each of these terms a re
nance~for the appropriate initial conditions of the motion!. A
single resonance retains the complete integrability of the
perturbed system. The interaction of even two resonan
results in the formation of narrow chaotic layers around
unperturbed separatrices of both resonances,13–15 but the
chaotic motion remains confined within a small domain
the layer. Only the combined effect of at least two drivi
resonances gives rise to diffusion along the layer of the fi
guiding, resonance ifN>Nmin holds~see Ref. 1 for details!.

In the first approximation~1.2! the driving perturbation
terms are nonresonant (vnmÞ0), but the final effect is due
to the secondary resonances between the driving perturb
and the slow phase oscillation on the guiding resonance.
is a particular case of the general rule that all the long-te
effects in nonlinear oscillations are due to some resonan
For the problem in question the principal parameter is
ratio

l5
uvnmu

vg
, ~1.5!

wherevg;(«uVgu)1/2 is the frequency of small phase osc
lations at the center of the guiding resonance, and whereVg

is the Fourier amplitude of the corresponding perturbat
term. For a weak perturbation («→0) the parameterl@1 is
big, and thus the effect of the driving resonances is a hi
frequency one. In fact, this is equivalent to a low-frequen
~adiabatic! perturbation. Hence we use the term inver
adiabaticity.14 The symmetry between the standard and
verse adiabaticity is especially clear in a conservative s
tem, i.e., for the interaction of coupling resonances. Inde
in this case the resonant interaction results in energy
change between the guiding and driving resonances. W
for the former the perturbation is a high-frequency one~in-
verse adiabaticity!, for the latter it is low-frequency~standard
adiabaticity!.

For an analytic perturbation the effect in both cases
exponentially small in the adiabaticity parameterl ~1.5!,
namely:1,14

D;e2pl;ws
2, ~1.6!

whereD is the local dimensionless diffusion rate in the a
tion I within a chaotic layer and wherews;uDH0u/«Vg

stands for the dimensionless layer width~for a more accurate
estimate see Ref. 14!. Notice that the effect~1.6! is of a
nonperturbative nature, sincel;«21/2 ~see Eq.~1.5!!.

This is the simplest resonant mechanism of AD. In p
ticular models the accuracy of such a three-resonance
proximation was found to be within a factor of 2, provide
that the perturbation is not too weak, i.e., the adiabatic
parameterl is not very big1 ~see also Sec. 3 below!.

As l→` the higher-order resonances with large h
monics numbersuni u, umj u→` come into play. Even though
their amplitudes drop exponentiallyVnm;exp(2sk), where
k5(uni u1(umj u, the detuningsuvnmu also rapidly decrease
The operative resonances which control the diffusion h
been roughly identified in Refs. 1 and 15 by minimizing t
expression
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with respect tok. Herel05v0 /vg , v0 stands for a charac
teristic oscillation frequency, and the following diophantin
estimate was used:

vnm;
v0

kL21 . ~1.8!

The most important parameter in Eq.~1.7!,

L5N1M2r , ~1.9!

is the number of linearly independent~incommensurate! un-
perturbed frequencies on anr -fold resonance. We shall ca
L the resonance dimension~in frequency space!. Actually,
Eq. ~1.9! gives the maximum dimension when allL indepen-
dent frequencies contribute to the driving resonances, wh
may be termed the full resonances. There are also pa
resonances which depend on a smaller number of frequen
L̄,L. Even though there are only a few of the latter, th
are crucially important for the new AD regime which is th
main subject of this paper~Sec. 5!.

The estimate~1.7!, which represents another AD mech
nism, seems to agree with numerical data.7,14 On the other
hand, Nekhoroshev rigorously proved10 an upper bound of
the form ~1.7! but with a different exponent (M5r 50):

L<LN5
~3N21!N

4
12. ~1.10!

Even for the minimum dimensionsN53 this upper bound
Lmax58 considerably exceeds the estimate~1.9!: L52(r
51). The difference grows asN→`. Even though this dis-
crepancy is not a direct contradiction inasmuch as Eq.~1.10!
is the upper bound, it constitutes a problem: what would
the origin of the difference between the two estimates?

Recently, this problem has been resolved by Locha11

who rigorously proved a more efficient Nekhoroshev-ty
estimate with the exponent~1.9! ~for M50 but anyr !. The
explanation is that Lochak assumed convexity of the unp
turbed HamiltonianH0(I ) given above, whereas Nekhoro
shev’s proof holds under a weaker condition of the so-ca
steepness ofH0 . From the physical point of view this differ
ence appears to be insignificant. At least, we are not awar
any example of a steep but non-convexH0 .

Both the diffusion rate and the measure of the chao
component~;ws , see Eq.~1.6!! are exponentially small in
the perturbation in the limit«→0, hence the term KAM
integrability14 referring to the Kolmogorov-Arnold-Mose
theory which proves the complete integrability for most in
tial conditions as«→0. This partial integrability, or better
almost-integrability, is as good as the approximate adiab
invariance. Notice, however, that the complementary se
initial conditions supporting AD—the so-called Arnol
web—is everywhere dense, as is the set of all resonan
~1.2!, any one of which can be a guiding resonance. Also,
variation is exponentially slow in the actionI only while the
variation in oscillation constant~for the unperturbed motion!
phaseu0 is much faster, with a characteristic time of ord
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the inverse Lyapunov exponent,u0;vg /u ln wsu;Tw
21, where
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Tw is the oscillation period in the chaotic layer~see Eq.~2.2!
below!.

Both rigorous estimates are valid asymptotically, for s
ficiently small « only. For example, Lochak requires11 (L
@1)

«,«L;S s2

L D 2L2

, ~1.11!

wheres is some average decay rate of the perturbation
plitudes. This is very small perturbation, and the probl
arises of estimating the diffusion rate in the intermedi
asymptotic region:«L!«!1, or 1!l0!lL . This problem
was first addressed in Refs. 14, where a new regime of
fusion, called the fast Arnold diffusion~FAD!, was conjec-
tured from some preliminary results of numerical expe
ments. Two characteristics of the new regime as contra
to the far-asymptotic AD~1.11! are as follows:

~i! the dependence of the diffusion rate on the adiaba
ity ~perturbation! parameterl0 ~1.7! is a power law rather
than exponential, and

~ii ! the diffusion rate does not depend on the resona
dimensionL, in particular, on the number of degrees of fre
dom N ~cf. Eq. ~1.7!!.

Precisely this behavior has been observed in numer
experiments with another multidimensional model.16 How-
ever, the authors of Ref. 16 have given a different interp
tation of their numerical results. Instead, we tried to rec
cile the same results with our new diffusion mechanism17

Unfortunately, both interpretations remain somewhat a
biguous because the perturbation in those numerical exp
ments was not sufficiently small to reach any asympto
behavior where the theoretical estimates were expecte
hold true. To resolve this ambiguity we continued numeri
and theoretical studies with the same model but usin
much weaker perturbation. In this paper we report on
first results and present their theoretical explanation.

2. MODEL AND NUMERICAL EXPERIMENTS

Following Refs. 16 and 17 we make use here of the sa
model with Hamiltonian

H~x,p,t !5
upu2

2
2K (

i 51

N11

cos~xi 112xi !d1~ t ! ~2.1!

and periodic boundary conditions~xN125x1 ; pN125p1!
where p, x are action-angle variables,d1(t) stands for the
d-function of period 1, andK→0 is small perturbation pa
rameter. Notice that this model hasN degrees of freedom
due to the additional motion integral(pi5const. The unper-
turbed frequenciesv i5pi are equal to the action variable
and the energy surfacesH0(p)5upu2/25const are spheres
and hence are strictly convex with unit determinant~1.4!.
The driving perturbation in the form of periodic «kicks»
not important for the diffusion but greatly simplifies nume
cal experiments as it allows the use of a~multidimensional!
map rather than differential equations of motion.

Even though this model does not immediately repres
by itself a physical system, it is very convenient for the stu
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theory can, then, be applied to real physical problems, s
as the stability of the Solar System18 or of charged particles
in magnetic fields in plasma devices, accelerators and co
ing beams.15,19

In previous work the diffusion in multidimensional mod
els like ~2.1! was studied only down toK;0.1.16,9 For such
perturbation levels and largeN a considerable part of phas
space becomes globally chaotic, which obscures the AD
fect. Even though the combined action of AD and glob
diffusion is an interesting problem which is important f
applications,1,15 here we mainly wanted to understand t
mechanism of AD itself. To this end we went down as far
to K;1026 with up to N515 degrees of freedom. Realiza
tion of this program has required essential modification
the problem itself. This is because direct computation of
diffusion rate quickly becomes prohibitively slow asK→0,
especially since a multiple computation precision is requi
for such a smallK. To overcome this technical difficulty we
have taken a different approach,14 namely, computing the
chaotic layer widthws and recalculating the diffusion rat
from a relation like~1.6!. Of course, this makes sense for
model withN>Nmin degrees of freedom~Sec. 1!. In this way
we have managed to reach~for another model! adiabaticity
parameter values ofl0'50 with an ordinary computer, a
compared tol0'10 only for a direct diffusion calculation on
a Cray supercomputer.7 In the model ~2.1! this would
roughly correspond toK;l22;4•1024 and 1022, respec-
tively, andN52 only.

In the present work we go further, and give up the c
culation of the diffusion rate altogether. Instead, we a
studying numerically and developing the theory of the ch
otic layer only. This proves sufficient to understand t
mechanism of AD as well, since both are essentially de
mined by the same higher-order adiabaticity parameter~1.5!
and the exponent in Eq.~1.7!. Then, all we need in numerica
experiments is to compute the oscillation periodT(ws) in-
side the chaotic layer of a guiding resonance, and recalcu
the layer widthws using the simple relations1

vgTmin5 ln
32

ws
, vgTav5 ln

32

ws
11, ~2.2!

whereTmin , Tav are the shortest and average periods, resp
tively. The two values are in a reasonable agreem
^ ln(wmin /wav)&50.31, within the rms fluctuations
D ln(wmin /wav)560.39, and both underestimate the full lay
width. This is because the diffusion at the layer edge is v
slow, so that the 100 oscillation periods used in numeri
experiments were insufficient to reveal the whole layer.
crude estimate14 yields the expected correction factor of o
der 2. No such correction was introduced into the numer
data, but it will be discussed below in Sec. 3.

A primary coupling resonancev1'v2 with phase oscil-
lation frequencyvg5A2K has been chosen as the guidin
resonance. Correspondingly,p1'p2'pg while other pi ( i
53,...,N11) were taken at random (mod/2p). For the tra-
jectory to be inside the layer the initial value of the guidin
resonance phase was taken to be approximatelyc15x1

2x2'p. However, for smallK the exact position of the
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layer had to be located numerically prior to computation
ws by a special searching part of the code. The computa
was performed for seven valuesN52, 3, 4, 5, 7, 9, 15 with
the same initial conditions for a single trajectory.

The results are summarized in Figs. 1 and 2. The lo
bound ofws;10222 was determined by the computation pr
cision ~about 30 decimal places!. The values of the principa
model parameter—the number of independent unpertur
frequencies, or the resonance dimens
L5N1M2r 5N—are also indicated. Notice that under th
particular conditions of the numerical experiments the re
nance dimension is equal to the number of degrees of f
dom of the model because the driving perturbation is p
odic (M51), and guiding resonance is simple (r 51).

The most striking feature of the empirical data is t
qualitatively different behavior forL52 which was observed
already in Ref. 16. The rest of the data show no system
dependence onL, but rather big fluctuations which rapidl
increase withl.

FIG. 1. Summary of numerical data for the model~2.1!. Broken solid lines
connecting various symbols show computed values ofws as a function of
the adiabaticity parameterl[1/AK and the resonance dimensionL5N in-
dicated by the numbers. Dotted lines represent the theory:~a! small-l limit,
one fitting parameter, Eq.~3.5!; (b2) large-l limit for L52, two fitting
parameters, Eq.~4.9!; ~c! intermediate asymptotics, three fitting paramete
Eq. ~5.8!.

FIG. 2. The same data as in Fig. 1, with respect to the theoretical de
dencewth(l), Eq. ~5.8! ~curvec in Fig. 1!. Thin solid curvesbL̄ represent
the first three members of the familyws(l,L̄), Eq. ~4.9! ~cf. Fig. 3!. Two
dashed lines show rmsws fluctuations~5.11!.
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To lowest order in the small perturbation parameterK
we can only consider the primary driving resonances wh
are explicitly present in the original Hamiltonian~2.1!. Then
the problem is very similar to that studied in Ref. 1, ap
from a different expression for the kinetic energy. First, w
transform the variables for the two degrees of freedom wh
determine the guiding resonance:x1 , x2 , p1 , p2→c1 , c2 ,
I 1 , I 2 where

c15x12x2 , c25x11x2 ,

p15I 11I 2 , p25I 22I 1 . ~3.1!

In this approximation the momentum satisfiesI 2'c2 , and
all pi' ẋi for i>3 are constant and determine the freque
cies of the driving resonances. The unperturbed motion
the separatrix of the guiding resonance is given by

c1~ t !54 arctan~evgt!2p, ~3.2!

where the frequency of the phase oscillation isvg5A2K. As
the interaction in the original Hamiltonian~2.1! is local, only
the two degrees of freedom directly coupled to the guid
resonance contribute to the driving perturbation in the c
otic layer. The full set of driving resonances remains fo
mally infinite because of the external perturbationd1(t) of
frequencyV52p, but the effect of most of them is expo
nentially small due to the large detuningvnm ~see Eqs.~1.5!
and ~1.6!!. Consequently, one can retain a single drivi
resonance only with minimal detuning:

vd5minupg2pd1sVu, ~3.3!

wherepd5p3 , pN11 ands50.61. In this approximation the
Hamiltonian takes the formH5H0(I 1 ,c1)1V(c1 ,t),
where

H05I 1
22K cosc1 , V'2K cos~c1/22vdt1f!,

~3.4!

andf is some constant phase.
Now, we can apply the standard method for deriving t

separatrix map and the layer width~see Refs. 1 and 13 fo
details!:

ws5DH0 /K'4p f l0
2 exp~2pl0/2!, ~3.5!

where DH0 is the layer width in energy,l05vd /vg

5lvd /&, andl[1/AK. Besides the usual approximation
for such evaluations, an additional factorf ;1 shows up for
the model~2.1! because the relative perturbationuV/H0u;1
is not small. In the particular caseN51, which reduces to
the well studied standard map, this factorf '2.15 was found
in numerical experiments,1 and later confirmed with much
better accuracy in Ref. 20:f 52.255... . The best theoretica
value recently derived isf '2.14 ~Ref. 21!. Uncertainty in
this factor limits the theoretical accuracy of relation~3.5!. It
is partly balanced by an underestimated layer width, and a
by a factor of 2 as discussed above.14 Hence the factorf
5 f th / f n in Eq. ~3.5! is actually the ratio of a theoreticalf th to
the correctionf n5w` /ws of the empiricalws8 value~for 100
oscillation periods in our case! to obtain the true valuew`

for infinitely many periods.

,

n-
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N ~Fig. 1! because the original interaction is local. Howev
this region is rather narrow. A comparison of numerical d
for L52 with theory~3.5! is presented in Fig. 1~the dotted
line a!. The value off 50.64 was obtained from the thre
leftmost points in Fig. 1 (lnl51.5– 2.5) with rms deviation
from the theory~3.5! D ln ws560.53. Assuming the empiri
cal correction14 f n52 gives f th51.3, which is rather differ-
ent from that in the standard map.

4. LARGE-l LIMIT: STATISTICAL ESTIMATES

For large l the layer width, as well as the AD rate
progressively exceeds the simple estimate~3.5! ~Fig. 1!. This
was noticed already in the first numerical experiments
AD.1 Evidently this effect, which is somewhat strange at fi
glance, is due to higher-harmonic driving resonances, e
though they are much weaker. Generally, such resona
are present in the original Hamiltonian~1.1!, and their am-
plitudes Vnm are explicitly given. However, in the mode
~2.1! under consideration here this is not the case, and
higher perturbation harmonics show up only in higher ord
of the perturbation expansion with respect to small pertur
tion parameterK!1. The mechanism for generating highe
harmonic terms is related to the modulation of each unp
turbed frequencypi by any other degree of freedom. I
particular, this general mechanism transforms the orig
local interaction between degrees of freedom in the sys
into a global one. Approximately, the higher-order amp
tudesVn;Kn5exp(n ln K), and their decay rates ~per free-
dom! can be assumed in the form17

s5 ln~A/K ! ~4.1!

with some constantA depending on a particular shape of t
perturbation. In our model~2.1! the leading higher terms
roughly correspond toA;2, which we will use below. No-
tice that the amplitudes do not depend on the external
turbation harmonicm, since it is ad-function.

A counterbalance to the weaker higher perturbat
terms is the smallerl ~1.5! due to the smaller detuningvnm

~1.2!. Generally, the dependencevnm(n,m,v) is very com-
plicated, with wild fluctuations, and exact evaluation of
higher-order perturbation is practically impossible and ev
useless beyond a few first terms.21 However, the leading de
pendence can be found as follows~see, e.g., Refs. 22 and 2
and also Refs. 1, 15, and 17!:

vnm5
V

qL21 Fnm~v!, ~4.2!

whereq5^uni u& is average absolute value of the compone
of integer vectorn and now the new functionFnm describes
the fluctuations only. The latter are quite big, which is t
main obstacle for reliable estimates. In some special ca
the functionFnm5F0 is simply a constant. For example, fo
the caseL52 and frequency ratioR5v/V5(A521)/2
~‘‘the most irrational’’ real number! we have 1/F05R
11/R5A5. Generally, only a sort of statistical estimate c
be obtained by settingFnm(v)'F f'const to some averag
value to be fitted from numerical data.
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takes a form similar to Eq.~3.4!:

Vn;exp~2qs~L21!!cosS qc1

2
2vnmt1fnmD , ~4.3!

where the factorL21 is less by 1 than the full number o
frequencies because of thed-function in the Hamiltonian
~2.1!, as discussed above. Assuming again that the term~4.3!
provides the main contribution to the formation of the ch
otic layer, which seems to be plausible owing to the b
detuning fluctuations, we arrive, analogously to Eq.~3.5!, at
the following estimate for the layer width:

ws;~2eln /q!q exp~2E~n!!. ~4.4!

Here the principal exponent is~cf. Eq. ~1.7!!

E~n!5qs~L21!1
pln

2
, ln5

vnm

vg
'l0

F f

qL21 , ~4.5!

wherel05V/vg5lV/&, andl[1/AK ~Fig. 1!.
The minimum ofE(n) is (V52p)

Emin5spLL1/L, L5
p2

&

F fl, p512
1

L
, ~4.6!

and is reached atq'q0 , where

q0
L'

L

s
,

ln

q0
'

2s

p
. ~4.7!

The latter relation shows that the factor (ln /q) in Eq. ~4.4!
approximately reduces to a constants→sL which renormal-
izes the amplitude decay rate, where

~L21!sL'~L21!s2 ln s2 ln
4

p
21.0. ~4.8!

The latter inequality is a necessary condition for the valid
of these approximate relations. This condition is satisfied
sufficiently large originals, or smallK ~see Eq.~4.1!!.

Finally, the approximate relation for the layer width
this limit reads

ln ws'Af2b~L !sL
pLL1/L. ~4.9!

This theoretical dependence is also shown in Fig. 1~curve
b2! for L52 and fitted valuesAf55.42, andF f50.34 for
the detuning parameter in Eq.~4.6!. The rms deviation for 5
points (lnl5224) is D ln ws560.71. While the average
detuningF f has a reasonable value, the factorAf seems too
big ~see next section!. Apparently, this discrepancy chara
terizes the accuracy of our statistical estimates. The a
tional parameterb(L)51 was set equal to unity forL52,
and will be discussed in detail in Sec. 5 below.

For biggerL the behavior is completely different, an
this, our most interesting result, will be described in the n
section.

5. INTERMEDIATE ASYMPTOTICS: FAST ARNOLD
DIFFUSION

The crucial change in the dependencews(l) stems from
the factor L21 in the expression for the exponentE(n)
~4.5!. The effect of this factor was previously missed in Re
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1 and 5~cf. Eq. ~1.7!!. Indeed, it leads to a nonmonotonic
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dependencews(L) according to Eq.~4.9!. The latter was
derived from optimization with respect to the average h
monic numberq among the driving resonances with th
maximum dimensionL5N only ~see Eq.~4.2!!. Meanwhile,
there are also resonances of lower dimension withL̃,L.
Hence we need a second optimization, now with respec
L̄, as was first done in Ref. 14~see also Ref. 17!. First, we
explain the idea of optimization for a simple example~cf.
Eq. ~4.9!!

ws5exp~2Ll1/L!. ~5.1!

The new factorL decreases the layer width asL grows, and
thus counteracts the increase inws due to the dependenc
l1/L. For any pairL1,L2 there is a certain value ofl5l*
at which bothws values coincide,

l* 5~L2 /L1!L1L2 /~L22L1!. ~5.2!

For l,l* we havews(L1).ws(L2) and vice versa. Thus
for a given l the particularL̃(l) should be found which
maximizesws . In this way we would obtain a broken lin
which is the envelope of the family of curvesws(l,L̃). In-
terestingly, the existence of such a family of intersect
curves could already be inferred~but was missed! from the
validity of approximation~3.5! which corresponds toL̃51
~Refs. 1, 2, 6, and 7!.

For L@1 a smooth approximation to the envelope
found from the local condition

dws

dL̃
52wsl

1/L̃S 12
ln l

L̃
D 50, ~5.3!

whence we obtain the optimal value

L̃0~l!5 ln l ~5.4!

and

wmax~l!5ws~ L̃0!5l2e, ~5.5!

wheree5exp (1). Thus, the dependence of the layer wid
on the adiabaticity parameter becomes a power law, prov
that L̃0<L, or

l<lL5eL, ~5.6!

i.e., for a not-too-weak perturbation. This border is,
course, much higher~in «! than that in the rigorous theor
~cf. Eq. ~1.11!!. We term~5.6! the intermediate asymptoti
region, as contrasted to the far asymptotic limit for the
versed inequality. The former is always bounded from ab
but rapidly grows withL, and may be arbitrarily large a
L→`.

We call this regime fast Arnold diffusion~FAD!. Within
the domain~5.6! the layer width~and diffusion rate! does not
depend on L, but for any fixed L and l→` the
Nekhoroshev-like dependence~4.9! is recovered asymptoti
cally.

In Fig. 3 the power-law mechanism is illustrated, for t
simple example~5.1!, by plotting the family of curves
ln(ws(l,L̃)/wmax) which are tangent to the line of maxima
wmax(l) ~5.5! up to the largestL̃5L55.
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For the more realistic asymptotic relation~4.9! the opti-
mization is more complicated because of the additional
pendence onL via sL

p . That can be partly removed by ap
proximate renormalization:L0→L0 /s. For L@1 the
remaining dependence~4.8! is weak and can be neglected,
least in evaluating the optimalL̃0 , which now becomes~cf.
Eq. ~5.4!!

L̃0~l!' ln~L/s!. ~5.7!

However, we retain the more accurate value ofsL ~4.8! in
the final expression:

ln ws'Af2bfeFs lnS L

s D2 lnS 4s

p D21G , ~5.8!

which is the main result of our studies. It is compared w
numerical data in Fig. 1~curve c, see also Fig. 2!. Besides
two fitting parameters previously used in Eq.~4.9! ~curveb2

in Fig. 1!, which now take somewhat different values; (Af

521.05 andF f50.4), we have to introduce a third one,bf

50.29. The fitting of empirical data has been performed
N55, 7, 9, 15 only. We excluded data forN53, 4 as they
seem to violate the condition~cf. Eq. ~5.6!!

L<LL5
p2

&

F flL'seL ~5.9!

for ln l*5 ~see Figs. 1 and 2!. Using the above fitted value
for F f50.4, and Eq.~4.1! for s5 ln(2/K)5 ln(2l2) we obtain
from Eq.~5.9! ln l3'4.2 and lnl4'5.5. While the first value
is close to the empirical one, the second is too large. T
origin of this discrepancy is not completely clear, but it m
be caused by fluctuations. Apparently, the latter are ma
related to the detuning functionFnm(v) which fluctuates
with both the harmonic numbers and the set of frequenc
for different L. Interestingly, while the optimal harmoni
numberq0 increases withl.lL as in ~4.7!, it remains ap-
proximately constant,

q0'e'3, ~5.10!

in the whole FAD region~5.9!. This follows directly from
Eqs. ~4.7! and ~5.7!. Surprisingly, the above asymptotic re
lations remain reasonably good in spite of the relativ

FIG. 3. A scheme of the familyws(l,L̃), for L̃51 – 5 as indicated, with
maximal L̃5L55 which form the smooth power-law dependence~5.5!
shown by dotted straight line.
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small q0 value ~Figs. 1 and 2!. Notice, however, that the
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Detuning fluctuations inF f were calculated from the nu
merical data using the relation~see Eq.~5.8!!

d ln ws

d ln F f
52bfesL'2bfe~0.712 ln l!, ~5.11!

which gives for the rms dispersion

^D ln F f&450.18, and^D ln F f&650.25. ~5.12!

The first value is the average over 4 cases withN55, 7, 9, 15
as in the main fitting; for the secondN53, 4 are also in-
cluded. The latter value is used in Fig. 2 for rms fluctuatio
D ln ws according to Eq.~5.11!.

The accuracy of our theory does not allow for a reas
able estimate of the factorAf'21 in the main relation~5.8!,
whose value is considerably smaller thanAf'5 in Eq.~4.9!.
However, the value of the new fitting parameterbf50.29,
which we had to introduce in Eq.~5.8! instead ofb(2)51 in
Eq. ~4.9!, is a problem for the theory. It is impossible to
the data for largeL with the latter value or vice versa, i.e
with b(2)50.3, as in Eq.~5.8! except forL52, unless one
assumes the valueF f53 in Eq. ~4.9! instead of 0.3, which
seems too big. In any event, something happens in go
from L52 to L>3, which is obvious from the data in Fig. 1
To reconcile these data with the above theory one need
assume a drop either in the parameterb from 1 to 0.3~with
approximately the sameF f'0.4! or in the parameterF f

from 3 to 0.4~with approximately the sameb'0.3 still to be
explained anyway!. Actually, the valueF f53 for L52
would contradict the rigorous upper boundF f<1.22 So we
have to understand the first possibility above.

In Ref. 17, using a somewhat different approach,
following expression has been derived for the parameterb in
the relation ~2.11!, similar to Eq. ~5.8! above: b'1/pAe
50.19. This value is close to the present empirical one,bf

50.29. However, the former does not fit the far asympto
expression~4.9! for L52, as discussed above.

A qualitative explanation of the decrease inb(L) with L
could be related to an underestimate of the perturbation F
rier amplitudes in Eq.~4.3!. Indeed, we assumed that th
amplitudes decay independently for each degree of free
~factor L21!. However, the higher harmonics may arise
the perturbation series not individually but in groups, th
decreasing the effective parameterL or s. The former pos-
sibility is excluded by the assumed expression~4.2! for de-
tuning. Hence we guess the effective amplitude decay rat
the forms→bs with empiricalb'bf'0.3.

A different value ofb51 for L52 is also explained in
this way because in that case only a single oscillation
quency remains. However, another important question ari
is the new factorb(L) a constant forL>3 or does it change
still further with L? In other words, is FAD really indepen
dent of N? Our empirical data seem to confirm such ind
pendence. Even though there are quite big fluctuations
large l they do not reveal any systematic variation ofws

with L. This is especially clear from Fig. 2 where the diffe
ence between the numerical data and the theory is sho

622 JETP 85 (3), September 1997
s

-

g

to

e

c

u-

m

s

in

-
s:

-
or

n.

dencews(l) around lnl53. This results from a deviation o
the approximate smoothed envelope~5.8! from the family of
curvesws(l,L̃), three of which are shown in Fig. 2~for
L̃52, 3, 4, cf. Fig. 3! as calculated from Eq.~4.9! with the
factor b(2)51, andb(3)50.29.

If the above hypothesis is true a new fitting is require
because the renormalizations→bs would result in more
complicated expressions than just a single factor in Eqs.~5.8!
and ~4.9!. By doing so we have found thatws(l) according
to Eq. ~5.8! changed negligibly after some changes in t
fitting parameters:Af520.88, bf50.28, F f50.21 which
appear to be reasonable also. A larger changedAf'1 occurs
in the family of curves Eq.~4.9! for L̄.2, and their agree-
ment with the smooth envelope~5.8! worsens owing to the
approximate relation~5.7!. To keep the above estimate
more self-consistent we neglect all these minor changes,
retain the above relations with a single parameterbf50.29
for L.2. In any event, the relations, which are approxima
anyway, are much simpler in this form.

Interestingly, half of the data in Fig. 1~ln l<4, L.2!
also fit a simple power law with exponent 6.3, which is ve
close to the value 6.6 obtained in Refs. 16 and 17 aro
ln l'2. However, for larger lnl.4 the deviation from such
a simple dependence~it would be a straight line in Fig. 1!
progressively increases in accordance with the theory~5.8!.

6. DISCUSSION

We have performed detailed investigations into fast A
nold diffusion, a new regime of AD when the diffusion ra
depends on the perturbation strength«5K, for the models
~1.1! and~2.1! respectively, or on the adiabaticity paramet
l;1/A«;1/AK as a power law~5.8! rather than an expo
nential like Eq.~4.9!.

We made use of a specific model~2.1! which is rela-
tively simple and very convenient for numerical experime
with arbitrary number of degrees of freedomN but, at the
same time, is rather difficult for theoretical analysis. This
because the model represents the limiting case of the l
interaction between degrees of freedom. Not only betw
two degrees of freedom, which would model a pair intera
tion in a broad class of physical systems, but even furt
restricted to the coupling between two nearest-neighbor
grees of freedom in a chain. Moreover, the coupling is h
monic, so that only three-frequency primary resonances~for
the two degrees of freedom and for the driving perturbati!
with harmonic numbersn561 show up in the original
Hamiltonian~2.1! independent ofN. As a result, the higher-
harmonic multifrequency resonances, which make the p
cipal contribution to AD, arise only in higher-order pertu
bation terms, which makes the theory very difficult from t
beginning. We circumvented this difficulty by a plausib
and simple conjecture~4.1! for the decay rate of the high
order perturbation amplitudes. However, to reconcile the e
pirical data with the theory we had, later on, to furth
modify this conjecture by introducing the additional fact
b(L) into our main relations~4.9! and~5.8!. Even though we
suggest in section 5 a qualitative explanation forb(L)Þ1,
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the origin of this additional dependence is not yet completely
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clear, and it constitutes an open question in our theory.
parently, this is related to the specific Hamiltonian~2.1! as
discussed above.

The factorb50.29, assumed to be constant forL5N
.2, is one of the three fitting parameters in our main th
retical relation~5.8! for the FAD. As explained in section 2
we actually computed and calculated the chaotic layer w
ws related to the diffusion rate via estimate~1.6!. The second
fitting parameterF f50.4, which describes the detuning flu
tuationswnm ~1.2!, also cannot be evaluated in the prese
state of the theory but was found numerically to have a pl
sible value. Finally, the third fitting parameterAf remains
completely out of theoretical reach and simply characteri
the global accuracy of the theory. We recall that all our
timates except the simplest one~3.5! are of a statistical na
ture, owing to the large detuning fluctuations. Within th
accuracy and fluctuations, the agreement between the em
cal data and the theory as presented in Figs. 1 and 2 ca
regarded as satisfactory, especially taking into account
big range ofws variation, almost 22 orders of magnitude!

Surprisingly, all this huge range corresponds to the
termediate asymptotic region~1!l!lL , see Eq.~5.9!! with
FAD, starting even at a relatively smallL5N>5. Even for
L53 and 4 the FAD range is apparently of a compara
size, and only for the minimalL52 does the far~exponen-
tial! asymptotic (l@lL) behavior clearly show up. As al
ready discussed in section 5, the sharp change inws(l) from
L52 to L53 is precisely due to the ‘‘mysterious’’ param
eterb, which drops by a factor of 3. Unfortunately, this do
not allow us to reach the far asymptotic limit and to confi
the exponential dependence~4.9! on N for l.lL beyond the
minimum L52. Meanwhile, this would be important to de
cide on the different interpretation ofN-independent diffu-
sion for largeN in Ref. 16. The authors of the latter conje
tured that this independence is a result of the lo
interaction in the model~2.1!. This contradicts our theory bu
not as yet the direct empirical evidence. At the moment
can only remark that their reference to Wayne’s theory24 for
the same model is irrelevant. Indeed, Wayne proved a l
N-independent stability for very special, nonresonant, ini
conditions~theorem 1.1!, whereas AD occurs within chaoti
layers only, i.e., also for highly specific but resonant init
conditions. Thus, the former theory is related to a glo
chaos rather than to KAM integrability with its peculiar A
nold web of chaotic layers.

In the case of a global interaction~1.1! with strong non-
linearity ~1.4! and uniform amplitude decay rate our theo
remains valid, and even becomes simpler ass5const. How-
ever, the numerical experiments would be much more d
cult for largeN. On the other hand, both the FAD range~5.9!
and the diffusion rate there depend generally on the num
of incommensurate unperturbed frequenciesL5N1M2r
~1.9!, which may be large ifM , the number of driving per-
turbation frequencies, is large.

Fast Arnold diffusion should not be confused with t
much faster diffusion in degenerate systems or those w
nonconvex energy surfaces~Sec. 1!. In the latter case the
diffusion mechanism is completely different. Apparent
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periments with the classical model of the hydrogen atom
crossed electric and magnetic fields.25

In the present study we have chosen one of the stron
primary resonances as guiding, with amplitudeVg5V1;K
~Sec. 2!. In case of a high-harmonic guiding resonance~Vg

5Vn , n@1! the main effect would be a tremendous drop
the diffusion rate due to the exponential rise of the adia
ticity parameter withq ~see Eq.~4.5!!:

ln;expS s

2
LqD;expS s

2
Lr1/LD , ~6.1!

wherer(n);qL is the density of the guiding resonances
the Arnold web with harmonic numbers up toq ~cf. Eq.
~4.2!!. Hence, the diffusion rate in the intermedia
asymptotic region drops exponentially withq or r, Eq. ~5.8!,
and even as a double exponential in the far asymptotic lim

In conclusion, our present studies confirm the previo
conjecture and preliminary empirical data14,17 concerning a
new regime of fast Arnold diffusion. Moreover, we hav
found that in multifrequency systems (L@1), in particular,
large ones (N@1), the FAD range in the perturbation~5.9!
is fairly big, so that this regime appears to be typical, in
sense, and might be important in various applications.

We are very grateful to our colleagues in the Univers
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part of this study. This work was partially supported also
the Russia Fund for Fundamental Research~Grant 95-01-
01047!.
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@S1063-7761~97!02509-2#

Through an oversight on the part of the author, there was no indication that the article, as a whole, descr
propagation of shocks and sound waves in a relativistic two-component medium in which the components interact. No
results apply specifically to a relativistic superfluid, but only the equations in the acoustic limit and the derivation
formulas for the velocity of first and second sound~Secs. 4–6!.
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